

COVER: Tunnel diodes, represented by the ${ }^{5}$-shape curve, highlight this year's special Diode issue Scores of diode types, shown within the " S curve, are tabulated in the latest De . partment of Defense approved diode listing.

Selected Topics In This Issue

Air Traffic Control
FAA improving data acqu: sition.

Circuits, Techniques
Short trigger pulse turns on SCR 157
Transistor trigger fires tube 158
Predetermined input level culs
of transistor............
servo loop frequency-modu-
lates oscillator
Components
Flexible, modular panel wiring

 Nome
 nine

Company

Compeny Addraes							
	1020	$30 \quad 40$	50	ω	70	0	0
1	1121	314	51	4	71	11	$\bigcirc 1$
2	$12 \quad 22$	3242	52	12	72	82	27
3	1323	$33 \quad 43$	53	ω	73	83	01
4	1424	344	54	64	74	8	94
5	15 25	35 as	55	45	75	15	95
6	1626	364	58	©	76	4	96
7	1727	374	57	4	π	\square	7
-	1828	3048	50	6	70	03	0
-	10 29	38 40	59		79		¢
300	3103203	330340	3503	3603	37030	360390	390
301	3113213	331341	351	361	37130	30130	391
302	3123223	332342	3523	362	37230	382	392
303	3133233	333343	353	363	37318	383	393
304	3143243	334344	354	364	37438	304	394
305	315325	335345	355	365	3753	3653	395
306	316320	336346	358	366	3763	3063	396
307	3173273	337347	357	367	3773	3073	397
300	310320	334348	350	360	378		398
309	310329	339 349	350	369	3793	3093	399
	$610 ¢ 80$	03040	650	660	170		600
601	611121	43141	051	c 1	071	491	
002	612122	03242	052	62	1726	622	69
03	612623	63363	653	cs3	673	683	693
cos	014024	634 64	OS4	64	674	4, 6	694
cos	\$15 122	dis chs	455	65	175	ces	cos
406	616026	63064	656	cos	076	ces	69
407	61787	6374	657	c)	0776		69
608	018 628	038643	${ }^{6} 5$	661	478	683	699
609	619629	638 640	6s	409	670	des	690

Ciny

150160170180190 $\begin{array}{lllll}151 & 161 & 171 & 101 & 191\end{array}$ $\begin{array}{llllll}132 & 102 & 172 & 102 & 192 \\ 153 & 163 & 173 & 189 & 19\end{array}$ $\begin{array}{lllll}153 & 163 & 173 & 189 & 193 \\ 154 & 164 & 174 & 184 & 194\end{array}$ $\begin{array}{lllll}154 & 104 & 174 & 184 & 194 \\ 155 & 165 & 175 & 185 & 195\end{array}$ 1ss ies i7s ies iss $\begin{array}{llllll}157 & 105 & 17 & 107 & 197\end{array}$ 1s9 160178100190 $\begin{array}{lll}159 & 160 & 170 \\ 109 & 190\end{array}$ 15040047040040 \begin{tabular}{llll}
451 \& 601 \& 471 \& 401

452 \& 462 \& 472 \& 432

\hline

\& 51 \& 462 \& 772 \& 422

\hline 153 \& 463 \& 473 \& 453 \& 492

\& 593
\end{tabular} 454 464 ©54 404 493 LSS 405 475 405 ADS 456 466476406496

 459 40047040040
\qquad 751761771701791 752702772702792 753763773703703 754764774784794 735 705 775 725 795
 757707771797
750707
790
750
790 75076077975070

20ne 200210220230240 201211221231241 202212222232242 $\begin{array}{llll}203 & 213 & 223 & 233 \\ 304 & 214 & 224 & 254 \\ 205 & 214 & 243 & 23\end{array}$ $\begin{array}{llll}205 \\ 215 & 225 & 235 & 245 \\ 215\end{array}$ 205216226230246

 200218228230210 | 200 | 210 | 220 | 230 |
| :--- | :--- | :--- | :--- |
| 205 | 240 | | |

\qquad $\begin{array}{llllll}501 & 511 & 521 & 531 & 541 \\ 502 & j 12 & 522 & 532 & 542\end{array}$ 500513523533543 so4 314324334444 505515525335545
 $\begin{array}{lllll}507 & 517 & 537 & 537 & 547 \\ 500 & 510 & 521 & 538 & 540\end{array}$ $\begin{array}{lllll}501 & 510 & 528 & 538 & 548 \\ 500 & 510 & 520 & 539 & 54\end{array}$
\qquad 20181182183181
 $\begin{array}{llllll}203 & 813 & 253 & 233 & 243\end{array}$ 8048141224834044 205815025215845

STOP
 ZERO CHASING NOW!
 MEASURE RF POWER without continual zERO.SETIING

One twist of one knob zero sets all ranges... for hours!
The new (hp 431A Power Meter gives you 3% accuracy on all ranges, less than $2 \mu w /{ }^{\circ} \mathrm{C}$
thermal drift

For details on this and other power measuring equipment turn the page.

Call your top engineering representative today for data demonstration of these time-saving, precision, advanced instruments

Your 4 representative is your headquarters for sales, service and parts on the industry's most complete-coverage instrument array. (e) indicates factory-level field repair sta. tions.

Eastern Seaboard
Astury Park, New Jersey The I F Rntinenn C.n
Baltimere 15, Marylanr
Morman Associates. Inc. MO 4-8345

- Beston Area

Burlington, Mass.
Middewex Tnpike., BR 2-9000

- Bridgeport 8, Conn. Yewell Associates. Inc
1101 E . Main St.. FO 6.3456

Camp Hill. Penisyian
The I. E. Robinson Co Park Place Onfice 810 Box 187, RE 7.6791

Englewaod, New Jersey R. M. C. Associates 91 Grand Ave., LO 7-3933 - New York 21, New York 236 E. 75 th St., TR 9-2023

- Philadelphia Area

West Conshahocken, Penn.
The I. E. Robinson Co.
$\begin{array}{cc}144 & \text { Elizabeth St. } \\ \text { CH } \\ 8-1600 \text { and TA } 8-6200\end{array}$ pittsburgh 27, PennsyIvania 4232 Srwnsvle. Sompany 4.551

Poughkeepsis, N. Y.
Yewell Associates. Inc

- Pechester 25 Mem Yort

Edward A Ossmann so 830 Linden Ave. LU 6-4940

Syracuse, New Yerk
Edward A Ossmann \& Assoc. GL 4-2461

Vestal, Mew Yort
Edward A. Ossmann \& Assoc
washington D. C. Area
Washingten, D. C. Are Rockville, Maryland Horman Associates. Inc.
941 Rollins Ave. HA 7.7560

Southeastern States
Atlanta 5. Georgia Bivins \& Caidwell. Inc.
3133 Mople, NE. $233-1141$ - Migh Point, Morth Carolina Bivins \& Caldwell. Inc
1923 N Main

Huntsville, Alabama B.vins \& Caldwell. Inc

CoOrlande, flerida Stiles Associates, Inc.
1226 E. Colonial, GA 5.5541 Richmend 30, Virginia B.vins \& Caldwell, Inc 219 HIEh Point Ave.
St. Patorsbure B, Fla.
Stiles Associates. Inc.
$410-150$ th Ave Beach, WA I-0211

Central, South Central States - Chicage 45, Illinois Crossley Associates, Inc. - Cleveland 24, Ohio 5827 Mayfielo Rd. H1 2.8080 - Dayton 19, Ohio Crossley Associates. Inc.
2801 Far Hills Ave, Ax 9-359 - Detroir 35, Miehigan S. Sterling Company
15310 W . McNichols Ro BR $3-2900$

- Indianapolis 20, Indiana Crossley Associates. Inc
5420 N College Ay CL Kansas City 30, Misseuri Kansas city 30, Missouri 7916 Paseo Blvd., HI 4.9494 St. Louis 17, Missouri Marpis Hanson Company 2814 S. Brentwood Blva. M1 7.4350 -St. Paul 14, Minneseta Crossley Associates, Inc. 842 Raymond Ave., MI 6.788 - Dallas I. Teras Earl Lipscomb Associates FL 7-1881 Bnd ED 2.6667 - Mausten 5, Teras Earl Lipscomb Associates
PO Box 6646 , MO $7-2407$ Western States - Albuquerque, New Mesice Neely Enterprises
650 Lomas Blvo. AL 5-5586 - denver 10, Colerado 1886 \& Broadway. PE 3.3791 Las Cruces. New Merice Neely Enterprises Les Angeles, Califernia - Los angeles, California Neely Enterprises
3939 Lankershim Bly N. Hollywood, TR 7-0721 - Pheenix, Arizena Neely Enterprises
M1 E Missouri, CR 4-543 Pertiand 9. Oregen 1238 N.W Glisan, CA 2.7337 - Sacramente 14. California Neely Enterprises
$317-15 \mathrm{~h}$ St GI 2.8901 Salt take City is, Utah Lahana \& Company 1482 Major St., HU 6.8166 - San Diego 6, California - San Diego 6, Califor 1055 Neely Enterprises - San Francisco Area San Carles, Caliternia Neely Enterprises 501 Laurel St., IY 1-2626 - Seattle O, Washington

1320 Prospect St., MA 2-0177 Tucson, Arizena $\begin{array}{ll} & \text { Tucsen, Arizena } \\ \text { Neely Enterprises } \\ 232 & \text { S. Tucson, MA } \\ 3-2564\end{array}$

CIRCLE 3 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961
69560

Unique temperature sta the most stable micro

Thermal drift less $\pm 3 \%$ accuracy ol

Single setting zel for hours

Easy to operate
Grounded recorde
Optional portable

New top 431A Power Meter

New tap Thermistor Mounts assure top 431A Thermal

This wide-range, temperature compensated coaxial mount covers 10 MC to 10 GC , with no tuning required. Closely matched thermal environments for the two thermistor pairs for use with the dual bridge 431A assure excellent tracking, even under thermal shock. The 478A as used with the 4 431A provides high accuracy and virtually drift-free operation.

SPECIFICATIONS

Frequency Range: 10 MC to 10 GC
SWh: Less than 1.5 lless than $13,50 \mathrm{MC}$ to 7 GC
Power Range: $\quad 1 \mu \mathrm{w}$ 10 10 mw (with 431A)
Eloments: Four 100.0 hm , negative temperature coefficient thermistors permanently installed
Price:
$\$ 145.00$
\square

W_{i}
Th

X-Band Mount, 8.2 to 124 GC perature tracking with the $\$ 4$ ence of thermal shocks. No tu usual freedom from drift is ass close temperature tracking ac ful matching of thermal envir thermistors.

SPECIFICATION
Frequency Range: 82 10 124 GC
Power Range: $\quad 1 \mu \mathrm{w}$ to 10 mw
SWR: Less than 1.5
Elements:
Waveguide Size: $1^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime}$
Price:
$\$ 145.00$

tability $1 \mu \mathrm{w}$ to 10 mw coverage, in power meter ever produced!

less than $2 \mu w /{ }^{\circ} \mathrm{C}$ y on all ranges
zeroes all ranges
te
order output
able operation

nal Stability

486A

Waveguide

Thermistor
Mount
I GC, provides close tem\$ 431A, even in the preso tuning is required. Uns assured with extremely ; achieved through care nvironments for the two

tions

This new Power Meter makes continual zero-setting a thing of the past, even on the $10 \mu \mathrm{w}$ range, with extreme temperature stability and a single zero-set covering all 7 ranges. You get a completely usable 10 db sensitivity premium over previously available equipment.
New, specially designed temperature compensated thermistor mounts are used with the 431A. The 478A Coaxial Mount covers 10 MC to 10 GC, and the X486A Waveguide Mount covers X-Band. A dual balanced bridge technique and careful design and construction keep dc power in one bridge equal to the unknown rf power in the other. The dc power is then metered. High heat conductivity materials and matched thermistors in close proximity in the 478A and 486A mounts provide extremely close thermal tracking. Thus ambient temperature effects are automatically balanced out and the meter remains zeroed, even in the presence of thermal shock.
These advantages combine to make the 4 431A unusually useful for instantaneous microwave power measurements. Microwave power standards measurements can be made to a high accuracy and resolution by using the dual bridge of the 431 A as a transfer device. A dc calibration input jack permits precise dc calibration of the thermistor mount The grounded output jack will then drive an appropriate digital voltmeter for increased resolution. In addition, the grounded output jack, combined with the nearly drift free operation of the 431A, makes reliable long term recordings of microwave power.
The 4431 A also has an optional rechargeable battery pack which will give up to 24 hours of completely portable operation, as well as regular ac line operation while recharging.
SPECIFICATIONS

Power Range

Accuracy
Overall Thermal Driff:
Operating Impedance
Operating Impedance:
Colibration Inpul:
Calibration Input:
Power:
Dimensions:
Price:

or perhaps your power measuring requirements can be met by these meters

4 430C Microwave Power

Meter - 0.02 to 10 mm
This laboratory-proven meter gives instantaneous rf power readings direct in dbm or mw, 10 MC to 40 GC with 4 proven bolometer mounts available now. 430 Cop erates with any bolometer operating at 100 or 200 ohms, positive or negative temperature coefficient. Fully adjustable biasing current to 16 ma available to bring bolometers to their operating range. Five power ranges are selected with a front-panel control, full scale readings of $0.1,0.3,1,3$ and 10 mw . Also continuous readings -20 to +10 dbm . Accuracy is $\pm 5 \%$ of full scale reading. Dimensions, (cabinet) $71 / 2^{\prime \prime} \times 111 / 2^{\prime \prime} \times 14^{\prime \prime}$; (rack mount) $19^{\prime \prime} \times 7^{\prime \prime} \times 13^{1 / 2 "}$ behind panel. Price, $430 \mathrm{C} \$ 250.00$ (cabinet); $430 \mathrm{CR}, \$ 255.00$ (rack mount).

4334 Calorimetric Power
Meter - 10 mw to 10 w
Here's the fastest, easiest means yet devised to measure powers accurately from 10 mw to $10 w$, dc to 12.4 GC! No barretter, thermistor, external terminations or plumbing are required. Measurements are as simple as connecting to a 50 ohm type N front panel terminal and reading directly. Only two (ront panel controls (range and zero); seven meter ranges for full scale readings of $0.01,0.03,0.1,0.3,1.0$, 3.0 and 10 w . Also provides continuous readings 30 to +10 dbw . Accuracy $\pm 5 \%$ of full scale (includes dc calibration and rif termination efficiency but not mismatch loss). Greater accuracy can be achieved through appropriate techniques. Dimensions, (cabinet) $201 / 2^{*}$ $\times 121 / 2^{\prime \prime} \times 14^{3} / 4^{\prime \prime}$; (rack mount) $19^{\prime \prime} \times 101 / 2^{\prime \prime} \times 13^{1} 2^{\prime \prime}$. Price, $\$ 434 \mathrm{~A}, \$ 1600.00$ (cabinet); 434AR, $\$ 1,585.00$ (rack mount).

HEWLETT-PACKARD COMPANY
1069 K Page Mill Road Palo Alto, California, U.S.A.
Cable "HEWPACK" DAvenport 6-7000
Sales representatives in all principal areas
Dato subject to change without notice. Prices f.o.b. factory

CONTENTS FOR APRIL 26, 1961 VOL. 9 NUMBER
9
ELECTRONIC DESIGN News
Designers Shifting to Wide-Band Communications
Solar-Cell Sensing Used in Novel Accelerometer
Microminiature Guidance Computer to Use 2-D Approach
FAA Adopts 3-Pulse Beacon System
Washington Report
Leipzig Fair Indicates Slow E. German Progress
Simulator for B-58 ECM Station Has Automated Program Control
4
6
6
8
20

Good Styling a Critical Factor
An Editorial

Diodes 1961—An ELECTRONIC DESIGN Staff Report

Tunnel diodes are gradually being incorporated into equipment designs. Four practical design articles pertaining to the use of tunnel diodes in amplifier and switching applications are presented to assist the design engineer preparing new systems. In addition. the latest Department of Defense list of approved diodes, with their specification num'sers, is included.
Tunnel Diode Square Wave Generator
Design procedure for a square wave generator conDesign procedure for a square wave, generator co
taining a minimum of components-J E. Dalley

Practical Aspects of Low-Frequency Tunnel Diode Amplifiers

Transistor-Tunnel Diode Combination
Obtaining the composite characteristics of a tunneldiode transistor combination-C. D. Todd

Tunnel Diode Amplifier Calculator 52
Handy slide rule to simplify tunnel diode amplifier calculations J. R. McDermott

Latest Defense Department Diode List 56
Latest military-approved list of semiconductor diodes with their specification numbers

Air Clutch Boosts Torque, Cuts Size

Small, air-driven clutches yield high torque for their size
Modular Terminal Panel Wiring Block
Provides versaiile circuiting for heavy-duty power control

WELDMATIC DIVISION/UNITEK

ELECTRONIC DESIGN
Mayden Publishing Co., Inc..
830 Third Avenue 830 Third Avenue, New York 22, N. Y

Ideas for Design
Ungrounded Shield Reduces Effective Cable Capacitance
hort Trigger Pulse Turns On SCR, Fires Flash Bulb
ransistor Trigger Pulses Fire Tube and Blocking Oscilla
Predetermined Input Lever Cuts Off Transistor, Sets Outpu
Predetermined Input Lever cuts Of Transistor, Sets Output Ideas for Design Entry Blank

\$1,000 Waiting-Tell Us Who Gets It

The Ideas for Design in this issue are worth looking at. Each Idea is eligible for the $\$ 1,000$ Idea of the Year award recently announced by Electronic Design.
Tell us which Ideas are of greatest value to you-that is, which suggest a solution to a problem you may have, or stimulate your thinking, or which are just plain clever. That may apply to merely one of the Ideas or to two or more. Feel free to nominate as many Ideas as you wish for the grand award.
Each Idea is numbered. Vote by circling the corresponding numbers on the Reader-Service Card.
And after you've voted, why not send in some Ideas of your own?

HIGH PERFORMANCE and WIDE VERSATILITY
50 volts into 50 ohms at 30% duty factor. . . rep. rate to 2 mc. . . . widths . 05 यs to 10,000 यs . . . delays to 10,000 यs . . .

New features for:
LONGER LIFE • EASE OF MAINTENANCE and OPERATION

- Printed Circuit Boards with all components clearly identified by schematic symbol numbers
- A new stabilized noise-free repetition rate section
- Variable rise time control
- Rack mountable-new single unit construction
- High volume fan for more efficient cooling

OTHER SPECIFICATIONS:
Rise Time: 15 mus - Fall Time: 15 mus - Attenuation: 50 db in 10 db steps, 20 do continuous control. External Trigger: ± 10 voits min. - Syn. Out (Synchronizing pulse): . 05 山s wide, 25 volts amplitude, lags trigger in by.$^{2} \mu \mathrm{~s}^{\circ}$. Size: $19{ }^{\prime \prime}$ wide $\times 83 /^{4 n}$ high $\times 12^{\prime \prime}$ deep. Weight: 35 lbs . Power: 105.125 volts, 50.60 cycles, 350 watts, 5 amps. - Low Budget Price: $\$ 720.00$ F.O.B. Culver City, California.

Investigate Rutherford's complete line of Pulse occessories designed to Investigare Rutherlord's complere line of Pulse
fit oll requirements. Write for our calalog sheel.

ENGINEERS: Il your tield is Pulse Circuitry Design, a bright future awails you at Rutherfiord Electronics Company. Sond rosume to Glon Sloul, Perronnel Directior.

eitherford
ELECTRONICS CO.
Dept. ED 4268944 Lindblade Street - Culver City, California
pulse generators ! pulse systems / accurate time delay generators CIRCLE 4 ON READER-SERVICE CARD

Designers Shifting to Wide-Band Communications

Digital Time-Sharing and Continuous-Wave Approaches Are Being Explored To Penetrate Spectrum Congestion

Alan Cornerefto
 News Editor

BY CHALLENGING intuition, some designers are developing systems in which messages sent over broadhand channels would get through congested environments better than those transmitted over narrow-band, exclusively assigned channels.

The apparently logical practice of using nar-row-band signals of high power to push through interference is being questioned as not so logical for some types of communications. Two wideband alternatives being explored are digital systems employing time sharing and continuouswave systems in which power is distributed over a wide band at low density.

A number of companies, including Motorola, Inc., Martin Co., Radio Corp. of America, General Electric Co. and Philco Corp., have developed random-access, discrete-address digital systems. Users of these systems would timeshare wide-band channels randomly and use various message-addressing techniques to lock transmitters to receivers.

A cw type of wide-band communication has been developed by General Electric. In the GE
technique, a double-sideband channel several megacycles wide carries a low-powered coded signal to receivers designed to combine multipath signals of very low signal-t(o-noise ratio.

Frequency-Division Sharing
 Of Spectrum Scrutinized

The renewed interest in wide-band communications is partly a result of information-theory developments that have clarified the relationship between spectrum capacity and various ways of sharing the space. Frequency-division sharing is being re-evaluated as the basic appproach to using available space; it has been called a poor choice for many applications.
Much of the current effort in wide-band communications rests on the groundwork laid by Lincoln Laboratory's multi-path diversity RAKE system, built in 1957, and the Army Signal Corps' AN/MRC-66 system of several years ago.
Other spread-spectrum systems have been developed to solve specific technical problems, such as ranging in space applications.

In addition to Motorola and Martin, which have released information on their random-access, discrete-address systems. Collins Radio Co.

Delta-modulation transmitter for proposed spreadspectrum communications system transmits discretely addressed digital signals. Feedback loop in Delta modulator integrates and amplifies pulses to reproduce a voice curve. Comparator subtracts reproduced curve from original curve. Positive and negative voltage differences from the comparator close and open the gate, so that pulses from clock will be stopped or passed. Result is that Delta modulation train is formed from clock pulses. Addressing of signal is added by three separate oscillators connected to a common if amplifier through three gates.
and Philco Corp. report they are developing classified spread-spectrum systems. RCA has several such classified systems in design, including at least one discrete-address system, RADAC. Bell Telephone Laboratories says it has built and tested various tupes of wide-band equipment with complex modulation schemes.

The Signal Corps is reviewing a number of proposals for random-access. discrete-address systems that it has received in response to an invitation. The ageney says the spectrum it anticipates in any warfare is so crowded that it doubts standard, assigned-frequency, narrowhand systems would be able to function. The Air Force is said to be considering a discreteaddress system for ground use.

Wideband Emergency System
 Uses Delta Modulation

At the 1961 IRE Convention in New York, Henry Magnuski of Mutorola, Chicago, described a proposed digital system in which a single widehand channel could provide emergency, shortrange communications in the vhf and whf bands.

Although the system exists only on paper, some hardware is reported to have been built to test the feasibility of the method.

Delta modulation is used in the proposed system. In this technique, the slope of the voice curve is sampled to provide digital signals from which the original input can be reconstructed. In operation the Motorola system would transmit short pulse groups, each carrying modulation and an address.
To avoid a central control point, transmission of the pulses would not be synchronizet. The channel therefore would be time-shared, and pulses from some senders would occasionally interfere with those of others. This interterence could be minimized, Dr. Magnuski reports, either by reducing the duty cycle or by transmitting redundant information at the cost of additional transmitter power that would contribute no extra range.

The system is said to be able to accommodate about five talkers per megacycle at an interference level of 30 dh .

Test model of Racep random-access, discrete-address communications system consists of encoder-de. coder for addressing, left; transmitter, center, and receiver, right. System is said to be capable of support. ing up to 700 users on 4 mc

Martin's concerpt of a discrete-address, spreadspectrum system is called RACEP. for Random Access Communications with Estended Performance. It has been tested in a breadboard model. the company reports. The system is similar to Motorola's proposal but is believed to use a form of pulse-conde modulation. Pcm is said to be less vulnerable to jamming than delta modulation.

Martin says that its system would support up to $7(X)$ users on one 4 -me channel in a typical 15 -mile link at a use factor of 10 per cent. The modulation system used is said to permit either. or both. voice and data transmission with the same equipment, although the system is basically digital. It is intencled for use at whf and uhf.
The system has been discussed with the Federal Aviation Agency for use in air traffic control, Martin salys. and has been proposed to military agencies for use in missile guidance and troposcatter communications.

Signals from GE's Phantom System
 Heard as Noise by Other Sets

Gencral Electric calls its broadband communications system Phantom I. The company describes it as a double-sideband system for longhaul communications. Average transmitted power is spread over several hundred kilocycles, and the system is intentionally operated at a low data rate in relation to transmission bandwidth to minimize the effects of jamming. Signals are addressed by waveform coding.

Phantom I is operating as a test model in the Southwest, sending to a GE facility near Syracuse, N.Y. Although the company is evaluating the system under an Air Force contract. the Army and Navy are monitoring the tests. The system has been reported successful in first tests, and second-phase testing has begun.

Phantom I is classified, as are most of the broadhand systems under development for the military. = -

New Raytheon Frame Grid Subminiatures

fill the gap with outstanding Gm/lp/size
There's no longer any need to sacrifice performance and reliability for small size. Raytheon frame grid subminiatures now fill your design needs with ext:emely compact tubes ol higher gain banduidth product. lower noise figure, and greatly increased reliability. Two submin. iatures with exceptionally high transconductance to plate current ratios are immediately available.

The CK7994 is a triode with a transconductance of 18.000μ mhos at a plate current of 15 mA . The CK7995, a sharp cutoff pentode. features 13.000μ mhos at 8.0 mA Both types are precisely fabricated with perfect pitch frame grids of
high uniformity of spacing and characteristics. Maximum reliahility is assured through the excellent mechanical rigidity of the grid structure.

Raytheon frame grid subminiature tubes remove the limitations imposed upon your designs by tubes with conventional grid construction. For optimum performance consider the many advantages offered by the growing line of frame grid tubes from Raytheon, leading manulacturer of subminiature tubes.
Full technical data may be obtained by writing to: Raytheon, Industrial Components Division. 55 Chapel Street. Newton 58, Massachusetts.

Fur Small Order or Protutype Requirements See Your Local Franchised Distributor
RAYTHEON COMPANY

BXPANDABLB

Picture this self contained, automatic system working for youthe compact Beckman 4011.01% dvm; together with converters for measuring low millivoltage DC, AC and ohms; a scanner which allows automatic readings of 29 sources of information; and finally, the Beckman solid-state, digital printer to make a permanent, indexed record of all the readings.
Price for the complete system about $\$ 4800$
For detailed specifications on all these instruments and their use together, write for Brochure A4011.

Bectuman 4011 Bociman 4011 dvm is avallable, as are the other modules portable package.

Solar-Cell Sensing Used

 In Novel AccelerometerLight Beam, Split by a Pendulum, Is Detected by Two Identical Sensors

A
NEW accelerometer developed on the West Coast uses a light beam and a pair of identical solar cells for sensing. The beam is split by a pendulum that responds to any acceleration

The solar cells are formed by scribing a line through the junction layer of a single cell. Changes in illumination on the two cells are detected and compared.
The pendulum is a quartz fiber rod. Illumination from above passes its edges and falls as two discrete beams on the cells. Movement of the pendulum with acceleration decreases the total light flux on one cell and increases it on the other.
In operation, the solar cells respond to the changes in light intensity in nonlinear fashion. However, the cells are used in a push-pull circuit that cancels out nonlinearities.
The accelerometer is the result of a joint effort by Electro Optical Systems, Pasadena, Calif., and Jet Propulsion Laboratory. Electro Optical developed the pickoff.
The accelerometer was developed for use in the high energy Vega vehicle, which has been canceled. In V'ega it would have been used to sense accelerations useful in orienting the vehicle with respect to the earth.

Acceleration to 1 Part in 10,000

Measured by This Technique
According to JPL's Dr. Alan Johnson, the new accelerometers using this technique are successful; they can measure acceleration to one part in $\mathbf{1 0 , 0 0 0}$. Used as simple level detectors or level indicators, they can detect to $1 / 10 \mathrm{sec}$ of arc.
The accelerometers are 1 -in. cubes illuminated by tungsten lamps. They have a condensing lens 0.1 in . in diameter. When the pendulum is in the center position, each of the two slots left between the shutters and the pendulum measures 1 mm by 0.2 mm .
Miniature incandescent lamps obtained by Electro Optical during the development of the device came from Chicago Miniature Lamp Co and American Cystoscope Makers, Inc. The Chicago Company's lamps were 0.1 in . in diameter, 0.187 in . long, with a $3-\mathrm{v}, 60-\mathrm{ma}$ filament rating. The threshold of the larger American Cystoscope No. 540-110 lamps and three of similar construc-

Scribe line splits silicon solar cell into two equal parts in the light-operated accelerometer. Quartz rod pendulum splits light beam into a pair of matched beams at null position. If acceleration is applied the pendulum moves and the change in light flux on the twin cells is compared to get an output proportional to the amount of acceleration.
tion to the Chicago No. CM8-666 lamps but 25 per cent larger, were shaken at rated voltage to $36 \mathrm{~g}, 20$ - to 1.500 -cycles noise without failure.
Used as a gyro pickoff, according to Electro Optical's manager of the Solid State Div., Irving Weiman, no pendulum would be necessary. A small spot of light would be directed from a mirror on the gyroscope to the scribed line on the solar cell. As the mirror drifted, the spot would move to one side or the other of the scribed line. This would result in unegual output from the two cells.
Some of the characteristics of the dual-cell pickoff were reported by Mr. Weiman. Sensitivity of the solar cell itself is given as $8 \mu \mathrm{a}$ per cm^{2} in tungsten light. Source impedance is 30 K . Senior research engineer William McClellan chose the doping of the silicon solar cells, so as to provide a 50 per cent greater output than standard solar cells-in terms of short-circuit output current. Symmetry, in terms of difference of output between the two cells on a single wafer, Mr. Weiman said, is 5 per cent over a two-to-one variation in light intensity. The temperature range is from 75 to 180 F .
The pickoff has application anywhere a nonloading readout is required. According to Mr. Weiman, it could be used for high-density photo readouts, optical computers and A-to-D converters (by lining up several cells and constraining an analog-generated light beam to travel across themn). The dual cell has been marketed in sample quantities by Electro Optical's manufacturing affiliate, Micro Systems, Inc., Pasadena, Calif. \quad ■

New digital computer techniques for network synthesis have enabled Burnell \& Co. to produce filters possessing the special time and steady state properties so essential to today's high precision, communication, data and guidance systems. An example of this achievement is the Burnell Type LTR-1 which overcomes problems formerly insoluble through the use of standard design procedure.
More than a linear phase band pass achievement, this new Burnell "low ringing" filter combines the center frequency, band width, rise time and attenuation characteristics that insure minimum phase distortion and low transient response. Hermetically secure, the LTR-1 easily shrugs off shock, vibration, acceleration and
other hazards encountered in extreme environments.

TECHNICAL DATA

Center frequency: 400 cps
Pass band width: (3 db) down +20 \%; -16.5% of center frequency
Attenuation: $\quad 30 \mathrm{db}$ at one-half and twice center frequency
Overshoot: ("low ringing") 1% Rise time: (1% to 99%) 6.25 ms . Meets MIL-F 18327A specifications.

If your circuit needs can not be met by the LTR class of filters or our stock of more than 15,000 specialized filter designs, Burnell engineers will, of course, manufasture to your specifications.

Write for Filter Bulletin.

With the aid of our new Guillemin Research Laboratory, we are now able to solve your network problems in an even wider range than ever before. brequency ces

Write for your membership card in the Space Shrinkers Club.

Microminiature Guidance Computer to Use 2-D Approach

2-D circuit, above, has Texas Instruments microtransistors, Pacific Semiconduclor microdiodes, and deposited carbon resistors mounted on a 1 - in. sq alumina wafer. Holes at the edges of the wafer are for wires used to connect it to a printed-circuit boord. All joints are made with solder. Intraconnections on the wafer are made with silkon the wafer are made with silk-
screened silver conductors. Below, deposited carbon resistors are put on a wafer using an injection printing process, giving good thickness control.

Microminiature guidance computer using 2-D circuits with microcomponents and deposited carbon resistors will weigh 15 lb and occupy 0.3 cu ft . The unit, being developed by American Bosch Arma Corp., will have a 1 -me clock rate and 2,300 words of multiaperture storage, provided by either a ferrite sheet or strips.

Three generations of guidance computers designed by Arma illustrate the progressive size reduction achieved. The first generation computer is the present Atlas ICBM inertial guidance computer. The second generation computer, not yet assigned to a specific project, uses circuitry embedded in foamed polyurethane. It was developed under Air Force con tract. The third generation computer is the microminiature unit now in development.

Microcomponents to Be Combined With Deposited Elements in Logic

Robert Haavind

News Editor

APROTOTYPE microminiature guidance computer, using a combination of ceramic wafermounted microcomponents and deposited elements in its logic, is scheduled for completion before the end of this year. A nondestructive multiaperture-type memory, using either ferrite sheets or strips, is planned for the experimental unit.

The technisques, being used by American Bosch Arma Corp., Garden City, L.I., N.Y., are derived from the 2-1) packaging approach developed by Diainond Ordnance Fuze Laboratories, Washington (see "Cuidelines to Microminiature Designs," ED, Nov. 9, 1960. p 61). Al though the basic approach to the Arma com puter has been decided. according to James P Maguire, supervisor of the company's microminiaturization group, some design details are not yet settled.
(Continued on p 10)

Arma Guidance Computer Specifications*			
Weight (lb)	200	60	15
Volume (cu fi)	8	2.5	0.3
Power Dissipation (w)	1,000	120	50
Memory size (words)	**	2,300	2,300
Bits per word	-	29	27
Clock Rate	-	250 kc	1 mc
Add time (1usec)	-	0.128	0.027
Multiply time ($\mu \mathrm{sec}$)	-	0.896	0.135

*First generation is the present Atlas Inertial guidance computer. Second generation uses circuits potted in polyurethane foam. Third aperture memory

* Classified Information.

CIRCLE 9 ON READER-SERVICE CARD \rightarrow

FOR MILITARY REQUIREMENTS

BE SURE OF MAXIMUM RELIABILITY...SPECIFY PHILCO TRANSISTORS

Look to the pioneer producer of many millions of Military transistors for your critical applications. Philco has been the symbol of reliability from one of the industry's first JAN types (2 N 128) to the present broad Military line.
The enviable record of ultra-reliable performance has resulted in the use of Philco transistors in many Military programs. The following types are available to existing Military specifications:

THE Mo.	applicanom	miltant SPEC. Mos
2N128	High frequency amplifier	MIL-T-19500/9A
2N240	High speed switch	MIL-S. 19500/25A
2N393	High speed switch	MLL-S-19500/77A (Sig C)
2N495	Medium frequency amplifier (Silicon)	MIL-T-19500/54A (Sig C)
2N496	Medium speed switch (Silicon)	MIL-S 19500/85 (Sig C)
2N499	VHF amplifier	MIL-S-19500/72A (Sig C)
2 N501A	Very high speed switch	MIL-T-19500/62 (Sig C)
2N502A	VHF amplifier	MIL-S 19500/112 (Sig C)
2N599	Medium speed switch	MIL-S-19500/166 (Navy)
2N1118	Medium frequency amplifier (Silicon)	MIL-S-19500/138 (Sig C)
2N1119	Medium speed switch (Silicon)	MIL-S-19500/139 (Sig C)
2N1158A	VHF oscillator	MIL-S.19500/113 (Sig C)
2N1199A	High speed switch	MIL-S-19500/131 (Sig C)
2N1200	HF amplifier (Silicon)	MIL-S. 19500/105 (Sig C)
2N1201	HF amplifier (Silicon)	MIL-S-19500/101 (Sig C)
2N1411	High speed switch	MIL-S. 19500/133 (Sig C)
2N1499A	High speed switch	MIL-S.19500/170 (Sig C)
2N1500	Very high speed switch	MIL-S. 19500/125 (Sig C)

For information on any of the above types, write Dept. ED 42061.

LANSDALE DIVISION - LANSDALE, PENMSYLVANIA

Splices in aircraft and missile circuitry must be dressed to weather the most withering kinds of high-altitude temperatures, moisture, vibration, shock, corona. AMP INCORPORATED splices are dressed for it, no matter what the environmental threat. High-altitude heat? AMP's STRATO-THERM (A) line of splices are designed to keep circuits intact at continuous temperatures to $1200^{\circ} \mathrm{F}$. The post-insulated Strato-Therm splice (illustrated) has a Teflon* outer sleeve and silver-plated electrolytic copper inner sleeve, plus metal crimping rings, for full circumferential protection to solid. stranded or combination conductors. Splices available in materials to resist effects of high energy fuels compounded with Hydrazine and for connecting Chromaloy and Alumel cables. AMP's positive compression crimp insures electrical soundness. The insulated StratoTherm splice is ideal for temperatures up to $550^{\circ} \mathrm{F}$.

What about moisture breathing? The CERTI-SEAL (B) splice molds an all-nylon sleeve over the conductors, then compression-crimps tin-plated copper rings over the nylon, for positive moisture-proofing of more than 100 different insulation diameters. Protection for large wire sizes? The AMPLI-NYL (C) splice gives total nylon insulation to spliced wire in sizes \#8.1/0 AWG; it will accommodate single-to-single, single-to-multiple, and multiple-to-multiple wire combinations. An airworthy splice for shielded wire? The TERMA-SHIELD (D) splice, for single or multiple connectors, is post-insulated with either nylon or Teflon. Conductors and shield braids are each crimped permanently and positively together, with insulation separating each conducting member. AMP is splice-conscious. It will pay you to consult with AMP where reliable space-age circuitry is the goal. Send for specific information on these AMP splices.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
 -oon hor invenert

Arma's "second generation" computer uses circuits potted in foamed polyurethane. Special iig, top, is used to hold components between pieces of printed circuit board as polting takes place. Circular plugs are then inserted in holes in foam plastic circuit holder. Computer configuration is shown below.

bly frame will hold 8 to 10 boards. A central duct in the computer will allow free air flow through the assembly frame slots and over the flat circuit surfaces, carrying away heat.

The use of corrugated cards between boards within each frame is being considered for better shock and vibration protection.

The initial estimated price for the computer is about $\$ 100,000$. This is expected to drop as microcomponents become less expensive, and as the computer goes into production. The computer is being developed with company funds.

Second Generation Computer

Uses Foam Plastic Circuits
Circuits potted in foamed polyurethane are used in a prototype miniature guidance computer already developed by Arma under Air Force contract. Arma terms this unit a "second generation" guidance computer.

Small cylindrical plugs containing up to 15 components embedded in foam plastic are fitted into machined holes in a foam plastic circuit holder. Printed boards on each side of these circuits are used for interconnections, using solder joints.

This all solid-state computer has not yet been assigned to any specific programs. ■ -

Proven ultra-high-speed transistors by SPRAGUE

the reliable switching characteristics of the field-proven 2N501A are now available in the TO-9 case to meet equipment needs

- The well known slim-line Type 2N501A MicroAlloy Diffused-base Transistor, extensively used in critical military, industrial, and commercial applications, is now joined by the 2 N 1500 , in its low.height TO. 9 case.
- The electrical characteristics of the 2N1500 are identical with those of the 2N501A. Both of these ultra-high-speed switching transistors will operate reliably at speeds up to 20 megacycles. They feature excellent high frequency response at very low collector voltages, a characteristic made possible by the placement of the collector in the diffused region of the base. - A precise, controlled-etching process makes it possible to maintain high frequency characteristics down to saturation voltage. Therefore, you can realize all
the advantages of direct-coupled circuitry with no loss in switching speed.
- Sprague MADT* Transistors are now manufactured with cadmium junctions, providing an extra safety margin. Effects of high temperature, the major destructive factor with transistors, are minimized by the superconductivity of cadmium, assuring cooler operation and greater reliability.
- For prompt application engineering assistance, write Commercial Engineering Section, Sprague Electric Co. Concord, N.H.
- For complete engineering data sheets, write Technical Literature Section, Sprague Electric Co., 347 Marshall St., North Adams, Mass.
*Trademark of Philco Corporation

SPRAGUE COMPONENTS
transistions
CAPACITORS MAGMETIC COMPOMEnTS RESISTORS
interference filters pulse transformens PIEZOELECTRIC CERAMICS PULSE-FORMING METWORKS
hich temperature magnet wire HIGH TEMPERATURE MAGMET WIRE
CERAMIC-BASE PRIMTED METWORKS PACKAGED COMPONENT ASSEMBLIES FUNCTIOMAL DIGITAL CIRCUITS

SPRAGUE
THE MARK OF RELIABILITY
'Sprogu' ind (2) we registeed listematic; of the Sprague Electic 0

Write for detailed literature

FAA Adopts Three-Pulse Beacon System

Symposium Told New Transponders Needed; Progress Slow in Anti-Collision Devices

A COMBINATION OF GOOD-ALL TYPES 663UW AND 663F CAPACITORS offer great flexibility in component placement. Case is a "skin-tight" Mylar* wrap, and cubic space is used to MAXIMUM efficiency. These GOOD-ALL types are widely used in the very finest instrumentation. Ratings are conservative and both are capable of being produced to HIGH-REL specifications.

SPECIFICATIONS

 10 +125 ,
Insulation Resisance -Greater than 100,000 megohm-
mydus. at $25^{\circ} \mathrm{C}$ - See curve below.
Life Test - 250 hours at $+85^{\circ} \mathrm{C}$
Dielectrie strensth - Twice rated voltage for one minute. Winding Construction-Extended foil (non-inductive) MYLAR

Mumidely Rosizance - Far exceeds requirements of ElA-
Spocic
RSI
Tolerance - Standard $\pm 20 \% \pm 10 \% \pm 5 \%$ thru $\pm 1 \%$.
Voltage Range - $100,200,400,600$ and 1000 voc.
DIMENSIONS (100 Volt Rating)

Three-pulse side-lobe suppression path system adopted by FAA for use in U.S. differs from two-pulse beacon systems in use internationally in that an omnidirectional pulse is sent 2 usec after first interrogation pulse and a specified time before second interrogation pulse. In standard twopulse system, control pulse is sent simultaneously with interrogation pulse and with much greater power than side lobes. In both systems re plies are suppressed if side lobes are received, but in three-pulse system less omnidirectional power is needed and timing is less critical.

