With this tape:
Full story

4 product tests

CrO2 Tapes: Full Story

3 practical projects

Animal Guidance Systems
SONY

QUADRADIOLOGICAL!

OR HOW TO IMMERSE YOURSELF WITH SONY’S SENSATIONAL TC-366-4

Sony now makes it possible for everyone to enjoy the unmatched new thrill of 4-channel quadradial ‘surround sound’ with this impressive tape deck TC-366-4!

All the most advanced features are there — professional 3-head system with separate recording, playback and erase heads for 4-channel tape/source monitoring. Mechanical servo-controlled tape tension for absolute minimum wow and flutter. Mixing facility with 4 separate auxiliary and microphone recording volume controls. 4VU meters. Tape selector for recording on normal tape or high quality tape such as Sony’s SLH tape. Separate record buttons for front channels and rear channels. Slant front for easy operation. Outstanding high frequency tape bias. And many more.

Also available as a slant front 4-track conventional stereo tape deck — Model TC-366.

SPECIFICATIONS

- System: 4-track 4-channel quadradial stereo recording and playback
- 4-track 2-channel stereo recording and playback
- Power requirements: AC 240V, 50Hz
- Power consumption: 40W
- Tape speeds: 71/2 ips, 3⅛ ips
- Recording time: 1.5 hours at 3⅛ ips (4-channel quadradial stereo with 1,800ft. tape); 3 hours total at 3⅛ ips (2-channel stereo with 1,800ft tape)
- Reel capacity: 7” or smaller
- Fast forward and rewind time: 2 minutes (with 1,200ft tape)
- Semiconductors: 49 transistors, 6 diodes
- Heads: Record head, Playback head, Erase head
- Frequency response: 20-25,000Hz at 71/2 ips. 30-20,000Hz ± 3 dB at 71/2 ips, 30-17,000Hz at 3⅛ ips
- Signal-to-noise ratio: 55dB (with SLH tape), 52dB (with standard tape)
- Distortion: 1.2%
- Flutter and wow: 0.09% at 71/2 ips, 0.12% at 3⅛ ips
- Inputs: Microphone inputs (4): Sensitivity -72dB (0.2mV); Accept low impedance microphones. Auxiliary inputs (4): Sensitivity -22dB (0.06V); Impedance 100k ohms
- Outputs: Line outputs (4): Output level 0 dB (0.775V). Load impedance 100k ohms; Headphone jacks (2). Accept 8-ohm stereo headphones
- Dimensions: 17”(W) x 18¾”(H) x 9¼”(D)
- Weight: 28 lb 3 oz
main features

ANIMAL GUIDANCE SYSTEMS ... 16
Scientists may use live animals in nuclear missiles — have we this right?

CHROMIUM DIOXIDE TAPES ... 26
How they work, what they do, and how to use them — a complete guide

RESISTORS IN PARALLEL .. 30
Computer-calculated values of any two paralleled resistors

PRACTICAL GUIDE TO ZENER DIODES — PART II 31
The principle and applications of these versatile circuit components

RADIO ASTRONOMY FOR AMATEURS — PART II 43
How to participate in this exciting new hobby — a practical guide

HI—FI GLOSSARY ... 54
Here are the most often misunderstood hi-fi terms — simply explained

VIDEO CASSETTES .. 61
Latest report on this exciting new audio/visual technology

COMMON COMPONENT CONNECTIONS 66
Chart shows outlines and connections for a wide variety of components

NEW PRINTED CIRCUIT LAYOUT METHOD 104
This new technique simplifies and speeds-up printed circuit design

product tests

ELECTRODATA 300 FM TAPE RECORDER 20
Australian-built FM recorder has many uses in science and industry

THE POWER AND THE GLORY ... 36
We test the McIntosh C25 Preamp. and MC 2105 105 Watt Power Amplifier

TEAC A—350 DOLBY CASSETTE RECORDER 56
This new-generation cassette recorder offers truly hi-fi performance

projects

SAFETY CROSSING ... 34
Another simple electronic puzzle — once again designed by A. J. Lowe

AUTOMATIC CAR ALARM SYSTEM 49
This ingenious, simple-to-install car alarm is automatically "armed"

BASS REFLEX CABINETS ... 68
Simplified approach to enclosure design produces very effective results

reviews

RECORDINGS — CLASSICAL, 85; RECORDINGS — JAZZ, 89; POP
TRENDS — 93; BOOK REVIEWS 99.

news & information

NEWS DIGEST, 6; EQUIPMENT NEWS, 74; COMPONENT NEWS, 80;
AUDIO NEWS, 82; INPUT GATE (READERS' LETTERS) 106;
TECH—TIPS, 107.

COVER: Over 50,000 cars are stolen in Australia each year. Electronics Today's
automatic car alarm (fully described in this issue) avoids the problems inherent in
many existing designs.
A large number of entries have been received for this competition — which closed on November 23.

The competition invited entrants to design an effective and reliable system to provide audible warning of a child falling (or about to fall) into a swimming pool.

Entries have been of a surprisingly high technical standard. Most competitors developed systems that either detect a child approaching the pool, or respond to wave action caused by a child entering the pool, or register the sonic components of the splash via underwater transducers.

We are currently evaluating entries and will be asking finalists to submit working prototypes fairly soon.

Final evaluation will be completed as soon as possible — but may take longer than originally expected due to the extraordinarily high technical standard of many of the entries.

The results will be published as soon as judging has been completed. Details of the next competition in this series will be announced early in 1972.

FIRST PRIZE
$1000
WORTH OF HI-FI EQUIPMENT
FROM
SIMON GRAY
Pty. Ltd.

RUNNER-UP PRIZES TO BE ANNOUNCED LATER

EXAMPLES OF HI-FI EQUIPMENT AVAILABLE FOR THE WINNER’S CHOICE AS PART OF $1000 FIRST PRIZE PRESENTED BY SIMON GRAY PTY. LTD.
solid state humans next?

O UR leading article this month — describing how the US and the USSR are actively experimenting with disembodied animal brains as bionic computers in missile guidance systems — is frightening in its implications.

Already scientists are openly discussing the feasibility of enhancing human and machine intelligence by organic links. Dr. R. M. Page, director of the U.S. Naval Research Laboratory in Washington, has discussed publicly a system in which human thoughts are fed automatically into a computer store as a basis for machine decision-making. A Rand Corporation study confirmed that this system could eventuate within our lifetime.

In a recent successful experiment, Professor Robert White, of Cleveland's Metropolitan General Hospital, cut the brain from a rhesus monkey, discarded the body, and then — by hooking up the brain's carotid arteries to another monkey — kept the disembodied brain alive for five hours. Other monkey brains have been kept alive for days at a time, using machine blood-cleansing techniques.

A member of Professor White's team states unequivocally: "The brain activity was largely better than when the brain had a body . . . I even suspect that without his senses he can think more quickly. . . ."

In his brilliant book 'Future Shock', Alvin Toffler says "As the brain surgeons and the neurologists probe further, as the bio-engineers and the mathematicians, the communication experts and robot-builders become more sophisticated, as the space men and their capsules grow closer to one another, as machines begin to embody biological components and men come bristling with sensors and mechanical organs, the ultimate symbiosis approaches."

For these techniques are not necessarily confined to non-human life. Professor White has gone so far as to state — albeit chauvinistically — "The Japanese will be the first to keep an isolated head alive. I will not, because I haven't resolved as yet this dilemma: Is it right or not?"

A very good question.
WHilst researching an article on computer time sharing this year, two members of our technical staff attended Honeywell's programming course.

We were so impressed by the versatility and capabilities of the system that we have now installed our own computer terminal within our project laboratory. The terminal will be used in data evaluation, project development, and in the preparation of a number of tables and nomographs that we feel will be of valuable assistance to engineers and technicians. The first of these tables appears elsewhere in this issue.

Our companion magazine 'Modern Motor' will also use the Honeywell system for the preparation and evaluation of road test data - enhancing yet further their reputation for the most comprehensive and accurate reports published today.

PAGE APPOINTS MARKETING DIRECTOR

PAGE Communications Engineers Pty. Ltd. have announced the appointment of Mr. L. Larsen as Marketing Director.

The company is part of the worldwide PAGE organisation established in America in 1947 and incorporated within the Northrop group in 1959.

Page provides a wide range of services within the field of telecommunications. These vary from feasibility studies to systems and engineering design in the fields of propagation, microwave techniques and information distribution, switching and control. Their capability extends from VLF through SHF and encompasses broadcast, tropospheric scatter, point-to-point, cable and satellite earth station communication techniques.

Mr. Larsen was previously Assistant General Manager of IRH Industries Ltd.

FIFTY DAY TIMER PROJECT

An unprecedented demand for 'E' Cells created by our December 50 day timer project has temporarily exhausted supplies. The sole suppliers, Plessey-Ducon, report that further supplies from Plessey International Inc. are expected to be available early in January.
Variations on an original theme... with Silcron!

Although it's only two years since the very first Silcron turntable was released, this economical and noise-free belt driven turntable has captured a substantial percentage of the Australian hi-fi market. The original Silcron Mk III appeals to the hi-fi enthusiast who demands perfection yet is cost-conscious without doubt it is the finest turntable available at the price.

Like all engineers who are also perfectionists, the designers of the original Silcron turntable have recognised the need for a deluxe model. And so we release the new Silcron Mk. IV "Isophonic" Series. It combines all the proven attributes of the Mk. III with new design and engineering features which make it the most outstanding turntable available in Australia today... no other turntable offers as much performance for relatively low cost.

FEATURES OF THE SILCRON TURNTABLES:

SILCRO MK. III.
- Sealed 12 pole synchronous motor.
- Belt drive... noise-free.
- Wow and flutter — less than 0.04%.
- Lightning fast speed change.
- Two speeds — 33½ and 45 r.p.m.
- Dynamically balanced cast aluminium turntable platter.
- Only 3 moving parts.
- Anti-static mat at no extra cost.
- Height above motor board — 2".
- Precision engineering throughout.

SILCRO MK. IV "ISOPHONIC" SERIES.
- New sealed 8 pole 750 r.p.m. synchronous motor.
- Belt drive... noise-free.
- Wow and flutter — less than 0.04%.
- Lightning fast speed change.
- Two speeds — 33½ and 45 r.p.m.
- Dynamically balanced cast aluminium turntable platter.
- Four times the power of the Mk. III.
- New centre bearing shaft assembly.
- Acoustically insulated turntable platter and pick-up assembly which eliminates acoustic feedback.
- Tone arm tracking is constant.
- New vibration absorbent anti-static mat.
- Basic turntable only, unmounted.
- With motor board and timber base.
- With independently sprung motor board, dustproof perspex cover, professional tone arm and magnetic stereo cartridge.
- New turntable, unmounted.
- With professional quality tone arm.
- With attractive oiled teak base.
- With professional tone arm and attractive oiled teak base.

CHOICE OF MODELS —

SILCRO MK. III.
- Basic turntable only, unmounted.
- With motor board and timber base.
- With independently sprung motor board, dustproof perspex cover, professional tone arm and magnetic stereo cartridge.

SILCRO MK. IV.
- Basic turntable, unmounted.
- With professional quality tone arm.
- With attractive oiled teak base.
- With professional tone arm and attractive oiled teak base.

Note: Dustproof perspex covers and spring mounted timber bases are available for both Silcron models.

See your franchised Simon Gray dealer. You'll find it costs very little to step up to Silcron! Service facilities are available in all states and spares if ever required.

INTERSTATE REPRESENTATIVES:

N.T.: Pilliner's Music House, Smith Street, Darwin. Tel. 3801
Qld: Sydney G. Hughes 134-135 Arthur St., New Farm, Brisbane. 581452
Sydney Office, 53 Victoria Ave., Chatswood, N.S.W. Tel. 40 6521
Adelaide Office, 501 South Terrace, Adelaide, S.A. Tel. 25 2157

See your franchised Simon Gray dealer. You'll find it costs very little to step up to Silcron! Service facilities are available in all states and spares if ever required.
Goldring headphones fill your ears with a full depth of sound, reducing outside noise interference to a minimum. Thick soft earpads cushion every distraction; separate volume controls give you the perfect balance you require; long cord length gives you freedom.

If your hearing is acute enough you might hear the difference in our 3 models.

1. **GOLDRING GR102** — with separate volume controls.
 - Frequency Response 20-20,000 Hz
 - Matching Impedance 4-8 ohms
 - Maximum power rating 0.2 watts
 - Cord length 15'
 - Net weight 15 ozs

2. **GOLDRING GR101**
 - Frequency range 150cps-15Kcs
 - Matching Impedance 4-16 ohms
 - Maximum input 0.2 watts
 - Cord length 7'
 - Weight 11 ozs

3. **GOLDRING GR100**
 - Frequency range 200cps-12Kcs
 - Matching Impedance 4-32 ohms
 - Maximum input 0.2 watts
 - Cord length 6'
 - Weight 10 ozs

GOLDRING

Engineering (A'asia) Pty. Ltd.

New South Wales: 26 Ricketty Street, Mascot 2020. Telephone 67 6088
Canberra: 19 Molonglo Mall, Fyshwick, A.C.T. 2604. Telephone 95 6248.
Victoria: 162 Peiham Street, Carlton 3053. Telephone 347 5177.
Queensland: 32 Balaclava Street, Woolloongabba 4102. Telephone 91 4972
South Australia: 207 Flinders Street, Adelaide 5000. Telephone 23 3488.
Western Australia: 32 Northwood Street, Leederville 6007. Telephone 8 4988.
First of the selling machines designed, developed and made by A.W.A. for the Totalizator Agency Board of New South Wales is now in operation.

This equipment at the William Street (Sydney) TAB branch, together with telephone betting machines, is part of a $3 million contract placed by the Board with A.W.A.

With the new TAB betting system, less than three seconds elapse from the time a bet is recorded on the machine until a ticket is issued. This includes the time taken to transmit the information, processing by a centralised computer and transmission back to the operator.

The A.W.A. installation at William Street consists of a number of branch input devices (BIDs) which record details of each bet, transmit it to a computer, where it is verified, and then prints a betting ticket which is handed to the customer.

The Company is supplying 925 of these devices.

The telephone betting machines, an adaptation of the branch input devices, are used to record wagers from telephone betting customers. Several of the B5 of these machines which the Company has contracted to supply are already in operation.

IREE AUDIO STUDY GROUP

The Council of The Institution of Radio and Electronics Engineers Australia gave approval at its meeting on November 17 for the formation of an IREE Audio Study Group.

This decision follows upon representations made to it by manufacturing, wholesaling and retailing interests engaged in the audio sector of the electronics industry.

An earlier meeting attended by representatives of these interests told executive officers of the IREE that the Audio Industry is presently fragmented and now recognises the need for unity and for a group effort to stimulate and guide its growth and development both nationally and internationally.

A prominent member of the Audio Industry told the IREE representatives led by Mr. Angus Fowler, that the Institution has the credibility, the authority and experience necessary to support and ensure the success of an audio industry group movement.

Mr. Fowler said the structure of the IREE could conveniently enable the establishment of an audio group which in addition to engineering aspects could be concerned with other areas of interest to the industry including standards of performance, measurement standards and certification of equipment.

"Another main objective will be stimulation of interest in the audio field and a continuing awareness about and dissemination of information on new developments", Mr. Fowler added.

Adopting Mr. Fowler’s recommendation for the formation of the group, the Council asked that immediate steps be taken to prepare a set of rules governing the Group’s establishment and operation as a virtually autonomous body. A committee has been formed and work is proceeding with a view to a detailed announcement being made in the New Year.

MITSUBISHI SETS EVR PRICE

Japan’s Mitsubishi Electric Corp. has become the second Japanese licensee to set a firm price on its electronic video recording (EVR) player.

The company priced its player at 276,000 yen, or about $900. Earlier, Hitachi Ltd. went on the Japanese market with its player at 268,000 yen, or about $975.

Tokyo Shibaura Electric Co. (Toshiba) has unveiled a combination EVR player/20-inch color TV receiver for just over $1,000 and a separate player which it said would be priced between $550 and $850. They are to become available at year end.

Matsushita Electric Industrial Co. the fourth Japanese licensee of the EVR Partnership, London, has not disclosed its marketing or pricing plans to date.

All four Japanese licensees are expected on the U.S. market next year when Motorola loses its exclusivity as North American supplier. Motorola’s license is direct from CBS, developer of the EVR system.

STA ELECTRONICS P/L

Manufacture – Sales – Service

392 Centre Road, Bentleigh, Vic., 3204. Tel.: 97 4832 A.M. 97 5539

First Australian release of 4 channel headphones. You don’t need four ears to listen to quadraphonic or quadriphonic sound. Available in 3 makes from $27.50.

IDEAL FOR THE TRAVELLING EXECUTIVE

- Handy, compact cassette-corder with "Swing-balance" mechanism... perfect for people on-the-go.
- Small and light... weighs only 1lb 1 oz and measures only 1 1/16" x 1 5/16" x 4 3/8".
- Sensitive built-in Electret Condenser Microphone.
- "Swing-balance" mechanism for keeping tape speed constant and assuring stable performance even while the unit's in motion.
- Sony-Q-Matic – automatic recording level control system.
- Four power sources – penlight batteries rechargeable batteries, auto/boat battery and household current.
- 400mW of power output from 2-1/8" speaker.
- Unique tape-end-alarm with Sony Auto-Sensor Cassette.
- Functional controls arranged for one hand operation.
- Meter for checking battery life and recording indication.
- Smart and handsome case with carrying strap.

You can plug this microphone into most portable tape recorders and have your voice operate the on-off switch. As long as you talk the machine will record. $18.00.

If you have a legitimate use for a miniature microphone like reporters or businessmen, this nice finished tie bar unit is just the thing at $3.75.

This is the jewel of them all. Gold plated cased miniatures dynamic microphone, 50 ohm imp. with shielded 3ft. cable & 3.5mm plug $16.00.
The Philips resistor.

□ High stability □ Low noise □ Long life

Why settle for moulded composition when you can get the superior quality of Carbon Film Fixed Resistors at even lower prices!

THE ELCOMA DIVISION
Electronic Components & Materials
Philips Industries Limited.
Sydney • Melbourne • Brisbane
Adelaide • Perth • Canberra • Hobart

PHILIPS
The “waffle” is a 400-fold enlargement of an electron microscope’s specimen carrier grid which contains information — texts or photographs — in extreme miniaturisation.

The actual specimen carrier grid, measuring two millimetres in diameter, is held in a forceps by the girl in the white coat. The other girl is holding a portrait photo which has been converted from the reduced version.

Research being conducted by Siemens Berlin Laboratory of Electron Microscopy has yielded interesting developments in miniaturisation of data storage. An electron microscope “turned upside down” can capture a thousand bible length books on a 25 square millimetre foil. This is achieved by an electron beam 1/100,000th of a millimetre in diameter which leaves traces upon a carbon foil, graphically duplicating the original. Conversion to legible form, faithful to the letter numbers and punctuation takes fractions of a second.

From this technique emerge remarkable possibilities for the future, but practical application for storing volumes of information still requires extensive development.

Sydneys’ LEADING HIFI Specialist Centre presents
SPECIAL SYSTEM at a Very Special Price

Want a Stereo?
Then look at these unbelievable systems. Better still, come in and listen to these unbelievable systems from only

$299.00
incl. tax.

System includes the latest Dual 1214 turntable, a perfect blend between manual single player and automatic. Turntable fitted with Shure M5E cartridge.

NIVICO MCA 104
13 watt continuous power
5 way SEA or

Kenwood
2002 Amp
complete. Giving
56 watts of power.

The LS 150 Speakers —
8” 2 way or A & R (Japan)
8” 3 way speakers.

JVC NIVICO GB2E
on display spherical speakers.
50 watts RMS. 8 speakers covering full range.

Treat yourself to a demonstration from the specialist staff.

AUTEL SYSTEMS Pty. Ltd.

20 Pittwater Rd., Gladesville, N.S.W., 2111
Telephone 89 0663

Open All day Saturday —
JVC NIVICO and TEAC Authorised warranty repair centre.
A WIDE RANGE OF LOW COST TEST INSTRUMENTS INCLUDING—
OSCILLOSCOPES, SWEEP GENERATORS, VTM, AUDIO GENERATORS, SIGNAL
GENERATORS, TRANSISTOR CHECKERS, ATTENUATORS, PROBES.

LSG-11 WIDE BAND SIGNAL GENERATOR
Probably the most popular low cost Signal Generator in the world.
This signal generator has a useful frequency range from 120 kHz
to 130 mHz and using an optional crystal, can be crystal controlled.
Adjustable output modulation frequencies of 400 and 1000 kHz can
also be used for testing audio amplifiers. $45.00

LAG-55 AUDIO GENERATOR
The LAG-55 is an indispensable instrument for audio work. Three
different waveforms, (sine, square and complex) are available for a
variety of tests. The wide frequency range from 20Hz to 2MHz and
constant output levels are most desirable features of the LAG-55.
Sine waves are generated with a Wien-bridge configuration and square
waves by a Schmitt trigger circuit. $85.00

LDM-810 GRID DIP METER
The well known Leader LDM-810 Grid Dip Meter is one of the more
useful instruments for checking receivers, oscillators, transmitters and
circuit components.
A frequency range from 2 to 250 MHz (in 6 bands) is available with
an internal modulation frequency of 1 kHz. $45.00

LBO-528 5" OSCILLOSCOPE
The LBO-528 Oscilloscope has been designed for high performance
operation wideband, DC to 10 MHz with a high sensitivity of 10 mV/p-p
makes it an invaluable tool in the development and testing of electronic
circuits. It is especially useful in the examination of low level equipment
such as tuners, IF amplifiers etc. $295.00

LBO-31M 3" OSCILLOSCOPE
The LBO-31M is a compact oscilloscope designed for all round service.
Its small and handy size will appeal to experimentors, servicemen and
plant technicians who demand maximum performance with minimum
space requirements. Responses from 3 Hz to 1 MHz and sensitivity
is 80 mV/cm. $137.50

LPB-102 LOW CAPACITANCE PROBES
The LPB-102 is a high impedance probe specially designed for Leader
LBO-528, LBO-558, LBO-328, LBO-338 Oscilloscopes. Its use prevents
any disturbance to the circuit under test. Input impedance is 10 MΩ
shunted by 18 pF and attenuation is 20 dB. $16.50

CATALOGUES AVAILABLE ON REQUEST.
Distributed by:

WARBURTON FRANKI

*NOTE THAT THESE ARE SUGGESTED
LIST PRICES ONLY AND MAY
VARY SLIGHTLY IN SOME AREAS
AVAILABLE FROM
LEADING ELECTRICAL SUPPLY HOUSES.*
SONY-TEAC JOINT VENTURE

Japan's Sony Corporation and TEAC Corporation have formed a joint company, in Tokyo, to develop and manufacture video equipment for the consumer and industrial fields.

Capital of the new venture is said to be about 400 million yen (approx $1 million) of which Sony holds 51% and TEAC 49%.

Ario Morita, Sony president, will be chairman and Katsuma Tani, TEAC president, will be president of the new firm.

We understand that the new company's entire production will be sold to the two parent companies, but with Sony initially receiving practically the entire output. Eventually the joint company will produce equipment for marketing through TEAC.

80,000 FT. FALL

When the balloon carrying a Plessey Army loudspeaker burst at 80,000 ft., the transducer had racked up nine months of continuous service in the interests of science.

The University of Melbourne's Department of Physics R.A.A.F. Academy was using it as a sound source and receiver in scientific investigations of the lower atmosphere, which have already yielded information of great value to weather forecasters.

The photograph shows the gondola which was wrecked after hitting the ground at about 125 mph. The delicate "sound transducer" and its matching horn were in perfect working order and suffered only a slight dent to an aluminum alloy casing!

With your interest in electro-mechanics you're worth more money in computers.

apply now for our specialist course in computer technology.

The Computer Industry needs men trained in the technical-mechanical side of computers. The industry is showing how great is its need by the kind of money it's paying.

If you are over 18 years of age, and have a keen interest or background in electro-mechanics, you should apply. You will be trained in the skills needed to install and maintain electronic computers and associated electro-mechanical equipment including practical training on the largest computer to be installed in Australia in a private vocational school.

Control Data Institute Division is an international specialist school in computer education. Our Sydney school is one of 25 world-wide and the first opened in the Southern Hemisphere. Control Data itself is one of the world's leading manufacturers of computers. We will teach you as only a computer manufacturer can.

Programming courses also available.

Control Data Australia Pty. Ltd.,
Institute Division,
283 Alfred Street North,
North Sydney, 2060.

Please send me details of your courses.

Name: __________________________

Address: _________________________

Phone: __________________________

Postcode: ________________________

Occupation: ______________________

Age: _____________________________

CDI/64

ELECTRONICS TODAY — JANUARY 1972
BRIGHT
● STAR ●
CRYS TALS
ESTABLISHED FOR THE PAST 35 YEARS FOR ALL YOUR REQUIREMENTS
Bright Star Crystals are preferred by leading manufacturers throughout the country for
ACCURACY — STABILITY
ACTIVITY — OUTPUT
Consult us for Crystals for any
Mobile Radio. All types available.

DISCOUNT FOR QUANTITY ORDERS
AMATEUR AIRCRAFT and
ULTRASONIC also available.
Our modern factory equipment allows us to offer you PROMPT DELIVERY for all CRYSTAL requirements.

DEVOTED EXCLUSIVELY TO
THE MANUFACTURE OF
PIEZO ELECTRIC
CRYSTALS
Contractors to Federal & State Government Departments.

REPRESENTATIVES —
Australia and New Zealand:
Messrs. Carrel & Carrel,
Box 2102, Auckland.
Farr Electronics,
Waterman Buildings,
408 King William Street,
Adelaide.
Phone: 84977.
Paris Radio Electronics,
7A Burton Street,
Darlinghurst, N.S.W.
Phone: 31-3273.
Fred Hoe & Sons Pty. Ltd.,
246 Evans Road,
Salisbury North, Brisbane.
Phone: 474311.
W. J. Moncrieff Pty. Ltd.,
24 Wittenoom Street,
East Perth, 6000.
Phone: 256140.

Write for a free comprehensive price list or quote for your requirements.

BRIGHT STAR CRYSTALS P/L
LOT 6, EILEEN ROAD, CLAYTON, VICTORIA, 546-5076

Trouble-Free Radio Link
Teleprinter messages and data of all kinds can be transmitted between continents over short wave radio links, but as these circuits are extremely interference-prone, special measures are required to ensure error-free transmission. The Elmex 1000 terminal, developed by Siemens, reduces the error rate in transmission of data over short wave circuits so that accuracy is comparable to that obtained in cable connections. The system incorporates automatic error correction. As soon as a wrong character is detected, the transmitting station is automatically requested to initiate a repeat transmission.

Because of its reliability this system is widely used by the various postal and telecommunications authorities in intercontinental telex traffic where radio circuits are still used.

Anti-Trust Suit Against IBM
America’s giant IBM Corporation has been hit by an anti-trust suit from the US-based Symbolic Control, Inc. The suit was lodged with the US Federal Court in mid-November.
Symbolic Control alleges that IBM has failed to ‘unbundle’ its hardware, software and maintenance packages in the field of numerically controlled machine tools — in which it has a 99% share of the market.
The complaint alleges that although software represents more than 35% of the total cost of an IBM numerically controlled machine tool package deal, IBM falsely tells its hardware customers that software and maintenance are ‘free’.
Recalled in the complaint is a 1956 consent decree in which IBM was prohibited from ‘Conditioning the sale or lease of any IBM electronic data processing machine or device upon the purchase or lease of any other IBM electronic data processing machine’.
IBM is also charged with attempting to stifle competition by selling at less than cost and attempting to monopolize by getting lessees and purchasers to agree not to do business with IBM competitors. The alleged offenses add up to violations of the Clayton and Sherman Acts and sections of the California Business and Professions Code.

Aircraft Satellite Antenna
A new high-gain L-band antenna for use by aircraft communicating with ground control has been designed and manufactured in Britain.
It would be fitted to subsonic and supersonic aircraft (Concorde), replacing high frequency radio (HF), which is often unreliable because of weather disturbance.
The Electronic and Space Systems Division of the British Aircraft Corporation, under contract to the U.K. Ministry of Defence, has developed the antenna to operate via geostationary satellites.
It consists of an array of elements and two antennae mounted on either side of an aircraft, such as on the tail fin.
The Royal Aircraft Establishment, Farnborough, is currently evaluating its reliability in a Hastings aircraft.
If fitted flush with the tail fin skin, signals received at each element of the antennae can be electronically adjusted so that the antenna beam can be steered without mechanical movement.
With a geostationary satellite system, the antennae will allow continuous high-quality communications, including data transfer, for airline use.
BAC is prime contractor with an international consortium which has been awarded a contract by the European Space Research Organisation to define the design requirements of satellites to set up reliable communication to aircraft in trans-oceanic flight.

Ho Hum
The US Government’s FCC dept, responsible for policing radio usage, have dropped a large bomb into the plans of many companies actively promoting electronic video recording systems.
Many of these systems use low powered TV transmitters to couple the recorded signal into the TV input circuits. But, according to the FCC, most of these transmitters exceed permissible RF radiation limits, and would not be permitted outside a Faraday cage.
THE ADVENT

What they’re saying about The Advent.

Although The Advent Corporation is new to the high-fidelity scene, its president is well known to anyone who has followed audio developments during the past fifteen years. Henry Kloss, a co-founder of Acoustic Research and later of KLH, is back with what promises to be an unusually diversified line of audio components. To no one’s surprise, one of the first Advent products is a speaker system. It is more evolutionary than revolutionary in design, incorporating new materials and processes rather than new principles. The Advent speaker measures 25½” x 14¼” x 11½”, and is suitable for use on the floor or on a bookshelf. It’s a two-way system, with a newly designed woofer that has an effective cone diameter of 7¾”, although its overall diameter would usually cause it to be classified as a 10” speaker. The cone surround (outer suspension) is a specially processed polyurethane, quite different from the rubber-like compounds used with most speakers. The woofer’s smallish diameter did not impair its low-frequency performance in the least, as our tests subsequently proved.

The tweeter is a direct radiator with a phenolic-resin cone 2 inches in diameter, also designed specially for this system. A three-position toggle switch in the rear of the cabinet selects normal highs, reduced highs, or extended highs, to suit one’s taste.

PRICE $169 each.

JULIAN D. HIRSCH

The shape of the curve above 6 kHz corresponds almost exactly to the calibration curve of our microphone . . . We can’t recall having heard another speaker in its price class that can match it . . . We would consider that it ranks in sound quality with most speakers at twice its price.

ELECTRONICS WORLD

The lows . . . remained strong and clean all the way down to 20 kHz with very low distortion . . . Without a doubt, The Advent is one of the smoothest and widest-range speakers we have had the pleasure of testing . . .

The tone-burst response was excellent throughout, ranking with the best we have seen from any speaker.

STEREO REVIEW

. . . the frequency response was flat, with only ±3 dB variations over the major portion of its range. What is more important is that the 45-degree off-axis response follows the on-axis response to a remarkable degree, denoting excellent high-frequency power response . . .

One could say that at twice the price The Advent speaker would be a good value.

AUDIO

After several weeks of listening, we still hadn’t found anything to complain about. They were, in fact, the least-coloured loudspeakers we have ever heard, and this includes the highest-priced systems currently available.

Probably for just that reason, The Advents proved eminently easy to live with. Dispersion was excellent and so, as a consequence, was the stereo imaging.

STEREOPHILE

Please send me further information on The Advent Loudspeakers.

Trade Enquiries Welcome.

Name.
Address.
State.
Post code.
Both the USA and the USSR are actively experimenting with live animals in nuclear missile guidance systems. Will man be next? Electronics Today questions man's ethical right to conduct these experiments and feels that details of this work should be published.

by L. George Lawrence

In a relatively short period of time, electronics-based weapons and their delivery systems have assumed a formidable role in the defense apparatus of the great powers. Now Rand Corporation's "Soviet Cybernetics Review" has reported an odd variation: Russian technologists, says Rand, are studying the feasibility of training cats to pilot air-to-air missiles right to their targets!

Although such possibilities are acknowledged both here and abroad, their application to armed conflict is startling. Provided that suitable instruments, including support electronics, are available, small animals can be trained to execute near-perfect control of production equipment and non-jammable guidance of weapons. But such duties, alien as they are, also pose the ethical question of our right to convert a lower creature into an ill-paid labourer or unwitting hero.

SKINNER METHODS

Almost any sentient creature can be trained in the Skinner box, diagrammed in Fig. 2. A typical unit
consists of two chambers, one of which constitutes the actual training area (for a pigeon, in this case) and the other containing the various control, cue, and feed mechanisms for reinforcing the animal's learned behaviour. This arrangement was developed by behaviorist psychologist Dr. B. F. Skinner, an outstanding authority on human and animal learning processes.

To make our living example (the pigeon) suitable for training, it is first fed a minimal diet until its weight is reduced by 20 percent. It is then put into the training box where an ample supply of water is always available.

Training begins by flashing one of the two key lights behind the key aperture. Now, after a time, the pigeon will peck the key (a microswitch), thereby activating the solenoid which pulls up the food tray to the simultaneously lighted food aperture. Thus, the animal learns to associate light of a given color with pecking and a consequent reward—food.

Once these initial steps have been learned, the Skinner box can be programmed—either manually or by computer—for the execution of more complex tasks. For example, the pigeon can be taught to peck only when the light is red or to expect to be fed only after it has made two or more bodily turns in the cage, etc.

As the training situation becomes more complex, the animal becomes aware of incidental cues—such as the ticking of clocks, external noises, and the like. Here, the internal volume of the Skinner box can be acoustically neutralized by radiating into it white noise at low levels. Also, if the pigeon makes errors in, say, tasks involving pattern recognition, it is "punished" by suddenly turning off a white shock light inside the chamber.

Figure 3 shows a television-type training arrangement confronting a "postgraduate" bird. Developed by the author for demonstration purposes, the display shows stationary and/or moving objects which contain a set of visual cues and superimposed images. The reinforced reward situation is maintained and expanded when the animal makes its peck at the control key (thereby receiving food).

It is on the basis of these and similar techniques that a massive set of skills can be taught to a pigeon—here assuming the form of an organic computer of enormous reliability, yet costing $1.50 or less.

CONTROL AND GUIDANCE PERFORMANCE

In 1964, Drs R. J. Herrenstein and D. H. Loveland performed experiments to determine complex visual concepts in the pigeon. (These birds are superb all-around subjects—hence their selection.) The test series showed clearly that pigeons had the unique ability to look for and react to the images of people. The birds were
allowed to look at projection slides in which human beings were obscured by cars, trues, window frames, and the like. This fascinating experiment, which also involved tasks of categorizing and complex rules for sorting out pictorial elements, produced evidence of animalistic conceptualization. But this experiment does not stand alone. Even in the study of instinctive behaviour with creatures low in the phylogenetic scale, there is overwhelming evidence of discrete sorting and generalizing.

Visual conceptualization and the motor activity triggered by it is one of the most sought-after goals of computer designers. Unfortunately, at present, this type of artificial electronic intelligence has eluded designers and remains an innate capacity of living organisms.

Dr. T. Verhave's experiments are a good case in point. Working for a large pharmaceutical company as a psycho-pharmacologist, he conceived the idea of using pigeons as quality-control inspectors. The company made gelatin drug capsules—about 20 million units per day—and sorting out "skags" or defective capsules was an involved and costly process.

The drug capsules were brought into the bird's view by means of a moving belt and, through inspection windows, examined for defects. Skags made up about 10 percent of all the capsules on the belt. Reinforcement (feeding) was applied only when the bird made an appropriate number of pecks on the window-key. Wrong pecks, either misses or false alarms, were not rewarded and caused a 30-second blackout inside the pigeon's work box. However, although results were excellent, Verhave's concept was not adopted. Fears of adverse publicity (sic. — Ed) and similar interferences kept it from being used on a routine basis. The problem, it seems, is that the average layman thinks of inspecting birds as animals scratching with their feet in a pile of drug capsules, picking one up now and then.

Some 30 years ago, one of the strongest scientific objections raised against animal-equipped missile-guidance systems was that of adequate feedback control. Further, it was thought that in an actual combat situation, an animal-type weapons pilot would become irritated (perhaps get airsick) and, thus, doom the mission.

