Break into code!

6802 Evaluation Board to Build

PLUS PROJECTS
Mono to Stereo Simulator
Numerical Scoreboard Display
Universal EPROM Programmer MkII

Audio Computing Music
MCS!
DIGITAL SAMPLER &
DELAY LINE

Just one of our customers for the MCS/1
- Midge Ure of Ultravox.
Get the professional sound of a
Powertran MCS/1 into your act.

Specification

Memory Size: Variable from 8 bytes to 64K bytes.
Storage time at 32 KHz sampling rate: 2 seconds.
Storage time at 8 KHz sampling rate: 8 seconds.
Longest replay time (for special effects): 32 seconds.
Converters: ADC & DAC: 8-bit companding.
Dynamic range: 72 dB.
Audio Bandwidth: Variable from 12 KHz to 300 Hz.
Internal 4 pole tracking filters for anti-aliasing and recovery.
Programmable wide range sinewave sweep generator.
MIDI control range: 5 octaves.
+1 V/octave control range: 2 octave with optional
transpose of a further 5 octaves.

Once again, Powertran and E&M MM combine to bring you
versatility and top quality from a product out of the realms of
fantasy and within the reach of the active musician.

The MCS-1 will take any sound, store it and play it back from
a keyboard (either MIDI or V/octave). Pitch bend or vibrato
can be added and infinite sustain is possible thanks to a
sophisticated looping system.

All the usual delay line features
(Vibrato, Phasing, Flanging, ADT,
Echo) are available with delays of
up to 32 secs. A special interface
enables sampled sounds to be
stored digitally on a floppy disc
via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top
professional units such as the Fairlight or Emulator. But the
MCS-1 doesn't come with a 5-figure price tag. And, if you're
prepared to invest your time,
it's almost cheap!

MCS-1 complete only £849 + VAT
Save even more with the MCS-1 kit:
only £599 + VAT
Demonstration Tape £2.50 + VAT

Powertran kits are complete down to the last nut and bolt,
with easy-to-follow assembly instructions.

POWERTRAN
CYBERNETICS LIMITED

POWERTRAN CYBERNETICS LIMITED
Portway Industrial Estate, Andover, Hants SP10 3ET, England
Telephone: Andover (0264) 64455
Access/Visa cardholders - save time - order by phone.
FEATURES

DIGEST 7
News from the leading edge at the leading edge of every issue.

READ/WRITE 13
Our letters page moves up front with some up-front letters.

DIGIVISION INSIDE OUT 16
Vivian Capel takes the back off the latest thing in television technology and reveals all.

THE REAL COMPONENTS 20
John Linsley Hood gets on the TO-5 case and examines small signal and power transistors.

TECH TIPS 54
Yet more novel ideas from the files, devised by ETI readers with ETI readers in mind.

PROJECTS

6802 EVALUATION BOARD 27
If machine code leaves you cold, warm up with our cover project — the painless way to understand microprocessors using the compact version of the trusty 6800 device.

UNIVERSAL EPROM PROGRAMMER MK1 35
Thank heavens for the MK1 EPROM programmer, because little EPROMs get bigger and faster every day. Or rather, thank heavens for Mike Bedford and Gordon Bennett who have produced an upgrade of ETI's original programmer which is completely software-driven and can handle all the latest devices.

LARGE DIGITSCOREBOARD 43
Forget LEDs, forget LCDs and get lit-up with light-bulbs using this stadium-sized four digit display, which is constructed in modules and can be controlled by computer or hardware switches. Design by Ken Wood.

STEREO SIMULATOR 50
Liven up your old record collection or just enhance your stereo with this add-on circuit developed around one specialised chip.

ETC

OPEN CHANNEL 59
Keith Brindley opens communications in our new department with the first of his monthly columns on all aspects of telecoms.

SCRATCH PAD 61
ETI's new diary amplifies the current events in electronics and comes up with a few shocks. Potentially different.

REVIEW 63
This month we open the gate on 'Digital Lab' — a software package for the Commodore 64 designed, logically to help with logic design.

INFORMATION

NEXT MONTH'S ETI 41
FOIL PATTERNS 56
BOOK SERVICE 42
READERS' SERVICES 62
PCB SERVICE 53
ADVERTISERS' INDEX 66
ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 µF</td>
<td>1000 µF</td>
</tr>
<tr>
<td>2.2 µF</td>
<td>1000 µF</td>
</tr>
<tr>
<td>4.7 µF</td>
<td>1000 µF</td>
</tr>
</tbody>
</table>

- 1000 µF: 1000 µF
- 470 µF: 470 µF
- 33 µF: 33 µF

DIODES

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µF</td>
<td>100 µF</td>
</tr>
<tr>
<td>47 µF</td>
<td>47 µF</td>
</tr>
<tr>
<td>39 µF</td>
<td>39 µF</td>
</tr>
</tbody>
</table>

- 10 µF: 10 µF
- 4.7 µF: 4.7 µF
- 3.3 µF: 3.3 µF
- 1.5 µF: 1.5 µF

TRANSISTORS

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µF</td>
<td>10 µF</td>
</tr>
<tr>
<td>4.7 µF</td>
<td>4.7 µF</td>
</tr>
<tr>
<td>3.9 µF</td>
<td>3.9 µF</td>
</tr>
</tbody>
</table>

- 1.5 µF: 1.5 µF
- 0.5 µF: 0.5 µF
- 0.47 µF: 0.47 µF

CERAMIC CAPACITORS

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pF</td>
<td>100 pF</td>
</tr>
<tr>
<td>470 pF</td>
<td>470 pF</td>
</tr>
<tr>
<td>330 pF</td>
<td>330 pF</td>
</tr>
</tbody>
</table>

- 10 pF: 10 pF
- 4.7 pF: 4.7 pF
- 3.3 pF: 3.3 pF

POLYESTER CAPACITORS

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 pF</td>
<td>1000 pF</td>
</tr>
<tr>
<td>470 pF</td>
<td>470 pF</td>
</tr>
<tr>
<td>330 pF</td>
<td>330 pF</td>
</tr>
</tbody>
</table>

- 10 pF: 10 pF
- 4.7 pF: 4.7 pF
- 3.3 pF: 3.3 pF

MINIATURE TRIMMERS CAPACITORS

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 pF</td>
<td>1000 pF</td>
</tr>
<tr>
<td>470 pF</td>
<td>470 pF</td>
</tr>
<tr>
<td>330 pF</td>
<td>330 pF</td>
</tr>
</tbody>
</table>

- 10 pF: 10 pF
- 4.7 pF: 4.7 pF
- 3.3 pF: 3.3 pF

RESISTORS NETWORK S.L. I

- 7: 1000, 560, 1K 2K, 4K, 10K
- 8: 1500, 150, 220, 560, 1K 2K, 4K, 10K

DIODES BROKE-RECTIFIER

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 µF</td>
<td>2000 µF</td>
</tr>
<tr>
<td>1000 µF</td>
<td>1000 µF</td>
</tr>
<tr>
<td>470 µF</td>
<td>470 µF</td>
</tr>
</tbody>
</table>

- 2000 µF: 2000 µF
- 1000 µF: 1000 µF
- 470 µF: 470 µF

ZENERs

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 µF</td>
<td>1000 µF</td>
</tr>
<tr>
<td>470 µF</td>
<td>470 µF</td>
</tr>
<tr>
<td>330 µF</td>
<td>330 µF</td>
</tr>
</tbody>
</table>

- 1000 µF: 1000 µF
- 470 µF: 470 µF
- 330 µF: 330 µF

VARIcaps

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 µF</td>
<td>1000 µF</td>
</tr>
<tr>
<td>470 µF</td>
<td>470 µF</td>
</tr>
<tr>
<td>330 µF</td>
<td>330 µF</td>
</tr>
</tbody>
</table>

- 1000 µF: 1000 µF
- 470 µF: 470 µF
- 330 µF: 330 µF

WATFORD ELECTRONICS

25 High Street, Watford, Herts, England, WD1 2AN

MAIL ORDER, CALLERS WELCOME

Tel. Watford (0923) 377440

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, C.A.S, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTERCARD ACCEPTED. GOVERNMENT & EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME.

PAYMENT TO ALL BANKS OVERSEAS ORDERS POSTAGE AT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

VAT

Export orders no VAT. Applicable to U.K. Customers only. Unless stated otherwise, all prices are exclusive of VAT. Please add 15% to the total cost including P&P.

Nearest Underground BR Station: Watford High Street

- Cash & Cheque accepted
- Amex accepted
- Visa accepted
- Money order accepted

TRANSISTORS

<table>
<thead>
<tr>
<th>Value (µF)</th>
<th>Total (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 µF</td>
<td>2000 µF</td>
</tr>
<tr>
<td>1000 µF</td>
<td>1000 µF</td>
</tr>
<tr>
<td>470 µF</td>
<td>470 µF</td>
</tr>
</tbody>
</table>

- 2000 µF: 2000 µF
- 1000 µF: 1000 µF
- 470 µF: 470 µF

SIEMENS

- G213369
- 1000 µF
- 470 µF
- 330 µF

ACCESS

- 1000 µF
- 470 µF
- 330 µF

RF CHOKES

- Miniature PCB type
- 30, 40, 60, 80, 100 µH

EETI MAY 1985
IDC CONNECTORS

<table>
<thead>
<tr>
<th>PCB</th>
<th>Pins</th>
<th>Female</th>
<th>Female</th>
<th>Male</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>70</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>80</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>90</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

SPECTRUM 32K UPGRADE

Upgrade your 16K Spectrum to full 48K with our RAM Upgrade Kit. Very simple to fit. Full instructions supplied.

BBC MICRO WORDPROCESSING PACKAGE

A complete wordprocessing package (which can be heavily modified to your requirements, maintaining large discounts). We supply everything you need to get a BBC Micro running as a wordprocessor. Please call in for a demonstration.

Example Packages:
- BBC Micro, with DFS Interface, Wordwise, Twin 4000 TEC Disc Drive, 12" High-res green monitor, Brother HR16 Displaywriter printer, Spectric & Database software on Disc. 10 34MA Discs, 500 sheets of paper, 4way mains trailing socket, manuals and cables. Only: £1,069

BBC MICRO & ACCESSORIES

BBC Model B Only £315

We stock the full range of BBC Micro peripherals, Hardware & Software like, Disc Drive, Video Quality & Mitsubishi, Diskettes, Printers, print, Paper, Interface cables, Hanifert (IO Block) & Cassette Recorder & Cassette, Monitor, Connectors (Read/Write, Diskettes, Discs & Software), Plotter (Graphic Tablet) EPROM Programmer, Lightpen, etc. JOYKEYBOARD, EPROM Eraser, Microchade, etc. The highly-located Walford's 16K BEEF DFS D2W, WORMLESS BLOCK- أعمال، BEEF Cameras, BEEF MICRO, EDP, BEEF Accessory (Educational Applications), BOOKS, etc. Please send SE for our descriptive leaflet.

DISC DRIVES

(CUMANIA)

<table>
<thead>
<tr>
<th>DRIVER (CUMANIA)</th>
<th>DISK CABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR100 - Single Cased with PSU 40 Track, 64K/S 100K</td>
<td>£119</td>
</tr>
<tr>
<td>CD200 - Twin Cased with PSU 40 Track, 64K/S 300K</td>
<td>£359</td>
</tr>
<tr>
<td>CD300 - Epson Single Cased with PSU D/25, 40 Track, 64K/S</td>
<td>£149</td>
</tr>
<tr>
<td>CD400 - Epson Twin Cased with own PSU D/25, 64K/S</td>
<td>£290</td>
</tr>
<tr>
<td>MITSUBISHI 64K "BLUM" DISK DRIVES</td>
<td></td>
</tr>
</tbody>
</table>

Double Drive - Mounted on 7 1/4" Track, Track Generation 580, Track to track access time 300 ns, 3MHz, 5V supply.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>25 TRACK</th>
<th>30 TRACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD250</td>
<td>£149</td>
<td>£199</td>
</tr>
<tr>
<td>CD300</td>
<td>£149</td>
<td>£199</td>
</tr>
<tr>
<td>CD400</td>
<td>£290</td>
<td>£440</td>
</tr>
</tbody>
</table>

5V DISKETTE (Ultimate Warranty)

- 10 38 Disksides, $5 single side density. £14
- 10 38 Disksides, Double side density. £23

Install Cartridge on Drive C security.
POWER AMPLIFIER MODULES

Omp POWER AMPLIFIER MODULES are available to suit the needs of the professional and hobby market, i.e., Industry, Leisure, Power supply, integral heat sink, Glass fibre P.C. B, and drive circuits to power compatible Vu meter. Open and short circuit proof.

Supplied ready built and tested.

OMP100 Mix 110 Watts R.M.S. into 4 ohms. Frequency Response 15Hz - 30KHz - 3dB. T.H.D. 0.05%. S.N.R. -118dB. Sens. for Max output 500V 1.0 V at 1275W. Price £32.99 + £5.50 P&P.

OMP/100 Mos-Fet Output 110 Watts R.M.S. into 4 ohms. Frequency Response 1-100KHz - 3dB. Damping Factor 250. Slew Rate 50V/μs. T.H.D. Typical 0.003%. Input Sensitivity 500mV. S.N.R. -130dB. Size 300 x 150 x 100mm. Price £26.99 + £5.30 P&P.

OMP/MM300 Mos-Fet Output 110 Watts R.M.S. into 4 ohms. Frequency Response 1Hz - 100KHz - 3dB. Damping Factor 350. Slew Rate 60V/μs. T.H.D. Typical 0.002%. Input Sensitivity 500mV. S.N.R. -130dB. Size 330 x 147 x 102mm. Price £79.99 + £4.50 P&P.

VU METER Compatible with our four amplifiers detailed above. A very accurate visual display. Hi-Fi. M.R.M. (11 LED devices in green, 7 red) plus an additional on/off indicator. Schediscalised logic control circuits for very fast rise and decay times. Tough moulded plastic case with inset acrylic type. Size 84 x 27 x 45mm. Price £5.30 + 75p P&P.

Note: Mos-Fets are supplied as standard (100KHz bandwidth & Input Sensitivity 500mV). If required P.A. version (50KHz bandwidth & Input Sensitivity 775mV). Order - Standard or P.A.

LOUDSPEAKERS

13" 50 WATT RMS Hi-Fi/Mono/Disco etc.
8" 60 WATT RMS Hi-Fi/Mono/Disco etc.
6.5" 60 WATT RMS Hi-Fi/Mono/Disco etc.
5" 70 WATT RMS Hi-Fi/Mono/Disco etc.
12" 85 WATT RMS C1286GP Lead guitar/keyboard/Disco etc.

SOUNDLAB (Full Range Twin Cone)

1', voice coil Res Freq 38Hz Freq Resp to 20KHz Sens 82dB PRICE £9.99
1", voice coil Res Freq 65Hz Freq Resp to 1KHz Sens 92dB PRICE £9.99
1', voice coil Res 38Hz Freq Resp to 2KHz Sens 94dB PRICE £3.99
1", voice coil Res 35Hz Freq Resp to 4KHz Sens 94dB PRICE £2.30 + £0.00 P&P.

SLIDE DIMMER

60 W RMS Hi-Fi/Mono/Disco etc.
80 W RMS Hi-Fi/Mono/Disco etc.
100 W RMS Hi-Fi/Mono/Disco etc.
120 W RMS Hi-Fi/Mono/Disco etc.
150 W RMS Hi-Fi/Mono/Disco etc.
200 W RMS Hi-Fi/Mono/Disco etc.
250 W RMS Hi-Fi/Mono/Disco etc.
300 W RMS Hi-Fi/Mono/Disco etc.

STEEDO CASSETTE DECK

STEREO CASSETTE DECK

STEREO CASSETTE DECK ideal for installing into Disco cabines, theatres etc. Surface mounting (Horizontal - Vertical) unit with all electronics including mains power supply. Multiple jack with plastic finish. Piano type keys including pause. Normal 'Chrome tape switch. With Vu Meters. 3 Digit counter. Slider Record Level control. Size 171 x 317 x 110 mm. Price £35.99 + £3.00 P&P.

PIEZO ELECTRIC TWEETERS

Join the Piero revolution. The low dynamic mass ino voice coil of a Piero tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a result it is not used with power amplifiers which would require tweeter systems of up to 120W or more in power if 2 put in series. FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made especially to suit today needs for compactness with high sound output levels. Finished in hard wearing black vinyl with protective corners. grille and carry handling handle. Sens. 8 0dB. Size 75 x 75 x 250mm. Price £3.99 40p P&P.

MC-128

SIDER DISCO MIXER

STEREO DISCO MIXER

B Burglar Alarm System

PIEZOELECTRIC TWEETERS

Piezo Electric Tweeters with twin power supplies and improved transient response with a lower distortion level than ordinary dynamic tweeters. As a result it is not used with power amplifiers which would require tweeter systems of up to 120W or more in power if 2 put in series. FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

PRICE INCLUDES V.A.T. * PROMPT DELIVERIES FRIENDLY SERVICE. ORDER - Standard or P.A.
Call For Science Minister

Science needs a minister, say the Alliance for Science, a campaign set up by three trade unions who represent 100,000 scientists and technologists. They are also calling for a National Economic Development Council (NEDC) to cover research and development, pinpointing crucial research areas to permit the most effective use of funds.

In a pamphlet entitled The case for a research and development strategy, the group call on the government to co-ordinate such a strategy as suggested by the House of Lords Select Committee on science and technology. They argue that a science minister should head a cabinet-level committee to look at science funding and plot long-term research and development objectives.

They call for more government funds to be pumped into research and development, particularly in areas such as information technology where we are said to be falling behind our competitors, and they believe that an NEDC is the best way of ensuring that the money goes to where it is needed most.

The pamphlet is the second publication from the Alliance, which was launched in December last year. The three unions involved are the Association of Scientific, Technical and Managerial Staffs (ASTMS), the Association of University Teachers (AUT) and the Institution of Professional Civil Servants.

For further information about the Alliance for Science contact Bill Brett of IPCS on 01-928 9951, Paul Cottrell of AUT on 01-221 4370, or Stan Davison of ASTMS on 01-267 4422.

Handheld Logic Analyser

A n ultra-compact logic analyser, which provides a full range of measurement facilities in a handheld, battery-operated format, has been introduced to the UK by House of Instruments.

The SOAR 1300 Series, available in 10MHz or 20MHz versions, use a high-contrast liquid-crystal dot-matrix display to provide comprehensive logic-timing, state and signature analysis on up to 16 channels, with features such as trigger position, trigger pass count and trigger delay included as standard. The 1" x 3" display is mounted on the top and shows eight channels at a time.

The instrument measures 253 x 140 x 38mm and weighs only 1kg, making it ideal for field-service use. Power is provided by four AA batteries or an optional AC mains adaptor, while key set-up parameters and acquisition data are retained for up to one year by an internal battery-backup memory function.

The 1300 Series may be used in single, repeat or compare acquisition modes, and data display, compare and search facilities are provided. Other display features include a x4 magnification, a window facility for examining part of a larger display, and a histogram display to compare the numbers of high- and low-level bits.

The instrument has built-in self-checking facilities, including battery-low indication, and an automatic power-off function to conserve battery life between readings.

The price of the 10MHz model (1310) was not available when we went to press, but the 20MHz version (1320) costs £1987.00 plus VAT. The instrument is also available in a form better suited to bench use, with the display on the front panel and a tilt stand. These models are designated 1410 (10MHz) and 1420 (20 MHz), and the 1420 costs £2146.00 plus VAT.

House of Instruments, Raynham Road, Bishops Stortford, Hertfordshire CM23 5PF, tel 0279-55155.

Watford Moves

Watford Electronics, a company which started with one man working from his home, has just moved into new, purpose-built premises in Watford's High Street.

The company was founded twelve years ago by Nazir Jessa, an optician who spent his evenings and weekends selling components from a stock kept in the corner of his bedroom. Although he advertised 'mail order only', Nazir spent his weekends serving the people who insisted on calling in person, and the queues often filled his lounge and hall and extended to the front gate and beyond.

Assisted by his younger Brother Raza, he build the company up until, after three years, he was able to buy the shop next door. Within a year the extra stock needed to serve the fast-expanding business filled even this space, and the problem has only been remedied with the move to the new building.

Called Jessa House, the premises house over 7000 different components and micro peripherals and cost £700,000 to build. Nowadays they actually welcome personal callers, and although they now have a staff of thirty Nazir and Raza still take their turn behind the counter.

Watford Electronics, 250 High Street, Watford, Hertfordshire WD1 2AN, tel 0923-37774.
Events Diary

Amateur Radio & Computer Fair - April 8th

The Limits of Digital Audio - April 9th
The IEI, Savoy Place, London WC2 at 7.00pm with tea from 6.45pm. Lecture by Dr. Lagadec of Willi Studer AG organised by the Audio Engineering Society. Non AES members welcome to join-up on the evening.

Motorola Power Design Seminar - April 15th
Sheraton Hotel, Heathrow. Programme includes S/DAC technology, switchmode 1,1 & 111, switchmode rectifiers and power MOSFETs and cost is £28.75. Contact Betty Fogg, IEL Travel Ltd, 9 Argyl Street, London W1V 2HA, tel 01-734 8200.

Innovation ’85 - April 16-19th
Cranfield Institute of Technology, Cranfield, Bedford, from 10.00am to 5.30pm daily. IT exhibition sponsored by Rank Xerox and intended to provide a clear overview of the technology for those considering installations and for students and others planning careers. Innovation ’85, Bridge House, Oxford Road, Uxbridge, Middlesex UB8 1HS, tel 0895 - 51133.

Northern Computer Show - April 16-18th
Belvue, Manchester. Business and professional computer exhibition aimed at both established and first time users. Contact the Exhibition Manager, The Northern Computer Show, Reed Exhibitions, Surrey House, 1 Throwley way, Sutton, Surrey SM1 4QG, tel 01-643 8040.

Computer Aided Design & Engineering in the Aircraft Manufacturing Industry -April 17th

Hospital Broadcasting Conference - April 19-21st
Newport, Gwent. Residential weekend including training sessions, equipment exhibitions, seminars and debates organised by the National Association of Hospital Broadcasting Organisations. Non-members are welcome and the cost is £51.00 including full board. Contact All Partridge, Conference Chairman, NAHBO, c/o 56 Fleet Road, Benfleet, Essex SS7 5JN.

Scottish Design Engineering Show - April 23-25th
Anderston Exhibition Centre, Albany Hotel & Holiday Inn, Glasgow. Exhibition of new design engineering ideas aimed at engineers and managers. Contact Canners Exhibitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.

Portable Computing Conference - April 25/26th
Fulcrum Centre, Slough. Conference and exhibition aimed at enabling management staff to assess the value and implications of portable computing techniques and including products from fifty or more leading suppliers. Costs from £109.25 for a half-day to £281.75 for two days. Contact the National Computing Centre, Oxford Road, Manchester M1 7ED, tel 061-228 6689.

The British Electronics Week - April 30th to May 2nd
Olympia, London, 10.00am to 6.00pm daily. The exhibition brings together the All Electronics/ECIF Show, Fibre Optics and Electronic Product Design, and the organisers claim that virtually every electronics company will be represented. Free entry by ticket obtained in advance from Evan Steadman Services Ltd, The Hub, Emson Close, Safron Walden, Essex, CB10 1HL, tel 0799 26699.

Electronic Production Efficiency Exposition - April 30th to May 2nd
NEC, Birmingham. See February issue for details or phone 0208-815226.

Framestores Make The World Go Round

The hose of you who manage to stay awake in front of the television may have noticed a change recently in the style of the BBC 1 rotating globe symbol. The old mechanical model with its electric motor and fixed camera has gone, to be replaced by an all-electronic system using framestores.

The BBC's graphic designers came up with a new image of the world, with improved accuracy and detail. The symbol achieves a higher level of output making it possible to display the symbol was developed by Engineering Designs and the animation was produced by the staff of the BBC Computer Graphics Workshop. The original map database of 20,000 points was provided by Glasgow University.

