ELECTRONIC DESIGN's Ninth Annual Transistor Data Chart (p 33) contains spe tions for 1,714 transistor types--last year only l,088 types were submitte publication by semiconductor manufacturers. With close to a 60 per cent in in the number of available iypes, the design engineer is now offered a gre selection of devices as well as increased sources of supply--but his searc for a transistor to do a certain job is likewise increased. Thus, ELECTRON SIGN's unique listing, specifically tailored for the design engineer, shou prove to be a handy time-saver. Contrary to existing lists which group tra tors by manufacturer or in numerical sequence (fine for salesmen, of limit to engineers), the 1961 Data Chart has transistors organized into six appl categories: AUDIO-mostly general purpose types, under l, listed in order creasing forward-current transfer ratio. HIGH FREQUENCY--including types r up to and above the vhf range and tabulated in order of increasing alpha-c frequency. POWER DEVICES--transistors rated at 1 and above are listed in 0 of increasing collector power dissipation. HIGH-LEVEL AND LOW-LEVEL SWITCH devices intended for switching are listed in order of increasing alpha-cut frequency. SPECIAL TYPES--low noise, high power/high frequency and other m laneous types are included. By this system of listing transistors, the des engineer is offered a rapid method of selecting a particular type based on meter value. In addition, close substitutes are apparent and multiple sour of supply are listed when applicable. Only U.S. manufactured types are giv One word of caution is included. Quite a few similar number types, made by eral companies, were submitted with different characteristics due to the n formity in test methods among manufacturers. The manufacturer whose data al used for each particular type is listed under "Mfg." Other suppliers of the types are found under "Remarks." Please take note that the company listed MICROWAVES. . . p 129 "Mfg." is not necessarily the prime supplier, a che source or the original EIA registrant. The final choice of supplier is obv: wo to the design engineer. I

CPPC's new 5 watt servo amplifier provides a unique combination of exceptional stability and miniature size. Built around a DC amplifier with high frequency cutoff above 30 acps, the SA 5601 provides uniform response over its full operating range. With a $10 \mathrm{k} \Omega$ input resistor the SA 5601 yields a voltage gain of $54 \pm 1 \mathrm{db}$ from -55° to $+125^{\circ} \mathrm{C}$ with all signal levels below saturation, and supply voltage of 56 ± 3 volts. Idling power is under 1 watt.
Designed to drive any size 8,10 or 11 servo motor with a 26 volt control-phase rating, the SA 5601 is available off the shelf with stud or screw mounting. A regulated supply of the 56 VDC power required for the SA 5601 operating from $115 \bigvee 400$ ~ and providing a 26 V AC tap for moto and synchro excitation is available in a similar package.

For information phone or write: Area 215 MAdison 2-1000 TWX LNSDWN, Pa. 1122(U)-or our Representatives.

 Home

A New, Better ELECTRONIC DESIGN

We hope you noticed several physical improvements in the last issue of Electronic Design. There were three that we are particularly proud of: (a) the strongest binding available in printing-indeed, the same type of binding used in the better paperback books (thus, ED can be maintained in good condition for the many readers using each copy); (b) improved type faces and layouts; and (c) better reproduction of illustrations.
These changes came about as a result of our switching printing operations to the inidwest. Shifting printing to the central part of the country will also insure faster distribution of Electronic Design.

Advertisers als., get a new service coincident with our getting a new printer. A limited number of ads may be inserted only 12 days preceding the issue date, or three days before the magazine is mailed.

The late closing form will enable manufacturers to introduce new product advertising with minimum delay where such timing is critical.

The switchover is nol without its problems. The editorial department has to rely on airlines for daily messenger service. If a plane is grounded or "diverted (thats a neat term to describe o crisis) as we approach press time we hove to set copy and give make-up instructions via teletype. Fingers crossed, we hope we won' see crossed headlines.
The end result will be even more timely news reporting for design engineer readers.
Turn to page 6, for example, for a rundown on some of the top events at last weeks Fifth National Conference on Military Electronics in Washingion. On page 10 readers will find an even more timely report on two hardwareoriented developments discussed at an otherwise theoretically-oriented Joint Automatic Control Conference in Boulder, Col. This meeting was held last Wednesday through Friday, June 28 to 30.

As you read through the stories in the issue notice the easy readibility of the new type style used for text. We hope this will prove an added convenience to busy readers.

On the ground, or high in the sky, Raytheon's line of rugged diode rectifiers gives dependable arc-free operation.
Example: Raytheon 583, one of six Raytheon half-wave rectifier types. Operating as a clipper diode at altitudes to 36,000 fcet, maximum ratings are 15,000 volts PiV, 8 amperes peak plate current Arc-free clipping action makes sure a magnetron can be fired once without refiring automatically or uncontrollably!

The reliability of Raytheon diode rectifiers is the result of exceptional care in design and manufacture . . . with no compromise in quality control. Gold-plated plates and zirconium coatings assure reliable operation at high voltages. Cathodes are heliarc welded. Higher exhaust temperatures mean less gas and longer life. For more information on Raythcon's growing line of dependable diode rectifiers. please write: Raytheon, Industrial Cornponents Division. 55 Chapel Street, Newton 58, Massachusetts.

PAYTHEON DIODE RECTIFIERS						
TVE	semvice	mater		max mare matums		
		veris	ames		$\begin{gathered} \text { purar } \\ \text { sumparion } \end{gathered}$	
303*		25 25	4.9 4.9	11.000 15.000	$\begin{aligned} & 0850 \\ & 20 \end{aligned}$	0.063 0.240
$\begin{gathered} 382010 . j \\ 3024 m a \cdot j \end{gathered}$	H W. RECT (Malf fil.) (FULL (IL)	$\begin{aligned} & 28 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	20.000 20.000	$\begin{aligned} & 0.150 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0030 \\ & 0.060 \end{aligned}$
2028	$\begin{aligned} & \text { Climen } \\ & \text { DIOOE } \end{aligned}$	2.5	4.75	13.000	8.0	0.020
3029		2.5 25	4.8 4.9	$\begin{array}{r} 16.000 \\ 7.700 \\ 5.000 \\ 10.000 \end{array}$	0.250 0.300 0.300 8.0	
48310	n. W rect. Clippler OIOOE 0100	5.0 5.0	S.0	$\begin{aligned} & 16.000 \\ & 16.000 \end{aligned}$	$\begin{gathered} 0.470 \\ 12.0 \end{gathered}$	$\begin{aligned} & 0.150 \\ & 0.050 \end{aligned}$

-Mi-SIG-200E Prelerred Type

For Small Order or Prototype Requirements, See Your Local Franchised Raytheon Distributor

See how little difference can be noted between a nearly opaque original (left) and three fast, economical diazo copies (right) made with Post Super Vapo Black Paper.

New Super Diazo Papers Make Prints From Prints

More uses -

No longer limited to copying just thin, translucent originals, recent Posp progress in formulating superfast diazo compounds has added a new dimension to diazotype reproduction.

A selection of new Post direct positive papers can now handle, at reasonable speeds, such problems as making prints from discolored originals, letterhead correspondence, or even from old prints them-selves-in short, from subjects considered too opaque for conventional diazo copying.

In drafting rooms, for example, this ability to reproduce from nontranslucent originals provides a unique, low-cost way to copy present engineering forms that may be on inexpensive, semi-opaque, sulphite paper.

More variety -

The convenience and versatility of the whiteprinting process takes on new meaning with these important Post developments. Available in sheets and rolls as Super VeriBlac (440-14) for semi-moist diazo
equipment, and as Super Vapo Blue (206M-14) and Super Vapo Black (208M-14) for dry, ammonia-process machines.
One of the most impressive features of these Post Super Diazo Papers is the extra speed in reproducing normal subjects, such as engineering tracings. There's no sacrifice of shelflife, image stability, development rate or clean backgrounds. The printing range is extremely wide.

More economy -

Cost is a key word in the consideration of any new product. Post Super Diazo Papers cost no more. Further, both large and small users will be quick to note that the combination of speed and economy basic to these new diazotype papers make them practical for longer runs -even 50 copies-and, less expensive than other duplicating methods often selected for such quantities.

Ask your Post dealer or write Frederick Post Company, 3644 North Avondale Avenue, Chicago 18, Illinois, for Super Diazo Facts.

SENSIFIZED PAPERS \& CIOTHS - TRACING \& DRAWING MEDIUMS - DRAWING INSTRUMENTS E SLIDE RULES ENGINEERING EQUIPMENT \& DRAFTING SUPPLIES - FIELD EOUIPMENT \& DRAFTING FURNITURE
ELECTRONIC DESIGN News
Laminar Devices Key Superconductivity Push 4
2.2-Ge Transmitter Due for Telemetry
8
RFI Studies Leading to Design Important Shifts 8
Two Advances Cited at Automation Parley 10
Hot TV Cooled Thermoelectrically 12
Styrofoam Antenna Can Be Built on Site
18
18
Twofold Rise Seen In Consumer Sales 21
Washington Report 22
Doppler Navigator on Way for All Aircraft Types 26
Space "Pointer" Slated with 6-Sec Accuracy 28
Transistor Reliability Specs Well on Way 32Editorial Comment

Transistors 1961

Ninth Annual Transistor Data Chart-
An ELECTRONIC DESIGN Staff Report 33
Specifications for 1,714 transistor types arranged to enalle rapid selection based on device application
Transistor Data Sheets-What They Mean and How to Use Them Properly
Explanation of the parameters contained in a transistor data chart and their interpretation in circuit design-M. Baker. J. I. Suckert

Latest Listing of Military Approved Transistors

Transistors contained in the military's latest preferred and
guidance type listing. MIL-STD-701B, are grouped in a con
venient application chart. A tabulation of single service ap
proved types and their specification number is also included
Transient Control Device Protects Rectifiers from Surge Overloads 84
Line and load surges as high as $1,400 \mathrm{v}$ are clipped to a $200-\mathrm{v}$ limit by a new transient protective device
Cozxial Cavity Increases Magnetron Frequency Stability 86
Designed for X-band use, this tube operates at 50 per cent efficiency, delivers a minimum peak power of 1 megawatt and an average power of 1 kw
MicroWave129
Dirers conversion of microwave power and a new low-noise antenna for par ametric amplifiers are featured in this edition of MicroWaves
J irect Microwaves-to-Electricity Power Seen Near 131
Devolopment of solid-state diodes and inverse magnetrons for direct conver-sion of microwave power
Designing the "Parant" 136
A combination antenna-parametric amplifier that circumvents the problemof noise pickup in the line between antenna and amplifier-A. D. Frost, R. R.Clark
New Definitions of Receiver Noise Performamee 142
A detailed summary of a 1961 PGMTT Symposium presentation by fine ex-perts in the field of noise measurement
Ideas for Design158
Simple Circuit Halves $20-\mathrm{Mc}$ Supply Frequency 158
Power Gain Plot Can Be Made Directly from Measurements 158
Long Period Multivibrator Reduces Timing Capacitor Size 160
One-Shot Pulse Output Has Greater Than 100\% Duty Cycle 161
Servo Circuit Compared Antenna Pattern Nulls, Peaks 162
Tunnel Diode Trigger Circuit Can Reset Itself 163
Emitter-Coupled Limiter Produces HF Square Waves 164
Ideas-for-Design Entry Blank 159
New Products 88
New Literature 155
Report Briefs 166
Careers 170
Your Career 170
Advertisers' Index 176
Electmonic Design is published biweelly by Maydon Publighing Compony, Inc., 850 Third Avenue, New York 22, N. Y
Y Richard Gaseaigno. Chairman of the Roard; James S. Mulhollond, Jr., Pronident, Edmund C. Grainger, Jr., Socretary Printed of Peale Bros., Inc. Chicage, III. Accepted as controlled circulation of Chicogo. III. and at Now Yart, N. Y Copyright 1961. Maydon Publishine Company, Inc.. 38.600 cosies this issue

Coming Next Issue

The interest of the electronics industry will soon be centered on San Francisco's Cow Palace. For the duration of WESCON, Aug. 21 to Aug. 24, manufacturers will proudly display their wares for evaluation and approval.

To assist visiting engineers in making the all-important decision of what to see first, the WESCON, Aug. 2, issue of Electronic DEsign will feature the products to be introduced for the first time. For convenience in locating these items, booth numbers will ac. company the product descriptions.

A trend survey, conducted by the editors of Electronic Design, covering recent, present and future product developments will be a highlight of the issue. Don't miss it.

Speaking of filters, Rantec is way up front. Men who know filters best in such projects as Mercury. Titan. Polaris and Discoverer - choose Rantec two to one Why?

Strictly the result of Rantec's superb miracie blend of research and development.
Broadband Harmonic Filters from C through K, bands
rejecting the second and third harmonics of any frequency in the pass-band region. . Waveguide Band-Pass Filters employing from one to fifteen cavities with precise equal-ripple, maximally flat insertion loss or maximally time-delay response., Coupled Coaxial Resonator and Coaxial Low-Pass, High-Pass and Band-Pass Filters
in frequency ranges from 100 mc to 10.000 mc
... Stripline Diplexing Filters to meet specific customer
specificatıons for packaging. frequency band.
response, isolation and power rating.
Below the FS-203 Band-Pass Filter - pass band 2.0004 .000 mc ; stop bands 0.1 .800 mc .
$4.400 \cdot 12.000 \mathrm{mc}$; VSWR in pass band 1.5 max.: insertion loss 1 db max. in pass band. 50 db min. in stop bands; impedance 50 ohms.
Reach for a Rantec . available in crush proof and soft pack! Also from Rantec . . antennas. - ferrite devices, waveguide components. electric components and microwave sub-systems.
 that

Laminar Devices Key Superconductivity Push

Laminating Films to Control Transistion Temperature
Among Successes Reported at Top Research Meeting

Alan Corneretto
News Editor

RESEARCHERS trying to exploit superconductivity have developed a technique with high promise for designers: combining normally nonsuperconductive metallic thin filmes with superconductive ones and achieving superconductivity in the entire assembly.

Such devices have been made by superimposing thin films of superconductive lead and normally nonsuperconductive silver. Because the films become superconductive at temper-

Charateristics of combined superconducting and normal films are dependent on thickness of films, implying devices may be made that would become superconductive at predetermined cryogenic temperatures. Curves are for configurations shown under graph. Two curves af lower left resulied from a structure different from others shown. This work was done at Arthur D. Litile, Inc.
atures dependent on film thickness, multilayered devices are foreseen in which different layers would become superconductive at different predetermined cryogenic temperatures.

The development was among recent successes reported at a conference on fundamental research in superconductivity held June 15-17 at the International Business Machines research center, Yorktown Heights, N. Y. It reflected a growing interest in the field.

Two reasons are given for the spurt in interest. One is the discovery last year of tunneling in superconductive thin films ($E D$, Dec. 7, 1960, p 4), and the other the recent development of materials that $r e m a i n$ superconductive in high magnetic fields.

Present superconductive thin-film devices are made either of naturally supercorductive metals, which are limited in number, or of difficult-to-process alloys. The $n \in w$ combina-

[^0]tion, or laminar, technique is expected to make it easier to tailor the transition temperatures of superconducting films than former methods permitted.
P. H. Smith of Arthur D. Little, Inc. (ADL), Cambridge, Mass., delivered a jointly authored paper on the process at the Yorktown Heights conference. Substantially the same reports appear in the June 15,1961 , issue of Physical Review Letters, published by the American Physical Society. Similar work has been done by Dr. Hans Meissner at the Stevens Institute of Technology.

Both Dr. James Nicol, one of the authors of the ADL paper, and Dr. Meissner, report that the two films-normal and supercon-ducting-must be in intimate contact with each other before the effect can be achieved. At both organizations one film is deposited immediately after the other while the original vacuum is maintained. The reasons for the phenomenon are not completely understood at present.

ADL reports that it has constructed devices by superimposing a film of one material between two films of the other, and by depositing one film on the other in an opensandwich construction. It calls the resulting devices laminar superconductors. At the conference, Mr. Smith reported that the assembly of two metals in contact behaves as a unit having its own characteristic superconducting properties.

Films worked with at ADL measure from 500 to 10,000 A thick, he says. Typically they are made by superimposing along the length of a $10-$ by $-0.3-\mathrm{mm}$ silver film a longer lead film 0.15 mm wide. Electrical connections are soldered to the ends of the lead film. A glass substrate with lead, tin and normally nonsuperconductive gold and silver have been used.

Addition of the silver is said to reduce the transition temperature of the assembly below that of lead alone. In one sample, a tran-
sition temperature of 1.87 K was reportedly measured. Normally, lead has a transition temperature of 7.2 K , according to ADL.

Several samples can be deposited simultaneously on the same substrate. The superconductive effects appear to be unchanged by the type of construction ised or the sequence of deposition of metals, says ADL.

According to Dr. Nicol, the phenomenon apparently can be harnessed to tailor the temperature at which a device will become superconductive. Another advantage he cites for the technique is that the pure metals involved are easier to work with than alloys, which may be relatively hard to vacuumdeposit.

Meeting Hears Evidence Backing Theories

Of Bardeen, Cooper and Schrieffer

Many of the papers delivered at the conference reported work that supported the various thenries of Professors Bardeen, Cooper and Schrieffer on the nature of superconductivity. The existence of energy gaps in superconductors, the dependence of the gaps on temperature position and field strength, and the possibly paired nature of electrons in superconductive materials were all discussed at the meeting, which was attended by virtually all the top superconductivity experts in the Western countries.
One of the highlights of the conference was a report by Dr. Naebauer, of Herrsching, Germany, on the measurement, for the first time, of the flux quantization unit in a superconducting ring. The unit was given as 4×10^{-7} gauss cm^{2}. The measurement, which constitutes one of the few direct observations of a quantum effect, supports the theoretical prediction that flux in a superconducting ring occurs in discrete units. The fact that the units are discrete was said to raise the possibility that devices may be built eventually in which the quantized nature of flux in a superconducting ring may be harnessed to count or to transduce.
Also at the conference, J. E. Kunzler Bell Telephone Laboratories, reported that ductile alloys of niobium-zirconium appear to be the most promising superconductive materials for magnets with field strengths in the 80 -to- 100 -kilogauss range, while the characteristics of niobium-three tin in wire-like form appear to be suitable for fields of at least 200 kilogauss.
Dr. Kunzler added that the prospects for material with electrical and magnetic characteristics capable of still higher fields appear bright. - -

Which AC/DC digital voltmeter should you buy?

...seven questions to help you decide

1. Is it rellable, dependable?

A rather general question, and one you often get rather general answers to. But with such an important consideration, you should get answers like these:

The stepping switches in the KIN TEL 502B AC/DC digital voltmeter are guaranteed for two years. KIN TEL can make this guarantee because it operates stepping switches conservatively, driving them with DC (as in telephone service) at a rate somewhat below their peak speed. This gentler drive gives the 502B a longer life, makes it capable of more sensitive measurements, eliminates the need for stepping switch adjustments or other maintenance, and greatly reduces down time.
When servicing is ultimately needed, KIN TEL-trained personnel in 22 different maintenance shops throughout the country are prepared to put your 502B in factory condition with minimum delay.

Each 502B is manufactured on a true production-line basis. KIN TEL has used this method in building over 10,000 "standard-cell-accuracy" instruments, instruments known for their consistent, trouble-free performance.
2. Does it have automatic range selection for AC and DC?

Auto-ranging is a convenience. It makes your job a little easier, a little surer. It permits unattended operation with \& printer to record voltages on the range giving the best resolution.
The KIN TEL 502B has it.

3. Does it have a single-plane readout?

A single-plane readout reduces reading errors. Each number is displayed individually. There are no super imposed outlines of "off" digits. You can read the num bers as easily from the side as from the front.
The KIN TEL 502B has a single plane readout.

4. Can you program it?

A programable instrument is a more useful instrument It can be used with a printer for unattended checkout of missile components, quality control of specific items, and other automated measurements.

You can program the 502B. It's the only standard off-theshelf digital voltmeter controllable by remote contact closures. With the AC converter control set to REMOTE, closures command any desired sequence of measurements at 10 -volt AC, 100 -volt AC, 1000 -volt AC, auto-range $A C$, or auto-range DC.

5. Will it over-range on both AC and DC?

A loaded question, perhaps, since the kin tel 502B is the only digital voltmeter on the market with AC and DC over-ranging. But this is an important feature, not just an extra one.
The 502B displays 4 complete digits plus a 5 th over ranging digit (0 or 1). This 5 th digit gives ten times more resolution at the often-measured decade points ($1,10,100$ volts) than 4 -digit voltmeters that lose a digit changing from .9999 to 1.000 . This means you get the useful accuracy of a 5 -digit voltmeter over a large part of the measurement range while retaining the stability, reliability, and price advantage of a 4 -digit instrument

6. Does it offer the highest accuracy?

Of course, none of the features listed so far are worth a dime if you can't depend on what the instrument tells you. So let's be specific:
With the 502B, DC measurements are accurate to within $.01 \%$ of reading \pm one digit. AC accuracy is the highest in the industry - within 0.1% of reading or ± 3 digits (0.03% of full scale) for signals between 30 cps and 10 kc up to $10.000,100.00$, or 1000.0 volts on the respective range scales. With manual or programed ranging, this same accuracy is maintained up to 15.000 or 150.00 volts for signals between 50 cps and 7 kc .

This accuracy is maintained by a constant and automatic calibration of the metering circuit against an unsaturated mercury-cadmium standard cell.

7. Is it worth what it costs?

The KIN TEL 502B costs $\$ 4245$, and is delivered from stock. Compare it - what it does and what it costs - with any other AC/DC digital voltmeter. We think that when you do, the 502 B will rate the same answer on this question that it has on the other 6: yes.

Write direct for complete details
on this exceptional voltmeter.
Representatives in all major cities.

5725 Kearny Villa Road. San Diego 11, California - BRowning 7-6700
-OHTU circie s on reader-service card

NOW! A REMARKABLE, NEW 0.40 volt © 500 ma DC POWER SUPPLY вY PERKIN THE ONLY POWER SUPPLY AYALLABLE COMBINING THESE 20 FEATURES:

Model TVCROti-05
$0-40$ vols @ 0.500 ma

1. Voltage Regulation: $\pm .01 \%$ or $\pm 2 \mathrm{mv}$
2. Cutrent Regulation: $\pm .02 \%$ or $\pm 50 \mu \mathrm{amp}$
3. Remote Voltage Programming: Full-range 0-40 v

Factory calibrated @ 100 ohms/volt $\pm .25 \%$
4. Remote Curvent Programming: Full range $15-500 \mathrm{ma}$ Factory calibrated @ 1 mho/ampere $\pm 1 \%$
5. Voltage Liminiting: Continuously adjustable 0-42 v
6. Current Limiting: Continuously adjustable $0-600 \mathrm{ma}$
7. Remote Voltage Sensing 8. Parallel Operation 9. Series Operation
10. Vernier Voltage Adjust: 5 mv resolution
11. Vernier Current Adjust: $50 \mu \mathrm{amp}$ resolution
12. Transicut-Free 13. Short-Circuit Proof
14. Extremely Fast Response: $25 \mu \mathrm{sec}$
15. Loz: Ripple: 500μ volts (voltage regulation mode)
50μ amps (current regulation mode)
16. Conzection Cooling 17. Portable 18. Regulation Mode Sでitch
19. Master-Slacic Opcration 20. Excellent Long-Term Stability

Additional Specs ■ AC Input: 105-125 v, 1 $\varnothing, 47-420 \mathrm{cps}, 0.5 \mathrm{~A}$

- Max. Ambient Temp.: $45^{\circ} \mathrm{C}$ ■ Meters: Dual Scale 0-50 V.DC, 0-600 ma
- Dimensions: $51 / 9^{"} \mathrm{H}, 8^{\mu} \mathrm{W}, 9^{\prime \prime} \mathrm{D}$-adapter to mount two in $19^{\prime \prime}$ rack
- Weight: 15 lbs . (approx.) Einish: Gray per MIL-E-15090B

AND ALL FOR JUST $\$ 198$ f. o. b. EI Segundo PERKIN
ELECTRONICS CORPORATION
345 Kansas Streer, El Segundo. California \square SPring 2-2171

[^1]PERKIN SALES REPRESENTATIVES

NEWS

2.2-Gc Transmitter
 Due for Telemetry

Details Are Described at Mil-E-Con Along With Data on High-G System

DETAILS of one of the first transmitters under development for the new $2.2-\mathrm{Gc}$ telemetry band were disclosed last week in Washington, D. C., at the Fifth National Convention on Military Electronics (Mil-ECon). Also described were a high-g telemetry: system said to be capable of withstanding accelerative forces of more than $150,000 \mathrm{~g}$.

The transmitter, designed by Radiation, Inc., of Melbourne, Fla., will contain only solid-state components and a voltage-tunable magnetron. The device is intended for use in satellites, where it is to transmit simultaneously a number of phase-coherent carriers for a special measurement program.
Typical power output is to be 10 w for a 33 -w anode power input. The transmitter will weigh 40 lb and measure approximately $17-1 / 2$ by 8 by $5-3 / 4 \mathrm{in}$.

Because the magnetron must generate discrete, phase-coherent carriers, its anode voltage will be modulated by a vhf power amplifier. The frequency of this all-solid-state stage will determine the frequency separation between the carriers. Thus, says Radiation, Inc., modulation of the anode voltage will provide a frequency modulation of the magnetron center frequency. A phase-lock servo loop will provide frequency stabilization.

Magnetron Amplifier to Have

Efficiency of More Than 40 Per Cent

The amplifier that will provide power to modulate the magnetron will have an efficiency of more than 40 per cent, according to the company. It will be driven by a vhf crystal oscillator. Power will be supplied by a separate package in which magnetic amplifiers and regulating circuitry are to produce efficiencies ranging from 69 to 81 per cent for input voltages ranging from 30 to 22 v , respectively. The magnetron supply voltage of $2,000 \mathrm{v}$ is to be regulated over 0.2 per cent from 0 to 75 C .

Use of the 2.2-Gc telemetry band is expected to produce more stable frequencies for space communications than the $216-235-\mathrm{mc}$ band now being used.

High-G Telemetry System

Projectile Speed Study

The high-g telemetry system described at the Mil-E-Con meeting is intended to aid study of the ionized shock layer generated by projectiles traveling at hyper velocities.

The airborne portion of the system is packaged as a $1.5-\mathrm{lb}$ projectile and is designed to be fired down an instrumented range into an oncoring narrow uhf beam transmitted at 8.5 and 11 Gc. A video crystal detector in the package receives the pulsed signal, which, after amplification frequency, modulates a $60-\mathrm{mc}$ oscillator in proportion to the amplitude of the incoming signal. A $60-\mathrm{mc}$ signal is then telemetered via diplexed antennas through the solid metal shell of the projectile to range receivers.

The project, described by Essad Tahan of Sylvania Electronics Systems, Waltham, Mass., is being conducted as a joint effort of Sylvania and the Canadian Armament Research and Development Establishment.

To withstand $150,000 \mathrm{~g}$'s for several milliseconds, the telemetry package contains special components. Transistor cases were opened up and filled with an epoxy resin, a special microwave diode had to be developed, and the entire assembly had to be potted and reinforced in a glass-cloth laminate.

Microminiature Timer for Arming Programs

 Uses Mirram Technique to Handle 370 WAmong the equipment on display was a 14oz digital arming program timer designed by Diamond Ordnance Fuze Laboratories, Washington, D.C. It was said to be the first operating device using the Micram microminiature packaging technique developed by Cleveland Metal Specialities Co., Cleveland, in cooperation with several large electronic companies. In this technique standard microminiature parts are densely packed on photoetched circuitry. The timer shown was said to be packed to a density equivalent to 300,000 components per cu ft.

The modularized unit, intended for use in missiles, includes a clock, timer, and readout and switching sections. It is said to have no moving parts. The clock uses a 24 point, 8-kc quartz-crystal oscillator having a 10 -cps output and an accuracy of 10 msec .

Aggregate power-handling capacity of the power-switching circuitry of the timer is 370 w says Cleveland Metal, which built the unit for DOFL. The company reports that the unit has been test flown successfully. It was developed under the Copperhead program. Cost of the unit is said to be in the $\$ 750-1,000$ range. -

Whenever you need voltage and power "regulation" for instrumentatiun purposes, especially transducer circuit:;, the new Bulova DC Reference Source assures maximum reliability.
In this Bulova double stage Zener model, regulation is accomplished by controlling the base voltage of a series power transisthe voltage chane first zener across input, are attenuated. The seond Zener source a voltage reference for feedback amplifier stage (Q_{3}).

Potentiometer connected to the base of the high beta transistor (Q 3) allows the voltage on the arm of potentiometer to be compared with the reference voltage across reference Zener, and then the resulting voltage error being amplified and applied to the base of power cransistor $\left(Q_{1}\right)$.
A third transistor (Q_{2}) is inserted to regula
A third transistor (Q_{2}) is inserted to regulate the voltag of the input so that this is virtually non-existent (plus/minus

1 mv under all conditions).
In this circuit the output voltage follows the relation $V_{0}=V_{1}\left(\frac{R_{1}}{R_{2}}+1\right)$. It is evident that the circuit has to provide a voltage gain.
Obviously, looking to the equation, this supply can operate over a wide range of output voltage by changing the multiplier ratio $\frac{R_{1}}{R_{2}}$.
The Zener control current automatically changes with output voltage so that the ontrol voltage amplifier absorbs the difachieve optimum performance with high reliability using thoroughly silicon solid state devices. The small size $11 / h^{\prime \prime}$ square Ey $1^{3} 4^{\prime \prime}$, permits this unit to fit in any system which requires a DC reference source.

RFI Studies Leading to Important Design Shifts

New Requirements to Bar Square Pulse Modulation For Radar; Stiffen Other Equipment Requirements

Abstract

R ADICALLY new designs for radar and Rother military equipment will be demanded soon by the Defense Dept. in the light of its attack on radio frequency interference. The new specifications will eliminate in future equipment rectangular-pulse modulation of radar and many present antenna designs.

This was disclosed at the Third Annual Symposium on Radio Frequency Interference in Washington, D. C.

First set of specifications to near completion is a revised radar standard prepared by the Joint Frequency Allocation Board of the Joint Chiefs of Staff. Sufficient data for composing a tight, practical
standard have already been gathered. The requirements of the standard will reflect latest state-of-the-art techniques and component designs.

The standard will specify stricter control of radar fundamental frequencies and improved selectivity, dynamic range, sensitivity of radar receivers. It will also re-

'Thermal Circuit' Removes Heat in Miniature Modules

HINTS on how to design "thermal circuits" which represent solid-state (no fans) solutions to heat removal in miniature module packaging were given in a paper presented before the IRE Production Group, June 14 and 15 in Philadelphia.

The paper explained how miniature circuit modules had been mounted on a heatconductive ceramic board which provided an efficient heat removal path from the modules to a heat sink. The concept behind this type of packaging according to the paper is that with extreme miniaturization the designer may have to pay as much attention to the thermal "circuits" as he has in the past paid to the electrical ones

The authors, Gerald Kriss and Louis Po-

Beryllium oxide board 3 -in. square by 0.06 -in. thick was used for the thermal link between the modules and the heat sink which would be clamped on one edge. Kovar studs were weld points for the module leads of nickel-plated copper.
laski of General Electric Co.'s Space Vehicle Dept., Philadelphia, showed how their design used the thermally conductive but electrically insulating ceramic board to integrate the heat removal, circuit interconnection, and module support functions into one solution. In a space vehicle application they said that the board would be attached to the side of the vehicle.

A beryllium oxide ceramic board was chosen for its known combination of high thermal and low electrical conductivity. Kovar studs were inserted into the 0.06 -in thick board to transfer module lead heat and provide electrical connections from the module to the board's circuits. The board's circuits consisted of moly-manganese screened

Slice through module shows how two heat flow exit paths are provided out of module. The transistors are embedded in a high-thermal-conductivity silver-flakeloaded epoxy (lighter color) which is later epoxybonded to the ceramic board. Also, the leads are extra thick to conduct heat out to the Kovar studs.
on and fired then copper plated. Electrically oversized $0.06-\mathrm{in}$. module lead wires were used to carry out part of the heat.
The modules themselves were epoxy-potted in two stages. First, a high thermal conductivity silver-flake-loaded epoxy was used around the transistor cases (which were purposely located close to the board for shortest thermal exit path of their heat). Then a less thermally conductive but more electrically insulative alumina-loaded epoxy was used for the rest of the module.

The authors pointed out that ceramic boards of this type might be the only solution for rf or high-voltage microcircuits where proximity to conventional metallic heat removal surfaces cannot be tolerated. - -

Modules assombled on ceramic boord. Thermocouples at hot and cold spots of modules showed that the board provided as good a thermal conduction path between the modules and heat sink (not shown) as if the modules were attached directly to the heat sink. Transistor case-heat sink drops were 6 to 8 F .
quire reduction of out-of-band modulation components and will place limits or. frequency emissions.

To meet these requirements certain changes in design will have to be made. Thus, there will be a decrasing use of magnetrons, particularly at lower frequencies. It is anticipated that klystrons will be used in their place.
Rectangular pulses will no longer be permitted for radar modulation. Instead, there will be a shift to sine-cosine, $\cos ^{2}$ or gaussian pulses which do not cause emissions remote from the fundamental.
Antennas will have to be constructed with greater precision in order to limit off-frequency responses, spill-over, backside emission, etc. Also, there will be a need for high-power waveguide and transmission line filters to limit the transmitter emission to the tightly specified frequency bands, and in addition to limit receiver susceptibility:

Also disclosed at the Symposium was the progress made in the Department of Defense's Electromagnetic Compatibility Program. The major effort of the Program is currently devoted to establishing a Joint Analysis and Prediction Center in Annapolis, Md. This Center, being organized by the Armour Research Foundation, is charged with devising methods for predicting the electromagnetic environment at given geographic areas. To do this it will need data on environmental conditions and equipment emission characteristics (spectrum signatures).

A first test of the possibilities of prediction will be made in the San Diego area, one of the worst areas for electromagnetic interference in the country according to RFI specialists. Environmental data for the area have already been collected. Most of the spectrum signatures are, however, still to be gathered.

Armour is currently selecting a mathematical model for the project. Several models are being reviewed, including ones developed by Melpar, AMF, Georgia Tech, and Jansky and Bailey. Also yet to be chosen is the computer in which the information will be processed. Both the STRETCH and IBM 7090 units are said to be under consideration.

It is anticipated that data will be collected by February of 1962 , and the processing can begin. The Analysis and Prediction Center at Annapolis will be ready for occupancy by January of that year. - -

in Industry's Strongest Chain of Transistor Performance

ABSOLUTE MAXIMUM RATINGS

PHILCO 2N2048

GERMANIUM SWITCH

Philco's new 2N2048 is the forerunner of a broad line of 150 mw MADT switching transistors. The new power dissipation capability is available in uniformly reliable high-speed units, at surprisingly low cost, via proven MADT automation.

Intended for both saturated and non-saturated logic circuits, the Philco 2N2048 gives you more than comparably priced transistors-more drive per transistot more switching speed per dollar invested in transistors, and the extra capability of extra power dissipation for applications that require it.

Philco 2 N 2048 features 在:lude minimum $\mathrm{h}_{\text {FE }}$ of 50 , maximum V'sAT; of 0.14 V ., minimum f_{T} of 150 mc ., and tightly controlled V_{BE} ranging from 0.25 V . minimum to 0.35 V . maximum. For complete information write Dept. ED7561.

Immediately
mailable in
available in
quantities 1.999
Philco Industrial
Philco Industrial
Semiconductar
Distributor

Famous for Quality the World Over
LANSDALE DIVISION, LANSDALE, PENNSYLVANIA

NEWS

Two Advances Cited At Automation Parley

Digital Speed-Control System And Lightweight Motor Outlined

Robert Cushman

Technical Editor
TWO PRACTICAL developments were described last week in Boulder, Colo., at the otherwise highly theoretical Joint Automatic Control Conference: a computercompatible digital speed servo and a very light, compact, powerful motor.

The digital speed-control system has been developed by Westinghouse Electric Corp. for large industrial process drives, such as those used in papermaking. It was explained that in papermaking not only is 0.1 per cent regulation desired for each drive but also, with the paper strips being driven through the mill at 3,000 ft per min by a $4,000-\mathrm{hp}$ system, it is important to be able to synchronize the speeds of all the drive motors along the process.

The digital speed servo has both position and speed loops. It includes all the features normally associated with analog servos, such as time-limit acceleration and vernier speed adjustment. Therefore it can be used directly in place of existing analog systems. Westinghouse says.
As might be expected, pulse rates from a master crystal reference are compared with feedback pulse rates from a digital tachometer connected to the output drive. A coincidence canceler had to be added to prevent ambiguity when pulses arrive at the same time.

Under steady operating conditions all of the control signal is provided by the position loop error. The position loop integrates the feedback and reference pulses from the coincidence pulse canceler by feeding them into the up and down lines of a high-speed reversible binary counter. The level of this counter is then determined by the respective pulse rates between reference and feedback, going up for one and down for the other. This level is then converted into an analog current level by a weighted decoder, and the level of this current is used to

Highly efficient de motor design is expected to produce $7-1 / 2 \mathrm{hp}$ inside a 5 -in. diam and with a weight of only 11 lb . Commutation would be by silicon-controlled rectifiers mounted in rotor and switched oplically by phototransistors.
drive the power amplifier.
The speed loop, on the other hand, operates on the difference of the pulse rates. Pulses from the reforence and feedback lines are made to cancel each other alternately.
Part of the significance of this type of system, according to Westinghouse, is that it facilitates digital computer control of large industrial processes.
The very lightweight, compact motor is a dc actuator, designed as a replacement for hydraulic actuators on missiles. The motor, said to be equally as efflicient but more reliable than its hydraulic counterpart, was described by Prof. George C. Neuton and R. W. Rasche of the Massachusetts Institute of Technology:

The design, which so far is only on paper, indicates a power rate of 550 kw per sec ($7-1 / 2 \mathrm{hp}$) with a $\overline{5}$-in.-diam motor weighing only 11 lb . It will therefore be competitive with hydraulic actuators for missile applications, the authors contend. Hydraulic actuators have so far been much more powerful and efficient than any electric actuator, but they are less reliable because of their susceptibility to dirt.

The key to the MIT improvement is a highly efficient molded aluminum-epoxy-fiberglass rotor with integral conductors. It would be molded as a hollow shell and supported at one end, so that a ferromagnetic plug could be used inside the rotor to increase the flux. The rotor would be evaporatively cooled by a sprayed freon fog.

Other papers at the conference covered most of the topics of current interest to theoreticians in the automatic control field: optimization schemes including "cost" feedback loops, adaptive techniques, nonlinear control and statistical control.

The conference was held last Wednesday through Friday, June 28-30. - -

Proven ultra-high-speed transistors by SPRAGUE

the reliable switching characteristics of the field-proven 2N501A are now available in the $\mathrm{TO}-9$ case to meet equipment needs

- The well known slim-line Type 2N501A MicroAlloy Diffused-base Transistor, extensively used in critical military, industrial. and commercial applications, is now joined by the 2 N 1500 , in its low-height TO. 9 case.
- The electrical characteristics of the 2 N 1500 are identical with those of the 2 N 501 A . Both of these ultra-high-speed switching transistors will operate reliably at speeds up to 20 megacycles. They feature excellent high frequency response at very low collector voltages, a characteristic made possible by the placement of the collector in the diffused region of the base. - A precise, controlled-etching process makes it possible to maintain high frequency characteristics down to saturation voltage. Therefore, you can realize all
the advantages of direct-coupled circuitry with no loss in switching speed.
- Sprague MADT* Transistors are now manufactured with cadmium junctions, providing an extra safety margin. Effects of high temperature, the major destructive factor with transistors, are minimized by the superconductivity of cadmium, assuring cooler operation and greater reliability.
- For prompt application engineering assistance, wrise Commercial Engineering Section, Sprague Electric Co. Concord, N.H.
- For complete engineering data sheets, write Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Mass.
*Trademark of Philco Corporation

SPRAGUE COMPONENTS

transistors
 CAPACITORS
 magnetic Components RESISTORS

interferemce filters PULSE TRANSFORMERS piezoelectric ceramics PULSE-FORMING METWORKS
high temperature magnet wire CERAMIC-BASE PRIMTED METWORKS PACKAGED COMPONENT ASSEMBLLES FUNCTIOMAL DIGITAL CIRCUITS

SPRAGUE
THE MARK OF REIIABILITY
'Sprague' and '(2)' ate registered tracemants of the Sprague Electric Co

model 317

 measures
NEWBallantine VTVM

 $300 \mu \mathrm{~V}$ to 300 V

atrumemese 10 cps to 11 Mc

$$
\begin{aligned}
& \text { Accuracy is \% of reading anywhere on scale at any } \\
& \text { voltage Five inch mirror-backed voltage scales of } 1 \\
& \text { to } 3 \text { and } 3 \text { to } 10 \text {, each with } 10 \% \text { overlap; } 0 \text { to } 10 \mathrm{db} \\
& \text { scale Use as a sensitive null detector } 5 \mathrm{cps} \text { to } 30 \mathrm{Mc} \\
& \text { Use as a stable } 60 \mathrm{db} \text { wideband amplifier, } 2.5 \text { volts max. output Cathode follower } \\
& \text { probe has a voltage range of } 300 \mu \mathrm{~V} \text { to } 300 \mathrm{mV} \text {, and a high input impedance Instrument } \\
& \text { is average responding type. Effect of line transients nil } \text { Available in portable model } \\
& \text { shown or in } 19 \text { inch rack version. }
\end{aligned}
$$

(D) Gil Gind UNa

VOLTAGE: $300 \mu \mathrm{~V}$ to 300 V .
FREQUENCY: 10 cps to 11 Mc (As a null detector, 5 cps to 30 Mc).
ACCURACY: \% of reading anywhere on scale at any voltage. 20 cps to $2 \mathrm{Mc}-2 \% ; 10$ cps to $6 \mathrm{Mc}-4 \%$; 10 cps to $11 \mathrm{Mc}-6 \%$.
SCALES: Voltage, 1 to 3 and 3 to 10 , each with 10% overlap. 0 to 10 db scale.
INPUT IMPEDANCE: With probe, 10 megohms shunted by 7 pF. Less probe, 2 megohms shunted by 11 pF to 24 pF .
AMPLIFIER: Gain of $60 \mathrm{db} \pm 1 \mathrm{db}$ from 6 cps to 11 Mc; output 2.5 volts.
POWER SUPPLY: $115 / 230$ V. $50-400 \mathrm{cps}, 70$ watts.
DIMENSIONS (Inches): Portable. $13 \mathrm{~h} \times 71 / 2 \mathrm{w} \times 91 / 2 \mathrm{~d}$. Rack, $81 / 4 \mathrm{~h} \times 19 \mathrm{w} \times 81 / 2 \mathrm{~d}$. WEIGHT: 17 pounds, portable or rack models. Approximately 34 pounds shipping weight.

Write for brochure glving many more details

Boonton, New Jersey

 amplituof raleuency. on haverionm we have a lange line. with addifions each vean also ac oc ano dc ac imveriens. chibators. caliorated wioe bano ar amplisier oirect aeading capacitance meten. other acce ssories. ask about our laboratory voliace stamoands to 1000 MC

LIKCLE 12 UN REAUER-SERVICE CARD

Hot TV Cooled Thermoelectrically

Westinghouse Units Improve Operation of Vidicon Tube In Closed-Circuit System at Steel Plant Soaking Pits

Thermoelectrically cooled television camera (with front cover removed). At top are the heat-radiating fins of the cooling elements, which enclose the vidicon. Motors and pulleys af the bottom control the focus and aperture of the lens.

Cooling element consists of three Westinghouse WX-814 bismuth telluride units connected in series. Note common hot and cold plates and single set of input terminals.

THERMOELECTRIC coolers improve performance of the vidicon tube in a closedcircuit television system that monitors the operation of cranes at a steel mill.
Operating in a $140-\mathrm{F}$ ambient, three Westinghouse WX-814 coolers, with a total cooling capacity of 5 w , maintain the 7735 vidicon at 90 F and dissipate heat generated by filaments and deflection and focus coils. Without this cooling, operation of the tempera-ture-sensitive tube would be marginal.

The television system was built by General Precision Laboratory, Pleasantville, N.Y., for soaking pits at a large steel mill.

Because of the high ambient temperature and the camera's remote location (at the end of a traveling crane), thermoelectric elements were solected as the most practical cooling method.
"We couldn't use forced air at 140 F for cooling, and losses in long piping runs would have required about 250 w of mechanical refrigeration for the job," explained Murray Altman, designer of the camera. "Instead we provide the cooling directly at the point of use."

The three thermoelectric units, strapped together to provide common hot and cold junctions, draw about 16 amp and are 50 per cent efficient.

Reliable Operation Is Essential
 Because of Comera's Inaccessibility

The rest of the camera, however, is cooled by forced air at 140 F and operates at 160 F . Reliable operation despite elevated temperatures is particularly important because of the camera's relatively inaccessible location and a need for maintaining uninterrupted three-shift operation at the mill.

Much of the circuitry normally contained in a television camera was moved to more accessible boxes elsewhere on the crane. Only a $10-\mathrm{mc}$ video preamp strip was retained in the camera. Frame grid tubes, tantalum

Interior of camera. Left to right: aperture and focus controls, $10-\mathrm{mc}$ video preamp strip, and vidicon tube enclosed within the thermoelectric coolers.
capacitors and military components rated for 125 C service are used throughout. Modular construction is employed to speed maintenance.

The camera also includes motor-driven focusing and lens-aperture controls. The aperture controls respond automatically to the video signal level and adjust the lens diaphragm and vidicon target voltage to accommodate an illumination range of more than $2(0,0(0)$ to 1 . This readily covers the brightness range encountered between the white-hot soaking pit and the rest of the mill.

Other components of the television system, including the camera control unit, power supplies and voltage regulators are also designed for high-temperature operation. About one-third of the circuitry, including the synchronizing generator and portions of the power supply, are transistorized. Silicon units are specified.

The control unit is enclosed in a watertight case to exclude the ultrafine steel dust emanating from the soaking pits. Cooling is by means of a heat exchanger employing ambient air at 140 F .

Video signals are transmitted from the mobile crane to monitor viewers by slotted line and antenna probe arrangement.

Five of these television systems have been delivered by General Precision Laboratory. Initial units already installed are reported to be operating around the clock for several months between servicing. -

stops surges... saves cost!
Transient high voltages-often of unpredictable magnitude-can destroy silicon power rectifiers. Even derating rectifier cells doesn't always guarantee protection.

But here's something that does protect against destructive surges: the Vickers Captivolt, a single simple component that provides rectifier reliability, assures extended life, and eliminates expensive derating. Yet the Captivolt itself is a dependable low-cost unit easily installed by connecting across the transformer secondary supplying AC; to the rectifier. Captivolts consume less than 5 watts steadystate . . . but capture and absorb unpredictable surge energy up to 12,000 watts with 0.05 micro-second response.

Under normal steady-state operation, the Captivolt appears as a very high resistance shunted by capacitance. The capacitance protects by absorbing very fast transient wave-fronts. When a critical voltage level is reached, the normal high resistance falls abruptly to a very low value, shunting long-duration destructive voltage transients. Resistance decreases logarithmically with voltage increase. In summary, Captivolts (1) provide rectifier reliability and extended life, and (2) often save more than $\$ 50$ initial rectifier cost with a Captivolt cost of less than $\$ 3$.
l'.S Captivolts protect other circuits, too: transistors, controlled rectifiers, meters, solenoids, relays, etc.
SAMPLES IN STOCK AT MOST DISTRIBUTORS-CALL OR WRITE FOR COMPLETE INFORMATION. (Bulletin 3135-1)

EFA 2000-3

VICKERS INCORPORATED

Division of Sperry Rand Corporation

ELECTRIC PRODUCTS DIVISION

IB4I LOCUST 8treet. SAINT LOUIS 3, missouri CIRCLE 13 ON READER-SERVICE CARD

DON'T LET VOLTAGE "SPIKES" DESTROY YOUR SILICON RECTIFIERS

$\begin{aligned} & \text { Type } \\ & \text { no. } \end{aligned}$	Rated Poak Volts, Recuriont Continuous Outy ACross AC Line	Rated RMWS Yolfs. Continous Duty Across Sinusoidal AC Line	'Maximum Dissipation Avorage Watts	Price Each (Nel)
SP102 SPIO5 SP110 SP1 15 SP120 SP125 SP130 SPP140 SP150 SP160	25 50 100 150 200 250 300 400 500 600	17.5 350 100 140 175 210 280 350 420	10 12 10 17 20 23 26 32 38 44	$\begin{array}{r} \$ 180 \\ \hline 1.95 \\ 2.20 \\ 2.50 \\ 2.70 \\ 2.95 \\ 3.15 \\ 3.70 \\ 4.20 \\ \hline 4.65 \end{array}$

Convection cooling if an cooling al velocity of 600 CFM
is employed. multiply wats

[^2]

Milestones in Engineering

When the sword was still the basic personal weapon, military swordsmen from all parts of the world converged upon Toledo, Spain, for the finest swords-the famed "Toledo blades."

Soldiers whose very lives depended as much upon the quality of their weapons as upon their personal skill would settle for nothing less than the very best.

This first application of the principle of "Mil Spec" buying has been refined and tightened until, today, components intended for use in military equipment must be designed and built to meet the most exacting specifications, pass the most demanding tests, satisfy the most rigid requirements.

North Electric " 240 " 4 pole and " 260 " 6 pole sub-miniature sealed relays are precision designed and engineered to obtain maximum switching circuits in minimum space and meet specifications of MIL R-5757D at a breakthrough in price!
These heavy duty relays, which incorporate precision balanced rotary motors to withstand shock tests of 50 Gs and vibration tests of 1000 cps at 10 Gs , have a life expectancy in excess of 100,000 operations at rated load.
Continuous testing for over two years assures superior performance and maximum reliability in rigorous airborne and missile ano industrial applications. For detailed specifications, write

NORTH ELECTRIC COMPANY
157 S. mer.rket st., galion. ohio
circie is on reader-service card

NEWS

Foxboro Ends Exclusive Pact With RCA for Control Systems

Foxboro Co. of Foxboro, Mass., has severed its exclusive arrangement with Radio Corp. of America for joint development of industrial computer-control systems. The decision was announced in a statement that Foxboro has sent to its customers.

Foxboro, an instrumentation manufacturer, said it had become "sobered" by the many large technical and economic roadblocks to computer control of industrial processes. The company had been cooperating with RCA's Industrial Computer Div. in nearby Needham, Mass.

Now, Foxboro says, it will be freer to pursue more immediate, smaller-scale analog computer solutions to industrial automation.

Another reason for the Foxboro move, industry sources speculate, is that the company will now be in a position to sell its "sub-lomp" equipment to other digital process-control computer manufacturers.

New National Group to Study Business Data Processing

A National Committee for Business DataProcessing is being formed under the sponsership of the Association for Computer Machinery. Its fields of interest will include business theory, operations research, management gaming, simulation and forecasting techniques, as well as the more usual business data-processing functions.

The association said that the formal organization of the committee would be completed at its September meeting in Los Angeles.

Mobile Ground Surveillance Radar Will Be Modified AN/TPS-25

The Army's first mobile radar set for ground surveillance is under development by Hazeltine Corp. as n modification of the shelter-housed AN/TPS-25 set now in operational use.

Conversion of the Hazeltine-built AN/ TPS-25 for use on tracked amphibious armored personnel carriers will involve three alterations: replacement of fixed antenna by a 25 -ft telescoping antenna mast for "quick look" capability at longer range; a smaller plotting board; and addition of an ac to de
converter for the $115-\mathrm{v}, 400$-cycle, gas-driven power unit.
The telescopic antenna will enable the set to detect moving targets at a range of more than 11 miles. At closer range, the set has the capability of distinguishing between the walk of a man and a woman up to a mile away.

Device Measures Blood Volume With Improved Speed and Accuracy

A new instrument, the Volemetron, measures blood volume-or the volume of plasma or red cells-quickly and accurately. Regarded as a boon to surgeons, the instrument obviates the usual guess-work as well as the inaccurate method of weighing blood-soaked sponges (which does not account for blood on the patient or on the drapes).

Accurate to within 5 per cent, this transistorized product of Atomium Corp., a Waltham, Mass., affiliate of Perkin-Elmer Corp. uses well-known dilution-monitoring techniques. A measured amount of radioactive iodine is injected into the blood and allowed to circulate for a few minutes. After it is diluted in the blood stream, a sample of the isotope-diluted blood is placed in the Volemetron. A calibrated meter shows the blood volume in about a minute.

The instrument should help surgeons avoid the dangers of over or under-replacement of lost blood. While the Volemetron can be used by relatively unskilled personnel, earlier isotope-dilution measurements required highly skilled personnel with very complex instrumentation. The instruments were normally located in laboratories remote from operating rooms.

Transistorized digital circuitry counts oulput of scintillation counter which gives indication of radioactivity in patient's blood sample. Accurate measurements are first made of background radiation in patient's blood before he receives injection of measured dose of radioactive iodine.

Whether you're developing an advanced servo system, verifying inertial guidance performance, checking out aircraft instrumentation or testing radar subassemblies - the chances are you need a convenient source of 400 cycle power. With MRC's prtable frequency changer, $\mathrm{f}^{(0)}$ cycle service is within plug-in distance of the nearest 115 volt AC outlet. There's no more need to depend on limited availability of built-in 400 cycle utility service - where troublesome line fluctuations can disrup sensitive tests. The solid state converter weighs only 30 lbs ., yet provides 100 VA of well regulated sinewave power-free of distortion and unaffected by line or load changes. Its static, solid state design assures cool, efficient and silent operation For added flexibility, it's packaged for either bench or rack mounting. Let this versatile unit assure you of dependable 400 cycle service . . . anywhere!

MRC MODEL 46-130-O SOLID STATE FREQUENCY CHANGER. PRICE SSAS. (silightly higher with case and meters)
SPECIFICATIONS

Input	105 to 130 VAC .47 to 1000 CDS .2 .5 amps max
Output	115 volts. 400 CDS . single phase sinewave; voltage adiustable from 105 to 130 volts; 100 volt amp continuous duty. 150 volt amp intermittant duty
Output Regulation	$\pm 1 \%$ over full line or load change: response time 30 milliseconds inominal)
Harmonic Distortion	less than 2% under severest line and load conditions
Frequency Stability	$\pm \frac{1}{4} \%$ over mar. line and load change. or over ambient temperature range (0^{\prime} 10 $40^{\circ} \mathrm{C}$)
Frequency Setting	$400 \cos \pm 0.5{ }^{\circ}$ 。
Synchronization	25V RMS. 2000 ohms impedance: range 390 to 410 cps
Dimensions	$3 \frac{1}{2}{ }^{\circ} \times 19^{\circ} \times 10 \mathrm{t}^{\text {" }}$ max. depth (for standard rack mounting)
Weight	spprox. 30 lbs . (rack mountingl; 37 lbs , bench mounting)
Design features	automatic short cireuit and overload protection; printed circuits. optional extras: easy vision panel meters and console case

Write today for descriptive literature

MAGNETIC RESEARCH CORPORATION
3160 WEST EL SEGUNDO BOULEVARD. HAWTHORNE, CALIFORNIA CIRCLE 15 ON READER-SERVICE CARD

Milestones in

Engineering
When the sword was still the basic personal weapon, military swordsmen from all parts of the world converged upon Toledo, Spain, for the finest swords-the famed "Toledo blades."

Soldiers whose very lives depended as much upon the quality of their weapons as upon their personal skill would settle for nothing less than the very best.

This first application of the principle of "Mil Spec" buying has been refined and tightened until, today, components intended for use in military equipment must be designed and built to meet the most exacting specifications, pass the most demanding tests, satisfy the most rigid requirements.

North Electric "240" 4 pole and "260" 6 pole sub-miniature sealed relays are precision designed and engineered to obtain maximum switching circuits in minimum space and meet specifications of MIL R-5757D at a breakthrough in price!

These heavy duty relays, which incorporate precision balanced rotary motors to withstand shock tests of 50 Gs and vibration tests of 1000 cps at 10 Gs , have a life expectancy in excess of 100,000 operations at rated load.

Continuous testing for over two years assures superior performance and maximum reliability in rigorous airborne and missile and industrial applications. For detailed specifications, write

NORTH ELECTRIC COMPANY
157 S. MIRRKEI' St.. GALION. OHIO
circle if on reader-service card

NEWS

Foxboro Ends Exclusive Pact With RCA for Control Systems

Foxboro Co. of Foxboro, Mass., has severed its exclusive arrangement with Radio Corp. of America for joint development of industrial computer-control systems. The decision was announced in a statement that Foxboro has sent to its customers.

Foxboro, an instrumentation manufacturer, said it had become "sobered" by the many large technical and economic roadblocks to computer control of industrial processes. The company had been cooperating with RCA's Industrial Computer Div. in nearby Needham, Mass.

Now, Foxboro says, it will be freer to pursue more immediate, smaller-scale analog computer solutions to industrial automation.

Another reason for the Foxburo move, industry sources speculate, is that the company will now be in a position to sell its "sub-loop" equipment to other digital process-control computer manufacturers.

New National Group to Study Business Data Processing

A National Committee for Business DataProcessing is being formed under the sponsership of the Association for Computer Machinery. Its fields of interest will include business theory, operations research, management gaming, simulation and forecasting techniques, as well as the more usual business data-processing functions.

The association said that the formal organization of the committee would be completed at its September meeting in Los Angeles.

Mobile Ground Surveillance Radar Will Be Modified AN/TPS-25

The Army's first mobile radar set for ground surveillance is under development by Hazeltine Corp. as a modification of the shelter-housed AN TPS-25 set now in operational use.

Conversion of the Hazeltine-built AN/ TPS-25 for use on tracked amphibious armored personnel carriers will involve three alterations: replacement of fixed antenna by a 25 -ft telescoping antenna mast for "quick look" capability at longer range; a smaller plotting board; and addition of an ac to dc
converter for the 115-v, 400-cycle, gas-driven power unit.
The telescopic antenna will enable the set to detect moving targets at a range of more than 11 miles. At closer range, the set has the capability of distinguishing between the walk of a man and a woman up to a mile away.

Device Measures Blood Volume With Improved Speed and Accuracy

A new instrument, the Volemetron, measures blood volume-or the volume of plasma or red cells-quickly and accurately. Regarded as a boon to surgeons, the instrument obviates the usual guess-work as well as the inaccurate method of weighing blood-soaked sponges (which does not account for blood on the patient or on the drapes).

Accurate to within 5 per cent, this transistorized product of Atomium Corp., a Waltham, Mass., affiliate of Perkin-Elmer Corp. uses well-known dilution-monitoring techniques. A measured amount of radioactive iodine is injected into the blood and allowed to circulate for a few minutes. After it is diluted in the blond stream, a sample of the isotope-diluted blood is placed in the Volemetron. A calibrated meter shows the blood volume in about a minute.

The instrument should help surgens avoid the dangers of over or under-replacement of lost blood. While the Volemetron can be used by relatively unskilled personnel, earlier isotope-dilution measurements required highly skilled personnel with very complex instrumentation. The instruments ware normally located in laboratories remote from operating rooms.

Transistorized digital circuitry counts output of scintillation counter which gives indication of radioactivity in patient's blood sample. Accurate measurements are first made of background radiation in patient's blood before he receives injection of measured dose of radioactive iodine.

Whether you're developing an advanced servo system, verifying inertial guidance performance, checking out aircraft instrumentation or testing radar subassemblies - the chances are you need a convenient source of 400 cycle power. With MRC's portable frequency changer, 400 cycle service is within plug-in distance of the nearest 115 volt AC outlet. There 's no more need to depend on limited availability of built-in 400 cycle utility service - where troublesome line fluctuations can disrupt sensitive tests. The solid state converter weighs only 30 lbs ., yet provides 100 VA 's of well regulated sinewave power-free of distortion and unaffected by line or load changes. Its static, solid state design assures cool, efficient and silent operation. For added flexibility, it's packaged for either bench or rack mounting. Let this versatile unit assure you of dependable 400 cycle service . . . anywhere!

MRC MODEL 46-130-O SOLID STATE FREQUENCV CHANGER. PRICE SSAS. (slightly higher with case and meters)
SPECIFICATIONS
Input $10510130 \mathrm{VAC} .47101000 \mathrm{cps}, 2.5$ amps man
Output $\quad 115$ volts. 400 cDS . single phase sinewave: voltage adiustable from 105 to 130 volts: 100 volf amp continuous duty. 150 volt amp intermittant duty Output Regulation $\quad \pm 1 \%$ over full line or load change: response time 30 milliseconds (naminal)
Harmonic Distortion less than 2% under severest line and load conditions

| Harmonic Distortion | less than 2% under severest line and load conditions |
| :--- | :---: | :--- |
| Frequency Stability | $\pm y^{\prime}$ over max. line and load change. or over ambient temperature range 10° to $40^{\circ} \mathrm{C}$) |
| Frequency Satting | $400 \mathrm{cDS} \pm 0.5 \sigma^{\circ}$ | Synchronization 25V RMS. 2000 ohms impadance: range 390 to 410 cDs Dimensions - $\quad 3 \mathrm{~s}^{\circ} \times 19^{\circ} \times 10 \mathfrak{x}^{-0}$ max depth (for standard rack mounting) Design Features automatic short circuit and overload protection; printed circuits.

Write today for descriptive literature
$M \mathrm{BC}$
MAGNETIC RESEARCH CORPORATION
3GO WEST EL SEGUNDO BOULEVARD - HAWTHORNE, CALIFORNIA CIRCLE 15 ON READER-SERVICE CARD

and does it to the tune of more than 1,600 tape-fed AMPin-cert Pin and Socket terminations per hour . . . sometimes even more, depending on operator dexterity! Lower cost. semi-skilled labor can easily handle not only the automatic termination of leads but also the loading of AMPin-cert Connector blocks. A simple insertion tool helps fill connector cavities faster than a dentist trying to get away for an afternoon of golf. When you take these advantages and add the controlled pressure crimp backed by AMP's twenty years of experience in the field of solderless termination techniques . . . you have connector performance of maximum reliability at the lowest installed cost in the industry. This is the winning combination you get with AMPin-cert Connectors . available in all sizes and configurations. Get all the facts! Write today!

AMP INCORPORATED
GENERALOFFICES: HARRISEURGG, PENNSYYL VANAA circle it on reader-service caro

NEWS

Styrofoam Antenna Can Be Built on Site

New Radar Dish Reported to Weigh

 Fifth as Much as Metal ParabolicsALIGHTWEIGHT radar antenna of styrofoam planks is designed to be machined and assembled directly at the radar site.

It is, its developer says, only one-fifth the weight of metal parabolic dishes. Transport ability and lightness are further enhanced by a novel antenna positioning device that employs a series of hydraulic jacks to steer the antenna.

The new dish was developed by Sylvania's Electronic Defense Laboratories of Mountain View, Calif. To construct it, one joins styrofoam planks into an egg-crate structure using urethane foamed-in-place seams. A computer-controlled milling machine, designed by Sylvania then automatically machines the reflector to the desired shape. For high-precision reflectors, a solid layer is first foamed-in-place over the cellular structure.

The reflective surface is then machined from this layer and is metalized by application of aluminum foil or copper mesh. A final layer of foam is then applied to protect the reflective surface and to receive the mounting plate.

Milling Maching Also Shapes

Front End of the Antenno
The front of the antenna is also contoured by the milling machine. This provides a slight amount of beam focusing, but, more important, it streamlines the antenna to reduce wind drag by as much as two-thirds over conventional parabolic reflectors, the company says.

The feed system is buried in the foam for rigid support. The outer surface is then covered with a white fiber-glass skin for weath-er-proofing and to minimize solar heating.

The computer-controlled milling machine that shapes the antenna consists of light weight, readily disassemblable parts that can be conveniently transported to the fabrication site. Antennas up to 20 ft in diameter can be fabricated with the present machine Equipment and techniques to make antennas up to 50 ft across are being developed.

Foam antenna is examined by its developer, Mack Suliteanu, engineer at Sylvania's Electronic Defense Laboratories. Semi-transparent fiber-glass mesh covering the face of the antenna forms a base for a subsequently applied outer plastic coating. Note feed horn buried in the foam. The antenna is supported by a series of hydraulic jacks that can be programed to impart any desired tracking motion to the antenna.

The computer itself is an analog instrument, programed to fabricate a given contour by inserting pre-calculated constants into a series of potentiometers.

A hydraulic positioning system replaces the conventional system of mounting rings, bearings and driving motors. The antenna is supported by four tripods, each consisting of three hydraulic jacks. Programed changes in the length of each leg, controlled by at digital computer and hydraulic servo steer the antenna through any desired search or track pattern.

Operation of the positioning system has been confirmed by manual programing, but the computer required for automatic operation is still in development.

This arrangement results in an unusual antenna motion. In a $360-\mathrm{deg}$ horizon search, for example, the antenna rolls on its edge through a full circle. In overhead tracking the reflector merely flips over between opposite horizons.

The hydraulic positioner is "much faster" than conventional antenna drives, according to a Sylvania spokesman. This is due to the inherently fast response of the hydraulic system and to the reduced inertial and gyrating loads of the foam antenna with its unusual rolling motion.

The antenna and positioning system were developed under a contract from the Army Signal Corps. - -

VITRAMON, INC. Develops Dramatically Improved Dielectric Material

$7 / y=$

ASSURE 10 TIMES BETTER PERFORMANCE AFTER A LIFE TEST 10 TIMES MORE DEMANDING!

Three years of intensive product research, and the desire to impose a more exacting quality control during production, have resulted in the development of a new porcelain "frit." Completely formulated and produced within our own plant, this high quality dielectric material, utilized for the improved "VY" Porcelain Capacitors, has produced dramatic results.

NOTE: ONered Euclusively For MIL-C-11272B Requirements.

Box 544, Bridgeport 1, Conn.

BEFORE YOU BUY ANY MORE TRANSISTORS,

MAKE SURE THEY HAVE CERAMETERM*BASES. THIS WILL SOLVE THREE TOUGH PROBLEMS

1. Soldering heat that causes ordinary glass to crack. 2. The problem of glass insulation cracking through shock or impact. 3. The problem of leakage due to glass insulation failure when bending or adjusting pins. Cerameterm terminals were specially developed for super reliability on severe high-performance applications for transistor bases, diodes, rectifiers, relays, and capacitors. Exceed Mil-Specs. Can take 11,000 psi shearing stress without failure. Provide vacuum-tight seal. Ideal for encapsulated devices.

> OTHER APPLICATIONS FOR PROBLEM-SOLVING CERAMETERM TERMINALS

Terminal

Multiple header

Above are a few examples of how Cerameterm is applied to a wide variety of electronic components. We also design to specific needs in such problem areas as transformers, condenser banks, relays, and similar high-performance electronic equipment.
eatontown, n. J.

Nationwide Data Loop Speeds Airline Work

1,000-Station Centralized System

 Uses Both Fast and Slow Bit RatesANATIONWIDE data-processing loop linking all ticket agents of United Air Lines to a central computer has been put into operation.

The loop has:

- A main trunk in which the data are transmitted at 1,000 bits per sec.
- Secondary lines, which feed into the main trunk at 75 bits per sec. Once the information reaches the main trunk, however, it is speeded to 1,000 bits per sec.

The system handles flight reservations from 1,000 stations around the country to a central nrocessing terminal in Denver. Agents in najor cities-about 80 per cent of all the agents-are linked directly to the fast trunk, and those in smaller cities to the slower lines. Use of the slower lines permits a considerable savings in operating costs.

The loop, called Instamatic, was designed for United Air Lines by the Teleregister Corp. of Stamford, Conn. Data communication equipment was constructed by North American Philips Co., Inc., of New York City.

Central Units Include Trunk

Terminal, Computer and Memory
The electronic equipment in the system includes a Central Trunk Terminal in Denver and a series of concentrators along two loops running east and west from Denver. Each loop is composed of two telephone trunk lines that carry traffic at the rate of 1,000 bits per sec in opposite directions.

A central processing computer and memory storage unit is also in Denver.

The central terminal links the trunk lines with the processor. Equipment at the terminal regulates information going into and out of the computer, handles the reception and transmission of traffic through the trunk lines, and detects errors in messages by applying horizontal and vertical parity checks.

Messages concerning such information as availability of space on a certain flight are generated and received at agent sets. These

Map of western portion of Instamatic flight-reservation network shows (1) Concentrator, (2) High-speed trunk line, (3) Low-speed line, (4) Distant Central Office Transceiver, (5) Keyset Multiple Selector, and (6) Agent set.
sets also contain printing units on which reservation confirmation information and cancellations are printed.

At the concentrators, messages are handled and operations carried out at the rate of 54,000 per hr, Philips says. The concentrators along the trunk lines continually read the addresses of all messages passing through the circuit, determining whether they are for agent sets under their control or are to be forwarded. And they check them for errors.

11 Switching to Spare Unit

Possible in Case of Failure
Concentrators also answer test and supervisory messages from the control center in Denver. Finally, if necessary, they can switch traffic to a spare unit should there be a mechanical or electrical failure.

Theoretically ticket agents can receive information about the availability of seats on a given flight up to a year in advance. The average elapsed time from the moment an agent on the main trunk sends the question until he receives an answer from the central terminal is 1 sec . Response time on the secondary lines is slightly longer, owing to the time lag in storage and retransmission. Here it is about $5-1 / 2$ sec.

Engineers have included in the system provisions for redesign and the addition of other services. These could include maintenance of passenger records, fare computations, flight-crew schedules, and anything else to insure a high operational speed. -

ANOTHER BENDIX FIRST! 120-VOLT, $110^{\circ} \mathrm{C}$. DAP TRANSISTORS

Exclusive! Available with Cerameterm* terminals that set new reliability standards

Here's important news for you if you're a design engineer. New Bendix 10- and 25-amp DAP ${ }^{\text {® }}$ diffused alloy power transistors switch high currents in microseconds. They also offer low input resistance for increased circuit stability over a temperature range from $-60^{\circ} \mathrm{C}$. to $+110^{\circ} \mathrm{C}$.
That's not all you get with these new DAP transistors. They're also available with new Cerameterm (ceramic-metal terminal) bases specially developed by Bendix for extra reliability in severe applications demanding high performance.
Only Bendix brings you all these advantages plus many more . . . that open the door wide to new design ideas and applications. Write for full details.

semiconductor products

 Red Bank Division hotmdel, new jersey

Main Office: South Street, Holmdal, NJ.—Phone: SHadyside 7.5400-TWX Holmdal NJ 1388 - Naw England Office: 114 Waltham, Lexingion, Mans, - Phoner VOlumiaer 2-7650

 Export Office: Bendix Infernational, 205 E . 42 2nd Streot, Now York 17. N.Y. - Phono: MUrray Hill 3.1
Stocting Distribuors-Contant nearost sales office for name of local distributor. CIRCLE 19 ON READER-SERVICE CARD

FM and analog testing, RF or closed circuit data storage with Mincom reliability - all in the day's work for this superb, all-purpose general instrumentation system: the Mincom G-100 Magnetic Tape Recorder / Reproducer. Direct response is 200 cps to 300 kc at 60 ips . FM response at 60 ips is dc to 20 kc (broadband), dc to 10 kc (standard). Fourteen tracks in one rack. All-transistored card system record / reproduce modules, interchangeable for FM or analog. Greater dynamic range, built-in calibration, lower power requirements. Interested? Write for complete specifications.

NEWS

Twofold Rise Seen In Consumer Sales

Executive Predicts an Industry Volume of $\$ 21$ Billion by 1970

C ONSUMER electronic sales will double in the next decade-from $\$ 10.2$ billion last year to $\$ 21$ billion by $1970-$ W. Walter Watts, chairman of RCA Sales Corp., told the June 19-20 Chicago Spring Conference on Broadcast and TV Receivers.

Among the new products to be offered in the near future, he said, are multiplex adapters to receive the newly approved fm stereo broadcasts. More than 75 per cent of present fm stations have indicated they will be broadcasting stereo within a year or two.

Color TV, in which RCA pioneered, for many years, Mr. Watts said, is now included in the marketing plans of almost all major TV manufacturers. Closed-circuit TV for industrial uses and educational TV offer additional sales areas for the TV'set supplier, he added.

Other prospects listed by the electronic executive included transistorized TV sets, electronic air-conditioners and home videotape recorders. These await clever ideas by design engineers, he said.

Various approaches to the design of multiplex adapters were discussed at the conference. Major manufacturers are ready to supply adapters that are either self-powered or obtain power from the basic fm tuner or amplifier chassis, it was indicated. Several one-tube and two-tube schemes have been devised, it was brought out, but most manufacturers prefer to field-test their units rather than risk consumer drop in interest following hasty, premature product delivery.
The radio-TV industry has long awaited
Table 1. Per Cent Tube Failures by Year and by Circuit Application

Circuit	July to July Test					
	$\begin{aligned} & 1954 \\ & 1955 \end{aligned}$	$\begin{aligned} & 1955 \\ & 1956 \end{aligned}$	1956	$\begin{aligned} & 1957 \\ & 1958 \end{aligned}$	$\begin{aligned} & 1958 \\ & 1959 \end{aligned}$	$\begin{aligned} & 1959 \\ & 1960 \end{aligned}$
Horiz. Defl.	25	34	17	10	10	5
Amp. Defl. Vert. Del						
Amp.	25	29	16	3	5	1
Damper	33	17	9	15	9	5
VHF Amp.	22	18	7	12	10	${ }_{12}^{5}$

ELECTRONIC DESIGN • July 5, 1961

Table 2. Per Cent Tube Failure By Cause and Year

| Cause | 1955 | 1956 | $\frac{1957}{}$ | $\frac{1958}{}$ | 1959 | 1960 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Open
 Heater | 1.86 | 1.775 | 1.025 | 1.17 | 0.73 | 0.725 |
| Shorts | 2.02 | 1.17 | 1.19 | 0.935 | 1.08 | 0.83 |
| Arcing | - | 0.72 | 0.22 | 0.56 | 0.34 | 0.76 |
| Gas | 1.50 | 0.82 | 0.29 | 0.14 | 0 | 0 |
| Other | 1.35 | 1.37 | 1.20 | 1.5 | 1.45 | 1.3 |

stereo fm approval as a boom to a saturated and dropping TV market, conferees said privately. Pessimists were wary of rushing into production and delivery with out adequate field experience.

Strides in receiving tube reliability were outlined by a company applications engineer, E. H. Boden. In 1954, he said, Sylvania began a reliability study TV receiver tubes. The tubes were operated in various manufacturers' sets under $130-v$ ac input for 50 min , turned off for 10 min and then turned on again. This cycle was repeated each hour for $1, j 00 \mathrm{hr}$. Mr. Boden noted that 59 per cent of the tube failures occurred in five circuits: horizontal-output, damper, vertical deflection-amplifier, rf-amplifier and uhfoscillator.

From 1950 to 1960 , he said, horizontalamplifier failure was reduced from 34 per cent to 5 ; vertical-amplifier from 29 per cent to 1, and rf-amplifier from 22 to 5 per cent (see Table 1 and 2). Tubes exhibiting no failure after 1500 hr at $130-\mathrm{v}$ ac cycling, increased from 38.5 to 72.5 per cent. From tests comparing the life of single and double-section tubes used in similar applications, Mr. Boden reported, Sylvania concluded that no serious difference in reliability was noted.

Pigeon Wired for VHF Tracking

Miniature vhf transmitter riding piggyback on this homing pigeon was used to track the bird for 25 miles. The $140-\mathrm{mc}$, crystal-controlled transmitter, powered by four mercury cells, delivers about 1 mw to a modified half-wave dipole antenna. The 5 -oz transmitter package was developed by American Electronics Laboratories for an animal homing instinct study of the Office of Naval Research

THE TUNG-SOL LINE OF HIGH-POWER GERMANIUM TRANSISTORS

- WIOELY INTERCHANGEABLE MORE FLEX IBLE IN APPLICATION UNIFORMLY RELIABLE For several years Tung.Sol has been manufacturing high power germanium transistors to the industry's most exacting standards of electrical and mechanical reliability.
They have proved themselves efficient and fully reliable in countless installations, providing rugged, long-life perform ance for equipment in commercial and military use.
As further proof of peak performance, the fact may be cited that Tung-Sol's complete line of high-power transistors in cludes the JAN 2N174 and USA 2N1358, fully inspected and guaranteed to their respective MIL specifications.
The Tung.Sol line offers widest applicability in high-power amplifiers. DC-to-AC converters, DC-to-AC inverters, regu lated power supplies, motor controls, servo amplifiers, relay drivers and high-power switches.
Designed for wide interchangeability, they may be specified for new, improved equipment. Their features of vacuumtight, copper-to-copper "Cold.Welded" sealing increase dcsign flexibility and make them more reliable. Stud-mounted single-end construction, with solid-lug terminals, simplifies
installation in all chassis and allows sufficient heat-sink design. Ask your Tung-Sol representative for full technical details, or write: Tung-Sol Electric Inc., Newark 4, N.J. Twx:NK 193.

TUNG-SOL HIGH-POWER GERMANIUM TRANSISTORS

maximum antimas (2800)					trpical values (2800)			
TVAE	$\begin{aligned} & \text { Vee } \\ & \text { velte } \end{aligned}$	$\begin{aligned} & \text { vee } \\ & \text { vone } \end{aligned}$	${ }^{16}$	9]	$\begin{aligned} & \operatorname{mix} . \\ & \operatorname{losen} \\ & \ln 0 \end{aligned}$	Hes	Ree	
${ }^{2 N 173 .}$	-80	-60	${ }^{18}$	100	8	82	10	-
$2 \times 170^{\circ}$	-70	-80	18	100	-	87	10	-
2N174A	-70	-80	18	100	-	97	10	-
$2 \mathrm{2N277}$	-40		188	100 100	8	62	10 10	8
2N270 2N441	-480	-80	188	100 100	:	82	10	8
${ }_{2} \mathbf{N 4 4} 4$	-480	-80	18	100	:	80	10	-
2 N 448	-80	-80	18	100	-	so	10	.
2 N 1089	-90	-00	18	100	-	B2	10	.
2 21100	-a	-100	18	100	-	87	10	,
201889 ${ }^{\text {a }}$	-70	-80	18	100	-	37	10	.
2 21412	-80	-100	18	100	-	17	10	.
2 m 1970	-80 i1)	. 100	10	100	4	29	10	.

techmical absibtance io available thmouen the followine gale

5. TUNG-SOL

NEWI "off the shelf' Line BERLOX.

TRANSISTOR HEAT SINKS

IF YOU USE TRANSISTORS . . . a standard "Off the Shelf" Line of BERLOX beryllia heat sinks is available in JEDEC-TO Numbers: $3,5,8,9,11,12,16,18,33,38$ and 39 . Extremely high thermal conductivity plus excellent dielectric properties offer these important advantages:

- Increased Transistor life and output
- Freedom from outgassing
- Extremely resistant to shock, vibration and moisture
- Infinite shelf life

THERMAL PROPERTIES

Thermal Conductivity $0.5 \mathrm{cal}^{2} / \mathrm{cm}^{2}$. sec. ${ }^{\circ} \mathrm{C}-\mathrm{cm}$ Thermal Expansion $5.8 \times 10^{-\circ} /{ }^{\circ} \mathrm{C}$

MECHANICAL PROPERTIES

Tranverse Bending Strength 25,000 psi Compression Strength 200,000 psi

DIELECTRIC PROPERTIES

Dielectric Constant $1 \mathrm{mc} 7.0,10 \mathrm{mc} 5.8,8500 \mathrm{mc} 6.0$
Dielectric Loss Tangent 1 mc less than $.0005,10 \mathrm{mc}$ less than $.0005,8500 \mathrm{mc} .0008$ Electrical Resistivity-greater than $1015 \mathrm{ohm}-\mathrm{cm}$ Dielectric Strength-greater than 300 volts $/ \mathrm{mil}$

OTHER BERLOX beryllia STOCK ITEMS available include: Thermocouple protection tubing, swageable insulator beads, crucibles, combustion boats. Custom, precision fabricated components such as microwave windows, circuit substrates and insulators.

See the BERLOX Line at the WESCON SHOW . . . Booth 4624

national bervilia corporation
First $\&$ Haskell Avenue, Haskell, New Jersey

- Gentlemen: Send me Technical Data on: (please check) - Transistor Heat Sinks \qquad Other \qquad
Name
Position
Company
Street
City
Zone_State
CIRCLE 22 ON READER-SERVICE CARD

WASHINGTON REPORT

The proposed all-out acceleration of the National Space Program puts NASA in the market for a wide range of professional and technical skills. Of particular concern to the agency is its need for personnel to fill key professional and administrative posts, carrying responsibilities for which industry is willing to pay from 25 to 100 per cent higher salaries.

NASA is now seeking a bigger allotment of grades eligible for salaries above the ceiling for career Government service. Its present authorization is for 290 such positions at salaries up to $\$ 19,000$, with 17 of them earmarked for a special top bracket of $\$ 21,000$. The agency has requested Congress to authorize 135 more "excepted" positions for a total of $42 \overline{5}$, of which 30 would be in line for the $\$ 21,000$ maximum. In order to hold key personnel, NASA would reserve some of the new salary authorizations for its present staff. But, many of the new posts would have to be filled from the outside.

The agency is currently engaged in a recruiting drive to fill some 500 jobs ranging from technicians to experienced scientists. Its campaign has included the college campuses, where last year NASA representatives interviewed 3,000 grads in competition with industry's talent scouts. In fiscal '62 a 4,000 increase in personnel is projected.
Industry's Space Work Load will increase sharply along with NASA'S, if, as seems likely, Congress goes along with the President's recommendation that the nation mount a crash program to gain undisputed leadership in lunar and planetary exploration. It will be primarily an R\&D workload, with heavy demand for top-flight scientists.

Congress willing, the space agency's estimated expenditures in fiscal ' 62 will total an estimated $\$ 1.7$ billion for an increase of 43 per cent over the original budget submitted by the outgoing Eisenhower administration. Of this amount, almost $\$ 1.3$ billion is earmarked for R\&D, with the man-in-space program getting the overwhelming share.

Space agency procurement officials estimate that at least 80 per cent of NASA'S R\&D spending will be placed under contract with industry, the universities and other private organizations. These officials are now at work revising procedures in an effort to reduce time lags in selecting contractors and conducting contract negotiations.
AIR FORCE TO PUSH DATA AUTOMATION
Incentive type CPFF contracts have been used to a limited potential of data automation techniques is the Air Force decision to set up an office to coordinate and foster improvements in automated data-processing systems for both administrative and command and control functions.

The new activity, which will become operational Aug. 1 under the Air Force Comptroller's Office, will evaluate the data requirements and existing data-processing facilities of all administrative
more precisely, to foster development of new system design concepts and to seek improvements through the re-engineering of existing facilities.

IN SEARCH OF COMPETITION

Top Defense Dept. officials have promised Congress an intensive new effort to curtail sole-source procurement, which is chiefly responsible for the fact that 60 per cent of military contracting is noncompetitive.

The growing complexity of military hardware and the frequent need for telescoping development and first-run production to shorten lead time inevitably have fostered single-source buying. But while award of first-run production to development contractors is considered a justifiable expedient in most cases, defense officials readily acknowledge that the services should seek competition for follow-on production.
Delayed Delivery of Technical Data and manufacturing drawings accounts for a good deal of the failure to shift promptly from singlesource to competitive buying. Thus the Pentagon intends to ride herd on procurement agencies to see that the Government gets the data to which it is entitled in time for competitive re-procurement. Contractors may be subject to financial penalties for failure to meet contract provisions on this score.

Such action, in turn, will require further steps to insure that the data ordered by the procurement agencies are adequate for re-procurement. Studies have indicated considerable laxity in specifying the Government's rights to data during contract negotiations.

In some cases, data are unavoidably incomplete because contractors withhold "proprietary" information. However, regulations defining such information are currently under review, and indications are that contractors will be subject to further restrictions on what they can claim as trade secrets.

Despite all efforts to correct deficiencies, some sole-source procurement will persist, even though adequate technical data and drawings are available, for the reason that quality cannot otherwise be assured.
NEW COST REDUCTION TACTICS
The Pentagon has instituted what amounts to an R\&D program on contracting techniques. It is investigating all sorts of schemes to achieve tighter control of costs under the controversial cost-plus-fixed-fee contracts, which now account for 42 per cent of military expenditures, compared with 24 per cent only five years ago.

CPFF contracts, like sole-source procurement, started as an expedient but rapidly became common practice owing to the difficulty of projecting costs for complex weapons systems and to the pressure for concurrent development and production.

Incentive type CPFF contracts have been used to a limited extent in an effort to capture the profit motivation and risk-taking inherent in fixed-price contracts. Defense officials now want to make greater use of incentive contracting. But they also want to provide a wider range of incentives and stiffer penalties, as well as more effective means of evaluating technical and cost performance.
Imaginative. If Nothing Else, is is proposed new form of incentive contract dubbed the "cost-plus-award-fee contract." It would provide that a board of assessors evaluate a contractor's technical and cost performance during the life of a contract and determine his exact fee on completion of the work.

Sprague type 73Z1 core-transistor DECADE COUNTERS

Sprague's Special Products Division, the largest and most complete facility in the magnetics industry, offers a simple yet versatile, low-cost yet reliable component for counter applications. Counting to speeds of 10 kc , the 73 Zl decade counter provides an output signal for every 10 input pulses, then resets in preparation for the next cycle. For higher counting, two or more counters may be cascaded. Typical characteristics are shown in the following table:

CHARACTERISTIC	INPUT	OUTPUT
Amplitude	1.5 to 8 volts	6.5 volts min.
Pulse Width	$1 \mu \mathrm{sec}$ min.	$50 \mu \mathrm{sec}$ nom.
Impedance	100 ohms	20 ohms

Utilizing two rectangular hysteresis loop magnetic cores and two junction transistors to perform the counting operation, the $73 \mathrm{Z1}$ counter is encapsulated in epoxy resin for protection against adverse environmental conditions. It has five terminals-B+(12v $\pm 10 \%)$, input, output, ground, and manual reset.

The 73 Z 1 decade counter is available as a standard item. However, "customer engineered" designs can be supplied when other counting cycles, speeds, and package configurations are required for special applications.

Other Special Products Division components for the digital equipment industry include: LOGILINE $5 \mathrm{mc} / \mathrm{s}$ digital circuits; $1 \mu \mathrm{sec}$ access time memory; magnetic shift registers and logic components; computer pulse transformers; switching transformers; precision toroidal inductors.

For complete sechnical data or application assistance on the 7321 counter or other Sprague components, write to Special Products Division, Sprague Electric Co., 347 Marshall Street, Nortb Adams, Massachwsetts.
the mark of reliability

COMINCO

ULTRA-PURE
METALS AND
ALLOYS
ALUMINUM
ANTIMONY
ARSENIC
BISMUTH
CADMIUM
GOLD
INDIUM
LEAD
SIL VER
TIN
ZINC
*
COMPOUND SEMICONDUCTORS
INDIUM
ANTIMONIDE
*
STANDARD
FORMS
INGOTS
BARS
RODS
RIBBON
SHEET
SHOT
POWDER
WIRE
*
PREFORMS
DISCS
DOTS
SQUARES
SPHERES
WAFERS
WASHERS
*

CHEMICALS

SALTS
SOLUTIONS

ELECTRONIC MATERIALS

When you specify

COMINCO INDIUM ANTIMONIDE

you can get:

- Electron Mobilities up to $700.000 \mathrm{~cm}^{2} /$ volt $-\sec \left(78^{\circ} \mathrm{K}\right)$
- Net Carrier Concentrations from 10^{14} to $10^{18} \mathrm{~cm}^{-3}\left(78^{\circ} \mathrm{K}\right)$
- Single and Polycrystalline forms doped to your specifications
- Shapes as versatile as your needs - circles - rings - rectangles bars - made to precise tolerances

plus

SPECIAL PACKAGING

To prevent in-transit da mage to electronic properties, ingots of Cominco Indium Antimonide are sealed in polyethylene and shipped in shockproof containers. Fabricated shapes are suspended in an inert liquid.

plus

RESEARCH SERVICE

Our research and development program is continually expanding the range of Cominco Indium Antimonide products you can order. We invite your enquiries on advance specifications.

Contact COMINCO first for the widest range of high quality INDIUM ANTIMONIDE products available.

Write to:

COMINCO PRODUCTS, INC.
ELECTRONIC MATERIALS DEPARTMENT Spokane, Washington
933 W. Third Ave. Phone: Rlverside 7-7103 TWX:SP311 clacte 24 on reader-senvice card

NEWS

400-Cps Phase-Shift Standard Useful from 0 to 180 Deg

Designers at the National Bureau of Standards, Washington, D. C., have designed a phase-angle master standard said to be capable of measuring phase shift to within 0.01 deg at 400 cps . It can do this reportedly from 0 to 180 deg .

The instrument consists of 12π-sections each of 14.6 deg , and three $4.3-\mathrm{deg} \pi \mathrm{sec}-$ tions, plus switching arrangements that permit any combination of sections to be connected as a delay line. It was considered desirable, the bureau reports, to provide several different phase-shift steps and a continuously variable fine control.

The input to the delay line is used as part of an RC network that incorporates 10 capacitor steps, each giving 0.44-deg of phase shift.

According to NBS, all π_{π}-sections must be exactly adjusted to have the same characteristic impedance in order to prevent reflections and to make the phase shift put in by the RC circuit independent of the number of π-sections connected.

Similar phase-angle standards could be made for higher audio frequencies, but the upper limit in frequency would probably be about 20 kc , the bureau believes. At higher frequencies, reportedly, stray capacitance introduced by connecting and switching leads might prove troublesome. However, it might be feasible to use the same master standard over a 2 -to- 1 frequency range by readjustments on the π-sections and termination for each frequency.

Phase-angle master standard designed by National Bureau of Standards operates continuously from 0 to 180 deg at 400 cps with 0.01 -deg accuracy. One of the designers, H. N. Cones, adjusts a mercury conlact for a portion of π-section used as delay line.

AMERICAN MACHINE \& FOUNDRY COMPANY
1101- North Royal Street. Alexandria, Virginia

* Wrife foday for further information
and spacifictions

Contact Redundancy in New UNION Crystal Case Relays

The UNION 2-pole double throw General Purpose Crystal Case Relay is designed to consistently meet the requirements of Mil-R-5757D and Mil-R 5757 10. Its essential features . . . from mininıum size to optimum reliability
 rotary armature provides maximum resistance to severe shock and vibration.

This small 4-PDT-10-Ampere relay is currently available with II5VAC and various DC operating voltages. Various mounting styles are provided. Write for bulletin 1069.
permit it to be used in aircraft, guided missiles, shipboard and ground control electronic equipment.
A unique torsion-wire armature suspension system and a rugged all-welded frame construction provide a high level of vibration and shock immunity. Contact redundancy, which assures reliability in dry circuit and higher level contac loads, is provided through the use of bifurcated contacts.
Available with $0.2^{\prime \prime}$ grid-spaced header or "S" type header, with various mountings, terminals, and operating voltages. Write for Bulletin 1064.