Most of these objections have now been overcome. Toward the end of World War II, Skinner and his assistants initiated a research programme called "Project Pigeon." It had a peacetime counterpart at the Naval Research Laboratories as "Orcon" — an acronym of the words "organic control." Both of these programmes have now been declassified.

Skinner's was a kind of majority-vote bombarding system directed against ships. The missile, a simple airborne vehicle named "Pelican," was designed to use three harnessed pigeons trained by his methods. Three animals were to be used on the theory that at least two would peck correctly on the left or right of a target screen. Again, in spite of excellent results, the system was never put into operation. The Manhattan Project and its atomic bomb came along, which eliminated — as it seemed at that time — the need for pinpoint bombing. However, the fact remains that animal-guided weapons systems cannot be jammed, either electronically or by other conventional means. Once trained, as Skinner implies in his reports, a given animal tends to retain its "data" so well that it can be recalled at will even if the creature has been freed from its laboratory environment and is allowed to go on free flight again. There is no "obsolescence."

It is for these and other reasons that dynamic combat schemes, such as that shown in Fig. 1, have emerged.

This weapons system is best understood by considering it as a composite. Its principal components are (1) a photo-reconnaissance satellite, (2) a radar system, and (3) an animal-guided ICBM.

The elements of target data are generated in peacetime and, more narrowly, in times of war. During overflights of enemy territory, the satellite uses infrared and other photographic methods to produce films of ground targets at a selected focal length. Then, by using Skinnerian conditioning techniques, the animal weapons pilot learns to recognize specific target features which are presented to him, together with moving-ground images, by means of superimposition in an optical display system. Thus, during actual target runs, the pilot will peck (in the case of a pigeon) the appropriate guidance keys until the vehicle makes suitable vernier manoeuvres to achieve perfect image superimposition or "target zero." As the target grows in optical magnitude, the superimpositions are kept in plane and, finally, a ballistic is selected which ensures a bulls-eye target run. At that time barometry takes over and senses the proximity of the target by evaluating the outside air pressure. Simultaneously, the chemical detonators are activated and, on command from the barometer sensor, initiate fission of the nuclear warhead.

As shown in Fig. 1, a weapon of this type is vulnerable to enemy countermeasures only as long as it receives initial guidance in the radar's guidance slot. Once the missile leaves the electronic horizon and enters the geodetic horizon under animal control, effective defense against it is no longer possible — at least not with the crude anti-missle weaponry available today. Indeed, it is one of the most
formidable war machines the human mind can conceive — for better or worse.

BIODYNAMIC GUIDANCE SYSTEMS

We mentioned the cat-guided missile scheme at the beginning of this article. It might appear, at first glance, to be little else but science-fiction, but it is dangerously more than that.

Typically, when thoughts turn to animals and guidance systems, we are inclined to envision a complete living thing — body, legs, skin, and a complete set of internal organs. This holds true of a lightweight creature like a pigeon, or perhaps a rat or mouse. There is little difficulty in providing long-term or stand-by life support systems for them, even within the cramped space of an ICBM. But animals such as mature cats, dogs, pigs (excellent performers), horses, and other large creatures, have larger brains and neuronal network capacities. The large brain can be electronically manipulated and is less inclined to die rapidly if its nutrient bath becomes disturbed. Thus, the designer focuses on the removed brain only, rather than considering an animal's composite body and its requirements. But, as he works with neurophysiologists to determine specific centres of data storage and correlation within an animal's severed brain, he encounters the difficulty of having no motor responders to stimulus. Data is expressed in the form of electronic products, only typically in the form of rising and descending voltages as one finds in manmade computers. There also are so-called "artifacts" or phenomena which are still unexplained.

Drs. Albe-Fessard and Rougeul provided excellent electronic data on the cortical responses of a cat's brain in 1958. However, it was most difficult to detect evoked potentials from non-specific areas of the cerebral cortex in awake animals. Further, it was difficult, and in some cases almost impossible, to extract signals from noise.

Fig. 4 shows a set of cortical responses. The animal was kept under light chloralose anesthesia. The entries LAL pertain to the left anterior leg, RAL identifies the right anterior leg. So-called secondary evoked potentials (SEP) disappear under barbiturate anesthesia — but, for reasons unknown, the application of chloralose has the odd effect of synchronizing and enhancing them. This brings us to the fine-constituents of organic brains and their synaptic transmission properties. What is desired here is that an animal's brain's data-processing system can clearly recognize and provide responses when exposed to stimulus in a "target matrix" such as shown to the left in Fig. 4.

Living brains are composed of neurons. Shown in simplified form in Fig. 5A, the biological neuron is essentially a binary or digital threshold device whose output is "all-or-none" — 1, 0 respectively. Its inputs, of which there can be as many as several thousand, are called dendrites. Actual signal processing takes place in the neuron's central body. Most dendrites are excitatory systems, that is, signals passed on by them cause the central cell body to "fire." Other dendrites have inhibitory properties: signals appearing on them keep the cell from firing. Thus, the neuron's electronic status, "1" or "0" at any given instant, is determined by the combination of signals appearing on the dendrites. If there are enough excitatory signals present, the cell threshold is exceeded and the neuron fires. Likewise, if too many inhibitory impulses are present, more excitatory signals are required to exceed the firing threshold.

These electronic characteristics allow us to consider the binary analogue circuit shown in Fig. 5B.

This "artificial neuron" is comprised of the multi-gate SCR, D1 and thyristor, D2. Because these diodes know no intermediate states of conduction like a transistor or normal vacuum tube does, the dynamic conditions of "on-off" can be established and maintained by applying appropriate trigger pulses to D1 and D2. Note that this is a simplified circuit in which zener-type threshold components have been omitted for clarity's sake.

However, although circuits of this type are being used in the relatively new field of bionics and represent progress in the art of self-organizing computer systems, it still is most difficult to transfer such analogies to real-life organic controls.

If we believe the principles set forth by St. Thomas Aquinas in his book Summa Theologica, true intelligence — be it that of machines or living organisms — must have these components: passive (intellectus possibilitis); active (intellectus agens); and will. It is unfortunate for our experimental animals that only they, next to ourselves, have the features, which suggest their employment on behalf of man's survival.

In conclusion, it can be stated that we are on the threshold of a new if undesirable art. The Skinnerian methods are being refined and updated, typically by augmenting them with sophisticated electronic gear. However, it appears that the problem of using animals' brains directly in guidance systems have not yet been solved to the complete satisfaction of those who plan to use them. Organic brains without life-supporting baths and circulating nutrients (blood) tend to die within 10 minutes or less. Thus, until this problem and others have been solved, it is safe to assume that Columba Domesticata — the common pigeon — will receive its draft call.

Reprinted by permission from Electronics World December 1971.
In our September issue we reviewed the Brue1 and Kjaer F.M. tape recorder, type 7001. Since that time a wholly Australian-designed and built FM tape recorder system has been produced.

The Australian recorder is the Electrodata 300 FM tape recorder, manufactured by Electrodata Associates Pty. Ltd. The FM recorder is their first product, and it was specifically designed for use in the field of medical research. Because of manufacturing limitations it had to be designed around a commercially available tape deck (the Sony TC 366) pending the construction of their own recorder. This resulted in an unexpected advantage for Electrodata Associates for as the system is designed to operate with a separate recorder this has resulted in a modular system which can be used with any moderately good conventional recorder. To prove this, we tried out the system with our battery operated Kudelski Nagra III recorder to obtain a portable system which could be easily used for field measurements — far more easily in fact than the Brue1 and Kjaer unit, which weighs 85 lb. The combined system can be fully battery operated, which makes for even greater flexibility.

With the standard Electrodata unit the power supplies are built into the tape deck, allowing four channels of record and playback modules to be contained in one rack. Because the design called for four channels this resulted in the need for a simple redesign of the standard Sony TC 366 deck to allow for the addition of the extra two channels, but since the production of the Electrodata FM tape recorder, several four channel tape recorders have been released. This will enable the production of a system with fewer modifications being required to the tape deck.

While there are many multi-track data recorders available — at a price — the design philosophy behind the Electrodata machine has been to produce a unit which is inexpensive compared with other FM recorders, yet with adequate flexibility to meet the needs of many users. The more expensive FM recorders offer many tape speeds of up to 100 inches per second, but the standard Electrodata
machine offers only three speeds with a maximum 7½ inches per second. This means that the FM frequency response is limited to about 2kHz while the frequency translation available is only a factor of four (compared with the Bruel and Kjaer 7001, with a frequency response of 20kHz and a frequency translation ratio of 40). But modules are available for speeds up to 60''/second if the customer is prepared to pay the higher cost of a high speed tape deck.

CONSTRUCTION OF THE UNIT

The heart of the Electrodata system is the rack of record and playback modules. The appearance of the unit as a whole is not as professional as one would normally expect for an instrument in this price range, but this is mainly due to the obviously domestic or consumer orientated design of the Sony TC 366 recorder. The FM modules are neatly constructed in a standard rack system. The record and replay modules are completely independent. The modules may be interchanged with the appropriate modules from other channels in the event of a failure.

The record module contains a record level meter which holds the peak signal level for some seconds. The only other control are a preset multiturn level adjustment and the input BNC connector.

The playback module has a speed selector switch, a preset multiturn dc offset potentiometer, an input/output miniature jack (similar to those used on transistor radio earphones used in conjunction with the flutter compensation), and a BNC output socket. The extremely simple controls make for the minimum confusion for the user whilst being quite adequate for complete control. The only adverse comment on the front panel arrangement is the use of the miniature jack connection for flutter compensation. These jacks are notorious for their inability to withstand prolonged usage. We would have preferred to see a more positive form of connector — even at the expense of an extra switch.

HOW IT WORKS

The record module differs significantly from the Bruel and Kjaer recorder. Whereas the Bruel and Kjaer recorder uses a constant-frequency master oscillator for all its modulators and demodulators and subdivides the frequency to suit the speed, the Electrodata recorder generates its FM signal to the record module and the frequency is individually adjusted for each tape speed. This is done by a very ingenious circuit which consists of a variable constant-current supply to a flip-flop.

The easiest way to visualise this circuit is to consider the 'constant' current supply as resistors in the frequency determining components of the flip-flop. If the value of three resistors is decreased, the frequency of the flip-flop increases. The 'constant' current supply maintains the current independently of what happens at the flip-flop, but is controlled by two sources; one a resistor which is related to the selected tape speed, and the other the input signal voltage. Thus, if the input signal voltage is zero, the

The Sony TC 366 tape deck is fitted with a four-channel head.
VERSATILE
FM RECORDER

SUMMARY OF MANUFACTURER'S MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Tape Speeds</th>
<th>Channel Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1/2, 3-3/4, 1-7/8 ips</td>
<td>FM or Direct (Using Sony circuitry)</td>
</tr>
<tr>
<td></td>
<td>FM only</td>
</tr>
<tr>
<td></td>
<td>FM or Direct (Using Sony circuitry)</td>
</tr>
<tr>
<td></td>
<td>FM only</td>
</tr>
<tr>
<td></td>
<td>Normal Sony Record Interlock & Switch on Respective Record Module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel 1</th>
<th>Channel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FM only</td>
</tr>
<tr>
<td></td>
<td>FM only</td>
</tr>
</tbody>
</table>

Head Configuration:

<table>
<thead>
<tr>
<th>Phase Error</th>
<th>Performance in Direct Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7½ ips</td>
</tr>
<tr>
<td></td>
<td>3¾ ips</td>
</tr>
<tr>
<td></td>
<td>1-7/8 ips</td>
</tr>
<tr>
<td></td>
<td>20Hz to 12kHz ±3dB</td>
</tr>
<tr>
<td></td>
<td>20Hz to 6kHz ±3dB</td>
</tr>
<tr>
<td></td>
<td>20Hz to 3kHz ±3dB</td>
</tr>
</tbody>
</table>

See also measured performance on page 24.

nominal carrier frequency is generated while at any other voltage the frequency is shifted. If the voltage is positive, a higher frequency is generated, if it is negative a lower frequency is generated. A change of one volt in the input produces a frequency deviation of 40% about the carrier frequency. This system is much simpler than that used in the Bruel and Kjaer recorder, but is capable of providing excellent results provided that the equipment has been correctly adjusted.

The signal from the modulator is passed (via a very small capacitor) to an integrated circuit which is essentially an unstable amplifier. A very small positive voltage pulse results in the amplifier saturating at one polarity while a similar negative voltage pulse results in it saturating at the other polarity. The small capacitor produces very little loading on the flip-flop but provides a pulse of sufficient amplitude to change the direction of saturation of the amplifier. This amplifier, in turn, drives a pair of transistors which, in their turn, drive the record head.

In the oscillogram (shown in Fig. 1) the square wave signal to the record head is shown with the sinusoidal input signal superimposed. The changing of pulse width with amplitude can be clearly seen. The signal which is fed to the record head has a sufficiently high amplitude to completely saturate the tape. This is common to most FM recorders where, because the waveform is not important, the larger the signal, the better the signal-to-noise ratio. This saturating of the tape also eliminates the need for an erase head, and eliminates some circuitry.

The playback circuit consists of a high-gain pre-amplifier, which tends to overload with the signal level from the head. This starts the squaring process and ensures well defined crossovers.

Fig. 1. (a) Square wave signal to record head of Electrodata FM 300. (b) Sine wave input

Fig. 2. Input Signal (200Hz) fed to the two FM recorders.

ELECTRONICS TODAY — JANUARY 1972
This signal then drives a Schmidt trigger. A Schmidt trigger is a circuit which produces square waves of constant amplitude corresponding in this case to the zero crossings of the input waveform. The signal from the Schmidt trigger then drives a bistable stage. The two outputs from the bistable oscillator are differentiated, and combined to produce a series of pulses the positions of which are related to the zero crossings of the input waveform from the tape head. These pulses are used to drive a monostable multivibrator whose output consists of a series of pulses with an exact pulse width, but spaced according to the input signal. The average voltage of these pulses is proportional to the spacing between them. Close spacing produces a high average voltage, while a greater spacing produces a lower voltage. The averaging is accomplished by two stages of active filters. These are designed to produce a roll over at about 2.5kHz at 7½ ips. The output from the filter is backed off against a dc voltage corresponding to the frequency of the unmodulated carrier.

The last filter stage also provides for the introduction of a flutter compensation signal. This signal is the output of a recorded but unmodulated channel. This signal on the tape has undergone essentially the same frequency changes as the desired signal, therefore any spurious signal normally introduced as a result of flutter is contained on this channel. By subtracting this signal from the signals on the wanted channels it is possible to reduce the effect of the flutter signal. We found that a reduction of 20 decibels, or 90%, was obtainable using this facility. The best results are obtained if the signal from the same tape head is used, i.e., channels 1 and 3, or channels 2 and 4, for optimum compensation. The price one has to pay is one less data channel available for recording. This feature is very necessary for the best response when data is recorded from a moving object or alternatively when the recorder has a significant amount of flutter and wow.

THE POWER SUPPLY

The power supply which was built into the tape deck, uses an integrated circuit type regulator driving a power transistor in each supply leg. Since the FM performance and stability directly depend upon the precision of the power supplies, the availability of these integrated circuit regulators with their high performance, combined with current overload protection, simplified the task of Electrodata in designing a power supply with high precision.

As a safeguard a crowbar protection circuit is used. This provides almost absolute fail-safe operation. If the voltage or the supply rails to the modules exceeds a preset limit, a silicon controlled rectifier connected across the supply to the regulator switches on and stays on. This short circuits the dc supply dropping it to a few volts and causes an extremely high current to flow through the fuse. The fuse blows and allows the protection circuit to reset. All this takes place before the voltage rises high enough to cause any damage, except possibly to the component that was the cause of the problem in the first place.

The complete record playback system makes use of eight diodes, eight transistors, ten operational amplifiers and many resistors and capacitors per channel. The design appears to be very stable and capable of producing good results for many years without the need for frequent realigning or service.

We felt that one weakness in the system, was the power supply. In the unit supplied for test this was mounted in the tape deck where ventilation may not be sufficient. Since the supply voltages govern the accuracy of the FM circuitry, a separate enclosure would probably reduce the thermal drift with time (as the recorder and power transistors achieve operating temperature).

Fig. 3. Record/Replay Response of Electrodata FM 300 to 200Hz square wave.

Fig. 4. Record/Replay Response of Bruel & Kjaer 7001 to 200Hz square wave.
VERSATILE FM RECORDER

HOW THE SYSTEM PERFORMED

Having looked at the design of the recorder, we put it through its paces on the test bench. In all departments it performed within the specifications stated by the manufacturer and was comparable with most units costing many times its price.

A significant difference between the Bruel and Kjaer 7001 and the Electrodata 300 is the frequency response design philosophy.

The Bruel and Kjaer recorder, being primarily designed for use with other Bruel and Kjaer spectral analysis equipment has been designed to produce an extremely flat frequency response to the upper frequency limit and then to rollover rapidly after this point. While this rapid rollover maintains the accuracy required for spectral analysis it does not reproduce the waveform accurately.

The Electrodata FM recorder on the other hand is designed to provide the optimum presentation of a waveform rather than the optimum frequency response. It therefore has a smooth rollover, and is 3dB down at the upper limiting frequency. To illustrate this, we fed a 200Hz square wave into both recorders, with an upper frequency limit of 2kHz. The Electrodata recorder has an upper frequency limit of 2kHz at 7¾ ips and the Bruel and Kjaer recorder has an upper frequency limit of 2kHz at 6 ips. As can be seen from Figures 2, 3, 4 the waveform produced on playback by the two machines is completely different. The Bruel and Kjaer recorder produces a square wave with a marked ringing while the Electrodata recorder produces a wave form which is very similar to the original. The waveform distortion would be even more marked if the ratio of signal frequency to cutoff frequency was higher or the width of the signal pulse was narrower.

Because the Electrodata recorder uses standard tape speeds this enables some increase in flexibility. We ran a series of measurements, using the Electrodata recorder, that continued for over an hour. From this series of measurements we only needed to analyse in detail a few sections, lasting for approximately 10 seconds. To do this, we transcribed a section of the tape directly onto a tape loop on an ordinary recorder using the direct mode of the Sony. This meant that it was not necessary to connect from FM to AM to FM with the attendant loss of signal-to-noise ratio or, as is more normal in laboratories which cannot afford two FM recorders, the cutting of a tape loop from a good reel of tape and the consequent destruction of the original record.

MEASURED PERFORMANCE OF ELECTRODATA FM 300 SYSTEM

Module Serial No. 001 using BASF 35LH Tape and Sony Deck TC366.
Serial No. 043366

<table>
<thead>
<tr>
<th>Frequency Response</th>
<th>+0, -3dB</th>
<th>+0, -6dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>at 7¾ ips</td>
<td>dc to 2kHz</td>
<td>dc to 2.5kHz</td>
</tr>
<tr>
<td>at 3¾ ips</td>
<td>dc to 1.3kHz</td>
<td>dc to 1.8kHz</td>
</tr>
<tr>
<td>at 1-7/8 ips</td>
<td>dc to 600Hz</td>
<td>dc to 750Hz</td>
</tr>
</tbody>
</table>

Distortion
-40dB (1%) for signal ±40% modulation

Interchannel Cross Talk
-60dB

Signal-to-Noise Ratio
(re 40% modulation) 40dB

Input Sensitivity
100 mV for 40% modulation

Temperature Sensitivity
0.1% per °F

Flutter Compensation
20dB reduction in flutter signal on channel 1, when channel 3 used to provide flutter compensation.

Total price of equipment as tested (including modified Sony TC 366 recorder) - less than $2500

Electrodata Associates Pty., Ltd., 8 Barry Ave, Mortdale, NSW.

DATA TRANSMISSION

A further thought on the use of the Electrodata FM modules is their possible use for data transmission. With a few small modifications they could be used for high quality transmission of signals over a poor quality broad-band channel providing an improvement in the flatness of the frequency response together with a marked increase in signal-to-noise ratio. The multiplex units soon to be released by Electrodata are likely to find their way as much into this field as into the FM recording field.

The handbook provided with the Electrodata FM recorder was particularly well laid out. Consisting of 24 foolscap pages, it details the specification, method of operation, theory and design details, circuit diagrams and a complete parts list (including manufacturers and suppliers.) The handbook would allow anyone with a basic electronics knowledge to operate and maintain his own machine (with the aid of a few standard instruments.) This is a feature which is particularly worthwhile. As the user of many imported instruments, we are often frustrated by the need to wait up to three months to have a minor, non-standard component airfreighted to Australia. It is highly commendable that an Australian produced instrument should contain only components locally manufactured by large international companies such as Philips and Fairchild.

In all, the Electrodata FM 300 system appears to be well built and to function extremely well. What it lacks in presentation is more than compensated for by its ease of operation and performance per dollar.

ELECTRONICS TODAY — JANUARY 1972
The least expensive speaker sold by AR (the AR-4x at $132) is also the most widely sold of all high-fidelity speakers, because it has provided maximum performance per dollar of cost. The new AR-6 offers significantly better performance for $180. It adds one-third octave of low distortion bass, and also provides superior dispersion and more uniform energy output at high frequencies. The seven inch depth of the AR-6 adapts it ideally to shelf placement, or it may be mounted directly on a wall with the fittings supplied with each speaker system.

Stereo Review says...

"All in all, the AR-6 acquitted itself very well in our tests. It was not quite the equal of the much more expensive AR models, whose sound it nevertheless resembles to an amazing degree, but on the other hand it out-performed a number of considerably larger and far more expensive systems we have tested in the same way. Incidentally, the AR-6 shares the AR characteristic of not delivering any bass output unless the programme material calls for it. If at first hearing it seems to sound "thin" (because it lacks false bass resonances), play something with real bass content and convince yourself otherwise. We don't know of many speakers with as good a balance in overall response, and nothing in its size or price class has as good a bass end."

High Fidelity says...

"Another great bookshelf speaker from AR... a really terrific performer. The AR-6 has a clean, uncoloured, well-balanced response that delivers some of the most natural musical sound yet heard from anything in its size/price class, and which indeed rivals that heard from speakers costing significantly more...

The response curves taken at CBS Labs tell a good part of the story. Note that across the largest portion of the audio spectrum and especially through the midrange the AR-6 responds almost like an amplifier...

Directional effects through the treble region, as evidenced by the average of 2dB that separates the three response curves, are actually less pronounced than we've seen in some costlier systems. Tests made of the effect of the tweeter level control show that it can vary the response from completely minus the tweeter to a steady increase in tweeter output of about 2 dB across its range. The design in this particular area is just about perfect... Pulse tests indicate virtually no ringing; in fact the AR-6 seems better than average in this regard too.

...a pair of AR-6s would be an excellent choice.."

The workmanship and performance in normal use of AR products are guaranteed from the date of purchase; 5 years for speaker systems, 3 years for turntables, 2 years for electronics. These guarantees cover parts, repair labour and freight costs to and from the factory or nearest authorised service station. New packaging, if needed, is also free.

The AR catalogue and complete technical data on any AR product are available free upon request.
OVER the last year, an increasing interest has been shown among professional tape recording engineers, as well as serious high fidelity enthusiasts, in what can be done with the new chromium dioxide magnetic tapes.

Although the first trials to use chromium dioxide as a magnetic material for recording tapes go back to the early sixties, the first tapes, showing the important advantages of this material, appeared not earlier than about 1966.

Today various tape manufacturers have developed good chromium dioxide tapes and a few manufacturers of quality cassette recorders are marketing cassette recorders which are optimised for the use of this new recording tape. Also discussions about the standardisation implications of chromium dioxide have already been started.

CHARACTERISTIC PROPERTIES OF CHROMIUM DIOXIDE RECORDING TAPES

A main characteristic of the magnetic material, chromium dioxide, is that it is relatively easy to vary the coercivity (this is the ability to resist demagnetisation) over a wide range, which means that it is possible to choose the appropriate optimal coercivity for a certain application. Also it is not difficult to maintain this chosen coercivity in production.

Another advantage is that the form of the single particles approaches more or less an ideal needle shape so that extremely good homogenity can be obtained (Figs. 1 and 2).

Both of these properties result in a remarkable improvement in high frequency recordability, which means that the high frequency maximum output level (MOL) as well as the high frequency sensitivity are much better than those from conventional magnetic tapes.

To demonstrate this, Fig. 3 shows the maximum obtainable saturation output as a function of frequency (without HF bias), of a chromium dioxide cassette tape with a 4 µ thick magnetic coating, compared to that of a modern “conventional” BASF LH cassette tape, having the same coating thickness. For simplicity reasons, the saturation output of the BASF LH tape is assumed to be flat (zero).

Of course, this kind of comparison has to be interpreted with some care, as the saturation output levels are determined without HF bias. Nevertheless, this presentation shows clearly the differences and advantages of chromium dioxide tapes, compared with conventional tapes.

COMPACT CASSETTES

The very high maximum output at high frequencies is of decisive importance for quality recording at very low tape speeds, such as the compact cassette tape speed of 1-7/8 ips.

As anyone, who has tried to make a good recording on cassettes knows, the major limitations of the compact cassette system are: poor background noise and critical high frequency recording (lack of brilliance), especially with music with much top (high frequencies). Cassettes mostly sound rather dull.

To understand this, it is necessary to look at the curves given in Figs. 4, 5 and 6 and to study their interdependence.

Figure 4 shows the maximum output level (MOL) as a function of frequency that is necessary to obtain high fidelity on a recording medium. This curve is the result of various analyses of the spectral amplitude distribution in different kinds of music, one of the primary criteria for high fidelity.

For correct understanding, it is emphasised that this maximum output level (MOL) as a function of frequency has nothing at all to do with the frequency response curve, which normally is given at low recording levels (far below maximum output level) and which is a measure of the transducing linearity of the recording system only. The maximum output level (MOL) curve as a function of frequency gives the tape output at either constant distortion, constant intermodulation distortion or constant compression from linearity of the signal (e.g. 5% THD or 1.5 dB compression).

If the recorded signal passes over this maximum output level limit, unacceptable distortion, intermodulation distortion or compression is unavoidable.

Independent of this MOL curve, the frequency response curve of the system (recorder plus tape) measured at a level far below MOL might be flat,
...Cassette recorders on the way to true high fidelity

because it is established by the recorder adjustment only, if a reference medium is used like the unrecorded portion of the DIN test tape. For reasons of simplification, it is usual in audio tape measuring technique to choose only two frequencies, one in the low part of the sound frequency spectrum, the second in the high part. At 1-7/8 ips tape speed measurements, it is convenient to use 333 Hz and 8000 Hz.

This simplification makes it possible to say that for true high fidelity it is a basic requirement that the MOL at 8000 Hz shall not be more than 10 to 12 dB down compared with the MOL at 333 Hz. This is already a compromise since, for professional studio recording techniques, the difference between high frequency and low frequency MOL is normally not more than about 2 dB.

Now we look at Figs. 5 and 6 where the measured MOL curves at 333 Hz and 8000 Hz as a function of HF bias are given for the two tapes previously mentioned. It is immediately clear that if the 10dB hi-fi criterion as mentioned before is applied, the HF bias adjustment for the "conventional" tape would be so low that the low frequency MOL would be very poor, resulting in a poor signal-to-noise ratio. According to DIN requirements, the S/N has been defined as the ratio between MOL at 333 Hz and the noise in dB measured according to DIN 45405 (weighted, quasi-peak).

Also the drop out sensitivity increases at low HF bias. This implies that, although from a theoretical point of view the hi-fi MOL difference between 8000 Hz and 333 Hz can be reached with conventional tapes, the HF bias adjustment would mean a critical utilisation of the tape from a practical and engineering point of view.

In practice most cassette recorder manufacturers utilise nearly all available low frequency MOL of the tape, which requires a relatively high HF bias setting, in order to obtain a

1. What are the characteristic properties of chromium dioxide recording tapes?
2. What are the advantages of chromium dioxide tapes, if used in compact cassettes?
3. In what respect are cassette recorders optimised for chromium dioxide tapes, different from conventional cassette recorders?
4. Are chromium dioxide cassettes usable on normal cassette recorders, that is to say on recorders which are not optimised for chromium dioxide tape?
5. Is it possible to meet the DIN hifi requirements if chromium dioxide cassettes are used for chromium dioxide optimised cassette recorders?
6. Are there additional advantages if chromium dioxide cassettes are used on recorders using an electronic noise suppressing system like the "DOLBY B" system?
7. Is it worthwhile to modify reel to reel domestic recorders for chromium dioxide magnetic tape?
8. Is chromium dioxide tape important for music cassettes?

This article provides the answers . . .
Chromium Dioxide Tape

good signal-to-noise ratio. However, in such cases the loss in high frequency sensitivity is compensated by using a very strong preemphasis in the recording amplifier (often more than 14 dB at 10,000 Hz) to give a flat frequency response at very low recording levels. However, the loss in high frequency maximum output level (MOL) cannot be compensated and the increased danger of high frequency intermodulation distortion or compression is avoided by connecting the VU meter (output meter) following the preemphasis in the recording amplifier circuit. This safeguards the user against high frequency distortion, etc., because if the music contains much top this top establishes the VU meter indication (rather than the bass) so that the user will tend to record at a lower level.

On paper this looks healthy enough, but, extremely strong preemphasis (over 14 dB at 10,000 Hz) means that the actual recording level will be mainly determined by the top part of the music, resulting in a rather significant discrepancy between the signal-to-noise ratio at measurements relative to MOL at 333 Hz and that obtainable in practice with music. Also, one should recognise that too high a preemphasis does not help hi-fi very much because the required LC active filters cause serious oscillations, resulting in square wave form distortion. This is clearly shown if one observes the overall 1000 Hz square wave performance of such a recorder.

Figure 6 shows the same MOL curves as a function of HF bias for chromium dioxide tape. It is obvious that the situation is much better here; because the chromium dioxide tape allows a good balance between high and low frequency MOL, namely 10 to 12 dB difference at a HF bias setting which guarantees a good utilisation of the tape properties from an engineering point of view.

It should also be said that chromium dioxide is a low noise oxide, which implies that, at the same background noise level as obtained from modern "conventional" tapes, a remarkable improvement in high frequency output (MOL) is available, whereas the signal-to-noise ratio improves because the MOL at 333 Hz can be better utilised. This gives the chromium dioxide cassettes their superior dynamic range and their exceptional brilliance and transparency.

We have found that chromium dioxide tapes produce at 1-7/8 ips tape speed, the same sound recording quality as conventional tapes at 3% ips – Ed).

All considerations made so far have been based on the assumption that the replay part of the cassette recorder will not be changed. But in practice it is expected that cassette recorder manufacturers will use at least a part of the high frequency MOL advantages of the chromium dioxide tapes to improve the signal-to-noise ratio of their recorders.

The key to this is the replay equalisation time constant. If this constant (which has been standardised internationally at 120μs) could be reduced to a lower value, the background noise would be reduced more or less in proportion. However, this can only be done at the cost of the beautiful MOL frequency curves because at least a part of the high frequency output is lost.

It is still an unanswered question, where the economical optimum lies, for, it is clear that an improvement of the signal-to-noise ratio of cassette recorders is very desirable.

An additional complication is the fact that many cassette recorder manufacturers have solved the noise problem by means of electronic noise suppression systems. A very good and well known example is the DOLBY B system, by means of which the signal-to-noise ratio of cassette recording systems can be improved by approximately 9 dB.

It would probably be ideal if the noise problem with compact cassette hi-fi recorders could be solved by means of one or another of the electronic noise suppression systems, so that the advantages of chromium dioxide tapes can be fully used to improve the brilliance. (See review of Advent and TEAC recorders in the November and current issues of ELECTRONICS TODAY).

DIFFERENCES BETWEEN CHROMIUM DIOXIDE AND CONVENTIONAL RECORDERS

As chromium dioxide tape has a significantly higher coercivity than conventional cassette tape, it is necessary for correct utilisation of this tape, to increase the HF bias current. This is shown by Figs. 5 and 6.

For the same reason, an increase of the erase capacity is required. Also, less preemphasis should be applied, however, should the replay time constant be changed, it might be possible that the recording preemphasis need not be altered.

How great these modifications will be, depends strongly on the actual recorder circuitry, and this varies considerably from one manufacturer's product to another.

In order to be able to give at least some data, the measuring results, obtained at the DIN HF bias adjustment, are considered. (DIN HF bias equals 2.5 dB sensitivity fall off, over maximum sensitivity at 6300 Hz.)

With the chromium dioxide tapes, this bias setting method results in a 2 to 2.5 dB HF bias current increase relative to the bias of the conventional tape. The HF sensitivity at 333 Hz of the new tape is about 2 dB lower, which means that the recorders have to compensate this to make sure that the recording level meter reading corresponds with the available MOL of the tape at this frequency.

Thanks to the fact that the relative sensitivity at 8000 Hz is about 6 dB higher, the preemphasis at the same frequency can be reduced by the same amount, and the erase capacity of the recorder has to be increased by about 40%.

So it is clear that chromium dioxide tapes are not fully compatible with modern conventional tapes, and that cassette recorders will only completely utilise the advantages of the new tape if some of the recorder functions are modified accordingly. In practice it is expected that chromium dioxide cassettes will automatically operate the necessary switches of the special chromium dioxide recorders, for instance, by means of a similar device to that now used to prevent undesired erasure of prerecorded cassettes.
CHROMIUM DIOXIDE CASSETTES ON NORMAL CASSETTE RECORDERS

Here the situation is a little more complicated and we must distinguish between Replay, Recording and Erase.

REPLAY

The reproduction of pre-recorded cassettes with chromium dioxide tape is simple because it is easy to take care of the different properties during the duplicating process. Should cassette recorders or reproducers change to a new replay time constant, and pre-recorded cassette manufacturers follow this change, the reproduction of such cassettes on conventional cassette recorders will give an increase, and possibly even an over-emphasis of high frequencies. However, on recorders with tone controls this can easily be compensated. In addition, there will be a noise improvement.

RECORDING

From a theoretical point of view, the different recording properties of new chromium dioxide cassettes could be expected to cause problems during recording. However, as already pointed out, many recorders have such a high HF bias adjustment that they are practically right for chromium dioxide tape. A bias setting which gives maximum output at low frequencies on conventional tapes is more or less optimum for chromium dioxide tape. (See the MOL curves as a function of bias, Figs. 5 and 6). For that reason in most cases, it will not be the bias setting which causes incorrect recording, but the relatively strong pre-emphasis in the recording amplifier, resulting in an over-emphasis of high frequencies. However, during reproduction on good equipment this can be compensated just as simply as in the case of cassettes, prepared for modified replay characteristics, by using the tone controls.

ERASURE

The erasure of chromium dioxide tapes on conventional cassette recorders remains the only real problem.

Erasability is directly proportional to the coercivity of the tape (about 40% lighter on chromium dioxide tape).

The erase capacity of different cassette recorders varies very strongly. We found extreme cases where the erase capacity was scarcely enough for conventional tapes (less than 50dB!) Even within one make there are big differences. Many tests in our laboratories have proved that most of the recorders tested, have enough erase capacity to erase the chromium dioxide tapes at standard working voltage, (e.g., with fresh batteries). This is logical because battery cassette recorders in particular need a certain over-capacity in erase capacity in order to compensate the decrease in voltage over the life of the batteries. Nevertheless it remains a fact, that on quite a number of recorders tested, the erasure of chromium dioxide tapes was insufficient, varying from 48 dB down to 20 dB!

CHROMIUM DIOXIDE CASSETTES AND DIN HI-FI REQUIREMENTS

The existing DIN hi-fi requirements for tape recorders (DIN 45500) are again under discussion. It is expected that the new standard will require a signal-to-noise ratio of 47 dB at 3% THD from a 333 Hz signal. Further requirements like wow and flutter, tolerance of tape speed, tolerances for replay and overall frequency response, are of no significance here.

The requirements of 47 dB at 3% THD is about the equivalent of 50 dB at 5% THD, which has been the tape measurement criterium up till now.

On compact cassette equipment, the mono tracks have a width of 1.5 mm, whereas on stereo equipment this 1.5 mm is divided in 2 x 0.6 mm and a separation track of 0.3 mm. So the DIN requirement has to be met by means of the 2 x 0.6 mm tracks, totalling 1.2 mm. At the testing track width of 1.5 mm, the chromium dioxide tape produces at least 53 dB S/N at 5% THD which means approximately 52 dB at 1.2 mm trackwidth.