ATHREE-PLLSE beacon system has been officially adopted by the Federal Aviation Agency for use by aircraft in the United States. The announcement touched off a competition among manufacturers of transponder equipment to supply the market guaranteed by the FAA's decision and by the major airlines' announced intention to equip their aircraft with transponders. These would be compatible with the secondary radar system being installed by the FAA at major air-traffic-control centers.

At least five companies have developed, or have almost developed, transponders capable of meeting the new standard. These are Radio Corp. of America, Bendix Corp., Collins Radio Co., Wilcox Electric Co., and at least one British firm. The RCA and Collins units, reportedly, are basically two-pulse systems that can be modified by adding a module. The Bendix transponder has both capabilities built in.

Announcement of the new standard was made at the First Annual International Aviation Research and Development Symposium held recently in Atlantic City. More than 500 aviation specialists from nearly 30 countries attended the week-long meeting at which the state of research in aviation was discussed. At the sym posium, it was stated that:

- The air-height surveillance radar being tested at the National Aviation Facilities Experimental Center near Atlantic City is so far performing as expected. Twenty-beam segments of the 111-beam system are providing altitude readings accurate to $=200 \mathrm{ft}$.
- Development of collision-avoidance systems or pilot-warning indicators suitable for general use in aircraft is not probable in the near future, even though one of the three systems under test at NAFEC-the Bendix ground-bounce-ranging system-is meeting specifications. Also under test is a Motorola cooperative pilot-warning indicator and a Sperry system using a microwave antenna.
- Studies designed to aid integration of the Air Force's SAGE system with the FAA's air-traf fic-control system are nearly complete and indicate that such integration is feasible.

The FAA's announcement of the three-pulse side-lobe suppression standard was made during a discussion of the agency's entire radar-beacon program. L. E. Shoemaker, head of the beacon systems section of the FAA's Development Div. said that nearly 60 ground stations were now
equipped with secondary radar beacons and that the FAA planned to install such equipment at all stations that had primary radar. He reported all the major airlines had programs to install transponders in their aircraft, although only a third of the planes are now so equipped.
Besides installing additional equipment, the agency is extending the usefulness of the beacon system by increasing the number of codes that can be used, by adding altitude-reporting capability and by developing transponder equipment suitable for all aircraft other than airline and military. This would comprise about 70 per cent of the planes fying in the U.S.
The 64 codes now available will be increased by doubling the number of pulses in the reply train to form a supplementary set of 64 basic codes. These will provide a total of 4,096 codes. Most secondary radar equipment in development is being designed to operate with the additional codes and to process replies containing altitude information.

Automatic Altitude Reporting

Planned in Beacon System

The FAA is confident that altitude reporting by means of beacon replies will prove feasible, according to Kenneth Wise of the agency's bea(ron section. In a paper at the meeting, he said that development of an automatic altitudereporting subsystem for radar-beacon systems would reduce the load on aircraft-ground communications channels and give controllers an important third dimension to establish position of aircraft.
In reporting on the FAA's transponder program, Mr. Wise said the ageney hoped to start testing by June, five different transponders now being developed for general aviation use. These are being designed by Haveltine TIDC Div., Indianapolis, and Wilcox Electric Co., Kansas City, Mo. The transponders will be lighter, cheaper and have less power drain than units in use on military and airline aircraft, Mr. Wise said.
These transponders will use only 64 codes and a single mode of interrogation, will have limited reply words and will not be as rugged as current types. They will reply only to the common air-traffic control conde $3^{\prime} \mathbf{A}$, which uses an $8-\mu \mathrm{sec}$ separation between leading edges of pulses, and will have only three-pulse, side-lobe suppression. Their range, Mr. Wise said, will be 150 miles. Weight and power drain will be 141 l and 35 (1) 60) w . The units are being designed to sell from $\$ 1,000$ to $\$ 1,400$. The FAA expects to complete testing the transponders by November. Mr. Wise reported.

The FAA representative revealed that the agency planned to develop an improved transponder antenna, with dual aperture and im-

€ MOW FAIBCHLD DIFFUSED SILICON INDUSTRIAL APPLICATIOMS
 - Commercial computers
 - Business machines TRANSISTORS:

THE BEST BASIC TYPES, double-diffused silicon with low saturation resistance and a reserve of speed, power handling and current range that permit the widest latitude in circuit design.

ELECTRICAL CHARACTERISTICS
$25^{\circ} \mathrm{C}$ except as noted)

Write for full specifications

AT COMPETITIVE PRICES, now comparable or lower than industrial germanium or silicon transistor types of more limited performance.
WITH ASSURED AVAILABILITY through regular Fairchild distributors. The fairchild name and the 2 N numbers protect the circuit designs you base on these specifications.

545 WHISMAN ROAD, MOUNTAIN YIEW. CALLF. YORKSHIRE 8.8161. TWX MN WW CIL 853

KIN TEL CLOSED CIRCUIT TV SYSTEMS

What is a KINTEL
Closed Circuit TV system?
The basic KIN TEL closed circuit TV system consists of a camera. camera control unit, and monitor, each con nected by cable. The camera can be located at great distance from the moni or, and any number of monitors may be used to display the same picture.

Cameras are small enough to hold in your hand; rugged enough to operate in virtually any environment; versatile enough to cover (via remote control) almost any area: and sensitive enough to provide excel lent pictures of subjects illuminated by a single candle.
. The camera control pro .-..... vides automatic operation The system is continuously self-adjust (several thousand to one) and features automatic high definition of bright objects. The only control you have to touch is the on-off switch.

The monitor displays a crisp. clear picture...full 650 -line resolution, twice that of the best home TV reception

How are such systems used? Today, kIN TELTV systems are perform ing a number of jobs for hundreds of firms, safely, inexpensively, tirelessly They are being used to watch opera tions or events that are tedious, diffi cult, dangerous, or even impossible for men to watch.

For example: Convair (above), Doug. las, Lockheed and Northrop watch rocket tests with kin TEL systems. U.S. Steel uses one to see inside open hearth furnaces. Westinghouse watches nuclear power reactor tests with one.

They are being used for surveillance.
For example: The San Francisco Naval Shipyard uses one to guard against pilferage.
They are being used fortraffic control. For example: The Alameda Naval Air Station uses a KIN TEL TV system to
bserve aircraft landings on the por tion of the runway that is not visible from the control tower.
They are being used to transmit visual information quickly and accurately; for remote observation of charts, meters, graphs, schedules blueprints, photographs, images rom microscopes, fingerprints, sig natures...the list is almost endless.
or example: E. F. Hutton uses a kin TEl system to transmit stock market quotations to the offices of the firm's executives. The Los Angeles Depart ment of Water and Power uses one for remote viewing of water-level meters The University of California teaches physics with one.
They are being used for monitoring any operation that normally requires standby personnel.

For example: American Potash and Chemical (above) monitors conveyor ine and warehousing operations with a kin tel TV system.
Why do these firms choose a KIN TEL system?
For a variety of reasons
First, reliability. KIN TEL TV is designed for continuous duty operation in severe environments. Day in and day out, it keeps working. It's the first choice for ICBM and other missile programs that really depend on TV, that can't chance failure, that can't afford to compro mise with reliability.
Second, picture quality. kin tel TV presents clear, sharp pictures. Full 650 line resolution provides maximum data...essential for quantitative observation of complex operations or transmission of printed material.
Third, automatic operation. KIN TEL TV is the only closed circuit system tha provides entirely automatic, through the-lens compensation for light-leve changes of several thousand to one.

Fourth, the KIN TEL closed circuit TV system is extremely sensitive. The light required to read this page is enough for sharp clear pictures, and usable pictures can be provided with less than one-foot candle illumination.
Fifth, kin tel TV systems are easy to install and simple to operate. With no changes in lens iris to make, with no difficult, interacting electrical adjustments required, the only thing the operator has to know is the location of the on-off switch.
Sixth, a complete line of shelf-item system components and a variety of cameras and monitors make virtually any application feasible... permit observation of nearly every kind of operation, under all kinds of conditions.

For example, with system components ou can remotely position the camera remotely select one of several lenses, remotely "zoom" in or out for closeup or wide-angle viewing, operate the camera in extremes of temperature or in explosive or dusty atmospheres, view microscope images. Whatever your viewing problem, KIN TEL probably has a stock solution.
Seventh, you don't have to waste your time and money on application engi neering. At no obligation to you, KIN rel's nationwide factory-trained field engineers - thoroughly experienced in optics, environmental requirements ighting, cabling, human engineering factors, and other installation consider ations-can determine whether or not closed circuit TV can be put to profit able use in your intended application.

What can a KIN TEL
system do for your business?
t can do what it is doing right now or hundreds of other firms. It can save you time and money...increase effici ency ... better your service to clients and customers. To find out how, write direct for catalog 6.205 and the name of your nearest KIN TEL engineering representative.

> KINTEL OOHU
> mectmonioninc

NEWS

proved coverage, and was investigating for commercial application the data-transfer feature of an Air Force transponder that uses parity pulses for error checking.

Three-Pulse Suppression System
 Believed Better Than Two-Pulse

The adoption of side-lobe suppression during interrogation is part of the program to improve existing equipment, Mr. Shoemaker said. In the standardization of the three-pulse suppression technique, not only will beam paths of interrogating transmission be shaped to minimize interference but effective bandwidth will also not be lost as range increases. This point was made by J. E. Herrmann of the agency's beacon section, who delivered a paper on interrogation path side-lobe suppression.
In a two-pulse system, interrogation and control pulses are sent simultancously-the control pulse omnidirectionally, the interrogation pulse directionally at slightly greater amplitude. The aircraft transponder compares the received pulse with the last one it received. If the new pulse is stronger than the last, it replies, because it is receiving an interrogation pulse. If amplitude is less, it is receiving a side-lobe and so suppresses its reply.
In the three-pulse system adopted by the FAA, an omnidirectional control pulse is transmitted $2 \mu \mathrm{sec}$ after the first directionally transmitted interrogation pulse and is followed by the third pulse. The aircraft transponder compares the control pulse with the first interrogation pulse in delay-line circuitry and replies if the third pulse is at least 9 db greater than the control pulse. If the third pulse is less in amplitude than the control pulse, a reply is suppressed. The elapsed time between the control pulse and the second interrogation pulse determines which transponders will reply.
According to Albert Brown, chief of the Systems Engineering Div. of the FAA, the advantages of this three-pulse system over a twopulse system are that it requires less omnidirectional power, gives better reflection suppression, is less dependent on timing and synchronization, is compatible with military systems and uses a simpler antenna.
The system was said to be originally developed by Mortimer Setrin of the Air Force. During the meeting D. G. Terrington of the British Ministry of Aviation, reported that Great Britain was still using a two-pulse, side-lobe suppression system, in accordance with an international agreement. It was learned at the meeting that a convincing demonstration of the effectiveness of the FAA three-pulse system has been made

KIN TEL-pioneer and leader in closed circuit television.

ARINC $532-C$ OR SIMILAR
Test setup for evaluating beacon transponding methods for reporting altitude from aircraft is installed at FAA's Atlantic Cily, N.J., facility. Transducer converts static pressure to an anolog signal. In a simplified arrangement not requiring decoder-encoder, the digifizer connects directly with the control unit of the Iransponder. The receiver in a more complex version has if video, modified to include suppression of sidelobes, spikes, long pulses and echoes. In reply to proper interrogation, the decoder-encoder codes a reply corresponding to altifude, and uses it to modulate the transponder reply. The code is cyclic binary-coded decimal.
to the British and that they are considering adopting it.

Mr. Wise reported that the three-pulse system, already in test operation at Atlantic City, would be put into general civilian use starting in 1962 It is being recommended for inclusion in the IFF Mark X air traffic control radar-beacon standard, which is a preliminary to recommendation to NATO as a standard system.

In discussing the side-lobe suppression program of the FAA, Mr. Herrmann said that the agency was developing with the Army Signal Corps a traveling-wave-tube switch called a Beacotron for ground-station beacons. In this device the tube output is controlled by voltage applied to the tube's control grid, enabling the switch to control the shape of the beam being transmitted as the beacon antenna is rotated. This feature is particularly valuable, it was said, in areas where several beacons are operating. Output can be suppressed when it will interfere with adjacent beacons. Another high-speed switch being developed for the same purpose would use either diodes or a ferrite device. Both efforts are part of a program to develop a beacon interrogation system that would need only one interrogator to generate both the control and interrogation pulses. They represent adoption of monopulse radar techniques to provide sharpened beam widths of interrogation antennas.

Video Processor in Development
 Uses Monopulse Techniques

Monopulse techniques, Mr. Shoemaker reported, are being used in equipment about to be introduced to mark the true center of the

here today:

Eimac X778 TWT
Frequency: 5.0 to 11.0 kMc maignal Gain: 60 db Minimum Power Output: 1 watt

Eimac X. 747 Voltage
Tunable Magnetron
0 to 1200 Mc Nominal Power Output: 100 mW

here tomorrow:

New Eimac X- and K-band on watt renez klystrons with

 noise characteristics.New Eimac higher powered NWT's to meet the requirements of commercial and military applications.

New Eimac S-band Voltage-
Tunable Magnetrons retaining desirable L-band linearity and long life.

And there's more to come! Behind the scenes a fully staffed Eimac Microwave Laboratory offers the broadest possible capabilities for new tube development. You'll find the most advanced answers to your microwave needs in Eimac... world leader in negative grid tubes, microwave tubes, amplifier klystrons. Write: Microwave Products, Eitel-McCullough, Inc., San Carlos, California.

Hoffman now offors you a subminiature series of temperaturecompensated slicon zener reference devices with a temperature coefficient ranging from $\pm .01$ through $\pm .0005$ percent per degree centigrado. Designated types 1N935-1 N939, these new units are hermetically sealed in the industry-preferred 500 mW glass package. They meet the stringent environmental and life test requirements of MIL-S/19500B and are easily adaptable to all forms of circuitry, including printed boards and subminiature modules.

		Veltuy Ioce per athure Coef. ficiont Nor		Maximum Dasistance (Ohms)
$\begin{aligned} & 1503 \\ & \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 01 \\ & =01 \\ & =0 \end{aligned}$	$\begin{array}{r} 040+75 \\ -550+100 \\ -5510+150 \\ \hline \end{array}$	
	$\begin{aligned} & 818.9 .95 \\ & 8.5095 \\ & 8.95-905 \end{aligned}$	$\begin{aligned} & =005 \\ & \pm \\ & =0.005 \\ & =000 \end{aligned}$	$\begin{array}{r} 010+15 \\ 550+100 \\ -5510+150 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & \hline 20 \end{aligned}$
		$\begin{aligned} & \pm 002 \\ & \pm .002 \\ & \pm .002 \end{aligned}$	$\begin{array}{r} 00+75 \\ -550+100 \\ -500+150 \end{array}$	$\begin{aligned} & \text { 鷘 } \\ & \text { s0 } \\ & \hline \end{aligned}$
		$\begin{aligned} & \pm 01 \\ & \pm 001 \\ & =001 \\ & \hline \end{aligned}$	$\begin{array}{r} 05+75 \\ -5550+100 \\ -5510+150 \end{array}$	$\begin{aligned} & \frac{80}{40} \\ & \frac{20}{20} \end{aligned}$
		$\begin{aligned} & \pm 0000 \\ & \pm 0000 \\ & =0000 \end{aligned}$	$\begin{aligned} & 05+75 \\ & -550+100 \\ & -5510+150 \end{aligned}$	$\begin{aligned} & 80 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$

*70\% of All Zener Reference Devices Ever Made Are Hoffman Madel

As the compony which introdueed the first commerciolly available silicon zener diode bock in 1953. Hoffman is your logicel couree of dopendable zonor dovices. Among other notable HoHman "firats" in this field wos the developmont, in 1955, of the IN430 zemer reforance aloment. a rovoludionary device able to maintain a constant voltoge over a wide tomparecure ronge. Two yoers later, Hoffman doveloped the demand for miniatorizetion and for printed eirevir applications. Now Hotmon brings its experience, the most extensilve in the field, to the Types IN935-1N939.
Moffimon experionce ond roliebility aro yours in the industrys widese ecloction of zener devices for limiting, clipping. reforonce, or regulation. You con dopend upon the loader, the pionoer-MOFFMAN. Hettmon's types IN935-IN939. Motronon's ryper iN.

Hoffman/:........: comlconduceor Divion

NEWS

target arc on the controller's display. This is done in the receiver, he said, by video processing in separate sum and difference channels, and by introduction of an adjusted threshold level. In manual tracking, the width of the displayed arc can be made to correspond to the width of the surveillance radar target, which is about 2 deg.
The viden-processing unit that will do this is in development at Burroughs Corp., Paoli, Pa It was described by W. A. Connolly, an FAA project engineer. It is a 10 -channel unit contained in five racks and will be part of major air traffic control radar beacon systems. It will provide beacon tracking, positive identification, and selection and display filtering over a range of one-half to 200 nautical miles, he said. According to Mr. Connolly, this elaborate all-transistorized system will be able to function 10 ways. It will:

- Provide plan position display of replies from aircraft equipped with basic IFF Mark X transponders that answer mode 1,2 , or 3 A interrogations. These displays will be blips.
- Provide ppi display of common-system transponders in mode 3 and change a blip display to a bar when the reply code is followed by identification pulses. The number of codes to be handled is expandable to 4,096 . An emergency reply produces a double bar, an audible alarm and a display of the letter " E."
- Display as a single blip all aircraft responding to mode 3 A and exclude responses from basic IFF Mark X transponders.
- Provide rapid readout and digital display of reply code.
- Provide digital decimal display of all information from planes equipped with mode-C alti-tude-reporting systems.
- Provide altitude zone filtering by either altitude reply codes or by analog height pulses from 3-D radars
- Display center marks on each beacon videro target equipped with suitable equipment.
- Accept three inputs: basic beacon, all C/S and selective aircraft replies, and analog altitude pulses.
- Control interrogation modes, video definition and display selection.
- Sense code-garble and have nondestructive readout.
Included in the unit will be a storage tube type of defruiter rather than a delay-line type. This subsystem will retain the response pattern of the first interrogation cycle, compare it with the next pattern, and filter out nonsynchronous replies, Mr. Shoemaker said. -

Advertisement
Burndy YD Tool Modified For Faster Operation

As a result of wide customer acceptance of BURNDY Omaton Division's YD-2, a new version of this semi-automatic, portable, pneumatic crimping tool has heen developed. The new edition, the YD-2-3 is a bench-mounted, foot-operated tool with a magazine holding almost eight times (533 contacts) as many contacts as the original version (70 contacts).
The YD was originally designed as a magazine-fed hand-operated tool for work in and near electronic cabinets. The new version will produce a higher rate of contact installation, making it especially useful in hamess wiring.
The bench-mounted, foot-activated increased-magazine-capacity features will allow the contact installation rate of the YID-2 to be greatlv increased. The YI)-2-3 retains the features of automatic pre-positioning, feeding. and crimping of BURNDY's HYFEN. STAPIN and CRABLOK ${ }^{\text {Di }}$ MODULOK ${ }^{\text {® }}$ lines of contacts. It alson features color coded die sets matched with the color of con-tact-carrying strips. The plastic carry strips are automatically ejecterl from the tow after the contacts have been used.

BIRNIS CORPORATION Norwalk. Connecticut
circle 17 on reader-service caro ELECTRONIC DESIGN • April 26, 1961
reliable solderless contacts result in dramatic reduction of installation time CONTACTS
wide application-all with snap-locked removable contacts

More MIL type transistors

Amplifier and Computer NPN (sulow, fred e: mounnes)

Type No.	Mil Spee	Volfoge Rating	Curre Min.	Gain Max.
2N332	MIL-T. 19500 /37A (NAVY)	$\mathrm{V}_{\mathrm{ci}} 45$	h/3. 900	-. 953
2N333	MIL-T-19500/37A (NAVY)	$\mathrm{V}_{\mathrm{co}} 45$	$h_{10} .948$	- . 976
2N334	MIL-T-19500/37A (NAVY)	$\mathrm{V}_{\mathrm{ci}} 45$	$h_{\text {tb }} .948$	-. 989
2N335	MIL-T-19500/37A (NAVY)	$V_{C 1} 45$	hro 974	-. 989
2 N 337	MIL-S.19500/69C (NAVY)	$V_{c ı} 45$	hei 20	- 55
2N338	MIL-S-19500 69C (NAVY)	$V_{c t} 45$	$h_{H} 45$	- 150

Unijunction NPN (sucoow.fxed efe mounnug)

Type No.	Mili Spee	Voltoge Rating	Current Gain Min. Max.			
2N489	MIL.T.19500 75 (USAF)	$V_{\text {beE }} 60$	η	. 51	-	. 62
2N490	MIL-T-19500 75 (USAF)	$V_{\text {bie }} 60$	η	. 51	-	. 62
2N491	MIL.T-19500 75 (USAF)	$V_{\text {B2E }} 60$	η	. 56	-	. 68
2N492	MIL-T-19500/75 (USAF)	$V_{\text {B2E }} 60$	η	. 56	-	. 68
2N493	MIL-T. 1950075 (USAF)	$V_{122} 60$	\#	. 62	-	. 75
2N494	MIL-T-19500 75 (USAF)	$V_{\text {E2E }} 60$	η	. 62	-	. 75

Audio PNP (сенаним)

Type No.	Mil Spee	Volrage Rating	Current Qain Min. Mex.			
2N43A	MIL-T. 19500 18 (USAF)	$\mathrm{V}_{\mathrm{ca}} 45$	hro	. 968	-	. 985
2NASA	MIL-T-19500 6 (USAF)	$V_{c i} 45$	hit	18	-	43
2N526	MIL-S.19500/60C (JAN)	$V_{\text {cı }} 30$	hes	53	-	90

Computer PNP (gesmanum)

Type No.	Mil Spee	Volrage Roling VCI 20	Current Gain Min.			
2N123	MIL-T-19500/30 (USAF)		hre	30	-	150
2N396A	MIL-T. 19500 64A (NAVY)	$\mathrm{V}_{\mathrm{cs}} 30$	het	30	-	150
2 N 404	MIL-T.19500/20 (USAF)	$V_{\text {cı }} 25$				

Reliability based on improved designs and backed-up by a book full of life test dato characterizes these General Electric transistors for military applications. For complete technical dato, jult see your Semiconductor District Salos Manager, or write to Somiconductor Products Dopartment, Section 3007 General Electric Company, Electron ies Pork, Syrocuso, Now York
FOR FAST DELIVERY AT FACTORY-LOW PRICES IN OUANTIIES UP TO PUP, SEE YORIED O.E DISTRISUTOR

Computer NPN (ввамим

Type No.	Milil Spee	Voltage Rating	Current Gain Min.			
2N78A	MIL-S. 1950090 (USAF)	Vcı 20	hes	45	-	135
2N167A	MIL.S-19500 11A (USAF)	$V_{\text {ct }} 30$	hei	17		
2N388	MIL-T.19500/65 (NAVY)	$V_{\text {cı }} 25$	her	60	-	180

NEWS

Bomber IR System Being Designed

 To Track Enemy While ScanningA passive infrared surveillance system for bombers is being designed to track while scanning for interceptors or missiles.
Avco Electronics and Ordnance Div., Cincinnati, is developing the system under a $\$ 500,000$ classified contract for the Air Force's Wright Air Development Div.
Signals from each target tracked by the system will be processed by separate receiving channels. A special-purpose digital computer, also in development at Avco, will compute tracking information from these signals for automatic injection into the bomber's control system. The display will be digital.
The proposed system is an outgrowth of the company's Avscan scanning system. an engineering model of which is being used as a design aid in the development program.
In operation, the Avscan IR scanner rides in the nose of a bomber and scans a rectangle in the aircraft's path. Its field of view is reported to be 60 deg azimuth and 40 deg elevation. Instantaneous field of view is said to be 0.1 by 1 deg, giving a resolution equivalent to 40 lines with a spin rate of $1,800 \mathrm{rpm}$. Range is believed to be up to 20 miles. The scanner operates in the 3 -5-micron intermediate infrared region.
The detector cell used is an indium antimonide grown-junction type developed by Avco and cooled to liquid-nitrogen temperature by immersion in a stainless-steel Dewar flask.
The scanning head contains a refractive optical system consisting of four two-element arsenic

Engineering model of Avscan infrared scanning system, being used to aid in the development of an \mathbb{R} track-while-scan system that will warn bombers of interceptors and missiles. Avscan's scanning head contains four achromats that spin at $1,800 \mathrm{rpm}$ while nod. ding 3 times per sec. Arsenic trisulphide dome is of $8.75-\mathrm{in}$. diam. Stainless-steel Dewar flask, at right, con tains a special indium untimonide grown-iunction cell that operates in the 3 -5-micron region. The model shown here has an extra cylindrical section to house a switch for demonstration purposes. System was de veloped by Avco Electronics and Ordnance Div.

GENERAL ELECTRIC

trisulphide and silicon achromats mounted on a rotating drum. The drum spins at 1.800 rpm while nodding 3 times per sec.

A different optical arrangement might be used in the track-while-scan system, it is reported. Broader scan coverage and probably a faster scan rate may be designed into the new system.
Avco is reported working toward designing a ranging capability into such an IR track-whilescan system. Ranging would be provided by a IR maser that generated coherent radiation.

Cryogenic Accelerometer And Delay Line Ordered

Two new applications of cryogenic technology are under way in separate programs sponsored by the National Aeronautics and Space Admin istration and the Air Force.

An accelerometer, expected to prove the feasi bility of cryogenic techniques for sensing of acceleration, is being developed at General Electric Co., Schenectady, N. Y. The device is to be produced under a $\$ 119,000$ NASA contract.
Martin Co. is designing a cryogenic delay line for the Rome (N.Y.) Air Development Center under a $\$ 90,000$ Air Force contract.
Design objectives for the accelerometer. which will be an analog, are a threshold and bias of $1 \times 10^{-6} \mathrm{~g}$ or less, and linearity and repeatability of one part per million or less, according to GE The threshold goal is said to be about two orders of magnitude better than that of available analog types and about one order better than the latest digital types. The linearity of typical available accelerometers is about 25 ppm , the company says.

The GE program is related to development of a cryogenic gyroscope, which is proceeding under a previous contract at the company's engineering laboratories. An engineering model of the gyroscope unit has been built and a prototype for testing will be produced, the company states.

As in the gyroscope, the proof mass of the accelerometer will be suspended and rotated in a magnetic field acting on a superconducting surface. The whole structure, including a cryogenic preamplifier, will be enclosed in liquidnitrogen environment. Data pickoff will be through the preamplifier

The delay line being developed by Martin is designed for $15,000-\mathrm{ft}$ transmission without energy loss. It is expected to fit in a 3 -in. cube. The line will operate at 4.2 K in the microwave region between 4 and 15 Gc and will provide a delay of $20 \mu \mathrm{sec}$. It is to be used in a classified system now in development.

Only from OHMITE

MIL-R-19365C

 Across the Board!

HIGHLIGHTS OF MIL-R-19365C -This revised specification covers power-type, wire-wound, adjustable resistors from 1 to 15,000 ohms inclusive. Resistance tolerance is specified as $\pm 5 \%$ for all eight power ratings which are listed at right. The maximum continuous operating temperature is $350^{\circ} \mathrm{C}$ (Char. V).

MIL-R-19365C resistors are the tubular type with singlelayer windings and lug-type terminals-two fixed and one adjustable.

Ohmite can supply all eight adjustable resistors to meet every requirement of MIL-R-19365C. Higher resistances using smaller wire sizes are available, also, to meet the performance requirements of this new MIL specification.

Write for Military Catalog 50B-the "Easy Way" 10 Order MIL Resistors.

OHMITE MANUFACTURING COMPANY
3643 Howard Street, Skokie, Illinois
Rheostats Power Resistors Precision Resistors Variable Transformers Tantalum Capacitors Variable Transtormers Tantalum Capactiors Tap Switches Relays R.F. Chokes Tap Switches Relays R.F. Chokes
Germanium Diodes Micromodules

STANDARD MIL-R.19365C ADJUSTABLE RESISTORS

STYLE	watts	DIMENSIONS		OHMS	
		LENGTH	DIA.	MIN.	max.
RX29	11	18.	the	1	470
R×32	17	2	\%	1	910
8×33	26	3 .	\%*	1	1.500
R×35	55	$4{ }^{*}$	\#n*	1	3,600
R×36	78	4	$1 / 44^{*}$	$!$	5.100
R×37	113	6.	$13 / 4$	1	8.200
R×38	159	8.	16%	1	11.000
RX47	210	101/2	$1 \mathrm{~W} \mathrm{c}^{+}$	1	15.000

-0.004* Diameter wire

Offering you complete availability of these MIL resistors so quickly is another indication of Ohmite's ability and desire to give industry the finest, most advanced resistance products with the best of service.

Now! Voltage Controlled Oscillator ...for FM with CRYSTAL STABILITY.

vCXO, Model 10M WA measures only $3 / 4^{-\prime} \times 2^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}$ with cover on.

Control Characteristics of Model Control Characteris
10 M WA (10.7 mc).

The new VCXO is a crystal oscillator directly frequency modulated by a control voltage. Direct frequency modulation may be had at any center frequency from 10 kc to 30 mc without frequency multipliers. This all solid-state device produces frequency swings of $\pm 0.2 \%$ of its crystal stabilized center frequency while maintaining excellent linearity. Center frequency stability is constant over wide temperature changes.

The standard VCXO, Model 10M-WA, has a center frequency of 10.7 mc . Available off the shelf in sample quantities, the Model $10 \mathrm{M}-\mathrm{WA}$ has a deviation of $\pm 20 \mathrm{kc}$, linear to within $\pm 200 \mathrm{cps}$. Measured temperature drift is less than 1 kc from $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. Output power is 5 mw .

Other VCXO's with similar specifications and with center frequencies as indicated above, are available on special order for both commercial and military system requirements.

If you have a frequency modulation problem, call on Itek Electro-Products engineering specialists to assist you in the design of your circuitry and in the selection of a VCXO best suited to your needs.

Write for Bulletin No. 10M-WA
Itek Electro-Products Co. 75 CAMBRIdGE PARKWAY, CAMBRIOGE 42, MASSACHUSETTS UNiversity 47200

WASHINGTON A REPORT

J. J. Christie

Washington Editor

RFI-THE HANDWRITING ON THE WALL

The Defense Department's Electromagnetic Compatibility Program, representing a long overdue effort to combat radio frequency interference from a military standpoint. is gaining momentum.

A big step forward in the program will come with the establishment of an RFI analysis center. This facility, which reportedly will be set up and administered by the Armour Research Foundation and located at Annapolis, Md., will be the focal point of efforts to develop techniques for measuring and predicting RFI environment and emission.

Meanwhile, DOD is collecting spectrum signatures on both new and existing equipments for experimental testing. It has let a few contracts and will award others this year to research measuring and predictive methods.

An example of the type of research required at this stage of the game is a project at Georgia Tech which seeks a short-cut means of measuring antenna field patterns. If efforts to measure far effects at close range are successful, Pentagon officials say the expense of such testing would be reduced by a factor of 10 .
Once the nature of the data required for interference prediction and control can be ascertained and the best methods of obtaining it can be determined, it is expected that a considerable amount of $\mathrm{R} \& \mathrm{D}$ will be necessary to upgrade instrumentation capabilities.
As the program matures, manufacturers will be required to furnish spectrum signatures with breadboards and with prototypes. Eventually, DOD officials expect that spectrum signatures can be supplied with design proposals on the basis of circuit designs and components.

The Consequences for Industry of the RFI compatibility program eventually will be similar to those now resulting from the Pentagon's determined effort to impose quantitative reliability specifications.
Initially, as in the case of reliability, the impact of the RFI program will be felt primarily on the systems and equipment level-in the need for specialized personnel and the necessity for increased testing and inspection. But, it won't be long before new obligations permeate the onmponents level. DOD experts believe that by 1963 designers of relays, tubes, transistors and other components will be dealing with RFI requirements. They also foresee a boom in filtering device developments.
A good indication of the growing awareness of the RFI problem is the expectation that some 600 engineers will attend the third national IRE symposium on the subject to be held in Washington June 12-13.

MILITARY COMMUNICATIONS DEFICIENCIES

The Kennedy Administration's re-evaluation of defense policy has resulted in strong emphasis on improving both strategic and tactical communications systems and command and control facilities.
In reference to the strategic requirements, the President told a recent
mecting of the NATO military committee: "In our studies we have found a serious need for a sensitive and Hexible control of all arms, and especially of nuclear weapons."

He outlined in his defense budget message requirements for "invulnerable and continuous command posts and communications centers" to insure "controlled and properly authorized response.

Implementation of these goals involves development of airborne and seaborne command posts as well as mobile land units and underground installations. The plan envisions tying one or more mobile command posts into key communications centers such as the Strategic Air Command headquarters.
Under wasideration for airborne centers are either the Lockheed C-130 transport plane or the KC-135 tanker version of the Boeing 707, both of which have the advantage of short runway requirement. The project may lead to new requirements for airborne computers, although it is noted that a good deal of the data processing could be performed on the ground and that the results would then be relayed to the flying command posts.

Underground installations will give added impetus to efforts to propagate low frexpuency and very low frequency signals through nonconductive rock strata. The program also puts further emphasis on the necessity for shock-resistant communications and for data-processing equipment.

Tactical Communications are under review as much from the point of view of procedures as from the standpoint of equipment. As one DOI) communications official put it, "voice transmission is too wasteful of bandwidth to be relied upon under present-day battlefield conditions. W'e must go to code to the fullest extent possible and even in fairly rudimentary equipment."
Concern over spectrum congestion and both intentional and unintentional interference has Pentagon communications experts anxiously watching developmental work on various modulation schemes and on wideband systems such as random access, discrete address systems. (See story on p 4). However, they remain noncommittal on these developments, pending determination of cost. weight and complexity as compared to conventional narrow-band systems.

Military communications planners expect to put greater reliance on digital data links for tactical use and point to the need for further development work in this field
Mobile tactical command posts also have high priority. One feature of these will be smaller versions of the trailer-housed MOBIDIC general purpose digital computer developed for use at Army headquarters level. Smaller versions will go into mohile units at corps and division levels, and perhaps at even lower command echelons.

McNAMARA'S TROMBONES

Drastic alterations in the Pentagon's procurement organization and procedures could result from studies that have been initiated by Defense Secretary Robert S. McNamara. Not only is single-service procurement under study but also the often proposed ministry of supply appmach under which procurement for all the services would be unified.

Some 100) or more quick study projects, which have been dubbed "McNamara's Trombones," have been assigned by the Defense Secretary since taking office in January. They range from re-examination of topplevel strategic dectrine by the Joint Chiefs of Staff to improved means of preventing classified information "leaks."

rectifier
 components news

Here comes the ZJ34, looking for trouble . . .
And, if the 2 J 34 is half the rectifier our men claim it to be, the trouble had better men claim it to be, the trouble had better asking the right party.
The 2 J 34 is the first double-diffused all hard-soldered high current rectifier on the market today, and if that fact alone doesn't stagger your imagination, consider its formidable statistics: maximum average single phase forward current (Ts-150 Stud). . A DC; maxi cps 1 phase basis) 1600 amps; maximum allowable peak reverse voltage, re petitive up to 600 PRV and transient up to 800 PRV.
So if trouble comes to you in the form of high current applications, give a long hard look at the $\mathrm{ZJ34}$. It's quite a trouble solver. A complete spec sheet is yours for the asking. Drop a note to Section 23D10

Our men in the field have been putting their ear to certain key-holes ately, and report back to us a lot of talk in the industry over plated verdesions. Ever eacer to settle an arßu ment we ran test recently on six different makes of IN538's at rated load, and the painted units ran an average of $10^{\circ} \mathrm{C}$ cooler than the plated ones. Granted, a silver or gold finish certainly looks pretty, but it means hotter operation, reduced lite expectancy. At General Electric we paint them. Bless us?

Stomach upset?

Nerves on edge?

Possibly you got that way trying to compare SCR's and Power Transistors. Let us try to make life easier for you.
Rectifiers are traditionally rated in cerms of average of a half cycle sine wave - they conduct one-half cycle, block the other half.

SCR's are rated the same way. For example, 2N681-689 Iavg $=16 \mathrm{~A}$ in the above halt-wave circuit. But power transistors are not rated in a half-wave circuit. They are rated on a DC basis. So in order to compare current ratings we must use the SCR DC rating. For 2N681-689 this is 25 A DC, as shown on the new spec sheet. wave form is the DC value which would produce an equivalent amount of "resistive heating," the 25 A is also the RMS
value of current the device will carry. Notice in our little drawing (we use the term loosely), that the aingle phase 16 A 25 A DC is that in comparing current, rating for SCR's and power transistors, use DC ratings for both
Now-how about gain? A given 30 amp power transistor requires 10 A base current for a collector (anode) current of 30 A. In an application switching 20 amps at a 100 cps repetition rate at a 10% duty cycle, this transistor would require 100 times more drive power than an SCR. transistors have important that power but when comparing them to SCR' lot more than current ratings must be kept in mind. The man to see for all the information on SCR's is your G-E Semiconductor District Sales Manager. He is probably sitting by the phone right now waiting for your call.

The G-E Semiconductor Rectitier Components Guide is now available. Write for it.

How not to treat

 our precious products!For many good reasons, high potential testing on the production line can be a real semiconductor killer, particularly only one completely safo rule for any high potting test.

The rule is: Either remove electrical connections or place jumpers across all semiconductors before applying high voltage anywhere in the circuit! Don't be known as a semiconductor killer.

Rectifier Components Department Auburn, New York. In Canada: Canadian General Electric Co., 189 Dufferin St Toronto, Ont. Export: International General Electric Co., 150 East 42nd St., New York, New York.

DeJUR Announces unique...new DIEITAL TRANSDUCERS and SUBMINIATURE PRESSURE INSTRUMENTS

FEATURES

- Small size . . . light weight
- Completely self-contained-no auxiliary conversion equipment needed
- Accuracy equal to much larger units
- Improved environmental and dynamic performance-ideal for military applicatlons
- Multiple outputs obtainable
- Superior reliability and versatility

DeJur Digital Transducers are self-contained solid state miniaturized packages designed to measure various parameters (pressure, temperature, flow, acceleration) and supply a digital signal output without the use of auxiliary equipment. The result can be a pulse duration type (PDM) digital signal whose pulse width in time is directly proportional to the amplitude of the input parameter being measured. PPM and PFM outputs also can be made available.
Constructed to meet rigorous conditions of application and exposure, DeJur Digital Transducers produce signals compatible with digital computers and electronic counters found in all military and industrial installations.

A new dimension in pressure instrumentation is created by the introduction of a complete line of subminiature pressure instruments. It includes potentiometric pressure transducers, pressure switches and pressure indicating meters with static, dynamic and environmental performance characteristics superior to larger units.

WRTE FOR DETAILED INFORMATION

You're always sure with

ELECTRONIC COMPONENTS

ELECTRONICS DIVISION, DEJUR-AMSCO CORPORATION, 45-01 NORTHERN BLVD., LONG ISLAND CITY 1, N.Y. SEE THEM AT DeJUR BOOTHS 2307.2309.1.RE SHOW

Pulsing Microwave Device"; "Microwave Filters Using Ghost-Mode Resonance," and "A Minia-ture-Package 2,200 Mc Parametric Amplifier Using a Varactor-Loaded Helix."

The keynote speaker will be James Bridges, Defense Dept. director of electronics, who will discuss "New Components and Their Impact on Our Future."

The conference, sponsored by the IRE, AIEE, EIA and Western Electronic Manufacturers Assoc., will be at the Jack Tar IIotel.

Standards for Luminance Available From NBS

A program to provide standards for luminance has been initiated by the National Bureau of Standards.

The program is in response to requests for precision evaluation of the brightness of aircraft instrument dials and panels.

Covering two components-a diaphragmed, flashed opal glass and an electric lamp-the standards are also being used for other standardizing purposes: for example, to achieve uniformity in measuring the brightness of cathode-ray tubes and TV sets, and to calibrate the luminance meters used by engineers.
Luminance standards are issued with a report of calibration containing instructions for their use. They are available at prices ranging from $\$ 63$ to $\$ 72$ (depending on the size of the lamp component), from the Photometry and Colorimetry Sections, National Bureau of Standards, Washington 25, D.C.

Over 100 Functions Monitored

Engineers test a new system that will check out the lounching of this country's first Soturn booster later this year from Cape Canoveral, Fla. Monitoring more than 100 functions, the system will automatically stop the launch sequence in the event of any malfunction. It was developed by the Guidance and Control Div. of the National Aeronautics and Space Administration.

SIMPLIFY YOUR SWITCHING CIRCUITS

with the new Shockley 4-layer diode (Type E)*

If simplicity and speed can improve your switching circuits, talk to our engineers about the capabilities of the Shockley 4 -layer diode. A few of these circuit applications are shown here.

For other applications and for specific information,
our engineering sales representatives are listed in EDC and EEM.

Shockley trans/stor

UNIT OF CLEVITE TRANSISTOR
CLEVITE

There's a Better Way... to cool a transistor. An idea like this, I realize, is liable to give an electronics engineer the midnight creep. Or drive him to drink. That's why I sell Birtcher heat radiators. I don't even have to bend an elbow to come right out and tell you that you'll get from 25% to 27% better transistor efficiency. Lets you increase input wattage, too. And you'll no longer have the spectre of Thermal Runaway haunting your dreams anymore. You can even forget derating curves (but not blondes). \square Now this reminds me, have you written for your membership certificate to my own anonymous Society? It's genuine Pergamum parchment (the certificate, that is) of indescribable beauty and portent. Send for my other stuff, too. Catalogs, qualification test reports you'll get, but nothing illustrated above. Write to: Charles F. Booher, Secretary, There's a Better Way Society of America, Inc., The Birtcher Corporation / Industrial Division, 745 S Monterey Pass Rd., Monterey Park, Calif.

NEWS

Leipzig Fair Indicates Slow E. German Progress

Radio and TV Sets On Display Fail to Impress Western Visitors

Gustav Grenschow

Electronic Design W. German Correspondent

WESTERN obesrvers at the Leiprig Spring Fair in Commınist East Germany were largely unimpressed with the radio and television models on display. On the whole no important technical advances were evident.

