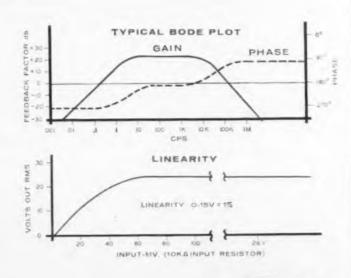
ELECTRONIC DESIGN'S Ninth Annual Transistor Data Chart (p 33) contains spe

tions for 1,714 transistor types--last year only 1,088 types were submitte publication by semiconductor manufacturers. With close to a 60 per cent in in the number of available types, the design engineer is now offered a gre selection of devices as well as increased sources of supply--but his searc for a transistor to do a certain job is likewise increased. Thus, ELECTRON SIGN's unique listing, specifically tailored for the design engineer, shou prove to be a handy time-saver. Contrary to existing lists which group tra tors by manufacturer or in numerical sequence (fine for salesmen, of limit to engineers), the 1961 Data Chart has transistors organized into six appl categories: AUDIO -- mostly general purpose types, under 1, listed in order creasing forward-current transfer ratio. HIGH FREQUENCY -- including types r up to and above the vhf range and tabulated in order of increasing alpha-c frequency. POWER DEVICES -- transistors rated at 1 and above are listed in o of increasing collector power dissipation. HIGH-LEVEL AND LOW-LEVEL SWITCH. devices intended for switching are listed in order of increasing alpha-cut frequency. SPECIAL TYPES -- low noise, high power/high frequency and other m laneous types are included. By this system of listing transistors, the des engineer is offered a rapid method of selecting a particular type based on meter value. In addition, close substitutes are apparent and multiple source of supply are listed when applicable. Only U.S. manufactured types are give One word of caution is included. Quite a few similar number types, made by eral companies, were submitted with different characteristics due to the no formity in test methods among manufacturers. The manufacturer whose data an used for each particular type is listed under "Mfg." Other suppliers of the types are found under "Remarks." Please take note that the company listed MICROWAVES. . . p 129 "Mfg." is not necessarily the prime supplier, a ches source or the original EIA registrant. The final choice of supplier is obvi up to the design engineer. It is thus advisable to use this li

in SERVO Amplifiers?



CPPC's new 5 watt servo amplifier provides a unique combination of exceptional stability and miniature size. Built around a DC amplifier with high frequency cutoff above 30 kcps, the SA 5601 provides uniform response over its full operating range. With a 10 k $_{\Omega}$ input resistor the SA 5601 yields a voltage gain of 54 \pm 1 db from -55° to $+125^{\circ}$ C with all signal levels below saturation, and supply voltage of 56 \pm 3 volts. Idling power is under 1 watt.

Designed to drive any size 8, 10 or 11 servo motor with a 26 volt control-phase rating, the SA 5601 is available off the shelf with stud or screw mounting. A regulated supply of the 56 VDC power required for the SA 5601 operating from 115 V 400 ~ and providing a 26 V AC tap for motor and synchro excitation is available in a similar package.

For information phone or write: Area 215 MAdison 2-1000, TWX LNSDWN, Pa. 1122(U)—or our Representatives. POWER OUTPUT 5W ± 3db 10 cps-30 kc < 1% THD AT 2 WATTS FEEDBACK > 20 db GAIN MARGIN > 20 db PHASE MARGIN > 90° TEMP. RANGE -55+125°C EFFICIENCY > 65%

ES! Look at these specifications

IVISIO

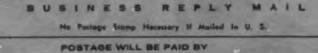
CLIFTON PRECISION PRODUCTS CO., INC. Clifton Heights, Pennsylvania CIRCLE 1 ON READER-SERVICE CARD

Many Let A the encoded method in the state of the state o

COVER: The introductory copy to ELECTRONIC DESIGN's Ninth Annual Transistor Data Chart makes an eye-catching typographical cover for this issue. For eye-filling details of transistors, consult the chart.

Sidelights of This Issue

Transistors . . . Transistors


Well, it's all there, bigger than ever and easy to use—ELECTRONIC DESIGN's Ninth Annual Transistor Data Chart, starting on p 33. Transistor types, in case you haven't guessed, are up 60 per cent this year. There are, we ruefully submit after more than three grueling months of counting and classifying, 1,714 types.

ED began its annual transistor chore early in April, when the first letters went out to manufacturers. The makers were asked to recheck their specifications on old types and furnish details on the new, if any. The rise over last year's total of 1,088 types became abundantly clear in due time. What wasn't so clear, though, was the difference in many cases between competitive types.

To make selection as easy as possible, we have organized all transistors into five basic types: audio, high-frequency, high-level switching, low-level switching and power. Then they are listed by the increasing value of the transistor's parameter.

Cash in on these valuable timesaving features when you select your transistors. And join us in a quiet "thank you" to our human data-processing machine, Miss Beverly Chesler. Beverly put in more than 150 hours collating the transistor data for you from companies over the nation. Don't mention "transistor" to her again this year.

ELECTRONIC D	ESIGN ONE D	AY SERVIC	E USE BEFORE	AUGUST 16th, 1961
Company				
Company Address		City	Zone	State
1 11 21 31 41 51 61 71 6 2 12 22 32 42 52 62 72 6 3 13 23 33 43 53 63 73 6 4 14 24 34 44 54 64 74 6 5 15 25 35 45 55 65 75 6 16 26 36 46 56 66 76 7 7 17 27 37 47 47 77 7 8 16 28 38 46 56 66 76 17 7 17 27 37 47 57 67 77 16 8 16 28 38 46 56 66 76 16 16 77 17 17 15 67	00 00 100 110 120 130 140 01 91 101 111 121 131 141 12 92 102 112 122 132 142 13 93 103 113 123 133 143 14 94 104 114 124 134 144 14 95 105 115 125 135 145 16 104 114 126 136 144 15 95 105 115 125 135 145 16 104 114 126 136 144 15 97 107 117 137 147 108 98 106 116 128 138 148 107 97 107 137 137 147 108 98 109 119 129 139 148	151 161 171 181 191 152 162 172 182 192 153 163 173 183 193 154 164 174 184 194 155 165 175 185 195 156 166 176 186 196 157 167 177 187 177	200 210 220 230 240 201 211 211 231 241 201 211 211 231 241 201 211 211 231 241 201 215 214 232 233 243 204 214 224 234 244 205 215 225 235 245 206 216 226 236 246 207 217 227 237 247 206 216 226 238 248 209 219 229 239 249	250 260 270 280 290 251 261 271 281 291 252 242 272 282 292 253 263 273 283 293 254 244 274 284 294 255 265 275 285 295 256 266 276 286 296 257 247 277 267 297 258 268 270 286 296 259 269 279 257 299
000 310 320 330 340 350 360 370 3 001 311 321 331 341 351 361 371 3 002 312 322 332 342 353 363 373 3 003 313 324 343 344 353 363 373 3 004 314 324 344 344 354 364 374 3 045 315 325 335 345 355 365 375 3 045 316 326 336 346 356 366 376 3 047 316 326 336 346 356 366 376 3 307 317 327 337 347 37 3 366 376 3 307 317 327 337 347 3 368 368 <td>11 391 401 411 421 431 441 12 392 402 412 422 442 432 442 13 393 403 413 423 433 442 13 393 403 413 423 434 444 16 395 405 415 424 434 444 15 395 405 415 425 435 445 16 396 406 416 426 436 444 16 376 405 416 426 436 445 17 397 407 417 427 437 447 18 396 406 416 426 438 448</td> <td>450 460 470 480 490 451 441 471 481 491 452 462 472 482 492 453 453 473 483 493 455 464 474 484 494 455 465 475 485 495 456 466 476 486 496 457 457 477 487 497 458 468 478 488 499</td> <td>500 510 520 530 540 501 511 511 531 541 502 312 522 532 542 503 513 523 533 543 504 514 524 534 544 505 515 525 535 545 506 516 526 536 546 507 517 527 537 547 508 518 528 538 548 509 519 529 539 549</td> <td>550 540 570 580 590 551 561 571 581 591 552 542 572 582 592 553 563 573 583 593 554 564 574 584 594 555 565 575 585 595 556 546 576 586 596 557 567 577 587 897 558 568 578 588 599 559 569 579 589 599</td>	11 391 401 411 421 431 441 12 392 402 412 422 442 432 442 13 393 403 413 423 433 442 13 393 403 413 423 434 444 16 395 405 415 424 434 444 15 395 405 415 425 435 445 16 396 406 416 426 436 444 16 376 405 416 426 436 445 17 397 407 417 427 437 447 18 396 406 416 426 438 448	450 460 470 480 490 451 441 471 481 491 452 462 472 482 492 453 453 473 483 493 455 464 474 484 494 455 465 475 485 495 456 466 476 486 496 457 457 477 487 497 458 468 478 488 499	500 510 520 530 540 501 511 511 531 541 502 312 522 532 542 503 513 523 533 543 504 514 524 534 544 505 515 525 535 545 506 516 526 536 546 507 517 527 537 547 508 518 528 538 548 509 519 529 539 549	550 540 570 580 590 551 561 571 581 591 552 542 572 582 592 553 563 573 583 593 554 564 574 584 594 555 565 575 585 595 556 546 576 586 596 557 567 577 587 897 558 568 578 588 599 559 569 579 589 599
600 610 620 630 640 650 650 670 6 601 611 621 631 641 651 661 671 6 602 612 622 32 642 652 652 662 672 6 602 612 622 32 642 652 652 662 672 6 603 613 623 533 643 653 664 674 6 605 613 623 643 644 654 647 6 605 613 624 644 644 644 644 646 674 6 605 615 625 635 645 655 665 675 6 606 610 626 638 646 654 677 6 607 610 626 638 646 655 667 677	81 691 701 711 721 721 741 82 692 702 712 722 732 742 83 692 703 713 723 737 743 84 694 704 714 724 734 744 85 693 705 715 725 735 745 86 696 706 716 726 736 746 87 697 707 717 727 737 747 86 696 706 716 726 736 746 87 697 707 717 727 737 747 86 696 706 716 726 736 746	750 760 770 780 790 751 741 771 781 791 752 762 772 782 792 753 763 773 783 793 754 764 774 784 794 755 763 775 785 795 756 764 776 786 795 757 747 777 787 797 759 746 778 786 798 759 749 779 789 799	800 810 820 830 840 801 821 831 841 802 812 823 832 843 803 813 823 833 843 804 814 824 834 844 805 815 825 835 845 806 816 824 834 844 805 815 825 835 845 806 816 826 836 846 807 817 827 837 847 808 816 826 836 846 807 817 827 837 847	850 860 870 880 FFU 851 861 871 881 891 852 862 872 882 892 853 863 873 883 873 854 864 874 884 894 855 864 876 886 896 857 867 877 887 897 858 868 878 888 898 859 869 879 889 899
007 017 027 037 047 037 007 079 0	oddress City		Zome State	
For employment Brochures give here a Home Address	the second s		the statement of the local division of the l	
For employment prochures give heme				De Design Work Supervise Design Work
For employment brochures give here a Home Address For Change of Address	City	Zana S		
Por employment Brochures give here of Home Address For Change of Address Old Company Name Old Company Address Did Company Address ELECTRONIC D Home		1912	liete D	Supervise Design Work
Por employment brochures give here of Home Address For Change of Address Old Company Name Old Company Address Old Company Address DELECTRONIC D Home Company		AY SERVIC	tente	AUGUST 16th, 1901
Por employment Brochures give here of Home Address For Change of Address Old Company Name Old Company Address Did Company Address ELECTRONIC D Home	0 FO 100 110 120 130 140 100 110 120 130 140 101 111 121 131 141 102 112 122 132 142	AY SERVIC Title	Lineto Constanti de la constan	State 250 260 270 280 290 251 261 271 281 291 252 242 272 282 272 253 265 273 283 293 254 264 274 284 294 253 265 275 285 295 254 264 274 284 294 255 265 275 285 295 256 266 276 286 296 257 247 277 287 297
For employment brochures give heme of Address For Change of Address For Change of Address Old Company Address Old Company Address Old Company Address ELEECTRONIC D Hame Campany Address 10 20 30 40 50 60 70 11 21 31 41 51 61 71 2 12 23 24 42 52 62 72 3 3 43 53 63 73 53 64 76 14 24 34 45 55 64 76 16 26 30 40 50 64 70 18 24 34 45 55 64 77 18 24 34 45 55 64 76 16 26 30 46 55 64 76 7 17 27 37 47 57 67 77 18 20 38 45 58 64 76	BO 90 100 110 120 130 140 101 111 121 131 141 102 92 102 112 132 134 102 92 102 112 132 134 103 113 123 133 143 104 114 124 134 134 105 105 112 135 145 104 114 124 134 134 105 105 1125 135 145 104 114 124 134 134 105 116 125 135 145 106 116 126 136 146 127 132 137 140 141 136 196 100 117 127 132 147 131 107 117 127 132 147 1313 107	AY SERVIC Tide Tide City 150 160 170 180 190 151 161 171 181 191 152 162 172 182 193 154 164 174 184 193 155 164 174 184 193 155 164 174 184 194 155 164 174 184 194 155 167 175 185 195	Line to Line to Lin	Supervise Design Work De Ne Design Work De Ne Design Work AUCUST 16th, 1961 State 250 260 270 280 290 251 261 271 281 291 252 242 272 282 292 253 243 773 283 293 254 244 774 284 294 255 265 275 285 295 256 266 276 286 296 257 247 777 257 347 258 248 278 286 296 259 241 279 289 279 250 560 570 580 590 551 561 571 581 391 552 542 572 542 592 253 543 573 543 593 554 544 576 586 596
For employment prochures give heme Home Address For Change of Address Did Company Address Old Company Address Did Company Address Campany Campany Address To 20 30 40 50 46 70 10 20 30 40 50 46 70 11 22 32 42 52 62 72 13 20 33 40 53 64 76 14 20 30 44 56 46 76 12 25 35 45 55 65 75 16 26 36 46 56 46 76 17 17 27 37 47 57 67 77 18 27 38 44 56 46 78 19 29 39 46 59 69 79 500 310 320 330 340 350 350 350 370 301 311 321 331 341 351 341 371 503 310 325 333 343 353 353 373 303 313 325 333 343 353 354 373 303 314 324 324 344 354 347 303 316 325 335 345 357 347 373 304 314 324 324 344 354 346 374 305 316 325 325 354	ESIGN ONE 0 90 100 110 120 130 140 01 111 121 131 141 02 92 103 113 123 133 101 111 121 131 141 02 92 103 113 123 133 103 113 123 133 143 104 104 114 124 134 105 125 135 145 146 97 103 113 123 133 143 105 125 135 145 146 97 107 117 127 137 148 98 106 114 121 121 131 107 117 127 137 148 108 197 107 117 127 137 143 103 104 411	AY SERVIC Title Total	Liesto Liesto	Supervise Design Work De Ne Design Work De Ne Design Work AUGUST 16th, 1901 Same 250 260 270 280 290 251 261 271 281 291 252 222 222 222 253 243 273 283 293 254 244 774 284 294 255 265 275 282 779 256 266 276 286 296 257 247 777 287 297 258 266 276 286 296 257 247 777 287 297 258 266 276 286 296 257 247 777 287 297 258 266 276 286 296 257 247 777 287 297 258 266 276 286 296 257 247 777 287 297 258 266 276 286 296 257 247 777 287 297 258 266 276 286 296 257 267 75 505 595 258 566 576 576 596 597 258 568 576 576 597 597 258 568 578 578 598 599 259 569 779 589 799 589 299 350 860 70 800 700 251 861 871 803 252 862 872 882 892 253 863 173 803 253 863 175 885 875 254 668 876 868 676 868 676
For employment prochures give heme Home Address For Change of Address Did Competity Name Old Competity Address ELEE CTRONICC D Mame Competity Address Competity Address Table 20 30 40 50 40 70 11 21 31 41 51 61 73 5 52 53 64 55 65 75 6 26 36 44 56 46 76 7 17 27 37 47 57 67 77 18 24 34 44 54 66 76 7 17 27 37 47 57 67 77 18 24 34 44 354 363 373 303 310 320 330 340 353 363 373 304 314 324 334 344 353 453 373 305 316 325 335 344 355 346 376 307 317 327 337 347 357 347 377 308 318 328 324 324 358 354 376 309 319 329 339 349 359 346 376 309 319 329 339 347 <tr< td=""><td>ESIGN ONE D 60 90 100 110 120 130 140 60 90 100 110 121 131 141 62 92 102 112 121 131 141 62 92 103 113 123 133 143 63 93 103 113 123 133 143 64 104 114 124 134 145 65 105 112 135 145 146 67 77 107 117 127 127 146 69 99 109 119 129 149 149 131 323 403 413 423 433 443 132 397 400 410 420 434 444 132 397 407 417 427 437 441 436 444</td><td>AY SERVIC Tile 150 160 170 180 190 151 161 171 101 191 152 162 172 182 192 153 163 173 185 193 154 164 174 184 194 153 164 176 186 196 157 167 177 187 197 154 164 176 186 196 157 167 177 187 197 154 164 174 184 194 157 167 177 187 197 154 164 174 184 191 155 165 177 187 197 154 164 174 184 191 155 165 177 187 197 155 167 177 187 197 156 169 179 189 199 450 460 470 488 490 451 461 471 481 491 455 464 476 484 494 455 465 475 485 495 455 667 770 780 790 750 760 770 780 790 751 764 776 785 795 756 766 776 786 796 759 769 777 787 797</td><td>Linesto Linesto E USE DEFORE Zona Zona 200 210 220 220 240 201 210 220 220 240 201 211 221 221 224 202 212 222 222 224 203 213 223 233 243 204 214 224 224 244 205 215 225 235 243 204 214 224 224 244 205 216 226 236 244 205 216 226 236 244 205 510 520 530 540 500 510 520 530 540 501 517 527 537 543 502 517 527 537 547 503 516 526 538</td><td>Supervise Design Work De Ne Design Work De Ne Design Work AUGUST 16th, 1961 State 250 260 270 280 290 251 261 271 281 291 252 242 272 282 272 253 243 273 283 293 254 242 274 284 294 255 265 275 285 275 256 264 276 286 296 257 247 272 287 297 258 264 276 286 296 259 241 277 287 297 250 560 570 580 5970 551 561 571 581 591 552 542 572 542 792 553 545 573 585 595 554 544 574 388 594 555 545 575 585 595 556 546 576 388 596 557 545 775 282 897 558 546 576 388 596 557 545 775 883 899 559 549 579 587 595 558 546 576 388 599 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 887 883 559 549 777 887 885 995 550 646 777 886 879 551 545 878 885 995<</td></tr<>	ESIGN ONE D 60 90 100 110 120 130 140 60 90 100 110 121 131 141 62 92 102 112 121 131 141 62 92 103 113 123 133 143 63 93 103 113 123 133 143 64 104 114 124 134 145 65 105 112 135 145 146 67 77 107 117 127 127 146 69 99 109 119 129 149 149 131 323 403 413 423 433 443 132 397 400 410 420 434 444 132 397 407 417 427 437 441 436 444	AY SERVIC Tile 150 160 170 180 190 151 161 171 101 191 152 162 172 182 192 153 163 173 185 193 154 164 174 184 194 153 164 176 186 196 157 167 177 187 197 154 164 176 186 196 157 167 177 187 197 154 164 174 184 194 157 167 177 187 197 154 164 174 184 191 155 165 177 187 197 154 164 174 184 191 155 165 177 187 197 155 167 177 187 197 156 169 179 189 199 450 460 470 488 490 451 461 471 481 491 455 464 476 484 494 455 465 475 485 495 455 667 770 780 790 750 760 770 780 790 751 764 776 785 795 756 766 776 786 796 759 769 777 787 797	Linesto Linesto E USE DEFORE Zona Zona 200 210 220 220 240 201 210 220 220 240 201 211 221 221 224 202 212 222 222 224 203 213 223 233 243 204 214 224 224 244 205 215 225 235 243 204 214 224 224 244 205 216 226 236 244 205 216 226 236 244 205 510 520 530 540 500 510 520 530 540 501 517 527 537 543 502 517 527 537 547 503 516 526 538	Supervise Design Work De Ne Design Work De Ne Design Work AUGUST 16th, 1961 State 250 260 270 280 290 251 261 271 281 291 252 242 272 282 272 253 243 273 283 293 254 242 274 284 294 255 265 275 285 275 256 264 276 286 296 257 247 272 287 297 258 264 276 286 296 259 241 277 287 297 250 560 570 580 5970 551 561 571 581 591 552 542 572 542 792 553 545 573 585 595 554 544 574 388 594 555 545 575 585 595 556 546 576 388 596 557 545 775 282 897 558 546 576 388 596 557 545 775 883 899 559 549 579 587 595 558 546 576 388 599 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 883 893 559 549 777 887 883 559 549 777 887 885 995 550 646 777 886 879 551 545 878 885 995<

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE 830 Third Avenue New York 22, New York

> FIRST CLASS Permit No. 725 New York, H. Y.

FIRST CLASS Permit No. 725 New York, H. Y.

BUSINESS REPLY MAIL

No Postage Stamp Necessary II Mailed In U. S.

POSTAGE WILL BE PAID BY

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE 830 Third Avenue New York 22, New York

A New, Better ELECTRONIC DESIGN

We hope you noticed several physical improvements in the last issue of ELECTRONIC DESIGN. There were three that we are particularly proud of: (a) the strongest binding available in printing—indeed, the same type of binding used in the better paperback books (thus, ED can be maintained in good condition for the many readers using each copy); (b) improved type faces and layouts; and (c) better reproduction of illustrations.

These changes came about as a result of our switching printing operations to the midwest. Shifting printing to the central part of the country will also insure faster distribution of ELECTRONIC DESIGN.

Advertisers also get a new service coincident with our getting a new printer. A limited number of ads may be inserted only 12 days preceding the issue date, or three days before the magazine is mailed.

The late closing form will enable manufacturers to introduce new product advertising with minimum delay where such timing is critical.

The switchover is not without its problems. The editorial department has to rely on airlines for daily messenger service. If a plane is grounded or "diverted" (that s a neat term to describe a crisis) as we approach press time we have to set copy and give make-up instructions via teletype. Fingers crossed, we hope we won't see crossed headlines.

The end result will be even more timely news reporting for design engineer readers.

Turn to page 6, for example, for a rundown on some of the top events at last week's Fifth National Conference on Military Electronics in Washington. On page 10 readers will find an even more timely report on two hardwareoriented developments discussed at an otherwise theoretically-oriented Joint Automatic Control Conference in Boulder, Col. This meeting was held last Wednesday through Friday, June 28 to 30.

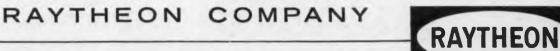
As you read through the stories in the issue notice the easy readibility of the new type style used for text. We hope this will prove an added convenience to busy readers. On the ground, or high in the sky, Raytheon's line of rugged diode rectifiers gives dependable arc-free operation.

Example: Raytheon 583, one of six Raytheon half-wave rectifier types. Operating as a clipper diode at altitudes to 36,000 feet, maximum ratings are 15,000 volts PiV, 8 amperes peak plate current. Arc-free clipping action makes sure a magnetron can be fired once without refiring automatically or uncontrollably!

The reliability of Raytheon diode rectifiers is the result of exceptional care in design and manufacture . . . with no compromise in quality control. Gold-plated plates and zirconium coatings assure reliable operation at high voltages. Cathodes are heliarc welded. Higher exhaust temperatures mean less gas and longer life. For more information on Raytheon's growing line of dependable diode rectifiers, please write: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

GET PEAK POWER WITH RAYTHEON RUGGED, ARC-FREE DIODE RECTIFIERS

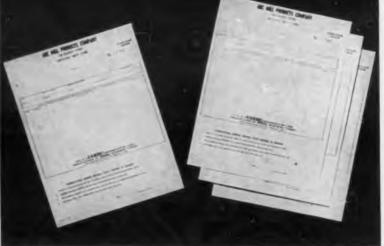
RAYT


MADE

		INEAT	TER	MA	R. PLATE BAT	
TYPE	SERVICE	VOLTE	-	PEAN INVERSE (VOLTE)	PEAK EURRENT (AMPERED)	
543*	H. W. RECT. (to 36.000 ft.) CLIPPER DIODE	2.5	4.9	17,000	0.250	0.065
- 1	(te 36,000 ft.)	25	4.9	15.000	8.0	0.240
3824W 1 3824WA 1	H W. RECT (HALF FIL.) (FULL FIL.)	2.5 5.0	3.0	20.000	0.150 0.300	0.030 0.060
3826	CLIPPER DIODE	2.5	4.75	15.000	8.0	0.020
3829	H. V. RECT. (OP. 1) (OP. 2) (OP. 3) CLIPPER	2.5	4.9	16,000 7,700 5,000	0.250 0.300 0.300	0.065 0.080 0.095
	30010	2.5	4.9	10,000	8.0	0.018
4831*	H. W. RECT.	5.0	5.0	16.000	0.470	0_150
	DIODE	5.0	5.0	16,000	12.0	0.060

RAYTHEON DIODE RECTIFIERS

Mil-Std-200E Preferred Type


For Small Order or Prototype Requirements, See Your Local Franchised Raytheon Distributor

INDUSTRIAL COMPONENTS DIVISION

See how little difference can be noted between a nearly opaque original (left) and three fast, economical diazo copies (right) made with POST Super Vapo Black Paper.

New Super Diazo Papers Make Prints From Prints

More uses -

No longer limited to copying just thin, translucent originals, recent Post progress in formulating superfast diazo compounds has added a new dimension to diazotype reproduction.

A selection of new Post direct positive papers can now handle, at reasonable speeds, such problems as making prints from discolored originals, letterhead correspondence, or even from old prints themselves—in short, from subjects considered too opaque for conventional diazo copying.

In drafting rooms, for example, this ability to reproduce from nontranslucent originals provides a unique, low-cost way to copy present engineering forms that may be on inexpensive, semi-opaque, sulphite paper.

More variety-

The convenience and versatility of the whiteprinting process takes on new meaning with these important Post developments. Available in sheets and rolls as Super Veri-Blac (440-14) for semi-moist diazo equipment, and as Super Vapo Blue (206M-14) and Super Vapo Black (208M-14) for dry, ammonia-process machines.

One of the most impressive features of these Post Super Diazo Papers is the extra speed in reproducing normal subjects, such as engineering tracings. There's no sacrifice of shelflife, image stability, development rate or clean backgrounds. The printing range is extremely wide.

More economy -

Cost is a key word in the consideration of any new product. Post Super Diazo Papers cost no more. Further, both large and small users will be quick to note that the combination of speed and economy basic to these new diazotype papers make them practical for longer runs - even 50 copies - and, less expensive than other duplicating methods often selected for such quantities.

Ask your POST dealer or write Frederick Post Company, 3644 North Avondale Avenue, Chicago 18, Illinois, for Super Diazo Facts.

SENSITIZED PAPERS & CLOTHS • TRACING & DRAWING MEDIUMS • DRAWING INSTRUMENTS & SLIDE RULES ENGINEERING EQUIPMENT & DRAFTING SUPPLIES • FIELD EQUIPMENT & DRAFTING FURNITURE CIRCLE 3 ON READER-SERVICE CARD

CONTENTS FOR JULY 5, 1961 VOL. 9 NUMBER

ELECTRONIC DESIGN News	. 4
Laminar Devices Key Superconductivity Push	4
22-Gc Transmitter Due for Telemetry	6
'Thermal Circuit' Removes Heat in Miniature Modules	8
RFI Studies Leading to Design Important Shifts	8
Two Advances Cited at Automation Parley	10
Hot TV Cooled Thermoelectrically	12
Styrofoam Antenna Can Be Built on Site	16
Nationwide Data Loop Speeds Airline Work	18
Twofold Rise Seen In Consumer Sales	21
Washington Report	22
Doppler Navigator on Way for All Aircraft Types	26
Space "Pointer" Slated with 6-Sec Accuracy	28
Transistor Reliability Specs Well on Way	32
Editorial Comment	~ *

Transistors 1961

Ninth Annual Trans An ELECTRONIC D Specifications for based on device	ESIGN Staff Report or 1,714 transistor types arranged to enable rapid selection	33
	nsistor Data Sheets—What They Mean and to Use Them Properly Explanation of the parameters contained in a transistor data chart and their interpretation in circuit design—M. Baker, J. V. Suckert	74
Late	est Listing of Military Approved Transistors Transistors contained in the military's latest preferred and guidance type listing, MIL-STD-701B, are grouped in a con- venient application chart. A tabulation of single service ap- proved types and their specification number is also included	82
Tania 1 Ocal al D	evice Protects Rectifiers from Surge Overloads	84
	urges as high as 1,400 v are clipped to a 200-v limit by a new	
Line and load su transient protect Coaxial Cavity Incre Designed for X-	urges as high as 1,400 v are clipped to a 200-v limit by a new	86
Line and load su transient protect Coaxial Cavity Incre Designed for X-	arges as high as 1,400 v are clipped to a 200-v limit by a new ive device cases Magnetron Frequency Stability band use, this tube operates at 50 per cent efficiency, delivers	86
Line and load sy transient protect Coaxial Cavity Incre Designed for X- a minimum peak MicroWaver	arges as high as 1,400 v are clipped to a 200-v limit by a new ive device cases Magnetron Frequency Stability band use, this tube operates at 50 per cent efficiency, delivers	
Line and load sy transient protect Coaxial Cavity Incre Designed for X- a minimum peak MicroWaver Direct Conversion par Ametric amy Farect Microw	arges as high as 1,400 v are clipped to a 200-v limit by a new ive device cases Magnetron Frequency Stability band use, this tube operates at 50 per cent efficiency, delivers a power of 1 megawatt and an average power of 1 kw on of microwave power and a new low-noise antenna for olifiers are featured in this edition of MicroWaves aves-to-Electricity Power Seen Near	ě.
Line and load su transient protect Oceanial Cavity Incre Designed for X- a minimum peak MicroWaver Direct conversion par ametric amy Farect Microwa Development of sion of microwa Designing the A combination	arges as high as 1,400 v are clipped to a 200-v limit by a new ive device cases Magnetron Frequency Stability band use, this tube operates at 50 per cent efficiency, delivers a power of 1 megawatt and an average power of 1 kw on of microwave power and a new low-noise antenna for olifiers are featured in this edition of MicroWaves aves-to-Electricity Power Seen Near	ě.

ELECTRONIC DESIGN Hayden Publishing Compony, Inc. B50 Third Avenue, New York 22, N.Y.

Ideas for Design 15 Simple Circuit Halves 20-Mc Supply Frequency 158 Power Gain Plot Can Be Made Directly from Measurements 158 Long Period Multivibrator Reduces Timing Capacitor Size 160 One-Shot Pulse Output Has Greater Than 100% Duty Cycle 161 Servo Circuit Compared Antenna Pattern Nulls, Peaks 162 Tunnel Diode Trigger Circuit Can Reset Itself 163 Emitter-Coupled Limiter Produces HF Square Waves 164 Ideas-for-Design Entry Blank 159	8
New Products	8
New Literature	5
Report Briefs	6
Careers	0
Your Career	0
Advertisers' Index	6
ELECTRONIC DESIGN is published biweekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York 22, N. T. Richard Gasceigne, Chairman of the Board; James S. Mulholland, Jr., President, Edmund C. Grainger, Jr., Sacreta Printed at Peale Bros., Inc., Chicago, III. Accepted as controlled circulation at Chicago, III. and at New York, N. Copyright D. 1961, Hayden Publishing Campany, Inc., 38,600 copies this issue.	ry.

Coming Next Issue

The interest of the electronics industry will soon be centered on San Francisco's Cow Palace. For the duration of WESCON, Aug. 21 to Aug. 24, manufacturers will proudly display their wares for evaluation and approval.

To assist visiting engineers in making the all-important decision of what to see first, the WESCON, Aug. 2, issue of ELECTRONIC DESIGN will feature the products to be introduced for the first time. For convenience in locating these items, booth numbers will accompany the product descriptions.

A trend survey, conducted by the editors of ELECTRONIC DESIGN, covering recent, present and future product developments will be a highlight of the issue. Don't miss it.

ELECTRONIC DESIGN is published biweekly by Hayden Publishing Company, Inc., 850 Third Avenue, New York 22, N. Y. T. Richard Gascaigne, Chairman of the Board, James S. Mulhelland, Jr., President, Edmund C. Grainger, Jr., Secsetary. Printed at Paole Bres., Inc., Chicago, III. Accepted as controlled circulation at Chicage, III. and at New York, N. Y. Copyright D 1961, Hayden Publishing Company, Inc., 38,600 ceptes this issue.

ELECTRONIC DESIGN . July 5, 1961

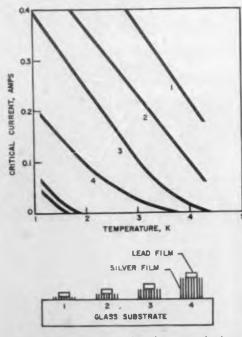
Speaking of filters, Rantec is way up front. Men who know filters best in such projects as Mercury. Titan, Polaris and Discoverer—choose Rantec two to one. Why? Strictly the result of Rantec's superb miracle blend of research and development.

Broadband Harmonic Filters from C through K, bands rejecting the second and third harmonics of any frequency in the pass band region . Waveguide Band Pass Filters employing from one to fifteen cavities with precise equal-ripple, maximally flat insertion loss or maximally at time-delay response Coupled Coaxial Resonator and Coaxial Low-Pass, High-Pass and Band-Pass Filters in frequency ranges from 100mc to 10.000mc Stripline Diplexing Filters to meet specific customer specifications for packaging, frequency band. response, isolation and power rating. Below the FS-203 Band-Pass Filter - pass band 2,000 4,000mc; stop bands 0-1,800mc. 4,400 12,000mc; VSWR in pass band 1.5 max.; insertion loss 1db max, in pass band, 50db min. in stop bands; impedance 50 ohms. Reach for a Rantec. available in crush proof and soft pack! Also from Rantec antennas. ferrite devices, waveguide components, electric components and microwave sub-systems.

it's what's up from that counts

CIRCLE 4 ON READER-SERVICE CARD

NEWS


Laminar Devices Key Superconductivity Push

Laminating Films to Control Transistion Temperature Among Successes Reported at Top Research Meeting

Alan Corneretto News Editor

RESEARCHERS trying to exploit superwith high promise for designers: combining normally nonsuperconductive metallic thin films with superconductive ones and achieving superconductivity in the entire assembly.

Such devices have been made by superimposing thin films of superconductive lead and normally nonsuperconductive silver. Because the films become superconductive at temper-

Characteristics of combined superconducting and normal films are dependent on thickness of films, implying devices may be made that would become superconductive at predetermined cryogenic temperatures. Curves are for configurations shown under graph. Two curves at lower left resulted from a structure different from others shown. This work was done at Arthur D. Little, Inc. atures dependent on film thickness, multilayered devices are foreseen in which different layers would become superconductive at different predetermined cryogenic temperatures.

The development was among recent successes reported at a conference on fundamental research in superconductivity held June 15-17 at the International Business Machines research center, Yorktown Heights, N. Y. It reflected a growing interest in the field.

Two reasons are given for the spurt in interest. One is the discovery last year of tunneling in superconductive thin films (ED, Dec. 7, 1960, p 4), and the other the recent development of materials that remain superconductive in high magnetic fields.

Present superconductive thin-film devices are made either of naturally superconductive metals, which are limited in number, or of difficult-to-process alloys. The new combina-

Three laminar superconductors are formed by deposition of thin-film lead strips on wider and thicker thin-film strips of silver. Intimate superposition of strips makes normal silver become superconductive at proper cryogenic temperature. In these three separate samples on glass substrate, the lead film is about 500 A thick, and the silver films vary from about 1,000 to 5,000 A. Electrodes facilitate measurements.

tion, or laminar, technique is expected to make it easier to tailor the transition temperatures of superconducting films than former methods permitted.

P. H. Smith of Arthur D. Little, Inc. (ADL), Cambridge, Mass., delivered a jointly authored paper on the process at the Yorktown Heights conference. Substantially the same reports appear in the June 15, 1961, issue of *Physical Review Letters*, published by the American Physical Society. Similar work has been done by Dr. Hans Meissner at the Stevens Institute of Technology.

Both Dr. James Nicol, one of the authors of the ADL paper, and Dr. Meissner, report that the two films—normal and superconducting—must be in intimate contact with each other before the effect can be achieved. At both organizations one film is deposited immediately after the other while the original vacuum is maintained. The reasons for the phenomenon are not completely understood at present.

ADL reports that it has constructed devices by superimposing a film of one material between two films of the other, and by depositing one film on the other in an opensandwich construction. It calls the resulting devices laminar superconductors. At the conference, Mr. Smith reported that the assembly of two metals in contact behaves as a unit having its own characteristic superconducting properties.

Films worked with at ADL measure from 500 to 10,000 A thick, he says. Typically they are made by superimposing along the length of a 10-by-0.3-mm silver film a longer lead film 0.15 mm wide. Electrical connections are soldered to the ends of the lead film. A glass substrate with lead, tin and normally nonsuperconductive gold and silver have been used.

Addition of the silver is said to reduce the transition temperature of the assembly below that of lead alone. In one sample, a transition temperature of 1.87 K was reportedly measured. Normally, lead has a transition temperature of 7.2 K, according to ADL.

Several samples can be deposited simultaneously on the same substrate. The superconductive effects appear to be unchanged by the type of construction used or the sequence of deposition of metals, says ADL.

According to Dr. Nicol, the phenomenon apparently can be harnessed to tailor the temperature at which a device will become superconductive. Another advantage he cites for the technique is that the pure metals involved are easier to work with than alloys, which may be relatively hard to vacuumdeposit.

Meeting Hears Evidence Backing Theories Of Bardeen, Cooper and Schrieffer

Many of the papers delivered at the conference reported work that supported the various theories of Professors Bardeen, Cooper and Schrieffer on the nature of superconductivity. The existence of energy gaps in superconductors, the dependence of the gaps on temperature position and field strength, and the possibly paired nature of electrons in superconductive materials were all discussed at the meeting, which was attended by virtually all the top superconductivity experts in the Western countries.

One of the highlights of the conference was a report by Dr. Naebauer, of Herrsching, Germany, on the measurement, for the first time, of the flux quantization unit in a superconducting ring. The unit was given as 4 x 10-7 gauss cm². The measurement, which constitutes one of the few direct observations of a quantum effect, supports the theoretical prediction that flux in a superconducting ring occurs in discrete units. The fact that the units are discrete was said to raise the possibility that devices may be built eventually in which the quantized nature of flux in a superconducting ring may be harnessed to count or to transduce.

Also at the conference, J. E. Kunzler, Bell Telephone Laboratories, reported that ductile alloys of niobium-zirconium appear to be the most promising superconductive materials for magnets with field strengths in the 80-to-100-kilogauss range, while the characteristics of niobium-three tin in wire-like form appear to be suitable for fields of at least 200 kilogauss.

Dr. Kunzler added that the prospects for material with electrical and magnetic characteristics capable of still higher fields appear bright.

Which AC/DC digital voltmeter should you buy?

... seven questions to help you decide

1. Is it reliable, dependable?

A rather general question, and one you often get rather general answers to. But with such an important consideration, you should get answers like these:

The stepping switches in the KIN TEL 502B AC/DC digital voltmeter are guaranteed for two years. KIN TEL can make this guarantee because it operates stepping switches conservatively, driving them with DC (as in telephone service) at a rate somewhat below their peak speed. This gentler drive gives the 502B a longer life, makes it capable of more sensitive measurements, eliminates the need for stepping switch adjustments or other maintenance, and greatly reduces down time.

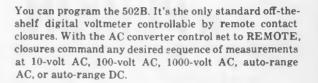
When servicing is ultimately needed, KIN TEL-trained personnel in 22 different maintenance shops throughout the country are prepared to put your 502B in factory condition with minimum delay.

Each 502B is manufactured on a true production-line basis. KIN TEL has used this method in building over 10,000 "standard-cell-accuracy" instruments, instruments known for their consistent, trouble-free performance.

2. Does it have automatic range selection for AC and DC?

Auto-ranging is a convenience. It makes your job a little easier, a little surer. It permits unattended operation with a printer to record voltages on the range giving the best resolution.

The KIN TEL 502B has it.


3. Does it have a single-plane readout?

A single-plane readout reduces reading errors. Each number is displayed individually. There are no superimposed outlines of "off" digits. You can read the numbers as easily from the side as from the front.

The KIN TEL 502B has a single plane readout.

4. Can you program it?

A programable instrument is a more useful instrument. It can be used with a printer for unattended checkout of missile components, quality control of specific items, and other automated measurements.

5. Will it over-range on both Ac and DC?

A loaded question, perhaps, since the KIN TEL 502B is the only digital voltmeter on the market with AC and DC over-ranging. But this is an important feature, not just an extra one.

The 502B displays 4 complete digits plus a 5th overranging digit (0 or 1). This 5th digit gives ten times more resolution at the often-measured decade points (1,10,100 volts) than 4-digit voltmeters that lose a digit changing from .9999 to 1.000. This means you get the useful accuracy of a 5-digit voltmeter over a large part of the measurement range while retaining the stability, reliability, and price advantage of a 4-digit instrument.

6. Does it offer the highest accuracy?

Of course, none of the features listed so far are worth a dime if you can't depend on what the instrument tells you. So let's be specific:

With the 502B, DC measurements are accurate to within .01% of reading \pm one digit. AC accuracy is the highest in the industry — within 0.1% of reading or \pm 3 digits (0.03% of full scale) for signals between 30 cps and 10 kc up to 10.000, 100.00, or 1000.0 volts on the respective range scales. With manual or programed ranging, this same accuracy is maintained up to 15.000 or 150.00 volts for signals between 50 cps and 7 kc.

This accuracy is maintained by a constant and automatic calibration of the metering circuit against an unsaturated mercury-cadmium standard cell.

7. Is it worth what it costs?

The KIN TEL $502B \cos \frac{4245}{245}$, and is delivered from stock. Compare it – what it does and what it costs – with any other AC/DC digital voltmeter. We think that when you do, the 502B will rate the same answer on this question that it has on the other 6: yes.

Write direct for complete details on this exceptional voltmeter. Representatives in all major cities.

5725 Kearny Villa Road, San Diego 11, California • BRowning 7-6700 CIRCLE 5 ON READER-SERVICE CARD

<u>NOW!</u> A REMARKABLE, NEW 0-40 volt @ 500 ma DC POWER SUPPLY THE ONLY POWER SILPP **AVAILARIF COMBINING THESE 20 FEATURES:**

Model TVCR04(1-05

- 1. Voltage Regulation: ±.01% or ±2 mv
- 2. Current Regulation: ±.02% or ±50µ amp
- 3. Remote Voltage Programming: Full-range 0-40 v Factory calibrated @ 100 ohms/volt ±.25%
- 4. Remote Current Programming: Full range 15-500 ma Factory calibrated @ 1 mho/ampere ±1%

5. Voltage Limiting: Continuously adjustable 0-42 v

- 6. Current Limiting: Continuously adjustable 0-600 ma
- 7. Remote Voltage Sensing 8. Parallel Operation 9. Series Operation
- 10. Vernier Voltage Adjust: 5 my resolution
- 11. Vernier Current Adjust: 50µ amp resolution
- 12. Transient-Free 13. Short-Circuit Proof
- 14. Extremely Fast Response: 25 µ sec
- 15. Low Ripple: 500µ volts (voltage regulation mode) 50µ amps (current regulation mode)

16. Convection Cooling 17. Portable 18. Regulation Mode Switch 19. Master-Slave Operation 20. Excellent Long-Term Stability

Additional Specs AC Input: 105-125 v, 10, 47-420 cps, 0.5 A ■ Max. Ambient Temp.: 45 °C ■ Meters: Dual Scale 0-50 V.DC, 0-600 ma Dimensions: 51/4" H, 8" W, 9" D-adapter to mount two in 19" rack ■ Weight: 15 lbs. (approx.) ■ Finish: Gray per MIL-E-15090B

PERKIN SALES REPRESENTATIVES PHOENIX, ARIZ.

Brooks-Feeger Assoc. 34-A E. First St. Scottsdale, Ariz WH 6-2111

SALT LAKE CITY, MTAH

Brooks-Feeger Assoc. 253 Rio Grande, Rm. No. 5 EL 9-2427

SAN DIEGO 4. CALIF.

Instruments for Measurements 2420 University Ave. JU 3-1972

SAN FRANCISCO, CALIF Cerruti & Assoc. P. O. Box 509 116 Cypress St. Redwood City, Calif. EM 9-3354

Boning Field - Rm. 108 PA -9000

DeWitt (Syracuse), N. Y. GI 6-0220

WASHINGTON, D. C. & MARYLAND

echanical

Products Markham Ed. Agincourt, Ont., Canada AX 3-7011

Geo. H. Sample & Son (Electronics) Pty. Ltd.

Belram Electronics 43 Ch. De Charlerol Brussels, Belgium

Sample House 17-19 Anthony St. Melbourne C.I. Australia

Gawler-Knoop Co. 8732 Flower Ave. Silver Spring, Md JU 5-7550

WICHITA, KAN. Design & Sales Eng. Co. 400 N. Emporia Wichita, Kan.

CAN2DA

Elect om Products

AUSTRALIA

FI 4138

BELOUM

38.12.40

ISBAEL

66890

FRANCE

SPAIN

SWEDEN

Megex 105, Quai Branly

Paris 15, France Seg. 36-93

ATAIO Ingenieros A. Aguilera No. 8 Madrid, Spain 23 27 42

NEW ZEALANO

NEW ZEALAND Geo. H. Sample & Son (Electronics) (N. Z.) Ltd. Box 3250 431 Mount Albert Rd. Mount Roskill, S. 1. Auckland, New Zealand 89-4 39

SEATTLE, WASH

ST. LOUIS 5. MO Cesign & Sales Eng. Co 7603 Forsyth Blvd.,

SYRACUSE, N. Y. D-B Assoc. P. O. Box 284

Rm. 304-06 PA 1-6403

Testco

ALBUQUEROUF M. M. Breeks-Feeger Assoc. 5510 Domingo Rd., N.E AM 8-1724 ANGOLA, IND.

Law Instrument Co. Box 95 217 & 8101-R ATLANTA S, GA. E. G. Holmes & Assoc. 4969 Roswell Rd., N.E.

BL 5-6660 BALTIMORE, MD. Gawler-Knoop Co. 807 E. Seminary Ave. Towson 4, Md. EN 9-3151

CHICAGO 25, ILL.

Salfro & Assoc. 5209 N. Kimball Ave. JU 8-0905 CLEVELAND, ONIO

Electro Sales Assoc. 281 E. 216th Euclid 23, Ohio RE 2-7444

DALLAS 20. TEXAS Wallace Assoc. P. O. Box 13203 FL 7-7080

DAYTON 20, DHIO Electro Sales Assoc **Oabel Station Box 143** CH 4-5551

> BENVER, COLO. Brooks-Feeger Assoc 3041 S. Broadway Englewood, Colo. SU 1-7375

BES MOINES, IOWA Design & Sales Eng. Co. 2702 41st Pl. BL 5-4584

DETROIT 24, MICH. Electro Sales Assoc. 15324 Mack Ave. TU 6-2280

> GREENSBORD, M. C. E. G. Holmes & Assoc 440 W. Market St. Suite B-1 BR 2-0855

INDIANAPOLIS, IND. Law Instrument Co. P. O. Box 27062 ST 7-0009

KANSAS CITY 8, MO. Design & Sales Eng. Co. 2600 Grand Ave GR 1-1640

Eastronics Ltd. 48 W. 48th St. New York 36, N.Y. CO 5-8323 LAWRENCE, MASS. Richard D. Frink Assoc. 46 Amesbury St. MU 3-3252 ISRAEL Eastronics Ltd. P. O. Box 2554 Tel Aviv, Israel

I DS ANGELES, CALIF. Instruments for Measurements 3455 Cahuenga Blvd., Suite F

Hollywood, Calif. HO 9-7294 MINNEAPOLIS, MINN.

Northport Eng., Inc. 1729 Selby Ave. St. Paul 4, Minn. MI 6-2621

NEW YORK CITY AND NORTHERN NEW JERSEY Gawter-Knoop Co. 178 Eagle Rock Ave. Roseland, N. J. N.Y. Tele, DI 4-2997 Roseland Tele, CA 6-4545

ORLANDO, FLA. E. G. Holmes & Assoc 1220 Edgewater Dr CH 1-2128

Erik Ferner AB Box 56 Bromma, Sweden B7 04 40 PHILADELPHIA, PA. Gawler-Knoop Co. 835 Glenside Ave: Wyncote, Pa. Phila, Tele, WA 7-1820 Wyncete Tele, TU 4-8805

CIRCLE 7 ON READER-SERVICE CARD

NFWS

2.2-Gc Transmitter **Due for Telemetry**

Details Are Described at Mil-E-Con Along With Data on High-G System

DETAILS of one of the first transmitters under development for the new 2.2-Gc telemetry band were disclosed last week in Washington, D. C., at the Fifth National Convention on Military Electronics (Mil-E-Con). Also described were a high-g telemetry system said to be capable of withstanding accelerative forces of more than 150,000 g.

The transmitter, designed by Radiation, Inc., of Melbourne, Fla., will contain only solid-state components and a voltage-tunable magnetron. The device is intended for use in satellites, where it is to transmit simultaneously a number of phase-coherent carriers for a special measurement program.

Typical power output is to be 10 w for a 33-w anode power input. The transmitter will weigh 40 lb and measure approximately 17-1/2 by 8 by 5-3/4 in.

Because the magnetron must generate discrete, phase-coherent carriers, its anode voltage will be modulated by a vhf power amplifier. The frequency of this all-solid-state stage will determine the frequency separation between the carriers. Thus, says Radiation, Inc., modulation of the anode voltage will provide a frequency modulation of the magnetron center frequency. A phase-lock servo loop will provide frequency stabilization.

Magnetron Amplifier to Have Efficiency of More Than 40 Per Cent

The amplifier that will provide power to modulate the magnetron will have an efficiency of more than 40 per cent, according to the company. It will be driven by a vhf crystal oscillator. Power will be supplied by a separate package in which magnetic amplifiers and regulating circuitry are to produce efficiencies ranging from 69 to 81 per cent for input voltages ranging from 30 to 22 v. respectively. The magnetron supply voltage of 2.000 v is to be regulated over 0.2 per cent from 0 to 75 C.

Use of the 2.2-Gc telemetry band is expected to produce more stable frequencies for space communications than the 216-235-mc band now being used.

6

High-G Telemetry System To Aid Projectile Speed Study

The high-g telemetry system described at the Mil-E-Con meeting is intended to aid study of the ionized shock layer generated by projectiles traveling at hyper velocities.

The airborne portion of the system is packaged as a 1.5-lb projectile and is designed to be fired down an instrumented range into an oncorring narrow uhf beam transmitted at 8.5 and 11 Gc. A video crystal detector in the package receives the pulsed signal, which, after amplification frequency, modulates a 60-mc oscillator in proportion to the amplitude of the incoming signal. A 60-mc signal is then telemetered via diplexed antennas through the solid metal shell of the projectile to range receivers.

The project, described by Essad Tahan of Sylvania Electronics Systems, Waltham, Mass., is being conducted as a joint effort of Sylvania and the Canadian Armament Research and Development Establishment.

To withstand 150,000 g's for several milliseconds, the telemetry package contains special components. Transistor cases were opened up and filled with an epoxy resin, a special microwave diode had to be developed, and the entire assembly had to be potted and reinforced in a glass-cloth laminate.

Microminiature Timer for Arming Programs Uses Micram Technique to Handle 370 W

Among the equipment on display was a 14oz digital arming program timer designed by Diamond Ordnance Fuze Laboratories, Washington, D.C. It was said to be the first operating device using the Micram microminiature packaging technique developed by Cleveland Metal Specialities Co., Cleveland, in cooperation with several large electronic companies. In this technique standard microminiature parts are densely packed on photoetched circuitry. The timer shown was said to be packed to a density equivalent to 300,000 components per cu ft.

The modularized unit, intended for use in missiles, includes a clock, timer, and readout and switching sections. It is said to have no moving parts. The clock uses a 24point, 8-kc quartz-crystal oscillator having a 10-cps output and an accuracy of 10 msec.

Aggregate power-handling capacity of the power-switching circuitry of the timer is 370 w says Cleveland Metal, which built the unit for DOFL. The company reports that the unit has been test flown successfully. It was developed under the Copperhead program. Cost of the unit is said to be in the \$750-1,000 range.

BULOVA DC REFERENCE SOURCE

Whenever you need voltage and power "regulation" for instrumentation purposes, especially transducer circuits, the new Bulova DC Reference Source assures maximum reliability.

In this Bulova double stage Zener model, regulation is accomplished by controlling the base voltage of a series power transistor (Q1). With the first Zener across input, the voltage changes of unregulated source are attenuated. The second Zener acts as a voltage reference for feedback amplifier stage (Q₃)

Potentiometer connected to the base of the high beta transistor (Q3) allows the voltage on the arm of potentiometer to be compared with the reference voltage across reference Zener, and then the resulting voltage error being amplified and applied to the base of power transistor (Q1).

A third transistor (Q_2) is inserted to regulate the voltage of the input so that this is virtually non-existent (plus/minus

1 my under all conditions).

In this circuit the output voltage follows the relation $V_0 = V_0$ $(\frac{\hat{R}_1}{R_2} + 1)$. It is evident that the circuit has to provide a voltage gain.

Obviously, looking to the equation, this supply can operate over a wide range of output voltage by changing the multiplier ratio $\frac{R_1}{R_2}$

The Zener control current automatically changes with output voltage so that the control voltage amplifier absorbs the difference. Reduced number of components achieve optimum performance with high reliability using thoroughly silicon solid state devices. The small size 11/2" square Ly 134", permits this unit to fit in any system which requires a DC reference source.

For additional data on frequency controlled components, write Bulova Electronics, Woodside 77, N.Y. CIRCLE & ON READER-SERVICE CARD

RFI Studies Leading to Important Design Shifts

New Requirements to Bar Square Pulse Modulation For Radar; Stiffen Other Equipment Requirements

RADICALLY new designs for radar and other military equipment will be demanded soon by the Defense Dept. in the light of its attack on radio frequency interference. The new specifications will eliminate in future equipment rectangular-pulse modulation of radar and many present antenna designs. This was disclosed at the Third Annual Symposium on Radio Frequency Interference in Washington, D. C.

First set of specifications to near completion is a revised radar standard prepared by the Joint Frequency Allocation Board of the Joint Chiefs of Staff. Sufficient data for composing a tight, practical standard have already been gathered. The requirements of the standard will reflect latest state-of-the-art techniques and component designs.

The standard will specify stricter control of radar fundamental frequencies and improved selectivity, dynamic range, sensitivity of radar receivers. It will also re-

'Thermal Circuit' Removes Heat in Miniature Modules

H INTS on how to design "thermal circuits" which represent solid-state (no fans) solutions to heat removal in miniature module packaging were given in a paper presented before the IRE Production Group, June 14 and 15 in Philadelphia.

The paper explained how miniature circuit modules had been mounted on a heatconductive ceramic board which provided an efficient heat removal path from the modules to a heat sink. The concept behind this type of packaging according to the paper is that with extreme miniaturization the designer may have to pay as much attention to the thermal "circuits" as he has in the past paid to the electrical ones.

The authors, Gerald Kriss and Louis Po-

laski of General Electric Co.'s Space Vehicle Dept., Philadelphia, showed how their design used the thermally conductive but electrically insulating ceramic board to integrate the heat removal, circuit interconnection, and module support functions into one solution. In a space vehicle application they said that the board would be attached to the side of the vehicle.

A beryllium oxide ceramic board was chosen for its known combination of high thermal and low electrical conductivity. Kovar studs were inserted into the 0.06-in thick board to transfer module lead heat and provide electrical connections from the module to the board's circuits. The board's circuits consisted of moly-manganese screened on and fired then copper plated. Electrically oversized 0.06-in. module lead wires were used to carry out part of the heat.

The modules themselves were epoxy-potted in two stages. First, a high thermal conductivity silver-flake-loaded epoxy was used around the transistor cases (which were purposely located close to the board for shortest thermal exit path of their heat). Then a less thermally conductive but more electrically insulative alumina-loaded epoxy was used for the rest of the module.

The authors pointed out that ceramic boards of this type might be the only solution for rf or high-voltage microcircuits where proximity to conventional metallic heat removal surfaces cannot be tolerated.

Beryllium oxide board 3-in. square by 0.06-in. thick was used for the thermal link between the modules and the heat sink which would be clamped on one edge. Kovar studs were weld points for the module leads of nickel-plated copper.

Slice through module shows how two heat flow exit paths are provided out of module. The transistors are embedded in a high-thermal-conductivity silver-flakeloaded epoxy (lighter color) which is later epoxybonded to the ceramic board. Also, the leads are extra thick to conduct heat out to the Kovar studs.

Modules assembled on ceramic board. Thermocouples at hot and cold spots of modules showed that the board provided as good a thermal conduction path between the modules and heat sink (not shown) as if the modules were attached directly to the heat sink. Transistor case—heat sink drops were 6 to 8 F.

quire reduction of out-of-band modulation components and will place limits or. frequency emissions.

To meet these requirements certain changes in design will have to be made. Thus, there will be a decrasing use of magnetrons, particularly at lower frequencies. It is anticipated that klystrons will be used in their place.

Rectangular pulses will no longer be permitted for radar modulation. Instead, there will be a shift to sine-cosine, cos² or gaussian pulses which do not cause emissions remote from the fundamental.

Antennas will have to be constructed with greater precision in order to limit off-frequency responses, spill-over, backside emission, etc. Also, there will be a need for high-power waveguide and transmission line filters to limit the transmitter emission to the tightly specified frequency bands, and in addition to limit receiver susceptibility.

Also disclosed at the Symposium was the progress made in the Department of Defense's Electromagnetic Compatibility Program. The major effort of the Program is currently devoted to establishing a Joint Analysis and Prediction Center in Annapolis, Md. This Center, being organized by the Armour Research Foundation, is charged with devising methods for predicting the electromagnetic environment at given geographic areas. To do this it will need data on environmental conditions and equipment emission characteristics (spectrum signatures).

A first test of the possibilities of prediction will be made in the San Diego area, one of the worst areas for electromagnetic interference in the country according to RFI specialists. Environmental data for the area have already been collected. Most of the spectrum signatures are, however, still to be gathered.

Armour is currently selecting a mathematical model for the project. Several models are being reviewed, including ones developed by Melpar, AMF, Georgia Tech, and Jansky and Bailey. Also yet to be chosen is the computer in which the information will be processed. Both the STRETCH and IBM 7090 units are said to be under consideration.

It is anticipated that data will be collected by February of 1962, and the processing can begin. The Analysis and Prediction Center at Annapolis will be ready for occupancy by January of that year.

CIRCLE 9 ON READER-SERVICE CARD

ABSOLUTE MAXIMUM RATINGS

OWER DIBBIPA

Storage Temperati	ire					. ,				 •	•	_	•	5	te	+	100	°C
Collector Voltage,	VcB						*						• •		•	-2	1 10	lts
Collector Voltage.	VCES -							 					• •			-21	9 ve	lts.
Collector Vollage.	VCEO -				•									•		-1	5 ve	lts
Collector Current.																		
Total Device Dissi	paties	(0	2	5	Ç				à				i,			+ +1	50 (BW

ELECTRICAL CHARACTERISTICS (@ 25° C)

Characteristics	Conditions	Min.	Max.	
Collector Cutoff Current,				
ICBO	V _{C8} = -50		3	μа
DC Current Amplification	VcE = -0.5v			
Factor, hrg	Ic = -50 ma	35		
DC Correct Amplification	Vce = -0.5v			
Factor, hrg	lc = -10 ma	50	300	
Collector Saturation Vollage.	Ic = -10 ma			
VCE SAT	l _B =0.5 ma	.050	0.140	volt
Bass Isput Voltage,	fc = -10 ma			
Vec	$i_{\rm H}~\simeq-0.5$ ma	0.25	0.35	velt
Nole Storage Factor.			1	
8's	le = -2.5 ma		100	
Gais Bandwidth Product.	Vce = -10v			
fr	IE =6ma	150		mc

Immediately available in quantities 1-999 from your Philoo Industrial Semiconductor Distributor PHILCO 2N2048 GERMANIUM SWITCH T0.9

Philco's new 2N2048 is the forerunner of a broad line of 150 mw MADT switching transistors. The new power dissipation capability is available in uniformly reliable high-speed units, at surprisingly low cost, via proven MADT automation.

NEW LINK

Intended for both saturated and non-saturated logic circuits, the Philco 2N2048 gives you more than comparably priced transistors—more drive per transistor more switching speed per dollar invested in transistors, and the extra capability of extra power dissipation for applications that require it.

Philco 2N2048 features include minimum h_{FE} of 50, maximum V(SAT) of 0.14V., minimum f_T of 150 mc., and tightly controlled V_{BE} ranging from 0.25V. minimum to 0.35V. maximum. For complete information write Dept. ED7561.

in Industry's Strongest Chain of Transistor Performance

KEY to stability

through silicone oil filled resistors for Autonetics' Polaris and Hound Dog programs

Key Resistor's KC Series — the only Silicone Oil filled hermetically sealed precision film resistors available today provide the ultimate in long term life and stability. Autonetics uses Ke's KC Series in the amplifier-electronic control motor assembly in a closed loop servo system of the Autonetics-produced Polaris FBM submarines' Ship's Inertial Navigation System (SINS) and the inertial autonavigators for the GAM-77 (Hound Dog) missile.

Reliability and quality are the keynote today for technical data.

with Key. Key has developed a new, automatic flux-free sealing technique for their KC Series — no flux is used in soldering operations. The unique oil-filled construction results in excellent heat dissipation characteristics — minimizes effects of severe overload. 100% X-ray inspection and seal testing assures maximum reliability and stability under all environmental conditions.

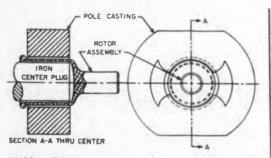
Make Key your one source for the finest in precision resistors of all types. Write today for technical data.

NEWS

Two Advances Cited At Automation Parley

Digital Speed-Control System And Lightweight Motor Outlined

Robert Cushman Technical Editor


TWO PRACTICAL developments were described last week in Boulder, Colo., at the otherwise highly theoretical Joint Automatic Control Conference: a computercompatible digital speed servo and a very light, compact, powerful motor.

The digital speed-control system has been developed by Westinghouse Electric Corp. for large industrial process drives, such as those used in papermaking. It was explained that in papermaking not only is 0.1 per cent regulation desired for each drive but also, with the paper strips being driven through the mill at 3,000 ft per min by a 4,000-hp system, it is important to be able to synchronize the speeds of all the drive motors along the process.

The digital speed servo has both position and speed loops. It includes all the features normally associated with analog servos, such as time-limit acceleration and vernier speed adjustment. Therefore it can be used directly in place of existing analog systems, Westinghouse says.

As might be expected, pulse rates from a master crystal reference are compared with feedback pulse rates from a digital tachometer connected to the output drive. A coincidence canceler had to be added to prevent ambiguity when pulses arrive at the same time.

Under steady operating conditions all of the control signal is provided by the position loop error. The position loop integrates the feedback and reference pulses from the coincidence pulse canceler by feeding them into the up and down lines of a high-speed reversible binary counter. The level of this counter is then determined by the respective pulse rates between reference and feedback, going up for one and down for the other. This level is then converted into an analog current level by a weighted decoder, and the level of this current is used to

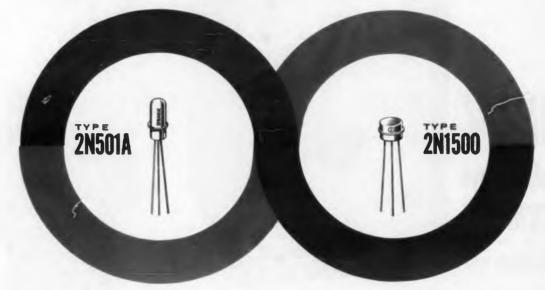
Highly efficient dc motor design is expected to produce 7-1/2 hp inside a 5-in. diam and with a weight of only 11 lb. Commutation would be by silicon-controlled rectifiers mounted in rotor and switched optically by phototransistors.

drive the power amplifier.

The speed loop, on the other hand, operates on the difference of the pulse rates. Pulses from the reference and feedback lines are made to cancel each other alternately.

Part of the significance of this type of system, according to Westinghouse, is that it facilitates digital computer control of large industrial processes.

The very lightweight, compact motor is a dc actuator, designed as a replacement for hydraulic actuators on missiles. The motor, said to be equally as efflicient but more reliable than its hydraulic counterpart, was described by Prof. George C. Newton and R. W. Rasche of the Massachusetts Institute of Technology.


The design, which so far is only on paper, indicates a power rate of 550 kw per sec (7-1/2 hp) with a 5-in.-diam motor weighing only 11 lb. It will therefore be competitive with hydraulic actuators for missile applications, the authors contend. Hydraulic actuators have so far been much more powerful and efficient than any electric actuator, but they are less reliable because of their susceptibility to dirt.

The key to the MIT improvement is a highly efficient molded aluminum-epoxy-fiberglass rotor with integral conductors. It would be molded as a hollow shell and supported at one end, so that a ferromagnetic plug could be used inside the rotor to increase the flux. The rotor would be evaporatively cooled by a sprayed freon fog.

Other papers at the conference covered most of the topics of current interest to theoreticians in the automatic control field: optimization schemes including "cost" feedback loops, adaptive techniques, nonlinear control and statistical control.

The conference was held last Wednesday through Friday, June 28-30.

Proven ultra-high-speed transistors by **SPRAGUE**

the reliable switching characteristics of the field-proven 2N501A are now available in the TO-9 case to meet equipment needs

The well known slim-line Type 2N501A Micro-Alloy Diffused-base Transistor, extensively used in critical military, industrial, and commercial applications, is now joined by the 2N1500, in its low-height TO-9 case.

The electrical characteristics of the 2N1500 are identical with those of the 2N501A. Both of these ultra-high-speed switching transistors will operate reliably at speeds up to 20 megacycles. They feature excellent high frequency response at very low collector voltages, a characteristic made possible by the placement of the collector in the diffused region of the base. A precise, controlled-etching process makes it possible to maintain high frequency characteristics down to saturation voltage. Therefore, you can realize all the advantages of direct-coupled circuitry with no loss in switching speed.

 Sprague MADT* Transistors are now manufactured with cadmium junctions, providing an extra safety margin. Effects of high temperature, the major destructive factor with transistors, are minimized by the superconductivity of cadmium, assuring cooler operation and greater reliability.

• For prompt application engineering assistance, write Commercial Engineering Section, Sprague Electric Co. Concord. N.H.

• For complete engineering data sheets, write Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Mass.

*Trademark of Philco Corporation

SPRAGUE COMPONENTS

TRANSISTORS CAPACITORS MAGNETIC COMPONENTS RESISTORS

INTERFERENCE FILTERS HIGH TEMPERATURE MAGNET WIRE PULSE TRANSFORMERS PIEZOELECTRIC CERAMICS PULSE-FORMING NETWORKS

CERAMIC-BASE PRINTED NETWORKS PACKAGED COMPONENT ASSEMBLIES FUNCTIONAL DIGITAL CIRCUITS

CIRCLE 11 ON READER-SERVICE CARD

Sprague and '@' are registered trademarks of the Sprague Electric Co 11

model 317

NEW

Ballantine VTVM measures

300 µV to 300 V

Price: \$445. (With probe \$495)

0

D.

at Frequencies 10 cps to 11 Mc

• Use as a stable 60 db wideband ampifier, 2.5 volts max. output Cathode follower probe has a voltage responding type • Effect of line transcript of the tra

VOLTS

is average responding type. Effect of line transients nil Available in portable model shown or in 19 inch rack version.

S: FICAT

VOLTAGE: 300 µV to 300 V. FREQUENCY: 10 cps to 11 Mc (As a null detector, 5 cps to 30 Mc).

ACCURACY: % of reading anywhere on scale at any voltage. 20 cps to 2 Mc - 2%; 10 cps to 6 Mc - 4%; 10 cps to 11 Mc - 6%.

SCALES: Voltage, 1 to 3 and 3 to 10, each with 10% overlap. O to 10 db scale. PUT IMPEDANCE: With probe, 10 megohms shunted by 7 pF. Less probe, 2 megohms shunted by 11 pF to 24 pF. INPUT IMPEDANCE:

AMPLIFIER: Gain of 60 db \pm 1 db from 6 cps to 11 Mc; output 2.5 volts.

POWER SUPPLY: 115/230 V, 50 - 400 cps, 70 watts.

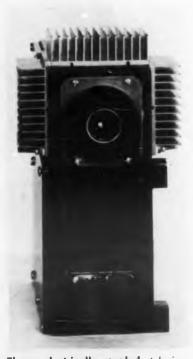
DIMENSIONS (Inches): Portable, 13 h x 71/2 w x 91/2 d. Rack, 81/4 h x 19 w x 81/2 d. WEIGHT: 17 pounds, portable or rack models. Approximately 34 pounds shipping weight.

Write for brochure giving many more details

Since 1932 -

INE LABORATORIES INC. BALLANT

Boonton, New Jersey


CHECK WITH BALLANTINE FIRST FOR LABORATORY AC VACUUM TUBE VOLTMETERS. REGARDLESS OF YOUR REQUIREMENTS FOR AMPLITUDE. FREQUENCY, OR WAYEFORM WE HAVE A LARCE LINE. WITH ADDITIONS EACH YEAR ALSO AC OC AND DC AC INVERTERS, CALIBRATORS, CALIBRATOR WIDE BAND AT AMPLIFIC DIRECT-REGNING CARACITANCE METER, DTHER ACCESSORIES, ASK ABOUT OUR LABORATORY VOLTAGE STANDARDS TO 1000 MC

LINCLE 12 UN REAUER-SERVICE CARD

Hot TV Cooled Thermoelectrically

Westinghouse Units Improve Operation of Vidicon Tube In Closed-Circuit System at Steel Plant Soaking Pits

Ł

Thermoelectrically cooled television camera (with front cover removed). At top are the heat-radiating fins of the cooling elements, which enclose the vidicon. Motors and pulleys at the bottom control the focus and aperture of the lens.

Cooling element consists of three Westinghouse WX-814 bismuth telluride units connected in series. Note common hot and cold plates and single set of input terminals.

THERMOELECTRIC coolers improve performance of the vidicon tube in a closedcircuit television system that monitors the operation of cranes at a steel mill.

Operating in a 140-F ambient, three Westinghouse WX-814 coolers, with a total cooling capacity of 5 w, maintain the 7735 vidicon at 90 F and dissipate heat generated by filaments and deflection and focus coils. Without this cooling, operation of the temperature-sensitive tube would be marginal.

The television system was built by General Precision Laboratory, Pleasantville, N.Y., for soaking pits at a large steel mill.

Because of the high ambient temperature and the camera's remote location (at the end of a traveling crane), thermoelectric elements were selected as the most practical cooling method.

"We couldn't use forced air at 140 F for cooling, and losses in long piping runs would have required about 250 w of mechanical refrigeration for the job," explained Murray Altman, designer of the camera. "Instead we provide the cooling directly at the point of use."

The three thermoelectric units, strapped together to provide common hot and cold junctions, draw about 16 amp and are 50 per cent efficient.

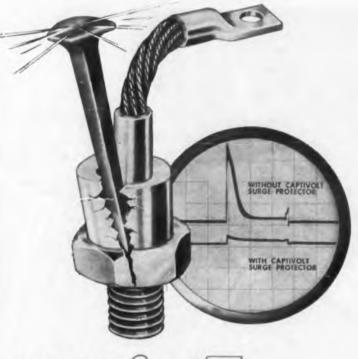
Reliable Operation Is Essential Because of Camera's Inaccessibility

The rest of the camera, however, is cooled by forced air at 140 F and operates at 160 F. Reliable operation despite elevated temperatures is particularly important because of the camera's relatively inaccessible location and a need for maintaining uninterrupted three-shift operation at the mill.

Much of the circuitry normally contained in a television camera was moved to more accessible boxes elsewhere on the crane. Only a 10-mc video preamp strip was retained in the camera. Frame grid tubes, tantalum

Interior of camera. Left to right: aperture and focus controls, 10-mc video preamp strip, and vidicon tube enclosed within the thermoelectric coolers.

capacitors and military components rated for 125 C service are used throughout. Modular construction is employed to speed maintenance.


The camera also includes motor-driven focusing and lens-aperture controls. The aperture controls respond automatically to the video signal level and adjust the lens diaphragm and vidicon target voltage to accommodate an illumination range of more than 20,000 to 1. This readily covers the brightness range encountered between the white-hot soaking pit and the rest of the mill.

Other components of the television system, including the camera control unit, power supplies and voltage regulators are also designed for high-temperature operation. About one-third of the circuitry, including the synchronizing generator and portions of the power supply, are transistorized. Silicon units are specified.

The control unit is enclosed in a watertight case to exclude the ultrafine steel dust emanating from the soaking pits. Cooling is by means of a heat exchanger employing ambient air at 140 F.

Video signals are transmitted from the mobile crane to monitor viewers by slotted line and antenna probe arrangement.

Five of these television systems have been delivered by General Precision Laboratory. Initial units already installed are reported to be operating around the clock for several months between aervicing.

DON'T LET VOLTAGE "SPIKES" DESTROY YOUR SILICON RECTIFIERS

VICKERS CAPTIVOLT

stops surges...saves cost!

Transient high voltages—often of unpredictable magnitude—can destroy silicon power rectifiers. Even derating rectifier cells doesn't always guarantee protection.

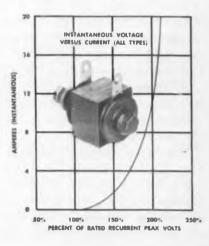
But here's something that does protect against destructive surges: the Vickers Captivolt, a single simple component that provides rectifier reliability, assures extended life, and eliminates expensive derating. Yet the Captivolt itself is a dependable low-cost unit easily installed by connecting across the transformer secondary supplying AC to the rectifier. Captivolts consume less than 5 watts steadystate... but capture and absorb unpredictable surge energy up to 12,000 watts with 0.05 micro-second response.

Under normal steady-state operation, the Captivolt appears as a very high resistance shunted by capacitance. The capacitance protects by absorbing very fast transient wave-fronts. When a critical voltage level is reached, the normal high resistance falls abruptly to a very low value, shunting long-duration destructive voltage transients. Resistance decreases logarithmically with voltage increase. In summary, Captivolts (1) provide rectifier reliability and extended life, and (2) often save more than \$50 initial rectifier cost with a Captivolt cost of less than \$3.

P.S. Captivolts protect *other* circuits, too: transistors, controlled rectifiers, meters, solenoids, relays, etc.

SAMPLES IN STOCK AT MOST DISTRIBUTORS—CALL OR WRITE FOR COMPLETE INFORMATION. (Bulletin 3135-1)

VICKERS INCORPORATED


Division of Sperry Rand Corporation

ELECTRIC PRODUCTS DIVISION 1841 LOCUST STREET - SAINT LOUIS 3, MISSOURI CIRCLE 13 ON READER-SERVICE CARD

STANDARD TYPES AND RATINGS

Type No.	Rated Peak Volts, Recurrent Continuous Duty Across AC Line	Rated RMS Volts, Continuous Duty Across Sinusoidal AC Line	¹ Maximum Dissipation, Average Watts	Price Each (Not)
SP102	25	17.5	10	\$1.80
SP105	50	35	12	1.95
SP110	100	70	14	2 20
SP115	150	105	17	2.50
SP120	200	140	20	2.70
SP125 SP130	250 250 300	175	23 26	2.95
SP140	400	280	32	3.70
SP150	500	350	38	
SP160	600	420	44	4.65

Convection cooling. If fan cooling at velocity of 600 CFM is employed, multiply watts by two (2).

 ARNPRIOR, ONTANIO (REP)
 37. LOUIS. CEntral 1-5830 (REP 1 JAEkson 1-487)

 OBTON IREP. LEdar 5-685
 LOS ARGLIES. 5Proces 2-3651

 CHICAQO, JUneard 8-125
 LOS ARGLIES. 5Proces 2-3651

 CLEVELAND, Clanor 1-355
 REW YORK City.

 DETROIT, FOrmsond 8-1307
 WASHINGTOR. D. C.,

 DETROIT, FOrmsond 8-500
 EXecutive 3-2650

Milestones in Engineering

When the sword was still the basic personal weapon, military swordsmen from all parts of the world converged upon Toledo, Spain, for the finest swords—the famed "Toledo blades."

Soldiers whose very lives depended as much upon the quality of their weapons as upon their personal skill would settle for nothing less than the very best.

This first application of the principle of "Mil Spec" buying has been refined and tightened until, today, components intended for use in military equipment must be designed and built to meet the most exacting specifications, pass the most demanding tests, satisfy the most rigid requirements.

North Electric "240" 4 pole and "260" 6 pole sub-miniature sealed relays are precision designed and engineered to obtain maximum switching circuits in minimum space and meet specifications of MIL R-5757D at a breakthrough in price!

These heavy duty relays, which incorporate precision balanced rotary motors to withstand shock tests of 50 Gs and vibration tests of 1000 cps at 10 Gs, have a life expectancy in excess of 100,000 operations at rated load.

Continuous testing for over two years assures superior performance and maximum reliability in rigorous airborne and missile and industrial applications. For detailed specifications, write

ELECTRONETICS DIVISION NORTH ELECTRIC COMPANY 157 S. MJ.RKET ST., GALION, OHIO CIRCLE 14 ON READER-SERVICE CARD

NEWS

Foxboro Ends Exclusive Pact With RCA for Control Systems

Foxboro Co. of Foxboro, Mass., has severed its exclusive arrangement with Radio Corp. of America for joint development of industrial computer-control systems. The decision was announced in a statement that Foxboro has sent to its customers.

Foxboro, an instrumentation manufacturer, said it had become "sobered" by the many large technical and economic roadblocks to computer control of industrial processes. The company had been cooperating with RCA's Industrial Computer Div. in nearby Needham, Mass.

Now, Foxboro says, it will be freer to pursue more immediate, smaller-scale analog computer solutions to industrial automation.

Another reason for the Foxboro move, industry sources speculate, is that the company will now be in a position to sell its "sub-loop" equipment to other digital process-control computer manufacturers.

New National Group to Study Business Data Processing

A National Committee for Business Data-Processing is being formed under the sponsership of the Association for Computer Machinery. Its fields of interest will include business theory, operations research, management gaming, simulation and forecasting techniques, as well as the more usual business data-processing functions.

The association said that the formal organization of the committee would be completed at its September meeting in Los Angeles.

Mobile Ground Surveillance Radar Will Be Modified AN/TPS-25

The Army's first mobile radar set for ground surveillance is under development by Hazeltine Corp. as a modification of the shelter-housed AN TPS-25 set now in operational use.

Conversion of the Hazeltine-built AN/ TPS-25 for use on tracked amphibious armored personnel carriers will involve three alterations: replacement of fixed antenna by a 25-ft telescoping antenna mast for "quick look" capability at longer range; a smaller plotting board; and addition of an ac to dc converter for the 115-v, 400-cycle, gas-driven power unit.

The telescopic antenna will enable the set to detect moving targets at a range of more than 11 miles. At closer range, the set has the capability of distinguishing between the walk of a man and a woman up to a mile away.

Device Measures Blood Volume With Improved Speed and Accuracy

A new instrument, the Volemetron, measures blood volume—or the volume of plasma or red cells—quickly and accurately. Regarded as a boon to surgeons, the instrument obviates the usual guess-work as well as the inaccurate method of weighing blood-soaked sponges (which does not account for blood on the patient or on the drapes).

Accurate to within 5 per cent, this transistorized product of Atomium Corp., a Waltham, Mass., affiliate of Perkin-Elmer Corp., uses well-known dilution-monitoring techniques. A measured amount of radioactive iodine is injected into the blood and allowed to circulate for a few minutes. After it is diluted in the blood stream, a sample of the isotope-diluted blood is placed in the Volemetron. A calibrated meter shows the blood volume in about a minute.

The instrument should help surgeons avoid the dangers of over or under-replacement of lost blood. While the Volemetron can be used by relatively unskilled personnel, earlier isotope-dilution measurements required highly skilled personnel with very complex instrumentation. The instruments were normally located in laboratories remote from operating rooms.

Transistorized digital circuitry counts output of scintillation counter which gives indication of radioactivity in patient's blood sample. Accurate measurements are first made of background radiation in patient's blood before he receives injection of measured dose of radioactive iodine.

ELECTRONIC DESIGN . July 5, 1961

performance, checking out aircraft instrumentation or testing radar subassemblies - the chances are you need a convenient source of 400 cycle power. With MRC's portable frequency changer, 400 cycle service is within plug-in distance of the nearest 115 volt AC outlet. There's no more need to depend on limited availability of built-in 400 cycle utility service - where troublesome line fluctuations can disrupt sensitive tests. The solid state converter weighs only 30 lbs., yet provides 100 VA's of well regulated sinewave power-free of distortion and unaffected by line or load changes. Its static, solid state design assures cool, efficient and silent operation. For added flexibility, it's packaged for either bench or rack mounting. Let this versatile unit assure you of dependable 400 cycle service...anywhere!

MRC MODEL 46-130-0 SOLID STATE FREQUENCY CHANGER. PRICE \$545. (slightly higher with case and meters)

SPECIFICATION.	S
Input	105 to 130 VAC, 47 to 1000 cps, 2.5 amps max.
Output	115 volts, 400 cps, single phase sinewave; voltage adjustable from 105 to 130 volts, 100 volt amp continuous duty, 150 volt amp intermittant duty
Output Regulation	±1% over full line or load change: response time 30 milliseconds (nominal)
Harmonic Distortion	less than 2% under severest line and load conditions
Frequency Stability	±14% over max. line and load change, or over ambient temperature range (0" to 40°C
Frequency Setting	400 cps ±0.5%
Synchronization	25V RMS, 2000 ohms impedance: range 390 to 410 cps
Dimensions	3½" x 19" x 10%" max. depth (for standard rack mounting)
Weight	approx. 30 lbs. (rack mounting); 37 lbs. (bench mounting)
Design Features	automatic short circuit and overload protection; printed circuits. optional extras: easy vision panel meters and console case

Write today for descriptive literature

MAGNETIC RESEARCH CORPORATION

CIRCLE 15 ON READER-SERVICE CARD

Milestones in Engineering

When the sword was still the basic personal weapon, military swordsmen from all parts of the world converged upon Toledo, Spain, for the finest swords—the famed "Toledo blades."

Soldiers whose very lives depended as much upon the quality of their weapons as upon their personal skill would settle for nothing less than the very best.

This first application of the principle of "Mil Spec" buying has been refined and tightened until, today, components intended for use in military equipment must be designed and built to meet the most exacting specifications, pass the most demanding tests, satisfy the most rigid requirements.

North Electric "240" 4 pole and "260" 6 pole sub-miniature sealed relays are precision designed and engineered to obtain maximum switching circuits in minimum space and meet specifications of MIL R-5757D at a breakthrough in price!

These heavy duty relays, which incorporate precision balanced rotary motors to withstand shock tests of 50 Gs and vibration tests of 1000 cps at 10 Gs, have a life expectancy in excess of 100,000 operations at rated load.

Continuous testing for over two years assures superior performance and maximum reliability in rigorous airborne and missile and industrial applications. For detailed specifications, write

ELECTRONETICS DIVISION NORTH ELECTRIC COMPANY 157 S. MI.RKET ST., GALION, OHIO CIRCLE 14 ON READER-SERVICE CARD

NEWS

Foxboro Ends Exclusive Pact With RCA for Control Systems

Foxboro Co. of Foxboro, Mass., has severed its exclusive arrangement with Radio Corp. of America for joint development of industrial computer-control systems. The decision was announced in a statement that Foxboro has sent to its customers.

Foxboro, an instrumentation manufacturer, said it had become "sobered" by the many large technical and economic roadblocks to computer control of industrial processes. The company had been cooperating with RCA's Industrial Computer Div. in nearby Needham, Mass.

Now, Foxboro says, it will be freer to pursue more immediate, smaller-scale analog computer solutions to industrial automation.

Another reason for the Foxboro move, industry sources speculate, is that the company will now be in a position to sell its "sub-loop" equipment to other digital process-control computer manufacturers.

New National Group to Study Business Data Processing

A National Committee for Business Data-Processing is being formed under the sponsership of the Association for Computer Machinery. Its fields of interest will include business theory, operations research, management gaming, simulation and forecasting techniques, as well as the more usual business data-processing functions.

The association said that the formal organization of the committee would be completed at its September meeting in Los Angeles.

Mobile Ground Surveillance Radar Will Be Modified AN/TPS-25

The Army's first mobile radar set for ground surveillance is under development by Hazeltine Corp. as a modification of the shelter-housed AN, TPS-25 set now in operational use.

Conversion of the Hazeltine-built AN/ TPS-25 for use on tracked amphibious armored personnel carriers will involve three alterations: replacement of fixed antenna by a 25-ft telescoping antenna mast for "quick look" capability at longer range; a smaller plotting board; and addition of an ac to de converter for the 115-v, 400-cycle, gas-driven power unit.

The telescopic antenna will enable the set to detect moving targets at a range of more than 11 miles. At closer range, the set has the capability of distinguishing between the walk of a man and a woman up to a mile away.

Device Measures Blood Volume With Improved Speed and Accuracy

A new instrument, the Volemetron, measures blood volume—or the volume of plasma or red cells—quickly and accurately. Regarded as a boon to surgeons, the instrument obviates the usual guess-work as well as the inaccurate method of weighing blood-soaked sponges (which does not account for blood on the patient or on the drapes).

Accurate to within 5 per cent, this transistorized product of Atomium Corp., a Waltham, Mass., affiliate of Perkin-Elmer Corp., uses well-known dilution-monitoring techniques. A measured amount of radioactive iodine is injected into the blood and allowed to circulate for a few minutes. After it is diluted in the blood stream, a sample of the isotope-diluted blood is placed in the Volemetron. A calibrated meter shows the blood volume in about a minute.

The instrument should help surgeons avoid the dangers of over or under-replacement of lost blood. While the Volemetron can be used by relatively unskilled personnel, earlier isotope-dilution measurements required highly skilled personnel with very complex instrumentation. The instruments were normally located in laboratories remote from operating rooms.

Transistorized digital circuitry counts output of scintillation counter which gives indication of radioactivity in patient's blood sample. Accurate measurements are first made of background radiation in patient's blood before he receives injection of measured dose of radioactive iodine.

performance, checking out aircraft instrumentation or testing radar subassemblies - the chances are you need a convenient source of 400 cycle power. With MRC's portable frequency changer, 400 cycle service is within plug-in distance of the nearest 115 volt AC outlet. There's no more need to depend on limited availability of built-in 400 cycle utility service – where troublesome line fluctuations can disrupt sensitive tests. The solid state converter weighs only 30 lbs., yet provides 100 VA's of well regulated sinewave power-free of distortion and unaffected by line or load changes. Its static, solid state design assures cool, efficient and silent operation. For added flexibility, it's packaged for either bench or rack mounting. Let this versatile unit assure you of dependable 400 cycle service... anywhere!

MRC MODEL 46-130-0 SOLID STATE FREQUENCY CHANGER. PRICE \$545. (slightly higher with case and meters)

Input	105 to 130 VAC, 47 to 1000 cps. 2.5 amps max
Output	115 volts, 400 cps, single phase sinewave; voltage adjustable from 105 to 130 volts; 100 volt amp continuous duty, 150 volt amp intermittant duty
Output Regulation	$\pm 1\%$ over full line or load change; response time 30 milliseconds (nominal)
Harmonic Distortion	less than 2% under severest line and load conditions
Frequency Stability	±12 over max. line and load change, or over ambient temperature range (0" to 40°C
Frequency Setting	400 cps ±0.5%
Synchronization	25V RMS, 2000 ohms impedance; range 390 to 410 cps
Dimensions	3½" x 19" x 10%" max. depth (for standard rack mounting)
Weight	approx. 30 lbs. (rack mounting); 37 lbs. (bench mounting)
Design Features	automatic short circuit and overload protection; printed circuits. optional extras: easy vision panel meters and console case

Write today for descriptive literature

MAGNETIC RESEARCH CORPORATION

3160 WEST EL SEGUNDO BOULEVARD . HAWTHORNE, CALIFORNIA CIRCLE 15 ON READER-SERVICE CARD

THIS TAPE PLAYS BACK THE SOUND OF MONEY...

and does it to the tune of more than 1,600 tape-fed AMPin-cert Pin and Socket terminations per hour . . . sometimes even more, depending on operator dexterity! Lower cost, semi-skilled labor can easily handle not only the automatic termination of leads but also the loading of AMPin-cert Connector blocks. A simple insertion tool helps fill connector cavities faster than a dentist trying to get away for an afternoon of golf. When you take these advantages and add the controlled pressure crimp backed by AMP's twenty years of experience in the field of solderless termination techniques . . . you have connector performance of maximum reliability at the lowest installed cost in the industry. This is the winning combination you get with AMPin-cert Connectors . . . available in all sizes and configurations. Get all the facts! Write today!

AMP INCORPORATED GENERAL OFFICES: HARRISBURG, PENNSYLVANIA AMP products and engineering assistance are available through subsidiary companies in Australia - Canada - England - France - Molland - Italy - Japan - Mexico - West Germany

CIRCLE 16 ON READER-SERVICE CARD

NEWS

Styrofoam Antenna Can Be Built on Site

New Radar Dish Reported to Weigh Fifth as Much as Metal Parabolics

A LIGHTWEIGHT radar antenna of styrofoam planks is designed to be machined and assembled directly at the radar site.

It is, its developer says, only one-fifth the weight of metal parabolic dishes. Transportability and lightness are further enhanced by a novel antenna positioning device that employs a series of hydraulic jacks to steer the antenna.

The new dish was developed by Sylvania's Electronic Defense Laboratories of Mountain View, Calif. To construct it, one joins styrofoam planks into an egg-crate structure using urethane foamed-in-place seams. A computer-controlled milling machine, designed by Sylvania then automatically machines the reflector to the desired shape. For high-precision reflectors, a solid layer is first foamed-in-place over the cellular structure.

The reflective surface is then machined from this layer and is metalized by application of aluminum foil or copper mesh. A final layer of foam is then applied to protect the reflective surface and to receive the mounting plate.

Milling Maching Also Shapes Front End of the Antenna

The front of the antenna is also contoured by the milling machine. This provides a slight amount of beam focusing, but, more important, it streamlines the antenna to reduce wind drag by as much as two-thirds over conventional parabolic reflectors, the company says.

The feed system is buried in the foam for rigid support. The outer surface is then covered with a white fiber-glass skin for weather-proofing and to minimize solar heating.

The computer-controlled milling machine that shapes the antenna consists of lightweight, readily disassemblable parts that can be conveniently transported to the fabrication site. Antennas up to 20 ft in diameter can be fabricated with the present machine. Equipment and techniques to make antennas up to 50 ft across are being developed.

Foam antenna is examined by its developer, Mack Suliteanu, engineer at Sylvania's Electronic Defense Laboratories. Semi-transparent fiber-glass mesh covering the face of the antenna forms a base for a subsequently applied outer plastic coating. Note feed horn buried in the foam. The antenna is supported by a series of hydraulic jacks that can be programed to impart any desired tracking motion to the antenna.

The computer itself is an analog instrument, programed to fabricate a given contour by inserting pre-calculated constants into a series of potentiometers.

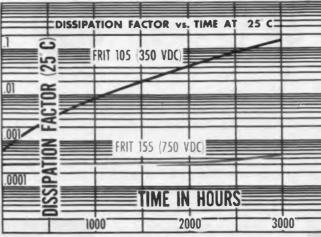
A hydraulic positioning system replaces the conventional system of mounting rings, bearings and driving motors. The antenna is supported by four tripods, each consisting of three hydraulic jacks. Programed changes in the length of each leg, controlled by a digital computer and hydraulic servo steer the antenna through any desired search or track pattern.

Operation of the positioning system has been confirmed by manual programing, but the computer required for automatic operation is still in development.

This arrangement results in an unusual antenna motion. In a 360-deg horizon search, for example, the antenna rolls on its edge through a full circle. In overhead tracking, the reflector merely flips over between opposite horizons.

The hydraulic positioner is "much faster" than conventional antenna drives, according to a Sylvania spokesman. This is due to the inherently fast response of the hydraulic system and to the reduced inertial and gyrating loads of the foam antenna with its unusual rolling motion.

The antenna and positioning system were developed under a contract from the Army Signal Corps.


VITRAMON, INC. Develops Dramatically Improved Dielectric Material

ASSURE 10 TIMES BETTER PERFORMANCE AFTER A LIFE TEST 10 TIMES MORE DEMANDING!

CIRCLE 17 ON READER-SERVICE CARD

Three years of intensive product research, and the desire to impose a more exacting quality control during production, have resulted in the development of a new porcelain "frit." Completely formulated and produced within our own plant, this high quality dielectric material, utilized for the improved "VY" Porcelain Capacitors, has produced dramatic results.

NOTE: Offered Exclusively For MIL-C-11272B Requirements.

C Vitromon, Inc.

When tested at 125 C with more than twice previous test voltages applied (750 VDC vs 350 VDC and 450 VDC vs 200 VDC) and with the time extended to 2000 hours (more than 10 times as stringent a test) post-test dissipation factor is .002 max, and insulation resistance is greater than 100,000 megohms (10 times better)!

INCORPORATED Box 544, Bridgeport 1, Conn.


BEFORE YOU BUY ANY MORE TRANSISTORS,

MAKE SURE THEY HAVE CERAMETERM* BASES. (GERAMIC-METAL TERMINAL) THIS WILL SOLVE THREE TOUGH PROBLEMS

1. Soldering heat that causes ordinary glass to crack. 2. The problem of glass insulation cracking through shock or impact. 3. The problem of leakage due to glass insulation failure when bending or adjusting pins. Cerameterm terminals were specially developed for super reliability on severe high-performance applications for transistor bases, diodes, rectifiers, relays, and capacitors. Exceed Mil-Specs. Can take 11,000 psi shearing stress without failure. Provide vacuum-tight seal. Ideal for encapsulated devices.

OTHER APPLICATIONS FOR PROBLEM-SOLVING CERAMETERM TERMINALS

Above are a few examples of how Cerameterm is applied to a wide variety of electronic components. We also design to specific needs in such problem areas as transformers, condenser banks, relays, and similar high-performance electronic equipment.

*Trademark for Bendix' practically indestructible, alumina-insulated ceramic-metal terminal assembly. Red Bank Division

CIRCLE 18 ON READER-SERVICE CARD

NEWS

Nationwide Data Loop Speeds Airline Work

1,000-Station Centralized System

Uses Both Fast and Slow Bit Rates

A NATIONWIDE data-processing loop linking all ticket agents of United Air Lines to a central computer has been put into operation.

The loop has:

• A main trunk in which the data are transmitted at 1,000 bits per sec.

• Secondary lines, which feed into the main trunk at 75 bits per sec. Once the information reaches the main trunk, however, it is speeded to 1,000 bits per sec.

The system handles flight reservations from 1,000 stations around the country to a central processing terminal in Denver. Agents in major cities—about 80 per cent of all the agents—are linked directly to the fast trunk, and those in smaller cities to the slower lines. Use of the slower lines permits a considerable savings in operating costs.

The loop, called Instamatic, was designed for United Air Lines by the Teleregister Corp. of Stamford, Conn. Data communication equipment was constructed by North American Philips Co., Inc., of New York City.

Central Units Include Trunk Terminal, Computer and Memory

The electronic equipment in the system includes a Central Trunk Terminal in Denver and a series of concentrators along two loops running east and west from Denver. Each loop is composed of two telephone trunk lines that carry traffic at the rate of 1,000 bits per sec in opposite directions.

A central processing computer and memory storage unit is also in Denver.

The central terminal links the trunk lines with the processor. Equipment at the terminal regulates information going into and out of the computer, handles the reception and transmission of traffic through the trunk lines, and detects errors in messages by applying horizontal and vertical parity checks.

Messages concerning such information as availability of space on a certain flight are generated and received at agent sets. These

Map of western portion of Instamatic flight-reservation network shows (1) Concentrator, (2) High-speed trunk line, (3) Low-speed line, (4) Distant Central Office Transceiver, (5) Keyset Multiple Selector, and (6) Agent set.

sets also contain printing units on which reservation confirmation information and cancellations are printed.

At the concentrators, messages are handled and operations carried out at the rate of 54,000 per hr, Philips says. The concentrators along the trunk lines continually read the addresses of all messages passing through the circuit, determining whether they are for agent sets under their control or are to be forwarded. And they check them for errors.

11 Switching to Spare Unit Possible in Case of Failure

Concentrators also answer test and supervisory messages from the control center in Denver. Finally, if necessary, they can switch traffic to a spare unit should there be a mechanical or electrical failure.

Theoretically ticket agents can receive information about the availability of seats on a given flight up to a year in advance. The average elapsed time from the moment an agent on the main trunk sends the question until he receives an answer from the central terminal is 1 sec. Response time on the secondary lines is slightly longer, owing to the time lag in storage and retransmission. Here it is about 5-1/2 sec.

Engineers have included in the system provisions for redesign and the addition of other services. These could include maintenance of passenger records, fare computations, flight-crew schedules, and anything else to insure a high operational speed.

ANOTHER BENDIX FIRST! 120-VOLT, 110°C. DAP TRANSISTORS

Exclusive! Available with Cerameterm* terminals that set new reliability standards

Here's important news for you if you're a design engineer. New Bendix 10- and 25-amp DAP[®] diffused alloy power transistors switch high currents *in microseconds*. They also offer low input resistance for increased circuit stability over a temperature range from -60° C. to $+110^{\circ}$ C.

That's not all you get with these new DAP transistors. They're also available with new Cerameterm (ceramic-metal terminal) bases specially developed by Bendix for extra reliability in severe applications demanding high performance.

Only Bendix brings you all these advantages ... plus many more ... that open the door wide to new design ideas and applications. Write for full details.

Extra quality at no extra cost with Bendix Semiconductors

Bendix Bulletin

Terre	Abs	oluto Mazi	imum Rati	Electrical Characteristic				
Type Number	Voe Vde	Ada	P.	1)	Gurran	et gain (@.fc		
2M 1073 2N 1073A 2N 1073B *BC 1073 *BC 1073 *BC 1073A *BC 1073B	40 80 120 40 80 120	10 10 10 10 10	60 60 60 60 60 60	110 110 110 110 110 110	20-60 20-60 20-60 20-60 20-60 20-60 20-60	5 Adc 5 5 5 5 5		
8 1274 B 1274A B 1274B *BC 1274 *BC 1274A *BC 1274A	40 80 120 40 80 120	10 10 10 10 10	60 60 60 60 60 60	110 110 110 110 110 110	50-120 50-120 50-120 50-120 50-120 50-120 50-120	5 Add 5 5 5 5		
**2N 1430	100	10	60	110	20 min. 30-120	10 Add		
2N 1651 2N 1652 2N 1653	60 100 120	25 25 25	100 100 100	110 110 110	20 min. 20 min. 20 min.	25 Add 25 25		

NEW BENDIX SEMICONDUCTOR PLANT situated on 118 acres at Holmdel, N.J., is devoted exclusively to research, engineering, and monufacture. A big reason you can continue to look to Bendix Semiconductors for extra quality at no extra cost,

> SEMICONDUCTOR PRODUCTS Red Bank Division

Main Office: South Street, Halmdel, N.J., —Phone: SMadyside 7-5400—TWX Halmdel NJ 1388 • New England Office: 114 Waltham, Lexington, Mass., —Phone: Volunteer 2-7650, Detroit Office: 12950 West & Mile Rd., Detroit 37, Mich, —Phone: JOrdan 6-1420 • Midwest Office: 2N565 Yark Rd., Elmhurst, III, —Phone: BRawning 9-5050—TWX Elmhurst III 393. West Coast Office: 117 E, Providencia Ave., Burbank, Calif. —Phone: VI. 9-3961—TWX BR8 9808 • Canadian Affiliate: Computing Devices of Canada, P.O. Box 508, Ottawa 4, Ont. Export Office: Bandix International, 205 E, 42nd Street, New York 17, NY, —Phone: MUrray Hill 3-1100—TWX NY 1-4800. Stoching Distributors—Contact nearest sales office for name of local distributor.

CIRCLE 19 ON READER-SERVICE CARD

FM and analog testing, RF or closed circuit data storage with Mincom reliability – all in the day's work for this superb, all-purpose general instrumentation system: the Mincom G-100 Magnetic Tape Recorder / Reproducer. Direct response is 200 cps to 300 kc at 60 ips. FM response at 60 ips is dc to 20 kc (broadband), dc to 10 kc (standard). Fourteen tracks in one rack. All-transistored card system record / reproduce modules, interchangeable for FM or analog. Greater dynamic range, built-in calibration, lower power requirements. Interested? Write for complete specifications.

WHERE RESEARCH IS THE KEY TO TOMORROW

MINCOM DIVISION MINNESOTA MINING AND MANUFACTURING COMPANY

2049 SO. BARRINGTON AVE., LOS ANGELES 25. CALIFORNIA - 529 PENN BLDG., 425 13th STREET N.W., WASHINGTON 4, D.C. CIRCLE 20 ON READER-SERVICE CARD

NEWS

Twofold Rise Seen In Consumer Sales

Executive Predicts an Industry Volume of \$21 Billion by 1970

CONSUMER electronic sales will double in the next decade—from \$10.2 billion last year to \$21 billion by 1970--W. Walter Watts, chairman of RCA Sales Corp., told the June 19-20 Chicago Spring Conference on Broadcast and TV Receivers.

Among the new products to be offered in the near future, he said, are multiplex adapters to receive the newly approved fm stereo broadcasts. More than 75 per cent of present fm stations have indicated they will be broadcasting stereo within a year or two.

Color TV, in which RCA pioneered, for many years, Mr. Watts said, is now included in the marketing plans of almost all major TV manufacturers. Closed-circuit TV for industrial uses and educational TV offer additional sales areas for the TV-set supplier, he added.

Other prospects listed by the electronic executive included transistorized TV sets, electronic air-conditioners and home videotape recorders. These await clever ideas by design engineers, he said.

Various approaches to the design of multiplex adapters were discussed at the conference. Major manufacturers are ready to supply adapters that are either self-powered or obtain power from the basic fm tuner or amplifier chassis, it was indicated. Several one-tube and two-tube schemes have been devised, it was brought out, but most manufacturers prefer to field-test their units rather than risk consumer drop in interest following hasty, premature product delivery.

The radio-TV industry has long awaited

Table 1. Per Cent Tube Failures by Year and by Circuit Application

		Ju	ly to J	uly To	est	
Circuit			1956 1957			
Horiz. Defl. Amp.	25	34	17	10	10	5
Vert. Defl. Amp.	25	29	16	3	5	1
Damper VHF Amp. UHF Osc.	33 22 —	17 18	97	15 12 14.6	9 10 7.4	15 5 12.4

Table 2. Per Cent Tube FailureBy Cause and Year

Cause	1955	1956	1957	1958	1959	1960
Open Heater	1.86	1.775	1.025	1.17	0.73	0.725
Shorts	2.02	1.17	1.19	0.935	1.08	0.83
Arcing	-	0.72	0.22	0.56	0.34	0.76
Gas	1.50	0.82	0.29	0.14	0	0
Other (20 items)	1.35	1.37	1.20	1.5	1.45	1.3

stereo fm approval as a boom to a saturated and dropping TV market, conferees said privately. Pessimists were wary of rushing into production and delivery without adequate field experience.