So, in principle, it should be possible to realise DIN standards although there is very little room for recorder electronic tolerances. Therefore it is understandable that, if no electronic noise suppression is used, a part of the excellent high frequency properties of the chromium dioxide tape will be used to improve the noise. In this connection a replay characteristic modification from 120 µs to 70 µs is under discussion and this will bring a noise improvement of about 3 dB. In a way the DIN hi-fi requirements are a little irrelevant for tape recording because they do not consider any requirement for maximum output level at high frequencies, which is of basic importance for high fidelity; as we have already shown.

CHROMIUM DIOXIDE TAPE WITH ELECTRONIC NOISE SUPPRESSION

On recorders with effective electronic noise suppression (mostly the more expensive recorders), the noise problem has already been solved. For example, recorders having the DOLBY B noise suppression system easily reach about 57 dB S/N (which is much better than the DIN requirements). On such recorders the chromium dioxide cassettes are an ideal medium because there is no need at all to give some of the high frequency advantages away in order to improve signal-to-noise. And so the tape will show its full brightness and brilliance even in loud passages with much treble. It is even expected that such recorders may surpass the quality of good LP records because the tape
Chromium Dioxide Tape

will not show the usual end groove distortion, record clicks and other surface noises.

CHROMIUM DIOXIDE AND REEL-TO-REEL RECORDERS

Figure 3 has shown clearly that the main advantage of chromium dioxide tape is produced at high and very high frequencies. That is why it is so effective at low cassette tape speeds.

Most reel-to-reel recorders are designed in such a way that they produce good sound quality at high tape speeds, e.g., 7\% and 3\% ips. At such speeds the difference between chromium dioxide tape and conventional tape is negligible. Even at 3\% ips the advantage is still relatively small, especially taking to account the recorder circuitry switching necessary to utilise this advantage; and the higher costs of chromium dioxide tape.

Only in professional audio applications will it be worth using chromium dioxide tapes at 3\% ips because there it is still possible to choose optimum working conditions.

CHROMIUM DIOXIDE TAPE IN MUSICCASSETTES

There are no technical objections at all against the use of chromium dioxide tape for music cassettes. All differences in recording properties can be easily taken care of during the duplicating process. It is also easy for music cassette manufacturers to follow any future change in replay characteristic of the cassette recorders and reproducers.

As it is, music cassettes with chromium dioxide tape will give an immediate quality improvement, at least in brilliance and thanks to the higher recording level which can be utilised, also in dynamic range. On “Dolbyised” music cassettes (as produced for instance by Decca), chromium dioxide will be an excellent combination.

Chromium dioxide magnetic tape is of great importance if we are to obtain good sound quality within the compact cassette system.

On recorders with optimised adjustments hi-fi quality can be obtained. On most conventional cassette recorders a significant increase and improvement in high frequency reproduction will be apparent, though there might be erasure problems. Music cassettes will show an immediate improvement in brilliance and dynamic range.

Chromium dioxide tape is especially effective on recorders having electronic noise suppression, because LP record quality and brilliance can be obtained in loud music having a strong high frequency content.

RESISTANCES IN PARALLEL

This table – computed by Electronics Today’s Honeywell computer time-sharing equipment – shows 325 parallel resistance combinations. The table indicates the value of any resistors that need to be paralleled to provide non-standard values.

To use, simply relate the values shown in the vertical and horizontal columns, e.g. a combination of 220 ohms plus 27 ohms will result in a resistance of 24.05 ohms.

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>27</th>
<th>33</th>
<th>47</th>
<th>56</th>
<th>68</th>
<th>82</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.00</td>
<td>5.45</td>
<td>6.00</td>
<td>6.43</td>
<td>6.88</td>
<td>7.30</td>
<td>7.67</td>
<td>7.96</td>
<td>8.25</td>
<td>8.48</td>
<td>8.72</td>
<td>8.91</td>
</tr>
<tr>
<td>12</td>
<td>5.45</td>
<td>6.00</td>
<td>6.67</td>
<td>7.20</td>
<td>7.76</td>
<td>8.31</td>
<td>8.60</td>
<td>8.98</td>
<td>9.37</td>
<td>9.68</td>
<td>10.00</td>
<td>10.47</td>
</tr>
<tr>
<td>15</td>
<td>6.00</td>
<td>6.67</td>
<td>7.50</td>
<td>8.18</td>
<td>8.96</td>
<td>9.64</td>
<td>10.31</td>
<td>10.63</td>
<td>11.37</td>
<td>11.83</td>
<td>12.89</td>
<td>13.04</td>
</tr>
<tr>
<td>27</td>
<td>7.30</td>
<td>8.31</td>
<td>9.64</td>
<td>10.80</td>
<td>12.18</td>
<td>13.50</td>
<td>14.85</td>
<td>15.95</td>
<td>17.15</td>
<td>18.22</td>
<td>19.33</td>
<td>20.31</td>
</tr>
<tr>
<td>56</td>
<td>8.98</td>
<td>9.88</td>
<td>11.83</td>
<td>13.62</td>
<td>15.65</td>
<td>18.59</td>
<td>22.04</td>
<td>25.88</td>
<td>29.43</td>
<td>33.77</td>
<td>38.18</td>
<td>43.40</td>
</tr>
<tr>
<td>68</td>
<td>9.41</td>
<td>10.47</td>
<td>12.68</td>
<td>14.76</td>
<td>17.35</td>
<td>20.31</td>
<td>23.53</td>
<td>26.43</td>
<td>29.86</td>
<td>33.88</td>
<td>38.28</td>
<td>43.17</td>
</tr>
<tr>
<td>82</td>
<td>9.89</td>
<td>11.11</td>
<td>13.04</td>
<td>15.25</td>
<td>18.03</td>
<td>21.26</td>
<td>24.81</td>
<td>28.06</td>
<td>31.97</td>
<td>35.90</td>
<td>40.48</td>
<td>45.05</td>
</tr>
<tr>
<td>100</td>
<td>10.39</td>
<td>11.71</td>
<td>14.04</td>
<td>16.64</td>
<td>20.00</td>
<td>24.05</td>
<td>28.70</td>
<td>33.13</td>
<td>38.73</td>
<td>44.64</td>
<td>51.94</td>
<td>59.74</td>
</tr>
<tr>
<td>120</td>
<td>11.02</td>
<td>13.33</td>
<td>16.36</td>
<td>19.60</td>
<td>23.48</td>
<td>28.89</td>
<td>34.05</td>
<td>39.27</td>
<td>46.71</td>
<td>54.35</td>
<td>60.84</td>
<td>66.22</td>
</tr>
<tr>
<td>150</td>
<td>11.90</td>
<td>14.79</td>
<td>18.86</td>
<td>22.64</td>
<td>27.50</td>
<td>34.00</td>
<td>41.54</td>
<td>49.57</td>
<td>58.92</td>
<td>69.82</td>
<td>82.46</td>
<td>93.93</td>
</tr>
<tr>
<td>180</td>
<td>12.88</td>
<td>16.84</td>
<td>21.34</td>
<td>25.83</td>
<td>32.53</td>
<td>40.79</td>
<td>50.30</td>
<td>61.82</td>
<td>73.18</td>
<td>87.17</td>
<td>104.00</td>
<td>119.20</td>
</tr>
<tr>
<td>220</td>
<td>13.92</td>
<td>18.89</td>
<td>23.86</td>
<td>28.34</td>
<td>35.96</td>
<td>45.00</td>
<td>56.38</td>
<td>69.00</td>
<td>82.73</td>
<td>98.70</td>
<td>117.59</td>
<td>139.59</td>
</tr>
<tr>
<td>270</td>
<td>15.00</td>
<td>19.99</td>
<td>25.92</td>
<td>30.36</td>
<td>39.50</td>
<td>50.86</td>
<td>65.00</td>
<td>81.00</td>
<td>99.23</td>
<td>119.00</td>
<td>143.50</td>
<td>173.50</td>
</tr>
<tr>
<td>330</td>
<td>16.14</td>
<td>20.15</td>
<td>27.94</td>
<td>32.38</td>
<td>42.90</td>
<td>55.00</td>
<td>72.00</td>
<td>93.00</td>
<td>116.00</td>
<td>143.00</td>
<td>176.50</td>
<td>216.50</td>
</tr>
<tr>
<td>390</td>
<td>17.34</td>
<td>21.45</td>
<td>29.97</td>
<td>34.42</td>
<td>45.90</td>
<td>59.00</td>
<td>80.00</td>
<td>106.00</td>
<td>136.00</td>
<td>172.00</td>
<td>214.50</td>
<td>265.00</td>
</tr>
<tr>
<td>470</td>
<td>18.64</td>
<td>22.98</td>
<td>31.99</td>
<td>36.96</td>
<td>49.38</td>
<td>63.00</td>
<td>88.00</td>
<td>119.00</td>
<td>156.00</td>
<td>199.00</td>
<td>251.00</td>
<td>313.00</td>
</tr>
<tr>
<td>560</td>
<td>20.02</td>
<td>24.73</td>
<td>34.00</td>
<td>39.42</td>
<td>54.30</td>
<td>71.00</td>
<td>100.00</td>
<td>139.00</td>
<td>183.00</td>
<td>232.00</td>
<td>293.00</td>
<td>368.00</td>
</tr>
<tr>
<td>680</td>
<td>21.44</td>
<td>26.57</td>
<td>35.97</td>
<td>41.33</td>
<td>58.00</td>
<td>76.00</td>
<td>108.00</td>
<td>148.00</td>
<td>196.00</td>
<td>250.00</td>
<td>314.00</td>
<td>394.00</td>
</tr>
<tr>
<td>820</td>
<td>23.87</td>
<td>29.06</td>
<td>38.71</td>
<td>43.78</td>
<td>63.00</td>
<td>83.00</td>
<td>118.00</td>
<td>168.00</td>
<td>224.00</td>
<td>286.00</td>
<td>356.00</td>
<td>440.00</td>
</tr>
<tr>
<td>1000</td>
<td>26.29</td>
<td>30.11</td>
<td>41.44</td>
<td>46.41</td>
<td>68.00</td>
<td>91.00</td>
<td>134.00</td>
<td>194.00</td>
<td>264.00</td>
<td>344.00</td>
<td>434.00</td>
<td>544.00</td>
</tr>
</tbody>
</table>
The Zener diode is generally associated with dc applications, such as the control and regulation of dc power supplies. Most Zeners are in fact used for this purpose but nevertheless they have many uses in ac, audio, rf, and ac control systems.

When supplied with alternating current and connected as a shunt regulator (Fig. 13), the Zener diode will limit both the positive and negative halves of the ac cycle. The diode conducts almost immediately after the signal passes through zero and into the negative segment. On the positive half cycle, the diode does not conduct until the applied voltage reaches the Zener voltage (Fig. 14). The result is a non-symmetrical square wave. Asymmetry can be improved by using high input voltages, but can never be completely eliminated unless two shunt connected diodes are employed in a back-to-back configuration (Fig. 15).

The Zener diode configuration shown in Fig. 15 is often used to provide stabilized filament supply voltages — especially to oscillator circuits and dc amplifiers. When using Zeners in this application bear in mind the ratio of average to peak Zener current. A figure of 0.6 is satisfactory.

Zener diodes may also be placed in the primary side of a step-down (or step-up transformer). When connected in this manner the diodes will regulate all associated secondary windings. The arrangement does require high voltage rated Zeners and is sometimes rather costly — however it is often used when high voltage secondary supplies need rudimentary stabilization.

Where power consumption is a prime consideration on ac power circuits, the Zener load resistor (RS) can be replaced by an inductance or capacitance. The device selected should have a reactance approximately the same as the calculated value for RS at the supply frequency.

Oscilloscope Calibrator

A single Zener diode may be used as an inbuilt oscilloscope voltage calibrator that is independent of line voltage variations. Figure 16 shows how simply this facility may be incorporated in practically any oscilloscope. A selected 10 Volt Zener may be used to provide a calibration voltage of one volt per division.

Zener Noise Voltages

As with neon regulator tubes, Zener diodes generate noise voltages. With Zener diodes, these voltages are associated with junction avalanche effects, and may vary between 10 uV and 1 mV depending upon the Zener type and voltage rating.

But unlike neon regulator tubes — where the incorporation of parallel filter capacitors is an excellent (if unintentional) way of making a relaxation oscillator — a Zener diode may be suppressed by adding parallel capacitance of 0.01 to 0.1 uF. This will reduce the noise voltage by a factor of at least 10 and yet maintain completely stable operation. (Figs. 17 & 18).

The Zener Diode as a Filter

The Zener diode will respond to ripple voltages in much the same manner as it does with slow voltage variations. It has a very low dynamic impedance and thus reacts in much the same way as a filter capacitor.

Excellent power supply filtering can be obtained by connecting a Zener diode (having a Zener voltage equivalent to the ripple trough) across the load. In most circuit applications this will be as effective as adding a smoothing capacitor of several
In this circuit the Zener diode establishes a reference voltage for the series transistor, which, in effect, operates as an emitter follower. Thus the emitter voltage is held within a few tenths of a volt of the base potential (which is determined by the Zener diode).

This transistor acts as a series element to absorb voltage variations. All load current flows through this series transistor. The power handling ability of this type of supply is determined entirely by the number and type of transistors used (and the ability of the heat sink to remove heat). Figure 23 shows the regulation obtained from the simple circuit of Fig. 22 which uses a 4.7V ¼W Zener and a 1k series resistor. The regulation may be improved by a factor of 10 by substituting a low dynamic resistance 4.7V 3.5W Zener (we used an IR 1N1589) for the ¼W device.

This circuit (Fig. 22) can provide a variable voltage regulated output by connecting a 1k potentiometer across the Zener diode. The variable reference voltage is then applied to the base of the series transistor. However, this modification reduces the degree of regulation due to the shunting effect of the potentiometer. A better system is to switch different Zener diodes into the circuit for different voltage outputs.

CONSTANT CURRENT REGULATION

A simple Zener-regulated constant current supply can be built using a single transistor as a variable series resistor. Figure 24 shows how it is done. Two circuit paths exist; one through the Zener diode which is in series with the bias resistor, and the other through R1, R2 and the 2N301 series transistor. Any change in the current through R3 causes a change in bias, the series transistor thus changes resistance to correct the current flow. In operation the current will remain substantially constant (within about 10%) from a short circuit to a 400 ohm output load. A graph of the output characteristics is shown in Fig. 25.

LOGIC CIRCUITS

In many ways a Zener diode
resembles a switch, and is therefore often used in computer and instrumentation logic circuits.

The advantage of Zener diodes for this purpose is their extremely rapid operation when switching around their avalanche point. Whereas germanium or silicon diodes are limited to data rates of less than 2.5MHz (due to storage of minority carriers) Zener diodes switching about their avalanche point have switching times practically equal to their relaxation time. For silicon this is 10⁹ seconds.

A typical AND gate, using two 6.8V Zener diodes is shown in Fig. 26. The positive 12 Volt bias is applied to both cathodes through the common load resistor, maintaining the diodes in avalanche condition. If a positive pulse is now applied to input A, the associated Zener will be gated out of the avalanche region. But due to the low impedance of the parallel connected Zener (associated with input B), the output (point A.B) remains clamped at 6.8Volts. The same circuit conditions apply if a pulse is applied solely to input B. However if a pulse arrives simultaneously at points A and B, both Zeners will be gated out of the avalanche region and the output voltage will rise from 6.8 Volts to the 12 Volt supply potential during the time that the pulse is coincident at the two inputs. Thus a positive pulse is produced coincident with the input pulse. Negative input pulses will not affect the circuit.

Figure 27 shows how a similar technique may be used to provide an OR function. In this configuration a pulse applied to either input will produce a pulse at the output.

SORTING

In the circuit shown in Fig. 28 the relays will be progressively energized as the input voltage increases. This circuit is often used for voltage controlled sorting. The relay contacts may be arranged to open chutes and illuminate indicator lamps for rapid sorting.

OVERVOLTAGE PROTECTION

The voltage sensitive characteristic of Zener diodes can be combined with the current sensitive characteristic of fuses to protect circuit components from overvoltage surges, whilst at the same time eliminating the 'nuisance' fusing that occurs when a fuse too close to the operating current is used.

By connecting a Zener diode of the correct voltage rating across the load, a fuse adequate to carry the normal load operating current for long periods may be used. But if the input voltage increases — and so exceeding the Zener breakdown voltage — the Zener diode will conduct. The sudden increase in current will blow the fuse practically instantaneously. (Fig. 29). A similar circuit may be used in conjunction with a circuit breaker rather than a fuse.

UNDervoltage PROTECTION

In some applications it may be necessary to disconnect a load from the mains supply if the supply voltage falls below critical level. A simple circuit that will provide this function is shown in Fig. 30. The series resistance R1 is chosen so that at normal operating voltages the Zener diode is broken down and sufficient current flows to hold the relay closed. When the supply voltage falls below the desired level, the Zener ceases to conduct and the relay drops out. The addition of the Zener diode to this circuit provides an accurate reference point, increasing reliability and eliminating the need for specially selected relays for different voltages.

DUAL VOLTAGE SUPPLY

Most logic circuitry needs a dual power supply — (one positive and one negative with respect to zero). The useful, but little known circuit shown in Fig. 31 can supply a dual output of balanced or unbalanced voltage from a single ended power supply. Zener diodes should be chosen to suit the voltages required.

Full details of operating characteristics of Zener diodes can be obtained from most semiconductor manufacturers.
The simple electronic puzzle presented in our September issue attracted a lot of interest. Many readers have asked us for more — so here's another — again designed by A.J. Lowe.

FIG. 1

FIG. 2

This story originated in the mind of Nick the Stutterer, better known as Niccolò Tartaglia, the Italian mathematician, who would be 472 years old had he lived. It goes like this:

Once upon a time, three beautiful blushing brides, and their handsome jealous husbands, arrived at a river they wished to cross. The boat, which was tied up there, would carry only two people. So, they had to work out how to get everybody across. But, this happened long before our present permissive age, and there were some restrictions. No bride was to be left in the presence of any other bride's husband, unless her own husband were there to protect her, or the other husband's wife were with him to stop any hanky panky.

Well, that's the problem, and in this project the people involved are represented by slide switches. (See Fig. 1), slide switches B1, B2 and B3 are the brides, and G1, G2 and G3 are the grooms, respectively.

The switches are moved to represent trips across the river in the boat. Nobody is allowed to swim, so the boat has to be rowed back and forth until all are over, with no compromising situations having been allowed to arise. If such a situation does arise, then an alarm goes off, and you've failed, and somebody's honour is imperilled.

The circuit is shown in Fig. 2. The somewhat bewildering array of switches is not so complex as it may seem at first. Each person is represented by a 3 pole 2 position slide switch. Thus Bride 1 switch includes B1a, B1b and B1c, all of which change over if B1 is moved across the river. The other people are similarly represented.

In a circuit diagram it is usual to join, with a dotted line, all switches which are linked together, but for clarity, these dotted lines have not been shown. All switches are shown in the starting position, that is, with all people on the near side of the river.

The alarm buzzer sounds only if a circuit is made between the left hand and right hand side lines. Thus, if B1 is left on the far side of the river with G2, the alarm will sound through B1a, G1a, G2b, and B2b, in the top line of
the diagram. However, if \(G1 \) is also at the far side of the river, to protect his wife, \(G1_a \) opens and so the alarm is not raised. Similarly, if \(B2 \) is on the far side of the river, she controls her husband, and \(B2_b \) is opened, and the alarm is not sounded.

The circuit can be followed through all the switches in this manner.

CONSTRUCTION

All you need is a panel, six 3 pole change-over switches, a buzzer, a battery and some wire. The original was made in a plastic box \(5\frac{1}{4}'' \times 4'' \times 3'' \) deep. It was fitted with an aluminium panel. The wiring inside is shown in Fig. 3. The alarm buzzer and battery holder were taken as a unit from a bicycle horn, and this is quite an inexpensive way of buying these items. Any available buzzer and suitable battery would do just as well.

As quite a lot of wiring is involved it has been shown in two stages, in Figs. 4 and 5. These diagrams show the back of the switches so now the positions of the people are reversed from the top view in Fig. 1. That is, \(B1 \) is on the right in the underside views. Stage 1 of the wiring includes the connections which run more or less lengthways, down the middle. Complete this stage before starting on Stage 2, which includes wires running across switches.

Check the wiring carefully, then test the device by setting up all the compromising situations on both sides of the river, and see that the alarm sounds in each case — and does not sound in any 'safe' situation.

It takes nine river crossings to solve the problem, and it's not too difficult for one person to work out. However, fun can be had at a party by asking six people, representing those in the problem, to work it out with the switches. With no one 'masterminding' the whole operation some real conflicts can arise.

PARTS LIST ET510

- Switches — six required A.B. Metals 'V' Type slider switch, from M.S.P.
- One buzzer
- One battery to suit
- Battery holder
- Wire
- Suitable case.

FIG. 3

FIG. 4 — WIRING STAGE 1

FIG. 5 — WIRING STAGE 2
AMERICANS make things bigger, better and more powerful, than practically everyone else.

A good example of this is the McIntosh MC2105 amplifier and matching C26 preamplifier, for here is a stereo amplifier system that can deliver a cool 105 Watts, average continuous power from each channel into 4, 8 or 16 ohm loads, and provides superlative performance with apparent ease.

The McIntosh preamplifier is packed in three heavy cardboard cartons - inside one another - providing more than adequate protection.

Having unpacked the unit one cannot help but be impressed by the unusual appearance. A large black glass panel stretches right across the front of the unit and this carries markings that are gold coloured when the unit is switched off, but which change to green when power is applied.

Each end of the front panel is finished by a chromed metal strip. All control knobs on the front panel are machined from solid aluminium and these are finished with a high lustre on the front face and have a knurled edge. The position of each knob is indicated by a slot neatly cut in its edge. The input selector switch, which is located in the top right hand corner, has six positions. These are:

- Tuner
- Phono 1
- Phono 2
- Auxiliary
- Tape 2
- Tape 1

A selector switch, that provides every conceivable operating mode, is located adjacent to the input selector and has seven positions. These are, by clockwise rotation:

1. Left channel input to left and right channel outputs
2. Right channel input to left and right channel outputs
3. Stereo reverse
4. Stereo normal
5. Mono, which adds the left and right inputs and feeds the combined signal to both output channels.
6. Left plus right input to left channel output only.
7. Left plus right input to right channel output only.
A set of six "push on" "push off" buttons are located below the input and mode selector knobs. These select Tape 1 or Tape 2 Monitoring, Low Pass and High Pass Filters, and Main and Remote Speakers. When all speakers are switched off, two 16Ω, 10W dummy load resistors are switched across the outputs. The make and model indentifications of the preamplifier together with a red illuminated "power on" indicator strip and the volume control are located in the top right section of the front panel.

The volume control was the only part of the preamplifier, that in our opinion did not reflect the same level of thought and effort evident in the rest of the unit. This control doubled as an on-off power switch (at the fully anticlockwise position) and this could result in excessive wear of the potentiometer. Ideally, an additional "push on" "push off" button could have been included with the six buttons on the left hand side for switching the power on and off, or, alternatively, a pull to operate control potentiometer could have been used.

The bottom half of the right hand side contains the following controls:

a) A loudness control which is variable and independent of the volume control.

b) A balance control.

c) Dual concentric bass control knobs with five boost and five cut positions.

d) Dual concentric treble control knobs with five boost and five cut positions.

A ring tip and sleeve socket for headphones is located on the front panel between the push buttons and the loudness control knob. Two additional controls are located on a recessed panel in the top of the unit. One provides 180° phase shifting of the left channel, should the speakers be wired out of phase. The second is an independent volume control for the centre channel output.

Adjustment of the loudness control was rather time consuming for as you moved the loudness control from the "flat" position to the "maximum" position you reduced the volume of the mid range and high range components rather than boosting the bass end as is the normal practice. Because of this arrangement it was easier to adjust the bass and treble controls rather than to adjust the loudness control, correct the volume control, then readjust the loudness control and so on, to obtain the desired combination of control settings.

The preamplifier is supplied with mounting brackets which incorporate the PANLOC mounting system developed by McIntosh. This system consists of quick release buttons located on the front panel of the preamplifier, allowing the unit to be slid out of its case, thus providing access to the phase and centre channel controls. In this position an engraved aluminium panel is revealed. This carries a block diagram of the preamplifier circuitry and performance specifications.

THE CONSTRUCTION

The back panel of the preamplifier contains all the input and output terminals. These consist of three sets of four spring-loaded terminals, one set for the power amplifier input, one set for the main speaker output and one set for the remote speaker output. (The speaker outputs are wired back to the preamplifier from the main amplifier unit) Six pairs of R.C.A. type coaxial sockets are provided for the following inputs: Auxiliary, Tape 2, Tape 1, Tuner, Phono 1 and Phono 2. Four pairs of R.C.A. type coaxial sockets are provided for Tape 1 and Tape 2 outputs and for two main amplifier outputs. A single R.C.A. type socket is provided for the centre channel output. Four 2-pin power sockets, one switched, three unswitched, are provided to energize auxiliary equipment.
The internal layout and metal work is exceptional. All components and printed circuit boards are mounted on a heavily chromed plated mounting panel. The main circuitry is contained on three printed-circuit boards horizontally mounted at the left hand end. The smallest board contains the power supply and centre channel circuitry. The other two boards contain the preamplifiers for each channel. These two boards have been laid out with all components laid parallel to an edge or an end of the board. The only difference between the two boards is an additional capacitor and resistor on the left channel preamplifier board, which are used to shift the output signal 180°. Each circuit board has its own serial number stamped on it and quality control markings can be seen at various places on each board.

All transistors are colour coded in addition to the normal type numbers and are soldered onto pins located on the printed circuit boards. This arrangement minimizes the chances of overheating the transistors during soldering and simplifies the removal of any transistor for replacement if required. The circuit utilizes emitter-follower configurations with negative feedback to reduce noise and distortion.

The power transformer is fully enclosed in a metal housing to provide maximum shielding. All wiring is fully colour coded and made up in harnesses, shielded where necessary. All the wiring terminations on the boards are also made via stand-off pins.

The preamplifier is supplied with a 16 page glossy "Owners Manual", a Service Information leaflet and an "If You're in a Hurry" card. The "owners Manual" covers the following topics:

- Guarantee
- Installation
- How to connect (graphically illustrated)
- What the controls do
- Listening to your stereo system
- Performance limits and charts
- Technical description and block diagram.

The service information manual includes detailed circuit diagrams with voltage levels and component details.

- Printed circuit board layouts
- Component parts lists with manufacturer's part numbers.

The "If You're in a Hurry" card gives concise instructions for external connections and for operating the various controls.

The McIntosh Guarantee, we believe, is unique for any preamplifier or amplifier, and states that, "should the performance of these units exceed the published performance limits specified, during the first three years from date of purchase, then McIntosh will restore the unit to its original performance free of charge, with the exception of transport costs". The recognized Australian distributors are service agencies.

Our laboratory tests showed that the measured performance was equal to, or better than, the manufacturer's performance limits in all parameters. The total harmonic distortion was considerably better than the stated limits, being 0.04%.

The frequency response rose less than 1/3 dB from 20Hz to 25kHz, and was then flat from 25Hz to 20kHz.

The McIntosh MC2105 solid state power amplifier is very similar in appearance to the preamplifier. The external finish is identical, with a black glass front panel with chromed trims at each end and machined aluminium knobs.

The front panel contains two large illuminated power-level meters in the top left hand corner. These are balanced by the make and model identification in the top right hand corner. Five aluminium knobs arranged across the bottom of the front panel provide the following facilities — from left to right:

- Left channel gain control.
- Meter range switch with four positions, namely OFF, -20dB, -10dB & 0dB.
- Right channel gain control.
- Speaker "on-off" rotary switch.
- Power "on-off" rotary switch.
- A ring tip and sleeve headphone plug.

The "If You're in a Hurry" card gives concise instructions for external connections and for operating the various controls.
The construction of the autotransformers is quite intriguing; they are bifilar and pentafilar wound, or in general terms — scrambled wound — to minimise the distortion inherent in standard transformer construction. The construction of the laminations is typical of the effort put into the transformer's design. These are tape wound and then cut and lapped optically flat. Once the windings are wound on, the laminations are then sealed together with a controlled air gap so that the desired response characteristics of the transformer are produced. This attention to details is necessary to maintain the very low distortion figures claimed (and achieved) by McIntosh.

The meter circuitry is an unusual innovation, it accelerates the movement of the meter when responding to a transient signal, thus compensating for the inertia characteristics of the meter, and then provides a slower decay so that the peak level may be more adequately determined. The manufacturers claim a peak reading accuracy within 2% of the true value. We found, during our tests, that impulses of 200 milliseconds duration, or greater, gave a true reading on the meter at the 0dB level, and impulses less than 100 milliseconds duration gave errors greater than 10% (ie – 2dB).

The unit came complete with an Owner's Manual, a Service Information leaflet and an "If You're in a Hurry" card, with similar information to that detailed for the preamplifier.

MEASURED PERFORMANCE

The measured performance of this amplifier can only be described as exceptional. At rated output of 105 watts per channel the frequency response was flat from 20Hz to 20 kHz ±0.1db. With such a high output rating we were surprised when after two hours operation with one channel operating at 105 Watts and one at 250 Watts (that's right — 250 Watts), the temperature rise did not exceed 80°F.
above a 70°F room temperature on the overloaded channel heatsinks. At rated output the temperature rise of the heatsinks was only just noticeable.

Total harmonic distortion was particularly low, especially for an amplifier with transformers in the output stages, and above 40Hz was considerably lower than the limits stated by the manufacturer.

The left channel power level meter was sticking around the 0dB graduation, thus making it impossible to determine its calibration accuracy. However, we may assume that the calibration of the right channel power level meter is indicative of the order of accuracy to be expected. The calibration accuracy of this meter was better than 0.3dB over the graduated range, and its associated attenuator within ±0.2dB for the -10dB and -20dB range. With the meter range setting at -20dB the unit delivered ½ Watt when the meter indicated 0dB.

At the -10dB meter range setting the output was 5 Watts at 0dB, and at 0dB meter range setting the output was 50 Watts at 0dB. A +3dB meter indication at 0dB range setting corresponded to a power output of 100 Watts.

The Power amplifier is designed with adequate controls so that it may be used on its own, driven by any suitable programme source (500mV at 50kΩ impedance.)

The McIntosh amplifier is the best amplifier we have ever tested — at $1626 for the two units, it is also one of the most expensive amplifier systems that we have ever seen.

During subjective testing we found it impossible to use its full power capability, for our test speakers (50 Watt continuous rating JBL monitors) could not handle the power, nor could we withstand the sound levels created. Whilst most manufacturers of high powered amplifiers claim that the average home can easily use — or will benefit from such reserve power — we have always found the speakers to be the limiting factor with high level transients or sustained signals.

We consider that this amplifier system is best suited to professional applications, although — if used with suitable speakers — it will provide perfect performance for the most discerning, well-heeled domestic user.
SIMPLE STEPS TO RECORD PLAYING SUCCESS.

1. INVEST IN THE BEST TURNTABLE AVAILABLE. THORENS

Choose from the Model TO-125 or the TD-150 Mk. II. Then you can share the opinions of leading overseas reviewers: "the best three-speed manual we've ever tested" — ("High Fidelity"), "wow and flutter were as low as we've ever measured" — ("Stereo Review"), "a favourite contender in the best turntable category" — ("Audio"), "it would be hard to imagine a unit that performs better" — ("Electronics World").

Examine Thorens specifications closely and critically. The new Model TO-125 features: 4 Transistor governed 16-pole synchronous motor 4 ≠2% speed control on all speeds 4 Belt drive 4 7 lb. 12" turntable 4 Wow and flutter ±0.06% 4 Rumble —68dB. 4 Fine Swiss craftsmanship.

The lower priced Thorens TD-150 Mk. II offers: 4 16-pole synchronous motor 4 Belt drive 4 7 lb. 12" diameter turntable 4 Two speeds — 33⅓ and 45 rpm 4 Wow and flutter ±0.09% 4 Rumble —65dB.

When you've purchased your Thorens turntable...

2. ADD AN ORTOFON M15 STEREO CARTRIDGE.

After many years research, Ortofon have designed a new stereo cartridge which maintains the proud traditions of the Ortofon name. Featuring new principles, the high performance standards which have made Ortofon world famous have been preserved in the new Series M15 and MF15. Over 80% of professional users such as the radio and television stations (and recording studios) specify Ortofon equipment.

BASIC SPECIFICATIONS:

Weight of cartridge: 5 grams. Frequency response: 20 Hz. to 10 kHz. ±1 dB. 20 Hz. to 20 kHz. ±2 dB. Recommended load: 47 kohms. Channel separation at 1 kHz. Greater than 30 dB.

Having equipped yourself with a fine player and cartridge...

3. KEEP YOUR RECORDS CLEAN WITH WATTS EQUIPMENT.

Airborne dust and dirt are the greatest enemies of your records and cause untold amounts of noisy interference. We recommend THE WATTS "DUST BUG"... which cleans the record, removing dust and static charges as the record plays. Surface noise is reduced considerably.

THE WATTS "DISC PREENEER"... designed expressly for records which have not had previous anti-static treatment. The "Disc Preeneer" keeps new records like new.

THE WATTS "MANUAL PARASTAT", Model Mk. IIA... is a dual purpose record cleaner designed to maintain new records as new and to restore fidelity to older discs. Ask for a copy of the Watts Guide to Record Cleanliness when you visit your record store.

"It's easy to follow the Three Steps to Success. Call at your nearest franchised Simon Gray dealer's showroom. He'll be delighted to tell you all about Thorens turntables, Ortofon stereo cartridges and Watts record cleaning equipment!"
The only amplifier that combines the benefits of Australian research with Japanese Technology:

The New J.H. ROTA OTL-2200

This amplifier has been designed utilizing both the Australian expertise of "J.H. Reproducers Co." and the technological facilities of the giant "Rota Corporation" of Japan.

CHECK THESE FEATURES

INPUTS:
- Magnetic Cartridge (4MV)
- Microphone (5.5MV)
- Tuner (200MV)
- Tape (200MV)
- Crystal or high output ceramic cartridge (200MV)

TOTAL OUTPUT POWER:
- 40 watts (2 channels) or 12 watts RMS per channel.

TOTAL HARMONIC DISTORTION:
- Below 1%; below 0.2% at 30 watts.

OUTPUT IMPEDANCE:
- 4-16 ohms.

FREQUENCY RESPONSE:
- 20-40,000 Hz ± 1 db.

TONE CONTROL:
- Bass ± 10 db at 100 Hz. Treble ± 10 db at 10,000 Hz.

S/N RATIO:
- Mag. & Mic, better than 60 db. Aux. & Tape, better than 75 db. Tuner, better than 70 db.

STYLING:
- Attractive black aluminium fascia in polished walnut cabinet.

ALL THIS FOR ONLY $110.00

(MUCH LESS WITH TRADE-IN)

* Amplifier will be despatched "freight free" within Australia.

Please send me a J.H. Rota OTL-2200 Amplifier. I enclose herewith my money order/cheque for

$..

NAME....................................

ADDRESS....................................

POSTCODE..................................

INSTROL
HI-FI & ELECTRONICS CENTRE
91A YORK ST., (between King & Market Sts.),
SYDNEY, N.S.W. 2000. Phone 29 4258
The antenna is probably the most important part of a radio telescope and familiarity with the associated terminology and fundamental designs is desirable before attempting construction. We propose to cover these topics only briefly, as very detailed treatments can be found in such books as "The Radio Amateurs Handbook" (A.R.R.L.), "The Amateur Radio Handbook" (R.S.G.B.), "The VHF Handbook" (Orr & Johnson - Radio Publications), "The A.R.R.L. Antenna Handbook" (A.R.R.L.), "VHF Antenna Handbook" (Kyle - '73 publications) or similar publications. Excellent practical and design details are given in these books as well as in the specialised books on radio astronomy that we will include later in a bibliography.

Although antennae differ in shape, size and method of operation, their general characteristics are defined by the following terms:—

Radiation Pattern or Direction Pattern

This refers to the pattern obtained when receiver antenna sensitivity is plotted in three dimensions (or the variation in power when a transmitter antenna field is plotted in three dimensions). The radiation patterns of a number of antennae are shown in Fig. 5 (a), (b) and (c). The radiation pattern shown in Fig 5 (a) is of a simple dipole in space, it has a striking resemblance to a doughnut.