Improvements in sound quality, ease of control and sensitivity appeared to have reached a peak last year. Some of the set cabinets this year were more contemporary in design, though. more in the direction of stylings in West Germany.

Production Emphasis
 Is Shifting to TV

A slow shift in production, from radio receivers to more television sets, is apparently under way in East Germany, where all plants are Govern-ment-owned or controlled. Manufacturing of home radios has been stopped at the Stassfurt plant, as has production of portable and auto radios at Funkwerk Halle. Both plants are now fully engaged in turning out television receivers.
Television production is concentrating on 15 set models, with list prices ranging from $\$ 410$ to $\$ 900$. Picture tubes for the receivers are standardized; only two types are available for all 15 receiver models. One of the tube types, a $17-\mathrm{in}$. variety, is being used in five models, and the other. 21 in., in 10 models.
In radio manufacturing, nine East German plants are building a total of 29 models of home receivers. Of the nine plants, two are concentrating on seven combination radio-phonograph consoles. Three manufacturers are building four portable radio models.

Three of the four portable radio models are transistorized.

Output of Semiconductors
 In Millions at Two Plants

East Germany has two producers of semiconductor devices, Werk Fuer Fernsehelektronik in Berlin-Obserschoeneweide and Halbleiterwerk Frankfurt in Frankfurt on Oder. Plans this year call for producing 3 million transistors and 5 mil lion diodes and semiconductor rectifiers.

The Berlin-Oberschoeneweide plant is developing germanium and silicon diodes for small-
power applications, as well as 'Lener diodes of up to 250 mw . The Frankfurt plant, in the midst of a long-range expansion program, is making germanium transistors and diodes.
Some of the East German component production is being adapted to printed-circuit requirements, but this field seems in a first stage of development, according to what was shown at Leipzig. There is, however, an over-all plan for the gradual, widest-possible introduction of printed circuits in East Germany.

Satellites Appear to Lag
 In Radio-TV Styling

Czechoslovakia, Hungary, Poland and other satellite countries exhibited at the fair. Judging by the displays, though, some of these nations are several years behind in radio and television styling and circuitry compared with the West.

Transistorized portable radios were shown by Czech, Polish and Hungarian manufacturers. A Czech model, dubbed Universal, can be used as an auto radio or a normal portable.
A Soviet transistor radio of very small dimensions had an audio output of 800 mw . This model is designed as a home radio, not as a portable in the Western sense of the word.

Television sets from the Soviet Union and some from Czechoslovakia came the closest to Western standards of cabinet design. These sets were equipped with 17 - or 21 -in. tubes and were relatively flat. - -

EIA Technical Data Service Offered to Microwave Users

Information to avoid possible interference with nearby microwave facilities will be available to microwave equipment manufacturers and users under a new Electronic Industries Association service.

The service, set up after consultation with the Federal Communications Commission, uses a standard form for compiling technical data on all U.S. private and commercial microwave facilities. These data include transmitting frequency and bandwidth; transmitter make, model, and rated power output; antenna type, input power and location; and compass points with which the station communicates.
Photocopies of these data forms are made and distributed weekly to subscribers. Assuming 100 per cent participation in the program, subscribers will have complete data on all microwave operations within a year, since the FCC requires licenses in this class to be renewed annually.
Information can be obtained from the EIA in Washington or from Seabrooke Printing Co., 514 Tenth St. N. W., Washington 4, D.C.

ELECTRONIC DESIGN • April 26, 1961

The Avnet System

Creates a new Concept of Service -"Locational"

Avnet penetrates the intricacies of supplying the one right solution to your electronics requirement by creating a totally new Concept of Service. LOCAL plus NATIONAL becomes LOCATIONAL.

Only Avnst's giant mational network gives you these benelits:

1. Competitive prices
2. Crews of highly trained field men. in constant seminar with the manufacturers.
3. One of the country's largest, best-balanced inventorics.
4. Instant accivity, if needed. from any or all
of eight maior Avnel Service Centers and of eight majior Avnet Servise Centers and
Stocking Facilities.

Only Avnet's strategic LOCAL Service Centers give you these benefits:

1. Immediate Delivery.
2. Sules Engineers living, working next door. personally acquainted with your localized needs. 3. On-the-spot quality controls, inspections. checking for steady posilive maintenance of uniformity slandards.
Connecilete nearby assembly facilities for your Connect
ments.

For the first time in the Industry, Avnet combines these 2 groups of benefits. A new concept-and a new word-is formed. Avnet has not I. but 8 Headquarters. When you concept-and a new word-is formed. Avnet has not I. but 8 Headquarters. When you contact your Loca
sources of supply.

AVNET

THE AVNET SY\&TEM
mon methode matorials Managemont
AVNETELECTRONICS CORO
 CERAMIC CAPACITORE TIC PRECIEMOMES CLARE RELAYS. ROBERTSON SFLICE \& COMNECTOR CABES. BABCOCK RELAYS. KINC SUBMINIATURE MI-TEMP CERAMIC CAPACITORE. TIC PRECISIOM TRIMMERS. U. S. GEMCOR EEMICONDUCTORS. SANGAMO CAPACITORS. MICRODOT CONNECTORE, BPAAGUE CAPACITORS CIRCLE 26 ON READER-SERVICE CARD
This is the Clary Model 2000 series
Militarized Printer. This is the one that
operates flawlessly... that prints
characters in a straight line within .001
inch...it even withstands such severe
conditions as a 50g shock of 7 milliseconds
duration and 10g's of vibration through.
out the frequency range of 2 to
12,000 cycles per second.
Constructed on a sturdy panel for rack
mounting, it contains all the necessary
electronic equipment for data decoding,
digit selections, and control functions.
It employs a simple, clean, basic design that
makes it adaptable to print the output
from a wide variety of devices, including
computers, digital voltmeters, shaft
position transducers, electronic counters,
and digital clocks. In addition, it is ideal
in industrial applications where continuous,
unfailing operation is required.

NEWS

U. S. Sends Clear Radio Signals To Venus and Back in $61 / 2 \mathrm{Min}$

Strong, clear radio signals have been reflected back to earth from Venus. The round trip took about 6-1/2 min , the National Aeronautics and Space Administration announces.
The transmission was completed at the Jet Propulsion Laboratory's Goldstone tracking station in the Mojave Desert. It is the first announced success in a two-month experiment to unveil some of the mysteries of Venus.

The laboratory crew at Goldstone started months ago to prepare two $85-\mathrm{ft}$ dish antennas for the experiment. The transmitting antenna, placed 7 miles from the receiving antenna to minimize interference, sent a $2,388-\mathrm{mc}$ signal to Venus using about 10 kw of power. The signal was a conical beam only 0.4 deg wide.
The Goldstone receiver used both a maser and a parametric amplifier.
Other experiments have bounced signals off Venus, but this is the first time such signals have been immediately detectable without elaborate analysis and processing, NASA reports.

R\&D in Chicago Region Under Study by 2 Groups

Electronic research and development in the Chicago region is being examined for quantity and quality by the National Electronics Conference, Inc., in cooperation with a group of engineering management personnel.

A study sponsored by the two groups is seeking to determine whether the region's R\&D potential is being adequately realized.

The findings are expected to be available for presentation at the 1961 National Electronics Conference, to be held Oct. 9-11 at the International Amphitheatre in Chicago.

French Field-Effect Amplifier With High Impedance Offered

A new French field-effect amplifier reported to have an extremely high input impedance- 0.5 to 5 meg , depending on type-is being offered in large quantities in France.

The semiconductor device, called Tecnetron, is made by Thomson-Houston Co. Designed principally for use in fm radios and TV sets, the amplifier has an upper frequency ceiling of 110 mc.

CIRCLE 248 ON READER-SERVICE CARD $*$
ELECTRONIC DESIGN • April 26, 1961

attention
diode users:
if someone has removed your
copy of
Hughes' informative new brochure on germanium
diodes, just circle 248
on reader
service card,
or write

Hughes
Semiconductor
Division • Box 278
Newport Beach,
California

WHY ENGINEERS USE GERMANIUM DIODES

How to characterize specify and use germanium diodes today

attention diode users: if someone has removed your copy of
Hughes' informative new brochure on germanium diodes, just circle 248 on reader service card, or write

Hughes
Semiconductor Division - Box 278 Newport Beach, California

Why engineers use germanium diodes

Of late, there has been much discussion as to exactly why, with the apparent superiority of the silicon diode, germanium diodes are being purchased and used at all. Especially today when the price gap between silicon and germanium has been appreciably lowered. To the device engineer, the following may appear "old hat"; but, for the engineer who utilizes semiconductor devices intermittently, changing semiconductor technology and market conditions should be constantly examined, summarized and recorded so that he will not lose sight of the exact purpose each component is designed for and where it fits in today's overall engineering picture. Hughes, pioneer of semiconductor devices (1), has attempted to achieve this with the following discussion of the germanium diode.
Price for today's semiconductor devices is a major design factor and should be examined first. Historically, the germanium diode has been less expensive than the silicon. In many instances, however, silicon diodes' costs have been reduced through improved manufacturing techniques so that they now equal those of germanium. But, where requirements call for the characteristics which originally made the germanium diode a valuable and popular device, price is still a most important factor. Where high recovery speed in the millivolt region combined with high conductance is a requirement. the silicon diode is still far more costly
to manufacture and to the purchaser tha germanium.
Other characteristica able in silicon, inhe ium diodes extereme taln applications. Ge conducting at low shown in Figure 3 र show a definite lag 0.5V forward voleag low forward voltage some germanium typ ing as low as 0.2 V . at low temperature loss of efficiency als ium diode essential istic is a major requ

Device engineers anium diodes prima electrical characteris tively low price when istics are too costly
(1) H. O. North, (Hy gaper preantion it
T. E. Firto, M. E. (Hiegto Aircraft Co. Majouromente of Poter odve. pepar pro 20.18
R. G. Bhulnm, M. Airerafi Company). "H annium p-a Ju ution pus murescs, Vol. 24 Detober, 1858.

germanium diode

FAMILIES AND TYPES

Elaniall, dermanium diodes can be
classified into three basic performance groupings
(a) general purpose (point contact)
(b) general purpose (gold bonded)
(c) ultra fast switching (gold alloy)

Figure 2 compares typical forward characteristics of the three germanium families listed above. Note the high forward

Polm Contect Cold Bencod Gold Alloy NOTE: Detailed opecificalione on all Hughere germanium diode iypeo are avoilable upon re. quest - we oestr cover for addreas of Hughes ropmentature neents yous.
conductance of the also dramatizes the of all three at low le

Figure 1 graphicall covery times of the parison. It should be represents the mea oped from a large widely used types
513. 3-81LEON/O: Forward Curren

Ge cole Boneed as

Note: If special body markings or sodings are required, llow additional .008~ por outside body diameter.

Fig . 1 - CeEmmanium panily companisons Typical Revorso Recovery Characteristics
 Tinse inn namosecondes)

and therefore more costly or than the same device in
ristics, presently unattaininherently make germaneremely attractive for cer 13. Germanium diodes atart low forward voltage as e 3. Whereas silicon diodes e lag until approximately oltage is erceeded. Where oltage drops are required, m types will begin conduct .2V. The ability to operate atures without significant cy also makes the german ntial where this character - requirement. neers today then, use germprimarily for their unique icteristics and for their relawhen the desired characterostly to produce in siticon.
(Huybes Aircraft Company), ium Diode of Improved Donip.: at wiscos. I.E.E. Convertion, \&. E. MaMahos, J. P. Roech
 Poinf-Contict Gormanium DiPoind At wheonk. 1.e.E. Cos 20. 1863.
a. M. B. MeMahon. (Hustroe ton Diodery., Curruate in Ger

f the latter two. Figure 2 st the forward conductance ow levels.
nically illustrates typical ref the three families for comald be noted that each curve mean characterimic develarge somplase of the more pes in each family.

M/OERMANIUM COMPAWISON urrent vs. Fonward Vottase

POINT CONTACT DIODES

ULTRA FAST SWITCHING DIODES

features These Hughes diodes ire a modification of the "gold bonded" process of diode manufacture. They combine fast recovary with low voltage drop. Devices in this series switch at nanosecond speeds and have rectification efficiencies ranging from 60 to 75% © 100 mc . Their for ward conductances are much higher than the "point contact" germanium types.
applications Designed especially for high speed computer logic, high-frequency transistor circuits, extremely fast reference switching...and, also, low-noise, lowlevel RF modulation and demodulation.
physical characteristics The original "point contact" diode is actually one in which the active junction is formed by a pressure contact between the whisker tip and the slice of germanium (i.e. the old crystal radio set with its cat whisker). The modern version of this device consists of a germanium N -type die which is soldered to one lead. The other lead is welded to a molybdenum S-shaped whisker whose tip has been indium plated. The tip is then fused to the germanium slice to form the active junction. Externally, they are fusion sealed in a subminiature glass package to ensure complete isolation of the active elements from damage or contamination They will withstand severe physical shock and vibration.
elbctaical characteristics Forwand currents range from about 1 to 25 mA at one volt while reverse currents range from is to 500 uA at 50 volts. Peak inverse volsages range from 50 to over 150 volts. The diode capacity is generally less than 1 p . Frequency response is about 100 mc . The diode operates efficiently within the range from $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
applicamons The number of uses for these diodes is legion. Examples are tube and transistor driven logic circuits, RF mixers, clampers, modulators, bridge recti fiers, detectors, and instrument rectifiers.
-iav wellors amallatb
HUCHES ELS TIPES

IN34A	IN66	IN70A	IN90	IN116	IN126A* IN191	IN198B	IN297	
IN38B	IN67A	IN81A	IN95	IN117	IN127A* 1N192	IN268	IN298	
IN54A	IN68A	IN88	IN97	IN119	IN128*	IN198*	IN290	IN480
IN58A	IN69A	IN89	IN99	IN120	IN142	IN198A	IN294	IN636

physical characteristics the oold bonded germanium diodes are tientical with the point contact types except that the molybdenum whisker is replaced by a sold-gallium doped wire. The forming process or "gold bonding." is a process in which a short pulse of current fuses the gold wire tip into the germanium and forms a small P-N iunction, giving fast recovery and low shunt capacitance.
electracal characteristics These pop ular Hugher diodes represent a high con ductance series. They have a range of forward currents from 25 to 600 mA at one volt. Inherent in this series is a sharp voltage-current reverse characteristic more like that which silicon displays. That is, the reverse current is linear with ap plied back voltage until a sharp break down region is reached. The reverse cur rents and peak inverse voltages, as well

Wine temperature ranges, are the same - those of the "point contact" series.

APPLICATIONs The applicability is also much the same as that of the point con lact series except the gold bonded devices offer the advantage of higher forward conductance and higher reverse impedance. It should be noted that the alloy formed at the juncture of the crystal and the whisker (gold, gallium, and germanium) is somewhat more britele than the corres ponding alloy formed in the case of the "point contact" diode Although consid erable progress has been made in improv. ing the mechanical ruggedness of these devices to the point where they are almost as rugged as the "point contact" types, careful consideration should be given to this factor when designing equipment which must withstand severe environmen tal conditions.

Heames ers types

IN96	IN98A	IN118	IN139	IN143	IN276*	IN279	IN287	IN291	IN770
IN96A	INIOK	IN118A	IN14O	IN270*	IN277*	IN281*	IN288	IN292	IN835
IN98	INI(K)A	IN133	IN141	IN273	IN278	IN283.	IN289	IN500	

RECOVERY Measured with the Lumatron scope and attechments, see Illustration 1. when switching from 10 mA to -6 V . $\mathrm{R}_{\mathrm{L}}=100$ ohms, they recover to 1 K ohms in 2 to 5 nanoseconds. Typical capacitance (B) 0 Voles $=0.8$ to 4 pf (measured on Boonton's Model 75A-S8 capacitance bridge with applied signal voltage 50 mV peak to peak). Forward switching speeds are too fast for detectable measurement on the presently available "traveling wave" or "sampling scope" equipment.
hUGhes types Two Hughes house types are currently available, HD2963 and HD2967; and resistration procedures for additional types are in process.

ILLUSTRATION I REVERSE RECOVERY CIRCUIT

> Lumatren Lumatran
Sampling Samping Oscittoscope SO OMEns
IMPUT

Survival Reliability'

Specific reliability data must include a complete definition of test conditions, testing intervals, what constitutes a failure, applicable confidence levels, and many other pertinent facts in order to be at all meaningful. However, the following chart indicates examples of Hughes' actual reliability performance against customer specification for a few representative germanium diode types.
Operating Lifo
IN1980
90% confidence that $\quad \begin{array}{r}\dagger 90 \% \text { confidence that } \\ 95 \% \text { of each population }\end{array}$
IN127AS will survive the specified pime interval.

1N281J

1N270s
customer

Purchasing Do's and Don'ts

DONT specify a device that does not exist for your circuits-although this will motivate research and development groups to design better products for the future... the immediate result is long delay in quantity delivery. Be sure you can wait if your requirement is exotic

DONT specify inferior products for economical purposes resulting in unreliable circuit perform ance. This practice creates a vicious reject and replacement cycle between manufacturer and user.

DONT buy from manufacturers whose facilities are not adequate for testing to rigid military specifications and whose production quantity deliv ery is questionable

DON'T attempt to ouy reliability by specifying breatdown voltages far in excess of those re quired. There may be some exceptions. however, his is a very expensive practice. DO buy reli ability - not reliability by safety factor!

DO make sure that the diodes you buy meet the manufacturer's advertised and regintered specifications.

DO make sure your IN diode type is "registered" with EIA, not "reserved" When using types with "reserved" status, the manufacturer may alter his specifications at will.

DO make sure the leakage currents are meas ured at a reverse voltage as high as your present requirement demands.

DO remember that reliability has to be designed in the diode; it cannot be tested in. No amount of testing will undo poor design. However, it is important that the manufacturer have a sound quality assurance program to insure that the reliability is actually there.

DO make sure that a diode that is to be used Do make sure that a diode that is to be used as a switch meets your speed requirements by actual test in your circuit; this is the only true
test. Manufacturers often show values for switchtest. Manufacturers often sh
speeds that are optimized.

DO be sure to get the leakage currents you actually need. Specify the measurements which match most closely your actual circuit requirements.

DONT guess what the parameters will be if your circuit is for intended high remperature operation, but DO get the proper data from the manufncturer.

Germanium diode's future at Hughes

Obviously, device engineers still need and use germanium diodes and will continue to incorporate them in their circuits for yeare to come. Hughes also will continue to design and produce better and more efficient germanium devices for the industry. Listed below are some of the goals Hughes engineers have outlined to achieve that end

- Leakage curnunt approacting miero micro-amps
- Minimum paramotor ehange with tomperature
- Infinite life expectancy
- Mirpominiaturizal reliability
- Recovery timet in the \qquad

HUGHES SEMICONDUCTOR DIVISION SALES OFFICES
BOSTON WE 34824 CHICAGO NA 2.0283 dallas em 1.1627 DENVER SU 9.3593 DETROIT UN 3.6700 KANSAS CITY PL 3.6400 LONG ISLAND PL 1.4620 LOSANGELES OR86125 MINNEAPOLIS WE 9.046 NEWARK MA 3.3520 ORANGE COUNTY PR
ORLANDO CH 1.2538 PHILADELPHIA MO 4.8365.6 SAN DIEGO AC 2.0404.5 SAN FRANCISCO DA 6.7780 SYRACUSE GR 1.0163 WASHINGTON, D.C. FE 7.6760 For export write: Hughes international
Culver City. California AUTHORIZED DISTRIBUTORS AKRON PO 2.8818
Akron Electronic Supply ALQUQUERQUE AM 83901
Radio Specialities Co., Inc. BOSTON RE 4.1000 BUFFALO GRA 3100 CEDAR RAPIDS EM 4.2493 Chicaco ha 1.6800 CHICAGO ST 2.2944 CHICAGO STM
Newark Electronics Corporation CINCINMATI MA 1.6530 nited Radio incorporated CLEVELAND MA 1.5835 DENVER AM 6.3181\&AL54986 OETROIT BR2.4200 Radio Specialties Co. HOUSTON JA 6.4369 KNOXVILLE
Bondurant Brothers
3.
Co LOS ANGELES RI 8.2444 Kierultf Electronics. Inc. Newart Electronics
Company Inc.
OR 4.840 MINEOLA, LONG ISLANE PI 6.8686 AINNEAPOLIS FE 9.6351 ew Bonn Company NEW HAVEN ST 7.7121 NEW YORK CH 3.5200 Terminal Hudson Elec. Inc NEW YORK CA 65611
Progress Electronics Co OAKLANO TE 4.3311
EImar Electronics. Inc OGDEN EX 3.8603 Carter Supply Company ORLANOD CH 1.3333
East Coast Radio of Orlando. Inc. philadelphia wa 55840 Radio Electric Service Co.
of Pennsylvania. Inc. of Pennsylvania. Inc. PHOENIX AL B. 6121
Electronic Specialties
Co
SAN DIEGO BE 9.0361
Western hadio and Television Supply Company Kierult Electronics. Inc. BR 6.3334
SEATLLE PA 37310 SILEER SPRING LO S. 5200
Kann-Ellern Electronics. Inc.
ST. LOUIS WO 2.9917
Electronic Components
Electronic Components for Industry
SVRACUSE GR 6.7431
TUCSON MA
Standard Radio Parts. Inc.

Semiconductor Division

HUGHES

hughes atrcraft compant
Newport Beach, Callfornia

Wet-Blast Machine Cleans
 Component Leads Rapidly

Semiautomatic cleaning of component leads prior to circuit board soldering is being done at rates up to 4,000 components per hour with a wetblast machine at Melpar, Inc., Falls Church, Va.

Other techniques evaluated by Melpar before choosing the automated wet-blast approach included brushing, chemical reaction, wiping, and glass erasing. The disadvantages of these methods included high cost, handling difficulties, and inability to clean all types of leads. The company sought a method that allowed uniform and complete cleaning, conveyor handling of components, and fast loading and unloading.

A modified wet-blast machine manufactured by Pressure Blast Manufacturing Co., Manchester, Conn., was chosen. In operation the machine adjutates an abrasive into a homogeneous watergrit mixture, which is forced out of a blast gun by compressed air.

Mighty Atom-Smasher Tube

Experimental model of 24 -megawatt superpower klystrons, being developed by Sperry Gyroscope Co., Great Neck, N.Y., for a proposed two-mile-long atom smasher, is assembled by Sperry engineers. Energies of up to 10 to 20 billion electron volts are expected to be achieved by driving relatively lightweight electrons along a straight poth. Six tubes will be delivered to Stanford University later this year. The accelerator of the atom smasher will require 240 of these klystrons.

- circie 240 on reader-senvice card

ELECTRONIC DESIGN • April 26, 1961

Look to FAFNIR

for

miniature
ball bearings of extra-clean vacuum-melt steel

Seconds after countdown, a microscopic pit in a miniature bearing could ground the most carefully planned space shot. To eliminate pits and other imperfections, Fafnir helped pioneer miniature ball bearings of vacu-um-melt stainless steel. This "extra-clean" steel is completely free of impurities, and makes for flawless bearing performance. Look to Fafnir for leadership in ball bearings. The Fafnir Bearing Company, New Britain, Connecticut.

BALLEEARINGS

NEWS

Simulator for B-58 ECM Station Has Automatic Program Control

A complex simulator has been put in operation by the Air Force to train crewmen of the B-58 bomber who man the Mach-2 craft's electronic countermeasures station.
The simulator, which has passed its acceptance tests, according to the manufacturer, Reflectone Electronics Inc., Stamford, Conn., is an exact replica of the bomber's Defense System Operator Station (DSO). In the B-58, the pilot and navigator are too occupied to monitor for tracking, possible attack, and to take countermeasures. The DSO operator, protects the aircraft.

Flexible programing, designed around an automatic programed system, permits the instructor to run the mission manually, automatically by a punched-tape programer, or both manually and automatically. The programer has a repeatable capacity for controlling 50 discrete functions over a maximum operating time of 10 hours during a single mission, according to the manufacturer.

A typical mission might include takeoff, use of the craft's passive and active defense systems, and communications and othreer equipment.

Reactions Are Prinfed by 300-Channel

 Printing Recorder for AnalysisStudents' reactions are recorded on paper tape; voice communications are recorded on magnetic tape. Fifty channels of a 300 -input-channel printing recorder record events as they occur. The remaining channels record the status of student controls or trainer actions on command of the

Student and instructor compartments of simulator for operators of B-58 electronic countermeasures station houses equipment for simulating missions, which can be programed automatically. Three punched matrix cards feed program information into trainer from triple box-like device above and to left of instructor, who may change conditions or insert malfunctions.
instructor at specific times. Only student errors are recorded, to simplify analysis.

Reflectone reports that the trainer simulates two enemy ground radars and three radar(quipped airborne targets. When the operator gets within range of these transmitters and is wacked he gets a warning. He then selects the com or chaff technigue he wants and observes ihe effects.

Airborne attacks can be simulated one, two or three at a time. Signal generators develop targets for display on radar-system indicators. All functions of monitoring, target selection, and use of armament must be performed to remove the target from the display.

Programing is provided by a llickock Cardomatic switch into which punched Mylar cards are inserted. Reflectone reports that, for the most part, voltages proportional to the value of the particular parameter are picked off a voltagedividing network by the switch.

The simulator uses an analog electro-mechanical computer system to produce pursuit or leadcollision attack courses, selection of which may be made by means of the punched cards. Angular quantities are generally indicated by mechanical shaft positions and scaler quantities by de voltages.

Development of very accurate elevation signals is said not to be necessary because the only elevation indication in the radar system is the relative time sequence in which the several target signals flash on the scope indicator. This function is provided with initial elevation set in as a de voltage.
The simulator is designed for retrofitting so that changes in configuration of the actual aircraft can be provided for in the simulator. - -

Slide out rack construction is used for simulator's electronic subsystems. Compuler for system is an ana-log-electromechonical unit.

BILICON NEW8 from Dow Corning
The Untouchables

Now...Single Crystal Silicon Doped to Your Specification

Write for "Hyper-Pure Silicon for Semiconductor Devices." Address Dept. 3316a.

Addrese:
Single crystal silicon... doped to your specific needs . . . is now available from Dow Corning. Rigid quality control of Dow Corning Silicon means greater device yield for you! And you achieve uniformity in device characteristics the result of greater uniformity in characteristics from rod to rod, greater lateral and radial uniformity within each rod.
This high quality is the result of a completely integrated production process - a process that starts with the manufacture of trichlorosilanes and other chemicals basic to silicon production. And at every step of the way, rigid quality control assures the ultimate in quality-purity.
Doped to specification single crystal Dow Corning Silicon contains in the order of 0.1 atoms of minority impurity per billion atoms of P-type material ... about 0.15 atoms of minority impurity per billion atoms of N-type material.
Louc oxygen content of Dow Corning Silicon reduces the undesirable effects on lifetime associated with the diffusion process. Result - few rejects ... increased device yield! In the picture at left, infrared transmittance at 9 microns is measured to determine oxygen content. Many materials register at pencil point-much higher than Dow Corning Silicon.
Crystal orientation is normally 111, but can be to your specification.
Specify Dow Corning single crystal silicon doped to your requirements. Specific resistivities within narrow tolerances from one to 1000 -ohms centimeter P-type . . one to 400 -ohms centimeter N-type. Rod diameters from 3 to 25 mm ($1 / 8^{\prime \prime}$ to $1^{\prime \prime}$) lengths to 250 mm (about $10^{\prime \prime}$).
Whatever your need - polycrystalline rod or chunk; high resistivity P-type single crystal rod; single crystal rod doped to your specifications Dow Corning should lead your list of sources.

HYPER-PURE SILICON DIVISION HEMLOCK, MICHIGAN

DOw Corning CORPORATION
MIDLAND. MICHIGAN
ATLANTA BOETION CMICADO CLEVELANII DALLAE LOBANOELES NEWYORK WABHINGTON, D.C. CIRCLE 31 ON READER-SERVICE CARD
From the broad line of Allen-Bradley quality ferrites, more and more designers are finding they can obtain the exact characteristics to meet their specific needs. Allen-Bradley's precise quality control methods insure continuously uniform electrical and mechanical properties-and A-B has the facilities for supplying ferrites in quantity. Listed below are a number of areas in which A-B ferrites have helped the manufacturer to reduce the product size or weight, or cost, and frequently the performance has been improved. If you have problems along this line, please let our engineers work with you in solving them.
0

APPLICATION	B FERRITE
TELEVISION, RADIO Deflection Yokes	$\begin{aligned} & W-03 \\ & W-01 \end{aligned}$
Flyback Transformers	w-or
Convergence Cores	W-01
I. F. Transformers	R-02
R. F. Tuning Coll (fized or permeabllity funed)	R-02
TELEPHONE SYSTEMS Interatage and Matching Tranaformers	W-03
H. F. FLUORESCENT LIGHTS Loading Reactors	W-07
Transformers	W-0s
ELECTRIC ORGANS AND HI-FI STEREO Oscillator Inductors	W-03
Output Tranaformers	W-0s
AUTOMATIC MACHINE TOOLS Magnetic Amplifters	R-03
Logic elements for high-power levale	R-03
Matching Transformers	W-0s
MOBILE POWER SUPPLIES Static Invertore	R-03
RADAR, MISSILES Pulse Transformers	W-04 R-02 (for short pulses)
PERMANENT MAGNETS	M-01

NEWS

Versatile Computer Is Planned To Process World Messages

Plans are under way for a versatile computer system that would process messages from a variety of worldwide networks.

The system, to be developed by RCA Communications, Inc., of New York City, reportedly will employ many of the techniques and much of the equipment used in the RCA 601.
The special data processor will be designed to store information that will enable it to handle automatically and rapidly all messages sent into it from any channel of communications. The system will be built to handle traffic transmitted by wire lines, microwave, coaxial cable, high-frequency radio, tropospheric scatter propagation or satellite communications systems.

By recognizing the various code symbols preceding a message, the processor will identify the type of message, the country it is destined for, the major city to which it should be sent, the route it should follow, the relay points along the line, and even the priority the message warrants. The system will then send the message through normal transmission channels to its destination.

One of the features of the computer-controlled system will be an automatic check for accuracy.

Two identical systems, to assure reliable operation, will be installed in New York City. They will occupy 3,850 sq ft.

10,000-W Transmitter to Bounce Telephone Signals Off Satellite

A $10,000-\mathrm{w} \mathrm{fm}$ transmitting system is being developed for the Air Force to bounce telephone and teletype signals off an Echo satellite. The system will be used on a 2,000 -mile experimental relay network between Floyd, N.Y., and Trinidad. West Indies Federation.

The equipment is being built by Radio Engineering Laboratories, Inc., Long Island City, N.Y., under a contract from Page Communications Engineers, Inc. It is designed to provide the reliability and clear-voice reception of wired telephone systems.

The new transmitter will beam its signals from Floyd at the satellite, which will reflect them downward. At Trinidad the highly attenuated signals will be picked up by powerful receiving systems, amplified and demodulated into their original voice, teletype or data messages.

The transmitting system includes a giant $10-\mathrm{kw}$ power amplifier (1,700 to $2,400 \mathrm{mc}$) and a $10-\mathrm{w}$ exciter, which will operate from an ultra-stable
"Atomicron" high-frequency generator
Page is in over-all charge of the installation of communications equipment, under technical direction of the Rome (N.Y.) Air Development Center.

Watch Converted to Measure Heart Beat Automatically

An inexpensive wrist watch has been converted into an automatic, convenient device for measuring the heart beat.

The device, called a Heart Beat Totalizer, was developed by Lockheed's Missile and Space Div., Sunnyvale, Calif., for two San Francisco heart specialists. It measures a person's heart beat day and night while he continues his normal way of life.

The device employs two electrodes, about the size of a postage stamp, which are taped to the chest. Wires from each electrode connect to a battery-operated amplifier, which can be clipped to a wearer's undergarment

Amplifier Increases Voltage
 of Human Heart Beat

Heart-beat voltage is increased by the amplifier and is transmitted by a thin double-wire to the wrist watch. A tiny electromagnet, taking the place of the watch's balance wheel, is powered by the heart-beat amplifier. The electromagnet operates the escapement mechanism of the watch, causing the second, minute and hour hands to move.

One hundred and fifty heart beats will move the second hand one full circle. For the minute hand to make a full circle, 9,000 heart beats are required.
Comparison of the heart watch with a conventional timepiece will tell how fast the heart is beating.

A patient wearing the Heart Beat Totalizer can determine the activities in his daily routine that produce increased strain on the heart.

Heart watch, looking like an ordinary timepiece, measures the heart beat.

THESE ARE THE "HANDS"

 OF A CRAFTSMAN......delicate, precise, nerveless. They're just one of the many sets of automated "hands" Sylvania has developed over two decades of manufacturing highuniformity Silicon Diodes.
As early as 1942, Sylvania produced its first Silicon Diode, type 1 N 21 . It was painstakingly fashioned by hand for highly specialized radar apparatus.

SYLVANIA SILICON DIODES

Today. Sylvania Silicon Diodes are produced in volume by automated "hands" capable of duplicating diode characteristics with mirror-image fidelity.
Superior Sylvania production facilities also provide diodes of high mechanical reliability. Case in point: Sylvania Silicon Diodes are cycled from $-78.5^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ to "prove out" the rugged, all-glass miniature package. Every Silicon Diode is subjected to critical leak-detection Zyglo tests to assure high-quality glass-tometal seals. Too, every Silicon Diode is scrutinized by 100% automated test equipment.
Sylvania offers the widest line of Silicon Diode families available. Just one phone call to your Sylvania Sales Engineer or Sylvania Franchised Semiconductor Distributor can fill virtually all your design requirements. For technical data on specific types, write Semiconductor Division, Sylvania Electric Products Inc., Dept. 184, 1100 Main Street, Buffalo 9, N. Y.

GENERAL TELEPHONE \& ELECTRONICS

Specify the new Amperex: P•A•D•T 40 the $\frac{2 \text { timenes faster }}{v=\frac{\text { nansesconst x penmies }}{\prime}}$ Right from the sketch-pad stage, plan your computer switching circuits with the new PADT-40. * The extreme speed and efficient design of the PADT-40 gives more U (usefulness factor) and lower cost x switching time. This results in fewer transistors to buy, less complicated circuits to design, and the elimination of many costly components because of multifunction circuit usage. But speed, of course, is only one of the cost-and-production advansages inherent in the PADT-40; RELIABILITY, as only the revolutionary Post Alloy Diffusion Technique can provide, is another; AVAIL ABILITY, as only the mass-production rechniques employed at the new Amperex plant in Slatersville, R. I., can provide, is still another; LOW PRICES (no higher than for low-speed transistors)... plus INTERCHANGEABILITY with many conventional mesa transistors, round out our 'package'. Yes, the new Amperex PADT-40 is truly worth specifying . . . now 1

Hikh Speed, plus

MECHANICAL RUGGEDNESS - guaranteed by the onlv proress that combines the best quali-
lies of both the alloy and the difusion methods As a result, the PADT-40 is resistant to vibration and shock.
PADT RELIABILITY - Hermetically sealed in a standard TO. 18 case. the PADT- 40 has a deep
diffused and extremely thin active base region As a tesult. the $h_{r e}$ and switching time are lemperature changes.
A Rugred. mech
a solder joints

- Flat bed aflachment for good heat
c dissipation
c Long path prevents weld contamination of
- Gold doped for high speed

SAVE TIME AND MONEY right from the start
 with Amperex P.A.D.T40

PNP Germanium Switching Transistor

NOW AVAILABLE FROM THESE
AND OTHER LEADING INDUSTRIAL ELECTRONICS DISTRIBUTORS:
CALIFORNIA
R. V. Weathearond company. aRILL SEMICONDUCTOR CORP. Ookland 6, Colif. EIMAR ELECTMONICS INC.
Oakland 7 , Calif. colorado interstare radio a supply
COMNECTICUT RADIO SHACK CORP. Stamford, Conn. W. Hortford, Conn.
N.w. Maven 10, Conn.

FLORIDA

THUROW ELECRRONICS, INC Coroo, Fla. : Jacksonvillo, Flo. Miami, Fla. Orlondo, Flo.
Pensacola, Flo. Tampo, Fla. ILLINOIS

(astiamporime

EDITORIAL

Good Styling a Critical Factor

The majority of electronic instruments now on the market show some evidence of good styling. In walking along the more than two miles of exhibits at last month's IRE Show, one expected almost automatically to see something smart, neat, clean and modern. Only infrequently did some boxed monolith, with camouflaged knobs and markings all in gray or black, turn up to remind us of the day when electronic engineers laid out their own panels.

It's quite certain that any Show attendees who grimaced as they looked at these ghosts of the past did not warm to buying them, regardless of their technical features. If a similar product showed evidence of being well designed both from the inside and the outside, they picked the latter.

The moral is obvious: if you design a product for the marketplace, make sure it meets today's standards of smart appearance.

Obviously silk-screened panel markings, baked on flush lines, and ordinary engravings look cheap. Neither can smart design be achieved now-as in recent years-simply by using fancy panel meters and colored knobs. We have reached a higher standard. Nothing less than completely integrated instrument designs are called for today:

To be properly designed, the product's circuit must not only perform its role and the controls be human-engineered to facilitate operability; the product must fit harmoniously into the total environment, which includes other equipment, test benches, storage shelves and the like. One such total approach to the packaging design of instruments was displayed at the IRE Show. The handiwork of Hewlett-Packard's industrial designer Carl J. Clement showed a single integrated solution to the design problem of panels for both bench and rack mountings, servicing accessibility, and the carrying of small instruments.

Industrial designers try to tell us our unconscious is favorably influenced by impressive appearance. We do not know how much. We acknowledge that good styling may only be in the eye of the beholder. But what our eye sees pleases us, and this should be sufficient warning to those who ignore the outside of their "black boxes."

- cincle je on meadersenvice cand ron distaimutons

N[
 CAPACITANCE MEASURING SYSTEM.-.

- A wide-range, direct-reading capacitance bridge assembly of high accuracy and resolution especially suitable for:

Calibration of two or three-ferminal variable air capacitor secondary standards.
Calibration of fixed value capacitance standards.
Measurements of voltage, frequency and temperalure effects on all types of capacitors.
Measurements of very low value three-terminal capacitors without zero correction.

- Measures ewo or three-terminal capaciturs in the range from 0 to 0.12 microfarads with a resolution of 0.0001 picofarads on the lowest range. Use of a ratio transformer circuit and a specially designed standard air capacitor having a very low temperature coefficient of capacitance and an exceptionally high stability minimizes drift due to changes of room temperature, voltage and frequency. Accuracy of the measured capacitance is referred to this one standard which can be periodically checked and adjusted to agree with an NBS certified standard for traceability.
- The complete, matched system includes the new ESI 707 capacitance bridge and the new ESI 860-B generator-detector, a combination of an ac generator and a sensitive null detector designed especially for use as an accessury to the bridge. Write for catalog sheet C-28.

Price; $\$ 1575$, F.O.B. Factory

Impedanee Bridges and Accessories Decade Voleage Dividers Decade Resistors and Capacilors ESIAC Compulers

Elootro Sciontifio Industries:
7524 S.W. MACADAM • PORTLAND 19, OREGON CHerry 6-3331
formerly ELECTRO-MEASUREMENTS, INC.
CIRCLE 36 ON READER-SERVICE CARO

How To Improve Response Speed of Servos Using Wire-Wound Pots...

High starting torque Wire-Wound pot (A) stalls Servo Motor (B) Motor overheats. Frying Pan (C) becomes hot and proceeds to pop corn. (Note Popcorn Hopper (D) designed for slow, continuous flow of top quality corn.) As corn pops, Turbo Jet Popcorn Aimer (E) directs stream of popped corn to Funnel (F). Corn is then directed into Auxiliary Power Treadmill (G), causing popcorn-loving mice to start Auxiliary Power readmin (G), causing popcorn-hoving mice to start Revolving Power Treadmill then turns Pulley (H) which turns Gears ($\&$ \& J), in turn revolving Pulleys ($\mathrm{K} \& \mathrm{~L}$). Pulley (L) spins Fly-Ball

Governor Grabber (M). As momentum is increased Governor-Grabber causes spinning Clutch-Hands ($\mathbf{N} \& \mathbf{O}$) to engage Wheel (\mathbf{P}), supply. ing the additional torque necessary to start servo rotating.
Reversing input signal flips Solenoid (Q) to reverse position, sliding Funnel (F) to Mouse-Reverse position. As popcorn is then directed into other side of Power Treadmill, the mice reverse their running action so as to continue catching falling popcorn. Periodic replacement with fresh mice and/or use of cheese-flavored popcorn can be used to increase efficiency of this system.

BUT THE BEST WAY YET... Use C.I.C. Low-Torque Film Pots!

Low torque is an inherent property of C.I.C. Film Pots. The smooth, unbroken, mirror-like surface of film offers minimum friction to the wiper and requires low brush pressures for friction to the wiper and requires ow brush pressures for cycle life. Write for your free C.I.C. catalog facts today.

Ask for list of missiles and aircraft
currently using C.I.C. FIIm Pots.

- mmesert meliagility - PAECISION LIMEMAITY
* mitil-miliom crele lufe
- MOLTI-miLION GTCLE LIFE - video frequency operation

COMPUTER INSTRUMENTS CORPORATION
92 MADISON AVENUE - HEMPSTEAD, L.I. NEW YORK

AVADIEABEE FROM STOCKS
 PRECISION FILM POTS

You can have any of these precision film pots on their way to you within hours. No need to wait for "custom" pots.