The full rotation of the world takes 12 seconds which is equivalent to 600 television fields. To store this digitally would normally take some 250 Mbytes of memory, but a data-saving technique has been invented (patent applied for) which stores a single field of the world in only 8 Kbytes. Each map is imprinted upon the foreground (the highlighted gold) and the background (the shaded blue). For each TV field a single frame is read from memory in sequence so that the world appears to rotate.

The hardware uses two 800 Kbyte full-resolution framestores to reproduce the blue and gold areas of the symbol and the captions. This data is stored as eight-bit samples in accordance with the internationally agreed coding standard (CCIRC Rec. 601). The compressed map data is stored in a separate memory of more than 4.5 Mbytes. Erasable 28 Kbyte memories are used for all data storage, and high-speed digital techniques are employed throughout.

Fourteen such equipments have been installed in the BBC's main and Regional centres, each with their own caption identification. The London equipment optionally displays a caption indicating the page number for programmes subtitled on Ceefax.

ETI Takes Allsorts

One of the advantages of working on a magazine is that you get some very interesting things through the post. Advertising agencies keen to catch your eye send out all manner of promotional novelties, and there is scarcely a desk in the company which does not groan with boxes of samples to us.

Several things are sent through the post. Baguettes, a packet of their new Traditional Recipes Liquorice. The accompanying press release waxed lyrical about mixtures of liquorice and aniseed and the marriage of traditional techniques with modern packaging methods which went into producing this fine product, and indeed, the liquorice does taste pretty good as the Assistant Editor can well testify. But none of this explains why they sent a sample to us.

Still, who's complaining. The Assistant Editor is now considering the idea of starting a regular food column in the hope of attracting more such samples, and wishes it to be known that, if Bassetts are planning any further promotional activity, he'd prefer it if they sent them some Liquorice Allsorts next. Please? (P.S. Or some Fudge? Ed.)
ACORN COMPUTER SYSTEMS
ACORN MODEL B Special Offer £300 (a)
ACORN Model B+ £335 (b)
ACORN Model B+DOS £346 (a)
ACORN Model B+Emote £399 (c)
UPGRADE KITS
A to B Upgrade Kit £85 (c)
DOS Kit £87 (c)
Emote Kit £85 (c)
Speech Kit £47 (c)
ACORN ADD-ON PRODUCTS
Z80 2nd Processor £349 (c)
6522 2nd Processor £171 (c)
Tastet Adaptor £290 (b)
IEEE Interface £820 (b)
Printer Adaptor £299 (b)
RH Light pen £39.50 (c)

MIRACLE W32000:
UV1 B erases up to 6 eproms at a time and
indicators.
This low cost intelligent eprom programmer can
already provided on the modem. Mains
boards enhance the considerable
facilities
UART CASCADER ROM £59 (c)
COMMUNICATION ROM
Termi Emulator £32.00 (c)
Gorimeter £32.00 (c)

MODEMS
— All modems listed below are BT approved

MIRACLE WS2000:
The ultimate world standard modem cover-all
common BELL and CCITT standards up to
1200 Baud. Allows communication with
virtually any computer in the world. The
optional AUTO DIAL and AUTO ANSWER
boards enhances the considerable facilities
designed for the modem. A
powered £109(b). Auto Dial Board/Auto
Answer Board £65(c) each. (awaiting BT
approval) Software lead £4.50.

TELECOM 2:
Complies with CCITT V23 1200/75 Duplex
and 1200/1200 Half Duplex standards that
allow communications with VIEWDATA
services like PRESTEL, MICRONET etc as
well as user to user communications. Mains
powered £69(b). DIAL HEADERS
SOFTY II
This pocket sized modem complies with V21
200/200 Baud and provides an ideal solution
for communications between users, with main
frame computers and bulletin boards at a very
economic cost. Battery or mains operated.

RF80FT £225(a) RX80T £215(b)

DISC DRIVES
These are fully cases and wired drives with slim line mechanisms of high
quality, Shugart A440 standard interface. Drives supplied with cables
manuals and formatting disc suitable for the BBC computer. TEAC 80
track drives are supplied with 40/80 track switching as standard. All
drives can operate in single or dual density format.

1 x 100K 40/80ST/S50A £99(b)
2 x 40K 40/80 ST/TSD £209(a)
2 x 100K 40/80ST/TSD55 A £265(a)
2 x 40K 40/80ST/TSD55 M 228 (d)

ACORN COMPUTER SYSTEMS

ACORN COMPUTER SYSTEMS
ACORN MODEL B Special Offer £300 (a)
ACORN Model B+ £335 (b)
ACORN Model B+DOS £346 (a)
ACORN Model B+Emote £399 (c)
UPGRADE KITS
A to B Upgrade Kit £85 (c)
DOS Kit £87 (c)
Emote Kit £85 (c)
Speech Kit £47 (c)
ACORN ADD-ON PRODUCTS
Z80 2nd Processor £349 (c)
6522 2nd Processor £171 (c)
Tastet Adaptor £290 (b)
IEEE Interface £820 (b)
Printer Adaptor £299 (b)

MIRACLE W32000:
UV1 B erases up to 6 eproms at a time and
indicators.
This low cost intelligent eprom programmer can
already provided on the modem. Mains
boards enhance the considerable
facilities
UART CASCADER ROM £59 (c)
COMMUNICATION ROM
Termi Emulator £32.00 (c)
Gorimeter £32.00 (c)

MODEMS
— All modems listed below are BT approved

MIRACLE WS2000:
The ultimate world standard modem cover-all
common BELL and CCITT standards up to
1200 Baud. Allows communication with
virtually any computer in the world. The
optional AUTO DIAL and AUTO ANSWER
boards enhances the considerable facilities
designed for the modem. A
powered £109(b). Auto Dial Board/Auto
Answer Board £65(c) each. (awaiting BT
approval) Software lead £4.50.

TELECOM 2:
Complies with CCITT V23 1200/75 Duplex
and 1200/1200 Half Duplex standards that
allow communications with VIEWDATA
services like PRESTEL, MICRONET etc as
well as user to user communications. Mains
powered £69(b). DIAL HEADERS
SOFTY II
This pocket sized modem complies with V21
200/200 Baud and provides an ideal solution
for communications between users, with main
frame computers and bulletin boards at a very
economic cost. Battery or mains operated.

RF80FT £225(a) RX80T £215(b)

DISC DRIVES
These are fully cases and wired drives with slim line mechanisms of high
quality, Shugart A440 standard interface. Drives supplied with cables
manuals and formatting disc suitable for the BBC computer. TEAC 80
track drives are supplied with 40/80 track switching as standard. All
drives can operate in single or dual density format.

1 x 100K 40/80ST/S50A £99(b)
2 x 40K 40/80 ST/TSD £209(a)
2 x 100K 40/80ST/TSD55 A £265(a)
2 x 40K 40/80ST/TSD55 M 228 (d)

ACORN COMPUTER SYSTEMS

ACORN COMPUTER SYSTEMS
ACORN MODEL B Special Offer £300 (a)
ACORN Model B+ £335 (b)
ACORN Model B+DOS £346 (a)
ACORN Model B+Emote £399 (c)
UPGRADE KITS
A to B Upgrade Kit £85 (c)
DOS Kit £87 (c)
Emote Kit £85 (c)
Speech Kit £47 (c)
ACORN ADD-ON PRODUCTS
Z80 2nd Processor £349 (c)
6522 2nd Processor £171 (c)
Tastet Adaptor £290 (b)
IEEE Interface £820 (b)
Printer Adaptor £299 (b)

MIRACLE W32000:
UV1 B erases up to 6 eproms at a time and
indicators.
This low cost intelligent eprom programmer can
already provided on the modem. Mains
boards enhance the considerable
facilities
UART CASCADER ROM £59 (c)
COMMUNICATION ROM
Termi Emulator £32.00 (c)
Gorimeter £32.00 (c)

MODEMS
— All modems listed below are BT approved

MIRACLE WS2000:
The ultimate world standard modem cover-all
common BELL and CCITT standards up to
1200 Baud. Allows communication with
virtually any computer in the world. The
optional AUTO DIAL and AUTO ANSWER
boards enhances the considerable facilities
designed for the modem. A
powered £109(b). Auto Dial Board/Auto
Answer Board £65(c) each. (awaiting BT
approval) Software lead £4.50.

TELECOM 2:
Complies with CCITT V23 1200/75 Duplex
and 1200/1200 Half Duplex standards that
allow communications with VIEWDATA
services like PRESTEL, MICRONET etc as
well as user to user communications. Mains
powered £69(b). DIAL HEADERS
SOFTY II
This pocket sized modem complies with V21
200/200 Baud and provides an ideal solution
for communications between users, with main
frame computers and bulletin boards at a very
economic cost. Battery or mains operated.

RF80FT £225(a) RX80T £215(b)
<table>
<thead>
<tr>
<th>SERIES</th>
<th>74 SERIES</th>
<th>74L SERIES</th>
<th>74LS SERIES</th>
<th>74S SERIES</th>
<th>74SBD SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>7401</td>
<td>7402</td>
<td>7403</td>
<td>7404</td>
<td>7405</td>
</tr>
<tr>
<td>74A</td>
<td>74B</td>
<td>74C</td>
<td>74D</td>
<td>74E</td>
<td>74F</td>
</tr>
<tr>
<td>74G</td>
<td>74H</td>
<td>74I</td>
<td>74J</td>
<td>74K</td>
<td>74L</td>
</tr>
<tr>
<td>74N</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
<td>74S</td>
<td>74T</td>
</tr>
<tr>
<td>74U</td>
<td>74V</td>
<td>74W</td>
<td>74X</td>
<td>74Y</td>
<td>74Z</td>
</tr>
<tr>
<td>74C</td>
<td>74F</td>
<td>74H</td>
<td>74J</td>
<td>74K</td>
<td>74L</td>
</tr>
<tr>
<td>74M</td>
<td>74N</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
</tr>
<tr>
<td>74S</td>
<td>74T</td>
<td>74U</td>
<td>74V</td>
<td>74W</td>
<td>74X</td>
</tr>
<tr>
<td>74Y</td>
<td>74Z</td>
<td>74AA</td>
<td>74AB</td>
<td>74AC</td>
<td>74AD</td>
</tr>
<tr>
<td>74BE</td>
<td>74BF</td>
<td>74BG</td>
<td>74BH</td>
<td>74BI</td>
<td>74BJ</td>
</tr>
<tr>
<td>74BK</td>
<td>74BL</td>
<td>74BM</td>
<td>74BN</td>
<td>74BO</td>
<td>74BP</td>
</tr>
<tr>
<td>74BQ</td>
<td>74BR</td>
<td>74BS</td>
<td>74BT</td>
<td>74BU</td>
<td>74BV</td>
</tr>
<tr>
<td>74BW</td>
<td>74BX</td>
<td>74BY</td>
<td>74BZ</td>
<td>74CA</td>
<td>74CB</td>
</tr>
<tr>
<td>74CC</td>
<td>74CD</td>
<td>74CE</td>
<td>74CF</td>
<td>74CG</td>
<td>74CH</td>
</tr>
<tr>
<td>74CI</td>
<td>74CJ</td>
<td>74CK</td>
<td>74CL</td>
<td>74CM</td>
<td>74CN</td>
</tr>
<tr>
<td>74CO</td>
<td>74CP</td>
<td>74CQ</td>
<td>74CR</td>
<td>74CS</td>
<td>74CT</td>
</tr>
<tr>
<td>74CU</td>
<td>74CV</td>
<td>74CW</td>
<td>74CX</td>
<td>74CY</td>
<td>74CZ</td>
</tr>
<tr>
<td>74D</td>
<td>74C</td>
<td>74B</td>
<td>74A</td>
<td>741</td>
<td>74L</td>
</tr>
<tr>
<td>74F</td>
<td>74H</td>
<td>74J</td>
<td>74K</td>
<td>74L</td>
<td>74M</td>
</tr>
<tr>
<td>74G</td>
<td>74I</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
</tr>
<tr>
<td>74N</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
<td>74S</td>
</tr>
<tr>
<td>74S</td>
<td>74T</td>
<td>74U</td>
<td>74V</td>
<td>74W</td>
<td>74X</td>
</tr>
<tr>
<td>74Y</td>
<td>74Z</td>
<td>74AA</td>
<td>74AB</td>
<td>74AC</td>
<td>74AD</td>
</tr>
<tr>
<td>74BE</td>
<td>74BF</td>
<td>74BG</td>
<td>74BH</td>
<td>74BI</td>
<td>74BJ</td>
</tr>
<tr>
<td>74BK</td>
<td>74BL</td>
<td>74BM</td>
<td>74BN</td>
<td>74BO</td>
<td>74BP</td>
</tr>
<tr>
<td>74BQ</td>
<td>74BR</td>
<td>74BS</td>
<td>74BT</td>
<td>74BU</td>
<td>74BV</td>
</tr>
<tr>
<td>74BW</td>
<td>74BX</td>
<td>74BY</td>
<td>74BZ</td>
<td>74CA</td>
<td>74CB</td>
</tr>
<tr>
<td>74CC</td>
<td>74CD</td>
<td>74CE</td>
<td>74CF</td>
<td>74CG</td>
<td>74CH</td>
</tr>
<tr>
<td>74CI</td>
<td>74CJ</td>
<td>74CK</td>
<td>74CL</td>
<td>74CM</td>
<td>74CN</td>
</tr>
<tr>
<td>74CO</td>
<td>74CP</td>
<td>74CQ</td>
<td>74CR</td>
<td>74CS</td>
<td>74CT</td>
</tr>
<tr>
<td>74CU</td>
<td>74CV</td>
<td>74CW</td>
<td>74CX</td>
<td>74CY</td>
<td>74CZ</td>
</tr>
<tr>
<td>74D</td>
<td>74C</td>
<td>74B</td>
<td>74A</td>
<td>741</td>
<td>74L</td>
</tr>
<tr>
<td>74F</td>
<td>74H</td>
<td>74J</td>
<td>74K</td>
<td>74L</td>
<td>74M</td>
</tr>
<tr>
<td>74G</td>
<td>74I</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
</tr>
<tr>
<td>74N</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
<td>74S</td>
</tr>
<tr>
<td>74S</td>
<td>74T</td>
<td>74U</td>
<td>74V</td>
<td>74W</td>
<td>74X</td>
</tr>
<tr>
<td>74Y</td>
<td>74Z</td>
<td>74AA</td>
<td>74AB</td>
<td>74AC</td>
<td>74AD</td>
</tr>
<tr>
<td>74BE</td>
<td>74BF</td>
<td>74BG</td>
<td>74BH</td>
<td>74BI</td>
<td>74BJ</td>
</tr>
<tr>
<td>74BK</td>
<td>74BL</td>
<td>74BM</td>
<td>74BN</td>
<td>74BO</td>
<td>74BP</td>
</tr>
<tr>
<td>74BQ</td>
<td>74BR</td>
<td>74BS</td>
<td>74BT</td>
<td>74BU</td>
<td>74BV</td>
</tr>
<tr>
<td>74BW</td>
<td>74BX</td>
<td>74BY</td>
<td>74BZ</td>
<td>74CA</td>
<td>74CB</td>
</tr>
<tr>
<td>74CC</td>
<td>74CD</td>
<td>74CE</td>
<td>74CF</td>
<td>74CG</td>
<td>74CH</td>
</tr>
<tr>
<td>74CI</td>
<td>74CJ</td>
<td>74CK</td>
<td>74CL</td>
<td>74CM</td>
<td>74CN</td>
</tr>
<tr>
<td>74CO</td>
<td>74CP</td>
<td>74CQ</td>
<td>74CR</td>
<td>74CS</td>
<td>74CT</td>
</tr>
<tr>
<td>74CU</td>
<td>74CV</td>
<td>74CW</td>
<td>74CX</td>
<td>74CY</td>
<td>74CZ</td>
</tr>
<tr>
<td>74D</td>
<td>74C</td>
<td>74B</td>
<td>74A</td>
<td>741</td>
<td>74L</td>
</tr>
<tr>
<td>74F</td>
<td>74H</td>
<td>74J</td>
<td>74K</td>
<td>74L</td>
<td>74M</td>
</tr>
<tr>
<td>74G</td>
<td>74I</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
</tr>
<tr>
<td>74N</td>
<td>74O</td>
<td>74P</td>
<td>74Q</td>
<td>74R</td>
<td>74S</td>
</tr>
<tr>
<td>74S</td>
<td>74T</td>
<td>74U</td>
<td>74V</td>
<td>74W</td>
<td>74X</td>
</tr>
<tr>
<td>74Y</td>
<td>74Z</td>
<td>74AA</td>
<td>74AB</td>
<td>74AC</td>
<td>74AD</td>
</tr>
<tr>
<td>74BE</td>
<td>74BF</td>
<td>74BG</td>
<td>74BH</td>
<td>74BI</td>
<td>74BJ</td>
</tr>
<tr>
<td>74BK</td>
<td>74BL</td>
<td>74BM</td>
<td>74BN</td>
<td>74BO</td>
<td>74BP</td>
</tr>
<tr>
<td>74BQ</td>
<td>74BR</td>
<td>74BS</td>
<td>74BT</td>
<td>74BU</td>
<td>74BV</td>
</tr>
<tr>
<td>74BW</td>
<td>74BX</td>
<td>74BY</td>
<td>74BZ</td>
<td>74CA</td>
<td>74CB</td>
</tr>
</tbody>
</table>
COOLING FANS.

With our range of BRAND NEW professional cooling fans.

- £6.25 or 110 vat £4.95 or BRAND NEW 240 v fan (updated tested, EX EQUIPMENT 240 v, MUFFIN - CENTAUR standard 4-12"
- 112.95 complete with data).

NHLER 49.11.22.8.16 v OC micro very quiet running 240 v operation NEW £6.95

very quiet running 240 v operation NEW £6.95

LA127 compactly designed unit with 3 pin filter socket.

Cooler fans include:
- £10.50 1200 watt fans
- £10.00 1000 watt fans
- £9.00 800 watt fans
- £9.00 600 watt fans
- £9.00 400 watt fans

COOL and IT LIABLE

MAINS FILTERS.

- Those wanting to update data and display devices caused by a natural reversible fan. Uses a brushless sensorless motor. 240 v operation NEW £12.00.

- 2732 ex equip £3.25, 27128 - 250ns NEW £12.00.

- 6809 £9.00, 6889 £10.00, 6908 £14.50, 6809/62, £19.00, 6809 £20.00, 6906 £2.99.

COOL and IT LIABLE.

BUDGET RANGE VIDEO MONITORS.

Budgeted for those seeking to upgrade their video monitor display equipment. All are for 240v working with standard composite video inputs.

- Units are tested and set for up to 80 cm use or 1100's of other units in stock.

NEW or little used 2B data modems allows US to make the FINAL REDUCTION. and for YOU to join the exciting world of data communications at the ridiculous price of Mr 11111.1111 + VAT Complete *4th edition manual etc Linufed Quality - Huffy while stocks last

SPECIAL 300 BAUD MODEM OFFER.

Another GIGANTIC purchase of this BRITISH TELECOM, BRAND NEW or little used 2B data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD 3rd PRICE of only £29.95! Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each. The 2B has all the standard requirements for data base, business or hobby communication.

- 300 baud full duplex
- Full remote control
- ETX2003 tone standards
- Supplied with full data base
- Modular construction
- Direct isolated connection

This must be ONE OF THE YEAR'S BEST BUYS!!!

SPECIAL 300 BAUD MODEM OFFER.

Another GIGANTIC purchase of this BRITISH TELECOM, BRAND NEW or little used 2B data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD 3rd PRICE of only £29.95! Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each. The 2B has all the standard requirements for data base, business or hobby communication.

- 300 baud full duplex
- Full remote control
- ETX2003 tone standards
- Supplied with full data base
- Modular construction
- Direct isolated connection

DECCA RGB 80-100 Monitor.

Little or hardly used manufacturer's surplus enables us to offer this special converted DECCA RGB Colour TV Monitor at a super low price of only £99.00. A price for a colour monitor as yet unheard of. Our own interface, special 16" high definition PL tube, combine with the tried and tested DECCA 80-100 series chassis to give 80 column definition and picture quality found only on monitors costing 3 TIMES OUR PRICE. In fact, we GUARANTEE you will be delighted with this product, the quality for the price has to be seen to be believed. Supplied complete and ready to plug direct to a BBC MICRO computer or any other system with a TTL RGB output. Other features include internal audio amp and speaker. A major company's over production problems, and a special REDUCTION. and for YOU to join the exciting world of data communications at a super low price.

- 304 H x 24 D, 90 day guarantee. Supplied in EXCELLENT condition, ONLY £99.00

DECORNER

Data Peripherals

- 512K memory £250.00
- 124K memory + MMU £385.00
- 4164-200 £3.50
- 4884-150 £4.00
- £49.95

DECORNER

1000's OF EXSTOCK SPARES FOR DEC PERP.

Direct isolated connection

- Modular construction
- Auto degaussing

SUPER PRINTER SCOOP.

BRAND NEW CENTRONICS 739-2

The Do Everything Printer at a price that was unthinkably low in just 2 years for 4 lines.

QIC-240 + SPOKED MODEMS.

QIC-240 + SPOKED MODEMS.

HUNDREDS OF PRINTERS.

EX STOCK from £49.00.

Call Sales office for Details.

ADD VAT TO ALL PRICES.

£250.00.

Financials:

- 4800, RACAL MPS4800 high speed condition £235.00 £498.00 £19.00

- Auto answer via MODERN or CALL. CALL.
To Boldly Go...

Dear Sir,

The article about Electronics for Peace in the April issue of ETI shows clearly how Electronics Technicians can get themselves a bad name for political naivete. The organisers of this movement should know that including the word "Peace" in the title of any organisation means that it will be regarded as a front for Communist activity. If one then goes on to publish secret information on weapons systems, suspicions are heightened whatever the organisers may say. You may rest assured that anyone foolish enough to join such a movement will be certain to have their phone tapped! In due course they may also be invited to a Worker's Congress in Prague, the bourne whence no worthwhile technician ever returns.

This is not to say that a truly independent political organisation for technicians is not needed, indeed it is vitally necessary. But it should be organised under the banner of FREEDOM, something which is anaethema(sic) alike to Communist and Capitalist systems. (Electronics for Freedom - EfF)

In every society of the world the Technician suffers exploitation by immature and often incompetent megalomaniacs. Technicians as a class are rather meek, but if we are to inherit the earth we have to find a better way to make the consensus (sic) of our views publicly known. We have to assist in creating a just society, make communication between peoples easier and use our skills to expand the capabilities of the mind. Electronics is vital in all this, so the objectives of the organisation would be as follows:

1. Making possible secret mass referenda on all important political issues by electronic means using TV, radio or telephone.
2. Development of Computer Systems, Languages and Programmes to formulate just and unambiguous legislation, regulations and codes of practice.
3. Development of personalised communication systems with miniaturised privacy devices (scramblers), and computerised translation facilities.
4. Development of bioelectronic devices and biofeedback methods for mind control and expansion. Also to enable the assessment and evaluation of personality types.

The last objective is the final frontier of electronics - understanding the nature of the mind and discovering who are fit persons to be trusted with power. These activities are far more worthwhile than merely ferreting out details of obsolescent weapons systems for the benefit of the RIS.

Anyone who feels they would like to form an organisation on these lines can get in touch with me at the University of Surrey where I work.

Yours faithfully,
Keith Wakeham
Church Crookham
Hampshire

Nice try, Mr. Wakeham, but you can't fool us. 'The final frontier', all that stuff about 'Computer Systems', 'personalised communication systems' and expanding 'the capabilities of the mind'. Beam us up Scottie, if you're not Mr. Spock. By the way, we gather Captain Kirk's been looking for you.