The pattern of a dipole and screen reflector is shown in Fig. 5 (b). Note the "side lobes". In practice these are reduced in amplitude as much as possible to prevent confusion in the interpretation of results. In the early years of radio astronomy many "new sources" turned out to be nothing more than side lobe responses from the antenna!

The pattern of a parabolic dish is shown in Fig. 5 (c). This is often called a "pencil beam" owing to its extreme narrowness.

Beamwidth

This is the angle, measured in a chosen plane (generally the plane of the main antenna element and at right angles to this plane), between the two "half power" points of the radiation pattern. The half power points, of a simple dipole and a small Yagi antenna are illustrated in Fig. 6 (a) and (b). The radiation pattern is taken in the plane of the antenna elements in both cases.

"Aperture" or "effective area"

This is a measure of the wavefront area from which an antenna can absorb power. It is generally expressed as a fraction of a wavelength squared.

In Part 2 of this series, Roger Harrison describes various types of antennae.

WHY RADIO ASTRONOMY AS A HOBBY?

Galileo was the first man to make systematic observations of the skies using a telescope. An amateur scientist, he constructed his own telescope, kept systematic records and made some startling discoveries. He correctly concluded that the sun, not the earth, was the centre of the solar system, confirming Copernicus' earlier theorem. He was jailed for his opinion! In 1936, Grote Reber, an amateur radio-astronomer constructed his own radio telescope and subsequently made a systematic series of observations of the skies which enabled him to complete a map of the radio sky.

Recognised as the world's first radio astronomer (and the world's only radio astronomer for more than ten years) Grote Reber's work stands as a pioneering and classical contribution to modern astronomy and astronomical physics. (Karl Jansky is credited with discovering the effect of cosmic radiations but did not persist with observations when his research contract was fulfilled).

All through the history of astronomy, amateurs have been able to make significant discoveries and contributions, alongside the efforts of professional scientists and scientific organisations. That this is so is no accident - it is generally the result of patient hard work and careful analysis.

Among those amateurs who have made their mark on astronomy are David and Johann Fabrichus who observed the variable star Mira Ceti. Joseph Fraunhofer who discovered spectroscopic lines in the radiation of the sun, Heinrich Schwabe who discovered the 11 year sunspot cycle, Frederich Sporer who did much spectroscopic work and described the law of sunspot zones, John Carrington who did a tremendous amount of work on solar observations and techniques, and Joseph Lockyer who developed a method for observing the solar corona.

In the newer science of radio astronomy the work of Frank Hyde and John Heyington, both amateurs, has made significant contributions since radio astronomy became a science.

Interest in radio astronomy, as a hobby, is growing rapidly in Australia and many find it instructive and rewarding from a personal point of view apart from the chance to be able to make some contribution to science.
as a fraction of the physical area of the antenna being considered. The value varies between 0.5 and 0.9. It is dependent on the direction of arrival of the wavefront, being at a maximum along the axis of the main lobe.

Directivity

Directivity is the ability of an antenna to absorb more power (from an electromagnetic wavefront) along a particular axis, than any other axis. An antenna that absorbs power, from an electromagnetic wave, equally from any direction, is termed an isotropic antenna. It exists only as a mathematical concept and a convenient reference.

Gain or power gain

Gain in an antenna system is a term used to express the increase in sensitivity of an antenna. For example, if a certain antenna produces ten times the voltage at its feedpoint, from a certain source, than that produced at the feedpoint of a dipole, then the voltage gain of the antenna is 20 dB.

Bandwidth

This refers to the frequency characteristics of an antenna. The gain of an antenna will vary with frequency, being greatest at the resonant frequency. The "half-power bandwidth" is the difference between the upper and lower frequencies at which the gain is half the maximum value (i.e. half the gain at the resonant frequency). Some antennas have a very broad bandwidth (e.g. log periodic, the helix) while some have a very narrow bandwidth (e.g. the Yagi).

Feedpoint

The feedpoint of a receiving antenna is the place where a detector can be connected (usually via a transmission line) to achieve optimum reception of the power absorbed by the antenna. In a simple dipole, this is usually at the centre, but can be at the ends (this requires a special transmission line). A multi-element array may have only one feedpoint or many feedpoints connected together. The Yagi array has only one feedpoint while the collinear array (or Kooman array) has many feedpoints, all connected together.

The **feedpoint impedance** is a measure of the resistive and reactive components seen by an RF signal connected to the feedpoint. The feedpoint impedance varies with frequency and is generally a pure resistance (or nearly so) at the resonant frequency, depending on the antenna type and its particular characteristics.

Broadband or aperiodic antennas have a relatively constant feedpoint impedance over a wide range of frequencies. The rhombic and log periodic antennas are of this type.

TRANSMISSION LINES

Antennae are rarely connected directly to the input of a receiver. To conduct the energy received by the antenna to the input of the receiver, a transmission line is used.

Transmission lines take a variety of forms, but the most commonly encountered are the coaxial line and the two-wire ribbon or open-wire line.

Coaxial line comes in three different forms: flexible, semi-flexible and solid. Flexible coaxial cable is made in a variety of ways but generally of the form shown in Fig. 7. The semi-flexible and solid variety are similar but for the arrangement of the outer and inner conductors. Soft copper is used for the inner and outer conductors of semi-flexible coaxial to allow it to be "formed" freely. Solid tubing is used for the inflexible or solid variety of coaxial transmission line. These two types are illustrated in Figs. 8 (a) and (b). Coaxial cable is referred to as "unbalanced" transmission line.

The two-wire flat ribbon type of transmission line is used extensively on T.V. antennae to connect the antenna to the T.V. receiver. The open-wire line is another form of two-wire transmission line, but has no solid insulator to maintain a constant distance between the two wires. Small insulators are placed at intervals along the line to perform this function. These two types of transmission line are illustrated in Figs. 9 (a) and (b). Note that two conductors are run parallel to one another in this type of transmission, which leads to it being referred to as "balanced" transmission lines.

All transmission lines have a characteristic impedance seen by an RF wave sent down the line. The characteristic impedance is a function of the diameters and the distance between the conductors and the dielectric constant of the insulation used in the transmission line.

Common impedances for coaxial lines are 50 ohms or 52 ohms, and 70 ohms or 75 ohms. Open wire or flat ribbon type lines are generally
available with an impedance of 300 ohms. Antennas are usually constructed so that the feedpoint impedance equals the transmission line impedance. If this cannot be readily accomplished, various methods are used to transform the antenna feedpoint impedance to the transmission line impedance so that they are "matched".

All transmission lines have a certain amount of loss due to the conductor resistance and dielectric loss. This is usually expressed as a loss of so many dB/100 ft. For radio astronomy it is best to use a transmission line which has the lowest loss obtainable and then only a short length. Long runs of transmission line reduce the sensitivity of a radiometer.

ANTENNA TYPES

Many types of antenna are suitable for use in radio astronomy. Full constructional details of a few of these will be included later in this series of articles.

DIPOLES AND REFLECTORS

A simple dipole can be used to receive the emissions from Jupiter but an array of dipoles and reflectors is much more sensitive — and more versatile. Two half-wave dipoles, connected in phase with reflectors is shown in Fig. 10 (a). As shown this sort of array is easily made steerable.

An antenna for a drift interferometer is shown in Fig. 10 (b). It consists of two dipoles, connected in phase, above a screen reflector. These antennae are easily erected in a back garden. They are cheap and quite effective. They are generally used between 10 MHz and 50 MHz. In the VHF range and above, antennae with extra elements become practicable. For example a ten-element Yagi at 15 MHz would be about 150 ft. long and 30 ft. wide, but at 150 MHz it is only about 18 ft. long and 35 inches wide.

THE COLLINEAR AND KOOMAN ARRAYS

The collinear array is similar to the array shown in Fig. 10 (a) but has a number of such arrays mounted one above the other. It is shown in Fig. 11 (a).

In the Kooman array all the reflectors are replaced by a large mesh screen (shown in Fig. 11 (b)).

Both these types are very useful, easy to construct, are not too critical in their dimensions and may be made fully steerable. They are most used at frequencies above 100 MHz. They become rather unwieldy when constructed for frequencies below this.

THE YAGI

The Yagi is a very simple antenna to construct, has a very high gain, a good radiation pattern and is easy to erect.

THE CORNER REFLECTOR

The corner reflector is another simple antenna yielding good gain and radiation pattern characteristics. It is relatively simple to construct and erect on a steerable structure. They have practicable dimensions even at frequencies as low as 30 MHz. Indeed a versatile corner reflector may be constructed from one reflector and a number of interchangeable dipoles (Fig. 13).
RADIO
ASTRONOMY
FOR
AMATEURS

Fig. 11b. The Kooman array. In this type of antenna all the reflectors are replaced by a large mesh screen.

THE LOG-PERIODIC

This is a type of broadband antenna and can take many forms. They are relatively easy to construct, provide reasonable gain and have a good radiation pattern.

Many designs have been published over the years and we have illustrated the general form of one type in Fig. 14. They are very useful for making observations over a number of widely separated frequencies.

THE HELIX

This is also a relatively broadband antenna and has the advantage of being able to accept signals of any polarisation. It has good gain and radiation pattern and is relatively easy to construct. It can be made fully steerable quite simply. (Fig. 15).

THE RHOMBIC

This antenna is a broadband antenna also. It suffers from the disadvantage of having the radiation pattern vary with frequency.

A rhombic for use at VHF frequencies can be very small and can be made fully steerable. Construction, as can be seen from Fig. 16 is very simple.

THE CYLINDRICAL PARABOLA

The cylindrical parabolic reflector is much easier to construct than a parabolic dish and only a little more difficult than the corner reflector. A mesh screen (or parallel wires) is fitted over a parabolic frame. A number of dipoles or a single dipole can be put at the focus (which is a line parallel to the surface) and made interchangeable to increase its versatility.

This antenna is very useful for drift radiometers or drift interferometers. It can be made steerable in elevation just as readily as the corner reflector. Dimensions can be quite practicable down to 50 MHz.

THE PARABOLIC DISH

This antenna employs optical techniques familiar to most people. It uses the same principle as the Newtonian telescope.

An antenna, generally a simple type such as a dipole and reflector, is mounted at the focus of a parabolic dish so that all the energy collected by the dish is focused onto this antenna.

The parabola has very high gain but can be unmanageable if high gain at the lower frequencies is desired. However, a 30 ft. diameter dish at 140 MHz will give more gain than anything of similar proportions. Like the corner reflector, a number of interchangeable antennae can be used to improve its versatility. A "chicken wire" or screen mesh works well, even up to 500 MHz, but the dimensions and surface irregularities cause deteriorated performance with this type of construction at higher frequencies.

Small dishes (6 ft. to 10 ft. diameter) with metal gauze (fly-wire) reflectors give good performance at frequencies between 1000 MHz and 3000 MHz (centimetre wavelength band).

Large parabolic antennae are in use at Jodrell Bank (UK), Parkes (Aust.) and Owens Valley (USA).

(Continued on page 96)
DECORATIVE/FUNCTIONAL/RELIABLE/This extensive range of Rodan indicator lamps, in both incandescent and neon styles, is designed for compatibility with and to enhance the presentation of electronic, electrical and industrial equipment... equipment in which space saving, long life indicators are essential. Features of the range include/long life (up to 100,000 hours)/Coloured lens in either red, yellow, green, blue or white./One hole mounting./Styles providing front-of-panel replacement./Styles with insertable lens—Suitable for symbol adaption and ideal for digital readouts./Clip-in bezel mounting styles./Chrome plated bronze or moulded plastic housings.

The range is available from the Professional Components Department, Villawood, N.S.W. or Plessey Ducon Interstate Offices. Descriptive literature is available on request.
If you want a Cartridge...

that will track at 0.0001 gram that has a frequency response of 1Hz to 100,000Hz.
Stanton is not for you
If, however, you want a cartridge
that tracks any record ever made
that doesn't mind a less than perfect (?) arm
that reproduces any frequency ever put on a record
that gives you at least 50% longer stylus life
that is not at all susceptible to hum pickup
that is smoother, cleaner and cheaper than any other comparable cartridge.
Then Stanton 681EE is the only one for you
Do yourself a favour and hear one today.
A major failing of most car burglar alarm systems is that the driver must take action to set them. Many drivers forget. Here is one that is virtually automatic, and is simple to install as well.

AUTOMATIC CAR-THEFT ALARM

also protects trucks, boats & caravans

Some months ago our companion journal 'Modern Motor', received a car burglar alarm for evaluation. One day someone forgot to switch it on, and the car was stolen complete with the alarm.

Question. — Was this a good alarm system?

In our opinion emphatically NO — for just as some people steal cars — others forget to switch on alarm systems.

And so the Electronics Today alarm system is automatically set. This is achieved by incorporating a circuit that 'arms' the alarm system some 30 seconds after the ignition is switched off.

The alarm is triggered by any drop in the battery supply voltage caused by an increase in loading on the vehicle's electrical system. Thus if a door is opened, this will activate the interior light, and the increase in electrical load will trigger the alarm.

This operating principle simplifies installation, for practically all vehicles have courtesy lights with actuating switches installed in at least two doors — and it is fairly easy to install further switches in the rear door pillars if required. Both the boot and under bonnet areas may be protected in a similar manner — indeed many vehicles have lights already fitted in these areas, if not, it is a simple matter to incorporate them into the circuit.

Remember that these lights must be switchable at all times — not just when the ignition is on.

The alarm will also be actuated by anyone pressing the brake pedal — or if a light is fitted — by opening the lid of the glove box.

DELAY CIRCUIT

The delay circuit built into the unit enables the driver to leave the vehicle without triggering the alarm.

As the alarm is triggered by an increase in electrical load, any doors or other protected areas may be closed at any time before or after the end of the time delay period, providing the doors are initially opened before the preset time. The subsequent decrease in load as the lights are extinguished will not trigger the alarm.

In the initial design stage we considered incorporating a second time delay to obviate the need for any external re-entry switches.

But as this would allow a thief quickly to break into a parked car and steal goods from the interior before the alarm was energized, we decided to use an instantaneous alarm and an external re-entry switch.
Nearly 50,000 cars a year are reported as stolen within Australia each year. In fact motor vehicle theft is today’s most prevalent crime.

What can one do to protect one’s own vehicle and reduce the chance of theft? Detective Sergeant Barry Filwood of the N.S.W. Crime Prevention Section advises the following simple precautions:

- Close all windows, lock all the doors and take your key with you when you leave the car.
- Never leave valuables such as clothes, cameras, or radios on seats or anywhere visible within the vehicle.
- Avoid loading valuables into your car in public, for a thief may be watching.
- Do not leave any papers of identification, such as Driver’s Licence, Registration papers or private correspondence within the car. At least don’t keep them in the glove box.
- Avoid parking in isolated places. If you have no garage, try to park under a street lamp, or in a lighted area.
- Record the serial numbers of your engine, car body and car radio somewhere other than in your car. This data will considerably assist the Police in identifying your vehicle. If you leave it in the car, you are providing the thief with the support of the claim that the car is his.
- Promptly report anyone loitering near or trying the door handles of parked cars.
- Leave only the ignition key when parking at a commercial garage.
- Install a steering lock and/or alarm system.

In the alarm system shown here, once the alarm has been de-activated by the external key, it remains de-activated until the ignition key is switched on. It is then automatically cancelled.

Bear in mind that the re-entry switch merely inhibits the alarm circuit. The unit is actually switched off as the ignition is switched on.

It is quite feasible to interconnect the re-entry key with the main door locking mechanism. Police statistics show that it is very rare indeed for a car to be illegally entered by using a door key. We have equipped one of our staff cars in this fashion and the system has proved both reliable and practically impossible to misuse — for the alarm is ‘armed’ by switching off the ignition, and reset by using the door key to enter the car in the normal way.

Alternatively a re-entry switch may be located on a body panel, or other convenient place.

A separate switch is built into the alarm unit to de-activate the system whilst the vehicle is being serviced.

The circuit is arranged so that once the alarm has been triggered it cannot be de-energized by either the re-entry or de-activating switches. It can only
be reset by switching on the ignition. The unit has been designed for vehicles with 12V electrical systems and by including or excluding a number of components (marked clearly on the circuit diagram), it can be used with either positive or negative earth electrical systems.

It is not possible to use this alarm circuit with six volt electrical systems.

CONSTRUCTION

By far the simplest way to assemble this unit is to mount all the components on the printed circuit board (the foil pattern of which is reproduced full-size in Fig. 1). The same board is used for both positive and negative earth systems.

Figures 2 and 3 show how the components are located on the board. Note that Fig. 2 shows the component layout for positive earth vehicles, and Fig. 3 is for negative earth vehicles.

The circuit diagram of the complete unit, shown in Fig. 4, illustrates the difference between the positive and negative earth systems.

When assembling the board observe carefully the polarity of the electrolytic capacitors and the pin connections of the operational amplifiers and transistors. Check all soldering for dry joints, or for drops of solder that may be shorting across any tracks. Also check that all components are rigidly mounted and that no leads are touching. Re-check all connections to the operational amplifiers. Set
AUTOMATIC CAR-THEFT ALARM

Fig. 5. This drawing shows how the alarm unit is connected into the vehicle's electrical system.

Fig. 6. This optional unit switches off and resets the alarm system after a preset time.

Fig. 7. Constructional details of circuit shown in Fig. 6.

to maximum resistance.

INSTALLATION

The completed unit should be installed out of sight, but in a fairly accessible place to enable the unit to be disabled when the vehicle is in for servicing.

Ensure that the alarm unit has been built to the correct polarity for the vehicle and that the electrical system is 12 Volt.

Solder leads onto the pins provided on the alarm unit and long enough to reach the points indicated on the installation drawing (Fig. 5).

Mount the alarm unit in the chosen location and run the wiring to the positions indicated on Fig. 5.

As explained earlier, the external re-entry switch can with a little ingenuity, be built into the existing door locking mechanism. But make sure that the switch is operated only by the key and not when the door is opened from the inside.

If an external key switch is used it should either have a momentary contact mechanism (or if a normal type of switch is used it may be momentarily turned on, then off again).

If the vehicle has any fibreglass or alloy panels a reed switch may be used for the external reset function. Just mount the reed behind a convenient panel and actuate it externally by a small bar magnet.

As the unit is operated by a momentary drop in battery voltage, caused by lamps being energized, it is essential that all globes be maintained in working order. One advantage of this system is that any fault in the triggering mechanism is immediately obvious.

The function of the potentiometer RV1 is to provide a sensitivity control. During the early development of this unit we were plagued by false alarms at intervals of a few hours. This was finally traced to the electric clock which had a mechanism that was electrically rewound at regular intervals! If this occurs then just back off RV1 meanwhile ensuring that the unit functions correctly when triggered in the normal way.

The vehicle's existing horn may also be used as the alarm horn — however it is well worth while installing a separate horn specifically for the alarm function. If this is done it should be mounted in an inaccessible position and the associated wiring carefully concealed.

Whilst not included in the basic alarm unit we have also shown a circuit (Fig. 6) that will switch off the horn alarm at the end of a 90 second period. The unit then resets automatically and will be re-activated if any further attempt is made to re-enter the vehicle.

ELECTRONICS TODAY — JANUARY 1972
HOW IT WORKS

The alarm circuit is best considered as a number of separate interconnected units. These are:
1. Power supply.
2. Detector.
3. Initial time delay.
4. Inhibiting network.
5. One cycle oscillator.
6. Output stage.
7. Maximum alarm-time unit (optional).

POWER SUPPLY

For vehicles with positive earth systems, the power supply is formed by Q1a, D1a, D2a, R1a and C1. (Components with suffix 'b' are used in the negative earth version.)

With the ignition key in the off, on, or start positions, power is supplied to resistor R1a via D1a or D2a. If power is supplied to this resistor, Q1a is turned off and no power is supplied to the alarm circuit. When the ignition key is turned to the off position no power is supplied to R1a and so R1a turns on Q1a and power is applied to the alarm circuit.

The reason for taking power signals from both the ignition coil and acc. positions is that in many vehicles all secondary electrical loads are disconnected in the start position. This would otherwise cause the alarm to operate whilst starting the car.

DETECTOR CIRCUIT

This is primarily an operational amplifier (IC1) with differential inputs. The inverting input (-) is Pin 2, and the non-inverting input (+) is Pin 3. If the input to Pin 2 is more than four millivolts higher than Pin 3, the output (Pin 6), will be within two volts of the negative supply rail. If Pin 2 is four millivolts, or more, lower than Pin 3, the output at Pin 6 will be within two volts of the positive supply rail.

A common centre tap, derived from R3 and R4, is used for both inputs. The voltage at the non-inverting input (Pin 3) is modified by feedback from the output, (Pin 6).

When the alarm is in the non-triggered state the output of IC1 is in the low state and the voltage at Pin 3 is between 5V and 1V lower than the voltage at Pin 2 depending on the setting of RV1.

If a negative pulse occurs on the supply rail, this pulse is coupled into Pin 2 by C4. Providing this pulse is greater than the bias on Pin 3, the output of IC1 will go high and will be held in this state by the action of the feedback loop.

If the activating switch SW1 is in the off position, the negative pulse on the supply rail cannot be coupled into Pin 2. This will prevent the alarm from being triggered, but will not stop the alarm once it is triggered.

INITIAL TIME DELAY

When power is initially applied to the circuit, C2 charges via D4, R8 and R2. The charging current through R8 causes Pin 2 of IC1 to go higher than normal for the first 30 seconds, and during this time a negative pulse on the supply rail will not trigger the alarm. After 30 seconds or so, C4 is completely charged by R2 and has no further effect on the circuit.

INHIBITING NETWORK

To enter the car without triggering the alarm it is necessary to make a momentary contact between the two 're-entry' terminals. When this contact is made, SCR1 latches on and pulls the voltage on Pin 3 of IC1 out of the range of the triggering pulse. This circuit is inoperative if the alarm has already been triggered.

ONE CYCLE OSCILLATOR

This circuit causes the horn to pulse at one second intervals. It is based on a second operational amplifier of a similar type to that used in the detecting circuit.

Increasing the value of R13 will decrease the pulsing frequency and vice versa. If the output of IC1 is in the low state, the oscillator is inhibited and the output of IC2 is held high.

OUTPUT STAGE

The output stage is simply a relay driven by transistor Q2 which in turn is driven by IC2. Diode D7 prevents reverse spikes from the relay damaging the transistor.

MAXIMUM ALARM TIME UNIT

This is an optional unit and has not been included on the main printed circuit board. Details are shown in Fig. 6. The unit resets the alarm circuit after a preset time.

The unit is connected across the alarm horn which is energized when voltage is applied to the circuit. Capacitor C7 is charged via R18. Transistors Q3 and Q4 are emitter followers and carry the relay current. When voltage is high enough the relay closes and momentarily applies power to the accessories. This resets the alarm. The alarm will be retriggered if the vehicle's electrical system is again disturbed. The circuit values shown will provide a time period of approx. 1.5 minutes, but this may vary with different relay coil resistances and capacitor tolerances. Increasing R18 or C7 will increase the time period and vice versa.

For the Connoisseur or for the Hi-Fi Beginner, the Convoy Technocentre of Sound is where you hear and buy the world's top equipment.

Continental Model 70 B & W Electrostatic Monitor speakers are shown above in black and white decor, also available in walnut. Left, Mayfair Model in teak and walnut. (Speaker kits available.)

What the Critics say about B & W Speakers.

MODEL 70 ELECTROSTATIC "approaching the ideal everyone is seeking - perfection," Mr. John Gilbert in the Gramophone London. "I was astounded ... they sound like the real thing!" John Free-stone, distinguished music critic England. MODEL DM3 Monitor Speakers 2 cu. ft., "The DM3 is a loudspeaker design worthy of the name MONITOR, We heartily commend it." Audio Record Review. MODEL DM1, Monitor Speakers, 0.65 cu.Ft., "... the very best we have heard within its size and price range," Tape Recording Magazine ..., with my colleague audio consultant David Phillips we like them sonically better than any other system.

B & W Speakers start at $130.00.

J.B.L., U.S.A. Hear the L.100 Century speakers. See the Aquarium range of omni-directional speakers - surround yourself with superlative sound.

PEERLESS OF DENMARK. A superb 12" 3 way in Teak or Walnut only $220. pr. astounding value. Cameo 2 way $100. pr. best value.

INTO SH OF U.S.A. America's most famous, 210 watts RMS Amplifier complete with Super Control Unit $2012. Other models from $760.

PIONEER, Japan. Best value for money in Amplifiers, Turntables, Speakers, 15 months Guranatee.

PHILIPS INTERNATIONAL Hi-Fi, HOLLAND. Europe's top Hi-Fi Equipment manufactured to din standards. A full range of this equipment on demonstration.

TEAC CENTRE FOR AUSTRALIA. A complete range of new TEAC semi-professional equipment on demonstration, fabulous A5100 Amplifier, reminiscent of valves. The Model 1230 Deck and the fully professional 7010 and 3300. Also professional quality TEAC Hi-Fi Cassette Deck from $183. The superb model A350 with Dolby and bias switch only $318.

TECHNOCENTRE SERVICE DIVISION. We set up your tape recorder or deck for the correct bias to give you optimum from the tape you use. It will be like a new machine when set up for TDK - SD Tape. All repairs and service for Hi-Fi equipment.

FREE CUSTOMER PARKING

Convoy Technocentre

Now at corner of Plunkett & Maclean Sts., Woolloomooloo, Sydney, 357-2444 (past Astor Motel).
A GLOSSARY OF

A-B TEST
A method of comparing two components, such as loudspeakers, by switching directly from one to the other.

AMBIENCE
Acoustic colouration caused by the reverberant characteristics of of the listening room or concert hall.

ANECHOIC
Echo-less; without reverberation.

BASS
In hi-fi terms – the frequency spectrum below 150 Hz.

CARTRIDGE
Section of record-player pick-up arm consisting of stylus and associated mechanism, (usually detachable) – also a continuous loop magnetic tape package – usually having eight tracks.

CASSETTE
Preloaded container for use with cassette recorders, has four track magnetic tape – usually operates at 1-7/8” second.

CHANNEL
A sequence of units handling one specific signal.

CLIPPING
Distortion caused by severe overloading of an amplifier.

COMPRESSION
Reducing the dynamic range of speech or music by increasing the level of noisy passages.

CROLYN
Trade name of a magnetic recording tape with a chromium dioxide coating (made by Dupont in USA).

CROSSOVER
Circuit used for dividing amplifier output into selected frequency bands. The output from the crossover network energizes the appropriate loudspeakers.

DAMPING
The ability of an amplifier to stop the movement of a loudspeaker cone once the energizing signal has ceased.

DECIBEL
A decibel (dB) is a logarithmic unit representing ratios. Decibels are used for expressing wide-ranging numbers on a simple linear scale. A decibel figure is the logarithm of a voltage ratio multiplied by 20 (or the logarithm of a power ratio multiplied by 10.) The system is commonly used to imply actual sound levels – an orchestra playing flatout produces about 100 dB. This is an incorrect usage of decibel notation, but most people know what is meant.

DIN
German Standards for industrial items – generally refers in hi-fi parlance to Standards for plugs, sockets etc. but there are DIN Standards for tape recordings equalisation and hi-fi specifications. DIN is an acronym for Deutscher Industrie Normen.

DOLBY SYSTEM
A system for reducing noise on tapes and records, etc. It operates by compressing a signal before recording and expanding it on replay.

DRIVE UNIT
Loudspeaker unit – i.e. not the complete enclosure.

DYNAMIC RANGE
Total range of signal from the highest to the lowest found in any given programme material. The term is also used to indicate the range of signal level that a piece of equipment can handle.
Like most technologies, the evolution of hi-fi has brought with it a vocabulary all its own. Most of the terms used are simple enough — once you know what they mean. Here is a listing of 38 of them.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigentone</td>
<td>Acoustic room resonances produced by parallel surfaces.</td>
</tr>
<tr>
<td>Filter</td>
<td>A circuit used to attenuate selected frequencies.</td>
</tr>
<tr>
<td>Flutter</td>
<td>Rate of oscillation — number of complete cycles of oscillation in one second. Originally expressed in cycles per second — now in Hertz (Hz). One Hz equals one cycle per second.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The range of frequency that can be handled by a piece of equipment. To be meaningful this figure must be qualified by stating the decibel limits over which the frequency response specification applies.</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Harmonic is a frequency twice that of the fundamental.</td>
</tr>
<tr>
<td>Harmonic</td>
<td>A multiple of a fundamental frequency. Thus, the second harmonic is a frequency twice that of the fundamental.</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>Distortion in which harmonics are added to the original signal.</td>
</tr>
<tr>
<td>Hertz</td>
<td>Unit of frequency.</td>
</tr>
<tr>
<td>Integrated Circuit</td>
<td>A circuit component in which transistors, diodes, resistors, etc., are formed on a microscopic chip of material. An integrated circuit 1/16” square may contain the equivalent of forty of fifty separate transistors.</td>
</tr>
<tr>
<td>kHz</td>
<td>One thousand cycles per second.</td>
</tr>
<tr>
<td>Loudness Control</td>
<td>A system by which bass and treble frequencies are boosted at low listening levels to compensate for associated hearing characteristics. Some hi-fi authorities dislike loudness controls on the grounds that they are unnatural. One wonders why they regard music as a natural phenomenon.</td>
</tr>
<tr>
<td>Mono</td>
<td>Single channel.</td>
</tr>
<tr>
<td>Octave</td>
<td>Frequency interval of two to one.</td>
</tr>
<tr>
<td>Peak-to-Peak</td>
<td>The magnitude of an electrical current or voltage measured between the extreme positive and negative excursions.</td>
</tr>
<tr>
<td>Power</td>
<td>The rate at which energy is converted or dissipated — measured in Watts.</td>
</tr>
<tr>
<td>Response Curve</td>
<td>Graph of frequency response with frequency on a horizontal scale and signal level on a vertical scale.</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square — the effective amplitude of an AC voltage waveform. It is equal to the DC voltage or current that would produce the same power dissipation in any given load.</td>
</tr>
<tr>
<td>Solid-State</td>
<td>An electronic circuit that uses transistors rather than valves.</td>
</tr>
<tr>
<td>Tweeter</td>
<td>Loudspeaker used solely for reproducing high frequencies.</td>
</tr>
<tr>
<td>Woofer</td>
<td>Loudspeaker used solely for low frequencies.</td>
</tr>
</tbody>
</table>
The TEAC A-350 is the second cassette recorder that we have reviewed which incorporates the Dolby noise reduction system as an integral part of the recorder. It is the first with high density ferrite heads. Many more will be marketed in the near future, for the recent advances with chromium dioxide and other new magnetic materials, greatly improve the frequency response obtainable.

As with all TEAC equipment, the external appearance of the TEAC A-350 is pleasing to the eye. The control panel, which is moulded in a black plastic, is partially covered with brushed stainless steel panels and is fitted into an oiled timber base with high end panels. The left side of the deck contains the tape compartment, a set of six piano-type function keys, an index counter, a tape run indicator, a record mode indicator and a tape eject button.

The design of the cassette carrier used in this recorder is unusual. It is in two parts — comprising a metal carrier onto which the cassette is placed, and a large dust cover. Normally these two components are combined, making it virtually impossible to clean the heads and difficult to clear should the tape get caught up on the pinch roller. Another good feature of the dust cover is the large viewing window, measuring 1-3/8" x 2-3/4" providing a clear view of the cassette. A counter, with reset button, is located on the far left, just below the dust cover. An orange strobe-type indicator, showing that the tape is actually running, is located just below the tripmeter. Six piano keys provided the following functions; from left to right:

a) Record, with an illuminated bezel strip above it.

b) Fast reverse.

c) Play.

d) Fast forward.

e) Stop.

f) Pause.

The sixth (pause) key is particularly useful. This can be depressed first so that there is no tape movement, particularly when selecting the record mode. All keys, with the exception of the pause key, are interlocked so that the stop key has to be operated each time before another function can be selected, thus minimizing the chance of pressing a wrong key.

The right hand side of the machine contains two medium sized VU meters; slide controls for input and output levels; microphone or line input, tape bias and Dolby mode switches and a peak level indicator.
The VU meters, which are mounted on a sloping panel to improve visibility, are well illuminated and graduated to within ±10% of actual level.

The addition of a peak level indicator provides a more accurate indication of peak levels. These are more critical with chromium dioxide tapes, as stated in our previous issue. We found this indicator hard to see under normal lighting conditions, unless you are directly over it, because of its small size and relatively low light output. Depending on the type of music being recorded, it is possible to reach peak level with the VU meter reading -10 on low frequency transients. Four slide controls are mounted to the left and below the VU meters and provide level control of each channel in the record and playback mode. These controls are very smooth in operation, and provide more than adequate level control. Three toggle switches and a power on/off rocker switch are located to the right of these controls. The toggle switch is normal or high bias, line or microphone input, and Dolby on/off.

A white indicator above the VU meters is illuminated when the Dolby system is selected.

Three large jack sockets are located on the front panel for left and right channel microphone inputs, and a stereo headphone output, (which is in parallel with the line output.) Standard R.C.A. type input and output sockets are located on a recessed panel at the back of the recorder, together with a DIN input/output socket.

Whilst most cassette recorders utilize tape tension comparators to stop the recorder at the end of a tape, the TEAC utilizes a new and superior system consisting of a rotary magnet and a reed switch with time delay circuit. Should the feed spool stop, due to a tape break or because the tape has finished, this mechanism will stop the recorder, after two or three seconds, and release the pinch roller as well as resetting the function switches.

MEASURED PERFORMANCE

In many respects the measured performance of the TEAC A-350 is extremely good, in others it is above average.

One exceptional characteristic is the very low wow and flutter. This was only 0.06% rms when checked using a standard TEAC cassette. We found...
TEAC A-350 DOLBY CASSETTE RECORDER

that this figure varied considerably from tape to tape but rarely exceeded the 0.13% claimed by the manufacturer. These low figures are mainly attributable to the large flywheel in the drive mechanism and the use of an outer-rotor type hysteresis-synchronous motor.

During the measurements and the subjective tests it was noted that the left and right channels were slightly different. Further investigation showed that the bias settings for each channel were completely different, as shown below.

Relative bias settings prior to conducting measurements

Bias switch Right Channel Left channel setting 0dB (reference Normal level) +2.6dB High +1dB +4dB

We have not been able positively to establish whether the bias settings were changed subsequent to manufacture. Correctly biased, we obtained good frequency responses, with both standard and chromium dioxide tapes.

The overall performance of the recorder was subjectively tested by playing specially pre-recorded cassettes and by recording excerpts from two records: Warner Brothers – JBL test record, and the CBS Simoh and Garfunkel “Bridge Over Troubled Waters”. The tapes were then compared with the record in an A-B type test. When chromium dioxide tapes were used, the difference between the original and the tape was particularly hard to detect, the only discernable loss being at very high frequencies. The loss was more apparent to the ear when conventional cassettes were used, as their frequency response rolls over before 10kHz on this recorder. In many homes, or where background music is required, the difference would not be noticeable.

For these tape comparisons the Dolby system was used and the marked reduction in tape noise provided by the Dolby Noise Reduction System was quite apparent, and certainly a necessary function to be used, if one desires to utilize the maximum frequency performance that chromium dioxide tapes can provide.

The frequency response obtainable from this machine is largely determined by the type of tape being used. Table I shows the extraordinarily wide range obtainable (at -10VU) with Advocate Crolyn and BASF C60 tapes compared with a number of the other top quality tape cassettes.

The main circuitry is located on three separate printed circuit boards, which are clearly labelled so that each channel and its respective trimmer potentiometers can be identified. All the transistors are silicon and the microphone preamplifier has a frequency response of 20-20kHz +0 -2dB. The drive motor is fitted with a double grooved pulley, which can be inverted to provide the speed change necessary for 60Hz. The mains power fuse, located in the base of the machine, incorporates a multipin plug, which has five positions. These provide voltage settings 240V, 220V, 200V, 117V and 100V.

The high density ferrite heads fitted to the tape recorder carry a lifetime guarantee with respect to wear and performance. The recorder is supplied with a very basic, illustrated, eight page instruction manual complete with circuit diagram. TEAC also supply a quick reference card with operating instructions on the front and maintenance instructions on the back.

A full set of R.C.A. patching leads, and a cleaning kit consisting of a bottle of cleaning fluid and a packet of cotton swabs are also supplied.

The recorder was a delight to use and certainly should make anyone question the advantages of a conventional reel to reel recorder, with its attendant threading problems and relative inconvenience.