Why UNION Relays Are So Denendable

There's a good reason why our relays are the standard for reliability. For years, we ${ }^{\text {ve }}$ been building tough. reliable relays for use in airborne and guided missile electronic equipment and similar vital applications where perfect operation under severe environmental conditions is mandatory
Our engineers created a compact 6-PDT miniature relay with just three major assemblies . . . instead of a fistful of small parts. This was accomplished by using a balanced rotary-type armature that provided a maximum resistance to the severe shock and vibration environment of aircraft and guided missiles. The rotary principle of operation is utilized in all our relays.
We have a reputation for building reliable electronic components and we intend to maintain our tradition for building reliable relays. And we supply these quality relays in quantity. Stocks are now available for prototype requirements in New York, Pittsburgh, Dallas and Los Angeles

For additional information, write for Bulletin 1017 or call Churchill 2-5000 in Pitrsburgh.
MEMBER OF THE NATIOMAL ASSOCIATION OF RELAY MAMUFACTURERS
UN O N S W ITCH \& S G G NAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 1B, PENNSYLVANIA

Space Center Awards $\$ 7$ Million In Work Contracts in a Month

More than $\$ 7$ million in contracts were awarded in April by the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration, Huntsville, Ala. Manufacturers and Government agencies in 16 states and the District of Columbia shared in the awards.

Of the total, more than $\$ 2$ million in work went to industrial concerns in Texas; $\$ 2$ million to private and Federal groups in Alabama, Florida, Georgia and Tennessee; $\$ 800,000$ in California; more than $\$ 1 \mathrm{mil}$ lion in Connecticut, Massachusetts, New Jersey, New York, Pennsylvania and Washington, D. C., and more than $\$ 300,000$ in Indiana, Illinois, Michigan, Ohio and Wisconsin.

The contracts to manufacturers ranged from $\$ 2,083,832$ to the Chance Vought Corp. of Dallas, Tex. - the largest single award - for 70-in. fuel and oxidizer tanks for Saturn; to $\$ 5,065$ to the Interelectronics Corp. of New York City for transmitters.

Epsco, Inc., of Cambridge, Mass., has announced receipt of a $\$ 360,000$ contract from the Goddard Space Flight Center in Maryland for three pulse-code-modulation receiving stations.

Million-Bit Computer Aids Navy

This real-time computer, designated AN/USQ-20V collects, processes and evaluates naval tactical data in combat and recommends courses of action. The memory section contains 1 million bits of information. Thirty-bits, comprising a single word, can be drawn from any location in the memory in $2.5 \mu \mathrm{sec}$. The com puters are being produced by Remington Rand Univac St, Paul, Minn., under a $\$ 5,534,526$ contract.
the raw materials of progress

Big help in thinking small:

7 times more cooling power with FC-75 and FC-43!

For substantial space-saving, weight-saving reductions in the design of electronic equipment, look to 3M Brand Fluorochemical Liquids FC-75 and FC-43! Their heat transfer capabilities are outstanding. Since these fluids boil at $100^{\circ} \mathrm{C}$. (FC-75) and $180^{\circ} \mathrm{C}$. (FC-43), their heats of vaporization can be used to effect heat removal by at least seven times the rate of nonvolatile organic liquid coolants.

Getting down to cases: the heat removal capacity of FC-75 and FC-43 helped Hughes Aircraft designers to miniaturize the com-
munications power unit (shown above) by a factor of six. For Raytheon designers, a transformer was reduced by 4 to 1 in volume and by 2 to 1 in weight, without impairment of performance or power output.

If you are designing in the electrical, electronics, missile or jet aircraft fields, look into the miniaturization help that the dielectric strength, limited solubility, thermal stability, and low pour points of FC-75 and FC-43 can offer. After reading the "Properties Profile," write for further information

PROPERTIES PROFILE
on 3M Brand Inert Liquids FC-75 AND FC-43

These unique dielectric coolants possess unusual properties that can prove advantageous to the designer of electrical devices and instruments, as well as to the manufacturer. Increased range of operating temperatures, improved heat dissipa lion which permits miniaturization, and greatly increased protection from thermal or electrical overload are possible with their use.
FC. 75 and FC. 43 are non-explosive, non flammable, non-toxic, odorless and non-corrosive. They are stable up to 750°., and are completely compatible with most materiais . . . even above the maximum temperatures permissible with all other dielectric coolants. Both are selfhealing after repeated arcing in either the liquid or vapor state.

ELECTRICAL PROPERTIES

	FC. 75	FC-43
Electrical Strength	35kV	40 KV
Dielectric Constant (1 to 40 KC (ct $75^{\circ} \mathrm{F}$.)	1.86	1.86
Dissipation Factor (1000 cycles)	0.0005	0.0005

TYPICAL PHYSICAL PROPERTIES

	FC-75	FC-43
Pour Point	<-100 ${ }^{\circ} \mathrm{F}$.	$-58^{\circ} \mathrm{F}$.
Boling Point	$212^{\circ} \mathrm{F}$.	$340{ }^{\circ} \mathrm{F}$.
Density	1.77	1.88
Surface Tension ($77^{\circ} \mathrm{F}$.) (dynes/cm)	15	16
Viscosity Centistokes	0.65 min.	2.74
Thermal Stability	$750^{\circ} \mathrm{F}$.	$600^{\circ} \mathrm{F}$.
Chemical Stability	Inert	Inert
Radiation Resistance	$\begin{gathered} 25 \% \\ \text { change } \\ 1 \times 10^{(a)} \\ \text { rads } \end{gathered}$	$\begin{gathered} 25 \% \\ \text { change } \\ 1 \times 10^{0} \\ \text { rads } \end{gathered}$

FC. 75 and FC. 43 have nearly equivalent heat capacities in the liquid and gaseous states.
For mere intermation on FC. 75 and FC -43, write today, stating area of interest to: 3 M Chemical Division, Dept. KAP-71, St. Paul 6, Minn.

RKAY Sweeping Oscillators ... Frequency Markers

AUDIO-VIDEO

- all-electronic - stable
- EALANCED OUTPUT
- NO PHASING ADJUSTMENTS
- ZERO REFERENCE LINE
- "CRYSTAL" FREQUENCY MARKERS

20 cps to 200 kc . . . Sona-SWeep model m
For Audio Eandpass. High-Q Fihers
Repetition Rate 0.2 to 25 cps , Logarithmic and Linear

- Buill-in Low Frequency Detector - Pulse Markers

Price \$895.00, Pob. factory. (\$985.00 F.A.S., N. Y.)
so ke 110 mo ... Marka-SWeep moos voso two For TV Frequencles

- 5 Crystal CW \& Marker Frequencies - Metered Outpur
- Calibrated Variable CW and Marker

Price $\$ 795.00$, f.o.b. factory. (\$875.00 FA.S., N. Y.)
50 kc to $20 \mathrm{mc} .$. Marka-SWeC户 model video For Flixed Band Video

- 3 Switcheo Sweop Widths - Fixed Pulse Markers - Provision for

Variable Pulse Marker
Price \$575.00, f.o.b. factory. (\$633.00 F.A.S., N. Y.)
50 kc to $50 \mathrm{mc} .$. Marka-Sweef model video 50 For Varled Applications

- Variable Center - Wic Price Maskers
.b. factory. (3930.00 F.A.S., N. Y.)

AUDIO-VHF

200 cps to $220 \mathrm{mc} .$.
Ligna-Sweep sm
For Audio, VIdeo, VHF Eandpass, Migh-p Filter

- Repotition Rate 0.2 to 30 cps - Video Swoep 1 kc to 10 mc - 200 cps to 30 mc Widths - Pulse Markers - Logarithmic Sweep Price $\$ 1,295.00$, f.o.b. factory. ($\$ 1, \mathbf{4 2 5 . 0 0}$ F.A.S., N. Y.)

VIDEO-VHF

 For Communications, Video Bendpass

- Varieble Center Frequency - Pulse Markera

Price $\$ 795.00$, f.o.b. lactory. ($\$ 875.00$ F.A.S., N. Y.)
1 mc 10260 mc ... Rada-Sweep Sr. For Production Alignmemt

- 6 Fixed Bands - Pulse Markers

Price $\$ 725.00$, lo.b. fectory. ($\$ 798.00$ F.A.s., N. Y.)
1 me to $350 \mathrm{mc} .$. Rada-Sweep 300
For Production Alignment

- 12 Fixed Bands - Pulse Markers

Price \$925.00, f.o.b. factory. (\$1.018.00 F.A.S., N. Y.)

VHF

2 mc to 470 me the Vari-Sweeps

- Fundamental Frequonc
- No Spurious Deats.
- Direct Reading Frequency Dial

2 mc to $220 \mathrm{mc} .$. Vari-Sweep eco-A

- Metered Output - 30 mc Sweeps

Price $\$ 795.00$, R.0.b. factory. ($\$ 875.00$ F.A.S., N. Y.)

4 mc to $120 \mathrm{mc} .$. Vari-Sweep if

- Built-In Variable Marker - Fixed Pulse Markers

Price $\$ 950.00$, f.o.b. factory. ($\$ 1,045.00$ F.A.S., N. Y.)

10 mc to $145 \mathrm{mc} .$. Vari-Sureep radar

- Same as IF at Different Frequency

Price \$950.00, f.o.b. factory. (\$1,055.00 F.A.S., N. Y.)

15 mc to 470 mc .. V'ari-Sweep 400

- Same as 860-A at Different Frequency

Price \$895.00, f.o.b. factory. (\$985.00 F.A.S., N. Y.)

VIDEO-UHF

50 kc to 1000 mc

Mega-Sweeps

Highly Floxible Lab-Type
instruments, Operating
Over quency Range
so ke to $950 \mathrm{mc} .$. calibrated Mega-Su'eep 110a

- Variable Center - Variable Width
- 40 mc Widths

Price $\$ 625.00$, f.o.b. factory. 18688.00 F.A.S., N. Y.

- Higher Output - Zero Reference

Price $\$ 625.00$, f.o.b. factory. (\$683.00 F.A.S., N. Y.)

WAT

ELECTRIC COMPANY

DEPT. ED-7
maple avenue - pine brook, n. d.

CIRCLE 28 ON READER-SERVICE CARD

NEWS

Doppler Navigator on Way For All Aircraft Types

A versatile navigation system applicable to all types of aircraft including fixed-wing rotary, vertical/short take-off and landing, drones and airships is under development.
Called the Ryanav IV, the completely selfcontained unit is undergoing air tests in a DC-3 of Ryan Electronics of San Diego, the system's developer. The system is reported to provide "all-weather, automatic navigation and hovering, without radio aids, wind estimates or true air speed data."

The Ryanav IV, the company says, accommodates all speed ranges from - 50 knots to $+2,000$ knots; all altitudes from 0 to 70,000 ft; drift velocities from 0 to ± 300 knots; velocities from -50 knots to $+2,000$; ground track from 0 to 360 deg , and vertical velocities to $\mathbf{6 0 , 0 0 0} \mathrm{ft}$ per min.

Velocity error is less than $1 / 2$ per cent and navigation positional error 0.7 per cent of the distance traveled, Ryan says. The hovering threshold is put at $1 / 4$ knot. The use of pure continuous-wave techniques permits this accuracy to be achieved without altitude or attitude "holes," from take-off to landing, according to the company.

Ground Speed and Drift
Computed on Visual Displays
Its electrical outputs are: heading velocity, drift velocity, vertical velocity, ground speed, ground track, drift angle, true heading, and east-west, north-south distance traveled. Visual displays include a navigation indicator showing ground speed and ground track, or wind speed and wind heading; a hovering indicator showing heading velocity, drift velocity, vertical velocity and a control indicator with five switch positions: Off, Silence, Land, Sea and Test.

The receiver-transmitter in the Ryanav IV is designed as a space-duplexed, fixedantenna system with no moving parts and requiring no adjustments. Attitude capability is not limited by radome cutout area or the gimbals usually found in systems employing stabilized antennas. Supersonic speeds are accommodated simply by shift ing the receiver band. No change in antenna angles or other system parameters is necessary.

Outputs are provided for tie-in with plot-
ting boards and other position-indicating equipment, inertial navigation equipment, bomb-director sets, anti-submarine warfare sets, and terrain-clearance radar.

The Ryanav IV employs continuous-wave eletromagnetic energy at $13,300 \mathrm{mc}$. The set's antenna directs this energy toward the earth's surface in three narrow beams. The frequency of the energy back-scattered from the ground is "Doppler shifted" by an amount proportional to the aircraft's velocity along the individual beam. The three Doppler frequencies are measured and used to compute the aircraft's velocity components. This is accomplished in the converter/computer unit, which comprises a low-voltage power supply module, a frequency-tracker module, a frequency-converter and velocity-computer module, and a computer module.

The various configurations of the Ryanav IV family of Doppler ground-velocity indicators may omit, modify or add certain units to meet specific needs. Antennas can be provided to meet specialized aircraft structural or operational requirements.

Maser Method Amplifies Sound

Direct amplification of sound waves using microwave radio energy has been achieved with this apparatus being assembled by Dr. E. B. Tucker of General Electric Research Laboratory. Amplification of the sound waves, or phonons, is accomplished by "stimulated emission" of energy by atoms as they change from higher to lower energy levels in a ruby crystal. The some mechanism is used in the maser (microwave am plification by stimulated emission of radiation) to am plify electromagnetic radiation.

Said Isaac Newton:

"Every particle of matter attracts every other particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distances between them."

Until recently, the thrust which propelled rocket vehicles into their coast stage, prior to orbiting, was provided by booster stages. The fuel carried by the satellite stage was used only to inject itself into orbit.

Now, however, a scientist at Lockheed Missiles and Space Division has evolved a Dual Burning Propulsion System which allows higher orbits and heavier payloads. With this system, the satellite vehicle fires immediately after the last booster stage burns out, thus augmenting the begin-coast speed. Later the satellite stage is re-started to provide orbit injection.

An even more recent development by Lockheed is a triple-burning satellite stage. This will permit a precise $\mathbf{2 4}$-hour equatorial orbit, even though the vehicle is launched a considerable distance from the equator.

These principles have made possible the early development of the midas satellite. Moreover, they substantially increase the altitude and payload of the DISCOVERER series. Lockheed, Systems Manager for these programs and for the polaris fbm, is pursuing even more advanced research and development projects. As a result, there are ever-widening opportunities for creative engineers and scientists in their chosen fields.

Why not investigate future possibilities at Lockheed? Write Research and Development Staff, Dept. M-15E, 962 West El Camino Real, Sunnyvale, Calif. U.S. citizenship or existing Department of Defense industrial security clearance required. All qualified applicents will receive consideration for employment without regard to race, creod, color or national origin,

Lockheed/missiles and space division

Systems Manager for the Navy POLARIS FBM and the Air Force AGENA Satellite in the DISCOVERER and MIDAS Programs

WRITE FOR
DATA SHEETS OR CONTACT YOUR NEAREST BORG TECHNICAL REPRESENTATIVE

NEW BORG MICROPOT $\substack{2 \in 100 \\ \text { seris }}$

$\star 100$ Ohms to 200K Ohms Resistance . Ł Meet Full Range of Military Specifications...

4 NEW SINGLE-TURNS

Feel the fine construction by turning the shaft . . . action is smooth, continuous . . . a feel of jeweled precision. See the extra strong design in the one-piece aluminum housing and front bearing mount. Note the rear covers fit precisely into machined shoulders to seal out dirt, vapors, corrosive atmospheres according to applicable mil specs.
Color-coded terminals are gold-plated for perfect solderability, corrosion-free shelf life. Element ends and terminals are welded to prevent loosening during application. All models are wirewound and linear. Standard bushing mounts have life-time lubricated sleeve bearings; standard servo mounts have two precision ball bearings. Precious metal contact and collector surfaces minimize noise, contact resistance and thermal effects over a long, trouble-free life. Complete data is yours by return mail.

BORG EQUIPMENT DIVISION
Amphenol-Borg Electronles Corporation
Janesville, Wisconsin - Phone Pleasant 4-6616

NEWS

Space ‘Pointer’ Slated With 6-Sec Accuracy

Servoed System to Aim Spectrometer For Measuring UV Star Radiation

ASPECTROMETER to be rocketed more than 62 miles above the earth will be aimed by a fine-guidance system, being designed for accuracy of $\pm 6 \mathrm{sec}$ of arc over a ± 2-deg field. The spectrometric system is intended to measure ultraviolet starlight in the $1,000-$ to- $3,000-\mathrm{A}$ range to a resolution of 2 A . It is planned for launching early in 1962 by Princeton University scientists working with the support of the National Aeronautics and Space Administration.

Coarse guidance will be provided by inertial gyroscopes, which are expected to stabilize the rocket to within $\pm 1 \mathrm{deg}$ of the desired pointing position. The fine-guidance system, being developed by Perkin-Elmer Corp., Norwalk, Conn., will actuate servo controls to point the spectrometer with the anticipated 6-sec accuracy.

This system will stabilize in two axes and use a rotating-image technique that is said to be relatively simple. Servos will signal two gimbal ring mounts to adjust their axes and position the spectrometer's stabilized diffraction grating. The servo signals will be gen-

Fine-guidance system to aim ultraviolet spectrometer from rocket depends on rotating image formed by optical system to actuate servos that adjust gimbal ring mounts. Spectrometer is to be rocketed above the atmosphere early next year to analyze radiation from bright stars.

ELECTRONIC DESIGN • July 5, 1961

Spectrometer portion of system will fit in 30 -in. long by 14 -in. diam volume. Before fine-guidance system takes over, coarse positioning will be provided by inertial gyroscopes.
erated when a star's light beam is picked up on a rotating, tilted mirror and directed through a reticle. The segmented reticle will modulate the beam passing through it according to the amount and direction of error. The system is designed to scan its portion of the UV spectrum in units of 30 A per sec.

The modulated beam, which is to contain information on the position of the star's image, will be focused on a phototube. The position data will be converted into error signals by an fm discriminator and resolver.

The $100-\mathrm{lb}$ spectrometer package is to be 35 in . long by $14-1 / 4 \mathrm{in}$. diam. Radiation from stars will enter through an opening in the nose section of the rocket and will arrive at the instrument already collimated. After being diffracted, the radiation is to be focused on a photomultiplier detector to generate photon-count signals for telemetering to ground-receiving equipment.

Closed-Circuit TV System Used To Verify Check Signatures

A closed-circuit TV system used for verification of check signatures has been installed in the First Pennsylvania Banking and Trust Co. of Philadelphia.

The system, developed by John F. McCarthy, Inc., Philadelphia, uses cameras and components furnished by Philco Corp.

The teller phones the bank's Signature Dept., identifies his numbered station, and requests the specific account. The clerk at the other end pulls the card from its alphabetical file, places it face down on one of two cameras, and the reproduction appears on the monitor.

SAVE SPACE WITH THIN, EXTRA-STRONG ELECTRICAL TAPES OF MYLAR ${ }^{\circ}$

Here's a pressure-sensitive tape that packs great strength into thinner gauges (20,000 psi for 1 mil). Tape of Mylar* polyester film saves space because manufacturers can use thinner gauges with no loss in performance... at lower cost per linear foot.

Want more? "Mylar" also provides -flexibility for snug wraps-high dielectric strength ($4,000 \mathrm{v} / \mathrm{m} \dagger$) -dimensional stability at high humidities -moisture and chemical resistance -resistance to temperatures from $-60^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. And "Mylar" lasts and lasts because there's no plasticizer to dry out with age.

Insulation of "Mylar" gives motors 50 to 100% longer service-free life. Gives capacitors longer-lasting stability, greater reliability. In a wide variety of electrical applications, the advantages of "Mylar" can improve the performance, lower costs. Evaluate "Mylar" for your product. Write for free booklet (SC) detailing properties.
Du Pont Co., Film Dept., Wilmington 98, Delaware.

General Electric slear LTV silicome componnd for potting and embedding

Transparent, resilient, self-supporting and easy to repair

LTV-s02 is easily appliod, flows freely in-and-LTV-602 is easily opplied, Hows freely in-andcosity in the uncured state. 800 . 1500 centipoise, LTV is ideal for potting and embedding of electronic assemblies. Unlike "gel-like" potting materials. I.TV-602 cures to a flexible solid. Oven rure is overnight, or from 6 to B hours at is to $80^{\circ} \mathrm{C}$.

ITV-602 is cosy to work with and ceas to repair. To repair parts embedded in LTV, merely cut out and remove section of material, renair into opening and cure. Pot life, with catalyst added, is approximately $\%$ hours and may be extended with refrigeration. When desirable, LTV may also be cured at room temperature.

Rosilioncy offors oxcollont shock resistance. Rosilioncy offors oxcollont shock rosistance acribed in MIL-STD-202A test condition B which sperifies five temperature cycles from -65 to $125^{\circ} \mathrm{C}$. Tests indirate that ITV retains protective properties even after 1800 hours aging at $175^{\circ} \mathrm{C}$. Other tests confrm LTV's
resistance to moisture and water immersion.
1.TV-602 is the newest addition to the broad line of G.E silicone potting and encapsulating materials which also include the RTV silicone rublers. For more information, write to General Electric Company, Silicone Products Department, Section L740, Waterford, New York.

GENERAL (6) ELECTRIC

NEWS

Soviet Hopes to View Venus And Mars With Color TV

A Soviet television scientist, Dr. Pavel V. Shmakov, predicts that "in the near future" his country will observe Venus and Mars by color tv.

The prediction was one of several made at the first International Festival of TV Arts and Sciences, held in Montreux, Switzerland. Dr. Shmakov declined to elaborate on his forecast, however.

The Soviet expert was questioned about TV equipment used in recent Russian space shots. He explained that although the moon rockets did not contain true TV apparatus, more recent vehicles, such as the one that carried Maj. Yuri Gagarin, did.

Dr. Leonard Jaffe, chief of the United States space agency's Operation Relay, pre-

Sonic 'Death' of a Light Bulb

When a 25,000 -w beam of sonic power-energy equivalent to a thousand symphony orchestras playing si-multaneously-is directed at a light bulb, this is what happens. Sequence shots show the actual separation of the bulb from the lamp base, the filament still glowing even though exposed to the air, and the final failure of the filament. The experiment, performed at facilities of Bolt, Beranek \& Newsman, acoustical consultants of Cambridge, Mass., was televised for the public by WBZ in Boston. The photos were taken by Jonathan Karas \& Associates of Durham, N. H.
dicted at the festival that a permanent translation TV link would be "bounced" from satellites within four to five years.

Another prediction, sent to the conference by David Sarnoff, president of the Radio Corp. of America, stated: "Ten years from now a billion people will watch the same TV show at the same time in color." Mr. Sarnoff added that simultaneous translation techniques would make the show understandable to all.

He suggested that new satellite television systems should be used by the heads of all nations for face-to-face discussions, and proposed that every TV set should have a special channel reserved for United Nations telecasts.
Dr. Jaffe was one of six recipients of a festival citation "in recognition of outstanding contributions to the advance of television." The others were Dr. Shmakov, of the Leningrad Technical Institute; Sir Noel Ashbridge of Great Britain, Prof. G. A. Boutry of France, Dr. Kenjiro Takayanagi of Japan, and Eric Esping of Sweden.
Thirty-two nations took part in the conference.

Israel Seeks Electricity In Shallow Salt Waters

A group of Israeli scientists is experimenting with a principle that may make it possible to get electricity from small, shallow bodies of salt water. The principle, based on a natural phenomenon discovered in a lake in Hungary, where the bottom waters were found warmer than the top, can be explained by a difference in density.
In the heavy brine of a "dead sea," the water tends to form two distinct layers: a heavy dense layer underneath and a less dense layer on top. The top layer acts as a transparent cover over the bottom. When the water is shallow and the bottom is black, the lower layer gets hotter and hotter. The heat cannot escape because the nonmixing of the layers prevents convection. Heat thus retained could be transferred to general electricity.
Since arid countries with abundant sunshine usually have some waters too salty for human use, a curse can be turned to an advantage.

This idea, as well as many others, will be discussed at the United Nations Conference on New Sources of Energy, to be held in Rome, Italy, from Aug. 21 to 31.

QUADRATURE-FREE AC SIGNALS!

...now possible with two entirely new AC pots -precision-built by Helipot!

Even though today's potentiometers are developed to a level of performance never before achieved, their use as AC voltage dividers introduces several problems not present under DC conditions. Most important of these are quadrature voltage and phase shift-the extraneous voltage 90% out of phase with the input signal, which results from capacitance between wire turns and metallic mandrel.
How do you eliminate quadrature? And the many other considerations associated with AC applications what about them? Helipot solves all these problems with two new AC potentiometer series.
Let's talk specifics.
YOU'LL WANT THE ANSWERS
TO THESE 5 QUESTIONS...

1. WHAT IS AN AC POTENTIOMETER?

Simply stated, a pot that's specifically designed for AC-excited circuits. It differs from ordinary wirewound pots in that quadrature effects are eliminated without the addition of elaborate compensating networks. At the same time, it provides lower output impedance, and improves linearity and reliability.
2. HOW DO AC POTS ELIMINATE QUADRATURE ERROR?
Helipot combines a multi-tapped pot with a multi-tapped autotransform

er. The voltage existing at each pot tap point is determined by the reference voltage at the corresponding
autotransformer tap. The pot resistance element is divided into a series of independent low-resistance ele-ments-hence a reduction in quadrature.
The figure shown plots quadrature error against rotation. It illustrates the difference in phase shift between ordinary wire-wound pots and a Helipot AC unit with 12 -segment autotransformer. You'll note that quadrature error is at its maximum near the midpoint between taps and is nearly zero at tap points. The result: negligible quadrature error and phase shift.
3. HOW ARE INPUT AND OUTPUT IMPEDANCE AFFECTED?
Input impedance remains high. Under AC applications, total pot resistance is paralleled by the AC impedance of the autotransformer. Since this impedance is 10 to 100 times greater than that of the pot, the addition of an autotransformer has a negligible effect on the input impedance.
Output impedance is much lower The addition of an autotransformer to the basic pot results in a maximum output impedance occurring midway between each set of adjacent taps. It follows that total output impedance is greatly reduced-any energy required by the load is fed from the nearest auto-transformer tap.

4. HOW DOES THE AC POT

IMPROVE LINEARITY?
The overall linearity of AC pots is dependent on the linearity of pot sections between taps - not total pot linearity.
An important feature of autotransformer application is the ability to easily adjust the voltage appearing at each pot tap - without affecting
the voltage ratio at any other tap. It is therefore possible to pull all tap points into the desired linearity band, regardless of basic pot linearity.
Another AC pot feature: It is capable of truly zero electrical "end coil."
5. ARE AC POTS MORE RELIABLE

THAN BASIC POTS?
Yes-much more so. That's because a pot winding or tap lead going open affects only that portion of the pot between taps adjacent to the open. Even the opening of CW or CCW terminals has no effect beyond the adjacent tap point. Or, simply stated - the more taps, the greater the inherent reliability. Models with up to 28 taps are available as special from Helipot.

Helipot offers two AC pot series and 26 standard models with frequency ranges from 20 to $20,000 \mathrm{cps}$. Choose your linear or non-linear version of either the $3^{\prime \prime}$ diameter single turn Series 5800 or the $2^{\prime \prime}$ diameter multiturn Series 7800. They're precisionbuilt by Helipot to meet unusual conformities and perform in most any desired function.
Any more questions? Detailed specs and additional product information are included in a new 32 -page potentiometer catalog. To get a copy, call your nearest Helipot Sales Engineer ing Representative...or write direct :

Beckman

instruments. inc.
HELIPOT DIVISION
fullertion, Calif.
pots: moroes. Meres

Electron Products

BW and BWE High Voltage Capacitors

Newest-8mallest High Voltage Capacitorsi

Compact configuration, lighter weight and extremely low noise are festures deserved by design engineers seeking smaller, more reliable high voltage capacitors.

BWE Series epoxy tube capacitors are designed for applications as AC and DC power supply ripple filter capacitors, voltage doubler circuits and blocking capacitora. Basic construction is similar to the Mil-C-14157 Hi-Rel Spec and meets environmental test conditions of Mil-C-25. Rectangular shaped, non-metallic case eliminates need for large stand-off terminals. The BW wrap and fill version is available for similar applications in less stringent environmenta.

Up to $30,000 \mathrm{~V}$ operation with standard capacity from .001 to .2 mfd. Standard capacity tolerance $\pm 20 \%$ (also available to $\pm 1 \%$). Competitively priced against other less sophisticatod versions. Technical information and test data available upon request.

Specifications:
Operating Temperature: $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Insulation Resistance: $\quad 30,000 \mathrm{M} \Omega \mathrm{min}$. (a4 $25^{\circ} \mathrm{C}$
Dissipation Factor: 1.0% max. © $25^{\circ} \mathrm{C}$
Test Voltage: 200% of rated voltage

ELECTRON PRODUCTS

430 North Halatead Street, Pasadena, California
T11 division of Marshall Induatries

EDITORIAL

Transistor Reliability Specs Well on Way

In last year's Transistor Data Chart issue our editorial called for reliability figures to be included with other important transistor characteristics contained in data sheets. Military specifications for components, including transistors, had been lax in reliability specifications due to lack of definitions and environmental standards. We cannot report this data this year, but progress is being made.

Since the release of the Darnell Report (Parts Specification Management for Reliability), improvement in component specifications has been in evidence. Perhaps the most significant in terms of semiconductor specifications is the use of LTPD (lot tolerance per cent defective) in newly prepared MIL-S-19500 documents in place of AQL (acceptable quality level) found in early MIL-STD105 specs. AQL is normally considered the quality level for which the producer takes a 5 per cent risk of having a good lot rejected while LTPD is generally defined as the quality level for which the customer takes a 10 per cont risk of accepting a defective lot. Therefore the manufacturer's risk is linked with AQL and LTPD is a measure of the customer's risk. Based on sample size, an AQL of 4 per cent can exist with LTPD figures ranging from 12 to 38 per cent. Thus, MIL-STD-105 clearly defines the manufacturer's obligation but offers rather a vague reliability promise to the customer responsible for producing reliable equipment from his incoming components.

With newer transistor specifications outlining specific LTPD values and environmental conditions, the customer is fully aware of the confidence he can place on his incoming devices. Manufacturers can determine their acceptance number from the charts included in the specs.

Other improvements in reliability specifications soon to be adopted include the listing of failure-rate figure for components placed on the Qualified Products List. In addition, products will remain on the QPL only as long as they meet specification requirements; failure to maintain a given quality level will result in deletion from QPL.

Based on the earnest efforts being applied by government personnel responsible for the preparation of components specifications, meaningful reliability will be contracted and delivered. Reliability figures may appear in next year's Transistor Data Chart if the rate of effort and enthusiasm generated by the Darnell Report is maintained by the military and industry.

Howarl Sirman

PSI TRANSISTORS FOR EVERY COMPUTER, COMMUNICATION AND POWER NEED!

NEWEST LOGIC SWITCH!

- Highly advanced version of 2N706
- $\mathrm{V}_{\text {cesar }}=.2 \mathrm{~V}$ Max at $\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}} \quad 1 \mathrm{~mA}$
- Broadest $h_{s \varepsilon}$ vs. $V_{c t}$ linearity ever offered

NEWEST VHF POWER AMPLIFIER!

- Even higher power-frequency
performance than 2N1506
- Five watt power output at $30 \mathrm{mc}, 12 \mathrm{db}$ power gain

NEWEST MEDIUM POWER SWITCH!

- Vesar - 1.0 V Max at $\mathrm{l}=1 \mathrm{Amp} . \mathrm{I}_{0}=100 \mathrm{~mA}$
- 13 watts at 25 C case temperature
- $l_{1} \quad 30 \mathrm{~m} \mu \mathrm{~s}$ typical at $\mathrm{I}_{\mathrm{c}} \quad 1 \mathrm{~A}, I_{\mathrm{s}_{1}}=\mathrm{I}_{\mathrm{h}}-100 \mathrm{~mA}$
$R=11$ ohms $V_{c c}=12 \mathrm{~V}$

NEWEST HIGH VOLTAGE POWER AMPLIFIER!

- 300 mW power output at 100 mc . 10 db power gain
- $\mathrm{V}_{\mathrm{Ci}}=150 \mathrm{~V}$ Min V cio -125 V Min

SWITCHING TRANSISTORS

NPN TRIPLE DIFFUSED SILICON MESA
Wide Range of Types $\mu \mathrm{A}$ to 10 Amps .2 V to 140 V

DIMENSIONAL DRAWINGS
All dimensions shown in inches

FREQUENCY-POWER OUTPUT RANGE OF PSI COMMUNICATIONS TRANSISTORS

PSI TRIPLE DIFFUSED PROCESS

DIMENSIONAL DRAWINGS All dimensions shown in inches

PSI triple diffusion makes possible these outstanding performance characteristics: Low VCE saturation. small signal beta and broad VHF versatility. The triple diffusion process, above, provid acturing control unmatched by any other process.
OTHER MESA PROCESSES

COMMUNICATION TRANSISTORS NPN TRIPLE DIFFUSED SILICON MESA Wide Range of Types
$m W$ to Watts 10 to $100+$ Source Voltages

HF HIGH POWER TRANSISTORS
NPN TRIPLE DIFFUSED SILICON MESA
Wide Range of Types . . . for many new applications.

TYPE	$\begin{aligned} & \mathbf{V} \text { Min. } \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & V_{\text {ce: }} \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & V_{\text {in }} \\ & \text { Min. } \end{aligned}$	hot	10 me	$\begin{aligned} & \text { per } \\ & \text { me } \end{aligned}$	$\begin{array}{\|c\|} \hline 5 \mathrm{mc} \text { C } \\ \text { AMM } \\ \text { Powort } \\ \text { OUt } \end{array}$	lass C Power Gawer	Package
$\begin{aligned} & \text { 2N1899 } \\ & \text { Cormerly } \\ & \text { PT } 901 \end{aligned}$	140	100	5	10 min	3	50 min	125w	10db	Single End
2N1900	140	100	5	10-20	3	50 min	125w	1000	Single End
2N1801	140	100	5	15.40	3	50 min	125w	1000	Single End
2N1902	140	100	5	10 min	3	50 min	125w	10db	Double End
2N1903	140	100	5	10.20	3	50 min	125w	10db	Double End
2N1909	140	100	5	15.40	3	50 min	125w	10db	Double End
PT900	80	50	5	10 min	3	50 min	125w	10db	Single End
kilowatt megacycles amperes nanoseconos Now possible with PSI Load Tested Silicon Mesa Power Transistors. In a typical switching apopication the rate o? iurrent lise can be as high as 100 million Amperes per second. Selected Beta ranges now available. able.									
Avalability Single Ended packages are avaliable in production quantities. Double Ended in Engineering quantities									

VERY HIGH FREQUENCY

TYPE	TOTAL POWEA AT 25 C CASE Warts	$\begin{aligned} & \mathbf{v} \\ & \text { Min. } \end{aligned}$	$\mathrm{V} .{ }^{2}$ Min.	V mio	POWER GAIN AT $\mathrm{I}=30 \mathrm{me}$ Tyo.	$\begin{aligned} & \text { POWER GAIN } \\ & \text { AT } \varphi=70 \mathrm{me} \\ & \text { Tyo. } \end{aligned}$	POWER GAIN AT $\mathrm{f}=100 \mathrm{mc}$ Tyo.	PK
2M1338	28	80	so	3	db 0	$10.500 \mathrm{P}=0.35 \mathrm{~W}$	$7 \mathrm{db} \mathrm{P}_{7}=0.35 \mathrm{w}$	10.5
2N1342	28	150	125	5		$1306 \mathrm{P}_{3}=0 \mathrm{AW}$	$10 \mathrm{db} P=03 \mathrm{~W}$	10.5
2N1505	30	50	40	3	$10 \mathrm{db} \mathrm{P}_{0}=18 \mathrm{w}$	$800 \mathrm{P}=12 \mathrm{~W}$	600 P $=1 W$	10.5
2N1506	30	60	40	4	$12 \mathrm{db} \mathrm{P}=18 \mathrm{w}$	$108 \mathrm{~b} P=12 \mathrm{~W}$	$850 \mathrm{dbP}=1 \mathrm{~W}$	10.5
2N1710	130	60	45	3	$1080 \mathrm{P}, 5 \mathrm{FW}$	$60 \mathrm{~b} \mathrm{P}_{0}=6 \mathrm{~W}$	$500 P_{0}=6 \mathrm{~W}$	108
2N1709	130	75	60	4	$12 \mathrm{db} P=5 \mathrm{~W}$	8db $P_{0}=1 \mathrm{w}$	$6010 P_{0}=7 w$	10

[^3]perating current ima io several amos
OPERATING FREQUENCY UP TO SEVERAL HUNDRED ME (HIGHER WITH VARICAPE DOUBLING CIRCUITS) POWER OUTPUT MILLIWATIS TO NEARLY 10 WATIS
he 2 N1 338. 2N1 342, 2N1505. 2N1506 are avalable in production quantities
the 2N1709 and 2N1710 are avalable in protolyping quantities

PICO-TRANSISTORS and MICRO-TRANSISTORS

PSI Pico and Micro transistors are ultra miniature triple diffused silicon mesa devices. They are designed for low level amplification and for low power, high speed switching applications. These unique transistors are extremely valuable where weight and size are prime design and operational factors.
The remarkable high reliability standards of PSI Micro-Diodes are the result of simplified construction and advanced surface passivation techniques. These same techniques are employed in the manufacture of PSI Micro Transistors.
The surface passivation process and coating materials provide pro tection from extreme environmental conditions of heat, moisture. thermal shock, mechanical stresses and electrical load.
After manufacture all devices are subjected to environmental testing to assure reliability and device parameters.

- Meet MIL-S-19500B and MIL-STD-202A
- $200 \mathrm{hr} .200^{\circ} \mathrm{C}$ Reliability Assurance
- $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ temperature range
- 100 mW power dissipation
- Pico size $1 / 1000$ of TO-5 package
- Micro size $1 / 100$ of TO-5 package
- Companion components to PSI Micro-Diode

(2ss. Pacific Semiconductors, Inc.
 A a subsidiary of thompson ramo wooldridge inc

12955 CHADRON AVE. HAWTHORNE, CALIF. OR 8-4711, OS 9.2281•TWX: HAW CAL 4270 • Cable Address: PSISOCAL

SALES OFFICES

HUmbold 4.50 Broadway, Nowark 4, New Jersey HUmboldt 4-5616-TWX: NK 1010
Boston-471 Washington Street. Wellesley 81, Mass. -
CEdar 5-0171
Syracuse-4455 E. Gene Street. Syracuse. New York -
GIbson 6.4610
phia 17, Pa. - No. Piligrim 2-8089. TwX: JNKTN 1064
Baltimore- 1811 North Rolling Road, Baltimore 7, Md.
WIndsor 4.3622
Willage $-69750 \cdot$ West North Avenu
8WX: OKP 1547

Dallas-P.O. Box 6067, Dallas, Texas • RIverside 7-1258 Detroit-1204 No. Woodward Ave., Royal Oak, Michigan Lincoln 8-472
St. Paul-1602 Selby Ave., St. Paul 4. Minn. - MIdway 5-9351 Missouri-3100 Kinglsey Dr., Florissant. Mo - MA 1-4.553

- 8271 Melrose Ave., Los Angeles 46, Calif.

San Diego-2223 El Cajon Islvd.-Room 211
Palo Alto-701 Welch Road-Suite 205, Palo Alto, Calit ${ }^{\text {D }}$.
DAvenport $1-2240$
NIC CENTERS COAST-TO-COAST

Electronic Design's Ninth Annual

TRENSISTOR DERE CEART

Electronic Design's Ninth Annual Transistor Data Chart contains specifications for 1,714 transistor types-last year only 1,088 types were submitted for publication by semiconductor manufacturers. With close to a 60 per cent increase in the number of available types, the design engineer is now offered a greater selection of devices as well as increased sources of supply-but his search time for a transistor to do a certain job is likewise increased. Thus, Electronic Design's unique listing, specifically tailored for the design engineer, should prove to be a handy time-saver.
Contrary to existing lists which group transistors by manufacturer or in numerical sequence (fine for salesmen, of limited use to engineers), the 1961 Data Chart has transistors organized into six application categories:

Audio-mostly general purpose types, under 1 w , listed in order of increasing forward-current transfer ratio, ($h_{1 e}$ or $h_{F E}$).

High frequency-including types ranging up to and above the vhf range and tabulated in order of increasing alpha-cut-off frequency, $\left(f_{c e}\right)$.

Power devices-transistors rated at 1 w and above are listed in order of increasing collector power dissipation.

Special types-low-noise, high-power/high-frequency and other miscellaneous types are included.

High-level and low-level switching-devices intended for switching are listed in order of increasing alpha-cut-off frequency, $\left(f_{a e}\right)$.

By this system of listing transistors, the design engineer is offered a rapid method of selecting a particular type based on a parameter value. In addition, close substitutes are apparent and multiple sources of supply are listed when applicable. Only U. S. manufactured types are given.
One word of caution is included. Quite a few similar number types, made by several companies, were submitted with different characteristics due to the nonconformity in test methods among manufacturers. The manufacturer whose data are used for each particular type is listed under "Mfg." Other suppliers of the same types are found under "Remarks." Please take note that the company listed under "Mfg." is not necessarily the prime supplier, a cheaper source or the original EIA registrant. The final choice of supplier is obviously up to the design engineer. It is thus advisable to use this listing as a guide to selection and then follow up with a detailed evaluation of specific test methods and data as outlined in each manufacturer's spec sheet.

A cross index is included to identify a type number with its listed category. The JEDEC type numbers are tabulated in numerical order and the category group is indicated.

Audio

$\begin{aligned} & \text { Type } \\ & \text { Ne. } \end{aligned}$	mig.	Type	$\begin{gathered} \text { hfo } \\ 0, \\ \text { hFE } \end{gathered}$	Moximum Rotinge					Chorectoristics				Remarts
				$\begin{aligned} & \mathbf{w}_{c} \\ & (m w) \end{aligned}$	$\begin{array}{\|l\|} \hline T_{i} \\ (c) \\ (c) \end{array}$		v_{c}	ma	$\begin{aligned} & I_{c 0} \\ & \mu \mathrm{a} \end{aligned}$		$\begin{array}{\|c\|} \hline c_{c} \\ \mu \mu 4 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{a}} \mathrm{e} \\ \mathrm{mc} \end{array}$	
2 N 160	RRD	nom.GJ, si	0.93	150	175	-	40	25	0.2	25	7	4	
215164	RRD	nom, CJ, si,	0.93	${ }^{150}$	175	-	40	${ }^{2}$	0.2	25	1	4	
${ }^{213} 319$	RRD	nm,G),sil	0.95	50 150 150			125	10		7			
21614	RRD	nmo, $\mathrm{Cl}^{\text {j }, \text { si }}$	0.56	150	175	=	40	25	0.2	${ }_{25}$	7	5	
21318	RRD	nm, GJ si	0.9\%	so	175	-	90	50	10			3	
2 N 1038	RRD	nno,GJ, si	0.56	500	175	-	90	30	6	-	-	3	
2n31) 21109s	RRD		0.98	150 500	175	=	60	60	10	18	1	3	
2 NI	RRD	nom, ${ }^{\text {jos,si }}$	0.98	150	175	-	40	25	0.2	25	1	6	
2211634	Rro	non, GJ, si	0.99	150	175	-	40	25	02	25	7	6	
${ }_{951}^{580}$	TI	nop, (J),si	${ }_{6}^{6}$	750 750	150	6		S0 6	6	-	=	8	${ }_{2}^{2 N 1155}$
$2 \mathrm{Ls63}$	II	nom, Gj, si		750	150	6	120	40	8	-	$=$	8	${ }_{2} 2 \mathrm{HL15} 5$
2 LH 154	MA	nen,ou, si	9	750	150	5	${ }_{50}$	60	5	-	-	-	
2 N 1155	Ma	nmo,0msi	9	750	150	5	80	50	6	-	-	-	
211156	Ma	nno. OH , si	4	750	150	5	120	40	8	\%	-		
${ }_{21332}$	TI		9	150	175		4	25	2	${ }_{20}^{20}$	-	$!$	TR, USM
22332A	HA	nmomesisi	920	150	175	0.66	15		2		30		
2313334	MA	nom, 16 c, si	920	500	175	2.8	45	-	0.5		15	-	
221903	II	nnom, CJ, si	9-20	150	175	1	45	25	2	25		4	${ }^{211149}$
${ }_{2}^{2 N 1169}$	TR		920 932	150 750	150	-	30 60	25 60	0.1		1	7	
2W142A	TR	nmodidisi	10.25	200	200	-	45	25	0.10	22	7	1	1008 meliztily as.
		non. C, si	10.25			-							
22×71	TR	nop, ${ }_{\text {aj,si }}$	10.25	200	200	-	15	25	O.CO	${ }_{22}^{22}$	7	8	
$2 \mathrm{~N} / 2$	TR	non,G1, si	$10-25$	200	200	-	45	25	0.02	22	7	8	
2M10	5	, Aj je			75	20	30	1.53	5 ma				
$2 \mathrm{~N} 10 / 13$	Sr	non, A, se	10.5	Im		20	50	0.89	5 ma	-	-	-	
2 M45	${ }_{\text {G1 }}^{\text {M }}$		12	150	100	2	45	-	10	22	40	-	-MIL
${ }^{2} 21736$	MA	non,oinisi	12.20	500	220	2.5	45	-	0.21		25	$\underline{1}$	aucio
2 Cl 756		non.om,si	$12-20$	500	200	2.5	60	-	0.1		-	-	
	RA		13.5	π	85	1.25		100			-	-	Sub
$\xrightarrow{\text { CKGIC }}$	$\begin{array}{\|l\|l} R A \\ \text { SSO } \end{array}$	pmp,AJ.ge	$\begin{aligned} & 13.5 \\ & 14.5 \end{aligned}$	$\begin{gathered} 76 \\ 305 \end{gathered}$	$\left.\right\|_{160} 85$	$\left\lvert\, \begin{aligned} & 1.25 \\ & 2.28 \end{aligned}\right.$	$\left.\right\|_{40} ^{45}$	$\left.\begin{array}{r} 100 \\ 50 \end{array} \right\rvert\,$	10	18	70	$\overline{2}$	${ }_{\text {Scosem }}^{\text {Solin }}$
${ }_{2} 2129$	amp		15	125	125	2.5	30	125	-	18	$\underline{2}$	$\underline{-}$	
2N33AA			15	1200	200	${ }^{2.5}$	${ }_{55}$	1	-	-	$=$	-	
$2 \mathrm{S3} 10 \mathrm{~A}$	TR		15	1000	200	1	25	0.1	1	-	-	-	Beta spees at 3
23314	TR	nmm, J, si	15	1000	200	1	125	0.1	1	-	-	-	ITment evels.
2Ms													current bevels.
2 2038	SSD		15	250	175	1.7	35	100	001	$=$	7	2	
2W1247	MA	npm,0i,si	15	30	150	0.2	6	5	1.5		12		TR
${ }^{211248}$	TR	nom. GJ, si	15	300	150		6	5				1	
${ }_{2}^{2 N 14140}$	$\left\lvert\, \begin{aligned} & M A \\ & R A \end{aligned}\right.$	mp, Aj, si	15	400 250	1200	2.28	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	180	0.00	12	${ }_{20}^{25}$	1	astio/red.
2 L 1655	RA	mp,aj, si	15	250	160	0.54	125	50	. 005	18	70		
TR3	IND	mp,AJ, se	15	120	85	3	40	150	10	15	15	1.6	
${ }_{2}^{24 \times 25}$	$\begin{aligned} & M A \\ & 6.1 \end{aligned}$	$\mathrm{mp}^{\mathrm{m}, \mathrm{A}, \text { sil }}$	16	150	${ }^{200}$	${ }_{2}^{2.5}$	50	=	. 05	-	12	. 8	
21118	Ti	nm, CR,si	18.40	150	175	2	15	\bar{z}	2	${ }_{20}^{16}$	$\stackrel{18}{18}$	5	TR Prace mpanam
$\begin{aligned} & 2 n 333 \\ & 2 \text { n33 } \end{aligned}$	$\left.\right\|_{M A} ^{i n}$	nom,CR,si	$\begin{aligned} & 1840 \\ & 18-36 \end{aligned}$	$\begin{aligned} & 150 \\ & 500 \end{aligned}$	175	${ }_{2}^{18}$	15	25	0.5	120	-	8	GE,TR,Ma,ra
2nsia	${ }_{\text {MA }}^{\text {MA }}$		${ }_{18,36}^{10.36}$	500 500	$\begin{aligned} & 200 \\ & 200 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	45 60	-	0.2		-	$\bar{\square}$	
	$\left.\right\|_{M A} ^{I I}$	nop,GR,si	cock	150 150	175	${ }_{0}^{1}$	15 15	25	2	25	,	5	2N115
2N334	TI	men, GR,si	18.90	150	175	$1{ }^{\text {d }}$	45	25	2	20	-	10	GE,TR,M, RA
	ma	non, 16, si	18.90					-		-	-	-	
2 2nsoun	$\left.\right\|_{\pi} ^{M}$	nop, DM, ${ }^{\text {asi }}$	${ }_{\text {coser }}^{18.90}$	$\begin{aligned} & 500 \\ & 150 \\ & \hline \end{aligned}$	200	2.5	150	$\overline{2}$	0.1	$\overline{25}$	-	1	
${ }^{2} 2 \times 151$	m	nmomionisi	18.	150	175	0.\%	4	${ }_{25}^{25}$	2	25	7	8	${ }_{\text {RR }}^{2 M 1}$
${ }^{2 N 129}$	SPR	mpo.a) se						5				30	
212923 201051			$\begin{aligned} & 20 \\ & 20 \end{aligned}$						$.005$				
2121670	GI	mp, DR se	20	120		2	100		${ }^{3}$	-		,	Hivolt smich
$2 \mathrm{~L} / 58 \mathrm{~A}$		npo,06,si	20.50					${ }_{2}^{50}$	0. 10	20	7	10	
													srance procesed

Index of Manufacturers

Abbrev. Company

AMP	Amperex Elec. tronic Co.	Hicksville, N. Y.
BE	The Bendix Corp.	Holmdel, N. J.
CBS	CBS-Hytron, Semicond. Operations	Lowell, Mass.
CL	Clevite Transistor	Waltham, Mass.
CT	Crystalonics, Inc.	Cambridge, Mas
DE	Delco Radio Div., GM Corp.	Kokomo, Ind.
EM	Electromation Co.	Venice, Calif.
FA	Fairchild Semicond. Corp.	Mountain View Calif.
GE	General Electric Co.	Syracuse, N. Y.
GI	General Instru. ment Corp.	Newark. N. J.
HO	Hoffman Semi cond. Div.	El Monte, Calif.
HU	Hughes Semicond. Div.	Newport Beach, Calif.
IND	Industro Transis. tor Corp.	Long Island City. N. Y.
KF	Kearfott Semi. cond. Corp.	West Newton, Mass.
MH	Minneapolis-Honeywell	Minneapolis, Minn.
MO	Motorola Semi. cond. Products Inc.	Phoenix, Ariz.
NA	National Semicond. Corp.	Danbury, Conn.
PH	Philco Corp. Lansdale Div.	Lansdale. Pa.
PSI	Pacific Semicond., Inc.	Cuiver City, Calif.
RCA	Radio Corp. of America	Somerville, N. J.
RRD	Radio Develop. ment and Re search Corp.	Paterson. N. J.
RA	Raytheon Co. Semicond. Div.	Newton, Mass.
RH	Rheem Semicond. Corp.	Mountain View, Calif.
SE	Secoa Electronic Corp.	Westbury, L. I.. N. Y.
STC	Silicon Transistor Corp.	Clare Place, L. I., N. Y.
SSD	Sperry Semicond. Div.	South Norwalk, Conn.
SPR	Sprague Electric Co.	North Adams, Mass.
SY	Sylvania Semicond. Div.	Woburn, Mass.

Audio（continued）

$\begin{aligned} & \text { Type } \\ & \text { Mo. } \end{aligned}$	Mfg．	Type		Menimum Retings					Cherecterisulies				Romarts
				$\begin{array}{\|c\|} \hline W_{c} \\ (m w) \\ (m) \\ \hline \end{array}$	$\begin{aligned} & \mathbf{T}_{\mathrm{j}} \\ & (\mathrm{c}) \end{aligned}$	mw＇d	V_{c}	$\begin{aligned} & 1 \\ & l^{\prime} c \\ & \text { ma } \end{aligned}$		$\begin{aligned} & \overline{N F} \\ & d b \end{aligned}$	$\begin{gathered} C_{c} \\ \mu \mu! \end{gathered}$	$\begin{aligned} & \text { lae } \\ & \mathrm{me} \end{aligned}$	
2 M 06	SY	pmp，AJ，${ }^{\text {a }}$	20－00	150	7	3	20	35	14	－	－	250	
2 N 161	MA	nmon，DM，si	20－55	500	200	2.5	45	－	2	－	－		
$2 \mathrm{NS330}$	GI	－，Dm，	$2{ }^{2}$	100	8	2	15		3^{2}	14	3	25	－matched pap，nan
TRT22	IND	mponjs	22	150	2.5	3	45	200	10	15	20	2.5	
CK22A	RA	pnp，A， sec°	22.5	80	85	－	20	100	2	6.5		1.2	aicromin
CK6EA	RA	mpp，AJ，ge	22.5	80	85	－	29	100	2	7	－	0.8	nicromin
CK54	RA	Pmp，FA，	23	80	8	－	29	100	2	2	－	0.8	microm
20185A	GE	mp， N, ge	24	200	85	1	25	200	16	15	40	0.8	
21109	GE	pmp，A， $\mathrm{se}^{\text {e }}$	24	75	85	2	25	50	16	15	40	0.8	
$2 N 1476$	SS	pmp，AJ， 31	21	250	175	1.7	100	100	0.5	－	1		
2 Cl 301	SY	mpp，AJ，ge	24－15	200	85	3.3	25	200	20	－	－	10	
$2 \mathrm{CH4}$	GE	mpo，AJ，se	25	240	100	1	45	300	16	6	40	1	MIL，GI
21229	${ }^{5}$	$\mathrm{nm}, \mathrm{A}, \mathrm{ge}$	25	50	15	1	10	－	100		－	600	
213300 A	SSO	pmpaj，${ }^{\text {a }}$	25	5	160	3	30	50	0.1	8	－	0.5	
2 m 56	TS		25	200	100	0.3	45	400	15	－	－	－	
2 L 564	IMD	mPD，AJ，	25	150	${ }^{6}$	2.5	30	300	3	12	20	0.8	us
24598	GI	mpp，A］．sa	25	150	100	0.2	20	50	5	116	35	0.4	Bilateral
24726	T1	omp，DM， 51	25	1 m	175	－	25	50	000	－	－		
21265	SY	mp，a，${ }^{\text {ce }}$	25	50	85	0.9	10	100	100	－	－	600	
2 L 1641	MA	Mma，A，${ }^{\text {ai }}$	25	400	200	2.28	50	100	0.01	12	25	1	audio／med．power
2 L 1101	SY	npo， 1 A，se	25.50	180	75	3.6	20	100	50	－	－	0.01	RCA
$2 \mathrm{Cl1102}$	SY	npm，AA．ge	25.50	180	75	3.6	40	100	50	－	－	0.01	
2034 2035	SY		$25-125$	150	75	3	40	100	50	－	－	0.01	Driver，${ }^{\text {II }}$
2035 24306	SY	npn，A」．se nomid．	25－125	150 50	75 88	${ }_{0}^{3} 8.83$	40	100 100	50 100	－	－	$\begin{aligned} & 0.01 \\ & 0.6 \end{aligned}$	Driver， T
2W064	mo	mpo，Al．se	26	200	100	2.5	45	100	6	－	－	0.1	IMD，RA，US，GI
2141474	SSO	pna， AJ, si	25	250	175	1.7	60	100	005	1	7	1	
215331	GI		27	100	85	2	15	－	3	14	14	－	－matched pap，npm
$\begin{aligned} & \text { CKESB } \\ & \text { CKESC } \end{aligned}$	$\begin{aligned} & \text { RA } \\ & \text { RA } \end{aligned}$	mp，A〕，	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	${\underset{\mathbb{E}}{\mathbf{E}}}^{2}$	$\begin{aligned} & 1.25 \\ & 125 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	10	－	－	－	Sutan
2 N 24	TI	mp， A, si							． 005	18	70	2.5	T0－18
2N118	1	npm，GR，si	29	150	175	1	45	60	2	$\overline{20}$	－	${ }_{5}^{8}$	
24279	AMP	pro．AJ．ge	30	25	75	2.5	20	10	110	10	－	0.15	
2M524	SY	mp，AJ，	30	225	100	3	45	500	10		－	，	GE，mo
$\begin{aligned} & 225594 \\ & 2 m 939 \end{aligned}$	GI SSO	npm，AJge	30	150	${ }_{175}^{85}$	1.67	20	10	2	16	15	2	Bilateral
2101406	SSO	pmp，AJ，it	30	250	${ }_{85}^{175}$	1.7	45	100	． 5 5	$\bar{\square}$	20	2	
2m1074a	SSO	pnanj，si	30	250	175	1.7	60	100	．068	－	${ }_{7} 7$	2	
2N1654	RA	prp，AJ，si	30	250	150	0.51	80	50	． 005	18	70	2	
2 211656	RA	Dnp，AJ，si	30	250	160	0.54	125	50	S	11	70	2	
Cr25a	RA	onp，A，哭	30	80	85	－	20	400	2	－	14	4	micromin RF switch
OC201	AMP	mp，PAÁT，	30	250	150	－	25	50	10	10	1	1	micamin af smich
2 n 331	${ }_{5}$	mp，AJ，ge｜	$30-70$	75	${ }^{8} 8$	1.2	30	5	1	20	50	． 1	
211372	5	mp，A，．ge	30.50	150	100	，	25	200	100		－	－	
211373	5	pmodJ．em	30.50	150	100	1	45	200	100	－	－	－	
2211432	5	mpp．DD，ge	30.120	${ }^{80}$	${ }^{85}$	1.3	35	10	15	－	－	250	
2N1380	5	mpa， $\mathrm{A}, \mathrm{ge}^{\text {c }}$	30.300	150	100	2	15	200			－	250	
${ }_{2}^{2 N 1331}$	Sy		$30-300$	150	100		25	200	100	－	\bar{T}	－	
21532	G1			100	85	2	15	－	3	14	14	－	－arched pmp，npn
21319	GE	DPQAJ．se	34	225	\＆	4	20	200	16	－	25		
24065 24005	RCA	pmp，AJ，	35 35	150 150 150	－	－	20	70	14	$\overline{-}$	－	0.25	SY
21598	GI	monjs	35	150	100	$\bar{\square}$	35		5	is	$\overline{35}$		
21534	II	npm，10．si	35	1.0	175	$\underline{-}$	80	50	5	20	35	50	TO-18 TR, MA
${ }_{2} 24738$	1	$n \mathrm{~nm}, \mathrm{DM}, \mathrm{si}$	35	1.	175	－	125	35	1	－	－	－	TR
$2 \mathrm{2ms26}$	ma	mp，N，si	35	150	200	2.5	50	－	． 005	－	12	0.8	
2 N 288	MA	pap，A, ，si	35	150	200	2.5	70	－	． 005	－	12	08	
221010	RCA	nmone	35	20	55	－	10	2	10	5	$\underline{5}$		
2N1564	1	nmen，M，si	35	12	175	－	80	50	1	20	5	50	TO－S TR，MA
201572	TI	non，om，si	35	1200	175	－	125	50	1	－	－	－	TR
OC53	AMP	POp，PADT	＋35	10	55 55	0.7	7	10	1.5	10	－	1.4	
21383	SY	mpo．Aj，ge	35.110	200	85	3.3	30	200	20	10	－	$\begin{aligned} & 0.01 \\ & 10 \end{aligned}$	Hearing Aid
${ }^{2121874}$	GE	anp．as	${ }^{36}$	200	85	4	25	200	16	－	40	＋	
$2 \mathrm{2N119}$	TI	Mpp，A］，Re		25 150	${ }_{15}^{5}$	2	25	50	16	15	40	6	
21335	1	npm，GR，si	36－90	150	175	1	45	25	${ }_{2}$	20	－	i1	TR，USN，MA，RA
2M335A	MA	nmo，KS，si	36－90	500	175	28	45	25	0.5	20	－	is	GE，${ }^{\text {GE，M，}}$
2N759	ma	nma，DM，si	36－50	500	200	2.5	45	－	0.2	－	－	－	
2M7594	ma	npo，DM，si	36.90	500	200	2.5	60	－	0.1	－	－	－	
229505	II	nma，GR，si	36－90	150	175	1	45	25	2	25	－	5	$2 \mathrm{N1152}$
221152	m	ngan，DM， 81	${ }_{37}^{36-90}$	150	175	0.06	45	25	2	－	7	1	
2 L 533	GI		37	100	ES	2	15	－	3	14	14	－	－matctred pap，nen

Type Mo.	Mfs.	Type		Masimon Relins					Charectoriaties				Remark:
				$\begin{gathered} w_{c} \\ (m \omega) \end{gathered}$	$\begin{aligned} & T_{j} \\ & (c) \end{aligned}$	mem 6	v_{c}	$\begin{gathered} I_{c} \\ \text { ma } \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{co}} \\ \mu \mathrm{a} \end{array}$	$\begin{aligned} & \mathrm{NF} \\ & d b \end{aligned}$	$\boldsymbol{C}_{\mathrm{c}}^{\mathrm{c}} \mathrm{~m}!$	$\begin{array}{\|l\|l\|} \text { 'ae } \\ \text { an } \end{array}$	
20712	MA	npm, MS.si	40		200	1.7	60	100	0.1	-	5	200	Switch
211009	S	DAPAJ80	40	150	E5	25	25	20	1	-	-	0	
211176	BE	mp,A) ${ }^{\text {a }}$	40	300	85	6.6	15	300	10	-	-	-	
2011764	㫙	mpp,Al.se	40	300	${ }^{85}$	6.6	40	300	10	-	-	-	
2011768	BE	mpa, N ge	40	300	8	6.6	60	300	15	-	-		
211191	HO	pnp,AJ.se	40	200	100	2.1	40	200	2	10	-	1.5	
211670	61	POP, DR, ${ }^{\text {ce }}$	40	120	85	2	60	-	3	-	3	-	Trinie Drivem
2 Ck 1730	11	mpnomisi	40	20	175	-	60	50	0.5	-	-	-	
CKı	RA	mpajge	40	80	85	-	24	100	?	-	14	6	Submin RF swich
CKAA	RA	mponlse	40	80	85	-	24	100	2	-	14	5	micromin RF swich
Cr26a	RA	mpp,A1se	40	80	85	-	18	400	2		11	6	Micromin RF switch
TR.650	NMO	map, AJ,	40	150	8	2.5	45	400	1.0	10	20	2	2 moso
TR 653	INO	mpp,A1.ge	40	150	85	2.5	30	400	1.0	10	20	2	
21382	SY	mpajse	10-7	200	${ }^{85}$	3.3	25	200	20	-	$\stackrel{7}{7}$	10	
2MSCOA	TR	npm, DG, 81	40-100	200	200	-	45	25	0.18	20	1	11	1006 reliability as.
													sance prece
$2 \mathrm{2Na3}$	GE	mpa.AJ $\mathrm{ge}^{\text {e }}$	42	240	100	4	45	300	15	6	40	1.3	
OC79	AMP	map, PADT se	42	550	75	-	25	300	10	is	-	12	
2 LHO	RCA	pap, Al.se।	4	150	-	-	30	50	10	12	-	0.7	
2 L 215	RCA	pnp, aj se	41	150	-	-	30	50	10	12	$=$	0.7	
2M525	GE	pno, Alse	14	23	100	4	45	500	10	S	\%	2.5	MO. S\%
201924	GE	mpDAJse	14	225	E5	-	10	500	1	7	-	-	
21238	II	pno, AJ se	45	150	${ }^{6} 5$	0025	25	200	6	7.5	-	1.5	
$2 \mathrm{2N21}$	TI	pnp, A jase	45	180	85	.003	25	200	-	7.5	-	1.5	
20322	GE	pmp, AJse	45	140	85	1	16	100	16		25	2.0	Driver
2 W 465	WD	OnP, AJ ge	45	150	85	2.5	45	200	5	15	20	0.1	MO, RA, US, GI, SY
2N595	G1	npn.AJse	45	150	15	1.67	20	-	2	16	15	4	Bilateral
2N1098	GE	pmp,AJ, 81 $\mathrm{mmo}, \mathrm{AJ}$ ge	45	150	200	2.5	40	-	. 005	-			
${ }^{211372}$	TI	prp,AJ,se	45	250	100	3.3	25	200	3	$\overline{7}$	$\stackrel{1}{2}$	I's	Oris
2 L 1373	TI	map,AJse	45	250	100	3.3	45	200	3	1	-	1.5	
201442	MA	pmp, AJ, si	45	400	200	220	50	100	0.01	12	25	1	audio/med. powel
2011145 201447	GE	mp,AJ.ge	45	140	55	1	16	100	16	$\stackrel{\rightharpoonup}{7}$	40	-	Oriver
2011441 2 N 1451	ND	pmp, AJ. ${ }^{\text {e }}$	45	200	Es	3.3	45	400		6	20	3	
(2N1451	INO	mp, A 1.5 ge	45	200	05	3.3	45	400	7.5	9	20	1.5	
2 L 1471	550	Dnp, $\mathrm{N}, 81$	45	250	175	1.7	100	100	0.5	-	1	1.	
Cress	RA	mpp,FA, re	45	80	\%	-	21	100	?	22	-	1	
Cruna	RA	Pap, AJ ¢	15	80	85	-	24	100	2	22	-	1.0	macromin
TRT1	IMD	mpp,Al.se	45	150	2.5	3	30	200	10	15	20	3	
	MAP	npn.DM, ${ }^{1}$	45.150	500	200	2.5	${ }^{4} 5$	-	0.2	is	-		
20850	AMP	pap,AJ, ${ }^{\text {ce }}$	41	25	75	2.5	20	10	150	10	-	0.1	
TR320 $2 m 050$	IMO	mpa.AJ.se	48	150	85	3	25	100	10	-	25	2.5	2 21320
2wnso	m0	[mp, 1],	49	200	100	2.1	45	500				1.5	
$20050 A$ 23053	M0	mpl, A . .ge	49	200	100	2.1	45	500	10	15	25	1.5	Mega lite
20c53	mo	papajage	49	200	100	2.1	30	250	5	10	20	1.5	
2N1185	MO	pap,AJ.se	49	200	100	2.1	60	500	5	5	-	1.5	
	G1	mpajse	50	150	100	2	45	-	10	18	40		-MIL, GE
$\left\lvert\, \begin{aligned} & 2 N 320 \\ & 2 N 331 \end{aligned}\right.$	GE	pmp,As,	50	225	${ }^{8}$	1	20	200	16	-	25	2.5	
24363	IMO	pmpajse	50	200	8	$\overline{2}$	30	200	16	9	-	1.16	IMD, MO, GI
20368	II	mp,A1se	50	150	${ }_{6}$	2.5	30	200	10	-	33	-	RA, us
24369	TI	pap, A)	50	150	6	2.5	30		7		33		
29022	RA	mp, FAs	50	150	15	-	20	100	6	6.5	3	0.8	
2 msM	${ }_{5 S} 5$	pmp, A 1 , 31	50	250	175	1.7	1	50	001		7	0.	T0-18
2 msp	530	MPP,AJ, sin^{1}	50	250	175	1.7	11	50	000	-	7	-	T0-16
21933	SSO	Pma, AJ, \%	50	250	175	1.7	18	50	.003	-	1	-	T0.18
2 W904	SSO	pmo, AJ.si	50	250	175	1.7	18	50	005	-	7	-	T0.18
2095	SSO	pmp,AJ, 31	50	250	175	1.7	50	50	$?$	-	1	-	T0-11
$2 \mathrm{NO46}$	SSD	ppp, AJ, 31	50	250	175	1.7	80	50	?	-	1	-	T0.16
211273	II	mp, A A de	50	150	18	. 0005	15	150	3	6.5	-	-	
$2 \mathrm{2W1274}$	TI		50	150	85	. 0025	25	150	3	6.5	-	-	
201383	1	Pap,A]se	50	200	65	-	25	200	. 001	7.0	-	1.5	
201917	550	pmp, AJ, 81	50	250	175	1.7	1	50	001	-	1	. 5	TO-S
291910	SSO	mpo.AJ.si	50	250	175	1.7	11	50	003	-	;	-	TO-S
201919	SSD	pap.N.si	50	250	175	1.7	18	50	003	-	1	-	T0-5
2 Cl 280	SSO	pmp,AJ, 31	50	250	175	1.7	18	50	06	-	1	-	T0. 5
201991	550		50	250	175	1.7	50	50	2	-	1	-	TO-S
211922	550	mon,A, si	50	250	175	1.7	00	50	?	-	-	-	T0.5
TR.320	110	omp, AJe	50	150	85	2.5	30	200	7.5	-	20	2.5	21320
21211 21028	5		50.100	180	85	3	40	100	50	-	-	0.01	mecred
21228	S\%	non, AJse	50.100	so	75	1	40	100	100	-	-	0.01	
202114	S	pmo.AJse	50.100	200	65	3.3	30	200	16	-	-	10	
21870	Sy	pap, Aj, se	50.100	150	85	2.5	${ }^{25}$	75	12	-	-	0.01	
203321	5	Dap, AJ ge-	50.100	200	05	3.3	25	200	16	\square	-	10	
201059	5	non,Ajse	50.100	180	15	3.6	20	100	50	-	-	0.01	
2wnos	ת	PRPAIS	$50-135$	150	85	2.5	20	70	14	-	-	-	

DFTA CHERT
Audio（continued）

$\begin{aligned} & \text { Type } \\ & \text { Ne. } \end{aligned}$	Mfs．	Troe	b_{6}	Mastomen Retimy					Cravermiaties				Remante
				$\begin{gathered} \mathbf{w}_{c} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{\|l\|} \hline T_{j} \\ \text { (c) } \end{array}$			l_{e}^{1}	l_{180}^{1}			$\begin{aligned} & \text { 1at } \\ & \text { en } \end{aligned}$	
2n109	תy	onp.A. Aes	50.150	50	\％	0.9	${ }_{25}^{25}$	$\frac{17}{15}$	12	Z	－		
2 Lm 23	S	mondee	$\begin{aligned} & 50-150 \\ & 50-150 \end{aligned}$	140	${ }^{5}$	23	${ }_{2}^{25}$	${ }_{100}$	12	＝	－	10	
29134	Sr	map $A, 1$	50－150	150	100	2	25	200	100	－	－	－	\％
2 L 133	Sr		50－150	150	100	2	15	200	100	－			π
212004	${ }_{\text {GE }}^{\text {GE }}$	mod．je	54	200	¢	，	25	200	16	1	40	12	
${ }_{\text {C1223 }}$	$\left\lvert\, \begin{aligned} & \text { GE } \\ & \text { RA } \end{aligned}\right.$		54	75	$\left.\right\|_{65} ^{80}$	${ }_{125}$	25	150	$1{ }_{10}^{18}$	${ }_{6}^{15}$	40	1.2	Diven
CKG5	RA		${ }_{5}$	7	${ }_{6} 5$	1.25	35	100	$\left\lvert\, \begin{aligned} & 10 \\ & 10 \end{aligned}\right.$	$\stackrel{\square}{6}$	－	こ	Sismin．
CKISC	R	［m， 11.8	${ }_{54}$	15	85	125	35	100	10				Smmin，
	IMO	mpapajige	\＄5	150	${ }^{25}$	25	30	300	，	12	20	1	
${ }_{2014}^{2014}$	$\left.\right\|_{\mathrm{GE}} ^{\mathrm{GE}}$	mpad se	${ }_{55}^{55}$	140	${ }_{8}^{185}$	1	16	${ }_{100}^{100}$	16	－	8	－	Diva
C1／2］A	RA	pmatas	55	80	${ }_{8}$	－	15	${ }_{100}^{100}$	${ }_{2}^{16}$		${ }_{10}$	$\overline{11}$	${ }_{\text {der }}^{\text {Oiven }}$
Ocs4	AMP	madse	5	10	55	0.1	3		0.1	10		0.01	Howing oud
${ }^{\text {OCS5 }}$	$a_{p H}$	AOT	5	10	S5	－	1	10	15			1.5	
${ }_{2} 2155$	$\mathrm{Cl}_{\mathrm{Cl}}^{\mathrm{PH}}$	Mnp，A）se	${ }_{60} 6$	250 150	${ }^{5}$	5.0	30	150	$\frac{1}{2}$	16	115	0.4	
${ }_{2} 2 \times 63$	IMD		60	150	8	2.5	3	200	10			0.1	RA，us
22937	S50	mp，AJ， $\mathrm{si}^{\text {a }}$	60	385	160	2.5	30	50	． 08	18	70	3	T0．15
29940	SS0	ORPA」s，	${ }_{60}$	250	$1 / 15$	1.7	35	100	001	－	7	3	
${ }^{2121475}$	SSD			250 10	175	1.7	${ }^{6}$	100	．00		1	1	
$2 \mathrm{Ls526}$	Sr	mpa ${ }^{\text {a me }}$	0	225	${ }^{15}$	3.1	45	500	10°		：	3	GE，TS，mo
$2 \mathrm{2mises}$	GE	mpas ${ }^{\text {ce }}$	61	225	${ }^{2} 5$		40	500	1				ce，\％，
${ }_{2}^{2 N 175}$	${ }_{\text {R }}^{\text {RCA }}$	mop．A」se	${ }_{65}^{65}$	50	－	－	10	2	12	－	－	0.85	
233980	RCA	（mon，Aj，ge	${ }_{65}^{65}$	$\begin{aligned} & 50 \\ & 150 \end{aligned}$	$\overline{100}$	2	10	${ }_{200}$	$\left\lvert\, \begin{aligned} & 12 \\ & 12 \end{aligned}\right.$	6	－	${ }_{1}^{0.15}$	
$2 \mathrm{mm07}$	rca	mo，$A 1 . \mathrm{se}$	65	150	－	2	20	70	12			$\underline{-}$	sr
2 L 088	RCA	mo， 1.1 .8	65	150	－	－	20	70	14	－		－	
$2 \mathrm{Cm49}$	RCA	nomAjse	65	100	－	13	20	100	14			－	
${ }_{2}^{2141488}{ }_{2}$	IMO	mo，Al se	${ }_{6}^{65}$	${ }_{200}^{200}$	${ }^{85}$	3．33	45	100	5	6	20	2	
Ocs	Amp	mo，$)^{\text {a }}$	${ }_{6}$	10	55	0.7	3		120				Heatıng ald
0 Cl 4	AMP	DMD，PADT 28		550	5	．	20	300	10			is	－
${ }_{20}^{212323}$	GE		${ }^{68}$	140	${ }_{75}^{\mathrm{Es}}$	1	16	100	16	－	25	25	Oive
2×361	1 mo	mp，A）de	70	150	85	2.5	15	200	$1{ }^{10}$		Z		
2 L 591	RCA	monofise	70	100	－	－	3	40	1	－		－	
2 m 517	RCA	nomaj ge	10	100		－		100	14		－		
$\xrightarrow{2 N 735}$	T11	apn，15，si	70	1.0	${ }_{175}^{175}$	－	80	50	1	20	5	50	Tolid，tr，ma
2 L 1297	TR	nnom， $\mathrm{OG}, 31$	10	30	150	0.24	${ }_{6}^{125}$	－	0.8			5	
211332 211565	Ti	mondse	10	150	15	2.5	30	200	25				Lom mint de ino．
2 T 26s	π		70	1.2	13		80	so		20		50	TR，M
$\xrightarrow{211513}$	T1 ry	nen， OH, Sl	${ }_{0}^{70} 5$	120	175		125	50	1	－			TR
［	$\xrightarrow{\text { sr }}$	nponAlse nponje	co－250	150	${ }_{\infty}^{\mathbb{E}}$	$\begin{aligned} & 2.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$			${ }_{0}^{0.01}$	
TR．313	1 mo	mondse		200	\％	${ }^{3} .33$			7.5			1.1	$2{ }^{213} 3$
22241	GE	modse	B	100	15	3	8	200	16		10	13	2
2 M 109	RCA	onp，Asse	15	150	－	－	25		10				
${ }_{2}^{212108}$	$\left\lvert\, \begin{aligned} & G E \\ & R C A \\ & \hline \end{aligned}\right.$	Mopalse	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & { }_{1} \\ & \text { is0 } \end{aligned}$	${ }^{18}$	2	${ }_{25}^{25}$	50	16	15	10	1.5	
21118	${ }^{10} 0$		15	200	100	2.7	40	200	2	10		$\overline{7}$	
2 L 1412	m	mpa 1.81	15	100	200	228	so	100	0.01	12	25	1	audio mod．pomat
${ }_{2}^{21162}$	G1	non，A，Ase	15	120		0.5	10	－	5	$\overline{5}$	x	－	Tricieat
GT01	$\left\lvert\, \begin{gathered} G 1 \\ G I \end{gathered}\right.$	mpandse	$\frac{1}{5}$	150 150	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	－	5	${ }_{6} 6$	${ }_{3}$	－	
${ }_{\text {cher }}^{\text {TR．23 }}$	${ }_{50}{ }^{\text {mo }}$	mp，Aise	${ }^{7}$	150	${ }^{10} 5$	2.5		200	7.5		20	2.5	2N323
211316	SY	monse	万－150	150	100	2	25	200	100				213
2 L 1231	${ }^{51}$	Menatice	${ }_{5}^{5} .150$	180	\％	3.6	25	100	50	－	－	10	
2n181	Ino	\％om， Om	5 7.250	600		－	30	－	0.01	三－	$=$	\％	
$2 \mathrm{2ms5}$	Ino．	mon．om，\square^{1}	${ }^{5} 5230$	600	175	1	40		0.01	－	－		
21120	11	nem，GR，31	6．333	150	175	1	15	25	2	20	－	1	TR
$\underset{\substack{212336 \\ 213364}}{2}$	$\begin{array}{l\|l\|} \hline 1{ }_{m a} \end{array}$		${ }_{\substack{16.333 \\ 0.333}}^{1}$	150 500	$\begin{aligned} & 175 \\ & 175 \end{aligned}$	$\frac{1}{2.1}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	${ }^{25}$	2.5		＝	13	Tr，GE，MA，RA
217560	m	mon． Oinis	${ }_{76-333}$	500	200	2.5	15	－	0.2	－	－	：	
2n7son	${ }_{T 1}^{m}$	non． 01.31	${ }_{\substack{6 \\ 76.333}}^{\text {c－333 }}$	500	200	2.5	50	\bar{s}	0.1	－	－	；	
2 zsio		nm，GR， 31	${ }^{76-333}$	150	175	1	45	25	2	20	－	1	2 Ll 15
${ }_{2}^{2121153}$	$\left\lvert\, \begin{aligned} & \text { MA } \\ & I I \end{aligned}\right.$		${ }_{60} 16.333$	150 150		0．0．6	${ }_{2}$		2	5	1	1	TR
24321	GE	mpaise	80	$\begin{aligned} & 125 \\ & 20\end{aligned}$	矿	0．029	20	1500	16	6.5	\％	2	
（2N527		Pop，Afs	80	235 200	${ }_{100}^{5}$	3.7	45 45	500 500	10		－	3.3	
		mpaje			100	2.1			3				

in Industry's

Strongest Chain

of Transistor
Performance
PHILCO
2 N2048 GERMANIUM SWITCH

FOR
FULL NEWS ON THIS NEW TRANSISTOR

SEE PAGE 9

Cumprehensiv reliability
information is
available to all reliability and quality assurance enyineers. Please send request on tompany letterhead

WHEN YOU REQURE RELIABHITY specify transistors having the industry's strongest record of performance and reliability...specify

E- Famous for Quality the World Over
LANSDALE DIVISION - LANSDALE, PENNSYLVANIA

ALABAMA Elrmingham, Paul Haydon Assoc. - ARIzoma. Phoonix, Porlmuth Eloc. Assoc. CALIFORNIA-Palo Arto, Los Angoles, San Diezo,

\square model NC-1 performs transistor tests up to 50 amps at 750W peak power!

Here's the only direct reading, variable duty cycle test set for non-destructive measure ment of medium and high power transistors The B A Model NC-1 applies suitable pulse then prak detects the resulting current pulse oo they have the same measuring value as ateady state DC same measuring value as agnal powerieconeiderably lowerthan puise steady state DC. lese stress is pue on the tran sistor. This permits power tests to be made at level meny times that of rated dissipation

- Minimizes heat sink requirements.
- Under optimum conditions, requires only 3 loths of 17. of the input power used in con ventional DC current tests
- Permits 750 watis max. power with max current of 50A or max ω oltage of 250 V

Gird-Atomic also offers the following equip ment for transistor testing
Beta Tester
Transistor Test Set Model KT• 1
Transistor Test Set Model GP-4
General Purpose Trankistor
Test Set
Model KP Series Curve Tracer Model KP Serie with Circuit Analyzer Model MW-1 rite today for nddreional information Write today for addionai information and name of your nearby Baird-Atomic representative.

Precision AUTOMATIC TRANSISTOR/DIODE TESTER

SELF.TESTING AND FAIL.SAFE FOR: Reliability Testing • Incoming Inspection - Production Testing Engineering Studies

Mh Hard-anodized insulator wafers

for all popular sizes and

 styles of power transistors and stud mounted diodesThermal conductivity considerably greater than conventional mica wafers of comparable thicknesses. Dielectric properties equal to best insulating materials. Insulate semi-conductor from chassis and dissipate the substantial heat generated at rated capacities. Extremely durable with high abrasion and corrosion resistance. Installed between semi-conductor and chassis, heat sink or

- CBS
- C. P. Clare Trenaistor Corp. - Deleo GMC
- General Electric
- Hofman
- Mughes
- Industro Tran. Corp.
- Motorola
- Mationa
- Phileo
- RCA
- Rayeom Mrg.
- Radlo Dev. \& Research Corp

DATA CHERT

(concluded)

Charesteristict				Romoth	TypeNo.
$\begin{aligned} & 1_{\infty} \\ & \mu \end{aligned}$	$\begin{aligned} & \text { MF } \\ & \text { © } \end{aligned}$	c_{c} unl	${ }_{m}^{6}$		
3	12	20	2		22550
500	-	-	${ }^{1.2}$	${ }_{\text {Re }}^{\mathrm{Ra}}$	
2.5	10	18	5		2 m 1471
2	10	-	2.5		211188
6	-	-		Ino. SY	2 m 67.
2	2	-	1.5		$\mathrm{C}_{6} 167$
\%	$\underline{2}$	izs	- 2,5	macomin	
10	16	10	0.5	mo, RA, US	${ }_{2966} 2116$
3	12	20	3		2 msn
3	4	40	3		211378
${ }_{5}^{3}$	4	40	3		$2{ }^{211379}$
5	5	-	3		2 2115
${ }_{3}^{2}$	10	-			
135	20	$=$	5.7		OCP70 2461

of Terms

Si Silicon

SBT Surface Barrier
$\mathbf{C}_{\text {ion }}=$ Collector-to-emitter capacitance meas. ured across the output terminals with
the input ac open-circuited
$f_{\text {ar }}=$ Frequency at which the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-fre-(small-signal)
f. = Frequency at which common emitter gain is unity.
$\mathbf{h}_{\text {te }}=$ Common emitter-small signal forward current transfer ratio
$\mathbf{h}_{r n}=$ Common emitter-static value of short circuited forward current ratio
$\mathbf{I}_{\mathrm{co}}=$ Collector current when collector junc tion is reverse-biased and emitter is dc open-circuited.