Bass From The Wood

Dear Sir,

I have scanned 'The Final Link' by Vivian Capel (ETI April 1985) with interest. It was surprising for me that no mention was made of studio and concert hall acoustics. There were two programmes recently on Radio 3, concerning concert hall 'design' and the reactions of performers and listeners. Even in these programmes, I felt that the experts have somehow got several matters wrong.

It is well known that the Festival Hall and the Barbican are unsatisfactory - due, it is said, to the air-conditioning ducts under the seats absorbing most of the deep bass. No mention was made of Bayreuth or Covent Garden, and it was implied that hard walls (brick or stone) were good. My experience is that the bass from Bayreuth is very good, the walls being, I believe, of wood.

A visit to Covent Garden immediately exposes the good bass, but on my equipment the bass from there is rather weak. I wonder if this is because suspended microphones tend to 'blow away' from the deep bass?

A recent broadcast from a cathedral in Wales sounded very bad indeed (stone wall etc). It was a Mozart string orchestra, and even a moderate volume setting was too high. The only solution was to turn the volume very low.

If the bass of the hall is good, volume can be turned surprisingly high, with every pleasure, to my ears. Some Wagner records come through very well.

A particularly irritating habit of the BBC is to broadcast a concert at reasonable volume level; then on return to the studio the voice is often too loud, even painful, so the volume has to be turned down. This could be due to a combination of poor studio acoustics, poor monitor speakers and insensitive control engineers.

I also find that only tape at 7 1/2 ips gives really good HiFi. Discs are not bad with the Goldring Epic cartridge (only £15) but here again volume has to be kept fairly low, to avoid listener fatigue and discomfort. Here again I suggest it is the deep bass which goes wonky. Of course, commercial discs do not give much in the way of really deep bass. I find that some popular discs have quite good bass with power. These activities are far more worthwhile than merely ferreting out details of obsolescent weapons systems for the benefit of the RIS.

A visit to Covent Garden immediately exposes the good bass, but on my equipment the bass from there is rather weak. I wonder if this is because suspended microphones tend to 'blow away' from the deep bass?

I use a Quad 303 amplifier and my speakers are approximately 10 cubic feet each made of brick and stone. Upper register is via Treleax and Oldidax horns (sic), attenuated...
to suit 12" woofers set in the enclosures.

There are some listening room effects - it is a longish room with plastic/concrete floor.

I hope these remarks could lead to further work along the lines of Mr. Capel's article.

Yours sincerely,
John Elliott MSc
Farnborough
Hants.

Personally, we listen to most of our music in the bath and we sometimes wonder if the lack of fidelity isn't due to the water in our ears.

Film Facts

Dear Sir,

I read with interest Mr. Armstrong's feature on 'telecine' and whilst agreeing with almost all within there are several points of accuracy that I would contest.

1. The aspect ratio between the cinema and television is not necessarily different. The 1.33 to 1 (4 to 3) aspect ratio used by most TV stations throughout the world is in fact Motion Picture Academy Ratio. Almost all films pre-1950, many films of the 50's and 60's and all film series made for television are to this ratio. In the early years of television round display tubes were used and 5:4 would have been displayed with better efficiency; despite this 4:3 for television was chosen so as to be compatible with the cinema.

2. The frame of Cinemascope film is not the same size as an ordinary 35mm film. A standard Academy frame is .625" high, there are quite broad 'rack lines' between frames. The frame height of Cinemascope is .715" and the rack lines are very narrow (35 thou.)

3. A true Cinemascope, that is 20th Century Fox, film will have 4 track magnetic sound; to accommodate this and not encroach on the picture area the sprocket holes on the film are smaller, the pitch is the same, however.

4. In the sequence of operations for a projection system at step two it is said that a claw engaging with the holes in the film moves the frame into position. Although 35mm cameras may use claws, 35mm projectors do not. The usual practise is to use an intermittent sprocket driven by a Maltese Cross mechanism.

5. Although it is common practice to refer to all anamorphic formats as Cinemascope this is rather akin to calling all vacuum cleaners Hoovers. Cinemascope was in fact a trade name of an anamorphic system used by 20th Century Fox. This system has now not been used for some years; most anamorphic films now are shot to the Panavision standard on their equipment.

Yours faithfully,
Nick Lyons
Normanton
West Yorkshire

Help-line

Dear Sir,

I have been a contented and successful project builder, reader of your magazine for quite a while now. With such outstanding comprehensive coverage and useful up to date information, not to mention those marvellous projects, that unaninmously puts your magazine aside from the rest.

You must now be wondering why I am writing to you. It is because I am in need of some information. Being an electronic enthusiast for quite some years now, I was happily employed and able to carry out projects, now due to unexpected redundancy, I am now turning those projects into my profession.

I am now in the process of setting up a design and production workshop, specialising in the designing and manufacturing of: Disco, Group, P A, HiFi and Studio Equipment. As these units will have a robust rugged but classic look! Further to this the units will have high specifications, useful tailor-made units to suit.

With such a marvellous ornate new venture, I can not possibly let down the appearance of my units. By using the readily available commercial standard size and shapes slider potentiometers, plus the unavailability of stepped rotary controls (pots), not to mention the control knobs. If you could be so kind as to enlighten me as to who or where I could obtain the following:

1. Slider potentiometers, with travel less than 40mm both single and stereo.
2. Stepped rotary potentiometers.
4. A manufacturer who would make any of the above to my specifications and finally control knobs not available to retail outlets.

Your help will be greatly appreciated from a happy and grateful reader.

Yours faithfully,
R. Leslie
Wolverhampton

From one 'electronic enthusiast' to another - whirr, click, pyang! No, but seriously, we've printed Mr. Leslie's letter because we can't really help him, although his predicament must be shared by many. ET! would like to see itself helping those in need of technical information on the sort Mr. Leslie seeks - hobbyists and, especially, people seeking to make the best of enforced redundancy with the help of their hobby. Since we are already overstretched producing the magazine and answering specific queries about the projects we have published, there is room for a 'reader-to-reader' enquiry service, through which ET! readers could help each other.

If anyone can offer Mr. Leslie some assistance we would be pleased to forward any details. If anyone seeks help from other readers, not necessarily on matters dealing with ET! projects or features, we would be happy to publish their request in what we hope will become a special 'help line' section of the magazine.

The one thing we'd ask is that you keep your letters short, preferably sticking to the meat of the query. We will, in any case, edit them if necessary.

Please send letters for this page to: Read/Write, c/o the Editor, ETI, ASP Ltd, 1 Golden Square, London W1R 3AB. Send Help Line queries to Help Line, c/o the Editor, ETI at the same address. Please note that any letter we receive is liable to be published unless clearly marked 'Not for publication'. We reserve the right to edit letters for space reasons.
DIGIVISION
INSIDE OUT

A digital Dallas? Computerized Coronation Street? Vivian Capel takes a look at the future of television and finds it's much the same.

During the early days of post-war television when I worked with a television service company, engineers would often append the comment 'digital interference' to their job sheets. No, they weren't blaming interference from a nearby computer, they were few and far between in those days, and most, in any case, were analogue. Otherwise expressed, they were reporting 'finger trouble', faults brought on by the television viewer fiddling with the array of presets that adorned the rear panels and sides of the TV receivers of the day.

Digital techniques were then known only to a small coterie — in the computer industry, mainly. Such things could never be applied to audio or television. Why, how could they accommodate the vast number of valves that would be needed, to say nothing of powering them?

The coming of semiconductors changed all that, but there seemed little to be gained from abandoning the simplicity of analogue signal processing. So, domestic sound and vision reproducers have remained firmly analogue - until recently. With its narrower bandwidth, audio was the obvious candidate for digitization. The compact disc has certainly shown what advantages can be obtained by digital signal storing and processing, with its low distortion and absence of noise.

But what about television? Professional studio equipment has employed digital techniques for many years. Independent television has had a digital standards converter in use since 1972, and the numerous weird effects increasingly seen on our TV screens demonstrate the growing use of digital video effects generators in broadcast studios.

Since 1977, ITT Semiconductors has been developing methods of applying digital techniques to domestic TV receivers. Seven years later, and at a cost of some £20 million, what is claimed to be the world's first digital domestic TV receiver went on sale — the Digivision D1000.

Reception

How does it work and what does it do? The principal source of signal degradation in any system is the transmission process - whether that be broadcasting or some form of analogue recording. The compact audio disc overcomes most signal degradation by recording and replaying digital signals but this advantage is not obtainable with digital TV at present, because the television signal itself is not digital. The set can only do its best with whatever is presented to it in the way of a normal analogue transmission via the aerial.

Because of this, the tuner and the IF stages of the Digivision receiver are conventional, as is the vision demodulator. From that point on the digital circuits take over.

The vision signal is converted to a 7-bit digital data stream. By employing a system of averaging on alternate lines, 8-bit resolution is achieved giving 255 sampling levels. As with a conventional TV, the colour or chroma signal is processed separately from this luminance or black-and-white portion.

The eye is less sensitive to colour definition than light and shade detail, which is why the chroma signal has a much smaller bandwidth than the luminance. Furthermore, the eye is less aware of small hue differences than shade gradations. Hence, the chroma signal is represented here by 63 sampling levels, obtained by a 6-bit data stream.

Ironically, it is the sound signal that gets the best treatment digitally; a 14-bit sampling system gives 16,383 levels. This is of course as it should be, because the ear is very sensitive to the distortion produced by an inadequate number of sampling levels, whereas the eye is less critical of gradation differences.
Processing

After conversion to digital signals the luminance information is filtered, the contrast is set, and black-level clamping and white balancing are carried out. A single chip is used for the video processing, and this includes the colour decoding. For PAL decoding a delay line is used in the normal analogue receiver. The function of this is to delay the signal for 64 us, or one complete line, in order to obtain the averaging on alternate lines to cancel phase aberrations. However, in place of the conventional glass delay line and ultrasonic transducers at each end, the delay is obtained by blocks of RAM with capability for storing the required one line. This occupies far less space than a glass delay line - only three square millimetres of chip area. The store is accommodated in the video processor chip along with the filters and other decoding functions.

The chip permits the decoding of NTSC colour signals as transmitted in America, and in this mode the delay circuit can be used as a comb filter for separation of the chrominance and luminance signals.

After processing and decoding, the digital signal is converted back to analogue. This task is performed on the same chip that carried out the A/D conversion. From there the three colour outputs are taken to conventional output stages to drive the display tube.

Deflection signals are generated digitally in a further chip in which division and count-down circuits provide both line and field scanning pulses which drive their respective output stages. These are synchronised from the digital video input.

A master clock generator provides the pulses for all the conversion and processing functions, and a microcomputer chip controls the whole operation. It scans the control keyboard which can have up to 32 keys covering brilliance, colour, and volume, among other things. Included is a phase-locked loop which provides tuning for VHF and UHF, plus a memory to store data for receiving up to 30 channels. The chip also incorporates a memory to store factory-programmed data for tube drive and timebase control. The clock generator runs at 17.73 MHz, four times the colour sub-carrier frequency.

In the sound circuit, one chip converts to digital and back again to analogue to feed the sound output stages and speakers, just as with the video signal. It seems as though the designers missed a trick here. If they had employed PWM (pulse width modulation) to drive the speakers there would have been no need of an analogue output stage which generates considerable distortion. In between the A/D and D/A conversions, another chip takes care of the sound signal processing. It includes the ability to deal with two-carrier TV stereo signals.

Sound reproduction is usually the lowest priority with most TV sets and the results are pretty 'lo-fi'. Here though, some attention has been given to this side of matters. The twin output stages deliver 15 watts each to two, three-driver speakers having bass-reflex loading.

Servicing

One thing that Digivision service engineers will not be able to report is 'digital interference' — in spite of it being a digital device. There are no viewer-accessible presets, only the normal controls. One internal preset sets the HT voltage, which is common practice with conventional TV’s. All other adjustments such as picture height and width, tube-drive and timebases are made by re-programming the control computer. This can only be done by using a service computer that plugs into a socket provided for the purpose. ITT has dubbed this device an 'electronic screwdriver'. Maybe, but a conventional screwdriver costs a lot less!
free from the makers. The snag is that owners who are qualified and prefer to do their own servicing, especially after the guarantee has expired, will be without the means to do so.

Apart from the clock generator and tuner interface IC’s there are six VLSI chips. If you didn’t know, that stands for Very Large Scale Integration, and just how large can be gathered from the fact that one chip can contain up to 200,000 transistors.

Possible Enhancement

That brings us to the obvious question, is it all worth it? Are there dramatic improvements comparable to those obtained with digital audio recording? Given a good signal from the aerial and good programme material, a conventional analogue TV which is properly adjusted is capable of excellent results. What limitations there are arise from the transmission system. These are: horizontal definition, line structure — which is easily noticeable on very large screens - and mutual interference between colour and luminance signals due to the way the colour sub-carrier is interleaved into the video spectrum to save bandwidth.

The main processor board of the Digivision.

These, and degradation due to transmission and reception conditions, will be suffered by the digital set just as much as the analogue. Real improvement could only be expected when the transmissions themselves become digital — which is likely to be a long way ahead. What then about reliability?

The makers claim that peak performance is held longer than with conventional sets because the onboard computer monitors performance continually and makes the necessary adjustments to maintain it. However, to put things in perspective, modern TV sets need far less adjustment than did their predecessors. Most faults occur in the display tube and deflection circuits which are conventional with the Digivision. Most sets these days contain a number of chips, and all can and do break down. Statistically, the more semi-conductor elements a chip has, the greater the chance of failure. On this basis the VLSI IC’s offer less prospect of longevity than the far simpler units employed in analogue receivers. All the same, there are many complex chips in daily use that have a good record of reliability and only time will tell with the Digivision.

In the absence of any major benefits to the viewer, it seems that digital television at present is an exploratory step.

The number of scanning lines could be increased. Plans are already afoot to double the line number by using 2.2 kbyte of RAM for line storage to enable each line to be traced twice. This would not increase the actual vertical definition, but the doubling of the lines would make them virtually indistinguishable, even on very large screens.

Another possibility is to use a field store that will hold a complete field of picture. By use of this the TV could be given a still-frame capability just like a video recorder. The only snag is that you could not continue viewing from where you left off, or inch to the next frame, since material transmitted while you were viewing the still frame would have passed. But some studio trick effects would be possible.

Two pictures could be displayed at the same time. With TV programmes as boring as they are, this could be a boon, as viewers could then transfer their attention to whichever seemed the most interesting! Zoom facilities could also be incorporated enabling a portion of the picture to be enlarged at will. Another possibility is the enhancement of the received signal by identifying and eliminating ghosts caused by multipath reception. With the problems caused in some areas by high rise buildings, this would give a positive advantage over analogue sets.

Other Makers

ITT have proved to be the first in the field but others are following. The Finnish firm Salora have produced a digital receiver which is now on sale and uses the same chips as Digivision. They are the first with the smaller 20 and 22-inch screen sizes, the ITT being 26-inch. Salora call their offering the Digicomputer, which could be a little misleading. Optional extras include a satellite tuner and PAL/SECAM/NTSC converter.

We may be seeing many other makers producing digital TV’s, because the ITT subsidiary Intermetall — which makes the chips at Freidberg — are supplying packages of the complete line-up of chips to such firms as Matsushita, Toshiba, Sharp and Zenith. Some 21 companies have signed up to buy the package from Intermetall. Knowing the cut-throat competition exist-
ing among these giants, it is almost certain that their research teams are busily finding ways to produce their own, with sufficient differences and perhaps improvements to circumvent the patent laws.

A further chip is being added to the package from Freiberg and that is one that will process any of the existing European teletext systems (except the French Antiope). To assemble all that on one chip is quite an achievement, especially as it includes automatic switching between the systems.

There are also plans to produce a digital VHS video recorder. This could be a major step forward, as the reproduction from domestic video recorders leaves much room for improvement. It all depends on whether they can digitize the main noise and distortion producing areas. Principally, these are in the recording process itself and with present technology digital video recording using the VHS format seems very unlikely.

As for those future gimmicks, the frame store and "smart TV" are among these giants, either will not be available for some time. Existing European teletext systems (except the French Antiope) are now well in the future and present sets will have the satisfaction of being in at the start of a new technology, especially as it includes automatic switching between the systems.

It appears that digital TV — along with about practically everything else — is the set prospect for the future. (I wonder if we will ever get crisp, clear, digital hi-fi telephone conversations with no clicks, crackles and noise?). Present purchasers of digital sets will have the satisfaction of being in at the start of a new technology, but at present there are few other compensations for the extra cost. ETI
We may be biased, but we think the majority of you will get quite carried away by John Linsley Hood's article on transistors.

I looked last month at the way in which transistors were developed and how they had evolved into their present form. I now propose to look at some of the various contemporary types.

As a working electronics engineer I tend to look unsympathetically at the propaganda of the 'back to valves' brigade. The enormous scope for circuit design now available to the electronics fraternity is due entirely to the wealth of devices at our disposal. Of course, one has to know what devices are available and how to use them properly so that they give of their best, and it is also necessary to know their individual strengths and weaknesses so that one always uses the most appropriate device for the job in hand. There are a lot of them to choose from, so let us take a look.

Small Signal Junction Transistors

These exist as small metal cans or blobs of moulded plastic with three (or sometimes four) wires, as shown in Fig. 1. There isn't much difference nowadays between the longevity and reliability of plastic and metal can encapsulations, especially since the can is often just a receptacle into which epoxy resin has been poured to hold the silicon chip in place. Metal can types, especially those which are hermetically sealed, tend to be a good bit dearer than plastic moulded types.

The chip inside the encapsulation will normally be of either the planar or the epitaxial planar type, both of which are shown in Fig. 2. Epitaxial (or epitaxial base) types have an additional thin layer of a different type of silicon grown on the chip by vapour phase techniques before the other diffusions have been made. They are cheaper and generally work better than other types and are therefore the most commonly used.

Typical power dissipations for small signal plastic transistors range from about 250 to 650 milliwatts. Metal can ones will typically handle from 300-1000 milliwatts dissipation. It is good practice to keep dissipations down to about half of the rated maximum.

Small signal NPN and PNP transistors can generally be regarded as 'maids of all work' in the small circuit field. They are easy to use, inexpensive, reasonably difficult to damage, and will work well when used within their limits. Certain types are particularly suited for use in very low-noise, low impedance applications. Because they can be used in complementary symmetry arrangements, some very crafty circuit layouts are possible. The circuit symbols for these devices are shown in Fig. 3a.

Darlington Transistors

These consist of a pair of small signal transistors coupled together in one case. They are available in NPN and PNP types and the circuit symbol for the NPN type is shown in Fig. 3b, with my own preferred symbol shown in Fig. 3c. They are similar to other junction transistors except that they have current gains of between 20 000 and 50 000 and relatively high input impedance. Typical input impedances would be from 100k to 250k for output currents of between 2 and 10mA, which is the range...
FEATURE : Real Components

Fig. 2 The construction of a typical small-signal, plastic-encapsulated transistor.

Fig. 3 Transistor circuit symbols.

Fig. 4 Cross-sectional view of an N-channel FET, showing the depletion regions which result when the device is just biased to cut-off.

Fig. 5 Cross-sectional view of an N-channel small signal junction FET.

Junction Field Effect Devices

These were the original high impedance transistor types and are represented in circuit diagrams by the symbols shown in Fig. 3d. Their physical construction is shown in Fig. 4. They differ from junction bipolar transistors in that their input terminal, the gate, is normally non-conducting. In fact, it is a reverse biased junction diode, and the only current which will flow is the normal reverse leakage current of such a diode. Typical input impedances for good quality devices of this type range from ten thousand to a million megohms.

Contrary to popular legend, these devices will not normally be damaged by static charges any more than any other small signal diode would be, so they don't need especial care in use. They come into their own where very high input impedances are needed, and where the extra cost of using a junction FET is justified—they are about five times the cost of an equivalent bipolar device. The better examples are also less noisy in high impedance circuitry than bipolar devices but one needs to choose carefully because some of the cheap and cheerful junction FETs are not very good in this respect.

Junction FETs also make good RF amplifier devices at frequencies up to about 300MHz, and can offer very low noise in this application. In circuitry, they will tend to have a lower stage gain than bipolar devices, unless a very high impedance output load is employed which usually means an active load of some kind. They have a very flat drain current/drain voltage characteristic which makes them good at rejecting HT line ripple effects, and also allows them to be used as nearly ideal constant current sources.

The chip construction of a junction FET is shown in Fig. 5. The chip acts as a thin conducting layer of P-type or N-type silicon (germanium is almost never used, though it is still used sometimes in bipolar devices), into which a depletion layer will expand, narrowing and finally cutting off the undepleted layer through which current may flow as the reverse bias potential applied to the gate is increased. Junction FETs are usually, though not always, symmetrical, so source and drain may be interchanged.

Small Signal MOSFETs

These devices, sometimes also known as insulated gate field effect transistors or IGFETs (MOSFET stands for Metal Oxide Silicon FET), have the general construct-

ETI MAY 1985
tion shown, for the wafer, in Fig. 6a. They work on the principle that if a charge (i.e., a voltage) is applied to an insulating layer, a charge of the opposite type will be attracted to the other face, as shown in Fig. 6b.

If that other face happens to lie in the body of a slice of high impedance (low impurity, or intrinsic) silicon, then current will flow in that charge layer. If the insulating layer is very thin, only a few volts need be applied to the gate in order to make current flow through the charge layer. The layer, which can be less than a micron thick, is usually made by oxidising the outer face of the silicon slice, so that a metal layer can be deposited on it without making contact. It is normally capable of withstanding an applied voltage of some 20 or 30 volts only, and can be damaged by static charges or careless handling.

In order to make these devices a little less fragile in normal day-to-day use, it is customary to incorporate on the chip a couple of back-to-back zener diodes across the gate-source connections. This reduces the input impedance to perhaps a million megohms. It is possible to get unprotected MOSFETs which have a higher input impedance, but these need careful handling.

The most common variety of small signal MOSFET is the dual gate type shown in Fig. 7. This was specifically designed as a device for RF amplification and mixing in radio and TV tuners, and is usable up to a few hundred megahertz. The second gate can be used to screen the input signal gate from the output signal on the drain, permitting stable RF amplification. In this application, it acts in a similar way to the screened-grid or RF pentode type of valve. I have shown the circuit symbol for these transistors in Fig. 3c.

All of these MOSFETs require a forward voltage applied to the gate electrode to cause them to conduct.