This “Dolbyised” deck helps to place cassette recorders in a new position in the High Fidelity field. They are no longer toys.

The inclusion of the Dolby system within the machine obviates the problems and inconvenience that occur with a separate Dolby unit which we personally dislike from an ergonomic point of view.

With a suggested retail selling price of $318.00 this unit is good value for money.

MEASURED PERFORMANCE TEAC A-350 STEREO CASSETTE DECK WITH DOLBY, MODEL A-350 SERIAL NO. 4346

Record to Replay Frequency Response

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Frequency</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>20Hz to 4kHz</td>
<td>±3dB</td>
<td>0VU</td>
</tr>
<tr>
<td>25Hz to 5kHz</td>
<td>±3dB</td>
<td>-10VU</td>
</tr>
<tr>
<td>20Hz to 8kHz</td>
<td>±3dB</td>
<td>-10VU</td>
</tr>
<tr>
<td>1kHz</td>
<td>±3dB</td>
<td>-10VU</td>
</tr>
<tr>
<td>4kHz</td>
<td>±3dB</td>
<td>-10VU</td>
</tr>
<tr>
<td>20Hz to 14kHz</td>
<td>±3dB</td>
<td>-10VU</td>
</tr>
</tbody>
</table>

Signal to Noise Ratio

- Unweighted: 55dB
- Weighted: 43dB

Intermodulation Distortion

- With 1kHz and 970Hz Signal @ 0VU -10dB

Line Input Sensitivity for 0VU

- 86mV

Microphone Input Sensitivity for 0VU

- 3.6mV

Line Output Sensitivity for 0VU Signal Level and Maximum Gain

- 700mV

Dimensions: 4 3/8" (H) x 16-15/16" (W) x 9-7/8" (D)

Weight: 11.3/4 lbs (5.3kg)

Price: $318
SONATA
All silicone solid-state Hi Fi Stereo Amplifier Model NS-1600D
10 watts R.M.S. per channel. Each channel has separate bass/Treble controls.

STEREO RECORD PLAYER

240V AC operation. Chromed tubular metal 9" tone arm with adjustable counter balance and rest — ceramic cartridge, sapphire stylus. 4-speed motor and 61" metal turntable with mat. $7.90 — post 50c. Mounting platform 15" x 11" x 2½" with cut-out to suit above record player. $5.50 — post 50c.

BATTERY SAVERS
240 vac operator approved. Suitable for operating battery operated transistor radios, cassette and tape recorders, etc.

6 - 9 V dc. 1 amp $9.35
6 - 9 V dc. 3 amp $14.35
4½ - 7½ - 9 - 12V ½ amp Regulated and protected $26.50.
Pack & Post 75c.

THE NEW BSR RECORD PLAYER
Model C117 and C117A3 can be supplied with Magnetic Cartridge and Diamond Stylus at $10.00 extra. Pre-cut Mounting Platforms are available to suit Changer. Price $9.00. Also Fully Moulded Smoke Tinted Perspec Covers Price $9.00.

MAGNAVOX
WIDE RANGE FREQUENCY RESPONSE TWIN CONE SPEAKERS, 8 or 16 ohms.

6WR Mk.V 12 watts RMS $ 9.90
8WR Mk.V 16 " " $10.75
10WR Mk.V 16 " " $11.50
12WR Mk.V 16 " " $12.50
Pack & Post 65c. Send S.A.E. for Data Sheet.

ROLA
Hi Fi SPEAKERS
8 — 15 ohms.

C 60 $ 8.50
C 60X Twin Cone $10.50
C BMX Twin Cone $ 9.00
12U50 — 50 Watts R.M.S. — $34.50.
What is Surplus? Many people are still under the impression that 'Surplus' or 'Disposals' components and equipment are War-time and Government surplus material. We want to put your minds at rest. WE DO NOT SELL GOVERNMENT SURPLUS MATERIAL. Our surplus are end of runs and over-bought manufacturers' stock. In most cases the goods we offer are in fact of high grade spec, and worth a lot more than standard and commercial components, but because we purchase in bulk we are able to bring these to you at 'anti-inflationary' cost. This way you save a lot of hard-earned cash and still purchase high grade components that are trouble free.

High Grade Fibre Glass Copper Laminated Printed Circuit Board

2½ lbs. of various & useful sizes, 5½ in. sided.
$2.00
plus 40c post.

Type 208 Power Transformer in TO3 case.
Mounted on large finned Heat-Sink
Transistor is G.E. (PNP) similar to
AD211. Max 15amp. Nominal 10
Vce 37v Vcb 40v Veb 20v
Frequency 50 KHz $2.50 ea. free post.

10 for $1.50 plus 15c post.

Type 208 Power Transformer in TO3 case.
Mounted on large finned Heat-Sink
Transistor is G.E. (PNP) similar to
AD211. Max 15amp. Nominal 10
Vce 37v Vcb 40v Veb 20v
Frequency 50 KHz $2.50 ea. free post.

I.B.M. Silver Wire change-over Relays. Oper.
40v 45v. 4 pole 40c ea. 5 pole 50c ea.
12 ea. 50c ea. 4 ea.
packed. 85c each.

Pak 4. New, high-grade wire-wound resistors. 3
watt to 20 watt. 50 for $2.00 plus 20c post.

40-48v AC operation. Reads up to 9999 hours, and calibrated in 10ths and 100ths of an hour.
Single units $3.00 ea. plus 25c post. With
240v prl-48v Sec. transformer, $8.00 plus
50c post. All electrical components, $13.00
plus $1.00 post.

MINIATURE JACK SOC.
KETS. Transistor type, precision made.
Brand new 3mm. 10 for
$1.00 plus 15c post.

HIGH SPEED MAGNETIC COUNTER. (4" x
1 1/4") 4 digit 0-9999. 500 ohm coil.
18-24v operation or 36v type.
2000 ohm coil. For both counters or tape timing also dozens of other uses. 95c ea. post free.

FREE! DIGIVAC TUNGSTEN READOUT TUBES
Vacuum fluorescent. Low power-operates at 1.5v AC or DC at 45mA 5v DC. Brand new at
1 amp. New A. Packed. 80c each or 16 for $1.00. Post free.

LEVER KEY SWITCHES. 10 assorted types for $3.00.
plus 40c post. Ex-units.

MANUFACTURERS . . . We will purchase all your surplus & redundant stocks of Electronic components. Please send or send lists. Cash paid.

ANNOUNCEMENT . . . We have much pleasure in announcing the opening of our Qld. & Brisbane Agency from the 17th Jan. 1972. All our current stocks as advertised by us will now be available to our readers there from 'RADIO COMPONENTS' (Ask for Norm Wilson) details as above.
EVERYONE talking about cassettes — and in the world of the information and entertainment arts-industries this means everyone — agrees that they portend a revolution. But there is little agreement on anything else. As matters stand, there are so many competing concepts and attendant incompatibilities in technology, so many variables affecting development of processes, and so many imponderables clouding public acceptance, that it is difficult to exercise prudence without actually favouring one system or another. The choice of technology, too, will surely affect and be affected by the nature of the material to be recorded and replayed — raising profoundly serious questions concerning the ways of making that new machinery may make possible, or, in effect, may actually enforce. The stakes are high enough to evoke the greatest concern, even as huge sums of money are ventured by established giants of the electronics and entertainment industries, and new companies are formed expressly to make the cassette revolution happen.

As with revolutions, there are cassettes and cassettes — and some that aren’t cassettes at all. The word, as used by the media prophets, is increasingly being understood specifically to mean containers of recorded visual and audio materials for playback via television receivers. Often, it serves as a contraction for “tv-cassettes,” or “video-cassettes,” distinguishing the new system from the now-familiar (but still not standardized!) magnetic-tape magazines for sound-recording and reproducing machines; or, for that matter, from the various holders, packs, magazines, cartridges, or other devices for loading sheets or rolls of photographic film, that have gone by the name “cassettes” since the days of glass plates.

In fact, film, in what are often deliberately (if not very precisely) differentiated as “cartridges,” is the essential element of several systems considered as competing with tape videocassettes for general acceptance. But even here there are sharp differences in the ways film is used, to begin with according to whether it is optically projected, as with conventional reel-to-reel machines directly on to screens or walls — a leading example being the Technicolor Super-8mm system; or, whether the film is scanned, or “read” electronically, and the sound and images converted for television receivers, in a manner modifying standard professional telecasting techniques — here two leading protagonists, both using 8mm films, are Vidicord and NordMende.

Film in cartridges, this time 8.75mm wide, carrying two picture channels and two audio tracks, also characterizes the EVR (Electronic Video Recording) system developed by CBS laboratories. But the film is produced by a unique process, combining electronic beam recording and optical printing, for replay using an oscillating spot-scanner attached to a standard television set. The EVR system has had more publicity than any other, especially in Britain and the United States — but also more actual demonstration, in a form produced by Motorola for educational and industrial applications. EVR programmes, it is important to note, can be made from conventional motion picture films — in fact, probably the greatest source of material; but the EVR films themselves, whether in cartridges or not, cannot be shown on standard or other projectors, existing or contemplated.

A kind of film, also in cartridges, is used in the SelectaVision holography process announced by RCA. The “film” however, actually is chemically treated transparent stock, significantly inexpensive, on which split laser beams “emboss,” patterns of their “interference” with one another, as they are reflected from the material, such as films, photographs, and videotapes, that is being holographed. The resulting holograms in effect are “codes” which must be unscrambled by another laser device, attached to or incorporated in a television receiver. RCA is promising that SelectaVision players and cartridges will be available by mid-1972, but only pilot models have been in operation so far, and industry observers are dubious about the projected arrival. However, RCA is already producing related laser-using devices for industry, such as a holographic lock-and-key system for plant security, and much in this technology may help to advance SelectaVision.

These systems all use “film,” but they have little in common in concept or practice, and the cassettes or cartridges employed in any one of them will not work in any other. In the case of systems using magnetic tape, the factor of compatibility is somewhat less hopeless, although not by much. All the systems seek to exploit the instant-recording, instant-replay potential of tape — in contrast to the requirement, in using
films, including RCA's holographic tapes, of several, usually expensive processing and conversion steps. Here the contender with the lightest, most portable apparatus so far is Instavision, developed by Ampex (the Toshiba trade name will be used in Japan), the company that marketed the first videotape recorder in 1956. Professional-standard equipment is planned for early release, with cheaper versions for amateurs and the home-entertainment trade to follow.

Similarly, the Sony Videocassettes system is being presented first for the enormous industrial and educational markets, with more compact, less expensive models for playback and recording in the home to come a year or so later. On the other hand, the AVCO Corporation's subsidiary, Cartridge Television, Inc., is directing its Cartivision (or Admiral) color recorder and player outfit firstly to home buyers, also offering a light black-and-white camera to be available "soon". AVCO-Cartivision also claims to be producing adapters for converting standard television sets for recording and playback — with the catch, of course, that only its own cassettes will fit the machinery.

Of the tape systems, the one coming closest to establishing a measure of general applicability is the Philips-VCR (for Video Cassette Recorder), for the reason the Philips has been able to convince a number of companies, in Europe and the Americas, to agree to make recorders and players that will accept VCR cassettes. Philips' vast size and power in the electronics industry is undoubtedly a decisive factor, but there also may be some beginnings here of the movement toward rationalization standards that communications industrialists and professionals are seeking to define, for there to be realization of the potentialities of individual recording and playback systems. Such standards, however, are a long way off, as the several systems — more than a score, by one count — compete for opening advantage in the race for acceptance. And, to make matters worse — or more interesting, as one prefers — there is no telling for sure that it will be some form of cassette or cartridge, using film, holograms, or magnetized tapes, that will win out.

For, already there are systems considered whenever cassette television is discussed that do not rely on such containers of material, but on discs resembling gramophone records: for example, the Teldec Video Disc concept developed in Britain and Germany jointly by Decca and Telefunken. The Video Discs carry signals of both sound and images in grooves considerably finer, up to 150 per millimeter, than those of present "long-playing" records, which usually have from 10 to 13 per millimeter. Playing speed is even more spectacularly faster: from 1500 to 1800 revolutions per minute, as compared with 33-1/3, 45, or the older 78 rpm of sound recordings. There are claims that discs would make the cheapest and most convenient vehicles for playback television, and several companies, most notably M.C.A., the huge entertainment complex, say they are working on disc systems.

Advocates of tape assert, however, that discs, requiring elaborate production processes, however ingenious, effectively rule out home-made television, one of the salient possibilities of cassette or cartridge technology. And such doubts, in turn, point to the questions observers, professionals, and would-be entrepreneurs are asking about playback television, whether employing cassettes or other expedients.

First, and perhaps finally, what will be in the programmes? Will they be so different from available TV that people will want to buy and keep copies? Or, will these be so expensive that most people will have to rent them? How will creators of programmes, as well as performers and technicians, be paid for their work, by fees or continuing royalties? And how will the ease of making copies with home equipment — or large-scale, commercial pirating of cassettes (already the horror of audio-tape producers) affect original programming?

Dozens of companies, including the leaders in broadcasting, motion pictures, book and periodical publishing, computers, communications, and information technology, are busily accumulating programme materials — especially films — or rights to their production or reproduction, in many cases without having committed themselves to any particular playback process. What will be the effects of cassettes or the like on theatre-going, television-viewing, radio-listening, social activities of the past decade or so: cable television, or CATV. Many industry leaders consider cassettes and cable-TV to be integrally related, and that the true consumer market for "software" lies in wiring homes to central communications complexes, incorporating libraries storing every kind of programme material in cassettes, available for instant transmission to individual home receivers. In this concept, relatively few cassettes, carrying specialized or favorite material, would need to be kept in the home, while an infinite variety could be dialed to show on any TV screen, at any hour.

To be sure, that possibility will make knowing what to choose more difficult than ever, with the potentialities for harm, and, hopefully, for benefit, immeasurably magnified. And the ultimate issue may be that of making sure that there are real choices, and not mere multiplication of seductive mindlessness — and, as always, that one's own judgmental "hardware" can make a difference in whatever "software" shows on screen.
BUY DIRECT BY MAIL AND SAVE 1/3!
AUSTRALIA'S LEADING MAIL ORDER TAPE & ACCESSORY SPECIALISTS
IMMEDIATE 24 HOUR SERVICE ON ADVERTISED LINES!

CASH BACK IF NOT SATISFIED

IMPORTED PROFESSIONAL QUALITY
U.S.A. BRAND 5 TAPE!

SAVE AT LEAST ONE THIRD — ORDER TODAY

<table>
<thead>
<tr>
<th>CASSETTES</th>
<th>C60</th>
<th>1.50</th>
<th>.99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C90</td>
<td>2.25</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>C120</td>
<td>4.75</td>
<td>2.25</td>
</tr>
<tr>
<td>ACETATE</td>
<td>15D3</td>
<td>150</td>
<td>.99</td>
</tr>
<tr>
<td>1/2 MIL.</td>
<td>15D5</td>
<td>600</td>
<td>1.99</td>
</tr>
<tr>
<td>15D7</td>
<td>7"</td>
<td>1200</td>
<td>3.60</td>
</tr>
<tr>
<td>MYLAR</td>
<td>10D5M</td>
<td>5"</td>
<td>900</td>
</tr>
<tr>
<td>1 MIL.</td>
<td>10D7M</td>
<td>7"</td>
<td>1800</td>
</tr>
<tr>
<td>MYLAR</td>
<td>5D3M</td>
<td>3"</td>
<td>300</td>
</tr>
<tr>
<td>1 MIL.</td>
<td>5D5M</td>
<td>5"</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>5D7M</td>
<td>7"</td>
<td>2400</td>
</tr>
<tr>
<td>TENSIL MYLAR</td>
<td>5D5MT</td>
<td>5"</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>5D7MT</td>
<td>7"</td>
<td>2400</td>
</tr>
<tr>
<td>MYLAR</td>
<td>5D32MS</td>
<td>3"</td>
<td>600</td>
</tr>
<tr>
<td>1/3 MIL.</td>
<td>5D5MS</td>
<td>5"</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>5D7MS</td>
<td>7"</td>
<td>3600</td>
</tr>
<tr>
<td>TENSIL MYLAR</td>
<td>5D5MTS</td>
<td>5"</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>1/3 MIL.</td>
<td>5D7MTS</td>
<td>7"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORMAL PRICE</th>
<th>OUR PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>.99</td>
</tr>
<tr>
<td>2.25</td>
<td>1.65</td>
</tr>
<tr>
<td>4.75</td>
<td>2.25</td>
</tr>
<tr>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>5.75</td>
<td></td>
</tr>
<tr>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>6.25</td>
<td></td>
</tr>
<tr>
<td>11.50</td>
<td></td>
</tr>
<tr>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>12.95</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>9.25</td>
<td></td>
</tr>
<tr>
<td>16.50</td>
<td></td>
</tr>
<tr>
<td>9.25</td>
<td></td>
</tr>
<tr>
<td>19.50</td>
<td></td>
</tr>
</tbody>
</table>

BIG SAVINGS ON THESE TAPE ACCESSORIES TOO!

CASSETTE PARTS KIT
Experimenters kit, contains all parts except for tape for cassette, $1.25

TAPE HEAD CLEANER
Protects and reduces head wear for longer life and better sound. 2 fl. oz., $1.25

SPLICING TAPE
Quality splicing tape for editing and repairing recording tapes, 1" x 100', 50c

TAPE CLIPS
Protects your tapes, secures tapes to reels, prevents unwinding and creasing, 75 for $1.35

*SEND FOR LIST OF OTHER RECORDING TAPE BARGAINS

Please send me your test spool FREE!

NAME

ADDRESS

DIRECT TAPE DISTRIBUTORS
BOX 3040 G.P.O. SYDNEY. 2001

TRY BEFORE YOU BUY
Free Test Spool
Send the coupon!

ELECTRONICS TODAY — JANUARY 1972

63
Already discerning enthusiasts have set two recently released And it's not

Both Sansui products... the Model 210A stereo tuner/amplifier and the Model AU-101 stereo control amplifier... offer extraordinary value for money. In terms of sheer performance no other similarly priced amplifier available in Australia today can match or surpass the 210A or the AU-101, including some products twice the Sansui price.

SANSUI MODEL AU-101 STEREO AMPLIFIER
Two leading Australian electronics magazines have reviewed the all low-noise silicon transistor Sansui Model AU-101. "Electronics Australia" (August, 1971) says... "the best comment we can make about the AU-101 is that few amplifiers, regardless of price, give an overall test result as good as this. This makes it a real bargain at the very reasonable price of $138". "Electronics Today" (May, 1971) says... "Surprise Packet"... "Performance of the Sansui AU-101 belies its low price"... "The hum and noise performance are both very good and better than most other amplifiers at twice the price"... "The Sansui AU-101 is a very good buy, particularly at the price". There you are... unbiased comments from two leading publications. What precisely does the Sansui AU-101 offer? Look at these specifications!

AU-101 Specifications:—
- Music power: 50 watts at 4 ohms, 44 watts at 8 ohms.
- R.M.S. power: 36 watts at 4 ohms, 30 watts at 8 ohms.
- Total harmonic distortion: Less than 0.8% at rated output.
- Frequency response: 20-60,000 Hz. ± 2 dB.
- Channel separation: Better than 45 dB.
- Input sensitivity: 3 mV. (Magnetic cartridge), 4 mV. (Microphone), 200 mV. (Auxiliary and Tape Recorder).
- Dimensions: 16" x 11" x 4½".
- Price: $138 (Suggested list price inc. sales tax).

SANSUI MODEL 210A STEREO TUNER/AMPLIFIER
The recommended list price of the Model 210A stereo tuner/amplifier is only $185*. Power output is 34 watts music power into 4 ohm speaker systems or 22 watts R.M.S. Frequency response is 25-30,000 Hz. ± 2 dB, and extends well beyond this figure. Sensitivity of the power amplifier suits magnetic cartridges at 3 mV. and 180 mV. sensitivity. SATISFY CARRIERS FOR AUXILIARY INPUTS AND TAPE RECORDERS.An easy read panoramic tuning dial simplifies selection of radio stations on AM/MW or AM/SW bands; a signal strength meter operates on the AM band. Selectivity is an almost unbelievable 40 dB, making the 210A the most selective receiver in the 210A's I.F. amplifier section. A whistle filter eliminates unpleasant interference and noise on weak AM stations. Every desirable control is provided in the 210A. A DIN socket for tape recorders, headphone jack, flexible bass and treble controls, a direct tape monitor switch, loudness control and clearly marked selector switch. When you call at your franchised Simon Gray dealer to hear the Sansui 210A, LISTEN CRITICALLY. You'll be agreeably surprised with the audible difference Sansui quality makes. Only Sansui Japan's leading audio only manufacturer... could design and manufacture an outstanding stereo tuner/amplifier expressly for Australian conditions and keep the price down to only $185! Call and see your Simon Gray dealer!

*IMPORTANT: Prices quoted in this advertisement are suggested consumer prices only.
Australian stereo
ew sales records for
SANSUI AMPLIFIERS.
surprising.

Ask for full details.
Send the coupon right away and
we'll send you all the facts!

Simon Gray Pty. Ltd.,
28 Elizabeth Street,
Melbourne, 3000.
Please send me complete technical details on the Sansui Model
2104/AU-101 and the name of my nearest Simon Gray franchised
dealer.

NAME
ADDRESS
POSTCODE
COMMON COMPONENT CONNECTIONS

The connections shown here are those most commonly used. Occasionally however, components may be found with outlines similar to those above, but with differing pin connections (for example, some FETs have the source and drain connections reversed; SCRs are occasionally sold in matched pairs for back to back operation on a common heat sink, and with the anode and cathode reversed on one unit).
WHERE space is at a premium the only really satisfactory way of producing good high-fidelity sound is to combine a totally enclosed 'infinite baffle' type of speaker with a high powered amplifier.

There is no way in the world that a bass reflex enclosure can compete because bass reflex enclosures have certain critical dimensions below which they are ineffective.

But not everyone lives in rooms 10ft. square, nor has to fit speaker enclosures in the space normally considered adequate for a pair of china cats.

For those whose choice of speakers is not completely dictated by considerations of space, the bass reflex design has still a lot going for it.

This type of enclosure was first used commercially by the USA’s Jensen company back in 1936, and was based on research by a number of workers including Voight, Olsen and Thurs, all of whom in turn based their studies on the Helmholtz resonator discovered in the 1800s (Fig. 1).

The basic bass reflex enclosure consists of a box, airtight except for a loudspeaker drive unit mounted on the front panel, and a vent (or tuned port) generally located on the front panel below the speaker.

The actual location of the vent is not too critical because the wavelength of the frequencies at which the vent operates is far longer than the overall dimensions of the speaker enclosure.

The size of the vent is important, for it is a combination of this and the physical dimensions of the enclosure, that determines the behaviour of the system and provides the smooth, extended low frequency response for which this type of enclosure is renowned.

The purpose of the vent is to allow out-of-phase radiation from the back of the cone to be 'reflected' so as to bring it in phase with the front radiation at low frequencies.

Simple bass-reflex cabinets may be designed, either by calculating the enclosure dimensions from the speaker diameter — or more satisfactorily — by determining the speaker’s free air resonance and then designing the enclosure and vent to suit.

No matter which design method is used, the method of construction will be the same. Primarily, the aim is to produce a rigid, non-resonant enclosure, airtight except for the loudspeaker cutout and vent.

Various materials may be used — from concrete, to plywood or pineboard. The thickness of material will depend upon the size of the enclosure. Generally, 1/2” or 5/8” plywood will suffice for the smaller enclosures, increasing to 1” to 1⅛” for the largest.

It is literally impossible to make the enclosures too rigid; if space allows, use the most massive material that you have available, or can afford.

Unless really heavy material is used, reinforce all diagonals (except the front panel) with 3” by 1½” bracing and use wooden blocks to reinforce all joins and corners. All joints should be securely glued and screwed.

Rubber or cork gaskets should be used to seal any removable panels.

The completed cabinet should then be checked for airtightness and if satisfactory, then lined on at least
three facing surfaces with two-inch thick Fibreglass or Innerbond. The lining material should be glued in place using a contact adhesive.

If mid-range and tweeter drive units are to be incorporated, these should be boxed in with separate airtight enclosures. These secondary enclosures should be as small as possible and their cubic capacity taken into account when calculating the total enclosure volume.

The positioning of the auxiliary drive units is not critical – but keep them at least 3" from other speakers and the walls of the enclosure. The front panel of the speaker enclosure should be painted matt black and then covered with an open weave grille cloth (this can be obtained from many specialist hi-fi dealers).

As explained above, a bass-reflex cabinet can be designed using the speaker diameter as a basis for the enclosure dimensions. The dimensions for a number of enclosures of this type are given in Table 1. These enclosures are based on the nominal speaker diameter – e.g., the diameter that is quoted by the manufacturer. The actual cone diameter will be less than this – probably by an inch or so. The area of the vent is shown in Table 1 and this is calculated from the actual measured speaker cone diameter.

The shape of the vent is not important; it may be circular, square or rectangular (as long as the ratio of length to height does not exceed five) or even divided into two or three separate vents whose total area equals that of the single correctly sized vent.

The position of the vent is also relatively unimportant, although it should not be located closer than 2" to the main speaker opening.

Whist this design approach will result in a speaker enclosure with generally excellent performance – a more elegant approach is that based on the known (or calculated) free air resonance of the speaker.

This figure is generally quoted in the manufacturer's literature. But it is quite easy to determine – if one has (or can borrow) a suitable oscillator and ac voltmeter. All that is necessary is to connect the speaker as shown in Fig. 2 and with the speaker suspended from a cord (and well away from walls or other reflecting surfaces), to sweep the oscillator frequency very slowly from 10 Hz to about 150 Hz. The

![Table 1](image)

Table 1 – this table and the associated drawing shows how to design a reflex cabinet if no data other than speaker diameter is known.
Table III — This table provides the design data for a given speaker free-air resonance and various enclosure volumes (in cubic feet).

<table>
<thead>
<tr>
<th>Nominal diameter of speaker</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>8"</td>
<td>45 – 150 Hz</td>
</tr>
<tr>
<td>10"</td>
<td>40 – 100 Hz</td>
</tr>
<tr>
<td>12"</td>
<td>30 – 85 Hz</td>
</tr>
<tr>
<td>15"</td>
<td>25 – 55 Hz</td>
</tr>
<tr>
<td>18"</td>
<td>20 – 40 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume in Cubic Feet</th>
<th>Free-air resonance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>25Hz</td>
</tr>
<tr>
<td>2.5</td>
<td>30Hz</td>
</tr>
<tr>
<td>3.0</td>
<td>40Hz</td>
</tr>
<tr>
<td>3.5</td>
<td>50Hz</td>
</tr>
<tr>
<td>4.0</td>
<td>60Hz</td>
</tr>
<tr>
<td>5.0</td>
<td>70Hz</td>
</tr>
<tr>
<td>6.0</td>
<td>80Hz</td>
</tr>
<tr>
<td>8.0</td>
<td>90Hz</td>
</tr>
</tbody>
</table>

Duct Tubes

(A) = 2" inside diameter
(B) = 3" inside diameter
(C) = 4½" inside diameter

Thus (A) – 2½" is a duct 2" inside diameter by 2½" long.

Where a measurement is given in square inches — this implies that a vent is required — not a tuned duct.
Toggle, rocker, pushbutton, paddle, lever lock...every practical alternative lever action combined with maximum performance, minimum weight and size and available in one, two, three and four pole models.

Subminiature switches manufactured by C. & K. Components Inc. U.S.A. are readily available in just about every shape, size and configuration imaginable and they are readily adaptable to a multitude of uses where space is at a premium. All switches feature rugged construction and simple mounting...long-term, trouble-free operation is ensured.

Contacts are rated 2 amps @ 240v AC and 5 amps @ 28v DC resistive load.

The full C. & K. range is now available from the Professional Components Department, Villawood, NSW or Plessey Ducon Interstate offices. Catalogue containing full specifications, options, information on hardware, panel layouts, mounting, etc. is available on request.
New:
BASF chromium dioxide cassette

Chromium dioxide CrO₂ plus special mechanics

Improved tape transport
In a unique manner, BASF chromium dioxide cassettes correct certain deficiencies in conventional cassette transport systems.

The new S.M. systems prevents the tape from sticking.
Preclude wow and flutter. Insures trouble free running, even for extended — play cassettes.

astonishing new sound
Chromium dioxide is a quite different coating. Its extended dynamic range of the high end of the audible scale, plus the added feature of minimal head wear are qualities which you can appreciate while making your first challenging recording.

Top results which show a much increased high frequency response — are best achieved on tape decks with a CrO₂ switch.

BASF Compact Cassettes in chromium dioxide and LH quality

Australian Distributors:
Maurice Chapman & Company Pty, Ltd.,
276 Castlereagh St., Sydney.
Phone: 61 9881
BASF, First in tape
SODALITE DARK-TRACE TUBES

by M.J. Taylor, Royal Radar Establishment.

The cathode ray tube is the basis of many, if not most, present-day display systems and seems likely to remain so for some time to come. The versatility of the device has been greatly extended over the years by the development of special types of tube for different uses and a recent addition is the dark-trace tube with a screen of powdered sodalite. This gives a high brightness display with a built-in variable memory time.

The principle of the dark-trace tube is simple. Where the electron beam hits the screen material a darkened area appears, instead of luminescence as with an ordinary phosphor screen. The dark area usually has a colour which is characteristic of the particular screen material so that the display has the appearance of a coloured drawing on white paper, with an overall brightness determined by the level to which the tube face is illuminated externally. It happens that the light which is absorbed in the darkened areas also causes these areas to fade (bleach). The greater the light level the faster the fading.

The concept of the dark-trace tube was first described in 1940 by A. H. Rosenthal and a device based on his ideas was subsequently developed during the war for military radar displays. Known as the skiatron or scotophor-tube it had a screen of potassium chloride. With an image taking minutes to fade, it was convenient for displaying slowly changing radar patterns. Moreover an image of the tube face could be projected onto a large display area.

Although it satisfied a need in the urgency of war, the skiatron tube has now largely been superseded by more versatile types of display. The greatest drawback of the skiatron tube is that the properties of the screen gradually change with use, so that the dark-trace becomes progressively more and more difficult to bleach. Eventually the tube has to be removed from its mount and the face heated to about 150°C to clear the screen. Nevertheless the essential simplicity and potentially low cost of dark-trace devices remain an attraction and have been the stimulus for recent research into new screen materials, of which sodalite has turned out to be the most promising so far.

Tubes with sodalite screens have a better performance in several respects than tubes with potassium chloride screens: in particular, they have a much faster optical bleaching process.

Dark-trace tubes are currently being reconsidered for a number of display applications for which there is an advantage in the built-in memory time, an added bonus being the brightness of the display, which removes the necessity for viewing the displays in a darkened environment. These devices compete directly with the so-called Direct Vision Storage Tube (DVST) in which the memory is achieved by storing a pattern of charge and the screen uses a conventional phosphor. The choice is largely, although not entirely, one of cost: the DVST and associated electronics are complex and expensive in comparison with dark-trace devices. There are, however, other minor differences in performance which may determine the choice for a particular application.

As an example of the use of sodalite tubes in the optical erase form, the illustration shows a display of air-traffic radar data on a sodalite tube, taken at RRE, Malvern, with a tube constructed by Ferranti Ltd. Aircraft tracks can be seen superimposed on a map of the coastline of eastern and southern England. The aerial in this case was rotating at about 4 rev/min and the illumination of the tube face was adjusted to give fading "tails" on aircraft echoes, providing vital directional information.

Weather and marine radars are other possible applications for sodalite tubes, involving relatively slow changes in displayed data.

Of the non-radar applications one of the most promising is in remote access data display terminals. A page of print can for example, be scanned electronically and the electrical data transmitted by telephone line to the remote display, where, because of the built-in storage it can be displayed as long as the user requires. This makes economic use of telephone links, and moreover, these data bandwidth requirements can be matched to ordinary lines by suitably low data transmission rates. Sodalite tubes may also find application in displays of computer graphics.

Radar display on a sodalite tube at the Royal Radar Establishment.
In the new Model 180C/D version of its 180-series Oscilloscopes, Hewlett-Packard has increased trace brightness by a factor of about five, giving a writing speed of 1500 cm/µs. (Standard P31 phosphor as photographed with 10,000 ASA film, f,3 lens, 1:0.5 object-to-image ratio without film fogging. Substantial increase in writing rate can be had with P11 phosphor, faster lenses, and use of film fogging techniques.)

This high writing speed, until now available only in much more expensive oscilloscopes, is particularly valuable for engineers working with the design, test, and maintenance of computer peripherals. Low pulse repetition rate makes it well nigh impossible to view the fast pulses in many of these devices on ordinary oscilloscopes.

The new 180C/D Oscilloscopes are an economical solution to this problem. These new scopes are not limited to computer peripheral testing, however. They can use all existing plug-ins for the 180 series that give real-time frequency response to 100 MHz, and sampling response to 12.4 GHz with a 35 ps Time Domain Reflectometer. They are, according to Hewlett-Packard, truly general-purpose instruments with the performance and versatility needed for electronic laboratory applications, the economy desired for single-purpose production use, and the compactness needed for service applications.

Full details from Hewlett-Packard Pty. Ltd., 22-26 Weir St., Glen Iris, Victoria, 3147.

STATIC DETECTOR

A new device known as a Statometer, detects static build up in any material, such as plastic, paper, laminates etc. It gives direct and instant readout, indicating strength and polarity of charge on a large, easy-to-read, scale graduated in Volt/centimeters.

The transistorized electronic part of the Statometer is mounted together with a large-size, easily readable indicating instrument in a handy casing at the front of which is a measuring tube. This tube forms a chamber in which air is ionised by alpha rays emitted by a radium source and thus made electrically conductive. The electric field to be measured enters the open front of the ionisation chamber and accelerates the ions thus producing a current which is proportional to the field intensity.

Full details from Peter Shalley Electronics Pty. Ltd., 127 York Street, Sydney, NSW 2000.

ROHDE & SCHWARZ

Agreement has been reached for Jacoby Mitchell Limited exclusively to represent Rohde & Schwarz in Australia, effective from 1st January, 1972.

Rohde & Schwarz is one of the pioneers of electronics and, from its base in Munich, Bavaria, now operates world-wide as one of the few manufacturers covering all aspects of the industry, from communications equipment, through sophisticated test instrumentation, to major civil and military capital equipment projects. Jacoby Mitchell Limited will become the Australian Sales and Service Organisation for the whole Rohde & Schwarz programme.

Associated with this expansion, the Jacoby Mitchell Head Office has moved to new premises at 215 North Rocks Road, North Rocks, NSW, 2151 – P.O. Box No. 2009, North Parramatta, 2151 – Telephone 630-7400 – Telex 21123.

OPTICAL UV RECORDER

The new Schlumberger/SIS optical UV recorder model OM 4501 allows the simultaneous recording from one to eight parameters in cartesian coordinates. The traces are recorded on daylight printing paper, sensitive to ultra-violet rays and are chemically developed following exposure to daylight.

The OM 4501 features voltage driven amplifiers which eliminates the matching problems associated with current driven UV recorders. The plug in amplifiers have variable gain, high input impedance, protection against overload and may be easily calibrated against internal reference supplies.

Recording may be carried out at any of eight speeds from 0.25 mm/s to 1000 mm/s, with remote control facilities. Two sets of
lines, one along the ordinate, every 5 mm and in heavier print every 25 mm, and the other on the abscissa in the form of a coded time base, permit visual definition of the cartesian references, independently of the proper speed. A numbered identification spot discriminator allows each trace to be identified.

The instrument is housed in an anti-shock case and is intended for rugged field application.

Full details from Schlumberger Instrumentation Australia Pty. Ltd., Head Office, 112 High Street South, Kew, Victoria, 3101.

ELECTRONICALLY CONTROLLED SOLDERING IRON

The electronics industry has discovered in the last five years that the control over the soldering tip temperature is a vital pre-requisite to circuit reliability, since most faults arise at component interconnections. Earlier, temperature control was by electro-mechanical means but, like so many other systems, these have now been surpassed by electronic circuitry.

An all solid state sensing and switching system has been introduced by Adcola Australia, after a long period of development and stringent tests. The manufacturers claim very high accuracy and sensitivity for their unit (+10°C at all settings up to 360°C).