Strides in receiving tube reliability were outlined by a company applications engineer, E. H. Boden. In 1954, he said, Sylvania began a reliability study TV receiver tubes. The tubes were operated in various manufacturers' sets under 130-v ac input for 50 min, turned off for 10 min and then turned on again. This cycle was repeated each hour for 1,500 hr. Mr. Boden noted that 59 per cent of the tube failures occurred in five circuits: horizontal-output, damper, verticaldeflection-amplifier, rf-amplifier and uhfoscillator.

From 1955 to 1960, he said, horizontalamplifier failure was reduced from 34 per cent to 5; vertical-amplifier from 29 per cent to 1. and rf-amplifier from 22 to 5 per cent (see Table 1 and 2). Tubes exhibiting no failure after 1500 hr at 130-v ac cycling, increased from 38.5 to 72.5 per cent. From tests comparing the life of single and double-section tubes used in similar applications, Mr. Boden reported, Sylvania concluded that no serious difference in reliability was noted.

Pigeon Wired for VHF Tracking

Miniature vhf transmitter riding piggyback on this homing pigeon was used to track the bird for 25 miles. The 140-mc, crystal-controlled transmitter, powered by four mercury cells, delivers about 1 mw to a modified half-wave dipole antenna. The 5-oz transmitter package was developed by American Electronics Laboratories for an animal homing instinct study of the Office of Naval Research.

THE TUNG-SOL LINE OF HIGH-POWER GERMANIUM TRANSISTORS

■ WIDELY INTERCHANGEABLE ■ MORE FLEX-IBLE IN APPLICATION ■ UNIFORMLY RELIABLE For several years Tung-Sol has been manufacturing highpower germanium transistors to the industry's most exacting standards of electrical and mechanical reliability.

They have proved themselves efficient and fully reliable in countless installations, providing rugged, long-life performance for equipment in commercial and military use.

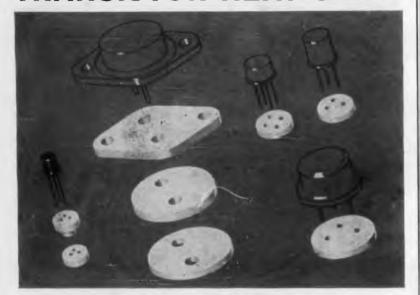
As further proof of peak performance, the fact may be cited that Tung-Sol's complete line of high-power transistors includes the JAN 2N174 and USA 2N1358, fully inspected and guaranteed to their respective MIL specifications.

The Tung-Sol line offers widest applicability in high-power amplifiers. DC-to-AC converters, DC-to-AC inverters, regulated power supplies, motor controls, servo amplifiers, relay drivers and high-power switches.

Designed for wide interchangeability, they may be specified for new, improved equipment. Their features of vacuumtight, copper-to-copper "Cold-Welded" sealing increase design flexibility and make them more reliable. Stud-mounted, single-end construction, with solid-lug terminals, simplifies installation in all chassis and allows sufficient heat-sink design. Ask your Tung-Sol representative for full technical details, or write: Tung-Sol Electric Inc., Newark 4, N.J. TWX:NK 199.

TUNG-SOL HIGH-POWER GERMANIUM TRANSISTORS

MAXIMUM RATINGS (25°C)					TYPICAL VALUES (28°C)				
TYPE	Vce Veite	Vce Volte	ic A	7j •0	HAX. ICBO Ma	hrs	fae ke	Ta Ta	
2N173	-80	-60	18	100	8	82	10	.8	
2N174*	-70	-80	18	100		87	10	.0	
2N174A	-70	-80	15	100		87	10	.8	
2N277	-40	- 40	16	100	8	62	10	.6	
2N278	-48	-80	18	100		82	10	.8	
2N441	- 40	-40	18	100	8	80	10	.8	
2N442	-48	-80	16	100	8	80	10	.8	
2N448	-60	-60	18	100		80	10	.8	
2N1089	-70	-80	16	100		62	10	.8	
2 N1100	-80	-100	18	100		87	10	.8	
2N1868*	-70	-80	18	100		87	10	.8	
2N1412	-80	-100	18	100		87	10	.6	
2N1070	-80 (1)	-100	18	100	4	29	10	.6	


TECHNICAL ASSISTANCE IS AVAILABLE THROUGH THE FOLLOWING SALES OFFICES: Atiants, Ga.: Columbus, Ohio: Culver City, Calif.; Dallas, Tax.; Denver, Colo.: Detroit, Mich.; Irvington, N.J.; Meirose Park, III.; Newark, N. J.; Philadelphia, Pa.; Besttle, Wash. In Canada: Abbey Electronics, Toronto, Ont. "Also Available in milliony versions.

TUNG-SOL

ELECTRONIC DESIGN . July 5, 1961

CIRCLE 21 ON READER-SERVICE CARD

NEW! "off the shelf" Line BERLOX TRANSISTOR HEAT SINKS

IF YOU USE TRANSISTORS ... a standard "Off the Shelf" Line of BERLOX beryllia heat sinks is available in JEDEC-TO Numbers: 3, 5, 8, 9, 11, 12, 16, 18, 33, 38 and 39. Extremely high thermal conductivity plus excellent dielectric properties offer these important advantages:

- Increased Transistor life and output
- Freedom from outgassing
- Extremely resistant to shock, vibration and moisture Infinite shelf life

٦ R I I Ì I ł l B I I

THERMAL PROPERTIES -Thermal Conductivity 0.5 cal/cm². sec.°C-cm

Thermal Expansion 5.8x10-*/*C

MECHANICAL PROPERTIES . Compression Strength 200,000 psi Tranverse Bending Strength 25,000 psi

DIELECTRIC PROPERTIES Dielectric Constant 1 mc 7.0, 10 mc 5.8, 8500 mc 6.0 Dielectric Loss Tangent 1 mc less than .0005, 10 mc less than .0005, 8500 mc .0008 Dielectric Strength-greater than 300 volts mil Electrical Resistivity-greater than 1015 ohm-cm

OTHER BERLOX beryllia STOCK ITEMS available include: Thermo-couple protection tubing, swagcable insulator beads, crucibles, combustion boats. Custom, precision fabricated components such as microwave windows, circuit substrates and insulators.

INATIONAL BERYLLI	A CORPORATION ue, Haskell, New Jersey
	e Technical Data on: (please check) ksOther
Name	Position
Company	
Street	
0.14	ZoneState

WASHINGTON REPORT

John J. Christie Washington Editor

A PREMIUM ON SPACE TALENT

The proposed all-out acceleration of the National Space Program puts NASA in the market for a wide range of professional and technical skills. Of particular concern to the agency is its need for personnel to fill key professional and administrative posts, carrying responsibilities for which industry is willing to pay from 25 to 100 per cent higher salaries.

NASA is now seeking a bigger allotment of grades eligible for salaries above the ceiling for career Government service. Its present authorization is for 290 such positions at salaries up to \$19,000, with 17 of them earmarked for a special top bracket of \$21,000. The agency has requested Congress to authorize 135 more "excepted" positions for a total of 425, of which 30 would be in line for the \$21,000 maximum. In order to hold key personnel, NASA would reserve some of the new salary authorizations for its present staff. But, many of the new posts would have to be filled from the outside.

The agency is currently engaged in a recruiting drive to fill some 500 jobs ranging from technicians to experienced scientists. Its campaign has included the college campuses, where last year NASA representatives interviewed 3,000 grads in competition with industry's talent scouts. In fiscal '62 a 4,000 increase in personnel is projected.

Industry's Space Work Load will increase sharply along with NASA'S, if, as seems likely, Congress goes along with the President's recommendation that the nation mount a crash program to gain undisputed leadership in lunar and planetary exploration. It will be primarily an R&D workload, with heavy demand for top-flight scientists.

Congress willing, the space agency's estimated expenditures in fiscal '62 will total an estimated \$1.7 billion for an increase of 43 per cent over the original budget submitted by the outgoing Eisenhower administration. Of this amount, almost \$1.3 billion is earmarked for R&D, with the man-in-space program getting the overwhelming share.

Space agency procurement officials estimate that at least 80 per cent of NASA'S R&D spending will be placed under contract with industry, the universities and other private organizations. These officials are now at work revising procedures in an effort to reduce time lags in selecting contractors and conducting contract negotiations.

AIR FORCE TO PUSH DATA AUTOMATION

Incentive type CPFF contracts have been used to a limited potential of data automation techniques is the Air Force decision to set up an office to coordinate and foster improvements in automated data-processing systems for both administrative and command and control functions.

The new activity, which will become operational Aug. 1 under the Air Force Comptroller's Office, will evaluate the data requirements and existing data-processing facilities of all administrative more precisely, to foster development of new system design concepts and to seek improvements through the re-engineering of existing facilities.

IN SEARCH OF COMPETITION

Top Defense Dept. officials have promised Congress an intensive new effort to curtail sole-source procurement, which is chiefly responsible for the fact that 60 per cent of military contracting is noncompetitive.

The growing complexity of military hardware and the frequent need for telescoping development and first-run production to shorten lead time inevitably have fostered single-source buying. But while award of first-run production to development contractors is considered a justifiable expedient in most cases, defense officials readily acknowledge that the services should seek competition for follow-on production.

Delayed Delivery of Technical Data and manufacturing drawings accounts for a good deal of the failure to shift promptly from singlesource to competitive buying. Thus the Pentagon intends to ride herd on procurement agencies to see that the Government gets the data to which it is entitled in time for competitive re-procurement. Contractors may be subject to financial penalties for failure to meet contract provisions on this score.

Such action, in turn, will require further steps to insure that the data ordered by the procurement agencies are adequate for re-procurement. Studies have indicated considerable laxity in specifying the Government's rights to data during contract negotiations.

In some cases, data are unavoidably incomplete because contractors withhold "proprietary" information. However, regulations defining such information are currently under review, and indications are that contractors will be subject to further restrictions on what they can claim as trade secrets.

Despite all efforts to correct deficiencies, some sole-source procurement will persist, even though adequate technical data and drawings are available, for the reason that quality cannot otherwise be assured.

NEW COST REDUCTION TACTICS

The Pentagon has instituted what amounts to an R&D program on contracting techniques. It is investigating all sorts of schemes to achieve tighter control of costs under the controversial cost-plusfixed-fee contracts, which now account for 42 per cent of military expenditures, compared with 24 per cent only five years ago.

CPFF contracts, like sole-source procurement, started as an expedient but rapidly became common practice owing to the difficulty of projecting costs for complex weapons systems and to the pressure for concurrent development and production.

Incentive type CPFF contracts have been used to a limited extent in an effort to capture the profit motivation and risk-taking inherent in fixed-price contracts. Defense officials now want to make greater use of incentive contracting. But they also want to provide a wider range of incentives and stiffer penalties, as well as more effective means of evaluating technical and cost performance.

Imaginative, If Nothing Else, is a proposed new form of incentive contract dubbed the "cost-plus-award-fee contract." It would provide that a board of assessors evaluate a contractor's technical and cost performance during the life of a contract and determine his exact fee on completion of the work.

Sprague type 73Z1 core-transistor DECADE COUNTERS

Sprague's Special Products Division, the largest and most complete facility in the magnetics industry, offers a simple yet versatile, low-cost yet reliable component for counter applications. Counting to speeds of 10 kc, the 73Z1 decade counter provides an output signal for every 10 input pulses, then resets in preparation for the next cycle. For higher counting, two or more counters may be cascaded. Typical characteristics are shown in the following table:

CHARACTERISTIC	INPUT	OUTPUT		
Amplitude Pulse Width	1.5 to 8 volts 1 µsec min.	6.5 volts min. 50 μsec nom.		
Impedance	100 ohms	20 ohms		

Utilizing two rectangular hysteresis loop magnetic cores and two junction transistors to perform the counting operation, the 73Z1 counter is encapsulated in epoxy resin for protection against adverse environmental conditions. It has five terminals $-B + (12v \pm 10\%)$, input, output, ground, and manual reset.

The 73Z1 decade counter is available as a standard item. However, "customer engineered" designs can be supplied when other counting cycles, speeds, and package configurations are required for special applications.

Other Special Products Division components for the digital equipment industry include: LOGILINE 5 mc/s digital circuits; 1 µsec access time memory; magnetic shift registers and logic components; computer pulse transformers; switching transformers; precision toroidal inductors.

For complete technical data or application assistance on the 73Z1 counter or other Sprague components, write to Special Products Division, Sprague Electric Co., 347 Marshall Street, North Adams, Massachusetts. SPRAGUE THE MARK OF RELIABILITY

CIRCLE 23 ON READER-SERVICE CARD

COMINCO ELECTRONIC MATERIALS

ULTRA-PURE METALS AND ALLOYS

ALUMINUM ANTIMONY ARSENIC BISMUTH CADMIUM GOLD INDIUM LEAD SILVER TIN ZINC

*

COMPOUND SEMICONDUCTORS

INDIUM ANTIMONIDE

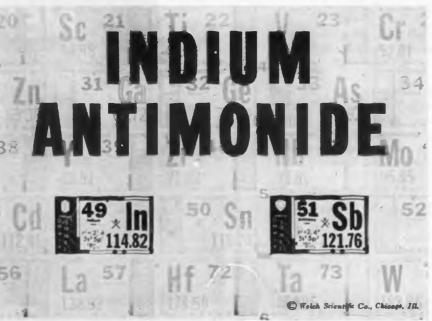
*

STANDARD FORMS

INGOTS BARS RODS RIBBON SHEET SHOT POWDER WIRE

*

PREFORMS


DISCS DOTS SQUARES SPHERES WAFERS WASHERS

*

CHEMICALS

SALTS SOLUTIONS

1507

When you specify COMINCO INDIUM ANTIMONIDE

you can get:

plus

plus

- Electron Mobilities up to 700.000 cm²/volt sec (78°K)
- Net Carrier Concentrations from 1014 to 1018 cm⁻³ (78°K)
- Single and Polycrystalline forms doped to your specifications
- Shapes as versatile as your needs circles rings rectangles bars — made to precise tolerances

SPECIAL PACKAGING

To prevent in-transit damage to electronic properties, ingots of Cominco Indium Antimonide are sealed in polyethylene and shipped in shockproof containers. Fabricated shapes are suspended in an inert liquid.

RESEARCH SERVICE

Our research and development program is continually expanding the range of Cominco Indium Antimonide products you can order. We invite your enquiries on advance specifications.

Contact COMINCO first for the widest range of high quality INDIUM ANTIMONIDE products available.

Write to:

COMINCO PRODUCTS, INC. ELECTRONIC MATERIALS DEPARTMENT Spokane, Washington 933 W. Third Ave. Phone: Riverside 7-7103 TWX: SP311 CIRCLE 24 ON READER-SERVICE CARD

NEWS

400-Cps Phase-Shift Standard Useful from 0 to 180 Deg

Designers at the National Bureau of Standards, Washington, D. C., have designed a phase-angle master standard said to be capable of measuring phase shift to within 0.01 deg at 400 cps. It can do this reportedly from 0 to 180 deg.

The instrument consists of 12 π -sections each of 14.6 deg, and three 4.3-deg π sections, plus switching arrangements that permit any combination of sections to be connected as a delay line. It was considered desirable, the bureau reports, to provide several different phase-shift steps and a continuously variable fine control.

The input to the delay line is used as part of an RC network that incorporates 10 capacitor steps, each giving 0.44-deg of phase shift.

According to NBS, all π -sections must be exactly adjusted to have the same characteristic impedance in order to prevent reflections and to make the phase shift put in by the RC circuit independent of the number of π -sections connected.

Similar phase-angle standards could be made for higher audio frequencies, but the upper limit in frequency would probably be about 20 kc, the bureau believes. At higher frequencies, reportedly, stray capacitance introduced by connecting and switching leads might prove troublesome. However, it might be feasible to use the same master standard over a 2-to-1 frequency range by readjustments on the π -sections and termination for each frequency.

Phase-angle master standard designed by National Bureau of Standards operates continuously from 0 to 180 deg at 400 cps with 0.01-deg accuracy. One of the designers, H. N. Cones, adjusts a mercury contact for a portion of π -section used as delay line.

CIRCLE 25 ON READER-SERVICE CARD

50

AMFLITE[®] Multi-Color Indicators and Switches

 Brilliant, shadow-free color in all light conditions
 Uniform light – no "hot spots"
 Up to 4 colors in one unit (choose from 6)

 Face may be engraved
 Bulbs easily replaced from front
 Adaptable to any panel thickness
 Suitable for military applications

	No 6V.	12V	24	Red. Green. Amber. Blue, Yellow. White	ENGRAVING
1000	1006	1012	1024		
Momentary 1100	0 1106	1112	1124		Up to
Maintained 1200	0 1206	1212	1224	Two colors furnished per unit - state which	two lines
Momentary 1300	0 1306	1312	1324		
Momentary 1400	0 1406	1412	1424	- state which	face
Momentary 1500	0 1506	1512	1524		- OCC

SERIES 7000 Amflite Illuminated Multi-Color Indicator	MODEL NO	LAMPS	PRICE	COLORS 6 available: Red, Green, Amber, Blue, Yellow, White	ENGRAVING \$1.50 per face
	7000	None	\$7.50		
4	7006	6-8V	\$8.25	Four colors furnished per unit-	Up to three
1.75*50	7012	127	\$8.25	state which	lines per
	7014	14V.	\$8.25	State winch	element face
3.00*	7028	28V	\$8.25		

AMERICAN MACHINE & FOUNDRY COMPANY 1101- North Royal Street - Alexandria, Virginia

Write today for further information and specifications

7 RELAY NEWS from Union Switch & Signal

Contact Redundancy in New UNION Crystal Case Relays

The UNION 2-pole double throw General Purpose Crystal Case Relay is designed to consistently meet the requirements of Mil-R-5757D and Mil-R-5757/10. Its essential features . . . from minimum size to optimum reliability . . . permit it to be used in aircraft, guided missiles, shipboard and ground control electronic equipment.

A unique torsion-wire armature suspension system and a rugged all-welded frame construction provide a high level of vibration and shock immunity. Contact redundancy, which assures reliability in dry circuit and higher level contact loads, is provided through the use of bifurcated contacts.

Available with 0.2" grid-spaced header or "S" type header, with various mountings, terminals, and operating voltages. Write for Bulletin 1064.

New 4-PDT-10-amp Relay Most Compact Rotary Type Available

This new durable relay is designed to meet the requirements of Mil-R-6106. It's a rugged relay featuring exceptionally sturdy terminals and husky contacts for high current applications. Glass-coated cylindrical contact actuators attached to the rotary armature provide square mating of contact surfaces, thereby assuring longer relay life. The balanced rotary armature provides maximum resistance to severe shock and vibration.

This small 4-PDT-10-Ampere relay is currently available with 115VAC and various DC operating voltages. Various mounting styles are provided. Write for bulletin 1069.

For additional information, write for Bulletin 1017 or call Churchill 2-5000 in Pittsburgh.

CIRCLE 26 ON READER-SERVICE CARD

Why UNION Relays Are So Denendable

There's a good reason why our relays are the standard for reliability. For years, we've been building tough, reliable relays for use in airborne and guided missile electronic equipment and similar vital applications where perfect operation under severe environmental conditions is mandatory.

Our engineers created a compact 6-PDT miniature relay with just three major assemblies . . . instead of a fistful of small parts. This was accomplished by using a balanced rotary-type armature that provided a maximum resistance to the severe shock and vibration environment of aircraft and guided missiles. The rotary principle of operation is utilized in all our relays.

We have a reputation for building reliable electronic components and we intend to maintain our tradition for building reliable relays. And we supply these quality relays in quantity. Stocks are now available for prototype requirements in New York, Pittsburgh, Dallas and Los Angeles.

Space Center Awards \$7 Million In Work Contracts in a Month

More than \$7 million in contracts were awarded in April by the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration, Huntsville, Ala. Manufacturers and Government agencies in 16 states and the District of Columbia shared in the awards.

Of the total, more than \$2 million in work went to industrial concerns in Texas; \$2 million to private and Federal groups in Alabama, Florida, Georgia and Tennessee; \$800,000 in California; more than \$1 million in Connecticut, Massachusetts, New Jersey, New York, Pennsylvania and Washington, D. C., and more than \$300,000 in Indiana, Illinois, Michigan, Ohio and Wisconsin.

The contracts to manufacturers ranged from \$2,083,832 to the Chance Vought Corp. of Dallas, Tex. — the largest single award — for 70-in. fuel and oxidizer tanks for Saturn; to \$5,065 to the Interelectronics Corp. of New York City for transmitters.

Epsco, Inc., of Cambridge, Mass., has announced receipt of a \$360,000 contract from the Goddard Space Flight Center in Maryland for three pulse-code-modulation receiving stations.

Million-Bit Computer Aids Navy

This real-time computer, designated AN/USQ-20V, collects, processes and evaluates naval tactical data in combat and recommends courses of action. The memory section contains 1 million bits of information. Thirty-bits, comprising a single word, can be drawn from any location in the memory in 2.5 μ sec. The computers are being produced by Remington Rand Univac, St. Paul, Minn., under a \$5,534,526 contract.

THE RAW MATERIALS OF PROGRESS

Big help in thinking small:

7 times more cooling power with FC-75 and FC-43!

For substantial space-saving, weight-saving reductions in the design of electronic equipment, look to 3M Brand Fluorochemical Liquids FC-75 and FC-43! Their heat transfer capabilities are outstanding. Since these fluids boil at 100° C. (FC-75) and 180° C. (FC-43), their heats of vaporization can be used to effect heat removal by at least seven times the rate of nonvolatile organic liquid coolants.

Getting down to cases: the heat removal capacity of FC-75 and FC-43 helped Hughes Aircraft designers to miniaturize the communications power unit (shown above) by a factor of six. For Raytheon designers, a transformer was reduced by 4 to 1 in volume and by 2 to 1 in weight, without impairment of performance or power output.

If you are designing in the electrical, electronics, missile or jet aircraft fields, look into the miniaturization help that the dielectric strength, limited solubility, thermal stability, and low pour points of FC-75 and FC-43 can offer. After reading the "Properties Profile," write for further information ...

on 3M Brand Inert Liquids FC-75 AND FC-43

These unique dielectric coolants possess unusual properties that can prove advantageous to the designer of electrical devices and instruments, as well as to the manufacturer. Increased range of operating temperatures, improved heat dissipation which permits miniaturization, and greatly increased protection from thermal or electrical overload are possible with their use.

FC-75 and FC-43 are non-explosive, nonflammable, non-toxic, odorless and non-corrosive. They are stable up to 750°F., and are completely compatible with most materials . . . even above the maximum temperatures permissible with all other dielectric coolants. Both are selfhealing after repeated arcing in either the liquid or vapor state.

ELECTRICAL PROPERTIES

	FC-75	FC-43
Electrical Strength	35KV	40 KV
Dielectric Constant (1 to 40 KC (a 75°F.)	1.86	1.86
Dissipation Factor (1000 cycles)	0.0005	0_0005

TYPICAL PHYSICAL PROPERTIES

	FC-75	FC-43
Pour Point	<-100°F.	—58°F.
Boiling Point	212°F.	340°F.
Density	1.77	1.88
Surface Tension (77°F.) (dynes/cm)	15	16
/iscosity Centistokes	0.65 min.	2.74
Thermal Stability	750°F.	600°F.
Chemical Stability	Inert	Inert
Radiation Resistance	25% change (@ 1 x 10 [®] rads	25% change @ 1 x 10 ⁸ rads

FC-75 and FC-43 have nearly equivalent heat capacities in the liquid and gaseous states.

For more information on FC-75 and FC-43, write today, stating area of interest to: 3M Chemical Division, Dept. KAP-71, St. Paul 6, Minn.

CHEMICAL DIVISION MINNESOTA MINING AND MANUFACTURING COMPANY ... WHERE RESEARCH IS THE KEY TO TOMORROW

CIRCLE 27 ON READER-SERVICE CARD

NEWS

Doppler Navigator on Way For All Aircraft Types

A versatile navigation system applicable to all types of aircraft including fixed-wing rotary, vertical/short take-off and landing, drones and airships is under development.

Called the Ryanav IV, the completely selfcontained unit is undergoing air tests in a DC-3 of Ryan Electronics of San Diego, the system's developer. The system is reported to provide "all-weather, automatic navigation and hovering, without radio aids, wind estimates or true air speed data."

The Ryanav IV, the company says, accommodates all speed ranges from -50 knots to +2,000 knots; all altitudes from 0 to 70,000 ft; drift velocities from 0 to ± 300 knots; velocities from -50 knots to +2,000; ground track from 0 to 360 deg, and vertical velocities to 60,000 ft per min.

Velocity error is less than 1/2 per cent and navigation positional error 0.7 per cent of the distance traveled, Ryan says. The hovering threshold is put at 1/4 knot. The use of pure continuous-wave techniques permits this accuracy to be achieved without altitude or attitude "holes," from take-off to landing, according to the company.

Ground Speed and Drift Computed on Visual Displays

Its electrical outputs are: heading velocity, drift velocity, vertical velocity, ground speed, ground track, drift angle, true heading, and east-west, north-south distance traveled. Visual displays include a navigation indicator showing ground speed and ground track, or wind speed and wind heading; a hovering indicator showing heading velocity, drift velocity, vertical velocity and a control indicator with five switch positions: Off, Silence, Land, Sea and Test.

The receiver-transmitter in the Ryanav IV is designed as a space-duplexed, fixedantenna system with no moving parts and requiring no adjustments. Attitude capability is not limited by radome cutout area or the gimbals usually found in systems employing stabilized antennas. Supersonic speeds are accommodated simply by shifting the receiver band. No change in antenna angles or other system parameters is necessary.

Outputs are provided for tie-in with plot-

ting boards and other position-indicating equipment, inertial navigation equipment. bomb-director sets, anti-submarine warfare sets, and terrain-clearance radar.

The Ryanav IV employs continuous-wave eletromagnetic energy at 13,300 mc. The set's antenna directs this energy toward the earth's surface in three narrow beams. The frequency of the energy back-scattered from the ground is "Doppler shifted" by an amount proportional to the aircraft's velocity along the individual beam. The three Doppler frequencies are measured and used to compute the aircraft's velocity components. This is accomplished in the converter/computer unit, which comprises a low-voltage power supply module, a frequency-tracker module, a frequency-converter and velocity-computer module, and a computer module.

The various configurations of the Ryanav IV family of Doppler ground-velocity indicators may omit, modify or add certain units to meet specific needs. Antennas can be provided to meet specialized aircraft structural or operational requirements.

Maser Method Amplifies Sound

Direct amplification of sound waves using microwave radio energy has been achieved with this apparatus being assembled by Dr. E. B. Tucker of General Electric Research Laboratory. Amplification of the sound waves, or phonons, is accomplished by "stimulated emission" of energy by atoms as they change from higher to lower energy levels in a ruby crystal. The same mechanism is used in the maser (microwave amplification by stimulated emission of radiation) to amplify electromagnetic radiation.

Said Isaac Newton:

"Every particle of matter attracts every other particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distances between them."

Until recently, the thrust which propelled rocket vehicles into their coast stage, prior to orbiting, was provided by booster stages. The fuel carried by the satellite stage was used only to inject itself into orbit.

Now, however, a scientist at Lockheed Missiles and Space Division has evolved a Dual Burning Propulsion System which allows higher orbits and heavier payloads. With this system, the satellite vehicle fires immediately after the last booster stage burns out, thus augmenting the begin-coast speed. Later the satellite stage is re-started to provide orbit injection.

An even more recent development by Lockheed is a triple-burning satellite stage. This will permit a precise 24-hour equatorial orbit, even though the vehicle is launched a considerable distance from the equator.

These principles have made possible the early development of the MIDAS satellite. Moreover, they substantially increase the altitude and payload of the DISCOVERER series. Lockheed, Systems Manager for these programs and for the POLARIS FBM, is pursuing even more advanced research and development projects. As a result, there are ever-widening opportunities for creative engineers and scientists in their chosen fields.

Why not investigate future possibilities at Lockheed? Write Research and Development Staff, Dept. M-15E, 962 West El Camino Real, Sunnyvale, Calif. U.S. citizenship or existing Department of Defense Industrial security clearance required. All qualified applicants will receive consideration for employment without regard to race, creed, color or national origin.

Lockheed / MISSILES AND SPACE DIVISION

Systems Manager for the Navy POLARIS FBM and the Air Force AGENA Satellite in the DISCOVERER and MIDAS Programs

BUNNYVALE, PALO ALTO, VAN NUYB, SANTA CRUZ, SANTA MARIA, CALIFORNIA • CAPE CANAVERAL FLORIDA • HAWAII

NEW BORG MICROPOT 2400 POTENTIOMETERS

★ 100 Ohms to 200K Ohms Resistance . . . ★ Meet Full Range of Military Specifications . . .

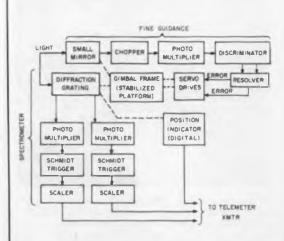
4 NEW SINGLE-TURNS

Feel the fine construction by turning the shaft . . . action is smooth, continuous . . . a feel of jeweled precision. See the extra strong design in the one-piece aluminum housing and front bearing mount. Note the rear covers fit precisely into machined shoulders to seal out dirt, vapors, corrosive atmospheres according to applicable mil specs.

Color-coded terminals are gold-plated for perfect solderability, corrosion-free shelf life. Element ends and terminals are welded to prevent loosening during application. All models are wirewound and linear. Standard bushing mounts have life-time lubricated sleeve bearings; standard servo mounts have two precision ball bearings. Precious metal contact and collector surfaces minimize noise, contact resistance and thermal effects over a long, trouble-free life. Complete data is yours by return mail.

Micropot® Potentiameters • Microdial® Turns-Counting Dials • Sub-Fractional Horsepower Motors • Frequency and Time Standards CIRCLE 30 ON READER-SERVICE CARD

NEWS


Space 'Pointer' Slated With 6-Sec Accuracy

Servoed System to Aim Spectrometer For Measuring UV Star Radiation

SPECTROMETER to be rocketed more A than 62 miles above the earth will be aimed by a fine-guidance system, being designed for accuracy of ± 6 sec of arc over a ± 2 -deg field. The spectrometric system is intended to measure ultraviolet starlight in the 1.000-to-3.000-A range to a resolution of 2 A. It is planned for launching early in 1962 by Princeton University scientists working with the support of the National Aeronautics and Space Administration.

Coarse guidance will be provided by inertial gyroscopes, which are expected to stabilize the rocket to within ± 1 deg of the desired pointing position. The fine-guidance system, being developed by Perkin-Elmer Corp., Norwalk, Conn., will actuate servo controls to point the spectrometer with the anticipated 6-sec accuracy.

This system will stabilize in two axes and use a rotating-image technique that is said to be relatively simple. Servos will signal two gimbal ring mounts to adjust their axes and position the spectrometer's stabilized diffraction grating. The servo signals will be gen-

Fine-guidance system to aim ultraviolet spectrometer from rocket depends on rotating image formed by optical system to actuate servos that adjust aimbal ring mounts. Spectrometer is to be rocketed above the atmosphere early next year to analyze radiation from bright stars.

3" Dia. 2490 Series

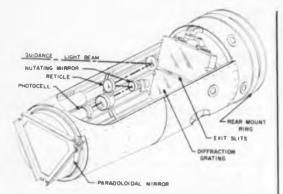
2" Dia. 2480 Series

1.7/16" Dia.

7/8º Dia

WRITE FOR

DATA SHEETS OR


BORG TECHNICAL

REPRESENTATIVE

2440 Series

BORG

SHOWN

Spectrometer portion of system will fit in 30-in. long by 14-in. diam volume. Before fine-guidance system takes over, coarse positioning will be provided by inertial gyroscopes.

erated when a star's light beam is picked up on a rotating, tilted mirror and directed through a reticle. The segmented reticle will modulate the beam passing through it according to the amount and direction of error. The system is designed to scan its portion of the UV spectrum in units of 30 A per sec.

The modulated beam, which is to contain information on the position of the star's image, will be focused on a phototube. The position data will be converted into error signals by an fm discriminator and resolver.

The 100-lb spectrometer package is to be 35 in. long by 14-1/4 in. diam. Radiation from stars will enter through an opening in the nose section of the rocket and will arrive at the instrument already collimated. After being diffracted, the radiation is to be focused on a photomultiplier detector to generate photon-count signals for telemetering to ground-receiving equipment.

Closed-Circuit TV System Used To Verify Check Signatures

A closed-circuit TV system used for verification of check signatures has been installed in the First Pennsylvania Banking and Trust Co. of Philadelphia.

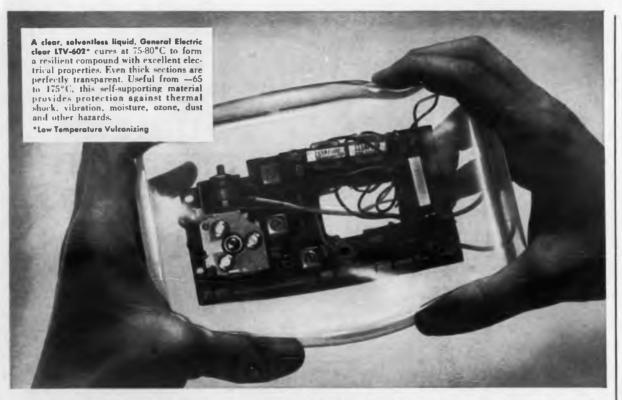
The system, developed by John F. McCarthy, Inc., Philadelphia, uses cameras and components furnished by Philco Corp.

The teller phones the bank's Signature Dept., identifies his numbered station, and requests the specific account. The clerk at the other end pulls the card from its alphabetical file, places it face down on one of two cameras, and the reproduction appears on the monitor.

ELECTRONIC DESIGN • July 5, 1961

SAVE SPACE WITH THIN, EXTRA-STRONG ELECTRICAL TAPES OF MYLAR®

Here's a pressure-sensitive tape that packs great strength into thinner gauges (20,000 psi for 1 mil). Tape of Mylar* polyester film saves space because manufacturers can use thinner gauges with no loss in performance... at lower cost per linear foot.


Want more? "Mylar" also provides —flexibility for snug wraps—high dielectric strength (4,000 v/m†)—dimensional stability at high humidities —moisture and chemical resistance —resistance to temperatures from -60°C to 150°C. And "Mylar" lasts and lasts because there's no plasticizer to dry out with age.

Insulation of "Mylar" gives motors 50 to 100% longer service-free life. Gives capacitors longer-lasting stability, greater reliability. In a wide variety of electrical applications, the advantages of "Mylar" can improve the performance, lower costs. Evaluate "Mylar" for your product. Write for free booklet (SC) detailing properties. Du Pont Co., Film Dept., Wilmington 98, Delaware.

*Registered Du Pont trademark †ASTM D-149

General Electric clear LTV silicone compound for potting and embedding

Transparent, resilient, self-supporting and easy to repair

LTV-602 is easily applied, flows freely in-andaround complicated parts. Having a low viscosity in the uncured state, 800-1500 centipoise, LTV is ideal for potting and embedding of electronic assemblies. Unlike "gel-like" potting materials. LTV-602 cures to a flexible solid. Oven cure is overnight, or from 6 to 8 hours at 75 to 80°C.

LTV-602 is easy to work with and easy to repair. To repair parts embedded in LTV, merely cut out and remove section of material, repair or replace defective part, pour fresh LTV into opening and cure. Pot life, with catalyst added, is approximately 8 hours and may be extended with refrigeration. When desirable, LTV may also be cured at room temperature.

Resiliancy offers excellent shock resistance. LTV-602 easily meets thermal shock tests described in MIL-STD-202A test condition B which specifies five temperature cycles from -65 to 125°C. Tests indicate that LTV retains protective properties even after 1800 hours aging at 175°C. Other tests confirm LTV's resistance to moisture and water immersion.

1.TV-602 is the newest addition to the broad line of G-E silicone potting and encapsulating materials which also include the RTV silicone rubbers. For more information, write to General Electric Company, Silicone Products Department, Section L740, Waterford, New York,

NEWS

Soviet Hopes to View Venus And Mars With Color TV


A Soviet television scientist, Dr. Pavel V. Shmakov, predicts that "in the near future" his country will observe Venus and Mars by color tv.

The prediction was one of several made at the first International Festival of TV Arts and Sciences, held in Montreux, Switzerland. Dr. Shmakov declined to elaborate on his forecast, however.

The Soviet expert was questioned about TV equipment used in recent Russian space shots. He explained that although the moon rockets did not contain true TV apparatus, more recent vehicles, such as the one that carried Maj. Yuri Gagarin, did.

Dr. Leonard Jaffe, chief of the United States space agency's Operation Relay, pre-

Sonic 'Death' of a Light Bulb

When a 25,000-w beam of sonic power—energy equivalent to a thousand symphony orchestras playing simultaneously—is directed at a light bulb, this is what happens. Sequence shots show the actual separation of the bulb from the lamp base, the filament still glowing even though exposed to the air, and the final failure of the filament. The experiment, performed at facilities of Bolt, Beranek & Newsman, acoustical consultants of Cambridge, Mass., was televised for the public by WBZ in Boston. The photos were taken by Jonathan Karas & Associates of Durham, N. H.

ELECTRONIC DESIGN . July 5, 1961

dicted at the festival that a permanent translation TV link would be "bounced" from satellites within four to five years.

Another prediction, sent to the conference by David Sarnoff, president of the Radio Corp. of America, stated: "Ten years from now a billion people will watch the same TV show at the same time in color." Mr. Sarnoff added that simultaneous translation techniques would make the show understandable to all.

He suggested that new satellite television systems should be used by the heads of all nations for face-to-face discussions, and proposed that every TV set should have a special channel reserved for United Nations telecasts.

Dr. Jaffe was one of six recipients of a festival citation "in recognition of outstanding contributions to the advance of television." The others were Dr. Shmakov, of the Leningrad Technical Institute; Sir Noel Ashbridge of Great Britain, Prof. G. A. Boutry of France, Dr. Kenjiro Takayanagi of Japan, and Eric Esping of Sweden.

Thirty-two nations took part in the conference.

Israel Seeks Electricity In Shallow Salt Waters

A group of Israeli scientists is experimenting with a principle that may make it possible to get electricity from small, shallow bodies of salt water. The principle, based on a natural phenomenon discovered in a lake in Hungary, where the bottom waters were found warmer than the top, can be explained by a difference in density.

In the heavy brine of a "dead sea," the water tends to form two distinct layers: a heavy dense layer underneath and a less dense layer on top. The top layer acts as a transparent cover over the bottom. When the water is shallow and the bottom is black, the lower layer gets hotter and hotter. The heat cannot escape because the nonmixing of the layers prevents convection. Heat thus retained could be transferred to general electricity.

Since arid countries with abundant sunshine usually have some waters too salty for human use, a curse can be turned to an advantage.

This idea, as well as many others, will be discussed at the United Nations Conference on New Sources of Energy, to be held in Rome, Italy, from Aug. 21 to 31.

QUADRATURE-FREE AC SIGNALS!

...now possible with two entirely new AC pots -precision-built by Helipot!

Even though today's potentiometers are developed to a level of performance never before achieved, their use as AC voltage dividers introduces several problems not present under DC conditions. Most important of these are quadrature voltage and phase shift-the extraneous voltage 90% out of phase with the input signal, which results from capacitance between wire turns and metallic mandrel.

How do you eliminate quadrature? And the many other considerations associated with AC applications – what about them? Helipot solves all these problems with two new AC potentiometer series.

Let's talk specifics.

YOU'LL WANT THE ANSWERS TO THESE 5 QUESTIONS...

1. WHAT IS AN AC POTENTIOMETER?

Simply stated, a pot that's specifically designed for AC-excited circuits. It differs from ordinary wirewound pots in that quadrature effects are eliminated without the addition of elaborate compensating networks. At the same time, it provides lower output impedance, and improves linearity and reliability.

2. HOW DO AC POTS ELIMINATE QUADRATURE ERROR?

Helipot combines a multi-tapped pot with a multi-tapped autotransform-

	OK HELIPOT MODE	ic reco
		1
1	TURE	Andres
7	LE SEGMENT	A
- 1	TRANSFORMER	NO TRANSFORMER

er. The voltage existing at each pot tap point is determined by the reference voltage at the corresponding

3 1981 8.1.1. 8**-82000 01

autotransformer tap. The pot resistance element is divided into a series of independent low-resistance elements-hence a reduction in quadrature.

The figure shown plots quadrature error against rotation. It illustrates the difference in phase shift between ordinary wire-wound pots and a Helipot AC unit with 12-segment autotransformer. You'll note that quadrature error is at its maximum near the midpoint between taps and is nearly zero at tap points. The result: negligible quadrature error and phase shift.

3. HOW ARE INPUT AND OUTPUT IMPEDANCE AFFECTED?

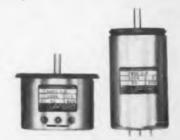
Input impedance remains high. Under AC applications, total pot resistance is paralleled by the AC impedance of the autotransformer. Since this impedance is 10 to 100 times greater than that of the pot, the addition of an autotransformer has a negligible effect on the input impedance.

Output impedance is much lower. The addition of an autotransformer to the basic pot results in a maximum output impedance occurring midway between each set of adjacent taps. It follows that total output impedance is greatly reduced-any energy required by the load is fed from the nearest auto-transformer tap.

4- HOW DOES THE AC POT IMPROVE LINEARITY?

The overall linearity of AC pots is dependent on the linearity of pot sections between taps – not total pot linearity.

An important feature of autotransformer application is the ability to easily adjust the voltage appearing at each pot tap – without affecting


CIRCLE 33 ON READER-SERVICE CARD

the voltage ratio at any other tap. It is therefore possible to pull all tap points into the desired linearity band, regardless of basic pot linearity.

Another AC pot feature: It is capable of truly zero electrical "end coil."

5. ARE AC POTS MORE RELIABLE THAN BASIC POTS?

Yes-much more so. That's because a pot winding or tap lead going open affects only that portion of the pot between taps adjacent to the open. Even the opening of CW or CCW terminals has no effect beyond the adjacent tap point. Or, simply stated - the more taps, the greater the inherent reliability. Models with up to 28 taps are available as special from Helipot.

Helipot offers two AC pot series and 26 standard models with frequency ranges from 20 to 20,000 cps. Choose your linear or non-linear version of either the 3" diameter single turn Series 5800 or the 2" diameter multiturn Series 7800. They're precisionbuilt by Helipot to meet unusual conformities and perform in most any desired function.

Any more questions? Detailed specs and additional product information are included in a new 32-page potentiometer catalog. To get a copy, call your nearest Helipot Sales Engineering Representative...or write direct;

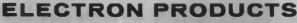
INSTRUMENTS, INC.

HELIPOT DIVISION Fullerton, Calif. POTS : MOTORS : METERS **Electron Products**

BW and BWE **High Voltage Capacitors**

Newest-Smallest High Voltage Capacitors!

Compact configuration, lighter weight and extremely low noise are features deserved by design engineers seeking smaller, more reliable high voltage capacitors.


BWE Series epoxy tube capacitors are designed for applications as AC and DC power supply ripple filter capacitors, voltage doubler circuits and blocking capacitors. Basic construction is similar to the Mil-C-14157 Hi-Rel Spec and meets environmental test conditions of Mil-C-25. Rectangular shaped, non-metallic case eliminates need for large stand-off terminals. The BW wrap and fill version is available for similar applications in less stringent environments.

Up to 30,000V operation with standard capacity from .001 to .2 mfd. Standard capacity tolerance $\pm 20\%$ (also available to $\pm 1\%$). Competitively priced against other less sophisticated versions. Technical information and test data available upon request.

Specifications:

Operating Temperature: -55°C to +125°C Insulation Resistance: Dissipation Factor: 1.0% max. @ 25°C

30,000 Mamin, @ 25°C Test Voltage: 200% of rated voltage

430 North Halstead Street, Pasadena, California **Mi** division of Marshall Industries

EDITORIAL

Transistor Reliability Specs Well on Way

In last year's Transistor Data Chart issue our editorial called for reliability figures to be included with other important transistor characteristics contained in data sheets. Military specifications for components, including transistors, had been lax in reliability specifications due to lack of definitions and environmental standards. We cannot report this data this year, but progress is being made.

Since the release of the Darnell Report (Parts Specification Management for Reliability), improvement in component specifications has been in evidence. Perhaps the most significant in terms of semiconductor specifications is the use of LTPD (lot tolerance per cent defective) in newly prepared MIL-S-19500 documents in place of AQL (acceptable quality level) found in early MIL-STD-105 specs. AQL is normally considered the quality level for which the producer takes a 5 per cent risk of having a good lot rejected while LTPD is generally defined as the quality level for which the customer takes a 10 per cent risk of accepting a defective lot. Therefore the manufacturer's risk is linked with AQL and LTPD is a measure of the customer's risk. Based on sample size, an AQL of 4 per cent can exist with LTPD figures ranging from 12 to 38 per cent. Thus, MIL-STD-105 clearly defines the manufacturer's obligation but offers rather a vague reliability promise to the customer responsible for producing reliable equipment from his incoming components.

With newer transistor specifications outlining specific LTPD values and environmental conditions, the customer is fully aware of the confidence he can place on his incoming devices. Manufacturers can determine their acceptance number from the charts included in the specs.

Other improvements in reliability specifications soon to be adopted include the listing of failure-rate figure for components placed on the Qualified Products List. In addition, products will remain on the QPL only as long as they meet specification requirements; failure to maintain a given quality level will result in deletion from QPL.

Based on the earnest efforts being applied by government personnel responsible for the preparation of components specifications, meaningful reliability will be contracted and delivered. Reliability figures may appear in next year's Transistor Data Chart if the rate of effort and enthusiasm generated by the Darnell Report is maintained by the military and industry.

Howard Bierman

CIRCLE 35 ON READER-SERVICE CARD > ELECTRONIC DESIGN • July 5, 1961

OFF THE SHELF...

PSI_TRANSISTORS FOR EVERY COMPUTER, COMMUNICATION AND POWER NEED!

NEWEST LOGIC SWITCH!

Highly advanced version of 2N706

• $V_{cESAT} = .2V$ Max at $I_c = 10mA$, $I_0 = 1mA$ • Broadest h_{FE} vs. V_{cE} linearity ever offered

NEWEST VHF POWER AMPLIFIER!

• Even higher power-frequency performance than 2N1506

• Five watt power output at 30 mc, 12 db power gain

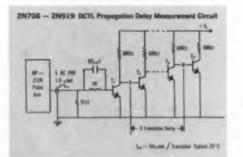
NEWEST MEDIUM POWER SWITCH! • Vcesar = 1.0V Max at Ic = 1 Amp, I = 100mA

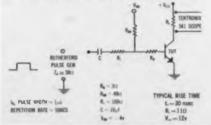
• 13 watts at 25 C case temperature

- t, = 30 mµs typical at Ic 1 A, I, = I , = 100mA
- $R_{\rm L} = 11$ ohms, $V_{\rm cc} = 12V$

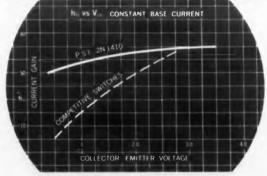
NEWEST HIGH VOLTAGE POWER AMPLIFIER!

- 300 mW power output at 100 mc, 10 db power gain
- $V_{CBO} = 150V$ Min, $V_{CEB} = 125V$ Min

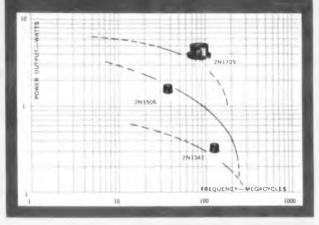

See inside for the most extensive line of high performance silicon transistors available today


SWITCHING TRANSISTORS

Wide Range of Types μ A to 10 Amps .2V to 140V


> DIMENSIONAL DRAWINGS All dimensions shown in inches

PT600 - PT601 Switching Circuit and Switching Time



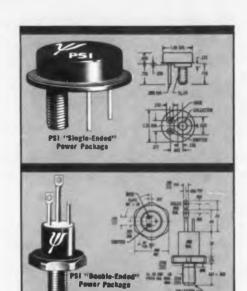
TO-18 PACKAGE HIGH SPEED TRANSISTORS TOTAL POWER 61 TYPE AT 25°C CASE Watts Vera V.so Min. mc TYP hre Ver nat Min Min. Max 2N706 1.0 25 20 3 350 20 min .60 2N706A 25 20 20, 60 1.0 5 350 60 2N7068 20- 60 20 5 10 25 350 40 2N753 10 25 20 5 350 40-120 .60 2N919 1.2 25 20 5 400 20 - 60 .20 2N920 12 25 20 5 400 40-120 .20 2N921 1.2 50 30 5 400 20.60 .25 2N922 1.2 50 400 40-120 .25 30 5 TO-5 PACKAGE HIGH SPEED TRANSISTORS 2N1252 2.0 30 20 210 15-45 1.5 5 2N1253 2.0 30 20 5 210 30.90 1.5 PACKAGE PREMIUM TRANSISTORS 2N1837 2.0 R0 50 R 210 40-120 .80 2N1837A 50 210 40-120 80 2.8 RÛ R 2N1409 2.0 30 25 4 230 15-45 .80 2N1409A 2.8 30 25 4 230 15-45 80 2N1410 2.0 45 30 4 230 30-90 .80 2N1410A 2.8 45 30 4 230 30-90 80 PT850 2.0 120 80 5 200 40-120 20 2.8 120 80 PT850A 5 200 40-120 2.0 **STANDARD TRANSISTORS** TOTAL POWER AT 25 C CASE Va 1 TYPE Vend Ver sat* PKG Vers her? TYP Watts Min Min. Min Max. 2N696 60 40 5 200 2.0 20. 60 1.5 TO- 5 2N697 2.0 60 40 200 5 40-120 1.5 TO- 5 2N698 2.0 120 80 5 190 20 min 5.0 TO- 5 2N699 2.0 120 80 190 40.120 5.0 10- 5 5 2N717 15 60 40 5 200 20 min 1.5 10-18 40 2N718 1.5 60 5 200 40.120 15 10.18 2N719 1.5 120 80 5 20 min TO-18 190 5.0 2N720 80 40-120 1.5 120 5 190 5.0 10-18 2N1420 2.0 60 30 5 170 100-300 1.5 TO- 5 PACKAGE GENERAL PURPOSE TRANSISTORS 2N1336 2.8 40 25 3 190 2N1838 2.0 30 4.5 190 45 40-150 1.4 2N1839 2.0 45 30 4.5 170 12. 50 1.4 2.0 25 20 5 150 1.4 2N1840 10 min SPECIAL PURPOSE TRANSISTORS TOTAL POWER TYPE AT 25"C CASE Vee PKG Ver here Ver sat* mc TYP. Watts Min Min. Min Max 100 220 2N1340 28 150 5 5 min 07 10- 5 45 PT601 13.0 60 210 30-90 10.8 4 1.0 PT600 13.0 EN 45 4 210 15-45 1.0 TO- 8 2N1900 125.0 140 100 5 50 min 10.20 2.0 POWER 5 2N1901 125 0 140 100 50 min 15.40 2.0 POWER *SEE DATA SHEETS FOR CONDITIONS h. vs V.

Extremely flat Beta vs. Collector Voltage is one of the many advantages made possible by the PSI Triple Diffusion Process.

C 1961, PACIFIC SEMICONDUCTORS, INC.

FREQUENCY-POWER OUTPUT RANGE OF PSI COMMUNICATIONS TRANSISTORS

PSI TRIPLE DIFFUSED PROCESS


PSI triple diffusion makes possible these outstanding performance characteristics: Low Vot saturation, faster switching, excellent high current beta, high smell signal beta and broad VHF versatility. The triple diffusion process, above, provides manu-

facturing control unmatched by any other process. OTHER MESA PROCESSES

COMMUNICATION TRANSISTORS

Wide Range of Types mW to Watts 10 to 100 + Source Voltages

DIMENSIONAL DRAWINGS All dimensions shown in inches

HF HIGH POWER TRANSISTORS

NPN TRIPLE DIFFUSED SILICON MESA

Wide Range of Types . . . for many new applications.

TYPE	V no Min.	V _{cen} Min.	Viso Min.	hee	10mc hre	f: mc		Iass C IFIER Power Gain	PACKAGE
2N1899 formerly PT901	140	100	5	10 min	3	50 min	125W	10db	Single End
2N1900	140	100	5	10-20	3	50 min	125W	10db	Single End
2N1901	140	100	5	15-40	3	50 min	125W	10db	Single End
2N 1902	140	100	5	10 min	3	50 min	125W	10db	Double End
2N 1903	140	100	5	10.20	3	50 min	125W	10db	Double End
2N1904	140	100	5	15-40	3	50 min	125W	10db	Double End
PT900	80	50	5	10 min	3	50 min	125W	10db	Single End

KILOWATT MEGACYCLES AMPERES NANOSECONDS Now possible with PSI Load Tested Silicon Mesa Power Transistors. In a typical switching application, the rate of surrent rise can be as high as 100 million Amperes per second. Selected Beta ranges now available.

Power Switching at higher speeds and RF Power Generation at higher levels than previously attainable are now possible. Availability: Single Ended packages are available in production quantities. Double Ended in Engineering quantities.

VERY HIGH FREQUENCY													
TYPE	TOTAL POWER AT 25 C CASE Watis	Vres Min.	V ··· Min,	Vrea Min.	POWER GAIN AT f = 30mc Typ.	POWER GAIN AT 1=70mc Typ.	POWER GAIN AT f = 100 mc Typ.	PKG					
2N1338	2.8	80	50	3	18 db 0 35W	10.5db P = 0.35W	7db Pa=0.35W	10.5					
2N1342	2.8	150	125	5		13db P3 = 0.4W	10db P = = 0.3W	10.5					
2N1505	3.0	50	40	3	10db Po = 1.8W	8db P = 1.2W	600 P = 1W	10.5					
2N1506	30	60	40	4	12db P -1 8W	10db P = 1 2W	8 5db P = 1W	TO					
2N1710	13.0	60	45	3	10db Po = 5W	$6db P_0 = 6W$	Sdb Po = 6W	10.8					
2N1709	130	75	60	4	12db P = 5W	8db $P_0 = 7W$	6db Po - 7W	TO					

THESE TRANSISTORS OFFER THE DESIGNER A WIDE SELECTION OF CHARACTERISTICS

SUPPLY VOLTAGE 10 VOLTS TO 125 VOLTS OPERATING CURRENT 1 mA TO SEVERAL Amps

OPERATING FREQUENCY UP TO SEVERAL HUNDRED mc (HIGHER WITH VARICAP & DOUBLING CIRCUITS)

POWER OUTPUT - MILLIWATTS TO NEARLY 10 WATTS The 2N1338, 2N1342, 2N1505, 2N1506 are available in production quantities

The 2N1709 and 2N1710 are available in prototyping quantities

ISISTURS LICON MESA wapplications.

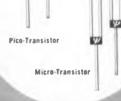
PICO-TRANSISTORS and **MICRO-TRANSISTORS**

PSI Pico and Micro transistors are ultra miniature triple diffused silicon mesa devices. They are designed for low level amplification and for low power, high speed switching applications. These unique transistors are extremely valuable where weight and size are prime design and operational factors.

The remarkable high reliability standards of PSI Micro-Diodes are the result of simplified construction and advanced surface passivation techniques. These same techniques are employed in the manufacture of PSI Micro Transistors.

The surface passivation process and coating materials provide protection from extreme environmental conditions of heat, moisture, thermal shock, mechanical stresses and electrical load.

After manufacture all devices are subjected to environmental testing to assure reliability and device parameters.


Meet MIL-S-19500B and MIL-STD-202A

- 200 hr. 200°C Reliability Assurance
- —65°C to 200°C temperature range

100 mW power dissipation

- Pico size 1/1000 of TO-5 package
- Micro size 1/100 of TO-5 package
- Companion components to PSI Micro-Diode

TYPES	New.			Water	1	Peril	
PMT 011-111	254				150°C	100 mW	
PMT 012-112	250			-	156 C	IVE INW	
PMT 013-113	404			54	150°C	100 mW	
PMT 014-114	40	CONTRACTOR OF		CARLE AND	150°C	100 mW	
PMIT 013-115	589		100000	2001.201	150°C	100 mW	
PMT 016-116	34		Ser Real		1975	100.000	
COLLECT HALL MILE	The last	a production	1000	1.0		104.0-0	
PMT 018-119			2	and the second	Larc	100.014	
ECTRICAL	HARACTER	ISTICS					r
TYPES	he	Val (sat)	VILLAND	Cum	And	in the (Tro)	-
PHILE CLASS	IDuA (IDN)	120	LEV	79 41	151132mA 20	0.0	
19903 8/0-110	ICA LIDEL	Lik	2.5%	21.01	MILLION & COL	25	
PMT INGINE	InA . JUNI	1.24	1.14	20 pt	20 U Minute and	4.0	
PM2 814-114	1 A 130V	1.24	Lâx	20 01	All (150m-R. Vert	5.0	
PM 7 810-115	3µ8 (199)	1.21	1.30	Bat	AU (15 No. A -1 N.	4.8	
PMT 016-118	5.A (15v)	3r	de la	6.4	20 (10mA-1v)	48	
PMT 018-118	1 ₄ A (10v)	34	.44	20 pt	AUT Dall-Set	48.0	
PMT 019-119	14A /10v+	31	At	20 pt	301 204-30	6.6	
NOTE: @ Pulse C	anditions Lengt	n ≤ Millin sec.	Duty Cycle	≤2%	Concession of the		Δ.
QUIVALENT	TYPES				1000		
PICO	MICRO		EQUIVALE	NTS			
PMT 011	PHAT THE		2N1409			Constanting of the local division of the loc	
FMT 012	PMT 112		201410				
PMT 012	PMIT 113		211096				
PMTON	PART 114		271/21				
PMT 015	* PMT 115		2N1837		-		
PMT 016	PMT 116		2N706		1000	and the second second	
FART BIE	PMT 118			Premisure 24 Au			
PMT 019	FAIT IVE		Law Lovel	Pre-	1000		

Dallas-P.O. Box 6067, Dallas, Texas • Riverside 7-1258 Detroit-1204 No. Woodward Ave., Royal Oak, Michigan • LIncoln 8-4722

St. Paul-1602 Selby Ave., St. Paul 4, Minn. • MIdway 5-9351

Missouri-3100 Kinglsey Dr., Florissant, Mo. • MA 1-4353 -8271 Melrose Ave., Los Angeles 46, Calif. OLive 3-7850

San Diego - 2223 El Cajon Blvd. - Room 211 • CYpress 7-3951

12955 CHADRON AVE. HAWTHORNE, CALIF. • OR 8-4711, OS 9-2281 • TWX: HAW CAL 4270 • Cable Address: PSISOCAL

SALES OFFICES

- -870 Broadway, Newark 4, New Jersey HUmboldt 4-5616 TWX: NK 1010 Boston-471 Washington Street. Wellesley 81, Mass. • CEdar 5-0171
- Syracuse-4455 E. Genesse Street, Syracuse. New York GIbson 6-4600

-No. 4 Township Line Road, Philadel-phia 17, Pa. • Pilgrim 2:8089 • TWX: JNKTN 1064 Baltimore-1811 North Rolling Road, Baltimore 7, Md. • Windsor 4-3622

-6957 West North Avenue, Oak Park, Illinois * Village 8-9750 • TWX: OKP 1547

DISTRIBUTORS IN MAJOR ELECTRONIC CENTERS COAST-TO-COAST

Palo Alto-701 Welch Road-Suite 205, Palo Alto, Calif • DAvenport 1-2240

ELECTRONIC DESIGN'S Ninth Annual Transistor Data Chart contains specifications for 1,714 transistor types—last year only 1,088 types were submitted for publication by semiconductor manufacturers. With close to a 60 per cent increase in the number of available types, the design engineer is now offered a greater selection of devices as well as increased sources of supply—but his search time for a transistor to do a certain job is likewise increased. Thus, ELECTRONIC DESIGN'S unique listing, specifically tailored for the design engineer, should prove to be a handy time-saver.

Contrary to existing lists which group transistors by manufacturer or in numerical sequence (fine for salesmen, of limited use to engineers), the 1961 Data Chart has transistors organized into six application categories:

Audio—mostly general purpose types, under 1 w, listed in order of increasing forward-current transfer ratio, $(h_{ie} \text{ or } h_{FE})$.

High frequency—including types ranging up to and above the vhf range and tabulated in order of increasing alpha-cut-off frequency, (f_{ae}) .

Power devices—transistors rated at 1 w and above are listed in order of increasing collector power dissipation.

Special types—low-noise, high-power/high-frequency and other miscellaneous types are included.

High-level and low-level switching—devices intended for switching are listed in order of increasing alpha-cut-off frequency, (f_{ac}) .

By this system of listing transistors, the design engineer is offered a rapid method of selecting a particular type based on a parameter value. In addition, close substitutes are apparent and multiple sources of supply are listed when applicable. Only U. S. manufactured types are given.

One word of caution is included. Quite a few similar number types, made by several companies, were submitted with different characteristics due to the nonconformity in test methods among manufacturers. The manufacturer whose data are used for each particular type is listed under "Mfg." Other suppliers of the same types are found under "Remarks." Please take note that the company listed under "Mfg." is not necessarily the prime supplier, a cheaper source or the original EIA registrant. The final choice of supplier is obviously up to the design engineer. It is thus advisable to use this listing as a guide to selection and then follow up with a detailed evaluation of specific test methods and data as outlined in each manufacturer's spec sheet.

A cross index is included to identify a type number with its listed category. The JEDEC type numbers are tabulated in numerical order and the category group is indicated.

For a free reprint of the Transistor Data Chart, circle 251 on the Reader-Service card.

Howard Bierman Technical Editor

Audio . . . p 34

Power ... p 48

Special ... p 54

High Level ... p 56

Low Level ... p 60

Cross Index . . . p 68

High Frequency ... p 42

CIRCLE 35 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

33

TRANSISTORS-1961

Audio

Type			hfe		-	num Re	stings	-	C	-	teri sti	_	
Ne.	Mfg.	Туре	hFE	W _c (mw)	T _j (c)	mw/c	V _c	I _C	I _{со} µа	N F db	Cc	f _{at}	Remarks
2N 160 2N 16DA 2N 349 2N 161	RRD RRD RRD RRD	npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si	0.93 0.93 0.95 0.96	150 150 750 150	175 175 175 175		40 40 125 40	25 25 40 25	0.2 0.2 10 0.2	25 25 25	777	4 4 3 5	
2N161A 2N348 2N1096 2N347	RRD RRD RRD RRD	npn,GJ,si npn,GJ,si npn,GJ,si npn,GJ,si	0.96 0.96 0.96 0.98	150 750 500 750	175 175 175 175		40 90 90 60	25 50 30 60	0.2 10 6 10	25 - - 18	7 - - 7	5 3 3	
2N1095 2N163	RRD RRD	npn,GJ,si npn,GJ,si	0.98 0.99	500 150	175 175	-	60 40	40 25	5 0.2	25	-7	3	
2N 163A 952 951 2N 953 2N 1154	RRD TI TI NA	npn,GJ,si npn,GJ,si npn,DJ,si npn,GJ,si npn,DM,si	0.99 6 9 9	150 750 750 750 750 750	175 150 150 150 150	6665	40 80 50 120 50	25 50 60 40 60	0.2 6 5 8 5	25	7	6 8 8 8	2N1155 2N1154 2N1156
2N1155 2N1156 2N117 2N332 2N332A	NA NA TI TI NA	npn, DM, si npn, DM, si npn, GR, si npn, GR, si npn, MS, si	9 9 9-20 9-20 9-20	750 750 150 150 150	150 150 175 175 175	5 5 1 1 0.86	80 120 45 45 45	50 40 25 25	6 8 2 2 2	- 20 20	- - - 30	- 4 6	TR, USN GE,TR, RRD, NA,RA
2N333A 2N903 2N1149 2N243	NA TI TR TI	npn,MS,si npn,GJ,si npn,DJ,si npn,GJ,si	9-20 9-20 9-20 9-20 9-32	500 150 150 750	175 175 150 150	2.8	45 45 30 60	- 25 25 60	0.5 2 0.1 1	- 25 25 -	15 -7 -	- 4 7 7	GE GE 2N1149 NA NA
2N472A 2N470	TR	npn,DG,Si	10-25	.200	200	-	45	25	0.02	22	7	8	100% reliability as- swance processed
2N471 2N472 2N102.13 2N144/13	TR TR SY	npn,GJ,si npn,GJ,si npn,GJ,si npn,AJ,ge npn,AJ,ge	10-25 10-25 10-25 10.5 10.5	200 200 200 1w 1w	200 200 200 75 75	- - 20 20	15 30 45 30 60	25 25 25 1.5a 0.8a	0.02 0.02 0.02 5 ma 5 ma	22 22 22	777	88	
2N45° 2N1439 2N756 2N756A CK64B	GI NA NA RA	npn,AJ,ge pnp,AJ,si npn,DN,si npn,DM,si	12 12 12-20 12-20 13.5	150 400 500 500 75	100 200 200 200	2 2.28 2.5 2.5	45 50 45 60	100	10 0.01 9.2 0.1	22 12 -	40 25 -	ī -	°MIL audio/med, power
CK64C 2N935	RA	pnp,AJ,ge pnp,AJ,ge pnp,AJ,si	13.5 14	75	85 85 160	1.25 1.25 2.85	45 45 40	100 100 50	10 10 .005		-	2	Sub min Sub min TO-18
2N284 2N284A 2N339A	ANP AMP TR	pnp,AJ,ge pnp,AJ,ge npn,DJ,si	15 15 15	125 125 1000	75 75 200	2.5 2.5 8	32 60 55	125 125 1	111	-	Ē		Beta specs at 3 Ic
2N340A	TR	npn,DJ,si	15	1000	200	8	85	0.1	1	-	-	-	levels Beta specs at 3
2N341A	TR	npn,DJ,si	15	1000	200	8	125	0.1	1	-	-	-	Current levels. Beta specs at 3 Current levels.
2N927 2N938 2N1247	NA SSD NA	pnp,AJ,si pnp,AJ,si npn,DM,si	15 15 15	150 250 30	200 175 150	2.5 1.7 0.2	70 35 6	100	.005 .001 1.5	-	12 7 12	.8 2 -	TO-18 TR
2N1248 2N1440 2N1623 2N1655 TR34	TR NA RA RA IND	npn,GJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,ge	15 15 15 15 15	300 400 250 250 120	150 200 160 160 85	- 2.28 0.54 0.54 3	6 50 20 125 40	5 100 50 50 150	002 0.01 .005 .005 10	6 12 18 18 15	15 25 70 70 15	- 1 .1 2 1.6	audio/med. power
2N925 2N529 2N118 2N333 2N334A	NA G,I TI NA	pnp,AJ,si npn,GR,si npn,GR,si npn,MS,si	16 17 18-40 18-40 18-36	150 100 150 150 500	200 85 175 175 175	2.5 2 1 1 2.8	50 15 45 45 45	- 25 25 -	.005 3 2 2 0.5	- 14 20 20 15	12 14 	.8 5 8	matched pnp,npn TR GE,TR,NA,RA
2N757 2N757A 2N904 2N1150 2N334	NA NA TI NA	npn,MS,si npn,MS,si npn,GR,si npn,DM,si npn,GR,si	18-36 18-36 18-40 18-40 18-90	500 500 150 150 150	200 200 175 175 175	2.5 2.5 1 0.86 1	45 60 45 45 45	- 25 25 25 25	0.2 0.1 2 2	- 25 20		- 5 1 10	2N1150 GE,TR,NA,RA
2N758 2N758A 2N904A 2N1151 2N129	NA NA TI NA SPR	npn,MS,si npn,DM,si npn,GR,si npn,DM,si pnp,AJ,ge	18-90 18-90 18-90 18-90 20	500 500 150 150 30	200 200 175 175 85	2.5 2.5 1 0.86	45 60 45 45 3	- 25 25 5	0.2 0.1 2 2	- 25		- - - - - - - - - - - - - - - - - - -	2N1151 TR
2N923 2N1051 2N1670 0C200	NA WE GI AMP	pmp,AJ,si npn,DD,si pmp,DR_ge pmp,PADT	20 20 20	150 600 120 250	200 150 85 150	2.5 0.25 2	40 60 100 25		.005 0.1 3 10		12 8 3	.8 70 1	US, MIL only Hi-volt switch
2N475A	TR	npn,DG,si	20-50	200	200	-	45	23	0.02	20	7	io	100% reliability as- surance processed

li	ndex of Manu	facturers
Abbrev.	Company	Location
AMP	Amperex Elec- tronic Co.	Hicksville, N. Y.
BE CBS	The Bendix Corp. CBS-Hytron, Semi- cond. Opera- tions	Holmdel, N. J. Lowell, Mass.
CL CT DE	Clevite Transistor Crystalonics, Inc. Delco Radio Div., GM Corp.	Waltham, Mass. Cambridge, Mass. Kokomo, Ind.
EM FA	Electromation Co. Fairchild Semi- cond. Corp.	Venice, Calif. Mountain View. Calif.
GE	General Electric Co.	Syracuse, N. Y.
GI	General Instru- ment Corp.	Newark, N. J.
НО	Hoffman Semi- cond. Div.	El Monte, Calif.
HU	Hughes Semicond. Div.	Newport Beach, Calif.
IND	Industro Transis- tor Corp.	Long Island City, N. Y.
KF	Kearfott Semi- cond. Corp.	West Newton, Mass.
мн	Minneapolis-Hon- eywell	Minneapolis, Minn.
MO	Motorola Semi- cond. Products Inc.	Phoenix, Ariz.
NA	National Semi- cond. Corp.	Danbury, Conn.
РН	Philco Corp. Lansdale Div.	Lansdale. Pa.
PSI	Pacific Semicond., Inc.	Cuiver City, Calif.
RCA	Radio Corp. of America	Somerville, N. J.
RRD	Radio Develop- ment and Re- search Corp.	Paterson, N. J.
RA	Raytheon Co. Semicond. Div.	Newton, Mass.
RH	Rheem Semicond. Corp.	Mountain View, Calif.
SE	Secoa Electronic Corp.	Westbury, L. I., N. Y.
STC	Silicon Transistor Corp.	Clare Place, L. I., N. Y.
SSD	Sperry Semicond. Div.	South Norwalk, Conn.
SPR	Sprague Electric Co.	North Adams, Mass.
SY	Sylvania Semi- cond. Div.	Woburn, Mass.

Abbrev.	Company	Location
TI	Texas Instru- ments Inc.	Dallas, Tex.
TR	Transitron Elec- tronic Corp.	Wakefield, Mass.
TS	Tung-Sol Electric Inc.	East Orange, N. J.
US	U. S. Transistor Corp.	Syosset, L. I., N. Y.
WE	Western Electric Co., Inc.	Laureldale, Pa.
WT	Western Transis- tor Corp.	Gardena, Calif.
WH	Westinghouse Electric Corp.	Youngwood, Pa.

Abbreviation of Terms

	-	
AJ DD DJ DP DP FA FJ GD GR B MD MS RG		Alloy Junction Double Diffused Grown Diffused Diffused Junction Diffused Mesa Diffused Planar Drift Epitaxial Fused Alloy Fused Junction Grown Diffused Germanium Grown Junction Grown Rate Meltback MADT Mesa Rate Grown
Si		Silicon
SBT		Surface Barrier
C	-	Collector-to-emitter capacitance meas-
		ured across the output terminals with the input ac open-circuited.
fae	11	Frequency at which the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-fre- quency value.
f	=	Frequency at which common emitter
		gain is unity.
hze	-	Common emitter-small signal forward
		current transfer ratio.
hPE	1	Common emitter-static value of short- circuited forward current ratio.
lee		Collector current when collector junc- tion is reverse-biased and emitter is dc open-circuited.

Audio	(continued)
-------	-------------

Туре			hfe		Aazim	un Re	tings		C	herec	lorist	ics	
No.	Mfg.	Туре	or	W c	Τj		۷c	1 c	1 _{co}	NF	Cc	lae	Romarks
			h FE	(mw)	(c)	mw/ o	٧	ma	μa	db	µµ1	RC	
2N406 2N761 2N530 TR722 CK22A	SY NA GI IND RA	pap,AJ,ge apn,DM,si pap,AJ,ge pap,AJ,ge	20-80 20-55 22 22 22 22.5	150 500 100 150 80	75 200 85 2.5 85	3 2.5 2 3 -	20 45 15 45 20	35 - 200 100	14 2 3 10 2	- - 14 15 6-5	- - 3 20 -	250 - 2.5 1.2	*matched pap, apa
CK64A CK64 2N186A 2N189 2N1476	RA RA GE GE SSD	pnp,AJ,ge pnp,FA,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,si	22.5 23 24 24 24 24	80 80 200 75 250	85 85 85 85 175	- - 4 2 1.7	29 29 25 25 100	100 100 200 50 100	2 2 16 16 0.5	ZZ ZZ 15 -	- 40 40 7	0.8 0.8 0.8 0.8 1	Mictomin
2N381 2N44 2N229 2N330A 2N460	SY GE SY SSD TS	pnp,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,si pnp,AJ,ge	24-45 25 25 25 25 25	200 240 50 200	85 100 75 160 100	3.3 4 1 3 0.3	25 45 10 30 45	200 300 50 400	20 16 100 0.1 15	- 6 - 8 -	- 40 - -	10 1 600 0.5 -	MIL, GI
2N564 2N592 2N726 2N1265 2N1441	IND GI TI SY NA	pnp,AJ,ge pnp,AJ,ge pnp,DM,si pnp,AJ,ge pnp,AJ,si	25 25 25 25 25	150 150 1w 50 400	65 100 175 85 200	2.5 0.2 - 0.9 2.28	30 20 25 10 50	300 50 100 100	3 5 .007 100 0.01	12 116 - - 12	20 35 - - 25	0.8 0.4 	US Bilateral audio/med. power
2N1101 2N1102 2N34 2N35 2N306	57 57 57 57	npn,AJ.ge npn,AJ.ge pnp,AJ.ge npn,AJ.ge npn,AJ.ge	25-50 25-50 25-125 25-125 25-125 25-125	180 180 150 150 50	75 75 75 75	3.6 3.6 3 3 0.83	20 40 40 40 20	100 100 100 100	50 50 50 50 50		1111	0.01 0.01 0.01 0.01 0.01 0.6	RCA Driver, TI Driver, TI
2N464 2N1474 2N531 CK65B	MO SSD GI RA	pnp,AJ,ge pnp,AJ,si pnp,AJ,ge	26 26 27 27	200 250 100 75	100 175 85 85	2.5 1.7 2 1.25	45 60 15 45	100 100 100	6 .005 3 10	-	- 7 14	0.7	IND, RA, US, GI • matched pnp, npm Sub min
CK65C 2N936 2N244 2N118 2N279 2N524	RA SSD TI TI AMP SY	pnp,AJ,ge pnp,AJ,si npn,GJ,si npn,GR,si pnp,AJ,ge pnp,AJ,ge	27 28 28-90 29 30 30	75 385 750 150 25 225	85 160 160 175 75 100	1.25 2.85 6 1 2.5 3	45 35 60 45 20 45	100 50 60 25 10 500	10 .005 1 2 110 10	- 18 - 20 10	- 70 - - -	- 2.5 8 5 0.15 2	Sub min TO-18 NA TR GE, MO
2N594 2N939 2N1446 2N1474A 2N1654	GI SSD IND SSD RA	npn,AJ,ge pnp,AJ,si pnp,AJ,ge pnp,AJ,si pnp,AJ,si	30 30 30 30 30 30	150 250 200 250 250	85 175 85 175 160	1.67 1.7 3.33 1.7 0.54	20 35 45 60 80	- 100 409 100 50	2 -001 5 -005	16 6 18	15 7 20 7 70	23222	Bilateral TO-18
2N1656 CK25A DC201 2N331 2N1372	RA RA AMP MO SY	pnp,AJ,si pnp,AJ,ge pnp,PADT, pnp,AJ,ge pnp,AJ,ge	30 30 si 30 30-70 30-90	250 80 250 75 150	160 85 150 85 100	0.54 - 1.2 2	125 20 25 30 25	50 400 50 - 200	5 2 10 1 100	18 - 20 -	70 14 	2 4 4 .4 -	micromin RF swite
2N1373 2N1432 2N1380 2N1381 2N532	22 22 22 22 22 22 23 22 23	pnp,AJ,ge pnp,DD,ge pnp,AJ,ge pnp,AJ,ge	30-90 30-120 30-300 30-300 32	150 80 150 150 100	100 85 100 100 85	2 1.3 2 2 2	45 35 15 25 15	200 10 200 200	100 15 14 100 3			- 250 - -	• matched pnp, np
2N319 2N405 2N406 2N593 2N734	GE RCA RCA GI TI	sg, LA, qnq sg, LA, qnq sg, LA, qnq sg, LA, qnq sg, LA, qnq ngn, MS, si	34 35 35 35	225 150 150 150 1.0	85 - 100 175	4	20 20 20 35 80	200 70 70 50	16 14 14 5 1	- - 16 20	25 - - 35 5	2 0.25 0.6 50	SY Bilateral TO-18 TR, NA
2N738 2N926 2N928 2N1010 2N1564	TI NA NA RCA TI	npn,DM,si pnp,AJ,si pnp,AJ,si npn,AJ,ge npn,MS,si	35 35 35 35 35 35	1w 150 150 20 1.2	175 200 200 55 175	2.5 2.5 -	125 50 70 10 80	35 - 2 50	1 .005 .005 10 1		- 12 12 5	- 0.8 0.8 2 50	TR TO-5 TR, NA
2N1572 OC57 OC53 2N383	TI AMP AMP SY	npn,DM,si pnp,PADT, pnp,AJ,ge pnp,AJ,ge	35	1.2w 10 10 200	175 55 55 85	- 0.7 3.3	125 7 3 30	50 10 5 200	1 1.5 0.1 20			- 1.4 0.01 10	TR Hearing Aid
2N187A 2N190 2N119 2N335 2N335A	GE GE TI TI NA	pnp,AJ,ge pnp,AJ,ge npn,GR,si npn,GR,si npn,MS,si	36 36 36-90 36-90 36-90	200 75 150 150 500	85 85 175 175 175	4 2 1 1 2.8	25 25 45 45 45	200 50 25 25 -	16 16 2 2 0.5	- 15 20 20 -	40 40 - -	1 6 11 -	TR, USN TR, GE, NA, RA GE
2N759 2N759A 2N905 2N1152 2N533	NA NA TI NA GI	npn,DM,si npn,DM,si npn,GR,si npn,DM,si	36-90 36-90 36-90 36-90 37	500 500 150 150 100	200 200 175 175 85	2.5 2.5 1 0.86 2	45 60 45 45 15	- 25 25 -	0.2 0.1 2 3	- 25 14	- - 7 14	61 -	2NI152 TR • matched pap, ap

(\mathbf{F})

TRANSISTORS-1961

Audio (continued)

	1		hfe			um Re	dia ye	-	C	herec	terist	ica	
Type No.	Mfg.	Туре		Wc	Tj	==/c	٧c	1 _c	I _{co}	NF	Cc	Iae	Remarks
941349			hFE	(mw)	-		V		μa	db	μµſ	mc.	
2N742 2N1009	NA SY	npn,MS,si og_LA,qnq	40 40	150	200 65	1.71 2.5	60 25	100 20	0.1	-	5	200	Switch
2N1176 2N1176A	BE	pnp,AJ,ge pnp,AJ,ge	40 40	300 300	85 85	6.6 6.6	15 40	300 300	10 10	-	2	-	
2N1176B 2N1191	BE	pnp,AJ.ge	40	300 200	85 100	6.6 2.7	60 40	300	15	- 10	-	-	
2N1670 2N1730	GI	pnp,DR,ge npn,DM,si	40	120 2w	85 175	2	60 60	- 50	3	-	3	-	Trinie Driver
CK4 CK4A	RA	phpAlge phpAlge	40	80 80	85 85	-	24	100	2 2	-	14	6	Submin RF switch
CK26A	RA	ag.LA,qnq	40	80	85	-	18	400	2	-	14	6	Micromin RF switch
TR-650 TR-653	IND	pnp,AJ,ge pnp,AJ,ge	40 40	150 150	85 85	2.5 2.5	45 30	400	1.0	10 10	20 20	22	21650
2N382 2N40DA	SY TR	pnp,AJ,ge npn,DG,si	40-76 40-100	200 200	85 200	3.3	25 45	200 25	20 0.02	20	7	10	100% reliability as- surance processed.
2N43 0C79	GE	php,AJge php,PADT,s	42 1e 42	240	100	4	45	300	16	6	40	1.3	
ZN104 2N215	RCA	pap,Al.ge	te 42 44 44	550 150 150	75	-	26 30	300	10	12	-	12	
2N525	GE	pnp,AJ.ge pnp,AJ.ge	44	225	100	4	30 45	50 500	10 10	12 6	25	0.7	MO, SY
2N1924 2N238	GE	pnp,AJge pnp,AJge	44 45	225 150	85 85	.0025	40 25	500 200	4	7.5	-	1.5	
2N291 2N322	TI GE	pnp,AJ,ge pnp,AJ,ge	45 45	180 140	85 85	.003	25 16	200	6 16	7.5	25	1.5	Driver
2N465 2N595	IND GI	pnp,AJge npn,AJge	45 45	150 150	85 85	2.5	45 20	200	6	15	20 15	0.0	MD, RA, US, GI, SY
2N924 2N1098	NA	pnp,AJ,si pnp,AJ,ge	45	150	200	2.5	40 16	-	.005		12	0.8	Bilateral
2N1372 2N1373	TI	pnp,AJ.ge pnp,AJ.ge	45	250	100	3.3	25 45	200	3	7	-	1.5	Driver
211442	NA	pnp,AJ,si	45	400	200	2.28	50	100	0.01	12	25	1	audio/med. power
2N1145 2N1447	GE	pnp,AJ.ge pnp,AJ.ge	45 45	140 200	BS BS	4 3.3	16 45	100 400	16 5	6	40 20	3	Driver
2N1451 2N1477	SZD	pnp,AJ,ge pnp,AJ,si	45 45	200 250	85 175	3.3 1.7	45 100	400	7.5	9	20	1.5	
CK65 CK65A	RA RA	php,FA,ge php,AJ,ge	45 45	80 80	85 85	-	24	100	2	22	-	1	micromin
TR721 2N762	IND NA	pnp,AJ,ge npn,DM,si	45 45-150	150 500	2.5	3 2.5	30 45	200	10	15	20	3	
2N280 TR320	AMP	pnp,AJ,ge	47	25	75	2.5	20	10	150	10	-	0.1	
2N650 2N650A	MO	php,AJ,ge php,AJ,ge	48 49 49	150 200 200	85 100	3 2.7	25 45	100	10 3	5	25	2.5	2N320 US
2N653 2N1186	MO	pnp,AJ,ge pnp,AJ,ge	49 49	200 200	100 100 100	2.0	45 30	500 250	10	15 10	25 20	1.5	Mega life SY
2N43A *	GI	pop,AJ,ge pop,AJ,ge	50	150	100	2.7	60 45	500	5	5	40	1.5	•MIL. GE
2N320 2N331	GE BE	pnp,AJ,ge pnp,AJ,ge	50 50	225 200	85 85	4	20 30	200 200	16 16	- 9	25	2.5	IND, MO, GI
2N363 2N368	IND TI	pnp,AJ,ge pnp,AJ,ge	50 50	150 150	85 85	2.5 2.5	30 30	200 30	10 7	-	33	*	RA, US
2N369 2N422	TI RA	pmp,AJ.ge pmp,FA.ge	50 50	150 150	15 15	2.5	30 20	50 100	7	6.5	33	1.3	
2N941 2N942	022 022	pnp,AJ,si pnp,AJ,si	50 50	250 250	175	1.7	11	50	001	-	7	0.8	TO-18
2W943	SSD	pap,AJ,si	50	250	175	1.7	18	50	.003	-	7	-	TO-18 TO-18
2N944 2N945	022 022	pnp,AJ.si pnp,AJ.si	50 50	250 250	175	1.7 1.7	18 50	50 50	.005 2	-	77	-	TO-18 TO-18
2N946 2N1273 2N1274	SSD TI TI	pnp,AJ,si pnp,AJ,ge	50 50	250 150	175 85	1.7		50 150	23	6.5	7	-	TO-18
201383	TI	pnp,AJ,ge pnp,AJ,ge	50 50	150 200	85 85	.0025	25 25	150 200	3	6.5 7.0	-	- 1.5	
ZN1917 ZN1910	22D	pnp,AJ,si pnp,AJ,si	50 50	250 250	175	1.7 1.7	8	50 50	.001 003	-	7	-	TO-5 TO-5
2N1919 2N1920	22D 22D	pnp,AJ,si pnp,AJ,si	50 50	250 250	175 175	1.7	18 18	50 50	.003 .005	-	777	-	TO-5 TO-5
2N1921 2N1922	022 022	pno,AJ,si pno,AJ,si	50 50	250 250	175	1.7	50 80	50 50	2	-	7	-	TO-5
TR-320 2N214	IND	php,AJ,ge npn,AJ,ge	50 50-100	150	85 85	2.5 3	30 40	200 200	7.5 50	-	7 20	2.5	TO-5 2N320
2N228	SY	non,AJge	50-100	50	75	1	40	100	100	-	-	0.03	Mat ched
2N241A 2N270 2N321	222	php,AJ,ge php,AJ,ge	50-100 50-100	200	85 85	3.3	30 25	200	16 12	-	-	10	
2N1059 2N408	222	pap,AJ.ge- apa,AJ.ge pap,AJ.ge	50-100 50-100 50-135	200 180 150	85 75 85	3.3 3.6 2.5	25 20 20	200 100 70	16 50 14	-	-	10	

Audio (continued)

-	1.1		*f=		lazim	on Re	tings		Q	-	terist	ica	
Type He.	Mfg.	Туре	1.41	W.c	Tj	m/c	V _c	1 c	1 ₆₀	NF	Ce	1 at	Romarka
	_		"FE	(mw)	(c)		v	-	m		Aput	-	
2N109 2N217 2N323 2N1374	57 57 57 57	pap,AJ,ge pap,AJ,ge pap,AJ,ge pap,AJ,ge	50-150 50-150 50-150 50-150	50 140 150	85 85 85 100	0.9 2.3 2	25 25 16	75 75 100 200	12 12 16	111	111	10 890	
ZN1375	SY	pap,AJ,ge	50-150	150	100	ź	25 45	200	100	Ξ	-	1	
2N18EA 2N191 CK22B CK66B	GE GE RA RA	pap,AJ,ge pap,AJ,ge pap,AJ,ge	55555	200 75 75	85 85 65	4 2 1.25	2223	200 50 100	16 16 10	- 15 6.5	40 40 -	12 12	Driver Sebmin.
CK66C	RA	sg.LA,qnq sg.LA,qnq	54	75 75	85 85	1.25 1.25	35 35	100 100	10 10	-	-	Ξ.	Sebmin. Sebmin.
2N566 2N1097 2N1144 CK27A DC54	IND GE GE RA AMP	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	55 55 55	150 140 140 80	18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 1	2.5 4 4 -	30 16 16 15	300 100 100 400	3 16 16 2	12	20 25 40 14		US Driver Driver micromin RF switch
0034	AMP	pnp,AJ.ge	55	10 10	55 55	0.7	3	5	0.1	10	-	0.01	Hoaring aid
2N226 2N596 2N633 2N937	PH GI IND SSD	pnp,AJ.ge npn,AJ.ge pnp,AJ.ge pnp,AJ.si	60 60 60	250 150 150 385	ス 万 町5 町5	5.0 1.67 2.5 2.85	30 20 35 30	150 200 50	1.3 1 2 10 .005	16	140 15 70	0.4 6 0.8 3	Bilatera I RA, US TO-18
2N940 2N1475 DC60 2N526	SSD SSD AMP SY	pnp,AJ,si pnp,AJ,si pnp,PADT_m pnp,LA,gnp	64	250 250 10 225	175 175 55 85	1.7 1.7 	35 60 7 45	100 100 10 500	.001 .005 1.5 10		777	3 1 1.6 3	GE, TS, MO
2N1925 2N175	GE	pnp,AJ,ge pnp,AJ,ge	64	225 50	85	-	40	500	4	-	-	-	
2N220 2N398A 2N407 2N408	RCA MO RCA RCA	pni,AJ.ge pnp,AJ.ge pnp,AJ.ge	65 65 65	50 150 150	- 100 -		10 10 105 20	2 2 200 70	12 12 12 14	6 6	-	0.85 0.85 1 -	57
2N649	RCA	pnp,AJ,ge non,AJ,ge	65 65	150	-	1	20	70	14	5	-	1	
2N1448 2N1452 DC56 DC74	IND IND AMP AMP	pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge pnp,PADT.ge	65 65 65	200 200 10 550	85 85 55 75	3.33 3.33 0.7	45 45 3 20	400 400 5 300	5 7.5 120 10	6 9 15	20 20	4 22 15	Hearing and
2N323	GE	php,AJ,ge	68	140	85	4	16	100	16	-	25	2.5	Driver
2N281 2N361 2N591 2N647	AMP IND RCA RCA	pnp,PADT_gr pnp,Aj_ge pnp,Aj_ge npn,Aj_ge	2 70 70 70 70	165 150 100 100	75 85 - -	2.5	12 45 12 25	250 200 40 100	4.5 10 7 14		* * *	0.9	RA, US SY
2N735 2N739	TI	apa,MS,si apa,DM,si	70 70	1.0	175	-	80	50	1	20	5	50	TO-18, TR, NA
2N1247 2N1352 2N1565	TR IND TI	npn,DG,si pnp,AJ,ge npn,MS,si	70 70 70 70	1w 30 150 1.2	175 150 155 175	0.24 2.5	125 6 30 80	70 200 50	1 0.8 2.5 1	- 20	9 18 5	5 2.5 50	Low drift, dc amp. TR, NA
2N1573 2N213 2N1251 TR-383	TI SY SY	npn,DM,Si npn,AJ,ge npn,AJ,ge pnp,AJ,ge	70 70-250 70-250 72	1.2w 150 150 200	175 85 85	- 2.3 2.5 3.33	125 40 20	50 100 100	1 50 50			- 0.01 7.5	TR
211241	GE	ph0,AJge	'n	100	15	3.33	25 25	200 200	7.5 16	-	40	1.0	2N383
2N109 2N192 2N217 2N1192	RCA GE RCA MO	sg.LA.qnq sg.LA.qnq sg.LA.qnq sg.LA.qnq sg.LA.qnq	75 75 75 75	150 75 150 200	- 85 -	- 2 2.7	25 25 25 40	70 50 70 200	14 16 14 2	- 15 10	40	1.5 2	
201442	NA	pnp,AJ,si	75	400	200	2.28	50	100	0.01	12	25	li	audio/med. power
2N1672 GT-74	GI	npn,AJ.ge pnp,AJ.ge	75 75	120 150	85 100	0.5 2	40 25	:	5	6	35	12	Trizie driver
GT-UI TR-323 2N1376	GI IND SY	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	75 75 75-150	150 150 150	100 85 100	2 2.5 2	25 16 25	- 200 200	5 7.5 100	16 - -	35 20 -	2.5	2N323
2N1431 2N1950	SY	non AJ,ge non ,DM,si	75-150 75-250	180	75 175	3.6	25 20	100	50	1	-	10	
2N1951 2N1952	IND,	non,DM,si non,DM,si	75-250 75-250	600 600	175	4	30 40	-	0.01	1	1	1:	
2N120 2N336	TI	npn,GR,si	76-333	150	175	1	45	25	2	20	-	7	TR
2N336A	NA	npn,GR,Si npn,MS,Si	76-333 76-333	150 500	175	1 2.8	45	25	2	20	-	13	TR, GE, NA, RA
2N760 2N760A	NA NA	npn,DM,si npn,DM,si	76-333	500 500	200	2.5	45 60	-	0.2	-	-	-	
2N910 2N1153	TI	non,GR,si non,DM,si	76-333 76-333	150	175	10.86	45	25 25	2	20	-	7	2N1153 TR
2N185 2N321	TI	pnp,AJ.ge pnp,AJ.ge	80	150 225		0.0025	25	150 200	6	6.5	-	2	
2N527 2N651	SY	pro, AJ, ge pro, AJ, ge	80	225	55 100	3.7	45	500 500	10	- 5	25	3 3.3	TS IN SY
- 11001	1-0	making fa	00	200	100	2.0	43	300	3	3	-	2	US, SY

ELECTRONIC DESIGN . July 5, 1961

in Industry's Strongest Chain of Transistor Performance

2N2048 GERMANIUM SWITCH

> FOR FULL NEWS ON THIS NEW TRANSISTOR

PHILCO IS DELIVERING THE MOST RELIABLE TRANSISTORS IN THE INDUSTRY!

WORLD'S ONLY FULLY-AUTOMATED

Heres why

A revolutionary equipment development patented by Philco. Provides unequalled control over all production phases. Results in an inherent reliability possible only through automated production. To you concerned with reliability this means a constant output of reliable transistors.

MOST ADVANCED QUALITY ASSURANCE PROGRAM!

A widely acclaimed 5 million dollar transistor reliability assurance program. Surveys quality and reliability from initial design to final release of the finished product. A key factor in this project is the most advanced test equipment found anywhere... eliminates all test variables induced by operator techniques or errors. To you concerned with reliability this means the constant checking and eliminating of the factors that result in unreliable transistors.

MORE THAN SOO MILLION

Currently, more than two million test hours are being run weekly . . . new equipment being

Comprehensive reliability information is available to all reliability and quality assurance engineers. Please send request on company letterhead to Dept. ED52461. WHEN YOU REQUIRE RELIABILITY specify transistors having the industry's strongest record of performance and reliability...specify

installed will run the logged hours of life tests to $2\frac{1}{2}$ billion by 1963! Provides a history of transistor operation under maximum stress conditions. This is important in determining the effectiveness of present production techniques and in developing new ones. To you concerned with reliability this means that you not only receive the optimum in reliability now, but are assured of it in the future.

EVERY 4TH EMPLOYEE'S SOLE CONCERN IS RELIABILITY!

Right! 25% of our working force is employed full time at improving our product. But it doesn't stop there. All personnel including operators, engineers, supervisors and managers attend comprehensive training programs designed to educate them with the need for reliability and the steps necessary to achieve it. To you concerned with reliability this means that we are highly concerned with it too!

THE EXTRA INSURANCE OF 100% TESTING OF ALL PRODUCED UNITSI

Tests and sorts at the incredible speed of 3600 transistors per hour. To you concerned with reliability this is *extra insurance* that you receive unmatched quality and reliability.

SILICON POWER TRANSISTORS RECEIVE **27 SEPARATE INSPECTIONS TO ASSURE RELIABILITY**

OK

From the time the finest silicon wafers are received, to the completion of the finished NPN silicon mesa power transistor's group life evaluation cycle, FANON transistor production specialists make 27 separate quality control inspections. The high-power transistors that are produced by this exclusive FANON 27-step point-by-point system perform as specified under extreme conditions. Order samples from your representative-contact FANON for special technical assistance.

75 Watts @ 25°C 43 Watts @ 100°C Max. 7.5 Amp I, Max. 100 Volts V,	
SQUARE CASE 85 Watts @ 25°C 2N389 2N1210 45 Watts @ 100°C 2N424 2N1211 Max. 7.5 Amp I, Max. 100 Veits V, 2N424A 2N1620	
DOUBLE-ENDED STUD 65 Watts @ 25°C 45 Watts @ 100°C Max. 7.5 Amp l, Max. 100 Veits V,	
FANOR TRANSISTOR CORPORATION	

FANON REPRESENTATIVES:

PANON EEPRESENTATIVES: ALABAMA—Birmingham, Paul Hayden Assoc. • ARIZONA—Phoenix, Perlmuth Elec. Assoc. • CALIFORNIA—Pale Atto, Los Angeles, San Diego, Perlmuth Elec. Assoc. • DELAWARE—Choltenham, Pa., W. R. Scholes Co. • D. C.—Silver Spring, Md., Chertes Lienau Company • FLORIDA— Oriando, Paul Hayden Assoc. • GEORGIA—East Pelint, Paul Hayden Assoc. • ILLINOIS—Chicago, Burt Anderson Assoc. • INDIANA—Chicago, III., Burt Anderson Assoc. • IOWA—Chicago, III., Burt Anderson Assoc. • LOUISIANA—Dallas, Teaxas, Taxport Company • MARYLAND—Silver Spring, Charles Lienau Company • MASSACHUSETT3—Boston, Anderson Asles Co. • MICHIGAN—Chicago, III., Burt Anderson Assoc. • ININNESOTA— Minneapolis, Mamilton and Bayle • N. CAROLINA, Paul Hayden Assoc. • ICW JERSEY—Orange, Simberkoff Sales Co. • NEW MERKEOT Assoc. • OKLAMOMA— Guardue, Perlmuth Elec. Assoc. • NEW YORK—Orange, N. J., Simberkoff Sales Co. • OHIO—Batavia, Burt Anderson Assoc. • OKLAHOMA— TENNESSEE—Memphia, Taxport Company • TEAS—Dallas, Teaxont Company • VIRGINIA—Cheitenham, W. R. Scholes Company • WASHINGTON—Seattle, M. K. Widdekind Co. • PENNSYLVANIA—Cheitenham, W. R. Scholes Company • WASHINGTON—Seattle, M. K. Widdekind Co. • WISCONSIR—Milwaukee, Burt Anderson Assoc.

CIRCLE 37 ON READER-SERVICE CARD

			h, 1	N	loxim	um Ra	ling
Type No.	Mfg.	Туре	fe hFE	W C (mw)	T _j (c)	mw/c	V _c
2N651A 2N654 2N780 2N1187 2N1370	MO MO TI MO TI	pnp,AJ.ge pnp,AJ.ge npn,DM.si pnp,AJ.ge pnp,AJ.ge	80 80 80 80 80	200 200 1w 200 150	100 100 175 100 85	2.8 2.8 2.7 .0025	45 30 45 60 25
2N1371 2N1374 2N1375 2N1382 2N1382 2N1449	TI TI TI TI IND	pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge	80 80 80 80 80 80	150 250 250 200 200	85 100 100 85 85	.0025 3.3 3.3 - 3.33	25 25 45 25 45
2N 1731 2N 1926 CK 28A OC 55 OC 59	TI GE RA AMP AMP	npn, DM, si pnp, AJ,ge pnp, AJ,ge pnp, AJ,ge pnp, PADT,	80 80 80 80 80 80	2w 225 80 10 10	175 85 85 55	- - 0.7 -	60 40 12 3 7
TR-321 2N543A	IND TR	pnp,AJ,ge npn,DG,si	80 80-200	150 200	85 200	2.5	30 45
2N527 2N324 2N224	GE GE PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	81 85 90	225 140 250	100 85 75	4 4 5.0	45 16 25
2N466 2N1706 2N1707 CK22 CK66	MO TS TS RA RA	pnp,Aj.ge pnp,FA.ge pnp,FA.ge	90 90 90 90 90	200 200 200 80 80	100 100 100 85 85	2.5	35 25 30 20 20
CK66A OC75 2N1376 2N1377 2N207	RA AMP TI TI PH	pnp,AJ,ge pnp,PADT, pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	90 ge 90 95 95 100	80 115 250 250 50	85 75 100 100 65	- 3.3 3.3 1.25	20 30 45 45 12
2N207A 2N207B 2N360 2N362 2N534	PH PH RÅ IND PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	100 100 100 100 100	50 50 150 150 25	65 65 10 85 65	1.25 1.25 2.5 2.5 1.43	12 12 20 20 50
2N535 2N535A 2N535B 2N568 2N632	PH PH PH IND IND	pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge	100 100 100 100 100	50 50 50 150 150	8888	0.83 0.83 0.83 2.5 2.5	20 20 20 30 30
2N736 2N740 2N1124 2N1380 2N1381	TI TI PH TI TI	npn,MS,Si npn,DM,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	100 100 100 100 100	1.0 1m 300 250 250	175 175 85 100 100	- 5.0 3.3 3.3	80 125 40 12 25
2N1574 TR383 2N213A 2N1944 2N1945	TI IND SY IND IND	npn,DM,si pnp,AJ,ge npn,AJ,ge npn,DM,si npn,DM,si	100 100 100-250 100-300 100-300	1.2w 150 150 600 600	175 85 85 175 175	- 3 2.5 4 4	125 25 40 20 30
2N1946 2N1947 2N1948 2N1949 CK67B	IND IND IND RA	npn,DM,si npn,DM,si npn,DM,si npn,DM,si pnp,AJ,ge	100-300 100-300 100-300 100-300 108	600 600 600 600 75	175 175 175 175 175 55	4 4 4 1.25	40 20 30 40 35
CK67C CK261 CK262 2N223 2N265	RA RA PH GE	pnp,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge	108 54 54 110 110	75 75 75 250 75	85 85 85 75 85	1.25 1.25 1.25 5.0 2	35 35 18 25
2N1705 GT-109 2N508 2N1018	TS GI GE RA	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	110 110 112 120	200 150 140 80	100 100 85 85	- 2 4 -	18 25 16 8
2N1128	PH	pnp,AJ,ge	120	150	85	2.5	25
TR-508 2N652 2N652A 2N655 2N1130	IND MO MO PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	125 130 130 130 130	150 200 200 200 150	5 100 100 100 85	2.5 2.7 2.8 2.8 2.8 2.5	16 45 45 30 30
2N1188 2N359	MO RA	pnp,AJ,ge pnp,AJ,ge	130 150	200 150	100 85	2.7	60 45

TRANSISTORS-196

Audio

(continued)

Ch	erect	eristic	2.6		
0	NF	С	1	De este	Type
0	æ	C MALT	æê MC	Remarks	No.
	15	-	2.0		2N651A
5	10	-	2.0	US	2N654 2N780
	5 6.5	1111	2 2.0		2N1187
	6.5		2.0		2N1370 2N1371
	6.5	-	2		2N1374
1	6.5 6.5	-			2N1375 2N1382
	6	20	25		2N1449
5	-	-	-		2N1731 2N1926
	- 10	14	17 0.01	micromin RF switch	CK28A
	-	-	2.2	Hearing aid	0C55 0C59
5	-	20	3.1	2N321	TR-321
2	20	7	15	100% reliability as- surance processed.	2N543A
	6	25 25	3.3 3	MD Driver	2N527 2N324
	-	25 125	0.51		211224
	15	-	1 3	US, GI, RA, SY	2N466 2N1705
	-	-	3		2N1707
	6.5 22		1.2		CKZ2 CK66
	22	-	12	RICIORIA	CK66A
	5.5	40	0.75		OC75 2N1376
	5.5 5	-	2		2N1377
			2		2N207 2N207A
	22	-	2		2N2078
0	-	-	1.2	IND, US RA, US	2N 360 2N 362
	-	-	-		211534
	5 2 2	1	22		2N535 2N535A
	2 12	20	2 1.5	us	2N5358 2N568
	-	-	1	RA, US, GI	2N632
	20	5	50	TO-18, TR, FA, NA TR	211736
	-	-	1.0	14	2N740 2N1124
	5.5 5.5	40 40	22		2N1380 2N1381
	-	-	- 1	TR	2N1574
	-	50	1.8 10	2N 383	TR383 2N213A
1	-	-			2N1944 2N1945
1	1111111				201945
	-	-	-		2N1947 2N1948
31 01	-	1			211949
	-	-	-	Submin.	CK678
	-	1	-	Submin. Submin.	CK67C CK261
	-	- 90	- 0.6	Submin.	CK262 2NZ23
	15	40	1.5	Driver	2N265
1	-	-	4		211705
	16	35 25	3.5	Driver	GT-109 2N508
	-	14	25	micromin RF switch KF	2N1018
	-	45	1		211128
	-	20	3.5	2N508 Sy	TR-508 2N652
	5 15	-	2.5		2N652A
	10	129	2.5 0.75	20	2N655 2N1130
	5	-	2.5		201188
	-	-	1	IND, US	2N359

New 2

model NC-1 performs transistor tests up to

50 amps at 750W peak power!