LINEAR SINGLE TURN FILM POTENTIOMETERS

Diamefor 1/2"	Rodiecme	timoeriny
	1 K	$\pm .5 \%$
	10K	$\pm .5 \%$
	Sok	$\pm .5 \%$
7/8"	IK	$\pm .5 \%$
	10\%	$\pm .5 \%$
	sor.	$\pm .5 \%$
	IK.	$\pm .25 \%$
	10k	$\pm .25 \%$
	sor	$\pm .25 \%$
1-3/32"	1 K	$\pm .5 \%$
	108	$\pm .5 \%$
	sok	$\pm .5 \%$
	IK	$\pm .25 \%$
	10K.	$\pm .25 \%$
	500	$\pm .25 \%$
2'0	SR	$\pm .25 \%$
	200	$\pm .25 \%$
	sor	$\pm .25 \%$
	5k	$\pm .1 \%$
	20K.	$\pm .1 \%$
	50\%	$\pm .1 \%$
$3^{\prime \prime}$	5 K	$\pm .1 \%$
	200	$\pm .1 \%$
	Sor.	$\pm .1 \%$
	5 K	.05\%
	200.	$\pm .05 \%$
	sor	05\%

SINE-COSINE SINGLE TURN FILM POTENTIOMETERS
Diometor Resisamese Conformity 1-3/32"

10K	$\pm .75 \%$
$20 K$	$\pm .75 \%$
$10 K$	$\pm .25 \%$
$20 K-$	$\pm .25 \%$
$10 K$	$\pm .15 \%$
$20 K$	$\pm .15 \%$

LINEAR MOTION FILM POTENTIOMETERS

Sq. 10K _ 1 " Stroke $\pm .5 \%$
20K ${ }^{1010}$ stroke $\pm .5 \%$ 10K 2" Stroke $\pm .25 \%$ 20K 2" Stroke $\pm .25 \%$ 10K 3^{30} " Stroke $\pm .1 \%$

WRITE OR CALL IN YOUR ORDER! POTENTIOMETERS WILL BE IN YOUR PLANT WITHIN 24 HOURS!

COMPUTER INSTRUMENTS CORPORATIOM 92 MADISON AVE, HEMPSTEAD, L. I, N. Y.

CIRCLE 3R ON READER-SERVICE CARD

ELECTRONIC DESIGN•April 26, 1961

Howard Bierman

Technical Editor

At the recent 1961 Solid State Circuits Conference, a rather large number of empty chairs was evident at the evening panel discussion devoted to tunnel diodes. At the 1960 Conference, the turnout for the tunnel diode session was 80 great that attendees who were fortunate managed to get seated on chairs, stairways or suitcases-many others were forced to stand throughout the three-hour discussion.

Why the drastic drop in interest within the short space of a year? Perhaps too much was promised in terms of application possibilities with too few practical uses demonstrated. Perhaps too little emphasis was placed on the need for adequate time to solve problems imposed by the bilateral device. An interesting and amusing analogy has been drawn between the plot of voltage vs current and intensity of interest vs time for the tunnel diode. The V-I characteristic follows the now famous " S " formstarting from zero, rising sharply to a peak, reversing to a low and then rising rapidly again. In terms of relative interest, zero might be considered the period in 1958 preceding publication of Dr. Esaki"s, "New Phenomenon in p-n Junctions" (Physical Review, Vol. 109)-interest soared until 1960, then dipped markedly as evidenced at the 1961 Conference. Will interest reverse its downward trend and demonstrate a sharp upswing? Experts at the Conference discussion predicted that new test equipment and computers will soon be released using tunnel diodes in conjunction with transistors. From these pioneer ventures, it is believed that design engineers will renew activity to incorporate the fast-switching, low-noise, radiation-resistant device into their new equipment.

In this year’s special Diode report, Electronic Design has included four practical design articles directed toward application of the tunnel diode to amplifier, oscillator and switching circuits. In addition, the latest of the Department of Defense approved diodes are listed together with their specification number.

- Tunnel Diode Square Wave Generator by J. E. Dalley, of the University of Utah. outlines the design steps leading to a simple and compact generator capable of fast rise time characteristics.

Practical Design Articles

Slide Rule

- Practical Aspects of Tunnel Diode Low-Frequency Amplifiers by Erich Gottlieb of GE contains information on such factors as stability, bias techniques and temperature effects p 42
- Transistor-Tunnel Diode Combination by Carl David Todd of Hughes describes a technique for obtaining a composite characteristic bearing the high-speed features of a tunnel diode with the higher voltage capability of a transistor . . p 48

Tunnel Diode Amplifier Calculator by James J. McDermott represents a valuable tool in the form of a slide rule which can design time by eliminating much of the tedious math involved in tunnel diode amplifier calculations p p 52

diodes
 191

Tunnel Diode Square Wave Generator

Although simple and compact, the circuit described is capable of producing square waves of less than 1 cps to over 2 me with no sag and only slight overshoot.

James E. Dalley

Electrical Engineering Dept.
University of Uiah
Salt Lake City, Utah

TWO TUNNEL DIODES, one coil, one resistor and one capacitor constitute the total component list for a stable square generator capable of operation from less than 1 cps to over 2 mc . The simple and compact circuit consists of a relaxation oscillator driving a bistable switching circuit; rise time of the square-wave output is less than 10 nsec. Although the design procedure outlined results in an approximate rather than exact solution, the method is straightforward and can be applied using commonly published data and circuit values.

Relaxation Oscillator Consists of A Tunnel Diode plus One Coil

The circuit for the relaxation oscillator is shown in Fig. la and the exact equivalent circuit is shown in Fig. lb.

The inductance of the coil is given by L, R_{L} is the resistance of the coil, R_{1} is any added resistance, L_{B} is the inductance of the tunnel-diode leads, R_{g} is the series resistance of the tunnel diode, R_{D} is the incremental resistance of the tunnel diode at a particular operating point and C is the shunt capacitance of the tunnel diode junction. V_{1} is the dc voltage source which is assumed to have zero internal impedance for the present discussion. An inspection of Fig. 1b will
reveal that a complicated expression would result if one attempted to write a transfer function. This can be avoided by comparing the output waveshape with the characteristic curve of the tunnel diode and choosing several regions of operation. Simplified equivalent circuits can be applied to some of these regions.

Fig. 2 shows a sketch of the output voltage of the relaxation oscillator with four periods of operating time defined. A sketch of a typical tunneldiode characteristic curve is shown in Fig. 3 with key voltages and currents indicated.

The operation during period 1 follows the characteristic curve from the origin to the point $\left(V_{p}, I_{p}\right)$. During period 2, the current remains constant at a value of I_{p} and the voltage jumps

The material covered by this paper is the result of independent research carried on by the author at the Sperry Utah Engineering Laboratory during the month of July 1960. Work on the relaxation oscillator was virtually completed before any published material on the subject was seen. ${ }^{1}$ The design equations and approach used in this paper are original (unless otherwise noted) with the author to the best of his knowledge. The bistable switching circuit is based on information given in an article by Erich Gottlieb and T. P. Sylvan of General Electric Company.?

[^0] General Electric Co., Syracuse, New York.
to V_{f}. Throughout period 3, the operating point follows the curve from the point $\left(V_{j}, I_{p}\right)$ to the point (V_{0}, I_{0}). When the valley point ($V_{v}, \boldsymbol{I}_{v}$) is reached, the operating point jumps again (period 4) and starts the cycle over from point (V_{a}, I_{v}). The supply voltage must lie between the peak and valley voltages.
Period 1: Experimental results indicate that satisfactory design equations can be obtained if the inductance and capacitance of the tunnel diode are neglected. The simplified equivalent circuit is shown in Fig. 4.
The loop equation in the S-domain is
\[

$$
\begin{equation*}
\left(\boldsymbol{L} \dot{S}+\boldsymbol{R}_{\mathbf{I}}\right) \boldsymbol{I}(s)=\boldsymbol{V}_{1} / \mathbf{S}+\boldsymbol{I}_{0} \mathbf{L} \tag{1}
\end{equation*}
$$

\]

where

$$
R_{t 1}=R+R_{D 1}
$$

and $R_{D_{1}}$ is the increment diode resistance during period 1 . Solving for the current,

$$
\begin{equation*}
I(s)=\frac{V_{1} / L}{s\left(S+\frac{R_{t_{1}}}{L}\right)}+\frac{I_{0}}{\left(S+\frac{R_{t_{1}}}{L}\right)} \tag{2}
\end{equation*}
$$

After the first cycle, I_{0} becomes I_{0} and the current in the time domain is

$$
\begin{equation*}
i(t)=\left(I_{v}-\frac{V_{1}}{R_{i_{1}}}\right) e^{-\frac{R t_{1} T}{L}}+\frac{V_{1}}{R_{\iota_{1}}} \tag{3}
\end{equation*}
$$

The output voltage is simply

$$
\begin{aligned}
V(t)= & i(t) R_{D_{1}} \\
& =\left[\left(I,-\frac{V_{1}}{R_{t_{1}}}\right) e^{-\frac{R_{1} \tau}{L}}+\frac{V_{1}}{R_{t_{1}}}\right] R_{D_{1}}
\end{aligned}
$$

The length of period 1 can be found by setting $V_{t}=V_{p}$ and solving Eq. (4) for T. This gives

$$
\begin{equation*}
T_{1}=\frac{L}{R_{H_{1}}} \ln \frac{V_{1}-I_{0} R_{r_{1}}}{V_{1}-\frac{V_{1} R_{1}}{R_{B_{1}}}} \tag{5}
\end{equation*}
$$

Now since $R_{t, 1}=J V / \Delta I$ at any point on the characteristic curve between the origin and the point ($\boldsymbol{V}_{p}, \boldsymbol{I}_{p}$), it can be seen that $\boldsymbol{R}_{l / 1}$ is nonlinear and is a function of the operating point. Obviously some average value must be used for R_{m} if T_{1} is to be found in a straightforward manner. A simple solution to arrive at a correct average value for $R_{t / 1}$ and reduce Eq. 5 to circuit constants and tunnel-diode parameters is to set

$$
\begin{equation*}
R_{D_{1}}=\frac{V_{P}}{I_{P}} \tag{ib}
\end{equation*}
$$

The above definition would be exact if the characteristic curve were a straight line passing through the origin and the point $\left(V_{p}, I_{p}\right)$, a fair approximation in actual practice.

Eq. 5 then becomes

$$
\begin{equation*}
T_{1}=\frac{L}{R_{t_{1}}} \ln \frac{\Gamma_{1}-I_{D} R_{t_{1}}}{\Gamma_{1}-I_{D} R_{t_{1}}} \tag{7}
\end{equation*}
$$

Fig. 2. Waveform of a relaxation oscillator output divided into four periods; periods f_{2} and t_{4} are deliberately expanded to permit inspection.

Fig. 3. Typical characteristic curve of a funnel diode.
where

$$
R_{I_{1}}=R+\frac{V_{F}}{I_{z}}
$$

Periods 2 and 4: When the operating point passes the point (V_{p}, I_{p}) on the curve, it enters the negative resistance portion of the curve which is unstable. An increase of voltage across the tunnel diode results in a decreased current and a decreased current through the inductance and series resistance results in a further increase of voltage across the tunnel diode. This action is cumulative and tends to reduce the current from I_{p} to I_{v} almost instantaneously. The current through an inductance cannot change instantaneously, so the operating point jumps from the point $\left(V_{p}, I_{p}\right)$ to the point $\left(V_{p}, I_{p}\right)$ which is on a positive resistance portion of the characteristic curve and stability is again restored. According to Gottlieb and Sylvan ${ }^{3}$ the switching speed with constant current drive is

$$
\begin{equation*}
T_{2}=\left(\frac{V_{1}-V_{p}}{I_{p}-I_{+}}\right) c \tag{8}
\end{equation*}
$$

Using the GE ZJ61-22 tunnel diode, the switching time should be approximately 1.2 nsec which is much faster than the $12-$ nsec rise time of the oscilloscopes used to observe the pattern.
3. Ibid p 17 .

Since the tunnel-diode capacitance is a factor in Eq. 8, it cannot be neglected in the equivalent circuit.
The operation during period 4 is similar to that of period 2 and it is assumed that the switching time is comparable.

The slight amount of overshoot at the ends of periocds 2 and 4 can probably be attributed to the series resonance of the inductor and the tunnel-diode shunt capacitance.
Period 3: During period 3, the operating point moves along the characteristic curve from (V_{f}, $\left.I_{p}\right)$ to $\left(V_{v}, I_{v}\right)$. Again there exists a problem of determining the value of a nonlinear resistance but the problem is complicated by the fact that a straight line to approximate the curve cannot be drawn through the origin. This can be remedied by drawing a straight line having a slope equal to the average slope of the curve and extending it until it intercepts the voltage axis. The effects of the curve in this region can then be approximately represented by a resistance having a value equal to the reciprocal of the slope of the line in series with a battery having a voltage equal to the voltage axis intercept.4 To simplify the equations, remove guesswork in arriving at an average value, and allow a single
4. Martin, Thomas L. Jr., Electronics Circuits, Prentice Hall, Inc. Englewood Clifts, N. J., 1955, pp 6-7.
diodes 1\%i

Fig. 5. Graphical representation of $R_{D 3}$ and V_{2}.

Fig. 6. Equivalent circuit valid during period 3.
approximation to be used, a definite rule will be established. If the straight line is drawn through the points $\left(V_{v}, I_{v}\right)$ and $\left(V_{p}, I_{p}\right)$, the tunnel-diode resistance in this region can be defined as

$$
\begin{equation*}
R_{D_{3}}=\frac{V_{f}-V_{p}}{I_{p}-I_{v}} \tag{9}
\end{equation*}
$$

and the required series voltage $\left(V_{\mathrm{s}}\right)$ is given by

$$
\begin{equation*}
V_{2}=V_{v}-\frac{I_{v}\left(V_{p}-V_{v}\right)}{\left(I_{p}-I_{v}\right)}=V_{v}-I_{v} R_{D_{3}} \tag{10}
\end{equation*}
$$

This expression was derived by writing the equation for the line through points $\left(V_{v}, I_{v}\right)$ and (V_{f}, I_{p}) using the slope intercept form where V_{2} is the intercept of the voltage axis.

Thus

$$
\begin{equation*}
I=\frac{1}{R_{D_{2}}}\left(V-V_{z}\right)=\frac{I_{\mathrm{p}}-I_{2}}{V_{f}-V_{2}}\left(V-V_{2}\right) \tag{10a}
\end{equation*}
$$

Now, set $l=I_{v}$ and $V=V_{v}$ and solve for V_{s} to arrive at Eq. 10. The graphical solutions for $R_{D 3}$ and V_{2} are shown in Fig. 5.

Using this method to represent the curve in region 3 , the simplified equivalent for the La-

Fig. 7. Circuit for diode voltage regulator.

Fig. 8. Plot of $T 1 / L$ vs $T 3 / L$ vs supply voltage V_{i}.
place transform loop equation is shown in Fig. 6. At the beginning of period $3, I_{o}=I_{p}$. The loop equation is

$$
\begin{equation*}
\left(L S+R t_{3}\right) I(s)=\frac{V_{1}-V_{2}}{S}+I_{p} L \tag{11}
\end{equation*}
$$

where $R_{t 3}=R+R_{D s}$ and the current in the S-domain is

$$
\begin{equation*}
I(s)=\frac{\frac{V_{1}-V_{2}}{L}}{s\left(S+\frac{R_{t_{3}}}{L}\right)}+\frac{I_{p}}{\left(S+\frac{R_{t_{1}}}{L}\right)} \tag{12}
\end{equation*}
$$

In the time domain this becomes
$i(t)=\left(I_{F}+\frac{V_{2}-V_{1}}{R_{t_{3}}}\right) e^{-\frac{R_{t 3} T}{L}}-\frac{V_{2}-V_{1}}{R_{t_{3}}}$
The output voltage is
$V(t)=i(t) R_{D_{1}}+V_{2}$

$$
\begin{align*}
= & R_{D_{3}}\left[\left(I_{p}+\frac{V_{2}-V_{1}}{R_{t_{3}}}\right) e^{-\frac{R t_{3} T}{L}}-\frac{V_{2}-V_{1}}{R_{i_{3}}}\right] \\
& +V_{3} \tag{14}
\end{align*}
$$

Substituting V_{\bullet} for $V(t)$ and solving for T

$$
\begin{equation*}
T_{3}=\frac{L}{R t_{3}} \ln \frac{I_{p}+\frac{V_{2}-V_{1}}{R_{t_{3}}}}{\frac{V_{0}-V_{2}}{R_{D_{3}}}+\frac{V_{2}-V_{1}}{R_{t_{3}}}} \tag{15}
\end{equation*}
$$

Several assumptions and approximations were used in deriving the equations for T_{1} (Eq. 7) and T_{3}. These equations can be solved without the need for characteristic curves by using the parameters given on the manufacturer's specification sheet. As will be shown later, the results are sufficiently accurate for a first approximation in practical situations and adjustments can be made to obtain the exact periods desired.

Power Supply Must Be Free

Of Transients and Drift

It was assumed earlier that the power supply had perfect regulation. While this is desirable, power supplies having an internal impedance of 1 ohm or less will operate satisfactorily. If it is not feasible to use an electronically regulated power supply at the desired voltage, a higher voltage supply can be used with a forward biased germanium or silicon diode used as a regulator as shown in Fig. 7. A germanium 1N270 diode can be used to regulate satisfactorily over a range of 350 to 600 mv ; a silicon 1 N 470 diode was used with satisfactory results for voltages between 730 and 830 mv . The diode current must be high enough to bias the diode beyond the knee of its curve. Capacitors are, in general, not satisfactory for bypassing the switching circuits used here.

It will be noted in Eqs. 7 and 15 that the pulse periods are dependent on the supply voltage. Thus the supply voltage must be free from drift also. As the supply voltage $\left(V_{1}\right)$ is increased, the period T_{1} decreased while the period T_{3} increases. If the total period, or frequency, is of greater importance than the relative pulse widths, it may be possible to find a voltage at which T_{1} and T_{3} are changing by equal but opposite amounts with changes in V_{1}. This would make frequency independent of V_{1} over a narrow operating range.

Fig. 3 indicates that V_{1} must be somewhat greater than V_{p} and less than V_{0}. A method for determining the usable range of V_{1} will now be presented. From Eq. 7 note that T_{1} approaches infinity as V_{1} approaches $I_{p} \boldsymbol{R}_{t 1}$.
$V_{1}>I_{p} R_{t_{1}}$
but $\quad R_{t_{1}}=R+R_{D_{1}}$ and $R_{D_{1}}=\frac{V_{p}}{I_{p}}$,

$$
\begin{equation*}
V_{1}>I_{p} R+V_{p} \tag{16a}
\end{equation*}
$$

Similarly, from Eq. 15 note that T_{8} will increase without limit if

$$
\begin{equation*}
\frac{V_{*}-V_{2}}{R_{D_{3}}}+\frac{V_{2}-V_{1}}{R_{t_{3}}}=0 \tag{17}
\end{equation*}
$$

Solving for V_{1} and substituting Eq. 10 for V_{2}, this reduces to

$$
\begin{equation*}
V_{1}<I_{v} R+V_{v} \tag{18}
\end{equation*}
$$

Combining expressions 16a and 18

$$
\begin{equation*}
I_{0} R+V_{0}<V_{1}<I_{0} R+V_{0} \tag{19}
\end{equation*}
$$

If R is reduced to zero, this expression becomes

$$
\begin{equation*}
V_{D}<V_{1}<V_{p} \tag{19a}
\end{equation*}
$$

On the other hand, as R is increased, the lower limit of V_{1} approaches the upper limit. When these two values are equal, it is impossible for V_{1} to be between them and oscillation will cease. The maximum value for R is found by setting the limits equal to each other and solving for R. The result is

$$
\begin{equation*}
R<\frac{V_{,}-V_{p}}{I_{p}-I_{n}} \tag{20}
\end{equation*}
$$

This, incidentally, is the reciprocal of the slope of a line passing through the points (V_{p}, I_{p}) and (V_{0}, I_{0}) and could be considered as the "average" negative resistance of the tunnel diode.

Step-by-Step Design Procedure
 And Design Example

For a given tunnel diode, the designer can vary L, R, and V_{1} to obtain the desired values of T_{1} and T_{3}. All of these factors influence both T_{1} and T_{3}, furthermore, R and V_{1} are interwoven in the equations in such a way that it becomes almost impossible to solve for them explicitly. If both T_{1} and T_{3} are specified in the design requirements, the following six-step design proce dure is recommended:

1. Choose the tunnel diode to be used and determine its parameters (I_{p}, I_{v}, V_{p}, etc.), or read them from the tunnel-diode data sheet. If an accurate characteristic curve is available, parametric values can be easily determined; the parameters can be determined experimentally without drawing the complete characteristic curve if necessary.
2. Choose a value of R consistent with the expected values of the inductance and supply voltage.
3. Determine the usable range of V_{1} from Eq. 19.
4. Plot T_{1} / L (from Eq. 7) and T_{3} / L (Eq. 15) on the same set of coordinates with V_{1} as the abscissa. Select V_{1} from these curves to
give the desired T_{1} / T_{3} ratio. The power supply should be variable about this value.
5. Solve for L to give the desired values of T_{1} and T_{3}. Design a variable inductance having this value of L in the center of its range and having the resistance R chosen in Step 2.
6. After the oscillator has been constructed, adjust V_{1} for the exact T_{1} / T_{3} ratio and adjust L for the desired frequency.
Example of Design Procedure: The first five steps of the design procedure will be illustrated by means of an example and then the predicted values will be checked against measured values in an experimental circuit. As was previously pointed out, desired values of T_{1} and T_{2} are usually specified; however, here several available fixed inductors will be used and the periods will be computed and measured for values of V_{1} within the usable range.
7. The GE ZJ61-22 tunnel diode will be used. The parameters for the particular unit to be used, determined by direct measurement, are as follows:

$$
\begin{aligned}
& I_{p}=23 \mathrm{ma} \\
& I_{*}=2.0 \mathrm{ma} \\
& V_{p}=125 \mathrm{mv} \\
& V_{*}=730 \mathrm{mv} \\
& V_{f}=1,165 \mathrm{mv}
\end{aligned}
$$

Other necesary parameters which may be calculated from the above are:
$R_{D_{1}}=\frac{V_{p}}{I_{p}}=\frac{125}{23}=5.44 \mathrm{ohms}$
$R_{D_{3}}=\frac{V_{f}-V_{0}}{I_{p}-I_{*}}=\frac{1,165-730}{23-2}=20.7$ ohrns
$\max K=\frac{V_{\mathrm{O}}-V_{P}}{I_{P}-I_{*}}=\frac{730-125}{23-2}=28.8 \mathrm{onms}$
$V_{3}=V_{V}-I_{V} R_{D_{3}}=730-2(20.7)=688.6 \mathrm{mv}$
2. Let $R=15$ ohms. This is well below the maximum value, yet it is larger than the resistance of the coils to be used. Thus this value can be realized for all coils used.
3. The minimum value of V_{1} is $V_{1}>I_{p} R+$ $V_{p}=23(15)+125=470 \mathrm{mv}$ and the maximum value is given by $V_{1}<I_{v R}+V_{v}=$ $2(15)+730=760 \mathrm{mv}$.
4. The normalized periods are given by the following equations and tabulated for various values of V_{1} in Table 1.

$$
\begin{aligned}
\frac{T_{1}}{L}= & \frac{1}{R_{t_{1}}} \ln \frac{V_{1}-I_{v} R_{t_{1}}}{V_{1}-I_{p} R_{t_{1}}} \\
& =\frac{1}{20.44} \ln \frac{V_{1}-2(20.44)}{V_{1}-23(20.44)} \\
& =4.89 \times 10^{-2} \ln \frac{V_{1}-41}{V_{1}-470}
\end{aligned}
$$

Table 1. Normalized periods for given values of \mathbf{V}.

	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{3}}$
$\boldsymbol{V}_{\mathbf{1}}(\mathbf{m v})$	\boldsymbol{L} $\mathbf{1 0} 0^{-2}$	$\times \mathbf{1 0 ^ { - 2 }}$
470	∞	3.56
500	13.3	3.79
550	9.0	4.24
600	7.09	4.86
650	5.94	5.74
700	5.14	7.25
750	$\mathbf{1 5 4}$	120
760	4.41	∞

$$
\begin{aligned}
\frac{T_{3}}{L}= & \frac{1}{R_{t_{3}}} \ln \frac{I_{3}+\frac{V_{2}-V_{1}}{R_{t_{3}}}}{\frac{V_{v}-V_{2}}{R_{D_{3}}}+\frac{V_{2}-V_{1}}{R_{t_{3}}}} \\
& =\frac{1}{35.7} \ln \frac{23+\frac{688.6-V_{1}}{35.7}}{\frac{730-688.6}{20.7}+\frac{688.6-V_{1}}{35.7}} \\
& =2.8 \times 10^{-2} \ln \frac{23+\frac{689-V_{1}}{35.7}}{2.0+\frac{689-V_{1}}{35.7}}
\end{aligned}
$$

The data of Table 1 are plotted in Fig. 8. Usable values of V_{1} can be selected that will give T_{1} / T_{s} ratios of from 3.5:1 to 1:2.5
5. This step will be worked backwards since only discrete values of inductance are available and it is not desirable to design and construct special coils for this example. Calculated and measured values of T_{1} and T_{s} are given in Table 2 for various values of V_{1}. The error was calculated using the following equation.
$\%$ error $=\left|\frac{\text { Calculated value }- \text { measured value }}{\text { measured value }}\right| \times 100$ (21)

With the $330-\mu \mathrm{h}$ coil, oscillations started at a supply voltage of 450 mv and stopped at 710 mv . When the $100-\mu \mathrm{h}$ coil was used, the circuit operated over a supply voltage range of 482 to 710 mv .
Some of the predicted values given in Table 2 vary from the measured values by fairly high percentages. When one considers that several as-

diodes 197

Fig. 9. Tunnel diode bistable switching circuit.

Fig. 10. Tunnel diode characteristic curve with high resistance load line; V_{3} represents the power-supply voltage.

Fig. 11. Complete circuit of the square-wave generator using a single power supply.
sumptions and approximations were made in the derivation of the equations, the inductance had a 10 per cent tolerance, that meters and oscilloscopes are not perfectly accurate nor can they be read with perfect accuracy; and that a slide rule was used for all calculations, the results seem to be consistent with the method used. They are sufficiently accurate for practical design purposes if adjustable inductances and power supplies are used.

Operating Characteristics

Of the Bistable Squaring Circuit

The simple bistable switching circuit sug. gested by Gottlieb and Sylvan ${ }^{5}$ is shown in Fig. 9. The characteristic curve for a tunnel diode is shown in Fig. 10 with a high resistance load line. It can be observed from the figure that the load line intercepts the curve at two points of positive resistance (points A and B). These are quite stable states. If the operating point is at point A
5. Gottlieb and Sylvan, op, cit. pp 15-17.

Fig. 12. Variation of period and frequency with temperature.

Table 2. Comparison of measured and calculated values for periods T_{1} and T_{3}.

\mathbf{L}	\mathbf{R}	$\mathbf{V}_{\mathbf{1}}(\mathbf{m v})$	Cal. $\mathbf{T}_{1}(\mu \mathrm{sec})$	Meas. $\mathbf{T}_{\mathbf{3}}(\mu \mathrm{sec})$	Per cent Error	Cal. $\mathbf{T}_{3}(\mu \mathrm{sec})$	Meas. $\mathbf{T}_{\mathbf{3}}(\mu \mathrm{sec})$	Per cent Error
$330 \mu \mathrm{~h}$	15.0 ohms	470	∞	39.0	∞	11.7	10.0	17
		500	44.0	32.0	37.5	12.5	10.1	23.8
		550	29.8	25.0	19.2	14.0	10.4	34.6
		600	23.4	21.0	11.4	16.1	12.5	19.2
		650	19.6	18.0	8.9	18.9	15.0	26.0
		700	17.0	16.0	6.25	23.9	18.0	32.8

and a positive current pulse forces the current through the tunnel diode to a value equal to or greater than I_{p}, the operating point will switch to point B. The operating point will remain at point B until it is switched back to point A by a negative current pulse large enough to reduce the tunnel-diode current to a value equal to, or less than, I_{v}. The operating point will remain at point A until it is switched again to point B. Thus there is no sag in either the high or the low state regardless of the frequency.

If a higher load resistance than the one illustrated in Fig. 10 is used, the load line will become more nearly horizontal. Constant current operation is then approached. The value of this constant current is determined by the supply voltage and the load resistance. It should lie midway between I_{p} and I_{v} if the positive and negative trigger pulses have equal amplitude.
The coupling capacitor should have the smallest capacitance that will give satisfactory triggering. It passes only the leading and trailing edges of the relaxation oscillator waveform and allows the bistable switching circuit to have a waveform different from that of the oscillator between switching pulses.
Since the leading edge of the oscillator waveform has approximately twice the amplitude of the trailing edge, the positive trigger pulse will be about twice as large as the negative pulse; thus, the constant current load line should intersect the switching diode characteristic curve at about one third the difference between I_{p} and I_{v}. The rise time for this circuit can be calculated from Eq. 8. Since the rise time is in the order of a few nanoseconds, it can be considered as being negligible for frequencies up to several megacycles.
The output of the bistable switching circuit is an almost perfect square wave except for a small overshoot, probably due to the series inductance of the tunnel diode and the cornecting leads plus the shunt capacitance of the tunnel diode.

A complete circuit of the square wave generator capable of operating from a single power supply is shown in Fig. 11. Resistor R_{a} and diode D_{1} form a regulating voltage divider to supply the proper voltage, V_{1}, to the relaxation oscillator which consists of L and $T D_{1}, R_{0}$ and $T D_{2}$ form the bistable switching circuit and C is the coupling capacitor between the oscillator and the switching circuit. $\boldsymbol{R}_{\mathrm{a}}$ can be made adjustable over a limited range to provide some variation in the
pulse width due to variation of V_{1}. The inductance should be adjustable if frequency variations are desired. Typical values of circuit components for use with the ZJ61-22 tunnel diodes are given in the figure.

Effects of Temperature and Supply Voltage
 On Performance

The temperature characteristics of tunnel diodes are discussed by Gottlieb and Sylvan. ${ }^{\circ}$ They point out that V_{p}, V_{v} and V_{ρ} decrease; I_{0} increases and I_{p} may increase, or increase up to a point, then decrease with increased temperature.
In order to check the temperature effects on the circuit as well as the tunnel diodes, the entire circuit of Fig. 11 (with the exception of R_{c} and D_{1} which were omitted from the circuit in order to allow for independent control of V_{1} and V_{3}) was placed in a temperature chamber. V_{2} was set at 640 mv and V_{3} at 6.4 v . A $330-\mu \mathrm{h}$ in. ductance, having a resistance of 11 ohms, was used and R_{\circ} was a $2-\mathrm{K}, 1 / 2-\mathrm{w}$ carbon composition resistor. The relaxation oscillator operated satisfactorily with no adjustment from -50 C to +140 C . The periods T_{1} and T_{3} and the frequency are plotted as a function of temperature in Fig. 12. The oscillator became unstable at 143 C . When V_{1} was adjusted to 630 mr , the oscillator operated satisfactorily to temperatures of +1.50 C and back down to 0 C without readjustment.

On the other hand, the supply voltage of the switching circuit $\left(V_{3}\right)$ had to be readjusted upward about every 50 C rise in temperature and the circuit would not operate at temperatures above 1.30 C . This was probably due to the fact that the load line intersected the characteristic curve too near the valley current (I_{4}), the valley current increased appreciably at high tempera. tures, and a carbon composition resistor was used for the load resistance.
The amplitudes of the oscillator and the switching circuit both reduced about 0.1 v for temperatures above 70 C .
It is obvious from the results of the temperature tests that a controlled temperature oven will be required if good frequency stability is required throughout the entire temperature range of from -50 C to +150 C . This is not surprising; even quartz crystals are placed in temperature controlled ovens when accurate frequency control is required. If the temperature variation can be limited to the range between 20 C and 100 C , frequency variations on the order of 6 per cent can be expected and 2 per cent accuracy was obtained for the circuit tested in the temperature range from +50 C to +100 C . =
6. Gottlich and Sylvan, ibid, pp 5-7.

CABLE?

Until now it was impossible to measure this short a time interval with sub-nanosecond accuracy.
Now, this measurement can easily be made with Eldorado's new Model 1060 Time Interval Meter plus a digital interpolator. Solid state throughout, the Model 1060 measures time interval with 10 nanosecond resolution. The interpolator improves the resolution to better than 0.1 nanosecond.
Using this equipment, the delay introduced by the 10 -inch cable plus its connectors was measured as:

$1.43 \pm .05$ nanosecond

This resolution is the equivalent of a $20,000 \mathrm{Mc}$ direct counting time interval meter!
The Model 1060 Time Interval Meter is an independent unit suited for all time interval measurements in the 10 nanosecond range or counting in the 100 Mc range. The interpolator accessory is available at modest extra cost.
Even though your time measurement problems are not in the area of cable delays, but rather in the fields of radar ranging and calibration, high speed velocity measurement,

rocket sled timing, shock waves, ultra-high speed photography, satellite tracking, ballistic missile studies, or any field where data is gathered in the form of a time interval measurement, this new technique may offer the solution you have been seeking.
For specific details on the Model 1060 and the interpolator, and for assistance in applying them to your problems, contact your Eldorado engineering representative or drop us a line at the factory. Please address Dept. 36.

basic data model 1060 counter-time interval meter

Time Interval meter
MaX. TIME INTERVAL: 10 seconds - RESOLUTION: 10 nanoseconds OSCILLATOR STABILITY: 0.000% - READOUT: Nixie inline and output for printout. Couster

STORAGE: 109 counts - max. COUNTING RATE: $100 \mathrm{Mc} / \mathrm{s}$
STORAGE: 10^{9} counts - MAX. COUNTING RATE: $100 \mathrm{Mc} / \mathrm{s}$
TYPICAL INPUT PULSE REQUIREMENT: + 4 volts into 50 ohms OELIVERY: 45 days.

Eldorado

ㅍ.lectronics

2821 TENTH STREET BERKELEY 10, CALIFORNIA PHONE: THORNWALL 1-4613

Practical Aspects Of Low-Frequency Tunnel Diode Amplifiers

A discussion of gain, stability and circuit behavior for a parallel-type amplifier. Factors such as bias requirements and stabilization as well as temperature behavior are analyzed.

Erich Gottlieb
Semiconductor Products Dept.
General Electric Co.
Syracuse, N. Y.

TUNNEL-DIODE amplifiers, offering advantages of small size and simple circuitry, must be carefully designed in terms of layout and conductance matching in order to obtain optimum amplification with adequate stability. In addition, the dc bias must remain stable to avoid nonlinearities and variations in gain. Practical results obtained from a parallel-type amplifier, using a germanium 1N2939 diode, will illustrate the practical problems and design solutions involved in low-frequency applications.

Characteristics of the
 IN2939 Germanium Tunnel Diode

The 1N2939 is a three-lead device, housed in the TO-18 package. Pins 1 and 2 are connected internally to reduce lead inductance and are the anode (positive electrode) leads, while pin 3 is the cathode lead and is electrically connected to the case. Having a -55 to +100 C operating junction temperature range, the 1 N 2939 has a peak current of $1.0 \mathrm{ma} \pm 10$ per cent and a min-

Fig. 2. Equivalent circuit and typical values of the 1 N 2939 bi ased in the negative conductance region.

Fig. 3. (a) Low frequency equivalent cir cuit of a parallel-type negative resistance amplifier. (b) Practical amplifier circuit.
imum I_{p} / I_{v} ratio of $8: 1$, see Fig. 1. It is basically designed for high-speed, low-level switching as well as for small signal, high-frequency operation in communication circuitry. Its speed and frequency limitations are determined primarily by the inductance and capacitances inherent in this type of package. Having a typical total capacitance of 7 pf , of which 1.5 to 2.0 pf is in the header, and a typical inductance of 6 muh ($1 / 8$-in. lead length) the device has a self-resonant frequency ($f_{z_{0}}$) of

$$
f_{x n}=\frac{1}{2 \pi} \sqrt{\frac{1}{L_{i} C}-\left(\frac{g_{d}}{C}\right)^{2}}=\pi \cdot 0 \text { me typical }
$$

Its resistive cut-off frequency ${ }^{1}\left(j_{\text {ro }}\right)$ is
$f_{r 0}=\frac{1}{2 \pi} \frac{\left(g_{d}\right)}{C} \sqrt{\frac{1}{R_{0}\left(g_{d}\right)}-1}=2,300$ me typical
Its other typical parameters are: a negative resistance $-r_{d}=1 /-g_{d}=-100$ to -150 ohms,

[^1]a series resistance $\left(R_{0}\right)$ of 1 ohm, typical peak point voltage (V_{p}) of 55 mv and a typical valley point voltage $\left(V_{v}\right)$ of 350 mv . The equivalent circuit when biased in the negative conductance region can be seen in Fig. 2.

Negative Resistance Amplifier

In the "Parallel" Connection
The basic low-frequency equivalent circuit of this connection can be seen in Fig. 3a. Essentially, it consists of a current source driving the parallel combination of the load conductance (g_{2}) and the negative diode conductance $\left(-g_{d}\right)$ of the tunnel-diode characteristic. This latter can be seen between points A and B on the static cur-rent-voltage characteristics shown in Fig. 1.
When biased at about the center of the negative conductance region ($120-125 \mathrm{mv}$), the slope ($d i / d v$) of the diode is equal to a negative conductance ($-g_{d}$) of approximately 0.00714 mhos ($-r_{d}=1 /-g_{d} \approx 140 \mathrm{ohms}$). To obtain maximum dynamic range, it is important to maintain this bias operating point in the center of the negative conductance characteristics.
An actual circuit which would closely satisfy the equivalent circuit of Fig. 3a can be seen in

Fig. 3b. Here the tunnel diode is shown being forward biased by the bypassed voltage divider R_{1} and R_{2} while choke L acts as a low resistance dc return across the ac line without shunting the ac gain. Transformer coupling could, of course, be used in lieu of RC or direct coupling, thereby eliminating the need for the choke. The total dc loop resistance must be smaller than the negative resistance in order to serve as a constant voltage source. Therefore,

$$
R_{1}+R_{\text {inductor }}<\frac{1}{\left|g_{d}\right|}
$$

preventing the device from switching. An extremely small value of total loop resistance might prompt the circuit to oscillate ($\boldsymbol{R}_{1}+\boldsymbol{R}_{\text {me }}<$ $\left.\mathrm{Lg}_{\mathrm{a}} / \mathrm{C}\right)$. Values found to permit stable amplification varied from $1 / 3$ to $2 / 3$ of $1 / g_{\mathrm{d}}$. The limit condition is that

$$
\begin{aligned}
& \frac{L\left|g_{d}\right|}{C}<R T<\frac{1}{\left|-g_{d}\right|} \\
& \text { where } R_{T}=R_{1}+R_{\text {inductor }}
\end{aligned}
$$

Power Gain Expressed as

Function of Circuit Conductance

The expression of "available gain" ($P G_{\text {ev }}$) for the equivalent circuit of Fig. 3a as rearranged in conductance terms is given by Eq. 1 where $g_{\theta}+g_{\imath}-g_{d}=$ the total circuit conductance g_{\imath}

$$
\begin{align*}
& P G_{o n}=\frac{P_{0}}{P_{i \sigma_{a v}}}=\frac{\left(\frac{\Delta i}{g_{i}}\right)^{2}\left(g_{l}\right)}{\frac{(\Delta i)^{2}}{4 g_{0}}}=\frac{(4)\left(g_{0}\right)\left(g_{i}\right)}{\left(g_{i}\right)^{2}} \\
& P G_{a v}=\frac{(4)\left(g_{0}\right)\left(g_{i}\right)}{\left(g_{0}+g_{l}-g_{d}\right)^{2}} \tag{1}
\end{align*}
$$

A number of conclusions can be drawn from this expression:

1. The available power gain would be infinite if $g_{t}=0$ (when $g_{\theta}+g_{0}=g_{d}$).
2. Practical values of power gain can be achieved by various combinations of g_{g} and g_{0} assuming a fixed value of $-_{d}$ (the latter depending on the geometric dimensions and current density of the device).

$$
\begin{aligned}
& \text { Case (a) } g_{\theta} \ll g_{l}=\left|g_{d}\right| \\
& \text { Case (b) } g_{t} \ll g_{\theta}=\left|g_{d}\right| \\
& \text { Case (c) } g_{l}=g_{v}=\frac{\left|g_{d}\right|}{2}
\end{aligned}
$$

Load Conductance Matches Negative Conductance, Generator Conductance Small

In this case, maximum power gain is obtained when $g_{\theta}=g_{l}+\left(-g_{d}\right)$. If $g_{t}=g_{d}$ then $g_{t}+$ $\left(-g_{d}\right)=0$ and therefore g_{g} is zero. This, of course, is the extreme case for infinite gain.

Fig. 4. Equivalent circuit of a tunnel diode plus external circuitry.

If g_{l} is almost equal to $-g_{d}$, practical values of circuit gain can be obtained. The degree of matching required to yield fixed values of gain is therefore of interest.
Gain versus degree of match: Starting with a 10 per cent mismatch, for example, with $-r_{d}=$ 100 ohms and $r_{3}=90$ ohms, the parallel resistance would be $-100 \times 90 /-100+90=900$ ohms. If r_{θ} is equal to 900 ohms, the available gain is

$$
P G_{a v}=\frac{4 \times \frac{1}{900} \times \frac{1}{90}}{\left(\frac{1}{900}+\frac{1}{90}-\frac{1}{100}\right)} 2=10=10 \mathrm{db}
$$

It is obvious that closer match is needed to obtain an increase in gain. Therefore, if $-r_{d}=$ 100 ohms, but r_{l} is increased to 99 ohms (for a 1 per cent match), the resultant parallel impedance $\left(\mathrm{Z}_{\text {in }}\right)$ is equal to $-100 \times 99 /-100+99=$ 9,900 ohms. Subsequently, if $r_{g}=9,900$ ohms, the available power gain is increased to:

$$
P G_{a v}=\frac{4 \times \frac{1}{9,900} \times \frac{1}{99}}{\left(\frac{1}{9,900}+\frac{1}{99}-\frac{1}{100}\right)^{2}}=100=20 \mathrm{db}
$$

And, of course, if a 0.1 per cent match could be achieved, the resultant gain would be increased to 30 db . It becomes apparent that this degree of matching is quite critical, especially if higher gain is required; of course, this gain must be maintained reasonably constant over an acceptable range of supply voltages and ambient temperatures.
Stability criteria: Several conditions can be established to determine stability:

1. If the parallel combination of r_{g} and r_{l} is greater than the negative resistance of the tunnel diode, the resultant characteristic is a large value of negative resistance making the circuit unstable.

