

ELECTRONIC DESIGM-ONE DAY SERVICE UsE befone nueust 3olit, 1981
 Name
 Tint

Cempeny

Form Nddre
For Change of Addrem
Oid Compony Nomo
\square
\square
\square
\square
\square
I
OW Company Addrem

Company

Company Address
 60
61
62
69
64
65
66
67
69
69 yyyyyyyyyy $\begin{array}{lll}30 & 59 \\ 81 & 91 \\ 32 & \\ 39 \\ 84 \\ \text { is } \\ 30 & \\ 89 & \\ 88 & \\ 39 & \end{array}$ 99
91
92
93
94
95
96
77
94
99

300310320330340 301311321321341 302312322332342 200313323333341 304314324334344 205315325335345 307317327337346 30031832833834 309319329339349 $600610 \quad 020630640$ $\begin{array}{llll}601 & \$ 11 & 821 & 631 \\ & 41\end{array}$ $\begin{array}{lllll}602 & 612 & 622 & 632 & 412 \\ 603 & 613 & 523 & 433 & 413\end{array}$ $\begin{array}{lllll}603 & 613 & 623 & 633 & 43 \\ 605 & 614 & 624 & 634\end{array}$ $\begin{array}{lllll}605 & 614 & 624 & 634 & 644 \\ 605 & 15 & 1525 & 435 & 015\end{array}$ 405 1616826636 645
 600 411420638048

$\begin{array}{lllll}350 & 360 & 370 & 380 & 390 \\ 351 & 301 & 371 & 301 & 391\end{array}$ $\begin{array}{lllll}352 & 302 & 372 & 382 & 392\end{array}$ $\begin{array}{llllll}353 & 303 & 373 & 303 & 393 \\ 354 & 364 & 374 & 304 & 394\end{array}$ $\begin{array}{lllll}354 & 304 & 374 & 384 & 394 \\ 155 & 305 & 375 & 305 & 395\end{array}$

 $\begin{array}{llllll}356 & 307 & 377 & 307 & 397 \\ 3 & 397 & 396 & 396\end{array}$ 3683603703283398 | 359 | 369 | 379 | 389 | 398 |
| :--- | :--- | :--- | :--- | :--- | 450660670650690

 $\begin{array}{llll}32 & 652 & 672 & 682 \\ 453 & 692\end{array}$ 454 1464 974 A. 693 65S 645075605 695 1560 wh 670600690 65 657 677697697

For employmem brochures - ant COD 690

Cin
Zene

For Clisige of Adire
Oid Compent Nees
Oid Company Adfren
ClH
Zone

Easier reading continuous display Higher sampling rate Multi-period average Wide temperature range Low-frequency accuracy Versatile new modular design Measurement flexibility, moderate cost

IN 4 NEW
 (tp SOLID STATE COUNTERS!

Turn the page to learn about new measuring convenience, dependability from

Call your bop engineering representative today for data demonstration of these time-saving, precision, advanced instruments

Your 4 representative is your headquarters for sales, service and parts on the Industry' most complete-coverage Inatrument array. (乡) indicates factory-level field repair ota. tions.

Eastern Seaboard
asbury Park, Mew Jersey The I. Robinson Co 1313 Railroad Ave KE 1-3150 Baltimore is, Marylanc.
Horman Associates, Inc. Horman Associates, Inc.
3006 West Cold Spring Lane MO Cold Sprin
M-8345

- Beston Area Burlington, Mass.
Yewell Associates, Inc.
2-9000
- Bridgepert 8, Conn

Yewell Associates, Inc.
1101 E. Maın St., FO
$6-3456$
Camp Mill, Pennsylvania
The I. E. Robinson Co
Park Place Office Bidg

- 187 RE 7.6791

Englewoad, New Jersey R. M. C. Associates 91 Grand Ave., 107.3933

- Mew Yerk 21, Mew York
${ }_{236}{ }^{\text {R E M M. C. Associates }}$
- Philadelohia Area

West Conshohocken, Penn.
The 1. E. Robinson Co.
CH 8.1600 and TA 8.6200
pittsburgh 27, Pennsylvania ${ }^{5} 32$ Sterling Company nsule. Rd, TU 4.55
Poughkeepsie, M. Y.
Yewell Associates. Inc
806 Main St., GR 1.3456

- Rechester 25. New York
- Rochard A Ossmann \& Assoc 830 Linden Ave., LU 6.4940

Syracuse, New York
Edward A. Ossmann \& Assoc Edward A. Ossmann \& Assoc.
101 Picard Dr P. 0 Box 128 GL 4.2461
Vestal, New York Edward A Ossmann \& AssoC
149 front St., ST 5.0296
(-Washington, D. C. Area
Washingten, D. C. Are Reckville. Maryland Horman Associates. Inc.
941 Rollins Ave, HA $7-7560$

Southeastern States

Atlanta 5, Georgia
Bivins \& Caldwell. Inc.
3133-Mople N.E., 233.1141

- Migh Point, Morth Carolina Bivins \& Caldwell. Inc

3 N. Main S
Muntsville. Alabama
Bivins \& Caldwell, Inc.
534.5733 (Dir. line to Atlanta)

- Orlande, Flerida Stiles Associates, Inc. 1226 E. Colonial, GA 5.5541
Richmend 30, Virginia
Bivins \& Caldwell, Inc.
1219 High Point Ave. EL 5.7931
St. Petersburg 8, fis.
Stiles Associates, Inc
Stiles Associates, Inc.
$410-150$ th Ave. Made.ra Beach, 391-0211

Central, South Central States -Cnicage 45. Illinois Crossley Associates. Inc.
2501 W. Peeterson.
BR $5-5000$ - Cleveland 24, Ohio S. Sterling Company
5827 Mayfield Rd.. H1 $2-8080$

- Oayton 19. Onie Crossley Associates, Inc.
2801 Far Hills Ave AX $9-3594$ - Detreit 35, Michigan S Sterling Company 15310 W. McNichols Rd BR 3.2900
- Indianapalis 20, Indiana Crossley Associates. Inc 5420 N. College Av.CL 1-9255 Kansas City 30, Missouri Harris-Hanson Company 7916 Paseo Blvd., HI 4.9494 St. Leuis 17, Missouri Harris-Hanson Company 2814 S. Brentwood Blvd Mi 7.4350 -St. Paul 14, Minnesota Crossley Associates, Inc.
842 Raymond Ave., Mi 6-788 - Dallas 9. Teras Earl Lipscomb Associates FL 7.1881 and ED 2.6667 - Mouston 5, Teras art Lipscomb Associais Earl Lipscomb Associates
P. D Boa 6646. M0 7-2407

Western States

- Albuquerque. New Mezice Neely Enterprises
6501 Lomas Blvd N.E 6501 Lomas Blvd., N.E
$255-5586$ - Denver 10, Colorado Lahana \& Company 1886 S Broadway. PE 3.3791 Las Cruces, New Merico 14 S. Water St., 526 .2486 - Los Angeles, California Neely Enterprises
3939 Lankershim Blvo
N. Hollywd. TR 7 1282, PO6.3811 - Phoenix, Arizona 641 E. Missouri, CR 4.5431

> Pertland 9, Oregen 1238 N.W. Glisan, CA 2.7337 - Sacramente 14, California Neely Enterprises 1317.15 th St. GI 2.890 Salt Lake City 15, Utah Lahana 8 Company
1482 Major St., HU 6.8166 - San Diege B, Califernia Neely Enterprises 1055 Neely Enterprises $\begin{aligned} & \text { Shafter St., AC } 3.8106\end{aligned}$ - San Francisce Area San Carlos, Califernia San Carlos, Califernia 501 Neely Enterprises - Seattle 9. Washington 1320 Prospect St., MA 2.0177 Tucsen, Arizena 232 Neely Enterprises

a pleasure

 to measure with these...

Measure frequency, period, ratio, qui continuous display, no "blinking"... 0. ...Unique low frequency accuracy... 0

All the advantages of solid-state design are now yours in these new solid state counters-offered at prices comparable to those of today's vacuum tube counters. And you get the plus advantages of greater readability, faster measurements, easier routine maintenance, rack-and-stack convenience of the new universal module instrument cabinets.

Offered in four models, these new counters have maximum counting rates of 300 KC or 1.2 MC , with a choice of Nixie or columnar readouts. The highintensity neon readouts are stacked in compact columns for faster, easier reading. On the in-line readouts, -pioneered standard incorporation of the new long-life, wide-viewing Nixies gives you many extra hours of lamp life and heretofore unknown readability even at extreme angles. Polarized screen provides maximum readout brilliance with freedom from reflections.

A unique display storage feature of these new counters produces a continuous visual readout of the most recent measurement, even while the instrument is making a new measurement. Only if the new count differs from the previous count will the display change, in which case it will shift directly to the new reading. The fatigue and error possibility of a "blinking" display is eliminated. The storage feature may be disabled with a rear panel switch.

The counter's "inactive time" (when not making a new measurement) is independent of gate time and adjustable from 0.2 to 5.0 seconds, thus permitting a higher sampling rate.

Counter	Max, Counting Rate	Registration
5212A	300 KC	$\begin{gathered} 5 \\ \text { digits } \\ \text { columnar } \end{gathered}$
5512A	300 KC	$\begin{gathered} 5 \\ \text { digits } \\ \text { Nixie } \end{gathered}$
5232A	1.2 MC	$\begin{gathered} \mathbf{d i g i t s ~}_{\text {columar }} \\ \text { columna } \end{gathered}$
5532A	1.2 MC	6 digits Nixie

High sensitivity permits low le without accessories, and multipl measurement (to 100,000 periods

Note clean, compact, easy-to-service phy new solid-state counters.

quickly, accurately
. 0.1 volt sensitivity
.. Operation -20° to
...Compact, easy-to-use instruments provide
...Solid-state dependability...Higher sampling rate
$+65^{\circ} \mathrm{C}$... Prices comparable to vacuum tube counters!

	Period	Measureme			equency	easurement			tio Measure		
Range	Accuracy	Reads in	Periods Averaged	Range	Accuracy	Reads In	$\begin{aligned} & \text { Gate } \\ & \text { Time } \end{aligned}$	Reads	Range	Accuracy	Price
2 cps to 10 KC in single period; up to 300 KC in multiple period average	$\pm 10 \mathrm{~ms} \pm$ time base accuracy \pm trigger errorl periods averaged	Milliseconds with positioned decimal	$\begin{aligned} & 1,10, \\ & 102,103 \\ & 104,105 \end{aligned}$	$\begin{gathered} 2 \mathrm{cps} \\ \text { to } \\ 300 \mathrm{KC} \end{gathered}$	```\pm1 count \pm time base accuracy```		$\begin{aligned} & 10,1 \\ & 0.1,0.01 \\ & \text { sec. } \end{aligned}$	$\begin{gathered} \left(f_{1} / f_{2}\right) \times \\ \text { period } \\ \text { multiplier } \end{gathered}$	$\begin{gathered} \mathrm{f}_{1}: 100 \mathrm{cps} \\ \text { to } \\ 300 \mathrm{KC} \\ (1 \mathrm{v} \mathrm{rms} \text { into } \\ 1,000 \text { ohms) } \\ \mathrm{f}_{2}: \text { same as } \\ \text { period } \end{gathered}$	$\begin{gathered} \pm 1 \text { count } \\ \text { of } f_{1} \pm \\ \text { trigger } \\ \text { error of } \\ f_{2} \end{gathered}$	$\begin{array}{r}\$ 975.00 \\ \hline 1,175.00\end{array}$
2 cps to 10 KC in single period; up to 1 MC in multiple period average	$\pm 1 \mu \mathrm{~s} \pm$ time base accuracy \pm trigger error! periods averaged	Milliseconds or microseconds with positioned decimal		$\begin{gathered} 2 \mathrm{cps} \\ 1.2 \mathrm{MC} \end{gathered}$					$\begin{aligned} & \mathrm{f}_{1}: 100 \mathrm{cps} \\ & \text { to } \\ & 1.2 \mathrm{MC} \\ & (1 \mathrm{v} \mathrm{~ms} \text { into } \\ & 500 \text { ohms) } \\ & \mathbf{f}_{2}: \text { same as } \\ & \text { period } \end{aligned}$		$1,300.00$ $1,550.00$

w level measurement Itiple period average iods) gives higher ac-

physical arrangement of
curacy in lower frequency ranges, even for noisy signals. Self-check is provided for both frequency and period measurement modes.

Only $31 / 2^{\prime \prime}$ high, these counters are housed in the new ${ }^{\text {最 modular cabinets ideal for both bench use and }}$ easy rack mounting. Routine maintenance is simple with snap-out decade /readout units and circuit cards. Readout drive directly from photoconductors eliminates a complete stage of complex circuitry, to effect genuine cost and reliability advantages. Compact design and construction and servicing ease are illustrated at the left.

Solid state design and construction gives you the advantages of low heat dissipation with minorheating effect on adjacent equipment, fast warm-up, low power consumption and new standards of reliability.

The new counters include a four-line BCD code output. This output, with assigned weights of 1-2-2-4, is available for systems use or to operate devices such as the 562A Digital Recorder. Front panel controls include Input Attenuation, Display, Reset and Function.

Call or write your representative or call us today for information and a demonstration!

Data subject to change without notice. Prices f.o.b. factory.

HEWLETT-PACKARD COMPANY

1081K Page Mill Road
Cable "HEWPACK" Sales representatives in DAvenport 6-7000

HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1
Rue du Vieux Billard No.
Gabe HEWPACK8A
Tel. No. (022) 28. 43. 86

THESE "WIRE-WOUNDS" ARE CIRCUIT SHRINKERS newly

expanded line lets $\mathrm{AXIOHM}^{\ominus}$ power resistors go into smaller circuits!

Ward Leonard AXIOHM power resistors are now available in scven sizes-down to 2 watts, up to 12.5.

They're ideal for miniaturization in printed-circuits, industrial instrumentation and automation circuitry. But they're recommended for amy electrical or electronic application where the highest stability and maximum overload capacity are required.

The seven AXIOHM sizes come in a
complete range of resistance values (see table) from 0.1 to as high as 75,000 ohms. Naturally, they feature the qual. ities Ward Leonard has made famous in powet resistors:

Vitrohm vitreous enamel; Ward Leonard's specially made ceramic core; specially selected and matched resistance wire; and strong, permanent, lowresistance, spot-welded, lead-to-end-cap junctions.

*Less leads.
Get complete details in Supplement C to Catalog 15. Write for your copy and a list of stocking distributors today. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)
 RESULT-ENGINEERED CONTROLS SINCE 1892

WARD LEONARD

 ELECTRIC CO. ."mun wimRESISTORS • RHEOSTATS • RELAVS • CONTROLS • DIMMERS CIRCLE 4 ON READER-SERVICE CARD
ELECTRONIC DESIGN News4
Advances Spur Thin-Film Computer Hopes
Sensing Network Is Planned in Gulf
Satellite System Would Map Moon With Erasable Tape$2.25-\mathrm{Gc}$ Transmitter Is All Solid State6
Satellite Triplets Send Back Key Data10
Single Radar to Aid All Ships in Harbor
Flarescan-ILS System Allows Blind Landing 14
New MM Waveguide Uses Plastic Lenses 18
Washington Report 20
Resistor Line Fully Automatic 22
Digital Communication Modules Developed 24
Solderiess Wirewraps Have Low Failure Rate
Single-Channel, 3-D TV Speeds Atomic Assembly"Dunking Duck" Is Invented With Transistor Oscillator28
New Laboratories Going Up As Research Spending Rises 36
Radar Augmenter Enlarges Target On Radars of Tracking Planes 39
Getting Obsolete? 41
Editorial Comment
Optimum Test Limits in Transistor and Switching Circuit Measurements42Less error in measurement and specifications can be achieved by using 20 and80, rather than 10 and 90 per cent levels of transistor switching response-C. Askanas
Precision Potentiometers Need Better Specifications 48An approach to spelling out potentiometer requirements more clearly-R. Hennessey
How to Choose a Curing Agent for Epoxy 52To choose a curing agent for an epoxy resin, the engineer must know boththe scope of available selections and what properties each will give-C. A. Harper
How to Select Miniature Lamps for Electronic Equipment 56There's more to selecting a miniature lamp than most engineers realize-L. W. Curtis
High-Density Electronic Packaging—Structural Design 60The analysis and experimental results of reinforced and postloaded techniquesapplied to the structural design of welded assemblies-C. B. Converse.P. N. James
Potentiometers: 2 Sides to Reliability64
Potentiometer manufacturers charge Editorial in May 24 issue overlooks effortswhich are made
Product Features 68
Newly available products of exceptional interest to design engineers
True Kms Voltmeter Covers 7-Mc Banduidth68
For the first time one instrument provides 1 per cent midband accuracy.$7-\mathrm{mc}$ bandwidth and $100-\mu \mathrm{v}$ sensitivity to measure the true rms valueof virtually all waveforms
Permanently Tuned. Ceramic, IF Transformer Is Temperature Stable 70New device may change appearance of broadcast receivers
New Products 72Outstanding items among the new products of direct interest to designersare l-kv silicon rectifiers, a low-noise GaSb tunnel diode, high-temperatureceramic diodes, a variable transducer, and a servo galvanometer which isaccurate to 0.25%
Ideas for Design 158
Circuit Squares DC Input Voltage 158
Inverted Exclusive-OR Circuit Compares Binary Lits 158
Voltage Changes Transmitted As Shifts in Frequency 160
One-Shot Multi Fixes Turn-On State of "Bistable" Unit 161
Modified Circuit for Constant-Width Pulses 162
Two-Transistor Circuit Increases Null-Detector Sensitivity 163
High Power AND Gate Uses Discharging Capacitor 164
Simplified Gate Driver Reduces Delay Between Outputs 164
Diodes Checked Out On Single 60-Cycle Tester 165
Ideas-for-Design Entry Blank 159
Design Decisions
Steel Ribbon Converts to Angular Motion
Steel Ribbon Converts to Angular Motion 168 168168
Liquid Lock Makes Loose Fit Press Fit 169
Hi-Fi Die Obviates Milling in St-Eric-o Cartridge Element 170
Noisy Multivibrator Helps Locate Distress Light 171
The Art of Tacking 176
How to solder your career-R. W. Johnson
Production Products 146
New Literature 150
Books 166
Letters 172
Careers 176
Advertisers' Index 179

Coming Next Issue

New design interest in surface-wave transmission lines is reported in the MicroWaves section of the August 2nd issue of Electronic Design. This well-known, but little-used transmission method may be coming into its own for antenna lines and longhaul communications. Articles on design of magnetic radar modulators and selection of Doppler modulation systems are also featured. The latter article should be of particular importance to designers interested in the fast-growing Doppler field.

[^0]

A revolutionary new, highly versatile, general purpose, portable pulse generator for field and laboratory use. Featuring a self-contained rechargeable battery pack which allows independent operation "in-the-field" as well as from standard line voltages.

SPECIFICATIONS:

Main Pulse - plus or minus, 18 volts into 50 ohm amp.
Repetition Rate from 20 CPS to 2 MCS in 5 ranges.
Pulse Delay from 0.0 to 10,000 USEC in 5 ranges.
Pulse Width from 0.05 USEC to 10,000 USEC in 5 ranges.
Overshoot and undershoot - 5\% or less. Duty factor -60% max. at any rep. rate.
Sync. Pulse Out - positive, 8 volts min., open circuit amplitude.
Size: $8^{\prime \prime}$ wide $\times 83 / 4^{\prime \prime}$ high $\times 12^{\prime \prime}$ deep.
Also available as rack mounted unit.

THE COMPLETE LINE OF RUTHERFORD PULSE GENERATORS AND SYSTEMS WILL BE ON DISPLAY-WESCON SHOW—BOOTH NOS. 1501 \& 1502

Write for complete catolog to Dept. ED7-19

Advances Spur Thin-Film Computer Hopes

Hughes Testing Complete DDA Using Films;
RCA Claims Field-Effect Deposited Transistor

Alan Comerelto
News Editor

SEVERAL recent developments indicate that designers are advancing in their drive to miniaturize computers via thin-films.

- At Hughes Aircraft Co., Culver City, Calif., tests are proceeding on a complete airborne computer in which thin-film capacitors and resistors operate in conjunction with conventional semiconductors of the smallest available type.
- Researchers at Radio Corp. of America, Princeton, N. J., claim development of a thinfilm cadmium-sulfide transistor operating on field-effect principles but differently from other field-effect devices.
- General Electric's Light Military Electronics Dept., Utica, N. Y., has built thinfilm logic circuits which it is proposing to the military services as replacements for conventional logic modules.

RCA reports it has deposited thin films of cadmium sulfide in strips so thin that electrodes can be spaced only 5 microns apart. The films are 1 micron thick. By using a source, drain, and gate configuration (corresponding to the emitter, collector and base nomenclature of conventional devices), RCA researchers have been able to make the combined cadmium-sulfide-insulation and metalelectrode structure act like $\boldsymbol{\text { a transistor. }}$

To do this however, they have had to bias the gate positively so that the gate material, starting as an insulator, has electrons drawn into it, enhancing its conductivity. Enhancement current rather than depletion current is said to be the dominant factor in the device's operation. In field-effect devices such as the Shockley unipolar transistor the gate is biased negatively so that current passing through the device may be modulated by varying the amount picked off.

Because of the extremely narrow electrode
spacing, reports RCA, the insulation-like cadmium sulfide can be made to operate at high frequencies, overcoming the low carrier drift mobilities of the material. In laboratory transistors made so far, gain-bandwidth-products of about 5,000 have been measured, the company says. A transconductance of 5,000 was achieved at 10 ma and 10 v .

RCA says the device and the techniques it has developed appear very suitable for mass deposition of computer circuitry. However, its speed is limited to 1 mc at present. Because only a few milliwatts are required for operation, component densities of 10,000 per sq in. are expected.

Experimental Hughes Thin-Film Computer Has 8,000 Components, Draws 30 W

To demonstrate feasibility of thin-film circuitry for logical processing in an airborne computer, Hughes has built a digital differential analyzer based on the circuitry of the

Thin-film digital differential analyzer builr by Hughes to demonstrate feasibility of techniques weighs 1 lb , occupies 20 ev in, contains more than 3,000 parts, yet draws only 30 w . Hinged wafers are of Fotoceram. Components along edges are micro-tronsistors and diodes in ultrasonically drilled holes. Thin-film components are in center of wafers.

Logic board for thin-film DDA contains 32 NOR circuits consisting of thin-film capacitors and resistors, and micro-semiconductors.

Thin-film feld-effect transistors deposited on substrate are made of cadmium sulfide. Electrodes for individual transistors in development at RCA hove been spaced as little as 5 microns apart to overcome some of the effects of using an insulator-like material for an active device. Substrate holds three transistors.

Mark II Polaris guidance computer. The unit is said to have more than 8,000 components. It weighs 1 lb , occupies 20 cu in . and requires $30 w$ of power. It has a core memory and logical circuitry made of thin-film capacitors and resistors deposited on top of one another and micro-transistors and diodes.

Resistors are formed by depositing a 250-A thick layer of Nichrome on a $40-\mathrm{mil}$ Fotoceram wafer and covering this layer with an insulation of silicon monoxide. A layer of copper to form a capacitor plate is deposited on the silicon monoxide.

Either silicon monoxide or anodized aluminum is used as dielectric. Another layer of copper and insulation makes a capacitor.

Interconnections are formed by etching a network of horizontal and vertical conductors separated by a flexible insulator. In one 1-by-1-in. rectangle on the wafer, Hughes says, 44 horizontal wires cross 64 vertical wires with interconnections at each intersection. Reliability is said to be very great. In the circuit mentioned, more than a million on-off cycles have handled $1 / 4$-amp with no failures, according to Hughes.

The computer is divided into 25 wafers, of which 17 logic wafers are nearly identical. For the 25 wafers only nine basic layouts are required, Hughes says. The wafers become unique when interconnections are selectively etched and when the semiconductors are added. These are inserted into holes ultrasonically drilled in the wafer. The wafers are hinged for accessibility so that the entire computer opens like a book.

Hughes estimates that if the computer were to be produced in a production run, the semiconductors would make up about 70 per cent of the cost of the end product. Labor and materials would be 30 per cent. - -

TO GIVE YOUR INSTRUMENTS

THE PRECISION-ENGINEERED LOOK

SPECIFY RAYTHEON CONTROL KNOBS

OVER 375 SIZES, COLORS, SHAPES ...TO MS91528C

For full information on the Most Complete Line of control knobs for industrial or military applications and Raytheon Control Knob Selector Wall Chart please write to: Raytheon Company, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.
For small order or prototype requirements see your local franchised Raytheon distributor
RAYTHEON COMPANY

High-Performance Commercial Potentiometer-Under \$1

Now-solve the quality-price dilemma with Bourns E-Z Trim commercial potentiometers. These subminiature thorough breds are direct descendants of the time-proven Trimpot potentiometer, and their performance shows it. They stand up to steady-state humidity and fully satisfy the requirements for such demanding applications as industrial controls.
Settings you make with E-Z Trim units are pinpoint sharp. thanks to the superior angular resolution afforded by the 15 .turn shaft. They stay that way, too, because the shaft is self-locking. Adjustments are fast and simple-an ordinary screwdriver does the job.

Take your choice of wirewound or Resiston carbon units. Wirewound Model 3067 handles a hefty $1 / 2$ watt at room temperature, is avallable with resistances of 100 ohms to 20K. Carbon Model 3068 offers resistances of 20 K to 1 Meg . Both units have either printed circuit pins or solder lug terminals

Order in production quantities of 1000 or more, and these exceptional potentiometers are yours for under $\$ 1$ each. Tell us you're in a hurry. and you'll have them within 48 hours -they're on the shelf from coast to coast. Write now for complete data and list of stocking distributors

Underwater current speed transducers and some of the surface equipment is displayed by Roy Gaul, of Texas A \& M, leff, Henry Walker, vise president of Hytech Corp. and Don Cretzler, president of Hytech, right. Current devices are Savonius rotors, standard velocity measuring device.
the slow-changing nature of the measurements makes this response adequate.

In the Gulf instrumentation set-up, buoys, used to house power supplies, conversion and transmitting equipment, would be linked to multiple underwater sensing stations. These would transmit data over webs to the buoy and the buoy would retransmit the data to equipment on an oil derrick or Texas Tower in the vicinity. In turn the information would be transmitted to shore site data reduction facilities by microwave link.

The power supply in the buoy would consist of standard wet cell batteries and a small diesel engine. When the batteries' charges reach a preset low the engine would turn on automatically to recharge them.

Telemetering equipment for the program is supplied by Telemetering Corp. of America, a subsidiary of Pacific Mercury Electronics, Sepulveda, Calif. A straightforward fm-fm telemetering system will be used, according to TCA's Vernon A. Dorrell, chief systems engineer. Frequencies used will be in the neighborhood of $13 \overline{\mathrm{mc}}$ in the vicinity of the Gulf missile range. In other areas of the Gulf, transmission frequencies used should be in the $225-260 \mathrm{mc}$ band.

The program, thus far a patchwork of loosely-knit organizations, was sparked by Texas A \& M's Roy Gaul. Mr. Gaul recently made a presentation to 30 or 40 different sovernment organizations, including Office of Naval Research and National Science Foundation, who have expressed interest in the program. -

As succeeding generations of missiles penetrate the curtain of space that separates Earth from other planets. the importance of electronic guidance, the importa airborne telemetry systems control and airborne telemetry systems becomes obvious. For, without new engineering design techniques to provide reliable communication and control, the most advanced missile is but a bird a gilded and very expensive cage.

As typical examples of what can be accomplished to insure maximum performance in missile telemetering, communication, data processing and other applications, Burnell \& Co.has developed two new filters-a miniature I ke crystal filter and, employing modern synthesis techniques, a miniature 500 kc LC toroidal filter possessing low transient distortion characteristics.

Bumellslos Cha.
 Prowiens im miereminitaturliation of
 TONOLES, PITEES AMD RELATED NETWOAKS

TECHNICALDATA 3 ke Crystal Filter Attenuation- 3 db B/W-2 cps Shape Factor-30/3-5:1 Impedance- 500 K in and out Temp. Coeff. - $021 \mathrm{cps}{ }^{\circ} \mathrm{C}$ Size-31/2 $\times 2^{\prime \prime 111} \times 11 / 14$ Insertion Loss- $3^{1 / 2} \mathrm{db}$ Also available in any impedance from 500 ohms to 500 K нeo.

CIICIE \& ON REDER-SERVCE CARO

TECHNICALDATA 500 ke LC Toroidal Filter
Attenuation-B/W 40 kc at 3 db -200 kc at 50 db Impedance- 50 ohms in and out Insertion Loss- 4.5 db Over and undershoot-
Over and undershool-
(for a step modulated
500 kc carrier) -less than 1% Size- $7 / 4 \times 3 \times 1^{11 / 2}$

Other Burnell filters are available in frequencies up to 30 mes over a wide range of impedances.

Write for new catalog.

Satellite System Would Map Moon With Erasable Tape

Lockheed Design Calls for Electrostatic-Thermoplastic Recording Of Lunar Surface and High-Speed Transmission of Data to Earth

Peter de Blane
News Editor

ELECTROSTATIC-thermoplastic tape re-- cording, high-speed data transmission and an accurate earth-controlled guidance system are basic concepts of a lunar-mapping satellite design described at the AIEE Aerospace and Transportation Committee Technical Conference in Philadelphia.

The design was drawn up by the Lockheed Aircraft Corp., Marietta, Ga., prime contractor for the Samos (Satellite And Missile Observation System) vehicle. Company engineers said that the design considerations for the lunar satellite were similar to those for Project Samos. Thus far, however, Lockheed has no contract to develop its moon-mapping system.

The recording technique combined with the guidance system is said to make possible a final map of the moon with altitude markings accurate to 50 ft and linear-distance measurements accurate to 158 ft .

The Lockheed method would utilize a computer on earth for guidance and positioning of the satellite's attitude in flight, as

Figures were obloined in
borne mapping systems.
Graphical relationship of ground resolution to altitude of a mapping satellite.
opposed to a pre-programed computer in the satellite proper.

The time history of the satellite's altitude would be telemetered back to earth for computation of orbital parameters. Then thrust initiate and magnitude signals would be sent to the vehicle. Thrust direction information would probably not be necessary, as the inertial guidance system would position the vehicle properly. This system is said to permit a guidance accuracy of 50 miles inclination from the desired polar orbit.

The mapping camera to be used would employ electrostatic-thermoplastic film and have a focal length/format ratio of $1 / 3$. Each frame would be a 30 -by- 30 mile segment of the moon's surface.

On exposure, static charges are arranged on a plastic tape corresponding to various levels of light. Images are recorded in 16 shades of gray, with a resolution inaccuracy of 158 ft in a 30 -by- 30 mile area at a distance of $30,000 \mathrm{ft}$. The tape can be read out directly. Readout is destructive, returning the tape to its original neutral electrical state. It may then be re-used.

Lunar mapping satellite as conceived by engineers of the Lockheed Aircraft Corp. Design problems are soid to be similar to those of the Samos sotellite.

Photographs of a 30 -by- 30 -mile area with an overlap of 60 per cent will be taken every 10 sec for 1 hr during each 2 hr orbit. This requires a total of 360 frames. A film capacity of 1,000 frames will provide an adequate reserve.

Data Link Would Transmit

One Frame Every 12 Sec
Under the proposed system, data would be transmitted at a rate of 3×10 bits per sec at a bandwidth of 750 kc . This speed would enable all of the information collected during the period of one orbit to be transmitted in a relatively short time. Picture elements themselves are resolved into 16 shades of gray, or 4 binary bits. The speed allows the transmission of one frame of data every 12 sec , a timing interval said to be an excellent compromise between readability and speed.

The star background over an area of the moon would be photographed concurrently: with that area. The method devised for this would use an integrated technique of elec-trostatic-thermoplastic recording. The star background would be recorded on the mapping format itself and included on each frame, thereby eliminating the need of a separate recording system.

Scientists would be able to use the photo of the star background over a mapped area, along with accurate time measurements, to determine the nadir point location of each frame. Then instruments such as the Kelsh Plotter, automatic mosaicker and others, would be used to put together the final map.

The navigation and control sybsystem of the satellite would be composed of a programer, including core storage, scalers and

Sample picture frame as it would appear when received from proposed satellite shows portion of the moon's surface with stor background directly above it.

Film for Moon: A Compromise

Electrostatic-thermoplastic tape recordins - a merger of television and photogra-phy-was selected as the recording media for Lockheed's proposed moon-mapping satellite after careful consideration. The methods considered included:

Radar: Due to the low altitude of the proposed mapping vehicle and the lack of any attenuating or refracting atmosphere. a ppi-type radar originally exhibited considerable merit as a mapping technique. However, upon further examination, difficulties in the resolution of many successively overlapping ppi presentations and in the vertical and azimuth stabilization of a satellite carrying a rotating antenna ruled out this system.
Television: Resolution and linearity obtainable with present vidicon-type tubes would give only relatively coarse terrain data. hardly comparable with photographic capabilities. While being satisfactory for navigation use, the image obtained would not do for map makers.
Infrared: Basically similar to television, in that the image resolution obtained is not atcurate enough for map-making.
Conventional Photography: A camera is figuratively the best choice for data-re cording with the highest precision. But film in the quantities necessary to map the monn would weigh over a ton. Even if a suitable transport vehicle were devised, the film would have to be returned to earth for processing. And the sensitive film necessary for the job would undoubtedly be foxged by hixh-level cosmic radiation
a timing clock with an accuracy of 1 part in $10^{\text {. }}$. Also in this package would be an inertial guidance system, radar altimeter and earth sensor.

Data transmission equipment would include the tape scanner and digitizers, a set of command receivers and transmitters, and the parabolic antenna.

Power would be supplied by solar cells and nickel-cadmium batteries.
The satellite itself would be cylindrically: shaped. Around its perimeter four solar cell paddles would be spaced. At one end of the satellite would be a 5 ft parabolic antenna on a shaft, and at the other the main mapping camera. By means of an earth sensor, the antenna would be kept pointing continually toward the earth. Stabilization jets placed around the midsection of the vehicle would be used for control of unit orientation. Alongside the mapping camera, would be a sensor, used to maintain stabilization. - -

in Industry's Strongest Chain of Transistor Performance

ELECTRICAL CHARACTERISTICS (© 25° C)

PHILCO
ABSOLUTE MAXIMUM RATINGS
 2N2048

GERMANIUM SWITCH

Philco's new 2N2048 is the forerunner of a broad line of 150 mw MADT switching transistors. The new power dissipation capability is available in uniformly reliable high-speed units, at surprisingly low cost, via proven MADT automation.

Intended for both saturated and non-saturated logic circuits, the Philco 2N2048 gives you more than comparably priced transistors-more drive per transistor more switching speed per dollar invested in transistors, and the extra capability of extra power dissipation for applications that require it.

Philco 2N2048 features include minimum h_{FE} of 50. maximum V (SAT) of 0.14 V ., minimum f_{T} of 150 mc ., and tightly controlled V_{BE} ranging from 0.25 V . minimum to 0.35 V . maximum. For complete information write Dept. ED71961.

LaNSDALE DIVISION, LANSDALE, PENNSYLVANIA

NO BUT'S HERE...

5®
Ask your ESC sales engineer or write for
new engineering bulletin 37-74 for com-
plete technical data
 AMERICA'S LEADING MANUFACTURER OF DELAY LINES

[^1]- excellent profit-shoring plan

> You never have to make excuses
> for quality . . . for delivery - for
engineering service - for price -

2.25-Gc Transmitter Is All Solid State

Tubeless 2-W RF Source Is Built Into S-Band Telemetry Equipment

A
A N ALL-SOLID-STATE rf source said to Abe capable of supplying 2 w of power at 2.25 Gc has been incorporated in an S-band telemetry transmitter, according to Sylvania Electric Products, Inc., Buffalo, N. Y

The source is an exciter-consisting of a $93.75-\mathrm{mc}$ oscillator with high-gain buffer, varactor-doubler, driver and power-amplifier stages-driving a harmonic multiplier string. According to Sylvania, the use of solid state components gives the complete transmitter an estimated mean-time-to-failure of 14,000 hours. An engineering model built for Wright Air Development Div. occupies 41 cu in. and weighs 3 lb , including a $1-\mathrm{lb}$ copper heat sink

The transmitter is single-sideband, sup-pressed-carrier modulated at a high level by phase discrimination. The modulator converts standard am or fm input to a sideband power of 320 mw . In the all-solid-state exciter of the transmitter, a fifth-overtone series crystal operating at 93.75 mc is used. This frequency is multiplied in a varactor

Developmenial telemetry transmitter held by Sylvania project leader W. S. Maciag uses elaborate heat sinking and 3-0 microwave construction to operate at 2.25 Gc and 2 w with all-solid-state construction.

S-band. 2-w fransmitter has if source consisting of a vhe exciter driving a harmonic multiplier. The modulator supplies either am or fm single-sideband suppressed carrier modulation
doubler that uses a PC-119-10 Varicap as the active element in a shunt-type circuit. Operation is an environment of -20 to +80 was required by WADD. This called for a careful heat-sinking of the power amplifier. A nickel-plated beryllium-oxide disk is used in the sink for each of two TA2084 transistors employed.
The harmonic generator consists of a cascaded tripler and two doublers. It uses varactor diodes with breakdown voltages in the - 100-range. This high voltage is said to keep peak currents low and provide reasonable laractor conversion efficiency. Total conversion efficiency is said to be 7 db in convert ing 10 w at 187.5 mc to 2 w at $2,025 \mathrm{Gc}$.

The configuration of the varactor was not conducive to high power dissipation. This required compensation in the microwave structure, where a bead-supported coaxial transmission line was used. Tuning stubs that match varactors individually and ease replacement are used as direct thermal paths. They are shorted half-wave transmission lines that provide metal-to-metal contact.
In the modulator, individual modulators each suppress the carrier frequency while generating both upper and lower sidebands. These are then directly combined to give only one sideband. This occurs when one of the balanced modulators shifts the phase of one of the sidebands 180 deg while maintaining the other at the reference, or input. phase. The balanced modulators, the phase shifter and the microwave sum network are strip transmission line $3-\mathrm{db}$ directional couplers. This portion of the transmitter was built in a three-dimensional coordinate system. -

Now! minify without "SHOE-HORNING"...

TANTALEX ${ }^{\text {® }}$ Solid-electrolyte Capacitors Can Help!

Big boast? Nol Plain fact. You need no shoe horn to get high capacitance values into your transistorized circuits. Sprague's ultra-miniature, solidelectrolyte TANTALEX Capacitors let you minify to the hilt without sacrificing performance or reliability! This one, for example, is only $1 / /^{\prime \prime}$ in diameter by $1 / /^{\prime \prime}$ long, yet packs a whopping $6.8 \mu \mathrm{~F}$ at 6 volts!

A Reliable Source of Supply!

Sprague Electric Company pioneered in the development of solid-electrolyte tantalum capacitors. Unmatched experience has enabled us to establish the largest production facilities in the capacitor industry. Producing more solid-electrolyte tantalum capacitors than all other suppliers combined, it stands to reason that Sprague Electric offers . . . in addition to reliability of product . . . reliability of source of supply!

Type 150D Capacitors can be furnished to meet all of the requirements of Military Specification MIL.C-26655A. Sprague, the pioneer in the solid tantalum capacitor field, is your first source for Types CS12 and CS13.

Polar and Non-Polar Types Available

The famous Type 150D polarized capacitor, outstanding for miniature size, excellent characteristics, and reliable service life, is now joined by nonpolarized Type 151D, which is useful in many new applications, such as phase-splitting in small lowvoltage motors, in servo systems, in low-frequency timed circuits, in crossover networks, and in bypass applications where high ripple voltages are encountered.

- We'll be happy to send you complete performance data covering the full range of sizes and ratings of Tantalex Capacitors. For information on Type 150 D Capacitor, nequest Bulletin 3520D. For data on Type 151D Capacitors, specify Engineering Bulletin 3521. Address Techrical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts,

You can get off-the-shelf delivery of Type 150D capacitors at factory prices on pilot quantities up to 499 pieces from your local Sprague Industrial Distributor

SPRAGUE COMPONENTS

CAPACITORS
mesistons
MAGNETIC COMPONENTS transistons
interference filters pulse transformers piezoelectric ceramics PULSE.FORMING METWORKS
high temperature magnet wiae CERAMIC-BASE PRINTED METWORKS PACKAGED COMPOMENT ASSEmBLIES FUNCTIONAL DIGITAL CIRCUITS

SPRAGUE
THE MARK OF REIIABILITY

Type 663UW . . Specified in many filter designs, features subminiature size, premium stability with extended life and proven reliability.
SpICIFICATIONS

Tomporature Rage - Full rating from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and to $+125^{\circ} \mathrm{C}$ mith 50% daratins.
 mids. at $25^{\circ} \mathrm{C}$ - See curve Biow
lif Fect - 500 mours at $+85^{\circ} \mathrm{C}$ and 125% of rated veltage.
Dblecinte strongelitice rated voltage for ene minute. Conatrestice -- hugated akin-light Mylero case with thermesolling plastic ond soals.
-imine cematrwetion-Ertomed foll (nen-inducilve) mrlan
Diolectric.

Feleranes- stancard $\pm 20 \% \pm 10 \% \pm 5 \%$ inru $\pm 1 \%$.
Voltage lange -100 . 200, 400, 600 and 1000 VDC.

MISC. SIZES (100 VDC)

CAP.	D	L	CAP.	\square	L
201	.136 =	\% 6	. 1	. 201	-1/0
A1	. 1380	12	. 12	. 210	1
. 022	. 203 -	46	47	\cdots	. $11 /$
. 047	234 :	2/4	1.00	- 303	-11/3

- Dapance tradenaerk tor polyester Aim.

Write for Detailed Literature on Good-All
Close Tolerance Capacitor.

GOOD-ALL ELECTRIC MFG. CO. Ogallala, Nebr

Satellite Triplets Send Back Key Data

Transit IV-A and 2 Smaller Vehicles Are Proving Worth of Multiple Launchings Despite Difficulties

Triple-play space shot is readied as engineers check (from top to bottom): Greb III, solar radiation measuring satellite; Injun, cosmic ray Van Allen Belt monitor; and Transif IV-A, navigational satellite.

THE FEASIBILITY of multiple satellite launchings has been established despite some difficulties in the recent triple-launching of Transit IV-A and two smaller orbiting vehicles, according to space officials.

The three satellites, riding a Thor-AbleStar from Cape Canaveral, were designed to be separated by a spring mechanism so that all would follow separate orbits. The two smaller vehicles, Greb III and Injun, failed to separate. Much of the data hoped for from these satellites is being obtained despite the separation failure, according to a Navy spokesman.

The multiple launching approach appears to be an ideal method of accomplishing several distinct space missions without the excessive costs of several individual launches.

The three satellites now in orbit are expected to accomplish the following:

- Transit IV-A, a navigational satellite, will signal from space on the energy provided by a small atomic battery atop the drumshaped craft.
- Injun will investigate the radiation in the Van Allen belts and its relationship to the Northern Lights.
- Greb III will study X-ray radiation from the sun and its effects in causing ionospheric disturbances and radio blackouts on earth.

According to a Navy spokesman, Greb III is not rotating as rapidly as planned and is receiving only one-half of the data anticipated. A photometer installed in Injun, is blocked by Greb III, therefore preventing the instrument from making air glow observations. However, Transit IV-A is working successfully, according to the Navy spokesman.

This was the first time n triple-decker payload launch had been attempted. Two previous successful Transit satellites have

Snap generator is fastened to the base of Transit IV－A sotellite by Martin Co．researchers．Fueled with plutoni－ um－238，it is designed to provide continuous electrical energy for two of the four satellite transmitters．Addi－ tional power source is supplied by solar cells and two nickel－cadmium batteries．
carried single piggy－back satellites with them into orbit．
The tiny atomic power generator in the Transit IV－A satellite is one of a series of Snap（System for Nuclear Auxiliary Power） devices being developed by the Atomic En－ ergy Commission for applications in space and on earth．

Inside the grapefruit－sized Snap device is a small amount of plutonium－238．As the radioactive material decays，it gives off heat． This heat is converted by thermocouples directly into electricity powering instrumen－ tation and two of the four transmitters aboard the Transit satellite．The half life of the plutonium－ 238 isotope used is 89.6 yr ． In addition to the $4.7-\mathrm{lb}$ Snap generator， developed by the Martin Co．，Baltimore，the satellite is powered by solar cells and carries two nickel－cadmium batteries．

Transit IV－A has an improved memory system（including an absolute time system） which will periodically receive orbital data from a ground injection station．The satel－ lite will transmit these orbital data contin－ uously until new data are received from the ground to replace the old．A single orbital passage of the satellite，will enable a proper－ ly equipped ground station to compute its own position from the orbital data and Dop－ pler shift measurement．

The Injun satellite was designed and built by Dr．James Van Allen of the State Uni－ versity of lowa as part of a program of research directed by him under contract with the Office of Naval Research．－－

COST／PERFORMANCE／AVAILABILITY

OFFER SIGNIFICANT BUYING ADVANTAGES

COST SAVINGS！High yields produced by Fairchild＇s Planar process mean reduced manufacturing costs． Result：Major savings for you because of extremely low reject rates．Fairchild＇s computer and general purpose diodes are priced for your cost savings．

PERFORMANCE BONUS！Planar diffusion techniques make possible combinations of parameters for highest performance in Fairchild diodes．The＂self－protective＂ Planar manufacturing technique provides an integral oxide coating from start to finish，and surface passiva－ tion for life．All internal contacts are fused，enabling the structure to withstand as much as $30,000 \mathrm{~g}$＇s impact without mechanical or electrical degradation．

ON－SChedule availability！Process and production control made possible by Planar diffusion results in
easy high volume production．For you，this means imme－ diate availability of standard units and on－schedule de－ livery of your specification devices and assemblies．
OVER 400 TYPES！Write for your free copy of the Fair－ child Sillicon Planar Diode Catalog．．．over 4001 N and FD ypes to established standard and military specifications．

FAIRCHILD

SEMICロNDレCTロR
S4S WHISMAN ROAD，MOUNTAIN VIEW，CALIFORNIA DIOOE PLUNT 3500 REDWOOO MIGHMAT，SNH RNAEL，CCNIF－CREEWFIELD 98000 －IWX SRF X

KIN TEL's Model 121A/A non-inverting DC amplifier has fixed gains of $0,+1,+10,+20,+30,+50,+100$, $+200,+300,+500$, and +1000 . A variable gain control adjusts any fixed gain from $\mathrm{X1}$ to x 2.2 . A gain calibration control gives $\pm 2.5 \%$ adjustment for each gain other than +1 .
With this new instrument, you can amplify accurately all low-level signals from DC to beyond 200 kc for the reliable measurement of strain, temperature, flow, vibration, displacement, or other physical phenomena. The $121 \mathrm{~A} / \mathrm{A}$ has the same dimensions, fits the same cabinets and modules as other KIN TEL DC amplifiers. For more information on this new, more usable DC amplifier, write to KIN TEL. Engineering representatives in all major cities.

ADDITIONAL SPECIFICATION NOTES:

The Model $121 \mathrm{~A} / \mathrm{A}$ is a non-inverting (positive input produces a positive output), wideband, DC amplifier. Amplification is accurate within 0.1% for all gains other than +1 (gain accuracy is 0.2% at +1), linear within 0.005% for outputs up to ± 15 volts DC with load impedances of 200 ohms or more. The amplifier provides up to $100 \mathrm{ma}-$ \pm DC or peak AC - into loads of 100 ohms or less. Input impedance is greater than 10 megohms; output impedance is less than 0.3 ohm . Frequency response is flat within 0.25% to 2 kc , within 4% to 10 kc , within 3 db to $\mathbf{2 0 0} \mathbf{k c}$. Drift is less than $\pm 2.0 \mu \mathrm{volts}$ equivalent input for over 40 hours at +1000 gain. Amplifier recovers from 100% overload in 0.4 second, is undamaged by sustained. direct short across output terminals. Price $\$ 1000$.

Coast-Guard conception of integrated display of navigation instruments on ship's bridge is being implemented in stages. In panel shown, which would permit one man to handle a sizable ship, the only equipments still undeveloped are a memory device, for display of navigational and other tables, and a video system to display ppi data broadcast from harbor surveillance radar. Scan-conversion video system is to be tested soon in New York Harbor.
dividual blips would be included in the system. In Europe, he said, similar systems are in use in which selected and otherwise processed data are broadcast.

It was learned at the meeting that General Precision, Inc., of Tarrytown, N. Y., has proposed a method of blip identification for use with the system but that the proposal has not been accepted. This technique would allow each ship to identify its own pip on the over-all harbor display. Called PLAN (Positive Locator Aid to Navigation), it would use a narrow rotating beam broadcast from an antenna mounted on the surveillance system transmitter. Each time this beam would be received by a ship in the harbor, the blip representing that ship on the harbor display would appear brighter than other blips.

Captain Brunner reported that development of the navigation aid was part of a continuing effort to develop a ship's bridge display of integrated instruments that would permit one man to navigate a sizable vessel.

Optical Maser Proposed as Aid

To Space Ship Navigation
At the meeting, C. B. Ellis and I. A. Greenwood, GPL Div., General Precision, Inc., Pleasantville, N. Y., said that an optical maser appeared suitable as a space navigation aid, especially to determine distance. They reported on company studies indicating that a pulsed optical maser, operating at about 66 w average beam power, would permit measurement of the distance from one space ship to another at $160,000 \mathrm{~km}$ with an accuracy of one part in 100,000 .
Such a maser might have 10 per cent power

SHOCKING NEWS FROM EIMAC: there's now a 250 -watt tetrode that can withstand shock of 90 G for 11 milliseconds and vibration from $20-750 \mathrm{cps}$ at 10 G , with maximum rated voltages applied! It's Eimac's 4CX250R (shown $11 / 2$ times actual size). This new tube in the 4CX250B family is electrically equivalent to Eimac's 7580. The difference: the 4CX250R is ruggedized for extreme environments - as are other members of the family. And what a difference! Call your Eimac representativeor write: Power Grid Tube Marketing, Eitel-McCullough, Inc., San Carlos, Calif.

BLOCKS FOR YOUR

 HOUSE OF DIGITS...
NEWS

LITTON DIGITAL COMPUTER COMPONENTS

Magnetic Drums. Nickel cobalt storage medium and contact heads. Typical specifications: 300 bits/inch, 500 millivolt out puts, 100 milliampere P.P. recording currents. Suitable for severe environments.

Test \& Support Equipment. Clock track and drum fill recorders, shaft encoder tester, tape editor, card tester, servo tester, and Bace.

Direct inquiries to Special Products Marketing Department, Litton Systems, Inc., Guidance and Control Systems Division, 5500 Canoga Avenue, Woodland Hills, California.
 LITTON SYSTEMS, INC. GUIDANCE AND CONTROL SYSTEMS DIVISION A Division of Litton Industries
efficiency, and it would require only about 800 w during the period of measurement, according to Mr. Ellis and Mr. Greenwood. This figure includes power required by both timing and output-display circuitry. The pulse-repetition rate would be about 1 per sec. To surmount the difficult problem of target acquisition with an extremely narrow beam, they suggested use of an optical telescope for rough sighting. The maser and the telescope would share a 2 - ft -diam reflecting mirror.

The optical maser was also said to be useful for precision altitude measurements and the measuring of velocity by Doppler shift

Design of Low-Powered Gyros Called

Promising Area of Development
M. B. Trageser of the Massachusetts Institute of Technology, Instrumentation Laboratory, delivered a paper he authored jointly with C. S. Draper. The two stated that designers would do well to shift emphasis in gyroscope design from achieving improved accuracy to reducing power consumption. This is especially true for space applications, the authors stated, where reduced power requirements would permit reductions in tem-perature-control equipment, give longer gyroscope life because of the lower operating temperatures, provide greater gyroscopic reliability, and permit more stable calibration because of narrower temperature swings. - -

Test of Pay Television to Be Delayed Another Year by FCC

The Federal Communications Commission has set back the test date of a pay-TV' test in Hartford, Conn., to July 1, 1962. The tests were originally scheduled to begin on August 23 of this year ($E D$, March 15, p.4).

The FCC said the delay was requested by RKO Phonevision, Hartford, Conn., sponsor of the tests. RKO Phonevision is a joint venture of RKO General, is unit of General Tire and Rubber Co., and Zenith Radio Corp. RKO Phonevision said the delay was necessary because more time was needed for production and delivery of equipment to be used.

A suit brought by a Connecticut group against the tests is said not to be responsible for the request.

Flarescan-ILS System Allows Blind Landings

Blind aircraft landings have been accomplished with a new system combining an added scanning beam and present Instrument Landing System (ILS) equipment.
The Flarescan-ILS system, under development by Airborne Instruments Laboratory, division of Cutler-Hammer, Inc., Deer Park, N. Y., will soon be evaluated by the Federal Aviation Agency at its Atlantic City experimental facility.
The present ILS system, using equipment installed at hundreds of airports and in thousands of aircraft, allows a pilot to approach a runway on a 3-deg glide slope by following indications of instruments in the cockpit. Since this is too steep an angle for landing, the pilot must take over control before reaching 200 ft altitude, and flare the aircraft out for touchdown. The added Flarescan equipment will allow the pilot to make the complete landing, including flareout, by following glide slope indicators.

ILS provides both lateral and vertical guidance to an aircraft by means of transmitted beams picked up by an airborne receiver. Error signals generated when the plane is not in the center of the beams position indicators which show the pilot the proper direction to bring the aircraft back onto the glide slope.

An added microwave transmitter used in the Flarescan-ILS system is located some distance ($2,500 \mathrm{ft}$ in the experimental system) behind the ILS transmitter along the runway. This generates a fan-shaped microwave beam, about 20 deg wide and $1 / 2 \mathrm{deg}$ high, which is mechanically scanned from the ground up to about 20 deg vertically 8 to 10 times a sec. Pulse coding of this beam at various angles allows a receiving system in the aircraft to determine its angular distance above the transmitter. The difference between this angle and the 3-deg ILS angle, along with the known baseline between the two transmitters, permits it geometric solution for aircraft altitude and horizontal distance from the transmitters.

The solution obtained allows the indicators in the aircraft to make his approach shallower at the proper time, decreasing to about $1 / 2 \mathrm{deg}$ at touchdown. At 3,000 ft from the transmitters the system provides an accuracy within 5 ft in altitude and 200 ft in range, according to an AIL spokesman.

IT'S NO SECRET...

IT'S THE CRIMP THAT COUNTS! Line 'em up! Look 'em over! They're as much alike as midnight sheep jumping for a sleep-searching count and . . . with good reason! Most of them have a great deal in common - materials, design and construction. It's this look-alike, act-alike quality about connectors that makes AMPin-cert connectors stand out. Only AMPin-cert gives you the one very important difference in connectors - AMP's industry-accepted solderless termination technique . . . a controlled-pressure, compression-crimp whose reliability is backed by twenty years of research, development and production.
Does the difference stop here? Definitely not! AMPin-cert not only gives you extreme reliability but also high-level production of terminations, up to 1,500 per hour on the AMP-O.LECTRIC automatic machine . . . quick "snap-in" assembly of contacts in the block with finger-touch ease and an extraction tool that makes routine checks, maintenance and circuit rearrangement "snap-out" easy.
Want to base your connector choice on something more than blind-fold logic? Then get the whole story on AMPin-cert connectors. Write today for the catalog -"AMPin-cert CONNECTORS (Pin and Socket Type)".

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA AMP groducts end onsineoring assistance are available through subsidiary companies in: Australia. Canade. England. France - Holland - Italy - Japan o Mexico - Weat Gormany CIRCLE 17 ON READER-SERVICE CARD

NEWS

New MM Waveguide Uses Plastic Lenses

Signals Beamed in Concrete Pipe Could Supplant Circular Guide

ABEAM waveguide said to achieve extremely low-loss transmission of millimeter waves is in development at the Army Signal Corps Laboratories, Fort Monmouth, N. J. The new guide consists of phase-correcting plastic lenses spaced at intervals within a large concrete or plastic pipe.

Signals are transmitted along the guide by free-space propagation and are guided by resetting the cross-sectional phase distributions at periodic intervals by means of the lenses.

Laboratory tests at 35 Gc have shown propagation losses of only 1.75 db per km, according to Dr. Georg Goubau, inventor of the guide. Construction of a $1-\mathrm{km}$-long guide for field tests is under way at Fort Monmouth.

The dimensions of the guide are frequen-cy-dependent, with the concept becoming increasingly practical at higher frequencies. A $50-\mathrm{Gc}$ guide would consist of a pipe between 1 and 2 ft in diameter in which dielectric lenses would be spaced at about 150 ft intervals. Transmission characteristics improve at high frequencies, so the pipe can be made progressively smaller and the phasecorrecting lenses can be spaced farther apart.
Calculations indicate that a 1 -ft-diam pipe with lenses 47 m apart would have a propagation loss of only 5 db per mile at 100 Gc .

Alignment of the lenses is reportedly not critical, and the signal can be readily transmitted around corners by dielectric wedges. Furthermore the beam guide does not introduce any delay distortions when transmitting a broad spectrum of microwave energy. Signals of different polarizations can be transmitted simultaneously in opposite directions through the guide.

Beam Principle Avoids Use

Of PCM Transmission
Proponents of the beam guide believe that these properties will make it an economical alternative to the circular metallic waveguide.
"We can run our guide around corners

Cross-section of new beam waveguide. Microwaves are guided along the concrete pipe by dielectric phasecorrecting lenses. Since lens alignment is not critical, the signal can be beamed around corners by a group of lenses or by a dielectric wedge. Actual guide would be between 1 and 2 ft in diameter.
without difficulty, and the absence of delay distortions means that we can avoid using pem transmission," Dr. Theodore Hafner, president of Beam Guidance, Inc, New York, licensors for the guide, told Electronic DesIGN. "Concrete pipe, while expensive, doesn't begin to approach the cost of pre-cision-machined metal guides."
It was also pointed out that while rain would tend to degrade performance, open guides, consisting only of appropriately spaced lenses could prove feasible in certain less demanding applications.

The beam guide is being further developed by refinement of the phase-correcting elements. Multiple-layer dielectric lenses to reduce reflection are being tested. Doublet lenses, metal lenses and combination metal-plastic are among the devices under study.

The results reported by Dr. Goubau were of tests on a model guide in which long path distances were achieved by successive reflections over a $30-\mathrm{m}$ path, as in an interferometer setup. Several lenses of $20-\mathrm{cm}$ diameter were interposed at about $1-\mathrm{m}$ intervals between the reflectors.

Test signals consisting of $70-\mu \mathrm{sec}, 35-\mathrm{Gc}$ pulses were transmitted in this manner along a total path of 4.5 km . Radial field measurements revealed that the beam was almost completely contained within a cylindrical space of the diameter of the lenses and was not affected by metallic or nonmetallic obstacles outside this space. - -

GUARD AGAINST

 READ/WRITE ERRORS WITH RELIABLE TAPES OF MYLAR

CUPPING

Test per MIL-T-21029 (Ships) Section 4.4.6. Average degree of cupping:
1.5 mil Cellulose Acetate- 15.9° (Range: 12.0° to 33.5°)
1.5 mil "Mylar" -1.5°

Beller Things lor Betler Living . . . through Chenatry

Company.
Address
City

Unstable tape can cup or ruffle-cause read write errors because the tape loses contact with the recording and playback heads. Dimensionally stable "Mylar"* polyester film base prevents tape cupping or ruffling. It does not shrink from dryness or swell from excess humidity, but maintains the original width and flatness of the tape.
"Mylar" is strong . . . has an ultimate break strength over 20,000 psi! Tapes of "Mylar" can resist edge nicks, stretching or breaking from sudden stops and starts. And since it contains no plasticizer to dry out, tapes of "Mylar" can be stored indefinitely without becoming brittle.

A stable tape assures accurate data acquisi-tion-helps prevent costly read/write errors and loss of valuable test data. Tapes of "Mylar" have this stability. To be sure you'll get the best performance, insist on a base of "Mylar" on your next order for magnetic tape. Write for the free booklet on comparative test data. Du Pont Company, Film Dept., Wilmington 98, Delaware.
".Mylar" is I)u l'ont's registered tradeniark for its lirand of polyester film. Only Du Pont makes "Mylar"

[^2]Name_Position

CIRCLE 19 ON READER-SERVICE CARD

Needle-sharp filtering in a single jump is a wonderful thing! Itek Crystal Filter 754A is only 10 cycles wide at the 3 db points - a bandwidth requiring a " Q " that only crystal can provide. Circuit simplification, ruggedness, temperature and long time stability, and utmost reliability are built-in extras.
Perhaps you don't need a 10 cycle wide crystal filter. But could you use the ingenuity that built one? Could Itek technical leadership help you?
Of course, the world's largest and most complete selection of stock crystal filters is available, too. Choose from more than 3,000 Itek-Hermes designs.

Write for free Brochure "WEESKACFAACP" or, What Every Engineer Should Know About Crystal Filters At A Cocktail Party. You'll enjoy it.

Itek Electro-Products Company 75 CAMBRIDGE PARKWAY, CAMBRIDGE 42, MASS. A DIVISION OF

WASHINGTON

 AREPORTJohn J. Christie
Washington Editor

DOD SPURS ACTIVITY IN QUANTUM ELECTRONICS

The Dept. of Defense will attempt to exploit as rapidly as possible the promising results of the last year's intensive R\&D activity in optical and infrared masers.

A committee of DOD consultants and representatives of each military service will be formed shortly to review all Government and private R\&D programs in maser technology. It will evaluate potential applications for extending the range of frequencies for radar and communications and also study prospects for use of coherent light in generation of power.

Prime purpose of the survey is to determine whether the scope of current $R \& D$ is adequate for military requirements and to pinpoint facets that may require more emphasis and increased Government financial support. The committee's findings also are expected to provide a time scale by which equipment and systems designers can anticipate the availability of practical devices.

By its effort to spur early development of practical quantum electronic devices, the Office of Defense Research and Engineering points up a policy matter of growing concern. This relates to the contention, particularly among officials responsible for development of advanced components, that applied research and component development in promising new areas of technology have lacked adequate support when not specifically designated for use in projected weapon system programs. These officials have advocated that shch activities be managed and financed independent of weapon sustem projects.

TOWARD SHIPBOARD AUTOMATION

The Maritime Administration has launched R\&D programs that may lead eventually to the integration of all shipboard operating functions under automatic control systems. Its objectives are to improve safety at sea and to make U.S. shipping more competitive by saving manpower.

Sperry-Rand is under contract to develop a prototype bridge control system console that will centralize the outputs by which a watch officer performs his present functions. The unit will be composed of five sub-consoles relating to navigation, plotting, steering, radar and communications, and the ship's condition.

The console will incorporate such familiar elements as weather facsimile recorder. an automatic direction finder, an adaptation of an X-Y recorder for plotting, the gyro-pilot and radar readouts. New elements will be a radar data computer and a ship-stability. computer.

The Radar Data Computer, under development by Goodyear Aircraft, is an anti-collision device capable of tracking 10 targets with analog computing circuits and of sounding an alarm on the bridge
when a target crosses a track. It will be possible for the watch officer to put a trial correction of the course in the computer and then change to this course if it clears the alarm.

The ship-stability computer will be an adaptation of existing equipment under the Sperry contract. A combination analog-digital computer, it will automatically make computations to determine the stability of the ship, provide readouts on the vertical acceleration of the bow, and perform watertight door and smoke and fire control functions.

More Advanced Control Techniques on the bridge, including engineroom monitoring and control, are planned for the next R\&D stage. Already in the works is a course computer, for which Norden Division of United Aircraft is making an engineering study. This will compute an optimum course to a destination with automatic feedin of correction data.

Since no previous attempt has been made to integrate control of a ship's steam power plant, the Maritime Administration has two parallel efforts underway to develop a system for controlling the whole operation from a console. Envisioned is a solid-state electronic servo system with hydraulic and pneumatic boosters. The console probably would contain automatic logging and computer programing. A similar effort will soon be launched for control of gas-turbine plants.

A BOOST FOR HIGHWAY CONTROL SYSTEMS

Commerce Secretary Luther M. Hodges is considering recommendations by his department's transportation policy group that would enable the Federal Government to provide a much-needed incentive for further development of electronic highway control systems.

Under one proposal the Bureau of Public Roads would provide a large-scale feasibility test of a system for automatic control of car steering, braking and acceleration on a limited access highway. A test strip of up to 100 miles is proposed.

The roads agency would name a prime contractor to serve as systems manager for the project. The contractor would assist the bureau in evaluating several proposed systems and handle the subcontracting and over-all supervision.

RCA, Bendix, Thompson-Ramo-Wooldrige and Battelle Memorial Institute are considered the leaders in this field, and all have been consulted by the bureau in preliminary planning.

The Urban Traffic Problem will receive attention under another proposed Bureau of Public Roads program to foster development of electronic systems that would anticipate snarls and automatically indicate corrective action.

Preliminary planning for this experimental project envisions use of imbedded inductive pick-up or transducer devices. The devices would measure traffic speed and density continuously for computer inputs. The computer would actuate control signals. Its readouts also would be used to relay instructions to motorists via radio or variable signs.

Such a system is considered particularly applicable to increasing the efficiency and capacity of urban expressways.
semiconductor products news

| Service with a smile

As more and more G-E germanium tunnel diodes are being designed into low level switching circuits, it becomes increasingly apparent that many design engineers prefer to determine their own electrical specifications. Your wish is our command, and a section of our manufacturing line is now exclusively utilized to "tailor make" your tunnel diodes. Example: you can choose your own specs for peak current from 25 to 250 ma . and one other important parameter, such as capacitance or peak voltage.
While you're ordering your tunnel diodes. you might be interested in another little G-E gem of reliability data, compiled on our computer-general purpose line. Twelve units were subjected to 10,000 hours of life testing . . . with virtually no degradation of characteristics. One more example from over 3 million tunnel diode hours of life testing, with truly remarkable results.

Incidentally, you can also order " A " versions of these germanium tunnel diodes, specifically designed for your fastest switching applications. You'll get speed so fast that it pushes the capability of present sampling scopes. You also get extremely tight control of the three primary requirements for switching runnel diodes; peak point. temperature stability and switchine speed.

- Applications are bustin' out all over

A great deal has been written in recent months on tunnel diode usage, particularly in the UHF and microwave areas. Now that practical tunnel diode devices are available, the circuit designer has a real need for a comprehensive and authoritative survey of this information, along with a concentrated bibliography. If you'll pardon a modest bow of the head and downcast eyes, the job has been done.

Erich Gottlieb, one of G-E's top tunnel diode application engineers, has covered the field of articles and papers published over the last year on tunnel diode usage at UHF and microwave frequencies. Over 90 pages of authoritative information, this survey is divided into four main sections: Amplifiers, Oscillators, Converters and General Information. Particular attention has been paid to noise figure and gain bandwidth, and how they relate to stability.

If you have a "need to know," drop us a line to Section 23G101 for your free copy.

Friend Erich has also recently finished an application note of his own called "Tunnel Diode Sinewave Oscillators" that we'll be glad to send to you. And Dr. C. S. Kim has finished a "Tunnel Diode Converter Analysis." For copies of either/both, write to Section 23G101.

| More proof positive . . .

that our 2N497A-498A and 2N656A 657A medium power silicon mesa transistors are indeed the industry's most thoroughly characterized and tested I You have probably seen our published 1,000 hour life tests. May we modestly bow our head again while you look over the following 6,000 hour chart, and note the long term stability and reliability that can mean so much in your circuit designs?

thousand mours of test

Footnote to the above: the "A" versions are exclusive trom General Electric, have higher power with cooler operation (cool transistors are reliable transistors), low input impedance (200 ohms vs. the usual 500 means more signal gets into the transistor and more current flows out). and lower saturation resistance (10 ohms vs. the usual 25 means less power loss when you turn the unit on). How can you eo wrond?

MIL types?

Can we put in a plug for USN 2N388? Phone your District Sales Manager, or buzz your G-E Semiconductor Distributor.

Somiconductor Products Dopartment, Electronics Park, Syracues, Now York. In Canada: Canadian Genoral Electric, 189 Dufferin St., Torento, Ont Expent: Infornational Goneral Electric 150 E. 42nd S1., N.Y. 17, N.Y.

NEWS

Resistor Line Fully Automatic

A completely automatic computer-controlled production line for manufacturing deposited carbon resistors has been demonstrated at the Western Electric Co. 's North Carolina Works near Winston-Salem. The computer controlling the line can be programed to schedule a month's output. It will then issue suitable instructions to fabricating machines, capable of a continuous production of 1,200 finished resistors per hour. The final products are specified accurate to a tolerance of $1 / 2$ of 1 per cent.

Bell jar held by Western Electric engineer has a gold cathode, used to deposit a layer of gold on the ends of carboncoated resistor cores possing through the line. The gold termination forms a contact on each end of the resistors, to which the next machine attaches wire leads and caps.

End of the line for the deposited carbon resistor is the packing machine, above. Here resistors are imbedded in styrofoam blocks, and loaded into a magazine. The magazines are then removed by an operator, who will propare the blocks for shipment.

The automatic production line for making deposited carbon resistors is made up of eleven stations. The control computer, an LGP-30, runs the process completely, from raw materials to finished resistor. Until loading for shipment, the resistors are not handled by operators.

Automatic inspection and testing station of auto matic line plots test record of every unit on a graph and rejects defective resistors. The station also provides feedback control to the computer, result ing in line self-correction, if necessary to maintain standords.

NEW PRODUCT

High Density Miniature HYFEN with center jackscrew

Now available from the Burndy Corporation, Omaton Division is a new miniature HYFENs connector with a center jackscrew which provides alignment and engaging force. This connector is presently designed in two configurations: 1) 104 contacts; and \because) six miniature coax contacts combined with 48 standard contacts. Contacts are crimp-type which snap-lock into and out of the connector body. Both inner and outer portions of the miniature coax contact are crimp-type. This connector may be designed to accommodate other combinations of coax, miniature coax, and standard contacts for particular applications.
Crimp-type contacts are installed by tools which are full-cycling, thereby guaranteeing a complete installation every time. These installation tools-hand, pneumatic or semi-automatic-provide a measurable crimp, facilitating quality control.

Connector bodies are molded of high heatresistant, flame-proof diallyl phthalate with molded-in ferrules for contact retention. Jackscrews and guide pins and sockets are stainless steel. The connector can be easily polarized by varied placement of guide pins and sockets.

All contacts are gold plated with nickel plated beryllium copper locking springs. Quality materials throughout provide maximum reliable performance of this connector. This miniature HYFEN connector performs to the applicable sections of MIL,-C-8384 and MIL,-T-7928. Further information is available from

Burndy Corporation, Norwalk, Connect. circie 22 on reader-seavice card ELECTRONIC DESiGN • July 19, 1961

Industry First... RN55 Precision Film Resistors in RCO7 Size Replace Fixed Composition Resistors

Every critical circuit forced to attain smallness through use of RC07 style composition resistors can now be upgraded. To make this possible, IRC offers both metal film and deposited carbon precision resistors in a new subminiature size.

1. the first time a molded RN55 resistor is available completely interchangeable in physical size with the RC07
2. meets or exceeds performance of precision films MMIL-R10509), which means lower noise, better TC, superior allaround stability than fixed composition RC07's (MIL-R-11)
3. surpass RC07's even when run at the MIL-R-11 rating of If watt (i) $70^{\circ} \mathrm{C}$
4. uniform, molded bodies just right for automated assembly immune to damage by normal transit and handling
For top resistor performance without any space penalty, specify new IRC Type EM or DM units for every miniature circuit. Full details in a new 12-page bulletin. International Resistance Company, 401 North Broad St., Philadelphia 8, Pennsylvania.

NEWS

Digital Communication Modules Developed

Prototypes Can Be Combined to Form
Systems or Used to Adapt Data Units

PROTOTYPE modules that can be combined to form complete digital communication systems have been constructed.
The modules can also be used to adapt data communication equipment for special needs. In use they adapt teletypewriter, data transceivers, facsimile machines, tape equipment and other devices for compatible operation.
The prototype series is made up of inputoutput multiplex equipment, modulatordemodulator units (modems) and special devices, such as parallel-to-serial and serial-to-parallel converters.
This concept of modularization at the functional level is a development of ACF Electronics Div., Riverdale, Md., under its ACF Building Block Communications Devices program (ABCD). Wherever possible, according to the company, standard solidstate circuits on plug-in cards are used throughout the series of functional blocks. This is said to permit the equipment to be sold at relatively low prices. Many of the cards are interchangeable, as are the modules within each type.

Modem to Process 4,800 Bits Per Sec

Is Among the Blocks Buil So Far
The following have been built so far: : modulator said to be capable of operation at 4,800 bits per sec for use with either radio, O° telephone links; a demodulator with an unusual equalizer; a stable clock with phase corrector; five multiplexer blocks for such equipment as facsimile systems and IBM transceivers; five demultiplexer blocks; se-rial-to-parallel and parallel-to-serial converters, and an encryption control.

The multiplexer equipment operates at up to 1,800 bits per sec, a limit imposed by telephone-system channels. ACF says the circuits in the time-division system are catpable of rates as high as 50 kc . From two to 16 channels can be multiplexed and demultiplexed. These may be either from asynchronous equipment, like teletypewriters;

Communications system consisting of modular funcfrional blocks is designed for flexibility in handling digital data from a variety of sources. The block being examined provides a multiplex input channel for teletype equipment.
quasi synchronous equipment, such as facsimile; or synchronous systems, such as an IBM card reader.
Logic levels in the multiplexing buildingblock circuits are 0 and -12 v nominal, and supply voltages, -12 and +12 v . All circuits operate at the nominal maximum frequency of $\overline{5}(0 \mathrm{kc}$. The levels of terminal devices are changed to ABCD) voltage levels by buffer circuitry when necessary

Terminal Devices of Varying Bit Rate

Reduce Effective Transmission Time
In the multiplex system, terminal devices with more than eight information bits per character must be accommordated by two or more channels of the multiplex cycle, because each channel is limited to eight bits. Another disadvantage, ACF admits is that when terminal devices of greatly different bit rates are used, the multiplexer transmits no information for much of the time

The modem blocks use four-level am, sup-pressed-carrier, vestigial-sideband transmission. Am was chosen, the company says, because of cost, size and complexity benefits. Four-level, suppressed-carrier techniques are said to give the same signal-to-noise ratio at 4,800 bits per sec as two-level unsup-

Hughes TWT capability offers you New solutions for tube and systems problems

A continuing program of applied research by Hughes has resulted in the development of outstanding operating features such as those Illustrated in the accompanying cutaway of a high-powered TWT When you have a requirement for an advanced microwave tube-CW or pulsed-consider TWT's, and Hughes. Perhaps the solution to your problem is already in development, or production at Hughes.
For a more complete rundown on what Hughes can offer you, contact your nearest District Office today, or write for your copy of the Hughes short form catalogue.
MORTHEASTERM 4 Federal Streel, Woburn,
Mass. WElls 3.4824
EASTERN 2000 "K" Streel. N.W.. Washington
D. C. FEderal 7.6760 le. CAplal 2.1111 . West Long Branch. N. J. WESTERM 11105 South La Cienega BIVd Los Angeles 45. Calit. SPring 6.1515
\qquad
HUGHES

MICROWAVE TUBE DIVISION

CIRCLE 25 ON READER-SERVICE CARD

Need a precision-measurement tool in the dc-10.4 mc range? A small-size, light-weight, semi-ruggedized instrument that operates almost anywhere from 50 - to-800 cycles line frequency? One that combines stability in performance, simplicity of operation accessibility for maintenance?
Then consider a Tektronix Type 310A Oscilloscope. For size, convenience, presentation of trace display-a Type 310A ideally suits precision-measurement applications at point-of-use . such as quality-control checks in production testing.... or mainte-
nance and calibration of complex electronic equipment in the laboratory or in the field.

Call your Tektronix Freld Engineer for a demonstration.

TYPE 310A CHARACTERISTICS
frequency Response-dc to 4 mc : $100 \mathrm{mv} / \mathrm{div}$ to $125 \mathrm{v} / \mathrm{div}$; 2 cycles to 3.5 mc : 10 mv/div to 100 mvidiv. Risetime-less than 90 nanoseconds. sweep Range- 0.5μ sec/div to 0.2 sec/div in 18 calibrated steps, coninnuously variable between steps and to 0.6 secldiv uncalibrated. $5 x$ Magnifier - extends calibrated sweep range to 0.1 μ secldiv. Trig -gering-amplitude-level selection with manual or preset stability control, and automatic facility. Horizontal Input. Amplitude Calibrator. Electronically-Regulated Power Supplies.

Type 310A Ozcilloscope (fo.e. Fectory).
$\$ 625.00$
Dimensions-10" high, $6 \%^{\circ}$ wide, $17^{\prime \prime}$ deep. Weight- $231 / 2$ pounds.

NEWS

Modem processes up to 4,800 bits per sec using four level am, suppressed-carrier, vestigial-sideband techniques. Binary data at 4,800 bits are transmitted as four-level, 2,400 -bit data. An intersymbol interference corrector in the receiver compensates simultaneously for delay and amplitude distortion.
pressed carrier systems operating at $\because, 100$ bits per sec. Vestigial-sideband modulation permits double the information rate of : double-sideband system. For communication at 4,800 bits per sec the data stream is changed to a four-level stream of 2,400 bits per sec by converters, which are switched out for rates of 2,000 bits or less.