Temperature and power availability can be changed at any time by turning a knob, even while the tool is under load, as the soldering iron is moved from one type of circuit to another. According to the manufacturers high quality soldering is assured as excessively high and low temperatures (even during extended soldering sequences) can be avoided.

Since the unit will sense and switch off the temperature at the pre-set level, very high powered heating elements can be used. The controlled temperature tool, suitable for use on all types of printed circuits (and turret lug terminals up to 1/8" diameter), weighs only 4.5ths oz. Heat-up time to working temperature is a mere 40 seconds.

The larger unit (Cat. No. CT8,) while weighing only 2½ ounces, is said to have a work output equal to conventional tools from 15 to 100 watts.

Both of these tools use standard Adcola non-freezing tips, available in many different face profiles. Changeover from one tip to another is fast and simple, merely by sliding in and out of stainless steel collets.

Full details from Adcola Products Pty. Ltd, 22 Firth St, Doncaster, Victoria. 3108.

PRECISION STEREO MICROSCOPE

An image-splitting module capable of high precision micro-measurements, developed by Vickers Instruments Ltd., was one of only seven foreign winners to receive an Industrial New Product Award for 1971 from the Museum of Science and Industry, Chicago. A panel of leading American scientists and engineers selected the Vickers instrument on the basis of technical importance, uniqueness and usefulness when choosing the 100 most significant new technical products of the year.

The Vickers winning entry is the Model M1152520 binocular image shearing module. High precision micro-measurements can now be made with binocular microscopes; before the development, only approximate measurements were possible with binocular vision. The instrument's essential advantage lies in the greatly improved speed and convenience in use which is now possible. This in turn means that more measurements can be made and that precise measurement techniques can be employed in a greater variety of applications.

PATON'S NEW AGENT

Paton Electrical Pty. Ltd. announces the appointment of Northern Instrument Services of 13 Hall Street, Edgeworth, Newcastle, Tel. 58-2449, as its agent for electrical instrument products in the Newcastle and northern areas of N.S.W.

Northern Instrument Services have specialised in the servicing and maintenance of all types of instrumentation and control systems in New Castle, and have detailed knowledge of the Paton instrument range.

SANWA MULTIMETERS
PROVEN IN OVER 90 COUNTRIES

U-500x — Quality-wide range VOM
- **DC Voltage:** 0.1V, 0.5V, 5V, 50V, 250V, 1000V
- **AC Voltage:** 2.5V, 10V, 50V, 250V, 1000V
- **DC Current:** 0.5mA, 5mA, 50mA, 250mA
- **Resistance:** Rx1, Rx10, Rx100, Rx1k
- **dB:** -20dB ~ +62dB
- **µF:** with external
- **pF:** 0.0001µF ~ 0.2µF with external

P-2s — A versatile pocket multimeter
- **DC Voltage:** 10V, 50V, 250V, 500V, 1000V
- **AC Voltage:** 10V, 50V, 250V, 500V, 1000V
- **DC Current:** 0.5mA, 10mA, 250mA
- **Resistance:** 0 ~ 5kΩ, 0 ~ 500kΩ
- **Volume Level:** -20 ~ +22dB, -20 ~ +36dB
- **Megohm:** 0.1 ~ 50MΩ
- **Capacitance:** 0.0002 ~ 0.3µF & power
- **0.01 ~ 0.0µF**

460-ED — Ultrahigh Sensitivity VOM
- **DC Voltage:** (±) 0.3V, 3V, 12V, 30V, 120V, 300V
- **DC Current:** (±) 120µA, 0.3mA, 3mA, 30mA, 300mA, 1.2A, 12A
- **AC Voltage:** 3V, 12V, 30V, 120V, 300V, 1.2kV
- **AC Current:** 1.2A, 12A
- **Resistance:** Rx1, Rx10, Rx100, Rx1k (Max 50MΩ)
- **dB:** -20dB ~ +63dB

F-80TRo — Unique Taut Band VOM
- **DC Voltage:** 0.25V, 2.5V, 10V, 50V, 250V, 500V, 1000V
- **AC Voltage:** 2.5V, 10V, 50V, 250V, 500V, 1000V
- **DC Current:** 40µA, 0.5mA, 5mA, 50mA, 500mA
- **Resistance:** Rx1, Rx10, Rx100, (Max 50MΩ)
- **dB:** -10dB ~ +36dB
- **L/I:** 15mA, 1.5mA, 150μA
- **LV:** 1.5V

A-303TRo — Medium Size, High Sensitivity VOM
- **DC Voltage:** 0.3V, 1.2V, 3V, 12V, 30V, 120V, 300V, 1200V
- **AC Voltage:** 0.3V, 3V, 12V, 30V, 120V, 300V, 1200V
- **DC Current:** 1.2A, 12A
- **AC Voltage:** 1.2A, 12A
- **Resistance:** Rx1, Rx10, Rx1k, Rx10k, (Max 50MΩ)
- **dB:** -10dB ~ +36dB
- **L/I:** 60mA, 600µA, 60µA
- **LV:** 1.5V

A-301 — Sensitive VOM with overload circuit breaker
- **DC Voltage:** 0.25V, 1K, 2.5V, 10V, 50V, 250V, 1000V
- **AC Voltage:** 2.5V, 10V, 50V, 250V, 1000V
- **Resistance:** Rx1, Rx10, Rx1k, Rx10k, (Max 20MΩ)
- **Frequency:** 50Hz ~ 10kHz for 10V & below.
- **Response:** 50Hz ~ 20kHz for 50V & 250V

* Prices shown are suggested trade prices which may vary slightly from location to location.

AVAILABLE FROM ALL LEADING ELECTRICAL TRADE HOUSES

Distributed by: WARBURTON FRANKI

ELECTRONICS TODAY — JANUARY 1972
A new range of high performance general purpose dual power supplies has been announced by Scientific Electronics Pty. Ltd.

The new units – which are intended for use in laboratories, schools and general educational applications – have both independent and auto-tracking modes.

The two identical supplies are completely independent when in the independent mode.

The auto tracking mode provides master/slave connection, with the slave tracking the master. This mode is ideally suited for semiconductor devices requiring dual supplies.

Constant voltage/current limit or constant voltage/current with automatic crossover ensures short circuit proof operation and permits series and parallel connection of two or more supplies when greater voltage or current is desired.

Brief specifications
- Load Regulation: Less than 0.01%
- Line Regulation: Less than 0.01%
- Ripple and Noise: Less than 1mV p-p (dc to 20MHz)

Controls: ten turn controls

Operating Temp. Range: 0°C to 60°C

Full details from Scientific Electronics Pty., Ltd., P.O. Box 61, Blackburn, Victoria. 3130.

FAST FOURIER-TRANSFORM ANALYZERS

A new Fourier Analyzer, a plug-in Fast Fourier Transform Arithmetic Unit and a high-speed Fast Fourier Processor have been introduced by Hewlett-Packard. Their design is the result of the company's experience over the last several years with Fourier analyzer applications in such diverse fields as:

- automotive test (including trucks, trains, etc.)
- machine design
- aircraft structural test
- automatic control system analysis
- underwater acoustics
- oceanography
- communications systems (telephone and microwave)
- environmental test
- biomedicine (nerve signal and brain wave analysis)
- geophysics and oil exploration
- nuclear reactor design and test
- electrical power system and machinery analysis
- university research
- analytical chemistry (NMR)

The Model 5451A Fast Fourier Analyzer is much like earlier HP Fourier Analyzers. It's faster though, taking only one second to perform a 1024-point Fourier transform. It also has a greater dynamic range: 80 dB for both linear and power-spectrum measurements. Relocatable software is furnished so the user can easily add his own programs to extend the capability of the system.

The Model 5451A is a complete, fully calibrated, dc-to-25 kHz signal analysis system. It has two input channels which are sampled simultaneously; according to Hewlett-Packard this is practically essential for accurate comparisons of signals when making such measurements as transfer function, coherence function, or crosscorrelation function. At the flick of a switch, the analyzer becomes a general-purpose digital computer, but no knowledge of computer programming is required to use it as a Fourier Analyzer – it's keyboard controlled.

The other two new Fourier analysis products are peripheral processors for computers or Fourier Analyzers, mainly HP. One or the other would be used, but not both at the same time.

If one second transforms aren't fast enough, the new Model 5471A Fast Fourier Transform Arithmetic Unit can be added to any HP Fourier Analyzer, new or old. It consists of four printed-circuit cards which plug into any HP computer in four contiguous I/O slots. When integrated with the 5451A Fourier Analyzer, Model 5471A does 1024-point transforms in only 160 milliseconds. This makes possible real-time power-spectrum analysis to frequencies beyond 2 kHz. Analyzer operation is unchanged; the same keyboard controls everything, but processing speeds are increased over six times. The new FFT Arithmetic Unit can also be used simply as an additional arithmetic unit in any HP computer to perform fast Fourier transforms of up to 2048 points, to do complex and complex-conjugate multiplication, and to perform Hanning operations. A software driver is supplied. Model 5471A should be very useful to
EQUIPMENT NEWS

university researchers and others with limited funds.

Even faster transforms — an order of magnitude faster — are possible with the new Model 5470A Fast Fourier Processor. This processor can be used as a peripheral for many manufacturers’ computers. However, it’s supplied with an interface and software driver for HP computers only. Integrated with any HP Fourier Analyzer or computer, Model 5470A reduces the time required for a 1024-point transform to 15 milliseconds. This makes possible real-time power-spectrum analysis to over 20 kHz. Multiple 5470s can be used for greater increases in speed: two processors will nearly double processing speeds. The processor has its own 4096-word core memory and can perform transforms of up to 2048 points. Larger memories and larger transform sizes are optional. The processor’s self-contained memory allows parallel processing in the computer and the processor for faster throughput speeds.

Full details from Hewlett-Packard Aust. Pty. Ltd., 22-26 Weir Street, Glen Iris, 3147.

NEW INSTRUMENTATION RECORDER

A completely new Tandberg instrumentation recorder, the “Series 100”, has just been released in Australia by the Australian Distributors, Simon Gray Pty. Ltd.

Performance equals the most advanced instrumentation recorders available for stationary use; however, the portable Tandberg “Series 100” is much lower in price. As the Tandberg model weighs only 25 lbs., it is completely portable and requires only standard power supply.

It features 4 tracks of IRIG Standard FM recording on V” tape at the speeds of 7½, 3¼ and 1½/8 ips. Signal-to-noise ratio at 7½ ips is claimed to be better than 47 dB. Figures for flutter are extremely low and can be improved still further by use of electronic flutter compensation.

A CRT monitor displays the deviation of all four channels simultaneously, to facilitate the selection of the appropriate input range. A dc motor permits use of the recorder on all line frequencies between 48 and 1000 Hz.

A spokesman for the Australian distributors, Mr. W. K. Dougall, stated that sales in Australia are expected to follow the trend overseas, particularly on the Continent and in the United States. In both of these international markets keen interest has been displayed; the interest shown reflects modern requirements for high quality instrumentation equipment in the fields of engineering and research. At the same time the lower initial cost of the Tandberg “Series 100” has proven an attractive sales incentive.

Full details from Simon Gray Pty. Ltd., 28 Elizabeth St., Melbourne, Vic.
VARIABLE POWER SUPPLIES

- Single and Dual Outputs
- Output Voltages to 60 Volts
- Output Current to 2 Amps
- Excellent Line and Load Regulation
- 0° to 60°C Operating Temperature
- Ten Turn Controls
- Constant Voltage/Current Limit
- Constant Voltage/Constant Current

SCIENTIFIC ELECTRONICS PTY. LIMITED
42 Barry Street, Bayswater, Vic. 3153. Phone:
Melbourne 729-3170; Brisbane 47-4311;
Adelaide 77-1326; Perth 21-6146

ATTENTION
ALARM INSTALLERS

SIMPLIFY YOUR INTRUER ALARM PROJECTS

Allow us to supply professional equipment at reasonable prices.

Due to mass production we can offer quality equipment freeing you to devote your time to the heart of your intruder system i.e. the application and installation.

Contact us for information on Pressure Mats, Bells, Magnetic Reed Switches. Control Systems, Timers, Photo-Electric Beams, etc.

SECURITY ENGINEERING PTY. LTD.

SUPPLIERS TO THE SECURITY INDUSTRY
182 GEORGE ST., PARRAMATTA, NSW.
2150. PH: 635 6550 -- 635 6468.

UNITED TRADE SALES P/L
280 LONSDALE STREET, MELBOURNE, 3000
PHONE 663-3815 (Opposite Myers)

COMPUTER RACKS — 28⅛” x 28⅛” x 71”. Square Tube 1⅛” Cad. Steel. All members are bolted together and can be made to various size racks. Double B/Bearing slide rails. Price $30 ea. Racks are dis-assembled for transport. Freight Forward.

POWER TRANSFORMERS — BRAND NEW, Primary 230 Volt AC-Sec. 26-0-26 volts 280 ma-Sec No.2 90 volts. Size 2⅛” x 2” x 7⅛”. Only 1-50 ea. P/P 50 cents.

SPECIAL — CURLY CORDS, 25 cents ea. P/P 15 cents.

MULTIMETERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensitivity DC</th>
<th>Sensitivity AC</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1000</td>
<td>1,000 o/v</td>
<td>1,000 o/v</td>
<td>$6.75</td>
</tr>
<tr>
<td>CT500/P</td>
<td>20,000 o/v</td>
<td>10,000 o/v</td>
<td>$17.75</td>
</tr>
<tr>
<td>AS 100D/P</td>
<td>100,000 o/v</td>
<td>10,000 o/v</td>
<td>$34.50</td>
</tr>
</tbody>
</table>

Add 50 cents for pack/post.

POWER SUPPLIES, 35 volt, 5 amp. C Core Transformer and Filter. Choke 5-10,000 uF 50 volt electrolytics. Transistor Regulator voltage adjustable. Size 21” x 7⅛” x 7⅛”. Weight approx. 25 lbs. Price $35.00. Freight forward.

POWER SUPPLIES, 12 volt, 5 amp, same specifications as 35 volt model. Weight approx. 18 lbs. Price $25.00. Freight forward.

SPECIAL: ERIE 1 watt 5% High Stab. Resistors and 2 watt 1% and 2% Mixed and 2 watt, $1.50 per 100. P/P 40 cents.

3,000 TYPE RELAYS. No specific coil resistance supplied. 50 cents ea. P/P 30 cents.

PIANO KEY SWITCHES. 6 keys, 4 sections with 6 changeovers. $1.00 ea. P/P 40 cents.

SILICON DIODES. 100 P.I.V.-145 amps. $4.50 ea, P/P 40 cents.

CAPACITORS. Mixed values Mica and Ceramic. Poly bags, $2 per 100 P/P 30 cents.

SPECIAL. HIGH IMPEDANCE HEADPHONES, 2600 ohms. Hurry, limited number only at this price, just $2.50. P/P 50 cents.

VALVES — 6J6, 30 cents ea. ATS 25-807, 50 cents ea. 6J7, 60 cents ea. 6SL7GT, 60 cents ea.

SPECIAL ELECTROLYTICS. 75 uF 10 volt working, upright printed circuit type. 10 cents ea. P/P 6 cents.

CAPACITORS. 33 uF 400 volt DC working, printed circuit type. 10 cents each. P/P 6 cents.

RELAYS — 6 volt miniature 280.ohm coil $1.20. P/P 25 cents.

COMPUTER MODULES. Contain 2.12AU7 and 1% Resistors. 40 cents ea. P/P 20 cents.

DENISH CONSTRUCTION KITS, no soldering required. There are 16 Projects, including Transistor Radio, Morse Code Oscillator, Continuity Tester, Signal Injector, Transistor Wireless Microphone, Transistor Reflex Radio and numerous others. These kits are priced at only $11.50. P/P 80 cents.

ELECO ELECTRONIC KIT No. 9. 20 Projects, no soldering or tools required. This kit includes a Solar Cell. Projects include Transistor Radio, Transformer coupled with 2 Transistor Radio, Shortwave Radio, 2 Transistor Intercom, 2 Transistor Audio AMP, Signal Tracer, Wireless Microphone, Audio Oscillator, Microphone, included in kit. SPECIAL PRICE only $16.50. P/P $1.00.

ALL PRICES SUBJECT TO ALTERATION WITHOUT NOTICE

Wanted to buy — Test Equipment Transmitters, Receivers, etc.
DIGITAL-TO-ANALOGUE CONVERTER

The new Zeltex ZD429 and ZD433 Digital-to-Analogue Converters accept two and three-digit BCD (8,4,2,1) inputs with corresponding outputs of 0 to +0.9V and 0 to +9.99V.

These completely self-contained D/A Converters can be set with a settled time of 20 μs/seconds and a 0.5% LSB linearity temperature coefficient is ±20 ppM/sec and corresponding outputs of 0 to +0.9V and 0 to +9.99V.

MONOLITHIC CAPACITOR ARRAYS

Employing "Ceralam" multi-layer chip capacitors, 14-pin and 16-pin DIP packages are now offered by AUX. Low-cost prototype quantities for evaluation are supplied with standard chip capacitors mounted in pre-formed packages. For production quantities, the entire capacitor array can be fabricated as a single monolithic structure with multiple connections attached to the lead frame, providing higher component density, lower cost and greater reliability. The Complete structure is co-molded and over-seals and interconnects can be combined with the capacitor array as required.

Chip capacitors are provided in voltage ratings of 25, 50 and 100 Vdc and in capacitance ratings from 1 pF through 1 mF. Temperature characteristics available as standard are NPO, X7R and ZSU.

HIGH STABILITY PRESSURE TRANSUDERS

Vibration or temperature changes will not affect the accuracy of a new range of high-stability pressure transuders, the British manufacturers - Transuders (CEL) Ltd - claims.

This is due to the advanced techniques used in the manufacture of the transuders, which are also said to respond well to step inputs.

The six models cover the range of 0 to 15,000 psi, although specials up to 50,000 psi can be supplied. All models measure less than four inches long by one inch in diameter. They have a repeatability of 0.1%, a non-linearity of 20.25% and a nominal rated output of 1.1 mV per V.

Each transducer embodies a cylindrical sensing member of beryllium copper or stainless steel, on to which is bonded a strain gauge which forms the four arms of a Wheatstone bridge.

With an applied voltage up to 16V ac or dc, the pressure on this member puts the bridge out of balance, resulting in an electrical analogue output signal of the pressure being generated; this can then be used for display or control purposes.

Special models are available for operation in extreme environmental conditions, or with customer-specified characteristics, and a complete system-design service is offered by the company.

MINIATURE RED RANGE CONNECTORS

A new, miniature range of connectors is announced by McMurdo Pty Ltd. All original design advantages of the Red Range are embodied in only a quarter of the size, thus offering enhanced use of existing panel space.

The Redette Range consists of connectors of 16, 26, 38 and 52 ways. Fixing dimensions common to other connectors have been chosen but the contact density is such that two more connections are available than on comparable types.

Sockets are fitted with floating bushes to assist alignment on back-rack applications. Plastic covers with cable entries and clamps for top and side entry are provided together with positive latches and plugg protective shrouds.

Mouldings are in D.A.P., Contacts are hard gold plated. Current rating is 3 Amps per contact. Minimum proof voltage is 1700 volts peak and contact resistance less than 10 mill-ohms.

Engagement and disengagement forces are not more than 8 oz. per contact.

PRESSURE SWITCH

A sub-miniature adjustable electrical pressure switch has been designed specifically to provide electrical outputs from pneumatic inputs, and can be used to initiate electrical functions such as motors, lights, and timers, and in fluidic, instrumentation, and power pneumatic applications.

The switch, manufactured in the U.K. by Pneumaid Ltd., is supplied in three pressure ranges 1½ - 10 psi, 3-30 psi, and 10-100 psi, the switch is sub-base mounted and electrical connections are made with one-piece push-in cable socket, enabling it to be detached quickly for servicing or replacement.

Switch dimensions are 1.25 in by 1 in. by 1.57 in., and, according to the manufacturers, life expectancy is 25 million operations at 100 milli-volts.

Full details from Fluid Power Company Pty Ltd., 4 Palmer Court, Mt. Waverley, Vic. 3149.

NEW DIGITAL READOUTS

To fill the price gap between low-cost NIXIES and the more expensive LED displays, Sperry Information Displays Division have released its SP-730 series - a seven-segment display available in two-digit and three-digit packages.

By a patented process, Sperry converts the glass front-plate into the unit's anode. Character height is 0.33 in., and, with a red filter in front of it, the display resembles an LED readout.

Like other gas-discharge types, the Sperry display requires a high voltage - 170 Volt. Current for the figure "8" is 1.4 mA. Decoder/drivers and a 16 Digt multiplex board can be supplied.

Full details from N.I. Instrument Company, 7 Sydney St., Marrickville, N.S.W.
the world's most expensive amplifiers.

Including the $5000 model 500/33 and the $185 model 1050.
The announcement of Mallory Duratape blank cassettes, a new product of Mallory Batteries (Australasia) Pty. Ltd., was made recently by Mr. J. David Ehlers, Managing Director of the Company. The new range of Mallory Duratape medium priced cassettes are available in the popular C-30 (to run 30 minutes recording time), C-60 and C-90 recording lengths. Mallory also introduces at this time a cassette size magnetic head cleaner, C.H.C. These Mallory Duratape products are introduced in a form of packaging designed primarily for mass merchandising and impulse sales.

Mallory Duratape, introduced approx. nine months ago, has met with world wide acceptance in Canada and most of Europe as well as the U.S.A. Mr. Ehlers said that Mallory Duratape is one of a number of consumer-oriented products scheduled for introduction in Australia by Mallory Batteries (Australasia) Pty. Ltd. Mallory Batteries (Australasia) Pty. Ltd. is a wholly-owned subsidiary of P. R. Mallory & Co. Inc., located in Indianapolis, Indiana, U.S.A. with affiliates in thirteen nations, and sales and distribution programmes throughout many countries.

A NEW FEATHERLIGHT HEADSET

A major advance in micro-miniature headsets is announced by Amplivox Communications Ltd. of Wembley, England. Amplivox Communications have produced a fully adjustable earphone housing, enabling the user to receive incoming signals without discomfort and irritation of earplug type designs. Fully adjustable in all directions for correct location and optimum performance, with 180° rotation to enable use on the right or left hand side of the head, the earphone's soft ear-piece has minimum contact with the bowl of the ear. When desired the earphone can be slightly moved away from the ear to avoid physical contact altogether and act as a miniature speaker in "free-field".

The microphone utilizes a specially designed acoustic tube to convey sound to the tropicalized microphone element, providing excellent speech intelligibility and improved overall stability. Telescopic adjustment and rotation of the acoustic tube allow for correct positioning near the mouth, or for parking on any size of head.

Both earphone and microphone transducers are well-proven Amplivox products of military type design providing for rugged and reliable performance. The whole assembly without cable, but complete with a new type of integral sliding headband, weighs less than 2 ounces, or without headband, for fitting on spectacle frames, less than 1 ounce. Each "Minilite" headset is supplied with a slim carrying pouch for personal use and safe storage.

Further Details may be obtained from: - RACAL ELECTRONICS PTY. LTD., 74 Talavera Road, North Ryde, N.S.W. 2113

THREE-HOUR CASSETTES

We understand from a reliable source that the Japanese TDK company may soon be releasing a C-180 cassette. It is believed that TDK are taking advantage of their experience gained in producing their new C-120 cassettes which have excellent anti-jamming characteristics.

VIDEO DISCS IN COLOUR

The TELDEC disc (a video equivalent of the long playing record) described in our April issue, has now been produced as a full colour reproducing system.

The new system, recently shown in Berlin, has undergone several other changes since our previous report. The disc size is now 8¼" in diameter and this provides five minutes playing time. The machine now features an automatic record changer. This extracts the records from their sleeves, plays them in the required sequence, and then repacks them. The disc-changing time is claimed by the makers to be less than half a second.

As with practically every other home video system, both delivery dates and prices are vague. Originally scheduled for late '72, deliveries are now stated to commence in mid '73 and prices are now quoted at nearly double the original estimates of $120 (single play, black and white machine).

RECTILINEAR LOUDSPEAKERS

Leroy Industries announce their appointment as Australian distributors for Rectilinear loudspeakers. These speakers have a five year parts and labour warranty. Six models are available, ranging in price from $150 to $545.

DOLBY LABORATORIES ANNOUNCES NEW LICENSEES

Two more major audio manufacturers in Japan have concluded licensing arrangements for use of the Dolby System, according to Robert Berkowitz, Head of Advertising and Information for Dolby Laboratories. Berkowitz made the announcement on Thursday, October 28, when he gave a lecture/demonstration on the Dolby System, entitled "Music and Silence" during the International Audio Festival and Fair in London.

The newly signed licensees, PIONEER ELECTRONIC CORPORATION and TOKYO SHIBAURA ELECTRIC COMPANY (TOSHIBA), bring to nearly 40 the number of hardware manufacturers now marketing or planning to introduce Dolby B-System products. Among pre-recorded cassette manufacturers, NIPPON COLUMBIA (Japan) and RCA (U.K.)
have been the latest to decide that their cassette releases will be in the Dolby B format. Other major companies who now issue all their cassettes encoded with the Dolby B characteristic include AMPEX STEREO TAPES (U.S.A.), CBS/COLUMBIA RECORDS (U.S.A.), and DECCA/LONDON (U.K.). Soon, Mr. Berkowitz stated, two more major recording companies in the U.S. will join the others so that almost 90% of the new cassette output in America will be Dolby encoded.

At the London Audio Fair a number of new Dolby products were on show, including cassette recorders from Sansui, open-reel tape decks from Ferrograph and Revox, and noise reduction units by Highgate Acoustics and Kellar. Cassette decks introduced at last year’s fair by Bell & Howell, Harman-Kardon, and Rank-Wharfedale were also demonstrated. The Decca Record Company and Precision Tapes gave visitors to their stands the opportunity to hear some of the wide range of Dolby cassettes now available on the British market.

The following companies now have available or will soon introduce Dolby System products for consumers:

- Advent U.S.A.
- AEG Canada
- Allied Radio Shack U.S.A.
- Allison Audio U.S.A.
- Ampex U.S.A.
- Ampex Stereo Tapes U.S.A./Canada/Belgium
- Bell & Howell U.S.A.
- Benham U.K.
- Bigaton Japan
- Cinema Tape Productions U.S.A.
- Columbia Records U.S.A.
- Concord U.S.A.
- Crown Radio Japan
- Decca U.K.
- Decca Musicassettes U.K.
- Dubbing Electronics U.S.A.
- Europa Film Sweden
- Ferrograph U.K.
- Fisher U.S.A.
- Harman-Kardon U.S.A.
- Highgate (Alpha) U.K.
- His Master’s Voice N.Z.
- Hispasov Spain
- Hitachi Japan
- Iberofon Spain
- Janssen U.S.A.
- Kenwood/Trio Japan
- Key U.K.
- King Records Japan
- Lafayette U.S.A.
- Lenco Switzerland
- London Records U.S.A./Canada
- Mitsubishi Japan
- Mood Music France
- Musical Heritage Society U.S.A.
- Music Carriers N.Z.
- Nakamichi Research Japan
- Nippon Columbia Japan
- Phonodisc Japan
- Planet Research Japan
- Plastic Products U.S.A.
- Preferred Sounds U.S.A.
- Pye Records/Precision Tapes U.K.
- RCA Ltd. U.K.
- RCA Italiana Italy
- Rank Wharfedale U.K.
- Revox Switzerland
- Roger Arnoff Lydstudio Norway
- Sankyo Japan
- Silver Japan
- Singer/KLH U.S.A.
- Sonab Germany
- Son-o-Frest (Eurodisc) Japan
- Standard Radio Japan
- Tape Duplicating Metrosound U.K.
- Teac Japan
- Telet Japan
- Telex U.K.
- Trident Tape Services U.K.
- Uher Sweden
- Vog Cassettes U.S.A.
- Wollensak/3M U.S.A.
- Columbia Records Canada
- MCA U.S.A./Canada
- Pioneer Japan
- Sanyo Japan
- Tokyo Shibaura (Toshiba) Japan

JOIN THE TAPE REVOLUTION

'TDK-SD* IS HERE!

(*SUPER DYNAMIC)

Professional quality recording tape praised the world over. Tape recorders are “dramatically improved” says Consumer Guide, U.S.A.

“Significantly different performance from other tapes that we have tested” says Electronics Today, Sydney.

THE TDK STORY: In 1932, TDK’s founders invented a new class of materials, ferrites, that became the basis of the entire magnetic recording industry. Today TDK is an International Company with more than 5,000 employees in Japan, U.S.A., West Germany and Taiwan, maintaining TDK’s leadership in audio, video and computer grade tapes.

‘SD’ SUPER DYNAMIC CASSette TAPE The tape that turned the Cassette into a High Fidelity Medium.

Gamma Ferric Oxide, an exclusive TDK high resolution, high efficiency magnetic formulation, has made it possible to achieve fidelity in the cassette medium that could previously be obtained only with reel to reel decks.

The surface of SD tapes is almost mirror smooth, which combined with special binders and lubricants has all but eliminated head wear. The tape offers the following features:

- Frequency response from 20—30,000 HZ
- Increased output level
- Minimum distortion
- Expanded dynamic range
- Lowest noise, best signal-to-noise ratio
- High reliability jam proof cassette construction

‘SD’ SUPER DYNAMIC REEL TAPE Engineered for the next generation of tape recorders, TDK Super Dynamic tape on open reels is capable of dramatically improving the performance of old recorders of modest quality. With reasonably good home equipment, it can produce professional, studio quality results 20—30,000 HZ.

(Left) Ordinary magnetic particles, magnified (right) SD—tape microfine particles of Gamma Ferric Oxide exclusive to TDK, also magnified.

OTHER TDK TAPES AVAILABLE

DIGI—Pack Computer Cassettes • Endless tape cassettes (3 mins, 6 mins, 30 sec. and 90 sec.) • Video and Computer tapes • Bulk packs. All tapes are Polyester based.

SOLE AUSTRALIAN AGENTS

CONVOY IMPORTS, 1 Maclean St., Woolloomooloo, Sydney, 2011. Phone 357-2444.

Please send me further information on "TDK—SD" Super Dynamic tape.

Name

Occupation

Address

Postcode
When all you want is soft romantic music

that's all you get with BASF LH-hifi recording tape—nothing else.

The fact that tape "Hhiss" is anything but seductive is one of the reasons why we have virtually eliminated it from BASF LH-hifi recording tape. The gradual narrowing of track widths and lowering of tape speed on domestic tape recorders, places, above all, great demands on tape to head contact and magnetic uniformity. A natural consequence of this development appeared to be background noise which became more audible during sound reproduction. To counter this, BASF engineers have introduced low noise equalisations and eliminated the background noise, increased sensitivity and achieved dramatic improvement in signal-to-noise ratio of as much as 8dB over other quality tapes.

BASF HAS THE QUALITY—YOU MAKE THE MUSIC—BASF FOR ENDLESS PLEASURE

BASF

Australian Distributors:
Maurice Chapman & Company Pty. Ltd.,
276 Castlereagh St., Sydney. Phone: 61 9881.
146 Burwood Rd., Hawthorn, Vic.
Phone: 81 0574.

Whatever music you decide is most persuasive, BASF LH-hifi will give it greater clarity, more realism and less distortion. The rest is up to you.

BASF Compact Cassettes are available in the following playing times:
C30 = 2 x 15 minutes = 30 minutes.
C60 = 2 x 30 minutes = 60 minutes.
C90 = 2 x 45 minutes = 90 minutes.
C120 = 2 x 60 minutes = 120 minutes.

BASF Compact Cassettes available everywhere in your choice of either "Trans," "Snap" or "Plastic Pack."

ELECTRONICS TODAY — JANUARY 1972
The notion that Delius was essentially a miniaturist is quite justified, most of his extended works having unrelied stretches or even being broken up into a string of miniatures. But Delius successfully captured an almost epic utterance in Paris (1899-1900), Sea Drift (1903), and A Mass of Life (1904-05). None of these works is familiarly known to present day listeners, performances being few, and it is an even more shocking state of affairs when none of these works is currently available in up-to-date recordings. The ordinary listener has had to wait for these resurrections to get to know A Mass of Life and Sea Drift, whilst, currently available recording exists of Paris.

Sea Drift is Delius' masterpiece and almost certainly among the most eloquent settings in the literature. Taking one of Whitman's most successful poems, Delius is uncannily responsive to all its nuances - the various levels of reminiscence, the juxtapositions of childhood and maturer experiences, of the natural and human. And how well Delius understands the Whitmanesque ambiguity of point of view (lover, brother, friend, what does it matter) and his musical portrayal of loss is rightly both personal and of greater significance. With this piece Delius remains the most successful composer to set Whitman, not an easy task as anyone who has tried his hand at it can testify. But it is especially in the evocation of the sea that makes this setting so memorable. In using this poem, Delius chose to omit Whitman's opening and closing sections (not the strongest portions of the poem, one must admit) preferring to suggest the "cradle endlessly rocking" with a swelling motion that establishes Whitman's intended atmosphere naturally and without direct statement, a device more usual in words. This swelling, motion pervades the entire setting, and is not only appropriate to the pattern of recall, but also calls to mind those other musical narratives of loss - Tristan, Pelléas with their evocation of the sea as a primordial and desolate presence. So accurate in fact is Delius' observation of this common emotional experience of the sea that one cannot help but note how rightly this setting is one of his best, and how it resounds shortly after and climaxing at "O darkness! O vain!", then silence and the baritone's "I am very sick and sorrowful". One almost does not notice the rocking setting ends in a complex of emotion. Beecham here gave one of his greatest performances and it would be hard to better this in a newer recording. His baritone soloist Bruce Boyce and the choir directed by Leslie Woodgate were also very much caught up in the spirit of the work. CBS is therefore to be congratulated for giving us back this performance and it is a pity that it did not see fit to release this record in Australia. But no doubt certain shops will be keeping import copies in stock. The recording is remarkably good although I am told by some that certain copies reveal a very slight wow. On the reverse of this disc is Delius' very pleasant incidental music to Hassan in a good enough performance. Most of the numbers on this side are also otherwise unavailable.

Less successful than Sea Drift and perhaps showing dated spots is Delius' setting of selections from Nietzsche's Zarathustra, A Mass of Life. At the risk of seeming ungrateful and especially since CBS has taken the trouble to release these records locally I must state that the recording on these discs were never good to begin with and the refurbishing improves things very little indeed. Sound is constricted and the wealth of orchestral detail in this score is not very much apparent. Nor I regret to say, is Beecham's performance one of his best. The opening is not rousing enough and the "Grosser Mittag" section seems rather sluggish. Elsewhere things go well enough but all is definitely not-the best. Inasmuch as HMV has announced a new recording under Charles Groves it would perhaps be well to wait a bit although in all fairness to CBS I am almost tempted to think this new release should have happened a long time ago. - J.A.A.

RAVEL — Fanfare from L'Eventail de Jeanne FRANCK - Symphony in D minor. Stokowski, Hilversum Radio Philharmonic Orchestra DECCA Phase Four PFS-4218.

This record opens with a brilliant fanfare written by Ravel for a composite ballet L'Eventail de Jeanne. A tiny masterpiece of orchestration this fanfare certainly is, and Stokowski is very much in his element here. I am not in a position to say whether Stokowski has added or retouched anything but his performance here is all too brief. If the rest of the ballet is anything like this, perhaps a complete recording should have been made. The cover notes list the rest of the numbers, each composed by some contemporary of Ravel's: Poulenc, Auric, Milhaud, Ferroud, Delannoy, Schmitt and Roussel.

In the past year or so, at least three new recordings of the Franck Symphony have been released, which seems a bit strange, considering that Franck's music is hardly the most popular fare these days. There are a dozen or so other recordings currently listed in the Schwann and Gramophone catalogues, and since I can hardly think of one version which is anything less than good, this new effort seems to reflect the usual absurd marketing practices most recording companies have today. Be that as it may Stokowski is at least never uninteresting and when he conducts something from the basic repertoire the results are usually at least stimulating. Give Stokowski an old war-horse and one is bound to learn a thing or two about the work. Well, yes, this performance is in fact interesting. Certainly there are very few conductors today who pay as much attention to detail and inner voices. Having been a turn of the century organist Stokowski would rather naturally bring out the "romantic organ" aspects of this score. Phrasing is rather fine if at times a trifle exaggerated (not always inappropriate in this work). There are undoubtedly some very fine moments, especially those flute/oobie trills at 485-90. Nevertheless I find it very hard to say why I should enjoy this performance as much as the recent Karajan (HMV) or the Martinon (ERATO). There almost seems to be a lack of conviction to this performance which belies Stokowski's admirers notes on the record jacket. Certainly less fiery performance than Karajan's. Also, the Hilversum Radio may well be one of Holland's best but it is no Concertgebouw. The all-important English horn has, for instance, a rather wooden quality to it and is often just accurate. And why must Stokowski insist at times on a very vibrate string ensemble?