Highest purity precisely defined

to meet critical electronic manufacturing needs

'Baker Analyzed' Reagents

THE d . T. BAKER ELECTRONIC CHEMICALS listed below offer you the highest standards of purity in the industry-proved by the most informative labeling in the industry. Every 'Baker Analyzed' label provides an Actual Lot Analysis that deAnalyzed' label provides an Actual Lot Analysis that de-
fines purity to the decimal; many also provide an Actual fines purity to the decimal; many also provide an Actual
Lot Assay. Your variables are minimized... rejections are Lewer... product performance is improved.
Important. 'Baker Analyzed' Reagents have consistently met or exceeded the requirements of the electronics industry. Through a continuing program of establishing additional and more stringent specifications, the 'Baker Analyzed' label consistently defines a degree of purity so high that special electronic labeling is unnecessary. Prices are economical ...deliveries are prompt and dependable in each marketing area.
J. T. BAKER ELECTRONIC CHEMICALS

Acefic Acid, Glacial	Cobal Carbonato	Mickelous Nirrote
Acelone	Cobolt Oxide	Nickolous Sulfote
Aluminum Nitrate	Cabalt Nitrate	Nitric Acid
Alvininum Sulfato	Emer, Anhydrous	Potroloum Eihor
Ammonium Carbonat	Hydrochloric Acid	Potasive Dichromat-
Ammonium Chloride	Hydrotworic Acid	Potassing Hydroxide
Ammonium Hydroxtde	Hydrogen Peroxide,	iso-Propyl Alcohot
Ammonivm Plosphote	30\% and 3\% Solution	Redio Mixhure No. 3
Antimony Triozide	Limivm Carbonato	Silicie Aeld
Barivin Acotate	Liminm Chloride	Sodivm Carbonate
Barium Carbonat	Limium Nitrate	Sodivm Chloride
Barium Fluoride	Limium Sulfate	Sodium Mydrozide
Barium Nitrate	Magnesium Carbonate	Sodiwm Phorphate Dibasic
Benzene	Magnesium Chloride	Strontium Corbonat-
Boric Acid	Mogneshum Oxide	Strontium Nitrate
Cadmium Chloride	Manganese Diozide	Sulturic Acid
Codminm Nitrote	Manganese Nirrate	Toluene
Codmium Sulfote	Manganese Sesquiozida	Trichloroamylene
Cokium Carbonate	Manganous Carbonate	Triple Corbenate
Colchum Chloride	Mothanol	Xylene
Caklum Fivoride	Nickel Carbonate	Zinc Chloride
Calchum Nitroto	Nickel Oxide, Black	Zine Nitrote
Colcium Phosphat-	Nikkel Oxido, Groen	Zinc Oxide
Carbon Tefrachloride	Niskolows Chloride	

ELECTRONICS BUYERS' GUIDE - July 20, 1961
TO LOCATE MEAREST SALES OFFICES. SEE CREEM SECTION. 333 When ordering or seeking information, Dlease mention ELECTRONICS BUYERS' GUIDE. CIRCLE 41 ON READER-SERVICE CARD

High Frequency

Type No.	Mfg.	Type	f fre	Maximum Ratings					Charactoristics				Remarks
				$\begin{gathered} W_{c} \\ (\mathrm{mw}) \end{gathered}$	T_{i} (c)	mw/ c	v_{c}	$\begin{aligned} & \text { Ic } \\ & \text { ma } \end{aligned}$	${ }^{6}$ le	I_{∞} $\mu \mathrm{a}$	$\begin{gathered} N F \\ \text { do } \end{gathered}$	C_{e} $1 \% \frac{1}{}$	
2N44AA	G1	nmm, A, ge	1	150	100	2	40	-	25	2	12	14	
2N1024	SSD	pmp,A, Si	1	150	150	1.2	15	100	9	25	$\underline{+}$	7	NA
2 N 1025	SSS	pmp,A, si	1	150	150	1.2	35	100	922	25	-	-	NA
$2 \mathrm{N94}$	SY	npn,AJ,ge	2	50	75	1	\pm	50	50	50	-	-	
2N139	SY	pmp, A, ge	$2($ min. $)$	80	85	. 75	20	15	22-110	50	-		
${ }_{2}^{2 N 169 A}$	SY	npm,AJ, ge	?	65	75	. 8	25	20	36-220	5	-	-	
2N193	SY	npm, N, ge	?	50	75	1	18	50	9	50	-	-	
2 N 194	SY	npn, $A 1.8 \mathrm{se}$	$?$	50	75	1	18	50	10	50	-	-	
2N194A	SY	npm, A, se	2	50	75	1	18	50	10	50	-	-	Converter
2N211	SY	$\mathrm{nm}, \mathrm{A}, \mathrm{ge}^{\text {e }}$	2	50	70	1.1	10	50	5-15	20	-	-	
$2 \mathrm{2N233}$	SY_{5}	nm, A」, ge	2	50	75	1	18	50	30	50	-	-	
${ }^{\text {2N4I3A }}$	SY	pop,A, ${ }^{\text {ce }}$	2	150	85	2.5	15	200	-	10	-	$\overline{7}$	GI
2N515	CBS	npm,AJ,ge	2	100	8	1.67	15	-		5	-	12	
2N516	SY	npo, A, $\mathrm{g}^{\text {ene }}$	2	50	75	1	18	10	-5.50	50	-	-	
${ }_{2}^{2 N 517}$	SY	npr, AN.ge	2	50 150	75	$\frac{1}{2}$	${ }_{2} 8$	10	10-60	50			
2N1026	GSO	Pmp, A, ge	2	150	100	2	25	-	25	1	12	14	IND, KF
2N1469	sso	pnp,AN,si	2	150	150	1.2	35 35	100	${ }^{184}$	25	-	7	
2N413	RA	pmo, FA, ${ }^{\text {ge }}$	2.5	150	85	1.2	18	200	30	2.0	7	7	IND, US, KF, GI
CK13	RA	Pnp,FA, ${ }^{\text {ge }}$	2.5	80	85	-	18	200	30	20	7	-	Wo. us, MF, G1
	RA CBS	Pmp,AJ, ge	2.5 3	${ }_{100}^{80}$	${ }_{8} 8$	167	18	200	30	2.0	7	$\overline{7}$	Micronin
2N438	CBS	Pnp,AJ, 8 C	3	100	88	1.67	20	-	-	5	-	12	RCA, GI, SY
2N438A	CBS	npn,AJ,ge	3	150	85	2.5	30	-	-	10	-	12	
2W445A	GI	npn,A,ge	,	150	100	2.5	30	-	70	2	12	12	GI, R
$\begin{aligned} & 2 \mathrm{~N} 481 \\ & 2 \mathrm{~N} 882 \end{aligned}$	$\begin{aligned} & \text { RA } \\ & \text { iND } \end{aligned}$	$\begin{aligned} & \text { pnp,AJ,ge } \\ & p n p, A, \varepsilon_{2} \end{aligned}$	3.5	200 150	$\begin{aligned} & 85 \\ & { }_{ष} \end{aligned}$	2.5	30 11	200	50 50	3	-	14	
TR-482	IND	Pnp,AJ, ge	3.5	150	85	2.5	11	200	20	3	-	12	RA, US
2N212	SY	npn, $A \cup, \mathrm{~g}^{\text {e }}$,	50	15	1	18	50	20	50	-	12	Converter
2N385	CBS	npm, A, s ge	4	150	100	2.0	25	S		35	-	4	SY, GI
$\begin{aligned} & 2 \mathrm{Na14A} \\ & 2 N 528 \end{aligned}$	${ }^{S Y}$	pnp, ${ }^{\text {d, ge }}$	4	150	8	2.5	15	20	$\overline{-}$	20	-	-	KF, GI
2 L 1027	SSO	$\mathrm{map}_{\mathrm{mp}, A J, s i}^{\text {mi }}$	1	150	150	1.2	15	100	25	10	-	7	US, MIL only
2 2N1058	SY	npn,AJ,	4	50	75	1	18	${ }^{100}$	15	25 50	-	7	Converiter
2 m 4 A A	SY	non, N , \%	5	50	85	. 8	20	50	19	50	-	-	Convener
$\begin{aligned} & 2 \mathrm{~N} 168 \mathrm{~A} \\ & 2 \mathrm{~N} 292 \end{aligned}$	$\begin{aligned} & S Y \\ & S Y \end{aligned}$		5	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	85	1.1	15	20	23-135	5	-	-	
${ }_{2} \mathbf{N} 398$	RA	npm,Aj, ge	5	65 150	85	. 9	15 25	20	$6-14$ 40	${ }^{5}$	-	$\overline{12}$	
2M38	RA	npm AJ, ge	5	100	85	-	25	400	25	2.0	-	12	T0-5 RF Smich
2N139	CBS	$\mathrm{nPn}, \mathrm{A}, \mathrm{ge}$	5	100	85	1.67	30	+0		10	-	12	GT, SY
$2 \mathrm{2N439A}$	CBS	$n p n, A, g e$	5	150	85	2.5	30	-	-	10	-	12	RA
2N448	CBS		5	100	85	167	15	5	9	6	-	12	
2 2N520A	GI	pnd,N, $z^{\text {che }}$	5	150 150	100	${ }_{2}$	15 25	2	100	5	12	2.4	
2N634	CBS	nm, N, se	5	150	85	25	20	-	100	5	12	14 12	$\operatorname{lind}_{G,} \mathrm{KF}$
2N1090	CBS	non, A.ge	5	120	${ }_{10}^{85}$	2	25	\cdots	75	8	-	12	
2N1681	$\left\lvert\, \begin{aligned} & \text { TS } \\ & \text { RA } \end{aligned}\right.$		5	180	100	-	30	200	75	3	$=$	-	
2N435	CBA		5.5	150 100	\% 8	1.67	12	20	60	30	-	$\overline{2}$	IMD, US
2 N 377	CBS	npo, A, ${ }^{\text {a }}$	6	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	100	$\begin{aligned} & 1,67 \\ & 20 \end{aligned}$	20	-	-	5 5	-	12	${ }_{C Y} \mathrm{RCA}, \mathrm{GI}, \mathrm{SY}$
2 L 465 A	GI	npm,AJ, pel	-	150	100	2	30	-	120	2		14	
OCA5 ST4150	${ }_{\text {amp }}^{\text {TR }}$	Pap, PADT,	80 6	83	75	15	15	10	100	0.5	$\underline{-}$	\square	
$\begin{aligned} & 5 T 4150 \\ & \text { 2W139 } \end{aligned}$	TR	n¢n, DJ, si	${ }^{6}$	50	200	45	60	-	25	15	-	0	
2 N 218	RCA	DMP, A, ${ }^{\text {cee }}$	6.8	0	85	1	15	15	48	6	1	-	SY
	rca	PnP, N, ge	6.8	8	85	-	16	15	4	5	-	-	
2 N 409 2 M 410	RCA	mpp,N, ${ }^{\text {cer }}$	6. 8.8	0	85	-	13	15	48	10	-	-	SY
2NSI4	RA	momp, FA,	6	150	8	-	13	15	75	10	-	-	
		mplifne	7	150	¢	-	15	200	60	2.0	6	-	IND, US, TS, GE, RCA,
2m30	RA		7	100	5	-	20	400	45	3	-	9	TO'S RF Smitch GI
$\begin{aligned} & \text { 2N1090 } \\ & \text { CK14 } \end{aligned}$	$\left\lvert\, \begin{aligned} & R A \\ & 0 A \end{aligned}\right.$	npm,A, ${ }_{\text {apm }}$	7	150	8	-	18	100	50	3	,	9	TO-S RF Swith
ST903	TR		7	80	5	$\bar{\square}$	15	200	0	20	6	-	
22485	INO	npn, ,AR,si	75	200	150	${ }^{1.0} 3$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	2	16 50	0.1	2	7	
2M160A	GE	npm, RG, ${ }^{\text {en }}$	d	6	${ }_{6}^{6}$	11	15	20	40	3 5	-	12	RA, US
21169	CE	npm, RG, 8 e	8	${ }_{0}$	85	1.1	15	20	12		-		
21283	GE		$!$	65	85	1.1	15	20	8	5	-	2.4	
	CBS	mpran, e	8	15	100	20	25	$-$	-	5	-	12	
213360	RA		8	150	85	-	20	-	∞	20	-	12	TS
	ck	MPR,RG, $0^{\text {co }}$	8	65	85	11	15	20	72	5	-	24	
$2 M 714$	TR	mpa, Gl, si	8	200	200	-	30	25	10.25	. 02	22	7	
24581	$\begin{aligned} & \text { TR } \\ & \text { RA } \end{aligned}$	mpp,G,N,si	8	200	200	-	45	25	$10-25$. 02	2	7	
21085	GE		8	100	8	\square	15	100	30	3	-	12	T0-5 RF Switch
2N1085	GE	mpn,RG,	8	${ }_{6}^{6}$	85	$\begin{array}{ll} 2.1 \\ 2.1 \end{array}$	9	20	40	3	-	24	
									4				

High Frequency（continued）

Troo	μ_{1} ．	Typo									Remokt
	${ }_{6 E}^{6 E}$	monche	：	${ }^{65}$		1.12	${ }_{15}{ }_{2}^{2}$	${ }_{0}^{20}{ }_{n}^{0}$	${ }^{3}=$	220	
，				${ }_{10}^{10}$	12	${ }_{\substack{25 \\ 20}}^{20}$	（25	10	${ }^{25}$	12	
2ma	${ }^{\text {ces }}$	min		${ }_{1 \infty}$	${ }^{\text {cos }}$	1．6］ 15				12	
stom	1				150				O	14	
	$\xrightarrow[\substack{\text { rich } \\ \text { RCA }}]{ }$	mmanem	，	${ }_{\substack{150 \\ 80}}$		L0	${ }_{16}{ }_{16}$ is	${ }^{315}{ }^{0}$	${ }^{0.1}{ }^{0.1}$	！	sr
	${ }_{\substack{\text { RCCA }}}^{\text {RCA }}$		10		${ }^{5}$		${ }^{15}$	15		－	
	1150	mon N,	10	20	${ }^{1} 85$	2.514	20	200	3	in	
con	${ }_{\text {cose }}^{\text {Rea }}$	mornem	10	${ }_{\substack{150}}^{100}$	I，	2，6］${ }^{1}$	${ }_{30}{ }^{2} 20$	20.8	${ }^{20}{ }^{20}$	兂	mo mis
	${ }_{\text {cose }}^{\text {cas }}$	nm，	io		${ }^{1050} 2.25$		10		2		
2 mB			10					${ }^{25}$	50． $0^{.02}$		
	$\stackrel{\text { TR }}{\text { TR }}$	mombis	10	200	20 200	＝ $\begin{aligned} & 30 \\ & 30 \\ & 30\end{aligned}$		25，	5	0	
	${ }_{\text {che }}^{\substack{\text { R } \\ \text { R }}}$		10 10	圱䞨	（1）	三15	（120	230 ${ }^{235}$	S00		
，	${ }_{\text {cas }}$	moner	10		${ }^{0} 5$		20			12	${ }_{68}^{\text {cx }}$
，							${ }_{12} 20$	200			
	$\stackrel{R}{\text { R }}$	cmat	10	${ }_{150}$	${ }^{5}$	1.0 1.0 10 0	120 30	xo ${ }^{2}$	${ }^{5}$	；	micomn
	IR	momes	il	${ }_{\substack{150 \\ 200}}$	${ }^{\circ} 1150$	＝ $\begin{aligned} & 30 \\ & 15 \\ & 15\end{aligned}$	${ }_{15}$	12080	2000．20		Mn，Ti
，		mome	11				8		（100		
22012		nmicas	＂		${ }^{150}{ }^{50}$		15.25		2000.1		
	${ }_{\text {IR }}^{\text {IR }}$		11	cois	${ }^{0} 5150$		${ }_{30}^{30}$		1200		
	$\sqrt{\frac{\mathrm{T}}{\mathrm{TR}} \underset{\mathrm{TR}}{ }}$	coich	${ }^{11}$		（lll	－	（10）	25	H000．020		${ }^{2432}$
（ismic											
	${ }_{\substack{80 \\ 100}}^{\text {mid }}$	mondic			（100		${ }^{15} 5$	20 ${ }^{1} 000$	${ }^{0}$		Tras，Re sment ，kF
	${ }^{\text {RAA }}$	mandicisi	${ }_{12}^{12}$		S0． 0.1150	0.50	${ }_{20}^{20}$	${ }^{5}$	I 1.001	6	
	${ }_{\text {TR }}$	nemas，		${ }_{200}^{200}$	200 ${ }^{200}$	15	${ }_{15}^{15}$				\％
	$\stackrel{\text { TR }}{\text { TR }}$	nimicts			边		（10）	${ }^{25} 5$	com		
${ }_{\text {coser }}$	${ }_{\text {css }}^{\text {cas }}$	\％min			（1）	2.5			－ 0^{0}	12	
	${ }_{\text {cosp }}^{18}$	mentige			${ }^{50}$		$1{ }^{15} 120$	100	${ }^{5} / 2{ }^{3}$		Tr－Sef smikn
	$\stackrel{\text { cosid }}{\text { TR }}$			coic	Sr	－	（15	${ }^{5}$	50，	1	
${ }_{21582}^{2120}$					－${ }^{100} 5$	${ }^{2}$	－0	－ 200			
\pm	${ }_{\text {Pr }}^{\text {Pr }}$	${ }_{\text {mom }}$		ciso	S0	1， 1.38	co	（10）	5 ${ }^{0}$		
${ }_{2}^{2120}$	${ }_{\text {RH }}^{\text {PR }}$			${ }_{150}{ }^{\circ}$	$9{ }^{5} 5$	${ }^{0.9} 9$			${ }^{10} 5$	4 6	${ }^{\text {Sime }}$ us，al，
$\underset{\substack{\text { and } \\ \text { cing }}}{\text { ckil }}$	${ }_{\text {cid }}^{\text {¢ }}$				${ }_{50}{ }^{5}$	${ }^{2} 20$	20		－ 0^{3}	！	
	${ }_{\text {PN }}^{\text {P／}}$		${ }^{2}$	\％	${ }^{\circ}$		20	2010			
2msan	${ }^{61}$	monic	${ }_{2}^{23}$	iso	S0 00	${ }^{2}$	so	0^{50}	${ }^{0}$	$\overline{1}$	wo
com	${ }_{\text {Pr }}^{\text {Pr }}$	momer		${ }_{10}^{10}$	S 120	0．0．56	¢ 6	${ }_{50}^{50} 80$	15．${ }^{501}$		
，	cis	coiche		，		H2000	100 10.0	$5{ }_{5} 5$	，mim		
	Ra			\％	${ }_{10} 5$	－	5	10.50		－	
	cica		30	\％		x	10	10	00		
\cdots	$\xrightarrow[\substack{\text { raca } \\ \text { raca } \\ \text { R }}]{ }$		－	${ }_{\infty}^{\infty}$	${ }^{\circ}$			${ }^{10} 10$	${ }_{0} 8$		
，	${ }_{\text {cos }}^{\text {man }}$	Mapere	3	¢	${ }^{5}$	\％	${ }_{28}{ }_{16}$	®	－	is	
	$\xrightarrow[\substack{\text { fica } \\ \text { nca }}]{ }$	come	3	$\left.\begin{array}{\|l\|l\|} 1020 \\ 1000 \\ 100 \end{array} \right\rvert\,$		（1．610 10	（10	边	（10	こ	

ELECTRONIC DESIGN • July 5， 1961

GSPD

SALES ENGINEERING OFFICES
ALBUQUERQUE R. E. McClendon Co 915 Yole Blvd., S.E., Albuquerque, Now Mexico
Tol: CHopel 3.45S
BALTIMORE Habco Electronic Soles Co 603 Allegheny Ave., Towson 4. Marylond Tol: Valley 5.9637
BOSTON L. L. Schloy Co., Ine.
70 Coolidge Hill Rood, Watertown 72, Mass Tel: WAlnul 6.0235
CHARLOTTE, N. C. Bill Henry Associolos 1013 D Providence Rood, Charlotte, N. C. Tel: FRonklin 5.8958
CHICAGO Withers, Ropek \& Cohill, Inc 5439 W. Division St. Chicogo 51, Illinois Tol: AUstin 7.7292
CLEVELAND Tochnicol Associotes, Ince. 4475 londer Rd., Chogrin folls, Ohio 4475 Londer Rd., Ch
Tal: TErroce 1.9884
DALLAS R. E. MeClendon Co., Suite 14.B 137 Walnut Mill Villoge, Dallas 20 , Toras Tal: Fleetwood 2.4054
DAYTON Technical Associates, Inc. 1724 Hillwood Drive, Doyton 39, Ohio Tol: Axminister $9-537$
DENVER Scientific Instrument co 1460 Pennsylvania St., Denver 3, Colorado Tol: Alpine 5 -2777
DETROIT Hilltronics, Inc
13720 Puritan Avenve, Detroir 27, Michigon Tol: BRoodway 2.4320
KANSAS CITY, MO. Harris.Hanson Co 7916 Paseo Ave., Kansas City 30 , Missouri 7916 Paseo Ave., K
Tell: Mllond 4.9494
LOS ANGELES 11563 South Paramount Blvd Downey, Colitornia
MILWAUKEE Arthur Engineering Sales Co. H210 W. Mallory Ave., Hales Corner, Wisconsin Tel: GArdner 5-5919
NEW YORK CITY H. W. Brede Co., Inc. 689 Groenvale. Glen Cove Rood, Glon Head long Island, Now York, Tal: ORiole 6.4900
ORLANDO Perroth Associates
2701 Wright Avenue, Orlondo, Floride 2701 Wrighl Avenue.
Toll: Mldwoy 4.0065
PALM BEACH Perrott Associates 4613 Woymouth Stroet. lake Worth, Florido Tel: 965.2519
PHILADELPHIA Schumacher Associoles 1209 York Rood, Abingion, Ponnsylvania Tell: TUrner 4-7808
PHOENIX W. G. Menschen Company 4430 East Morion Woy. Phoenir 18, Arizono Toll: whilnoy 0.747
SAN FRANCISCO Jomes S. Heoton Co 413 Lathrop Street Redwood City, Colitornio Tol: EMarson 9.5278
SEATTLE Roy Johnston Co., Inc.
1011 East 69th Stroet, Seatlo, Washington Tol: LAkeviow 4.5170
ST. LOUIS Horris-Hanson Co
2814 S. Erontwood Blvd., St Lovis 17, Missouri Tal: Mlasion 7.4350
5T. PAUL Arthur Engineoring Soles Co. 1027 Burke Ave., St. Poul 13, Minnesoto
Tolı IVonhoo 4.3277
SYRACUSE L. L. Schloy Corp
109 Kinne Rood, De Witre (Syracuse), Now York Tol: GIbson 6.1642

SILICON CONTROLLED SWITCHES ... from SSPD

 to 10 amperes, in the miniature TO-18 package.
High sensitivity

 $\ldots 20 \mu \mathrm{~A}$ firingClose firing control ... within $\pm .08 \mathrm{~V}$Voltage ratings to 200 VMIL-S-19500 capability

Type	Maximum Anode Voltage (DC or Peak AC) \pm Volts	Maximum Average Forward Current $75^{\circ} \mathrm{C}$ mA	Maximum Gato Current to "Fire" $\mu \mathrm{A}$	Gate Voltage to Fire + Volts	
				Min.	Max.
2N884	15	200	20	. 44	. 60
2N885	30	200	20	. 44	. 60
2N886	60	200	20	44	. 60
2 N887	100	200	20	. 44	. 60
2N888	150	200	20	. 44	. 60
2N889	200	200	20	. 44	. 60

... Offering efficient switching in the 1-200 mA range and peak pulse current capability

Available for the first time in the miniature TO-18 case, these units offer the same high sensitivity and close characteristics control introduced by SSPI in pioneering PNPN devices for control and logic applications.

The precise firing characteristics of these devices make them ideal for timing and time delay circuits, voltage limit detectors, high gain static switching, logic circuits, and related applications.

With the high surge capability of this series, squib firing systems requiring pulse currents up to 5 amperes can be greatly miniaturized without sacrificing design margin. In addition, the low 1 mA holding current level is particularly useful in many programming, control and logic circuits.

Designed to meet the requirements of MIL-S19500, these units are subjected to extensive temperature storage and cycling, as well as 100% acceptance testing, as a regular part of the manufacturing procedure.

Write for Bulletin C420-03
circle 201 ON reader-service card

PROVEN LEADERSHIP IN PNPN TECHNOLOGY... from SSPI

SOLid STATE $\left.\right|_{\text {rom }}$ roducts. Inc.

Are you on our mailing list for "New Design Ideas"?

Type Ne.	Mfg.	Type	${ }^{+}$a*	Maximum Rotiege					Charactoristies				Remark ${ }^{\text {a }}$
				$\begin{array}{\|c\|} \hline W_{c} \\ (m w) \\ (m w) \end{array}$	$\begin{aligned} & T_{j} \\ & \text { (c) } \end{aligned}$	mw/c	$\left\lvert\, \begin{array}{ll} v_{e} \\ v \end{array}\right.$	$\left\lvert\, \begin{array}{ll} 1 & c \\ \text { ma } \end{array}\right.$	${ }^{\text {h }}$ le	$\left\lvert\, \begin{aligned} & 1 \mathrm{co} \\ & \mu \mathrm{a} \end{aligned}\right.$	$\begin{aligned} & N F \\ & d b \end{aligned}$	$\left\lvert\, \begin{gathered} C_{c} \\ \mu \mu \end{gathered}\right.$	
2 L 1395	RCA	mpp, Di, ee	30	120	85	-	40	10	90	16	-	-	
$2 \mathrm{NLT50}$	PH	pmp,SBT, 180	30	15	7	0.5	14	5	50	2	-	6	
221025	RCA	Onp, $\mathrm{Dr}, \mathrm{E}^{2}$	33	80	71	-	24	10	50	12		-	
2N1426	RCA	Pmp, Di,se	33	80	71	-	24	10	130	12	-	-	
2N1524	RCA	map,Di,ge	33	80	71	0.4	24	10	∞	16	-	2	
20155	ACA	mp, Di,ge	33	80	71	0.4	24	10	60	16	-	2	
221526	RCA	mmp, Di,ge	33	80	71	0.4	24	10	130	16	-	-	
2 21527	RCA	pmp, Dr, ge	33	80	71	0.4	24	10	130	16	-	-	
2 N 1108	TI	Pnp,GD,ge	35	30	85	0.5	16	5	-	5	-	15	
2 2 1110	TI	Mm, $\mathrm{CDO}^{\text {cege }}$	35	30	85	0.5	16	5	-	5	-	1	
$2 \mathrm{2N1111}$	TI	DMP, GD, ge $^{\text {ce }}$	35	30	85	0.5	20	5	-	5	-	15	
2 21111A	TI	Mnp,GD,ge	35	30	85	0.5	20	5	-	5	-	1.5	
2 N 1111 B	T	pnp,GD, $\mathrm{se}^{\text {e }}$	35	30	85	0.5	20	5	-	5	-	15	
24003	GI	pop, Of, ge	40	120	${ }_{15}^{85}$	2	30	$\overline{5}$	-	3	14	3	
2N750	RA	npn, DJ, si	40	150	1/5	0.7	50	50	7	10	-	5	
2 Cl 107	TI	mpagios	40	330	185	0.5	16	5	7	5	-	1.5	
2W1369	RACA	npm, DJ , si	40	300	175	0.5	50	50	75	10	-	6	
201634	RCA		40	0	71	0.4	31	10	75	16	-	-	
2N1638	RCA	mpodrse	40	∞	71	0.4	31	10	$\frac{15}{5}$	7	-	2	
2213746	RCA	mp, Dr, ge	40	∞	π	-	31	20	. 985	16	-	3.8	
214640	RCA	Pmp, Dr,ge	42	80	85	0.75	34	10	60	5	$-$	-	
$2 \mathrm{MGH1}$	RCA	mp, Dise	42	0	85	0.75	34	10	00	7	-	-	
$2 \mathrm{NGA2}$	RCA	mp, Dr,	42	80	85	0.75	31	10	∞	7	-	-	
2Nな	TR	npn, DJ, si	44	300	1/5	-	60	50	20-00	1	-	8	
2 N 75	TR	npm, $D J$, si	41	300	175	-	100	50	20-60	1	-	8	
24×39	TR	npm, DJ , si	4	300	175	-	45	25	20-45	4.1	15	-	TMTE3 (150 mm)
2 NSHO	TR	non, DJ, si	4	300	175	-	45	25	$0^{60} 90$	0.1	15	8	TMT ${ }^{\text {a }}$ (150 mm)
TMT812	TR	mpon, DJ,s	4	150	15	-	45	25	20	0.1	-	6	-
2 W1196	HU	pnp,W0,si	45	385	200	2	70	25	-	,	-	4	
201631	RCA	mp, $\mathrm{Dr}, 50$	45	80	71	0.4	34	10	80	16	-	2	
27168	RCA	MPD, Di, m	45	80	71	0.4	34	10	80	16	-	2	
$2 N 1635$	RCA		45	∞	71	0.4	34	10	75	16	-	2	
23163	RCA	mpa, Dr, ${ }^{\text {a }}$	45	0	71	0.4	34	10	7	16	-	-	
$2{ }^{2} 1681$	RCA	Pmp, Dis	45	80	71	0.4	34	10	80	5	-	-	
201169	RCA	pmp, Orat	45	0							-		
21048 21364	TI	Mmp, ciose	50	30 80	$\begin{aligned} & 75 \\ & 55 \\ & 55 \end{aligned}$	0.6	${ }_{2} 2$	5 5	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	0.7	-	L_{3}	
27315	PH	pmp,si,ge	50	20	5	1.33	5	5 5	$\stackrel{22}{38}$	0.7	-	3 3	SPR
20693	PH	Pmp, Ma, ${ }^{\text {a }}$	50	2	100	0.63	6	50	155	5	-	2	SPR,GI
24E04	G1	mpp, Dr me	50	120	${ }^{85}$	2	30	-	-	4	14	3	
2×189	PSI	mpn, DMaisi	50	125 w	150	1000	140	10a	10	Oma		6	hit Ieg., hi pur
3306	GE	npm, MB, $\mathrm{C}_{\text {ce }}$	50	30	86	0.5	${ }^{5}$	20	2.2	3	-	$?$	tetrode
PTs00	PSI	non, OM, si	50	125 m	150	1000	${ }^{80}$	102	3	homa	-	1	hi hequ hi pow.
PTSOI	PSI	npo,mbsis	50	125w	150	1000	140	10 a	10	30	-		Mi frequancy. high powes
201197	nu	pap,mesi	55	385	200	2	π	-	-	-	-	4	
2 N 128	PH	Dmp,SB,	60	25	85	0.1	10	5	40	0.6	10	2.5	SPR
$2 \mathrm{N749}$	RA	nom, DO, s	60	150	175	0.75	45	50	10	10	-	6	
271388	RA	npm, D, J si	∞	300	175	0.5	45	50	10	10	-	6	
2N811	TR	npm, O, si	6	300	175	-	45	25	cobs30	0.1	15	8	TMTM (150 mim)
กTル	TR	nmpodsi	${ }_{6}^{6}$	150	173	$\overline{7}$	45	25	40	0.1	-	6	
2N1517a	AMP	Mmp,PADT,		180	-	1.7	20	10	100	-	-	-	*T, RF-IF
PADTzo	AMP	m, PADT,	7°	8	-	1.7	20	10	150	-	-	-	:it re
PADT21	amp	pmo,PADT, 8	10°	83	-	1.7	20	10	150	-	-	-	IT, Convener
PADTE	AMP	pmopadis	70°	${ }^{83}$	-	1.7	20	20	150	-	-	-	of T, IF $=$ mop
PADT23	AMP	pro, PADT,	70 0°	100	-	1.7	35	10	150	-	-	-	Ot, RF amp
PADT24	AMP	Pmp, PADT,	$0^{\circ} 0^{\circ}$	100	-	1.7	35	10	150	-	-	-	of, IF
PAOT\%	AMP	map, PADT ${ }^{\text {ma }}$		-	-	=-	-	-	-	-	-	-	-15, IF amp
PADT27	amp	map, PADT	70°	100	-				150	-		-	- T , ose
PADT31	AMP	Pmp, PADT,	\% 0°	100	-	1.7	35	10	-	-	-	-	
20336	PH	pmp, SR, ${ }^{\text {m }}$	75	20	5	1.3	5	5	35	0.7	-	3	SPR
2N6\%	FA	nm, DP, si	∞	2\%	1%	13.3	40	5	40	0.1	-	18	RM, PSI, HO, TR, TI, IMO, SY, SSD, MA
	FA	npa, DP_{1}, si	0	21	15	133	00	-	30	0.1	-	12	RH, IMD, TR, MA
	FA	$n \mathrm{~nm}, \mathrm{DP}, \mathrm{sin}$	0	20	15	13.3	80	-	6	. 01	-	12	RH\% M M M, Ma
2105	FA	$n \mathrm{nma,DP}$ si	0	10	15	6.7	28	-	$\frac{12}{38}$. 005	-	5	
20127	FA	nmp, DP, si	0	20	175	133	20	-	35	0.1		30	QH. TR
2 man	TR	nen, DJ, $\mathrm{s}^{\text {i }}$	6	300	1\%		∞	50	40-129	.	-	8	-10.
$2{ }^{2105}$	TR	¢90, D J, \%	E	300	175	-		50		1	-		
3 M 37	GE	men, 318	90	30	5	0.5	5	20	11	3	-	1.5	tesom
$2{ }^{2098}$	RCA	mom, Dip	10	0	5 5	-	30	10	0	15	-	-	
3 mm	FA	$n \mathrm{~nm}, \mathrm{DP}$ 2 ${ }^{\text {a }}$	100	210	175	113	40	-	5	01	-	18	RM, PSI, TDO, TR, SSD,

DATE CHERT
High Frequency (continued)

Type No.	Mig.	Type	a	Meximum Reolinge					Charecteristics				Remerks
				$\begin{gathered} w_{c} \\ (m w) \end{gathered}$	$\begin{aligned} & T_{j} \\ & (c) \end{aligned}$	mw/d	$\left\|\begin{array}{c} v_{c} \\ v \end{array}\right\|$	$\begin{aligned} & 1 \mathrm{c} \\ & \mathrm{ma} \end{aligned}$	${ }^{\text {h }}$ te	$\begin{array}{\|l\|} \hline 1 \mathrm{co} \\ \mu \mathrm{a} \end{array}$	$\begin{aligned} & \text { NF } \\ & d D \end{aligned}$	$\begin{gathered} C_{c}^{c} \\ \mu \mu \mathrm{f} \end{gathered}$	
2 N 1180	RCA	$\mathrm{mpl}, \mathrm{D}, \mathrm{ge}$	100	80	71	-	30	10	80	12	-	-	
221225	RCA	pmo, $\mathrm{Drageg}^{\text {a }}$	100	120	85		80	10	8	12	-	-	
$2 \mathrm{NL253}$	FA	npm, DP, si	100	2 w	175	13.3	20	-	45	0.1	-	30	RH
2 21396	RCA	pnp, Dr, ge	100	120	85	-	40	10	90	16	-	\square	
2 N 1420	FA	npn,DP,si	100	2w	175	13.3	30	-	130	0.1	-	20	RH, NA
2 21613	FA	non, DP, St	100	3w	200	17.2	50	-	80	. 0004	-	18	RH
212178	PH	Dnp,MD.ge	100	60	100	. 8	25	-	45	1.5		1.3	
2N1778A	PH	pnp, MO.ge	100	60	100	. 8	25	50	70	1.5	-	1.3	
2N1749	PH	pmp,MD, ge	100	75	100	i	40	10	45	1.5	-	1.3	
3N34	TI	non,GD,si	100	125	150	1	30	20	1	0.4	20	.	terrode
0 Cl 17	AMP	pro, DJ.ge	100	60	15	2	20	5	-	2	-	-	
2×152	PH	pnp,MD,	100	60	100	. 8	12	50	250	0.8	-	1	
2 M97	RH	npn, MS, si	120	41	173	26.5	60	500	25	0.1	-	20	MA, GE
2 2N998	RH	non,N0,si	120	am	175	26.5	100	500	25	0.1	-	20	MA, GE
2N656	RH	$\mathrm{nma}, \mathrm{MS}$, si_{1}	120	${ }^{4}$	175	26.5	${ }_{0}$	500	60	0.1	-	20	M. GE
2 N 657	RH	npn,MS, si	120	4	175	26.5	100	500	60	0.1	-	20	NA, GE
211023	RCA	pap, Dr,ge	120	120	85	-	40	10	60	12	-	$\underline{-}$	W, ${ }^{\text {ce }}$
210066	RCA	mpo, Or ,ge	120	120	8	-	40	10	00	12	-	-	
2 N 1397	RCA	pmp,or,Ge	120	120	85	-	40	10	90	16	-	-	
2N1409	RH	npm, $16, \mathrm{si}$	120	2.8w	150	22.5	30	500	30	0.1	-	20	PS
221410	RH	n@n,MS,S1	120	2.8w	150	22.5	30	500	50	0.1	-	20	PSI
211420	RH	non, DD, Si	120	2 m	175	13.2	0	500	200	. 003	-	20	PSI, TR, GI
2 L 1507	RH	n¢0,00,s	120	2w	175	13.2	60	500	200	. 003	-	20	
PT600	PSI	nom, OM, si	120	13m	175	86.7	80	-	12	1		40	hit frea, hi pwo.
PT601	PSI	npm,DM,si	120	13w	175	66.7	60	-	14	1	-	40	hitrea. hi pwis
RT5001	RH	npo, M5, st	120	$3 \times$	175	20	∞	1000	0	0.1	-	30	
RT5002	RH	non,ME,si	120	3m	175	20	60	1000	60	0.1	-	30	
RTS003	RH	n¢0, MS, 51	120	3 m	175	20	100	1000	40	0.1	-	30	
RTS000	RH	npm, MS, St	120	3 m	175	20	100	1000	60	0.1	-	30	
2N715	TI	nom,10, si	125	1.2 w	175	8	50	-	1	. 001	-	3	${ }^{n}$ FEE $10-50, \mathrm{Ma}$
20716	TI	npm, MS, sil_{1}	125	1.2 m	175	75	70	50	1	. 001	-	3	nFE 10-50, MA
2N1785	PH	DROMD, ${ }^{\text {r }}$	125	45	85	. 75	10	50	-	$?$	-	1.5	
211785	PH	pap.MD.ge	125	45	85	. 75	10	50	-	2	-	17	
2N1787 218184	PH	map. 10.0 ge	125	45	4	. 75	15	50		1.5	-	1.5	
2N1854	PH	Dnp.Mo.ge	125	60	100	. 8	20	50	60	1.5	-	1.6	
2 N 1177	RCA	mp, DT, ge	140	80	n	-	30	10	100	12	-	-	
${ }^{211178}$	RCA	mop, Dise	140	80	71	-	30	10	40	12	-	-	
211179	RCA	mod, Di,ge	140	80	71	-	30	10	80	12			
$2 N 728$	TR	npm, O , 51	150	300	175	-	15	25	20	25	-	8	
21472	TR	nmo, DJ, si	150	300	175	-	30	25	20	25	-	8	
$\begin{aligned} & 2 N 1505 \\ & 2 N 127 \\ & 2 N \end{aligned}$	PSI PH	non, 18.51	150 150	$3{ }^{3}$	175	0.2	50	50	1	-	-	1.5	high frea, high momer
2 W 1727	PH		150	60	100	0.8 0.8	20	50	-	15	-	1.5	
211788	$P H$	pop, 10.8	150	60	100	0.8	20	50	-	1.5	-	1.5	
2 N 1788	PH	pmp,M0,se	150	60	100	0.8	35	50	-	1.5	-	1.5	
2 1 1780	PH	pno.mD,ge	150	60	100	0.8	3	50	-	1.5	-	1.5	
211790	PM	pnp,MD, ${ }^{\text {che }}$	150	00	100	0.8	35	50	-	1.5	-	1.5	
3135	TI	npa,GD,si	150	125	150	1	30	2	1	0.4	14	-	Tetiode
211335	PSI	non, MS, si	170	2.8 m	150	24	120	75	13	8	$\underline{-}$	-	High freq, lugh power
2N1336	PSI	npo, WS, si	170	2.8m	150	24	120	15	13	,	-	4	High freq, min power
$\left\lvert\, \begin{aligned} & 2 \text { 2N1337 } \\ & \text { PADT30 } \end{aligned}\right.$	$\begin{aligned} & \text { PSI } \\ & \text { AMP } \end{aligned}$	npm,10,sil	$\begin{aligned} & 170 \\ & 2^{200} \end{aligned}$	$\underset{83}{2.8 \mathrm{~m}}$	150	$\begin{aligned} & 24 \\ & 1.7 \end{aligned}$	$\begin{gathered} 120 \\ 25 \end{gathered}$	7 10	13	8	-	1	Hugh treq, high power
2W1506	PSI	npn,mS,si	210	${ }^{3} \mathrm{~m}$	175	1.7	60	10	-	-	-	8	High frequency, hish
2W1339	PSI	npn,MS, sı	220	2.8 m	150	24	120	75	-	8	-	4	Afiphlireo., hoth powet
PADT 28 2N1746	AMP	pnp,PADT.88	$82220{ }^{\circ}$	100	-	1.7	35	10	120	-	-	-	${ }^{\text {- }} \mathrm{it}$, rf amp
2N1746	PH	Dnp.MD ${ }^{\text {de }}$	235	60	100	. 8	20	50	-	2	-	3	
221709	PSI PSI	npm, DM, si	240 240	${ }_{13}^{13 m}$	175	66.7	75	1.20	-		-	40	Mi freq., hi pwt,
2N588	PH	npn,mome	250	30	15	0.75	15	1.28 50	-	$\begin{aligned} & 50 \\ & \text { L. } 8 \end{aligned}$	3.8	4	Hi freq, in pwt. SPR,G
	mos	Dnp, WS, ge	250	300	100	1	15	50	40		-	-	
221340	PSI	nppomes, ${ }^{\text {a }}$	250	28m	2.80w	24	120	75	\square	8	-	-	High freq.on high power
201491	RCA	npm,10,s	250	3 m	175	20		50	50	10	-		Wiskrea, his power
201837 2018374	PSI PSI		250	$2 w$	175	13.3	0	5	9	001		11	
2N1837A	PSI	npm, DM, ${ }^{\text {a }}$	250	2.8 w	17	18.6	80	-	,	. 01	-	11	HI freq., ho power
2N1838 2M1639		npm, DM, ${ }^{\text {a }}$	250	20	$1 / 75$	18.3	45	-	9	0.1	-		
$\left\|\begin{array}{l} 2 \text { NO1838A } \\ 2 N 1839 \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \text { PSI } \\ \text { PSI } \end{array}$	non, DM, ${ }^{\text {a }}$,	250	2.0	175	18.5	45	-	,	0.1	-	9	Mi froa., hi pur.
$\left\|\begin{array}{l\|l\|l\|l\|} 2 N 189 \\ 2 N 189 A \end{array}\right\|$	$\begin{array}{\|l\|l\|} \text { PSII } \\ \text { PSI } \end{array}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	20.8m	175	13.3	45	-	9	0.1	-	9	$\mathrm{H}_{1} \text { freq, min pui }$
2H602A	PH		200	$\frac{15}{2.0}$	115	10.6 1.0	45 30	-	g	0.1 13	6	10^{9}	Hi feqo, in pwo
	PH	prommper	250	60	6		20	-	-	1			
211492	RCA		275	30	175	20	60	50	50	10	-	$\stackrel{-}{-}$	
211341	PSI	npm, MS, 31	280	2.80	150	24	120	5	$-$	8	-	,	High heq, hich somer
21058	mo	pmo, DM, me	300	75	100	1.	15	50	0	0.2	-	3.5	CES
2N1488	RCA		300	3 m	$1 / 5$	20	100	50	50	10	-	35	

RCA 3907/2N404 "Premium"
Switching Transistors are as close as your telephone CALL YOUR RCA SEMICONDUCTOR DISTRIBUTOR

Just pick up the 'phone and tell him how many and what type you need for your special project or pre-production requirements. He will deliver from local stock-and he also offers these extra advantages:
\checkmark Prompt delivery of the latest RCA types for your evaluation

- Orders filled from factory-fresh stock
- Up-to-date, practical product information
- Valuable RCA technical assistance when you need it
"One-stop" service on your orders
-Specialisis who understand your problems and electronic needs
Remember when you want fast delivery, reliable service, always check first with your local RCA Semiconductor Distributor. For the name and address of your nearest RCA Semiconductor Distributor, write RCA, Distributor Products Sales Harrison, N. J.

RADIO CORPORATION - OF AMERICA

Semiconductor Preducfs-Distrilustor Sales Marrisen, M. J.

RCA establishes a new level of reliability for computer transistors with the $3907 / 2 \mathrm{~N} 404$, produced under RCA's CERTIFIED-RELIABILITY PREMIUM SWITCHING-TRANSISTOR PROGRAM

Now from RCA, originator of the famous 2N404, comes a significant improvement in reliability-RCA 3907 2N404-the first of a series of transistors produced under RCA's CERTI-ING-TRANSISTOR PROGRAM Through unique ungrounded four-poster structural deunique ungrounded four-poster structural desuperior built-in ruggedness and reliability have been achieved. Here are some of the outstanding features of the new RCA 3907 2N404:

- Withstands 20,000 G centrifuge tests
- Withstands $1,500 \mathrm{G}, 1 / 2 \mathrm{msec}$. MIL shock test - Thermal resistance of $400^{\circ} \mathrm{C} / \mathbf{W}$
- Exceeds MIL environmental specifications for shock, vibration, salt spray, centrifuge and moisture resistance.
ca fitio orrices sast, New

 Wilkinion S1., BA 0.2366 - Wathington, D.C., 1725° "K.'St., N.W., FE 7.8500

And this new 3907 2N404 incorporates all of the superior characteristics of the original RCA 2N404. long the workhorse of the computer industry. This famous unit is built on the experience of: well over 50 million transistor life-tes hours plus over 20,000 hours of continuous
operation at maximum ratings.

RCA 3907 2N404 can be your best answer for top reliability, mass availability and superior capability in computer transistors. Call your For information on RCA's PREMIUM TRANSISTOR PROGRAM, write RCA Semiconductor and Materials Division, Commercial Engineering, Section G-18-NN-1, Somerville, New Jersey

SWITCHING SERVICEManimum Ratinge, Aboluot Menimum Values 3907/2M4O4	
COLIECTORTO. case voltace	- 25 MAX
COHECTOR TO-EMITRE Voltage with VED $=-1 v$	- 24 max
emitier to-mase voltage	-12 max
collector current	- 200 max
emitier current	200 max
TRANSISTOR DISSIPATION: Al ambient lemporalure of: $\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 55^{\circ} \mathrm{C} \\ & \hline 11^{\circ} \end{aligned}$ $71^{\circ} \mathrm{C}$	$\begin{gathered} 150 \text { max } \\ \text { 7s max } \\ 35 \text { max } \\ \hline \end{gathered}$
AMBIENT temperature iange. Operating Storage	$\begin{aligned} & -0510+15 \mathrm{c} \\ & -0510+100^{\circ} \mathrm{c} \end{aligned}$
LEAD temperature For immorsion in molton solder for 10 secondi mar	255 max ${ }^{\circ} \mathrm{C}$

Type No.	Mis.	Trpe	las	Marimum Retinge					Charactoristics				Remarts
				$\underset{(m w)}{c}$	T_{j} (c)	mw/ 6	V_{V}	${ }^{1} \mathrm{c}$	hfo	$\begin{aligned} & I_{\mathrm{CO}} \\ & \mu^{2} \end{aligned}$	$\begin{aligned} & N F \\ & d b \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{C}} \\ \mu \mu \mathrm{l} \end{gathered}$	
2N503	PH		320	25	85	0.63	20	50	4.2	3	-	1.0	
2N499	PH	Pnp,MD.ge	340	30	85	0.75	30	50	85	10	-	1.3	61
2M741	\cdots		360	300	100	1	15	100	25	2	7	6	And VFF
2N71AA	Mo	PM, DM, ge	300	300	100	1	20	100	25	0.2	7	6	
2N1407	TI	Mnp,MS, ge	375	75	100	1	30	50	6	2	1	-	
2×19	PSI	npn, OM, si	400	1.2w	100	6.7	25	220	4	. 005	-	5	
$2 \mathrm{mg20}$	PSI	npo, Dm, si	400	1.2 w	200	67	25	220	4	. 005	-	5	
$2 \mathrm{me21}$	PSI	npo, OM, 31	400	1.2 m	200	67	50	200	4	. 005	-	1	
2 N 922	PSI	npm, DM, si	100	1.2m	200	6.7	50	200	4	. 005	-	4	
2 N 1405	11	Mp, MN, ge	450	75	100	1	30	50	8	2	5	-	
2N1405	TI	DAP, WS,	450	75	100	1	30	50		2	6	-	
2 2N1143	TI	prip, DB, ${ }^{\text {ce }}$	400	750	100	10	25	100	8	. 1	-	1.5	PGe2cto 20mc
2 N 1502	mo	Pap, MS, ge	500	3 m	100	40	25	500	108b	1.5	-	7	Migh frequ, high powar
2N1561	MO		500	3m	100	40	25	500	10db	1.5	-	7	Higt freq, high power
2×1700	10	mp, DM	600	75	100	1	25	50	100	0.4	-	11	UMF Amp
217004	\cdots	PAP, DM,	600	75	100	1	2	505	db200me	C0. 0	5	11	MIL
2×1142	TI	mod, DB,	600	750	100	10	30	100	10	0.7		15	PGe26db e 200 me
2N1645	WE	pmp, DJ,	700	-	100	12.5	35	0.3	50	0015	-	10	
2 5 537	WE	MAP, DG,	750	250	100	3	-	100	10	2	-	28	U.S. MIL only
2N1094	VE	mp, DM, ge	750	150	100	0.3	-	4	13	1.2	-	4	U.S., MIL only
2 N 1111	TI	MP, DB, ${ }^{\circ}$	750	750	100	10	35	100	12	0.1	-	1.5	PGJod a 20 mc
241195	WE	Pmp, DMge	750	250	100	0.3	30	40	13	1.2	-	4	HO
2M218	SY	PAR,N,g	-	80	85	1.3	20	-	22.110	50	-	-	
2×231	PH	Mnp,SBT.ge	-	9	55	0.9	4.5	3	66	3	-	-	SPR
2N233	SY	mpn,AJ.ge	-	50	75	1	10	50	10	50	-	-	
21217	SY	PMP, Dr,ge	-	. 000	100	1	40	10	20-175	50	-	-	
2 W312	CES	npm, $\mathrm{N}^{\text {de }}$	-	75	8	1	15	-	-	60	-	12	SY, GI
2M10	SY	pap, AJ, ${ }^{\text {Pe }}$	-	50	75	1	20	-	22-110	5	-	-	
2nsor	SPR	pnomorse	-	30	85	-	35	50	16	100	-	-	
2W544	SY	MPD, DJ, ${ }^{\text {ce }}$	-	80	65	13	18	10	20-175	4	-	-	
20x ${ }^{2}$	SY	PRD, DJ, \%	-	100	100	1.3	20	-	20	30	-	-	
201706C	SY	npn, DM, si	-	300	200	2	40	50	20-60	d25	-	-	
2N743	SY	npm, MS, ${ }^{\text {si }}$	-	300	175	2	20	200	20-60	1	-	-	Epitaxial
2N74	SY	$n \mathrm{n}, \mathrm{N}_{1} \mathrm{~N}, \mathrm{si}$	-	300	175	2	20	200	10-120	1	-	5	Epitaxial
21753	PSt		-	$1{ }^{16}$	175	6.7	25	50	-	0.5	-	5	Epiral
21768	SPR	pnp,MD, ${ }^{\text {c }}$	-	35	100	-	12	100	40	1	-	-	PH
210769	SPR	Pnp,MD.	-	35	100	-	12	100	55	0.3	-	-	PH
20173	PH	npor, $\mathrm{SA}, \mathrm{si}^{\text {si }}$	-	150	150	1.2	20	100	11	0.1	-	1.3	
20174	PH	mpm,SA, si	-	150	150	12	20	100	20	0.1	-	1.3	
20175	PH	npm,SA, si	-	150	150	12	20	100	50	0.1	-	1.3	
2N776	PH	npm, SA, si	-	150	150	12	20	100	11	0.1	-	1.3	
2477	PH	$n \mathrm{Pn}, \mathrm{SA}, \mathrm{si}$	-	150	150	12	20	100	20	0.1	-	13	
2N778	PH	nmosh , si	-	150	150	12	20	100	50	0.1	-	1.3	
2.1781	SY	OAP, M5, ${ }^{\circ}$	-	150	100		15	200	25	3	-	-	Epitaxial
21762	SY	MPD,MS, \%	-	150	100	2	12	200	20	3	-	-	Epitaxial
2178	SY	npm, Ms, si	-	300	15	2	40	210	20-60	. 25	-	-	Epitaxial
20178	SY	npm, MS, si	-	300	175	2	30	200	${ }^{2}$. 25	-	-	
20115	PH	MaMDs	-	0	100	0.8	20	100	50	5	-	3	
2N1158A	PH	PATM M M	-	75	100	1	20	100	50	5	-	2.8	
$2 N 1204$	SPR	Pap,MD,	-	200	100	-	20	500	40	7	-	-	PH
2W12\%	SY	Mando	-	50	75	1	20	10	15	50	-	-	
2 W 1205	SY	Pmpad,	-	0	65	13	10	-	10	100	-	-	
2N1267	PH	npa, SADT, si	-	150	150	0.8	2.1	100	11	01	-	1.5	
2N1258	PH	npa, SADT, si	-	150	150	0.8	20	100	20	. 01	-	1.5	
2012:	PH	TM, SADT, 3	-	150	150	0.8	20	100	50	. 01	-	15	
241270	PH	MPnSNDT, si	-	150	150	a 1	20	100	11	10	-	15	
2×1271	PH	npm, MDT, el	-	150	150	0.1	20	100	20	. 01	-	1.5	
2 W 1272	PH	npasadis il	-	150	150	as	20	100	50	D1	-	1.5	
2N1398	π	Danp MS, ${ }^{\text {cos }}$	-	50	85	-	30	10	2.3	10	5	-	
241308	TI	Pap, S_{5}, sil	-	50	6	-	30	10	23	10	5	-	
201400	π		-	50	85	-	30	10	1.5	10	-	-	
271401	π	Pap ${ }^{\text {Nas, }}$	-	50	0	-	30	10	2	10	-	-	
2N1401a	π	Pra, ${ }^{\text {ces }}$	-	50	\%	-	30	10	2	10	-	-	
241402	π		-	50	6	-	30	10	22	10	-	-	
201450	51	DQA, ${ }^{\text {a }}$	-	12.	100	16	30	100	20	10	-	-	
201494	SPR	DmpMD,	-	400	100	-	20	500	5	7	-	-	PH
2 W 1515	AMP	日, PAOTa		8	75	-	20	10	6	-	-	-	0C169
201636	SY	E0, ${ }^{\text {asel }}$	-	150	100	2	15	50	20	3	-	-	
20167	PH	mansat, si	-	100	140	-	4.5	50	2.5	001	-	-	
21®7	PH	MPD, SAT, si	-	100	10	-	4.5	5	5	+001	-	-	SPR, chopper
20104	SY	Monda	-	100	400	13	5	100	-	5	-	-	
201742	PH	Pand ${ }^{\text {a }}$, 1	-	∞	100	08	20	-	-	08	4.9	-	
201773	PH	Wupmose	-	0	100	0.8	20	-	-	al	10	-	

High Frequency (concluded)

Typo No.	Mfs.	Trpe	$f^{\text {a }}$	Maximum Ratings					Charaetoristles				Rement
				$\left.\begin{array}{c} w_{c} \\ (\mathrm{~m} \end{array}\right)$	T_{j} (c)	mw/c	v_{c}	$\begin{aligned} & I_{c} \\ & \text { ma } \end{aligned}$	H/0	$\begin{array}{\|l\|} 1 \\ \hline \end{array}$	$\begin{aligned} & \text { NF } \\ & \text { do } \end{aligned}$	$\begin{aligned} & C_{e} \\ & \mu \mu! \end{aligned}$	
20174	PH		-	∞	100	0.8	๗	-	-	1	-	-	
221745	PH	POp, 10.10	-	∞	100	08	20	50	-	2.5	-	-	
201777	PH	DND.MO ${ }^{\text {a }}$	-	0	100	0.1	20	50		2	-	-	
21178	SY	mp, $\mathrm{Nu}^{\text {a }}$	-	100	100	13	30	100	30-150	6	-	-	
21173	SY	mande	-	100	100	13	30	100	$30-50$	5	-	-	
20178	SY	mp, N_{1} \%	-	100	100	1.3	30	100	20	4	-	-	
211840	PSI	npm, DM M, si	-	200	175	13.3	24	-	9	-	-	11	mi fieq, mi pum
20140A	PSI	npen, Dm_{6}, si	-	28	175	18.6	25	-	9		-	11	hiv meq, hi mum
201818	WE	nom, Mm, si	-	15.4	150	75	2	35	. 005	100 mc	-	-	
2N1865	PH	mp, Mose	-	60	1100	0.8	20	50		2	-	-	
2011865	PH	mpp, 10.8	-	0	100	0.8	35	50	-	2	-	-	
21185	PH	ONPMD.8e	-	0	100	0.8	35	50	-	2	-	-	
20165	PH	WP. D, \%e	-	∞	100	0.8	20	50	-	2.5	-	-	
2 N 1588	SY	npn,MS,si	-	600	175	1	\pm	500	20.00	0.5	-	18	Epitaxial
21.1589	SY		-	600	175	4	60	500	40-120	0.5	-	11	Epitaxial
211590 21151	SY	MP, 以, \%	-	150	100	2	15	200	25	3	-	-	Epitaxial
2N1501	SY	Onpusem	-	150	100	2^{2}	12	200	20	3	-	-	Epitaxial
2 N 1963	SY		-	400	175	2.8 2.6	30	200	2	25	-	3.5	Epiraial
2NISA	SY	mmoms, si	-	400	175	2.6	${ }_{0}$	500	20-60	0.5	-	18	Epitaxial
201195	5		-	400	175	2.6	ω	500	40.120	0.5	-	18	Epitaxial
2 L 1969	SY	Pap, $\mathrm{A}, 18$	-	150	100	2	30	400	50-200	5	-	20	
GT16\%	GI		-	150	100	2	100	-	25	1	-	-	Orift
Mal 1	SPR	mp, MAT, ${ }^{\text {co }}$	-	25	75	-	6	50	40	10	-	-	
mat	SPR	mp,MAT, $\mathrm{Se}^{\text {e }}$	-	20	75	-	,	50	40	10	-	-	
PTE50	P51	npn, OM_{3} si	-	2 w	175	13.3	120	-	2	2	-	-	his frea, mi gur.
PTB50A	PSI	nom, OM, si	-	2.0w	175	18.6	120	-	2	2	-	-	hi meg, in pum.
Sol	SPR	pmp, SBT, ge	-	20	${ }_{6} 6$	-	5	5	10	10	-	-	
50.2	SPR	pmp.SBT. ${ }^{\text {e }}$	-	15	${ }^{6}$	-	3	5	10	10	-	-	
50.3	SPR	pmp, SBT, 0^{3}	-	20	6	-	5	5	10	10	-	-	
ST3081	IR	Pon, DJ ,si	-	150	175	$=$	-	-	-	-	-	-	

Abbreviation of Terms

Alloy Junction
Double Diffused
Grown Diffused
Diffused Junction
Diffused Mesa
Diftused Planar
Drift
Epitaxial
Fused Alloy

FJ	Fused Junction
GD	Grown Diffused
Ge	Germanium
GJ	Grown Junction
GR	Grown Rate
MB	Meltback
MD	MADT
Ms	Mesa
RG	Rate Grown

Si Silicon
SBT Surface Barrier
$\mathbf{C}_{0 。}=$ Collector-to-emitter capacitance meas. ured across the output terminals with the input ac open-circuited.
$f_{\mathrm{ar}}=$ Frequency at which the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-frequency value.
$f_{t}=$ Frequency at which com!non emitter gain is unity.
\mathbf{h}_{f} = Common emitter-small signal forward current transfer ratio
$\mathbf{h}_{\mathrm{PE}}=$ Common emitter-static value of short circuited forward current ratio.
$\mathbf{I}_{\mathrm{se}} \quad=$ Collector current when collector junction is reverse-biased and emitter is dc open-circuited.
 Specify the new Amperex: P•A•D•T 40 the 2 timesfaster PNP Germanium Switching Transistor * $\mathrm{U}=\frac{1}{\text { nanoseconds } \times \text { pennies }}$ Right from the sketch-pad stoge, plan your computer switching circuits with the new PADT-40. * The extrsme speed and efficient design of the PADT-40 gives more U (usefulness factor) and lower cost x switching time. This results in fower mansistors to buy, less complicated circuits to design, and the elimination of many costly components becouse of multifunction circuit usage. But speed, of course, is only one of the cost-and-production advanlages inherent in the PADT-40; RELIABILITY, as only the revolutionary Post Alloy Diffusion Technique con provide, is another; AVAILABiluty, os only the mass-production rech. niques employed of the new Amperex plant in Slatersville, R. I., can provide, is still another; LOW PRICES (no higher than for low-speed transistors)... plus INTERCHANGEABILITY with many conventional meso transistors, round oul our 'package'. Yes, the new Amperek PADT- 40 is truly worth spocifying . . . nowl

High Speed, plus MECHANICAL RUGGEDNESS - guaranteed by the only process that combines the best quali.
ties of both the alloy and the difusion methods. As a result, the PADT 40 is resistant to vibration and shock.
PADT RELIABILITY - Hermetically sealed in a standard TO- 18 case. the P'ADT-40 has a deep diffused and extremely thin active base region virtually independent of surface effects and temperature changes.
a Rulged. mechanically reliable eutectic

- Boldal bed allo
- Flat bed attachment for good heal
dissipation
c Long path
transistor
- Gold doped for high speed
- Extremely high cut-off frequency - High Bela - Low resistivity germanium

TOTAL
8WITCMINE TIME
indeding Rise.
Poll, Detay and Storage ... 130 WAMOSECONDS!

Aninisu

 for complete data and new zransistor brochureAMPEREX ELECTRONIC CORPORATION
aso Dulfy Avenue. Micksville, L. I.. N. Y.

SAVE TIME AND MONEY right from the start
 with Amperex. P.A.D.T40

PNP Germanium Switching Transistor

NOW AVAILABLE FROM THESE ANO OTHER LEADING INDUSTRIAL ELECTRONICS DISTRIBUTORS:

TRANSISTORS-1961
Power

Trpe No.	Mis.	Type	${ }_{c}$	Mar. Ratings				Charectoristies					Remerks
				w/c	$\mathbf{T}_{\mathbf{j}}$	$\underset{v}{v_{c}}$	$\left[\begin{array}{ll} 1 & c \\ \text { amp } \end{array}\right]$	${ }^{\text {h fe }}$	$I_{m 0}$	$\begin{aligned} & \mathrm{f} \\ & \mathrm{ai} \\ & \mathrm{kc} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Powr. } \\ \text { Gain } \\ \text { in } \end{array}$	Pown. Out. wit	
21333	II	npm, CR,si	1.0	0.008	150	55	D6	9.90	. 01	6	30	-	TR
$2 \mathrm{N340}$	TI	nm, GR,si	1.0	0.008	150	85	. 06	990	. 001	6	30	-	TR
$2 \mathrm{N341}$	T1	npR, GR, si	10	0.008	150	125	. 06	9.90	. 001	6	30	-	TR
2 3 31 A	TR	$\mathrm{npn}, \mathrm{OJ}, \mathrm{si}$	1	0.008	200	125	. 1	1590	. 001	-			
	II	npn,GR,si	1.0	0.008	150	60	. 06	932	. 001	6	30	-	IR
213424	II	npm, GR, si	10	0.008	150	85	. 06	939	. 001	6	30	-	TR
$2 \mathrm{N3M} 3$	II	npm, GR,si	1.0	0,008	150	60	. 06	20.50	. 001	8	30	-	TR
2N343A	IR	$\mathrm{nma}, \mathrm{OJ}, \mathrm{si}$	1	. 008	150	85	-	29.90	. 001	-	-	-	TR
231206	TR	mpn, GR,si	10	10	200	60	-	15-18	1	-	-	-	
21207	TR	nm, 6 R,si	1.0	10	200	125	-	15-90	1	-	-	-	
2011566	II	npm, MS, si	1.2	-	175	80	50	100	1	50	-	-	TR,NA
211335	PSI	nom, M, sis	28	0.024	150	. 120	. 075	13	. 008	170 mc	-	-	high frea, high pwo.
211336	PSI	$\mathrm{ngm}, \mathrm{MS}, \mathrm{si}$	2.8	0.024	150	120	075	13	-008	170.mic	-		high reqe, high pur.
211339	PS	npmMS.si	28	0.024	150	120	. 075	-	008	220 mc			high frea, high pwi.
2N1340	PSI	npn, स¢,si	28	Q. 24	150	120	. 075	-	. 008	$250 \mathrm{mc}$	-	-	high heq, higit pum.
221341	PSI	npon, MS, si	2.8	0.024	150	120	. 075	-	. 000				
211505	PSI		3	0.2	1775	50	-	7	-	$150 \mathrm{mc}$	-	-	high frequ, high pur.
2 L 1506	PSI	non, $1 \times 5,81$	3	0.2	175	60	25	9	M15	210 mc	-	-	high frea, high pwr.
$2 N 1561$	\cdots	pnp,ME, si	3	0	100	25	. 25	10	. 2015	500 mc	-	-	high trea, high pur.
2N1552	40	MnD,MS,	3	. 04	100	25	. 25	10	. 015	450 mc	-	-	hightrea., nigh pwo.
2 N 1692	Mo	mproms,	3	. 04	100	25	25	10 do	. 0015	500 mc	6	0.5	
2N1693	MO	pmp,ws.er	3	. 04	100	25	25	10 db	2015		6	. 1	
2 MOg	${ }_{11}$	mppopal, si	3.6	. Q $_{3}$	200	32 60	1.40	${ }_{12} 35$	012 10	9 nc	-	-	
				.es	20	60		$12 \cdot 36$	10	9 nc	-	-	RCA
2 m 988	TI	$\mathrm{nmm}, \mathrm{DJ}, \mathrm{si}$	4.0	.033	200	100	200	12-36	10	9 mc	-	-	
24656	II	$\mathrm{nm}, \mathrm{DJ}, 51$	4.0	. Q3	200	60	200	30-90	10	8 mc	-	-	$T R, R H, F A, N A$, RCA G'
2N®1	II	npm, DJ,si	4.0	. 023	200	100	200	30-90	10	8 mc	-	-	TR, RH, FA, NA, GE
201479	RCA	npp, DJ, si	4	-	175	60	1.5	50	10	1.5 mc	-	-	
2 N 1400	RCA	npo, DJ ${ }^{\text {si }}$	4	-	175	100	1.5	50	10	1.5 mc	-	-	
211481	RCA	$\mathrm{nm}, \mathrm{D}, \mathrm{st}$	4	-	175	60	1.5	50	10	L. 5 mc	-	-	
211468	RCA	npm, DJ, si	4	-	175	100	1.5	50	10	1.5 mc	-	-	
2N1067	STC	non, DJ, si	5	28.6	175	60	0.5	35	5	1.5	-	-	RCA
${ }^{2121210}$	SY	npn, AJ, ge	6	0.1	85	15	2	40, 100	3	7	-	-	
574201	TR	$\mathrm{npn}, \mathrm{DJ}, \mathrm{si}$	${ }_{6}^{6}$. 03	200	45	0.5	12.36	. 001	-	-	-	
574202	TR	$n \mathrm{~nm}, \mathrm{DS}, 31$	6	03	200	75	0.5	12.36	. 001	-	-	-	
ST203	TR	npo, $\mathrm{OJ}, 51$	5	. 03	200	45	0.5	$30-90$. 01	-	-	-	
STA20]	TR	npm, DJ, 31	6	. 03	200	75	0.5	30-90	. 001	-	-	-	
218326	SY	npn, N, se	7	0.11	85	35	2	45	3	150	-	-	
221172	DE	Pmp,N,ge	7.5	. 1	100	40	1.5	0	0.01	17	34	-	driver
2W1183A	RCA	pmp,A,ge	7.5	-	100	45	3	20	. 03	500	-	-	
2W11838	RCA	mp, AJ.ge	7.5	-	100	80	3	20	. 03	500 500	-	-	
201184	RCA	mp, A, ge	7.5	-	100	45		40	. 03	500	-	-	
$2 N 1184$	RCA	mp, N, ge	7.5	-	100	60	3	40	03	500	-	-	
	RCA	mpp,A, ge	7.5		100	80	3	40	. 13	500	-	-	
2 N 122	TI	npm, GR,si	8.75	. 070	150	120	140	3	10	5	28	-	
2W176	SY	pmp,AJ.ge	10	0.15	90	30	,	4.5	0.3	-	35.5	-	RCA, MO, BE
2×350	SY	mp,AJ.ge	10	0.13	100	40	3	40	-	5	32	$\bar{\square}$	
2N351 2N376	RCA	Mm, A.ge	10	1	90	40	3	65	,	-	33.5	4	MO, 5 Y
2N376 2N669	$\begin{aligned} & \text { RCA } \\ & \text { ma } \end{aligned}$	pra, A,ge pmp,N, ge	10 10	1.5	90	40	3	78	${ }^{3}$	$\overline{5}$	35	4	
21.1058	IND		10	$\left.\right\|_{0.133} ^{1.5}$	175	30	${ }^{3}$	90	03	5	40	2	
2 L 1714	II	npn, MS, si	10	. 134	175	60	1	-	. 002		-		,
221715	T1	nom, ${ }^{\text {NS }}$, si	10	. 134	175	100	,	-	. 002	20 mc	-	-	
2 2 1716	TI	npm, M5, si	10	. 134	175	60	,	-	.000	20 mc	-	-	
$2 N 1717$	TI	npa, M6, si	10	. 134	175	100	1	-	. 002	20 mc	-	-	
2N1718	11	non,MS.si	10	. 134	175	60	1	-	. 002	20 mc	-	-	
2N1719	II	npon 10.10 si	10	. 134	175	100	1	-	. 002	20 mc	-	-	
2 L 1720	II		10	. 134	175	60	1	-	. 002	20 mc	-	-	
2 N 1721	TI	npm,MS, si	10	. 134	175	100	1	-		20 mc	-	-	
221755	CL	pmp, N, ge	10	2.5	95	40	3	-	$?$	15	30-75	-	
2N1756	CL	mpa, A, ge	10	2.5	95	60	3	-	7	15	30.75	-	
2 N 1757	CL	mpp, N, pe	10	2.5	95	80	3	-	7	8	30-75	-	
2N1758	CL	pmp, A, 8 ge	10	25	95	100	3	-	7	8	$30-75$	-	
2 N 1758	CL	pap, ${ }^{\text {a }}$, ge	10	2.5	95	0	3	-	7	10	60.150	-	
211760	CL	mpp,N,ge	10	2.5	8	60	3	-	$?$	10	60.150	-	
2N1761	CL	mp,N, ${ }^{\text {ce }}$	10	2.5	95	80	3	-	7	,	60-150	-	
2N11762 CDT1310	CL	pnp, A. $\mathrm{ge}^{\text {ge }}$	10	2.5	95	100	3	-	7	5	60-150	-	
COT1310	CL	pnp,N, 8 ce	10	1.5	95	40	5	-	15	5	40.120	-	
COT1311	CL	mpp, A, $\mathrm{E}^{\text {e }}$	10	1.5	9	60	5	-	15	5	40-120	-	
CDT1312 CDT1313	CL	mp, N, ge	10	1.5	8	80		-	15	5	40.120	-	
CDT1313	CL	pmp, A, 8 ge	10	1.5	95	100	5	-	15	5	40-120	-	

Power (continued)

ZENER VOLTAGE REFERENCE DIODES AND SILICON MESA

 Encased in slass packases. Holtman Zoner Volt.
 Bevore environmertal conditions MES Trans.

 Save der En and purchasing time by calling for

225 GREENWICH STREET
NE WORK 7 NE W YORK

LOWE ISLALIO: WVAMMOE C-7650 WIW Masev: DLLawant 3-87so
CALI COLLCT WEW ORDIR OLPT 212 Ba 7.7922
 Cmitapaise mumotas im maior antas "ManaRisomlame"- Phat land of satisfied engineers
and buyers where the Marrison industrial distribution and buyers where the Harrison industrial distribution
facilities provide the finost. most dependable service. Located only 27 inches away from you-as near as
vour telephone. CIRCLE 47 ON READER-SERVICE CARO ELECTRONIC DESIGN • July 5, 1961

Hoffman OFFERS YOU MORE THAN 2000 SIIICON SEMICONDUCTOR DEVICES

- THE MOST COMPLETE SILICON LINE
CASE

HIGH-EFFITIENCY SOLAR CEELS \square 120C TYPE 4 TPPES E sillicon solar colls-120C-8 to $120-12$ (Date sheot No. 120)		T0.18 CASE 2 TMPEs asllicon mestiranaistors(Data sheot Mo. 147) 14 Trpes e elilicon 1N2928-1N2934 (Date sheot No. 137) 12 TPPEs silicon -HUS-HUIOOA (Dats sheet No. 131)
Pasen 120CG TYPE 4 TYPEs a silicon "Solaprid" cells-120CG-10 to 120CG-14 (Oata sheet No. 136) 220C TYPE 3 TrPEs E silicon solar colls-220C-8 to $2200-10$ (Dat sheat No 126) (Dreie sheat No. 126)		

H5 TYPE

PHOTO-VOLTAIC DEVICES

WRITE FOR 1961 CATALOG COVERING FULL LINE OF HOFFMAN SILICON SEMICONDUCTOR DEVICES. INDIVIDUAL DATA SHEETS ARE AVAILABLE AS LISTED.

Hoffman

ELECTMONICS Semiconductor Division

Silicon Field-effect Transistors

- Almost infinite input impedance ($1000 \mathrm{M}_{\Omega}$)
- Almost infinite power gain
- Extremely low noise figures (0.5 dB maximum)
- Negligible offset voltage (less than $1_{\mu} V$)
- Unprecedented gain stability

The silicon field-effect transistors from Crystalonics combine almost all advantages of vacuum tubes and conventional transistors. They are silicon majority carrier devices presently available in the TO-5 package, and have three terminals; anode, cathode, and grid. The transistor action takes place entirely within the bulk of the silicon material and completely away from the surface, giving rise to an unprecedented gain stability of the unit. The radiation resistance of the fieldeffect transistors exceeds that of the conventional units approximately ten times.
The new devices are recommended as first stages to high input, low noise amplifiers, low level switching circuits such as choppers, analog multipliers, and electronically variable resistors.

Low Noise Amplifiers:
Field-effect transiteors are inherently low noise devices and have noise fíures considerably below that of the bert Ielected low noise transistors and tubes. sistor, the field-effect unit does not pacs any working current throukh the junctions, and it does not rely for its operation on minority carriers which eventually recombine to produce base current of the conventional unit. Both processes, the passink of current throukh emitter and collector junctions and carrier recombination are inher. ently noiay, and are completely elim. inated in the new device. The result io

- transiator series (C620) with maximum noise figures of 0.5 dB with 1 Ma senerator impedance. To obtain optimum performance for the low noise field-efiect transistors, the krid bins should he kept at zero and the anode potential at approximately 3 volts.

High Input Impedance A mplifiers:
The input impedence of the field. effect irantiator is effectively equiva. lent to a reverse biased silicon diode and is of the order of 1000 Mis. The output characteristics of the C613 fieldeffect transistor is shown below. They pentode. In wict the fold-effect tran sistor can be used in a manner analoRous to vacuum pentodes and. therefore. no new circuit techniques are required.

Low Level Switching:
Unlike the conventional transitur which is armally "off" switch. the feld-effect unit is "normally "on" switch. In the "on condition. the unit, retistor without any "offset" voltale. The only equivalent of "offset voltake" in the field-eflect transistors is the noise senerated by this silicon resistor, and is of the order of $.1 \mu$ Volt. No matehink of units is therefore required. and only one device has to be used instead of the usual two.
FROM STOCK
Silicon Field-effect Transistors Crystalonics Inc. Types

C610	C611	C612	C613	C614
C615	C650	C651	C652	C653

Factory Prices - Free Engineering Data Phone Orders Collect To:

1736 East Joppa Road, Baltimore 4, Md. Phone: VA 5-7820

$\begin{aligned} & \text { Typt } \\ & \text { No. } \end{aligned}$	Mfy.	Type		Man. Rarlag:			
				w/c	$\begin{gathered} \mathrm{T}_{\mathrm{j}} \\ \mathrm{c} \end{gathered}$	V_{c}	T_{c}
LT-12	CBS	Dup,	20	0.33	85	100	3
LT-13	CBS	$\mathrm{mp}, \mathrm{N}, \mathrm{C}$	20	0.33	5	120	3
LT-14	CBS	Pap, A, Pe	20	0.33	85	150	3
LT. 15	C8s	pmp, $\mathrm{N}, \mathrm{ge}^{\text {c }}$	20	0.33	\$	200	3
21234	8 BE	PWRANP	25	1.2	50	30	3
21235A	BE	manNs:	25	12	9	10	3
212358	BE	pnp,N, ${ }^{\text {a }}$	25	12	90	10	3
212364	BE	mp, 1.80	25	12	5	40	3
212051	BE	mopango	25	12	\%	40	3
2129	SY	manice	25	0.33	100	∞	2
27399	BE	mp	25	1.2	S	10	3
2900	BE	mp, N,	25	12	95	40	3
27146	CL	pmp, N. ${ }^{\text {a }}$	25	0.7	5	40	5
20111450	CL	mpande	25	0.7	5	0	15
2111468	CL	Pmanse	25	0.7	5	∞	15
2N146C	CL	pmp,AN, ze	25	0.1	9	100	5
$2 N 147$	CL	Pmp,	2	0.7	5	0	15
211147	CL	mpon, ${ }^{\text {P }}$	\%		95	co	15
2 W 11478	CL	Pno,N,	25	-	9	80	15
$21137 C$	CL	mpa,N,	25		85	100	15
212205	CBS	pn	25	0.5	${ }^{6}$	25	3
211246	C8S		25	0.5		25	
211463	RCA	npm,01,si	25		200	60	3
21104	RCA	mpm, OJ, si	25	-	201	100	3
211485	RCA	mpen, Oj , si	25	-	200	60	3
20146	RCA	npm, DJsi	25		200	100	3
$8-17$	BE	mpana	2	12	50	30	3
${ }^{8} .178$	BE	mpan,	25	12	9	30	3
$8-179$	BE	pmp,Nip	25	12	0	40	3
CTPISOX	CL	- np, ${ }^{\text {a }}$	25	10	95	100	15
CTPI503	CL	man	25	20	5	0	15
CTP1504	CL	PMAN. $0^{\text {a }}$	25	10	95	0	5
CTP 150	CL	pmp,N, ise	2	1.0	95	4	15
CTP154	CL	Map,Nus	2	10	95	0	25
CTPIS	CL	mpp, N_{30}	2	10	\%	0	25
CTP1552	CL	mp, N, S_{5}	25	LO	9	0	25
CTPIS53	CL	mapondse	25	10	5	100	25
212368	CBS	Mm, N,	30	-	${ }^{5}$	40	3
21242	SY		30	0.33	100	45	20
21257	BE	mpd	30	2.0	9	40	3
21258	BE	mpp,N, ${ }^{\text {ce }}$	30	2.0	0	-	3
2 L 338	MH	MPD,AJ, ${ }^{\text {cem }}$	32	Q, 15	5	80	3
21538	M ${ }^{\text {H }}$	pnpanje	32	Q/5	\%	ω	3.0
2 NS 40	M ${ }_{\text {M }}$	$\mathrm{mpp}, \mathrm{N}, \mathrm{g}^{8}$	32	0,45	95		3.0
2N120	M H	mp, N, ge	32	0.5	5	80	3
2 N 1200	M	Pmp, N, se	32	0,A5	95	120	3
211251	M ${ }^{\text {M }}$	mpp, N, se	32	0.45	95	∞	3
212262	M ${ }_{\text {H }}$	mp,N, ${ }^{\text {cem }}$	32	0.45	95	0	,
201208	MH	pmp, $\mathrm{Na}^{\text {cee }}$	32	0.15	45	0	3
212501	M	P9p, $\mathrm{N}_{\text {de }}$	32	a/5	95	60	3
201508	H	mp, $\mathrm{Na}_{\text {ce }}$	32	0.5	5	0	3
2 max	WE	momaje	35			∞	5
211011	BE	dapan,	35	02	95		,
2 L 178	00	mpang	40	14	50	40	3
2 NW 5	mo	Pmon, c°	4	L4	50	15	3
21555	mo		∞	1.4	50	30	3
211007	STC	mpad,y	40	a_{2}	200	80	
2M1087a	π	mpm MS, ${ }^{\text {a }}$	40	. 278	200	80	. 5
212088	STC	apmod, DJi ,	4	02	200	120	S
2W1040A	TI		40	. 280	20	120	0.5
210201	STC	npm, $0 \mathrm{~J}, \mathrm{~s}$	40		200	0	5
2 Cl 1099 A	TI		4	228	200	d	5
${ }^{2 N 1050}$	STC	npen, 01.15	40	02	200	120	
2 2 11550 A	1	npm,16, si	0	228	200	120	5
211458	ces	mp,AJ.Es	10	0.66	8	30	5
$2 \mathrm{NL1454}$	CBS	mpp, $\mathrm{N}, \mathrm{c}^{0}$	40	2.65	85	30	5
21145	CBS	mplas,	0	2.66	85	60	,
2×1456	COS	omp, N, se	40	266	85	∞	,
211457	C8S		10	2 6 5	85	0	5
201458	CES	mp,N,	ω	265	85	∞	5
214661	CES	pmonase	40	D.cs	5	30	5
211462	CES	mpa, $\mathrm{L}_{1} \mathrm{~g}$ e	40	2666	5	30	5
211483	CES	pmp, A , es	40	D. 65	85	0	5
201164	CBS	pap, AN, es	40	2.c5	85	0	5
20161	TR	Monodjosil	10	21	175	0	3

 Nashville. Texas: All State Electronics Inc. Dallas: Lenert Company. Houst

SILICON TRANSISTOR CORPORATION

2N389A
2N424A

THE COMPLETE LINE OF INTERMEDIATE AND HIGH POWER SILICON TRANSISTORS

For transistor and diode specification sheets, write to
SILICON TRANSISTOR CORPORATION / mat max minizum

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Mfg．	Type	w_{c}	Mor．Rotings				Charectorlasics					Remarts
				w／c	$\begin{aligned} & T_{1} \\ & c \end{aligned}$	${ }_{v_{c}}$	$\begin{gathered} { }^{1}{ }^{c}{ }^{c} \\ \text { amp } \end{gathered}$	${ }^{\prime}$ fe	$\begin{aligned} & 1 \\ & \infty \\ & m \end{aligned}$	$\begin{aligned} & \hline \\ & \mathrm{cec} \\ & \mathrm{kc} \end{aligned}$	$\begin{gathered} P o w r_{0} \\ \text { Gain } \\ \text { db } \end{gathered}$	Pown． Out w	
$2 N 1649$	TR	npn，DJ，si	40	27	17	120	3	15－45	．025	10 nc	－	－	
$2 \mathrm{LLG9}$	TR	npm， DJ, si	40	27	17	80	3	30－90	．025	10 mc	－	－	
2×1650	TR	npm， 0 J，si	40	27	175	120	3	30－50	． 025	10 mc	－	－	
2N1885	TR	npn， DJ, si	40	27	175	60	5	20－80	． 35	8 mc	－	－	
2 2 2018	TR	npn，$D J$, si	40	27	175	150	－	$20-60$	01	10 mc	－	－	
2 2 2019	TR	mpn， DJ, si	40	27	175	200	－	20.60	． 01	10 me	－	－	
2N2020	TR	npm， DJ, si	40	27	175	150	－	40－120	01	10 mc	－	－	
2TECO1	TR	npm， $\mathrm{D}, \mathrm{J}, 3 \mathrm{i}$	40	． 27	15	200		10.120		to mc	－	－	
2W1120	BE	onpoAJ，${ }^{\text {a }}$	45	10	\％	0	15	20.50	15	－	－	－	mo
2N250	It	PnD．A J，	50	27	100	30	5	00	2	－	30	－	CL
21051	TI	pmp，AJ， $0^{\text {a }}$	50	27	100	∞	5	∞	2	－	30	－	
21553	OE	Pnpaj」s	50	15	100	80	5	－	202	25	－	－	
2N655	DE	pnp，A Jes	50	25	100	80	5	\square	10	25	－	－	Jan2Me65
2 N 1014	RCA	pap，AN，ge	50	10	100	100	10	7	2.1	－	26	30	
2N1059	STC	npn， $0 \mathrm{~J}, \mathrm{si}$	50	． 29	1／5	© 0	4	\pm	1	1	－	－	RCA
211070	STC	npm， DJ, si	50	29	175	6	4	21	1	1	－	－	RCA
21172	TI	npm，MS，si	50	． 67	$1 / 5$	80	7.5	－	1	20 nc	－	－	
211724	TI	non，MS，si	50	． 67	178	80	7.5	－	1	20 nc	－	－	
221505	RCA	pnp， $\mathrm{Dr}_{1} \mathrm{sec}^{8}$	50	0.7	－	∞	10	90	． 15	－	－	－	
2N1506	RCA	pmo．Dr， 8°	50	0.7	－	100	10	125	． 15	－	－	－	
2141470 201657	RA	npm，DJ，si	55	3.0	20	60	2	50	10	10	－	－	Diamond Pack rex
2 L 1657	RA	¢pn，DB，si	55	33	200	60	2	50	10	10 mc	－	－	
2 M 19	BE	pap，AJ， $\mathrm{gec}^{\text {c }}$	60	12	98	45	3	－	0.5	－	－	5	
$2 \mathrm{nc39}$	BE	pnp，AJ，${ }^{\text {co }}$	80	1.2	100	40	5	15－30	20	－	－	－	
2Wagh	BE	pmp，N，${ }^{\text {cem }}$	60	12	100	70	5	15－30	10	－	－	－	
2 2 6398	BE	p p P，$A J_{1}$ ，	∞	12	100	80	5	15－30	2.2	－	－	－	
2W1073	8E	mppaj，${ }^{\text {ce }}$	0	10	100	40	10	20－6	20	15	－	－	
2N1073A	BE	MP，AL，	©	1.0	100	80	10	20.6	1.5	－	－	－	
2N10738	BE	mpp，AJ，${ }^{\text {ce }}$	60	1.0	100	120	10	206	20	1.5	－		
2N1136	BE	DMp，AJ，${ }^{\text {a }}$	∞	12	100	40	－		0.5	－	－	－	
$2 N 11364$	㔭		∞	1.2	100	7	6	－	2	－	－	－	
2111368	BE	㗇，AJ，${ }^{\text {ce }}$	60	12	100	80	6	－	2	－	－	－	
2 N 1137	BE	pmp， $\mathrm{NJ}^{\text {，ge }}$	∞	12	100	40	5	－	0.5	－	－	－	
2W1137A	BE	mpaj，	∞	12	100	70	6	－	2	－	－	－	
2 W 1378	BE	mon，AJ，	∞	12	100	80	6	－	2	－	－	－	
$2{ }^{2} 1238$	BE	mpo， N ，\％	60	1.2	300	40	6	－	0.5	－	－	－	
2W1139	BE	PAD，AJ，	60	12	100	70		－	20	－	－	－	
2 W 13388	BE		60	12	100	00	－	－	2	－	－	－	
2N120	TR	mpan， D, y ， $\mathrm{I}^{\text {a }}$	60	27	175	∞	5	15－75	50	15 mc	－	－	STC
2 N 1211	TR	nmon， D, si	60	21	175	70	5	15－75	50	15 mc	－	－	STC
201487	RCA		60	－	175	60	6	30	25	1 nc	－	－	STC，SE
2141409	rca	npm，$D J$, si	60	－	175	100	6	30	25	1 mc	－	－	STC，SE
2N1409	RCA		6	－	175	60	6	30	${ }^{2}$	1 mc	－	－	STC，SE
2 L 1490	RCA	npm， DJ, si	60	－	175	100	5	30	25	1.25 mc	－	－	STC，SE
2N1616	TR	npon， DJ, si	\pm	27	15	60	5	15－7	50	15 mc	－	－	
241617	TR	npon， O, J, si	∞	27	175	5	5	15－75	50	15 mc	－	＊	
$2 N 1618$	TR	npm，DJ，si	∞	27	175	0	5	15－75	50	15 me	－	－	
STALO	TR	npm， DJ, si	©	27	150	ω	5	10	1	－	－	－	SE
STA50	TR	n¢n， DJ, si	0	21	150	60	5	10	1	－	－	－	
2 N 1740	TS	pmpalsse	7		\％	80	15	37	8	18	－	－	\cdots
3M5	M ${ }_{\text {M }}$	pmpad．p	75	1.0	100	ω	10	50	30	750	－	－	Sat wilte． 15 v
3 M 45	M ${ }_{\text {H }}$	mpaj，	75	1.0	100	20	10	40	3.0	450	－	－	Sat voll 0.15
3047	4	app，AJ．	7	10	200	40	10	50	3	750	－	－	Sat voll 0 O． $15 v$
330	${ }^{4}$	mpajam	75	10	100	6	10	40	3	450	－	－	Sat volt＝0．15v
2068	7	npm，DJ，${ }^{\text {a }}$	05	． 0	200	0	，	12－40	10	7 mc	－	－	STC，RR，RA
20121619	TI	mpon， $\mathrm{DJ}, \underline{0}$	6	． 48	200	00	2	$12-00$	10	6 me	－	－	STC，TR，MA SE
2W1619 2W1ce0	TR	Tpand ，\％il	5	27	200	50	5	30	01	15 cc	－	－	
2 c 1 cos	RA	mpa， $08,3 i$	8	0.5	200	60	2	50	10	40 ac	－	－	
2 l （108	RA	\％pa， 08	\％	0.5	200	100	2	9	10	40	－	－	
2W1894	RA	mpan， DR ，¢ ${ }^{\text {di }}$	65	0.5	200	60	2	30	． 01	－	－	－	
${ }^{211205}$	Ra	apa， 08,41	65	0.5	200	20	2	30	． 01	－	－	－	
2 W1155	RA	пpm， 08, si	${ }^{5}$	05	200	∞	2	9	． 01	－	－	－	
211057	Ra	mpn，D8，si	6	0.5	200	00	，	50	． 01	－	－	－	
2 N 180	RA	mpa， DB_{3} si	85	0.5	20	100	2	9	． 01	－	－	－	
STCID	STC		\％	－	200	60	f	10－50	．025				
STC1102	5TK	mpa 0 D，si	85	－	200	500	6	10.50	． 025	1 lac	－	$=$	
STCllue	STC	apan DJ S ${ }^{\text {a }}$	8	－	200	0	5	25.5	des	$1 \times$	－	－	
STCILO	STC	－0，00，${ }^{\text {a }}$	85	－	200	100	6	$25-15$	095	isec	－	－	
20esia	± 0	Dajome	50	12	100	0	3	40－100		5	－	－	DE，BE
2 rasoa	\square	pmp， $\mathrm{N}_{\text {ces }}$	50	1.4	100	50	3	3	3	5	33		
220514	0		50	14	100	50	1	6	3	5	30	－	
$213 \pi \times 1$	mo	－9，Ne	90	14	100	50	5	0	3	5	38	－	
2 c 1	10	mal，	0	12	100	\oplus	10	10－30	4	5	36	－	
2 m 20	0	ma，	\pm	12	30	0	¢	10.30	1	5	38	－	

Power (continued)

Type	Mfg.	Typo	${ }^{w}=$	Max. Ratings				Chorectorisitica					Roment
				W/6	$\begin{array}{\|c} T_{1} \\ c \\ \hline \end{array}$	$\begin{aligned} & v_{c} \\ & { }_{c} \end{aligned}$	$\begin{aligned} & 1 \\ & c \\ & \text { cimp } \end{aligned}$	${ }^{1}$	$\begin{aligned} & 1 \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{\|l} \hline 1 \\ \mathrm{ce} \\ \mathrm{kc} \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Pown } \\ \text { Gind } \\ 0 \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Poun: } \\ \text { Oal } \\ \hline \end{array}$	
${ }^{214629}$	mo		90	1.2	100	80	10	10.30	1	5	38	-	
${ }_{21500}^{2 N 50}$	mo	pmp,A, se	90	1.2	100	100	10	10,30	'	5	38		
${ }_{2 \times 67}^{2 W 6}$	${ }_{\text {BE }}^{8 E}$	prosi, ${ }^{\text {mom }}$	90	1.2	100	50	15	15	1	-	-	-	
$2 \mathrm{M6}$ 7 ${ }^{\text {a }}$	${ }^{\text {BE }}$		${ }_{90}$	12	100	90	15	15	1	-	:	-	
2467 C	恹	Pmp,A, 8°	90	12	100	120	15	4	1	-	-	-	
${ }_{2 \times 1475}$	BE	pmpa,	90	L2	100	150	15	7	1	-	-		
${ }_{2} 2 \mathrm{NG774}$	8 BE	pmande	\$0	1.2	100	60	15	15	1	-	-	-	
${ }^{2 N 6788}$	8E	Pmpa,	\%	1.2	1100	90	15	15	1	$-$	-	-	
$2 \mathrm{C678C}$	BE	pmpAJge	90	12	100	100	15	75	1	-	-	-	
211001	8 E	pmoAJ, ee	90	0.8	100	30	5	20:60	1.0	-	-	-	
$2 \mathrm{2m10314}$	BE		90	0.8	1100	40	15	20.60	1.0	-	-	-	
$2 \mathrm{2N10318}$	${ }_{\text {BE }}^{8 E}$	mpp,N, ${ }_{\text {max }}$	90	Q. 8	100 100	n	15	20-60	${ }_{20}^{20}$	-	-	-	
211038	${ }_{\text {BE }}$	mponise	${ }_{90}$	Q ${ }^{8}$	100	30	15	50-100	10	-	-	-	
2 2 1138 a	BE	mpon, ${ }^{\text {mos }}$	90	0.8	100	40	15	50-100	10	-	-	-	
2710328	BE	Prp,N,	0	0.8	100	n	15	50-100	22	-	-	-	
${ }_{2 N 112}^{2 N 123 C}$	8E	pronde	so	0_{1}^{08}	100	\%	15	50-100	2	-	-	-	
2W1162A	mo		90	12	100	50	25	15.6	15	1	-	-	
2 21163	mo	pmondice	50	12	100	50		15-6			-		
221163	\%	mpp,AJ,	90	1.2	100	50	25	15-E	15	,	-	-	
${ }_{2 N 1164}^{2 N 164}$	mo	mop,N, ce	90	1.2	100 100	8		15-65	3	4	-	-	
2N116	mo	mpan,se	90	$\stackrel{L}{2}^{2}$	100	\$0	25	15.55	${ }_{3}$	1	=	-	
2 2 11155	mo	pmo,N.se	90	12	100	∞	25	15-65	15	4	-	-	
211165	mo	mp,N,	50	12	100 100	80	25	${ }^{1565}$	3	1	-	-	
${ }_{2 N 167} 21165$	mo		90	${ }_{L} \mathrm{~L}_{2}$	1100	100	25	${ }_{15}^{1565}$	15	!	-	-	
2N1167a	0	Mp, N,	9	L2	100	100	25	150\%	15	1	=	-	
211335	mo	mp,N.e	90	1.2	100	50	3	35-90	3	7	-	-	
211350	mo	mp,Nom	90	12	100	50	3	00-140	3	5	-	-	
211362	${ }^{0} 0$	mpanse	90	1.2	100	100	3	3590	3	7	-	-	
${ }_{2} 21131363$	${ }^{0} 0$	mpande	${ }_{90} 9$	12	100	100	3	60-100	3	5	-	-	
					100	120	3	35.90	3	1	-	-	
	mo	PppN, ${ }^{\text {ce }}$	50	L2	: 20	120	3	60-100	3	5	-		
2N1529A	mo	Pap, N,	90		1000	${ }_{40}^{40}$	5	${ }_{20-40}^{20-40}$	2	10 10	-	-	
$2{ }^{2} 1530$	mo	mpando	90	1.2	100	40	5	2040	2	10	=		
2W1530A	mo	mp,N, m^{8}	50	1.2	100	∞	5	$20-10$	2	10	-	-	
201531	mo	prpan,	5	1.2	100	80	5	20-60	2	10	-		
${ }_{20}^{2015354}$	\%	pranje	50	1.2	100	${ }^{80}$	5	2010	2	10	$=$	-	
2N1532A	mo	mpNo	5	1.2	100	100	5	$20=0$	2	10			
201533	± 0	pmon, ${ }^{\text {a }}$	50	1.2	100	121	5	2040	2	10	-	-	TR
${ }_{2011534}^{20154}$		mpanic	90	1.2	100	40	5	${ }^{3}-20$	2	25	-		
	M0	pmpand,	\$0	L.2	100 100	- 0	5	${ }_{35-10}^{350}$		25	=	-	
2215335	\%	mpans	50	12	100	∞		${ }^{35} 70$		0.5	$=$	-	
2N1536	mo	mpan	9	1.2	100	∞	5	35-10	2	25	-	-	
221536	mo	Prpane	so	12	100	∞	5	35-0	2	2.5	-		
${ }_{2}^{212153374}$	mo	RoAND,	0	${ }_{1.2}^{1.2}$	100	1300	5	3510	2	05	-	-	
201533°	mo	mp, $\mathrm{N}^{\text {a }}$	90	${ }_{2}^{2} 2$	100	120	5	$35 / 10$	2	4.5	-	\square	
211538	mo	mpans	so	1.2	100	ω_{0}	5	50, 000	2	4	-	-	
2215392	mo	mand		1.2	100	40	5	50.100	2	4	-	$-$	
2N1550	\%	mpaje	50	${ }_{1}^{1.2}$	100 100	-	5	50,100	2	:	$=$:	
$2 \mathrm{Lls41}$	mo	$\square_{\text {apone }}$	${ }_{50}$	${ }_{2}{ }^{2}$	100	0_{0}	5	80-100		:	-		
2 zistia	mo	mpasios	90	12	100	0	5	50-100	2	1	-	-	
2015ce	mo	Pro, A), som	so	1.2	$\begin{aligned} & 1000 \\ & 100 \end{aligned}$	$\left\lvert\, \begin{aligned} & 100 \\ & 100 \end{aligned}\right.$	5	50.100		4	-	-	
2 L 1513	± 0	mpanio	90	L^{2}	100	120	5	50, 100	2	1	-	-	
$2 \mathrm{2mL54}$	mo	mpanie	9	12	100	0	5	15-150	2	4	-	-	
2015444	mo	mpancomem	50	12	100	10	5	\% 150	2	1	-	-	
20125s	mo	mpande	5	12	100	${ }_{0}^{0}$	5	T-150	2	!	-	-	
${ }_{2} 21.546$	mo		80	1.2	100	${ }_{0}^{0}$	5	cols	2	!	-	-	
2misica	Mo	mpaic	50	1.2	100	0	5	75-150	2	1	-	-	
2 L 1317	mo	mpa,	5	12	100	10	5	7-150	2	1	-		
		Nopem	${ }_{80}$	$\frac{12}{12}$	180	$\left\lvert\, \begin{array}{l\|l\|} 1000 \end{array}\right.$	5		2	$\stackrel{1}{4}$	-	-	
20159	m	Oma	0	1.2	100	4	15	10.30	3	10	-	-	
$\left\|\begin{array}{l} 2 \pi 15 \operatorname{sen} \\ 2 \pi 150 \end{array}\right\|$	0	miNo	5	$\sqrt{12}$	100	${ }_{\infty}^{10}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\left\|\begin{array}{c} 90.30 \\ 10.30 \end{array}\right\|$	3	10	-	-	