An unusual type of distortion compensation is used in the modem. It is said to correct simultaneously both amplitude and delay distortion. The compensator is reported useful as an equalizer of digital or analog transmission systems, is highly adjustable filter, or an instrument for obtaining any ampli-tude-vs-frequency curve or differential-delay-vs-frequency curve.
The compensator consists of a string of time-delay stages, an adjustable adder network and inverters. Data pass serially through the delays, the outputs of which are continually summed. When the adder network is properly adjusted-after an oscilloscope "eye" pattern of received data is observed-the output of the network is compensated for the distortion. The delay stages are designed to introduce a minimum of distortion of their own, ACF says. - -

SENIOR
SCIENTISTS
AND
ENGINEERS:
ANNOUNCING
STAFF
OPENINGS
AT
ELECTRONICS
RESEARCH
LABORATORIES

There is a continuing need to know more about the nature of space and its complex environment. Only through fundamental research and scientific inquiry can this need he met. At Convair Astronautics Electronics Research I.aboratories. our task is to meet this need: to explore the space sciences: to advance the state of the space technology arts. Here, com-pany-funded research in space electronics and space physics is in progress. motivated by the need to develop instruments and electronic techniques vital to the progress of space flight and exploration.
The men selected to staff these laboratories must be of high academic caliher. They must possess the sort of professional background which demonstrates interest and achievement in solving the broad spectrum of problems associated with space
technology.
technology
Senior and staff positions are available now for electronic scientists and physicists with advanced degrees. Specific areas of research are detailed on the back of this page. If they meet your interest, we invite your investigation. A convenient inquiry card is attached which you may mail in complete confidence. It will be promplly reviewed by a member of the Electronics Research I.aboratories staff

If the inquiry card has heen removed. or if vou wish to furnish or request more detailed information. please write to 11r. R. M. Smith. Industrial Relations Administratur-Engineering. Mail Zone 130-90). Convair/Astromautics. S675 Kearny Villa Rovad. San Diego 12. California.
contuct Mr. T. Cozine manaper opeas New York placement office. CIrcle S-5034.1

CONVAIR/ASTRONAUTICS

ATTENTION: MR. R. M. SMITH
MAIL ZONE $130-90$
VINZOAITVO 'zI Oפsia nvs
8ZII XOG GOHHO ISOd
SJILVNO\&ISV/צIVANOJ

FIRST CLASS
PERMIT NO. 1524
SAN DIEGO, CALIF.

The Electronics Research Laboratories at Convair Astronautics offer fine facilities and a professional atmosphere, plus a distinguished staff of associates, to scientists and engineers with an interest in fundamental research
A free exchange of ideas is actively pursued through attendance at scientific meetungs, and since a grea deal of the research conducted here is unclassified publishing of papers is also encouraged.
An added advantage is the location of the Labora tories. San Diego. California, boasts an ideal climate fine living conditions, excellent schools, vigorous cultural attractions, and constantly expanding facilities for advanced education.

SENIOR AND STAFF POSITIONS ARE AVAILABLE NOW TO ELECTRONIC SCIENTISTS AND PHYSICISTS TO CONDUCT RESEARCH IN THE FOLLOWING AREAS:

Solid State and Thin Film Revearch for application to micro-electronics using sputtering, vacuum evaporation eposition, decomposition-sublimation, and advanced ele tron beam graphics.
surface physics studies of film hinetics and structures by electron microscopy including the study of epitaxy and nucleation from the vapor phase "in situ.
Materials research and synthesis of inorganic semi-con. ductors for active components in molecular electronics and solar energy conversion applications.

Theoretical and experimental studies of thin magnetic films for computer applications. The mechanism of orien tation. domain nucleation and wall motion. and the mech nisms of nanosecond flux reversal

If you desire more information, may we urge your prompt inquiry on the attached card. If it has beeen removed, or you wish to furnish more details about your background, please write to Mr. R. M. Smith. Industrial Relations Administrator-Engincering. Mail Zone 130-90, Convair'Astronanties, 5676 Kearny Villa Road. Sun Diego. California. Men lising in the New York area are invited to contact Mr. T. Cozine, manager of our New York placement office. Circle 5.5034.)

Study of geo-astrophysical phenomena including the development of instrumentation to study weather-indicating menomena. cosmic radiaion. haknety ad gravic fell prohes.
pace Electronics Revearch for application to traching. communication and data processing systems and spectal purpose devices and instruments for use in satellite pay. oads.

Satistical Communication Theory studies of narrow hand ing. correlation and rate controlled sampling and quantizatraching. communication and real-time digital control and data processing systems.
Special purpose instrumentation for sensing and control ling attitude and velocity of space vehicles with heretofore unattarnable sensitivities and precision including micro gram thrust rochets. gravity field differential torquing. and radiation pressure sensing.

Electronic Manufacturer Contracts For Servicing of Its Computers

Clary Corp. of San Gabriel, Calif., has con tracted with Federal Electric Corp. to provide nationwide service for its computers.

This is a departure from traditional servicing methods, but it will enable the company to sell in areas previously beyond its servicing capabilities.
Federal Electric, service assuciate of International Telephone \& Telegraph Corp.. with headquarters in Paramus, N. J., said it will supply the full range of service normally received from a factory service arm, including maintenance.

Information-Hunting Computer Has a 8,192-Word Memory

A mechanized information-retrieval system with an 8,192-word, magnetic-core memory of 20 -bit words is in operation at Western Reserve University for the American Society of Metals.
The system, developed over the last four years by the university, is built around a GE 225 computer, programed for literature searches. The memory is said to enable the computer to search through 100,000 indexer abstracts, patent reports, technical articles and the like in an hour. Western Reserve indexing and tape language are compatible with most existing data processing installations.
Able to utilize either magnetic-tape or punched-card input, the General Electric computer features a 15,000 -character-per-sec transfer rate.

Control console of GE 225 information searching computer, installed at Western Reserve University for the Amerizan Society of Metals.

- Circie 910 on career inouiry form, page 177 ELECTRONIC DESIGN • July 19, 1961

Linde News

LINDE COMPANY, DIVISION OF UNION CARBIDE CORPORATION

Crystal tungsten opens up a new era for the metal in electronics

Typical elecironic shapes fabricated from crystal tungsten 11. To r.1: target emitter zero-porosity tungsten anode for high-powered electron tuhes with fluid cooling:
high-power vacuum suitch contact of /ero-porosity tunguten mounted to copper

A new method of consolidating tungsten pouder into tungsten ingot has been created by I-mde:s Crystal Products Department. This new material-in crystal form-changes the whole approach to use of tungsten in electronic applications.
Compared to metallurgically prepared (PM) tungsten. crystal tungsten offers 5 to 15 per cent higher electrical conductivity. Thermal conductivity is about 20 per cent hisher at $500^{\circ} \mathrm{F}$. resulting in improved heat dissipation. These properties can he advantageous in electronic design.

Useful in vacuum devices

The high purity and zero porosity of the cristal tungsten also suggest its use not only in electrical contact points, but also in vacuum switches. electrical leadins in vacuum tubes. and applications where outgassing or leakage is a problem. Their purity and lack of grain boundaries provide more even electron emission. making them valuable in sev eral high pressure vacuum or open ai switches. Other uses include: flexible sheet in electronic tubes; x-ray and anticathode targets.
IINDE crystal tungsten is considerably more ductile than undoped PM
tunglen. It can be drawn into wire as fine as 1 mil. giving greater yield of finished product from the starting ingot. Although undoped crystal tungsten has a lower recrystallization temperature. it doers have a vield point at about 15$)^{-1}$ e

Material easily worked

Significant is the fact that it can be eissily worked and at temperatures $800^{\circ} \mathrm{F}$. lower than working temperature for powder metallurgy or vacuum-are cast tungsten-making it useful for a wide range of non-clectronic applications. Present shapes include swaged rods from 10^{10} to ${ }^{3} \mathrm{H}$-inch diameter, as grown ingots up to $\frac{1 / 4}{}$-inch diameter in production. and even larger diameters in development

For more details on this new material. check the coupon belou.

Super-hot process metal-coats and fabricates intricate parts

Dense, high-purity metal coatings for

 certain base materials, and the fabrication of odd shapes, are accomplished with "Plasmaplate." a super-hot plasma stream process developed by LINDE's Flame-Plating Department.In operation, a high-current torch uses temperatures up to 30.000° F. to produce a supersonic stream of ionized gas-melt and accelerate to high velocity particles of any inorganic material that melts without decomposition.
High-purity coating materials-such as tungsten or other refractory metals - are thus permanently fused to the surfaces of materials such as graphite brass. copper. stcel. molybdenum, titanium. aluminum and others.
Parts of intricate configuration can be fabricated by depositing the coating material un a mandrel machined to the desired internal shape of the finished part. After the desired thickness is obtained, the mandrel is dissolved out by chemical means.

Tungsten grid cape - one of many complex shapes made by LINDE's"Plasmaplate" Process.

Thin coatings of tungsten carbide and other hard materials can also be applied to base metals by the LINDE oxyacetylene Flame-Plating "gun" process, to increase surface wear as many as 40 times.
For details on either of these LINDE processes, check the coupon below.

```
CHECK-CLIP COUPON-ATTACH TO BUSINESS LETTERHEAD
Linde Company, Dept. ED-073
    270 Park Avenue
    New York 17, N. Y
    Please send details on the iems checked: LINDE
    OLNDE CTyal Tingem, COMPANY
    \square LINDE "Plasmaplate" Process
    \square \mp@code { L i n d e ~ F l a m e - P l a t i n g ~ P r o c e s s }


CURTISS-WRIGHT
corporation
Intermountain Branch
Electronics Division
P.O. Box 10044 Albuquerque. Now Meniso

Telephoner 345.1661

\section*{NEWS}

\section*{Solderless Wirewraps \\ Have Low Failure Rate}

Solderless wirewrap connection techniques now gaining wide use in industry are averaging only 1 failure per 200,000 connections according to production engineers.

Speaking at the recent IRE Production Engineering Conference in Philadelphia, A. H. Wenner of IBM's Federal Systems Div., Kingston, N. Y., said that IBM is now making solderless wirewrap connections at the rate of 100 million per year with the 1 in 200,000 failure rate. Following the presentation of the paper a representative from West-


The reputation, reliability and performance of Intermountain instruments and systems are based on highly developed Solid State design techniques utilized, for example, in the design and processing of Solid State Printed Circuit Cards. You can put this demonstrated Solid State Design capability to work for you. Intermountain will design and process Standard or High Density Miniaturized Solid State Printed Circuit Cards for your specific application . . . to your specifications - or furnish any of a wide variety of standard Intermountain circuits which have been proven in operation of Intermountain instruments and systems. Exacting standards of quality, reliability and performance - substantial savings in design time and ultimate cost - these are just some of the advantages you get with Intermountain. Write today for information, or a quotation on your Solid State Circuit Design requirements.
CIRCLE 20 ON READER-SERVICE CARD


Wirewrap panels for computer in Polaris submarine are wired by General Electric Co. with a numerically controlled wiring machine. Top: A Gardner Denver Co. wiring machine is programed to take one end of a wire, wrap it around one terminal, follow a predetermined path among the terminals to a second terminal, then wrap the other end of the wire to that terminal. Bottom: Malco Manufacturing Co. aluminum wirewrap terminal boards use nylon bushings around the terminals to achieve a 10,000 -terminal density in a 24 -in. sq area.

ELECTRONIC DESIGN • July 19, 1961
ern Electric Co. said that his firm was experiencing a similar failure rate on wirewrap connections made at the rate of 6 million per year.

The failure rate figures apply to the number of substandard wraps discovered during inspection. Very few failures ever occur beyond this point, the production engineers indicated. Mr. Wenner said that operator variations were the main cause of poor connections. He and others at the meeting agreed that new numerically controlled automatic wirewrapping machines being produced by Gardner Denver Co. should increase the yield of good connections.

Cost of the conventional manual connections using a hand wirewrap tool is about half that of conventional solder joints, according to Mr. Wenner.

Wirewrap techniques have also proved surprisingly good for low production and even breadboarding. Isaac Auerbach of Auerbach Electronics Corp., Philadelphia, said that when his firm was forced to use the technique for a prototype item because of customer specifications, the technicians discovered it was both easier to use the first time and easier to modify.

\section*{Automatic Data Reduction System To Assist Oceanographic Studies}

An automatic data-reduction system will be used by Woods Hole Oceanographic Institution, Woods Hole, Mass., to convert analog data gathered for ocean wave studies.

Called the Addressor System, by its developers Tele-I)ynamics, a division of American Bosch Arma Corp., Philadelphia, the system can also be used for:
- Investigations of thermal microstruc ture in a thermocline.
- Studies of transfer of momentum, heat, and water vapor across the ocean-atmosphere interface.
- Studies of bottom friction of oceanic and tidal currents

The Addressor comprises a two- or fourtrack tape playback system, 12 -fm demultiplexers, and an analog-to-digital converter. It includes such features as tape error compensation using any channel as reference, reference detection for computer control, and a specially designed flexible patchboard. The outputs permit on-line entry of data to existing high speed digital computers. Direct ana\(\log\) outputs will also be available.


\section*{Immediate Minuteman} and Dyna-Soar openings for Electronic and Electrical Engineers

Electronics is one of the fastest growing areas of engi neering at Boeing. Electronic and electrical engineers interested in the advancement of space-age technologies will find challenging and deeply rewarding opportunities in advanced Bueing programs, including the DynaSoar manned space glider and the solid-fuel Minuteman ICBM. Assignments exist in your particular area of interest and at the level you require for career satisfaction and advancement. For your convenience, a professional application form appears at the right, and continues on the following page.

RETLRN TO: MR. W. B. Evans THE BOEING COMPANY P. O. BOX 3707. FSF SEATTLE 24, WASHINGTON

PROFFSSIONAL POSITION APPLICATION (All replies held in strict confidence)

Date of this Application

Name
\(\qquad\)

LAST FIRST MIDDLE IUSE NO INITIALSI
Social Security No

Present Address


Telephone №.


Male__Female_Marital Status___

No. of Children Other Dependents
U.S. Veteran_Entry Date \(\qquad\)

Discharge Date

Type of Discharge

Spouses Maiden Name

Employer

Previous Boeing Employee.

If the answer to following three questions is "yes," explain on supplementary sheet:
1) Have you any physical defects?
2) Have you ever been arrested (except traffic and juvenile)?


CIRCLE 909 ON CAREE INQUIRY FORM, PAGE 177

III;HER EDUCATION
\begin{tabular}{|c|c|c|}
\hline Colleere and bisation &  &  \\
\hline 1. & & \\
\hline 2. & & \\
\hline \multicolumn{3}{|l|}{EMPLOYMENT HISTORY (Attach Resumme)} \\
\hline Firme Name ant AMtrea & \({ }_{4}^{\text {Baow Moy }}\) & \[
\begin{aligned}
& \text { Datra Emplavel } \\
& \text { Month Year }
\end{aligned}
\] \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Pramition \& Bries} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{Patition \& Dutien} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
3. \\
Position \& Dutices
\end{tabular}}} \\
\hline & & \\
\hline 4. & & \\
\hline
\end{tabular}

REFFRENCFS. Give full names, nccupations and addremes. Professional (previous supervisor preferred):
1.
2.

Character (other than relatives or former employers):
1. 2.

LIST TYPE OF WORK PREFFRRED UPON FMPLOYMF.NT:

Have you ever been cleared for classified military information? If yes, give date, level and company

May we contact your former and present employer prior to completion of employment negotiations? Yes__ No_If "yes," I authorize, without liability, the release of all employment and personal information.



Electronic and electrical engineers will find unique opportunities at Boeing. Activities in research, design and test are making sig. nificant contributions to the state-of the-art as well as to the development. manufacture and installation of svstems associated with Dyna-Soar, Minuteman, Bomarc, advanced aircraft, and orbital vehicle programs.
Assignments encompass broall areas of electronics activities in cluding surveillance, communications, guidance and control systems engineering, systems integration, antennas, cabling, circuit design, electromagnetic narfare, electronic packaging, electronics ground support, instrumentation, radin frequency interference control, reliability, systems test, solid state circuit design and many others.
Exceptional opportunities exist for logical designers and for specialists in systems design; in data processing aisociated with telemetry, and in digital design techniques embracing circuit and systems design, miniaturization, test and evaluation of airborne computers and supporting ground electronics.
You'll find space in the application at the left to indicate your special interests. Fill in and mail today.
* * *


Matching the career advantawes at Boeing are the family liting advantayes of the Pacific Northwest. This uncongested, evergreen area is famous for mild, yearround climate. unexcelled recreational facilities, fine modern homes, excellent educational and cultural institutions and healthful outdoor Western living for the entire family.

BUEINE

RETLRN TO: MR. W. B. EVANS THE BOFING COMPANY
P. O. BOX 3707. ESF

SFATTLE 24, WASHINGTON

\section*{NEWS}

\section*{Single-Channel, 3-D TV Speeds Atomic Assembly}

Three-dimensional television now available as an industrial aid uses only a single vidicon and one channel instead of the two vidicons and two channels needed with former stereoscopic techniques.

The new closed-circuit sets are being used to monitor the manipulation of component parts and the assembly of radioactive isotope power sources at Atomics International Corp., Div. of North American Aviation. Inc., Los Angeles.

In the past, single-plane TV techniques for nuclear assembly proved lengthy and arduous. To simplify the joh, atomic developers painted the radiation chambers and "hot" cells with easily spotted reference lines of different colors

\section*{3-D Television Kits Being Used}

For Nuclear Power Source Program
Atomics International purchased the unusual 3-D television kits to speed work for the SNAP program (Systems for Nuclear Auxiliary Power).
Made by Stereotronics Corp., 1717 N. Highland St., Los Angeles, the television system works as follows:

A mirror system, screwed onto a standard \(16-\mathrm{mm}\) industrial TV camera lens, doubles the image. The pair of half-size images is then transmitted to the TV monitor, where they are presented side by side on the view. ing screen.

By replacing the standard safety screen with polarized filters and then viewing the


Image picked up by a single vidicon in Stereotronics Corp.'s new 3-D TV system is doubled by a mirror sys. tem and presented (above) side by side on the monitor's viewing screen. When the two images appear to converge through polarized glasses, a three-dimensional presentation appears.
screen through converging polarized lenses, one sees a 3-D image.
Instead of glasses, a viewing hood may be used. No electronic modifications are necessary to adapt a closed-circuit TV system to three dimensions. The cost is on the order of \(\$ 900\).

\section*{Many Other Military, Industrial Uses}

Foreseen For Stereo-Viewing Kit
Other uses for the Stereotronics 3-D TV kit include viewing screens for tanks, underwater manipulation, stereo microscopes and commercial TV, according to the company president, James F. Butterfield.

Stereotronics Corp. is preparing the kit for commercial TV. Temporary stereo glasses would be wrapped in colored cellophane. The unwrapped cellophane would fit over the TV screen and serve as the polarizing medium. Instead of field polarization, color polariza-tion-with suitably colored convergence lensris in the glasses-would be used.

\section*{Automated Storage System to Use Digital and Analog Techniques}

An automated storage system, combining digital and analog techniques, will automatically stack and store heavy aircraft engine parts.

The storage system, to be developed by Electro Nuclear Systems Corp., Minneapolis, Minn., will be installed at Alameda Naval Air Station, Calif.

\section*{Loads of Up to 500 Lb}

\section*{Automatically Placed in Compartments}

The storage system will move pallets holding loads of up to 500 lb and deposit them in any one of more than a thousand storage compartments. By using automatic controls the stackers will be able to move in both vertical and horizontal directions simultaneously, thus reducing time and increasing the efticiency of the operations. The system will also be able to withdraw the loads, which measure more than one yard in each dimension, from the compartments and return them to a central conveying point.

According to specifications, the stacking system will accomplish about 185 stacking operations per hour or about three per min. In operation, the automatic stacker removes a loaded pallet from a conventional conveyor. The operator at a control console directs the load to its destination by depressing keys on the addresser.


\section*{NEW SOLID-STATE DIGITAL VOLTMETER AT WORK!}

As reliable as they are quiet, the EAI Series 5000 Tran sistorized Digital Voltmeters combine a unique "FullTime" high input impedance circuit with outstandingly accurate, high speed performance.
EAI Series 5000 features include -
- Full-time input impedance to 1000 megohms
\(\square\) Relative accuracy \(0.01 \%\) full scale
\(\square \mathbf{2 0 0}\) readings per second average
\(\square\) Input noise filter
\(\square\) Fully transistorized
\(\square\) Outstanding long term stability
- Quiet, reliable, trouble-free operation

Versatile as well as economical, these voltmeters provide decimal and binary-coded decimal electrical outputs for driving a full range of accessory equipment. Brilliant, easy-to-read projection displays eliminate "glow-through" ambiguity while providing wide angle reading - even under adverse ambient lighting conditions.


Write for complete details on the new Electronic Associates, Inc. Series 5000 Voltmeters, or call your nearest EAI Engineering Representative.


\section*{from Magnetic Metals . . .}

\section*{THERMALLY STABLE TRANSFORMER LAMINATIONS}

If you're designing a transformer or reactor that must maintain constant inductance under the blazing desert sun or in the sub-zero cold of the Arctic or outer space, you need our thermally stable Supermu " 30 " laminations. They're the only temperature-stabilized laminations available anywhere.
Special composition and the ultimate in annealing control stabilize over a wide temperature range the permeability oif thermally stableSupermu " 30 " laminations. Meticulous care in stamping eliminates burrs and preserves absolute flatness.

With performance characteristics effectively sta bilized. thermally stable Supermu " 30 " offers the only available solution to thermal design problems, and is also of particular value where you want to miniaturize components.

Laminations of thermally stable Supermu " 30 " are made in all standard sizes and thicknesses. Count on two-week delivery. Custom designs are available on special order. Our engineers are ready and well qualified to help you make the most of this exceptional lamination material. Write or call today.

See us at the Wescon Show-Booth 4413

\section*{ \\ Hayes Avenue at 21st Street, Camden 1, N.J.}

853 Production Place. Newport Beach, California
transformer laminations • motor laminations - lape-uound cores powdered molybdenum permalloy cores \(\bullet\) electromagnetic shields

\section*{NEWS}

\section*{‘Dunking Duck’ Is Invented With Transistor Oscillator}

An all-electronic version of the toy "dunking duck" has been invented by Dr. H. E. Stockman, Professor of Electrical Engineering at Lowell (Mass.) Technological Institute.

The usual version of the toy consists of a model duck so mounted on a pivot that once set in operation the head dips repeatedly, without any immediately apparent mechanical stimulus. The electronic unit, made in the shape of a duck or a bee, depends for its operation on a transistor nscillator.

A tapped inductor forms a cavity. A small Alnico magnet, attached to the duck's head, dips into the cavity. The 3,00\%-to-5,000-turn inductor is connected to the transistor in a common-emitter configuration. The bottom winding is connected to the base, and the top winding is connected through a 1.5-v battery to the collector.

Ultrasonic or High Audio Frequency Oscillation Results From High Mutual Inductance

Because of the high value of mutual inductance, the system oscillates at a high audio or ultrasonic freguency. This results in a de collector current of several milliamperes. However, because this oscillation is damped by a resistor connected between the base and ground, if mechanical oscillations are not allowed to take place, the electrical oscillations vanish also.

Once the unit has been started, and mechanical oscillations have begun, mutual inductance in the circuit increases during each down-dip, so that the oscillation limit \(\beta \mathbf{A}=1\) is exceeded. With a short rise time, the device then works itself into a "spike" of ultrasonic oscillations of high-average current value and short duration, causing the down motion of the magnet to become forcefully enhanced.

\section*{Duck's Head Begins to Rise}

As Collector-Current Pulse Dies
Associated with the increase in mutual inductance is a secondary electromotive force. This biases the base of the transistor until a point of diminishing return is reached, whereupon the driving collectorcurrent pulse vanishes, and the duck begins to raise its head again.

Mechanical oscillations are determined by


Schematic of the toy shows that it is a simple transistor oscillator with a movable magnetic core. E2 is a secondary electromotive force generated by mechanical motion of the magnet
the natural frequency of the oscillationin this case on the order of 1 cps.

Because the magnet serves as a quenching agent and the ultrasonic oscillation pertains to system resonance, the phenomenon resembles super-regeneration; on an oscilloscope the ensuing wave-train looks very much like that ohtained from a transistor super-regenerative device.

The unit is satid to consume so little power that the battery used should last for several months.

Proxluced by Sine-Serco of Waltham, Mass., it sells for \$11.

Tiny Ferrite Cores Form Memory


Minialure ferrite cores, above, form the memory of a data-processing system that will be used in the first Orbiting Astronomical Observatory of the National Aeronaulics and Space Administration (ED, Jan. 4, p 12). The advanced memory system, developed by International Business Machine's Federal Systems Div., Rockville, Md., uses quadruple-component and triplemodular redundancy. Asynchronous operation simplifies tie-in to external equipment. Nondestructive readout permits multiple readout of the entire memory while the satellite is in range of a receiving station. The memory's storage capacity is 102,400 bits, redundant, and 204,000 bits, nonredundant.

\section*{MICROMINIATURE MODULE MAKERS!}


\section*{The better way's by welding --} the better welder's by Hughes.

Are you reaching for maximum reliability? These manufacturers are. They recognize that only by use of voltage-regulated welders can they achieve the full reliability that welded packaging offers. That's why they've chosen Hughes.
When your microminiaturization problems involve high-density packaging of heat sensitive components, you will find that the better way is by welding -and the best results come from Hughes voltage regulated welders.

Write or wire today for full information on the complete line of HUGHES electronic welding equip. ment: HUGHES, Vacuum Tube Products Division, 2020 Short Street, Oceanside, California. For export information, write: HUGHES INTERNATIONAL, Culver City, California.

\section*{HUGHES}

VACUUM TUEE PRODUCTS DIVISION


1
Military Products Group engineers at Minneapolis-Honeywell St. Petersburo. Florida, use welding lor maximum density -encapsula fion for maximum strength - 10 achieve uniform, reliable results in the production of rugged but inex ensive modules. Shown above is Minneapolis. Honey well modute using bulld-on welded technique.

©
The Cubic Corooration. San Diego. Calitornia, welds presently available, standard components to achieve flexible desion of computer logic modules. (above left) 10 mc thip-Hop circuit using conventionat components, water board point to. point assembly. (right) NAND gate produced to ti. TO. 5 transistor case using micro components, insulative walers, point to point wiring


5 , Dallas. Texas. lace atricul microminiatur. then problems. They find that electronic welding produces inex pensive, lightweight, shockprool modules of outstandino reliability. Shown above are modules and ing point-to point welded wiring (left) Set and reset generator: (right Oscillator amplifier, dual controlled.


If you're stymied by switching problems in data processing, automatic control or highspeed keying, then consider the unusual attributes of AE's Series V51 mercurywetted contact relay.
This fleet switcher can be driven at speeds up to 100 operations per second, completely free from contact bounce. It requires no maintenance within its life of over a billion transfers. The contacts can switch dry circuits or handle loads up to 250 volt-amperes. Operate and release time is approximately \(\mathbf{3}\) milliseconds.

Contact and armature assemblies of the V51 are hermetically sealed in a glass capsule with a high-pressure hydrogen atmosphere. Mercury wetting continuously renews the contacts, eliminates wear, erosion, welding and sticking. Operating sensitivity is 250 milliwatts, minimum.
AE engineers will be glad to aid in applying the V51 to your designs. Ask for Circular 1988 covering full specs on the V51. Write the Director, Control Equipment Sales, Automatic Electric, Northlake, Illinois.

\section*{AUTOMATIC ELECTRIC \\ 8ubsidiary of GENERAL TELEPHONE \&ELECTRONICS}

To synchronize the camera shutters, an unusual method of detection is employed to time the incident of maximum shutter opening.

A shutter disk drive incorporates two aluminum wheels with small iron slug inserts, which are geared to the input shafts of the two rotating disk shutters. Reluctance pickups are accurately positioned with respect to the aluminum wheel to sense the open position of the disk shutter.

The ballistic camera synchronization system also includes equipment for the measurement of time delays in transmitting shutter-open pulses through the modulation and demodulation circuits, as well as time delays in the communications circuits.

\section*{Fiber-Glass Instrument Carrier Built for Underwater Research}

A new submarine instrument carrier, called the V-Fin (Vehicle For Instrumentation), has been developed by the Braincon Corp. of Marion, Mass. The molded fiberglass vehicle is useful for such projects as seismic investigation, temperature and pressure studies, echo-sounding and high-speed sampling at constant, predetermined undersea depths.
The V-Fin, because of its precise hydromatic design, is said to be completely stable at speeds up to 20 mph , remaining at the desired depth regardless of fluctuations in the speed of the towing ship.

The instrument compartment of the V-Fin is 12 in . long, 2-1/2 in. wide and 1-1/8 in. deep. It can be sealed; components placed in it may be individually potted. Information is transmitted to the towing ship over a coaxial towing cable.

A hydrophone and impedance-matching transistorized preamplifier is available for use in the V-Fin, the company reports.


V-Fin underwator instrument carrier for marine researchers and commercial fishermen is said to be stable at speeds up to 20 mph .

ELECTRONIC DESIGN • July 19, 1961

Unique construction of Elcor ISOFORMER \({ }^{\circ}\) makes efficient isolated power supplies practical


The drawing shows the unique construction of the Isoformer (isolation transformer). This is the key element in new Elcor isolated power supplies... called ISOPLYS.

Significant features of the Isoformer are: (A) Tape-wound magnetic core (B) Shielded primary winding (C) Shielded secondary winding separated from core by air gap.

Results? Distributed capacitance between ground and shield of secondary winding is reduced to the order of 15 to 40 pf, depending on transformer power rating. And in spite of the air gap there is good magnetic coupling between primary and secondary winding. Efficiency is of the order of \(90 \%\). When used in D-C power supply, such as the Isoply, rectifiers are enclosed in same shied as secondary winding. With Isoplys you can now create simpler, less costly, and in many cases, better performing circuit designs in applications never before possible.


ELCOR Incorporated
Subsidiary of Welex Electronics Corporation Sales / R \& D Laboratory / Manufacturing 1225 W Broad Street / Falls Church, Virginia JElferson 2-8850
CIRCLE 35 ON READER-SEPVICE CARD

\section*{New Laboratories Going Up As Research Spending Rises}

Tofal electronic research expenditures have climbed over \(\$ 2\) billion a year, estimates the Commerce Department's Bureau of Defense Services Administration. Military R\&D alone in 1960 hit over \(\$ 1.8\) billion -a 10 per cent jump over 1959. To keep pace with these expanded research needs, new laboratories have been springing up throughout the industry. Shown here are examples of some of the projects being carried on in the many new facilities.



Photodetectors for space using semiconductors and liquid elec trolytes are under development at International Business Machines Corp.'s Thomas J. Watson Research Center in Yorktown Heights, N. Y. The photodetector above is sensitive enough to detect weak signals from the moon, but rugged enough to withstand intense direct sunlight. It is expected to operate for several years with a 1.36 -v battery. In normal solar cells light must pass through a thin silicon layer to reach the junction where energy conversion takes place. In the IBM device the surface layer is a sulphuric acid elec trolyte which absorbs very little light. Sensitivity is \(740 \mu \mathrm{~m} / \mathrm{cm}^{3}\) measured at 0.9 micron at a light level of \(241,0 / \mathrm{cm}^{2}\), according to IBM. High sensitivity to ultraviolet is used in ultraviolet detector using similar principle, below.


Tantalum Capacitors . . . industry's broadest line of wet slug, solid and foil types.
Ceramic dise capacitors . . . made by Radio Materials Company, a Mallory division.
Subminiafure Snap-Action Switches
Milli-Switch line, with varied actuators.
Selector Switches . . . dozens of models.

Heavy-Duty Electrolytics . . . high capacity HC type and non-polarized NP type.

Vitreous Enamel Resisfors . . . 5 to 200 watts, including MIL types.
Get them all . . . get them fast . . . get them at factory prices from a Mallory Industrial Distributor near you. Call him now. He's stocked to handle your hottest order.

Distributor Division
Indianapolis 6, Indiana

\section*{MALIORY}

\section*{See your Mallory Industrial Distributor \\ These Mallory Industrial Distributors}
stock the lines indicated by numerals:

Key: 1-Tantalum capacitors 2-Selector switches 3-Vitreous enamel resistors 4-Ceramic disc capacitors 5-Snap-action switches 6-HC.NP capacitors



CIRCLE 36 ON READER-SERVICE CARD


\section*{LOW POWER \\ ENVIRONMENTALLY PROVED... AVAILABLE NOW! \\ Delco Radio's new silicon digital modules operate on less than 4 mw . of power} SILICON per logic stage. They are rugged enough to withstand extreme environmental conditions and are small and lightweight. Encapsulated in light foamy epoxy, each module weighs less than 12 grams and occupies less than one-half cubic inch. The basic set of modules DIGITAL includes a bistable multivibrator, a diode NOR gate, a power driver, a monostable multivibrator and an astable multivibrator. From these basic units larger computer subassemblies MODULES
can be assembled, such as shift registers, adders, binary counters, decimal counters and timing devices. A range of applications-from small scale switching circuits to large computers can be satisfied with these modules. Environmentally proved to:


ACCELERATION
20G'sACCELERATION
20G's

\section*{Analog-Digital Recording Systems To Be Developed For the Navy}

Two identical high-speed digital data recording systems, to be designed for shipboard installations, will use both digital and ana\(\log\) inputs.

The system, to be developed by Monitor Systems, Inc. of Fort Washington, Pa., will handle up to 25 inputs, 10 in analog voltage form and 15 in digital form. In its normal mode of operation, each system will sample all data channels within 20 msec followed by a quiescent interval for the remainder of the sampling period.

Frame rate will be adjusted by the operator to \(0.1,0.2,0.5,1,2,4,8,16,32\), or 64 seconds as desired. The operator will be able to select any one channel for high-speed sampling at a rate of 800 samples per sec. All data will be recorded on magnetic tape in compatible format for IBM 650 or 704 computer processing.

The systems will be developed under a \(\$ 250,000\) Navy contract.

\section*{Optical Sensor Designed to Help Blind 'See' Approaching Objects}

An optical range finder is being developed to help blind people sense the distance of approaching objects by means of vibrations applied to their fingers.

The device is essentially a zoom lens operating in conjunction with a photomultiplier, which converts the light variations of an approaching object into mechanical vibrations.

The detector is being incorporated into a briefcase that has a handle with four metal membranes, arranged so they touch the fingers of the holder. The membranes are set for fixed-distance ranges- 1 to \(3 \mathrm{ft}, 3 \mathrm{to} 9\) ft , 9 to 30 ft , and beyond 30 ft . A blind person would sense approaching objects-an auto, say-through successive activation of the membranes, while using his thumb to change the angle of the lens.

The device is being developed by Dr. Bertil Jacobsen of Karolinska Hospital, Stockholm, Sweden. He is also the inventor of the endoradiosonde, a tiny transistor radio transmitter that can be swallowed by a patient to supply data to a receiver outside his body.

\section*{Look to FAFNIR}


CIRCLE 133 ON READER-SERVICE CARD


\section*{Get top performance with...}

\section*{AIL test instruments for lab or field use}

\section*{... including the most complete line for noise figure measurement}

It will pay you to know this family of test equipment. In it you'll find the most versatile line of noise figure measurement instruments available.

You'll find a growing family of transistorized devices portable, reliable . . . equally useful in laboratory or field application.

You'll find many unique devices, including low-cost instruments that give you the measurement you want at a fraction of the cost of alternate approaches.

And in all AIL test equipment you'll find design refinements and superior performance that stem from the company's years of scientific leadership in microwave, space and military electronic research.

Prompt attention to your inquiries from leading test instrument representatives. Prices and specifications subject to change without notice.

For more information send the coupon below or circle publication inquiry numbers 784-795

\section*{AIRBORNE INSTRUMENTS LABORATORY}

Division of CUTLER-HAMMER INC.
Where applied science helps build practical products Deer Park, Long Island, New York

Send FREE information and specifications on the following precision test instruments: (Please circle type numbers.)

Recelver test equipment Type 390A-3, 391, 393 Type 30
Type 132 Type 70 Type 71 Type 74 Type 113030
Special purpose test equipment
Type 133 Type 124C Type 120 Type 50 Type 90
Please check \(\square\) send only literature \(\square\) have a representative contact me

Name Titie

Company \(\qquad\)
Address.
\(\qquad\)

RECEIVER TEST EQUIPMENT
(including the most and the best in noise figure measurement.) (LEFT TO RIOHT)

TYPE 390A-3, 391, 393-Crystal Test Sets SImpllfied, aceurate LOW COST tosts are provided by these inatruments. Measure microwave or video crystals rapidly in the field or lab. Meagure noise figure, pair matching, conversion low, relative or tangential ensativitics. Price from \(\$ 97\) to \(\$ 299\). Circle publication No. 784.

TYPE 30-Precision I-F Attenuator
Oet the highest avallable eccuracy in this piston typo attenuator.
Pantuese: 80 and 60 Mc atandard frequencies. Continuoualy variable over 80 db range above minimum ineertion lose Accuracy \(\pm .006 \mathrm{db}\) per db from 10 to \(80 \mathrm{db} ;\) .05 db from \(0-10 \mathrm{db}\). Price \(\$ 250\) to \(\$ 295\). Circle publication No. 785.

TYPE 132-Precision Test Recevver
Many types of precise measurements of R-F circuits are posible with this excellent labora-

tory tool. Calibrate R-F attenuatore and couplers. Measure noise figure and eelectivity. Features: Incorporates Type 30 attenuator. 30 and 60 Mc atandard frequencies. Noise figure 1.6 db at 30 Mc ; 2.4 db at 60 Mc . Prices \(\$ 1,360\) and \(\$ 1,400\). Circle publication No. 786.

TYPE 70-Broed Band Noise Generators
11 Models for automatic or manual noise Ggure meneurement.
Fsatunes: Prequency range from 10 Mc to 40 Kmc. Relative ozcees noiee tomp: 16.3 \(\mathrm{db} \pm 0.25 \mathrm{db}\). Price 8125 to 8330 .
Plue new, exclunive hot-cold body senerator to provide higheat accuracy available in 0 to 2 Kmc range, exces noiee \(6.83 \mathrm{db} \pm 0.1\) db. Price 8675. Circle publication No. 787.

\section*{TYPE 71-Power Supply}

Provides Power for all nine Type 70 argon discharge noise genaratore when uced manually. Price 8165. Circle publication No. 788.

TVPE 74-Automatic Noise Figure Indicator
Widest frequency coverage is yours with this equipment. Plus marimum foribility. Esclurive tunable I-F amplifier available.
Peaturea: R-Prange 10 Mc to \(\mathbf{4 0} \mathbf{K m c}\) with Type 70 noice generators. I-P range-30,60
and 40 to 180 Mc . Noise frure ranges- 0 to \(25 \mathrm{db}, \pm 0.5 \mathrm{db} ; 23\) to \(38 \mathrm{db}, \pm 1.0 \mathrm{db}\). Prices \(\$ 765\) and 8830 . Circle publication No. 789.

Type 113030 (not Illustrated)-Radar Porformance Monitor. Transistorised. Meacures noiet Agure, check mizer crystale; checks eranarnithed and relected power. Circle publication No, 790.

\section*{SPECIAL RECEIVER}

NEW-TYPE 133-Paramotric Amplifier
Extromely low nolse amplifiors for microwave applications through X-Band featuring oxcellent amplitude and phase otability and aimple operation. Fized cuned narrow band, tunable nerrow band and fixed tuned wide band ( \(\mathbf{1 0 \%}\) ) decigno available. We will gladly quote on epecial designe Circlo publication No. 791.

\section*{SPECIAL PURPOSE TEST EQUIPMENT (LEFT TO RIGHT)}

TYPE 124C-Wide Range Power Oscillator Watts of pewer ever a wide range makes thio Oncillator invaluable in many microwave teste.

Panturea: 200 to 2.500 Mc . Intermal or external modulation. Nominally 30 watte output. Price \$2,485. Circlo publication No. 792
TYPE 120-Function Generator
Three Weve Forms are provided in one lightwoight tranciotorised package. Sine waves, equare waves or pulien with eonstant ampli tude within \(\pm 1 \mathrm{db}\) over the 30 to 39,000 Cps rance. Output amplitude and pulee width adjustable. Price \$299. Circle publicetion No. 793.
TYPE 50-Transistorized Power Bridge
smallest, lightegt, lewest-cost power bridge on the martet. You get the same eccuracy a with higher-priced unite.
Fearures: Rangea 1.0 and \(10 \mathrm{mw} \pm 8 \%\). R-F coverage 10 Mc to 40 Kmc , depending on thermistor used (not eupplied). Circle publication No. 794.
TYPE 90-Circuit Design Reliability Tester Prow and Improve your cireult deslgns with this inetrument. An eapecially valuable tool with low frequency circuits where the Cuntomer domands ultimate in reliability. Usen "eztreme values" technique on up to 16 parameters. Binary readout of circuit parameters at time of failure. Price \(\$ 3,600\). Circle publication No. 795.

ENGINEERS
TALK ABOUT IDEAS

\section*{IDEAS FOR DESIGN}

Electronic Design, 850 Third Ave., N.Y. 22 Please send me_copy/ies of " 100 Ideas for Design." Remittance ( \(\$ 1.50\) per copy) is enclosed.
```