Baird-Atomic also offers the following equip-

General Purpose Transistor Test Set Model KP Series

Write today for additional information and

name of your nearby Baird-Atomic repre-

Engineers and scientists Investigate challenging opportunities with BA Write Industrial Relations Director All

eration for employment without regard to race, creed, color or national origin

Model GP-4

Model MW-1

Model MWT-1

ment for transistor testing:

- with Circuit Analyzer

AND ELECTRONICS . . . SERVING BCIENCE

Transistor Test Set

Beta Tester

Curve Tracer

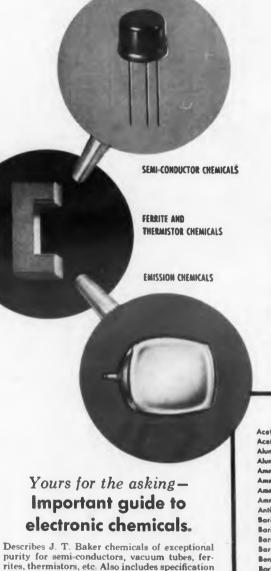
ment of medium and high-power transistors. The B A Model NC-1 applies suitable pulse drive signals to the transistor under test and so they have the same measuring value as steady state DC. Because the average pulse signal power is considerably lower than that of steady state DC, less stress is put on the transistor. This permits power tests to be made at a level many times that of rated dissipation.

NCED

6 10ths of 17, of the input power used in con-

Permits 750 watts max. power with max. current of 50A or max voltage of 250V

OPTICS


ELECTRONIC DESIGN . July 5, 1961

teristics Type C. !... Remarks No. db mil mc 12 20 2N570 2N631 2N1008 3 10 500 2.5 2 2 1.2 RA 18 10 2N1471 2.5 2N1193 - 22 22 IND, SY 2N467 1.2 . CK67 micromin CK67A 25 125 0.7 2N1129 2N467 16 MO RA US 0.5 12 20 40 211572 2 2N1378 45 40 2N1379 2N1185 2 10 2N]]94 3 325 Relay photo-tr. OCP70 20 0.3 2N461

(concluded)

Highest purity precisely defined

to meet critical electronic manufacturing needs

sheets that define the high standards for 'Baker

Analyzed' Reagents. Write for your complimen-

J. T. Baker Chemical Co.

Phillipsburg. New Jersey

ELECTRONICS BUYERS' GUIDE - July 20, 1961

tary copy today.

J. T. Baker ELECTRONIC ELECTRONIC CHEMICALS Baker Analyzed' Require

THE J. T. BAKER ELECTRONIC CHEMICALS listed below offer you the highest standards of purity in the industry—proved by the most informative labeling in the industry. Every 'Baker Analyzed' label provides an Actual Lot Analysis that defines purity to the decimal; many also provide an Actual Lot Assay. Your variables are minimized ... rejections are fewer... product performance is improved.

IMPORTANT. 'Baker Analyzed' Reagents have consistently met or exceeded the requirements of the electronics industry. Through a continuing program of establishing additional and more stringent specifications, the 'Baker Analyzed' label consistently defines a degree of purity so high that special electronic labeling is unnecessary. Prices are economical... deliveries are prompt and dependable in each marketing area.

J. T. BAKER ELECTRONIC CHEMICALS

Acetic Acid, Glacial **Cobalt Carbonate** Acetone Cobalt Oxide Aluminum Nitrate **Cobalt Nitrate** Aluminum Sulfate Ether, Anhydrous Ammonium Carbonate Hydrochloric Acid Ammonium Chloride Hydroflupric Acid Ammonium HydroxTde Hydrogen Peroxide. Ammonium Phosphate 30% and 3% Solution Antimony Trioxide Lithium Carbonate Barium Acetate Lithium Chloride Lithium Nitrate Barium Carbonate Lithium Sulfate **Barium** Fluoride **Barium Nitrate Magnesium Carbonate** Magnesium Chloride Benzene **Boric Acid** Magnesium Oxide **Cadmium Chloride** Manganese Dioxide Manganese Nitrate **Cadmium Nitrate** Managnese Sesaulozide **Codmium** Sulfate Colcium Carbonata Managanous Carbonate Calcium Chloride Methanol Calcium Fluoride Nickel Carbonate Calcium Nitrate Nickel Oxide, Black **Calcium Phosphate** Nickel Oxide, Green Carbon Tetrachloride **Nickelovs** Chloride

Nickelous Nitrate Nickelous Sulfate Nitrie Acid **Petroleum Ether** Potossium Dichromote Potossium Hydroxide iso-Propyl Alcohol Radio Mixture No. 3 Silicie Acid Sodium Carbonate Sodium Chloride Sodium Hydroxide Sodium Phosphate Dibasic Strontium Carbonate Strontium Nitrate **Sulfuric Acid** Toluene Trichlorgethylene **Triple Carbonate** Xylene Zinc Chloride Zinc Nitrate Zinc Oxide

ELECTRONIC DESIGN . July 5, 1961

of Terms

- Si Silicon
- SBT Surface Barrier
- Come = Collector-to-emitter capacitance measured across the output terminals with the input ac open-circuited.
- f... Frequency at which the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-frequency value.
- f = Frequency at which common emitter gain is unity.
- h_{fe} = Čommon emitter-small signal forward current transfer ratio.
- hrs = Common emitter-static value of shortcircuited forward current ratio.
- Ice = Collector current when collector junction is reverse-biased and emitter is dc open-circuited.

- July 20, 1961 • TO LOCATE NEAREST SALES OFFICES. SEE GREEN SECTION. 333 When ordering or seeking information, please mention ELECTRONICS BUYERS' GUIDE. CIRCLE 41 ON READER-SERVICE CARD

41

TRANSISTORS-1961

High Frequency

				-	Aaxin	um Ro	tings		C	aract	erist	ics	
Type No.	Mfg.	Туре	free	Wc	Tj	mw/c	V c	I c	h fe	I co	NF	Cc	Remarks
-	-	-	-	(mw)	(c)		V	ma		μa	đb	ppf	
2N444A 2N 1024	GI	npn,AJ,ge onp,AJ,si	1	150 150	100 150	2	40 15	100	25 9	2 25	12	14	NA
2N 1025 2N94	SSD SY	pnp,AJ,si npn,AJ,ge	1	150 50	150 75	1.2	35 20	100	9-22 50	25 50	-	-	NA
2N139	SY	pnp, AJ, ge	2(min.)	80	85	.75	20	15	22-110	50 50	-	-	
2N169A 2N193	SY SY	npn,AJ,ge npn,AJ,ge	2	65 50	75 75	.8 1	25 18	20 50	36-220 9	5 50	-	-	
2N194 2N194A	SY SY	npn,AJ,ge npn,AJ,ge	22	50 50	75	i	18 18	50 50	10 10	50	-	-	Mixer
2N211	SY	npn, AJ, ge	2	50	70	1.1	10	50	5-15	50 20	-	-	Converter
2N233A 2N413A	SY	non, AJ, ge pnp, AJ, ge	22	50 150	75 85	1 2.5	18 15	50 200	30	50 10	-	-	GI
2N445 2N515	CBS	npn,AJ,ge npn,AJ,ge	22	100 50	85 75	1.67	15 18	- 10	25-50	6 50	-	12	u.
2N516	SY	npn, AJ, ge	2	50	75	i	18	10	5-15	50 50	-	-	
2N517 2N519A	SY GI	npn, AJ, ge pnp, AJ, ge	22	50 150	75 100	1 2	18 25	10	10-60 25	50	-	10	IND, KF
2N1026 2N1469	SSD SSD	pnp, AU, si pnp, AU, si	22	150 150	150 150	1.2	35 35	100	18-44	25	-	7	IND, Kr
2N413	RA	php,FA,ge	2.5	150	85	-	18	100 200	36 30	25 2.0	7	7	IND, US, KF, GI
CK13 GK13A	RA	pnp,FA,ge pnp,AJ,ge	2.5 2.5	80 80	85 85		18	200	30	2.0	7	-	
2N356 2N438	CBS	pnp, AJ, ge	3	100	85	1.67	20	200	30	2.0	7	12	Micromin RCA, GI, SY
2N438A	CBS	npn, AJ, ge npn, AJ, ge	3	100 150	85 85	1.67	30 30	-	-	10 10	-	12	GI GI RA
2N445A 2N481	GI	npn,AJ,ge	3	150	100	2	30	-	70	2	12	14	
2N482	IND	pnp,AJ,ge pnp,AJ,ge	3 3.5	200 150	85 85	3 2.5	30 14	20 200	50 50	3	-	14	RA, US
TR-482 2N212	IND Sy	pnp,AJ,ge npn,AJ,ge	3.5	150 50	85 75	2.5	14 18	200	20 20	3 50	-	12	Converter
2N385	CBS	npn,AJ,ge	4	150	100	2.0	25	-	-	35	-	4	SY, GI
2N414A 2N528	SY WE	pnp, AJ, ge pnp, DG, ge		150	85	2.5	15 40	200	25	20 10	2	-	KF, GI US, MIL only
2N1027 2N1058	SSD SY	pnp,AJ,si npn,AJ,ge		150 50	150	1.2	15	100	18	25	-	7	
2N94A	SY	npn, AJ, ge	5	50	85	.8	18 20	50	15 19	50 50	-	-	Convertier
2N 168A 2N 292	SY SY	npn,AJ,ge npn,AJ,ge	5	65 65	85 85	1.1	15 15	20	23-135	5	-	-	
2N395 2N438	RA	pnp,AJ,ge	5	150	85	.9 -	25	20	6-44 40	5 2.0	1	12	GE TO-5 RF Switch
2N439	CBS	npn,AJ,ge npn,AJ,ge	5	100	85 85	1.67	25 30	400	25	3	-	9 12	TO-5 RF Switch GT, SY
2N439A 2N446	CBS CBS	npn,AJ,ge	5	150	85	2.5	30	-	-	10	-	12	RA
2N448	GE	npn,AJ,ge npn,RG,ge	5	100 65	85 85	1.67 1.1	15 15	20	25	65	1	12	
2N52DA 2N634	GI CBS	pnp,AJ,ge npn,AJ,ge	5	150 150	100	25	25 20	-	100	15	12	14	IND . KF
2N1090	CBS	non, AJ, ge	5	120	85	2	25	-	-	8	-	12	UL.
2N1681 2N483	RA	pnp,FA,ge	5 5.5	180 150	100	-	30 12	200 20	75 60	3 3.0	-	2	IND. US
2N357 2N377	CBS	npn,AJ,ge npn,AJ,ge	6	100 150	85 100	1.67	20 25	-	-	5	-	12	RCA, GI, SY
2N446A	GI	npn,AJ,ge	6	150	100	2	30		120	5	12	12	SA
OC45 ST4150	AMP TR	pnp,PADT, npn,DJ,si	ge 6 6	83 5.0	75 200	45	15 60	10	100	0.5	-	+	
2N 139 2N 2 18	RCA	pnp,AJ,ge	6.8	80	85	1	16	15	48	15	8	80	SY
2N409	RCA	pnp, AJ, ge	6.8 -6.8	80 80	85 85	-	16 13	15	48	6	-	-	ew.
2N410 2N414	RCA	pap, AJ, ge pap, FA, ge	6.8 7	80 150	85	-	13	15	75	10	-	-	SY
21439	RA		,		85	-	15	200	60	2.0	6	-	IND, US, TS, GE, RCA, SY, GI
2N 1090	RA	npn,AJ,ge npn,AJ,ge	'	100	85	-	20 18	400	45	3	-	9	SY, GI TO-5 RF Switch GI
CK14 ST903	RA	pnp, FA,ge	1	80	85	-	15	200	60	2.0	6	9	TO-5 RF Switch
2N 485	IND	pnp, AJ, ge	7.5	150 200	150 85	1.0	30 30	20	16 50	0.1	25	7	RA, US
2N168A 2N169	GE GE	npn,RG,pp		65	85	11	15	20	40	5	-	2.4	
2N 293	GE	npn, RG, ge rupn, RG, ge	Ī	65	85 85	11	15 15	20 20	72 25	55	-	2.4	
2N 396	CBS RA	npn, AJ, ge pnp, AJ, ge	8	150 150	100 85	2.0	25	-	60	5	=	12	GI, SY TS
20449 20471A	GE	non, RG, ge		65	85	11	15	20	72	5	-	24	
IM 72A	TR TR	npn,GJ,si npn,GJ,si		200 200	200	-	30 45	25	10-25	.02	22	77	
IN 1086	RA GE	pnp,AJ,ge npn,RG,ge	1	100 65	85 85	1.1	15	100	30 40	3	-	12	TO-5 RF Switch
	GE	apn, RG, m	li	65	i iii	1.1 1.1	j j	20	40	3	-	2.4	

High Frequency (continued)

				М	oxim	ım Rei	ings		C	aracti	risti	cs	
Type No.	Mfg.	Туре	fae	₩ _c (mw)	T _j (c)	mw/c	v c v	l _c ma	^h fe	I _{со} µа	N F db	С _с _{µµ} t	Remarks
N 1087 N 1121 SOO N358 N447	GE GE SSD CBS CBS	npn,RG,ge npn,RG,ge pnp,AJ,si npn,AJ,ge npn,AJ,ge	8 8 9 9	65 65 150 100 100	85 85 150 85 85	1.1 1.1 1.2 1.67 1.67	9 15 25 20 15	20 20 100 -	40 72 9 -	3 5 25 5 6		2.4 2.4 7 12 12	GI, SY
N521A T904 N140 N219	GI TR RCA RCA	pnp,AJ,ge npn,GR,si pnp,AJ,ge pnp,AJ,ge	9 9 10 10	150 150 80 80	100 150 85 85	2 1.0 	25 30 16 16	- 15 15	150 31 75 75	1 0.1 6 6	12 25 8	14 7 - -	SY
N411 N414B N416 N440 N440A N447A N473	RCA IND RA CBS CBS GI TR	pnp, AJ, ge pnp, AJ, ge pnp, FA, ge npn, AJ, ge npn, AJ, ge npn, AJ, ge	10 10 10 10 10 10	80 200 150 150 150 150 200	85 85 85 85 85 85	2.5 1.67 2.5 2	13 14 12 30 30 30	15 200 200 - -	75 90 80 	10 3 2.0 10 10 2	4	- 12 - 12 12 12 14	SY IND, KF IND, US, GI, TS, KF GI, SY, RA GI, RA
N474 N474A N475 N475 N479A N484	TR TR TR TR RA	npn, GR, si npn, GR, si npn, GJ, si npn, GR, si npn, GJ, si pnp, FA, ge	10 10 10 11 11	200 200 200 200 200 150	200 200 200 200 200 85		15 30 30 45 30 12	25 25 25 25 25 25 20	20-50 20-50 20-50 20-50 40-100 90	.02 .02 .02 .02 .02 .02 3.0	20 20 20 20 20	7 7 7 7 7 7 7 7	US.
N635 N1091 K16 K16A T905	CBS CBS RA RA TR	npn,AJ,ge npn,AJ,ge pnp,FA,ge pnp,AJ,ge npn,GR,si	10 10 10 10 10	150 120 80 80 150	85 85 85 85 150	2.5 2 - 1.0	20 25 12 12 30	- 200 200 -	- 80 80 65	5 8 2.0 2.0 0.1	- 4 4 25	12 12 - 7	GE Micromin
N118A N478 N479 N480 N1417	TR TR TR TR TR	npn,GR,si npn,GR,si npn,GR,si npn,GR,si npn,GR,si	11 11 11 11 11	150 200 200 200 150	175 200 200 200 150		30 15 30 45 15	25 25 25 25 25 25	19-90 40-100 40-100 40-100 30-200	0.2 .02 .02	27 20 20 20 19	7 7 7 7 7 7	JAN, TI
N1418 F15 F35 F45 F904A	TR TR TR TR TR	npn,GR,si npn,GR,si npn,GR,si npn,GR,si npn,GR,si	11 11 11 11 11	150 200 200 200 150	150 200 200 200 150	- - 1 10	30 15 30 45 30	25 25 25 25 25	30-200 10-100 10-100 10-100 60	.02 .02	19 22 22 22 25	7 7 7 7 7	2N332
T910 N397 N486 N751 N1390	TR RA IND RA RA	npn, GR, si pnp, AJ, ge pnp, AJ, ge npn, DJ, si npn, DJ, si	11 12 12 12 12 12	150 150 - 150 300	150 85 85 •175 •175	1.0 3 0.75 0.5	30 15 30 20 20	- 20 50 50	140 80 100 4 4	0.1 2.0 3 0.01 0.01	20 - - -	7 12 12 6 6	TO-5, RF Switch, KF RA, US
N541 N542 N542A N543 N636	TR TR TR TR CBS	npn,GR,si npn,GR,si npn,GJ,si npn,GR,si npn,AJ,ge	15 15 15 15 15	200 200 200 200 200 150	200 200 200 200 200 85		15 30 30 45 20	25 25 25 25	80-200 80-200 80-200 80-200	.02 .02	20 20 20 20	7 7 7 7 7	NA NA GE
N1091 IC44 N476 N477 N522A	RA AMP TR TR GI	npn,AJ,ge pnp,PADT, npn,GJ,sa npn,GJ,si pnp,AJ,ge	15 ge 15 17 17 17	150 83 200 200 150	85 75 200 200 100		15 15 15 30 25	100 10 25 25	70 100 30-60 30-60 200	3 0.5 .02 .02 1	- 19 19 12	9 	TO-5 RF switch
N582 N1118 N1118A N232 N417	RA PH PH PH RA	pnp,AJ,ge pnp,SAT,si pnp,SAT,si pnp,SBT,gi pnp,FA,ge	18 18 18 20 20	100 150 150 9 150	85 140 140 55 85	- 1.3 1.3 0.9 -	14 25 25 4.5 10	100 50 50 3 200	60 20 25 39	3 .002 1.0 6 8.0		12 6 6	TO-5 RF switch SPR SPR SPR IND, US, GI, TS
NGD2 IK17 IK17A IK195 IN523A	GI RA RA PH GI	pnp, Dr.ge pnp, FA.ge pnp, AJ.ge pnp, SA.si pnp, AJ.ge	20 20 20 21 21 23	120 80 80 150 150	85 85 85 140 100	2 - 1.3 2	20 10 10 25 20	- 200 200 50 -		3 2.0 2.0 .002 1	14 4 4 12	4 - 7 14	micromin IND
N1428 N1429 N1055 N1900 N1901	PH PH GI PSI PSI	prip, SAT, si prip, SAT, si prip, Dr, ge npn, DM, si npn, DM, si	23 23 25 25 25 25	100 100 120 125w 125w	140 140 85 150 150	0.86 0.86 2 1000 1000	6 6 40 140 140	50 50 	45 45 10 19	.001 .001 4 20ma 20ma		7 7 3 0,1 1	hi freq., hi pwr. hi freq., hi pwr.
N274 N370 N371 N372 N373	RCA RCA RCA RCA RCA	pap,Dr,ge pap,Dr,ge pap,Dr,ge pap,Dr,ge pap,Dr,ge	30 30 30 30 30	80 80 80 80 80 80	85 85 85 85 85		35 20 20 20 20	10 10 10 10 10	60 60 60 60	16 20 20 20 8			SY SY Mixer, SY SY
20374 201109 201224 201224 201225	RCA TI SY RCA RCA	pnp, Dr, ge pnp, GD, ge pnp, DD, ge pnp, Dr, go pnp, Dr, ge	30 30 30 30 30	60 30 120 120 120	85 85 100 85	- .5 1.6 -	25 16 40 40 60	10 5 10 10	60 20-175 60 60	8 5 12 12 16		1,5	converter, SY

ELECTRONIC DESIGN . July 5, 1961

SALES ENGINEERING OFFICES

- ALBUQUERQUE R. E. McClendon Co. 915 Yale Blvd., S.E., Albuquerque, New Mexico Tel: CHopel 3-4551
- BALTIMORE Habco Electronic Sales Co. 603 Allegheny Ave., Towson 4, Maryland Tel: VAlley 5-9637
- BOSTON L. L. Schley Co., Inc. 70 Coolidge Hill Road, Watertown 72, Mass. Tel: WAlnut 6-0235
- CHARLOTTE, N. C. Bill Henry Associates 1043 D Providence Road, Charlotte, N. C. Tel: FRanklin 5-8958
- CHICAGO Withers, Ropek & Cahill, Inc. 5439 W. Division St., Chicago 51, Illinois Tel: AUstin 7-7292
- CLEVELAND Technical Associates, Inc. 4475 Lander Rd., Chagrin Falls, Ohio Tel: TErrace 1-9884
- DALLAS R. E. McClendon Co., Suite 14-B 137 Walnut Hill Village, Dallas 20, Texas Tel: FLeetwood 2-4054
- DAYTON Technical Associates, Inc. 1724 Hillwood Drive, Daytan 39, Ohio Tel: AXminister 9-5374
- DENVER Scientific Instrument Co. 1460 Pennsylvania St., Denver 3, Colorado Tel: Alpine 5-2777
- DETROIT Hillfronics, Inc. 13720 Puritan Avenue, Detroit 27, Michigan Tel: BRoadway 2-4320
- KANSAS CITY, MO. Harris-Hanson Co. 7916 Paseo Ave., Kansas City 30, Missouri Tel: Hlland 4-9494
- LOS ANGELES 11563 South Paramount Blvd. Dawney, California
- MILWAUKEE Arthur Engineering Sales Co. 11210 W. Mallory Ave., Hales Corner, Wisconsin Tel: GArdner 5-5919
- NEW YORK CITY H, W, Brede Co., Inc. 689 Greenvale-Glen Cove Road, Glen Head Long Island, New York, Tel: ORiole 6-4900
- ORLANDO Perrott Associates 2701 Wright Avenue, Orlando, Florida Tel: MIdway 4-0065
- PALM BEACH Perrott Associates 4613 Weymouth Street, Lake Worth, Florida Tal: 965-2519
- PHILADELPHIA Schumacher Associates 1209 York Road, Abington, Pennsylvania Tel: TUrner 4-7808
- PHOENIX W. G. Henschen Company 4438 East Marion Way, Phoenix 18, Arizona Tel: Whitney 6-7477
- SAN FRANCISCO James S. Heaton Co. 413 Lathrop Street, Redwood City, California Tel: EMerson 9-5278
- SEATTLE Ray Johnston Ca., Inc. 1011 East 69th Street, Seattle, Washington Tel: LAkeview 4-5170
- ST. LOUIS Harris-Hanson Co. 2814 S. Brentwood Blvd., St. Louis 17, Missouri Tel: Mission 7-4350
- **ST. PAUL** Arthur Engineering Sales Co. 1027 Burke Ave., St. Paul 13, Minnesota Tel: IVanhae 4-3277
- SYRACUSE L. L. Schley Corp. 109 Kinne Road, De Witte (Syracuse), New York Tel: Glbson 6-1642

CIRCLE 200 ON READER-SERVICE CARD > TO BE PLACED ON MAILING LIST

SWITCHES ... from SSPI

... Offering efficient switching in the 1-200 mA range and peak pulse current capability to 10 amperes, in the miniature TO-18 package.

Туре	Maximum Anode Voltage (DC or	Maximum Average Forward Current 75°C	Maximum Gate Current to "Fire"	Gate Voltage to Fire + Volts			
	Peak AC) ± Volts	mA	μA	Min.	Max		
2N884	15	200	20	.44	.60		
2N885	30	200	20	.44	.60		
2N886	60	200	20	.44	.60		
2N887	100	200	20	.44	.60		
2N888	150	200	20	.44	.60		
2N889	200	200	20	.44	.60		

Available for the first time in the miniature TO-18 case, these units offer the same high sensitivity and close characteristics control introduced by SSPI in pioneering PNPN devices for control and logic applications.

The precise firing characteristics of these devices make them ideal for timing and time delay circuits, voltage limit detectors, high gain static switching, logic circuits, and related applications.

With the high surge capability of this series, squib firing systems requiring pulse currents up to 5 amperes can be greatly miniaturized without sacrificing design margin. In addition, the low 1 mA holding current level is particularly useful in many programming, control and logic circuits.

Designed to meet the requirements of MIL-S-19500, these units are subjected to extensive temperature storage and cycling, as well as 100% acceptance testing, as a regular part of the manufacturing procedure.

> Write for Bulletin C420-03. CIRCLE 201 ON READER-SERVICE CARD

PROVEN LEADERSHIP IN PNPN TECHNOLOGY ... from (SSPI)

Products, Inc.

E PINGREE STREET + SALEM, MASSACHUSETTE

Are you on our mailing list for "New Design Ideas"?

TRANSISTORS - 1981 High Frequency (continued)

-	1.00				loxia	um Ra	tings		a	eract	oristi		
Typ= Ne.	Mfg.	Туре	fae	W _c (mw)	Tj (c)	mw/c	V c v	i _c ma	h fe	ι _{co} μa	NF db	С _с µµ1	Remarks
2N1395 2N1750 2N1425 2N1425 2N1426 2N1524	RCA PH RCA RCA RCA	pnp,Dr,ge pnp,SBT,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	30 30 33 33 33 33	120 15 80 80 80	85 75 71 71 71	- 0,5 - 0,4	40 14 24 24 24	10 5 10 10 10	90 - 50 130 60	16 2 12 12 16		- 6 - 2	
2N 1525 2N 1526 2N 1527 2N 1527 2N 1108 2N 1110	RCA RCA RCA TI TI	pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,GD,ge pnp,GD,ge	33 33 33 35 35	80 80 80 30 30	71 71 71 85 85	0.4 0.4 0.5 0.5	24 24 24 16 16	10 10 10 5 5	60 130 130 -	16 16 16 5 5		2 - 1.5 1	
2N 1111 2N1111A 2N1111B 2N603 2N750	TI TI TI Gi RA	pnp,GD,ge pnp,GD,ge pnp,GD,ge pnp,Dr,ge npn,DJ,si	35 35 35 40 40	30 30 30 120 150	85 85 85 85 175	0.5 0.5 0.5 2 0.75	20 20 20 30 50	5 5 5 50		5 5 5 7 10		1.5 1.5 1.5 3 6	
2N1 107 2N1389 2N1633 2N1634 2N1634 2N1638 2N3746	TI RA RCA RCA RCA RCA	pnp,GD,ge npn,DJ,si pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	40 40 40 40 40 40	30 300 80 80 80 80	85 175 71 71 71 71 71	0.5 0.5 0.4 0.4 0.4	16 50 34 34 34 34	5 50 10 10 10 20	- 7 75 75 75 .985	5 10 16 16 7 16		L5 6 - 2 3.8	
2N640 2N641 2N642 2N754 2N755	RCA RCA RCA TR TR	pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge npn,DJ,si	42 42 42 44	80 80 80 300	85 85 175	0.75 0.75 0.75 -	34 34 34 60	10 10 10 50	60 60 60 20-80	5771			
2N839 2N840 TMT842 2N1196	TR TR TR HU	npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si npn,MS,si	44 44 44 45	300 300 300 150 385	175 175 175 175 200		100 45 45 45 70	ទងសង្កង	20-80 20-45 40-90 20	1 0.1 0.1 0.1 4	15 15 -	8 8 6 4	TMT839 (150mw) TMT840 (150mw)
2N1631 2N1632 2N1635 2N1635 2N1635 2N1637	RCA RCA RCA RCA RCA	pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge	45 45 45 45 45	80 80 80 80 80	71 71 71 71 71 71	0.4 0.4 0.4 0.4 0.4	34 34 34 34 34	10 10 10 10	80 80 75 75 80	16 16 16 16 5	1111	22	
2N1639 2N248 2N344 2N345 2N393	RCA TI PH PH PH	pnp, Dr.ge pnp, GD,ge pnp, SB,ge pnp, SA,ge pnp, MA,ge	45 50 50 50 50	80 30 20 20 25	71 75 55 55	0.4 0.6 1.33 1.33 0.63	34 25 5 6	10 5 5 50	75 20 22 35 155	7 5 0.7 0.7 5		2 L2 3 3 2	SPR SPR SPR_GI
2NG04 2N1899 3N36 PT900 PT901	G1 PSI GE PSI PSI	pnp,Dr,ge npn,DM,si npn,MB,ge npn,DM,si npn,Ms,si	50 50 50 50 50	120 125w 30 125w 125w	85 150 85 150 150	2 1000 0.5 1000 1000	30 140 6 80 140	- 10a 20 10a 10a	- 10 2,2 3 10	4 10ma 3 10ma 30	14	3 6 2 1 1	hi fæq., hi pwr tetrode hi fæq, hi powr. Hi frequency, high power
2N1197 2N128 2N749 2N1388 2N841	HU PH RA RA TR	pnp,Ms,si pnp,SB,ge npn,DJ,si npn,DJ,si npn,DJ,si	55 60 60 60 60	385 25 150 300 300	200 85 175 175 175	2 0.4 0.75 0.5	70 10 45 45 45	- 50 50 50 25	- 40 10 10 80-336	- 0.6 10 10 0.1	- 10 - 15	4 2.5 6 8	SPR TMT841 (150 mw)
THT843 201516 201517A PADT20 PADT21	TR AMP AMP AMP AMP	npn,DJ,si pnp,PADT, pnp,PADT, pnp,PADT, pnp,PADT,	e 70 •	150 83 100 83 83	175	- 1.7 1.7 1.7 1.7	45 20 40 20 20	25 10 10 10	40 100 150 150	0.1		6	•1T, RF-IF •1T, RF amp •TT, Converter
PADT22 PADT23 PADT24 PADT25 PADT25	AMP AMP AMP AMP	pmp,PADT, pmp,PADT, pmp,PADT, pmp,PADT, pmp,PADT,	n 70 • 70 • 70 •	83 100 100 -		1.7 1.7 1.7	20 35 35	10 10 10	150 150 150	11111		1111	ef T, IF amp efT, RF amp eTT, IF amp eTT, IF amp ef T, RF amp
PADT27 PADT31 2N346 2N696	AMP AMP PH FA	pnp,PADT, pnp,PADT, pnp,SB,ge npn,DP,si	e 70 •	100 100 20 2w	- 55	1.7 1.7 1.3 13.3	35 19 5 40	10 10 5 -	150 35 40	- 0,7 0,1		- 3 18	ef T, osc ef T, Mixer osc. SPR RH, PSI, HO, TR, TI,
2N698 2N699 2N706 2N1252 2N844	FA FA FA FA TR	npn,DP,si npn,DP,si npn,DP,si npn,DP,si npn,DJ,si	80 80 80 80 80	2w 2w 1w 2w 300	15 15 15 15 15 15	1113 13.3 6.7 1113	80 80 28 20 60		30 65 12 35	0,1 .01 .005 0.1		12 12 5 30	IND, SY, SSD, NA RH, IND, TR, NA RH, NA RH, NA RH, TR
2NB45 3N37 2N584 2N607	TR GE RCA FA	ngn,DJ,si ngn,MB,ge pnp,Dr,ge ngn,DP,si	86 90 100	300 300 30 80 2w	175 85 85 175	0.5 13.3	100 6 30 40	50 50 20 10	40-120 40-120 L1 60 75	1 3 16 .01	1 1 1 1	8 1.5 18	letrode RH, PSI, HO, TR, SSC SY, NA

High Frequency (continued)

	1	1		M	loxim	um Rel	lings		0	harac	terist	ics	
Type Na,	Mfg.	Туре	a	W _c (mw)	Ťj (c)	mw/c	V c v	l c ma	h te	l co µa	NF db	С _с µµt	Remarks
2N1180 2N1225 2N1253 2N1396 2N1420	RCA RCA FA RCA FA	pnp,Dr,ge pnp,Dr,ge npn,DP,si pnp,Dr,ge npn,DP,si	100 100 100 100 100	80 120 2w 120 2w	71 85 175 85 175	- 13.3 13.3	30 40 20 40 30	10 10 10 -	80 60 45 90 130	12 12 0.1 16 0.1	1 1 1 1 1	- 30 20	RH RH, NA
N1613 N1748 N1748A N1749 N34	FA PH PH PH TI	npn,DP,si pnp,MD,ge pnp,MD,ge pnp,MD,ge npn,GD,si	100 100 100 100 100	3w 60 60 75 125	200 100 100 100 100 150	17.2 .8 .8 1 1	50 25 25 40 30	- 50 10 20	80 45 70 45 4	.0004 1.5 1.5 1.5 0.4	20	18 1.3 1.3 1.3	RH
C171 N1752 N497 N498 N656	AMP PH RH RH RH	pnp,DJ,ge pnp,MD,ge npn,MS,si npn,MS,si npn,MS,si	100 106 120 120 120	60 60 4w 4w	75 100 175 175 175	2 .8 26.5 26.5 26.5 26.5	20 12 60 100 60	5 50 500 500 500	250 25 25 60	2 0.8 0.1 0.1 0.1		- 1 20 20 20 20	NA, GE NA, GE NA, GE
N657 N1023 N1066 N1397 N1409	RH RCA RCA RCA RH	npn,MS, s) pnp,Dr,ge pnp,Dr,ge pnp,Dr,Ge npn,MS, si	120 120 120 120 120 120	4w 120 120 120 2.8w	175 85 85 85 150	26.5	100 40 40 40 30	500 10 10 10 500	60 60 90 30	0.1 12 12 16 0.1		20 - - 20	NA, GE PSI
N1410 N1420 N1507 PT600 PT601	RH RH RH PSI PSI	npn,MS,si npn,DD,si npn,DD,si npn,DM,si npn,DM,si	120 120 120 120 120 120	2.8w 2w 2w 13w 13w	150 175 175 175 175 175	22.5 13.2 13.2 86.7 86.7	30 60 60 60 60	500 500 500 -	50 200 200 12 14	0.1 .003 .003 1 1	111 1	20 20 20 40 40	PSI PSI, TR, GI TI hi freq, hi pwr, hi freq, hi pwr,
275001 275002 275003 275004 20715 20716 20717 20716 20717 20	RH RH RH TI TI PH PH PH	npn,MS,si npn,MS,si npn,MS,si npn,MS,si npn,MS,si npn,MS,si pno,MD,ge pno,MD,ge	120 120 120 120 125 125 125 125 125	3w 3w 3w 3w 1.2w 1.2w 45 45 45	175 175 175 175 175 175 85 85	20 20 20 8 .75 .75 .75	60 60 100 100 50 70 10 10	1000 1000 1000 1000 - - 50 50 50 50	40 60 60 1 -	0.1 0.1 0.1 .001 .001 2 2 1.5		30 30 30 3 3 1.5 1.5 1.5	^h FE 10-50, NA ^N FE 10-50, NA
2011864 201177 201178 201179 201728 201729	PH RCA RCA RCA TR TR	pnp,MD,ge pnp,Dr,ge pnp,Dr,ge pnp,Dr,ge npn,JD,si npn,JJ,si	125 140 140 140 150 150	60 80 80 80 300 300	100 71 71 71 175 175	.8	20 30 30 30 15 30	50 10 10 10 25 25	60 100 40 80 20 20	1.5 12 12 12 12 25 .25		1.6	
N 1505 N1 726 N1 727 N1 728 N1 788	PSI PH PH PH PH	npn, MS, si pnp, MD, ge pnp, MD, ge pnp, MD, ge pnp, MD, ge	150 150 150 150 150	3w 60 60 60	175 100 100 100 100	0.2 0.8 0.8 0.8 0.8	50 20 20 20 20 35	50 50 50 50	7	L5 1.5 1.5 1.5		1.5 1.5 1.5 1.5 1.5	high freq, high power
N1789 N1790 N35 N1335 N1336	PH PH T1 PSI PSI	pnp, MD, ge pnp, MD, ge npn, GD, si npn, MS, si npn, MS, si	150 150 150 170 170	60 60 125 2.8w 2.8w	100 100 150 150 150	0.8 0.8 1 24 24	35 35 30 120 120	50 50 20 75 75	- 4 13 13	1.5 1.5 0,4 8		15 15 	Tetrode High freq., high power High freq., high power
N 1337 PADT 30 N 1506	PSI AMP PSI	npn,MS,si pnp,PADT, npn,MS,si	170 ge200* 210	2.8w 83 3w	150 - 175	24 1.7 _2	120 25 60	75 10 9	13 -	8 -	1.8.1	4 - 8	High freq., high power fr High frequency, high
PA DT 28 PA DT 28 N1746 N1709 N1710 N588	PSI AMP PH PSI PSI PH	npn,MS,si pnp,PADT, pnp,MD_ge npn,DM,si npn,DM,si npn,MD,ge		2.8w 100 60 13w 13w 30	150 - 100 175 175 85	24 1.7 .8 86.7 66.7 0.75	120 35 20 75 60 15	75 10 50 1.2a 1.2a 50	- 120	8 	- - - - - - - - - - - - - - - - - - -	4 3 40 40	Aligh Ireq., hogh power "IT, RF amp Hi Ireq., hi pwr, Hi Ireq., hi pwr, SPR, GI
N710 N1340 N1491 N1837 N1837A	MO PSI RCA PSI PSI	pnp, MS, ge npn, MS, si npn, MS, si npn, DM, si npn, DM, si	250 250 250 250 250 250	300 28w 3w 2w 2.8w	100 2.8 175 175 175 175	4 24 20 13.3 18.6	15 120 30 80 80	50 75 50 -	40 50 9	.2 8 10 .001	1 + + 1 +	- 4 - 11 11	TI High freq., high power Hi freq., hi power Hi freq., hi power
N]838 N]838A N]839A N]839A N]839A N502A	PSI PSI PSI PSI PH	npn,DM,si npn,DM,si npn,DM,si npn,DM,si pnp,MO,ge	250 250 250 250 250 260	2w 2.8w 2w 2.8w 75	175 175 175 175 175	13.3 18.6 13.3 18.6 1.0	45 45 45 30		9999	0.1 0.1 0.1 0.1 0.1 1.3	6	9 9 9 9 10	Hi freq., hi power Hi freq., hi pwr. Hi freq., hi pwr. Hi freq., hi pwr.
N502 N 1492 N 1341 N595 N 1493	PH RCA PSI MO RCA	pmp,MD,ge npn,MS,si npn,MS,si pnp,DM,ge npn,MS,si	260 275 280 300 300	60 3w 2.8w 75 3w	65 175 150 100 175	1.0 20 24 1. 20	20 60 120 15	- 50 75 50 50	- 50 40 50	1 10 8 0.2 10		1.0 4 3.5	High freq., high sower GE

ELECTRONIC DESIGN . July 5, 1961

48

RCA PREMIUM QUALITY COMES FROM WITHIN

RCA 3907/2N404 "Premium" **Switching Transistors** are as close as your telephone CALL YOUR RCA SEMICONDUCTOR DISTRIBUTOR

Just pick up the 'phone and tell him how many and what type you need for your special project or pre-production requirements. He will deliver from local stock-and he also offers these extra advantages

- Prompt delivery of the latest RCA types for your evaluation
- -Orders filled from factory-fresh stock
- Up-to-date, practical product information
- Valuable RCA technical assistance when you need it
- "One-stop" service on your orders
- ~Specialists who understand your problems and electronic needs

Remember when you want fast delivery, reliable service, always check first with your local RCA Semiconductor Distributor. For the name and address of your nearest RCA Semiconductor Distributor, write RCA, Distributor Products Sales, Harrison, N. J.

RADIO CORPORATION OF AMERICA Semiconductor Products-Distributor Sales

Herrison, N. J.

RCA establishes a new level of reliability for computer transistors with the 3907/2N404, produced under RCA's CERTIFIED-RELIABILITY PREMIUM SWITCHING-TRANSISTOR PROGRAM

Now from RCA, originator of the famous 2N404, comes a significant improvement in reliability-RCA 3907 2N404-the first of a series of transistors produced under RCA's CERTI-FIED-RELIABILITY PREMIUM SWITCH-ING-TRANSISTOR PROGRAM. Through a unique ungrounded four-poster structural design and new double-weld construction, superior built-in ruggedness and reliability have been achieved. Here are some of the outstanding features of the new RCA 3907 2N404:

- Withstands 20,000 G centrifuge tests
- Withstands 1,500 G, ^{1/2} msec. MlL shock test Thermal resistance of 400°C/W
- Exceeds MIL environmental specifications for shock, vibration, salt spray, centrifuge and moisture resistance. BCA FIELD OFFICES ... EAST: Nework, N. J., 744 Broad St., HU 5.3900 • Eritan, N. J., 605 Maritan Pike, HA 8:4802 • Syracuse 3, N. Y., 731 James St., Roam 402, GR 4-5591 • Baltimore, Md., EN 5-1850 • NORTHEAST: Needham Heights 94, Mass., 64 "A" St., HI 4-7200 • SOUTHEAST: Orlando, Fla., 1520 Edgewater Drive, Suite 21, GA 4-4768 • EAST CENTRAL: Detroit 2, Mich., 714 New Center Bida, TR 5:500 • CENTRAL: Chicago, III. Suite 1154, Marchandise Mart Plaza, WH 4-2900 • Minneapolls, Minn., 5805 Escelator Bida, WE 9-0676 • WEST: Los Angeles 54, Calif., Box 54074, RA 3-8361 • Burlingame, Calif., 1838 El Camine Rool, OX 7-1620 • SOUTMWEST: Dollar, 7, Texas, 7905 Carpenter Freeway, FL 7-8167 • GOV'T.: Dayton, Ohio, 224 N. Wilkinson St., BA 6-2366 • Washington, D.C., 1725 ''K'' St., N.W., FE 7-8500

And this new 3907 2N404 incorporates all of the superior characteristics of the original RCA 2N404, long the workhorse of the computer industry. This famous unit is built on the experience of: well over 50 million transistor life-test hours plus over 20,000 hours of continuous operation at maximum ratings.

RCA 3907 2N404 can be your best answer for top reliability, mass availability and superior capability in computer transistors. Call your RCA representative for complete particulars. For information on RCA's PREMIUM TRAN-SISTOR PROGRAM, write RCA Semiconductor and Materials Division, Commercial Engineering, Section G-18-NN-1, Somerville, New Jersey.

COLLECTOR TO-	()
BASE-VOLTAGE	- 25 MAR
COLLECTOR TO EMITTER VOLTAGE with VER = -1v	- 24 MAX
EMITTER TO BASE VOLTAGE	-12 MAX
COLLECTOR CURRENT	- 200 MAX
EMITTER CURRENT	200 MAR
TEANSISTOR DISSIPATION: At ambient temperature of: 25°C 55°C 71°C	150 MAR 75 MAR 35 MAR
AMBIENT TEMPERATURE RANGE: Operating Storage	-65 to + 85 C -65 to + 100 C
LEAD TEMPERATURE: For immersion in molten solder for 10 seconds mex.	255 MAX °C

THIS SEMENCE

Available Through Your RCA Distributor The Most Trusted Name in Electronics RADIO CORPORATION OF AMERICA

TRANSISTORS-1961

High Frequency (continued)

-			-	h	Aoxim	um Re	tings		C	horact	oristi	CS .	
Type No.	Mfg.	Туре	tae	¥ _c (mw)	Tj (c)	mw/c	V c v	1 _c ma	h fe	ι _{co} μa	N F db	С _с µµI	Romarka
2N503 2N499 2N741 2N741A	PH PH MO NO	pnp,MD,ge pnp,MD,ge pnp,MS,ge pnp,DM,ge	320 340 360 360	25 30 300 300	85 85 100 100	0.63 0.75 4	20 30 15 20	50 50 100 100	4.2 8.5 25 25	3 L0 2 02	7 7 7	1.0 1.3 6 6	GI Amp VHF
2N1407 2N919 2N920 2N921 2N922	TI PSI PSI PSI PSI	pnp, MS, ge npn, DM, si npn, DM, si npn, DM, si npn, DM, si	375 400 400 400 400	75 1.2w 1.2w 1.2w 1.2w 1.2w	100 100 200 200 200	1 67 67 67 67	30 25 25 50 50	50 220 220 200 200	6444	2 .005 .005 .005 .005	7	15544	
2N1405 2N1406 2N1143 2N1562 2N1561	TI TI TI MD MO	pnp,MS,ge pnp,MS,ge pnp,DB,ge pnp,MS,ge pnp,MS,ge	450 450 480 500 500	75 75 750 3w 3w	100 100 100 100 100	1 10 40 40	30 30 25 25 25	50 50 100 500	8 8 10db 10db	2 .7 1.5 1.5	2011	- 1.5 7 7	PG=22db e 200mc High freq., high power High freq., high power
2N700 2N700A 2N1142 2N1645 2N1645 2N537	MO MO TI WE WE	pro,DM,ge pro,DM,ge pro,DB,ge pro,DJ,ge pro,DJ,ge	600 600 600 700 750	75 75 750 - 250	100 100 100 100 100	1 10 12.5 .3	25 25 30 35	50 505 100 0,3 100	10db db200m 10 50 10	0,4 0,7 .0015	1 1 1 mm	1.1 1.1 1.5 10 2.8	UHF Amp, MIL PG=26db # 200mc U.S. MIL only
2N1094 2N1141 2N1195 2N218 2N231	WE TI WE SY PH	pnp, DM, ge pnp, DB, ge pnp, DM, ge pnp, AJ, ge pnp, SBT, ge	750 750 750	150 750 250 80 9	100 100 100 85 55	0.3 10 0.3 1.3 0.9	- 35 30 20 4,5	40 100 40 - 3	13 12 13 22-110 66	1.2 0.7 1.2	1111	4 1.5 4 -	U.S., MIL only PG=30db + 200mc HO SPR
2 N233 2N247 2N312 2N4 10 2N504	SY SY CBS SY SPR	npn, AJ, ge pnp, Dr, ge npn, AJ, ge pnp, AJ, ge pnp, MD, ge		50 .080 75 50 30	75 100 85 75 85		10 40 15 20 35	50	10 20-175 22-110 16	50 50 60 5 100	1111		SY, GI
211544 211624 211706C 211743	SY SY SY SY	pnp,DJ,ge pnp,DJ,ge npn,DM,si npn,MS,si		80 100 360 300	85 100 200 175	1.3 1.3 2 2	18 20 40 20	10 	20-175 20	4 30 .025 1	1111		Epitaxial
2N744 2N753 2N768 2N769 2N773	SY PSI SPR SPR PH	npn,MS,si npn,MS,si pnp,MD,ge pnp,MD,ge npn,SA,si		300 1w 35 35 150	175 175 100 100 150	2 6.7 - 1.2	20 25 12 12 20	200 50 100 100 100	40-120 - 40 55 11	1 0.5 1 0.3 0.1		5	Epitaxial PH PH PH
2N774 2N775 2N776 2N777 2N777 2N778	PH PH PH PH PH	npn,SA,si npn,SA,si npn,SA,si npn,SA,si npn,SA,si		150 150 150 150 150	150 150 150 150 150	2222	20 20 20 20 20	100 100 100 100	20 50 11 20 50	0.1 0.1 0.1 0.1 0.1		1.3 1.3 1.3 1.3 1.3	
2N781 7N7U2 2N783 2N784 2N1158	SY SY SY PH	pnp,NS,ge pnp,NS,ge npn,NS,si npn,MS,si pnp,MD,		150 150 300 300 60	100 100 175 175 100	2 2 2 2 2 2 0.8	15 12 40 30 20	200 200 200 200 200	25 20-60 25 50	3322			Epitaxial Epitaxial Epitaxial
2N1158A 2N1204 2N1264 2N1266 2N1266 2N1267	PH SPR SY SY PH	pap, MD, ge pap, OM, qaq pap, GD, qaq pap, LD, qaq pap, LD, qaq pap, SA, TGAS, paga	1111	75 200 50 80 150	100 100 75 85 150	1 - 1 1,3 0,8	20 20 20 10 20	100 500 10 -	50 40 15 10 11	5 7 50 100 .01		2.8 L5	РН
211268 211269 211270 211271 211271 211272	PH PH PH PH PH	npn, SADT, s npn, SADT, s npn, SADT, s npn, SADT, s npn, SADT, s	11 - 11 - 11 -	150 150 150 150 150	150 150 150 150 150	0.8 0.8 0.8 0.8 0.8	20 20 20 20 20	100 100 100 100 100	20 50 11 20 50	.01 .01 10 .01 .01	1111	1.5 1.5 1.5 1.5 1.5	
2N1398 2N1399 2N1400 2N1401 2N1401A		pap, MS, ge pap, MS, si pap, MS, ge pap, MS, ge		50 50 50 50 50	85 85 85 85	1 1 1 1	30 30 30 30 30	10 10 10 10	2.3 2.3 1.6 2 2	10 10 10 10 10	5 6	* * * * *	
211402 211450 211494 211515 211546	TI SY SPR AP SY	PRD, MG, grap AJ, grap MD, grap ADT, grap MD, grap MD, grap		50 120 400 83 150	85 100 100 75 100	L6 - - 2	30 30 20 20 15	10 100 500 10 50	2.2 20 15 60 20	10 10 7 			PH 0C169
201676 201677 201604 201742 201742 201743	PH PH SY PH PH	pep,SAT,si pep,SAT,si pep,AJ,ge pep,MD,si pep,MD,ge		100 100 100 60 60	140 140 100 100	- 1.3 0.8	4.5 4.5 25 20 20	50 50 100 -	10.5 50	001 001 5 0.8 0.8	- 4.9 10		SPR, chopper SPR, chopper

				h	lexim	um Re	tings		Q	haract	oristi		
Type No.	Mfg.	Туре	fat	W _C (mw)	Tj (c)	mw/c	V _c v	l _c ma	hfe	I _{со} µа	N F db	C c	Remarks
2N 1744 2N 1745 2N 1747 2N 1782 2N 1783	PH PH PH SY SY	pmp, MD, ge pmp, MD, ge pmp, MD, ge pmp, AJ, ge pmp, AJ, ge	1 1 1 1	60 60 60 100 100	100 100 100 100 100	0.8 0.8 0.8 1.3 1.3	20 20 20 30 30	- 50 50 100	- - 30-150 30-90	1 2.5 2 6 5	1111	1111	
2N 1784 2N 1840 2N 1840 2N 1840 2N 1841 2N 1865	SY PSI PSI PH	prop, AJ, ge npn, DM, si npn, DM, si npn, DM, si gnp, MD, ge		100 2w 2,8 15,4 60	100 175 175 150 100	1.3 13.3 18.6 75 0.8	30 24 25 2 20	100 35 50	20 9 9.005 -	4 - 100 mc 2	1111	11 11 -	hi f:oq., hi pwr. hi froq., hi gwr.
2N1866 2N1867 2N1868 2N1958 2N1959	PH PH PH SY SY	pnp, MD, ge pnp, MD, ge pnp, MD, ge npn, MS, si npn, MS, si		60 60 60 600 600	100 100 100 175 175	0.8 0.8 0.8 4 4	35 35 20 60 60	50 50 50 500 500	- - 20-60 40-120			- - 18 18	Epitaxial Epitaxial
2N 1960 2N 1961 2N 1962 2N 1963 2N 1963 2N 1964	SY SY SY SY SY	pnp, MS, ge pnp, MS, ge npn, MS, si npn, MS, si npn, MS, si		150 150 400 400 400	100 100 175 175 175	2 2 2.6 2.6 2.6 2.6	15 12 40 30 60	200 200 200 200 200 500	25 20 20-60 25 20-60	3 25 25 0.5	1 1 1 1	- 3 3,5 18	Epitaxial Epitaxial Epitaxial Epitaxial Epitaxial Epitaxial
2N1965 2N1969 GT1665 MA-1 MA-2	SY SY GI SPR SPR	npn, MS, si pnp, AJ, ge pnp, AJ, ge pnp, MA T, ge pnp, MA T, ge		400 150 150 25 20	175 100 100 75 75	2.6 2 2 -	60 30 100 6 3	500 400 - 50 50	40-120 50-200 25 40 40			18 20 - -	Epitaxial Drift
PT850 PT850A SO-1 SO-2 SO-3	PSI PSI SPR SPR SPR	npn, DM, si npn, DM, si pnp, SBT, ge pnp, SBT, ge pnp, SBT, ge	1111	2w 2.8w 20 15 20	175 175 65 65 65	13.3 18,6 - -	120 120 5 3 5	555	2 2 10 10 10	2 2 10 10 10		1 1 1 1	hi freq., hi gwr. hi freq., hi gwr.
ST3081	IR	non,DJ,si	-	150	175	-	-	-	-	-	-	-	10-00

High Frequency (concluded)

		Abbreviation	of Te	rms
AJ DD DG DJ DM DP Dr Ep FA		loy Junction ouble Diffused rown Diffused iffused Junction iffused Mesa iffused Planar rift pitaxial used Alloy	FJ GD Ge GJ MB MD Ms RG	Fused Junction Grown Diffused Germanium Grown Junction Grown Rate Meltback MADT Mesa Rate Grown
	Si SBT C ₀₀		itter capac e output to pen-circuit which the urrent tr	erminals with ted. magnitude of ransfer ratio
	fx	= Frequency at gain is unity.	which com	nmon emitter
	hre	= Common emitt current transfe	er-small s er ratio	ignal forward
	hpe	alue of short- t ratio.		
	Ico	= Collector curre tion is reverse dc open-circui	-biased a	

Specify the new Amperex P·A·D·T 40 the 2 times faster PNP Germanium Switching Transistor

nanoseconds x pennies

* U=

Right from the sketch-pad stage, plan your computer switching circuits with the new PADT-40. The extreme speed and efficient design of the PADT-40 gives more U (usefulness factor) and lower cost x switching time. This results in fewer transistors to buy, less complicated circuits to design, and the elimination of many costly components because of multifunction circuit usage. But speed, of course, is only one of the cost-and-production advantages inherent in the PADT-40, RELIABILITY, as only the revolutionary Post Alloy Diffusion Technique can provide, is another; AVAIL-ABILITY, as only the mass-production tech-'niques employed at the new Amperex plant In Slatersville, R. L., can provide, is still another; LOW PRICES (no higher than for low-speed transistors) ... plus INTERCHANGEABILITY with many conventional mesa transistors, round out our 'package'. Yes, the new Amperex PADT-40 is truly worth specifying now!

High Speed. plus.

MECHANICAL RUGGEDNESS - guaranteed by the only process that combines the best quali-ties of both the alloy and the diffusion methods. As a result, the PADT-40 is resistant to vibra-tion and shock. PADT RELIABILITY - Hermetically sealed in a

standard TO-18 case, the PADT-40 has a deep diffused and extremely thin active base region. As a result, the hre and switching time are virtually independent of surface effects and temperature changes.

- A Rugged, mechanically reliable eutectic
- solder joints Flat bed attachment for good heat
- dissipation C Long path prevents weld contamination of
- transistor D Gold doped for high speed
- Extremely high cut-off frequency
 High Beta
 Low resistivity germanium

TOTAL ING TIME including Rise. Fall, Delay and Storage130 NANOSECONDS!

SAVE TIME AND MONEY right from the start

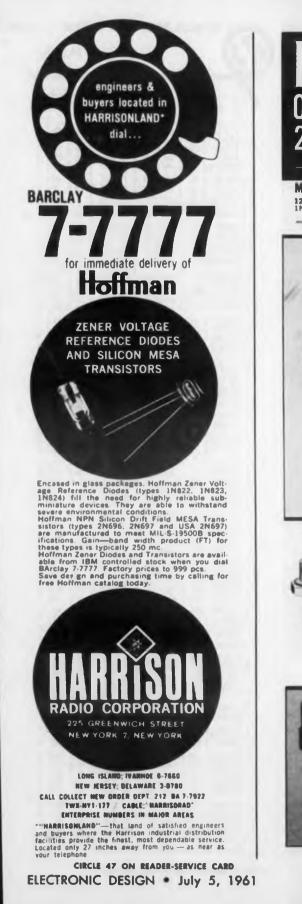
with Amperex. PADT40

PNP Germanium **Switching Transistor**

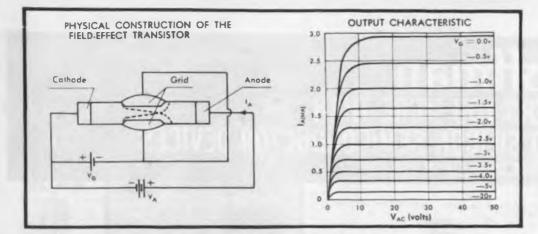
NOW AVAILABLE FROM THESE AND OTHER LEADING INDUSTRIAL ELECTRONICS DISTRIBUTORS:

and the second se	
CALIFORNIA	R. V. WEATHERFORD COMPANY Glendale 1, Calif. BRILL SEMICONDUCTOR CORP. Oakland 6, Calif. ELMAR ELECTRONICS INC. Oakland 7, Calif.
COLORADO	INTERSTATE RADIO & SUPPLY Denver 4, Colorado
CONNECTICUT	RADIO SHACK CORP. Stamford, Conn. W. Hartford, Conn. New Haven 10, Conn.
FLORIDA	THUROW ELECTRONICS, INC. Cacco, Fla Jacksonville, Fla. Miami, Fla. • Orlando, Fla. Pensacola, Fla. • Tampa, Fla.
ILLINOIS	NEWARK ELECTRONICS CORP. Chicago, III.
SSACHUSETTS	RADIO SHACK CORP. Boston, Mass.
MICHIGAN	RADIO SPECIALTIES COMPANY Detroit, Michigon
NEW YORK	MILO ELECTRONICS New York, N. Y. ROME ELECTRONICS Rome, N. Y.
TEXAS	ADLETA COMPANY Dallas 1, Texas Fort Worth, Texas
	Andalas

TRANSISTORS-1961


Power

Trees				Max. Ratings					herec	toristi		1	
Type No.	Mfg.	Туре	W _c w	w/c	Tj	V _c v	l _c amp	h fe	l _{co} ma	laë kc	Powr. Gain db	Powr. Out.	Remarks
2N339 2N340 2N341 2N341A 2N341A 2N342	TI TI TR TI	npn, GR, si npn, GR, si npn, GR, si npn, DJ, si npn, GR, si	1,0 1,0 1,0 1 1	0.008 0.008 0.008 0.008 0.008	150 150 150 200 150	55 85 125 125 60	.06 .06 .06 .1 .06	9-90 9-90 9-90 15-90 9-32	.001 .001 .001 .001 .001	667	30 30 30 	1111	TR TR TR TR
ZN 342A 2N 343 2N 343A 2N 1206 2N 1207	TI TI TR TR TR	npn,GR,si npn,GR,si npn,DJ,si npn,GR,si npn,GR,si	1.0 1.0 1 1.0 1.0	0.008 0.008 .008 10 10	150 150 150 200 200	85 60 85 60 125	.06 .06 -	9-32 26-90 29-90 15-19 15-90	.001 .001 .001 1 1	1 1 8 9	30 30 - -	1111	TR TR TR TR
2N 1566 2N 1335 2N 1336 2N 1339 2N 1340	TI PSI PSI PSI PSI	npn,MS,si npn,MS,si npn,MS,si npn,MS,si npn,MS,si	1.2 2.8 2.8 2.8 2.8 2.8	- 0.024 0.024 0.024 0.024	175 150 150 150 150	80 .120 120 120 120	50 .075 .075 .075 .075	100 13 13 -	800.	50 170mc 170mc 220 mc 250 mc	1.11.1		TR,NA high freq, high pwr. high freq, high pwr. high freq, high pwr. high freq, high pwr.
2N1341 2N1505 2N1506 2N1561 2N1562	PSI PSI NO NO	npn, MS, si npn, MS, si npn, MS, si pnp, MS, si pnp, MS, ge	2.8 3 3 3 3	0.024 0.2 0.2 .04 .04	150 175 175 100 100	120 50 60 25 25	.075 - .25 .25	- 7 9 10		280 mc 150 mc 210 mc 500 mc 450 mc	1111	1 1 1	high freq., high pwr. high freq., high pwr. high freq., high pwr. high freq., high pwr. high freq., high pwr.
2N 1692 2N 1693 OC30 2N497	MO MO AMP TI	pnp,MS,ge pnp,MS,ge pnp,PADT,ge npn,DJ,si	3 3 3.6 4.0	.04 .04 .023	100 100 75 200	20222460	.25 .25 1.4 200	10 db 10 db 35 12-36	.0015 .0015 .012	500 mc 9 mc	6 6 -	0.5	TR, RH, FA, NA, RCA
2N498 2N656	TI TI	npn,DJ,si npn,DJ,si	4.0 4.0	.023 .023	200 200	100 60	200 200	12-36 30-90	10 10	9 mc 8 mc	1.1	-	TR, RH, FA, NA TR, RH, FA, NA, RCA, GE
ZN657	TI	npn,DJ,si	4.0	.023	200	100	200	30-90	10	8 mc	-	-	TR, RH, FA, NA, GE
2N 1479 2N 1480 2N 1481 2N 1482 2N 1482 2N 1067	RCA RCA RCA RCA STC		4 4 4 5	- - - 28.6	175 175 175 175 175 175	100 60 100	1.5 1.5 1.5 1.5 0.5	50 50 50 50 35	10 10 10 10 5	1.5 mc 1.5 mc 1.5 mc 1.5 mc 1.5			RCA
2N1218 ST4201 ST4202 ST4203 ST4203 ST4204	SY TR TR TR TR	npn,AJ,ge npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si	6 6 6	0.1 .03 .03 .03 .03	85 200 200 200 200 200	45 45 75 45 75	2 0.5 0.5 0.5 0.5	40-100 12-36 12-36 30-90 30-90	3 .001 .001 .001 .001	7		1111	
2N326 2N1172 2N1183 2N1183A 2N1183A 2N1183B	SY DE RCA RCA RCA	pmp,AJ,ge	7 7.5 7.5 7.5 7.5	0.11 .1 	85 100 100 100 100	35 40 45 60 80	2 1.5 3 3 3	45 	3 0.01 .03 .03 .03	150 17 500 500 500	- 34 - -		driver
2N1 184 2N1 184A 2N1 184B 2N122 2N122 2N176	RCA RCA RCA TI SY	pnp, AJ, ge	7.5 7.5 7.5 8.75 10	- .070 0.15	100 100 100 150 90	45 60 80 120 30	3 3 3 140 3	40 40 40 3 4,5	.03 .03 .03 .03 10 0.3	500 500 500 1	- 28 35,5		RCA, MO, BE
2N350 2N351 2N376 2N669 2N1068	SY RCA RCA MO IND		10 10 10 10	0.13 1 1.5 0.133	100 90 90 90 175	40 40 40 30 60	3 3 3 1.5	40 65 78 90 38	- 3 3 0,3 0,5	5 5 -	32 33.5 35 40	4 4 2	MO MO, SY MO
2N 1714 2N 1715 2N 1716 2N 1716 2N 1717 2N 1718		npn,MS,si npn,MS,si npn,MS,si npn,MS,si npn,MS,si	10 10 10 10 10	.134 .134 .134 .134 .134	175 175 175 175 175 175	60 100 60 100 60	1 1 1 1 1		.002 .002 .002 .002 .002	20 mc 20 mc 20 mc 20 mc 20 mc 20 mc			
2N1719 2N1720 2N1721 2N1755 2N1755	TI TI TI CL	npn, MS, si npn, MS, si npn, MS, si pnp, AJ, ge pnp, AJ, ge	10 10 10 10 10	.134 .134 .134 2.5 2.5	175 175 175 95 95	100 60 100 40 60	1 1 1 3		.002 .002 .002 .002 7 7	20 mc 20 mc 20 mc 15 15	- - 30-75 30-75		-
2N1757 2N1758 2N1759 2N1760 2N1761	CL CL CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	10 10 10 10	2.5 2.5 2.5 2.5 2.5	95 95 95 95	80 100 40 60 80	333		7777777	8 8 10 10 6	30-75 30-75 60-150 60-150 60-150	111	
2N1762 CDT1310 CDT1311 CDT1311 CDT1312 CDT1313	CL CL CL CL	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	10 10 10 10	2.5 1.5 1.5 1.5 1.5 1.5	55 55 55 55 55 55 55 55	100 40 60 80 100	3 5 5 5		7 15 15 15 15	6 5 5 5	60-150 40-120 40-120 40-120 40-120		


Power (continued)

Type Na.		fg. Type		Max, Ratings					Chere	cteri	-		
	Mfg.		W _c w	w/c	T _j c	V _c v	l _C amp	h fe	l co ma	f _{æt} kc	Powr. Gain db	Powr. Out. w	Remarks
C ST 1740 CST 1741 CST 1742 CST 1743 CST 1744	CL CL CL CL CL	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	10 10 10 10 10	2.5 2.5 2.5 2.5 2.5 2.5	95 95 95 95 95	40 40 40 40 80	3 3 3 3 3 3		33333	7 7 7 7 7 7 7	28-33 32-35 34-37 36-39 28-37		
CST1745 CST1746 CTP1104 CTP1105 CTP1108	CL CL CL CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	10 10 10 10 10	2.5 2.5 2.0 2.0 2.0	95 95 85 85 85	80 80 40 40 20	3 3 3 3 3		3 3 2 2 2 2	7 7 4 5 4	28-33 32-37 28 30 27	- 1.2 1.2 0.6	
CTP1109 CTP1111 ST1739 2N301 2N301A	CL CL CL RCA SY	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	10 10 10 11 12	2.0 2.0 2.5 - 0.2	90 90 95 91 85	20 80 40 40 60	3 3 3 3 2	- - 70 -	2 5 3 0.1 5	6 4 7 5	35 29 28-39 35	0.6	CL, RCA, BE, CBS
2N 1314/ OC26 2N 1315/	AMP	pap,PADT,ge		-	90 90	32 32	3.5 7.5	33	<0.1 <0.1	150 300	-	-	0C27
OC27 2N 1709	PSI	non, DM, si	13	86.7	175	75	1.2a	-	l0 max	2 mm mm	10 00	-	hu freq., hu pwr,
ZN 1710 2N307 2N1658 2N1659 2N307A	PSI BE MH MH SY	npn, BM, si pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	13 15 15 15 15 17	86.7 2.0 0.2 0.2 0.34	175 75 100 100 75	60 35 80 60 35	1.2a L0 1 1 2		10 max .35 0.5 0.5 -			1111	hi freq., hi pwr. 2N234A BE
2N 155 2N 156 2N 157 2N 157 2N 157A 2N 158	CBS CBS CBS CBS CBS	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	.33 0.33 0.33 0.33 0.33 0.33	83 88 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86 8	30 30 60 100 60	3 3 3 3 3	20 20 20 20 20	2 1 1 1 1	55555		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CL, 8E
2N 158A 2N 255 2N 255 2N 255A 2N 256 2N 256A	CBS BE CBS BE CBS	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	0.33 2.0 0.5 2.0 0.5	ស ស ស ស ស ស ស ស ស ស	80 15 15 30 25	3 3 3 3 3	20	1 10 10 10 10 1	5 5 5	- 25 - 25	2 19-26 2 22-29 2	2N234A, CL 2N234A, CL
2N401 2N500 2N1042 2N1043 2N1044	BE EM TI TI TI	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	1.2 .18 .27 .27 .27 .27	90 95 100 100	40 30 40 60 80	33333		1.3 2 0.75 0.75 0.75	- - -	30 25 - -	5 20w	TR TR TR
2N 1045 2N 1078 2N 1291 2N 1292 2N 1292 2N 1293	TI CBS CBS CBS CBS	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	.27 0.33 0.33 0.33 0.33 0.33	100 85 85 85 85	100 60 30 30 60	333333	20-60 30 min 30 min 30 min 30 min	0.75 0.5 0.5 0.5 0.5	- 5 5 5 5 5		222222	TR
2N1294 2N1295 2N1296 2N1297 2N1290	CBS CBS CBS CBS CBS	npn,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge	20 20 20 20 20	0.33 0.33 0.33 0.33 0.33	85 85 85 85 85	60 80 80 100 100	3 3 3 3 3 3 3	30 min 30 min 30 min 30 min 30 min	0.5 0.5 0.5 0.5 0.5	5 5 5 5 5 5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2A 2A
2N1320 2N1321 2N1322 2N1322 2N1323 2N1324	CBS CBS CBS CBS CBS CBS	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	0,33 0,33 0,33 0,33 0,33	85 85 85 85 85	30 30 60 60 80	333333	30 min 30 min 30 min 30 min 30 min	0.5 0.5 0.5 0.5 0.5	5 5 5 5 5 5		2 2 2 2 2 2	TO-10 TO-10 TO-10 TO-10 TO-10 TO-10
2N 1325 2N 1326 2N 1327 2N 132 8 2N 132 8 2N 1329	CBS CBS CBS CBS CBS	npn,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge	20 20 20 20 20 20	0.33 0.33 0.33 0.33 0.33	85 85 85 85	80 100 100 30 30	3 3 3 3 3 3	30 min 30 min 30 min 30 min 30 min	0.5	5 5 5 5 5 5		2 2 2 2 2 2	TO-10 TO-10 TO-10 TO-13 TO-13
2N 1330 2N 1331 2N 1332 2N 1332 2N 1333 2N 1334	CBS CBS CBS CBS CBS	npn,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge	20 20 20 20 20 20 20	0.33 0.33 0.33 0.33 0.33 0.33	85 85 85 85 85	60 60 80 100 100	33333	30 min 30 min 30 min 30 min 30 min	0.5 0.5 0.5 0.5	55555		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TO-13 TO-13 TO-13 TO-13 TO-13 TO-13
2N1437 2N1438 2N1465 2N1466 2N1466 2N1504	CBS CBS CBS CBS CBS	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	20 20 20 20 20 20 20	0.33 0.33 0.33 0.33 0.33 0.33	85 85 85 85 85 85 85	100 100 120 120 80	3333333	20 min 20 min 20 min 20 min 20 min	0.5 0.5 0.5 0.5	55555		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TO-13 TO-10 TO-13 TO-10
CDT1319 CDT1320 CDT1321 CDT1322 LT-11	CL CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	20 20 20 20 20 20	1.5 1.5 1.5 1.5 1.5 0,33	100 100 100 100 85	40 60 80 100	55553	20-60 20-60 20-60 20-60	15 15	555555			-

ELECTRONIC DESIGN . July 5, 1961

Silicon Field-effect Transistors

- Almost infinite input impedance (1000 M^{Ω})
- Almost infinite power gain
- Extremely low noise figures (0.5 dB maximum)
- Negligible offset voltage (less than $l \mu V$)
- Unprecedented gain stability

The silicon field-effect transistors from Crystalonics combine almost all advantages of vacuum tubes and conventional transistors. They are silicon majority carrier devices presently available in the TO-5 package, and have three terminals; anode, cathode, and grid. The transistor action takes place entirely within the bulk of the silicon material and completely away from the surface, giving rise to an unprecedented gain stability of the unit. The radiation resistance of the field-effect transistors exceeds that of the conventional units approximately ten times.

The new devices are recommended as first stages to high input, low noise amplifiers, low level switching circuits such as choppers, analog multipliers, and electronically variable resistors.

Low Noise Amplifiers:

Field-effect transistors are inherently low noise devices and have noise figures considerably below that of the best selected low noise transistors and tubes. Unlike the conventional bipolar transistor, the field-effect unit does not pass any working current through the junctions, and it does not rely for its operation on minority carriers which eventually recombine to produce base current of the conventional unit. Both processes, the passing of current through emitter and collector junctions and carrier recombination are inherently noisy, and are completely eliminsted in the new device. The result is a transistor series (C620) with maximum noise figures of 0.5 dB with 1 M^Ω generator impedance. To obtain optimum performance for the low noise field-effect transistors, the grid bias should be kept at zero and the anode potential at approximately 3 volts.

High Input Impedance Amplifiers:

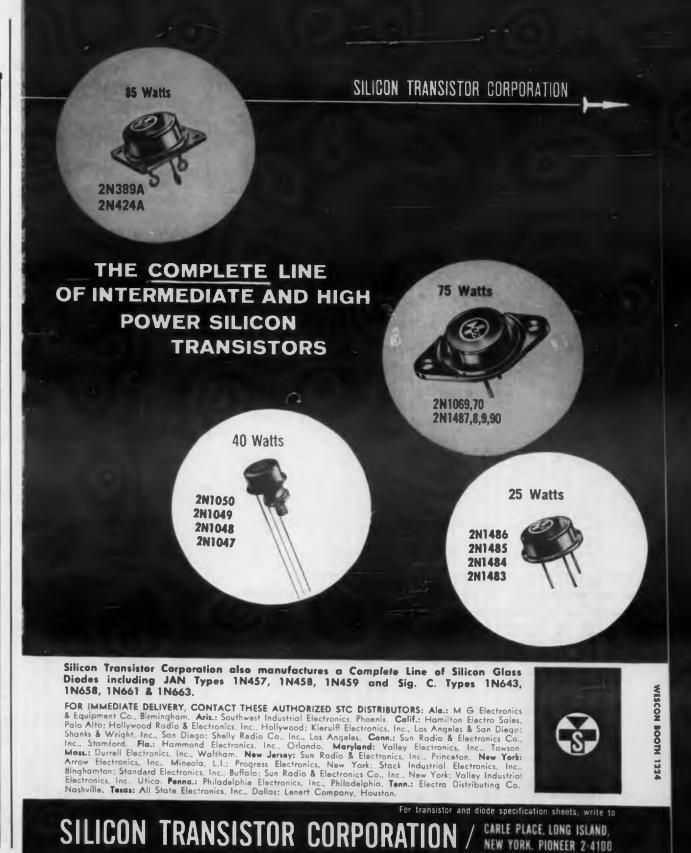
The input impedance of the fieldeffect transistor is effectively equivalent to a reverse biased silicon diode and is of the order of 1000 Mft. The output characteristics of the C613 fieldeffect transistor is shown below. They are identical with those of a thermionic pentode. In fact, the field-effect transistor can be used in a manner analogous to vacuum pentodes and. therefore. no new circuit techniques are required.

Low Level Switching:

Unlike the conventional transistur which is a normally "off" switch, the field-effect unit is a normally "on" switch. In the "on" condition, the unit, therefore, is merely a passive silicon resistor without any "offset" voltage. The only equivalent of "offset voltage" in the field-effect transistors is the noise generated by this silicon resistor, and is of the order of $1.\mu$ Volt. No matching of units is therefore required, and only one device has to be used instead of the usual two.

ORI	DER NO	W FR	OM STC	CK
Sil		d-effect stalonics Inc.	Transisto	rs
C610	C611	C612	C613	C614
C615	C650	C651	C652	C653

Factory Prices - Free Engineering Data Phone Orders Collect To:


1735 East Joppa Road, Baltimore 4, Md. Phone: VA 5-7820

2	6	10			P	owe	er
Тура			w	H	-	ating:	1
No.	Mfg.	Туре		#/c	l j c	v c	l c amp
LT-12 LT-13 LT-14 LT-15	CBS CBS CBS CBS	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	20 20 20 20 20	0.33 0.33 0.33 0.33	5888	100 120 150 200	3333
2N234A 2N235A 2N235B 2N235A 2N235A 2N285A 2N295	BE BE BE BE SY	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	25 25 25 25 25 25 25 25 25 25 25 25 25 2	12 12 12 12 12 12 12 12 12 12 12 12 12 1	90 90 90 95 95	30 40 40 40 40 60	33332
2N 399 2N400 2N1 146 2N1 146A 2N1 146B	BE CL CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	25 25 25 25 25 25	1.2 1.2 0.7 0.7 0.7	995555	40 40 40 50 80	3 3 15 15 15
2N1147 2N1147 2N1147A 2N1147B 2N1147C	CL CL CL CL	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	NUNNIN	0.7 0.7 - -	95 95 95 95 95 95	100 40 60 80 100	15 15 15 15 15
201245 201246 201483 201484 201484 201485	CBS CBS RCA RCA RCA	pnp, AJ, ge pnp, AJ, ge npn, DJ, si npn, DJ, si npn, DJ, si	25 25 25 25 25 25 25 25 25 25 25 25 25 2	0.5	85 20n 201) 200	25 25 60 100 60	3 3 3 3 3
2N 1486 8-177 8-178 8-179 CTP1500	RCA BE BE DE CL	npn,DJ,si pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge p.np,AJ,ge	25 25 25 25	ELER .	200 90 90 90 95	100 30 30 40 100	3 3 3 3 15
CTP1503 CTP1504 CTP1504 CTP1544 CTP1545	CL CL CL CL CL	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0 1.0 1.0 1.0	55 95 95 95	80 50 40 60	15 15 15 25 25
CTP1552 CTP1553 2N2368 2N242 2N242 2N257	CL CL CBS SY BE	pap, AJ, ge pap, AJ, ge pap, AJ, ge pap, AJ, ge pap, AJ, ge	25 25 30 30 30	L0 1.0 0.33 2.0	95 95 85 100 90	40 100 40 45 40	25 25 3 2.0 3
2N258 2N538 2N539 2N540 2N1202	BE MH MH MH MH	pro, AJ, ge pro, AJ, ge pro, AJ, ge pro, AJ, ge pro, AJ, ge	30 32 32 32 32 32	2.0 0.45 0.45 0.45 0.45	90 95 95 95 95	- 80 80 80 80	3 3 3.0 3.0 3.0 3
2N1203 2N1261 2N1262 2N1262 2N1263 2N1263 2N1501	MH MH MH MH	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	KKKKK	0.45 0.45 0.45 0.45 0.45	95 95 95 95 95	120 80 80 60	333333
2N1502 2N463 2N1011 2N178 2N554	MH WE BE MO MO	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	32 35 35 40 40	0.45 	95 	40 60 40 15	3 5 3 3 3 3
2N555 2N1047 2N1047A 2N1048 2N1048A	MO STC TI STC Ti	pap, AJ, ga apa, AJ, si apa, MS, si apa, MS, si apa, MSI, si	40 40 40 40 40	1.4 0.2 .228 0.2 .228	90 200 200 200 200 200	30 80 80 120 120	3 2 0.5 2 0.5
2N 1049 2N 1049A 2N 1050 2N 1050A 2N 1453	STC TI STC TI CBS	npn,DJ,si npn,MS,si npn,DJ,si npn,MS,si pnp,AJ,ge	40 40 40 40 40	0.2 228 0.2 228 0.66	200 200 200 200 85	80 80 120 120 30	2 0.5 2 5 5
211454 211455 211456 211457 211458	CBS CBS CBS CBS CBS	pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	40 40 40 40	1.66 1.66 1.66 1.66 1.66	85 85 85 85 85	30 60 60 80 80	55555
2011461 2011462 2011463 2011463 2011464 2011647	CBS CBS CBS CBS TR	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	40 40 40 40	0.66 0.66 0.66 0.66 .27	85 85 85 85 85	30 30 80 80	5 5 5 5 3

< CIRCLE 49 ON READER-SERVICE CARD

(continued)

	1	Irectur		Dem		Type
h fe	1 CO	at kc	Powr Gain do	Powr Oul W	Remarks	No.
-	1	5		-		LT-12
-	1	555	-	-		LT-13 LT-14
-	1	5	1111	-	000	LT-15
-	1	-	-	34	CBS	2N234A
-	1.0 1.0	-	2	36 38	CBS, CL	2N235A 2N235B
-	1.0	-	-	35		2N236A
ž	10	-	1	39	hFE 20 min,	2N285A 2N296
-		1				2N296
-	15	-	33 35	6		211400
-	25	1	-	-		2NI 146 2NI 146
-	25	4	-	-		211146
-	25 25	4		-		2N11460 2N1147
2	20	1	-	-	solder lugs	2N1147 2N1147/
-	25	4	-	-	solder lugs	2N1147(
-		4	-	-	solder lugs	2111470
-	1	5	-	-		2N1245 2N1246
45	15	1,25 mc	-	-	STC, SE	2N 1483
11111111111111111111111111111111111111	15	1.25 mc	-		STC, SE STC, SE STC, SE	2N1484 2N1485
45		1.25 mc	-	1.2		
-	1.0		36	-	STC, SE	2N 1486 B-177
-	1.0	-	30-36	-		B-178
30-75	8	-	25-30	-		B-179 CTP150
30-75	8	-	-	-		CTPISO
30-75	8	-	-	-		CTP150
30-75 25-75	8	3	2	-		CTP150 CTP154
25-75	15	3	-	-		CTPIS
25-75	15	3	-	-		CTP155
25-75	15 1.0	3	37	-	BE	CTP155
-	3.0		36	2	CL, BE, TS	2N236B 2N242
-	-	-	-	33	CL	2N257
-	2	-	-	35	SY, CL	2N 268
30 43	22	200 200	-	-		2 N538 2N539
64	2	200	-	-		2N540
86	2	200	-	-		2N1202
37	22	200 200	-	-		2N1203 2N1261
23	2	200	-	-		2N1262
64	22	200	-	-		2 N1263 2 N1501
6	2	200	-	-	Red well Bar	2N1501 2N1502
60	100	200	-	-	Sat. volt=0.15v U.S. MIL only	2N463
60 30-75	15	-	-	-	MO	2N1011
50 50	2	6	30 35	-		2N178 2N554
50	-	6	35	-		211555
12-36	.015	-	-	-	TR	2N 1047
12-36	.0019	58 m	-	-	TR TR	2N1047A 2N1048
12-36		5 8 mc	-	-	TR	2N 10484
30-90	.015	-	-	-	TR	ZN 1049
30-90 30-90	.0015	i7mc	-		TR	2N1049A 2N1050
30-90	7 mc	-	-	-	TR TR	2N1050A
50	1,0	5	-		TO-13	2N 1453
100	1.0	55	-	4442	TO-13	2N1454
50 100	1.0	5	-	1	TO-13 TO-13	2N1455 2N1456
50	1.0	555	-	4	TO-13	2N1457
100	1,0		-			2N 1458
50 100	1.0	5		4 4 4 4	TO-10	2N 1461 2N 1462
50	1.0	5	-	1	TO-10 TO-10	2N1463
100	1.0	5	-	4	TO-10	2N1464
1545	.025	10 mc	-	-	and the second s	2N1647

CIRCLE 50 ON READER-SERVICE CARD >

TRANSISTORS-1961

Power (continued)

-			W	N	lox. R	ating		Characteristics					
Type No.	Mfg.	Туре	u W	w/c	T.J.c	V v	l c amp	h _{fe}	1 C0	f at kc	Powr. Gain db	Powr. Out. W	Remarks
2N1648 2N1649	TR	npn,DJ,si non,DJ,si	40	27	15 15	120 80	3	15-45	.025	10 mc	-	-	
2N1650	TR	npn,DJ,si	40	.27	175	120	3		.025	10 mc 10 mc	-	-	
2N1886 2N2018	TR TR	npn,DJ,si npn,DJ,si	40 40	27 21	175	60 150	5		.35	8 mc 10 mc	1	-	
2N2019	TR	non,DJ,si	40	.27	175	200	-	20-60	.01	10 mc	-	-	
2N2020 2N2021	TR TR	npn,DJ,si npn,DJ,si	40	21 .21	175	150 200	1	40-120		10 mc	-	-	
2N1120 2N250	BE	pnp,AJ,ge pnp,AJ,ge	45 50	1.0	95 100	80 30	15 5	20-50	15	-	30	-	MO
2N251	TI	pnp,AJ,ge	50	_27	100	60	5	60	2	-	30	-	UL .
2N553 2N665	DE DE	eg, L A, qnq pnp, A J, ge	50 50	15	100	80 80	5	-	L.02	75	1	-	JAN2N665
2N1014 2N1069	RCA STC	pnp, AJ, ge npn, DJ, si	50 50	1.0 .29	100 175	100	10	75 20	1.1	-	26	30	RCA
2N1070	STC	npn,DJ,si	50	.29	175	60	4	20	1	1	-	2	RCA
2N1722 2N1724	TI TI	npn,MS,si npn,MS,si	50 50	.67	175	80 80	7.5	-	1	20 mc 20 mc	-	-	
2N 1905 2N 1906	RCA RCA	pnp,Dr,ge pnp,Dr,ge	50 50	0.7	-	60 100	10 10	90 125	.15	-	-	-	
2N 1470	RA	npn,DJ,si	55	3.0	200	60	2	50	10	10		-	Diamond Package
2N1657 2N419	RA BE	npn,DB,si pnp,AJ,ge	55 60	.33 L2	200	60 45	23	50	10	10 mc	-	- 5	annona i aoraĝe
2N639 2N639A	BE	pnp,AJ,ge	60	1.2	100	40	5	15-30	10	-	-	-	
2N6398	BE	pnp,AJ,ge pnp,AJ,ge	60 60	1.2 1.2	100	70	5	15-30 15-30	L.0 2.2	-	-		
2N 1073 2N 1073A	BE	pnp,AJ,ge	60	1.0	100	40	10	20-6	2.0	1.5	-		
2N1073B 2N1136		pnp,AJ,ge pnp,AJ,ge	60	1.0	100	120	10 10	20-6 20-6	15 2.0	1.5	-	-	
2N1136A		pnp,AJ,ge pnp,AJ,ge	60 60	1.2	100 100	40 70	6	-	0.5	-	-	-	
2N11368 2N1137		pap,AJ,ge	60	12	100	80	6	-	2	-	-	-	
2N1137A	BE	pnp,AJ,ge pnp,AJ,ge	60 60	1.2	100 100	40 70	6	1	0.5	-	-	-	
2N11378 2N1138	BE	pnp,AJ,ge pnp,AJ,ge	60 60	1.2	100	80 40	6	-	2	-	-	-	
2N113BA	BE	pap,AJ,ge	60	12	100	70	6	1	0.5 2.0	-	-	-	
2N 11388 2N 12 10	TR	php,AJ,ge npn,DJ,si	60 60	1.2 .27	100	80 60	65	15-75	2 50	- 15 mc	-	-	STC
2N1211 2N1487	TR RCA	npn,DJ,si	60	27	175	70	5	15-75	50	15 mc	-	-	STC
2N1488	RCA	npn,DJ,si npn,DJ,si	60 60	-	175 175	60 100	6	30 30	25 25	l mc	-	-	STC, SE STC, SE
2N1489 2N1490	RCA RCA	npn,DJ,si npn,DJ,si	60 60	-	175	60 100	6	30 30	23	1 mc L25mc	-	-	STC, SE STC, SE
ZN 1616 2N 1617	TR TR	npn,DJ,si	80	.27	175	60	5	15-75	50	15 mc	-	-	
2N1618 ST440	TR	npn,DJ,si npn,DJ,si	60	27 27	175	70	5	15-75 15-75	50 50	15 mc	1		
ST450	TR TR	npn,DJ,si npn,DJ,si	60 60	27 27	150 150	60 60	5	10 10	$\begin{vmatrix} 1\\ 1 \end{vmatrix}$	1	2	2	SE
2N174A 3N45	TS MH	eg, LA, qrq	75	-	95	80	15	37	8	18	-	-	MO
3146	MH	eg, LA, ond eg, LA, ond	75 75	1.0 1.0	100 100	60 80	10 10	40	3.0 3.0	750 450	1	-	Sat volt=0.15v Sat volt=0.15v
39147 39148	MH .	eg, LA, qeq	75	10 10	100	40 60	10 10	50 40	3	750 450	-	-	Sat. volt=0.15v Sat. volt=0.15v
20(389 21424	TI	npn,DJ,si	85	.48	200	60	2	12-60	10	7 mc	-	-	STC, TR, RA
2N1619	TI TR	hipn,DJ,si Hipn,DJ,si	85 85	.48 .27	200 200	80 80	25	12-60 30	10 D.1	6 mc 15 mc	-	-	STC, TR, RA SE
2N1660 2N1661	RA RA	npa,DB,si npa,DB,si	85 85	0.5	200 200	60 80	22	90 90	10 10	40 mc 40 mc	-	-	
2N1052	RA	npn,DB,si	85	0.5	200	100	2	90	10	40 mc	-	-	
2N1894 2N1895	RA RA	npn,DB,si npn,DB,si	85 85	Q.5 Q.5	200 200	60 80	222	30 30	.01 .01	-	-	2	
2N1896 2N1897	RA RA	npn,DB,si npn,DB,si	5	0.5	208 200	60 80	22	90 90	.01	:	-	-	
2N1896	RA	npn,DB,si	85	0,5	200	100	2	90	.01	-	-	-	-
STC1101 STC1102	STC	npn,DJ,si npn,DJ,si	80 85	-	200 200	00 100	6	10-50	.025	l mc l mc	-	-	
STC1103	STC	mpn,DJ,si mpn,DJ,si	85 85	-	200 200	60 100	6		.025	1 mc	-	-	
20297A	MO MO	pip,AJ,ga	50	12	100	80	3	40-100	3	5	-	-	DE, BE
21850A 21(351A	MD MD	pap, AJ, ge pap, AJ, ge	90 90	14 14	100 100	50 50	3	30	3	5	33 33	2	
201376A 201627	MO	PRD, AJ, pri PRD, AJ, pri	90 90	1.4	100 100	50	5	60 10-30	3	5	35 38	-	112212
20628	MO	m,A,m	D	1.2	100	60	10	10-30	i	5	30	-	

52

Power (continued)

1			W	M	ex. R	stings			Che	vecto	istics		
ype la.	Mfg.	Туре	w.	w/c	T I c	V c V	l c amp	h fe	l co ma	f at kc	Powr, Gain	Powr, Oul.	Remerks
	MO	pap,AJ, ge	90	LZ	100	80	10	10-30	4	5	38	-	
	MO BE	pnp,AJ,ge pnp,AJ,ge	90 90	1.2	100	100 50	10 15	10-30	4	5	38	-	
577A	BE	pnp,AJ,ge	90	1.2	100	60	15	6	î	-	-	-	
	BE	pnp,AJ,ge	90	1.2	100	90	15	45	1	-	-	-	-
	BE BE	pnp,AJ,ge	90 90	12	100	100	15	45	1	-	-	-	-
	BE	pnp,AJ,ge pnp,AJ,ge	90	12	100	60	15	75	$\left \begin{array}{c} 1 \\ 1 \end{array} \right $	2	-	-	
	BE	php,AJ,ge	90	1.2	100	90	15	75	1	-	-	-	
	BE	eg_LA,qnq	90	1.2	100	100	15	75	1	-	-	-	
1031 1031A	BE	pnp,AJ,ge pnp,AJ,ge	90 90	0.8 0.8	100	30 40	15	20-60 20-60	1.0	-	-	-	
1031B	BE	pnp,AJ,ge	90	0.8	100	70	15	20-60	1.0	-	2	-	
103 IC	BE	pnp,AJ,ge pnp,AJ,ge	90 90	0.8	100	80 30	15	20-60	2.0	-	-	-	
	BE						15	50-100		-	-	-	
0328		pnp,AJ,ge pnp,AJ,ge	90 90	0.8	100	40	15 15	50-100 50-100	1.0	-		2	
1032C		pnp,AJ,ge	90	0.8	100	80	15	50-100	2	-	-	-	
	MD	pnp,AJ, ge pnp,AJ, ge	90 90	1.2	100	50 50	25	15-65	3	4	-	-	
	MO				100.00			15-65	15	4	-	-	
	MO	pnp,AJ,ge pnp,AJ,ge	90 90	1.2	100	50 50	25	15-65 15-65	3 15		-	-	
	MO	pnp,AJ,ge	90	1.2	100	80	25	15-65	3	4	-	-	
1164A 1165	MO	pnp,AJ,ge pnp,AJ,ge	90	1.2	100	80 80	25	15-65	15	4	-	-	
				L2			25	15-65	3	4	-	-	
	MO	pap,AJ,ge pap,AJ,ge	90	1.2	100	80 80	25	15-65	15 3		1	-	
1166A		pnp,AJ,ge	90	1,2	100	100	25	15-65	15	4	-	-	
1167 1167A	MO	pnp,AJ,ge	90 90	1.2	100	100	25	15-65	3	4	-	-	
		pro, AJ, ge		1.2	100	100	25	15-65	15	4	-	-	
	MO MO	pnp,AJ,ge pnp,AJ,ge	90 90	1.2 1.2	100	50 50	3	35-90 60-140	3	7	-	-	
	MO	pnp,AJ,ge	90	1.2	100	100	3	35-90	3	7	- 1	-	
363	MO	pap,AJ,ge	90	1.2	100	100	3	60-140	3	5	- 1	-	
	MO	pnp,AJ,ge	90	1.2	100	120	3	35-90	3	7	-	-	
1365 1529	MD MD	pap,AJ,ge pap,AJ,ge	90 90	L2 L2	100	120	3	60-140 20-40	32	5	-	-	
	MO	pap,AJ,ga	90	12	100	40	5	20-40	ź	10 10	12	-	
1530	MO	pnp,AJ,ge	90	1.2	100	40	5	20-40	2	10	-	-	
1530A		pnp,AJ,ge	90	1.2	100	60	5	20-40	2	10	-	-	
1531 1531A	MO	prop,AJ,ge prop,AJ,ge	90 90	L2 L2	100	80	5	20-40 20-40	22	10	-	-	
1532	MO	pho, AJ, ga	90	1.2	100	100	5	20-40	ź	10	-	-	
1532A	MO	pop,AJ,ge	90	1,2	100	100	5	20-40	2	10	- 1	-	
1533	MD MO	prop.AJ, ga	90	1.2	100	120	5	20-40	2	10	-	-	TR
1534 1534 A		pro,AJ,ge pro,AJ,ge	90 90	1.2	100	40	5	35-70 35-70	22	8.5	121	1	
1535	MO	pmp,AJ,ge	90	1.2	100	60	5	35-70	2	4.5	-	-	
1535A 1536	MO	pro,AJ,ge pro,AJ,ge	90 90	12	100	60	5	35-70	22	8.5	-	-	
1536A								35-70		8.5	-	-	
1537	MO	pro,AJ,ge pro,AJ,ge	90 10	L2 L2	100	80 100	5	35-70 35-70	22	8.5			
1537A		pro, AJ, go	90	1.2	100	100	5	35-70	2	8.5	-	-	
1538 1539	MO MO	pap,AJ,ge pap,AJ,ge	90 90	1.2	100	120	5	35/70	22	4.5	1	-	
1539A		pap,AJ,ge	90	1.2	100	40	5	50-100			-	-	
1540	MO	pap,AJ,ge	90	1.2	100	60	5	50-100	2		1.	-	
1540A		pro,AJ,ge	90	1.2	100	60	5	50-100		4	-	-	
1541 1541a	MO	php,AJ,ge php,AJ,ge	90 90	12	100	80	5	50-100 50-100	2		-	-	
		pnp, CJ, gn	50	1.2	100	100	5	50-100	2				
1542 1542A	MO	pap,AJ,ge	90	1.2	100	100	5	50-100	2	4	1 -	1	
1543 1544	MO MO	pap,AJ,ge	90 90	L2 12	100	120	5	50-100	2		-	-	
1544A		pro,AJ,ge pro,AJ,ge	50	12	100	40	5	75-150 75-150	22		1	1	
1545	MO	pap,AJ_ge	90	12	100		5	75-150	2	4	-		
1545A	MO	pnp,AJ,ge	90	1.2	100	0	5	75-150	2	6	-	-	
1546 1546A	MO	pap,AJ,ge pap,AJ,ge	90 50	1.2	100	80	5	75-150	22		-	-	
	MO	PRO, AJ, P	99	12	100	100	5	75-150	ź	11	12	-	
1547A	10	PRO,AU,ge	90	1.2	100	100	5	75-100	2	4	-	-	
1518	10	pap, U, ga	90	12	100	129	5	75-150	2	4	-	-	the second
1549 1549A	MO MO	pro,AJ,ga pro,AJ,ga	90	比	100	40	15	10-30	3	10	-	-	
	iii	MO,AU,M	N N	12	100		15	10-30	l i l	10	1:	1	

ELECTRONIC DESIGN . July 5, 1961

DIFFERENT SIZE -SAME PERFORMANCE

call your local AVNET stocking facility

IN NEW YORK

specify

SPERRY

through

AVNET

70 State St., Westbury, L.I., N.Y. FD 3-5800 IN BOSTON 45 Winn St., Burlington, Mass. BR 2-3060 IN DAYTON 4180 Kettering Blvd., Dayton 39, Ohio AX 8-1458 IN CHICAGO 10130 W. Pacific Ave., Franklin Park, III. GL 5-8160 IN PACIFIC NORTHWEST 11240 Main St., Bellevue, Washington GLencourt 4-4911 IN SALT LAKE CITY 816 South Main St., Salt Lake City, Utah DAvis 8-0245 AVNET ELECTRONICS CORP.

CIRCLE 51 ON READER-SERVICE CARD

CIRCLE 52 ON READER-SERVICE CARD

	100
NEW TO-18 Types now Available	TO-5 EQUIVALENT
2N935	2N327A
2N936	2N328A
2N937	2N329A
2N938	2N1025
2N939	2N1026
2N940	2N1469
2N941*	2N1917*
2N942"	2N1918*
2N943"	2N1919*
2N944"	2N1920*
2N945"	2N1921*
2N946"	2N1922*

MY SIN. COURTESY OF LANVIN

More than just another transistor available now, a full line of PNP Alloy Junction Silicon Transistors in a smaller case (TO-18) with the same high performance as TO-5.

The engineering problem of getting the exact performance from a substantially smaller unit has for years faced engineers using silicon transistors. Now Sperry offers you PNP Alloy Junction Silicon Transistors in a higher density package than the popular TO-5. These new TO-18s have the same electrical characteristics, are smaller in size, lighter in weight than TO-5 ... and at no increase in price.

THESE PNP ALLOY SILICON TRANSISTORS, IN EITHER CASE, ARE

- Medium frequency digital switching circuits
- Operational analogue elements
- Audio and communication circuits
- Nuclear instrumentation

*Chopper Transistors — for single use or matched pairs that have the best combination of chopper characteristics available — high breakdown ratings 50 to 80 volts. Two point control of current/voltage offset parameters. Matched pairs to standard tolerance of 100 µv.

SEMICONDUCTOR IS OUR MIDDLE NAME ... SEMICONDUCTOR INTEGRATED NETWORKS (SEMI-NETS"), MESA AND ALLOY SILICON TRANSISTORS AND DIODES SALES OFFICES: CHICAGO, ILLINOIS: LOS ANGELES, CALIFORNIA: WESTWOOD, NEW JERSEY; TEWKS-BURY, MASSACHUBETTS: SYKESVILLE, MARYLAND.