Type No.	Mrg.	Typo	${ }_{w}{ }^{c}$	Max. Ratings				Charactaristics					Remarks
				w/c	T_{i}	$\begin{gathered} V_{c} \\ v^{\prime} \end{gathered}$	amp	${ }_{\text {fe }}$	$\begin{aligned} & T_{\infty} \\ & \text { ma } \end{aligned}$	$\begin{aligned} & \mathrm{f} \\ & \mathrm{cot} \\ & \mathrm{kc} \end{aligned}$	Powh Gain db	Pown. Out. *	
2 21550A	mo	pnp,AJ, ge	90	1.2	100	00	15	10-30	3	10	-	-	
2N1551	mo		90	1.2	100	80	15	10.30	2	10		-	
2 21551A	m0	pnp, $A 1$. ge	90	1.2	100	80	15	10-30	3	10			
2N1552	mo	pnp,A, ge	50	1.2	100	100	15	$10-30$	2	10			
2N1552A	mo	Pnp,AJ.ge	90	1.2	100	100	15	10-30	3	10	-	-	
${ }_{2}^{2 N 1553}$	no	pnp,ALse	90	1.2	100	40	15	30-60	2	6	-	-	
2N1553A	Mo	Pmp,A1,ge	90	1.2	100	10	15	3060	3	6		-	
2N1554	MO	Pmp,AI,ge	90	1.2	100	60	15	30-60	$?$	6	-	-	
2N1551A 2N1555	Mo	mpadige	90	1.2	100	60	15	$30-60$	3	6			
2N1555	mo	pmp,A, $\mathrm{se}^{\text {e }}$	90	1.2	100	80	15	$30-60$	3	6	-	-	
2N1555A	mo	mpa,AJ,ge	90	1.2	100	80	15	3060	3	6	-	-	
2N1556	M0	pnp,AJıse	90	1.2	100	100	15	30,60		6	-		
$\begin{aligned} & 2 N 1556 A \\ & 2 N 1557 \end{aligned}$	Mo	MPD, $\mathrm{N}^{\text {deg }}$	90	1.2	100	100	15	30-60	3	6	-	-	
2 N 1557 A	mo	mp,A, ge	90	1.2	100	40	15	$50-100$	3	6	-	-	
2N 1558	mo	pmp,AJ,	90	12	100								
2 2N1558A	mo	pmp, N, ge	90	1.2	100		15	50-100	3	5	-	-	
2N1559	mo	pmp, $\mathrm{N}_{\text {a }} \mathrm{se}$	90	12	100	80	15	50.100	3	5	-		
2N1559A	M0	pap, N, ge	90	1.2	100	80	15	50.100	3	5	-	-	
2N1560	Mo	pmp,adge	90	1.2	100	100	15	50-100	3	5	-	-	
$2 \mathrm{2N1560a}$	MO	mapange	90	1.2	100	100	15	50-102	3	5		-	
2 N 392	DE	Pnp,AN, ${ }^{\text {e }}$	91	. 8	100	60	5	-	0.065	6	-	-	
2N608	DE	ppp, A, ge $^{\text {c }}$	9	1.2	100	40	3	-	1.065	10	-	-	
2 N 1159	DE	MnDAJ, ge	94	0.8	100	80	5	-	0.0®6	10	-	-	
2N1160	DE	Pnp,A, ${ }^{\text {ce }}$	8	0.8	100	80	7	-	0.065	10	-	-	
241168	DE		9	0.8	100	50	5	-	0.065	10	-	-	
3 M 49	M	Pmp,A,	94	1.25	100	60	10	50	3	750	-	-	Sal volt e $0.15 v$
3N50	M ${ }_{\text {M }}$	pmpanise	91	1.25	100	80	10	40	3	450	-	-	Sat. voll $=0.15 v$
$\begin{aligned} & 3 N 51 \\ & 3 N 52 \end{aligned}$	MH	Pmp,AJ, 8 e	9	1.25	100	40	10	50	3	750		-	Sab wolt $=0.15 \mathrm{v}$
		Pmp,AJ, ${ }_{\text {e }}$	94	1.25	100	80	10	40	3	450	-	-	Sat volt = 0.15v
$\begin{aligned} & \text { 2N574 } \\ & 22574 A \end{aligned}$		pnp, Nıse	100	1.13	95	60	15	14	7	75	-	-	
2 21575	WH	Mmp,A, ${ }^{\text {che }}$	100	1.13	95	80	15	14	20	75	-	-	
2N5/5A	M $\mathrm{HH}^{\text {che }}$	Pmp, N, $\mathrm{Pmp}, \mathrm{N}, \mathrm{ge}$	100	$\underline{L} 43$	95	6	30	25	7	75	-	-	
2N1157	MH	Pmp, Pmp, AJ, ge de	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	1.43 1.43	95	80 60	30	25	20	75	-	-	
2N1651	BE	M, ${ }^{\text {d, }}$		1.4	95	80	30	50	20	15	-	-	
$2 N 1002$	BE	Pmp,OJ,ge	100	12	110	60	25	30	2.0	-	-	-	Sat, volt $=1.0 \mathrm{v}$
$2 \mathrm{2N1653}$	${ }^{\text {BE }}$	Dmp,ojige	100	1.2	110	1200	25 25	30 30	20	-	-		Sat volt $=0.5 \mathrm{v}$
2N1936	TI	npn,w,si	100	134	175	120	15	30	$\begin{aligned} & 2.0 \\ & 20 \end{aligned}$	7 me	-	-	Sat. voll $=0.5 v$
2 N 1987	TI	nDPn,MS, Si	100	1.34	175	80	15	-	20	1 mc			
PT900	PSI	non, im, si	125	1	150	80	10	3	10	50 mc	10	100	hi req, hi power
Pr901 2N1899	$\begin{array}{\|l\|} \hline \text { PS } \\ \text { PS } \end{array}$		125	1	150	140	10	10	30	50 mc	-	0	hi freq, hi power
2N1900	$\left\lvert\, \begin{array}{l\|l\|} \mathrm{PSS} \\ \mathrm{PSI} \end{array}\right.$		125	1	150	140	10	10	20	50 mc	10	100	tif freg, it power
214800		non,OM 31	125	1	150	140	5	10	20	2 mc	-	-	hi frequ, hi power
2N1901	PSI	nom, DM, Si_{1}	125	1	150	140	5	10	20	25 mc	-	-	
2N173 $2 N 174$	\|DE	pmpajse	150	0.5	100	60	0.5	-	0.1	10	-	20	
$2 N 174$ $2 N 27$	DE	mpaj,	150	0.5	100	80	15	-	0.1	10	-	40	TS, mo, Ti, RCA
21278	DE	$\begin{aligned} & \text { مnpA AJge } \\ & \text { PnpA } A, g e \end{aligned}$	150	0.5 0.5	100 100	40 50	15	-	0.1	10	-	20	MO, TS. TL, RCA
$2 \mathrm{MH1}$		mparis		45	100	50	15		0,1	10	-	20	MO, TS, TI, RCA
2 MQ	DE	Pmp, ${ }^{\text {Paj }}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	0.5	100	40	15	-	0.1	10	-	20	MO, TS, TI, RCA
2 mm 3	DE	pmp, ${ }^{\text {a }}$, g°	150	0.5	100	50	15 15	-	0.1	10	-	20	MO, TS, TI, RCA
2 LW 11	TI	pmpA, ge	150	2	100	40	25	20.00	0.1	10	-	20	MO, TS, TI, RCA
2N511A	TI	DMp, $\mathrm{N}_{\text {cese }}$	150	2	100	60	25	20.60	5	-	-	-	Sa, volt 0.2 LV
2M5118	TI	Papad ame	150	2	100	80	25	20.60	5		-		Quv
24512	TI	PMP, N ¢	150	2	100	40	25	20.00	5	-	-	-	
${ }_{\text {2N5 }}^{2 \times 12 A}$	T1	pmpAls	150	2	100	∞	25	20.0	5	-	-	-	
225128	T1	mp, N, ${ }^{\text {a }}$	150	2	100	80	25	$20-60$	5	-	-	-	
2N513	TI	mpp, N ,ge	150	2	100	40	25	2000	5	-	-	-	Six. volt $=0.4 v$
226134	T1	pepajem	150	2	100	60	25	$20-60$	5	-		-	
2N5138	TI	Pmp, Nige	150	2	100	80	25	20-60	5	-	-	-	
${ }_{2}^{21514}$	TI	pmpajese	150	2	100	40	25	20-60	5	-	-	$=$	
2M514A	TI	mandse	150	$?$	100	∞	25	$20-60$	5	-	-	-	Sak. woll - 0.5 v
2N5148	TI	pmpajse	150	2	100	80	25	20-60	5	-	-	-	Sat. volt = L. $5 v$
211021	TI	pmp,adse	150	?	1200	100	10	30.50	2	-		-	
2 L 1002	T	Pmp, A,	150	2	100	120	10	30-50	2	-	-	-	
2N1025 2N1100	DE	PPp, N.	150	0.5	100	80	15	-	0.1	10	-	40	TS, mo, TI, RCA
2N1507	TI	Pmanjo	150	0.5	100	100	15	\square	0.1	10	-	40	TS, MO, RCA
		PDPAD, ${ }^{\text {c }}$		2	100	100	20	10	10			-	
2M1500	T	Pap,AD, ${ }^{\text {Pa }}$	150	2	100	130	20	10	10	-	-	-	
2 L 1981	π	Mp ${ }^{\text {a }}$	150	?	100	50	15	50	6	-	-	-	
24190	II	рпp, J_{1} si	150	2	100	$\begin{aligned} & \text { D } \\ & \mathbf{D} \end{aligned}$	15 15	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	6	-	-	-	
WX118ub	WH	пpp, F, si	150	2	150	50	10	1000	10	11		-	

DATA CHERT

Power (concluded)

Special Types

Typo No.	Mig.	Tyロ	\cdots	Men. Refiegs					Cherectopistics				Remerte
				$\mathrm{m}_{\mathrm{c}}{ }^{\text {c }}$	Tij	menc	$V_{\text {c }}$	I_{e} \square	He	${ }^{1}$	MF	Eto	
	GI GI		1.8 mm	50	100	0.83	20	-	7	5	16	30	photo
2 l 1312	GI	npn, A, re	1.5 mc	120	100	1.5	75 50	-	25	3	10	11	hist woltape
201322	GI	¢п¢AN,	2 mm 1 mm	120 50	100	1.5	50 20	-	30 40	3 5	10 16	11 30	lind waltare
2W1310	GI	mpnajie	10 mo	120	100	1.5	50	-	30	3	10	11	photo migh waltere
211393	CI	PmoAJ, ${ }^{\text {ce }}$	3.4 mc	50	85	Q88	20	-	160	5			
2M139	GI	Pnp,AJ, er	1 mc	50	${ }^{6}$	0.6	10	-	50	5	16	30	photo
GT124	G1	nppa, $\mathrm{N}, \mathrm{c}^{2}$	3	150	100	2	40	-	7		\square	-	hish volime
GT1200	G1		-	120	15	2	50	-	-	1	20	-	driver
2 N 1408	CI	pmp,AJ,ge	-	150	100	2	50	-	20	3	10	35	hit wolage

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Mig.	Type	(mm)	T	mw.e	v	I(ma)	8 m	Rement
C650	CT	OMP, N, si	250	100	2	45	50	-	field eftect
C681	CT	PRD, N, si	250	160	2	35	50	-	field effloct
C65	CT	Mnp, N, , s ${ }^{\text {a }}$	250	160	2	2	50	-	held effect
C653	CT	pmp, N, si	250	160	2	15	50	-	field effect
C610	CT		250	150	,	40	50	250	field aflea
C611	CT		250	100	2	40	50 50	$\begin{aligned} & 400 \\ & 650 \end{aligned}$	field eftect fiod effect
C613	CT	mp, N, si	250	100	2	40	50	1000	field eflect
C614	CT	pap, $\mathrm{N}, \mathrm{si}^{\text {si }}$	250	100	2	40	50	250	field ethect
C615	CT		250	100	2	40	50	750	field efloct
2N1671	GE	Mm, ${ }^{\text {m }}$	150	140	-	-	5	-	mijuation
271714	GE	m, si	450	140	-	-	-	-	mijunction
2 L 15718	GE	0n, si	450	H0	-	-	-	-	unijuction
24510	GE	nen, RU, 0°	15	${ }_{8}$	-	70	20	-	

In-prosess festing of sillicon diodes with a Type 575
TEKTRONIX TRANSISTOR-CURVE TRACER

... in research and development
The Type 575 is a versatile precision tool for in-process testing of semiconductor diodes-as illustrated above in the Semiconductor-Device Development Lab of Tektronix. Research Division. Viewing the display on a Type 575, a technician can easily determine the forward conduction characteristics as well as the reverse breakdown-and-leakage of a semiconductor diode prior to sealing, during sealing, and after sealing.
NOTE: Double-exposure waveform photos of the case-sealing operation were taken with control settings at 1 ma/div (v) and 0.2 vidiv (h)-forward direction, upper right-and $20 \mu \mathrm{aldiv}(v)$ and $20 \mathrm{v} / \mathrm{div}(\mathrm{h})$-leverse direction, lower left.

- in other applications

The Type 575 provides 20 -ampere collector displays ($10-$ ampere average supply current), two ranges of collector supply (0 to 20 volts, 0 to 200 volts), and 2.4 -ampere base supply (positive or negative base stepping).

With a Type 575 , you can plot and measure 7 different transistor characteristics. You can display 4 to 12 curves per family-with input current from 1 microampere/step to 200 200 millivolis/step-in repetitive or single-family presentations. You can select either common-emitter or common-base configurations.

Add a Type 175 Adapter and you extend the range of collector displays 10 times and the range of base supply 5 times.

Type 575 Calibrated Displays

Vortical Axis-Collector Current, 16 steps from 0.01 ma/div to 1000 maldiv. Pushbuttons are provided for multiplying each current slep by 2 and dividing orizontal Axis-Collector Voir
Horizontal Axis-Collector Voltage, 11 steps from 0.01 v/div to 20 v/div.
oth Axes-Base Voltage, 6 steps from 0.01 v/div to $0.5 \mathrm{v} / \mathrm{dlv}$ Base Current, 17 steps from 0.001 ma/div to $200 \mathrm{ma} / \mathrm{div}$.

Type 573 Transister-Curve Tracer

standards, and speedily accept or reject the transistor under test.

- In production rune

The Type 575-used by itself or with a Type 175 Adapter for increased current capability-is a convenient Quality Control tool for production testing of both PNP and NPN transistors-a simple procedure with Test-Setup Charts of front-panel layout available from your Tektronix Field Enwith arrows, display limits drawn on the seraticule, other with arrows, display limits drawn on the graticule, other time-saving techniques devised by a QC Engineer clearly noted, a production worker can easily change from one test urves displayed on the s-inch crt of the Type 575 with charted

Tekironix, Inc.

- PC. P. Box 500 - Sooverton, Oregon - Thone Mirchell 4-0161 - TWX-BEAV 311 - Cable: TEKTRONIX

 CIRCLE SA ON READER-SERVICE CARD

HIGH-CURRENT

ADAPTER AVAILABLE

For measuring high-powered semiconductor devices which exceed the current capabilities of a Type ask, about the Type 175 High-Current Adap:er. Not intended for separate use, the Type 175 depends upon the circuitry and crt of a Type 575 to provide 200 -ampere collector displays, three ranges of collector supply, and 12-ampere base supply-for Current on the Vertical Axis and current on the Vertical Axis and Voltage on the Horizontal Axis.
Type 173 Translator-Curve Tracer High-Current Adapter

HIGH-VOLTAGE TYPE 575
AVAILABLE
Supplied on order from your Tektronix Field Engineer is a special model of the Type 575 Transistorthe Type 575 , the special model provides much higher diode breakdown test voltage (variable from zero to 1500 volis at a maximum current of I milliampere) and also much higher Collector Supply (up 10400 volts, at 0.5 ampere).

For complete specifications of this special model-call your Tektronix Field Engineer.
Type 575 Mod IzeC
.31175 (wicos (0.0. Iaction)
. . for more information about evaluating semiconductor devices with a Type 575 or orher Tekronix fesl Engineer. He will be glad so assist you.

CAREER OPPORTUNTIES NOw enizt of Tektronix in the following fields: Instru. ment dosign, Circuis dosion ond angineoring, Cothode-ray inbes, Electron dovices. For information write to Irving Smith, Profossional Plocement.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Mfg．	Type	$\begin{aligned} & i_{0} \\ & \text { nct } \end{aligned}$	Maximum Roflings					Charactoristic：				Swhethiag				Remerks
				（w）	$\begin{aligned} & T_{i} \\ & \text { (c) } \end{aligned}$	W／c	v_{c}		${ }^{6} 10$	1_{∞}	$\begin{gathered} \text { Powr. } \\ \text { Gain } \\ \text { (1) } \end{gathered}$	Pown． Out w	$\begin{array}{\|l\|} \hline \text { Rise } \\ \text { Time } \\ \mu \mathrm{sec} \end{array}$	$\begin{array}{\|l\|} \hline \text { Store } \\ \text { Time } \\ \mu \text { sec } \end{array}$	$\begin{array}{l\|} \hline \text { Sat } \\ \text { Volt } \end{array}$	$\begin{aligned} & \text { Lew } \\ & \text { Cur } \end{aligned}$	
241238	HU		0．8	1.0 1.0	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	－	$\begin{array}{\|l\|} \hline 15 \\ 15 \end{array}$	$\begin{array}{\|l\|} \hline 0.5 \\ 0.5 \end{array}$	$\begin{array}{\|c\|} \hline 14 \\ 32 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	Z	＝	$\bar{\square}$	－	－	－	
201240	HU	mpp，FJ，si	1.0	1.0	200	－	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 32 \\ & 16 \end{aligned}\right.$	0.1	－	－	－	－	－	－	
211241	HU	pmp，F J，si	1.0	1.0	200	－	35	0.5	24	0.1	－	－	－	－	－	－	
2 L 1242	HU	Dop，F J，si	1.0	1.0	200	－	65	0.5	14	0.1	－	－	－	－	－	－	
211243	nu	mpp，FJ，si	1.0	1.0	200	－	E5	0.5	21	0.1	－	－	－	－			
21124	HU	pmp，FJ，si	12	1.0	200	－	110	0.5	14	0.1	－	－	－	－	－	－	
201073	8E	pap， 01.80	1.5	35	100	1.5	40	10	206	2.0	－	－	－	－	1.0	－	
2 L 1073	BE	mp， 01.80	1.5	35	100	1.5	80	10	206	2.0	－	－	－	－	1.0	－	
211073	BE	mp， 01.8	1.5	35	100	1.5	120	10	20.6	2.0	－	－	－	－	1.0	－	
8－1085	BE	mp，DJfe	1.5	60	100	1.0	120	10	5s	2.0	－	－	－	－	0.75	－	
$0 \mathrm{CL2}$	AMP	Pnp，PADT，${ }^{\text {Pe }}$	2.5	10	75	－	38	1	150	30	－	－	－	－	0.	－	
${ }_{0}^{0093}$	AMP	mp，PADT，se	25	10	75	－	${ }_{4}^{40}$	1	150	30	－	－	－	－	－	－	
$2 \mathrm{ML518}$	${ }_{\text {A }}$ DE	MPD，A，${ }^{\text {made }}$	4	70	15 100	$\overline{12}$	50	25	150	30 100	－	40	20	$\overline{7}$	－	－	
201519	DE	mp，AJse	4	70	100	1.2	80	25	－	100	－	40	20	7	0.3	－	
2 W1520	DE	pmp，AJse	4	70	100	12	50	35	－	100	－	40	20			－	
2M1521	DE	pnpAJse	4	70	100	12	80	35	－	100	－	10	20	7	0.3	－	3a
201522	DE	mp， $\mathrm{AJsex}^{\text {d }}$	4	70	100	12	50	50	－	100	－	40	20	7	0.3	－	
2N1523	DE	mpa，AJse	4	70	100	12	80	50	－	100	－	40	20	7	0.3	－	502 Winn．gain of 12 m
2N297	BE	PRPAJ．	5	35	90					3	－	－		－			
20997A	ct	mpAAJe pnp，A	$\frac{5}{5}$	12	$\frac{95}{90}$	2.5	88	5	－	$\frac{3}{3}$	＝	Z	＝	－	108	80	BE，DE，MO
21375	CL	mpaje	7	－	98	3.	80	3	－	3	－	－	－	－	1.0	80	
2M378	TS	mpajse	1	50	100	12	20	5	30	0.5	－	－	－	－	1.0	－	
24377	CL	ppodje	7	5	85	0.3	80	3	－	5	－	－	－	－	1	15	TS
24360 24058	TS	Pnp，A．se	7	50 50	100	0.8	30	5	－	0.5	－	－	－	$-$	－	50	
2 M59	TS	mpajage	7	50	100	0.8	80	5	－	0.5	－	－	12	12.5	0.24	30	CL
210011	DE	mpajse	7	70	100	0.1	80	5	－	100	－	－	5	2	0.3	3	2m1011 Sig．C．，mo
274568	DE	mpo．AJse	10	91	100	12	40	7	－	0.065	－	－	10	5	－	－	II
2 2M55A	DE	popaj，ec	10	0	100	12	60	0.065	－	0.065	－	－	10	5	－	－	TI
2 L 558 A	DE	mpajse	10	9	100	1.2	80	7	33	0.065	－	－	10	5	－	－	TI
211038	T1	Pmpajas	10	20	100	0.21	40	3	33	50	－	－	－	－	－		
2 N 1039	TI	DnP，AJse	10	20	100	0.27	60	3	33	50	－	－	－	－	－		
2 W 1010	TI	PMPAJse	10	20	100	0.27	80	3	33	50	－	－	－	－	\square		
211358	DE	mpajse	10	150	100	2	80	15	－	0.1	－	40		5	0.3	－	IS，TI，RCA，MO
201412 201970	DE	mpadice	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	150 150	100	2	100 100	15	－	100	－	40	15	5	0.3		TS，RCA，MO
214387	${ }_{\text {PH }}^{\text {PE }}$	mapadse	$\left\lvert\, \begin{aligned} & 10 \\ & 12 \end{aligned}\right.$	150	100	2	100	15	－	0.1	－	－	10	5		－	
2N3\％	PH														0.35		
$2 \mathrm{~L} 10 \%$	TI	MPD，A］${ }^{\text {cee }}$	15	12.5	100	0.5	60	3	－	0.1	33	5	－	－	－	－	
2M1006a	II	mpadise	15	150	100	2	100	10	40 20	10	－	－	－	－	1.0	－	
2210468	TI	mpados	15	150	100	2	130	10	10	10	－	－	－	－	－	－	
201600	DE	papdja	17	15	100	0.1	80	1.5	0	10	－	0.6 m	3	i	0.3		
201610	DE	mp，AJse	17	15	100	0.1	80	1.5	－	10	－	0.4 m	3	1	0.3		
241611	DE	pmpadse	17	7.5	100	0.1	60	1.5	－	10	－	0.4 m	3	1	0.3	－	
201612	DE	MPDAS	17	75	100	0.1	60	15	－	10	－	$0.4 m$	3	1	0.3	－	
2 L 1015	${ }_{\text {DE }}^{\text {DE }}$		25	50 150	150	0.7	60 30	4.5	－	$\begin{aligned} & 0.00 \\ & 10 \end{aligned}$	－	－	5	2	is	\square	
$2 \mathrm{2m1005a}$	UH	man，FJ，si		150	150	1.4	60	7.5	8	10							
2 L 1015 B	［1］	am， FJ ，si	25	150	150	1.4	100	7.5	8	10		－	5	1	1.5	1	SE
2 21015C	UH	amm， Fl ，si	25	150	150	1.4	150	75	－	10	－	－	5	1	1.5	8	
2210150	WH	nemorjsi	25	150	150	1.1	200	75	－	10	－	－	5	1	1.5	－	
201016	UH	men，FJ，Si	25	150	150	1.4	30	7.5	8	10	－	－	5	，	25	1	SE
2710164	WH	mpa，FJ，it	25	150	150	1.4	60	7.5	1	10	－	－	5	1	2.5	1	SE
2010168	VM	mpmof J，si	25	150	150	1.4	100	7.5	8	10	－	－	5		25	1	
${ }_{2}^{201 m} 2010$	\％${ }^{\text {\％}}$	Apm，F J，si	25	150	158	1.4	150	7.5	8	10	－	－	5	1	2.5	$!$	
2m160	AMP	aph，FJ，si ${ }_{\text {and }}$	200	${ }_{30} 150$	150	1.4	200	${ }^{7}$	8	10 0.1	－	－	5	1	2.5	8	
221656	AMP	mpo，PADT	200	30	50	－	－	6			－	－		－	－	－	
201669	AMP	MP，PADT ${ }^{\text {P }}$	200	30	90	－	－	$\overline{-}$	5	0.1	－	－	＝	－	－	－	
0 CzS	AMP	Ma，PADT	200	13	90	－	80	6	32	－100	－	－	－	$=$	－	－	
OC3s	AMP	Map，PADT ${ }^{\text {and }}$	200	13	50	－	60	5	50	$\leqslant 100$	－	－	－	－	－	－	
0035		－a．mots	20	13	90	－	60	6	50	$\leqslant 100$	－	－	－	－	－	－	
20118	㫙	PMP，PADT	200	${ }_{50}^{13}$	100	12	∞	6	70	＜100	－	－	－	－	－	－	
2420	BE	papajs	400	60	100	12	100	1	60	1.0 1.0	＝	－	15	$=$	0.5	－	
2 mc 2 OA	嫄	pmode	400	60	100	12	90	15	60	1.0	－	－	is	－	0.5	－	
2 m 37	BE	昒A了	400	60	100	12	60	d	15	1.0	－		－	－	4.7	－	

reliability
 in
 volume...

CLEVITE TRANSISTOR

How to select power transistors

by RICHARD F. MOREY, JR.
Monager, Applications Engineering, Clevife Transistor
Division of Clevite Corporation

A basic understanding of the interrelationship of transistor design parameters facilitates selection of the most advantageous unit for a given application.

Transistor characteristics depend upon each other. Consequently, a design change in the manufacture of a transistor directly affects a number of its electrical characteristics.
As a guide to users of power transistors, several of the important design elements and the electrical characteristics they influence have been summarized in chart form (fig. 1).

The curves (figs. 2-5), show typical characteristics for two power transistors of quite different design. Clevite's 2 N 1762 , for example, is a 3 ampere unit having the following design parameters: Small junction area; high resistivity germanium; moderate germanium lifetime; average wafer thickness and no emitter doping.

In contrast, Clevite's 2 N 1146 C is a 15 ampere power transistor which has several quite different parameters based upon a higher current and power requirement; large junction area several times the size of the 3 ampere unit; identical base width and resistivity but longer germanium lifetime and thicker wafer plus aluminum doping to increase emitter efficiency.

Working with the chart in figure 1 and the table, figure 6 , we see that the comparative design elements of

Effect of Transistor Design on Characteristics

DESIGM PARAMETEA		Increase in Wafer Thictroess	heduction in GE matorial lifetime	Increase in Ce material resistivity	Retuction in Bese Widih	Incresse in Nunction Arse
PMEGMAL MESISTAMCE R,	-	-	-	-	-	decrease
COLLECTO LEAKACE CURAENT laso \qquad	-	tecrease	increasa	increaso	-	incresse
COLLECTOR BASE VOLTAGE VCa COI	-	-	-	incrasest	-	decresse slightly
COLLECTOA EMITIER VOLTAGE V_{a}	decrease	-	increase	increase	decreasa	dacrease slightly
	increase	-	decrease	-	increase	-
Linesitity of hes	better	-	-	-	-	better
SATURATION VOLTAGE Vesisat	decrease	decrease	increase	increase	decrase	encrease
beta cutorf FREOUENCY fos	dacrease	-	incrosso	-	incrosso	decresse
PUNCH THROUGH VOLTAGE VPI	-	-	-	decresse	cocriase	-
SECONDATY BREAKODWH CURRENT I	increase	increase	-	decrease	-	incosase

Figure 1.
the two transistors result in the 15 ampere unit exhibiting: - lower thermal resistance and higher leakage currents because of its large junction area.

- slightly lower collector to base voltage.
- higher gain because of the emitter doping and higher lifetime.
- very linear current gain out to high currents because of its large area and special emitter doping.
- lower collector to emitter breakdown voltages because of its higher gain and lower collector to base voltage.
- much lower saturation voltage and base input voltage because of its high gain and thicker wafer and larger area.
- low common emitter frequency response because of its high gain and large area.
Comparison of Characteristics - Two different designs

Characteristic	2N1762 Typical Value 3 Amp. Device	2N1146 Typical V 15 Amp. D	Units
Thermal Resistance	1.4	0.5	${ }^{\circ} \mathrm{C} /$ wall
levo at loov at $85^{\circ} \mathrm{C}$	3	15	mA
leoo at 100 V at $25^{\circ} \mathrm{C}$	1	4	mA
BVemo	130	120	Volts
$V_{\text {ciolme) }}$	70	50	Volts
Current Gain at $I_{\mathrm{c}}=1$ Amp.	60	220	
Current Gain at $1_{c}=5 \mathrm{Amps}$.	15	140	
Current Gain at $l_{c}=15 \mathrm{Amps}$.	S.	75	
Saturation Voltage at 3 Amps .	0.3	0.2	Volts
Saturation Voltage at 15 Amps.	. -	0.4	Volts
Saturation Resistance	100	26	Milliohms
Frequency Cutoff at 1 Amp.	18	4	kc.

Figure 6
In order for circuit designers and users of power transistors to obtain the best combination of electrical characteristics, the requirements for the application must be well known and be matched to the transistors available on the market. Therefore, an elementary knowledge of the existing relationships between transistor characteristics is a useful design tool. A tabular summary of characteristics for Clevite's complete line of power transistors is available. Ask for Bulletin 61-A.

$G E T$ CLEVITE TRANSISTOR	POWER TRANSISTORS FAST FROM THESEDISTRIBUTORS 200 SMITH STREET WALTHAM 54, MASSACHUSETTS

CALIFORNIA

Fortune Electronics Corporation
1321 Mission Street
San Francisco 3, California
UNderhill 1-2434
Bob Simcock Jim Hays
Call Mike Dellamonica Ben Main
Henry Putn
Frank Cianciolo
Shelley Radio Co., Inc. 2008 Westwood Blvd. Los Angeles 18, California BRadshaw 2.4391

Frank Shelley Call Dick Hakins Irwin Pigovat Bob Valdez

Nesco Electronics
1715 E. Colorado Street
Pasadena, California
MUrray 1.4861
SYcamore 5.9161
Don Cassidy Harold Matthew Call Dave Pric Ed Rice Matt Leondis

COLORADO

L. B. Walker Radio Company 300 Bryant Street Denver 4. Colorado WEst 52401

James Bevington Call Dwane Orth AI Benjamin
Sam Fonville

FLORIDA
Gulf Semiconductors, Inc.
7210 Red Road
Miami 43, Florida
MOhawk 5.3574

Call	George L. Chase
John F. Wattles	

ILLINOIS
Semiconductor Specialists, Inc.
5706 West North Avenue
Chicago 39, Illinois
NAtional 2 -8860

MARYLAND
D \& H Distributing Company, Inc 2025 Worcester Street LE 9.6525

Len Hassman Leroy Marpoe Allen Draper
William Davis
John Bittner
Robert Bonar

MASSACHUSETTS

Greene-Shaw Company
341 Watertown Street Newton 58, Massachusett WOodward 9.8900

I Sid Shaw
Andrew Murphy Peter Pearson
Call William Heghlis Donald Ranagan Richard Moschner Robert Murray
Cramer Electronics, Inc
811 Boylston Street Boston 16, Massachusetts COpley 7.4700

> Nils Attemann Nick Milona Gerald Cramer Max Cramer Charles Silliker Sam Share Doug Carrick Marvin Wood Les Gill

Call

MISSOURI
Burstein-Applebee Company
1017 Charlotte
Kansas City. Missour
BA 1-4266

> Rollo Fouts Ed Gerlach Harris Fromhold Pat Patterson Jim Neustadt Dan Hatter Gene Goff

Call

NEW JERSEY
General Radio Supply Company, Inc.
600 Penn Stree
Camden 2, New Jersey
WOodlawn 4.8560
Walter A. Beringer
John Jakubowski
Charles Sikora
Steve Tiska
Lou Rodio
Cliff Gilbert
Walter Beringer, Jr.

NEW YORK
Arrow Electronics, Inc.
525 Jericho Turnpike
Mineola, Long Island, New York
Ploneer 6.8686
Murray Goldberg
Bob Becker
Herb Brody
Al D' Ambra
Bob Dowling
Aaron Geffner
Jerry Manuta
Jim Mason
Phil Miller
Leo Mitchell
In Sodus

Leo Mitchell
Inv Sodus

Harvey Radio Co., Inc.
103 West 43rd Street
JUdson 2.1500

```
Harvey E. Sampson, Jr.
Stan Eskatz
Ernie Stern Ernie Stern Erank Lanne Frank Lannen
Buzz Hart Martin Gillmon
```

Call

Statewide Electronic Supply Co., Inc Pickard Drive
ast Syracuse, New York
GLenview 4-3227

Joe Perleoni
 Sam Perleon
 Joe Cariseo

OHIO
Pioneer Electronic Supply Compan?
5403 Prospect Avenue
leveland 15, Ohio
Telephone: 432.0010

$$
\begin{aligned}
& \text { Jerry Blank } \\
& \text { Thomas J. Gretz } \\
& \text { Robert L. Dittrick } \\
& \text { George Remner } \\
& \text { Frank L. Toplak } \\
&
\end{aligned}
$$ Donald Gonsalves

PENNSYLVANIA
Phila. Electronics, Inc 1225 Vine Street Philadelphia 7, Pennsylvania O 8.7444

Adam Cavalier Anthony Cucch Call Romeo A. Cucch Carmen Salvucc Edward S. Smith

TENNESSEE

Electra Distributing Company
1914 West End Avenue
Nashville 4, Tennesse
AL pine 5 -8444

> | | $\begin{array}{l}\text { Henry Flowers } \\ \text { Bill Stafford } \\ \text { Call } \\ \text { Stanley Bennett } \\ \text { John Sullivan } \\ \\ \\ \text { Irving Silver }\end{array}$ |
| :--- | :--- |

TEXAS
MeNicol, Inc.
3012 East Yandel
El Paso, Texas
LOgan 6-2936

> | Call | $\begin{array}{l}\text { L. W. McKennon } \\ \text { C. L. Beck } \\ \text { R.C. Fryman }\end{array}$ |
| :--- | :--- |
| | |

WASHINGTON
Kam Electronics
1211 East Denny Way Seattle 22, Washington EAst 3-5100

Call Gerald R. Wallace Harry Levinson

Abbreviation of Terms

AJ

DJ
DM

Epitaxial
Fused Alloy
Fused Junction
Grown Diffused
Germanium
Grown Junction
Grown Rate
Meltback
MADT
Mesa
Rate Grown
Silicon
SBT Surface Barrier
$\mathbf{C}^{\text {. }}=$ Collector-to-emitter capacitance meas ured across the output terminals with the input ac open-circuited.
$\mathbf{f}_{\mathrm{se}}=$ Frequency at which the magnitude of the forward-current transfer ratio (small-signal) is 0.707 of its low-frequency value
f = Frequency at which common emitter gain is unity
$\mathbf{h}_{\text {. }}=$ Common emitter-small signal forward current transfer ratio.
$\mathbf{h}_{v k}=$ Common emitter-static value of short circuited forward current ratio.

Ivu = Collector current when collector juncion is reverse-biased and emitter is dc open-circuited.

If you would like an additional copy of the Transistor Data Chart Section circle 251 on the Reader-Service Card (Quantity prices on request)

High Level (continued)

$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$	Mis.	Typo	1	Man. Retings					Charactorititics				Swirehing				Remomin
				${ }^{c}$ (w)	- ${ }^{1}$	c w'e		$\begin{aligned} & 1_{c} \\ & 1 \end{aligned}$	$\mathrm{n}_{\text {le }}$	$\begin{aligned} & \hline 1_{c o} \\ & \text { ma } \end{aligned}$	$\begin{aligned} & \text { Powra } \\ & \text { Gain } \\ & \text { in } \end{aligned}$	$\begin{gathered} \text { Powto } \\ \text { oul } \\ w \end{gathered}$	$\begin{aligned} & \hline \text { Rise } \\ & \text { Time } \\ & \text { Usec } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Sior } \\ & \text { Time } \\ & \mu \mathrm{sec} \end{aligned}\right.$	$\left[\begin{array}{l} \mathrm{S}_{2} 2 \mathrm{~L} \end{array}\right.$	$\left[\begin{array}{c} \text { Lisik } \\ \text { Out } \end{array}\right.$	
2296374	BE	pmo, AJ, ge	400	60	100	1.2	90	6	45	1.0	-	-	-	-	0.7	-	
2N637B	BE	pmp,A).g	400	60	100	12	100	6	45	1.0	-				0.7	-	CL
2M638	BE	map,Alse	400	60	100	1.2	60	6	30	1.0	-	-	-	-	0.7	-	
2m6384	BE	mpalse	400	60	100	12	90	6	30	1.0	-	-	-	-	0.7	-	
206388	BE	pmp,AJse	400	60	100	1.2	100	6	30	1.0	-	-	-	-	0.7	-	
$2 \mathrm{NG75}$	PH	pnp,A, ge	400	1	85	16.7	75	2	40	100	-	-	-	-	0.35	-	Infinite heat sink
2 N456	TI	pmp,AJse	430	50	100	0.67	40	5	30-90	02	-	$-$	12	12.5	0.24	30	RCA
2 M 55	TI	pap A).ge	430	50	100	0.67	60	5	30-90	0.6	-	-	12	12.5	0.21	30	RCA
2 Tm 71	PH	Pap,AJ.ge	700	1	8	0.017	40	$?$	100	20	-	-	$-$	-	-	-	Infinite heat sink
STCLICS	STC	npa, DJ,si	1 lic	85	200	0.125	60	6	25-75	0.025	-	-	-	-	-	-	
STCIIOA	STC	npn, DJ,si	1ma	85	200	0.425	100	6	25.75	0.025	-	-			-	-	
${ }_{2}^{20673}$	PY	PDPAJ,	1.1 mc	0.3	85	5	75	2	160	40	-	-	0.5	0.4	0.2	-	Infinite heat sink
20124A	STC	non, DM, ${ }^{\text {ai }}$	2 ac	85	200	0.4	60	3.5 2.5	12.60 20.80	10	-	-	-	-	-	-	SE
2N178	STC			25 7	200	0.125 0.375	60	2.5 5	20.80 15.60	0.1 0.2	$=$	2	-	-	$=$	-	
211768	STC	npon, DM, si	2	40	200	0.2	80	3	35-100	. 015	-	-	-	-	-	-	
241769	STC	npon,0M, ${ }^{\text {a }}$,	40	200	0.2	100	3	35-100	. 015	-	-	\square	-	-	-	
2 21620	STC	npn,0m,si	2 mc	85	200	0.45	100	5	15.51	1	\square	-	-	-	-	-	
21551	TR	npm,01.si	3nc	3	200	0.5	60	-	20-80	1.2	-	-	1.2	0.3	0.9	-	
26552	TR	npm, $0 \mathrm{O}, 31$	3 nc	3	200	0.5	30	-	20-80	12	$-$	-	1.2	0.3	0.9	-	
201055	TR	npm, DJ, si	3	3	200	0.015	100	-	20.80	0.001	-	-	-	-	\square	-	
24547	TR	npon, DJ, 31	4 Am	5	200	0.5	60	\cdots	20-80	1.2	-	-	0.7	0.2	3.0	-	
$2 \mathrm{LS54}$	TR	nom, DJ,si	anc	5	200	0.5	30	$=$	20.80	0.5	$=$	-	0.7	0.2	2.0	-	
$2 \mathrm{TH549}$	TR	nmm, DJ, si	4 frc	5	200	0.5	60	-	20-80	0.5	-		0.7	0.2	1.5		
2W550	TR	npm, DJ,si	Inc	5	200	0.5	30	-	20-80	0.5	-	-	0.1	0.2	1.5	-	
241117	TR	npm, D, si	Anc	5	200	0.5	60	-	10	0.04	-	-	0.7	0.2	1.5		
241115	TR	npm, DJ, si	6 mac	5	200	0.5	60	0	40	1.2	-	-	0.7	0.2	3.0	-	
291173	WE	npm, $, \mathrm{J}, \mathrm{se}$	${ }_{6}^{6 m c}$	-	100	3.33	35	0.2	80	0.001	-	$=$	$\overline{7}$	-	-	-	
ST40	TR		6 fax	50 50	200	0.33	60	3	30	20	-	$=$	0.25	0.5	6		
ST400	TR	npm, DJ, si	6 mc	50	200	0.33	45	3	30	20	-	-	0.25	0.5	5	-	
211174	WE	pnp,AJ,ge	7 mc	-	100	3.33	35	0.2	85	0.005	-	-	-	-	-		
$2 \mathrm{SH55}$	TR	nonojosi	bac	5	200	0.5	60	-	15	12	-	-	0.3	0.15	3.0	25	
27546 2 21052	TR	npn, $0 \mathrm{~J}, \mathrm{si}$	8 mc	5	200	0.5	30	-	15	0.5	-	-	0.3	0.15	2.0	-	
	TR	npa, DJ, ${ }^{\text {i }}$	ima	5	200	. 012	60	500	15	0.001	-	-	-	-	-	-	
$2{ }^{2} 212$	TR	non,0J, 31	10ac	85	200	0.27	60	3000	12.60	1000	-	-	-	-	3.5	-	
21251054 201208	TR	npm, DJ, si	12mc	\%	200	. 017	125	-	20-80	. 0001	-	-	-	-	\%	-	
211208	TR	npm, DJ, si	12 mc	85	200	0.27	60	5	15	1.0	,	-	0.25	-	3	-	
211209 2 L 1250	TR	nmon, DJ, si	12 mc	85	200	0.27	45	5	20	2.0		-	0.25	-	3	-	
	TR	nma, 0 ¢ 51	12 mc	85	200	0.21	45	5	20	2.0	-	-	0.25	-	3	-	
$\begin{aligned} & 2 \mathrm{~N} 1072 \\ & 2 \mathrm{~N} 101 \end{aligned}$	WE	npn,DD,s1 non,A1.se	$\begin{aligned} & 30 \mathrm{mc} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \\ & 0.27 \end{aligned}$	17	3	13 33.	0.1 50	-	-	0.05	0.05	-	-	US, ML anly
RT 497M	RH	nponod, 01	50	3	175	0.0	60	0.5	${ }_{20}^{33 .}$	So	-	-	-	-	-	-	
RTAgem	RH	non,00,si	50	3	175	0.0	100	0.5	20			-	-	=	=	-	Miciobloc T0.46
2W92	FA	men, DP, si	60°	1.8	200	0.01	80	-	30	0.00518	-	-	-	=	-	-	
2N1975	FA	npm, OP, si	600°	3	200	0.017	80	-	30	$0.005{ }^{103}$	-	-	-	-	-	-	
211978	FA	npmopesi	${ }^{600}$	30	200	0.17	40	$=$	40	$0.001 / 10$	-	-	=	=	-	-	-19
231585	FA	npm, DM M,si	600	2	150	0.0016	35	-	30		-	-	-	-	-	-	${ }^{19}$
2N1989	FA	npon, DM, ${ }^{\text {a }}$	60°	2	150	0.001	60	-	40		-	-	-	-		-	
	RH	npn,DD,s1	60	3	175	Q.Q	60	0.5	60	-	-	-	-	-	-	-	Microbloc
	$\begin{gathered} \text { RH } \\ R H \end{gathered}$		60 60	3 5	175	0.0	100	0.5	60 50		-	-	\pm	-	-	-	Miciobloc
RT5230	RH		60	2	175	0.003	${ }_{30} 17$	0.5 0.5	50 50	0.001	$=$	-	-	=	=	:	
2 N 21	FA	mmp, $\mathrm{DPP}^{\text {a }}$, ${ }^{\text {a }}$	10°	1.5	175	0.01	50	-	35	0.044	-	-	-	=	-	-	
211131	FA	pmp,DP, 31	$70^{\circ \mathrm{mc}}$	2	175	13.3	50	-	35	0.01	-	-	0.08	=	-	5	OTTHU, TI, TR
2011987	FA	nmon, 01.81		2	150	0.0016	40	-		-	-	-	-	-			
${ }_{2}^{24.69 \%}$	FA	npn, DP, 3i	$80 / 7$	${ }^{2}$	175	13.3	40	-	40			$\underline{-}$	0.00	0.03	-		SSO, TR, SY, MA, TI.
2469	FA	n@m, DP, si^{1}	$80(1)$		175	13.3	80	-	30	0.01	-	-	0.08	0.05	=	-	SH, TR,'MA, GI, SSO.
21717	FA	nmm, DP sil	800(t)		175	10	80	-	30	0.01		-		-	-		GI. HO, PSI, RH, MA
201719	FA	npon, DP, si	$80(15)$	1.5	175	10	80	-	30	0.01	\pm	-	0.08	$\overline{=}$	=	-	PSI, RM, GI RH,
211252	FA	npn,0Psi	$80(1)$		175	13.3	20	-	35	0.1	-	-	0.08	0.05	-	-	$\begin{aligned} & \text { TR, GI, IND, PSI, TI, } \\ & \text { RH } \end{aligned}$
217190	FA	npn, DP, si	${ }^{80}$	1.8	200	0.01	80	-	45	0.0001,		-	-	-	-	-	
27870	FA	npm, DP, si	${ }^{80}$	1.8	200	0.01	80	-	80	0.0001	-	-	-	-	-	-	${ }^{4} \mathrm{~T}$
241613	FA		${ }_{80}^{80}$	${ }_{3}^{1.8}$	200 200	0.01	80 50	-	70 80	${ }^{0} 0005$		Z	$0 \times$	-	-	-	
210189	FA	nma, DP , $\mathrm{sic}^{\text {a }}$		${ }^{3}$	200	0.017	${ }_{80}$	-	880	0.000		-	0.08	-	-	-	OTRM
2 L 1893	FA	npm, DP, si	80°	3	200	0.017	100	-	80			-	-	-			
201974	FA	non, DP, si	80		200	0.017	180	$=$	70	0.006		Z	-	=	=	$=$	-19
2N1984	FA		80°	1	150	0.0016	83	-	70		-	-	-	-	-	-	-19
211991	FA	MPD.OM, Si	$80{ }^{\circ}$	1	175	0.005	20	$\overline{0}$	45			-	-	-	-	1	${ }^{\circ} 9$
RT482	RH	npm, DD,si	∞	2	175	0.013		0.5	50			-	-	-	-	-	
RT483	RH	nmo, DD,si	80	$?$	175	0.013	40	0.5			-	-	-	-	-	-	
RTAM	RH	nmm, DD, 31	80	2	175	0.013	10	0.5	70	0.0	-	-	-	-	-	-	
RTSSSM	RH	nom, DD, 3	80	3	175	0.12	50	0.5	40	0.008			-	-	-	-	Macoblec

High Level

For an additional copy

(concluded)								
IPharastarisics sminening								Romek
nh	$\begin{aligned} & I_{\infty} \\ & m 0 \end{aligned}$	$\begin{array}{\|c} \begin{array}{c} \text { Pawn } \\ \text { Gain } \\ \infty \end{array} \end{array}$	$\begin{array}{\|c\|} \hline \text { Pomer } \\ \text { Oot } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Rive } \\ \text { Time } \\ \text { usec } \end{array}$	$\begin{array}{\|l\|} \hline \text { Stor } \\ \text { Time } \\ \mu \text { seec } \end{array}$	$\begin{array}{\|c} \hline \text { Sat } \\ \text { Voll } \end{array}$	$\left\|\begin{array}{c} \text { Leaw } \\ \text { Out } \end{array}\right\|$	
40	0.01	-	-	-		-		Micobloc
60	=	-	-	$=$	Z	z	=	
70	=	-	-	-	=	-	:	
70	-	-	-	-	-	-	-	
50 70	0.01 m	=	-	$=$	-	$=$	$=$	${ }_{4}{ }^{4}$
15	-	18	0.00	0.05	-	-	-	TSD, SY, MA, 61 TI, INO, PSI, HO,
65	0.01	-	-	0.08	-	-	-	NA, TR, SSO, GI, PSI, TI, RH
${ }_{80}^{75}$		-	-	0.08	-	-	-	M4. GI, MO, PJI, RH
80 85 80			-	0.08	-	$=$	-	
80 30		-	-	0.11	0.14	0.9	-	
60	0.01	-	-	0.11	0.14	0.9		
130 150	0.000	-	-	O.1.	O.1.	-	-	${ }_{1}$
110	0.0081	-	-	-	-	-	$=$	\% ${ }_{4}$
10	0.001 m	-	-	-	-	-	$=$	का
50 45	0.01	-	-	0.08		-	-	HU. TI, TR
45	0.01	-	-	0.08	0.05	-	-	Tr. Mid, GI, PSI,
${ }_{25}^{130}$	0.01	-	-	-	-	-	-	
138 130	0.0004		$\bar{\square}$	-	-	\square	-	${ }^{\text {9T }}$
130	0.0001	-	-	-	-	-		
150 100	0.01 0.005		=	$=$	-	$=$	$=$	41
110			-	=	-	-		${ }_{4}^{4}$
120	-	-	-	-	-	$=$	=	\%
10 10	0.0003	-	-	-	-			
10 70	0.000	-	-	-	=	-	$=$	Micabloc
70	0.001	-	-	$\overline{-}$		-	-	Wicablox
65	0.01	-	-	-	-	-	-	Wrabloc
${ }_{4} 4$	0.001	-	-	$\bar{\square}$	$\bar{\square}$	-	-	Micrabloc
60	0.1	-	-	0.1	0.0	1.3	-	
40 60	0.1	-	-	0.1	0.15	13	-	
					0.2	13	-	
15	0.000		-	-	$\overline{-}$	-	-	Marobloc 4
$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 10.05 \\ & 0.06 \end{aligned}$	${ }_{10}$	1	0.06 0.002	0.1	0.8	$=$	Poumer gin Fa70mRH
60	10	1	1	0.002	0.11	0.8	-	RH
6.5 50			-	0.0	0.17	-	-	
$\begin{aligned} & 50 \\ & 70 \end{aligned}$	0.0003 0.0003			-		-	Z	${ }_{6} \%_{1} 61$
80 50	0.00029 0.0000		-	-		-	-	
5			-	-	-	-	-	4. Epilaxial
12	${ }_{10}$	Z	-	Z	$=$	-	50	BE. 2M639
${ }_{30}^{12}$	10	$=$	-	-	$=$	=	-	
30	10	-	\square	-	-	-	$=$	
${ }^{0}$	-	-	-	-	-	-	-	
50	-	-	-			:	$=$	

Pe Transistor Data Chart
ard and circle 251.
ELECTRONIC DESIGN • July 5, 1961

stluanla Pailcake tranisitoins

Increased packaging density! Mil-min .100" lead-to-lead spacing!
Now available in - Epitaxial Germanium Mesa - Epitaxial Silicon Mesa
Germanium Alloy-Junction - Germanium Drift-Field
100^{\sim} lead-to-lead apacing for automatic and direct insertion in Mil-atandard 273A printed circuit without reforming leads - mechanically indexed for ponitive and
permanent lead identification- eliminate solder bridging problems. $070^{" \prime}$ max cane height - 255" max. cane diameter - power dixsipation in free air: 300 mw fur Mesa, 100 mw for Alloy and Drift-Field units - max. junction temperature: $100^{\circ} \mathrm{C}$ for Germanium and $175^{\circ} \mathrm{C}$ for Siticon eneet all environmental texts in
accordance with Mil-S-19500R . hermetic seal reliability (leak rate lower than

Sylvania originated the "Pancake" package to provide a practicable solution to a vital engineering challenge-end-product miniaturization with high operational reliability. The tabulation of 15 types is a clear indicator of the industry's acceptance of the "Pancake" package
If you are working with microminiacurization to improve "payload factors" or to enable "redundancy for reliability," call in your Sylvania Sales Engineer now. to help you determine the best device for your specific requirements. He or your Sylvania franchised Semiconductor Distributor can provide you with "Pancake" transistors-fast!' For tech data on specific types, write Semiconductor Division, Sylvania Electric Producta Inc., Dept. 187, Woburn, Mass.

 CIRCLE 58 ON READER-SERVICE CARD

6

Low Level

$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$	M/9.	Type	'a.	Mailmum Ratinga					Charectaristics			Suirching				Romatk
				$\begin{aligned} & w_{c} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{array}{\|l\|} T_{i} \\ (c) \end{array}$		v_{c}	$\begin{aligned} & I_{c} \\ & m a \end{aligned}$	$\begin{aligned} & m_{e} \\ & n_{F E} \end{aligned}$	$\left.\right\|_{c o}$	$\left\lvert\, \begin{aligned} & c_{c o e} \\ & \mu \mu 1 \end{aligned}\right.$	$\begin{aligned} & \text { Rise } \\ & \text { Time } \end{aligned}$	$\begin{aligned} & \text { Stor } \\ & \text { Time } \end{aligned}$	$\begin{array}{\|c\|} \text { sal } \\ \text { voll } \end{array}$	$\begin{aligned} & \text { Leak } \\ & \text { Cul } \end{aligned}$	
21327	CT	$\mathrm{mp}, \mathrm{A}, \mathrm{si}$	02	250	160	3	10	5	,	. 005	70		-		-	
210304	RA	mi FA ,	0.2	250	1150	-	40	50	15	${ }^{5}$	70	-	$=$	-	$=$	SSO
$\underset{\substack{211235}}{2125}$	$\stackrel{\text { RA }}{\text { RA }}$	Mmp.FA, si	0.25	${ }_{250}^{250}$	160 180	St	${ }_{35} 8$	100	${ }_{30}$. 5	${ }_{70}$	-	-	-	-	SSO. MA
2331	CT	mp, N, si	0.3	250	160	3	35	50	28	. 05	0	-	-	-		
21105	RA	mp.FA, si	0.3	250	160		35	50	30	5	0	-	-	-	-	SSD, MA
211006	${ }_{\text {RA }}^{\text {RT }}$	mp.FA, ${ }^{\text {a }}$	0.4	250	160		30	50	${ }^{60}$	5	70	-	$=$			SSD. MA
	CT	pmp.N, ${ }^{\text {a }}$	0.4	250	180	$?$	20	50	11	col	5	-	-			
${ }_{C} 101$	CT CT	mpo	0.4	250 250	${ }_{160}^{160}$	${ }_{2}^{2}$	${ }_{70}^{20}$	50	1	5	50	-	$=$	-	-	
2 N329	cT		0.5	250					co							
${ }_{21329}$	RA	mmo.fi,si	0.5	385	160	-	30	50	60	005	0	-	=	5	-	
$2 \mathrm{mmos7}$	GE	mmonj.se	0.5	240	100	1	15	300	is	300	10	-		0.08	58	
	${ }_{\text {PH }}$		0.7		200	5.0	${ }_{4} 3$	200	15	100	70	-	=	$\overline{0.3}$		RA
$2 \mathrm{m670}$	PH	DNO, AJ, Pe	0.7	300	25	5.0	40	23	200			-		0.3		Puls
${ }_{21123}^{2124}$	$\begin{gathered} \text { Hu } \\ \text { HU } \end{gathered}$	m	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	400 100	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	${ }^{3}$	110	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 21 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\left\lvert\, \begin{aligned} & 95 \\ & 95 \end{aligned}\right.$	-		-		TO.SP
2 Ll 164	CT		0.8	250	160	2	10	50	15	001		-				
clie	CT	mp,a],sı	0.8	250	160	2	15	50	15		50	-		-		
CSM	CT	DnP, A, si	0.8	250	160	2	8	50	12	. 2	50					
243274	HU	mp,N,si	1.0	385	160	3	50	100	14	10	95	-	-	-	-	RA. SSO
21238284	HU	mpajs	1.0	${ }^{385}$	1150		50	100	25	10	${ }_{9}^{95}$	-				wT. RA SSO, Ja
$2{ }_{23393}$	$\xrightarrow{\text { RUCA }}$	pnp, $\mathrm{A}, 1,31$	1.0	${ }^{385}$	160	3	50	100	50	10	9	-				WT. RA SSO. MA
$\xrightarrow{2131053}$	$\begin{array}{\|l\|l\|} \hline \text { RCA } \\ G E \end{array}$	mpp.A.se	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 200 \\ 200 \end{gathered}$	105	4	30 50	300	25	${ }_{25}^{16}$	$\stackrel{\square}{0}$	-	-	0.09		BE, us. MO
21067	PH	monen, se	1.1	300		5.0							-			neon in
	HU	DM,A, A, S	1.2	400	100		15	100	20	10	95	-	-			
${ }^{211229}$	HU	pmo, $\mathrm{N}, 8$	12	400	160		15	100	36	10	95	-		-	-	MT.ma
2 L 1230	HU	map,	12	250	200	-	35	500	14	50	100					MA
2 L 1231	HU	mp.FJ, Sl^{1}	1.2	250	200	-	35	500	24	50	100					WT. MA
2 L 123	Hu	mop.ff	12	250	200	-	65	500	14	50	100	-	-	-	-	wT. ma
2 m	HU	mpo.f.,	${ }^{12}$	250 250	200 200	-	110	500 500	24	50	100	$=$		-		MT. MA
$2 \mathrm{2N}$	HU		1.2	$\underset{1}{250}$	200 160	1.4	110	200	${ }_{20}^{14}$			-				${ }_{\text {WTM Ma }}^{\text {coxal }}$
211239	Hu	mp, 1 , s_{1}	12	1*	160	7.4	15	200	36	10	95	-				Coxizal
211239	HU	m			100	-	15	-	28.65		-	-				
	H	mom	12	1000	150	7.4	35	200	,	10	95	-				Coaxal package
201241 201221	$\begin{array}{\|l\|l} \mathrm{Hu} \\ \mathrm{HU} \end{array}$		12	1000	$1 \begin{aligned} & 160 \\ & 180\end{aligned}$	7.14	${ }_{65}^{35}$	${ }_{200}^{200}$	${ }_{20}^{36}$	10	${ }_{95}^{95}$	-				
2 N 12	HU	m, ${ }^{\text {m,sis }}$	1.2	\%	160	7.1	${ }_{65}$	200	36	10	9	$=$				coaxial pachage Coaial pachage
2 N	CT	mo.n.								005						
	$\begin{aligned} & \mathrm{CT} \\ & \mathrm{CT} \end{aligned}$	mpen. ${ }^{\text {and }}$	12	250	1160	${ }^{2}$	10	50	23			-		-	-	eld
2 K	$\begin{aligned} & \mathrm{Cr} \\ & \mathrm{SY} \end{aligned}$	mpp.A.si ${ }_{\text {and }}$	1.5	250 100	1100	${ }_{1}^{1.65}$	10	${ }_{20} 20$	50	50 15	50	15	,			, 10
$2 \mathrm{NS5}$	ino		1.5	150	${ }_{5}$	2.5	15	200	25	15	14				So	Us, KF
	IND	mp.N.	1.5	150		2.5	25	200	25		10		0.1		35	US
B1ISAA	$\left.\right\|_{\text {\| }} ^{8 E}$	Onp.A. ${ }^{\text {and }}$	1.5	100	100	. 15	50		-	10		1.5		$\begin{aligned} & 25 \\ & 28 \end{aligned}$	$=$	
${ }^{2133294}$	sso	mmp.fA,si	2	385	160	2.85	40	50	14		π					
215336	PH	DTP.A.E	2.0	50	${ }_{*}$	0.18	20	30		4.0	-	-		0.07	150	
${ }_{211125}^{21069}$		non, A. ge	?	150 300		2.5	20	220	-	25	-	5	5	0.3	20	
211125 211220	$\begin{array}{\|l\|l\|} \hline \text { PS } \\ \text { SSO } \end{array}$	mp.AJ.ge	${ }_{2}^{2}$	300 150	${ }_{1}^{150}$	5.2	25	250						0.15	50	
21123	550	mpon, 31	2	150	150	1.2	10		6	0.1	-	-			$\underline{\square}$	
211146	Imo	mponse	2	200	${ }_{5}$	3.33	45	400	30	5	-	-			-	
	$\begin{aligned} & \text { AMP } \\ & \text { AMP } \end{aligned}$	DMP.PADT		550		-		600		10						
2 NB 17	RA		${ }_{2.5}^{2.5}$	100	${ }_{6}$	1.6	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	100		10		0.7	-	$=$	0.5	
23618	Ra	npm, A, se	2.5	75	${ }_{5} 5$	1.25	30	400	20	10	20					
2×356	5	apm, AJ, $\mathrm{se}^{\text {e }}$	3	100	${ }_{4}{ }^{\text {a }}$	1.6	20	500	-	25	-	1.0	0.3	0.6	-	G1
	$\left\lvert\, \begin{aligned} & G 1 \\ & G F \end{aligned}\right.$	Mo	3	150	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	500	${ }^{60}$	3	14	1.5	0.3	0.18	35	Sr
2 m 201	${ }_{\text {RA }}$	Mo, Aj se	3	150		${ }^{2} 2$		400	20 man		20		Z		=	
212808	Ra	mp.al	3	${ }^{5}$	${ }^{65}$	1.25	30	40	30	4	20	$=$	-			Submin
21147	IMO	omp.AJ. $\mathrm{ce}^{\text {e }}$	3	200	Es	3.33	45	400	45	5						
	$\begin{array}{\|l\|l\|} \text { ino } \end{array}$	Mon, A.pe	3.5	200	${ }_{10}{ }^{\text {® }}$	$3,33$	15	200	70	2.5	12	. 6	4	0.1		
2 m 00 A	RCA	mpadis	,	150				150								
2 M 25	SY	pRo.AJ. GE	1	150	85	2.5	20	400		2.0	14	1.0	0.3	0.2	30	RA, inots, us KF. GI
${ }^{2 \times 12000}$	$\begin{aligned} & R M \\ & R A \end{aligned}$	Pnop,AJ, ge			${ }_{85}^{80}$	$\begin{aligned} & 1.25 \\ & 125 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\left\|\begin{array}{c} 150 \\ 100 \end{array}\right\|$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	5	20	-	$=$	-	-	
2 Llig 7	50			150			15	100						=		
2 N 1028	SSO	mpp.A, 31	1	150	150	,	10	100	9	25				0.15		

Low Level (continued)

Type Mo.	Mfg.	Typo	4.	Maximum Ratings					Characteriatice			Smisching				Romerks
				$\begin{gathered} w_{c} \\ (m w) \end{gathered}$	T_{i} (c)	mwic	v_{c}	$\begin{aligned} & 1_{c} \\ & m a s \end{aligned}$	$\begin{aligned} & \mathrm{h}_{\text {fe }} \\ & \mathrm{h}_{\mathrm{FE}} \end{aligned}$	$\begin{aligned} & I_{\mathrm{CO}} \\ & \mu_{0} \end{aligned}$	$\left\|\begin{array}{c} C_{\cos } \\ \mu \mu \mathrm{I} \end{array}\right\|$	Rise Time	$\begin{aligned} & \text { Stor } \\ & \text { Tine } \end{aligned}$	$\begin{aligned} & \text { Sat } \\ & \text { Volt } \end{aligned}$	$\begin{array}{\|l\|l} \text { Leak } \\ \mathrm{CuI} \end{array}$	
2N1448	IND	pmp, \mathbf{N}, se	1	200	${ }^{6}$	3.33	45	100	65	5		-	-	-	-	
2N1605A	SY	npn,AJ, ge	1	200	100	2.6	40	200	40	10	20	-	-	-	-	
2N17E0	SY	mpn,A,ge	1	100	100	1.3	25	100	30-110	10	20	-	-	-	-	
$2 \mathrm{M1781}$	SY	$\mathrm{npm}, \mathrm{A}, \mathrm{ge}$	1	100	100	1.3	25	100	40	5	20	-	-	-	-	
2N2000	TI	MMD, ${ }^{\text {N,fe }}$	1	300	100	4	50	750		8	30	-	-	-	-	
CK25	RA	Pmp, FA,ge	15	80	\%	-	20	400	-	2	14	0.5	0.3	0.25	30	
21395	GE	mp, Asge	4.5	200	100	3.3	15	200	\square	6	12	0.55	0.5	0.1	20	TI, KF
2N520	IND	map,AS, ge	4.5	150	0	2.5	15	200	40	1	14	-	0.5	0.1		US
2N520A	IND	pmp,AJ.ge	4.5	150	\%	2.5	25	200	100	1	14	0.9	0.7	-	75	us
2N1308	TI	npn,A〕,ge	4.5	150	85	2.5	25	300	,	5	11	. 70	. 50	Iv	7	TO-S, SY, GI
2 21303	TI	Mnp,AJ.ge	4.5	150	85	2.5	30	300	-	3	16	. 40	90	Iv	-	GI, MF
2N1354	IND	pnp,A, A,ge	4.5	200	85	3.33	30	200	70	2.5	12	. 55	. 5	0.1	-	GI, KF
2N1169	SY	mpn,AS.se	4.5	120	¢	2	25	400	20	50	20	. 5	\because	-	-	RCA
2N1170	SY	¢pn, A. $\mathrm{ge}^{\text {c }}$	4.5	120	${ }^{5}$	2	25	400	20	50	20	-	-	$\stackrel{\rightharpoonup}{7}$	-	RCA
2M123	SY	mnp.AJ.ge	5	100	85	1.65	15	125	30-150	0.6		-	-	$\begin{aligned} & 9.2 \\ & r_{\text {max }} \end{aligned}$	-	
2 K 315	GI	pmp.A.se	5	100	\pm	2	20	500	-	1	14	1.0	0.2	0.12	20	KF, IND, US
2N315A	GI	Dnp, AJ, ge	5	150	100	2	30	500	3	1	14	0.9	0.4	0.12	35	WD, US, KF
2 B 396 A	SY	Mmp, N, ge	5	150	100	?	30	200	30-150	6	-	-	.	-	-	TS,MF,GE,GI
2M14	SY	Omp,AJ.ge	5	150	85	2.5	30	200	30-90	5	-	-	-	-	-	KF, GI
2M439	SY	npn, AJ, ge	5	100	85	1.66	20	-	-	10	-	0.5	0.1	0.25	30	
2M150	GE	PMp, N, ge	5	150	15	2.5	12	125	-	6	20	-	-	0.2	30	
21576	SY	npm,AJ.ge	5	200	100	2.6	20	400	\checkmark	20	-	2	1	0.4	40	
2N578	RCA	pmp,AJ.te	5	120	n	-	20	400	15	3	-	0.85	0.33	0.2	15	TS,IND,US,KF,GI
2 E 85	RCA	npm,AJ.ge	5	120	71	-	25	200	40	3	$\bar{\square}$	0.35	0.25	0.1	40	SY, GI
2W658	RA	DMO, FA,ge	5	150	68	-	16	la	-	2.5	12	-	.	0.25	50	
2 NOO 3	RA	Dnp, Al, ge	5	75	\%	1.25	30	400	40	4	20	-	-	-	-	Submin
2 N 004	RA	pro, Ad, pe	5	75	85	1.25	30	400	40	4	20	-	-	-	-	Subinis
2N815	RA	npm,AJ.ge	5	75	85	1.25	25	200	60	10	20	-	-	-	-	Submin
$2 \mathrm{~N} 1{ }^{2} 16$	RA	nom, N, ge	5	15	85	1.25	25	200	60	10	20	-	-	-	-	Submin
2 M 19	RA	npm,A..ge	5	75	05	1.25	30	400	30	10	20	-	-	-	-	Sitomin
2N8O	RA	npm,A.ge	5	75	\%	1.25	30	400	30	10	20	-	-	-	-	Submis
2M25	RA	pnp, A.ge	5	75	${ }_{5}$	125	30	200	30	6	20	-	-	-	-	Sutam
2M26	RA	Onp, N, ge	5	15	85	1.25	30	200	30	6	20	-	-	-	-	
2N1012	GI	npn, N , pe	5	150	100	?	40	-		5	10	0.1	0.1	0.1	50	
2N1123	PH	PAD, Anse	5	150	100	10	45	500	3.5	10	15	-	-	0.005	70	
2N1219	SSD	pno.AJ, si	5	250	175	1.1	25	100	-	001	15	-	-	-	-	
2N1318	IND	pnp,A」, ge	5	200	25	3.33	40	400	98	5	12	-	-	-	$=$	
2N1449	IND	mp,A, ge	5	200	${ }^{5}$	3.33	45	400	80	5	$\underline{-}$	-	-	-	-	
2N1990	TI	npm,A, es	5	150	15	2.5	30	300	-	5	11	1.1	1.5	-	-	
GT1658	GI	npo, $A \mathrm{~J}, \mathrm{ge}$	5	150	100	2	30	300	50	3	10	1.1	1.5	-	-	
KCS 1005	KF	pmo, AJ, ge	5	200	\%	5.2	30	400	40	12	-	-		-		
2 N 271	SV	non,AJ.ee	6	150	100	2	20	200	0	10	-	2.5	0.7	$\bar{\square}$	40	GE, GI
2 N 357	SY	nom, A, ge	6	100	18	1.6	15	500	-	25	-	12	. 7	. 20	1	
21357 A	GI	npo,N, ge	6	150	100	2	30	500	90	3	14	0.5	0.5	0.18	40	${ }_{5} \mathrm{SY}$
2M26	SY	mp.AJ, ${ }^{\text {ce }}$	6	150	\%	2.5	20	400	-	2	14	1.0	0.3	0.22	0	RA,TR,TS,GI,US. TI, KF
2N799	RA	npm,08,si	6	-	-	1.4	45	25	15	.008	5	-	-	-		
2 NGO	RA	npn,D8.si	6	-	$\stackrel{\rightharpoonup}{1}$	-	45	25	15	.002	5	-	-	-	-	
2N1319	RCA	pap.N.ge	6	120	71	-	20	400	30	2.5		20	-	-	=	
2N1343	IND	mop.A, ie	6	150	85	2.5	20	400	40	3	12	1.0	-	-	-	
2N1997	TI	non,A,se	6	250	100	3.3	45	-		15	12	1.0	-	-	-	
CK26	RA	map.FA,ge	6	80	\%	-	18	400	-	2	14	0.5	0.3	0.25	40	
2N100	SY	npn,AJ.se	7	150	100	2	40	-	25(min)	15	1	-	-	0.25	0	
2N1090	RCA	npn,AJ, ze	7	120	05	-	25	400	50	4	-	0.25	0.20	-	50	GI
2N1114	SY	nom,AJ.ge	7	150	100	2	15	200		30	-		-	-	80	-
2N198	TI	npn,AJ.se	7	150	\% 15	2.5	25	300	-	5	11	-	-	-	0	
CT123	GI	map.AJ.ge	,	150	150	2	25	I	40	3	15	0.9	0.5	0.1	90	
2N123	GE	pap,AJ,ge	8	150	0	2.5	15	125	0.981	6	15	0.45	0.90	0.15	\pm	SY
21388	GI	non,AJ.se	8	150	100	2	25	500	-	5	10	0.6	0.4	-	120	SY, GE, RA
2N396	GE	pnp,AJ.se	8	200	100	3.3	20	200	-	6	12	0.4	0.6	0.08	30	TI,GI,SY, TS
219376A	SY	npn,AJ,ge	8	200	100	2.6	40	400	-	40	12	2	0.6	0.4	40	-1,olst,is
2 2N579	RCA	pro.AJ,ge	8	120	11	-	20	400	30	3	$\overline{-}$	0.36	0.33	0.2	30	
2N581	RCA	Dnp.AJ.se	8	150	85	-	18	100	30	3	12	0.20	8.20	0.35	30	US, IMO,GI,KF
2N553	RCA	pap,AJ, ee	8	120	85	-	18	100	30	3	12	0.2	0.20	0.35	30	
2N598	PH	prip.AJ.ge	8	250	100	3.3	35	500	-	3	15	0.2	-	0.085	8	
2N6E2	RA	pmp.FA.ge	8	150	8	-	11	12	-	2.5	12	-	-	0.25	co	KF
2N714	RCA	pmp, AJ,ge	8	150	85	\square	30	200	60	2	11	-	-	-	-	
2N790	RA	npn, DB, si	8	-	-	1.4	45	25	30	002	8	-	-	-	-	
2N792	RA	npm, DB, ${ }^{\text {a }}$	8	-	-	1.1	45	25	60	. 000	5	-	-	-	-	
2NS03	RA	npn,DB,sı	8	-	-		45	25	30	. 090	20	-	-	-	-	
2NS05	RA	non,OB,si	8	-	-		45	25	80	. 000	20	-	-	-	-	
2N1280	IND	pnp,AJ.ge	8	200	85	3.33	16	400	60	5	10	10				
2N1284	IMD	pmp,AJ, ge	8	150	85	2.5	20	400	90	2	15	. 45	. 9	15	$\underline{\square}$	
2N1304	TI	mpn,A,ge	8	150	6	2.5	25	300	110	5	If	. 45	. 50	Iv	-	TO-S,GI,SY,GE

UNVARYING HIIHH-OUALITY PERFORMANGE

AT $120^{\circ} \mathrm{C}$, minnerime (5) =- =-

> Complete technical information is available from you Motorola district office: Motorola distributor: or write to tion Department. 5005 East McDoweli Road. Phoenix 10 Arizona.
> motorola distaict offices
> Chicago Chiton. N D Dallas $\begin{array}{ll}\text { Oarton Detroit } \\ \text { Silver Spring. Md. } & \text { Glenside. Pa. } \\ \text { Syracuse }\end{array}$ Hollywood Minneapolis Orlando. Fla

The parameter distribution shown in these 1000 hour $100^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$ storage life tests exhibits a high degree of stability ... the key to product cliability and dependability in your circuits Even after extended life testing at an elevated emperature of $120^{\circ} \mathrm{C}\left(20^{\circ} \mathrm{C}\right.$ above the suggested maximum rating). these units continue to exhibit tight distribution within originally stated limits positive assurance of unvarying high-quality performance of Motorola power transistors.

This data. taken on random samples of produc ion lots of Motorola 2N174 transistors, is typical of the 100\% lot life-tests conducten on all Motorola power transistors. When you use Motorola power transistors you know you are obtaining outstanding product reliability.

EVEN AT $20^{\circ} \mathrm{C}$ ABOVE T_{J} MAX.

MOTOROLA POWER TRANSISTORS

MOTOROLA IS YOUR MOST COMPLETE POWER TRANSISTOR SOURCE

You'll find a standard power transistor that meets you specific design requirements from the wide selection of field-proven devices available from Motorola.

T0-36 "Doorknob" Package. 15 types in "low silhouette" case 150 watts power dissipation: $0.5^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal resistance: $100^{\circ} \mathrm{C}$ maximum junction temperature: 15 amps: 2 to 1 gain spread and voltage combinations to 100 volts; 3 Mil-type units.
T0.3 "Diamond" Package. 118 types in "low silhouette" case 90 watts power dissipation: $0.8^{\circ} \mathrm{C} / \mathrm{W}$ maximum thermal resistance: $100^{\circ} \mathrm{C}$ maximum junction temperature; 3. 5 . 10. 15 and 25 amps: narrow pain spread and voltage

4
MOTOROLA
Somiconductor Products Inc.

TRANSISTORS-1961
Low Level

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	MFs.	Trpe	'so	Maximen Ratings				
				$\begin{gathered} w_{c} \\ \left(\mathrm{~m}_{\mathrm{w}}\right) \end{gathered}$	T_{i} (c)	w/c	v_{c}	${ }_{\text {I }}^{\text {c }}$
211305	11	mp, N	1	150	¢	2.5	30	300
2 L 347	IND m	mpan	8	150	8	2.5	20	200
2N1350	IND	mom, N, se	B	200	85	3.33	50	0
201351	Ind a	pen,AJ,	1	200	85	3.33	10	400
2N1355	IMO	mon, Nige	8	200	${ }^{6}$	3.33	30	200
2N1356	IND	mp,N, $\mathrm{m}^{\text {a }}$	1	200	100	2.66	30	200
2N16\%	SY	qpm, $\mathrm{N}_{\text {de }}$	8	100	100	1.3	25	200
212001	TI	mp, AJ,	B	300	100	1	30	150
2 L 167	GE	mon. 6 J.	9	${ }^{6}$	5	1.1	30	5
21358	GI	non, N, s	9	100	¢	2	20	500
273580	SY	apmAdso	9	150	100	2	30	500
21090	CE	Mp, AJ,	9	150	65	2.5	10	200
2 meg	PA	npm, Ni, en	9	75	6	125	25	100
2N1190	GE	mpo,RG, ${ }_{\text {a }}$	9	6	¢	1.1	25	5
OC141	AMP	пpm,Padt.	9	100	5	-	20	250
2 mmo	SY	mpa, AJ,	10	100	4	1.66	15	
20510	GE	mp,A,	10	150		2.5	12	125
2 L 521	IND	[mp, A1, ge	10	150		2.5	15	200
2 T 521 A	IMD		10	150	8	2.5	25	200
2N600	PH	mon, AJse	10	730	100	10	35	500
2w6ss	RA	Ma.FA.Ex	10	150	${ }^{\mathbf{5}}$	-	14	5
21775	RA	npen, M6, si	10	150	15	0.7	45	50
2 mes	RA		10	75	5	1.25	30	100
2M005	RA	PMP, N,	10	75	4	1.25	30	100
2N21	RA	¢padse	10	75	85	1.25	30	100
2 MOP	RA	mpo,N, se	10	75	¢	1.25	30	100
211281	110		10	200	E	3.33	16	100
201349	190	Pm, A1,	10	200	${ }^{5}$	3.33	40	400
211998	II	apon, N, le	10	150	\%	2.5	29	300
2 L 198	11	mp,N, ${ }^{\text {co }}$	10	250	100	3.3	35	100
2 W 27	GI	mpan, ${ }^{\text {ces }}$	11	150	100	2	30	
2 7 791	RA	am, OB, si	11	-	-	1.4	45	25
$2 \mathrm{NsO4}$	RA		11	-	-		15	25
C197	RA	pap, FA, ${ }^{\text {a }}$	11	∞	\%	-	15	100
2 3 16	GI	mpp, N, ge	12	100	85	2	20	500
223164	61	pmp,AJ.ge	12	150	100	2	30	500
23037	GE	Pap, AJ.ge	12	200	100	3.3	15	200
2 4 404	RCA	Pap, N, pe	12	120	8	-	25	100
$2 \mathrm{mb35}$	GE	npo, AJ, $\mathrm{m}_{\text {ce }}$	12	150	区	2.5	20	300
2×1300	II	np, A A	12	150	85	2.5	25	300
2 N 1307	II	mpp,A,ge	12	150	85	2.5	30	300
$2 N 1313$	IMD	pmp, A, ce	12	15	${ }^{\circ}$		30	400
$2 \mathrm{N1344}$	IMD	pap, AJ,	12	150	${ }^{8} 5$	2.5	15	40
$2 N 1345$	IMD	pmp, N, , ${ }^{\text {ce }}$	12	150	${ }^{5}$	2.5	10	10
201346	IND	pmp,A, ise	12	150	85	2.5	12	
211357	INO	mpo, A, se	12	200	${ }_{5}^{5}$	3.33	30	20
21269	RCA	pmp,A].ge	13	120	85	1	25	100
24798	RA	mpn, DB, 51	13	-	-	1.4	45	${ }_{2} 2$
2NSO6	RA	npm, 08, si	13				45	2
2 L 1091	RCA	mon, , ese	13	120	85		25	
2NSE	SY	pnp,AJ, ge	14	120	π	2.6	25	a
$2 \mathrm{NB07}$	RA	pmp,AJ, $\mathrm{pe}^{\text {e }}$	14	5	あ	1.25	25	10
2N800	RA	pmp,AJ, ¢	14	15	${ }_{6}$	1.25	25	10
2 N 58	PH	DPD.SP.si	14	150	140	1.3	40	
2N859	PH	pmp.SP,si	14	150	140	1.3	40	
2N860	PH	Pmp,SA, SI	14	150	140	1.3	25	
2 Mess	PH	DnD.SP, 31	14	150	140	1.3	15	
215580	RCA	pmp, Al.ge	15	120	7	-	20	40
$2 \mathrm{NG36A}$	SY	mpa, AJ, ge	15	150	100	2	25	30
2N660	RA	$\mathrm{pmp}, \mathrm{FA}, 8 \mathrm{c}$	15	150	*	-	11	
2N129	IND	pro, AJ, ge	15	200	\%	3.33	16	40
2N1316	IND	pnp,AJ.se	15	200	5	3.33	30	40
2 N 1317	IND	pmp,AJ,ge	15	200	15	3.33	20	
2N1310	IMD	mp, AJ, ge	15	200	05	3.33	10	
2N1999	TI	pmp, A, ge	15	250	100	3.33	30	
$2 \mathrm{NS59}$	PH	$\mathrm{pmp}, \mathrm{AL}, \mathrm{ge}$	16	250	100	03.3	30	50
2 NGOL	PH	$\mathrm{pmp}, \mathrm{AJ}, \mathrm{pe}$	16	750	100	10.0		
$2 \mathrm{Na28}$	GI	pmp,N, $\mathrm{ge}^{\text {e }}$	17	150	100		30	
2N636	GE	npn, AJ, ge	17	150	8	2.5	20	
CK28	RA	Pnp.FA.ge	17	80	\&	-	12	40
2 N 522	IMD	pnp.AJ, ge	18	150	85	2.5	15	2
2 2552A	1 ma	Pmp, AJ, ge	18	150	*	2.5	25	2
2N582	RCA	Dro.AJ,ge	11	120	d	-	25	1
2N584	RCA	Pmp,AJ,ge	18	120	85	15	5	1

SILICON AND GERMANIUM DIODES AND TRANSISTORS - SILICON RECTIFIERS - CIRCUIT-PAKS
 ORLANDO, FLA, GArden 3.0518- PHILADELPHIA PA. Maddontield M 1), MAzet 8.1272- SAN FRANCISCO, CAL (Redwood City), EMerson 9.5566 - SYRACUSE. N Y howard 3.9141 - CANADA Waterloo. Ont. SWerwood 5.6831 - GOVERNMENT RELATIONS: Washington. D.C., MEtropolitan 8.5205 CIRCIE 60 ON READER-SERVICE CARD

DETE CHERT
(continued)

ELECTRONIC DESIGN • July 5, 1961

higher temperature high vacuum oven

perature operate, migh vacuum bake oven. rn $1 \times 10^{-6} \mathrm{~mm} \mathrm{H}$
The 0.8 achieves temperature uniformity of 3° at 0 to $800^{\circ} \mathrm{C}$ and is the low cost oven that functions perfectly temperatures above $250^{\circ} \mathrm{C}$ and pressures on the 6 th scale without custom modification.
Tri Metal's new oven not only saves you money at pur chase time, it is also extremely economical to operate and easy to maintain
No water-cooling of the door is required. Accepts bench or dry box mounting.
Tri metal Works has been engaged in the custom tabricafion of high vacuum components and equipment for leading manufacturers and users since 1946. You are invited to see a demonstration of 0.8 in our plant laboratory. Call or wite for appointment.
higher temperatures
UD to 800 C .
BETTER UNIFORMITY
Plus or minus 3 C.
LESS MAINTENANCE
Low.Cost. Neoprene " 0 " ring gaskets
guaranteed one year
FASTER HEAT UP
$500^{\circ} \mathrm{C}$ in 23 minutes.
CLOSER CONTROL
I C Thermocouple INSIDE the work zone.
HIGHER VACUUM
1×10.4 Torr $=(\mathrm{mm} \mathrm{Hg}) @ 500 \mathrm{C}$
COOLER EXTERIOR
All surfaces cool to the touch

TRI METAL WORKS INC.

 or phone $893-2000$.

TRANSIETORS-1961

	Abbreviation of Terms
AJ	Alloy Junction
DD	Double Diffused
DG	Grown Diffused
DJ	Diffused Junction
DM	Diffused Mesa
DP	Diffused Planar
Dr	Dift
Ep	Epitaxial
FA	Fused Alloy
FJ	Fused Junction
GD	Grown Diffused
Ge	Germanium
GJ	Grown Junction
GR	Grown Rate

For an additional copy of the Transistor Data Cha"t turn
phe Reader-Seruce Card and circle 251.