Name

```

Addrees
City \(\qquad\)
"New ideas are only new combinations of old ideas," said a wise old philosopher. If this is true then ELECTRONIC DESIGN's "100 Ideas for Design" book is an invaluable source of new ideas for electronic design engineers.
Within its covers you'll find 100 of the best "Ideas for Design" that appeared in ELECTRONIC DESIGN during 1960. These ideas can help you solve design problems-visualize solutions-create new ideas-increase your earning power.
To get your copy of " 100 Ideas for Design" fill out the coupon and enclose a check or money order for \(\$ 1.50\). We'll pay the postage.

\section*{Radar Augmenter Enlarges Target On Radars of Tracking Planes}

An active radar augmenter has been developed to make small Air Force drone or target aircraft appear as large "enemy" planes on the radars of tracking planes.

The 14-lb augmenter, developed and now being produced by Lockheed Electronics Co. of Hlainfield, N. J., electronically simulates the radar-echo characteristics of target vehicles. The typical augmenter gain is about \(7(1 \mathrm{db}\) at 9 Gc . The unit receives a radar-transmitted signal and transmits an amplifitd signal back to the tracking missilecarrying aircraft.

\section*{Simulated Enlarged Target Area}

\section*{Can Be Varied With Attenuator}

Assuming the transmitter and receiver line losses are equal to the antenna gains and that the antenna isolation obtainable is greater than 70 db , the simulated target area is \(\overline{5} 0 \mathrm{sq} \mathrm{m}\). Target areas may be varied by a variable attenuator in the antenna output line.

The C/X-band unit uses a traveling-wavetube amplifier, transistorized power supplies and matched receiving and transmitting antennas. The frequency range is 5 to 11 Gc . Output power is \(\mathbf{1} \mathbf{w}\) minimum, although more than 3 wre transmitted over a major portion of the band. Signal gain over the major prortion of the frequency range is greater than 65 db and as high as 72 db . Input and output impedance is 50 ohms nominal. Input power (dc) is 100 w with a voltage rating of 25 to 29 vdc . Regulation is 1 per cent.

The augmenter can be used at rated specifications in an environment of -54 C to 71 C and at altitudes up to \(70,000 \mathrm{ft}\).


Twt radar augmenter, which provides a gain of 70 db at 9.000 Gc , is intended for installation in drone or target aircraft to reinforce radar tracking by missilecarrying aircraft.


\section*{MORE MEGAWATT CYCLES PER DOLLAR*}

The Shockley 4-layer diode offers you a fast, simple method for generating voltages up to 200 volts and pulse currents from 2 amps to 100 amps. Turn on time-just \(0.1 \mu \mathrm{~s}\).

This reliable, solid state device gives you simplicity along with small size, light weight, drastically reduced power consumption and high speed.

These unique advantages make the Shockley 4-layer diode an ideal device for pulse generators, pulse amplifiers, pulse modulators, squib firing
detonator circuits, for triggering thyratrons, magnetrons, traveling wave tubes...

Shockley 4 -layer diodes have been proved in many, many industrial and critical military applications. If you have a circuit problem involving the fast switching of high power, the advantages and capabilities of the Shockley 4 -layer diode could help you solve it. Call your Shockley representative or write for application information.
- Even the smallest Shockley 4 -layer diode will handle 2 ampere pulses. (The unit price for 500 Type D diodes is \$4.)


\section*{CANNON MS PLUGS}
meet the most specialized and stringent demands.Cannon Ms
Plugs are built for rugged service! From general duty ground use to specialized missile applications, these plugs fulfill the requirements of MIL-C.5015...are also suitable for many commercial and industrial applications where quality and dependability are required. Our full line of environmental resisting MS plugs gives you the optimum in interchangeability, variety of contact arrangements, and shell types and sizes. The MS series, MS-A, MS-B, MS-C, MS-E, MS•R, MS-K, are available from authorized Cannon Distributors everywhere; or write:


CANNON ELECTRIC COMPANY - 3208 Humboldt St., Los Angeles 31,Calif. circle 43 on reader-seavice card


\section*{*service!}

Now more than ever before, you can save time by calling TIME - your Cannon Authorized Plug Specialist

\section*{TIME}

ElECTRONIC SALES

Community Drive and Pond Hill Road Great Neck, New York
HUnter 7-0100 TWX: GT NK 5674
CIRCLE A4 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 19, 1961

\section*{EDITORIAL}

\section*{Getting Obsolete?}

Is experience the best teacher? Will you be worth more as an engineer 10 years from now because of your experience?

Dr. Thomas Stetson. Head of the Department of Civil Engineering at Carnegie Institute of Technology expresses some provocative ideas on the value of experience in an article titled "Education for Oblivion?" (Carnegie Alumnus, April 1961).

He points out that starting salaries for engineering graduates have risen far more rapidly than those of experienced employees with the same basic training. This situation, he says, is claimed to be caused by a temporary maladjustment caused by an expanding technology combined with a shortage of engineers.

Commenting on this, Dr. Stetson says:
" . . . There is considerable evidence to indicate that the situation is not temporary, but will continue and may even become more pronounced. Such a trend implies that a new engineering graduate is near the peak of value to his employer and society, and that several years of experience may only add slightly to his professional stature. .."
He goes on to view the problem quantitatively.
". . . Unless a graduate of 10 years ago has systematically spent about 10 per cent of his time extending his knowledge beyond the level of development achieved in his collegiate training he will not have value in excess of a new graduate. This . . assumes that he has retained all of his previous training, which is probably far from realistic.
"If an estimate of decay from neglect or disuse is also 10 per cent per year, an engineer is faced with the task of growing in new knowledge at the rate of about 20 per cent per year to remain of equal value to his employer and society. To increase in value at a significant rate he should probably devote about one-third of his productive hours to self-education and improvement. . . . "
In other words, you have got to keep with your field or become obsolete. How can you keep up? One way is to learn how to read effectively-and use this skill to regularly absorb the carefully compiled, edited, and detailed account of the advances in your field that appears in every issue of technical magazines like Electronic Design.
Employers would also do well to act on this problem. Technical management should not merely expect engineers to keep up with the advances in their field, it should insist on and require this as part of each man's job. One of the best ways to do this is to encourage and make time available for technical reading-right on the job.
If a man is to spend one-third of his time to grow in his field, surely one hour of his working day, set aside for technical reading, is not asking too much. Certainly he will supplement this one hour with many more on his own, encouraged by the knowledge that management is really interested in his growth.


\section*{NEW \\ MODEL 700 \\ OAPACITANOE MEASURING SYETEMM•••}

- A wide-range, direct-reading capacitance bridge assembly of high accuracy and resulution especially suitable for:

Calibration of two or three-terminal variable air capacitor secondary standards.
Calibration of fixed value capacitance standards.
Measurements of voltage, frequency and lemperature effects on all types of capacitors.
Measurements of very low value three-terminal capacitors without zero correction.
- Measures two or three-terminal capacitors in the range from 0 to 0.12 microfarads with a resolution of 0.0001 picofarads on the lowest range. Use of a ratio transformer circuit and a specially designed standard air capacitor having a very low temperature coefficient of capacitance and an exceptionally high stability minimizes drift due to changes of room temperature, voltage and frequency. Accuracy of the measured capacitance is referred to this one standard which can be periodically checked and adjusted to agree with an NBS certified standard for traceability.
- The complete, matched system includes the new ESI 707 capacitance bridge and the new ESI 860 -B generator-detector, 2 combination of an ac generator and a sensitive null detector designed especially for use as an accessory to the bridge. Write for catalog sheet C-28.

Price; \(\$ 1575\), F.0.B. Factory


> visit our display 1961 WESCON
> Booths \(1928-1929\)

formerly ELECTRO-MEASUREMENTS, INC.

\title{
Transistor and Switching-Circuit Measurements
}

At present, rise and fall time measurements for switching transistors are taken at the 10 and 90 per cent points of the device excursion. Although this approach is acceptable for an exponential function, the 10 and 90 per cent levels are difficult to determine for transistors having a delayed exponential due to high frequency loading: capacitive feedthrough and ringing also limit the accuracy of locating the 10 and 90 per cent points. Response measurement using 20 to 80 per cent levels, author Charles Askanas argues, is equally valid and avoids the above problems.

Charles Askanas
Engineering Project Manager
Lumatron Electronics, Inc.
New Hyde Park, N. Y.
ACK of correlation and repeatability in switching speed measurements plague manufacturers and users of fast transistors for computer circuits. Among the many factors which compound this problem is the lack of uniformity in circuit construction and layout resulting in nonrepeatable differences in the distributed reactances critical at high frequencies.

The lack of correlation is partially due to



Fig. 1. Plot of a normalized exponential.
the persistent use of a definition which was originally intended for use with somewhat classic exponentials. That is, the definition of rise time and fall time between 10 and 90 per cent, and turn-on delay time and storage time between 10 per cent of an imput pulse and 10 per cent of an output pulse. The advantage and validity of measuring switching times between 20 and 80 per cent is given.

The Exponential Related to Switching-Speed Characteristics

Review of Definitions: The dimensionless exponential response of a network is:
\[
\begin{equation*}
\frac{k(t)}{K_{0}}=\mu^{\prime \prime r} \tag{1}
\end{equation*}
\]
\(K_{0}\) is the initial current or voltage at time \(t=0 . T\) is the time constant of the system.

A tabulation of \(t / T\) is shown in Fig. 1. together with a plot of the normalized exponential. It can be seen that the exponential will reach a steady state in five time constants.

Relationship between Exponential Rise Time and Frequency Response: Since shunt (distributed and lumped) capacitance determines high-frequency response, consider the rise time of the integrating network (low-pass filter) shown in Fig. 2.
The rise time, defined as the time interval between 10 and 90 per cent of the total excursion is:
\[
t_{r}=2.3 \mathrm{RC}-0.1 \mathrm{RC}=2.2 \mathrm{RC}
\]

The cut-off frequency of the network is:
\[
f_{r}=\frac{1}{2-\mathrm{RC}} \quad \therefore f^{2}=\frac{2.2}{2-f_{r}}=\frac{0.22}{f_{f}}
\]
and \(t_{r} f_{c}=0.35\)
If the rise times were defined as the time interval required for voltage output to \(\mathrm{g}_{0}\) from 20 to 80 per cent of its final value \(t_{r}=1.6 \mathrm{RC}-0.22 \mathrm{RC}=1.38 \mathrm{RC} \approx 1.4 \mathrm{RC}\)
\[
t_{r} f_{c}=0.22 \quad t_{1}=\frac{1.1}{2 \pi f_{r}}=\frac{0.22}{f_{i}}
\]

Since the exponential becomes asymptotic to its final value in five time constants, the selection of the 10 and 90 per cent points on the waveform is straightforward. However, it can also be seen that selecting the time between 20 and 80 per cent is as valid for indication of the frequency response as the 10 and 90 per cent points-one just deals with a different constant. However, defining switching times between 20 and 80 per cent must still be justified.

Switching Response of
A Grounded-Emitter Transistor
The most accepted form of the saturating grounded-emitter transistor response is the exponential \({ }^{\prime}\)
\(t=\frac{1}{f_{1}\left(\omega_{c}\right)-f_{2}\left(\omega_{r} \alpha\right)} \ln f_{t} \frac{\left(i, i_{\mathrm{b}}\right)}{f_{1}\left(i_{,} i_{\mathrm{b}} \alpha\right)}\)
\(\omega_{c}=\) the common-base current gain cutoff radian frequency.


Fig. 2. Simple RC low-pass filter circuit.


Fig. 3. In the transistor output eircuit shown, \(C_{d}\) represents the distributed circuit capacity and \(C_{i n} R_{\text {In }}\) the oscilloscope input impedance
\(n=\) the common-base current gain \(i_{c}=\) collector current
\(i_{b}=\) "on" or "off" base current
These equations, valid to determine an approximate response or a direction for design, are accurate within 20 per cent; the following are assumed:
1. The transistor switch input is from an idealized constant-current source. Actually, most of the switching circuits are voltage driven from source impedances between 50 and 100 ohms.
2. The transistor is considered essentially nonloaded, i.e., the load resistance is assumed small enough so that the short-circuit current gain can be used, and the only load capacitance considered is that of the collector capacitance which is nominally in the order of 1.0 to 30 pf .

Analytically, the nonloading assumption is:
\[
R_{L} C_{c \omega_{c}} \ll 1
\]
(continued on \(p\) 44)

\section*{New (pp High Stability Oscillator}


The unusual stability of the new 204B combines with solid state design and battery operation to give you one of the most useful, reliable, versatile oscillators available today. Because the 204B is fully transistorized, internal heat is small and warmup drift is negligible. In addition to battery operation, the 204B is operable on ac , with an ac power pack available at extra cost.
Frequency stability over the entire 5 cps to 500 KC range is better than \(\pm 0.03 \% /{ }^{\circ} \mathrm{C}\) from \(0^{\circ}\) to \(55^{\circ} \mathrm{C}\). Amplitude stability over rated frequency range and output levels is better than \(\pm 0.1 \%\) over 8 hours of operation at constant line voltage and temperature*; better than \(\pm 0.2 \%\) for line voltage changes of \(\pm 10 \%\) : better than \(\pm 0.1 \% /{ }^{\circ} \mathrm{C}, 0.55^{\circ} \mathrm{C}\).
Output of the 204B is fully floating, isolated from both power line ground and chassis. Balanced and unbalanced loads, and loads referenced either above or below ground, can be driven by this versatile oscillator.

\section*{SPECIFICATIONS}

\section*{rrequency Ranger}

Dial Accuracy: Prequency Responses Dutput Impetance: Outputs
Output control:

\section*{Distortion:}

Noise:
Power Source:
Power Accessery Available:

\section*{Dimensione}

Price:
20es

3 cps to 500 KC, 5 ranges, 5\% over \(\pm 3 \%\)
\(\pm 3 \%\) with
500 ohms
\(500 \mathrm{mms}(2.5 \mathrm{rms})\) into \(600 \mathrm{ohms} ; 5 \mathrm{v}\)
\(\mathbf{~ r m s ~ o p e n ~ c i r c u i t ~}\)
Continuously variable bridged "T" attenuator with at least 40 db Less than 1\%
Less than 0.05\%
4 battery cells at 6.75 y each, 7 ma
drain, life at least 300 hours drain, life at least 300 hours AC power supply can be installed in place of batteries. Optional at \(6 \cdot 3 / 32^{\circ} \times 5 \cdot 1 / 8^{\prime \prime} \times 8^{\circ} .6 \mathrm{lbs}\). (1)2M8, \(\$ 275.00\) Low impedance circuits drive the 600 ohm output, effectively isolating the oscillator stage.
Designed in the new instrument module packaging, the 204B is only \(6 \cdot 3 / 32^{\prime \prime}\) high, 5 多" wide \(^{\prime \prime}\) and \(8^{\prime \prime}\) deep; weighs just 6 pounds! A new rack mount adapter holds three 204B oscillators or other instruments of the new modular design.
-On battery operation, stability \(-1 \%\) during battery depolarization, less than
30 minutes.
HEWLETT.PACKARD COMPANY
1077K Page Mill Road Palo Ato, Califomia, U.SA Cable "HEWPACK" DAvenport 6-7000

Sales representatives in all principal areas
HEWLETT-PACKARD S. A.
Rue du Vieuz Eillard Mo. \(1 \quad\) Geneva, Switaeriand
Cable "HEWPACKSA"
Tel. Mo. (022) 26.43.36


Fig. 4. The equivalent transistor out. put developed from Fig. 3.


Fig. 7. The effect of loading on the transistor rise time response.

To determine the validity of the nonloading assumption, consider a typical highfrequency switching circuit:

The alpha cut-off frequency \(=100 \mathrm{mc}\)
\(\omega_{c}=2 \pi f=2 \pi \times 10^{8} \mathrm{rad} / \mathrm{sec}\)
\(C_{c}=10 \mathrm{pf}\)
\(R_{L}=500\) ohms which is fairly small load resistor
\[
\begin{aligned}
& \omega_{c} C_{e} R_{L}=2 \pi \times 10^{8} \times 10 \times 10^{-12} \times 5 \times 10^{2} \\
&=\pi \\
& \therefore R_{L} C_{c \omega_{c}}>1
\end{aligned}
\]

Thus, the loading effect cannot be ignored. Furthermore, this is neglecting the effect of distributed circuit capacitance due to layout and wiring and the capacitive input of most oscilloscopes or probes used to monitor fast switching times.


Fig. 6. Common emitter collector saturation characteristics.
Consider the switching circuit output shown in Fig. 3.
\(C_{\text {in }}\) and \(R_{\text {in }}\) are the input impedance to the monitor oscilloscope (if its input is capacitive, as well as resistive.)
\(C_{c}\) is the collector capacitance.
\(C_{d}\) is the distributed circuit capacitance.
Consider the transistor as a function generator whose output is the idealized exponential. In the equivalent circuit, \(\boldsymbol{R}_{\text {total }}\) includes the transistor output impedance and its shunt load resistance \(R_{L}\) (which is at ac ground) and \(C_{7}=C_{\text {in }}+C_{d}+C_{e}\) as shown in Fig. 4.

As shown, for high-freqency operation:
\(R C_{T \omega_{c}}>1\) and \(C_{T}>C_{c}\)
\[
\therefore \omega_{c} \gg \frac{1}{\mathrm{RC}} \text { and } \mathrm{RC} \gg \frac{1}{\omega_{e}}
\]

As shown, it is RC which determines the response and not \(\omega_{c}\).

Rewriting Eq. 1 as:
\(t=-K \ln g \quad\) when \(g=\frac{f_{n}\left(i_{c}, i_{b}\right)}{f_{1}\left(i_{c}, i_{b}, a\right)}\)
\[
\begin{equation*}
\mathbf{K}=\frac{1}{f_{1}\left(\omega_{c}\right)-f_{2}\left(\omega_{r}, \alpha\right)} \tag{2}
\end{equation*}
\]
\(K\) is a constant for a given transistor. \(g=e^{-t / \kappa}\)
which is the assumed exponential feeding the integrating network.

Using transform theory:
\[
\mathcal{L}\left(e^{-1 / n}\right)=\frac{1}{(S+1 / K)}
\]

The transfer function of the equivalent lowpass filter is:
\[
\begin{aligned}
& \frac{V_{2}(S)}{V_{1}(S)}=\frac{\frac{1}{C S}}{R+\frac{1}{C S}}=\frac{1}{1+C S R} \\
& \therefore V_{2}(s)=\frac{V_{1}(S)}{1+C S R} \\
& \quad=\frac{1}{(s+1 / K)(C S R+1)} \\
& \quad=\frac{1}{C R}\left[\frac{1}{(s+1 / K)(s+1 / \mathrm{RC})}\right]
\end{aligned}
\]

By residues:
(4)
\[
V_{2}(S)=\frac{1}{C R}\left[\frac{A_{1}}{s+1 / K}+\frac{A_{2}}{s+1 / \mathrm{RC}}\right]
\]
\(R\) in the above treatment has been assumed as constant. However, \(R\) includes the output impedance of the transistor which varies by many orders of magnitude as the transistor switches from "on" to "off."

The slope of the \(V_{c e}-I_{c}\) characteristic curves of the grounded emitter transistor is a good approximation of the transistor output impedance. The characteristic curve of a "typical" transistor is considered in Fig. 5.

Some small change in the transistor output impedance is seen as it switches from point \(A\) to point \(B\). A rapid change in impedance is seen as the transistor reaches the saturation point, \(Q\). However, if the voltage axis is increased by a factor of at least 10 , a more realistic view of the transistor saturation characteristic is obtained as shown in Fig. 6.

In Fig. 6 the output impedance of the transistor is seen to vary markedly as the transistor is driven further into saturation. The transistor output impedance, which is a function of \(I_{c}, V_{c e}\), and \(I_{b}\), can be approximated by linear increments which are functions of time. Thus in the frequency domain,
\(R\) ( \(S\) ) can be expressed as a finite series. \(R(S)=R_{1}\left(S_{1}\right), R_{2}\left(S_{2}\right), R_{3}\left(S_{3}\right), \ldots R_{n}\left(S_{n}\right)(5)\) Rewriting Eq. 4:
(6)
\(V_{2}(S)=\frac{1}{C R(S)}\left[\frac{A_{1}}{(s+1 / K)}+\frac{A_{3}}{s+\frac{1}{C R(S)}}\right]\)
\(A_{1}=\frac{1}{C R(S)}\left[\frac{1}{8+\frac{1}{C R(S)}}\right]\)
\[
\begin{gathered}
=\frac{1}{C R(S)}\left[\frac{1}{+C R(S)-1 / K}\right] \\
=\frac{K}{K-C R(S)}
\end{gathered}
\]
\[
A_{2}=\frac{1}{\operatorname{CR}(S)}\left[\frac{1}{s+1 / K}\right]
\]
\[
\quad s=-\frac{1}{\operatorname{CR}(S)}
\]
\[
=\frac{1}{C R(S)}\left[\frac{1}{-\frac{1}{C R(S)}+1 / K}\right]
\]
\[
=\frac{K}{C R(S)-K}
\]
\[
V_{2}(S)=\frac{K}{K-C R(S)}\left(\frac{1}{s+1 / K}\right)
\]
\[
+\frac{K}{C R(S)-K}\left(\frac{1}{s+\frac{1}{C R(S)}}\right)
\]
and substituting Eq. 5.
\(\boldsymbol{V}_{2}(S)=\frac{K}{K-C\left[R_{1}\left(S_{1}\right), R_{2}\left(S_{2}\right), \ldots . R_{n}\left(S_{n}\right)\right]}\)
\(\left(\frac{1}{s+\frac{1}{K}}\right)+\frac{K}{C\left[R_{i}\left(S_{1}\right), R_{n}\left(S_{2}\right) \ldots R_{n}\left(S_{n}\right)\right]-K}\)
\(\left[\frac{1}{s+\frac{1}{C\left[R_{1}\left(S_{1}\right), R_{:}\left(S_{2}\right), \ldots R_{n}\left(S_{n}\right)\right]}}\right]\)
Writing the \(n^{\text {tb }}\) turn of \(K / K-C R(S)\) in the time domain \(k_{1 n}=K / K-C R\left(t_{n}\right)\) which is a constant in each time increment. Similarly \(k_{\ell n}=K / C R\left(t_{n}\right)-K\)
\(\therefore \quad \mathcal{L}^{-1} \quad V_{0}(S)=v(t)=k_{1} e^{t / \pi}+\)
\(\left(k_{21} e^{-t_{1} /{ }^{n} n_{1}(l)}, k_{22} e^{-t_{2}, C n_{2}(t)}, \ldots \ldots, k_{i n} e^{-t_{n} / C z_{n}(t)}\right.\)
or \(v_{2}(t)=k_{1} e^{-t / \mathbb{K}}+\left[k_{21} f_{1}\left(t_{1}, R_{1}, C\right)\right]\),
\(\left[k_{22} f_{2}\left(t_{2}, R_{2}, C\right)\right], \ldots\left[k_{2 n} f_{n}\left(t_{n} R_{n} C\right)\right]\)
(continued on \(p p\) 66)
ELECTRONIC DESIGN • July 19, 1961

\section*{}

In our country's defense program, failure cannot be tolerated. The "Reliability Factor" of all elements of defense becomes more and more important as the arsenals of both East and West become more and more sophisticated. In the future, less business will go to the unproven, low priced producer. Management has learned that the lowest initial cost does not always result in the lowest end cost. f Fairchild precision potentiometers are proven performers. They are flying with predicted excellence in many important missile, special weapon and space vehicle applications. They have earned a reputation for sustained high accuracy over a wide temperature range, lowest noise level and long life-quality features that can be achieved only with experienced, precision workmanship and painstaking attention to the smallest detail. As a result, "Fairchild Reliability" has become an industry standard. / Fairchild produces complete lines of precision multi-turn, single-turn, rectilinear, rotary trimmer pots, deposited metal FilmPot single-turns and trimmers, and linear displacement transducers. Variations on most standard model specifications can be obtained to suit your particular needs. The complete services of our Engineering Dept. are available to help you.


MULTI-TURN-3, 5, 10, 20
The complete line of multi-turns consists of two diameters- \(\mathrm{VN}^{\prime \prime}\) and \(1 \mathrm{~h}^{\mathrm{N}}\) a linearity of \(\pm 0.2510 \pm .05 \%\) over a temperature range of \(-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\). standard. Hi.temp units availabie on special order. Power
rating: 2.5 watts at \(40^{\circ} \mathrm{C}\). This dosign lends itself to multi-tapping and
multi-ganging. multi-ganging.


LINEAR DISPLACEMENT TRANSDUCERS
TRIM-TITE \({ }^{*}\) MICROMINIATURE TRIMMERS
Linear displacement transducers-with or without springloaded return

Trim-Titề microminiature trimmors - Typa 926 and 927-can fit under a postage stamp. They metand oxcesd MIL-STD 202A shock require. ments ( range of resistance values.


SINGLE-TURN-LINEAR-NON-LINEAR-SINE-COSINE There are over 28 standard models available in sizes that range in diemeter from zo" to \({ }^{\text {s. }}\). They feature high functional accuracy. high resolusimplified procious metal slip-ring construction. welded taps and terminals, and precious metal contacts and resistince wires. Bushing or
servo mounts, sleeve or ball bearings. Gangable, with no increaso in servo mou
diameter.


ROTARY \& RECTILINEAR TRIMMER FILMPOTS*
Fairchild Film Potso use e continuous film of evaporated alloys of precious metais as the resistance element. This exclusive Noblohms
 Rectilinear FilmPote trimmers (right) come in two sizes. Precise adjustments ara made by a \(281 / 2\) turn scrow. Resistance ranges: 50 to 25 Kl :
up to \(50 \mathrm{k} \Omega\) on special order.


Micheville, 1. I. N.
Hicksville, L. I., N. Y.
Slll E. Washington slvd., Los Angolos, Calis.
transducers a rate ofros a potentiometers a accelerometens CIRCLE 47 ON READER-SERVICE CARD


Fig. 9. Normalized total transistor response.
Thus, the transistor response is the delayed exponential which would be expected when driving an RC network with an exponential. However, the resultant output rise time of the delayed exponential is altered by the shift in \(R(t)\), i.e., \(R\) changes during the transistor excursion.
The theoretically predicted resultant delayed exponential including the effect of the transistor loading is shown in Fig. 7. In order to verify the appearance of the delayed exponential, the output of the circuit shown in Fig. 8a was monitored.
The transistor has the following specified characteristics:
\[
\begin{gathered}
h_{l e}=20 \text { at } I_{c}=10 \mathrm{ma}, V_{c e}=1 \mathrm{v} \\
C_{c}=4.5 \mathrm{pf} \\
h_{l e}=2 \text { at } V_{c e}=15 \mathrm{vdc},
\end{gathered}
\]
\[
I_{e}=10 \mathrm{ma}, \text { and } f=100 \mathrm{mc} .
\]

It can be seen that the transistor is being sufficiently overdriven to assure saturation.
The response oscillogram of the circuit appears in Fig. 8b. The delayed exponential characteristic can be observed in Fig. 8b, i.e., the waveform continues to increase in magnitude after the steady state appears to have been reached. If one changes the sweep speed to 50 nsec per cm in order to view the entire characteristic, the delayed response is not as evident. Response characteristic at a sweep speed of \(50 \mathrm{nsec} / \mathrm{cm}\) is shown in Fig. 8c.

In Fig. 8d one can see an oscilloscope dis-


Fig. 8. (a) Test circuit used to verify the delayed exponential response. In (b) is shown the circuit response using a sweep speed of \(10 \mathrm{nsec} / \mathrm{cm}\); in (c) the speed has been changed to \(50 \mathrm{nsec} / \mathrm{cm}\). In (d) the delayed exponential is shown as displa/ed on a Tektronix 541 A at a \(20 \mathrm{nsec} / \mathrm{cm}\) rate.
play of the response characteristics on a Tektronix 541 A. Again the delayed exponential characteristic can be seen.

\section*{Errors in Selecting}

10 and 90 Per Cent Points
The high frequency delayed transistor response appears in Fig. 8. The curve shown in Fig. 8 is so nonlinear around the 90 per cent region that as small error in the selection of the 90 per cent point yields a very large error in time. The 80 per cent point is approximately the first easily selected linear portion of the curve and a small error in the selection of the 80 per cent point corresponds to correspondingly small error in time.

As can be seen graphically:
\(\Delta V_{1}=\Delta V_{2}\) but \(\Delta t_{2} \gg \Delta t_{1}\)
Aside from the delayed transistor response

the faster switch has anomalies in the response characteristic such as capacitive feed through, reflection due to improperly terminated inputs, and ringing. Each of these may have peaks which are over \(\mathbf{1 0}\) per cent of the total transistor swing.

It is desirable to have test limits which are easily selected regardless of a change in waveform and are not disturbed by the above described anomalies. But, most of all, it is desired to have test limits which encompass, as completely as necessary, the wareform being observed.

The 20 per cent level can be justified as the lower test limit since it is high enough on the curve to be independent of the reflections and feed through.

The 80 per cent upper test limit is the highest point of the linear portion of the re-

Fig. 10. (a) Oscilloscope pattern showing transistor response with maximum resolution. (b) Same pattern reduced in resolution in order to observe total response.
sponse characteristics which is easily determined. As shown graphically in Fig. 9, is small error in the selection of 80 per cent means a correspondingly small error on the time axis. The exponential delay can be further increased without seriously effect ing the 80 per cent limit; however, the error in selecting 90 per cent would increase proportionately with an increase in exponential delay.

However, 20 per cent as the lower limit and 80 per cent as the upper limit are not the only optimum test limits. Specific requirements may result in other limits. The limits are selected as being optimum in order to present the most general case.

\section*{Instrumentation Errors}

Due to Sweep Speed Choice
Further justification of the nominal 20 and 80 per cent points as the lower and upper test percentage points can be made from an instrumentation point of view.

If one wants to determine switching times accurately with an oscilloscope, the sweep speed must be such that the waveform may be viewed over a large a time as possible. This increased resolution results in the measuring error illustrated graphically in Fig. 10. If the resolution is decreased in order to see the entire response, it may appear as shown in Fig. 10b. In Fig. 10b, the entire waveform gered at levels which are less than 50 per point is reduced, but the entire measurement is correspondingly reduced in accuracy.

The users of transistor switches are rarely concerned with the upper portion of the leading edge of a drive or trigger pulse. Circuit designers are primarily concerned with transfer and delay time between logic elements. Both are functions of the level at which a logic element triggers.

In most designs, logic circuits are triggered at levels which are less than 50 per cent of the input pulse, in order to reduce turn on delay times. Furthermore, delays between successive stages are usually computed from \(\mathbf{5} 0\) per cent points. Thus, the above 80 per cent nonlinear portion of the delayed exponential rise usually yields no useful information to the logic designer. - -

\section*{Acknowledgments}

The author expresses appreciation to Philip Emile and Paul Schwartz of Lumatron Electronics for their many helpful comments and enlightening suggestions and to Lawrence May for his drawings.

\section*{Reference}
 cember 1954 .


Reliable
In critical applications, Allen-Bradley Type \(\mathbf{R}\) adjustable fixed resistors are without equal. For example, in recent tests Type \(\mathbf{R}\) resistors successfully withstood acceleration, shock and vibration five times better than the latest MIL Spec requirements. Such wide margin of safety is your assurance of quirements. Such wide margin of sasety is your assurance of through an exclusive Allen-Bradley process in which the solid resistance elements and the insulating mounting are hot molded into one integral unit. The moving element is selflocking for absolutely stable settings. Also, the Type R control allows "stepless" adjustment of its resistance.

The molded case of the Type R control is watertight and dust-tight. Rated \(1 / 6\) watt at \(70^{\circ} \mathrm{C}\), these Type \(R\) controls are available in values from 100 ohms to 2.5 megohms. - Test Report 171801, Sept. 1960. Unised States Teutins Company, Inc.

UNDER EXTREME ENVIRONMENTAL CONDITIONS

\section*{NEW CUP GUARD \\ permits adjustment \\ after encapsulation}

NEW PANEL MOUNTING permits front of panel adjustment

\section*{ALLEN-BRADLEY}

QUALITY
ELECTRONIC
COMPONENTS

\section*{Precision Potentiometers}

\section*{Need Better Specifications}

\begin{abstract}
One would think that after all these years virtually everyone should know how to specify a precision potentiometer. But it just isn't so, according to Robert Hennessy. Mr. Hennessy, who's been designing precision pots for more than nine years points out that even pot manufacturers don't agree on basic electrical definitions. (This is one of the problems
that the new Precision Potentiometer Manufacturers' Association will try to solve.) In an eff ort to eliminate the most pressing ambiguities he offers this article.
\end{abstract}

Robert Hennessy
Carter Manufacturing Corp.
Hudson, Mass.
FLECTRICAL specifications for precision Epotentiometers are too ambiguous. They were developed solely for specifying the shaft-voltage relationship of precision potentiometers. Presently used specifications have, in practice, created situations where the manufacturer is not clear as to the customer's requirements and the customer often receives a unit that meets the letter of his specifications and then finds his specifications do not reflect his requirements. Since manufacturers often disagree among themselves on the precise meanings of various specifications, it seems that the problem is not merely one of customer education.

Further proof of this lies in the fact that requirements exist that cannot be covered by the existing definitions. Thus, the customer or designer may be expert in the field of precision potentiometers and find he cannot specify the requirements and consequently must buy a unit that is over specified.

\section*{Accuracy Definitions \\ Cause Most Trouble}

Accuracy definitions are the most troublesome. There is some disagreement in the industry on the precise meaning of resolution, electrical angle, etc., but these are minor and they do not often cause severe difficulty.

Basically, a precision potentiometer generates a voltage output as its shaft is rotated. This relationship is specified by an equation, a table of output values corresponding to shaft angle, or a graph. In each case, the function to be generated is easily understood but difficulties arise as to tolerances.

Through custom, the accuracy is based on the maximum deviation from a theoretical master function of zero error. In practice, the accuracy of a precision potentiometer (once manufacturing is complete) can be altered in any one of three ways (or a combination of them).
1. By using an angle that varies somewhat from the prescribed 100 per cent rotation angle. (This is done presently under "independent linearity.")
2. By phasing the potentiometer to the system so that the actual output varies its relationship to the absolute shaft position.
3. By varying the actual voltage across the potentiometer whereby the output range is greater or less than the 100 per cent reference voltage. (This is also done, at present, under "independent linearity" and also "independent conformity.") External circuitry is generally needed for this adjustment.

\section*{Specifications Should Show}

\section*{Which Allowances Are Permitted}

Accuracy definitions are needed to indicate whether any of these allowances are permissible and, where they are, the tolerances of the adjustments and of the accuracy with the adjustments.

When the system designer has a preci-sion-potentiometer requirement, he knows the following:
1. The function to be generated by the potentiometer (linear, square law, logarithmic, etc.).
2. The shaft angle over which this func tion is to be generated.
3. Whether this total shaft angle is absolute or can be varied.
4. Whether external circuitry can be made

available or is desirable by means of which the voltage at the low-voltage-end terminal of the potentiometer may be adjusted.
5. Whether the high-voltage end may be similarly adjusted.
6. If it is necessary that the first indication of voltage (or voltage change) must be the beginning of the function.
7. What accuracy is required in the shaft-position-to-voltage-output relationship.

If a table or a check-off list is now made, the potentiometer can be specified completely. For example:
(1) Function
(2) Reference Angle
(3) Reference Angle Tolerance


If
table, the first block can refer to a print. The terms used in (4) and (5) are similar to their present use.
Independent indicates that adjustment of the particular end of the potentiometer is allowable. The proper use of this term permits that end to be adjusted only within the conformity tolerance.

Terminal derives its name from the fact that no external adjustments are allowed and the source is connected directly to the terminal of the potentiometer.
Zero Base in (6) is retained for the special case where it is desirable that the first jump-off or voltage change is phased for zero degrees. Also in (6) the figure___per cent at ___ deg defines the angle at which the designer prefers the manufacturer to specify the output voltage in order that the designer may phase the potentiometer identically with the manufacturer's test. This figure should be given with all end adjustments on the output removed. Of course, if Zero Base is used, this is unnecessary.

Conformity is the term used here for all accuracy designations whether the function be linear or nonlinear.

As an example of how this table is used, consider a square-law potentiometer that is to be turned against a dial. The dial is calibrated to 330 deg. The circuit designer wants the potentiometer to be grounded in its zero position but he can adjust the high voltage end slightly. The conformity of the output is to be within 0.5 per cent. The designer's table could then read:
\begin{tabular}{|c|c|c|}
\hline (1) & Function & Square Law \\
\hline (2) & Reference Angle & 330 deg \\
\hline (3) & Reference Angle & \\
\hline & Tolerance & \(\pm \underline{\mathbf{d e g}}\) \\
\hline (4) & Low-Voltage End & \begin{tabular}{l}
Independent \\
© Terminal
\end{tabular} \\
\hline (5) & High-Voltage End & \begin{tabular}{l}
\(\triangle\) Independent \\
\(\square\) Terminal
\end{tabular} \\
\hline (6) & Index & \(\square\) Zero Base \\
\hline & Conformi & \[
\text { 玉 } 0.5 \%
\] \\
\hline
\end{tabular}

Since the dial is already calibrated, no tolerance is allowed on the reference angle. On the other hand, if the dial is to be calibrated to the potentiometer output a toler-
- Manufacturer would indicate output per cent of
input voltage at the specified rotation angle for the specific potentiometer.


Look to Parsons for Performance in DISTANCE MEASURING EQUIPMENT

PARSONS ELECTRONICS has extensive experience in the design, development, manufacture, and installation of Miss-Distance Indicators and Distance Measuring Equipment-including active (PARAMI) and passive (PARPAS) systems for missile evaluation and scoring. This experience, coupled with a continuing research program, will provide systems to meet widely diversified and rapidly changing requirements. Let Parsons help you with your distance measuring problems by providing total capability - Single source responsibility.

For technical information, write:
PARSOIS
Olectronics

\section*{THE RALPH M. PARSONS COMPANY} мавнинетом

\section*{offices in
othes
 meinciral octies
tunovoriout} TMnovonout
Twe wonco

 CIRCLE 49 ON READER-SERVICE CARD
ance of a few degrees should be allowed on the total angle.

\section*{AND PRECISION FORK UNITS 1 TO 40,000 CYCLES}

\section*{TYPE 2007-6 FREQUENCY STANDARD}

Transistorized, Silicon type
Size, \(11 / 2^{\prime \prime}\) dia., \(\times 3^{1 / 2^{\prime \prime}} \mathrm{H} .\), Wi., 7 oz.
Frequencies: 360 to 1000 cy .
Accuracies:
\(2007.6 \pm 0.2 \% \quad\left(-50^{\circ} 10+85^{\circ} \mathrm{C}\right)\) R2007.6 \(\pm .002 \%\left(+15^{\circ} 10+35^{\circ} \mathrm{C}\right)\) W2007-6 \(\pm .005 \%\left(-65^{\circ} 10+85^{\circ} \mathrm{C}\right)\) Input: 10 to 30 V DC al 6 ma .
Output: Multitap, 75 to 100,000 ohms

\section*{TYPE 2001-2 FREQUENCY STANDARD}

Size, \(33 / 4^{\prime \prime} \times 4^{1 / 2^{\prime \prime}} \times 6^{\prime \prime} H_{\text {., Wt., }} 26\) oz. Frequencies: 200 to 3000 cycles Accuracy: \(\pm .001 \%\) at \(+20^{\circ} 10+30^{\circ} \mathrm{C}\) Output: 5V at 250,000 ohms Input: Heater voltage, 6.3-12-28 B voltage, 100 to 300 V , at 5 to 10 ma . Accessory Modular units are available to divide, multiply, amplify and power this unit.

TYPE K-5A FREQUENCY STANDARD
Size, \(3^{112^{\prime \prime} \times 3^{\prime \prime} \times 13 / 4^{\prime \prime}}\)
Weight, \(11 / 2 \mathrm{lbs}\).
Frequency: 400 cycles
Accuracy: \(.03 \%,-55^{\circ}\) 10 \(+71^{\circ} \mathrm{C}\) Input: 28V DC \(\pm 10 \%\)
Output: 400 cy . approx. sq wave at 115 V into 4000 ohm load (approx. 4 W )

\section*{TYPE 25 PRECISION FORK}

\section*{INQUIRIES INVITED}
for sver 20 years we hove made trequency standards and precision tork units for applications where consistent occurocy and rugged dependability ore vital. Shown are just a low typical examples.
Some users integrate our producis with instruments of their own manulacture. In blies to meet special needs.
You ore invited to submit ony problems within the areo of our activity lor study by our engineering staf.

Size, \(\%\) " dia. \(\times 2\) Ki"
Weight: 2 ounces
Frequencies: 200 to 1000 cy .
Accuracies:


Accuracies:
R-25T and R-25V \(\pm .002 \%\left(15^{\circ}\right.\) to \(\left.35^{\circ} \mathrm{C}\right)\)
25 T and \(25 \mathrm{~V} \pm .02 \%\left(-65^{\circ}\right.\) 10 \(\left.85^{\circ} \mathrm{C}\right)\)
For use with fubes or transistors.

\section*{AMERICAN TIME PRODUCTS \\ DIV. OF BULOVA WATCH COMPANY, INC. \\ 61-20 Woodside Ave., Woodside 77. L. I., N. Y. WESTERN OFFICE, 234 N. LAKE AVE., PASADENA, CALIF}

\section*{Two Main Differences}

Distinguish Specifications
There are two main differences between these proposed definitions and the existing ones. The first is the separation of the independent and dependent variable. Presently used "independent linearity" envelops both variables since the output (dependent variable) is defined as being adjustable and the angle (independent variable) also is defined as having a finite tolerance. In fact, all the accepted definitions define simultaneously the independent and dependent variables.

A void exists any time a requirement calls for the independent-variable characteristics of one definition and the dependent-variable characteristics of another. The table shown separates the two variables. The independent variable is defined distinct from any requirement on the dependent variable. Once the angle is specified, the output can be defined properly.

The other main difference is in specifying the possible adjustment of one end of the potentiometer output and not the other. Under the present specifications, both ends must be defined as adjustable or not adjustable. Thus, if the system (as in the example) allows freedom of adjustment on the highvoltage end of the potentiometer but not on the low-voltage end, the only possibility with conventional terminology is to go to a terminal linearity (which now is identical with terminal conformity) and sacrifice the adjustment on the high-voltage end. The result will be an increase in price for the same conformity.
The phasing or indexing of the potentiometer should in no way be interpreted as a variable, either independent or dependent. Rather, it is supplementary. It is an added requirement in the case of "zero base" and it only restricts any increase in conformity that could be obtained by phasing the potentiometer to its most desirable conformity condition for this case.

\section*{Circuit Designer's Needs}

Should Dictate Specification
Technically, the proper attack on this problem is to consider exactly what is being
specified by the designer. When he specifies a total function angle and the corresponding output, he is defining the ideal potentiometer (or master) for his application. If the system can tolerate an angular deviation-if he sees that 329 deg as well as 330 deg total angle can be tolerated, he is in effect saying his master or ideal potentiometer can have a total angle of 329 deg and the manufacturer is, therefore, allowed this range for his reference angle.

Therretically, there is no connection between this angle and the actual total electrical angle as the potentiometer is manufactured. If the manufacturer can meet the conformity requirements with a winding angle of 325 deg , the specifications are met. Indeed, something of this nature is usually done when a potentiometer with a function that includes a zero derivative is being manufactured.

Applying the same attack to the output, the designer, by saying one or both ends are adjustable, specifies that the ideal 100 per cent output voltage can vary from the total potentiometer voltage. The current independ-ent-linearity definition is often described as "the best straight-line fit." This "best straight-line fit" is again a master potentiometer defined as having an input (or total angle) that may vary within a few degrees and an output whose total range also may vary slightly. It is up to the manufacturer to select the best master within these ranges. The proposed table further permits this output to be varied on only one end while the other end is predetermined.

The table can be further improved by removing all terms that need defining. It would then look like this.
\begin{tabular}{|c|c|c|}
\hline (1) & Function & \\
\hline \multirow[t]{2}{*}{(2)} & Total Function & \\
\hline & Rotation & deg \\
\hline \multirow[t]{2}{*}{(3)} & Function Rota- & \\
\hline & tion Tolerance & \(\pm\) - deg \\
\hline \multirow[t]{2}{*}{(4)} & Low-Voltage End & \(\square\) Adjustable \\
\hline & & \(\square\) Nonadjustable \\
\hline \multirow[t]{2}{*}{(5)} & High-Voltage End & \(\square\) Adjustable \\
\hline & & \(\square\) Nonadjustable \\
\hline \multirow[t]{2}{*}{(6)} & Index & Zero deg jump- \\
\hline & & \(\square \ldots\) at ___ deg \\
\hline (7) & Conformity & \(\pm \ldots \%\) of \(\mathrm{E}_{1 \text { ¢ }}\) - \\
\hline
\end{tabular}
(2) Total Function Rotation
__deg
tion Tolerance \(\qquad\)
Adjustable Nonadjustable Adjustable Nonadjustable off \(\square-\%\) at \(\quad\) deg

\section*{DALE}
resistor name on the Best Production Lines


While answering quality control's demand for inherent stability. Dale resistors also meet production's need for easy assembly
Conveniently packaged Dale resistors are available in a wide variety of sizes and terminations to fit every circuit Meanwhile, inherent stability is assured through Dale's ad vanced design and stringently controlled methods of manu-facture-methods which are at new levels of achievement as part of Dale's super-high reliability development program. SPECIAL PROBLEMS? Let us help you with your requirements for special resistance problems. We make modifications of standard products, resistor networks, matched pairs, etc. Send us your specs.
PROMPT DELIVERY. Whether your need is for a short "test run" or a large production release, Dale offers prompt service, direct from the factory and through a widespread network of distributors.

\section*{DALE ELECTRONICS, INC. (H) 1328 28th Ave., Columbus, Nebraska} A subsidiary of HATHAWAY INSTRUMENTS INC.
aale TYPE DCH resistors
carbon film - class a seal (Clip or lead mounting; available with weld. able leads)
Excellent high frequency characteristics; best stability available in carbon film resistors: long, reliable load life. Hermetically sealed in non-hygroscopic ceramic envelope: designed to provide complete insuture, salt spray and other severe environmental conditions. including mechanical shock.
- MEET functional requirements of

MIL-R-10509C
- RATED at \(1 / 10,1 / 8,1 / 4,1 / 2,1\) and

2 watts; 10 sizes.
- TOLERANCE \(1 \%\).
- RESISTANCE RANGE from 1 ohm to 150
- FULL LOAD OPERATION to \(70^{\circ} \mathrm{C}\), derating to 0 at \(150^{\circ} \mathrm{C}\).


In the first article of this series (May 10, issue), author Charles H. Harper described how the many curing agents used by epoxy packagers made for the vast varieties of epoxies available to the designer. In this article, he outlines the more important classifications among the curing agents and relates them to the properties they produce in the final hardened resin.

Charles A. Harper
Air Arm Div.
Westinghouse Electric Corp.
Baltimore, Md.
F OUR TERMS are used to describe maF terials capable of reacting with epoxy resin polymers: curing agent, converter, hardener and catalyst.

The first three terms are actually interchangeable and describe materials which react with the resin to become part of the end product. But the last term, catalyst, is only correct when describing a material which causes epoxy resin polymer units to react with one another, with the catalyst not being part of the cured product. This is similar, then, to the curing of polyester resins. (Polyesters were compared with epoxies in the first article of this series in the May 10 issue). Some examples of catalysts for epoxy resins are given in Table 1. The amines included in this table represent a common type of epoxy curing agent. They can usually be identified by their pungent, fishy odor.

\section*{Curing Agent-Terminology}

Helps Reduce Confusion
Sub-terms often used to describe curing agent types are aliphatic and aromatic. Other sub-terms are primary, secondary, or tertiary. The latter group of terms deals with the number and locations of the nitrogen or amine \(\left(-\mathrm{NH}_{2}\right)\) groups on the molecule in the case of amines (in other chemicals these terms may refer to different groups). The term aromatic identifies any organic chemical built up of a basic chemical building block employing the benzene ring structure \(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\) often structurally shown as:


Aliphatic describes any organic chemical not using the benzene ring in the basic skeleton of the molecule. Generally speaking, aromatic amines are more difficult to process than aliphatic amines, since most aromatic amines are solid, while aliphatic amines are generally liquid. Aromatic amines give considerably better thermal aging properties. though.

\section*{Acid Anhydrides: \\ Good for High Temperatures}

A second class of curing agents often used with epoxy resins is the class known as acid anhydrides. The main advantage of acid anhydride curing agents over amine curing

Table 1. Curing Agents for Epoxy Resins
A - Catalytic Curing Agents for Epoxy Resins
\begin{tabular}{|c|c|c|c|c|}
\hline Curing Agent & phr* & Gel Time & Curing Schedule & Comments \\
\hline Epi-Cure 83 & 15 & 24 hr & \(16 \mathrm{hr} / 165 \mathrm{~F}\) & Slow cure, low exo therm. Recommended for large castings. \\
\hline Epi-Cure 86 & 10 & 6 hr & \(1 \mathrm{hr} / 212 \mathrm{~F}\) & Good mechanical and electrical properties. Recommended for electrical potting. \\
\hline Piperidine & 6 & 8 hr & \(3 \mathrm{hr} / 212 \mathrm{~F}\) & Used for casting and potting applications. \\
\hline Benzyl Dimethylamine & 5-10 & 4.8 hr & \(2.4 \mathrm{hr} / 200 \mathrm{~F}\) & Used at 0.1-1.0 per cent as an accelera. tor for anhydride curing agents. \\
\hline Diethylaminopropylamine & \(6 \cdot 10\) & 3.5 hr & Several days at room temperature. & Has been used in room temperature cure adhesives. \\
\hline Dimethylamino/ methylphenol (DMP.10) & - & - & - & Used at 0.1-1.0 per cent as an accelera. tor or at 10 phr with LP. 3 polysulfide. \\
\hline 2,4,6.Tri (dimethylaminoethyl) phenol (DMP.30) & \(6 \cdot 10\) & \(1 / 2.1 \mathrm{hr}\) & \(1 \mathrm{hr} / 200 \mathrm{~F}\) & Main use is same as DMP. 10 except that it is more ac. tive. \\
\hline \(\mathrm{BF}_{3}\) - Ethylamine complex & 2.5 & Months & \[
\begin{aligned}
& 1 \mathrm{hr} / 200 \mathrm{~F} \\
& 4 \mathrm{hr} / 300 \mathrm{~F}
\end{aligned}
\] & Cured resins are quite brittle. Rec ommended for \(B\) stage systems. \\
\hline
\end{tabular}
agents is the superior high temperature properties of the resulting acid anhydridecured epoxy system.

Until recently, the acid anhydrides used were all solid materials. The more common solid acid anhydrides used are phthalic anhydride, hexahydrophthalic anhydride, pyromellitic dianhydride and chlorendic anhydride. They melt at \(128 \mathrm{C}, 35 \mathrm{C}, 286 \mathrm{C}\) and 239 C respectively, and give heat distortion temperatures ranging from 135 to 260 C . With the exception of hexahydrophalic anhydride, certain practical difficulties in the use of these materials have been an unfortunate detriment to their wider usage. Not only are their melting points high but it is difficult to get the anhydrides into solution with the epoxies. Even when they are put in solution the pot lifes are relatively short.

The liquid and low melting temperature acid anhydrides commonly used are dodecen-
 yl succinic anhydride, hexahydrophthalic anhydride, and Nadic methyl anhydride.

B - Aliphatic Polyamine Curing Agents for use with Epoxy Resins
\begin{tabular}{|c|c|c|c|c|}
\hline Curing Agent & phr* & Gel Time| & Curing Schedule & Comments \\
\hline Diethylene triamine (DETA) & 10 & 30 min & Overnight at room temperature. Several days for full cure. & Good general purpose room temperature curing agent, but fairly toxic. \\
\hline Triethylene tetramine (TETA) & 12 & 30 min & Overnight at room temperature. Several days for full cure. & Usually preferred over DETA and TEPA. \\
\hline Tetraethylene pentamine (TEPA) & 13.8 & 30 min & Overnight at room temperature. Several days for full cure. & Recommended in protective coating applications. \\
\hline Iminobispropylamine & 13 & 30 min & Overnight at room temperature. Several days for full cure. & About the same as (TETA) but higher cost. \\
\hline Xylylene diamine & 18 & 20 min & Room temperature. Several days for full cure. & Exceptionally good color. Forms carbonates with \(\mathrm{CO}_{2}\) of atmosphere. \\
\hline Methane diamine & 22 & 8 hr & \[
\begin{aligned}
& 1 \mathrm{hr} / 200 \mathrm{~F} \\
& 3 \mathrm{hr} / 350 \mathrm{~F}
\end{aligned}
\] & Good color. Similar to aromatic amines in curing schedule and properties. \\
\hline Armine AL-1 & 22 & 15.20 min & \(1 \mathrm{hr} / 212 \mathrm{~F}\) & Very exothermic but requires heat cure for maximum properties. \\
\hline Aminoethyl piperazine (AEP) & 22 & 20 min & \(1 \mathrm{hr} / 212 \mathrm{~F}\) & Short pot life, high exotherm. Requires heat cure. Cured resin has excellent impact strength and heat distortion temperature of 105 110 C. \\
\hline
\end{tabular}

C - Aromatic Polyamine Curing Agents for Epoxy Resins
\begin{tabular}{|c|c|c|c|c|}
\hline Epi-Cure 841 & 22.5 & |8.10 hr & \[
\begin{aligned}
& 1 \mathrm{hr} / 200 \mathrm{~F} \\
& 2 \mathrm{hr} / 400 \mathrm{~F}
\end{aligned}
\] & Liquid mixture. \\
\hline M-phenylene diamine (MPDA) & 14 & 6.8 hr & \[
\begin{aligned}
& 1 \mathrm{hr} / 200 \mathrm{~F} \\
& 2 \mathrm{hr} / 400 \mathrm{~F}
\end{aligned}
\] & Solid melting at 62 C. \\
\hline Methylenedianiline (MDA) & 26 & 30 min & \[
\begin{aligned}
& 1 \mathrm{hr} / 200 \mathrm{~F} \\
& 2 \mathrm{hr} / 400 \mathrm{~F}
\end{aligned}
\] & Solid melting at 90 C . \\
\hline Tonox-PL & 28 & \(8-10 \mathrm{hr}\) & \[
\begin{aligned}
& 1 \mathrm{hr} / 200 \mathrm{~F} \\
& 2 \mathrm{hr} / 400 \mathrm{~F}
\end{aligned}
\] & Waxy solid melting at 80 F . Can be cooled before addi tion to resin without solidifying. \\
\hline Diaminodiphenyl sulfone (DDS) & 32 & \[
\begin{aligned}
& 1 \mathrm{hr} \text { at } \\
& 250 \mathrm{~F}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{hr} / 300 \mathrm{~F} \\
& 3 \mathrm{hr} / 425 \mathrm{~F}
\end{aligned}
\] & \begin{tabular}{l}
Solid melting at 175 \\
C. Forms B-stage resins with excel lent stability. Cure may be accelerated with 1 phr of \(B F_{8}\) ethylamine complex.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
- Parts by weight per 100 parts of Epi-Rez 510 -(Jones-Dabney) or equivalent
- For a 1-1b batch af an ambient temperature of 77 F.
(For larger batch size the gel time may be considerably less-)
}

Table 2. Heat Distortion Temperatures of a Standard Epoxy Resin with Various Curing Agents


Selection Guide for Choosing Epoxy-Curing Agent Systems
\begin{tabular}{l|l|l|l}
\hline \multicolumn{1}{c|}{ Want } & \multicolumn{1}{|c}{ Use } & \multicolumn{1}{c}{ Comments } \\
\hline \begin{tabular}{l} 
Room temp. \\
cure
\end{tabular} & \begin{tabular}{l} 
1. Aliphatic \\
polyamine
\end{tabular} & Generally have short pot life. \\
\hline \begin{tabular}{l} 
Moderate \\
high \\
operating \\
temp. (125 C)
\end{tabular} & \begin{tabular}{l} 
1. Aromatic \\
polyamine \\
2.id \\
anhydride
\end{tabular} & \begin{tabular}{l} 
Liquid and low temperature \\
melting acid anhydrides offer \\
handling convenience over solid \\
curing agents and retain prop- \\
erties up to 180 C. They can be \\
cured at moderate tempera- \\
tures.
\end{tabular} \\
\hline \begin{tabular}{l} 
High \\
temperature
\end{tabular} & \begin{tabular}{l} 
1. Cycloaliphatic \\
diepoxides
\end{tabular} & \begin{tabular}{l} 
Cycloaliphatic diepoxides resist \\
2. Epoxy novolacs \\
Epoxidized \\
polyolefins
\end{tabular} & \begin{tabular}{l} 
(Altraviolet light. Epoxy novolacs \\
offer improved chemical re- \\
sistance and adhesion. Epoxi- \\
dized polyolefins allow low-tem. \\
epoxies.)
\end{tabular} \\
peratue curing with acid anhy. \\
dride agents.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Curing Agent Type & Curing Agent & Approx. Heat Distortion Temperature C \\
\hline Aliphatic Amines & Ethylene diamine Diethylene triamine Triethylene tetramine Piperidene DMP-30 Shell D & \[
\begin{array}{r}
90 \\
120 \\
125 \\
100 \\
115 \\
95
\end{array}
\] \\
\hline Aromatic Amines & \begin{tabular}{l}
M-Phenylene diamine (Shell Catalyst CL) \\
p.p-Methylene diamilene \\
p.p-Diaminodiphenyl sulfone
\end{tabular} & \[
\begin{aligned}
& 155 \\
& 155 \\
& 175
\end{aligned}
\] \\
\hline Acid Anhydrides & Phthalic anhydride Nadic Methyl anhydride (NMA) Chlorendic anhydride (HET) Pyromellitic dianhydride & \[
\begin{aligned}
& 150 \\
& 185 \\
& 190 \\
& 260 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Table 3. Comparison of Heat Distortion for Bisphenol and Cycloaliphatic Diepoxides}
\begin{tabular}{l|l|c}
\hline \multicolumn{1}{c|}{ Resin } & \multicolumn{1}{c}{ Hardener } & \begin{tabular}{c} 
Heat \\
Distortion \\
Temperature C
\end{tabular} \\
\cline { 3 - 3 } \begin{tabular}{ll} 
Epoxide 201 \\
Epoxide 201 \\
Dicyclopentadiene & Phthalic Anhydride \\
Dioxide & \begin{tabular}{l} 
Chlorendic Anhydride \\
Maleic Anhydride/Polyol
\end{tabular} \\
Vinylcyclohexene & Chlorendic Anhydride \\
Dioxide & Diethylene Triamine \\
Epon 828 & Methylene Dianiline \\
Epon 828 & Chlorendic Anhydride \\
Epon 828 & Phthalic Anhydride \\
Epon 828 & Pyromellitic Dianhydride \\
Epon 828 & \\
\hline
\end{tabular}\(\quad 100\) \\
\hline
\end{tabular}

Also, what has been termed a liquid eutectic anhydride mixture is available as a mixture of hexahydrophthalic anhydride and chlorendic anhydride.
Table 2 shows heat resistant properties of the various commonly used curing agents. The heat distortion temperature referred to in the table is the temperature at which a flat sample under a standard load will deflect a given amount. For rigid resins, high heat distortion compounds are usually better in over-all thermal aging properties. Semi-rigid and flexible resins naturally have lower heat distortion temperatures since they deflect faster under load. Other thermal properties of semi-rigid and flexible resins are governed primarily by the curing agent and the modifiers used.

\section*{Still Other Epoxy Resins \\ For Exotic Uses}

In addition to the bisphenol type epoxies which have been discussed thus far, there are several other epoxy molecular modifications
which are used. Three of these will be briefly discussed to round out the total epoxy picture: Cycloaliphatic diepoxides, epoxy novolacs and epoxidized polyolefins.

Cycloaliphatic diepoxide resins represent a class of epoxy materials which do not contain the phenolic rings associated with most of the commercially available epoxy resins. Therefore, these diepoxides are virtually unaffected by ultraviolet light and in addition have excellent resistance to thermal degradation and air oxidization. Some heat distortion point comparisons are shown in Table 3. These materials have been developed by the Union Carbide Chemicals Co. and are identified as Epoxide 201, Epoxide 207 (dicyclopentadiene dioxide) and vinyl cyclohexene dioxide. For comparison with a conventional bisphenol epoxy resin the structural formulas of these diepoxides are shown in Fig. I. The shorter distance between reactive groups means compounds made from these diepoxides are more highly cross-lined. Thus, higher heat distortion temperatures
can be obtained with many of the same hardeners used for bisphenol epoxies.
Epoxy Novolacs
For Highest Temperature Applications
An epoxy resin system known for its superior temperature resistance is epoxy novolac. Epoxy novolac resins contain more of the benzene ring or phenolic resin type structure in the molecule; thus they combine the excellent thermal stability of the phenolic structures with the reactivity of the bisphenol epoxies, see Fig. 2.

Hardeners or curing agents used with conventional bisphenol-A epoxy resins can also be used with epoxy novolacs, since the curing reaction is through the epoxy groups of the molecule. Postcuring is usually necessary to develop the maximum properties of the epoxy novolac resins.

Another group of epoxy resins are the epoxidized polyolefins. These polyfunctional epoxies contain epoxy groups, hydroxyl groups \((-\mathrm{OH})\) and double bonds [vinyl type functionality, \((\mathrm{C}=)\) ]. It will be
\[
\begin{aligned}
& 0-1-\mathrm{CH}_{2}-\mathrm{O}-\stackrel{i}{\mathrm{C}}-\mathrm{CH}-\mathrm{CH}
\end{aligned}
\]

Fig. 1. The shorter distance between reactive groups in the cycloaliphatic diepoxides (bottom) compared to common bisphenol-A epoxies (top) allows the diepoxides to be more highly cross-linked.


Fig. 2. The greater number of benzene rings or phe nolic type structure found in epoxy novolacs accounts for their thermal stability


Fig. 3. Epoxidized polyolefins have some of the dou ble bonds found in polyesters.
remembered from the discussion of polyesters that this double bond arrangement is typical in a polyester resin. Thus, as with polyester resins, epoxidized polyolefins are capable of reacting with the peroxide catalysts which are conventionally used with polyester resins. Also, since epoxidized polyolefins contain the reaction points common to epoxy resins, these resins can be reacted with amine and acid-curing agents.

The simplified structure of an epoxidized polyolefin is compared to the structural formula for a bisphenol-epichlorohydrin, Fig. 3.

The epoxidized polyolefins are liquids of various viscosities at room temperature. The uncured resin is about 20 per cent lighter than conventional epoxy resins. Electrical properties are comparable to those of conventional epoxies while exotherm curves are flatter. Epoxidized polyolefins offer excellent high-temperature performance.

In this and the previous article in this series on epoxies, we have covered the main degrees of freedom possible for the designer merely by the choice of the particular resin and particular catalyst to be used in the resin-catalyst system. In the final article, the one remaining degree of freedom, the modifier, will be discussed. - -


\section*{BREAKTHROUGH}


Now, from Bryant . . . leading supplier of magnetic memory drums and disc files . . . complete memory systems, and a full line of modular read, write, selection, and interface circuitry . . . designed and delivered by Bryant systems engineers . . . proven in commercial, government, and military service. Memory system features include:

\author{
NEW "PLUG-IN" MEMORY SYSTEMS AND CIRCUITS
}
"-Plug-In" Capability
Compatible with user logic levels Self-contained power supplies Standard rack mounting

Design Flexibility
Frequencies to 1 MC
Serial and paraliel operation
Selective alteration of data
Custom units for every requirement

\section*{Built-In Reliability}

Complete solid state designs Derated components, Mil-approved Glass epoxy printed boards Overload protection

\section*{Circuit Availability}

Individual circuits avallable include: Individual circuits avallable include read, write, selection, clock read,
driver, inverter, llip flop. multiple gate, and power supply modules.

Whether you require a complete "black box" memory, or individual circuit modules . . . contact your local Bryant representative. or write direct.

\section*{COMPUTERPRODUCTS Disc File and Magnetic Drum Memorles for Every Storage Appllcation} 852 Ladd Road . Walled Lake, Michigan . MArket 4-4571

A DIVISION OF EX-CELL-O CORPORATION

\title{
mom To Select Miniature Lamps For Electronic Equipment
}
L. W. Curtis

Manager of Engineering
Lamp Div.
Newark, N. J.

Selecting a miniature lamp for use in mass-production electronic equipment isn't always a matter of picking up a catalog and ordering the first type that will work. Author Curtis, who has worked with miniature lamps for 25 years, tells what the engineer should worry about.

SELECTING miniature lamps for use in electronic equipment requires more thought than is usually realized. This is especially true when the lamp is to go into mass produced gear where it must function reliably for long periods of time.
To select the best lamp type for his equipment, the engineer should consider not only its electrical performance and the circuit in
which it will be used, but also the testing procedures it will undergo on the assembly line. The lamp's physical strength can be just as important as its inherent noise characteristics.
The need for ruggedness was demonstrated by an auto radio manufacturer who checked his sets for loose connections by tapping them with a rubber mallet. As a result of this test-

Table 1. Low-Voltage Miniature Lamp Types
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Design Voliage & Design Current & Rated Avg. Lab. Life - Hr at Design Volts & Inherent Strength & Inherent "Noise" \\
\hline 43 & 2.5 v & 0.50 amp & \(3,000 \mathrm{hr}\) & High & Low \\
\hline 45 & 3.2 & 0.35 & 3,000 & High & Low \\
\hline 47 & 6.3 & 0.150 & 3,000 & High & Low \\
\hline 44 & 6.3 & 0.250 & 3,000 & High & Low \\
\hline 1847 & 6.3 & 0.150 & Indef. Long & High & Low \\
\hline 1866 & 6.3 & 0.250 & Indef. Long & High & Low \\
\hline
\end{tabular}

Table 2. Common 12.0-v Miniature Lamp Types
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & \begin{tabular}{l}
Design \\
Voltage
\end{tabular} & Design Current & Rated Avg. Lab. Life -Hr at Design Volts & Inherent Strength & Inherent "Noiso" \\
\hline 1815 & 14.0 V & 0.20 cmp & \(3,000 \mathrm{hr}\) & Low & Medium \\
\hline 1816 & 13.0 & 0.33 & 1,000 & Medium & Medium \\
\hline 1891 & 14.0 & 0.24 & 500 & Medium & High \\
\hline 1892 & 14.4 & 0.10 & 1,000 & Low & High \\
\hline 57x & 14.0 & 0.24 & 500 & Medium & High \\
\hline 1895 & 14.0 & 0.27 & 1,500 & High & High \\
\hline 1893 & 14.0 & 0.33 & Indef. Long & High & High \\
\hline 1898 & 14.0 & 0.24 & 500 & High & Low \\
\hline
\end{tabular}

Table 3. Common 28.0-v Miniature Lamp Types
\begin{tabular}{c|c|c|c|c|c} 
Type & \begin{tabular}{c} 
Design \\
Voltage
\end{tabular} & \begin{tabular}{c} 
Design \\
Current
\end{tabular} & \begin{tabular}{c} 
Rated Avg. \\
Lab. Life \\
Design Volts at
\end{tabular} & \begin{tabular}{c} 
Inherent \\
Strength
\end{tabular} & \begin{tabular}{l} 
Inherent \\
"Noise"
\end{tabular} \\
\hline 313 & 28.0 v & 0.170 amp & \begin{tabular}{c}
500 hr \\
327 \\
336
\end{tabular} & 28.0 & 0.040
\end{tabular}

Table 4. "Baseless" and Wedge Lamp Types
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Design Voliage & Design Current & Rated Avg. Lab. Life - Hr at Design Volis & Configuration \\
\hline 10 & 2.5 V & 0.50 amp & \(3,000 \mathrm{hr}\) & 2-pin \\
\hline 12 & 6.3 & 0.15 & Indef. Long & 2-pin \\
\hline 15 & 7.0 & 0.40 & 500 & 2-pin \\
\hline 19 & 14.4 & 0.10 & 1,000 & 2-pin \\
\hline 20 & 14.0 & 0.23 & 500 & 2-pin \\
\hline 29 & 10.0 & 0.10 & 3,000 & 2-pin \\
\hline 158 & 14.0 & 0.24 & 500 & Wedge \\
\hline 159 & 6.3 & 0.15 & Indef. Long & Wedge \\
\hline
\end{tabular}
ing method, many of his lamps failed. Substitution of an inherently stronger lamp with the same outer physical dimensions eliminated the problem.

Then there were the manufacturers of 12 v auto radios who found intolerable speaker noises when the production line sets were tested. The pilot lamps were found to be the culprits. They became noise sources because the relatively long \(12-v\) filaments were supported by twin anchors, looped around the coiled, incandescent section. Under impact, the filament moved around the inside of the anchor loops. This caused the resistances to vary slightly which, in combination with the particular circuitry in the radios, resulted in the high level of noise.

\section*{To Select A Iamp Type}

\section*{Questions Should Be Asked}

Some of the questions the engineer should consider when choosing a lamp type are:
1. Will the lamp undergo tumbling or excessive shock during the equipment's manufacture?
2. Will the impact or vibration tests to which the equipment is exposed occur while the filament is lighted or not?
3. Will the lamp be subjected to intermittent or prolonged cycling during its expected life?
4. Will there be any momentary overload?
5. Will there be any ambient temperature extremes?
6. Will the lamp be subjected to sudden temperature changes?
7. Will the lamp be exposed to shock or vibration while the equipment is in normal use?
8. Will the lamp be difficult to replace; if so, should indefinitely long life be specified or should there be some provision in the equipment for easy replacement?
9. Will there be a possibility that "noise" can be generated in the circuit as a result of varying resistance within the lamp?
There are numerous types of panel bulbs to choose from. However, the catalog information is usually limited to listing the design voltage and current, the life, the candlepower and the physical size and configuration of the bulb and its base.

\section*{Several Facts Help}

Answer the Questions
Here are a few general facts that should guide the selection of a lamp type:
1. Panel bulbs designed for \(2.5 \mathrm{v}, 3.2 \mathrm{v}\)


\section*{These unique features show why Daystrom 341 Series Potentiometers have zero backlash and maximum resistance to shock and vibration.}

Three things make these rotaries unique. (1) : our patented V-guide design which eliminates backlash. (2) : the use of our patented double wipers effectively doubles resolution. And (3): impossible to see with the naked eye, is the winding ; the resistive element is wound tightly in a precision groove cut into the mandrel by a tiny diamond tool. As a result, each turn always stays securely in position, despite severe shock and vibration.--Only Daystrom 341 Series rotaries offer these features. Available in values from 1 K to 600 K , rated at 2.5 watts in still air, they are only \(1 / 2^{\prime \prime}\) in diameter and \(1^{\prime \prime}\) long, with or without our patented clutch for servo use. They meet or exceed all applicable MIL specs.--Start solving your potentiometer problems now : contact your Daystrom Representative (or the factory) for more information on specifications, prices, fast delivery.

DAYSTROM, incorporated
POTENTIOMETER DIVISION
ARCHBALD, PENNSVLVANIA - LOS ANGELES, CALIFORNIA

CIRCLE 53 ON READER-SERVICE CARD

\section*{How Raytheon can offer you \\  10 times better Semiconductor Reliability Assurance}

Most of the commonly used quality control procedures for semiconductors follow MIL Std. 105 and normally result in a wide spread of customer risk, directly dependent on the quantities purchased. (See curves X, Y. and Z below for risk points.) Now, Raytheon offers reliability protection (under MIL-S-19500B, Method B - defining the Lambda [ \(\lambda\) ] concept), which specifically limits customer risk. This means that for the first time, you, the customer, can specify reliability assurance at a fixed confidence level, to a fixed low value. in terms of a lambda number.
To explain further, reliability assurance is generated by the manufacturer's life test procedures. These life test procedures, or plans, are best described by operating characteristic curves (see below), which describe the ability of each particular plan to discriminate between good and unacceptable product.


\section*{Who Takes The Risk?}

Under most current procedures, the A.Q.L. (Acceptable Quality Level) and Iot Size determine the operating characteristic curves. Typical of such curves are X, Y. and Z. Note how the customer risk point shifts.

In contrast. curves A and B are typical of the new plan now in operation at Raytheon. Note that not only is the customer risk point fixed, but fixed at industry's lowest specified failure rate.

The first transistor types offered by Raytheon incorporat. ing this new method are the Raytheon 2N404 and Ray theon 2N428 germanium PNP switching transistors. These products, now available in quantity, carry a reliability assurance of lambda \((\lambda)=2 \% / 1000\) hours; equivalent to 0.02 failures/ 1000 hours.

\section*{Here's The Difference}

The essential difference is that a reliability specification, under the older system. carried implied customer risk failure rates varying from 15 to \(25 \% / 1000\) hours, depending on lot size. The lambda \((\lambda)=2 \% / 1000\) hours quality assurance (customer risk failure rate), now offered by Raytheon, averages a 10 fold reduction in failure rate. Stated positively, you can be 10 times more sure of getting good product. A truly important advance in product quality.
Ask your local Raytheon sales engineer about this program.
A new nomograph, relating lambda ( \(\lambda\) ) to sample size and accept number, as well as process average requirement is now available. For this, along with the paper "A.Q.L - What Is It?", by J. M. Gilbey, write or call your local Raytheon Semiconductor Sales Office.

\section*{RAYTHEON COMPANY}

SEMICONDUCTOR DIVISION

SILICON AND GERMANIUM DIODES AND TRANSISTORS - SILICON RECTIFIERS - CIRCUIT-PAKS

 MIILAOELPMIA, PA, (M) COVERMMEMT MELATIOMs. Wochingtion, D. C., MEtropolmen esf20s

CIRCLE 54 ON READER-SERVICE CARD

For extreme acceleration or impact it is sometimes possible to improve the performance by shock mounting the socket.

Table 3 lists some of the \(28-v\) types that are available.
"Baseless" and Wedge

\section*{Types Can Also Be Used}
"Baseless" lamps will survive higher ambient temperatures than the conventional lamps because there is no cement used in the construction that can soften or fume. The two-pin miniatures and the wedge types fall in the "baseless" category. They are also designed to withstand rapid changes in temperature.

Some of the two-pin miniatures have found applications in electronic organs where stability is especially important. They should also find many useful applications in printed circuits. In places where loading is particularly difficult, the "baseless" lamps lend themselves nicely to "rear" loading.

Some automotive panels use rear loading lamps. The lamp is inserted in a socket that adapts to a printed circuit panel. In position. the lamp is on the opposite side of the panel from where it was inserted.

A list of " -2 -pin baseless" and wedge lamps is given in Table 4.
The up-to-date lamp manufacturer has the facilities for evaluating his products for known conditions of use. In many instances, however, he is not familiar with the environment the lamp is expected to survive. Communication between the electronic engineer and the lamp engineer can be extremely important.

The following points should be considered when a lamp must be selected:
1. In general. where the circuit permits, use 2.5- to \(6.3-\mathrm{v}\) lamps for maximum ruggedness.
2. The choice of the lamp type should always be based on the environmental conditions to be survived before active service as well as after.
3. Some lamp types are inherently noisy while others are relatively quiet. The importance of the noise depends on the electronic circuitry. If the lamp and its switch are directly connected across the power source, noise is seldom generated. The fact that this is not always practical makes noise a definite consideration.
4. It is wise to contact the lamp manufacturer when a special condition requires a special characteristic. - -


\section*{E-200 HIGH TEMPERATURE CAPACITORS Operable to \(\mathbf{+ 2 0 0}{ }^{\circ}\).}

The Bendix \({ }^{8}\) E-200 series of lightweight, small size capacitors is designed for installations requiring a high degree of component reliability at operating temperatures as high as \(200^{\circ} \mathrm{C}\).

High temperature capability and mica-like electrical characteristics enable the E-200 series to withstand extremely high orders of AC in small envelope size at all ambients under \(200^{\circ} \mathrm{C}\).

The new series is designed and manufactured
to a Bendix specification which is patterned after the high reliability specification MIL-C14157B, proposed.

Hermetically sealed in tubular or rectangular housings, these capacitors offer superior resistance to mechanical and climatic environments. E-200 CHARACTERISTICS: - Wound mica papers Solid impregnants - Exceptional stability - High insulation resistance - Radiation resistance - Outstanding dependability

For full details, write
Scintilla Division
SIDNEY, NEW YORK


Conadion Afiliate: Aviation Electric, LId., 200 Lourantion Blvd., Montreal 9, Queboc. Export Soles \& Service: Bendia Intemational, 205 E. 42nd St., Now York 17. N. Y. CIRCLE 55 ON READER-SERVICE CARD

\title{
High-Density Electronic Packaging - Structural Design
}

\begin{abstract}
Welded assemblies constructed from High-Density Electronic Packaging (HDEP) designs must endure the rugged mechanical environments specified by military requirements. Reinforced and post-loaded structural analysis, derived from the construction industry, has been applied to HDEP: the mathematical calculations and test results are presented.

The basic concept of HDEP was outlined in the April 12 issue, layout procedure discussed in the May 10 issue and resistance welding techniques covered in the May 24 issue.
\end{abstract}

Courtland B. Converse. Paul N. James
The Sippican Corp.
Marion, Mass.

THE INHERENT compressive strength of encapsulated components can be used to achieve a reliable structural assembly for a High-Density Electronic Package. Reinforced and postloaded structural design analysis, applied to HDEP assemblies, has resulted in rugged units which have passed the stringent military requirements for shock, vibration and temperature cycling.
Although a single encapsulated module may be capable of withstanding compressive forces in the order of tons, a unified structure is required to brace groups of modules as well as cooling devices, connectors and cabling. Internal loads must be kept to a minimum and, under vibration stresses, amplifications must be low.

\section*{Postloading As Applied}

To Electronic Assemblies
Circuit Module Compression Techniques: One of the problems concerning present day specifications is that the required frequency range in vibration is so wide (from 5 to as high as \(3,000 \mathrm{cps}\) ) that it is almost impossible to avoid resonances in structural members. If a highly loaded member operates continuously in a resonant range, this member usually must be quite heavy in order to keep the alternating stress levels below the endurance limits of the material being used.

Although a potting compound serves as an adequate means of uniformly supporting each electronic component, the encapsulated circuit module presents some complex problems because of the widely divergent properties of its composite materials. The qualitative properties of potting compounds are:
1. High compressive strength.
2. High coefficient of thermal expansion.
3. Low Young's modulus (which is the modulus of elasticity).
4. Low tensile strength.
5. Relatively high damping factor under vibratory conditions.
Experience indicates that the most serious problems exist in environments exhibiting large changes in temperature. When many modules are postloaded by a bolt having a low coefficient of thermal expansion, an increase in temperature will cause the bolt tension to increase because of the expansion of the modules.

Low coefficient of thermal expansion is an attribute of all materials having high tensile strengths, the property necessary to minimize the bolt diameter, which in turn influences the arrangement of circuitry within the module. The bolt must be capable of exerting enough compression on the module stack at the lowest environmental temperature to maintain the structural integrity of the module stack as a beam under vibratory load conditions, but not exceed elastic limit at the highest environmental temperature.

To keep the change in tension on the bolt to a minimum throughout the temperature range, components such as Bellville washers and springs can be used. In most cases, however, a wide range of bolt tensions can be accepted, because it can be shown that a high bending load has to be put on the module stack in order to separate the modules on the tension side of the beam. The exception to this is when heavy modules, resulting from the use of a high specific gravity potting compound, are operating at \(\%\) high acceleration level.

Postload Methods: High-Density Electronic Packages lend themselves particularly well to the reinforced and postloaded structural technique. Because most of the epoxy potting compounds in use today exhibit high compressive strength, electronic subassemblies such as circuit modules can be postloaded in "stacks" to produce a homogeneous structural beam (Fig. 1). The module stacks, held in compression by a tensioning bolt and appropriate hardware, are clamped against structural webs. These webs, usually fabricated of aluminum or magnesium, are inserted at calculated locations in the module stacks and serve to transmit the loads from the electronics to a point where the total loads may be carried by a vehicle. These parts are shown by Fig. 2. A case or frame assembly usually surrounds an array of circuit module stacks and serves to support the wiring module.

\section*{Table 1. Definition of Abbreviations}

A Area
Area
Subscript, Bolt
Subscript, Circuir Module
Young's modulus of elasticity, psi
Bending stress
Frequency, eps
Nafural frequency
Gravity, \(1 \mathrm{~g}=32.2 \mathrm{ft} / \mathrm{sec} / \mathrm{sec} /\) or
\(386 \mathrm{in} / \mathrm{sec}^{2}\)
Moment of inertia, in. \({ }^{4}\)
Length
Axial strain
Temperature change
Bending moment
Applied load, allowable load, postload force
Amplification factor (dimensionless)
Weight/unit length
Total weight
Deflection due to bending of beam
Distance from neutral axis to outer fiber Coefficient of thermal expansion

Another means of placing a circuit module assembly in compression, also based on the postload concept, is shown by Fig. 3. In this method, the individual circuit modules are cemented to cold plates by a thin layer of epoxy ( 0.0005 to 0.001 in . thick). In some designs, a module will be cemented to each side of a cold plate. The units thus formed are strung together by tension bolts through the cold plates. Intermediate webs may be used where compression of a large assembly of circuit modules is required.

Tensioning bolts are also used to tie the assembly together in the side-to-side dimension, these bolts being located through the longitudinal axis of the end-frames and intermediate webs.
This method results in an assembly of circuit modules and cold plates which is held in compression in two dimensions.

Wiring Module Structural Requirements: The many layers of film and ribbon in a wiring module tend to produce a good reinforced structure. Tests show that the many wire-wrap connections between the circuit modules and wiring module (from 12 to 24 per circuit module) cause the circuit module stacks to become structurally part of the wiring module. In other words, the deflection curve of the wiring module will look just like that of the circuit module beams.
In one way this is troublesome since structural loads are transmitted through the wirewrap connections. On the other hand, there


Fig. 1. Circuit modules postloaded in stacks to form a homogeneous structural beam.


Fig. 2. Mechanical components used for structural beam assembly.


Fig. 3. Circuit modules are cemented to cold plates and compressed in two dimensions.
are usually so many connections per module that each connection is loaded well below the ultimate tensile strength of 5 lb each.

To evaluate this connection qualitatively, a small wiring module, wire-wrapped to four individual elements of 0.05 lb each, was run through an environment of 30 to \(3,000 \mathrm{cps}\) sinusoidal vibration at a level of 30 g . The mounting consisted of clamping the wiring module to a horizontal shake table. The elements were not bolted together, but were supported only by the wire-wrap terminals. It is noted that there was no instrumentation such as strain gages on the terminals, so that the stress levels encountered are unknown. The wiring module had a circuit in series with each one of the circuit module terminals, and continuity was not interrupted at any time. The same specimen was subjected to a \(100-\mathrm{g}\) half-sine shock of 9.5 msec duration.

The above evaluation does not mean that the wire-wrap connections are adequate without the postloading bolt through the middle of the circuit modules, because on larger wiring modules, sizable, if not ultimate, forces would be imparted to the wiring module especially in the bending modes. Also, in the plane tested, the alternating flexural stresses in the wire-wrap terminals would present a serious fatigue condition in the more severe environments. This type of mounting may be considered, when supported by test data, for smaller machines.