Or, if $g_{g}+g_{l}<\left|g_{d}\right|$, then g_{d} is negative.
2. If the total (dc loop) bias conductance is
smaller than the negative conductance of the diode, the circuit will be bistable and tend to switch between the peak and valley point current extremes.
3. As long as the resonant frequency (f_{0}) of the circuit is below the resistive cut-off frequency ($f_{r o}$) of the circuit, the amplifier will tend to oscillate at f_{n}. This latter criteria may be particularly troublesome in the low-frequency range since it is not simple to design low-frequency amplifiers without the use of wiring and components having a great deal of stray inductances.

The circuit cut-off frequency is still given by

$$
f_{r o}=\frac{1\left|g_{d}\right|}{2 \pi C} \sqrt{\frac{1}{R_{0} g_{d}}-1}
$$

but R_{d} is now the sum of R_{s} (internal) $+R_{s}$ (external). Since R_{s} (external) is essentially the matched load resistance, the term under the radical becomes very small, thus reducing $f_{\text {ro }}$ The use of greater shunt capacity to reduce $f_{r o}$ is not recommended since this would also lower the resonant frequency of the circuit (f_{0}).

Looking at the equivalent circuit of Fig. 4, it can be seen that the circuit resonant frequency

$$
f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L_{z} \times C}-\left(\frac{g_{d}}{C}\right)^{2}}
$$

is determined largely by C and L_{s}, both of which are increased by the use of additional lumped constants.
4. To permit stable amplification ${ }^{\circ}$

$$
\frac{1}{y_{d}}>R_{T}>\frac{L_{o d}}{C}
$$

where R_{T} is the total positive circuit resistance, L and C are the total circuit inductance and capacitance.
The limit condition would be $1 / g_{d}=R_{T}$

[^2]in which case $1 / g_{d}>L_{g} / C$. Assuming the distributed capacitance can be kept down to about 3 pf and the device capacitance is $7 \mathrm{pf}, \mathrm{C}=$ $3+7=10 \mathrm{pf}$,
$$
L<\frac{C}{g_{d}^{2}}<\frac{10 \times 10^{-12}}{1 \times 10^{-4}}=100 \mathrm{~m} \mu \mathrm{~h}
$$

This constitutes an additional stability criteria which is especially difficult to deal with at very low frequencies. It can be seen from this equation, however, that a high capacitance or low conductance diode (high $\mathrm{C} / \mathrm{g}_{d}{ }^{2}$ ratio) would be easier to stabilize at low frequencies.
5. Since the negative resistance may be affected by dc bias and temperature variations, all above conditions must remain satisfied. In a $20-\mathrm{db}$ stage having only a 1 per cent difference between $-r_{d}$ and r_{b}, this 1 per cent difference must be kept constant to maintain a fixed value of gain.

Generator Conductance $\mathbf{I g}_{\mathbf{j}}$) Matches Negative

 Conductance $\lg _{\boldsymbol{d}}$, Load Conductance \boldsymbol{g}_{1} SmallHere the generator conductance must remain closely matched to the diode while reasonable variations in load conductance only affect gain slightly. If. for example,

$$
r_{g}=109 \text { ohms }\left(g_{g}=9.18 \times 10^{-8} \mathrm{mhos}\right)
$$

$r_{l}=1,000$ ohms ($g_{l}=1 \times 10^{-3}$ mhos)
$-r_{d}=100$ ohms $\left(-g_{d}=1 \times 10^{-2}\right.$ mhos $)$

$$
\begin{aligned}
P G_{a v} & =\frac{4 \times 9.18 \times 10^{-6}}{\left(9.18 \times 10^{-3}+1 \times 10^{-3}-1 \times 10^{-2}\right)^{2}} \\
& =\frac{36.7 \times 10^{-6}}{3.25 \times 10^{-8}}=1,130=30.54 \mathrm{db}
\end{aligned}
$$

Now, if both r_{g} and $-r_{d}$ remain constant, but r_{i} varies by ± 10 per cent, the following changes in gain would result.
(a) $r_{l^{\prime}}=r_{l}-10 \%$

Thus $r_{l^{\prime}}=1,000-100=900$ ohms and $g_{t}=$ 1.11×10^{-3}
$P G_{o r}=\frac{4 \times 9.18 \times 1.11 \times 10^{-6}}{\left[(9.18+1.11-10) 10^{-3}\right]^{2}}=\frac{4(1) .4 \times 10^{-6}}{8+\times 10^{-8}}$ $=481=2(6.8 \mathrm{dl})$
A loss of 3.74 db
(b) $r_{l}=r_{t}+10 p \times r$ cem

Thus $r_{t}^{\prime \prime}=1,000+100=1,100$ ohms and g_{t} $=0.91 \times 10^{3}$
$P G_{i n t}=\frac{4 \times 9.18 \times 0.91 \times 100^{-6}}{\left[(9.18+0.91-10) 1\left(0^{-3}\right]^{2}\right.}=\frac{33.3 \times 10^{-6}}{81 \times 10^{-8}}$ $=4,1: 20=36: 2 \mathrm{dl}$
A gain increase of 5.66 db .
Since the gain has gone up in one case and down in the other, a total change of $5.66+$ $3.74=9.4 \mathrm{db}$ must be considered. Stability Criteria: In both cases previously discussed, the value of negative conductance is equally critical, since either g_{g} or g_{l} must remain very nearly equal to $\left|g_{d}\right|$ in order to sustain adequate stable gain. Otherwise, the same previously discussed stability criteria apply in both cases.

Load Conductance (g)| is Equal to the Generator Conductance \boldsymbol{g}_{d} While $\boldsymbol{g}_{d}=\boldsymbol{g}_{t}+\boldsymbol{g}_{\text {g }}$

In this instance, the generator and load conductances share the responsibility of matching the negative diode conductance thereby distributing the burden somewhat. Here, however, both g_{g} and g_{l} must remain extremely constant and all other stability criteria still apply.

Summary of Requirements

To Achieve Stability

(1) Regardless of the operating frequency of the amplifier, the latter has to be built with extremely short leads and careful layout, as if it were a vhf stage, in order to keep $f_{x o}$ above $f_{r o}$ and $I,<C / g_{d}{ }^{2}$.
(2) For adequate amplification and stability, the sum of the load and generator conductances has to be very nearly equal to, but always greater than, the negative conductance of the diode.

$$
G_{t}>-g_{d}
$$

(3) The total dc loop conductance must be larger than the negative conductance. (Dc bias supply must be a voltage source.)
(4) All above requirements must remain satisfied over a range of supply voltages and temperature conditions.

Several Methods of Obtaining

Stable DC Bias
There are two reasons why the dc operating point must remain stable. First, looking at Fig. 5 , it is apparent that the maximum voltage

GUARD AGAINST SIGNAL DROPOUTS WITH RELIABLE TAPES OF MYLAR

Signal dropouts can make the data from critical tests completely useless. That's why the reliability of your magnetic tape base is so important. Tapes of Mylar*, because they're dimensionally stable, resist cupping which may cause signal dropouts from loss of contact with the recording or playback heads. They also resist swelling and shrinking which can cause track displacement.

Tapes of "Mylar" also resist stretching and breaking from sudden stops and starts, edge nicks, and are unaffected by humid storage and aging. They have 7 times the initial tear strength of ordinary plastic tapes!

The tremendous cost of gathering data demands reliability. Get it with tapes of "Mylar". Send coupon for free booklet of comparative test data and judge for yourself. Du Pont Company, Film Department, Wilmington 98, Del.
*Du Pont's registered trademark for its polyester film.

Fig. 5. Load line superimposed on the diode characteristic curve.

swing is limited to about 100 mv (peak-to-peak) by the nonlinearities occurring around points A and B. If point C is allowed to deviate from the center of the linear slope, the dynamic range would be greatly reduced and/or the distortion increased.
Second, even the slightest nonlinearities in the operating portion of the slope $\left(-g_{d}\right)$, could create relatively large changes in gain due to the required match conditions. In Fig. 6 the results of such slight nonlinearity have been illustrated by the following test:
The circuit was set up at full supply voltage $(6 \mathrm{v})$ properly biased ($E_{\text {diode }}=125 \mathrm{mv}$) and having the following parameters:

$$
\begin{aligned}
& r_{t}=140 \mathrm{ohms} \\
& e_{\text {in }}=4 \mathrm{mv} \\
& r_{g}=1,000 \text { ohnis } \\
& e_{0}=3.6 \mathrm{mv} \\
& P G_{a t}=18.1 \mathrm{db}
\end{aligned}
$$

Subsequently, the supply voltage was reduced (simulating a lower battery voltage) in steps. The change of output voltage was recorded and the resultant loss in power gain calculated. The cause of the rapid gain fall-off is expected to be a nonlinear change in negative conductance versus bias voltage.

AMBIENT TEMPERATURE (C)

Fig. 9. A linear increase of negative resistance takes place as diode temperature is raised.

In order to get an idea of the magnitude of this change, the output signal voltage was maintained constant by readjusting the load resistance and thereby sustaining a reasonably constant match. The change in r_{l} can be considered equal to the change in $-r_{d}$, see Fig. 7 .

Note the fact that the slope changes sign at about 140 mv . From Fig. 7, it is evident that a means to stabilize the bias voltage must be found. Three of the more obvious methods are:
(1) The use of a mercury cell (stable E_{b}).
(2) The use of the relatively constant voltage drop across a forward biased diode.
(3) The use of breakdown (Zener) diodes as voltage regulators.

Experimental Check of the Temperature Dependence of Tunnel Diodes

An increase in ambient temperature has the following effect on the V-I characteristics of the tunnel diode: the peak current may increase or decrease, the valley current increases and the forward injection voltage ($V_{f D}$) decreases. The effect on the negative resistance region is to make the value of $-r_{d}$ temperature sensitive. To ohtain a rough estimate of the sign and magnitude of this coefficient for the 1N2939, the following tests were performed:
(1) A circuit was set up having 13.3-dh power gain at room temperature. In the first experiment, only the ambient temperature (t_{a}) was varied and the results can be seen in Fig. 8.

It became quickly apparent that an increase in temperature would result in (1) a change in diode bias voltage and (2) a change in gain which could be caused by the bias change, by a change in negative resistance or both.

In a test setup, with temperature varied from 10 to 50 C while maintaining a $145-\mathrm{ohm}$ load resistance, the bias voltage changed 3 mv and gain decreased by 6.6 db . After readjusting the bias to its original value (131 mv), only a fraction of a db improvement was obtained (0.6 db). Obviously a change in negative resistance took place. By adjusting the load resistance (r_{1}) to obtain approximately the original value of power gain, the sign and magnitude of this change can be roughly estimated. From Fig. 9, an average change of 0.8 ohm/C has taken place which, when normalized to room temperature, gives approximately a 0.5 per cent/C "positive" temperature coefficient.

Subsequent work on representative production lots of these tunnel diodes have shown that a certain spread in the above coefficients is evident. Hence the above data, although reasonably accurate, are not necessarily typical for the 1N2939 diode. It is therefore recommended that for accurate design specifications, an up-to-date specification sheet be consulted. -

A new high in potentiometer capabilities .the Clarostat Series 59M14. 10-turn. 7s" potentiometer packs more performance per cubic inch than any other multiturn pot today. Clarostat's unique design permits more winding length in a given diameter than conventional designs. And, price-wise the Series 59 M 14 is competitive across the board For all your mult-turn potentiometer needs. compare Clarostat for quality.
for value.

SPECIFICATIONS - SERIES 59M14, 10-TURN POTENTIOMETERS

- Diameter
- Length
- Maximum Resistance
- Indep. Linearity
- Wattage
- Taps
- Rotations
- Maximum Torquer
- Werght
$155^{\prime \prime}$ (Bushing) 1.611 (Servo; 100.000 ohms $\pm .25^{\circ} \%$. To $\pm .05^{\circ} \%$ 45 watts 40 C Centertap Center tap
$3600-i 0$
1.0 oz in

1002

WRITE
FOR COMPLETE DETAILS

CLAROSTAT MANUFACTURING CO.. INC. DOVER. NEW HAMPSHIRE

diodes
 196i
 Transistor-Tunnel Diode Combination

High-speed switching, at relatively high-voltage levels, is possible using a tunnel diode transistor combination.

Carl D. Todd

Senior Staff Engineer
Hughes Semiconductor Div.
Newport Beach, Calif.

THE HIGH SPEED triggering capability of the tunnel diode may be combined with the higher useful voltage levels of a transistor to produce a composite negative resistance device having an N-type current stable characteristic. The peak voltage is relatively insensitive to temperature variations and transistor leakage current does not generally pose a problem.

Negative resistance devices can be grouped into two major classes, N-type or current stable and S-type or voltage stable. N-type negative resistance devices have a voltage-current plot with the basic shape illustrated in Fig. la.

For a range of voltage values between a peak voltage, V_{P}, and a valley voltage, V_{V}, three current values are possible for each value of applied voltage. If the current is specified, however, only one voltage may exist for that current. N-type characteristic devices are therefore considered current or open-circuit stable.

S-type negative resistance devices, such as the tunnel diode, have a voltage-current plot as shown in Fig. 1b.

For a range of current values between a valley current, I_{V}, and a peak current, I_{P}, three voltages may exist. Specifying the voltage, however, defines the one value of current which may exist. S-type negative resistance devices are therefore considered voltage or short-circuit stable.

Monostable multivibrators and relaxation oscillators using N -type negative resistance devices normally use a capacitor as the energy storing element; S-type devices must use an inductor. Low-frequency oscillators using S-type negative resistance devices are therefore quite bulky and have considerable weight.

Straight-Line Analysis of the

Tunnel-Diode-Transistor Combination
The circuit which may be used to convert the S-type, low-voltage characteristic of the tunnel
diode into an N-type characteristic operating at much higher voltage levels is shown in its simplest form in Fig. 2.

The emitter-base diode characteristic may first be assumed to intersect the tunnel diode characteristic in the valley region as illustrated in the drawing of Fig. 3. Since the tunnel diode and the transistor input are directly in parallel, a composite characteristic of these two curves may be constructed as illustrated by adding the two currents for a given voltage value. This composite characteristic must operate along the load line whose slope is determined by the value of R_{1} and whose voltage intercept is the terminal voltage, V_{1}.

Constructing the plot of the terminal current I_{1}, as a function of the terminal voltage, V_{1}, by graphical manipulations, the characteristic of Fig. 4a is obtained. While at first glance this does not look exactly like the basic shape shown in Fig. la, it will perform switching applications in a similar manner. The line $a^{\prime}-b^{\prime}$ is due mainly to resistor R_{1} and, to a much lesser degree, to the initial slope of the tunnel diode. The emitterbase diode of the transistor has no effect since it has been assumed that conduction does not begin until a higher voltage level is reached. Since there is no base current, the collector current may, for most cases, be assumed negligible. In the construction of the curve, $h_{P E}$ of the transistor has been assumed to be constant with collector voltage and collector current.

The line $b^{\prime}-c^{\prime}$ is due to the negative resistance region of the tunnel diode. Current through the tunnel diode is decreasing as the terminal voltage across the total circuit is decreased. Because the voltage drop across the tunnel diode is larger in the negative resistance region than for the initial positive slope, the value of I_{1} produced by a given terminal voltage will be a small amount less. If the value of R_{1} is high such that the firing voltage, V_{P}, is made large with respect to the voltage across the tunnel diode, line $b^{\prime}-c^{\prime}$ will fall very close to line $a^{\prime}-b^{\prime}$. It is assumed that the emitter-base diode does not conduct in
this region and thus the only current flowing is that through the tunnel diode. Collector leakage currents have also been assumed negligible.

Line $c^{\prime}-d^{\prime}$ of Fig. 4a is produced as the operating point in Fig. 3 is moved along the constant current region in the valley of the tunnel diode. The emitter-base diode is still assumed to be nonconducting in this region.

As the terminal voltage V_{1} is now increased slightly, the current flowing through the tunnel diode remains the same since the operating point is still in the valley region of the tunnel diode. Base current begins to flow as soon as the value of $V_{B E}$ exceeds the value V_{d}. This current is multiplied by the current gain of transistor Q_{1} thus producting the rapidly rising current described by line $d^{\prime}-e^{\prime}$ in Fig. 4 a.

If the value of $V_{B E}$ exceeds the voltage V_{p}, the tunnel diode current again rises and, under certain conditions, may cause a leveling off in the current I_{1}.

Perhaps the most important parameter in any negative resistance device used in a switching application is the firing point, described in the characteristic of Fig. 4 by V_{P}^{\prime} which is equal to V_{b}. For the conditions assumed for this case, V_{P}^{\prime} may be very easily computed from the simple relation

$$
\begin{equation*}
V^{\prime \prime}{ }_{P}=I_{P} R_{1}+V_{P} \cong I_{P} R_{1} \tag{1}
\end{equation*}
$$

For nearly all cases, the value of $V^{\prime}{ }_{P}$ is much larger than the peak voltage of the tunnel diode, V_{P}, and thus the approximation indicated above in Eq. 1 is very accurate. This means that the firing point is very stable since the peak current of a tunnel diode is not appreciably affected by changes in temperature.

The value of the voltage $V_{c}{ }_{c}$ is given by:

$$
\begin{equation*}
V_{e}^{\prime}=I_{V} R_{1}+V_{v} \cong I_{V} R_{1} \tag{2}
\end{equation*}
$$

$V^{\prime}{ }_{c}$ is the valley voltage for the composite device for the exact conditions assumed. The value of I_{V} of the tunnel diode will be determined by the peak current and the peak-to-valley current ratio, H, of the tunnel diode used. The higher the value
of H for the tunnel diode, the lower the voltage V^{\prime} o and the more efficient the composite device becomes when used as a switch. Since the behavior of I_{V} of a tunnel diode as a function of temperature is not fully understood, it is not possible to accurately predict the variations in valley voltages for the composite.

The voltage differences between $V^{\prime}{ }_{c}$ and V^{\prime} has been greatly exaggerated in Fig. 4a. This voltage will actually be the difference between the values of V_{o} and V_{d} of the tunnel diode and hence, for most cases, will be negligible. The transistor will thus begin to conduct at a terminal voltage V_{1}, approximately equal to the product of I_{∇} and \boldsymbol{R}_{1}.

The terminal resistance for the "off" condition is very nearly equal to \boldsymbol{R}_{1} and the resistance for the "on" condition will approach the value of R_{1} divided by the $h_{f e}$ of the transistor. Any tendency of the current gain of the transistor to decrease with increasing current levels will result in an increase in the "on" resistance at those current levels.
The position of the emitter-base diode characteristic will vary with temperature at a rate of approximate iy $2.5 \mathrm{mv} / \mathrm{C}$. As long as the knee of this curve falls within the valley region, the effect on the composite characteristic will be negligible.

It is of interest to study the case where base current begins to flow before the valley region of the tunnel diode is reached. For applications using germanium tunnel diodes with germanium transistors, this is the condition most of the time. By proper biasing, the emitter-base diode characteristic may be moved to any portion of the tunnel diode characteristic as will be seen later.

Assume the conditions depicted in Fig. 5. Again, the emitter-base diode is assumed to be nonconducting until a certain voltage, V_{c}, is reached. The composite characteristic curve shown in Fig. 4b is therefore identical to the one in Fig. 4a up to the point where base current commences. As soon as the voltage across the tunnel diode and the transistor input has reached the value V_{c}, base current flows. This current is multiplied by the $h_{f 0}$ of the transistor thus producing a very rapid rise in the current I_{1} as before. There is no flat or constant current region in the characteristic curve representing the tunnel diode and the transistor in parallel, and thus there will be no constant current portion in the over-all composite characteristic curve of Fig. 4b. When conditions are such that the tunnel diode begins to operate in its valley region, however, there will be an increase in the rate of current increase since the effect of the negative resistance slope of the tunnel diode is no longer present.

The change in emitter-base diode characteristics with temperature which produced a very

Fig. 1. V.I characteristic curves of negative resistance devices.

Fig. 2. Basic funnel diodetransistor combination to convert " S " to " N " type characteristic.

Fig. 3. Straight-line approximation of the composite device input characteristics where the emitter-base diode intersects the valley region of the tunnel diode.

Fig. 4. Terminal voltage vs terminal current for conditions set in Fig. 3 is shown in (a) and for Fig. 4 is shown in (b).
minor change in the over-all results for the first case described must now be considered in light of the conditions illustrated in Fig. 5. Whereas previously, shifts in the transistor characteristics did not change the valley current for the composite curve shown in Fig. 3, such is not the case in Fig. 5. If line $c-d$ shifts downward by a value $\Delta V \mathrm{mv}, I_{c}$, the valley current for the composite, will shift upward by an amount equal to $\Delta V R_{b c}$ ma and the valley voltage for the over-all composite characteristic curve of Fig. 6 will shift upward by $R_{1} \Delta V / R_{b c} v$. Since R_{1} is normally much larger than the value of $\boldsymbol{R}_{\mathrm{bc}}$, the resulting change in the valley voltage of the over-all characteristic will be much larger than the value of ΔV and the amount of change for the curve of Fig. 4a.

Development of the Characteristic Curve for the Practical Case

In the preceding analysis, the emitter-base diode was assumed to remain nonconducting until a certain threshold voltage was reached. Beyond this voltage the characteristic was assumed to rise in a linear manner. Actually, the
diode characteristic curve is a logarithmic function. This means that for the practical form of the conditions shown in Fig. 3, the line $c^{\prime}-d^{\prime}$ will not be constant current but such that the current at any point d^{\prime} may be much larger than that for point c^{\prime}. All transitions will be more or less smooth curves rather than the very sharp ones indicated in the previously described straight-line analysis.

The peak voltage of a tunnel diode is low so the current llowing in the emitter-base diode at this level may be negligible as assumed. Triggering will actually occur when the load line of R_{1} is tangent to the composite curve; for general considerations, this point will be very close to the peak point. Thus Eq. 1 still holds for the trigger voltage of the practical case and the "off" resistance will still be equal to \boldsymbol{R}_{1}.

The slope of the over-all composite characteristic curve bears a definite relationship to the relative values of the magnitude of the tunnel diode resistance, r_{d}, the transistor input resistance, R_{i}, and the transistor common emitter current gain, $h_{f e}$.
(continued on p 50)

Fig. 5. Straight line representation of the input characteristic when base current flows before tunnel diode valley region is reached.

Fig. 7. Operating characteristic curve for a funnel diode-fransistor combination.

Fig. B. Over-all characteristic developed from Fig. 7.

(a)

(c)

Fig. 6. Exaggerated input charciteristics for a practical case. Full (a) or degenerate (b) loops will be formed depending on the load conditions (c).

Fig. 9. Voltage bias (a) and current bias (b) used to shits the relative position of the tunnel diade and transistor input characteristics.

(b)

This relationship is given by Eq. 3 and is illustrated in Fig. 6a and b.

$$
\begin{equation*}
R_{m}=\frac{V_{1}}{I_{1}}=\left(\frac{R_{1}+R_{j}}{R_{f}}\right)\left(\frac{1}{\frac{h_{f}+1}{R_{\mathrm{s}}}-\frac{1}{r_{d}}}\right) \tag{3}
\end{equation*}
$$

The over-all composite characteristic curve obtained will be of the nature shown in Fig. 6a if the value of r_{d} may be equal to $R_{4} /\left(1+h_{f e}\right)$ near the peak point with $\left|R_{i}\right|$ greater than the value of R_{1}. If the voltage necessary to cause r_{6} to be equal to the value of $R_{4} /\left(1+h_{f e}\right)$ is greater than that necessary for $\left|R_{i}\right|$ to be equal to R_{1}, a degenerate loop will be formed as indicated in Fig. 6b. The load conditions necessary for each case is shown in Fig. 6c.

In most cases, the size of the loop is quite small, being most apparent for a low design value of trigger voltage or where the emitterbase diode has a higher conduction voltage. The conditions shown in Fig. 6 have been greatly exaggerated for clarity.

Graphical Example

Of Transisfor-Diode Combination

As a practical example, a tunnel diode of peak current equal to 1.85 ma was combined with an npp alloy germanium transistor having an $h_{p,}$ of 70 over a wide current range. The characteristic curves for the tunnel diode, the emitter-base diode for the transistor, and the parallel composite for the two are shown in Fig. 7. For the curves including the transistor, the collector voltage was held constant at 1.5 v . In actual use, however, the collector voltage is varying and may be substantially higher than 1.5 v with correspondingly higher junction temperature. The various load line conditions are shown for ter-
minal voltage, V_{1}, values of 4 to 20 v .
The voltage-current characteristic obtained by graphical analysis is shown in Fig. 8. An additional curve included in Fig. 8 is the curve obtained at an elevated temperature of approximately 45 C .

The room temperature characteristic of Fig. 8 has a very sharp peak region which indicates a loop of very small area. As the temperature is increased, the size of the loop becomes smaller.

Addition of Bias

To Shift Input Characteristic

Voltage Bias: Voltage bias may be used to shift the relative positions of the tunnel diode and the transistor input characteristic curves. A practical means of obtaining a large region of negative resistance is shown in Fig. 9a. Resistor \boldsymbol{R}_{2} should be small in comparison to the tunnel diode resistances. Supply voltage V_{2} may be derived from the same source used to supply the entire circuit if point " \mathbf{B} " is made common.

Some characteristic curves obtained for various voltage bias conditions are shown in Fig. 10. The dotted lines indicate an approximate condition. The trigger voltage will remain relatively constant and will normally change only by an amount equal to the bias voltage. The application of bias may be extended to use with silicon transistors or may be used to compensate for differences in transistors. By making the bias voltage vary at the same rate as the change in $V_{B E}$ with temperature, the stability of the overall circuit may be substantially improved.

Current Bias: For an ideal switch, it is desirable that the "off" current and the "on" voltage both be zero. For the basic circuit of Fig. 2, the "off" current is determined mainly by resistor R_{1}. The "on" voltage is a function of the relative shapes of the tunnel diode and the transistor input characteristics. From the composite curve shown in Fig. 8, the valley voltage may be determined as that value of V_{1} which causes the load line of R_{1} to be tangent to the valley region of the composite curve. Thus, the lower the composite valley current, the lower the value of valley voltage on the over-all characteristic of Fig. 8.
The composite curve of Fig. 7 may, in effect, be shifted downward by the application of a current source to the tunnel diode in the manner shown in Fig. 9b. The vertical shift will be equal to the bias current I_{2}. The peak current will also be decreased by an amount equal to I_{2}, and thus, for the same firing voltage, the value of R_{1} must be increased; this will increase "off" resistance.
The three characteristic curves of Fig. 11 illustrate the effect of bias current applied in the manner described. Curve 2 represents a much more efficient switch than the condition with no bias current as shown by curve 1 .

There is a limit as to how much bias current may be applied and hence how low the "on" voltage may be made. The current gain of the transistor falls off rapidly as the collector voltage is decreased below a few tenths of 1 v . Also, it is possible to cause a "locking" condition in which the switch may only be turned off upon the application of a reverse voltage pulse.

Characteristic curve number 3 of Fig. 11 shows the effect of applying a voltage bias and a current bias at the same time.

Circuit Predictability Improved by

Collector Resistor

The presence of a resistor $\left(R_{2}\right)$ in series with the collector allows the transistor to saturate very quickly thus allowing the "on" condition to be determined by the paralle] combination of the two resistors, \boldsymbol{R}_{1} (Fig. 2) and $\boldsymbol{R}_{\mathbf{2}}$. In Fig. 12 note how closely the curves for the over-all characteristic follow the dotted line representing the parallel combination of the two resistors.

While the addition of R_{2} does reduce the effciency of the switch, it does make it much more predictable. By selecting an operating point in the "on" region which is substantially removed from the turning point, the circuit becomes relatively unaffected by changes in temperature or in changes in transistor parameters. The higher the trigger voltage for which the circuit is designed, the better will be the adherence to the straightline function.

Composite Device Responds to Short Duration Pulses

Although the N-type negative resistance composite device may be triggered in the same manner as other two terminal negative resistance devices, a third terminal is often desirable.

The junction of the tunnel diode and the transistor base serves as an ideal point at which to apply a trigger. The effect of a momentary trigger is that described earlier. Upon the application of a positive trigger (assuming an npn transistor), the peak trigger voltage will be decreased momentarily. If the normal "off" voltage is larger than the momentary value of the peak voltage, the circuit will fire.

The tunnel diode is a very high speed device and hence it may respond to trigger pulses only a few nanoseconds in length. Thus while the operating speed of the over-all composite device will be greatly dependent upon the speed of the transistor, a trigger of extremely short duration applied directly to the tunnel diode will actuate the circuit. It may be desirable to insert a very small inductance in series with the tunnel diode and the base of the transistor to decrease the effect of the high input capacitance presented by the transistor. - -

Fig. 10. Over-all input characteristic for various voltage bias conditions.

Fig. 11. Effect of current and voltage bias on over-all characteristic curve.

Fig. 12. Effect of series collector load resistor.

Tunnel Diode Amplifier Calculator

A handy slide rule to reduce tedious calculations involved in the design of tunnel diode amplifier circuits.

James R. McDermott
Electronics Consultont
MeDermolt Associates, Inc.
New York, N. Y.

D
ESIGN of tunnel diode amplifiers involves equations with time-consuming multiplication, division, and squaring of terms with large powers of 10. The Tunnel Diode Amplifier Calculator has been prepared to save substantial time and effort by reducing these calculations to simplified slide-rule operations.
The Tunnel Diode Amplifier Calculator scales can be cut out and easily assembled. The scales are glued onto thin, tough cardboard or bristol board. The A scale is the top, fix ale while the B scale slides underneath. Cut the edge strips from the B scale and glue them to the back of the A scale. These strips serve as spacers between the front and a solid back sheet and also as guides for the center slide movement.

Design Procedure Using

Slide-Rule Colculator
The value of the calculator is demonstrated by an example involving a $100-\mathrm{mc}$ series-type amplifier, operating between two 50 -ohm transmission lines, shown in the schematic diagram. An initial requirement is that the amplifier be stable, which is satisfied by meeting the following requirements:
(Continued on p54)

For those engineers who are too busy to cut and paste, a prefabricated Tunnel Diode Am. plifier Calculator may be obtained for $\$ 2.00$ from McDermoll Associates, Inc., 1472 Broadracy, New York 36, N.Y.

it is the only crimp-type contact which, in one size only, accommodates all sizes of wire from 18 gauge to 30 gauge! Because it is the only crimp-type contact which offers positive locking into connectors each time, every time. And because it is the only crimp-type contact giving you the unmatched reliability and versatility of the Varicon; mating with itself or with numerous other Varicons!

discover for yourself Elco Varilok's unparalleled features! Available loose for use with hand-tools; or in reel form with power operated bench-machine.* Also available: a contact withdrawal tool; and crimp gauge

ELCO CORPORATION: M Street below Erie, Philadelphia 24, Pa., CU 9.5500
ELCO Pacific: 2200 Centinela, West Los Angeles 64 , Cal, GRanite 8.0671 international ELCO A. S., Lindealle 42, Copenhagen, Vanlose, Denmark ELCO Australasia, Bradberry House, 55 York Street, Sydney. Australia CIRCLE 41 ON READER-SERVICE CARD

$$
\begin{aligned}
& \text { diodes } \\
& L_{1} 61\left(g_{d} / \epsilon_{t}\right)<R_{t}<\frac{1}{g_{d}} \\
& L_{t}<R_{t}\left(c_{t} / g_{d}\right)
\end{aligned}
$$

or
In addition, it must be noted that in these amplifiers the resonant frequency is adjusted by variation of circuit resistance, while gain is controlled by adjustment of circuit inductance. With these factors in mind, proceed with amplifier design in accord with the following steps:

1. Circuit Resistance required for a given frequency is obtained from the following relations:

$$
\begin{equation*}
R_{t}=\frac{r_{d}}{1+\omega^{2}\left(c_{d}^{2} / g_{d}^{2}\right)} \tag{1}
\end{equation*}
$$

Negative diode resistance r_{d} is obtained by aligning the arrow of the g scale with the arrow of the r_{d} scale, placing reciprocal values opposite each other. From the schematic, read, opposite 7 on the g_{d} scale, 143 for the value of \boldsymbol{r}_{d}.
Next, solve for $\omega^{2}\left(c_{d}{ }^{2} / g_{d}{ }^{2}\right)$. Move 5 pf of the c_{d} scale opposite 7 millimhos of the g_{d} scale. Under the arrow at 80 on the f scale, read c_{d} / g_{d} $=7.2\left(\times 10^{-10}\right)$. (Note: The arrow coinciding with 80 has no numerical relation to the f scale.) Set 7.2 of the c_{d} / g_{d} scale opposite 100 mc on the f scale. The slide is extended to the right, therefore, read the answer on the lower $\omega^{2}\left(c_{d}{ }^{2} / g_{d}{ }^{2}\right)$ scale as 0.21 . (Note: When the slide is extended to the left for this problem, read the answer on the upper scale, at the lefthand arrow.)

Total circuit resistance R_{t} is now found by simple pencil division of $143 / 1.21$. in accord with Eq. 1 , thus giving 118 ohms. But the circuit resistance of $r_{g}+r_{0}+r_{L}$ is only 102 ohms, which means an added 16 ohms (r_{a}) must be connected in series.
2. Amplifier Gain is controlled by the value of total circuit inductance L_{ℓ}, which must be slightly smaller than $R_{t}\left(c_{d} / g_{d}\right)$ for maximum stable value. To find the value of $R_{t}\left(c_{d} / g_{d}\right)$, set the value of 7.2 on the c_{d} / g_{d} scale opposite the 80 arrow on the f scale. Then, read opposite 118 on the $\boldsymbol{R}_{\mathrm{t}}$ scale, a value of 84.3 on the $R_{t}\left(c_{d} / g_{d}\right)$ scale, in millimicrohenries. L_{8} must therefore be somewhat less than this value.
In the schematic, series lead inductance L_{0} of $6 \mathrm{~m} \mathrm{\mu h}$ is given, but in practice this may vary from 2 to $12 \mathrm{~m} \mu \mathrm{~h}$. Consequently, $L_{\text {, can fall be- }}$ tween 72 and $82 \mathrm{~m} \mu \mathrm{~h}$, and a 50 - to $100-\mathrm{m} \mu \mathrm{h}$ variable inductance is connected in series to provide a wide range of gain adjustment.
3. Bias Considerations are few. The operation

ELECTRONIC DESIGN • April 26, 1961
of the diode is centered about an inflection point on its characteristic curve. For this example, it is 130 mv at 0.7 ma . The value of battery voltage and adjustable series dropping resistor are chosen so that the inflection point setting may be conveniently obtained. The rf bias decoupling choke has an inductance value which gives not less than 10 K at the operating frequency, in this case 15μ h.
4. Power Gain is determined, for tunnel diodes, in terms of insertion gain. For the series circuit in the example, insertion power gain is given by:

$$
\begin{equation*}
P_{\text {gain }}=\frac{\left(r_{0}+r_{L}\right)^{2}}{\left(r_{0}+r_{L}-r_{d \rho}\right)^{2}} \tag{2}
\end{equation*}
$$

In most literature, the $-r_{d}$ term is written as $-r_{d}$, implying the negative diode de resistance can be used. However, this is incorrect (except for dc applications) since, in the series circuit, the effective negative resistance is governed at the frequency of interest by circuit inductance L_{t}. For this reason, the value of $r_{d f}$ is determined in accord with

$$
\begin{equation*}
r_{d \rho}=L_{l}\left(g_{d} / c_{d}\right) \text { ohms } \tag{3}
\end{equation*}
$$

To find (g_{d} / c_{a}) on the calculator, align the left hand ends of the c_{α} / g_{d} and f scales. Opposite the known value of c_{a} / g_{d}, read the numerical value of g_{d} / c_{b} on the f scale and raise that value by 10^{7}. For the example given, first align scales and then opposite 7.2 on the c_{d} / g_{d} scale read 140 on the f scale. Thus 140 by 10^{7} or 1.4×10^{9} is the value for g_{d} / c_{d}.
The solution of the power gain equation is simplified by the Tunnel Diode Amplifier Calculator because it eliminates handling squared terms. It is only necessary to add $r_{0}+r_{L}$ and $r_{g}+r_{L}-r_{d s,}$, place the latter term opposite the first on the slide rule and read the gain directly in decibels.

For the circuit given, the inductance L_{a} was adjusted to give an $r_{d \rho}$ of 103. Thus, $r_{d \rho}=L$ $\left(g_{d} / c_{d}\right)=118$ ohms. Thus, $r_{g}+r_{L}=100$, and $r_{g}+r_{L}-r_{d \rho}=3.16$ ohms, providing a power gain of 30 db . Increasing $L_{\text {, }}$ sufficiently provided experimental gains up to 40 db . Much beyond this value, circuit instability becomes a problem.

For parallel-type tunnel diode circuits, the power gain is given by the same scales but the quantities are in terms of conductance in mhos $\times 10^{-3}$. Here, if the frequency of interest is much smaller than ω_{s}, the diode reactive frequency, the diode admittance is approximately equal to g_{d} and the dc value can be used.

For additional detailed information on tunnel diode amplifiers and factors affecting circuit gain, refer to "Designing with Tunnel Diodes" by U.S. Davidson et al., Electronic Design, Feb. 3 and 16, 1960. - -

breaks through with new $\mathbf{7 5}$ v. Solid Tantalum Capacltor. .

REPRESENTATIVES FOR "KEMET" SOLID TANTALUM CAPACITORS EAST COAST, willistan Park, M. Y.Electrical Manufacturers Service.
P. O. Box 128, 105 Hill side Avenue FLORIDA, Molbourne-Joseph A. Adams
Associates, P. O. Bor 1322 Associates, P. O. Bor 11222
MIDDLE ATLAMTIC, Cleveland 1MIDDLE ATLANTIC, Cleveland 1-
R. Gidinell \& Co. 1229 W. Lake Ave.
8outh Whitio, Ind -W South Whitley, Ind.-Warne
As sociates. P. O. Box 338 MıOwEST, Chicase 45-D. Dolin Sales,
3553 Wesi Peterson Avenue 3553 Wesi Peterson Avenue Stanclothier Co., Inc., 12 West 58th St SOUTHWEST, Dallas, TexasAmmon \& Champion Company, 2714 Bomar Street
 Bocky moumpaim AnEA, Denver 26Barnhill Associates. 1170 South Sheridan G. S. Marshall Company, Cal 2065 Muntington Orive.

highest rated working voltage unit of its kind available today!

 capacitance values: 1 to 18. Microfarads - temperature range: -55 to $+125^{\circ} \mathrm{C}$.A new frontier in capacitor technology has been opened by "Kemet's" successful achievement of a new 75 -volt solid tantalum capacitor!
"Kemet's" breakthrough comprises 14 catalog types, hermetically sealed in the four case sizes specified in MIL-C26655A for CS12 and CS13 styles . . . providing Standard E.I.A. capacitance values in tolerances of $\pm 20 \%, \pm 10 \%$, and $\pm 5 \%$.
"Kemet's" latest addition to its complete line of solid tantalum capacitors supplements its popular J-Series . . . available in capacitance values ranging from . 33 to 330 microfarads and working voltages of $6,10,15,20,35$, and 50 .
Solid construction and utmost operating dependability have made "Kemet" tantalum capacitors the leader in their field. They can be specified and installed with confidence, because they have been subjected to the most exacting tests for life, temperature, humidity, vibration, and acceleration.

For data on "Kemet's" new 75-volt J-Series tantalum capacitors, write for Bulletin 3B to Kemet Company, Division of Union Carbide Corporation, 11901 Madison Ave., Cleveland 1.
"Kemet" and "Union Carbide" are registered trade-marks for products of
KEMET COMPANY
UNION CARBIDE

diodes
 191

Latest Defense Department Diode List

The latest military listing of preferred and guidance type semiconductor diodes has recently been approved by the Department of Defense. Although the tabulation has not been officially blessed at the time of this writing, close sources involved in the preparation indicate the listing is complete and accurate.

Table 1. Small signal and power diodes.

V	$\begin{aligned} & 50 \\ & \text { ma } \end{aligned}$	$\begin{gathered} 150 \\ \mathrm{ma} \end{gathered}$	$\begin{gathered} 250 \\ \text { ma } \end{gathered}$	$\begin{gathered} 500 \\ \text { ma } \end{gathered}$	A	5	$\begin{gathered} 12 \\ A \end{gathered}$	$\begin{gathered} 20 \\ A \end{gathered}$	$\begin{gathered} 35 \\ A \end{gathered}$	50	$\begin{gathered} 70 \\ \mathrm{~A} \end{gathered}$
50	1N4838	-	-	-	-	-	-	-	-	-	-
100	1N485B	-	-	-	-	-	-	1N2498	1N1184	IN2173	1N1397
200	IN486B	-1N645	*1N538	1N3189	* INII24A	1N1614	1N1202	1N2508	IN1186	IN2174	IN1399
300	-	-	-	-	-	-	-	IN2135A	-	1N168	-
400	-	-1N647	-1N540	1N3190	*INII26A	1N1615	IN1204	-	IN1188	-	INI 401
500	-	-	5	-	-	-	-	-	-	-	-
600	-	IN649	- 1N547	1N3191	*INII28A	1N1616	IN1206	-	1N1190	-	IN1403
800	-	-	IN560	-	-	-	-	-	-	-	-
1,000	-	-	IN561	-	-	-	-	-	-	-	-

Table 2. High voltage rectifiers.

V	45 ma @ 75 C	75 mo @ 100 C	100 ma @ 100 C	300 ma @ 25 C
1,500	-	-	-1N1731	*\|N1130 *IN1131
$\begin{aligned} & 3,000 \\ & 5,000 \end{aligned}$	-	*1N1734	-1N1733	-
12,000	1N1147	-	-	-
16,000	IN1149	-	-	

Table 4. Microwave diodes.