DATA CHERT

Low Level（continued）

Typo Ne．	Mfg．	Type	Moximum Ratings						Charsectoristics			Swirching				Pamede
			fa	$\begin{gathered} W_{c} \\ (\mathrm{mw}) \end{gathered}$	T_{j} （c）	mw／c	V_{c}	$\begin{array}{\|c} \hline \mathrm{c}_{\mathrm{c}} \\ \mathrm{ma} \end{array}$	$\begin{aligned} & h_{f e} \\ & h_{F E} \end{aligned}$	$\begin{aligned} & T_{C O} \\ & \mu_{0} \end{aligned}$	$\begin{aligned} & C_{c o e} \\ & \mu \mu \mathrm{t} \end{aligned}$	$\begin{aligned} & \text { Rise } \\ & \text { Time } \end{aligned}$	Stor Time	$\begin{array}{\|l\|l} \text { Sat } \\ \text { Volt } \end{array}$	$\begin{array}{\|l\|} \text { Leazt } \\ \text { Cur } \end{array}$	
$2 \mathrm{2N1300}$	TI	npn，A，，ge	18	150	8	2.5	25	300	200	5	15	－	－	－	－	TO－S，SY，GE
2N1309	T1	pmp，A，ge	18	150	5	2.5	30	300	210	3	11	－	－			T0－5，KF，GI
2 2317	GI	pmp，AJ．ge	20	100	85	？	30	500	－	1	14	0.3	0.4	0.18	30	US，IMD，KF
$2 \mathrm{2N317A}$	GI	Pnp，A，ge	20	150	100	2	30	500	180	1	14	0.3	0.4	0.18	40	IMD，US，KF
20337	TI	npm，CD，si	20	125	150	． 001	15	20	19	1	－	0.05	0.02	1.5	35	TR，RA，GE
2 M 17	Ind	mp，AJ，ge	20	200	85	3	30	200	140	25	12	－	－	$-$	－	KF
20661	RA	Pnp，FA．ge	20	150	85	－ 7	9	1a	－	2.5	12	－	－	0.25	120	KF
2 29746	RA	npa，MS，${ }^{\text {si }}$	20	150	175	0.75	45	50	45	10	3	－	－	0.25		
2 L 1008	BE	pmp，N，re	20	400	85	6.6	20	300	100	10	－	－	－	0.25	－	
2 T 1008 A	BE	mp，AJ，ge	20	400	85	6.6	40	300	100	10	－	－	－	0.25	－	
2M10088	㫙	pnp，AJ．ge	20	400	85	6.6	60	300	100	10	－	－	－	0.25	－	
2 L 1017	RA	mpp，FA，ge	20	150	8	－	10	400	－	2	12	0.25	－	0.25	100	US，KF
CX419	RA	npo，FA si	20	385	160	－	40	50	15	005	35	0.25	－	0.2	100	US，KF
CMM20	RA	npn，FA．si	20	385	160	－	35	50	30	． 005	－	－	－	－	－	
CK421	RA	npn，FA，si	20	385	160	－	30	50	60	． 05	20	－	－	－	－	
CKM74	ra	non，08，si	20	250	180	1.9	40	50	15	． 005	20	－	－	－		
CX475	RA	npm，08，si	20	250	180	1.9	35	50	30	． 005	20	－	－	－	$=$	
CK476	RA	npm．08，st	20	250	180	1.9	30	50	60	． 005	20	－	－	5	－	
CK477	RA	npn，OB，si	20	250	180	1.9	30	50	65	． 005	20	－	－	－	－	
2M861	PH	pnp，SP，si	22	150	110	1.3	25	50	65	0.1	5					
24863	PH PH	mpo，Sp，si	22	150	140	1.3	15	50	65	1	5	－	－	－	－	
20854	PH	Dmp．SP．si	22	150	140	1.3	6	50	65	1	－	－	－	－	－	
${ }_{2}^{2 N 523}$	IND	mop，A，ge	24	150	成	2.5	15	200	200	1	11	－	－	－	－	US．KF
	IMO	pmp，A〕．ge	24	150	65	2.5	20	200	300	1	14	0.1	0.4	－	200	US，KF
2 2747	RA	npm，MS，si	25	150	175	0.75	25	50	30	10	－	－	－	－	－	
$2 \mathrm{W748}$	RA	nen，MS，si	25	150	175	0.75	30	50	10	6	－	－	－	－	－	
2N1386	RA	npo，MEs，si	25	300	175	0.5	25	50	30	10	6	－	－	－	－	
2N1387	RA	npa，M6，si	25	300	175	0.5	30	50	20	10	6	－	－	－	－	
${ }^{2 N 1205}$	TR	npm，GR，si	21	150	150	－	20	－	6	50	3.0	－	－	－	30	
21338	TI	npm，GD，si	30	125	150	001	45	20	39	1	－	06	0	1.5	15	TR，RA，MA，GE
2N643	RCA	Dmp．DR．se	30°	120	71	－	30	100	45	3	2	0.03	0.005	－	45	＂gan－Danowioth
2N907	RA	npm，DB，sı	30	\bigcirc	－	－	45	25	35	002	20		－	－	－	
KCSI004	KF	pmp．A．ge	32	200	85	3	10	400	120	12	－	－		－	－	
2NH2	TR	npm，GJ， 81	4	300	175	－	45	25	20	0.1	－	－	－	－	－	
TMT812	TR	npm，DJ，sı	41	150	173	－	45	25	20	1	6	－	－	－	－	
$2 \mathrm{CsO88}$	RA	non，DB，31	45	－	－	－	45	25	75	002	20			－		
2NGA	RCA	pnp．DR．ge	50°	120	71	－	30	100	45	3	－	0.015	0.009	－	45	－gain bandmiatm product
573030	TR	npon， DJ, si	50	100	150	0.8	15	5	－	50	4	． 04	07	10	－	
2N865	PH	pnp，SP，si	52	150	140	1.3	10	50	：50	． 1	5	－	－	－	－	
2 L 1254	HU	Dnp．MS．si	55	250	100	1.8	15	－	25	30	8	－	015	015	0.28	T0－5 package
$2 N 1256$ 2N1258	HU	pmp．10，si	55	250	100	1.8	30	－	25	30	\bigcirc	－	－		－	T0－5 package
$2 N 1258$ 201779	HU	pmo．MS，si	55	250	160	1.8	50	$\overline{-}$	25	30	8	－	－	－	－	T0．5 package
2 L 1779	SY	npm， N, ge	60	100	100	1.3	25	100	25	10	10	－	－	－	－	，
2N803	TR	npo，DJ， sl_{1}	64	300	175	－	45	25	40	1	－	－	－	－	－	
TMT843	TR	npm． DJ .81	64	150	$1 / 5$	－	15	25	40	1	6	－	－	－	－	
20560	WE	npn，DD，si	70	600	150	． 25	60	100	20	． 1	8	． 06	． 05		－	US，MIL Lonly，MA
2N615	RCA	mp，Drise	70	120	\％	－	30	100	45	，	2	0.01	0.002	－	45	－gain bandwiclin
$0 C 46$	AMF	Dnp．PADT，ge	73	83	π	－	20	125	＜ 80	＜	－	－	－	－	－	product
OC139	AMP	npn，PADT．ge	73.5	100	75	－	20	250	15	0.8	－	－	－	－	－	
OC140	AMP	npm，PADT．ge	74.5	100	15	－	20	250	75	0.8	－	－	－	－	＝	
2 L 1255	H\％	DMP．MS，SI	75	250	160	1.8	15	－	55	30	8	－	－	－	－	T0－5 Package
2 N 1257	MU	pnp．u5， 31	75	250	160	1.8	30	－	55	30	8	－	－	－	－	T0－5 Package
201259	Hu	pap．MS，31	75	250	160	1.8	50	－	55	30	8	－	－	\％	－	T0－5 Package
$\begin{aligned} & \text { OCA7 } \\ & \text { 2NO6 } \end{aligned}$	$\begin{aligned} & \text { AMP } \\ & F A \end{aligned}$	$\begin{aligned} & \text { pap, PADT.ge } \\ & \text { npon,DP.si } \end{aligned}$	$\begin{aligned} & 75.5 \\ & 180(\mathrm{fr}) \end{aligned}$	$\begin{gathered} 83 \\ 1 w \end{gathered}$	$\frac{15}{175}$	6.7	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	125	200	<3			E	－	－	
				Iw	15	6.7	2	－	45		5	． 02	－	－	－	GI，TR．SSO，SY，MA．
2N702	T1	$\mathrm{npn}, \mathrm{DJ}, 31$	100	150	175	002	20	50	15.45	5	－	－	－	． 6	－	FA．MA
2N1507	RH		120	1w	15	13.2	60	500	200	． 003	20	∞	600	． 07	\bigcirc	TI
$2 \mathrm{NL139}$	TR	npon，GR，si	150	500	175	－	15	25	20	25	8	12	10	0.7	5	
2 S 501	PH	Pap．MD ge	175	60	100	0.8	15	50	－	1.0	1.75	0.013	0.007	0.00	35	SPR，GI
2M501A	PH	pnp，Mo．ge	175	175	∞	0.8	15	50	－	－1．0	1.1	0.013	0.007	1.0	35	SPR．GI
$2 N 705$ 20710	TI	pno．AJ，ge	300	300	100	1	15	50	6	3	5	0.03	0.075	0.2	40	MO，SY，GE，RA
2M710	TI	pnp，WS，ge	300	100	300	4	15	50	6	． 3	5	． 06	． 075	80	－	SY，MO，RCA，GE，RA
2 W 711	TI	pnp，We，ere	300	300	100	4	12	50	6	0.3	5	． 07	0.1	50	－	MO．SY，RCA，GE，RA
24707A	mo	npon，OM，si	350	Iv	175	6.7	70	－	30	． 01	4	－	－	meec	－	Epitaxal
2N706A	MO	npo，DM，si	400	Iw	175	6.1	25	－	4	． 005	4.5	． 018	． 016	－	－	$\begin{aligned} & \text { (Epitaxalmo) SY, TI } \\ & \text { PSI,HU,MA,GI } \end{aligned}$
2N7068	± 0	npon，Om，st	400	10	1／5	6.7	25	－	4	． 005	4.5	． 018	． 016	－	1	（mo．Epitaxial）SY，PSI
2 n 73	Mo	mon， $\mathrm{OM}, 31$	400	10	1／5	6.7	25	－	4	． 005	4.5	． 018	． 019	－	－	MA，HU，GI （MO，Epitaial）MU，SY

Low Level (concluded)

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Wig.	Type	'a.	Moximum Retings					Charecteristics			Switching				Remarts:
				$\begin{gathered} \mathbf{w}_{c} \\ \left(\mathbf{n W w}^{\prime}\right) \end{gathered}$	T_{1} (c)	mm / c	$\begin{gathered} v_{c} \\ v \end{gathered}$	$\begin{aligned} & I_{c} \\ & m m \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{fe}} \\ & \mathrm{~h} F \mathrm{E} \end{aligned}$	$\left\lvert\, \begin{aligned} & I_{c o} \\ & \mu \mathrm{a} \end{aligned}\right.$	$\left\|\begin{array}{l} c_{c o e} \\ \mu \mu 1 \end{array}\right\|$	Rise Time	$\begin{array}{\|c\|} \hline \text { stor } \\ \text { Tine } \end{array}$	$\begin{aligned} & \text { Sat } \\ & \text { Volt } \end{aligned}$	$\begin{aligned} & \text { Leain } \\ & \text { CuIf } \end{aligned}$	
2 N 228	mo	Dnp, DM, sis	100	500	175	1	15	200	1	4	3.5					
NS345	NA	npn, DM, si	100	500	175	2.8	30		80-200		5	-	-	-	-	Epilaxial, SY
2 2T79A	PH	mpomo ${ }^{\text {mose }}$	950	50	100	${ }^{8 .} 8$	15	50	-20	1	1.9	-	Z	-	=	
2 NBAEA	PH	pmp.mo.ge	550	60	100	8	15	50	-	1	1.9	-	-	-	-	
2N834	mo	mpn,DM, si	500	10	175	6.7	40	200	5	. 01	2.8	015	016	-	-	Epitaxial, SY
2N559	WE	pmp.DG, ge	750	150	100	. 5	15	50	25	5	-	. 002	003	-	-	
2N1305	TI	mp, M6, ge	750	750	100	8	25	100	30	5	1.3	. 001	000	1	-	TO-5, non saluiater
${ }_{2}^{2 N 917}$	FA	non, DP, si	800°	300	200	1.71	20	7	50	05	-	-	-	masec		4T
2N167A	GE	npn, AS,ge	-	65	85	1.	30	75	30	0.6	-	-	-	-	-	T
2N20 2N3356	PH	mpo.SB, ge non,GJ.s	-	25 500	85	0.5	6	15	30	0.5	1	-	-	0.04	20	SPR
	$\begin{aligned} & \text { GE } \\ & \text { GE } \end{aligned}$	npp,GJ,ss	-	500 500	175	-	60 45	25 25	52	1	II	-	-	-	-	
2 m 3774	SY	npm,A」, ge	-	150	100	2	40	200	20-60	40	11					
2N388A	SY	npn,AJ, ef	-	150	100	?	25	200	20-180	40	-			${ }^{\text {CGC }}$ (ma		GI
$\begin{aligned} & \text { 2N398 } \\ & 2 N 399 A \end{aligned}$	RCA	pnp.AJ, ge	-	50	55	-	105	100	∞	6	-	-	-	0.3	60	GI
2M43BA	SY		-	150 150	100	-5	15	200	N	2	-	0	-	-	-	
2N439A	SY	npo, N, se	-	150	Q5	2.5	25	200	15(min)	10	-	0.7	-	-	-	
2NHCA	SY	non,N.se	-	200	85	3.9	25 25	200	$\begin{gathered} 30(\mathrm{man}) \\ 40 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	-	0.5 0.3	-	-	-	
2Mag6	PH	pnp.SB, ${ }^{\text {I }}$	-	150	140	1.3	10	50	5.0	1	6					
2MS56	SY	npm,AJ.ge	-	100	85	1.66	20	200	5.0	25	$\stackrel{-}{-}$	3.5	$\overline{2}$	0.08	$\begin{array}{\|l} 16 \\ 55 \end{array}$	max
2 T 557	SY	non, AJ.se	-	100	85	1.66	20	200	-	25	-	6.5	2.5			
2N558	SY	npo, A, ge	-	100	5	1.66	15	200	-	15	-	3.5	2	0.75	20	
2N586	RCA	pnp,N.ge	-	250	\%		45	250	55					0.25	55	
2N587 2N597	SY	npo,Ad.ge	-	150	®	2.5	40	200	28	10	30	-	-		20	
225597 $2 N 634$	PH	mpp,N.ge	-	250 150	100 85	3.3	45	400 300	$\stackrel{5}{5}$	5	15	-	-	0.005	π	
2 24635	GE	npm,N. A ge	-	150 150	85	85	20	300	55 100	6	-	-	-	-	-	
2ME36A	GE	npm,N, se	-	150	\%	-	15	300	190	6	-	-	-	-	-	
24707 24725	FA	npon,OP.si	-	$1{ }_{1} 150$	175	6.7	28	50	12	.005	5	Q	-	-	-	(Epitaxial, MO), GI
2476	PH		-	150	100	${ }_{1}^{2} .2$	15 20	${ }^{50}$	20	3	-	0.1	-	-		
20771	PH	non.sh,s	-	150	150	1.2	20	100	7.5	218	1.3	-	-	-	-	
2W72	PH	npn,SA,si	-	150	150	1.2	25	100	5.5	. 5	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	-	-	-	-	
20790	RCA	pnp.DM, ge	-	150		2.5	13	100	50	1	8	-	-	-	-	
20795	${ }_{\text {RCA }} \mathrm{PH}$		-	150	${ }_{10} 8$	2.5	13	100	50	1	8	-	-	=	-	
221119	PH	Dmp.SAT, si	-	150	140	1.3	10	50	5.0	. 001	6.0	-	-	-	-	
221122	PH	map.ma.se	-	25	85	0.63	12	50	8	5.0	6.0					
2W1122A	PH	onp.ma, ge	-	25	${ }_{5}$	0.63	15	50	1	5.0	6.0	-	-	0.1	$\begin{array}{\|l} 25 \\ 25 \end{array}$	$\begin{aligned} & \text { BPR GI GI } \\ & \text { BPR } \end{aligned}$
$\begin{aligned} & 2 \text { W117S } \\ & 2 N 11>A \end{aligned}$	$\begin{aligned} & \text { GE } \\ & \text { GE } \end{aligned}$	map, N, ce	-	200	\%	-	25	200	∞	6	-	-	-	-	-	
2 W 1213	RCA	Pnp, A.ge	-	200	${ }^{6}$	-	25	200	0	6	-	-	-	-	\square	
211214	RCA	Mon, MESA.ge	-	75	\%	-	25 25	100	-	3	-	015	05	-	-	
2 W 212	RCA	Dmp,Mesa, ${ }^{\text {me }}$	-	78	${ }_{85}$	-	25 25	100	-	3	-	. 015	. 05	-	-	
241216	RCA	map.LESA.ge	-	15		-	25	100								
211217	GE	Opm, \boldsymbol{N}, \%	-	75	${ }^{2} 5$	-	20	25	40	${ }^{3}$.		015	0	-	-	
2 L 1271	GE	non,G1,si	-	150	150	-	30	25	20	.01	-	-	-	:	-	
2 L 1278	GE	nem, GI, es	-	150	150	-	30	25	33	-01	-	-	-	-	-	
201278	GE	npm, GJ, 31	-	150	150	-	30	25	0	. 01						
241280	GE	non, ©G, ${ }^{\text {ce }}$	-	73	85	-	10	50	50			-	-	-	-	
2 N 1200	GE	npen, M8,	-	75	8	-	15	100	50	2	-					
261298 241300	$\left\lvert\, \begin{aligned} & \text { SY } \\ & R C A \end{aligned}\right.$	mpa, N.ge	-	150	100	2	40	200	35-110	0.1	-		Fal	In		
2 LH 301	RCA		-	150	${ }_{8}^{68}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	13	${ }_{100}^{100}$	50	1	8				-	
201304	RCA	pno. DR, ${ }^{\text {ce }}$	-	240												
2 L 1404	TI	Pnp,A, ge	-	150	¢5	2.5	30 25	300	50	3	16^{-}	-	-	-	-	
2 L 1413	GE	mop. A, re	-	200	85	2.	25	200	36	8	16	-	-	-	-	
2m1414	REA	Dap,AJ. se	-	200	85	-	25	200	52	8	-	-	-	-		
2W1450	RCA	Dap,DR, ¢e	-	120	\%	-	30	100	20	10	-	-		-		
$\begin{aligned} & 2 N 1177 \\ & 2 N 1499 \end{aligned}$	$\begin{array}{\|l\|} \hline S Y \\ P Y \end{array}$	$\left\lvert\, \begin{aligned} & \text { nom, N, se } \\ & \text { pap, MD, } \end{aligned}\right.$	-	200	75	1	40	100	25.0	100	-	-	-	-	-	
2 W 1614	GE	pmp, N, ge	-	230	85	0.60	20	50	${ }_{3}^{38}$	1	25	-	0.12	-	-	
201663	PH	mpn,SA,	-	150	150	$1 . \overline{2}$	20	1000	7.5	25	-	-		-	-	
2 L 1608	RCA	onp.DM, ge	-	150	\%	2.5	13	100	7 7	1.5	$\overline{7}$	-	-	-	-	
23168	GE	non, N, se	-	75	\%	-	20	25	30	0.6	-		-	-	-	
218173	PH	pap, Mo, er	-	50	*	83	13	100	3	1.6	1.5	-	-	-	-	
21.008	TI	nom, N, ge	-	150	\%	2.5	25	300	-	5	11	-	$=$	-	=	
211984	RA	papan N	-	375	100	0.2	60	14	9	10	1	-	-		-	
2W1958	RA	pmop, N,	-	375	100	0.2	60	1.	100	10	-	-	-			
$\begin{aligned} & 2011856 \\ & 21157 \end{aligned}$	RA	pmp, N,	-	375	100	0.2	60	14	5	$\overline{-}$	-	-	-	-	-	
2 LH 200	ra	mpo, N.se	-	375	100	0.2	60	1.	50	10	1	-	-	-	-	
2veces	ma	Mav, N, si	-	250 250	175	1.67	30	100		. 01	8	-	-	-	-	
2meen	ma		-	250	175	1.67	50	100	-	. 001	8	-	$=$	-	$=$	
20ess	ma	peo, N, , <	-	250	173	1.67	50	100	-			-	-	-	-	
2 cecos	M	Pap, ${ }^{\text {N, }} 31$	-	230	175	1.67	80	100	-	. 02	8	=	-	-	-	
2uecol	M	202, $\mathrm{N}, 4$	-	250	175	1.67	60	100	-	.05						

ELECTRONIC DESIGN • July 5, 1961

concentrated semiconductor coverage

By it's very pioneering nature, research demands and consumes components at a virtually unquenchable rate. The engineer who loses time waiting for delivery of components that should be at his fingertips does not achieve his full potential. When he loses time, his company loses money. Lafayette's "total capability" in industrial electronics strengthens the talents and training of your research staff with the widest most comprehensive selection of electronic materials available.

For example, whatever transistors you specify, Lafayette's Concentrated Semiconductor Coverage provides immediate quantity shipment to any point in the U.S. and Canada. Choose from America's nine leading transistor manufac-turers-their entire lines available at factory low prices from Lafayette's huge stocking facilities. Your research program gains hours even days, having filled it's needs faster from Lafayette than any other source.

Thousands Of Electronic Firms Hove Expanded Their Research Potential Through Lafayettc. Has Yours?

Lefoyette is Authorized Foctory Distribufor for: TEXAS IMSTRUMENTS © MOTOMOLA
 - stamband REctifier - astmo dymamics meat simas and mant otwers.

FREE!

Send for the new Lafayette/Astro-Dynamics Heat Sink Guide. Matches the correct heat sink or heat sink combination with transistor packege number. Write Lafayette Redio, Dept. EDG.1 165-03 Liberty Ave. Jemaice 33, N. Y.

INDUSTRIAL ELECTRONICS DIVISIONS
"EmTERPRISE" MUMBERS IM MNOR CITIES

JAMAICA	NEW YORK
16508 LIEEATY AVE.	100 SIXTH AVENUE
JAMAICA 33, N. Y.	NEW YORK 13, N. Y.
AXTEL 1.7000	WORTN 6-5300
TWX: NY 4.933	TWX: NY 1.648

NEWARK
24 CEATRAL AVE.
MEWARK 2, N. 1.
MARKET $2 \cdot 1651$

BOSTON
110 FEDERAL ST. BOSTON 10, mASS. MUBBARD 2.7850 TWX: BS-4i7u
 $=$ (MORE THAN 1007

(2)
$\left(\frac{0-n+2}{0-n+2}\right.$

CIRCLE 63 ON READER-SERVICE CARD

TRKNSTETORE-19日1
Cross Index

Introducing... concentric geometry A significant improvement in NPN diffused silicon mesa fast-switching transistors

ELECTRONIC DESIGN • July 5, 1961

ue Voltage Ratings verified by 100% Power Testing ider full operating conditions. You also get the advanges of reduced inventory, and the convenience of ngle-source purchasing. Next time you buy transistors the 2N1015-2N1016 family make sure they're 100% ower tested. You can be sure . . . if it's Westinghouse. or complete information, write or call: Westinghouse ectric Corp., Semiconductor Dept., Youngwood, Penna.

Westinghouse

For "ofl the shell" delivery, order from these Westingtouse Distributors: EASTERM
ack semicono
 Lectromic mmolisale Bess inc mess /CO 1 -4700
 cemiser eatio camoinc H Lwo a asc
 mann ellert electromics. INC nucear electromics eadio 8 Electaomic PaRTS Conp

KImar elletromics
Mamilton Electro sules

Full technical specifications available on request. Write, wire or call:

2N1654		2N1899	P.HF	C652		53	A
2N1655	A	2N1900	P. HF	C653	SP	OC54	A
2N1656	A	2N1901	P.HF	CF45017	HL	OC5S	A
2N1657	P	2N1905		CK4	A	OC56	A
2N1658	P	2N1906	P	CK4A	A	OC57	A
2N1659	P	2N1917	A	CK13	HF	OC58	A
2N1660	P	2N1918	A	CK14		OC59	A
2N1661		2N1919		CK16	HF	OC60	A
2 N 1662		2N1920	A	CK17	HF	OC74	A
2 N1663	4	2N1921		CK17A	A	OC79	A
2N1665	HF	2N1922	A	CK22	A	OC80	4
2 N1667	HL	2N1924		CK22A	A	OC139	Ll
2N1668	HL	2N1925	A	CK228	A	OC140	LL
2N1669	HL	2N1926		CK22C	A	OC141	L
2N1670	A	2N1936		CK25	1	OC170	H
2N1672	A	2N1937		CK25A	A	OC171	HF
2 N1676	HF	2N1944	A	CK26	-	OC:200	A
2 N 1677	HF	2N1945		CK26A	A	OC201	A
2N1678		2N1946	A	CK27	1	OCP70	A
2N1681	HF	2N1947		CK27A	A	PADT20	HF
2N1683	4	2N1948		CK28	1	PADT21	HF
2N1684	HF	2N1949		CK28A	A	PADT22	HF
2N1692		2N1950		CK64	A	PADT23	HF
2 N 1693	P	2N1951		CK64A	A	PADT24	HF
2N1701	HL	2N1952		CK64B	A	PADT25	HF
2N1702	HL	2N1954	4	CK64C	A	PADT26	HF
2N1705	A	2N1955	4.	CK65A	A	PADT27	HF
2N1706	A	2N1956	U	CK658	A	PADT28	HF
2N1707	A	2N1957	4	CK65C		PADT29	HF
2N1709	P.HF	2N1958	HF	CK66	A	Padt30	HF
2N1710	P.HF	2N1959	HF	CK668	A	PADT31	HF
2N1711	Hi	2N1960	HF	CK66C	A	PAdT40	LL
2N1714		2N1961	HF	CK67	A	Padiso	HL
2N1715	P	2N1962	HF	CK67A	A	PADT51	LL
2N1716		2N1963	HF	CK678	A	PADTGO	SP
2 N 1717	P	2N1964	HF	CK67C	A	PT600	HF
2 N 1718		2N1965	HF	CK261	A	PT601	Hf
2N1719		2N1969	HF	CK262	A	PTE50	HF
2N1720		2N1970	HL	CK419	4	PT850A	Hf
2N1721		2N1971	HL	CK420	4 L	P1900	P
2N1722		2N1972	HL	CK421	4	RT409	HL
2 N 1723		2N1973	HL	CK474	4	RT482	HL
2N1724	P	2N1974	HL	CK475	4	RT483	HL
2N1726	HF	2N1975	HL	CK476	4	RT484	HL
2 N 1727	HF	2N1978	HL	CK477	L	RT497M	HL
$2 N 1728$	HF	2N1983	HL	CDT1310		RTA98m	HL
2N1730		2N1984	HL	CDT1311		RT656M	HL
2N1731	A	2N1985	HL	CDT1312		RT657M	HL
2N1742	HF	2N1986	HL	CDT1313		RT696M	HL
2N1743	HF	2N1987	HL	CDT1319	P	RT696AM	HL
2N1744	HF	2N1988	HL	CDT1320		RT697M	HL
$2 N 1745$	HF	2N1989	HL	CDT1321		RT697AM	HL
2N1746	HF	2N1990	HL	CDT1322		RT698M	HL
2N1747	HF	2 N 1991	HL	CST1739		RT699m	HL
2N1748	HF	2N1994	LL	CST1740		RT1420m	HL
2N1749	HF	2N1995	L1	CST1741		RT1613M	HL
2N1750	HF	2N1996	4	CST1742		RT5151	HL
2N1752	HF	2N1997	L1	CST1743		RTS151 RTS 152	HL
2 N 1754	4	2N1998	L	CST1744		RT5202	HL
2N1755		2N1999	LL	CST1745		RT5203	HL
2N1756		2N2000	LL	CST1746		RT5204	HL
2N1757		2N2001	L	CTP1104		RT5212	HL
2N1758		2N2002	11	CTP1105		RT5230	L
2 N 1759		2N2003	4	CTP1108			HF
2N1760		2N2004	L	CTP1109		So-2	HF
2N1768	HI.	2N2005	L	CTP1500		S0.3	HF
2 N 1769	Hi.	2 N 2006	11	CTP1503		ST15	HF
2 N 1779	1	2N2007	4	CTP1504		ST35	
2N1780	1.	2N2018		CTP1508		ST45	F
$2 N 1781$ 2 N 1782	4.	$\begin{aligned} & \text { 2N2019 } \\ & \text { 2N2020 } \end{aligned}$		CTP 1544 CTP1552		ST401	L
2N1783	HF	2N2021		CTP1553		ST440	P
2N1784	HF	3N34	HF	CTP1728		ST450	P
2N1785	HF	3N35	MF	GK13A	${ }_{\text {HF }}$		P
2N1786	HF	3N36	HF	GK16A	HF	ST4203 ST4204	P
2N1787	HF	3 3N37	HF	GT74			
2N1788	HF	3N45		GT81	${ }^{\text {a }}$	STC1103	
2N1789	H2	3N46		GT109	A	TMTB39	
2 N 1790	HF	3N47		GT123	LP	TMT839	HF
2N1837	HF	3 N 48		GT1200			
2N1837A	A HF	3N49		GT1624	SP		HF
2N1838	HF	3N50		KGS1004	$\frac{L}{4}$	TMTEA2 H	
${ }^{2 N 1838 A}$	A HF	3N51		KGS1005		TMT843 ${ }^{\text {H }}$	
	HF	3N52		LT11		TMT843	
2 N 1839 A	A HF	3 N54		LT12		wxilsua	
2N1840	HF	8177		LT13		WX115UB	
2N1840A	A HF	8178		LT14			P
2N1841		8179		P LT15		WX115UD	P
2N1864	HF	81085	HL	MA. ${ }^{\text {ma }}$	HF HF	Wx115UD	P
${ }^{2 N 1865}$	HF	81154	LL	MA.2		W115WB	P
$2 N 1866$	HF	811544	LL	NS345	HL	W×115W8	P
2 N1867	HF	C101	L	$\mathrm{OCl22}^{\text {O }}$	${ }_{\text {H2 }}$	WX115WC	P
2 N 1868	HF	C102	L	$\mathrm{OCl2}^{\text {O }}$	HL	$\underset{W \times 115 \times A}{\text { Wxil }}$	P
2N1886	P	C103	LL	OC24	HL	W×115×A	P
2N1889	HL	C106	LL	OC28	HL	W×115x8	P
2N1890	HL	C301	LL	OC29	HL	WX115XC	P
2N1893	HL	C302	LL	OC30		W×115×0	P
2N1894	P	C611	SP	OC35	HL	wxilicua	P
2N1895		C612	SP	OC36	HL	Wx118U8	P
2N1896		C613	SP	P OC41	HF	wx118UC	P
2N1897		C614	SP	P OC45	HF	W×118×A	P
2N1898		C650	SP	P OC46	4	W×118×8	P
2N1899		C651	SP	P OC47	LL	WX118xC	P

ELECTRONIC DESIGN • July 5, 1961

There's a Better Way... to cool a transistor. The fish don't like this sort of briny nonsense, either. The one on the left is a rare species known as Pisces Lingua, or underwater talking fish. He's telling the rest of his buddies that some irate electronics engineer probably gave this transistor the deep six because of thermal runaway. Or maybe its derating curve was all wet. The other fish are mute on the matter. They could inform Pisces Lingua that the Birtcher Corporation makes a semiconductor heat radiator that would not only cool the transistor, but boost its efficiency 25% to 27%. But they refrain from comment because there's a hungry gleam in his eye. If this makes you hungry to do business with me, write today for my catalog and other stuff. Don't ask me to send you any fish. But I'll send you an Honorary Membership Certificate to my Society. Write to: Charles F. Booher, Secretary, There's a Better Way Society of America, Inc., The Birtcher Corporation / Industrial Division, $74 \overline{5}$ S. Monterey Pass Rd., Monterey Park, California; phone ANgelus 8-8584, TWX LA 2177.

Cool!
Write for my
non-fishy Transistor Radiator Catalog

웅

B
Sizes available for just about every commonly used transistor. So yours are different? Maybe I'll provide a radiator anyway - no hooks.

Transistor Data Sheets-

What They Mean and How to Use Them Properly

Abstract

Electronic Design's Ninth Annual Transistor Data Chart (p 33) contains 1714 transistor types with abbreviated specifications. For complete details on the various transistor parameters and explanation of the test conditions used, reference to manufacturers' data sheets is necessary. Thus, the Transistor Data Chart is intended to guide the design engineer to several types; the specific selections is then based on complete device characteristics and price as obtained from the manufacturer. The relationship which exists between published characteristics and design requirements is discussed and a useful circuit design check list is included.

Mitchell Baker, Jordan V. Sukert
 Motorola Semiconductor Div., Inc.
 Phoenix, Ariz.

AWELL-PREPARED transistor data sheet, properly interpreted by a circuit design engineer, is an extremely useful design aid. To meet the present demands for circuit and systems reliability, an understanding of transistor specifications and their relationship to design requirements is a valuable design asset.

Basic Structure of a
Transistor Data Sheet
A modern, well-prepared data sheet should provide the design engineer with all the necessary information for selecting a transistor capable of performing a particular job. To accomplish this, the data sheet is normally divided into six general sections. A description of the device is given first. followed by sections on absolute ratings, electrical and thermal characteristics, mechanical data and applications information.
The description of the device usually gives the broad general application which permits the designer to classify transistors ac-

If you would llike an additional copy of the Tranglator Data
Chart Seetlon circle 251 on the Reader-Service Card.
cording to his specific requirements. Thus. a typical power transistor description might indicate whether the unit was designed for audio work or switching applications. In addition, the power and/or current rating is specified, the polarity (pnp or npn) is given, and the type of material is indicated. At a glance, therefore, the engineer can determine if a particular transistor or group of transistors is suitable for using in a particular purpose.
From this point, however, the selection of a specific transistor for a particular project becomes more involved. The unit must be considered in terms of its various electrical ratings and characteristics to make sure that it fits the application from every conceivable standpoint. In addition, the engineer is responsible for selecting the least expensive transistor

Distinction Between

Ratings and Characteristics
A rating is defined as a limiting value assigned by the manufacturer which, if exceeded, may result in permanent damage to the device. On the other hand, a characteristic is a measurable property of the device under specific operating conditions for
which the transistor will provide satisfactory and reliable performance

Absolute Maximum Ratings are those ratings beyond which degradation regarding the life and reliability of a transistor may be expected. These ratings are based on internal physical construction, semiconductor material and manufacturing processes. Because these are "ratings", most data sheets will not indicate test conditions under which these "ratings" are specified. Therefore, "ratings" are the extreme capabilities of a transistor and are not intended to be used as design conditions.

For example, under absolute maximum ratings, the letter B placed before a characteristic symbol usually means breakdown. Therefore, $B V_{C B O}, B V_{C E O}, B V_{C E S}, B V_{C E S}$, and $B V_{\text {fв }}$ represent the breakdown ratings of the device; when these ratings are exceeded, an avalanche or breakdown condition may take place and destroy a transistor. Breakdown is dependent upon temperature and an

Fig. 1. Typical output characteristics of a Motorola 2N1530 power transistor.
arbitrary voltage and current condition，the combination of which can trigger the ava－ lanche effect．
As a practical example，the graph in Fig． 1 illustrates the typical output characteris－ tics of a 2N1530 power transistor．The ab－ solute maximum voltage $B V_{C E O}$ is shown as being 45 v ，the absolute maximum cur－ rent is shown as 5 amp ．

With an absolute maximum power rating of 90 w （as shown on the data sheet for this particular transistor），it is now possible for the design engineer to calculate and plot a maximum voltage－current relationship which must not be exceeded．
Thermal characteristics，listed with the absolute maximum ratings，are expressed in degrees C per watt and define the dissipa－ tion capability of the transistor regarding the junction temperature in relation to the transistor case temperature．

Electrical Characteristics
 Indicate Design Centers

Whereas the absolute maximum specifica－ tions provide the limits beyond which reli－ able operation cannot be obtained，this sec－ tion of the data sheet contains the device design centers．When discussing any specific characteristics，the test conditions must be defined in order to achieve a common under－ standing between the user and the manu－ facturer of the transistor．Almost every pa－ rameter listed on a data sheet is subject to variation among manufacturers due to these test conditions．Motorola data sheets cover－ ing the power transistor series from 2N1539 through 2N1548 will be used to discuss each parameter in order．（See Fig．2）．
Collector－Base Leakage Currents：$I_{\text {CRO }}$ is a term initially used to signify the quality of a transistor．Actually，three very definite $I_{\text {ros }}$＇s are of importance to the designer． The first is the reading taken at some low collector－base voltage，in this case， $2 v$ with a maximum value of $I_{c k \prime}$ indicated at this voltage．This value，for all practical pur－ poses，represents the thermal component of the collector current which cannot be reduced by further decrease of $V_{\text {CR．}}$ ．As the ambient temperature increases，the leakage current increases．Using the arbitrary rule that the thermal component of current will double for every 10 C ，the design engineer can pin－ point the temperature component of the leakage current．
Collector－Base Voltage Characteristics：The second component of $I_{\text {rпо }}$ which is important in high－temperature usage is the current due to the collector－base voltage with the emitter

ELECTRICAL CHARACTERISTICS，GENERAL（AI $25^{\circ} \mathrm{C}$ Case Temperalure unless otherwise specified）

Parsater	8pmosi	Min	Tvp	Mas	Valk
	Iseo	二	二	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	mA
$\begin{aligned} & \text { Cllector-Base Cutof Current } \\ & \mathbf{V}_{C A}=-2 \mathbf{V} \text { (all eypes) } \end{aligned}$	Iceor	－	－	200	${ }^{4} \boldsymbol{\lambda}$
	$1{ }_{\text {raco }}$	－	－	20	mA
$\begin{aligned} & \text { Emitter- Base Cuton Curpent } \\ & V_{\text {oin }}=12 \mathrm{~V} \text { (all types) } \end{aligned}$	Ieao	－	－	0.5	mA
	80	$\begin{aligned} & 30 \\ & 45 \\ & 60 \\ & 75 \\ & 70 \end{aligned}$	二	二	volis
	les	二	二	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	mA
	BVicu	$\begin{aligned} & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$	二	二	volts
	$8 V_{\text {cmo }}$	$\begin{aligned} & 90 \\ & 60 \\ & 80 \\ & 106 \\ & 120 \end{aligned}$	二	二	volts

ELECTRICAL CHARACTERISTICS，COMMON EMITTER（AI $25^{\circ} \mathrm{C}$ Case Temperature unless otherwise specified

Currene Gain $\mathbf{V}_{\mathrm{co}}=-2 \mathbf{V}, 1 \mathrm{c}=3 \mathrm{~A}$ 2N1539．2M1540． 2 W15A1．2N15A2．2M1543 2N1544．2M154S．2N1546．2N1547．2N1548	ho．	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	＝	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	－
Ease－Emitter Drive Voltage $l_{1}=3 \mathrm{~A} .1 \mathrm{~m}=300 \mathrm{~mA}$ 2N1539．2N1540．2N1541．2W1542．2N1543 2W1544．2W1585．2M1546．2N1547．2N1548	$\nabla \cdot$	＝	ב	$\begin{aligned} & 0.7 \\ & 0.5 \end{aligned}$	volts
Collector Saturation Voltage $1 .=3 \mathrm{~A} .1 \mathrm{n}=300 \mathrm{~mA}$ 2N1539．2N1560，2N1541，2N1562．2W1543 2N1544，2N154S．2N1546，2W1547，2N1548	$V_{\text {cra }}(\text { eat })^{\text {a }}$	－	0.2 0.1	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	volts
Frequency Cutoff $\mathbf{V}_{10}=-2 \mathbf{V} .1=3 \mathbf{A}$ 2N1539．2N1540．2N1S41，2N1542 2N1543 2N1544．2N1545．2N（S46．2W154）．2N1548	f．．		4		kc
Switching Characteristics $I_{1}=3 \mathrm{~A}$ Delay＋Rise Time 2N1539，2N1540．2N1541，2N1542．2N1543 2W1S44．2W154S，2N1546，2W1547．2W1548 Siorage Time 2N1539．2N1540，2N1541，2N1542，2N1543 2N1544，2N1545．2N1546，2N1547，2N1548 Fall Time 2N1539．2N1540，2N154i，2N1542，2N1543 2M1544，2N1545．2N1546．2N1547，2M1548	$1+6$	－ － ＝	1 5 5 3 5 5 8	-	usec usec usex
	8 c ：	3.0 5.0	6.0 7.5	－	mhos

Fig．2．Electrical characteristics contained in a transistor data sheet．
open．The data sheet indicates that $V_{\text {ch }}$ at 25 v on the 2 N 1539 power transistor pro－ duces a maximum leakage of 2 ma ．This volt－ age component is not temperature sensitive． Therefore，the design engineer wishing to determine his leakage value at some higher temperature（e．g．$T_{1}=75 \mathrm{C}$ ），can safely assume that the maximum increase in the thermal component of leakage current will be 32 times 200μ a（using the＂doubling－ every－10 C＂rule）．Adding to this the 2－ma
voltage component results in a value of 8.4 ma maximum leakage at 75 C with 25 v across the transistor．All future references to temperature will refer to the transistor case temperature and not the ambient tem－ perature．
High－Temperature Collector－Base Leakage Currents：Since there are many voltages and many applications to be considered，it is difficult for any manufacturer to specify leakage under all voltages at all tempera－

TRENSISTORS-1961

Fig. 5. Output characteristics of the 2 N351A with the saturation region indicated.
tures hence, the third $I_{\text {спо. }}$. Motorola specifies a guaranteed maximum leakage at 90 C at a voltage level well within reliable usage of any given transistor. The selection of the onehalf collector-emitter breakdown voltage ($B V_{\text {ce:s }}$) rating for the high temperature test is an arbitrary one but is established at a point where the manufacturer knows the device will be in a reliable operating area.
Emitter-Base Cut-Off Current (IF, ${ }_{\text {Fis }}$): One of the least used parameters on a data sheet
 of any given junction within a transistor; therefore this limit is shown at a region where most design will be taking place. The emitter-base diode breakdown voltage rating is indicated by the $B V^{\prime}: m$, listed under the absolute maximum ratings.
Collector-Emitter Leakage Current (I, w): The X in this symbol means that there is

Fig. 3. Collector characteristics of a power transistor in a common emitter connection.

Fig. 4. The current gain, $h_{\text {re }}$ of alloy transistors decreases with increased collector current.
some known back-bias voltage applied to the base-emitter diode. For each transistor, this back-bias must be specified as a test condition for any given $\boldsymbol{I}_{\text {cE, }}$ or $\boldsymbol{B} \boldsymbol{V}_{C E X}$ rating. This rating is very useful in designing power converters where one transistor is conducting while the other transistor is back-biased in the off condition waiting for transformer action to turn it back on. It is more convenient to apply a given voltage and guarantee that the current will not be above a certain maximum value than to apply a test current and see if the voltage will be above a certain minimum value. The latter test could be related to a second breakdown ${ }^{1}$ type of relationship. On many diodes, applying a given test current could show a voltage rating of many volts above the manufacturer's listed rating. The collectoremitter could, for example, possibly with-
stand 150 to 200 v ; however, power dissipation could be exceeded.
Collector-Emitter Breakdown ($B V_{C E S}$): The most important rating that the engineer can consider when selecting the transistor for his circuit is $\boldsymbol{B} V_{\text {cES }}$, see Fig. 3.

Almost all power transistor applications require source voltages, collector-to-emitter, thus $V_{C E}$ ratings must be equal to or larger than the source voltage; inductive loads will make this requirement higher. For the design engineer, a useful rating would be $B V_{C E R}$ which falls between $B V_{C E B}$ and $B V_{\text {ceo }}$ in alloy transistors. On many test conditions, high dissipation can be experienced with the combination of test voltage and test current. Therefore, many tests are specified as sweep tests or pulse tests where the duty cycle is low enough that the maximum junction temperature is not exceeded. These tests should be performed with the transistor mounted on an adequate heat sink.
Collector-Emitter Breakdown Voltage with the Base Open ($\boldsymbol{B} \boldsymbol{V}_{\text {ceo }}$): This test is related to $I_{C B O}$ and the gain characteristic $h_{F E}$. With the base open, a condition can be reached where $h_{F E}$ will multiply the $I_{\text {rao }}$ at a given voltage and start an avalanche condition as the junction temperature rises due to self-heating. This can quickly reach breakdown conditions if not carefully tested by the sweep method.

A possible cause of transistor failure is lack of $B V_{c E U}$, especially at high voltages; this condition is often encountered in application such as series-regulated power supplies and power amplifiers. In switching circuits, this condition can exist when the transistor is switched from on to off, thus passing a region where the base has infinite resistance or is essentially open.
Collector-Base Breakdown Voltage (BV $V_{\sigma_{1}}$): This rating will show the limitation of the collector-base junction, but is a rating which is only occasionally used in actual circuit considerations. Many engineers make the error of selecting a transistor based on this parameter putting themselves into a highpriced, low-availability category, when actually the true ratings could have been defined by $B V_{\sigma k}$. Circuits should be carefully analyzed to determine if $B V_{г}$ or some collector-to-emitter rating is the controlling factor under the worst conditions.
Current Gain ($\boldsymbol{h}_{F E}$): This is the most arbitrary of all test conditions listed on a data sheet. For alloy transistors, current-gain is a function of collector current and in most
cases will decrease when I_{c} increases, see Fig. 4.

It is best to design around data sheet limits. However, circuit requirements could dictate current gain spreads. Under these circumstances, it would be beneficial for the design engineer to work closely with the manufacturer to obtain a special device. This parameter is one that will vary to some degree with life, and is therefore used as an end-of-life characteristic.
Base to Emitter Voltage ($V_{\text {HE }}$): This parameter denotes the input voltage at the specified test condition, required in the design of power converters and switching circuits. The test for this parameter is usually performed with the transistor in saturation. Saturation Voltage ($V_{c \in, a l}$): Saturation voltage $V_{C E \text { vat }}$ (Fig. 5) is the minimum voltage necessary to maintain normal transistor action at a particular collector current. At collector voltages lower than $V_{V, \text { nat }}$ the base-collector diode is forward biased and the current-voltage relationship changes abruptly. Thus, the saturation voltage is the minimum collector-emitter voltage required to maintain full conduction when enough base drive is supplied; further applications of base drive will reduce $V_{r \text { : }}$ ot. Since the $V_{i, ~ s a l}-I_{c}$ curve is almost a straight line, some transistor manufacturers list the characteristic as saturation resistance ($V_{(E, 01}$).

Transistor efficiency in converters is a function of switching speed and power dissipated in the fully-on condition. A very low saturation voltage is extremely desirable and is a function of the collector current and base current drive. Saturation voltage rises with an increase in collector current and is inversely related to the gain $\left(h_{r t}\right)$ of the transistor.
Common Emitter-C'ut-Of Frequency ($f_{a f}$): Current gain frequency cut-off (f_{a}) for the common emitter configuration, (also called the beta cut-off frequenc y) is the frequency where the small-signal, forward-current gain is 0.707 of the current gain value at a given reference frequency. The common base frequency cut-off $F_{a b}$. (generally not specified for power transistors) is appre nately equal to $h_{l e}$ times $F_{\text {ae }}$.
Power Transistor Circuit Design

Check List

Without going into details of the external circuit requirements, the following questions should be considered during selection of a moper power transistor.
(comfinued on $p 80$)

Four overlapping Beta Ranges - High meter resolution Direct reading with test circuit power off

SPECIFICATIONS
New Sierra 2198 4-range Transistor Tester reads Beta directly in the circuit; also measures lco, Beta out of circuit.
Less downtime and less danger of damage to transistors under test with this new Sierra instrument-battery-operated, light weight, portable, easy to use.
Maintenance, quality control, incoming inspection and production testing are just a few of the applications where you save time and money by testing transistors, even complete assemblies, without unsoldering leads. Model 219B reads Beta in the circuit, 1 to 120 . Ico is measured on a straightforward basis; collector potentials of 3,6 or 12 vdc may be selected. All controls are on the front panel . . . an instrument of converience, speed, accuracy.

Test ranges
Beta 1-4, 3-12, 10-40, 30-120
Ico: $0.50,0.500$ ua
Accuracy
In circuit: $\pm \begin{array}{ll} \pm 20 \% & \text { for external loads over } \\ 500 \text { ohms. }\end{array}$ Improved 1 mproved accuracy above
500 ohms, usable readings Sut of circuit: $\begin{aligned} & \text { below } 500 \text { ohms. } \\ & \pm 10 \%\end{aligned}$ Out of circuit: $\pm 10 \%$

Power: $\begin{aligned} & \text { Internal battery, mercury or } \\ & \text { zinc-carbon type, } 600 \mathrm{hrs} \text { av. } \\ & \text { life: }\end{aligned}$ zinc-carbon type, 600 hrs . av
life. output indicated on
front-panel meter. $\begin{aligned} & \text { Operating } \\ & \text { Temperature: } 32 \text { to } 149 \text { F }\end{aligned}$
Operating
Temperature:
32 to $149 \quad$ F

 Price: $\$ 278.00$
Write or phone today for information and demonstration.
-Beta readings to 300 may br
approximated.

SIERRA ELECTRONIC CORPORATION A Division of Philco Corporation
6919 K BOHANNON DRIVE - DAvenport 6-2060 • MENLO PARK, CALIF., U.S.A. Sales representatives in all principal areas.
Canada: Atlas Instrument Corporation, Ltd., Montreal, Ottawa, Toronto, Vancouver. Export: Frazar \& Hansen, Ltd., San Francisco.
CIRCLE 68 ON READER-SERVICE CARD

The industry's most thoroughly characterized and medium power silicon Mesa transistors...2N497A,

The "A" versions are exclusive from General Electric:

thousand hours of test

thousand hours of test

Higher power with cooler operation (coal transistors are reliable trausustorn)
Low input impedance (200 rus the veal 500 means more signal gets into the tramistor occumeme and wore current flow out !)
Lower saturation resistance (10) vo. the usual 25 means more power where you torus the unit on!)

Yoltanm Ratings ($25^{\circ} \mathrm{C}$) Voltages
Collocser to Base
Collector to Emitter Collector to Emitter
Emitter to
to Temperatures Temperature i Storage
Operating Junction
 $25^{\circ} \mathrm{C}-5$ wats.* \therefore - orate $5.72 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ increase in ambient temperature above $25^{\circ} \mathrm{C}$
 Collector
(lc $=100$ bane Voltage ($1 c=100 \mathrm{Ho}, 16=0$)
Collector 10 E miner Voltage

 Cutoff Characteristics
Collector Current ($\mathrm{I}_{\mathrm{B}}=0, \mathrm{~V}_{\mathrm{Ca}}=30 \mathrm{~V}$) Collector Current (High Tomparolura)
($18=0, \mathrm{Vca}=30 \mathrm{~V}$, TA $=150^{\circ} \mathrm{C}$) -Pules Test: 300 uses. 2% Duty Cycle

tested

98A, 2N656A, 57A...come from General Electric

Positive internal atmospheric control achieved through the use of General Electric's buffered-sieve encapsulation technique, higher power dissipation with lower saturation resistance and lower input impedance are important features of this line of top quality one to five watt audio switches. Especially well suited for either high level linear amplifier or switching applications, these are the industry's most thoroughly characterized and tested medium power silicon double diffused NPN transistors available today. Just take a look at the extended life test charts illustrated for convincing evidence of long term stability and reliability.
Semiconductor Products Department, Section 23G100, Electronics Park, Syracuse, New York.
For fast delivery of medium power Mesa transistors at factory-low prices in quantities up to 999 call your G-E semiconductor distributor.

Progress is Our Most Important Product GENERAL ELECTRIC
 CIRCLE O4 ON READER-SERVICE CARD

DISTRICT SALES OFFICES

NORTHEASTERN
General Electric Co
Kelley Bidg.
Kelley Blder
Liverpool. N. Y. GRan
General Electric Co.
Garden City, N. Y. Ploneer 1-4710
General Electric Co.
200 Main Ave.
Clifton. N. J. GRegory 3.6387
General Electric Co
410 Asylum St. Jackson $7-0135$
Hartford, Conn
General Electric Co.
General Electric Co
701 Washington st.
Newtonville, Mass. DEcatur 2-7120
SOUTHEASTERM
General Electric Co.
$777-1410$
$777-144$ St., NW. Washington, D.C.
Executive 3.3600
General Electric Co
104 E Gore Ave
Orlando. Florida Cherry 1-2991
General Electric Co
Barclay Blidg.
One Beimont
One Belmont Ave
Bala Cynwyd, Pa. GReenwood 7.6237 CENTRAL
General Electric Co.
3800 M . Milwaukee Av
Chicago. III. SPring 7-1600 General Electric Co.
2375 ; Hampton Aye
 General Electric C_{0} General Electric Co
3280 Gorham Ave. So Minneapolis, Minn. WEst 9-4621 General Electric Co. Imperial Office Plaza 17220 W . Eight M le Rd Southfield, Mich. ELgin 6-1075 General Electric Co. Talbott Bld
118 W .1 st
Daston, Otio saldwin 3-7151
General Electric Co.
2111 S . Green Rd.
Cleveland, Onio EVergreen 2-5650
General Electric Co
P.O. Bor 2331
Denver, Colorado Dudiey e-5771
General Electric Co.
3200 maple Avenue
Dallas, Teasas Riverside 2.7971
wESTERN
Goneral Electric Co.
11840 W. Olympic Bivd.
Los Angeles, Cal. GRanite $9-7763$
General Electric Co
Guarahty Bank Bloge. Suite 700
3550 N. Central Ave
Phoenil, Arizona ALpine 8. 7724
General Elestric C
701 Walch Road
Palo Alto, Cal.
Falo Atco, Cal. DAvenport $1-677$
General Electric
220 Dawson St
Seattle Wash. Parkway 5.6800
Genaral Electric Co
121 Broadway St.
San Diego, Cal. BE 3.1329
CIRCLE OS ON READER-SERVICE CARD

TRANSISTORS-1961

Fig. 6. The relioble area of collector operation is contained within the shaded region shown.

Fig. 7. Curves used in determining peak power of a power transistor.

1. What will the maximum load current requirement be?
2. What is the output voltage desired and what are the low and high line values of the source or input voltage?
3. What driving power is available? This factor is needed to determine the dc current gain required fo the maximum and minimum load currents.
4. What type of heat sink will be available?
j. What will the ambient temperature excursions be?
5. Are there any frequency requirements such as a response to a step function?
6. What are the cost limitations and availability requirements when considering large scale production?
In referring to the above questions, perhaps the most critical point is the collectoremitter voltage requirement for the specific design conditions. Knowing the voltage extremes and the maximum load current, the power dissipation must be considered in relationship to the heat sink available. With this knowledge, a search is then made for the thermal resistance or power dissipation capability of a suitable device. At this point, a decision might be required necessitating parallel operation for excessive load current requirements or series operation for highvoltage applications. ${ }^{2}$ Series or parallel operation is well worth considering because of the lower price and better availability of less-specialized types. If heat sink considerations limit single power transistor dissipation capability, series operation may be attractive. For a given heat sink size and a stated maximum dissipation, the individual junction temperature rise for two transistors in series will be one-half the rise of a single unit. The same advantage is offered with parallel operation.

Assume a condition of 80 C case temperature and power dissipation sufficient to raise the junction temperature of a single unit to 105 C . This would indicate a power dissipation of approximately 30 w if the thermal resistance junction to case was 0.8 C per watt. This 30 w would be divided between two transistors if series operation was used therefore dissipating 15 w per unit or a junction temperature rise of 12.5 C per transistor. The junction temperature will now be 92.5 C for both devices instead of the single unit at 105 C .

Checkout for Reliable

Circuit Design

A design is not complete until an examination is made of the reliability of the circuit.

It is of utmost importance to examine the safe area of operation and the load line characteristic of each power transistor used in any equipment.

Definite areas of reliable operation can be predicted in devices such as germanium pnp power transistors. In Fig. 6, the region indicated as "maximum reliability" denotes safe operation with little chance of device burnout. The cross-hatched area is Ω derated zone of operation which may be considered safe for momentary excursions but may result in a collector-to-emitter short. To evaluate line or load surges which instantaneously place the transistor into higher dissipation, a set of curves based upon the thermal time constant, pulse width, and duty-cycle is included on the data sheet as shown in Fig. 7. Determination of Peak Power: The peak allowable power is; from Fig. 7,

$$
P_{p}=\frac{\left(T_{1}-T_{A}-\theta_{A_{A}} P_{n a}\right)}{\theta_{l c}\left(\frac{1}{C_{e}^{\prime}}\right)+\theta_{C \cdot A}\left(t_{1} / t\right)}
$$

C_{p} is a coefficient of power as obtained from the data chart. T, is junction temperature in $\mathrm{C} ; T_{1}$ is ambient temperature in C ; $\theta_{J e}+\theta_{C_{1}} ; t_{1}$ is pulse width; t is the pulse period; $\left(t_{1} / t\right)$ is the duty cycle; P_{0} is a constant power dissipation and P_{p} is the additional allowable pulse power dissipation above the amount of $P_{0 s}$.

The above equation applies when a heat sink is used which has thermal capacity much larger than the transistors' thermal capacity

The chart in Fig. 7a is normalized with respect to the thermal time constant, which is on the order of 50 msec for these power transistors. Consider a typical example as follows:
$P_{0}=10 \mathrm{w} \quad T_{A}=40 \mathrm{C}$
Pulse width $\left(t_{1}\right)=1 \mathrm{msec}$
Duty Cycle $\mp 20 \sigma_{c}$
$\theta_{c .1}=3 \mathrm{C} / \mathbf{w}$ $\theta_{s c}=0.8 \mathrm{C} / \mathrm{w} \quad T_{/ m}=100 \mathrm{C}$
Solution: Enter the graph at $t_{1} \tau=1$ msec 50 msec , and duty cycle $20 c_{\%}$. Find $C_{p}=5$. Solve equation

$$
P_{p}=\frac{100-40-(3+0.8) 10}{\frac{0.8}{5}+3 \times 0.2}
$$

$P_{\mu}=29 \mathrm{w}$ in addition to the steady 10 wr resulting in 39 w peak. - -

Reference

1. "How to Design Economical High-Voltage Circuits" Motorola Semiconductor Products, Inc., Phoenix. Ariz. 2. Motorola Power Transistor Handhook, First Edition, pg. 33-34.

A NEW UP-TO-DATE CATALOG

featuring - What's new in Controlled Rectifiers - Breakthroughs in micro component packaging - How Transitron has applied Minuteman reliability to its broad line of semiconductors - A library of semiconductor literature - SPECIAL FOR PURCHASING AGENTS AND BUYERS, "थ5 Tips On Hou' To Buy Semiconductors" - It's all here UNDER THE FLAP

NOW AVAILABLE -

NEW 50-AMP CONTROLLED RECTIFIER

The latest addition to the Transitron line, the 50 -Amp Silicon Controlled Rectifier, is a three-terminal, four-layer device designed to control very large load currents with small gate current signals. A mechanically rugged and electrically stable device, the new Controlled Rectifier is provided in the $1 \mathrm{y} \mathrm{c}^{\circ 0}$ hex base stud-

mounted package and is hermetically sealed. Wherever high power handling ability is required, the 50 -Amp Silicon Controlled Rectifier will find wide application ranging from frequency chang. ing to welding control.
-1/s Actual size

TCR550 SERIES (1 $1 \mu^{\prime \prime}$ hex package) operating current range to 50 amps.				
Type	Minimum Peak Reverse Volt and Minimum Forward Breakover Voltage (volts)	Maximum Average Forward Current at $90^{\circ} \mathrm{C}$ case (amps)	Package Configuration	Package
TCR4050	400.	50.	1ko" hex	A
TCR3050	300.	50.	16/ ${ }^{\text {c }}$ hex	A
TCR2050	200.	50.	14." hex	A
TCR1050	100.	50.	1\%0* hex	A
TCR550	50.	50.	13, " her	A

PLUS FIVE OTHER VERSATILE PACKAGES

Transitron continues to offer the broadest line of Silicon Controlled Rectifiers in the industry. Available in six different and versatile packages, these rugged devices offer greater reliability and efficiency while replacing thyratrons, magnetic amplifiers, and other switching devices in many varied applications.

	SILICON CONTROLLED RECTIFIERS				
Type	Minimum Peak Reverse Voltage and Minimum Forward Breahover Voltage (volts)	Maximum Forward (am at $25^{\circ} \mathrm{C}$ case	Average Current ps) at 100° case	Package Configuration	Pach age
TCR1020	100.	20.	10.	"ha" hex	B
TCR2020	200.	20.	10.	"Ko" hex	8
$\begin{aligned} & \text { TCR3020 } \\ & \text { TCR } 4020 \end{aligned}$	300.	20.	10.	"Kos hex	8
TCR1010	100.	10.	5.0	"ho" hex	B
TCR2010	200.	10.	5.0	"Ka" her	B
TCR 3010	300.	10.	5.0	"Ks* hex	8
TCR4010	400.	10.	5.0	"has her	8

SILICON CONTROLLED RECTIFIERS - closely controlled electrical characteristics plus a high degree of mechanical ruggedness

11/6", $/ 16{ }^{"}$, $7 / 16^{"}$ HEX PACKAGES (B, C, D)

Transitron's Silicon Controlled Rectifiers are PNPN high power bistable controlled switching devices. They are analogous to a thyratron or ignitron, with far smaller triggering requirements and microsecond switching. The low conduction drop permits current ratings up to 20 amperes and provides high efficiency with low cooling requirements. Also, blocking voltages up to 500 volts permit the smallest packaging yet made possible for high power control. Operation at 125 C is permissible with derating.

TO-5 PACKAGE (E)

The TO.5 package configuration also has a low conduction drop which permits operations from 25 ma to 1 ampere (types 2N1595-2N1599) and 5 ma to 1 ampere (Types TCR 251 - TCR 4001). Operating and storage temperature range is from -65 C to 150 C . Typical turn-on time is 0.2 to 0.3 microseconds; turn-off time is 1.0 to 1.2 microseconds.

T0-18 PACKAGE (F)

Transitron's Silicon Controlled Switch is also a PNPN bistable unit featuring high gate sensitivity and low holding currents for low level switching from 1 ma to 200 ma. Further, these units are particularly useful in controlled rectifier trigger circuits as these switches offer precise and consistent control of the firing angle, Typical turnon time is 0.2 microseconds; turn-off time, 1.0 microseconds.
for information on Transitron's complete line of Controlled Rectifiers and Controlled Switches check 155 Reader Service Card, or write for Bullotin TE-1356

SILICON CONTROLLED RECTIFIERS					
Type	Winimum Peák Reverse Voltage and Minimum Forward Breakover Voltage (volts)	Maximum Average Forward Current (amps) at $25^{\circ} \mathrm{C}$ case at 100° case		Pack. Config. uration	Package
2N683	100.	16.	8.	Ko" hex	C
2N685	200	16.	8.	\% ${ }_{6}$ " hex	c
2N687	300.	16.	8.	$\%_{0}{ }^{\prime \prime}$ hex	C
2N688	400.	16.	8.	$Y_{0}{ }^{\prime \prime}$ hex	C
2N689	500.	16.	8.	\%," hex	C
2N1844	100.	10.	4.	Ko" hex	c
2N1846	200.	10.	4.	\%o" hex	c
2N1848	300.	10.	4.*	\%o" hex	C
2N1849	400	10.	4.0	$\mathrm{K}_{0}{ }^{\text {a }}$ hex	C
2N1850	500.	10.	4.	\% ${ }^{\prime \prime}$ hex	C
TCR1005	100.	5.0	3.0	\%o." hex	0
TCR2005	200.	5.0	30	\%/10" hex	D
TCR3005	300.	5.0	3.0	\%o" hex	0
TCR4005	400	5.0	3.0	\%/8" hex	D
2N1600	50.	3.0	$3.0{ }^{\circ}$	hos hex	D
2N1601	100	3.0	$3.0{ }^{\circ}$	1/6" hex	D
2N1602	200.	3.0	$3.0{ }^{\circ}$	\%/6" hex	D
2N1603	300	30	30°	\%/6" hex	0
2N1604	400.	3.0	$3.0{ }^{\circ}$	\%/" hex	D
2N1772A	100.	4.7	3.	hto hex	0
2N1774A	200	4.7	3.	\%/s" hex	D
2N1776A	300.	4.7	3.	\%ho hex	D
2N1777A	400	4.7	3.	$h_{0}{ }^{\text {a }}$ hex	0
2N1772	100	4.7	3.	'how hex	D
2N1774	200.	4.7	3.	\%/s" hex	0
2N1776	300.	4.7	3.	\%o" hex	D
2N1777	400.	4.7	3.	\%/6" nex	D
2N1595	50.	0.6.	10°	T0.5	E
2N1596	100.	$0.6{ }^{\circ}$	10°	T0.5	E
2N1597	200.	$0.6{ }^{\circ}$	1.0°	10.5	E
2N1598	300.	$0.6{ }^{\circ}$	1.0°	T0.5	E
2N1599	400.	$0.6{ }^{\circ}$	1.0°	T0.5	E
$\begin{aligned} & \text { 2N2011 } \\ & \text { (TCR1001) } \end{aligned}$	100.	$0.6{ }^{\circ}$	1.0°	T0.5	E
2N2012 (TCR2001)	200.	$0.6{ }^{\circ}$	1.0 *	T0.5	E
2N2013 (TCR3001)	300.	$0.6{ }^{\circ}$	1.0°	T0.5	E
2N2014 (TCR4001)	400.	0.6.0	1.0^{*}	10.5	E
SILICON CONTROLLED SWITCHES					
2N948 (TSW31S)	30.	$0.2^{\bullet \bullet}$	$0.2 \dagger$	T0.18	F
$\begin{aligned} & \text { 2N949 } \\ & \text { (TSW61S) } \end{aligned}$	60.	0.2°	$0.2 \dagger$	T0-18	F
$\begin{aligned} & \text { 2N950 } \\ & \text { (TSW101S) } \\ & \hline \end{aligned}$	100.	0.2**	$0.2 \dagger$	T0-18	F
2N951 (TSW201S)	200.	0.2°	$0.2 \dagger$	r0-18	F
- At $80^{\circ} \mathrm{C}$ case		$25^{\circ} \mathrm{C}$ ambient $\quad \dagger$ At 75° amblent			

SILICON DIODES - advanced techniques insure long-ferm mechanical and electrical stability

COMPUTER TYPES					
Type		Maximum Average Current @ $25^{\circ} \mathrm{C}$ (mA)	$\begin{gathered} \text { Maximum } \\ \text { Recovery } \\ \text { TIme } \\ \text { (musec) } \end{gathered}$	Maximum Capacitance at 0 Volts ($\mu \mathrm{\mu}$)	Pactage
10914*	75.	75.	4.	4.	A
1N916*	75.	75.	4.	2.	A

"Alse avaMatie In miere pactage

MICRO ZENER DIODES (SPECIFICATIONS AT 25 C)						
Iype	Mominal ${ }^{\circ}$ Voltage (volts)	$\begin{gathered} \text { Test } \\ \text { Current } \\ \text { (mA) } \end{gathered}$	Maximum Resistance (0hmsi)	$\begin{gathered} \begin{array}{c} \text { Maximum } \\ \text { Inverse Current } \\ @ \\ =-1 \text { Volt } \\ (\mu A) \end{array} \\ E_{5} \end{gathered}$	Typical Forward Voltage $@ 5.0 \mathrm{~mA}$ (volts)	$\begin{aligned} & \text { Pack- } \\ & \text { age } \end{aligned}$
TMD. 01	5.1	5	15	1.0	0.75	-
TMD. 02	5.6	5	15	1.0	0.75	B
TMD. 03	6.2	5	15	1.0	0.75	8
TMD. 04	6.8	5	15	1.0	0.75	B
TMD-05	7.5	5	15	0.1	0.75	-
TMO. 06	8.2	5	15	0.1	0.75	-
TMD-07	9.1	5	15	0.1	0.75	8
TMD-08	10.0	5	15	0.1	0.75	B
TMD 09	11.0	5	20	0.1	0.75	B
TMD 10	12.0	5	20	0.1	0.75	B
- Voltage Tolerance $\pm 10 \%$. For $\pm 5 \%$ Voltage Tolerance use " A " sulfix (i.e. TMMD-01A).						

FAST SWITCHING

	Maximum Inverse Operating Voltage (volts)	Maximum Average Forward Current @ $25^{\circ} \mathrm{C}$ (mA)	Maximum Recovery Time $(\mu \mathrm{sec})$	Pack- age
TMD24	50.	50.	0.3	-
TMD25	100.	50.	0.3	B
TMD27	200.	50.	0.3	B

VERY FAST SWITCHING

TMDSO	60.	20.	.004	B
MEWI COMPUTER TVPE DIODES AVAILABLE IN MICRO PACKAGE				
TMDS4 (1NO14)	75.	75.	.004	B
TMO56 (1N916)	75.	75.	.004	B

HIGH CONDUCTANCE TYPES

Type		Maximum average Forward Current $@ 25^{\circ} \mathrm{C}$ (mA)	Maximum Inverse Current ($\mu \mathrm{A}$ @ volts)	$\begin{aligned} & \text { Pact- } \\ & \text { age } \end{aligned}$
TMD-41	50.	75.	0.25 @ 50	8
TMDD-42	100.	75.	0.25 @ 100	-
TMD-45	200.	75.	0.25 @ 200	8

MICRO-STABISTORS

Type	Forward Voltage @ 1 mA DC (volts)	Maximum formard Voltage © 20 mA DC (volts)	Maximum Dynamic Resistance @ 1 mA @ 1 KC (ohms)	Maximum Inverse Current @ -2 volts DC ($\mu \mathrm{A}$)	Package
TM020	0.64 $\pm 10 \%$	0.85	60	0.5	-
TMD40	$0.55 \pm 10 \%$	0.85	60	0.5	B

IN914 AND IN916 COMPUTER TYPE SILICON DIODES
Transitron now offers the industry superior reliability in diffused silicon computer diodes. Low capacitance and milli-microsecond switching are combined with low inverse currents, high breakdown voltages and good forward switching characteristics. A double plug package insures added strength and strain relief at both ends.

The IN914 and 1N916 will find applications wherever fast switching and high reliability diodes are required.
For Complefe Information on Transifron's Computer Type Silicen Diodes, check 156 Reader Sorvice Cerd, or write for Bullotin TE-1350G

SILICON MICRO DIODES

WITH A TRUE HERMETIC SEAL!

With the introduction of all-glass packag. ing, Transitron now has been able to achieve TRUE hermetic sealing for its entire line of silicon microdiodes! . . . All units are completely compatible with present circuitry . . . All provide the same excellent performance as larger Transitron devices in $1 /$ th $^{\text {th }}$ to $1 / 2$ th the space. Glass is melted around the silicon body that forms the working part of the device. Absolute hermetic sealing makes this the most reliable and efficient micro-regulator ever developed - ideal for voltage regulating and reference service wherever space and weight economies are required.

For Complete Information on these Trensitren
Micre Zener Diodes, check 157 Reoder Service Card

SEE TRANSITRON'S COMPLETE LINE OF SEMICONDUCTORS AI WESCOM EOOTHS 3502-3504

SILICON T superior b extended

Transitron, pionee ducer of the ind ductors now offers

PNP 2N1131 2N1132
NPN 2N696 2N697
2N698
2N699
2N1252
2N1253
2N706
2N1420

Tyoe	
2 21131	40
2N1132	40
2N696	60
2 N 697	60
2 N 698	100
2N699	100
2 L 1252	30.
2 L 1253	30
2N706	25
2 N 1420	60

For Complete Infor 158 Reader Service

MINUTEMAN T and Titan Hig improvements semiconductor improved: Low Power NPN Si mediate Powe These lypes ar Transitron Distr

N TRANSISTORS - with or beta linearity permit ded operating range

LIBRARY OF APPLICATIONS INFORMATION

Transitron now has available additional literature covering circuit design, operation, and application of various semiconductor types: -

- the biasing of Silicon Controlled Rectiflers and Switches (AN-1356B-7B)
- THE TUNNEL DIODE CIRCUIT DESIGN HANDBOOK (AN-1359A)
- THE SILICON CONTROLLED RECTIFIER Theory of Operation - Application Notes - Circuits (AN-1356A)
- THE BINISTOR - Circuir Design Informafion and Application Notes (AN-1360A)
- THE TRANSWITCH - Circuit Design Information and Application Notes (AN-1357A)

PLUS
 "25 Tips on How to Buy Semiconductors" FREE!

Write directly to Transitron Electronic Corporation, Wakefield, Mass. for your copies. Or contact your nearest Transitron Industrial Distributor shown on the other side of this foldout.

APPLICATION ASSISTANCE

If you would like application assistance on immediate projects in the selection of

- MICRO-COMPONENTS
- CONTROLLED RECTIFIERS
- SILICON TRANSISTORS
- sIlICON DIODES
- Other transitron types
contact your nearest Transitron Field Office, or write directly to Transitron Electronic Corporafion outlining your requirements.

WANT MORE INFORMATION?

If you would like to have more complete information on any of the new Transitron semiconductor types shown on these pages, please circle the appropriate Reader Service Number(s) on the Electronic Design Reader Service Card.

PRESENTED BY THESE AUTHORIZED TRANSITRON INDUSTRIAL DISTRIBUTORS

BELL ELECTRONIC CORP.
225 Highland Cross
Rutherford, N.J.
WEbster 3-1460

H. L. DALIS, INC.
35-35 24th St.
Long Island City 6, N.Y.
EMpire 1-1100

FEDERAL ELECTRONICS, INC.
Vestal Parkway, East
Binghamton, N.Y.
Ploneer 8-8211

MILO ELECTRONICS CORP.
530 Canal St.
New York 13, N.Y.
BEekman 3-2980

RADIO ELECTRIC SERVICE CO.
of PENNA., INC.
701 Arch St.
Philadelphia, Pa.
WAlnut 5-5840

RADIO EQUIPMENT CORP.
147 E . Genesee St.
Buffalo 3, N.Y.
TL 6-1415

RADIO and ELECTRONIC PARTS CORP.

3235 Prospect Ave. Cleveland 15, Ohio UTah 1-6060

Transitron M Micro

TRUE HERMETIC ASSURES RELIAI UNDER A WID OPERATING CO

Development of the MICROtransistor in an hermetical sents a major step forward with conventional "metal ca glass packaging embodies hermetic seal between lei stantially increased; possibi
For Complete Information, che Bulletins PE-78, PE-79.

A Transitro tron field of home office. listed on the

Micro-T- the first silicon diffused mesa ro-Transistor in an all glass package!

AETIC SEAL
ELIABLE PERFORMANCE WIDE RANGE OF CONDITIONS

MICRO-T - first silicon diffused mesa micrometically sealed all-glass package - repreorward in microminiaturization. As compared etal can" configurations, the MICRO-T's hard nbodies a significant improvement in the een leads and package. Reliability is subpossibility of leakage is sharply reduced.
fion, check 159 Reader Service Card or write for

tron Sales Engineer is as near as your telephone. Transioffices are well staffed and in constant contact with the ce. For orders from 1 to 999 call the nearest distributor the foldout page

See Transitron's complete line of semiconductors of WESCON Booths 3502- 3504

TEAR OUT AND SAVE

ship in Semiconductors"

Updated Transistor List
Contains Many Improved Types

Over 600 new types are included in this year's Transistor Data Chart. A high percentage of last year's types are upgraded in electrical characteristics such as power dissipation and cut-off frequency. Improvements in transistor fabrication techniques have resulted in the availability of high-power, highfrequency devices plus fastswitching epitaxial transistors.

The increasing quantity of types, of course, presents a growing problem to the design engineer in search of a particular one. Less than two dozen former types were abandoned. The addition of types bearing new JEDEC numbers, with marginal improvements (if any) over existing types, adds to the selection problem.

Electronic Design's organization of its Transistor Data Chart into basic types and its listing of types by the increasing value of a key characteristic make selection as straight-forward as possible.
If you would like a free reprint of this section, turn to the Reader-Service Card and circle 251.

July 19-Case for Switching Speed

Due to space limitations, we were forced to postpone publication of a provocative argument posed by Charles Askanas, Engineering Project Manager al Luma. Iron Electronics. Titled "Optimum Test Limit for Transistor SwitchingCircuit Measurements," the article offers a iustification for the use of 20 and 80 per cent test points rather than 10 and 90 per cent points, presently used to characlerize switching devices. Be sure to read the analysis in the July 19 is. sue; your comments on the validity of the argument are invited.

CIRCLE 70 ON READER-SERVICE CARD

- CIRCLE 155 THRU 160 ON READER-SERVICE CARD

Your profits in the next decade will be greatly benefited by the right choice of supplier of solid-state materials.

The key question is what criteria to use in making the choice. The simplest, most reliable criterion has to be PAST PERFORMANCE. Judged on this basis the Electronic Chemicals Division of Merck \& Co., Inc. deserves your attention. In just four short years, it has achieved these exclusive major breakthroughs:
1958 Float zone, vacuum refined, doped single crystal silicon - 1959 Z-Met Thermoelectric materials 1960 Epitaxial silicon N+N wafers and III-V Compounds - 1961 Epitaxial germanium P+P wafers

When you hitch your product development to Merck materials research you are enlisting a proved producer. If you want to be the first to exploit new solid-state materials breakthroughs, join the ranks of Merck customers today. Write, wire or phone your needs, problems, hopes.

- Tradomaik

Electronic
 Chernicals Division
 MERCK \& CO. Inc.

RESEARCH and PRODUCTION FOR BETTER SOLID-STATE MATERIALS

Latest Listings of
 Military Approved Transistors

To encourage the use of improved transistor types in the design of new military equipment, MIL-STD-701A has been updated, with Department of Defense approval, by MIL-STD-701B. New types have been added, some older types have been dropped and several "guidance" types have been upped to the "preferred" category. MIL-STD-701B types are grouped in a convenient application chart shown in Table 1. A list of the DOD, as well as single-service types with specification numbers and issue dates is in Table 2.

Table 1

			Germanium		Silicon	
			PNP	NPN	PNP	NPN
power	Audio ($<300 \mathrm{mw}$)	Prelerred Guidance	2N526 2N652A 2N467 2N220	[.....	2N1026A	2N335
	Medium frequency (3 to 30 mc)	Preferred Guidance Preferred	2N1309	2N1308	2N1118	2N338
	High írequency ($>30 \mathrm{mc}$)	Guidance	$\begin{array}{\|l} \text { 2N384 } \\ \text { 2N700A } \\ \text { 2N1142 } \end{array}$			$\begin{aligned} & 3 N 35 \\ & 2 N 1613 \end{aligned}$
Switching	$\begin{array}{\|l\|} \hline \text { Low speed (}>5 \\ \mu \mathrm{sec} \text { total time }) \end{array}$	Preferred Guidance	2N398	\cdots	2N329A	(t)
		Preferred	$\begin{array}{\|l\|} \hline \text { 2N404 } \\ \text { 2N428 } \end{array}$	2N358A		
	Medium speed (1 to $5 \mu \mathrm{sec}$)		$\begin{aligned} & \text { 2N428 } \\ & \text { 2N396A } \end{aligned}$	2N388		
		Guidance	2N599		2N491	2N337
			2N705	2N1310	2N1119	
		Preferred				2N706
	Fast speed ($<1 \mu \mathrm{sec}$)	Guidance	$\begin{aligned} & \text { 2N559 } \\ & \text { 2N1500 } \\ & \text { 2N695 } \\ & \text { 2N1195 } \end{aligned}$		2N1132	2N560 2N1893
	Bilateral switch (medium speed)	Preferred Guidance	……	\ldots	-787
Power		Preferred				
	300 mw to 3 w	Guidance	2N1039 2N1041	,	2N1234	2N341
	31030 w	Prelerred	2N539	\%		2N498
		Guidance	2N1184B	2N326		2N1485
		Preferred	$\begin{aligned} & \text { 2N297A } \\ & \text { 2N1358 } \end{aligned}$		
	$>30 \mathrm{w}$	Guidance	$\begin{aligned} & 2 \mathrm{~N} 1120 \\ & 2 \mathrm{~N} 1165 \\ & \text { 2N1046 } \end{aligned}$	+.....		$\begin{aligned} & \text { 2N389 } \\ & 2 \mathrm{~N} 424 \\ & \text { 2N1050 } \\ & \text { 2N1016B } \\ & \hline \end{aligned}$

Type	Specification	Date
2N43A	MIL-T-19500/18(USAF)	Amend 2. 10 November 1958
2N44A	MIL-T-19500/6(USAF)	Amend 1.10 April 1958
2N78A	MIL S-19500/90(USAF)	23 May 1960
2N117	MIL-T-19500/35(NAWY)	15 March 1958
2N118	MIL T $19500 / 35$ (NAVY)	15 March 1958
2N119	MIL.T 19500/35(NAWY)	15 March 1958
2N118	MIL T 19500/2(JAN)	12 December 1957
2N123	MIL-T-19500/30(USAF)	4 February 1959
2N128	MIL T 19500/9A(JAN)	12 June 1959
2N129	MIL-T 19500/8(SigC)	21 July 1958
2N144	MIL-T-19500/29(USAF)	Dropped
2N158	MIL-S 19500/24A(JAN)	27 November 1959
2N167A	MIL S. 19500/11A(USAF)	23 May 1960
2N173	MIL-T-19500/12(NAW)	Dropped
2N174	MIL-T-19500/13A(JAN)	8 January 1953
2N200	MIL T-19500/5	Dropped
2N220	MIL- T 19500/1	14 June 1957
2N240	MIL S. 19500/25A(JAN)	5 November :959
2N243	MIL T 19500/34(USAF)	Dropped
2N244	MIL T 19500/34(USAF)	Dropped
2N245	MIL T 19500/14(USAF)	Dropped
2N246	MIL T 19500/15(USAF)	Dropped
2N274	MIL-T 19500/26(SigC)	3 October 1957
2N297A	MIL T 19500/36A(SigC)	17 November 1953
2N299	MIL T $19500 / 39(\mathrm{SigC})$	Dropped
2N300	MIL- T. 19500/55(SigC)	21 July 1958
2N325	MIL S. 19500/40(JAN)	29 February 1960
2N326	MIL S 19500/40(JAN)	29 Februan 1960
2N328A	MIL S $19500 / 110$ (SigC)	Amend 1 13 May 1960
2N329A	MIL-S 19500/111(SigC)	Amend 113 bilay 1960
2N331	MIL T 19500/4A	16 January 1958
2N332	MIL.T 19500/37A(NAVY)	18 June 1959
2N333	MIL T 19500/37A(NAVY)	18 June 1959
2N334	MIL-T 19500/37A(NAVY)	18 June 1959
2N335	MIL T 19500/37A(NAVY)	18 June 1959
2 N 337	MIL S 19500/69C(NAVY)	14 October 1950
2N338	MIL S $19500 / 69$ (NAVV)	14 October 1950
2N342	MIL-S 19500/16B(JAN)	24 February 1950
2N343	MIL S 19500/16B(JAN)	24 February 1950
2N358A	MIL S 19500/63B(JAN)	23 May 1960
2N384	MIL S-19500/27A(JAN)	20 January 1960
2N388	MIL T 19500/65(NAVY)	20 March 1959
2 N 393	MIL S 19500/77A(SigC)	30 October 1957
2N396A	MIL S 19500/64A(NAVY)	27 October 1959
2N404	MIL T 19500/20(USAF)	Amend 23 March 1959
2N416	MIL T 19500/56A(SIgC)	3 February 1959
2N417	MIL T- 19500/57A(SIgC)	3 February 1959
2N422	MIL T 19500/66A(NAVY)	26 June 1959
2N425	MIL T 19500/41A(SigC)	26 January 1959
2N426	MILT 19500/42A(SigC)	26 January 1959
2 N 427	MIL T $19500 / 43 \mathrm{~A}(\mathrm{SIgC})$	26 January 195\%
2N428	MIL S $19500 / 448($ SigC)	
2N431	MIL T 19500/21(USAF)	Amend 110 sper 1958
2N432	MIL. T 19500/22(USAF)	Amend 110 toril 1958
2N433	MIL T 19500/23(USAF)	Amend 110 spril 1958
2N461	MIL T 19500/45(USAF)	7 July 1958
2N463	MIL T 19500/70(NAVY)	14 May 1959
2N464	MIL T $19500 / 49 \mathrm{~B}(\mathrm{~S}, \mathrm{gC})$	3 February 1959
2N465	MIL- $19500 / 50 \mathrm{~A}(\mathrm{SigC})$	3 February 1957
2N466	MIL S 19500/51B(SigC)	17 August 1950
2N467	MIL T 19500/52B(SigC)	3 February 1957
2N489	MIL- T-19500/75(USAF)	1 July 1959
2N490	MIL. T-19500/75(USAF)	1 July 1959
2N491	MIL T 19500/75(USAF)	1 July 1959
2N492	MIL. 19500/75(USAF)	1 July 1959
2N493	MIL T 19500/75(USAF)	1 July 1959
2N494	MIL T 19500/75(USAF)	1 July 1959
2N495	MIL T 19500/54A(SigC)	13 August 1959
2N496	MIL S 19500/85(SigC)	Amend 122 March 1960
2N497	MIL. T-19500/74(NAVY)	30 June 1959
2N498		
2N499	MIL T-19500/72A(SigC)	4 January 1960
2N501A	MILT. $19500 / 62(\mathrm{SigC})$	5 December 1953
2N502A	MIL S 19500/112(SigC)	4 April 1960
2N526	MIL-S-19500/60C(JAN)	29 July 1960
2N537	MIL S 19500/100(SigC)	30 November 1959
2N539	MIL. $19500 / 38$ (NAWY)	28 May 1958
2N545	MIL-S.19500/84(NAVY)	24 February 1960
2N559	MIL-S 19500/152(SIgC)	7 December 1960
2N560	MIL-S 19500/73A(JAN)	29 July 1960
2N574	MIL-T-19500/46(SigC)	22 May 1960

Type	Specitication	Date
2N575	MIL T. 19500/47(SigC)	22 May 1960
2N599	MIL-S.19500/66(NAWY)	25 January 1961
2N624	MIL.T 19500/82(SigC)	10 August 1959
2N656	MIL-T-19500/74(NAW)	30 June 1959
2N657	MIL- 19500/74(NAW)	30 June 1959
2N665	MIL-S-19500/588(JAN)	12 July 1960
2N681	MIL-S.19500/108(NAWY) Controlled Rectifiers	22 March 1960
2N682	MIL-S-19500/108(NAVY)	22 March 1960
2N683	Controlled Rectifiers MIL S 19500/108(NAVY) Controlled Rectıfiers	22 March 1960
2N684	MIL-S.19500/108(NAVY) Controlled Rectifiers	22 March 1960
2N685	MIL S 19500/108(NAVY) Controlled Rectifiers	22 March 1960
2N686	MIL S 19500/108(NAW) Controlled Rectifiers	22 March 1960
2N687	MIL S 19500/108(NAVY)	22 March 1960
2N688	Controlled Rectifiers MIL S. 19500/108(NAWY) Controlled Rectifiers	22 March 1960
2N694	MIL S 19500/160(SigC)	9 December 1960
2N695	MIL S 19500/135(NAWY)	17 October 1960
2N696	MIL S 19500/99A(SigC)	1 April 1960
2N697	MIL-S 19500/99A(SIgC)	1 April 1960
2N700A	MIL S 19500/123(SigC)	1 July 1960
2N702	MIL S 19500/153(SIGC)	7 December 1960
2N703	MIL S 19500/153(SIgC)	7 December 1960
2N705	MIL S 19500/86(NAVY)	6 June 1960
2N706	MIL S 19500/120(SigC)	2 June 1960
2N716	MIL S 19500/154(SIEC)	7 December 1960
2N1000	MIL T-19500/79(SigC)	22 June 1959
2N1001	MIL S $19500 / 81(\mathrm{SigC})$	17 June 1959
2N1002	MIL S 19500/83(SigC)	10 August 1959
2N1011	MIL T 19500/67(SigC)	22 January 1959
2N1025	MIL S 19500/78A(S,gC)	7 December 1959
2N1026	MIL S 19500/78A(S'gC)	7 Decermber 1959
2N1026A	MIL S 19500/78AISIBC)	7 December 1959
2N1039	PAIL S 19500/89(NAVY)	21 July 1960
2N1041	MIL S 19500, '89(NAVY)	21 July 1960
2 N 1042	MIL S 19500/137(SigC)	8 September 1960
2N1043	MIL S $19500 / 137(S 18 C)$	8 Seplember 1960
2N1044	MIL S 19500/137(SigC)	8 September 1960
2N1045	MIL S 19500/137(SigC)	8 September 1960
2N1046	MIL S 19500/88(NAVY)	21 July 1960
2N1072	MIL S $19500 / 1631$ SIGC)	5 January 1961
2N1082	MIL S $19500 / 103$ (SigC)	18 December 1959
2N1094	MIL S 19500/161(SigC)	9 December 1960
2N1118	MIL S 19500/138(SigC)	9 September 1960
2N1119	MIL S 19500/139(SigC)	9 September 1960
2 N 1120	MIL T 19500/68(SigC)	10 February 1960
2 N 1142	MIL S 19500/87(NAVY)	15 August 1960
2N1158A	MIL S 19500/113(SigC)	4 April 1960
2N1183	MIL S 19500/143(SigC)	10 October 1950
2N1183A	MIL S 19500/143(SigC)	10 October 1950
2N11838	MIL S 19500/143(SigC)	10 October 1950
2N1184	MIL S 19500/143(SIGC)	10 October 1950
2N1184A	MIL S $19500 / 143(\mathrm{SigC})$	10 October 1950
2N1184B	MIL S $19500 / 143$ (SIGC)	10 Oclober 1950
2N1195	MIL S $19500 / 71$ B(JAN)	29 July 1960
2N1196	MIL S 19500/164(SigC)	6 January 1961
2N1197	MIL S 19500/165(SıgC)	6 January 1961
2N1199A	MIL S 19500/131(SIgC)	25 July 1960
2N1200	MIL S $19500 / 105(\mathrm{SigC)}$	28 December 1959
2 N 1201	MIL S $19500 / 101\left(S_{\text {S C }}\right.$ C)	30 November 1960
2N1302	MIL S 19500/126(NAVY)	14 October 1960
2N1303	MIL S 19500/126(NAVY)	14 October 1960
2N1304	MIL S 19500/126(NAVY)	14 October 1960
2N1305	MIL S 19500/126(NAVY)	14 October 1960
2N1306	MIL S 19500/126(NAW)	14 October 1960
2N1307	MIL S 19500/126(NAVY)	14 October 1960
2N1308	MIL S 19500/126(NAWY)	14 Oclober 1960
2N1309	MIL S 19500/126(NAVY)	14 October 1960
2N1310	MIL S 19500/136(NAVY)	6 December 1960
2N1358	MIL S 19500/122(SigC)	20 June 1960
2N1411	MIL S 19500/133(SigC)	3 August 1960
2N1412	MIL S 19500/76(NAVY)	4 February 1960
2N1500	MIL S 19500/125(SigC)	11 July 1960
3N35	MIL S $19500 / 80 \mathrm{~A}(\mathrm{SIGC})$	30 October 1959

SPECIFY ARNOLD IRON POWDER CORES ... COMPLETE RANGE OF SIZES AND SHAPES FOR YOUR DESIGIS

Arnold offers you the widest range of shapes and sizes of iron powder cores on the market.
In addition to toroids, bobbin cores and cup cores-typical groups of which are illustrated below-Arnold also produces plain, sleeve and hollow cores, threaded cores and insert cores, etc., to suit your designs. Many standard sizes are carried in watehouse stock for prompt shipment, from prototype lots to production quantities. Facilities for
special cores are available to order.
The net result is extra advantage and assurance for you. No matter what shapes or sizes of iron powder cores your designs require, you can get them from a single source of supply - with undivided responsibility and a single standard of known quality. And Arnold's superior facilities for manufac. ture and rest assure you of dependably uniform cores, not only in magnetic properties but also in high mechanical
strength and dimensional accuracy. - For more information on Arnold iron powder cores, write for a copy of our new 36-page Bulletin PC-109A. The Arnold Engineering Company, Main Office and Plant, Marengo, Illinois. adoress otert. eo.

CIRCLE 71 ON READER-SERVICE CARD

A BASIC GUIDE TO

PRECISION POTENTIOMETERS

The Raytron Catalog of Precision Potentiometers describes, illustrates and provides electricai, mechanical and general specifications on most of our standard units. Drawings, temperature rating curves and general engineering data are also included to enable rapid, accurate selection of potentiometers which will meet all requirements, normal or special.

Whatever your specifications in single-turn, linear and non-linear units, the name Raytron guarantees high-precision, exact performance and environmental compliance...at minimum cost.

WRITE FOR YOUR PERSONAL CATALOG OF RAYTRON PRECISION POTENTIOMETERS.

INSTRUMENTS FOR INDUSTRY, INC.
101 NEW SOUTH ROAD, HICKSVILLE, L. J., N. Y. CIRCLE 72 ON READER-SERVICE CARD

Transient Control Device

Protects Rectifiers

From Surge Overloads

HIGH-VOLTAGE transients, appearing across power supplies when an inductive load is suddenly turned off, can be effectively reduced by a newly developed gas-tube device. Conventional means to avoid rectifier burnout include the use of relatively expensive, high piv diodes or Zener devices.

Low Cost Diodes Can Be Used

 With Transient ProtectorLow cost, 200-v piv rectifiers can be used with transient control, de-
veloped by Ledex, Inc., Dayton, Ohio. Transient peaks as high as $1,400 \mathrm{v}$ have been applied to rectifier and bridge arrangements using the transient control with no rectifier failures resulting. See Fig. 1. The heart of the device consists of a gas tube which ionizes at a critical voltage (200 v in present units) thus creating a low-impedance shunt for excessively large pulses. For most power-supply applications, the 200 -v ionization potential is adequate; higher voltage ratings and low-

Fig. 1. Oscilloscope trace across inductive load at output of a bridge rectifier. In (a) is shown a 1,400-v pulse (200-v/division) appearing across the de output while (b) shows the clipping action achieved by addition of the transient control.

Fig. 2. Basic rectifier bridge circuit showing current flow resulting from suddenly opening the inductive load circuit.
er voltage ratings can be supplied on a custom basis if required.

Device Protects Against Line

As Well As Load Surges

In the full-wave bridge circuit shown in Fig. :2, current I would flow as indicated from an inductive load when the switch is opened. Without the transient control, a highvoltage pulse would appear across the four diodes and breakdown is possible: should one diode become shorted, the diode on the adjacent leg of the bridge would be destroved in at short time.

Should a transient occur at the ac input, the transient control permits current flow through the low impedance or conducting diodes rather thatl through the high-imperdance bridge arms. Thus, positive or negative spikes are clipped at the $200-v$ level.

In addition to the tramsient control. Ledex is packaging a protected bridge rectifier, incorporating four rectifiers plus a built-in control rated as follows: 115 v ace input, 100 v de output, maximum surge $\overline{\text { on }}$ amp for 8 msec.

Transient controls, part A-16800001 are packed 10 to a carton; prices per carton are $\$ 0(0)$) for one carton, $\$ 18.50$ ea for $2-9$ cartons and $\$ 16.00$ ea for 10-49 cartons. The protected bridge rectifier, part A-46501-()01, is $\$ x .1 \overline{5}$ ea in $1-9$ quantities, $\$ 7.40$ ea in $10-24$ lots and $\$ 6.80$ ea in $2 \overline{2}-99$ quantities. A value analysis kit RTC, containing one protected bridge rectifier and one transient control, is available at $\$ 11.00$ ea.