\section*{Mathematical Analysis of \\ Structural Characteristics}

Circuit Module Beam Bending: In dealing with any structural system, one of the most important parameters is Young's modulus, or modulus of elasticity. In the case of most epoxies, the modulus in compression is nonlinear in the range of stresses under normal bolt loads. Fig. 4 is a plot of compressive load vs strain for a common epoxy used in encapsulation. If it is assumed that the base is 1.38 in . and the height 1.65 in ., this works out to a surface area in compression of 2.29 sq in. If the bolt down the middle is an aluminum number 10-32, the highest load, based on the bolt diameter, that can safely be put on it is about 800 lb . Since \(S=P / A\). the compressive stress is \(800 / 2.29\) or 350 psi. Looking at the slope of the load-strain curve in the region of this load, it is apparent that a slight increase in bolt load could appreciably change the modulus of elasticity. Factors of safety must be applied to accommodate this increase.

Unfortunately, any formula for natural frequency of a beam contains \(E\) (Young's modulus) to the following extent. The natural frequency is:
\[
\begin{equation*}
f_{n}=2.45 \sqrt{\frac{g E I}{w L^{4}}} \tag{1}
\end{equation*}
\]
where \(w\) is the weight per unit length of beam. The effect of a nonlinear modulus is to change the natural frequency in a varying temperature environment where the bolt postload is changing.

Inconsistencies have also been found in analyzing pre-stressed structures in vibratory environments. Information is available on the pre-stressed theory of construction, but most of the data unfortunately deal only with the well known and tested properties of concrete. In the time that Sippican has been dealing with this type of structural support, a full evaluation of the different potting compounds has been impossible. Difficulty has been encountered in obtaining correlation between theoretical analysis and experimental results. However, there is an empirical method that can be used to determine the natural frequencies in bending.

If the shape of the static deflection curve is known, it is possible to calculate the natural frequency from the Stodola formula:
\[
\begin{equation*}
f_{n}=\frac{1}{2 \pi}\left(\frac{g \Sigma W y}{\Sigma W y 2}\right)^{1 / 2} \tag{2}
\end{equation*}
\]

To simplify the simple static test that must be performed to obtain various values of \(y\), beam can be loaded to about 20 times its weight and the deflections measured at different points. Since the deflection is a linear function of weight, the deflections are divided by 20 to obtain \(y\) under static loading.

To further simplify the above analysis, the maximum deflection can be measured and a second formula employed:
\[
\begin{equation*}
f_{n}=\frac{1}{2 \pi} \sqrt{\frac{g}{y}} \tag{3}
\end{equation*}
\]

This last method gives a more inaccurate result, but is adequate for preliminary design.

Also important is the fact that the deflection or natural frequency varies with the postload force on the circuit module stack. Therefore, the static deflections should be found for each condition of the bolt postload expected over the temperature environment spectrum.

Effect of Wiring Module on Circuit Module Stack Bending: There are two approaches that can be taken to find the effect of the wiring module on the circuit module stacks.


Fig. 4. Compressive load vs strain characteristics for a typical epoxy.
If preliminary static tests show that the natural frequency is greater than the frequency limit outlined in a given specification, it can be assumed that the presence of the wiring module will make the entire system stiffer or will have the effect of raising the natural frequency in the plane of wiring module bending. However, conventional designs have shown that this plane of bending is not the most critical, because the moment of inertia of the circuit module stack is greater than in the other bending plane.

In the plane parallel to the wiring module, the wire-wrap terminals behave as relatively flexible cantilevers. Because these terminals are long and slender, so as to pass through the wiring module, the only effect that they have shown in recent tests is damping. There does not seem to be enough of a structural connection to alter the natural frequency significantly.

Amplification Factors: In a complex postloaded system, such as the one that has been discussed above, calculation of the magnification factor, \(\mathbf{Q}\), is nearly impossible. However, some general information was gathered during recent tests on two representative models.

The first model tested was a 12 -circuit module stack mounted in a jig with supports. An " \(O\) " ring at the end support served the


Fig. 5. Typical vibration test setup. showing circuit module assembly, compression webs, structural frame parts, tensioning bolts, and cold plates (corrugated metal parts).
purpose of eliminating close tolerances between the boss of the pressure pad and the hole in the case. If the pressure pad was allowed to be loose in this hole, there would be a ringing at resonance, and a serious fatigue condition would exist. This model was vibrated in the two bending planes at two different postloads. The following summations can be made:
1. Increased postloads give higher natural frequencies and lower transmissibilities.
2. Low postloads give lower natural frequencies but higher transmissibilities. Knowledge of these factors permits the design of structures which have low amplification factors. The actual values of amplification depend on the stiffness of the case and wiring module connection, but values of \(\mathbf{Q}\) from 3 to 7 are common.
The second model tested was an entire machine. This machine, which was designed with amplifications of 10 for the aluminum parts and 5 for the epoxy structure, was vibrated in all three planes from 5 to 3,000 cps up to levels of 30 g . In addition, a factor of safety of 1.5 was used in the design. The only instance of actual stresses higher than design loads was in bending of the end plate about its low moment of inertia axis. This was due to the long span with no support and the presence of a large number of holes.

Fig. 5 shows a typical vibration test setup.
Bolt Postload: In determining the proper postload to put on the bolt, two basic conditions, thermal stresses and bolt load increase due to bending, must be considered.

In calculating thermal stresses in the bolt, the general assumption can be made that, for equilibrium to exist, the compressive load in the circuit modules must be the same as the tension load in the bolt. Thus the load in the bolt can be equated with the load in the circuit module stack:
\[
\begin{equation*}
\alpha_{n} L \Delta t+\frac{P_{n} L}{A_{n} E_{B}}=\alpha_{c} L \Delta t-\frac{P_{c} L}{A_{c} E_{c}} \tag{4}
\end{equation*}
\]
where the subscripts \(B\) and \(C\) are the bolt and circuit module, respectively. If the lengths are the same and the changes in temperature are equal, the above equation can be reduced to:
\[
\begin{equation*}
\Delta P=\frac{\Delta t\left(\alpha_{C}-\alpha_{R}\right)\left(A_{l} E_{B}\right)\left(A_{C} E_{C}\right)}{A_{u} E_{R}+A_{C} E_{C}} \tag{5}
\end{equation*}
\]

The average value of \(a\) for most epoxy potting compounds lies in the region of 18 x \(10^{-6} \mathrm{in}\). \(/ \mathrm{in} . / \mathrm{F}\), while that of heat-treated stainless steel is \(5.5 \times 10^{-6} \mathrm{in}\). in ./F. These values indicate the problems involved, e.g., for a large change in temperature, there will be a large change in bolt tension. Because the potting compound has such a high value of ultimate compressive strength, it is not a
problem at the higher temperatures. However, in order to maintain bolt tension at the lower temperatures, but not yield tension at the higher temperatures, a balance between the area of the bolt and the area of the circuit module must be achieved. This balance is achieved by use of Eq. 4.

This problem, coupled with that of electronic layout, structural strength, natural frequency and weight, implies a close working relationship between the electronic engineer, thermal engineer and the structural designer. That the problems are not insurmountable becomes apparent with the use of the calculation methods presented, and the advantages gained from the properties of the completed structure are substantial. If it turns out that the temperature extremes are too great, such schemes as Bellville washers or springs may be adopted.

The other factor affecting the size of the bolt concerns the reaction of the bolt to various modes and deflections in bending. Axial accelerations of the structure also influence the stress in the bolt.

The centerline of the bolt should go through the neutral axis of the circuit module stack. If an accurate value of the modulus of elasticity were known, the load required to cause separation of the modules could be calculated by letting the ultimate bending stress equal the postload stress along the face of the circuit modules. This bending stress can be calculated using the formula:
\[
\begin{equation*}
F_{b}=M c / I \tag{6}
\end{equation*}
\]
where \(c\) is the distance from the neutral axis to the outermost fibres on the surface of the tension side of the stack. This calculation is usually only significant at the low values of postload where module separation takes place at relatively low bending stresses. The weakest point will be the shear loads imposed on the bolt at the end of the module stack.

Axial loads down the circuit module stack, imposed by vibration or shock, can cause an increase in the bolt tension depending on the relative rigidity between the bolt and the potting compound. If the mass of the bolt is neglected, this change in postload will be
\[
\begin{equation*}
\Delta P=\frac{Q}{\frac{(A E)_{B}}{(A E)_{C}}+1} \tag{7}
\end{equation*}
\]
where \(\mathbf{Q}\) is equal to the added axial load imposed by the circuit modules. This value could be equal to their weight times the \(g\) forces in a shock test. Tests on completed modules have substantiated design steps. - -
- McClure, James G., "The Prestressed Bolt." Machine Design, Sept. 15, 1960 .

\section*{Potentiometers: 2 Sides to Reliability}

\begin{abstract}
Are manufacturers bending efforts to make potentiometers more reliable? They are indeed, report a cross-section of specialists in the field. The manufacturers made their views known in response to an editorial in the May 24, 1961, issue of ELECTRONIC DESIGN, calling for better potentiometers. Users were blamed in part by the makers for performance difficulties. One unfortunate inference drawn by some manufacturers from the editorial was that systems companies can produce a more reliable potentiometer. This the editorial did not wish to convey. Nor did it wish to suggest that potentiometers are notoriously unreliable. Following are letters from manufacturers on the subject:
\end{abstract}

Not all pots are alike . . .
Your Editorial on p 31 of your May 24 issue calling for a gold-plate special potentiometer is certainly subject to dispute. As division manager of the Helipot Div. of Beckman Instruments, Inc., and also as president of the Precision Potentiometer Manufacturers Association I feel I cannot leave the remarks unchallenged.
Your Editorial tars all potentiometers with the same brush. This is highly unfair. Many manufacturers have been supplying highly reliable trimming potentiometers for years. The potentiometers used by the industrial and commercial instrument manufacturers have also been highly satisfactory over many years because these people have used the product most nearly as it should be used. Other types of pots have operated well into the millions of revolutions area.

None realizes more than the pot manufacturers themselves that the potentiometer, by its very construction, is a critical item under many conditions. What then makes pots un-
reliable? Acknowledging the nature of the product and its limitations, we believe the customer himself aggravates the problem. Some of these causes, as we see them, are:
1) Pot selection is too often relegated to a junior engineer.
2) Requirements demand poor pot design. As only one example, we find that resolutions and/or linearity requirements demand wires as small as 0.0005 in. in diameter. How long can you rub this wire with a brush before the wire breaks?
3) The demand that the pot compensate for most or all of the errors in the system. This requires accuracies that are at best marginal. When the pot will not hold these unrealistic accuracies beyond the first few thousand revolutions the system no longer performs to requirements so the pots fail.
4) Inadequate servo system design causes the pot to dither. This concentrates all the wear at a small point and early failure results.
5) Actual physical mistreatment of pots. For example, we see pots where the shaft was shortened by sawing halfway through the shaft and breaking off the rest of the way. Why be surprised when bearings fail or the pot doesn't perform because of a bent shaft?
6) Purchase on price alone without regard to value analysis. The constant pressure to reduce price and meet ever stronger specifications drives the manufacturer to short cuts or "tongue-incheek" acceptance of orders. I think we manufacturers know how to build pots of far better reliability but our customers will either not pay the price or they will not accept the performance level necessary.
Your Editorial intimates that the pot manufacturers are not doing anything to upgrade the reliability of our product. To this I strenuously object. Most of the manufac-
turers have spent, are spending, and will spend substantial amounts of money to upgrade our products and also to explore new areas. Perhaps we have not communicated well enough to the industry the efforts we are making. Speaking for my company, here is just a partial list of things we have done:
1) Tried every new material or lubricant that has shown any promise to try for greater reliability.
2) Worked with vendors to improve the quality of wire, housings, contacts. bearings, plating, etc.
3) Developed all sorts of no-rubbing contact pots such as photo-electric, variable impedance, magnetorestrictive, variable pressure, etc. Unfortunately the users will not accept the linearity. temperature coefficient or accuracy: limitations these units possess so we are forced back to the conventional type potentiometer.
4) Have spent substantial sums of money in the development of cermet type potentiometers for ultra high reliability.
D. C. McNeely, Division Manager Beckman Instruments, Inc.
Helipot Div.
Fullerton, Calif.
- ED supports intensive research like this to improve performance.

\section*{Reliable pots are here . . .}

I am amazed that any reputable magazine would print an editorial such as that appearing in your May 24th issue, indicting an entire industry without taking the trouble to make any investigation whatever of the facts.
Reliable precision potentiometers can be made, and are being made every day by reputable potentiometer manufacturers, and we at Fairchild have the data to back up this statement as far as our own products are concerned. Fairchild alone has spent over half a million dollars in just the last five years in research and development on new
approaches to the problem of making potentiometers better and more reliable. In addition we have spent many hundreds of thousands of dollars on projects undertaken for specific customers, many of them at only a fraction of the total cost required to meet the almost impossible conditions requested by the customer, so that in effect far more was spent on improving performance and reliability than is indicated by the R\&D figures alone. I am sure other major manufacturers of precision potentiometers have spent comparable amounts.

Briefly, the problem is that everyone talks reliability but almost everyone buys only price. Unfortunately, almost anyone with a lathe can get into the potentiometer business and there are probably a hundred or more, who have an engineer or technician and a few assemblers, who claim to make precision potentiometers-and their prices are much lower than manufacturers who maintain a large engineering staff and complete quality control department with facilities for all environmental tests and continuous surveillance of production units to assure the performance and reliability ordered by the customer. Then when these "bargain" units fail, your "engineer" and his "visitor" say "Potentiometers are no damn good."

Reliable precision potentiometers are available if the user is willing to pay for them, and if he will call in one of the major potentiometer manufacturers before all the rest of the design is frozen and the combination of requirements left over for the potentiometers becomes impossible.

> H. E. Hale

Vice President \& General Manager Fairchild Controls Corp.
Hicksville, L. I., N. Y.
- Fairchild Controls Corp.'s efforts in achieving reliability are well known in the industry. Some of its precision potentiometers are described in the ad on \(p 45\).
Use mandufacturer's know-how . . .
Your Editorial in the May 24, 1961, issue of Electronic Design, which makes reference to the need for a "Gold-Plate Special Pot," serves to stimulate thought, relating to the ever increasing demand for high reliability components to satisfy the need of our infinitely expanding systems.

Perhaps we have been guilty of attempting to satisfy all needs at one time in one unit. Our direct experience . . . with the military and systems engineers . . . [indicates] that

NO SAcRMEICE REQUMRED


\section*{.If yow choose the new} SMITH-FLORENCE

\section*{Potentiometric Voltmeter}

A number of differential voltmeters are available from sources other than Smith-Florence. Some have this feature, some have that. (We have compared them all.) But you won't have to sacrifice one feature for another if you choose the new Smith-Florence 851. In the medium voltage range, it has more useful features than any other voltmeter. Here they are:
* Solid State Reliability (and compactness)
* 0 to 10 vdc Precision Source in \(10 \mu v\) Steps
* Unique 5-Dial Inline Readout
* Wide Range ( 1 mv to 1 kv full scale)
* Working Zener Reference Backed up by Built-in Standard Cell (only with S-F instruments)
* Polarity Reversal (only with S-F instruments) you can read negative voltages with same accuracy as positive voltages
* Recorder Output ( 1 v gives f.s. deflection)
* Input Impedance Above 10 v, 10 Megohms (best available)
* Automatically Positioned Decimal Point
* Lightweight, rugged, portable weighs 15 lbs.

This is not to say that only Smith-Florence produces a good voltmeter-just the only one with all these features.

\section*{OTHER DATA}

Absolute accuracy better than \(\pm .05 \%\). Most sensitive null range 1 mv (f.s.). Infinite input impedance from 0 to \(10 \mathrm{vdc}-10\) megohms to 1 kv . (Only available in S-F 851.) Size (cabinet) \(71 / 6^{\prime \prime} \times 11^{\prime \prime} \times 101 / 2^{\prime \prime}\). Weight 15 lbs . Cabinet or rack price, \(\$ 550.00\).

\section*{MORE DATA AVAILABLE}

Please request Model 851 data sheet. Contact your Smith-Florence engineering representative or write us directly.

TRY IT YOURSELF
Your Smith-Florence engineering representative can give you a demonstration now. Call our nearest rep at your convenience, or drop us a line at the factory and we'll make the arrangements.

4228 23rd West • Seattle 99, Washington
Phone: ATwater 4.0170

\section*{LAMBDA Convection Cooled}

\section*{Transistorized Regulated Power Supplies}


\section*{La SERES}
\begin{tabular}{|c|c|c|}
\hline 34 VDC & 5 & AMP \\
\hline 0. 34 VD & 10 & AM \\
\hline - 34 & 20 & \\
\hline 20.105 VDC & 2 & \\
\hline 105 VDC & & AMP \\
\hline 105 VDC & 8 & AM \\
\hline 75-330 VOC & & \\
\hline -330 VOC & & . 5 AM \\
\hline -330 VDC & & \\
\hline
\end{tabular}

\section*{SPECIAL FEATURES}
- Convection Cooled-No infernal blowers or filters-mainfonance free
- Ambient \(50^{\circ} \mathrm{C}\)
- No Voliage Spikes or overshoot on "furn on, furn off." or power failure
- Short Circuit Proof
- Remofe programming over Vernier band
- Hermetically-sealed transformer designed to MIL-T-27A
- Easy Service Access
- Constant Current Operation-Consulf Factory
- Guaranfeed 5 years

\section*{CONDENSED DATA}

\section*{DC OUTPUT (Regulated for line and load)}
\begin{tabular}{|c|c|c|c|c|}
\hline Model & Voliteger Rasge (1) & Vemier Band & Current Ragge \({ }^{\text {(3) }}\) & Price \({ }^{\text {(4) }}\) \\
\hline LA 50.03 A & 0. 34 VDC & 4 V & 0.5 AMP & 8395 \\
\hline LA100.03A & 0. 34 VDC & 4 V & 0.10 AMP & 510 \\
\hline LA200.03A & 0. 34 VDC & 41 & 0.20 AMP & 95 \\
\hline LA 20.05B & 20.105 VDC & 10 ) & 0.2 AMP & 350 \\
\hline LA 40.05 B & 20.105 VDC & 10 V & 0. 4 AMP & 495 \\
\hline LA 80.05B & 20.105 VDC & 10 V & 0. 8 AMP & 780 \\
\hline LA 8.08B & 75.330 VDC & 30 V & 0. 0.8 AMP & 395 \\
\hline LA 15.08B & 75.330 VDC & 30 V & 0.1 .5 AMP & 560 \\
\hline LA 30.08 B & 75.330 VDC & 30 V & 0. 3 AMP & 860 \\
\hline
\end{tabular}

Regulation (line) . . . . . . Less than 0.05 per cent or B millivoles (whichever is greater). For input variations from \(\mathbf{1 0 5}\). 140 (3) VAC .
Regulation (load)...... Less than 0.10 per cent or 15 millivolts (whichever is greater). For load varia. (whichever is greater). F
tions from 0 to full load.
Ripple and Noise........ Less than 1 millivolt rms with either terminal grounded.

\section*{Temperature}

Coefficient.
(1) The DC output rolaze lor each model in completely covered by lour relector owitches plus vernier range.
(2) Center of vernier band may be eet ot any of 16 pointo throughout volage range. (3) Current rating applies over entire voltoge range.
(1) Pricea mre tor unmelered modele. For metered models add the oufin "M" an ds 330.00 to the price.

AC INPUT \(\quad 105.140 \mathrm{VAC}, 60^{(3)} \neq 0.3\) cycle \(^{(6)}\)
 In the United Stateo end Canade. For operation over vider frequency band, con Size
LA 50.03 A, I.A20.05B, LA \(8.08 \mathrm{~B} \quad 311^{\prime \prime} \mathrm{H} \times 19^{\circ \prime} \mathrm{W} \times 143 \mathrm{~s}^{\prime \prime} \mathrm{D}\) LA100.03A, LA40.05B. LA15.08B \(7^{\pi^{\prime \prime}} \mathrm{H} \times 19^{*} \mathrm{~W} \times 143^{\prime \prime} \mathrm{D}\) LA200.03A, LA8005B, LA30.08B \(\quad 10^{1} 1^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 1612^{\prime \prime}\) D

\section*{Send for new Lambda Catalog 61}
which is currently operational in many important military programs. In several of these programs it is the only potentiometer used. Our approach has truly produced reliability by design in that:
1) Transformer taps, which are the fundamental source of accuracy, cannot change with time, use, or environment
\({ }^{2}\) ) The design permits use of larger potentiometer wire for a given resolution and input impedance than do conventional potentiometers.
3) Limited rotational usage is not detrimental to life (e.g. ground speed output in airborne navigational system.)
4) Noise and pick-up are low, due to the low-impedance circuitry possible with the component.
While your Editorial is timely as far as conventional potentiometers are concerned, we wonder if the industry is not "beating a dead horse". For years engineers have vainly tried to get reliability from potentiometers, and certainly some progress has been made. However, there is only one sure way to get reliability, whether it be in a system or a component, and that is iny design. Lionel Robbins Sales Manager Perkin-Elmer Corp Norwalk, Conn
- I'erhalps we need better system design.

Conductive plastic pot is the answer . . .
We've been overlooked! Overlooked by Electronic Design's May 24 Editorial We must have been by-passed! We, who've been performing successfully in all types of critical installations where reliability is the prime requisite.

To cite just one example of reliability that now exists, a group of our rotary conductive plastic pots run over 200 million revolutions at 600 rpm , and
- Showed an average resistance increase of only \(0.035^{\circ}\) 'c per million rev
- Stayed within the original \(0.5 \%\) linearity requirement for that same span;
- Maintained a noise level below the original value for over 100 million rev.
Some were tested under \(70-\mathrm{g}\) vibration at 5-2,000 cps, \(100-\mathrm{g}\) shock, \(100-\mathrm{g}\) acceleration in all axes, without discontinuity.

Morris Tarragano Markite Corp. New York, N.Y
- There has certainly bren a great deal of progress in pot design. Continued efforts by manufacturers are to be applauded.


Every electronic and electrical wire you need-from the finest drawn magnet wire to the most complex multiconductor cable.
There is a Belden wire or cable in every insulation and shielding to meet your design and application requirements. Here is just part of this complete line. Available from stock.



ELECTRONIC DESIGN • July 19, 1961


\section*{now...high accuracy synchro and resolver testing \\ - GERTSCH STANDARDS REPLACE COSTLY ELECTRO-MECHANICAL METHODS}

Gertsch Synchro Standards simulate the output of a master Synchro Transmitter (CX), with better than 2 seconds of arc accuracy. Ideal for checking Synchro Control Transformers (CTs), or complete systems. Units feature a low effective unbalance impedance which permits loading the output without introducing stator output errors.

When driven by a suitable signal source, unit provides stator outputs \(S_{1}, S_{1}\) and \(S_{1}\), corresponding to the outputs of a master Synchro Transmitter as the shaft is rotated in \(5^{\circ}\) increments. Quadrant switching simulates operation over a full \(360^{\circ}\). Series SS.

Gertsch Resolver Standards simulate the output of a master Resolver Transmitter (RX). Checks Resolver Control Transformer (RCT). Unit features low effective unbalance impedance, hence negligible loading error,

Driven by a suitable signal source, unit produces 2 isolated output voltages corresponding to the sine and cosine output voltages of a master Resolver Transmitter as the shaft is rotated in \(5^{\circ}\) increments. Full \(360^{\circ}\) operation. Series RS.

Synchro and Resolver Standards rotate throughout a full \(360^{\circ}\), in \(5^{\circ}\) increments. Accuracy is better than 2 seconds of are. Both single-switch and 2 -switch models are available to cover all standard voltages and frequencies. Bulletins SS and RS on request.

Gertsch Divider Heads-for checking angular measurements on all types of rotary components. Accuracy is \(\pm 15\) seconds. Repeatability: +5 seconds. Large dial indicator provides direct readings with 3 -second resolution. Unit rotates in \(5^{\circ}\) steps through a full \(360^{\circ}\) in either direction . . . is quickly set up, easy to operate, and fully portable. Bulletin DH-5.


\section*{PRODUCT FEATURE}


\section*{True Rms Voltmeter Covers 7-Mc Bandwidth}

REGARDLESS of duty cycle or amplitude characteristics, the true rms value of any waveform from 10 cps to 7 mc can be measured with a new meter that functions over a range of \(100 \mu \mathrm{v}\) to 300 v . The bandwidth of 7 mc is at least an order of magnitude greater than that of any other rms responding voltmeter available at the present time.

The model 910A true rms voltmeter, manufactured by the John Fluke Manufacturing Co., Inc., Seattle, Wash., has a sensitivity of 1 mv full scale and an accuracy of 1 per cent. Its applications include distortion measurements, double-power noise measurements and transformer copper loss measurements.

Model 910A accomplishes the direct conversion of the input ac voltage to a dc voltage, proportional to the effective heating
(rms) value of the input voltage, by means of a low-impedance thermocouple. This thermocouple, situated in the feedback loop) of a sensitive dc amplifier is chopper stabilized to operate at a constant level. Because the thermocouple is operated at this constant temperature level, the meter responds very rapidly to a change in input voltage and also maintains its calibration accuracy over long periods of time.

Other voltmeters with comparable bandwidth and sensitivity normally employ an indirect means to convert from ac to dc. The most popular methods are peak detection and diode rectification. In meters which use diode rectification. the average de value is multiplied in the voltmeter by the form factor of 1.11 and the unit will indicate correctly the rms value of a pure sine wave. However,

should any distortion appear in the waveform to be measured, the meter will interject this error into the rms indication.
Using thermal techniques to sense the rms value of input waveforms, the model 910 A is designed to eliminate many of the problems normally associated with instruments which employ thermocouples. Constant temperature ovens are not required.
The use of an input amplifier provides high sensitivity while isolating the thermocouple from the input terminals. By combining the thermocouple in the feedback loop of a sensitive dc amplifier which maintains a constant input power to the thermocouple, the unit achieves fast response and accurate calibration.

The thermocouple tempera-ture-sensing amplifier is shown in the block diagram. With 0 v ac at the input terminals to the instrument, this amplifier provides a current into the thermocouple and through the meter. Net current in the meter is then 0 ; there is no deflection. When an ac signal is applied to the thermocouple from the fourstage amplifier, dc through the thermocouple is reduced to keep its temperature constant. The reduction in dc is indicated on the meter. Since it is a thermal device, the thermocouple automatically responds only to the heating or rms value of the waveform.
At full scale the 910A will indicate the rms value of any pulse train or other complex waveform which has a crest factor of 3 or less. For readings less than full scale, it will accept crest factors as large as three divided by the fraction of full scale reading.

Model 910A true rms voltmeter is available in a cabinet model for \(\$ 545\) and a rack model for \(\$ 565\).

For more information on this instrument turn to the ReaderService Card and Circle 251.

SPECTROL SOLVES EQUATIONS LIKE THIS...

\section*{\(\left.\theta=\operatorname{Atan}^{-1} B\left[1+0.2\left[++0_{E} 0_{1}\right]^{2}\right)^{1 / 2}-1\right]\)}

> to design non-linear potentiometers -faster, more accurately

The above equation is the mathematical expression for the non-linear function required of a precision pot to relate voltage ratio \(\frac{e_{o}}{E_{l}}\) to potentiometer shaft position 0 . has used this technique.

This is a typical non-linear problem applied to Spectrol's new IBM 1620 digital computer ... equipment which eliminates days of design time, provides errorfree results and makes it possible for Spectrol to issue quotations a day or two after receiving your request. For the past three years Spectrol-and only Spectrol-

Basically, it works this way: Computer input data is in the form of programmed equations or tabulated X and Y coordinates. Previously programmed tapes with and \(Y\) coordinates. Previously programmed tapes with at Spectrol) operate on the data, to compute output in terms of winding equipment settings, cam angles
and radii. An electric typewriter prints out this information on a form such as that shown above. which is sent directly to production, eliminating delays and potential transcription errors.
Speaking of production, Spectrol has precision equipment for winding non-linear resistance elements at its plants in New York and Toronto to supplement its California facilities. Using the computer in California, Spectrol can TWX winding instructions to either plant another reason you can expect results sooner.
One more thought: Call us if you're in a bind. Letters take time.
To assist engineers who have applications for nonlinear pots, Spectrol has prepared a detailed specifications brochure. For your copy, contact your Spectrol engineering representative or the factory.

ELECTRONICS CORPORATION 1704 South Del Mar Ave. - San Gabriel, Calif. • ATlantic 7.9761 Adams Court . Plainview. L. I., New York - WElls \(8-4000\) toronto. ontario, canada


Because it never varies from birth to death. a fingerprint is the most reliable method of personal identification.

NAE silicon devices have fingerprint reliability because they never vary in performance, even under extreme conditions of temperature, shock or humidity. Test our semi-conductor devices. You can count on them to perform with reliability These hermetically sealed, corrosion resistant units perform at full capacity for the life of the equipment. Wherever reliability is important specify NAE.
Here, at North American Electronics, Inc.. we manufacture Silicon Rectifiers, Controlled Rectifiers and Voltage Regulators
to exclusive specifications. These give them the finest
characteristics available. In process, reliability is further
assured by \(100 \%\) testing to all specified parameters.
Get acquainted with NAE devices. Write for specifications, data and details.

\section*{nae Yist in seliabiaity"}


\section*{Permanently Tuned, Ceramic, IF Transformer Is Temperature Stable}

APERMANENTLY tuned, small, ceramic filter may well replace the bulky if cans in commercial broadcast receivers. Though not intended as a direct substitute for if transformers in existing equipment. the device can drastically cut the size of newly designed receivers while obviating if-strip alignment.

Manufactured by U. S. Sonics Corp., 63 Rogers St., Cambridge, Mass., the hermetically sealed, ceramic, if transformer provides a temperature stability of 10 ppm per deg C from - 20 to +80 C . Insulated for 500 wvdc, the filter can take an input voltage of 10 v rms. It can pass 100 g shock levels and 2.5 g vibration levels at any normal frequency.

Made of a lead-zirconate, leadtitanate compound, the filter does not require the metal shielding that takes up so much of the space around conventional wound transformers.

Further, since it does not require tuning, it can be mounted in any convenient part of a chassis. The filter is only 5 - 16 -in. long and \(5 / 16-\mathrm{in}\). in diameter.

Typical power loss for the filter, a mere 1 db , compares with up to 12 db for conventional if transformers. The filter's low loss is due, in part, to its high tolerance to impedance mismatch. A typical unit can be used with output impedances ranging from 500 ohms to \(\overline{5} \mathrm{~K}\) without much change in resonant frequency.

The ceramic in the new filter vibrates in a fundamental morde rather than a harmonic mode so it has only one spurious re-sponse-and that isn't related harmonically to the center frequency. For example, the spurious response for a 455-kc filter is about 100 kc .

One of the unique characteristics of this filter is that it acts as a symmetrical transformer: it can be wired into the

\section*{sust Plug it in} any computer and...
circuitry with either of its leads as input. Axial-lead construction of the device lends itself well to economical automatic assembly techniques.

The shell serves as the rf ground connection. It has no dc connection, so separate provisions would be necessary for biasing tubes or transistors.

Two models of the filter are now available, both tuned to 455 \(\mathrm{kc} \pm 1 \mathrm{kc}\). One model, type A10019C, suitable for transistor circuitry, has a \(10-\mathrm{K}\) input impedance and a \(1-\mathrm{K}\) output impedance. The other version, type \(\mathrm{A} \cdot 5 \mathrm{H} 4 \mathrm{C}\), suitable for vacuumtube circuits, has a \(25-\mathrm{K}\) input impedance and a \(200-\mathrm{K}\) output impedance.

In large quantities, over 10,000 units, the filter is available, on 15-day delivery, at 31 cents per unit. This cost is competitive with the cost of conventional. magnetic, if transformers. But, of course, one would also require an inexpensive choke (for dc return), and a capacitor.
In addition to their if applications, these ceramic filters are also available for other frequencies and bandwidths. Center frequencies can range from 100 kc to 1 mc and \(6-\mathrm{db}\) bandwidths can range from 1 per cent of center frequency to 20 per cent. Input and output impedances can range from 50 ohms to 15 K .

For more information on these small ceramic filters, turn to the Reader-Service Card and circle 252.


Price of the Model 3732P is \(\$ 350\) : delivery 30 days. Other prices. detailed specifications and demonstrations available from all Donner representatives or just drop us a line at the factory. Please address Dept 36.

DONNER
SCIENTIFIC COMPANY
A SUBSIDIARY OF, SYSTADN - IONNER.
CONCORD, CALIFORNIA

\section*{NEW PRODUCTS}

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.


Silicon Rectifiers
Rated to 1 Kv Piv
Double-diffused silicon rectifiers IN3289 through IN3295 have piv ratings from 200 to 1,000 v. Current rating is 100 amp ; transient voltage rating of the \(1-\mathrm{kv}\) unit is \(1,300 \mathrm{v}\). Hard solder construction enables the devices to perform reliably in applications where large temperature excursions are encountered.

General Electric Co., Rectifier Components Dept., Dept. ED, W. Genesee St., Auburn, N. Y. Price: \(\$ 9.50\) to \(\$ 44.00\) ea, OEM quantities.

\section*{Ceramic Diodes Operate at 400 C}

Designed for high-temperature applications, these ceramic diodes withstand 400 C continuously, up to 500 C intermittently. Type Z-6437 ratings are: piv, 200 ; current, 10 amp ; filament, \(2.5 \mathrm{v}, 85 \mathrm{w}\), and peak cathode current, 125 amp . The 2 -amp Z-5434 is rated at 750 v piv. Type Z-5365 is a small unit with anode piv of 1 kv . Filament operates at \(1 \mathrm{v}, 10 \mathrm{w}\). The rectifiers withstand 50 g for \(11 \mathrm{msec}, 20\) g at 2 kc .
General Electric Co., Power Tube Dept., Dept. ED, Schenectady, 5, N. Y.
P\&A: \$146 to \$315 ea; samples from stock.


Piezoelectric Transducer In Rigid Mounting

A variable piezoelectric transducer, the Variducer has a rigid mounting and positive electrical contact for accurate, low-noise measurement of shock velocity, blast pressure, compression and expansion wave durations, force. and other parameters. Pressure range is 0 to \(1,000 \mathrm{psi}\), rise time \(1 \mu \mathrm{sec}\), and voltage sensitivity 30 mv per 1 psi. Operating temperature is 300 C max. Type V-1 uses barium titanate sensor, type V-2 lead zirconate.

Mirax Chemical Products Corp., Dept. ED. St. Louis, Mo.
P\&A: \$100 up; so days.


Servo Galvanometer Is Accurate to 0.25\%
Galvanometer servometers provide full-scale accuracy of \(25 \%\) in any position, under shock, vibration, and varying temperatures. There are no magnetically induced errors, and no damage occurs under \(1,000 \%\) overload. Full-scale response time is 50 msec max. Power required 1.5 w max.

Computer Instruments Corp., Dept. ED, 92 Madison Ave., Hempstead, L. I., N. Y.
P\&A: \$275 up; so to 45 days.


\section*{Low-Noise Amplifier}

\section*{Uses GaSb Tunnel Diode}

Noise figures of 2.5 to 3.5 db have been achieved in stable, high gain, circulator-coupled amplifiers for use at uhf and \(L\) bands. The compact, all solid-state unit has very low power requirements. Noise constant of the GaSb diodes is about 0.7 as compared to 1.35 for Ge. Cut-off frequency is between 2 and 4 Gc . Peak-to-valley ratio is about \(20: 1\).

Micro State Electronics Corp., Dept. ED, Murray Hill, N. J.

\section*{makes power supply news for '61}
with a design for general purpose, continuous duty applications:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MODEL & \multicolumn{2}{|l|}{OC OUTPUT RANGE VOLTS AMPS} & RIPPLE \% rms & & & \[
\begin{gathered}
\text { ONS } \\
\text { D }
\end{gathered}
\] & PRICE \\
\hline PR 15-10M & 0.15 & 0.10 & 4 & \(31 / 2\) & 19 & 137/8 & \$345.00 \\
\hline PR 38.5M & 0.38 & 0.5 & 2 & \(31 / 2\) & 19 & 137/2 & \$325.00 \\
\hline PR 80-2.5M & 0.80 & 0.2 .5 & 1.5 & \(31 / 2\) & 19 & 13\% & \$325.00 \\
\hline PR 155-1M & 0-155 & 0.1 & 1 & \(31 / 2\) & 19 & 13\% & \$325.00 \\
\hline PR 310-0.6M & 0-310 & 0-0.6 & 0.5 & \(31 / 2\) & 19 & 137/0 & \$345.00 \\
\hline PR 15-30M & 0.15 & 0.30 & 4 & 7 & 19 & 137/8 & \$495.00 \\
\hline PR 38-15M & 0.38 & 0.15 & 2 & 7 & 19 & 137/8 & \$475.00 \\
\hline PR 80.8M & 0.80 & 0.8 & 1.5 & 7 & 19 & 13\%/8 & \$450.00 \\
\hline PR 155-4M & 0.155 & 0.4 & 1 & 7 & 19 & 137/ & \$430.00 \\
\hline PR 310-2M & \(0-310\) & 0.2 & 0.5 & 7 & 19 & 13\%/9 & \$430.00 \\
\hline
\end{tabular}

\section*{REGULATION:}

LINE: \(\pm 1 \%\) for \(115 \pm 10 \mathrm{v}\) ac line change at any output voltage within specified range.
LOAD - at maximum output voltage:
Less than \(2 \%\) output voltage change for \(50-100 \%\) load change ( \(3 \%\) for PR \(15-10 \mathrm{M}\) and PR \(15-30 \mathrm{M}\) ). Leas than \(4 \%\) output voltage change for \(25-100 \%\) load change ( \(\mathbf{6 \%}\) for PR \(\mathbf{1 5 - 1 0 M}\) and PR \(\mathbf{1 5 - 3 0 M}\) ). (See Graph below for typical load characteristics)



\section*{PR GROUP FEATURES:}
"FLUX-O-TRAN"
CONSTANT VOLTAGE TRANSFORMER: Delivers regulated square-wave voltage to rectifier, improving rectifier utilization, and reducing output ripple.
ADJUSTABLE WIDE-RANGE OUTPUT:
Continuously variable voltage control permits output settings from 0 to maximum rating.
OVERLOAD PROTECTION:
Special "Flux-O-Tran" transformer and DC overload circuit breaker allow output to be shorted without damage to unit. Ideal for lighting lamps and charging capacitive idea
SILICON RECTIFIERS:
Reliable, efficient, full-wave rectification.
CAPACITIVE FILTERING:
Provides excellent ripple reduction and minimizes transient response characteristics.
NO VOLTAGE OVERSHOOT:
No output voltage overshoot from turn-on, turn-off or power failure.

\section*{NEW 32 PAGE POWER SUPPLY CATALOGI} Featuring:
- 11 Kepco design groups including new "SM", "HB" and "PR" models.
- Separate listing and description of programmable current/voltage regulated models.
- Special nomograph of voltage drop vs. wire size and supply current.
- Dual index to all models
by DESIGN GROUP (inside front cover):
by OUTPUT VOLTAGE (inside rear cover)


\footnotetext{

131-36 SANFORD aVENUE • FLUSHING 52, N. Y. - IN 8-7000 • TWX \# NY 4-5196
}

\section*{NEW PRODUCTS}

Thermoelectric Module


Cooling and heating of electronic systems are provided by the Coron thermoelectric module. Units are available in one, two, four and eight couple modules, in encapsulated and nonencapsulated form.
Sela Electronics Co., Dept. ED, 545 West End Ave., New York 24, N. Y.
P\&A: \(\$ 19.00\) to \(\$ 24.00\); from stock.

\section*{Cleaning Chemicals}

For electronic components. Made for processing semiconductors and other components, cleaning chemicals include de-scaling solutions, bright dips, carbon removers, special paint removers, and epoxy strippers.
Fidelity Chemical Products Corp., Electronic Chemicals Div., Dept. ED, Newark, N. J.

\section*{Adjustable Pot Cores}

455
Operating to 3 mc , Ferroxkor adjustable pot cores have final adjustment accuracy of better than \(0.02 \%\). Each core size is available in three standard effective permeabilities. Made to close tolerances, the units are easily assembled.

Ferroxcube Corp. of America, Dept. ED, Saugerties, N. Y.

Humidity Chamber


Automatically controlled humidity chamber H-104 provides humidity time cycles in conformance with MIL-E-5272C. It will attain a relative humidity of 95 per cent at a dry-bulb temperature of 160 F . Fail-safe control system and variable thermostat are incorporated. Interior is stainless steel.
Wyle Laboratories, Manufacturing Div., Dept. ED, El Segundo, Calif.
P\&A: \(\$ 1,290\); 30 days.


Poly-Thermaiezes-Patent applied lo.



Transformers
PHELPS DODGE COPPER PRODUCTS corporation
INCA MANUFACTURING DIVISION
fort wayne, indiana

CIRCLE OA ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 19, 1961

Heater


Ceramic film heating elements in this heater will not glow, support combustion, or emit odor. System dissipates 8.7 kw , operates from 120/208\(\checkmark\), three-phase power, and weighs less than 4 lb . Requirements of MIL-E-5272C are met.
Therm-O-Lab Corp., Dept. ED, 6940 Farmdale Ave., North Hollywood, Calif.

\section*{Radioisotope Unit}

Portable radioisotope unit, called the Pipeliner, offers 10,20 , and 30 curie power. Radiation source is Iridium 192 housed in a leadtungsten alloy. Unit weighs 60 lb , including controls. Device can be operated remotely, and AEC-recommended radiation levels are maintained.

Picker X-Ray Corp., Dept. ED, 1275 Mamaroneck Ave., White Plains, N. Y.
P\&A: Unit, \(\$ 1,505 ; 1 R\) source, \(\$ 250\) to \(\$ 350 ; 2\) weeks.

\section*{Transformer}

449
For laboratory testing. Called Lab-Pac, this transformer furnishes three phases for any output voltage from 100 to \(640 \mathrm{v}, 30\) to 60 amp ac. Tap switches are changed on three phases simultaneously. An ac voltmeter is provided.
Strong Electric Corp., Dept. ED, 464 City Park Ave., Toledo 1, Ohio.

Variable Transformer
420


419 model 1700 and dc milliammeter model 1702 each provide 10 ranges from 0 to 1.5 to 1,500 . Meter is compensated from 15 to 35 C . Mirror scale length is 5.5 in . Deep core magnet movement has spring-mounted sapphire jewels and hardened steel pivots.
Simpson Electric Co., Dept. ED, 5200 W. Kinzie St., Chicago 44. Ill.
Price: Model 1700, \$160; model 1702, \$135.

\section*{Switching Transistors}

457
Silicon npn planar switching transistors, available in production quantities, include types \(2 \mathrm{~N} 706,2 \mathrm{~N} 706 \mathrm{~A}, 2 \mathrm{~N} 706 \mathrm{~B}, 2 \mathrm{~N} 707\), and the highly reliable 2 N 708 . Units are sealed in a TO-5 case. Life tests indicate little degradation at high temperatures.
General Instrument Semiconductor Div., Dept. ED, 65 Gouverneur St., Newark 4, N. J.

\section*{Power Supply}

459
Silicon power supply operates from 115 v ac , 50 to 60 cps , and provides 24 v dc at 1 amp with low ripple and good regulation. Protection against incorrect polarization is provided. Military requirements are met.
Gates Electronic Co., Dept. ED, 2243 White Plains Road, New York, N. Y.
Price: \$49.

\section*{Switch \\ Switch}


Subminiature switch, model B-2, requires an operating force of 3 oz max. Movement differential is 0.0002 max and operating force differential is \(1 / 2\) oz max. The switch is supplied with either turret or solder-type terminals.

Milli-Switch Corp., Dept. ED, 105 Town Center Road, King of Prussia, \(\mathbf{P a}\).

Timer Motor


Synchronous timer motor has all moving parts sealed in oil for dependable, noiseless operation. Package \(O D\) is \(1-11 / 16 \mathrm{in}\). A spring-loaded packing gland prevents the oil from working out of the housing when motor is operating.
Controls Co. of America, Lake City, Inc., Dept. ED, 110 W. Woodstock, Crystal Lake, III.

\section*{Ceramic Insulators}

453
Miniature dense alumina wafers 0.014 in . thick are available in \(0.03,0.05\), and 0.07 in . squares. Wafers are metalized and gold plated on both sides with no overlap on thin edges. They can be soldered to transistor bases and components.
Ceramics International Corp., Dept. ED, 39 Siding Place, Mahwah, N. J.
Price: \(\$ 0.75\) each for small quantities.

\section*{Selenium Rectifier}

High-current rectifier, called Hi-I, is available in ratings from 200 ma convection-cooled to 33 amp forced-air cooled, half-wave. Stacks rated at up to \(5,000 \mathrm{amp}\) are available. Cells, rated at 33 v ac, can be stacked in series for higher voltage ratings. Applications include electroplating, anodizing, battery charging, welding, and dynamic braking.
Westinghouse Electric Corp., P. O. Box 2099, Pittsburgh 30, Pa.

Radiation Monitor

Fountain-pen size personal radiation monitor clips onto the wearer's clothing. It emits highpitched chirps and flashes a neon light to warn of exposure to radiation. Designated model ORNL, the device uses a mercury cell which gives about 30 days of uninterrupted operation.
Victoreen Instrument Co., Dept. ED, 5806 Hough Ave, Cleveland 3, Ohio.

\section*{Wirewound Resistor}

Molded wirewound resistor type BWH is made in \(\pm \mathbf{5 \%}\) and \(\pm \mathbf{1 0 \%}\) tolerances, with resistance range of 0.24 to 1,000 ohms. Performance requirements of MIL-R-11C are met or exceeded. In RC- 32 size, rating is 2 w at \(70 \mathrm{C}, 1 / 2 \mathrm{w}\) at 137 C .
International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa. Availability: Two weeks.

\section*{Glass-Epoxy Laminates}

450
Slit coils and fabricated parts can be made from continuous glass-epoxy laminates with Mylar facing. The material is said to have excellent electrical properties and chemical resistance, and a high strength-to-weight ratio. It meets AIEE Class \(F\) temperature rating and MIL-P-18177B specifications. Thicknesses from 0.007 to \(1 / 16 \mathrm{in}\). are available.

Spaulding Fibre Co., Inc., Dept. ED, 310 Wheeler St., Tonawanda, N. Y.

Vacuum Evaporation Unit


Automatic control of vacuum system valves and pumps is provided by this vacuum evaporation unit. It evacuates a \(10-\mathrm{in}\). bell jar to 0.1 micron in 2 min , and reaches an ultimate pressure of 0.001 micron. Two pairs of insulated electrodes are on a \(16-\mathrm{in}\). base plate, and six spare feedthroughs are provided.
Mikros, Inc., Dept. ED, 7620 S. W. Macadam Ave., Portland 19, Ore
P\&A: \$2,250 to \(\$ 2,750 ; 15\) duys.
ELECTRONIC DESIGN • July 19, 1961


\section*{Wire-wound, Sealed in Silicone-Ceramic}

NEW MIL-R-26C AMENDMENT 2 IN BRIEF: By means of this new amendment, specification MIL-R-26C is extended to include three sizes of insulated, wire-wound resistors with axial leads. The new insulated resistors meet all requirements of MIL-R-26C including a dielectric strength test (1000-volt, V-block) and an insulation resistance test (1J0-volt, V-block). Currently, tolerance is specified as \(5 \%\) and maximum ambient temperature rating as \(275^{\circ} \mathrm{C}\)

INSULATED RESISTOR CONSTRUCTION: A single layer of resistance alloy wire is wound on a ceramic core. Metal end caps, with axial leads attached by welding, are then fitted snugly over each end of the core. A molded jacket of silicone-ceramic material completes the unit by sealing the entire assembly.

Through research and advanced production know-how, Ohmite is able to introduce this advanced product line to meet the demanding new requirements of its Military and Industrial customers.
\begin{tabular}{c|c|c|c|c|c}
\hline Mil Des. & Char. & Watts & Resist. Range \(*\) & Length \(=.020\) & Dia. \(=.020\) \\
\hline RW67 & V & 6.5 & 0.10 to 3600 ohms & 0.917 & 0.323 \\
\hline RW68 & V & 5.0 & 11.0 & 0.10 to 8200 ohms & 1.823 \\
\hline RW69 & V & 8.0 & 3.0 & 0.10 to 910 ohms & 0.343 \\
\hline
\end{tabular}
*MIL-R-26C limit for single-layer winding
CIRCLE 65 ON READER-SERVICE CARD

RESISTORS SHOWN TWICE SIZE


Anticipating Industry's Needs In Quality Components
All Sizes and Values Available From Distributor or Factory StockWrite for Bulletin.
OHMITE MANUFACTURING COMPANV 3643 Howard Street, Skokie, Illinois
Rheostats - Power Resistors - Precision Resistors \(\bullet\) Variable Transformers - Tantalum Capacitors - Tap Switches - Relays - R.F Chokes•Germanium Diodes•Micromodules

\section*{\(\square\) \\ Textolite \({ }^{\text {/reliability }}\)}

\section*{NEW PRODUCTS}

\section*{Textolite 11571}

RADIO and TELEVIIIONS newest STAR \({ }^{*}\)

The General Electric TV Receiver Department is one of the major manufacturers of television sets sold in the United States. Contributing to this high volume has been the quality achieved through rigid manufacturing procedures. Part of the strict specifications call for Textolite 11571 XXX PC Copper-Clad laminate for use as circuit boards in all of their TV home receivers.

According to a TV Department spokesman, 11571 was selected because of its excellent insulation resistance under humid conditions. It has superior punching characteristics, stands up well in soldering and has good peel strength. Mr. W. W. Ward, Supervisor, Components, TV Receiver Department, said, "Since changing to 11571, production quality has been materially improved. It is the best laminate we've ever used.'

Especially designed for use in television and radio receivers, G-E Textolite 11571 reliably meets UL testing standards, MIL-P 139498 and MIL-P 3115, type PBE-P specifications as well as NEMA \(X X X\) PC requirements. If you manufacture JV or radio equipment, you probably have an application in which 11571 would assure added reliability at a low cost. We will be happy to supply you complete information and samples. Write: Laminated Products Department, Section ED-71, General Electric Co., Coshocton, Ohio.

WESCON Show - Booth 4811


With eight or more switches. Multiple programer counter is made for applications requiring a number of switch contacts at predetermined numbers. Double-deck, end-drive unit will close from one to eight or more switches. Four basic designs are available, with variations to user order

Durant Manufacturing Co., Dept. ED, Milwaukee 1, Wis.

\section*{0}

Open side walls provide access for rack-torack wiring when several racks are arranged side by side in a row. Series PR racks have rear doors only, and series FR racks have both front and rear doors. Standard fittings and accessories are available. Heights range from \(48-1 / 8\) to \(83-1 / 8\) in.

Par-Metal Products Corp., Dept. ED, 32-62 49th St., Long Island City 3, N. Y.
P\&A: \$80.60 to \$257.20; from stock.

Potentiometer


Molded carbon potentiometer series 63 M , is \(1 / 2 \mathrm{in}\). in diameter, and is rated at \(1 / 2 \mathrm{w}\) at 70 C , derated to 120 C . Unit is made for instrumentation and airborne equipment. MIL-R-94B, style RV-6 specifications are met. Resistance values range from 100 ohms to 5 meg \(\pm 10 \%\), with linear tapers.
Clarostat Manufacturing Co., Dept. ED, Dover, N. H

Thermionic Test Cell


A research tool for performing parametric studies in thermionic energy conversion, model B103 thermionic test cell has a replaceable emitter and collector, variable interelectrode spacing, and temperature controls and monitors. Unit has an electron-bombardment heat source Inert gas is used for controlled cooling.
Thermo Electron Engineering Corp., Dept. ED, 85 First Ave., Waltham 54, Mass. Availability: 120 to 150 days.


\section*{for the military equipment designer looking for a complete, single source of reliable, field-proven transistors, rectifiers, and diodes}

With ite line of Mil-type semiconductor devices continually expanding. Motorola now offers 84 hish reliability devices of the "preferred" types as well as many "guidance" types listed by the Department of Defense. This comprehensive selection includes power transistors, milliwatt transistors, rectifiers and zener diodes. In addition to the quality proven by their ability In addition to the quality proven by their ability to meet proven their meliability in many of these devices tewn sis the Minutemnon, Polaris. Ades, Nike-Zeus and
others. Also, Motorola is the first to offer military users componente that were developed to meet the high reliability requirements of the Minuteman program. These are the 101 and 201 Mean ewitch and amplifier types.

If you are working on military equipment, we sugsest you call your local Motorola representative for further information on the types listed below as well ar other types that are presently being tested to the appropriate military specifications.

LISTED BELOW ARE SOME OF THE MORE POPULAR LINES OF MOTOROLA MIL-TYPE TRANSISTORS, RECTIFIERS AND SILICON ZENDER DIODES.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{POWER TRANSISTORS} & \multirow[t]{2}{*}{SILICON ZENER IN29708} & \multicolumn{2}{|l|}{DIODES (S|G.C)} \\
\hline 2N174 (JAN) & 2N1011 (SIG C) & 2N1358 (SIG. C) & & 2N2985B & 1N30018 \\
\hline 2N297A (SIG. C) & 2N1120 (SIG. C) & 2 21412 (USN) & 1N29718 & 1 229868 & 1 N 3002 B \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{MILLIWATT TRANSISTORS}} & 1N2972B & 1 N 29888 & 1 N 3003 B \\
\hline & & & 1 229738 & 1299898 & 1N30048 \\
\hline \multirow[t]{2}{*}{2N331 (JAN)
2N461 (USAF)} & 2 2465 (SIG. C) & \multirow[t]{2}{*}{2N467 (SIG. C)} & 1 N 29748 & 1N29908 & 1N30058 \\
\hline & 2 N 466 (JAN) & & 1N29758 & 1N29918 & 1N30078 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{MESA TRANSISTORS 2N700A (SIG. C) 2N705 (USN)}} & & 1 N 29768 & 1 N 2992 B & 1N3008B \\
\hline & & & 1N29778 & 1N29938 & 1 1 30098 \\
\hline & & & 1N29798 & 1299988 & 1N30118 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SILICON REこTIFIERS (JAN)}} & 1 N 29808 & 1 129978 & 1N30128 \\
\hline & & & 1 N 29828 & 1 N 29998 & 1 N3014B \\
\hline 1N254 & IN538 & INS47 & 1N29848 & 1 N 30008 & 1 N30158 \\
\hline
\end{tabular}

\section*{ANNOUNCING another superior Motorola \\ AIII-8ypo \\ somiconductor- \\ Tho SNYLIE (USN) \\ }

Motorola's new 2N1412 (USN), produced to the requirements of MILS-19500/76A, is the first Mil-type power transistor olfering a collector voltage of 100 volts. This hushy Motorola unit max) enables it to run cooler fer incressed circuit reliability and longer life.

In addition, the Motorola \(2 N 1412\) (USN) is rated for \(100^{\circ} \mathrm{C}\) continuous junction operation and its "low silhouette" TO-36 case requires far less headroom than conventional TO-36 pack. ages. It's ideal for application in high-power, high-efficiency amplifier and switching circuits, and in most cases will replace the commercial 2N1100.

MOTOROLA IS YOUR MOST COMPLETE SOURCE FON HIGN-RELIABILITY MIL.TYPE SEMICONDUCTORS For complete technical information on any of Motorola's Mil type units, phone your Motorola Semiconductor District Office:



 syracuse, M. V., GRanite 4.332 /wlator Fart, Fio., Midway 7.2507

VISIT WESCON BOOTH \#914-916

侖
MOTOROLA
semiconductor Producte Ine.

SOOS EAST MCDOWELL ROAD - PHOENIX B ARIZONA

\section*{Mica Capacitors}

490


Custom-molded capacitors, type RE, have silvered-mica dielectrics and epoxy encapsula tion. Expendable flexible molds formed to any desired contour without tooling or dies permit shaping single or multiple capacitors to customer's requirements. Units meet MIL-C-5 specifications. Tolerances of \(\pm 0.1 \%\) are available.

Federal Pacific Electric Co., Cornell-Dubilier Electronics Div., Dept. ED, 50 Paris St., Newark, N. J.

\section*{Power Supplies}

468


Rack-mounting modules and power supplies are made in a wide range of ratings and sizes. Ripple is less than 1 mv rms; regulation is \(\pm 0.05 \%\) or \(\pm 0.5 \%\), line and load. Input is 105 to \(125 \mathrm{v}, 40\) to 400 cps . Output is adjustable over a \(10 \%\) range.
Technipower, Inc., Dept. ED, 18 Marshall St., South Norwalk, Conn.
P\&A: 550 up; two weeks.

\section*{Photoconductive Cell}


For low light levels and low voltages, type NSL-33 cadmium-sulfide photoconductive cell has a spectral response resembling that of the human eye. Recommended illumination range is 0.01 to \(1,000 \mathrm{ft}-\mathrm{c}\). Device, intended for photometric applications, is tubular and hermetically sealed. Diameter is 0.378 in., length is 1.25 in .
National Semiconductors Ltd.. Dept. ED. 230 Authier St., Montreal 9, Canada.

\section*{Magnetic Rectifier Control}


Silicon controlled rectifiers can be fired by model MRC-6203 magnetic rectifier control. Unit is full wave, isolated, with no common connections between the SCR load and the control windings. A high, narrow 3 -msec output pulse of \(9 \mathrm{v}, 1 \mathrm{amp}\) is generated. Module measures \(4-9 / 16 \times 3-1 / 16 \times 3-5 / 8 \mathrm{in}\).

Fairfield Controls, Inc., Dept. ED, 114 Manhattan St., Stamford, Conn.

\section*{Instrument Counter}

462


High-speed digital readings provided by instrument counter model D indicate tool movements within 0.001 in . Maximum speed is 1,500 rpm, giving up to 150,000 increments per minute. Counter is applicable to navigational and tracking instruments.

Durant Manufacturing Co., Dept. ED. Milwaukee 1 , Wis.

\section*{Cable Identification Tapes}

498


Coded identification tapes called Identitape can be used to mark cables in assembly procedures. Markers are supplied on cards from which they are easily removed. A range of materials and colors, as well as shrink-on type, is available. Military specifications are met. Tapes are made to reduce time and guesswork at assembly.
Manger Electric Co., Inc., Dept. ED, Miller St., Stamford, Conn.
Availability: Two days.

Millivolt Source


Calibration. linearity and drift measurements are easily made with millivolt source model 205. Linearity, step attenuator accuracy, and stability are \(0.1 \%\) each. Full-scale outputs are \(1,000,100\), and 10 mv . Mercury battery supplies power for 1.000 hr of operation.
Monroe Electronic Laboratories, Inc., Dept. ED, 21 Vernon St., Middleport. N. Y.

Vane-Axial Fans


Produce 50 to \(\mathbf{5 0 0} \mathbf{c f m}\). Series 60 vane-axial fans operate at \(3,400 \mathrm{rpm}\) on 115 v , singlephase, 60 -cps current. They provide from 50 to 500 cfm at static pressures ranging from \(1 / 3\) in . through 1 in . of water static pressure. There are 10 standard models.
Joy Manufacturing Co.. Dept. ED, Henry W. Oliver BIdg., Pittsburgh 22. Pa.

\section*{Power Transistors}


Industrial power transistors, types 2N5:38 through \(2 N 540 \mathrm{~A}\), have a maximum dissipation of 30 w at a base-mounting temperature of 25 C. Each transistor weighs less than 6 g and requires \(1 / 3 \mathrm{sq} \mathrm{in}\). of chassis space. Units are made for servo motor controls, power amplifiers, converters, regulated power supplies, and low-speed power switches.

CBS Electronics, Dept. ED, 100 Endicott St., Danvers, Mass.


For rocket and satellite sun trackers, photoelectric sensors have various angular characteristics for servo control, spin detection, and aspect determination. Type EA-3 amplifier conditions sensor signals for servo or telemetering applications, providing a 5-v output. Weight of sensor assemblies is about 10 g , of amplifier, about 30 g .

Ball Brothers Research Corp., Dept. ED, Boulder Industrial Park, Boulder, Colo.

\section*{Digital Recording Head}

448
Photographs and digital data can be recorded simultaneously on the same film with this digital recording head. The device converts transducer signals to code suitable for digital photo recording. Codes can be recorded at rates up to 300 frames per sec. A code scanning unit types out data recorded on all frames. Any number of code bits can be accommodated

FMA, Inc., Dept. ED, 142 Nevada St., El Segundo, Calif.

Heat-Resistant Coating
489


Temperatures over \(4,000 \mathbf{F}\) are withstood by PyroShield 21 coating. Furnished in powder form and mixed with water, it is applied by brush, spray, or dip. Coating withstands 2,000 \(\mathfrak{F}\) for more than an hour, while protected surface remains under 350 F . Coating can be washed away after a fire, or, for permanent protection, can be covered with paint or enamel. Columbia Technical Corp., Dept. ED, Woodside 77, N. Y.

\section*{HAMILTON STANDARD ANNOUNCES...}

\section*{4 new static inverters specifically designed for aircraft and missiles}


Hamilton Standard has developed a new line of 100 VA and \(500-\mathrm{VA}\) inverters that establishes an important increase in inverter reliability and performance. The units are specifically designed for airborne use. They possess extremely high overload and short circuit capacity and offer wide operating ambient temperature ranges. The basic design is modular and utilizes silicon transistors throughout. The packages are small, compact and deliver high over-all power-toweight ratios.
AS MAIN OR STANDBY AC POWER SOURCE, these new inverters can now replace much of the rotary equipment presently in use on aircraft and missiles for supplying power to:
- Gyros - De-icing and other heating equipment
- Radar - Warning and emergeney devices
- Telemetry - Communication equipment
- Instrumentation - Guidance systems

CHARACTERISTICS OF 100-VA and 500-VA STATIC INVERTERS
\begin{tabular}{|c|c|c|c|c|}
\hline RATING
part MO. & \[
\begin{aligned}
& 100 \text { ver } \\
& 555546
\end{aligned}
\] & \[
\begin{aligned}
& 100 \text { vas } \\
& 565480
\end{aligned}
\] & \[
\begin{aligned}
& 100 \text { va } \\
& 566470
\end{aligned}
\] & \[
\begin{aligned}
& 500 \mathrm{va} \\
& 570250
\end{aligned}
\] \\
\hline Output Froege (Mom.) Frequency & 400 \({ }^{115} 0.25 \%\) & \[
\begin{gathered}
11500200 v \\
400 \pm 1 \%
\end{gathered}
\] & \({ }^{1000 \pm 15 \%}\) & \[
\begin{aligned}
& 1150.200 \% \\
& 000 \pm 0.25 \%
\end{aligned}
\] \\
\hline Phases & Thices & Single or three & Single & Single or three \\
\hline Transient Protection & Yes & Yes & Ves & Ves \\
\hline Tomp. Ranges & \(-55^{\circ} \mathrm{C} 10125{ }^{\circ} \mathrm{C}\) & \(-550 \mathrm{C} 1085{ }^{\text {c }}\) & \(-550 \mathrm{C} 10710 \mathrm{C}\) & \(-55{ }^{\circ} \mathrm{C} 10125{ }^{\circ} \mathrm{C}\) \\
\hline Input oltage (Range) & 18.28 vac & 20.28 vac & 20.29v dc & 14.280 \\
\hline
\end{tabular}


UNITED AIRCRAFT CORPORATION MAMTITOW STANDABD DIVISTOW

\section*{NEW PRODUCTS}

Antenna Multi-Coupler


Made for vif, lf, and mf bands, the type NV-2 multi-coupler feeds up to six independent receivers. Input and output impedance is 60 ohms, gain is \(3-\mathrm{db}\) max, and interaction between outputs is 35 db below signal level. Unit weighs \(16-1 / 2 \mathrm{lb}\) and mounts on a \(19-\mathrm{in}\). rack.

Rohde and Schwartz Sales Co. Inc., 111 Lexington Ave., Passaci, N. J.

\section*{AC Millivoltmeter}

Accuracy is \(\mathbf{1 \%}\). Model VT-3A ac millivoltmeter, for measurements as low as 10 mv , has a response of 20 cps to 600 kc , at \(1 \%\) accuracy, or \(1 / 2 \mathrm{cps}\) to 5 mc . It has a total of 12 voltage ranges; input impedance is 22 meg max on all ranges. Weight is \(3-1 / 2 \mathrm{lb}\); dimensions are 6 x \(9 \times 5 \mathrm{in}\). It is portable.

Electronic Applications Co., Dept. ED, 10916 Basye St., El Monte, Calif.
Pricp: \$295.

Time Delay Relay


Miniature, hermetically sealed time delay relay has ranges from 15 sec to over 30 min with \(2 \%\) accuracy. Contacts are rated for 3 amp at 125 v ac, 30 v dc; lifetime is 50,000 operations min . Units measure \(1 \times 2 \times 4 \mathrm{in}\)., have flange or bracket mountings, and meet MIL specs.

Giannini Controls Corp., Cramer Div., Dept. ED, Centerbrook, Conn.
\[
\mathbb{Z}
\]

\section*{Now! 100\% power testing of 1N536-1N561 series rectifier cells gives greater reliability ...at no extra cost!}

Now you can get Westinghouse power semiconductor quality in this popular, low-current rectifier series. Complete in-service reliability is assured by \(100 \%\) Power Testing. Each and every one of these rectifiers is tested under full-load conditions-which simulate actual field operation. This exclusive Westinghouse procedure, developed through years of experience in high-power silicon rectifiers, has resulted in high reliability standards.
Each cell is completely tested under the severest combination of current, voltage, and temperature. Westinghouse gives this assurance of extra reliability, yet the Westing house 1 N536-1N561 series rectifiers cost no more than other makes.

Features Include: New fused, double-diffused construction Ambient operating temperature minus \(65^{\circ} \mathrm{C}\) to plus \(165^{\circ} \mathrm{C}\) - Typical forward drop at 1 ampinstantaneous at \(25^{\circ} \mathrm{C}-.95\) volts \(\quad\) Hermetically sealed encapsulation.
The 1N536-1 N 561 series rectifier cells are immediately available in quantities for all requirements. Why settle for less? Insist on rectifiers which have been \(100 \%\) Power Tested. Whether the rectifiers you want are large or small . . . You can be sure . . . if it's Westinghouse.

SC-1043
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{For "off the shelf" dallvery, order from these Weatinghousa Distributors:} \\
\hline Eastemm & MIOWESTE \\
\hline ACK SEMICONOUCTOR INC Grmiacmam 5. Als, Fa & ELECTRONIC COMPONENTS FOR IMOUSTRY CO St Loun, Mo /wo 2.9817 \\
\hline Cameradio Pimberret, Po./EX1-0000 & Mallmank imstrumewrs conp oalles, Tolea/R1 70000 \\
\hline  & inter state radio e supply co. \\
\hline ELCETMOMIC WhOLESALERS. ImC & Lement co \\
\hline  &  \\
\hline CEMESEE TADIO PARTS CO \(\qquad\) & semicomouctor spicialists. Inc Chicese. III /MA 2 -san \\
\hline mamm elteet electmomics, inc amimero. Ma/TU 9-4242 & \begin{tabular}{l}
8. stemime co \\
Dotrati, Mrat /BR 3280
\end{tabular} \\
\hline micear electmomics & \begin{tabular}{l}
UMITED EADIO, IMC \\
Cuermanti, Onio/ma I
\end{tabular} \\
\hline  &  \\
\hline \begin{tabular}{l}
sCWWEELE ELECTROMICS \\
Lone Inland. M Y/P1 6.6520 \\
siver sorine. Md /JU 5.7023
\end{tabular} & \begin{tabular}{l}
mamiton electmo sales \\
 mewark electaomics co ingeod, Coil /on \(\mathbf{4 . 4 4 0}\)
\end{tabular} \\
\hline
\end{tabular}

Westinghouse Electric Corp., Semiconductor Dept., Youngwood, Pa.

\section*{Portable Meters}

Taut-band suspension mechanisms are used in a series of port able ac and dc ammeters and volt meters. Scale lengths are 6 and \(10-1 / 2\) in., with arcs of 100 and 240 deg. Accuracy is within \(1 / 2 \%\)

Westinghouse Electric Corp. Dept. ED, P. O. Box 2099, Pittsburgh 30, Pa.

\section*{Electron Beam}

Power Supply


Output of \(6 \mathbf{k w}\) is provided by this electron beam power supply. model A2632, made for welding. cutting, vacuum melting, and metal purification. Bias, focus, overvoltage trip and overcurrent trip are adjustable. Input power is 208 \(\mathrm{v}, 30 \mathrm{amp}, 3\) phase.

Del Electronics Corp., Dept. ED 521 Homestead Ave., Mount Vernon, N. Y

\section*{Missile Battery}

Activates in 1 sec, automatically. Model 79 24-v missile battery has a discharge time of 0.83 min when discharged at 10 amp , a capacity of \(0.14 \mathrm{amp}-\mathrm{hr}\) and an output of \(3.06 \mathrm{w}-\mathrm{hr}\) per lb and \(0.19 \mathrm{w}-\mathrm{hr}\) per cu in. It performs at an altitude of \(50,000 \mathrm{ft}\). Weight is 1.1 lb .

Electric Storage Battery Co. Missile Battery Div., Dept. ED P. O. Box 11301, Raleigh, N. C.

\section*{Solenoid Valves}

625
Seven siঞes: \(3 / 8,1 / 2,3 / 4,1\), \(1-1 / 4,1-1 / 2\) and 2 in. are offered. Types \(Q\) and \(Q-1\) solenoid valves are UL listed. General purpose type \(\mathbf{Q}\) is for air and water at 5 to 400 psi, temperatures to 250 F and steam pressure to 15 psi. Type Q-1 handles steam only from 5 to 150 psi and temperatures to 365 F .
J. D. Gould Co., Dept. ED, 4707 Massachusetts Ave., Indianapolis 18, Ind.

From the Indiana Steel Products Division
of INDIANA GENERAL CORPORATION


Typical Demagnetization and Energy Product Curves for Indox I, V and VI

\section*{Indox magnets for creative designers... and tough inspectors, too}
\begin{tabular}{|c|c|c|c|}
\hline & Imeox I & Imeox y & mboex VI \\
\hline Coercive force ( \(\mathrm{H}_{\mathrm{c}}\) ), Oersteos & 1,825 & 2.000 & 2,550 \\
\hline Residual Induction ( \(\mathrm{B}_{\text {r }}\) ), Gauss & 2,200 & 3,840 & 3,200 \\
\hline Peak Energy Product ( \(\mathrm{B}_{4} \mathrm{H}_{3}\) ). Max. & \(1.0 \times 10^{68}\) & \(3.5 \times 10^{3}\) & \(2.4 \times 10^{8}\) \\
\hline Reversible Permeability & 1.2 & 1.05 & 1.06 \\
\hline Reversible Temperature Confficient (Magnetic) & \(-0.19 \% /{ }^{\circ} \mathrm{C}\) & 0.19\% \(/{ }^{\circ} \mathrm{C}\) & -0.19\%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Magnetization field for Saturation, Oersteds & 10,000 & 10.000 & 10,000 \\
\hline Chemical Composition & BaFe \({ }_{12} 0_{1,9}\) & \(8 \mathrm{CFe} \mathrm{l}_{1:} 0_{1: 1}\) & Bafe \({ }_{12} \mathrm{O}_{10}\) \\
\hline Specifit Gravity & \[
\begin{array}{r}
4.7 \text { or } \\
0.17 \mathrm{lb} / \mathrm{cu} \text { in }
\end{array}
\] & \[
\begin{array}{r}
5.0 \text { or } \\
0.181 \mathrm{lb} / \mathrm{cu} \text { in }
\end{array}
\] & \[
\begin{array}{r}
4.5 \text { or } \\
0.162 \mathrm{Ib} / \mathrm{cu} \text { in }
\end{array}
\] \\
\hline
\end{tabular}

Indiana's Inoox ceramic permanent magnets not only open the doors to new and better design - they give you the added bonus of tested, proved reliability.
Build it smaller, build it cheaper, build it better. How? With Indox ceramic magnets.
Why? Indox provides high resistance to both demagnetization and radiation environments; high resistivity means low eddy current losses; low incremental permeability; high energy per unit weight.
Where? Some of the performance proven Indox applica tions include loud-speakers, ion pumps, traveling wave tubes, holding devices, sonar magnetostriction units, synchronous drives, generators, motors
Why Indiana? Because nobody in the business has the wealth of experience in ceramic magnet manufacture and engineering know-how. We can cite examples of INDox success stories where other materials have failed. If you want to know more about this outstanding material in relation to
your own designs, write or call us. Ask for Bulletin 18 .

INDIANA


OIENERAL

INDIANA STEEL PRODUCTS
Phone HOward 2-3131 - Direct Distance Dialing Code 219

\section*{VALPARAISO, INDIANA}

INDIANA PERMANENT MAGNETS CIRCIE 70 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

Power Supply


Dynamic regulation of \(\pm \mathbf{0 . 1} \%\) line and \(\pm 0.5\) \(v\) load is maintained by dc power supply MTR2830 over its output range of 24 to 32 v dc, 30 amp. A transistor series regulator eliminates transients; a magnetic amplifier provides static regulation of \(\pm 0.1 \%\) line and load. Ripple is 5 mv , dynamic impedance 30 milliohms max from 0 to 20 kc .

Perkin Electronics Corp., Dept. ED, 345 Kınsas St., El Segundo, Calif.

\section*{Tape Cartridges}

423


Continuous-loop tape cartridges, models M-4. M-6, and M-8A, accommodate tape lengths from \(6-1 / 2 \mathrm{ft}\) to \(1,700 \mathrm{ft}\), and, using double-oxide tape in a moebius loop, play from 10 sec to 128 min at \(3-3 / 4 \mathrm{ips}\). Lock automatically secures tape during shipping and handling.
Viking of Minneapolis, Inc., Dept. ED, 9600 Aldrich Ave., S. Minneapolis 20, Minn.

Capacitor Retaining Clamp


For plug-in capacitors. Clamps are open-loop type with a built-in tension loop, and are available for several case diameters. Cam-action locking clips are said to hold capacitors securely against vibration and to permit fast closure and removal. Design conforms to MIL-C-8603 (ASG) specifications.
Birtcher Corp., Industrial Div., Dept. ED, 745 S. Monterey Pass Road, Monterey Park. Calif.

ELECTRONIC DESIGN • July 19. 1961

\section*{Immediate} delivery! EINETCO

CAPACITORS
in quantities up to 500 Per Ifem CONTACT THESE AUTHORIZED ELMENCO INOUSTRIAL DISTRIBUTORS
 M. 7th St., Phooniz









 ulumois: Mamart Eioctronites cern., 223 w. haol son st. Chices
 Elestronces, Inc., 2oso Rock Rose Avenue, batit
 massacnusetrs: cramer Electrones lue. sil
 MEW JERSEV: Federace Purcher

 MEw mexico: Eloctronics Ports co., Inc., 222 Compl2 Lomai Bl, N. E., Aibuquerque: Ratio

 Sta Ave. N. Y., Harvey Ratio co. inc., 103 w . 100 sizith Ave., , i. Y. 13, stact lin ustriai Elocei:

 pemusrivamic: Alme Radio co,
 Columbia Ave. Lencaster, corcite o. Revioy co


 TEXAS: All-stane Elect. the


 UTRA: Carter suppiy co., 3214 washington Blvo., ogden
 CaMADA: Electro sonic supply Co., Lte., 543 Yonge street, foromio s. ont.
\(\square\)
 Another New Nigh Crder of Reliability!


ASSURE A LOW FAILURE RATE OF Only 1 Failure in 7 Iteenelo Unit-Hours for 0.1 MFD Capacitors* \(14,336.000\)

\section*{Setting A New Hlgh Standard Of Performancel}
\(\star\) Life tests have proved that E-Menco Mylar-Paper Dipped Capacitors - Iested at \(105^{\circ} \mathrm{C}\) with rated voltage applied have yielded a failure rate of only 1 per \(1,433,600\) unit-hours for 1.0 MFD. Since the number of unit-hours of these capacitors is inversely proportional to the capacitance, 0.1 MFD El-Menco Mylar-Paper Dipped Capacitors will yield ONLY 1 FAILURE IN 14,336,000 UNIT-HOURS. CAPACITANCE AND VOLTAGE CHART - Five cose sizes in working voltoges and ranges


\section*{SPECIFICATIONS}

\section*{- TOLERANCES: \(10 \%\) and \(20 \%\). Closer iolerances} avoilable on request.
- INSULATION: Duraz phenolic, epory vacuum
- impregnoiod.
- LEADS: No. 20 B \& \(S\) (.032") onnooled copper clad steol wire crimped beods for printed circuil
- DIELECTRIC STRENGTH: 2 or \(21 / 2\) limes rolod vollage, depending upon working vollage.
- insulation resistance at \(25^{\circ}\) C: For osmpd or less, 100,000 magohms minimum, Grooler than .OSMFD, 5000 megohm -microforad - insulation resistance at \(105^{\circ} \mathrm{C}\) : For OSMFD or less. 1400 megohms minimum. Greater than powi. ra magehm-microlorods.
- power factor at \(25^{\circ} \mathrm{C}: 1.0 \%\) maximum at

These copacitors will exceed all the electrico equirements of E. I. A. specincation RS. 164 and Military specinteations MIL-C.918 and MIL-C-25C. Write for Tochnical Brochure

CIRCIE TI ON READER-SEAVICE CARD ELECTRONIC DESIGN • July 19. 1961

\section*{World's Most Compact, Lightweight 81/2" \(\times 11^{\prime \prime}\) XY-(1) REGORDER: \\ }

\section*{NEW PRODUCTS}

Film Resistors


Microminiature film resistors are 0.135 in . in diameter and 0.05 in . long. They are rated at \(1 / 8 \mathrm{w}, 250 \mathrm{v}\) at 100 C , and are derated to 150 C . The resistance range from 25 ohms to 110 K is covered with \(1 \%\) and \(2 \%\) tolerances. The noble metal film resists oxidation and moisture, and is not affected by low temperatures.

American Components, Inc., Dept. ED, 8th Ave, and Harry St., Conshohocken, Pa.
P\&A: \(\$ 4.00\) to \(\$ 1.00\); from stock.

\section*{Infrared Equipment}

458
Produces up to 3,000 F. High-intensity infrared equipment uses fluid cooling to obtain the maximum capabilities of quartz lamp sources. Product temperatures up to \(3,000 \mathrm{~F}\) can be produced in continuous operation. The equipment can be readily adapted to custom designs.
Fostoria Corp., Engineered Products Div.. Dept. ED, Fostoria, Ohio.

Solenoid Valves


Miniature three-way, brass solenoid valves, series BM-300, handle differential pressures up to 200 psi . ON, NC, directional, and freeventing types are available. Valves weigh 15 oz, measure \(3-47 / 64 \mathrm{in}\). over-all. Liquids and gases from -45 to +150 F are handled. Operating time is 8 to 12 msec . Special models rated at 500 psi and -60 to +350 F are available.
Allied Control Co., Inc., Dept. ED, 2 East End Ave., New York 21, N. Y.


\section*{development}


FIRST CLASS
PERMIT
NO. 515
HAWTHORNE,
CALIFORNIA

\section*{BUSINESS REPLY MAIL} NO POSTAGE STAMP NECESSARY IF MAILED IN UNITED STATES

\section*{POETAGE WILL BE PAID BY-}

Pacific Semiconductors, Inc.
12955 Chadron Ave.
Hawthorne, California

\section*{File for ready reference}

you should specify


72 high performance triple diffused silicon mesa transistors available now from PS!!
\begin{tabular}{|c|c|c|c|}
\hline WIGM SPEE & 2N1837 & 2N1613 & 2N1335 \\
\hline SwITEWIM & 2N1837A & 2N1711 & 2N1337 \\
\hline tramsistars & PT850 & 2N1893 & 2N1338 \\
\hline & PT850A & BEMEAM PURPESE & 2N1342 \\
\hline 2N706 & STAMRAME & swirswime & 2N1505
2N1506 \\
\hline 2 N706B & switculm & TMAMSISTOAS & 2N1709 \\
\hline 2N708 & TRAMSISPC & 2N1336 & 2N1710 \\
\hline 2N753 & & 2N1339 & PT530A \\
\hline 2N834 & 2N497 & 2N1344 & PT531 \\
\hline 2N919 & 2 N 498 & 2N1838 & PT613 \\
\hline 2N920 & 2N656
2N657 & 2N1839
2N1840 & PT720 \\
\hline 2N921 & 2N696 & & \\
\hline 2N922 & 2N697 & SPECIM NIPCSE & WF WI \\
\hline 2N1252
2N1253 & 2N698 & 8wITCWINC & POwE \\
\hline 2 N 1253 & 2N699 & Thumistens & TMumistens \\
\hline PTETMTMM & 2N717
2N717A & 2N1340 & 2N1899 \\
\hline SWITEWIMS & 2N718 & PT600 & 2N1900 \\
\hline TRAMSISTCES & 2N718A & PT601 & 2N1901 \\
\hline & 2N719 & & 2N1902 \\
\hline 2N1409 & 2N719A & commumicatiom & 2N1903 \\
\hline 2N1409A & 2N720 & TMasiston & 2N1904 \\
\hline 2N1410 & 2N720A & & PT900 \\
\hline 2N1410A & 2N1420 & 2N707 & PT900-1 \\
\hline
\end{tabular}

FOR IMMEDIATE ACTION-MAIL CARD Pestege mad reply card below will brine you, by return mail, complete specifications on the PSI Triple Diffused Silicon Mesa Transistors you check-including curves, electrical characteristics, dimensional drawings-and complete, up-to-the-minute short-form PSI transistor catalog. AM Free-man mow.

Gentlemen: Please send full data on transistors checked:
\begin{tabular}{llll}
\(\square 2\) 2N696 & \(\square 2\) N1342 & \(\square 2\) N1709 & \(\square\) 2N1899 \\
\(\square 2\) N697 & \(\square 2\) N1409 & \(\square 2\) N1710 & \(\square\) PT600 \\
\(\square 2\) N706 & \(\square 2\) N1410 & \(\square 2\) N1837 & \(\square\) PT601 \\
\(\square 2\) N706A & \(\square 2\) N1410A & \(\square 2\) N1837A & \(\square\) PT850 \\
\(\square 2\) N1336 & \(\square 2\) N1420 & \(\square 2\) N1838 & \(\square\) PT850A \\
\(\square 2\) N1338 & \(\square 2\) N1505 & \(\square 2\) N1839 & \(\square\) PT900 \\
\(\square 2\) N1340 & \(\square 2\) N1506 & \(\square 2\) N1840 & \(\square\) PT900-1
\end{tabular}
\(\square\) also send complete. short-form PSI transistor catalog
NAME

ADDRESS
\(\qquad\)


PSI TRANSISTOR TO. 51 PACKAGE


HIGH PERFORMANCE COMPUTER LOGIC SWITCHES
\(\mathrm{T}_{\mathrm{s}}<25 \mathrm{~ns} \cdot \mathrm{~V}_{\mathrm{CE}}(\mathrm{sat})<.2 \mathrm{~V} \cdot 250 \mathrm{~mW}\) Dissipation @ \(25^{\circ} \mathrm{C}\)



Bandwidths of 2 ke to 30 kc at 6 db with a center frequency at 10.7 mc are provided by a series of six crystal filters. Designated series FB, the units are hermetically sealed. Insertion loss is 4 db max; in-band ripple, 0.8 db max; ultimate rejection, 105 db min. Units occupy less than 2.5 cu in . and operate from -55 to +90 C .
Midland Manufacturing Co., Dept. ED, 3155 Fiberglas Road, Kansas City 15, Kan.
Availability: From stock.

DC Driver


Ask for your copy of the new Ask for your copy of the new
up-to-the-minute "Micro-Ep-toctronics Catalos" and "PSI Micro-Diode Reliability Report"
Available at PSI Distributors coast-to-coast

\section*{Pacific Semiconductors, Inc:} A a subsidiary of thompson ramo wooloridge inc.
12955 Chadron Avenue, Hawthorne. Callf. . Cable: PSISOCAL CIRCLE 75 ON READER-SERVICE CARD

Flip-fiop fan-out capabilities are extended to 64 AND or OR gate loads per output with the T-163 dc driver. Standard T-series container measures \(7 / 8 \mathrm{in}\). diameter by \(2-3 / 16\) in. seated height, with \(9-\) pin plug-in base.
Engineered Electronics Co., Dept. ED, 1441 E. Chestnut Ave., Santa Ana, Calif.

P\&e.4: \(\$ 32.50\) ea; stock.

Digital Readout

There's a PSI Micro-Transistor for every design requirement and every assembly technique. If you're planning a new and original computer design let us hear from you. Just call Bill Eckess, OSborne 9-2281, TWX : HAW CAL 4270 or write PSI Micro-Electronics Division.


Four-unit digital readout assembly 20000 P features quick disconnect and plug-in. Entire assembly may be removed from panel front, or lamp and terminal assembly may be disconnected from the rear. Assembly may be potted to specification.

Industrial Electronic Engineers, Inc.. Dept. ED. 5528 Vineland Ave., North Hollywood, Calif.
P\&A: \$129.50; so days.
<CIRCLE 74 ON READER-SERVICE CARD

NEW PRODUCTS

Heat Dissipators
496


One-piece aluminum heat sinks, made in three basic package sizes with configurations for mounting JEDEC transistors and diodes, contain no welded or brazed joints. Cooling fins are radially arranged. Low profile makes the dissipators suitable for circuit card uses.
U. S. Heat Sink, Dept. ED, 637 S. Isis Ave., Inglewood, Calif.

\section*{Pot Tapping Kit}

Snap taps to simulate nonlinear or special functions in the RVBC2 and RVC2 precision pot may be inserted with this portable tapping kit. Goniometer and chuck assembly, insertion tool, and necessary accessories are included.
Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.

Delay Line


Delay time of \(24.65 \mu \mathrm{sec}\) is provided by delay line model 332. Designed for aircraft transponder use, the line is hermetically sealed for operation to \(60,000 \mathrm{ft}\); temperature range is -65 to +105 C . Weight is 14 oz , size \(1.625 \times 2.45 \mathrm{x}\) 3.3. Output rise time is \(0.60 \mu \mathrm{sec}\). Ten taps with tolerances of 0.1 \(\mu s e c\) are provided. Attenuation is 4 db .
Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.

\section*{Concerned about these radiation}


NEW YORK-Pulse nuclear radiation which could temporarily disable avionics controls in a weapon system and thus jeopardize the success of the weapon's mission is becoming the subject of serious military and industry concern.
The extremely brief, but very high intensity pulses of radiation that occur immediately following a nuclear explosion can produce disrupting transients or erratic operation of avionic equipment at distances from the detonation point that were once considered to be safe for equipment.
aviation week, 8/8/60, Page 58
Increasing use of nuclear energy in propulsion systems and weapons, as well as the exposure of space systems to Van Allen and cosmic radiation, is causing growing interest in the effects of nuclear radiation on complex electronic systems. One of the more significant phenomena that occur under high-level nuclear radiation is the transient effect, leading to circuit malfunction as opposed to permanent damage.
. shields or protective covers that surround typical electronic systems are almost completely transparent to these radiations.

ELECTRONICS, 2/10/61, Page 62


\section*{G. E. OFFERS THREE ANSWERS TO}

\section*{1. G-E 5-STAR TUBES}


Special heavy-duty construction, highest quality materials, and low boron-content glass envelopes give G-E 5-Star tubes an increased tolerance to steady-state radiation and provide faster recovery time to pulsed gamma radiation. Integrated gamma dosage up to \(10^{9}\) roentgens and approximately \(10^{18}\) integrated fast neutron flux (NVT) can be sustained without permanent damage. For temperatures up to \(220^{\circ} \mathrm{C}\)., G-E 5-Star tubes offer the ultimate in high-output performance and reliability under the most adverse conditions of vibra-