Table 3. Germanium diodes.

v	30 $m a$	40 ma	75 ma
50	-	IN276	-
80	IN933	IN-	-
100	-	-	IN270
IN277			

Table 5. Silicon switching diodes.

V	10 ma	100 mo	400 ma
Slow Speed ($0.8 \mu \mathrm{sec}-0.3 \mu \mathrm{sec}$)			
75-100	-	-	IN691
Fast Speed ($0.3 \mu \mathrm{sec}$ - $10 \mathrm{~m} \mu \mathrm{sec}$)			
$\begin{array}{r} 75.100 \\ 175-200 \end{array}$	-	$\text { IN } \overline{3070}$	1N697 -
Very Fast Speed (<10 musec)			
$\begin{aligned} & \hline 20-50 \\ & 75-100 \end{aligned}$	$\begin{aligned} & \hline \text { IN3064 } \\ & \text { *iN914 } \end{aligned}$	-	-

Table 8. Voltage regulator diodes.

Table 7. Controlied rectifiers.

V	10 A	16 A @ 65 C	50 A
50	2N1771A	2N682	-
100	2N1772A	2N683	-
200	2N1774A	2N685	-
300	2N1776A	2N687	-
400	2N1777A	2N688	-
500	-	2N689	-

- preforred

ELECTRONIC DESIGN • April 26, 1961

Frequency Stabilization

 ML-7855Special anode design of ML-7855 permits frequency stoble operation within $10-15$ seconds after application of high voltage. (Frequency change during this initial period is less than 1 mc).
ML. 7855 provides frequency stable operation with unregulated supply - change in plate dissipation has no effect upon frequency.
CW eperation to 2500 mc , with 1000 V Ebb, 100 ma lo.
Plate-pulsed to 3000 mc , with 3500 v eb, 3.0 a ib, with a ip of 3 usec at 0.0025 Du .

Send for UHF brochure
 CIRCLE 43 ON READER-SERVICE CARD

Table 9. Specification numbers for approved diodes.

Type	Speciffation	Type	Specification
IN21B	MIL-E-1/656	1N249B	MIL-S-19500/134(SigC)
1N21C	MIL-E-1/657	IN250B	MIL-S-19500/134(SigC)
IN2IE	MIL-E-1/1155(USAF)	1N251	MIL-E-1 / 1023
	Cancelled	1 N253	MIL-E-1/1024A
IN2IWE	MIL-E-1/1115	1N254	MIL-E-1/989B
IN23B	MIL-E-1/618	1N255	MIL-E-1/990B
1N23C	MIL-E-1/295B	1N256	MIL-E-1/991B
IN23CR	MIL-E-I/550A	1N263	MIL-E-1/809B
IN23E	MILEE-1/1231(SigC)	1N269	MIL-E-1/808(SigC)
IN23WE	MLL-E-1/1117A	IN270	MIL-E.I/992A
IN25	MIL-E-1/658	IN276	MIL-E.I/1025
1N26	MIL-E-1/659B	1N277	MIL-E-1/993A
1N26B	MIL-S-19500/128(SigC)	1N281	MIL-E-1/961
1N28	MIL-E-1/660A (cancellod)	IN315	MIL-E-1/1088(SigC)
1N31	MIL-E-1/661A	1NA118	MIL-E-1/1196(SigC)
1N32	MIL-E-1/27A	1N412B	MIL-E-1/1151(SigC)
1N388	MIL-E-1/492B	IN413B	MIL-E-1/1194(SigC)
1N39	MIL-E-1 /TT7B(NAVY)	IN429	MIL-E-1/1134A(USAF)
1N44	MIL-E-1/377 (NAVY)	1N430	MIL-S-19500/140(NAVY)
IN48	MIL-E-1/378(NAVY)	1N457	MIL-E-1/1026
	Cancelled	1N458	MIL-E-1/1027
1N53	MIL-E-1/497B	1N459	MIL-E-1/1028
IN55A	MIL-E-I / 487 A(NAVY)	IN483B	
IN55B	MIL-E-1 / 481 A(NAVY)	IN485B	MIL-S-19500/118(NAVY)
IN56A	MIL-E-I /549A(NAVY)	1N486B	
IN63	MIL-E-1/376B(NAVY)	1N538	MIL-E-1/1086 Cancelled
IN67A	MIL-E-1 /508(NAVY)	IN538	MIL-E-1 / 1084A
	Cancelled	IN540	MIL-E-I / 1087 Cancelled
IN67A	MIL-E-I/508 Cancelled	IN540	MIL-E-1 / 1085A
IN69A	MIL-E-1/142D	IN547	MIL-E-1/1083A
IN70A	MIL-E-1/154D	1N548	MIL-S-19500/97(SigC)
1N72	MIL-E-1 / 780A(NAVY)	IN549	MIL-S-19500/98(SigC)
1N78	MIL-E. I /662A	IN560	MIL-S-19500/167(NAVY)
1N78B	MIL-S-19500/129(SigC)	IN561	MIL-S-19500/167(NAVY)
IN78C	MIL-S-19500/130(SigC)	1N570	MIL-E-1/1275(USAF)
IN81A	MIL-E-I/155D(SigC)	IN592	
IN82A	MIL-E-I/1299(SigC)	IN593	MIL-E-1/1109(USAF)
IN93	MIL-E-1/895B(NAWY)	IN594	
INI26A	MIL-E-1/156C	IN595	
IN127A	MIL-E-1/157C	IN643	MIL-E-1/1171(SigC)
1N127B	MIL-E-I/1150(SigC)	IN645	
	Cancelled	IN646	
IN128	MIL-E-1 / 158B	IN647	MIL-E- I / 143(USAF)
IN145	MIL-E-1/811 (NAVY)	IN648	
1N198	MIL-E- / 700	IN649	
IN212	MIL-E-1/932A(NAVY)	IN658	MIL-E-I / $1160(S i g C)$
IN224	MIL-E-1/713	1N662	MIL-E-1/1139(SigC)

Type	Specification	Type	Spaciflation
1N663	MIL-E-1/1140(SigC)	IN1345.	MIL-E-1/1190
1N664		1N1346	MLEE-1/1191
thru		IN1347	MIL-E-1/1192
1N672	MIL-S-19500/150(SigC)	INI348.	MIL-E-1 / 1193
1N674		IN1353	
1N675		\|N1358	MIL-E-1/1236(SigC)
IN701		IN1361	
1N673 and		1N1396	
1N947	MIL-S-19500/149(SigC)	IN1397	
IN691	MIL-S-19500/132(NAVY)	IN1399	
1N696	MIL-S-19500/121(NAVY)	IN1400	MIL-E-1/1202(USAF)
IN697	MIL-S-19500/141(NAVY)	IN1401	
IN709		IN1402	
1N716		1N1403	
1N718		IN1408	MIL-E-1/1172(SigC)
1N720	MIL-E-1/1238(SigC)	IN1413	MIL-E-1/1173(SigC)
1N722		IN1414	MIL-S-19500/148(SigC)
IN750		IN1415	MIL-S-19500/146(SigC)
IN746A		IN1416	
thru	MIL-S-19500/127(NAVY)	thru	
IN759A		IN1424	MIL-S-19500/147(SigC)
1N821		initiã	ML-S-19500/1 ${ }^{\text {(SigC) }}$
IN823	MIL-S-19500/159(NAVY)	1N1483	
IN827		1N1743	
IN914	MIL-S-19500/116(NAVY)	IN1425	
1N933	MIL-S-19500/119(NAVY)	thru	
1N935B		1N1483	MIL-S-19500/145(SigC)
1N938B	MIL-S-19500/156(NAVY)	IN1464	
1 N939B		1N1485	
IN941B		1N1744	
IN944B	MIL-S-19500/157(NAVY)	1N1614	MIL-E-1/1240(SigC)
IN945B		1N1615	MIL-E-1/1241(SigC)
1N962B		1N1616	MIL-E-1/1242(SigC)
thru	MIL-S-19500/117(NAVY)	1N1682	
1N992B	ML-S-19500/17(NavV)	IN1731 IN1733	MIL-S-19500/142(SigC)
1N1124A		1N1733 1N1734	MIL-S-19500/142(SigC)
$\begin{aligned} & \text { INI126A } \\ & \text { INII28A } \end{aligned}$	MIL-S-19500/104(NAVY)	1N1777	
1N1130		\| N1778	
INIT3i	MIL-E-1/1287(SigC)	IN1781	MIL-E-I/1235(SigC)
INII47	MIL-E-1/1305(SigC)	1N1795	
IN1149	MIL-E-I / 1306 (SigC)	1N1804	
1N1183		IN1807	MIL-E-1/1236(SigC)
$\begin{aligned} & \text { thru } \\ & \text { IN } 1190 \end{aligned}$	MIL-E-1/1135(USAF)	$\begin{aligned} & \text { IN1816A } \\ & \text { thru } \end{aligned}$	MIL-E-1/1259(NAVY)
1N1199		IN1836A	
thru	MIL-E-1 / 1 108(USAF)	1N2052	
1N1206		IN2053	MIL-E-1/1237(SigC)
[N1281		1N2135A	MIL-S-19500/134(SigC)
thru	MIL-E-1/1136(USAF)	IN2153	MIL-S-19500/91
1N1288		1N2172	MIL-E. 1 / 1196
IN1324	MIL-E-1/1176(USAF)	1N2173	MIL-E-1/1151
IN1341	MIL-E-1/1186	1N2174	MIL-E-1/1194
IN1342	MIL-E-1/1187	1N2804B	
IN1343	MIL-E-1/1188	thru	
IN1344	MIL-E-1/1189	IN28118	MIL-S-19500/114(NAVY)

Type	Speciflcation
$\begin{aligned} & \text { IN2813B } \\ & \text { IN2814B } \\ & \hline \end{aligned}$	
IN2816B	
IN2818B	
IN2819B	
IN2820B	
IN2822B	
Hru	
IN2829B MIL-S-19500/114(NAVY)	
IN2831B	
thru	
IN2838B	
IN2840B	
thru	
IN2846B	
IN2970B	
1N2977 ${ }^{\text {a }}$	
1N2979	
IN2980	
IN2982	
1N2984	
IN2985	
IN2986	
IN2988	
IN2993	
IN2995	MIL-S-19500/124(SigC)
IN2997	
IN29998	
thru	
1N3005B	
IN3007B	
IN30088	
IN30098	
IN30118	
1N3012B	
IN3014B	
IN30158	
1N30168	
Hhru	MLL-S-19500/115A(NAVY)
IN30518	
IN3189	
1N3190	MIL-S-19500/155(NAVY)
IN3191	
IN3154	
IN3155	MIL-S-19500/158(NAVY)
IN3157	
2N681	
thru	MIL-S-19500/108(NAVY)
2N688	
2NIT71A	
2NI772A	
2N1774A	MIL-S-19500/108(NAVY)
2NIT76A	
2N1777A	

THE COMPLETE LINE OF INTERMEDIATE AND HIGH POWER SILICON TRANSISTORS

Silicon Transistor Corporation also manufactures a Complete Line of Silicon Glass Diodes including JAN Types IN457, IN458, IN459 and Sig. C. Types IN643, IN658, IN661 \& IN663.

FOR IMMEDIATE DELIVERY, CONTACT THESE STC AUTHORIZED DISTRIBUTORS: Alo: MG Electrical Equipment Co., Birminghom. Colif: Brill Semiconductor Corp., Ookland; Hollywood Radio Supply, Inc., Hollywood; Peninsula Electronic Supply, San Jose; Shelley Rodio Co., Inc., Los Angeles; Wesco Leader Distributors, Shanks \& Wright, Inc., San Diego. Fla: Hammond Electronics, Inc., Towson. New' York: Arrow Electronics, Inc., Mineola, L. I.; Progress Electronics Co., Inc., New York City; Summir Distributors, Inc., Buffoto. Ponne: Philadelphia Electronics, Inc., Philo. Toxas: Lenert Compony, Houston; Central Electronies, Dallos

SILICON TRANSISTOR CORPORATION

HOSKINS ALLOY

Precision Resistor Wire

The trouble with using only one type of alloy wire in all of your precision resistors is that very often you and your customers end up paying for something that really isn't customers end up paying for something that really isn't
required so far as the end use is concerned. Now take Hoskins Alloy $815-\mathrm{R}$, for example. It's a relatively new custom-quality iron-chromium-aluminum composition But a number of alert and cost-conscious manufacturers have already found that it poseesses all of the physical and electrical properties necessary for many precision resistor applications. High strength, good ductility. Excellent resistance to corrosion. Controlled low temperature coefficient. What's more -and more to the point these days-they've also found that Alloy 815-R's lower density and higher electrical resistivity combine to give them very worthwhile savings. Up to 14.1 \% more ohms per pound -up to 19.6 \% less cost per megohm!

Yours for the Asking-ll you're a man who tancies such tieures. wedd like to sond you an oyeful-namely: 12 page catalog that's londed with fechnical data. Il you olso happon to make precision resistors, sample spools of 815 . \mathbf{R} wire are available for testing and evaluation.

HOSKINS manufacturing company

4445 Lawton Avenue - Detroit 8, Michigan - TYler 5-2860
In Canada: Moskins Alloys of Canada, Lid., 45 Racine Rd., Rexdale P.O., Toronto, Ontario
Producers of Custom Quality Resiotance, Resistor and Thermo-Electric Alloys since 1908 CIRCLE 45 ON READER-SERVICE CARD

Air Clutch

 Boosts Torque, Cuts SizeZepurt of Ursis

ANEW air clutch, in a $1-\mathrm{in}$. diant case, provides almost five times the torque available with conventional mag netic clutches of the same size. In : $1 / 2 \mathrm{in}$. size, the air clutch shows ever more dramatic improvement over mag netic clutches-a factor of almost 14.

The $1-\mathrm{in}$. (size 10) clutch is part of a line developed by Elm Instrument Corp., 30 Chasner St., Hempstead, L.I., N.Y., that now includes a size 5 and a size 10 and will include a size 18 in six weeks. Each clutch has two concentric, stainless-steel shafts extending from oneend of the housing. The outer shaft has a $1 / 4 \mathrm{in}$. OD while the inner one, extending for a $1 / 2 \mathrm{in}$. beyond the end of the outer one, has an OD of $1 / 8 \mathrm{in}$. These shafts can be driven independently of each other, or they can be driven simultaneously. They can be driven in the same direction at different speeds or in opposite directions.

Breakaway forque vs inlet-air pressure for a size 10 air clutch.

The units come in green, anodizedaluminum housings. A hose adapter is provided which allows a clutch to be connected to any convenient air supply. The units can easily be driven by a lowcost, fish-tank, air pump.

The size 10 air clutch develops a torque differential, of $320 \mathrm{in} .-\mathrm{oz}$ (at 60 psi inlet pressure) compared with the 72 in.oz avaliable with magnetic clutches. At 2 psi, the size 10 air clutch delivers a torque differential of $96 \mathrm{in} .-\mathrm{oz}$. In the size 5 , the torque differential at 60 psi is 48 in .oz compared with 3.5 in. oz for magnetic clutches.

The clutches are powered by air pressure delivered through a $3 / 16 \mathrm{in}$. ID tube. Their response times are less than 4 msec .

Using ABEC Class 5 bearings the air clutches can operate in a temperature range from -5 F to +400 F . They are also available with oil-impregnated bronze bearings at lower cost. The air clutches are all designed to pass the severe environmental specifications in MIL-T-5422.

Unit price for the size 10 clutch is $\$ 138.69$ for quantities of 1 to 10 . The price drops to $\$ 134.53$ for 11 to 25 units, to $\$ 131.76$ for 26 to 50 units, to $\$ 128.29$ for 51 to 100 units, to $\$ 124.82$ for 101 to 500 units, and finally, to $\$ 110.95$ for more than 500 units. Prices are about 10 per cent lower for the size 5 . The clutches are available for immediate delivery.

For more information on these small, high-torque, air clutches, turn to the Reader-Service Card and circle 251.

Now-an Even Smaller High-Temperature Trimpot ${ }^{\oplus}$ Potentiometer
Here, just $3 / 4^{\prime \prime}$ in length, is a wirewound potentiometer that is completely humidity-proof and operates at $175^{\circ} \mathrm{C}$! Ideal for your printed circuit applications, it withstands 30G vibra. tion and 100 G shock, dissipates 0.5 watt at $70^{\circ} \mathrm{C}(0.2$ watt at $125^{\circ} \mathrm{C}$), and has tapered pins for quick, easy mounting. Sealed against humidity in a high-temperature plastic case, the Model 3000 exceeds the requirements of MIL.STD-202A. Method 106. The 15 -turn screwdriver adjustment permits pinpoint settings and the self-locking shaft keeps them accu.
rate. For maximum stability, the unit incorporates a ceramic mandrel, Reliability is outstanding. The exclusive Silverweld ${ }^{\text {B }}$ bond between terminal and resistance wire is virtually inde structible under thermal or mechanical stress

Available within 24 hours from factory and distributor stocks. the Model 3000 is stocked in resistances of 50 ohms to 20K A Resiston carbon version. Model 3001, is available with resistances of 20 K to 1 Meg . Write for complete data and list of stocking distributors.

Exclusive designers and manufacturers of Trimpoti potentiometers. Pioneers in transducers for position, pressure, acceleration. GIRCLE 46 ON READER-SERVICE CARD

Hi-Voltage...

 $\mathrm{E}_{0}=$ Constant

sophisticated results
 from simple circuit

- regulation and stabilization
- 400 to 25,000 volts
- reduces ripple
- higher reliability
- economy of cost, weight and space

3808 HOUGH AVENUE - CLEVELAND 3, OHIO
EXPORT: 240 WEST ITTM 8T. - NEW YONK 17. NEW YONK CIRCLE 47 ON READER-SERVICE CARD

Assembled terminal block stack is locked into aluminum track.

Modular Terminal Panel Wiring Block

Tab lerminals lock into modular cage as sembly without use of tools.

ERSATILE power control circuiting for switchboards, control panels, and industrial instrumentation is provided by a newly designed modular terminal block. The modular technique allows rapid, simple change of stack configurations to suit the many variations of wiring logic.
Manufactured by AMP Inc., Eisenhower, Blvd., Harrisburg, Pa., the TermiBlok uses modular 3-circuit common and 6 -circuit common insulated cage assemblies which fit into an extruded aluminum track. The cages are made of tinplated brass, and are housed in nylon insulators. Within each of the cage assemblies, a slotted, stainless steel spring member accepts tab terminals without necessity of any mechanical adjustment. No tools are needed for insertion or withdrawal. Individual cages can be added anywhere in the stack.

The heavy-duty terminal block is rated at $35-\mathrm{amp}$ continuous current, or maximum wire temperature of 105 C . Voltage drop of the cage assembly, measured
between the end terminals of a 3-way cage, is 10.0 mv maximum at 12 amp . The block has a 125 per cent currentcycling overload capacity; insulation resistance is $1,500 \mathrm{vdc}$ at sea level. Components withstand vibration, corrosion and humidity tests in accordance with military specifications.

The insulated cage assembly is available in two styles: series 3 , accommodating 3 circuits per linear inch of track, and series 4 , with 4 circuits per inch. One size of track width will accept both series. Series 3 has a higher, thicker nylon insulator to permit an increased creepage distance of $5 / 8 \mathrm{in}$. minimum with a $1 / 4$-in. strike distance, for highcurrent applications or use where heat dissipation is important.

The high density afforded by this cage design, 0.275 in . center-to-center lineal spacing for series 4 and 0.333 in . for series 3, is further complemented by the front-loading feature of the modules.
Tab terminals are joined to circuit wires by a manual or automatic compression crimp. The 0.031 -in. thick tab will accommodate wire sizes from 14 to 22 AWG. Insertion force is 2 lb min to 15 lb max; withdrawel force is 5 to 15 lb. The $0.040-\mathrm{in}$. thick terminal accepts wire sizes from 10 to 12 AWG; withdrawal force is slightly heavier than in the thinner tab. Pre-insulated terminals are color-coded by wire size.
Cage assemblies are available in 10 colors of nylon insulators for color coding of circuitry. An end-barrier nylon insulator, one per stack length, is used to enclose the last cage in the stack

The extruded aluminum track is supplied either plain or coated with polyvinylchloride. Desired length is cut with a hacksaw from the standard 6 -ft section. The $0.200-\mathrm{in}$. lip on either side of the track permits use of adhesive marking tape for identification of circuits.

A coaxial cable support bracket, to be available on special order, will hold a connector in the track to accommodate 2 coaxial conductors.

Price of the modules is less than $\$ 0.10$ per circuit in large quantities, $\$ 0.15$ each in small quantities. Standard items are available from stock; special orders are filled in 4 to 6 weeks.

For more information on these modular power control terminal blocks, turn to the Reader-Service Card and circle 252

202A FUNCTION GENERATOR-Down to 0.008 cps;

 transient-free!Uses: Electrical simulation of mechanical phenomena, vibration studies, servo research and testing, medical research, geophysical problems, subsonic and audio testing.
Advantages: No switching transients, continuously variable 0.008 to $1,200 \mathrm{cps}$ range, 30 v output peak-to-peak constant, hum less than 0.05%, square, triangular or electronically synthesized sine waves, 1% stability, 0.2 db response, less than 1% distortion (sine waves) on all but x 100 range.
Price: $\$ 550.00$ (cabinet model), $\$ 535.00$ (rack mount).

650A TEST OSCILLATOR - Flat within $1 \mathrm{db}, 10 \mathrm{cps}$ to 10 MC !

Uses: Testing TV amplifiers or wide-band systems, measuring filter transmission characteristics and tuned circuit response. determining receiver alignment, making telephone carrier and bridge measurements.
Advantages: No zero set, no adjustments during operation, output voltage range $30 \mu \mathrm{v}$ to 3 v , less than 1% distortion, 20 cps to 100 KC ; less than $2 \%, 100 \mathrm{KC}$ to 1 MC ; approx. 5% at 10 MC . Hum less than 0.5%, output voltage attenuator, self-contained voltmeter, 2% to 3% stability

Price: $\$ 550.00$ (cabinet model), $\$ 535.00$ (rack mount).

Easy to operate, highly stable, wide range

4

PRECISION OSCILLATORS

(4) precision oscillators perform a wide variety of audio, video, and low frequency tests. They offer the outstanding advantages of flexibility and broad usefulness at moderate cost. Employing the pioneered RC resistance capacity circuit, the units combine accuracy and reliability with ease of operation and minimum adjustment.

205AG AUDIO SIGNAL GENERATOR-Six instruments

 in one; 20 cps to 20 KC !Uses: Measure amplifier gain and network frequency response, measure broadcast transmitter audio and loudspeaker response, drive bridges, use in production testing or as precision source for voltages. Monitors oscillator output, measures output of device under test
Advantages: Self-contained instrument, no auxiliary equipment needed. 5 watts output, $\pm 1 \mathrm{db}$ response, less than 1% distortion, hum more than 60 db down, no zero setting, output and input meters read v and dbm ; four output impedances.
Price: $\$ 600.00$ (cabinet model), $\$ 585.00$ (rack mount).
206A AUDIO SIGNAL GENERATOR-Less than 0.1\% distortion; 20 cps to 20 KC !
Uses: Convenient, precision audio voltage source; checks FM transmitter response, makes high quality, high fidelity amplifier tests, transmission measurements.
Advantages: Continuously variable audio frequency voltage (output 15 dbm) 0.2 db response, hum 75 db down, 2% frequency accuracy, less than 0.1% distortion. 111 db attenuator with 0.1 db steps.
Price: $\$ 300.00$ (cabinet model), $\$ 785.00$ (rack mount).
Data subject to change without notice. Prices f.o.b. factory.
HEWLETT-PACKARD COMPANY
1031K Page Mill Road Palo Alto, California, U.S.A Cable "HEWPACK" Palo Alto, Caifiornia, HEWLETT-PACKARD S.A.
Rue du Vieux Billard No. 1, Geneva, Switzerland
Rue du Vieux Billard No. 1, Geneva, Switzerland
Cable "HEWPACKSA" Tel. No. (022) 26.43 .36
Field representatives in all principal areas
Field repres
-SERVICE CARD

Digital Clock
 Times Long Periods

Designed to serve as a long-duration data timer or as date-time source for dataprocessing equipment, digital clock provides a binary-coded output of day, hour and minute. Output is contact closure; a visual readout is also provided. With no tubes or transistors, the design gives trouble-free service.

Electro-Logic Corp., Dept. ED, 515 Boccaccio Ave., Venice, Calif.
PもA: $\$ 89.5$; 30 days.

NEW PRODUCTS

Covering all new products generally specified by engineers designing electronic original equipment. Use the Reader-Service Card for more information on any product. Merely circle number correapond ing to that appearing at the top of each description.

Silicon Power Varactors
 675

Available in 55 Models

Silicon varactor diodes MA-4351AG through MA-4358A-F offer a wide variety of piv ratings from 6 to 120 v . and junction capacitance values (measured at breakdown voltage) ranging from 0.1 to 50 pf . The 55 models provide high-efficiency harmonic generation from 1 to $\mathbf{4 0 , 0 0 0} \mathrm{mc}$. The pill case has axial prongs, one of which may be removed for mounting on tap ped posts. Junction series resistance values range from 1.1 to 21 ohms. The diodes are hermetically sealed and meet military environmental tests. The two large units in the photo show construction of the varactors, four of which are arrayed below the postage stamp.

Microwave Associates, Inc., Dept ED, Burlington, Mass. Acailability: Sample quantities

Thermoelectric Junctions

In Arrays and Modules
Spot cooling of power transistors and other components is provided by the TA-20 array and TA-20M module, both containing a group of smaller junctions. The rigidly constructed module, measuring $1-1 / 2 \times$ $1-1 / 2 \times 1 / 2 \mathrm{in}$., can pump more than 20 w or typically attain a temperature differential in excess of 80 C . With $1 / 16$-in. aluminum plates on top and bottom, the module is ready for use as a complete thermoelectric unit.

Ohio Semiconductors, Dept. ED, 1205 Chesapeake Ave., Columbus 12, Ohio.
Price: TA-20, $\$ 85.19$ to $\$ 56.79$; TA-20M, $\$ 91.06$ to $\$ 60.71$

Capacifance Bridge
 For Electrolytic Capacitors

Model 1W1 capacitance and dissipation factor loridge is for the measurement of both tantalum and aluminum electrolytic capacitors. It has provisions for 2-, 3- and 4-terminal measurements. An optional () to 600 vdc polarizing power supply is available. Specifications for capacitance are: range, 0 to 120,WHO Hf ; accuracy, $\pm 1 \%+10 \mathrm{pf}$; sensitivity, $\pm 0.1 \%$ +10 pf . Specifications for dissipation factor are: range, 1 to 120 ; accuracy, $\pm(2 \%+0.1 \%$ dissipation factor); sensitivity, $\pm(0.2 \%+0.05 \%$ dissipation factor).

Sprague Electric ((o., Dept. El). North Adtams Mass.
P\&A: \$845; May 1, 1961.

For Solid-State Scalers

All solid-state preset timer model 8.5.5-6 is designex for use with any transistorized scaler. Two interchangeable time bases, 10 -kc crystal controllerl oscillator and $60-\mathrm{cps}$ line, are easily changed by inserting plug-in cards. A five-digit neon readout expresses elaspsed time in multiples of tenths of a sec for the $60-\mathrm{cps}$ time base and multiples of one hundred thousandths of a minute for the $10-\mathrm{ke}$ time base. Preset circuitry operates on any single digit. Any digit may be preset in any decade, one deciade at a time. All other decades are preset to zero autumatically.

Eldorado Electronics, Dept. ED, 2821 Tenth St., Berkeley, Calif.
PGA: \$1,600 with 10-kc oscillator, $\$ 1.460$ without; 60 days.

PR GROUP

7" PANEL HEICHT

moder	se outrut ramas	
PR 15.30 m	0-15	0-30
PR 38.150 M	0-38	0-15
PR Co.mm	0-80	0-8
Phi $155-4 \mathrm{~m}$	0-155	$0-4$
Ph 310-2m	0-310	0-2

Fepoo

makes

power
SM GROUP
Procise, roliable performance in a wide choice of output ranges.
Three rack sizes: $\mathbf{8} \mathcal{K}^{\prime \prime} \mathrm{H}_{1} \mathbf{5} \mathrm{~K}_{4}{ }^{\prime \prime} \mathrm{H}$ and $31 / 2^{\prime \prime} \mathrm{H}$. Impervious to operational damage: circuit protection is an inherent function of input transformer and regulator characteristics.

HB GROUP

Optienal 0.1% or 0.01% regulations
31/2" PANEL HEIGHT

0.1%	oc outruy		0.01%
wodels	worte	m	mocels
HE 2m	0-325	0-200	H8 20M
HL 4M	0-383	0-400	HB 40M
HE 6M	0-323	0-600	ME COM
HE 8 m	0-325	0-800	MB 50m

HB GROUP

Exceptional porformance: delivers $0-325 \mathrm{v}$ dc at 200, 400,600 or 800 ma from one standard $31 / 2^{\prime \prime} \mathrm{H}$ rackmounting package.
Incorporates many "special" features as standard: constant curront mode amote programming, romoto de on off control.

PR GROUP

A floxible now soneral-purpaso line of semi-cenductor power supplies. dojus
It 1\% line regulation; semi-regulated for load. Many standard modifications available.

supply

news

 for '61
FOR DETAILED

SPECIFICATIONS
ON MORE THAN
150 STANDARD MODEL POWER SUPPLIES, BEND FOR
KEPCO CATALOG E-611

FLUSHING 52, N. Y. IN 1.7000•TWX \#NY4.5196

NEW PRODUCTS

An acoustic transducer, named the Oyster, is designed to operate under water. Able to tolerate water pressure up to 60 psi , the device has a frequency range from 10 cps to 10 kc . Below resonance, it has a nondirectional, flat, -82 db response referred to 1 v per microbar.

Clevite Ordance Div. of Clevite Corp., Dept. ED. 540 E. 105 St., Cleveland, Ohio.

Porcelain Capacitor

In radial design. End radial porcelain capacitor model VY is available is reduced size. Standard thickness of $5 / 32 \pm 1 / 32 \mathrm{in}$. and width of $9 / 32$ $\pm 1 / 32$ in. provides more stable mount ing on printed-circuit boards. The unit is available in capacitance values from 10 pf to $1,000 \mathrm{pf}$.
Vitramon, Inc., Dept. ED, Box 544 , Bridgeport 1, Conn.

DC Voltage Standard

649

New dc voltage standard and null voltmeter, model 302, provides shortterm stability better than 25 ppm and 30 -day stability better than 50 ppm . Output voltages can be set from 1.000 to 502.110 v in $1-\mathrm{mv}$ increments. Instrument can deliver 20 ma. Output impedance is less than 0.01 ohm for dc, less than 0.2 ohm at 1 kc .

Kin Tel Div. of Cohu Electronics, Inc., Dept. ED, 5725 Keamy Villa Road, Box 623, San Diego 12, Calif. Availability: 30 days.
< CIRCLE SO ON READER-SERVICE CARD

Model 58SC accelerometer includes provision for self calibration even after installation. Acceleration range is from 0.02 g to $40,000 \mathrm{~g}$ with maximum cross sensitivity of 5%. Temperature range is -65 to +350 F for standard units and -65 to +500 F for hightemperature units.

Columbia Research Laboratories, Dept. ED, MacDade Blud. and Bullens Lane, Woodlyn, Pa .
Prices $\$ 295$ for 1 to 5 mifs.

Hermetic Switches

A line of hermetically sealed, rugged, control switches includes spdt, dpdt, and 4 pdt switches. The 28 -vdc switches carry 5 amp for resistive loads, 2.5 amp for inductive loads. 4 amp for motor luads, or 2.4 amp for lamp loads. Ambient temperature range is from -65 to +250 F

Controls Co. of America, Dept. ED, Control Switch Div., 1420 Delmar Drive, Folcroft, Pa.

Servo Actuator

Is self-contained. Model 410 contains a servo amplifier, servo valve and hydraulic cylinder. It can be furnished with any stroke length from 1 to 6 in. and cylinder diameter from 1-1/4 to $2-1 / 2 \mathrm{in}$. Power supply is built in and command can be by putentiometer or external signal. Speeds are up to 40 -in. per sec and frequency response is to 40 cps with 90 deg lag.

American Measurement and Control Inc., CompuDyne Corp., Lept. ED, Hatboro, Pa.
circue si on reader-senvice caro >

SLICON DIODE

All silicon glass diodes of the same type number, regardless of the manufacturer, must meet minimum requirements. Meeting these requirements is one thing, but consistently surpassing them is another.
Princeton silicon diodes are subjected to the most rigid control possible . . . computer control. Computer logic applied to both manufacture and testing produces the most reliable and most predictoble silicon glass diodes possible.
Each lot of diodes has a computer control record, containing the complete hisrory of the specific lot. Customers may compare this record with their own standards to analyze and predict the performance of the diodes.

COUPIUTER

RELIABLITY

Over 100 types are now available from Princeton Electronics Corporation . . . your most logical source for ultra-rellable, subminiature silicon diodes specifically designed to meet demanding military and indus. trial computer applications. Write today for short form catalog of ovailable ratings.

NEW PRODUCTS

Commutator Simulator

Two solid-state telemetry checkou: instruments, a commutator simulator and a decommutator feature portability and 1 per cent accuracy. The simulator generates repetitive pulss frames for either pam or pdm. It can frame any number of pulses to operate at any repetition rate. The decommutator receives pam or pdm pulses and provides the analog of the information in any desired pulse. Both instruments are available with $30,45,60$, or 90 channels. They each weigh 7 lb .

Crestmont Consolidated Corp., Dept. ED, Crestmont Electronics Div., 2201 W. Burbank Blvd., Burbank, Calif.
PもA: $\$ 1,200$ per unit; 3 weeks.

Miniature Relay

660
Has glassto-metal hermetic seal. The relay, called the centipede, has eight terminals and four mounting pins which fit on $0.200-\mathrm{in}$. centers for standard printed-circuit grid mountings. Class-to-metal sealing and recessed leads set in epoxy are used. A dpdt type, it is available in voltage and current sensitive models with coil resistances from 0.1 to $\mathbf{1 1 , 0 0 0}$ ohms. It mearures $0.4 \times 0.8 \times 0.875 \mathrm{in}$.

Control Dynamics Corp., Dept. ED. 7420 Fulton Ave., North Hollywood, Calif.

Push Button Switch

659
Has quadrant lighting. A cellularized module and associated push rod allows any quadrant of the Quadlite push button switch to be lighted individually. It has a spdt switch rated at 5 amp at $125 / 250 \mathrm{v}$ ac, 4 amp at 30 v dc , resistive, or 2.5 amp at 30 v dc inductive.
Controls Co. Of America, Control Switch Div., Dept. ED, 1420 Delmar Drive, Folcroft, Pa.

NEW FROM WESTINGHOUSE AT YOUNGWOOD

New Westinghouse High Gain Transistor simplifies circuitry, increases
reliability, eliminates driver stage components, reduces cost of assembly.

NEW WESTINGHOUSE SILICON POWER TRANSISTOR PROVIDES

GAIN OF

Westinghouse introduces a complete new family of High Gain Silicon Power Transistors providing a gain of 1000 or more at $2 \mathrm{amps} .$. with guaranteed minimum gain of 400 at 10 amps (WX118X series) . . . a guaranteed minimum gain of 100 at 10 amps (WX118U series). These devices can substantially reduce circuit components, increase reliability, save space and weight.

They're ideal for application in high power, high efficiency regulators, amplifiers and switching circuits. For example, 1500 watts of power can be easily controlled with a 50 milliwatt signal! For full information call your nearest Westinghouse representative or write to Semiconductor Dept., Youngwood. Penna. You can be sure . . . if it's Westinghouse.
sc. 1025

OTHER FEATURES INCLUDE

[^3]- Collector current-10 amperes

The Fairchild $3 S$-G is the industry's first commercially-available line of solid-state strain gage pressure transducers that produce a 5 -volt d-c output signal!
This revolutionary new line of precision instruments offers improvement on the desirable characteristics of conventional strain gage pressure transducers, piezo-electric pressure transducers and poten-tiometer-type pressure transducers.

The $3 S$-G is small (approx 3 inches long) and lightweight (approx. 5 ounces) and does not require external amplification.
3S.G pressure transducers are rugged. They are responsive to both 3S-G pressure transducers are rugged. They are responsive to both
static and high-frequency dynamic inputs. They possess extraorstatic and high-frequency dynamic inputs. They possess extraor-
dinary environmental capabilities, and are extremely accurate. They produce a high-output signal and are completely solid-state which assures the ultimate in reliability. The $35-\mathrm{G}$ with all these features, is also competitively priced.

35.G prossure transducers are Avalisble
in new and varsatile in nertormance varilapeions - for military and insustrial appli-
cations. Write
tor cations. Write
new catalos.
now catalog.
223 Poik Avonus, Hickevillo, L. I., N. Y.
6III E. Warhington Blvd., Los Angeles. Colif. TRANSDUCERS - RATE GYROS - POTENTIOMETERS - ACCELEROMETERS. CIRCIE SA ON READER-SERVICE CARD

NEW PRODUCTS

Panoramic Receiver

Range $\mathbf{1 0 0}$ to $\mathbf{1 5 0} \mathbf{m c}$. Model Pan $1 F$ panoramic receiver has no moving parts and features an electronic sweep and inertialess tuning. The highly sensitive receiver scans from 100 to 150 mc at 22 sweeps per sec and furnishes a visual display of all signals through the range. Frequency measurement accuracy is 0.2%; dynamic range is 60 db . Expanded sweep displays $1-, 5$ - or $10-\mathrm{mc}$ sections. Power requirement is $117 \mathrm{v}, 400 \mathrm{cps}$. The 3 -chassis set weighs a total of 60 lb .
Trak Electronics Co., Inc., Dept. ED, Wilton. Conn.

Antenna Multicoupler

Is transistorized. Model 7 wideband antenna multicoupler operates from 2 to 32 mc , providing outputs for 8 receivers from a single antenna. The solid-state unit has input and output impedance of 75 ohms. Insertion gain is 2 db , noise figure less than 8 db . Input vswr is $1.7: 1$, output vswr 1.14:1. Unit weighs about 10 lb .

Trak Electronics Co., Inc., Dept ED, Wilton, Conn.

Switching Deck

With narrow switches. Any desired number of switches can be stacked in the series SD101 switching deck. Individual switches measure $7 / 16 \mathrm{in}$. wide. Switch depth behind panel is 1-3/4 in., height 1-5/8 in. Number of switching sequences per switch is 1 to 10 . The units meet military specifications.
Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.

633

628

"They have been making them for years for their own systems!
Now they're available to the industry.
Why don't you write for
further info?"

An automatic soldering system for production-line soldering of pc boards and in-line terminals is made of a number of independent modules. Modules are available for soldering. fluxing, preheating, cleaning, drying, scrubbing, and cooling. Solder temperature and contact time can be varied. Wave soldering can be used or jet soldering.

Compo Shoe Machinery Corp., Dept. ED, Special Products Div., 125 Roberts Road, Waltham 54, Mass.

Static Inverter
655

Solid-state static inverter Model SI-2 converts 22 to 28 v dc to an output of $115 \mathrm{v} \pm 10 \%$, single phase, 60 cps. Sinusoidal output waveform has less than 5\% total harmonic distortion. Output power is 350 va . Size is 9×10 $\times 11$ in. over-all. The inverter mects environmental requirements.

Kidde Aero-Space Div., Walter Kidde \& Co., Inc., Dept. ED, 9 Brighton Road, Clifton, N.J.

Electromagnet

Has 51,500 gauss field. Model 18A-LI-HI electromagnet has high field, large gap and high homogeneity. The $1-1 / 2$-in. diam pole tips. Maximum power of the magnet is 200 kw for low impedance coils and 12 kw for high impedance coils.
Pacific Electric Motor Co., Dept. ED, 1009 66th Ave., Oakland, Calif.

For
USAF MINUTEMAN:
a never-failing stream of chilled water for 3 years.

Assignment:

For Boeing Air

plane Company
design and produce a
highly reliable water
chiller for constant tem-
perature control of Minute-
man's guidance and control
section. Achievement: A water
chiller designed and produced for
an MTBF of $232,558 \mathrm{hrs}$.; failure
rate $.430 \times 10^{-5}$. Engineering Design
Features: 1. Elimination of poten-
tial breakdown due to electrical con-
tacts by utilizing a "solid state" acti- -
vated modulating hot gas by-pass valve.
System operates continuously, decreasing failure
rate inherent in start-stop operation. 2. Elimination
of many moving parts. Example: Capillary tube replaces
expansion valve. 3. Hermetic refrigeration system, elimina-
tion of rotating seal. Immediately operational, even after pro-
longed storage. 4. Temperature of supply water controlled to
$\pm 0.2 F$. (Exceeded specification requirement of $\pm 1.0 \mathrm{~F}$.)
5. "Flooded chiller" assures minimum capacity variance in
ambient range of 50 F to 110 F . 6. Adjustable temperature
range of supply water from 36 F to 46 F . 7. Withstands
acoustical blast of 140 decibels. 8. Meets the following
specifications: (1) Salt spray - MIL-E-4970; (2)
Shock and vibration (while operating)- $\pm 7.5 \mathrm{G}$,
 interference - (STL) GM07-59-2617A. 乌. Maintenance requirements extremely low due to features 1 through 4. 10. Reduction of bulk through elimination of moving parts and simplification of design. Unit measures 17.75 "x20.75" x $33.85^{\prime \prime}$ h. Highly transportable and highly adaptable to various

ELLIS AND WATTS

 PRODUCTS, INC.Greatine Enginaberina in
Temperature and Fumiraty Conirol
: Alr Conditaners. Liquid Coolers P.O. Box 330. Cincinnatilie Ohio

Register 1,500 counts per min. Series 1801 predetermining counters use rotary preset switches for convenience. Reset time is 150 msec ; up to 1,500 counts per min can be registered. Models are available for original equipment makers and existing equipment users. Units have 1 or 2 rows of preset dials, with 4 or 6 decades.