*Trade Mark, Sperry Rand Corporation

SEMICONDUCTOR OPPORTUNITIES AVAILABLE TO QUALIFIED ENGINEERS

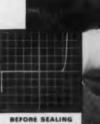
TRANSISTORS-1961

Power (continued)

Туре			-										
No.	Mfg.	Туре	w	w/c	T j c	° c V	c amp	h fe	CO IBA	f ae kc	Powr, Gain db	Powr. Out.	Remarks
2N1550A		pnp,AJ,ge	90	1.2	100	60	15	10-30	3	10	-	-	
2N1551 2N1551A	MO MO	pnp,AJ,ge pnp,AJ,ge	90 90	1.2	100	80 80	15 15	10-30 10-30	23	10 10	-	-	
2N1552	MO	pnp,AJ,ge	90	1.2	100	100	15	10-30	2	10	-	-	
2N 1552A		pnp,AJ,ge	90	1.2	100	100	15	10-30	3	10	-	-	
2N1553 2N1553A	MO	pnp,AJ,ge pnp,AJ,ge	90 90	1.2	100	40	15 15	30-60 30-60	23	6	-	-	
2N 1554	MO	pnp,AJ,ge	90	1.2	100	60	15	30-60	2	6	-	-	
2N1554A 2N1555	MO	php,AJ,ge php,AJ,ge	90 90	1.2	100	60 80	15 15	30-60 30-60	3	6	-	-	
N 155 5A	-	php,AJ,ge	30	1.2	100	80	15	30-60	3	6	-	-	
2N1556	MO	pnp,AJ,ge	90	1.2	100	100	15	30-60	3	6	-	-	
ZN 1556A ZN 1557	MO MO	pnp,AJ,ge pnp,AJ,ge	90 90	1.2	100	100	15 15	30-60	3	6	-	-	
2N 1557A	MO	pnp,AJ,ge	90	1.2	100	40	15	50-100		6	1	-	
2N 1558	MO	pnp,AJ,ge	90	1.2	100	60	15	50-100	3	5	-	-	
2N 1558A 2N 1559	MO	pnp,AJ,ge pnp,AJ,ge	90 90	12	100	60 80	15 15	50-100	3	5	-	-	
2N1559A		prop, AJ, ge	90	1.2	100	80	15	50-100		5	-	-	
2N1560	MO	pnp,AJ,ge	90	1.2	100	100	15	50-100	3	5	-	-	
2N1560A 2N392	MO DE	php,AJ,ge php,AJ,ge	90 94	1,2	100	100	15 5	50-100	3 0.065	5	-	-	
N669	DE	pnp, AJ, ge	94	1.2	100	40	3	-	0.065	10	-	2	
N1159	DE DE	pnp,AJ,ge pnp,AJ,ge	94 94	0.8	100	80 80	57	-	0.065	10 10	-	-	
2N1168	DE	pnp,AJ,ge	94	0.8	100	50	5		0.065 0.065	10	-	-	
N49 N50	MH	php,AJ,ge	94	1.25	100	60	10	50	3	750	2	-	Sat. volt=0,15v
INSI	MH MH	pnp,AJ,ge pnp,AJ,ge	94 94	1.25	100	80	10 10	40	3	450 750	Ē	-	Sat. volt = 0, 15v
N52	MH	pnp,AJ,ge	94	1.25	100	60	10	40	3	450	-	-	Sat volt = 0,15v Sat volt = 0,15v
N574	MH	pnp, AJ, ge	100	1.43	95	60	15	14	7	75	-	-	
N574A	MH MH	prip, AJ, ge prip, AJ, ge	100	L43 L43	95 95	80 60	15 30	14 25	20	75	-	-	
N575A	MH	pnp,AJ,ge	100	1.43	95	80	30	25	20	75 75	-	-	1.1
N1157	MH	pnp,AJ,ge	100	L43	95	60	30	50	7	75	-	-	
N1157A	BE	pnp,AJ,ge pnp,DJ,ge	100	1.43	95 110	80 60	30 25	50 30	20	75	-	-	
N1652	BE	pnp,DJ,ge	100	1.2	110	100	25	30	2.0	2	-	-	Sat. volt=1.0v Sat. volt=0.5v
N 1653	BE	pmp,DJ,ge npn,MS,si	100	1.2	110	120 60	25 15	30	2.0	7 mc	-	-	Sat. volt = 0.5v
N 1937	TI	npn,MS,si	100	1.34	175	80	15	-	20	7 mc	-	-	
PT900 PT901	PSI PSI	non,DM,si	125	1	150	80	10	3	10	50 mc	10	100	hi freq., hi power
N1899	PSI	non,MS,si non,DM,si	125	1	150 150	140 140	10 10	10 10	30 20	50 mc	10	100	hi freq., hi power
N1900	PSI	npn,DM,si	125	i	150	140	5	10	20	25 mc	- 10	- 100	hi freq., hi power hi freq., hi power
N1901	PSI	non,DM,si	125	1	150	140	5	10	20	25 mc	-	-	he freq., he pwr.
	DE	pnp,AJ,ge pn p,AJ,ge	150 150	0.5	100	60 80	0.5	-	0.1	10 10	-	20 40	MO, TS, TI, RCA
N277 N278	DE	pnp,AJ,ge	150	0.5	100	40	15	-	0,1	10	-	20	TS, MO, TI, RCA MO, TS, TI, RCA
	DE	pnp,AJ,ge	150	0.5	100	50	15	- 1	0,1	10	-	20	MD, TS, TI, RCA
1442	DE	pnp,AJ,ge pnp,AJ,ge	150 150	0.5	100	40 50	15 15	-	9.1 0,1	10 10	-	20 20	MO, TS, TI, RCA
N443	DE TI	pnp,AJ,ge	150	0.5	100	60	15	-	0,1	10	-	20	MO, TS, TI, RCA MO, TS, TI, RCA
NSIIA	π	pnp,AJ,ge pnp,AJ,ge	150 150	2	100	40 60	25	20-60	5	-	-	-	Sal. volt=0.2v
N511B	ті	pap,AJ,ge	150	2	100	80		20-60	5	-			SaL volt=0.02v
N512	TI	pnp,AJ,ge	150	2	100	40	25	20-60	5	-	-	-	-
N512B	TI	pap,AJ,ge pap,AJ,ge	150 150	22	100	60 80	25	20-60	5	-	-	-	
N513	TI	pnp,AJ,ge	150	2	100	40	25	20-60	5	1	-	-	Sat. volt=0.4v
	ŢI	pap,AJ,ge	150	2	100	60	25	20-60	5	-	-	-	Sat. volt=0,4v
1514	TI I	pnp,AJ,ge pnp,AJ,ge	150 150	22	100	80 40	25 25	20-60	5	0	1	-	Sal, volt=0.4v
N514A	TI	pnp,AJ,ge	150	2	100	60	25	20-60	5	-	-	-	Sat. volt=0.5v Sat. volt=0.5v
		pnp,AJ,ge	150	2	100	08	25	20-60	5	-	-	-	SaL volt=0.5v
		pnp,AJ,ge pnp,AJ,ge	150 150	22	100	100	10 10	30-90 30-90	22	-	-	-	TR
N 1099	DE	pno.AJ.m	150	0.5	100	80	15 15	-	0,1	10	-	40	TR TS, MO, TI, RCA
	DE	pnp, AJ, ge pnp, AD, ge	150 150	0.5 2	100	100	15 20	10	0,1 10	10	-	40	TS, MO, RCA
N1908	TI	pnp,AD,ge	150		100	130	20	10	10	-	-	-	
N1980	TI	pnp,AJ,ge	150	2	100	50	15	50	6	-	-	-	
N1982	ח דו	pnp,AJ,ge pnp,AJ,si	150 150 150	2 2 2	100	70 90	15 15	50 50	6	5	-	-	
X118UA		non,F,si	1150	2	150	50	10	1000	10	īi	-	-	the second se

Power (concluded)

-				. N	lax. R	ating	8		Che	ecter	istics		
Type No.	Mfg.	Туре	W c w	w/c	Tj c	V _c v	c amp	h _{fe}	l co ma	at kc	Powr, Gain db	Powr. Out w	Romarks
X118UE X118UC X118XA X118XB X118XC	WH WH	npn,F,si npn,F,si npn,F,si npn,F,si npn,F,si	150 150 150 150 150	2 2 2 2 2 2 2	150 150 150 150 150 150	100 150 50 100 150	10 10 10 10	1000 1000 1200 1200 1200	10 10 10 10 10	11 11 11 11 11			
WX115UA WX115UB WX115UC WX115UD WX115UD	WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	250 250 250 250 250	2.22 2.22 2.22 2.22 2.22 2.22 2.22	150 150 150 150 150	50 100 150 200 50	30 30 30 30 30 30	30 30 30 30 30 23	15 15 15 15 15	17 17 17 17 17 18			
WX115WB WX115WC WX115WD WX115WD WX115WD WX115WD	WH WH	npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si npn,AJ,si	250 250 250 250 250 250	2.22 2.22 2.22 2.22 2.22 2.22 2.22	150 150 150 150 150 150	100 150 200 200 50	30 30 30 30 30 30	23 23 23 23 23 23 27	15 15 15 15 15	18 18 18 18 18 19			
WX115X8 WX115XC WX115XC	WH	npn,AJ,si npn,AJ,si npn,AJ,si	250 250 250	2.2 2.22 2.22	150 150 150	100 150 200	30 30 15	27 27 27 27	15 15 15	19 19 19	=	-	


Special Types

Туре		1			Max	. Reti	nga		0	herec	teristi	C 8	-
No. Mfg.		fae	W _C W	T j oc	mm/c	V _c	I _c	n _{le}	I co ma	NF	Goe	Remarks	
2N469A 2N1311 2N1312 2N1312 2N1312 2N1310	GI GI GI GI	pnp,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge	1.8 mc 1.5 mc 2 mc 1 mc 1.0 mc	120 120 50	85 100 100 85 100	0.83 1.5 1.5 0.83 1.5	20 75 50 20 90		75 25 30 40 30	53353	16 10 10 16 10	30 11 11 30 11	photo high voltage high voltage photo high voltage
2 N1393 2 N1394 GT1624 GT1200 2 N1408	GI GI GI GI	pnp,AJ,ge pnp,AJ,ge npn,AJ,ge npn,AJ,ge pnp,AJ,ge	3.4 mc 1 mc 3 -		85 85 100 85 100	0.63 0.83 2 2 2 2	20 10 40 90 50		160 50 75 - 20	5 5 4 3	16 16 20 10	30 30 - 35	photo photo high voltage driver high voltage

Type No.	Mfg.	Туре	=(m=)	т	mw/c	۷	l(ma)	gm	Remarks
C650	СТ	pnp,AJ,si	250	160	2	45	50	-	field effect
C651	CT	pnp,AJ,si	250	160	2	35	50		field effect
C652 C653	CT	pnp,AJ, si	250	160	2	a	50	-	field effect
C610	CT	pap,AJ,si pap,AJ,si	250 250	160 160	2	15 40	50 50	-	field effect
C611								250	field affect
C612	CT	pnp,AJ,si pnp,AJ,si	250 250	160	22	40 40	50 50	400	field effect
C613	ČŤ	pnp,AJ,si	250	160	2	40	50	1000	field effect
C614	CT	pap,AJ,si	250	160	2	40	50	250	field effect
C615	CT	pro AJ, si	250	160	2	40	50	750	field effect
2N 1671	GE	pe,si	450	140	-	-	-	-	uniunction
211671A	GE	pn,si	450	140	- 1	-	-	-	mijunction
2N1671B	GE	pn,si	450	140	- 1	-	-	-	unijunction
ZN 1510	GE	non,RJ,ge	75	85	-	70	20	- 1	

If you would like an additional copy of the Transistor Data Chart Section circle 251 on the Reader-Service Card (Quantity prices on request)

In-process testing of silicon diodes with a Type 575 TEKTRONIX TRANSISTOR-CURVE TRACER

DURING SEALING

AFTER SEALING

INVALUABLE TOOL FOR EVALUATING SEMICONDUCTOR DEVICES

... in research and development

The Type 575 is a versatile precision tool for in-process testing of semiconductor diodes-as illustrated above in the Semiconductor-Device Development Lab of Tektronix' Research Division. Viewing the display on a Type 575, a technician can easily determine the forward conduction characteristics as well as the reverse breakdown-and-leakage of a semiconductor diode prior to sealing, during sealing, and after sealing.

NOTE: Double-exposure waveform photos of the case-sealing operation were taken with control settings at 1 ma/div (v) and 0.2 v/div (h)-forward direction, upper right-and 20µa/div (v) and 20 v/div (h)-reverse direction, lower left.

... in production runs

The Type 575-used by itself or with a Type 175 Adapter for increased current capability—is a convenient Quality Control tool for production testing of both PNP and NPN transistors—a simple procedure with Test-Setup Charts of front-panel layout available from your Tektronix Field En-gineer. Using a Test-Setup Chart, with control settings marked with arrows, display limits drawn on the graticule, other time-saving techniques devised by a QC Engineer clearly noted, a production worker can easily change from one test procedure to another, accurately compare the characteristic curves displayed on the 5-inch crt of the Type \$75 with charted standards, and speedily accept or reject the transistor under test.

... in other applications

The Type 575 provides 20-ampere collector displays (10ampere average supply current), two ranges of collector supply (0 to 20 volts, 0 to 200 volts), and 2.4-ampere base supply (positive or negative base stepping).

With a Type 575, you can plot and measure 7 different transistor characteristics. You can display 4 to 12 curves per family-with input current from 1 microampere/step to 200 milliamperes/step or input voltage from 10 millivolts/step to 200 millivolts/step—in repetitive or single-family presentations. You can select either common-emitter or common-base con**figurations**

Add a Type 175 Adapter and you extend the range of collector displays 10 times and the range of base supply 5 times.

Type 575 Calibrated Displays

Vertical Axis-Collector Current, 16 steps from 0.01 ma/div to 1000 ma/div. Pushbuttons are provided for multiplying each current step by 2 and dividing by 10, increasing the current range to 0.001 to 2000 ma/div.

Horizontal Axis-Collector Voltage, 11 steps from 0.01 v/div to 20 v/div.

Both Axes-Base Voltage, 6 steps from 0.01 v/div to 0.5 v/div. Base Current, 17 steps from 0.001 ma/div to 200 ma/div. Bass Source Voltage, 5 steps from 0.01 v/div to 0.2 v/div.

Tektronix, Inc. P. O. Box 500 · Beaverlan, Oregon · Phone Mitchell 4-0161 · TWX-BEAV 311 · Cable: TEKTRONIX

TERTECORIX FIELD OFFICES: Albuquerque, N. Mes. - Attenta, Ga. - Baltimore (Toreson) Md. + Boston (Lesington) Mass. - Buffalo, N.Y. + Chicago (Park Ridge) III. - Clevelend, Ohio - Dallas, Texas - Daylon, Ohio Derver, Colo. - Detroit (Lathrup Village) Mich. - Endicott (Endeell) N.Y. - Greenboro, N.C. - Housion, Texas - Indianapolis, Ind. - Kensas City (Mission) Ken. - Los Angeles, Calif. Area (East Los Angeles, Lathrapede) Mich. - Endicott (Endeell) N.Y. - Greenboro, N.C. - Housion, Texas - Indianapolis, Ind. - Kensas City (Mission) Ken. - Los Angeles, Calif. Area (East Los Angeles, Calif. Area (East Los Angeles, Edino, Subrec, Canada - New York, City Area (Abortion, L.), N.Y. - Stamford, Conn. - Union, N.J.) - Orlando, F.B. - Phoesis (Costidade) Arts. Poughteepale, N.Y. - San Diego, Calif. - San Francisco, Calif. Area (Lateyetis, Palo Alio) - SI. Petersburg, Fia. - Syracuae, N.Y. - Toronio (Willowdale) Ont., Canada - Washington, D.C. (Annandale, Va). TENTRONIX EMGINEERING REPRESENTATIVES: Hewthorne Electronics, Portland, Oregon + Seattle, Weshington. Tektronis is represented in twenty oversees countries by qualified engineering organizations.

In Europe places contact Tattrania International A.G., Torrassanway 1A, Zug, Switzorland, Phone (042) 4-00-00, for the address of the Tattrania Representativa in your country. CIRCLE 54 ON READER-SERVICE CARD

HIGH-CURRENT ADAPTER AVAILABLE

For measuring high-powered semiconductor devices which exceed the current capabilities of a Type 575, ask your Tektronix Field Engineer about the Type 175 High-Current Adapter. Not intended for separate Adapter. Not intended for separate use, the Type 175 depends upon the circuitry and crt of a Type 575 to provide 200-ampere collector dis-plays, three ranges of collector sup-ply, and 12-ampere base supply—for calibrated displays with Collector Current on the Vertical Axis and either Collector Voltage or Base Voltage on the Horizontal Axis.

HIGH-VOLTAGE **TYPE 575** AVAILABLE

Supplied on order from your Tektronix Field Engineer is a special model of the Type 575 Transistor-Curve Tracer. Although similar to the Type 575, the special model provides much higher diode breakdown test voltage (variable from zero to 1500 volts at a maximum current of 1 milliampere) and also much higher Collector Supply (up to 400 volts, at

0.5 ampere). For complete specifications of this special model-call your Tektronix Field Engineer.

(prices (.o.b. fectory) Type 575 Mod 122C

... for more information about eval-uating semiconductor devices with a Type \$75 or other Tektronix test equipment, call your Tektronix Field Engineer. He will be glad to assist you.

CAREER OPPORTUNITIES now exist at Tektronix in the following fields: Instru-ment design, Circuit design and engi-neering, Cathode-ray tubes, Electron physics, Solid state and semiconductor devices. For information write to . Irving Smith, Professional Placement.

CIRCLE 53 ON READER-SERVICE CARD

Doesn't anyone make a reliable silicon rectifier

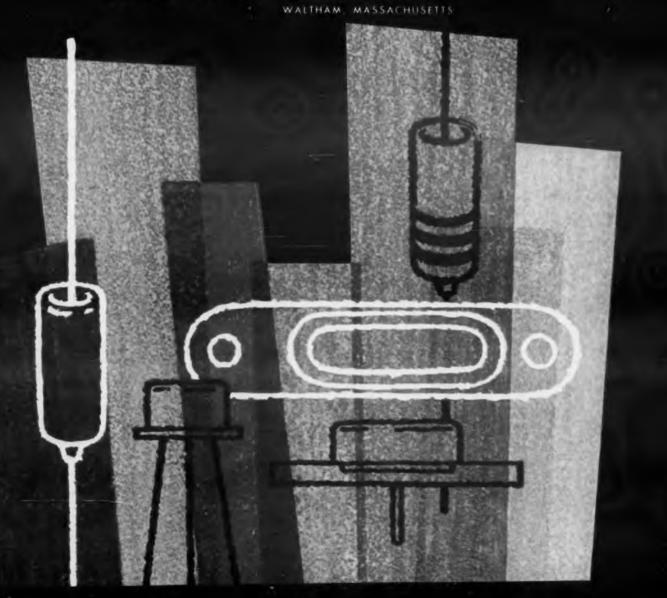
> Rest easy friend...someone can and has! Slater Electric applied the engineering know-how that has kept them a leader in the electrical industry and solved the problem of reliability with their new "Trim-Line" diffused junction silicon rectifiers.

This unique series directly replaces top hat types with features to spare — they require no heat sinks up to 1.5 amperes — they're miniature in size, conservatively rated and ... no bones about it, they're reliable!

If silicon rectifiers have you barking up a tree — we've got the solution. Complete engineering data is available on request — simply write...

ACTUAL SIZE

CIRCLE 55 ON READER-SERVICE CARD


	-				Maxin	num R	atings		C	haract	oristic			Swith	hing		
Type No.	Mfg.	Туре	f RC	U C (W)	T J (c)	w/c	V v	l c a	hfe	1 C0 Ma	Powr, Gain db	Powr, Out	Rise Time usec	Stor. Time	Sat. Volt	Leak Cur	Romerks
2N1238	HU	pnp,FJ,si	0.8	1.0	200	-	15	0.5	14	0.1	-	-	μsec	μ\$8C	-	-	
2N1239 2N1240	HU	pnp,FJ,si	0.8	1.0	200 200	-	15 35	0.5	32 14	0.1 0.1	-	1	-	-	-	-	1
2N1241 2N1242	HU HU		1.0	1.0 1.0	200 200	-	35 65	0.5	24 14	0.1	-	1	-	-	-	-	
2N1243 2N1244	HU		1.0	1.0	200	-	65	0.5	24	0.1	-	-	-	-	-	-	
2N1073 2N1073A	HU BE BE	pnp,DJ,ge	12 1.5 1.5	1.0 35	200 100 100	1.5	110 40	0.5	14 20-6	0.1 2.0	-	-	-	-	1.0	-	
2N1073B	BE		1.5	35 35	100	1.5 1.5	80 120	10 10	20-6 20-6	2.0 2.0	-	-	-	-	1.0 1.0	=	-
0C22	BE	php,DJ,ge php,PADT,ge	1.5	60 10	100 75	1.0	120 32	10 1	5a 150	2.0 30	-	=	1	-	0.75	-	
0C23 0C24	AMP AMP	pnp, PADT,ge pnp, PADT,ge		10 10	75 75	-	40 32	1	150 150	30 30	-	-	1	-	-	-	
2N1518 2N1519	DE	pnp,AJ,ge	4	70	100	1.2	50	25	- (100	-	40	20	7	0.3	-	
2N1520	DE		4	70	100	1.2	80 50	25 35	-	100	-	40 40	20 20	7	0.3	-	Min, gain of 12 at 25a
2N1521	DE	pnp,AJ,ge pnp,AJ,ge	4	70	100	1.2	80	20	-	100	-	40	20	,	0.3		Min. gain of 12 at 35a Min. gain of 12 at
211522	DE	onp.AJ.ge		70	100	1.2	50	50	_	100	-	40	20	,	0.3	-	Min. gain of 12 at 35a Min. gain of 12
2N1523	DE	pnp,AJ.ge	4	70	100	1.2	80	50		100		40	20	,	0.3	-	Min. gain of 12 50a Min. gain of 12 at
2N297	BE	pap,AJ,ge	5	35	90	1.5	50	5	_	3	_	40	-	-	1.02		50a
2N297A 2N618	CŁ	onp AJ ge onp AJ ge	1043	ĪŽ	95 90	2.0	60	3	5	2 1010	-	-	-	-	1.0	80	BE, DE, MO
2N375 2N378	CL TS	pnp,AJge pnp,AJge	77	50	95 100	12	80 20	35	- 30	3 0.5	-	-	-	-	1.0	-	MO
2N379 2N380	CL TS	pap,AJ,ge	7	5 50	85 100	0.3	80 30	3	-	5	-	-	-	-	1	15	TS
2N458 2N459		pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge	17	50 50	95 100	0.72	80 60	5	-	0.5	-	-	12	12.5	0.24	50 30	CL
2W1011	DE	pnp,AJ.ge	1	70	100	0.0	80	5	-	0.5 100	1	-	5	2	0.3	30	2N1011 Sig. C., MC
2N456A 2N457A	DE	pnp,AJ.ge pnp,AJ.ge	10 10	91 91	100	12	40 60	7 0.065	-	0.065	-	-	10 10	5	-	-	TI
2N458A 2N1038	DE Ti	pnp,AJ,ge pnp,AJ,ge	10 10	94 20	100 100	1.2	80 40	73	- 33	0.065	-	=	10	5	-	1	Ť
2N1039 2N1040	TI TI	es_LA,qnq	10	20 20	100	0.27	60	3	33	50	-	-	-	-	-	-	
2N1358 2N1412	DE	pnp,AJ.ge	10	150	100	2	80 80	3 15	33 -	50 0.1	-	40	15	5	0.3	-	TS, TI, RCA, MO
2N1970 2N387	DE DE PH	pap,AJ,ge pap,AJ,ge	10 10 12	150 150 12.5	100 100 100	2 2 0.5	100	15 15	-	100 0.1	-	40	15 10	5	0.3	-	TS, RCA, MO
2N386	PH	pnp,AJ,ge pnp,AJ,ge	14	12.5	100	0.5	80 60	3	-	1.0 0.1	33 33	5	-	-	0.35	1	
2N1046 2N1046A	TI	pnp,AD_ge pnp,AD_ge	15 15	150 150	100 100	22	100	10 10	40 20	10 10	-	-	2	-	1.0	1	
2N1046B 2N1609	DE	pap,AD,ge pap,AJ,ge	15 17	150 7.5	100 100	2 0.1	130 80	10 1.5	10	10	-	0.4#	-	ī	0.3	-	
2N1610 2N1611	DE	ss.LA.qnq	17 17	7.5	100 100	0.1 0.1	80 60	15	-	10	-	0.4w	3	1	0.3	-	
2N1612 2N1971	DE	pag.LA.qaq pag.LA.qaq	17	7.5	100	0.1	60	1.5	-	10 10 0.02	-	0.4w 0.4w	3		0.3 0.3	-	
2N1015	WH	non,FJ,si	25	150	150	1.4	30	7.5	8	10	-	-	5	2	1.5	8	SE
2N1015A 2N1015B	WH	non,FJ,si non,FJ,si	25 25 25	150 150	150 150	1.4	60 100	7.5	8	10 10	-	5	5	1	1.5		SE
2N1015C 2N1015D	WH	npn,FJ,si npn,FJ,si	25	150 150	150 150	1.4	150 200	75	8	10 10	2	1	5	1	1.5	8	
2N1016 2N1016A	WH	non,FJ,si non,FJ,si	25	150	150	1.4	30 60	7.5	8	10 10	-	1	5	1	2.5		SE
2N1016B 2N1016C	WH	non,FJ,si non,FJ,si	22	150	150	1.4	100	7.5	8	10	-	-	5		2.5		SE
2N1016D 2N1667	WH		25	150	158 150 90	1.4	150 200	7.5	8 8 90	10 10 0.1	-	-	5		2.5	8	
2N1668	AMP	pop, PADT .ge	200	30	90	-	-	6	50	0.1	-	-	-	-	-	-	
2N1669 0C28	AMP	I DINO, PTAUL PE	200	30 13	90 90	-	80	Ē	70 32	0.1 <100	1	1	:	1	-	-	
0C29 0C35	AMP AMP	pag, PADT ge pag, PADT ge pag, PADT ge	200	13	90 90	=	60 60	6	90 50	<100 <100	2	12	12	1	2	1 :	1.1
OC36 2N418	AMP BE	pap, PADT ge pap, AJ ge	200	13 60	90 100	12	B0 100	6	70 60	<100 1.0	-	-	-	-	-	-	-
2N420 2N420A	BE	pap Aj ge pho Aj ge	400	60 60	100	12	65 90	4	60	1.0	-	1	15	-	0.5	1	

TRANSISTORS-1961

CIRCLE 56 ON READER-SERVICE CARD >

reliability in volume...

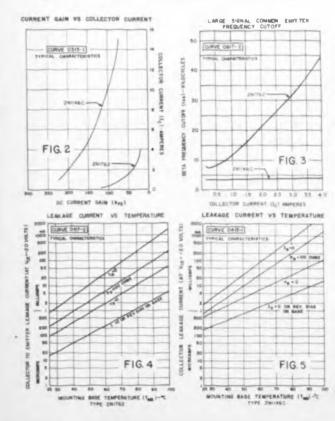
CLEVITE TRANSISTOR

How to select power transistors

by RICHARD F. MOREY, JR.

Manager, Applications Engineering, Clevite Transistor Division of Clevite Corporation

A basic understanding of the interrelationship of transistor design parameters facilitates selection of the most advantageous unit for a given application.


Transistor characteristics depend upon each other. Consequently, a design change in the manufacture of a transistor directly affects a number of its electrical characteristics.

As a guide to users of power transistors, several of the important design elements and the electrical characteristics they influence have been summarized in chart form (fig. 1).

The curves (figs. 2-5), show typical characteristics for two power transistors of quite different design. Clevite's 2N1762, for example, is a 3 ampere unit having the following design parameters: Small junction area; high resistivity germanium; moderate germanium lifetime; average wafer thickness and no emitter doping.

In contrast, Clevite's 2N1146C is a 15 ampere power transistor which has several quite different parameters based upon a higher current and power requirement; large junction area several times the size of the 3 ampere unit; identical base width and resistivity but longer germanium lifetime and thicker wafer plus aluminum doping to increase emitter efficiency.

Working with the chart in figure 1 and the table, figure 6, we see that the comparative design elements of

DESIGN PARAMETER	Addition of Emitter Doping	Increase in Water Thickness	Reduction in GE material lifetime	Increase in GE material resistivity	Reduction in Base Width	Increase in Junction Area
THERMAL RESISTANCE R+	-	-	-	-	-	decrease
COLLECTOR LEAKAGE CURRENT	-	decrease	increase	increase	-	increase
COLLECTOR BASE VOLTAGE	-	-	-	increase	-	decrease slightly
COLLECTOR EMITTER VOLTAGE Vot	decrease	-	increase	increase	decrease	decrease slightly
D.C. CURRENT GAIN	increase	-	decrease	-	increase	-
LINEARITY OF hee	better	-	-	-	-	better
SATURATION VOLTAGE V CE (SAT)	decrease	decrease	increase	increase	decrease	decrease
BETA CUTOFF FREQUENCY	decrease	-	increase	-	increase	decrease
PUNCH THROUGH VOLTAGE VPT	-	-	-	decrease	decrease	-
SECONDARY BREAKDOWN CURRENT	increase	increase	-	decrease	-	increase

Effect of Transistor Design on Characteristics

Figure 1.

- the two transistors result in the 15 ampere unit exhibiting:
 lower thermal resistance and higher leakage currents because of its large junction area.
- slightly lower collector to base voltage.
- higher gain because of the emitter doping and higher lifetime.
- very linear current gain out to high currents because of its large area and special emitter doping.
- lower collector to emitter breakdown voltages because of its higher gain and lower collector to base voltage.
- much lower saturation voltage and base input voltage because of its high gain and thicker wafer and larger area.
- low common emitter frequency response because of its high gain and large area.

Comparison of Characteristics — Two different designs

Characteristic	Typical Value	2N1146C Typical Value 15 Amp. Device	Units
Thermal Resistance	1.4	0.5	°C/watt
Iceo at 100V at 85°C	3	15	mA
Iceo at 100V at 25°C	1	4	mA
BVCRO	130	120	Volts
VCEO(404)	70	50	Volts
Current Gain at $1_c = 1$ Amp.	60	220	
Current Gain at $1_c = 5$ Amps.	15	140	
Current Gain at 1c = 15 Amps	i. —	75	
Saturation Voltage at 3 Amps.	0.3	0.2	Volts
Saturation Voltage at 15 Amps		0.4	Volts
Saturation Resistance	100	26	Milliohms
Frequency Cutoff at 1 Amp.	18	4	kc.

Figure 6

In order for circuit designers and users of power transistors to obtain the best combination of electrical characteristics, the requirements for the application must be well known and be matched to the transistors available on the market. Therefore, an elementary knowledge of the existing relationships between transistor characteristics is a useful design tool. A tabular summary of characteristics for Clevite's complete line of power transistors is available. Ask for Bulletin 61-A.

> CLEVITE TRANSISTOR Waltham, Massachusetts

POWER TRANSISTORS FAST FROM THESE DISTRIBUTORS

200 SMITH STREET WALTHAM 54 MASSACHUSETTS

CALIFORNIA

Fortune Electronics Corporation 1321 Mission Street San Francisco 3, California UNderhill 1.2434

Bob Simcock Jim Hays Mike Dellamonica Call Ben Main Henry Putnam Frank Cianciolo

Shelley Radio Co., Inc. 2008 Westwood Blvd. Los Angeles 18, California BRadshaw 2-4391

Frank Shelley **Dick Hakins** Call Inwin Pigovat **Bob Valdez**

Wesco Electronics 1715 E. Colorado Street Pasadena, California MUrray 1-4861 SYcamore 5-9161

Don Cassidy Harold Matthews Dave Price Call Ed Rice Matt Leondis

COLORADO

L. B. Walker Radio Company **300 Bryant Street** Denver 4, Colorado WEst 5 2401

James Bevington Dwane Orth Call Al Beniamin Sam Fonville

FLORIDA

Gulf Semiconductors, Inc. 7210 Red Road Miami 43, Florida MOhawk 5-3574

Call George L. Chase John F. Wattles

ILLINOIS

Semiconductor Specialists, Inc. 5706 West North Avenue Chicago 39, Illinois NAtional 2-8860

Paul Carroll **Bob Bode** Call Hal Choisser Max Robinette

MARYLAND

D & H Distributing Company, Inc. 2025 Worcester Street Baltimore 30, Maryland LE 9-6525

Len Hassman Leroy Marpoe **Richard Draper** Call Allen Draper William Davis John Bittner **Robert Bonar**

IRCLE 56 ON READER-SERVICE CARD

MASSACHUSETTS Greene-Shaw Company

341 Watertown Street Newton 58, Massachusetts WOodward 9-8900

Sid Shaw Andrew Murphy Peter Pearson Call William Heghlis **Donald Ranagan Richard Moschner Robert Murray**

Cramer Electronics, Inc. 811 Boylston Street Boston 16, Massachusetts COpley 7-4700

Nils Attemann Nick Milona **Gerald Cramer** Max Cramer **Charles Silliker** Call Sam Share Doug Carrick Marvin Wood Les Gill George Wallace

MISSOURI

Burstein-Applebee Company 1017 Charlotte Kansas City, Missouri BA 1-4266

Rollo Fouts Ed Gerlach Harris Fromhold Pat Patterson Call **Jim Neustadt** Dan Hatter Gene Goff

NEW JERSEY

General Radio Supply Company, Inc. 600 Penn Street Camden 2, New Jersey WOodlawn 4-8560 Walter A. Beringer

Walter Beringer, Jr.

John Jakubowski **Charles Sikora** Call Steve Tiska Lou Rodio **Cliff Gilbert**

NEW YORK

Arrow Electronics, Inc. 525 Jericho Turnpike Mineola, Long Island, New York Ploneer 6-8686

Murray Goldberg Bob Becker Herb Brody Al D'Ambra Bob Dowling Call Aaron Geffner Jerry Manuta Jim Mason Phil Miller Leo Mitchell Irv Sodus

Harvey Radio Co., Inc. 103 West 43rd Street New York 36, New York JUdson 2-1500

Harvey E. Sampson, Jr. Stan Éskatz **Ernie Stern** Call Ed Lewin Frank Lannen **Buzz Hart** Martin Gillmon

Statewide Electronic Supply Co., Inc. **Pickard Drive** East Syracuse, New York GLenview 4-3227

Joe Perleoni Call Sam Perleoni Joe Cariseo

OHIO

Pioneer Electronic Supply Compant 5403 Prospect Avenue **Cleveland 15, Ohio** Telephone: 432-0010

Jerry Blank Thomas J. Gretz Robert L. Dittrick Call George Remner Frank L. Toplak **Donald Gonsalves** Kenneth McNabb

PENNSYLVANIA

Phila. Electronics, Inc. 1225 Vine Street Philadelphia 7, Pennsylvania LO 8.7444

Adam Cavalier **Anthony Cucchi** Romeo A. Cucchi Carmen Salvucci Call Edward S. Smith Andy Simiriglio

TENNESSEE

Electra Distributing Company 1914 West End Avenue Nashville 4, Tennessee ALpine 5-8444

> Henry Flowers Bill Stafford **Stanley Bennett** John Sullivan **Irving Silver**

McNicol, Inc.

D. C. McNicol L. W. McKennon C. L. Beck Call R. C. Fryman

WASHINGTON

Kam Electronics 1211 East Denny Way Seattle 22, Washington EAst 3-5100

Call Geraid N. Wash Gerald R. Wallace

DATA CHART

Abbreviation of Terms

AJ	Alloy Junction
DD	Double Diffused
DG	Grown Diffused
DJ	Diffused Junction
DM	Diffused Mesa
DP	Diffused Planar
Dr	Drift
Ер	Epitaxial
FA	Fused Alloy
FJ	Fused Junction
GD	Grown Diffused
Ge	Germanium
GJ	Grown Junction
GR	Grown Rate
MB	Meltback
MD	MADT
Ms	Mesa
RG	Rate Grown
Si	Silicon
SBT	Surface Barrier
C	Collector-to-emitter capacitance meas- ured across the output terminals with the input ac open-circuited.
f _{ie} =	Frequency at which the magnitude of

f.

the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-frequency value.

Frequency at which common emitter gain is unity.

- Common emitter-small signal forward h current transfer ratio.
- Common emitter-static value of shorthere circuited forward current ratio.
 - Collector current when collector junction is reverse-biased and emitter is dc open-circuited.

If you would like an additional copy of the Transistor Data Chart Section circle 251 on the Reader-Service Card (Quantity prices on request)

Call

TEXAS

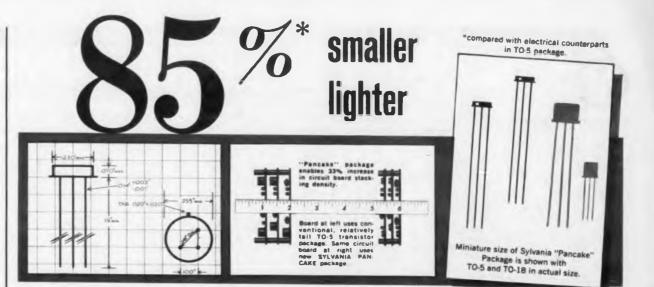
3012 East Yandell El Paso, Texas LOgan 6-2936

P

TRANSISTORS-1961

High Level (continued)

High Level


-					Max	. Roti	193		0	heract	eristic			Swite	hing		
Type No.	Mfg.	Туре	f	W c (w)	o j c	ew/c	с v	l c a	h _{fe}	l co ma	Powr. Gain db	Powr. out w	Rise Time µSBC	Stor Time µsec	Sat. Volt	Out	Romerka
N637A N637B N638 N638A N638B	BE BE BE BE BE	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge	400 400 400 400 400	60 60 60 60 60	100 100 100 100 100	1.2 1.2 1.2 1.2 1.2 1.2	90 100 60 90 100	66666	45 45 30 30 30	1.0 1.0 1.0 1.0 1.0	11111	1111	1111	1111	0.7 0.7 0.7 0.7 0.7	11111	CL
N675 N456 N457 N671 TC1103	PH TI TI PH STC	pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge npn,DJ,si	400 430 430 700 1 mc	1 50 50 1 85	85 100 100 85 200	16.7 0.67 0.67 0.017 0.425	75 40 60 40 60	25526	40 30-90 30-90 100 25-75	100 0.2 0.6 20 0.025	1111	1111	- 12 12 -	12.5 12.5	0.35 0.24 0.24 	30 30 -	Infinite heat sink RCA RCA Infinite heat sink
TC1100 N673 N424A N1701 N1702	STC PH STC STC STC	npn,DJ,si pnp,AJ,ge npn,DM,si npn,DM,si npn,DM,si	1mc 1.1mc 2mc 2mc 2mc	85 0.3 85 25 75	200 85 200 200 200	0.425 5 0.4 0.125 0.375	100 75 60 60 60	6 2 3 2.5 5	25-75 160 12-60 20-80 15-60	0.025 40 10 0.1 0.2			0.5 - -	0.4	0.2	1111	Infinite heat sink SE
N1768 N1769 N1620 N551 N552	STC STC STC TR TR	npn,DM,si npn,DM,si npn,DM,si npn,DJ,si npn,DJ,si	2 2 2mc 3mc 3mc	40 40 85 3 3	200 200 200 200 200 200	0.2 0.2 0.425 0.5 0.5	80 100 100 60 30	335	35-10 35-10 15-75 20-80 20-80	.015 1 1.2			- - 1.2 1.2	- - 0.3 0.3		1111	
N1055 N547 N548 N549 N549	TR TR TR TR TR	npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si	3 4mc 4mc 4mc 4mc	3 5 5 5 5	200 200 200 200 200 200	0.045 0.5 0.5 0.5 0.5	100 60 30 60 30		20-80 20-80 20-80 20-80 20-80 20-80	1.2 0.5 0.5			- 0.7 0.7 0.7 0.7	- 0.2 0.2 0.2 0.2	3.0 2.0 1.5 1.5	1111	
2N1117 2N1116 2N1173 5T402 5T403	TR TR WE TR TR	npn,DJ,si npn,DJ,si npn,AJ,ge npn,DJ,si npn,DJ,si	4mc 6mc 6mc 6mc 6mc	5 5 50 50	200 200 100 200 200	0.5 0.5 3.33 0.33 0.33	60 60 35 60 45	- 0.2 3 3	40 40 80 30 30	0.04 1.2 0.004 20 20	1111		0.7 0.7 0.25 0.25	0.2 0.2 0.5 0.5	1.5 3.0 6 5		
2N1174 2N545 2N546 2N1052 2N1212	WE TR TR TR TR TR	pnp,AJ,ge npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si	7mc Banc Banc Banc Banc 10mc	- 5 5 5 85	100 200 200 200 200	3.33 0.5 0.5 .045 0.27	35 60 30 60 60	0.2	85 15 15 15 15 12-60	0.005 1.2 0.5 0.001	1111	1111	- 0.3 0.3 -	0.15	3.0 2.0 3.5	25	
2N1054 2N1208 2N1209 2N1250 5T401	TR TR TR TR TR	npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si npn,DJ,si	12mc 12mc 12mc 12mc 12mc	5 85 85 85 85	200 200 200 200 200 200	.045 0.27 0.27 0.27 0.27 0.27	125 60 45 60 45	5555	20-80 15 20 15 20	.000- 1.0 2.0 1.0 2.0		1111	0.25 0.25 0.25 0.25	1111	33333	+ + + +	SE
2N1072 2N1041 RT 497M RT 498M 2N912	WE TI RH RH FA	npn,DD,si npn,AJ,ge npn,DD,si npn,DD,si npn,DD,si npn,DP,si	30mc 33 50 50 60°	12 20 3 3 1.8	150 100 175 175 200	65 0.27 0.02 0.02 0.02	75 100 60 100 80	1 3 0.5 0.5	13 33. 20 20 30	0.1 50 	1111	1111	0.05	0.05	1.1.1.1	1 1 1 1	US, ML only Microbloc TO-46 Microbloc
2N1975 2N1978 2N1985 2N1989 2N1989 RT656M	FA FA FA FA RH	npn,DP,si npn,DP,si npn,DP,si npn,DM,si npn,DM,si npn,DD,si	60° 60° 60° 60°	3 30 2 2 3	200 200 150 150	0.017 0.17 0.0010 0.0010 0.0010	80 40 35 60		30 40 30 40	0.005 /4	- 6 	1 1 1 1	1 1 1 1 1	1 1 1 1 1	1.1.1.1	1 1 1 1	71° 71° 71° 71°
RT657M RT5202 RT5230 RN721 RN721 RN1131	RH RH FA FA	npn,DD,si npn,DD,si npn,DD,si npn,DD,si pnp,DP,si pnp,DP,si	60 60 60 70° m	3 5 2 1.5	175 175 175 175 175 175	0.02 0.033 0.013 0.01	60 100 175 30 50	0.5 0.5 0.5 0.5	60 50 50 35	0.001		1 1 1 1	1 1 1 1		1 1 1 1 1	1111	Microbloc Microbloc *fT
2N1987 2N696 2N698	FA FA FA	npn,DM,si npn,DP,si npn,DP,si	70° 80(17 80(17	2	175 150 175 175	13.3 0.001(13.3 13.3	50 40 40 80		35 50 40 30	0.01			0.08	0.03		1 1 1 1	"THU, TI, TR "T SSD, TR, SY, NA, TI, RH, TR, NA, GI, SSD
N 717 2N 719 2N 1252	FA FA FA	npn,DP,si npn,DP,si npn,DP,si	80(fT 80(fT 80(fT	1.5	175 175 175	10 10 13.3	80 90 20		30 30 35	0.01 0.01 0.1	1.1.1		0.08 0.08 0.08	- 0.05	111	1.1.1	IND, PSI, TI GI. HO, PSI, RH, NA PSI, RH, GI TR, GI, IND, PSI, TI RH
2N 71 9A 2N 870 2N 911 2N 1613 2N 1889	FA FA FA FA	npn, DP, si npn, DP, si npn, DP, si npn, DP, si npn, DP, si	80° 80° 80° 80°	1.8 1.8 1.8 3 3	200 200 200 200 200 200	0.01 0.01 0.01 17.2 0.017	80 80 80 50 80		45 80 70 80 80	0.0004 0.0004 .0005 0.000 0.000	на – на – 17			1111			여T GI 여T •1T •1TRH •1T
201893 201974 201964 201991 RT 482	FA FA FA FA RH	npn,DP,si npn,DP,si npn,DM,si pnp,DM,si npn,DD,si	80° 80° 80° 80°	3 3 2 1 2	200 200 150 175 175	0.017 0.017 0.001 0.005 0.013	80 5 35 7 20	- - - 0.5	80 70 70 45 50	0.000	- 64			1111		1111	*1T *1T *1T
RT 483 RT 484 RT 696 M	RH RH RH	npn,DD,si npn,DD,si npn,DD,si	80 80 60	223	175 175 175	0.013 0.013 0.02	40	0.5 0.5 0.5	40 70 40	0.02 0.02 0.003				-			Microblec

					Ma	n. Rati	ngs	
Type No.	Mfg.	Туре	1	W _c (w)	Tj	w/c	V _c v	1.0
RT698M RT5151 RT5152 RT5203 RT5204	RH RH RH RH RH	прп, DD.si прп, DD,si прп, DD,si прп, DD,si прп, DD,si прп, DD,si	80 80 80 80 80	322222	175 175 175 175 175 175	0.02 0.013 0.013 0.013 0.013	120 45 45 40 30	0.5 0.5 0.5 0.5
RT 5212 2N 722 2N 1988 2N 697	RH FA FA FA	npn,DD,si pnp,DP,si npn,DM,si npn,DP,si	80 90° 90° 100(†	2 1.5 2 1/2	175 175 150 175	0.013 0.01 0.0016 13.3	60 50 60 40	0.5
2N699	FA	npn,DP,si	100(1	7)2	175	13.3	80	-
2N718 2N718A 2N720 2N720A 2N730	FA FA FA FA TI	npn,DP,si npn,DP,si npn,DP,si npn,DP,si npn,MS,si	100(f 100° 100(f 100° 100°	1.8 F)1.5 1.8	175 200 175 200 175	10 0.01 10 0.01 0.01	40 50 80 100 60	1111
2N731 2N871 2N909 2N910 2N1050	TI FA FA FA WE	npn, MS, si npn, DP, si npn, DM, si npn, DP, si npn, MS, si	100m 100° 100° 100° 100°	1.8 1.5 1.8	175 200 175 200 150	0.01 0.01 0.01 0.01 2	60 80 30 80 40	
2N1132 2N1253	FA FA	pnp,DP,si npn,DP,si	100(*		175 175	13.3 13.3	50 20	
2N1420 2N1444 2N1711	FA WE FA	npn,DP,si npn,DM,si npn,DP,si	100° 100m 100°	2	175 150 200	0.013 4 0.017	30 60 50	ē.2
2N1890 2N1972 2N1973 2N1983 2N1985	FA FA FA FA FA	npn,DP,si npn,DM,si npn,DP,si npn,DM,si npn,DM,si	100° 100° 100° 100°	3 2 3 2 2 2 w	200 175 200 150 150	0.017 0.013 0.017 0.0016 0.0016	80 30 80 35	1111
R TAO9 R T696AM R T697M R T697AM R T699M	RH RH RH RH RH	npnDD,si npn,DD,si npn,DD,si npn,DD,si npn,DD,si npn,DD,si	100 100 100 100 100	333333	175 175 175 175 175 175	0.02 0.02 0.02 0.02 0.02	60 60 60 60 120	0.5 5 0.5 0.5
RT1613M RT5001 RT5002 RT5003 RT5004	RH RH RH RH RH	npn,DD,si npn,MESA,si npn,MESA,si npn,MESA,si npn,MESA,si npn,MESA,si	100 120 m 120 m 120 m	c 3	175 175 175 175 175 175	0.02 20 20 20 20 20	75 60 60 100 100	0.5 10 10 10 10
RT1420M 2N869 2N1409 2N1409A 2N1410	RH FA PSI PSI PSI	npn,DD,si pnp,DP,si npn,MS,si npn,DM,si npn,MS,si	130 150° 175 250 175	3 1.2 2.8 2.8mc 2.8	175 200 150 175 150	0.02 0.807 0.024 0.186 0.024	60 25 30 30 45	0.5 0.5 0.5
2N1410A 2N708 2N915 2N916 2N914	PSI FA FA FA FA	npn,DM,si npn,DP,si npn,DP,si npn,DP,si npn,DP,si	250 400° 400° 400° 450°	2.8 w 1.2 1.2 1.2 1.2 1.2	175 200 200 200 200	0.186 0.007 0.007 0.007 0.007	45 20 60 35 20	0.5
2N268A 2N497A 2N498A 2N656A 2N657A	CL GE GE GE	pmp,AJ,ge npn,MS,si npn,DM,si npn,DM,si npn,DM,si		14 1 1 1 1	90 200 200 200 200 200	1.5	80 60 100 60 100	3
2N1990 PADT50 PADT40	FA AMP AMP	non, DM, si pnp, PADT, ge pnp, PADT, ge		2 16.5 94	150 75 75	0.0016	75	0.7

For an additional copy turn to the Reader-Serve

(concluded)

	_	teristi			Swite	hing		
h _{fe}	l _{co} ma	Powr. Gain db	Powr. Out w	Rise Time µsec	Stor, Time µsec	Sat. Volt	Leak Out	Remete
40 60	0.01	-	-	-	-	-	=	Microbloc
60	-	-	2	-	2	1		
-	-	-	-	2	-	-	-	
70	-	-	-	-	-	-	-	
70 50	- 0.01	-	-	-	-	-	-	
70	0.01,		2	-	-	1	1	97 97
75	-	18	0.08	0.03	21	-	-	SSD, SY, NA, GI, TI, IND, PSI, HO,
65	0.01	-	-	0.08	-	-	-	TI, INO, PSI, HO, RH, TR NA, TR, SSD, GI, PSI, TI, RH
75	0.01	-	-	0.08	-	-	-	NA, GI, HO, PSI, RH
80	0.000		-	-	-	-	-	I TT GI
65 80	0.01		-	0.08	-	-	-	PSI, RH, NA, GI
30	0.000	- 1	1	0.11	0,14	0.9	1	MT GI FA
60	0.01	-	-	0.11	0.14	0.9	-	FA
130	0.000	- 1	-	-	-	-	-	1 117
150	0.01 µ 0.005	- U	-	-	-	-	-	¶Ţ
40	0.005	- 61	-	1	1	1	1	41
50	0.01	- 1	-	0.08	-	- 1	-	HU TI TR
45 130	0.01		-	0.08	0.05	-	-	HU, TI, TR TR, IND, GI, PSI, TI, RH "IT
25	0.002/	- E	-	-	-	-	-	
130	0.000	uə-	-	-	-	-	-	भ र
130	0.000	-	-	-	-	-	-	97
150	0.01 /	43 -	2	-	-	-	1	1
140	0.000		-	-	2	5	-	भूम भूम
120	-	-	-	-	-	-	-	4 <u>1</u>
40	0.003	-	-	-	-	-	-	
40	0.001	- 1	-	-	-	-	-	Microbloc
70 70	0.003	-	-	-	-	-	-	Microbloc
65	0.01	-		-	-	1	1	Microbloc Microbloc
45	0.001	-	-	-	-	-	-	Microblac
40	0.1	-	-	0.01	0.15	13	-	
60 40	0.1	-		0.1	0.2	1.3	-	
60	0.1	-	-	0.1	0.15	13	-	
175	0.003	-	-	-	-	-	-	Microbloc
45 30	9000.0 10	<u>в</u> 7	-		-	-	-	*fT
10	0.05	10	i	0.06	0.1	0.8	-	Power gain F=70mcRH
60	10	7	1	0.042	0.17	0.8	1	RH
6.5	0.000		-	0.06	0.17	-	-	
50 70	0.0004		-	-	-	-	-	T,GI
80	0.0003		-	-	-	-	-	196-
50	0.0004		-	-	-	1111	1	°f⊤ °f⊤, Epitaxiat
-	2	-	-	-	-	-	50	BE, ZN639A
12	10	-	-	-	-	-	-	55, LIND 34
12	10	-		-	-	1	-	
30 30	10	2	2	1	-	-	-	
40	-	-	-					
-	-	-	-	-	-	-	-	
50	-	-	-	-	-	-	-	

SYLVANIA PANCAKE TRANSISTORS

Increased packaging density! Mil-min .100" lead-to-lead spacing!

Now available in • Epitaxial Germanium Mesa • Epitaxial Silicon Mesa Germanium Alloy-Junction • Germanium Drift-Field

.100" lead-to-lead spacing for automatic and direct insertion in Mil-standard 273A printed circuit without reforming leads - mechanically indexed for positive and permanent lead identification - eliminate solder bridging problems - .070" max case height - .255" max. case diameter - power dissipation in free air: 300 mw for Meaa, 100 mw for Alloy and Drift-Field units - max, junction temperature: 100°C for Germanium and 175°C for Silican - meet all environmental tests in accordance with Mil-S-19500B - hermetic seal reliability (leak rate lower than 1 x 10" cc sec verified by Radiflo equipment - withstand 200 p.s.i.g pressure.

Sylvania originated the "Pancake" package to provide a practicable solution to a vital engineering challenge-end-product miniaturization with high operational reliability. The tabulation of 15 types is a clear indicator of the industry's acceptance of the "Pancake" package.

If you are working with microminiaturization to improve "payload factors" or to enable "redundancy for reliability," call in your Sylvania Sales Engineer now, to help you determine the best device for your specific requirements. He or your Sylvania franchised Semiconductor Distributor can provide you with "Pancake" transistors-fast! For tech data on specific types, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 187, Woburn, Mass.

	Electrically Similar Type				
NIUM ALLOY-JUN	1				
	(TO-5 Package)				
PNP	2N404				
NPN	2N388				
NPN	2N977				
NPN	2N385				
NPN	2N1005				
PNP	2N396				
PNP	2N414				
PNP	2N42B				
NIUM EPITATIAL	MESA				
	(TO-18 Package)				
	2N781				
PNF	2N782				
CON EPITAXIAL M	ESA				
	(TO-18 Package)				
	2N783				
NPN	2N784				
	(TO-5 Package)				
	2N1958				
NPN	2N1959				
DRIFT-PIELO					
	(TO-33 Package) 2N1225				
	PNP NPN NPN PNP PNP PNP PNP PNP CON EPITAXIAL PNP PNF CON EPITAXIAL M NPN NPN NPN				

e Transistor Data Chart ard and circle 251. TRANSISTORS-1961

Low Level

				M	azimu	m Ra	lings	_	Chara	octerii	tics		Swite	hing		
Type He.	Mfg.	Туре	fae	W _C (mw)	T _j (c)	anw/c	V _C v	l _c ma	h _{fe} h _{FE}	I _{co}	С _{сое} µµſ	Rise Time	Stor Time	Sat Volt	Leak Cur	Romarks
2N327 2N1034 2N1275 2N1037 2N328	CT RA RA RA CT	pnp,AJ,si pnp,FA,si pnp,FA,si pnp,FA,ge pnp,AJ,si	0.2 0.2 0.2 0.25 0.3	250 250 250 250 250 250	160 160 160 160 160	3 .54 3	40 40 80 35 35	50 50 100 50 50	15 15 15 30 28	.005 5 .005 5 .005	70 70 60 70 70			1 1 1 1		SSD. NA SSD, NA
2N1035 2N1036 2N1640 C101 C301	RA RA CT CT CT	pnp, FA, si pnp, FA, si pnp, AJ, si pnp, AJ, si pnp, AJ, si	0.3 0.4 0.4 0.4 0.4 0.4	250 250 250 250 250 250	160 160 160 160 160	- 2 2 2 2	35 30 20 20 70	50 50 50 50 50	30 60 11 11 4	5 5 001 5 5	70 70 50 50 50					SSD, NA SSD, NA
2N329 2N329A 2N1057 2N327A 2N670	CT RA GE WT PH	pnp,AJ,si pnp,FA,si pnp,AJ,ge pnp,AJ,si pnp,AJ,ge	0.5 0.5 0.5 0.7 0.7	250 385 240 - 300	160 160 100 200 85	3 4 3 5.0	30 30 45 .3 40	50 50 300 200 2a	60 60 15 200	.005 .005 300 100 20	70 70 40 70 -			- .5 0.08 - 0.3	- 58	RA Pulse Amp.
2N1234 2N1244 2N1641 C102 C302	HU HU CT CT CT	pmp,AJ,si pmp,AJ,si pmp,AJ,si pmp,AJ,si pmp,AJ,si	0.8 0.8 0.8 0.8 0.8	400 1000 250 250 250	160 160 160 160 160	3 7.4 2 2 2	110 110 10 15 8	100 200 50 50 50	21 20 15 15 12	10 10 001 5 .2	95 95 50 50 50					TO-5 Package Coantal package
2N327A 2N32BA 2N329A 2N331 2N1056	HU HU HU RCA GE	pnp,AJ,si pnp,AJ,si pnp,AJ,si pnp,AJ,ge pnp,AJ,ge	1.0 1.0 1.0 1.0 1.0	385 385 385 200 240	160 160 160 85 100	33334	50 50 50 30 50	100 100 100 200 300	14 25 50 25	10 10 10 16 25	95 95 95 40			- - - 0.09	- - - 32	RA, SSD WT, RA SSD, JA WT, RA, SSD, NA BE, US, MO Neon indicator
2N674 2N1228 2N1229 2N1230 2N1231	PH HU HU HU	pnp,AJ,ge pnp,AJ,si pnp,AJ,si pnp,FJ,si pnp,FJ,si	1.1 1.2 1.2 1.2 1.2 1.2	300 400 400 250 250	85 160 160 200 200	5.0 3 - -	75 15 15 35 35	2a 100 100 500 500	- 20 36 14 24	40 10 10 50 50	- 95 95 100 100	1 1 1 1		0.35		WT WT.NA WT.NA WT.NA
2N1232 2N1233 2N1234 2N1234 2N1238 2N1239	HU HU HU HU	pnp,EJ,s: pnp,EJ,si pnp,EJ,si pnp,AJ,si pnp,AJ,si	12 12 12 12 12 12	250 250 250 1w 1w	200 200 200 160 160	- - 7.4 7.4	65 65 110 15 15	500 500 500 200 200	14 24 14 20 36	50 50 50 10 10	100 100 100 95 95					WT, NA WT, NA WT, NA Coaxial package Coaxial package
2N1239 2N1240 2N1241 2N1242 2N1242 2N1243	HU HU HU HU HU	pmp,AJ,si pmp,AJ,si pmp,AJ,si pmp,AJ,si pmp,AJ,si pmp,AJ,si	1.2 1.2 1.2 1.2 1.2	1w 1000 1000 1w 1w	160 160 160 160 160	7.4 7.4 7.4 7.4 7.4	15 35 35 65	- 200 200 200 200 200	28-65 20 36 20 36	.1 10 10 10 10	- 95 95 95 95					Coaxial package Coaxial package Coaxial package Coaxial package
2N1642 C103 C106 2N312 2N519	CT CT CT SY IND	pnp,AJ,si pnp,AJ,si pnp,AJ,si npn,AJ,ge pnp,AJ,ge	1.2 1.2 1.2 1.5 1.5	250 250 250 100 150	160 160 160 85 85	2 2 1.66 2.5	6 10 10 15 15	50 50 50 200 200	23 23 50 - 25	.005 5 50 15 2	50 50 14	- - 1.5 -				Field effect Field effect US, KF
2N519A B1154 B1154A 2N328A 2N536	UND BE BE SSD PH	pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,FA,si pnp,AJ,ge	1.5 1.5 1.5 2 2.0	150 400 400 385 50	85 100 100 160 85	2.5 .15 .15 2.85 0.83	25 40 60 40 20	200 300 300 50 30	25 - - 14 -	1 10 15 5 4.0	14 20 20 70 -	1.3 1.5 1.5 -	0.7	-25 25 -0.07	35 150	US
2N679 2N1125 2N1220 2N1223 2N1246	SY PH SSD SSD IND	npn, AJ, ge pnp, AJ, ge pnp, AJ, si pnp, AJ, si pnp, AJ, ge	2 2 2 2 2 2	150 300 150 150 200	85 85 150 150 85	2.5 5.0 1.2 1.2 3.33	20 40 25 40 45	200 250 	- 9 6 30	25 10 0.1 0.1 5	1 1 1 1 1	5	5	0.3 0.15	20 50 10 -	
OC80 2N438 2N817 2N818 2N356	AMP SY RA RA SY	pmp,PADT.g npn,AJ.ge npn,AJ.ge npn,AJ.ge npn,AJ.ge	e2 2.5 2.5 2.5 3	550 100 75 75 100	75 85 85 85	- 1.6 1.25 1.25 1.25 1.6	32 30 30 30 30 20	600 	85 20 20 20	10 10 10 10 25	- 20 20 -	0.7			0.5	Submin Submin Gł
2N356A 2N520 2N801 2N802 2N1447	GI KF RA RA IND	npn, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge	3 3 3 3 3	150 150 75 75 200	100 100 85 85 85	2 2 1.25 1.25 3.33	30 20 30 30 45	500 - 400 400 400	60 20(mi) 30 30 45	3 n) 25 4 4 5	14 	1.5	0.3	0.18	35	SY Submin Submin
2N1353 2N385A 2N404A 2N425	IND SY RCA SY	pnp,AJ,ge npn,AJ,ge pnp,AJ,ge pnp,AJ,GE	3.5 4 4 4	200 150 150 150	85 100 100 85	3.33 2 2.5	15 40 40 20	200 200 150 400	70 30-111 30 -	2.5 40 5 2.0	12 	.6 - 1.0	_4 0.3	0.1	- 30	GI GI IND, TS RA, INOTS, US, KF, GI
2N799 2N800 2N824 2N1027 2N1028	RA RA RA SSD SSD	pmp,AJ,ge pmp,AJ,ge mpn,AJ,ge pmp,AJ,si pmp,AJ,si	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	75 75 75 150 150	85 85 85 150 150	1.25 1.25 1.25 1.25 1.2 1.1	25 25 25 15 10	150 150 100 100 100	30 20 40 18 9	5 5 5 25 25	20 20 20 7		1111	- - - 0.15		Submin Submin NA, SSD NA

Maxim um Ratings Characteristics Switching Туре Wc Ť, vc Mfg. Туре fae hie Rise Stor Sat Leak No. c Remarks ca CO w/c (mw (c) Time Tim Volt Cur hFE v ma 10 in l 2N1448 IND pnp,AJ,ge npn,AJ,ge npn,AJ,ge 200 85 3.33 2.6 1.3 1.3 44 45 400 65 5 2N1605A 2N1780 SY 100 40 200 40 20 -4 40 10 4 100 100 25 25 50 100 20 20 30 1 1 1 --SY non, AJ,ge pnp, AJ,ge 211781 100 100 100 58 2N2000 4 300 100 ä 750 _ RA CK25 pnp,FA.ge 4 80 85 20 400 26 14 0.5 0.25 30 20 0.3 pnp,AJ.ge pnp,AJ.ge pnp,AJ.ge 211395 3.3 2.5 2.5 2.5 GF 4.5 200 100 15 200 12 0.55 0.5 TI, KE 2N520 2N5204 150 150 IND 4.5 15 40 15 14 US IND 4.5 85 25 25 200 100 14 0.9 0.7 75 15 2N1302 TI non AJ,ge 4.5 150 65 300 .50 1v TO-5, SY, GI pnp,AJ,ge pnp,AJ,ge npn,AJ,ge 2N1303 ΤL 4.5 85 2.5 3.33 2 150 30 30 .40 300 3 16 90 _ lv GI, KF 2N1354 IND SY 4.5 85 _ 200 70 0.1 200 .5 2 .5 2N1169 4.5 25 2C 20 50 20 20 120 85 400 RCA -201170 SY npn, AJ,ge pnp, AJ,ge 4.5 15 120 400 -RCA ŠY 2N123 5 100 85 1 66 15 125 30-150 06 . 0.2 (max) 211315 pnp, AJ, ge pnp, AJ, ge pnp, AJ, ge GI 5 100 85 14 14 1.0 0.2 KF, IND, US IND, US, KF TS,KF,GE,GI KF, GI 20 500 0.12 2222 20 2N3154 GI 100 150 30 500 70 55 0.12 35 21396 150 30-150 30 200 6 2N414 SY pnp,AJ,ge npn,AJ,ge 5 150 85 2.5 30 200 30-90 5 2N439 100 20 10 . 0.5 0.7 0.25 30 21450 GE SY RCA pnp, AJ, ge npn, AJ, ge 150 65 2.5 20 0.2 555 12 125 6 30 211576 200 100 20 400 20 1 40 pnp,AJ,ge npn,AJ,ge pnp,FA,ge 2N578 120 n 71 20 400 15 0.85 0.33 TS.IND.US.KF.GI -2N585 2N658 RCA 5 120 25 40 50 200 40 3 0.35 0.25 0.1 SY, GI KF RA ŝ 150 85 ž 12 0.25 la 5 2N803 RA pnp, AJ, ge 5 75 85 1.25 1.25 1.25 30 400 40 4 20 _ _ Submi -pnp,AJ,ge npn,AJ,ge 2N804 RA 5 15 85 30 400 40 20 -. Submin 2N815 RA 85 25 25 30 200 60 20 Submin NON AL PE 2N816 RA 5 75 85 1 25 200 60 10 20 - --Submin 2N819 RA npn,AJ.ge 5 75 1.25 85 400 30 10 20 --Submin 211820 RA npn,AJ,ge 75 85 1.25 30 400 30 10 5 20 -Submin 4 . . 2N825 2N826 pnp,AJ.ge RA 85 1.25 30 200 30 6 20 . . Submin 75 150 150 pnp, AJ, ge npn, AJ, ge 30 40 20 RA 5 85 1.25 200 30 0.1 2N1012 GI PH 55 100 0.1 0.1 50 70 5 2N1123 pnp,AJ,ge 100 10 45 500 3.5 10 15 0.085 pnp,AJ,si pnp,AJ,ge pnp,AJ,ge npn,AJ,ge npn,AJ,ge 2N1219 SSD 5555 250 175 1.7 25 100 001 15 12 -. 3.33 3.33 2.5 2 2N1348 IND 200 200 85 40 45 400 95 80 5 -2N1449 2N1994 IND 5 5 3 1 1 1 30 30 11 TI 150 85 300 1.1 1.5 GT1658 GI ŝ 150 100 50 10 KG\$ 1005 KF pnp,AJ.ge npn,AJ.ge npn,AJ.ge 5.2 2 1.6 5 30 20 200 85 400 40 12 2N377 2N357 SY 6 150 100 200 0.7 10 25 _ 2.5 40 GE. GI 6 100 15 30 1.2 85 20 GI 2N357A npn,AJ,ge 6 150 100 2 2.5 90 14 500 0.5 0.18 40 32 ŚΥ 21426 pnp,AJ,ge 6 150 85 20 400 14 1.0 0.3 0.22 40 RA, TR, TS, GI, US, TI, KE 2N 789 RA non.DB.si 6 25 25 15 15 1.4 45 002 _ -5 npn,DB,si npn,DB,si pnp,AJ,ge pnp,AJ,ge npn,AJ,ge RA RC/ 2N902 6 45 20 002 5 -. 2N1319 120 71 400 30 2.5 20 2N1343 IND 6 150 85 2.5 20 400 40 12 1.0 _ 2 2N1997 TI 100 250 3.3 4 Ĭ5 CK26 RA pap.FA.ge 67 RO 85 18 400 2 14 0.5 0.3 0.25 40 2N100 SY 2 150 100 40 25/m 15 1 RCA npn,AJ.ge 120 85 100 2N1090 7 25 400 50 0.25 0.20 4 50 GI 2N1114 SY 2 2.5 15 25 -200 30 60 2N1995 npn,AJ,ge 150 85 300 5 11 GT123 GI pnp,AJ.ge 7 150 150 2 25 0.9 0.5 40 15 15 3 0.1 90 pnp,AJ,ge npn,AJ,ge pnp,AJ,ge npn,AJ,ge 2N123 GE 8 150 85 2.5 15 125 0.987 6 0.45 0.90 0.15 65 GI 211388 ā 150 25 20 40 100 500 5 10 0.6 0.4 120 SY, GE, RA TI.GI.SY, TS 2N396 GE 200 200 3.3 200 8 100 12 0.6 0.08 2N576A SY ă 100 40 2 1 0.4 40 28579 pnp,AJ,ge pnp,AJ,ge RCA 8 120 150 71 20 18 400 30 0.36 0.33 0.2 3 30 IND, US, TS, KF, GI 2N581 2N583 RCA 8 12 0.35 85 100 30 0.20 8.20 30 US, IND, GI, KF pnp,AJ,ge pnp,AJ,ge pnp,FA,ge 8 120 85 100 18 100 30 3 0.2 0.20 30 2N598 PH 3.3 500 8 35 85 -3 0.085 2NG62 8 150 85 1a 2.5 12 _ _ 0.25 KF 2N714 RCA pnp.AJ,ge 8 150 85 30 200 80 11 2 npn,DB,si npn,DB,si 1.4 45 2N790 RA 8 25 25 25 25 30 002 8 --. . RA 2N792 8 60 002 5 -2N903 non.DB si 8 _ 45 30 80 002 20 20 ----2N905 RA npn,DB,si 8 45 002 _ . _ 2N1280 IND pnp,AJ.ge 8 3.33 2.5 2.5 200 16 20 85 400 60 10 10

Low Level (continued)

ELECTRONIC DESIGN . July 5, 1961

45

9

52

400 90

25 300 110 ŝ 16 .45 50 .1v

2N1284 2N1304

IND

pnp,AJ,ge npn,AJ,ge

8

150

85

85

-

TO-5,GI,SY,GE

MOTOROEN DISTN	tier offices
BELMONT, MASS.	IVanhoe 4-5070
CHICAGO, ILL.	AVenue 2-4300
BALLAS, TEX.	LAkeside 6-8931
DAYTON, OHIO	AXminster 3-4164
BETROIT, MICH	BROadway 3-7171
HOLLYWOOD, CALIF.	HOllywood 2-0821
MINNEAPOLIS, MINN.	Liberty 5-2198
CLIFTON, N.J.	GRegory 2-5300
from NEW YORK	Wisconsin 7-2980
WINTER PARK FLA.	Midway 7-2507
GLENSIDE. PA.	TUrner 7-7020
from PHILADELPHIA	WAverly 7-6144
BURLINGAME, CALIF.	Diamond 2 3228
SYRACUSE, N.Y.	GRanite 4-3321
SILVER SPRING, MD	JUniper 5-4485

UNVARYING HIGH-QUALITY PERFORMANCE AT 120°C ENCE: 2MITE **EVEN AT** POWER TRANSISTOR **20°C ABOVE** T₁ MAX.

AT 100°C

INDUSTRIAL

MOTOROLA POWER TRANSISTORS

The parameter distribution shown in these 1000-hour 100°C and 120°C storage life tests exhibits a high degree of stability ... the key to product reliability and dependability in your circuits Even after extended life testing at an elevated temperature of 120°C (20°C above the suggested maximum rating), these units continue to exhibit tight distribution within originally stated limits positive assurance of unvarying high-quality performance of Motorola power transistors.

2NIT

This data, taken on random samples of production lots of Motorola 2N174 transistors, is typical of the 100% lot life-tests conducted on all Motorola power transistors. When you use Motorola power transistors you know you are obtaining outstanding product reliability.

Complete technical information is available from your Motorola district office: Motorola distributor; or write to Motorola Semiconductor Products Inc., Technical Information Department, 5005 East McDowell Road, Phoenix 10, Arizona.

MOTOROLA DISTRICT OFFICES: Belmont, Mass. Burlingame, Calif, Chicago, Clifton, N. J. Dallas Dayton, Detroit Glenside, Pa. Hollywood, Minneapolis, Orlando, Fla. Silver Spring, Md. Syracuse, Toronto, Canada.

MOTOROLA IS YOUR MOST COMPLETE POWER TRANSISTOR SOURCE

CONDITION OF STORAGE OO

END OF LIFE LIMIT. IS MA MA RECOVERY 24 HRS (25"

You'll find a standard power transistor that meets your specific design requirements from the wide selection of field proven devices available from Motorola.

T0-36 "Doorknob" Package. 15 types in "low silhouette" **case:** 150 watts power dissipation; 0.5°C/W maximum thermal resistance: 100°C maximum junction temperature; 15 amps; 2 to 1 gain spread and voltage combinations to 100 volts; 3 Mil-type units.

T0-3 "Diamond" Package. 118 types in "low silhouette" case; 90 watts power dissipation: 0.8 C/W maximum thermal resistance: 100°C maximum junction temperature; 3, 5, 10. 15 and 25 amps; narrow gain spread and voltage combinations to 120 volts; 3 Mil-type units.

5005 EAST MODOWELL ROAD . PHOENIX 10. ARIZONA CIRCLE 59 ON READER-SERVICE CARD

22 FACTS-PROVE RAYTHEON 2N338 SILICON TRANSISTORS

GIVE YOU FASTER SWITCHING-IMPROVED CIRCUIT PERFORMANCE -COMPLETE INTERCHANGEABILITY

New Designer's Handbook on Raytheon 2N338. Get complete details on the 22 reasons why the Raytheon 2N338 is mechanically and electrically superior for all switching and amplifier applications. Forty-eight curves, charts, and circuit diagrams measure Raytheon's performance against other manufacturers' – show you how you can get greater cir-

The benefits of this construction are also

available in Raytheon's entire series of

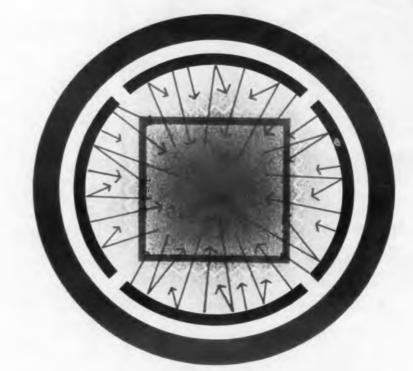
NPN silicon transistors-2N332, 2N333

2N334, 2N335, 2N336, 2N337.

the Raytheon office nearest you for your copy.

Raytheon's 2N338 switches faster, performs better throughout the frequency and temperature range than competitive types. Twentytwo superior features incorporating dramatic advances in new materials and processes, make the Raytheon 2N338 the finest medium frequency silicon transistor available. You get increased safety factors plus the benefits of complete interchangezbility with other 2N338 types.

Adapted from techniques and processes developed under Signal Corps contract, DA-36-039-SC-72710, the Raytheon 2N338 is also available as a MIL type (MIL-S-19500/69C [NAVY]).


RAYTHEON COMPANY

SEMICONDUCTOR DIVISION

SILICON AND GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS • CIRCUIT-PAKS BALTIMORE, MD., SOuthfield 1-0450 • BOSTON, MASS., Decatur 2-7177 • CHICAGO, ILL., NAtional 5-4000 • DALLAS, TEXAS, LAkeside 6-7921 • DAYTON, OHIO, BALdwin 3-8128 • DETROIT, MICH., TRinity 3-5330 • ENGLEWOOD CLIFFS, N. J., Lowielf 7-4911 (Manhattan, Wisconsin 7-6400) • LOS ANGELES. CAL., PLymouth 7-3151 • ORLANDO, FLA., GArden 3-0518 • PHILADELPHIA, PA., Haddonfield, N. J.), HAzet 8-1272 • SAN FRANCISCO, CAL., (Redwood City), EMerson 9-5566 • SYRACUSE, N.Y., HOward 3-9141 • CANADA, Waterloo, Ont., SHErwood 5-6831 • GOVERNMENT RELATIONS: Washington, D.C., MEtropolitan 8-5205 CIRCLE 60 ON READER-SERVICE CARD TRANSISTORS-1961 Low Level Mank - Ratinas Туре W_c Ve I_c Mfg. Type 1_{a•} Ne. (c) ۷ (ww) 2.5 2.5 3.33 3.33 3.33 300 290 100 100 200 888888 8 2N1305 TL mp,AJ,ge 150 30 20 50 40 30 pap,AJ,ge pap,AJ,ge pap,AJ,ge pap,AJ,ge IND 150 200 2N1347 2N1350 IND 2N1351 2N1355 200 200 8 100 100 100 85 85 200 200 750 75 506 2.66 1.3 4 30 25 30 30 20 2N1356 2N1685 2N2901 2N167 IND pnp,AJ,ge spn,AJ,ge 200 100 300 SY pap.AJ.ge npn.GJ.ge npn.AJ.ge 8 1.1 GE 65 100 2 21358 9 500 200 100 75 250 2 2.5 1.25 SY GE RA GE 211358A 211394 npn,AJ,ge pnp,AJ,ge npn,AJ,ge 150 9 105555万 30 10 25 25 20 150 75 65 100 2N823 2N1198 9 1.1 npn,RG,ge npn,PADT,g OC141 ALIF 9 -1.66 2.5 2.5 2.5 10 npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge SY GE IND IND PH 2N440 2N518 100 150 150 150 750 0.0000 15 12 15 25 35 10 125 290 290 500 10 2N521 10 2N521A 10 211600 150 150 75 75 75 La 50 400 400 400 pnp,FA.ge npn,MS,si pnp.AJ,ge 10 14 45 30 30 30 2N659 2N745 5万**55**55 RA RA RA RA 10 0.75 2NB05 2NB05 10 10 1.25 1.25 1.25 pnp,AJ,ge non,AJ,ge 10 2N821 1.25 3.33 3.33 2.5 3.3 400 400 400 300 400 RA IND IND TI TI 10 10 75 200 200 150 100 million 30 16 40 29 35 2N822 npn,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,AJ,ge pnp,AJ,ge 2N1281 2N1349 10 2N 1996 2N 1998 10 10 250 -100 30 150 2 21427 GI 11 pap,AJ,ge 25 25 400 500 2N791 RA non,DB,si 11 1.4 45 45 15 20 211904 RA RA GI npn,DB,si pnp,FA,ge 11 11 12 85 80 CK27 211316 pnp,AJ,ge 100 100 30 15 25 20 25 2N316A GI GE pap,AJ.ge 12 12 12 12 12 12 150 2 200 120 150 150 100 85 85 85 3.3 2N397 pao, AJ.ge 2.5 2.5 2N404 RCA pap,AJ,ge npn,AJ,ge npn,AJ,ge 2N635 GE TI 2N1306 150 175 150 150 30 30 15 10 12 12 12 12 12 85 85 85 85 85 85 85 2.5 2N1307 T1 pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge -2.5 2.5 2.5 2N1313 IND 2N1344 IND pnp,AJ.ge pnp,AJ.ge 2N1345 IND 2N1346 IND 12 150 200 120 30 25 45 45 25 85 85 3.33 2N1357 IND pnp,AJ,ge 12 13 pnp,AJ,ge npn,DB,si 211269 RCA 1.4 2N793 RA 13 2N906 RA npn,DB,si 13 -RCA 13 120 85 2N1091 non AJ.ge 2.6 1.25 1.25 120 75 75 150 150 71 65 65 14 14 25 25 25 40 40 2N582 SY pnp,AJ,ge 2N807 2N808 pnp,AJ,ge pnp,AJ,ge RA 14 14 1.3 1.3 2N858 PH PH pap,SP,si 140 pnp,SP,si 14 140 2N859 140 140 71 150 1.3 2N860 PH pnp,SA,si 14 25 15 20 25 11 150 120 150 150 2N862 PH pnp,SP,si 1.3 14 15 15 15 RC/ pnp, AJ, ge npn, AJ, ge 2N580 2 100 2N636A SY 2N660 RA pap,FA,ge -85 85 85 85 100 pnp,AJ,ge 15 200 3.33 IND 16 30 20 10 30 2N1282 IND 15 15 200 200 3.33 2N1316 pnp,AJ,ge 2N1317 IND pnp,AJ,ge 15 15 200 250 IND php,AJ,ge 3.33 2N1310 2N1999 TI pap, AJ, ge 3.33 100 3.3 **30** 30 30 50 250 2N599 2NG01 PH pnp,AJ .ge 16 pnp,AJ,ge 750 150 100 10.0 PH 16 17 2N428 GI pnp, AJ, ge 2 17 150 85 2.5 20 2N636 GE npn,AJ,ge 12 15 25 25 25 CK28 2N522 RA pnp,FA.ge 17 80 85 85 85 150 150 120 IND pnp,AJ.ge ii 2.5 INE 2N522A pnp,AJ.ge 10 pnp. A.J.ge 2N582 -RCA pap, AJ, ge 18 120 85 7N584

(continued)

Chere	_	_		Swite	hing			
hfe hFE	Ι _{co} μ a	C _{con} µµ1	Rise Tim	Stor Time	Sat Volt	Lask Cur	Romarka	Type Ne.
100	3	11	.28	.80	.lv	-	TO-5, KF, GI	2N1305
60 95	2.5 10	12 12	-	-	-	-		2N1347 2N1350
65 80	5 2.5	12 12	ā		0.08	1		2N1351 2N1355
80 40	2.5	12 20	.4	.6	0.08	-		2N1356
0.985	5	30 2.5	0.4	0.7	0.35	30	UPA CONTROLING	2N1685 2N2001
60	3	14	0.4	0.5	0.18	30	USAF2N167-MIL Sy	2N167 2N358
25.75	5	14 12	-	-	0.04	70	GI KF.	2N358A 2N394
40	5 1.5	20 2.5	0.4	0.7	0.35	30		2N823 2N1198
150	0.8	-	-	-	-	-		OC141
- 70	10	12	0.3 0.8	0.7 0.9	0.25 0.15	40 60	GI	2N440 2N518
150		14 14	0.2	0.5	-	135	us, kf us, kf	2N521 2N521A
-	10 2.5	15 12	-	-	0.085	90 70	EM KF, GI	2N600 2N659
22	10	3 20	-	-	-	-	Submin	2N745 2N805
60 40	4	20 20	-	-	*	-	Submin	2N805 2N805 2N821
10	10	20	-	-	-	-	Submin	2N822
90 110	5	10 12	.9	-	1	1		ZN1281 2N1349
-	5	11 15	-	-	-	-		2N1996 2N1998
-	2	14	D.43	0.3	0.105	55	KF,TS,TI,MO	21427
60	.002	5	-	-	-	-	IND,RA,US	2N791
60 -	.002	20 14	0.4	<u>0</u> .3	0.25	55		2N904 CK27
-	1	14	0.4	0.4 0.4	0.14	30 35		2N316 2N316A
-	65	12	0.3	0.7	0.07	40	IND, US, KF TI, KF	2N397 2N404
-	55		22	.50	- .lv	25	US,GE,RA,GI,SY,KF	2N635
110	3	11	.20	.50	.1v		TO-5,GI,SY,GE TO-5, GI, KF	2N1306 2N1307
60 90	-5	14 12	0.7	0.3	=	-		2N1313 2N1344
60 125	3 2.5	14 14	.3 .3	4	.10	1		2N1345 2N1346
85	2.5	12	.3	.7	0.07	-		2N1357
40	2002	5	0.17 -	0_20	0.12	-		2N269 2N793
150 20	002	20	1.20	- 0.17	-	70	GI	2N906 2N1091
(min) 40	5	20	-	-	-	-	KF, RCA Submin	2N5B2 2N807
40	5	20	-	-	-	-	Submin	2N808 2N858
65	.1	5	-	-	-	-		2N859
33 33	.1 .1	5	-	-	-	-		2N860 2N862
45 0-300	3	20	0.16	0.29	0.2	45	GI,IND,US,TS,KF	2N580 2N636A
-	2.5	12	-	-	0.25	90	KF	211660 211282
00	5	10 14	.8	-	-	-	KF	2N1316
95 85	3	14	-	-	-	-	KF	2N1317 2N1318 2N1009
	4	15 15	-	-	- 0.085	- 125		2N1999 2N599
E I	3.5	15	-	0.3	0.22	125	SY,MO,RA,IND,US,	2N601 2N428
	5		.43	0.3	9.66	35	TS, TI, KF, GE	2N636
	2.0	14	0.4	0.3	0.25	35 80		СК28
20 00	1	14	0.2	0.5	-	175	US,KF US,KF	2N522 2N522A
50 50	5 2	-	D.15 D.15	0.17	0.2 0.2	60 60	TS,GI,IND,SY,KF	2N582 2N584

HIGHER TEMPERATURE HIGH VACUUM OVEN

New and now available to industry a low cost, high temperature, high vacuum bake oven. Tri Metal's 0-8 oven operates at 800 C while maintaining pressures as low as 1 x 10-4 mm Hg.

The 0-8 achieves temperature uniformity of 3° at 0 to 800°C and is the low cost oven that functions perfectly at temperatures above 250 C and pressures on the 6th scale Low-Cost. Neoprene "O" ring gaskets without custom modification.

Tri Metal's new oven not only saves you money at purchase time, it is also extremely economical to operate and easy to maintain.

No water cooling of the door is required. Accepts bench or dry box mounting.

Tri Metal Works has been engaged in the custom fabrication of high vacuum components and equipment for leading manufacturers and users since 1946. You are invited to see a demonstration of 0-8 in our plant laboratory. Call or write for appointment.

HIGHER TEMPERATURES Up to 800 C.

BETTER UNIFORMITY Plus or minus 3°C.

LESS MAINTENANCE

guaranteed one year.

FASTER HEAT UP 500 C in 23 minutes.

TRI METAL WORKS INC.

CLOSER CONTROL 1 C Thermocouple INSIDE the work zone.

HIGHER VACUUM 1 x 10-4 Torr* (mm Hg) @ 500 C.

COOLER EXTERIOR All surfaces cool to the touch.

For a Free Detailed Brochure Write To. TRI METAL WORKS INC. Industrial Division 1600 Bannard Street. East Riverton. New Jersey, or Phone 829-2000.

"terminology recommended by Standards Committee of American Vacuum Society

Abbreviation of Terms

AJ DD DJ DP DP EFA FJ GC GC GC MD MS CS I		Alloy Junction Double Diffused Grown Diffused Diffused Junction Diffused Mesa Diffused Planar Drift Epitaxial Fused Alloy Fused Junction Grown Diffused Germanium Grown Junction Grown Rate Meltback MADT Mesa Rate Grown Silicon
SBT		Surface Barrier
Cire	=	Collector-to-emitter capacitance meas- ured across the output terminals with
		the input ac open circuited.
far	=	Frequency at which the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-fre- quency value.
f		Frequency at which common emitter gain is unity.
hre		Common emitter-small signal forward
h _{PE}	=	current transfer ratio. Common emitter static value of short-
1 _{co}	=	circuited forward current ratio. Collector current when collector junc- tion is reverse-biased and emitter is dc open-circuited.

For an additional copy of the Transistor Data Chant turn the Reader-Service Card and circle 251.

Туре	Tune			Maximum Ratings							Characteristics			ing		
Ne	Mfg.	Туре	fae	W _c (mw)	Tj (c)	mw/c	V _C v	l _c ma	hfe hFE	1 _{со} µа	C _{coe} µµ1	Rise Time	Stor Time	Sat Volt	Leak Cur	Romert.
2N1308 2N1309 2N317 2N317A 2N337	TI TI GI GI TI	npn,AJ,ge pnp,AJ,ge pnp,AJ,ge pnp,AJ,ge npn,GD,si	18 18 20 20 20 20	150 150 100 150 125	85 85 85 100 150	2.5 2.5 2 ,001	25 30 30 30 45	300 300 500 500 20	200 210 - 180 19	5 3 1 1	15 11 14 14 -	- 0.3 0.3 0.05	- 0.4 0.4 0.02	- 0,18 0,18 1.5	- 30 40 35	TO-5,SY,GE TO-5, KF, GI US, IND, KF IND, US, KF TR, RA, GE
2N417 2N661 2N746 2N1008 2N1008A	IND RA RA BE BE	pnp,AJ,ge pnp,FA,ge npn,MS,si pnp,AJ,ge pnp,AJ,ge	20 20 29 20 20 20	200 150 150 400 400	85 85 175 85 85	3 0.75 6.6 6.6	30 9 45 20 40	200 1a 50 300 300	140 - 45 100 100	2 2.5 10 10 10	12 12 3 -		1111	0.25 0.25 0.25	120	KF KF
2N1008B 2N1017 CK419 CK420 CK421	BE RA RA RA RA	pnp,AJ,ge pnp,FA,ge npn,FA,si npn,FA,si npn,FA,si	20 20 20 29 20	400 150 385 385 385	85 85 160 160 160	6.6 - - -	60 10 40 35 30	300 400 50 50 50	100 - 15 30 60	10 2 005 005 005	12 35 20	0.25	1111	0.25	100	US, KF
CK474 CK475 CK475 CK477 2N861	RA RA RA PH	npn,08,si npn,08,si npn,08,si npn,08,si npn,08,si pnp,SP,si	20 20 20 20 20 20 22	250 250 250 250 250 150	180 180 180 180 180	1.9 1.9 1.9 1.9 1.3	40 35 30 30 25	50 50 50 50 50	15 30 60 65 65	.005 .005 .005 .005 .005 .01	20 20 20 20 20 5		1111	1111	1111	
2N863 2N864 2N523 2N523A 2N523A 2N747	PH PH IND IND RA	pnp,SP,si pnp,SP,si pnp,AJ,ge pnp,AJ,ge npn,MS,si	22 22 24 24 25	150 150 150 150 150	140 140 85 85 175	1.3 1.3 2.5 2.5 0.75	15 6 15 20 25	50 50 200 200 50	65 65 200 300 30	.1 .1 1 1 10	5 14 14 6					US. KF US, KF
2N748 2N1386 2N1387 2N1205 2N338	RA RA RA TR TI	npn,MS,si npn,MS,si npn,MS,si npn,GR,si npn,GD,si	25 25 25 27 30	150 300 300 150 125	175 175 175 150 150	0.75 0.5 0.5 .001	30 25 30 20 45	50 50 50 - 20	10 30 20 6 39	6 10 10 50 1	- 6 6 3.0	- - - .06			- - 30 75	TR, RA, NA, GE
2N643	RCA	pnp, DR ,ge	30°	120	71	-	30	100	45	3	2	0.03	0.006	-	45	"gain-bandwidth
2N907 KGS1004 2N842	RA KF TR	npn,DB,si pnp,AJ,ge npn,GJ,si	30 32 44	- 200 300	- 85 175	3	45 10 45	25 400 25	35 120 20	.002 12 0,1	20	-	-	111		product
TMT 842 2N908 2N644	TR RA RCA	npn,DJ,si npn,DB,si pnp,DR,ge	44 45 50°	150 120	175 71		45 45 30	25 25 100	20 75 45	1 .002 3	6 20	0.015	:	-		*gain bandwidth
ST3030 2N865	TR	npn,DJ,si onp,SP,si	50 52	100 150	150 140	0.8	15 10	50	150	50	4	.04	.07	40	-	product
2N1254 2N1256 2N1258 2N1779 2N843	HU HU HU SY TR	pnp,MS,si pnp,MS,si pnp,MS,si ngn,AJ,ge ngn,DJ,si	55 55 55 60 64	250 250 250 100 300	160 160 160 100 175	1.8 1.8 1.8 1.3	15 30 50 25 45	- - - 100 25	25 25 25 25 25 40	30 30 30 10	8 8 8 10 6		.015	.015	0.28	TO-5 package TO-5 package TO-5 package
TMT 843 2N560 2N645	TR WE RCA	npn.DJ,si npn,DD,si pnp,Dr,ge	64 70 70	150 600 120	175 150 85	- .25 -	45 60 30	25 100 100	40 20 45	.1 .1 3	6 8 2	.06 0.01	.05	-	- 45	US, MILoniy, NA ®gain bandwidth product
0C46 0C139	AMP	pop, PADT, gi opn, PADT, ge		83 100	75	1	20	125	< 80	<3			-	-	1	
OC140 2N1255 2N1257 2N1259	AMP HU HU	npn,PADT,ge pnp,MS,si pnp,MS,si pnp,MS,si		100 250 250 250	75 160 160 160	- 1.8 1.8 1.8	20 15 30 50	250	75 55 55 55	0.8 30 30 30	888					TO-5 Package TO-5 Package TO-5 Package
OC47 2N706	AMP FA	pap.PADT.ge apa,DP,si		83 1w	75 175	6.7	20 20	125	<200 45		- 5	.02	-	-	-	GI,TR,SSD,SY,NA,
2N702 2N1507	TI RH	npn,DJ,si npn,DD,si	100 120	150 1w	175	.002	20 60	50 500	15-45	.5	-	80	600	.6	:	RH,IND,TI,RCA FA, NA TI
2N1139 2N501 2N501A 2N705 2N710	TR PH PH TI TI	npn, GR, si pnp, MD, ge pnp, MD, ge pnp, AJ, ge pnp, MS, ge	150 175 175 300 300	500 60 175 300 100	175 100 60 100 300	- 0.8 0.8 4 4	15 15 15 15 15	25 50 50 50 50	20 - 6 6	.25 1.0 -1.0 .3 .3	8 1.75 1.1 5 5	12 0.013 0.013	10 0.007 0.007 0.075	0,7 0.08 1.0 0.2	5 35 35 40	SPR. GI SPR. GI MO.SY.GE.RA SY.MO.RCA.GE.RA
2N711	TI	pnp,MS.ge	300	300	100	4	12	50	6	0.3	5	.07	0.1	90 Rused	-	MO.SY,RCA.GE,RA
2N707A 2N706A	MO	npn,DM,si npn,DM,si	350 400	lw lw	175 175	6.7 6.7	70 25	-	30 4	.01 .005	4 4.5	.018	.016	-	1-	Epitaxial (Epitaxial,MO) SY, TI PSI,HU,NA,GI
2N7068 2N753	MO MU	npn,DM,si npn,DM,si	400 400	lw lw	175	6.7 6.7	25 25	-	4	.005	4.5	.018	.016	-	4	(MO, Epitaxial) SY, PS NA,HU,GI (MO, Epitaxial) HU, SY

İn

Low Level (continued)

ELECTRONIC DESIGN . July 5, 1961

Low Level (concluded)

					-	m Ret		_	Chare	cteris	tics		witch	ing		
Type No.	Mig.	Туре	fae	W _C (mw)	T _j (c)	mw/c	V _c v	l _c ma	h _{fe} hFE	I _{co} µa	C _{coe} µµf	Rise Time	Stor Time	Sat Volt	Leak Cur	Remarks
2N828 NS345	MO	prip,DM,si	400	500	175	4	15	200	. 4	.4	3.5	-	-	-	-	Epitaxial, SY
2N779A	PH	npn,DM,si pnp,MD,ge	400 450	500 60	175	2.8	30	50	80-200	1	5	-	-	-	-	
2N84GA 2N834	PH MO	pnp,MD,ge npn,DM,si	450 500	60 1w	100	.8	15	50 200	5	1	1.9	.015	.016	-	-	Epitaxial, SY
2N559 2N1385	WE	pnp.DG.ge	750	150	100	.5	15	50	25	5	-	.002	.003	-	-	US, MIL only
2N917		pnp,MS,ge	750	750	100	8	25	100	30	5	1.3	.001	.002	4 Musec	-	TO-5, non saturate
2N167A	FA GE	npn,DP,si npn,AJ,ge	800°	300 65	200 85	1.71	20 30	75	50 30	.05	-	1	-	-	Ξ	11
2N240 2N3358	PH	pnp,SB,ge npn,GJ,si	1	25 500	85	0.5	6 60	15	30	0.5	4	-	-	0.04	20	SPR
2N336A 2N377A	GE	npn,GJ,si npn,AJ,ge	-	500	175	-	45	25	52 75	1	n	-	1.	-	-	
2N388A	SY	npn,AJ,ge	-	150 150	100	22	40 25	200 200	20-60 60-180	40 40	-			GC (I		GI
2N398 2N399A	RCA	pnp,AJ,ge pnp,AJ,ge	-	50 150	55 100	-	105	100 200	60 70	62	:	-	-	0.3	60	GI
2N43BA 2N439A	SY SY	non,AJ.ge non,AJ.ge	=	150 150	65 85	2.5	25	200	15(min)	10	-	0.7	-	-	-	
2N440A	SY	npn,AJ,ge	-	200	85	3.3	25	200	40	10	-	0.5	-	-	-	
2N 496 2N 556	PH SY	pnp,SB,si npn,AJ,ge	1	150 100	140 85	1.3	10 20	50 200	5.0	1 25	6	3.5	1	0.08	16 55	1 26
2N557	SY											0.5	ſ	0.5	33	t ₂ =3.5 ns max t ₀ =2.0 ns max
2N558	SY	npn,AJ,ge npn,AJ,ge	-	100 100	85 85	1.66	20 15	200	-	25 15	-	6.5	2.5	0.5	20 20	
2N586 2N587	RCA SY	pnp,AJ,ge non,AJ,ge	2	250 150	85 85	-	45	250	55	8	-	-	-	0.25	55	
ZN597 2N634A	PH	pnp,AJ,ge npn,AJ,ge	-	250	100	2.5 3.3	40 45	200 400	20	10 5	30 15	-	1	0.085	20 70	
2N635A 2N636A	GE	npn,AJ,ge	-	150 150	85	85	20 20	300 300	55 100	6	-	-	-	-	1	
2N 707	GE	npn,AJ,ge npn,DP,si	1	150 lw	85 175	6.7	15	300	190 12	6	-	-	-	-	-	
2N725 2N770	SY	pnp,DM,ge non.SA si	-	150 150	100	2	15	50	20	3	5	.02 0.1	-	-	-	(Epitaxial, MO), GI GE
2N771 2N772	PH	npn,SA,si npn,SA,si	=	150	150	1.2	20 20	100	5.5 7.5	12	1.3	-	-	-	-	
2N794	RCA	pnp,DM,ge		150 150	150	1.2	25 13	100	5.5 50	.5	1.3	-	-	-	-	
2N795 2N1119	RCA	pnp,DM,ge pnp,SAT_si	:	150	85 140	2.5	13	100	50	1.001	0	-	-	-	-	
ZN1122 ZN1122A	PH	php.MA.ge	-	25	85	0.63	12	50	8	5.0	6.0 6.0	-	-	0.1	25	SPR, GI
2N]175	GE	pnp,AJ,ge		200	85	- 0.03	15	50 200	8	5.0	6.0	2	-	0.1	25	IPR, GI
2N1175A 2N1213	GERCA	pnp,AJ,ge pnp,MESA,ge	12	200 75	85 85	1.7	25	200	80	6	1	.015	.05	-	:	
2N1214 2N1215	RCA	pnp, MESA.ge	:	75	80	-	25	100	-	3	-	.015	.05	-	-	
2W1216	RCA	pap, MESA, ge	-	75	5	-	25	100		3	-	.015	.05	-	-	
2N1217 2N1277	GE	n pn,AJ,ge npn,GJ,si	1	75 150	85 150	1	20 30	25 25	40 20	.6	-	-	-	-	-	
2N1278 2N1279	GE	npn,GJ,si	1	150 150	150 150	-	30 30	25	33	.001	-	-	-	-	-	
2N1288	GE	non,BG,ge	-	75	85	-	10	50	50	2	-	-	2	-	-	
2N1289 2N1299	GE	npn,MB,ge npn,AJ,ge	1	75 150	85 100	2	15 40	100 200	50 35-110	2	2	Rise	+ Fall	line -	1.5 μ	60
2N1300 2N1301	RCA RCA	pnp.DM.ge pnp.DM.ge	1	150 150	85 85	2.5	13 13	100	50 50	1	8	-	1 2	-	-	
2N1364 2N1404	RCA	pnp,DR,ge	-	240	15	4	30	500	50	4	-	-	1	-	1	
2NL413	GE	pnp,AJ,ge pnp,AJ,ge	-	150 200	85 85	2.5	25 25	300 200	36	3	16	-	1	-	-	
N1414 N1450	GE RCA	pnp,AJ,ge pnp,DR,ge	-	200 120	85 85	-	25 30	290 100	52 20	8	-	:	2	-	1	
2N 1473 2N 1499	SY	npn,AJ,ge pnp,MD,ge	:	200	75	4	40	400	25-80	100	-	-	-	-	-	
2N 1614 2N 1663	GE	pap,AJ,ge non,SA,si	-	25 240	85	0.63	20 40	50 300	35	1 25	25	-	0.12	-	-	
2N1683	RCA	pnp,DM,ge	=	150 150	150 85	1.2	20 13	100	7.5	1.5	ī	-	1	1	-	
2N1694 2N1754	GE PH	npn,AJ,ge pnp,MO,ge	-	75 50	55	.83	20 13	25	30	0.6	-	-	-	-	-	
2N1808 2N1954	TI	non,AJ,ge pno,AJ,ge		150	85	2.5	25	300	-	15	1.5 11	1	-	-	1	
2N1955	RA	pap.AJ.ge	-	375 375	100	0.2 0.2	60 60	la la	90 100	10 10	-	1	1	-	1	
2N1956 2N1957		pnp,AJ,ge pnp,AJ,ge	1	375 375	100	0.2	60 60	la	90 90	10	3	-	-	-	-	
2N2002 2N2003	NA		-	250 250	175	1.67	30	100		.001	8	-	1	-	2	
2112904	NA	pa p,AJ,si	=	250	175	1.67	30 50	100 100	1	.001 .003		:	-	:	=	
N2905	NA	pap,AJ,si pap,AJ,si	=	250 250	175 175	1.67	50 60	100	-	.0019		=	-	-	-	
12907	NA	pnp,AJ,si	-	250	175	1.67	60	100	-	.005		-	-	-	-	

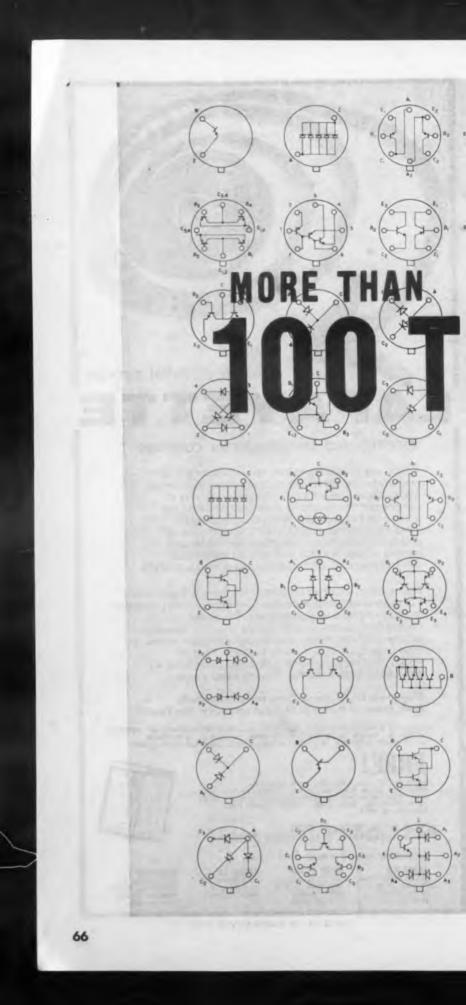
ELECTRONIC DESIGN . July 5, 1961

Send for the new Lafayette/Astro-Dynamics Heat Sink Guide. Matches the correct heat sink or heat sink combination with transistor package number. Write Lafayette Radio, Dept. EDG-1 165-06 Liberty Ave., Jamaica 33, N. Y.

INDUSTRIAL ELECTRONICS DIVISIONS

"ENTERPRISE" NUMBERS IN MAJOR CITIES

JAMAICA 165-08 LIBERTY AVE. JAMAICA 33, N. Y. AXTEL 1-7000 TWX: NY 4-933 NEW YORK 100 SIXTH AVENUE NEW YORK 13, N. Y WORTH 6-5300 TWX: NY 1-648


NEWARK 24 CENTRAL AVE. NEWARK 2, N. J. MARKET 2-1661

BOSTON 110 FEDERAL ST. BOSTON 10, MASS. HUBBARD 2-7850 TWX: BS-447U

CIRCLE 62 ON READER-SERVICE CARD

Ÿ.

65

ELECTRONIC DESIGN . July 5, 1961

• Lower Assembly Cost...Greater Reliability Fewer soldered connections reduce assembly cost...provide increased circuit reliability.

• Up to 80% Space Reduction Space savings with increased design flexibility.

• PLANAR Stability Assures Matched Performance Electrical match available...thermal match provided through heat conductive header.

Standard Transistor Packaging

Combinations of transistors or diodes are assembled in a single TO-5 type package. TO-18 type packages available.

•*To Your Own Specifications

Assemblies to your specifications available on quantity orders.

Write for Special Products Handbook ... contains specifications, outline drawings and commentary.

CIRCLE 63 ON READER-SERVICE CARD

*TO

YOUR

SPECS

ELECTRONIC DESIGN • July 5, 1961

#TO

YOUR

SPECS

TO

YOUR

SPECS

TO

YOUR

SPECS

67

TRANSISTORS-1961

Cross Index

-		-			
2N34	2	2N241A	P	2N343A 2N344	HF
2843	2	2N243	A		
2N43A	A	2N242 2N243 2N244	A	2N346	HF
2N44	A	2N247	HF	2N347	A
2N45	A	2N248	HF	2N348	A
2N34 2N35 2N43 2N43A 2N44 2N45 2N94 2N94A	HF	ZN250	************	2N349	A
21944	HF	2N251	P	21330	P
2N100	4	20255	P	2N351	P
2N102/13	2	2N256	P	2N351A	P
2N109	Â	2N256A	P	2N356	LL.HF
2N117	A	2N257	P	2N356A	LL
2N118	A	2N265	A	2N357	
2N118A	HF	2N268	PHHIAHPPAAAAAPAHHP;	2N357A	LL
2N119		2N268A	HL	2N358	LL,HF
2N120	-	2N269	LL	2N358A	LL
2N123	11	21274	HE	2N360	Â
2N128	HF	2N277	P	2N362	A
2N129	A	2N278	P	2N363	A
2N139	HF	2N279	A	2N368	
2N140	HF	2N280		2N369	A
2N144/13	-	21281	-	21370	HF
2N155	F	212844	2	2N372	HE
2N157A	P	2N285	Ä	2N373	HF
2N158	P	2N285A	P	2N374	HF
2N158A	P	2N291	A	2N375	HL
2N160	A	2N292	HF	2N376	P
2N160A	A	2N293	HF	2N376A	P
2N161	-	2N296	P	21377	LL,HF
201614	2	28297	HL P.HL	213//4	HL
2N163A	A	28298	PHL	2N378A	LL,HF LL HL LL HL HL HL HL
2N168	HE	2N301	P	2N379	HL
2N168A	HE	2N301A	P	2N380	HL
2N169	HF	2N306	AP	2N381	HL
2N169A	HF	2N307	P	2N382	A
2N173	P	2N307A	P	2N383	A
20174	P	211311	LL	21384	HF
2N175	A	2N312	11	2N385A	Li
2N176	P	2N315A	LL.	2N386	HL
2N178	P	2N316	LL	2N387	HL
2N185	A	2N316A	LL	2N388	LL,HF
2N186A	A	2N317	LL	2N389	P
2N187A		2N317A	u	2N392	P
201884	- 2	28319	-	21373	HI
20190	â	21320	2	21395	LLHE
2N191	Ä	2N322	Â	2N396	HUHHUHUAPPUPUUAA
2N192	A	2N323	. A	2N396A	LL
2N193	HF	2N324	A	2N397	LL,HF
2N194	HF	2N326	P	2N398	LL
2N194A	HF	2N327	LL	2N398A	A
21207	- 2	213274		211399	P
212078		2N328A	11	2N400A	u.
2N211	MF	2N329	ü	2N401	P
2N212	MF	2N330	A	2N404	LL
2N213		2N330A		214044	ц
2N213A	- 2	21331		21405	-
2N215	2	2N332A	-	21407	Â
2N217	A	2N333	Ä	21408	Å
2N218	HF	2N333A	A	2N409	HF
2N219	HF	2N334	A	2N410	HF
2N220	A	2N334A		2N411	HF
2N223	- 2	2N335		21412	HF
21224	- 2	213354		214134	HE
2N228	Ä	2N336	A	2N414	LL.HF
2N229	A	2N336A		2N414	HFF HFF HFF
2N231	HF	2N337	LL	2N414	HF
2N232	HF	2N338	ц	2N415	HF
2M233	HF	ZNJJEA	ц	20416	HF
282334	rir E	21337		21418	HI
2N235A	F	2N340	F	2N419	P
2N2358	F	2N340A	1	21420	HL
2N236A	F	2N341	P. /	21420	A HL
2N100 2N102/13 2N104 2N102/13 2N104 2N109 2N109 2N109 2N109 2N109 2N109 2N120 2N120 2N120 2N120 2N120 2N120 2N120 2N120 2N120 2N120 2N120 2N139 2N140/13 2N155 2N156 2N156 2N156 2N156 2N156 2N160 2N160 2N160 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N163 2N164 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N177 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N176 2N177 2N176 2N176 2N190 2N191 2N192 2N191 2N192 2N191 2N192 2N191 2N192 2N194 2N207 2N207 2N217 2N207 2N2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2N244 2N244 2N244 2N244 2N244 2N244 2N244 2N257 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N255 2N277 2N279 2N279 2N279 2N279 2N279 2N280 2N277 2N279 2N280 2N277 2N280 2N281 2N285 2N285 2N285 2N285 2N285 2N285 2N285 2N285 2N285 2N285 2N297 2N297 2N297 2N297 2N297 2N297 2N297 2N297 2N297 2N297 2N297 2N297 2N301 2N302		2N345 2N345 2N345 2N347 2N347 2N350 2N350 2N350 2N350 2N350 2N350 2N350 2N350 2N350 2N350 2N350 2N350 2N355 2N355 2N356 2N356 2N356 2N356 2N356 2N356 2N356 2N356 2N356 2N376 2N376 2N377 2N376 2N377 2N376 2N377 2N377 2N377 2N378 2N388	HL P HL HL A P
2N238		28342	-	21424	
2N240 2N241	LL	283424		20425	HL
20241		1211343		L'EINES	-

Introducing... concentric geometry A significant improvement in NPN diffused silicon mesa fast-switching transistors

Hughes Semiconductor Division offers immediate delivery of a whole family of exceptionally fast-switching NPN silicon mesa transistors. These devices incorporate a new design feature that increases both performance and reliability.