Recording and surfaces on this record are superb. - J.A.A.

At the premiere of his Eighth Symphony, Mahler is said to have told Sibelius, "A symphony must be like the world, it must embrace everything." Sibelius in 1910 already possessed very different ideas as to what a symphony should be. The Third Symphony (1907) was already behind him and he was working on his Fourth, to be his finest achievement and certainly very different from Mahler's Eighth. Admiration for Sibelius' symphonic achievement and the uniqueness of his "sound" as compared to most...
post-Wagnerian writing has tended to neglect altogether any discussion of influences on his work. While an almost grudging concession to the presence of Tchaikovskian elements is made with regard to the First Symphony, any talk about Wagnerian influence, as by a certain composer must admit that much of the writing here already and in more classic lines. The First Symphony is quite different in this respect. But while some aspects of this symphony seems to set Sibelius as starting off from late German romanticism, it must be admitted that already very little in this work sounds German, and that is in great part due to a greater influence on Sibelius than anything in the Wagnerian vein, that of Tchaikovsky. By virtue of hindsight we realize that it was Tchaikovsky who veered Sibelius away from the post-romantic German elements. It was Tchaikovsky which impressed Sibelius with the fact that symphonies could, in fact, be written without Wagnerian chromaticism and in more classical lines. The First Symphony is final proof of this. But once again it is only too easy to emphasize the antecedents in this work. There is very little here that is personal as Tchaikovsky. Nor is this work a "world" or else it is the converse of the Kullervo. One has to admit that much of the writing here already reflects Sibelius' own voice, for instance, the illusion of movement not so much by means of counterpoint as by alternating dynamics and speed (Harold Truscott). Whatever moments of poor quality this work has, it is nevertheless rather remarkable and avid Sibelians will definitely want a copy of this work. Performances from all concerned are always on a high level, recording is excellent, and surfaces on my copy are good.

The Kullervo is, however, not the only cause for joy in this Album. We are also given the only recordings of the Scene with Cranes from Kuolera and four excerpts from Swanwhite. No cause for complaint here except that too little of Swanwhite is included. While none of these pieces is top level Sibelius, there are very lovely moments and the writing for two clarinets in the Scene with Cranes is very haunting indeed. And now will HMV or anybody give us a complete recording of the Tempest music? — J.A.A.

Panufnik's Universal Prayer is most certainly not "one of the most original musical creations of the middle Twentieth Century" nor is it "an entirely new development of music" whatever Stokowski may say on the cover of this record. For the phrase is a tautology for numerous premières of truly original works (Ives, Symphone No. 4, Varese Arcana, for example) Stokowski can be strangely and irritatingly naive at times when he does talk about some of the music he conducts. Nor are Panufnik's own notes and graph of the geometrical symmetry of his work more inviting. If these are not naive, one is strongly tempted to think them pretentious. Ultimately of course it is the music that must stand up to the test and whatever Panufnik's ruminations as to the work's being neither twelve-tone nor aleatory but based strictly upon one triad only, everything sounds very much old hat to me. Certainly this work is carefully organized, or one is tempted to say too rigidly perhaps, without any musical compensations. Panufnik's earlier symphonies, the Rustica and Sacra may have been conventional but one felt at least the man was trying to write music not mathematics, and I have nothing against very mathematical composers like Boulez or Xenakis who can also be musical. For those who do not agree with me, here is a very good performance indeed from a conductor who seems to believe in this work. Recordings is very good, except for some distortion towards the end of each side. — J.A.A.

"O SACRUM CONVIVIUM" — Modern French Church Music. Jean Langlais — "Messe Solennelle"; Maurice Durufle — Quatre Motets; Gabriel Faure — "Messe Basse"; Francis Poulenc — "Litanies a la Vierge"; St John's College, Cambridge; Stephen Cleobury, organ; Andrew Brun, solo treble; George Guest, director. Argo ZRG—662.

The diversity of style in modern French church music becomes vividly apparent with this new release. All the works have their own individuality and are fascinatingly dissimilar — the lyrical approach to the words of the mass by Faure; the modal tonalities and declamatory texture of four motets by Durufle; the frequent mood changes in Poulenc's "Litanies"; the mystical colouring of the Messiaen, and the intense dissonance admant contrapuntal textures of the Langlais Mass. It might be argued that the Faure Mass is out of place on a recording devoted to Modern French music but this is really immaterial.

The work which stands apart in originality is the "Messe Solennelle" by Jean Langlais — a remarkable piece of writing, intense, exciting and forceful. It deserves the marvellous rendering given to it here. From the opening suspense-laden organ dissonances to the crowning glory of the trompettes a clef's passage above which one just becomes immersed in the work. Mention should be made here of the organist, Stephen Cleobury. His understanding of the work and the application of a fine technique together with control of suitable registration schemes give the work a strong individuality.

The quality of singing is just as fine. Entries are firm and balance of voices (including the alto line) is clear. One can almost feel the tension in their voices as they convey this general feeling of intensity. Certainly their voices do not blend as well as their neighbours at King's, but they are probably not meant to. In any case the contrapuntal lines are transparently clear and there is a sense of freshness and gentle radiance in their voices.

Faure's "Messe Basse" contains a few anticipations of his "Requiem" and is set for treble voices. A charming rendering, especially from treble soloist Andrew Brun who sings confidently and with a delicate lilt. Incidentally the organ accompaniments here are simply gorgeous.

The other works are given equally fine renditions. I single out Langlais as it is the most striking and leaves a more lasting impression.

Sound is particularly clear and there is a commendable balance between organ and choir (full organ as used in the Langlais never drowns the choir). Some slight background noise (pasting cars, I think) in the Durufle. The disc comes complete with texts (and translations) and an excellent sleeve note by Philip Radcliffe. Possibly the finest recording the choir has made. — C.M.W.
ET019*
As described in E.T. Jan '72. Complete kit includes all components, pre-punched box, etched and drilled P.C. board, hardware and full instructions. $25.50 plus $1.00 post. (Wired and tested $3.50 extra) Specify positive or negative earth versions.

SE500*
Fully automatic version of ET019. Adjustable re-entry delay enables the alarm to operate from the ignition only. Simple to install, easy to operate, fully guaranteed. Complete with full instructions. $32.50 plus $1.00 post (available only in wired version). Specify positive or negative earth version.

SINCLAIR ELECTRONICS
CHOOSE YOUR MODEL, PARDNER!!!

Douglas Trading is firing Big Discounts your way.

Our opposition would probably like to shoot us if they could find out just how much you’ll save. Think in terms of saving a quarter to one-third of going list price and you’ll be right on the mark!

AKAI X-5000

4-TRACK, 3-SPEED
STEREO RECORDERS — in leather or wood!

Just listen to these features — 4-track stereo monaural recording and playback, 3-speeds, Cross Field Head, Hysteresis synchronous 2-speed motor, automatic shut-off, pause control, equaliser for each tape speed, DIN and stereo headphone jacks ... the list goes on and on but our heavily discounted stocks must run out soon. Hurry. Reach for the savings! $299

AKAI M-10

4-TRACK, 3 MOTORS, STEREO.

Here’s a model to give you a truly professional touch — with true Concert Hall Sound! Features 4-track stereo monaural recording and playback, Cross Field Head System with 3-heads, 3-speeds, 3-motors, auto. stop, auto. pinch wheel release, track selector and tape lifter. 40 W Music Power solid state amplifier with two integrated circuits. $399

BREAKTHROUGH

AKAI AND DOUGLAS TRADING EXCLUSIVE,

AKAI 4-track, 2-channel Stereo Cassette Recorder.
Breakthrough! Fantastic response . . .
30-18,000 Hz (+/- 3 dB) from cassette
with 150,000 hours guaranteed
head life. Integrated
circuit . . . Hysteresis
synchronous outer-rotor
motor . . . recommended
retail price was $480 . . .

Douglas Trading special price $232

SPECIAL DELIVERY

The Biggest Discounts are at

191 BOURKE ST., MELBOURNE.
Telephone 63 9321.
This volume in Swaggie's chronological study of Louis Armstrong's swing years seems to me to be superior to Volume One, which we've already reviewed, from the point of view of Louis' playing and sometimes of the orchestral support.

Some of the tunes have long been forgotten, and I wonder if -- and how -- they could ever have been very popular. Yet in his improvisations even on the very worst tunes, Armstrong comes up each time with at least one brilliant idea which is appropriate to the particular opus, and not just to the chords. Sometimes it's hard to know how he could have been bothered, yet the results are always worthwhile.

Louis used three slightly different sounds and approaches at different stages of his career, each one immediately recognizable as his own. His last sound, just before his playing fell right off in old age, was the most raw and emotional, his early cornet style the most inventive and technically florid, and the style recorded here was his most contained and perhaps most subtle approach. You really need this recording if you are to have the complete Armstrong picture.

In the coda to I Come From A Musical Family he lets some perfectly rounded low notes slide out like pistons leaving a cylinder. These notes seem to define the interior space of the instrument. There follows an uncannily plaintive hooting note which does not quite fill the instrument out. He has fractionally depressed one of the valves I should say, which sounds for all the world as though he has sung through the tubing.

The most inventive solo is on Somebody Stole My Riff. He just rolls low notes over each other, sometimes off-handedly, foreshadowing Lester Young. But though for a moment he has contemplated dropping right out of the tune into another key. Then he cracks out over the top of the band just when you think they are about to leave him behind.

On Dippermouth he proves to be just as effective with the powerhouse orchestrated Dixieland of the Jimmy Dorsey Orchestra. In fact, that is his best accompaniment on the recording. Dorsey backs him again on an embarrassing thing called Hurdy Gurdy Man and on the second version of Swing That Music. This rattles along in a marvellously old-fashioned Down On The Levee sort of way, but Louis' trumpet is again timeless.

Mostly terrible tunes; great Armstrong. Recorded sound is excellent except for a couple of tracks on the first side on which there is a bit of gurgling distortion. Very pronounced pre-echo. -- J.C.

BENNIE MOTEN Bennie Moten's Kansas City Orchestra 1923-5
Swaggie 51278 Mono. Elephant's Wobble, Crawdad Blues, South, Vine Street Blues, Tulle Blues, Wondo Dust, Baby Dear, She's Sweeter Than Sugar, South Street Blues, Sister Honky Tonk, As I Like It, Things Seem So Blue To Me, 18th Street Strut, Kater Street Rag.

This is one of the best examples I have heard of the beginnings of organised and arranged Negro jazz. In its day this band would have been regarded as a dance band and one can see these virile young Negroes changing from their loose working clothes into awkward starched collars and shirts and donning black dinner suits which always look too small because of their bulging muscles. It is also more than likely that they would never leave the stage in between dances except when it was time for the supper, which they would inevitably eat in the kitchen. It would never enter their heads that they were making history or doing anything important other than going out to do a gig the same as any other dance band.

This album is assembled from old pre-electric 78s and once you get used to the archaic sound you realise what beauty there is in this pure classic jazz.

Most of the tunes are based on one or another of the 12 bar themes which have become traditional. This is interesting because it was this band which gave birth to the Count Basie Orchestra -- a band which has always been noted for playing the 12 bar blues whether slow or jumping. In his cover notes, English collector-Brian Rust, likens one of these 12 bar tracks to Muskrat Ramble which makes one wonder what these enthusiasts get out of jazz if they haven't got an ear!

Lammar Wright is on cornet; Thamon Hayes, trombone; Herman Walder, clarinet and tenor; Bennie Moten, piano and leader; Sam Tall, Banjo; and Willie Hall, drums. This is the personnel on the 1923 recordings and they are joined by Henry Cooper, cornet; Harlan Leonard, clarinet and alto for the 1924 session and for the 1925 tracks Vernon Page is added on tenor and LaForest Dent replaces Sam Tall on banjo.

The two cornet style reminds one of the Oliver band and the occasional comedy effects from the reeds brings Jelly Roll to mind. Probably the best solo comes from Moten himself with one of the finest examples of ragtime piano on Kater Street Rag.

Moten finally gave up the piano chair to the young William "Count" Basie and when Moten died, Basie took over the band which has been recording and touring ever since. This album includes the entire published output of one of the most interesting bands in the history of jazz and it is most satisfying to be able to go back almost half a century to what was the beginning of the Basie band.

But this is not really music to be talked about, it is music to listen to. Surface noise and distortion is inevitable because of the rarity of the original records from which this album was taken, some of them were far from perfect copies. -- G.B.

ARMAND HUG -- Armand Hug Piano Solos' Swaggie, Stereo 51281.

Some day, some nut is going to issue an album called Armand Plays Armand. Or maybe Armand Digs Armand or Armand Meets Armand. Or, bottom of the barrel, Armands: Ain't They Sweet?

This fatuity is prompted by the issue on Swaggie of a set of piano solos Armand Hug recorded in the New Orleans History of Jazz Museum on January 10, 1971.

Historic site, historic records. This is the first time an Australian company (and Swaggie is based in Melbourne, as you doubtless know) has recorded an American jazz artist in America. (I add "in America" in case some smartie refers to the records made here by Max Kaminsky, Rex Stewart and Eddie Shu).

Armand Hug is, I assume, the greatest solo jazz pianist living in New Orleans. Because he knew what it would mean to miss New Orleans, he has never left the Crescent City. Mr. Ray Marginson, the Vice-Principal of Melbourne University, met Mr. Hug recently on some quasi-academic tour which took him to the land of dreams. He reported the encounter to Dick Hughes, a former president of Melbourne University Rhythm Club, at French's Tavern, Darlinghurst, Sydney, where Hughes plays solo piano and leads a trio.

According to Hughes, Hug assured Marginson he had been given first offer of
ORDER EARLY FOR XMAS

MODERN BOOKS & PLANS, 21-23 Bathurst Street, Sydney 2000.

Please state code number when ordering

Please send me the following book(s)...

Add postage-N.S.W. 60c, other States 80c.

I enclose $...

Name...

State...

P. Code...

ELECTRONICS TODAY — JANUARY 1972

Prices are current at time of publishing but are subject to change.
GARNER. And for a couple of seconds, at the very beginning you may do a solo album? Time's running on Hug's own composition, You Cooked friends. - B. W.

The Reunion Jazz Band is so called because it is a reunion of some of the original members of the Dutch Swing College Band. W & G have released Volume 3 of the Reunion Jazz Band and if Volumes 1 and 2 are as good — or even only nearly as good — then I wish they would hurry up and release them too. They may have released, but not to my knowledge. But then I don't know very much and, if I may quote Vincent and Youmann, I know that you know.

This band must be one of the best revivalist jazz bands in the world. It reminds me a lot of the Graeme Bell band of the mid and late 40s at its very best. Incidentally, I think it was the trombonist of the Dutch Swing College band who got too perturbed when Roger Bell (Graeme's brother, y'know) suggested he should take more solos. "Horrible Dutrey didn't play trombone solos in King Oliver's Creole Jazz Band," he said. "Why should I?"

The Dutch Swing College Band soon got the purist out of its system and I feel pretty sure Louis Armstrong meant it when he said: "These are the boys I like to jam with."

Coincidentally, there are two numbers from the Oliver Creole Jazz Band on this record, Working Man Blues and Mabel's Dream, and coincidentally, both have an Australian sound. I guess the Australian sound is pure coincidence although I wouldn't be surprised if it were a lingering indirect result of Bell's first European tours of 1947-48. Dim Kibber on clarinet sounds quite antipodean. New Holland or Old Australia?

This review is not meant to be an essay in journalism. I assure you, but I must mention the occasional resemblance of Eddie Hampton's tuba playing to that of Bob Wright in the old Southern Jazz Group from Adelaide. It's excellent tuba, anyway, and on Gillard's Weeper, behind Pim Hogervorst's glancing, dancing banjo, it boozed along like Bill Benford's on the 1928 Jelly Roll Morton Red Hot Pepper session

This record has a most interesting selection of tunes, one of which, Lil Armstrong's Everything's Wrong. Ain't Nothing Right. I had never even heard of before. The opening soloist on this is Joop Schrier, who plays a very bluesy back-to-the-roots piano. In the sleeve notes he describes it as "a rare blues melody based on a 16-bar pattern." The other soloists are Dim Kibber and Jan Morks on clarinet, Wim Kolske on trombone and Wybe Buma on trumpet.

Hoagy Carmichael's beautiful tune, New Orleans, is largely a feature for Buma's trumpet and very lyrical trumpet it is. Note the whole tone phrase Hogervorst uses at the end of his half-chorus guitar solo.

Jan Morks, who has a short clarinet solo on New Orleans, takes a tenor sax chorus on Sunday and sounds very much like Eddie Miller.

A very versatile band this, with Kibber playing soprano and clarinet, Hogervorst guitar and banjo, Hammm bass and tuba, Morks clarinet, tenor and drums, and Martin Bennen, drums and trumpet. When Bennen joins Buma to play a two-trumpet lead, Morks conveniently depuities for him on drums. All they need is Ade Monsborough on violin.

I think it was Schrier who played a magnificent piano solo of Saint Louis Blues on one of the Dutch Swing College albums from the early fifties. He leads the Reunion Jazz Band but takes solos only on Sunday, Everything's Wrong and La Chartreuse. Chartreuse opens in Jimmy Yancey style and has a most interesting ending.

I hate to harp on this Australian jazz, but the diligent student is well aware that Ade Monsborough and Kelly Smith pioneered the use of two clarinets in Melbourne back in the mid forties. The result was one of the distinctive Australian jazz sounds of the golden days of the revival.

Kibber and Morks strut their two clarinet stuff on Louisiana, that delightful tune which got equally definitive interpretations by Bix Beiderbeck and Count Basie. First chorus they play in unison. They chase each other in low register throughout the second chorus. They go back in unison for the third chorus, taking alternate breaks after every two bars. A key change and an abrupt ending make it all add up to a delightful and stimulating track.

On the whole, this is a delightful and stimulating record. If Volumes 1 and 2 of the Reunion Jazz Band are available, just toss them my way would you, W & G? And if they aren't pray remedy the situation post haste. - B. W.
Another ADVANCE 'scope for
precise waveform measurements

OS1000 oscilloscope
15MHz, 7’’ high

Here is a small size, lightweight 5mV/cm dual trace oscilloscope offering wide time base ranges and comprehensive trigger control combined with broad bandwidth and calibrated deflection factor. Solid state circuitry makes the OS1000 ideal for servicing or laboratory use.

DISPLAY:
10cm x 6cm rectangular tube with 4kV overall E.H.T.P.31 (standard) or P7 (long persistence) phosphor available. With dark grey filter as standard, Brilliance, Focus and Graticule illumination by normal controls.
EXTERNAL Z MOD:
AC coupled rear panel socket. 1vpk.pk for visible modulation, 60V for blanking. Input impedance 1MΩ.
DISPLAY MODES:
SINGLE TRACE: Y1 or Y2.
DUAL TRACES: Alternate sweep or chopped mode (250kHz) automatically selected by time base setting:
Alternate sweep—0.5µS/cm to 0.5ms/cm, chopped mode—1µS/cm to 1 sec/cm. X-Y mode—via Y1 and Y2 inputs selected on time base range switch.
Bandwidth DC to 1MHz.
Y DEFLECTION:
Dual channels—Sensitivity—5mV/cm to 20V/cm ± 3%. BANDWIDTH: DC to 15MHz.
INPUT Z: 1MO/30pf.
INPUT COUPLING: AC/DC/Ground.
TIME BASE: Ranges 1 sec/cm to 0.5µS/cm with X10 Expansion ± 5%.
TRIGGER MODES: (i) Internal Y1 + or —
(ii) Internal Y2 + or —. (iii) External + or —. (iv) Line + or —.
LEVEL CONTROL: (i) Manual or (ii) Auto with automatic free run in absence of signal.
CRT TRIG.: Input Z. 100kΩ 15pf.
EXTERNAL X: Via external X input, sensitivity 1V/cm. Input resistance 100kΩ, bandwidth DC to 2MHz.

GENERAL INFORMATION

CALIBRATORS:
(i) CAL: Line frequency square wave 1V pk.pk ± 2% rise time approx. 20µS.
(ii) PROBE TEST: Time base gate waveform ± 10V.
SUPPLIES:
95111/103-121/111-130.
45-440Hz. Approx. 35VA.
OPERATING TEMPERATURE RANGE:
0 to + 40°C.
WEIGHT:
20 lb.
SIZE:
7” x 11” x 17”.

Probe Kit

An accessory probe kit is available for use with the entire range of Advance oscilloscopes. This provides for a standard compensated test lead which may be terminated at one end with BNC or UHF type connectors and at the probe end may be fitted with probe bodies of x1 and x10 ratio.
Spring-loaded hook, needle, 4mm plug and alligator tips may be fitted to the probe, which also has provision for a grounding lead connection adjacent to the probe tip. All the parts are supplied in a plastic wallet suitably compartmented.

Further information available from:

JACOBY MITCHELL
SYDNEY 630 7400 BRISBANE 21 0586
MELBOURNE 30 2491 MELBOURNE 30 2491 PERTH 28 5725
ADELAIDE 93 6117 LAUNCESTON 2 5322

ELECTRONICS TODAY — JANUARY 1972
REVIEWER
John Clare,

RAY CHARLES — Volcanic Action Of My Soul. EMI Stereo SPBA 3021. See You Then, What Am I Living For? The Long and Winding Road, The Three Bells, Witchita Lineman, Something, I May Be Wrong, Down In The Valley etc.

Ray, Oh Ray, how silently you lie. Would that there were some volcanic action of your soul!

I don't know what it is. Ray Charles has lost nothing technically, but there is little of the old excitement on his recent recordings — though I believe he is still a knockout in person.

The arrangements are pretty terrible, but then they often were on 'The Genius Of Ray Charles' and he overcame it all there. Maybe Ray should get back to the blues.

There are a couple of souring moments on Something and 'The Long And Winding Road', but generally it's just OK. That's not enough from Ray.

Production and sound quality is very 'commercial'. And that's it, really. — J.C.

BLOOD SWEAT AND TEARS
BS&T 4, Stereo. Go Down Gamblin', Cowboys and Indians, John The Baptist, Redemption, Lisa, High on a Mountain, Valentine's Day, Take Me In Your Arms, For My Lady, Mama Gets High, A Look To My Heart.

One of the things I immediately liked about Blood Sweat and Tears was that although they used reverbence and stereo and distancing gimmicks on their recordings, they seemed to know that brass, if bright and immediate, could be a very exciting focal point rather than just a background punctuation. I liked the sound of two trumpets, at times sharp and delicate, reminding me a bit of Andy Kirk. I liked the way they would establish a cathedral-quiet with the organ and then have the brass crash through, shattering glass.

Obviously they could not go on doing things in exactly the same way, and on this recording they've gone for a much fuller, enveloping sound, not only in the arrangements, but in the way the recording has been produced. This is fine on "Go Down Gamblin" and "Redemption" which rock quite furiously (Gamblin' has David Clayton Thomas' first guitar solo on record: good feeling; not over-flowing with ideas) but on a couple of the more leisurely things, like the rather trite 'Cowboys And Indians', it seems dangerously near that huge, bland and remotely bilowing sound you get on the sound track of Western Movies as the wagons roll over the prairies, swept by the shadows of monumental sailing cumulo-nimbus, and watched with no doubt by Indians. So it's deliberate on 'Cowboys' but it occurs elsewhere too.

It's not all like that, but overall I think the sound is less distinctive than it used to be, despite, or perhaps because of the fact that there are more nice, less obvious, musical things happening in the instrumental passage before the last vocal chorus of Gamblin', a plunger-muted trumpet plays a slightly more ornamented version of what the rest of the brass are doing. Listen for it, it's a nice effect, and it shows they've heard Clark Terry once or twice. That sound somewhere between an Oriental gong and a train hooting through a tunnel at the end of Cowboys and Indians is actually Dave Bergeron playing one note on the Tuba while singing another note in his throat. It's hard enough to do this in unison to what you are doing, let alone in the weird harmony Bergeron has got here. Don't let anybody tell you that these guys are not first rate musicians. Listen to the trombone skittering around in trumpet register on Redemption.

Most of the songs are originals, but I don't think that any of them are particularly memorable, as some of their early songs were. They are mostly very pleasant however, and worth hearing repeatedly if only for the arrangement. "Mama Gets High" is a gas. It's a tongue in the cheek pseudo-blues with a long improvised dixie-band tag.

All in all, a beautifully played and well-recorded album, but I must confess to liking the previous one better. The Australian pressing compares quite well with the American. A slight airiness, lack of substance in the voice shows that something has been lost. However something has also been gained; namely surface noise. If it were not for this, CBS would be just about my favourite company: most of their recordings are surfacey to begin with, and they take on a lot more surface within a few months. — J.C.

LEAF HOUND — 'Leaf Hound' Telefunken, Stereo SLE 14604 —P. Drowned My Life In Fear, Stray, Stagnant Pool, Sad Road To The Sea, Work My Body, Sawdust Caesar, A Minute To Go.

I must confess that I had never heard of Leaf Hound. There is no information on the record sleeve, but they have a heavy American sound, though the singing suggests that they could be English. I imagine that this is their first recording.

Leaf Hound is an archetypal heavy rock band, something like Grand Funk, but not as good. As each tune employs repeating riffs, and usually the same chords, it sounds a bit samey, but the heaviness, simplicity and energy of it all make this a great party record. Sound is very sharp. — J.C.

CURTIS KNIGHT — Give You Plenty Lovin' RCA Stereo SL-101955. No Point Of View, Help Me If You Can, Give You Plenty Lovin' Goodbye Cruel World, Lena, Why Are We Here On Earth, Hi Low, Down In The Village etc.

Curtis Knight was at one time in a band with his close friend Jimi Hendrix, and it is said that his ideas as well as Hendrix's helped form what came to be known as psychedelic rock.

This recording shows off many Hendrix-like ideas, and it is a pity that the sound is often muffled for there is some very good stuff here. On No Point Of View, Knight plays a very hard, swinging chorus on guitar. His sound is sharp and clean, and fairly keps out of the speakers, in contrast to the slight muddiness of the rest of the band. Elsewhere his guitar is not recorded so well, but he gets off some very fine stuff. On Give You Plenty Lovin' he uses feedback, fuzz, and very occasionally the wah wah pedal to produce some extremely satisfying sounds and ideas. So well does he control distortion and duration of notes that he often seems to be playing a wind
NEW IMPORTED STEREO TURNTABLE
AND PICK-UP
3 speed turntable with ceramic stereo pickup
counter-balanced tubular arm, $7.90. Base in teak or
walnut, $5.50 extra. Deluxe Base... $8.50. Post
50c, or $1.00 with Base:
Turntable and motors separate ... $4.50
Pickup arm and cartridge $3.50
FET FOUR INPUT MIXER
AS FEATURED IN SEPTEMBER “ELECTRONICS TODAY”
COMPLETE KIT OF PARTS AS SPECIFIED
CASE & COVER IN BAKED ENAMEL FINISH
Post $1.00 $24.75
NEW GARRARD
RECORD PLAYER
Three speed turntable with “Sonatore” ceramic pick-up
mounted on grey metal base plate with automatic stop
$15.50. Post and packing NSW ...
$1.00, Interstate — $1.50
At last a breakthrough in the cost for high quality portable radio
transceivers of the walkie-talkie hand-held type. We are introducing and
offering for sale a fully PMG approved

MIDLAND 1 WATT
TRANSCEIVER
for 27,240 kHz operation with switch provision for
two additional channels, tone call signal, background
noise squelch control, battery voltage indicator, steel
case with separate cover, good for five miles distance
communication under average field conditions, with
penlite cell-batteries for

ONLY $37.50 PER UNIT, FULLY GUARANTEED
Postage extra.

NEW RANGE OF RESISTORS,
CONDENSERS & POTENTIOMETERS
The resistors are mainly I.R.C. and Morganite and are in a wide
range of values from 100 ohms to 3 meg, in ¼, 1 and 2 watt and
include wire wound. LIST PRICE $9.00 per 100. OUR PRICE
$2.00 per 100. Post and packing 25c extra.
The condensers are in most popular brands and include Polyester,
Paper, Mica, Ceramic and Electrolytic in values up to 8mfd. LIST
PRICE $11.00 per 100. OUR PRICE $2.00 per 100. Post and
packing 65c.
The pots, are all current types and include switch pots, and dual
concentric, tandem, tab pots, etc. LIST PRICE $12.00 per dozen.
OUR PRICE $2.50 per dozen. Post and package 60c extra.
I do it quite well. Somebody has made a very basic mistake in deciding to do the song over an even, straight ahead four to the bar jazz feeling. The song just does not work without a heavily accented rock beat... "Spinning Wheel (sock!) Got To Go Round"... that drum solo is also part of the song. The arrangement here, as on all the faster tunes, is brash studio jazz. The romantic arrangements are workmanlike and eminently forgettable.

Sound has a hard, shallow feeling, and Hill's voice quality seems to have been changed for the worse. I don't like this at all, but then I do not like Engelbert Humperdink either, so if that's your cup of char you won't want to take my word for it.

J.C.

THE MOODY BLUES "Every Good Boy Deserves Favor" Threshold, Stereo Tick Tock, procession, The Story In Your Eyes, Our Guessing Game, Emily's Song, After You Came, One More Time To Live, Nice To Be Here, You Can Never Go Home, My Song.

I once visited a friend who was playing a Procul Harum record, and I remarked that it seemed to be pretty pretentious stuff. He replied, "I suppose I would find it pretentious if I took it seriously. I just like the sound they make."

This is the way to approach the Moody Blues. Apart from their electric guitars, a piano, organ and flute, the Moodies make use of a Mellotron, which is a kind of echo machine or tape recorder. It certainly makes some pretty sounds. Sometimes it does sound like a full orchestra, but the slight lack in definition and attack lends it a more ethereal effect. Sometimes it's all a little suffocating like a stage version of heaven with cotton wool clouds, tinted mists and lots of t alcum powder.

It's a soothing world the Moodies have created, and portentous lyrics dealing with 'Creation! Destruction! Desolation!' emerge in the context like idle surrealistic diversions. Nothing is real.

Some of the songs here are very derivative of the Beatles. The others are very, very ordinary. The sound is the same as it always has been, but in terms of material this is not a good Moody Blues album.

In terms of reproduction, the recording is superb by local pressing standards. There are some sound effects at the beginning which would be ideal to show off your equipment: thunder and rain, and then rain, right there in your living room, very real sounding rain. Better cover the furniture before you play this one.

J.C.

There is one thing about groups on the Vertigo label: they are all trying to do something distinctive. Effort, and perhaps a certain amount of pretension, has gone into everything from the cover on in. On the outside of this folding sleeve is a photo of a large room devoid of furniture and painted a silvery white. By the glass doors a young woman sits in a rocking chair while a little girl plays with her hair. They too are painted white. Through the door—like a coloured inset—a lovely fragment of rural English winter: leafless trees, brilliant grass, a blue door. Outside the far window stands a man in black with his back to us. Inside the fold, the same room minus its occupants. The man now looks in. I rather like the cover, and I rather like the music. Though there are only two titles, each side has several songs. On side one they segue into each other; on side two they are separated into tracks. On side one they employ a formula of one rocking track followed by a slow exotic one. I must confess that unless I can hear the tracks clearly without straining, I don't pay much attention to underground type lyrics. A stream of images and wise thoughts goes by, soon forgotten. So with Nirvana, Nor are the tunes very good. What I really like are the instrumental interludes.

They get a fine surging rock going with a piano rattling away eight to the bar at the same time and one of two guitars flying along at leisurely speed over the top. What's so different about that? Nothing, nothing at all except that they have a more skilful feeling. I first listened to this record through earphones after having spent two days body surfing in almost the best seat of my experience. I was full of sweet fatigue and the music filled my head with images of rolling waves, the solo guitar like spray flying off into the wind. And the feeling of the vulputious abrasive slide down the wave face came back into my body. Towards the end of side one the music, now led by a saxophone, increased in intensity and the waves began to chase each other in a great circle.

Forget the songs—it's terribly hard to write a good song—the instrumental parts are full of beautiful motion. Sound is good.

J.C.

TONY WILLIAMS — 'Ego' Polydor, Stereo 2425 070. Clap City, There Comes A Time, Piskow's Filarigee, Circa 45, Two Worlds, Some Hip Drum Shit, Lonesome Weils, Mom and Dad, the Urchins of Shermere, Ron Carter, bass and cello; Khalid Yasin, organ; Ted Dunbar, guitar; Don Alias, percussion; Warren Smith, percussion.

Unfortunately it seems that the further away in time from Miles Davis that Tony Williams gets, the less potent does his music become.

I've liked his other records for their sheer violent force, though I'd found the music a little too organised in comparison to the music he had been playing with Miles. Talk of inconstance, incidentally, in relation to this music is quite absurd, and indicates a very lazy ear. Harmonically the music has been a little strange, and the sound is very heavy, but in form it was never very complicated or very free.

On this recording Williams is showing signs of not knowing what to do. He may be a leader, I don't know, but he is not a leader in the sense that Miles is a leader able not only to get men together and make them play well, but to lead them through new concepts.

Here we find the sound lighter and yet more conventionally psychedelic. There is more improvisation, more, but not much, collective freedom on this recording, but the results are such that the careless listener will probably conclude that there is less. Some of the guitar solos by Dunbar are in quite a conventional modern jazz mould, and they are very enjoyable. Enjoyable too is Young's atmospheric sound, but he doesn't get enough going for my taste. Williams' songs are up to much.

Generally, the recording is best played as an intermittently intriguing, almost always pleasant and rhythmic background. Production and recorded sound is ideal for the music.

J.C.
SPECIAL ANTENNAE

Professional observatories use a number of antennae and techniques which are of interest.

One of the most famous installations in Australia is the Mills Cross, located at Molonglo, Canberra. This consists of a series of antennae arranged in a line, one mile long, both lines forming a cross, oriented North-South and East-West. Designed by Professor B. Y.

Fig. 17a. Plan view of antennae in Mills Cross array.

Fig. 17b. In-phase antenna pattern. Black area indicates great enhancement of gain.

Fig. 17c. Out-of-phase antenna pattern. White area indicates large null in pattern.

Fig. 17d. Resultant pencil beam pattern of Mills Cross array.

Mills of Sydney University this antenna provides a very narrow pencil beam and can resolve very fine details of any noise source being studied. A combination of techniques is used to enable the beam to be aimed almost anywhere in the sky. The East-West arm is fully steerable in altitude while the North-South arm uses a lobe phase-switching technique.

The radiation pattern of all the antennae in each line is combined to produce the desired effect.

Another method of increasing resolving power of an antenna is aperture synthesis. There are a number of methods of doing this, one being to use a long line of fixed antennae and a moveable line of antennae that moves parallel to the fixed line so that it can

RADIO ASTRONOMY

(Continued from page 46)
we put a little more feature into each feature.

- A Papst hysteresisynchronous motor with outer rotor for unvarying speed accuracy. • Precise stylus overhang adjustment with built-in gauge — no shifting, no guesswork, no templates. • Silicone-damped cueing in both automatic and manual play. • And, those exclusive light touch pushbuttons to make it easy to enjoy all those other wonderful 50H features. • Three other models to choose from — 770H — 630 — 610. Ask to see them at your hi-fi dealer.

ELAC MIRACORD 50H

Cut out and post for a FREE BROCHURE

ELAC MIRACORD 50H

MAGNA TECHTRONICS AUST. P/L
P.O. BOX 314, CROWS NEST, 2065. N.S.W.

Please send information on
ELAC TURNTABLES & CARTRIDGES

NAME ..
ADDRESS ...

The third article in this continuing series will be published in Electronics Today next month.
BRISBANE AGENT.
Now established at 67 Sandgate Rd., ALBION, Brisbane, Old.
* OPENING 17th JANUARY *
The range of exclusive Pre-Pak products and specials will be available in this large walk – around warehouse Mail orders welcomed. Our policy throughout Australia is: "We will undersell any other distributor on quality electronic components and equipment."