Electronic Controls Div., Veeder-Root Inc., Dept. ED, Danvers, Mass.

DC Motor

Has low if noise. Low-cost, long-life de motor series 317 uses a transistor inverter. The unit operates without brushes or governor, for increased reliability and elimination of radio interference.
Bristol Motors Div., Vocaline Co. of America, Inc., Dept. ED, Old Saybrook, Conn.

Heat Sink

Requires small volume. Semiconductor cooler model NC-401 is said to require half the space of other standard natural convection units. Thermal resistance is 2.8 to 0.8 C per w for natural convection, and down to 0.25 C per w with forced cooling.
Wakefield Engineering, Inc., Dept. ED, 414 Main St., Wakefield, Mass.
Availability: Stock.

SALESPOWER
NEW PRODUCTS WITHMALLORY MERCURY BATTERIES

A NEW VOICE FOR THE SPEECHLESS This new electronic larynx developed by Bell Telephone Laboratories and manufactured by Western Electric Company transmits sound waves into the throat cavity of a person whose larynx has been paralyzed or removed. Tiny Mallory Mercury Batteries power the transistor circuit, provide full power throughout their long life.

ELECTRONIC GARAGE DOOR OPERATOR made by H. W. Crane Co. transmits a radio signal to operate garage door from inside car. The compact, transistorized control is powered by Mallory Mercury Batteries. These tiny cells deliver long, dependable service with a constant voltage output.

CONVERTING CURRENT TO VOLTAGE, the new Hewlett-Packard AC current probe simplifies measurements of alternating current. Two Mallory Mercury Batteries provide the instrument's low impedance power supply, with fade-free service of approximately $\mathbf{4 0 0}$ hours.

PLOTTING THE EARTH'S MAGNETIC FIELD is one of the many uses for this portable Gaussmeter from F. W. Bell, Inc. Power source for this sensitive, transistorized instrument, Mallory Mercury Batteries assure good voltage stability over long periods of time and a very high capacity per unit volume.

Want to miniaturize? Make a new product more portable? Get longer battery life, with fewer changes? You'll get all these salesbuilding extras-and more-from Mallory Mercury Batteries. Here's power that won't fade in use . . . never dies in storage. These tiny cells last many times longer than conventional batteries . . . are packed with much more capacity per unit size. They're leakproof . . . operate over a wide temperature range . . . provide constant voltage discharge that's ideal for transistor circuitry.

We have a broad line of standard single or multiple voltage cells . . . and we'll develop custom power packs for you. For consultation and engineering data, write Mallory-the mercury battery pioneers.

Mallory Battery Company. North Terrytown. N. Y. - alvision of

MALLORY

In Camada: Mallory Battery Company of Camada Limited Toronto b, OmJario
In Europe: Matlory Batterien, Lidd., Dapenham, England

Vacuum Oven

Operates at $\mathbf{8 0 0} \mathbf{C}$. Commercial vacuum oven can operate at temperatures to 800 C and pressures as low as 0.000001 mm . Temperature uniformity is ± 3 from 0 to 800 C . Heating and control elements are in the vacuum chamber to afford even temperatures and precise readings of temperature and vacuum
Tri Metal Works, Inc., Dept. ED, Riverton, N. J.

Line Monitor
640

In portable case. The 400 -cycle line monitor of the Shop-Lab series of precision portable instruments uses two expanded-scale meters. Frequency meter accuracy is 0.05%, voltmeter accuracy 0.5%. The rugged instrument is lightweight and compact.
Voltron Products, Inc., Dept. ED, 1020 S. Arroyo Parkway, Pasadena, Calif.
Price \& Availability: $\$ 375$; 30 days.

Rectifier Cooler

Has low thermal resistance. Rectifier cooler model NC-423 offers low thermal resistance per unit volume: 0.8 C per w with natural convection, down to 0.3 C per w with forced air. Special units for highpower rectifier stack designs are available with natural-convection thermal resistance as low as 0.5 C per \mathbf{w}.

Wakefield Engineering, Inc., Dept. ED, 414 Main St., Wakefield, Mass.

NEW PRODUCTS

CORNING CYFM CAPACITOR has reliability you can see

You get total protection against environment for less money than ever before

The new Corning CYFM capacitor gives you reliability at a markedly lower cost than that of any like capacitor.
The CYFM goes far beyond MIL-C-1 1272B specs. It has proved its performance through more than $3,000,000$ hours of testing. It took a 50 -day MIL moisture test and a 96 -hour salt spray test with no measurable effects. We stopped testing only when it became evident that no more significant data could be developed. The CYFM went through other tests, with solvents, fluxes, boiling salt, and steam, to make sure it is the most completely sealed capacitor you can buy.
Youll soe why the CYFM can take such torture when you check its design. We stack alternate layers of stable ribbon glass and aluminum foil. Then we weld the foils to the bead-terminal assembly, which has a glass bead sealed ω the Dumet wire lead. With heat and pressure, the entire capacitive element is frozen in glass for complete protection
against environment and for structured protection against physical shock.
True glass-to-metal seals at the weld area and along the leads bar moisture. The seal of the leads to the glass shifts stresses from the leads to the entire monolithic unit, guarding the capacitance area. Of course, you get electrical performance to match this environmental stability, since the CYFM has our glass-foil capacitor construction.
The CYFM is machine made . . . each capacitor is the same as every other, to give you uniformity which hand production cannot match.
You can get immediate delivery on the CYFM in two types. The CYFM-10 gives capacitance values from 1 to 300 pf . The CYFM-15 provides values from 220 to 1200 pf .
For the rest of the story on this capacitor, send for our data sheet. Write to Corning Glass Works, 540 High Street, Bradford, Pa.

This is the CYFM capacitor. 6 times actual size. The dark areas between the ends of the glass and the capacitance alement are your visual prool of the complete glass-to-metal seal.

\square
CORNING ELECTRONIC COMPONENTS CORNING GLASS WORKS, BRADFORD, PA. CIRCLE SE ON READER-SERVICE CARD

Rated at 10 amp . Designed for space environment, series 200 relay is hermetically sealed and resists moisture and temperature extremes. It withstands shock and acceleration of 50 g , and vibration of 30 g up to 2 kc . Life exceeds 150,000 operations at 10 $\mathrm{amp}, 26.5 \mathrm{v} \mathrm{dc}$ or 115 v ac, at 125 C . The $2.5-\mathrm{oz}$ relay measures $1 \times 0.6 \times 1.25 \mathrm{in}$.
Wheelock Signals, Inc., Dept. ED, 273 Branchport Ave., Long Branch, N.J.
Price: About \$8 ea.
Coaxial Connector
639

Meets military requirements. Seven-pin coaxial connector has snap-in contacts that may be removed with an extraction tool. A clamping mechanism retains cable jacketing and braid with a minimum of 15-lb force. Cables retained are RG/58U, RG/187U, RG/188U, and RG/159U. Contacts are copper alloy, rhodium plated; inner insulation material is Tefon.

Viking Industries, Inc., Dept. ED, 21343 Roscoe Blvd., Canoga Park, Calif.

Bearing Counter

With clear readout. Integral illumination provides uniform day and night readout in $360-\mathrm{deg}$ bearing counter. Translucent figures 0.187 in . high give high contrast ratio with low gloss and spillage. Counter registers 000.0 to 359.9 and repeat at rate of 600 deg per min. Torque is 1 oz-in. from 67 to 180 F. Weight is 6 oz .

Veeder-Root Inc., Dept. ED. 70 Sargeant St., Hartford 2, Conn.

CIRCLE 909 ON CAREER INQUIRY FORM, PAGE $163 \rightarrow$ ELECTRONIC DESIGN • April 26, 1961

ELECTRONIC ENGINEERS

A new precision electronics system - the Azusa Mark 11 - is now in operation at the Air Force Missile Test Center. Cape Canaveral. Florida. Designed and built by Convair/Astronautics, this remarkable system performs a variety of tasks with exceptional reliability. To the range safety officer. it provides a constant prediction of the impact point of any missile should its engines fail in flight. Engineers can determine exactly the speed and location of the missile at any time during the flight by studying data recorded by the Mark 11. It can also be used to calculate satellite rendezvous points in space. track orbiting space vehicles, or determine interception points for satellite-to-satellite test and recovery missions.
Experienced electronic engineers are needed now to continue the refinement of this and similar systems and to develop them for future space missions.
You'll find more complete information, plus details of specific positions now available, on the next page.

If the inquiry curd has been removed, or if you wish to furnish or request more detailed information, please write to Mr. R. M. Smith, Industrial Relations Administrator-Engineering. Mail Zone 130-90. Convair/Astronautics, 5666 Kearny Villa Road. San Diego 12. California. (If you live in the New York area, please contact Mr. T. Cozine, manager of our Nen. York placement office, c/o Gieneral Dynumics, I Rockefeller Plaza, New York City; telephone CIrcle 5-5034.)

This convenient
inquiry card
may be the start
of a new career
for you -
a new way of life
for your family.
Why not mail
it today?

Subminiature frame-grid tubes CK 7994 and CK 7995 are housed in T-3 button envelopes with nominal outside dimensions of 0.375 by 1.25 in . The CK 7994 is a high-frequency, grounded-grid triode, designed for use in wide-band amplifier stages and grounded-grid amplifier applications. With a ratio of 15 ma plate current to $18,000 \mu$ mhos g_{m}. the tube has a plate-to-cathode and heater capacitance of 0.25 pf . The CK 7995 is designed for use as a wide-band rf or if amplifier, especially in equipment with a low plate supply voltage. It has 8 -ma plate current, g_{m} of 13,000 umhos, and a grid-to-plate capacitance of 0.03 pf. Tubes operate in environments to 220 C .

Industrial Components Div., Raytheon Co., Dept. ED, 55 Chapel St, Newton 58, Mass.
PじA: $\$ 8.50$ ea; sample quantities.

Switching Transistors

352
Germanium pnp mesa transistors 2N705, 2N710 and 2N711 are designed for use in military and commercial data-processing equipment. The diffusedbase units meet requirements of MIL-S-19500B Combined turn-on, storage, and tum-off time is 275 nsec for 2 N 705 and 2 N 710 , and 450 nsec for 2 N 711 . Power dissipation is 150 mw max at 25 C ; minimum beta is 25 , alpha cut-off frequency 300 mc . Package is TO. 18 .
Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N. J.

Scanner Unif

All-solid-state scanner unit produces two 17-bit modified time-of-day codes in the Atlantic Missile Range format, and a $1-\mathrm{ppm}$ pulse rate output. The unit fits 19 -in. rack mounting, and measures 7×17 in . The weight is 27 lb , and the power requirement is $117 \mathrm{v}, 50$ to 400 cps at 70 w .
Electronic Engineering Co. of Califomia, Dept. ED, 1801 E. Chestnut Ave., Santa Ana, Calif. P\&A: $\$ 5,775$; 60 to 90 days.
< Circle 909 on carer inquiay form, page 163 ELECTRONIC DESIGN • April 26, 1961

the answer to high reliability for sensitive instruments, guidance systems, electronic equipment

Are you concerned with high reliability for equipment with low vibration/shock tolerance? Is your application on aircraft, missiles, space craft or ground support equipment?
Then here's the vibration isolator that gives you everything you need.

Lord BTR (Broad Temperature Range) Elastomeric Mountings cushion high G shock loads, isolate vibration to 2000 cps . give all-attitude protection, limit resonant amplification to approximately three or less. And this performance is unaffected byextreme environments and temperatures from -65° to $+300^{\circ}$ F. Size for size, ounce for ounce, they pack more load-carrying and energy-storage capacity than any other isolator.

Performance has been repeatedly proved on the most difficult applications. Even ultra-sensitive inertial guidance systems on operational ICBM's are now protected by standard production BT R Mountings.

Utilize this advance in vibration/shock/noise control to achieve higher reliability for your project.

Information on BTR Elastomeric Mountings is contained in Bulletin 301, available from your nearest LORD Field Engineering Office or the Home Office, Eric, Pa.
circle 60 on reader-service card

the strong case for Centricores

When you're consldering magnetic cores It pays to get down to cases. The sturdy aluminum case for Centricores assumes special Importance where Impact, vibration, heat or mechanical pressure could cause trouble in a control loop you're designing, or where you want to miniaturize an inductive component.
The case is ruggediy rigid, so that you can apply your circuit windings without danger of distorting the core's magnetic properties. And the case is absolutely leakproof. You can vacuum-impregnate Centricores without danger of their damping oil leaking out or foreign matter leaking in. The tightly sealed case also guards against leakage in applications where high ambient temperatures are present, or where Centricores are used in rotating equipment.

Here's a tip on minlaturisation. The rugged design of the Centricore case permits use of a thinner gage aluminum that shaves fractions of an inch off their size fractions that can add up to precious inches where you want to scale down component dimensions. Centricores are the slimmest magnetic cores on the market.
Centricores are the most unlform. They give the exact performance you want, from core to core and lot to lot. Their remarkable consistency in insulation, dimensions, squareness, thermal stability and gain is the product of unique quality controls that begin with the very selection of raw materials and extend through final testing.
Write for complete data. Centricores are avail able from stock from our East and West Coast plants in all standard sizes and magnetic qualities, and in both aluminum and phenolic cases. We will match them within 5 per cent over the entire voltage-current loop, in sets, units or in multiples up to twelve. Write for detailed specifications today.

MAGNETIC METALS COMPANy

Hayes Avenue at 218t Street, Camden 1, N.J. 853 Production Place, Newport Beach, California transformer laminations • motor laminations - tape-wound cores powdered molybdenum permalloy cores • electromagnetic shields

NEW PRODUCTS

Mylar Tubing

A wide range of inside diameters, from 0.040 in. to 8 in ., is available in a new line of Mylar tubing. Wall thicknesses range from 0.001 to 0.050 in. in relationship to diameter. Dielectric strength is $2,500 \mathrm{v}$ per mil. Tubing withstands 300 F continuously and is rated Class B (130 C). Material is impervious to common solvents and resists corrosion and fungus.

Resinite Corp., Dept. EI-2, Dept. ED, 6984 N. Central Park Ave., Chicago 45, Ill.

Time Code Generator

Time code generator model 804 supplies time code with a frequency stability of three parts in 10°. Three additional auxiliary pulse rates are provided: 20 -bit, 24 -hour binary coded decimal (BCD) code; 1 mc differentiated square wave; and 1-pps pulse. This all-solid-state unit requires $65 \mathrm{w}, 100$ to 130 v at 50 to) 400 cps . The generator measures $7 \times 18 \times 17 \mathrm{in}$.

Electronic Engineering Co. of California, Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif P心A: $\$ 7,925 ; 60$ to 90 days.

Proximity Limit Switch

Sensitive to ferrous and nonferrous metals, the proximity switch includes completely transistorized control and pick-up unit. Contaminants that collect on the pick-up do not affect the operation, and the pick-up will not attract metal chips.
Electronic Signals, Inc., Dept. ED, P. O. Box 3811 Cleveland 10, Ohio. Price: $\$ 72.00$ and up.

FOR TECHNICAL ASSISTANCE AND SERVICE CONTACT THE TRANSITRON FIELD OFFICE NEAREST YOU AS LISTED BELOW.
BALTIMORE, Maryland
2319 Maryland Ave........... CHesapeake 3-3220
BOSTON, Massachusetts
168-182 Albion St.
Wakefield, Mass..
$245-5640$
CAMDEN, New Jersey
227 S. Sixth St. . . .
........WOodIawn 6-2877
chicago. Illinois
66A1 W. North Ave.
Oak Park, III. . . .
Cleveland. Ohio
14625 Detroit Ave
Lakewood, Ohio.
dallas. Texas
511 Braniff Airways Blde
Dallas 35, Texas
Darton, Ohio
379 W. First SL BAIdwin 4-9651
dENVER, Colorado
First National Bank Bldg.
621 Seventeenth SL.
DETROIT, Michigan
2842 West Grand Blvd.............. TRinity 5.2440
Kansas citr, Missouri
Wirtham Blide
31st and Troost Sts..............VAlentine 1-1819
LOS ANOELES, California
6362 Hollywood Blyd.
Hollywood 28, Calif.. HOllywood 2-2381
newark. New Jersey
1060 Broad St.
............ MArket 3.3151
ORLANDO, Florida
" 10 Jacklind Bidg.
205 E. Jackson St.
...................CHerry 1-4526
phoenix. Arizona
2727 North Central Ave. CResiwood 7-3366
ST. PAUL, Minnesota
Griges-Midway Bidg.
1821 University Ave. MIdway 6-1891
SAN DIEGO, California
3620 30th St..
........CYpress 7.3708

SAN FRANCISCO, Calífornia
535 Middlefield Rd.
Palo Alto, Calif.................. DAvenport 1-2064 seattle, Washington
3466 East Marginal Way.
. MAin 4-0783
syracuse, New York
2360 James St. .
........ HOward 3.4502
winston-salem, North Carolina
Nissen Building
310 W. Fourth S
.PArk 3-0363

Transitron

olectronie cerporation 1
wakefield, massachusetts

CIRCLE 62 ON READER-SERVICE CARD CIRCLE 63 ON READER-SERVICE CARD -

NEW FROM
Trangitron

meros

(A MESA MICRO-TRANSISTOR)

- SILICON DIFFUSED

- HERMETICALLY-SEALED

- ALL-GLASS PACKAGE

INTRODUCING THE FIRST SERIES IN A COMPLETE LINE OF MICRO-TRANSISTORS

Development of the micro-T - first silicon diffused mesa micro-transistor in an hermetically sealed all-glam package - represents a major step forward in microminiaturization. As compared with conventional "metal can" configurations, the Micno-T's hard glass packaging embodies a aignificant improvement in the hermetic seal between leads and package. Reliability is substantially increased; poesibility of leakage in sharply reduced.

This new series of 45 -volt micro-transistors is the first designed for mall-signal low-level applications, with current operating range from 50 microamps to 20 milliamps. Other electrical characteristics include an Res of 100 to 200 ohms; minimum Betas from 20 to 80; cut-ofl frequencies of over 50 megacycles. Perfectly compatible with present circuitry, micno-Ts will facilitate mierominiaturizing in such critical areas as airborne, space vehicle and missile application. They are $1 / 20$ th the size of the TO-5, and $1 / 5$ th that of the TO-18.

The first five types of micro-Ts are available now. For full information, write for Bulletins No. PB-78, (Amplifier types) and PB-79, (Switching types).

Transitron

NEW PRODUCTS

Mark II Relay

The spdt relay features operation which produces u self-cleaning or brushing action. The relay has a minimum life of 100,000 cycles at rated load. The solenoid for nominal 26.5 v dc operation; other voltages can be supplied. Type 1000 relay meets specifications MIL-R-5757 and MIL-R-25018, Clas: C, Type II, Grade 3. The unit weighs 4.7 oz .

Electro-Tec Corp., Dept. ED, 10 Romanelli Ave., South Hackensack, N.J.

Thermoelectric Cell

Usable thermoelectricity is produced by this power package measuring $6 \times 1-1 / 2 \times 3 / 8$. Specifications are: power output 2.5 mw , and current of 5 ma into a 100 -ohm load. Its resistance is 100 ohms, and it generates 1 v at 200 F differential. The Seejen weighs 1-1/2 oz.
Harco Laboratories, Inc., New Haven, Conn. PUA: \$4.95; 14 days.

Linear Amplifier

Double delay line, nonoverloading, linear amplifier is based on Oak Ridge National Labs A-8 design. Type N-308 amplifier has a gain of 7,000 , adjustable by coarse and fine crystals, stability of 0.25% per day, rise time of about $0.2 \mu \mathrm{sec}$, and integral linearity of $0.1 \%, 3$ to 100 v into $10-\mathrm{K}$ load. The unit is available with integral or differential discriminator. An optional pick-off circuit is for coincidence work in the $50-\mathrm{nsec}$ range.
Hamner Electronics Co., Inc., Dept. ED, Princeton, N.J.
Avallability: From stock.

High altitude, subminiature, cold-cathode trigger tube designed for high altitude operation requires an input of 0.25 w and a trigger voltage of 250 v . Type WC-18 requires trigger current of $10 \mu \mathrm{a}$, and a keep-alive current of $30 \mu \mathrm{a}$. The tube is rated at 700 v , and can operate at max ratings to $65,000 \mathrm{ft}$. Electronic Industries Inc., Dept. ED, South Norwalk, Conn.
Availability: from stock.

Double-Ended Transistors

Subminiature silicon npn transistors are available in double-ended configuration. Capable of dissipating 400 mw at 25 C , the types 2 N 902 through 2 N 908 are electrically equivalent to the single-ended subminiature 2N789 through 2N793, 2N745 and 2N746, and to the TO-5 units 2 N 332 through 2 N 338 . Size is $0.130 \times 0.160 \mathrm{in}$. Ambient temperature range is -85 to +175 C . Military specifications are met.

Raytheon Co., Semiconductor Div., Dept. ED, 215 First Ave., Needham, Mass.
Price b Availability: $\$ 8$ to $\$ 30$; immediate.

Electronic Relay

No de power supply is needed for the operation of model 120 solid-state electronic relay. Output is 25 $\mathrm{v}, 150 \mathrm{ma} \mathrm{dc}$; input is dc or $\mathbf{6 0 - c y}$ ac. Turn-on point is adjustable from 3 to 150 v . An independent hysteresis control determines turn-off point. A dual phase-sensitive detector input provides coherent detection of $80-\mathrm{cps}$ input signals and reduces noise. Size is $8 \times 4 \times 4 \mathrm{in}$.
K-F Products, Inc., Dept. ED, 3100 E. 43 rd Ave., Denver 16, Colo.

Unique

construction of Elcor ISOFORMER ${ }^{\circ}$ makes efficient isolated power supplies practical

The drawing shows the unique construction of the Isoformer (isolation transformer). This is the key element in new Elcor isolated power supplies... callod ISOPLYS.

Significant features of the Isoformer are: (A) Tape-wound magnetic core (B) Shielded primary winding (C) Shielded secondary winding separated from core by air gap.

Results? Distributed capacitance between ground and shield of secondary winding is reduced to the order of $\mathbf{1 5}$ to $\mathbf{4 0}$ pf, depending on transformer power rating. And in spite of the air gap there is good magnetic coupling between primary and secondary winding. Efficiency is of the order of 90%. When used in D-C power supply, such as the Isoply, rectifiers are enclosed in same shierd as secondary winding. With Isoplys you can now create simpler, less costly, and in many cases, better performing circuit designs in applications never before possible.

ELCOR Incorporated
Subsidiary of Welex Electronics Corporation Sales / R \& D Laboratory / Manufacfuring 1225 W. Brosd Street / Falls Church, Virginia JEfferson 2-8850
CIRCLE 65 ON READER-SERVICE CARD

NEW PRODUCTS

Time Delay Standard

Variable, wide-band time delay standard has a constant delay from dc to 2 Gc . The time delay is continuously variable up to 3 nsec. Accuracy is better than 18 at any given point, readability better than 50 nsec . Attenuation is 0.017 db at 100 mc and 0.85 db at 1.5 Gc .

Ad-Yu Electronics Laboratory, Inc., Dept. ED, 249-259 Terhume Ave., Passaic. N.J.
Availability: 1 to 2 weeks.
Sensitive Magnefomefer 381

Magnetic anomalies of $\mathbf{0 . 1}$ gamma or less are detected and relayed in digital or analog form by this instrument. The continuous output is sufficient to drive telemetry systems or recorders. The unit is 7 in . long $\times 3 \mathrm{in}$. in diameter. Power consumption is 0.8 w at 200 ma .

Amoux Corp., Dept. ED, 11924 W. Washington Blvd., Los Angeles 66, Calif.

Trigger Tube

Subminiature, low-impedance coldcathode trigger tube model 7711/ Z71U is for use as an inertialess switch and counter in automatic telephone exchanges. The tube has two positivevoltage operated starters. Starter transfer current of 40μ a makes it suitable for use with diodes and transistors.

Amperex Electronic Corp., Semiconductor Div., Dept. ED, 230 Duffy Ave., Hicksville, L.I., N.Y.

CIRCLE 66 ON READER-SERVICE CARD $>$

The NLS V60 Digital Millivolemeter is designed for a wide range of scientific, industrial and military applications including strain gage and thermocouple measurements, calibrating millicolt devices, process monitoring, and semiconductor research and testing.

Here is a new, faster, more precise way to make low-level DC voltage measurements. The NLS V 60 full 4 -digit millivoltmeter makes 80 measurements per minute, average. It features ± 0.018 precision (ability to repeat readings within close limits) - unattainable from pointer meters, strip chart recorders or combination of a digital voltmeter and preamplifier. Accuracy of the V60 is $\pm 0.1 \mathrm{~F}$ of reading or ± 10 microvolts, whichever quantity is greater.
A span (scale factor) control allows you to set the V60 to display its reading directly in units of pressure, weight, length, strain, stress, speed, etc. And because the V60 is a digital voltmeter, you can read it at a glance from close or afar in
total darkness or sunlight, without parallax error.
Other features include: very high AC and DC common mode rejection . . . retention of accuracy under adverse conditions range of $\pm 99.99 \mathrm{mv}$. full scale . . . plug-in stepping switches . . . high input impedance . . . precise internal voltage reference . . . filter to attenuate input signal noise full floating, ground isolated input circuit

V60 complete \$1,625

non-linear systems, inc. Originator of the Digital Voltmeter
del mar, california

See it in Action

For a demonstration of the new V'60 millivoltmeter or any digital measuring instrument. call any of the following instrument, call any of the following you prefer, please contact NLS for adyou prefer, please co

Mortheast
NLS Division Office
Long tsiond. N.
Ploneor 76222 NLS District Offle Nurth 1.1228.
BRyont 97999 BRyant 97999
Howard $/$ Shum Howard Shut co
Nowionville Mass
LAsell 7 . 5304 LAsell $7-5304$ Moddie Atlontic NLS Division OHfice
Haddonfiald. N. HAzel 1663 Som Associntes. Inc.
Rochestor. New York OLympic A-8840 SBM Associstes. Inc
Ulice. Now Yortion REdwood 24410 SBM Associates. Inc
Binghamton. New Yo
 SBM Associntis. Inc.
Syracuse. New Yortu Syrocuse. New York
HOward 5001 Southeast NLS Division Olfice Washingtion
EEderal 74315 Wh A. Brown As Assoc ndibn River Clity. Fi
AMherse 70011 w. A. Brown Assoc Oriando. F10.

GArden 5.5682 W. A Brown Assoc | Munisvilio Alaboma |
| :--- |
| $J E f f a r i o n$ | w. A Brown \& Asso Winsion Sniem. NC W. A. Brown \& W. A Brown Assoc Alemple 61800

MLTwosi Chicago. 1111 nois TUnedo 9-1277 Ohto instrumen
Opyion Onio
Cut CHapei 2744 Encineoring Services St Louis. Miseour
PArkview
62233 Encernerring Services Company
Kansisicity, Missouri
JEfferson 1 H765
 Engineering Sonvic Wichirs. K.nnses
MUrroy 3.3751 Engineoring Services
Codor Repids.
Iows Cedor Rapids.
EMDIre
56183^{2}

Gaine Engineering Co Detroit, Michigen
FOrresi 6.5353 Mountalin end
Southwest NLS Division Office
Denver. Colorado PELarl 1.3787
NLS Division Olfice OLS B. Teras
OLlatwood 1.5240 Burt Porrer Company
Sastle. Was hington
 Bur Porter Comp Burt Porter Com
Portiand. Oropon
ATlantic 4.171 B
 Arooks. Feeger ${ }^{2}$ A
AMherstaue. N.
AM Brooks. Feoger Q Assoc
Enilewoor Colorado
EInswo SUnset 17375
 Whitney $6-2111$ Broohs. Feeger a Azsoc.
Sole Lok Clity. Utah ELELR 9.2427

Mitchall Speairs Co. | Mrichell Spesirs |
| :--- |
| Fort Worth. Tex | Fort worne

WAInut 3657 Mitchell Spears
Mousion. foras Mousion.
MAdison
$3-4112$ Mutchell Speairs Co
Dallas. Teras Dallas. Teres
ANdrew 2.6466 Pacilic NLS Division Office South Pasedena. Coll
MUIray 2.3705^{2} C. W Maudlin C Ppilo Atto Callifornie
OAvenport 6.5291 Buvenporter Company Sertle Washington
EABt 38330 EAst 38330 Portiand. Oreton
ATIAntic 41718 ATlantic 4171 B canesa Aoromotive Engineering 147 Mymus Blad. Point Claire. Quebec
Ox 7 -0810 (Montraal) Aeromotine Engineering Aproducts. Lto.
1912A A AvonueRD. Toronto. Onterio
RU $3-1288$ RU 3428 Expori, Excluding Frazer \& Mansen, Lto
$301 \mathrm{Cliay}^{2}$ St 301 Cloy St,
San Froncisco. Calir.
EXbrook San Francisco, Calif.
EXbrook 25112

CIRCLE 67 ON READEE-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961

Portable power supply model 4372 offers dial selection of voltages from 0 to 125 v dc, or $\mathbf{0}$ to $\mathbf{1 4 0}$ v ac at 2.5 or 3.0 amp respectively. The bridge rectifier is overload protected, and a special accessory filters the output for a max ripple of 0.075 v at full load. The unit measures $5 \times 5 \times 7-1 / 2 \mathrm{in}$. weighs 7-1/2 lb.
Edler Engineering Co. Inc., Dept. ED, 1568 S. First St., Milwaukee 4, Wisc.
PUA: \$49.50; from the stock.

Counter Indicator

Variable radix counter indicator model C-100 is a transistorized counter operating at rates up to 110 kc . Complete " G " Series also includes Preset Counter and Counter Indicator; Set/Reset Indicator; Plus/Minus Indicator.

Electronic Control Products, Dept. ED, P. O. Box 286, Dunellen, N.J
Price: $\$ 98$ to 122.50

Capacitance Measuring Sysfem

Model 700 measures 2- or 3-terminal capacitors in the range of 0 to $0.12 \mu \mathrm{f}$ with a resolution of 0.0001 pf on the lowest range. The system provides five ranges of capacitance readings with 120,000 dial divisions of resolution on any range. Accuracy relative to the standard capacitor is $\pm 0.01 \%$ plus one dial division, on the three intermediate ranges; $\pm 0.002 \%$ plus one dial division on the highest and lowest range. The unit measures $19 \times 10-1 / 2 \times 8$ in Electro Scientific Industries, Dept. ED, 7524 S.W Macadam Ave., Portland 19, Ore.

Plot your lumped constant delay line needs on these charts! $\%$

400

* If your requirements fall within any one of the triangles then the TIC standard type in any configuration is your answer. For other specifications PDL type provides Delay time to 500 mi croseconds, Impedance 25 to 10,000 ohms, Delay to Rise ratios to 150-1.

DELAY LINES

FEATURE:

- higher rellability
- lower attenuation

TIC's lumped constant delay lines are available in three standard configurations, TDL (tubular), RDL (rectangular), PCL (printed circuit), PDL series (are made to customer specifications). They feature a higher delay to rise time
ratio per cubic inch than is available with conventional techniques. Every TIC Delay Line is hermetically sealed and complies with applicable MIL specs. TIC Delay Lines are M derived, phase and frequency compensated with excellent pulse response characteristics and exceptionally low attenuation Standard lead lengths of RDL and TDL units is $2^{\prime \prime \prime}$. The PCL lead length is $3 / 4^{\prime \prime}$.

Prompt delivery. Write, wire or call.

DRE
 TECHMOLOGY INSTRUMENT CORP. OF CALFORNIA

CIRCLE 68 ON READER-SERVICE CARO

NEW PRODUCTS

Subminiature Trimmer

A high-temperature, precision trimming potentiometer model 355 measures $1 / 2 \times 1 / 2 \times 0.2 \mathrm{in}$. It is available in values from 10 ohms to 50 K over an operating temperature range from -55 C to 220 C . Resolution, at $50-\mathrm{K}$, is 0.0086%. Worm-gear adjusting device provides friction loading and eliminates backlash. Wire leads are 4 in . in length, 30 awg, and Tefon insulated.

Daystrom Inc., Dept. ED, Archbald, Pa
Thermocouple Hotbox

All types of thermocouple wire are joined directly to copper in the universal TC hotbox. No external junctions are used, eliminating the need for wirematching plugs. Junction temperature of 150 F is maintained; 51 pairs of wires can be accommodated. Research, Inc., Dept. ED, Box 6164, Minneapolis 24, Minn.

Pulse Modulator
365

Peak power of 1.2 megawatts is provided by pulsed-power signal-source modulator model 344 M . Trigger generator, pulser, high-voltage power supply and filament supply are contained in a 7 -ft cabinet. Pulse width is 0.1 to $5.0 \mu \mathrm{sec}$, continuously variable; maximum duty cycle is 0.002 . Rise time is less than 0.2 usec min at maximum pulse voltage and current into a linear load.
Radiation At Stanford, Dept. ED, Palo Alto, Calif.
ELECTRONIC DESIGN • April 26, 1961

Push-Button Actuator

Model A4-195/EF-136 is a spdt actuator which is rated at $5 \mathrm{amp}, 125 / 250 \mathrm{vac}, 2.5 \mathrm{amp}$ at 30 v dc. The unit features $0.250 \mathrm{in} . \mathrm{min}$ overtravel, $4-\mathrm{oz} \mathrm{min}$ release force, and a movement differential of 0.004 in. \max
Control Switch Div., Dept. ED, 1420 Delmar Drive, Folcroft, Pa.

Insertion-Loss Scanner

Measurement of insertion loss as a function of frequency in the range of 50 kc to 8 mc is provided by the PTC 1206 insertion loss scanner. System consists of sender and receiver units with power supply. Dual-trace crt displays insertion loss versus frequency characteristic of system under test. Recorder output is available.
Pye Telecommunications Ltd., Dept. ED, Cambridge, England.

Low Power Recorder

Miniature strip chart recorder requires $400 \mu w$ for full response within 0.6 sec . Model A+ Recorder is available in 0 to 1 ma range with moving coil resistances of $140,350,1,500$, or 5,500 ohms, and a 4,500-gauss flux. Ink pen, hot wire, or Teledeltos writing systems with standard chart speeds can be specified. Panel space required is $5-1 / 2 \times 7-1 / 3 \mathrm{in}$. and portable housing is available.
Atkins Technical Inc., Dept. ED, 1276 w. Third St., Cleveland 13, Ohio.

Cooling Unit

Operation from -65 to +125 F and altitude from sea-level to $\mathbf{1 0 , 0 0 0} \mathbf{f t}$ is possible with the RS-100-102 cooling unit. It is rated at 800 w at 125 F condenser temperature and power requirements are 416 v , 3 -phase, 400 cps . Weight is 85 lb ; size is $16 \times 10 \times 19$ in.

Eastern Industries Inc., Dept. ED, 100 Skiff St., Hamden 14, Conn.

72 NEW MOTOROLA

From Motorola, a 10 watt silicon diffusedjunction zener diode to meet the requirements of MIL-S-19500B/124 (amendment 1). 1N2970B(SIG. C.) thru 1N3015B(SIG. C.) provide nominal zener voltages of 6.8 to 200 volts . . . 1N2970RB(SIG. C.) thru 1N3015RB (SIG. C.) are equivalent reverse polarity units . a total of 72 new Motorola mil-type zeners for your critical military circuits.
Two zener impedance tests - at the practical $1 / 4$ power operating point $\left(\mathrm{Z}_{31}\right)$ and at the knee (Z_{nk}) - guarantee sharp zener knees, product uniformity and quality. Motorola's zener voltage regulation test (ΔV_{s}) assures unexcelled regulatory characteristics. Units are packaged in a rugged, hermetically sealed stud case. and are able to withstand very high surge currents.

FOR COMPLETE TECHNICAL INFORMATIOM
 Seemisonuuctor sisee silict othice or myour Motorois
 Arizona.

motorola distaict effices

Belmont. Mass / Burlingame, Calif / CMleaso / Clifton, N. J. / Dallas silver Spring. Md / Syracuse / Toronto, Canada

USER PREFERRED ZEMER DIODE TYPES AVAILABLE FROM MOTOROLA

$\begin{aligned} & \text { M00 MILLIWATT } \\ & 1 N 746 A \text { thru } \\ & 1 N 799 \\ & 1 N 9628 \text { thru } \\ & 1 N 9928 \\ & 3.3 \text { to } 200 \text { volts } \\ & \text { of MIL-S-19500B } / 117 \text { \& } 127 \end{aligned}$	
	Summiarature class TEMPERATURE. COMPENSATED 6.2 volt, 8.4 volt. 9.0 volt, 11.7 volt Coefficients .01 to $.0003 \% /{ }^{\circ} \mathrm{C}$

mew zener diode/rectifier handedok A major revision of Motorola's's previous handbook. 185 pages of theory, dessign characteristics and comprohen. rder, (no purchase ordeers, please), From Handiook
 East McDowell Road, Phoenix 10, Arizona.

A
Somiconductor Producte Inc.

SOOS EAST MCDOWELL ROAD - Phoenix 10, ARIzona

MOTOROLA

SUESIDAAEY OF MOTOROLA, INC

NEW PRODUCTS

Shielded Transformers

Power transformers in five design styles cover the range from 100 w to 50 kva, 120 v input, 120 v output. These transformers are code requirement class I division 1, for use in locations where hazardous concentrations of flammable gasses or vapors exist.
Acme Electric Corp., Dept. ED, Cuba, N.Y.

Miniature Attenuators
383

Printed circuits provide up to 20 steps of attenuation in ladder or potentiometer configuration. Composition or wirewound $1 / 2-\mathrm{w}$ resistors are available in these units. The attenuators meet standard type specifications.
Cinema Engineering Div. of Aerovox Corp., Dept. ED, 1100 Chestnut St., Burbank, Calif.

Instrument Switches

382

Type CVS switches have up to 32 adjustable positions and $360-\mathrm{deg}$ rotation. Stop positions can be selected without removing the switch from the panel. Contacts, commutator rings and brush blades are of solid nickel-silver. Terminals accommodate wire up to 18 awg.

Aerovox Corp., Cinema Engineering Div., Dept. ED, 1100 Chestnut St., Burbank, Calif.

- CIRCLE 71 ON READER-SERVICE CARD

Four-terminal measurements of forward voltage drop can be made with model 1808 diode test set. Ranges are 1,3 and 10 v . Adjustable reverse voltage is metered from 0.5 to 2.000 v . Reverse current can be read directly from less than 1 na to 3 ma .
Dynatran Electronics Corp., Dept. ED, 187 Herricks Road, Mineola, N.Y. PもA: $\$ 1,250$; 30 to 60 days.

Stem and Wafer Machine 374
Small production runs on all types of button stems up to $11 / 4 \mathrm{in}$. diam may be made on this machine. Model $105-$ BSTl is equipped with gas-airoxygen or hydrogen-oxygen bumers to handle all types of glass parts.
Eisler Engineering Co., Inc., Dept. ED, 750 S. 13th St., Newark 3, N.J

High-Temperature Furnace 366
Capable of reaching $2,600 \mathrm{C}$ at vacuum of $10^{-6} \mathrm{~mm} \mathrm{Hg}$, the furnace has heating area 6 in . in diameter by 7 in . high. Heating is accomplished by passing $3,000 \mathrm{amp}$ through a circular tungsten element surrounded by tantalum foil. Vacuum apparatus for the chamber consists of $46-\mathrm{cfm}$ roughing pump and a $6-\mathrm{in}$. oil diffusion pump. The $10^{-6} \mathrm{~mm} \mathrm{Hg}$ pressure can be reached in approximately 4 -min pumping time.
Electro-Optical Systems, Inc., Dept. ED, 125 N. Vinedo Ave., Pasadena, Calif.

Miniature Capacitors

377
High voltage capacitors are available in sizes from $15 / 8 \times 113 / 16 \times$ $11 / 6$ in. Designated as HI-VAR, these units exceed MIL-C-25C requirements, and range in value from 0.1 uf to 15.0 uf, in voltages from 400 to $12,500 \mathrm{vdc}$.

Dearborn Electronic Laboratories, Inc., Dept. ED, P.O. Box 3400, Orlando, Fla.

The "case" for 300-volt Tantalytic* capacitors

The best capacitor case for $\mathbf{3 0 0}$-volt operation is General Electric's High Voltage Tantalytic ${ }^{\text { }}$ Capacitor. Its single-cell construction is the smallest and lightest for its rating. It weighs 0.1 ounce and measures only 0.75 inch in length.

Performance of this G-E unit distinguishes it as quickly as its size. -Rog. Trado-mort of Gonaral Electick Co.

Capacitance stays within 10% of original value even after 2000 hours testing at rated voltage and temperature. Impedance is lower at -55 C than that of any other high-voltage tantalum capacitor.
These same features characterize the full line of ratings from $200 \mathrm{~V}(.15 \mathrm{uf}$) to 300 V (25 uf). Polar or non-polar designs
are available from stock for 85 C and 125C applications.
Data on G-E High Voltage Tantalytic Capacitors is found in Bulletin GEA7065. Ask your G-E Sales Engineer for a copy today. Or write to General Electric Co., Schenectady, N. Y. Capacitor De partment, Irmo, South Carolina. $430-02$

Progress /s Our Most Important Product General (6 6lectric

General Electric also offers these reliable Tantalytic capacitors

NEW PRODUCTS

Module Racks

Standard S-Block racks can accommodate either 19 or 283 C -PAC series S plug-in modules. A choice of taper or solder pin type connectors is available, and power and ground busses are factory prewired. Power connections $+12-,-6$ - and $-18-v$ terminals are quick disconnect type. The units are of welded steel construction and measure $19 \times 51 / 2 \times 91 / 2 \mathrm{in}$.

Computer Control Co., Inc., Dept. ED. 983 Concord Street, Framingham. Mass.

Cable Tester

One-man checkout of interconnecting and power cables is possible with this portable cable test set. Cables are checked for crossed wires, shorts and opens; power cables are checked for proper ao and de voltages and correct phase rotation. Standard model has a go/no-go meter and handles up to 35 conductors. Set weighs 21 lb and operates from 115-v, 60 to 400 cps , or from internal batteries. Unit can be packaged for commercial or military use.