We call it concentric geometry-with a continuous surrounding base contact. It provides extremely low base spreading resistance $r_{\rm b}'$. This results in a faster switch and a much improved amplifier.

This new design also greatly simplifies transistor construction assuring uniform quality and high reliability.

Hughes NPN silicon mesa transistors also provide other important advantages-controlled gain bands, low storage time, high ft, low collector saturation voltage.

Here are some typical values for these high-performance transistors:

To get complete information on these high per-formance NPN transistors—or Hughes extensive PNP line—contact your nearest Hughes Semi-conductor Sales Office or Hughes Authorized Distributor. Or write Hughes Semiconductor Division, Marketing Department, Newport Beach, California.

SEMICONDUCTOR DIVISION

Type		in - 100µ IVenO (V)	4	NCER 1c = 2ml 886 = 10(1 (V)	tic- Vce Nin.		Min. 1t 1c~ 10mÅ Vcf~ 15V (mc)	Har T) Tor	. Switc ne (nse T _{ot})		Мал. Ісво (6159 (µ4)	Max. Colo (al EV (gf)	VCE 10= 10= 10A (V)	1c= 1a=	042 ati) 10må • 1mÅ V)	
2N706	25	3	-	20	20	-	200	-	-	60	0.5	6	0.6	-	0.9	-
2N706A	25	5	15	20	20	60	200	40	75	25	0.5	5	0,6	0.7	0.9	-
2N706B	25	5	15	20	20	60	200	40	75	25	0.5	5	0.4	0.7	0.9	50
2N753	25	5	15	20	40	120	200	40	75	35	0.5	5	0.6	0.7	0.9	-
2N707	56	4	-	25	Q.	-	-	-	-	-	5.0	10	0.6	-	0.9	-

CIRCLE 64 ON READER-SERVICE CARD

2N426	LL	2N526		2N643	LL
2N427	LL	2N527		2N644	LL
28428	HF	2N528 2N529	HF	2N645 2N647	u
2NA3RA	HF	2N530	Â	2N649	â
2N439 LL	HF	2N531	A	2N650	A
2N439A	HE	2N532	A	2N650A	A
2N427 2N438 2N438 2N438A 2N439A 2N439A 2N440A 2N440A 2N440 2N441 2N442 2N443 2N443	.HF	2N533 2N534	*******	2N651 2N651A	**********
2N440A	HF	2N534	2	2N651A	-
2N442	P	2N535A	Â	2N652	Â
2N443	P	2N5358	A	2N653	Ä
2N443 2N444 2N445 2N445 2N445 2N446	HE	2N536 2N537	LL	2N654	۸
2N444A	HF	2N537	HF	2N655	A
2N445	HF	2N538 2N539		2N656 2N656A	P,HF HL
2N446	HF	2N540		2N657	P.HF
2N446 2N446A 2N447 2N447A 2N448 2N449 2N450 2N456 2N456 2N456 2N456	HF	2N540 2N541 2N542	HF	2N657A	HL
2N447	HF	2N542	HF	2N658	LL
2N447A	HF	2N542A 2N543 2N543 2N543A 2N544 2N545	HF	2N659 2N660	LL
21449	HF	2N543A	A	2N661	LL
2N450	LL	2N544	HF	2N662	LL
2N456	HL	2N545	HL	2N665	P
2N456A	HL	2N546 2N547	HL	2N669 2N670	P
284574	HL		HL	2N671	HL
2N458	HL	2N549	HL	2N671 2N673	HL
ZN458A	HL	2N550	HL	2N674 2N675	HL
2N459	HL	20551	HL	ZN675	
2N460 2N461	A	2N553	P	2N677 2N677A	P
2N463	AP	2N554	P	2N6778	P
2N464	A	2N555	P	2N677C	P
2N465	A	21056	LL	2N678 2N678A	P
2N466 2N467	SP,A	2N558	LL	2N678A 2N678B	
2N469A	SP,A A SP	2N548 2N549 2N550 2N550 2N551 2N552 2N555 2N555 2N555 2N556 2N557 2N566 2N566 2N566 2N566 2N5668 2N5668 2N570	LL	2N678C	P
011070	AA	2N560	11	2N679	LL
2N470 2N471 2N471A 2N472 2N472A 2N473 2N474	A	2N561	P	2N695	HF.HL
2N472	A	2N566	Â	2N696 2N697	HF.HL
2N472A	A.HF	2N568	A	2N698	HF.HL
2N473	MF	2N570	A	2N699	HF.HL
2N474	HF	2N572	A	2N700	HF
2N475	HP	2N572 2N574 2N575	P	2N700A 2N702	ĩ
2N474A 2N475 2N475A	A	2N575A	PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2N705	LL
2N476 2N477 2N478	HP	2N576	LL	2N706	LL.HF
2N477	HP		LL	2N706A 2N706B	LL.HF LL LL HF
2N479	HI		ü	2N706C	HE
2N479A	H	2N580	LL	2N707A	LL
2N480	HP		LL.HF	2N707	LL
2N480A 2N481	HE	2N582	LL.HF	2N708 2N710	HL
2N482	H		il	2N711	LL.HF
2N484	H	2N585	LL	2N714	u
2N485	H	2N586	LL	2N715	HF
2N486 2N495	HI	21138/	HF	2N716	HF
2N495	H	2N591	A	2N717 2N718	HL
2N496A	51		A	2N7184	HL
2N497	P,H		AAAA	2N719/	HL
2N497A 2N498	P.H	211394		2N719 2N720	HL
2N498A	H	2N596	A	2N721	HL
2N499	H	F 2N597	A	2N722	H
2N500		P 2N598		2N725	L
2N501 2N501A	L	2N599 2N600	LL	2N726 2N728	H
2N502	H	F 2N601	L	21729	H
2N502A	H	F 2N602	HF	2N730	H
2N503	H	F 2N603	HF		H
2N504 2N508	н	A 2N609			1
2N511		P 2N610	1	2N736	1
2N511A		P 2N618	HL	2N738	
2N5118		P 2N624 P 2N627	H		
2N512 2N512A		P 2N627 P 2N628	E F	2N741	н
2N5128		P 2N629	1	2N741	A H
2N513		P 2N630		P 2N742	
2N513A		P 2N631 P 2N632		A 2N743	
2N513B 2N514		P 2N633		A 2N744 A 2N745	H
2N514A		P 2N634	H	F 2N746	L L
2N514B		P 2N634	A L	I ONTAT	L
2N515 2N516		F 2N635		F 2N748	
2N510		IF 2N635	A L	L 2N750	H
2N518	1	L 2N636	H	F 2N751	H
		IF 2N637	H	L 2N753	LL,H
2N519	LL,F		A		Suffery C
2N519A		IF 2N637		L 2N754	H
2N519A 2N520 2N520A		IF 2N637 L 2N637 IF 2N638	B H H	L 2N754	H
2N519A 2N520 2N520A	LL.H	IF 2N637 2N637 IF 2N638 2N638	B H H A H	L 2N754 L 2N755 L 2N756 L 2N756	H
2N519A 2N520 2N520A 2N521 2N521A	LL.P	IF 2N637 L 2N637 IF 2N638 L 2N638 L 2N638	B H H A H B H	L 2N754 L 2N755 L 2N756 L 2N757 L 2N757	HHAA
2N519A 2N520 2N520A 2N521 2N521A 2N522A	LL.P	IF 2N637 2N637 IF 2N638 LL 2N638 LL 2N638 LL 2N639	B H H A H B H	L 2N754 L 2N755 L 2N756 L 2N757 L 2N757 P 2N758	HH
2N519A 2N520 2N520A 2N521A 2N521A 2N522 2N522A		IF 2N637 L 2N637 IF 2N638 L 2N638 L 2N638 L 2N639 IF 2N639 IF 2N639	B H A H B H A	L 2N754 L 2N755 L 2N756 L 2N757 L 2N757 P 2N758 P 2N759 P 2N759 P 2N759	
2N519A 2N520 2N520A 2N521 2N521 2N522 2N522 2N522 2N523 2N523		IF 2N637 2N637 IF 2N638 IL 2N638 IL 2N638 IL 2N639 IF 2N639 IF 2N639 IF 2N639		L 2N754 L 2N755 L 2N756 L 2N757 L 2N757 P 2N758 P 2N759 P 2N759 P 2N759	
2N519A 2N520 2N520A 2N521 2N521 2N522 2N522 2N523 2N523 2N523 2N5234		IF 2N637 2N637 IF 2N638 IL 2N638 IL 2N638 IL 2N639 IF 2N639 IF 2N639 IF 2N639		L 2N754 L 2N755 L 2N756 L 2N757 L 2N757 P 2N758 P 2N759 F 2N759 F 2N750 F 2N760	
2N519A 2N520 2N520A 2N521 2N521 2N522 2N522 2N522 2N523 2N523		IF 2N637 L 2N637 IF 2N638 L 2N638 L 2N638 L 2N639 IF 2N639 IF 2N639		L 2N754 L 2N755 L 2N756 L 2N757 L 2N757 P 2N758 P 2N759 P 2N759	

ELECTRONIC DESIGN . July 5, 1961

-

Ø

TRANSISTORS-1961

Cross Index (continued)


2NJ 62 2N768 2N769 2N770 2N771 2N772 2N773 2N774 2N775 2N776 2N776 2N778 2N778 2N778 2N778 2N780 2N780 2N780 2N780 2N790 2N790 2N792 2N793 2N793 2N790 2N792 2N793 2N795 2N796 2N799 2N800 2N801 2N802 2N803 2N804 2N805 2N805 2N805 2N805 2N805 2N805 2N805 2N805 2N806 2N805 2N806 2N807 2N815 2N816 2N817 2N816 2N817 2N816 2N817 2N816 2N817 2N822 2N828 2N828 2N829 2N820 2N820 2N806 2N807 2N816 2N817 2N818 2N820 2N806 2N807 2N816 2N817 2N816 2N817 2N820 2N806 2N807 2N820 2N806 2N820 2N806 2N820 2N807 2N820 2N820 2N820 2N806 2N820 2N806 2N820 2N820 2N820 2N806 2N820 2N820 2N820 2N806 2N820 2N820 2N820 2N820 2N806 2N820 2N820 2N820 2N806 2N820 2N820 2N820 2N820 2N806 2N820 2N820 2N820 2N820 2N806 2N820 2N820 2N820 2N820 2N806 2N820 2N820 2N806 2N820 2N806 2N820 2N806 2N820 2N806 2N820 2N806	A	2N910 2N911 2N912 2N914 2N915 2N915 2N920 2N921 2N922 2N923 2N924 2N926 2N926 2N926 2N935 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N936 2N937 2N938 2N937 2N938 2N940 2N940 2N952 2N952 2N953 2N1008 2N1008 2N1008 2N1001 2N1010 2N1000 2N1	A,HL HL
2N769		2N912 2N914	THE HELLER FFFFFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
2N771 2N772	LL	2N915 2N916	HL
2N773 2N774	HF	2N917 2N919	LL
2N775	HF	2N920 2N921	HF
2N777 2N778	HF	2N922 2N923	HF
2N779A	LL	2N924 2N925	A
2N781 2N782	HF	2N926 2N927	A
2N783 2N784	HF	2N928 2N935	A
2N789 2N790	LL	2N936 2N937	A
2N791 2N792	LL	2N938 2N939	A
2N793 2N794	LL	2N940 2N941	A
2N795 2N796	LL	2N942 2N943	A
2N799 2N800	LL	2N944 2N945	A
2N801 2N802	LL	2N946 2N952	A
2N803 2N804	LL	2N953 2N957	A
2N805 2N806	LL	2N1008 2N1008	A,LL
2N807 2N815	LL	2N1008 2N1009	A
2N816 2N817	LL	2N1010 2N1011	P,HL
2N818 2N819	LL	2N1012 2N1014	P
2N820 2N821	LL	2N101 2N101	A HL
2N822 2N823	LL	2N101 2N101	SC HL
2N824 2N825	LL	2N101 2N101	HL HL
2N826 2N828	LL	2N1010 2N1010	SA HL
2N834 2N839	HF	2N1010 2N1010	SD HL
2N840 2N841	HF	2N101 2N101	A
2N842 2N843	ü	2N102	P
2N845	HF	2N102	HF
2N858	ü	2N102	6 HF
2N860	LL	2N102	
2N862	L	2N103	
2N864	ü	2N103	IC P
2N870	HL	2N103	ZA P
2N902 2N903	ALL	2N103 2N103	2C P
2N904 2N904A	A.L	2N103 2N103	5 LL
2N905 2N906	A.LI	2N103 2N103	7 LL 8 HL
2N907 2N908	L	2N103 2N104	9 HL
20909	H	2N104	1 HL

greater derating margin for higher reliability...at lower cost than lower rated types Westinghouse 2N1015 and 2N1016 transistors— Circuits which use power transistors can be upgraded in

Circuits which use power transistors can be upgraded in reliability by changing to the Westinghouse 2N1015-2N1016 series. The low saturation resistance and high dissipation rating (150 watts) of these transistors mean cooler operation—more safety factor in service. In fact, the 2N1015-2N1016 series offers twice the derating margin you can get in competitive types. Their high voltage ratings—up to 200 volts V_{CE} —also mean an end to series connections of lower rated types. Yet all this is yours at less cost than you are now paying.

CAN REPLAC

In addition to these many circuit advantages, the 2N1015-2N1016 transistors give you the reliability assurance of

nder full operating conditions. You also get the advanges of reduced inventory, and the convenience of ngle-source purchasing. Next time you buy transistors the 2N1015-2N1016 family make sure they're 100% ower tested. You can be sure ... if it's Westinghouse. br complete information, write or call: Westinghouse ectric Corp., Semiconductor Dept., Youngwood, Penna.

Westinghouse

EASTERN

EASTERN ACK SEMICONDUCTOR IRC Birmingham 5, Ala /FA 2-0588 CAMERADIO Pittsburth, Pa /EX 1-4000 CRAMER ELECTRONICS, INC. Boston, Mass /CO 7-4700 BOSTOM MADE SALERS, INC Melbourne, Florida/PA 3-1441 GENERAL RADIO SUPPLY CO., INC. Camden, N. J./WO 4.8569 Camden, R. J., WO 4-8564 GENESEE RADIO PARTS CO Bertals, R. Y. /DE 9661 NANN-ELLERT ELECTORICS, INC. Ballimore, Md. /TU 9-4242 MILGRAY ELECTRONICS New York, M. Y./RE 2-4400 New York, N. Y./RE 2-6400 RADIO & ELECTRONIC PARYS CORP Cloveland, (In.,) VI 1-6660 SCHWEBER ELECTRONICS Long Island, N. Y./PI 6-6520 Silver Spring, Md./JU 5-7023

For "off the shelf" delivery, order from these Westinghouse Distributors: MIDWESTERN

MIDWESTERN ELECTRONIC COMPONENTS FOR INDUSTRY CO St. Louis, Mo./WO 2-9917 NALLMARK INSTRUMENTS CORP. Dellas, Texas/R1 7-8933 MALLMARR IN3 INVENTION INTER-STATE RADIO & SUPPLY CO. Damies 4, Colo /TA 5-8257 Mouston, Texas/CA 4-2663 Mouston, Texas/CA 4-2663 RADIO DISTRIBUTING CO Indianapolia, Ind /ME 7-5571 SEMICONDUCTOR SPECIALISTS, INC. Chicago, III /MA 2-6860 S. STERLING CO. Outrait Mich /RR 3-2900 UNITED RADIO, INC. Cincinnati, Ohio/MA 1-6530

WESTERN ELIMAR ELECTRONICS UNAMILTON ELECTRO SALES Los Angolos, Colli / DR 2-9154 NEWARK ELECTRONICS CO. Inglowood, Calif. OR 4-8440

201042	01	2N1147C	D
2N1042	5	2N1149	
2N1044	P	2N1150	A
2N1045	PPPHL	2N1151	
2N1046	HL	2N1152	A
2N1046A	HL	2N1153	A
2N10468	P	2N1154	
2N1047	P	2N1155	.
20104/A		201130	6
2N104RA	P	2N1157A	P
2N1049	P	2N1158	HF
2N1049A	P	2N1158A	HF
2N1050	P	2N1159	P
2N1050A	P	2N1160	P
2N1051	A	201102	2
2N1052		2N1163	P
2N1055	HL	2N1163A	P
2N1056	LL	2N1164	P
2N1057	LL	2N1164A	P
2N1058	HF	2N1165	P
2N1059	1	2N1165	P
2N1065	HE	2N1166A	P
2N1066	HE	2N1167	P
2N1067	P	2N1167A	P
2N1068	P	2N1168	Ρ
2N1069	P	2N1169	LL
2N1072	HI	2N1172	P
2N1073	HL	2N1173	HL
2N1042 2N1043 2N1044 2N1045 2N1046A 2N1046A 2N1047 2N1047 2N1047 2N1047 2N1048A 2N1049A 2N1050 2N1050 2N1050 2N1055 2N1055 2N1055 2N1055 2N1055 2N1055 2N1055 2N1055 2N1055 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1065 2N1072 2N1073 2N1073 2N1073 2N1073 2N1073 2N1073 2N1073 2N1073 2N1075 2N107	₽₽₽₽₽₽₽₽₽₹₩₩₩₩₩₽₽₽₽₽₩₩₩	2M1150 2M1151 2N1151 2N1152 2N1153 2N1155 2N1155 2N1155 2N1155 2N1155 2N1155 2N1155 2N1157 2N1158 2N1162 2N1162 2N1162 2N1162 2N1164 2N1165 2N1166 2N1166 2N1166 2N1166 2N1166 2N1167 2N1167 2N1167 2N1173 2N1173 2N1175 2N1175	₽▲▲▲▲▲▲▲▲₽₽₭₭₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
2N1073B	P	2N1175	LL
2N1078	╸ ┺┺┺┺┺┺┺┺┺┺┺┺┺┺┺┺	2N1175A 2N1176A 2N1176B 2N1176B 2N1177 2N1178 2N1179 2N1180 2N1183 2N1183A 2N1183B 2N1183B 2N1184A 2N1184B	LL
201086		2N11764	
2N1087	HE	2N1176B	Â
2N1090 LL	HE	2N1177	HF
2N1091 LL	.HF	2N1178	HE
2N1094	HF	2N1179	HF
201095		2N1183	PIF
2N1097		2N1183A	P
2N1098	A	2N1183B	P
2N1099	P	2N1184	P
2N1100	P	2N1184A	P
2N1101		2N1184B 2N1185 2N1185 2N1186 2N1187 2N1188	P
2N1102 2N1107 2N1108 2N1108 2N1109	HÊ	2N1185	
2N1108	HE	2N1187	A
2N1109	HF	2N1188	
2N1110 2N1111 2N1111A	HF	2N1191	A
2N1111	HF	2N1192	. A
2N1111B	HE	2N1193	HE
2N1114	LL	2N1194A	HE
2N1116	HL	2N1195	HF
2N1117 2N1118	HL	2N1196	HF
2N1118	HF	2N1197	HF
2N1118A	HE	2N1198	LL
2N1120	P	2N1203	P
2N1121	HF	2N1204	HF
2N1117 2N1118 2N1118A 2N1119 2N1120 2N1121 2N1122 2N1122 2N1122 2N1123 2N1124 2N1125 2N1125		2N1191 2N1191 2N1193 2N1194 2N1194 2N1195 2N1195 2N1195 2N1202 2N1203 2N1204 2N1208 2N1209 2N1210 2N1211 2N1212	LL
2N1122A	LL	2N1208	HL
2N1123	LL	201209	HL
2N1125	ាព	2N1211	P
	A	2N1212	HL
2N1129	A	241213	LL
2N1130 2N1131	A	2N1214 2N1215	LL
2N1131 2N1132	HL	2N1215	LL
2N1136	P	2N1216 2N1217	LL
2N1136A	P	2N1218	P
2N1136B	P	2N1220	LL
2N1136B 2N1137 2N1137A	P	2N1221 2N1222	Ĩ
2N1137A 2N1137B	P	2N1222 2N1223	LL
2N1137B	P		HL
2N1138A	P	2N1225	HF
2N1138B	P	2N1226	HF
2N1139	HF	2N1228 2N1229	LL
2N1141 2N1142	HF	2N1229 2N1230	LL
2N1143	HF	2N1231	1.1
2N1144	A	2N1231 2N1232	LL
2N1145	A	2N1233	LL
2N1146 2N1146A	P	2N1234	
ZN1140A		1211238	TIL.LL
	P	2N1230	11
2N1146B	F	2N1239 2N1240	
2N1146B 2N1146C 2N1147	FFF	2N1239 2N1240 2N1241	
2N1146B 2N1146C 2N1147 2N1147A	F F F F	2N1239 2N1240 2N1241 2N1242	
2N1146B 2N1146C 2N1147	F F F F	2N1239 2N1240 2N1241 2N1242	

< CIRCLE 65 ON READER-SERVICE CARD

PARAMETER	CONDITIONS	NS381	NS382	NS383	NS384
Min. BVCEO	(ICE = 10mA)	20v	20 v	12v	12v
Min. BVCER	(ICE = 10mA, RBE = 109)	25v	25v	15v	15v
Min. BVEBO	$(I_{EB} = 10 \mu A, I_{C} = 0)$	5v	5v	5v	5v
hFE	$(I_{C} = 3mA, V_{CE} = .4v)$	20-60	40-120	20-60	40-120
Max. VCE	$(I_{C} = 3mA, I_{B} = .3mA)$.25v	.25v	.15v	.15v
Max. ton	$(I_{B_1} = 3mA, I_{B_2} = 1mA, V_{CC} = 3v, R_L = 270\Omega)$	15 _{nsec}	15 _{nsec}	15 _{nsec}	15 _{nsec}
Max. torr	$(I_{B_1} = 3mA, I_{B_2} = 1mA, V_{CC} = 3v, R_L = 270\Omega)$	25 _{nsec}	25 _{nsec}	25 _{nsec}	25 _{nsec}
Max. ts	$(I_{B_1} = I_{B_2} = I_C = 10mA, V_{CC} = 10v, R_L = 1k)$	15 _{nsec}	15 _{nsec}	12 _{nsec}	12 _{nsec}

Full technical specifications available on request. Write, wire or call:

CORPORATION

Danbury, Conn. • Ploneer 3-7624 • TWX DANB 452-U CIRCLE 66 ON READER-SERVICE CARD

72

Cross Index (continued)

2N1244	H	2N1337 2N1339	P,HF	2N1442 2N1444	A	2N1539	P
2N1247 2N1248	Â	2N1340	PHF	2N1446	HL A,LL	2N1539A 2N1540	P
2N1250	HL	2N1341	P,HF	2N1447	A.LL	2N1540A	P
2N1251	A	2N1344	LL	2N1448	ALL	2N1541	P
2N1252	F.HL	2N1345 2N1346	H	2N1449 2N1450	A,LL HF	2N1541A 2N1542	P
2N1253		2N1347	iL	2N1451	A	2N1542A	P
Н	F,HL	2N1348	LL	2N1452	A	2N1543	P
2N1254 2N1255	LL	2N1349 2N1350	H	2N1453 2N1454	P	2N1544 2N1544A	P
2N1256	iL	2N1351	il	2N1455	P	2N1545	P
2N1257	LL	2N1352	A	2N1456	P	2N1545A	P
2N1258	LL	2N1353	LL	2N1457	P	2N1546	P
2N1259 2N1261	P	2N1354 2N1355	LL	2N1458 2N1461	P	2N1546A 2N1547	P
2N1262	P	2N1356	ii	2N1462	P	2N1547A	P
2N1263	P	2N1357	u	2N1463	P	2N1548	P
2N1264 2N1265	P	2N1358 2N1359	HL	2N1464 2N1465	P	2N1549 2N1549A	P
2N1266	A	2N1360	P	2N1466	P	2N1550	P
2N1267	HF	2N1362	P	2N1469	HF	2N1550A	P
2N1268	MF	2N1363 2N1364	P	2N1470	P	2N1551	P
2N1269 2N1270	HF	2N1365	P	2N1471 2N1473	ALL	2N1551A 2N1552	P
2N1271	HF	2N1370	A	2N1474	A	2N1552A	P
2N1272	HF	2N1371	A	2N1474A		2N1553	P
2N1273 2N1274	Â	2N1372 2N1373	A	2N1475 2N1476	A	2N1553A 2N1554	P
2N1275	u	2N1374	Â	2N1477	Â	2N1554A	p
2N1277	LL	2N1375	A	2N1479	P	2N1555	P
2N1278	LL	2N1376	A	2N1480 2N1481	P	2N1555A 2N1556	P
2N1279 2N1280	u	2N1377 2N1378	A	2N1482	p	2N1556A	P
2N1281	LL	2N1379	A	2N1483	P	2N1557	P
2N1282	LL	2N1380	A	2N1484	P	2N1557A	P
2N1284 2N1288	LL	2N1381 2N1382	Â	2N1485 2N1486	P	2N1558 2N1558A	P
2N1289	LL	2N1383	Â	2N1487	P	2N1559	P
2N1291	P	2N1384	LL	2N1488	P	2N1559A	P
2N1292 2N1293	P	2N1386 2N1387	LL	2N1489 2N1490	PP	2N1560 2N1560A	P
2N1293	P	2N1388	HF	2N1491	HF		P.HF
2N1295	P	2N1389	HF	2N1492	HF	2N1562	P,HF
2N1296	P	2N1390	HF	2N1493	HF	2N1564	A
2N1297 2N1298	P	2N1392 2N1393	SP	2N1494 2N1499	HF	2N1565 2N1566	A
2N1299	ú	2N1394	SP	2N1501	P	2N1572	A
2N1300	LL	2N1395	HF	2N1502	P	2N1573	A
2N1301 2N1303	LL	2N1396 2N1397	HF	2N1504 2N1505	P.HF	2N1574 2N1605	L.
2N1304	LL	2N1398	HF	2N1506	P.HF	2N1605A	ü
2N1305	LL	2N1399	HF	2N1507	HF	2N1609	HL
2N1306	LL	2N1400	HF	2N1515	HF	2N1610	HL
2N1307 2N1308	LL LL	2N1401 2N1401	HF A HF	2N1515/ OC169		2N1611 2N1612	HL
2N1309	LL	2N1402	HF	2N1516	HF	2N1613	
2N1310	A.SP	2N1405	HF	2N1517	LL		F.HL
2N1311 2N1312	A.SP A,SP	2N1406 2N1407	HF	2N1517/ 2N1518	HF	2N1614 2N1616	LL
2N1313	A, SP	2N1407	SP	2N1519	HL	2N1617	P
2N1314	A			2N1520	HL	2N1618	P
1314/ OC26	P		HF.HL	2N1521 2N1522	HL	2N1619 2N1620	HL
2N1315	A		A HL	2N1522	HL	2N1623	A
2N1316	LL		HF.HL	2N1524	HF	2N1631	HF
2N1317	LL	2N1410	A HL	2N1525	HF	2N1632	HF
2N1318 2N1319	LL		A HF	2N1526 2N1527	HF	2N1633 2N1634	HF
2N1320	P	2N1413	LL	2N1529	P	2N1635	HF
2N1321	P	2N1414	LL	2N1530	P	2N1636	HF
2N1322 2N1323	P	2N1415	LL	2N1530 2N1531	A P		HF
2N1323 2N1324		2N1417 2N1418	HF				HF
2N1325	F	2N1420	LL.HF	2N1532	P	2N1640	LL
2N1326	F	2N1425	HF	2N1532		2N1641	u
2N1327 2N1328	F				P	2011646	HF
2N1329	F	2N1429	HF		AP	2N1646	HF
2N1330	F	2N1431		2N1535	P	2N1647	P
2N1331 2N1332	F	2N1432 2N1437		2N1535 2N1536	A P	2N1648 2N1649	
2N1332 2N1333	-					2N1650	5
2N1334	P.LI	2N1439	F	2N1537	P	2N1651	
2N1335	P.HI	2N1440		2N1537	A P	2N1652	P
2N1336	P.HI	E 2N1441		2N1538	P	2N1653	1

61-5

2N1654 A 2N1655 A 2N1655 A 2N1657 P 2N1658 P 2N1658 P 2N1660 P 2N1661 P 2N1662 P 2N1663 LL 2N1665 HL 2N1667 HL 2N1665 HL 2N1667 HL 2N1672 A 2N1676 HF 2N1678 A 2N1676 HF 2N1678 HL 2N1681 HL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 HL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1683 LL 2N1692 P 2N1707 A 2N1705 A 2N1707 A 2N1706 A 2N1707 A 2N1706 A 2N1707	2N1900 P. 2N1901 P. 2N1905 2N1905 2N1905 2N1906 2N1917 2N1918 2N1920 2N1920 2N1920 2N1920 2N1922 2N1926 2N1926 2N1936 2N1946 2N1947 2N1945 2N1945 2N1945 2N1945 2N1945 2N1955 2N1956 2N1956 2N1956 2N1957 2N1958 2N1958 2N1959 2N1961 2N1961 2N1965 2N1963 2N1964 2N1976 2N1976 2N1977 2N1978 2N1978 2N1978 2N1978	HF CC45017 P CK4 P CK4 A CK13 A CK14 A CK16 A CK17 A CK17 A CK17 A CK22 A CK22 P CK25 P CK25 P CK25 P CK25 P CK25 P CK25 P CK25 A CK22 A CK22 A CK22 A CK22 A CK26 A CK27 A CK26 A CK27 A CK26 A CK66 HF CK66 HF CK66 HF CK66 HF CK66 HF CK67 HF CK77 HC CT1310 CT1310	A ALLA LA A PAAAAAAAAAAAAAAAAAAAAAAAAAA	54 A 55 A 56 A 57 A 58 A 59 A 60 A 74 A 79 A
2N1720 2N1720 2N1721 2N1723 P 2N1723 P 2N1723 P 2N1723 P 2N1723 P 2N1726 F 2N1727 P 2N1726 F 2N1727 P 2N1727 F 2N1728 F 2N1742 P 2N1742 P 2N1742 P 2N1742 F 2N1743 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1745 F 2N1755 F 2N1756 F 2N1756 F 2N1757 P 2N1758 F 2N1780 F 2N1830 F 2N1830 F 2N1840 F	2N1969 2N1970 2N1970 2N1971 2N1972 2N1973 2N1974 2N1975 2N1978 2N1986 2N1985 2N1985 2N1986 2N1985 2N1988 2N1988 2N1988 2N1988 2N1988 2N1998 2N1999 2N1990 2N1990 2N1995 2N	HF CK262 HL CK419 HL CK420 HL CK421 HL CK474 HL CK475 HL CK475 HL CK477 HL CDT1310 HL CDT1311	PTPTRTRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	850 HF 850A HF 900 P 409 HL 483 HL 483 HL 484 HL 497M HL 7696M HL

There's a Better Way... to cool a transistor. The fish don't like this sort of briny nonsense, either. The one on the left is a rare species known as *Pisces Lingua*, or underwater talking fish. He's telling the rest of his buddies that some irate electronics engineer probably gave this transistor the deep six because of thermal runaway. Or maybe its derating curve was all wet. The other fish are mute on the matter. They could inform Pisces Lingua that the Birtcher Corporation makes a semiconductor heat radiator that would not only cool the transistor, but boost its efficiency 25% to 27. But they refrain from comment because there's a hungry gleam in his eye. If this makes you hungry to do business with me, write today for my catalog and other stuff. Don't ask me to send you any fish. But I'll send you an Honorary Membership Certificate to my Society. Write to: Charles F. Booher, Secretary, *There's a Better Way Society of America, Inc.*, **The Birtcher Corporation** / Industrial Division, 745 S. Monterey Pass Rd., Monterey Park, California; phone ANgelus 8-8584, TWX LA2177.

Cool! Write for my non-fishy Transistor Radiator Catalog

Ø

Transistor Data Sheets— What They Mean and How to Use Them Properly

ELECTRONIC DESIGN'S Ninth Annual Transistor Data Chart (p 33) contains 1714 transistor types with abbreviated specifications. For complete details on the various transistor parameters and explanation of the test conditions used, reference to manufacturers' data sheets is necessary. Thus, the Transistor Data Chart is intended to guide the design engineer to several types; the specific selections is then based on complete device characteristics and price as obtained from the manufacturer. The relationship which exists between published characteristics and design requirements is discussed and a useful circuit design check list is included.

Mitchell Baker, Jordan V. Sukert Motorola Semiconductor Div., Inc. Phoenix, Ariz.

A WELL-PREPARED transistor data sheet, properly interpreted by a circuit design engineer, is an extremely useful design aid. To meet the present demands for circuit and systems reliability, an understanding of transistor specifications and their relationship to design requirements is a valuable design asset.

Basic Structure of a Transistor Data Sheet

A modern, well-prepared data sheet should provide the design engineer with all the necessary information for selecting a transistor capable of performing a particular job. To accomplish this, the data sheet is normally divided into six general sections. A description of the device is given first, followed by sections on absolute ratings, electrical and thermal characteristics, mechanical data and applications information.

The description of the device usually gives the broad general application which permits the designer to classify transistors ac-

If you would like an additional copy of the Transistor Data Chart Section circle 251 on the Reader-Service Card. a typical power transistor description might indicate whether the unit was designed for audio work or switching applications. In addition, the power and/or current rating is specified, the polarity (pnp or npn) is given, and the type of material is indicated. At a glance, therefore, the engineer can determine if a particular transistor or group of transistors is suitable for using in a particular purpose. From this point, however, the selection of

cording to his specific requirements. Thus,

From this point, however, the selection of a specific transistor for a particular project becomes more involved. The unit must be considered in terms of its various electrical ratings and characteristics to make sure that it fits the application from every conceivable standpoint. In addition, the engineer is responsible for selecting the least expensive transistor.

Distinction Between Ratings and Characteristics

A rating is defined as a limiting value assigned by the manufacturer which, if exceeded, may result in permanent damage to the device. On the other hand, a characteristic is a measurable property of the device under specific operating conditions for which the transistor will provide satisfactory and reliable performance.

Absolute Maximum Ratings are those ratings beyond which degradation regarding the life and reliability of a transistor may be expected. These ratings are based on internal physical construction, semiconductor material and manufacturing processes. Because these are "ratings", most data sheets will not indicate test conditions under which these "ratings" are specified. Therefore, "ratings" are the extreme capabilities of a transistor and are not intended to be used as design conditions.

For example, under absolute maximum ratings, the letter B placed before a characteristic symbol usually means breakdown. Therefore, BV_{CRO} , BV_{CEO} , BV_{CRO} , BV

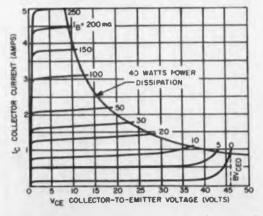


Fig. 1. Typical output characteristics of a Motorola 2N1530 power transistor.

arbitrary voltage and current condition, the combination of which can trigger the avalanche effect.

As a practical example, the graph in Fig. 1 illustrates the typical output characteristics of a 2N1530 power transistor. The absolute maximum voltage BV_{CE0} is shown as being 45 v, the absolute maximum current is shown as 5 amp.

With an absolute maximum power rating of 90 w (as shown on the data sheet for this particular transistor), it is now possible for the design engineer to calculate and plot a maximum voltage-current relationship which must not be exceeded.

Thermal characteristics, listed with the absolute maximum ratings, are expressed in degrees C per watt and define the dissipation capability of the transistor regarding the junction temperature in relation to the transistor case temperature.

Electrical Characteristics Indicate Design Centers

Whereas the absolute maximum specifications provide the limits beyond which reliable operation cannot be obtained, this section of the data sheet contains the device design centers. When discussing any specific characteristics, the test conditions must be defined in order to achieve a common understanding between the user and the manufacturer of the transistor. Almost every parameter listed on a data sheet is subject to variation among manufacturers due to these test conditions. Motorola data sheets covering the power transistor series from 2N1539 through 2N1548 will be used to discuss each parameter in order. (See Fig. 2).

Collector-Base Leakage Currents: I_{CBO} is a term initially used to signify the quality of a transistor. Actually, three very definite I_{eBO} 's are of importance to the designer. The first is the reading taken at some low collector-base voltage, in this case, 2 v, with a maximum value of I_{CBO} indicated at this voltage. This value, for all practical purposes, represents the thermal component of the collector current which cannot be reduced by further decrease of V_{CB} . As the ambient temperature increases, the leakage current increases. Using the arbitrary rule that the thermal component of current will double for every 10 C, the design engineer can pinpoint the temperature component of the leakage current.

Collector-Base Voltage Characteristics: The second component of I_{cno} which is important in high-temperature usage is the current due to the collector-base voltage with the emitter

ELECTRICAL CHARACTERISTICS, GENERAL (At 25°C Case Temperature unless otherwise specified)

Parameter	Symbol	Min	Тур	Max	Velt
$\begin{array}{l} \mbox{Collector-Base Cutoff Current} \\ \mbox{Vea} = -25V & 2N1539, 2N1544 \\ \mbox{Vea} = -40V & 2N1540, 2N1545 \\ \mbox{Vea} = -55V & 2N1541, 2N1545 \\ \mbox{Vea} = -65V & 2N1542, 2N1547 \\ \mbox{Vea} = -80V & 2N1543, 2N1548 \\ \end{array}$	Icoa		1111	2.0 2.0 2.0 2.0 2.0	mA
Collector-Base Cutoff Current $V_{CB} = -2V(all types)$	Ісво			200	μÂ
Collector-Base Cutoff Current at Te = +90°C at Ven = ½ BVeen rating	leno	-	-	20	MA
Emitter-Base Cutoff Current Ven = 12V (all types)]επο			0.5	mA
$\label{eq:loss} \begin{array}{llllllllllllllllllllllllllllllllllll$	BV _{c≥s}	30 45 60 75 90	-		volts
$\begin{array}{l} \hline \textbf{Collector}. \hline \textbf{Emitter Leskage Current} \\ V_{Pe} = 1.0V \\ V_{Ce} = 40 \\ V_{Ce} = 60 \\ 2N1540, 2N1545 \\ V_{Ce} = 80 \\ 2N1541, 2N1546 \\ V_{Ce} = 100 \\ 2N1542, 2N1547 \\ V_{Ck} = 120 \\ 2N1543, 2N1548 \end{array}$	Icaz	1111	=	20 20 20 20 20 20	mA
Collector-Emitter Breakdown Voltage L = 500mA, L = 0 2N1539, 2N1544 2N1540, 2N1545 2N1547, 2N1546 2N1542, 2N1547 2N1543, 2N1548	BV _{ceo}	20 30 40 50 60			volts
Collector-Base Breakdown Voltage Lc = 20mA 201539, 201544 201540, 201545 201541, 201545 201542, 201547 201542, 201546	BVcao	i0 60 80 100 120		1111	volts
ECTRICAL CHARACTERISTICS, COMMO	N EMITTER (At 25°C Case	Temperature unles	s otherwise specified	1)	
Current Gain $V_{cv} = -2V, I_c = 3A$ 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548	hee	\$0 75	-	100	-
Base-Emitter Drive Voltage L = 3A, 1n = 300mA 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548	Vuz	=	-	0.7	volts
Collector Saturation Voltage L = 3A, 1 ₂ = 300mA 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548	$\mathbb{V}_{CR(p_{\Delta T})}$	-	0.2	0.6	volts
Frequency Cutoff $V_{11} = -2V_1 I_1 = 3A$ 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548	f	=	4	=	kc
Switching Characteristics I. = 3A Delay + Rise Time 201539, 201540, 201541, 201542, 201543 201544, 201545, 201547, 201543 Storage Time 201539, 201540, 201541, 201542, 201543	ε ₀ + ε,	Ξ	5 5 3	Ξ	изес
201332, 201340, 201341, 201342, 201343 Fall Time 201539, 201540, 201546, 201547, 201548 Fall Time 201539, 201540, 201546, 201547, 201548	£r	1	5 8	-	Marc
$\begin{array}{l} \textbf{Transconductance} \\ \textbf{V}_{,+} = -2 \textbf{V}_{,1} \textbf{I}_{-} = \textbf{3A} \\ \textbf{2N1539}, \textbf{2N1540}, \textbf{2N1541}, \textbf{2N1542}, \textbf{2N1543} \\ \textbf{2N1544}, \textbf{2N1545}, \textbf{2N1546}, \textbf{2N1547}, \textbf{2N1548} \end{array}$	Bri:	3.0 5.0	6.0 7.5	-	mhos

Fig. 2. Electrical characteristics contained in a transistor data sheet.

open. The data sheet indicates that V_{CB} at 25 v on the 2N1539 power transistor produces a maximum leakage of 2 ma. This voltage component is not temperature sensitive. Therefore, the design engineer wishing to determine his leakage value at some higher temperature (e.g. $T_1 = 75$ C), can safely assume that the maximum increase in the thermal component of leakage current will be 32 times 200 μ a (using the "doublingevery-10 C" rule). Adding to this the 2-ma voltage component results in a value of 8.4 ma maximum leakage at 75 C with 25 v across the transistor. All future references to temperature will refer to the transistor case temperature and not the ambient temperature.

High-Temperature Collector-Base Leakage Currents: Since there are many voltages and many applications to be considered, it is difficult for any manufacturer to specify leakage under all voltages at all tempera-

TRANSISTORS-1961

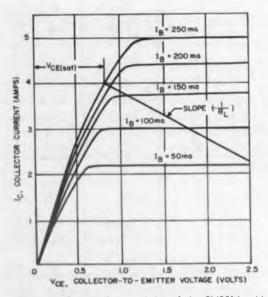
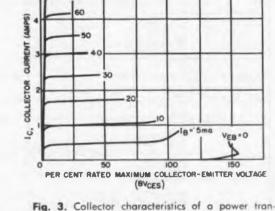



Fig. 5. Output characteristics of the 2N351A with the saturation region indicated.

tures hence, the third $I_{current}$ Motorola specifies a guaranteed maximum leakage at 90 C at a voltage level well within reliable usage of any given transistor. The selection of the onehalf collector-emitter breakdown voltage (BV_{CES}) rating for the high temperature test is an arbitrary one but is established at a point where the manufacturer knows the device will be in a reliable operating area.

Emitter-Base Cut-Off Current (I_{EBO}): One of the least used parameters on a data sheet is I_{EBO} . It is well to know the I_{EBO} limit of any given junction within a transistor; therefore this limit is shown at a region where most design will be taking place. The emitter-base diode breakdown voltage rating is indicated by the BV_{EBO} listed under the absolute maximum ratings.

Collector-Emitter Leakage Current (I_{CEA}): The X in this symbol means that there is

rig. 3. Collector characteristics of a power from sistor in a common emitter connection.

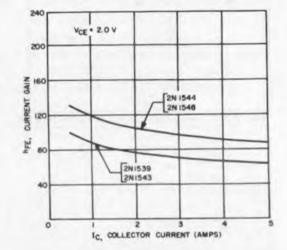


Fig. 4. The current gain, h_{FE} of alloy transistors decreases with increased collector current.

some known back-bias voltage applied to the base-emitter diode. For each transistor, this back-bias must be specified as a test condition for any given I_{CEX} or BV_{CEX} rating. This rating is very useful in designing power converters where one transistor is conducting while the other transistor is back-biased in the off condition waiting for transformer action to turn it back on. It is more convenient to apply a given voltage and guarantee that the current will not be above a certain maximum value than to apply a test current and see if the voltage will be above a certain minimum value. The latter test could be related to a second breakdown' type of relationship. On many diodes, applying a given test current could show a voltage rating of many volts above the manufacturer's listed rating. The collectoremitter could, for example, possibly withstand 150 to 200 v; however, power dissipation could be exceeded.

Collector-Emitter Breakdown (BV_{CES}): The most important rating that the engineer can consider when selecting the transistor for his circuit is BV_{CES} , see Fig. 3.

Almost all power transistor applications require source voltages, collector-to-emitter. thus V_{CE} ratings must be equal to or larger than the source voltage; inductive loads will make this requirement higher. For the design engineer, a useful rating would be BV_{CER} which falls between BV_{CER} and BV_{CEO} in alloy transistors. On many test conditions, high dissipation can be experienced with the combination of test voltage and test current. Therefore, many tests are specified as sweep tests or pulse tests where the duty cycle is low enough that the maximum junction temperature is not exceeded. These tests should be performed with the transistor mounted on an adequate heat sink.

Collector-Emitter Breakdown Voltage with the Base Open (BV_{CEO}): This test is related to I_{CBO} and the gain characteristic h_{FE} . With the base open, a condition can be reached where h_{FE} will multiply the I_{CBO} at a given voltage and start an avalanche condition as the junction temperature rises due to self-heating. This can quickly reach breakdown conditions if not carefully tested by the sweep method.

A possible cause of transistor failure is lack of BV_{ceo} , especially at high voltages; this condition is often encountered in application such as series-regulated power supplies and power amplifiers. In switching circuits, this condition can exist when the transistor is switched from on to off, thus passing a region where the base has infinite resistance or is essentially open.

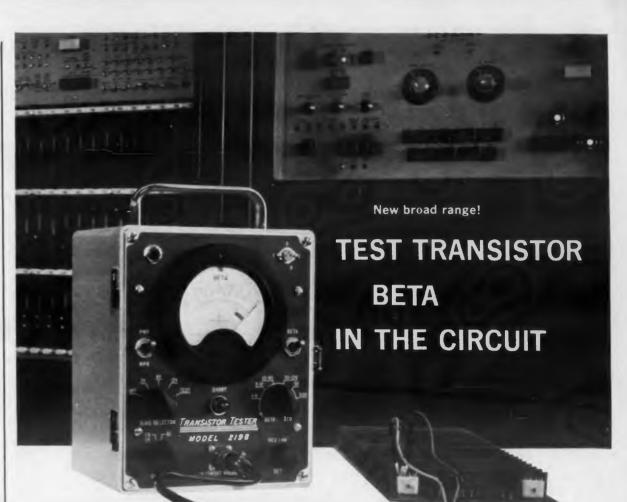
Collector-Base Breakdown Voltage (BV_{CHO}): This rating will show the limitation of the collector-base junction, but is a rating which is only occasionally used in actual circuit considerations. Many engineers make the error of selecting a transistor based on this parameter putting themselves into a high-priced, low-availability category, when actually the true ratings could have been defined by BV_{CE} . Circuits should be carefully analyzed to determine if BV_{CHO} or some collector-to-emitter rating is the controlling factor under the worst conditions.

Current Gain (h_{rE}) : This is the most arbitrary of all test conditions listed on a data sheet. For alloy transistors, current-gain is a function of collector current and in most

cases will decrease when I_c increases, see Fig. 4.

It is best to design around data sheet limits. However, circuit requirements could dictate current gain spreads. Under these circumstances, it would be beneficial for the design engineer to work closely with the manufacturer to obtain a special device. This parameter is one that will vary to some degree with life, and is therefore used as an end-of-life characteristic.

Base to Emitter Voltage $(V_{\mu\epsilon})$: This parameter denotes the input voltage at the specified test condition, required in the design of power converters and switching circuits. The test for this parameter is usually performed with the transistor in saturation. Saturation Voltage $(V_{CE, ad})$: Saturation voltage $V_{CE \ uat}$ (Fig. 5) is the minimum voltage necessary to maintain normal transistor action at a particular collector current. At collector voltages lower than $V_{CE, adt}$ the base-collector diode is forward biased and the current-voltage relationship changes abruptly. Thus, the saturation voltage is the minimum collector-emitter voltage required to maintain full conduction when enough base drive is supplied; further applications of base drive will reduce $V_{CE, sql}$. Since the $V_{eE,aar}$ —I_c curve is almost a straight line, some transistor manufacturers list the characteristic as saturation resistance $(V_{tE tat})$.


Transistor efficiency in converters is a function of switching speed and power dissipated in the fully-on condition. A very low saturation voltage is extremely desirable and is a function of the collector current and base current drive. Saturation voltage rises with an increase in collector current and is inversely related to the gain $(h_{F\ell})$ of the transistor.

Common Emitter-Cut-Off Frequency (fac): Current gain frequency cut-off (f_{ac}) for the common emitter configuration, (also called the beta cut-off frequency) is the frequency where the small-signal, forward-current gain is 0.707 of the current gain value at a given reference frequency. The common base frequency cut-off F_{ab} , (generally not specified for power transistors) is appronately equal to h_{ℓ_0} times $F_{\alpha\alpha}$.

Power Transistor Circuit Design Check List

Without going into details of the external circuit requirements, the following questions should be considered during selection of a proper power transistor.

(continued on p 80)

No leads to unsolder Four overlapping Beta Ranges . High meter resolution Direct reading with test circuit power off

New Sierra 219B 4-range Transistor Tester reads Beta directly in the circuit; also measures Ico, Beta out of circuit.

Less downtime and less danger of damage to transistors under test with this new Sierra instrument-battery-operated, light weight, portable, easy to use.

Maintenance, quality control, incoming inspection and production testing are just a few of the applications where you save time and money by testing transistors, even complete assemblies, without unsoldering leads. Model 219B reads Beta in the circuit, 1 to 120. Ico is measured on a straightforward basis; collector potentials of 3, 6 or 12 vdc may be selected. All controls are on the front panel ... an instrument of convenience, speed, accuracy,

Write or phone today for information and demonstration.

±20% for external loads over 500 ohms. Improved accuracy above 500 ohms, usable readings below 500 ohms. Out of circuit: ±10%

Test ranges

Accuracy

In circuit:

Power: Internal battery, mercury or zinc-carbon type, 600 hrs. av. life: output indicated on front-panel meter.

SPECIFICATIONS

1co: 0-50, 0-500 µa

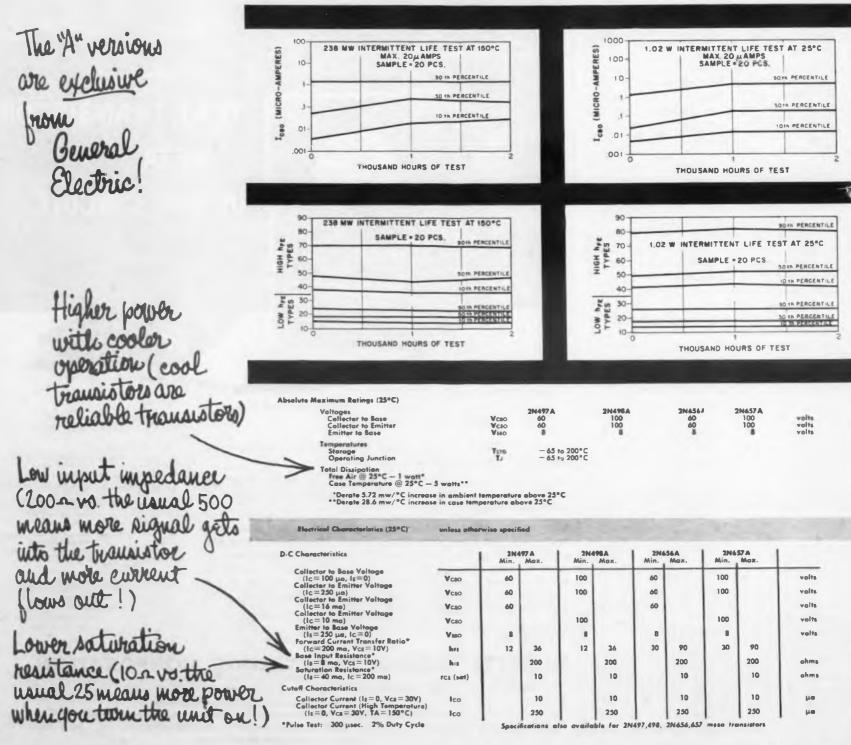
Beta 1-4, 3-12, 10-40, 30-120*

Operating Temperature: 32 to 149 F

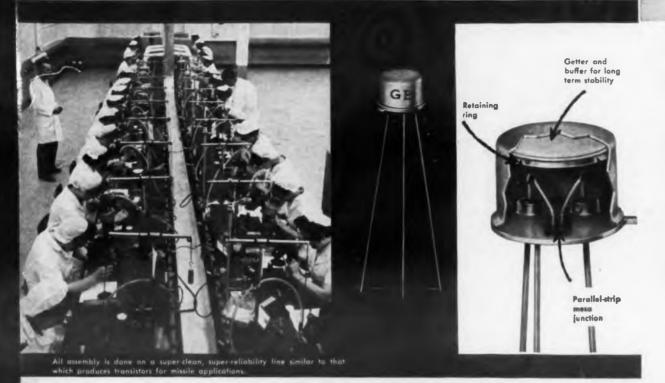
> 9" high, 7%" wide, 6½" deep, weight, 10¼ lb., including batteries. Size:

Price: \$275.00

*Beta readings to 300 may br approximated.



A Division of Philco Corporation 6919K BOHANNON DRIVE . DAvenport 6-2060 . MENLO PARK, CALIF., U.S.A. Sales representatives in all principal areas.


Canada: Atlas Instrument Corporation, Ltd., Montreal, Ottawa, Toronto, Vancouver. Export: Frazar & Hansen, Ltd., San Francisco. CIRCLE 68 ON READER-SERVICE CARD

ELECTRONIC DESIGN . July 5, 1961

The industry's most thoroughly characterized and medium power silicon Mesa transistors...2N497A,

tested 98A, 2N656A, 57A...come from General Electric

Positive internal atmospheric control achieved through the use of General Electric's buffered-sieve encapsulation technique, higher power dissipation with lower saturation resistance and lower input impedance are important features of this line of top quality one to five watt audio switches. Especially well suited for either high level linear amplifier or switching applications, these are the industry's most thoroughly characterized and tested medium power silicon double diffused NPN transistors available today. Just take a look at the extended life test charts illustrated for convincing evidence of long term stability and reliability.

Semiconductor Products Department, Section 23G100, Electronics Park, Syracuse, New York.

For fast delivery of medium power Mesa transistors at factory-low prices in quantities up to 999 call your G-E semiconductor distributor.

Progress Is Our Most Important Product GENERAL E ELECTRIC CIRCLE 94 ON READER-SERVICE CARD

ELECTRONIC DESIGN . July 5, 1961

DISTRICT SALES OFFICES

NORTHEASTERN General Electric Co. Kelley Bdg. Liverpool, N. Y. GRanite 6-4411 General Electric Co. 600 Old Country Road Garden City, N. Y. Ploneer 1-4710 General Electric Co. 200 Main Ave. Clifton, N. J. GRegory 3-6387 General Electric Co. 410 Asylum St. Hartford, Conn JAckson 7-0135 General Electric Co. 701 Washington St. Newtonville, Mass. DEcatur 2-7120

SOUTHEASTERN

General Electric Co. 777—14th St., N.W., Washington, D.C. EXecutive 3.3600 General Electric Co. 104 E Gore Ave. Orlando. Florida CHerry 1-2991 General Electric Co. Barclay Bidg One Beimont Ave. Bala Cynwyd, Pa. GReenwood 7-6237

CENTRAL

General Electric Co. 3800 N. Milwaukee Ave Chicago, III. SPring 7-1600 General Electric Co. 2375 S Hampton Ave St. Louis, Mo. STerling 1-0409 General Electric Co. 3280 Gorham Ave. So. Minneapolis, Minn. WEst 9-4621 General Electric Co. Imperial Office Plaza 17220 W. Eight M le Rd. Southfield, Mich. ELgin 6-1075 General Electric Co. **Talbott Bide** 118 W. 1st St. Dayton, Ohio BAldwin 3-7151 General Electric Co. 2111 S. Green Rd. Cleveland, Ohio EVergreen 2-5650 General Electric Co. P.O. Box 2331 Denver, Colorado DUdley 8-5771 General Electric Co. 3200 Maple Avenue Dallas, Texas Riverside 2-7971

WESTERN

General Electric Co. 11840 W. Olympic Blvd. Los Angeles, Cal. GRanite 9-7763 General Electric Co. Guaranty Bank Bldg. Suite 700 3550 N. Central Ave. Phoenis, Arizona ALpine 8-7724 General Electric Co. 701 Weich Road Palo Alto, Cal. DAvenport 1-6771 General Electric Co. 220 Dawson St. Seattle Wash. PArkway 5-6800 General Electric Co. 121 Broakway St. San Diego, Cal. BE 3-1329

CIRCLE 95 ON READER-SERVICE CARD

TRANSISTORS-1961

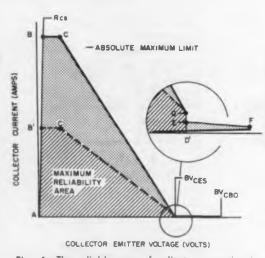
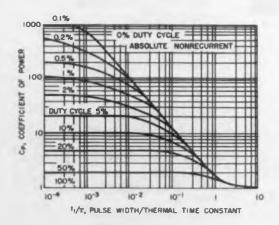



Fig. 6. The reliable area of collector operation is contained within the shaded region shown.

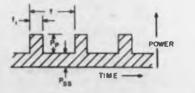


Fig. 7. Curves used in determining peak power of a power transistor.

- 1. What will the maximum load current requirement be?
- 2. What is the output voltage desired and what are the low and high line values of the source or input voltage?
- 3. What driving power is available? This factor is needed to determine the dc current gain required for the maximum and minimum load currents.
- 4. What type of heat sink will be available?
- 5. What will the ambient temperature excursions be?
- 6. Are there any frequency requirements such as a response to a step function?
- 7. What are the cost limitations and availability requirements when considering large scale production?

In referring to the above questions, perhaps the most critical point is the collectoremitter voltage requirement for the specific design conditions. Knowing the voltage extremes and the maximum load current. the power dissipation must be considered in relationship to the heat sink available. With this knowledge, a search is then made for the thermal resistance or power dissipation capability of a suitable device. At this point, a decision might be required necessitating parallel operation for excessive load current requirements or series operation for highvoltage applications.² Series or parallel operation is well worth considering because of the lower price and better availability of less-specialized types. If heat sink considerations limit single power transistor dissipation capability, series operation may be attractive. For a given heat sink size and a stated maximum dissipation, the individual junction temperature rise for two transistors in series will be one-half the rise of a single unit. The same advantage is offered with parallel operation.

Assume a condition of 80 C case temperature and power dissipation sufficient to raise the junction temperature of a single unit to 105 C. This would indicate a power dissipation of approximately 30 w if the thermal resistance junction to case was 0.8 C per watt. This 30 w would be divided between two transistors if series operation was used therefore dissipating 15 w per unit or a junction temperature rise of 12.5 C per transistor. The junction temperature will now be 92.5 C for both devices instead of the single unit at 105 C.

Checkout for Reliable Circuit Design

A design is not complete until an examination is made of the reliability of the circuit. It is of utmost importance to examine the safe area of operation and the load line characteristic of each power transistor used in any equipment.

Definite areas of reliable operation can be predicted in devices such as germanium pnp power transistors. In Fig. 6, the region indicated as "maximum reliability" denotes safe operation with little chance of device burnout. The cross-hatched area is a derated zone of operation which may be considered safe for momentary excursions but may result in a collector-to-emitter short. To evaluate line or load surges which instantaneously place the transistor into higher dissipation, a set of curves based upon the thermal time constant, pulse width, and duty-cycle is included on the data sheet as shown in Fig. 7. Determination of Peak Power: The peak allowable power is; from Fig. 7,

$$P_{\mu} = \frac{(T_{i} - T_{A} - \theta_{A}P_{a})}{\theta_{\mu}\left(\frac{1}{C_{\mu}}\right) + \theta_{CA}(t_{i}/t)}$$

 C_p is a coefficient of power as obtained from the data chart. T_i is junction temperature in C; T_{\perp} is ambient temperature in C; $\theta_{Je} + \theta_{CA}$; t_1 is pulse width; t is the pulse period; (t_1/t) is the duty cycle; P_{aa} is a constant power dissipation and P_p is the additional allowable pulse power dissipation above the amount of P_{aa} .

The above equation applies when a heat sink is used which has thermal capacity much larger than the transistors' thermal capacity.

The chart in Fig. 7a is normalized with respect to the thermal time constant, which is on the order of 50 msec for these power transistors. Consider a typical example as follows:

$$P_{ss} = 10 \text{ w}$$
 $T_A = 40 \text{ C}$
Pulse width $(t_1) = 1 \text{ msec}$
Duty Cycle $= 20\%$
 $\theta_{cA} = 3 \text{ C/w}$
 $\theta_{sc} = 0.8 \text{ C/w}$ $T_{sm} = 100 \text{ C}$
Solution: Enter the graph at t_1/τ

msec/50 msec, and duty cycle 20%. Find $C_p = 5$. Solve equation

= 1

$$P_{p} = \frac{100 - 40 - (3 + 0.8) \ 10}{\frac{0.8}{5} + 3 \times 0.2}$$

 $P_p = 29$ w in addition to the steady 10 w resulting in 39 w peak.

Reference

1. "How to Design Economical High-Voltage Circuits", Motorola Semiconductor Products, Inc., Phoenix, Ariz. 2. Motorola Power Transistor Handbook, First Edition, pg. 33-34.

CIRCLE 155 THRU 160 ON READER-SERVICE CARD >

A NEW UP-TO-DATE CATALOG

SEMICONDUCTOR DEVELOPMENTS

OF TRANSITRON

FEATURING • What's new in Controlled Rectifiers • Breakthroughs in micro component packaging • How Transitron has applied Minuteman reliability to its broad line of semiconductors • A library of semiconductor literature • SPECIAL FOR PURCHASING AGENTS AND BUYERS, "25 Tips On How To Buy Semiconductors" • It's all here — UNDER THE FLAP

The latest addition to the Transitron line, the 50-Amp Silicon Controlled Rectifier, is a three-terminal, four-layer device designed to control very large load currents with small gate current signals. A mechanically rugged and electrically stable device, the new Controlled Rectifier is provided in the $1\%_{6}$ " hex base stud-

mounted package and is hermetically sealed. Wherever high power handling ability is required, the 50-Amp Silicon Controlled Rectifier will find wide application ranging from frequency changing to welding control.

		RIES (1%," h		
Туре	Minimum Peak Reverse Volt and Minimum Forward Breakover Voltage (volts)	Maximum Average Forward Current at 90°C case (amps)	Package Configuration	Package
TCR4050	400,	50.	1%s" hex	A
TCR3050	300.	50.	1%," hex	A
TCR2050	200.	50.	1%s" hex	A
TCR1050	100.	50.	1%, " hex	A
TCR550	50.	50.	1%s" hex	A

PLUS FIVE OTHER VERSATILE PACKAGES

Transitron continues to offer the broadest line of Silicon Controlled Rectifiers in the industry. Available in six different and versatile packages, these rugged devices offer greater reliability and efficiency while replacing thyratrons, magnetic amplifiers, and other switching devices in many varied applications.

Туре	Minimum Peak Reverse Voltage and Minimum Forward Breakover Voltage (volts)	Forward (an	n Average Current nps) at 100° case	Pack- age Config- uration	Pach
TCR1020	100.	20.	10.	"Ma" hex	8
TCR2020	200.	20.	10.	"%e" hex	B
TCR3020 TCR4020	300.	20.	10.	¹‰″ hex	8
TCR1010	100.	10.	5.0	"%s" hex	B
TCR2010	200.	10.	5.0	"%s" her	B
TCR3010	300.	10.	5.0	"Yis" hex	8
TCR4010	400.	10.	5.0	"%a" hex	B

Transitron

CONTINUED INSIDE

SILICON CONTROLLED RECTIFIERS - closely controlled electrical characteristics plus a high degree of mechanical ruggedness

¹%⁶, %⁶, %⁶ HEX PACKAGES (B, C, D)

Transitron's Silicon Controlled Rectifiers are PNPN high power bistable controlled switching devices. They are analogous to a thyratron or ignitron, with far smaller triggering requirements and microsecond switching. The low conduction drop permits current ratings up to 20 amperes and provides high efficiency with low cooling requirements. Also, blocking voltages up to 500 volts permit the smallest packaging yet made possible for high power control. Operation at 125 C is permissible with derating.

TO-5 PACKAGE (E)

The TO-5 package configuration also has a low conduction drop which permits operations from 25 ma to 1 ampere (types 2N1595 - 2N1599) and 5 ma to 1 ampere (Types TCR 251 - TCR 4001). Operating and storage temperature range is from -65 C to 150 C. Typical turn-on time is 0.2 to 0.3 microseconds; turn-off time is 1.0 to 1.2 microseconds.

TO-18 PACKAGE (F)

Transitron's Silicon Controlled Switch is also a PNPN bistable unit featuring high gate sensitivity and low holding currents for low level switching from 1 ma to 200 ma. Further, these units are particularly useful in controlled rectifier trigger circuits as these switches offer precise and consistent control of the firing angle. Typical turn-on time is 0.2 microseconds; turn-off time, 1.0 microseconds.

For information on Transitron's complete line of Controlled Rectifiers and Controlled Switches check 155 Reader Service Card, or write for Bulletin TE-1356.

Туре	Minimum Peak Reverse Voltage and Minimum Forward Breakover Voltage (volts)	Maximum Forward (am) at 25 'C case	Current	Pack- age Config- uration	Pack
2N683	100.	16.	8.	%s" hex	С
2N685	200.	16.	8.	%s" hex	C
2N687	300.	16.	8.	%s" hex	C
2N688	400.	16.	8.	%," hex	C
2N689	500.	16.	8.	%," hex	C
2N1844	100.	10.	4.*	%s" hex	C
2N1846	200.	10.	4.*	%s" hex	C
2N1848	300.	10.	4.*	%, " hex	C
2N1849	400	10.	4.*	%a" hex	C
2N1850	500.	10.	4.*	%s" hex	C
TCR1005	100.	5.0	3.0	%" hex	D
TCR2005	200.	5.0	3.0	1/16" hex	D
TCR 3005	300.	5.0	3.0	%" hex	0
TCR4005	400,	5.0	3.0	1/4" hex	D
2N1600	50.	3.0	3.0*	%s" hex	D
2N1601	100	3.0	3.0*	%," hex	D
2N1602	200.	3.0	3.0*	%6" hex	D
2N1603	300	3.0	3.0*	%s" hex	D
2N1604	400.	3.0	3.0*	1/16" hex	D
2N1772A	100.	4.7	3.	%4" hex	0
2N1774A	200	4.7	3.	%s" hex	D
2N1776A	300.	4.7	3.	‰" hex	D
2N1777A	400	4.7	3.	%" hex	0
2N1772	100.	4.7	3.	1/16" hex	D
2N1774	200.	4.7	3.	1/16" hex	0
2N1776	300.	4.7	3.	%s" hex	D
2N1777	400.	4.7	3.	%" hex	D
2N1595	50.	0.6**	1.0*	TO-5	E
2N1596	100.	0.6**	1.0*	TO-5	E
2N1597	200.	0.6**	1.0*	T0-5	E
2N1598	300.	0.6**	1.0*	T0-5	E
2N1599	400.	0.6**	1.0*	T0-5	E
2N2011 (TCR1001)	100.	0.6**	1.0*	TO-5	E
2N2012 (TCR2001)	200.	0.6**	1.0*	TO-5	E
2N2013 (TCR3001)	300_	0.6**	1.0*	TO-5	E
2N2014 (TCR4001)	400.	0.6**	1.0*	10-5	E
	SILICON CO		SWITCH	1	
2N948 (TSW31S)	30.	0.2**	0.21	TO-18	F
2N949 (TSW61S)	60.	0.2**	0.2†	TO-18	F
2N950 (TSW101S)	100.	0.2**	0.2†	TO-18	F

Transitron electronic corporation

ĺ.

SILICON DIODES - advanced techniques insure long-term mechanical and electrical stability

	C	OMPUTER	TYPES		
Туре	Maximum Inverse Operating Voltage (volts)	Maximum Average Forward Current @ 25°C (mA)	Maximum Recovery Time (mµsec)	Maximum Capacitance at 0 Volts (µµf)	Package
1N914*	75.	75.	4,	4.	A
1N916*	75.	75.	4.	2.	A

"Alse available in micro package

Type	Nominal" Voltage (volts)	Test Current (mA)	Maximum Dynamic Resistance (ohms)	$\begin{array}{l} \mbox{Maximum} \\ \mbox{Inverse Current} \\ \mbox{(μA$)} \end{array} \\ \end{array}$	Typical Forward Voltage @ 5.0 mA (volts)	Pack age
TMD-01	5.1	5	15	1.0	0.75	
TMD-02	5.6	5	15	1.0	0.75	B
TMD-03	6.2	5	15	1.0	0.75	8
TMD-04	6.8	5	15	1.0	0.75	B
TMD-05	7.5	5	15	0.1	0.75	B
TMD-06	8.2	5	15	0.1	0.75	B
TMD-07	9.1	5	15	0.1	0.75	B
TMD-08	10.0	5	15	0.1	0.75	B
TMD-09	11.0	5	20	0.1	0.75	B
TMD-10	12.0	5	20	0.1	0.75	B

Tolerance use "A" suffix (i.e. TMD-01A).

FAST SWITCHING

Туре	Maximum Inverse Operating Voltage (volts)	Maximum Average Forward Current @ 25°C (mA)	Maximum Recovery Time (µsec)	Package
TMD24	50.	50.	0.3	8
TMD25	100.	50.	0.3	8
TMD27	200.	50.	0.3	B

VERY FAST SWITCHING

TMD50	60.	20.	.004	B
NEWI COMPUT	ER TYPE D	IDDES AVAIL	ABLE IN MICRO PA	CKAGE
TMD54 (1N914)	75.	75.	.004	8
TM056 (1N916)	75.	75.	.004	B

HIGH CONDUCTANCE TYPES

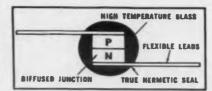
Туре	Maximum Inverse Operating Voltage (volts)	Maximum Average Forward Current @ 25°C (mA)	Maximum Inverse Current @ 25°C (µÂ @ volts)	Package
TMD-41	50.	75.	0.25 @ 50	B
TMD-42	100.	75.	0.25 @ 100	
TMD-45	200.	75.	0.25 @ 200	B

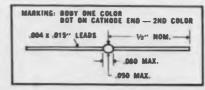
MICRO-STABISTORS

Туре	Forward Voltage @ 1 mA DC (volts)	Maximum Forward Voltage @ 20 mA DC (volts)	Maximum Dynamic Resistance @ 1 mA @ 1 KC (ohms)	Maximum inverse Current @ - 2 volts DC (μA)	Pack-age
TMD20	0.64 ± 10%	0.85	60	0.5	
TMD40	0.55 ± 10%	0.85	60	0.5	B

1N914 AND 1N916 COMPUTER TYPE SILICON DIODES

Transitron now offers the industry superior reliability in diffused silicon computer diodes. Low capacitance and milli microsecond switching are combined with low inverse currents, high breakdown voltages and good forward switching characteristics. A double plug package insures added strength and strain relief at both ends.


The 1N914 and 1N916 will find applications wherever fast switching and high reliability diodes are required.


For Complete Information on Transitron's Computer Type Silicon Diodes, check 156 Reader Service Card, or write for Bulletin TE-1350G

SILICON MICRO DIODES WITH A TRUE HERMETIC SEAL!

With the introduction of all-glass packaging, Transitron now has been able to achieve TRUE hermetic sealing for its entire line of silicon microdiodes! . . . All units are completely compatible with present circuitry . . . All provide the same excellent performance as larger Transitron devices in 1/4th to 1/40th the space. Glass is melted around the silicon body that forms the working part of the device. Absolute hermetic sealing makes this the most reliable and efficient micro-regulator ever developed --- ideal for voltage regulating and reference service wherever space and weight economies are required.

For Complete Information on these Transitron Micro Zoner Diodes, check 157 Reader Service Card

SEE TRANSITRON'S COMPLETE LINE OF SEMICONDUCTORS AT WESCON BOOTHS 3502-3504

SILICON T superior b extended

Transitron, pionee. ducer of the indu ductors now offers

	2N1131
	2N1132
NPN	2N696
	2N697
	2N698
	2N699
	2N1252 2N1253
	2N706

2N1420

Type	Maximum Collector Voltage V _{cb} (volts)
2N1131	40
2N1132	40.
2N696	60
2N697	60.
2N698	100
2N699	100
2N1252	30.
2N1253	30.
2N706	25
2N1420	60

For Complete Infor 158 Reader Service

MINUTEMAN T and Titan High improvements h semiconductor improved: Low **Power NPN Si** mediate Powe These types ar **Transitron Distr**

IN TRANSISTORS - with or beta linearity permit ded operating range

pioneering developer of silicon transistors and prothe industry's broadest line of high-quality semiconw offers these popular types.

N1131	(multi-purpose medium power)
N1132	Write for Bulletin TE-1354-1131
2N696	(multi-purpose medium power)
2N697	Write for Bulletin TE-1354-696
2N698	(high voltage medium power)
2N699	Write for Bulletin TE-1354-698
N1252	(low storage time medium power)
N1253	Write for Bulletin TE-1354-1252
2N706	(high speed logic transistor, small signal) Write for Bulletin TE-1353-706
N1420	(multi purpose medium power) Write for Bulletin TE-1354-1420

SILICON TRANSISTORS

Maximum Collector Voltage (volts)	Minimum DC Common Emitter Current Gain, Ba	Typical Collector Saturation Voltage (volts o mA)	Typical Cut-off Frequency (Mc)	Maximum Power Dissipation (a 100 C Case (watts)
40	15 (a 150mA	1.0 @ 150	50.	1
40.	30. @ 150mA	1.0 @ 150	60.	1.
60	20. @ 150mA	08@150	80	1
60.	40 @ 150mA	08 @ 150.	100	1.
100	20. @ 150mA	3. @ 150	80.	1.
100	40 @ 150mA	3. @ 150.	100.	1.
30.	15. @ 150mA	08@150.	90.	L
30.	30 @ 150mA	0.8 @ 150.	110.	1.
25	20. @ 10mA	0.3 @ 10	400	0.5
60	100. @ 150mA	0.7 @ 150.	100.	1.

ate Information on these Transitron Silicon Transistors check r Service Card, or write for Bulletins indicated.

MAN TYPES — As a result of the Minuteman in High-Reliability Programs, many significant ments have been effected in Transitron's various ductor lines. Among the families evaluated and d: Low Noise Type Silicon Transistors, Medium NPN Silicon Transistors, 7/6" Hex Base Inter-Power and High Power Silicon Transistors. pes are now available in quantity from your n Distributor.

Leadership in Semiconductors"

LIBRARY OF APPLICATIONS INFORMATION

Transitron now has available additional literature covering circuit design, operation, and application of various semiconductor types: ----

- THE BIASING of Silicon Controlled Rectiflers and Switches (AN-1356B-7B)
- THE TUNNEL DIODE CIRCUIT DESIGN HANDBOOK (AN-1359A)
- THE SILICON CONTROLLED RECTIFIER -Theory of Operation

 Application Circuits (AN-1356A) Notes
- THE BINISTOR Circuit Design Information and Application Notes (AN-1360A)
- THE TRANSWITCH Circuit Design Information and Application Notes (AN-1357A)

PLUS

"25 Tips on How to Buy Semiconductors" **FREE!**

Write directly to Transitron Electronic Corporation, Wakefield, Mass. for your copies. Or contact your nearest Transitron Industrial Distributor shown on the other side of this foldout.

APPLICATION ASSISTANCE

If you would like application assistance on immediate projects in the selection of

- MICRO-COMPONENTS
 - CONTROLLED RECTIFIERS
 - SILICON TRANSISTORS
 - SILICON DIODES
 - OTHER TRANSITRON TYPES

contact your nearest Transitron Field Office, or write directly to Transitron Electronic Corporation outlining your requirements.

WANT MORE INFORMATION?

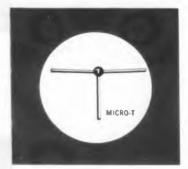
If you would like to have more complete information on any of the new Transitron semiconductor types shown on these pages, please circle the appropriate Reader Service Number(s) on the Electronic Design Reader Service Card.

SEE YOUR AUTHORIZED DISTRIBUTOR FOR QUANTITIES FROM 1-999

Transitron M Micro

PRESENTED BY THESE AUTHORIZED TRANSITRON INDUSTRIAL DISTRIBUTORS

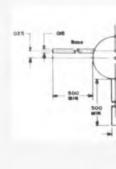
- BELL ELECTRONIC CORP. 225 Highland Cross Rutherford, N.J. WEbster 3-1460
- H. L. DALIS, INC. 35-35 24th St. Long Island City 6, N.Y. EMpire 1-1100
- FEDERAL ELECTRONICS, INC. Vestal Parkway, East Binghamton, N.Y. Ploneer 8-8211


MILO ELECTRONICS CORP. 530 Canal St. New York 13, N.Y. BEekman 3-2980

RADIO ELECTRIC SERVICE CO. of PENNA., INC. 701 Arch St. Philadelphia, Pa. WAlnut 5-5840

RADIO EQUIPMENT CORP. 147 E. Genesee St. Buffalo 3, N.Y. TL 6-1415

RADIO and ELECTRONIC PARTS CORP. 3235 Prospect Ave. Cleveland 15, Ohio UTah 1-6060

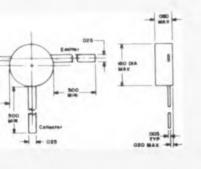

TB

TRUE HERMETIC ASSURES RELIAI UNDER A WIDE OPERATING CO

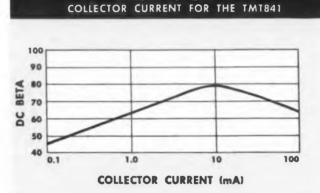
Development of the MICROtransistor in an hermetical sents a major step forward with conventional "metal ca glass packaging embodies hermetic seal between lei stantially increased; possibil

For Complete Information, che Bulletins PB-78, PB-79.

A Transitron tron field of home office. listed on the



Micro-T- the first silicon diffused mesa ro-Transistor in an all glass package!


AETIC SEAL ELIABLE PERFORMANCE WIDE RANGE OF G CONDITIONS

MICRO-T — first silicon diffused mesa micrometically sealed all-glass package — repreforward in microminiaturization. As compared hetal can'' configurations, the MICRO-T's hard hobdies a significant improvement in the een leads and package, Reliability is subpossibility of leakage is sharply reduced.

tion, check 159 Reader Service Card or write for

		Al	MPLIFIER TYPES		
Туре	Maximum Collector Voltage (Volts)	Minimum AC Beta (hie)	Typical Gain-Bandwidth Product (Mc)	Maximum Collector Leakage Current at 25°C (µA)	Maximum Power Dissipation at 25°C Ambient (mW)
TMT 839	45	20	45	1	150
TMT 840	45	40	45	1	150
TMT 841	45	80	65	1	150
		SI	WITCHING TYPES		
Туре	Maximum Collector Voltage (Volts)	Minimum DC Beta (hrɛ)	Typical Gain-Bandwidth Product (Mc)	Maximum Saturation Resistance (Ohms)	Maximum Power Dissipation at 25 C Ambient (mW)
TMT 842	45	20	45	120	150
TMT 843	45	45	65	120	150

TYPICAL DC BETA VS.

tron Sales Engineer is as near as your telephone. Transil offices are well staffed and in constant contact with the ce. For orders from 1 to 999 call the nearest distributor the foldout page

See Transitron's complete line of semiconductors at WESCON Booths 3502- 3504

TEAR OUT AND SAVE

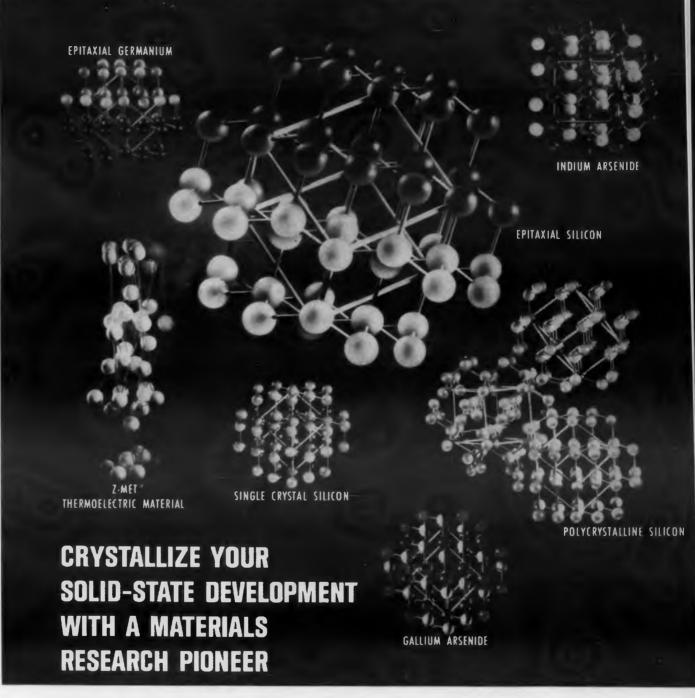
On electronic corporation T wakefield, melrose, boston, mass.

ship in Semiconductors"

Updated Transistor List Contains Many Improved Types

Over 600 new types are included in this year's Transistor Data Chart. A high percentage of last year's types are upgraded in electrical characteristics such as power dissipation and cut-off frequency. Improvements in transistor fabrication techniques have resulted in the availability of high-power, highfrequency devices plus fastswitching epitaxial transistors.

The increasing quantity of types, of course, presents a growing problem to the design engineer in search of a particular one. Less than two dozen former types were abandoned. The addition of types bearing new JEDEC numbers, with marginal improvements (if any) over existing types, adds to the selection problem.


ELECTRONIC DESIGN'S organization of its Transistor Data Chart into basic types and its listing of types by the increasing value of a key characteristic make selection as straight-forward as possible.

If you would like a free reprint of this section, turn to the Reader-Service Card and circle **251.**

July 19—Case for Switching Speed

Due to space limitations, we were forced to postpone publication of a provocative argument posed by Charles Askanas, Engineering Project Manager at Lumatron Electronics. Titled "Optimum Test Limit for Transistor Switching-Circuit Measurements," the article offers a justification for the use of 20 and 80 per cent test points rather than 10 and 90 per cent points, presently used to characterize switching devices. Be sure to read the analysis in the July 19 issue; your comments on the validity of the argument are invited.

CIRCLE 70 ON READER-SERVICE CARD > CIRCLE 155 THRU 160 ON READER-SERVICE CARD

Your profits in the next decade will be greatly benefited by the right choice of supplier of solid-state materials.

The key question is what criteria to use in making the choice. The simplest, most reliable criterion has to be PAST PERFORMANCE.

Judged on this basis the Electronic Chemicals Division of Merck & Co., Inc. deserves your attention. In just four short years, it has achieved these exclusive major breakthroughs:

1958 Float zone, vacuum refined, doped single crystal silicon \cdot 1959 Z-Met^{*} Thermoelectric materials 1960 Epitaxial silicon N+ N wafers and III-V Compounds \cdot 1961 Epitaxial germanium P+ P wafers

When you hitch your product development to Merck materials research you are enlisting a proved producer. If you want to be the first to exploit new solid-state materials breakthroughs, join the ranks of Merck customers today. Write, wire or phone your needs, problems, hopes. •Trademark

RESEARCH and PRODUCTION FOR BETTER SOLID-STATE MATERIALS

TRANSISTORS-1961

9

Latest Listings of Military Approved Transistors

To encourage the use of improved transistor types in the design of new military equipment, MIL-STD-701A has been updated, with Department of Defense approval, by MIL-STD-701B. New types have been added, some older types have been dropped and several "guidance" types have been upped to the "preferred" category. MIL-STD-701B types are grouped in a convenient application chart shown in Table 1. A list of the DOD, as well as single-service types with specification numbers and issue dates is in Table 2.

Table 1

			Germa	nium	Silicon	
			PNP	NPN	PNP	NPN
	Audio (<300 mw)	Preferred	2N526 2N652A 2N467		2N1026A	2N335
			2N220		21110204	->+11+
DW	Medium frequency	Preferred	0012000	2N1308	2N1118	2N338
DW 81	(3 to 30 mc)	Guidance	2N1309			
	High frequency		2N384 2N700A		1-1.000	3N35
	(>30 mc)	Guidance	2N1142	1 111		2N1613
	Low speed (>5 µsec total time)	Preferred Guidance	2N398	10111-9	2N329A	
	µsec total time)	Preferred	2N404	2N358A	COLUMN 2	*****
	Medium speed	Treferreu	2N428 2N396A	2N388	noie	
	(1 to 5 µsec)			******	2N491	
		Guidance	2N599	2N1310	2N1119	2N337
witching		Preferred	2N705	ma	112123	2N697 2N706
			2N559		2N1132	2N560
	Fast speed (<1 µsec)	Guidance	2N1500 2N695 2N1195			2N1893
	Bilateral switch	Preferred			(comment	
1	(medium speed)	Guidance			DOTTO	
		Preferred			·	11.044
	300 mw to 3 w	Guidance	2N1039 2N1041	110135		2N341
	3 to 30 w	Preferred	2N539			2N498 2N657
Power	0.000	Guidance	2N1184B	2N326		2N148
Power		Preferred	2N297A 2N1358	Sec. 11		
	>30 w	Guidance	2N1120 2N1165 2N1046	*****		2N389 2N424 2N1050 2N1010

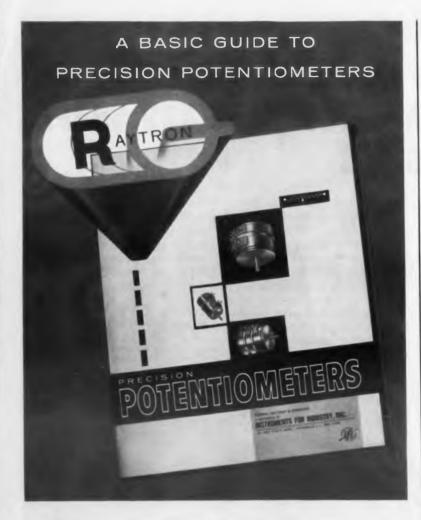
Table 2						
ype	Specification	Date				
N43A	MIL-T-19500/18(USAF)	Amend 2. 10 November 1958				
N44A	MIL-T-19500/6(USAF)	Amend 1. 10 April 1958				
N78A	MIL S 19500/90(USAF)	23 May 1960				
N117	MIL-T-19500/35(NAVY)	15 March 1958				
N118	MIL T 19500/35(NAVY)	15 March 1958				
N119	MIL-T 19500/35(NAVY)	15 March 1958				
N118 N123	MIL-T-19500/2(JAN) MIL-T-19500/30(USAF)	12 December 1957 4 February 1959				
N128	MIL T 19500/9A(JAN)	12 June 1959				
N129	MIL-T-19500/8(SigC)	21 July 1958				
N144	MIL-T-19500/29(USAF)	Dropped				
N158	MIL S 19500/24A(JAN)	27 November 1959				
N167A	MIL-S-19500/11A(USAF)	23 May 1960				
N173	MIL-T-19500/12(NAVY)	Dropped				
N174	MIL-T-19500/13A(JAN)	B January 1958				
2N200	MIL-T-19500/5	Dropped				
2N220	MIL-T-19500/1	14 June 1957				
2N240	MIL-S-19500/25A(JAN)	5 November 1959				
2N243 2N244	MIL T 19500/34(USAF) MIL T 19500/34(USAF)	Dropped Dropped				
N245						
2N245 2N246	MIL T 19500/14(USAF) MIL T 19500/15(USAF)	Dropped Dropped				
2N274	MIL T 19500/26(SigC)	3 October 1957				
2N297A	MIL T 19500/36A(SigC)	17 November 1953				
2N299	MIL T 19500/39(SigC)	Dropped				
2N300	MIL-T-19500/55(SigC)	21 July 1958				
2N325	MIL-S-19500/40(JAN)	29 February 1960				
2N326	MIL-S-19500/40(JAN)	29 February 1960				
2N328A	MIL \$ 19500/110(SigC)	Amend 1, 13 May 1960				
2N329A	MIL S 19500/111(SigC)	Amend 1 13 May 1960				
2N331	MIL T 19500/4A	16 January 1958				
2N332	MIL T 19500/37A(NAVY)	18 June 1959				
2N333	MIL T 19500/37A(NAVY)	18 June 1959 18 June 1959				
2N334 2N335	MIL T 19500/37A(NAVY) MIL T 19500/37A(NAVY)	18 June 1959 18 June 1959				
2N337	MIL S 19500/69C(NAVY)	14 October 1960				
2N337	MIL S 19500/69C(NAVY)	14 October 1950				
2N342	MIL-S-19500/16B(JAN)	24 February 1960				
2N343	MIL S 19500/16B(JAN)	24 February 1960				
2N358A	MIL S 19500/63B(JAN)	23 May 1960				
2N384	MIL-S-19500/27A(JAN)	20 January 1960				
2N388	MIL T 19500/65(NAVY)	20 March 1959				
2N393	MIL S 19500/77A(SigC)	30 October 1959				
2N396A	MIL S 19500/64A(NAVY)	27 October 1959				
2N404	MIL T 19500/20(USAF)	Amend 2 3 March 1959				
2N416	MIL T 19500/56A(SigC)	3 February 1959				
2N417	MIL T 19500/57A(SigC) MIL T 19500/66A(NAVY)	3 February 1959 26 June 1959				
2N422 2N425	MIL T 19500/86A(NAVT) MIL T 19500/41A(SigC)	26 January 1959				
2N426	MIL T 19500/42A(SigC)	26 January 1959				
2N427	MIL T 19500/43A(SigC)	26 January 1959				
2N428	MIL-S-19500/44B(SigC)	20 3010019 1999				
2N431	MIL T 19500/21(USAF)	Amend 1 10 4pr 1958				
2N432	MIL T 19500/22(USAF)	Amend 1 10 2oril 1958				
2N433	MIL T 19500/23(USAF)	Amend 1 10 April 1958				
2N461	MIL T 19500/45(USAF)	7 July 1958				
2N463	MIL T 19500/70(NAVY)	14 May 1959				
2N464	MIL T 19500/49B(SigC)	3 February 1959				
2N465	MIL-T-19500/50A(SigC)	3 February 1959				
2N466	MIL-S-19500/51B(SigC)	17 August 1960				
2N467 2N489	MIL T 19500/52B(SigC) MIL T 19500/75(USAF)	3 February 1959 1 July 1959				
2N489	MIL-T-19500/75(USAF)	1 July 1959				
2N491	MIL T 19500/75(USAF)	1 July 1959				
2N492	MIL T 19500/75(USAF)	1 July 1959				
2N493	MIL T 19500/75(USAF)	1 July 1959				
2N494	MIL T 19500/75(USAF)	1 July 1959				
2N495	MIL T 19500/54A(SigC)	13 August 1959				
2N496	MIL S 19500/85(SigC)	Amend 1 22 March 1960				
2N497	MIL T-19500/74(NAVY)	30 June 1959				
2N498						
2N499	MIL T-19500/72A(SigC)	4 January 1960				
2N501A	MIL T-19500/62(SigC)	5 December 1953				
2N502A	MIL S 19500/112(SigC)	4 April 1960				
2N526	MIL-S 19500/60C(JAN)	29 July 1960				
2N537	MIL-S-19500/100(SigC)	30 November 1959				
2N539 2N545	MIL T 19500/38(NAVY) MIL S 19500/84(NAVY)	28 May 1958 24 February 1960				
2N545 2N559	MIL S 19500/84(NAVY) MIL S 19500/152(SigC)	7 December 1960				
2N560	MIL S 19500/73A(JAN)	29 July 1960				
2N574	MIL-T-19500/46(SigC)	22 May 1960				
2.0074	(SIEC)					

Туре	Specification	Date
2N575	MIL T-19500/47(SigC)	22 May 1960
2N599	MIL S 19500/66(NAVY)	25 January 1961
2N624	MIL-T-19500/82(SigC)	10 August 1959
2N656	MIL-T-19500/74(NAVY)	30 June 1959
2N657	MIL T 19500/74(NAVY)	30 June 1959
2N665	MIL-S-19500/58B(JAN)	12 July 1960
2N681	MIL-S-19500/108(NAVY)	22 March 1960
	Controlled Rectifiers	
2N682	MIL-S-19500/108(NAVY)	22 March 1960
	Controlled Rectifiers	
2N683	MIL-S-19500/108(NAVY)	22 March 1960
	Controlled Rectifiers	
2N684	MIL-S-19500/108(NAVY)	22 March 1960
	Controlled Rectifiers	
2N685	MIL S 19500/108(NAVY)	22 March 1960
	Controlled Rectifiers	
2N686	MIL S 19500/108(NAVY)	22 March 1960
2N687	Controlled Rectifiers	22 14-11-10/0
219087	MIL S 19500/108(NAVY)	22 March 1960
2016.00	Controlled Rectifiers	
2N688	MIL S-19500/108(NAVY)	22 March 1960
2N694	Controlled Rectifiers MIL-S-19500/160(SigC)	9 December 1960
2N695	MIL S 19500/135(NAVY)	
		17 October 1960
2N696	MIL S 19500/99A(SigC)	
2N697 2N700A	MIL-S-19500/99A(SigC) MIL S 19500/123(SigC)	1 April 1960 1 July 1960
2N702	MIL S 19500/123(SigC) MIL S 19500/153(SigC)	7 December 1960
2N703	MIL S 19500/153(SigC)	7 December 1960
2N705	MIL S 19500/86(NAVY)	6 June 1960
2N706	MIL S 19500/120(SigC)	2 June 1960
2N716	MIL S 19500/154(SigC)	7 December 1960
2N1000	MIL T-19500/79(SigC)	22 June 1959
2N1001	MIL S 19500/81(SigC)	17 June 1959
2N1002	MIL S 19500/83(SigC)	10 August 1959
2N1011	MIL T 19500/67(SigC)	22 January 1959
2N1025	MIL S 19500/78A(SigC)	7 December 1959
2N1026	MIL S 19500/78A(SigC)	7 December 1959
2N1026A	MIL S 19500/78A(SigC)	7 December 1959
2N1039	MIL S 19500/89(NAVY)	21 July 1960
2N1041	MIL S 19500, 89(NAVY)	21 July 1960
2N1042	MIL S 19500/137(SigC)	8 September 1960
2N1043	MIL \$ 19500/137(SigC)	8 September 1960
2N1044	MIL S 19500/137(SigC)	8 September 1960
2N1045	MIL S 19500/137(SigC)	8 September 1960
2N1046 2N1072	MIL S 19500/88(NAVY)	21 July 1960
2N1072	MIL S 19500/163(SigC) MIL S 19500/103(SigC)	5 January 1961 18 December 1959
2N1094	MIL S 19500/161(SigC)	9 December 1959
2N1118	MIL S 19500/138(SigC)	
2N1119	MIL S 19500/138(SigC) MIL S 19500/139(SigC)	9 September 1960 9 September 1960
2N1120	MIL T 19500/68(SigC)	10 February 1960
2N1142	MIL S 19500/87(NAVY)	15 August 1960
2N1158A	MIL S 19500/113(SigC)	4 April 1960
2N1183	MIL S 19500/143(SigC)	10 October 1950
2N1183A	MIL S 19500/143(SigC)	10 October 1950
2N1183B	MIL S 19500/143(SigC)	10 October 1950
2N1184	MIL S 19500/143(SigC)	10 October 1950
2N1184A	MIL \$ 19500/143(SigC)	10 October 1950
2N1184B	MIL S-19500/143(SigC)	10 October 1950
2N1195	MIL S 19500/71B(JAN)	29 July 1960
2N1196	MIL S 19500/164(SigC)	6 January 1961
2N1197	MIL S 19500/165(SigC)	6 January 1961
2N1199A	MIL S-19500/131(SigC)	25 July 1960
2N1200	MIL S 19500/105(SigC)	28 December 1959
2N1201	MIL S 19500/101(SigC)	30 November 1960
2N1302	MIL S-19500/126(NAVY)	
2N1303 2N1304	MIL S-19500/126(NAVY) MIL S-19500/126(NAVY)	
	MIL S 19500/126(NAVY)	
2N1305 2N1306	MIL S 19500/126(NAVY) MIL S 19500/126(NAVY)	
2N1306 2N1307	MIL S 19500/126(NAVY) MIL S 19500/126(NAVY)	
2N1307 2N1308		
2N1308	MIL S 19500/126(NAVY) MIL S 19500/126(NAVY)	
	MIL S 19500/136(NAVY)	
2N1310		201 June 1960
2N1358	MIL S 19500/122(SigC)	
2N1358 2N1411	MIL S 19500/133(SigC)	3 August 1960
2N1358		

SPECIFY ARNOLD IRON POWDER CORES COMPLETE RANGE OF SIZES AND SHAPES FOR YOUR DESIGNS

Arnold offers you the widest range of shapes and sizes of iron powder cores on the market.

In addition to toroids, bobbin cores and cup cores—typical groups of which are illustrated below—Arnold also produces plain, sleeve and hollow cores, threaded cores and insert cores, etc., to suit your designs. Many standard sizes are carried in warehouse stock for prompt shipment, from prototype lots to production quantities. Facilities for special cores are available to order.


The net result is extra advantage and assurance for you. No matter what shapes or sizes of iron powder cores your designs require, you can get them from a single source of supply—with undivided responsibility and a single standard of known quality. And Arnold's superior facilities for manufacture and test assure you of dependably uniform cores, not only in magnetic properties but also in high mechanical • For more information on Arnold iron powder cores, write for a copy of our new 36-page Bulletin PC-109A. The Arnold Engineering Company, Main Office and Plant, Marengo, Illinois.

BRANCH OFFICES and REPRESENTATIVES IN PRINCIPAL CITIES • Find them FAST in the YELLOW PAGES

CIRCLE 71 ON READER-SERVICE CARD

The Raytron Catalog of Precision Potentiometers describes, illustrates and provides electrical, mechanical and general specifications on most of our standard units. Drawings, temperature rating curves and general engineering data are also included to enable rapid, accurate selection of potentiometers which will meet all requirements, normal or special.

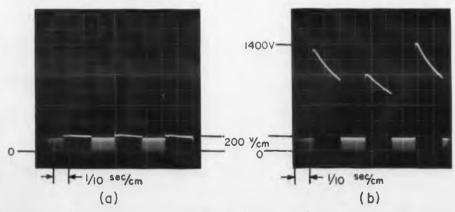
Whatever your specifications in single-turn, linear and non-linear units, the name Raytron guarantees high-precision, exact performance and environmental compliance...at minimum cost.

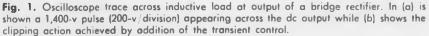
> WRITE FOR YOUR PERSONAL CATALOG OF RAYTRON PRECISION POTENTIOMETERS.

GEORGE RATTRAY & COMPANY a subsidiary of

INSTRUMENTS FOR INDUSTRY, INC.

101 NEW SOUTH ROAD, HICKSVILLE, L. I., N. Y. CIRCLE 72 ON READER-SERVICE CARD


Transient Control Device Protects Rectifiers From Surge Overloads


HIGH-VOLTAGE transients, appearing across power supplies when an inductive load is suddenly turned off, can be effectively reduced by a newly developed gas-tube device. Conventional means to avoid rectifier burnout include the use of relatively expensive, high piv diodes or Zener devices.

Low Cost Diodes Can Be Used With Transient Protector

Low cost, 200-v piv rectifiers can be used with transient control, developed by Ledex, Inc., Dayton, Ohio. Transient peaks as high as 1,400 v have been applied to rectifier and bridge arrangements using the transient control with no rectifier failures resulting. See Fig. 1. The heart of the device consists of a gas tube which ionizes at a critical voltage (200 v in present units) thus creating a low-impedance shunt for excessively large pulses. For most power-supply applications, the 200-v ionization potential is adequate; higher voltage ratings and low-

EDEX

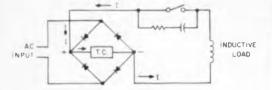


Fig. 2. Basic rectifier bridge circuit showing current flow resulting from suddenly opening the inductive load circuit.

er voltage ratings can be supplied on a custom basis if required.

Device Protects Against Line As Well As Load Surges

In the full-wave bridge circuit shown in Fig. 2, current I would flow as indicated from an inductive load when the switch is opened. Without the transient control, a highvoltage pulse would appear across the four diodes and breakdown is possible; should one diode become shorted, the diode on the adjacent leg of the bridge would be destroyed in a short time.

Should a transient occur at the ac input, the transient control permits current flow through the low impedance or conducting diodes rather than through the high-impedance bridge arms. Thus, positive or negative spikes are clipped at the 200-v level.

In addition to the transient control, Ledex is packaging a protected bridge rectifier, incorporating four rectifiers plus a built-in control rated as follows: 115 v ac input, 100 v dc output, maximum surge 50 amp for 8 msec.

Transient controls, part A-46800-001 are packed 10 to a carton; prices per carton are \$20,50 for one carton, \$18,50 ea for 2-9 cartons and \$16,00 ea for 10-49 cartons. The protected bridge rectifier, part A-46501-001, is \$8.15 ea in 1-9 quantities, \$7.40 ea in 10-24 lots and \$6.80 ea in 25-99 quantities. A value analysis kit RTC, containing one protected bridge rectifier and one transient control, is available at \$11.00 ea.

For further information on these devices, turn to the Reader-Service Card and circle 252.

Write for technical data on the complete line of "KEMET" Solid Tantalum Capacitors]

ELECTRONIC DESIGN . July 5, 1961

KEMET offers you the only full line of high-voltage solid tantalum capacitors for a multitude of military/industrial applications. J-Series and N-Series are available in working voltages of 75, 60, 50, 35, 20, 15, 10, and 6—in standard E.I.A. values with $\pm 5\%$, $\pm 10\%$, and $\pm 20\%$ tolerances. Low leakage characteristics are excellent. Four J-Series case sizes conform to MIL-C-26655A-with or without insulating sleeve. Leads are solderable and weldable. All KEMET types have passed approved environmental tests. Whatever your solid tantalum capacitor needs, meet them with KEMET's complete line! Kemet Company, Division of Union Carbide Corporation, 11901 Madison Avenue, Cleveland J. Ohio.

KEMET COMPANY

"Kemet" and "Union Carbide" are registered trade-marks for products of

CIRCLE 73 ON READER-SERVICE CARD

it's the CONTACT that counts!

positive contact surfaces on each Alden top-connected contact give you:

- More reliable electrical contact
- More secure mechanical grip
- Minimum electrical resistance

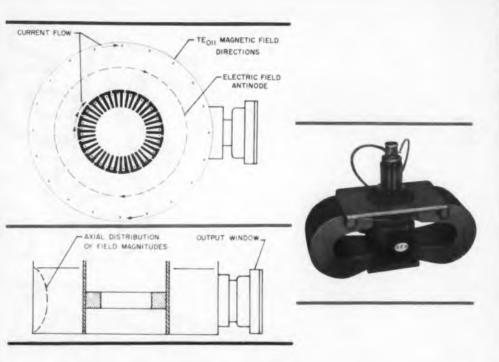
Each lead has individual strain relief because wire is doubled back through contact tab. Punch press contact design permits rapid heat transfer - eliminates unreliable cold solder joints as in screw machine contacts. Danger of insulation pull back is eliminated by bringing wire insulation right into molded clip pocket.