SEASONS GREETINGS.
We extend to all our customers our very best wishes for Christmas and the New Year. We hope you will have many fun-filled hours of enjoyment during the coming holidays building your latest project. However, if you have forgotten that vital part, don't worry! We are open for normal trading hours excluding Public Holidays.

NEW CATALOGUE
Available after 1st January only. This significantly presented 1972 catalogue will be available for just $1.00 which is refunded with your first order for $10.00 or more. Containing more information and revised price lists, our latest catalogue will be your complete shopping guide to Electronics. Featuring special sections on Hi-Fi & disposals, there is something to interest everyone. Send for your copy NOW!

<table>
<thead>
<tr>
<th>SPECIALS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 BC107 Transistors $2.00</td>
<td>6 BC108 Transistors $2.00</td>
</tr>
<tr>
<td>5 BC109 Transistors $2.00</td>
<td>3 2N3638 Transistors $2.00</td>
</tr>
<tr>
<td>2 D1311 Transistors $2.00</td>
<td>2 TT801 Transistors $2.00</td>
</tr>
<tr>
<td>4 4001/2/TT798 Transistors $2.00</td>
<td>3 4040/2/TT798 Transistors $2.00</td>
</tr>
<tr>
<td>5 4040/2/TT798 Transistors $2.00</td>
<td>8 EM4001 1000-PF-1A rect. $2.00</td>
</tr>
<tr>
<td>5 EM400 EM4008 PIV 18A rect. $2.00</td>
<td>5 4N3491/1-R 50 PIV 18A rect. $2.00</td>
</tr>
<tr>
<td>6 A15A/100-PV 3A rect. $2.00</td>
<td>1 2N4443 100-PV 5A SCR $2.50</td>
</tr>
<tr>
<td>2 C106Y1 SCR $1.80</td>
<td>1 2N2646 UJT $2.50</td>
</tr>
<tr>
<td>2 2N3054 Transistors $3.00</td>
<td>2 2N3055 Transistors $3.00</td>
</tr>
<tr>
<td>1 4CO6T 400V 6A Res & Registor diode complete kit $2.50</td>
<td>2 2N4549 FET $2.00</td>
</tr>
<tr>
<td>3 2N4549 FET $2.50</td>
<td>3 ORP-12 Photo $2.00</td>
</tr>
</tbody>
</table>

FIBREGLASS P.C. BOARD
Approx size 10" x 5"
30c each or 10 for $2.00
Bulk pack—about 25
small size pieces
Equivalent to above $2.60 + 40c Post

CASSETTE TAPE RECORDER
Complete kit, pre-assembled amplifier board & mechanics—full instructions supplied...$29.95
(5) Batteries not included...
(6) Post $1.00

7 TRANSISTOR RADIO KITS
Complete kit with instructions and carrying case. Battery not included...Easy to assemble, attractive case...$7.95
PRE-FAB HIFI SPEAKER ENCLOSURES
All timber pre-cut to exacting specifications, featuring a special "iron-on" veneer. Sarlon grille Innerbox included. See August issue of Electronics Today for details. Special offer...8-30 kit Magnavox $22.50

SUPER-PAKS
Fantastic saving with these terrific bulk-buy deals!
PAK 1-New, unmarked TO18 PNP transistors, all guaranteed new & perfect, assorted, assorted types BC177 & BC178. 10 for only $1.50 Post 15c.
PAK 2-New, unmarked FAIRCHILD TO18 PNP transistors, latest silicon planar type, all guaranteed new & perfect. 10 for only $1.50 Post 15c.
PAK 3-New, top quality German-made resistors, 3W, 5% 30 different values...Approx. lucky dip offer 1.50 Post 15c.
PAK 4-New, high-grade wire-wound resistors, 3W to 20W assorted values...50 for $2.00 Post 20c.

HEAD OFFICE and Mail Order Division
718 Parramatta Road, Croydon, N.S.W. 2132
Telephone 797-6144
Redfern Sales Centre
103 Regent Street, Redfern, Phone 69-5922
Disposals Division
95-97 Regent Street, Redfern, Phone 69-5922

PRE-PAK electronics

EXPRESSION IN '72

SELECT YOUR SUPPLIER FROM OUR NEW CATALOGUE

ELECTRONICS TODAY — JANUARY 1972
BOOK REVIEWS

REVIEWERS: Brian Chapman
Roger Harrison

Few people can now be unaware of the impact on modern living that the development of solid state devices such as the transistor has made. Without the transistor our computer, space age would not be possible.

Less well-known, is the impact of integrated circuits. These devices combine in one 14 or 16 pin case, measuring approximately one inch long by three-eighths of an inch wide, up to several hundred transistors and their associated resistors and capacitors (all in solid state form). ICs, as they are commonly known, are increasing in complexity every day and it is possible to buy such things as dual differential amplifier, 4096 bit random access memories, phased locked loop and complete TV detector, audio output stages, all complete in the one chip and only requiring a few extra components and power supplies to perform the desired function.

An example of the cost reduction effectiveness of these devices is that of the latest generation of small computers. These machines costing approx. $30,000 occupy about 9 inches in height of a standard 19" rack and have the same capabilities as discrete component machines of 10 years ago which were housed in approximately three full 6' high 19" racks and which bore price tags of $200,000 or more.

Yet another example of the impact of ICs is in the space industry. The accuracy and precision required for the Apollo moon landings can only be obtained by enormous electronic complexity. Several computers are required for the various functions of launch guidance, space navigation, spacecraft housekeeping and lunar landing control, etc. With discrete components the equipment weight would be prohibitive. Here the extra functional packaging density is of utmost importance.

So much for the areas of science and computation, but additionally, ICs are now invading the domestic scene and there obtrusively finding their way into the most seemingly unlikely applications such as washing machine control. As unit prices continue to come down and chip complexity increases we can expect to see ICs take over more and more applications which have been traditionally mechanical.

As well as offering increased reliability the new solid state controls will offer increased versatility and by their unified black box construction, dramatically reduce prices of the equipment to which they are applied. All technicians should note, therefore, that it is imperative to gain a good working knowledge of the operation and application of these devices as the revolution will be in many ways more far reaching than that engendered by the change over from valves to transistors. At every technological change some people inevitably find themselves, if not redundant, relegated to a lower income bracket. Remember radio mechanics were 30 years ago highly paid and eagerly sought after people. Now it is just another not-too-well paid trade. So be warned — keep moving with times or you will be left behind.

This book offers a simple introduction to the integrated circuits of one of the two main families of devices. These families are:

1. Linear: Where the output of the circuit is proportional to the input and usually varies linearly with the input.
2. Digital: Where the output has only two stable states dependent on the input level and the built-in logic function.

Although digital ICs are described briefly, the main accent of the book is on the linear devices which are finding increasing application as operational amplifiers, IF amplifiers, modulators, video amplifier, voltage comparator and voltage regulator, to mention just a few.

The text is well written in simple unmathematical terms and is....

John A: Salary $12,000

John B: Salary $4,000

Whatever happened to John B?

John A dreamed of success — a better job, higher pay, more out of life. He did something about it. He joined & Str. John B:....
NEW ALL-TRANSISTOR STEREO AMPLIFIERS WITH IN-BUILT A.M. TUNER ULTIMATE IN DESIGN—LONG DEPENDABILITY using all silicon transistors 40 WATTS — RMS

$134.00 Plus Freight (cabinet extra)
Model C300/20/T (with Tuner)

$108.00
Plus Freight (cabinet extra)
AMPLIFIER ONLY. Specifications as above but with the added feature of front panel switch which allows selection of two speaker systems.

The World’s Most Versatile Circuit Building System!

SIZES: 1/8” and 1/16” WIDTHS
Length: 100 ft. roll, 5 ft. card

IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION.

USEFUL FOR WIRING REPAIRS

* NO DRILLING * FAST * NO MESS

Available from all leading Radio Houses

Marketed by:

ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC. 3148
Telephone 56-7231.

MANUFACTURERS OF RADIO AND ELECTRICAL EQUIPMENT AND COMPONENTS

CLASSIC RADIO 245 PARRAMATTA ROAD, HABERFIELD, N.S.W. PHONE 798 7145
The book should prove a useful reference work for those who either use or intend to use some portion of the radio spectrum.

Written for those who have little or no knowledge of radio communications, radar, radio astronomy or allied fields, this book provides a wealth of information for the technician, engineer or scientist, etc.

The topics covered are: Allocation, the Nature of Radio Waves, Receiving Equipment, Very Low Frequencies, Medium Frequencies, High Frequencies, Very High Frequencies and Frequencies above VHF.

The book was written primarily for Americans and thus some of the contents will not apply to Australian or New Zealand conditions, especially as regards frequency allocations. Nevertheless, much of the material is applicable throughout the world and information on local differences can be obtained from the appropriate licensing authority. (In Australia – the P.M.G.).

A preface has been written by W. Oliver (G3XT), for the guidance of English readers, pointing out the differences that apply to conditions in Britain as against America. This is of little value to Australian readers and even for the British reader the preface is inadequate and gives little information of use.

The first chapter gives a very good introduction with a short history and a definition of the radio spectrum. This is followed by explanations of reasons for allocating, regulatory agencies, international call sign prefix allocations, station operating agencies and types of stations. This chapter includes some very good, and necessary definitions (and also some material which is applicable only in the United States).

The second chapter gives a very basic introduction into the nature of radio waves explaining the terminology used, various characteristics, propagation, the ionosphere, noise and interference and types of modulation (AM, FM, SSB and Pulse). This chapter is necessary if readers, unacquainted with radio communications or propagation, are to understand the rest of the book. It is, of necessity, simple and would not stand rigorous technical examination but should be adequate and certainly not misleading to the uninitiated or non-technical reader.

Chapter three explains receiving equipment in a simple straight-forward manner and includes block diagrams and photographs of actual equipment.

Whilst one would assume that this chapter would logically be followed by one on transmitters; this is not the case, in fact, transmitters are described in a section in each of the following chapters.
ELITE AUSTRALIAN TAPe RECORD
ELEcTRONIC ORGAN. DO NOT FOR SALE. BRENNEL TAPE IN ELECTRONICS TODAY MICRO ADS.

ELECTRONIC Organ. Do not build yourself an organ without first finding out about the superb Schobert (USA) Assemble-It-Yourself Kits. Inquiries to Schobert Organ (Australia), 124 Livingstone Ave., Pyrmont, NSW, 2073. (Mail only, please.) AUSTRALIAN Tape Record Society offers tape library, "The Microphone" Journal, audio visuals, round robins, tapespomende, sales, Inquiries, P.O. Box 130, Hornsby, NSW, 2077. Please enclose large, stamped envelope.

FOR SALE: Brennel Tape Deck. Last less than 100 hours use. 3 motors, 3 stereo heads. $50.00. Separate record and playback amplifiers Concentric Track switching allowing recording on track 1 while playing track 2 and vice versa. $15.00. 10 watt U/L amplifier and power supply. Contains record bias erase oscillator and on/off. Apply for Playback amplifier heaters. $20.00 Carrying case included if all above sold together. Bookshelf speaker unit as either lid of above carrying case or as Instrol Kit. $12.00. PENOLA ELECTRICITY SUPPLY. Penola, S.A. CATALOGUE of electronic components. Send "x 4" S.A.E. MICRONICS, P.O. Box 175A, Randwick, N.S.W. 2031.

DECEASED ESTATE BC211 with P.S./type53T.x.78 R x / C o m m a n d FREQ Mitr. / 2 o f 000V, 250mA P.S./Rx Tx type109/Comm Tx/type S.P.S./150 Wt Mod. 1 5 0 0 W m o d tranyl./Mobiles/transistor P.S./A. T 5 tx/Tx 1154B/750V-2000V. 866's P.S. Plus every component and thing in the shack. $300, the lot. Phone 391-3720 (Melb) after 6:00 p.m.

QUASI (HIGH LEVEL modulators with wide band RF modules). (Complete) systems 20 watt $80, 40 W, $120, 80 W, $170. Output P.E.P. min 2-30 Mhz. Input 50mW. Size 80 W-500cc. Supply 12 V. For all your wide band requirements 5 kHz - 250 MHz. NEWMAN, 27 Berry St., Regents Park, 2143.

SEMIConDUCTORS BC108, 2N2346, 2N303 - 35c each; BC107, BC109, - 40c each; 2N3053 - 1$25 each; S.C.R. 2SF664 (1A, 400V) - 2$35 Triac. AC06DT (6A, 400V) - 2$.250, IN4001 (EM401) - 20c each. IN4004 (EM404) - 35c each. Post & Pack. 15c. CHI ELECTRONICS, P.O. Box 17, Wakefield, S.A. 5081.

CRYSTALS... for CB 27, 240 and 26, 785 MHz, 1½in. pin, miniature, $6 gr. Post Free. Shally, 127 York Street, Sydney.

HEATHKIT B/W bar and dot generator good condition $90.00. 31 3273.

STATE and Commonwealth distributors wanted for radio telecommunications and associated electronic equipment. Paris Radio Electronics, 7a Burton Street, Darlinghurst.

INQUIRIES ARE INVITED for the purchase of as new Collins Communications Receivers type 390 & 390A-5 to 32 MHz. Digital Read Out, 1.meg. Band Dial Calibration 200 Hz. Crystal synthesing driftless Rx. (Finance available). Apply in writing to:

INDUSTRIAL AND MEDICAL ELECTRONIC COMPANY

6th Floor, 288 Little Collins Street, Melbourne.

PHONE: 63-9258.

B & W D.M.1. LOUD SPEAKERS $95.00 each "Jet Audio" G.P.O. Box F336, Perth, Western Australia 6001.

MUSIC MAKER — the magazine for all with an active interest in music. From newsagents or by post, 30c, from Music Industry (Magazines). Box 4526, GPO, Sydney 2001.

Here is a book for all you dads who have young sons and need an excuse to fiddle in the garage. An ideal book for the above purpose, it progresses from basic theory through a range of experiments designed to introduce a lad to the wonders of the world of electricity in a most fascinating manner.

The experiments are designed specifically for home construction at a minimum of cost. In many cases the projects can be assembled from junk box parts.

The parts which have to be bought have been carefully selected so that they can be readily obtained from any local electronics distributor.

Apart from the many classical experiments in electrostatics and magnetism, there are many novel experiments such as home construction of electric lamps and solenoids, a ground path telephone, magnetic metal finder, simple synchronous motor, simple relay and a host of others.

Keep an eye on junior, however, Dad, some of the experiments show connections to direct mains which is reasonably safe on the USA 110 Volt system but could be lethal on our 240 Volts.

The book is well written and illustrated and must be considered to achieve its aim exceedingly well. - B.C.

"The infrared spectrum was discovered 170 years ago but very little technical progress took place in the field for the first 130 years."

"The Second World War renewed interest in the infrared spectrum, and rapid advances in the state of the art have taken place". "Today, infrared technology is used in domestic, industrial, military, medical, and space applications".

This introduction to the book is given by the author in the preface, and exemplifies how many discoveries, made decades, and in some cases, centuries ago, have only recently found useful application. The reason for this is that it is one thing to know what needs to be done, but quite another to develop the tools and technology to do it.

The first four chapters of the book deal with the history of infrared, the laws and principles of electromagnetic radiation, infrared sources and infrared detectors.

Chapters 5 and 6 deal with practical instrumentation and systems based on the previously developed theory. Data is included on such topics as infrared thermometers, spectrosopes, communications, temperature measurement and control, gas analysers, etc.

Chapter 7 provides a further treatment of infrared applications in astronomy, space technology, ecology, fishing, air pollution, criminology and the study of oil paintings - a fascinating and varied cross-section.

Each chapter is followed by a series of questions designed to consolidate the reader's understanding of the subject matter. Answers to these questions are provided in an appendix, and an index provides quick access to the appendix.

Mathematical equations are provided wherever necessary, but the text is not obscured by mathematics and can, therefore, still be understood even if the sums are passed over.

The text is well written and adequately illustrated and the book probably a well rounded coverage of the topic for those who are interested in the field. - B.C.
THE COMPANIES LISTED ON THIS PAGE STOCK KITS AND/OR PARTS FOR "ELECTRONICS TODAY" PROJECTS. THEY DO THEIR BEST TO HAVE ALL PARTS AVAILABLE AS SOON AS POSSIBLE AFTER PUBLICATION.

HOWEVER IT MUST BE APPRECIATED THAT DUE TO THE VAGARIES IN SUPPLY AND DEMAND THERE MAY BE OCCASIONS WHEN A PARTICULAR PART OR KIT CANNOT BE SUPPLIED DIRECTLY FROM STOCK.

WE WILL EXTEND THIS SERVICE TO COVER ALL STATES AND NEW ZEALAND AS SOON AS POSSIBLE.

NEW SOUTH WALES
A.C.E. RADIO: 136 Victoria Road, Marrickville, 2204. Telephone 51-7008.
EDGE ELECTRIX: 25a Burwood Road, Burwood, 2134. Telephone 747-2931.
KITSETS AUSTRALIA: Suite 2, 21 Oakes Avenue, Dee Why, 2099. Telephone 982-5571.
NATIONAL RADIO SUPPLIES: 332 Parramatta Road, Stanmore, 2048. Telephone 56-7288.
PRE-PAK ELECTRONICS: 718 Parramatta Road, Croydon, 2132. Telephone 797-6144.

VICTORIA
E.D. & E: 232 Flinders Lane, Melbourne, 3000. Telephone 63-3595.
S.T.A. ELECTRONICS: 392 Centre Road, Bentleigh, 3204. Telephone 97-4832.

QUEENSLAND

SOUTH AUSTRALIA
GERARD & GOODMAN: 192-196 Rundle Street, Adelaide, 5000. Telephone 23-2222.

New Printed Circuit Layout Method

A NEW method of preparing printed circuit board layouts is being introduced into Australia. Called the DRL Masterplan, it is claimed to simplify the initial design stages of printed circuit board production very considerably.

The new system involves the selection of a number of cut-out silhouette shapes of the discrete components specified on the theoretical diagram and arranging them into position to form a convenient layout on one side of a transparent acrylic sheet. This sheet is accurately printed with a grid matrix on both sides and represents the circuit board itself to a scale of two to one. The sils cling firmly to the sheet merely by finger pressure but can be removed and repositioned at will. By turning the sheet over, the component side is visible through the sheet, reversed left to right, and the circuit side can be sketched with a wax pencil — an operation requiring little or no precision.

Alterations to both sides will be necessary before the design is finalized but these alterations can be made easily and quickly. A sheet of dimensionally stable film is now taped to the circuit side and, following the wax pencil sketching underneath, the circuit is prepared in its final form with orthodox crepe tape and self-adhesive patches.

These simple concepts result in an accurate master, twice full size and ready for the camera. A special dry transfer sheet provides connection patterns for integrated circuit packs. Masters for screen printing components references, double sided boards and masks for automated soldering techniques can be produced with equal facility.

The DRL Masterplan system is manufactured under licence in Australia by Standard Industries Pty. Limited, 28 Ridge Street, North Sydney, who have appointed Messrs Warburton Franki Industries their agents.
FIRE ALARM
FK-100J

BURGLAR ALARM
1K-100J

POOL ALARM
BK-100J

DOOR PHONE
FPM-101R

INTERCOM
FPM-301

RADIO – DOORCHIME – DOORPHONE – INTERCOM
BURGLAR – FIRE – POOL – BATH
ALARMS

COMBINED IN ONE COMPREHENSIVE SYSTEM
AVAILABLE AS A KIT HKK-107R

EXTERNAL ALARM
VK-100J

Available from
OLIMS TRADING CO. & DISTRIBUTORS
NEW SOUTH WALES: 559-1011
VICTORIA: 42-4236
QUEENSLAND: 51-5548
SOUTH AUSTRALIA: 514025
WESTERN AUSTRALIA: 23-4683
TASMANIA: 34-6711
MANUFACTURING ET PROJECTS

Is it permissible to manufacture for public sale any items that you print as projects in ELECTRONICS TODAY? Would I be contravening any copyright or patent laws?

R.J.S. Kensington Pk., S.A.

• Everything printed in ELECTRONICS TODAY is, of course, subject to copyright and permission must be obtained from the Editor before reproduction.

Such permission is normally granted provided ELECTRONICS TODAY is credited in the reproduced article. Much the same applies to constructional projects, except that whilst we generally do not take out patent rights on any of our projects we cannot guarantee that none has been taken out elsewhere.

Any company wishing to manufacture equipment based on ELECTRONICS TODAY projects should first discuss the matter with our Engineering Manager — and then with a patent attorney.

CONGRATULATIONS

I would like to congratulate you and your staff on the excellent article 'Hi-Fi — a Buyer's guide' published in your previous issue. There was more common sense advice and useful technical information packed into the article's six pages than I have found in most full length books.

T.S. Adelaide, S.A.

• Thank you, but see below!

ANGRY DEALER

I protest most strongly about the obvious prejudice and sheer misinformation contained in your so-called 'Hi-Fi — buyer's guide', in your last issue.

You have quite obviously not researched your subject — your statement that it is impossible to buy acceptable hi-fi for less than $150 is untrue — you know perfectly well that my company sells an excellent stereo system for under $100. Nobody in their right mind would pay over $250 for a complete hi-fi system. Articles like yours are stupid and damage the industry. Of course you won't print this letter.

F.S. Sydney, NSW.

• Who won't? Our correspondent has generated more indignation than he can contain. He has failed even to read the article. We did not state that 'it is impossible to buy acceptable hi-fi for less than $150', anywhere in the article. Maybe we should have done — because you can't — our correspondent's equipment notwithstanding.

What our correspondent means by 'prejudice', 'sheer misinformation' and 'lack of research' is that we did not call and see him when preparing the article. We did not do so because the product referred to is a cheap imported record player with not the slightest justification to the claim of 'hi-fi' performance.

We leave the claim that our article 'damaged the industry' for the industry and our readers to decide.

EIGENTONES

I have heard that for good sound reproduction the dimensions of a listening room are quite critical — and that furthermore the length of a room will determine the lowest frequency that can be reproduced.

G.L. Durban
South Africa

• This is right. It is necessary to avoid rooms whose dimensions are equal, or simple multiples of each other, or have a common denominator. In such cases, so-called eigentones superimpose upon one another and leave gaps in parts of the frequency range.

The lowest frequency that can be reproduced in a room is a function of the longest dimension of that room. The proof requires detailed mathematical analysis. In simplified form the formula becomes

\[f_{\text{min}} = \frac{340}{a} \]

where \(f_{\text{min}} \) is the lowest reproducible frequency, and \(a \) is the longest room dimension in ft.

CLEANING TAPE

I would like to comment on I.C.L.'s letter (ELECTRONICS TODAY — December 1971) concerning his suggestion that tape cassette manufacturers use cleaning tape as a leader.

There are a few problems in this. The most important of these is that many cassette players continue to run when the end of the cassette tape is reached. The capstan then continues to turn and can wear through the leader unless this has some special properties that cleaning tapes does not have.

Other disadvantages relate to tape lay-up, available space (cleaning tape is quite thick), and also strength.

R. D. Beecroft, NSW.

TIME SHARING?

I refer to your advt. on page 7 of the December issue. As a service to your readers you might consider storing data on such young ladies in a computer and then charge fees to those making enquiry of it. In return for this brilliant idea would you let me have the name, 'phone number, interests, vital statistics, etc., of the lady in question.

M.R.G., Toorak, Vic.

• What can M.R.G. mean by 'etc' — ?

READERS' LETTERS

It is our policy to reply to all readers' letters — but not necessarily via these columns. Please ensure that you write your full name and address on your letter. We have a number of letters — mostly from our younger readers in which not even the writer's initials are included.

We try to reply to letters as quickly as possible — however on occasions there may be some delay. But please don't think that your letter has been ignored.
TECH-TIPS

A LOUDSPEAKER MICROPHONE

A small loudspeaker may be used as a very effective microphone for intercom's, if it is coupled to an amplifier via the circuit shown here. Output is sufficient to drive practically any transistor (or valve) audio amplifier.

TRANSFORMER-INDUCTOR TESTER

Transformers and inductors can be checked for open circuits, short circuits, shorted turns, etc., by this very simple method.

The inductance to be checked is connected across the Y-input terminals of a CRO and the time-base output coupled to the Y-input via a small capacitor. The retrace edge of the timebase ramp will set the inductance ringing, and a decaying oscillation will result.

Various conditions are shown in the accompanying illustrations — these have been photographed directly from an oscilloscope. From left to right, the photographs show — no fault — a dead short — an open circuit — a shorted turn.

The capacitor should be between 100pF and 1000pF for inductances down to 2 mH. It should be decreased for inductances lower than 2 mH. Meaningful results can be obtained for inductances as low as 50 uH. Timebase speed should be increased as inductance is decreased.

ELECTRONICS TODAY — JANUARY 1972
EMPLOYERS — Seeking Staff? Electronics Today is read by the very people you seek! (and our copy deadline is only 10 days). Managers, Engineers, Technicians, Draughtsmen, Salesmen, etc. • You already have a good job but seek a better one. Here they are.

DESIGN DRAUGHTSMAN

Applications are invited from reliable draughtsmen of 1st year designing standard with an electrical/mechanical background and experience in sheet metal work, plastic moulding, die casting. The successful applicant would preferably have had experience also in domestic air-conditioning, cooling equipment and other domestic appliances. Please phone for appointment.

The Personnel Officer,
PYE INDUSTRIES LTD.
53 Carrington Road,
MARRICKVILLE,
55-0411.

TECHNICAL ASSISTANT

Applications are invited for the position of Technical Assistant in the Research and Development Division of a large food manufacturing company. Applicants should be 18 to 20 years of age, possess or just completed the Higher School Certificate and wish to advance to tertiary qualifications in chemistry, food technology or other appropriate areas.

The company possess a progressive educational policy along with excellent wages and conditions. Applications in writing setting out educational background course to be undertaken should be addressed to:

The Personnel Officer,
WHITE WINGS LIMITED,
P.O. Box 63,
CHIPPENDALE, 2008.

INSTRUMENT TECHNICIAN

THE C.S.R. CO. LTD.
Pyrmont Refinery
Bowman Street, PYRMONT.

A secure and interesting position is offered to an Instrument Technician for duties involving maintenance and installation of industrial instruments controlling the process of sugar refining. It is desired that the successful applicant will be familiar with pneumatic controls and flow metering and have some knowledge of electronics. Good conditions. Assurance Scheme available. Work clothing supplied. Parking available.

Apply:
PERSONNEL OFFICER

BOOSTING VR TUBES

In some applications, VR tubes prove reluctant starters. This can often be overcome by wrapping a coil of insulated wire around the tube and then connected it to the high voltage ac side of the supply. This circuit is particularly useful when a number of VR are to be operated in parallel.

A simple unit for checking diode condition is shown above.

The diode to be checked is connected across the points shown as A and K (observing the polarity indicated). If the diode is functioning correctly, both lamps will light; if the diode is shorted, lamp L2 will light; if the diode is open circuit, Lamp L1 will light.

An excellent product detector can be assembled from locally available IF transformers and a few other components.

The circuit shown here is simple to construct, and non-critical in operation. Several volts of RF should be available at the emitter of Q1. The BFO may be any conventional circuit providing the required stability and output.

ELECTRONICS TODAY — JANUARY 1972
For further information on Advertisers listed below complete the coupon/s stating information required including company and position held (if relevant). Cut out the coupon and post to:

ELECTRONICS TODAY, 21-23 Bathurst St., Sydney. 2000.

ADVERTISERS INDEX

<table>
<thead>
<tr>
<th>ADVERTISER</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace Radio</td>
<td>59</td>
</tr>
<tr>
<td>Amplion (A'sia) P/L</td>
<td>86</td>
</tr>
<tr>
<td>Auriena (A'sia) P/L</td>
<td>15, 81</td>
</tr>
<tr>
<td>Australian Musical Industries</td>
<td>111</td>
</tr>
<tr>
<td>Australian Radio & Television College P/L</td>
<td>112</td>
</tr>
<tr>
<td>Autel Systems P/L</td>
<td>11</td>
</tr>
<tr>
<td>Bright Star Crystals</td>
<td>14</td>
</tr>
<tr>
<td>Classic Radio Service</td>
<td>100</td>
</tr>
<tr>
<td>Control Data Aust. P/L</td>
<td>13</td>
</tr>
<tr>
<td>Consradics Distributors</td>
<td>102</td>
</tr>
<tr>
<td>Conway International</td>
<td>52, 83</td>
</tr>
<tr>
<td>Custom Electronics</td>
<td>78, 96</td>
</tr>
<tr>
<td>Direct Tape Distributors</td>
<td>63</td>
</tr>
<tr>
<td>Douglas Trading P/L</td>
<td>88</td>
</tr>
<tr>
<td>Edge Electrix</td>
<td>96</td>
</tr>
<tr>
<td>Elmaesco Instruments P/L</td>
<td>94</td>
</tr>
<tr>
<td>Goldring Engineering P/L</td>
<td>8</td>
</tr>
<tr>
<td>Ham Radio Suppliers</td>
<td>96, 103</td>
</tr>
<tr>
<td>Hi-Fidelity Audio Tech. Services</td>
<td>75</td>
</tr>
<tr>
<td>Imported Components P/L</td>
<td>87</td>
</tr>
<tr>
<td>Industrial & Medical</td>
<td>102</td>
</tr>
<tr>
<td>Instron Hi-Fi Electronics Centre</td>
<td>42</td>
</tr>
<tr>
<td>Jacoby Mitchell & Co P/L</td>
<td>92</td>
</tr>
<tr>
<td>Kitsets Aust.</td>
<td>101</td>
</tr>
<tr>
<td>Lafayette Electronics</td>
<td>110</td>
</tr>
<tr>
<td>Lanthur Electronics</td>
<td>78</td>
</tr>
<tr>
<td>Leroya Industries</td>
<td>48.62.91,102</td>
</tr>
<tr>
<td>Magna-Techtronics (Aust.) P/L</td>
<td>97</td>
</tr>
<tr>
<td>Magrath, J.H. P/L</td>
<td>96</td>
</tr>
<tr>
<td>Maurice Chapman & Co P/L</td>
<td>72, 84</td>
</tr>
<tr>
<td>Music Maker</td>
<td>102</td>
</tr>
<tr>
<td>National Radio Suppliers</td>
<td>94</td>
</tr>
<tr>
<td>Olins Trading Co.</td>
<td>105</td>
</tr>
<tr>
<td>Philips Industries P/L</td>
<td>10</td>
</tr>
<tr>
<td>Plessey Ducon</td>
<td>47, 71</td>
</tr>
<tr>
<td>Pre-Pak Electronics</td>
<td>60, 98</td>
</tr>
<tr>
<td>Scientific Electronics</td>
<td>79</td>
</tr>
<tr>
<td>Security Engineering P/L</td>
<td>29</td>
</tr>
<tr>
<td>Simon Gray P/L</td>
<td>741,64,65</td>
</tr>
<tr>
<td>Sinclair Electronics</td>
<td>87</td>
</tr>
<tr>
<td>Sony (Jacoby Kemphorne & Co. P/L)</td>
<td>2</td>
</tr>
<tr>
<td>Sound House</td>
<td>96</td>
</tr>
<tr>
<td>S.T.A. Electronics P/L</td>
<td>9</td>
</tr>
<tr>
<td>Stott's College</td>
<td>99</td>
</tr>
<tr>
<td>Techno Electronics</td>
<td>87</td>
</tr>
<tr>
<td>United Trade Sales P/L</td>
<td>75.79</td>
</tr>
<tr>
<td>Varian P/L</td>
<td>77</td>
</tr>
<tr>
<td>Warrburgon Franki Ltd</td>
<td>12, 76</td>
</tr>
<tr>
<td>W. C. Wedderspoon P/L</td>
<td>25</td>
</tr>
<tr>
<td>Wonder Wool P/L</td>
<td>77</td>
</tr>
<tr>
<td>Zephyr Products P/L</td>
<td>100</td>
</tr>
</tbody>
</table>

Four reply coupons are provided here for your convenience. Please list only ONE advertiser and ONE product on each coupon. If you require information on more than four individual products, make as many copies of the coupons as you like (preferably typed)—again using one coupon form for each product.

Send to **ELECTRONICS TODAY, 21-23 Bathurst St., Sydney. 2000.**

ADVERTISER

PRODUCT

NAME

ADDRESS

COMPANY

POSITION

POSTCODE

ADVERTISER

PRODUCT

NAME

ADDRESS

COMPANY

POSITION

POSTCODE

ADVERTISER

PRODUCT

NAME

ADDRESS

COMPANY

POSITION

POSTCODE

Send to **ELECTRONICS TODAY, 21-23 Bathurst St., Sydney. 2000.**

[Insert relevant information from the text]
Please deliver ELECTRONICS TODAY for the next 12 months, starting with the issue to:

NAME

ADDRESS

GIVE THIS COUPON, AND $6, TO YOUR LOCAL NEWSAGENT. (If he already delivers your papers — as he probably does — there will be nothing more to pay; if not, he may make a small charge for the service.)

USE THIS COUPON

For only $6 a year (12 issues at 50 cents each) you ensure that every copy of ELECTRONICS TODAY will arrive on your doorstep as soon as it is published — and that you'll never miss out on it if an issue happens to sell out.

...by your local newsagent

LAFAYETTE "TINY MITE" 16 WATT MOBILE SOLID-STATE PA AMPLIFIER. Only 1-3/8 x 3-1/6 x 5-7/6 D

COMPLETE SYSTEM
"Tiny Mite" PA Amplifer, Two Lafayette Horn PA Speakers, Lafayette Push-to-Talk Dynamic Microphone
System Price $77.25

For 12 Volts DC Negative or Positive Ground $47.95
Inc. Sales Tax

$10.35 $11.50 Ea.

Ideal for mobile P.A. applications, the "Tiny Mite" provides 16 watts peak power output. Maximum current 1.6A. Output impedance 8 or 16 ohms. Complete with mobile bracket, mic plug and cables.

LAFAYETTE ELECTRONICS VIC., 3182. Phone: 94 6036
The A-1230 stereo tape deck.

It has all sorts of nice professional touches like record "pause control" and a bias control for high output low noise tapes. This switch will give you a wider frequency range and a very impressive signal to noise ratio of 55 dB. Tape recordings "off the air" and from discs will take on a new dimension of fidelity with TEAC's bias control.

You can get up to four hours of uninterrupted taped performance. Four precision Technobuilt hyperbolic heads and three motors plus an all Solenoid push-button system assure superb performance.

It has a wow and flutter of 0.08% at 7½ ips. A frequency response of 30 – 22,000 Hz at 7½ ips.

If you're serious about recording your own tapes, the TEAC A-1230 is for you. And if you want automatic reverse, the A-1250's got it.

TEAC
A Sound Idea

Australian Distributors
Australian Musical Industries Pty. Ltd.
155 Gladstone St.,
Sth. Melbourne, Vic., 3205.
Phone 69 7281
Another profitable ARTC career story

I'm tired of doing the same job for so little pay.

I've heard that the ARTC course gives you a better future in radio and TV.

I'm going for that ARTC course today Bill!

Well I'm still only thinking about it.

These college lectures sure make it easy to learn.

It's good doing practical work in your own workshop.

I've finally got that car I've always wanted.

What a beauty Harry!

I really must take that course ARTC. Make it easy for that better paid job.

Harry completed his course quickly and now has a well paid job ahead of him.

Your career can be more profitable and interesting

Get into one of these profitable electronic careers in radio and television. There is a profitable career for you in the many phases of radio, television and electronics including manufacturing, radio servicing, television servicing, research, sales broadcasting and television executive, armed forces. ARTC can help you gain one of these much sought-after positions. But remember, it is only the trained man who succeeds and

ARTC can give you the complete training which is necessary.

Train at home.

With ARTC you can obtain the training you need. At the benches and in the lecture halls of Australian Radio and TV college or in your own home by correspondence... you can be taught every important aspect of radio, television, details of every application of the fundamental principles of electronics. The course is intensely practical and individual.

Make spare time money.

If you wish you can make your spare time earn money for you. Many students make extra money at spare time work after only the first few weeks. Think of all those things extra money can bring you, home of your own, car, time for relaxation, etc. Safeguard your future... mail today.

Start earning money while you do the course, write today for free booklet.

Australian Radio and Television College Pty. Ltd.

E. S. & A. BANK BUILDING,
Cnr. Broadway and City Road, Sydney,
(Opp. Grace Bros.) Phone 211-4244 (3 lines.)