For further information on these devices, turn to the Reader-Service Card and circle 252.

Write for technical date on the complete line of "KEMET" Solid Tantalum CapacitorsI

Only

"KEMET"

has the widest choice of High-Voltage

SOLID TANTALUM CAPACITORS

... at LOW Microfarad Values!

J-SERIES

(Polar Type)
.0047 to 330 MICROFARADS

111

Temperature Range:
-55 to $+125^{\circ} \mathrm{C}$

N-SERIES

(Non-Polar Type)
.0024 to 160 MICROFARADS

Temperature Range:
-55 to $+105^{\circ} \mathrm{C}$

J-Serles meets or exceeds MIL-C-26655A
KEMET offers you the only full line of high-voltage solid tantalum capacitors for a multitude of military/industrial applications. J-Series and N-Series are available in working voltages of 75 , $60,50,35,20,15,10$, and 6 -in standard E.I.A. values with $\pm 5 \%, \pm 10 \%$, and $\pm 20 \%$ tolerances. Low leakage characteristics are excellent. Four J.Series case sizes conform to MIL.C.26655A with or without insulating sleeve. Leads are solderable and weldable. All KEMET types have passed approved environmental tests. Whatever your solid tantalum capacitor needs, meet them with KEMET's complete line! Kemet Company. Division of Union Carbide Corporation, 12901 Madison Avenue, Cleveland 1, Ohio.

it's the CONTACT that counts!

Alden top-connected contact glve you:
More reliable electrical contact

- More secure mechanical grip
- Minimum electrical resistance

Each lead has individual strain relief because wire is doubled back through contact tab. Punch press contact design permits rapid heat transfer - eliminates unreliable cold solder joints as in screw machine contacts. Danger of insulation pull back is eliminated by bringing wire insulation right into molded clip pocket.

These unique Alden molding techniques in connector design drastically reduce the number of parts required and make possible multi-contact connectors of amazing basic simplicity and reliability.

Resilient Alden contacts can be included in any type of molded insulation for any combination of contacts. Hundreds of standard off-the-shelf designs are quickly available - with of without leads - of as part of unit-molded cables.

Our Customer Department will work closely with you on any connecting or cabling problems. A letter with description or sketch will enable us to provide recommendations or samples at once.

New, flamepraef. HIgh veltage First majer advance in connector standard assemblat connactors cennetars now available in high- roliatility since patting offers fool. in non-interchangeable layouts with from density flame-retardant polyethylone. proof tamper-proof connections for 2 to 11 contacts, miniature connectors. Light. compact connectors lor applica. trouble-free operation. Alden "IMI" plain or shielded, for carrying Dower or tions up to 30 KVDC and UD to $250^{\circ} \mathrm{F}$ connactors and cables (wies, contacts. signal, miniature plugs and sockefs;
without distertion.
or other inserts) are integraily molded signal connectors: and CRT connoctors in a single hot shot of insulation so that
material forming the connectors and maverias the wires forms a single con-
covering tinu ous, bonded insulation.

7139 North Main St., Brockion, Mass.
CIRCLE 74 ON READER-SERVICE CARD

Coaxial Cavity Increases Magnetron Frequency Stability

THE USE of the coaxial cavity principle in magnetron design results in 5 to 10 times better frequency stability. Model SFD-303 magnetron, designed for X -band use, operates at 50 per cent efficiency, delivers minimum peak power of 1 megawatt and an average power of 1 kw . Its light weight of 45 lb makes it ideal for long-range airborne radar systems. Greater frequency stabilization makes steady state operation possible at the optimum impedance point.

The SFD-303 coaxial magnetron, manufactured by SFD Laboratories, 800 Rahway Ave., Union, N. J., employs a new concept in anode design which results in the significant improvements in frequency stability. Typically, side-lobe ratios are greater than 10 db , missing pulses less than 0.2 per cent and pulling factor is less than 6 mc at the megawatt level. At $2-\mu$ sec pulse lengths, the rf band-width is less than 0.7 mc.

The principle on which the model

303 is based allows for high-frequency magnetrons to be built with large interaction areas so that the power dissipated per unit area of the anode and cathode is very low. Normally, when such large interaction areas are used, serious problems of mode control exist. Control of the mode in which oscillations begin is lost as the voltage pulse rises on the magnetron.
The approach which has here-tofore been taken to the problem of mode control consists in designing the multi-cavity anode circuit to produce a relatively large frequency separation between the desired, or pi-mode, and its adjacent neighbors. Both strapped and rising-sun structures are based upon this philosophy. These techniques insure mode stability once the proper mode has been established, but do not insure its build-up in the presence of competing modes whose starting voltages fall in the same general range. To overcome the ease of starting such an unloaded mode the practice has
been to introduce some asymmetry into the anode block to orient both components of the doublet equally to the output slot.

In the coaxial structure, the design insures correctly phased rf currents at the normally short-circuited ends of the resonators.
The figure shown illustrates the main features of the anode. Alternate resonators are cut througi to the coaxial cavity which is dimensioned to resonate in the circular electric ($T E_{011}$) mode. The circumferential currents associated with this mode have the same phase at all points around the periphery of the cylinders. Since the resonators present a low impedance at their back ends, they are well matched to the impedance of the coaxial cavity as seen from the inner cylinder wall cut through positions.

Operation of the large cavity in the $T E_{\text {w, }}$ mode insures currents and voltages of the same phase in alternate resonators. Mutual flux linkage between adjacent resonators is relied upon to excite the other half of the resonators with equal, but oppositely phased, currents giving rise to a pure pi-mode.

The higher Q_{0} achieved by removing the straps in the resonator assembly yields higher efficiency in addition to greater frequency stability. It also raises the impedance of the anode so that less stored energy , accompanied by reduced power loss, is required to produce the same electric field in the interaction space.

In a conventional magnetron the anode surface can be increased only by increasing the anode height. This results in a long magnet with large magnet weight. With the new design the anode surface can be increased by increasing the number of resonators rather than increasing their height. This allows an extra degree of design freedom which results in weight reduction.

Model SFD-303 is available 120 days after receipt of order, with price dependent on quantity and delivery date.

For further information on this magnetron turn to the Reader-Service Card and Circle 253.
JUT ARRIVED! moos soce ramiy

ACompact-Versatile POWER SUPPLY
Constant Voltage / Constant Current Operation

- Auto-Series \& Auto-Parallel Operation
SPECIFICATIONS
Output: $0-40$ Volts, 0-0.5 Amps D.C. Load Regulation:
Constant Voltage: 0.01% or 4 mv . Constant Current: 0.05% or $250 \mu \mathrm{a}$ Line Regulation:
Constant Voltage: 0.01% or 4 mv .
Constant Current: 0.05% or 250μ a
Ripple and Noise:
Constant Voltage: $200 \mu \mathrm{~V}$.
Constant Current:
$200 \mu \mathrm{a}$ Transient Recovery Time: $50 \mu \mathrm{sec}$. Size: $51 / w^{\prime \prime} \mathrm{H} \times 712 / w^{\prime \prime}$ W X $81 / 2^{\prime \prime} \mathrm{D}$
Price: \$169.00
OThER PRECISE, VERSATILE AND COMPACT POWER SUPPLIES IMCLUDE:

mesol	E Out	1 Out	$\begin{aligned} & \text { Bench } \\ & \text { Model } \end{aligned}$	Rack Moce	Continuously Varibula	Spectal Comments	Prics
52004	0.36	0.25		\times	Yes	Misht Efliciency	\$575.00
$5 \mathrm{cos}-2$	0.36	$0-1.5$	x	X	Yes	Dual Outpul	580.00
2000-2	0.36	0.2 .5	\times	\times	Yes	Low Cost Madium	339.00
2028	0.36	0.1 .5		x	Yes	Dual Output Remote Sanzing	380.00
cesam	0.20	0.2 .0		x	Yes	Remote Sensing Remote Programmine	350.00
desa	0.36	0.5		x	Yes	Constant Voltage/ Constant Current	475.00
8108	0.60	0.7 .5		\times	Yes		795.00
112	0.32	0.10		X	No	Romote Sonsing	550.00
814	0.36	0.25		x	Yes	Constant Voltage / Constant Curment	775.00
1558	0.18	0.1 .5	x	\times	Yes	Constant Voltage / Constant Current	169.00
030	0.100	0.1 .0	X	x	Yes	wioe Voltage Span	375.00
1814	0.100	0.1 .0		\times	Yes	Constant Voltage / Constant Current	475.00
B500	0.320	0.0 .6		X	Yes	Remote Programming	485.00

Write for new 44 page, illustrated "1961 Long Form Catalog"
HARRISON LABORATORIES. INC.
AS INDUSTRIAL ROAD - BERKELEY HEIGHTB. NEW JEREEY Phone 464-1234 - TWX SUMMIT, N.J. 977
"See Us at the Wescon Show Booth 1008-1010"
CIRCLE 75 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number corresponding to that appearing at the top of each description.

System Records
 1,200 Bits Per In.

High-density recording system PHD-1200 can reliably read and write digital tapes at 1,200 bits per in., 100 ips . Transient error rates are fewer than one bit in 10^{5} and permanent error rates are less than one bit in 10^{10}. More than 20,000 passes of the same tape can be made without losing information or increasing transient dropout rate. System includes a digital magnetic tape transport, a dual read/write head assembly, read/write amplifiers, de-skewing buffer, manual control unit, and power supplies, cabled and mounted in a rack cabinet.
Potter Instrument Co., Inc., Dept. ED, Sunnyside Blvd., Plainview, N. Y.
P\&A: 829,500 , evaluation sample; 4 months.

Line Voltage Regulator

Provides $\mathbf{1 0 0 - D b}$ Isolation

Solid state ac line regulator series 700 provides 0.1% regulation and $100-\mathrm{db}$ line isolation. Harmonic attenuation and transient rejection are 40 db . Input harmonies of $10 \% \max$ are reduced to less than 0.25% in the output. Power rating is 1 kva . Response time is $100 \mu \mathrm{sec}$. Bench and rack models are made for use at 50,60 , and 400 cps . Both 115 and 230 v units are available.
Stevens-Evans, Inc., Dept. ED, 3801 Hicock St.. San Diego, Calif.
P\&A: 81,200 to 81,$500 ; 45$ to 60 days.

Silicon Controlled Rectifiers
Housed in a double-ended, studless package, silicon controlled rectifiers 2N1929 through 2N1935, handle up to 1.1 amp without heat sinks. Piv ratings range from 25 to 300 v : operating temperature range is -65 to +125 C . Maximum leakage current ranges from 4.0 to 0.9 ma .

General Electric Co., Rectifier Components Dept., Dept. ED, W. Genesee St., Auburn, N. Y.

P\&A: 2N1933, \$10 OEM; stock.

PNPN Device

Has Alloyed Junction
The Dynaquad is a germanium, three-terminal, pmpn structure packaged in a standard TO-5 case. Alloyed juncrion design is used for economy and reliability. The device has a rise time of 10.1 usec, and provides an output voltage swing of 35 Applications include driver, flip-flop, counter shift register and other logic circuits. Type's 2N1966 through 2N1968 are in production.

Tung-Sol Electric Inc., Dept. EI). 1 Sumner Ave., Newark 4, N. J.
P\&A: From s.3.10: immediate

Voltage-Controlled

Subcarrier Oscillator

Transistorized subcarrier oscillator type $516 / 2$. operating on IRIG channels 1 to 18 and A to E , measures $3 / 4 \times 3 / 4 \times 1-1 / 4 \mathrm{in}$. Input is 0 to 5 r or $=2.5 \mathrm{v}$. Input impedance is 30 ow K min, linearity $\pm 0.5 \%$ of bandwidth. Output is 1 v rms nominal. Unit requires 28 v unregulated de at 10 ma , and weighs 1.6 oz . Shock, acceleration and vibration tests are met.
Telemetering Corp. of America, Dept. ED. 8345 Hayvenhurst Ave.. Sepulveda, Calif. P\&A: On request.

JFI
MINIATURE METALIZED INDUCTORS MAKE THE DIFFERENCE!

JFD Mctalized Inductors provide outstanding electrical performance under severe environmental conditions in a small package.
Utilizing a silver film fired permanently to a high dielectric constant glass, they offer the ultimate in inductor simplicity and stability. This inherently rugged construction results in extraordinary reliability under extremely severe environments . . especially those of shock, vibration, temperature and altitude.

The inductance, types of windings, size, distribured capacitance, Q and other parameters of JFD Metalized Inductors can be designed to meet your specific needs. W'hy don't you write for bulletin 223 and see the difference they can make in your circuitry?

Features

1. Rugged construcrion affords unusually high stability under conditions of severe shock and vibration.
2. Use of glass dielectric assures low temperature coefficient of inductance and operation without derating over extremely severe environmental conditions.
3. Low distributed capacity.
4. Special alloy plating protects metal parts from corrosion.
5. A high \mathbf{Q} over a broad frequency range.
6. Silver plated copper leads.
7. Available in panel mount and printed circuit mount types.
8. JFD Variable Inductors can also be supplied to order. Write for questionnaire or contact the JFD
sales office or representarive nearesr sales office or representative nearest you.

JFD
JFD ELECTRONICS CORPORATION
Components Division * 6l01 16th Avenue, Brooklyn, New York - Phone DEwey 1-1000 - TWX-NY25040

FIXED AND VARIABLE. DISTRIBUTEO AND LUMPED CONETANT DELAY LINEE - DULEE FOMMING NETWORKE
BE SURE TO VISIT JFD BOOTM No. 621 AT THE 1961 WESCON SHOW, AUGUST 22-25.
CIRCLE 76 ON READER-SERVICE CARD

NEW PRODUCTS

Carbon Film Resistor

Designed for printed circuits, carbon film resistor EC 25 is $1 / 4 \mathrm{in}$. in diameter by $13 / 32$ in. long and mounts vertically. Rating is $1 / 4$ w at 70 C derated to 0 at 150 C . Resistances range from 5 ohms to 500 K with a tolerance of 1%.

Mepco, Inc., Dept. ED, 37 Abbett Ave., Morristown, N. J.

Electron Beam Systems

Guns, controls, and power supplies are available in ratings from 3 kw at 10 kv to 9 kw at 30 kv . Systems of the LB-100 series are complete, and provide magnetic deflection of beam over 3 in . square area, pulsing, regulation, and variable focus and focal length. Temperatures above 6,200 are readily attained.

GVC Electron Heating Corp., Dept. ED, 81 Hicks Ave., Medford 55, Mass.

Instrument Switch

With up to six banks. Instrument switch type PW is available in $1-, 2$-, 3 - and 4 -pole types and assemblies up to six banks. Maximum number of positions is 29 in one-pole versions, six in the four-pole version. Voltage rating is 250 v ac or dc, current rating 0.5 amp.

Interlab, Inc., Dept. ED, 116 Kraft Ave. Bronxville, N. Y.
Price: $\$ 6.96$ to $\$ 41.72$.

Alternators

Semiconductor voltage regulation, holding the output to $\pm 2 \%$ from 1,000 to $12,000 \mathrm{rpm}$, is provided by these alternators. Two types are offered: 15 v dc, $1,000 \mathrm{w} ; 100 \mathrm{v}$ dc, $1,500 \mathrm{w}$. Construction features radially oriented ceramic magnets. in the rotor.

Syncro Corp., Dept. ED, Oxford, Mich.

Transistor Testers

544
Automatic multi-parameter tester type 4 is one of a group of go no-go and absolute readout transistor testers. With automatic sorting and classification, it tests breakdown voltage, lower limiting voltage, dc pulse current gain, saturation voltage, and reverse current.
Fairchild Semiconductor Corp., Dept. ED, 545 Whisman Road, Mountain View, Calif.
P\&A: \$22,000; 90 to 120 days.

Frequency Standard

551
Stable to 1 part in 10^{11} for one month, the Rubidium frequency standard is suitable for applications in the hf electromagnetic spectrum in communications, navigation and computational systems of aircraft and missiles. It weighs about 20 lb .
FMA, Inc.. Dept. ED, 142 Nevada St., El Segundo, Calif.

Servo Motor

412

Designed for missile use, this 6 -pole, $400-\mathrm{cps}$, size 15 servo motor offers the following characteristics: theoretical acceleration at stall, 22,700 radians per $\sec ^{2}$; minimum power output, 1.151 w ; input power at stall, 6.1 w ; motor dampening, 130 dyne-cm per sec.

Wright Machinery Co., Div. of Sperry Rand Corp., Dept. ED, Durham, N. C.

Cuts balancing time 80\%. U'sed with a vibration analyzer, this computer determines location and amount of compensating weight to be added or removed. Used in single and twoplane balancing operations for both in-place or production balancing of rotating parts, the instrument saves up to 80% time.
International Research \& Development Corp., Dept. ED, Worthington, Ohio.

Autotransformers

672

Handle 30 amp. Series W Variac autotransformers type W30, rated for 30 amp. provide continuous control of ac voltage from 0 v to 17% above line voltage. Available for $120-$ or $240-\mathrm{v}, 50$ - to $60-\mathrm{cps}$ operation, units withstand momentary overload of $1,000 \%$. Type W30M is fully enclosed.

General Radio Co., Dept. ED, West Concord, Mass.
Price: W:30, 875; W'30M, \$97.
Gear Heads

Precision gear heads and speed reducers are available in size 5 to 18 servo mounts. Units have Class 2 gearing, with ABEC Class 1.5 bearings. End play and radial play are low; backlash is 30 min maximum. Housing is anodized aluminum alloy.

EIm Instrument Corp., Dept. ED, 30 Chasner St., Hempstead, L. I., N. Y.

Volt-Ohm Meters

Accuracy is 0.01% for voltage and resistance measurements or 0.2% for ac measurements to 1.000 v and for 10 ohms to 10 meg . Model 600 voltohmmeters are five-digit precision differential instruments with in-line display readout. Reference voltage is provided by Zener diode supply stable to 0.001% for a 10% line change

Auto-Data. Dept. EII, 94:3 Turquoise, San Diego, Calif.
P\&A: $\$ 1,885$ to $\$ 3,450: 30$ t1) 45 dаук.

Silicon Diodes

523
Diffused-junction silicon diodes in 53 types have high inverse voltages, high forward conductance, low leakage current. and high rectification efficiency. Operating from -65 to 175 C , the medium current rectifiers are welded and hermetically sealed in a glass and metal case.
Raytheon Co, Semiconductor Div., Dept. ED, 215 First Are., Needham, Mass.
P\&A: \$0.58 10 8.3 cn, 100 10 $999 ;$ immediate.

Glass Diodes

Mena diffused junction glass diodes 3G05 through 3G30 have rating ranging from 50 to 300 v . Forward conductance to 300 ma , voltage drop of 0.9 v at 25 C , and low leakage characteristics are other features. Temperature range is -55 to +150 C .

International Rectifier Corn., Dept. ED, 1521 E. Grand Ave., El Sexundo, Calif.
P\&A: $\$ 1.07$ to $\$ 2.80 \mathrm{ea}, 1$ to 99 ; stack.

CIRCLE 77 ON reader-Service card >

For the most critical design applications...

the MYCALEX family

SUPRAMICA* ceramoplaslics: exclusive formulations of synthetic mica and special elec-trical-grade glasses. New SUPRAMICA 620"BB" ceramoplastic for true hugh-temperature hermetic seals (helium leakage less than 2×10^{10} after severe environmental tests).
MYCALEX ${ }^{\star}$ glass-bonded mica: quality natural mica and electrical grade glasses. Offer high dielectric strength, high arc resistance, high-temperature capabilities.
Both formulations offer total dimensional stability in preci-sion-molded and precision-fabricated grades.

SYNTHAMICA synthetic mica: fusion of silica, alumina, mag nesia, and alkali fluorides chemically pure, offering a wide range of superior properties for the most demanding dielectric applications.

For new 36-page catalog . . . technical assistance . . . write or phone: General Offices and Plant: 121 Clifton Boulevard, Clifton, N. J, Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y. Woilf's largest mampecturer of caromoplastics, elass-bended mice and synthotic mies mroducts

MYCALEX tube and Iransistor sockets: a line of precisionmolded, slass-bonded mica and ceramoplastics for UHF, VHF, and similar high-reliability applications.

mYCALEX commutation switches and plates: high-reliability miniaturized electromechanical devices for missiles, multiplex ing, telemelering, timing, timedivision and control switching. Now up to 540 contacts on a 3° O.D. plate!

55×10^{9} ANODE DISSIPATION FACTOR

G-E Powar Tube Dopartment Products Alst Include:

- Izaitrons	- Migi-puwar mimloxers
- Travelinge wave tubes	- Hisid-power
- Magnotroms	mavgurico fil
	- Klystrons
Itrotes	- Timrmionic canvorters

- Ignitrons
- Iraveling wave tubes
- Magnotrens
fetrotes
- Migi-pawer teplozers
- iligh-powar
- Rlystroms
- Imarmionic cenvortors

Highest Registered Rating Now Available from G.E.

In an Air-cooled Tube

The latest addition to General Electric's expanding line of hydrogen thyratrons is now available for pulse applications such as radar modulators and linear accelerators. Developed under U. S. Army Signal Corps contract, the GL-7890 achieves an anode dissipation factor of 55×10^{9} and has a peak anode voltage rating of 40 kv . The tube can now be operated water-cooled or air-cooled at full ratings. COMING: increased current and voltage capactir
Now in the late stages of development, the Z-5212 will further increase voltage and current-carrying capacity in hydrogen thyratrons. Peak anode voltage rating for this tube will be 50 kv with an average current rating of 8 amp . General Electric's Power Tube Department will welcome your requests for technical data on the Z-5212.

temperature indicating device on cl-7390a

The first high-power ceramic-metal hydrogen thyratron, General Electric's GL7390, is now being built to MIL specifications. A modified version of this tube, the GL7390 A , is equipped with an integral anode temperature indicator for convenient readings. Both the GL-7390 and the GL-7390A have ratings of $33-\mathrm{kv}$ peak anode voltage and 4 -amp average current.

61.7390A
hydrogen thyratron bulletin ayailable
For a comprehensive analysis of the theory and application of hydrogen thyratrons, write to the Power Tube Department, General Electric Company, Schenectady, N. Y. Ask for Bulletin PT-49. To order, or obtain more information on hydrogen thyratrons, contact your neareat Power Tube sales office. Phone numbers are listed below.

POWER TUBE DEPARTMENT
GENERAL ELECTRIC
TELEPHONE TODAY - Syracuse, OL 2-5102 . . caition, M. J., GR 3-6381 . Now York City, WI 7-4065 ... Wastiagtian, D. C., EX 3-3600 ... Cwicags. SP 7.1608 ... Darten, 8 A $3.7151 \ldots$ Orlanto, Fla., GA 4.62811. Los Angoles, CR 9-7785.

NEW PRODUCTS

Storage Tube

Double-ended scan converter readout storage tube type K 2070 provides resolution in excess of 1 , 000 lines at 50% modulation. Simultaneous or sequential reading and writing is possible; retention. erasure, and decay rate are controlled.

Electronic Tube Sales Dept., Allen B. Dumont Laboratories, Div. of Fairchild Camera and Instrument Corp., Dept. ED, 750 Bloomfield Ave., Clifton, N. J.
Multiplier-Modulator
583

Miniature analog multipliermodulator model 100 provides 2% accuracy in case size of $1 \times 1-1 / 2 \times$ 3 in . Inputs are de to $20 \mathrm{kc}, \pm 1.5 \mathrm{v}$, output 100 to $20,000 \mathrm{cps}$, zero to 1.4 $v \mathrm{rms}$. Distortion is less than 1% : response time as a modulator is less than 1 msec .

Transmagnetics Inc., Dept. ED, 40-66 Lawrence St., Flushing 54, N. Y.

Ratio Computer 586

Output is 1 ma or 10 mv suitable for driving pen writing or stripchart recorders. Model 557-2B ratio computer accepts two independent dc signals as low as 10 mv . Accuracy of computed ratio is 1%. Uses include measurement of ratios from strain-gage type transducers, thermocouples, resistance bulbs.
Magnetic Instruments Co., Inc., Dept. ED, Thornwood, N. Y.
Dept. ED,

Encapsulated variable inductors. with single or bifilar windings meet MIL-C-15305. Coils are tuned by a powdered iron core. Inductance variation is $\pm 20 \%$ from nominal, with temperature coefficient of $\mathbf{- 5 0}$ to 100 ppm per deg C. Distributed capacity is 1.5 pf max.

Vanquard Electronics Co., Iept. ED, 3384 Motor Ave.. Los Angeles 34, Calif.

Angle Repeater

Accurate within 6 min. Panelmounted model PPR-20 displays the angular position of remote unit to within 6 min of arc. Range is 0 to 360 deg, slewing rate 180 deg per sec. Unit has solid-state construction and rapid response. Panel size is $1-3 / 4 \mathrm{in}$. OD by 1-1/2 in. long

Theta Instrument Corp., Dept. ED, 520 Victor St., Saddle Brook, N. J.

P\&A: \$1,500; \& weeks.

Vane-Axial Blower
575

Delivers 140 cfm of air against a static pressure of 5 in . of water at $25,000 \mathrm{ft}$. Sea level output is 77 cfm against 5 in . of water. No pressure-sensing or speed-regulating switches are needed in the system. Motor is wound for 200 vac 400 cps , three phase.
Globe Industries, Inc., Dept. ED 1784 Stanley Ave., Dayton 4, Ohio

BPRING-ERINEN

TYPE 210 Up to twelve 10 -point levels ar four 30 -point levels

TYPE 211 Up to twelve 111 -point levels
or tour 33 -point levels

GAM-OPERATED

Up to eight cams with 30,32 or 36 looth ratchets
oneroment

Let Clare put the exactly right stepping switch in your design

Designers who count on CLARE stepping switches as components for complex counting, totalizing and sequencecontrol equipment know that from the wide CLARE line they can select the exact switch their application requires. If necessary, CLARE engineering will provide special switch designs.
CLARE stepping switches are available as spring-driven, cam-operated or direct-drive switches with capacities from 10 to 52 points. All may be hermetically sealed in nitrogen or oil, or provided with dust covers.
All CLARE stepping switches are well known for their long life, high capacity and minimum maintenance through millions of precise stepping operations. For complete information write for Catalog 202.

monco

chan!
C. P. CLARE \& CO., 3101 Pratl Blvd.

Chicago 15, Illinois. In Canada:
C. P. Clare Canada Lld., 840 Caledonia Road

Toronto 19, Ont. Cable address: Clarelar.

NEW PRODUCTS

Pressure Transducer

High-range absolute pressure transducer $7: 37$ meets oovernment specs in miniature size. Ranges from 0 to 4,000 up to 0 to 10,000 psi are made, with resolution to 0.2%, resistances 1 K to $10 \mathrm{~K} \pm 5 \%$
Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Shaft Extensions

Available in $1 / 8,3 / 16$, and $1 / 4 \mathrm{in}$. shaft sizes, these precision shaft extensions have male and female ends in the same or any combination of these sizes. Length of extension is 1-5/8 in. Diameters are concentric to 0.0005 in .
PIC Design Corp., Dept. ED, 477 Atlantic Ave., East Rockaway, L. I.. N. Y. PRA: S!5 to 75.00; from stock.

Wide Band-Pass Filters

Typen NB-1 and NB-1B are four-crystal networks contained in at hermetically sealed package less than $1 \mathrm{cu}-\mathrm{in}$. and $2.5 \mathrm{cu}-\mathrm{in}$. respectively. The center frequency of both types is 10.7 mc $\pm 3 \mathrm{kc}$ with a 6 db bandwidth of $200 \mathrm{kc}+10 \mathrm{kc}$, -0 kc and an ultimate rejection of 100 db min. Singly they provide a 60 to 6 db bandwidth ratio of $\mathbf{2 . 2 5}$ to 1 .
Midland Manufacturing Co., Dept. ED. 3155 Fiberglas Road, Kansas City 15, Kan. Availability: From stock.

LEADERSHIP IN DESIGN AND MANUFACTURE OF SLIP RING ASSEmBLIES

Complete facilities, metallurgical and engineering services are available for design and manufacture of slip ring assemblies to critical specifications, ranging in diameter from 1" to 48" and larger-for General Purpose, Radio Frequency and Video Ring Circuits, High Speed Instrumentation, High Voltage Ring Circuits and Power Pulse Slip Rings. A slip ring data file is available -write for your copy.
D. E. MAKEPEACE DIVISION

PINE \& DUNHAM STREET - ATTLEBORO, MASS. Circle 231 on Reader-Service Card

A thoroughly dependable source for fine wire of duc. tile and non-ductile materials for every appication. Special processes have been developed for bare drawing wire as fine as .0004". Wollaston Process for ductile metals . . . Taylor and extrusion methods for non-ductile metals are employed to meet requirements for finer wire. All standard fine wires are stocked for prompt delivery. Full facilities are available for production of fine wire made to customer's individual requirements. Write for details
baker platinum division
113 astor street - newark, n. J.
Circle 233 on Reader-Service Card

Precious metal contacts in pure or alloyed forms of silver, platinum, palladium and gold provide unmatched resistance to almospheric corrosion, deformation, are erosion, binding and metal transfer, Baker high-reliability precious metal contacts are supplied as wire, rod, sheet and in c complete line of fabricated forms. Facilities are also available for manufacture to your specifications.

BAKER CONTACT DIVISION
207 GRANT AVE. - NEWARK, HARRISON P.O., N. J. Circle 235 on Reader-Service Card

FINE WIRE, THIN FOILS, RIBBON AND tUbing in noble metals and their alloys
WIRES: Bare drawn wire of ductile materials down to $.004^{\text {"-High temperature thermocouple wires-High }}$ temperature furnace windings-Potentiometer and Resistance wires-Platinum clad fungsten wire.
FOILS: In platinum, palladium and gold down to $.0001^{\prime \prime}$ -in iridium and rhodium as thin as $.001^{\prime \prime}$.
TUBING: Seamless in platinum, palladium, gold and their alloys. Sizes from $.018^{\prime \prime}$ with $.004^{\prime \prime}$ wall up to $11 / 2^{\prime \prime}$ with 042" wall. - Available in standard or to specification.
baker piatinum division
lis astor street - newark, n. s.
Circle 237 on Reader-Service Card
ELECTRONIC DESIGN • July 5, 1961

IMMERSION GOLD COATING FOR ELECTRICAL AND ELECTRONIC PARTS

Use Atomex gold immersion solution for more perma. nent, less expensive coating of printed circuits, metallized plastics, etc. with complete assurance of tarnish resistance and electrical resistivity, In a simplified immersion process, 24 K gold is deposited by ionic displacement in a thin, dense, uniform protective layer. - Atomex is the first practical gold immersion solution containing no free cyanide. It eliminates need for costly analytical controls. Write for technical data.

> CHEMICAI DIVISION
> 113 ASTOR STREET. NEWARK, N. J.

Circle 236 on Reader-Service Card

SALES OFFICES: CHICAGO - DALLAS. DETROIT houston - LOS ANGELES . MEW YORK - ORLANDO PROVIDENCE - SAN FRANCISCO - WASHINGTON, D. C.

Please send literature as indicated below. addressed to my attention:
\square Slip Ring Assemblies
\square Rhodium Plating
\square Fine Wire
\square SilvalBrite Silver PlatingPrecious Metal Contacts
\square Atomex
\square Fine Wirc. Thin Foils, Ribbons \& Tubing
name
title
FIRM
StREET
city

Providing $6 \mathbf{l b}$ of linear force from a few watts of power, the firm's model 11 torque motor operates in high humidity and temperature. Unit can operate while immersed in fluids,resists shock to 67 g , and operates from -66 to +400 F . Device weighs 12 oz and meets MIL specs.
Midwestern Instruments, Inc., Dept. ED, P. O. Box 7509. Tulsa 18, Okla.

Potentiometer Tester

Plots results on X-Y recorder. This potentiometer tester, type 2398, supplies necessary signals to plot resistance vs shaft rotation on an $\mathrm{X}-\mathrm{Y}$ recorder. It operates in two ranges, from 1 ohm to 1 meg and from 10 ohms to 10 meg . and provides 120 db resistance measurement capability.
F. L. Moseley Co., Dept. ED, 409 N. Fair Oaks Ave., Pasadena, Calif.

Ceramic Bases
539

For mounting components. Alumina ceramic bases are said to be extremely rugged, useful at temperatures as high as $1,000 \mathrm{C}$. Parts are custom fabricated. Complete subassemblies with metalized ceramic bases brazed into metal parts are available.
Metalizing Industries, Inc., Dept. ED, 338 Hudson St., Hackensack, N. J.

Of course-but they are much broader than you might think. The illustrated units are just a few of the difficult and unusual switches that Centralab has been called upon to design.
What kind of special switch do you need? Centralab engineers can modify an existing type, or design an entirely new switch to solve your problems.
For immediate attention, write directly to Centrabab's Switch Sales Manager, outlining your problem.

1. Swilches 36 circuits propressivily in missie check--wit
 2. Low volaze swich with auxliayy high voliage snap action swich cycle. Has guarded delent.
2. 5 pole, 9 posilun low volaze swich with locking action
 a. Oual concentit swich in which inner shatloperales rolors

a. 3 pole 18 pos
-. 3 pole 18 position unit with 6 positions on each section.

the electronics division of globe-union inc. $98 ว G$ E. KEEFE AVENUE - MILWAUKEE 1, WISCONSIN In Canada: Centralab Canada Lid., P.O. Box 400. Alax, Ontarlo

ELECTRONIC SWITCHES • VARIABLE RESISTORS - CERAMIC CAPACITORS • PACKAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS circle su on reader.service card

NEW PRODUCTS

Shock and vibration resistant. Shock tests in excess of 200 g resulted in no visible shifting of components. Peak acceleration at 500 cps vibration is 200 g ; and at $2,000 \mathrm{cps}, 90 \mathrm{~g} ; 487 \mathrm{de}$ signs are available.

Masterite Industries, Dept. ED. 851 W. Olive St., Inglewond, Calif.
Availability: from stock.
Curve Follower

Function generator converts manual set-point control to automatic program control. The DataTrak curve follower can drive ganged pots to provide up to 12 control signals. Dust-tight case is 19 in . wide.
Research. Inc., Dept. ED, Box 6164, Minne. apolis 24, Minn.

Proportional Solenoid

Occupying less than 1-1/2 cu in., and weighing less than $4-1 / 2 \mathrm{oz}$, this proportional solenoid, model 15, provides relatively small, highforce displacements proportional to input signals. Unit operates in temperatures to 400 F , is submersible in fluid or gas, and can be mounted to provide force in any direction.

Midwestern Instruments, Inc., Dept. ED, P. O Box 7509, Tulsa 18, Okla.

ELECTRONIC DESIGN • July 5, 1961

Oscilloscope

Sensitivity is $50 \mu v$ per $\mathbf{c m}$; low noise level permits resolution of signals down to $10 \mu \mathrm{v}$. Model 403-B commercial oscilloscope permits display of nonamplified outputs from strain Lages, pressure pickups, accelerometers and other transducers. Its 21 sweeps range from 1μ sec to 5 sec per cm

Allen B. Du Mont Laboratories, Dept. ED -50) Bloomfield Ave., Clifton, N. J.

Current Recorder

Five-ampere current recorder has better thatl -2 over-all accuracy, and a frequency response ण1 25 to 5011 cps. Safe working voltage is 750 rnss. iuput resistance is 0.112 ohm . At standard chart speed of $1 \mathrm{i} n$. per hr, paper supply lasts 31 days.
Rustrak Instrument (o.. Dept. ED, 1330 Silver St., Manchester. N. H.
Price: $\$ 105$.

Volt-Ohm-Milliammeter

Models 267 and 268 are designed for general laboratory work and production line testing. Sensitivity is 5,000 ohms per volt for both models. Microampere ranges are 0 to 50 for model 267 and 0 to 60 for model 268.
Simpson Electric Co., Dept. ED, 5200 W. Kinzie St., Chicago 44, III.
Availability: Immediate from distributors.

High-Performance

Commercial Potentiometer-Under \$1

Now-solve the quality-price dilemma with Bourns E. \mathbf{Z} Trim * commercial potentiometers. These subminiature thoroughbreds are direct descendants of the time-proven Trimpot \& potentiometer, and their performance shows it. They stand up to steady-state humidity and fully satisfy the requirements for such demanding applications as industrial controls.
Settings you make with E.Z Trim units are pinpoint-sharp. thanks to the superior angular resolution afforded by the 15 -turn shaft. They stay that way, too, because the shaft is self-locking. Adiustments are fast and simple-an ordinary CIRCIE 84 ON READER-SERVICE CARD

Take your choice of wirewound or Resiston carbon units. Wirewound Model 3067 handles a hefty $1 / 2$ watt at room temperature, is available with resistances of 100 ohms to 20K. Carbon Model 3068 offers resistances of 20K to 1 Meg. Both units have either printed circuit pins or solder lug terminals.
Order in production quantities of 1000 or more, and these exceptional potentiometers are yours for under $\$ 1$ each. Tell us you're in a hurry, and you'll have them within 48 hours -they're on the shelf from coast to coast. Write now for complete data and list of stocking distributors.

8036 SMALL, RUGGED CERAMIC
 HYDROGEN THYRATRON SAVES VALUABLE SPACE

Tung-Sol leads the way with a ceramic Hydrogen Thyratron that fills an important design need. An electrical equivalent of the popular Tung. Sol 5949A - only one third tube volume is required by this new member of the family.
Tung-Sol ceramic Ilydrogen Thyratron 8036 has rugged environmental ratings. It is designed for flange mounting with flexible connecturs to achieve a solid mounting with lossfree terminations. Grid connection is made to the flange through the grid ring clamp.

For full technical data, consult your Tung-Sol representative or write: Tung-Sol Electric Inc., Newark 4, N.J. TwX:Nk 193.

HYDROGEN THYRATRON GEBTA 6587A, a glass thyratron, is a direct plug. in replacement for Tung-Sol overall height are saved by means of the ring disk type of construction, which also provides the advantages of external (cool) anode and lower lead inductance. It is rated for higher voltages
with higher currents than prototype tubes. Grid connection can be made through the grid ring or through the tube base pin. An internally-connected hydrogen reservoir promotes long life.

	-038	ese7a	ce22
Overall melogh, max	$3.75{ }^{\circ}$	6.	8.75
Peak forwera voltage	25. KV	18.	16.
peazeurront	500. Amps	365.	325.
Peak Pulse Power (Delivered is ino losa)	6.25 Mw	3.25	2.6

techmical abgiatance ie available through: atianta. ga: Columbun. Onio; Culver City. Calli,: Dallas. Tea.; Denvar, Cole.; Doetroit, Pa.; Eeatte, wasn. in canada: Abdey Eleotronich, Toronto, Ont.

(4) TUNG-SOL

NEW PRODUCTS

Time-Delay Relay

Solid-state time-delay relay SI-01-TD, weighing less than 3 oz , has no moving parts. Supply voltage is 18 to 30 v dc; delay is $30 \pm 6 \mathrm{sec}$. Equivalent contact rating is $40 \mathrm{v}, 10 \mathrm{ma}$. Operating temperature range is -55 to +125 C .

Espey Manufacturing \& Electronics Corp., Saratoga Industries Div., Dept. ED, Saratoga Springs, N. Y.

Oven Assembly

547
Three-vacuum oven assembly model 8435 is for bake-out of semiconductors and other devices at 200 or 300 C. A single pump evaluates to $1 \times 10^{-3} \mathrm{~mm} \mathrm{Hg}$. Control is sensitive to within $\pm 1 / 2 \mathrm{C}$. Each oven has individual controls. Work chamber is $18 \times 18 \times 18$ in.

Electric Hotpack Co., Inc., Dept. ED, Cottman Ave. at Melrose St., Philadelphia 35, Pa.

Navigation Gyro

548
For missile applications and other high performance uses, type C70 2527-001 floated-rate integrating gyro has an angular momentum of inertia of $500,000 \mathrm{sm}-\mathrm{cm}^{2}$ per sec. Vertical drift is 0.003 and aximuth drift is 0.015 deg per hr , short term
General Precision, Inc., Kearfott Div., Dept. ED, 1150 McBride Ave., Little Falls, N. J.

Pulse Counter

Differential pulse counter F 160 has separate coils for addition and subtraction. Simultaneous add and subtract commands are accepted without error. Count rate is $\mathbf{2 5}$ per sec max. Front plate size of the five-digit counter is $2 \times 3-3 / 4$ in.
Presin Co., Inc., Dept. ED, 2014 Broadway, Santa Monica, Calif.
P\&A: \$62.50; stock.

Potentiometer Transducer

587

Miniature. low-pressure transducer, madel L-96, has less than 1% error at vibration levels exceeding 35 g . Available in 0 to 10 to 0 to 350 psi absolute or gage pressure ranges. Performance is said to be unaffected by temperature variations. The unit weighs 4 oz and measures 1 in . in diameter and 2 in . long.
Servonic Instruments, Inc., Dept. ED, 1644 Whittier Ave., Costa Mesa, Calif.

Medium-Power Relay

550
Rated at 15 amp . the GF series relay is for motor loads of up to $1 / 2 \mathrm{hp}$ and can be used in a wide range of ac and dc applications. Contacts are spst to 4 pdt. Standard relays with $1 / 4-\mathrm{in}$. diameter silver contacts are rated at 15 amp at 115 v ac or 28 v dc.

American Machine \& Foundry Co., Potter \& Brumfield Div., Dept. ED, Princeton, Ind. P\&A: $\$ 3.30$ to \$7.10: from stock.

Integrating Gyro

549
Floated-rate integrating gyro type C70 2516 010 is suitable for missiles. Angular momentum is $101.000 \mathrm{gm}-\mathrm{cm}^{-}$per sec ; short term vertical drift is 0.02 deg per hr; short term azimuth drift is 0.03 deg per hr ; mass unbalance shift is 0.5 deg per hr
General Precision. Inc., Kearfott Dis., Dept. FII, 1150 McBride Ave.. Little Falls, N. J.

Drive Regulators

Variable-speed drive regulators and exciters use silicon controlled rectifiers and diodes to provide 0.1% regulation at base speed, with response times up to twice that of tube-typhe regulaturs. Drives range from 1 to 350 hp .

Reliance Electric \& Engineering Co., Dept. ED, $247(11$ Euclid Are., Cleveland 17, Ohio.

the first economical, space saving, vertically mounted resistor for printed circuit
applications

MEPCO	MEPCO
EC 254	EC254
500k 1\%	500K $1=$

two items high on the list of vita
importance in solving today's tough design problems. MEPCD's new miniature $1 / 4$ W Carbon Film resistors were specifically
designed to break the cost and space barrier in printed circuit applications.
Having both leads extending from one end and available in three different lead spacing arrangements, these Carbon Film Resistors for vertical mounting offer advantages never before available.

Write or call today for samples and literature.
SPECIFICATIONS

Resistance Values up to 100,000,000 Megohms

Model RX-1 Hi-Mcg Resistor

Victoreen Hi-Meg Resistors -
Standard of the Industry for Over 18 Years

Available tolerances
1\% 2\% 5\% 10\%

For longer life, Victoreen Hi-Meg Resistors are in a class by themselves, especially for all high-impedance, low-current applications. Hi-Meg Resistors have a carbon-coated glass rod element with silver-banded ends for best electrical contact . . . are vacuum sealed in a glass envelope treated with special silicone varnish that minimizes moisture effects. Always specify Victoreen Hi-Meg Resistors for the ultimate in long-term stability.

NEW PRJDUCTS

Booster Amplifier

This dual-channel booster amplifier is able to drive both stators of a precision size $11,40(0)$ eps resolser. Known as model 1012, the device has unity gain, an accuracy of 0.05%, and less than 5 min phase shift. The unit occupies 1 cu in., weighs 1 oz , and operates from -55 to 12 is C. Iifferent mounting configurations are available.

Melcor Electronics ('orp), Dept. EL), 48 Toledo St., South Farminydale, L. I., N. Y.
P\&.A: \$250-280 ench: 30 days.

Germanium Transistor

545
For critical computer switching applications. Type 3917/2N4(1) germanium transistor meets mechanical and environmental stability requirements of MLL-S-19500B. Specifications are: col-lector-to-base voltase, -25 v max: collector-toemitte rvoltage. -24 v max with $\mathrm{V}_{\mathrm{var}}$ at -1 v ; operating ambient temperature, -65 to +85 C

Radio Corporation of America. Dept. EI), Somerville, N. J.
Availability: Immediuto.

Magnetic-Tape Rewinder

Spools 10.5 -in. reel in 90 sec. Average rewind speed is 500 ips. The TR- 300 magnetictape rewinder has a universal hub variable from 3 to $3-3 / 4 \mathrm{in}$. which accepts NAB or IBM tape reels without adapters. Tape guides handle tapes $1 / 2$ or 1 in . wide.

Electronic Engineering Co. of Calif., Automation Div., Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif.
P\&A: $\$ 690$; 6 weeks.

Gamewell made a pot that will trip a microswitch

This $7 / \mathbf{s}^{\prime \prime}, 100,000$ ohm pot has a microswitch attached. The camshaped shaft can actuate the switch precisely at the chosen point A simple solution - yes. but the answer to a special problem.
Gamewell's YES service

- Your Engineered

Specials service -
is amazingly capable at
designing simple
answers to special pot
problems. Why not put
it to the test? Write
for the facts.

* \mathbf{y} our

Cngıneered

Specials service

the gamewell company, potentiometer division, 1421 Chestnut street, newton upper falls 64 , mass. A SUBSIDIARY OF E. W. BlISS COMPANY.

CIRCLE 88 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 5, 1961

For up to 3,000-psi oil pressure two-way solenoid valves are available in normally open and normall.: closed types. Both are pilot operated poppet valves in cartridge form and can adapt to any type of manifold or sub-plate. The poppet and plunger are the only moving parts.
Fluid Power Accessories, Inc. Dept. EI). Box 64. Glenview, III

Plugs and Receptacles 572

Phenolic molding compounds are used in the manufacture of these multiple plugs and receptacles, available in a variety of shapes and terminal arrangements. Applications include appliances. electronic equipment and other industries.

Hooker Chemical Corp., I)urez Plastics Div., Dept. ED. Niagara Falls, …

Multivibrators

11

One-shot multivibrators are offered in two types: the T-166 contains a built-in noise rejection cirtains a built-in noise rejection cir-
cuit and the $\mathrm{T}-167$ is designed to have a pulse-width variation of 5% max from -45 to 65 C. A pulse width of $2 \mu \mathrm{sec}$ to 1 sec can be generated by either unit.
Engineered Electronics Co., Dept. ED. 1441 E. Chestnut Ave., Santa Ana, Calif. P\&A: \$38.40: \$64.50: 2 weeks.

General Instrument Planar Tranisistors

At last! A truly passivated planar! New 2Nroe silibon ssitch

For high speed logic switching with assured reliability, the General Instrument 2 N708 npn silicon planar switch features the unique Molecular Shield"M surface-passivation process. Here's a planar that is stable, reliable and uniform...lot by lot... with excellent gain characteristics as well as extremely low leakage current. Designed for switching applications, this type, as well as others in the popular 2 N 706 class, utilizes the latest planar techniques. Extensive tests have proved that this type of transistor construction offers definite circuit advantages. Life tests, for example, indicate little degradation as a result of operation and storage at high temperatures. The immediate availability of the 2 N 706 series in production quantities should be of interest to designers now using our silicon mesa transistors. The 2N708 is also available in limited quantities. For microtransistors, pancake•package transistors...for all your silicon planar and mesa transistors, call the sales office or franchised distributor nearest you. Or write for complete details to General Instrument Semiconductor Division, 65 Gouverneur St., Newark 4, N.J.
Abbreviated Specifications-General Instrument NPN Silicon Planar Transistors

Type	$\mathbf{V}_{\text {cio }}$	$\mathbf{V}_{\text {CER }}$	$\mathbf{h}_{\mathbf{4}}$	$\boldsymbol{T}_{\mathbf{s}}$
2N706	$25 v$	20 v	20	60 nsec
2N706A	25 v	20 v	20	25 nsec
2N706B	25 v	20 v	20	25 nsec
2N708	40 v	20 v	30	25 nsec

GENERALINSTRUMENT SEMICONDUCTOR DIVISION geverallustrument corporatoh

NEW PRODUCTS

Any 17-bit time code containing three binary words for seconds, minutes or hours can be generated. Model 6202 time-code generator, for ground or airborne use, has a stability of 10^{7} per day. One code format can be supplied as an amplitude-width-modulated code on a $1,000-\mathrm{cps}$ sine wave and as a dc level shift.

Epsco-West, Dept. ED, 240 E. Palais Road, A naheim, Calif.

Five-Digit Voltmeter

Accuracy is $\mathbf{0 . 0 1 \%}$. This five-digit voltmeter has a range of ± 0.0001 to $\pm 999.99 \mathrm{v}$ dc. Speed is 20 readings per sec avg; outputs are BCD and 10 -line decimal; all switching is electronic ; dimensions are 5-1/4 $\times 19 \times 20 \mathrm{in}$.

Electro Instruments, Inc., Dept. ED, 8611 Balboa Ave., San Diego 11, Calif.

Power Inductor

Variable power inductor is designed for complex load banks, accurate voltage control for tuning and phase-angle control circuits and breadboard filter circuits. It is available in two overlapping ranges from 10 to 40 and 40 to 160 mh . Dc resistance in either range is less than 5 ohms with dc and rms current of 0.5 amp max. Servomechanisms/Inc., Dept. ED, 200 N. Aviation Blvd., El Segundo, Calif.

Design with
 MALLORY MERCURY BATTERIES for new sales appeal in your products

PERSONAL RADIATION MONITOR, developed at Oak Ridge National Laboratory, warns of radiation levels by flashing a neon lamp and sounding a tone in a hearing aid earphone. The transistorized circuit operates 24 hours a day for 30 days at a time, from power by a single Mallory TR-133R mercury battery.
Photo courtesy Oak Ridge National Laboratory
Operated by Union Carbide Corporation
For the U. S. Atomic Energy Commission

PORTABLE TRANSISTOR TEST SET is made by Metronix, Inc., a subsidiary of Assembly Products, Inc. Used as the DC power source, Mallory Mercury Batteries assure stable voltage over long periods of time, are undamaged by momentary short circuits, and provide long shelf life.

MICROMINIATURE TRANSMITTER, used for monitoring tooth wear and pressures and for other biomedical applications, is made by Varo, Inc. Small enough to be fitted into a dental bridge, it transmits information over short distances to a pickup/preamp, utilizing an RM-312 Mallory Mercury Battery smaller than an aspirin tablet.

A DUAL INSTRUMENT FOR REACTOR MONITORING, the $\log n$ Period Amplifier made by Keithley Instruments, Inc. gives extremely accurate low-level DC measurements. The constant voltage source used for calibrating this sensitive instrument is a Mallory Mercury Battery . . . chosen for its steady voltage and an accuracy within $\pm 1 / 2 \%$. Stable, long-lived Mallory Mercury Batteries are used as the power supply for several other Keithley instruments.

Miniaturize your new product . . . make it more portable . . . give it extra long service between battery changes . . . with Mallory Mercury Batteries. Pioneered by Mallory, these unusual batteries last 3 to 7 times longer than conventional batteries, depending on drain. They provide the highest watthours per pound of any commercially available primary battery. Sizes smaller than an aspirin tablet deliver ample energy for many miniature circuits.

Mallory Mercury Batteries have the unique characteristic of staying at constant voltage throughout their long life. This property is ideal for transistor circuitry . . . also proves useful in applying these cells as a highly stable source of voltage for reference or calibration. Voltage of cells coming from production varies no more than a few millivolts.

As for shelf life, we've tested mercury batteries held in storage for over six years: capacity loss was minimum. Steel case construction with molded grommet seal makes them free from leakage.

Choose from a broad line of standard single or multiple voltage cells . . . or let us develop a custom power pack or you. Write us for consultation and engineering data.

Mallory Battery Co., North Tarrytown. N. Y. a division of P. R. Mallory \& Co. Inc.

Mallory

[^4]In Europe: Mallory Rulleries, Lid., Dagcnham, Eingland

Have no moving parts. Six types of PowerMax integral horsepower, position servo amplifiers are available. Positioning accuracy is typically better than 0.3%. Dc inputs include analog programer output, positioning potentiometers, selector switch and fixed-resistor networks, electromagnetic flow-meters and static switching circuits.
Electromation Co., Dept. ED, 4254 Glencoe Ave., Venice, Calif. Availability: stock.

Resistor Networks
589

Lug-type resistor networks are made in lengths to 6 in., with up to 13 resistors. Values can be matched to 0.005%; individual tolerances are 0.01%. Values range from 1 ohm to 2 meg , with ratings to 3 w and 1 kv .

Reon Resistor Corp., Dept. E[), 155 Saw Mill River Road, Yonkers, N. Y.

Photoelectric Reader

Sorts by color. Photoelectric reader model 150 provides a resistance range of about 25 K to 250 K from white to black surfaces at a distance of $1 / 8 \mathrm{in}$. from the lens. Volume is $2 / 3 \mathrm{cu} \mathrm{in}$. Range is flush to $1-1 / 2 \mathrm{in}$.; weight is 1 oz .

Melpar, Inc., Dept. ED, 3000 Arling. ton Blvd., Falls Church, Va.

[^5]
circle ol on reader-service card

NEW PRODUCTS

Vertical Sensing Element 580

Two-axis, proportionally damped, bubble-type A 1800-01A-A vertical sensing element drives gyro torque motors. Vertical accuracy is $\mathbf{+ 1 5}$ min of arc, repeatability is 5 min and tilt angle is 0.75 deg nominal at full-scale output.

General Precision, Inc., Kearfott Div., Dept ED, 1150 McBride Ave., Little Falls, N. J.

Power Supply Cabinet

542

Shock and vibration, category D per MIL-E4970A, are withstood by this power supply cabinet. Designated model 2C, the cabinet is weath-er-proof and suitable for outdoor use. The cabinet is offered on nine of the firm's standard power supply models providing de currents up to $1,500 \mathrm{amp}$ from 15 to 135 v .

Christie Electric Corp., Dept. ED, 3410 W 67th St., Los Angeles 43, Calif.

Bellows Couplings

Allow 5-deg misalignment. Solid, split-hub, and combination miniature bellows couplings transmit 200 oz-in. max torque. The phosphor bronze units have zero backlash, permit 5 -deg max misalignment, and $3,000 \mathrm{rpm}$ max speed. Surface is palladium flash-plated.

FAE Instrument Corp., Dept. ED, 16 Norden Lane. Huntington Station, L. I., N. Y.

674

when

conditions

are

 critical...
here's why
HOLDWE POWER - atlee clips are specially contoured to flex under tension. Their grip actually increases as shock and vibration increases. PROVEN RESULTS - no visible shift. ing or twisting - no lead-breaking resonance - holding power un. changed by heat or constant use.
COOLING EFFICIENCY - atlee clips, acting as heat sinks, approach within 10% of "infinity". PROVEN RESULTS - operation of transistor at maximum ratings without life shortage.
ELECTRICAL INSULATION-atlee clips are available with Dalcoal B coating. an enamel combining twice the dielectric stength of Teflon with equal heat conductivity of mica. PROVEN RESULTS - proper electrical insulation from chassis and proper thermal behavior.

SEND FOR TRANSISTOR APPLICAXION
TABLE - A comprehensive listing of attee clips for specific transistor application.

CIRCLE 92 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

This variable-voltage power sup ply has an output from 0 to 140 v ac with regulation of $=6 \%$ at 75 w. Maximum no-load output is 142 v rms. Front panel meter reads 0 to $150 v$ with 1% full scale accuracy. Unit measures 9-3/8 x 4-7/8 x 5-1/2 in.

Lafavette Radio Corp. Dept. ED. 165-08 Liberty Ave.. Jamaica 33, N. Y'
Price: $\$ 19.75$.

Miniature Pentode

Improved linear deflection is featured in the 6 HB , a T 6-1/2 miniature pentode. Designed for receiver applications, the tube has a transconductance of $25.000 \mu \mathrm{mhos}$.

Raytheon Co., Industrial Components Div., Dept. ED. 55 Chapel St., Newton 58, Mass.
P\&A: $\$ 0.72$ en, 100 or mary; immedinte.

Recycling Timer

 516

This compact recycling timer designated series Dual-Trol, produces a series of on-off electrical pulses. It consists of two timing modules. one for the on and the other for the off signal, which can be adjusted to vary the timing interval. Ten replaceable modules are available with timing ranges from 6 sec to 3 hr . Units are rated at 10 amp and measure $7-1 / 2 \times 5-1 / 8 \times 5-9 / 16 \mathrm{in}$.
Industrial Timer Corp., Dept. ED, 1407 McCarter Highway, Newark 4, N. J. P\&A: $\$ 77.50$; sir to pight weeks.

CIRCLE OJ ON READER-SERVICE CARD \rightarrow

New Transfilter ${ }^{\circ}$ Combinations

Greater selectivity in a miniature package

. . . and increased stability at a decreased cost. Further, magnetic shielding can be eliminated as well as the necessity for factory and field alignment. That's why CLEVITE'S ceramic i-f filters are rapidly replacing conventional components in today's mobile or high quality commercial receivers. Basic component of these rugged fixed-tuned devices is the CLEVITE piezoelectric "Transfilter" developed especially for great stability of resonant frequency with respect to time and temperature. Cascading and coupling these resonators provide excellent selectivity at desired bandwidths. Size, $1^{1 / 2^{\prime \prime}} \times 3 / 4^{\prime \prime} \times 2.0^{\prime \prime}$ high; Center Frequency, 455 kc ; Shape Factor ($60 / 6 \mathrm{db}$), 3:1 to 6:1; Bandwidth, 4 to 20 kc ; Insertion Loss, 6 to 12 db max. (depending on bandwidth); Impedance, 2700 ohms in and out; Temperature Range, $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Call, write or wire for complete details.
CLEVITE ELECTRONIC COMPONENTS
232 Forbes Road, Bedford, Ohio / Division of ELEEITE Corporation

NEW PRODUCTS

Angular Accelerometers

Resolution is 0.01% of full scale. The AA series angular accelerometers for sensing roll. pitch and yaw cover from 0.5 to 500 radians per $\sec ^{2}$ in five models. They can be used with carrier amplifiers or $400-\mathrm{cps}$ power systems and are suitable for missile instrumentation and control.
Dynamic Measurements Co., Dept. ED, 106 Terwood Road, Willow Grove, Pa.

Image Orthicon

428
With rugged construction as well as high sensitivity, type GI-7409 image orthicon is designed for military applications such as in missiles, satellites, fire control and drone guidance.
General Electric Co., Cathode Ray Tube Dept., Dept. ED, Syracuse, N. Y.

Infrared Bolometer

426
Mosaic infrared bolometer permits imaging or photographing extensive areas at one time through the use of passive heat emission. A complete image can be provided in a fraction of a second.
Barnes Engineering Co., Dept. ED, 40 Com mercial Road, Stamford, Conn.

Program Drill

Drills up to 200 holes in any pattern through a load of one or more printed-circuit boards, up to $8 \times 12 \mathrm{in}$. Model 120 automatic program drill, having a repeat accuracy of 0.002 in ., is a high-speed electric drill with a pneumatically operated spindle and movable work tablr controlled by paired stop-pins set in a revelving control disk.
Develop-Amatic Engineering, Dept. ED, 923 Industrial Ave., Palo Alto, Calif.

SILICONE NEWS from Dow Corning

Engineer for Value

New Dielectric Gel Assures Protection Plus Easy Repairs

If value engineering is important to $\boldsymbol{z o u}$. so is Dielectric Gel. Tnis nen "see-through" potting material offers all the advantages of other materials plus visual inspection and instrument testing . . . plus easy repair . plus fool-proof repotting.
A water white, medium viscosity liquid, Dielectric Gel readily surrounds components. It cures in place, forming a resilient mass with outstanding dielectric properties, good thermal stability and moisture resistance. No significant stresses are developed during or after cure. Serviceable from -60 to 200 C, Dielectric Gel protects potted components and circuits from
shock and vibration. wher entironmental extreme- . . . is excellent for filling and impreqnating caparitors. maynetic amplifiers. similar components and devices.
Circuit- and components potted in Dielec. tric (iel can le checked both visually and by instrument. When probes are removed. Dielectric Gel heals itself. To replace a defective part you simply cut anay the Dielectric Gel with a knife or scissors. replace the defective component and pour fresh Gel around the part. Result: Original high quality protection:

CIRCIE 800 ON READER SERVICE CARD

Dow Corning

...Specify Silicones

No Heat-loosened Terminals Here

Repeated soldering dores not loosen terminals mounted on silicone-glass laminate made nith Dow Corning resins. lightweight and rugged, silicome-qlass laminates provide greater strenyth at elevated temperatures than many metals
keep, their excellent dielectric properties despite sturage, environmental aying. rapidly changing ambients. vibratory shock and high humidity. These are the reasons why Lear, Inc., Grand Rapids, Michigan selected siliconeglass laminate for the capacitor muunting board in their Stable Platform Model 2013J.

CIRCIE SOI ON READER SERVICE CARD
Easy Way to Repair Encapsulations
It's eass to replace defertive parts encapsulated in Silastic ${ }^{\text {® }}$ RTV. the fluid silicone rubber that cures without heat. First. you cut a slit in the Silastic RTV jacket; second, replace the component: third. patch the cut by pouring fresh silastic RTV over the repair . . . there's no measur. able lose in dielectric propertien or physical strength. Encap-ulation with Silastir RTV offers theve advantages. (on): resistance to muisture. fungus. corrosive atmospheres. corona and ozone. excerlent dielectric properties. good heat dissipation and all operating temperature range of $-(0)$ (o) 2.50 C . Silastic RTV assures top value protection.

CIRCIE 802 ON READER SERVICE CARD

Heat-sink Sealant Ups Performance

When transistors and diodes are mounted with Dow Corning compound as the heat-sink sealant. heat dissipation improves up to 50%. That's because this greaselike silicone compound doesn't dry out, harden, melt or lose its initial properties from - 50 to 200 C . . . even after long time expusure. Duw Corning silicone cumpound has excellent thermal conductisity and increases the heat transfer between diode-and-washer and washer-and-chassis
improves device performance. Applied to lead terminals and connector pins after soldering, Dow Corning compound protects against corrusion, corona and shorts.

ClRCIE 303 on reader service card

CORPORATION MIDLAND, MICHIGAN

\qquad

ELECTRONIC DESIGN • July 5, 1961

$\left\{\begin{array}{l}\text { 白 } \\ 0\end{array}\right.$

The Right Formula

 For Your Career Your Ability + Cadillac
= A Better Position For You

It's an easy formula to remember and it's one that has stood the test of 30 years of service. Cadillac is the nation's largest electronic placement service and is retained by over 520 top electroni firms-both large and small-from coast to coast. Cadillac's service is COMPLETELY CONFIDENTIAL and available to you ABSOLUTELY FREE OF CHARGE.

FREE-Monthly Opportunities Bulletin

If you wish to receive a monthly bulletin of the finest available electronics opportunities, simply send us your name and home address (and, if you wish, a review of your qualifications). Our services are without cost to you through our Chicago office and our Los Angeles subeidiary, Lon Barton Associates.

ON D. BARTON
 CADHAC

 ASSOCIATES, INC29 Enost Modisan Bldg. Chisage 2. Illinois Flnansial 0-9400
Where More Electronic Executives Find Their Positions han Anywhere Else in the World

CIRCLE 072 ON READER-SERVICE CARD

Class 1, Nikrothal L

Kanthal's Standard Nickel-based Alloy for resistors and potentiometers

Now better gwalley and at a lower price!

Thanks to new aging equipment and more efficient processing, Kanthal now offers Class 1, Nikrothal L with a maximum temperature coefficient of resistance of ± 5 ppm per ${ }^{\circ} \mathrm{C}$ from $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ (was $10 \mathrm{ppm})$ and at a five per cent reduction in bare wire price. Prices have been correspondingly lowered for insulated Class 1 , Nikrothal L.
Don't forget Class 2, Nikrothal L, and Classes 1 and 2, Kanthal DR - no change in quality or price.
W riso loday for Kambal's now Precision Resistenco Alioys Bulletion describing physical properties, sizes, spocificastions, design and

NEW PRODUCTS

High-Low Temperature Chamber

Range is -100 F to +600 F . Temperature can be lowered from 70 F to -100 F in 5 min , and raised to 600 F in 45 min . Heating unit is electric resistance type, operating on 15 amp , 115 v ac. Refrigerant is liquid CO_{2}. Sealed construction is said to permit continuous operation at -100 F without condensation. Unit measures $21-1 / 2 \times 14 \times 18 \mathrm{in}$. Test space measures $9 \times 11 \times 10 \mathrm{in}$.
Bemco, Inc., Dept. ED, 11631 Vanowen St. North Hollywood, Calif.
P\&A: \$440.00 FOB Nurth Hollywood; from stock

Controlled Switches

527
Fast recovery silicon controlled switches operate from 50 to 800 ma average, 10 amp peak Complete recovery occurs in $2 \mu \mathrm{sec}$; rise time is $0.1 \mu \mathrm{sec}$. Voltage ratings of the pnpn devices range from 30 to 200.

Solid State Products, Inc., Dept. ED, 1 Pingree St., Salem, Mass.
P\&A: $\$ 10$ to $\$ 29$ ea, 100 to 999; stock.
Delay Lines

Lumped-constant electromagnetic delay lines are designed for microminiature circuit applications. Delay is $0.35 \mu \mathrm{sec} \pm 5 \%$; risetime is 0.03 μ sec max ; impedance is 1,500 ohms; temperature range is -55 to +125 C. Unit shown occupies 0.3 cu in . Requirements of MIL-STD-202-B are met.

Andersen Laboratories, Inc., Dept. ED, 501 New Park Ave., W. Hartford 10, Conn.

$+500^{\circ} \mathrm{Fro}$ - $100^{\circ} \mathrm{F}$ in SIX minutes Withnew delta TEMPERATURE CHAMBER

Rapid tomperature cycling without sacrificing preciso conirol $\left(\pm 1 / 2^{\circ} F\right.$) is achieved with the Delia 1060F fempera fure chamber.
This convenient bench model can make the complete cycle berween $-100^{\circ} \mathrm{F}$ and $+500^{\circ} \mathrm{F}$ in less than melve minutes.
An auxiliary timer Dolta MR-1 is available for use in tost work whore automatic cycling is dosired.
For further information on the 1060 F and other Delfa remperature chambers, confact your local Delta represen. tative or write

CIRCLE 97 ON READER-SERVICE CARD

ELECTRONIC DESIGN • July 5, 1961

Solid-state device is designed to switch input signals of up to $1 v$ with a resolution of $5 \mu \mathrm{v}$. Designated type SW-101, the unit switches up to 1,000 times per sec. Switching transient is less than 4 mv ; gating power is less than 2.5 mw , and error is less than $50 \mu \mathrm{v}$. No external transformer is required. The unit occupies less than $1 / 2 \mathrm{cu}$ in. and weighs 8 g .
Alpha-Tronics Corp., Dept. ED, 1033 Engracia, Torrance, Calif.
Availability: 80 duys.

Multicoder

432
For all IRIG channels with sampling rates for PDM systems. Transducer-source resistances up to 5 meg may be used. Other features of the multicoder are: input of 28 v at $1-1 / 4 \mathrm{w}$. input resistance greater than 100 meg at 70 C . input impedance at $1,000 \mathrm{cps}$ of 150 K .

Applied Electronics Corp. of N. J., Dept. EI), 22 Center St., P. O. Box 4:3, Metuchen, N. J.

Absolute Pressure Transducer
485

Designed for use with corrosive media, the model 723 absolute pressure transducer is a bourdon-tube, potentiometer-type instrument with a stainless steel isolation bellows. Range is from 0 to 350 , to 0 to 3,500 psia. Typical static error band is $\pm 1 \%$. Resistance is 1 K to 10 K . Nominal resolution is 0.25 to 0.45%. Power rating is 1.5 w continuous at 165 F . Units are $1-3 / 8 \mathrm{in}$. in diameter and 3 in . long. Weight is 7 oz.
Bourns, Inc., Instrument Div., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

New Pangiescent

Iamp by Sylvania

puts a dramatic idea in appliance design

Now you can design exciting new sales appeal into almost any appliance with Panelescent ${ }^{\text {² }}$ (electroluminescent) lamps.
For example, in the control panel of a room air conditioner. This startling new form of light glows beautifully in the dark, makes a control panel clearly visible in dim rooms or during the night.
Not a bulb, not a tube, but a sheet of metal with an electrified coating, the Panelescent lamp is virtually indestructible, gives off no heat, either. Installation by mass assembly is simple. No sockets,
bulbs, fragile parts, or complicated assemblies. Panelescent lamps use a minute amount of current, glow for years without ever needing to be switched on or off.
See your Sylvania representative for more information about how Panelescent lamps can be used to improve a new product you're planning. Or write now to Special Products Division, Sylvania Electric Products Inc., 60 Boston St., Salem, Mass.
With 6000 different kinds of lamps
8YLVANIA LIOHTS THE WAY

SUBSIDIARY OF GENERAL
GENERAL TELEPHONE \& ELECTRONICS

NEW! solid State time/delay/relays

...with traditional AGASTAT* reliability!

Now available . . . solid state time/delay/relays with the accuracy essential for critical missile and computer applications! These new AGASTAT relays are the result of over 25 years' time delay engineering and manufacturing experience . . . specialized experience which has made AGASTAT the standard of reliability throughout industry.
Advanced design combines specially selected semiconductors and other components in a "modular-sandwich" configuration. Result: the standard modules mean flexibility; uniformity; and rapid delivery of "custom" produced prototypes. The solid state AGASTAT is hermetically sealed . . . resistant to vibration and shock. Special circuitry protects against input polarity reversal, provides immunity to voltage transients and continuously modified inputs.
What are your requirements? These solid state relays are only $1-5 / 16^{\prime \prime}$ sq. ... available in six standard types, with delay on pull-in or drop-out; timing ranges from 0.01 sec . to 10 hours, fixed or adjustable. Operation $-18-32$ vdc; -55 c to 125 c; load capacity to 5 amperes. Write Dept. SI-47 for data sheet. Or ask for a quotation on your special application requirements.

NEW PRODUCTS

Brakes and Clutches

Size 5 brakes and clutches have torque ratings of $6 \mathrm{oz}-\mathrm{in}$. min engaged and $0.05 \mathrm{oz}-\mathrm{in}$. max disengaged at 28 v dc. Brake torque is 2 oz-in. Units consume 1.16 w and have a 2.8 msec response time at 28 v . Minimum engagement voltage is 6 v dc. Designed for use in analog navigation computers, units weigh 0.97 oz and meet MIL specs.

Clifton Precision Products Co., Inc., Dept. ED, 5050 State Road, Drexel Hill, Pa. Availability: Off-shelf delivery.

Hermetic Sealing Glass

532
Precision electronic components can be hermetically sealed in this glass, Kovex 50. The glass is said to provide a matched seal with metal. Annealing point is 502 C ; softening point, 700 C ; thermal expansion coefficient, 48 x 10^{7}; density, 2.27 ; power factor, 0.25 ; dielectric constant, 4.98 ; loss factor, 1.24 .

Mansol Ceramics Co., Dept. ED, Belleville, N. J.

Static Relay

Sensitivity is $0.5 \mu \mathbf{w}$. The ultRelay static relay with meter-movement sensitivity handles up to $750-\mathrm{w}, 650-\mathrm{cps}$ loads, and is virtually unaffected by shock and vibration. Power amplification ratios are 90 to 100 db . Operating temperature range is -40 to +160 F .

Airborne Accessories Corp., Industrionic Div., Dept. ED, 5456 W. Washington Blve., Los Angeles 16, Calif.
Price: $\$ 85$.

It's a fact! Only a specially designed indicator can exactly meer the precise circuitry requirements of computers, data proceming and control systems.
Only Tec. Litiss can be tailored exacely to meet your demands-at comperitive prioes - by engineers who conceived and developed the concept of self-contained transistorized indicator devices.
Every Tec-LuTe-a complex transitorized indicator or a simple lite-is manufactured under risid quality assurance programs to surpaces military and commercial quality standards.

Write for detailed information on TEC-LTRS. . . custom designed to exoced your most exacting demands.
orioimator of patentio
TRANSISTORIZEO INDICATORS

Transistor Electronics Corporation
3357 Ropublic Ave. - Minneopolis 26, Minn TWX MP 331 • WE 9-6754

CIRCLE 100 ON READER-SERVICE CARD

For TO-18 package. Heat sinks for mesa transistors in the TO-18 package use a threaded nut for secure contact with transistor weld flange. The two-piece, stud-mounted sinks are of aluminum having high thermal efficiency. No. 1107 is anodized, No. 1106 has caustic etch finish
Thermolloy Co.. Dept. ED, 2130 Irving Blvd.. Dallas 8. Tex.

Silicon Controlled Rectifiers

Rated at 25 amp at 100 C, diffused silicon controlled rectifiers of the TI-150 series are housed in stud package. Rated breakover voltages, both forward and reverse, are 50, 100, 200, 300, and 400 w respectively for the TI-150. 151, 152, 153 , and 154.
Texas Instruments Inc., Dept. ED, P. O. Box 5012. Dallas 22, Tex. Arailability: Immerdiatr.

Silicon Transistors

502

In TO-18 case, phy alloy junction silicon transistors 2 N935 through 2 N 946 are electrically equivalent to TO-5 types such as 2 N 1917 through 2N1922, 2N1025, and others. They are suited for switching. communications, and instrumentation uses.
Sperry Semiconductor Div., Sperry Rand Corp., Dept. ED, Norwalk, Conn

New Improved CBS PNP Power Transistors
 2N538(A) • $2 \mathrm{~N} 539(\mathrm{~A}) \cdot 2 \mathrm{~N} 540(\mathrm{~A})$ FEATURE MORE POWER, LESS WEIGHT, LESS SPACE

The CBS 2N538(A), 2N539(A) and 2N540(A) have a maximum dissipation of 30 watts at a base mounting temperature of 25 deg. Centigrade. Yet, each transistor weighs less than 5 grams and requires only $1 / 3$ square inch of chassis space.

Compact and rugged, these hermetically-sealed CBS PNP Germanium Power Transistors are ideal for military and industrial power applications demanding high reliability. They are especially suited for servo motor controls, power amplifiers, converters, power supply regulators and low-speed power switches.
Note the major characteristics and advantages. Call or write today for complete technical data and delivery information from your local sales office or Manufacturer's Warehousing Distributor.

CBS semiconductors

More Reliable Products through Advanced Engineering

CBS ELECTRONICS, Semiconductor Operations, Lowell, Massachusetts
A Division of Columbia Broadcasting System, Inc. - Semiconductors • tubes - audio components - microelectronics
Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 • Newark, N. J., 231 Johnson Ave., TAlbert 4-2450 Melrose Park, Ill., 1990 N. Mannheim Rd., EStebrook 9-2100 • Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 Toronto, Ont., Canadian General Electric Co., Lid., LEnnox 4-6311.

FIELD PROVEN!
3240
WITH Q日 ROBOTEC overload and hort protectio
and M4.11 heatran electronic dissipotion
control \$34950
FOB FACTORY Other Modet Available. Write
for Catalog d solid state DC power supply with 05% regulation. 1 millivolpripple. 01 ohm source im. pedance, 50 microsec pedonce, 50 microsec and response time, 55 440 cycle input. 440 cycle input.
I MMEDIATE DELIVERY EOgewad 3.5200 (LD Aroa Cale 316)
CIRCLE 103 ON READER-SERVICE CARD

1708 SMAMES ORIVE, WESTBURY, MEW YORE

NoW!

CONTINUOUS PRODUCTION
 SEMICONDUCTORIZED POWER SUPPLY -5015

Ar Puner Devigus inc.

Y 170 SMAMES DRIVE, WESTBURY, MEW YOAK FDrewnad 36200 (LD Area Cove 516) CIRCLE 104 ON READER-SERVICE CARD

NEW PRODUCTS

Bulkhead Connector

This compression-sealed unit has a normal leakage rate of less than 10^{-7} cc per sec, with rates of 10^{-4} cc per sec available on special order. Bodies and pins are fused with glass, meeting MIL-C-5015 specifications. Various contact arrangements with 12 to 32 pins are available. Unit mates with any standard MS socket
Escon, Inc.. 735 Branch Ale., Providence. R. I.

Module Cage

507
Instrumentation module cage holds up to 24 printed circuit cards, or up to 12 modules 1.375 in. wide. Standard 22 -pin or 24 -pin connectors mount at rear. Modules are available ior strain sage, telemetry, and recorder uses.
Wiley Electronic Products Co., Dept. ED. 2045 W. Cheryl Drive, Phoenix, Ariz.

CONTROL DATA

High Speed Punched Paper Tape Reader

- Unsurpassed Reliability
- Advanced Mechanical Design
- 350 Char/Sec Read Rate
- Start-Stop or Continuous Mode
- 5, 7, or 8 Level Tape
- Tape Widths: $11 / 10^{\prime \prime}, 7 / 6^{\prime \prime}, 1^{\prime \prime}$
- Instantaneous tape width selection
- Reads all punched tape Paper-Plastic Colored-Plain
Oiled or Non-oiled
- Complete freedom from programming limitations
The Control Data Model 350 Paper Tape Reader employs the most advanced tape controls and reading techniques. Multi-colored tapes can be read interchangeably without the need of bias adjustments, and new specially designed light guides in the reading head eliminate dirt collecting holes. The precise control system eliminates troublesome resonances and provides complete freedom from programming limitations. These and other features combined with careful attention to details and quality, result in a paper tape reader which provides new high standards of reliability and versatility.
rer provides new hish and
CONTROL DATA CORPORATION

CEDAR ENGINEERING DIVISION

 CIRCLE 105 ON READER-SERVICE CARD

Connector Cables

506
Color-coded connector cables are made for in terconnection of audio equipment. Plugs are provided. Basic colors of white, green, yellow red and blue are available. Colored marking strips and color dots may be easily applied.
Zoron, Inc., Dept. ED. 512 W. Monroe St., Chicago, Ill.

Time Delay Relay

Of almost crystal can size, this time delay relay, Model M-100, has spdt output contacts rated at 0.25 amp . Input voltage is 24 to 32 v dc. Adjustable time ranges are from 5 msec to 30 $\mathrm{sec}, \pm 5 \%$ under 10 sec and $\pm 10 \%$ over 10 sec . Units are hermetically sealed, rated at one million operations, and available in a variety of mounting styles.

Electronic Products Corp., Dept. ED, 4642 Belair Road, Baltimore 6. Md.

Designed to cool digital modules, particularly the firm's S-PAC series, the model CU-30 cooling unit utilizes three axial-flow fan units mounted in parallel within the chassis. It has a removable dust filter. The airduct may be adjusted to draw air from either the front or rear of the cabinet. Unit measures $19 \times 5 \times 8 \mathrm{in}$.

Computer Control Co., Inc., Dept. ED, 983
Concord St., Framingham, Mass.
P\&A: \$12\%.00; delivery from stork,

Differential Mv Commutator

459

Range is dc to 20 kc for the differential millivolt commutator, packaged for missile and ground support applications. Specifications include: nower, 1 w at 28 v : input impedance. 100 K : sensitivity, 10 mv full-scale input: resolution, better than $20 \mu \mathrm{v}$: linearity, better than 11.25%.
Applied Electronic: Corp. of … J., Dept. EI), 22 Center St.. P. O. Box 43. Metuchen, N. J.

Leak Detector

For testing hermetically sealed components. Leaks in the 10^{-11} cc-per-sec range can be detected with the type 24-510 leak detector. Up to 10,000 transistors can be tested in each cycle, requiring less than an hour. Components are soaked in a nontoxic radioactive gas, are air washed. then are tested for traces of radioactivity.

Consolidated Electrodynamics Corp., Dept EI), 360 Sierra Madre Villa, Pasadena, Calif.

EVERYONE TALKS

IIN HERMETICALLY SEALED CONNECTORS

 BUT OULY OFFERS PROOF

TERMINATING AND CHECKOUT - RELIABILITY ASSURANCE SUBSTANTIALLY REDUCES THE NEED FOR USER'S VERIFICATION TESTING These are only a few of tne many reasons why you should consult the world's most experienced manufacturer of electrical connectors for your hermetic sealing needs. For immediate delivery and quotations write, phone, or wire Customer Services Manager, PHOENIX DIVISION, 2801 AIRLANE, PHOENIX, ARIZONA. Phone BRidge 5-4792. Test report and complete KPT Catalog available upon request from:

CANMON ©.PLUGS

The Cannon KPT Hermetic line is designed to, and far sur passes all requirements of MIL-C-26482 ... has proven sta. tistically reliable in leakage tests 200 times as severe as that required by MIL-C-26482. Cannon offers you hermetic seals with a reliability coefficient of .999 at a confidence level of 95%. Our rigid manufacturing controls and continued testing guarantee reliability at no added cost-and, in many instances, at lower prices than ordinary hermetic seals. Available for off-the-shelf delivery from Cannon stocking points and CAPS Distributors throughout the United States. LEADFREE COMPRESSION GLASS EXCEPTIONALLY LEGIBLE CONTACT IDENTIFICATION FOR FASTER

CANNON ELECTRIC COMPANY, 3208 Humboldt Street, Los Angeles 31. California.

The ascendant position of Vitro Electronics in telemetry systems management and products stems from the facilities, experience, and talent it takes to produce on sime. Vitro telemetry capability is demonstrated daily down the AMR and PMR ranges. Management versatility is reflected in our ground, mobile, shipboard, airborne, and space operations around the globe. - This specialty of Vitro's trusted electronic competence is founded on long and familiar experience in the functions of telemetry conception, design, engineering, procurement, production, testing, and installation. Where the utmost in exacting telemetry systems performance is demanded - Vitro is at work.
Outstandine opportunities for telemetry systems, RF and advanced dovelopment engineors.

 010 JERUP-DLAAR ORIVE, SILYEA SPRIM, MARYLAMD/ 2801 POWTIUS AVEWUE, LOS AMOELE B4, BALIFORUIA CIRCLE 107 ON READER-SENVICE CARD

NEW PRODUCTS

Sea-Water Depth Transducer

Range is $\mathbf{3 5 0}$ to $\mathbf{1 , 0 0 0}$ psia for model 734 seawater depth transducer. Other features include : resistances of 5 to $10 \mathrm{~K} \pm 5 \%$, resolution of as low as 0.15%; vibration limit of 35 g at 2,000 cps, static error band of $\pm 0.5 \%$. dimensions of 2 in . in diameter by 1.44 in ., and weight of 16 oz .

Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

Appliance Wire

528
Tefion TFE and FEP insulation is 10 mils to $1 / 32$ in. thick on appliance wire AWG 16 to 26. Temperature ratings are 105 to 200 C max. with voltage ratings to 600 v . Wire is U / L approved.

Tensolite Insulated Wire Co., Inc., Dept. ED, W. Main St., Tarrytown, N. Y.

Ultrasonic Delay Lines

531
Almost temperature-independent. These delay lines are manufactured of Code 8875 glass. This material has a nominal time delay temperature coefficient of zero $\pm 0.75 \mathrm{ppm}$ per C. Attenuation coefficient is low enough to permit time delays of $350 \mu \mathrm{sec}$ or higher at frequencies below 10 mc .

Corning Glass Works, Dept. ED, Corning, N. Y.

Frequency Standard

461

For 360 to $1,300 \mathrm{cps}$ with accuracies of 0.002%. Type 27 frequency standard measures $11 / 16 \mathrm{in}$. in diameter and $2-15 / 16 \mathrm{in}$. long. It weighs $1-3 / 4 \mathrm{oz}$, requires 20 to 30 v dc at 5 ma and operates over a temperature range of -65 to +125 C. Vibration conditions of MIL-E-5272B Procedure II are met.

American Time Products, Div. of The Bulova Watch Co., Inc., Dept. ED, 61-20 Woodside Ave., Woodside 77, N. Y.

BLOWERS

545015

FAST DELIVERY FROM STOCK HUNDREDS OF MODELS CUSTOM DESIGNING

Also a complete line of Irectional hersepower mofors
WRITE TODAY 44 Poge Packeged Cooling Catalog

Mclean

ENGINEERING LABORATORIES
World Leeder in Peckaged Cooling Princaton, N. J. - WAlnut 4-4440 TwX Princoton, Now Jorsoy 636 CIRCLE IOB ON READER-SERVICE CARD

Rated at 15 w at 25 C with maximum operating temperature of 265 C. Model 3030 wirewound potentiometer offers resistances of 10 ohms to 10 K and nominal resolution of as low as 0.6%. Weight is 0.9 oz ; size is $1.07 \times 0.52 \times 1.27 \mathrm{in}$. Applications include in power supplies.
Bourns, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.
Price: $\$ 8$ to $\$ 10$.

Synchros

Bu/Weps specification MIL-S-20708A are met by this series of synchros over a temperature range of -55 to +85 C . The series is designed for use in fire control, radar, navigation, missile functions, and similar applications.
Kearfott Div., General Precision, Inc., Dept. ED, Little Falls, N. J.

Image Orthicon

433
For near infrared use, type Z5395 image orthicon is suitable for both military and industrial applications. It can be used to penetrate hazy atmospheres for mapping and surveillance, as well as in passive detection systems.
General Electric Co., Cathode Ray Tube Dept., Dept. ED, Syracuse, N. Y.

Static Inverter
462

Rated at 175 va, model 143-101-171 static inverter has an output of 115 v ac, 400 cps , single phase from an input of 25 to 30 vdc . Output voltage and frequency are maintained within $\pm 1 \%$ from no load to full load; harmonic distortion is held to within $\mathbf{4 \%}$. Uses include missile and aircraft ground support equipment.

American Electronics, Inc., Precision Power Div., Dept. ED, 1598 E. Ross Ave., Fullerton, Calif.

CIRCLE 109 ON READER-SERVICE CARD

NEW PRODUCTS

Inductance Bridge

Designed for 400 to $20,000 \mathrm{cps}$ operation. this inductance bridge is basically a calibrated variable frequency oscillator coupled to a modified Maxwell bridge. The bridge, model 63B, provides direct-reading calibration of both the inductance and resistance dials, with a resolution of 0.01%. Inductance range is $0.02 \mu \mathrm{~h}$ to 11 h : resistance range, 0.002 ohm to 110 K . Accuracy is about 0.25%.
Boonton Electronics Corp., Dept. ED, Morris Plains, N. J.

Image Orthicon

With ultraviolet sensitivity, type GL 7969 image orthicon is suited for missile detection systems, spectrographic detection and medical instruments. Light-level capacity can be as low as $10^{-5} \mathrm{ft}-\mathrm{c}$. Resolution is high
General Electric Co., Cathode Ray Tube Dept. Dept. ED. Syracuse, N. Y

Fast-Responding Pico-ammeter

431
For nuclear applications, this pico-ammeter has a dynamic range of 10^{-12} to $10^{-3} \mathrm{amp}$ in 19 ranges and an accuracy of better than 3% of full scale at all outputs. Speed of response is less than 1 msec to 64% of final value at 10^{-3} to $10^{-3} \mathrm{amp}$.
General Electric Co., Dept. ED, Schenectady 5. N. Y.

Variable Inductor

For low audio range. Miniature saturablecore reactor model EL-215 operates at 1 w from 30 to 450 cps min , and 250 to $3,750 \mathrm{cps}$ max. Used to determine frequencies in filter and oscillator circuits, it is effective as a lowfrequency sweeping device. The potted unit operates in temperatures from -55 to +85 C .
Vari-L Co., Inc., Dept. ED, 207 Greenwich Ave., Dept. ED, Stamford, Conn.

HOW TO GET THE POWER TRANSISTORS YOU NEED?

JUST ASK DELCO. For even though our catalog lists only a handful of germanium power transistors, there is only a handful out of all those ever catalogued that we don't make. And those only because nobody ever asked for them.
We've made, by the millions, both large and small power transistors. Both diamond and round base. Both industrial and military types. And each in a wide variety of parameters that have proved themselves reliable in nearly every conceivable application.
You get Delco transistors fast. You get Delco transistors in any quantity. And for all their high reliability, you get them reasonably priced. All you have to do is contact our nearest sales office-and ask for them.

Union, New Jersey 324 Chestnut Street

 MUrdock 7.3770
anta Monica, California 26 Santa Monica Blvd. UPton 0-8807

Chicago, Illinois 750 West 51 It Street POrtsmouth 7-3500

Detroit, Michigan 57 Harper Avenu TRinity 3-6560

Division of Genisional Motors Mokomo, Indians

DELCO SEMICONDUCTORS NOW AVAILABLE AT THESE DISTRIBUTORS:

Boston:

GREENE-SHAW COMPANY, INC.
341-347 Watertown St., Newton 58, Mass.
WO 9-8900
New York:
HARVEY RADIO CO., INC. 103 West 43rd St., New York 36, N. Y. JU 2-1500

Chicago:
MERQUIP ELECTRONICS, INC. 5904 West Roosevelt, Chicago, Illinois AU 7-6274

Detroit:
GLENDALE ELECTRONIC
SUPPLY COMPANY
12530 Hamilton Ave., Detroit 3, Michigan TU 3-1500

Philadelphıa:
ALMO RADIO COMPANY
913 Arch Si., Philadelphia, Pennsylvania WA 2-5918

Baltimore:
RADIO ELECTRIC SERVICE
5 North Howard Si., Baltimore, Maryland LE 9-3835

Los Angeles:

RADIO PRODUCTS SALES, INC. 1501 South Hill St., Los Angeles 15, Calif. Ri 8-1271

San Francisco:

SCHAD ELECTRONIC SUPPLY, INC. 499 South Market St., San Jose 13, Calif. CY 7-5858

Seattle:

CAG ELECTRONICS COMPANY 2021 Third Avenue, Seattle 1, Washington MA 4-4354

Ask for a complete catalog

 DELCO RadoCIRCIE 111 ON READER-SERVICE CARD

Voltage Reference

Solid-state, shielded voltage reference standards of series 220 provide $5.7,8.5$, or 10.5 v dc at 10 ma . Operating from $115 \mathrm{v}, 60 \mathrm{cps}$ line. regulation is $\pm 0.001 \%$ for $\pm 10 \%$ line variations Capacitance from line to output is less than 1 pf.

Viking Industries, Inc., Dept. ED, 21343 Roscoe Blvd., Canoga Park, Calif.
P\&A: 150 ; \& weeks.

Timing and Control Systems

434
Programed timing and control systems provide initiation and termination of various switching functions at preselected times. Programing is from punched tape, punched cards, magnetic tape, hard wire, patch panels or thumbwheel switches. Digital design and modular construction are used.

Curtiss-Wright Corp., Electronics Div., Dept. ED. P. O. Box 10044, Albuquerque, N. M.

Size 11 Resolvers

529
Small. light weight size 11 resolves are intended for such applications as computation, angle data transmission and automatic control. Models CR4-0987-001 through CR4-0987-005. have a 0.1% function error, $\pm 3 \mathrm{~min}$ inter-axis error, and $0.1 \tilde{c}_{c}$ transformation ratio unbalance.