These unique Alden molding techniques in connector design drastically reduce the number of parts required and make possible multi-contact connectors of amazing basic simplicity and reliability.

Resilient Alden contacts can be included in any type of molded insulation for any combination of contacts. Hundreds of standard off-the-shelf designs are quickly available - with or without leads - or as part of unit-molded cables.

Our Customer Department will work closely with you on any connecting or cabling problems. A letter with description or sketch will enable us to provide recommendations or samples at once.

New, flameproof, high voltage connectors now available in high-density flame-retardant polyethylene. Light, compact connectors for applica-tions up to 30 KVDC and up to 250° F Light, compact of tions up to 30 K without distortion



First major advance in connector Standard assembled connectors reliability since petting offers fool- in non-interchangeable layouts with from proof tamper-proof connections for 2 to 11 contacts, miniature connectors, trouble-free operation Alden "IMI" plan or shelded, for carrying power or connectors and cables (wires, contacts, signal, miniature plugs and sockets, or other inserts) are integrally molded signal connectors; and CRT connectors in a single hot shot of insulation so that are all available for fast delivery. covering the wires form a single con-tinu ous, borded insulation.

7139 North Main St., Brockton, Mass. CIRCLE 74 ON READER-SERVICE CARD

Coaxial Cavity Increases Magnetron Frequency Stability

THE USE of the coaxial cavity principle in magnetron design results in 5 to 10 times better frequency stability. Model SFD-303 magnetron, designed for X-band use, operates at 50 per cent efficiency, delivers minimum peak power of 1 megawatt and an average power of 1 kw. Its light weight of 45 lb makes it ideal for long-range airborne radar systems. Greater frequency stabilization makes steady state operation possible at the optimum impedance point.

The SFD-303 coaxial magnetron, manufactured by SFD Laboratories, 800 Rahway Ave., Union, N. J., employs a new concept in anode design which results in the significant improvements in frequency stability. Typically, side-lobe ratios are greater than 10 db, missing pulses less than 0.2 per cent and pulling factor is less than 6 mc at the megawatt level. At $2-\mu$ sec pulse lengths, the rf band-width is less than 0.7 mc.

The principle on which the model

303 is based allows for high-frequency magnetrons to be built with large interaction areas so that the power dissipated per unit area of the anode and cathode is very low. Normally, when such large interaction areas are used, serious problems of mode control exist. Control of the mode in which oscillations begin is lost as the voltage pulse rises on the magnetron.

The approach which has here-tofore been taken to the problem of mode control consists in designing the multi-cavity anode circuit to produce a relatively large frequency separation between the desired, or pi-mode, and its adjacent neighbors. Both strapped and rising-sun structures are based upon this philosophy. These techniques insure mode stability once the proper mode has been established, but do not insure its build-up in the presence of competing modes whose starting voltages fall in the same general range. To overcome the ease of starting such an unloaded mode the practice has

ELECTRONIC DESIGN • July 5, 1961

been to introduce some asymmetry into the anode block to orient both components of the doublet equally to the output slot.

In the coaxial structure, the design insures correctly phased rf currents at the normally short-circuited ends of the resonators.

The figure shown illustrates the main features of the anode. Alternate resonators are cut through to the coaxial cavity which is dimensioned to resonate in the circular electric (TE_{oll}) mode. The circumferential currents associated with this mode have the same phase at all points around the periphery of the cylinders. Since the resonators present a low impedance at their back ends, they are well matched to the impedance of the coaxial cavity as seen from the inner cylinder wall cut through positions.

Operation of the large cavity in the TE_{min} mode insures currents and voltages of the same phase in alternate resonators. Mutual flux linkage between adjacent resonators is relied upon to excite the other half of the resonators with equal, but oppositely phased, currents giving rise to a pure pi-mode.

The higher Q_o achieved by removing the straps in the resonator assembly yields higher efficiency in addition to greater frequency stability. It also raises the impedance of the anode so that less stored energy, accompanied by reduced power loss, is required to produce the same electric field in the interaction space.

In a conventional magnetron the anode surface can be increased only by increasing the anode height. This results in a long magnet with large magnet weight. With the new design the anode surface can be increased by increasing the number of resonators rather than increasing their height. This allows an extra degree of design freedom which results in weight reduction.

Model SFD-303 is available 120 days after receipt of order, with price dependent on quantity and delivery date.

For further information on this magnetron turn to the Reader-Service Card and Circle 253.

STRACE MARK

A Compact-Versatile A Compact-Versatile **BOBBERS BOBBERS BOBBERS BOBBERS BOBBERS Constant Voltage / Constant Current Operation Constant Voltage / Constant Current Operation**

JUST ARRIVED!

SPECIFICATIONS Output: 0-40 Volts, 0-0.5 Amps D.C. Load Regulation: Constant Voltage: 0.01% or 4 mv. Constant Current: 0.05% or 250 µa. Line Regulation: Constant Voltage: 0.01% or 4 mv. Constant Current: 0.05% or 250 µa. Ripple and Noise: Constant Voltage: 200 µv. Constant Current: 200 µa. Transient Recovery Time: 50 µsec. Size: 5½,4" H X 7½,4" W X 8½" D

Price: \$169.00

OTHER PRECISE, VERSATILE AND COMPACT POWER SUPPLIES INCLUDE:

Medel	E Out	I Out	Bench Model	Rack Model	Continuously Variable	Special Comments	Price
520A	0-36	0-25		X	Yes	High Efficiency	\$575.00
800A-2	0-36	0-1.5	X	X	Yes	Dual Output	580.00
8008-2	0-36	0-2.5	x	x	Yes	Low Cost Medium Current Supply	339.00
8028	0-36	0-1.5		x	Yes	Dual Output Remote Sensing	580.00
BOSAM	D-20	0-2.0		x	Yes	Remote Sensing Remote Programming	350.00
ABOSA	0-36	0-5	1	x	Yes	Constant Voltage / Constant Current	475.00
8108	0-60	0-7.5		x	Yes	Constant Voltage / Constant Current	795.00
812C	0-32	0-10	1	X	No	Remote Sensing	550.00
8144	0-36	0-25		x	Yes	Constant Voltage / Constant Current	775.08
8558	0-18	0-1.5	x	x	Yes	Constant Voltage / Constant Current	169.00
880	0-100	0-1.0	X	X	Yes	Wide Voltage Span	375.00
881A	0-100	0-1.0		x	Yes	Constant Voltage / Constant Current	475.00
ADES	0-320	0-0.6		X	Yes	Remote Programming	495.00

Write for new 44 page, illustrated "1961 Long Form Catalog"

HARRISON LABORATORIES, INC.

45 INDUSTRIAL ROAD . BERKELEY HEIGHTS, NEW JERSEY

Phone 464-1234 — TWX SUMMIT, N.J. 977 "See Us at the Wescon Show Booth 1008-1010" CIRCLE 75 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

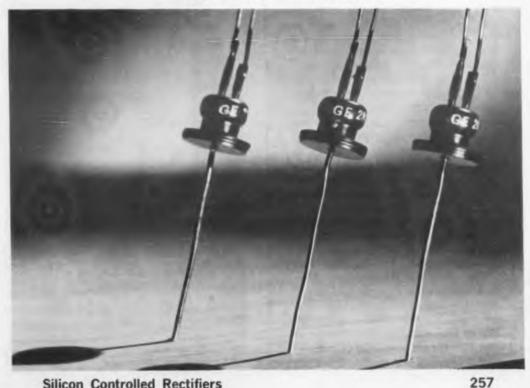
System Records 1,200 Bits Per In.

High-density recording system PHD-1200 can reliably read and write digital tapes at 1,200 bits per in., 100 ips. Transient error rates are fewer than one bit in 10^s and permanent error rates are less than one bit in 10¹⁰. More than 20,000 passes of the same tape can be made without losing information or increasing transient dropout rate. System includes a digital magnetic tape transport, a dual read/write head assembly, read/write amplifiers, de-skewing buffer, manual control unit, and power supplies, cabled and mounted in a rack cabinet.

256

Potter Instrument Co., Inc., Dept. ED, Sunnyside Blvd., Plainview, N. Y.

P&A: \$29,500, evaluation sample; 4 months.



Line Voltage Regulator Provides 100-Db Isolation

Solid state ac line regulator series 700 provides 0.1% regulation and 100-db line isolation. Harmonic attenuation and transient rejection are 40 db. Input harmonics of 10% max are reduced to less than 0.25% in the output. Power rating is 1 kva. Response time is 100 μ sec. Bench and rack models are made for use at 50, 60, and 400 cps. Both 115 and 230 v units are available.

Stevens-Evans, Inc., Dept. ED, 3801 Hicock St., San Diego, Calif.

P&A: \$1,200 to \$1,500; 45 to 60 days.

Silicon Controlled Rectifiers In Studless Housing

Housed in a double-ended, studless package, silicon controlled rectifiers 2N1929 through 2N1935, handle up to 1.1 amp without heat sinks. Piv ratings range from 25 to 300 v: operating temperature range is -65 to +125 C. Maximum leakage current ranges from 4.0 to 0.9 ma.

General Electric Co., Rectifier Components Dept., Dept. ED, W. Genesee St., Auburn, N. Y.

P&A: 2N1933, \$10 OEM; stock.

PNPN Device Has Alloyed Junction

258

259

The Dynaquad is a germanium, three-terminal, pnpn structure packaged in a standard TO-5 case. Alloyed junction design is used for economy and reliability. The device has a rise time of 0.1 μ sec, and provides an output voltage swing of 35 v. Applications include driver, flip-flop, counter, shift register and other logic circuits. Types 2N1966 through 2N1968 are in production.

Tung-Sol Electric Inc., Dept. ED, 1 Sumner Ave., Newark 4, N. J.

P&A: From \$3.10; immediate.

Voltage-Controlled Subcarrier Oscillator

Transistorized subcarrier oscillator type 516/2, operating on IRIG channels 1 to 18 and A to E, measures $3/4 \times 3/4 \times 1-1/4$ in. Input is 0 to 5 v or ± 2.5 v. Input impedance is 300 K min, linearity $\pm 0.5\%$ of bandwidth. Output is 1 v rms nominal. Unit requires 28 v unregulated dc at 10 ma, and weighs 1.6 oz. Shock, acceleration and vibration tests are met.

Telemetering Corp. of America, Dept. ED, 8345 Hayvenhurst Ave., Sepulveda, Calif. **P&4:** On request.

MINIATURE METALIZED INDUCTORS MAKE THE DIFFERENCE!

JFD Metalized Inductors provide outstanding electrical performance under severe environmental conditions - - in a small package.

20

Utilizing a silver film fired permanently to a high dielectric constant glass, they offer the ultimate in inductor simplicity and stability. This inherently rugged construction results in extraordinary reliability under extremely severe environments - - especially those of shock, vibration, temperature and altitude.

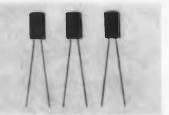
The inductance, types of windings, size, distributed capacitance, Q and other parameters of JFD Metalized Inductors can be designed to meet your specific needs. Why don't you write for bulletin 223 and see the difference they can make in your circuitry?

Features

 Rugged construction affords unusually high stability under conditions of severe shock and vibration.
 Use of glass dielectric assures low temperature coefficient of inductance and operation without derating over extremely severe environmental conditions.

- 3. Low distributed capacity.
- 4. Special alloy plating protects metal parts from corrosion.
- 5. A high Q over a broad frequency range.
- 6. Silver plated copper leads,
- 7. Available in panel mount and printed circuit mount types.

8. JFD Variable Inductors can also be supplied to order. Write for questionnaire or contact the JFD sales office or representative nearest you.



VARIABLE TRIMMER FISTON CAPACITORS * FIXED METALIZED INDUCTORS * LC TUNERS * DIPLEXERS FIXED AND VARIABLE, DISTRIBUTED AND LUMPED CONSTANT DELAY LINES * PULSE FORMING NETWORKS

> BE SURE TO VISIT JFD BOOTH No. 621 AT THE 1961 WESCON SHOW, AUGUST 22-25. CIRCLE 76 ON READER-SERVICE CARD

NEW PRODUCTS

Carbon Film Resistor

Designed for printed circuits, carbon film resistor EC 25 is 1/4 in. in diameter by 13/32 in. long and mounts vertically. Rating is 1/4w at 70 C derated to 0 at 150 C. Resistances range from 5 ohms to 500 K with a tolerance of 1%.

Mepco, Inc., Dept. ED, 37 Abbett Ave., Morristown, N. J.

Guns, controls, and power supplies are available in ratings from 3 kw at 10 kv to 9 kw at 30 kv. Systems of the LB-100 series are complete, and provide magnetic deflection of beam over 3 in, square area, pulsing, regulation, and variable focus and focal length. Temperatures above 6,200 are readily attained.

GVC Electron Heating Corp., Dept. ED, 81 Hicks Ave., Medford 55, Mass.

Instrument Switch

676

With up to six banks. Instrument switch type PW is available in 1-, 2-, 3- and 4-pole types and assemblies up to six banks. Maximum number of positions is 29 in one-pole versions, six in the four-pole version. Voltage rating is 250 v ac or dc, current rating 0.5 amp.

Interlab, Inc., Dept. ED, 116 Kraft Ave., Bronxville, N.Y. Price: \$6.96 to \$41.72.

670 Alternators

Semiconductor voltage regulation, holding the output to $\pm 2\%$ from 1,000 to 12,000 rpm, is provided by these alternators. Two types are offered: 15 v dc, 1,000 w; 100 v dc, 1,500 w. Construction features radially oriented ceramic magnets in the rotor.

Syncro Corp., Dept. ED, Oxford, Mich.

Transistor Testers

Automatic multi-parameter tester type 4 is one of a group of go no-go and absolute readout transistor testers. With automatic sorting and classification, it tests breakdown voltage, lower limiting voltage, dc pulse current gain, saturation voltage, and reverse current.

Fairchild Semiconductor Corp., Dept. ED, 545 Whisman Road, Mountain View, Calif. P&A: \$22.000: 90 to 120 days.

Frequency Standard

Stable to 1 part in 1011 for one month, the Rubidium frequency standard is suitable for applications in the hf electromagnetic spectrum in communications, navigation and computational systems of aircraft and missiles. It weighs about 20 lb.

FMA, Inc., Dept. ED, 142 Nevada St., El Segundo, Calif.

Designed for missile use, this 6-pole, 400-cps, size 15 servo motor offers the following characteristics: theoretical acceleration at stall, 22,-700 radians per sec2; minimum power output, 1.151 w; input power at stall, 6.1 w; motor dampening, 130 dyne-cm per sec.

Wright Machinery Co., Div. of Sperry Rand Corp., Dept. ED, Durham, N. C.

Balancing Computer

411

544

551

Cuts balancing time 80%. Used with a vibration analyzer, this computer determines location and amount of compensating weight to be added or removed. Used in single and twoplane balancing operations for both in-place or production balancing of rotating parts, the instrument saves up to 80% time.

International Research & Development Corp., Dept. ED, Worthington, Ohio.

Autotransformers

Handle 30 amp. Series W Variac autotransformers type W30, rated for 30 amp, provide continuous control of ac voltage from 0 v to 17% above line voltage. Available for 120or 240-v, 50- to 60-cps operation, units withstand momentary overload of 1,000%. Type W30M is fully enclosed.

General Radio Co., Dept. ED, West Concord, Mass.

Price: W'30, \$75; W30M, \$97.

Gear Heads

688

Precision gear heads and speed reducers are available in size 5 to 18 servo mounts. Units have Class 2 gearing, with ABEC Class 1.5 bearings. End play and radial play are low; backlash is 30 min maximum. Housing is anodized aluminum alloy.

Elm Instrument Corp., Dept. ED, 30 Chasner St., Hempstead, L. I., N. Y.

672

Volt-Ohm Meters 448

Accuracy is 0.01% for voltage and resistance measurements or 0.2% for ac measurements to 1,000 v and for 10 ohms to 10 meg. Model 600 voltohmmeters are five-digit precision differential instruments with in-line display readout. Reference voltage is provided by Zener diode supply stable to 0.001% for a 10% line change.

Auto-Data, Dept. ED, 943 Turquoise, San Diego, Calif.

P&A: \$1,885 to \$3,450; 30 to 45 days.

523

Silicon Diodes

Diffused-junction silicon diodes in 53 types have high inverse voltages, high forward conductance, low leakage current, and high rectification efficiency. Operating from -65 to $\div 175$ C, the medium current rectifiers are welded and hermetically sealed in a glass and metal case.

Raytheon Co., Semiconductor Div., Dept. ED, 215 First Ave., Needham, Mass.

P&A: \$0.43 to \$3 ca, 100 to 999; immediate.

Glass Diodes

458

Mesa diffused junction glass diodes 3G05 through 3G30 have rating ranging from 50 to 300 v. Forward conductance to 300 ma, voltage drop of 0.9 v at 25 C, and low leakage characteristics are other features. Temperature range is -55 to +150 C.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

P&A: \$1.07 to \$2.80 ea, 1 to 99; stock.

CIRCLE 77 ON READER-SERVICE CARD ►

For the most critical design applications ...

the **MYCALEX** family

SYNTHAMICA® synthetic mica:

a fusion of silica, alumina, mag-

nesia, and alkali fluorides . . .

chemically pure, offering a wide

range of superior properties for

the most demanding dielectric

applications.

SUPRAMICA[®] ceramoplastics: exclusive formulations of synthetic mica and special electrical - grade glasses. New — SUPRAMICA 620"BB" ceramoplastic for true high-temperature hermetic seals (helium leakage less than 2 x 10⁻¹⁰ after severe environmental tests). MYCALEX[®] glass-bonded mica:

quality natural mica and electrical-grade glasses. Offer high dielectric strength, high arc resistance, high-temperature capabilities. Both formulations offer total

dimensional stability in precision-molded and precision-fabricated grades.

MYCALEX commutation switches and plates: high-reliability, miniaturized electromechanical devices for missiles, multiplexing, telemetering, timing, timedivision and control switching. Now up to 540 contacts on a 3" O.D. plate! MYCALEX tube and transistor sockets: a line of precisionmolded, glass-bonded mica and ceramoplastics for UHF, VHF, and similar high-reliability applications.

For new 36-page catalog ... technical assistance ... write or phone:

General Offices and Plant: 121 Clifton Boulevard, Clifton, N. J. Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y.

World's largest manufacturor of caramoplastics, glass-banded mica and synthetic mica products

(36) Progress In Hydrogen Thyratrons

55×10⁹ ANODE DISSIPATION FACTOR

G-E Power Tube Department Products Also Include:

- Ignitrens
- Traveling-wave tubes
- Magnetrees
- Metal-ceramic
 - Metal-ceramic tetrodes
- High-power waveguide filters
 Klystrons
 Thermionic converters

· High-power duplexers

Highest Registered Rating Now Available from G.E. In an Air-cooled Tube

The latest addition to General Electric's expanding line of hydrogen thyratrons is now available for pulse applications such as radar modulators and linear accelerators. Developed under U. S. Army Signal Corps contract, the GL-7890 achieves an anode dissipation factor of 55 x 10⁹ and has a peak anode voltage rating of 40 kv. The tube can now be operated water-cooled or air-cooled at full ratings.

COMING: INCREASED CURRENT AND VOLTAGE CAPACITY

Now in the late stages of development, the Z-5212 will further increase voltage and current-carrying capacity in hydrogen thyratrons. Peak anode voltage rating for this tube will be 50 kv with an average current rating of 8 amp. General Electric's Power Tube Department will welcome your requests for technical data on the Z-5212.

TEMPERATURE INDICATING DEVICE ON GL-7390A

The first high-power ceramic-metal hydrogen thyratron, General Electric's GL-7390, is now being built to MIL specifications. A modified version of this tube, the GL-7390A, is equipped with an integral anode temperature indicator for convenient readings. Both the GL-7390 and the GL-7390A have ratings of 33-kv peak anode voltage and 4-amp average current.

HYDROGEN THYRATRON BULLETIN AVAILABLE

For a comprehensive analysis of the theory and application of hydrogen thyratrons, write to the Power Tube Department, General Electric Company, Schenectady, N. Y. Ask for Bulletin PT-49. To order, or obtain more information on hydrogen thyratrons, contact your nearest Power Tube sales office. Phone numbers are listed below.

265-09-9545-8481-36

POWER TUBE DEPARTMENT

 TELEPHONE TODAY
 Syracuse, 0L 2-5102... Ciliton, M. J., GR 3-6307

 ... New York City, WI 7-4065... Washington, D. C., EX 3-3600... Chicago,

 SP 7-1608... Dayton, BA 3-7151... Orlando, Fla., GA 4-62811...

 Los Angolos, GR 9-7765.

NEW PRODUCTS

Storage Tube

Double-ended scan converter readout storage tube type K2070 provides resolution in excess of 1,-000 lines at 50% modulation. Simultaneous or sequential reading and writing is possible; retention, erasure, and decay rate are controlled.

Electronic Tube Sales Dept., Allen B. Dumont Laboratories, Div. of Fairchild Camera and Instrument Corp., Dept. ED, 750 Bloomfield Ave., Clifton, N. J.

Multiplier-Modulator 583

Miniature analog multipliermodulator model 100 provides 2%accuracy in case size of $1 \times 1-1/2 \times 3$ in. Inputs are dc to 20 kc, $\pm 1.5 v$, output 100 to 20,000 cps, zero to 1.4 v rms. Distortion is less than 1%; response time as a modulator is less than 1 msec.

Transmagnetics Inc., Dept. ED, 40-66 Lawrence St., Flushing 54, N.Y.

Output is 1 ma or 10 mv suitable for driving pen writing or stripchart recorders. Model 557-2B ratio computer accepts two independent dc signals as low as 10 mv. Accuracy of computed ratio is 1%. Uses include measurement of ratios from strain-gage type transducers, thermocouples, resistance bulbs.

Magnetic Instruments Co., Inc., Dept. ED, Thornwood, N. Y.

CIRCLE 78 ON READER-SERVCE CARD

Variable Inductors

493

Encapsulated variable inductors. with single or bifilar windings, meet MIL-C-15305. Coils are tuned by a powdered iron core. Inductance variation is ±20% from nominal, with temperature coefficient of -50 to +100 ppm per deg C. Distributed capacity is 1.5 pf max.

Vanguard Electronics Co., Dept. ED. 3384 Motor Ave., Los Angeles 34, Calif.

Angle Repeater

497

Accurate within 6 min. Panelmounted model PPR-20 displays the angular position of remote unit to within 6 min of arc. Range is 0 to 360 deg, slewing rate 180 deg per sec. Unit has solid-state construction and rapid response. Panel size is 1-3/4 in. OD by 1-1/2in. long.

Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook, N. J.

P&A: \$1,500; \$ weeks.

Vane-Axial Blower

575

Delivers 140 cfm of air against a static pressure of 5 in. of water at 25,000 ft. Sea level output is 77 cfm against 5 in. of water. No pressure-sensing or speed-regulating switches are needed in the system. Motor is wound for 200 v ac. 400 cps, three phase.

Globe Industries, Inc., Dept. ED, 1784 Stanley Ave., Dayton 4, Ohio.

TYPE 210 Up to twelve 10-point levels

SPRING-BRIVEN

Up to twelve 11-point levels or four 33-point levels

Up to eight cams with 30, 32 or 36 tooth ratchets

Let Clare put the exactly right stepping switch in your design

Designers who count on CLARE stepping switches as components for complex counting, totalizing and sequencecontrol equipment know that from the wide CLARE line they can select the exact switch their application requires. If necessary, CLARE engineering will provide special switch designs.

CLARE stepping switches are available as spring-driven. cam-operated or direct-drive switches with capacities from 10 to 52 points. All may be hermetically sealed in nitrogen or oil, or provided with dust covers.

All CLARE stepping switches are well known for their long life, high capacity and minimum main-

tenance through millions of precise stepping operations. For complete information write for Catalog 202.

C. P. CLARE & CO., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C. P. Clare Canada Ltd., 840 Caledonia Road, Toronto 19, Ont. Cable address: CLARELAY.

DAP' INSULATION STANDARD ON SPRING-DRIVEN SWITCHES FOR-

 High insulation resistance
 Good arc resistance Stable insulation resistance
 Strength and stability • Low moisture absorption *diallyl phthalate

C. P. ÇLARE & CO. Relays and related control components

Op to exteen 20 point losely.

NEW PRODUCTS

Pressure Transducer

609

High-range absolute pressure transducer 737 meets government specs in miniature size. Ranges from 0 to 4,000 up to 0 to 10,000 psi are made, with resolution to 0.2%, resistances 1 K to 10 K $\pm 5\%$.

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Available in 1/8, 3/16, and 1/4 in. shaft sizes, these precision shaft extensions have male and female ends in the same or any combination of these sizes. Length of extension is 1-5/8 in. Diameters are concentric to 0.0005 in.

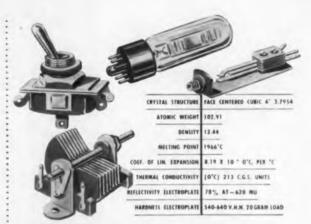
PIC Design Corp., Dept. ED, 477 Atlantic Ave., East Rockaway, L. I., N. Y. **P&A:** \$45 to 75.00; from stock.

Wide Band-Pass Filters

537

Types NB-1 and NB-1B are four-crystal networks contained in a hermetically sealed package less than 1 cu-in. and 2.5 cu-in. respectively. The center frequency of both types is 10.7 mc $\pm 3 \text{ kc}$ with a 6 db bandwidth of 200 kc + 10 kc, -0 kc and an ultimate rejection of 100 db min. Singly they provide a 60 to 6 db bandwidth ratio of 2.25 to 1.

Midland Manufacturing Co., Dept. ED, 3155 Fiberglas Road, Kansas City 15, Kan. Availability: From stock.


LEADERSHIP IN DESIGN

Complete facilities, metallurgical and engineering services are available for design and manufacture of slip ring assemblies to critical specifications, ranging in diameter from 1" to 48" and larger—for General Purpose, Radio Frequency and Video Ring Circuits, High Speed Instrumentation, High Voltage Ring Circuits and Power Pulse Slip Rings. A slip ring data file is available —write for your copy.

D. E. MAKEPEACE DIVISION PINE & DUNHAM STREET • ATTLEBORO, MASS. Circle 231 on Reader-Service Card

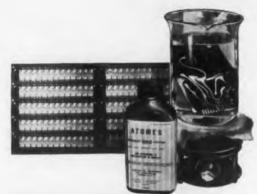
> BAKER PLATINUM DIVISION 113 ASTOR STREET * NEWARK, N. J. Circle 233 on Reader-Service Card

RHODIUM PLATING RESISTS CORROSION

Rhodium plating offers outstanding protection against surface corrosion under all atmospheric conditions. Used in electrical and electronic applications, it improves efficiency whenever a low-resistance, longwearing, oxide-free component is required . . . assures low noise level for moving components . . . provides positive action for components subject to long periods of inactivity . . . eliminates partial rectification and unwanted signals by keeping components oxide-free. Send for complete technical data.

> CHEMICAL DIVISION 113 ASTOR STREET • NEWARK, N. J. Circle 232 on Reader-Service Card

SIMPLIFIED SILVER PLATING FOR ELECTRICAL AND ELECTRONIC COMPONENTS


The simplest, most efficient process for protecting electrical, electronic and lamp components with mirrorbright silver plating in flash to heavy deposits. Silva-Brite is a crystal-clear solution—work is visible during plating process. Plating is quick, easy, non-critical with results assured at current densities from 10 to 40 amps psf—and little or no polishing required. Normal room temperature operation minimizes fumes and bath decomposition. Write for complete information on Silva-Brite and application procedure.

AMERICAN PLATINUM & SILVER DIVISION 231 N. J. RAILROAD AVENUE • NEWARK, N. J. Circle 234 on Reader-Service Card ELECTRONIC DESIGN • July 5, 1961

PRECIOUS METAL CONTACTS

Precious metal contacts in pure or alloyed forms of silver, platinum, palladium and gold provide unmatched resistance to atmospheric corrosion, deformation, arc erosion, binding and metal transfer. Baker high-reliability precious metal contacts are supplied as wire, rod, sheet and in a complete line of fabricated forms. Facilities are also available for manufacture to your specifications.

BAKER CONTACT DIVISION 207 GRANT AVE. • NEWARK, HARRISON P.O., N. J. Circle 235 on Reader-Service Card

IMMERSION GOLD COATING FOR ELECTRICAL AND ELECTRONIC PARTS

Use Atomex gold immersion solution for more permanent, less expensive coating of printed circuits, metallized plastics, etc. with complete assurance of tarnish resistance and electrical resistivity. In a simplified immersion process, 24K gold is deposited by ionic displacement in a thin, dense, uniform protective layer. • Atomex is the first practical gold immersion solution containing no free cyanide. It eliminates need for costly analytical controls. Write for technical data.

> CHEMICAL DIVISION 113 ASTOR STREET + NEWARK, N. J. Circle 236 on Reader-Service Card



FINE WIRE, THIN FOILS, RIBBON AND TUBING IN NOBLE METALS AND THEIR ALLOYS

WIRES: Bare drawn wire of ductile materials down to .004"—High temperature thermocouple wires—High temperature furnace windings—Potentiometer and Resistance wires—Platinum clad tungsten wire. FOILS: In platinum, palladium and gold down to .0001" —in iridium and rhodium as thin as .001".

TUBING: Seamless in platinum, palladium, gold and their alloys. Sizes from .018" with .004" wall up to $1\frac{1}{2}$ " with 042" wall. • Available in standard or to specification.

BAKER PLATINUM DIVISION 113 ASTOR STREET • NEWARK, N. J. Circle 237 on Reader-Service Card ELECTRONIC DESIGN • July 5, 1961

ZONE

STATE

STREET

CITY.

Torque Motor

Providing 6 lb of linear force from a few watts of power, the firm's model 11 torque motor operates in high humidity and temperature. Unit can operate while immersed in fluids, resists shock to 67 g, and operates from -66 to +400 F. Device weighs 12 oz and meets MIL specs.

Midwestern Instruments, Inc., Dept. ED, P. O. Box 7509, Tulsa 18, Okla.

Potentiometer Tester

534

Plots results on X-Y recorder. This potentiometer tester, type 2398, supplies necessary signals to plot resistance vs shaft rotation on an X-Y recorder. It operates in two ranges, from 1 ohm to 1 meg and from 10 ohms to 10 meg, and provides 120 db resistance measurement capability.

F. L. Moseley Co., Dept. ED, 409 N. Fair Oaks Ave., Pasadena, Calif.

Ceramic Bases

For mounting components. Alumina ceramic bases are said to be extremely rugged, useful at temperatures as high as 1,000 C. Parts are custom fabricated. Complete subassemblies with metalized ceramic bases brazed into metal parts are available.

Metalizing Industries, Inc., Dept. ED, 338 Hudson St., Hackensack, N. J.

536

Of course-but they are much broader than you might think. The illustrated units are just a few of the difficult and unusual switches that CENTRALAB has been called upon to design.

What kind of special switch do you need? CENTRALAB engineers can modify an existing type, or design an entirely new switch to solve your problems.

For immediate attention, write directly to CENTRALAB'S Switch Sales Manager, outlining your problem.

Switches 36 circuits progressively in missile check-but application. Used with stepping relay in limited equipment area. Glass silicone insulation.

- Sub-miniature 24 position switch provides 50% space reduction over conventional switch construction. Has rugged, accurate indexing for long lite. Glass epoxy insulation.
- Low voltage switch with auxiliary high voltage snap action switch which breaks heavy load to rotaty switch during switch cycle. Has guarded detent.
- switch cycle, was guarded obtent.
 4. 5 pole, 9 position low voltage switch with locking action make and breaks on integral snap action switch. Snap action switch breaks load the rolary switch during switch cycle.
 4. Dual concentric switch in which inner shall operates rolors of all 3 sections while outer shall operates rolor on front section independently. Used in aerial pholography equipment.
- 3 pole, LB position unit with 6 positions on each section, Mas high torque for positive positioning of contacts. Glass epoxy insulation. Used in ground support equipment.

THE ELECTRONICS DIVISION OF GLOBE-UNION INC. 9806 E. KEEFE AVENUE . MILWAUKEE 1, WISCONSIN In Canada: Centralab Canada Ltd., P.O. Box 400. Ajax, Ontario


P-6131

ELECTRONIC SWITCHES . VARIABLE RESISTORS . CERAMIC CAPACITORS . PACKAGED ELECTRONIC CIRCUITS . ENGINEERED CERAMICS CIRCLE 83 ON READER-SERVICE CARD

NEW PRODUCTS

Component Holders

540

Shock and vibration resistant. Shock tests in excess of 200 g resulted in no visible shifting of components. Peak acceleration at 500 cps vibration is 200 g; and at 2,000 cps, 90 g; 487 designs are available.

Masterite Industries, Dept. ED, 851 W. Olive St., Inglewood, Calif. Availability: from stock.

Curve Follower

590

Function generator converts manual set-point control to automatic program control. The Data-Trak curve follower can drive ganged pots to provide up to 12 control signals. Dust-tight case is 19 in. wide.

Research, Inc., Dept. ED, Box 6164, Minneapolis 24, Minn.

Proportional Solenoid

Occupying less than 1-1/2 cu in., and weighing less than 4-1/2 oz, this proportional solenoid, model 15, provides relatively small, highforce displacements proportional to input signals. Unit operates in temperatures to 400 F, is submersible in fluid or gas, and can be mounted to provide force in any direction.

Midwestern Instruments, Inc., Dept. ED, P. O. Box 7509, Tulsa 18, Okla.

ELECTRONIC DESIGN • July 5, 1961

NUMBER 16-NEW PRODUCT SERIES

Oscilloscope

Sensitivity is 50 μ v per cm; low noise level permits resolution of signals down to 10 μ v. Model 403-B commercial oscilloscope permits display of nonamplified outputs from strain gages, pressure pickups, accelerometers and other transducers. Its 21 sweeps range from 1 μ sec to 5 sec per cm.

Allen B. Du Mont Laboratories, Dept. ED, 750 Bloomfield Ave., Clifton, N. J.

Current Recorder

704

584

Five-ampere current recorder has better than 2% over-all accuracy, and a frequency response of 25 to 500 cps. Safe working voltage is 750 v rms, input resistance is 0.02 ohm. At standard chart speed of 1 in. per hr. paper supply lasts 31 days.

Rustrak Instrument Co., Dept. ED, 130 Silver St., Manchester, N. H. Price: \$105.

Volt-Ohm-Milliammeter

585

Models 267 and 268 are designed for general laboratory work and production line testing. Sensitivity is 5,000 ohms per volt for both models. Microampere ranges are 0 to 50 for model 267 and 0 to 60 for model 268.

Simpson Electric Co., Dept. ED, 5200 W. Kinzie St., Chicago 44, Ill.

Availability: Immediate from distributors.

High-Performance Commercial Potentiometer-Under \$1

Now—solve the quality-price dilemma with Bourns E-Z Trim® commercial potentiometers. These subminiature thoroughbreds are direct descendants of the time-proven Trimpot® potentiometer, and their performance shows it. They stand up to steady-state humidity and fully satisfy the requirements for such demanding applications as industrial controls.

Settings you make with E-Z Trim units are pinpoint-sharp, thanks to the superior angular resolution afforded by the 15-turn shaft. They stay that way, too, because the shaft is self-locking. Adjustments are fast and simple—an ordinary screwdriver does the job.

Take your choice of wirewound or Resiston® carbon units. Wirewound Model 3067 handles a hefty ½ watt at room temperature, is available with resistances of 100 ohms to 20K. Carbon Model 3068 offers resistances of 20K to 1 Meg. Both units have either printed circuit pins or solder lug terminals.

Order in production quantities of 1000 or more, and these exceptional potentiometers are yours for under \$1 each. Tell us you're in a hurry, and you'll have them within 48 hours —they're on the shelf from coast to coast. Write now for complete data and list of stocking distributors.

Manufacturer: Trimpot® potentiometers; transducers for position, pressure, acceleration. Plants: Riverside, California; Ames, Iowa; and Toronto, Canada CIRCLE 84 ON READER-SERVICE CARD

8036 SMALL, RUGGED CERAMIC HYDROGEN THYRATRON SAVES VALUABLE SPACE

Tung-Sol leads the way with a ceramic Hydrogen Thyratron that fills an important design need. An electrical equivalent of the popular Tung-Sol 5949A - only one third tube volume is required by this new member of the family.

Tung-Sol ceramic Hydrogen Thyratron 8036 has rugged environmental ratings. It is designed for flange mounting with flexible connectors to achieve a solid mounting with lossfree terminations. Grid connection is made to the flange through the grid ring clamp.

For full technical data, consult your Tung-Sol representative or write: Tung-Sol Electric Inc., Newark 4, N.J. TWX:NK193.

HYDROGEN THYRATRON 6587A

6587A, a glass thyratron, is a direct plug-in re-placement for Tung-Sol SC22. Valuable inches of overall height are saved by means of the ring-disk type of construction, which also provides the advantages of external (cool) anode and lower lead inductance. It is rated for higher voltages with higher currents than prototype tubes. Grid connection can be made through the grid ring or through the tube base pin. An internally-con nected hydrogen reservoir promotes long life.

	8036	6587A	8022
Overall height, Max	3.75*	6.	8.75
Peak forward voltage	25. KV	18.	16.
Peak current	500. Amps	365.	325.
Peak Pulse Power (Delivered to the load)	6.25Mw	3.25	2.6

TECHNICAL ABBISTANCE IS AVAILABLE THROUGH: Atlanta, Ga.: Columbus, Ohio; Culver City, Calif.; Dailas, Tex.; Denver, Colo.; Detroit, Mich.; Irvington, N.J.; Matrose Part, III.; Newark, N.J.; Philadelphia, Pa.; Beattle, Wash. In Canada: Abbey Electronics, Toronto, Ont.

NEW PRODUCTS

Time-Delay Relay

592

Solid-state time-delay relay SI-01-TD, weighing less than 3 oz, has no moving parts. Supply voltage is 18 to 30 v dc; delay is 30 ± 6 sec. Equivalent contact rating is 40 v, 10 ma. Operating temperature range is -55 to +125 C.

Espey Manufacturing & Electronics Corp., Saratoga Industries Div., Dept. ED, Saratoga Springs, N.Y.

Oven Assembly

Three-vacuum oven assembly model 8435 is for bake-out of semiconductors and other devices at 200 or 300 C. A single pump evaluates to 1 x 10⁻³ mm Hg. Control is sensitive to within $\pm 1/2$ C. Each oven has individual controls. Work chamber is 18 x 18 x 18 in.

Electric Hotpack Co., Inc., Dept. ED, Cottman Ave. at Melrose St., Philadelphia 35, Pa.

Navigation Gyro

548

547

For missile applications and other high performance uses, type C70 2527-001 floated-rate integrating gyro has an angular momentum of inertia of 500,000 gm-cm² per sec. Vertical drift is 0.003 and aximuth drift is 0.015 deg per hr, short term.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Pulse Counter

Differential pulse counter F 160 has separate coils for addition and subtraction. Simultaneous add and subtract commands are accepted without error. Count rate is 25 per sec max. Front plate size of the five-digit counter is 2 x 3-3/4 in.

Presin Co., Inc., Dept. ED, 2014 Broadway, Santa Monica, Calif. P&A: \$62.50; stock.

Potentiometer Transducer

587

Miniature, low-pressure transducer, model L-96, has less than 1% error at vibration levels exceeding 35 g. Available in 0 to 10 to 0 to 350 psi absolute or gage pressure ranges. Performance is said to be unaffected by temperature variations. The unit weighs 4 oz and measures 1 in. in diameter and 2 in. long.

Servonic Instruments, Inc., Dept. ED, 1644 Whittier Ave., Costa Mesa, Calif.

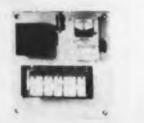
Medium-Power Relay

550

Rated at 15 amp, the GF series relay is for motor loads of up to 1/2 hp and can be used in a wide range of ac and dc applications. Contacts are spst to 4pdt. Standard relays with 1/4-in. diameter silver contacts are rated at 15 amp at 115 v ac or 28 v dc.

American Machine & Foundry Co., Potter & Brumfield Div., Dept. ED, Princeton, Ind. P&A: \$3.40 to \$7.10; from stock.

Integrating Gyro


549

Floated-rate integrating gyro type C70 2516 010 is suitable for missiles. Angular momentum is 100,000 gm-cm⁺ per sec; short term vertical drift is 0.02 deg per hr; short term azimuth drift is 0.03 deg per hr; mass unbalance shift is 0.5 deg per hr.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Drive Regulators

588

Variable-speed drive regulators and exciters use silicon controlled rectifiers and diodes to provide 0.1% regulation at base speed, with response times up to twice that of tube-type regulators. Drives range from 1 to 350 hp.

Reliance Electric & Engineering Co., Dept. ED, 24701 Euclid Ave., Cleveland 17, Ohio.

the first

economical. space saving, vertically mounted resistor for printed circuit applications

> MEPCO MEPCO MEPCO EC 254 EC 254 EC 254 500K 1% 500K I-500K 1-

Low cost — smaller space . . two items high on the list of vital importance in solving today's tough design problems. MEPCO's new miniature 1/4 W Corbon Film resistors were specifically designed to break the cost and space barrier in printed circuit applications. Having both leads extending from one end and available in three

different lead spacing arrangements, these Carbon Film Resistors for vertical mounting offer advantages never before available. Write or call today for samples and literature.

SPECIFICATIONS

Power Rating Max. Voltage	1/4 W at 70°C derated to 0 at 150°C 300 volts	Length Diameter Leads	$\frac{1}{4} \pm \frac{1}{4} \pm \frac{1}{4} + \frac{1}{4} \pm \frac{1}{4} + \frac{1}$	MEPCO
Resistance Range Tolerance Temp. Cooff. Environmental Char.	5 to 500 K ± 1% 200 PPM to 500 PPM MIL-R-10509C Char. B	Lead Spacing	$\begin{array}{c} A & .125 \pm 005 \\ B & .156 \pm 005 \\ C & .200 \pm 005 \end{array}$	

Manufacturers of Precision Resistors Meristown, New Jersey CIRCLE 86 ON READER-SERVICE CARD

Resistance Values up to 100,000,000 Megohms

Model RX-1 Hi-Mcg Resistor

Victoreen Hi-Meg Resistors – Standard of the Industry for Over 18 Years

Available tolerances 1% 2% 5% 10%

For longer life, Victoreen Hi-Meg Resistors are in a class by themselves, especially for all high-impedance, low-current applications. Hi-Meg Resistors have a carbon-coated glass rod element with silver-banded ends for best electrical contact . . . are vacuum sealed in a glass envelope treated with special silicone varnish that minimizes moisture effects. Always specify Victoreen Hi-Meg Resistors for the ultimate in long-term stability.

tareen

SEGE HOUGH AVENUE
CLEVELAND 3. OHIO
EXPORT 240 WEST 17TH ST.
NEW YORK 17, NEW YORK
CIRCLE 87 ON READER-SERVICE CARD

A-4135A

Booster Amplifier

This dual-channel booster amplifier is able to drive both stators of a precision size 11, 400cps resolver. Known as model 1012, the device has unity gain, an accuracy of 0.05%, and less than 5 min phase shift. The unit occupies 1 cu in., weighs 1 oz, and operates from -55 to ± 125 C. Different mounting configurations are available.

Melcor Electronics Corp., Dept. ED, 48 Toledo St., South Farmingdale, L. I., N. Y. **P&A:** \$250-280 each; 30 days.

Germanium Transistor

545

541

For critical computer switching applications. Type 3907/2N404 germanium transistor meets mechanical and environmental stability requircments of MIL-S-19500B. Specifications are: collector-to-base voltage, -25 v max; collector-toemitte rvoltage, -24 v max with V_{ER} at -1 v; operating ambient temperature, -65 to +85 C.

Radio Corporation of America. Dept. ED, Somerville, N. J. Availability: Immediate.

Magnetic-Tape Rewinder

581

Spools 10.5-in. reel in 90 sec. Average rewind speed is 500 ips. The TR-300 magnetictape rewinder has a universal hub variable from 3 to 3-3/4 in. which accepts NAB or IBM tape reels without adapters. Tape guides handle tapes 1/2 or 1 in. wide.

Electronic Engineering Co. of Calif., Automation Div., Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif. **P&A:** \$690; 6 weeks. *

Gamewell made a pot that will trip a microswitch

This 1/8", 100,000 ohm pot has a microswitch attached. The camshaped shaft can actuate the switch precisely at the chosen point A simple solution - yes. but the answer to a special problem. Gamewell's YES service - Your Engineered Specials service is amazingly capable at designing simple answers to special pot problems. Why not put it to the test? Write for the facts.

*your

engineered

Specials service

THE GAMEWELL COMPANY, POTENTIOMETER DIVISION, 1421 CHESTNUT STREET, NEWTON UPPER FALLS 64, MASS, A SUBSIDIARY OF E. W. BLISS COMPANY.

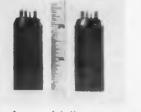
CIRCLE BB ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

Solenoid Valves 578

For up to 3,000-psi oil pressure, two-way solenoid valves are available in normally open and normally closed types. Both are pilot operated poppet valves in cartridge form and can adapt to any type of manifold or sub-plate. The poppet and plunger are the only moving parts.

Fluid Power Accessories, Inc., Dept. ED. Box 64. Glenview, Ill.

Plugs and Receptacles 572



Phenolic molding compounds are used in the manufacture of these multiple plugs and receptacles, available in a variety of shapes and terminal arrangements. Applications include appliances, electronic equipment and other industries.

Hooker Chemical Corp., Durez Plastics Div., Dept. ED. Niagara Falls, N. Y.

Multivibrators

One-shot multivibrators are offered in two types: the T-166 contains a built-in noise rejection circuit and the T-167 is designed to have a pulse-width variation of 5% max from -45 to -65 C. A pulse width of 2 μ sec to 1 sec can be generated by either unit.

Engineered Electronics Co., Dept. ED, 1441 E. Chestnut Ave., Santa Ana, Calif. **P&A:** \$38.40; \$44.50; 2 weeks,

CIRCLE 89 ON READER-SERVICE CARD >

General Instrument Planar Transistors

At last! A truly passivated planar! New 2N708 silicon switch

For high speed logic switching with assured reliability, the General Instrument 2N708 npn silicon planar switch features the unique Molecular Shield[™] surface-passivation process. Here's a planar that is stable, reliable and uniform...lot by lot...with excellent gain characteristics as well as extremely low leakage current. Designed for switching applications, this type, as well as others in the popular 2N706 class, utilizes the latest planar techniques. Extensive tests have proved that this type of transistor construction offers definite circuit advantages. Life tests, for example, indicate little degradation as a result of operation and storage at high temperatures. The immediate availability of the 2N706 series in production quantities should be of interest to designers now using our silicon mesa transistors. The 2N708 is also available in limited quantities. For microtransistors, pancake-package transistors... for all your silicon planar and mesa transistors, call the sales office or franchised distributor nearest you. Or write for complete details to General Instrument Semiconductor Division, 65 Gouverneur St., Newark 4, N.J.

Abbreviated Specifications-General Instrument NPN Silicon Planar Transistors

VCIO	VCER	h _{st}	Ts
25v	20v	20	60 nsec
25v	20v	20	25 nsec
25v	20v	20	25 nsec
40v	20v	30	25 nsec
	25v 25v 25v	25v 20v 25v 20v 25v 20v	25v 20v 20 25v 20v 20 25v 20v 20 25v 20v 20

GENERAL INSTRUMENT SEMICONDUCTOR DIVISION GENERAL INSTRUMENT CORPORATION

Time-Code Generator

579

A COLOR OF COLOR

Any 17-bit time code containing three binary words for seconds, minutes or hours can be generated. Model 6202 time-code generator, for ground or airborne use, has a stability of 10⁷ per day. One code format can be supplied as an amplitude-width-modulated code on a 1,000-cps sine wave and as a dc level shift.

Epsco-West, Dept. ED, 240 E. Palais Road, Anaheim, Calif.

Five-Digit Voltmeter

Accuracy is 0.01%. This five-digit voltmeter has a range of ± 0.0001 to ± 999.99 v dc. Speed is 20 readings per sec avg; outputs are BCD and 10-line decimal; all switching is electronic; dimensions are 5-1/4 x 19 x 20 in.

Electro Instruments, Inc., Dept. ED, 8611 Balboa Ave., San Diego 11, Calif.

Power Inductor

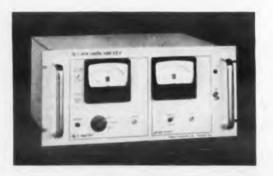
Variable power inductor is designed for complex load banks, accurate voltage control for tuning and phase-angle control circuits and breadboard filter circuits. It is available in two overlapping ranges from 10 to 40 and 40 to 160 mh. Dc resistance in either range is less than 5 ohms with dc and rms current of 0.5 amp max. Servomechanisms/Inc., Dept. ED, 200 N.

Aviation Blvd., El Segundo, Calif.

Design with

MALLORY MERCURY BATTERIES for new sales appeal in your products

PERSONAL RADIATION MONITOR, developed at Oak Ridge National Laboratory, warns of radiation levels by flashing a neon lamp and sounding a tone in a hearing aid earphone. The transistorized circuit operates 24 hours a day for 30 days at a time, from power by a single Mallory TR-133R mercury battery.


Photo courtesy Oak Ridge National Laboratory Operated by Union Carbide Corporation For the U. S. Atomic Energy Commission

PORTABLE TRANSISTOR TEST SET is made by Metronix, Inc., a subsidiary of Assembly Products, Inc. Used as the DC power source, Mallory Mercury Batteries assure stable voltage over long periods of time, are undamaged by momentary short circuits, and provide long shelf life.

MICROMINIATURE TRANSMITTER, used for monitoring tooth wear and pressures and for other biomedical applications, is made by Varo, Inc. Small enough to be fitted into a dental bridge, it transmits information over short distances to a pickup/preamp, utilizing an RM-312 Mallory Mercury Battery smaller than an aspirin tablet.

A DUAL INSTRUMENT FOR REACTOR MONI-TORING, the log n Period Amplifier made by Keithley Instruments, Inc. gives extremely accurate low-level DC measurements. The constant voltage source used for calibrating this sensitive instrument is a Mallory Mercury Battery...chosen for its steady voltage and an accuracy within $\pm \frac{1}{2}$ %. Stable, long-lived Mallory Mercury Batteries are used as the power supply for several other Keithley instruments. Miniaturize your new product . . . make it more portable . . . give it extra long service between battery changes . . . with Mallory Mercury Batteries. Pioneered by Mallory, these unusual batteries last 3 to 7 times longer than conventional batteries, depending on drain. They provide the highest watthours per pound of any commercially available primary battery. Sizes smaller than an aspirin tablet deliver ample energy for many miniature circuits.

Mallory Mercury Batteries have the unique characteristic of staying at constant voltage throughout their long life. This property is ideal for transistor circuitry ... also proves useful in applying these cells as a highly stable source of voltage for reference or calibration. Voltage of cells coming from production varies no more than a few millivolts.

As for shelf life, we've tested mercury batteries held in storage for over six years: capacity loss was minimum. Steel case construction with molded grommet seal makes them free from leakage.

Choose from a broad line of standard single or multiple voltage cells . . . or let us develop a custom power pack or you. Write us for consultation and engineering data.

Mallory Battery Co., North Tarrytown. N. Y. a division of P. R. Mallory & Co. Inc.

In Canada: Mallory Battery Company of Canada Limited, Toronto 4, Ontario

In Europe: Mallory Batteries, Ltd., Dagenham, England CIRCLE 90 ON READER-SERVICE CARD

Servo Amplifiers

Have no moving parts. Six types of Power-Max integral horsepower, position servo amplifiers are available. Positioning accuracy is typically better than 0.3%. Dc inputs include analog programer output, positioning potentiometers, selector switch and fixed-resistor networks, electromagnetic flow-meters and static switching circuits.

Electromation Co., Dept. ED, 4254 Glencoe Ave., Venice, Calif. *Availability:* stock.

Resistor Networks

589

582

Lug-type resistor networks are made in lengths to 6 in., with up to 13 resistors. Values can be matched to 0.005%; individual tolerances are 0.01%. Values range from 1 ohm to 2 meg, with ratings to 3 w and 1 kv.

Reon Resistor Corp., Dept. ED, 155 Saw Mill River Road, Yonkers, N. Y.

Photoelectric Reader

671

Sorts by color. Photoelectric reader model 150 provides a resistance range of about 25 K to 250 K from white to black surfaces at a distance of 1/8 in. from the lens. Volume is 2/3 cu in. Range is flush to 1-1/2 in.; weight is 1 oz.

Melpar, Inc., Dept. ED, 3000 Arlington Blvd., Falls Church, Va.

ELECTRONIC DESIGN . July 5, 1961

Vertical Sensing Element

580

Two-axis, proportionally damped, bubble-type A1800-01A-A vertical sensing element drives gyro torque motors. Vertical accuracy is +15 min of arc, repeatability is 5 min and tilt angle is 0.75 deg nominal at full-scale output.

General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Power Supply Cabinet

542

Shock and vibration, category D per MIL-E-4970A, are withstood by this power supply cabinet. Designated model 2C, the cabinet is weather-proof and suitable for outdoor use. The cabinet is offered on nine of the firm's standard power supply models providing dc currents up to 1.500 amp from 15 to 135 v.

Christie Electric Corp., Dept. ED, 3410 W. 67th St., Los Angeles 43, Calif.

Bellows Couplings

674

Allow 5-deg misalignment. Solid, split-hub, and combination miniature bellows couplings transmit 200 oz-in. max torque. The phosphor bronze units have zero backlash, permit 5-deg max misalignment, and 3,000 rpm max speed. Surface is palladium flash-plated.

FAE Instrument Corp., Dept. ED, 16 Norden Lane, Huntington Station, L. I., N. Y. when conditions are critical...

Ho .

the choice is **atlee** transistor clips

HOLDING POWER — atlee clips are specially contoured to flex under tension. Their grip actually increases as shock and vibration increases. PROVEN RESULTS — no visible shifting or twisting — no lead-breaking resonance — holding power unchanged by heat or constant use.

COOLING EFFICIENCY — atlee clips, acting as heat sinks, approach within 10% of "infinity". PROVEM RESULTS — operation of transistor at maximum ratings without life shortage.

ELECTRICAL INSULATION—atiee clips are available with Dalcoat B coating, an enamel combining twice the dielectric stength of Teflon with equal heat conductivity of mica. PROVEN RESULTS—proper electrical insulation from chassis and proper thermal behavior.

SEND FOR TRANSISTOR APPLICATION TABLE — A comprehensive listing of atlee clips for specific transistor application.

ELECTRONIC DESIGN . July 5, 1961

AC Power Supply

514

This variable-voltage power supply has an output from 0 to 140 v ac with regulation of $\pm 6\%$ at 75 w. Maximum no-load output is 142 v rms. Front panel meter reads 0 to 150 v with 1% full scale accuracy. Unit measures 9-3/8 x 4-7/8 x 5-1/2 in.

Lafayette Radio Corp., Dept. ED, 165-08 Liberty Ave., Jamaica 33, N. Y.

Price: \$19.75.

Miniature Pentode

Improved linear deflection is featured in the 6HB6, a T6-1/2 miniature pentode. Designed for receiver applications, the tube has a transconductance of 25,000 μ mhos.

Raytheon Co., Industrial Components Div., Dept. ED. 55 Chapel St., Newton 58, Mass. P&A: \$0.72 ea, 100 or more; im-

mediate.

Recycling Timer

516

521

This compact recycling timer, designated series Dual-Trol, produces a series of on-off electrical pulses. It consists of two timing modules. one for the on and the other for the off signal, which can be adjusted to vary the timing interval. Ten replaceable modules are available with timing ranges from 6 sec to 3 hr. Units are rated at 10 amp and measure $7-1/2 \ge 5-1/8 \ge 5-9/16$ in.

Industrial Timer Corp., Dept. ED, 1407 McCarter Highway, Newark 4, N. J. P&A: \$77.50; six to eight weeks.

and without an entry at a contraction of the contra

CIRCLE 93 ON READER-SERVICE CARD

Compact chassis of Osborne 300 CBT Citizens Band Transceiver. "Transfilter" Combinations eliminate need for critical tuned tranformers.

New Transfilter[®] Combinations

Greater selectivity in a miniature package

... and increased stability at a decreased cost. Further, magnetic shielding can be eliminated as well as the necessity for factory and field alignment. That's why CLEVITE'S ceramic i-f filters are rapidly replacing conventional components in today's mobile or high quality commercial receivers. Basic component of these rugged fixed-tuned devices is the

CLEVITE piezoelectric "Transfilter" developed especially for great stability of resonant frequency with respect to time and temperature. Cascading and coupling these resonators provide excellent selectivity at desired bandwidths. Size, $1\frac{1}{2}$ " x $\frac{3}{4}$ " x 2.0" high; Center Frequency, 455 kc; Shape Factor (60/6db), 3:1 to 6:1; Bandwidth, 4 to 20 kc; Insertion Loss, 6 to 12 db max. (depending on bandwidth); Impedance, 2700 ohms in and out; Temperature Range, -20°C to +90°C. Call, write or wire for complete details.

CLEVITE ELECTRONIC COMPONENTS 232 Forbes Road, Bedford, Ohio / Division of ELEVITE Corporation

Angular Accelerometers

466

1 BE

Resolution is 0.01% of full scale. The AA series angular accelerometers for sensing roll, pitch and yaw cover from 0.5 to 500 radians per sec² in five models. They can be used with carrier amplifiers or 400-cps power systems and are suitable for missile instrumentation and control.

Dynamic Measurements Co., Dept. ED, 106 Terwood Road, Willow Grove, Pa.

Image Orthicon

With rugged construction as well as high sensitivity, type GI-7409 image orthicon is designed for military applications such as in missiles, satellites, fire control and drone guidance.

General Electric Co., Cathode Ray Tube Dept., Dept. ED, Syracuse, N. Y.

Infrared Bolometer

Mosaic infrared bolometer permits imaging or photographing extensive areas at one time through the use of passive heat emission. A complete image can be provided in a fraction of a second.

Barnes Engineering Co., Dept. ED, 40 Commercial Road, Stamford, Conn.

465

428

426

Drills up to 200 holes in any pattern through a load of one or more printed-circuit boards, up to 8×12 in. Model 120 automatic program drill, having a repeat accuracy of 0.002 in., is a high-speed electric drill with a pneumatically operated spindle and movable work table controlled by paired stop-pins set in a revelving control disk.

Develop-Amatic Engineering, Dept. ED, 923 Industrial Ave., Palo Alto, Calif. SILICONE NEWS from Dow Corning

Engineer for Value

New Dielectric Gel Assures Protection Plus Easy Repairs

If value engineering is important to you, so is Dielectric Gel. This new "see-through" potting material offers all the advantages of other materials *plus* visual inspection and instrument testing . . . plus easy repair . . . plus fool-proof *repotting*.

A water white, medium viscosity liquid, Dielectric Gel readily surrounds components. It cures in place, forming a resilient mass with outstanding dielectric properties, good thermal stability and moisture resistance. No significant stresses are developed during or after cure. Serviceable from -60 to 200 C, Dielectric Gel protects potted components and circuits from shock and vibration, other environmental extremes . . . is excellent for filling and impregnating capacitors, magnetic amplifiers, similar components and devices.

Circuits and components potted in Dielectric Gel can be checked both visually and by instrument. When probes are removed, Dielectric Gel heals itself. To replace a defective part you simply cut away the Dielectric Gel with a knife or scissors, replace the defective component and pour fresh Gel around the part. Result: Original high quality protection!

CIRCLE 800 ON READER SERVICE CARD

Corning

Dow

... Specify Silicones

No Heat-loosened Terminals Here

Repeated soldering does not loosen terminals mounted on silicone-glass laminate made with Dow Corning resins. Lightweight and rugged, silicone-glass laminates provide greater strength at elevated temperatures than many metals . . . keep their excellent dielectric properties despite storage, environmental aging, rapidly changing ambients, vibratory shock and high humidity. These are the reasons why Lear, Inc., Grand Rapids, Michigan selected siliconeglass laminate for the capacitor mounting board in their Stable Platform Model 2013J.

Easy Way to Repair Encapsulations

It's easy to replace defective parts encapsulated in Silastic[®] RTV, the fluid silicone rubber that cures without heat. First, you cut a slit in the Silastic RTV jacket; second, replace the component: third, patch the cut by pouring fresh Silastic RTV over the repair... there's no measurable loss in dielectric properties or physical strength. Encapsulation with Silastic RTV offers these advantages, too: resistance to moisture, fungus, corrosive atmospheres, corona and ozone, excellent dielectric properties, good heat dissipation and an operating temperature range of -60 to 250 C. Silastic RTV assures top value protection.

Heat-sink Sealant Ups Performance

When transistors and diodes are mounted with Dow Corning compound as the heat-sink sealant, heat dissipation improves up to 50%. That's because this greaselike silicone compound doesn't dry out, harden, melt or lose its initial properties from -70 to 200 C . . . even after long time exposure. Dow Corning silicone compound has excellent thermal conductivity and increases the heat transfer between diode-and-washer and washer-and-chassis . . . improves device performance. Applied to lead terminals and connector pins after soldering, Dow Corning compound protects against corrosion, corona and shorts.

CIRCLE 801 ON READER SERVICE CARD

CIRCLE 802 ON READER SERVICE CARD

CIRCLE 803 ON READER SERVICE CARD

CORPORATION MIDLAND, MICHIGAN

DERCHON: ATLANTA BOSTON CHICAGO CLEVELAND DALLAS LOS ANDELES NEW YORK WASHINGTON.D.C. CIRCLE 800, 801, 802, 803 ON READER-SERVICE CARD

Automatic Checkout Systems

Programed. digital automatic checkout systems provide quantitative, qualitative and go/no-go testing at all levels of maintenance and production. They direct input-output switching, select measurement scales and compare system responses to predefined limits. Magnetic or punch tape can be used.

Curtiss-Wright Corp., Electronics Div., Dept. ED, P. O. Box 10044, Albuquerque, N. M.

Panel Meters

450

Accuracy is 2% of full scale for dc and rf rectifier and ac moving-iron type panel meters. The ac rectifier type has an accuracy of 3%. Series 201 and 301 are 2-1/2 and 3-1/2 in., round or rectangular. All types have three-year warranty.

Daystrom, Inc., Weston Instruments Div., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N. J.

Tape Transport

410

Messages of 10 sec to 3 min in length may be stored in the cartridge of the Repeater Reel magnetic-tape transport. Messages may be played over and over because the tape is spliced to form one continuous loop. Applications include monitoring and surveillance of mechanical and automatic operations.

Metric Processing Corp., Dept. ED, 143 Roseland Ave., Caldwell, N. J.

451

= A Better Position For You

It's an easy formula to remember and it's one that has stood the test of 30 years of service. Cadillac is the nation's largest electronic placement service and is retained by over 520 top electronic firms—both large and small—from coast to coast. Cadillac's service is COMPLETELY CONFIDENTIAL and available to you ABSOLUTELY FREE OF CHARGE.

FREE—Monthly Opportunities Bulletin

If you wish to receive a monthly bulletin of the finest available electronics opportunities, simply send us your name and home address (and, if you wish, a review of your qualifications). Our services are without cost to you through our Chicago office and our Los Angeles subsidiary. Lon Barton Associates.

CIRCLE 872 ON READER-SERVICE CARD

Class 1, Nikrothal L Kanthal's Standard Nickel-based Alloy for resistors and potentiometers

Now better quality and at a lower price!

Thanks to new aging equipment and more efficient processing, Kanthal now offers Class 1, Nikrothal L with a maximum temperature coefficient of resistance of ± 5 ppm per °C from -50° C to $+150^{\circ}$ C (was 10 ppm) and at a five per cent reduction in bare wire price. Prices have been correspondingly lowered for insulated Class 1, Nikrothal 1

Don't forget Class 2, Nikrothal L, and Classes 1 and 2, Kanthal DR — no change in quality or price.

Write today for Kanthal's new Precision Resistance Alioys Bulletin describing physical properties, sizes, specifications, design and application considerations.

CIRCLE 96 ON READER-SERVICE CARD

NEW PRODUCTS

High-Low Temperature Chamber

Range is -100 F to +600 F. Temperature can be lowered from 70 F to -100 F in 5 min, and raised to 600 F in 45 min. Heating unit is electric resistance type, operating on 15 amp, 115 v ac. Refrigerant is liquid CO₂. Sealed construction is said to permit continuous operation at -100 F without condensation. Unit measures $21-1/2 \times 14 \times 18$ in. Test space measures $9 \times 11 \times 10$ in.

Bemco, Inc., Dept. ED, 11631 Vanowen St., North Hollywood, Calif.

P&A: \$440.00 FOB North Hollywood; from stock.

Controlled Switches

Fast recovery silicon controlled switches operate from 50 to 800 ma average, 10 amp peak. Complete recovery occurs in 2 μ sec; rise time is 0.1 μ sec. Voltage ratings of the pnpn devices range from 30 to 200.

Solid State Products, Inc., Dept. ED, 1 Pingree St., Salem, Mass.

P&A: \$10 to \$29 ea, 100 to 999; stock.

Delay Lines

460

Lumped-constant electromagnetic delay lines are designed for microminiature circuit applications. Delay is $0.35 \ \mu \text{sec} \pm 5\%$; risetime is $0.03 \ \mu \text{sec}$ max; impedance is 1,500 ohms; temperature range is -55 to +125 C. Unit shown occupies 0.3 cu in. Requirements of MIL-STD-202-B are met.

Andersen Laboratories, Inc., Dept. ED, 501 New Park Ave., W. Hartford 10, Conn.

MODEL 1060F

Rapid temperature cycling without sacrificing precise control ($\pm \frac{1}{2}$ ° F) is achieved with the Delta 1060F temperature chamber.

CHAMBER

This convenient bench model can make the complete cycle between -100° F and $+500^\circ$ F in less than twelve minutes.

An auxiliary timer Delta MR-1 is available for use in test work where automatic cycling is desired. For further information on the 1060F and other Delta

For further information on the 1060F and other Delta temperature chambers, contact your local Delta representative or write

PRIVATE

LINES

9999; stock.

527

483

When employment information is obtained through ELEC-TRONIC DESIGN, it's sent direct to your home, so that only you and one prospective employer at a time know about it. You can conduct your employment campaign privately—as it should be conducted.

This is why every Reader Service Card reserves a line for your home address, and why circled numbers are detached from Career Inquiry Service Forms sent to companies. You can apply for many jobs simultaneously ... only you will know how many.

Use the Career Inquiry Service Form, and the Reader Service Card when job hunting. They're your private lines to employment opportunities ... another service for you from ELECTRONIC DESIGN. Low-Level Switch

Area ment

Solid-state device is designed to switch input signals of up to 1 v with a resolution of 5 μ v. Designated type SW-101, the unit switches up to 1,000 times per sec. Switching transient is less than 4 mv; gating power is less than 2.5 mw, and error is less than 50 μ v. No external transformer is required. The unit occupies less than 1/2 cu in. and weighs 8 g.

Alpha-Tronics Corp., Dept. ED, 1033 Engracia, Torrance, Calif. *Availability: 30 days.*

Multicoder

432

485

For all IRIG channels with sampling rates for PDM systems. Transducer-source resistances up to 5 meg may be used. Other features of the multicoder are: input of 28 v at 1-1/4 w, input resistance greater than 100 meg at 70 C, input impedance at 1,000 cps of 150 K.

Applied Electronics Corp. of N. J., Dept. ED, 22 Center St., P. O. Box 43, Metuchen, N. J.

Absolute Pressure Transducer

Designed for use with corrosive media, the model 723 absolute pressure transducer is a bourdon-tube, potentiometer-type instrument with a stainless steel isolation bellows. Range is from 0 to 350, to 0 to 3,500 psia. Typical static error band is $\pm 1\%$. Resistance is 1 K to 10 K. Nominal resolution is 0.25 to 0.45%. Power rating is 1.5 w continuous at 165 F. Units are 1-3/8 in. in diameter and 3 in. long. Weight is 7 oz.

Bourns, Inc., Instrument Div., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

482 ISYLVANIA LIGHTING-DESIGNED FOR DESIGN ENGINEERS

puts a dramatic idea in appliance design

Now you can design exciting new sales appeal into almost any appliance with PANELESCENT[®](electroluminescent) lamps.

For example, in the control panel of a room air conditioner. This startling new form of light glows beautifully in the dark, makes a control panel clearly visible in dim rooms or during the night.

Not a bulb, not a tube, but a sheet of metal with an electrified coating, the PANELESCENT lamp is virtually indestructible, gives off no heat, either.

Installation by mass assembly is simple. No sockets,

bulbs, fragile parts, or complicated assemblies. PANELESCENT lamps use a minute amount of current, glow for years without ever needing to be switched on or off.

See your Sylvania representative for more information about how PANELESCENT lamps can be used to improve a new product you're planning. Or write now to Special Products Division, Sylvania Electric Products Inc., 60 Boston St., Salem, Mass.

With 6000 different kinds of lamps SYLVANIA LIGHTS THE WAY

NEW! Solid State time/delay/relays

...with traditional AGASTAT[®] reliability!

Now available . . . solid state time/delay/relays with the accuracy essential for critical missile and computer applications! These new AGASTAT relays are the result of over 25 years' time delay engineering and manufacturing experience . . . specialized experience which has made AGASTAT the standard of reliability throughout industry.

Advanced design combines specially selected semiconductors and other components in a "modular-sandwich" configuration. Result: the standard modules mean flexibility; uniformity; and rapid delivery of "custom" produced prototypes. The solid state AGASTAT is hermetically sealed . . . resistant to vibration and shock. Special circuitry protects against input polarity reversal, provides immunity to voltage transients and continuously modified inputs.

What are your requirements? These solid state relays are only 1-5/16" sq. ... available in six standard types, with delay on pull-in or drop-out; timing ranges from 0.01 sec. to 10 hours, fixed or adjustable. Operation-18-32 vdc; -55c to 125c; load capacity to 5 amperes. Write Dept. S1-47 for data sheet. Or ask for a quotation on your special application requirements.

IN CANADA: ESNA CANADA, LTD., 12 GOWER ST., TORONTO 16, ONTARIO, CANADA CIRCLE 99 ON READER-SERVICE CARD

Brakes and Clutches

Size 5 brakes and clutches have torque ratings of 6 oz-in. min engaged and 0.05 oz-in. max disengaged at 28 v dc. Brake torque is 2 oz-in. Units consume 1.16 w and have a 2.8 msec response time at 28 v. Minimum engagement voltage is 6 v dc. Designed for use in analog navigation computers, units weigh 0.97 oz and meet MIL specs.

Clifton Precision Products Co., Inc., Dept. ED, 5050 State Road, Drexel Hill, Pa. Availability: Off-shelf delivery.

Hermetic Sealing Glass

532

Precision electronic components can be hermetically sealed in this glass, Kovex 50. The glass is said to provide a matched seal with metal. Annealing point is 502 C; softening point, 700 C; thermal expansion coefficient, 48 x 10⁷; density, 2.27; power factor, 0.25; dielectric constant, 4.98; loss factor, 1.24.

Mansol Ceramics Co., Dept. ED, Belleville, N. J.

Sensitivity is 0.5 μ w. The ultRelay static relay with meter-movement sensitivity handles up to 750-w, 650-cps loads, and is virtually unaffected by shock and vibration. Power amplification ratios are 90 to 100 db. Operating temperature range is -40 to +160 F

Airborne Accessories Corp., Industrionic Div., Dept. ED, 5456 W. Washington Blvd., Los Angeles 16, Calif. Price: \$85.

CALIMMES

It's a fact! Only a specially designed indicator can exactly meet the precise circuitry requirements of computers, data processing and control systems. Only Tec.LITES can be tailored exactly to meet your demands - at competitive prices by engineers who conceived and developed the concept of self-contained transistorized indicator devices. Every TEc.LITE - a complex transis-torized indicator or a simple lite-is manufactured under rigid quality

manufactured under rigid quality assurance programs to surpass military and commercial quality standards. Write for detailed information on

TEC.LITES.... custom designed to exceed your most exacting demands.

ORIGINATOR OF PATENTED NSISTORIZED INDICATORS

3357 Republic Ave. • Minneapolis 26, Minn. TWX MP 331 . WE 9-6754

CIRCLE 100 ON READER-SERVICE CARD ELECTRONIC DESIGN . July 5, 1961

486

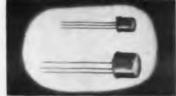
Heat Sink

499

500

For TO-18 package. Heat sinks for mesa transistors in the TO-18 package use a threaded nut for secure contact with transistor weld flange. The two-piece, stud-mounted sinks are of aluminum having high thermal efficiency. No. 1107 is anodized, No. 1106 has caustic etch finish

Thermolloy Co., Dept. ED, 2130 Irving Blvd., Dallas 8. Tex.


Silicon Controlled Rectifiers

Rated at 25 amp at 100 C, diffused silicon controlled rectifiers of the TI-150 series are housed in stud package. Rated breakover voltages, both forward and reverse, are 50, 100, 200, 300, and 400 v respectively for the TI-150, 151, 152, 153, and 154.

Texas Instruments Inc., Dept. ED, P. O. Box 5012, Dallas 22, Tex. Availability: Immediate.

In TO-18 case, pnp alloy junction silicon transistors 2N935 through 2N946 are electrically equivalent to TO-5 types such as 2N1917 through 2N1922, 2N1025, and others. They are suited for switching, communications, and instrumentation uses

Sperry Semiconductor Div., Sperry Rand Corp., Dept. ED, Norwalk, Conn.

CIRCLE 101 ON READER-SERVICE CARD >

1.00 75 105 2N540 ___80 45 113 0.75 1.88 2N540A -80 ---55 45 113 0.75 1.88 71 213 All types have: Max, collector current, 3.5 amps; junction temperature, -max, saturation voltage 0.6 volts (1,=20, 1=200 mR). Minimum alpha cu is 200 KC (1<=100 MA, Vcg=-4 volts); max, thermai resistance, 2.2°C/W -65 to +95°C; semiconductors H

More Reliable Products through Advanced Engineering

 Typical leakage three to five times lower than specification limits. High dissipation with minimum size · High collector-to-base voltage High collector-emitter breakdown

temperatures

voltage · Wide range of operating and storage

CBS PNP Power Transistors with an im-

proved industrial male package offer:

• Single, sturdy 8-32 mounting stud

sistance to thermal shock Rugged welded construction through the selection of matched materials having excellent welding properties

Matched glass-to-metal seal for

greater mechanical strength and re-

CBS ELECTRONICS, Semiconductor Operations, Lowell, Massachusetts

A Division of Columbia Broadcasting System, Inc. • Semiconductors • tubes • audio components • microelectronics Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 • Newark, N. J., 231 Johnson Ave., TAlbert 4-2450

-21)

52

Melrose Park, Ill., 1990 N. Mannheim Rd., EStebrook 9-2100 . Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 Toronto, Ont., Canadian General Electric Co., Ltd., LEnnox 4-6311.

New Improved CBS PNP Power Transistors

2N538(A) • 2N539(A) • 2N540(A) FEATURE MORE POWER, LESS WEIGHT, LESS SPACE

The CBS 2N538(A), 2N539(A) and 2N540(A) have a maximum dissipation of 30 watts at a base mounting temperature of 25 deg. Centigrade. Yet, each transistor weighs less than 5 grams and requires only 1/3 square inch of chassis space.

Compact and rugged, these hermetically-sealed CBS PNP Germanium Power Transistors are ideal for military and industrial power applications demanding high reliability. They are especially suited for servo motor controls, power amplifiers, converters, power supply regulators and low-speed power switches.

Note the major characteristics and advantages. Call or write today for complete technical data and delivery information from your local sales office or Manufacturer's Warehousing Distributor.

 $\frac{Min}{V_{CE}}$ (d = 1)

---55

---55

---55

20

20

30

30

Max. VCBO

---80

---80

---80

-80

Туре

2N538

2N538A

2N539

2N539A

ELECTRICAL CHARACTERISTICS

50

50

75

3.33

3.33

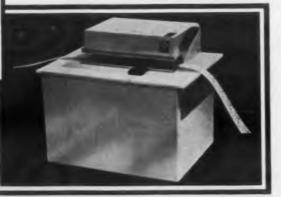
2.50

2.50

17.5

35

1.33


1.33

1.00

COMPUTERS **BUSINESS MACHINES** DATA REDUCTION DATA PROCESSING MACHINE CONTROL INDUSTRIAL CONTROL

The Control Data Model 350 Paper Tape Reader employs the most advanced tape controls and reading techniques. Multi-colored tapes can be read interchangeably without the need of bias adjustments, and new specially designed light guides in the reading head eliminate dirt collecting holes. The precise control system eliminates troublesome resonances and provides complete freedom from programming limitations. These and other features combined with careful attention to details and quality, result in a paper tape reader which provides new high standards of reliability and versatility.

For complete specifications, prices and delivery write or call us directly or contact our nearest soles representatives.

NEW PRODUCTS

Bulkhead Connector

This compression-sealed unit has a normal leakage rate of less than 10⁻⁷ cc per sec, with rates of 10-9 cc per sec available on special order. Bodies and pins are fused with glass, meeting MIL-C-5015 specifications. Various contact arrangements with 12 to 32 pins are available. Unit mates with any standard MS socket. Escon, Inc., 735 Branch Ave., Providence, R. I.

Module Cage

507

506

518

517

Instrumentation module cage holds up to 24 printed circuit cards, or up to 12 modules 1.375 in. wide. Standard 22-pin or 24-pin connectors mount at rear. Modules are available for strain gage, telemetry, and recorder uses.

Wiley Electronic Products Co., Dept. ED, 2045 W. Cheryl Drive, Phoenix, Ariz.

Color-coded connector cables are made for interconnection of audio equipment. Plugs are

provided. Basic colors of white, green, yellow,

red and blue are available, Colored marking

Zoron, Inc., Dept. ED, 612 W. Monroe St.,

strips and color dots may be easily applied.

Connector Cables

Time Delay Relay

Chicago, Ill.

 Unsurpassed Reliability Advanced Mechanical

- Design • 350 Char/Sec Read Rate Start-Stop or Continuous
- Mode
- 5, 7, or 8 Level Tape
- Tape Widths: 11/16", 7/8", 1" Instantaneous tape width
- selection
- Reads all punched tape Paper-Plastic Colored Plain **Oiled or Non-oiled**
- Complete freedom from programming limitations

Of almost crystal can size, this time delay relay, Model M-100, has spdt output contacts rated at 0.25 amp. Input voltage is 24 to 32 v dc.

Adjustable time ranges are from 5 msec to 30 sec. $\pm 5\%$ under 10 sec and $\pm 10\%$ over 10 sec. Units are hermetically sealed, rated at one million operations, and available in a variety of mounting styles.

Electronic Products Corp., Dept. ED, 4642 Belair Road, Baltimore 6. Md.

ELECTRONIC DESIGN . July 5, 1961

Module Cooling Unit

Designed to cool digital modules, particularly the firm's S-PAC series, the model CU-30 cooling unit utilizes three axial-flow fan units mounted in parallel within the chassis. It has a removable dust filter. The airduct may be adjusted to draw air from either the front or rear of the cabinet. Unit measures 19 x 5 x 8 in. Computer Control Co., Inc., Dept. ED, 983

Concord St., Framingham, Mass. P&4: \$127.00; delivery from stock.

Differential My Commutator

459

520

Range is dc to 20 kc for the differential millivolt commutator, packaged for missile and ground support applications. Specifications include: power, 1 w at 28 v: input impedance. 100 K; sensitivity, 10 mv full-scale input; resolution, better than 20 μ v; linearity, better than 0.25%.

Applied Electronics Corp. of N. J., Dept. ED, 22 Center St., P. O. Box 43, Metuchen, N. J.

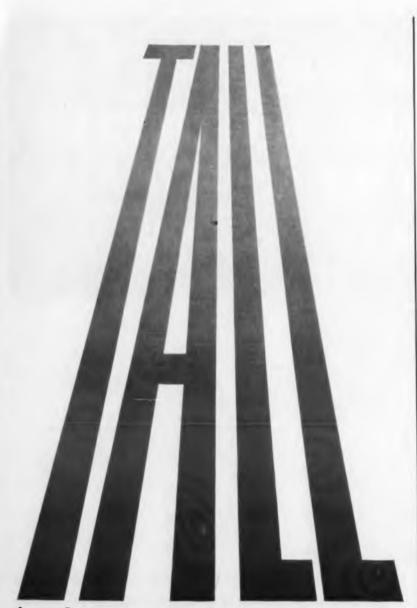
Leak Detector

519

For testing hermetically sealed components. Leaks in the 10^{-11} cc-per-sec range can be detected with the type 24-510 leak detector. Up to 10,000 transistors can be tested in each cycle, requiring less than an hour. Components are soaked in a nontoxic radioactive gas, are air washed, then are tested for traces of radioactivity.

Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

The Cannon KPT Hermetic line is designed to, and far surpasses all requirements of **MIL-C-26482**, has proven statistically reliable in leakage tests 200 times as severe as that required by MIL-C-26482. *Cannon offers you hermetic seals* with a reliability coefficient of .999 at a confidence level of 95%. Our rigid manufacturing controls and continued testing guarantee reliability at no added cost—and, in many instances, at lower prices than ordinary hermetic seals. Available for off-the-shelf delivery from Cannon stocking points and CAPS Distributors throughout the United States. **LEAD-FREE COMPRESSION GLASS EXCEPTIONALLY LEGIBLE CONTACT IDENTIFICATION FOR FASTER** TERMINATING AND CHECKOUT


RELIABILITY
ASSURANCE SUBSTANTIALLY REDUCES THE
NEED FOR USER'S VERIFICATION TESTING

These
are only a few of the many reasons why you should consult the
world's most experienced manufacturer of electrical connectors for your hermetic sealing needs. For immediate delivery
and quotations write, phone, or wire Customer Services Manager, PHOENIX DIVISION, 2801 AIRLANE, PHOENIX, ARIZONA.

Phone BRidge 5-4792. Test report and complete KPT Catalog available upon request from:

CANNON ELECTRIC COMPANY, 3208 Humboldt Street, Los Angeles 31, California. CIRCLE 106 ON READER-SERVICE CARD

in telemetry systems management

The ascendant position of Vitro Electronics in telemetry systems management and products stems from the facilities, experience, and talent it takes to produce on time. Vitro telemetry capability is demonstrated daily down the AMR and PMR ranges. Management versatility is reflected in our ground, mobile, shipboard, airborne, and space operations around the globe. This specialty of Vitro's trusted electronic competence is founded on long and familiar experience in the functions of telemetry conception, design, engineering, procurement, production, testing, and installation. Where the utmost in exacting telemetry systems performance is demanded — Vitro is at work.

Outstanding opportunities for telemetry systems, RF and advanced development engineers.

VIATO ELECTRONICS A DIVISION OF VITRO CORPORATION OF AMERICA PRODUCERS OF NEMS-CLARKE EQUIPMENT

DID JEBUP-DLAIR DRIVE, SILVER SPRIND, WARYLAND / 2301 PONTIUS AVENUE, LOS ANGELES 64, CALIFORNIA CIRCLE 107 ON READER-SERVICE CARD

Sea-Water Depth Transducer

456

Range is 350 to 1,000 psia for model 734 seawater depth transducer. Other features include: resistances of 5 to 10 K \pm 5%, resolution of as low as 0.15%; vibration limit of 35 g at 2,000 cps, static error band of \pm 0.5%, dimensions of 2 in. in diameter by 1.44 in., and weight of 16 oz.

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Appliance Wire

528

Teflon TFE and FEP insulation is 10 mils to 1/32 in. thick on appliance wire AWG 16 to 26. Temperature ratings are 105 to 200 C max, with voltage ratings to 600 v. Wire is U/Lapproved.

Tensolite Insulated Wire Co., Inc., Dept. ED, W. Main St., Tarrytown, N. Y.

Ultrasonic Delay Lines

531

Almost temperature-independent. These delay lines are manufactured of Code 8875 glass. This material has a nominal time delay temperature coefficient of zero ± 0.75 ppm per C. Attenuation coefficient is low enough to permit time delays of 350 μ sec or higher at frequencies below 10 mc.

Corning Glass Works, Dept. ED, Corning, N. Y.

Frequency Standard

461

For 360 to 1,300 cps with accuracies of 0.002%. Type 27 frequency standard measures 11/16 in. in diameter and 2-15/16 in. long. It weighs 1-3/4 oz, requires 20 to 30 v dc at 5 ma and operates over a temperature range of -65 to +125 C. Vibration conditions of MIL-E-5272B Procedure II are met.

American Time Products, Div. of The Bulova Watch Co., Inc., Dept. ED, 61-20 Woodside Ave., Woodside 77, N. Y.

CIRCLE 108 ON READER-SERVICE CARD

ELECTRONIC DESIGN . July 5, 1961

Potentiometer

Rated at 15 w at 25 C with maximum operating temperature of 265 C. Model 3030 wirewound potentiometer offers resistances of 10 ohms to 10 K and nominal resolution of as low as 0.6%. Weight is 0.9 oz; size is $1.07 \times 0.52 \times 1.27$ in. Applications include in power supplies.

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Price: \$8 to \$10.

Synchros

530

433

462

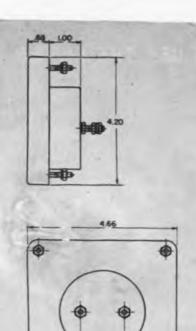
457

Bu/Weps specification MIL-S-20708A are met by this series of synchros over a temperature range of -55 to +85 C. The series is designed for use in fire control, radar, navigation, missile functions, and similar applications.

Kearfott Div., General Precision, Inc., Dept. ED, Little Falls, N. J.

Image Orthicon

For near infrared use, type Z5395 image orthicon is suitable for both military and industrial applications. It can be used to penetrate hazy atmospheres for mapping and surveillance, as well as in passive detection systems.


General Electric Co., Cathode Ray Tube Dept., Dept. ED, Syracuse, N. Y.

Static Inverter

Rated at 175 va, model 143-101-171 static inverter has an output of 115 v ac, 400 cps, single phase from an input of 25 to 30 v dc. Output voltage and frequency are maintained within $\pm 1\%$ from no load to full load; harmonic distortion is held to within 4%. Uses include missile and aircraft ground support equipment.

American Electronics, Inc., Precision Power Div., Dept. ED, 1598 E. Ross Ave., Fullerton, Calif.

140

5.75

162

-1.00

NEW WESTON PANEL METERS PROVIDE THREE IMPORTANT DESIGN ADVANTAGES...

- Exclusive magnetic shielding
- Sustained accuracy up to ± 0.5%
- Ranges tailored for special applications

Long-term accuracy and reliability are special features of Weston's new line of panel instruments. Accuracy - in Model 1761 – is up to $\pm 0.5\%$ of full scale deflection when supplied with knife edge pointer and mirror scale. Exclusive CORMAG self-shielded mechanisms are used in both Models 1751 and 1761. The meters may be mounted on magnetic or non-magnetic panels without special adjustments... are immune to the effects of stray fields and nearby instruments. Housed in dust and moistureresistant Bakelite cases with glass windows, they are supplied in a wide variety of standard ranges. Special range meters with conventional magnetic construction are available where higher current sensitivity, lower resistance, special ballistic characteristics and controlled scale distribution are required.

Call your Weston representative for details, or write for Catalogs 01-109 and 01-110-which contain technical information on this new line of precision panel meters. Weston Instruments Division, Daystrom, Inc., Newark 12, New Jersey. International Sales Division, 100 Empire Street, Newark 12, New Jersey. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ontario.

> Standard instruments: Black Lance pointer, easy to read black markings on white dial, 100° erc. Model 1751–Size: Rectangular–4.66″ π 4.20″ 4″ long scale. Accuracy: \pm 2% full deflection as DC instrument. Model 1761–Size: Rectangular \pm 5.75″ π 4.62″, 4.5″ long scale. Both models available as: DC ammeters, milliammeters, microammeters, volumeters (1000k/volt).

DAYSTROM, INCORPORATED WESTON INSTRUMENTS DIVISION Weston for <u>Dependable</u> Accuracy

CIRCLE 109 ON READER-SERVICE CARD

Inductance Bridge

Designed for 400 to 20,000 cps operation, this inductance bridge is basically a calibrated variable frequency oscillator coupled to a modified Maxwell bridge. The bridge, model 63B, provides direct-reading calibration of both the inductance and resistance dials, with a resolution of 0.01%. Inductance range is $0.02 \ \mu$ h to 11h; resistance range, 0.002 ohm to 110 K. Accuracy is about 0.25%.

Boonton Electronics Corp., Dept. ED, Morris Plains, N. J.

Image Orthicon

With ultraviolet sensitivity, type GL 7969 image orthicon is suited for missile detection systems, spectrographic detection and medical instruments. Light-level capacity can be as low

as 10⁻⁵ ft-c. Resolution is high. General Electric Co., Cathode Ray Tube Dept., Dept. ED. Syracuse, N. Y.

Fast-Responding Pico-ammeter 431

For nuclear applications, this pico-ammeter has a dynamic range of 10^{-12} to 10^{-3} amp in 19 ranges and an accuracy of better than 3% of full scale at all outputs. Speed of response is less than 1 msec to 64% of final value at 10^{-9} to 10^{-3} amp.

General Electric Co., Dept. ED, Schenectady 5, N. Y.

Variable Inductor

492

430

484

For low audio range. Miniature saturablecore reactor model EL-215 operates at 1 w from 30 to 450 cps min, and 250 to 3,750 cps max. Used to determine frequencies in filter and oscillator circuits, it is effective as a lowfrequency sweeping device. The potted unit operates in temperatures from -55 to +85 C.

Vari-L Co., Inc., Dept. ED, 207 Greenwich Ave., Dept. ED, Stamford, Conn.

HOW TO GET THE POWER TRANSISTORS YOU NEED?

JUST ASK DELCO. For even though our catalog lists only a handful of germanium power transistors, there is only a handful out of all those ever catalogued that we don't make. And those only because nobody ever asked for them.

We've made, by the millions, both large and small power transistors. Both diamond and round base. Both industrial and military types. And each in a wide variety of parameters that have proved themselves reliable in nearly every conceivable application.

You get Delco transistors fast. You get Delco transistors in any quantity. And for all their high reliability, you get them reasonably priced. All you have to do is contact our nearest sales office — and ask for them.

Union, New Jersey 324 Chestnut Street MUrdock 7-3770 Santa Monica, 726 Santa Mo UPton 0-8807

Santa Monica, California 726 Santa Monica Blvd. UPton 0-8807 Chicago, Illinois 5750 West 51st Street POrtsmouth 7-3500

Detroit, Michigan 57 Harper Avenue TRinity 3-6560

Division of General Motors Kokomo, Indiana

CIRCLE 110 ON READER-SERVICE CARD

DELCO SEMICONDUCTORS NOW AVAILABLE AT THESE DISTRIBUTORS:

Boston: GREENE-SHAW COMPANY, INC. 341-347 Watertown St., Newton 58, Mass. WO 9-8900

New York: HARVEY RADIO CO., INC. 103 West 43rd St., New York 36, N. Y. JU 2-1500

Chicago: MERQUIP ELECTRONICS, INC. 5904 West Roosevelt, Chicago, Illinois AU 7-6274

Detroit:

GLENDALE ELECTRONIC SUPPLY COMPANY 12530 Hamilton Ave., Detroit 3, Michigan TU 3-1500

Philadelphia: ALMO RADIO COMPANY 913 Arch St., Philadelphia, Pennsylvania WA 2-5918

Baltimore: **RADIO ELECTRIC SERVICE** 5 North Howard St., Baltimore, Maryland LE 9-3835

Los Angeles: **RADIO PRODUCTS SALES, INC.** 1501 South Hill St., Los Angeles 15, Calif. RI 8-1271

San Francisco: SCHAD ELECTRONIC SUPPLY, INC. 499 South Market St., San Jose 13, Calif. CY 7-5858

Seattle: **C4G ELECTRONICS COMPANY** 2221 Third Avenue, Seattle 1, Washington MA 4-4354

Ask for a complete catalog

CIRCLE 111 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

Voltage Reference

Solid-state, shielded voltage reference standards of series 220 provide 5.7, 8.5, or 10.5 v dc at 10 ma. Operating from 115 v, 60 cps line, regulation is $\pm 0.001\%$ for $\pm 10\%$ line variations Capacitance from line to output is less than 1 pf.

Viking Industries, Inc., Dept. ED, 21343 Roscoe Blvd., Canoga Park, Calif. **P&A:** \$150; 3 weeks.

Timing and Control Systems

Programed timing and control systems provide initiation and termination of various switching functions at preselected times. Programing is from punched tape, punched cards, magnetic tape, hard wire, patch panels or thumbwheel switches. Digital design and modular construction are used.

Curtiss-Wright Corp., Electronics Div., Dept. ED, P. O. Box 10044, Albuquerque, N. M.

Size 11 Resolvers

529

434

Small, light weight size 11 resolves are intended for such applications as computation, angle data transmission and automatic control. Models CR4-0987-001 through CR4-0987-005, have a 0.1% function error, ± 3 min inter-axis error, and 0.1% transformation ratio unbalance.

Kearfott Div., General Precision, Inc., Dept. ED, Little Falls, N. J.

Submersible Pan-Tilt

Operating to 1,000 ft depth, model 3003-2 submersible pan and tilt mechanism permits remotely controlled underwater positioning with 360 deg of pan and 90 deg of tilt. Remote readout of pan and tilt position is available.

Ward Associates, Dept. ED, P. O. Box 9067, San Diego 9, Calif.

P&A: \$3,000; 60 days.

491

MICRO-MINIATURE RELAY STYLE 6A

For Printed Circuits

Less Space

Lower Mounting Height

Terminals & Mounting Conform to 0.2" Grid Spacing

> For reliable switching of low-level as well as power loads. Style 6A will operate at coil power levels below most larger current-sensitive relays in its general class, yet easily switches load currents of 2 amps resistive and higher at 26.5 VDC or 115 VAC. Contact arrangement to DPDT. Unique construction permits flexible wiring and a variety of schematics. Withstands 50 G shock and 20 G vibration to 2000 cycles. Meets applicable portions of specifications MIL-R-5757D and MIL-R-25018 (USAF) Class B, Type II, Grade 3.

Call Or Write For Additional Information

PRICE ELECTRIC CORPORATION

302 E. Church Street • Frederick, Maryland MOnument 3-5141 • TWX: Fred 565-U CIRCLE 112 ON READER-SERVICE CARD

RCA'S GROWING RUVISION TUY

New design capabilities unfold as RCA's amazing nuvistor tube family grows in number. You now have at your fingertips five commercial nuvistor types which permit you to nuvistorize your critical equipment designs for greater efficiency and extreme compactness.

RCA-7587 general-purpose sharp-cutoff industrial tetrode **RCA-7589** general-purpose medium-mu industrial triode **RCA-7895** high-mu industrial triode (μ =64) **RCA-8CW4** TV and FM tuner triode **RCA-2CW4** TV and FM tuner triode

Design features responsible for the fast-growing popularity of nuvistor tubes include:

• Low heater drain • Very high transconductance at low plate current and voltage • Exceptional mechanical ruggedness from ceramic-and-metal construction • Exceptional uniformity of characteristics from tube to tube • Operation at full ratings at any altitude • Extremely low interelectrode leakage • High sensitivity and stability • Very small size and light weight

The Most Trusted Name in Electronics RADIO CORPORATION OF AMERICA

Division, Harrison, New Jersey.

Nuvistorized circuits are currently in use or under de-

• Jet engine wave and vibration analyzers

· Electrometers and vacuum-tube voltmeters

• IF amplifiers in airborne weather radars

... and literally scores of other applications.

· Cascode amplifiers in radar beacon IF strips

· Pulse-width discriminators, frequency multipliers

Discover for yourself what nuvistor tubes can do in

your own critical circuits. For information, contact

your RCA Field Representative, or write: Commercial

Engineering, Section G-18-DE-1, RCAJElectron Tube

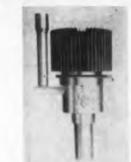
• Radar air traffic controllers

Sonar systems, sonobuoys

• FM tuners, VHF TV tuners

• Research satellite

Scintillation counters


velopment for:

RCA FIELD OFFICES...EAST: Newark 2, N. J., 744 Broad Street, HUmboldt 5-3900 • MIDWEST: Chicago 54, III., Suite 1154, Merchandise Mart Plaza, WHitehall 4-2900 • WEST: Los Angeles 22, Calif., 6801 E. Washington Blvd., RAymond 3-8361 • Burlingame, Calif., 1838 El Camino Real, OXford 7-1620

NEW PRODUCTS

Thermoelectric Generator

498

Eight-watt thermoelectric power generator is designed for operation of remote, unattended industrial field instrumentation. Fuel is natural gas, propane or butane. Rugged, reliable unit may be continually exposed to weather. Weight is 65 lb, width 12 in., height 17 in.

Texas Instruments Inc., Dept. ED, P. O. Box 6027, Houston 6, Tex.

Ultrasonic Probe 512

Operating to 100 kc, with useful response to 1 mc, probe VP-10 provides an inexpensive means of measuring ultrasonic levels. The probe will stand a static pressure of 100 psi, and is unaffected by high temperatures. Output at cavitation is several volts, permitting use with simple equipment for waveform and level display.

Vibrasonics, Inc., Dept. ED, 10 High St., Boston, Mass.

Low-Noise Preamplifier 501

For radiation detectors. Preamplifier model 100A, featuring charge-sensitive feedback, is used with semiconductor radiation detectors. Charge sensitivity variation is less than 10% from 0 to 1,-000 pf. Noise is equivalent to 600 electrons rms, rise time less than $0.1 \mu sec.$

Nuclear Industries, Inc., Dept. ED, 10 Holland Court, Valley Stream, N. Y. **Price:** \$295.

Broadband Amplifier 515

This 100-w broadband amplifier can provide a cw signal from 200 ke to 275 mc. Input and output imepdances of 50 and 90 ohms, respectively, are compatible with standard transmission lines and fittings. Broadband rf transformers for different impedance levels can be supplied. The cabinet measures 21 x 22 x 47 in., and has recessed casters.

Instruments for Industry, Inc., 101 New South Road, Hicksville, N.Y.

P&A: \$6,500; about 8 weeks.

Power Transistors

Silicon power transistors 2N2015 and 2N2016 have saturation resistance of 0.25 ohm max, power dissipation up to 150 w. Beta is 15 to 50 at 5 amp, 7.5 min at 10 amp. The devices operate at case temperatures from -65 to +200 C.

Radio Corp. of America, Semiconductor and Materials Div, Dept. ED, Somerville, N. J.

Silicon Chopper

120	100				
. 6		_		-	÷.,
		_	_	_	-
	-		_	_	2

One-gram silicon chopper operates from less than 1 my to =20 v. Driving voltage is a square wave with amplitude of 5 to 25 v, peak to peak. Signal Current is 10 ma max, linearity less than $\pm 0.5\%$ deviation from best straight line. Operating temperature is -55 to +150 C.

Solid State Electronics Co., Dept. ED. 15321 Rayen St., Sepulveda. Calif.

P&A: \$88; stock.

CIRCLE 114 ON READER-SERVICE CARD

INSTANT ENGINEERING DRAWINGS

1	M			TA	N	1		16		D	M
1	MA	NU	FAC	TU	RI	NG	co	MP	AN	¥	Com
	-								10		OHORROW

STATE

522

503

FASTER PRINTS MEAN FASTER PRODUCT DEVELOPMENT, FASTER PRODUCTION. Imagine locating a drawing or record

in seconds. Imagine having a work-size print in just 8 seconds. All this, and more, can happen when your drawings and records are on microfilm . . . with FILMSORT® Aperture Cards and THERMO-FAX "Filmac" Reader-Printers. This is the way many companies are saving valuable engineering and drafting time, saving the cost of full-size print preparation, saving space, and saving print distribution costs. The cost? Far less than you would expect for such amazing efficiency. Find out now how you, too, can put microfilm to work-get Instant Engineering Drawings when you need them, where you need them-with **3M Microfilm Products.**

3M MICROFILM

BRAND

Furnace and Oven Users: Why did BTU Engineering Corporation switch to a stepless temperature control designed around the General Electric Silkon Controlled Recthier? "The General Electric SCR makes a better control at m over price. It has all the advantages of the saturable core ratching requirements, and all the latitude of a magnetic contactor without the see-saw effect, stickiness and noise."

Diffusion furnace used in semiconductor manufacturing, developed by BTU Engineering Corporation, Waltham, Mass. The Stepless Control designed around the General Electric SCR has no moving parts, does not deteriorate with age. It is also fail safe. In the absence of a signal it shuts off the power.

Advantages of the BTU Stepless Control include:

No costly contactor failures.

- Reliability of a solid state rectifier as the heart of the system.
- It operates "full-on," "fulloff" or any point in between with infinitesimally precise control.
- Nearly linear throughout range.
- No matching of imposed load to size of control unit required.

Now lower-priced than ever before, the SCR opens new areas for engineering development. Can you afford to wait any longer? Write today for application information. Rectifier Components Department, Section 23G7, General Electric Company, Auburn, New York.

CIRCLE 195 ON READER-SERVICE CARD

120

Light Flasher Users:

Why does the Aero-Space Division of the Walter Kidde Co. use General Electric Silicon Controlled Rectifiers in their static light flashers? "General Electric SCR's have

made possible solid state circuits that optimize long, maintenance free life in our static flashers. They easily withstand the high inrush currents of incandescent lamp loads and the severe electrical and environmental conditions associated with commercial and military airborne equipment."

Solid state light flashers, developed by the Aero-Space Div. of the Walter Kidde Co., Belleville, N.J., eliminate all rotating elements, nothing to wear out. Another example of advanced equipment design made possible by the use of the General Electric SCR.

Advantages of the static light flasher include:

- Withstands inrush currents ten times normal.
- No arcing or corroding of points.
- No rotating elements.
- Reliability through long, maintenance free life.
- Smaller size, lighter weight.
 Lower total package cost.

Now lower-priced than ever before, the SCR opens new areas for engineering development. *Can you afford to wait any longer?* Write today for application information. Section 23G18, Rectifier Components Dept., General Electric Company, Auburn, N. Y.

CIRCLE 196 ON READER-SERVICE CARD

NEW PRODUCTS

High-Power Transmitter

415

508

427

490

Output is 1 to 2 kw at 200 to 400 mc. Designed for missile and space applications, the transmitter withstands temperatures of 400 or 500 F as well as severe shock and vibration. The rf circuitry is broad-banded for operation over a 10-mc range around a selected nominal frequency.

Space Electronics Corp., Dept. ED, 930 Air Way, Glendale, Calif.

Electroluminescent Panels

Metal, glass and plastic e-1 panels are now available in quantity. Metal panels can be made up to 2 sq ft, glass panels 30 in. square; plastic panels are made in a wide variety of shapes and forms. Metal panel life is about 15,000 hours. Light output is about 10 ft-l at 600 v, 60 cps.

Westinghouse Electric Corp., Dept. ED, Box 2278, Pittsburgh 30, Pa.

Temperature Chamber

Range is -100 to +350 F for the Mark II temperature chamber. Features include: internal working dimensions of $11 \times 12 \times 5$ in., liquid carbon dioxide refrigeration, resistance element heater, aluminum liner and fan with external blower motor.