tion and shock. tion and shock.

\section*{2. CERAMIC TUBES}


Microminiature ceramic tubes, when adapted to your present circuitry, can increase steady-state radiation tolerance to as high as \(10^{11}\) roentgens and 1010 NVT. In addition, the effects of pulse radiation are reduced considerably if the tubes are operated at higher temperatures. These reductions are proportionately greater as the tube operating temperature is increased to its maximum, up to \(500^{\circ} \mathrm{C}\).
Rigid, compact construction of ceramic tubes makes them extremely resistant to shock and vibration and provides the smallest equipment package using standard circuitry components.

\section*{problems in the news?}


Frequently it is desirable to operate in a high radiation area and protect equipment by shielding.
preliminary considerations seem to rule out protection by shielding for present payloads. The range of a \(100-\mathrm{mev}\) proton is about 1.5 cm in lead; since about half of the damage is produced by the protons above 100 mev , it is clear that several cm of lead will be required to increase semiconductor lifetime significantly
cascade products are forward scattered in addition to other less preferentially radiated products, it appears that the use of thin shields may lead to an increase in damaging radiation.

Proceedings of the IRE, 5/60, Page 952

Researchers who recently uncovered a new radiation hazard are now searching for ways to counteract it. When transient radiation (gamma rays and neutrons) strikes electronic instruments, they act up, components don't function properly, and false data are sent out or received. Dose rates don't have to be high, and even "safe" radiation levels are unsafe for electronics, says the Defense Dept. Implications are serious because computers, missiles, and defense electronics systems are all susceptible.

MACHINE DESIGN, \(8 / 18 / 60\), Page 23


\section*{NUCLEAR RADIATION PROBLEMS}

\section*{}


TIMM circuits, inherently resistant to radiation, are made of ceramic and titanium components which tolerate nearly 10,000 times the steady-state radiation of circuits employing solidstate devices, and more than 1,000 times greater high-intensity pulse radiation. No transients were produced in the output of a test TIMM during a \(5 \times 10^{7} \mathrm{R} / \mathrm{sec}\). dose rate pulse.
TIMM circuits operate at \(580^{\circ} \mathrm{C}\)., utilizing normal heat osses to increase efficiency: B+ power usage is no more than solid-state circuitry. High, constant temperature provides improved circuit stability. Rugged, microprovides improved circuit stabire construction is highly resistant to shock and miniature construction is hight resistant and allows component densities as high as one million parts per cubic foot.

Write for your free radiation file folder containing tion file folder containing all the latest informatinn on components and applications data. To: General Electric Co. Receiving Tube
Owensboro, Kentucky


Progress /s Our Most Important Product

\section*{GENERAL ELECTRIC}


For oscilloscope calibration and time measurements. Model 166B time generator gives intensitymodulated time markers synchronized to the trace of the firm's 160B and 170 A oscilloscopes. It provides marker intervals of 10,1 or 0.1 \(\mu \mathrm{sec}\) with an accuracy of \(\pm 0.5 \%\).

Hewlett Packard Co., Dept. ED, 1501 Page Mill Road, Palo Alto, Calif.
P\&A: 130; 10 weeks.

Transistor Testers
353


An electronic servo automatically sets transistor biases in the series TAB transistor testers. Basic parameters of \(n p n\) and pnp, small and medium power transistors can be measured. Collector voltage range is 0 to 30 v dc ; current range is 0.1 to 100 ma ; base current, -1 to 100 ma .
Deltron, Inc., Dept. ED, 4th and Cambria Sts., Philadelphia 33, Pa. Price: \(\$ 240\) to \(\$ 305\).

Ripple Meter
447


For aircraft and missile de power supplies, model T256 ripple meter measures peak-to-peak, plus peaks, minus peaks and rms. It can be batterv or line powered.
Avtron Mfg., Inc., Dept. ED, 10409 Meech Ave., Cleveland 5, Ohio.
Price: \(\$ 350\).


NEWS! API NOW HAS A CONTINUOUS READING METERRELAY. No signal-sampling interrupters necessary. The CRMR indicates continuously, controls continuously, resets automatically. Built around an unrestrained D'Arsonval movement, it will monitor and control any variable translatable to analogous voltage or current values. Sensitive enough to operate on inputs as small as 5 millivolts or 10 microamps full scale, it will accept low-level signals without amplification. Compact as a panel meter, it needs only a power supply and load relay (both of which API can furnish) to make a complete little control system. Or, you can build it into an equipment control network. Bulletin S-2-1 will give you details on operation, along with specifications and price information. A copy is yours for the asking.


CIRCLE 77 ON MEADER-SERVICE CARD

\section*{NEW PRODUCTS}

High-Voltage Capacitors


Paper-dielectric capacitors type RA are available in 10 different voltage ranges from 10 to 60 kv dc. Operating from -55 to +115 C , they are rated for \(10,000 \mathrm{hr}\) at 85 C . Capacitors are impregnated with polybutene oil.

Corson Electric Manufacturing Corp., Dept. ED, 540 39th St., Union City, N. J.

\section*{Indicator Light}


Miniature indicator light, called Mini-Cator, consists of a replaceable lamp cartridge and mating lamp holder. Holder mounts in a \(3 / 8\) in. diameter hole. Cartridge has nylon shell and stainless steel pins.

Industrial Devices, Inc., Dept. ED, Edgewater, N. J.

DC Relay


Sensitive dc relay of SP series operates as low as 15 mw , spdt, and 70 mw , dpdt. Contacts are rated for 5 amp resistive, 115 v ac or 26.5 v dc. Size is \(2 \times 2-1 / 8 \times 1-3 / 4 \mathrm{in}\)., temperature range -45 to +85 C . Standard coil resistances are \(2.5,5\), and 10 K .

Elgin Advance Relays, Electronics Div., Elgin National Watch Co., Dept. ED, 2435 N. Naomi St., Burbank, Calif.
P\&A: About \$s ea; stock to 8 weeks.

682

678

690

\section*{Why Die Stamped} Circuits by Dytronics?

\section*{ELECTRICAL PROPERTIES UNIMPAIRED}

Die stamped circuits are produced by a dry tech. nique which employs a heated metal-rutting die to delineate the conductor pattern and bond it to the base material by activatiny the adhesive between the metal foil and the insulating material.

The electrical properties of the base material are unimpaired, because no chemicals are used, and there is no adhesive residue or residual metal on the insulating surfaces. This gives the designer the advantage of selecting base materials for physical and electrical properties with. out considering chemical resistance.

A new booklet. "Denigning with Dytronics Die Stamped Circuits." will help you evaluate and denign with die stamped circuits. Write for your free copy today.


ROCHESTER 48, MICH.
A subsidiary of Taylor Fibre Co.
Norristown. Pa.

Telemetry Filters

All standard bands, transmit and receive, are covered by the series N filters. Output is within 1.5 db of input over \(\pm 7.5 \%\) of center frequency for channels 1 through 18 , and \(\pm 15 \%\) for channels A through E. Insertion loss is less than 3 db . Distortion over entire band is less than \(1 \%\). Units, epoxy-encapsulated, have a temperature range of -55 to +85 C .
Key Resistor Corp., Dept. ED,
Gardena, Calif.
Availability: 30 days.
Cable Strap
365


Self-locking cable strap can be inserted into a blind mounting hole and locked by thumb pressure without tools, forming a hermetic seal. Construction is of grey plastic. Insulating straps resist chemicals, corrosion, wear, and vibration. Various sizes are available. Buduig Manufacturing Co., Dept. ED, P. O. Box 4212, Glendale 2, Calif.

\section*{Radio Beacon}


Re-entering space vehicles can be identified and located with this transistorized beacon transmitter. Transmitter is crystal controlled and amplitude modulated with two or more audio frequencies, one for identification and others for telemetering. Telemetering modulation frequencies are variable.
Cook Electric Co., Dept. ED, 2700 Southport Ave., Chicago 14, III.


\section*{Now, you can save time and insure reliability... by specifying DK Coaxial switches in your design}

It's easy. DK Coaxial switches are available in scores of shapes, sizes, and functions from factory stock. RF Products' new DK Coaxial switch catalog lists over 130 variations of 16 basic coax switch designs, covering a proven \(90 \%\) of all known applications. All the facts and figures on the industry's most complete line of coaxial switches are at your finger tips.

You'll also find that these switches successfully combine ruggedness with the highest standards of precision: spring-leaf switching blades, gold-plated silver contacts and impedance matched connectors keep insertion loss and VSWR ( \(1.3 @ 4,000 \mathrm{MCs}\) ) low, Crosstalk high (in
decibels down); electro-mechanically actuated models operate and release in 8 to 20 milliseconds, depending on type and function, with a proven mechanical life of \(1,000,000\) cycles minimum when operated under 10 cps .
And, don't forget that RF Products, pioneers in the development of the coaxial switch, will continue to offer you design and engineering services whenever you need them. Whether you order a switch from the catalog or a switch designed to meet your exact specifications, you can be assured of the same high quality and service.
For details on our new line of standard switches, write for catalog DK 61.

\title{
The Untouchables
}

\section*{Specify Crucible Charges of Deposited Hyper-Pure Silicon}


Free brochure-"Hyper-Pure Devices." W'rite Dept. 4019.

Pre-packaged single piece crucible charges in sizes and weights to meet the exact require ments of your Czochralski crystal growing equipment . . . are now available from Dow Corning.

Accurately Pre-weighed, these single piece crucible charges assure easy handling . . . smallest surface area . . . highest purity . . . an excep. tionally clean melt and a savings in crucible costs.
High Quality is inherent in Dow Corning crucible charges. The deposited polycrystalline silicon in these charges has never touched a mold. Result - highest purity.

This High Purity means consistently higher quality crystals - simplifies doping procedures - increases device yield. Typical resistivity of N-type crystals grown from Dow Corning prepackaged crucible charges is greater than 100 . ohms centimeter for \(80 \%\) of the crystal; maximum boron content, 0.3 parts per billion atoms; maximum donor impurity, 2.0 parts per billion.
Now You Specify the Wieight and Diameter, up to 38 mm (about \(11 / 2^{\prime \prime}\) ), best suited for each crucible of your Czochralski crystal growing machines. Your crucible charges will be supplied in the appropriate length to provide the exact weight you require in just one piece.
Protective Packaging guards initial deposited purity right through crucible charging. Charges are individually wrapped in special cellophane, and sealed in airtight polyethylene envelopes to assure untouchable purity.
Whatever your need - deposited silicon crucible charges: polycrystalline rod or chunk; high resistivity P-type single crystal rod; single crystal rod doped to your specifications - Dow Corning should lead your list of sources.


HYPER-PURE SILICON DIVISION Addrese: HEMLOCK, MICHIGAN

\section*{DON COrning CORPORATION}

\section*{MIDLAND. MICHIGAN}

ATLANTA BOBTON EMICAGO CLEVELAND DALLAS LOEANGELES NEW VOMK WABMINOTOM, D.C. CIRCLE 10 ON READER-SERVICE CARO

\section*{NEW PRODUCTS}


Encapsulated digital logic modules of series 200 operate from dc to 250 kc , in temperatures from -54 to +71 C . Included are activeNAND and OR elements, diode gating, and logically gated flip-flops. Terminals match \(0.200-\mathrm{in}\). grid.

Data Systems Div., Harman-Kardon, Inc., Dept. ED. Ames Court, Plainview, N. Y. Price: \(\$ 5\) to \(\$ 20\) en in quantity.

Log Frequency Converter

With \(2 \%\) accuracy. Model HLFC-120 lou frequency converter provides a dc voltage output which varies in proportion to the los of the frequency of an input signal. Used with X-Y plotters, the unit has full-scale output of 100 mv at 400 ohms. Interchangeable discriminators cover 1, 2 or 3 decades from 5 cps to 20 kc . Accuracy is \(2 \%\) from 20 cps to 20 kc .
Houston Instrument Corp., Dept. EI), P. O. Box 22234, Houston 27. Tex.
P\&A: \(5565 ; 45\) days.

Sequencer
691


Miniature. modular sequencer type SSL-101 is designed to produce signals on separate output lines at a rate equal to that of the input clock. The 10 -count unit allows only one output to be energized at a time. Size is \(0.7 \times\) \(0.7 \times 3.0 \mathrm{in}\). max: weight is under 1 oz .
Alpha-Tronics Corp., Dept. ED, 1033 Engracia, Torrance, Calif.
Availability: 30 days.

Low-noise linear pot series 431 is made with strokes from 0.5 to 12 in ., power rating 1.2 w per in. Stability is under 30 ppm per deg C to 150 C : resistance range is 50 ohms to 1 meg. Accuracy is \(\pm 2 \%\) to \(\pm 0.5 \%\). Unit withstands heavy shock and vibration.

Hyres Electrical Div., Hydraulic Research and Manufacturing Co., Dept. ED, 11675 Sheldon St., Sun Valley, Calif.
P\&A: \$200; so days.

\section*{Insulation Tester}


With megohmmeter. Model 2955 Vibrotest is designed for dielectric absorption tests and plotting of insulation resistance vs time. The dc test potential is continuously adjustable from 0 to \(2,500 \mathrm{v}\). Meters with \(4-1 / 2 \mathrm{in}\). scale indicate test voltage and insulation resistance from 100 K to \(50,000 \mathrm{meg}\).

Associated Research, Inc., Dept. ED, 3777 W. Belmont Ave., Chicago 18, III.

Digital Printer
683


Front-feed printer model 400DT can be coupled to any electronic counting equipment or control system that provides 1-2-4-8 binarycoded decimal output with a swing of -6 v , The six-digit unit has a cycling rate of four lines per sec max. Printer mounts in cabinet or rack.
Computer Measurements Co., Dept. ED, Sylmar, Calif.
P\&A: \(\$ 1,700 ; 60\) days.



Cary Electrometers measure insulation resistance of \(10^{15}\) ohms at potentials of one volt or less with \(\pm 1 \%\) accuracy
Provide fast accurato leakage measurements; eliminate instrument loading of the test circuit
In addition to measuring large resistance values Cary Electrometers are used for measuring charging phenomena, hysteresis and photo effects of semi-conductors and insulating materials. Applications include air ionization studies, measurement of ion currents in mass spectrometry, radioactivity measurements of solids, liquids and gases and Hall effect studies.

Cary Electrometers detect currents as small as 10-17 amperes; charges to \(6 \times 10^{-16}\) coulombs; and voltages as low as 20 microvolts.

High stability (less than \(5 \times 10^{-17}\) amperes steady drift), high accuracy ( \(\pm 0.25 \%\) using a precision potentiometer), and operation independent of changes in vacuum tube and component characteristics are just a few of the features contributing to the superior performance of Cary Electrometers.

Choose from several models: MoDEL 31 for measuring currents from grounded sources and voltages from ungrounded sources; MODEL 31 V for voltage measurements from grounded sources; MODEL 31-31V for measuring voltage or current from grounded sources.


\section*{NEW PRODUCTS}

\section*{Delay Line}


Lumped-constant delay line provides a delay of \(0.21 \mu \mathrm{sec}\), with a rise time of \(0.08 \mu \mathrm{sec}\) max. The line withstands 800 v min; maximum continuous operating temperature is 125 C. Attenuation is \(20 \%\) max. Diameter is 0.3 in ., length 1.5 in .

Andersen Laboratories, Inc., Dept. ED, 501 New Park Ave., West Hartford 10, Conn.

\section*{Silicon Diodes}

660
Diffused-junction silicon diodes MA-4413 and MA-4414 have a junction capacitance of 1.8 pf max at -6 v bias, and combine low leakage with \(2-n s e c\) switching speed. They are rated at 10 ma at 1.0 v forward with breakdown voltages at \(0.1 \mu \mathrm{a}\) of 40 and 30 v . Made for computer applications, the diodes are sealed in a subminiature glass case.

Microwave Associates, Inc., Dept. ED. Burlington, Mass.

\section*{Reflecting Tape}

Pressure-sensitive tape Y-9050 is capable of performing continuously at temperatures of 500 to 600 F , and can withstand more than \(3,000 \mathrm{~F}\) radiant heat for short periods. Thickness is 0.006 in ., weight 0.0038 lb per \(\mathrm{ft} / \mathrm{in}\). width, tensile strength 75 lb per in . width. Roll lengths of 36 yards are \(1 / 4\) to 36 in . wide.

Minnesota Mining and Manufacturing Co., Dept. J1-1, Dept. ED, St. Paul 6, Minn.

\section*{Limit Stop}


Screw adjustment from 0 to 40 turns is provided by mechanical limit stop model 40. The size 10 device has 0.04 oz-in. starting torque with 0.50 oz-in. load limit. Weight is 1-1/2 oz, length 2 in.

Elm Instrument Corp., Dept. ED, 30 Chasner St., Hempstead, L. I., N. Y.
P\&A: \(\$ 62.80\) to \(\$ 78.50\); stock.

\section*{most practical way} to put strong threads in soft materials the TAP-LOK \({ }^{\circ}\) INSERT
 IM Serte metals mo Mastics... Mas full V-form erternal thresds to provide maximum lockine torque and permit wide choice of mating hole sizes. Rocommended for soft aluminum. zinc die castings, sand cestings and mastics meets requirements of MIL-WS 35914.


H-SERIES
PEA WIGNER STMENCTM MATENIALS. . Hes heavy wall and truncated root external thread and threshate catting edees for hard-to-tap higher-strength materials and to mext MIL. and other specs calling for Cless 38 throed fit for exaing sttor installation.


Another fastoner development from -TAP-LOK/ aroov-pin 1146 Hendricks Causoway. Ridgefield, N.J. CIRCLE 83 ON READER-SERVICE CARD
NIC DESIGN - July 19, 1961

Digital Cards


For computer applications, these digital cards include a BCD-to-decimal decoder, an accumulator and a decade counter. The BCD-to-decimal decoder has repetition rates of 100 kc ; flip-flops are used as basic storage device. The accumulator has five adder sections and the decade counter contains two full decimal digits of serial counters.
Computer Techniques Inc. Dept. ED, 3300 Northern Blvd., Long Island City 1, N. Y.

\section*{Zener Diodes}

390
Highly stable Zener reference diodes PS1511 through PS1517 are available with temperature coefficients ranging from \(0.01 \%\) to \(0.0005 \%\). Made for \(10-\mathrm{v}\) decimal readout in differential and digital voltmeter applications, the units have low dynamic impedance characteristics and are not positionsensitive.

Pacific Semiconductors, Inc., Dept. ED, 12955 Chadron Ave., Hawthorne, Calif Price: 87.65 to \$34.00 ea, 100 to 999.

Long-Delay Relays 444


Accuracy is \(\pm 5 \%\) for relays with time delays ranging from seconds to over 1-1/2 hr. Models can be furnished for on-time delay, offtime delay and interval timing. Contacts are 5 amp , 3pdt. Adjustable units have calibrated, etched dial. They can be surface mounted or flush-panel mounted.
Clearview Electronics Corp., Dept. ED, 140 E. Main St., P. 0. Box 294, Elkton, Md.


DEVELOPED IN CONJUNCTION WITH THE NOVAR TUBE

- Cinch is the only source for Novar Sockets.
- Fits Present Chassis Cutouts. You don't have to redesign chassis to accommodate the Cinch Novar Socket; physical dimensions are the same as octal sockets.
- Electrical and mechanical tests performed according to EIA Standards.
- Contact Design. Contacts are designed for long lasting resiliency and to withstand fatigue. This means dependable operation and reliability.
- Contact Finishes: insure constant voltage perform ance. Different finishes are available for extraordinary environmental conditions.

Write for full information today!

\author{
1028 South Homan Avenue . Chicage 24, III.
}

\section*{NEW PRODUCTS}

Servo Amplifier


For motors to size 15. Model A429 germanium servo amplifier, rated at \(400 \mathrm{cps} \pm 10 \%\). operates servomotors at 6 -w output over the temperature range of -55 to +71 C . It is supplied with two parallel summing signal inputs each having independent gain.
Westamp, Inc., Dept. ED, 112 Massachusetts Ave., Los Angeles 25, Calif.
Availability: 1 week.

\section*{Crystal Ovens}


Temperature stability is \(\pm 0.1 \mathrm{C}\) for cycling; operating temperature is 75 to \(85 \pm 2 \mathrm{C}\). The JK09S1 crystal oven holds two HC-6/U crystals; the JK09S115 holds two HC-13U crystals. Units with other ranges can also be furnished. James Knights Co., Dept. ED, Sandwich, III.

Microminiature Capacitor


Capacity is \(0.075 \mu \mathrm{f}\). Measuring \(0.5 \times 0.5\) \(\times 0.125 \mathrm{in}\)., this capacitor has a voltage rating of 200 wvde with a capacity variation of less than \(10 \%\) from -55 to +150 C . Units with ranges from 47 pf to \(0.01 \mu \mathrm{f}\) are also available. Dielectric is barium titanate.

American Components Corp., Dept. ED, 15222 Grevillea St., Lawndale, Calif. P\&A: so.so to \$2; stock.


\section*{in "engineered" voltage regulation}


The most significant thing about past performance is the promise it holds for the future. Each day, our engineering moves forward toward new milestones. We will welcome your problems in ac or dc power regulation. For immediate attention, write or phone Mr. A. Steichen, Product Manager. Electronics, Sola Electric Company. Elk Grove Village, Illinois.


\section*{Never before could you}

\section*{DIAL THE RIPRLE
AND
REGULATION!}

Try this new twist: a built-in Adjustable Parameter control that actually lets you dial precisely the regulation and ripple characteristics you need in a power supply quickly, economically! NJE's entirely new concept in power supply design - the VariReg**enables the engineer to eliminate overspecification of costly regulation and ripple. You arrive at the combination of characteristics that best suits your application, without wasting time or money - then you

order production models accordingly.
Regulation may be smoothly adjusted between \(\pm 0.005 \%\) and \(\pm 10 \%\). Ripple is accurately and smoothly adjustable between 3 and 200 millivolts peak to peak.

All NJE CR and QR Transistor-Regulated Power Supplies now feature the Adjustable Parameter Vari-Reg as an optional extra ( \(\$ 75\) ). All are available for immediate delivery. Write today for completo technical specifications and prices!

Pratent Acplised Fo

CORPORATION
20 Boright Avenue . Kenilworth, New Jersey
BR. 2.6000 - TWX Cranford, NJ 51 - FAX-FFP

\section*{NEW PRODUCTS}

\section*{Portable Oscilloscope}


Measures \(5-1 / 8 \times 6 \times 7\) in. and weighs \(5-1 / 2 \mathrm{lb}\). The Nuscope oscilloscope is for modulation control, production-line testing and equipment servicing. The vertical amplifier has a flat response from 40 cps to 225 kc and can be used from 10 cps to 500 kc and over. Sweep frequencies are 20 to 30 cps .

National Union Electric Corp., Electronics Div., Dept. ED, Bloomington, Ill.

P\&A: \$89.50; from stock.

Antenna Pedestal


Weighs \(\mathbf{3 0 0} \mathbf{~ l b}\). Model 3606 azimuth antenna pedestal can be used at the top of a tower as well as at lower levels. It develops a torque of \(1,000 \mathrm{ft}-\mathrm{lb}\) at 1.5 rpm . A mast of up to 5-1/2 in. may be installed through the vertical axis. Either ac or dc motors may be used.
ANTLAB, Inc., Dept. ED, 6330 Proprietors Road, Worthington, Ohio.

Double Pentode
686


Miniature 9-pin double pentode ELL80/6HU8 is made for audio output stages. Tube has common cathodes, delivers 9 w with low distortion and can be used in push-pull or two single-ended circuits.

ITT Components Div., Dept. ED, Clifton, N. J.

Dummy load bank is combined with power attenuator in model 511A. The attenuator has a) rating of 50 w and is for use where a power amplifier is used to drive a low-power amplifier. An rf input can be connected from any j0-ohm coaxial line to the input connector. Seco Electronics Inc., Dept. ED, 5015 Penn Ave. S., Minneapolis 19, Minn.

\section*{Sound Meter}


Range is 5 cps to 30 kc . Model 412 sound meter is designed to meet ASA S1.4-1961 standard. Sound-level range is 24 to 150 db . A ceramic microphone permits use over a wide temperature range. It has a built-in electroacoustic calibrator and operates on two batteries plus a single bias cell.
H. H. Scott. Inc., Dept. ED, 111 Powdermill Road, Maynard, Mass.

\section*{Static Inverter}


Rated at 1,200 va, model SI-4 static inverter delivers 115 v ac at 60 cps from 48 v dc. Other features are: maximum harmonic distortion, 7\%; power factor, 0.8 ; temperature ranges, -20 to +60 C . Uses include standby sources for microwave broadcast equipment.

Kidde Electronic Laboratories, Dept. ED, Brighton Road, Clifton, N. J.

The only true measure of eyelet price Installed Gost
and here's JUST ONE of the ways UNITED helps you cut IC:


\section*{TOOLING COSTS REDUCED UP TO 90\%!}

With United's system of standardized eyelet sizes, only 7 sets of tools are required for all 65 eyelets. One tool can set up to 12 different lengths of the same diameter! Initial tooling costs are greatly reduced ... and the high quality and long life of United's setting tools keep replacement costs to a minimum as well. Where special eyeleting jobs call for special tooling, the ready availability of United's complete tool engineering service will help you save time and money. Savings in all these areas can help you cut your total tooling costs up to \(90 \%\) !

- . that show how United can help you cut in. stalled Costs through lower tooling costs (and through lower engineering, down-time and tool acquisition costs), ask for your free copy of "Eyelets and Price Buying." Simply phone the United office in your area or write direct to Fas: tener Division, United Shoe Machinery Corpo: ration, 1752 River Road, Shelton, Connecticut.

\section*{\& \(1 /\) United Eyelets}

Fastener Division
UNITED SHOE MACHINERY CORPORATION Shelton, COMmOCtICNE

 CIRCLE 87 ON READER-SEMMCE CASD

\section*{New Unitek accessories to insure GOOD WELDS ALL DAY}
1. Electrode Kit (EK-1000)
2. Insulated Electrodes (CO-0400) Moly (CO-0402) RWMA-2
3. Electrode Holders-31/2 in. (HE-1200)
4. Magnifier (MA-2117)
5. Bracket Assembly (MA-2115)
6. Illuminator (MA-2118)
7. Horizontal Adapter (MA-2042)
8. Riser Assembly (MA-2041)
9. Force Gage (MA-2031)
10. Electrode Aligner (MA-2102)
11. Precision Wire Cutters (MA-2052)

Not Shown: Visor (MA-2116)
Swing Pedal-15 Ib. (MA-2022)


New from Unitek - a coordinated line of accessories to keep space clear, to make operations fast and easy, to reduce eye strain, and to increase reliability in every step of the process. Write for detailed information and prices. 950 Royal Oaks Drive, Monrovia, California


CIRCL IE ON READRR-SREVICI CAMO

\section*{NEW PRODUCTS}

\section*{Control Switch \\ 430}

Made for lamp or relay drive at currents up to 200 ma and voltages up to 32 v , model 600100 operates with nominal input voltage levels of 0 v and +3 v or more, with maximum loading of \(100 \mu \mathrm{a}\) at -5 v . Sensitivity is under 30 pa. Size is \(0.88 \times 0.88 \times 2.00 \mathrm{in}\).

Weber Aircraft Corp., Weber Electronics Div., Dept. ED, 2820 Ontario St., Burbank, Calif.

\section*{DC Signal Amplifier} 373
Gain is 50 to 500 , continuously variable. Model SA9-0 de signal amplifier accepts inputs from thermocouples, thermal sensing to bridges and de transducers. Output is 0 to 5 v ; input is 0 to 10 mv ; power required is 30 ma at 28 v \(\pm 10 \%\). It operates under environmental extremes and is suitable for airborne use.

Statham Instruments, Inc., Dept. ED, 12401 W. Olympic Blvd., Los Angeles 64, Calif.

\section*{Transistor Tester}

378
Displays beta as a function of collector current. Model T3A-2 transistor tester shows H complete plot of beta vs \(I_{c}\) from 0 to 500 ma peak at 1 to 10 kc . Provision is made for plots to 1 mc . Accuracy is \(5 \%\). The unit may be used with any dc scope.

Orbitec Corp., Dept. ED, 512-30th St., Newport Beach, Calif.


\section*{Rack-and-Panel Connector}

369
Multi-service, rack and panel. 14-contact connector has two RGU coaxial fittings. They are designed for either RGU 50 or RGU 70 ohm-matched impedance cable. Contacts are for AWG 20 wire; pin diameter is 10.040 in. Positive polarizing guide hardware is of nonmagnetic passivated stainless steel.

Precision Connectors, Inc., Dept. ED, P. O. Box 96, Mineola, L. I., N. Y.

\section*{Voltage References}

372
Rated at 1.15 to \(3 v\) with tolerances of \(2 \%\) and \(5 \%\). Types SS3140 through SS3145 voltage references consist of series strings of silicon and germanium diodes. Dynamic resistance ranges from 20 to 40 ohms at 10 ma ; average current at 25 C is \(\mathbf{5 0}\) to 200 ma max; temperature coefficient is 2.4 to 5.6 mv per deg C.

Semiconductor Specialists, Inc., Dept. ED, 5706 W. North Ave., Chicago 39, 111.
Price: \(\$ 2.50\) to \(\$ 4.00\).

\section*{Connectors}

648
For wire-wrap terminations. Type FT-WJ100 Press-Fit Teflon connector is rectangular with truncated circular ends. When properly seated, it provides extremely high torque. Over-all height is 1.2 in ., above-the-chassis height is 0.46 in . and below-the-chassis is 0.459 in.

Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N. Y.

\section*{Logic Element}

For 10 to 16 mc . Type LE-40 logic element can be used as a static flip-flop or dynamic logic element. It consists of four input AND gates which buffer into a steering circuit. It is compatible with the firm's 3C-PAC series H units.

Computer Control Co., Inc., Dept. ED, 98:3 Concord St., Framingham, Mass.
P\&A: \&249; stock.

\section*{Milliwatt Relay}

376
Requires 40 mw . Series AV pillbox relay withstands \(15-\mathrm{g}\) vibration and \(50-\mathrm{g}\) shock. Header terminals are placed on the flat side of the relay. It can be supplied as spdt or 2 pdt with contacts suitable for 2 -amp or dry-circuit loads.

Filtors, Inc., Dept. ED, Port Washington, N. Y.

\section*{Telemetering Transmitter}

432
Used in rotors of high-speed machinery, telemetering transmitter WTT-102 transmits data on the subcarrier oscillator frequency directly, with no rf carrier, through noncontacting slip rings. Subcarrier frequency deviations of \(\pm 40 \%\) are readily obtained. Cylindrical model WTT103 is also available.
Wiley Electronic Products Co., Dept. ED, 2045 W. Cheryl Drive, Phoenix, Ariz.

\section*{Isolator}

421
Circuits at \(25,000 \vee\) can be controlled from ground-level circuits through a high-voltage isolator. A light source operates a photosensitive cell in the separate high-voltage unit. Type CK-1105 isolator requires a control potential of 120 v ; and CK-1108, 5 v . Signal resistance off is over \(10^{7}\) ohms, on is less than \(10^{3}\) ohms for the CK-1105 and less than 500 ohms for the CK-1108.

Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton 58, Mass. P\&A: \$24.50; immediately in sample quantities.


\section*{for instrumentation and telemetry}

This compact, reliable DC to DC converter provides conversion of \(28 \pm 4\) volts DC to a precision 5 volts DC (a) 100 ma . or 1 amp . Measuring only \(43 / 4^{\circ} \times 31 / 2^{\prime \prime} \times 114^{\prime \prime}\), weighing only 20 ounces, it gives a completely accurate power supply and maintains it, with no change, within the temperature range. Designed, developed and produced by Temco Electronics, the converter is a solid state, off-the-shelf package that meets or exceeds mil specs. It will meet your airborne or ground telemetry and instrumentation power supply specifications with no necessity for change in configuration. We invite your inquiries on this unit. It is also available in other voltages to meet specific applications.


\section*{BENDIX REACTION WHEEL FOR SATELIITE CONTROL and stabilization}

Precision reaction wheels developed at Bendix meet requirements for attitude control of space vehicles and satellites. For example, these wheels will be used for Project ADVENT-advanced Army research program which will use satellites as relay stations for global communications.
Since reaction torque is directly proportional to applied voltage, the reaction wheel provides a means for proportional control of vehicle attitude. An integral tachometer senses wheel speed and direction of rotation.

Several wheel configurations are now available, and the basic design concept offers flexibility to meet still broader requirements. Individual wheels can be tailored to specific voltage, torque, inertia, and momentum storage requirements.

ADVANTAGES AND FEATURES
- Minimum weight and power - Brushless motor and tachometer
- Low friction • Flexible design
- Consistent performance over environmental range

Eclipse-Pioneer Division
Tatorboro, N, J.


Diurict OFFicen: Burbant, and Sen Francisco, Celli., Sectile, Wach, Dayton, Onvej and Woshingron, D.C. Empert Setes \& Servico Bendia intemationel, 205 Ef 42 ind St., Now Yort 17, MY.

\section*{NEW PRODUCTS}

DC Power Supplies


Regulation is \(\pm 0.1 \%\). Six of the power supplies in the MRST series have an output of 24 to 32 v at 100 to 600 amp and one has an output of 24 to 40 v in two ranges at 250 amp . Applications are in plant-central supplies and laboratory testing. Response time is 20 to 200 msec.

Perkin Electronics Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.

\section*{Electric Heater Blankets}

For defrosting, curing plastics or adhesives and standby temperature control for solid propellant missiles. In sizes to \(30 \times 10 \mathrm{ft}\), the Heat Sheet electric heater blankets use resist-ance-alloy foil which is etched to shape and laminated in Neoprene, epoxy or silicon rubber to meet MIL and U1 specification.

Thermal Circuits, Inc., Dept. ED, 59 Park St., Beverly, Mass.
Availability: 10 days.

\section*{Volt-Millivoltmeter}


Vacuum-tube millivoltmeter model 100 has 12 ranges from 1 mv full scale to 300 v and 12 db ranges from -72 to +52 full scale. Accuracy is \(1 \%\); readout is on a \(5-\mathrm{in}\). scale. It operates from 115 or 230 v at 50 to \(1,000 \mathrm{cps}\) and is portable.
Sun Electric Corp., Dept. ED, Harlem and Avondale, Chicago 31, Ill.
P\&A: \$284; from stock.


\section*{CYCLO-SINE}

Hermetically-sealed drive for space applications

The Bendix \({ }^{\text {® }}\) Cyclo-Sine Drive provides an absolute, hermeti-cally-sealed actuator for varied space applications. Operating through a flexible ring, the drive offers infinite resolution and irreversibility for generalpurpose and precision servo devices.

\section*{OUTSTANDING} CHARACTERISTICS:

5:1 weight advantage ovar conventional drives. Up to 20,000:1 speed differential - No backlash • Infinite resolution

Manufacturers of
GYROS - ROTATING COMPONENTS RADAR DEVICES • INSTRUMENTATION PAGKAGED COMPONENTS

Eclipse-Pioneer Division


Telertboro, N. J.


For subminiature relays with plug-in design. Series 3030 relay receptacles use a wide-bevel receptacle which allows for misalignment of relay pin contacts. Thickwall socket contacts provide for high-spring tension. Various terminations can be furnished.

Precision Connectors Inc., Dept. ED, P. O. Box 96, Mineola, L. I., N. Y.

\section*{Linear Potentiometer}

383
Operates at 500 F. Model 147 long-travel linear potentiometer provides a linearity of \(\pm 0.25 \%\), resistance of \(5 \mathrm{~K} \pm 5 \%\), resolution of \(0.045 \%\) and a power rating of 1 w at 500 F . The potentiometer element is platinum alloy wire. Dimensions are 1.4 in in diameter and 12 in. in length.

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Connector Housing
377


With split-backshell design. The firm's DPJ connector can be completely wired before this housing is applied. Maximum cable size is 0.937 in . Solder-pot area is fully protected.
Glenair, Inc., Dept. ED, 1211 Airway, Glendale, Calif.

\section*{AC-DC Converter}


Accuracy is \(\pm \mathbf{0 . 1 5 \%}\) absolute from 0.5 to \(1,000 \mathrm{v}\) ac. Model C-100AR converter features a frequency range of 30 cps to 10 kc , solidstate circuitry and standard rack mounting design. Suitable for use with differential and digital voltmeters, it operates from 115 v ac.
Calibration Standards Corp., Dept. ED, 1025 Westminster Ave., Alhambra, Calif. Price: \$455.


Eighteen months ago, TSI introduced the Model 361 as the industry's first completely transistorized 1 MC digital Counter/Timer. It won immediate acceptance. The integrity of the original design has been preserved through eleven successive production runs.
Field reports on the 361 are consistently impressive. We have rarely received a valid report of malfunction due to a manufacturing or design defect.
There are good reasons for this record of proven reliability. The NOR-logic design of the 361, for example, drastically reduces its semiconductor count over that of conventional instruments. Our inflexible attitude toward derating, and our refusal to use "selected" components or transistors add significantly to the performance margins this instrument will maintain over wide ranges of power line voltage and ambient temperature. Like all TSI instruments, the 361 is \(100 \%\) solid-state. It runs cool, despite its compact design.

Engineers who use it tell us that the 361 has the best amplifier of any 1 MC Counter/Timer . . . sensitive, wideband, and unaffected by noise and jitter. They also compliment the straightforward readout, the flexibility provided by its dual-channel logic, and its crystal-clock stability.

It will pay you to consult TSI when you need digital instrumentation in the real-time domain.
* Modal 361 solid seate I mC Counter/ A.B. Freq. st'd, self-chock. Dual amplifers IImer/Freq. Meter. 10 MV sensitivily. 3 ports in \(10^{\prime}\) / week stobility. Siz-digit in-line Nizie readout. 0.1 eps - 1 MC freq. stondord oulputs in decode slops. Modes: Count, Iroquency, frequency relio, period A. period with unique "lovel-sampling" design. Availoble in \(311^{\prime \prime}\) "rock (Model 361 -R). Eench version shown. Avoilable from slock.
One of 17 Solid Stale Insiruments by \(1 \$ 1\).
TRANSISTOR SPECIALTIES INCORRORATED Sophisticated Digital Instrumentation


TERMINAL DRIVE, PLAINVIEW, NEW YORK - WELLS 5-8700

\section*{NEW PRODUCTS}

Power Supply


Solid-state power supply has separate electronic and magnetic overload-sensing systems; either can independently sense voltage and current, and adjust or shut off as required. Inputoutput efficiency is about \(\mathbf{8 0 \%}\). Special features simplify maintenance.

Weber Aircraft Corp., Weber Electronics Div., Dept. ED, 2820 Ontario St., Burbank, Calif.

\section*{Trimming Potentiometer}


Square trimming potentiometer weighs \(3 / 4\) \(g\) and is rated at 1 w at 50 C . Resistance range is 10 ohms to 50 K . Maximum operating temperature is 175 C : temperature coefficient is 20 ppm per \(\operatorname{deg} \mathrm{C}\). Equivalent noise resistance is \(0.1 \%\). Trimmer measures \(3 / 8 \mathrm{in}\). square and meets applicable military requirements.

Techno-Components Corp., Dept. ED, 18232 Parthenia St., Northridge, Calif.

\section*{Ceramic Capacitor}

374


Rating is \(\mathbf{1 0 0 0 0 0}\) pf. The Cerol capacitor meets MIL-C-11015B. Specs include: 50 wvdc from -55 to +85 C , derated to 25 wvdc at 125 C ; series resistance of 0.2 ohm max from 8 to 10 mc ; power factor \(2 \%\) max; temperature coefficients of \(+10 \%\) or \(-30 \%\) from - 55 to +125 C at \(0 v\) and \(+10 \%\) or \(-40 \%\) at rated voltage.
Aerovox Corp., Hi-Q Div., Dept. ED, Olean N. Y.
 equipment cabinets to cut off puwer when service duor is opened. Complete line is available including high-temperature, environment-free and
sutiminiature mudels. \(A\) two-swirch model consutiminiacure models. A two-switch model conof brackets eliminates dangers of "rying down" that could occur with conventional type interlocks. Write for Data Sheet 186.


In electronic equipment...

SWITCH

\section*{RELIABILITY \\ SAFEGUARDS YOUR PRODUCT'S REPUTATION}

If you manufacture electronic equipment, remember that the success of your product often depends on a switch. The design of switches for complex electronic applications is a specialty. By specifying micro switch Precision Switches you can open new possibilities for automatic control. You can also be sure of precision and reliability that is thoroughly tested in the industry's most complete test laboratory for small and subminiature switches. Find out about the important new switch ideas being added to the MICRO switch line, every one with MICRO SWITCH reliability.

MICRO SWITCH . . . FREEPORT. ILLINOIS
A division of Honeywell
In Canuda: Homeywell Controls, Limised. Toronto 17. Ontario

\section*{momevwell mptamatiomal \\ Solorid and eovrice oftices in all principal cilies of the \\ morid. Manulacturine in United Statoo. United Jine-}

\section*{Small Size and Long Life Make G-E Glow Lamps Ideal as Indicators}

There are over 60 General Electric glow lamps made especially for use as indicators in appliances, business machines, military equipment - wherever indicating devices are needed. They're small, rugged, usually low-cost, operate on standard AC voltage at low wattage and give off very little heat. All of which makes them ideal for use as indicators. Here are details on a few of them:


NE-2H lasts 25,000 hours on standard AC voltage, only \(3 / 4\) inch long, operates on just is watt, is a high brightness lamp and costs much less than a dime including an attached resistor ( 5 different resistors arc available).


NE-2J another high brightness lamp with a 25.000 hour life * on standard AC voltage, operates on is watt, is less than one inch long, has a single contact midget flange base and will fit most standard indicator fixtures. This lamp is not available with attached resistor.

NE-45 has a 7.500 hour average useful life on standard AC voltage: operates on \(1 / 4\) watt. is \(117 / 32\) inches long, has 30 K resistor built into screw base and big electrode that presents a large glowing area when lit.
- With a 30 K resistor.

For detailed information on the 18 most popular General Electric glow lamps, write for bulletin \#3-0193. General Electric Co., Miniature Lamp Dept. M-134. Nela Park, Cleveland 12, Ohio.

Progress is Our Most Impontant Product


\section*{NEW PRODUCTS}

\section*{Use Timers}


Ranges to \(\mathbf{1 , 0 0 0} \mathbf{h r}\). Called Time Totalizers, these time clocks are for preventive maintenance of electronic gear in ground and airborne applications. They are essentially mercury coulombmeters, operated by an integral electrical network which compensates for temperature differences and supply-voltage variation.

American Machine \& Foundry Co., Leland Airborne Products Div., Dept. ED, 261 Madison Ave., New York 16, N. Y.
Price: \(\$ 12\) to \(\$ 15\).

\section*{Telemetering Transmitters}

For use on rotors of high-speed rotating machinery. These transmitters permit transmission of data on the subcarrier oscillator frequency, with no rf carrier, through capacitively coupled noncontacting slip rings. Model WWT-102 measures \(1.75 \times 1.75 \times 2.25 \mathrm{in}\). and model WWT-103 measures 1.25 in . in diameter and 3.1 in . long.

Wiley Electronic Products Co., Dept. ED, 2045 W. Cheryl Drive, Phoenix, Ariz.

\section*{Single-Turn Potentiometers}


Wirewound types. Series 2490 potentiometers are in 3 in . in diameter for ranges from 100 to 200,000 ohms; series 2480,2 in. for 20 to 125,000 ohms; series \(2460,1-7 / 16 \mathrm{in}\). for 20 to 100,000 ohms; series \(2440,7 / 8 \mathrm{in}\). for 10 to 50,000 ohms. All are gangable in up to eight units except for the 2440 which is gangable in up to six units.

Borg Equipment Div., Amphenol-Borg Electronics Corp., Dep. ED, Janesville, Wis.
Availability: sample quantities only until Aug. 15.

382

595


\section*{glass for your} diode packages... precision drawn to specifications
- GARNER provides tighter tolerances . . . improved roundness and concentricity . . . squarer and smoother end cuts.

Parts ultrasonically scrubbed, chemically cleaned, and rinsed in deionized water. Shipped ready for your production line.
Meeting your specifications is insured by continuous inspection, starting with raw material.
Fast dependable deliveries based on large stocks of redraw tubing . . . advanced production equipment, and the ability to move quickly.

Send for complete data.

\section*{T. H. GARNER CO.}

Serving the semi-conductor industry since 1954
177 s. indian hill blvo.
CLAREMONT, CALIF. - NAtional 6-3526

CIRCLE OS ON READER-SERVICE CARD ELECTRONIC DESIGN • July 19, 1961

Rated at up to \(60 \mathrm{v}, 7.5 \mathrm{amp}\), type 810 B power supply can be voltage or current regulated. Load regulation for constant voltage operation is less than \(0.02 \%\) or 10 mv from no load to full load, and for constant current operation, less than \(0.05 \%\) or 3.5 ma . Ripple and noise are less than 1 mv rms for constant voltage and less than 3 ma rms for constant current.
Harrison Laboratories, Inc., Dept. ED, 45 Industrial Road. Berkeley Heights, N. J. P\&A: 5795; 20 to 30 days.

\section*{Glass Mount}

Electron gun mount glass M-10 is made in rods of standard round, square, or D shape. and in custom configurations. Annealing point is 507 C , softening point 780 C . Thermal expansion coefficient is 2.8 ppm. density 2.17. Ten colors are produced.
Mansol Ceramics Co., Dept. ED, Belleville, N.J.

\section*{Distribution Amplifier}

For closed-circuit television. Unit is of modular construction. Bandwidth with six outputs is over 8 mc . Gain variation is to \(190 \%\) of unity. Unit fits into \(3-1 / 2 \mathrm{in}\). of 19 in . rack space and is 12 in . deep.
Nassau Laboratories, Dept. E.D. 42 Valley Road. Plandome, N. Y.
Price: Under \(\$ 400\) for six outputs.

\section*{Wire Cutter}

Accuracy is \(\pm 0.005\) in. Model MMP-203 wire cutter is for cutting and handling wire. ribbon and rods for welded or micromodular circuit work. It handles AWG 40 or larger wires. bare or insulated. and ribbon as small as \(0.003 \times 0.015 \mathrm{in}\). Speed is 1,200 pieces per hr .

Dickinson \& Assoc., Dept. ED, 334 N. Central Ave., Glendale 3, Calif.
Price: \(\$ 845\).

\section*{YOU GET THIS MUCH MORE SELECTIVITY WITH A COLLINS mECHANICAL FILTER}


Choose Collins filters, and you don't performance receivers-in fact, for any have to choose between small size and filtering job between 50 and 600 kc , a selectivity. The steep, fiat-topped curve Collins mechanical filter does a better above is the work of a few dime-size job in less space. disces sealed in a case often smaller than a penlight battery. These resonant discs have Q's of \(8,000-12,000\), up to 150 times that of bulky electrical LC filter elements.
Colline mechanical filters also offer you unprecedented stability. Frequency shift can be held botween 1.5 and 2 parts per million per degree centigrade over the range \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), and there is no observable drift with age.
For carrier systems, single sideband Mede to tale it, Collins mechanical fil. ters meet MIL-Spee requirements for humidity, corrosive environments. shock, vibration - the works. Literally hundreds of thousands now demonstrate their reliability throughout the world in communications equipment made by commurications equipment made by filter may be your best answer, too. equipment, bandpass filtering in high- for Date File C-101A.

COLLINE RADIO COMPANY • NEWPOET BEACH, CALIFORNA - DALLAS, TERAS - CEDAR BAPIDS IOWA
Check Collins at WESCON, Booths 1301-1302.
CIRCLE 96 ON READER-SERVICE CARD

PUTTING MAGNETICS TO WORK


\section*{How to shrink a filter!}

Magnetics Inc. " 120 " solves the problem of core size vs. inductance in miniaturized circuits

Trying to squeeze high core inductance into a small space for use in miniaturized resonance, filter, audio, or carrier frequency circuits usually ends in a compromise. You either force more out of a smaller core, or you use a larger one. Not so, however, if you're familiar with the Magnetics Inc. " 120 ."
This molybdenum permalloy core has a . 655 inch outer diameter-is just between the .500 and the .800 inch core you may be using. What makes this little fellow unique is its inductance per 1,000 turns . . . higher than either of its neighbors, whether 60,125 or 160 permeabilities.
Note, too, that like all Magnetics Inc. powder cores, the " 120 " is performance-proved and rated within realistic
inductance limits. All permeabilities are available from stock now. What's more, the 125 permeability core is inductance stabilized within \(\pm \mathbf{0 . 1 \%}\) from \(0^{\circ}\) to \(55^{\circ} \mathrm{C}\). More information on this and other cores in the Mag. netics Inc. line is contained in design bulletin PC-203 R. It's yours by writing Magnetics Inc., Deparlinent ED.91, Buller, Perinsylvania.
> maEDETICS inc.

\section*{NEW PRODUCTS}

Radiator-Retainers


Reduce heat by \(25 \%\). Types 3AL-725 and 3Al.-728 transistor heat radiator and retainers accept case diameters from 0.31 to 0.325 in. and from 0.475 to 0.49 in . for all standard transistor package sizes. Parts are available with hard anodize finish for breakdown voltage to 200 v dc.

The Birtcher Corp., Industrial Div., Iept. ED, 745 S. Monterey Pass Road, Monterey Park, Calif.
Availability: 2 to 3 wetks.

\section*{RF Transformers}

For balanced modulating symtems of airborne single-sideband communications transceivers. Type 1039 rf transformers can be used throughout the frequency range of intelligence transfer. They meet the environment requirements of MIL-C-15305A, Grade 1, Class K.

Applied Components Inc.. Dept. FD, 401 E. Beach Ave., Inglewood, Calif.

\section*{RF Coils}

Ranges from 2 to 32 mc . Type 1067 rf coils are for use in the front section of a fixedtuned single-sideband military communications systems. Each unit contains two coils operating on different bands. They can be made to meet CIL-C-15305A, Grade 2, Class B requirements.
Applied Components Inc., Dept. ED, 401 E. Beach Ave., Inglewood, Calif.

\section*{Decade Counter}


Reversible type CM-105 modulor decade counter integrates plus or minus pulses at rates up to 150 kc . It consists of a printedcircuit card with a four-stage binary decimal counter and control circuits. It counts 4 to \(6-1\) pulses with \(4-\mathrm{v}\) per \(\mu \mathrm{sec}\) risetime and \(2-\mu \mathrm{sec}\) pulse width.

Circuit Structures Lab., Dept. ED, 3014 Halladay, Santa Ana, Calif.

\section*{High-Impedance Amplifier}

639
Response is 1 db from 5 cps to 100 kc , or 3 db from 3 cps to 300 kc . This solid-state amplifier has an input impedance of \(15,000 \mathrm{meg}\) shunted by 1 to 1.5 pf and an output impedance of 1 meg shunted by 3 to 10 pf . Power gain is to 35 db ; voltage gain is to 0.5 db ; noise level is 50 to 100 mv at output with input open; output voltage is 06 v max.
Denro Lab, Dept. ED, 2801 15th St., N. W., Washington 9, I). C
Price: \(\$ 8\) r

Traveling-Wave-Tube Base


Ceramic-to-metal tube base for travelingwave tubes withstands repeated welding onerations and bakeout in air at 700 C for 72 hr without leaking. Assembly consists of a nickel cap supporting 4 to 8 ceramic-to-metal tubular feedthroughs, together with an integral cera-mic-to-metal input adaptor and copper evacuation tube.
(eramics International ('orp., Dept. ED, 39 Siding Place, Mahwah. N. J

\section*{Magnetic Tape Translators}

641
Honeywell and IBM computers are made compatible with these tape translators. Honeywell 800 and 400 EDP systems work from tapes written by IBM machines and write tapes acceptable by IBM equipment with the translators. Nodel 36 is for the 800 series and model 436 is for the 400 series.
Minneapolis-Honeywell Regulator Co., Electronic Data Processing Div., Dept. ED, 60 Walnut St., Wellesley Hills, Mass.
P\&A: 8.36; \$9.3,600, rents for \(\$ 1,9.50 \mathrm{mu} ; 486\) : \(\$ 48,875\), vents for \(\$ 975 \mathrm{mo}\). 12 to 15 mos.

\section*{RF Transformer}

634
Range is \(\mathbf{5 0} \mathbf{k c}\) to \(\mathbf{3 0} \mathbf{m c}\). Type 1008 rf trans former is an output transformer for a crystal filter used in airborne single-sideband communications transceivers. It meets environmental requirements of MIL-C-15305A, Grade 2. Class B.

Applied Components Inc., Dept. ED, 401 E Beach Ave., Inglewood, Calif. Availability: made to meet customer specs.
 WITH A

\section*{GRIP LIKE A VISE}
now

\author{
available
}
on many
FUSITE

\author{
TERMINALS
}

Never before has a glass been developed that is so compatible for use with \(52 \%\) nickel alloy leads.

The result is a compression between the glass and pins so tight that twisting and bending of the pins to the breaking point will not cause rupture or leakage. (Determined by Veeco Leak Detector with sensitivity at \(10^{-10} \mathrm{std} . \mathrm{cc} / \mathrm{sec}\).) Thermal shock is excellent with this new TR-Class. Salt spray resistance exceeds 100 hours.

Every performance feature is well in excess of Mil Specs. The use of TR-Glass may be considered for all types of Fusite solid glass headers as well as many other style terminals.

Samples on request. Write Fusite, Department C-4

Fusite Corporation, Cincinnati, 0.
Woodford Mfg. Co., Versailles, Ky.
Fusite N. V., Konigweg 16, Almelo, Holland
Fusite GmbH, Dieselstrasse 5 Karlsruhe, W. Germany
THE FUETE CORPORATION
6000 FERNVIEW AVENUE. CINCINNATI 12, OHIO
CIRCLE 98 ON READER-SERVICE CARD

\section*{all the cards...}


You bet, it's hard to beat 4 aces! It'* just as hard to beat 4 years of \(K\). \(F\). Choke production experience. Originally designed, developed and introduced by ACDC the 'RFC Series' of preferred inductors has berome the standard for OE'M manufarturer. everyuliere.
\(125^{\circ} \mathrm{C}\). HIGH RELIABILITY, SMALL ENCAPSULATED ACDC R. F. CHOKES

As always, ACDC RF Chokes are 1 st choice of the induatry... and, as always, they are available for immediate delivery from stock. 123 Standard Values to choose from Indurtance \(+125^{\circ} \mathrm{C}\) Designed to meet MIL.C.15305-A Epory encapulated for maximum resistance to moisture and immersion.
In circuits where RF inductors are required and the equip
ment design objective includes maximum reliability under. the most stringent environmental conditions, these ACDC RF
Chokes will help you attain optimum circuitry performance.
Put this combined experience and know-how to work for you.
In the long run you will find it will save you both time and
money; like holding 4 aces, you can't do better!
Full specifications included in Bulletin 125-A, write for yours
 today.

2979 North Ontario Street, Burbank, California Manufacturers of regulated powersupplies, inductive devicesfrompower to radiofrequencios, pulsecircuityycomponentsandmagneticamplifiers

\section*{NEW PRODUCTS}

Welding Power Supply


Rated at 30 kva. The Weldpower ac welding power supply features a half-cycle timing switch for use with single or dual-synchronous: timers. Transformers are made for use at 5511 and 440 v ac, for outputs of 30 kva at \(50 \%\) duty cycle, and 220 v for 22 kva . Unit has a 0.5 to 10 -cycle timing range and a 6 to 30 -cycle timing range with the heat program timer.
Raytheon Co., Commercial Apparatus \& Systems Div., Dept. ED, 225 Crescent St., Waltham 54, Mass.

\section*{Logic Test Panel}

638
For maintenance testing of logic areas and functions, a selective test panel has been incorporated in the firm's DynaPath-20 numerical control systems. Each logic area is isolated through a series of switches. Measurements are taken in each area to determine marginal operating level. Flow of information can be controlled stage-by-stage.
The Bendix Corp., Industrial Controls Section, Dept. ED, 21820 Wyoming, Detroit 37. Mich

\section*{Magnetic-Tape Cleaner}


Sonic and ultrasonic cavitation at the tape surface removes loose oxide, base chips and dirt from magnetic tape. Model CT-2 magnetictape cleaner handles \(1 / 4,1 / 2\) or \(3 / 4 \mathrm{in}\). tape in thicknesses of \(1 / 2\) to 5 mils. Speed is 300 ft per min. Water is used as the cleaning fluid.

General Kinetics Inc., Dept. ED, 2611 Shirlington Road, Arlington 6, Va. P\&A: \$4,454; so to 60 days.

\section*{ELECTRON TUBE NEWS...from SYLVANIA}

\section*{NEW SYLVANIA}


\section*{delivers 45 W output with} heater-supply as low as 5 Volts

\section*{New Sylvania-6883A (12.6V type), 6159A (26.5V type) maintain 45W power at reduced Ef of 10 V and 21V, respectively}

RF amplifier output.
Class C service 70W (ICAS) up to 60 MC . 35 W (ICAS) Up to 175 MC

From Sylvania comes the first major performance improvement to the popular 6146 and associated family since their introduction 7 years ago. The new, Sylvania-originated 6146A, 6883A, 6159A eliminate communications fade-out caused by decreased heater voltage supplies. Designed for use as an AF power amplifier and modulator, RF amplifier and oscillator, they offer the same excellent output capabilities (at normal heater ratings) and reliability that characterize their prototypes.
At Sylvania even established types undergo intensive and continuous field examination to incorporate up-to-the-minute design requirements. In fact, it was in just this way that the well-known line of Sylvania

Gold Brand premium tube types was originated. All are specifically designed to fill critical application requirements-effectively, efficiently, reliably.
If your industrial or military design demands specialized tube types, call on the creative engineering and production capabilitics of Sylvania. Your Sylvania Sales Engineer will be pleased to work with you. For tech data on specific types, such as the new Sylvania6146A, write Electronic Tubes Division, Sylvania Electric Products Inc., 1100 Main St., Buffalo9, N. Y.
*Minimum output limit for an individual tube (CCS) measured in a single-tube self-excited oscillator circuit. Conditions: plate voltage -600 Vdc : grid \(\# 2\) voltage -180 Vdc ; grid \#1 resistor \(-30,000\) ohms; plate current -100 to 112 mA . grid \# 1 current-2 to 2.5 mAdc; frequency-15MC.

\section*{MICROWAVE DEVICE NEWS from SYLVANIA}


\author{
20 KW to 120 KW \\ peak power output
}

with Sylvania Ka Band Magnetrons



Sylvania Ka Band Magnetrons offer a remarkable range of powers, fill virtually all your Ka band requirements They include extremely compact types with exceptional power-to-weight ratios. All are fixed-frequency types for power-to-weight ratios. All are fixed-frequency types for outstanding reliability and longevity
SYLVANIA-5789, first commercially available U. S. type for Ka band, uses 22-vane "rising sun" anode, and improved dispenser-type cathode. With hermetically sealed input and pressurized output. it is highly adaptable to high altitude operation.
SYLVANIA-6799 features 120 KW peak power output and is a proven high-power millimeter wave source. It is available for use with longer pulses and higher duty cycles at slightly reduced power.
SYLVANIA M-4155A, ruggedized version of the 5789. features compact size and weight of only 9 lbs ., improved heat dissipation and excellent stability. It utilizes a special cone-shaped cathode support and "building block" mounting arrangement for added mechanical strength. M-4155A possesses both long- and short-pulse capabilities.
SYLVANIA XM-4064, ruggedized magnetron, offers exceptional stability under severe environmental conditions. Only 9 lbs. in weight, it provides peak power output of 70KW for a remarkably good power-to-weight ratio.
SYLVANIA XM-4158, ruggedized magnetron, provides 120 KW peak power output. Weight is only 27 lbs . It uses E type magnets for a uniform, flat surface configuration that can be used as a structural part of the chassis XM-4158 is compatible with either long- or short-pulse operation.

SYLVANIA XM-4218, rugredized tube, provides a power-to-weight ratio of \(8: 1\) making it especially suited for portable, field-type radar. It uses metal-to-ceramic seals, ceramic cathode capsule, cantilever cathode support. The tube withstands 50 g shock, 10 g vibration tests. XM-4218 provides a lower pushing factor than tubes of comparable performance. Weight is only 4 lb .
SYLVANIA XM-4206 is a ruggedized, compact tube with encapsulated cathode. Only 10.5 lbs .. it provides 40 KW peak power output.
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
srlvania \\
Prequency (KMC)
\end{tabular} & \[
\begin{aligned}
& \text { BAND } \\
& \text { Peath } \\
& \text { Powor } \\
& \text { (KWW) }
\end{aligned}
\] & \begin{tabular}{l}
raons \\
Max. \\
Duty Cyele
\end{tabular} & \begin{tabular}{l}
Max. \\
Pulse wieth \\
(usec)
\end{tabular} \\
\hline 5789 & \(\left\{\begin{array}{l}34.512 \\ 35.208\end{array}\right.\) & 40 & . 0006 & 1.0 \\
\hline 6799 & 34.512
135.208 & 120 & . 0005 & 1.0 \\
\hline M-4155A & \(\left\{\begin{array}{l}34.512 \\ \mathbf{3 5 . 2 0 8}\end{array}\right.\) & 40 & . 0006 & 1.0 \\
\hline XM-4064 & \(\left\{\begin{array}{l}34.512 \\ \mathbf{1 5 . 2 0 8}\end{array}\right.\) & 70 & . 0008 & 1.0 \\
\hline XM. 4158 & 134.512
135.208 & 120 & .0008 & 1.0 \\
\hline XM.4218 & \(\left\{\begin{array}{l}34.512 \\ \\ 35.207\end{array}\right.\) & 32 & . 0006 & 0.4 \\
\hline XM-4206 & \[
\left\{\begin{array}{l}
34.7 \\
35.0
\end{array}\right.
\] & 40 & . 0006 & 1.1 \\
\hline
\end{tabular}

Investigate the design advantages of Sylvania Ka band magnetrons and associated Ka band TR tubes. Contact your Sylvania Sales Engineer for complete information. For tech-
nical data on specific types, write Electronic Tubes Division, Sylvania Electric Products Inc.. Dept. MDO-D, 1100 Main St., Buffalo 9, N. Y.


\section*{The all:new, all solid-state Philbrick P2 amplifier}


NO TUBES, NO CHOPPERS, NOTHING BUT PERFORMANCE, An ingenious arrangernent of all solid-state components endows this operational amplifier with the most remarkable and versatile characteristics. But let's let them speak for themselves. Full differential input: truly floating with respect to ground. No common mode error. Low inpus current: typically \(10^{-11}\) amps. Low noise: typically under 10 microvolts in the dc to 1 kc range. Sub millivoll long term stability: less than 100 microvolts drift per day. Cool running: typically 330 milliwatt dissipation. I'ide bard pass: typically 75 kc as a unity gain follower. High open loop gain: typically \(30,000 . \mathbf{\$ 2 1 0}\). Truly low cost:

Use the P2 for instrumentation, analog computation, and other applications requiring high reliability and accuracy. Discover its marvelous versatility and convenience. Add, integrate, scale, invert with it. Take advantage of its differential inputs to perform very high impedance voltage following (or amplification), precise current driving, and many other useful applications. The P2's output delivers 1 ma at \(\pm 10\) volts. The cast aluminum housing fits right in your hand.
Please write for further information 80:

\section*{GEORGE A.}

PHILBRICK
RESEARCHES. INC.
127 Clantendon st. eoston ic. mass. COMmONWEALTM C-8373. TWX: OS 1032. FAX: DSN aEPRESENTATIVES IN PNINCIPAL CITIES EXPORT OFFICE: 200 W ITTH ST., N. V. II. N. Y TRL CMELEEA 23200, CAELE: TRILRUBH
CIRCLE 100 ON READER-SERVICE CARD

\section*{Pulse Counter}

Dual-channel, \(10-\mathrm{mc}\) pulse counter type HW consists of two separate seven-decade units in module form. Each channel consists of a \(10-\mathrm{mc}\) decade scaler followed by six 1 -mc scalers. Readout is in neon-lighted decimal digits. The 8-4-2-1 binary-coded decimal count in each scaler is available for performing logic operations.

Harvey-Wells Electronics, Inc.. Dept. ED, 14 Huron Drive, Natick, Mass.
P\&A: \$2,500; 2 weeks.

\section*{Frequency Divider-Clock}

596
Accuracy is \(\pm 10 \mu \mathrm{sec}\) for time comparison Model 113BR frequency divider-clock provides comparisons between local time or frequency standards and hf or vlf broadcasts. Drive rates can be recorded over long periods and time or frequency differences can be determined between oscillators in widely separated systems. Requirements of MIL-E-16400 are met.

Hewlett-Packard Co., Dept. ED. 1501 Page Mill Road, Palo Alto, Calif.
P\&A: \(\$ 2,750\); s weeks.

\section*{Pressure Transducer}

Silicon-semiconductor, strain-gage pressure transducer provides 250 mv output without an amplifier from 10 to 30 vdc . It is sensitive to static and hf dynamic pressures. Range is 0 to 100 through 0 to 10,000 psia or psig. Standard linearity is \(0.25 \%\) max. Uses are in steel, missile, underwater and nuclear fields.

Fairchild Controls Corp., Dept. ED, 219 Park Ave., Hicksville, L. I., N. Y.

\section*{Miniature Amplifier}

Rated at 5 w, type C70 \(31460011-\mathrm{cu}\) in. amplifier is designed for use at ambient temperatures of 125 C . Component leads are interconnected by means of electrical-resistance spot welding. Completely potted in epoxy, the unit is suitable for missile and aircraft applications where extremes in shock and vibration are encountered.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

\section*{Universal Motor}

599
Rated up to \(1 / 10 \mathrm{hp}\) at \(10,000 \mathrm{rpm}\), type GR ac-dc motor is \(2-1 / 4 \mathrm{in}\). in diameter and \(3-1 / 4\) to 4 in . long. Output torque at 10,000 rpm is \(10 \mathrm{oz}-\mathrm{in}\). with a current of 1.3 amp at \(115 \mathrm{vac}, 60 \mathrm{cps}\). Field and armature windings can be varied to provide different speed-torque characteristics. Units meet Mil specs.

Globe Industries, Inc., Dept. ED, 1784 Stanley Ave., Dayton 4, Ohio.

\section*{New}

Philbrick 6033 solid-state power supply


GALANCED OUTPUTS, COMPUTING GRADE. The 6033 is the latest addition in the distinguished line of Philbrick power supplies. It will energize at least 10 Philbrick P2 amplifiers and other transistorized electronic equipment. Like the P2, its remarkable characteristics speak for themselves. Low internal impedance: less than 2 milliohms. Low noise and hum: guaranteed less than 150 microvolts rms ( \(0.001 \%\) ). Highly regulated outputs: against load, less than 300 microvolts; against line, less than 200 microvolts. Low long term drift: typically \(0.1 \%\). Short transient recouery time: no load to full load, less than 1 millisecond. Unique short circuit orerload protection: inherent in the 6033's design with no extra circuitry to deteriorate performance. Truly low cost: about half that of supplies with comp- \(\$ 205\).

Operates from 115 volt, \(50-400\) cycles, providing up to 150 ma at plus AND minus 15 volts, slaved to a common reference. Conveniently packaged, cool running, and highly reliable. Available as bench model or modular plug-in. Bench model dimensions: \(31 / 2^{\prime \prime} h \times 51 / 2^{\prime \prime} w \times 71 / 2^{\prime \prime} \mathrm{d}\). Also available with 300 ma output.
Complete facts are waiting for you. Please write:

GEORGE A.
PHILBRICK RESEARCHES, IPIC.
127 CLARGNDON BT. BOsTON 15. MAEs.
COMmOwwentic e-s37s. TwX: Es 1032. FAX; BSN nexpmesentatives in phincipal citien

\section*{NEW PRODUCTS}

\section*{Copper-Clad Laminate}


Glass-fiber reinforced plastic circuit board offers superior electrical performance and resistance to breakage. The material processes easily and punches at room temperature. It is self-extinguishing.
Cimastra Div., The Cincinnati Milling Machine Co., Dept. ED, Cincinnati 9, Ohio.

\section*{Laser Materials}

644
Barium fluoride doped with various rare earths and transition elements is available in single crystals \(3 / 4 \mathrm{in}\). in diameter and 1 in . long. The crystal can be used as a laser material. Chips of the material, suitable for investigating properties of the various dopings, are also available.

Semi-Elements, Inc., Dept. ED, Saxonburg. Blvd., Saxonburg, Pa.
P\&A: Chips, \$15; Crystals, \(\$ 400\) each. From stock.

\section*{RF Voltmeter}

666
For avionics and laboratory use. Model 400 rf voltmeter measures input and output voltages in rf, video, audio and servo systems. Alpha transistors permit calibration as an rf indicator or null detector up to 30 mc . Transistorized, the unit is portable.

R-K Labs, Dept. ED, Box 700, Wantagh, N. Y.

P\&A: 8245; 45 day8.
Diode Module


High-density packaging for 12 diodes is provided by this module. Individual pin terminations connect module to the master board. Contacts are silver-plated with gold flash.
Precision Connectors Inc., Dept. ED, P. O. Box 96, Mineola, L. I., N. Y.

\section*{HERES THE INSIDE STORY OF} General Electric low current

Weldad top leod ... for easy, de-
pendable installation; fin dipped for
maximum solderability
Wolded tube seal possibility of leoks maximum solderability

Mormetic seal ... Kovar metal to matched oxide. bonded ceramic seol pro rectr against thermal shock,
cycling; onhances electrical cycling; enhonces electrical ront


\section*{rectifiers and Zener diodes}

An average of 16 separate life, electrical, mechanical and environmental tests prove out the quality that has been built into General Electric low current rectifiers and zener diodes. The use of "getters", the finest hermetic seal available, hard soldered joints, and welded main and tube seals are only a few of the reasons they test out so well. Silicon rectifier type 1 N 538 , for example, was put through torturous life test studies over a period of 10,000 hours at maximum temperature, current and PRV . . . and came through with a \(99 \%\) survival percentage.

For complete technical information, just call your Semiconductor Products District Sales Manager. Or write Rectifier Components Department, Section 23G26, General Electric Company, Auburn, New York. In Canada: Canadian General Electric, 189 Dufferin Street, Toronto, Ont. Export: International General Electric, 150 E. 42nd Street, N.Y. 17, N.Y.

For fast delivery of selenium, germanium, and silicon rectifiers at factory-low prices, see your authorized G-E distributor

\title{
Progress /s Our Most Important Product general foction
}

CIRCLE 102 ON READER-SERVICE CARD


Gallium arsenide photovoltaic detector GAU401, designed for the 0.4 to 0.9 micron region, has peak sensitivity at 0.85 microns. It is housed in a TO-18 case with a glass window. Square or circular cell areas from 0.2 to 4.0 sq mm can be provided. The device operates at temperatures up to 120 C .

Philco Corp., Lansdale Div., Dept ED, Lansdale, Pa .
P\&A: \$100 ea; 1 to 14 days.

\section*{Core Tester}

Constant current flux reset tester model D is made for production testing of tape-wound cores for magnetic amplifiers. Test conforms to AIEE procedures, in frequencies of 60,400 , and 1,600 cps. Tester handles cores with a cross-sectional area of 0.04 to \(3.0 \mathrm{~cm}^{2}\) and with mean lengths from 3.5 to 20 cm at 2 oersteds drive.

Magnetics, Inc., Dept. ED, Butler, Pa.
Availability: 10 to 14 days.

\section*{Cords and Cables}

High-temperature types. Called Hot Spot Securityflex, these cords and cables are designed for use where intense heat would ordinarily curtail the life of a cable. Cords use butyl insulation with a butyl jacket; control and power cables use butyl insulation with asbestos braid jacket.

Anaconda Wire and Cable Co., Hot Spot Securityflex. EFL-P5, Dept. ED, 25 Broadway, New York, N. Y.

Signal Monitor


Compact signal monitor type SM-9310 is a display unit using solid-state devices. Designed for use with vhf receivers, it provides a sweep width of 3 mc max. Panel height is 3-1/2 in.
Communication Electronics, Inc., Dept. ED, 4900 Hampden Lane, Bethesda 14, Md.

\section*{FROM MOLTEN SOLDER TO} COLD WATER


\section*{Positive Proof: TI HARD GLASS ENCAPSULATED RESISTORS Give You Unexcelled Resistance to Thermal Shock}

Make this dramatic test yourself and discover why Texas Instruments hard glass encapsulated carbon film resistors outperform those of any other construction. First torture the resistor by immersing it in molten solder at \(350^{\circ} \mathrm{C}\) then quickly dip it in water. Now, test the device for electrical stability and mechanical intactness and you'll find as we have that these precision hermetic resistors are completely unaffected by violent thermal shock. Such performance is possible ONLY because TI type CG \(1 / 4\) and CG \(1 / 4\) resistors are protected by a hard glass encapsulant and entirely solderless construction. These same features virtually eliminate possible damage to the resistors during installation in your assemblies.


The extreme thermal shock test is only one of many tests that have proven over the past two years that TI type CG \(1 / 6\) and CG \(1 / 4\) resistors are virtually indestructible. Over eleven million unit hours of test data have been compiled on moisture resistance, thermal shock, extended overload, and load life to prove that TI hard glass encapsulated resistors give you reliable performance under all environments and operating conditions. When you specify TI CG \(1 / 4\) and CG \(1 / 4\) hermetic resistors, you can be assured of getting the most rugged, reliable, precision resistors available... at prices you would pay for ordinary resistors!
Take advantage of the proven reliability of TI hard glass resistors . . . order them today through your nearby TI Sales Office or authorized TI Distributor
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{SPECIFICATIONS} & \multicolumn{2}{|l|}{LETWE \%28} \\
\hline \[
\begin{gathered}
\text { TI } \\
\text { type } \\
\text { number }
\end{gathered}
\] & mathege rating & \[
\begin{gathered}
\text { MIL } \\
\text { designation }
\end{gathered}
\] & standard cesistance ranges & maximum recommended voltage \\
\hline - & wats & - & - & volts \\
\hline CG\% & \% & RMSOB & 24.90101 mags & 350 \\
\hline CCS & 4 & None & 108 to 100 & 250 \\
\hline
\end{tabular}





\section*{Texas Instruments}

INCORPO R ATEED
I3500 N CENTRAL EXPRESSWAY
P. O. BOX 5012 DALLAE 22 TEXAS

\section*{NEW PRODUCTS}

Rotary Switch Kit


Engineers can design and build miniature rotary switches with kit No. PK-20-S. Up to 25 foursection switches similar to the firm's types PA1000 and PA200। switches can be constructed with factory precision.
Centralab Div., Globe-Union Inc., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis.
Availability: From distribufors

\section*{Receiving Tubes}

Novar tubes in four types have integral 9-pin all-glass bases. A low-temperature heater is used. Types RCA-6AY3, RCA-12AY3 and RCA-17AY3 are half-wave rectifier tubes rated at 5 kv plate piv. Peak plate current is 1.1 amp max, with dc plate current of 175 ma max Type RCA-7868 is a high-perveance power pentode for audio output. A push-pull pair can deliver a signal power output of 44 w max, with \(5 \%\) total harmonic distortion
Radio Corp. of America, Electron Tube Div.. Dept. ED, 30 Rocke feller Plaza, New York 20. N. Y

\section*{Motor-Generator}

This \(5 \cdot \mathrm{kw}\) motor-generator is a power source in laboratory testing. Equipment includes a static regulator, output meters, as selec tor switch and rheostat adjust ment. Voltage regulation is within \(1 \%\), no-load to full-load. Input is \(60 \mathrm{cps}, 1,200 \mathrm{rpm}, 220\) or 440 v with a \(10-\mathrm{hp}\) motor.

Kato Engineering Co., Dept. ED, Mankato, Minn.

Reverse Dynamic


High-voltage diodes can be tested with these curve tracers which provide 0 to 5 kv at 60 cps . Reverse current is \(20 \mu\) a to 1 ma . Model 1031-2A, providing true peak meter readings and oscilloscope plotting, is made for precision on-line inspection. Model 10312B, giving a calibrated oscilloscope plot, is made for economical online inspection with moderate accuracy.
Instrument Techniques, Inc., Dept. ED. Henderson and Shoemaker Roads, King of Prussia, Pa. Price: 1031-2A, \$2,375; 1031-2B, \$1,900.

\section*{Wire Markers}

524
U'p to \(\mathbf{5 0}\) circuits can be coded on both ends with Trace-Tab wire markers. Divided strips, numbered from 1 to 10, are printed on a color coded, adhesive-backed cloth tape. Five colors are used.
Pyramid Instrument Corp., Dept. ED, 630 Merrick Road, Lynbrook. N. Y .

Image Orthicon 577 TV Camera


For live-image or closed-circuit monochrome use at 600 -lines mini mum resolution. Type V-600 cam era can be used in military and industrial plants without intense illumination. It reduces radiation hazard in survey, medical and radiological uses. It occupies 2 cu ft and weighs 25 lb .
Foto-Video Electronics, Inc. Dept. ED, 36 Commerce Road, Cedar Grove, N. J.

 wide range of novel uses in extreme environments. The BR-12P is an especial boon to those designing for both sides of the component card due to low profile and side header mounting arrangement. A second type, the BR-12K, provides sensitivity down to 20 mw . Both types have contacts rated at dry circuit through 3 amps resistive.

Performance characteristics are generally shared with other types in the BR-12 Series. All are available with activated


CIRCLE 105 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Flush Circuit Devices}

618
Selector switches and pulse generators are typical applications of these flush circuit devices called Permadiscs. Precious metals deposited on insulating board create pie-section terminals in concentric circles. Height difference between conductor and board is 0.0001 in . There is no electrical noise at 50 rpm . Temperature range is -65 to +125 C .

Precision Circuits, Inc., Dept. ED, 87 Weyman Ave., New Rochelle, N. Y.

\section*{Pressure Switches}

616
Water columns of 0.25 to 16 in . will actuate these signal and differential pressure switches. Known as the Deltadyne series, the devices have a spring-biased diaphragm, and activate a switch at a preselected pressure. Units measure about \(2 \times 3\) in., and are vibration-resistant. Pall Corp., Dept. ED, Glen Cove, N. Y.

\section*{Vacuum Transfer Relay \\ 693}

Interrupts 18 kw dc. Vacuum transfer relay RB1R handles 18 kv peak and 15 amp rms . It will interrupt 18 kw dc for over 100,000 operations at 3 amp or 6 kv . Size is \(2-3 / 4 \mathrm{in}\). overall. Operate time is 3 msec max, release time 5 msec max.

Jennings Radio Manufacturing Corp., Dept. ED, P. O. Box 1278, San Jose 8, Calif.

\section*{Contactors and Starters}

443
Size 3 and 4 contactors and starters have been added to the firm's 100 -line. Size 3 devices are rated for control of up to \(50 \mathrm{hp}, 600 \mathrm{v}\); size 4 for up to \(100 \mathrm{hp}, 600 \mathrm{v}\). They use a horizontal straight-line magnetic action. Contacts are slanted.

General Electric Co., Dept. ED, Schenectady 5, N. Y.


\section*{Direct-Recording Oscillograph}

613
Built-in timing circuit of the Visicorder 906C can be triggered externally. Timing intervals of \(0.01,0.1,1 \mathrm{sec}\), and \(0.01,0.1\), and 1 min are available. Device records as many as 14 channels simultaneously at frequencies to 5 kc . Optical system uses mercury ultraviolet light on photosensitive paper.

Minneapolis-Honeywell, Heiland Div., Dept. ED, 5200 E. Evans Ave., Denver 22, Colo. P\&A: \(\$ 2,145\) to \(\$ 2,700\); immediate delivery.


\section*{Decade Counter}

555
Compact decade counter tube CK7978 is a bi-directional, ring stepping type with maximum dimensions of \(2.3-\mathrm{in}\). heights, \(1.16-\mathrm{in}\). width. The cold-cathode, gas-filled tube provides visual and electrical readout up to 5 kc . Total anode current ranges from 0.30 to 0.60 ma .

Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton 58, Mass. P\&A: \$11; immediate.

\section*{Magnetic Probe}

553
Ac magnetic field evaluation probe operates with an ac vtvm for determining ac magnetic field intensity. Calibrated probe consists of an air core inductor, cast in epoxy, within a shielded enclosure. Shielded cables and connector are included.

Perfection Mica Co., Magnetic Shield Div., Dept. ED, 1322 N. Elston Ave., Chicago 22, III. P\&A: \$15; stock.

\section*{Copper-Clad Laminate}

615
Developed for printed circuits, this copperclad epoxy paper base laminated plastic is designated grade EP-492-1. Specimens \(1 / 16\) in. thick have flexural strength of \(25,000 \mathrm{psi}\) lengthwise, 23,000 psi crosswise. Dissipation factor is 0.031 to 1 mc ; dielectric constant is 4.17. Insulation resistance is 190,000 meg. Material is flame-resistant.

National Vulcanized Fibre Co., Dept. ED, 1061 Beech St., Wilmington 99, Del.
P\&A: \(\$ 1.55 \mathrm{gq} \mathrm{ft}\) in maximum quantity; s weeks.

\section*{Clutch/Brake}

692
Integrally matched with a customer-specified precision servo pot, this clutch/brake is said to eliminate shaft misalignment, backlash and end play. Power is \(2 \mathrm{w}, 24 \mathrm{v}\) dc. Clutch torque is 10 oz -in. min brake torque 6 oz - in . min. Response time is 8 msec , weight 1.3 oz .

Dynamic Instrument Corp., D ED, 59 New York Ave., Westbury, N. Y.

\section*{Ratio Drives}

360
Concentric ratio drives use ballbearings rather than gears to transfer power. Designated type RDLCC, drives have ratios of 2.66 to 1 and 7.08 to 1 . Units, permanently lubricated, are made for servo-mechanism and instrumentation applications. Drives can be panel-mounted.

Jan Hardware Manufacturing Co., Dept. ED, 38-01 Queens Blvd., Long Island City 1, N. Y.


\section*{Up to \(19.6 \%\) less cost per megohm!}


> Up to \(14.1 \%\) more ohms per pound!

\section*{HOSKINS ALLOY 815•R}

\section*{Precision Resistor Wire}

The trouble with using only one type of alloy wire in all of your precision resistors is that very often you and your customers end up paying for something that really isn't required so far as the end use is concerned. Now take Hoskins Alloy 815-R, for example. It's a relatively new custom-quality iron-chromium-aluminum composition. But a number of alert and cost-conscious manufacturers have already found that it possesses all of the physical and electrical properties necessary for many precision resistor applicntions. High strength, good ductility. Excellent resistance o corrosion. Controlled low temperature coe ficient. Wtat's n e -and more to the point these days-they've also found that Alloy \(815-\mathrm{R}\) 's lower density and higher electrical resistivity combine to give them very worthwhile savings. Up to \(14.1 \%\) more ohms per pound -up to 19.6 \% less cost per megohm!

Yours for the Asking-If you're a man who fancies such figures, we'd like to send you an eyeful-namely: A handy little "Cost-per-Megohm" Comparator, plus a 12 page catalog that's loaded with technical data. If you also happen to make precision resistors, sample spools of \(815 . R\) wire are available for testing and evaluation.



\section*{EOSEINS MANUFACTURING COMPANE}

4445 Lawton Avenue - Detroit 8, Michigan - TYler 5.2860
In Canada: Hoskins Alloys of Canade, Ltd., 45 Racine Rd., Rexdale P.O., Toronto, Ontario Producers of Custom Quality Reststance. Resistor and Thermo-Electric Alloys since 1908



Made to encapsulate components thin-wall tubular and rectangular diallyl phthalate cases are molded ats small as \(0.065-\mathrm{in}\). OD, 0.055 -in. ID, and \(0.125-\mathrm{in}\). long. Glass-fiber-filled and Orlon-filled styles are available. Material is said to have good dimensional stability and moisture permeability.
Industrial Electronic Rubber Co., 31945 Aurora Road. Solon 39, Ohio.
Availability: Samples supplied on request.

\section*{Data Printer}

389
Cards or continuous paper forms are handled by the 1404 printer. operating directly from the outfut of the 1401 data processing system. Card output is 800 per minute max; card size is 51 to minute max; card size is 51 to
160 columns. Continuous paper forms are printed at 600 lines per minute max. A read-compare feature is optional.
International Business Machines Corp., Data Processing Div., Dept. ED, 112 E. Post Road, White Plains, N. Y.

P\&A: \$85.500; two years.

Telemetry Transmitter


Solid-state, crystal-controlled telemetry transmitter, model N15A125, measures \(5 \times 5 \times 1-7 / 8 \mathrm{in}\). and weighs less than 20 oz. Supplies fm or cw signals on the 135 me band. Requires a 20 - to \(24-\mathrm{v}\) power supply and provides 0.5 to 1 w output. The transmitter withI w output. The transmitter with-
stands extreme conditions of shock, stands extreme conditions of
vibration and temperature.
DuKane Corp., Government Div., Dept. ED, St. Charles, III.
circie ios on reader-service card -

\section*{The} ever made!

\author{
Daven's New Series G Sub-Miniature Switch...1/2" Diameter.!
}

\begin{abstract}
A new sub-miniature rotary selector switch, developed by DAVEN. is specifically suited for application in missiles, arcraft, handy talkies, field pack sets, frog-man communication equipment, and all types of mobile apparatus. This explosion proof, waterproof switch has the same reliability as its bigger brothers . . . but in a fraction of the space. It meets applicable military specifications on temperature, humidity, corrosion, vibration, acceleration, shock and immersion.

This unit is available as a single pole, 10 position switch and can be obtained with up to four poles on a single deck.
\end{abstract}

\section*{Contact Resistance: Less than 008 ohm}

Contact Rating: 1 ampere, 250 V D. C. into resistive load 350 MA. 100V D C. into inductive load.

Insulation Resistance: 200,000 megohms between any two terminals or between any terminal and shell. Measured at \(25^{\circ} \mathrm{C}\)., \(50 \%\) RH, at sea level.
Life Expectancy: 50,000 cycles minımum
Shaft and case: Stainless steel Panel and hub: Glass filled epoxy Contacts and terminals: Silver alloy Rotors: Rhodium plated beryllium copper


Write tadely for compurcherssive technical refrort w" DAVEN \({ }^{\text {co }}\) on the newe Series G Sub-Miniature Kutary Suitch


For additional information - or immediate sbipment, Call or Write:
TYCO SEMICONDUCTOR
beAR HILL. WALTHAM 54 . MASSACHUSETTS
TWinbrook 9-2400

\section*{NEW PRODUCTS}

\section*{Silicon Rectifiers}

603


Rating is 1 amp , continuous duty. Silicon rectifiers with ratings of 200 to 1,000 piv do not require heat sink. Double-diffused silicon junction is hermetically sealed in cylindrical case with all parts silver-plated for minimum contact resistance, good solderability of leads and thermal conductivity.
Electronic Devices, Inc., Dept. ED, 50 Webster Ave., New Rochelle, N. Y.

\section*{Accelerometer-Amplifier}

387