Kearfott Div.. General Precision, Inc., Dept. ED, Little Falls, N. J.

Submersible Pan-Tilt
489

Operating to $1,000 \mathrm{ft}$ depth, model 3003.2 submersible pan and tilt mechanism permits remotely controlled underwater positioning with 360 deg of pan and 90 deg of tilt. Remote readout of pan and tilt position is available.

Ward Associates, Dept. ED, P. O. Box 9067. San Diego 9. Calif.
P\&A: $\$ 8,000$: 60 days.

MICRO-MINIATURE RELAY STYLE 6A

For Printed Circuits

Less Space
Lower Mounting Height
Terminals \& Mounting
Conform to 0.2" Grid Spacing

For reliable switching of low-level as well as power loads. Style 6A will operate at coil power levels below most larger current-sensitive relays in its general class, yet easily switches load currents of 2 amps resistive and higher at 26.5 VDC or 115 VAC. Contact arrangement to DPDT.

Unique construction permits flexible wiring and a variety of schematics. Withstands 50 G shock and 20 G vibration to 2000 cycles.

Meets applicable portions of specifications MIL-R-5757D and MIL-R-25018 (USAF) Class B, Type II, Grade 3.

Call Or Write For Additional Information

PRICE ELECTRIC CORPORATION

302 E. Church Street - Frederick, Maryland MOnument 3-5141 • TWX: Fred 565-U CIRCLE 112 ON READER-SERVICE CARD

New design capabilities unfold as RC,A's amazing nuvistor tube family grows in number. You now have at your fingertips five commercial nuvistor types which permit you to nuvistorize your critical equipment designs for greater efficiency and extreme compactness.
RCA-7587 general-purpose sharp-cutoff industrial tetrode RCA-7580 general-purpose medium-mu industrial triode RCA-7895 high-mu industrial triode ($\mu=64$)
RCA-ECW4 TV and FM tuner triode
RCA-2CW4 TV and FM tuner triode
Design features responsible for the fast-growing popularity of nuvistor tubes include:

- Low heater drain - Very high transconductance at low plate current and voltage - Exceptional mechanical ruggedness from ceramic-and-metal construction - Exceptional uniformity of characteristics from tube to tube - Operation at full ratings at any altitude - Extremely low interelectrode leakage - High sensitivity and stability • Very small size and light weight

Nuvistorized circuits are currently in use or under de. velopment for:

- Jet engine wave and vibration analyzers
- Radar air traffic controllers
- Sonar systems, sonobuoys
- Electrometers and vacuum-tube voltmeters
- Research satellite
- Scintillation counters
- FM tuners. VHF TV tuners
- Pulse-width discriminators, frequency multipliers
- IF amplifiers in airborne weather radars
- Cascode amplifiers in radar beacon IF strips . and literally scores of other applications.

Discover for yourself what nuvistor tubes can do in your own critical circuils. For information, contact your RCA Field Representative, or write: Commercial Engineering, Section G-18-DE-1, RCAElectron Tube Division, Harrison, New Jersey.

5-3900 - MIDWEST: Chicago 54, III., Suite 1154, Merchandise Mort Plozo. Whitehall 4-2900 - WEST, Los Angeles 22. Calif., 6801 E. Washington Blvd., RAymond 3-8361• Burlingame, Calif., 1838 EI Camino Real, OXIord $7-1620$

NEW PRODUCTS

Thermoelectric Generator

Eight-watt thermoelectric power generator is designed for operation of remote, unattended industria field instrumentation. Fuel is natural gas, propane or butane. Rugged, reliable unit may be continually exposed to weather. Weight is 65 lb , width 12 in ., height 17 in

Texas Instruments Inc., Dept. ED, P. O. Box 6027, Houston 6 Tex.

Ultrasonic Probe

Operating to 100 kc , with useful response to 1 mc , probe VP-10 provides an inexpensive means of measuring ultrasonic levels. The probe will stand a static pressure of 100 psi , and is unaffected by high temperatures. Output at cavitation is several volts, permitting use with simple equipment for waveform and level display

Vibrasonics, Inc., Dept. ED, 10 High St., Boston, Mass.

Low-Noise Preamplifier
501

For radiation detectors. Preamplifier model 100 A , featuring charge-sensitive feedback, is used with semiconductor radiation detectors. Charge sensitivity variation is less than 10% from 0 to $1,-$ 000 pf . Noise is equivalent to 600 electrons rms, rise time less than $0.1 \mu \mathrm{sec}$.

Nuclear Industries, Inc. Dept. ED, 10 Holland Court, Valley Stream, N. Y.
Price: \$295

This $100-\mathrm{w}$ broadband amplifier can provide a cw signal from 200 kc to 275 mc . Input and output imepdances of 50 and 90 ohms, respectively, are compatible with standard transmission lines and fittings. Broadband rf transformers for different impedance levels can be supplied. The cabinet measures $21 \times 22 \times 47 \mathrm{in}$., and has recessed casters

Instruments for Industry, Inc. 101 New South Road, Hicksville, N. Y.

P\&A: \$6.500: about 8 weeks.

Power Transistors

Silicon power transistors 2N2015 and 2 N2016 have saturation resistance of 0.25 ohm max, power dissipation up to 150 w . Beta is 15 to 50 at $5 \mathrm{amp}, 7.5 \mathrm{~min}$ at 10 amp . The devices operate at case temperatures from -65 to +200 C

Radio Corp. of America, Semiconductor and Materials Dis., Dept. EI, Somerville, N. J.

Silicon Chopper

One-gram silicon chopper oper. ates from less than 1 mv to $\neq 20 \mathrm{v}$. Driving voltage is a square wave with amplitude of 5 to 25 v , peak to peak. Signal Current is 10 ma max, linearity less than $\pm 0.5 \%$ deviation from best straight line. Operating temperature is -55 to +150 C .
Solid State Electronics Co., Dept. ED, 15321 Rayen St., Sepulveda, Calif.
P\&A: \$88; stock.
CIRCLE 114 ON READER-SERVICE CARO

INSTANT ENGINEERING DRAWINGS

FASTER PRINTS MEAN FASTER PRODUCT DEVELOPMENT, FASTER PRODUCTION. Imagine locating a drawing or record in seconds. Imagine having a work-size print in just 8 seconds. All this, and more, can happen when your drawings and records are on microfilm . . . with FILMSORT® Aperture Cards and THERMO-FAX "Filmac" Reader-Printers. This is the way many companies are saving valuable engineering and drafting time, saving the cost of full-size print preparation, saving space, and saving print distribution costs. The cost? Far less than you would expect for such amazing efficiency. Find out now how you, too, can put microfilm to work-get Instant Engineering Drawings when you need them, where you need them-with 3M Microfilm Products.

3M MICROFILM

BRAND
PRODUCTS

3M Company Depl. FCO-751, St. Paul 6, Minn.
Please send me information about Instant Engineering Drawings.

MAME
tite
COMPANY
ADDRESS
ciry. \qquad 2ONE STATE

Minnisota Mining ano
Manufacturime company

Furnace and Oven Users:
Q. Why did BTU Engineering Corporation switch 10 a stepless
temperature control
designed around the General Electric Sllicon Controlled Rectlier?
A. "The General Electric SCR makes a better control at
lower price. It has all the advantages of the saturable core reactor with none of its limita tions of range and powe
matching requirements, and al the latitude of a magnetic contactor without the see-saw
effect, stickiness and noise."

Difusion furnace used in semiconuy BTU Enkineering Corporation Watham. Mass. The Stepless Control designed around th
General Eleciric SCR has no moviny parts. doses not deteriorate
with ake. It is also fail sale he absence of a signal it shuts

Advantages of the

 BTU Stepless Control include:- No costly contactor failures
- Rellability of a solid state rectifier as the heart of the system.
- It operates "full-on." "full of" or any point in between with infinitesimally precise control.
- Nearly linear throughout ange.
- No matching of imposed land to size of control unit required.

Now lower-priced than ever be fore, the SCR opens new areas for engineering development. Can you afford 80 w'ais any longer? Write today for applica tion information. Rectifier Components Department. Section pany, Auburn, New York.

GENERAL ELECTRIC

Light Flasher Users:

 Why does the Aero-Space Divi-
sion of the Walter Kidde Co. sion of the Walter Kidde Co. Controlled Rectifiers tatic light Reshers?

A."General Electric SCR's have made possible solid state cir-
cuits that optimize long. maintenance free life in our static flashers. They easily wuthstand the high inrush currents of incandescent lamp loads and the severtal conditions associated with commercial and military airborne equipment."

Solid state light flashers, developed by the Aero-
Space Div. of the Walter Kidde Co., Belleville, N.J. eliminate all rotating elements. nothing to wear out. vanced equipment design made possible by the use of the General Electric SCR.

Advantages of the static Ilgh flasher Includ
Withstands Inrush currents tem times normal.

- No arcing or corrodiug of points.
No rotating element
Rellabillty through long, maintenance free life.
- Smaller size, lighter weight.
- Lower total package cost.

Now lower-priced than ever he ore, the SCR opens new area for ensineering development. Can you afford $t 0$ wait any onRer? Write today for appli cation information. Section 23618, Rectifier Component pany, Auburn, N. Y.

GENERAL ELECTRIC

NEW PRODUCTS

High-Power Transmitter
415

Output is 1 to 2 kw at 200 to 400 mc . De signed for missile and space applications, the transmitter withstands temperatures of 400 or 500 F as well as severe shock and vibration. The rf circuitry is broad-banded for operation over a $10-\mathrm{mc}$ range around a selected nominal frequency.

Space Electronics Corp., Dept. ED, 930 Air Way, Glendale, Calif.

Electroluminescent Panels

508
Metal, glass and plastic e-1 panels are now available in quantity. Metal panels can be made up to 2 sq ft , glass panels 30 in . square; plastic panels are made in a wide variety of shapes and forms. Metal panel life is about $\mathbf{1 5 , 0 0 0}$ hours. Light output is about $10 \mathrm{ft}-\mathrm{I}$ at 600 v , 60 cps .
Westinghouse Electric Corp., Dept. ED, Box 2278, Pittsburgh 30, Pa.

Temperature Chamber

427
Range is -100 to $+350 \mathbf{F}$ for the Mark II temperature chamber. Features include: internal working dimensions of $11 \times 12 \times 5 \mathrm{in}$., liquid carbon dioxide refrigeration, resistance element heater, aluminum liner and fan with external blower motor
Associated Testing Laboratories, Inc., Dept ED, Wayne, N. J.
Price: \$285.
Decade Resistance
490

Five-dial decade resistance box has ranges from 0.0 to $9,999.9$ to 999,990 ohms in steps of 0.1 to 10.0 ohms. Temperature coefficient is less than 0.002% per deg C. Current rating ranges from 10 ma to 0.5 amp .

Voltron Products, Inc., Dept. ED, 1020 S. Arroyo Parkway, Pasadena, Calif.
Price: \$115 to \$1s0.

Super processing aids Tucor TR tubes' power-handling ability

One stage in Tucor's exclusive electronic ionization processing technique is illustrated in the highpower TR tube shown at the exhaust station. Model T48U15 is a cuuart\%, folded-cylinder tube operating at UHF and L-band frequencies with a multi-megawatt power input. This tube was designed to provide short recovery time without the disadvantages of the contaminants usually added for this purpose that shorten tube life. The addition of a newlydeveloped uranium getter maintains purity of the gas fill indefinitely.

Following the duplexer stage in which such a tube would be used. a lower-powered post-TR tube circuit is ustially required. Such tubes as the Tucor T48U9 and T48U10. which have been developed for this purpose as well as for use in medi-um-powered duplexers, provide lower leakage powers and long-life performance.

Why do Tucor tubes perform better? A combined microwave circuit and plasma physics design results in an optimum configuration and gas fill for any application.

Whether shelf items or custom designs for your specific application, Tucor tubes provide advantages in reliability. Why not investigate further by asking for our latest tube catalog?

CIRCLE 197 ON DONH Roced (Roun R, Witon, Commeticu ELECTRONIC DESIGN • July 5, 1961

Trimmer Potentiometer

The 25-turn, $3 / 4$-in. sq model 51 trimmer potentiometer is available in ranges from 50 ohms to 200 K . It dissipates 3 w without external heat sink or other hardware. Military specs for altitude, humidity and other environmental conditions are met. Weight is 5 g .
Spectrol Electronics Corp., Dept. ED, 1074 S. Del Mar Ave., San Gabriel, Calif.

Camera Tube

429
With tri-alkali photocathode, type 7967 camera tube is claimed to provide 50 times more sensitivity than standard image orthicons. It operates with an illumination of up to $10^{-6} \mathrm{ft}-\mathrm{c}$. The magnesium-oxide semiconductive target has almost no lateral leakage. Resolution is better than 300 TV lines at low light levels or 1,200 lines at higher levels.

General Electric Co., Cathode Ray Tube Dept. Dept. ED, Syracuse, N. Y.

Miniature Humistor

435
Over-all length is $1 / 4 \mathrm{in}$. and header diameter is $5 / 32$ in. Model H-160-3 humistor detects and measures vapor or gases exhibiting an electric di-pole movement. Readout is through as megohmmeter or a megohm bridge. The device can be completely immersed in water and withstands temperatures from 0 to 100 C

Conrad-Carson Electronics. Inc., Dept. EI), El Cajon, Calif.
P\&A: \$10: from stock in small quantities.

Remote Alarm

A solid-state remote alarm monitor, model 901, samples and encodes any number of data points and keys a single channel of any transmission medium. The signal is decoded and displayed at the receiver. Operation is continuous. Compact plug-in construction is employed, 17 points occupying a $3-1 / 2 \times 5-3 / 16 \times 6-15 / 16$ in. package. Units resist moisture, fungus, and high temperature.

Compudyne Corp., Dept. ED, Hatboro, Pa.

The 6 most inmportant things in your working life are your five skilled fingers and your A.W.Faber *9800 SG Locktite Tel-A-Grade Lead Holder.
Lockitite becomes a part of your creative process. The no-slip functional grip gives you smooth ess. The no-slip functional grip gives you smooth Gun-rifted cluch practically banishes finger fatigue. bull dos. Unique indicator reveals the degree in use at alance. Carries ironclad 2 -year guar nice. A FAbrg will replace the entire holder at no charge if any part wears out in normal
usage. Yes, you can buy cheaper lead holders, but can you afford to let pennies stand between you and your perfect working tools? Buy quality -buy Locktrre, call your dealer today.

Cartell Drawing leeds \#9030, ore of the identica quality and groding as world-fomous Costoll wood peneil - Usable in all standard holders, but a perfect mote for Lockrite Drows parlectly on all surfoces, includine Cronor and Mylar bose films Available in all degrees from 781010 H , and in a koleidoscope of colors -

A.W.FABER-CASTEIL

Poncil Co., Inc., Newark 3, 1. J.
 which can be readily engaged with a minimum angular error to a servomechanisms gear train when energized by an external command signal. The transducer must accurately return to a specified null position when the command signal is removed

A SOLUTION:

Provide an electro-magnetic clusch, spring return mechanism and rotary potentiometer. Assemble these parts into the required package with the resultant difficulties brought about by the mounting and coupling problems with a consequent increase in cost.

THE OPTIMUM SOLUTION:

Technology Instrument Corporation's west coast engineering facilities developed and offer a unitized package consist. ing of an electro-magnetic clutch, spring return mechanism and rotary potentiometer as one compact assembly. The clutch will transmit high torque without slippage and has negligible angular engagement error. TIC's unique spring return mech-
unitized package

GENERAL INFORMATION:

Shaft Position Transducers can be linear or nonlinear potentiometers, synchros. inear transformers or digitizers. Spring return mechanism can be supplied designed to return to any desired point, A built-in slip clucch can also be furnished if the input torque can exceed the rating of the clutch. anism will accurately return the output transclucer to the desired null, yet requires low driving torque. TIC's unitized assembly replaces three (3) individual components with their inherent assembly difficulties.

TIC UNITIZED PACKAGE HAS MANY APPLICATIONS,

SUCH AS: Auto pilots, altitude controllers, machine controllers,
measurement and control problems, speed control, process
control of temperature and flow, differential measurement,
expanded scale servos, or any other problem requiring an output, commencing at some specified servo position determined by an external command signal.

TNE

TECHNOLOGY INSTRUMENT CORPORATION

NEW PRODUCTS

In-Wall Amplifier

For flush-mounting in frame or masonry walls, model 2030 in-wall amplifier requires a depth of 4 in . A 30-w, all-transistor unit, the amplifier includes a voltage-regulated power supply and has four microphone inputs. All 12 transistors are accessible through removable front plate.

Rauland-Borg Corp., Dept. ED, 3535 W. Addison St., Chicago 18, 111.

Storage Tube

510
Writing speed of $\mathbf{1 0 0 , 0 0 0} \mathbf{i p s}$ and a brightness in excess of $200 \mathrm{ft-1}$ is obtained with a potential of 5 kv in the WL 7682 storage tube. One writing gun and one flood gun are used in the electrostatically focussed and deflected tube. Storage time is 30 sec to 30 min . Display area is 4 in . with an OD of $5-1 / 4 \mathrm{in}$. max.

Westinghouse Electronic Tube Div.. Dept. ED, P. O. Box 284, Elmira, N. Y.

Multichannel Digital System

Low-level data signals are displayed and recorded on paper tape by this multichannel digital system, model ER-3295. Consisting of five separate units, the instrument scans consecutively 98 three-wire inputs from various transducers. Resolution is $\pm 1 \mu \mathrm{v}$. A digital voltmeter provides visual readout. A slave scanner can be added to increase input capacity.

Kin Tel Division, Cohu Electronics, Dept. ED, Box 623, San Diego, Calif.
P\&A: About \$11.500, fob: San Diego; 90 days.
now available in a wide range of STANDARD SIZES

precision tooled beryllium copper CLIPS
for: Transistor, Capacitor, Diode, Fuse and Component applications.

B T I elertronic clips are now stocked for prompt shipment in a complete range of standard sizes and designs. The une of beryllium copper and associated alloys insures positive apring contart preasure with exceedingly high electrical and thermal conductivity.

W'rite today for the new series of B T I bulletins showing standard sizes with specifications.

B T I also offers standard groundink strips and ring
 contacta for all electronic requirements.
braun Tool \& Instrument COMPANY. INC.
138 Fifth Ave., Hawtherne, N. J.

circle 118 on reader-senvice caño

Microminiature series 251 terminal boards can be encapsulated with terminals wired to connector contacts or supplied with a cap to facilitate customer wiring prior to encapsulation. Floating-type connector contacts are polarized. For use with the firm's Super-Flex tapes, the boards are made for computer, radar and communications use.
Cicoil Corp., Dept. ED. 3833 Saticoy St., Van Nuys. Calif.

Voltage Divider

511
Decade voltage divider has total resistance of $1 \mathrm{~K}, 10 \mathrm{~K}$ and 100 K . Linearity of the five-dial unit is 0.01%. temperature coefficient 0.001%. The Kelvin Varley circuit is used. Box measures $3-3 / 4 \times 4 \times$ 5 in . and weighs 1 lb .
Voltron Products, Inc., Dept. ED 1020 S. Arroyo Parkway, Pasadena. Calif
P\&A: \$150: 30 daye
DC Power Supply

Rated at $100 \mathbf{k v}, 10 \mathrm{ma}$, continuous duty. Model 5492 power supply has a highly regulated output, automatic rate of voltage rise and is short-circuit proof. Provisions are made for remote control operation and remote metering. Plug-in shielded cable is used for connections.
Associated Research. Inc., Dept. ED, 3777 W. Belmont Ave., Chicago 18, III.

HOW TO GET HIGH TEMPERATURE STABILITY AND INDUSTRIAL ECONOMY

With New TI Low-Cost

Silicon Industrial Transistors...

You can assure your customers optimum circuit performance up to $125^{\circ} \mathrm{C}$ when you design-in new, low-cost TI silicon industrial transistors. Priced comparable to lower-temperature industrial devices, these new TI silicon industrial units provide the high performance your industrial designs require.
Get greater margins of operational safety by applying these new silicon industrial transistors to your process control, communication, aviation system, electronic instrumentation, and computer applications today

NEW ARRIVAL FROM ITT!

and, NO DIAPER MEEDEDI ITT WET-AMODE

 tantalum capacitors now available IN MEW SHAPE WITH POSITIVE WEDGE SEAL, RATIMGS FROM 1.7 TO 560 MFD .Proud product of a two-year design effort: a unique, positive mechanical seal permits straight-wall construction in this new line of ITT wet-anode tantalum capacitors. No flange. Your most advanced circuit designs gain new compactness, new simplicity - plus new reliability and performance from high-purity tantalum dielectric and ITT's total process control during manufacture. This new line meets all the requirements of MIL-C-3965B and is now available in ratings from 1.7 to 560 mfds . Specify H-type for temperatures to $85^{\circ} \mathrm{C}$; L-type for temperatures to $125^{\circ} \mathrm{C}$.

COMPLETE SPECIFICATIONS on ITT wet- and solid-anode tantalum capacitors are available on request. Write, on your letterhead, please, to the address below. ENEINEERS: Your ITT representative has a complete set of qualifications and quality control tests for your inspection.

NEW PRODUCTS

High-Voltage Rectifiers

Ratings are to $\mathbf{5 0 , 0 0 0}$ piv and 1 amp dc per block for the SDI series double diffused silicon rectifier assemblies. They are designed in single wave: half wave, center tap or full wave; three phase: half wave, full wave or star; protective networks and tube replacements.

Solitron Devices, Inc., Dept. ED, 500 Livingston St., Norwood, N. J.

Pressure Transducer
405

Potentiometer-type pressure transducer model 12112 is offered in ranges from 1 to 200 psia and psig. Typical resolution is 0.25% to 0.33%. Platinum-alloy winding element has resistance of 5 to 15 K . Repeatability, hysteresis and friction are under 0.5%. Applications include space and missile environments.

Princeton Machine and Development Co., Dept. ED, P. O. Box 187, Princeton Junction, N. J.

Sound Meter

417

Range is 35 to $-142 \mathbf{d b}$; response is from 40 to $8,000 \mathrm{cps}$. Model 450 sound meter measures $2 \times 3 \times 6 \mathrm{in}$., weighs 2 lb and operates from a $22.5-\mathrm{v}$ battery. It meets ASA Standard A, B and C weightings. The amplifier is stabilized against voltage and temperature changes.
H. H. Scott, Inc., Dept. ED. 111 Powdermill Road, Maynard, Mass.
Price: $\$ 150$.

STANDING ATTHETOP WesTran TRANSISTORS QUALITY - RELIABILITY

Westran PNP SILICON

ALLOY JUNCTION TRANSISTORS
TYPES-2N327A-28A-29A 2N1228-29-30-31-32-33-34 PROMPT DELIVEAY ON ANY ORDER 24 HOUR DELIVERY ON SMALL QUANTITIES CUSTOM DESIGN ENGINEERING SERVICES AVAILABLE

Westran

WESTERN TRANSISTOR CORP.
13021 South Budlong Avenue Gardena. California FAculty 15741
EXPORT DEPT Minthorne International Co
15 Moore St. New York 4. N Y
Wascon boeth no. 4zu
CIRCLE 121 ON MEADER-SERVICE CARD

Power Switching Transistors

504
Capable of switching $\mathbf{1 0 0} \mathbf{w}$, these pnp switching transistors, types 2N637, 2N637A, 2N637B, $2 \mathrm{~N} 638,2 \mathrm{~N} 638 \mathrm{~A}$, and 2 N 638 B , are designed for high current operation in dc-dc converters and dc-ac inverters. The series has three different voltage breakdown ratings for use in both $12-\mathrm{v}$ and 28-v supplies. Average power dissipation is 60 w max. Current gain is controlled, eliminating need for matching.
Bendix Corp., Dept. ED. Red Bank Div., Holmdel, N. J.

Pressure Transducer

For missile applications. Type 4-328 pressure transducer operates from between 0 to 15 and 0 to 99 psia. Output is 50 mv ; linearity and hysteresis are less than $\pm 0.5 \%$ of full range output. Thermal zero shift is within 0.005% per $\operatorname{deg} \mathbf{F}$. Weight is 5.5 oz .

Consolidated Electrodynamics Corp., Dept. ED, 36ㅇ Sierra Madre Villa, Pasadena, Calif.

Smoothing Chokes

505
Designed for aircraft and missiles, these hermetically sealed smoothing chokes have inductances from 0.2 mh to 5.100 h , at dc currents from if ma to 25 amp . Cinits have straight-pin, hooked-pin. or flexible Teflon lead connectors, and may be mounted on chassis, printed-circuit board. or stacked. Dimensions range from 1.12 $\times 0.91 \times 0.87 \mathrm{in}$. to $1.57 \times 1.46 \times 1.49 \mathrm{in}$. Weight is 1.2 to A oz.

Arnold Magnetics Corp., Dept. ED, 6050 W. Jefferson Blvd., Los Angeles 16, Calif.
P\&A: 8.00 to $\$ 20.00$; two weeks.

Attenuators

Rated at 20 w audio, 5 w dc. These L and T pad attenuators measure less than 1-3/16 in. deep. Insulation used combines rapid heat transfer with high dielectric strength. Wiper contacts are rigidly attached to the shaft. A wide range of impedance ratings is furnished.

Centralab, Dis. of Globe-Union Inc., Dept. ED, 900 E. Keefe Are.. Milwaukee 1, Wis.

OAK ROTARY SOLENOIDS provide high torque at the start of their actuation stroke-where and when it's needed most. Ordinarily, magnetic attraction of the solenoid coil is greatest near the end of the stroke. Oak engineers have solved this by inclining the ball races at a steeper angle near the top-or start-of the race. This "downhill" action levels off near the end of the rotary stroke. Since torque is inversely proportional to the length of stroke, a 2 E solenoid that pro-
vides 6.4 inch-ounces of starting torque at 45° would offer almost twice as much torque when designed for a 25° stroke. You can obtain Oak Solenoids for stepping angles of $25^{\circ}, 35^{\circ}, 45^{\circ}$, and 67.5°-in right-or left-hand rotation. Because Oak Solenoids are custommade to meet specific actuation and torque requirements, you can outline your needs with your local Oak sales representative. If you prefer, send a sketch of your design to our Applications Engineering department.

OAK MANUFACTURING CO.

CRYSTAL LAKE, IILINOIS • Ielephone: Crystal Lake, 459-5000 OAK EIECTRONICS CORPORATION, ISubsidiary) Culver Ciry. Colifornia
rotary and pushbutton switches - television and fm tuners - subassembies APPIANCE CONTROIS - CHOPPERS - ROTARY SOLENOIDS - VIBRATORS

REPORT

PRECISION SIZE 5 MOTORS NOW AVALLABLE FROM STOCK

Available for immediate delivery, these miniaturized Bendix ${ }^{\text {² }}$ motors (type number CK 1066-40-A1) are designed for applications where space and weight requirements are at a minimum. So small that four can be packaged in a square inch, these motors are ideally suited for missile instrumentation and similar miniaturized applications. The motor has a tapered shaft; however, units may be obtained with other type shafts and with center tapped control windings.

PYACAL MOTOL CMARACTEASTICS	
Vothoge	
Rinod phore	26 rovir
Control phose	26 vols
Proquency.... 400 ¢de	
Sioll Currem*	
Fined Phase. 100 mo	
Suall limplenso	
Fined Thase... $260=184.5+1183.5$ ahmControt Thase $260=184.5+1183.5$ atmen	
Seall Powar Maput* (Totall) 3.69 wathe	
Torque-to-hortia Ratio... $44.400 \mathrm{rad} / \mathrm{sec}^{2}$ (Stall Acceleration)	
Renge. $55^{\circ} \mathrm{C} .10+70^{\circ} \mathrm{C}$.	
With rated volinge apaled to coch anowe	

avenage peronmance cutves

For information on these motors-
or simillar motors in aizes $8,10,11,15$.
20, and 28-writen

NEW PRODUCTS

Trimmer Potentiometer

Kange is 20 ohms to 100 K. Model 427 trimmer potentiometer is designed for etched circuit boards and has gold-plated copper leads of $0.1-\mathrm{in}$. spacing. Power dissipation is 1 w to 70 C ; tolerances are ± 10 or $\pm 5 \%$; requirements of MIL-R-27208 are met.

Aero Electronics Corp., Dept. ED, 1745 W. 134th St., Gardena, Calif. Availability: 1 to 2 weeks.

Bar Switches

Parity-code bar switches, series DP and series OP, provide odd or even parity in the five-bit output. Conversion from octal or decimal digits to binary code is by means of binary-coded contact closures. Full 10-button decimal banks with 1-2-4-8 output contacts are offered in the DP series; seven-button banks with 1-2-4 contacts are offered in the OP series.

Computer Control Co., Inc., Dept. ED, 2251 Barry Ave., Los Angeles 64, Calif.

Instrument Carrier

For submarine use, the V-Fin instrument carrier is for applications such as seismic investigation, echo sounding, pressure and tempera-

REPORT
 AUTOSYW SYMCHROS

Depondeble in minioturizing
control elrcultery

These Bendix ${ }^{3}$ size 5 Autosyn synchros are well suited to the needs of missile instrumentation and similar applications requiring ministurization and weight reduction. Typical characteristics are listed below. For additional information, including comprehensive data on transmitter, control transformer, and difienential characteristics, write today.

Operating remperaturo reage $-55^{\circ} \mathrm{C}$. $10 ~ \$ 5^{\circ} \mathrm{C}$ hoter moment of inorric. $0.25 \mathrm{gm} \mathrm{cm}^{2}$ Welom . 0.8 or

Available as tramminer, comera
tranaformer and diferential.

Manufacturers of
OYROS - ROTATNNO COMPONENTS RADAR DEVICES - INSTRUMENTATION PACKAOEO COMPONENTS
Eclipse-Pioneer Division

Teferbere, N. . .
CIRCLE 124 ON READER-SEPVICE CARD ELECTRONIC DESIGN • July 5, 1961
ture studies. It can be used in acoustic systems over the range of 10 to $6,000 \mathrm{cps}$. Hydrophone sensitivity is $-\mathbf{8 8} \mathrm{db}$. Molded in Fiberglass, the unit weighs less than 14.5 lb and has an instrument compartment of $12 \times 2-1 / 2 \times 1-1 / 8 \mathrm{in}$.

Braincon Corp., Dept. ED, 312, Marion, Mass.

Electronic Tachometer

Speeds to $\mathbf{1 2 , 0 0 0} \mathbf{r p m}$ are calibrated accurately with this miniature electronic tachometer. A photoelectric cell responds to illumination changes and transmits a signal to a pulse-triggered computer which determines the rpm and displays the result on a direct-reading meter. Drills, presses, power drives, motors and other equipment can be checked. No external power source is needed.

Pioneer Electric \& Research Corp., Dept. ED, 743 Circle Ave., Forest Park, III.
Price: $\$ 9.5$

Waveform Analyzers
452

With digital output, these waveform analyzers are capable of measuring amplitude rise time, ring, decay time and sag. They are suitable for applications where large quantities of measurements are required such as in automatic checkout systems and production test systems.
Curtiss-Wright Corp., Electronics Div., Dept ED, P. O. Box 10044, Albuquerque, N. M.
from under the seas... to the edges of space... and beyond

VĀP-AIR MERC THERMOSTATS

Vİp-Air Mercs have many uses, widespread acceptance Usod in:
Titan, Thor, Jupiter, Redstone Saturn, Juno II, Pioneer IV. and other missiles; X-15 Space Research Vehicle; F-108 Delta Dart, A3J Vigilente.
P8M-2 Seamaater, F101B Voodoo and AAD-2 Skyhawh, and other military aircraft; Nautilus sub. marine: ground support vans and equipment; the new Electra F-27, Viscount, DC-8, 707, and 880 jets, as well as most other
major commercial aircrah.

Used for:

Temperature control of electronic compartments, reference ovens, crystal ovens: nose-cone devices; oyroscopes: inertial guidance systom: accelerometers ; air compressors ; turbines; cabins, cockpits. capsules; windshields; do-icing equipment; oil, luel, hydraulic systems: for telemetering of temperatures; for control systems, and as warning devices in ground support vans and equipment; and many other uses.
have proved outstandingly accurate and dependable for the most critical thermal sensing and control applications in missiles, aircraft, ground support and undersea equipment.
The Army Ballistic Missile Agency has for two years accepted Merc thermostats as standard temperature control items on all their missiles.
Time after time, Vap-Air mercury tube thermostats have proved their exceptional ability to meet the most exacting specifications for thermal sensing and control. Small, lightweight, they are unaffected by altitude or moisture, can't are or burn, can withstand 100-G shocks and $30-\mathbf{G}$ vibration without loss of accuracy. They have fast response, close limit tolerances, wide operating ranges, and undeviating accuracy to provide millions of cycles of reliable operation. Mercs need only simple circuits, are adaptable to virtually any need.

BURFACE-TYPE

WELL-TYPE

STANDARD MERC THERMOSTATE

 AVAILABLE FROM 8TOCKThree standard groups: (1) Duct-type, for gas or fluid temperature, (2) Surface-type, for "area-contact" temperature sensing, (3) Well-type, for sensing case temperatures. Order direct from catalog. Complete, ready to mount. Meet military specification MIL-E-5272 A. Write for Bulletin No. 684.

VĀP-AIR...specialists in aerobpace CONTROLS FOR NEARLY 20 YEARS

Entire systems and a complete line of sensors, electronic controls and precise voltage regulation, electro-pneumatic and electro-mechanical valves, advanced hot-air inline valves and pressure regulators, electric power controllers and heat exchange equipment-for aircraft, missiles and ground support.

COMPLETE CONTROL CAPABILITIES

CIRCLE 125 ON READER-SERVICE CARD

LOOK HERE FOR ANSWERS TO YOUR RELAY PROBLEMS

IT'S WHAT'S INSIDE THAT COUNTS

 IN TIME DELAY RELAYS
Especially when milliseconds count! Note the printed circuit construction of Leach's optional output time delay relays. This economical line of off-the-shelf electronic units includes time delays on release and time delays on operate-in a timing range of $\mathbf{1 0 0}$ milliseconds to $\mathbf{6 0}$ seconds. These standard components are available with fixed or adjustable timing to meet your most critical requirements. And they're all 100% inspected during manufacture for highest reliability!

Bulletin TD-200.

WE'RE LOADED WITH LITERATURE...

Write for bulletins, write for information, write for details and specifications. Or mail your request on the Reader-Service Card!

BLOCK THAT SHOCK!

Leach balanced. armature relays provide high resistance to shock (50 G 's) and vibration (15 G 's to $2000 \mathrm{cps})$. They meet
 5757C and MIL-R-6106C. Choose from 4,000 variations of 20 basic types!

Bulletin BA-859.

NOT A SQUARE IN THE WHOLE FAMILY!
 When only a round can

relay will fit your need, Leach offers this family group in contact configurations of 2,4 and 6 PDT and in contact ratings ranging from dry circuit to 10 amps .
4 PDT, 10 AMP Bulletin RC-soo.

SUBMINIATURE

 CRYSTAL CANS, TOO!Want big performance, compact size? Get both in a wide range of
 standard relay configurations. Dual coils... balanced rotary armature for 2 amp, 2 PDT switching in aerospace and electronic control applications. Bulletin CC-M200 and M101.

WHAT'S HALF OF A SUBMINIATURE?

Answer: The new Leach Half-Size Cryatal Can Relay. Half the height of a subminiature but boasting the same base dimensions, the same performance! Amazing.

Bulletin CC-M250.

LEACH CORPORATION, 18435 Susana Road, Compton, Californie - District offices and field representatives in principal cities of U.S. - Export: Leach International, S.A. Forty-one years of serving the control needs of the eircraft, missile end electronic industries

CIRCLE 126 ON READRR-SERVICE CARO

NEW PRODUCTS

Power Supply

Regulation is $\pm 0.1 \%$ for line and $\pm 0.4 \mathrm{v}$ for load. Model MTR28-10 power supply provides 24 to 32 v de at 10 amp . Ripple is 2 mv . Features include a magnetic amplifier and a transistor series regulator. No tubes, vibrators or moving parts are used.

Perkin Electronics Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.

IF Preamplifiers

For low-noise operation, series H modular if preamplifiers can be furnished with balanced or unbalanced input. Output impedance is 50 ohms. Tube units operate from -55 to +85 C and germanium transistor units, from -20 to +50 C. Silicon types can also be furnished. Design is miniature.

Orion Electronic Corp., Dept. ED, 108 Columbus Ave., Tuckahoe, N. Y.
P\&A: $\$ 200$ to $\$ 250$; 2 to 8 week.
Plotting Board

Vertical-horizontal plotting board type 1587 provides two simultaneous plots of any four independent voltages against time. Plotting surface is $30 \times 30 \mathrm{in}$. The unit operates with analog and digital computers, coordinate converters, radars and other analog devices.

Milgo Electronic Corp., Dept. ED, 7620 N. W. 36th Ave., Miami 47, Fla.

The

accepted way
to measure
Nanosecond
swITcHING
TIMES
of transistors, diodes, circuits

Bandpass to 2 KMC. Sweep rates to $0.05 \mathrm{~ns} / \mathrm{cm}$. Dual channels. Complete test systems available for pulse, transistor switching, and diode recovery measurements.

ACCURATE, DIRECT READING automatic TEST SET

Automatically measures risetime, falltime, storage and delay characteristics from 0.5 ns to 2 usec. Accuracy 5%, or better. Up to 3600 tests per hour.

Write for complete specifications

Lumatron

electronics
LUMATRON ELECTRONICS, INC. 116 County Courthouse Rd. New Hyde Park, L. I. New York

CIRCLE 127 ON READER-SERVICE CARD
20)

Direct Microwaves-to-Electricity Power Seen Near

Inverse magnetron converter developed by Raytheon. Left to right: cathode, anode-cavity structure, coaxial if input and cover. Final version of this device may approach 60 per cent efficiency and generate up to 1 kw cw in the 1. to 2-Gc range. Wright Air Development Div. is presenily emphasizing development of this type of microwave power converter over other possible inversely operated tubes. The weight of the final version, including magnet, will be approximately 35 lb .

Manfred Meisels
 Technical Editor

0FF-THE-SHELF hardware for direct conversion of microwaves into electrical power may be a reality within two years, according to scientists at the Wright Air Development Div., which is now sponsoring two research projects in this area.
Raytheon's Spencer Laboratory, Burlington, Mass., is investigating the inverse operation of magnetron-type tubes, while at Purdue University, West Lafayette, Ind.. the emphasis is on inverse operation of klystrons, and both vacuum and semiconductor diodes. Efficiencies of 60 per cent are believed possible with the inverse magnetron and semiconductor diode approaches.

Power requirements for such converters are fairly modest- 1 kw cw for the magnetron and perhaps 75 w for the semiconductor diodes. Proposed applications include powering electronic gear aboard satellites and transmitting power to unmanned equipment atop mountains and in other remote areas.
These applications and the proposed conversion methods differ markedly from those for the microwave powered helicopter (also a Raytheon project) in which heat exchangers and gas turbines would achieve power conversion. Power requirements here are measured in megawatts, though Raytheon is reportedly looking into thermionic and thermoelectric generators as an alternative to the mechanical conversion cycle. Regardless of the application and ultimate conversion scheme used, ultra-high-power microwave tubes such as Raytheon's Amplitron or General Electric's multiple-beam

NO STEPPING SWITCHES IN THIS

ULTRA-RELIABLE DVM: Cubic announces a new digital voltmeter design that eliminates stepping switches and, with them, the need for periodic maintenance. The new Cubic $\mathbb{V}-70$ uses the same ultra-reliable reed relays developed for submarine cables. These reed relays are sealed in glass and have practically unlimited life. They are noiseless and completely unaffected by operating position.
Accurate: The V-70 reads any d-c voltage from 0.001 to 999.9 volts with an absolute accuracy of 0.01% plus or minus 1 digit. The Cubic V- 70 Digital Voltmeter provides these and other premium features at a cost of only $\$ 1,580$ For details, write to Dept. ED-106 Industrial Division, Cubic Corporation, San Diego 11, Calif. (in Europe: Cubic Europa S. p. A., Via Archimede 185, Rome).

Cubic manufactures a complete line of quality digital instruments, including a-c and d-c voltmeters, ohmmeters, ratiometers, scanners and printer controls.

CIRCLE 129 ON READER-SERVICE CARD

INDUSTRIAL DIVISION EAN DIEGO, CALIF., U.EA. ROME, ITALY
klystron and Orthotron would be employed at the transmitter.

The direct conversion methods now being actively studied fall into three categories. - Inverse operation of conventional microwave tubes

- Vacuum diodes
- Semiconductor diode arrays

Of these, inverse operation of microwave tubes appears most likely to yield moderateorder powers (approximately 1 kw) with acceptable efficiency. For low power, semiconductor diode arrays look promising. Light weight and small size would make them attractive for many satellite applications.

The inverse magnetron tube being developed by Raytheon as an outgrowth of earlier work with the backward-wave type Microfier has already shown efficiencies of 32 per cent. In tests at 1.28 Gc , pulsed outputs of 4 kw were obtained over a 0.1 per cent duty cycle. WADD scientists feel that cw operation at 60 per cent efficiency will eventually be obtained.

The tube consists of 30 radial vanes which form 29 anode cavities. Microwave fields applied to the tube accelerate the electrons from cathode to anode. Current is drawn to the anode when the rf interaction voltage exceeds the dc potential of the tube and Hartree threshhold voltage.

Raytheon has built nine progressively improved tubes of this type for WADD. In its ultimate version, a $1-\mathrm{kw}$ tube is expected to weigh about 35 lb . including the magnet. Continuous heating of the cathode would

Inverse klystron microwave power converter. Electron beam between cathode and collector is accelerated by microwave input. Efficiency is reduced by need to divert some of the input to the pre-bunching cavity. A separately heated cathode is required.
not be required as operation is sustained by secondary electron emission resulting from back bombardment.
Inverse operation of klystrons for direct conversion is also considered feasible. Recently initiated work at Purdue University has been confined to inverse operation of commercially available tubes. Preliminary tests at 3 Gc are inconclusive as the emphasis has been on gathering data for design of a special-purpose tube rather than on extracting power from a commercial version.
A proposed inverse klystron, illustrated here, has been theoretically analyzed by WADD with mixed conclusions. Such a unit could be designed for high powers and frequencies. However, a separate heater supply is necessary. Spreading of the electron beam and entrance angle, as well as the need to supply power to both cavities of the tube would result in low efficiency and degraded performance.
An inversely operated traveling-wave-tube converter has also been analyzed at WADD. The electron beam in this device would gain energy from the microwave field rather than surrendering it as is the case in normal twt operation. By gradually increasing phase velocity of the rf traveling wave to account for increasing beam velocity, the electrons can be accelerated while continuing to be phase locked with the traveling wave. This can be accomplished with a tapered helix of gradually increasing pitch.
Limitations of the inverse twt include need for a separate heater supply and limited power handling capability of the slow wave structure. Efficiency of such a device might approach 40 per cent.

Cyclotron and Plasma Convertors

Believad Theoratically Possible
A cyclotron resonance converter has also been analyzed at WADD. In the basic design, electrons emitted from a central anode are spiraled outward by the cyclotron action of the rf input and a suitably adjusted magnetic field. The electrons thus gain energy from the field and strike properly oriented collector plates. By placing the collectors at a low velocity point of the electron trajectory, efficiencies of up to 60 per cent could

MAKE PRECISION

Now your laboratory can make precision attenuation measurements over dynamic ranges of 100 ob with the new Microline Model 61 Al Parallel l-F Substitution Receiver System. thas these outstanding advantages.

1. Accuracy of 005 db per db and readout resolution of 02 db
2. No preamp reaured for full 100 db dynamic range
3. Linear or log operation
4. Completely adaptable AFC circuitry for klystron or Bwo
5. Ulira: stable 30 mc reterence oscillator
6. Precision cut.off attenuator
7. Recever noise figure of 3 db

Extreme accuracy is obtaned through Extreme accuracy is obtaned through
comparison of the test signal with the parallel comparison of the test signal with the par 1.F input switen and output conerent null 1.F input switch and output conerent null detector. No spectal Rf plug.th heads are required. Accessory mixers and local oscillator couplers are avalable from 2.6 through 40 GC (See table below).
Further information on request.

SFFPRY
See it in operation at WESCON Booth Nos. 3111-3121

SPERRY MICROWA VE ELECTRONICS COMPANY, CLEARWATER, FLORIDA - DIVISION OF SPERRY RANO CORPORATION Microllne Inatrumonts - Radar Test Sets - Systems Instrumentation. Solid State Devices and Materials - Microwave Components and Antennas CIRCLE 130 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 5, 1961

200 watts paak power 20 watts CW

TYPICAL OPERATING PARAMETERS

MICROWAVE ASSOCIATES, INC.
electron tube and device division
result, as there would be little power dissipated via electron bombardment. Back bombardment of the cathode, however, could enable heaterless operation.

Prospects for plasma converters have also been analyzed by WADD. One approach would be to create a plasma by using the microwave input and then apply a magnetic gradient to cause ion and electron drift in opposite directions. The electrons would be connected to an external load and the positive ions used to bombard a cathode to cause electron emission.

While a plasma converter would be small and easy to fabricate, the wide distribution of electron energies in the plasma would probably result in efficiencies no greater than 25 per cent.

Having analyzed these approaches to medium-power direct conversion, WADI) has settled on the inverse magnetron as the most feasible-at least for the immediate future.

Multiple-Diode Arrays

In Development of Purdue
Equall: imaginative designs for low power converters have also been proposed. The obvious approach of vacuum diode rectification may prove useful despite electron transit time limitations. It has been shown that rectification can take place even when the cathode-to-anode spacing is equal to several hundred periods. Realistically, a spacing equal to a few periods could achieve

Inverse fraveling-wave-fube microwave power converter. Electron beam is accelerated by absorbing energy from if wave in the helix. The gradually increasing pitch of the helix keeps the traveling wave in phase with the accelerating electrons. A separate heater is required for the cathode.

COLLECTOR

Proposed cyclotron resonance microwave power converter. Rf input, in conjunction with magnetic field (perpendicular to plane of drawing), accelerates electrons to the collector plates. Studies indicate that the device could approach 60 per cent efficiency. Back bombard ment of cathode would eliminate need for heater
efficiencies of up to 25 per cent. In this mode of operation, out-of-phase electrons would absorb energy from the rf input and be returned to the cathode. The resulting secondary emission could allow heaterless operation of the diode.
Experiments at Purdue with lighthouse tubes operating as diodes have shown efficiencies of up to 20 per cent at 3 Gc . Maximum output was approximately 1 w .

Much higher efficiency and power output are anticipated for arrays of semiconductor diodes wired as full-wave rectifiers. The yroup at Purdue has operated arrays of 64 diodes placed directly in the waveguide. A 360 -diode array employing 1 N830 silicon point-contact diodes is now being assembled for testing. The diodes will be mounted in a flared section of $10-\mathrm{cm}$ guide. Outputs of between 10 and 15 w at 2.5 Gc with perhaps 75 per cent efficiency are hoped for.

Future plans call for even larger arrays developing up to 100 w . These could be distributed among several parallel sections of guide joined by a magic T or similar device.

Theoretical studies of large junction diodes as possible microwave rectifiers are also under way. In addition, nonlinear effects in bulk semiconductor materials in strong rf fields have been noted at Purdue. It has been suggested that an understanding of these effects could lead to a rectifier consisting of a large semiconductor crystal properly oriented within a waveguide. - -

MAN! THE HOURS YOU SAVE!

when testing packaged modules containing semi-conductors with the new DIT-MCO Model 720 automatic logic circuit tester.

Here's your space-age answer to faster testing at lower cost-using non-technical operating personnel.

The new Tape Programmed DIT-MCO Model 720 rapidly performs static and dynamic tests on active and passive modular circuits.

It automatically measures voltages, resistances and currents on a "hi-go-lo" basis.

Provisions are made for programming external signals and stimuli for special test requirements and monitoring results on external detectors.

Highly important marginal tests are easily performed and one digit tolerances can be programmed.

Many more performance features of the Model 720 are described in a technical bulletin available upon request from DIT-MCO -the nation's leader in automatic circuit testing.

Instrumentation and Digital Systems Engineers are invited to inquire regarding openings in our new Systems Engineering Division

DIT.MCO Model 720 will test:
Active logic circuits using transistors.
Passive logic circuits using diodes.
Pulse amplifiers, inverters, modulators and shapers.
Memory and slorage networks.
Multivibrators, including flip-flops.
Gating circuits
Diode matrices
Decoders and counters.
Circuitry using Binistors.
Oscillators.
Micrologic elements.
Control rectifier circuits.

DIT.MCO, INC
911 BROADWAY Kansas City 5, Missouri

Denver Areo Los Angeles Areo New York Cify Area Polo Alto Areo Pootrle Area

AComo 2.1202 ORegon 8.6106 nutroy Hill 2-5844 DAvenport 5-0180

Designing the "Parant"

Instead of worrying about noise temperature and noise pickup in antenna leads, authors Frost and Clark circumvented these problems by integrating the parametric amplifier within the antenna structure. The resulting parant, designed for Doppler tracking of satellites, eliminates open connecting lines between antenna and amplifier. Input to the parametric amplifier is applied directly from the signal-induced potentials at the ends of the antenna. Dipole parants have been built for 54-, 108-, and 220-mc operation. Etched circuit antennas for 500 mc and slotted antennas useful at 2 Gc are being designed.

Fig. 2. Construction details of the half-wave parant. Two matched varactor diodes provide parametric amplification in conjunction with the coaxial cavity formed by the addition of the hollow center conductor. Higher order TEM modes provide resonant storage for the pump and ider frequencies

Albert D. Frost, Ronald R. Clark
University of New Hampshire,
Durham, N. H.

WHEN the need for low-noise reception warrants the use of parametric amplifiers, noise pickup in the leads between the antenna and receiver can significantly degrade system performance. Since reducing the distance between antenna and receiver is only a partial solution, it was decided to eliminate this source of noise altogether by integrating the parametric amplifier with the antenna.
Experiments were performed with halfwave and quarter-wave dipoles because the antenna elements could be most conveniently adapted to serve as the network elements of a parametric amplifier. This was accomplished by adding a concentric inner conductor to the dipole, thus forming a coaxial cavity. Units operating at 108 mc and 54 mc are illustrated in Figs. 1 through 4.
Coupling between the inner region and the outer cylindrical surface of the antenna occurs through incidental fringing capacitance and through shunt varactor diodes. The inner region, through its spectrum of TEM resonances provides the resonant storage necessary for parametric amplification.

Parant Operates as

A Degenerate Amplifier

The parant is operated in the degenerate amplification mode (input frequency $=$ output frequency). The fundamental TEM mode provides the signal frequency; the fifth order mode provides idler storage; and the sixth order mode matches the pumping frequency. A high order even TEM coaxial mode was chosen for pumping to minimize parasitic self-oscillations at or near the signal frequency.
The output signal is extracted from the coaxial region by a rectangular loop appropriately oriented in a radial plane. Coupling to the idler frequency is minimized by

Fig. 3. Quarter-wave dipole parant designed for 54 -mc operation. Design is similar to the half-wave unit, but note use of a ground plane. Bottom view shows internal construction and varactor diode connected be tween the inner and outer elements.
cutting loop length to a half-wavelength of the idler. The position of the loop with respect to the standing-wave current pattern in the center conductor also reduces coupling to this mode.

The diode is pumped through the center conductor, which also provides a dc path for the diode reverse bias.

Suitable external circuitry associated with the parant was designed to provide the following:

- Tuning of the idler, pump, and signal modes
- Pump input
- De bias

Networks for the half-wave, 108 -mc parant and for the quarter-wave, $54-\mathrm{mc}$ parant are shown in Figs. 5 and 6, respectively. Circuit values were chosen to match the characteristics of the 1 N894 varactor diodes used in the antennas described here.

Both the half-wave and quarter-wave parants provide stable gains of up to 15 db over passive dipoles. (See gain-frequency curves in Figs. 7 and 8).

Antenna Can Be Electronically

 Switched at High SpeedsDiode reverse bias can be adjusted to vary the parant's gain over a range of 45 db .

Alffred flectronics

MICROWAVE SWEEP GENERATORS Still the industry's most advanced oscillators. Series 620 single band models and Model 605 use convenient plug-in generator heads covering $1-26.5 \mathrm{kmc}$. Models $6001 \mathrm{~B}-6004 \mathrm{C}$ provide I watt output, electronically swept or stable single frequency, $1-12 \mathrm{kmc}$.
Features include built-in leveler and narrow band symmetrical sweep, adjustable frequency markers, and Quick Look readout. Drift, less than $\pm .02 \%$ per hour; residual FM, less than $\pm .0025 \%$ peak.
These units save valuable engineering time by providing constant RF power input to microwave tubes and power input to microwave tubes and constant input, variations in output inconstant input, variations in output indicare directly component transfer characteristics. Microwave properties are examined over continuous spectrum, assuring accuracy during broad or narrow band testing. Prices: Model 620 series, \$2,890-3.340; Model 605, \$1,750; Generator Heads, $\$ 1.500-1,990$; Model 6001 B-6004C, $\$ 7,250-8,690$.
microwave levelers
Ideal instruments for maintaining constant power output ($\pm 1 \mathrm{db}$) with long term stability. CW or square wave modulation. Fast response, very high gain assure flat RF output from BWO's. Also available: Model 700 leveler amplifier. which may be used with external RF components. Prices: Microwave Levelers. \$875-990; Model 700, $\$ 575$.

MICROWAVE AMPLIFIERS Alfred manufactures microwave amplihers for virtually every requirement general purpose, medium power, high gain, and low to medium noise figure All models feature low spurious modulation and stable operation. General purpose amplifiers provide 30 db gain and 10 mw power output with 25 db noise figure. Medium power models offer power up to 10 watts. High power amplifiers provide up to 1 Kw pulse power. Low noise amplifiers provide noise figure from 6 to 15 db at frequencies from 5 to 12 kmc .
In addition to standard amplifiers, Alfred offers periodic or permanent magnet focused amplifiers where light weight and low input power is required as well as amplifiers designed specifcally for phase modulation. Prices: General purpose amplifiers, $\$ 1,490$ 1.690; Medium power amplifiers. \$1.550-3.590; Low noise amplifiers, \$3,150-4,990.
POWER SUPPLIES
Alfred furnishes four basic types of power supplies. Model 250 Traveling Wave Tube Supply operates low and moderate power traveling wave ampli-
fier and oscillator tubes. This instrument provides all normal sources - helix. collector, four separate anodes. grid, heater, solenoid and blower - from one compact unit.
Microwave Power Supplies Model 252 , with the unregulated and regulated solenoid supplies Model 253 and 254 , operate all presently known low and medium noise figure TW tubes. Model 252 furnishes electrode and heater power for permanent magnet focused TW tubes. Electromagnet focused TW tubes require in addition either Model 253 or 254 solenoid supply. Alfred's Sweeping Power Supplies serve as general purpose sources for either electronically swept or fixed frequency opronically swept or ixed frequency operation of voltage tuned magnetrons, Alfred's foating high voltage lubes, Alfred's hoating high volage supplies provide extremely stable and highly regulated DC voltages, featuring wide voltage and current ranges, very small ripple and accurate voltage adjustment Prices: Model 250, $\mathbf{5 1 , 9 9 0}$; Models 252, \$890; 253, \$300; 254, \$400; Sweeping Power Supplies, $\$ 1,650-1,690$; High Voltage Supplies, \$690-1,090.
Free catalog available. Write 10 :

ALfRED ELECTRODICS

897 Commercial Street - Palo Alto, California Phone: DAvenport 6.6496

- SEE US AT SOOTH 1412

microwneses

Fig. 4. Construction details of the quarter-wave parant. The antenna is single-ended and uses only one diode. However, additional diodes can be wired in parallel with the first, if desired. Construction of the quarter-wave antenna is simpler than that of the half-wave parant

Fig. 5. Tuning networks and bias blocking circuits for the half-wave, 108 -me parant. Length L represents the distributed impedance of the leads and connectors between the antenna and the circuit. Capacitors C, and C_{N} fune the idler and signal frequencies, respectively.

Fig. 6. Tuning networks for the quarterwave, 54 -me parant. Single-ended characteristic of the antenno eliminates circuit balancing problems inherent in the half-wave design. Only one capacitor is required for tuning the idler or signal frequencies.

Fig. 7. Gain-frequency characteristic of the half-wave parant. Pump frequency was 600 mc

Fig. 8. Gain-frequency characteristic of the quarter-wave parant. Pump frequency was 302 mc .

Fig. 9. Tuning network for the halfwave, 108 -me parant. Unit is conveniently mounted at center section of the antenna.

Fig. 10. Etched circuit, half-wave parant. This design approach should prove useful for antenncs operating up to 500 mc . The etched circuit board replaces inner conductor of the lower-frequency parants. Resonant region is achieved by the stripline construction. Distributed elements would be used for tuning.

This change is due to the inhibition of para metric amplification and the combined effect of detuning and resistive shunting of the interior coaxial cavity. By pulsing the bias, an unmodulated signal can thus be conveniently chopped at rates up to 200 kc with $50-\mathrm{db}$ isolations. This ease of switching makes the parant a versatile beginning for many complex types of receiving systems.

The half-wave parant of Fig. 1 was constructed of 1.75 in . square aluminum pipe with a wall thickness of 0.125 in . The flat side walls and increased wall thickness as compared to earlier models built of circular pipes permit convenient use of stripline fittings and more effective support of the inner
conductor. The circular pipe was, however retained for the inner conductor. Length was calculated by the equation

$$
\begin{equation*}
L=0.48 \lambda \frac{L \cdot D}{L / D+1} \tag{1}
\end{equation*}
$$

where
$L=$ antenna length for half-wave dipole
$D=$ antenna diameter
$\lambda=$ free-space signal-wave length.
This expression was found empirically valid for conventional dipoles in which the signal is derived across a mid-point gap of negligible width and coupled to a matched resistive load. The gap in the inner conductor as shown in Fig. 2 provides the necessary dc isolation between the two diodes of the half-

MicroWares

wave parant, but it is also an important factor in the design of tuning circuits for the signal, idler and pump frequencies.

The effect of this gap on the resonance of the inner region is dependent on the relative magnitude of its susceptance, though generally it shifts the resonant frequencies upwards.

Distributed Impedance Is

A Factor in Design
Also across this gap are the composite impedances of the radial connections from sap to plug, connectors, leads (see Fig. 5) and internal wiring as far as capacitor C_{t} in the tuning network. These act as an irregular transmission line to provide, together with C_{1}, a series resonance as viewed from the gap. Their detuning effect is relatively minor at the $108-\mathrm{mc}$ signal frequency of the antenna, but quite important at the $490-\mathrm{mc}$ idler frequency.

The gap is physically located at a point where the longitudinal current density and voltage gradient are high for the odd order modes. Its location with respect to the oven order modes is at a low-current, highimpedance point.

Tuning of the idler and signal frequencies, occuring at odd TEM modes, is accomplished by adjustment of series resonant branches composed of lumped and/or distributed impedance elements. With a signal frequency of 108 mc and a consequent pump frequency near 600 mc , the circuit elements are largely distributed.

The pump signal coupling loops provide an in-phase voltage across the center conductor gap. Thus, any out of phase excitation arising from signal or idler frequency components will not produce a net output along the pumping signal line. Loading and signal loss are thereby avoided.

A tuning network assembled for the halfwave parant is shown in Fig. 9. Early models of the parant were tuned by the insertion of dielectric strips into the coaxial region. It was felt that the adjustable tuning network described here is more suitable for a developmental model, but the use of dielectrics for fixed tuning may be attractive when assembling a large number of

ALL-NEW

TRUE RMS VOLTMETER

now ... measure true RMS value of virtually all waveforms

model 9|0A

BAND WIDTH:
($10 \mathrm{cps}-7 \mathrm{mc}$)
Accurate measurement of complex waves is now possible over a wide range of frequency with the NEW If MODEL. 910A.

For the first time one instrument provides 1% midband accuracy, 10 cps to 7 mc bandwidth, plus $100 \mathrm{u} v$ sensitivity. For added versatility an amplifier output is provided for simultaneous oscilloscope or recorder monitoring.

Model 910A employs a thermocouple located in the feedback loop of a sensitive DC amplifier to measure the actual heating effect of the input waveform. This circuit arrangement is the key to the rapid response and high calibration accuracy of the Model 910A and also prevents any error in reading due to ambient temperature variation. Isolation of the thermocouple from the input terminals by a high gain, ultra stable AC amplifier provides high input impedance and completely protects the thermocouple from burnout under any condition of overload.

Model 910A is ideal for measuring AC currents in non linear devices, total harmonic content of distorted waveforms, noise, average vices, total harmonic content of distorted waveiorms, noise, average power of pulse trains, and other measurements

Prices and data subject to change without notice.
A more complete deacripilon will be sent to you upon requesh \square
FLபKE P. O. Box 7428

Partial Specifications-jf MODEL 910A Voltage Range: $\quad 1 \mathrm{MV}$ to 300 V (full scale resdings) Decieen Raze: Decibel Ramge: -72 to +52 dbm Proquoney Responser 10 cps to 7 Mc Aceuracy:
$\pm{ }^{ \pm}{ }^{1 \%} \mathrm{kc}$ of full scale 50 cps to
300 KC
$\pm 3 \%$ of full scale 20 cps to 2 Mc
$\pm 3 \%$ f full scale 20
 $\stackrel{3}{3.5 \mathrm{Mc}}$ of full scale 10 cps to 7 Mc Input Impedance: $\quad 10$ megohms shunted by 30 pl for 10 megonms shunted by 30 po for
0.3 voit range and below. 10 mog.
 range and above.
3 at full secle, proportionately
higher for
readings lioss than fill nigher
scole.
Cabinel Model $-\$ 555.00$
Rack Model- 5555.00
Rrices fob itactor.

CIRCLE 134 ON READER-SERVICE CARD
JOHN FLUKE MFG. CO., INC. soattle 33, Washington

Direct Reading Microwave Wavemeters

Proven in Performance and Reliability $.01 \%$ Accuracy

Covering a frequency range of 500 mc to 18 gc with $.01 \%$ maximum error. Frequency Standards' precisionengineered wavemeters combine greater accuracy of readout with a broader frequency range in both absorption and transmission types. Each unit provides direct readout without chart and is individually calibrated and tem-
 perature cormpensated for a high degree of accuracy and stability. Higher accuracies can be obtained depending on other limitations.

Frequency Standards. America's foremost center for new ideas in microwave technology, produces this precision wavemeter in absorption, termination, and RF transmission styles both for laboratory and operational applications. For outdoor use a direct reading model is furnished in a ruggedized waterproof carrying case. Delivery within 10 days - For information on the complete line of wavemeters, write for catalog P-26102.
Certified: All wavemeters are calibrated against standards origin. ating with the U.S. National Bureau of Standards.-

Fhizuling stawnaing BOX 504. ASBURY PARK. N. J. PROSPECT 4-OSOO

Center for Microwàve Components: Wavemeters - Reference Cavities • Signal Sources - High Power Filters - Discriminators - Antenna Couplers - Diplexers - Duplexers - Directional Couplers • Antennas • Cavities
parants designed for constant-frequency operation at a single frequency.

Matched-diode selection for the half-wave parant emphasized voltage sensitivity and static capacity. These two characteristics were matched as closely as possible within the tolerances obtainable with the lowpriced diodes employed. Matching of reverse resistance and forward conduction point was performed less critically.

Quarter-Wave Parant Considered Simpler to Design and Fabricate

The quarter-wave parant is a more workable design from the standpoint of simplicity in construction and operation. It is essentially a half-section of the half-wave parant with the outer conductor welded to 』 conducting ground plane.
Its singled-ended configuration, as compared to a symmetrical half-wave dipole. permits more freedom of design for external circuitry and better control of cavity resonances. There is no balancing problem, either of external circuitry or diodes. Cir cuitry can be placed under the ground plane and there adjusted without affecting fields within the antenna itself.
The quarter-wave parant shown in Figs. 8 and 4 was designed for a $54-\mathrm{mc}$ signal thus allowing lumped circuit elements to be used. Tuning networks for the signal and idler resonances (see Fig. 6) are connected across the base of the cavity, as are the dc bias and pumping inputs. In designing these networks, the following precautions should be observed.

- Dc bias must be applied between the center conductor and the dipole cylinder without shorting out the pump signal.
- The bias circuit must not lower the Q of the idler and signal-tuned circuits.
- Idler and signal power must not be dissipated in the pump and bias circuits.

Etched-Circuit and Slot Parants

 Being Designed for Higher FrequenciesParants for use at higher frequencies are now being developed at the Antensa Sys-

Fig. 11. Dual slot parant for use up to 2 Gc. Cavities behind slots in ground plane provide resonant storage for parametric amplification. Initial model of this design is undergoing operational tests.
tems Laboratory of the University of New Hampshire. In the region between 200 and 500 mc , an etched circuit antenna using essentially distributed elements for tuning appears feasible. The design shown in Fig. 10 is now being fabricated. A slot antenna, such as illustrated in Fig. 11 would operate at frequencies in the $1.5-$ to 2 -Gc range. An initial model of this type has been completed and development is being continued.

As a simple dipole, the parant can be employed alone or together with Yagi arrays. parabolas, corner reflectors, etc. Multiple units with in-phase pumping and adjusted for equal gain merit consideration in high speed electronically-scanned arrays or in direction finding systems using a Wullenweber antenna or Luneberg lens. - -

Acknowledgment

The parant concept was evolved in connection with Doppler tracking at the University of New Hampshire of early U. S. and Soviet satellites and is being developed under the sponsorship of the Electronics Research Directorate, Air Force Cambridge Research Labora-
tories.

0
Not a usual combinatlon. The sensitivity and toughness included in every Honeywell panel instrument is a result of the infinite patience and superior technical know-how of our designers and engineers. \square Ruggedized Honeywell panel instruments are available with external zero adjuster. They are sealed, dustproof, moistureproof and immune to the hazards of climate and atmosphere. Built to withstand the most severe tests of shock, vibration and strain - and still give accurate, reliable readings - they're another reason why the name Honeywell and the word dependability are synonymous. \square Perhaps a quality instrument from Honeywell can help you do a job better and faster. Just get in touch with our representative in your area - he's listed in the classified pages of your telephone directory. Or contact us direct: PRECISION METER DIVISION, Minneapolis- TI Canada, Honeywell Controls Limited, Toronto 17, Ontario. Honeywell International Sales and service offices in all principal cities of the world.

CIRCLE 136 ON READER-SERVICE CARD
H Pracision Meterst

New Definitions Of Receiver Noise Performance

Abstract

Shortly before the 1961 National Symposium of the IRE's Professional Group on Microwave Theory and Techniques, five authorities in the field of noise measurement undertook to agree on a workable set of definitions of receiver noise. Whether Messrs. William Mumford and Rudolf Engelbrecht of Bell Telephone Laboratories, Hermann Haus, Massachusetts Institute of Technology, Robert Adler, Zenith Radio Corp., and Matthew Lebenbaum, Airborne Instruments Laboratory, have indeed said the last word in this long-standing controversy remains to be seen. Their significant report to the symposium, abstracted here, is nevertheless strongly commended to the interest of microwave designers.

THE noise performance of a system is evaluated in terms of its output signal-to-noise power ratio under operating conditions, S_{0} / N_{0}. Output power is expressed as the signal power at the input multiplied by the signal gain, G_{6}.

The output noise power can be expressed in terms of the signal gain, G_{s}, input signal power, S_{i}, output signal bandwidth, B_{o}, and an operating noise temperature, $T_{o p}$. Hence, the output signal-to-noise ratio is:

$$
\begin{equation*}
\frac{S_{o}}{N_{o}}=\frac{G_{n} S_{i}}{G_{0} k T_{o p} E_{o}}=\frac{S_{i}}{k T_{o p} B_{o}} \tag{1}
\end{equation*}
$$

Two receiving systems have the same output signal-to-noise ratio if they have the same $S_{i} / k T_{\text {on }} B_{o}$ ratio.

In a single response receiver (in which one frequency at the input corresponds to a single output frequency, regardless of the complexity of the gain-frequency characteristic) the output noise power, N_{o}, is defined as

$$
N_{o}=G_{s} k B_{o}\left(T_{\theta}+T_{e}\right)
$$

(2)

The term T_{0} is the input generator noise temperature. T. is called the "Effective Input Noise Temperature." For a two-port transducer, this is the temperature which, when
the input is connected to a noise-free equivalent of the transducer, would result in the same output noise power as that of the actual transducer connected to a noise-free input source.

To measure T_{e}, the designer can observe the output noise power for two different temperatures of the generator. If the ratio of the two output noise powers is Y,

$$
\begin{equation*}
T_{t}=\frac{T_{\rho}(h o t)-Y T_{g}(\text { cold })}{Y-1} \tag{3}
\end{equation*}
$$

The term $T_{\text {up }}$, occurring in Eq. 1 can be expressed as

$$
\begin{equation*}
T_{o p}=T_{g}+T_{e} \tag{4}
\end{equation*}
$$

An alternative definition of receiver noise, that of the Noise Figure, remains useful. Since, however, the literature contains several conflicting definitions of Noise Figure, the authors recommend the definition in the IRE standards on electron tubes. ${ }^{1}$ In terms of Noise Figure, F, the operating noise temperature can be written as

$$
\begin{equation*}
T_{o,}=T_{g}+290(F-1) \tag{5}
\end{equation*}
$$

In a multiple response receiver, such as a superheterodyne receiver with response at the image frequency or a parametric amplifier with response at the idler frequency,
there are two distinct contributions to moise:
N_{00} - output noise due to the noise power available from the impedance connected to the amplifier input.
V_{s} - All other contributions to the input noise power. These are due to noise generated within the receiver components and noise resulting from any frequency conversions within the receiver.
Letting B_{s} be the limiting noise bandwidth common to all responses
$\boldsymbol{N}_{g o}=k B_{N}\left(\boldsymbol{T}_{v 1} \boldsymbol{G}_{1}+\boldsymbol{T}_{92} \boldsymbol{G}_{2}+\right.$ \qquad $+T_{u n} \boldsymbol{G}_{n}$) (6) where G_{n} is the transducer gain of the $n^{\text {'h }}$ response. That is, the ratio of output power to the corresponding input power available to the $\boldsymbol{n}^{\text {th }}$ input response.
N_{n} can be characterized by a temperature, T_{b}, common to all responses, so that
$N_{n}=k B_{s} T_{b}\left(G_{1}+G_{2}+\ldots .+G_{n}\right) \quad$ (7)
The total output noise is then
$N_{o}=k E_{\checkmark}\left[G_{1}\left(T_{g 1}+T_{b}\right)+G_{i}\left(T_{g=}+T_{i,}\right)\right.$

$$
\begin{equation*}
\left.+\ldots \cdots+G_{n}\left(T_{g n}+T_{n}\right)\right] \tag{8}
\end{equation*}
$$

T_{b} is obtained from Eq. 3.
The operating noise temperature is given by

$$
\begin{equation*}
T_{o \omega}=\frac{N_{0}}{k B_{0} G_{0}} \tag{9}
\end{equation*}
$$

Since most modern noise generators provide broadband noise, their use in direct measurement of noise injects the noise equal1 y into all responses. That is,
$\boldsymbol{T}_{o}=\boldsymbol{T}_{g 1}=\boldsymbol{T}_{g \mathrm{t}}=\ldots \ldots=\boldsymbol{T}_{\theta n} \quad$ (10)
Eq. 8 thus reduces to
$N_{i}=k B_{1}\left(T_{y}+T_{b}\right)\left(G_{1}+G_{2}+\ldots .+G_{n}\right) \quad$ (11)
To measure T_{b} in terms of Noise Figure, use $T_{b}=290\left(F_{b}-1\right) \quad$ (12) where F_{l}, is the multiple channel or "broadband" Noise Figure.
To evaluate F_{l}, use

$$
F_{b}=\left[\frac{T_{g}(\text { hot })}{290}-1\right]-Y\left[\frac{T_{g}(\text { cold })}{290}-1\right]
$$

When the input signal occupies only one
response, $G_{d}=G_{1}$. If the system is designed for lowest operating noise temperature, i.e., noise bandwidth B_{s} matches signal bandwidth \boldsymbol{B}_{0}, the operating noise temperature is given by

$$
\begin{align*}
T_{o p}= & T_{p 1}+T_{b}+\frac{G_{2}}{G_{1}}\left(T_{g z}+T_{b}\right) \\
& +\frac{G_{3}}{G_{1}}\left(T_{p z}+T_{b}\right) \\
& +\ldots+\frac{G_{n}}{G_{1}}\left(T_{p n}+T_{b}\right) \tag{14}
\end{align*}
$$

For the special case when, under operating conditions, the generator noise temperatures applied to all input responses are equal, Eq. 14 reduces to

$$
T_{o \triangleright}=\left(T_{\theta}+T_{0}\right)\left(1+\frac{G_{2}}{G_{2}}+\ldots \ldots+\frac{G_{n}}{G_{2}}\right)(15)
$$

When the received input signal is distributed over more than one input response, only the term G_{8} of Eq. 9 is affected. When the portions of the input signal are uncorrelated, with powers of $S_{11}, S_{i n}, \ldots, S_{1 n}$
$G .=\frac{S_{11} G_{1}+S_{12} G_{2}+\ldots . .+S_{1 n} G_{n}}{S_{11}+S_{i 2}+\ldots+S_{i n}}=\frac{S_{o}^{(16)}}{S_{i}(\text { total })}$ Substituting G, into Eqs. 8 and 9 yields
$T_{*}=\frac{N_{0}}{k B_{0} G_{0}}$

$$
\frac{B_{N}\left[G_{1}\left(T_{g 1}+T_{b}\right)+\ldots+G_{n}\left(T_{g n}+T_{6}\right)\right]}{B_{n}\left[\frac{S_{i 1} G_{1}+S_{12} G_{2}+\ldots .+S_{i n} G_{n}}{S_{i 1}+S_{i 2}+\ldots .+S_{i n}}\right]}
$$

It is concluded that to evaluate the signal-to-noise ratio of any receiving system, the designer must know $T_{o p}, B_{o}$, and the total input signal power S_{i} (having the same distribution over the various input responses assumed in the evaluation of $T_{o p}$).

The multiple-channel effective input noise temperature, T_{b}, (i.e., T_{e} for a single response receiver) is computed by Eq. 3, the gains of the various responses, and the noise bandwidth, B_{N}.

With these terms, the designer can calculate his particular system's operating noise temperature, $T_{o p}$ by inserting them in the general Eq. 17, or an appropriate simpler form. - -

Reference

1. Proceedings of the IRE, July, 1957, Vol. 45, p 1000.

ELECTRONIC DESIGN • July 5, 1961

NEW! DIFRECT READING FREDCEENCY METER

a full octave and beyond 3.95 to 11.0 KMc

DELIVERY FROM STOCK

Meet the newest member of the FXR "family" of direct reading frequency meters. This coaxial type, Model No. N414A, has a range from 3.95 KMc to 11.0 KMc and by use of FXR Series 601 coax to waveguide adapters converts to waveguide setups. The unit covers "a full octave and beyond" with an absolute accuracy of 0.1% throughout its range. It is a perfect companion for the FXR Models No. C772 and X772 signal sources.

This newest direct reading frequency meter augments FXR's existing line, recognized as the largest in the industry. Direct
reading, reaction type units are available for use up to 395 KMc while micrometer types extend FXR's coverage up to 220 KMc.
Write or call now for dala sheets on Model No. N414A and other units in the infegrated FXR family of precision frequency mefers.

FXR "FAMILY" OF DIRECT READING REACTION TYPE FREQUENCY METERS

FXR M.M. TYPES (Micrometer Reading)

DELIVERY FROM STOCK

$\begin{gathered} \text { Motel } \\ \mathrm{He}_{2} \end{gathered}$	$\begin{gathered} \hline \text { Frequaty } \\ \text { nime } \\ \text { (Kic) } \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Assolstate } \\ \text { Aeturky } \\ (\%) \end{array} \end{array}$	${ }^{\text {apmax }}$			$\begin{array}{\|c\|} \hline \text { Prite } \\ \text { Woitside. } \\ \text { Wos. } \end{array}$
COAXIAL TYPES						
NA10A	1.00-4.00	0.10	3000	$12 / 2^{\text {c }}$ Cosx	Type N)	\$495.00
NSIAA	3.85-11.0	0.10	500101500	13/8- ${ }^{\text {cose }}$	Typen)	485.00
WAVEGUIDE TYPES						
-hal08	3.95-5.85	0.08	8000	49	149A	250.00
${ }^{4}$ Calos	5.85-8.20	0.08	8000	50	344	180.00
-W4108	7.05-10.00	0.08	8000	51	51	165.00
0×4108	8.20-12.40	0.08	8000	52	39	150.00
Y410A	12.40-18.00	0.10	4500	91	419	210.00
KA10A	18.00-26.50	0.10	4000	53	425	230.00
UAIOA	26.50.39.50	0.10	3000	96	381	250.00
Ci02A	5.85-8.20	0.03	8000	50	344	1275.00
X402A	8.20.12.40	0.03	8000	52	39	1275.00

DELIVERY FROM STOCK

F_{1+}^{1} iKI

Amphanol-Aorg Electronits Corparation

PRECISION MICROWAVE EQUIPMEWT - HIEH-POWER PULSE MODULATORS - HICH-VOLTAGE POWER SUPPLIES - ELECTRONIC TEST EQUIPMENT CIRCLE 137 ON READER-SERVICE CARD

VARIAN Potentiometer RECORDERS

More performance in less space

G-22 FOUR CHANNELS IN 14"; DEPTH ONLY $111 / 2^{\prime \prime}$ BEHIND FRONT PANEL

6. 11 TWO CHANNELS IN $101 / 2^{\circ}$. DEPTH ONLY 55° EEMIND FRONT PANEL

G. 10 ONE CHANNEL <1/2 CU. FT

THIREE COMPAC'I CHOICE:S

Using one quarter the space of many comparable potentiometer recorders, the Varian family packs exceptional function into very little space. Interchangeable input chassis accommodate full-scale signal voltages from 10 mv to 500 v d.c., temperatures from $-200^{\circ} \mathrm{C}$ to $+1500^{\circ} \mathrm{C}$, and 1 mA current recording. The Varian recorders have 1% accuracy, $\frac{1 / 4 \%}{6}$-of span sensitivity, 1 or $2 / \frac{1}{5}$ second balancing time, full-span zero adjust, Zener diode or mercury cell reference. A selection of chart speeds from \%//hour to $16^{\prime \prime} /$ minute lets you pick the time resolution you need.
In addition to being rack-mountable, the G- 22 and G-11A are portable for use in many locations. A wide range of accessories - such as retransmitting slidewires, alarm contacts and event markers - helps broaden the outstanding functional versatility outlined above. Chances are a Varian recorder can serve your need. Write Instrument Division for detailed specifications.

mma B EPA SPECTROMETERS, MAGNETS. FLUXMETERS GRAPMIC RECORDEQS MAGNETOMETERS MICROWAVE TUBES MICROWAVE SYSTEM COMPONENTS. MIGG VACUUM COUIPMENT. LINEAR ACCELERATORS. RESEARCH AMD DEVELOPMENT SERVICES

MICROWAVE PRODUCTS

Reflex Klystron

Operates to 120 Gc. Reflex klystron QKK971 operates from 100 to 120 (ic with power output of 10 mw min , and a minimum life of 250 h . Anode voltage is 1.700 v , current 50 ma . Heater requires 2.5 v at 1.5 amp , and reflector voltage is -100 to 300%. The integral-cavity tube has vernier tuning.

Raytheon Co., Microwave and Power Tube Div., Dept. ED, Foundry Ave., Waltham 54, Mass. P\&A: 83.500: 90 days.

Optical Maser Head 703

Precision positioning of optical maser head model TO2000 provides aiming accuracy within 10 sec of arc. Operating from 150 to 400 K . the head handles up to 4,000 J , and will accommodate rods up to 0.2 in . diameter. Included are three pink ruby rods, sighting telescope, tube and rod cooling, sync output, and manual and automatic triggering. Power supply is available.

Trion Instruments, Inc. Dept. ED, 7300 Huron River Drive, Dexter, Mich.
P\&A: \$s,695; so days.

ELECTRONIC DESIGN • July 5, 1961

ONE METER TO FOUR MILLIMETERS

New Litton Electron Tubes for Advanced Applications

A. L-3403 KLYSTRON TUBE: One of our super power line, a long pulse, power amplifier klystron for the Ballistic Missile Early Warning System, delivering 1.25 megawatts peak power output.
B. L-3270 BRoadband KLystron: A 2 megawatt L-band klystron offering long life, high peak power, 8 percent bandwidth. Other broadband klystrons, using the exclusive Litton Skirtron techniques, are available with higher power in the L through S-band region with .002-.004 duty cycles.
c. L-3455 HICH POWER MAGNETROM: A new magnetron delivering a minimum of 2 megawatts peak power at $406-450 \mathrm{mc}$. with a .002 duty cycle.
D. L-3450 HIGH TEMPERATURE PULSE MAGMETRON: Provides long life operation at ambient temperatures in excess of $662^{\circ} \mathrm{F}$. Many hours of $900^{\circ} \mathrm{F}$. operation have been achieved in X-band tests.
E. L-3629 floatimg drift fube klystron: High power, water-cooled klystron oscillator fixed tuned at $33,000-37,000 \mathrm{mc}$. Power output: 15 watts CW minimum. Other tubes available for immediate delivery from $12-4 \mathrm{~mm}$. wavelength.
f. L-3472 TWT: PPM focused traveling wave tube offers higher CW power - 10 watts minimum and wider bandwidth in a compact $3-\mathrm{lb}$. size. Operates in the range of $\mathbf{7 , 0 0 0 - 1 1 , 0 0 0 ~ m c . ~ O n e ~ o f ~}$ a line of TWT's including a 1000 -watt X-band pulse tube.
G. MICROTRON: The L-3189, one-kilowatt CW magnetron, is accompanied in package form by an electromagnet and filter assembly, high voltage and filament and isolation transformers. Only 6 -second warm-up. Two year warranty for domestic microwave cooking.
H. L-3H30 CUBE MINIATURE MAGNETRON: A one-kilowatt miniature magnetron, fixed tuned at $9300 \pm 30 \mathrm{mc}$, weighing less than 9 ounces and no bigger than a normal X-band waveguide flange. Developments at other power levels and frequencies are planned.
I. L-3408 SWITCH TUBE: Provides switching at relatively low control voltage levels with an efficiency of 95 percent. Features high voltage holdoff, high current handling. Collector ratings: 150 Kv ; $20 \mathrm{Amps} ; 10 \mathrm{KW}$ dissipation.

For information on our tube line, exclusive of classified types, send for the 1961 Electron Tube Condensed Catalog. Write to: Marketing Dept., Electron Tube Division, 960 Industrial Road, San Carlos, California

[8
 LITTON INDU8TRIE8 Eleotron Tube Division

CIRCLE 139 ON READER-SERVICE CARD

One of a series EXPLORING THERMISTOR APPLICATIONS

makes a big difference in a

time delay circuit

Circuits like the one above are often used where variable or fixed delay are required. Circuit ingredients: a thermistor and a variable resistor, in series with a battery and a relay.

With the switch closed, current flow is limited by the high resistance of the thermistor. The thermistor then heats up. permitting sufficient current flow to close the relay. Delay time can be increased or decreased by increasing or decreasing series resistance.

This is just one example of putting the thermistor to work. There are hundreds more - including temperature control, liquid level measurement, remote control, switching, power measurement, voltage control or you name it.

There are Just two kinds of thermistors, really: ordinary, which are good; and FENWAL ELECTRONICS', which are a little bit better. One reason is that FENWAL ELECTRONICS has the edge in experience. We pioneered in this field. Another reason is that we can suit your application exactly - FENWAL ELECTRONICS has the most complete line of thermistors available

Eenwel | For details, application assist- |
| :--- |
| ance, and new Thermistor |
| Catalog EMC 4, writo: |

AUGAT
 HEAT DISSIPATORS FOR
 POWER TRANSISTORS

Augat's new Heat Dissipators utilize a minimum of space and still offer the large radiating surfaces needed for maximum transfer of heat. All Augat dissipators feature a parallel, open-fin construction assuring low thermal resistance. They are readily adaptable to forced air cooling for even lower resistance.

Augat Heat Dissipators are manufactured in three styles to accommodate the TO-3, TO-36 and 2N-1015 transistors or their equivalent.

Write for Bulletin No. HD-261 which describes this new line in full detail.

AUGAT BROS., INC.
31 Perry Avenue, Aitleboro, Mass. CIRCLE 141 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

Broad-band ferrite coaxial isolator C992-100-409 operates from 2 to 4 Gc . Bandwidth isolation is 15 db . insertion loss 1 db , vswr less than 1.25:1. The 2-lb isolator is 6.16 in . long. Type N female coaxial connectors are standard, with other types optional
General Precision, Inc., Kearfott Div., Microwave Products, Dept. ED, 14844 Oxnard St., Van Nuys. Calif.

Microwave Garnet

404
Low-loss, microwave garnet. MCL-300 is intended for use in the uhf and L-band regions. This material is available in bars, cylinder: and disk form. Typical applications include 3- or 4-port low-loss circulators, either in full waveguide or coaxial. Curie temperature is 125 C .
Microwave Chemicals Laboratory. Inc., Dept. ED, 282 Seventh Ave., New York 1, N.Y.

Traveling-Wave Tube

A periodic-permanent, magnetfocused, low-noise traveling-wave tube, the HA-54 is for operation in the S-band. When operated from 2.4 to 3.4 Gc the tube has a noise figure of 13 db max, small signal gain of 25 db min and saturation power output of 5 dbm min . It measures 18 in . long with a 2 in . OD and weighs $3-1 / 2 \mathrm{lb}$.
Huggins Laboratories, Inc Dept. ED, 999 E. Arques Ave., Sunnyvale, Calif.
P\&A: $\$ 2,500$ ea; 8 to 10 weeks.
CIRCLE 142 ON READER-SERVICE CARD \rightarrow

ELECTROLYTIC CAPACITORS—Reliability is our first ingredient

The "case" for 300-volt Tantalytic* capacitors

The best capacitor case for 300 -volt oper ation is General Electric's High Voltage Tantalytic* Capacitor. Its single-cell construction is the smallest and lightest for its rating. It weighs 0.1 ounce and measures only 0.875 inch in length.

Performance of this G.E unit distinguishes it as quickly as its size. -Rog. Trade-mart ol Genoral Electrie Co.

Capacitance stays within 10% of original value even after 2000 hours testing at rated voltage and temperature. Impedance is lower at -55 C than that of any other high-voltage tantalum capacitor.
These same features characterize the full line of ratings from 200 V (. 15 uf) to 300 V (25 uf). Polar or non-polar designs
are available from stock for 85 C and 125C applications.

Data on G.E High Voltage Tantalytic Capacitors is found in Bulletin GEA7065. Ask your G-E Sales Engineer for a copy today. Or write to General Electric Co., Schenectady, N. Y. Capacitor Department, Irmo, South Caroline.

Progress /s Our Most Important Product GENERAL ELECTRIC

General Electric also offers these reliable Tantalytic capacitors

Measures every Characteristic

 of Semiconductor Devices from 25 to 1500 Mc> TRANSISTORS - $h_{f b}, h_{f e}, h_{s b}, h_{i b}, h_{o b}, h_{s e}-$ all short-circuit admittance and open-circuit impedance parameters.
> TUNNEL DIODES - equivalent circuit parameters: series \mathbf{L}, series \mathbf{R}, shunt $\mathbf{C}_{\boldsymbol{*}}$ negative $\mathbf{R} .$. resistive cut-off frequency, self-resonant frequency.
> * measures vacuum-tube transadmittances
> as well, under high frequency, dynamic conditions
> . 7-pin miniature, grounded-cathode Tube Mount available (Type 1607-P201, \$75.)
> * TRANSISTOR TEST MOUNTS AVAILABLE:
> * Type 1607-P101
> (0.200-in.-pin-circle
> common base, 860.)
> Type 1607-P111
> (0.100-in.-pin-circle.
> common base, \$65.)
> - Type 1607-P102
> (0.200-in.-pin-circle. common emitter, 560 .)
> - Type 1607-P401
> (0.200-in.-pin-circle,
> tetrode, S65.)

This Instrument Takes In Stride Advances In Solid-State Devices -
it can measure all theoretical two-, three-, and four-terminal characteristics

Monitoring Diode

RF power monitoring diode MA462 is for measurement applications in the X -band region. It is housed in a hermetically sealed, reversible polarity cartridge and is guaranteed for operation to 150 C . It meets the environmental conditions of MIL-S-19500B. A rectified output voltage with controlled variation is provided for input power levels between $10 \mu \mathrm{w}$ and 10 mw cw .

Microwave Associates, Inc., Dept. ED, Burlington, Mass.
Availability: Immediate

Y-Circulator

For the 2-Gc region, this Y-Circulator is 2 in . in diameter. It can be magnetically tuned with electromagnets or permanent magnets which become an integral part of the package. Standard configuration is with TNC connectors at 120 deg spacing. A 6% bandwidth is obtained across a frequency range of 2 to 4 Gc . Insertion losses are less than 0.4 db with an isolation of $-20 \mathrm{db}\left(-30 \mathrm{db}\right.$ at $\left.f_{0}\right)$ and vswr of 1.3 (1.1 at f_{0}).

Hycon Manufacturing Co., Dept. ED, 700 Royal Oaks Drive, Monrovia, Calif.
Availability: Immediate.

Coaxial Mixer Diode
 403

The MA-445 series of coaxial silicon mixer diodes are rated conservatively at 1 -erg burnout. Primary applications include use in single-ended or balanced hybrid mixers and communication and radar applications in the 10 - to 18 -Gc frequency range. Specifications for the MA-445 are: conversion loss, 7.5 db max; output noise ration, 2.5 max ; if impedance, 325 to 625 ohms.

Microwave Associates, Inc., Semiconductor Div., Dept. ED, Burlington, Mass. Availability: Immediate.

- CIRCLE 143 ON READER-SERVICE CARD

ANOTHER ADVANCED MICROWAVE TUBE DEVELOPMENT FROM RAYTHEON'S SPENCER LABORATORY

Crystal Detectors

Microwavis

For K and R band waveguide systems, models K422A and R422A have sensitivity of 0.05 v per mw and flat response within 2 db Maximum vswr is 2.5. Both models have feed-through terminations which may be removed when great er sensitivity is required. Model K 422 A is for 18 to 26.5 Gc and the R422A is for 26.5 to 40 Gc .
Hewlett Packard Co., Dept. ED, 1501 Page Mill Road. Palo Alto Calif.
P\&A: Single units are $\$ 200$ nintched pairs are $\$ 820$.

C-Band Oscillator

i microminiature, C-band oscillator $3 / 4$-in. in diameter and $3 / 8$ in. long, model 9180 is for both plate pulse and cw service. The plate pulse service unit can be built in the 4 to 6 Gc spectrum with a tuning range of any 300 mc segment of that section. Peek pulse power is 50 to 100 w . The cw version can tune any 100 mc segment of the 4.0 tp 5.5 Gc spectrum. Power output is approximately 5 mw . Trak Microwave Corp.. Dept. F,D. Tampa, Fla.