<table>
<thead>
<tr>
<th>Transistor Type</th>
<th>Typical Input Impedance</th>
<th>Typical Stage Gain</th>
<th>Typical Output Impedance (Common Collector)</th>
<th>Typical Maximum Working Frequency (MHz)</th>
<th>Typical Maximum Working Voltage (V)</th>
<th>Typical Maximum Working Current (mA)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal Junction Transistors</td>
<td>0.5-20k</td>
<td>40-200</td>
<td>200k</td>
<td>300MHz</td>
<td>1dB</td>
<td>150V 500mA</td>
<td>NOT VERY LINEAR WITHOUT NF6</td>
</tr>
<tr>
<td>Small Signal Darlington Transistors</td>
<td>250k</td>
<td>100-500</td>
<td>200k</td>
<td>100MHz</td>
<td>6dB</td>
<td>40V 1A</td>
<td>TEMPERATURE SENSITIVE</td>
</tr>
<tr>
<td>Junction FETs</td>
<td>1011R</td>
<td>10-30</td>
<td>10M</td>
<td>400MHz</td>
<td>2.5dB</td>
<td>30V 15mA</td>
<td>LINEAR</td>
</tr>
<tr>
<td>Dual-Gate MOSFETs</td>
<td>1012R</td>
<td>50-100</td>
<td>500k</td>
<td>500MHz</td>
<td>2dB</td>
<td>20V 20mA</td>
<td>CAN BE DAMAGED BY STATIC CHARGES</td>
</tr>
<tr>
<td>Small Power MOSFETs</td>
<td>1012R</td>
<td>50-200</td>
<td>250k</td>
<td>500MHz</td>
<td>6dB</td>
<td>100V 1A</td>
<td>CAN BE DAMAGED BY STATIC CHARGES: VERY LINEAR</td>
</tr>
<tr>
<td>Power Transistors (NPN)</td>
<td>10-200R</td>
<td>10-30</td>
<td>5k</td>
<td>40MHz</td>
<td>N/A</td>
<td>400V 25A</td>
<td>CAN SUFFER FROM 'HOLE' STORAGE EFFECTS</td>
</tr>
<tr>
<td>Power Transistors (PNP)</td>
<td>10-200R</td>
<td>10-30</td>
<td>5k</td>
<td>10MHz</td>
<td>N/A</td>
<td>100V 15A</td>
<td>SOMEWHAT SLUGGISH & SUFFER FROM 'HOLE' STORAGE</td>
</tr>
<tr>
<td>Power Darlington Transistors</td>
<td>20k</td>
<td>50-10</td>
<td>5k</td>
<td>4MHz</td>
<td>N/A</td>
<td>120V 15A</td>
<td>SLUGGISH AND SUFFER FROM 'HOLE' STORAGE</td>
</tr>
<tr>
<td>Power MOSFETs</td>
<td>100M+</td>
<td>50-10</td>
<td>10k</td>
<td>500MHz</td>
<td>POOR</td>
<td>750V 10A</td>
<td>HIGH INPUT CAPACITANCE-PRONE TO OSCILLATE IF NOT PREVENTED</td>
</tr>
<tr>
<td>Power FETs</td>
<td>10M+</td>
<td>10+</td>
<td>5k</td>
<td>100MHz</td>
<td>N/A</td>
<td>? ?</td>
<td>HIGH OPERATING CURRENT REQUIRED</td>
</tr>
</tbody>
</table>

Table 1 A comparison of the characteristics of different transistor types.
This will be positive in the case of an N-channel MOSFET (operating on a positive DC supply line) and negative in the case of the less common P-channel types. Small signal devices of this type will typically have a mutual conductance or Gm of a few milliamps per volt. This allows a simple calculation of stage gain from

\[
\text{Gain} = Gm \times RL
\]

where RL is the effective load impedance.

Recently, and to my great delight, small signal versions of the T-MOS type of power MOSFET have been introduced. These have a slightly different type of chip construction to the normal small-signal MOSFET, and I have shown this in Fig. 8. Their big advantage is that they can withstand drain voltages of up to about 100V, whereas the average dual-gate device or small signal junction FET can only cope with some 20-30V.

By comparison with bipolar transistors, MOSFETs are much more linear in their characteristics and do not suffer from operational problems such as thermal runaway and hole storage. The absence of this latter defect makes small signal TMOS devices considerably better than bipolar junction devices when used in the class A stages of audio amplifiers, as in the case of the Audio Design power amplifier shown in ETI last summer.

The circuit symbol used for the TMOS device is the same as that used for other MOSFETs except that they are only available in single gate versions.

I have shown the normal operating characteristics of the various small signal transistors in Table 1, and a group of curves showing their input voltage/output current characteristics in Fig. 9.

Bipolar Junction Power Transistors

These are heavier duty versions of the small signal transistors we have already come across, and range in current handling capacity from an ampere or so for some of the small plastic encapsulated types with a metal cooling tag to 400 amperes in the case of some of the big industrial devices.

Permitted dissipations, with adequate heat-sinking, range from one to many hundreds of watts, and maximum collector voltages can be up to 500-1000 volts in specialised types, with 60-150V being more common in easily found devices such as the 2N3055 or 2N3442.

There isn't a big difference in price between the plastic encapsulated types and the hermetically sealed metal TO66 or TO3 versions, so, for DIY projects where one isn't buying a lot of power transistors, the metal versions may be preferable. They are certainly easier to cool.

Power junction transistors are available in NPN and PNP types, just like small signal devices, but the PNP ones tend to be a bit slower in action and a bit less burst-proof than the NPN ones. One should beware of assuming that because they are complementary in characteristics they can be treated as identical. A nice comment I once heard was that 'NPN and PNP power transistors are as similar as a man and a woman of the same height and weight'.

The transition frequency of a power transistor, that is, the frequency at which the current gain falls to unity, will usually lie within the range 4-20MHz, which is considerably lower than the transition frequency of a typical small signal device which would probably be between 100 and 400MHz. In addition to being more sluggish than small signal types, power transistors also have lower current gains. Whereas a small signal junction transistor has a typical current gain of 100-500, a power device might have a current gain of only 15-80, with the lower
values usually being found at higher collector current.

Since this can occasionally be a nuisance where high output currents are required (remember that the required drive current is the output current divided by the current gain), compound Darlington power transistors are available which have current gains in the range 1000-10,000. These are very useful, especially since they are not a lot dearer than single power transistors. However, they do have snags, of which the chief are that their output current for a given forward voltage is very temperature dependent and that they are, if anything, even more sluggish than ordinary power output devices.

![Fig. 10 Sectional views of a 2N3055 power transistor chip.](image)

The major problem with bipolar junction power transistors is that of secondary breakdown. This arises because the forward voltage of a conducting semiconductor junction — such as the base emitter junction in a transistor — drops as the temperature of the junction rises. So, in a power transistor, which has a typical chip cross-section as shown in Fig. 10, if the current flow through the transistor makes the chip get hot, it is likely that some part of its area will get hotter than others. The base-emitter junction forward voltage in these regions will then drop, and more current will flow through this region. This will cause the collector current opposite these areas to increase, which will make the areas concerned still hotter . . . and so on, until the device goes phut.

The only way to avoid this is to make sure that such transistors are always operated well within the ‘safe operating area’ specified by the manufacturers. Ensuring that this condition is always met can be tricky in equipments designed to drive dynamic loads such as loud-speakers or motors. Nevertheless, it is practicable.

Power MOSFETs

Small signal dual-gate devices have a lateral current flow, that is, in a direction parallel to the surface of the wafer, and consequently have a fairly high channel resistance. In order to use the MOSFET principle in power devices, a means had to be found of lowering the conducting resistance. The chip construction employed is shown in Fig. 8.

In this arrangement, the current flows in a vertical direction (ie, at right angles to the surface of the wafer). This means that the channel length is defined not so much by the accuracy of the wafer masking during successive diffusions as by the actual thickness of the diffused layer, which can be very narrow indeed and quite accurately controlled.

Power MOSFETs are very fast devices by comparison with the relatively sluggish bipolar power devices. They are also very much more linear, although they don’t have such a high gain. Apart from the fact that they require a forward bias of 2-3V to force them into conduction, they are similar in characteristics to output ‘Beam-tetrode’ valves, but, of course, much more compact and free from the need for a cathode heater supply.

Their main drawback is that they are inclined to see wires connected to their pins as small inductances, whereupon they will happily oscillate at a few hundred megahertz until they burn out either themselves or some other, weaker link. This can be avoided simply by the use of a suitable ‘gate stopper’ resistor, in the range 250R-2k2. They also have an absolute limit on the voltage which can be applied to their gates in either a forward or a reverse direction. This usually requires both attention to the circuit design, and some form of zener diode protection.

Cost considerations apart, I think that they have overtaken bipolar junction transistors for power amplifier output devices provided that they are correctly employed. Moreover, they are quite immune to ‘secondary breakdown’, and whilst they do have other problems, there is nothing that cannot fairly easily be avoided.

Power MOSFETs are currently available in working voltages up to 500V, and current ratings up to 50 amperes — although not both in the same package. Maximum power ratings are now up to the 150 watt mark, and rising.

Combination devices are beginning to appear, consisting of small power MOSFETs driving large power bipolar transistors, all on the same chip and in the same package. They combine the easy drive characteristics of power MOSFETs with the very high current capabilities of power transistors, mainly for uses like motor driving. Also appearing are power MOSFETs with built-in logic elements, to give muscle to low-power logic circuitry.

Power Junction FETs

These were introduced by Sony, in Japan, just before the general acceptance and widespread manufacture of power MOSFETs. They are, in effect, just bigger versions of the small signal devices described above, with higher voltage, current, and dissipation ratings. The few audio amplifiers built by Sony using these had a good reputation.

I am not sure whether the success of the ‘vertical’ power MOSFET will mean that power junction FETs (which behave in a manner very similar to that of valve triodes) have now become obsolete, or whether in the fullness of time they will be made by other manufacturers and become widely available.

I propose to look next month at the topic of transistor parameters, y, z and h, and the techniques of performance calculations using these. I will also look a bit more closely at the way in which transistors are employed, with particular reference to some of the hidden snags, since the quality of the designs which we make for ourselves will depend a lot on our ability to avoid unforeseen problems and to choose the most appropriate device and the best way of using it. After all, it often costs no more to make up a good design than a less satisfactory one, and the same components may serve for both.
ANTEX
a world of soldering

Tomorrows Soldering Technology Today.

ANTEX has a worldwide reputation for quality & service & for many years has been one of the best known & most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX Soldering Irons, the advanced design of the interface between the element & the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an XS25 watt iron can be used for tasks where a 40 watt iron would normally have been required.

ANTEX Soldering Irons exhibit exceptionally low leakage currents & hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.

Model C

Model XS

Model XS-BP
- 25 Watts. 240 volts, fitted with British Plug.

ST4 Stand
- To suit all irons.

SK5 Soldering Kit. Contains model CS 240 Volt, an ST4 Stand and solder.

SK6 Soldering Kit. Contains model XS 240 Volt, an ST4 Stand and solder.

SK5-BP and SK6-BP Soldering Kits as above with British Plug.

Model CS

Model CS-BP
- 17 Watts. 240 volts, fitted with British Plug.

TCSU-D
- Very robust temperature controlled Soldering Unit, with a choice of 30 Watt (CSTC) or 40 Watt (XSTC) miniature irons. Range 65°C to 420°C. Accuracy ± 1%.

TCSU-D
- Elegant Temperature Controlled Soldering Unit with 30 W Iron (XSTC) and built around FERRANTI custom-made ULA Range Ambient to 450°C. Accuracy ± 5°C. Zero crossing switching. Detachable sponge tray.
BI-PAC

HIGH QUALITY MODULES FOR STEREO, MONO & OTHER AUDIO & EQUIPMENT

Audio Amplifiers
- POWER O/P: MAX 15W (R.M.S.)
- Voltage: 110V
- Price: £10 each
- Set of 4: £35

Other Modules
- Cadmium Cell ORP12
- Meneetapesc Equaliser AL 750
- Audio Amplifiers AI 30A
- Normal Sensitivity

Special Offer:
- Please send self-addressed envelope
- Normal Value Over f 10 00

SEMICONDUCORS FROM AROUND THE WORLD

A collection of Transistors, Diodes, Rectifiers & Bridges as well as a first class Semiconductors for everyday use in popular Hobby Projects. These include SCR’s, Diodes, Rectifiers, Triacs & Bridges as well as a first class

SEMICONDUCTORS FROM AROUND THE WORLD

100 A collection of Transistors, Diodes, Rectifiers, & Bridges as well as a first class Semiconductors for everyday use in popular Hobby Projects. These include SCR’s, Diodes, Rectifiers, Triacs & Bridges as well as a first class

1000 Silicon Power Transistors All Per.
- Codex: Coded, Mixed Types With Data And Expt. Sheet No Re-
- projects. Fantastic Value. O/P: £15
- Price: £60 per pack

Get your preferred modules at BI-PAC and enjoy the best pricing on the market. Order No. VP56 is just £4.00.

TECABOTY

THE ELECTRONIC COMPONENTS & SEMICONDUCTOR BARGAINS OF THE YEAR!

This collection of Components and Semiconductors is the best bargain for hobbyists, it is probably the most value-packed selection ever offered, it consists of Resistors, carbon, and wire-wound of various values. Capacitors: All types, sizes and sorts including electrolytics. Potentiometers - single, dual, slider and preset. Switches: Fuses, Metalized, Wire, P.C.B. Board, Plugs, Sockets etc. GREAT VALUE Data.

If you need some Resistors, Diodes, Rectifiers, Triacs & Bridges as well as a first class Semiconductors for everyday use in popular Hobby Projects, these modules are perfect for you.

1000 Silicon Power Transistors All Per.
- Codex: Coded, Mixed Types With Data And Expt. Sheet No Re-
- projects. Fantastic Value. O/P: £15
- Price: £60 per pack

Get your preferred modules at BI-PAC and enjoy the best pricing on the market. Order No. VP56 is just £4.00.

100 All Sorts Transistors A mixed bag of NPN, PNP, SCR’s, Diodes, Rectifiers and Bridges as well as a first class Semiconductors for everyday use in popular Hobby Projects. These include SCR’s, Diodes, Rectifiers, Triacs & Bridges as well as a first class

SEMICONDUCTORS FROM AROUND THE WORLD

100 A collection of Transistors, Diodes, Rectifiers, & Bridges as well as a first class Semiconductors for everyday use in popular Hobby Projects. These include SCR’s, Diodes, Rectifiers, Triacs & Bridges as well as a first class

PIECO BUZZER

Miniature round piezo electric buzzer. White plastic. Low Power Consumption.
- Frequency: 32k
- Power Consumption: 200mW
- Size: 20mm x 20mm x 5mm
- Price: £0.99

RAPID FILTER

LOW PASS FILTER

DESIGNED TO REDUCE HUM ON THE V.H.S. TV AND RADIO BAND. Compatible with S.V.S.W.R. Less than 1.2 at 27MHz. Inductance 20pF, Impedance 100 ohm.
- Code: O/No. VP 119
- Price: £15

HIGH PASS FILTER/SUPPRESSOR

CB/TB/High pass filter. Reduces unwanted signals picked up by antennas. 40 x 25 x 17mm
- Code: O/No. VP 115
- Price: £2.75

ANTENNA SWITCH 2 and 3 WAY

Cable socket to control 10010I of tape recorder. Available with 1 or 4 pin socket. Power input - 240v AC 50Hz Out - 240v AC 50Hz.
- Code: O/No. VP 117
- Price: £1.05

LOW PASS FILTER

Designed to reduce harmonics on the V.H.S. TV and Band. Compatible with S.V.S.W.R. Less than 1.2 at 27MHz. Impedance 50 ohm
- Code: O/No. VP 116
- Price: £15

EDGE CONNECTORS

2 x 5 or 1 x 5 Pin Edge Connectors (Go). Code: O/No. AMP123(2) £1.20 each. £5 per 50 off

45p each

LOW PASS FILTER

DESIGNED TO REDUCE HUM ON THE V.H.S. TV AND RADIO BAND. Compatible with S.V.S.W.R. LESS THAN 1.2 AT 27MHz.
- Inductance 100pF, Impedance 50 ohm.
- Code: O/No. VP 116
- Price: £2.75

IC BARGAINS

40 Assorted I.C’s un-tested. Integrators, Comparators, JFET’s, TTL, Triacs, etc.
- Code: O/No. VP 110
- Price: £5

POWER SUPPLY OUR PRICE £3.75

- Code: O/No. VP 113
- Price: £3

LEARN A LINGO PILLOW SPEAKER

Build your own portable. Speaker 5.5" x 10" x 2.0" Size: 20x25x50mm. Power Consumption: 1W...
The 6802 is not a microprocessor we have paid a lot of attention to in the past. C.P. Atkins has come up with this straightforward design for those who would like to get to know it a little better.

This project was designed for people who wish to break into the world of microprocessors. Many such systems have been designed in the past but most are still too complicated for the hobbyist to understand. Other people buy expensive computer systems and find they still know very little about the micro and how it works, quite often because of a monitor program which controls every move.

The project described is very simple and of basic design yet forms a powerful base upon which to design complex systems. It was primarily designed to allow people to teach themselves microprocessor hardware design and machine-code, allowing the user not only to program the circuit but also to program the vectors. Hex displays are added so that the programmer can actually see the result. In time the user should find it unnecessary to keep designing new circuits and just reprogram the board for each requirement instead.

The drawback with this project is that every time you wish to change or modify the program you will have to reprogram an EPROM, unless you are lucky enough to have access to an EPROM emulator. Because most of the people likely to construct this project will own or have access to a computer, I have also designed an EPROM emulator which will run the board, and this will be described in a future article.

The control and timing signals for the 6802 are identical to those of the 6800 except that TSC, DBE, 01, 02 and two unused pins have been eliminated and some signal and timing lines have been added. These are RAM enable (RE), crystal connections Extal and Xtal, memory ready (MR), Vcc standby, and enable 02 output (E).

The internal oscillator is crystal controlled, but other clocks may be used if desired. The connections are for a series resonant crystal. A divide-by-four circuit is...
The board contains just seven chips. These are one 6802 microprocessor, one 2716 EPROM, one 7400, two 6821 PIA's (peripheral interface adapters) and two TIL 311 hex displays. The microwave is connected up in a minimum configuration, which is to say that there are no fancy extras.

The data bus is 8 bits wide and is connected to both PIA's and the EPROM. The 6821 has 16 bits wide. A0 to A10 are fed into the EPROM giving a memory area of 2K. A15 is taken off the bus, inverted through a two input NAND gate, and used to enable the EPROM via pins 18 and 20. The 2K memory starts at hex address 8000H. This figure is arrived at in the manner shown in Fig. 3.

<table>
<thead>
<tr>
<th>A15</th>
<th>A14</th>
<th>A13</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
<th>A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>BINARY</td>
</tr>
<tr>
<td>0</td>
<td>HEX</td>
</tr>
</tbody>
</table>

Fig. 3 Derivation of the memory start address.

The end of the EPROM is 8000 + 2K which is 877F. When the reset switch is pushed for a restart the processor looks at address FFFE but in this case it is 877F. So our restart vectors are stored in 877F and 87FF. Since the EPROM starts at address 8000H, 80H will be stored in address 877E and 00H will be stored in 87FF. Obviously if the EPROM was being programmed in an external programmer the 8000H would be the same as 0000H.

Decoding of the PIA's is made simple by the number of chip enables the 6821 has to its credit. R50, R51, and C51 are connected to A0, A1, and A2 respectively, and this is the same on both PIA1 and PIA2 (IC3, IC4). On PIA1 (IC3) the four register addresses were decoded for 5004H to 5007H, so A14 was connected to C52 and A12 is NANDed with the valid memory address line and connected to C50. PIA2 is decoded for 4004H to 4007, so A14 is connected to C50 and A15 is connected to C52. The R/W, Reset, and E02 clock signals are straightforward connections to similar pins on the micro.

That leaves the IRQA and IRQB signals. These have all been linked together and connected to the IRQ and NMI signal on the micro, just to keep things simple. The remaining 20 pins on each chip, namely P00-P07, P0B-P07, and the four control lines C1A, C1B, C2A, and C2B, are all connections to the outside world. It is from here that you will see the results of the program you have written.

To help you to see this, two TIL 311 hex displays have been linked to the P00-P07 lines of PIA 1. These displays take one four bit word and decode and drive the seven segment display. So, using your PIA data register as a memory location, you can display your answer or the result of a program. These displays are also latched so a result will stay until changed. Including these eight lines, there are thirty two input/output lines and eight control lines, which is more than you would get in a home computer.

The 6802 has an oscillator and a driver circuit, so the clock is produced simply by putting a 4MHz crystal between the XTAL1 and XTAL2 pins of the micro (pins 38 and 39). Because the circuit is so small, pull up resistors are fitted to some of the signals. In a bigger system with more chips these signals would automatically be dragged up.

For our use some signals are held high. These are RAM enable (RE), memory ready (MR) and Halt. Other signals that are in operation but are pulled-up are the interrupt lines, (pins 4 and 6), the VMA (valid memory address) signal which should be gated to the peripheral chips in some way, and the Reset signal which is also connected to a micro switch for use with restart procedures. This leaves the BA (Bus Available) signal which we are not really interested in. This is left disconnected.

Interrupts

There are three different types of interrupts: non-maskable interrupt (NMI), interrupt request (IRQ) and a software interrupt. The non-maskable interrupt is, as the name suggests, not maskable. A low on this pin causes the processor to finish its current instruction and push the return address, index register, accumulators, and condition code register on the stack. The 6802 then goes to address FFCC H to get the most significant byte. After that it goes to FFFD H to get the least significant byte. These two bytes are then loaded into the program counter and the interrupt subroutine is started somewhere in memory.

The interrupt request works a little differently because it is maskable. A low on the IRQ pin will have no effect unless the interrupt mask has been cleared. If it has been cleared an IRQ input will cause the 6802 processor to push the return address, index register, accumulators, and condition code register on the stack after it has finished its current instruction.

It then goes to address FFF8H to get the most significant byte and to FFFFH to get the least significant byte. The processor then sets the interrupt mask so that no other IRQ interrupt routine can start, after which the program counter is loaded with the contents of FFFH and FFFG H and the interrupt routine starts.

Note that NMI has a higher priority than that of IRQ. On the evaluation board NMI and IRQ are linked together and connected to the interrupt pins on the 6821 PIA's, so that all the interrupts are controlled via the PIA (peripheral interface adapters) handshake lines. These are CA1, CA2, CB1 and CB2, and these will be explained later.

The software interrupt request

Fig. 2 The interrupt vector byte locations.
The program counter is loaded also be used as a break function. The program counter is loaded with the contents of FFFAH and FFB8H and then jumps to the interrupt routine in memory. It can also be used as a break function.

Address Modes

There are seven address modes that can be used by the programmer. They are:- Accumulator addressing, immediate, direct, extended, indexed, implied, and relative addressing.

In direct addressing, the 8 bit address of the operand must be stored in the lowest 256 memory locations, from 0000 to 00FF.

Direct addressing is sometimes called base page addressing because the operand must be in the first 256-byte page of memory. The 6802 uses address locations FFB8 to FFFF to store reset and interrupt addresses so as to keep the lowest 256 addresses free for direct addressing.

An example of this mode is the ADD $09 instruction, which adds the contents of memory location 073A to Accumulator A. The advantage of this mode of addressing is that it is quicker than extended addressing because it uses two instructions instead of three.

Extended addressing uses the second and third bytes of the instruction to store the address of the operand, a rather different approach to that used in the Intel and Zilog processors. The second byte contains the high order address byte and the third byte contains the low order address byte. For example ADDA $073A would be written in three memory bytes as BB 073A. This instruction adds the contents of memory location 073A to Accumulator A. Extended addressing is used for all memory beyond $FF, but can be used for memory below that point. Note that $ also denotes Hexadecimal in 6802 assembler.

is controlled by micro-code, and registers are stored on the stack. The program counter is loaded with the contents of FFFAH and FFB8H and then jumps to the interrupt routine in memory. It can also be used as a break function.

Fig. 4 Circuit diagram of the evaluation board.
Little has been said so far about the Peripheral Interface Adaptors, of which there are two on the evaluation board. In effect, it will be these chips which the operator will program, so an insight into their operation will be useful.

An input/output port must provide a versatile programmable interface between the microprocessor and the external system devices (peripherals). These devices or peripherals can be simple lamps, switches or keyboards or more complex devices such as tape recorders, visual displays or other circuits. There are no special instructions for the PIA because, as far as the 6802 is concerned, it appears as a block of four memory addresses which can be read from or written into like any other RAM.

The addresses chosen must be consecutive and in the case of the evaluation board these addresses are 5004H, 5005, 5006 and 5007 for PIA1 (IC3). For PIA 2 (IC4) the addresses 4004, 4005, 4006 and 4007 are used. The eight data lines of the PIA are simply connected to the MPU data bus as normal and it will be noticed that several control lines are also connected between the two as discussed earlier.

Small differences aside, the PIA can be considered as two identical halves, side A and side B each having eight data (I/O) input/output lines and two special lines used for control or handshake purposes. To avoid repetition the A side only will be described.

PA0 to PA7 are data I/O lines which can be used as either inputs or outputs dependent upon how the programmer writes the initialisation routine. You could, for example, programme three lines as inputs and five as outputs. CA1 and CA2 are peripheral control lines; CA1 is always an input but CA2 can be initialised as an input or output.