Solid state accelerometer-amplifier combination model 50X2 has continuously variable gain from 0 to 50 , with a maximum sensitivity of 2 v per g . Frequency response is \(\mathbf{5}\) to \(\mathbf{4 , 0 0 0} \mathrm{cps}\) for acceleration levels from 2 to 100 g . Size is \(2-3 / 4 \times 1 \times 1-1 / 8 \mathrm{in}\)., weight 4 oz . Power is 3.8 ma at 28 v dc.

Columbia Research Laboratories, Dept. ED, MacDade Blvd. \& Bullens Lane, Woodlyn, Pa.

Junction Capacitance Tester


Semiconductor junction capacitance test set model \(705 \mathrm{C}_{\text {ob }}\) measures 0 to 43 pf in four ranges. Accuracy is \(\pm 0.2\) pf on all ranges. The low-cost set provides adjustable junction rf voltage, limited to 0.2 v rms.
Summers and Mills, Inc., Dept. ED, 1511 Levee St., Dallas 7, Tex.

\section*{Power Supply}

546
RF type, high voltage power supply provides continuously variable dc output voltages in a range from 10 kv to 40 kv . High voltage limit
control sets the upper voltage limit from 35 to 45 kv . Line regulation is better than \(0.05 \%\); load regulation is \(0.5 \%\); ripples is less than \(0.5 \%\).

Electro Scientific Industries, Mikros, Inc., Subsidiary, Dept. ED, 7620 S.W. Macadam Ave., Portland 19, Ore
P\&A: \(\$ 550\) to \(\$ 600 ; 15\) days.

Power Supply


Rated at \(150 \mathrm{v}, \mathbf{7 0} \mathrm{ma}\). Model 22-130 modular dc power supply has an output adjustable from 130 to 170 v and from 0 to 70 ma . Input is 105 to \(125 \mathrm{v}, 2.5 \mathrm{amp}, 50\) or 400 cps . Line regulation is 300 mv or \(0.2 \%\); load regulation is 150 mv or \(0.1 \%\). Ripple is 3 mv rms.
Dressen-Barnes Electronics Corp., Dept. ED, 250 N. Vinedo Ave., Pasadena, Calif. P\&A: \$198.50; s0 days.

Magnetic Memories
398


With a cycle time of 6 rent magnetic memories type 3300 provide storage capacities from 128 to 4,096 words and from 4 to 64 bits per word. Digital data are accepted either synchronously or asynchronously, and stored in randomly specified or sequential addresses.
Rese Engineering, Inc., Dept. ED, A and Courtland Sts., Philadelphia 20, Pa.

\section*{Differential Amplifier}

380
For airborne use, model A differential amplifier occupies less than \(3 / 4 \mathrm{cu} \mathrm{in}\). Response is flat within \(\pm 1 \%\) to \(150 \mathrm{kc}, 3 \mathrm{db}\) down at 400 kc ; linearity is better than \(\pm 0.05 \%\) at 5 v ; gain is up to 40 ; standard input is 20 v dc; temperature range is -100 to +350 F .

Stanaway Associates, Dept. ED, 3820 E. Colorado Blvd., Pasadena, Calif.

FIRST PORTABLE LOW COST DUAL


\section*{Featuring * DC to 5 Mc Bandwidth * \(1 \mathrm{mv} / \mathrm{cm}\) sensitivity * AT HALF THE EXPECTED PRICE} Available now for the first time - the only light VERTICAL AMPLIFIERS: DC to 5 Mc bandwidth (3 db); 70 nanoseconds rise time; \(100 \mathrm{v} / \mathrm{cm}\) to \(100 \mathrm{mv} / \mathrm{cm}\) on both amplifiers, \(1 \mathrm{mv} / \mathrm{cm}\) preamplifier on lower amplifier. INPUT IMPEDANCE: (each channel) 30 picofarads across 1 Megohm.
HORIZONTAL SWEEP: 1 microsecond/cm to 1 second/ cm in 5 steps.
TRIGGER: Internal; free running, or with 0.5 cm excur. sion by either beam; External; \(\pm 0.5 \mathrm{v}\) to 2.5 v ; TV frame and TV line.
WEIGHT: 22 pounds SIZE: \(91 / 2^{\prime \prime} \times 81 / 2^{\prime \prime} \times 13^{\prime \prime}\)
Price: Model 5Mc-2 Oscilloscope with 2 Probes \(\$ 495.00\) Immediate delivery. All prices are quoted f.o.b. Los Angeles, and are subject to change without notice.
for complete information and demonstration contact nearest representative. Anderson-Stone Engineering, Newton, Mass.
Anderson-Stone Engineering, Newton, Mass.
Brozan Associates, Mineola, Long Island; Syracuse, New York
J. Jatronics, Houston, Dallas, Fornsylvania

Kittleson Company, Los Angeles, Palo Alto, Califomia
S. S. Lee Asseciates, Washington, D.C; Baltimore, Maryland

Winston-Salem, North Carolina: Orlando, Florida
Pivan Engineering, Chicago, Illinois; Indianapolis, Indiana


\section*{Packard Bell Electronics \\ ENGINEERING BEYOND THE EXPECTED}

12333 West Olympic Boulevard, Los Angeles 64, California circie 110 on reader-service card


Never before available on an industry-wide basis! This month's Utica special is the \#25-5 . . . a new bent chain nose plier designed to grip, twist and loop very fine wire in closely confined areas. It's ideal for work on chassis as well as other subminiature electronic assemblies. Special features include \(60^{\circ}\) angle bent chain nose Beveled edges full length of jaw - Fine serrations in jaws to prevent nicking or marking - Primer coated dipped cushion grip handles and Bauer spring to reduce operator fatigue - Induction hardened edges - Gleaming finish - Backed by Utica's famous full guarantee. Write for complete information on the \#25-5 or the Utica Electronic Plier of the Month program. Or ask to have your Utica distributor call!

UTICA DROP FORGE \& TOOL DIVISION - KELSEY-HAYES COMPANY, UTICA A, MEW YORK


CIRCLE 111 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Novar-Socket Tubes}


These receiving tubes have ninepin novar sockets. Types 6AY3, 12AY3, and 17AY3 are half-wave rectifiers designed to serve as damper diodes in horizontal deflection circuits. Plate voltage is 5,000 max; plate current is \(1,100 \mathrm{ma}\) peak-to-peak or 175 ma dc . Type 7868 is an audio power output pentode.

Radio Corp. of America, Dept ED, 30 Rockefeller Plaza, New York 20, N. Y.

\section*{VLF Timing Receiver}

695


Used at 16, 18, or 20 kc for reception of the major standard frequency stations, model 400 receiver provides an accurate means of checking local standards. Sensitivity is better than \(1 \mu \mathrm{v}\). A built-in \(100-\mathrm{kc}\) oscillator is optional.

Interstate Electronics Corp., Dept. ED, 707 E. Vermont Ave., Anaheim, Calif.

\section*{Rotary Solenoid}


No linkages are required to convert linear motion to rotary with his solenoid, whose action is pure rotation of a balanced rotor. Unit, originally designed for missile applications, resists shock and vibration.

Singer-Bridgeport, Dept. ED, 915 Pembroke St., Bridgeport 8, Conn.

\section*{TRIPLE PURPOSE TRIPLE SERVICE \\ }

\section*{L\&N's Stabilized 9835-B Microvolt Amplifier}
lesigned for low-level d-c measurements of thermocouples, strain gages, etc., in research and production testing. this amplifier combines the functions of three instruments in one:
1. A llirect Reading Indicator that has a sensitivity of \(0.2 \overline{\mathrm{i}} \mathrm{uv}\);
2. A Recorder I'reamplifier that extends the range of any Speedomax \({ }^{2}\) (type G or H) ()-to-10 MV Recorder;
3. A Null lletector that provides a short period of only two to three seconds.
Ronges - \(-2.5(0+2.5,-5(1)(1)+5(1),-10(1)\) to \(+100,-2.50\) to \(+2.50,-5(1) t o+.5100\) and - Iorso to +1 ons) mierwiolts.
Accuracy - \(1 \times\) recorder preamplifier, \(\pm(0.4 \%\) of range \(+11.5 \mu \mathrm{H})\). As direct reading indicator, \(\pm(1.4 \%\) of range \(+(1.5 \mu v)\).
Source Resisfonce- 10,000 ulim, max.
Response Time-Within \(1 \%\) of balance: (1) 2 sec. for \(2,(1101\) !! mur. suurce resistance; (2) \& sec. for nource resistance from 2(10) fo \(10,(1)(1)!?\)
Switches-(1) Sir-pasition range switch; (2) Three-position selector suitch: nonlinear meter rexponse, linear meter response, recorder-output to recorder conncctor: (3) On-off line power switch.

\section*{Amplifier Output of Recorder Comnection-} with extremes of meter scale: (1) \(\pm 5\) mu across 500 \& for null recorder: (z) \(\pm 0.5\) rolt for external indicutar lincing resistances of \(2(1,010)\) !? ur liiglier.
 (d). Weight is approximately \(\cdot \frac{s}{} / \mathrm{lbs}\).

Power Input-1 15 volts, (i) or 51 rycles. Price - \(\$ 660.00\) F.O.B. Ihila. or North Wales, Pr. (subject to change without notice). Specify Lint No. 9x.s:5-B when ordering from L\&N, sars Stenton A lee., Phila, 44, Pa. or nearest L\&N Office.

LEED


MORTMRUP
Aulomalk Cometh - Romean

\section*{TELEMETRY BY TELE-DYNAMICS \\ 1 " \(=\) Transistorized
FM Transmitters}


If you've a need for light-17 ounces -extremely compact-20 cu. in.215 to 260 telemetry transmitters, specify Tele-Dynamic's Type 1053A and Type 1055A.
Providing one- or two-watt true FM output respectively, they employ dependable silicon transistors for high efficiency and offer better than \(0.01 \%\) frequency stability. Type 1055A uses germanium transistors in the output stage. Each will operate reliably at any altitude and under any environment. Pressurized aluminum cases seal out the effects of altitude, humidity, salt spray, sand and dust.
These units, representative of Tele. Dynamic's latest creative effort in the complete telemetry field, are capable of being combined into various custom systems and are low in cost.
For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call TeleDynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone TRinity 8-3000.
- \(\quad 12\)

\section*{anerican mosch arma corpooration}

5000 Partaido Avon Philodolphia 31, No. CIRCLE 113 ON READER-SERVICE CARD ELECTRONIC DESIGN • July


Subminiature electrical and mechanical parts can be welded with the model JA head. The instrument has a fast forging force and adjustable steel ball bushings. Operation is by foot-treadle. Forging force range is 1 to 10 lb . Device measures \(8 \times 3 \times 9\) in. with welding heads extended. Weight is \(9 \mathbf{l b}\).

Raytheon Co., Commercial Apparatus and System Div., Production Equipment Dept.. Dept. ED, 25 Crescent St., Waltham 54, Mass. P\&A: \$1.84: immediate.

Electro-Optical Devices
554


Relay and potentiometer, made for noise-free signal control, incorporate a light source and a photocell in a light-proof casing. The CK-1111 relay can be used with \(3(1) \mathrm{v}\) dc or peak ac, with typical "on" resistance of 13 K . The CK-1112 provides continuous control in potentiometer function, operating to 10 v at 20 ma input.

Raytheon Co., Industrial Components Div., Dept. ED, 55 Chapel St., Newton 58, Mass. P\&A: \(\$ 11\) ea, 1 to 9. immediate.

Commutators
576


For wide variety of uses, including telemetry, multi-point checkout and commercial instrumentation. These commutators use Drireed contacts which are rated for 1 billion operations. The unit shown is single-pole with 12 channels and is \(1-9 / 16 \mathrm{in}\). in diameter and \(1-1 / 4 \mathrm{in}\). long.

Hathaway Instruments, Inc., Hathaway Denver Div., Dept. ED, 5800 E. Jewell Ave., Denver 22, Colo.

not recommended for hi-fi enthusiasts

\author{
(Although we don't have too many reasons why it isn't.)
}

Just because the frequency response of our new 6 watt transistorized servo amplifier is extra good, someone had to suggest its use as a HI-FI component. He proved his case, too, by playing MANTOVANI through it without losing a string! Actually, the exceptional bandwidth which permits its operation on either 60 or 400 cycle carriers is only one of many features that make this amplifier outstanding. Low dynamic output impedance insures good linearity and minimizes distortion between "motor-line performance" and "motor-amplifier performance"
High (30K) input impedance permits operation from most of the common input sources.
And high reliability has been achieved without the finality of potting; aluminum oxide articles provide good thermal conductivity at the same time affording protection against adverse environments.
For additional information on this servo amplifier No. TA006-0A-100 write: Diehl Manufacturing Company, Somerville, New Jersey.

\section*{BPECIFICATIONE}
Output TABEOOATVO
 11 c ambient with 4 , heat tins
Gain 1000 veits volt nomina)
Input imp. fog mimmum
Phase Shift al No meakurabig phase shift in 20 cps passtaed tat 60 cos caters Noise ois voits input shorted
Power Req \(-23 \pm 2\) volts DC at 600 amp 9 _ 9 voits DC at ols amic

\section*{}

DIEHL MANUFACTURING COMPANY
A BUDBIDIARY OF THE BINGER MANUFACTURING COMPANY
Somerville, Now Jersey
CIRCLE 114 ON READER-SERVICE CARD

A new concept in contact design


\section*{New Wire-Form Confact Cuts Miniaturization Costs}

As you can see, it's quite different from conventional solid pin and socket contacts-and for good reason.

Spring action of the beryllium-copper beam sections exerts an equalized force at 4 separate points on the wall of the socket contact. This eliminates the need for a costly and space-consuming spring member in the socket contact. Result: economical micro-miniaturization . . . with densities of 100 to 175 contacts per square inch. Tests show that Wire-Form Contacts retain consistently low resistance after 1,000 cycles of repeated insertions and withdrawals. And unlike solid pin contacts, Wire-Form Contacts can be easily realigned, even after severe bending.

The Wire-Form design makes possible a completely new series of Amphenol Micro-Miniature Connectors. Included are 52- and 104-contact Micro-Rac rack and panel conare 52- and 104-contact Micro-Rac rack and panel con-
nectors with intregral body-dielectric construction. They provide up to \(20 \%\) more contacts in an equivalent space-
at nearly half the "standard" cost. And with Wire-Form Poke-Home Contacts, assembly time is shortened, since all wire terminations are made independent of the connector.

Multi-Purpose Strip Connectors are also available. Applicable to a wide range of uses, they are especially suited for use as printed circuit, tape cable and modular connectors. Bulk Wire-Form Contacts are also supplied for use where it is desirable to plug in modules and components to printed circuit boards and other miniaturization devices.

A complete description of this new micro-miniaturization technique is available by writing: Vice-President, Marketing, Amphenol Connector Division, 1830 S. 54th Avenue, Chicago 50, Illinois.

\section*{AMPHENOL CONNECTOR DIVISION}


\section*{NEW PRODUCTS}

\section*{High-Voltage \\ Power Supply}


Bright-trace storage tubes can be powered by this dual-output, high-voltage power supply. Input is 25 to 29 vdc at less than 1 amp . Output is regulated \(-1.5 \mathrm{kv}, 1\) to 3 ma dc for the writing gun and \(+10 \mathrm{kv}, 100 \mu \mathrm{a}\) dc for the accelerating anode. Device measures \(6 \times 4 \times 1-1 / 2 \mathrm{in}\)., weighs 3 lb , and operates to \(25,000 \mathrm{ft}\) at temperatures from -55 to +71 C .
Espey Manufacturing and Electronics Corp., Saratoga Industries Div., Dept. ED, Saratoga Springs, N. Y.

\section*{Power Sensors}

440
For in-line measurement over a wide frequency range extending from dc to the vhf region. These power sensors measure true power of complex waveforms and can be furnished for ranges of a few milliwatts to hundreds of watts

Consolidated Aviation Equipment, Inc., Dept. ED, 104 Atlantic Ave., Lynbrook, L. I., N. Y

Input Scanner 357


Programable input scanner, model DY-2901, accepts up to 25 inputs, or 100 inputs with slave units, and selects system functions, ranges, and measurement delay for each input channel. Channel selection is by pushbutton; connectors can be quickly removed, and programing is by pinboard. Channel identification recording outputs are provided.

Hewlett-Packard Co., Dymec Div., Dept. ED, 395 Page Mill Road Palo Alto, Calif.
P\&A: \(\$ 1,950\); 14 weeks.


For aircraft, ship-to-shore communications and mobile radio installations. Series 995 telephonetype relay carries up to 4 pdt contacts, rated at \(150 \mathrm{w}, 3 \mathrm{amp}\) max for palladium types and platinumruthenium and rated at \(150 \mathrm{w}, 1\) \(1 / 2 \mathrm{amp}\) for silver types. Coils are available from 3 to 110 v dc.
Guardian Electric Manufacturing Co., Dept. ED, 1550 W. Carroll Ave., Chicago 7, Ill.

\section*{Carbon-Metal Resistors 438}

Offered in three types: military, commercial and epoxy sealed, designated MP, CP and EP. Power ratings are \(1 / 8,1 / 4,1 / 2,1\) and 2 \(w\); resistance range covered is from 10 ohms to 50 meg . These resistors have additives of metal as well as the usual pyrolysis of carbon.
American Components. Inc. Dept. ED, 8th Ave. at Harry St., Conshohocken, Pa.

Vacuum Furnace
442


Cold-jacket type, this vacuumfurnace operates continuously at 2,500 C. It is heated by six pairs of tungsten strips suspended by wa-ter-cooled, low-thermal-loss feedthroughs. The hot zone is \(3-1 / 2 \mathrm{in}\). in diameter, 5 in . high. A \(40-\mathrm{kw}\) saturable-core reactor control is used.
F. J. Cooke, Inc., Dept. ED, 145 Water St., S. Norwalk, Conn.


\section*{NEW from TI}

4-CHANNEL serva/riter: RECORDER


\section*{RECORDS 4 CONTINUOUS CHANNELS}

\section*{ON A ~IDE SINGLE CHART}

You can now record four continuous channels of data on a wide single chart ... four overlapping pens continuously recording on the full width of the \(93 / 4^{\prime \prime}\) chart. For the first time in a potentiometric recorder four variables can be traced with high resolution on a single sheet of chart paper! The recorder is the proved servo/riter in the flush-mounting configuration for use in standard \(19^{\prime \prime}\) relay racks.

Amplifiers are separate from the recorder and may be mounted as far as 15 feet from the recorder chassis. An optional factory-assembled package places the four amplifiers in a standard rack-mounting case for location adjacent to the recorder case.

In addition, five- and six-channel servo/riter recorders are available, utilizing overlapping pens on dual side-by-side \(41 / 3^{\prime \prime}\) charts. Two- and three-channel recorders are offered in both the narrow and wide configurations, with all pens writing on only one sheet of chart paper.

The same industry-proved performance characteristics and wide ranges of the single and dual-channel servo/riter recorders are designed into the new multi-channel instruments. These include:
- HIGH SENSITIVITY-
1.0 mv to 100 mv full-scale
- HIGH INPUT IMPEDANCE4 megohms off-balance
- FAST RESPONSE-
.5 second full-scale rise time
- HIGH REJECTION RATIOS"Transverse" 1,000/1 "Longitudinal"
d-c Common Mode 330/1
d-c \& a-c Guard \(30,000 / 1\)
\(0,000,000 / 1\)
- HIGH RELIABILITY-Non-lash gearing and conservatively rated electronics.

Write for complete information.

APPARATUS DIVISION
PLANTS IN HOUSTON and dallas. texas

Texas Instruments
INCORPORATED
3609 BUFFALO SPEEDWAY
P. O. BOX 6027 HOUSTON 6, TEXAS

\section*{New}

Sonic Energy Cleaning Systems

\author{
REDUCED INITIAL COST
}

25\% less cost
LESS FLOOR SPACE
up to \(40 \%\) less
maximum rellablity
proven design-field tested
IMPROVED EFFICIENCY
compact power generation
LIFETIME WARRANTY on new Omnimite® transducer
SYSTEM INTEGRATION
improved filter, rinse \& dryer restyled cabinets
for maximum adaptability
From Bendix . . . pioneer and largest producer of Sonic Energy Cleaning equipment


\section*{NEW PRODUCTS}

\section*{Power Converter}

694


Rated from 10 to 100 w for 6 or 12 v dc operation, commercial and industrial power converters measure \(1-1 / 2 \times 1-1 / 2 \times 3 \mathrm{in}\). The transistorized units are complete with rectifier and filter system.
James Electronics Inc., Dept ED, 4050 N. Rockwell St., Chicago 18. III.
P\&A: \(\$ 11.95\) to \(\$ 39.95\); stock.

\section*{Energy-Storage Capacitors}

Complete line offered. Using single-unit and multi-unit block construction, these energystorage capacitors are for applications such as high-energy pulses for radar, electrohydraulic metal forming and arc-air heating for wind tunnels.
Westinghouse Electric Corp., Dept. ED, P.O. Box 2099, Pittsburgh 30, Pa.
Availability: Stock or made to order.

\section*{Shaft Position Encoder}

707
Analog-to-digital shaft position encoder CG733 uses a U-scan technique for simplicity of design and performance. Binary outputs of 128, 8192 and 524,288 counts are provided with an accuracy of \(\pm 1\) count. Conforming to environmental requirements, the units operate from -65 to +85 C .
Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

DC Converter


Voltage-to-frequency converter changes 0 to 5) v de into pulse or square-wave output. Frequency varies linearly within \(1 \%\) with the dc input. Full-scale output frequencies range from 500 to \(2,000 \mathrm{cps}\). Models with \(0.1 \%\) linearity and 50 ppm per deg C temperature sensitivity are also available.
Pioneer Magnetics Inc., Dept. ED, 850 Pico Blvd., Santa Monica, Calif.


PERMACEL Electrical Tapes for Class B and Class H insulation. Glass backing, silicone-varnished or plain. Highly adhesive, strong, conformable, time and temperature resistant.

Permacec: \(=\)
Tapes - Electrical Insulating Materials - Adhesives CIRCLE 118 ON READER-SERVICE CARD
TRANSISTOR TRANSFORMER SELECTOR KIT


Set of 9 transformers covers impedance range of 150 through 200,000 OHMS
Matches most new transistor impedance ratings
FULL DESIGN DATA ENCLOSED
1. Nomographs and circuitry for 3. Guide to MIL-T-27A determining correct impedances 4. Cross Reference index 2. Power versus DBM chart 5. Outline drawings

\section*{MICROTRAD commany inc.}
|||unU|fitil 145 E. Mineola Ave., Vallev Stream, W.Y.
circle ilo on reader.service card ELECTRONIC DESIGN • July 19, 1961

\section*{- Vatrar \\ ISOGLAS ISOLASTANE \\  \\ SHEETS ROLLS TAPES \\ FOR CONTINUOUS \\ OPERATION AT TEMPERATURES UP TO \(155^{\circ} \mathrm{C}\). \\ Nalvar Isoglas and Isolastane aflord heavy duly equipment extra} prolection against frequent overloads beyond Class B ratin Isoglas consists of a glass tabric coated with an isocyanate reacted resin. Isolostane is similar except that an elastomeric resin is used. These products are outstonding in their
- thermal slability
- resistance to crazing and cracking
- resistance to solvents, Askarel, and other
non-Aammable synthatic insulating liquida
- loughness and scull resistance
- wet dielectric strength
- Aexibility at low temperatures
- fungistatic qualitios

Also ovailable laminated with ather insulating materials for slat lining, coil supports, and phase insulation. Ask for Data Sheet and Samples.

 CIRCLE 120 ON READER-SERVICE CARD


NEW 3"

"SPACE SAVER"
DC OSCILLOSCOPE
The little 10-10 has big applications. Use it in industrial, med ical and general service ficlds for computer "read out" and for voltage, frequency and phase shift measurement. It features identical vertical and horizontal AC or DC coupled amplifiers. external sync terminal, external rapacity binding posts fo sweep rates lower than 5 eps , transformer-operated power supply, voltage-regulated B+ and bias and excellent specifications. 3RP-I CR tube included. Send for free Heathkit catalog or see your nearest Heathkit dealer.

\section*{}

HEATH COMPANY Benton Marbor 60, Michigan
Mease send the free Meathkit catalog.
NAME
ADDOESS
CIT \(\qquad\)
CIRCLE 121 ON READER-SENVICE CARO ELECTRONIC DESIGN • July 19, 1961

\section*{3-Mode Controller}


Transistorized 3-mode controller SCD-1001-P accepts input signals of 60 or \(400 \mathrm{cps}, 50 \mathrm{mv}\) Proportional settings from 5 to \(1,000 \%\), reset time of 0.1 to 300 repeats per \(\min\) and rate times of 0.005 to 2 min are standard. Current or voltage outputs can be obtained.
Plug-In Instruments, Inc., Dept. ED, 1416 Lebanon Road, Nashville 10, Tenn.

\section*{Laboratory Standards}

699
Voltmeter, milliammeter. Model 1700 dc voltmeter and model 1702 milliammeter both have 10 ranges and provide an accuracy of \(0.5 \%\) of full scale. They are temperature compensated from 15 to 35 C. Self-shielded core magnetmeter movements protect the instruments from external fields.

Simpson Electric Co., Dept. ED, 5200 W. Kinzie St., Chicago 44, III.
P\&A: 1700, \$160; 1702, \$135: From stock.

\section*{Pyrolytic Graphite}

391
Plates, cylinders, and special shapes of pyroIytic graphite are available in sizes up to \(1 / 2\) in. thick and 4-1/2 ft long. The crystal structure of the material permits it to conduct heat and electricity in one plane, but to insulate perpendicular to that plane. High-temperature tensile strength is \(60,000 \mathrm{psi}\) at \(2,750 \mathrm{C}\). The material polarizes infrared light.

General Electric Co., Metallurgical Products Dept., Dept. ED, Detroit 32, Mich.

Pulse Transformer Kit


With 25 units. Pulse transformer Test-Chest contains 25 different units, in 20 case styles, providing over 500 variations. Turns ratios are 1:1:1, \(2: 1: 1,4: 1: 2\), and \(4: 1: 4\). Inductive values range from \(50 \mu \mathrm{~h}\) to 140 mh .

Pulse Engineering, Inc., Dept ED, 560 Robert Ave., Santa Clara, Calif. P\&A: \$125; immediate.

with American Aluminum Quality ... Dependability ... Service!

Yes, you can really relax when you place your aluminum fabricating problems in the competent hands of American Aluminum. Backed by 50 years of progressive engineering know-how, AA can serve you from design to finished product . . . all under one roof. Immediate attention, with emphasis on quality and dependability, is given to your specific needs when using American Aluminum's "Peace of Mind" service. All you have to do is sit back and relax .. . let us do the worrying!

SPECIALISTS IM CONTRACT MANUFACTURING of aluminum for the electronics industry

Complete fabricating facilities for Deep Drawing, Heat Treating, Spinnings, Assembly, Brake Work, Stampings, Anodizing, Welding, Finishing.

Complete die making facilities sock dios on hand for many shape Complete inspection facilities

Send for brochure "ALUMINUM FABRICATING FOR INDUSTRY"
AMERICAN ALUMINUM COMPRNY
Manufacturers of Aluminum Products
for industry since 1910
Sheffield Street, Mountainside, Now Jersey CIRCLE 122 ON READER-SERVICE CARD


FOR LARGE COMPONENTS AND SMALL SUBSYSTEMS . . . the new ITT ST-300 offers a 250 force-pound exciter for vibration and shock testing. This latest in a series of dynamic new vibration equipment utilizes the unique concepts of lateral motion excitation and airbearing support-both developed by ITT engineering and proved on ITT's other vibration exciters of the 100 and 200 Series.

The exceptionally flat frequency response of the ST-300 permits precise testing without the need for elaborate compensating devices. Natural resonances are unaffected by table loadings. In addition, by checking shock and vibration on the same instrument, testing time and cost are substantially reduced. Other significant features of the ST-300 include:
- no sionificant distortion throughout normal test range
- first major resonance above 5 Kc
- useful frequency from 5 cycles to 50 Ke
- shock testing to over \(5,000 \mathrm{~g}\) 's
- table size: \(5^{\circ} \times 8^{\prime \prime}\)

For complete information and applications data, call an ITT Instruments representative or write for Data File ED-1426-1

Other ITT vibration exciters include


ST- 150 for testing one ounce loads to over 100 g's


1
ST. \(\mathbf{1 0 0}\) for small component production testing and accelerometer calibration

\section*{NEW PRODUCTS}

Accelerometer


Ranges from 0.03 to \(\mathbf{4 0 , 0 0 0} \mathrm{g}\), with frequency response flat within \(\pm 5 \%\) from 0.2 cps to 12 kc , are provided by model 504 miniature accelerometer. Sensitivity is 20 mv per g, amplitude linearity \(\pm 1 \%\). Temperature range is -65 to +350 or +500 F . Height is 0.53 in ., weight 15 g.

Columbia Research Laboratories, Dept. ED, MacDade Blvd. \& Bullens Lane, Woodlyn, Pa. P\&A: \(\$ 189.50\) ea, 6 to 10; two weeks.

\section*{Switching Transistors}

High-speed npn epitaxial switching transistors have high breakdown voltages, low saturation voltages, and low output capacities. Designated types NS-381 through NS-384, the devices come in TO-18 packages.

National Semiconductor Corp., Dept. ED. Danbury, Conn.
P\&A: \(\$ 20.90\) to \(\$ 2.90\) for 1-99: from stock.

\section*{RF Transformer}

For low-power radar receivers in airborne and ground equipment, type 1044 rf transformer is used at frequencies under 100 mc . Ratings are: primary windings, 1 to \(1.3 \mu \mathrm{~h}\) with a Q-factor of 26 min ; secondary windings, 0.1 to \(0.14 \mu \mathrm{~h}\) with n Q -factor of 66 min .

Applied Components Inc., Dept. ED, 401 E. Beach Ave., Inglewood, Calif.
Availability: made to meet customer specs.

\section*{Linear Actuator}


With stroke to 6 in . Polynoid linear actuators provide reliable, easily controlled motion at low cost. They can be used to hold underload at any position or provide reciprocating motion. Stroke is up to 6 in . standard. Foot mounting is provided.

Skinner Precision Industries, Inc., Dept. ED, New Britain, Conn.

643

635

\section*{Select the transistorized DVNA-EMPIRE GAUSSMETER best suited to your needs}

Completely transistorized Dyna-Empire gaussmeters accurately measure flux density and determine "flow" direction. Ideal for measuring and locating strey Ideal or measurinR and locating stray fields, plotting variations in strength and performing rapid comparisons of production lots against astandard. Easy-to-operate, no jerk, pull, ballis-
tic readings or circuit breaking required.


NEW TRANSISTORIZED GAUSSMETER MODEL D-874 Special Features:
FIVE RAMEEs: 300 gauss full scale, 1.000 gauss full scale, 3,000 gauss full scale. 10,000 gauss fuli scale, 30,000 gauss fuli scale.
limeai oven emtiae openatime ramee
PORTABLE, OPENATES FROM OWH SELF.
contaimed batteries
aEQUIAES MO EXTERMAL POWER sOURCE
imtenmai caligration stamdard
WEIGNT-A LIS.
UNIVEREML PAORE SUPPLIED IS \(0.025^{\circ}\) TMICK EI \(0.200^{\prime \prime}\) WIDE. ACTIVE AREA IS OMLY 0.0078 souane lucnes located mean ime IIP OF TME PROBE.
Complete with Universal probe \(\$ 195\).

\section*{TRANSISTORIZED GAUSSMETER \\ MODEL D. 855}

This quality precision built Gaussmeter reads fux densities to \(30,000 \mathrm{Gauss}\) full scale \(\pm 2.5 \%\). It is a highly sensitive instrument and provides tremendous flexibility. Complete with two linear probes-one high senaitivity probe for measurement of low density fields and one probe for measurement of high density fields. Special probe available for reading 3 gauss full scale.

Write to
Dyna-Empire, Inc.
1075 Stewart Avenue, Garden City, N. Y.


CIRCLE 124 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 19, 1961

\section*{\(1=\)}

Microminiature connectors have contact densities of 100 to 175 per sq in. Series 220 Micro-Rac is a rack and panel connector, and series 221 Strip is for in-line, stacked, and special configurations. Current rating is 3 amp max, and temperature range is -65 to +250 F. Contacts, beryl-lium-copper, are spring-tempered and resist deformation
Amphenol - Borg Electronics Corp., Amphenol Connector Div. Dept. ED, Broadview. III.

\section*{Rotary Solenoid}


Requires 0.0033 amp input at room temperature or 0.005 amp at -55 C. Voltage range is 25 to 29 v . Type 99:31-04 rotary solenoid meets M1L-1-22075 and is for devices requiring 35 -deg rotation. John Oster Manufacturing Co. Avionic Div., Dept. ED. Racine, Wis.
Arailability: 60 days.
Switchlight Adaptors 368


Snap-in adaptors simplify mounting of the firm's switchlights and indicators. They can be supplied with legend engraved or stamped. Round and square types are available. They are made of nylon with cadmium-plated spring-steel retaining clips.

Pendar, Inc., Dept. ED, 14744 Arminta St., Van Nuys, Calif. P\&A: under \$1; stock.

CIRCLE 125 ON READER-SERVICE CARD \(>\)


This planar microdiode could help a designer make a new reputation. Here are the parameters of a "big" planar diode...but this is the first and only planar diode available in micro-size. "You get the high reliability advantages of planar structure in a package \(0.080^{\prime \prime}\) by \(0.045^{\prime \prime} \ldots\) microdiodes which have passed 10 -day JAN humidity test cycles and ionic salt immersions with no degradation of electrical parameters...true surface passivation only available from General Instrument's unique Molecular Shield " process. - Here is instant availability of a full line of planar microdıodes for computer and general purpose design, in any quantity, either as individual devices or preassembled as complete nanocircuits in standard TO-5 cans (up to six diodes per can). - For full information on General Instrument microdiode types MD 4, 6, 8 and 10 call the sales office or franchised distributor nearest you. In addition, the same reliablity benefits of true passivation planars are available in General Instrument's microtransistors. Write today to General Instrument Semiconductor Division, 65 Gouverneur Street, Newark 4. New Jersey

Typleal Nanocircuit Assemblies Available in TO-5 Packeges.


NC-1. Six Diode Assembly

typical specifications
- Max. power dissipation:
- Reverse Recovery
- Reverse Recovery:
JAN 256 ck.
100 100 Kohms in 03 mec
switching from 5 ma swithing from 5 ma
lorward current to 40 v Torward current to 40
reverse voltage. - BOV: 100 v : continuo working voltage: 80 v . - Average rectified current:
75 ma DC.
- Minimum forward current
- Reverse current: 080 VDC
- Storage and operating temperature range:
\(-65^{\circ} \mathrm{C}\) to +150 C.

GENERALINSTRUMENT SEMICONDUCTOR DIVISION gENERALINSTRUMENT CORPORATION

\section*{}

\section*{SEE YOU AT}


Why should a publication have a booth at WESCON? So that our editors can meet you in person to discuss what you like-or would like to see-in Electronic DEsign. So that we can find out about the projects you are working on that would interest many of your : 38,500 fellow subscribers.

If you are thinking of writing an article yourself, so much the better. Come in and talk it over. And while you are in the booth. you can pick up a copy of the new tabloid size Electronic Daily ... it's published each day to bring you all the latest news, announcements, and the significance of behind-thescene developments at the show.

Electronic Design-Electronic Daily
DOOTH PIーAT WESCON


\footnotetext{
4. Axtiryond w
}

\section*{NEW PRODUCTS}

\section*{Shock Recorder}


Statistical recorder has four channels, each of which can be set from 1 to 25 g . Accuracy is \(\pm 5 \%\). Frequency response is 0 to 40 cps min . Temperature range is -65 to +250 F : unit meets MIL-E-5272 specifications. Electrical output is optional. Devices are made to monitor shocks received in shipping.

Inertia Switch, Inc., Dept. ED, 311 W. 43rd St., New York 36, N. Y.
P\&A: si5.00 per channel; one week.

\section*{Surge Suppressors}

Ranges are 2 to 85 amp , maximum discharge current, and 30 to 480 rms v ac. Available in polarized or nonpolarized units, the Voltrap surge suppressors protect silicon and germanium cells, controlled rectifier cells and similar devices. Multiple units are available in a single assembly.

Westinghouse Electric Corp.. Dept. ED, P. O. Box 2099, Pittsburgh 30, Pa.

\section*{Thermo-Converters}

For frequencies to \(\mathbf{4 0 0} \mathrm{mc}\). the UF7 series coaxial thermo-converters are for rugged remote monitoring or recording of rf and af voltages and currents. Full-scale voltage ranges are from 0.1 to 101 v .

Altron Electronics Co., Dept. ED, P. O. Box 141. Ridley Park, Pa.

P\&A: 8155: 15 days.

\section*{Right-Angle Connector}


For circuit boards. Right-angle plug and receptacle series 6040 is designed for printed circuit applications where a soldered joint is required between board and connector. Contacts match \(0.100-\mathrm{in}\). grid. Closed-entry socket receptacles and die-cast aluminum protective shells are optional.

Precision Connectors Inc., Dept. ED, P. O. Box 96, Mineola, L. I., N. Y.

667


\section*{G-M provides continuous quality control}

Your need for a full margin of rellialility in servo systems is matched by the continuous quality of G.M Servo Notors and Cenerators. The extra design expericuce that goes into ctery ;i.1t unit is guided through production by 10.01 , after test, after qualification tesi. Sizes range from 5 to 18 , with prompt avail. ability that promises quick adaptation to your servo development and production programs.

Qualify C-M Servos for all uf vimur projects, now, in advance of acturil nurvl. Send procurement specs and prints. todlay.

Phona: PEnsacole 6-1800 (TWX CG-3266)


4234 N. Knor Avenue - Chicogo 41
Other offices in principal cities
CIRCLE 127 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 19, 1961


Hand dispenser for epoxy adhesives and potting compounds, called the Epoxer, provides fingertip control of epoxy flow, with positive cut-off. Unit, pressurecharged, dispenses filled or unfilled materials over a range of viscosities. It can dispense dots, drops, and beads.

Kenics, Corp., Dept. ED, P. O. Box 27, Greenwood Station, Wakefield, Mass.
P\&A: \$48.00; from stock.

\section*{Cryogenic Sensors}

\section*{385}

Measure to 4 K or -269 C . These miniature cryogenic sensors are germanium semiconductors for use in test and operation of space vehicles using liquid helium and nitrogen, and for use in calibration and standards laboratories. One type measures surface temperatures: the other is for internal applications.
Minneapolis-Honeywell Regulator Co., Dept. ED, Wayne \& Windrim Aves., Philadelphia 44. Pa.

Modular Delay Lines
351


Delays of 10 to 100 nsec are provided by modular sections, each an encapsulated LC circuit. Lines comprising 6 to 60 modules are available, and may be stacked to provide over 200 sections. Called Wee Lines, the units have 500 ohm impedance and include phase correction for proper pulse response. Taps may be pulled at any increment of delay without distorting pulse shape.

Nytronics, Inc., Dept. W-1, Dept. ED, 500 Springfield Ave., Berkeley Heights, N. J.
Availability: From stock to 8 weeks.


YOU'RE

SFEPRY

\section*{SPERRY SEMICONDUCTOR DIVISION}
of
SPERRY RAND CORPORATION NORWALK, CONNECTICUT


\section*{.... and it's up to us to present the facts.}

Here's evidence on Sperry's PNP alloy junction silicon transistors:
1. All units are baked at \(200^{\circ} \mathrm{C}\) for 200 hours and each device is doubly tested for a perfect hermetic seal - through a \(150^{\circ} \mathrm{C}\) hot oil check and a separate hydrostatic test at 100 psi .
2. Sixty-three QC checks are performed before and during mechanized manufacture.
3. Our newly-built 65,000 square \(f 00 t\) facility in Norwalk, Connecticut incorporates the latest techniques to produce the quality and quantity you require.
4. We offer you a wide variety of PNP types from which to choose.

May we have your verdict?

\section*{THE CALL OF THE TALOS COMES IN LOUD AND CLEAR through CECO's compact, low noise, telemetering preamplifier}

CECO's Model 3010, wide band, telemetering preamplifiers, used aboard the Navy's new CLG-series cruisers, boost air-to-surface signals, minimize noise, reduce output and size requirements of missile transmitters. Used in the AN/UKR. 10 telemetering and AN/USQ. 11 miss. distance systems manufactured by Aircraft Armaments, Inc., for the Talos, Terrier, and Tartar missiles, the Model 3010 is simple. highly compact and flexible in physical configuration. It is characterized by
extremely low noise
and stable gain and features new tube types and conservatively rated components for trouble-free operation. CECO specializes
in the design and manufacture of amplifiers. For additional information WRITE FOR BULLETIN AB

COMMMUNITY ENGINEERING CORPORATION
STATE COLLEGE PENNSYLVANIA


CIRCLE 129 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}


Adjustable 850 to \(\mathbf{1 , 1 5 0} \mathbf{c p s}\). Designed for modulating microwave amplifiers, signal generators, and traveling-wave tube amplifiers, model 305 provides a square wave up to 60 v peak-topeak. Rise time is \(0.4 \mu \mathrm{sec}\), with \(5 \mu \mathrm{sec}\) fall. Frequency stability is \(\pm 0.2 \%\). Size is \(3-3 / 8 \times 6 \times\) \(5-3 / 8 \mathrm{in}\). Weight is \(2-1 / 2 \mathrm{lb}\).

Alfred Electronics, Dept. ED, 897 Commercial St., Palo Alto, Calif.

\section*{C-Band Transponder}

476


Recovery time is \(30 \mu \mathrm{sec}\). Beacon transponder model SC-702 operates in the 5.4 to 5.9 Gc range. It can decode 38 different codes. Solidstate modulator gives recovery time of \(30 \mu \mathrm{sec}\). Output stage uses pulsed triode for reliability: input power is less than 30 w . Transmitter output is 1 kw peak. Weight is 10 lb .

General Dynamics/Electronics, Public Relations Dept., Dept. ED, 100 Carlson Road, Rochester 3, N. Y.

VHF-UHF Power Oscillators


50 mw to 50 w of power are provided by the firm's model 408 and 410 power oscillators. Frequency ranges are from 200 to 550 mc and 500 to \(1,050 \mathrm{mc}\) for the two instruments respectively. Dial resettability is within \(0.002 \%\).

\section*{0 TO 1500 V \\ COMPLIANCE with ELECTRONIC MEASUREMENTS}


\section*{CONSTANT CURRENT POWER SUPPLIES}

You'll find a whole new world of application in Electronic Measurements Constant Current Power Supplies. Take the husky Model C6:38A shown here. It ll deliver up to 1500 V de at any output current from a few microamperes up to 100 ma . There are other features too . . a modulation input, programmability, less than \(0.01 \%+1 \mu \mathrm{a}\) ripple . . . and the all-important voltage control that lets you set the maximum voltage compliance.

For complete information ask for Specification Sheet 3072B.


A meter indicates proper loading. Modulation can be cw, external, pulse, internal square wave ( \(1 \mathrm{kc} 100 \%\) ) or, on special order, am. Stability is \(\pm 0.1 \mathrm{db}\) per hour.

Microdot Inc., Dept. ED, 220 Pasadena Ave. South Pasadena, Calif.

\section*{Sweep Generator}


Model SP-1200 sweep generator has a center frequency range of 5 to 1.200 mc and a sweep width of 5 to \(1,200 \mathrm{mc}\). An automatic gain control circuit continuously samples the swept output to insure a uniform signal level over the entire range. Flatness is within \(\pm 0.2 \mathrm{db}\) over a 100 me width and within \(\pm 0.75 \mathrm{db}\) over-all. Rf output is over 0.25 v rms into 50 ohms and can be adjusted in steps of \(0,10,20,30,40\) or 50 db .
Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.

Coaxial Isolator


L-band coaxial isolator is 6.45 in . long weighs less than 2 lb . Standard units covering 1.0 to 2.0 Gc have a \(10: 1\) isolation/insertion loss ratio, vswr of 1.15 max. Narrow-band models with higher isolation/insertion ratios are also made.
E \& M Laboratories, Dept. ED, 15145 Califa St., Van Nuys, Calif.
P\&A: \$s25; \& weeks.

\section*{Tunable Magnetron}

712
Voltage-tunable magnetron ZM-6014 covers the 500 to \(1,200 \mathrm{mc}\) range with a power output of \(1 / 2 \mathrm{w}\). It can sweep the band in 0.01 usec or less; tuning rate is 0.65 mc per v . Tube operates at 2.5 kv max, anode current of 20 ma max, filament current of 3.2 amp max. Weight is \(3-1 / 2 \mathrm{lb}\)

General Electric Co., Power Tube Dept., Dept. ED, Schenectady 5, N. Y P\&A: \$950; 180 days.


Encapsulation with putty-type Alkyd satisfies need for reliability by resistor maker and customers.

Today's creative engineers design with PLASKON Alkyd in mind for the manufacture of delicate electronic components. Here are reasons why electronic engineers prefer PLASKON putty-type Alkyds as the encapsulation medium:
- Simple to fabricate . . . molds quickly at extremely low pressures . . . permits rapid production cycles.
- Clean to handle . . . nothing to mix.
- Dimensional stability prevents distortion or damage to delicate inserts.
- Coefficient of linear thermal expansion is similar to that of popular wire alloys ... reduces strain in service... aids the functioning of encapsulated units.
- Thermal conductivity helps to dissipate heat faster, resulting in less change in resistance value before and after encapsulation.
- Available in colors, for coding.
- More economical than most encapsulating processes.

PLASTICS DIVISION
\(4 O\) RECTOR BTREET, NEW YORK G. N. Y.


CIRCLE IJI ON READER-SERVICE CARD


Developed by Joy apecifically for 60 cycle commercial duty, the Series 60 vaneaxial fans operate at 3400 rpm, 115 volts, single phase, \(50 / 60\) cycles and produce from 50 to 500 cfm at static pressures of \(1 / 4^{\prime \prime}\) through \(1^{\prime \prime}\) wg. They are extremely compact and ruggedly built
of anodized aluminum. There are only four major parts; rotor, housing, motor, and separately mounted capacitor. Production quantities are available on order and small quantities are available off-the-shelf. For more information write for bulletin 3313-57.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Model No.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Design } \\
& \text { CFM } \\
& \pm 3 \% \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Design } \\
& \text { PS } \pm 7 \%
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Max. } \\
\text { Pressure }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Motor Data} & \multicolumn{6}{|r|}{Mechanical Dimensions (inches)} & \multirow[t]{2}{*}{\[
\begin{gathered}
1 / n_{n}^{*} \text { Holes } \\
\text { Plar } \\
\text { fange }
\end{gathered}
\]} & \multirow[t]{2}{*}{Total Weight Pounds} \\
\hline & & & & & внр & mFD & A & B & C & 0 & E & F & & \\
\hline X702-401 & 50 & 70 & 0.30 & 0.45 & . 005 & NONE & 4.37 & 4.62 & 5.25 & 5.87 & 4.50 & 0.9 & 4 & 5.4 \\
\hline X702-402 & 100 & 145 & 0.35 & 0.60 & . 010 & NONE & 5.12 & 5.37 & 6.00 & 6.62 & 4.50 & 0.9 & 4 & 5.8 \\
\hline X702-403 & 150 & 180 & 0.35 & 0.80 & . 015 & NONE & 5.62 & 5.87 & 6.50 & 7.12 & 4.50 & 0.9 & 4 & 6.1 \\
\hline X702-404 & 200 & 265 & 0.40 & 0.79 & . 035 & 5 & 5.62 & 5.87 & 6.50 & 7.12 & 5.00 & 1.3 & 8 & 7.2 \\
\hline \(\times 702-405\) & 250 & 330 & 0.40 & 0.82 & . 043 & 5 & 5.87 & 6.12 & 6.75 & 7.37 & 5.00 & 1.3 & 8 & 7.4 \\
\hline X702-406 & 300 & 340 & 0.40 & 0.93 & . 052 & 5 & 6.12 & 6.37 & 7.00 & 7.62 & 5.00 & 1.3 & 8 & 7.6 \\
\hline \(\times 702.407\) & 350 & 430 & 0.50 & 1.10 & . 060 & 5 & 6.37 & 6.62 & 7.25 & 7.87 & 5.00 & 1.5 & 8 & 8.5 \\
\hline \(\times 702-408\) & 400 & 520 & 0.75 & 1.20 & . 068 & 5 & 6.62 & 6.87 & 7.50 & 8.12 & 5.00 & 1.5 & 8 & 8.7 \\
\hline X702-409 & 450 & 560 & 0.75 & 1.30 & . 075 & 5 & 6.87 & 7.12 & 7.75 & 8.37 & 5.00 & 1.5 & 8 & 8.9 \\
\hline X702.410 & 500 & 625 & 0.75 & 1.40 & . 083 & 5 & 7.12 & 7.37 & 8.00 & 8.62 & 5.00 & 1.5 & 8 & 9.1 \\
\hline
\end{tabular}
-Rated 236 WVAC-
Note: Spon aluminum inlet bells and aluminum wire inlet bell screens are available to lit all sizes of fans.

AIR MOVING EQUIPMENT FOR ALL INDUBTRY


Joy Manufacturing Company Olivor Bulding, Pithaburgh 22, Pe.

In Canoda loy Manulacturing Company (Canada) Lminod, Gah, Omario

\section*{NEW PRODUCTS}

Coaxial Switches and Attenuators 714
Solid-state devices are made for microwave receiver applications. Series MA-3460 switches operate from 210 to \(2,850 \mathrm{mc}\) with a typical switching speed of 4 nsec . Insertion loss i0.2 db max closed and \(20 \mathrm{db} \min\) open. Driving power is 10 to 100 mw . Series MA-344l variable attenuators have the same frequency range and insertion loss characteristics. Bias is -3, v at \(10 \mu \mathrm{a}\) to +1 v at 10 ma .
Microwave Associates, Inc., Dept. ED, Burlington, Mass.

\section*{Coaxial Attenuators}

Operate to \(5 \mathbf{G c}\). Carbon film resistive ele ments are used in this series of coaxial attenuators. Attenuation accuracy is \(\pm 0.1\) to \(\pm 0.5 \mathrm{db}\) up to 3 Gc ; vswr is 1.02 to \(1.3: 1\), dc to 5 Gc . Pow: er handled is 1 w for \(\mathrm{cw}, 1 \mathrm{kw}\) peak. Input and output impedance is 50 ohms. Type \(C\) connector: are standard, with other types available.
Ad-Yu Electronics Lab., Inc., Dept. ED, 249259 Terhune Ave., Passaic, N. J.
P\&A: \$56; 2 weeks.

\section*{Traveling-Wave Tube}

An 8-db over-all noise figure is achieved by a radar using the N1042M traveling-wave tube. Under typical operating conditions, the tube requires a magnetic focusing field of 525 gauss, has a gain of 25 db , noise factor of 6.5 db , and saturated output of 1 mw .
English Electric Valve Co. Ltd., Dept. ED. Chelmsford, England.

\section*{Helical Antennas}

Made for 2-Gc band, helical antennas of the TY-52 and TY-53 series are designed for easy maintenance accessibility. Two-bay models have a 9.4 gain, three-bay 14.1. The antennas withstand wind up to 112 mph , and can be deiced by passing low-voltage, high-current power through the helix.

General Electric Communications Products Dept., Dept. ED, P. O. Box 4197, Lynchburg, Va.


\section*{in multi-channel recording systems}
there is
nothing newer
. There are many reasons why Brush's newest oscillograph is the ideal choice for today's most advanced telemetry and computer systems. Its precision and reliability are proven. You get analog data instantly recorded on eight 40 mm channels . . and the sharpest traces on rectilinear coordinates you've ever seen. Thirteen electrically controlled chart speeds take the guesswork out of interpretation. All functions are operated by pushbutton . . . including an ingenious auto-load chart changing arrangement. But . . . the most important reason of all is that this vertical panel oscillograph carries the name "Brush". No one is as qualified. See for yourself. Call, write or wire.
WHUSH INSTRUMENTS
3TTM AND PERKINS CREEVITE CLEVELAND 14, OHIO


\section*{SCOTCH \({ }^{\text {® }}\) BRAND MAGNETIC INSTRUMENTATION TAPES OFFER A RIGHT TAPE FOR EVERY APPLICATION}

Knowledgeable tape users realize that magnetic tapes are not all alike-that it takes specific constructions to meet the needs of specific applications. And they ve learned to rely on "Scotch" bhand to supply the one right tape for each application. Not only does "Scotch" bravd offer a complete line, it offers that something extra that makes all the difference in performance-the uniformity and reliability that result from 3M's experience, technical skill, and continuing research. Make the "Scotch" brand label your guide in buying instrumentation tapes. Your 3.1 Representative is close at hand in all major cities-a convenient source of supply and information. For details, consult him or write Magnetic Products Division, 3 IJ Co St. Paul 6, Minnesota. ©1\%1, 3M Gmpany

The wide "Scotch" brand line provides many tape-, including these broad classifications:
SANDWICH TAPES 488 and 489-exclusive with "SCOTCH" BRAND, of fering 30 times the wear of standard tapes, drastic reductions in herat fering 30 times the wear of standard tapes, drastic reductions in heal
wear, elimination of oxide rub)-off. In standard or extra-play lengtis. HIGH RESOLUTION TAPES 458 and A59-offering superior resolution in high frequencies, gr"ater pulse density in digital recording. In stanlard and extra-play longths.
HEAVY DUTY TAPES 498 and 499 -offering exceptional life, gond resolution, high resistance to temperature and humidity, reduction in the build-up of static charge. In standard and extra-play lenuth, HIGH OUTPUT TAPE 428 -offering top output in low freguencirs, Prrforms well even in temperature extremes.
STANDARD TAPES 403 and 408 -offering the good all-round per formance at low relative cost which has made them the standaril formance at low relative cos
of the instrumentation field.

\section*{Fixed Magnetron}

715
Operating at 3.04 to 3.06 Gc , the M561 fixed-frequency magnetron handles 80 kw peak, 80 w avg. Pulse length is \(1.0 \mu \mathrm{sec}\), prf \(1,000 \mathrm{pps}\). Size is \(6.28 \times 6.11 \times 3.28 \mathrm{in}\)., weight \(3-1 / 4 \mathrm{lb}\). Peak anode current is 15 amp , peak potential 13 kv .
English Electric Valve Co. Ltd., Dept. ED Chelmeford, England.

Hybrid Mixer


The V-8302B hybrid mixer is designed for waveguide coupling in both local oscillator and signal arms. It performs without adjustment over 8.5 to 9.6 Gc frequency range. Maximum vswr in both signal and local oscillator arms is 2.0 ; isolation is 20 db min . Typical noise figure is 8.5 db ; it weighs three oz.

Varian Associates, Dept. EI), 611 Hansen Way, Palo Alto, Calif.
Price: s.395 fob Palo Alto

\section*{Traveling-Wave Tube}

572
Low noise traveling-wave tube, model 2110A. is periodic permanent magnet focused and of metal-ceramic construction. The tube operates from 2.3 to 4.45 Gc and provides 10 mw output. Gain is 30 db with a \(10-\mathrm{db}\) max noise level. Power consumption is less than 3 w ; auxiliary cooling is unnecessary. The unit weighs 6 lb and measures \(\mathbf{1 7 - 1 / 8} \mathrm{in}\). long \(\times \mathbf{2 - 1 / 4} \mathrm{in}\). in diameter.

Microwave Electronics Corp., Dept. ED, 4061 Transport St., Palo Alto, Calif.
P\&A: \(\$ 3.500 ; 30\) days.

\section*{Ferrite Material}

706
Microwave ferrite type \(1-101\) is for use in devices requiring a high phase shift and low insertion loss in the medium power range. In some applications this material may be used down to S-band frequencies. Characteristics are: saturation magnetization, 2,000 gauss; line width, 400 ; dielectric loss tangent, 0.0005 ; dielectric constant, 13; curie temperature, 300 C .
Irvan Engineering Co., Inc., Irvan Ferrite Co., Inc., Div., Dept. ED, 13856 Saticoy, Van Nuys, Calif.

\section*{HERE YOU SEE IT}


HERE YOU DON’T!


V'alue is what we're talking about. There isn't a soul alive who would knowingly throw away a gold or silver or platinum watch case or pin or eyeglass frame. Because they're worth money. This sense of value is responsible for a considerable part of Handy \& Harman's Refining activity. Constantly, we are sent precious metal scrap from retail jewelers all over the country. (les, often in shoe boxes.)

And just as constantly we wish that industry had the same sense of value when it comes to their precious metal "waste." Just because it doesn't look like anything doesn't mean that it isn't worth something.

To show you where profits lurk, we've included a list showing the various forms of precious metal waste.

It is by no means complete (it is possible that you have other forms), May we suggest that - should you be in doubt - you contact the Handy \& Harman Refining Center nearest jou. Further, if you are not in doubt about your waste bearing precious metals, but you are (or have been) in doubt as to its full value, it will profit you to send it to us. Our Bul. letin 24 describes our Refining Division in detail. A copy awaits you at

Plating Solutions Precipitates, Sludges and Sediments

\section*{Cooted Copper Wire \& Racks Blanking Grindings Blanking Scrap, Stampings, Strip,} Filter Pods
Anode Ends Tonk Scrapings Electrolytic Silver Hypo Solutions X-Ray Film Cooted Plastics, Ceramics, Glass, Mico, Quartz, etc. Chemicals
Mirror Solutions-Silver
Nitrate
Turnings, Chips, Shavings

\section*{Silver on Steel Bearings} Silver Steel Iurnings

\section*{Powder Mixfures}

Screen Scrop
Screen Scrap
Solder Scrap
Brazing Alloy Scrap
Contact Alloy Scrap
Silver on Steel, Tungsten, Moly Scrap
Bi-Metal Scrap
Silver Paint Waste, Wipe Rags, Paper Cons
Platinum-Bearing Material
Gold on Moly, Tungsten, Wire

Your No. I Source of Supply and Auphorify on Presious Motala
HANDY \& HARMAN
arideeport 1, conmecticut
CLearwater 9.8321
 CIRCLE 135 ON READER-SERVICE CARD
povidence 3, a. I. 425 Richmond St .

CMICASO 22, ILL 1900 West Kinzie St. 900 West KInzle St.
SEely \(3-1234\)

\section*{\({ }^{\text {an }}{ }^{\text {New }}\) and}

䇣 important P\&B relay


\title{
having rare longevity
}

\begin{abstract}
This small, 4-pole relay has the happy faculty of maintaining its original operating tolerances over an exceptionally long life. Example: tests (by customers!) show this relay has variations in electrical charactoristics of loss than 5\% after more than 100 million operations.
But that's far from all. This is a small relay . . . about a one inch cube. This relay is easy to install using the conveniently spaced solder lugs or a socket. Thus you save time and production costs. This relay is versatile its 4PDT . Thus you save time and production cosis. This relay is versatie...its aPOT contacts wil switch loads rom dry crcut up ios amperes. This relay-well, why nol ordor sample 5-5251, in Princeton, Indiana.
\end{abstract}


KHP SERIES SPECIFICATIONS CONTACTS:
Arrongoment: 4 Form C, 2 Form 2.
Metariol: lia" dia. Silver standord. Silver cadmivm oxide and gold alloy availoble. Reting: 3 amps (a 30 rolts \(D C\) or 115 volhs \(A C\) rasistive for 100,000 operationa

\section*{colls:}

Tesistence: 11,000 ohms mar Temparoture: Operating Ambient: \(-45^{\circ} \mathrm{C}\). 10 Powor: 0.5 watr min operate ain \(25^{\circ} \mathrm{C}\). 0.9 watts nom. (1) \(25^{\circ} \mathrm{C}\). 20 watts mar. (a \(25^{\circ} \mathrm{C}\) TIMING VALUES: Nominol Vollage (a. \(25^{\circ} \mathrm{C}\). Max. Valua Pull-in time 15 ms
5 ms
INSULATION RESASTANCE: 1500 megohme min. DIELECTRIC STRENGTM:
500 Volts RMS 60 cycles: berweon contact
MECM. HFE. In 60 eycles bolwean other alemenis.
SOCXET. Solder lug of 100 million cycles.
SOCKET: Solder lug or printed circuit terminals. DUST COVER: SIandard.
TERMINALS: Solder lug and loper tob.

KHP SERIES RELAY NOW AVAILABLE AT YOUR LOCAL ELECTRONIC PARTS DISTRIBUTOR


\section*{NEW PRODUCTS}

Pen-type dosimeter is worn in pocket. Known as SCRAM (SelfContained Radiation Monitor), device chirps like a cricket when radiation increases. In normal backgrounds, SCRAM chirps every two minutes. As radiation increases, chirps blend to produce a steady tone. Device runs for about one year on a single mercury cell. It measures 6 in . long and \(3 / 4 \mathrm{in}\). in diameter.
Radiation Equipment and Accessories Corp., Dept. ED, 665 Merrick Road, Lynbrook, N. Y.
Price: \(\$ 75.00\).

Interlock Switch
617


Thirty-six gang interlock switch cannot be actuated until reset button is pressed, and no two buttons can be actuated simultaneously. Bounce rate is less than \(500 \mu \mathrm{sec}\). Switches are rated at 3 amp inductance, 5 amp resistance at 115 vac . Lens has dual lamps. Switch withstands shock test of 50 g . Panel measures \(16-1 / 2 \times 4-1 / 2 \times 2-3 / 4\) in. MIL specs are met.
Pepco, Inc.. Dept. ED, 2080 Placentia Ave., Costa Mesa, Calif.

Circuit Tester


Automatic circuit checker model R1 100 tests 100 circuits for shorts, opens, and reversals. Faults are unambiguously on display panel. Test output is 24 v at 50 ma .

Pearce-Simpson Electronics Div. Dept. ED, 3950 N.W. 28th St., Miami, Fla.
< CIRCLE 136 ON READER-SERVICE CARD

Eliminates grooving operations in module construction by becoming a finished slot. Two lanced tabs hold board under a \(3-\mathrm{g}\) shock load. Maierial is beryllium copper. It is \(4-1 / 4 \mathrm{in}\). long and is made for \(3 / 32\) or \(1 / 16 \mathrm{in}\). boards.

The Birtcher Corp., Industrial Div., Dept. ED, 745 S. Monterey Pass Road, Monterey Park, Calif.

Data System 612


Alarm scanning, telemetering, and recording is performed by the series 7000 data system, which measures, converts, transmits, and records analog values in digital form. System is of modular design. Operation can be manual or automatic, controlled by a digital timing clock. System automatically checks itself. Any number of remote stations can be accommodated.

Monitor Systems, Inc., Dept. 14, Dept. ED. Fort Washington Industrial Park, Fort Washington, Pa.

\section*{Multi-Turn Limit}

525
Positive mechanical limit stop can be set for any number of shaft revolutions from 1 to 1,500 turns. Operating speed is 1.800 rpm max. Anodized aluminum case measures 1-1/16 \(\times 2-1 / 4 \times 3-1 / 4\) in. Military specifications are met.

Computer Sciences, Inc., Dept. EI), fil? Main St., Westbury, N.. Y.

\section*{Low-Temperature Cabinet}

393

For storing epoxy compounds. Model E-40-2 has a 2 -cu-ft capacity and provides temperatures to -50 F . Cabinet measures 32 x \(24 \times 43\) in. and is mounted on canters.

Cincinnati Sub Zero Products, Dept. ED, 39:32 Reading Road.

Only Ampex AR-300/FR-700 systems make all these wideband recording techniques practical and routine

It takes 4 mc response to fully encompass all the above applications. Increasing tape speed past static heads would demand \(1,300 \mathrm{ips}\) and record only 3 minutes, using massive \(19^{\prime \prime}\) reels . but Ampex puts a full hour on standard \(101 / 2^{\prime \prime}\) reels. by rotating the recording heads at \(12,000 \mathrm{rpm}\) transversely across slow-moving tape ( \(121 / 2\) and 25 ips ) to get the needed relative head-to-tape speed for 4 mc . In so doing, the AR-300 and FR-700 recorders borrow from Ampex's videotape* Recorders, which use an identical technology to capture TV frequencies.

More bits per hour, another bonus from rota. ting heads. Rotating heads reconcile two ideals: relative freedom from information dropout. and maximum information recorded per reel of tape. With head-to-tape speed to spare, each bit of information can be permitted to occupy a greater wave length along the track to minimize dropout. At the same time, rotating heads are ideal for recording very narrow, closelyspaced tracks across the tape. This narrow spacing puts 64 tracks into each inch. Up to \(5,000.000\) bits of PCM data can be recorded per second, or \(1.8 \times 10^{111}\) bits on a one-hour reel.

750 similar recorders have written the relia. billity record. Better than \(99 \%\) reliability from over 750 videotape Recorders in worldwide use is a matter of record. Sole routine replacements necessary are heads and tapes. On a megacycle-hour basis, life compares favorably with lower performance recording methods.

Some significant specifications. One or two tracks available. Tape speeds: \(121 / 2 \mathrm{ips}\) for single track and 1 hour- 25 ips for two tracks and \(1 / 2\) hour. Models. AR-300 Mobile or Airborne for record only-FR-700 single rack laboratory record/playback. Response: by FM 10 cps to \(4 \mathrm{mc}( \pm 3 \mathrm{db}\) ). Tape: 1.0 mil Mylar (DuPont T. M.), \(2^{\prime \prime}\) wide on \(101 / 2^{\prime \prime}\) reels. Elecironics: all solid state. Environmental (AR-300): 50,000 feet altitude, temperatures \(-54^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\). Tape interchangeability between all AR-300 and FR-700 recorders.

*TM Ampex Corp.


AMPEX INSTRUMENTATION PRODUCTS CO. Box 5000 - Redwood City, California

Radar reconnaissance and tracking Radar simulation and training Pre- and post-detection recording Wideband communications Infrared recording


Whatever your part in engineering and building electronic equipment, here's the NEW catalog that should be at your fingertips for CABLES! New Catalog No. 4C-61 gives complete charts on Royal RG and special application cables, physical and electrical characteristics, testing procedures, engineering tables (impedance, attenuation, etc.). Valuable information, too, on MIL-spec, signal, control and other multi-conductor cables.

> WRITE for your copy - TODAY!
> Royal Electric Corporation
> 301 Sarafoga Avonue
> Pawiucket, Whode Island
> In Canoda, Royal Electric Company Pointe Claire, Queb

CIRCIE 138 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Delay Line}

Magnetostrictive delay line model 20 Mol provides a time delay of \(60 \mu \mathrm{sec}\). Adjustment range is \(\pm 3 \mu \mathrm{sec}\); input impedance is 550 ohms; output impedance is 2,000 ohms, attenuation is 50 db ; signal ratio is \(12: 1\). Uses are in computers, data processing and airborne instruments.
ESC Electronics Corp., Dept. ED 534 Bergen Blvd., Palisades Park, N. J.
Availability: © weeks.
Operational Amplifier
709


Loop gain of \(10^{7}\) is provided by model TR-1 amplifier. The device, all-transistorized, is stable within \(10 \mu \mathrm{v}\) in 24 hr . Output from 0 to 1 kc at 20 ma is \(\pm 50 \mathrm{v}\). For \(\pm 25 \mathrm{v}\) output, current is 100 ma . Input impedance is about 1 meg . Output loop impedance is 250 ohms. For a loop gain of 10 , output impedance is 0.1 ohm . Unit weighs less than 2 lb .

Boonshaft and Fuchs, Inc., Dept. ED, Hatboro Industrial Park, Hatboro, Pa.

\section*{Telephone-Line Filter}

562
With \(100-\mathrm{db}\) altenuation from 14 kc to 10 Gc . Type WFV-3111-1 telephone-line filter permits the use of a telephone inside a shield room. Other applications include use on teletype machines or other data-transmitting lines which enter into interference-free areas

Cornell-Dubilier Electronics Div., Federal Pacific Electric Co., Dept. ED, 4144 Glencoe Ave., Venice, Calif.

\section*{Slip Ring Assemblies}

564
For -200 to +200 C use, these Teflon-clad slip ring assemblies handle high voltages without arcing damage, even under conditions of extreme humidity. They maintain high resistance between circuits.

Electro-Tec Corp., Dept. ED, 10 Romanelli Ave., S. Hackensack, N. J.

\section*{HOW TO SAVE TIME WHEN YOU NEED CORNING COMPONENTS IN A HURRY}

Check this list for the Corning Electronic Components distributor located nearest to you . . . Clip and save.
You can get immediate delivery from him at factory prices on virtually the full line of top-reliability Corning components . . . tin oxide resistors, from the \(\mathbf{6}_{\boldsymbol{c}} \mathrm{C}\) line through the environment-proof NF type: cupacitors. axial lead and wafer types; shock- and vibration-resistant precision trimmers; rugged, high stability inductors and inductor kits, and printed circuit grid boards and grid board kits.
All you need: your distributor's name, a telephone and a purchase order. Your distrihutor will do the rest . . . quickly.

\section*{CORNING ELECTRONIC COMPONENTS DISTRIBUTORS}
\begin{tabular}{|c|c|c|}
\hline ARI2ONA & MASSACHUSETTS & оніо \\
\hline Phosmix & BOSTON & akron \\
\hline Radio Specialties \& Appliances & Cramer Electronics, Inc. & The Sun Radio Company \\
\hline rucson & Radio Snack Corp. & CINCIMNATI Hushes. Peters \\
\hline Standard Radio Parts, Inc. & michigan & cleveland \\
\hline California & Ferguson Electronic Suonly & Radio and Electronic Par Corp \\
\hline SOUTHERN CALIFORNIA & MINNESOTA & columbus \\
\hline Federated Purchaser, Inc. & St. LOUIS PARK & Hughes.Peters. Inc. \\
\hline Universal Radio Supply Co & George Spencer. Ine. & DAYTOM \\
\hline Newart Electronics Co., Inc R. V. Weatherford Co. & \[
\begin{aligned}
& \text { NEW JERSEY } \\
& \text { MOUNTAINSIDE }
\end{aligned}
\] & OKLAHOMA \\
\hline NORTHERN CALIFORNIA & Federated Purchaser, Inc. & OIl Capital Electronics Corp. \\
\hline \begin{tabular}{l}
Elmar Electronics, Inc \\
R. V. Weatherford Co
\end{tabular} & NEW mexico & Orego \\
\hline & alamogordo & PORTLAND \\
\hline & Radio Specialties Co., Inc. & United Radio Supply \\
\hline COLORADO & albuouerque & PENNSYLVANIA \\
\hline \begin{tabular}{l}
DENVER \\
Interstate Radio \& Supply Co.
\end{tabular} & Radio Specialties Co.. inc. & \begin{tabular}{l}
PHILADELPHIA \\
Herback \& Rademan, Inc.
\end{tabular} \\
\hline Florida & buffalo & PITTSBURGH \\
\hline MELBOURNE & Radio Equipment Corp & Cameradio Company \\
\hline Electronic Wholesalers, Inc. & NEW YORK CITY AREA & SCRANTON \\
\hline \(\underset{\substack{\text { MIAMI } \\ \text { Electronic Wholesalers, Inc. }}}{\text { M }}\) & Interstate Electronics. Inc. & Fred P. Pursell \\
\hline Electronic Wholesalers, Inc. & Milgray Electronics, Inc Milo Electronics Corp. & TENNESSEE \\
\hline chicago & Terminal Hudson Electronics. Inc. & Electra Distributing Company \\
\hline Newark Electronics Cord. & POUGHKEEPSIE & dallas texas \\
\hline indiana & Higgins \& Sheer Electronic & Adieta Company \\
\hline fort wayme & Distributors & mouston \\
\hline Ft. Wayne Electronic Supply, Inc. & ROCHESTER & Busacker Electronic Equipment co. \\
\hline INDIANAPOLIS & Rochester Radio Supply Co., Inc. & UTAH \\
\hline Grahamm Electronics Supply,
Inc. & SYRaCuSE & Kimball Distributing Co. \\
\hline IOWA & Morris Distributing Co., Inc. & virginia \\
\hline CEDAR RAPIDS & & morfolk \\
\hline Deeco, Inc. & Valley Industrial & Priest Electronics, Inc. \\
\hline louisiana & Electronics, Inc. & WASHINGTON \\
\hline new orleans & & SEATTLE \\
\hline Electronic Parts Corp. & Federal Electronics, Inc & Seattle Radio Supply, Inc. \\
\hline MARYLAND & NORTH CAROLINA & WASHINGTON, D.C. \\
\hline BALTIMORE & WINSTON-SALEM & Silberne Radio Electionics \\
\hline Wholesale Radio Parts Co., Inc. & Dalton Mese Inc. & \\
\hline
\end{tabular}

CORNING ELECTRONIC COMPONENTS CORNING GLASS WORKS, BRADFORD, PA.
CIRCLE 139 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 19, 1961

\section*{NOW TIN OXIDE RESISTOR RELIABILITY FOR JUST \(6^{〔}\)}

Now you have a happy combination you can play two ways. Use our C resistors in place of composition types to boost product performance at virtually the same cost or to maintain the high performance of precision type resistors while cutting costs markedly, saving space.

These \(C\) resistors are available in \(1 / 2\) and I watt sizes. Both are available in \(\pm 5 \%\) tolerance. They have the inherent stability of a tin oxide conductor fired onto \({ }^{a}\) glass substrate. We add a special solventproof insulation. Current noise level is less than 0.1 microvolt per volt of applied signal.

The C is the ideal resistor for any of your applications which involve radio or television components, instruments, computers, or other communications equipment

If you're interested in higher wattages, you can get the same basic construction in our low-cost LPI series, which ranges from 3 to 10 watts.

Typical values of Corning C resistors:
\begin{tabular}{cccccccc}
\hline Type & Resistance & Wattage & \begin{tabular}{c} 
Load \\
Life
\end{tabular} & \begin{tabular}{c} 
Moisture \\
Resistance
\end{tabular} & \begin{tabular}{c} 
Temperature \\
Coefficient
\end{tabular} & \begin{tabular}{c} 
Nominal \\
Dimensions
\end{tabular} \\
\hline \(\mathrm{C}-20\) & 51 to 150 K & \(1 / 2\) & \(.5 \%\) & \(0.3 \%\) & \begin{tabular}{c}
\(150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). \\
\(\left(-55^{\circ} \mathrm{C}\right.\).
\end{tabular} & \(.375^{\prime \prime} \mathrm{x} .138^{\prime \prime}\) \\
\(\left.+150^{\circ} \mathrm{C}.\right)\)
\end{tabular}

You can get off-the-shelf delivery from your local Corning distributor.
For complete specs on both C and LPI types, write to Corning Glass Works, 540 High St., Bradford. Pa.

\section*{Vertical Sensing Element}

Snap-action, subminiature type 228571-1 vertical sensing element has a tilt angle of 0.75 deg. Differential output is 18 v ; maximum current through either contact is 18 ma : range is 75 to 135 min of arc. Design is single-axis.
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Vacuum Furnaces


Cold-wall vacuum furnaces produce temperatures up to \(2,500 \mathrm{C}\) at \(10^{-5} \mathrm{~mm} \mathrm{Hg}\). Made for materials research, development, and production programs, the ovens have internally heated hot zones which may be either vertical or horizontal, providing from 60 to \(2,700 \mathrm{cu}\) in. Heating-element life is practically unlimited. Automatic control is optional.
Vacuum Specialties, Inc., Dept. ED, Somer ville, Mass.

\section*{DC Signal Amplifier}

Low-level, de signal amplifier model MA-100 is for measurements such as temperature or strain in industrial and military applications. Output is \(\mathbf{0}\) to \(\mathbf{5} \mathbf{v}\) dc from \(\mathbf{0}\) to \(\mathbf{1 0} \mathbf{~ m v}\) dc input. Input resistance is 10 ohms \(\pm 10 \%\); output load is 1 to 100 K ; frequency response is 0 to 2 cps ; response time is 100 msec . Dc voltage gain is 500 v \(\pm 10 \%\)

Dynex Industries, Inc., Dept. ED, 170 Eileen Way, Syosset, N. Y.
Availability: custom units, less than 8 weeks.

\section*{Pressure Transducer}

711
High-line, low-differential pressure transducers, series \(4-351\), are rated at 5,000 psi with less than \(1 \%\) range shift, and withstand 8.000 psi. Differential pressure range is \(\pm 15\) to \(\pm 100\) psid. Compensated temperature range is -65 to +250 F . Units measure \(2-3 / 4 \mathrm{in}\). in diameter and \(2-3 / 8 \mathrm{in}\). long.
Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

\section*{amco1000 \(\mathrm{G}^{\prime}\) 's CERTIFIED SHOCK TESTS}

\section*{Amco Aluminum and Semi-Custom Modular Frames qualify for Airborne, Shipboard and Ground Support Applications}


\section*{Aluminum}


Semi-Custom


Certified Independent Tests prove Amco Aluminum and Semi-Custom Frames withstand shock \& vibration under Mil E-5272C; Procedure XI (5-500cps), Procedure III (approx. 1000g's shock Mil-S901), Procedure II ( 15 g 's and drop Mil-S4456). Write for Test Report Supplement E.
ALUMINUM...Unique! Meets any size . . . Flush or recessed mounting of panels. Almost any shape from 13 basic parts . . . 3 castings \& 10 extrusions. Units from \(6^{\circ}\) to 20 ft .; slopes from \(0^{\circ}\) to \(90^{\circ}\) standard. MilSpecs 606:-T6 extrusions and 356-T6 castings.
SEMI-CUSTOM . . . Heavy-duty, more internal clearance. .. 14 ga . box-channel steel írames, 1 ! ga . gusseting provides exceptional rigidity both front-to-back and side-to-side. Frames based on \(22!\) is" increments provides clearance for recessing \(19^{\prime \prime}\) wide panels. Meets EIA Standards.

CUSTOM . . . When space and appearance are critical .16 ga . double-channel steel frames, based on increments of \(19{ }^{1}{ }_{16}{ }^{\circ}\) widths, supports in excess of 3000 lbs. Multi-width panels and cowlings give single-unit appearance with series mounted racks. Meets EIA Standards.
Amco manufactures all necessary blowers, chassis slides, doors and drawers, writing surfaces, cowling lights and other accessories. Check the extra savings you get thru Amco's combined-discount system of racks and accessories. PLUS FREE ASSE.MBLY. Amco is your one complete source of Modular Instrument Enclosure Systems and Accessories. Write today for catalog of complete specifications.


REALISTIC 3 WEEK DELIVERY

Factory trained representatives in principal cities of U.S. and in Canada.
Custom MCO ENGINEERING CO. 7333 West Ainalie Street, Chicago 31, Illinois


\section*{NEW PRODUCTS}

\section*{Tape Recorder}

Continuous-loop recorder/reproducer GL2510 uses tape lengths up to 75 ft at speeds from \(1-7 / 8\) through 60 in . per sec. The selfcontained system has 14 analog, fm, or pdm amplifiers, power supply, and ventilating blower unit housed in a single cabinet.

Consolidated Electrodynamics Corp. Dept. ED. 360 Sierra Madre Villa, Pasadena, Calif.

\section*{Panel Meter}


The \(1-1 / 2 \mathrm{in}\). model 15 LP panel meter, in clear or black acrylic case, conforms to industrial and military mounting standards. Coremagnet movement is used. Other meters to 7 in. are available.

Pace Electrical Instruments Co., Dept. ED, 70-31 84th St., Glendale 27, N. Y.

\section*{Phenolic Rods}

Paper base phenolic rod, Insurok T-308R, has high density, low moisture absorption, good electrical properties and is suitable for highspeed machining. Uses include cam-actuated pins, machine screws and inside-threaded caps. Rod is available in \(42-\mathrm{in}\). lengths with diameters from 0.093 to 0.509 in . Natural tan and black colors are supplied with standard and special finishes.

The Richardson Co., Dept. ED, Melrose Park, III.

\section*{Solar Cells \\ 570}

Conversion accuracy is \(10 \%\) or greater. N-P silicon solar cells type N120CG-10 are designed for use in solar power supplies in space vehicles.

Hoff man Electronics Corp., Semiconductor Div., Dept. ED, 1001 N. Arden Drive, El Monte, Calif.

\section*{Metal-Film Resistors}

Ratings are \(1 / 8\) to \(2 w, 250\) to 750 v , from 25 to 10 meg. Type EE Noble-Met resistors surpass MIL-R-10509C, Characteristic C. All types can be furnished with temperature coefficients of 25,50 or 100 ppm per deg C. Standard tolerance is \(\pm 1 \%\).

American Components, Inc., Dept. ED, 8th Ave. at Harry St., Conshohocken, Pa.

407

411

437
Model F-296 maken full-size phete
pecord of single Iransionla


\section*{With these}

Fairchilld-Polaroid Oscilloscope Cameras you can...

Medal F-28 records twe troces an woch point. each one-hall full size

\section*{PERMANENTLY RECORD OSCILLOSCOPE TRACES} in 2 to 10 seconds!

No special photographic skills are needed with a FairchildPolaroid Oscilloscope Camera. Two models are available. One records single, direct-reading, full-size scope images; the other, two half-size images on on. print. Operation of both is fast and simple, hardly interrupts lab procedures. You can evaluate prints as fast as you can pull them from the camera, enter photo evidence into reports at once.

For literature and prices, write to Industrial Products Division, Fairchild Camera and Instrument Corp., 580 Midland Ave., Yonkers, N.Y. Dept. ED-5.


\section*{Encapsulated Transformers}

For printed-circuit applications these encapsulated transformers are offered in five sizes of 0.08 to 1.2 cu in . A total of 64 units, all meeting MIL-T-27A Grade 5 Class \(\$\) requirements, offer a wide choice of power levels.

ADC Inc., Dept. ED, 2833-13th Ave. S., Minneapolis 7. Minn
Price: \$5. 40 up.

Strain Gage Amplifier


Variable gain device provides excitation voltage to a Wheatstone bridge. Subcarrier oscillator provides 75 mw excitation. Unit has a negative feedback amplifier and a phase-sensitive demodulator. Gain is continuously variable over a range of 20 to 1. Amplifier is a pluk-in module measuring \(1.725 \times 1.875 \times\) 2.75 in.

Natel Engineering Co., Dept. E.l. 15922 Strathern St., Van Nuys, Calif.
P\&A: s.si5 to \$495: \% weeks.

\section*{Heat Sinks}

Natural-convection aluminum coolers, models 10106 and 20107, can be adapted for forced-convection requirements. Made for transistors, diodes, rectifiers, and similar components.

Anderson Machine Inc., Dept. ED, 50) Brook Road. Needham Heights, Mass.

\section*{Vertical Sensing Element 567}

Two-axis vertical sensing element type C70 1807000 , for such uses as initial alignment of a gyro platform, has a sensitivity of 20 \(\pm 2 \mathrm{mv}\) per min for up to \(\pm 10 \mathrm{~min}\). Linearity is within \(5 \%\) of 3 min of arc sensitivity ; output symmetry is within \(5 \%\) for up to 20 min . Damping ratio is up to 100 .

General Precision, Inc., Kearfott I)iv., Dept. ED, 1150 McBride Ave., Little Falls. N. J.



 

\section*{}
  :NOVAR

\section*{... Another Milestone in Dynamic RCA Tube Design}

\section*{NOW COMMERCIALLY AVAILABLE FOR TV AND HIGH-FIDELITY CIRCUITS}

Novar, RCA's line of 9-pin all-glass integral-base tubes, provides superior performance at lower cost than those high-dissipation type receiving tubes, regardless of base configuration, which were previously manufactured with octal bases and T9 or T12 envelopes.

Among all-glass integral-base receiving tube designs only novar offers:
Larger internal lead diameter-for strong cage support, and high thermal conductivity for very effective heat dissipation.
Wider spacing between pins ( \(0.172^{\prime \prime}\) )-to assure freedom from voltage breakdown and, therefore, to provide greater assurance of reliability.
Pin length of \(0.335^{n}\)-to insure firm retention of tube in socket. Pin-circle diameter of \(0.687^{\prime \prime}\)-large enough to accommodate both T9 and T12 envelopes.
Revolutionary "Dark Heater"-found only in RCA receiving tubes, is additional assurance of high reliability.

First Commercially Available Novar Types Are: RCA-6AY3, 12AY3, 17AY3 HALF-WAVE VACUUM RECTI-FIERS-These novar types are specifically designed for use as FIERS-These novar types are specifically designed for use as
damper diodes in horizontal-deflection circuits of TV receivers. damper diodes in horizontal-deflection circuits of TV receivers.
Rated to withstand a maximum peak-inverse plate voltage of Rated to withstand a maximum peak-inverse plate voltage of \(50(0) 0\) volts, they can supply a maximum peak plate current of 1100 ma and a maximum dc plate current of 175 ma . The heatercathode insulation withstands negative peak pulses up to 5000 volts with a 900 volts de component. Low-impedance cathode coating withstands high-voltage pulses encountered in TV damper circuits. New RCA "Dark Heater" assures unusually long tube life and reliability.

RCA-7868 POWER PENTODE-For high-fidelity audio amplifier applications, two of these novar high-perveance power pentodes can deliver up to 44 watts of power output in Class AB, push-pull service. Extra base-pin connections for grids \#1 and \#2 and special radiator on siderods of grid \#2 assure cooler operation...and, of course, the RCA-7868 has the revolutionary "Dark Heater."

Sockets are readily available for novar tube types. For additional information on novar types, call your RCA Field Representative or write RCA Electron Tube Division, Commercial Engineering, Section G-18-DE-2, Harrison, N. J.

The Most Trusted Name in Electronics

RCA ELECTRON TUBE DIVISION FIELD OFFICES
EAST: 744 Broad Street, Newark 2, New Jersey, HUmboldt 5-3900 - MIDWEST: Suite 1154, Merchandise Mart Plaza, Chicago 54, Illinois, WHitehall 4-2900 - WEST: 6801 E. Washington Boulevard, Los Angeles 22, California, RAymond 3-8361.


Shell a basket of assorted Duncan potentiometers and you'll find a similarity that's more than skin deep. Designs have been standardized to yield higher reliability, lower production costs. It's a garden fresh approach that's paying off at the market place. Check over the Duncan crop yourself. They're all in season now! Send for our new Spring Catalog.

Vine ripening above top to bottom: 1.3/4 \(4^{\circ}\) Model 3704: \(1 \cdot 3 / 4^{\circ} 1602\) and 1.7/16 \({ }^{\circ}\) 1502. All feature diallyl pthalate housing to withstand shock
and protect against fungus or attack by acids or alkali. Servo or bushing mountines and operating tempera. tures to \(150^{\circ} \mathrm{C}\) are available.

DUNCANELETERENSCS.INC. 2865 FAIRVIEW ROAD - COSTA MESA. CALIFORNIA CIRCLE 144 ON READER-SERVICE CARD

\section*{NEW PRODUCTS}

\section*{Thermoelectric Material}

410
Gadolinium selenide, a thermoelectric material with a high Z factor, is available in a powdered form for further processing by the customer into rods. Undoped material, as well as n-type and p-type material are available.

Semi-Elements Inc., Dept. ED, Saxonburg Blvd., Saxonburg, Pa.

\section*{Pressure Transducer}

409


Provides high continuous output, type 78-C pressure transducer provides an output of 500 mv with \(10 \mathrm{v}, 60 \mathrm{cps}\) input; over 1 v at 400 cps . It is available in ranges \(0-5\) to \(0-350 \mathrm{psi}\), gage, absolute or differential. Excitation is 6 to 10 v from 50 to \(20,000 \mathrm{cps}\). Temperature range is from -115 to 500 F . OD is \(1-1 / 4-\mathrm{in}\).

United Aero Products Corp., Dept. ED, Burlington, N. J.

\section*{Thermocouple Kit}

408
For many applications. Thrift/Therm test kit has a spring-loaded thermocouple for internal surface measurements, a ceramic-beaded unit for multiple surface temperatures, a probetype unit for liquids and gases, capable of handling \(3,500 \mathrm{psi}\), and an exposed-junction type for fluids, suitable for \(3,000 \mathrm{psi}\).

Harco Laboratories, Inc., Dept. ED, New Haven, Conn.

\section*{Ultrasonic Cleaner}

For small parts, model 100 ultrasonic cleaner can be operated with detergents, mild acids, solvents and alkaline cleaners. It has a capacity of \(1-1 / 4 \mathrm{qt}\). It is suitable for hard-to-clean intricate assemblies. Other standard models hold up to 14 gallons.

Hermes Sonic Corp., Dept. ED, 13-19 University Place, New York 3, N. Y.

\section*{Parametric Amplifier}

406
Reliable, low-noise parametric amplifiers are made for use in tropospheric scatter, radio relay, radar and telemetry systems. Unit includes diode mount and klystron pump, power supply and automatic level and frequency control may be included as optional extras.

Control Electronics Co., Inc., Dept. ED, 10 Stepar Place, Huntington Station, N. Y.

\section*{How to buy a down payment on a new home for \({ }^{\$ 1} .25\) a day}


Will he ever save the down payment? He'll be in his new home sooner than he thinks, if he saves something every payday. The effortless, automatic way is the Payroll Savings Plan for U.S. Savings Bonds.

Saving for a new home, or anything else in fact, is simply a matter of spending less than you earn. Thousands of Americans have found an automatic way: the Payroll Savings Plan where they work. Through this plan your payroll clerk sets aside n certain amount each payday for U.S. Savings Bonds. As little as \(\$ 1.25\) a day buys a \(\$ 50\) Bond a month (cost \(\$ 37.50\) ). In 5 years you'll own Bonds worth \$2,428.00 -enough for a substantial down payment and closing costs.

Six nice things about U.S. Savings Bonds
- You can eave automatically on the Payroll Savinga Plan or buy Bonds at any bank- You now earn \(33 / 4 \%\) to maturity. You invest without risk - Your Bonds are replaced free if lost or stolen. You can get your money with interest anytime you want it - You buy shares in a stronger America.

You save more than money with U. S. Savings Bonds


This advertising is donated by The Advertasing Council and this magazins.

\section*{Material-Level Control 626}

Heavy-duty relay rated at 10 amp is an optional feature of the L-400 rotary-paddle material-level control. The unit is mounted on bin, hopper or tank walls by 1-1/4in. pipe coupling. Control signal is from a circular magnet mounted on the motor shaft. Enclosures can be weather-and-dust tight or explo-sion-proof.

Flo-Tronics, Inc., Electronics Control Div., Dept. ED, 712 W. Ontario Ave., Minneapolis 3, Minn.

Power Supplies
556


Photomultiplier power supplies in the PM series have line regulation of \(\pm 0.005 \%\) and load regulation of \(0.002 \%\). Ripple is less than 1 mv rms ; stability is \(0.01 \%\) per hr . Three models have ratings of 300 to 1,800 and \(2,500 \mathrm{v}\) dc at 0 to 10 ma, and 1 to 3.5 kv at 0 to 5 ma .
PRL Electronics, Inc., Dept. ED. 2:32 Westcott Drive, Rahway, N. J. P\&A: \$290 to \$360: stock to 4 weks.

High-Voltage

\section*{Transformers}

For high-power uses, a line of 39 models of high-voltage transformers is offered. Single-phase and three-phase rectifier-plate tranformers range from 1 to more than 250 kva. Applications include areas such as microwave, broadcast, laboratories and electronic heating
Electro Engineering Works, Dept
EID, San Leandro, Calif.

Tape Editing System
624
Automatic magnetic-tape editing system model MT-1 provides an edited composite record of any two telemetry tapes received from the same missile. Final tape can be processed through PAM and PDM cummutators without data dropout. Both switched and continuous edit ing are possible.
Gulton Industries, Ortholog Div., Dept. ED, Princeton Junction, N. J.

CIRCLE 145 ON READER-SERVICE CARD

\section*{BASIC PRECISION SWITCHES}

\section*{Checked}
```