Pulse Modulator

360
The PM-87 pulse moderator is designed to test, for life and performance, super power klystrons, continuous-duty radar transmitters and similar equipment. Peak power is 64 megawatts continuous average power is 75 kw . Continu ously adjustable pulse range is 75 kv to 250 kv with pulse current of 260 amp at 250 kv . Frequency is 30 to 360 pps; pulse height deviates from flatness $\pm 2 \%$. Rise time at 10 to 90% voltage is 0.8μ sed ; decal time is $1.5 \mu \mathrm{sec}$ at the same voltag es.
Ling-Temco Electronics, Inc., Dept. ED, 1515 S. Manchester Ave., A naheim, Calif. Availability: so to 60 days.

How new Raytheon "BEAM MISER" boosts efficiency in crossed field devices

Unique depressed collector greatly improves efficiency of "M" BWO's and crossed field amplifiers.
"Beam Miser" is Raytheon's newest advance in crossed field oscillator and amplifier design. With it are opened many new design possibilities for applications requiring voltage tunability or bandwidth plus high reliability and efficiency.

Incorporating the "Beam Miser" into, existing crosised field tubes will yield improved performance and will not require any mechanical or electricul changes in equipment.

Write for further information on Raytheon develupments in crossed field devices. Microwave \& Puwer Tube Division, Raytheon Company. Waltham 54, Massachusetts. In Canada: Waterloo, Ontario.

"BEAM MISER" consists of an additional electrode in the crossed field device which collects a portion of the spent beam at cathode potential and returns it to the cathode by means of an internal conductor.

RAYTHEON COMPANY

FERRITE ISOLATORS by $D-B$

- for exceptionally high performance.
a full range of sizes. 30-day deliveries

DE MORNAY-BONARDI 780 South Arroyo Parkway, Pasadena, California
CIRCIE 145 ON READER-SERVICE CARD

Communications System

Operates at $6 \mathbf{G c}$. The 50 series is a solidstate microwave package including rf, multiplex, telegraph carrier and alarm equipment. Modular construction and circuit cards are used throughout. Klystron provides 1 w output, is rated for $20,000 \mathrm{hr}$ of continuous operation. Up to 600 voice channels may be used, with 18 frequency-shift channels per voice circuit. Monitoring equipment can serve 22 stations with 8 points continuously scanned at each station.

Motorola Inc., Communications Div., Dept. ED, 4501 W. Augusta Blvd., Chicago 51, Ill.

Mixer Diode

467
Noise figure is 7 db . Glass packaged diode type 1N831A, useful in strip-line circuits, can be conveniently mounted in coaxial circuits for broad-band, low-noise mixer applications. Operating from 1 mc to 4 Gc , burn-out rating is 250 mw cw . The device exhibits a noise figure of 7.0 db max for a $30-\mathrm{mc}$ if noise figure of 1.5 db at $3,060 \mathrm{Gc}$.

Microwave Associates, Inc., Dept. ED, Burlington, Mass,
P\&A: On request; stock.
Delay Line

For X-band. Waveguide line lengths of 13 to $1,228 \mathrm{ft}$ are contained in a mobile unit. The step-variable line is composed of coiled, rigid waveguide. Improved bending techniques result in minimum distortion of the waveguide and reduction of discontinuities. Length is changed quickly and accurately through use of highisolation waveguide switches.

Turbo Machine Co., Dept. ED, Lansdale, Pa.

MAGNETIC RECORDING HEADS

ANALOG

DIGITAL

PRECISION—HIGH PERFORMANCE

STANDARD \& SPECIAL
S. E. D. Memaries, Inc.

231 Route 17, Rutherford, N.J.
WEbster 3-5958

CIRCIE IAS ON READER-SEVVICE CARO

ELECTRONIC DESIGN - July 5, 1961

Model XD-6A rf detector consists of two separate detection circuits in a single package. Each section has an operating range of 100 kc to 1 Gc . Input impedance is 5) ohms for each section: vswr rating is 1.2 to $1 \mathbf{m a x}$ at $1 \mathbf{G c}$. U'nit comes complete with BNC connections on both inputs and both outbuts. TNC and N-type connector: are also available.
Telonic Industries. Inc., Dept. f:I). Beech Grove. Ind

Shielded Grid Triode

402
Designed as a switch tube in hard-pulse modulations. the ML7845 delivers more than 4 megawatts pulse power output for radar. communications and similar applications. The cathode is unipotential and oxide-coated. When cooled by forced air the anode is capable of dissipating 3 kw with capable of dissipating 3 kw with
15! cfm air flow. When the tube is immersed in a suitable dielectric was such as sulfur hexafluoride, its maximum ratings are 75 kv de and 80 kv peak.

Machlett Laboratories. Inc.. Dept. ED, Springdale, Conin.
P\&A: \$2.415; so drys.

Junction Circulator

Broad-band junction circulator model SL-43-3, operating at 2.2 to 2.7 Gc , is one of a line covering 1 to 35 Gc . The devices have better than 20 db isolation, less than 0.5 db insertion loss, and vswr less than $1.2: 1$ over a 15 to 20% frequency band. S, X, and SL band models with insertion loss of 0.15 db or less are available.
Cascade Research Div., Lewis and Kaufman Electronics Corp., Dept ED, 5245 San Fernando Road West, Los Angeles 39, Calif. Availability: 2 weeks.

Scientific-Allanta antenna pattern recording console at Boeing Airplane Company. Wichita, Kansas, with Scientific-Allanta model range tower in oachground-

Advancing the Art of Aircraft Antennas

Boeing uses versatile Scientific-Atlanta equipment to design and evaluate antennas for $B-52 H$ bombers

1A Boeing B-52H global bomber packs more total firepower than that expended by all the Allied and Axis bombers in World War II. Each B-52H will carry four Skybolt missiles plus a potent assortment of other weapons. Equipped with penetration aids. including electronic countermeasures (ECM) and decoys. the B-52H can strike as many as five military targets on a single mission. It is produced for the Air Force's Strategic Air Command at the Wichita. Kansas, Division of Boeing.
Obviously, the design of antennas for such an aircraft demanded nothing short of "state of the art." As it turned out. Boeing engineers advanced the state of the art in the design of ECM antennas for B-52Hs and B-47s. They were aided significantly by a new antenna test facility, consisting predominately of Scientific-Atlanta equipment-including pattern recorders, wide range receivers, signal sources, and a model range tower.
The foremost advantage of Scientific-Atlanta instrumentation is versatility. Complete frequency coverage is provided with recordings proportional to voltage. power, or db in

SEE US AT WESCON • BOOTH 3522

100 K ohms in a $3 / 4^{\prime \prime *}$ wirewound trimmer pot! Only Atohm has it!

Atohm precision, high reliability pots provide higher resistances, better resolution, higher wattages, larger wire-per-value for greater reliability, machine-wound elements for uniformity and lower cost, and other design advantages that merit your consideration. Write for the new Atohm catalog, It makes trimmer pot selection easy
ATOHM ELECTRONICS INC.
7848 San Fernando Road. Sun Valley. California
betwer:n mounting hole
CIRCLE ISO ON READER-SERVICE CARD

PROBING THE "TRANSPROBE" Wavegulde switch

The only moving parts of the "Transprobe" are solenoid plunger and a light weight, dielectrically supported metal probe. Result ... greater fexibility, longer life, ability to switch under full waveguide power. The design can be applied to any waveguide size. Unit shown is a single-pole-double-throw, X-band switch The design is equally successful for adaptation to SPDT, SP3T, transfer switch or special configurations. Typical specifications: Frequency. 8.2-12.4 KMC, VSWR ... 1.20, Insertion Loss ... 0.2 db , Crosstalk... 35 db , Life . . 2,000,000 operations. To probe more thoroughly the unusual advantages in this new approach to waveguide switching write Transco Products. Inc., 12210 Nebraska Avenue, Los Angeles 25, California.

CIRCLE ISI ON READER-SERVICE CARD

world's shortest short-form catalog on BWOS

 rely gold-plated and designed for heat sink type mounting and operation. Frequency range covered is 215 to $2,325 \mathrm{mc}$. All units can be used as building blocks stacked side by side on 4 surfaces.Resdel Engineering Corp., Dept. ED, 330 S Fair Oaks Ave., Pasadena, Calif.
Availability: 20 days.

Waveguide Fittings

Broached or unbroached waveguide fitting are manufactured to MIL-F-3922 from forgings castings or bar stock for microwave applications Magnesium and oxygen free copper flanges are available
Pem Machine Tool Co., Inc., Dept. ED, 1456 Chestnut Ave., Hillside, N. J
Availability: From stock.

Variable Attenuator

For field equipment. Type $\mathbf{1 7 0}$ series of panelmounting attenuators is made for operation over full waveguide bandwidth, or with direct-reading dials for narrow-band use. Frequency range of type X170 is 8.5 to 10.5 Gc , with accuracy ± 2 db from 0 to 50 db . Insertion loss is 0.75 db max, vswr 1.15:1 max. Average power handling capability is 1 w , peak lower 1 kw .
General Microwave Corp., Dept. ED, 47 Gazza Blvd., Farmingdale, N. Y.

You don't have to send for it This is it!

TYPE \#	fREQ. RANGE kmc	POWER ต\|
001.2	1-2	50-200
002.4	2.4	30-120
00 3.7-5.9	3.7-5.9	30-45
004.8	4.8	10.70
005.2 .8 .3	5.2-8.3	10.40
006 -11	7.11	$10-40$
006 -12	6-12	10-30
007.13	8.2-12.4	10.15
$0010-15$	10.15.5	10.20
OD 12.18	12.4-18	10.25
OD 15-22	15-22	$10-20$

But don't give up if the tube you need isn't listed here these are just the BWOs we usually keep on the shelf in quantity, ready to ship today. We also produce, in either experimental or production quantities, oscillators covering partial, octave, and even greater-thanoctave bandwidths.
Would you like a copy of our honest-to-goodness catalog, with complete periormance curves, specifications, and operating data? Just drop us curves, on the Type $0015-22$ back. ward wave oscillator

$\Longrightarrow \rightarrow$ -

We'd also like to hear from you if you're interested in permanent-magnet-focused tubes or traveling wave amplifiers.

WESCON

SOOTM 123 STEWART
 NGINEERINO

RELaYs: Wide range, for electromechanical swifching. Send for Bullelin T-5000R2

KEYS: Cam-fype and push-button Send for Bulletin T-5002R.

STEPPIME SWITCMES. Fast and dependable Bulletin T-5001R.

JACKS \& PLUCS: For many electrical and electronic uses. Send for Bulletın r. 5003.

TELEPMONE MAMDSETS: Standard or with switch assemblies. Send for Bulletin T-5005.

For bulletins and more information contact the nearest Sales Branch affice: Allanta-750 Ponce de Leon Place N.E.; Chicago-564 W. Adams Street; Kansas City (Mo.)-2017 Grand Avenue; Rochester-1040 University Avenue; San Francisco1805 Rollins Road.

CBNCDAL OYNAMICES /BLBCTMONICE

CIRCLE 153 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July

Micnowaves

Hybrid Mixer

Compact hybrid mixer V-8306C performs without adjustment over 7.0 to 8.0 Gc . It is designed for waveguide coupling in both local oscillator and signal arms. Typical noise figure of 8.0 db includes a $3-\mathrm{db}$ image and 1.5 db if strip contribution. Maximum vswr in both signal and local oscillator arms is 2.0 . Isolation is 20 db min . Made of aluminum it weighs 6 oz .

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.
Price: $\$ 495$ fob Palo Alto.

Waveguide Isolator

X-band waveguide isolator C994-100-932 provides isolation greater than 70 db . Insertion loss is 1.0 db max, vswr 1.2:1 max. Center frequency is $\pm 100 \mathrm{mc}$, power handling capability 1 w avg. The $9-\mathrm{oz}$ isolator is 3 in . long.

General Precision, Inc., Kearfott Div., Microwave Products, Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Ceramic Seals

Coaxial ceramic seals for traveling-wave tubes consist of dense alumina insulator sealed to a monel inner conductor and surrounded by a nickel outer conductor. Metallization process results in good rf match characteristics.

Ceramics International Corp, Dept. ED. 39 Siding Place, Mahwah, N. J

DIRECT READING

CALORIMETER BRIDGE

Four seales with the following frll seale ceflections: 1 milliveth, 10 millimatts, 10 milliwatts, 1000 millimets.
Acearsey: 1%-areapt in the 1 millimath range.
DC-10 KMC - Input Impedaace: 51.5 ohms

In this Calorimeter the R.F. power to be measured is compared to an accurately known D.C. power, by means of a null indicator and 260 thermocouples in 2 differential thermopiles, which sense the very low temperature rise of .0015 degrees C per milliwatt of the circulating fluid. This fluid is flowing at the rate of $2 / 3$ of an ounce per minute.
Since R.F. power is compared to

MODEL CE-31

D.C. power, both of which will depend to an equal extent on the ambient temperature, the effect of the ambient temperature on this power measurement is cancelled out. The R.F. power is then read directly on a $1 / 4 \%$ D.C. milliameter, calibrated in milliwatts. The null indicator pointer is deflected $1 / 4$ " by a power difference of 100 microwatts.

WRITE TODAY for COMPLETE INFORMATION
 Phone: SHadyside 1-0404

CIRCLE 154 ON READER-SERVICE CARD
COMPACT Modine transistor coolers

keep tight rein on temperature

Same size and weight as a pack of cigarettes . . . dissipate 85 watts with only 5 cubic feet per minute of $25^{\circ} \mathrm{C}$ air with silicon transistors.

Standard models for forced air flow and natural convection carried in stock, available for immediate shipment with any of five standard transistor mounting hole patterns.

adel has the world's largest selection of line SUPPORT CLAMPS, BLOCKS AND HARNESS STRAPS!

33,000 different types and sizes...how versatile can one source be? Designed for every application... positive, vibration-free support in aircraft, missile, marine, automotive and original equipment of all kinds ...applicable in extreme environments.

Complete Catalog available upon request . Specty AIDE:L Line Supports for wuality in eolume Peliabiltaty
F PRODCTS 1444 Washington Avenue. DIVISION Huntington 4. West Virginia

... for Perfect lead-to-pin joints on All sizes of A / N and similar connections
(bhaice $610-\mathrm{MEIT}$. . . for Fast-Efficient Accurate-Permanent connections.

POWER UNITS • HANDPIECES - ACCESSORIES for all jobs from Micro-Miniature to Heavy-Current connectors WIIE FOR DESCRIPTIVE LITERATURE, PRICES AND MEAREST DISTEIBUTOR

CIRCLE 163 ON READER-SERVICE CARD

Traveling-Wave Tube

Voltage Controlled Oscillator

Positive, reliable oscillator performance is essential to your aerospace telemetry needs. And Tele-Dynamic'snewest-the Type 1270A Voltage-Controlled Oscillator is representative of Tele-Dynamic's creative effort in the complete telemetry field.

Characterized by excellent overall specifications, this new oscillator is high in electrical performance and environmental characteristics. Input 0 to 5 volts or ± 2.5 volts, linearity $\pm 0.25 \%$ best straight line . . . a power requirement of 28 volts at 9 milliamps maximum. Distortion is 1% and amplitude modulation 10%.

Environmental characteristics include thermal stability of $\pm 1.5 \%$ design bandwidth from $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unlimited altitude, 30 G random vibration and 100 G acceleration and shock. The 1270A weighs less than two ounces and has a volume of two cubic inches.

For detailed technical bulletins, call the American Bosch Arma marketing offices in Washington, Dayton or Los Angeles. Or write or call Tele-Dynamics Division, American Bosch Arma Corporation, 5000 Parkside Avenue, Philadelphia 31, Pa. Telephone TRinity 8-3000.

TELE-DYNAMICS DIvision

Amenican mosen arsant corporation

5000 Pertuide Avo., Fhillodelphe 34, He CIRCLE 164 ON READER-SERVICE CARD

This particular telemetering cable was designed by project engineers of a major aircraft manufacturer. for guided missile work.

But when it came to the actual making of the cable. they came to a cable specialist - Rome Cable Division - for 153 good reasons.

As a start, take conductors. There are 111 of them. each precisely controlled to be absolutely uniform in size and conductivity. That takes know-how and facilities: and it's just a start.

Now add 37. That's the number of individually insulated triplets. each twisted with fillers. covered with a tinned copper shielding braid and jacketed with Synthinol. Then note that the partial assembly is raped with laminated Fiberglas and that. finally, the whole works is covered with heavyduty Rome Synthinol.

Adding the conductors, triplets. and a point each for filler, braid, jacket. tape and outer jacket. you come up with 153 good reasons-skill, experience. and specialized equipment - why you should take your next cable problem to a cable specialist. such as Rome.

Inquiries invited. Write to Rome Cable Division of Alcoa, Dept. 11-71, Rome. N. Y.

NEW LITERATURE

Planar Semiconductors

261
Reliability, performance, cost and adaptability of planar diodes and transistors are discussed in this 12-page color brochure. Technical data, including performance curves and electrical specifications, are included. Planar transistors, manufactured with a protective oxide coating, are compared with their mesa equivalents. Fairchild Semiconductor Corp., 545 Whisman Road, Mountain View, Calif.

RF Interference Filters

262
Radio-frequency interference filters designed to reduce conducted interference in shielded-enclosure test activities and groundsupport equipment applications are described in this eight-page publication. Entitled "Shielded Room and Ground Support Equipment Filters", the booklet covers the firm's complete line. Genistron, Inc., Sales Dept., 6320 W. Arizona Circle. Los Angeles 4ì, Calif.

Environmental Data

263
Common conversion factors, formulas, and data on vibration, shock, pressure and other dynamic phenomena are given in this pocket folder. It is intended primarily for the environmental engineer. The folder has 27 sections, each devoted to a particular topic from the basic trigonometric formulas to a graph of piezuelectric transducer response. Endevco Corp., 161 E. California Blvd., Pasadena, Calif.

Electroplating

264
A method of electroplating without requiring immersion tanks is described in this eight-page brochure. Localized areas, it is said, can be plated, with little masking required. Sifco Metachemical, Inc., 935 E. 63rd St., Cleveland 3, Ohio.

Plugs, Connectors and Switches 265

Banana plugs, phone jacks, alligator clips, test leads, cable connectors, toggle switches and miscellaneous related items are described and illustrated in this 32-page catalog. Physical and electrical specifications and prices are included. GC Electronics Co.. Rockford, III.

NEW moderately priced high-precision SLOTTED LINES

Rad residual VSWR under 1.010; rafod error in defected signal under 1.005 .

Extra

High Purity Gold Plate!

An AMCI Type 2181 Slotted Line with interchangeable precision tapered-reducers provides for accurate measurements in several

CIRCLE 166 ON READER-SERVICE CARD

TEMPEREX HD electroplate meets or surpasses the most exacting specifications of the electronics industry. Its deposits of $99.99+$ purity provide a uniformity of metallurgical characteristics never before attainable in gold electroplate.
Other advantages: 75 Knoop hardness; easy to solder or weld; and an exceptional ductility that permits cork-screw twisting of electroformed strips without fracturing!

NEW LITERATURE

Measuring Instruments

In 96 pages, Catalog S describes over 250 instruments, counting systems, radionucleides and nuclear accessories. Much of the catalog is devoted to new products. Illustrations and technical data are included for each device. Nuclear-Chicago Corp., 359 E. Howard Ave., Des Plaines, Ill.

Toroidal Cores

Basic design information tips and formulas for toroidal cores are given in this 14page handbook. Included are temperature curves, analysis of core loss, dc resistance, eddy current loss resistance, hysteresis loss resistance and self-capacitance. Request on company letterhead from Connolly and Co.. Dept. ED, P. O. Box 295, Menlo Park, Calif.

Silicon Diodes

267
Eighty-six glass silicon diodes are cataloged in this four-page brochure, as well as 35 general purpose and 51 computer types. Technical specifications are given. Computer Diode Corp., 250 Garibaldi Ave., Lodi, N. J.

Long-Life Vacuum Tubes

268
Specifications, descriptions and dimensional drawings for the firm's vacuum tubes are given in this 26-page handbook. Manufacturing techniques and quality control procedures are also described. State Labs, Inc. 215 Park Ave. S., New York 3, N. Y.

Low-Pressure and Flow Switches
 269

Complete specifications, details and prices on low-pressure switches and velocity-actuated flow switches are described in this 30 page catalog. Design information and dimensional diagrams are included. The Henry G. Dietz Co., Inc., 12-16 Astoria Blvd., Long Island City 2, N. Y.

Flashtubes for LASERS

270
Flashtubes capable of driving LASERS are described in this four-page booklet. Information on operation and application is included. Data on power requirements and capabilities of three assemblies are given. General Electric Co., Dept. LP-15, Nela Park, Cleveland 12, Ohio.

SOLVE 5 CRITICAL DESIGN PROBLEMS WITH TURBOTEMP Teflon FEP/ Nylon WIRE

Until Turbotemp ${ }^{\text {® }}$ Teflon FEP/Nylon wire was developed, no single wire ever solved so many combined heat and electrical problems. This new wire provides these advantages:

1. Overcomes the "short length" probem inherent in extruded Teflon TFE. Get the long continuous lengths (up to $6,000 \mathrm{ft}$.) that until now were available only in lower temperature wires or in those having less stable electrical properties.
2. Gives complete freedom to circuit designers when optimum performance demands low capacitance. The low dielectric constant of FEP/nylon shows minimum change over a wide range of frequency and temperature.
3. Provides utmost reliability to automatic wire wrap terminations. Of all conventional plastics or combinations tested, FEP/nylon has the best cut through resistance on wire wrap pins.
4. Is suitable for continuous operation up to $120^{\circ} \mathrm{C}$, an important consideration if computers are for military use.
5. Meets flammability requirements of both MIL-W-16878 and U.L. Appliance Wire.

*oupont nea, t. м.

American ENKA Corporation
DEPT. W. 39 SUDBURY ROAD, CONCORD, MASSACHUSETTS TELEPHONE: EMERSON 9-9630

Missile men, especially, know the advantages of Neoprene jacketed cables .. low temperature flexibility, abrasion resistance and resiliency. And missile men who are also cablemen know it pays at the count down to count on Brand-Rex Cablemanship! And you should too.
There's more to the absolute reliability of Brand-Rex cables than just rigid adherence to specifications. Brand-Rex Cablemanship combines technology, skill, broad cable engineering services, production capability of three coast-to-coast plants and technical field service . . . all delivered by a tightly-knit organization backed by the vast resources of the American Enka Corporation.
Whatever your requirements for wire or cable, regardless of the rigidity of your specifications for conductors, layup patterns, insulation materials, shielding or armoring, you can count on the Cablemanship of Brand-Rex.

Write for samples and information today!

American ENX A Corporation suobury moad concono massachusetts TELEPHONE EMERSON 9.\%30

DC Power Supplies

The firm's model CVQ transistorized power supply is described in this eight-page brochure. Theory of operation of the $100-\mathrm{w}$, regulated supply is discussed. Specifications are included. Sola Electric Co., Busse Road at Lunt, Elk Grove Village, IIl.

Clutches and Brakes

Electromagnetic clutches and brakes, mechanical clutches, torque indicators, torque standards and multi-speed transmissions are described in 40-page manual No. 361. Engineering and applications information is included. Autotronics, Inc., Dept. 30, Florissant, Mo.

Photoelectric Systems

273
Applications of photoelectric systems in automation are described in this 20-page bulletin, No. 611. Light sources, photo units, electronic controls and timers are discussed. with electrical and physical specifications included. Photomation, Inc., 96 S. Washington Ave., Bergenfield, N. J.

Temperature-Measuring Paints

 274Paints and crayons which can be used to measure surface temperatures are described in this folder. Pigments change color at specified temperatures, indicating whether surface is hotter or colder than desired Princeton Div., Curtis-Wright Corp., Princeton, N. J.

Semiconductor Technical Bulletins 275

A series of technical bulletins on semiconductors are available. No. 60S17-1, "Index of Technical Bulletins", lists technical data sheets on the firms semiconductor products. No. ICE-235, "RCA 2N404 Family", gives data on six transistors. No. ST-1945, "Reliability of the RCA-USAF-2N404 at High Stress Levels", presents test data on the 2 N 404 transistor. No. ICE-229, RCA Silicon Rectifier Interchangeability Guide", lists available silicon rectifiers. No. ICE-228, "Application Guide-RCA VHF Silicon Transistors", includes information on transistor design, construction and circuitry. No. ST2106, "Micromodule Reliability Status Report", presents reliability information on the firm's micromodules. Radio Corp. of America, Semiconductor and Materials Div., Somerville, N. J.

MINIATURIZATION pLUs LOWER COST

Thin Versatlle Co-Netic and Netic Magnetic Shielding Folls

Permit positioning foil-wrapped components A \& B closely. minimizing interaction due to magnetic fields making possible compact and less costly systems.

How thin Co-Netic and Netic foils lower your magnetic shielding costs:

1) Weight reduction. Less shielding material is used because foils (a) are only $.004^{\circ}$ thick and (b) cut and contour easily.
2) Odd shaped and hard-to-get-at components are readily shielded, saving valuable time, minimizing tooling costs.

These foils are non-shock sensitive, non-retentive, require no periodic annealing. When grounded, they effectively shield electrostatic and magnetic fields over a wide range of intensities. Both foils available from stock in any desired length in various widths.
Co-Netic and Netic foils are successfully solving many types of electronic circuitry magnetic shielding problems for commercial, military and laboratory applications. These foils can be your short cut in solving magnetic problems.

Cuts readily to any shape with ordinafy scissors.

Inserts readily to convert exisung non-shielding enclosures.

Shielding cables reduces magnetic radiation or pickup.

Wrapping tubes prevents utside magnetic interference.

PROTECT VITAL MAGNETIC TAPES

When accidentally exposed to unpredictable magnetic fields, presto! - your valuable data is combined with confusing signals or even erased.

For complete, distortion-free protection of valuable magnetic tapes during transportation or storage. Single or multiple reel Rigid Netic Enclosures available in many convenient sizes and shapes.

for safe, distor-
tion-Iree storage of starage of lage corded magnetic tapes.

Thin pliable foil wraps easily around magnetic lape. maintain. ing original secorded fidelity
 magerial ate no
signty at.
lected by vibration shock (including dropping or bumping) etc. Nelic is non-retentive requires no periodic
annealing.

Write for further details today.

MAGNETIC SHIELD DIVISION PERFECTION MICA CO.
1322 No. Elston Avenue, Chicago 22, Illinois originators of permanently efrective netic co netic magnetic shielding

What's YOUR Portable Power Problem?...

BURGESS has more than 5000 battery types to choose from:
ZINC-CARBON
MERCURY
NICKEL-CADMIUM
WATER-ACTIVATED
each with the highest measure of uniform dependability! This is why 2 of 3 electronic engineers specify

BURGESS BATTERIES
 The Most Complete One-Source Line of PORTABLE POWER!

ZINC-CAREON

Most popular source of portable power, zinc carbon batteries excel in adaptability, avail ability and economy. Burgess offers the wides range of choice in cylindrical and flat cells, plus exclusive patented "wafer-cell" construction for more compact power and uniform performance.

MERCURY ACTIVATORS

Burgess Quality-Controlled mercury botteries as sure uniform operation over wide temperature range, high ampere-hour output, flat discharge curve. Long, non-foding service for instruments, transistor radios, portable electronic products.

SEALED NICKEL-CADMIUM BATTERIES
A secondary rechorgeable battery system which delivers high energy output from a small packoge! Hermetically sealed-in-steel cells eliminate main tenance and oddition of liquids. Can be recharged many limes, by trickle or quick charge, for long lasting economical power!

RESERVE DATTERIES

High energy output in a compact power source. Can be stored dry for yearsl Activated only when immersed in water. No handling of dongerous electrolyte, no spilling or leakingl Wide range of efficient operating temperotures. Designed for your specific applications.

EXCLUSIVE WAFER.CEL

This construction offers compectress, long shelf life. excoptional service life. A 30% increose in bal. rory life at no increase in size.

Check with your Iurgess Distributor for complete local stocks of fresh BURGESS BATIERIESI Or your distributor con order from Burgess the special battory needed for your spectic application

PREI DESION SERVICE
For upecial applications, skillod Eurgess Enginoers offor you a FREE bathery dosign service. Burgess will manufacture the exact batlory to fil your needs, regardless of quantity required.

NEW IMOINRERING MANUA

Now 100-page dry bathery handbook now availablel Engineors angoged in Now design of batrery-powered equipment are invited to write to Burgess Comery Compony, Dopl. ED, Froeport, m., to secure a copy. Others may buy the manual for $\$ 1.00$.

BURGESS BATTERY COMPANY
REEPORT, ILLINOIS
CIRCLE 171 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Vote for Ideas Valuable to You

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receives the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a $\$ 50$ award.
Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.

The Ideas chosen as the most valuable in each issue will be eligible for the $\$ 1,000$ Idea of the Year award.
So vote for the Ideas you find most valuable. And, after you've voted, why not send in an Idea of your own?

Simple Circuit Halves
 20-Mc Supply Frequency

A simple circuit was required to supply a $10-\mathrm{mc}$ signal from a $20-\mathrm{mc}$ source. The circuit shown fulfilled the requirement quite adequately.
Transformer T_{1} is resonant at the $20-\mathrm{mc}$ input frequency. Transformer T_{2} is resonant at 10 mc , with a portion of the $10-\mathrm{mc}$ energy coupled back into the transistor. The loop gain is low enough to keep the circuit from oscillating with the drive removed.

Frequency divider has two resonant circuits-the input circuit at 20 mc , the output at 10 mc .

Herbert F. Verse, Jr., Research Engineer. Jet Propulsion Laboratory, Pasadena, Calif.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 734.

Power Gain Plot Can Be

When plotting the large current gain of power transistors the plot can be made rather quickly by eliminating the division step.

Current gain is given by $\boldsymbol{H}_{F B}=\boldsymbol{I}_{c} / \mathrm{b}$. The graph paper is used as shown in the figure, with base current values laid out beforehand on the graph. The intersection of the measured base current line and the collector current abscissa yields a correct point on the $H_{r \varepsilon}$ vs $I_{\text {, curve. }}$

Current gain $H_{F B}$ is plotted directly from I_{b} and I. measurements by laying out base current "guidelines beforehand.

John T. Lamb, Research Enyineer, Th, Tappan Co., Mansfield, Ohio.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 733.

Fourth $\$ 50$

"Most Valuable of Issue" Award For Curve-Tracing Attachment
Chester B. Shapero, self-employed research engineer of Cupertino, Calif., has won Electronic Design's fourth \$50 Most Valuable of Issue Award.
Mr. Shapero receives the award for his Idea for Design, "Low-Cost Scope Traces Transistor Characteristic Curves," which appeared in the April 12 issue. The idea described a circuit which enabled a lowcost oscilloscope to be used for displaying transistor characteristic curves.

IDEAS-FOR-DESIGN

How You Can Participate

Rules For Awards

Here's how you can participate in Ideas for Designs Seventh Anniversary Awards:
All engineer readers of Electronic DeSIGN are eligible.
Entries must be accompanied by filled-out Official Entry Blank or facsimile. Ideas submitted must be original with the author, and must not have been previously published (publication in internal company magazines and literature excepted).

Ideas suitable for publication should deal with:

1. new cirevits or circuir modifications
2. new design techniques
3. designs for new production methods
4. clever use of new materials or new components in design
5. design or drafting aids
6. new methods of packaging
7. design short cuts
8. cost saving tips

Awards:

1. Each Idea published will receive an honorarium of $\$ 20$
2 The Idea selected as the most valuable in the issue in which it appears will receive $\$ 50$.
2. The Idea selected as the Idea of the Year will receive a Grand Prize of $\$ 1,000$ in cash.
The Idea of the Year will be selected from those entries chosen Most Valuable of the Issue.

Most Valuable of the Issue and Idea of the Year selections will be made by the readers of Electronic Design. The readers will select the outstanding Ideas by circling keyed numbers on the Reader-Service cards. Payment will be made eight weeks after Ideas are published.
Exclusive publishing rights for all Ideas will remain with the Hayden Publishing Co.

Ideas-for-Design Editor
Eiecctronic Design
8.50 Third Ave.

New York 22, N. Y.
Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea across.)

> (Use separate sheet if necessary)

I submit my Idea for Design for publication in Electronic Desigs. I understand it will be eligible for the Seventh Anniversary Awards- $\$ 20$ if published, $\$ 50$ if chosen Most Valuable of Issue, $\$ 1,000$ if chosen Idea of the Year.

I have not aubmitted my Iden for Design for publication ebsewhere. It is entirely original with me and doas not violate or infringe any copyrighto

 queat publication shall be solely in the discretion of Hayden Publishing Company, Inc.

Name \qquad Title \qquad
Company Name \qquad
Address \qquad
For Additional Entry Blanks, circle $\mathbf{7 5 0}$ on Reader-Service Card.

${ }^{\text {momas } \wedge}$ EDISON

OFFERS DESIGN ENGINEERS CONSISTENTLY RELIABLE MOTOR GENERATORS AND MOTOR GENERATOR GEAR HEAD ASSEMBLIES

IDEAS FOR DESIGN

Long Period Multivibrator 748

Reduces Timing Capacitor Size

Building a transistorized monostable multivibrator for pulse widths of 10 msec or more can be a problem if space is at a premium. The problem arises because the finite β of Q_{1} (circuit a in the figure) places an upper limit on resistor R. This, in turn, means that C must be large, both electrically and physically, to yield the large $R C$ product required for long pulse widths.

The maximum permissible value of R is given approximately by:

$$
R=\frac{V_{1}-1.3}{V_{1} / R_{t} \cdot \frac{1}{\beta}}
$$

The quantity 1.3 accounts for the drop across $C R_{1}$ and the base-to-emitter junction of Q_{1} when the transistor is on. $V_{1} R_{1}$ is the collector current of Q_{1} when Q_{1} is on. Not considered is the effect of the collector-toemitter drop of Q_{1} when it is on, and the bleeder current required to hold Q_{2} off.

As an example, consider the typical values below:

$$
\begin{aligned}
V_{1} & =30 \mathbf{v} \\
R_{b} & =3.3 \mathrm{~K} \\
\beta & =40
\end{aligned}
$$

Then,

$$
R=\frac{30-1.3}{\frac{30}{3.3} \cdot \frac{1}{40}}=126.3 \mathrm{~K}
$$

If a pulse width of 20 msec is required, the time constant is derived from:

$$
t \approx 0.68 R C
$$

Choosing a standard value for R of 120 K , we have

$$
C=\frac{20 \times 10^{-3}}{0.68 \times 120 \times 10^{2}}=0.245 \mu \mathrm{f}
$$

(a)
(a) Maximum value of R in this monostable multivibrator is limited by the value of β for transistor Q_{1}. Thus, for long pulse widths, capacitor C must be large.

(b)
(b) Replacing Q_{1} with two-transistor Darlington connection effectively squares the value of β. This allows a iarger R, and reduces both the value and size of C.

Compared to the other components in the circuit, this capacitor is physically very large. This is especially true if the capacitor must be both accurate and stable.

However, the size of the capacitor can be considerably reduced if transistor Q_{1} is replaced by the two-transistor Darlington connection. The over-all β is now $40 \times 40=$ 1.600 , and R can be 40 times larger than before. Hence, C can be 40 times smaller. Using a practical value of $R=1 \mathrm{meg}$, we have

$$
C=\frac{20 \times 10^{-1}}{0.68 \times 1 \times 10^{i}}=0.0294 \mu \mathrm{f}
$$

Obviously, a much smaller capacitor will be required.
W. E. Zrubek. Design Engineer. Westinghouse Electric Corp., Baltimore, Md.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 748.

One-Shot Pulse Output Has 746 Greater Than 100\% Duty Cycle

Greater than 100 per cent duty cycle pulse generators can be designed by connecting two one-shot multivibrators in series.

Such a generator was needed to produce display pulses variable from microseconds to seconds. The pulses were to be triggered by a four-decade, preset counter when the counter reached a preselected number. The maximum frequency of the display was 100 kc .
At the end of the display pulse time, the counters were to be reset, ready to be triggered again, within $10 \mu \mathrm{sec}$. Thus, if the preset selector is set to a low number such as 0002 , and if the counter receives pulses at a 100 -kc rate, coincidence is again reached 20 to $30 \mu \mathrm{sec}$ after the counter is reset to zero
Thus, if the output display pulse time is 1 sec, the pulse generator has to operate with

SILICON. GERMANIUM AND OTHER METALLIC RECTIFIERS?

CALL ON HEINEMANN

Now in use by a number of leading electrical equipment manufacturers, Heinemann Circuit Breakers and Silic-O-Netic Overload Relays are providing effective protection for "sensitive" metallic power rectifiers.

However, generalizations are difficult to make. This is a demanding application. We at Heinemann must honestly admit we don't have all the answers. But we have found - through extensive testing and customer evaluation - that the Heinemann hydraulic-magnetic actuating element can provide the close-tolerance, fast-acting response necessary to keep overload amperage within the required limits and, at the same time, eliminate nuisance tripping. Circuit breakers and relays can be produced with an instantaneous trip point low enough to prevent overcurrent heating and resultant rapid damage to rectifier barrier layers.

Heinemann protection has been an important factor in extending the practical application of metallic rectifiers.

But each particular situation requires treatment on its own terms. If you are concerned with the protection of silicon, germanium or other metallic rectifiers, chances are Heinemann engineers can help you. Your inquiries are invired.

MrINIMANN

Circuit Breakers
Overload Relays

BUCKBEE MEARS IS VERSATILE! BUCKBEE MEARS IS INGENIOUS!

Why?

Because our Research people at BMC work on the assumption that "Whatever the mind can imagine the hand can create." Here for your consideration are some of the things this thinking has accomplished. They are not offered as proud boasts but to assist you in deciding whether or not we can be of help to you.

Bureau of Ordnance U.S. Navy was responsible for our initial venture into photo-mechanical reproduction. With their cooperation, we produced the first metal reticle for the armed forcesrevolutionizing fire control components.

Automation in photo-mechanical tech niques - another first - produced 21 niques ano produced 21 with 441,222 perfectly sized and waped conical penings for the Radi Corporation of America. Rad Corporation of America

A new standard for testing liquid and dry materials was adopted when BMC conceived and built a micro-mesh sieve for the Shell Development Co.

For Goodyear Aircraft and Bell Telephone Laboratories, BMC developed components for electrical domes with production accuracy of .015 inches in 17.48 feet.

Pure nickel storage mesh, designed for Hughes Products-Tube Division, 21 inch radar storage tube.

Gold connector strips for transistors and gold resistors to measure micrometeorites in space.

Anything that can be drawn in line can be reproduced-small runs at moderate costs-large runs on automatic equipment. Ask us-we just might have the answer for you.

louckbee mnears

247 E. 6 th STREET . ST. PAUL 1, MINNESOTA
CIRCLE 174 ON READER-SERVICE CARD

IDEAS FOR DESIGN

a duty cycle of 99.998 per cent or better. That is, it must be retriggered within $20 \mu \mathrm{sec}$ after the elapse of the 1 -sec pulse.

A single one-shot multi was ruled out because of duty cycle limitations. However, the problem was simply solved by connecting two ordinary one-shots in series.

The first multi triggered the second, with the output of the second multi initiating the zero set of the counters. The display pulse time was the sum of the periods of the two multivibrators.

By the time the period of the second multi is over, the first multi is ready to accept a trigger. The duty cycle of this combination is better than 100 per cent.

Arpad Somlyody, Circuit Design Analyst. Burroughs Corp., Electronic Components Div., Plainfield. N. J.

Pulse output with greater than 100 per cent duty cycle can be obtained by connecting two one-shot multivibrators in series.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 746.

Servo Circuit Compared
 Antenna Pattern Nulls, Peaks

 735In developing an automatic antenna pattern computer н simple and reliable method was required to compare the pattern nulls with the lobe peaks. In addition, not only was the greatest magnitude lobe peak to be selected, but also the "deepest" null.

The maximum lobe peak is easily measured and selected for greatest amplitude with a simple voltage memory device, such as a capacitor. Locating the "deepest" null, how-

Automatic readout supplies lobe peak to null depth ratios of antenna pattern.
ever, presents circuitry problems which can set complex.

This problem was solved by using a simple servo bridge balancing circuit with a high back-resistance silicon diode. The servo used with this diode is able to proceed in the direction of the greatest ratio of lobe peak to null depth. When the diode is properly oriented, the servo direction cannot be reversed. To regain the original $1: 1$ ratio, it is only necessary to short out the diode momentarily. The servo then swings back to its unity ratio.

Eduin S. Osner. Sr. Enginepr, Varian Associates, Radiation Div., Palo Alto, Calif.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 735.

Tunnel Diode Trigger
 Circuit Can Reset Itself

The tunnel diode trigger circuit, Fig. 1, resets itself without the need for a clipping line or additional reset pulses. A trigger applied as shown switches the tunnel diode from the low state (state 1) to the high state (state 2). The diode now presents a higher impedance than in the original state, and its current decreases to I_{2}, Fig. 2. The original current through the tunnel diode is

$$
\boldsymbol{I}_{1}=\frac{\mathbf{V}_{1}-\boldsymbol{V}_{1}}{\boldsymbol{R}^{\prime}+\boldsymbol{R}}
$$

If capacitor C were sufficient to maintain the voltage across R^{\prime}, the current through the tunnel diode immediately after switching to state ? would be

$$
I_{7}=\frac{\boldsymbol{V}^{\circ}-V_{x}-V_{K}^{\prime}}{R}
$$

Since the voltage across capacitor C changes with the time constant of C, R, and R^{\prime} in parallel, the current through the tunnel diode will decrease toward

Fig. 1. Presence of voltage holding capacitor C allows tunnel diode trigger circuit to reset itself.

.tough going ahead!

E-I GLASS-TO-METAL SEALS

Utmost reliability is assured under severest environmental conditions. E-I Glass-to-Metal Seals have proven their ability to withstand extremes of temperature, high mechanical shock and vibration, and wide pressure changes in thousands of critical commercial and military applications.

E-I offers a Complete Line of economical standard seals, facilities for designing special seals and custom service for the sealing of components of your own manufacture. Call or write for literature or recommendations on your specific sealing problems.

MURRAY HILL, NEW JERSEY

- Dutsion of Philhp IBlectronice A PAarmaceutical Indugtrise Corp.

We specialize in heavy wire TOROIDAL COMPONENTSmagamps, transformers, etc.

Equipped with the largest selection of winding machines, UNIVERSAL offers coils from $1 / 1 \mathrm{cc}^{\prime \prime}$ Fin. I.D. up to 30° O.D.

WIRE RANGE FROM \#2一\#SO.
We also offer "Pof" Windings and Encap sulated Construction to MIL T-27A.

UNIVBASAL TOROID COIL WINDING, INC. Thimp CIRCLE 176 ON READER-SERVICE CARD

right off the shelf.

(2) 1 N L एल MACHINE SCREWS

Immediale delivery on ALL SIZES Immediale delivery on All SIZES Made To AN \& MS SPECS. 100° FLA HEADS available.
Send for your Stor catalog loday, on letterhead please.

IDEAS FOR DESIGN

Fig. 2. After being switched to stote 2 by trigger pulse, capacitor C causes current to decrease to I, and the diode switches back to its original state.

Thus the voltage across the tunnel diode will decrease exponentially, moving from point 2 to point 3.

When the current through the tunnel diode reaches I_{1} (the valley current), the diode will switch back to its original state.
The conditions for the tunnel diode to reset to state 1 are:

$$
I^{\prime}<I_{+} \text {where } I^{\prime}=\frac{V_{*}-V_{2}}{R^{\prime}+R}
$$

Since V, and K are chosen by normal circuit considerations, and I_{v} and V_{z} are obtained from the tunnel diode specifications, the value of R^{\prime} is determined as:

$$
R^{\prime}=\frac{V_{t}-V_{2}-I_{t} R}{I_{v}}
$$

The "on-time" of the tunnel diode is determined by the time constant T where:

$$
T=\frac{R^{\prime} R C}{R^{\prime}+R}
$$

Since the values of R^{\prime} and R are determined by the previous considerations, the on-time of the trigger circuit is fixed by the choice of the value of C.

Robert N. Larsen, Assist. Electrical Enyineer, Argonne National Laboratory, Argonne, Ill.
If this Idea is valuable to you, give it a vote by circling Reader-Service number 731.

Emitter-Coupled Limiter

 732
Produces HF Square Waves

A sine-to-square wave converter can be easily designed by using diode clippers. But

Casting Engineers

Gave us the right component weight with greater strength ... and helped us into a new market.. says William C. Croft Prosident.
The Pyle-Naslonal Company
"Before we offered our miniature connectors to the aircraft/missile industry, we searched for a lightweight alloy, easily castable, which would withstand high a mbient temperatures Casting Engineers furnished a stainless steel casting for our products which allowed us to compete very favorably with aluminum in weight, with tremendous increase in strength and corrosion resistance-a metallurgical breakthrough

MINICAST Proved Feasibility of Thin Walls, Close Tolerances

Section thickness is critical in airborne connectors where weight is a liability and strength is essential. Plastic patterns, pioneered at Casting Engineers, assured uniformity in detailed configurations, met all MIL interchangeability specifications for olerances on diameters and concen ricity.
Casting Engineers can make it ponent design and production. MIN ICAST parts slash machining costs eliminate secondary operations. MINICAST means precision, dependability . . . and economy.
Now eight-page brochure tolls how 10 specify investment costings to cut your production costs Sand for your free copy today'

Castinp Engineers plante in Chicago and Now York City Adarese Inquirien to
2328 N. Bosworth Ave. Chicago 14. III. BUckingham 1-5940
CIRCLE 178 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

tantalum

 FOIL
Te5

ELECTROLYTIC CAPACITORS

as you like them, when you want them

- 30% More Foil Areo in all standard cases Higher capacities-to $5200 \mu \mathrm{~F}$
Lower D-C leakage
Longer life, greater stability Reliability data available on request.
- 10 Case Sizes including 5 MIL standard coses, thus
704 standard units
Save space
Save weight
Save money
- 4More Major 'Pluses'

No external lead weld
Mermetically sealed cathode
Best shock and vibration resistance
Polar, partial Non-Polar, and Non-Polar types
Take your choice of reasons for specifying iel miniature Tantalum Foil Capacitors. you will be right every time. Only leí, pioneer developer and long-time specialist in miniature electrolytics, can give immediate attention to your needs for long runs, short runs, standards and specials. iel also offers expedited shipment of stock items when needed. Write for Product Data Bulletin 2745.

International Electronics Industries, Inc. Box 9036-12, Nashville, Tennessee
where reliability replaces probability CIRCLE 179 ON READER-SERVICE CARD

High frequency sine-to-square converter is made up of transistorized emitter-coupled lihiteds.
the rise time of the square wave then depends on the magnitude of the input sine wave. Thus, the ratio of the peak-to-peak values of the input to the output should be at least 3 .

However, an emitter-coupled limiter not only needs a much smaller input voltage, but its rise-time is limited only by the switching times of the transistors. These can be reduced by driving the switching transistors out of a common collector stage.
The circuit shown produces, once the potentiometer is adjusted, a fast rise time, symmetrical square wave. A 5 -mc sine wave with 2 v peak-to-peak at the input gives a $2 \cdot \mathrm{v}$ peak-to-peak square wave with a rise time of approximately 20 nsec . For an input voltage of 6 v peak-to-peak, the rise time reduces to less than 10 nsec with a slight overshont.

Harald Hahn. Assist. Electrical Engineer. Brookhaven National Laboratory, Upton. L.I., N.Y.

If this Idea is valuable to you, give it a vote by circling Reader-Service number 732.

Vote for Ideas Valuable to You

Vote for the Ideas which are valuable to you. Other engineers will vote for the Ideas which are most valuable to them. The Idea which receives the most "Valuable" votes will be judged "Most Valuable of Issue." Its author will receive a $\mathbf{\$ 5 0}$ award.

Choose the Ideas which suggest a solution to a problem of your own or stimulate your thinking or which you think are clever.

The Ideas chosen as the most valuable in each issue will be eligible for the $\$ 1,000$ Idea of the Year award.

So vote for the Ideas you find most valuable. And, after you've voted, why not send in an Idea of your own?

(rov) ROTARY SWITCHES

- For Critical Reliability Applications.
- Quick changing of programs, configurations, circuits.
- Maintenance problems completely eliminated by unique 5-second wafor replacement models.

Export Dapt: Roburn Agonsies Ine., 431 Groewndeh Sp., Now Yeok 13. M, Y. CIRCLE 181 ON READER-SERVICE CARD

LERMER Adds Important NEW Features toflexible acetate containers

 sures for uniform fit Knurled for easy grip - Ent gineered to hold tight-Easy to remove and replace Closures available in assorted colors - May be hot stamped in contrasting color with trade mark or other desired copy

- Reinforced molded bottoms - Firm wide base-Prevents tipping over - Available in colors

- Containers available in diameters from $1 / 4^{\prime \prime}$ through $11 / 4^{\prime \prime}$ - Any lengths up to 7" - Longer lengths on special order - Can be furnished in long lengths open at both ends. You can make your own containers by cutting to your sizes. We furnish closures.

Now is the time to consider the fiexibility, the protection, the beauty, the features and economy of Lermer flexible plastic containers. Ideal for many products. Write today for samples.
ALSO A COMPLETE LINE OF RIGID MOLDED CONTAINERS.

LERMER PLASTICS, INC. 572 South Avenue, Garwood, M. J.

REPORT BRIEFS

Tem Diode Switching

The theory and technique for the design of a broadband ($100-$ to- 1 frequency range) TEM microwave diode switch are presented. A coaxial transmission line switch has been constructed that provides 26 db or greater isolation and insertion loss ranging from 1.6 db to less than 1 db from 40 mc to $\mathbf{4 0 0 0}$ mc. An analysis is given of the switching action of one and of two or more diodes. Also discussed is the biasing of the center conductor of a TEM transmission line over broad frequency bandwidths so as not to interact with the rf signal. Theory of TEM Diode Switching, Robert V. Garver, Diamond Ordnance Fuze Laboratories, Washington, D. C., Oct., 1960, 56 pp , Microflm \$3.60, Photocopy 89.30. Order PB 153579 from Library of Congress, Washington 25, D. C.

RFI-Duplexer Tubes

An investigation was conducted on several types of TR duplexer tubes and a waveguide filter commonly used in systems, to determine their effectiveness in rejecting spurious microwave radiation. The devices studied were all designed for operation in the $2.8-\mathrm{Gc}$ frequency band. The low power level characteristics of these devices were checked over a frequency range of 2.6 to 35 Gc . Results of the investigation showed that neither the TR tube nor the waveguide filter can provide adequate protection against unwanted signals at frequencies higher than the system frequency. Characteristics of Microwave Duplexer Tubes Under Spurious Radiation Conditions, Irving Reingold, Army Signal Research and Development Labs., Fort Monmouth, N. J., March 31, 1959, 27 pp, Microfilm \$2.70, Photocopy \$4.80. Order PB 147821 from Library of Congress, Washington 25, D. C.

Waveguide Components

Presents the design and development of components for use in a circular waveguide system employing the low-loss TE_{01} circular electric wave mode. Components were investigated with regard to direct scaling for use with $2.710-\mathrm{in}$. ID and $0.725-\mathrm{in}$. ID circular waveguide at 9.375 Gc and 35 Gc , respectively.

Several new components were developed. These include a straight waveguide section,

SILICONTROL

(SOLID STATE THYRATRONS)
THE ALL.IN-ONE PACKAGE CONTROL FOR THE SYSTEM DESIGNER

CHECK THESE
IMPORTANT ADVANTAGES...

1. One Silicontrol fires one or two sil. icon controlled rectifiers in back-toback orrangement or bridge circuif. No added circuitry needed.
2. Eliminates matching of silicon controlled rectifiers. No need to select similar impedance values. Fires any two SCRs of any rating or manufacture.
3. Failsofe feature builf-in. Prevents destruction of SCRs and lood components through a wide range of overload conditions. Linear control from zero to maximum output. Can shift gate pulse more than 180°.
4. No bios needed; loss of control signal iurns off unif.
5. Immune to voltage transients on supply bus resulting from odjacent switching or relay operations. Prevents SCR pulses from interfering with other circuits.
6. The only unif providing all of the above features.
7. SILICONTROLS are available from stock.
8. Both 60 cps and 400 cps models available.
9. Military packaging as required.

Send for Engineering Bulletin No. 2000
 VecTroL

ENGINEERING, INC.
A Subsidiary of Sprogue Electric Compony
37 MAGEE AVE, STAMFORD. CONN
CIRCLE 183 ON READER-SERVICE CARO

METERS

You can SEE and READ

> New
> Series 1025-1026 interchangeable with Round Bakelite Case Types

Brilliantly new in their high visiblity poly styrene cases are these modern type Meters by HOYT which sive a true reading at a lance: Here longer scale length and the elimination of shadow's plus clean design add up to a topnotch combination to incorporate in any panel.

The Famous HOYT high torque movement with precise and rugged craftsmanship gives you what you've been looking for in Meters. These models are directly interchangeable with all round Bakelite meters. and are avallable in all AC and DC ranges as Ammeters, Milliammeters. Microam meters. Voltmeters and Millivoltmeters. Similar styles $\# 103731_{2}$ and $\$ 1060 \mathrm{C}^{\prime \prime}$ meters are also availahle for hily modern panel meter application

The HOYT square plastic case series ($\mathbf{z 6 4 9}$ and ± 653 showni is available in $21 / 2^{\prime \prime}, 31 / 2^{2}$ and $4_{2}{ }^{\prime \prime}$ types. Just right for use where equipment needs to be revised to meet modern design requirements. These instruments are interchangeable with square Bakellte meters and can be supplied uith Bakelte meters and can be supplied with Irosted or colored hand on the case fron in any AC and DC ranke. Extra long scales
in shadou free cases give you the most in shadou qree cases give you the

Write us for the NEW HOYT PANEL METER Brochure showing a complete line of plastle and Bakelite models.

ElECTRICAL INSTRUMENTS

BURTON-ROGERS COMPANY

Soles Division, Dept. ED-7
42 Carleton Street, Cambridge 42, Mass. CIRCLE 184 ON READER-SERVICE CARO
a flexible waveguide section, couplings, transistions, bends, a mode absorber, a rotary joint, a high-power load, a low-power load, waveguide switches and windows. Proposed designs are presented for directional couplers and ferrite components. All experimental work was done in the X band. Investigation and Development of Circular Waveguide Components, Alva C. Todd. Dich M. Joe, Demetrios P. Kanellakos, Armour Resparch Foundation, Columbus, Ohio, April, 1959, 136 pp , Microfilm \$6.90, Photocopy $\$ 21.30$ Order PB 150589 from Library of Conyress Wiashington 25, D. C.

Printed Antennas

Discusses several types of printed antenna arrays and related feeds and baluns. Detailed consideration is given to the Franklin array, Chireix-Mesny array, and the capacitively coupled collinear array. Experimental techniques, such as probing the magnitude and phase distribution of the current along a printed array and measuring the impedance and phase velocity that characterize printed balanced lines are described. The antenna performance characteristics for the types of arrays that were studied are given including gain, loss, impedance, size, side-lobe levels, and half-power beamwidths. Study of Printed Antennas, J. A. McDonough, R. G. Malech. J. Kowalshy, Airborne Instruments Lab., Inc., Mineola. N. Y., Aug., 1955. 57 pp , Microfilm \$3.60, Photocopy \$9.30. Order PR 150667 from Library of Congress, Washin!gton 25, D. C.

Transistors

A hybrid parameter equivalent circuit for the common emitter connection is developed. The basic circuit is modified for high-frequency use in such a way that the parameters of the equivalent circuit are independent of frequencies. Methods of measuring these various parameters are discussed in detail and circuit diagrams are provided for each such measurement. The proposed transistor equivalent circuit is then used in the analytical development of circuit design equations and criteria for low-pass, highpass, and band-pass amplifiers. Transistor Equivalent Circuit Criteria, Thomas L. Martin Jr., David J. Sakrison, et al. Arizonn University, Tucson, Ariz., Aug. 30, 1.956, 83 pp. Microfilm \$4.80, Photocopy \$1.3.80. Order $\boldsymbol{P} \boldsymbol{E} 147539$ from Library of Congرress, Washington 25, D. C.

Gizlikfl:
 adapters extend strip transmission line applications

Strip transmission line may now be a practical solution to your equipment weight and size reduction programs with added reliability . . .

Miniaturization of microwave circuitry is now advancing rapidly with the successful mating of strip transmission line components to coaxial cable another breakthrough by Gremar connectronics. ${ }^{\circ}$
A wide variety of configuration in all connector series including in-line and right angle mountings are available for such components as crystal holders, disc resistors, and other strip transmission line components. Over 50 types are normally carried in stock for off the shelf delivery.
Add Gremar conneceromics (8) your R \& D feam! By concentrating engineering, production and quality control on RF connectors and components only, Gremar is first in new developments. That's why, if you're working with strip transmission line, you should be working with Gremar. . .
Write for bulletin $\$ 13$
(8) Gremar Mfg. Co., Inc. (a) Sanders Associates, Inc.

SOLENOID VALVES OF - FLO $^{\text {N }}$ FOR ETCHING, CLEANING!

Valcor's solenoid valves of Teflon are perfect for any process that requires absolute freedom from contam. ination! The molded body and diaphragm of Teflon is chemically inert and corrosion-resistant to virtually every medium. Valcor solenoid valves outlast and outperform steel! Available in a variety of sizes and pressure ratings... immediate delivery. Write today for tree 16 -

VALCOR

ENGINEERING CORP.
5382 Carmegie Avenue - Kenilworth, N. J. - CH S-1665

CIRCLE 186 ON READER-SERVICE CARD

REPORT BRIEFS

Radiation Damage in Semiconductors

A diode resistant to nuclear radiation damage was constructed as a result of extensive studies of nuclear irradiation effects on semiconducting materials. The diode uses p-type germanium with resistivity of about $0.20 \mathrm{ohm}-\mathrm{cm}$ as the base material. Principal object of the study was to determine the mechanisms by which radiation degrades semiconductor devices. The researchers state that one of the most significant accomplishments of the program was the development of the instrumentation and techniques of measurement used with the General Atomic electron linear accelerator. Resrarch in Radiation Damage in Semiconductors, J. W. Harrity and nthers, General Dynamies Corp. for U. S. Air Force. Feb. 1960, 157 pp, $\$ 3.00$. Order PB 16167.3 from OTS, Washington 25, D. C.

Ground Support Functions

This study was conducted to determine the relations between automation and personnel requirements for guided missile ground support functions. Three systemsSnark, Bomarc, Mace-were investigated in regard to organization-level maintenance of electronic equipment. The study shows that automatic equipment, itself, is not the cause of increased personnel requirements, but rather the use to which automation is put within the over-all support organization. Automation and Personnel Requirements for (inided Missile Ground Support Functions, General Electric Co. for Wright Air Development Center, May 1959, pp 49, \$1.25. Order PB 151978 from U. S. Department of Commerce Field Office, 10.31 S. Broadway, Los Angeles 15. Calif.

Ceramic Tubes

This Air Force "phasing-in" study reports on the results of a survey to facilitate the prompt use of newly developed high-temperature ceramic tubes and components in aviation electronic equipment. Many of the supporting components investigated were still in the research and development stages. Various materials and construction methods were tested in a search for simple, efficient, and economical means of installation and servicing. Adaptation of Ceramic Tube Types.

DEPENDABLE SWITCHING

of contact loads to 25 amps . . .

"Diamond H" Series W Relays - The simple, functional construction of this high-quality general-purpose relay assures long-time dependable switching. For n broad range of applications, specifying "Diamond H " Series W Relays makes good sense. Here are some reasons:
Reliable-Mechanical life in excess of $10,000,000$ cycles.
Versatile-a-c or d-c units available with choice of eight different combinations.
Compact-Measures $11 / 2 \times 11 / 2 \times 13 / 8$ inches-weighs less than 10 oz .
High Contact Rating-Conservatively rated up to 25 amps, $240 \vee \mathrm{a}-\mathrm{c}$ or 28 v d-c.
Easy to mount-Plug-in design. Panel or side mounts also available.
Underwriters Laboratory ApprovalU/L File 31481.
Coso-saving-Low in initial cost, the Series W is easy to install, saves space, and is easy to service.
Send for complete facts-in new 8page Series W Relay Guide.
 "-HART

210 Berthelomew Avenve, Martford I, Conn.
Phone JAckson 5-3491
CIRCLE 188 ON READER-SERVICE CARD ELECTRONIC DESIGN • July 5, 1961

CETRON offers two New High Voltage-High Vacuum RECTIFIERS

In the field of radar, transients must also be removed. These high voltage. high vacuum clippers and rectifiers are designed to give the high effi. ciency and careful control demanded in modern equipment.
The 4831 is primarily a clipper tube, but can also be used as a high voltage rectifier. The 8020W is a high voltage. half wave rectifier designed for high ambient temperatures. It has been tested to withstand a shock of 375G. High operating frequencies and high peak inverse voltages of the 8020 W preclude the use of gas filled rectifiers.

	4831	8020W
Peak Inverse Volts	16.000	40.000
Fil. Voltage	5.0	5.0
Fil. Amperes	5.0	6.0

Cetron Rectifiers are capable of Meet. ing All Requirements of JAN Militery Specifications
Cetron Engineers are always ready to assist in your tube requirements.

BE CERTAIM WITH CETRON - FOR TMTRATROMS. RECTIFIERS. TRIOOES AND PHOTO CELLS

CETRON

 ELECTRONIC CORPORATION715 Hamilton Streot - Geneva, Illinois CIRCLE 189 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 5, 1961

Aerovox Corp. for Wright Air Development Center, June 1959, 166 pp, \$3.00. Order PB 151922 from U.S. Department of Commerce Field Office, 1031 S. Broadway, Los An!seles 15, Calif.

Sampled-Data Systems

Theory of the operational analysis of the finite, pulse-width system is developed. The closed-form expression of the response of such a system is described by several wellknown operators such as the z-transform, the modified z-transform and the simple form of the p-transform. Finding the incremental responses and their superposition is the basic principle of the theory. It is applied to two-sampler systems as well as multirate sampling systems. Operational Analysis of Finite Pulsed Sampled-Data Systems, T. Nishimura, Electronics Research Laboratory, University of California, Berkeley, Calif., May 1960, 39 pp, Microfilm \$3.00, Photocopy \$6.30. Order PB 149092 from Library of Congress, Washington 25, D. C.

Reliability

A specific mathematical model is formulated for improving system reliability with a minimum of effort. Also shown is how to determine the allocation of effort among subsystems which yields the desired system reliability at minimum total expenditure of effort. Increased Reliability With Minimum Effort, Arthur Albert, Frank Proschan, Applied Mathematics and Statistics Labs., Stanford University, Calif., Oct. 9, 1959, 29 pp, Microfilm \$2.70. Photocopy \$4.80. Order PB 14994.3 from Library of Congress. Washington 2:5, D. C.

Speech Statistics

At a symposium co-sponsored by the Leningrad State University and the Speech Section of the Commission on Acoustics, USSR Academy of Sciences, papers were presented by Soviet scientists on the investigation of speech, linguistics, telephonic acoustics, physiology, mathematics, and related subjects. Fourteen of these research reports on statistical methods have been translated and compiled in this publication. Problems of Speech Statistics, translated from 12 Russianlanguage publication of the Leningrad State University, 1958, $137 \mathrm{pp}, \$ 2.75$. Order 6111792 from OTS, Washington 25, D. C.

standard knobs ($\frac{2}{5}$ I-

fastest delivery

Variety and versatility in a complete standard line of thermosetting plastic knobs. Combinations, variations in types, sizes and colors delivered promptly. Send for catalog.

kurz-kasch

Kurz-Kasch, Inc., 1415 S. Broadway, Dayton 1, Ohio Circle 190 on reader-service caro
get the
Goshen Rubber... IDEA*

To procisefy fabricate parts, seals, and components from selected compounds, and for specific applications only!

WHEN FACED WITH CRITICAL SPECS.

The tougher the specs, the more important it becomes that you have it "custom made by Goshen Rubber." If the part, or component you need can perform best by being fabricated from a natural, synthetic or silicone rubber compound, count on Goshen. Exclusive fabricating techniques, developed here at GRC, are available to meet strictest specifications, and for advance testing under many types of near-field conditions. Let us know your problem. Write, wire or phone.

RUBBER CO., INC.

AT RCA'S NEW SPACE CENTER IN PRINCETON, N.J. WHERE TIROS WAS BORN
Continued research and investigation into new areas of electronics and space technology has opened up a number of challenging opportunities for creative scientists and engineers at this rapidly growing division of RCA. Immediate openings are available in the following areas:

- APPLIED PHYSICS RESEARCH/Advanced space electrical power and propulsion
- SPACE SYSTEM AMALYSIS/Applied mathematics/Thermodynamics and mechanics
- PROPULSION STUDY AND DESIGN/For fínal stage space craft
- ELECTROMIC SYSTEMS AND CIRCUIT DEYELOPMENT/Communications/Video and digital data processing/TV camera and pickup tube design
- INfORMATION PROCESSIME / Data systems analysis/Computer applications and programming research
For a personal interview, communicate with Mr. D. D. Brodhead. Call Collect HIghtstown 8-0424 or send resume to Dept. PE-269, Astro-Electronics Division, Princeton, New Jersey

All sualitied applicants considerod ropardioss
of race. ereed, mier or mational srisie.

The Most Trusted Name in Electronics
andio conpomation or amenica
CIRCLE 901 ON CAREER INOUIRY FORM

YOUR CAREER

Over 8,000 Requests For "Self-Tests"

The do-it-yourself tests put out by the General Electric Company's Light Military Electronics Department, Utica, N. Y., have proved surprisingly successful. LMED says 8,695 "self-tests" have been sent out in answer to requests.

These tests were originated by LMED as a recruiting "gimmick." They have been publicized in LMED's employment ads during the past year. The result, according to GE recruiter Ron Bach is that about 10 times as many names have come into LMED as might otherwise have been expected. The number and quality of the "hires" resulting from this greater number of "contacts" has been encouraging, Mr. Bach said.

The self-tests are made up of multiplechoice questions and each test averages about six pages in length. They cover the technical specialties of interest to LMED, ranging from electronic packaging to radar and digital computer design. Sample questions from two of the most recent of these tests, the one on digital computers and the sole nontechnical test of the series, are included here to show the nature of the questions. Using the answers given at the back of each test, an engineer can score himself and then, by comparing his score with the norms developed by LMED through testing its own engineers, he can see how he "stacks up" with engineers presently at LMED.

GE Doesn't Use Test

Results in Its Own Recruiting

GE recruiters themselves do not pay any particular attention to what a man says his score was on one of these self-tests. GE does hope of course that the tests create the right "image" of attitudes and opportunities at LMED and that the tests serve to help applicants voluntarily pre-screen themselves. But the recruiters at LMED still believe that their personal interviews "in depth" are best for determining which men to make offers to.

Mr. Bach says he has found one particular line of questioning the most productive in separating out the better engineers. He first asks the engineer he is interviewing to describe the engineering organizations he has been with. Then, most important, he asks the man to describe in detail his functional relationship with those organizations. What were his individual responsibilities? A man

Advancement Your Goal? Use CONFIDENTIAL Action Form

Electronic Design's Confidential Co. reer Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the eiectronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
Electronic Design will act as you secretary, type neat duplicates of your application and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in louch with you.

Painstaking procedures have been set up to ensure that your application receives complete confidential protection. We take the following precautions:

- All forms are delivered unopened to one reliable specialist at Electronic Design.
- Your form is kept confidential and is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in con fidential files at Electronic Design, and after a reasonable lapse of time, they are destroyed.
" you are seeking a new job, act now!

After completing, mail career form to Electronic Design, 850 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)

Name			Telephone		
Home Address		City	Zone	State	
Date of Birth _ Place of Birth__				Citizenship	
Position Desired					
College	Dates	Degree		Major	Honors

Recent Special Training \qquad

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional) \qquad
Use section below instead of Reader Service Card. Do not write persomal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

IBM scientists have developed a process of falbricating cryogenic memory planes in a single, automatic cycle. Aithough still experimental, such work could result in larger, more reliable cryogenic computer memories.
The 135 -cryotron memory plane developed by IBM is about the size of a postage stamp. It is built up in 19 thin layers of metal and insulating material. Each layer is craporated onto a glass sulstrate through a precisely made pattern or mask. The proper mask for each layer is registered to the required accuracy by means of an automatic mask changer mechanism inside the vacuum system. The control techniques developed by IBM are so sensitive that the evaporation process can form lines finer than a human hair and metallic films so thin they are invisible to the unaided eye.
The IBMI engineering group that developed this new method of automatically fabricating experimental memory planes found it had to move back and forth across
technical boundaries to achieve its results. Circuit design engineers, for example. worked closely with physicists and mathematicians to develop special circuits that would operate within the limits imposed by film characteristics and control techniques. This integrated approach to systems development has helped make possible many of the adrances that IBM has made recently in such fields as semiconductors, microwaves, optics and magnetics. If imaginative problem-solving in any of these areas interests you-and you have a degree and experience in engincering. mathematics, or one of the sciences - wed like to hear from you.

All qualified applicants will be considered without regard to race, creed, color or national origin. Please write: Manager of Technical Employment IBM Corporation. Dept. 555G1 590 Madison Avenue New York 22. N. Y:

YOUR CAREER

:vhe can't describe his responsibilities on past engineering jobs (and a great many can not, apparently) would probably not receive an offer through Mr. Bach.

Nontechnical Test Has

Uncovered Good Administrators

An example of the self-screening potential of these tests has been the number of good men for nonengineering, administrative posts within LMED which the one nontechnical test in the group has helped uncover, Mr. Bach said. Nonengineers also read the ads for engineers, he said, and when they see that a nontechnical test is also available, they are encouraged to write to what they would have otherwise considered a hopelessly technical organization like LMED to inquire about the test and employment. Some of these nonengineering applicants have been employed in businesses as far removed from engineering as advertising agencies.

What Do the

Tests Mean?

Since most of the tests are technical, engineers will have little trouble in understanding the right or wrongness of the answers. They may however question the relative meaning of their scores as compared to the norms given for the GE engineers. For example, one Electronic Design editor who did not think himself a match for a LMED computer designer was surprised to find that he self-scored in the second to highest (there were five) group which according to GE indicated he "shows probability of excellent performance in intermediate to high-level computer research, design and development." It was this editor's conclusion that multiplechoice questions favor the widely read person but possibly disfavor the working designer who must concentrate in a certain area.
Nevertheless the tests make for a pleasant evening's exercise and with intelligent selfinterpretation can be a quasi-quantitative indication of one's strengths and weaknesses.

Management Aptitude
 \section*{Test More Subtle}

At first sight the answers to the questions in the "Human Relations Quiz" look obvious. "This is what any company would expect you to say." Obviously a manager-type should "want to play cards with a neighbor and his
wife" rather than "build some new furniture in the workshop" (question 5). Obviously he should "tend to identify more with his company than with a profession" (question 29)

Less obvious is question 27 which says that a good manager should not want his subordinates to run to him whenever they had a question but to work out their problems for themselves. Also less obvious is question 12 which says that a good manager ought to be able to readily allay other people's suspicions.

The weighing values given for the answers to the questions help to understand the logic)ehind the test (actually as GE explains, the tests were developed by the empirical procedure of relating responses of GE managers and individual worker types. A top weight of six points is given the answer to question 38 which indicates that a good manager type should not respect people who seem uncertain about things. But only two points are given for the answer to question 23 which indicates that a good manager thinks that people should try to behave ethically even when it means personal sacrifice.

Interested Engineers

Should Obtain Complete Tests

These sample questions and answers will give some idea of the tests. However, engineers who are seriously interested should obtain the complete tests by writing: Technical Recruiting, Light Military Electronics Dept. French Road, Utica, N. Y.

Sample Questions From GE Self-Test

Logic Circuits and Digital Computers

1. In a junction transistor the base-to-collector current amplification factor is in the range of:
a. 10^{-3} to 10^{-8}
b. 0.9 to 1.0
c. 20 to 100
d. 700 to 900
2. In the Venn diagram below, areas correspond to Boolean functions of the variables A, B, and C. How many of these represent MINTERMS?

b. 2
c. 3
d. 7
e. 8
3. With reference to the schematic circuit diagram below (if $\mathbf{A}=$ positive voltage and $\overline{\mathbf{A}}=$ no voltage) the Boolean func-

THANKS FOR SHARING THE LOAD, DR. MAXWELL!

Your equations together with Newton's Laws serve as a basis for explaining classical electromagnetic phenomena. Most important among the outgrowths of your theory are radio and its allied invention, radar. At AC, we are using techniques for the generation and propagation of electromagnetic waves to increase the total capabilities of the B-52 weapons system.
If you are interested in applying yesterday's theories, like Maxwell's, to today's Mach 2 and 3 aircraft, and if you have a BS, MS or PhD in EE, ME, Physics or Math, please contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. G, 7929 South Howell, Milwaukee 1, Wisconsin.

AC SPARK PLUG THE ELECTRONICS DIVISION OF GENERAL MOTORS CIRCLE 903 ON CAREER INQUIRY FORM

Opportunities in Basic Research or Development in the fields of

Requirements of new and continuing projects concerned with space vehicle communications, navigation, and radar have created new openings for electromagnetic theory specialists as well as antenna engineers. The scientists and engineers of the Research and Development Division of the Hughes Aircraft Company Aerospace Group in Culver City are providing broad scientific and technical leadership to government and company funded programs on advanced airborne and space electronic systems, air to air missiles, ballistic missiles, and satellite and interplanetary communication systems. As part of this team, the Antenna Department is responsible for a diversified program of antenna research and development in the following specific areas:

Immediate assignments exist for scientists and engineers of superior ability who meet the qualifications in one of the following categories:

RESEARCH Advanced degrees and experience in electromagnetic theory Interest in fundamental research in antennas, wave propagation, scattering theory, plasma effects on electromagnetic radiation, and solid state antennas.

DEVELOPMENT Graduates in E.E. or Physics or extensive experience in lieu of degree. Minimum of three years of professional experience in monopulse and conical lobing antennas in reflector and array configurations, electronically scanned arrays, inflatable and erectable antennas, shaped beam arrays from curved surfaces and signal processing antenna systems.
If you meet the above qualifications and are interested in joining other superior scientists and engineers at Hughes, please airmail your resume to MR. ROBERT A. MARTIN, Supervisor Scientific Employment, Hughes Aerospace Engineering Division, 11940 West Jefferson Blvd. Culver City 50 , California.

Creating a new world with electronics
HUGHES

WE PROMISE YOU A REPLY WITHIN ONE WEEK
All ouatified apolicents will receive consideration tor emplay. ment mithoul regerd to rece, cresd, cotor or national origin.

HUGHES AIRCRAFT COMPANY
AEROEPACE ENOINEERINO DIVISION

YOUR CAREER

tion f is:
a. $A B+C D$
b. $(A+B) C D$
c. $(A B+C) D$
d. $(A+B)(C+D)$

ค. $A B C D$
9. The monostable multivibrator below

a. Is used in counters.
b. Generates a gating pulse.
c. Is free running.
d. Will not work as drawn.
89. Circuits employing NOR logic
a. Are found in superspeed computers.
b. Were first used in the NORC computer.
c. Are based upon negative resistances.
d. Contain blocks which expcute the negative $-O R$ operation.
e. Contain transistors and resisturs.

Professional Inventory on Human Relations

1. If you had to choose an occupation other than the one you now have, which would you rather be:
a. Physician
b. Explorer
2. How would you rather spend an evening:
a. Building some new furniture in the workshop
b. Playing cards with a neighbor and his wife
3. Which would you least like to do:
a. Add several columns of figures
b. Be interviewed for a new job
4. You are usually able to "put yourself in someone else's shoes" in order to understand his point of view:
a. True
b. Not true
5. Are you a keen judge of other people's motives:
a. Yes
b. $N o$
6. Opportunity to contribute to basic scien-

DO YOU HAVE MAGNETIC COMPONENTS ON YOUR MIND?

Acme Electric's long experience in designing and building transformers has been the keystone to our progress with such equipment as direct current static rectifiers, magnetic amplifier conerolled saturable reactors. automatic battery chargers, and many other modern types of power equipment.
Acme Electric cransformers are designed for a variety of applications ranging from radio and television through missiles and ground control.
If you have had experience in any phase of magnetic component design - and want an opportunity where your efforts and ability can lead to a secure future, then tell Acme Electric all about yourself.

This is one of the 600 KW static, magnetic, rectified direct current power supplies furnished to Brookhaven National Laboratory for use with the 30 BEV Alternating Gradient Synchrotron.

ACME ELECTRIC CORP.
Personnel Depariment
907 Waver Street
Cuba, N. Y.
emassan/iess
Acme \lim. Flectric

CIRCLE 905 ON CAREER INOUIRY FORM
tific knowledge is highly important to me:
a. Agree
b. Disagree
12. Can you readily allay other people's suspicions:
a. Yes
b. No
14. It's more important that a man we hire can do his work well than that he makes friends rapidly among his work associates:
a. Agree
b. Disagree
23. People should try to behave ethically, even when it means some personal sacrifice:
a. Agree
b. Disayree
24. When internal tensions occur, do you give full attention to their resolution:
a. Yes
b. No
27. I would rather that a man who works under my supervision:
a. Consults me whenever he had a doubt
b. Tries to work out problems for himself
29. I tend to identify more with my profession and work than with any one company:
a. True
b. Not true
38. Do people who seem unsure and uncertain about things lose your respect:
a. Yes
b. No

Ansucers to Sample Questions
Computer Quiz:

1. c
2.
3. b
4. b
5. d

Human Relations Quiz:
Weighing Factor

1. a	4
5. b	6
7. a	4
9. a	2
10. a	4
11. b	6
12. a	4
14. a	4
23. a	2
24. b	4
27. b	4
29. b	4
38. a	6

LP Record-Stellar Style

The message from Courier is just one of the challenges offered to you at PHILCO Western Development Laboratories, whose long record in space communications achievement merely presages the adventure ahead.

From the earliest plans to invade space, PHILCO Western Development Laboratories has played a vital role in satellite vehicle instrumentation, still but part of its contribution to space communications. From this newest electronics center on the San Francisco Peninsula comes a continuing flow of advanced missile tracking, range and data processing instrumentation.

Added research projects and growing programs assure you a long and rewarding career as a member of the PHILCO Western Development Laboratories. What you think and what you do can be unhampered and uninhibited. Personal recognition and advancement promptly follow performance, with monetary rewards to match. Northern California provides an affluent climate for living, as PHILCO Western Development Laboratories provides a stimulating climate for working. For information on careers in electronic engineering, please write Mr. W. E. Daly, Dept. D-7.

All qualified applicants for employment will be considered without regard to race, creed, color, or national orisin: U. S. citizenship or carrent transferable Department of Defense clearance required.

WESTERN DEVELOPMENT LABORATORIES
3875 Fabian Way, Palo Alto, California
CIRCLE 906 ON CAREER INQUIRY FORM

General Electric Company, Semiconductor Pric Company, General Electric Company, Tantalytic General Electric Company, Tantalytlc General Instruments Corporation 147 General Motors Corporation, A. C
Spark Plug Dlv.
cenerk Plus Div. 173
General Radio Company 148
$\begin{array}{cc}\text { Goshen Rubber Co., Inc. } & 169 \\ \text { Gremar Mfg. Co. Inc. } & 167\end{array}$

ITT Components Div

Industrial Electronte Ensineers.............. 124 Industria Electronic enkineers, inc. Instruments for Industry inc.	Instruments for Industry, Inc.
International Business Machine Corp	
172	

- J F D Electronic Corp. 89

Kanthal Corp. The 108

- Kay Electric Company 26

Kemet Company 85

- Kepco, Inc.

Key Resistor Corporation 10
Kintel. DIv. of Cohu Electronics. Inc. ${ }_{\text {Kurz-Kasch }} \mathbf{5}$

Lafayette Electronice Div. 65
each Corpoctronica D
Lermer plestics, In
Litton Indurtries. Inc. 166
Lockheed/Misalles and Space Div................ 27
Lumatron Electronics. Inc. 128

$\begin{array}{lll}\text { National Beryllia Corp. } \ldots & 22 \\ \text { National Semiconductor Corporation ... } & 72 \\ \text { North Electric Company }\end{array}$

Oak Manufacturing Co. 125 Optimized Devices, Inc. 40

Pacinc Semiconductors. Inc. . 32 A-B-C-D
Periection Mica Co. 15
Perkin Electronics Corporation
Development Labs. -1.. 175
Post Co.. Frederick
Power Designs, Inc. 112

Radio Corporation of America, Astro Electronics Div. 170
Radio Corporation of America, Cover Electron Tube Div. ...45. 118. Cover IV Rantec Corporation
"Ravtheon Co., Industrial Components Div.

Tube Co., Microwave and Powe
Raytheon Co......................... 148
Raytheon Co. Semiconductor Div. 62
\qquad

- Manufacturers' catalog appeare in 1960-61 Electmonic Degicmeas: Cataloc

BULLETIN

Effective today we guarantee our family of 25 amp power transistors to a maximum thermal resistance of $4^{\circ} \mathrm{C}$ per watt (not . 7 C per watt)! They are also guaranteed to a maximum junction temperature of $100^{\circ} \mathrm{C}$. Here they are:

* This is not junction to case. It includes the entire transistor's thermal path, including copper-to-copper interface to the heat dissipator.

FOR IMMEDIATE DELIVERY - PHONE YOUR LOCAL DISTRIBUTOR OR WIRE US TODAY!
 HONEYWELL

SEMI-CONDUCTOR DIV. - 1015 SOUTH 6TH ST. - MINNEAPOLIS, MINN.

Honeywell

H Semicondulutor Prowultr

Advertiser
SED. Memories, Inc.
Scientife-Atlanta. Inc
Scentife-Atianta. Inc
Sel-Rex Corporation

- Slerra Electronic Corporation

Slater Electric. Inc.
-Solld State Products. Inc

Sperry Microwave Electronics Co.

- Sperry
Remilonductor, Div of Sperry
Corporation Rand Corporation
Sprague Electic Company Sprague Electric Con
Standard Press Steel
Star Star Stainless Screw
Stewart Engineering Co. \ldots.
Sylvania Electic Producis. Inc. Sylvania Electric Sylvania Electric P
Special Products

Union Switch \& Signal, Div. Westinghouse Air Brake
Universal Torold Coil winding. Inc........... ${ }^{248} 164$

Western Transistor Corp.124 ${ }^{124}$

- Manufacturers' catalog appears in 1960-61

Advertising Representatives

4dv. Salea Manager: Robert W. Gascoigne
Sales Service Suptro: Alvin D. Ross New York: Richard Parker, Blair Mc Clenachan, Berry Conner, Jr., James . Quinn, Charles J. Stillman, Jr. Kenneth M. George, John N. Weber Pierre J. Braude, 850 Third Avenue, Plaza 1-6530

Chicago: Thomas P. Kavooras,
Fred T. Bruce, 664 N. Michigan
Avenue, Superior 7-8054
Cleveland: Douglas H. Boynton
Los Angeles: John V. Quillman,
.
Dunkirk 2-7337
San Prancisco: Stanley I. Ehrenelou, 292 Walter Hayes Drive, Palo Alto, Devenport 1-7646
routheastern: Pirnie \& Brown, Mor gan Pirnie, Harold V. Brown, G. H Krimsier, 1722 Rhodes-Haverty Bidg. Atlanta, Ga., Jackson 2-8113
London EC4: Brad Nichols, 161 Fleet Street
Tokyo: Karl H. Bachmeyer Associates, 27 Morimoto-cho, 1-chome,
Azabu, Minato-ku

NEW HIGH-POWER TRAVELING 1 W OUTPUT

The new 489A (1 to 2 GC) and 491C (2 to 4 GC) are broad band, low noise Traveling-Wave Tube Amplifiers providing at least 1 watt output for 1 milliwatt input over their full frequency range.
These compact, rugged, dependable instruments are supplied in the new universal module cabinet combining, in one single instrument, a lightweight, portable bench amplifier and a neat, clean rack mounted unit.
Both Models 489A and 491C incorporate new, permanent-magnet TWTs, offering low power consumption and solving the heat problem of previous TWT amplifiers. Specially designed circuitry provides amplitude modulation from de to 100 KC , with internal amplification so that small modulation signals cause a large output power change.

Besides allowing amplification with small input signals, the modulation circuitry can provide leveled power output by using external elements completing a feedback loop.
SPECIFICATIONS

Modal:	489 A 491C
Frequency Range:	1.2GC 2.4GC
Price: Common Specifications	\$1,970.00 \$1,970.00
Output fer 1 mw Input:	At least 1 wath
Meximum if Input:	100 mm
Small Signal Gain:	Greater than 30 db
Amplitudo Modulation Passband:	DC 10100 KC
Modulation Somsitivity:	Approx. 20 db if change for a 20 r peok mod. sig.
Input Impodancer	50 ohms, SWR less than 2.5
Output Impedance:	50 ohms, SWR less than 2.5
Connoclors:	Type N, lemale
Front Panal Controls:	Goin
Metor Monitors:	Anode, helix, collector and cothode current
Dimenslons:	$16 \frac{1}{4^{n}} \times 51 / 2^{n} \times 18 \% e^{n} \text { deep }$ (cabinet convertible to rack mount) $19^{\circ \prime \prime} \times 51 \%^{\circ "} \times 16 \%{ }^{\circ \prime}$ deep behind panal (rack mount)

ELECTRONIC DESIGN - ONE DAY SERVICE USE EEFONE AUEUST 16thl, 1861
 Nom Tile

For Chonge of Addreen
Old Company Momo
Ola Company Addrem
Cin Zeat state

\square	D_{0} Desigen Wort
\square	Superviec Oesign Wort
\square	D_{0} Mo Design Work

FIRST CLASS
Pormit No. 725
Now Yort, N. Y.

No Possage Slamp Necossoary if Mailed in U. S.
POSTAGE WILL BE PAID BY

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE
830 Third Avenue
Now York 22, Now York

FIRST CLASS
Permin Mo. 725
Nem Yort, N. Y.

BUSINESEREFLYMAL
No Pontage Stamp Nocenory if Mailed in U. S
POBTAGE WILL DE PAID BV

ELECTRONIC DESIGN

ONE DAY READERS INQUIRY SERVICE
830 Third Avenue
Now York 22, Now York

-WAVE TUBE AMPLIFIERS 1 mw INPUT!

OR MEET YOUR REQUIREMENTS WITH ONE OF THESE BENCH-PROVEN (b) TWT AMPLIFIERS

- Models 490B, 491A, 492A and 494A TWT Amplifiers use a simple broad-band coupling method employing input and output coupling helices. Full energy transfer is effected, even though there is no mechanical connection to the inner helix. A similar helix is used for a coupled attenuator which surrounds the central portion of the tube, preventing amplified energy from causing regeneration. Encapsulated replacement tubes including integral coupling helices are available and are delivered factory-tested and ready to install.

全 491 A TWT Amplifier, 2 to 4 GC,
has a full range has a full range watt, with minimum gain of 30 db . Combined with a 1 mw S-Band signal generator such as 616 A it provides a versatile full watt source for high power testing.

量492A. 4 to 8 GC, and 494A 7 to 12.4 GC. are 30 db gain TWT amplifi20 mw output. Offering ampli tude, pulse, phase or FM moduation, they are ideal for use as broadband amplifiers or isolat ing buffer stages.
than 25 db , excellent pulse modulation characteristics and helix modulation. modulation.

490B TWT
Amplifier
2 to 4 GC.
provides at east 10 mw

(4) 4908	¢491a	492A	4094
2 to 4 GC	2104 GC	4108 GC	71012.4 GC
30 db min.	30 db min.	30 db min.	30 db min.
10 mm min. into 50 ohm load	1 watt min. into 50 ohm lood	20 mw min. into 50 ohm lood	20 mw min. into 50 ohm lood
Less than 25 db	Less than 30 db	less then 30 db	Less than 30 db
Approx. 0.015 asec.	Mod. not provided	Approx. $0.015 \mu \mathrm{sec}$	Approx. $0.015 \mu \mathrm{sec}$.
50 ohms, SWR less than 2	50 ohms, SWR less than 2	50 ohms, SWR less than 2	50 ohms. SWR less than 2
50 ohms, SWR less than 3	50 ohms, SWR less than 3	50 ohms. SWR less than 3	50 ohms. SWR less then 3
\$1,400.00	\$1,400.00	\$1,500.00	\$1,800.00

Data subject to change without notice. Prices f. o. b. Pactory
Call your representative today for full information on these versatile TWT Amplifiers.

HEWLETT-PACKARD COMPANY
HEWLETT-PACKARD S.A.
1073K Page Mill Road Palo Alto, California, U.S.A Cable "HEWPACK" DAvenport 6-7000

Rue du Vleux Billard No. Geneva, Switzerland Sales representatives in all principal areas

Now 0.25 ohm max. R_{s}; min. beta of 15 @ $5 \mathrm{amp}-7.5$ @ 10 amp ..with RCA 2 N 2015 and 2 N 2016
150 -watt, $200^{\circ} \mathrm{C}$ Silicon Power Transistors

Outstanding as replacements for germanium power transistors of comparable power ratings in inverter, voltage-regulator and other power-supply applications, the new high-temperature RCA 2N2015 and 2N2016 feature:

- 0.25 -ohm max. saturation resistance at ic $=5 \mathrm{amp}$.
- Beta of 15 to 50 at $\mathrm{Ic}=5 \mathrm{amp}$
- Min. beta of 7.5 @ $\mathrm{lc}=10 \mathrm{amp}$.
- 10 amp max. collector current.
- 150 watts max. transistor dissipation at 25 C .
- 200 C max. junction temperature
- 1.17 C W max. thermal resistance.
- JEDEC TO-36 package.
- Immediate Availability.

[^0]: Three laminar superconductors are formed by deposition of thin-film lead strips on wider and thicker thin-film strips of silver. Intimate superposition of strips makes normal silver become superconductive at prope cryogenic temperature. In these three separate samples on glass substrate, the lead film is about 500 A thick, and the silver films vary from about 1,000 to $5,000 \mathrm{~A}$. Electrodes facilitate measurements.

[^1]: Visit Porkin of WESCON Eooths 516-51
 CIRCLE 6 ON READER-SERVICE CARD

[^2]: anamnovar soo CoATON: ARED CMicano. JU, CEder 5 6ars Celevelamo roition 1355

 Br Routs. CEntol, s8jo Los Anailis. Spince 5246 WEw vonk cisv.

[^3]: HESE TRANSISTORS OFFER THE DESIGNER

[^4]: In Canala: Mallory Buttery Company of Canada Limited. Toronto 4. Ontario

[^5]: CIRCLE 90 ON READER-SERVICE CARD