There are three registers for each half of the PIA but one register serves two purposes. The Control register may cause some problems as it contains all the control flags. At this stage we are only concerned with bit 2, because it is this bit which decides which register has this memory address. When bit 2 is 0, the address 5004 (4004 for PIA 2) belongs to the direction register. When bit 2 is 1 the address 5004 belongs to the data register. The remaining bits are all connected with the behaviour of the control

...
The addresses are well thought out in that, when the reset switch is operated, all the registers in the PIA are reset to zeros. This includes bit 2 in the control register. So the first time address 5004H is used, it will address the direction register. After this the programmer will ensure that bit 2 is set to 1, so that any further references to 5004H will address the data register. It is most unlikely that you will have to change the direction register contents in the same program but if so, it would be necessary to clear bit 2 first and reset it again afterwards.

As discussed earlier, I/O lines can be programmed as input or output in any configuration. For example if the direction register was initialised with 0000 1111, PA0-PA3 would be inputs and PA4-PA7 would be outputs. The register is available to the programmer as address 5004H.

Once initialised, the data register is the one most used by the programmer and therefore has priority over the direction register which also shares memory address 5004H.

Unfortunately more has to be said about the control register flags. The main differences between sides A and B of the PIA are here and this is best shown in Fig. 8. Bit 2 has already been discussed, but every other bit in this register also has some effect upon the behaviour of the peripheral control lines CA1, CA2, CB1 and CB2. A detailed explanation can be found on a Motorola 6821 applications sheet.

CA1 and CA2 only are shown in Fig. 8, but side B is the same (CB1 and CB2). The illustration may be a bit confusing, and for this reason some examples will be given later. For simple programming little knowledge is needed of the control register, but as you progress an understanding will become essential.

Construction and Testing

The complete project is contained on one, small, double-sided PCB. The tracks are necessarily very close together so great care must be taken during soldering to ensure that adjacent tracks are not accidentally bridged. Terminal pins are used for the external connections and these should be pushed through the board before any other components are installed. IC sockets are recommended and these should be soldered into place next, followed by the switch, the resistors and the crystal. Finally solder the display onto the board and then insert the ICs into their sockets, taking care that they are the right way around.

When the board has been assembled, check it carefully and then connect up the 0 and 5V rails. The TIL 311 displays should illuminate and show the letters FF. If all is well, the next stage is to try a test program.
To do this you will need either a programmed EPROM or an EPROM emulator. For those who do not already have one, an EPROM emulator design will be described in a follow-on article, but other emulators such as the one described in our July and August issues last year should be suitable. Constructors who do not have an emulator but do have access to an EPROM programmer and a UV eraser can simply load the test program onto a 2716 EPROM.

Remember that complicated PIA, and note that it was initialised by two simple lines using the index register.

![Flow diagram of programs 1 (left) and 2.](image)

Program 1

Program 1 is very simple and should cause the displays to show 55 when the reset switch is pushed. If this fails to work check the program. If it still does not work, check the signals described earlier with an oscilloscope. You need not worry about the complicated waveforms, just check that a switching signal is present or, in some cases, that the signal is held high.

Once this works you are ready to start writing your own programs.

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>8E 000F</td>
</tr>
<tr>
<td>0003</td>
<td>CD FF04</td>
</tr>
<tr>
<td>0006</td>
<td>FF 5006</td>
</tr>
<tr>
<td>0009</td>
<td>8E 55</td>
</tr>
<tr>
<td>000B</td>
<td>B7 5006</td>
</tr>
<tr>
<td>000E</td>
<td>3F</td>
</tr>
<tr>
<td>07FE</td>
<td>80 RESET VECTOR</td>
</tr>
<tr>
<td>07FF</td>
<td>00 RESET VECTOR</td>
</tr>
</tbody>
</table>

Program 2

Program 2 is very simple and should cause the displays to show 55 when the reset switch is pushed. If this fails to work check the program. If it still does not work, check the signals described earlier with an oscilloscope. You need not worry about the complicated waveforms, just check that a switching signal is present or, in some cases, that the signal is held high.

Once this works you are ready to start writing your own programs.
WOULD YOU HAVE THE COURAGE TO JOIN DATELINE?

If all your friends are married, you're not meeting anyone at work, you've moved to a new area or you are newly single again, joining Dateline is really just a sensible way of meeting lots of compatible people, and perhaps someone special...

WHO JOINS DATELINE?

People just like you! Thousands of people join Dateline each month so you probably already know people who have used the Dateline service or met through Dateline.

People who join Dateline come from all over the country—from farms, villages, market towns and cities. The problems of meeting people are not confined to any particular locality, occupation or class. What all Dateline members have in common is an optimistic, positive attitude in tackling the problem practically.

Most people at some point in their lives have felt the need to meet new people, get out of a rut, or find someone special, and there really are very few ways you can meet the kind of people you want to meet. Dateline is simply the most honest, realistic way of being introduced to a wide choice of compatible partners.

HOW DOES DATELINE WORK?

Forget fears of cold-hearted computers! You choose the sort of people you want to meet. When you join Dateline you will complete a very comprehensive questionnaire. Information from this will be locked into our computer memory, and the matching process, in which your data is compared with that of every Dateline member of the opposite sex, will begin. The most compatible matches will be found and their details forwarded to you. You will also be matched to other compatible people and they will contact you, and so a whole new social life begins.

IS DATELINE SUCCESSFUL?

Many thousands of couples like those on this page, have met and married through Dateline. The Dateline questionnaire is designed to match couples through many facets of physical type, personality and life-style; not just matching those who want to meet people similar to themselves, but those who also want to meet someone different.

If you think you would like to join the thousands of people all over the country who have been finding a new social life or love and happiness through Dateline, simply complete the questionnaire below. He will send you confidentially and completely free, full details about Dateline and how it works, and details of just one of the Dateline members who are compatible with you. Send to: Dateline Computer Dating. 23 Abingdon Road, London W8. Tel: 01-938 1011.

Computer Test to Find Your Ideal Partner.

I am over seventeen and would like you to send me completely free and without obligation, a description of my ideal partner. Plus a free full colour brochure and lots more information about Dateline. I enclose two first class stamps.

Your sex: Male F Female Age: Your Height: Your Age: Age you would like to meet Min Max

Christian Name ____________________________
Surname ____________________________
Address ____________________________
Nationality ____________________________
Religion ____________________________
Occupation ____________________________

Send today to: Dateline, Date ETB 23/25 Abingdon Rd, London W8 01-938 1011
Master
Electronics - Microprocessors
- Now! The Practical Way!

- Electronics - Microprocessors
- Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

New Job? New Career? New Hobby?
SEND THIS COUPON NOW.

FTREEI
COLOUR BROCHURE
OR TELEPHONE 0506 2687 2590
OR TELEX 22758 124 HR SERVICE

ADDRESS
It-

Other Subjects
like
tional National Sarlio& Modcxmdcs Mod PO. Bcce7. 'llagnracuth, Devan, N 14 OHS

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTHWAMPTON
S01 5AP
TEL: 0703 780084

MICRO PROCESSOR ENG LTD
21 HANLEY ROAD SHIRLEY
SOUTH
Make programming even exotic EPROMs easy with our upgraded Universal EPROM programmer. Mike Bedford (hardware) and Gordon Bennett (software) produce a software-driven version of this invaluable device in both upgrade and self-contained form.

As far as the world of microelectronics is concerned, a lot of water can pass under the bridge in 18 months. In August 1983, a design for a universal EPROM programmer was published in ETI and, as its name suggests, this piece of equipment allowed virtually all the common single supply EPROMs to be programmed. At this time the largest device available was the 27128, only preliminary data being available for the 27256. In the intervening period the 27256, 27512 and 27513 have become available and since they use a different programming voltage to the previous devices may not be programmed by the original programmer. The 2764A and 27128A have also made an appearance, these being lower programming voltage versions of the 2764 and 27128 respectively. This being the case, it seemed appropriate to introduce a MkII version of the EPROM programmer to support these new devices and at the same time make some other improvements. We have produced an upgrade board to allow existing users of the MkI board to enhance it and also a single MkII board for those without the earlier board. The MkII Universal EPROM Programmer is capable of programming a comprehensive range of single supply EPROMs varying in size from the 2758 to the 27512 and 27513 and including the 27-series, 25-series and the Motorola 68-series as well as a number of EEPROMs. In addition it allows the 2764 and larger devices to be programmed by the intelligent programming method hence reducing programming times drastically. All supply voltages have been made switchable under program controls so there is no need for a switch on the programming console. Two LEDs have been provided to indicate the current status of the programmer - in particular whether or not it is safe to remove the device. A modification to speed up EPROM reading has been made and, as a final enhancement, it is easier to set up since the adjustment of the programming voltages has been made much finer and the potentiometers are now more accessible when the board is rack-mounted.

In both versions, the programmer is fully programmable and everything is controlled by software. It is designed around the Tanbus specification which means that it should be an easy task to interface it to any 6502 or 6809 based system and users of a Tangerine computer will be able to plug the programmer directly into the system rack.

New Devices

Before describing the new programmer it is helpful to outline the advances in the realm of EPROMs which have made this upgrade necessary. Table 1 shows the pin-outs of all the devices which are supported. A similar illustration was included with the original article showing how standard pin-outs made designing a universal programmer relatively easy. The new devices conform to the same standard and also have JEDEC pin-outs.

This family of devices must now include the largest single page EPROMs which will be used with 8-bit processors, as the capacity of a 27512 is 64K bytes — in other words, it occupies the entire memory map of an 8-bit system. The 27513 has the same capacity as the 27512 but the memory is organised differently having 4 pages of 16K bytes each and therefore representing the first of a new class of devices — paged EPROMs. To specify the page to be accessed a write operation is performed. The least significant 2 bits of the following data word...
then specify the page number.

The major fact about the 27256
and 27512/2513 which makes
them incompatible with the
original EPROM programmer
is that the programming voltage is
12.5V. This follows the trend of
decreasing programming voltages
as the capacity increases and the
silicon die size decreases, the
devices up to and including the
2732 using 25V and the 2764 and
27128 using 21V. In addition, versions
of the 2764 and 27128
which also use the new 12.5V Vpp
have been released. These are
known as the M2764A and
27128A.

Intelligent programming is
possible on all devices from the
2764 upwards. In this case, 1ms
programming pulses are applied to
the EPROM until it verifies, at
which point a further pulse is
applied. This contrasts with the
standard 50mS pulse.

Another facility introduced on
some of the newer devices is re-
ferred to as 'intelligent identifier'
or 'auto select mode'. After applying
+12V to A9, where this facility is
available, one of two bytes may
be read out depending on the
logic level of A0. These two bytes
contain codes identifying both the
device type and the manufacturer.
It was decided not to implement
this mode for two reasons. Firstly,
the facility was designed for indus-
trial production programming
where the process is often carried
out by those with a minimal
knowledge of electronics. By con-
trast, the home user will probably
be clear about what device type is
being used. Secondly, not all de-
vices include the facility, and it is
reasonable to assume that applying
+12V to A9 of EPROMs with-
out intelligent identifier will be
detrimental. In an environment in
which all devices from the 2758
upwards are to be programmed,
the provision of the feature will
increase the likelihood of destroy-
ning EPROMs.

The price of EPROMs has been
influenced by the fact that quartz
windows could only be fitted in
 ceramic packages. Recent advances
now allow a seal to be
made between quartz and plastic,
and, as a result, some manufac-
turers are releasing EPROMs in
plastic packages at a significant
cost reduction. Over the past few
years, the price of EPROMs has
already reduced to the point where
they are comparable to the price
of ROMs. Since a large proportion
of the remaining cost is due to the
quartz window, manufacturers have
also started producing EPROMs
without the quartz window at an
even lower price.

The lack of quartz window
means that these devices cannot
be exposed to ultra violet and
erased. They are referred to as pro-
duction EPROMs or OTP EPROMs
(One Time Programmable). Since
these EPROMs are electrically
identical to standard EPROMs,
they are programmed in exactly
the same way.

Some EPROMs are now avail-
able not only in the standard 24 or
28 pin DIL (dual-in-line) packages
but also in the newer, smaller,
LCC (leadless-chip-carrier) pack-
ages which have pins spaced at

Table 1 Pin-outs of all devices supported by the programmer.
PROJECT: EPROM Programmer MkII

Table 2 Pin-outs of all LCC devices which could be supported by the programmer.

0.05" on 4 sides of a rectangle and so allow a much greater PCB packaging density. Internally these devices are identical to conventionally packaged EPROMs and as a result the programming requirements are the same. To handle them, the EPROM programmer only needs to be provided with a different socket on the console. Table 2 shows the pin-out of those devices currently available in this package. It should be noted that the 25 series devices differ from each other and the 27 series devices in this configuration more than in the standard DIL package. Accordingly, it would be advisable to consider programming only the 27 series EPROMs in LCC configuration or to provide a number of different sockets.

Similar Devices
The term EPROM is usually taken to mean UV erasable PROM, but there is a closely related family of devices — electrically erasable programmable read-only memories, known as EEPROMs or E2PROMs. At the time of designing the original programmer, the extra complexity involved in supporting EEPROMs was not considered justifiable in view of their high cost. The price of EEPROMs has not dropped drastically and they are, therefore, still quite rare among home computer users. But numerous enhancements to these devices have been made and accordingly they may be supported by the MkII programmer. The fact which complicated the programming of the original Intel 2816 (2K x 8 EEPROM) was the fact that it used a 21V programming voltage which had to be shaped by an RC circuit to give an exponential rise. The next development still used 21V for programming but the waveform shaping requirement was relaxed, the only restriction then being on the fall time of the Vpp pulse. The latest EEPROMs don't even require a high programming voltage, internal circuitry generating this from the +5V supply. In addition, there are now some devices which support these very latest programming techniques but are compatible with earlier devices, accepting either 21V or TTL programming levels.

EEPROMs have also developed in the method of programming. On the first devices, a byte could only be programmed if it was first erased, either by writing an FF(HEX) to that byte or by using the complete chip erase facility. On the more recent devices, bytes may be directly re-programmed without the need for erasing first. Programming times and the number of programming cycles have also seen improvements. The first 2816 required 10mS programming pulses whereas some of the newer versions will programme in 2mS per byte. The technology used in EEPROMs, HMOS-E FLOTEX cell design, has an inherent limitation on the number of programming cycles. The original EEPROMs had a lifetime of 10,000 cycles but 1 million cycles is now not uncommonly quoted.

Unfortunately, there isn't the same degree of standardisation among EEPROMs as with UV EPROMs. Although a 2816 is always a 2K x 8 EEPROM, different manufacturers' devices with this number may represent a number of different points within the progression outlined above. In addition 2816A, 2817, 2817A and 5213 are variations on the same theme by various manufacturers. Because of these complications, we won't give a list of EEPROM type numbers which are supported by the MkII Universal EPROM programmer. It will, in fact, handle all those 2K x 8 devices which feature TTL level programming. Some 8K x 8 EEPROMs are also becoming available — for example the 2864 and 52B33. Where these are programmed by TTL levels, they may also be supported by the MkII programmer.

Mark II Board — Hardware
This section refers to either the MkII EPROM programmer or the MkI with the addition of the upgrade board, the hardware of these two configurations being identical with one exception. The MkI board has 4 x 6821 PIAs, of which 2 are used by the programmer for control functions leaving 2 free for general use. The MkII board utilises 3 PIAs for controlling the programmer, the 4th having been omitted in order to fit the extra circuitry onto the PCB. The upgrade board makes use of the 3rd PIA on the MkI board but does not, however, affect the 4th one which means that this configuration gives a spare PIA, the true MkII board not having this facility. (See 'How It Works' for part
they. This happens where a particular pin can take either a logic level or a Vpp voltage. In such cases, although this wouldn't normally be required, it would not be harmful to set both bits high at the same time since the two corresponding outputs are isolated by use of diodes.

Finally, in the 6821 PIA, the data direction registers are double addressed with the corresponding I/O port register. Bit 2 in the appropriate control register determines which of these two registers actually will be addressed, a 1 selecting the I/O port register and a 0 selecting the data direction register. Once the data direction register is selected, setting a 1 to a bit in this register selects the corresponding bit in the I/O port to be an output whereas a 0 selects the I/O port bit to be an input.

The Upgrade Board — Construction

Construction of the upgrade board for the MkII programmer is straightforward and no special comments need to be made. Interfacing to the main board and setting up do require explanation. The procedure is as follows:

A. Remove the regulator IC10 from the main board. This may be re-used as IC12 or IC13 on the upgrade board.
B. Remove R4, R5 and C1 from the main board. RV1, RV2, RV3, Q3, Q4 and R6 may also be removed if required.
C. Remove SW1 if fitted to the main PCB or if not fitted remove the two wire links in its place.
D. Remove D1 on the main board. E. Add D3 to the main board, connecting the cathode to SK3 pin 1 and the anode to IC9 pin 9.
F. Replace C5 (10nF) by 100n on the main board.
G. Physically fix the upgrade board to the main board by use of three plastic bolts. If the fixing holes marked on the upgrade board are used they will align with 'track-free' areas of the main board. The photographs with this article illustrate the means of interconnection.
H. Make the connections between the two boards as shown in Table 4.

Table 3 Memory map of the programmer.

<table>
<thead>
<tr>
<th>IC8</th>
<th>CONTROL REGISTER A</th>
<th>0</th>
<th>OUTPUT</th>
<th>1</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PORT A DATA REGISTERS</td>
<td></td>
<td></td>
<td>A15</td>
<td></td>
<td></td>
<td>A12</td>
<td></td>
<td></td>
<td>A8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTROL REGISTER A</td>
<td>1</td>
<td>—</td>
<td>CA2</td>
<td></td>
<td></td>
<td></td>
<td>A6</td>
<td></td>
<td></td>
<td>A8</td>
</tr>
<tr>
<td></td>
<td>PORT B DATA REGISTERS</td>
<td>2</td>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A7</td>
<td>A6</td>
<td>A4</td>
</tr>
<tr>
<td></td>
<td>CONTROL REGISTER B</td>
<td>3</td>
<td>OUTPUT</td>
<td>D17</td>
<td>D18</td>
<td>D17</td>
<td>D16</td>
<td>D15</td>
<td>D13</td>
<td>D12</td>
<td>D11</td>
</tr>
<tr>
<td></td>
<td>PORT C DATA REGISTERS</td>
<td>4</td>
<td>OUTPUT/DAC</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>CONTROL REGISTER A</td>
<td>5</td>
<td>—</td>
<td>CA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A6</td>
<td>CA1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PORT D DATA REGISTERS</td>
<td>6</td>
<td>OUTPUT</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>CONTROL REGISTER B</td>
<td>7</td>
<td>—</td>
<td>CB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CB1</td>
</tr>
<tr>
<td></td>
<td>PORT A DATA REGISTERS</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>CONTROL REGISTER A</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>PORT D DATA REGISTERS</td>
<td>10</td>
<td>OUTPUT</td>
<td>22</td>
<td>GE</td>
<td>REG</td>
<td>LENG</td>
<td>GREEN</td>
<td>28</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Memory map of the programmer.
J. If using a programming console remove the switch, connecting the two wires which this interrupted directly to the appropriate ZIF socket pins and add 1 green and 1 red LED which are wired to connector A on the upgrade board via a 4-way cable as follows:

- `A/1` Green LED anode
- `A/2` Green LED cathode
- `A/3` Red LED anode
- `A/4` Red LED cathode

K. Installation is now complete and Vcc and Vpp voltages need to be set up as follows after first temporarily removing the wires to connector C:

1. Apply +5V to C7 only and adjust RV4 to give +5V on B4.
2. Apply +5V to C6 only and adjust RV5 to give +12.5V on B4.
3. Apply +5V to C5 only and adjust RV7 to give +21V on B4.
4. Remove +5V from C5 and adjust RV8 to give +25V on B4.
5. Apply +5V to C4 only and adjust RV9 to give +26V on B2.

<table>
<thead>
<tr>
<th>UPGRADE BOARD CONNECTOR</th>
<th>MAIN BOARD DESTINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/1</td>
<td>IC7 PIN 14</td>
</tr>
<tr>
<td>C/2</td>
<td>IC7 PIN 13</td>
</tr>
<tr>
<td>C/3</td>
<td>IC7 PIN 12</td>
</tr>
<tr>
<td>C/4</td>
<td>IC8 PIN 17</td>
</tr>
<tr>
<td>C/5</td>
<td>IC8 PIN 15</td>
</tr>
<tr>
<td>C/6</td>
<td>IC8 PIN 16</td>
</tr>
<tr>
<td>C/7</td>
<td>IC8 PIN 14</td>
</tr>
<tr>
<td>C/8</td>
<td>IC7 PIN 11</td>
</tr>
<tr>
<td>C/9</td>
<td>IC7 PIN 10</td>
</tr>
<tr>
<td>C/10</td>
<td>IC8 PIN 12</td>
</tr>
<tr>
<td>B/1</td>
<td>IC11 PIN 13</td>
</tr>
<tr>
<td>B/2</td>
<td>NO CONNECTION</td>
</tr>
<tr>
<td>B/3</td>
<td>SK3 PIN 28</td>
</tr>
<tr>
<td>B/4</td>
<td>O/P (CENTRE) OF IC10</td>
</tr>
<tr>
<td>B/5</td>
<td>SK3 PIN 1</td>
</tr>
<tr>
<td>B/6</td>
<td>OV (IC11 PIN 11)</td>
</tr>
<tr>
<td>B/7</td>
<td>SK3 PIN 22</td>
</tr>
<tr>
<td>B/8</td>
<td>+5V (IC11 PIN 13)</td>
</tr>
</tbody>
</table>

Table 4 Connections between the upgrade board and the original programmer.

Fig. 1 Circuit diagram of the upgrade board (note component numbering).
HOW IT WORKS

Readers should note that the component numbers on Fig. 1 — the upgrade board circuit diagram — do not start at 1. Instead they follow on from the component numbers on the main MkI board. The following description assumes a knowledge of the workings of the MkI board to which the upgrade board is connected and a description of which may be found in ETI August 1983.

The upgrade board supplies Vpp (selectable to +5V, +12.5V, +21V or +30V), Vcc (selectable to +5V or +6V), a replacement driver for OE (the active low output enable line) and drivers for two LEDs. The old part of the Vpp circuitry which generates an unregulated +30V by use of a 78540 has been retained. However, the regulator consisting of a LM317 MP and a resistor chain, in which portions of the chain could be switched out by transistors, has been replaced. The new regulator is similar to that on the Mkl board but differs in two respects. Firstly each variable resistor in the chain has a fixed resistor in series with it, hence giving a more accurate means of setting up the voltages.

Secondly an extra resistor portion and transistor have been added to allow the 12.5V programming voltage to be selected. This regulation circuit comprises IC2, Q13, Q14, Q15 and the associated passive components. An unswitched Vpp is passed to various Vpp circuits with a +8V supply which is regulated to either +5V or +6V for Vcc. This regulator circuit is built around IC13 and is a similar configuration to the Vpp regulator. Transistors Q11 and Q12 provide a switched Vcc supply which replaces the original, manually switched supply to EPROM pin 2.

It should be noted that the Vcc supply to pin 24 on the EPROM need not come from this circuitry as no 24pin devices feature intelligent programming, so +5V will always be used.

On the original board a 10nF capacitor, C5, was connected between OE/ Vpp on pin 22 of the EPROM socket and 0V. This was a compromise between the 100nF suppression capacitor actually specified in the 2732 data sheet and a value which wouldn't slow down logic edges too much. The new circuit the recommended 100nF capacitor is used but logic signals are not significantly slowed down as a result of the Q21/Q22 combination which provides a high current OE signal capable of charging the capacitor rapidly and Q24 which provides a logic low signal bypassing the suppression capacitor. Capacitor C5 should be changed on the original board.

Transistor Q23 provides a NOR function, turning Q24 on when neither of the signals driving EPROM pin 22 are present.