ENgr. Pwde

```

CONTROL SWITCH DIVISION

\section*{Meet Thousands of Application Needs with these Five Basic Switch Types}

STANDARD MODELS in a wide range of dimensional and characteristic designs-from the tiny, powerful sub-subminiature type to the large, general purpose type where size is not important. See each switch series for application suggestions and brief specifications.

VARIATIONS-hundreds available -designed and engineered to meet such specific requirements as:
U.L. listings high temperatures diy circuitry extra ong live
reset for 2-way limit high in-rush AN and MS special terminals

ACTUATORS-toggle, pushbutton, leaf, roller leaf, lever, roller lever, etc., available. Choose the Switch Series that meets your basic application needs. Then tell us the specific characteristics you want. Chances are, we have a standard ready for your use. We are fully equipped to make the switch you need in any quantity.
perfect for super-sensitive uses...
T series


SUB-SUBMINIATURE, SPDT, \(1 / 2^{\prime \prime} \times 1 / 4 " \times 3 / 2^{\prime \prime}\)
high current capacity in " y case. excellent shock and vibration resistance. solder terminals, others on request. 25.000 ops. min per MIL-S- 6743 . 7.5 amps @ \(125 / 250\) VAC, 60 cycles Ind. \& Res.


2-CIRCUIT, SPDT double break, \(11 / 4^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}\) combines high capacity, moderate size, long life and precision control. tested to \(10,000,000\) operations end and side solder, screw and spade terminals. 750,000 ops. @ 125 VAC, 10 amps., U.L. rated.
for general purpose, high in-rush and repeatability uses...

S2B series
for rugged, low-cost, easy wiring uses. F series

MINIATURE, SPOT, \(13 / 32^{\prime \prime} \times 13 / 22^{\prime \prime} \times 5 / 6^{\prime \prime}\)
rugged, low-cost design
convenient terminals simplify wiring solder, screw and spade terminals. 150.000 ops. \(10 \mathrm{amps} @ 125 / 250\) VAC 28 VOC Res.

SPOT, \(130{ }^{13} \times 1 / 20\) " \(x^{3 / 4}\)
tough, durable, compact.
handles high in-rush loads easily.
repeats to \(10,000,000\) cycles min.
crew terminals.
20 amps, \(125 / 250 / 480\) VAC, U.L. rated.
\(1 / 2 \mathrm{amp}, 125\) VOC; \(1 / 4 \mathrm{amp}, 250\) VOC.

For more details on these basic precision switch types write for catalog No. 110.


\section*{EItronic 880}

World's first all-electronic, digital voltmeter with full-five-digit accuracy!

Consider what you get with the new EItronic 880. Twenty readings per second. True, absolute \(0.01 \%\) accuracy. Solid state reliability and coolness. Silent operation. Only the Eltronic 880 can give you these advantages.

Switching is accomplished electronically. There are no moving parts. No contacts to clatter and wear. Hence, no noise. Exclusive "conductance adder" logic tracks varying voltages, permitting exact values to be read instantly.

For operator convenience, measurements are digitally displayed on a unique readout which tilts to three different positions. Measurements can be easily and accurately read
whether the 880 is used on a bench, at eye level or high in a rack. Clear, bright, digital indicators have 10,000 -hour life, eliminating troublesome bulb changing.

Reliability too, is exceptional. Each component, circuit board and sub-assembly is rigorously "pyramid" tested. Each completed 880 is subjected to a program of accelerated aging, simulating 100 hours of actual use. Questionable components are discovered before delivery, sharply increasing field reliability.

The EItronic 880 is available now. Its cost is surprisingly low, so why settle for less? Get in touch with your nearest EI field office today.

Semiconductor

\section*{Strain Gage}

For general-purpose use. Series DB semiconductor strain gages include matched gages for a variety of materials, yages for dynamic measurements, small gages for limited space and gage factors of -140 to +170 . Resistance rankes are 120 to 5,000 ohms.
Kulite-Bytrex Corp., Dept. ED, 50 Hunt St., Newton 58, Mass. P\&A: \$90 per pkg: stock.

VHF Triode


A 100-w triode for af and vhf rf applications, the PL-254W operates at 4,000 v max plate potential. Filament requires 5.0 v at 7.5 amp . The tube is suitable for class cw or fm uses.
Penta Laboratories, Inc., Derit ED, 312 N. Nopal St.. Santa Barbara. Calif.

\section*{Lightweight Reflectors 563}

Accuracy is 1 min of arc for surface deviation. These all-metal, lightweight reflectors are furnished with diameters of less than 1 in . to over 5 ft and weigh from 0.4 to 1.5 lb per sq ft. Aperture ratio is from \(\mathrm{f} / 8\) to \(\mathrm{f} / 0.4\).
Electro-Optical Systems, Inc. Dept. ED, 125 N. Vinedo Ave. Pasadena. Calif.

\section*{Navigational Counters}

Slewing speeds to \(1,000 \mathrm{rpm}\) can be furnished. These navigational counters include digital counters bevel-gear driven units, geared high-speed latitude and longitude counters and miniature counters Units can be designed to meet customer requirements.

General Precision, Inc., Kearfot Div., Dept. ED, 1150 McBride Ave., Little Falls. N. J.
- CIRCLE 146 ON READER-SERVICE CARD

\section*{Data Commutator}

631
Four-channel data commutator type DC-11 has an input-output speed of 480,000 characters per sec. The unit is designed for use with the firm's G-20 computer. Sorting operations are sufficiently fast for 100,000 records of 80 alpha-numeric characters to be sorted in less than 18 min .

The Bendix Corp., Computer Div., Dept. ED.

Disk Brakes
619


Floor - mounted, through - shaft disk brake has its own ball-bearing mounted shaft. Designated series 55,200, he devices are applicable where it is necessary to drive through the brake. Brakes are acoperated and have torques of 1 \(1 / 2.3,6,9\), and \(15 \mathrm{lb}-\mathrm{ft}\).

Stearns Electric Corp., Dept. ED. 120 N. Broadway, Nilwaukee 2, Wis.

\section*{Universal Recorder}

Has 23 ranges, extending from 30 ma to 15 amp ac and de and from 30 to 600 v ac and dc. Other features of model 802 universal recorder include permanent magnet moving-coil movement, three-speed transmission, synchronous \(60-\mathrm{cps}\) chart drive and inkless or ink recording. It measures 13-3/4 x 11 \(3 / 4 \times 11 \mathrm{in}\). and is portable.
Curtiss Wright Corp., Princeton ()iv., Dept. ED, Princeton, N. J.

\section*{Radio Receiver}

697
For am, cw or ssb. Model NC190 radio receiver has an hf ferrite filter for sensitivity of adjacent channels. Three positions are provided: 600-cps for singlesignal cw reception, 3 -kc for single sideband and am reception and 5-kc for clear channel speech and music reception.

National Radio Co., Inc., Dept. ED, 37 Washington St., Melrose 76, Mass.
P\&A: \$199.50; immediate.

Crimp-łype Connectors


These solderless, coaxial connectors are available in a variety of mounting configurations, including snap-locking versions. Male and female connectors may be mounted interchangeably. Mated length is \(1^{12 / 10^{n}}\). Working voltages: \(1,000 \mathrm{~V}\). maximum, at sea level ; 500 V . maximum, at 60.000 feet. VSWR; less than 1.2 up to \(2,000 \mathrm{mc}\). Life; 5,000 matings, minimum, without electrical deterioration. Tensile strengths of the crimps exceed the breaking strength of the cable. Hard gold plated Beryllium copper and TFE plastic are extensively used to assure optimum reliability.

Microdot, Inc., 220 Pasadena Avenue, South Pasadena, California
circle 247 ON reader-service card

Coaxial Switch


SPDT miniaturized switch features a case volume of \(1 / 2 \mathrm{cu}\). in. and weight of 1/6 oz. Design allows direct insertion into miniaturized circuit without cumbersome adapters. Toggle action is positive, rf characteristics are highly efficient. V'SWR is less than 1.25 to 2.0 kmc . Insertion loss is 0.8 db at 2.0 kmc . Contact rating is ' \(/ 2 \mathrm{amp}\) at 150 N . resistive. Operating is 50,000 operations, minimum. Special stripline manufacturing technique provides low loss, wide frequency band properties.

Microdot, Inc., 220 Pasadena Avenue, South Pasadena, California

\section*{mICROMINIATURE COAXIAL CABLE}


Microdot's Cable Facilities specialize in precise metallic braiding of microminiature coaxial cables. In a new, ultra-modern plant, special advanced techniques of cylindrical weaving are combined with the utilization of highest quality materials and rigid quality control methods, to produce a wide range of miniaturized RF frequency cables ... cables designed and produced to yield the same matched impedance as required for larger cables.

"Mini-Noise" cable, a result of Microdot research, is spe cially processed to minimize self-generated noise - prevents noise interference with low strength signals. These cables also offer high performance in extreme temperature ranges.


Twinax cable produced by Microdot is a shielded, twisted pair of conductors utilizing prime dielectrics for low loss, featuring controlled capacitance and impedance. Shield is added after insulation and conductors are arranged in a balanced to ground configuration.

\section*{S NXI Tese -}

Triax cable by Microdot offers if leakage below the level experienced with Double Shielded Coax. Three active conductors permit feedback to cancel a known noise source. Capacitancecancelling hook-ups are possible for cathode followers.

\section*{MICRODOT INC.}

220 Pasadena Avenue. South Pasadena, Calif MUrray 2.3351 SYcamore 99171 ing cables: Coax 50. 70. 75, 93, 95 ohm. Twinax 125 and 160 ohm. Triax 50 and 93 ohm.

\section*{Tithode \\ Thru-Connected Printed Wiring Boards H\|GH\{ \(\left\{\begin{array}{l}R e l i a b i l i t y! \\ R e-u s a b i l i t y!\end{array}\right.\)}


\section*{PRODUCTION PRODUCTS}

\section*{Welding Machine}

Pincer and vertical heads are interchangeable. The pincer head has a pressure range of 0.5 to 5 lb ; the vertical head, 0.5 to 8 lb . Throat depths are 9 and 7 in . This welding machine requires no adjustment of electrodes, heads or power settings. Power supply is regulated to \(\pm 0.05 \mathrm{w}\)-sec or \(\pm 2 \%\).
Sippican Corp., Dept. ED, Marion, Mass. Price: \(\$ 950\).

Eyeleting Machine


Is fully automatic. Eyeleting machine automatically feeds, sets and resistance fuses eyelets as small as 0.020 in . inside diameter to boards as thin as \(1 / 64 \mathrm{in}\). Through connections conform to Military Standard 275A. Mechanical dwell time and heat cycle are variable up to 1 sec .

Edward Segal, Dept. ED, 132 Lafayette St., New York 13, N. Y

\section*{Transistor Marker}

263
Speed is \(\mathbf{3 , 0 0 0}\) units per hr max. Model U1038 marker prints trademarks, date codes, part numbers and other data on tops and sides of JETEC transistors. Offset printing heads compensate for dimensional differences. Components are automatically fed to the printing positions and ejected into a gravity chute.
Markem Machine Co.. Dept. ED, 172 Congress St., Kenne, N. H.

\section*{Microcircuit Machine}

264
Prototype or production microcircuits up to 1.25 in . sq can be made with model 410 microcircuit machine. Tools and parts are mounted in positioners accurate to a few millionths of an inch. Microscope is mounted on a joystick X-Y positioner with \(1.25-\mathrm{in}\). travel. Indexing tool mounts hold 8 tools; a complete assortment of tools is available. The machine is suit able for research and high-speed production. Kulicke and Soffa Manufacturing Co., Inc. Dept. ED, 401 N. Broad St., Philadelphia 8 Pa .


PRECISION PLASTIC BALLS
ACE is one of America's leading mass producers of seamless plastic including nylon and tefion. Completei range of sizes.
 colors and tolerances. Small runs or large runs. Huge stocks for immediate delivery. Quick, low-cost service on specials. Write, wire or call for samples, price lists and handy new selection chart.

ACE PLASTIC COMPANY 91,5月 VAN WYCK EXPWY - JAMAICA 36. N Y CIRCLE 149 ON READER-SERVICE CARD

\section*{this FREE ENGINEERING MANUAL}
tells why tOtal 2 solves all retaining ring


E-RING DESIGN - SPECIAL RING SMAPES - STACKED RINGS With Ramco's Circolox problems. This Free Enand Spirolox you have the gineering Manual brings solve all retaining ring story-write for it today!


BAMSEY CORPORATIOM a subsidiary of Themgen lame Wooldridge lec Son 513 , Dopl. P. Si. Iovia C6, Missouri
CIRCLE ISO ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 19, 1961

\section*{FOR THE ELECTRONIC ENGINEER FREE-\$2,800.00}

\section*{EXTRA IN 1961}

It's true. This is the average increase in salary of the Electronics Men placed through Cadillac in 1961.

The nation's largest placement service, Cadillac is employed by 520 of the nation's leading electronic firms-from coast-to-coast. Our service is completely confidential and available to you absolutely free of charge. In all probability, at least 3 dozen of our clients are looking right now for a man of your background.

\section*{FREE-Opportunities Bulletin}

Find out the top positions in electronics every month. Send us your name and home address direct or circle Reader Service Card No. 888


LON D. BARTON CADILLAC
ASSOCIATES, INC. 29 East Madison Blde Chicago 2, Illinois Chicago 2, ininois
FInancial 6-9400

CIRCLE 888 ON READER-SERVICE CARD
\(10 \mathrm{mc}=\) 1,000 me Frequency Response with new INCREDUCTOR \({ }^{\text {D }}\) Wideband RF Transformer

\section*{Dust-Free Cabinet}

265
Distortionless plexiglass provides unobstructed view over \(34 \times 28 \times 16 \mathrm{in}\). work area inside this molded dust-free cabinet. Filter system removes \(99.97 \%\) of all particles of 0.3 micron size, and all larger particles. Optional under-the-hood equipment is available.

Gerwen Electronics, Inc., Accessory Dept., Dept. ED, 7-22 149th St., Whitestone 57, N. Y. P\&A: \$300: 30 days.

Wafer Sorter

Automatically gaging germanium or silicon pellets, the TSK Auto-Sorter has consistent repetitive accuracy to within 0.00040 in . The machine will gage and sort 2,4001 pellets per hour into any one of 10 categories. A variety of automatic controls is included as standard equipment.
D. M. Gaskill \& Associates, Inc.. Dept. ED. 342 Budlong Road, Cranston 10. R. I.

\section*{Solderless Terminal Tool}

267
Cuts, strips and crimps. Type 9900 solder-less-terminal tool cuts solid or stranded wire and accommodates AWG sizes 22 through 10. It is made of spring steel and has a ground cutting edge. A sliding set screw is provided on one handle.
R. N. Hunter Sales Co., Dept. ED. 9851 AIburtus Ave., Santa Fe Springs, Calif.
Price: \(\$ 2.50\).

\section*{Cutting Machine}

268
For shielded cable. Having semi-automatic operation, this cutting machine provides rates of 600 to 1,200 per hr for most cables. Stripping length can be adjusted from \(1 / 2\) to \(1-1 / 2\) in. As the machine cuts, it fuses together the ends of the shielding.

Ewald Instruments, Dept. ED. Box 124, Kent. Conn.
P\&A: \(\$ 1,000\) to \(\$ 1,500 ;\) t to 6 weeks.


ROWAN CIREUIT PROTECTORS FOR ALL REQUREMENTS COMPLETELY FIELD TESTED


Rowan Circuit Protectors, Type CCPB-A are completely field tested. New Literature just available describes the versatility of the complete line which is proven by the numbers of circuit protectors in use - protecting electronic circuits in important computing, laboratory and industrial applications.
The chief reason for the lines immediate success lies in the wide selection of trip-time-versus-current curves the Type CCPB-A Circuit Protectors offers. There are two thermal versions: Type CCPB-AI for medium lag and Type CCPB-A2 for slow lag: also a magnetic Type CCPB-AM, which is instantaneous. You select curves exactly tailored for your particular application.
Other advantages in the Rowan Circuit Protectors include ease of resetting, small-space mounting and precise calibration, etc.
See all models at the WESCON Show, Booth 221, or ask for new technical literature, Form \#6-61-10000.
Sales Representatives in Principal Cities.
CIRCUIT PROTECTOR DIVISION
THE ROWAN CONTROLLER COMPANY
30 BRIDGE AVENUE RED BANK, MEW JERSEY


\section*{RELIABILITY... \\ locked in and guaranteed}

Working on the problems plaguing electronic systems design, CAMBION® engineers developed a new device to keep coils and coil forms in proper adjustment.
This exclusive development is the CAMBION internal PERMA-TORQ, a miniaturized, constant tensioning unit located completely within the CAMBION ceramic coil form. Allowing tuning cores to be locked while still tunable, it considerably reduces harmonics, provides increased stability and decreases oscillation in high gain IF strips. Reliability under all conditions keynotes the performance.
New Internal PERMA-TORQ is available in coil forms with the normal yellow, red, green and white slugs - (range: 0.2-300 MC) and with purple slugs (range: 2-40 MC) and blue slugs (range: 40-300 MC). Mechanically, PERMA-TORQ is very easy to adjust. Only a special tuning tool is needed.
CAMBION makes more than 1500 coil forms with varying collar-and-terminal arrangements - including ceramic, phenolic and shielded forms for conventional and printed circuits. All are guaranteed to meet your specifications.
The broad CAMBION line includes plugs and jacks, solder terminals, insulated terminals, terminal boards, capacitors, shielded coils, coil forms, panel hardware, digital computer components. For a catalog, for design ascistance or for both, write to Cambridge Thermionic Corporation, 457 Concord Ave., Cambridge 38, Massachusette. In Europe contact Maitland Engineoring, Ltd., 50 Heaton Moor Rd., Stockport, England, or Uni-Office, N.V., P.O. Box 1122 Rotterdam, The Netherlande.


CIRCLE IS4 ON READER-SEQVICE CARD

\section*{PRODUCTION PRODUCTS}

\section*{Hard Water Stills}

Electric and steam heated, the Hy-Thermco stills produce high ionic-pure water that is free of organic and bacteria impurities. Capacities are from \(1 / 2\) to 10 gallons per hr ; heating elements are side mounted.

The Electric Hotpack Co., Inc., Dept. ED. Cottman Ave. at Melrose St., Philadelphia 35, Pa.

\section*{Inspection System}

Length and diameter of parts are gaged by automatic inspection machine. U'p to 1.200 parts per hr are checked and sorted into acceptable and reject categories. Machine can be quickly adjusted for various part sizes.

Radio Corp. of America, Dept. ED, 12605 Arnold Ave., Detroit 39, Mich.

Drawer Oven


A five-drawer oven with mechanical convection and horizontal airflow is said to increase production and reduce cost per part. Temperature ranges are 100 F to 356 F and 600 F . Drawer size is \(18-1 / 2 \times 20 \times 5 \mathrm{in}\).

Blue M Electric Co., Dept. ED, 138th \& Chatham St., Blue Island, III.

\section*{Clean-Room Uniforms}

For special environments. Uniforms can be furnished for protection against contamination in white rooms or for use in Class II, III and IV clean rooms. Gloves for liquid oxygen applications are also available.

Angelica Uniform Co., Dept. ED, 1429 Olive St., St. Louis 3, Mo.

\section*{Sleeve Cutting Machine}

Operation is automatic. Up to 200,000 lengths of \(1 / 4\) and up to 50,000 lengths of 1 in . are produced per hour. The Richmond sleeve cutting machine cuts paper, plastics, nylon, rub- 270

\section*{IDEAL FOR CRITICAL LABORATORY vacuum bake MEEDS}

TEMPCOR COMPACT TABLE MODEL VAC-U-THERM OVENS

Electronics, food, drug, chemical and steel laboratories find this table model VAC U-THERM OVEN ideal when accelerated drying operations are required for rapid. ly drawing off moisture in testsamples. Prevents decomposition through oxidation and throws off inflammable gases and explosive vapors. Table top design and portability features allow for use of storage space beneath unit and controls and working chamber at convenient height.
Bakes materials in temperatures up to \(250^{\circ} \mathrm{C}\) at \(1 \times 10^{\circ} \mathrm{MM}\) hg.
Hydraulic type thermostat.
Compound Vacuum gauge.
Aluminum sheathed nickelchromium alloy heaters operate with consistency af black heat.
Stainless steel shelves with prepositioned tracks.
Stainless steel meshed glass viewing window.
MODEL 1425 (shown) . . \(8^{\circ} x\) \(8^{\circ} \times 9^{\circ} \ldots \$ 190.00\) F.O.B. River. ton, N.J.
Other models . . . table or flange types . . . aluminum or stainless steel... sizes to \(13^{\circ} \times 14^{\prime \prime} \times\) \(18^{\circ}\). . . prices to \(\$ 1970.00\).


Manufacturers of
Constant Tamperature, Vacuum and Controlled Atmosphere Equipment 600 Tempcor Boulevard, Riverton, N. J.

CIRCLE 155 ON READER-SERVICE CARD

\section*{CIEAN}

Electronic, Electrical, Mechanical Components and Contacts with NO Film or Residue

\section*{Cobehn}

HIGH-VELOCITY SPRAY-CLEAN TECHNIQUE


\section*{APPLICATIONS}
loctronic Compenents a Assemblies: Diodes. Transistors, Slip-Ring Commurators, Crystals, Vacuum Tube Components, Sub Miniature Assemblies.
Meter a Instrument Compenents: Inatrument Bearings. Jowol Bearings \& Pivots, Gear Trains, Lapped Surfaces.
Electrical Contacts: Relays, Vibrators, Voltage Regulators, Sensitive Switches.

\section*{FEATURES}

No film, residue, of corrosive effect to damage surface, fire and explosion hazard nil, mon-polar, mon-ionic, an all around safe operation.

For spacific information obout your critical cleaning problems, sond prod. et information and production re. quirements.

Coldwell, N. \& CApital 6.6675
CIRCLE 156 ON READER-SERVICE CARD
ber, fiber glass, tinned copper wire and other materials.
Martin Engineering Co., Dept. ED, 40 Woodbine Lane, Holyoke, Mass.

\section*{Wire Bonder}

Thermocompression wire bonder model 401C, for microcircuit construction, provides a vacuum pickup needle for handling components. A supply tray for components is mounted on a swinging arm. Extra-force bonding hammer and flat-top heat column are standard. The machine handles circuits up to 1 in . square.
Kulicke and Soffa Manufacturing Co., Dept. ED. 12:34 Callowhill St., Philadelphia 23, Pa.

Orienting Table


An orienting table for semiconductor crystal slicing is accurate to 1 min of arc. It can be installed on machines now in operation or supplied as optional equipment on new machines. The fully automatic slicing machines produce wafers with thickness from 0.025 to \(0.007=\) 0.0005 in. An automatic back-off mechanism minimizes surface imperfections.

Fitchbury Engineering Corp., Electronic Dis.. Dept. ED, Fitchburg, Mass.

\section*{Fluxing Machine}

276
Solders printed circuit boards. The FWL automatic fluxing machine pumps flux through an elongated nozzle so that the liquid forms a continuous, double-sided, standing, laminar wave. The wave is \(1 / 4\) to \(3 / 4 \mathrm{in}\). high, controlled to \(+1 / 32\) for resin-batsed or watersoluble flux.

Electrovert, Inc., Dept. ED, 124 E. 40th St.. New York 16. N. Y.

\section*{Wire Stripper}

Capacity is 32 through 50 AWG. Model WR-6 has two abrasive wheels to remove the wire coating without damage to the conductor. Wheels of various densities are available. Motor requirements are \(1,725 \mathrm{rpm}, 115 \mathrm{v}\), single-phase, 60 cps .

High Speed Hammer Co., Dept. ED, 313 Norton St., Rochester 21, N. Y.


QUGGED CONSTRUCTION THROUGHOUT

Designed with an instantaneous reset feature, these relays provide the same time delay for a series of cycles when temperature and voltage vary.
They are pre-set from 3 to 180 seconds, are chatter-free and will withstand severe shock and vibration. Because of this unique combination of features, these relays are now being used in such new circuit applications as:
Sequential timing for missiles - Automatic reset on digital readout equipment - Oscillator stabilization - Overload protection Computer sequencing
"DM" SERIES STEPPING MOTORS
Curtiss-Wright Stepping Motors convert digital pulses into mechanical work or motion. Units are bi-directional witt high starting torque.
Write for complete Components Catalog 260 to help you select Curtiss. Wright electroalc components for use where dependability is of prime tmportance.

\section*{COMPONENTS DEPARTMENT.ELECTRONICS DIVISION}

CURTISE (C) MRICMT
CORPORATION • EAST PATERSON, N. J.


Helitrim \({ }^{\text {(8) }} 1 / 2^{\prime \prime}\) square trimming pots give you...

\section*{-UNIQUE SLIP CLUTCH STOP •SEALED ALL-METAL HOUSING}
as standard features!
Where small size and high operating temperature are important considerations, choose between two \(1 / 2^{\prime \prime}\) square Helitrim trimming potentiometers. The Model 70 has Teflon leads. The Model 71 has gold-plated pins. Both are precision-built by Helipot to give you special features as standard!
These Helitrim extras include a slip clutch stop that prevents open circuits - positively keeps the wiper from going off the end of the coil and into dead space. And sealed all-metal housings that provide humidity-resistant operation under the most severe environmental conditions.
Just as important is ease and accuracy of adjustment. There's no guesswork with Helitrim potentiometers - the adjustment screw makes 42 complete turns. This gives extra meaning to the pot's outstanding resolution - as fine as \(\mathbf{0 . 0 8 3 \%}\) in the upper resistance values.
Performance? Take a look at these specs. You'll see why top performance, too, is standard with Helipot.
STANDARD SPECIFICATIONS

Resolution in percent . . . . . . .......................... 1.01 to 0.083
Adjustment screw rotation ............................ . . 42 turns, \(\pm 1\) turn Power rating, watts ................................... 1 at \(50^{\circ} \mathrm{C}\)
Torque, max. oz. in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Life expectance, adjusting screw revolutions . . . . . . . . 10,000
Temperature range . . . . ............................. \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Price? Helitrim pots are competitively priced at \(\$ 5.35\) for the Model 70 and \(\$ 5.95\) for the Model 71. Considerably less in quantity !
Availability? Your nearest Helipot representative has both models in stock - ready for immediate delivery. Call him today.

\section*{Beckman}

\section*{NEW LITERATURE}

\section*{General Equipment}

Catalog No. 161, 240 pages, describes electric ovens, furnaces, baths, environmental cabinets, related temperature control equipment and accessories for laboratory, pilot plant and production applications. Supplementary scientific data in charts and tables is included. Blue M Electric Co., 138th and Chatham St., Blue Island, III.

\section*{Power Supplies \\ 279}

Transistorized power supplies are described in this 12 -page catalog, No. 61 A. Wide-range, high-current supplies, ac-dc modular supplies, general purpose supplies, and high-current, switching type power supplies are included. Consolidated Avionics Corp., 800 Shames Drive, Westbury, N. Y.

\section*{Reliability Nomograph}

Designed for application to semiconductors, this nomograph allows computation of the acceptance number for any given sampling plan. Success rate can be predicted from life test data either at a 90 per cent confidence level or for individual risks. Instructions are included. Raytheon Co., Semiconductor Div., 215 First Ave., Needham, Mass.

\section*{Silicon Rectifiers}

Six-page short form data folder gives electrical and physical characteristics of the firm's JEDEC-type silicon rectifiers. Over 600 types are included. Bradley Semiconductor Corp., 275 Welton St., New Haven, Conn.

\section*{Miniature Bearings}

282
A line of miniature bearings is described in Catalog 3E. Radial, roller, pivot, and special bearings are covered. Dimensional data, photographs, and full-sized drawings are included. Installation information is given. Landis and Gyr, Inc., 45 W. 45th St., New York 36, N. Y.

\section*{Fans and Blowers}

A line of fans and blowers for ventilating electronic equipment is described and illustrated in this 48 -page catalog. Mechanical and electrical characteristics, performance curves and engineering drawings are included. Solid state and vacuum tube cooling are considered in a special section. McLean Engineering Laboratories, P. O. Box 228, Princeton, N. J.

\section*{Numerical Control} 284
Entitled "Numerical Control, as applied to the complete integration of product testing with a manufacturing business", this nine-page brochure discusses numerical control in testing procedures. The paper finds that the benefits of numerical control extend beyond the actual testing procedures. Designers for Industry, Inc., 4241 Fulton Parkway, Cleveland 9, Ohio.

\section*{Universal Timing Set}

285
Applications of digital time signals to coordinate remote equipment in complex instrumentation and dataprocessing systems are described in this 18 -page, spiral-bound brochure. The Hallicrafters Co., 4401 W. Fifth Ave., Chicago 24, III.

\section*{Electronics Catalog}

286
Electronic equipment, components, radio and TV supplies of over 115 manufacturers are listed in a 268 page catalog. It is cross indexed and includes an industrial tube cross reference. Wedemeyer Electronic Supply Co., Dept. ED, Ann Arbor, Mich.

\section*{Electron Tubes}

Condensed 16-page catalog provides quick reference specifications and photos describing the firm's line of microwave tubes, display devices, and operational accessories. Litton Industries, 960 Industrial Road, San Carlos, Calif.

\section*{Magnetic Shields}

\section*{288}

Curves and tables to aid in the selection of magnetic shields are given in this 16-page booklet. Nicoloi and Mu-Metal shields for electron tube applications are discussed. The firm's shields and shaft hardware are cataloged. James Millen Manufacturing Co., Inc., 150 Exchange St., Malden 48, Mass.

\section*{Transistor Circuitry}

Entitled "Transistor Guide for Communications Circuit Designers", this guide surveys the basic rules pertaining to transistorized communications circuits. Practical information, circuit diagrams, curves and equations which aid in design of circuitry for audio, video, and rf equipment are presented. Write on company letterhead to: Philco Corp., Dept. ED. Church Road, Lansdale, Pa.

\section*{Transformer Catalog}

289
Electrical and physical specifications are given for almost 900 industrial transformers in a 36 -page catalog. It is cross-indexed and includes units for military and commercial applications. Chicago Standard Transformer Corp., 3501 W . Addison St., Chicago 18, Ill.

\section*{Precision Switches}

Catalog 104 describes precision switches for various applications. It has photographs and condensed descriptions of over 200 items including miniature switches, limit switches, proximity switches and electronic switch-circuit assemblies. Micro Switch, Div. of Minneapolis-Honeywell, Freeport, III.

\section*{Glass History}
"This Is Glass," 68 pages, gives the history of glass and details the basic types of glass. It includes glassceramic materials and a two-page chart giving properties of selected glasses and glass-ceramics. Corning Glass Works, Public Relations Dept., Corning, N.Y.

\section*{Electronics Catalog}

Product data for electronic parts, equipment and accessories are given in a 236-page catalog. Radio, TV, audio, amateur radio and industrial components of 115 manufacturers are listed. Tydings Co., Electronics supplies, 933 Liberty Ave., Pittsburgh 22, Pa.

\section*{Electronic Components}

Catalog No. 105, 204 pages, lists the products of approximately 100 component manufacturers. Test equipment, high fidelity and recording equipment, intercom systems, hand tools and hardware are also included. Star Electronic Distributors, 7736 S. Halsted St.. Chicago 20. Ill.

\section*{Piezoelectric Devices}

294
Applications of piezoelectric devices are discussed in this 16 -page illustrated booklet. Performance characteristics of major piezoelectric substances are outlined and compared. Clevite Electronic Components, Bedford, Ohio.

\section*{Aircraft System}

Bulletin GER-1704, 16 pages, describes GE's integrated ac electrical system aboard the F4H Mach II allweather aircraft. It includes a discussion of the system components, schematic diagrams, technical drawings and photographs of the equipment. General Electric Co., Schenectady \(5, \mathrm{~N} . \mathrm{Y}\).

\section*{Welding Techniques}
"Fabrication of Welded Motor Rocket Cases" is described in this 72-page booklet. Illustrations, tables and diagrams are given. Areas covered are materials, design, welding and quality assurance. Chemical compositions of the ultra high strength steels are given along with their mechanical properties, heat treatment and fracture toughness data. Send \(\$ 2.50\) to American Welding Society, Dept. ED, ss W. 39th St., New York 18, N. Y.


CHARACTERISTICS:
All Counters Below Incorporate Geneva Drive
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & PART NUMEER & \begin{tabular}{l}
MO. OF \\
DIGITS
\end{tabular} & \[
\begin{aligned}
& \text { Maximum } \\
& \text { COUNT }
\end{aligned}
\] & COUMPS PER REV. & MAXIMUM SPEED RPM & MAXIMUM
BREAR AWAY
TORQUE
(3 \(20^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{E422 SERIES: \({ }^{\text {a }}\)} \\
\hline ANELE & \(8422 . \square^{2}\) & 5 & \(179^{\circ} 59^{\circ}\) & \(20^{\circ}\) & 1200 & . 75 \\
\hline (center scale) & C160432- & 5 & \(179^{\circ} 59^{\circ}\) & \(20^{\circ}\) & 1200 & . 75 \\
\hline & C160431- \(\square\) & 6 & \(179{ }^{\circ} 59.9{ }^{\circ}\) & 2' & 1200 & 1.0 \\
\hline & C160435- & 4 & \(179.9^{\circ}\) & \(2^{\circ}\) & 1200 & . 75 \\
\hline decimal & C160433- \(\square\) & 3 & 99.9 & 2.0 & 1200 & . 75 \\
\hline (center scale) & C160434- & 4 & 999.9 & 2.0 & 1200 & . 75 \\
\hline MK II & MK 2 MOD 1 & 4 & 359.9 & \(2.0^{\circ}\) & 1800 & . 35 \\
\hline Med I & MK 3 MOD 1 & 3 & 359. & \(2.0^{\circ}\) & 1800 & . 35 \\
\hline SERIES: & C160407004 \({ }^{3}\) & 4 & 359.9 & \(2.0{ }^{\circ}\) & 1800 & . 35 \\
\hline & A403-208 & 4 & 359.9 & \(2.0^{\circ}\) & 1800 & . 35 \\
\hline
\end{tabular}
' Available in left or right Shaft, End or Side Mount, Mask readout of N-S, E-W, (+), (一)
2 Same as C160432 \(\square\) ercept .040 shorter length
(C160432 preferred for new designs)
3 Available in various shaft extensions and white or bare aluminum numerals


This Vought Electronics Servo Analyzer is an all-electronic instrument covering the dynamic range of most servo systems without the troublesome maintenance requirements of mechanical multipliers.

Modulation rates of .005 to 1000 cps in five ranges are provided in sinusoidal, step, and ramp functions either directly or in suppressed carrier form. Modulation frequency accuracy readings of \(2 \%\) are possible.

Other important unit specifications are:
- carrier frequency range of 50 to \(10,000 \mathrm{cps}\)
- carrier phase shift of less than \(2^{\circ}\) to 5 kc
- signal attenuation of 0 to 99 db in 0.1 db steps
- phase measurement accuracy of \(2^{\circ}\)

Use of Vought Electronics Servo Analyzer has been demonstrated successfully with Titan and Minuteman missiles as well as in industrial laboratory applications. It is available in both bench and rack mounted models.

For more complete information about this versatile instrument, contact:

Chief of Product Sales Chance Vought Electronics Division P. O. Box 1500, Arlington, Texas

\section*{CHANCE VOUGHT}

\section*{NEW LITERATURE}

\section*{Insulation Products}

296
Catalog A-61 covers laminated plastics, printed circuit boards, flexible insulation, molded plastics, vulcanized fibre and mica products. Capabilities for advanced military and industrial applications are listed. A product materials directory for critical electrical insulation and mechanical applications is also included. Continen-tal-Diamond Fibre Corp., Subsidiary of the Budd Co., Newark, Del.

\section*{Spring Design}

A 16-page manual summarizes basic information concerning helical springs, flat springs, wire forms, special fasteners, precision metal stampings and assembled spring-like devices. Mechanical properties and recommended uses of commonly used spring materials are presented in tabular form. Associated Spring Corp., Bristol, Conn.

\section*{Business Automation 298}

Operations of the engineering documents section of the United States Army Rocket and Guided Missile Agency are described in an eightpage pamphlet. The instant mechanical retrieval of engineering drawings from a file of over two million drawings, 850,000 of which are active, is outlined. Minnesota Mining and Manufacturing Co., 900 Bush Ave., St. Paul 6, Minn.

\section*{Test Instruments} 299
Information on spectrum analyzers, frequency response plotters, communications systems analyzers and telemetry test instruments is included in Catalog Digest E. Frequency range of the instruments is \(1 / 2 \mathrm{cps}\) through 44 kmc . Block diagrams illustrate applications. Panoramic Radio Products, Inc., joll S. Fulton Ave., Mt. Vernon. N. Y.

\section*{SPECIAL OFFER FOR ELECTRONIC DESIGN SUBSCRIBERS}

These sturdy attractive box files are ideal for keeping copies of Electronic Design within easy reach for reference, and will keep them looking as good as new. Two box files will hold 26 issues - a year's worth of practical design information. Order two now while this special low rate of ONLY \$2.00 EACH* still applies.


\section*{Systems and Instruments}

300
Programable systems for data handling, component testing, automatic measurement and control applications are described in a 16 -page catalog. Special purpose test and measurement equipments are also described in the catalog. Specifications and prices are given for each item. Dymec Div. of Hewlett-Fackard, 395 Page Mill Road, Palo Alto, Calif.

\section*{Digital Modules}

\section*{301}

Series 300 transistorized digital system modules are covered in a 16 page catalog. It describes the system functions which are packaged on each gold plated module. Block diagrams, logical design considerations and input-output specifications are included. All data necessary for the design of a digital system are provided. Navigation Computer Corp., Valley Forge Industrial Park, Norristown, Pa.

\section*{Safety Starters}

Bulletin GEA-7321, four pages, describes combination safety magnetic motor starters that offer protection against unauthorized entry and personnel injuries. Photographs illustrate safety devices and how to perform inspection or maintenance with or without power interruption. Pricing information is also included. General Electric Co., Schenectady 5, N. Y.

\section*{Resin System Pumps}

303
A 10-page booklet illustrates and gives complete specifications for 20 basic models of the Triplematic pump and the available variations of each model. These pumps are designed for multi-component resin systems. Also included is an outline of the technical services available from the company and a series of questions and answers about resin system technology. H. V. Hardman Co., Inc., 571 Cortlandt St., Belleville, N. J.

- Low Cost
- Easy to Assemble
- Occupy Small Space

Also available with Nylon insulation for Radio-Frequency Applications.

Write for Calalog C-501.


3SOIFP-FOR FRONT OF PANEL MOUNTING. Hex nut attached on back side of ponel eliminales unouthorized lampering. Requires only \(/\) /s" dia. mounting hole-con be mounled on \(1 / 2^{\prime \prime}\) centers.


3SOIPR-FOR EACK OF PANEL MOUNTING. Mounts with a standard \(\mathcal{K}^{\prime \prime}\) " 32 threaded locknul in front. Requires only \(1 / \mathrm{s}^{\prime \prime}\) dia. mounting halo-can be mounted on \%" centers.

\section*{HICHACCURACY, WINDING COMPENSATED RESOLVERS}

Kearfott precision resolvers are high accuracy units particularly applicable to analog computers and automatic control systems. The resolvers are capable of holding the angular arc error to accuracies within 20 seconds from electrical zero. A compensator winding provides feedback voltage for a resolver isolation amplifier. Unity gain from the amplifier input to resolver rotor output is made possible by adjustment of a resistor. Since compensator and rotor winding voltages vary with temperature and fre-- quency in a parallel manner, the feedback loop is automatically adjusted to compensate for these variations.
\begin{tabular}{|c|c|c|c|c|}
\hline & Unit No. & R980-410 & T980-003 & CZ05180202 \\
\hline & Size & 11 & & \\
\hline & Accuracy (Max Error from E.Z.) & 5 minutes & 5 minutes & 20 seconds \\
\hline PICAL & Function Error & .1\% max & . \(05 \%\) max & .01\% max \\
\hline PERFORMANCE & Excitation ( 400 cps ) & 60 voits & 60 voits & 115 volts \\
\hline DATA & Transformation Ratio (Rotor to & & & \\
\hline & Stator) & \(980 \pm .020\) & \(980 \pm .010\) & 980 \(=2 \%\) \\
\hline & Phase Shift & 7.5 lead & 8.5 lead & \(2.5{ }^{\circ} \pm 1 \mathrm{~min}\) \\
\hline
\end{tabular}

Write for complete data


> KEARFOTT DIVISION
> GENERAL PRECISION. INC.

\section*{John Gregorio can shows JOU...}


\section*{how to measure ac ratios to one part per million... at a sensible price}

In fact, any of North Atlantic's field engineering representatives can quickly demonstrate how the Models RB-503 and -504 Ratio Boxes will meet all your requirements for high accuracy at lowest cost.

Designed for either bench or rack mounting, both models provide rated accuracy over their full ratio range, with six-digit, in-line window readout for best readability. Both incorporate heavy duty switches with transient suppression, fold-away legs, easily removeable end plates and voltage dividing transformers to MIL-7.27A. Abridged specifications are given below:
\begin{tabular}{|c|c|c|}
\hline & RB-503 & RB-504 \\
\hline Ratio Range & 0.000000 to 1.1111110 & -0.111110 to +1.111110 \\
\hline Accuracy Of Ratio For All Ratios (at 400 cps ) & \(\pm\left[0.001+\frac{0.0001}{(\text { Ratio })}\right] \%\) & \(\pm\left[0.0001+\frac{0.000025}{(\text { Ratio })}\right] \%\) \\
\hline Frequency Range (Usaful) & 50 to 10,000 cps & 50 to \(10,000 \mathrm{cps}\) \\
\hline Nominal Input Impedance (at 400 cps ) & 50K.60K & \(>250 \mathrm{~K}\) \\
\hline Max Input Voltage & 0.51 , Volts, (f in cps) (not to exceed 350 V .) & 1.0f, Volts, (f in cps) (not to exceed 350 V .) \\
\hline Max. Effective Series Resistance & 3.5 ohms & 8 ohms \\
\hline Resolution & 5 decades plus 1 turn potentiometer & \begin{tabular}{l}
5 decades plus \\
1 turn potentiometer
\end{tabular} \\
\hline Size & \(13^{1 / 20}\) h. \(\times 19^{\circ}\) w. \(\times 8^{\prime \prime} \mathrm{d}\). & \(3{ }^{1 / 2 "}\) h. x \(19^{\prime \prime}\) w. x \(8^{\prime \prime} \mathrm{d}\). \\
\hline Price & \$295.00 & \$450.00 \\
\hline
\end{tabular}

Also from North Atlantic: Model RB-510 for high precision at 10 kc and \(\mathbf{R E} \mathbf{B} 520\) for MIL Spec applications.

If you're up against critical jobs of ac ratio measurement - in the laboratory, on the production line, or in the field - it will pay you to talk to the North Atlantic man in your area. For his name, call or write today. Or request
Bulletin RB 503-504 for complete data.

See us af WESCON Booth 2812-2814
CIRCLE 164 ON READER-SERVICE CARD

\section*{NEW LITERATURE}

\section*{Diodes}

Most standard EIA cool-junction diodes are listed in this catalog. Included are computer switching diodes, high-conductance all-purpose diodes and high-voltage silicon subminiature rectifiers for commercial or military applications. Delta Semiconductors, Inc., 835 Production Place, Newport Beach, Calif.

\section*{Transducer Data \\ 305}

A Fourth Edition of the 2200 Series Accelerometers Technical Book contains recent information on vibration and shock instruments. Discussions of piezoelectric materials, nonvibration environments, mounting techniques, applications and calibration techniques are included. Maintenance data and useful formulas are given. Endevco Corp., Literature Dept., 161 E. California Blvd., Pasadena, Calif.

\section*{Microwave Equipment}

306
The firm's line of microwave equipment is described and illustrated in this 25 -page catalog. Physical and electrical specifications are given for attenuators, rf sources, tuners, terminations, and related devices. Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md.

\section*{Cathode Ray Tubes}

307
Physical dimensions, electrical characteristics, and line width specifications of over 200 cathode-ray tubes are given in this 12page brochure. Included are oscilloscopes, radar monitors, video records, flying-spot scanners, industrial monitors, receiver check tubes and spiral accelerator tubes for precision scope applications. Sylvania Electric Products, Inc., 1100 Main St., Buffalo, N. Y.

\section*{Electric Ovens}

308
A line of electric ovens, furnaces, magnetically agitated baths, environmental cabinets and related temperature-controlled equipment is described in this 64 -page pock-et-size catalog. Photographs and brief descriptions are included with technical specifications. Blue M Electric Co., 138th and Chatham St., Blue Island, IIl.

\section*{How to make} more money on payday without getting a raise


You enve more than money. You make surc of enjoying the things you're saving for. Every U.S.S Savings Rond helps your Government kcep the Peace.

Why wait for a raise when you can do something now about increasing your income? More than 8 million Americans are doing it every payday by buying U.S. Savings Bonds on the Payroll Savings Plan. It works like this: each payday your payroll clerk sets aside whatever amount you wish, buys your Bonds. and delivers them. You receive \(\$ 4\) for every \(\$ 3\) you put in, guaranteed. Why not start planning a bigger payday this easy way today?

> Why U.S. Savings
> Bonds are good to buy and hold

You can save automatically on the Payroll Savings Plan. You now earn \(33 / 4 \%\) to maturity • You invest without risk - Your Bonds are replaced free if lost or stolen. You can get your money with interest anytime you want it - You buy shares in a stronger America.

You save more than money with U. S. Savings Bonds 20 m

This advertising is donated by The Advertising Council and this magazine.

\section*{KODAK EKTRON} DETECTORS
-for the \(1 \mu\) to \(6 \mu\) infrared

a wide open choice in spectral responsivity and time constant

a wide open choice of physical forms -large. small. complex shapes. multıple arrays. "immersed," Dewar. housed-ingenuity is the only limit, almost

For more precise explanations and a price list of off the shelf Kodak Ektron Detectors (or to see if we can build a complete infrared system for you), write-

\section*{EASTMAN KODAK COMPANY}

Apparatus and Optical Division
Rochester 4, N.Y.

Kodak
mod wan

\section*{Antenna Calculator}

Frequencies from 30 to \(30,000 \mathrm{mc}\) are covered by this parabolic antenna calculator. The scales include: frequency, wavelength, beamwidth, vswr, windloading and focal length, as well as spectrum scale for band designation, conversion scales for inches, and vswr-return loss. Send \(\$ 2.00\) to Gabriel Electronics, Dept. ED, Main and Pleasant Sts., Millis, Mass.

\section*{Transformers}

Electrical and physical specifications on 870 transformers for a wide range of radio and television, industrial and communication applications are listed in this 32-page cata\(\log , \mathrm{No}, \mathrm{S}-106\). Output transformer chart indicates the recommended output transformer to be used with various standard and high-fidelity output tubes. Stancor Electronics, Inc., 3501 Addison St., Chicago 18, III.

\section*{Digital Data Applications}

310
A quarterly company magazine, Datex Digest, has begun publication. It intends to report significant achievements in digital data recording and control. The first issue contains a survey article on radiotelescope antenna position recording and control systems. Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.

\section*{Knobs}

Over 200 different knobs in a variety of sizes, shapes and colors for radio, television, automotive and electronic instrument applications are illustrated in this 24 -page full color brochure. Shaft mountings and miscellaneous parts are also described. Rohden Manufacturing Co., 4739 Montrose Ave., Chicago 41, Ill.

\section*{Microwave Instruments} 312
Noise and field intensity meters, impulse generators, power density meters, modulation meters, coaxial attenuators and other microwave components are described in this 56 -page catalog, No. 614. Each item is described with its applications and specifications. Photographs, charts, tabular data, formulas, and line drawing are included. Empire Devices, Inc., Amsterdam, N. Y.

1. X-BAND MONO PULSE ANTENNA utilizes the principle of multiple modes in waveguide. It features extremely deep mulls (50 DB) and a very compact configuration.
2. PARABOLIC ANTENNAS of conventional design for \(X\)-Band and KU-Band are also available in the Kearfott line.
3. HORN ANTENNA This dielectric lense horn antenna is phase compensated to give optimum patterns and side lobe levels.
4. X-BAND PLANAR ARRAY ANTENNA consists of a phased array of waveguide slot radiators. The pattern consists of two conical beams at a carefully controlled angle with respect to vertical.
5. Ka BAND CONICAL SCANNING ANTENNA achieves a high rate of electrical scanning through use of a tri-slot device that gives 3 electrical scans for each mechanical scan. Compactly designed, it provides extremely close control (less than . 1 DB) over the cross over.

Write for complete data


KEARFOTT DIVISION GENERAL PRECISION. INC.

Little Falls, New Jersey


\section*{Becco Ammonium Persulfate etches cleanly!}

For etching printed circuits, Becco's ammonium persulfate process offers important advantages. As one large producer of printed circuits puts it: "Ammonium persulfate is better all around. We have experienced little troubie and far fewer rejects. It is more easily dissolved than ferric chloride, and can be safely handled in large volumes, with resultant cost savings.
"Moreover, the persulfate solution etches cleanly with a minimum of undercut and can be used with all conventional resists, and on all laminates. A 'natural' for solder-plated resist."
Switch to Becco ammonium persulfate and get these advantages:
1. Various types of circuits can be etched in one system.
2. Etchant is relatively non-corrosive
3. Etchant remains clear and transparent in use
4. After-treatment is simplified.
5. Sludge formation is avoided during etching.
6. Waste solution can be easily disposed of.
7. Copper can be recovered from spent etching solution.
8. Venting of the etching area is unnecessary.
9. Equipment corrosion is minimized.
10. Cost of etching solution is low.
11. Conversion from other etching processes is simple and inexpensive.
Want more information? We'll be glad to send full details. Just write us at Department ED-61-21.
BECCO Ammonium Persulfate

flle
CHEMICAL DIVISION
General Sales Offices: 161 East 42nd Srreet, New York 17, w.Y CIRCLE 168 ON READER-SERVICE CARD

\section*{NEW LITERATURE}

\section*{Crossbars}

Technical bulletin No. 60-115 reviews six types of crossbars, the various means of actuation and control and suitable applications, as well as presenting the results of experimental tests on various models. Photographs, tables, drawings, and curves are included. James Cunningham, Son \& Co., 33 Litchfield St., Rochester, N. Y.

\section*{Microwave Components}

Specifications for a standard line of precision wavemeters, preselector-balanced mixers, bandpass and low pass filters are contained in six-page brochure. Information on a custom line of bandpass filters, discriminator cavities, diplexers, wave traps and reference cavities is also given. Frequency Standards, P. O. Box 504, Asbury Park, N. J.

\section*{Transistors and Diodes}

315
A line of semiconductor products is listed with technical specifications and dimensional diagrams in this 10 -page catalog. Included are transistors, diodes, rectifiers, controlled rectifiers, switches, microcomponents, regulators and references, capacitors and encapsulations. Transitron Electronic Sales Corp., 168-182 Albion St., Wakefield, Mass.

\section*{Nickel-Chromium Wire}

316
Nonmagnetic nickel-chromium wire is described in this eight-page brochure. Temperature resistance, specific resistance, coefficient tolerances, yield strength vs diameter and elongation vs diameter at different temperatures are given. Molecu Wire Corp., Eat-ontown-Freehold Pike, Scobeyville, N. J.

\section*{Frequency and Time Standard Systems}

A general discussion of problems related to frequency and time standards and detailed consideration of system operations ar given in this 56 -page manual, Application Note No. 52. Illustrations, tables, sample problems and solutions are included. Data sheets on some of the firm's equipment appear in the appendix. Write to Mr. Harry J. Lewenstein, Dept. ED, Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto, Calif

NOW MAILING! PL88 - technical data, pricing bulletin describing Advanced-design commercial and itizen-band base-station antennas and accessories. Includes Tower, Rotator, "Baluns," Masting and to-have-around "info." Request your copy, today; no obligation.

WORLD RENOWMED AND RESPECTED


LABORATORIES
ASBURY PARK 41, NEW JERSEY, U.S.A.
CIRCLE 169 ON READER-SERVICE CARD

\section*{DRAKE \\ "ECONOGLD" \\ Neon Glow \\ INDICATOR LIGET \\ ASSEMBLIES \\ for maximum performance at minimum cost . . .}

Ideal as low-budget indicators on stand ard line voltage. Thoroughly practical easy to mount from front of panel, secured by Tinnerman nuts or Snap-in plugs. Available with or without current-limiting resistors.... with either plain or flured lenses, or flat caps - plain or numbered... in your choice of Colorless, Red. Yellow. White. High-brigheness neon glow lamps give clear visibility, long life.
"Econoglo" units are suggested for such applica tions as: Radio and TV. Hi Fi, Communications Equipment, Computers, Instruments, Tovs, elc., elc.

- SEND FOR DATA SHEET 601 WITH FULL DETAILS AND SPECIFICATIONS

\section*{DRAKA}

MANUFACTURING COMPANY
4624 N. olcoit avinut - chicago 31, hlinois
minlature lighting specialists
circle ito on reader-service card
ELECTRONIC DESIGN • July 19, 196

\section*{DESIGN ENGINEERS \\ Select the Right Choke INSTANTLY!}

\section*{High-Voltage Rectifier Assemblies}

317
A new line of double-diffused high-voltage potted rectifier assemblies, designated Series SDI, is covered in this 10-page catalog. Technical data and drawings on singleand three-phase rectifier assemblies rated up to 50,000 piv and 1 amp dc are included. Other semiconductor products are also described. Solitron Devices, Inc., 500 Livingston St., Norwood, N. J.

\section*{AGC Characteristics of Transistors 318}

Forward and reverse age characteristics of vhf germanium mesa transistors are described in this eight-page booklet. Characteristics at 45,100 and 200 mc are detailed. Operating curves are given. A simplified design procedure is outlined. Texas Instruments Inc., Semiconductor-Components Div., P. O. Box 5012, Dallas 22, Tex.

\section*{Transistor Substitutions}

Called the "International Transistor Substitution Guidebook," this 64-page publication recommends interchangeabilities among transistors manufactured in the U. S. and six foreign countries. Physical dimensions of the transistors are included. Send \(\$ 1.50\) to John F. Rider Publisher, Inc.. Dept. ED. 116 W. 14th St.. New York, N. Y

\section*{Bearings}

319
Sealed bearings, rod ends, spherical and corrosion-resistant bearings are described in this 16 -page illustrated catalog, No. 560. Physical specifications and dimensional drawings are included. Stephans-Adamson Mfg. Co., Sealmaster Bearing Div., Aurora III.

\section*{Thyratons}

320
Two bulletins, No. PA-223 and PA-503 are entitled "Thyratrons Are Different" and "The Care and Control of Thyratrons" They discuss how thyratrons differ from high vacuum tubes, ionization and deionization, temperature effects, installation precations, de control, ac control, and how to interpret thyratron ratings. A separate section describes applications. CBS Electronics, Information Services, 100 Endicott St., Danvers, Mass.
permanant protiction

\section*{electantecumronenis}

a formulation breakthrough in resin systems for POTTING AND ENCAPSULATING ELECTRONIC COMPONENTS


TELEPOXY SYSTEMS are highly superior Insulating Compounds, made possible through Narmco's recon dite research and advanced materials chemistry.
TELEPOXY ASSURES reliable performance from potted, encapsulated or coated components and sub-assemblies -cven when they are subjected to extreme operating conditions.

UNEXCELLED physical and electrical properties
DIMENSIONAL STABILITY-negligible shrinkage
VARIETY OF
\[
\begin{aligned}
& \text { MMENSIONAL } \\
& \text { during cure }
\end{aligned}
\]

TELEPOXY
COMPOUNDS
are avail abie
EACH OFFERS:
EXTREMELY LOW
EXPA COEFFICIENTS OF THERMAL
EXPANSION - lor maximum piotection of
SIMPLICITY of application
TYPICAL APPLICATIONS: Encapsulating toroidal trans formers . . . discriminators . . . antenna-matching trans ormers...capacitors... ferrite pot cores...r-f chokes ..inductors...semi-conductors...magnetic and vacuum tuhe amplifers. Write for literature describing a var ety of TEI.EPOXY formulations

NARMCO . . . for high-performance materials. Formulators of Structural and Industrial Adhesives. Reinforced
Plastic Laminating Materials. Ablative and Molding Compounds

\section*{NI}

NARMCO MATERIALS TELECOMPUTING
CORPORATION

\section*{厄}
serves the nation ano industry with systems and sub.

circle 173 on reader-service card

\section*{IDEAS FOR DESIGN}

Fifth \(\$ 50\)
"Most Valuable of Issue" Award for Cable Shielding Method
H. W. McCord, engineer in the Electron Tube Div. of the Radio Corporation of America. Harrison, N. J., has won Electronic Design's fifth \(\$ 50\) Most Valuable of Issue Award.

Mr. McCord receives the award for his Idea for Design "Ungrounded Shield Reduces Effective Cable Capacitance," which appeared in the April 26 issue. The idea pointed out that the input capacitance of a cable feeding a cathode follower can be reduced by connecting its shield to the stage input instead of to ground.

\section*{Circuit Squares \\ DC Input Voltage}

Here's a circuit we designed whose output is proportional to the dc input, squared. Its operation is based on the fact that the area of a right triangle is proportional to the product of its sides.
With a direct voltage applied at the input, the wave-shapes at the emitter, point 1 ,


Output voltage of circuit is directly proportional to the de input voltage squared.
of the 2 N 491 unijunction and at the base, point 2, of the 2 N336 are as shown in the figure. The clipping level at point 2 set by the dc input, with the average value of the waveform given by:
\[
\begin{equation*}
E_{D C}=\frac{A_{p}}{2}-\frac{A_{1}{ }^{t}{ }_{1}}{2 t_{o}} \tag{1}
\end{equation*}
\]
where
\[
\begin{gather*}
A_{p}=k t_{o} \\
A_{1}=k t_{1} \\
E_{D C}=\frac{A_{p}}{2}\left[1-\frac{t_{1}^{2}}{t_{o}^{2}}\right] \\
=\frac{A_{p}}{2}-\frac{A_{p}{ }^{t} 2^{2}}{2 t_{o}^{2}} \tag{2}
\end{gather*}
\]

But \(A_{p} / 2\) is a dc offset level, and hence:
\[
\Delta E_{D C}=\frac{-A_{2}^{\prime} y^{2}}{2 t_{0}^{2}}=K t_{1}^{2}
\]

Since \(t_{1}=A_{1} / k\) and \(A_{1}\) is the input level, the output is proportional to the input squared, within the range of \(0<t<t_{0}\).

Robert L. Colcord, Radar Engineer, Magnavox, Fort Wayne, Ind.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 741 .

\section*{Vote for Ideas Valuable to You}

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receives the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a \(\$ 50\) award.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.

The Ideas chosen as the most valuable in each issue will be eligible for the \(\$ 1,000\) Idea of the Year award.
So vote for the Ideas you find most val uable. And, after you've voted, why not send in an Idea of your own?

\section*{Inverted Exclusive-OR}

\section*{Circuit Compares Binary Bits}

Binary bits taken from a film store had to be compared with binary numbers set on switches. The comparison was made with a circuit, Fig. 1, which uses a single transistor to perform the inverted exclusive-OR function:
\[
[\overline{\bar{A} B+\bar{B} A}]=[A B+\overline{A B}]
\]

With the preset switch open, the output signal will be high ( +12 v ) only if the film-


Fig. 1. Transistor and diodes are used to provide inverted exclusive-OR function for comparing binary bits.


Fig. 2. Basic circuit of Fig. 1 can be modified to perform exclusive-OR function.
operated switch is open. If the preset switch is closed, the output will be high only if the film switch is closed.

The circuit can be modified to perform the exclusive-OR function:
\[
\bar{A} B+\bar{B} A
\]

If the preset switch, Fig. 2, is open, the output signal is high only if the film switch is closed. With the preset switch closed, the output is high only if the film switch is open.

Both sets of conditions allow point \(E\) to drop below +12 v , so that the transistor is turned on.

Frank Neu, Electronic Engineer, Lawrence Radiation Laboratory, Berkeley, Calif.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 739.

\section*{How You Can Participate}

\section*{Rules For Awords}

Here's how you can participate in Ideas for Design's Seventh Anniversary Awards: All engineer readers of Electronic DeSIGN are eligible.
Entries must be accompanied by filled-out Official Entry Blank or facsimile. Ideas submitted must be original with the author, and must not have been previously published (publication in internal company magazines and literature excepted).
Ideas suitable for publication should deal with:
1. new circuits or circuit modifications
2. new design techniques
3. designs for new production methods
4. clever use of new materials or new components in design
5. design or drafting aids
6. new methods of packaging
7. design short cuts
8. cost soving tips

Awards:
1. Each Idea published will receive an honorarium of \(\$ 20\).
2. The Idea selected as the most valuable in the issue in which it appears will receive \(\$ 50\).
3. The Idea selected as the Idea of the Year will receive a Grand Prize of \(\$ 1,000\) in cash.
The Idea of the Year will be selected from those entries chosen Most Valuable of the Issue.

Most Valuable of the Issue and Idea of the Year selections will be made by the readers of Electronic Design. The readers will select the outstanding Ideas by circling keyed numbers on the Reader-Service cards. Payment will be made eight weeks after Ideas are published.
Exclusive publishing rights for all Ideas will remain with the Hayden Publishing Co.

\section*{SEVENTH ANNIVERSARY AWARDS}

\section*{IDEAS-FOR-DESIGN}

Ideas-for-Design Editor
Electronic Design
850 Third Ave.
New York 22, N. Y.
Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea across.)
(Use separate sheet if necessary)
I submit my Idea for Design for publication in Electronic Desicn. I understand it will be eligible for the Seventh Anniversary Awards \(\$ \$ 20\) if published, \(\$ 50\) if chosen Most Valuable of Issue, \(\$ 1,000\) if chosen Idea of the Year.

I have not submitted my Iden for Design for publication elsewhere it is entirely original with me and does not violate or infringe any copyrights.
 Drsion. This nght extends to the subsequent use of the Idea for Design by Hayden in any of its other publications. Hononariums, if any, for subse quent publication shall be solely in the discretion of Hayden Publishing Company, Inc.

\section*{Name}
\(\qquad\) Titlo

\section*{Company Name}

Address \(\qquad\)
For Additional Entry Blanks, circle 750 on Reader-Service Card.


New Flexi-core transformers offer-
Freedom of design never before possible ...at standard transformer prices!

It's a fact! New Sylvania Flexi-core transformers are entirely unlike any you've ever seen before! Every one is custommade to your specifications.
No longer do you need to compromise on size, shape and linear design. No longer are you restricted by conventional E.I. C, U, or D configurations. Odd sizes and special shapes can be made without the usual penathies in tooling and delivery
Reason? The heart of the new Flexi-core transformer is a core consisting of nests of laminations of formed steel strips.

These nests are fitted together to produce \(100 \%\) interleaving for optimum design.
Results: Sylvania Flexi-core transformers operate cooler. provide higher reliability and are up to \(30 \%\) lighter and smaller than conventional types
Whatever your transformer application, Sylvania can build you a better one custom-designed to meet your needs at a competitive price. For details on production quantities, consult your Sylvania Special Products representative. Or write Sylvania Electric Products Inc., Ipswich, Mass.

\section*{IDEAS FOR DESIGN}

\section*{Voltage Changes Transmitted 736 As Shifts in Frequency}

The difference of two signals, normalized to their sum, had to be accurately transmitted over very long cables. At first, voltage drops along the cables presented a great problem. However, this problem was soon solved by converting the information to frequency variations and transmitting frequencies rather than amplitudes

Shown in the block diagram are the basic sections used in the circuit. As a unit they:
1. Convert a voltage to a frequency that is directly proportional to the voltage (digitizing).
2. Divide two voltages dynamically and with a fast response, digitizing the output.
The transfer ratio depends solely on the time constants chosen. The voltage may be either constant or varying, as long as the time constant is short compared to the period of the variation.

If \(V_{2}\) is fixed and \(V_{1}\) is integrated until a level of \(V_{2}\) is reached, (at which the integrator is reset to zero), then
\[
V=\frac{V_{1} t}{R C}
\]

When: \(V=V_{2}, \quad \tau=\frac{V_{2}}{V_{1}} R C\)
then. \(f=\frac{1}{\tau}=\frac{V_{t}}{V \cdot R C}\)
or: \(f=K V_{1} \quad\) where \(K=\frac{1}{V_{2} R C}\)
If \(V_{2}\) is also varied:
\(f=k \frac{V_{1}}{V_{2}} \quad\) where \(k=\frac{\mathbf{1}}{R C}\)
It may be necessary to restrict the frequency range, that is, to keep the frequency from


Voltage drops in cables did not have to be considered when voltage differences were converted to proportional frequencies.
going to zero when \(V_{1}=0\). This can be done by adding \(V_{1}\) to \(V_{2}\) and, instead of integrating \(V_{2}\), we integrate \(V_{2}+V_{2}\). Reset still occurs at a voltage level of \(V_{2}\).

For the first case, with \(V_{2}\) fixed:
\[
j=\frac{\boldsymbol{V}_{1}+\boldsymbol{V}_{2}}{V_{2} R C}=K V_{1}+f_{0}
\]
where \(K=\frac{\mathbf{1}}{V_{2} R C}\)
and \(f_{t}=\frac{1}{R C}\)
For the second case, with \(V_{2}\) varying:
\[
\begin{aligned}
& f=k \frac{V_{1}}{V_{2}}+f_{0} \\
& =f_{0}+f_{0} \frac{V_{1}}{V_{2}} \\
& \pm f_{o}\left(1+\frac{V_{1}}{V_{2}}\right) \\
& \text { where } k=\frac{1}{R C} \\
& \qquad f_{0}=\frac{1}{R C}
\end{aligned}
\]

There are many variations possible with this basic block diagram. In our application the circuit was used to indicate the proton beam location in the Brookhaven alternating gradient synchrotron.

Martin Plotkin. Electrical Engineer, Brookhaven National Lab., Upton, L.I.. N. Y.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 736.

\section*{One-Shot Multi Fixes \\ 734 \\ Turn-On State of "Bistable" Unit}

Added circuitry is usually required when a bistable multi is to come "on" in its correct stable state after power is applied. This turnon problem is, however, avoided if a one-shot multi can be used instead.

It is possible to use a one-shot when its timing cycle is longer than the time between the set and reset pulses. If this is the case, the output will have the desired pulse-width. And, because it has only one stable state, the one-shot will always be turned on correctly. It must be remembered, though, that the reset pulses must be large enough to overcome the bias caused by the timing components.

Irving Bayer, Principal Engineer, Budd Electronics, Lon! Island City 1, N. Y
If this Idea is valuable to you, give it a vote by circling Reader-Service number 734.


\section*{the Complete Line on Polyester Film and every film with "engineered" drafting surface}

Only K\&E offers you all the film-based media for vour drafting and reproduction needs, and they're all working products, designed to permit additions or deletions. The same engineered drafting surface throughout enables you to standardize on drafting techniques, and the same base throughout means constant behavior characteristics under exposure to light, heat, moisture, etc. 1. HERCULENE - the unchallenged leader among drafting films, with better than ever working properties for pencil. ink, and typing. Now with a choice of specialized writing mates: Duralur plastic pencils render tracings that are completely washable in soap and water new Runce pencils have all the fine "feel" of graphite, yet resist smudging better than graphite on regular paper.
2. PHOTACT - the photographic second original on film that can be prucessed with regular paper developer. I mage lines can be manually erased, too (no cradicators needed). Underneath - an excellent drafting surface for changes or additions in pencil, ink or typing. Available in three film types: Contact. Direct Positive, and Projection.
3. DUPRO \({ }^{\text { }}\) - for ink-like second originals that can serve as working copies. Image lines are smudge-proof, with appearance and permanence of photog raphy, yet are easily removed with soft vinyl eraser. For additions or changes in pencil, ink or typing: a perfectly bal anced drafting surface underneath. Another advantage: wash-off emulsion permits processing in room light -no durkroom needed.
4. HELIOS - for intermediates of exceptional ruggedness. produced easily, quickly, and at low cost by the standard dry diazo process. Mechanical erasure removes image lines (no eradicators needed) ; engineered drafting surface on the reverse side. Unsurpassed line density and background clarity -black line or sepia.
5. STABILENE - the re-stabilized drafting medium with unsurpassed dimensional stability. Ideal for highly precise work, like the preparation of multi-color maps, printed circuitry, lofting layouts, tools and templates, etc. Available with more than 20 types of surfaces-for pencil and ink work, scribing, peeling, stripping, and a variety of reproduction methods
For more information on any of these popular K\&E polyester-base films, simply mail the coupon below.

\section*{\(\mathrm{K}+\mathrm{E}\)}

KEUFFEL \& ESSER CO. NEW YOAK - MOBOREN, N. J. PHILADELPHIA - DETROIT SAN FRANCISCO•IOS ANGELES - SEATTLE MONTREAL

KEUFFEL \& ESSER CO., Dept. ED-7, Hoboken, N. J.
Gentlemen:
Please send me your new hrochure titled "Complete Line on Polyester Film." Name\& Title
Company \& Address:


CIRCLE 175 ON READER-SERVICE CARD

\section*{solderless terminals and connectors}

\section*{OVER 800 TYPES AND SIZES FOR EVERY INDUSTRIAL WIRING APPLICATION}
- Including Mil Spec., Heavy Duły, High Temperatures.
- Wire Ranges: No. 22 thru No. 2 A.W.G.

Fast Delivery thru your Electronic Parts Distributor

\section*{UALDOM}


CIRCLE 176 on reader-service card


Need Personnel?
(It's easier to altack this problem with a permanent career brochure in ELECTRONIC DESIGNERS' CATALOG.)

\section*{IDEAS FOR DESIGN}

\section*{Modified Circuit for}

\section*{Constant-Width Pulses}

Alfred W. Zinn's circuit, Fig. 1, for making the pulse width of a monostable multivibrator independent of its circuit components (Ideas for Design, "Delay Line Added for Constant-Width Pulse," ED, Dec. 7, 1960, p 194) can be improved by using the delayline to transmit a double pulse to a bistable multi, Fig. 2. The advantages of this circuit over Mr. Zinn's are that:
- Load does not affect output waveform.
- Pulse base line is clamped.
- Opposite polarity pulses may be obtained, since both sides of multi can be used.
- No critical time constants are required, as in the case of the "one-shot."
- There is no ringing on the output, since the delay line is on the input.
- Pulse width may approach the pulse repetition rates.
Monroe Landau, EDO Corp., College Point, \(N . Y\).

Readers Zinn and Landau have suggested two delay line circuits for obtaining con-


Fig. 1. Alfred W. Zinn's circuit places a shorted delay line on the output side of a monostable multi to help form a constant-widh output pulse.


Fig. 2. Reader Landau's circuit uses the delay line to transmit a double-pulse to a bistable multi.
stant－width output pulses．If anyone knows of any other circuits，either modifying these or offering new approaches，we＇d certainly like to hear about them．Just send the cir－ cuits，with a brief description，to Ideas for Design Editor，Electronic Design， 850 Third Ave．，New York 22，N．Y．Those that are published will be eligible for the Most Valuable of Issue Award．

If this Idea is valuable to you，give it a vote by circling Reader－Service number 749.

\section*{Two－Transistor Circuit}

\section*{Increases Null－Detector Sensitivity}

The sensitivity of null detectors can be considerably increased by using the amplify－ ing circuit shown in the figure．This circuit


Five－component circuit increases null detector sensi－ tivity，allowing high－accuracy bridge measurement to be made in the field with rugged，relatively insensi－ tive equipment．
was found to be particularly useful for in－ the－field work．It permitted high－accuracy bridge measurements to be made with a rug－ ged，but relatively insensitive，null－detecting device．

Only five components are used in the cir－ cuit，including two complementary transis－ tors operated push－pull．A current gain equal to the average beta of the transistors is pro－ vided．Voltage gain is unity．The circuit was found to be extremely stable，with drift over a few hours use between 0.02 and \(0.10 \mu \mathrm{a}\) ． For more gain，circuits can be cascaded．

The resistance of the potentiometer is not critical．It is used as a zeroing control to cen－ ter the needle of the null indicator．

Matching of the transistors is not neces－ sary although the circuit is more stable if they are matched．The resistance of the null detector is not critical either．Input imped－ ance of the current multiplier is beta times that of the null device．

Yale Jay Lubkin，Senior Staff Engineer， Loral Electronics Corp．，New York，N．Y．

If this Idea is valuable to you，give it a vote by circling Reader－Service number 729.

\section*{Westinghouse announces \\ new リロルクi Re \\ surge \\ suppressor}

The Westinghouse VOLTRAP is a unique voltage limiting device which has been de－ signed and constructed for the sole purpose of providing a shunt path for transient overvoltages．It provides positive protec－ tion，year after year for all static devices such as silicon and germanium cells and silicon controlled rectifier cells．
Westinghouse now offers a complete line of VOLTRAP surge suppressors．Most units are available for quick shipment．

\section*{Ratings：}

A－c rms voltage ratings in 30 volt steps： 30 to 480 volts．
Clamping range： 75 to 1360 volts peak． Max．discharge current range： 2 to 80 amps ． Polarized and non－polarized units avail－ able in all common rectifier circuit con－ nections from 1 to 6 circuit elements． Suitable for operation in ambient to \(50^{\circ} \mathrm{C}\) ． Special units can be constructed to meet specific requirements．

\section*{\(\downarrow\)}


VOLTRAP has these exclusive advantages．
－Special open construction provides free air circulation for most effective cooling and longer life．
－Use of spring washer against alloy creates wide air gap to practically eliminate possibility of shorts due to overloads．
－No aging problem when operated within its rated value．
VOLTRAP improves greatly the relia－ bility of static device circuitry，and permits the use of lower PRV silicon cells．No other surge protection needed．

Protect your static circuits with exclu－ sive Westinghouse VOLTRAP．Your local Westinghouse sales engineer has complete circuitry and pricing information．Or，write Westinghouse Electric Corporation，Gen－ eral Purpose Control Department，P．O Box 2025，Buffalo 5，New York． rou can be sure ．．．if it＇s Westinghouse．


HOW IT wonke：At not mal RMS volt－ age Voltcep power boss is insienificin As indicated in the graph，when a voltage surge occurs，VOLTRAP provides a shun path which permits a curront how of as
much as 1000 times the steady stote cur－ much as 1000 times the staady state cur－
rent while limiting the PRV to o value between 2.5 is 2.8 times the RMS voltage． Once a surge is discharged，the unit re． turns to its stondy state condition，draw ing only a small curront from the liae． The practically ideal voltase clamping characteristic of Vottrap provides offoc tive，positive protection for static devices．

Westinghouse

1.25006

To：Westinghouse Electric Corporation
General Purpose Control Dept P．O．Box 2025，Buffalo，N．Y．
\(\square\) Please send me your Technical Data 19－160 on Voltrap．
\(\square\) Please have a Westinghouse electronics engineer call for an appointment．

Name
Address
Company
City \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{NOW AVAILABLE!} The Smallest Strain Gage Pressure Transducer...