Associated Testing Laboratories, Inc., Dept. ED, Wayne, N. J. **Price:** \$285.

Decade Resistance

Five-dial decade resistance box has ranges from 0.0 to 9,999.9 to 999,990 ohms in steps of 0.1 to 10.0 ohms. Temperature coefficient is less than 0.002% per deg C. Current rating ranges from 10 ma to 0.5 amp.

Voltron Products, Inc., Dept. ED, 1020 S. Arroyo Parkway, Pasadena, Calif. **Price:** \$115 to \$130. Super processing aids Tucor TR tubes' power-handling ability

One stage in Tucor's exclusive electronic ionization processing technique is illustrated in the highpower TR tube shown at the exhaust station. Model T48U15 is a quartz, folded-cylinder tube operating at UHF and L-band frequencies with a multi-megawatt power input. This tube was designed to provide short recovery time without the disadvantages of the contaminants usually added for this purpose that shorten tube life. The addition of a newlydeveloped uranium getter maintains purity of the gas fill indefinitely.

Following the duplexer stage in which such a tube would be used, a lower-powered post-TR tube circuit is usually required. Such tubes as the Tucor T48U9 and T48U10, which have been developed for this purpose as well as for use in medium-powered duplexers, provide lower leakage powers and long-life performance.

¹ Why do Tucor tubes perform better? A combined microwave circuit and plasma physics design results in an optimum configuration and gas fill for any application.

fill for any application. Whether shelf items or custom designs for your specific application, Tucor tubes provide advantages in reliability. Why not investigate further by asking for our latest tube catalog?

ELECTRONIC DESIGN . July 5, 1961

Trimmer Potentiometer

414

The 25-turn, 3/4-in. sq model 51 trimmer potentiometer is available in ranges from 50 ohms to 200 K. It dissipates 3 w without external heat sink or other hardware. Military specs for altitude, humidity and other environmental conditions are met. Weight is 5 g.

Spectrol Electronics Corp., Dept. ED, 1074 S. Del Mar Ave., San Gabriel, Calif.

Camera Tube

429

With tri-alkali photocathode, type 7967 camera tube is claimed to provide 50 times more sensitivity than standard image orthicons. It operates with an illumination of up to 10-6 ft-c. The magnesium-oxide semiconductive target has almost no lateral leakage. Resolution is better than 300 TV lines at low light levels or 1,200 lines at higher levels.

General Electric Co., Cathode Ray Tube Dept., Dept. ED, Syracuse, N. Y.

Miniature Humistor

435

Over-all length is 1/4 in. and header diameter is 5/32 in. Model H-160-3 humistor detects and measures vapor or gases exhibiting an electric di-pole movement. Readout is through a megohmmeter or a megohm bridge. The device can be completely immersed in water and withstands temperatures from 0 to 100 C.

Conrad-Carson Electronics, Inc., Dept. ED, El Cajon, Calif.

P&A: \$10; from stock in small quantities.

Remote Alarm

488

A solid-state remote alarm monitor, model 901, samples and encodes any number of data points and keys a single channel of any transmission medium. The signal is decoded and displayed at the receiver. Operation is continuous. Compact plug-in construction is employed, 17 points occupying a 3-1/2 x 5-3/16 x 6-15/16 in. package. Units resist moisture, fungus, and high temperature.

Compudyne Corp., Dept. ED, Hatboro, Pa.

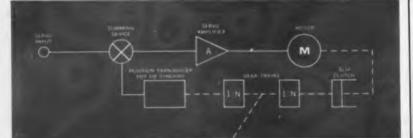
The 6 most important things in your working life are your five skilled fingers and your A.W.FABER #9800 SG LOCKTITE Tel-A-Grade Lead Holder.

LOCKTITE becomes a part of your creative process. The no-slip functional grip gives you smooth traction and practically banishes finger fatigue. Gun-rifled clutch holds the lead like the jaws of a bull dog. Unique indicator reveals the degree in use at a glance. Carries ironclad 2-year guarantee. A.W.FABER will replace the entire holder at no charge if any part wears out in normal

usage. Yes, you can buy cheaper lead holders. but can you afford to let pennies stand between you and your perfect working tools? Buy quality -buy LOCKTITE, call your dealer today.

Castell Drawing Leads #9030, are of the identical quality and grading as world-famous Castell wood pencil Usable in all standard holders, but a perfect mate for Locktite
Draws perfectly on all surfaces, including Cronar and Mylar base films
Available in all degrees from 78 to 10H, and in a kaleidoscope of colors

A.W.FABER-CASTELL Pencil Co., Inc., Newark 3, N. J.


AW FABER CRSTELL DRAWING LEAD 9030

Our Bicentennial year-1761-1961 200 years of uninterrupted manufacturing experience.

CIRCLE 116 ON READER-SERVICE CARD

ELECTRONIC DESIGN . July 5, 1961

PROBLEM: To provide an output Potentiometer-Transducer which can be readily engaged with a minimum angular error to a servomechanisms gear train when energized by an external command signal. The transducer must accurately return to a specified null position when the command signal is removed.

A SOLUTION:

Provide an electro-magnetic clutch, spring return mechanism and rotary potentiometer. Assemble these parts into the required package with the resultant difficulties brought about by the mounting and coupling problems with a consequent increase in cost.

THE OPTIMUM SOLUTION

Technology Instrument Corporation's west coast engineering facilities developed and offer a unitized package consisting of an electro-magnetic clutch, spring return mechanism and rotary potentiometer as one compact assembly. The clutch will transmit high torque without slippage and has negligible angular engagement error. TIC's unique spring return mechanism will accurately return the output

GENERAL INFORMATION:

Shaft Position Transducers can be linear or nonlinear potentiometers, synchros, linear transformers or digitizers. Spring return mechanism can be supplied designed to return to any desired point. A built-in slip clutch can also be furnished if the input torque can exceed the rating of the clutch

transducer to the desired null, yet requires low driving torque. TIC's unitized assembly replaces three (3) individual components with their inherent assembly difficulties.

TIC UNITIZED PACKAGE HAS MANY APPLICATIONS,

SUCH AS: Auto pilots, altitude controllers, machine controllers, measurement and control problems, speed control, process control of temperature and flow, differential measurement, expanded scale servos, or any other problem requiring an output, commencing at some specified servo position determined by an external command signal.

CIRCLE 117 ON READER-SERVICE CARD 122

COlonial 3-7711

In-Wall Amplifier

418

For flush-mounting in frame or masonry walls, model 2030 in-wall amplifier requires a depth of 4 in. A 30-w, all-transistor unit, the amplifier includes a voltage-regulated power supply and has four microphone inputs. All 12 transistors are accessible through removable front plate.

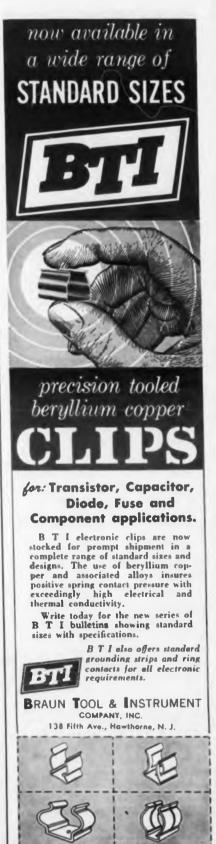
Rauland-Borg Corp., Dept. ED, 3535 W. Addison St., Chicago 18, Ill.

Storage Tube

510

Writing speed of 400,000 ips and a brightness in excess of 200 ft-l is obtained with a potential of 5 kv in the WL 7682 storage tube. One writing gun and one flood gun are used in the electrostatically focussed and deflected tube. Storage time is 30 sec to 30 min. Display area is 4 in. with an OD of 5-1/4 in. max.

Westinghouse Electronic Tube Div., Dept. ED, P. O. Box 284, Elmira, N. Y.



487

Low-level data signals are displayed and recorded on paper tape by this multichannel digital system, model ER-3295. Consisting of five separate units, the instrument scans consecutively 98 three-wire inputs from various transducers. Resolution is $\pm 1 \mu v$. A digital voltmeter provides visual readout. A slave scanner can be added to increase input capacity.

Kin Tel Division, Cohu Electronics, Dept. ED, Box 623, San Diego, Calif.

P&A: About \$11,500, fob; San Diego; 90 days.

CIRCLE 118 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961 Terminal Boards 445

Microminiature series 251 terminal boards can be encapsulated with terminals wired to connector contacts or supplied with a cap to facilitate customer wiring prior to encapsulation. Floating-type connector contacts are polarized. For use with the firm's Super-Flex tapes, the boards are made for computer, radar and communications use.

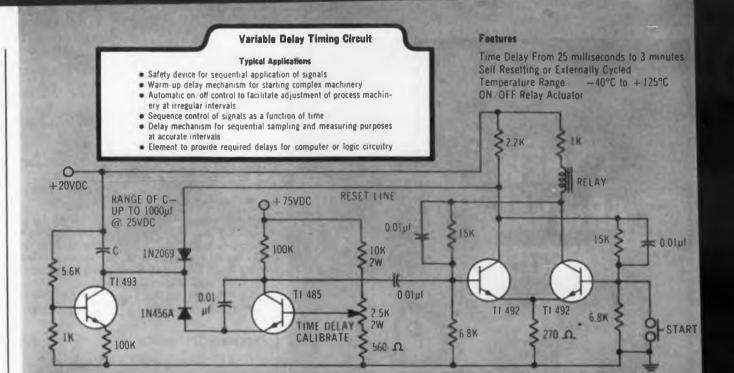
Cicoil Corp., Dept. ED, 3833 Saticoy St., Van Nuys, Calif.

Voltage Divider 511

Decade voltage divider has total resistance of 1 K, 10 K and 100 K. Linearity of the five-dial unit is 0.01%. temperature coefficient 0.001%. The Kelvin Varley circuit is used. Box measures $3-3/4 \ge 4 \ge 5$ 5 in. and weighs 1 lb.

Voltron Products, Inc., Dept. ED, 1020 S. Arroyo Parkway, Pasadena, Calif. **P&A:** \$150; 30 days.

DC Power Supply 4


449

Rated at 100 kv, 10 ma, continuous duty. Model 5492 power supply has a highly regulated output, automatic rate of voltage rise and is short-circuit proof. Provisions are made for remote control operation and remote metering. Plug-in shielded cable is used for connections.

Associated Research, Inc., Dept. ED, 3777 W. Belmont Ave., Chicago 18, Ill.

CIRCLE 119 ON READER-SERVICE CARD

HOW TO GET HIGH TEMPERATURE STABILITY AND INDUSTRIAL ECONOMY

With New TI Low-Cost Silicon Industrial Transistors...

You can assure your customers optimum circuit performance up to 125 °C when you design-in new, low-cost TI silicon industrial transistors. Priced comparable to lower-temperature industrial devices, these new TI silicon industrial units provide the high performance your industrial designs require.

Get greater margins of operational safety by applying these new silicon industrial transistors to your process control, communication, aviation system, electronic instrumentation, and computer applications today.

CHARACTERISTICS										
TYPE	MIN BVCBO	DC Beta Range	MAX I CBO @ 100°C	f _{æb} (typ)					3	
TI 480	50 v	9-36° (4 5 ma	50 µa (a 30 v	1 mc	11 480	-			/	
TI 481	80 v	9-36° @ 5 ma	50 µa (e 30 v	1 mc	TI 481			1		
TI 482	20 v	>20 @ 30 & 150 ma	50 µa @ 10 v†	60 mc			T1 482	T1 482		
TI 483	40 v	20-60 @ 150 ma	50 µa 👜 30 v†	60 mc			TI 483	TI 483		
TI 484	40 v	40-120 @ 150 ma	50 да @ 30 v†	60 mc			TI 484	T1 484		
TI 485	20 v	15-60 @ 10 ma	20 µa @ 15 v†	200 mc					TI 485	
TI 486	80 v	20-80 @ 200 ma	300 µа (л 60 v‡	15 mc			TI 486			
TI 487	80 v	20-80 (a 200 ma	300 µa 🖝 60 v‡	15 mc			TI 487			
TI 492	40 v	15-45° @ 1 ma	50 µa @ 30 v	8 mc		TI 492				
TI 493	40 v	15-45 @ 10 ma	50 µa @ 20 v	20 mc		TI 493				
TI 494	40 v	40-125 @ 10 ma	50 µа (¤ 20 v	20 mc		TI 494				
TI 495	40 v	120-250 @ 10 ma	50 µa w 20 v	20 mc	10 C	TI 495				
TI 496	40 v "	>10 @ 3 ma	75 µa @ 40 v	1 mc						TI 496

SEMICONDUCTOR COMPONENTS DIVISION FLANTS IN DALLAS, TEXAS BEDFORD, ENGLAND AND NICE, FRANCE

TEXAS INSTRUMENTS

NEW ARRIVAL FROM ITT!

AND, NO DIAPER NEEDED! ITT WET-ANODE TANTALUM CAPACITORS NOW AVAILABLE IN NEW SHAPE WITH POSITIVE WEDGE SEAL, RATINGS FROM 1.7 TO 560 MFD.

Proud product of a two-year design effort: a unique, positive mechanical seal permits straight-wall construction in this new line of ITT wet-anode tantalum capacitors. No flange. Your most advanced circuit designs gain new compactness, new simplicity – plus new reliability and performance from high-purity tantalum dielectric and ITT's total process control during manufacture. This new line meets all the requirements of MIL-C-3965B and is now available in ratings from 1.7 to 560 mfds. Specify H-type for temperatures to 85°C: L-type for temberatures to 125°C.

COMPLETE SPECIFICATIONS on ITT wet- and solid-anode tantalum capacitors are available on request. Write, on your letterhead, please, to the address below. **ENGINEERS:** Your ITT representative has a complete set of qualifications and quality control tests for your inspection.

Phone these ITT-CD Capacitor Sales Offices:

	Albequerque All I	
	BostonCA	7-2988
	Chicago	7-2250
	Cleveland GR	5-3000
	Ballas	1-1785
	BaytonBA	8-5493
IVISION	Benver	
	Betroit	8-3322
GRAPH CORPORATION	Real Manage M.	
O ALTO, CALIF.		
	Kansas CityJE	
CIRCLE 120	ON READER-SERVICE	CARD

124

High-Voltage Rectifiers

416

Ratings are to 50,000 piv and 1 amp dc per block for the SDI series double diffused silicon rectifier assemblies. They are designed in single wave: half wave, center tap or full wave; three phase: half wave, full wave or star; protective networks and tube replacements.

Solitron Devices, Inc., Dept. ED, 500 Livingston St., Norwood, N. J.

Pressure Transducer

405

Potentiometer-type pressure transducer model 12112 is offered in ranges from 1 to 200 psia and psig. Typical resolution is 0.25% to 0.33%. Platinum-alloy winding element has resistance of 5 to 15 K. Repeatability, hysteresis and friction are under 0.5%. Applications include space and missile environments.

Princeton Machine and Development Co., Dept. ED, P. O. Box 187, Princeton Junction, N. J.

417

Range is 35 to -142 db; response is from 40 to 8,000 cps. Model 450 sound meter measures 2 x 3 x 6 in., weighs 2 lb and operates from a 22.5-v battery. It meets ASA Standard A, B and C weightings. The amplifier is stabilized against voltage and temperature changes.

H. H. Scott, Inc., Dept. ED, 111 Powdermill Road, Maynard, Mass. Price: \$150.

Power Switching Transistors

Capable of switching 400 w, these pnp switching transistors, types 2N637, 2N637A, 2N637B, 2N638, 2N638A, and 2N638B, are designed for high current operation in dc-dc converters and dc-ac inverters. The series has three different voltage breakdown ratings for use in both 12-v and 28-v supplies. Average power dissipation is 60 w max. Current gain is controlled, eliminating need for matching.

Bendix Corp., Dept. ED. Red Bank Div., Holmdel, N. J.

Pressure Transducer

453

504

Practical Products for Creative Engineering

For missile applications. Type 4-328 pressure transducer operates from between 0 to 15 and 0 to 99 psia. Output is 50 mv; linearity and hysteresis are less than $\pm 0.5\%$ of full range output. Thermal zero shift is within 0.005% per deg F. Weight is 5.5 oz.

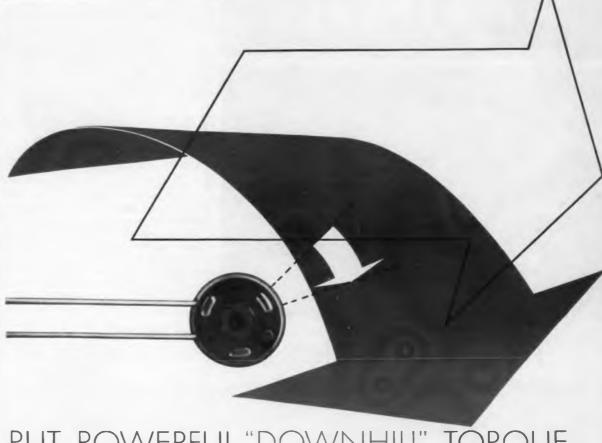
Consolidated Electrodynamics Corp., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

Smoothing Chokes

505

Designed for aircraft and missiles, these hermetically sealed smoothing chokes have inductances from 0.2 mh to 5,100 h, at dc currents from 6 ma to 25 amp. Units have straight-pin, hooked-pin. or flexible Teflon lead connectors, and may be mounted on chassis, printed-circuit board, or stacked. Dimensions range from 1.12 x 0.91 x 0.87 in. to 1.77 x 1.46 x 1.49 in. Weight is 1.2 to 8 oz.

Arnold Magnetics Corp., Dept. ED, 6050 W. Jefferson Blvd., Los Angeles 16, Calif. P&A: \$5.00 to \$20.00; two weeks.


Attenuators

Rated at 20 w audio, 5 w dc. These L and T pad attenuators measure less than 1-3/16 in. deep. Insulation used combines rapid heat transfer with high dielectric strength. Wiper contacts are rigidly attached to the shaft. A wide range of impedance ratings is furnished.

Centralab, Div. of Globe-Union Inc., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis.

PUT POWERFUL "DOWNHILL" TORQUE INTO YOUR REMOTE ACTUATION

OAK ROTARY SOLENOIDS provide high torque at the start of their actuation stroke—where and when it's needed most. Ordinarily, magnetic attraction of the solenoid coil is greatest near the end of the stroke. Oak engineers have solved this by inclining the ball races at a steeper angle near the top—or start—of the race. This "downhill" action levels off near the end of the rotary stroke. Since torque is inversely proportional to the length of stroke, a 2E solenoid that provides 6.4 inch-ounces of starting torque at 45° would offer almost twice as much torque when designed for a 25° stroke. You can obtain Oak Solenoids for stepping angles of 25°, 35°, 45°, and 67.5°—in right—or left-hand rotation. Because Oak Solenoids are custommade to meet specific actuation and torque requirements, you can outline your needs with your local Oak sales representative. If you prefer, send a sketch of your design to our Applications Engineering department.

Creative Engineering • Quality Component

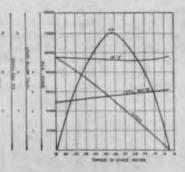
OAK MANUFACTURING CO.

CRYSTAL LAKE, ILLINOIS • telephone: Crystal Lake, 459-5000 OAK ELECTRONICS CORPORATION, (Subsidiary) Culver City, California

ROTARY AND PUSHBUTTON SWITCHES • TELEVISION AND FM TUNERS • SUBASSEMBLIES APPLIANCE CONTROLS • CHOPPERS • ROTARY SOLENOIDS • VIBRATORS

CIRCLE 122 ON READER-SERVICE CARD

PRECISION SIZE 5 MOTORS NOW AVAILABLE FROM STOCK

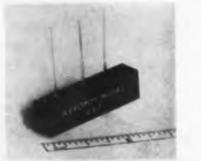

Available for immediate delivery, these miniaturized Bendix[®] motors (type number CK 1066-40-A1) are designed for applications where space and weight requirements are at a minimum. So small that four can be packaged in a square inch, these motors are ideally suited for missile instrumentation and similar miniaturized applications. The motor has a tapered shaft; however, units may be obtained with other type shafts and with center tapped control windings.

TYPICAL MOTOR CHARACTERISTICS

CITAGACIENTICS
Vokoge
Fixed phose
Control phose
Frequency
Stall Current®
Fixed Phase
Control Phase
Stall Impediance®
Fixed Phase 260 = 184,5+3183,5 ohms
Control Phase . 260 - 184 - J183,5 alms
Stall Power Input ^e (Total)
Stall Torque
No Load Speed
Torque-to-Inertia Ratio 44,400 rad/sec ¹ (Stall Acceleration)
Operating Temperature
Range 55°C. to +70°C.
Weight
BM/th unterly unknow was Red to each share

For information on these mators or similar mators in sizes 8, 10, 11, 15, 20, and 28—write:

AVERAGE PERFORMANCE CURVES

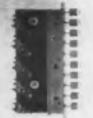


District Offices Burbank, and San Francisco, Calif., Southio, Wash., Dayton, Ohio, and Washington, D. C. Export Sales & Service: Bondix International, 205 E. 42nd St., New York 17, N. Y.

CIRCLE 123 ON READER-SERVICE CARD

Trimmer Potentiometer

464


Range is 20 ohms to 100 K. Model 427 trimmer potentiometer is designed for etched circuit boards and has gold-plated copper leads of 0.1-in. spacing. Power dissipation is 1 w to 70 C; tolerances are ± 10 or $\pm 5\%$; requirements of MIL-R-27208 are met.

Aero Electronics Corp., Dept. ED, 1745 W. 134th St., Gardena, Calif. Availability: 1 to 2 weeks.

Bar Switches

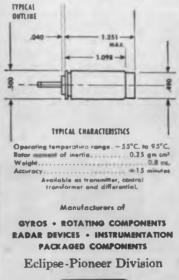
454

455

Parity-code bar switches, series DP and series OP, provide odd or even parity in the five-bit output. Conversion from octal or decimal digits to binary code is by means of binary-coded contact closures. Full 10-button decimal banks with 1-2-4-8 output contacts are offered in the DP series; seven-button banks with 1-2-4 contacts are offered in the OP series.

Computer Control Co., Inc., Dept. ED, 2251 Barry Ave., Los Angeles 64, Calif.

Instrument Carrier

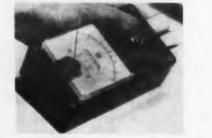

For submarine use, the V-Fin instrument carrier is for applications such as seismic investigation, echo sounding, pressure and temperaREPORT

AUTOSYN SYNCHROS

Dependeble in ministurizing

These Bendix® size 5 Autosyn synchros are well suited to the needs of missile instrumentation and similar applications requiring miniaturization and weight reduction. Typical characteristics are listed below. For additional information, including comprehensive data on transmitter, control transformer, and differential characteristics, write today.

CIRCLE 124 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961


ture studies. It can be used in acoustic systems over the range of 10 to 6,000 cps. Hydrophone sensitivity is -88 db. Molded in Fiberglass, the unit weighs less than 14.5 lb and has an instrument compartment of 12 x 2-1/2 x 1-1/8 in.

Braincon Corp., Dept. ED, 312, Marion, Mass.

Electronic Tachometer

406

452

Speeds to 12,000 rpm are calibrated accurately with this miniature electronic tachometer. A photoelectric cell responds to illumination changes and transmits a signal to a pulse-triggered computer which determines the rpm and displays the result on a direct-reading meter. Drills, presses, power drives, motors and other equipment can be checked. No external power source is needed.

Pioneer Electric & Research Corp., Dept. ED. 743 Circle Ave., Forest Park, Ill. Price: \$95.

Waveform Analyzers

With digital output, these waveform analyzers are capable of measuring amplitude risetime, ring, decay time and sag. They are suitable for applications where large quantities of measurements are required such as in automatic checkout systems and production test avatems.

Curtiss-Wright Corp., Electronics Div., Dept. ED, P. O. Box 10044, Albuquerque, N. M.

VĀP-AIR MERC THERMOSTATS

from under the seas... to the edges of space... and beyond

VEp-Air Mercs have many uses, widespread acceptance Used in: **Used for:**

Titan, Thor, Jupiter, Redstone, Saturn, Juno II, Pioneer IV. and other missiles; X-15 Space Research Vehicle; F-106 Delta Dart, A3J Vigilante. P6M-2 Seamaster, F101B Voodoo and A4D-2 Skyhawk, and other

military aircraft: Nautilus submarine: ground support vans and equipment: the new Electra. F-27, Viscount, DC-8, 707, and 880 jets, as well as most other major commercial aircraft

..............

Temperature control of electronic compartments, reference ovens, crystal ovens; nose-cone devices; gyroscopes; inertial quidance system: accelerometers; air compressors; turbines: cabins, cockpits, capsules: windshields: de-icing equipment; oil, fuel, hydraulic systems; for telemetering of temperatures; for control systems, and as warning devices in ground support vans and equipment: and many other uses

have proved outstandingly accurate and dependable for the most critical thermal sensing and control applications in missiles, aircraft, ground support and undersea equipment.

The Army Ballistic Missile Agency has for two years accepted Merc thermostats as standard temperature control items on all their missiles.

Time after time. Vap-Air mercury tube thermostats have proved their exceptional ability to meet the most exacting specifications for thermal sensing and control. Small, lightweight, they are unaffected by altitude or moisture, can't arc or burn, can withstand 100-G shocks and 30-G vibration without loss of accuracy. They have fast response, close limit tolerances, wide operating ranges, and undeviating accuracy to provide millions of cycles of reliable operation. Mercs need only simple circuits, are adaptable to virtually any need.

DUCT-TYPE

AVAILABLE FROM STOCK

Three standard groups: (1) Duct-type, for gas or fluid temperature, (2) Surface-type, for "area-contact" temperature sensing, (3) Well-type, for sensing case temperatures. Order direct from catalog. Complete, ready to mount. Meet military specification MIL-E-5272 A. Write for Bulletin No. 684.

Entire systems and a complete line of sensors, electronic controls and precise voltage regulation, electro-pneumatic and electro-mechanical valves, advanced hot-air inline valves and pressure regulators, electric power controllers and heat exchange equipment-for aircraft, missiles and ground support.

VAP-AIR ... SPECIALISTS IN AEROSPACE CONTROLS FOR NEARLY 20 YEARS

COMPLETE CONTROL CAPABILITIES

for complete technical information	Please send information on Vap-Air Merc Thermostats
and applications write: VAP-AIR DIVISION	NAME
VAPOR HEATING CORPORATION, Dept. 77-G 80 East Jackson Blvd., Chicago 4, Illinois	FIRM
New York • St. Paul • Denver • Washington	ADDRESS
Philadelphia • Seattle • Sen Francisco • Houston Richmond • Los Angeles • St. Louis	CITY, ZONE, STATE
CIRCLE 125 ON REA	ADER-SERVICE CARD

LOOK HERE FOR ANSWERS TO YOUR RELAY PROBLEMS

IT'S WHAT'S INSIDE THAT COUNTS IN TIME DELAY RELAYS

Especially when milliseconds count! Note the printed circuit construction of Leach's optional output time delay relays. This economical line of off-the-shelf electronic units includes time delays on release and time delays on operate - in a timing range of 100 milliseconds to 60 seconds. These standard components are available with fixed or adjustable timing to meet your most critical requirements. And they're all 100% inspected during manufacture for highest reliability!

Bulletin TD-200.

WE'RE LOADED WITH LITERATURE...

Write for bulletins, write for in formation, write for details and specifications. Or mail your request on the Reader-Service Card!

BLOCK THAT SHOCK!

Leach balancedarmature relays provide high resistance to shock (50 G's) and

vibration (15 G's to 2000 cps). They meet or exceed MIL-R-25018, MIL-R-5757C and MIL-R-6106C. Choose from 4,000 variations of 20 basic types! Rulletin RA-859.

NOT A SOUARE IN THE WHOLE FAMILY!

When only a round can relay will fit your need, Leach offers this family group in contact configu-rations of 2, 4 and 6 PDT and in contact ratings ranging from dry circuit to 10 amps. Bulletin RC-300.

LEACH CORPORATION, 18435 Susana Road, Compton, California District offices and field representatives in principal cities of U.S. presentatives in principal cities of U.S. • Expert: Leach International, S.A. ars of serving the control needs of the aircraft, missile and electronic industries Forty-one y

NFW PRODUCTS

Power Supply

407

Regulation is $\pm 0.1\%$ for line and ± 0.4 v for load. Model MTR28-10 power supply provides 24 to 32 v dc at 10 amp. Ripple is 2 mv. Features include a magnetic amplifier and a transistor series regulator. No tubes, vibrators or moving parts are used.

Perkin Electronics Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.

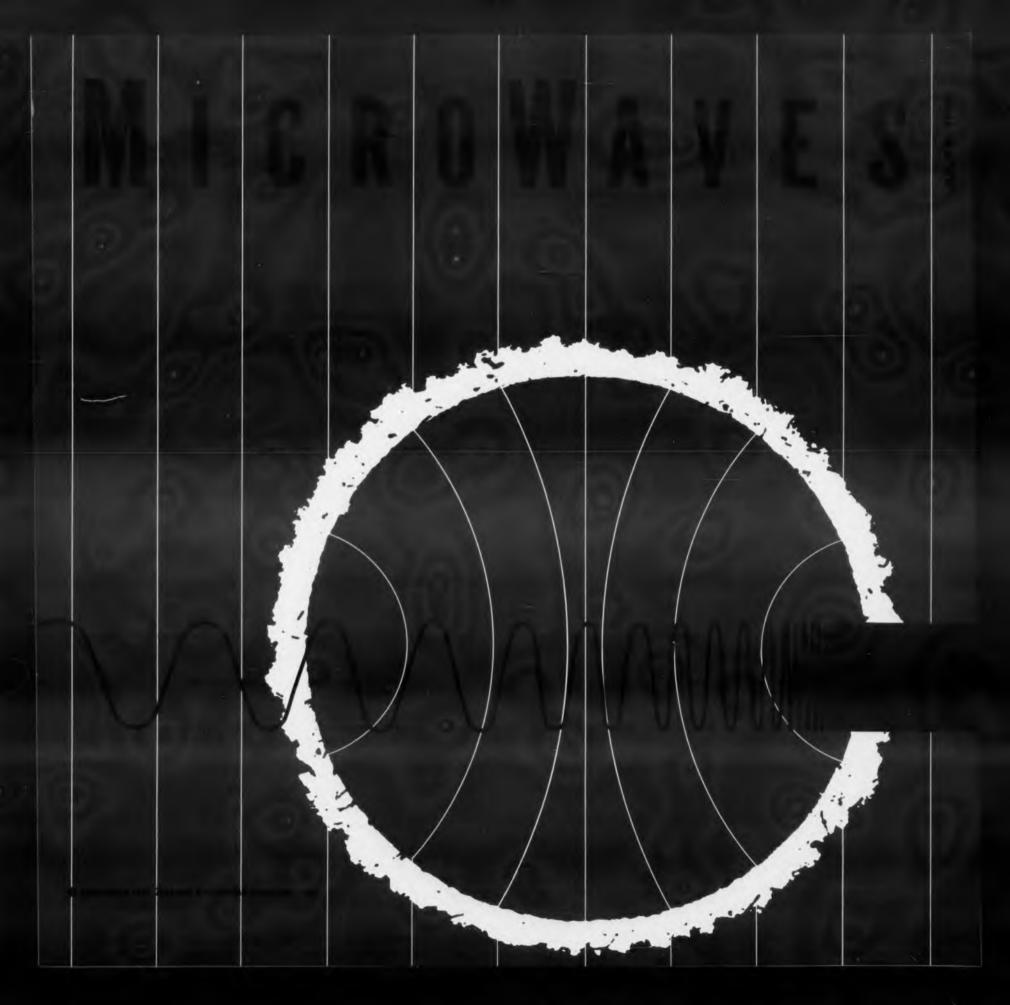
IF Preamplifiers

408

For low-noise operation, series H modular if preamplifiers can be furnished with balanced or unbalanced input. Output impedance is 50 ohms. Tube units operate from -55 to +85 C and germanium transistor units, from -20 to +50C. Silicon types can also be furnished. Design is miniature.

Orion Electronic Corp., Dept. ED, 108 Columbus Ave., Tuckahoe, N. Y. P&A: \$200 to \$250; 2 to 3 week.

Plotting Board


409

Vertical-horizontal plotting board type 1587 provides two simultaneous plots of any four independent voltages against time. Plotting surface is 30 x 30 in. The unit operates with analog and digital computers, coordinate converters, radars and other analog devices.

Milgo Electronic Corp., Dept. ED, 7620 N. W. 36th Ave., Miami 47, Fla.

Developing a space communication system? Working in advanced radar? Need a pump tube for an out-front parametric amplifier? Making advanced measurements in the laboratory? Varian's VA-99 reflex klystron oscillator will make new approaches possible.

The rugged new VA-99 is frequency stable from sea level to outer space, reliable in extreme environments. Frequency is fixed. Tube is factory preset to frequency ordered, between 68.0 and 72.0 kMc. Means are provided for subsequent fine trimming to exact operating frequency. The VA-99 is conduction cooled through waveguide flange. Excellent performance is also obtained at lower power levels. Base and leads are molded to permit high-altitude operation without pressurization.

Interested? Need a similar tube at a somewhat higher or lower frequency? For further information write Tube Division

VA-99 (shown actual size) 68.0-72.0 kMc / 250 mW Typical Power Output / Fixed Frequency, Trimmable

MICROWAVES

Research, Anyone?

A bad case of scientific heartburn was induced among diners at this year's PGMTT symposium banquet, when the after-dinner speaker reported some amazing tales of Soviet derring-do in microwaves. The speaker was actually a representative of the United States Information Agency playing the bogus role of a Russian scientist to perfection. To everyone's relief, he finally admitted that the Russians had not supported a 1-sq-km space platform with microwave power—not yet.

Meanwhile, back at the lab, ELECTRONIC DESIGN checked into U. S. progress in direct conversion of microwave power. Our status: a wealth of interesting proposals and some research effort—but possibly not enough. Two small projects, funded with less than \$200,000 are paying off. But they constitute the total American participation in direct conversion of microwave power. The details are in the article beginning on the opposite page. Any good ideas here that are not being exploited because of inadequate support by government and industry?

> Solid-state diodes and inverse magnetrons are being developed for direct conversion of microwave power. See

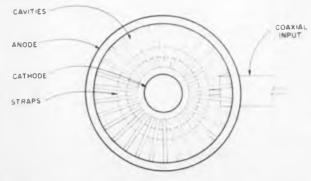
> An integral antenna-parametric amplifier combination that reduces noise pickup and that can be electronically switched is described in

Designing the Parant p 136

For the latest thinking on the problem of defining noise, turn to

New Definitions of Receiver Noise Performance p 142

> A coaxial cavity magnetron and an optical instrument for detection of waveguide arcing are featured in


Microwave Products p 144

CIRCLE 128 ON READER-SERVICE CARD

NEWS

Direct Microwaves-to-Electricity Power Seen Near

Inverse magnetron converter developed by Raytheon. Left to right: cathode, anode-cavity structure, coaxial rf input and cover. Final version of this device may approach 60 per cent efficiency and generate up to 1 kw cw in the 1- to 2-Gc range. Wright Air Development Div. is presently emphasizing development of this type of microwave power converter over other possible inversely operated tubes. The weight of the final version, including magnet, will be approximately 35 lb.

Manfred Meisels Technical Editor

O FF-THE-SHELF hardware for direct conversion of microwaves into electrical power may be a reality within two years, according to scientists at the Wright Air Development Div., which is now sponsoring two research projects in this area.

Raytheon's Spencer Laboratory, Burlington, Mass., is investigating the inverse operation of magnetron-type tubes, while at Purdue University, West Lafayette, Ind.. the emphasis is on inverse operation of klystrons, and both vacuum and semiconductor diodes. Efficiencies of 60 per cent are believed possible with the inverse magnetron and semiconductor diode approaches.

Power requirements for such converters are fairly modest—1 kw cw for the magnetron and perhaps 75 w for the semiconductor diodes. Proposed applications include powering electronic gear aboard satellites and transmitting power to unmanned equipment atop mountains and in other remote areas.

These applications and the proposed conversion methods differ markedly from those for the microwave powered helicopter (also a Raytheon project) in which heat exchangers and gas turbines would achieve power conversion. Power requirements here are measured in megawatts, though Raytheon is reportedly looking into thermionic and thermoelectric generators as an alternative to the mechanical conversion cycle. Regardless of the application and ultimate conversion scheme used, ultra-high-power microwave tubes such as Raytheon's Amplitron or General Electric's multiple-beam

NO STEPPING SWITCHES IN THIS

ULTRA-RELIABLE DVM: Cubic announces a new digital voltmeter design that eliminates stepping switches and, with them, the need for periodic maintenance. The new Cubic V-70 uses the same ultra-reliable reed relays developed for submarine cables. These reed relays are sealed in glass and have practically unlimited life. They are noiseless and completely unaffected by operating position.

Accurate: The V-70 reads any d-c voltage from 0.001 to 999.9 volts with an absolute accuracy of 0.01% plus or minus 1 digit. The Cubic V-70 Digital Voltmeter provides these and other premium features at a cost of only \$1,580. For details, write to Dept. ED-106 Industrial Division, Cubic Corporation, San Diego 11, Calif. (in Europe: Cubic Europa S. p. A., Via Archimede 185, Rome).

Cubic manufactures a complete line of quality digital instruments, including a-c and d-c coltmeters, ohmmeters, ratiometers, scanners and printer controls.

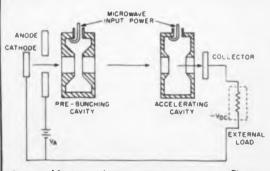
CIRCLE 129 ON READER-SERVICE CARD

BAN DIEGO, CALIF., U.S.A. ROME. ITALY

MICROWAVES NEWS

klystron and Orthotron would be employed at the transmitter.

The direct conversion methods now being actively studied fall into three categories.


- Inverse operation of conventional microwave tubes
- Vacuum diodes
- Semiconductor diode arrays

Of these, inverse operation of microwave tubes appears most likely to yield moderateorder powers (approximately 1 kw) with acceptable efficiency. For low power, semiconductor diode arrays look promising. Light weight and small size would make them attractive for many satellite applications.

The inverse magnetron tube being developed by Raytheon as an outgrowth of earlier work with the backward-wave type Microfier has already shown efficiencies of 32 per cent. In tests at 1.28 Gc, pulsed outputs of 4 kw were obtained over a 0.1 per cent duty cycle. WADD scientists feel that cw operation at 60 per cent efficiency will eventually be obtained.

The tube consists of 30 radial vanes which form 29 anode cavities. Microwave fields applied to the tube accelerate the electrons from cathode to anode. Current is drawn to the anode when the rf interaction voltage exceeds the dc potential of the tube and Hartree threshhold voltage.

Raytheon has built nine progressively improved tubes of this type for WADD. In its ultimate version, a 1-kw tube is expected to weigh about 35 lb, including the magnet. Continuous heating of the cathode would

Inverse klystron microwave power converter. Electron beam between cathode and collector is accelerated by microwave input. Efficiency is reduced by need to divert some of the input to the pre-bunching cavity. A separately heated cathode is required.

not be required as operation is sustained by secondary electron emission resulting from back bombardment.

Inverse operation of klystrons for direct conversion is also considered feasible. Recently initiated work at Purdue University has been confined to inverse operation of commercially available tubes. Preliminary tests at 3 Gc are inconclusive as the emphasis has been on gathering data for design of a special-purpose tube rather than on extracting power from a commercial version.

A proposed inverse klystron, illustrated here, has been theoretically analyzed by WADD with mixed conclusions. Such a unit could be designed for high powers and frequencies. However, a separate heater supply is necessary. Spreading of the electron beam and entrance angle, as well as the need to supply power to both cavities of the tube would result in low efficiency and degraded performance.

An inversely operated traveling-wave-tube converter has also been analyzed at WADD. The electron beam in this device would gain energy from the microwave field rather than surrendering it as is the case in normal twt operation. By gradually increasing phase velocity of the rf traveling wave to account for increasing beam velocity, the electrons can be accelerated while continuing to be phase locked with the traveling wave. This can be accomplished with a tapered helix of gradually increasing pitch.

Limitations of the inverse twt include need for a separate heater supply and limited power handling capability of the slow wave structure. Efficiency of such a device might approach 40 per cent.

Cyclotron and Plasma Converters Believed Theoretically Possible

A cyclotron resonance converter has also been analyzed at WADD. In the basic design, electrons emitted from a central anode are spiraled outward by the cyclotron action of the rf input and a suitably adjusted magnetic field. The electrons thus gain energy from the field and strike properly oriented collector plates. By placing the collectors at a low velocity point of the electron trajectory, efficiencies of up to 60 per cent could

ELECTRONIC DESIGN . July 5, 1961

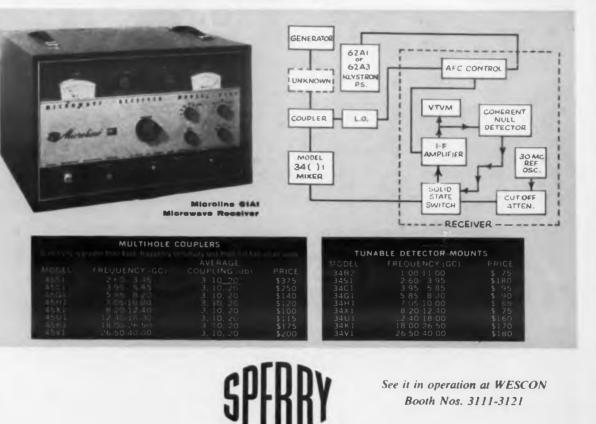
JOW!

MAKE PRECISION

tenuation

TH THE NEW

MODEL 61A1 PARALLEL I-F SUBSTITUTION RECEIVER SYSTEM


Now your laboratory can make precision attenuation measurements over dynamic ranges of 100 db with the new Microline Model 61A1 Parallel 1-F Substitution Receiver System. It has these outstanding advantages:

1. Accuracy of .005 db per db. and readout resolution of .02 db

- 2. No preamp required for full 100 db dynamic range
- 3. Linear or log operation
- 4. Completely adaptable AFC circuitry for klystron or BWO
- 5. Ultra-stable 30 mc reference oscillator 6. Precision cut-off attenuator
- 7. Receiver noise figure of 3 db

Extreme accuracy is obtained through comparison of the test signal with the parallel substitution signal made by a solid state 1-F input switch and output coherent null detector. No special RF plug-in heads are required. Accessory mixers and local oscillator couplers are available from 2.6 through 40 GC. (See table below).

Further information on request.

SPERRY MICROWAVE ELECTRONICS COMPANY, CLEARWATER, FLORIDA • DIVISION OF SPERRY RAND CORPORATION Microline Instruments • Reder Test Sets • Systems Instrumentation • Solid State Devices and Materials • Microwave Components and Antennas CIRCLE 130 ON READER-SERVICE CARD

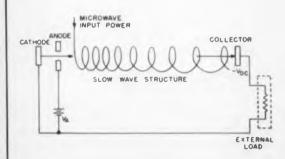
TYPICAL OPERATING PARAMETERS

MICROWAVE ASSOCIATES, INC.

CIRCLE 131 ON READER-SERVICE CARD

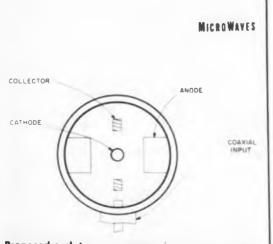
MICROWAVES NEWS

result, as there would be little power dissipated via electron bombardment. Back bombardment of the cathode, however, could enable heaterless operation.


Prospects for plasma converters have also been analyzed by WADD. One approach would be to create a plasma by using the microwave input and then apply a magnetic gradient to cause ion and electron drift in opposite directions. The electrons would be connected to an external load and the positive ions used to bombard a cathode to cause electron emission.

While a plasma converter would be small and easy to fabricate, the wide distribution of electron energies in the plasma would probably result in efficiencies no greater than 25 per cent.

Having analyzed these approaches to medium-power direct conversion, WADD has settled on the inverse magnetron as the most feasible—at least for the immediate future.

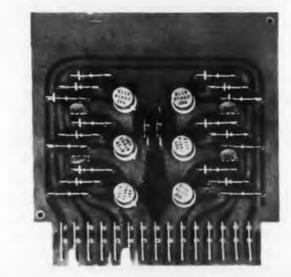

Multiple-Diode Arrays In Development at Purdue

Equally imaginative designs for lowpower converters have also been proposed. The obvious approach of vacuum diode rectification may prove useful despite electron transit time limitations. It has been shown that rectification can take place even when the cathode-to-anode spacing is equal to several hundred periods. Realistically, a spacing equal to a few periods could achieve

Inverse traveling-wave-tube microwave power converter. Electron beam is accelerated by absorbing energy from rf wave in the helix. The gradually increasing pitch of the helix keeps the traveling wave in phase with the accelerating electrons. A separate heater is required for the cathode.

ELECTRONIC DESIGN . July 5, 1961

Proposed cyclotron resonance microwave power converter. Rf input, in conjunction with magnetic field (perpendicular to plane of drawing), accelerates electrons to the collector plates. Studies indicate that the device could approach 60 per cent efficiency. Back bombardment of cathode would eliminate need for heater.


efficiencies of up to 25 per cent. In this mode of operation, out-of-phase electrons would absorb energy from the rf input and be returned to the cathode. The resulting secondary emission could allow heaterless operation of the diode.

Experiments at Purdue with lighthouse tubes operating as diodes have shown efficiencies of up to 20 per cent at 3 Gc. Maximum output was approximately 1 w.

Much higher efficiency and power output are anticipated for arrays of semiconductor diodes wired as full-wave rectifiers. The group at Purdue has operated arrays of 64 diodes placed directly in the waveguide. A 360-diode array employing 1N830 silicon point-contact diodes is now being assembled for testing. The diodes will be mounted in a flared section of 10-cm guide. Outputs of between 10 and 15 w at 2.5 Gc with perhaps 75 per cent efficiency are hoped for.

Future plans call for even larger arrays developing up to 100 w. These could be distributed among several parallel sections of guide joined by a magic T or similar device.

Theoretical studies of large junction diodes as possible microwave rectifiers are also under way. In addition, nonlinear effects in bulk semiconductor materials in strong rf fields have been noted at Purdue. It has been suggested that an understanding of these effects could lead to a rectifier consisting of a large semiconductor crystal properly oriented within a waveguide.

MAN! THE HOURS YOU SAVE!

when testing packaged modules containing semi-conductors with the new DIT-MCO Model 720 automatic logic circuit tester.

Here's your space-age answer to faster testing at lower cost—using non-technical operating personnel.

The new Tape Programmed DIT-MCO Model 720 rapidly performs static and dynamic tests on active and passive modular circuits.

It automatically measures voltages, resistances and currents on a "hi-go-lo" basis.

Provisions are made for programming external signals and stimuli for special test requirements and monitoring results on external detectors.

Highly important marginal tests are easily performed and one digit tolerances can be programmed.

Many more performance features of the Model 720 are described in a technical bulletin available upon request from DIT-MCO -the nation's leader in automatic circuit testing.

Instrumentation and Digital Systems Engineers are invited to inquire regarding openings in our new Systems Engineering Division.

DIT-MCO Model 720 will test:

Active logic circuits using transistors. Passive logic circuits using diodes. Pulse amplifiers, inverters, modulators and shapers. Memory and storage networks. Multivibrators, including flip-flops. Gating circuits. Diode matrices. Decoders and counters. Circuitry using Binistors. Oscillators. Micrologic elements. Control rectifier circuits.

in our	Denver Areo	ACama 2-1202
	Los Angeles Areo	ORegon 8-6106
	New York City Area	MUrroy Hill 2-5844
	Polo Alto Area	DAvenport 5-0180
	Seattle Area	MAin 4-3780
CIRCLE 132 C	N READER-SERVICE CARD	

Instead of worrying about noise temperature and noise pickup in antenna leads, authors Frost and Clark circumvented these problems by integrating the parametric amplifier within the antenna structure. The resulting parant, designed for Doppler tracking of satellites, eliminates open connecting lines between antenna and amplifier. Input to the parametric amplifier is applied directly from the signal-induced potentials at the ends of the antenna. Dipole parants have been built for 54-, 108-, and 220- mc operation. Etched circuit antennas for 500 mc and slotted antennas useful at 2 Gc are being designed.

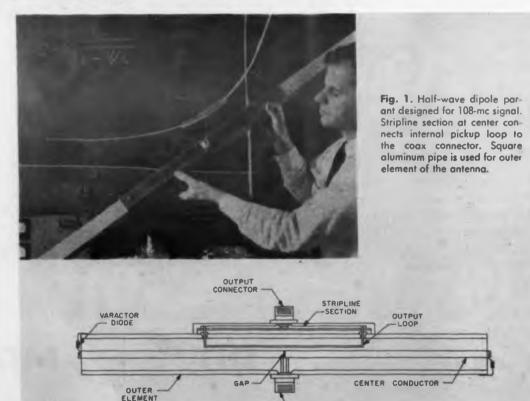


Fig. 2. Construction details of the half-wave parant. Two matched varactor diodes provide parametric amplification in conjunction with the coaxial cavity formed by the addition of the hollow center conductor. Higher order TEM modes provide resonant storage for the pump and idler frequencies.

BIAS AND PUMP

CONNECTOR

Designing the "Parant"

Albert D. Frost, Ronald R. Clark

University of New Hampshire, Durham, N. H.

WHEN the need for low-noise reception warrants the use of parametric amplifiers, noise pickup in the leads between the antenna and receiver can significantly degrade system performance. Since reducing the distance between antenna and receiver is only a partial solution, it was decided to eliminate this source of noise altogether by integrating the parametric amplifier with the antenna.

Experiments were performed with halfwave and quarter-wave dipoles because the antenna elements could be most conveniently adapted to serve as the network elements of a parametric amplifier. This was accomplished by adding a concentric inner conductor to the dipole, thus forming a coaxial cavity. Units operating at 108 mc and 54 mc are illustrated in Figs. 1 through 4.

Coupling between the inner region and the outer cylindrical surface of the antenna occurs through incidental fringing capacitance and through shunt varactor diodes. The inner region, through its spectrum of TEM resonances provides the resonant storage necessary for parametric amplification.

Parant Operates as A Degenerate Amplifier

The parant is operated in the degenerate amplification mode (input frequency = output frequency). The fundamental TEM mode provides the signal frequency; the fifth order mode provides idler storage; and the sixth order mode matches the pumping frequency. A high order even TEM coaxial mode was chosen for pumping to minimize parasitic self-oscillations at or near the signal frequency.

The output signal is extracted from the coaxial region by a rectangular loop appropriately oriented in a radial plane. Coupling to the idler frequency is minimized by

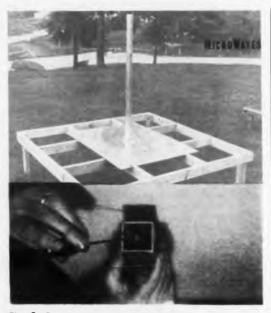


Fig. 3. Quarter-wave dipole parant designed for 54-mc operation. Design is similar to the half-wave unit, but note use of a ground plane. Bottom view shows internal construction and varactor diode connected between the inner and outer elements.

cutting loop length to a half-wavelength of the idler. The position of the loop with respect to the standing-wave current pattern in the center conductor also reduces coupling to this mode.

The diode is pumped through the center conductor, which also provides a dc path for the diode reverse bias.

Suitable external circuitry associated with the parant was designed to provide the following:

- Tuning of the idler, pump, and signal modes
- Pump input
- Dc bias

Networks for the half-wave, 108-mc parant and for the quarter-wave, 54-mc parant are shown in Figs. 5 and 6, respectively. Circuit values were chosen to match the characteristics of the 1N894 varactor diodes used in the antennas described here.

Both the half-wave and quarter-wave parants provide stable gains of up to 15 db over passive dipoles. (See gain-frequency curves in Figs. 7 and 8).

Antenna Can Be Electronically Switched at High Speeds

Diode reverse bias can be adjusted to vary the parant's gain over a range of 45 db.

ALFRED ELECTRONICS

* First in guality broadband microwave instrumentation

MICROWAVE SWEEP GENERATORS

Still the industry's most advanced oscillators. Series 620 single band models and Model 605 use convenient plug-in generator heads covering 1-26.5 kmc. Models 6001B-6004C provide 1 watt output, electronically swept or stable single frequency, 1-12 kmc.

Features include built-in leveler and narrow band symmetrical sweep, adjustable frequency markers, and Quick Look readout. Drift, less than $\pm .02\%$ per hour; residual FM, less than $\pm .0025\%$ peak.

These units save valuable engineering time by providing constant RF power input to microwave tubes and other components under test. With constant input, variations in output indicate directly component transfer characteristics. Microwave properties are examined over continuous spectrum, assuring accuracy during broad or narrow band testing. Prices: Model 620 series, \$2,890-3,340; Model 605, \$1,750; Generator Heads, \$1,500-1,990; Model 6001B-6004C, \$7,250-8,690.

MICROWAVE LEVELERS

Ideal instruments for maintaining constant power output (±1 db) with long term stability. CW or square wave modulation. Fast response, very high gain assure flat RF output from BWO's. Also available: Model 700 leveler amplifier, which may be used with external RF components. Prices: Microwave Levelers, \$875-990; Model 700, \$575.

MICROWAVE AMPLIFIERS

Alfred manufactures microwave amplifiers for virtually every requirement – general purpose, medium power, high gain, and low to medium noise figure. All models feature low spurious modulation and stable operation. General purpose amplifiers provide 30 db gain and 10 mw power output with 25 db noise figure. Medium power models offer power up to 10 watts. High power amplifiers provide up to 1 Kw pulse power. Low noise amplifiers provide noise figure from 6 to 15 db at frequencies from .5 to 12 kmc.

In addition to standard amplifiers, Alfred offers periodic or permanent magnet focused amplifiers where light weight and low input power is required as well as amplifiers designed specifically for phase modulation. Prices: General purpose amplifiers, \$1,490-1,690; Medium power amplifiers, \$1,550-3,590; Low noise amplifiers, \$3,150-4,990.

POWER SUPPLIES

Alfred furnishes four basic types of power supplies. Model 250 Traveling Wave Tube Supply operates low and moderate power traveling wave amplifier and oscillator tubes. This instrument provides all normal sources – helix, collector, four separate anodes. grid, heater, solenoid and blower – from one compact unit.

Testing Insertion characteristics of X-band filter with Alfred Swept Generator which consists of Alfred Microwave Oscillator and Alfred Microwave Lovelsr. This combination electronically

Microwave Power Supplies Model 252, with the unregulated and regulated solenoid supplies Model 253 and 254, operate all presently known low and medium noise figure TW tubes. Model 252 furnishes electrode and heater power for permanent magnet focused TW tubes. Electromagnet focused TW tubes require in addition either Model 253 or 254 solenoid supply. Alfred's Sweeping Power Supplies serve as general purpose sources for either electronically swept or fixed frequency operation of voltage tuned magnetrons, BWO's and similar microwave tubes. Alfred's floating high voltage supplies provide extremely stable and highly regulated DC voltages, featuring wide voltage and current ranges, very small ripple and accurate voltage adjustment. Prices: Model 250, \$1,990; Models 252, \$890; 253, \$300; 254, \$400; Sweeping Power Supplies, \$1,650-1,690; High Voltage Supplies, \$690-1,090.

Free catalog available. Write to:

Phone: DAvenport 6-6496

CIRCLE 133 ON READER-SERVICE CARD

WESCON BOOTH 1412

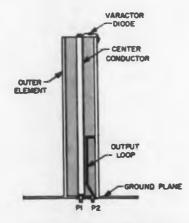


Fig. 4. Construction details of the quarter-wave parant. The antenna is single-ended and uses only one diode. However, additional diodes can be wired in parallel with the first, if desired. Construction of the quarter-wave antenna is simpler than that of the half-wave parant.

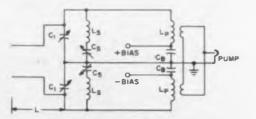


Fig. 5. Tuning networks and bias blocking circuits for the half-wave, 108-mc parant. Length L represents the distributed impedance of the leads and connectors between the antenna and the circuit. Capacitors C_t and C_k tune the idler and signal frequencies, respectively.

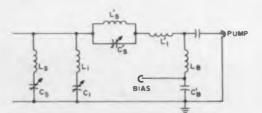


Fig. 6. Tuning networks for the quarterwave, 54-mc parant. Single-ended characteristic of the antenna eliminates circuit balancing problems inherent in the half-wave design. Only one capacitor is required for tuning the idler or signal frequencies.

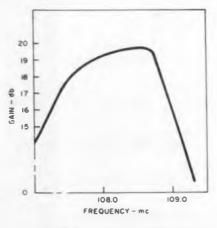
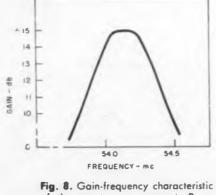



Fig. 7. Gain-frequency characteristic of the half-wave parant. Pump frequency was 600 mc.

of the quarter-wave parant. Pump frequency was 302 mc.

This change is due to the inhibition of parametric amplification and the combined effect of detuning and resistive shunting of the interior coaxial cavity. By pulsing the bias, an unmodulated signal can thus be conveniently chopped at rates up to 200 kc with 50-db isolations. This ease of switching makes the parant a versatile beginning for many complex types of receiving systems.

The half-wave parant of Fig. 1 was constructed of 1.75 in. square aluminum pipe with a wall thickness of 0.125 in. The flat side walls and increased wall thickness as compared to earlier models built of circular pipes permit convenient use of stripline fittings and more effective support of the inner

Fig. 9. Tuning network for the halfwave, 108-mc parant. Unit is conveniently mounted at center section of the antenna.

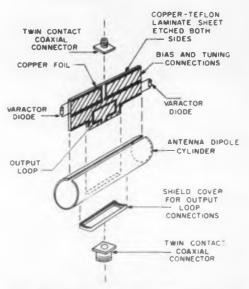


Fig. 10. Etched circuit, half-wave parant. This design approach should prove useful for antennos operating up to 500 mc. The etched circuit board replaces inner conductor of the lower-frequency parants. Resonant region is achieved by the stripline construction. Distributed elements would be used for tuning.

conductor. The circular pipe was, however, retained for the inner conductor. Length was calculated by the equation

$$L = 0.48 \lambda \frac{L/D}{L/D + 1} \qquad (1)$$

where

L = antenna length for half-wave dipole D = antenna diameter

 λ = free-space signal-wave length.

This expression was found empirically valid for conventional dipoles in which the signal is derived across a mid-point gap of negligible width and coupled to a matched resistive load. The gap in the inner conductor as shown in Fig. 2 provides the necessary dc isolation between the two diodes of the half-

wave parant, but it is also an important factor in the design of tuning circuits for the signal, idler and pump frequencies.

The effect of this gap on the resonance of the inner region is dependent on the relative magnitude of its susceptance, though generally it shifts the resonant frequencies upwards.

Distributed Impedance Is A Factor in Design

Also across this gap are the composite impedances of the radial connections from gap to plug, connectors, leads (see Fig. 5) and internal wiring as far as capacitor C_1 in the tuning network. These act as an irregular transmission line to provide, together with C_1 , a series resonance as viewed from the gap. Their detuning effect is relatively minor at the 108-mc signal frequency of the antenna, but quite important at the 490-mc idler frequency.

The gap is physically located at a point where the longitudinal current density and voltage gradient are high for the odd order modes. Its location with respect to the oven order modes is at a low-current, highimpedance point.

Tuning of the idler and signal frequencies, occuring at odd TEM modes, is accomplished by adjustment of series resonant branches composed of lumped and/or distributed impedance elements. With a signal frequency of 108 mc and a consequent pump frequency near 600 mc, the circuit elements are largely distributed.

The pump signal coupling loops provide an in-phase voltage across the center conductor gap. Thus, any out of phase excitation arising from signal or idler frequency components will not produce a net output along the pumping signal line. Loading and signal loss are thereby avoided.

A tuning network assembled for the halfwave parant is shown in Fig. 9. Early models of the parant were tuned by the insertion of dielectric strips into the coaxial region. It was felt that the adjustable tuning network described here is more suitable for a developmental model, but the use of dielectrics for fixed tuning may be attractive when assembling a large number of

ALL-NEW... RMS VOLTMETER

now . . . measure true RMS value of virtually all waveforms

ACCURACY BAND WIDTH: (10 cps-7 mc)

Accurate measurement of complex waves is now possible over a wide range of frequency with the NEW <u>jf MODEL 910A.</u>

Voltage Range:

Decibel Range:

Input Impedance:

Crest Factor:

Price:

Accuracy:

Partial Specifications-jf MODEL 910A

Frequency Response: 10 cps to 7Mc

-72 to +52 dbm

1 MV to 300V (full scale readings)

 \pm 2% of full scale 20 cps to 2Mc \pm 3% of full scale 20 cps to 3.5 Mc

± 5% of full scale 10 cps to 7 Mc

10 megohms shunted by 30 pf for 0.3 volt range and below. 10 megohms shunted by 15 pf for 1.0 volt range and above.

3 at full scale, proportionately higher for readings less than full

Cabinet Model-\$545.00

Rack Model-\$565.00 Prices f o b. factory.

 \pm 1% of full scale 50 cps to 800 KC

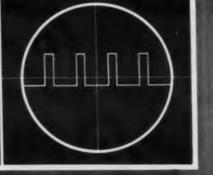
For the first time one instrument provides 1% midband accuracy,
10 cps to 7mc bandwidth, plus 100 u v sensitivity. For added versa-
tility an amplifier output is provided for simultaneous oscilloscope
or recorder monitoring.
Madel 010A sympletic a thermoscouple leasted in the feedback least

Model 910A employs a thermocouple located in the feedback loop of a sensitive DC amplifier to measure the actual heating effect of the input waveform. This circuit arrangement is the key to the rapid response and high calibration accuracy of the Model 910A and also prevents any error in reading due to ambient temperature variation. Isolation of the thermocouple from the input terminals by a high gain, ultra stable AC amplifier provides high input impedance and completely protects the thermocouple from burnout under any condition of overload.

Model 910A is ideal for measuring AC currents in non linear devices, total harmonic content of distorted waveforms, noise, average power of pulse trains, and other measurements that involve waveforms which are not necessarily pure sinusoids.

Prices and data subject to change without notice.

A more complete description will be sent to you upon request,


MODEL 910A

JOHN FLUKE MFG. CO., INC. P. O. Box 7428 Seattle 33, Washington

scale.

CIRCLE 134 ON READER-SERVICE CARD

Direct Reading Microwave Wavemeters

many

Proven in Performance and Reliability .01% Accuracy

Covering a frequency range of 500 mc to 18 gc with .01% maximum error, Frequency Standards' precisionengineered wavemeters combine greater accuracy of readout with a broader frequency range in both absorption and transmission types. Each unit provides direct readout without chart and is individually calibrated and temperature compensated for a high degree of accuracy and stability.

Higher accuracies can be obtained depending on other limitations.

Frequency Standards, America's foremost center for new ideas in microwave technology, produces this precision wavemeter in absorption, termination, and RF transmission styles both for laboratory and operational applications. For outdoor use a direct reading model is furnished in a ruggedized waterproof carrying case. **Delivery within 10 days** • For information on the complete line of wavemeters, write for catalog P-26102.

Certified: All wavemeters are calibrated against standards originating with the U.S. National Bureau of Standards.~

Center for Microwzve Components: Wavemeters + Reference Cavities + Signal Sources + High Power Filters + Discriminators + Antenna Couplers + Diplexers + Duplexers + Directional Couplers + Antennas + Cavities

parants designed for constant-frequency operation at a single frequency.

Matched-diode selection for the half-wave parant emphasized voltage sensitivity and static capacity. These two characteristics were matched as closely as possible within the tolerances obtainable with the lowpriced diodes employed. Matching of reverse resistance and forward conduction point was performed less critically.

Quarter-Wave Parant Considered Simpler to Design and Fabricate

The quarter-wave parant is a more workable design from the standpoint of simplicity in construction and operation. It is essentially a half-section of the half-wave parant with the outer conductor welded to a conducting ground plane.

Its singled-ended configuration, as compared to a symmetrical half-wave dipole, permits more freedom of design for external circuitry and better control of cavity resonances. There is no balancing problem, either of external circuitry or diodes. Circuitry can be placed under the ground plane and there adjusted without affecting fields within the antenna itself.

The quarter-wave parant shown in Figs. 3 and 4 was designed for a 54-mc signal thus allowing lumped circuit elements to be used. Tuning networks for the signal and idler resonances (see Fig. 6) are connected across the base of the cavity, as are the dc bias and pumping inputs. In designing these networks, the following precautions should be observed.

• Dc bias must be applied between the center conductor and the dipole cylinder without shorting out the pump signal.

• The bias circuit must not lower the Q of the idler and signal-tuned circuits.

• Idler and signal power must not be dissipated in the pump and bias circuits.

Etched-Circuit and Slot Parants Being Designed for Higher Frequencies

Parants for use at higher frequencies are now being developed at the Antenna Sys-

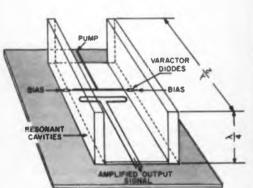


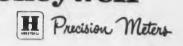
Fig. 11. Dual slot parant for use up to 2 Gc. Cavities behind slots in ground plane provide resonant storage for parametric amplification. Initial model of this design is undergoing operational tests.

tems Laboratory of the University of New Hampshire. In the region between 200 and 500 mc, an etched circuit antenna using essentially distributed elements for tuning appears feasible. The design shown in Fig. 10 is now being fabricated. A slot antenna, such as illustrated in Fig. 11 would operate at frequencies in the 1.5- to 2-Gc range. An initial model of this type has been completed and development is being continued.

As a simple dipole, the parant can be employed alone or together with Yagi arrays, parabolas, corner reflectors, etc. Multiple units with in-phase pumping and adjusted for equal gain merit consideration in high speed electronically-scanned arrays or in direction finding systems using a Wullenweber antenna or Luneberg lens.

Acknowledgment

The parant concept was evolved in connection with Doppler tracking at the University of New Hampshire of early U.S. and Soviet satellites and is being developed under the sponsorship of the Electronics Research Directorate, Air Force Cambridge Research Laboratories.



Not a usual combination. The sensitivity and toughness included in every Honeywell panel instrument is a result of the infinite patience and superior technical know-how of our designers and engineers.
Ruggedized Honeywell panel instruments are available with external zero adjuster. They are sealed, dustproof, moistureproof and immune to the hazards of climate and atmosphere. Built to withstand the most severe tests of shock, vibration and strain - and still give

accurate, reliable readings --- they're another reason why the name Honeywell and the word dependability are synonymous.
Perhaps a quality instrument from Honeywell can help you do a job better and faster. Just get in touch with our representative in your area - he's listed in the classified pages of your telephone directory-

Or contact us direct: PRECISION METER DIVISION, Minneapolis-Honeywell Regulator Company, Manchester, New Hampshire, U. S. A. In **Honeywell** Canada, Honeywell Controls Limited, Toronto 17, Ontario. Honeywell International Sales and service offices in all principal cities of the world.

CIRCLE 136 ON READER-SERVICE CARD

New Definitions

Shortly before the 1961 National Symposium of the IRE's Professional Group on Microwave Theory and Techniques, five authorities in the field of noise measurement undertook to agree on a workable set of definitions of receiver noise. Whether Messrs. William Mumford and Rudolf Engelbrecht of Bell Telephone Laboratories, Hermann Haus, Massachusetts Institute of Technology, Robert Adler, Zenith Radio Corp., and Matthew Lebenbaum, Airborne Instruments Laboratory, have indeed said the last word in this long-standing controversy remains to be seen. Their significant report to the symposium, abstracted here, is nevertheless strongly commended to the interest of microwave designers.

T HE noise performance of a system is evaluated in terms of its output signalto-noise power ratio under operating conditions, S_o/N_o . Output power is expressed as the signal power at the input multiplied by the signal gain, G_o .

The output noise power can be expressed in terms of the signal gain, G_{ii} , input signal power, S_{ii} , output signal bandwidth, B_{oi} , and an operating noise temperature, T_{op} . Hence, the output signal-to-noise ratio is:

$$\frac{S_o}{N_o} = \frac{G_s S_i}{G_s k T_{op} B_o} = \frac{S_i}{k T_{op} B_e} \qquad (1)$$

Two receiving systems have the same output signal-to-noise ratio if they have the same $S_i/kT_{op}B_o$ ratio.

In a single response receiver (in which one frequency at the input corresponds to a single output frequency, regardless of the complexity of the gain-frequency characteristic) the output noise power, N_o , is defined as

 $N_o = G_s k B_o (T_o + T_e)$ (2) The term T_o is the input generator noise temperature. T_e is called the "Effective Input Noise Temperature." For a two-port transducer, this is the temperature which, when the input is connected to a noise-free equivalent of the transducer, would result in the same output noise power as that of the actual transducer connected to a noise-free input source.

To measure T_{ex} the designer can observe the output noise power for two different temperatures of the generator. If the ratio of the two output noise powers is Y,

$$T_{\epsilon} = \frac{T_{g}(hot) - YT_{g}(cold)}{Y - 1}$$
(3)

The term T_{op} , occurring in Eq. 1 can be expressed as

$$T_{op} = T_g + T_e \qquad (4)$$

An alternative definition of receiver noise, that of the Noise Figure, remains useful. Since, however, the literature contains several conflicting definitions of Noise Figure, the authors recommend the definition in the IRE standards on electron tubes.¹ In terms of Noise Figure, F, the operating noise temperature can be written as

 $T_{o\mu} = T_{g} + 290(F - 1)$ (5) In a multiple response receiver, such as a superheterodyne receiver with response at the image frequency or a parametric amplifier with response at the idler frequency, there are two distinct contributions to noise:

- N_{go} output noise due to the noise power available from the impedance connected to the amplifier input.
- N_N All other contributions to the input noise power. These are due to noise generated within the receiver components and noise resulting from any frequency conversions within the receiver.

Letting B_N be the limiting noise bandwidth common to all responses.

 $N_{go} = kB_N (T_{g1}G_1 + T_{g2}G_2 + \dots + T_{gn}G_n)$ (6) where G_n is the transducer gain of the n^{th} response. That is, the ratio of output power to the corresponding input power available to the n^{th} input response.

 N_n can be characterized by a temperature, T_{h_1} common to all responses, so that

$$N_n = kB_s T_b (G_1 + G_2 + \dots + G_n)$$
(7)
The total output noise is then

$$N_{a} = kB_{X}[G_{1}(T_{a1} + T_{b}) + G_{2}(T_{a2} + T_{b})]$$

 $+\ldots+G_n(T_{gn}+T_b)]$

 T_b is obtained from Eq. 3. The operating noise temperature is given by

$$T_{ab} = \frac{N_o}{kB_oG_s} \tag{9}$$

(8)

(13)

Since most modern noise generators provide broadband noise, their use in direct measurement of noise injects the noise equally into all responses. That is,

$$T_{g} = T_{g1} = T_{g2} = \dots = T_{gn} \quad (10)$$

Eq. 8 thus reduces to

 $N_{e} = kB_{x}(T_{g} + T_{b})(G_{1} + G_{2} + \ldots + G_{n}) \quad (11)$ To measure T_{b} in terms of Noise Figure, use $T_{b} = 290(F_{b} - 1) \quad (12)$

where F_b is the multiple channel or "broadband" Noise Figure.

To evaluate F_{h} use

$$F_{b} = \left[\frac{T_{g}(hot)}{290} - 1\right] - Y \left[\frac{T_{g}(cold)}{290} - 1\right]$$

When the input signal occupies only one

ELECTRONIC DESIGN . July 5, 1961

response, $G_s = G_1$. If the system is designed for lowest operating noise temperature, i.e., noise bandwidth B_v matches signal bandwidth B_o , the operating noise temperature is given by

$$T_{gp} = T_{g1} + T_b + \frac{G_z}{G_1} \left(T_{g2} + T_b \right) \\ + \frac{G_s}{G_1} \left(T_{g3} + T_b \right) \\ + \dots + \frac{G_n}{G_1} \left(T_{gn} + T_b \right)$$
(14)

For the special case when, under operating conditions, the generator noise temperatures applied to all input responses are equal, Eq. 14 reduces to

$$T_{op} = \left(T_g + T_b\right) \left(1 + \frac{G_2}{G_1} + \ldots + \frac{G_n}{G_1}\right) (15)$$

When the received input signal is distributed over more than one input response, only the term G_n of Eq. 9 is affected. When the portions of the input signal are uncorrelated, with powers of $S_{(1)}, S_{(2)}, \ldots, S_{(m)}$

$$G_{\cdot} = \frac{S_{i1}G_{i} + S_{i2}G_{2} + \dots + S_{in}G_{n}}{S_{i1} + S_{i2} + \dots + S_{in}} = \frac{S_{o}}{S_{i}(total)}$$

Substituting G, into Eqs. 8 and 9 yields

$$T_{**} = \frac{N_o}{kB_oG_o} \tag{17}$$

$$= \frac{B_{N}[G_{1}(T_{g1}+T_{b})+...+G_{n}(T_{gn}+T_{b})]}{B_{n}\left[\frac{S_{i1}G_{1}+S_{i2}G_{2}+....+S_{in}G_{n}}{S_{i1}+S_{i2}+...+S_{in}}\right]}$$

It is concluded that to evaluate the signalto-noise ratio of any receiving system, the designer must know T_{op} , B_o , and the total input signal power S_i (having the same distribution over the various input responses assumed in the evaluation of T_{op}).

The multiple-channel effective input noise temperature, T_b , (i.e., T_e for a single response receiver) is computed by Eq. 3, the gains of the various responses, and the noise bandwidth, B_N .

With these terms, the designer can calculate his particular system's operating noise temperature, T_{op} by inserting them in the general Eq. 17, or an appropriate simpler form.

Reference

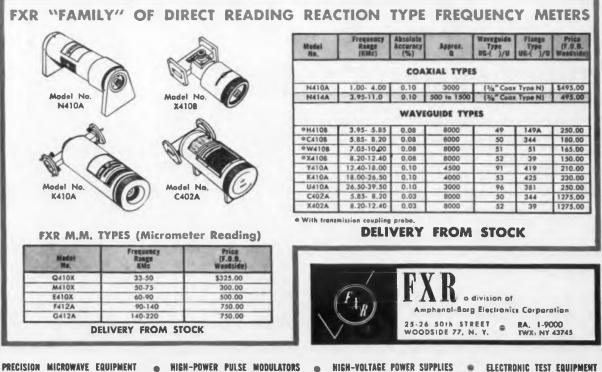
1. Proceedings of the IRE, July, 1957, Vol. 45, p 1000.

DELIVERY FROM STOCK

 Nodel No. N414A

 Price: \$495.00

 Direct reading from 3.95 to 11.0 KMc

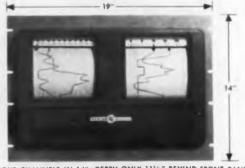

 Covers a full actove and beyond

 Reaction type with 0.1% absolute accuracy

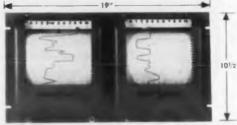
Meet the newest member of the FXR "family" of direct reading frequency meters. This coaxial type, Model No. N414A, has a range from 3.95 KMc to 11.0 KMc and by use of FXR Series 601 coax to waveguide adapters converts to waveguide setups. The unit covers "a full octave and beyond" with an absolute accuracy of 0.1% throughout its range. It is a perfect companion for the FXR Models No. C772 and X772 signal sources. This newest direct reading frequency meter augments FXR's existing line, recognized as the largest in the industry. Direct reading, reaction type units are available for use up to 39.5 KMc while micrometer types extend FXR's coverage up to 220 KMc.

Non-contacting choke for long life and high Q Standard Type N Connectors for universal utilization

Write or call now for data sheets on Model No. N414A and other units in the integrated FXR family of precision frequency meters.



ISION MICKOWAYE EQUIPMENT O HIGH-POWER PULSE MODULATORS O HIGH-YOLTAGE POWER SUPPLIES O ELECTRONIC TEST EQUIPMEN Circle 137 on reader-service card


ELECTRONIC DESIGN . July 5, 1961

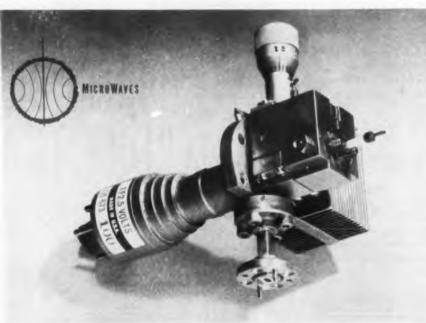
VARIAN Potentiometer RECORDERS

More performance in less space

G-22 FOUR CHANNELS IN 14"; DEPTH ONLY 111/2" BEHIND FRONT PANEL

G-11A TWO CHANNELS IN 101/2" DEPTH ONLY 5%" BEHIND FRONT PANEL

G-10 ONE CHANNEL <1/2 CU. FT


THREE COMPACT CHOICES

Using one quarter the space of many comparable potentiometer recorders, the Varian family packs exceptional function into very little space. Interchangeable input chassis accommodate full-scale signal voltages from 10mv to 500v dc., temperatures from -200° C to $+1500^\circ$ C, and 1mA current recording. The Varian recorders have 1% accuracy, &S-of-span sensitivity, 1 or 2% second balancing time, full-span zero adjust, Zener diode or mercury cell reference. A selection of chart speeds from &"/hour to 16°/minute lets you pick the time resolution you need.

In addition to being rack-mountable, the G-22 and G-11A are portable for use in many locations. A wide range of accessories – such as retransmitting slidewires, alarm contacts and event markers – helps broaden the outstanding functional versatility outlined above. Chances are a Varian recorder can serve your need. Write Instrument Division for detailed specifications.

NMR & EPR SPECTROMETERS, MAGNETS, FLUXMETERS, GRAPHIC RECORDERS, MAGNETOMETERS, MICROWAVE TUBES, MICROWAVE SYSTEM COMPONENTS, HIGH VACUUM EQUIPMENT, LINEAR ACCELERATORS, RESEARCH AND DEVELOPMENT SERVICES

MICROWAVE PRODUCTS

Reflex Klystron

702

Operates to 120 Gc. Reflex klystron QKK971 operates from 100 to 120 Gc with power output of 10 mw min, and a minimum life of 250 h. Anode voltage is 1,700 v, current 50 ma. Heater requires 2.5 v at 1.5 amp, and reflector voltage is -100 to 300 v. The integral-cavity tube has vernier tuning.

Raytheon Co., Microwave and Power Tube Div., Dept. ED, Foundry Ave., Waltham 54, Mass. P&A: \$3,500; 90 days.

Optical Maser Head 703

Precision positioning of optical maser head model TO-2000 provides aiming accuracy within 10 sec of arc. Operating from 150 to 4000 K, the head handles up to 4,000 J, and will accommodate rods up to 0.2 in. diameter. Included are three pink ruby rods, sighting telescope, tube and rod cooling, sync output, and manual and automatic triggering. Power supply is available.

triggering available. Trion Instruments, Inc., Dept. ED, 7300 Huron River Drive, Dexter, Mich. **P&A:** \$3,695; 30 days.

Oscillator Cavity

Calibration accuracy to $\pm 2 \text{ mc}$ and 0.1% resettability are provided by this oscillator cavity. Operating frequency is 400 to 1,000 mc. Used with 2C36 or similar uhf triodes, 10 mw into a 50-ohm load is provided. Output attenuator is calibrated from 120 to 0 db below 1 mw. Power output is monitored by bead and disk thermistors. The cavity withstands extreme shock.

Frequency Standards, Dept. ED, P. O. Box 504, Asbury Park, N. J.

P&A: \$250 to \$350 each; 90 to 120 days.

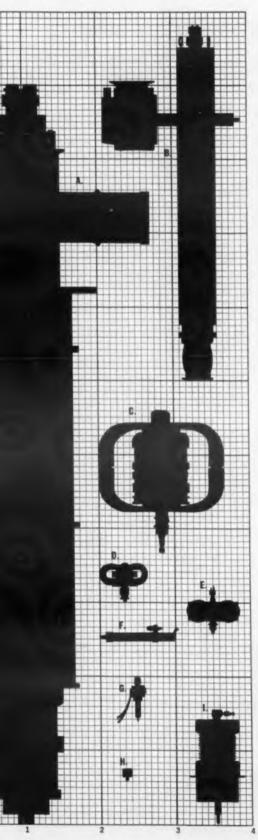
Backward-Wave Oscillator

Operating from 18 to 26.5 Gc, backward-wave oscillator type BW-4289 provides a voltage-tunable signal for local oscillator and test equipment applications. Power output is 5 mw min. Tube is 5 in. long, 3-1/2 in diameter, and weighs 5 lb with integral permanent magnet. The rf output is fitted with flexible waveguide.

Sylvania Electric Products Inc., Dept. ED, 1100 Main St., Buffalo 9, N. Y. **P&A:** \$3,000; 60 days.

ELECTRONIC DESIGN . July 5, 1961

594


8

7

6

5

ONE METER TO FOUR MILLIMETERS New Litton Electron Tubes

for Advanced Applications

A. L-3403 KLYSTRON TUBE: One of our super power line, a long pulse, power amplifier klystron for the Ballistic Missile Early Warning System, delivering 1.25 megawatts peak power output.

B. L-3270 BROADBAND KLYSTRON: A 2 megawatt L-band klystron offering long life, high peak power, 8 percent bandwidth. Other broadband klystrons, using the exclusive Litton Skirtron techniques, are available with higher power in the L through S-band region with .002-.004 duty cycles.

C. L-3455 HIGH POWER MAGNETRON: A new magnetron delivering a minimum of 2 megawatts peak power at 406-450 mc. with a .002 duty cycle.

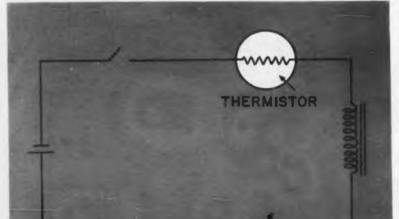
D. L-3458 HIGH TEMPERATURE PULSE MAGNETRON: Provides long life operation at ambient temperatures in excess of 662°F. Many hours of 900°F. operation have been achieved in X-band tests.

E. L-3629 FLOATING DRIFT TUBE KLYSTRON: High power, water-cooled klystron oscillator fixed tuned at 33,000-37,000 mc. Power output: 15 watts CW minimum. Other tubes available for immediate delivery from 12-4 mm. wavelength.

F. L3472 TWT: PPM focused traveling wave tube offers higher CW power — 10 watts minimum and wider bandwidth in a compact 3-lb. size. Operates in the range of 7,000-11,000 mc. One of a line of TWT's including a 1000-watt X-band pulse tube.

6. MICROTRON: The L-3189, one-kilowatt CW magnetron, is accompanied in package form by an electromagnet and filter assembly, high voltage and filament and isolation transformers. Only 6-second warm-up. Two year warranty for domestic microwave cooking.

H. L-3430 CUBE MINIATURE MAGNETRON: A one-kilowatt miniature magnetron, fixed tuned at 9300 ± 30 mc, weighing less than 9 ounces and no bigger than a normal X-band waveguide flange. Developments at other power levels and frequencies are planned.


L-3408 SWITCH TUBE: Provides switching at relatively low control voltage levels with an efficiency of 95 percent. Features high voltage holdoff, high current handling. Collector ratings: 150 Kv; 20 Amps; 10 KW dissipation.

For information on our tube line, exclusive of classified types, send for the 1961 Electron Tube Condensed Catalog. Write to: Marketing Dept., Electron Tube Division, 960 Industrial Road, San Carlos, California

ON INDUSTRIES ron Tube Division BES AND DISPLAY DEVICES

One of a series EXPLORING THERMISTOR APPLICATIONS

a little thermistor

makes a big difference in a time delay circuit

Circuits like the one above are often used where variable or fixed delay are required. Circuit ingredients: a thermistor and a variable resistor, in series with a battery and a relay.

With the switch closed, current flow is limited by the high resistance of the thermistor. The thermistor then heats up, permitting sufficient current flow to close the relay. Delay time can be increased or decreased by increasing or decreasing series resistance.

This is just one example of putting the thermistor to work. There are hundreds more — including temperature control, liquid level measurement, remote control, switching, power measurement, voltage control or you name it.

There are just two kinds of thermistors, really: ordinary, which are good; and FENWAL ELECTRONICS', which are a little bit better. One reason is that FENWAL ELECTRONICS has the edge in experience. We pioneered in this field. Another reason is that we can suit your application exactly — FENWAL ELECTRONICS has the most complete line of thermistors available

anywhere.

For details, application assistance, and new Thermistor Catalog EMC 4, write:

51 Mellen Street, Framingham, Massachusetts CIRCLE 140 ON READER-SERVICE CARD

Variable Attenuator

Range is 25 db. Model 1146 is a continuously variable attenuator with less than 0.5 db insertion loss and adjustment range of 25 db over the 500 to 1,000 mc range. Attenuation is essentially constant with frequency (\pm 0.4 db max); unit handles 8 w average power. Connectors are BNC or TNC.

Radar Design Corp., Dept. ED, Pickard Drive, Syracuse 11, N. Y. **P&A:** \$ 210 ea: 8 week.

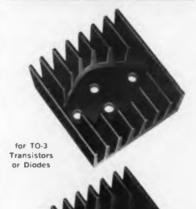
Waveguide Isolators

378

470

Broad-band ferrite load isolators in five models cover spans between 2.60 and 12.4 Gc. Insertion loss of the type 101 units is 1 db max, isolation 20 to 40 db min. They are designed for use with medium-power equipment.

Caswell Electronics Corp., Dept. ED, 414 Queens Lane, San Jose, Calif. **P&A:** \$165 to \$310 ea; 1 to 30 days.


CA: 3105 (0 \$510 eu, 1 (0 50 uugs

Magnetron output termination of low vswr for cw and pulsed testing is provided by these water loads. Available with or without a variable-phase magnetron pulling slug, loads may be pressurized to 30 psig. Seven types operate between 2.6 and 71.0 Gc.

Bomac Laboratories, Inc., Dept. ED, Salem Road, Beverly, Mass.

for TO-36

Transistors

Augat's new Heat Dissipators utilize a minimum of space and still offer the large radiating surfaces needed for maximum transfer of heat. All Augat dissipators feature a parallel, open-fin construction assuring low thermal resistance. They are readily adaptable to forced air cooling for even lower resistance.

Augat Heat Dissipators are manufactured in three styles to accommodate the TO-3, TO-36 and 2N-1015 transistors or their equivalent.

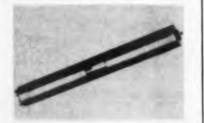
Write for Bulletin No. HD-261 which describes this new line in full detail.

Lem AUGAT BROS., INC. 31 Perry Avenue, Attleboro, Mass. CIRCLE 141 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

390

Coaxial Isolator

Broad-band ferrite coaxial isolator C992-100-409 operates from 2 to 4 Gc. Bandwidth isolation is 15 db, insertion loss 1 db, vswr less than 1.25:1. The 2-lb isolator is 6.16 in. long. Type N female coaxial connectors are standard, with other types optional.


General Precision, Inc., Kearfott Div., Microwave Products, Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Microwave Garnet 404

Low-loss, microwave garnet. MCL-300 is intended for use in the uhf and L-band regions. This material is available in bars, cylinders and disk form. Typical applications include 3- or 4-port low-loss circulators, either in full waveguide or coaxial. Curie temperature is 125 C.

Microwave Chemicals Laboratory, Inc., Dept. ED, 282 Seventh Ave., New York 1, N.Y.

Traveling-Wave Tube 356

A periodic-permanent, magnetfocused, low-noise traveling-wave tube, the HA-54 is for operation in the S-band. When operated from 2.4 to 3.4 Gc the tube has a noise figure of 13 db max, small signal gain of 25 db min and saturation power output of 5 dbm min. It measures 18 in. long with a 2 in. OD and weighs 3-1/2 lb.

Huggins Laboratories, Inc., Dept. ED, 999 E. Arques Ave., Sunnyvale, Calif. **P&A: \$2,500** ea; 8 to 10 weeks.

CIRCLE 142 ON READER-SERVICE CARD

ELECTROLYTIC CAPACITORS—Reliability is our first ingredient

The "case" for 300-volt Tantalytic* capacitors

The best capacitor case for 300-volt operation is General Electric's High Voltage Tantalytic[®] Capacitor. Its single-cell construction is the smallest and lightest for its rating. It weighs 0.1 ounce and measures only 0.875 inch in length.

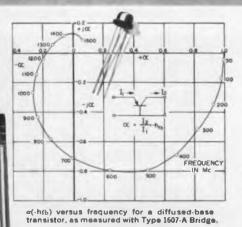
Performance of this G-E unit distinguishes it as quickly as its size. "Reg. Irade-mort of General Electric Co. Capacitance stays within 10% of original value even after 2000 hours testing at rated voltage and temperature. Impedance is lower at -55C than that of any other high-voltage tantalum capacitor.

These same features characterize the full line of ratings from 200V (.15 uf) to 300V (25 uf). Polar or non-polar designs

are available from stock for 85C and 125C applications.

Data on G-E High Voltage Tantalytic Capacitors is found in Bulletin GEA-7065. Ask your G-E Sales Engineer for a copy today. Or write to General Electric Co., Schenectady, N. Y. Capacitor Department, Irmo, South Carolina.

General Electric also offers these reliable Tantalytic capacitors



ISUF SOOVOC

R.R< R>> R.R= C

> Tunnel-diode impedance characteristics plotted to determine approximate values for the self-resonant and resistive cut-off frequencies.

Type 1607-A Transfer Function and Immittance Bridge ... \$1775

Measures every Characteristic

of Semiconductor Devices from 25 to 1500 Mc

TRANSISTORS - hfb, hfe, hfb, hbb, hob, hee - all short-circuit admittance and open-circuit impedance parameters.

TUNNEL DIODES - equivalent circuit parameters: series L, series R, shunt C, negative R ... resistive cut-off frequency, self-resonant frequency.

- * DIRECT-READING for all measurements.
- * BASIC ACCURACY is 5%.
- * BIASING TERMINALS for application of dc bias to component under test; special model accepts as much as 2.5 amos.
- * LOW R-F SIGNAL APPLIED may be held below 5 mv for transistor measurements.
- * COMPLETELY PASSIVE INSTRUMENT stability of calibration is dependent only upon permanent physical dimensions

* MEASURES VACUUM-TUBE TRANSADMITTANCES

as well, under high frequency, dynamic conditions7-pin miniature, grounded-cathode Tube Mount available (Type 1607-P201, \$75.)

* TRANSISTOR TEST MOUNTS AVAILABLE:

- Type 1607-P101
- common base, \$60.) • Type 1607-P111
- (0.100-in.-pin-circle,

it can measure all theoretical two-, three-, and four-terminal characteristics

JUniper 5-1088

Write For **Complete Information**

MEW YORK, WOrth 4-2722 District Office in Ridgefield, N. J. Whitney 3-3140

PHILADELPHIA CHICAGO Ook Pork Village 8-9400 Abington HAncock 4-7419

WASHINGTON, D.C. SAN PRANCISCO LOS ANGELES Los Altos Whitecliff 8-8233 Los Angeles HOllywood 9-6201

IN CANADA CHerry 6-2171 MICROWAVES PRODUCTS

Monitoring Diode 401

RF power monitoring diode MA-462 is for measurement applications in the X-band region. It is housed in a hermetically sealed, reversible polarity cartridge and is guaranteed for operation to 150 C. It meets the environmental conditions of MIL-S-19500B. A rectified output voltage with controlled variation is provided for input power levels between 10 µw and 10 mw cw.

Microwave Associates, Inc., Dept. ED, Burlington, Mass. Availability: Immediate.

Y-Circulator

358

For the 2-Gc region, this Y-Circulator is 2 in. in diameter. It can be magnetically tuned with electromagnets or permanent magnets which become an integral part of the package. Standard configuration is with TNC connectors at 120 deg spacing. A 6% bandwidth is obtained across a frequency range of 2 to 4 Gc. Insertion losses are less than 0.4 db with an isolation of $-20 \text{ db} (-30 \text{ db at } f_o)$ and vswr of 1.3 (1.1 at f_0).

Hycon Manufacturing Co., Dept. ED, 700 Royal Oaks Drive, Monrovia. Calif.

Availability: Immediate.

Coaxial Mixer Diode 403

The MA-445 series of coaxial silicon mixer diodes are rated conservatively at 1-erg burnout. Primary applications include use in single-ended or balanced hybrid mixers and communication and radar applications in the 10- to 18-Gc frequency range. Specifications for the MA-445 are: conversion loss. 7.5 db max; output noise ration, 2.5 max; if impedance, 325 to 625 ohms.

Microwave Associates, Inc., Semiconductor Div., Dept. ED, Burlington, Mass. Availability: Immediate.

tetrode, \$65.)

• Type 1607-P102

GENERAL RADIO COMPANY WEST CONCORD, MASSACHUSETTS

(0.200-in.-pin-circle, (0.200-in.-pin-circle, common emitter, \$60.) • Type 1607-P401 (0.200-in.-pin-circle, common base, \$65.)

ANOTHER ADVANCED MICROWAVE TUBE DEVELOPMENT FROM RAYTHEON'S SPENCER LABORATORY

MICROWAVES

353

360

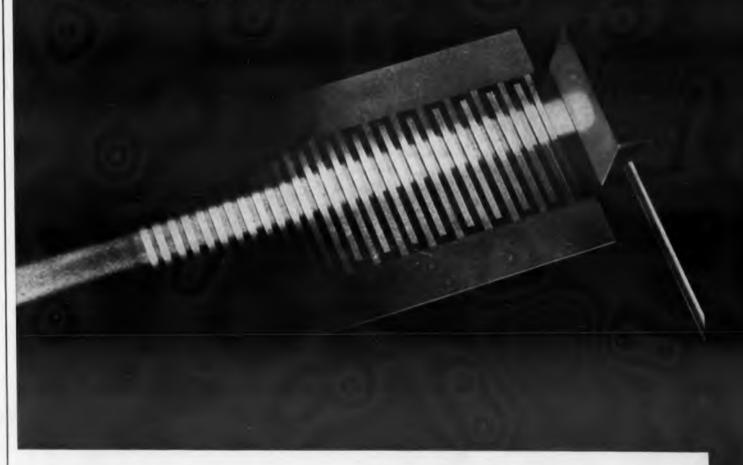
Crystal Detectors 354

For K and R band waveguide systems, models K422A and R422A have sensitivity of 0.05 v per mw and flat response within 2 db. Maximum vswr is 2.5. Both models have feed-through terminations which may be removed when greater sensitivity is required. Model K422A is for 18 to 26.5 Gc and the R422A is for 18 to 26.5 Gc.

Hewlett Packard Co., Dept. ED, 1501 Page Mill Road, Palo Alto, Calif.

P&A: Single units are \$200; matched pairs are \$420.

C-Band Oscillator

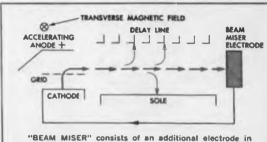

A microminiature, C-band oscillator 3/4-in. in diameter and 3/8 in. long, model 9180 is for both plate pulse and cw service. The plate pulse service unit can be built in the 4 to 6 Gc spectrum with a tuning range of any 300 mc segment of that section. Peek pulse power is 50 to 100 w. The cw version can tune any 100 mc segment of the 4.0 tp 5.5 Gc spectrum. Power output is approximately 5 mw.

Trak Microwave Corp., Dept. ED, Tampa, Fla.

Pulse Modulator

The PM-87 pulse moderator is designed to test, for life and performance, super power klystrons, continuous-duty radar transmitters and similar equipment. Peak power is 64 megawatts continuous: average power is 75 kw. Continuously adjustable pulse range is 75 kv to 250 kv with pulse current of 260 amp at 250 kv. Frequency is 30 to 360 pps; pulse height deviates from flatness $\pm 2\%$. Rise time at 10 to 90% voltage is 0.8 µsed; decay time is 1.5 µsec at the same voltages.

Ling-Temco Electronics, Inc., Dept. ED, 1515 S. Manchester Ave., Anaheim, Calif. Availability: 30 to 60 days.


How new Raytheon "BEAM MISER" boosts efficiency in crossed field devices

Unique depressed collector greatly improves efficiency of "M" BWO's and crossed field amplifiers.

"Beam Miser" is Raytheon's newest advance in crossed field oscillator and amplifier design. With it are opened many new design possibilities for applications requiring voltage tunability or bandwidth plus high reliability and efficiency.

Incorporating the "Beam Miser" into existing crossed field tubes will yield improved performance and will not require any mechanical or electrical changes in equipment.

Write for further information on Raytheon developments in crossed field devices. Microwave & Power Tube Division, Raytheon Company, Waltham 54, Massachusetts. In Canada: Waterloo, Ontario.

the crossed field device which collects a portion of the spent beam at cathode potential and returns it to the cathode by means of an internal conductor.

RAYTHEON COMPANY

MICROWAVE & POWER TUBE DIVISION

CIRCLE 144 ON READER-SERVICE CARD >

5528 VINELAND AVENUE NORTH HOLLYWOOD, CALIFORNIA

CINCLE 146 ON READER-SERVICE CARD

Noise figure is 7 db. Glass packaged diode type 1N831A, useful in strip-line circuits, can be conveniently mounted in coaxial circuits for broad-band, low-noise mixer applications. Operating from 1 mc to 4 Gc, burn-out rating is 250 mw cw. The device exhibits a noise figure of 7.0 db max for a 30-mc if noise figure of 1.5 db at 3,060 Gc. Microwave Associates, Inc., Dept. ED, Burlington, Mass. P&A: On request; stock. WORDS lay be displayed **Delay Line** or COLOR Colored digits or words and/or ior backgroun available

Mixer Diode

For X-band. Waveguide line lengths of 13 to 1,228 ft are contained in a mobile unit. The step-variable line is composed of coiled, rigid waveguide. Improved bending techniques result in minimum distortion of the waveguide and reduction of discontinuities. Length is changed quickly and accurately through use of highisolation waveguide switches.

MICROWAVES PRODUCTS

Operates at 6 Gc. The 50 series is a solid-

state microwave package including rf, multiplex, telegraph carrier and alarm equipment. Modu-

lar construction and circuit cards are used

throughout. Klystron provides 1 w output, is

toring equipment can serve 22 stations with 8

points continuously scanned at each station. Motorola Inc., Communications Div., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill.

469

467

Communications System

Turbo Machine Co., Dept. ED, Lansdale, Pa.

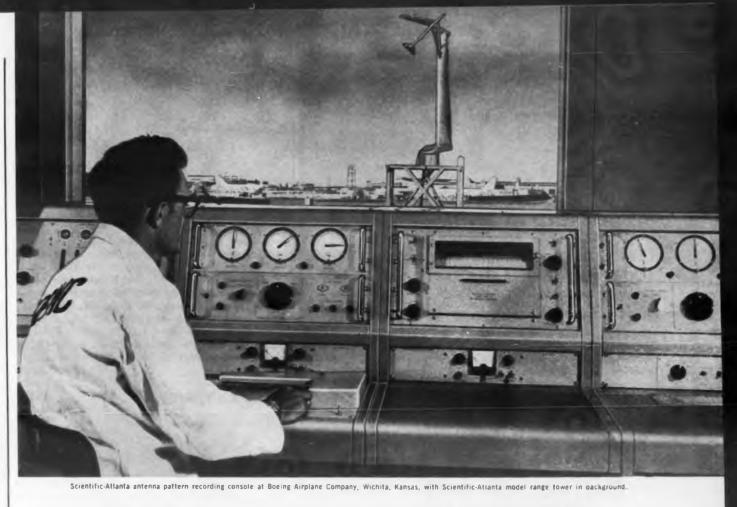
367

RF Detector

Model XD-6A rf detector consists of two separate detection circuits in a single package. Each section has an operating range of 100 kc to 1 Gc. Input impedance is 50 ohms for each section; vswr rating is 1.2 to 1 max at 1 Gc. Unit comes complete with BNC connections on both inputs and both outputs. TNC and N-type connectors are also available.

Telonic Industries, Inc., Dept. ED, Beech Grove, Ind.

Shielded Grid Triode 402


Designed as a switch tube in hard-pulse modulations, the ML-7845 delivers more than 4 megawatts pulse power output for radar, communications and similar applications. The cathode is unipotential and oxide-coated. When cooled by forced air the anode is capable of dissipating 3 kw with 150 cfm air flow. When the tube is immersed in a suitable dielectric gas such as sulfur hexafluoride, its maximum ratings are 75 kv dc and 80 kv peak.

Machlett Laboratories. Inc., Dept. ED, Springdale, Conn. P&A: \$2,415; 30 days.

Junction Circulator 380

Broad-band junction circulator model SL-43-3, operating at 2.2 to 2.7 Gc, is one of a line covering 1 to 35 Gc. The devices have better than 20 db isolation, less than 0.5 db insertion loss, and vswr less than 1.2:1 over a 15 to 20% frequency band. S, X, and SL band models with insertion loss of 0.15 db or less are available.

Cascade Research Div., Lewis and Kaufman Electronics Corp., Dept ED, 5245 San Fernando Road West, Los Angeles 39, Calif. Availability: 2 weeks.

Advancing the Art of Aircraft Antennas

Boeing uses versatile Scientific-Atlanta equipment to design and evaluate antennas for B-52H bombers

A Boeing B-52H global bomber packs more total frepower than that expended by all the Allied and Axis bombers in World War II. Each B-52H will carry four Skybolt missiles plus a potent assortment of other weapons. Equipped with penetration aids, including electronic countermeasures (ECM) and decoys, the B-52H can strike as many as five military targets on a single mission. It is produced for the Air Force's Strategic Air Command at the Wichita, Kansas, Division of Boeing.

Obviously, the design of antennas for such an aircraft demanded nothing short of "state of the art." As it turned out, Boeing engineers *advanced* the state of the art in the design of ECM antennas for B-52Hs and B-47s. They were aided significantly by a new antenna test facility, consisting predominately of Scientific-Atlanta equipment—including pattern recorders, wide range receivers, signal sources, and a model range tower.

The foremost advantage of Scientific-Atlanta instrumentation is versatility. Complete frequency coverage is provided with recordings proportional to voltage, power, or db in

SEE US AT WESCON · BOOTH 3522

either rectangular or polar coordinates. Owing to the equipment's wide frequency coverage, sensitivity, and flexibility, many other laboratory measurements can be made including calibration of microwave attenuators, insertion loss and gain measurements. These, and other features which enable Boeing to derive data faster and easier, have resulted in significant savings of research time.

There's one other point that should be mentioned. At Boeing's antenna test facility, Scientific-Atlanta's equipment has operated with good reliability. Whenever help is needed, Scientific-Atlanta engineers are there in a hurry.

Scientific-Atlanta will accept full responsibility for the design, construction, and manufacture for any antenna test facility that suits your needs. For details, write

CIRCLE 149 ON READER-SERVICE CARD >

100 K ohms in a 3/4" wirewound trimmer pot! Only Atohm has it!

Atohm precision, high reliability pots provide higher resistances, better resolution, higher wattages, larger wire-per-value for greater reliability, machine-wound elements for uniformity and lower cost, and other design advantages that merit your consideration. Write for the new Atohm catalog,

It makes trimmer pot selection easy. ATOHM ELECTRONICS INC. 7648 San Fernando Road, Sun Valley, California

•between mounting holes

CIRCLE 150 ON READER-SERVICE CARD

PROBING THE "TRANSPROBE" WAVEGUIDE SWITCH

The only moving parts of the "Transprobe" are solenoid plunger and a light weight, dielectrically supported metal probe. Result ... greater flexibility, longer life, ability to switch under full waveguide power. The design can be applied to any waveguide size. Unit shown is a single-pole-double-throw, X-band switch. The design is equally successful for adaptation to SPDT. SP3T. transfer switch or special configurations. Typical specifications: Frequency... 8.2-12.4 KMC, VSWR ... 1.20, Insertion Loss...0.2 db, Crosstalk...35 db, Life... 2,000,000 operations. To probe more thoroughly the unusual advantages in this new approach to waveguide switching write Transco Products, Inc., 12210 Nebraska Avenue, Los Angeles 25, California.