Transistors Q17, Q18, Q19 and Q20 simply form two darlington drivers with built-in current limiting resistors to drive two LEDs indicating programmer status. In addition to the extra circuitry on the upgrade board an extra diode, D3, is added to the main board. This is to provide the extra address line A15 to pin 21 of the EPROM socket, the diode being required to isolate it from the Vpp supply which can also be present on this pin. This diode — an OA91 — should be fitted between SK3 pin 1 (cathode) and IC9 pin 9 (anode).

PARTS LIST

RESISTORS (all ¼ W, 5% unless stated)

- R17, 18, 35, 37, 43, 45
- R19, 22
- R20, 23, 44, 46
- R21, 24
- R25, 29
- R26, 27
- R28, 36, 38
- R30
- R31, 32, 33, 34
- R39
- R40
- R42
- R47
- R4, 8, 9
- R5, 6, 7

CAPACITORS

- C5 (replace on main board)
- C11, 13
- C12, 14
- C15
- C16

SEMICONDUCTORS

- IC12, 13
- IC14
- Q9, 11, 13, 14, 15, 16
- Q17, 18, 19, 20, 21
- Q32
- Q16, 12, 22
- Q13
- Q10, 24
- Q11, 23
- Q12
- Q15

MICROSEMI 100nF

- D1, D4, D5
- D3 (fit on main board)

MISCELLANEOUS

- L2 31uH, 13 turns 22
- SWG on RM6 pot core (AI = 250)
- Connectors A, B, C 0.1” pitch right angled molex connectors 4, 5, 6 and 8 ways respectively.
- PCB, three plastic bolts and nuts for attaching to main PCB.

BUY LINES

All components are standard. The biggest problem may be in finding a 28-pin ZIF socket. These are supplied by Watford Electronics and Technomatic. Electrovalue and Maplin will supply a OR22 wirewound resistor and Electrovalue will also supply the RM6 pot cores. The Molex connectors are standard inter-PCB connectors and the Euro connector for the MkII board likewise.

The version of the LM317 you should look for is one in a TO 202 or TO 220 case and not a TO 220. However, the regulator consists of two ICs and you can get a TO 202 in a TO 202. However, the original board a 10nF capacitor, C5, was connected between OE/ Vpp on pin 22 of the EPROM socket and 0V. This was a compromise between the 100nF suppression capacitor actually specified in the 2732 data sheet and a value which wouldn't slow down logic edges too much. The new circuit the recommended 100nF capacitor is used but logic signals are not significantly slowed down as a result of the Q21/Q22 combination which provides a high current OE signal capable of charging the capacitor rapidly and Q24 which provides a logic low signal bypassing the suppression capacitor. Capacitor C5 should be changed on the original board.

Transistor Q23 provides a NOR function, turning Q24 on when neither of the signals driving EPROM pin 22 are present.

Transistors Q17, Q18, Q19 and Q20 simply form two darlington drivers with built-in current limiting resistors to drive two LEDs indicating programmer status. In addition to the extra circuitry on the upgrade board an extra diode, D3, is added to the main board. This is to provide the extra address line A15 to pin 21 of the EPROM socket, the diode being required to isolate it from the Vpp supply which can also be present on this pin. This diode — an OA91 — should be fitted between SK3 pin 1 (cathode) and IC9 pin 9 (anode).

PROJECT: EPROM Programmer MkII

Over the next two months, we'll be dealing with an entirely self-contained version of the MkII and with the software to drive the upgrade.
Next month's ETI leads off with a major feature on TIME DOMAIN ANALYSIS, an invaluable technique for circuit design and analysis brought within the reach of everyone with a home micro. Our comprehensive feature, complete with program listings in standard BASIC, explains the technique and how to use it.

A major constructional project is the SECOND PRO- CESSOR FOR THE ACORN ELECTRON. Second processors are among the most exciting add-ons for computers and this feature explains the whys and wherefores in general terms before leaping into the particular circuit. Of course, the board can be adapted to suit any 6502/6510 computer.

Meanwhile, on the analogue front, John Linsley Hood continues his series on THE REAL COMPONENTS, explaining the y, z and h characteristics of transistors and how to handle them in designing circuits. Linsley Hood also unveils a LOW-COST ACCESSORY which will bring near-professional facilities to the humblest of PA, broadcast, domestic and studio systems.

In addition, we include the second part of the EPROM PROGRAMMER UPGRADE - the completely self-contained board; an EPROM EMULATOR designed for use with the 6802 board featured in this issue, but adaptable to any system; a HEAT PEN add-on for digital voltmeters, which will convert almost any DVM into a multi-purpose thermometer; TECH TIPS; READ/ WRITE and the new ETC section, featuring COLUMNS, REVIEWS and SCRATCH PAD, the ETI diary.

All the usual ETI features in a jam-packed issue. It's on sale on MAY 3RD - SO AVOID DISAPPOINTMENT AND PLACE YOUR ORDER NOW.
BEGINNERS GUIDE

- Beginner's Guide to Basic Programming £5.85
- Beginner's Guide to Digital Electronics £5.85
- Beginner's Guide to Electronics £5.85
- Beginner's Guide to Integrated Circuits £5.85
- Beginner's Guide to Computers £5.85
- Beginner's Guide to Microprocessors £5.85

COOKBOOKS

- Microprocessor Cookbook M. Hordeski £9.50
- IC Op Amp Cookbook Jung £15.10
- Active Filler Cookbook Lancaster £14.30
- TTL Typer Cookbook Lancaster £12.50
- CMOS Cookbook Lancaster £13.50
- TTL Cookbook Lancaster £13.50
- Micro Cookbook Vol.1. Lancaster £13.50

ELECTRONICS

- Principles of Transistor Circuits Amos £9.00
- Design of Active Filters with practical aspects Berlin £11.30
- Electronic Devices & Circuit Theory Boylstad £14.45
- Principles of General Instrumentation De Sa £11.45
- Giant Handbook of Computer Software £12.95
- Giant Handbook of Electronic Circuits £21.00
- Giant Handbook of Electronic Projects £13.60
- Electronic Logic Circuits Gibson £8.45
- Analysis and Design of Analogue Integrated Circuits Gray £42.50
- Basic Electronics Grob £13.00
- Introduction to Digital Electronics & Logic Joynsen £9.25
- Electronic Testing and Fault Diagnosis Lovesey £7.85
- Electronic Fault Diagnosis Lovesey £8.25
- Essential Electronics A-Z Guide Lovesey £7.50
- Microelectronics Digital & Analogue circuits and systems Millman £12.25
- Practical Solid State Circuit Design Olesky £28.50
- Power PETs and their application Carter £10.80
- Electronic Drafting and Design Raskkhod £28.65
- Electronic Fault Diagnosis Sinclair £4.50
- Physics of Semiconductor Devices Sze £16.90
- Digital Circuits and Microprocessors Taub £11.25
- Active Filter Handbook £9.50
- Designing with TTL Integrated Circuits Texas £15.25
- Transistor Circuit Design Texas £15.20
- Digital Systems: Principles and Applications Tocci £14.85
- Master Handbook of Telephones Tilster £12.50

COMPUTERS & MICROCOMPUTERS

- From BASIC to PASCAL Anderson £11.30
- UNIX - The Book Bangham £9.00
- 280 Microcomputer Handbook Barden £15.05
- Digital Computer Fundamentals Barter £11.75
- Microprocessor Interfacing Carr £8.50
- Microcomputer Interfacing Handbook A/D & D/A Carr £10.50
- Microcomputers/Microprocessors - An Intro Glone £36.50
- Troubleshooting Microprocessors and Digital Logic Goodman £11.25
- Let your BBC Micro Teach you to program Hartnell £7.95
- Programming your ZX Spectrum Hartnell £8.50
- How to Design, Build and Program your own working Computer System Holland £10.50
- BASIC Principles and Practice of Microprocessors £8.00
- Microcomputer Builders’ Bible Johnson £14.75
- Digital Circuits and Microprocessors Johnson £16.95
- PASCAL for Students Kemp £8.99
- The C - Programming Language Kernighan £24.45
- Guide to Good Programming Practice Meek £9.50
- Theory and Practice of Microprocessors Nicholas £11.45
- Microprocessor Circuits Vol.1. Fundamentals and Microcontrollers Noll £9.80

- Beginner's Guide to Microprocessors Parr £5.85
- Microcomputer Based Design Peatman £11.75
- Digital Hardware Design Peatman £10.75
- BBC Micro Revealed Ruston £6.50
- Easy Programming for the ZX Spectrum Stewart £7.45
- Microprocessors Handbook Stout £46.45
- Microprocessor Design and Applications Stout £46.45

Please send me the books indicated. I enclose cheque/postal order for £...... please make cheques payable to Technical Book Service. Payment in sterling only. Prices include postage and packing. I wish to pay by Access/Barclaycard. Please debit my account.

Signed

Name

Address

E.T.I. MAY 1985
LARGE DIGIT SCOREBOARD

Do your achievements go unnoticed? Build Ken Wood's big, bright display board and make sure that everyone knows the score.

This scoreboard has been designed for use in a gymnasium or other large space and uses mains light bulbs to provide a display which is large enough to be seen from a distance and bright enough to be read easily in daylight. The scores or other numerical information are normally entered via thumbwheel switches but the system could also be adapted to accept data from a microcomputer. The basic model has a four digit display which could be used, for example, to show a two-digit score for each of two teams, but the number of digits can easily be increased to suit other applications.

The Circuit

The heart of the project is a digit driver module. This uses a 7447A (BCD to seven segment decoder) to drive a digit composed of mains lamps via seven triacs. The BCD information is fed serially through a shift register, and picked off the drive the display.

One module is used per digit in the display, and they are chained together so that they form a long shift register of four bits per digit. The control logic is isolated from the mains by an opto-isolator module at the start of the chain, and only one of these is needed for the display.

The third module is a power supply. This provides two separate 5V supplies, one for the circuitry in the display drivers and the other for circuitry isolated from the mains by the opto-isolator module. The supplies shown only offer up to 100mA, so for displays with a lot of digits a different regulator may be needed.

Finally, there is a controller module. This takes data from up to

Fig.1 Block diagram of the complete system.
The power supply is in two sections, each of which has a bridge rectifier and a smoothing capacitor followed by a voltage regulator (ICs 9 & 10). C6 and C8 cut out any high frequency spikes and protect the regulators from oscillation. Each section is also fitted with a LED and current limiting resistor as a visual check of operation.

The section that supplies power to the control electronics has its OV connected to earth as a safety precaution, and also provides mains sync pulses to the controller module. The bridge rectifier BR2 is isolated from the smoothing capacitor with a diode D1, so a full wave rectified AC waveform appears at the junction between D1 and R12. This is fed to TR1, which is driven hard on for all but the brief interval when the waveform is at less than 0.7V, 100 times a second.

The mains sync pulses are not necessarily at the zero crossing point of the mains because of the phase shifts that can occur through the transformer. To overcome this, they are fed into a monostable IC1a which is trimmed so that its output is truly at the mains zero crossing point. This is fed into a second monostable whose output is gated with the controller blanking output to hold the triacs off for a period into the mains half cycle. This achieves the dimming function.

IC2a, 2b, 2c, and 3a produce a square wave clock at about 50kHz. It is also used to control the operation of the remainder of the module.

IC4a, 4b, and 6a produce a pulse lasting for exactly one clock period at each mains crossing. This is used to reset IC7, a four bit counter. The counter controls IC8, an eight input multiplexer, to sequence through the bit inputs from the thumbwheel switches. Output D from the counter selects one switch bank or the other via IC2d.

IC5a, IC5b, and IC5c produce a clock signal that is used to control the operation of the module.

IC6a, IC6b, and IC6c produce a master clock signal that is used to control the operation of the module.

Figures 2, 3, 4 and 5. Circuit diagrams of the power supply (top left), the controller (above), the opto-isolators (above right) and the digit driver board. Note the use of separate earthed and floating +5V supplies, the controller being operated from the earthed supply, and bear in mind that one digit driver board is required for each digit of the display.
When the counter reaches 15 the carry output goes high and the counter is inhibited via IC2e. This means that, after each mains zero crossing, the data bits from the thumbwheel switches appear in turn at the serial data output and via IC2c and 5c at the shift data output to the digit drivers.

The beginning and end of this sequence is detected by IC3b which produces an envelope signal while data is coming out of the controller. The signal is made available to an external controller via IC6, and also gates the shift data and shift clock outputs to the digit drivers. It is also fed into the blanking signal so that, even with a very short period set for the monostable IC1b, the triacs cannot come on while data is being transmitted.

The three control signals connected to the digit drivers are fed through an opto-isolator circuit to prevent any mains isolation, hence making the unit completely safe for connection to, for example, a home computer.

Each of the three channels is identical, so reference will be made to one channel only. An emitter follower transistor Q2 drives the LED in the opto-isolator IC11. The opto-isolator transistor, biased by R19 to improve its high frequency response, is buffered by a Schmitt trigger (IC14a & R25), and a final output buffer IC14b drives the output. IC15 is a four bit shift register, which converts the serial data to parallel at its outputs. The fourth output passes serial data on to the next driver module in the chain, thus with four digit drivers each gets its new data after sixteen clocks. The parallel BCD data is decoded by IC16 to form the segment drive to each of seven triacs.

The blanking signal drives Q5 which switches off the outputs of IC16, preventing the possibility of a digit being displayed while the shifting process goes on and allowing the display to be dimmed.

The box should be built first, and this is probably the most difficult part of the construction for those who are not naturally good at carpentry. It is not possible to give exact details and dimensions because these will vary according to the size of the digits and the number required, but the arrangement used in the prototype is shown in Fig. 6 and may be useful as a guide. Note the downward tilt of the display area which makes for easy viewing from below, and the steel brackets used to support a coloured plastic filter in front of the lamps.

The circuit boards are all single

Diagram

The circuit boards are all single

BUylines

The BCD thumbwheel switches used in the prototype were obtained from RS Components, who will not supply parts to non-trade customers. If you cannot find another source you will either have to persuade a friendly local radio dealer to order them for you or, for a small surcharge, order them through Crewe Allan & Company, 51 Scrutton Street, London EC2. The transformer came from Maplin, who can also supply suitable opto-couplers. Other suppliers may also stock these parts but check carefully that the transformer dimensions suit the PCB layout. Maplin also stock sheet aluminium which could be cut up to form the heatsink and the control panel, but you may find that a local hardware shop can supply panels cut to size. The semiconductors are all readily available, with the exception of the 4098 and possibly the 40163. Cricklewood and Maplin stock the 4098 and Watford stock all of the semiconductors. The PCBs are available from our PCB service, and don't forget that you will need one digit driver board for each digit of your display.
PARTS LIST

CASE AND CONTROL PANEL

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2-17</td>
<td>1N4148 panel-mounting fuse holder and 3A fuselink</td>
</tr>
<tr>
<td>FS1</td>
<td>mains neon</td>
</tr>
<tr>
<td>LP1</td>
<td>7-pin DIN socket or other multipole connector to choice</td>
</tr>
<tr>
<td>SK1</td>
<td>BCD ten position thumbwheel switch with true and inverse outputs</td>
</tr>
<tr>
<td>SW1-4</td>
<td>DPST toggle or other mains on-off switch</td>
</tr>
</tbody>
</table>

- mains lights bulbs and batten lampholders as required; wood, brackets, etc., for enclosure; coloured filter for front of display; small aluminium panel for the controls and nuts and bolts to mount; cable ties or spiral wrap or similar; stand-off pillars, nuts and bolts for mounting PCBs; ribbon cable, writing, etc.

REAR PANEL

- CABINET
- FACIA
- BRACKETS
- BATTENS
- ITO SUPPORT
- DISPLAY PANEL
- DISPLAY PANEL I

POWER SUPPLY

RESISTORS (all 4W 5%)

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12</td>
<td>10k</td>
</tr>
<tr>
<td>R13, 14</td>
<td>330R</td>
</tr>
<tr>
<td>R15</td>
<td>1k</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5, 7</td>
<td>470u 16V radial electrolytic</td>
</tr>
<tr>
<td>C6, 8</td>
<td>100n 5% poly-carbonate</td>
</tr>
</tbody>
</table>

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>Part</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC9, 10</td>
<td>78L05</td>
</tr>
<tr>
<td>Q1</td>
<td>BC184L</td>
</tr>
<tr>
<td>D1</td>
<td>1N4001</td>
</tr>
<tr>
<td>BR1, 2</td>
<td>W005</td>
</tr>
<tr>
<td>LED1, 2</td>
<td>miniature red LED</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>6-0-6V, 500mA mains transformer, chassis mounting</td>
</tr>
<tr>
<td>PCB</td>
<td>1mm terminal pins; earth tag; nuts and bolts for mounting transformer</td>
</tr>
</tbody>
</table>

Fig. 6 Details of the cabinet used for the prototype.

Fig. 7 Component overlay of the power supply board. Note the earth connection to the frame of the transformer and the mains connections taken directly to the transformer, not to the PCB.

ETI MAY 1985
PROJECT: Scoreboard

FROM POWER SUPPLY AND EITHER OPTO-ISOLATOR OR PREVIOUS DIGIT MODULE

46V FLOATING

SHIFT DATA

SHIFT CLOCK

BLANKING

+5V

TO NEXT DIGIT MODULE

PARTS LIST

DIGIT DRIVER MODULE

RESISTORS (all 1/4W 5%)

- R28 330Ω
- R29 10k
- R30-36 100Ω

CAPACITORS

- C11 100μF 10V radial electrolytic
- C12 100μF poly-carbonate

SEMICONDUCTORS

- Q5 BC184L
- IC15 74L5195
- IC16 74LS47
- SCR1-7 TIC206

MISCELLANEOUS

- PCB; 1mm terminal pins; nuts and bolts, mica washers and insulating bushes for triacs; heatsink (see text and Buylines); IC sockets if desired — 2 off 16 pin DIL.

—

ETI MAY 1985

Fig. 8 Component overlay of a digit driver board. The lamp connections are made directly to the centre pins of the triacs.

Fig. 9 Drilling details of the heatsink for the digit driver board.

Fig. 10 Mounting arrangements for the triacs.

Fig. 11 How the lamps are connected to form a 7-segment display.

Bent down to pass through the board, while the centre pin is bent up for a flying lead connection to the lamps. Only after the triac-heat sink assembly has been completed should the triacs be soldered to the board.

The displays themselves are pygmy bulbs in bulb holders, mounted on a wooden panel. 15W bulbs should give sufficient light for most applications. Three bulbs are used for each segment as shown in figure 11, but for larger displays it might be better to use the small incandescent strip lamps commonly found in bedside lights for each segment.

The reverse of the lamp panel is used as a chassis, and the various circuit boards are screwed onto it through standoff pillars. Interwiring is kept neat by using spiral wrap around the cable.
PARTS LIST — CONTROLLER MODULE

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W 5%)</th>
<th>C3</th>
<th>IC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 1k8</td>
<td></td>
<td>4001</td>
</tr>
<tr>
<td>R2 10k</td>
<td>C4</td>
<td>4011</td>
</tr>
<tr>
<td>RV1,2 220k miniature</td>
<td></td>
<td>40163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACITORS</th>
<th>IC1</th>
<th>IC2</th>
<th>IC3,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,2 120n 5% poly carbonate</td>
<td>4098</td>
<td>4069</td>
<td>4013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th>IC7</th>
<th>IC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 4098</td>
<td>4512</td>
<td></td>
</tr>
<tr>
<td>IC2 4069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC3,4 4013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td></td>
</tr>
</tbody>
</table>

PARTS LIST — ISOLATOR MODULE

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W 5%)</th>
<th>CAPACITORS</th>
<th>SEMICONDUCTORS</th>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R16-18 150R</td>
<td>C9,10 100u 10V radial electrolytic</td>
<td>Q2-4 BC184L</td>
<td>PCB: 1mm terminal pins; IC socket if desired — 1 off 16 pin DIL</td>
</tr>
<tr>
<td>R19,21,23 100k</td>
<td></td>
<td>IC11-13 Opto-isolator (see Buylines)</td>
<td></td>
</tr>
<tr>
<td>R20,22,24 10k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R25-27 47k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 12 Component overlay of the controller board.

Fig. 13 Component overlay of the opto-isolator board.
to external controller socket SK1

TO THUMBWHEEL SWITCHES SW1-14
AND DIODES D2-17

Fig.14 Interconnection of the boards.

looms, or ribbon cable as appropriate. Make sure that suitable cable is used for the mains supply to the lamps, between the lamps and the triacs, and the returns from the digit driver boards.

The supply, return, and earth wires have been taken individually to a central supply point, rather than chaining them from one point to the next. This includes the power supply module as well as each display. Remember that much of the wiring carries mains voltages and currents, and must be of a high standard to avoid the risk of accidents.

The diodes associated with the thumbwheel switches are mounted on the switches themselves, and the arrangement shown uses the inverse data outputs. If the switches used do not have inverse outputs, turn all the diodes round, swap the common connections for the two pairs of digits and alter the pull-up resistors on the controller module so that they pull down to 0V. If a display of less than four digits is required, simply omit switches and diodes starting with SW1, then SW2, etc.

Any convenient connector can be used for the outlet to the external controller. A seven pin DIN socket has been used in the prototype. The external controller can interrogate the thumbwheel switches by intercepting the serial data and control signals. It can inject data in place of the switch data by driving the switch disable input to a logic “1” (anything over 3.7V), at which point the output of IC8 goes high impedance and can be driven externally.

If the switch inputs are never going to be used, the controller module may be dedicated to external control by omitting IC4, 7, and 8, and R2-R9. The copper track on the component side of the board leading to IC3 pin 1 should be cut (close to the IC as it also goes to other places) and a wire link soldered between the pad of IC8 pin 15 and IC5 pin 2. This allows the external controller to generate the envelope signal. IC6 pins 5 and 6, and IC3 pins 4 and 5 must be wired to 0V to protect their CMOS inputs.

Setting Up and Use

It is a good confidence booster if the power supply works when you switch it on. Try it with its outputs disconnected, and the LEDs should light to show that something is getting through. If you have a meter, check that both outputs are producing 5V.

Unfortunately, very little intermediate checking can be performed on the rest of the circuit. Be careful when poking around the digit driver areas as these are live when the mains is connected.

Make the set up adjustments with a single bulb plugged in somewhere, and arrange for the display to show all “8”s. Set RV1 on the controller module fully anticlockwise and RV2 fully clockwise. Switch on, and the lamp should be at full brightness. Using an insulated screwdriver so that mains hum pickup does not affect adjustments, slowly turn RV1 clockwise until the lamp suddenly goes dim, and stop there. Now turn RV2 anticlockwise, and the lamp should increase in brightness. The lamp may be set to the desired operating brightness, remembering that the cooler a lamp is run, the longer it will last.

If the display is to be run at full brightness, either because you need that much light or because you wish to keep RF interferences to a minimum, continue to turn RV2 anticlockwise until the lamp suddenly goes out then turn it back to the point where the lamp comes on again.

The display is now ready for use, so switch off and install all the lamps. It would be as well to have a few spare triacs in stock, because when bulbs blow they tend to take their triacs with them. Running the display at reduced brightness should help a little.

ETI MAY 1985
STEREO SIMULATOR

Liven up your mono recordings, give breadth to your stereo with this unit developed by the indefatigable Dave Bradshaw from an idea by B. Webb.

There are many occasions when you're stuck with a mono signal, but it seems a waste. Mono is particularly irritating when you're using stereo headphones - it feels as if everything is coming just from the exact centre of your head. Here's a little unit that can remove that irritation.

Let's get one point perfectly straight, though. When you're presented with a mono signal, there's no way that you can get a true stereo signal back again. There are complex processes available to synthesise an apparent stereo signal, but these are very costly and time consuming and are primarily of use in the recording studio.

So, what the circuit does here is a bit of sleight of hand. By introducing phase and amplitude differences between the two channels, a semblance of ambience can be generated, and this can remove the more objectionable effects of listening to mono through a stereo medium. However, the unit described here does not restore the stereo information.