Design engineers will find the tiny, versatile Statham P318 the answer to pressure measurement problems where size and weight are critical. The P318 has been engineered for a variety of missile, airborne, wind tunnel, and industrial applications. It is an accurate, reliable, flush-diaphragm transducer featuring high frequency response. Weight? Only 0.5 grams! Size? Only 0.59" dia. x \(0.050^{\prime \prime}\) thick!

Ranges: 0-10) psi to 0-100 psi.

Transduction: Resistive, complete strain gage bridge.
A vailable for ahsolute, gage or differential pressure measurements.


Statham Instruments, Inc., 12401 W. Olympic Blurk.
Las Angeles fit. C'alif. (iRanite 8 0361 TW'X: West Las Angeles CAL 6602

\section*{IDEAS FOR DESIGN}

\section*{High-Power AND Gate Uses Discharging Capacitor}

Whenever a high current or high voltage AND function is required, the circuit shown in the figure can be used. A typical application would be the writing of information from a shift register into a core memory.

Initially, the signal source supplies sufficient current to charge capacitor \(C\) through


Presence of signal and gate pulses discharges capacitor to supply high-voltage or high-current output pulse
resistor \(\boldsymbol{R}\). The capacitor's final charge depends upon the RC time constant and must not exceed the back bias on diode \(D_{1}\).

When the gate pulse occurs, it forward biases \(D_{1}\). The capacitor then discharges through the transformer. Diode \(D_{2}\) is used to clamp the backswing. The transformer can be either step-up or step-down, depending on whether the application requires high current or voltage.

Charles Becklein, Engineer, Sanders Associates, Plainview, N. Y.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 738.

\section*{Simplified Gate Driver 745 Reduces Delay Between Outputs}

Six-diode gates are used extensively in electronic systems. Waveforms for driving these are opposite going square-waves. For proper operation it is desirable that there be a minimum delay between waveforms.


Gate driver uses one stage of common base amplification per channel.
 speeds me
urements.

\section*{versatility +economy}

\section*{Panoramic's ULTRASONIC SPECTRUM ANALYZER SB-7bZ}

200 cps to 300 kc


Up te \(25 \mu v\) sensipivity and exceptional dynomic renge with simple. comvenient oppriced instrument siandor comport, law military Installations and in industry, the S8-7bZ is ideolly suited for:
- Ultresonle molse and vibration amolysis - Communlection system enalysis - wire comice ond VLF rodio
- FM Tolemetry subcarriee channal anolysis - Goneral Feuriser enalysis

The se-7az features:
- Vorioble meep width: 0 to 200 te
* Amplifude scales: LOA loe. 20dt linear
- ond 2.5.b expandod
- Sensilitivity: 25 vatio from 100 eps to 2 ke Sonsilivity: 25 uiv for full seale doflerlow, as \(25 \mu \mathrm{v}\)
- Smoep ientor \(6.7 / \mathrm{sec}\)., symelvenized 10 power Ine. plus provisions for vorlable sweep rotes whon used with occessery -quipment
high-mersistonce Cer Tube
Write, biro. amone now for detalled spesifl. eations bultelin: and ask to bo put on our Pegular malline llst or the paaturine agelleatien rate


Formerly Panoramic Radiu Products, Inc 2 \%n \(\mathbf{3 2 4} \mathrm{S}\). Fulson Ave., Mi. Vernon, N.Y Phener Owens 9 -4600
Coblesi Ponoramic. Mount Vernon,


\section*{new, millivolt discriminators}

The new Keithley Models 710 and 711 are extremely stable, light-modulator dc amplifiers operating a thyratron tube and relay. They are identical except for method of trip level adjustment. Uses include a broad range of Go, No-Go automatic control applications such as testing of diode and capacitor leakage currents. controlling temperatures, sorting resistors in automatic bridges. They can also be used in nuclear safety installations and numerous process control functions. The discriminators are fail-safe in that failure of any component creates the alarm condition. They are immune to vibration, chatter-free, can be made locking or non-locking, and can be floated up to 500 volts above ground.

Sensitivity: 0.2 to 10 mv ; can be extended with internal resistive divider.
Max. Source Impedence: 100 K
Repeatabillty of Trip Point: Better than 200 microvolts.

Speed of Responso: 40 to 60 milliseconds with signal 50 ; larger than trip level.

Price: Model 710. \(\qquad\) \(\$ 450.00\) Model 711. . . . . . . . \(\$ 470.00\)

for details write

\section*{KEITHIT, EY
}

\section*{12415 EUCLID AVENUE} CLEVELAND B. OHIO CIRCLE 180 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 19,

Because one waveform is the inverse of the other, the usual method of generation is to use separate channels for each output, one containing an odd and the other an even number of inversions. This means that high speed design techniques must be used to reduce the delay between outputs.

A very satisfactory approach is to use one stage of common base amplification in one channel. Because of the high speed of the common base mode, very little delay results between outputs.

The switch driver shown in the figure has a delay between outputs of less than \(0.1 \mu \mathrm{sec}\). This can be reduced to a lower figure by the use of diodes to prevent saturation of the transistors and by adding speed up capacitors.

Jim Curry, Enyineer, Tasker Instruments Corp., Van Nuys, Calif.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 745.

\section*{Diodes Checked Out 737 On Single 60-Cycle Tester}

Here's a simple testing circuit we devised for the rapid processing of semiconductor diodes. With the diodes placed across the test clips, the set-up determines its polarity, or whether it is shorted or open. An alternating, rather than dc, voltage is used.


Diodes placed on test clips can be rapidly checked on this 60 -cycle, rather than dc , tester.

The circuit works as follow's:
Cathode placed to right - Relay No. 1 operates and lights L1.
Cathode placed to left - Relay No. 2 operates and lights L2.
Short circuit - Both relays and both lamps oporate
Open circuit - Neither relay or lamp operates
Raymond J. Shaughnessy, Text Engineer, Raytheon Co., Brighton, Mass.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 737.


\section*{Rockbestos}

\section*{Firezone Aerospace Wire \\ Resists Jet Engine Heat in B-52}

Rockbestos Firezone Type 101 Aerospace Wire is used for power and control circuits in the B-52 jet bomber, renowned for its high performance and dependability.

Dependability is designed into Rockbestos Aerospace wire too. In jet aircraft Rockbestos Wire resists the high temperatures around engine and afterburner sections. It is also used for high impedance circuits in guided missiles.

Standard Rockbestos Aerospace wires cover a temperature range from 257 F to \(\mathbf{7 5 0} \mathrm{F}\). Many special wires have been produced to operate at even higher temperatures. In addition to high temperature aerospace wire, Rockbestos supplies hook-up wire, coaxial cable, and ground support cable.

For complete information on Rockbestos
Aerospace Wire \& Cable write for Bulletin.

\section*{ROCKBESTOS WIRE \& CABLE CO. dIVIIION OF CERRO CORPORATION} MAIN OFFICE AND FACTORY: Nicoll and Canner Streets, New Haven, Conn. CIRCLE 181 ON READER-SERVICE CARD


\section*{SMALLEST MYLAR* CAPACITORS... PRECISION MOLDED UNIFORMITY!}


\section*{GET MICRO-MOLDED MINIATURE MYLAR CAPACITORS FROM...}
- DUPONT
\[
\begin{aligned}
& \text { PACKAGED ELECTRONICS } \\
& \text { it division of illinois tool works } \\
& \mathbf{1} \mathbf{W} \text { isi leslie avenuer alexandria. va. }
\end{aligned}
\]

\section*{[近books}

Electric Circuits and Machines
Eugene C. Lister, McGraw-Hill Book Co., 330 W. 42 St., New York 36, N. Y., 897 pp, \$5.50.

This third edition presents the fundamentals of both direct and alternating current circuits and machinery. It is designed for use in technical high schools, technical institutes, community colleges, and in survey courses for nonelectrical engineering students. Information on all major types of electrical machinery is included, and basic principles of electricity are presented with a minimum of detailed mathematical analyses. Material is also included on
circuit protectional equipment and the effective use of industrial symbols. Questions and problems are alsu provided with many numerical examples worked out in detail.

\section*{Microwave Transmission}
J. C. Slater, Dover Publications, Inc., 10 Varick St., New York 14, N. Y., 309 pp ,\$1.50.

Described here is the general theory underlying the methods used for transmitting microwaves from point to point, from the generator in which they are produced to the receiver in which they are detected. Emphasis



Air flow directed at any angle. through \(230^{\circ}\)


Motor-rotor assembly furned endfor-end gives thls pattern
OWE SOURCE
for VENTILATED RELAY RACK CABIMETS,
CONTROL CONSOLES. BLOWERS. CHASSIS,
CMASSIS-TRAK REL. ELOWERS. CHASSIS.
CMASSIS-TRAK, RELLTED COMPONENTS
CIRCIE IB3 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 19, 1961
is on the fundamental theory of electromagnetic waves rather than on practical applications. Chapter headings include: Transmission Lines, Maxwell's Equations, Plane Waveguides, and Reflection, Rectangular Waveguides, Radiation From Antennas, and Coupling of Coaxial Lines and Waveguides.

\section*{Field Theory of Guided Waves}

Robert E. Collin, McGraw-Hill Eook Co.. Inc. 330 W. 42 St., New York 36 , N. Y. \(606 \mathrm{pp}, \$ 10.00\).

An account of guided wave theory at the graduate level, this text sets forth the mathematical techniques and solutions of the more elaborate save-guiding structures, waveguide discontinuities, waveguide antennas and coupling apertures. Both the basic theory and mathematical techniques involved in this field are discussed. In addition, the book has been planned as a reference for the engineer or physicist. The treatment pre-
supposes a prior knowledge at the introductory level of field theory and propagation in waveguides. Emphasis is on the field solutions in contrast to a description of microwave structures in terms of equivalent-circuit parameters. However, an amount of microwave circuit theory is included for a logical interpretation of field solutions in terms of possible equivalent circuits. Chapter headings include: Green's Functions; Transverse Electromagnetic Waves; Transmission Lines; Propagation in Cylindrical Waveguides; Inhomogeneously Filled Waveguides; Periodic Structures; and Surface Waveguides.

\section*{Transcendental and Algebraic Numbers}
A. O. Gelfond, Dover Publications, Inc., 180 Varick St., New York 14, N. Y., \(210 \mathrm{pp}, \$ 1.75\) (paperbound).

Translated from the Russian, this volume discusses the modern theory of transcendental numbers and the fundamental methods of this theory.

 extra security into printed-circuit assemblies. For a cost you count in pennies. A Transipad mounting is rock solid. It eliminates strain on delicate leads, provides vibration-proof separation between them. It isolates the transistor case from contact with printed conductors. And, perhaps most important, it provides a built-in air space to dissipate the heat of soldering (how many transistors have you lost lately through heat shock?). Transipads come in sizes and styles to fit most transistor types; some will convert lead arrangements from in-line to pin-circle, or vice-versa; others will widen lead spacing. Samples and drawings are yours for the asking. A note or a phone call will bring them.



\section*{*LESS WEIGHT! LESS SPACE! LESS COST! MORE VERSATILE! MORE EFFICIENT!}

The unique design of IERC's UP Series Transistor Heat Dissipators give amazing cooling performance in natural and forced-air installations. Technical data covering the unusual performance benefits of Universal Power Series Transistor Heat Dissipators is available now -write TODAY!

International Electronic Research Corporation 135 West Magnolia Boulevard, Burbank, California
Fereign Manufacturers: Europelec, Paris, France Garrard Mig. \& Eng Co., Ltd., Swindop, England

\section*{DESIGN DECISIONS}

Featuring the clever and unusual
in packaging, appearance design, and circuitry in electronic equipment.

\section*{Steel Ribbon Converts Linear to Angular Motion}

A steel ribbon helps convert linear to angular motion in a single-axis, flightsimulation table. At its lower end, the ribbon is secured to a flat tangent plate. At its upper end, it is secured to a rocker that drives the table.

A similar mechanism appears at the lower end of the voice-coil-driven rod that moves the tangent plate. The lower mechanism has a reverse arrangement, however. Here, the upper end of the ribbon is secured to the tangent plate while the lower end is secured


Steel ribbon, secured to flat tangent plate and curved rocker, converts linear-to-angular motion with virtually no backlash. Ribbon has been emphasized in photograph for clarity.
 FOR USE IN PRODUCTION OF SEMI-CONDUCTOR METALS...
Where you produce such metals as germanium and silicon, VITREOSIL is ideal for use. For special requirements or special problems. write us your requirements. Now available Quartz to metal seals. See our ad in Chemical Engineering. Electronic Engineers Master \& Electronic Designers' Catalogues.

\section*{SPECTROSIL}

FOR HYPER-PURITY IN SEMI-CONDUCTOR WORK Unique Transmission characteristics PURITY - purest form of fused silica
TRANSPARENCY - unique optical properties HOMOGENEITY - completely homogeneous and 'ree from granularity
availability - Heck material for lenses, prisms, etc; red, filer, weol; hollow ware as tubing, crucibles. and special apparatus.
Write for complete illustresed estalog.


CIRCLE 187 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 19, 1961

\section*{POLARIS CONNECTORS}

\section*{LIONEL}

Series WM-20
Extra Reliability With-
- Rugged Die-Cast Housings
- Diallyl Phthalate Moldings
- Beryllium Copper Contacts For Extended
Insertion/Withdrawal Life


Five sizes, 34 to 104 contact range - Also available for \# 16 wire terminations - Meet applicable MIL specs
- Materials \& specifications modified to meet your special needs-
- Write for Series WM-20

Dimensional Data Sheets


Lionel Electronic Laboratories
(Formarly Anton Eloctronic Laborasorios)

> 1226 Flushing Ave. Brooklyn 37, N. Y. circle ies on reader-service card
to the rocker. This opposing arrangement maintains constant tension on both the upper and lower ribbons.

The unusually simple linear-to-angularmotion converter, designed by David S. York, vice president and chief mechanical engineer of MicroGee Products, Inc., 6319 Slauson Ave., Culver City, Calif., provides several advantages. It offers very little noise, virtually no backlash, and a very high order of stability and linearity.

These factors are extremely important in testing systems for small perturbation stability. The usual mechanisms for converting linear-to-angular motion, like rack-andpinion and other backlash-type devices, give a "staircase effect" in the input-output characteristics. This effect can be disastrous in measurements involving small displacements.

\section*{Liquid Lock Makes Loose Fit Press Fit}

A drop of liquid holds an aluminum collar securely in place in a subminiature trimmer potentiometer. The collar helps provide a hermetic seal for the resistance element in the WeeTrim potentiometer, model 500 , manufactured by Handley, Inc. of 12960 Panama St. in Los Angeles.

Handley could not use a press fit because the pressure required might distort the highresolution, high-stability resistance winding. Instead, Handley used Loctite sealant, a liquid manufactured by American Sealants Co. of Hartford, Conn. This liquid hardens into a tough plastic bond when it is confined between close-fitting metal parts.

The Loctite is available in different grades offering shear strengths ranging from as low as 75 psi to as high as \(1,500 \mathrm{psi}\).


Subminiature trimming pot uses liquid sealant to lock aluminum collar in place without requiring a force fits.


THE MOST RELIABLE SOLUTION TO MANY ELECTRONIC PROBLEMS CAN BE FOUND IN THE PALM OF YOUR HAND WHEN YOU USE...

\section*{VECO THERMSTORS AND VARISTORS}

What better way to prove to yourself the reliability of VECO Thermistors and Varistors than by testing them under the actual environmental conditions in which they are to be used? VECO Thermistor and Varistor Circuit Design Kits give you the opportunity of doing this to your complete satisfaction. In kit form they cost so much less - and each kit presents a full range of resistance values of the various bead. disc, rod and washer type Thermistors or a wide assortment of standard Varistors. Here's your opportunity to put stock Thermistors and Varistors through your toughest quality control tests. Once you've tried them you'll agree -VECO is the leader in reliability.
\begin{tabular}{|c|c|c|}
\hline KD 25 & Thermister Disc Kit-13 VECO Discs & \\
\hline KP 50 & Thermistor Glass Probe Kit-6 VECO Probes & \\
\hline KR 75 & Thermistor Rod Kit-8 VECO Rods & \\
\hline KTB1 & Thermistor Bead Kit-8 VECO Beads & \\
\hline KW125 & Thermistor Washer Kit-12 VECO Washers & \\
\hline KV100 & Varistor Kit-8 VECO Varistors (assorted types) & \\
\hline KV1001 & Varistor Kit-s Veco varistor Discs & \\
\hline
\end{tabular} WV1001 Varistor Kit-s VECO Varistor Discs


FREE:
To learn more about VECO Circuit Design Kits write for folder SE102
108 SPRIMGFIELD ROAD, UNION, N. J. MUrdock 8.7150


Wyle Model C-106 Miniature Chamber
Offering You..
CLOSER TEMPERATURE CONTROL COOLER OUTSIDE SKIN - BETTER OPERAT. ING ECONOMY - GREATER FLEXIBILITY - FASTER HEATING \& COOLING RATES

Revolutionary NEW "Sensor" The new Wyle liquid \(\mathrm{CO}_{2}\)-cooled Model C. 106 Miniature Temperature Chamber is the first to use a revolutionary new type electronic resistance bulb controller that "anticipates" temperature changes and thus effects minimum variation over the full range. Extra thick layers of new, improved insulation retard flow of heat to outside skin ... skin stays cooler. Interchangeable plug-in doors, with various provisions for specimen mounting, instrumentation, specimen operation, and observation, assure minimum downtime. All features lead to greater economy of operation.

RACK...STACK...OR SIDE-BY-SIDE MOUNTING


Fits standard \(19^{\prime \prime}\) racks . . . Flush top a Dottom . . . Flush sides
640 Cu . In. Capacity \(-100^{\circ} \mathrm{F}\) to \(+500^{\circ} \mathrm{F}\) Range \(08^{\prime \prime} \times 8^{\prime \prime \prime} \times 10^{\prime \prime \prime}\) Test Volume Dimensions • Weight . . . Approx. 55 Lbs. © Heating \& Cooling Rates . . . Up to \(100^{\circ} \mathrm{F}\) per Minute
Write TODAY for Full Information! HYDE PARK, NEW YORK. AND AT NORCO, CALIF. CIRCLE 190 ON READER-SERVICE CARD

\section*{DESIGN DECISIONS}

\section*{Hi-Fi Die Obviates Milling In St-Erie-o Cartridge Element}

A tiny ceramic element for a high-fidelity phonograph cartridge posed some unusual problems for Erie Technical Ceramics of State College, Pa. The engineers at Erie needed a special extrusion die to make a tight tolerance, X-shaped element for their "St-Erie-o" reproducer cartridge. Unfortunately, the "obvious" methods for making the die were difficult and costly.
The arms of the asymmetrical, X -shaped ceramic element were to be only 31 mils long and 15.5 mils wide and the tolerances were to be held to within \(1 / 2 \mathrm{mil}\). The lengths were to be equal within \(1 / 2 \mathrm{mil}\) while the 7.5 -mil radii between the arms of the X were to be held to within \(1,2 \mathrm{mil}\).

A first glance at the problem suggested the use of an electro-erosion milling process for fabricating the die. But a second look indicated that this would require lapping to the final tolerances and lapping would have been impractical in such a tiny orifice. Furthermore, because of the large depth of the hole compared with its width vibrations in the electrode would have made it extremely difficult to hold the proper dimensions.

Erie's engineers found the solution when they turned to William C. Bobbitt, manager of the Punch \& Die Div. of F. J. Stokes Corp. in Philadelphia. He designed a foursegment die, with the segments clamped to-


Exil-face of four-piece, hi-fi extrusion die. Four segments in center are so perfectly mated that mating lines are undetectable.


\section*{TOROIDS}

\section*{We specialize in heavy wire} TOROIDAL COMPONENTSmagamps, transformers, etc.

Equipped with the largest selection of winding machines, UNIVERSAL offers coils from \(1 / 1 s^{\prime \prime}\) Fin. I.D. up to \(30^{\prime \prime}\) O.D.

WIRE RANGE EROM \#2 —\#SO.
We also offer "Pof" Windings and Encapsulated Construction to MIL T-27A.


171ED Colt Streal Irvingron 11, M. d ESsox 4.9804 The mest COMPLETE lime of TOROIDAL equipment in the wopld.

CIRCLE 191 ON READER-SERVICE CARD

are YOUR Problem
We Can...
- act as your precision gear department
- keep your production line going smoothly without shut-downs
- reduce rejects, hand adjustments or other supervisory aftention
- provide you with precise gearing for any purpose whatever
- and do it with a strict adherence to safe engineering economy
specialists in the fine pitch bield Use our more than a decade of experience in Gear making, in any material, for America's most particular users of precision or commercial gears. Send blueprints or specs for prompt estimates to

\section*{P \\ PROCESS 5 5A B CO., INC. 3305 W. Newport - Chicage 18, Illinois \\ CIRCLE 192 ON READER-SERVICE CARD} ELECTRONIC DESIGN • July 19, 1961

\section*{Suppress lead wire errors with REC's new \\  \\ TRIPLE BRIDGE UNIT}

Check these advantages in resistance temperature measurement applications:
- Suppresses large lead resistance changes (up to 5 ohms)
- Suppresses variable lead resistances at null and when unbalanced
- Suppresses unequal lead resistances
- Trims out calibration differences
- Multiple temperature ranges
- Standardized 10 mv . DC output
- Full line of auxiliary equipment

This precision-made, plug-in unit permits convenient change of full-scale temperature and corrects known calibration errors of sensor. Basic 10 -channel unit provides 10 temperature ranges for each of 10 sensors.


For more informetion write for Bullotin \(\mathbf{1 6 0 1 2}\)
ROSEMOUNT
ENGINEERING
COMPANY
4900 West 78th Sireet, Minneapolis 24, Minn
I TEMPERATURE AND PRESSURE MEASUREMENTS
CIRCLE 193 ON READER-SERVICE CARD

SAVE TIME SAVE DOLLARS SOLVE PROBLEMS Write today for
 - Wide range of varia special applications
HELP YOURSELF
circle io4 on reader-service card ELECTRONIC DESIGN • July 19, 1961
gether in a circular holder. Matching pairs of the segments were ground simultaneously while the profiles were monitored on a ground-glass screen under a 40X magnification.

Matching the segments to within \(1 / 2\) mil, one of the tightest tolerances encountered in die work, according to Bobbitt, was the really difficult part of the job. But the resulting hi-fi die made fabrication of the ceramic cartridge element a simple matter for Erie.

\section*{Noisy Multivibrator Helps Locate Distress Light}

Components and circuits which generate radio-frequency-interference should normally be designed out of electronic equipment. But in one case, an RFI-producing circuit was deliberately made even noisier.

A high-intensity distress light, manufac tured by ACR Electronics Corp. of 551 W. \(2 \cdot 2\) nd St., New York, uses a modified multivibrator in a transistorized dc-to-dc converter. When the unit was first designed and found to be noisy, the first thought was, of course, to eliminate the noise. But Chief Enyineer Morton Sunshine suggested, "Let's make it noisier and let's use the noise."

In the production model of the distress light, the noise is passed through filters which pass the distress frequency, -13 mc . This distress signal can be picked up as far as 25 to 30 miles away. Rescue craft can follow this signal with radio direction finders to locate a person lost at sea.

The circuitry in the distress light is arranged so the discharge of a capacitor into a Zenon light acts as a pinger in the water. The pinging "noise" can be received as far as 15 miles away by standard sonar equipment.
Of course the basic function of the device is generating high-intensity light. This function is implemented with a "lens" made of a molded, clear epoxy resin which completely encapsulates the Zenon lamp. The "reflector" behind the lamp is a small strip of aluminized Mylar tape with a checkboard pattern. This low-cost material is similar to that used as automobile bumper strips.

The \(1-\mathrm{lb}\) distress light can be seen 50 miles away on a clear night. Its prime function is admirably supplemented by the use of both electrical and acoustical noise.

\section*{EXPERT Help \\ in}

Laminated Plastics From Specialists


\section*{An Example of}

Synthane You-shaped Versatility
Do you have a materials problem? Perhaps laminated plastics is the answer: Why not discuss it with our field representative in your territory? He has behind him the entire Synthane organization with over 32 years of experience in the manufacture and fabrication of laminated plastics. Our engineers, technicians and field representatives are specialists in this field, and over two-thirds of our people have over 10 years' experience with Synthane. The solution to your materials problem can probably be found at Synthane. You-shaped Vcrsulitity makes Synthane a Betler Buy in Laminates
\[
\begin{aligned}
& \text { Synthane Co } \\
& \text { Gentlemen: }
\end{aligned}
\]
Please send me information relating to Synthane as a source
for laminated plastics materials and parts.

Name
Address


\section*{Miniature AGASTAT time/delay/relay offers maximum reliability in minimum space}

For control systems where reliability and size are important design considerations, specily the Miniature AGASTAT time/delay/relay.

Only \(1 \frac{1}{2}\) in. square, less than 5 in . high, and weighs as little as 15 oz . Four adjustable models provide delays from .03 sec . to 3 minutes - on pull-in or drop-out. Electrically-operated, pneumatically timed for instant recycling and freedom from voltage-variation drift. Choice of ac and dc operating voltages, with solder lug, octal plug or AN connector terminals.

Since 1981, AGASTAT time/delay/relays have been specified for reliability and accuracy in almost every industry with electrical control requirements. Wouldn't this be a good time to learn what this proven performance can mean in your timing circuit?

We'll gladly send complete details. Just write Dept. M2-47

\section*{}

\section*{Objects to Superfluous Styling}

Dear Sir:
Your editorial, "Good Styling a Critical Factor", brings to attention a serious problem confronting design engineers today. Most electronic equipment is designed to fulfill some definite objective, toward which all design effort should be directed. In addition to the technical features inside the unit, various other factors such as layout, external appearance, color, etc., apparently may have subtle psychological as well as practical advantages in meeting this objective, and must be considered as an important part of the over-all design.

On the other hand, there are certain aspects to styling which can only be regarded as unrelated and superfluous. Their most obvious purpose is to increase sales appeal by purporting to demonstrate a pride in workmanship and design by the manufacturer over and above the "standard" (i.e. his competitors). Such "frills" have become increasingly evident in recent years, particularly in consumer products (automobiles for example). Not only are they sometimes crude, but worse still, they are often actually detrimental to the primary objective of the equipment. They also increase the cost.

Determining the dividing line between essential styling and superfluity is a job which calls for the highest degree of practical engineering judgment. It is not a job for artists, as your editorial would imply. Nor can it be judged very intelligently by walking past two miles of exhibits noting such trivialities as silk screen, "ordinary" engravings, etc. Before passing judgment on the styling of any instrument, I would suggest that a person first use the instrument.

The problem confronting design engineers is that currently popular styling frills are often expected (or even demanded) by the customer which are actually in conflict with the primary objective of the equipment, as


HERE'S THE FIRST SMALL COMPLETE DATA-ACQUISITION SYSTEM men new loonst Genisco APD Data Acquisition system is a complete and compact solid-state packaged system designed to meet a wide range of instrumentation requirements. You can use it to read out thermocouples, resistance thermometers, strain-gage transducers or any other DC voltage low-impedance sensors. Modular plug-in board design allows great flexibilityone chassis can provide a complete 20 -channel system.
Data is sampled at 20 samples per second; repeatability is \(0.1 \%\) of full scale. Output can be shown of recorded directly in engineering units with sign indication and channel identification. Readout can be converted to punch tape, magnetic tape, typewriter or other storage medium.
The new Genisco APD requires low power and is ideal for portable, laboratory, or field use. Call or write today for prices and complete details.
- Analog.to. Pulse Duration
patent applied for


2233 Rederal Ave., Les Angolos 04, Callfernias
CIRCLE 197 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 19, 1961

he away from carrier irequancy, 9.0 me
> - Migh attenuation - Narrow bandwidth - Low insertion loss

Ortho Crystal now offers a complete line of quality crystal filters with papticular applications in doppler radar. receiver If, comb filter sets or where ever filters of high stability factors and narrow bandwidths are required. Compact, ruggedized packaging will meet all MIL specs. Ortho will custom design to your exacting requirements. Write for complete catalog.

\section*{Typical Filter Characteristics}

Carrier Frequency: \(\mathbf{3 . 0} \mathbf{~ m c}\)
3 db Bandwidth: +300 cps to 3 kc 60 db Attenuation: - \(300 \mathrm{cps}, 6 \mathrm{kc}\) Min. Attenuation: 60 db Insertion Loss: 5 db max. Passband Ripple: \(\pm 1 / 4 \mathrm{db}\) Input \& Output Impedance: 3000 ohms Operating Temp. Range:
\(-40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)

\section*{OC ortho crystal Inc.}
- division of ORTHO industaies inc. [0]

7 PATERSON ST.- PATEASON 1, M. J.- MU 4-5853
CIRCLE 198 ON READER-SEREICE CARD
ELECTRONIC DESIGN • July
well as adding to the cost. This is particularly evident where specifications as well as expenditures are controlled by nontechnical personnel.

Stewart Coffin
Dynamic Controls Co. Cambridge, Mass.

\section*{Need for "Impedance-Matching" Electronic Device Stressed}

Having just read your editorial "Good Styling a Critical Factor" I should like to extend my thanks for your most complimentary remarks concerning our new packaging system. Much of the credit for its development belongs to our designers, Tom Lauhon, Allen Inhelder, Don Pahl, Andi Are, Dale Gruye, Herb Beaven, and Ken Dinwiddie; and to Dick Payne and Ron Perkocha for the sometimes thankless job of drafting.
Since we regard Electronic Design as one of our most important sources of information, it is especially encouraging to note the theme expressed in your editorial. We are in whole-hearted agreement. We have found that the value of an electronic device-just as of any other product-is determined on the basis of many/ attributes. Of course, most importantly, does it work at all? But of growing significance, as the complexity and sophistication of our industry increases, is the effectiveness of the coupling between the device and its human user. This coupling depends, to a great extent, upon a visual clarity of function and a professional appearance, which serve not only to simplify the operation of the device, but to inspire the confidence of the operator. In this area lie the real challenges for the electronic industrial de-signer-and the real opportunities for making worthwhile contributions.

> Carl J. Clement, Jr.
> Manager, Industrial Design Hewlett-Packard Co.
> Palo Alto, Calif.

\section*{Accuracy Is Our Policy...}

In the "Letter to the Editor" by Sam Ringel May 10, bond strength is printed as 320 psi when actually it is ten times as great3,200 psi.

\section*{MITE포운}

\section*{MINIATURE MOLDED OXIDE RESISTORS}


RELIABILITY - Failure rate is better than one per ten million
hours
STABILITY - Under full load, the stability is better than \(2^{\circ}\) 。
after 10,000 hours. Subsequent rate of change will not exceed \(0.1 \%\) per thousand hours.
TEMP. COEF. - Will not exceed \(\pm 0.05 \%\) per \({ }^{\circ} \mathrm{C}\).
NOISE - Less than 0.5 uV V applied
TOLERANCE - All MIL \(-R-11 C\) values of \(\pm 5 \%\).
SIZE - Same as the Mil Type RC20
SPECIFICATION - Exceeds materially Mil - R 11 C .
भRICE as compelling as the performance and related to \(\$ \%\)
carbon composition resistors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type & Rating " \(70^{\circ} \mathrm{C}\) Ambient & \[
\begin{gathered}
\text { Mil } \\
\text { Type }
\end{gathered}
\] & \[
\begin{gathered}
\text { Rated } \\
\text { Vollage }
\end{gathered}
\] & Minimum Resistance & Maximum Resistance & Dialetric Strengin \\
\hline F20 & 1/2 Watt & RC20 & 350 V & 10 Onms & 50 ¢ิ N & 1000 Volts \\
\hline
\end{tabular}


> For fur ther information write for data sheef W 101 \& 3355 EOGECLIFFE TERRACE. CLEVELAND 11. OHIO Factories in Canada and England

\section*{where}

\section*{have the}

\section*{simple relays}

\section*{gone?}


Many, of course, have disappeared along with the relatively simple jobs they were asked to perform. (A good telegraph relay * or pulse repeater today, for example, should not only be small but able to transfer its contacts on a milliwatt or so about 500 times a second for half a billion operations - and then be repairable, adjustable and lovable besides.) But there are still plenty of naive, uncomplicated loads around that ask only to be switched on and off, at reasonable intervals, by a device that doesn't have so many parts and fancy thingamajigs that it may become temperamental and refuse to work without being coaxed.

For such applications we are happy to say we have a paragon of ingeniously simple, fool-proof relay design. It won't make the same cunfidence-inspiring noise as the classic above and it's not for telegraphy, but you can see through its enclosure and watch its contacts surely open and close. The designer starled with the familiar enclosure and octal plug. in base and then developed the relay accordingly (with UL requirements in mind); he didn't
*Plig (octal, Ibat is) for Sigma Serles 72 relay

just take an existing relay and tack on a new base and enclosure. As a result, the parts make the best use of the volume ( \(1^{5} /\) /r \(^{\prime \prime}\) square \(\times 2^{1 / 16^{\prime \prime}}\) high) and are big, simple, rugged and few in number. The base is specifically designed to carry the 10 amp . loads the relay will switch.

The relay is designated "Series 46 " and intended for general purpose, heavy - duty DPDT switching on AC or DC inputs. Rated DC loads are 5 amps at 28 volts, 1 amp. at 120 volts; AC, 1200 voltamperes per pole with 240 -volt and 10 amp. maximums. Life ranges from 10 million operations with \(1 \cdot\) amp. loads to half a million with \(10-\mathrm{amp}\). loads. The relay can be as sensitive as 200 milliwatts DC, or \(0.2 \mathrm{v}-\mathrm{a} \mathrm{AC}\).

We've looked at what else is available for the same modest price and the " 46 " specs give us considerable hope. If your problem has been the right specs but the wrong price, or vice-versa, perhaps you'd like the 46 AC and DC bulletins. In the meantime, always remember: You can be sure if it's Sigma, it's simple.
SIGMA

\section*{LETTERS \\ MRC-66 Not Wideband}

Dear Sir:
Your article on wideband communications, April 26, 1961, p 4, may be somewhat misleading to your readers in referring to the AN / MRC-66 system as having been part of the groundwork for the current wideband investigations. To clarify the point, the MRC-66 "Communication Central" is a nar-row-band ssb system employing 4,750 privately assigned channels in a 33 -mc spectrum beginning at 132 mc .

Arthur T. Klingberg Motorola, Inc.
Chicago, III.

\section*{Let's Talk the Same Language}

Dear Sir:
A recent advertisement in one of the electronics magazines demanded that vendors adhere to specs, delivery, and other essentials. Illustrated with a photo of two menone an engineer, the other a purchasing agent-the ad was headed, "Don't Play Games With These Boys."

The time has come to expand on this theme. We in the electronics industry must stop "playing games." One of the most costly of the games many of us have been playing is that of over-specifying-or of specifying without understanding.

We at Mid-Eastern Electronics had two dramatic examples of such specifying recently. Two of our representatives reported that some important customers wanted us to convert our entire line of transistorized power supplies to fully programable units. This would have required new design, more inventory, and substantially higher costs.

Rather than jump into a large conversion program blind-folded, Mid-Eastern's president, William W. Hartz, visited the engineers who had insisted on "programable" supplies.

In the first case, the engineer required tamper-proof power supplies. It was essential that the voltage be adjustable only at the rear of the power-supply units. A simple screwdriver adjustment with a locking nut and a modified panel solved this problem.

In the second case, the engineer needed only a means of remotely controlling the output voltage-a far cry from true remote programing. An inexpensive pushbuttoncontrolled, gear-motor drive, built into the power supplies, solved this problem.


Completely Wired - Replaceable Lamps
Por eritical milltary reguiramonts;
exteeds MIL-P-7788A.
uniform illumination - maxımum contrast readability at any angle e visual comfort and efficiency - high impact resistance - wiring meets MIL-E-5400 environmental specs.
FOR AIRCRAFT - SMIPLOARD
- GROUND SUPPORT EOUIPMENT

Innovators and leaders in this specialized field. BODNAR is noted for developing new panels at minimum cost . . . unique shapes, with maximum visibility, resistance to severe mechanical, thermal, chemical and environmental stresses.
Write today for details and spocification Bullefins on Illuminated Plostic Control Panels, Dials, Knob Assemblies . . . inquiries invited on special requirements.

\section*{BODNAR PRODUCTS CORP.}

238 Huguenat Street
Now Rocholie 5, N. Y.
Phone: NEw Rochelle 6-4664

\section*{TRANSISTORIZED DIGITAL SYSTEMS}

Digital Systems-The NAVCOR systems approach is one encom. passing modular units of standard NAVCOR plug-in modules. This permits future change or expansion of your requirements -minimizes the possibility of obsolescence. Every NAVCOR system includes indicators on all memory elements for easy checkout and maintenance.

NAVCOR development and production facilities can expedite your digital system programoffering a unique combination of technical experience and production economy.


Creative engineering by NAV. COR has successfully developed the 100 Series transistorized modules for digital test equip. ment and prototype devalop. ment. and the newer 300 Series card modulas for constructing complete data handling systems. Delivered complete and attrac. tively packeged, these econom. ical systems modules are ready to operate with a minimum of inter-unit wiring.
NAVCOR can engineer and manfecture complete systoms to your requirements. Years of oxperience, devoted exclusively to semiconductor digital systems design, have produced hundreds of thousands of operating logic stages.

\section*{FREE}

Send for complete data and specifications on the 300 Series systems blocks.

NAVIGATION COMPUTER CORP. VALIEY FORGE INDUSTRIAL PARK NORRISTOWN, PA. Glendale 2-6531

In both these cases there was but a small additional cost per unit. The cost of the "fully programable units," originally specified, would have been at least double the standard prices, since \(100-\mathrm{v}, 10-\mathrm{amp}\), and \(18-\mathrm{v}, 35-\mathrm{amp}\) units were needed. Space required would also have been doubled. Delivery would have been two months for programable units instead of two weeks for the slightly-modified units.

It would be to everybody's advantage if we thought twice before talking, and if we talked twice before acting. We're not playing games! Language is a tool for exchanging ideas and facts and for clarifying thought. When it serves only to confuse, to impress, or to please the speaker with the sound of his own voice, valuable time and effort are going up in hot air.

Whether we're buying or selling-let us know what we're talking about. The growing number of new terms is increasing the possibility of misunderstanding. This makes it imperative that both user and supplier take time to work together and understand each other.

> Gunther A. Bielefeld
> Mid-Eastern Electronics, Inc. Springfield, N. J.

\section*{The Puff's Have It}

Referring to his letter in your 7 June issue, I am confident that it will please Mr. D. C. Friedmann to know that his idea is so good that, in fact, one of his suggested abbreviations, "puff," for picofarad was adopted by British engineers about a generation ago. Let us hope that the more elderly of these engineers will not now, at this late stage, be deprived of their puff by Americans who, as Madison Avenue now has it, are "on their way up."
F. D. Harris

British Radio Electronics Ltd.
Washington, D. C.
Referring to the correspondence from Mr. Friedman on a nickname for picofarads, I'd like to argue for "puff" as being it, because the picofarad has been in use in the United Kingdom for quite a while and this is their slang for it. We so often find ourselves separated from our English cousins in the field of electronic terminology, so let's not start still another separation.
R. D. Cortright Union Thermoelectric

Chicago, Ill.

CIRCLE 202 ON READER-SERVICE CARD


Save time, save space... TEST IN PLACE with new printed circuit test jacks from Raytheon

Test compact, closely mounted circuits quickly with new Raytheon miniature right-angle printed circuit test jacks for \(.080^{\prime \prime}\) test prods. No need to remove in-the-way circuit boards or use test prod adapters. Molded nylon construction features exclusive design berylliumcopper damage-proof spring pin contact. Double gold plating over silver plate assures reliable electri-
cal contact and fast dip-soldering of terminals. All materials meet military specifications. Available in eight MS16108 colors, plus gray and violet.

For more information on the new right-angle printed circuit test jack and other Raytheon styles please write: Raytheon Company, Industrial Components Division, 55 Chapel Street, Newton 58, Mass.


> For small order or prototype requirements see your locul franchised Ruytheon distributor


\title{
The Art of Tacking
}

\author{
"Tacking" a breadboard together with a soldering iron has much in common with tacking a sailing craft against the wind. Uncommon skill is needed to do both well. Here a seasoned "tacker" sets forth his Six Johnson Lauss of Tacking.
}

\section*{R. W. Johnson \\ Consulting Engineer \\ R. W. Johnson Co.}

ALL PROFESSIONS have artistic elements. The skilled trial attorney masters the sly innuendo and the subtle suggestion to the jury, the surgeon deftly knots the stitch, the dentist undercuts the filling, and the most adroit electronics engineer knows the art of tacking.

Although many seek to proceed from notebook to production, this species is all but extinct, lost in the company failure statistics. We are thus inflicted with the breadboard, the artistic masterpiece of electronics. The breadboard stands as the electronic engineers' sole remaining bastion against regimented conformity in these days of plug-in modules; his sole opportunity for exercise of the creative, artistic urge; his single link to a happier and more relaxed era.

As a timely and highly significant contribution to the art, this article presents Johnson's Six Laws of Tacking.

LAW ONE
Never twist. Although an engineer might naively (or even smugly) believe that some components at least have been calculated correctly and will not change, such belief is foolhardy. This can be amply demonstrated in any breadboard by simply twisting the wires of any two or more components tightly together and soldering. It is a fundamental law that whenever this is done, at least one of these components will change during the inventing process. To avoid this in tacking, never twist.

\section*{LAW TWO}

Never cut. The economy minded prefer to use components over and over again. Using
parts from the Private Collection also avoids renewing old battles with the purchasing department, stock room clerks, inspectors, value analysts and others. The extent to which re-use is possible depends on two factors: the length of the lead and how much overheating has occurred. The two factors are not independent; for the shorter the lead, the more heat from soldering.
Again, simple demonstration can prove another fundamental truth: cut the lead off any component (diode, resistor, capacitor, transistor, or what have you) and leave just enough to solder it into the circuit. One will see that inevitably this component is precisely the one that must be changed, thereby leaving a useless component with leads too short to use the next time. So, never cut.

\section*{LAW THREE}

Avoid parallelism. What stereo does for good music, what solid state does for reliability, added dimensions can do for a breadboard. Three-I) circuits are the ultimate in electronic artistry; one can always follow the leads, make contact with probes, test leads and iron, and there is less mutual magnetic and capacitive coupling when wires are skew rather than parallel. The best breadboard circuits expand outward in geometrically spherical fashion akin to a galactic nova. Thus, no two components or wires should ever be parallel.

\section*{LAW FOUR}

Always use old solder. Bright, shiny, new \(60 / 40\) solder is attractively packaged these days in handy dispensers, and the temptation is strong to use it. Unfortunately the dispenser can never be located among the pile of used components, tools and test leads on the bench. Anyhow, old used solder is far superior for tacking. In fact, the more crys-
talline and pithy, the better. Like vintage wines, solder improves with age for tacking purposes.
One therefore develops the habit of picking up bits of old solder from the bench with the tip of one's iron and using this for tacking. This helps keep the bench clean (at the expense of an occasional burn), saves money on solder, and avoids the splatter of resin. But most important, the joint barely stays together. So for good tacking, always use old solder.

LAW FIVE
Never tack more than two wires. In the art of tacking one soon learns the difficulty of tacking more than two wires together. One genuine artist has even mastered the finesse of holding " N " wires in contact by skilled use of an alligator clip while he places a tiny drop of solder (old solder; remember Law Four) at precisely the right spot.
But not all engineers can achieve such creative heights; so when more than two wires are to be tacked, there is a problem. When the engineer goes to tack the third wire, the others ungratefully fall apart. Without violating Law One (never twist), the recourse is to tack each succeeding component further up the lead of its neighbor. This is of assistance in satisfying Law Three as well, as there will be a more rapid geometric expansion of the circuit. So for all but the purist: Never tack more than two wires at a time.

\section*{LAW SIX}

Stop at 14 changes! No discussion of this subject is complete without a reference to etched circuits. It could be argued that by the time one has reached this stage, he should be over the breadboard phase. Statistics show, however, that 78.2 per cent of all electronic

\section*{Advancement Your Goal? Use CONFIDENTIAL Action Form}

Electronic Design's Confidential Co reer Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fost. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.

Electronic Design will act as your secretary, type neat duplicates of your application and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:
- All forms are delivered unopened to one reliable specialist at Electronic Design.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled,
- All original applications are placed in confidential files at Electronic Design, and after a reasonable lapse of time, they are destroyed.

If you are seeking a new job, act now!

\section*{ELECTRONIC DESIGN \\ CAREER INQUIRY SERVICE}

USE BEFORE AUG. 30, 1961

\section*{(15)}

After completing, mail career form to Electronic Design, 850 Third Avenue. New York N. Y. Our Reader Service Department will forward copies to the companies you select below.
( Please print with a soft pencil or type.)
\(\qquad\)
Home Address _ City \(\qquad\)
Zone \(\qquad\) State \(\qquad\)
Date of Birth \(\qquad\) Place of Birth \(\qquad\) Citizenship

Position Desired \(\qquad\)
\begin{tabular}{l|l|l|l|l} 
College & Dates & \multicolumn{1}{c}{ Educational History } \\
Degree
\end{tabular} Major \begin{tabular}{l} 
Honors \\
\hline \\
\\
\\
\end{tabular}

Recent Special Training
\(\qquad\)


Outstanding Engineering and Administrative Experience

Professional Societies \(\qquad\)
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 900 & 901 & 902 & 903 & 54 & 905 & \$06 & 907 & 908 & 909 & 910 & 911 & 912 & 913 & 914 & 915 & 916 & 917 & 918 & 919 & 920 & 921 & 922 & 923 \\
\hline 925 & 926 & 927 & 928 & 424, & 930 & 431 & 932 & 933 & 934 & 935 & 93\% & 937 & 9.88 & 939 & 940 & 941 & 942 & 94 & 94 & 945 & 916 & & \\
\hline
\end{tabular}

If you were a surgeon instead of an engineer...

. . . you'd want to work at one of the leading hospitals in the nation-where your associates would represent the finest medical talents available. In such a situation you could grow more in a year than in a lifetime spent in an ordinary clinic.
The same thing is true of every profession. Your own stature as an engineer is determined to a great extent by the calibre of your associates. At Motorola you will be working for and with some of the most respected engineers and scientists in the electronics field-Motorola is an "engineer's company." And, here at Motorola the horizon is wide and the celling unlimited-you can go as far-as fast-as your capabilities permit. You'll be working for a secure, diversified company-not wholly dependent on one single market.
You owe it to yourself and your family to investigate the opportunities at Motorola. Dozens of fields of interest are open-just a few of which are listed below. Write today for the full story.
We'll send you a complete description of "Your Life at Motorola"-in Chicago; Phoenix: Riverside, California; Culver City, California; Minneapolis, Minnesota. Naturally your request will be kept in complete confidence.

Radar transmitters and receivers
- Redar circuil design

Eloctronic countermeasure systems
- Military communications equipment design
- Pulse circuit desiga
- If strip design
- Dovice using hylstrom, travaling wave tube
and beckwerd wave oscillator
Display and storage devices
2-WAY RADIO COMMUNICATIONS
- VHF \(\frac{8}{1}\) UHF receiver
- Tranamitter desizn and development
- Power supply
- Systems engineerine
- Antenna design
- Selective signaling
- Transistor applications

Cryatal engineerine
- Sales angineering
- Design of VHF \& UHF FM communicasions in portable or subminiature developman Mieromave field engineers
- Transistor switching circuit design

Logic circuit design
T.V. circuit desien engineering
- Mome radio design
- New product design
- Auto radio design
- Mechanical engineering
- Semi-conductor device development
- Semi-conductor application work

MR. W. H. HAUSMANN
Engineering Personnel Mgr. Dept. B 4545 Augusta Blvd., Chicago 51, Ill.

All quallfied appilicants will recelve onnsideration for employment athout color, or national origin.

\section*{DESIGNING YOUR FUTURE}
engineering is done on the production line and after delivery. In these cases the engineer must cope with a temporary regression to what might be called the etched-circuit breadboard. Here one has the annoying problem of how to tack on various components as fixes for the defect without heating the board so much as to loosen the glue.

Painstaking research by the author has disclosed that with the soldering iron operating at precisely 93 v , it is possible to tack a component on an etched board and remove it a total of 14 times, provided that Law Three (use old solder) has been obeyed. Beyond this cut-off point, one of two things is most apt to happen: the component already on the board becomes overheated and changes its value, correcting the defect; or the copper separates from the board, so one can blame the defect on the etched-circuit board manufacturer. It's a good idea to remember: Make fewer than 14 changes in each component after release for production.

So much for the laws of tacking.
Now a corollary to the art of tacking is the art of untacking. If what goes up must come down, what is tacked must be untacked. One untacks to change one of the added components. And, of course, one untacks when he is finally satisfied with the design-to save the components for his Private Collection, so the same design mistakes can be corrected the next time.

Fortunately, if Johnson's Six Laws have been observed, untacking becomes a relatively simple matter. One simply touches the iron to the joints, and the breadboard fies apart like a mainspring. In fact, this is the test of a really good breadboard-every tack should fly apart by itself when touched by an iron. About the only precaution in untacking is to leave enough old solder on the leads so they can be tacked again the next time without violating Law Four.

A number of the more artistic breadboards constructed according to the Johnson Laws have been used to illustrate this instruction. Note that like so many items that obey strict engineering laws, the results have an artistic "essence" of their own.
Note: Readers who have found this article helpful will look forward to a future article on the semiconductor properties of cold-soldered joints. Credits: Photo by courtesy of DLE-GT Productions.

\author{
Now The
}

Time To
Convert?

Electronic engineers make good editors. ELECTRONIC DESIGN's editors have all "converted" from engineering duties to editing duties. You may be interested.

We have new assistant editor openings. EE's with 2-3 years circuit design experience have the ideal background.

If you get satisfaction out of communicating with others, if you enjoy pulling out the important, if you enjoy using words to convey ideas, you will like editorial work.

\section*{Write}

Edward E. Grazda, Editor
Electronic Design
850 Third Ave.
New York 22, N.Y.

\section*{UNIVAC CORDWOOD PACKAGING SHRINKS SIZE 200 TIMES!}

A few months ago this unit measured more than \(\mathbf{2 0 0}\) times its present size.
Univac engineers and scientists reduced it, through cordwood packaging of components, to its present state of "vest pocket" miniaturization without sacrificing Univac's customary high standards of ultra-reliability. Such achievements in high density packaging have led to other Univac accomplishments of starling and yet undisclosed dimensions.

Opportunities are now available at Univac to participate in advanced computer programs which involve various approaches to high density packaging. This state of the art is under constant change by Univac engineers and scientists who enjoy at Univac an exceptional personal freedom for professional expression. These men now extend an invitation to their scientific colleagues who may be seeking new positions of greater promise, challenge and reward.

Immediate openings include :

\section*{RESEARCH ENGIMEERS-}

Attractive positions are now avallable for Research Engineers. These permanent assignments include circuit development work and the logical design of high speed computer elements.
- TRANSISTOR CIRCUIT DESIGNERS
- electronic packaging engineers
- SERVO-ENGINEERS
- electromechamical engineers
- qualitr control emgineers
- PRODUCTION ENGINEERS
- Rellability emgimeers
- Standards e specifications engimeers

Send resume of education and experience to: R. K. PATTERSON, DEPT.C-7

\section*{Themingtone Thand Thivace}

OIVISION OF SPERRY RAND CORPORATION 2750 West Seventh St., SI. Paul 16, Minn.
There are also immediare openings in all areas of digital computer development at our other laboratories. Inquiries should be addressed 10:
FE. MAGLE. Dept C. 7 D. CLAVELOUX. Dopt. C 7 aremington rano univac aemington aano univac O. Bor 1500 wilson Avenue
Blue Bell, Pa South Norwall, Conn
(All quallitied applicants wilt be considered regardiese af race. creed. color or natianal origin.)

\section*{ADVERTISERS' INDEX}

\section*{July 19. 1961}

ACF industries ......................... 179
ACDC Electronics. Inc. ................ 110
AMP, Incorporated .................... 17
Ace Plastic Company .................. 146
Alrborne Instruments Laboratory .. 38B-C
Allen-Bradley Co. ..................... 47
Allied Chemical Plastlics Div. ......... 133
Amco Engineering Co. ................ 140
American Aluminum Company ...... 127
Amerlean Bosch Arma Corporation .. 123
American Time Products ............. 34
Ampex Instrumentation Products Co. .. 137
Amphenol Borg Electronice
Corporation
124
Applied Physles Corporation ........ 94
Areo Electronics Inc. .................. 85
Assembly Products, Inc. .............
Automatic Electric ....................... 34

Babcock Relays. Inc. ............... 116
Beceo Chemical Div., Food Machinery
4. Chemical Corp. .................... 156

Belden Mfg. Co. ........................ 67
Bendix Corporation, The, Eclipse
Ploneer Components Div. ........... 102
Bendix Corporation. The,
Ploneer-Central Div.
126
Bendix Corporation. The, Scintilla Div. 59
Bodner Products Corp. ................ 174
Boeing Company, The .............. 29, 30
Borg-Wamer Corporation .......Cover III
- Bourns. Inc.
er 115
Bruah instruments ................... 134A
Bryant Computer Products Div. ...... 55
-Burndy Corporation .................... 23
Burnell \& Co., Inc. ................... 7
Cadillac Assoclates, Inc. ............... 147
Cambridge Thermionic Corporation .. 148
Cannon Electric Company ............. 40
Chance Vought Electronics .............. 152
Cinch Manufacturing Company ...... 95
Cobehn. Inc. 149
-Cohn Mifg. Co., Inc., SIgmund ........ 167
-Collins Radio Company ............... 107
Community Engineering Corp. ........ 132
Controle Company of America ........ 143
- Convalr-Astronautics, Convair Div. of

General Dynamics .............. 26A-B
Corning Glass Works ............. 138. 139
-Curtiss-Wright Corporation ...... 28. 149

- Dale Electronics, Inc.

51

-Daven Co., The ......................... 119

Daystrom. Inc., Potentiometer Div. .. 57

Delco Radio, Div. of General Motors
 Corp.

38

Dleht Mig. Co. .......................... 123

Donner Scientific Co. ................... 71

Dorsett Laboratories. Inc. .............. 93

Dow Corning Corporation 92

Drake Manufacturing Company ...... 156

Duncan Electronics, Inc. .............. 142

Dupont de Nemours \& Co., E 1 .,

Mylar Div. Inc

19

Dyna Empire, Inc. ....................... 128

Dytronics, Inc.

90

-ESC Electronics Corp. ................. 10

ESI/Electro Scientific Industries ..... 11

Eastman Kodak Co. ..................... 155
- Manufacturers' catalog appears in 1960-1961 Electronic Debigneres Catalog

\section*{ACF ELECTRONICS}


You can bring new meaning to your career in engineering by investigating opportunities in state-of-the-art developments at ACF. Experienced engineers at all levels are cordially invited to inquire about challenging positions in the following fields:

ANALOG \& DIGITAL TECHNIQUES SIMULATOR ENGINEERING IONOSPHERIC PROPAGATION HF, RF COMMUNICATIONS MICROWAVE COMPONENTS \& SYSTEMS OPTICS \& INFRARED AIRBORNE RADAR SYSTEMS FIELD ENGINEERING

These openings involve assignments at our laboratories located in SUBURBAN WASHINGTON, D. C. and the New York metropolitan area at Paramus, New Jersey. Pleasant residential neighborhoods provide readily available housing. Advanced study under tuition refund may be conducted at nearby universities. All qualified applicants will receive consideration for employment without regard to race, creed, color or national origin.

Send resume to:
A. C. SUGALSKI

Manager,
Professional Employment
at our Riverdale Facility
Dept. 12
RIVERDALE, MARYLAND•HYATTSVILLE, MARYLAND• PARAMUS, NEW JERSEY
CIRCLE 902 ON CAREER INQUIRY FORM
looking for a special potentiometer?
 different types of potentiometers in its PRODUCT LOCATOR. 27 categories wound" are included. Each sub-listing such as "Clutch," "Linear Motion," "Microminiature," "Precision," or "Self-trimming" gives manufacturers' name and thumbmanufacturers name and thumb 52 items to aid in rapid selection. 52 items are furt hescribed by special literatur bound in section or 3 of EDC
This is only one example of the more than 7,000 products from 2,212 companies which are displayed
Handy Inquiry Cards or Application Data Forms are bound in to make it easier for you to obtain ad ditional data - and manufacturers' reps are also listed if you wish to phone for quick price and delivery information
Electronic Designers' Catalog is one more service provided by the publishers of Electronic Design.


lel-McCullough. In
 Elastic Stop Nut Co
 Electro Instruments, In

\begin{tabular}{l} 
Electro Instruments, Inc. .............. 144 \\
Electro Motive M/g. Co., The \\
\hline 5
\end{tabular}

Electronic Associates, Inc.

Electronic Design .............38D, 130, 152
 \(\begin{array}{llll}\text { Electronic Designers' Catalog ... } & \text { 162, } & 180 \\ \text { Electronic Measurements Co., Inc } & . . . & 132\end{array}\)

Fainir Bearing Company
Fairchild Camera and Instrument Corp. 140
Fairchlld Controls Corporation ........
\(\begin{array}{ll}\text { Fairchild Semiconductor Corporation... } & 13 \\ \text { Fusite Corporation, The ................ } & 109\end{array}\)

G-M Laboratories. Inc ................ 130
Garner Co. T. H ...n................. 106
Receiving Tube Dept. ............ 88. 89
Receiving Tube Dept.
Chemical Materials Dept.
neral Electric Company
Laminated Products Dep
Miniature Lric Company
Miniature Lamp Div. ................ 106
Reral Electric Company.
Rectifier Components Div. ..... 112. 113
neral Electric Company
Semiconductor Products Dept
General Instrument Corporation -..... 21 Genisco. Inc.
Gertsch Products. Inc
Groov-Pin Corporation
Groov-Pin Corporation ........... 94

Handy Harmon
Helipot Div of Beckma
Helipot Div of Beck
Hewletlents. Yne . .................. 150
Hitemp Wires Co many I.., IA, 1B, 48
Honeywell. Mico Switch Div.
Hoskins Manufacturing Company 104. 117
Hughes Aircraft Company. Microwave
Hughes Aircraft Company. Vacuum
Tube Products Div25

Tube Products Div.................... 33

ITT Industrial Products Div Inlinois Tool Works,

\section*{International Products}

International Resistance Company
Invar Electronics Corp. ......
Itek Electro-Products Company

Joy Manufacturing Company

- Manufacturers' catalog appears in 1960-1961 Electronic Disigners' Catalog

\section*{G-E LEXAN \({ }^{\circledR}\) POLYCARBONATE RESIN GOOD DIELECTRIC-AND MUCH MORE!}


STABLE ELECTRICALS Binding posts made of LEXAN resin retain electricals even under moist, hot conditions. They do not loosen, are molded in six attractive LEXAN colors for coding. Other features are: low loss and power factor, low dielectric constant, high voltage insulation, non-sink surfaces. (Superior Electric)


DIMENSIONAL STABILITY Card guide for business machines is molded to close tolerances . . . must undergo minimum change in dimensions during service. Parts show excellent dimensional stability under moist and high temperature conditions. LEXAN resin meets selfextinguishing requirement. (IBM)


HEAT RESISTANCE Beautiful handles of LEXAN polycarbonate resin are used in rugged service on soldering irons. They resist the impact, heat and abrasion of daily bench work. The hard, glossy handes are light in weight. Molded in three pastel colors, they provide toughness and sales appeal. (Ungar Electric Tools)


STRENGTH These coil forms can take temperatures above \(200^{\circ} \mathrm{F}\) without deforming, despite stresses exerted by tightly wound wire. LEXAN resin is noncorrosive even when used with very fine Class F magnet wire. Coil forms have structural strength and stability . . . high oxidation resistance...stable electricals.


SELF-EXTINGUISHING The selfextinguishing characteristic of LEXAN resin (ASTM-D635) is just one of several indispensable properties in this unique connector. Other important features are high dielectric strength, dimensional stability, moldability, good appearance, high impact strength. (Camblock Corp.)

\section*{HIGH-PERFORMANCE DESIGNS}

Start with lexan thermoplastic LEXAN resin is a stable and beautiful design material. It provides an outstanding variety of top qualities - from good electricals to the highest impact strength of any plastic. It has excellent high-temperature properties, including a high heat distortion point under heavy loads. The material is naturally transparent . . . has often been likened to a transparent metal. In fact, it offers the production advantages of both thermoplastics and non-ferrous metals. Its other advantages are too numerous to describe here: we urge you to refer to G-E's extensive literature on LEXAN resin. Send for details on price, properties, applications and G-E‘s technical assistance program today! General Electric, Chemical Materials Department, Section \(£ 1\)-41 Pittsfield, Mass.

\section*{LEXAN:}

Polycar
GEMERAL
ELECTRIC



We think you'll agree that the art form above gives a deceptive illusion. Wire and cable, too, can create an illusion in that several different brands can look and feel identical-can seem to have comparable quality.

Most brands of wire and cable may even be made with similar materials and equipment. One brand, however, will outlast, outperform the others every time - Hitemp.

Is there a good reason? You bet! Hitemp has the greatest store of experience in the industry-two modern production facilities that are second to none-and more than one-


\footnotetext{
CIRCLE 203 ON READER-SERVICE CARD
}

Advertiser

Sangamo Electric Compan Shockiey Transistor, DIv. of Clevite Sigma Instruments. Inc
Smith Florence. Inc. Sola Electric Company Spectrol Electronles Corporation
Rand Corp. Sprague Electric Company Star Stainless Screw Co Star Stainless Screw Co.
Statham Instruments, Inc Stevens Mfg. Co., Inc. Switcheraft. Inc.
Sylvania Electric Products. Inc
Electronic Tubes DIv.
Sylvania Electric Products. Inc.
Special Products
Synthane Corp.
Tektronix, Ine. ..
Telecomputing Corp.
Telex. Laboratories ............
Temperature Engineerling Corp Thermal American Fused Quartz Co. . 168 Trak Electronics Co., Inc. Transistor Specialties. Inc. Tyco Semiconductor Corp.
United Alreraft Corp., Hamilton Standard Div.
United Shoe Machinery Corp. United Transformer Corp. Unitek Weldmatic Div. Universal Torold Coll Windin......... 100 Utica Drop Forge Tool Div. Victory Engineering Corp. Waldom Electronics. Inc. Ward Leonard Electric Co. Welwyn International Inc Western Devices. Inc.
-Westinghouse Electric
-Westinghouse Electric
Wyle Laboratories
\(\qquad\)
- Manufacturers' catalog appears in 1960-196

Manufacturets catalog appear
Electronic Desigers' Cataloc

\section*{Advertising Representatives}

Adv. Sales Manager: Robert W. Gascoigne
Sales Service Suppr.: Alvin D. Ross New York: Richard Parker, Blair Mc Clenachan, Berry Conner, Jr., James Pe Quinn, Charles J. Stillman, Jr. Kenneth M. George, John N. Weber, 850 Third Avenue, Plaza 1-5530
Chicago: Thomas P. Kavooras, Fred T. Bruce, 664 N. Michigan Avenue, Superior 7-8054
Cleveland: Douglas H. Boynton
Los Angeles: John V. Quillman,
3275 Wilshire Blvd.
Dunkirk 2-7337
San Francisco: Stanley I. Ehrenclou, 292 Walter Hayes Drive, Palo Alto, Davenport 1-7646
Southeastern: Pirnie \& Brown, Mor-
gan Pirnie, Harold V. Brown, MorKrimsier, 1722 Rhodes-Haverty Bidg. Atlanta, Ga., Jackson 2-8113
London EC4: Brad Nichols, 151 Fleet Street
Tokyo: Karl H. Bachmeyer Associates, 27 Morimoto-cho, 1-chome
Azabu, Minato-ku
\begin{tabular}{lllll|}
\hline & 19 & 20 & 30 & 40 \\
1 & 11 & 21 & 31 & 41 \\
2 & 12 & 22 & 32 & 42 \\
2 & 13 & 23 & 33 & 49 \\
4 & 14 & 24 & 34 & 44 \\
3 & 15 & 25 & 25 & 45 \\
6 & 16 & 26 & 36 & 46 \\
7 & 17 & 29 & 37 & 47 \\
8 & 18 & 25 & 39 & 49 \\
6 & 19 & 29 & 39 & 49
\end{tabular}
\begin{tabular}{l|ll}
40 & 30 & 60 \\
41 & 31 & 61 \\
42 & 32 & 62 \\
9 & 39 & 63 \\
4 & 54 & 6 \\
45 & 35 & 6 \\
46 & 56 & 6 \\
47 & 37 & 6 \\
49 & 30 & 6 \\
49 & 59 & 6
\end{tabular} \(\begin{array}{ll}60 & 70 \\ 61 & 71 \\ 62 & 72 \\ 63 & 73 \\ 64 & 74 \\ 65 & 75 \\ 66 & 76 \\ 67 & 77 \\ 68 & 78 \\ 69 & 79\end{array}\) \(\begin{array}{ll}70 & 80 \\ 71 & 81 \\ 72 & 82 \\ 73 & 83 \\ 74 & 84 \\ 75 & 85 \\ 76 & 86 \\ 77 & 87 \\ 78 & 80 \\ 70 & 80\end{array}\)
 \(\qquad\) 300310320330340 301211321331341 302312322332342 \(\begin{array}{llllll}305 & 313 & 323 & 333 & 343\end{array}\) 30431432433434 205315325335345 \(\begin{array}{lllll}206 & 316 & 326 & 336 & 346 \\ 307 & 317 & 327 & 337 & 347\end{array}\) \(\begin{array}{lllll}308 & 318 & 328 & 338 & 348 \\ 308 & 318 & 325 & 339 & 340\end{array}\)

309319 320 339 349
 \(\begin{array}{llll}601 & 611 & 121 & 631 \\ 602 & 412 & 122 & 612\end{array}\) \(\begin{array}{lllll}c 02 & 112 & 122 & 012 & 012 \\ 003 & 13 & 023 & 633 & 493\end{array}\) \(\begin{array}{llll}603 \\ 6014 & 524 & 634 & 644\end{array}\) \begin{tabular}{llll}
605 & 14 & 224 & 635 \\
\hline 6045
\end{tabular} cos 114820636 b46 \(\begin{array}{lllll}607 & 617 & 027 & 637 & 607\end{array}\)

\(\begin{array}{llllll}350 & 360 & 370 & 360 & 390 \\ 351 & 161 & 371 & 381 & 391\end{array}\) \(\begin{array}{llll}351 & 361 & 371 & 381 \\ 352 & 391 \\ 359 & 392 & 372 & 302\end{array}\) \(\begin{array}{llllll}352 & 362 & 372 & 362 & 392 \\ 353 & 363 & 373 & 383 & 393\end{array}\) \(\begin{array}{llllllllll}354 & 364 & 374 & 304 & 394 \\ 355 & 365 & 375 & 345 & 395\end{array}\) \(\begin{array}{llllll}355 & 365 & 375 & 305 & 395 \\ 350 & 345 & 370 & 354 & 390\end{array}\) \(\begin{array}{llllll}350 & 366 & 376 & 386 & 396 \\ 137 & 367 & 377 & 387 & 397\end{array}\) \(\begin{array}{llll}357 & 367 & 377 & 378 \\ 358 & 397 \\ 390\end{array}\)

 \(\begin{array}{llll}651 & 61 & 671 & 681 \\ 652 & 692 \\ 652 & 672 & 602 & 692\end{array}\) \(\begin{array}{lllll}52 & 602 & 672 & 602 & 692 \\ 053 & 63 & 673 & 603 & 693\end{array}\)
 ass 665675 A85 c9 656 666 770666696 \(\begin{array}{lllll}657 & 057 \\ 677 & 697 & 697\end{array}\) 150 c58 670408090 4s9 cos 879 ces 199
\begin{tabular}{l}
100 \\
101 \\
102 \\
105 \\
104 \\
105 \\
108 \\
107 \\
108 \\
100 \\
\hline 400 \\
401 \\
402 \\
203 \\
404 \\
405 \\
400 \\
408 \\
408 \\
409 \\
700 \\
701 \\
702 \\
700 \\
70 \\
705 \\
706 \\
708 \\
700 \\
709
\end{tabular} 00110
011
02
103
104
105
106
107
108
109
400
401
402
403
404
403
400
408
409
700
701
702
709
704
705
706
707
700
709 \begin{tabular}{l}
110 \\
111 \\
112 \\
113 \\
114 \\
118 \\
118 \\
117 \\
118 \\
118 \\
410 \\
411 \\
412 \\
413 \\
414 \\
415 \\
416 \\
417 \\
418 \\
419 \\
710 \\
711 \\
712 \\
712 \\
719 \\
71 \\
71 \\
\hline 71 \\
717 \\
71
\end{tabular} \(0120 \quad 130\)
121131
 Zone State For anploperer
For Clange of Aldree
For Clange ol Nadre Civy Zons \(\qquad\)

\section*{}

Nome

\author{
Compery
}


Fer Chatige of Addres:
Oid Compony Nams
Oid Compent Addres



Publicher: Rubert F. Ahrensdor Editur: Edward F.. Grazda Munaging Editur: James A. Lippke Trchnical Editors: G. H. Rostky Ti. Bierman, H. H. Cushman, M. Bierman, Meisels, A. Rosenblatt Meve Editurs: R. Haavind, Chiff; Newe Edicurs: R. Raavind
A. Curnerettu, R. N. Ross
Tow Proulucte Editors: A. W. Solda Are Products Editors: A. .. Farrell
Chief: ©. H. Farley. E. G. Fin Wuahinglun Editur: J. J. Christie Weat Civeat Editor: T. E. Mount Conoulting Editur: R. N. DeFloria Cuntributing Eiditurs: J. G. Adashko, F.. Brenner. B. Bernstein

A:dicurial Praduction: D. S. Viebig. A. Abramuti

Arl Directur: R. A. Schulze
Art Assistan!: I. Aruego
Production Mumager: T. V. Sedita
Asal. Pred. Mgr:: H. De Polo Production Assistants: P. Bergang M. Spectur

Circulation Manager: N. M. Flston Anst. Circ. Mgra: II. A. Hunter Krader Serrice: L. Blair

Hayden Publishing Compran!, I.ue.
Chuirmuan of ther Honard:
T. Richard Gascoigne

Prosadem: dames S. Mulholland, Jr

\section*{Accuracy Policy}

Recognizing the puwer of the printed word w intuence, it is Fi.Ectroisic bristis's policy

To make ull remanoulde efforts 10 insuare accuracy of editiorial minteler. To publish proupply correctionta brought is our attertiont.
To nue knowingly publinh mistead. ing adrertiosememens.
adrertisemertl.
Readers nuting errors or misstateRente of fact* are encouraged to writ the editur.

\section*{Subscription Policy}

II FCirunt Destum is circulated only to qualified

 Miblily. you qualify for subacriplion withour
 name and ens neering itite. your company s smann The letter must de sisnied by you personally.

 fate fur nongualined subscribers- \(\$\) siso CIRCIE 206 ON READER-SERVICE CARD -
ee Add this to the list of other things you didn't know about Borg-Warner Controls 99

\section*{FACT BORG-WARNER CONTROLS FILE transulegrs \& aceiliromitirs}
.. PROVEN RELIABility
underseas, underground and outer space!


Borg-Warner Controls' complete line of pressure transducers and accelerometers includes both variable reluctance and vibrat-ing-wire types. For magnetic tape recording, FM/FM telemetering links, jet engine testing underwater measurement, underground nuclear test monitoring yaw control, rocket engine pres. sure measurement and a variety of other military, commercial and laboratory applications.

CENTAUR space vehicle
relies on accelerometers by Borg-Warner Controls for critical measurements!
Instruments designed and built by Borg. Warner Controls are used for measurement and control af light parameturs un some of the most advanced missile and space programs. An accelerometer for the new Centaur Space Booster is shown being installed at Convair (Astronautics) Division of General


with the New RCA-8051 \(11 / 2\)-Inch vidicon
|TV|
ensitivity or increase in lag.
and Twelve hundred lines-and without sacrifice o
A photoconductive layer of preciselyg of documents or instruments and for for high-quality B-\&-W film or live pickup bility over the entire scanned area. Pisely controlled thickness assures unif for color pickup in 3-vidicon cameras pickup, plate prevents optical distortion. Picture background is free of flare uniform output current and unificon cameras.
This new vidicon and its associated complap is free of flare and other spurious signals. Precision-ground current capa-
Section G-18-Q-3, RCA El RCA Vidicons-check (deflection, alignment and focusing coils)
(-18-Q-3, RCA Electron Tube Division, Harrison, N RCA Field Representative, or write designed and develuped
For \(35-\mathrm{mm}\) optics-ROW-AN RCA vidicon For each N. J
13** vidicon, 1200 lines resolution
For \(16-\mathrm{mm}\) optics-RCA-7735-A OPTICAL SVSTEMS
vidicon, 900 lines resolution-A
For 日-mm optics-RCA-4427
1/2* vidicon, 400 lines resolution


The Most Trusted Name in Electronics
INDUSTRIAL PRODUCT SALES: NEWARK \(22, \mathrm{~N}\), CALIF,
22. CALIF, 6901 E. Washington Blivd, RA 2, N. I., 744 Broad

Filth St., HU 5.3900 - DAYTON 2, OHIO, 234 . BURLINGAME, CALF, 1939 EHICAGO 54, ILL. S
```


[^0]: Electaonic Design is oublished biweetly by Haydon Publishing Compony, Inc., 850 Third Avenue. Now York 22. N. Y . Richard Gascoigne. Chairman of the Board: James 5. Mulhollond, Jr.. President; Edmund C. Grainger, Jr., Secratory. Printed at Poole Bros Ine Chicage, III. Accepted er conteolled cieculation al Chicogo III. and of New York, N. Y Cooyeieht 1961. Hayden Publishing Company, Inc., 38.600 copies this istue.

[^1]: exceptional employment opportunilies
 for engineers experienced in computer components

[^2]: E. I. du Pont de Nemours \& Co. (Inc.)
 Film Department, Room 612 , Wilmington 98, Delaware

 Please send free, 12 -page booklet of comparative test data
 Please send free, 12-page booklet of comparait
 to help me evaluate magnetic-tape reliability.