RANSCO

CIRCLE 151 ON READER-SERVICE CARD

MICROWAVES PRODUCTS

Cavity Amplifiers

Waveguide Fittings

Miniature cavity amplifiers, series 20, are entirely gold-plated and designed for heat sink type mounting and operation. Frequency range covered is 215 to 2,325 mc. All units can be used as building blocks stacked side by side on 4 surfaces.

Resdel Engineering Corp., Dept. ED, 330 S. Fair Oaks Ave., Pasadena, Calif. Availability: 20 days.

361

471

365

Broached or unbroached waveguide fittings are manufactured to MIL-F-3922 from forgings. castings or bar stock for microwave applications. Magnesium and oxygen free copper flanges are available.

Pem Machine Tool Co., Inc., Dept. ED, 1456 Chestnut Ave., Hillside, N. J. Availability: From stock.

Variable Attenuator

For field equipment. Type 170 series of panelmounting attenuators is made for operation over full waveguide bandwidth, or with direct-reading dials for narrow-band use. Frequency range of type X170 is 8.5 to 10.5 Gc, with accuracy ± 2 db from 0 to 50 db. Insertion loss is 0.75 db max, vswr 1.15:1 max. Average power handling capability is 1 w, peak lower 1 kw.

General Microwave Corp., Dept. ED, 47 Gazza Blvd., Farmingdale, N. Y. world's shortest short-form catalog on BWOs

You don't have to send for it

This is it!-

	K		
TYPE #	FREQ. RANGE	POWER	
OD 1-2	1-2	50-200	
OD 2-4	2-4	30-120	
OD 3.7-5.9	3.7-5.9	30-45	
OD 4-8	4-8	10-70	
OD 5.2-8.3	5.2-8.3	10-40	
OD 6-11	7.11	10-40	
OD 6-12	6-12	10-30	
OD 7-13	8.2-12.4	10-15	
OD 10-15	10-15.5	10-20	
OD 12-18	12.4-18	10-25	
OD 15-22	15-22	10-20	

But don't give up if the tube you need isn't listed here... these are just the BWOs we usually keep on the shelf in quantity, ready to ship today. We also produce in either experimental or production quantities, oscillators covering partial, octave, and even greater-thanoctave bandwidths.

Would you like a copy of our honestto-goodness catalog, with complete performance curves, specifications, and operating data? Just drop us a note. Here's a sample set of curves, on the Type 0D 15-22 backward wave oscillator:

CIRCLE 152 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

Hybrid Mixer

MICROWAVES

373

Compact hybrid mixer V-8306C performs without adjustment over 7.0 to 8.0 Gc. It is designed for waveguide coupling in both local oscillator and signal arms. Typical noise figure of 8.0 db includes a 3-db image and 1.5 db if strip contribution. Maximum vswr in both signal and local oscillator arms is 2.0. Isolation is 20 db min. Made of aluminum it weighs 6 oz.

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.

Price: \$495 fob Palo Alto.

Waveguide Isolator

386

X-band waveguide isolator C994-100-932 provides isolation greater than 70 db. Insertion loss is 1.0 db max, vswr 1.2:1 max. Center frequency is ± 100 mc, power handling capability 1 w avg. The 9-oz isolator is 3 in. long.

General Precision, Inc., Kearfott Div., Microwave Products, Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Ceramic Seals

381

Coaxial ceramic seals for traveling-wave tubes consist of dense alumina insulator sealed to a monel inner conductor and surrounded by a nickel outer conductor. Metallization process results in good rf match characteristics.

Ceramics International Corp, Dept. ED. 39 Siding Place, Mahwah, N. J

DIRECT READING CALORIMETER BRIDGE

Four scales with the following full scale deflections: 1 milliwatt, 10 milliwatts, 100 milliwatts, 1000 milliwatts. Accuracy: 1%-except in the 1 milliwatt

Accuracy: 1% --- except in the 1 milliwatt range.

DC-10 KMC - input impedance: 51.5 ehms

In this Calorimeter the R.F. power to be measured is compared to an accurately known D.C. power, by means of a null indicator and 260 thermocouples in 2 differential thermopiles, which sense the very low temperature rise of .0015 degrees C per milliwatt of the circulating fluid. This fluid is flowing at the rate of $\frac{2}{3}$ of an ounce per minute.

MODEL CB-31

D.C. power, both of which will depend to an equal extent on the ambient temperature, the effect of the ambient temperature on this power measurement is cancelled out. The R.F. power is then read directly on a $\frac{1}{4}$ % D.C. milliameter, calibrated in milliwatts. The null indicator pointer is deflected $\frac{1}{4}$ " by a power difference of 100 microwatts.

Since R.F. power is compared to

WRITE TODAY for COMPLETE INFORMATION

Electro IMPULSE LABORATORY INC. 208 RIVER ST. + RED BANK. N.J. Phone SHadyside 1-0404

CIRCLE 154 ON READER-SERVICE CARD

COMPACT Modine transistor coolers

keep tight rein on temperature

Same size and weight as a pack of cigarettes . . . dissipate 85 watts with only 5 cubic feet per minute of 25°C air with silicon transistors.

Standard models for forced air flow and natural convection carried in stock, available for immediate shipment with any of five standard transistor mount-

ing hole patterns.

Write for bulletin ID-159

Modine Manufacturing Company 1608 DeKoven Ave., Racine, Wisconsin CIRCLE 161 ON READER-SERVICE CARD

ADEL HAS THE WORLD'S LARGEST SELECTION OF LINE SUPPORT CLAMPS, BLOCKS AND HARNESS STRAPS!

33,000 different types and sizes...how versatile can one source be? Designed for every application...positive, vibration-free support in aircraft, missile, marine, automotive and original equipment of all kinds ...applicable in extreme environments.

Complete Catalog available upon request ... Specify ADEL Line Supports for quality in volume

DISTRICT OFFICES: Burbank, California - Mineola, Long Island, New York - Dayton, Ohio - Wichita, Kansas CIRCLE 162 ON READER-SERVICE CARD

... for <u>Perfect</u> lead-to-pin joints on <u>All</u> sizes of A/N and similar connections

(Chasaco) GLO-MELT

... for Fast-Efficient Accurate-Permanent connections.

POWER UNITS • HANDPIECES • ACCESSORIES for all jobs from Micro-Miniature to Heavy-Current connectors

WRITE FOR DESCRIPTIVE LITERATURE, PRICES AND HEAREST DISTRIBUTOR

Traveling-Wave Tube

372

A 3-mw pulse amplifier traveling-wave tube, the VA-126 is rated at 5 kw average power. Frequency range is 5.4 to 5.9 Gc. Efficiency is 30%; gain is 35 db. The liquid-cooled unit is self-centering in its electromagnet for ease in mounting.

Varian Associates, Dept. ED, 611 Hansen Way, Pale Alto, Calif.

Video Receiver

Self contained, battery operated, X-band cw crystal video receiver, model R115, employs video chopping. It is designed for direct connection to an antenna and provides a dc output proportional to the X-band signal input. Nominal sensitivity is - 45 dbm.

AEL, Inc., Dept. ED, 121 N. 7th St., Philadelphia, Pa.

Step Attenuator

385

Operating from dc to 500 mc, the D170 step attenuator has six switch positions permitting selection of attenuation from 0 to 41 db in 1-db increments. Accuracy is within 0.3 db; vswr is 1.10:1 max, power handling capability 1 w. Impedance is 50 ohms.

General Microwave Corp., Dept. ED, 47 Gazza Blvd., Farmingdale, N. Y.

TELEMETRY BY TELE-DYNAMICS

Voltage Controlled Oscillator

Positive, reliable oscillator performance is essential to your aerospace telemetry needs. And Tele-Dynamic'snewest—the Type 1270A Voltage-Controlled Oscillator is representative of Tele-Dynamic's creative effort in the complete telemetry field.

Characterized by excellent overall specifications, this new oscillator is high in electrical performance and environmental characteristics. Input 0 to 5 volts or ± 2.5 volts, linearity $\pm 0.25\%$ best straight line . . . a power requirement of 28 volts at 9 milliamps maximum. Distortion is 1% and amplitude modulation 10%.

Environmental characteristics include thermal stability of $\pm 1.5\%$ design bandwidth from -20°C to +85°C, unlimited altitude, 30G random vibration and 100G acceleration and shock. The 1270A weighs less than two ounces and has a volume of two cubic inches.

For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone TRinity 8-3000.

CORPORATION 5000 Parkside Ave., Fhiladelphie 31, Pa. CIRCLE 164 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

153**GOOD REASONS WHY** YOU SHOULD NOT TRY TO MAKE AN INSTRUMENTATION CABLE LIKE THIS ONE

This particular telemetering cable was designed by project engineers of a major aircraft manufacturer, for guided missile work.

But when it came to the actual making of the cable, they came to a cable specialist-Rome Cable Division-for 153 good reasons.

As a start, take conductors. There are 111 of them, each precisely controlled to be absolutely uniform in size and conductivity. That takes know-how and facilities; and it's just a start.

Now add 37. That's the number of individually insulated triplets, each twisted with fillers, covered with a tinned copper shielding braid and jacketed with Synthinol. Then note that the partial assembly is *taped* with lami-nated Fiberglas and that, finally, the whole works is covered with heavyduty Rome Synthinol.

Adding the conductors, triplets, and a point each for filler, braid, jacket, tape and outer jacket. you come up with 153 good reasons-skill, experience. and specialized equipment-why you should take your next cable problem to a cable specialist, such as Rome.

Inquiries invited. Write to Rome Cable Division of Alcoa, Dept. 11-71, Rome, N. Y.

NEW LITERATURE

Planar Semiconductors

Reliability, performance, cost and adaptability of planar diodes and transistors are discussed in this 12-page color brochure. Technical data, including performance curves and electrical specifications, are included. Planar transistors, manufactured with a protective oxide coating, are compared with their mesa equivalents. Fairchild Semiconductor Corp., 545 Whisman Road, Mountain View. Calif.

RF Interference Filters

262

263

264

261

Radio-frequency interference filters designed to reduce conducted interference in shielded-enclosure test activities and groundsupport equipment applications are described in this eight-page publication. Entitled "Shielded Room and Ground Support Equipment Filters", the booklet covers the firm's complete line. Genistron, Inc., Sales Dept., 6320 W. Arizona Circle, Los Angeles 45, Calif.

Environmental Data

Common conversion factors, formulas, and data on vibration, shock, pressure and other dynamic phenomena are given in this pocket folder. It is intended primarily for the environmental engineer. The folder has 27 sections, each devoted to a particular topic from the basic trigonometric formulas to a graph of piezoelectric transducer response. Endevco Corp., 161 E. California Blvd., Pasadena, Calif.

Electroplating

A method of electroplating without requiring immersion tanks is described in this eight-page brochure. Localized areas, it is said, can be plated, with little masking required. Sifco Metachemical, Inc., 935 E. 63rd St., Cleveland 3, Ohio.

Plugs, Connectors and Switches 265

Banana plugs, phone jacks, alligator clips, test leads, cable connectors, toggle switches and miscellaneous related items are described and illustrated in this 32-page catalog. Physical and electrical specifications and prices are included. GC Electronics Co., Rockford, III.

NEW LITERATURE

Measuring Instruments

266

In 96 pages, Catalog S describes over 250 instruments, counting systems, radionucleides and nuclear accessories. Much of the catalog is devoted to new products. Illustrations and technical data are included for each device. Nuclear-Chicago Corp., 359 E. Howard Ave., Des Plaines, Ill.

Toroidal Cores

Basic design information tips and formulas for toroidal cores are given in this 14page handbook. Included are temperature curves, analysis of core loss, dc resistance, eddy current loss resistance, hysteresis loss resistance and self-capacitance. Request on company letterhead from Connolly and Co., Dept. ED, P. O. Box 295, Menlo Park, Calif.

Silicon Diodes

267

268

270

Eighty-six glass silicon diodes are cataloged in this four-page brochure, as well as 35 general purpose and 51 computer types. Technical specifications are given. Computer Diode Corp., 250 Garibaldi Ave., Lodi, N. J.

Long-Life Vacuum Tubes

Specifications, descriptions and dimensional drawings for the firm's vacuum tubes are given in this 26-page handbook. Manufacturing techniques and quality control procedures are also described. State Labs, Inc., 215 Park Ave. S., New York 3, N. Y.

Low-Pressure and Flow Switches 269

Complete specifications, details and prices on low-pressure switches and velocity-actuated flow switches are described in this 30page catalog. Design information and dimensional diagrams are included. The Henry G. Dietz Co., Inc., 12-16 Astoria Blvd., Long Island City 2, N. Y.

Flashtubes for LASERS

Flashtubes capable of driving LASERS are described in this four-page booklet. Information on operation and application is included. Data on power requirements and capabilities of three assemblies are given. General Electric Co., Dept. LP-15, Nela Park, Cleveland 12, Ohio.

CRITICAL DESIGN PROBLEMS WITH TURBOTEMP[®] Teflon FEP/Nylon WIRE

SOLVE 5

Until Turbotemp® Teflon FEP/Nylon wire was developed, no single wire ever solved so many combined heat and electrical problems. This new wire provides these advantages:

1. Overcomes the "short length" problem inherent in extruded Teflon TFE. Get the long continuous lengths (up to 6,000 ft.) that until now were available only in lower temperature wires or in those having less stable electrical properties.

2. Gives complete freedom to circuit designers when optimum performance demands low capacitance. The low dielectric constant of FEP/nylon shows minimum change over a wide range of frequency and temperature.

3. Provides utmost reliability to automatic wire wrap terminations. Of all conventional plastics or combinations tested, FEP/nylon has the best cut through resistance on wire wrap pins.

4. Is suitable for continuous operation up to 120°C, an important consideration if computers are for military use.

5. Meets flammability requirements of both MIL-W-16878 and U.L. Appliance Wire.

* DUPONT REG. T. M.

ELECTRONIC DESIGN • July 5, 1961

BRANI

REX

DIVISION OF

American **ENKA** Corporation

DEPT. W. 39 SUDBURY ROAD, CONCORD, MASSACHUSETTS

TELEPHONE: EMERSON 9-9630

WRITE FOR COMPLETE DATA!

Missile men, especially, know the advantages of Neoprene jacketed cables . low temperature flex-ibility, abrasion resistance and resiliency. And missile men who are also cablemen know it pays at the count down to count on Brand-Rex Cablemanship! And you should too.

There's more to the absolute reli-ability of Brand-Rex cables than just rigid adherence to specifica-tions. Brand-Rex Cablemanship combines technology, skill, broad cable engineering services, pro-duction capability of three coastto-coast plants and technical field service . . . all delivered by a tightly-knit organization backed by the vast resources of the American Enka Corporation.

Whatever your requirements for wire or cable, regardless of the rigidity of your specifications for conductors, layup patterns, insu-lation material, chiefding, or lation materials, shielding armoring, you can count on Cablemanship of Brand-Rex. or on the

Write for samples and information today!

SUDBURY ROAD. CONCORD. MASSACHUSETTS TELEPHONE: EMERSON 9-9630

DC Power Supplies

The firm's model CVQ transistorized power supply is described in this eight-page brochure. Theory of operation of the 100-w, regulated supply is discussed. Specifications are included. Sola Electric Co., Busse Road at Lunt, Elk Grove Village, Ill.

Clutches and Brakes

Electromagnetic clutches and brakes, mechanical clutches, torque indicators, torque standards and multi-speed transmissions are described in 40-page manual No. 361. Engineering and applications information is included. Autotronics, Inc., Dept. 30, Florissant, Mo.

Photoelectric Systems

273

Applications of photoelectric systems in automation are described in this 20-page bulletin, No. 611. Light sources, photo units, electronic controls and timers are discussed. with electrical and physical specifications included. Photomation, Inc., 96 S. Washington Ave., Bergenfield, N. J.

Temperature-Measuring Paints 274

Paints and crayons which can be used to measure surface temperatures are described in this folder. Pigments change color at specified temperatures, indicating whether surface is hotter or colder than desired. Princeton Div., Curtis-Wright Corp., Princeton, N. J.

Semiconductor Technical Bulletins 275

A series of technical bulletins on semiconductors are available. No. 60S17-1, "Index of Technical Bulletins", lists technical data sheets on the firms semiconductor products. No. ICE-235, "RCA 2N404 Family", gives data on six transistors. No. ST-1945, "Reliability of the RCA-USAF-2N404 at High Stress Levels", presents test data on the 2N404 transistor. No. ICE-229, RCA Silicon Rectifier Interchangeability Guide", lists available silicon rectifiers. No. ICE-228, "Application Guide-RCA VHF Silicon Transistors", includes information on transistor design, construction and circuitry. No. ST-2106, "Micromodule Reliability Status Report", presents reliability information on the firm's micromodules. Radio Corp. of America, Semiconductor and Materials Div., Somerville, N. J.

CIRCLE 169 ON READER-SERVICE CARD ELECTRONIC DESIGN . July 5, 1961 272

Thin Versatile **Co-Netic and Netic Magnetic** Shielding Foils

Permit positioning foil-wrapped components A & B closely, minimizing interaction due to magnetic fields making possible compact and less costly systems.

R

How thin Co-Netic and Netic foils lower your magnetic shielding costs:

1) Weight reduction. Less shielding material is used because foils (a) are only .004" thick and (b) cut and contour easily.

2) Odd shaped and hard-to-get-at components are readily shielded, saving valuable time, minimizing tooling costs.

These foils are non-shock sensitive, non-retentive, require no periodic annealing. When grounded, they effectively shield electrostatic and magnetic fields over a wide range of intensities. Both foils available from stock in any desired length in various widths.

Co-Netic and Netic foils are successfully solving many types of electronic circuitry magnetic shielding problems for commercial, military and laboratory applications. These foils can be your short cut in solving magnetic problems.

Cuts readily to any shape ordinary scissors.

Wraps easily

Inserts readily to convert existing non-shielding enclosures.

hielding cables reduc magnetic radiation or pickup.

Wrapping tubes prevents outside magnetic side magni iterference

TECT VITAL MAGNETIC PES TA

When accidentally exposed to unpredictable magnetic fields, presto!-your valuable data is combined with confusing signals or even erased.

For complete, distortion-free protection of valuable magnetic tapes during transportation or storage. Single or multiple reel Rigid Netic Enclosures available in many convenient sizes and shapes.

Rigid Netic (.014' and up in thickness) Shielded Rooms and Enclosures for safe, distor-tion-free stor-age of large quantities of re-corded magnetic tapes.

Composite pho-to demonstratto demonstrat-ing that mag-netic shielding qualities of Rigid Netic Alloy Material are not significantly af-fected by vibri burmoino beto. Me

pliable foil wraps easily around magnetic tape, mainta ing original recorded fidelity tau

fected by vibration shock (including dropping or bumping) etc. Netic is non-retentive, requires no periodic annealing.

Write for further details today,

MAGNETIC SHIELD DIVISION PERFECTION MICA CO. 1322 No. Elston Avenue, Chicago 22, Illinois

CIRCLE 170 ON READER-SERVICE CARD

What's YOUR Portable Power Problem?...

BURGESS has more than 5000 battery types to choose from:

ZINC-CARBON MERCURY NICKEL-CADMIUM WATER-ACTIVATED

each with the highest measure of uniform dependability! This is why 2 of 3 electronic engineers specify

BURGESS BATTERIES The Most Complete One-Source Line of PORTABLE POWER!

ZINC-CARBON

Most popular source of portable power, zinccarbon batteries excel in adaptability, availability and economy. Burgess offers the widest range of choice in cylindrical and flat cells, plus exclusive patented "wafer-cell" construction for more compact power and uniform performance.

MERCURY ACTIVATORS

Burgess Quality-Controlled mercury batteries assure uniform operation over wide temperature range, high ampere-hour output, flat discharge curve. Long, non-fading service for instruments, transistor radios, portable electronic products.

SEALED NICKEL-CADMIUM BATTERIES

A secondary rechargeable battery system which delivers high energy output from a small package! Hermetically sealed-in-steel cells eliminate maintenance and addition of liquids. Can be recharged many times, by trickle or quick charge, for long lasting economical power!

RESERVE BATTERIES

High energy output in a compact power source. Can be stored dry for years! Activated only when immersed in water. No handling of dangerous electrolyte, no spilling or leaking! Wide range of efficient operating temperatures. Designed for your specific applications.

EXCLUSIVE WAFER-CELL

This construction offers compactness, long shelf life, exceptional service life. A 30% increase in battery life at no increase in size.

Check with your Burgess Distributor for complete local stocks of fresh BURGESS BATTERIESI Or your distributor can order from Burgess the special battery needed for your specific application

PREE DESIGN SERVICE

For special applications, skilled Burgess Engineers offer you a FREE battery design service. Burgess will manufacture the exact battery to fit your needs, regardless of quantity required.

NEW ENGINEERING MANUAL

New 100-page dry battery handbook now available! Engineers engaged in the design of battery-powered equipment are invited to write to Burgess Battery Company, Dept. ED, Freeport, III., to secure a copy. Others may buy the manual for \$1.00.

> BURGESS BATTERY COMPANY Division of Servel, Inc. FREEPORT, ILLINOIS

> > CIRCLE 171 ON READER-SERVICE CARD

158

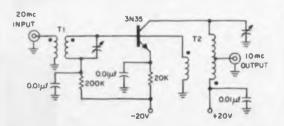
IDEAS FOR DESIGN

734

Vote for Ideas Valuable to You

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receives the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a \$50 award.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.


The Ideas chosen as the most valuable in each issue will be eligible for the \$1,000 Idea of the Year award.

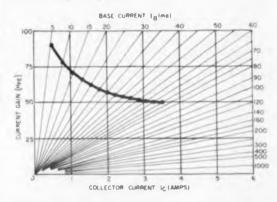
So vote for the Ideas you find most valuable. And, after you've voted, why not send in an Idea of your own?

Simple Circuit Halves 20-Mc Supply Frequency

A simple circuit was required to supply a 10-mc signal from a 20-mc source. The circuit shown fulfilled the requirement quite adequately.

Transformer T_1 is resonant at the 20-mc input frequency. Transformer T_2 is resonant at 10 mc, with a portion of the 10-mc energy coupled back into the transistor. The loop gain is low enough to keep the circuit from oscillating with the drive removed.

Frequency divider has two resonant circuits—the input circuit at 20 mc, the output at 10 mc.


Herbert F. Verse, Jr., Research Engineer, Jet Propulsion Laboratory, Pasadena, Calif.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 734.

Power Gain Plot Can Be 733 Made Directly From Measurements

When plotting the large current gain of power transistors the plot can be made rather quickly by eliminating the division step.

Current gain is given by $H_{FB} = I_c/b$. The graph paper is used as shown in the figure, with base current values laid out beforehand on the graph. The intersection of the measured base current line and the collector current abscissa yields a correct point on the H_{FE} vs I_{e} curve.

Current gain H_{FE} is plotted directly from I_b and I, measurements by laying out base current "guidelines" beforehand.

John T. Lamb, Research Engineer, The Tappan Co., Mansfield, Ohio.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 733.

Fourth \$50

"Most Valuable of Issue" Award For Curve-Tracing Attachment

Chester B. Shapero, self-employed research engineer of Cupertino, Calif., has won ELECTRONIC DESIGN's fourth \$50 Most Valuable of Issue Award.

Mr. Shapero receives the award for his Idea for Design, "Low-Cost Scope Traces Transistor Characteristic Curves," which appeared in the April 12 issue. The idea described a circuit which enabled a lowcost oscilloscope to be used for displaying transistor characteristic curves.

SEVENTH ANNIVERSARY AWARDS

(State the problem and then give your solution. Include sketches or photos that will help get the idea across.)

IDEAS-FOR-DESIGN

Ideas-for-Design Editor ELECTRONIC DESIGN

850 Third Ave. New York 22, N. Y.

Idea

Entry Blank

How You Can Participate

Rules For Awards

Here's how you can participate in Ideas for Design's Seventh Anniversary Awards: All engineer readers of ELECTRONIC DE-SIGN are eligible.

Entries must be accompanied by filled-out Official Entry Blank or facsimile. Ideas submitted must be original with the author, and must not have been previously published (publication in internal company magazines and literature excepted).

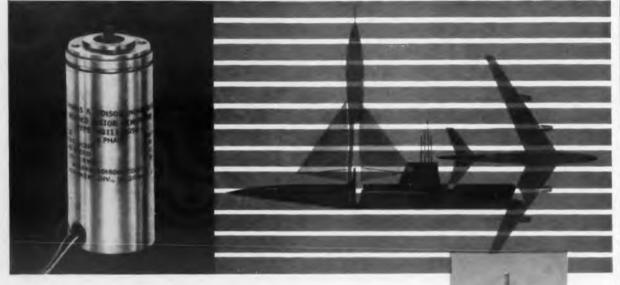
Ideas suitable for publication should deal with:

- 1. new circuits or circuit modifications
- 2. new design techniques
- 3. designs for new production methods
- 4. clever use of new materials or new components in design
- 5. design or drafting aids
- 6. new methods of packaging
- 7. design short cuts
- 8. cost saving tips

Awards

- 1. Each Idea published will receive an honorarium of \$20.
- The Idea selected as the most valuable in the issue in which it appears will receive \$50.
- 3. The Idea selected as the Idea of the Year will receive a Grand Prize of \$1,000 in cash.
- The Idea of the Year will be selected from those entries chosen Most Valuable of the Issue.
- Most Valuable of the Issue and Idea of the Year selections will be made by the readers of ELECTRONIC DESIGN. The readers will select the outstanding Ideas by circling keyed numbers on the Reader-Service cards. Payment will be made eight weeks after Ideas are published.
- Exclusive publishing rights for all Ideas will remain with the Hayden Publishing Co.

(Use separate sheet if necessary)


I submit my Idea for Design for publication in ELECTRONIC DESIGN. I understand it will be eligible for the Seventh Anniversary Awards-\$20 if published, \$50 if chosen Most Valuable of Issue, \$1,000 if chosen Idea of the Year.

I have not submitted my idea for Design for publication elsewhere. It is entirely original with me and does not violate or infringe any copyright, patents or trademarks or the property rights of any other person, firm or corporation. Hayden Fublishing Company, Inc. shall have the exclusive publication rights to these ideas for Design selected for publication in ELECTRONIC Drason. This right extends to the subsequent use of the idea for Design by Hayden in any of its other publications. Honorariums, if any, for subsequent publication shall be solely in the discretion of Hayden Publishing Company, Inc.

н	Name	Title	
	Company Name		
	Address		

For Additional Entry Blanks, circle 750 on Reader-Service Card.

THOMAS A. EDISON OFFERS DESIGN ENGINEERS CONSISTENTLY RELIABLE MOTOR GENERATORS AND MOTOR GENERATOR GEAR HEAD ASSEMBLIES

Consistent reliability, unit after unit, is assured when you use Edison motor-generators. Because reliability is designed into these components, and painstaking inspection follows every step of their construction, you can be sure each and every Edison motor-generator will meet your most exacting requirements.

Designed to meet and exceed the requirements of MIL-S-17806, MIL-S-17807 and MIL-E-5272B, these components give you *performance* reliability you can count on.

Special one-piece motor-generator housings provide the compact, rugged construction needed for consistent performance under extreme operating conditions. Unlike off-the-shelf components, Edison servomotor-generators, available in production quantities, are specifically designed to operate as integral parts of your electro-mechanical system.

For complete information on Edison motor-generators and motor-generator gear head assemblies, write for Catalog 3044.

These motor-generators are available with or without gear heads

CIRCLE 172 ON READER-SERVICE CARD

Long Period Multivibrator 748 Reduces Timing Capacitor Size

Building a transistorized monostable multivibrator for pulse widths of 10 msec or more can be a problem if space is at a premium. The problem arises because the finite β of Q_1 (circuit *a* in the figure) places an upper limit on resistor *R*. This, in turn, means that *C* must be large, both electrically and physically, to yield the large *RC* product required for long pulse widths.

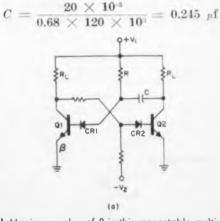
The maximum permissible value of R is given approximately by:

$$R = \frac{V_1 - 1.3}{V_1/R_L \cdot \frac{1}{\beta}}$$

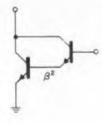
The quantity 1.3 accounts for the drop across CR_1 and the base-to-emitter junction of Q_1 when the transistor is on. V_1R_1 is the collector current of Q_1 when Q_1 is on. Not considered is the effect of the collector-toemitter drop of Q_1 when it is on, and the bleeder current required to hold Q_2 off.

As an example, consider the typical values below:

$V_{1} =$	= 30 v
$R_L =$	3.3 K
$\beta =$	= 40


Then,

$$R = \frac{30 - 1.3}{\frac{30}{3.3} \cdot \frac{1}{40}} = 126.3 \text{ K}$$


If a pulse width of 20 msec is required, the time constant is derived from:

 $t \approx 0.68 RC$

Choosing a standard value for R of 120 K, we have

(a) Maximum value of R in this monostable multivibrator is limited by the value of β for transistor Q_1 . Thus, for long pulse widths, capacitor C must be large.

(b) Replacing Q_1 with two-transistor Darlington connection effectively squares the value of β . This allows a larger R, and reduces both the value and size of C.

(b)

Compared to the other components in the circuit, this capacitor is physically very large. This is especially true if the capacitor must be both accurate and stable.

However, the size of the capacitor can be considerably reduced if transistor Q_1 is replaced by the two-transistor Darlington connection. The over-all β is now 40 x 40 = 1,600, and R can be 40 times larger than before. Hence, C can be 40 times smaller. Using a practical value of R = 1 meg, we have

$$C = rac{20 imes 10^{-4}}{0.68 imes 1 imes 10^{4}} = 0.0294 \ \mu {
m f}$$

Obviously, a much smaller capacitor will be required.

W. E. Zrubek, Design Engineer, Westinghouse Electric Corp., Baltimore, Md.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 748.

One-Shot Pulse Output Has 746 Greater Than 100% Duty Cycle

Greater than 100 per cent duty cycle pulse generators can be designed by connecting two one-shot multivibrators in series.

Such a generator was needed to produce display pulses variable from microseconds to seconds. The pulses were to be triggered by a four-decade, preset counter when the counter reached a preselected number. The maximum frequency of the display was 100 kc.

At the end of the display pulse time, the counters were to be reset, ready to be triggered again, within 10 μ sec. Thus, if the preset selector is set to a low number such as 0002, and if the counter receives pulses at a 100-kc rate, coincidence is again reached 20 to 30 μ sec after the counter is reset to zero.

Thus, if the output display pulse time is 1 sec, the pulse generator has to operate with

OVERCURRENT PROTECTION FOR

SILICON, GERMANIUM AND OTHER METALLIC RECTIFIERS?

CALL ON HEINEMANN

Now in use by a number of leading electrical equipment manufacturers, Heinemann Circuit Breakers and Silic-O-Netic Overload Relays are providing effective protection for "sensitive" metallic power rectifiers.

However, generalizations are difficult to make. This is a demanding application. We at Heinemann must honestly admit we don't have all the answers. But we have found — through extensive testing and customer evaluation — that the Heinemann hydraulic-magnetic actuating element can provide the close-tolerance, fast-acting response necessary to keep overload amperage within the required limits and, at the same time, eliminate nuisance tripping. Circuit breakers and relays can be produced with an instantaneous trip point low enough to prevent overcurrent heating and resultant rapid damage to rectifier barrier layers.

Heinemann protection has been an important factor in extending the practical application of metallic rectifiers.

But each particular situation requires treatment on its own terms. If you are concerned with the protection of silicon, germanium or other metallic rectifiers, chances are Heinemann engineers can help you. Your inquiries are invited.

HEINEMANN

ELECTRIC COMPANY 156 Plum Street, Trenton 2, N.J.

Circuit Breakers Overload Relays

CIRCLE 173 ON READER-SERVICE CARD

5.A. 1725

BUCKBEE MEARS IS EXACT! BUCKBEE MEARS IS VERSATILE! BUCKBEE MEARS IS INGENIOUS!

Why?

Because our Research people at BMC work on the assumption that "Whatever the mind can imagine the hand can create." Here for your consideration are some of the things this thinking has accomplished. They are not offered as proud boasts but to assist you in deciding whether or not we can be of help to you.

Automation in photo-mechanical tech-

dry materials was adopted when BMC conceived and built a micro-mesh sieve for the Shell Development Co.

A new standard for testing liquid and

niques - another first - produced 21 inch color TV shadow masks, each with 441,222 perfectly sized and spaced conical openings for the Radio Corporation of America.

Bureau of Ordnance U.S. Navy was responsible for our initial venture into

photo-mechanical reproduction. With

their cooperation, we produced the

first metal reticle for the armed forces-

revolutionizing fire control components.

For Goodyear Aircraft and Bell Telephone Laboratories, BMC developed components for electrical domes with production accuracy of .015 inches in 17.48 feet.

A resolution target for Air Reconnaissance Center, Wright Patterson Air Force Base-certified for all services.

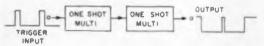
Developed the mesa transistor masks for Bell Telephone Laboratories.

Pure nickel storage mesh, designed for Hughes Products—Tube Division, 21 inch radar storage tube.

Gold connector strips for transistors and gold resistors to measure micrometeorites in space.

Anything that can be drawn in line can be reproduced—small runs at moderate costs—large runs on automatic equipment. Ask us—we just might have the answer for you.

IDEAS FOR DESIGN

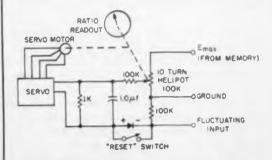

a duty cycle of 99.998 per cent or better. That is, it must be retriggered within 20 usec after the elapse of the 1-sec pulse.

A single one-shot multi was ruled out because of duty cycle limitations. However, the problem was simply solved by connecting two ordinary one-shots in series.

The first multi triggered the second, with the output of the second multi initiating the zero set of the counters. The display pulse time was the sum of the periods of the two multivibrators.

By the time the period of the second multi is over, the first multi is ready to accept a trigger. The duty cycle of this combination is better than 100 per cent.

Arpad Somlyody, Circuit Design Analyst. Burroughs Corp., Electronic Components Div., Plainfield, N. J.


Pulse output with greater than 100 per cent duty cycle can be obtained by connecting two one-shot multivibrators in series.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 746.

Servo Circuit Compared 735 Antenna Pattern Nulls, Peaks

In developing an automatic antenna pattern computer a simple and reliable method was required to compare the pattern nulls with the lobe peaks. In addition, not only was the greatest magnitude lobe peak to be selected, but also the "deepest" null.

The maximum lobe peak is easily measured and selected for greatest amplitude with a simple voltage memory device, such as a capacitor. Locating the "deepest" null, how-

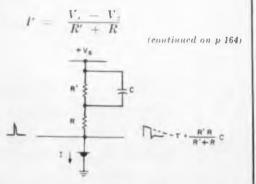
Automatic readout supplies lobe peak to null depth ratios of antenna pattern.

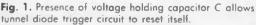
ever, presents circuitry problems which can get complex.

This problem was solved by using a simple servo bridge balancing circuit with a high back-resistance silicon diode. The servo used with this diode is able to proceed in the direction of the greatest ratio of lobe peak to null depth. When the diode is properly oriented, the servo direction cannot be reversed. To regain the original 1:1 ratio, it is only necessary to short out the diode momentarily. The servo then swings back to its unity ratio.

Edwin S. Oxner, Sr. Engineer, Varian Associates, Radiation Div., Palo Alto, Calif. If this Idea is valuable to you, give it a vote by circling Reader-Service number 735.

Tunnel Diode Trigger731Circuit Can Reset Itself

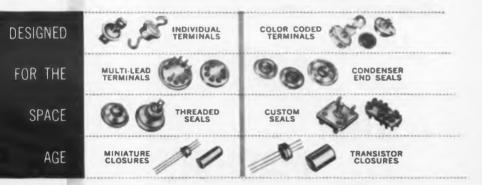

The tunnel diode trigger circuit, Fig. 1, resets itself without the need for a clipping line or additional reset pulses. A trigger applied as shown switches the tunnel diode from the low state (state 1) to the high state (state 2). The diode now presents a higher impedance than in the original state, and its current decreases to I_2 , Fig. 2. The original current through the tunnel diode is


$$I_1 = \frac{V_* - V_1}{R' + R}$$

If capacitor C were sufficient to maintain the voltage across R', the current through the tunnel diode immediately after switching to state 2 would be

$$I_z = \frac{V_z - V_z - V_{k'}}{R}$$

Since the voltage across capacitor C changes with the time constant of C, R, and R' in parallel, the current through the tunnel diode will decrease toward



ELECTRONIC DESIGN . July 5, 1961

.tough going ahead!

Utmost reliability is assured under severest environmental conditions. E-I Glass-to-Metal Seals have proven their ability to withstand extremes of temperature, high mechanical shock and vibration, and wide pressure changes in thousands of critical commercial and military applications.

E-I offers a Complete Line of economical standard seals, facilities for designing special seals and custom service for the sealing of components of your own manufacture. Call or write for literature or recommendations on your specific sealing problems.

Patented in Canada, No. 523,390; in United Kingdom, No. 734,583; licensed in U. S. under No. 2561520

MURRAY HILL, NEW JERSEY A Division of Philips Electronics & Pharmaceutical Industries Corp.

CIRCLE 175 ON READER-SERVICE CARD

1.0. Up to 30 0.0.

WIRE RANGE FROM #2-#50.

We also offer "**Pot**" Windings and Encapsulated Construction to MIL T-27A.

CIRCLE 177 ON READER-SERVICE CARD

IDEAS FOR DESIGN

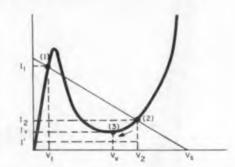


Fig. 2. After being switched to state 2 by trigger pulse, capacitor C causes current to decrease to l_1 and the diode switches back to its original state.

Thus the voltage across the tunnel diode will decrease exponentially, moving from point 2 to point 3.

When the current through the tunnel diode reaches I_{i} (the valley current), the diode will switch back to its original state.

The conditions for the tunnel diode to reset to state 1 are:

$$l' < I_*$$
 where $l' = rac{V_* - V_z}{R' + R}$

Since V_{*} and R are chosen by normal circuit considerations, and I_{v} and V_{2} are obtained from the tunnel diode specifications, the value of R' is determined as:

$$\mathcal{C} = \frac{V_s - V_2 - I_v R}{I_v}$$

The "on-time" of the tunnel diode is determined by the time constant T where:

$$T = \frac{R'RC}{R' + R}$$

Since the values of R' and R are determined by the previous considerations, the on-time of the trigger circuit is fixed by the choice of the value of C.

Robert N. Larsen, Assist. Electrical Engineer, Argonne National Laboratory, Argonne, Ill.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 731.

Emitter-Coupled Limiter 732 Produces HF Square Waves

A sine-to-square wave converter can be easily designed by using diode clippers. But

Casting Engineers

Gave us the right component weight with greater strength...and helped us into a new market... says William C. Croft

President, The Pyle-National Company

"Before we offered our miniature connectors to the aircraft/missile industry, we searched for a lightweight alloy, easily castable, which would withstand high ambient temperatures.

Casting Engineers furnished a stainless steel casting for our products which allowed us to compete very favorably with aluminum in weight, with tremendous increase in strength and corrosion resistance — a real metallurgical breakthrough.

MINICAST Proved Feasibility of Thin Walls, Close Tolerances

Section thickness is critical in airborne connectors where weight is a liability and strength is essential. Plastic patterns, pioneered at Casting Engineers, assured uniformity in detailed configurations, met all MIL interchangeability specifications for tolerances on diameters and concentricity.

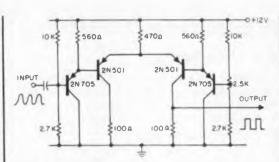
Casting Engineers can make a significant contribution to your component design and production. MIN-ICAST parts slash machining costs, eliminate secondary operations.

MINICAST means precision, dependability . . . and economy.

New eight-page brachure tells how to specify investment castings to cut your productian casts Send for your free copy today!

Casting Engineers Planta in Chicago and New York City Addreas Inquiries to: 2328N. Bosworth Ave. • Chicago 14, III. BUckingham 1-5940

as you like them, when you want them


- 30% More Foil Areo in all standard cases Higher capacities—to 5200 μF Lower D-C leakage Longer life, greater stability Reliability data available on request.
- 10 Case Sizes including 5 MIL standard cases, thus
 704 standard units
 Save space
 Save weight
 Save money
- 4 More Major 'Pluses' No external lead weld Hermetically sealed cathode Best shock and vibration resistance Polar, partial Non-Polar, and Non-Polar types

Take your choice of reasons for specifying **iei** miniature Tantalum Foil Capacitors . . . you will be right every time. Only **iei**, pioneer developer and long-time specialist in miniature electrolytics, can give immediate attention to your needs for long runs, short runs, standards and specials. **iei** also offers expedited shipment of stock items when needed. Write for Praduct Data Bulletin 2745.

International Electronics Industries, Inc. Box 9036-12, Nashville, Tennessee

where reliability replaces probability CIRCLE 179 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

High frequency sine-to-square converter is made up of transistorized emitter-coupled lihiteds.

the rise time of the square wave then depends on the magnitude of the input sine wave. Thus, the ratio of the peak-to-peak values of the input to the output should be at least 3.

However, an emitter-coupled limiter not only needs a much smaller input voltage, but its rise-time is limited only by the switching times of the transistors. These can be reduced by driving the switching transistors out of a common collector stage.

The circuit shown produces, once the potentiometer is adjusted, a fast rise time, symmetrical square wave. A 5-mc sine wave with 2 v peak-to-peak at the input gives a $2 \cdot v$ peak-to-peak square wave with a rise time of approximately 20 nsec. For an input voltage of 6 v peak-to-peak, the rise time reduces to less than 10 nsec with a slight overshoot.

Harald Hahn. Assist. Electrical Engineer, Brookhaven National Laboratory, Upton, L.I., N.Y.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 732.

Vote for Ideas Valuable to You

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receives the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a \$50 award.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.

The Ideas chosen as the most valuable in each issue will be eligible for the \$1,000 Idea of the Year award.

So vote for the Ideas you find most valuable. And, after you've voted, why not send in an Idea of your own?

ROTARY SWITCHES

- For Critical Reliability Applications.
- Quick changing of programs, configurations, circuits.
- Maintenance problems completely eliminated by unique
 S-second water replacement models.

Export Dept. Roburn Agencies Inc., 431 Greenwich St., New York 13. N. Y. CIRCLE 181 ON READER-SERVICE CARD

LERMER Adds Important NEW Features

• Clear, flexible extruded containers • Full width straight opening • No turnedin top • Easy to fill and empty • Streamlined • Seamless • Can be printed up to 4 colors

 Molded polypropylene closures for uniform fit
 Knurled for easy grip
 Engineered to hold tight—Easy to remove and replace
 Closures available in assorted colors
 May be hot stamped in contrasting color with trade mark or other desired copy

 Reinforced molded bottoms
 Firm wide base—Prevents tipping over
 Available in colors

Now is the time to consider the flexibility, the protection, the beauty, the features and economy of Lermer flexible plastic containers. Ideal for many products. Write teday for samples.

ALSO A COMPLETE LINE OF RIGID MOLDED CONTAINERS.

PIONEERS AND SPECIALISTS IN PLASTIC CONTAINERS SINCE 1918 CIRCLE 182 ON READER-SERVICE CARD

REPORT BRIEFS

Tem Diode Switching

The theory and technique for the design of a broadband (100-to-1 frequency range) TEM microwave diode switch are presented. A coaxial transmission line switch has been constructed that provides 26 db or greater isolation and insertion loss ranging from 1.6 db to less than 1 db from 40 mc to 4000 mc. An analysis is given of the switching action of one and of two or more diodes. Also discussed is the biasing of the center conductor of a TEM transmission line over broad frequency bandwidths so as not to interact with the rf signal. Theory of TEM Diode Switching, Robert V. Garver, Diamond Ordnance Fuze Laboratories, Washington, D. C., Oct., 1960, 56 pp, Microfilm \$3.60, Photocopy \$9.30. Order PB 153579 from Library of Congress, Washington 25, D. C.

RFI-Duplexer Tubes

An investigation was conducted on several types of TR duplexer tubes and a waveguide filter commonly used in systems, to determine their effectiveness in rejecting spurious microwave radiation. The devices studied were all designed for operation in the 2.8-Gc frequency band. The low power level characteristics of these devices were checked over a frequency range of 2.6 to 35 Gc. Results of the investigation showed that neither the TR tube nor the waveguide filter can provide adequate protection against unwanted signals at frequencies higher than the system frequency. Characteristics of Microwave Duplexer Tubes Under Spurious Radiation Conditions, Irving Reingold, Army Signal Research and Development Labs., Fort Monmouth, N. J., March 31, 1959, 27 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 147821 from Library of Congress, Washington 25, D. C.

Waveguide Components

Presents the design and development of components for use in a circular waveguide system employing the low-loss TE_{01} circular electric wave mode. Components were investigated with regard to direct scaling for use with 2.710-in. ID and 0.725-in. ID circular waveguide at 9.375 Gc and 35 Gc, respectively.

Several new components were developed. These include a straight waveguide section,

SILICONTROL

THE ONLY COMPLETE PHASE SHIFT CONTROL PACKAGE FOR SILICON CONTROLLED RECTIFIERS

(SOLID STATE THYRATRONS)

THE ALL-IN-ONE PACKAGE CONTROL FOR THE SYSTEM DESIGNER

CHECK THESE IMPORTANT ADVANTAGES . . .

 One Silicontrol fires one ar two silicon controlled rectifiers in back-toback arrangement or bridge circuit. No added circuitry needed.

 Eliminates matching of silicon controlled rectifiers. No need to select similar impedance values. Fires any two SCRs of any rating or manufacture.

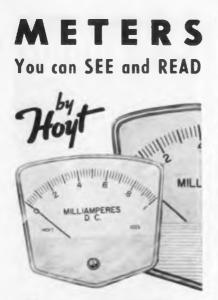
3. Failsafe feature built-in. Prevents destruction of SCRs and load components through a wide range of overload conditions. Linear control from zero to maximum output. Can shift gate pulse more than 180°.

4. No bias needed; loss of control signal turns off unit.

5. Immune to voltage transients on supply bus resulting from adjacent switching or relay operations. Prevents SCR pulses from interfering with other circuits.

6. The only unit providing all of the above features.

7. SILICONTROLS are available from stock.


8. Both 60 cps and 400 cps models available.

9. Military packaging as required.

Send for Engineering Bulletin No. 2000

ELECTRONIC DESIGN . July 5, 1961

New Series 1025-1026 Interchangeable with Round Bakelite Case Types

Brilliantly new in their high visibility polystyrene cases are these modern type Meters by HOYT which give a true reading at a glance: Here longer scale length and the elimination of shadows plus clean design add up to a topnotch combination to incorporate in any panel.

The Famous HOYT high torque movement with precise and rugged craftsmanship gives you what you've been looking for in Meters. These models are directly interchangeable with all round Bakelite meters, and are available in all AC and DC ranges as Ammeters, Milliammeters, Microammeters. Voltmeters and Millivoltmeters. Similar styles #1037 31₂⁻ and #1060 6" meters are also available for say modern panel meter application.

The HOYT square plastic case series (#649 and #553 shown) is available in $2\frac{1}{2}$ ", $3\frac{1}{2}$ " and $4\frac{1}{2}$ " types. Just right for use where equipment needs to be revised to meet modern design requirements. These instruments are interchangeable with square Bakelite meters and can be supplied with a frosted or colored band on the case front in any AC and DC range. Extra long scales in shadow free cases give you the most value and quality for your money.

Write us for the NEW HOYT PANEL METER Brochure showing a complete line of plastic and Bakelite models.

a flexible waveguide section, couplings, transistions, bends, a mode absorber, a rotary joint, a high-power load, a low-power load, waveguide switches and windows. Proposed designs are presented for directional couplers and ferrite components. All experimental work was done in the X band. Investigation and Development of Circular Waveguide Components, Alva C. Todd, Dick M. Joe, Demetrios P. Kanellakos, Armour Research Foundation, Columbus, Ohio, April, 1959, 136 pp, Microfilm \$6.90, Photocopy \$21.30. Order PB 150589 from Library of Congress, Washington 25, D. C.

Printed Antennas

Discusses several types of printed antenna arrays and related feeds and baluns. Detailed consideration is given to the Franklin array, Chireix-Mesny array, and the capacitively coupled collinear array. Experimental techniques, such as probing the magnitude and phase distribution of the current along a printed array and measuring the impedance and phase velocity that characterize printed balanced lines are described. The antenna performance characteristics for the types of arrays that were studied are given including gain, loss, impedance, size, side-lobe levels, and half-power beamwidths. Study of Printed Antennas, J. A. McDonough, R. G. Malech. J. Kowalsky, Airborne Instruments Lab., Inc., Mineola, N. Y., Aug., 1955, 57 pp. Microfilm \$3.60, Photocopy \$9.30. Order PB 150667 from Library of Congress, Washington 25, D. C.

Transistors

A hybrid parameter equivalent circuit for the common emitter connection is developed. The basic circuit is modified for high-frequency use in such a way that the parameters of the equivalent circuit are independent of frequencies. Methods of measuring these various parameters are discussed in detail and circuit diagrams are provided for each such measurement. The proposed transistor equivalent circuit is then used in the analytical development of circuit design equations and criteria for low-pass, highpass, and band-pass amplifiers. Transistor Equivalent Circuit Criteria, Thomas L. Martin Jr., David J. Sakrison, et al. Arizona University, Tucson, Ariz., Aug. 30, 1956, 83 pp. Microfilm \$4.80, Photocopy \$13.80. Order P B 147539 from Library of Congress, Washington 25, D. C.

42 Carleton Street, Cambridge 42, Mass. CIRCLE 184 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

Strip transmission line may now be a practical solution to your equipment weight and size reduction programs with added reliability . . .

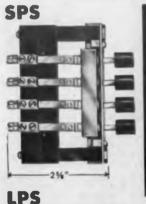
Miniaturization of microwave circuitry is now ad-vancing rapidly with the successful mating of strip transmission line components to coaxial cable . . . another breakthrough by Gremar connectronics.

A wide variety of configuration in all connector series including in-line and right angle mountings are available for such components as crystal holders, disc resistors, and other strip transmission line components. Over 50 types are normally carried in stock for off the shelf delivery.

Add Gremar connectronics® to your R & D team!

By concentrating engineering, production and quality control on RF connectors and components only, Gremar is first in new developments. That's why, if you're working with strip transmission line, you should be working with Gremar. . Write for bulletin #13

B Gremar Mfg. Co., Inc.



eine

CIRCLE 186 ON READER-SERVICE CARD

GENERAL CONTROL FOREMOST SINCE 1934 SWITCHING CONTROLS

SPS-LPS BENEFITS:

 More than one switch on a single frame. (2 to 16 positions are standard)

 Multiple and variable contact forms per position.

> Nylon actuators for light, smooth and long life operation.

> > Light weight construction. [aluminum and brass)

> > Variety of actions
> >
> > accumulative lock,
> > no two interlock,
> > lock release and
> > momentary.

 LPS lights are easily installed or removed from front of panel.

Our deliveries are good tool Write far SPS-LPS Data Bulletin or see our catalog in Radio's Master.

GENERAL CONTROL CO. 1207 Soldiers Field Rood Boston 34, Mass.

100

83

CIRCLE 187 ON READER-SERVICE CARD

REPORT BRIEFS

Radiation Damage in Semiconductors

A diode resistant to nuclear radiation damage was constructed as a result of extensive studies of nuclear irradiation effects on semiconducting materials. The diode uses p-type germanium with resistivity of about 0.20 ohm-cm as the base material. Principal object of the study was to determine the mechanisms by which radiation degrades semiconductor devices. The researchers state that one of the most significant accomplishments of the program was the development of the instrumentation and techniques of measurement used with the General Atomic electron linear accelerator. Research in Radiation Damage in Semiconductors, J. W. Harrity and others, General Dynamics Corp. for U. S. Air Force, Feb. 1960, 157 pp, \$3.00. Order PB 161673 from OTS, Washington 25. D. C.

Ground Support Functions

This study was conducted to determine the relations between automation and personnel requirements for guided missile ground support functions. Three systems-Snark, Bomarc, Mace-were investigated in regard to organization-level maintenance of electronic equipment. The study shows that automatic equipment, itself, is not the cause of increased personnel requirements, but rather the use to which automation is put within the over-all support organization. Automation and Personnel Requirements for Guided Missile Ground Support Functions, General Electric Co. for Wright Air Development Center, May 1959, pp 49, \$1.25. Order PB 151978 from U.S. Department of Commerce Field Office, 1031 S. Broadway, Los Angeles 15. Calif.

Ceramic Tubes

This Air Force "phasing-in" study reports on the results of a survey to facilitate the prompt use of newly developed high-temperature ceramic tubes and components in aviation electronic equipment. Many of the supporting components investigated were still in the research and development stages. Various materials and construction methods were tested in a search for simple, efficient, and economical means of installation and servicing. Adaptation of Ceramic Tube Types.

DEPENDABLE SWITCHING

of contact loads to 25 amps . . .

"Diamond H" Series W Relays—The simple, functional construction of this high-quality general-purpose relay assures long-time dependable switching. For n broad range of applications, specifying "Diamond H" Series W Relays makes good sense. Here are some reasons:

Reliable — Mechanical life in excess of 10,000,000 cycles.

Versatile—a-c or d-c units available with choice of eight different combinations.

Compact—Measures 1½ x 1½ x 1½ inches—weighs less than 10 oz.

High Contact Rating—Conservatively rated up to 25 amps, 240 v a-c or 28 v d-c.

Easy to mount—Plug-in design. Panel or side mounts also available.

Underwriters Laboratory Approval— U/L File 31481.

Cost-saving—Low in initial cost, the Series W is easy to install, saves space, and is easy to service.

Send for complete facts—in new 8page Series W Relay Guide.

ELECTRONIC DESIGN . July 5, 1961

TO REMOVE TRANSIENTS

CETRON offers two New High Voltage-High Vacuum RECTIFIERS

In the field of radar, transients must also be removed. These high voltage, high vacuum clippers and rectifiers are designed to give the high efficiency and careful control demanded in modern equipment.

The 4B31 is primarily a clipper tube, but can also be used as a high voltage rectifier. The 8020W is a high voltage, half wave rectifier designed for high ambient temperatures. It has been tested to withstand a shock of 375G. High operating frequencies and high peak inverse voltages of the 8020W preclude the use of gas filled rectifiers.

	4831	8020W
Peak Inverse Volts	16,000	40,000
Fil. Voltage	5.0	5.0
Fil. Amperes	5.0	6.0

Cetron Rectifiers are capable of Meeting All Requirements of JAN Military Specifications

Cetron Engineers are always ready to assist in your tube requirements.

BE CERTAIN WITH CETRON-FOR THYRATRONS, Rectifiers, triddes and photo cells

CIRCLE 189 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

Aerovox Corp. for Wright Air Development Center, June 1959, 166 pp, \$3.00. Order PB 151922 from U. S. Department of Commerce Field Office, 1031 S. Broadway, Los Angeles 15, Calif.

Sampled-Data Systems

Theory of the operational analysis of the finite, pulse-width system is developed. The closed-form expression of the response of such a system is described by several wellknown operators such as the z-transform, the modified z-transform and the simple form of the p-transform. Finding the incremental responses and their superposition is the basic principle of the theory. It is applied to two-sampler systems as well as multirate sampling systems. Operational Analysis of Finite Pulsed Sampled-Data Systems, T. Nishimura, Electronics Research Laboratory, University of California, Berkeley, Calif., May 1960, 39 pp, Microfilm \$3.00, Photocopy \$6.30. Order PB 149092 from Library of Congress, Washington 25, D. C.

Reliability

A specific mathematical model is formulated for improving system reliability with a minimum of effort. Also shown is how to determine the allocation of effort among subsystems which yields the desired system reliability at minimum total expenditure of effort. Increased Reliability With Minimum Effort, Arthur Albert, Frank Proschan, Applied Mathematics and Statistics Labs., Stanford University, Calif., Oct. 9, 1959, 29 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 149943 from Library of Congress, Washington 25, D. C.

Speech Statistics

At a symposium co-sponsored by the Leningrad State University and the Speech Section of the Commission on Acoustics, USSR Academy of Sciences, papers were presented by Soviet scientists on the investigation of speech, linguistics, telephonic acoustics, physiology, mathematics, and related subjects. Fourteen of these research reports on statistical methods have been translated and compiled in this publication. Problems of Speech Statistics, translated from a Russianlanguage publication of the Leningrad State University, 1958, 137 pp, \$2.75. Order 6111792 from OTS, Washington 25, D. C.

Variety and versatility in a complete standard line of thermosetting plastic knobs. Combinations, variations in types, sizes and colors delivered promptly. Send for catalog.

kurz-kasch

Kurz-Kasch, Inc., 1415 S. Broadway, Dayton 1, Ohio CIRCLE 190 ON READER-SERVICE CARD

AT RCA'S NEW SPACE CENTER IN PRINCETON, N.J. WHERE TIROS WAS BORN

Continued research and investigation into new areas of electronics and space technology has opened up a number of challenging opportunities for creative scientists and engineers at this rapidly growing division of RCA. Immediate openings are available in the following areas:

- APPLIED PHYSICS RESEARCH/Advanced space electrical power and propulsion
- SPACE SYSTEM ANALYSIS/ Applied mathematics/ Thermodynamics and mechanics
- PROPULSION STUDY AND DESIGN/For final stage space craft
- ELECTRONIC SYSTEMS AND CIRCUIT DEVELOPMENT/Communications/Video and digital data
 processing/TV camera and pickup tube design
- INFORMATION PROCESSING/Data systems analysis/Computer applications and programming research

For a personal interview, communicate with Mr. D. D. Brodhead. Call Collect Hightstown 8-0424 or send resume to Dept. PE-269, Astro-Electronics Division, Princeton, New Jersey

> All qualified applicants considered regardless of race, creed, soler or national origin,

The Most Trusted Name in Electronics

RADIO CORPORATION OF AMERICA CIRCLE 901 ON CAREER INQUIRY FORM

YOUR CAREER Over 8,000 Requests For "Self-Tests"

The do-it-yourself tests put out by the General Electric Company's Light Military Electronics Department, Utica, N. Y., have proved surprisingly successful. LMED says 8,695 "self-tests" have been sent out in answer to requests.

These tests were originated by LMED as a recruiting "gimmick." They have been publicized in LMED's employment ads during the past year. The result, according to GE recruiter Ron Bach is that about 10 times as many names have come into LMED as might otherwise have been expected. The number and quality of the "hires" resulting from this greater number of "contacts" has been encouraging, Mr. Bach said.

The self-tests are made up of multiplechoice questions and each test averages about six pages in length. They cover the technical specialties of interest to LMED, ranging from electronic packaging to radar and digital computer design. Sample questions from two of the most recent of these tests, the one on digital computers and the sole nontechnical test of the series, are included here to show the nature of the questions. Using the answers given at the back of each test, an engineer can score himself and then, by comparing his score with the norms developed by LMED through testing its own engineers. he can see how he "stacks up" with engineers presently at LMED.

GE Doesn't Use Test Results in Its Own Recruiting

GE recruiters themselves do not pay any particular attention to what a man says his score was on one of these self-tests. GE does hope of course that the tests create the right "image" of attitudes and opportunities at LMED and that the tests serve to help applicants voluntarily pre-screen themselves. But the recruiters at LMED still believe that their personal interviews "in depth" are best for determining which men to make offers to.

Mr. Bach says he has found one particular line of questioning the most productive in separating out the better engineers. He first asks the engineer he is interviewing to describe the engineering organizations he has been with. Then, most important, he asks the man to describe in detail his functional relationship with those organizations. What were his individual responsibilities? A man

Advancement Your Goal?

Use CONFIDENTIAL Action Form

ELECTRONIC DESIGN'S Confidential Career Inquiry Service helps engineers "sell" themselves to employers—as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.

To present your job qualifications immediately to companies, simply fill in the attached resume.

Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.

ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your application and send them to all companies you select—the same day the resume is received.

The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.

Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. We take the following precautions:

• All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.

• Your form is kept confidential and is processed only by this specialist.

• The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.

 All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.

If you are seeking a new job, act now!

ELECTRONIC DESIGN CAREER INQUIRY SERVICE USE BEFORE AUG. 16, 1961

After completing, mail career form to ELECTRONIC DESIGN, 850 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.

(14)

Name			Telephone	
Home Address		City	Zone S	state
Date of Birth	Place of	Birth	Citizenshi	ip
Position Desired				
		Educational History		
College	Dates	Degree	Major	Hono
Recent Special Trainin	g			
Company		Employment History Dates	Title	Engineering Special
Outstanding Engineerin	ng and Administrative E	Experience		
0 0				
Professional Societies _				
Published Articles				
Ainimum Salary Regu	irements (Optional)			
	Use section below instead of data below this line. This	of Reader Service Card. L	o not unite personal	

937 938

939 940 941 942

943 944 945

946 947 948 949

925 926 927 928 929 930 931 932 933 934 935 936

AREERS

IBM scientists have developed a process of fabricating cryogenic memory planes in a single, automatic cycle. Although still experimental, such work could result in larger, more reliable cryogenic computer memories.

The 135-cryotron memory plane developed by IBM is about the size of a postage stamp. It is built up in 19 thin layers of metal and insulating material. Each layer is evaporated onto a glass substrate through a precisely made pattern or mask. The proper mask for each layer is registered to the required accuracy by means of an automatic mask changer mechanism inside the vacuum system. The control techniques developed by IBM are so sensitive that the evaporation process can form lines finer than a human hair and metallic films so thin they are invisible to the unaided eye.

The IBM engineering group that developed this new method of automatically fabricating experimental memory planes found it had to move back and forth across technical boundaries to achieve its results. Circuit design engineers, for example, worked closely with physicists and mathematicians to develop special circuits that would operate within the limits imposed by film characteristics and control techniques. This integrated approach to systems development has helped make possible many of the advances that IBM has made recently in such fields as semiconductors, microwaves, optics and magnetics. If imaginative problem-solving in any of these areas interests you-and you have a degree and experience in engincering, mathematics, or one of the sciences—we'd like to hear from you.

All qualified applicants will be considered without regard to race, creed, color or national origin. Please write: Manager of Technical Employment IBM Corporation, Dept. 555G1 590 Madison Avenue New York 22, N. Y.

YOUR CAREER

who can't describe his responsibilities on past engineering jobs (and a great many can not, apparently) would probably not receive an offer through Mr. Bach.

Nontechnical Test Has Uncovered Good Administrators

An example of the self-screening potential of these tests has been the number of good men for nonengineering, administrative posts within LMED which the one nontechnical test in the group has helped uncover, Mr. Bach said. Nonengineers also read the ads for engineers, he said, and when they see that a nontechnical test is also available, they are encouraged to write to what they would have otherwise considered a hopelessly technical organization like LMED to inquire about the test and employment. Some of these nonengineering applicants have been employed in businesses as far removed from engineering as advertising agencies.

What Do the Tests Mean?

Since most of the tests are technical, engineers will have little trouble in understanding the right or wrongness of the answers. They may however question the relative meaning of their scores as compared to the norms given for the GE engineers. For example, one ELECTRONIC DESIGN editor who did not think himself a match for a LMED computer designer was surprised to find that he self-scored in the second to highest (there were five) group which according to GE indicated he "shows probability of excellent performance in intermediate to high-level computer research, design and development." It was this editor's conclusion that multiplechoice questions favor the widely read person but possibly disfavor the working designer who must concentrate in a certain area.

Nevertheless the tests make for a pleasant evening's exercise and with intelligent selfinterpretation can be a quasi-quantitative indication of one's strengths and weaknesses.

Management Aptitude Test More Subtle

At first sight the answers to the questions in the "Human Relations Quiz" look obvious. "This is what any company would expect you to say." Obviously a manager-type should "want to play cards with a neighbor and his wife" rather than "build some new furniture in the workshop" (question 5). Obviously he should "tend to identify more with his company than with a profession" (question 29).

Less obvious is question 27 which says that a good manager should not want his subordinates to run to him whenever they had a question but to work out their problems for themselves. Also less obvious is question 12 which says that a good manager ought to be able to readily allay other people's suspicions.

The weighing values given for the answers to the questions help to understand the logic behind the test (actually as GE explains, the tests were developed by the empirical procedure of relating responses of GE managers and individual worker types. A top weight of six points is given the answer to question 38 which indicates that a good manager type should not respect people who seem uncertain about things. But only two points are given for the answer to question 23 which indicates that a good manager thinks that people should try to behave ethically even when it means personal sacrifice.


Interested Engineers Should Obtain Complete Tests

These sample questions and answers will give some idea of the tests. However, engineers who are seriously interested should obtain the complete tests by writing: Technical Recruiting, Light Military Electronics Dept., French Road, Utica, N. Y.

Sample Questions From GE Self-Test

Logic Circuits and Digital Computers

- 1. In a junction transistor the base-to-collector current amplification factor is in the range of:
- a. 10-1 to 10-1
- b. 0.9 to 1.0
- c. 20 to 100
- d. 700 to 900
- 7. In the Venn diagram below, areas correspond to Boolean functions of the variables A, B, and C. How many of these represent MINTERMS?

8. With reference to the schematic circuit diagram below (if A = positive voltage and $\overline{A} = no voltage$) the Boolean func-

THANKS FOR SHARING THE LOAD, DR. MAXWELL!

Your equations together with Newton's Laws serve as a basis for explaining classical electromagnetic phenomena. Most important among the outgrowths of your theory are radio and its allied invention, radar. At AC, we are using techniques for the generation and propagation of electromagnetic waves to increase the total capabilities of the B-52 weapons system.

If you are interested in applying yesterday's theories, like Maxwell's, to today's Mach 2 and 3 aircraft, and if you have a BS, MS or PhD in EE, ME, Physics or Math, please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. G, 7929 South Howell, Milwaukee 1, Wisconsin.

AC SPARK PLUG A THE ELECTRONICS DIVISION OF GENERAL MOTORS CIRCLE 903 ON CAREER INQUIRY FORM CAREERS

Opportunities in Basic Research or Development in the fields of ELECTROMAGNETIC THEORY & ANTENNAS

Requirements of new and continuing projects concerned with space vehicle communications, navigation, and radar have created new openings for electromagnetic theory specialists as well as antenna engineers. The scientists and engineers of the Research and Development Division of the Hughes Aircraft Company Aerospace Group in Culver City are providing broad scientific and technical leadership to government and company funded programs on advanced airborne and space electronic systems, air to air missiles, ballistic missiles, and satellite and interplanetary communication systems. As part of this team, the Antenna Department is responsible for a diversified program of antenna research and development in the following specific areas:

Advanced techniques for space Advances techniques is a communication and navigation.

Information theory and data processing applied to antenna systems.

Statistical analysis of scattering Do propagation.

Pattern synthesis from sources on arbitrarily curved surfaces.

Aperture control by application of solid state devices.

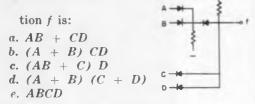
Multi-function aperture and feed capabilities.

Immediate assignments exist for scientists and engineers of superior ability who meet the qualifications in one of the following categories:

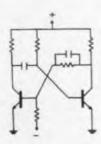
RESEARCH Advanced degrees and experience in electromagnetic theory Interest in fundamental research in antennas, wave propagation, scattering theory, plasma effects on electromagnetic radiation, and solid state antennas.

DEVELOPMENT & Graduates in E.E. or Physics or extensive experience in lieu of degree. Minimum of three years of professional experience in monopulse and conical lobing antennas in reflector and array configurations, electronically scanned arrays, inflatable and erectable antennas, shaped beam arrays from curved surfaces and signal processing antenna systems.

If you meet the above qualifications and are interested in joining other superior scientists and engineers at Hughes, please airmail your resume to MR. ROBERT A. MARTIN, Supervisor Scientific Employment, Hughes Aerospace Engineering Division, 11940 West Jefferson Blvd., Culver City 50, California.


Creating a new world with electronics

WE PROMISE YOU A REPLY WITHIN ONE WEEK


All qualified applicants will receive consideration for employ ment without regard to race, creed, color or national origin

HUGHES AIRCRAFT COMPANY AEROSPACE ENGINEERING DIVISION

YOUR CAREER

9. The monostable multivibrator below

- a. Is used in counters.
- b. Generates a gating pulse.
- c. Is free running.
- d. Will not work as drawn.

39. Circuits employing NOR logic

- a. Are found in superspeed computers.
- b. Were first used in the NORC computer.
- c. Are based upon negative resistances.
- d. Contain blocks which execute the negative -OR operation.
- e. Contain transistors and resistors.

Professional Inventory on Human Relations

- If you had to choose an occupation other than the one you now have, which would you rather be:
 - a. Physician b. Explorer
- 5. How would you rather spend an evening:
- a. Building some new furniture in the workshop
- b. Playing cards with a neighbor and his wife
- 7. Which would you least like to do:
 - a. Add several columns of figures
 - b. Be interviewed for a new job
- 9. You are usually able to "put yourself in someone else's shoes" in order to understand his point of view:
- a. True b. Not true
- 10. Are you a keen judge of other people's motives:

a. Yes b. No

11. Opportunity to contribute to basic scien-

DO YOU HAVE MAGNETIC COMPONENTS ON YOUR MIND?

Acme Electric's long experience in designing and building transformers has been the keystone to our progress with such equipment as direct current static rectifiers, magnetic amplifier controlled saturable reactors, automatic battery chargers, and many other modern types of power equipment.

Acme Electric transformers are designed for a variety of applications ranging from radio and television through missiles and ground control. If you have had experience in any phase of magnetic component design — and want an opportunity where your efforts and ability can lead to a secure future, then tell Acme Electric all about yourself.

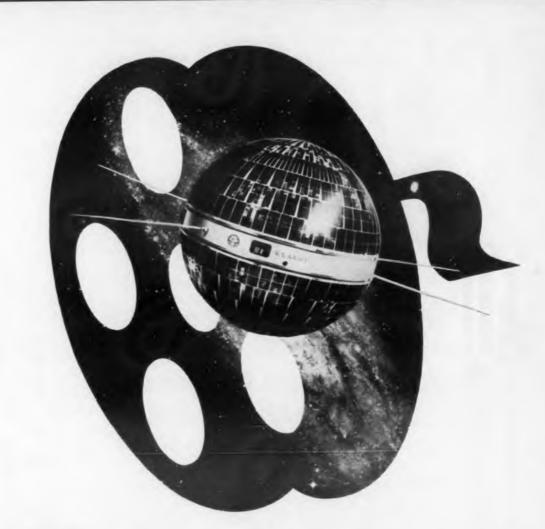
This is one of the 600 KW static, magnetic, rectified direct current power supplies furnished to Brookhaven National Laboratory for use with the 30 BEV Alternating Gradient Synchrotron.

CIRCLE 905 ON CAREER INQUIRY FORM ELECTRONIC DESIGN • July 5, 1961 tific knowledge is highly important to me: a. Agree b. Disagree

12. Can you readily allay other people's suspicions:

a. Yes b. No

- 14. It's more important that a man we hire can do his work well than that he makes friends rapidly among his work associates:
- a. Agree b. Disagree
- 23. People should try to behave ethically, even when it means some personal sacrifice:


a. Agree b. Disagree

- 24. When internal tensions occur, do you give full attention to their resolution:a. Yesb. No
- 27. I would rather that a man who works under my supervision:
- a. Consults me whenever he had a doubt
- b. Tries to work out problems for himself
- 29. I tend to identify more with my profession and work than with any one company:

a. True b. Not true

38. Do people who seem unsure and uncertain about things lose your respect:
a. Yes
b. No

Answers to Sample Questions **Computer Quiz:** 1. c 7. 0 8. b 9. b 39. d **Human Relations Quiz:** Weighing Factor 1. a 4 5. b 6 7. α 4 9. α 2 10. a 4 11. 6 6 12. a 1 14. a 1 23. a 2 24. b 1 27. b 29. b 4 38. a 6

LP Record-Stellar Style

The message from Courier is just one of the challenges offered to you at PHILCO Western Development Laboratories, whose long record in space communications achievement merely presages the adventure ahead.

From the earliest plans to invade space, PHILCO Western Development Laboratories has played a vital role in satellite vehicle instrumentation, still but *part* of its contribution to space communications. From this newest electronics center on the San Francisco Peninsula comes a continuing flow of advanced missile tracking, range and data processing instrumentation. Added research projects and growing programs assure you a long and rewarding career as a member of the PHILCO Western Development Laboratories. What you think and what you do can be unhampered and uninhibited. Personal recognition and advancement promptly follow performance, with monetary rewards to match. Northern California provides an affluent climate for living, as PHILCO Western Development Laboratories provides a stimulating climate for working. For information on careers in electronic engineering, please write Mr. W. E. Daly, Dept. D-7.

All qualified applicants for employment will be considered without regard to race, creed, color, or national origin; U. S. citizenship or current transferable Department of Defense clearance required.

WESTERN DEVELOPMENT LABORATORIES

3875 Fabian Way, Palo Alto, California

CIRCLE 906 ON CAREER INQUIRY FORM

175

0317

CAREERS

ADVERTISERS' INDEX

July 5, 1961

04.9 07 0000	
lvertiser	Page
MP, Incorporated, .cme Electric Corp. .del Products Div. .liden Products Company .liford Manufacturing Company .lifred Electronics .merican Bosch Arma Corp. .merican Machine & Foundry Co. .mperex Electronic Corporation .troid Engineering Company. The .tiobm Electronics. Inc. .ugat Bros. Inc. .vnet Electronics Corp.	16 174 154 86 155 137 154 24A 47 83 104 152 146 53
Baird-Atomic, Inc. Saker Chemical Co., J. T. Salkantine Laboratories, Inc. Sendix Aviation Corporation, Eclipse Pioneer Components Div. Sendix Corporation, The Electron Tube Products Sendix Corporation, The Semiconduc- tor Div. Sirtcher Corporation, The Beetronics Corp. Sourns, Inc. Srand Rex a Div. American Enka Corp. Suckbee Mears Suckbee Mears Sulvas Electronics Div Burgess Battery Company Surton-Rogers Company	39 41 12 126
for Div. Sirtcher Corporation, The Borg Equipment Div., Amphenol-Borg Electronics Corp. Sourns, Inc.	19 73 28 97
Corp. Fraun Tool & Instrument Co. Inc Suckbee Mears Sulova Electronics Div Surgess Battery Company Surton-Rogers Company	157 122 162 7 158 167
2BS Electronics Sadillac Associates, Inc Cannon Electric Company Casting Engineers Cedar Engineering Div Centralab The Electronics Division of Globe-Union, Inc Cetron Electronics Corp. Chicago Dynamics Industries, Inc Clare 4 Company, C. P. Clevite Electronic Components Clevite Transistor, A Div. of Clevite Corp. Clifton Precision Products Co. Inc Comsolidated Reactive Metals, Inc Consolidated Molded Products Corp Cubic Corporation	111 106 113 164 112 1 96 165 93 105 B. 57 er 11 24 150
Daystrom. Inc. Weston Instrument D Delco Radio. Div. of General Motors Corp. 11 Delta Design, Inc. 11 De Mornay-Bonardi DIT-MCO. Inc 10 DuPont de Nemours & Co., E. I. Myla Div.	6. 117 108 150 135 6. 107 ar 29
EICO Edison Industries, Thomas A. Elastic Stop Nut Corp. of America Electrical Industries Electronic Design Englehard Industries, Inc.	
FXR. Inc. Faber-Castell Pencil Co., Inc., A. W. Fairchild Semiconductor Corporation Fanon Transistor Corporation Fenwal Electronics Fluke Mig. Co., Inc., John Frequency Standards	143 121 56 57 28 146 139 140
Gamewell Co. The General Dynamics Electronics General Electric Company, Power Tube Dept General Electric Company, Rectifier Components General Electric Company, Silicone Products Dept.	168 153 98 120
	1000 0

•Manufacturers' catalog appears in 1960-0 ELECTRONIC DESIGNERS' CATALOG

The Making of History was not only His Privilege

.... It was His Goal

MCDONNE

If you are an advanced degree physicist, scientist or electronic management engineer who seeks to shape air and space vehicles to their unique environmental problems rather than stretch existing designs for marginal success, you are needed at McDonnell.

Write R. F. Kaletta, Professional Placement, McDonnell Aircraft, St. Louis 66, Missouri Advertiser

Page

General Electric Company, Semi- conductor Products Dept78, General Electric Company, Tantalylic Capacitors	
Hart Mg Co	87 49 168 161 31 111 49 174
•Industrial Electronic Engineers, Inc Industrial Electronics Industries, Inc Instruments for Industry, Inc	124 50 165 84 172
•J F D Electronic Corp.	89
Kanthal Corp., The *Kay Electric Company Kemet Company *Kepco, Inc. Key Resistor Corporation Kintel, Div. of Cohu Electronics, Inc. Kurz-Kasch	108 26 85 10
Kintel. Div of Cohu Electronics. Inc. Kurz-Kasch	5 169
Lafayette Electronics Div. Leach Corporation Lermer Plastics, Inc. *Litton Industries, Inc. Lockheed/Missiles and Space Div. *Lumatron Electronics, Inc.	65 128 166 145 27 128
McLean Engineering Laboratories Magnetic Research Corporation	176 114 15 103 29 134 20 177 141 25 119 153 40 61 92
National Beryllia Corp National Semiconductor Corporation North Electric Company	22 72 14
Oak Manufacturing Co. Optimized Devices, Inc.	125 40
Pacific Semiconductors, Inc32 A-B-C Perfection Mica Co. Perkin Electronics Corporation "Philco, Lanadale Division	157 6 37
Radio Corporation of America, Astro Electronics Div. Radio Corporation of America. Electron Tube Div45, 118. Cover Rantec Corporation Ravtheon Co., Industrial Components Div. Raytheon Co., Microwave and Power Tube Raytheon Co. Semiconductor Div. Rome Cable, Div. of Alcoa	1

*Manufacturers' catalog appears in 1960-61 Electronic Designers' Catalog

ELECTRONIC DESIGN . July 5, 1961

BULLETIN

Effective today we guarantee our family of 25 amp power transistors to a maximum thermal resistance of .4°C per watt (not .7°C per watt)! They are also guaranteed to a maximum junction temperature of 100°C. Here they are:

HONE	YWELL	THERMAL	
2N574	2N1157	DISSIPATION	RESISTANCE
2N574A	2N1157A	@ 25° C	В ј.мв-
2N575	DA3F3		
2N575A		187 WATTS	.4° C/WATT
			1

* This is not junction to case. It includes the entire transistor's thermal path, including copper-to-copper interface to the heat dissipator.

FOR IMMEDIATE DELIVERY — PHONE YOUR LOCAL DISTRIBUTOR OR WIRE US TODAY! HONEYWELL SEMI-CONDUCTOR DIV. • 1015 SOUTH 6TH ST. • MINNEAPOLIS, MINN.

CIRCLE 193 ON READER-SERVICE CARD

Advertiser

Page

 SED. Memories, Inc.
 150

 Scientific-Atlanta Inc.
 151

 Sel-Rex Corporation
 155

 *Sierra Electronic Corporation
 71

 Silater Electric, Inc.
 56

 *Solid State Products. Inc.
 43

 *Sperry Microwave Electronics Co.
 133

 *Spargue Electric Company
 14. 23

 Standard Press Steel
 165

 Stat Stainless Screw Co.
 164

 Stewart Engineering Co.
 152

 Sylvania Electric Products. Inc.
 59

 Sylvania Electric Products. Inc.
 59

 Special Products
 109

TechnologyInstrumentCorp.122Tektronix.Inc55TranscoProducts.Inc.152"Transistor ElectronicsCorp.110"Transiton Electronic80 A-B-C-D-E-F63Tucor.Inc.120"Tung-Sol Electric.Inc.21, 98

Valcor Engineering Corp. Valley Electronics. Inc. Vapor Heating Corporation Varian Associates Vectrol Engineering. Inc. 168 50 127 127 144 166 13 Vickers, Inc. Victoreen Vitramon, Inc. Vitro Electronics 100 114

Western Transistor Corp. 124 "Westinghouse Electric Corporation 70, 71 "Weston Instruments, Div. of Daystrom. Inc. 115

*Manufacturers' catalog appears in 1960-61 Electronic Designers' Catalog

Advertising Representatives

Adv. Sales Manager: Robert W. Gascoigne

Sales Service Super.: Alvin D. Ross

New York: Richard Parker, Blair Mc-Clenachan, Berry Conner, Jr., James P. Quinn, Charles J. Stillman, Jr., Kenneth M. George, John N. Weber, Pierre J. Braude, 850 Third Avenue, Plaza 1-5530

Chicago: Thomas P. Kavooras, Fred T. Bruce, 664 N. Michigan Avenue, Superior 7-8054

Cleveland: Douglas H. Boynton

Los Angeles: John V. Quillman, 3275 Wilshire Blvd., Dunkirk 2-7337

San Francisco: Stanley I. Ehrenclou, 292 Walter Hayes Drive, Palo Alto, Davenport 1-7646

Southeastern: Pirnie & Brown, Mor-gan Pirnie, Harold V. Brown, G. H. Krimsier, 1722 Rhodes-Haverty Bldg., Atlanta, Ga., Jackson 2-8113

London EC4: Brad Nichols, 151 Fleet Street

Tokyo: Karl H. Bachmeyer Associates, Morimoto-cho, 1-chome, Azabu, Minato-ku

NEW HIGH-POWER TRAVELING

The new (a) 489A (1 to 2 GC) and 491C (2 to 4 GC) are broad band, low noise **Traveling-Wave Tube Amplifiers provid**ing at least 1 watt output for 1 milliwatt input over their full frequency range.

These compact, rugged, dependable instruments are supplied in the new 🖗 universal module cabinet combining, in one single instrument, a lightweight, portable bench amplifier and a neat, clean rack mounted unit.

Both Models 489A and 491C incorporate new, permanent-magnet TWTs, offering low power consumption and solving the heat problem of previous TWT amplifiers. Specially designed circuitry provides amplitude modulation from dc to 100 KC, with internal amplification so that small modulation signals cause a large output power change.

Besides allowing amplification with small input signals, the modulation circuitry can provide leveled power output by using external elements completing a feedback loop.

SPECIFICATIONS

Model:	489A	491C
Frequency Range:	1 - 2 GC	2 - 4 GC
Price:	\$1,970.00	\$1,970.00
Common Specifications		
Output for 1 mw Input:	At least 1 watt	
Maximum of Input:	100 mw	
Small Signal Gain:	Greater than 3	0 db
Amplitude Modulation Passband:	DC to 100 KC	
Modulation Sensitivity:	Approx. 20 db a 20 v peak me	
Input Impedances	50 ohms, SWR	less than 2.5
Output Impedance:	50 ohms, SWR	less than 2.5
Connectors:	Type N, female	0
Front Panel Controls:	Gain	
Meter Menitors:	Anode, helix, c	
Dimensiens:		vertible to rack mount) 6% [#] deep behind

DELECTRONIC DESIGN . ONE DAY SERVICE USE BEFORE AUGUST 16th, 1961

	the second s			the second se	
Company					
Company Address		0	lay	Zone	State
10 20 30 40 1 11 21 31 41 2 12 22 32 42 3 13 23 33 43 4 14 24 34 44 5 15 25 35 45 6 16 26 36 46 7 17 27 37 47 8 18 28 38 47	50 60 70 80 90 51 61 71 81 91 52 62 72 82 92 53 63 73 83 93 54 64 74 84 94 55 63 75 85 95 56 64 76 86 96 57 67 77 87 97 58 64 78 86 96	101 111 121 131 141 151 102 112 122 132 142 152 103 112 122 132 143 153 104 114 124 134 153 104 114 124 134 144 105 115 125 135 145 135 106 116 126 136 136 136 106 116 126 136 146 136 106 116 126 136 146 136 107 117 127 137 147 157	161 171 101 191 2 162 172 182 192 2 163 173 183 192 2 164 174 104 194 2 165 175 105 195 2 165 175 105 195 2 164 76 186 196 2 165 175 105 195 2 164 77 187 197 2	00 210 220 230 240 01 211 221 221 241 02 212 222 232 242 03 213 233 243 04 214 224 234 244 05 215 233 245 05 215 232 245 05 216 226 236 246 07 217 227 327 247 06 216 226 236 246 07 217 227 327 247	250 260 270 280 290 251 261 271 281 291 252 262 272 282 292 253 263 273 283 293 254 264 274 284 294 255 265 275 285 295 256 266 276 286 296 257 267 277 287 297 258 268 278 288 298
9 19 29 39 49 9 19 29 39 49 300 310 320 330 340 301 311 321 331 341	38 68 78 68 78 59 69 79 89 99 350 360 370 360 390 351 361 371 381 391	109 119 129 139 149 159 400 410 420 430 440 450	169 179 189 199 2 460 470 480 490 5	X00 218 228 238 248 109 219 229 239 249 100 510 520 530 540 101 511 521 533 541	258 268 278 288 298 259 269 279 289 299 550 560 570 580 590 551 561 571 581 591
302 312 322 322 322 342 303 313 323 333 343 304 314 324 334 344 305 315 325 335 345 306 316 326 336 346 307 317 327 337 347	352 362 372 382 392 353 363 373 303 393 354 364 374 314 394 355 365 375 315 395 354 364 374 314 394 355 365 375 316 395 356 366 376 316 396 357 367 377 316 397	402 412 422 432 442 452 403 413 423 433 443 453 404 414 424 434 444 454 405 415 425 435 455 406 416 426 436 446	462 472 482 492 5 463 473 483 493 5 464 474 484 494 5 465 475 485 495 5 466 476 486 496 5	S1 S2 S3 S4 S02 S12 S22 S32 S42 S03 S13 S23 S33 S43 S04 S14 S24 S34 S44 S05 S15 S25 S35 S43 S06 S16 S26 S36 S46	512 562 572 582 592 553 563 573 583 593 554 564 574 584 594 555 565 575 585 595 556 566 576 596 596
308 318 328 338 348 309 319 329 339 349 600 610 620 630 640 601 611 621 631 641	258 368 378 388 398 359 369 379 389 399 650 660 670 680 690 651 661 671 681 691	408 418 428 438 448 458 409 419 429 439 449 459 700 710 720 730 740 750	468 478 488 498 4 469 479 499 499 4 760 770 760 790 1	506 518 528 538 548 507 519 529 539 549 500 810 820 830 840 501 811 821 831 841	558 568 570 588 590 559 569 579 589 599 850 860 870 880 890 851 861 871 881 891
602 612 622 632 642 603 613 623 633 643 604 614 624 634 644 605 615 625 635 645 606 614 626 636 646 607 617 627 537 647	652 662 672 692 692 653 663 673 683 693 654 664 674 684 694 655 663 675 685 693 656 666 676 686 696 657 667 677 687 697	703 713 723 733 743 753 704 714 724 734 744 754 705 715 725 735 745 755 706 716 726 736 746 754	763 773 783 793 764 774 784 794 765 775 785 795 766 776 786 796	002 012 022 032 842 003 013 023 033 043 004 014 024 034 844 005 015 025 035 645 006 016 026 036 045 006 016 026 036 047	852 842 872 882 892 853 863 873 883 893 854 864 874 884 894 855 845 875 885 895 856 866 876 886 894 857 867 877 887 897
608 618 628 638 648 609 619 629 639 649 Francis Lange Lange Home Address	658 668 678 688 698 659 669 679 689 699	708 718 728 738 748 756	768 778 788 798	808 818 828 838 848 809 819 829 839 849 Zono State	858 868 878 888 898 859 869 879 889 899
For Change of Addre Old Company Nome Old Company Addres		City	Icano St		Do Design Work Supervise Design Wee Do No Design Work

ELECTRONIC DESIGN - ONE DAY SERVICE USE BEFORE AUGUST 16th, 1961

Санцыку		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second		
Company Address		a hard a	City	Zone	State
10 20 30 40 1 11 21 31 41 2 12 22 32 42 3 13 23 33 43 4 14 24 34 44 5 15 25 35 45 6 16 26 34 46 7 17 27 37 47 8 18 28 38 48 9 19 29 39 49	50 40 70 80 90 51 41 71 81 91 52 42 72 82 93 53 43 73 83 93 54 44 74 84 94 55 46 74 86 96 57 87 77 87 97 58 46 78 86 96 57 87 87 86 97 59 66 78 86 96 59 97 90 97 97	100 110 120 130 140 101 111 121 131 141 102 112 122 132 142 103 113 123 133 143 104 114 124 134 144 105 115 125 135 145 106 116 126 136 146 107 117 127 137 147 108 116 128 136 148 107 117 127 137 147 108 116 128 136 148	150 140 170 180 190 151 141 171 181 191 152 162 172 182 192 153 143 173 183 193 154 164 174 184 194 155 145 175 185 195 156 146 176 186 196 157 147 177 187 197 158 146 177 188 198	200 210 220 230 240 201 211 221 231 241 202 212 222 232 242 203 213 223 233 243 204 214 224 234 244 205 215 225 235 245 204 214 224 234 244 205 215 225 235 245 204 216 226 236 246 204 216 226 236 246 204 218 228 238 249 204 218 228 238 249	250 240 270 280 290 251 241 271 281 291 252 262 272 282 292 253 263 273 283 292 254 264 274 284 294 255 265 275 285 295 256 266 276 286 294 257 267 277 287 297 259 269 279 288 299
00 310 320 330 340 101 311 321 331 341 102 312 322 332 342 103 313 323 332 343 104 314 324 334 344 105 315 326 333 343 104 314 324 334 344 105 315 326 335 345 106 316 326 336 346 107 317 327 337 347 108 316 326 336 348 107 317 327 337 347	350 340 370 340 390 351 361 371 381 391 352 362 372 342 392 353 343 373 383 393 354 364 374 384 394 355 365 375 385 395 356 366 376 346 396 357 367 377 387 397 368 368 378 388 398	400 410 420 430 440 401 411 421 431 441 402 412 422 432 442 403 413 423 433 443 404 414 424 434 444 405 415 425 435 445 406 416 426 436 446 407 417 427 437 447 408 418 428 438 448 409 419 429 439 449	450 460 470 480 490 451 461 471 481 491 452 462 472 482 493 453 463 473 483 493 454 464 474 484 494 455 464 476 484 494 455 464 476 486 496 457 467 477 487 497 458 468 479 499 499	500 510 520 530 540 501 511 521 531 541 502 512 522 532 542 503 513 523 533 543 504 514 524 534 544 505 515 525 535 543 506 516 526 536 344 505 516 526 536 344 507 517 527 537 547 506 516 526 536 344 507 517 527 537 547 506 518 528 538 544	551 561 571 581 591 552 562 572 582 592 553 563 573 583 593 554 564 574 584 594 555 565 575 585 593 556 566 576 586 594 537 567 577 587 597 558 568 578 586 591
Score Score <th< td=""><td>450 660 670 680 690 651 661 671 681 691 652 662 672 682 692 653 663 673 683 693 654 664 674 684 694 655 665 675 685 693 656 666 676 686 696 657 667 678 688 696 657 669 679 687 699</td><td>700 710 720 730 740 701 711 721 731 741 702 712 722 732 742 703 713 722 733 743 704 714 724 734 744 705 715 725 735 745 706 716 726 736 746 707 717 727 737 747 706 718 728 738 749</td><td>750 740 770 780 790 751 761 771 781 791 752 742 772 702 772 753 743 773 703 773 754 764 774 784 794 755 745 775 715 795 754 766 776 786 796 757 747 776 788 796 759 769 779 709 799</td><td>BD0 B10 B20 B30 B40 B01 B11 B21 B31 B44 B02 B12 B22 B32 B42 B03 B13 B24 B34 B44 B04 B14 B24 B34 B44 B04 B14 B24 B34 B44 B05 B15 B25 B35 B44 B04 B14 B24 B34 B44 B04 B16 B26 B35 B44 B04 B16 B26 B36 B44 B06 B16 B26 B36 B44 B07 B17 B27 B37 B44 B07 B19 B27 B37 B44</td><td>550 840 525 840 625 551 841 271 881 89 532 842 872 882 89 333 843 873 853 845 153 844 874 844 89 553 845 875 885 89 555 845 875 885 89 555 845 875 885 89 555 845 876 886 89 555 845 87 886 89 555 845 87 806 89 555 845 87 806 89</td></th<>	450 660 670 680 690 651 661 671 681 691 652 662 672 682 692 653 663 673 683 693 654 664 674 684 694 655 665 675 685 693 656 666 676 686 696 657 667 678 688 696 657 669 679 687 699	700 710 720 730 740 701 711 721 731 741 702 712 722 732 742 703 713 722 733 743 704 714 724 734 744 705 715 725 735 745 706 716 726 736 746 707 717 727 737 747 706 718 728 738 749	750 740 770 780 790 751 761 771 781 791 752 742 772 702 772 753 743 773 703 773 754 764 774 784 794 755 745 775 715 795 754 766 776 786 796 757 747 776 788 796 759 769 779 709 799	BD0 B10 B20 B30 B40 B01 B11 B21 B31 B44 B02 B12 B22 B32 B42 B03 B13 B24 B34 B44 B04 B14 B24 B34 B44 B04 B14 B24 B34 B44 B05 B15 B25 B35 B44 B04 B14 B24 B34 B44 B04 B16 B26 B35 B44 B04 B16 B26 B36 B44 B06 B16 B26 B36 B44 B07 B17 B27 B37 B44 B07 B19 B27 B37 B44	550 840 525 840 625 551 841 271 881 89 532 842 872 882 89 333 843 873 853 845 153 844 874 844 89 553 845 875 885 89 555 845 875 885 89 555 845 875 885 89 555 845 876 886 89 555 845 87 886 89 555 845 87 806 89 555 845 87 806 89
For Change of Addre Old Campony Name				Zono Sta	
Old Company Addres	-	City	Leve		I Supervise Design We I De Ha Design Wark

FIRST CLASS Permit No. 725 New York, N. Y.

BUSINESS REPLY MAIL

No Postage Stamp Necessary If Mailed In U. S.

POSTAGE WILL BE PAID BY

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE 830 Third Avenue New York 22, New York

> FIRST CLASS Permit No. 725 New York, N. Y.

BUSINESS REFLY MAIL

No Postage Stamp Necessary If Mailed In U. S

POSTAGE WILL BE PAID BY

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE 830 Third Avenue New York 22, New York

-WAVE TUBE AMPLIFIERS mw

OR MEET YOUR REQUIREMENTS WITH ONE OF THESE BENCH-PROVER **TWT AMPLIFIERS** the

gain with noise figure of less than 25 db, excellent pulse modulation characteristics and helix

@ Models 490B, 491A, 492A and 494A TWT Amplifiers use a simple broad-band coupling method employing input and output coupling helices. Full energy transfer is effected, even though there is no mechanical connection to the inner helix. A similar helix is used for a coupled attenuator which surrounds the central portion of the tube, preventing amplified energy from causing regeneration. Encapsulated replacement tubes including integral coupling helices are available and are delivered factory-tested and ready to install.

modulation.

\$ 490B TWT Amplifier. 2 to 4 GC. provides at least 10 mw output, 30 db

imum gain of 30 db. Combined with a 1 mw S-Band signal generator such as \$616A it provides a versatile full watt source for high power testing.

@ 492A. 4 to 8 GC, and @494A, 7 to 12.4 GC, are 30 db gain TWT amplifiers providing

20 mw output. Offering ampli-tude, pulse, phase or FM modulation, they are ideal for use as broadband amplifiers or isolating buffer stages.

	4908	\$491A	@492A	@494A
Frequency Range:	2 to 4 GC	2 to 4 GC	4 to 8 GC	7 to 12.4 GC
Gain:	30 db min.	30 db min.	30 db min.	30 db min.
Output Power:	10 mw min. into 50 ohm load	1 watt min. into 50 ohm load	20 mw min. into 50 ohm load	20 mw min. into 50 ohm load
Noise Figure:	Less than 25 db	Less than 30 db	Less than 30 db	Less than 30 db
Pulse Rise & Decay Time:	Арргох. 0.015 дзес.	Mod. not provided	Арргох. 0.015 µsec	Approx. 0.015 µsec.
Input Impedance:	50 ohms, SWR less than 2	50 ohms, SWR less than 2	50 ohms, SWR less than 2	50 ohms, SWR less than 2
Output Internal Impedance:	50 ohms, SWR less than 3	50 ohms, SWR less than 3	50 ohms, SWR less than 3	50 ohms, SWR less than 3
Price (including tube):	\$1,400.00	\$1,400.00	\$1,500.00	\$1,800.00

Data subject to change without notice. Prices f. o. b. factory.

Call your & representative today for full information on these versatile TWT Amplifiers.

HEWLETT-PACKARD COMPANY

1073K Page Mill Road Palo Alto, California, U.S.A. Cable "HEWPACK" DAvenport 6-7000 Sales representatives in all principal areas

HEWLETT-PACKARD S.A.

Rue du Vieux Billard No. 1 Geneva, Switzerland Cable "HEWPACKSA"

Tel. No. (022) 26. 48. 86

7599

6

Publisher: Robert E. Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G. H. Rostky, H. Bierman, R. H. Cushman, M. W. Meisels, A. Rosenblatt News Editors: R. Haavind, Chief; A. Corneretto, R. N. Ross New Products Editors: A. W. Solda. Chief; C. H. Farley, E. G. Farrell Washington Editor: J. J. Christie West Coast Editor: T. E. Mount Consulting Editor: R. N. DeFloria Contributing Editors: J. G. Adashko, E. Brenner, B. Bernstein Editorial Production: D. S. Viebig, A. Abramoff Art Director: R. A. Schulze Art Assistants: O. Mitch, J. Aruego Technical Illustrator: P. Rios Production Manager: T. V. Sedita Asst. Prod. Mgr.: H. De Polo Production Assistants: P. Bergang, M. Spector Circulation Manager: N. M. Elston Asst. Circ. Mgr.: H. A. Hunter

Reader Service: L. Blair Hayden Publishing Company, Inc.

Chairman of the Board: T. Richard Gascoigne

President: James S. Mulholland, Jr.

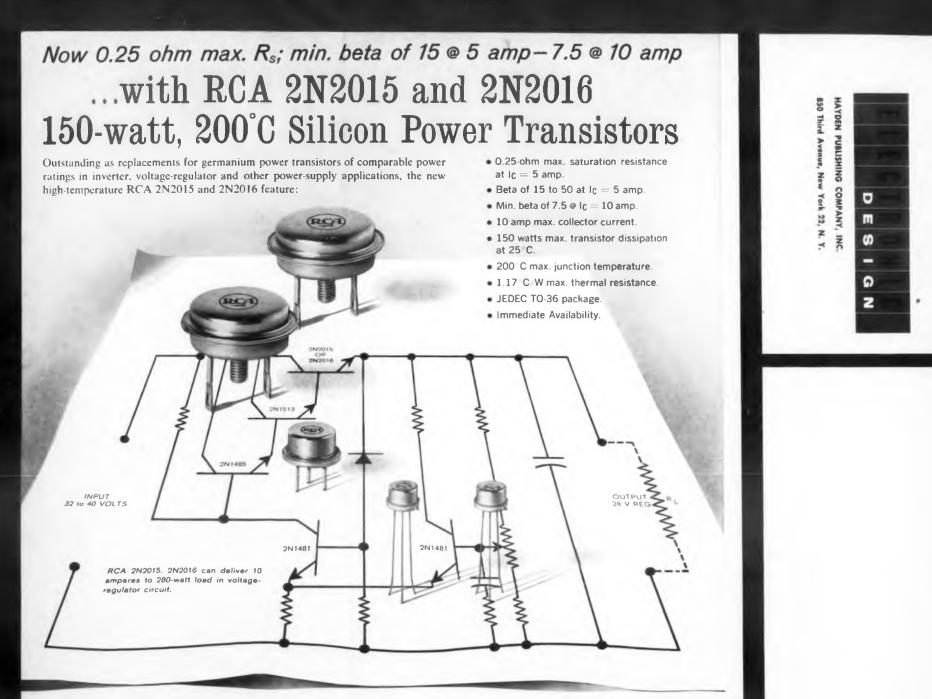
Accuracy Policy

Recognizing the power of the printed word to influence, it is ELECTRONIC DESIGN'S policy:

To make all reasonable efforts to insure accuracy of editorial matter. To publish promptly corrections brought to our attention.

To not knowingly publish misleading advertisements.

To reserve the right to refuse any advertisement.


Readers noting errors or misstatements of facts are encouraged to write the editor.

Subscription Policy

ELECTRONIC DESIGN is circulated only to qualified design engineers of U. S. manufacturing compa-nies, industrial consultants and government agen-cies. If design for manufacturing is your respon-sibility, you qualify for subscription without charge provided you send us the following infor-mation on your company's letterhead: Your name and engineering title, your company's main products and description of your design duties. The letter must be signed by you personally.

ANY ADDRESS CHANGES FOR OLD SUB-SCRIBERS NECESSITATE A RESTATEMENT OF THESE QUALIFICATIONS Subscription rate for nonqualified subscribers—\$25.00 per year U. S. A., \$35.00 per year all other countries. Single copy \$1.50.

CIRCLE 194 ON READER-SERVICE CARD

Check these superior ratings against those of the germanium types you are now using:

Туре	Dissipation 25°C Watta	IC Amp	V _{CEX} Valte	VCEO (sus) Volte	Typical fae Ke	Constr.	JEDEC Pachage
2N2016	150	10	130	65	25	NPN	TO-36
2N2015	150	10	100	50	25	NPN	TO-36

Call your RCA representative today for full particulars on new RCA 2N2015, 2N2016 and the entire RCA lineup of Industrial Silicon Transistors. For additional technical information, write RCA Semiconductor and Materials Division, Commercial Engineering, Section G-18-NN-1, Somerville, New Jersey.

Available through your RCA distributor

The Most Trusted Name in Electronics RADIO CORPORATION OF AMERICA

FIELD OFFICES

EAST: Newark, N. J., 744 Broad Street, HUmboldt 5-3900 · Erlton, N. J., 605 Marlton Pike, HAzel 8-4802 · Baltimore, Md., ENterprise 5-1850 · Syracuse 3, New York, 731 James Street, Room 402, GRanite 4-5591 · NORTHEAST: Needham Heights 94, Mass., 64 "A" Street, Hillcrest 4-7200 - SOUTH-EAST: Orlando, Fla., 1520 Edgewater Drive, Suite #1, GArd in 4-4768 · EAST CENTRAL: Detroit 2, Mich., 714 New Center Bldg., TRinity 5-5600 -CENTRAL: Chicago, III., Suite 1154, Merchandise Mart Plaza, WHitehall 4-2900 - Minneapolis, Minn., 5805 Excelsion Blvd - WEst 9-0876 - WEST: Los Angeles 54, Calif., Box 54074, RAymond 3-8361 -Burlingame, Calif., 1838 El Camino Real, OXford 7-1620 · SOUTHWEST: Dallas 7, Texas, 7905 Carpenter Freeway, FLeetwood 7-8167 - GOV'T .: Dayton, Ohio, 224 N. Wilkinson St., BAldwin 8-2366 Washington, D.C., 1725 "K" St., N.W., FE 7-8500