As a bonus, the unit can also be used to generate spatial stereo. In this, each channel is intermixed with the other channel out of phase. In theory, this expands the stereo image. In practice, the degree of success depends very strongly on the material being listened to. The effect can make the results from headphones rather more comfortable, so you might like to try out the spatial stereo as well as the pseudo variety.

The Circuit

The circuit used here is a more-or-less direct ‘lift’ of the circuit in Mullard’s application notes. The TDA3810 is a purpose-made device for pseudo and super stereo, so why reinvent the wheel?

To the special IC has been added a quad op-amp, to boost the signal to the level required for optimum noise performance, and to reduce and buffer the signal after the TDA3810. In the parts list, we specify a TL094, but any quad op-amp can be used provided there is sufficient supply voltage for it - it so happens that the TL094 can operate down to 4.5 V, which is the minimum supply voltage for the TDA3810. Maximum supply voltage for the 3810 is 16.5V, which is below the maximum for the TL094.

Supply current will be in the region of 10 mA (without the LEDs), a little more to the top end of the supply range, a little less for...
Fig. 1 Circuit diagram of the mono-to-stereo simulator.

In the stereo mode, operation is quite straightforward, as all the TDA3810 does is act as a buffer. The op amps IC1a and b are configured as x 10 amplifiers, for reasons that will be discussed later, and IC1c and d are +10 amplifiers. So the net result is no change.

In the pseudo-stereo mode, IC1a - d act as before. However, IC2 is configured somewhat differently by its internal switches. The two filters, F1 and F2 are brought into circuit. Basically, the signal applied to the L input goes through to the L output with a small amplification and inversion. However, some of the inverted L input is passed to the input of the inverting amplifier in the R chain, via low-pass filter F1. This is combined with some of the non-inverted input fed in via the R terminal, which is passed through notch filter F2. Analysing what's going on in either F1 or F2 is difficult (particularly, in F2), and after several pages of algebra, we were little the wiser, so we cheated and used the values given in the manufacturer's data sheet! Let it suffice to say that the R channel has a different phase to the L channel as well as a different frequency response, and that response varies with frequency.

Finally, in spatial stereo mode, the configuration is as shown in Fig. 3. The input signals are buffered and slightly intermixed by the resistors connected between the +1 buffers' outputs. The signals are passed to the op-amps which invert them. These op-amps are configured so as to produce anti-phase cross-talk, ie the right output contains 50% of the left input, but inverted. At higher frequencies, capacitors C3 and L reduce the cross-talk.

Op-amps IC1a and b increase the input signal level to 2V RMS, which assumes a 200mV RMS input signal to the whole unit - probably more common than 2V! 2V is the recommended minimum input voltage to the TDA3810 with a 12V supply; obviously, if the supply voltage is significantly lower than this, then the input signal level to IC2 should be decreased to allow sufficient operating headroom for it and for IC1a and b. This will be detrimental to the noise performance. Obviously, the gains of IC1a and b will have to be adjusted accordingly, as will the gains of IC1c and d.
Construction

The first move should be to insert the IC sockets, making sure that you get them the right way round. This makes it easier to locate the positions of all the other components. Next insert and solder the resistors, followed by the capacitors, and then the LEDs. Finally, before inserting the ICs, check your work carefully and, in particular, look for solder bridges.

Now pick your insertion point in the main system that you're adding the unit to. The best point would be before the volume control, if the signal here is of a suitable level. In this way, the unit receives a more-or-less constant input signal level which makes for optimum signal-to-noise ratio.

The supply requirements of the circuit have already been mentioned. With a standard split supply circuit, it will probably be sufficient to feed the circuit from just the +ve supply and the 0V- the current consumption requirements of the circuit are modest and should not cause any problems.

BUYLINES

No special problems should occur here. The TDA3810 (as well as the more common TL094) can be purchased from Technomatic. Of the other components, the only trouble you may have is with the 3n9 capacitors for C3 and 4. Not many capacitor types are made with E12 series values nowadays, the E6 series being much more prevalent. However, polystyrene still seem to be available in E12 values, and this can be used here. The main problem with polystyrene capacitors is their size, but this has been allowed for on the PCB (in the main, polycarbonates have been specified for their relatively small size, not for any other reason; so long as the tolerance is 10% or better, any type should do, as this circuit does not have super-fi pretensions!).

<table>
<thead>
<tr>
<th>MODE</th>
<th>CONTROL INPUT STATE</th>
<th>LED SPATIAL PIN 7</th>
<th>LED PSEUDO PIN 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONO PSEUDO-STEREO</td>
<td>HIGH</td>
<td>LOW</td>
<td>off</td>
</tr>
<tr>
<td>SPATIAL STEREO</td>
<td>HIGH</td>
<td>HIGH</td>
<td>on</td>
</tr>
<tr>
<td>STEREO</td>
<td>LOW</td>
<td>X</td>
<td>off</td>
</tr>
</tbody>
</table>

Table 1 Mode-switching logic.
ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering. The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third and fourth are the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available — if it isn't listed, we don't have it. Our terms are strictly cash with order — we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until after we receive payment.

1981

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/8106-6</td>
<td>Waaz-Phase</td>
<td>1.76</td>
</tr>
<tr>
<td>E/8106-9</td>
<td>Alien Attack</td>
<td>4.00</td>
</tr>
<tr>
<td>E/8107-1</td>
<td>System A-Input (MM or MC)</td>
<td>3.05</td>
</tr>
<tr>
<td>E/8107-2</td>
<td>System A -Preamp</td>
<td>3.95</td>
</tr>
<tr>
<td>E/8107-3</td>
<td>Smart Battery Charger</td>
<td>2.27</td>
</tr>
<tr>
<td>E/8108-5</td>
<td>Watchdog Home</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>Security (2 boards)</td>
<td>2.00</td>
</tr>
<tr>
<td>E/8109</td>
<td>Mains Audio Link (3 bds)</td>
<td>8.45</td>
</tr>
<tr>
<td>E/8109-4</td>
<td>Laboratory PSU</td>
<td>5.21</td>
</tr>
<tr>
<td>E/8105-7</td>
<td>Power Timer</td>
<td>3.99</td>
</tr>
<tr>
<td>E/8110-2</td>
<td>Sound Bender</td>
<td>4.05</td>
</tr>
<tr>
<td>E/8111-1</td>
<td>Voice Over Unit</td>
<td>4.57</td>
</tr>
<tr>
<td>E/8111-3</td>
<td>Phone Bell Shifter</td>
<td>3.40</td>
</tr>
<tr>
<td>E/8112-4</td>
<td>Component Tester</td>
<td>1.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/8202-2</td>
<td>Allez Cat Pest Repeller</td>
<td>1.93</td>
</tr>
<tr>
<td>E/8202-5</td>
<td>Moving Magnet Stage</td>
<td>2.00</td>
</tr>
<tr>
<td>E/8202-6</td>
<td>Moving Coil Stage</td>
<td>4.01</td>
</tr>
<tr>
<td>E/8203-4</td>
<td>Capacitance Meter (2 boards)</td>
<td>11.66</td>
</tr>
<tr>
<td>E/8205-1</td>
<td>TV Meg</td>
<td>3.13</td>
</tr>
<tr>
<td>E/8206-1</td>
<td>Ion Generator (3 bds)</td>
<td>9.20</td>
</tr>
<tr>
<td>E/8206-4</td>
<td>MOSFET Amp Module</td>
<td>7.80</td>
</tr>
<tr>
<td>E/8205-6</td>
<td>Logic Lock</td>
<td>3.52</td>
</tr>
<tr>
<td>E/8206-6</td>
<td>Digital PWM</td>
<td>3.84</td>
</tr>
<tr>
<td>E/8206-9</td>
<td>Optical Sensor</td>
<td>2.00</td>
</tr>
<tr>
<td>E/8212-3</td>
<td>Oscilloscope (4 bds)</td>
<td>13.34</td>
</tr>
<tr>
<td>E/8212-6</td>
<td>Servo Interface (2 boards)</td>
<td>6.75</td>
</tr>
<tr>
<td>E/8212-4</td>
<td>Spectracolour (2 boards)</td>
<td>5.75</td>
</tr>
</tbody>
</table>

1983

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/8301-1</td>
<td>Fuel Gauge</td>
<td>3.45</td>
</tr>
<tr>
<td>E/8301-2</td>
<td>2X ADC</td>
<td>2.59</td>
</tr>
<tr>
<td>E/8305-3</td>
<td>Programmable PSU</td>
<td>3.45</td>
</tr>
<tr>
<td>E/8303-1</td>
<td>Soundboard</td>
<td>12.83</td>
</tr>
<tr>
<td>E/8303-2</td>
<td>Alarm Module</td>
<td>3.62</td>
</tr>
<tr>
<td>E/8303-3</td>
<td>Z811 User Graphics</td>
<td>1.07</td>
</tr>
<tr>
<td>E/8303-4</td>
<td>Logic Probe</td>
<td>2.50</td>
</tr>
<tr>
<td>E/8304-1</td>
<td>Real Time Clock</td>
<td>8.74</td>
</tr>
<tr>
<td>E/8304-4</td>
<td>Stage Lighting - Main</td>
<td>13.73</td>
</tr>
<tr>
<td>E/8304-5</td>
<td>Stage Lighting - Display</td>
<td>3.45</td>
</tr>
<tr>
<td>E/8305-1</td>
<td>Compressor/Limiter</td>
<td>6.19</td>
</tr>
<tr>
<td>E/8305-2</td>
<td>Single PSU</td>
<td>3.16</td>
</tr>
<tr>
<td>E/8305-4</td>
<td>NDFL Amp</td>
<td>7.88</td>
</tr>
<tr>
<td>E/8305-5</td>
<td>Balance Input Preamp</td>
<td>3.23</td>
</tr>
<tr>
<td>E/8305-6</td>
<td>Stage Lighting - Autoade</td>
<td>6.19</td>
</tr>
<tr>
<td>E/8305-7</td>
<td>Stage Lighting - Triac Board</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td>Stage Lighting - Triac Board</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td>Stage Lighting - Triac Board</td>
<td>4.74</td>
</tr>
</tbody>
</table>

1984

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/8401-1</td>
<td>Vector Graphics</td>
<td>8.27</td>
</tr>
<tr>
<td>E/8402-1</td>
<td>Speech Board (Mini-Mike)</td>
<td>10.97</td>
</tr>
<tr>
<td>E/8402-2</td>
<td>MP (Modular Preamp) Disc input (mono)</td>
<td>3.73</td>
</tr>
<tr>
<td>E/8402-3</td>
<td>MP Output stage (stereo)</td>
<td>3.73</td>
</tr>
<tr>
<td>E/8402-4</td>
<td>MP Relay/PFU</td>
<td>3.73</td>
</tr>
<tr>
<td>E/8402-5</td>
<td>MP Auto Light Switch (mono)</td>
<td>1.60</td>
</tr>
<tr>
<td>E/8402-6</td>
<td>MP Tone, filter (stereo)</td>
<td>3.73</td>
</tr>
<tr>
<td>E/8402-7</td>
<td>MP Balanced output (st)</td>
<td>3.73</td>
</tr>
<tr>
<td>E/8402-8</td>
<td>MP Headphone amp (st)</td>
<td>3.73</td>
</tr>
<tr>
<td>E/8402-9</td>
<td>MP Mother board</td>
<td>9.01</td>
</tr>
<tr>
<td>E/8403-1</td>
<td>Power Meter</td>
<td>5.81</td>
</tr>
<tr>
<td>E/8403-2</td>
<td>Z810 DRAM</td>
<td>9.79</td>
</tr>
<tr>
<td>E/8403-3</td>
<td>Odobiet Die</td>
<td>3.76</td>
</tr>
<tr>
<td>E/8404-1</td>
<td>School Timer</td>
<td>4.07</td>
</tr>
<tr>
<td>E/8405-1</td>
<td>Auto Light Switch (mono)</td>
<td>4.01</td>
</tr>
<tr>
<td>E/8405-2</td>
<td>X810 EPROM Prog.</td>
<td>10.57</td>
</tr>
<tr>
<td>E/8405-3</td>
<td>Mains Borne RC</td>
<td>5.07</td>
</tr>
<tr>
<td>E/8405-4</td>
<td>Centronics Interface</td>
<td>4.09</td>
</tr>
<tr>
<td>E/8405-5</td>
<td>Vario</td>
<td>6.62</td>
</tr>
<tr>
<td>E/8405-6</td>
<td>Crossover</td>
<td>3.59</td>
</tr>
</tbody>
</table>

1985

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/8501-1</td>
<td>Active Bass Speaker</td>
<td>2.79</td>
</tr>
<tr>
<td>E/8501-2</td>
<td>DRAM Card Update</td>
<td>3.66</td>
</tr>
<tr>
<td>E/8501-3</td>
<td>Digital Delay (2 bds)</td>
<td>26.00</td>
</tr>
<tr>
<td>E/8502-1</td>
<td>Digital Delay Expander</td>
<td>10.79</td>
</tr>
<tr>
<td>E/8502-2</td>
<td>Data Logger</td>
<td>5.17</td>
</tr>
<tr>
<td>E/8503-1</td>
<td>Combo preamplifier</td>
<td>5.09</td>
</tr>
<tr>
<td>E/8503-2</td>
<td>THD meter mV & osc. bds</td>
<td>2.70</td>
</tr>
<tr>
<td>E/8503-3</td>
<td>THD meter mains PSU</td>
<td>1.36</td>
</tr>
<tr>
<td>E/8503-4</td>
<td>THD meter battery PSU</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>IP/MSP & OP/PSU bds</td>
<td>9.30</td>
</tr>
<tr>
<td>E/8503-5</td>
<td>ParaGraph Equaliser</td>
<td>9.30</td>
</tr>
</tbody>
</table>

How to order:

indicate the boards required by ticking the boxes and send this page, together with your payment, to ETI PCB Service, Argus Specialist Publications Ltd, 1 Golden Square, London W1 R 3AB. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.

Total for boards £
Add 45p p&p £
Total enclosed £

PLEASE ALLOW 28 DAYS FOR DELIVERY

Signed
Name
Address

ETI MAY 1985
This simple circuit is quite useful for generating a number of functions. It can be used for trilling, vibrato or higher frequency modulation. It will also provide voltages for note sequences, gating, controlling filters, VCA's or any voltage controlled module.

A 555 timer is used as a simple voltage controlled clock with the five megohm potentiometer determining sequence speed along with the voltage at the control voltage input. This input will vary the speed with a positive voltage applied. This function is non-linear, has a 3:1 range and increases speed as the voltage decreases. With the component values shown (5M and 22n) the range is 2Hz to 7KHz. Larger values of CR will result in slower rates, and small values, faster ones.

A 7474 flip-flop is wired as a walking ring counter. The outputs overlap, so the final output is apparent as four steps. Moving one

The GDO must be calibrated and this can be done in one of (at least) two ways:

i) Listen for the GDO frequency on a good communications receiver and, using spot frequencies, calibrate the C1 scale.

ii) Measure the GDO frequency with meter using a high impedance probe on the source of Q1. Using the GDO is simple, the appropriate coil for L1 is plugged in and the GDO switched on. L1 (which is mounted on a 3 pin DIN plug external to the circuit) is brought in the vicinity of the tuned circuit under test (TCUT). C1 is adjusted for a local minimum in the

Coil Details for 78-160 MHz

<table>
<thead>
<tr>
<th>Coil</th>
<th>Frequency Range (MHz)</th>
<th>Number of Turns</th>
<th>Tap</th>
<th>Wire Gauge (SWG)</th>
<th>Number of Turns Per Inch</th>
<th>Coil Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.6-3.5</td>
<td>139</td>
<td>32</td>
<td>36ENA</td>
<td>Close Wound</td>
<td>¾”</td>
</tr>
<tr>
<td>B</td>
<td>3.45-7.8</td>
<td>40</td>
<td>12</td>
<td>36ENA</td>
<td>Close Wound</td>
<td>¾”</td>
</tr>
<tr>
<td>C</td>
<td>7.6-17.5</td>
<td>40</td>
<td>14</td>
<td>24Tinned</td>
<td>32</td>
<td>¾”</td>
</tr>
<tr>
<td>D</td>
<td>17.2-40</td>
<td>15</td>
<td>5</td>
<td>20Tinned</td>
<td>16</td>
<td>¾”</td>
</tr>
<tr>
<td>E</td>
<td>37-85</td>
<td>4</td>
<td>1½</td>
<td>20Tinned</td>
<td>16</td>
<td>¾”</td>
</tr>
<tr>
<td>F</td>
<td>78-160</td>
<td>See Diagram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of the four level controls moves the whole sequence. These should be adjusted for preferred operation. The primary disadvantage here is that individual notes are difficult to tune accurately so the sequence should be run fairly fast in order to minimise note inaccuracies when controlling a VCO.

The sequencer can be turned off at the gate input with a ground. No connection, or a positive voltage will allow the circuit to operate. This input is protected from normal synthesiser positive voltages, but negative voltages should not be applied unless you use the optional gate protection circuit.

The 50K pot on the output controls the level from 0 to 3.5 volts. The 14 capacitor and switch are used to provide a slide function.

Note the power supply is 5 volts and must be regulated. Higher voltages may destroy the 7474 IC. If 5 volts is not available, use any 5 volt voltage regulator to step down a higher voltage.

Push-button Operated Change-over

D. Wells
Newport Pagnell

The circuit shown was developed during the design of a DC controlled pre-amplifier. Using momentary contact switches allowed standardisation of all front panel switches. As well as giving a single or double pole change over switch the circuit ensures that the power up state of the switches is always the same. In the author's application only DC control voltages were being switched so the limitations of the 4066 switches at audio frequencies were unimportant; other applications may need to take account of these.

IC1a goes high when SW1 is pressed, R1 and C1 provide a debounce function. The outputs of IC2a change state on the positive edge of IC1a output. As the two outputs of IC2a are complementary and are connected to the control inputs of two switches in IC3, a change over switch is achieved by commoning the outputs of the two switches. R3 and LED1 are optional and form a visual indication of switch status.

IC1b provides a short high pulse at its output immediately after power up. The values of R2 and C2 ensure that this pulse is longer than the pulse from IC1a. The high from IC1b is connected to the set input of IC2a and causes the power up state to always be: point A connected to point B and point B to C open circuit.

As it stands the circuit only uses half the gates in all three IC's. One possible use for these spare gates is shown in the diagram. The positive pulse from IC1b is fed to one of the spare switches in IC3. This switch was connected in parallel with one of the source select inputs thus ensuring that the same source was always selected at power up (the source switches were latched by the audio switching IC used). Other functions that could be implemented include: two single pole single throw switches; another single pole change over switch; a double pole single throw switch.

Could G M. Heath get in touch with us over his contribution to Tech Tips and would all future contributors help us by marking their name and address on each sheet of their submission. Thanks.
The top and bottom patterns for the scoreboard controller module.

The digit driver board pattern for the scoreboard.

The pattern for the scoreboard opto-isolator module.
The EPROM Programmer upgrade board foil pattern.

The mono-to-stereo simulator foil pattern.

The power supply board pattern for the scoreboard.
The top and bottom patterns for the 6802 Evaluation Board.
OPEN CHANNEL

Keep it human

When electronic communications systems were in their infancy, it seemed that the existing news communicators were newspapers - were in for a hard time. Pundits (then, and some even now) predicted the rise of the electronic newspaper and demise of the real McCoy. Well, the technology of the electronic newspaper is now with us, but it's being given a run for its money - after all, who on earth wants to sit in front of a computer display: CRT, LCD or other, to read the news when you could have a real, live newspaper folded on your lap.

The Financial Times will be the first UK publication to make use of SatStream North America and it obviously hopes to eliminate freighting costs, as well as being able to produce the paper in hours, compared to the days of the past, and go into service with a single telephone in each first class executive Pullman carriage. BR plans to expand this rapidly into the second class, too - some of the fee-paying, ordinary mortal commuters know what a 'phone is, you know) and foresees a high usage of electronic mail via portable terminals. In effect, commuters can use the train as a mobile office. Presumably, BR feels that its commuters should get some more work done and stop wasting time reading humanised newspapers.

Keith Brindley

Open Channel welcomes letters and information on products and events to do with telecommunications. Please address correspondence to 'Open Channel', ETI, ASP Ltd., 1 Golden Square, London W1R 3AB.

STEWARD OF READING

110 Wykenham Road, Reading Berks RG6 1PL
Telephone: 0734 68041

Callers welcome 9 a.m. to 5.30 p.m. Monday to Saturday inclusive.
FIND YOUR WAY THROUGH THE DIGITAL ELECTRONICS MAZE

First there was **SUPERKIT**

and now... **NEW SUPERKIT II**

This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. **SUPERKIT II** includes an instruction manual and many more components, enabling you to design and use adders, subtractors, counters (ripple, up/down, synchronous, decade and Gray code), registers, pattern recognisers and 7-segment displays.

You need the board and components from **SUPERKIT** to enable you to build the circuits in **SUPERKIT II**. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer.

SUPERKIT (SUP) £22.00

SUPERKIT II (SUP II) £16.00

Special price £35.00 for both (SUP + II) (inc. VAT and p & p)

The **SUPERKIT series** is backed by our theory courses. **DIGITAL COMPUTER LOGIC** (beginners' course), which covers the design of logical circuits, and **DIGITAL COMPUTER DESIGN** (more advanced), which covers the design of digital computers. **MICROPROCESSORS AND MICROELECTRONICS** teaches you what a microprocessor is and what it can do.

DIGITAL COMPUTER LOGIC (DCL) £7.00

DIGITAL COMPUTER DESIGN (DCD) £9.50

GUARANTEE If you are not completely satisfied, return the item to us within 28 days for a full refund. All prices include worldwide surface postage (ask for prepayment invoice for airmail). Allow 28 days for delivery in UK. Overseas payment by international credit card or by bank draft drawn on a London bank.

CAMBRIDGE LEARNING LTD, Unit 10, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England.

Tel: 0480-67446

VAT No 313 026022 Transact No 2789159 Reg No 1328762

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips — not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from £10.95 to £17.75 + VAT; manuals £1 - £5.)

The Interaktion User Group has 14K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc.

No fears about this one going obsolete — now in its fifth successful year! Send us your name and address with a 21st stamp and we'll send you 40 pages of details (forget the stamp if you can't afford it!). You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

Interak 1

 Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips — not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from £10.95 to £17.75 + VAT; manuals £1 - £5.)

The Interaktion User Group has 14K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete — now in its fifth successful year! Send us your name and address with a 21st stamp and we'll send you 40 pages of details (forget the stamp if you can't afford it!). You've already got a plastic computer for playing games now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

Interak 1

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391
Steve Wozniak is one of the legends of the electronics world. While still hardly more than a teenager, he and his friend Steven Jobs built a smallish, microprocessor-based device in a garage in California. This was in the mid-seventies and, when they started to sell similar devices through their local electronic parts supplier, they caused quite a stir. They began marketing the device on unboxed PCBs and gave it a name - the Apple computer. By the early eighties, Jobs and Wozniak were reckoned to have per-
tected Apple and the rest must know that there are more jobs around in their part of the world than qualified people to fill them. Indeed, with an average salary of $28,000 which is already 75% higher than the US average, it's perhaps it's time for the high technology companies of Silicon Valley to start offering inducements in non-financial forms to

While the robot population of Britain rose by 33% last year to a total of 2,623 (not including the occupants of the House of Commons or the cast of 'Crossroads'), the country is still only sixth in the league behind France, Italy, West Germany (with 6,600 robots), the US (13,000) and Japan (64,600). Of course, it's common knowledge that the Japanese have a different system for counting robots. For example, they claim to have developed a device controlled by 671 and 8-bit micros which can read music, listen to instructions, talk and play keyboards. In Britain, this would be known as Richard Clayder-
man.
SERVICE SHEET

Enquiries
We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think you may have made. However, our time is limited, and we can only adapt or design projects for readers (other than for publication), nor can we predict the outcome if our promptness, but we reserve to their specifications.
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour, and some sensible test readings and drawings of circuits if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gold test chip).
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole.
- We receive a large number of letters asking if we have decided projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see below backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.

Write For ETI
We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on it, we would like to hear from you. Let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the help you need. Don’t forget to give us your telephone number.

Trouble With Advertisers
So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should:
1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier, then may have the case unsatisfactory or incomplete fullfilment. If so, give full details of the order you sent and when you sent it.
5. Keep a copy of all correspondence.
6. Check your bank statement to see if the cheque you sent has been cashed.
7. If you don't receive a satisfactory reply from the supplier, then may have the case unsatisfactory or incomplete fullfilment. If so, give full details of the order you sent and when you sent it.
8. Keep a copy of all correspondence.
9. Check your bank statement to see if the cheque you sent has been cashed.
10. If you don't receive a satisfactory reply from the supplier, then may have the case unsatisfactory or incomplete fullfilment. If so, give full details of the order you sent and when you sent it.

Backnumbers
Backnumbers of ETI are held for one year only from publication, but we receive so many enquiries that this cannot be guaranteed. Where a backnumber is sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Strand, Hemel Hempstead, Hertfordshire, HP1 1BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions, sorry).

Corrections to Projects
Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in a SAE.

EPROM Card (June 1984)
On the circuit diagram, Q2 base is shown connected to +25V, but should be connected to +5V. Q3 should not be connected to +5V, but only to point A. The capacitor connected between +25V and 0V is C5 and should be 2u2 35V tantalum bead. Switch S5 should be 2A 8V 2k7 if using suggested PSU. (RB OK for 24V).

Spectrum Joystick Interface (June 1984)
The PCB and the circuit diagram do not agree; the circuit diagram is correct, and all PCBs sent out by the PCB service should have been amended. IC3 is 74LS241, as correctly stated in the parts list but incorrectly given in the footnote to the circuit diagram.

CMOS Tester (August 1984)
C3 and C2 are reversed on the overlay; C3 is the electrolytic and C2 the polyesters. R3 is 10k, not 1M as given in the parts list, and RV1 is a 1M horizontal skeleton preset. R1-16 are two, eight resistor SIPs, the component labelled C14 on the overlay is SK1, and the connections to D2 shown in Fig 3 are reversed. On the circuit diagram, the eight lines connecting SW9-16 to the inverters are shown in reverse sequence. Some of the inverters have been given the wrong designations; the correct sequence is: top to bottom, top to bottom. The pin 1 of IC3 is pin 11, and its output pin 12, and the input of IC3 is pin 14, and its output is pin 15. The PCB is correct in all respects.

Sharp Joystick Interface (August 1984)
Some of the inverter pins are incorrectly labelled on the circuit diagram. Pins 11 and 10 are shown reversed on the drawing, IC1b, pins 9 and 8 are shown reversed on IC1c, and the output of IC4 at pin 10, not pin 20. Note that a number of the inverters have been incorrectly shown as non-inverting buffers. AM/FM Radio (November 1984)
In Fig 2, the oscillator and IF sections should be shown connected to ground; the PCB is correct. In Fig 4, C31 should be 10n to give the 75uS deadtime shown in Fig 3, but R47 has been found to give a brighter middle range. R38 in Fig 5 should, of course, be 20k rather than 20k and it is connected across, C44 and C46 should be shown connected to ground. In the construction section on page 25, four pieces of 8mm plywood are mentioned, but in fact only three are needed — the fourth side is the front panel. See also the note in the ETI MAY 1985
REVIEW

Digital Lab

Computer software

Associate Services Ltd.

23 Chesham Street
London SW1X 8NQ

Price: £29.95

For some years now, sophisticated circuit design and analysis software has been available for expensive minicomputers and mainframes. One of the most interesting developments in the micro field in recent months - interesting, that is, for those involved in electronics - is the introduction of cheap packages for circuit design and analysis on home computers.

Digital circuit design and testing would seem to be the obvious direction for software developers in this area to take. So it's surprising to find that the best packages (and there are only a handful of them) are actually devoted to modelling and analysing linear circuits.

Apart from Sinclair Research's 'Make-A-Chip' package for the Spectrum, which pretends to be no more than educational, there has been nothing to my knowledge tackling the problems of either combinatorial or sequential logic design. Until now, that is.

'Digital Lab' is a package produced by Associated Services (London) Ltd., of 23 Chesham Street, London SW1X 8NQ, for the Commodore 64. The disk-based software comes with a 60-page manual and costs around £30. In all fairness, Associated Services aim the program at 'pupils and students who would like to extend their practical approach to designing and constructing logic circuits' - although they do claim that the program can be used to help actual circuit construction.

I must confess that I assumed 'Digital Lab' would turn out to be a real designer's tool before actually trying it out. In that respect, I was disappointed. The package allows you to link together as many gates as you can fit into a 99 row by 99 column matrix (windowed on the screen as a five by five matrix), but there are no NAND, NOR or EXNOR gates available - these having to be built-up from ANDs, ORs and NOTs - and the ability to hold the 'input-output screen' (in which the circuit you have designed is assigned input and output names) and alter the design would have been useful. As it stands, if you want to alter your circuit in any way, input-output lines have to be re-assigned from the start. This is quite a tedious procedure.

I would expect to see more packages like this being produced in the future. No doubt, their authors will learn from this one and make what improvements they can. At the moment, 'Digital Lab' has the edge because the competition is practically non-existent. Its own merits are also clear. It is a powerful, value-for-money aid in learning about combinatorial logic. It is not really a designer's tool and, even as a learning aid, it should be used together with a good book on logic circuits. Its one virtue for the professional or advanced amateur is that the program takes the tedium out of calculating truth-tables for complex gate arrangements. For this reason alone, Commodore-64 owners involved in logic design may well have reason to be very grateful to Associated Services.

Gary Herman
ALARMS
FREE BOOKLET on BURGLAR ALARMS with LOWEST U.K. DIY PUBLISHED PRICES. PHONE OR WRITE FOR YOUR COPY. 051-523 8440. AD ELECTRONICS 217 WARREBCK MOOR AINTREE, LIVERPOOL L9 0HU.

BEAT THE BURGLAR
HOME SECURITY AT TRADE PRICES
- MANUFACTURERS OF PROFESSIONAL ALARM EQUIPMENT FOR THE TRADE AND D.I.Y.
- SEND NOW FOR OUR COMPREHENSIVE D.I.Y. GUIDE TO CATALOGUE S.A.E. OR PHONE.

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kiranography, heliophonics, music, telekinetics, Computer software. S.A.E. 4 x 9". Paralab, Downton, Wiltshire.

BOOKS
- ETI MAY 1985
- 01-437 0699
- Send your requirements to: Caroline Faulkner ASP Ltd., 1 Golden Square, London W1.

APPOINTMENTS

ELECTRONICS ENGINEER
Cloud Electronic Ltd who manufacture a range of high quality audio products amplifiers, mixers etc, require an Electronics Engineer to join their R+D team. The ideal candidate will have an active interest in audio and relevant R+D experience.

Write giving full details to:
CLOUD ELECTRONICS LTD 511-515 Staniforth Road Sheffield S9 4RA.

MINIATURE FM TRANSMITTERS. Frequency 60-145 MHz, range 1/4 mile S.G.F. — P.C.B. All components. Full instructions 9-12v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. £6.95 inc. or ready built £8.95. Same day despatch — Zenith Electronics, 21 Station Rd., Industrial Estate, Hailsham, E. Sussex BN27 2EW.

MINIATURE TRANSMITTER, transmits all voices and sounds to any VHF/FM radio up to 5 miles away, size 2in x 1/4in, tunable 70-150 MHz complete kit, including sensitive microphone, £4.95 send cash/cheque/PO: Tectroniks, 22 Lambardes N.A.G., Nr. Dartford, Kent DA3 8HX. Mail order only.

SERVICES

SCOPES
Repaired & recalibrated, all makes, all models. Scopex Satgan, Older TT K, TQ MENDASCOPE LTD Otter House Western Underwood, Olney Bucks MK46 5JS. Tel: Bedford (0234) 712445.

J. Linsley Hood Designs
Distortion Analyser Kit £25.00 (Inc P&P)
Millivoltmeter Kit £15.25 (Inc P&P)
Case & Panel £12.00 (Inc P&P)
ETIMOSFET P Amp Kit £31.00 (Inc P&P)
Audio Signal Generator (02%) £28.50 (Inc P&P)
Audio Signal Gen. (0.002%) £36.80 (Inc P&P)
Fixed Freq Sig Gen Kit £11.00 (Inc P&P)
Send SAE for full information.

ETI MAY 1985

ELECTRONICS TODAY INTERNATIONAL Classified

01-437 0699

Send your requirements to: Caroline Faulkner ASP Ltd., 1 Golden Square, London W1.
100W AMPLIFIER — £9.95 built using the same board for 50W, 150W, 200W or 4 or 6 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details (no address duplication, 269 Hessle Road, Hull).

KIA RETURN AN AD. No. 19... New variable automatic protection power supplies 12-40v/5A/STAB... return AD15 + £9.95 — 8, Cuniflle Rd., Ilkeley... same time, 1000 amplifiers — Giveaway prices!

BARGAIN!!!

LED 7 SEGMENT, DISPLAY, BRAND NEW 14 PIN DIL RED 43 inch, COMMON ANODE DISPLAY 0-9 WITH RIGHT AND LEFT DECIMAL POINT 5 pieces £2.00 (40p each)
10 pieces £3.50 (35p each)
50 pieces £15.00 (30p each)
100 pieces £25.00 (25p each)
1000 pieces £250.00 (35p each)

TELEPHONE YOUR ORDER TO 0296 613815

KIA WISH YOU A HAPPY EASTER... Tread yeourselves... 100w. Powerlet amps + relay — built & tested... Post this advert + £12 (inc) KIA-8, LS29 9DZ (Catalogue 50p).

CORTEX COMPUTER — RS232, RGB Interface. Centronic Printer Port, Extension BUS and 2 x 5¼ inch Disk Drive with CADOS operating system £500 o.n.o. Additional software MDEX with forth and graphics £100. Tel: 0480 860821.

64K DRAMS. 416 4 150ns £3.95, 120ns £3.00 Tested. Also one Shugart SA400 5.4 inch Drive £55 with 240V relay output, includes 16-bit P.I.O. £24.95 Also SPECTRUM JOYSTICK INTERFACE using Kempston standard with any Atari-type controller £25.50, Check/PO to—R. Chandler 5 Norfolk Place, LEEDS LS7 4PT. Tel: 693540 comprehensive instructions included.

FOR SALE

10W AMPLIFIER — £3.95 built using the same board for 50W, 150W, 200W or 4 or 6 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details (no address duplication, 269 Hessle Road, Hull).

KIA RETURN AN AD. No. 19... New variable automatic protection power supplies 12-40v/5A/STAB... return AD15 + £9.95 — 8, Cuniflle Rd., Ilkeley... same time, 1000 amplifiers — Giveaway prices!

BARGAIN!!!

LED 7 SEGMENT, DISPLAY, BRAND NEW 14 PIN DIL RED 43 inch, COMMON ANODE DISPLAY 0-9 WITH RIGHT AND LEFT DECIMAL POINT 5 pieces £2.00 (40p each)
10 pieces £3.50 (35p each)
50 pieces £15.00 (30p each)
100 pieces £25.00 (25p each)
1000 pieces £250.00 (35p each)

TELEPHONE YOUR ORDER TO 0296 613815

KIA WISH YOU A HAPPY EASTER... Tread yeourselves... 100w. Powerlet amps + relay — built & tested... Post this advert + £12 (inc) KIA-8, LS29 9DZ (Catalogue 50p).

CORTEX COMPUTER — RS232, RGB Interface. Centronic Printer Port, Extension BUS and 2 x 5¼ inch Disk Drive with CADOS operating system £500 o.n.o. Additional software MDEX with forth and graphics £100. Tel: 0480 860821.

64K DRAMS. 416 4 150ns £3.95, 120ns £3.00 Tested. Also one Shugart SA400 5.4 inch Drive £55 with 240V relay output, includes 16-bit P.I.O. £24.95 Also SPECTRUM JOYSTICK INTERFACE using Kempston standard with any Atari-type controller £25.50, Check/PO to—R. Chandler 5 Norfolk Place, LEEDS LS7 4PT. Tel: 693540 comprehensive instructions included.

FOR SALE

10W AMPLIFIER — £3.95 built using the same board for 50W, 150W, 200W or 4 or 6 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details (no address duplication, 269 Hessle Road, Hull).

KIA RETURN AN AD. No. 19... New variable automatic protection power supplies 12-40v/5A/STAB... return AD15 + £9.95 — 8, Cuniflle Rd., Ilkeley... same time, 1000 amplifiers — Giveaway prices!

BARGAIN!!!

LED 7 SEGMENT, DISPLAY, BRAND NEW 14 PIN DIL RED 43 inch, COMMON ANODE DISPLAY 0-9 WITH RIGHT AND LEFT DECIMAL POINT 5 pieces £2.00 (40p each)
10 pieces £3.50 (35p each)
50 pieces £15.00 (30p each)
100 pieces £25.00 (25p each)
1000 pieces £250.00 (35p each)

TELEPHONE YOUR ORDER TO 0296 613815

KIA WISH YOU A HAPPY EASTER... Tread yeourselves... 100w. Powerlet amps + relay — built & tested... Post this advert + £12 (inc) KIA-8, LS29 9DZ (Catalogue 50p).

CORTEX COMPUTER — RS232, RGB Interface. Centronic Printer Port, Extension BUS and 2 x 5¼ inch Disk Drive with CADOS operating system £500 o.n.o. Additional software MDEX with forth and graphics £100. Tel: 0480 860821.

64K DRAMS. 416 4 150ns £3.95, 120ns £3.00 Tested. Also one Shugart SA400 5.4 inch Drive £55 with 240V relay output, includes 16-bit P.I.O. £24.95 Also SPECTRUM JOYSTICK INTERFACE using Kempston standard with any Atari-type controller £25.50, Check/PO to—R. Chandler 5 Norfolk Place, LEEDS LS7 4PT. Tel: 693540 comprehensive instructions included.

FOR SALE

10W AMPLIFIER — £3.95 built using the same board for 50W, 150W, 200W or 4 or 6 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details (no address duplication, 269 Hessle Road, Hull).

KIA RETURN AN AD. No. 19... New variable automatic protection power supplies 12-40v/5A/STAB... return AD15 + £9.95 — 8, Cuniflle Rd., Ilkeley... same time, 1000 amplifiers — Giveaway prices!

BARGAIN!!!

LED 7 SEGMENT, DISPLAY, BRAND NEW 14 PIN DIL RED 43 inch, COMMON ANODE DISPLAY 0-9 WITH RIGHT AND LEFT DECIMAL POINT 5 pieces £2.00 (40p each)
10 pieces £3.50 (35p each)
50 pieces £15.00 (30p each)
100 pieces £25.00 (25p each)
1000 pieces £250.00 (35p each)

TELEPHONE YOUR ORDER TO 0296 613815

KIA WISH YOU A HAPPY EASTER... Tread yeourselves... 100w. Powerlet amps + relay — built & tested... Post this advert + £12 (inc) KIA-8, LS29 9DZ (Catalogue 50p).

CORTEX COMPUTER — RS232, RGB Interface. Centronic Printer Port, Extension BUS and 2 x 5¼ inch Disk Drive with CADOS operating system £500 o.n.o. Additional software MDEX with forth and graphics £100. Tel: 0480 860821.

64K DRAMS. 416 4 150ns £3.95, 120ns £3.00 Tested. Also one Shugart SA400 5.4 inch Drive £55 with 240V relay output, includes 16-bit P.I.O. £24.95 Also SPECTRUM JOYSTICK INTERFACE using Kempston standard with any Atari-type controller £25.50, Check/PO to—R. Chandler 5 Norfolk Place, LEEDS LS7 4PT. Tel: 693540 comprehensive instructions included.

FOR SALE

10W AMPLIFIER — £3.95 built using the same board for 50W, 150W, 200W or 4 or 6 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details (no address duplication, 269 Hessle Road, Hull).

KIA RETURN AN AD. No. 19... New variable automatic protection power supplies 12-40v/5A/STAB... return AD15 + £9.95 — 8, Cuniflle Rd., Ilkeley... same time, 1000 amplifiers — Giveaway prices!
<table>
<thead>
<tr>
<th>Classification</th>
<th>Name (Mr/Mrs/Miss/Ms)</th>
<th>Address</th>
<th>Signature</th>
<th>Date</th>
<th>Daytime Tel. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSEX</td>
<td>R JONES ELECTRONICS</td>
<td>287 Rectory Rd., Grays, Essex</td>
<td>Tel: (0375) 33156 — 24hr answer phone</td>
<td>Components, IC’s, Full After Sales Service</td>
<td>Electronic repairs — Industrial & Domestic</td>
</tr>
<tr>
<td>LANCASHIRE</td>
<td>ETESON ELECTRONICS</td>
<td>15B Lower Green, E.E – Poulton-le-Fylde, Blackpool</td>
<td>Tel: (0253) 886107</td>
<td>Component Specialist</td>
<td>Open: 9-3 30am-12 30, 1.30-5.30</td>
</tr>
<tr>
<td>MERSEYSIDE</td>
<td>PROGRESSIVE RADIO</td>
<td>93 Dale Street, Tel 051 236 0982</td>
<td>47 Whitechapel, Tel 051 236 5489</td>
<td>Liverpool 2</td>
<td>THE ELECTRONICS SPECIALISTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GET YOUR SHOP NOTICED IN ELECTROMART

Phone
01-437 0699
for details

ETI ADVERTISERS INDEX MAY 1985

- Antex .. 25
- Audio Electronics 19 & 59
- BK Electronics 6
- Bi Pak .. 26
- B.N.R. & E.S 34
- Book Service 42
- Cambridge Learning 60
- Crickewood Electronics 34
- Cybernetic Applications 34
- Dateline 33
- Display Electronics 12
- Electrovalue 41
- Greenbank 60
- Henry’s 61
- ICS ... 19

- ILP .. 63
- Kelan Engineering 60
- Maplin .. 60
- Microprocessor Engineering 34
- Newrad Inst. Cases 59
- Powertran 1F-1BC
- Rapid Electronics 8
- Riscomp Ltd 41
- SME .. 61
- Steward of Reading 59
- Target Electronics 14
- Technomatic 10 & 11
- TK Electronics 19
- Watford Electronics 4 & 5

Please mention ETI when replying to all advertisements — it helps the advertiser and it helps ETI.

Thanks — Paul Stanyer.
LEARNING TOOLS

P101 Mk2
The P101 Mk 2 Hydraulic Robot Arm offers unrivalled value for money in the field of educational robots. Either as a self-contained system or linked to an external micro, the P101 Mk 2 gives a realistic simulation of industrial robots. The P101 Mk 2's robust construction makes it an excellent basis for experimentation and general robotics research.

Six-axis Robot System kit £1320 + VAT

P102 Mk2
The two-speed Hydraulic Robot Arm is designed to provide "hands-on" experience in practical robotics courses. The Genesis P102 Mk 2 has most of the features of large industrial robots costing from 10 times the price. The P102 Mk 2 is supplied with its own micro-processor control system and remote control box. Alternatively an external microcomputer can be used to control the robot via its RS232C interface or parallel port. Complete Six-axis Robot System kit £1795 + VAT

MICROGRASP
A real programmable robot for the price of a printer! MicroGrasp has four servo-controlled axes and an independent gripper. The robot can be connected to most popular computers via special Powertran adaptors. Robot kit with power supply £215 + VAT
Universal interface board kit £57 + VAT

POWERTRAN PLOTTER
Three-colour precision plotting on an A3 plane. This plotter is one of the most versatile peripherals that can be bought. Exchange the pen carriage for a router or a scriber for computer-controlled etching or machining. Available for BBC 86 or RML 380Z.
£270 + VAT

HEBOT II
With independent control of its two wheels, two-tone hooter, flashing "eyes", retractable pen and four-way collision detectors, Hebot provides an ideal introduction to computer control. Connects to most popular micros.
Complete kit £85 + VAT
Universal computer interface board kit £11 + VAT

Please send me the following kits
I enclose Cheque/Postal Order, value £
(Don't forget to add V.A.T.)
Name
Address

To Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hampshire SP10 3ET
Please allow 21 days for delivery. Offers subject to availability. Prices apply to UK only, are exclusive of V.A.T. and correct at time of going to press. Overseas customers – please contact our Export Department.
All new in the 1985 Catalogue

PROFESSIONAL QUALITY HIGH POWER LOUDSPEAKERS

A new range of superb quality loudspeakers.
* Virtually indestructible high temperature voice-coil reinforced with glass-fibre
* 100% heat overload tolerance
* Advanced technology magnet system
* Rigid cast alloy chassis
* Linen or Plastiflex elastomer surrounds
* 5-year guarantee (in addition to statutory rights)

Available in 5, 8, 10, 12, 15 and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50W to 300W e.g.
- 5in. 50W 95dB £19.50
- 8in. 100W 98dB £29.95
- 10in. 100W 100dB £29.95
- 12in. Twin Cone 100W 100dB £31.95

Note - the output power doubles for each 3dB increase (ref 1W "i 1m).

PRECISION GOLD MULTIMETERS

A new range of very high quality multimeters offering truly amazing quality at the price.

Pocket Multimeter, 16 ranges. 2000Ω DC AC £6.95£ (YJ06G)
M-1028Z with Continuity buzzer, battery tester and 10A DC range. 23 ranges. 20,000Ω DC £14.95£ (YJ07H)
M-2028Z with Transistor, Diode & LED tester and 10A DC range. 27 ranges 20,000Ω DC £19.95£ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input. 53 ranges including peak-to-peak AC. centre-zero and 12A AC DC ranges £34.95£ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and 20µA DC AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy (0.25% + 1 digit DCF) £42.50£ (YJ10L)

N.B. All our prices include VAT and Carriage. A 50p handling charge must be added if your total order is less than £15 on mail order (except catalogue).

MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3 Rayleigh, Essex SS6 8LR Tel: Southend (0702) 552911
Shops:
- BIRMINGHAM Lyntoun Square, Perry Barr. Tel: 021-356 7292
- LONDON 159-161 King Street, Hammersmith. W6. Tel: 01-748 0926
- MANCHESTER 8 Oxford Road. Tel: 061-236 0281
- SOUTHAMPTON 46-48 Bevols Valley Road. Tel: 0703 25831
- SOUTHEND 282-284 London Rd. Westcliff-on-Sea. Essex. Tel: 0702-554000
Shops closed all day Monday.

§ indicates that a lower price is available in our shops.

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue.

(Items below are NOT kits.)
* Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14p (gold from 70p)
* Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only £58.95 (AF99H)
* 10-Channel Stereo Graphic Equalisers - 3 models - basic, with peak level meter, and with spectrum analyser - from £77.95
* Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only £195.00 (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
* Detailed descriptions of the exciting new 74HC range of IC's which combine the advantages of CMOS and TTL. From £4.50
* Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available 61 keys, only £33.95 (YJ12N)
* 1°. Resistors now 5Oppm C. 0 4W. only 2p each!
* Auto transformers 120 240V 50VA. £10.75§ (YJ56L) 100VA £14.95§ (YJ57M) 150VA £16.95£ (YJ58N) 250VA £21.95£ (YJ59P).
* Digital Clinical Thermometer Only £13.95 (FK51F)

Check our 1985 Catalogue for all our other fascinating new lines.

1985 CATALOGUE

Pick up a copy now at any branch of W H Smith or in one of our shops. The price is still just £1.35, or £1.75 by post from our Rayleigh address (quote CA02C)

N.B. All offers subject to availability. Prices firm until May 11 1985

Post this coupon now for your copy of the 1985 catalogue.
Price £1.35 + 40p post and packing. If you live outside the U.K. send £2.40 or 11 International Reply Coupons. I enclose £1.75.

Name ____________________________
Address __________________________

ETI 5 85

All offers subject to availability.