The Hallicrafters Co., Dept. ED 4401 W. Fifth Ave., Chicago 24, Ill.

Planefary Lappers

379
Semiconductor crystal processors are capable of lapping both faces of a slice simultaneously, with parallelism in the order of 0.000005 in . Model PL-2875-B features a 2-7/8 in. track and ten carriers, and will lap 10 slices up to a max size of 1-3/4 in. in diameter. Model PL-1875-B has a 1-7/8 in. track and 17 carriers, each holding from one to three slices. This unit can lap 17 slices up to 1 in . in diameter.
Dallons Labs., Inc., Dept. ED., 5068 Santa Monica Blvd., Los Angeles 29. Calif.

WHO CAN SHOW YOU A 220 MC FREQUENCY METER WITH THESE FEATURES?

* All Solid State 10 MC Counter Section
* All Solid State Time Interval Plug-in
* Power Consumption 125 Watts
* Decade Count-down Time Base
* Two Year Warranty Except for Converter Tubes

* Rugged Unitized

 ConstructionModel
737AN
with
inline readout.

Move it anywhere you want with ease. Rack Mounting simpler, too.

Only CMC can! Only cmc's Frequency-Period Meter offers solid state reliability and 48 pound compactness.

DO ALL THESE JOBS:

- Measure frequency dc to 220 mc

Measure period to 0.1 microsecond

- Measure time Interval 0.1 microsecond to 10^{7} seconds
- Count dc to 10 mc

Now • See how the CMC 737A compares with its two closest competitors

	$\begin{gathered} \text { CNC } \\ \text { motal } 737 a \end{gathered}$	$\begin{aligned} & \text { Cempany A } \\ & 220 \text { me mait } \end{aligned}$	$\begin{aligned} & \text { Company } \\ & 220 \text { me onit } \end{aligned}$
CIRCUITRY	All solid state counter section	100\% vacuum tube	100\% vacuum tube
TOTAL NUMBER OF VACUUM TUBES	13	91	75
WEIGHT	Net 48 lbs .	Net 118 lbs .	Net 115 lbs .
SIZE	$\begin{gathered} 14^{*} \mathrm{H} \times 1 \mathrm{P}^{\mathrm{W}} \mathrm{~W} \\ \times 13^{*} \mathrm{O} \\ (1.8 \mathrm{cu} . \mathrm{ft} .) \end{gathered}$	$\begin{gathered} 2111^{\circ} \mathrm{H} \times 20^{\circ} \mathrm{W} \\ 823 y_{2} \mathrm{D} \\ 15.8 \mathrm{cu} . \mathrm{ft} .) \end{gathered}$	$\begin{gathered} 20^{\circ} \mathrm{H} \times 20^{\circ} \mathrm{w} \\ \times 19^{\circ} \mathrm{D} \\ (4.4 \mathrm{cu} . \mathrm{ft} .) \end{gathered}$
POWER	125 watts	600 watts	380 watts
TIME BASE	Decade count-down type; no divider adjustment	Multi-vibrator type; requires frequent adjustment	
WARRANTY PERIOD	2 years	1 year	1 year
PRICE asasic unit with vertical decade display)	$\$ 2150$	\$2150	\$2275
(converter plug-ins)	\$250 each	\$250 each	\$250 each
(TIM plug-in)	\$300 each	\$175 each	Included

WHAT IT IS

CMC's Model 737A Frequency Meter combines an all solid state 10 mc digital counter and a vacuum tube plug-ins are currently available with more on the way. Model 7311 plus-in more on the way. Model
extends the 10 mc range 10100 mc and Model 732A covers 100 mc to 220 mc . The third available plug-in, Model 751 A , is an all solid state 0.1 microsecond to 10^{\prime} second time interval section.

LOW POWER - A KEY ADVANTAGE

The complete instrument uses only 125 watts of power which reduces operating temperatures, prolongs component ife, and assures long trouble-free operation. Even at 10 mc , transistors are well derated. Because of this inherent reliability, CMC offers a two year free
service warranty except for converter tubes - the first manufacturer to offer this extended guarantec.

THESE FEATURES, TOO

Automatic decimal point * Inline readout available as standard option ${ }_{5}^{*}$ Startsility, 2 parts in in 10° standard \pm parts in 10° special. * Accuracy Sensitivity, $0.25 \vee \mathrm{rms} *$ Standardiz against WWV * Remote programming without special regard to cable length, type of cable, or impedance matching * Printer output to drive digital recording equipment, punches inline readout and other data handlins gear, $\$ 80.00$ extra.
AND HERE'S
100% SOLID STATE RELIABILITY
CMC offers a complete line of transistorized digital instrumentation in cluding universal counter-timers, time interval meters, frequency-period counters, printers and preset counter controllers. Here are two models espehigh reliability and flexibility of function are key factors. These units can also be remotely programmed by simply closing contacts.

Model 727A Universal Counter-Timer

Issine only 50 watts, Model 727a measumas de
 base. Price se 2430 .
Model 726A Universal Counter-Timer

Only $51 / 4 /$ Inches hish and molghing Jugt 25
 Decade count-down tume basse. Pownt consump
tion 40 watts; price, B1550.

FOR MORE INFORMATION - contrect your CMC representative for a demonstration, or write for new technical bulletins. Please address Dept. 36

Narrow bandpass, tunable filter model 100 is for use in the 118 to 136 mc range. It has tuning accuracy to within 25 kc . Power rating is 50 w am at 100% modulation and useful bandpass is 100 kc . Type N female connectors are used.
Adams-Russell Co., Inc., Dept. ED, 200 Sixth St., Cambridge 42, Mass.
PbA: $\$ 1,175 ; 30$ days.

Card Reader

Automatic control of program, formula, position, etc., is provided at low cost with clip cards and reader. Vinyl cards may be cut with scissors; finger length is in direct proportion to command signal. Life is over 1 million readings; accuracy can be 1 part per 30,000 . No relays or stepping switches are used. The flush-mounting reader can be supplied to handle cards with up to 40 fingers.
Jordan Controls, Inc., Dept. ED 3235 W. Hampton Ave., Milwaukee 9 Wis.

Glass Cloth

Material for insulating boards withstands soldering temperatures of 450 to 500 F , and is made of silicone-glass laminate. This laminate is applicable in environments of -40 to 160 F ; withstands shocks of 30 g for 11 msec.
Dow Corning Corp., Dept. ED, Midland, Mich.

Sealed T-Switch

367
The H-16-200 is a spdt switch which meets MIL-S-6743 electrical ratings. It has a pretravel of 0.012 in . is 0.787 in . in length and weighs 7 g . Operating force is 550 g min .

Controls Company of America, Control Switch Div., Dept. ED, 1420 Delmar Drive, Folcroft, Pa.
< CIRCLE 73 ON READER-SERVICE CARO

EMECER Standard Cabinets

$7^{\prime \prime}$ high, 16 gauge steel center strut for ease of equipment mounting and greater over-all structural strength.

14 gauge steel frame construction assures greater ruggedness and rigidity.

Electronically controlled spot welds assure superior strength.

Jig assembly line fabrication provides rigid quality control and assures compatibility of frames.

Key Heliarc* Welds provide for greater structural rigidity.

Continuing research and development by the Roy C. Ingersoll Research Center maintains EMCOR leadership in metal cabinetry.
-Regibrared Trademart Linde Air Produck Co.

From single cabinots to major oystomas, the hundreds of basic frames of the EMCOR Modular Enclosure Systom meot your hoight, width, depth and strue. fural enclosure needs.

WIITE TODAY FOR CONDENSED CATALOG 106

Originators of the Modular Enclosure System
INGERSOLL PRODUCTS Division of Borg-Warner Corporation G3O CONGDON • DEPT. 1221 - ELGIN, ILLINOIS Ln
CIRCLE 74 ON READER-SERVICE CARD

NEW PRODUCTS

DC Motor

A permanent-magnet dc motor, model PM-1 is suitable for military and commercial uses. With efficiencies to 54% through high-flux utilization, the motor requires very low current at full load. Weight is less than 2 oz ; length is 2 in ., OD 7/8 in. Motor operates from -55 to +100 C , under vibration, shock and acceleration satisfying military specifications. Voltage range is 3 to 30 v dc.
Reflectone Corp., Dept. ED. Stamford, Conn. PdA: $\$ 14.50$ ea in quantity; stock.

Memory Systems

Magnetic-core memory systems are available wired, assembled, and tested. Capacity ranges from 256 to 4,096 words of 8 to 32 bits. Read-write cycle time is 5 to $12 \mu \mathrm{sec}$. Systems are built to operate under broad variations in power and temperature. Com plete information retention is provided, even in case of full power loss. Standard and custom types are made.
Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N.J.

Power Transistors

Drift-field germanium pnp power transistors 2N1905 and 2N1906 have linear characteristics and a wide frequency response. They are useful as highpower, high-speed switches, ultrasonic oscillators. and wide-band linear amplifiers. Power dissipation is 50 w at 25 C . Rise and fall times are less than 1 usec . Minimum beta is 50 for 2 N1905, 75 for 2N1906. Typical gain-bandwidth product is 7.5 mc .

Radio Corp. of America, Semiconductor and Mateterials Div., Dept. ED, Somerville, N. J.

Digital Ohmmeter

Transistorized, five-digit, ohmmeter featuring a three-position readout with Super-Nixie indicators is accurate up to 0.01%. Model 3500AO indicates the

353

396

Whatever your part in engineering and building electronic equipment, here's the NEW catalog that should be at your fingertips for CABLES! New Catalog No. 4C-61 gives complete charts on Royal RG and special application cables. physical and electrical characteristics, testing procedures. engineering tables (impedance, attenuation, etc.). Valuable information, too, on MIL-spec, signal, control and other multi-conductor cables.

WRITE for your copy - TODAY!
Royal Electric Corporation
301 Sarafoga Avanue
Pawtuckel, Rhodo island
In Conodas Royal Electric Compony (Quebec) Lnd.0
circle 75 on reader-seavice card
ELECTRONIC DESIGN • April 26, 1961

SELECTIVE Gas-Damped SENSITIVITY

GENISCO
GMB SERIES
ACCELEROMETERS
for airborne applications

- constant damping
- potentiometer pickoff OR SWITCH CONTACTS

2233 Federal Ave., Les Angoles ©S, Cellifemia ciecle 76 on reader-service card
range of 0.01 ohm to 9.9999 meg. The average reading time is 2 sec , and the test currents meet MIL specifications. Plug-in boards and military-type connectors are used throughout, and printers can be operated directly.
Electro Instruments, Inc., Dept. ED, 8611 Balboa Ave., San Diego 11, Calif.

Neon Distribution Amplifier

Three pulse width modulated signals can be applied simultancously to EECO 860 neon distribution amplifier. The unit supplies a 12 -channel output for transmission over two-wire cables for distances up to several miles. The output levels are sufficient to drive camera neon lines to remotely located instrumentation cameras. The all solid-state unit measures $7 \times 16 \times 19 \mathrm{in}$.

Electronic Engineering Company of California, Dept. ED, 1601 Chestnut Ave., Santa Ana, Calif. P\&A: $\$ 2,500$; 60 to 90 days.

Cooling Unit

Laboratory cooling unit has at rating of 18 kw at 80 F . Temperature can be controlled manually or a servo system permits remote control of the unit. Operating conditions are from 32 to 110 F , and from sea level to $5,000 \mathrm{ft}$ altitude. The unit weighs 200 lb , and raeasures $21-3 / 8 \times 29-3 / 16 \times 34-1 / 2 \mathrm{in}$. Power requirements are $440 \mathrm{v}, 3$-phase, 60 cps .
Eastern Industries Inc., Dept. ED, 100 Skiff St., Hamden 14, Conn.

Power Transistors

351
Stud-mounted silicon power transistors use standard stud-mounted rectifier hardware. Increased thermal conductivity allows operation in ambient temperature range of -65 to +200 C . The five studmounted types are the 2 N1894 through 2 N1898, electrically equal respectively to the $2 \mathrm{~N} 389,2 \mathrm{~N} 424$, 2N1660, 2N1661 and 2N1662.

Raytheon Co., Semiconductor Div., Dept. ED, 200 First Ave., Needham, Mass. PGA: $\$ 24$ to $\$ 60,100$ to 999 ; immediate.

MEWRAYTHEON IEM90 series BAR-POINTER KNOBS

REDUCE PARALLAX PROBLEMS

Parallax is practically eliminated with these new 90 series Bar-Pointer Knobs made to fulfill human engineering recommendations of the Department of Defense and the U.S. Air Force.

Dial-skirted and bar-pointer designs, in black or gray, fully meet the requirements of MS 91528 B . Nonreflective matte finish for military applications. High-gloss finish for industrial equipment that deserves the precision-engineered look.
For more information about 90 series Bar-Pointer Knobs and the most complete line of high quality control knobs, please write: Raytheon, Industrial Components Division, 55 Chapel Street, Newton 58, Massachusetts.

For Smull Order or Prototype Requirements See Your Local Franchised Raytheon Distributor.

RAYTHEON

RAYTHEON COMPANY

INDUSTRIAL COMPONENTS DIVISION CIRCLE 77 ON READER-SERVICE CARD
 describing comprehensive IR line of diodes and rectifying cells．

INTERNATIONAL RECTIFIER diodes and rectifying cells from 50 ma through 250 amps at $25-1000$ volts per junction

Incomparable preadth of line ．．．International Rectifier produces reliable diodes and rectifying cells rated from 50 ma through 250 amps at 25－1000 volts per iunction．．．produces series／parallel combinations through 100，000 amps and 320,000 volts．（Higher ratings availabie for special applications）．

SILICON STUD MOUNTED POWER RECTIFIER CELLS

6 AMD 12 AMP．MERMETICALIV SECLED TVPES－ 50 to 500 FAV REAC

SILICON GENERAL PURPOSE RECTIFIER CELLS

MINIATURE＂TRL－SEALED＂ECOWOMY SA SERIES－ 500 בan rates， 200 to 200 PTV

 HERMETICALLY SEALED MINIATUWE AXIML LEAD SERIES－ 300 to 500 ma ， 50 TD 500 FIN
 WERMETICAUY SEALED AXIML LEAD SERIES－ 200 to 000 me ， 50 io 000 FIV

SILICON VOLTAGE REQULATOR DHODES AND REFERENCE ELEMENTS

HERMETICALIY SEALED AVIAL LEAD STVLE M SERIES－T30 mMUWIKt TEA
Wenmericatv senied axin leab sine s semies－ 1 wett rico
MERMETICAUY SEALED STUD MOUNTED STME T SERIES－ 2.5 wree IEted
WERMETICAULY SEALED STUD MOUNTED STME T SERIES－ 10 Heat ram

THIS30 MIMIATURE VOLTMCE REFERENCE ELEMEMTS－ 0.0 vint（

MINIATURE SELENIUM RECTIFIER CELLS AND CONTACT PROTECTORS

INTERNTOOMA工ヲ卫
 omsoo or oumurrow semconoucrons

NEW PRODUCTS

Pulsed X－Ray System

With 1－usec pulse duration．Model 5660 pulsed X－ray system is expected to have widespread use in shock and vibration studies，radiation effects， rocketry，medical radiology，ballistics， and crystallography．The long－life tube is pulsed with a square－wave voltage of up to 150 kv ；rate of appli－ cation is 1 to 30 pulses per sec．Result－ ing X－rays have an effective spot size of $1 \times 2 \mathrm{~mm}$ ，and at 1 in ．from the target have an intensity of 10 million roentgens per sec．A Rauland image intensifier tube provides an image suitable for direct viewing or pho－ tography．

Zenith Radio Corp．，Dept．ED， 6001 W．Dickens Ave．，Chicago 39， III．

Automatic Tape Spooler

Bidirectional－winding automatic tape spooler TS－400 can be used with any tape reader．The unit uses stand－ ard reels up to 8 in ．in diameter，and handles paper or Mylar tape．The unit has a $1,000 \mathrm{ft}$ tape capacity and winds at 15 ips ．
Electronic Engineering Company of California，Dept．ED， 1601 E．Chest－ nut Ave．，Santa Ana，Calif．
PbA：\＄495； 6 to 8 weeks．

PDM Multicoder

All－transistor，48－channel，PDM multicoder has 3 －pole， 16 －channel subcommutator．It is of modular plug－in design．Silicon semiconductors are used throughout．Unipolar or bi－ polar models are available with com－ mon or insulated ground．

Applied Electronics Corporation of N．J．，Dept．ED， 22 Center Street， Metuchen，N．J．

Aufomatic Solderer

526
Compact，automatic，soldering ma－ chine for pe boards can be adjusted quickly for pc boards measuring from $2 \times 3 \mathrm{in}$ ．to $8 \times 12 \mathrm{in}$ ．A two－wave solder pot with automatic fluxing can hold 300 lb of solder．The machine handles from 180 to 720 boards per hr ．

Devcon Inc．，Dept．ED，P．O．Box 616，Westfield，N．J．
＜Circie 78 on reader－service card

Conductive Inks

Printed circuit conductive inks which can be sprayed, roller coated or screened have an approximate resistance of 400 ohms per sq in ., when screened through 8 XX mesh. Formulation EL-787 is prepared for porous boards. while formulation EL-796 is for thermo-plastic applications. The inks are black in color, and will air dry in 35 min .

Advance Process Supply Co., Inc. Dept. ED, 2315 West Huron Street, Chicago 12, Ill.
Price: $\$ 35$ to $\$ 39$ per gal.

Telemeiry Display

Model TDU-1 telemetry display unit has sensitivity of $2 \mu \mathrm{v}$ for full deflection. Image rejection is $\mathbf{6 0 ~ d b}$ and gain control range is 80 db . It operates at 30 mc input frequency, and has a continuously adjustable sweep from 0 to 3 mc . This is a companion unit to TMR-1 telemetry receiver.

Defense Electronics, Inc., Dept. ED, 5451-B Randolph Road, Rockville, Md.
PdA: $\$ 685$; 30 to 60 days.

Wide-Band Transformer 378

Ri Iransformer model RFT-130, covers the range of 1 to 30 mc and matches a 50 -ohm unbalanced source to a 1,200 -ohm balanced load. It has a frequency response of 0 to 3 db in the indicated range. Flat loss is approximately 1 db . The unit is potted in epoxy resin, measures $1.7 / 16 \mathrm{in}$. cu , and mounts with two $6-32 \times 1 / 4 \mathrm{in}$. spade bolts.

Columbia Technical Corp., Dept. ED, 24-30 Brooklyn-Queens Expressway W., Woodside 77, N.Y.

Data Converter

372
A radiosonde balloon data converter accepts analog synchro voltages representing radiosonde elevation and azimuth in degrees. The unit senses and records contact closures, and measures elapsed time in increments of 0.01 min . Completely transistorized, the data converter conforms to MIL requirements, and was designed to operate with existing tracking antennas and recorders.

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.

${ }^{\text {a }}$ New and

 important $\mathrm{P}_{\&}$ B relay114

CIRCLE 79 ON READER-SERVICE CARD

Terminal Assemblies

A high degree of reliability is claimed for "Cerameterms" ceramicmetal terminal assemblies. They are for use with transistors, relays and condenser banks.
Bendix Corp., 1)(pt. ED. Eatontown, N.J.

Audio Chokes

Rated at 350 h at 5 dc ma, audio choke C-2345 has a dc resistance of 5,800 ohms. Type C-2346 is rated at 35 h at 1.5 ma dc and has a de resistance of 1.800 ohms. Both units have an insulation breakdown rating of $2,500 \mathrm{v} \mathrm{ms}$.

Chicago Standard Transformer Corp., Dept. ED, 3501 IW. Addison St., Chicago 18, Ill.
Price: $\$ 5.11$ for C-2.345; $\$ 2.87$ for C-2.346.

Filament Transformers

529
Filament transformer P-6432 has a 5.v center tap, a 21 -amp secondary and an insulation breakdown of 2,500 v rms. P-6433 has a 5-v center tap, 15 -amp secondary and an insulation breakdown of $2,000 \mathrm{v} \mathrm{rms}$.
Chicago Standard Transformer Corp., Dept. ED, 3501 W. Addison St., Chicago 18, Ill.
Price: From $\$ 11.56$ to $\$ 13.89$

Power Transformers

Industrial power transformer $\mathrm{P}-6358$ is rated at $300-0-300 \mathrm{v}$ ac at 6.5 ma . Model PM-8423 is rated at $300-0-300 \mathrm{v}$ ac at 90 ma . Primaries of both units are 117 v 60 cps .

Chicago Standard Transformer Corp., Dept. ED, 3501 W. Addison St., Chicago 18, Ill.
Price: \$9.9.3, P-6.358; \$13.55, PM8423.

Test Console
Universal storage and crt console model 300 B is for test of storage tubes having up to two writing guns and one flood gun. Characteristics are: accelerating voltages, screen potential of 20 kv max; positioning voltages, +250 to $\mathbf{- 2 5 0} \mathbf{v}$; sawtooth frequency ranges, 20 to $16,000 \mathrm{cps}$; synchronized sweeps, 60 to $15,750 \mathrm{pps}$

Automation Laboratories, Inc., Dept. ED, 179 Liberty Ave., Mineola, L.I., N. Y.

Circte al on reader.senvice card

ONLY
 FROM CINCH.

$\mathbb{N O V}$ RR TMTBI SOCIEMMTS

DEVELOPED IN CONJUNCTION WITH THE NOVAR TUBE

Cince Manufacturing Company

1028 South Homan Avonue - Chicago 24, III.

Ownion of Unmod-carr Factenor conporelion, bocton, messechusefte

NEW PRODUCTS

Transmitter Arrestor

Lightning arrestor Type LA-4 features a hightemperature series capacitor, and a low loss magnetic type spark gap that permits the unit to exceed MIL-A-9094C specification. The arrestor has a mounting flange that may be fitted into an antenna coupler.

Dale Electronics, Inc., Dept. ED., Columbus, Neb. Availability: 70 days.

Mofor-Generator
536

Brushless motor-generators have ratings from 3 to 150 kw . The synchronous motor-powered devices are claimed to have 1% voltage regulation with optional regulation up to $1 / 2 \%$. Frequency is "exactly" 400 cps. Standard harmonic content is less than 2% with closer tolerances available.

American Electronics, Inc., Dept. ED, Precision Power Div., 1598 E. Ross Ave., Fullerton, Calif.

Poienfiometer

Wirewound potentiometer series $57-$ EM is a $2 . \mathrm{w}$ unit available in resistances up to 100 K . Glasssealed terminals permit this high-reliability unit to operate at temperatures up to 150 C .

Clarostat Manufacturing Co., Dept. ED, Dover, N. H .

Entirely New Diode Concept...Combinations

Pacific Semiconductors, Inc. announces a new approach to the production of silicon diodes to provide performance characteristics never before possible.
The PSI Laminar process makes possible large scale production of diodes having these outstanding features:

Great Mechanical Stability
Ultra-Fast Recovery
Extremely Low Capacitance
Extremely Low Leakage
Extremely Low Stored Charge
High Rectification Efficiency
Double Hermetic Seal
$200^{\circ} \mathrm{C}$. Storage Temperature

HOW IS SUCH PERFORMANCE AND GREAT MECHANICAL STABILITY POSSIBLE?
Briefly, the PSI Laminar Diode with its many layers, permits extremely low series resistance coupled with a very small junction area to provide a structure yielding a combination of speed, conductance and capacitance never before obtainable.
The laminated silicon element is provided with a glass-like surface layer which passivates the silicon and gives the element complete moisture integrity. This thoroughly sealed element is then welded within the standard PSI package...double hermetic sealing.
The front contact of the PSI Laminar Diode

of specs never before possible!

is decisively imbedded in a gold lamination on the crystal giving the device complete and absolute protection against failure due to shock and vibration. Front contact failure is positively eliminated!

WHAT DIODE TYPES ARE AVAILABLE?

All diode types now being made from conventional mesa and planar processes. This includes the PS9013 high conductance core driver, with the following specifications:

LAMINAR TYPE PS9013

Forward current @ 0.9V $>500 \mathrm{~mA}$
Saturation voltage $>80 \mathrm{~V}$ @ $25^{\circ} \mathrm{C}$
$\mathrm{I}_{-60} @ 25^{\circ} \mathrm{C}<.20_{\mu} \mathrm{A}, \mathrm{I}_{-60} @ 150^{\circ} \mathrm{C}<50 \mu \mathrm{~A}$
Reverse Recovery* $<.2 \mu \mathrm{sec}$

Capacitance @ 9V reverse <7 pfd
*Switching 500 mA forward to -30 V reverse recovery to 10 K ohms
The PS9013 will replace the following: 1N690, 1N691, 1N920, 1N921

LAMINAR LOGIC DIODE 1N3257 will replace the following:

1N903 thru 1N908A, 1N914, 1N914A,
1N916, 1N916A, 1N251
LAMINAR MEDIUM CONDUCTANCE
DIODE 1N3258 will replace the following:
1N658, 1N662A, 1N663, 1N792, 1N796,
1N800, 1N808, 1 N815
All of the above EIA types are also available in Laminar construction.

Semiconductors, Inc.

HAWTHORNE, CALIFORNIA - A SUBSIDIARY OF THOMPSON RAMO WOOLDRIDGE INC.
circle ib on reader-seavice card

> Tarzian Silicon Voltage Regulators now at workday prices

1-watt
Epoxy enclosed
6 to 105 volts, in 20% increments
Standard tolerance is 20\%
(all common tolerances available on request)
Immediate availability
Sarkes Tarzian did it in 1957 for silicon rectifiers and has done it again in 1961 for silicon voltage regulators...devised production methods that make it possible to offer quality silicon semiconductor devices at a price level that permits their use not only in Sunday circuits but also in workday circuits.
At the new low prices, more circuits can be better protected or improved in performance by the use of these small and inherently rugged devices as clippers, limiters, and regulators.
Send for price and ordering information.

Where highest quality
is in volume production

SARKES TARZIAN, INC.
 EEMICONDUCTOR DIVIBION • BLOOMINOTON, INDIANA In Cenada: 700 Woston Rd. Toranto 9 - Expont: Ad Aurtima, inc., Now York

NEW PRODUCTS

Tape Reader

Up to $\mathbf{8 0}$ bits of information can be read simultaneously by means of TP 401 tape reader. The unit reads 10 lines and 8 levels across at a time at 6 tests per sec. Special search speed runs at 12 ips . A frame counter indicates the number of frames the tape has advanced from a selected point. TP 401 measures $10-1 / 2 \times 13 \times 19 \mathrm{in}$.

Electronic Engineering Company of California. Dept. ED, 1601 Chestnut Are., Santa Ana, Calif. P\&A: $\$ 1,620 ; 6$ weeks.

Push-Button Switch

Rated to $\mathbf{5 0} \mathbf{w}$, the $\mathbf{S 6}$ series molded push-button switch is $1-7 / 16-\mathrm{in}$. long, with OD of $11 / 16 \mathrm{in}$. It is available normally open or normally closed, spst or spdt. Maximum working voltage is 115 v . Carter Parts Co., Dept. ED, 3401 Madison St., Skokie, Ill.

Battery Holders

Designed to retain \mathbf{C} cell mercury batteries under severe shock, No. 2880 holders are of phosphor bronze, with beryllium copper spring washers. They measure 2-3/8 at the base. Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.
Price: $\$ 0.78$ ea, 100 to 249.
Availability: From stock.

a

Vertically mounted ceramic coil form No. 2501 is for printed circuit work. The grade L-5 ceramic form is silicone-impregnated and is internally threaded for tuning cores. It is available with four different powdered-iron tuning cores having overlapping frequency ranges from 0.2 to 150 mc Dimensions are 0.255 in. for the form OD and 0.625 in. for mounted height
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.

Converter

Designed for use with "Nixie" indicator tubes, models V'C $12-170$ and VC $28-170$ have an output of 170 v dc from 12 and 28 v dc respectively. Full load current is 30 ma for each, enough to power 10 "Nixies."
Burroughs Corp., Electronic Tube Div., Dept. ED P. O. Box 1226, Plainfield, N.J.

Price: $\$ 48.50$ in small quantities.

Ferrite Anfenna Coil

Broadcast band antenna coil RTC 9252 is for small receivers where no external antenna or large internal loop antenna is desired. The inductance can be screw-driver adjusted from $43 \mu \mathrm{~h}$ at 2.5 mc ("Q" of 100) to 270 uh at 790 kc ("Q" of 300).
Chicago Standard Transformer Corp., Dept. ED. 3501 W. Addison St., Chicago 18, Ill.

General hastrument Semiconductar

NEW 10-WATT ZENERS...

> Exremely Iow Dynamic Impedance
> Superior Case Design
> Up to 175° C Operation
> Diffused Junction Type
> 100% Scope Tested

Oustanding Quality-New line of superior quality 10 -watt zener diodes provides dependable uniformity of electrical characteristics... completes the family of General Instrument zeners. Unique case design, which employs thermal matching of silicon and package, enables units to withstand apid temperature cycling and thermal apid low juction

Abstract

servatively rated diodes show ire. Con stability under life dests show extreme stameters Now Diod ery in Ty Available for Immediate Deliv 1N2049; and 1N1351 the iN2044 through age ranges from 7.5 to 30 volts (higher upon request).

REPRESENTATIVE GROUP OF SUPERIOR ZENERS FOR
YOUR MOST EXACTING
CIRCUIT REQUIREMENTS
10 WATTS TO $1 / 4$ WATT

CONTACT GENERAL INSTRUMENT for full techniral information on the complete line of sener diodes, and for applirations anistemer an all your avmiromderior needs.
GENERAL INSTRUMENT GENERAL TRANSISTOR
TRANSISTORS, DIODES, RECTIFIERS

IN CANADA: General Instrument Limited, Semiconductor Division, P.O. Box $=9,151$ Weber Street South. Waterloo, Ontario. Canada. CIRCLE ES ON READER-SERVICE CARD

The only thing standard about new Flexi-core transformers is the price!

You can't buy a new Sylvania Flexi-core transformer "off-the-shelf." We make them to your specifications. Each one is custom-designed and competitively priced. No longer are design engineers forced to compromise on size, shape and linear dimensions or be restricted by conventional E.I., C, U or D configurations. Odd sizes and special shape transformers can now be made without the usual penalties in tooling and delivery.
Reason? The heart of the new Flexi-core transformer is a formed core consisting of nests of laminations of fabri-
cated steel strips. These nests are fitted together to provide 100% interleaving for optimum design. Result: Sylvania Flexi-core transformers operate cooler, provide higher reliability and are up to 30% smaller and lighter than conventional types.
Whatever your application for transformers might be. Sylvania can build you a better one at a competitive price. For details on production quantities, consult your Sylvania Special Products representative. Or write Sylvania Electric Products Inc., Ipswich, Mass.

Syin I. $?$ I ~ SUESIDIARY OF

 GENERAL TELEPHONE \& ELECTRONICS

 GENERAL TELEPHONE \& ELECTRONICS}

NEW PRODUCTS

Modulator

An electro-optical system is used to perform the modulation in the "Autoverter" microvolt modulator. A power source capable of 200 v dc delivering 200 ma is the only requirement to drive the unit. Two $5-\mathrm{v}$ square wave outputs have less than $2-\mu \mathrm{v} \mathrm{rms}$ noise level with $2-\mu v$ zero offset. Weight is less than 3.3 oz .

Apollo Electronics Inc., Dept. ED, 301 S. Harbor Blvd., Fullerton, Calif.

Impulse Counter
543

Push-button actuated impulse counter has an automatic reset which counts at a rate up to 500 counts per minute. The start button is integral with the count-setting knob. Four standard counting ranges are available: 1 to 120; 2 to 240; 4 to 480, and 8 to 960.

Automatic Timing \& Controls, Dept. ED, King of Prussia, Pa.
Price: $\$ 45$.

Modular Connector

For miniaturized packaging, these connectors will provide 100 connections in 2-1/2 in. of length. Top and side feed nylon modules may be interlocked on a rigid plastic track which may be cut to any length. Burndy Corp., Dept. ED, Norwalk, Conn

CIRCLE 57 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961

CLEVITE TRANSISTOR

Figure 1 - 1 ma., $10 n s e c ., 185 \mathrm{mv} . / d i v$.

The usefulness of diode stored charge measurements

by DAVID E. HUMEZ
Technical Advisor to the Manager of Operations

Clevite Transistor, Waltham, Moss
Because driving signals usually are of fixed amplitude and duration in a given circuit, it would be desirable to express the transient behavior of diodes in terms of the charge which must be removed during switching. It would be even more desirable if a simple method of measuring stored charge under a given set of circuit conditions could predict the diode behavior under different conditions.
Measurements of the charge represented by the product of reverse current (I_{r}) and the time (t_{r}) required for the diode junction voltage to drop to zero have been disappointing. For the same forward current (and therefore the same total stored charge) the charge measured varies widely with changes in the reverse current. Table 1 lists a series of measurements on a single, moderately-fast, diode. Note particularly that the measurement madefrom 10 ma . to 18 ma . shows a smaller ratio of t_{r} to τ, the effective total charge lifetime, than all the other measurements and yet does not show a maximum normalized value of $t_{r} I_{r}$. Very small values of $t_{r} \tau$ do not give more understandable results.

Table 1						
\mathbf{I}_{f} ma	\mathbf{I}_{r} ma	\mathbf{t}_{r} nsec	$\mathbf{t}_{r} \mathbf{I}_{r}$ $\mu \mu$ coul	\boldsymbol{T} nsec	$\boldsymbol{\tau} \mathbf{I}_{f}$ μ_{μ} coul	
5	2	18	36	31.7	1588.5	
20	2.0	42	84	33.2	664.0	
20	1.0	62	62	31.6	632.0	
20	0.5	86	43	33.8	676.0	
20	0.1	134	13.4	34.0	680.0	
10	18	3.1	55.8	33	330.0	
20	1.0	73	73	37.2		
20	2.0	48	96	33.6		
20	5.0	26	130	31.6		

The use of the popular expression $Q=\boldsymbol{T} I_{r}\left(e^{t_{r} / T}-1\right)$ at all, and particularly when $t_{r} \ll \tau$, gives rise to large errors because the derivation of the expression makes use of a fundamentally false assumption: viz., that at the time, t_{r}, the charge contained in the diode will have dropped to zero. Both theory and measurement show that the fraction of the total charge removed during this time is never larger than about one fourth, that it varies widely with the ratio of $I_{/} / I_{r}$ and that it reaches a maximum at $I_{/} / I_{r}$ of approximately 1.5 corresponding to $\mathrm{t}_{\mathrm{r}} / \tau=0.35$ approximately.

The current and voltage traces displayed in figure 1 illustrate the variation in the fraction of charge removed during the time, t_{r}. The diode behavior shown is that of the diode of Table 1. The last three lines of Table 1 were derived from the photographs, whereas the first five lines were obtained with different equipment. Experimental difficulties in achieving simultaneous traces of current and voltage have given rise to small errors.

A general solution of the diffusion equation for a diode whose base is thick compared to a diffusion length (W $>$ L) yields the expression, erf $\sqrt{t, \tau}=I_{f}\left(I_{/}+I_{I}\right)$. By the use of this simple expression, values of τ and $\tau I_{/}$(the total stored charge) have been calculated in the last two columns of Table 1. For a wide range of values for $\mathrm{I}_{/} / \mathrm{I}_{r}$, remarkably uniform values of τ result. From the value of τ can be calculated $t_{\text {r }}$ for any value of $I_{/} / I_{r}$. Assuming a value of $\tau=33$ nsec t_{r} was calculated for $I_{j} / I_{r}=0.55$. The result predicts that the constant current phase of recovery should be over in 3.1 nsec. Figure 2 illustrates this same diode performing under these conditions. The diode is being switched from 10 ma forward to 3 volts and approximately 100 ohms external loop impedance. Note that with such a low voltage and loop impedance the voltage drop across the diode itself is not negligible. The reverse current is not $3 / 100$ amperes but rather .018 approximately. Also at this speed the rise time of the generator and CRO are important. It is, none the less, encouraging that a measurement made at 134 nsec and an I_{f} / I, of 200 to 1 should predict so well the behavior at 3.1 nsec and an I / I, of 1 to 1.8 .

Figure 2

10ma., Insec/div.

$\begin{aligned} & \mathbf{I}_{f} \\ & \mathrm{ma} \end{aligned}$	I. ma	$\begin{gathered} \mathrm{t}_{\mathrm{n}} \\ \text { nsec } \end{gathered}$	$\begin{aligned} & \mathrm{t}_{4}= \\ & \text { nsec } \end{aligned}$
20	2.0	42	140
10	1.0	42	200
5	0.5	42	260
2	0.2	42	330
1	0.1	40	380

Table 2 illustrates a simple .test for the condition $\mathrm{W}>\mathrm{L}$. The diode yielding the results listed as t_{r} satisfies the condition, the other diode does not.
Stored charge measurements can, then, be made at conveniently long times for a large group of moderately to very fast diodes intended for use in the low nanosecond range. A single set of test conditions could well be adopted as standard for a very wide range of end use conditions.
Detailed information on this subject is available. When writing please ask for Applications Bulletin 3.

Wire twisting for splicing is eliminated by splice cap 2008S. The steel cap has eight equally spaced flutes to position it in the crimping tool as the connection is made.
Buchanan Electrical Products Corp., Dept. ED. Hillside, N.J

Lanyard-Operated Switch

A 4pdt lanyard-operated switch, type 19-479-1 withstands high-level sinusoidal and random noise vibration tests in both axes, in normally open and closed positions, without contact movement. Switch has passed vibration test of 92 g at 2 kc . Contacts are rated at 10 amp dc . Weight is 0.5 lb , length 2.7 in. Life exceeds 5,000 cycles per min
Kinetics Corp., Dept. E.D, 410 S. Cedros, Solana Beach, Calif.

Vibration Tables
547

Lightweight vibration tables are made for elec ronic reliability testing programs. Model RH-5220, for horizontal vibration, produces $3.2 \mathrm{~g} ; \mathrm{RV} \cdot 5340$ for vertical vibration, will produce 3.6 g . Frequency tange is $25 \pm 5 \mathrm{cps}$; test load capacity is 500 lb .
L. A. B. Corp., Dept. ED, 700 Onondaga St. Skaneateles, N. Y.
Price: $\$ 4,000$ to $\$ 7000$

- Circle of on reader-seavice cand ELECTRONIC DESIGN • April 26, 1961

PLOT MEASUREMENTS

INSTANTLY, ACCURATELY, ECONOMICALLY WITH ROHDE and SCHWARZ

Z-g DIAGRAPHS

RANGE: 30 to 2400 MC
The Diagraphs employ the directional coupler principle. Measurements can be read directly on a Smith chart or a special transmission-line chart without any arithmetical or graphical evaluation work, thereby saving time, expense, and eliminating error. A large number of accessories is available such as baluns, variable shorts, etc.

THE DIAGRAPHS OFFER 4 MEASURING USES:

- Impedance and Admittance Measurements: Wide-band response diagrams on aerials, transformers, load resistors, filters and other networks can be traced within minutes.
- Measuring Transmission Characteristics: Transfer characteristics of multi-terminal networks and semi-conductors can be plotted directly on a transmission-line chart.
- Phase Angle Measurement: Take phase angle readings between 2 voltages from $+180^{\circ}$ to -180° directly on a polar coordinate system. - Use as a Measuring Receiver: The built-in superheterodyne receiver can be used as a linear measuring receiver.

Smith Chart (Rectangular Coordinates)

Speciflcations

WRITE TODAY FOR DIAGRAPH DATA SHEET
ROHDE \& SCHWARZ
111 Lexington Ave., Passaic, N. J. - PRescott 3-8010
Carter Chart (Polar Coordinates)
\qquad

cannon AMTOUNCEES CAPS CANNON AUTHORIZED ©. PLUG SPECIALIST

Distributor Program

CANNON PLUGS...ASSEMBLED LOCALLY TO YOUR RE-QUIREMENTS-BYFACTORYTRAINED SPECIALISTS.CanNon Electric Company has appointed 10 of its top distributors to its new CAPS organization. Canno!l Authorized Plugs Specialists (CAPS) are factory trained to assemble Cannon Plugs to your individual requirements .offer you faster service and a wider selection than that available from any other distributor organization. You get the famous Cannon qualityfast delivery-factory prices, CAPS are located throughout the United States: there is one near you. Contact the CAPS listed below for all your plug requirements.
atlanta, ga.
Electro-Air Corporation 645 Antone Street N.W. TRinity 3 . 1651 CHICAGO, ILL. United Aircraft Supply Corp. 5637 West 63 rd Place POrtsmouth 7.1500 Dallas, tex.
${ }^{\text {Tekko }} 4308$ Maple LAkeside 6-8763
DENVER, COLO.
Kimball Electronics Inc. 4975 Jackson Stree DUdley 8 -9326
inglewood. calif. Liberty Electronics Corp. ORegon 8.7163
mineola, Long isLand, w.y. Schweber Electronics 60 Herricks Road
Ploneer 6.6520
NEW YORK, M.Y.
Time Electronic Sales
373 Broadway
BArclay 7.3922
NORTH HOLLYWOOD, CALIF.
Richey Electronics
Riangle 7.2651
Philadelphia, pa
Aercon, Inc.
2137 Ludlow Stree
LOcust 8 -5105
OUTM EEND, IMD.
Radio Distributing Company
1212 High Street
ATlantic 8.4664

CANNON ELECTRIC COMPANY, 3208 Humboldt Street Los Angeles 31, California

NEW PRODUCTS

Cable Clamps

Adjustable cable clamps and cable ties are completely flexible from -65 to +225 F . Unaffected by moisture, the Lok-Strap clamps withstand extreme flexure and vibration. They do not become brittle at low temperatures and do not stretch at high temperatures. Wire harnesses from $1 / 8$ to 2 in . in diameter are accommodated.
Panduit Corp., Dept. EI-2, Dept. ED. 17301 Ridgeland Ave., Tinley Park, III.

Cryogenic Pumps

436

Flooded electric motors are used in line-mounted cryogenic pumps. Operating temperature range is -290 to -420 F . Motors range in size from fractional to 50 hp , for 60 or 400 cps power. The $50-\mathrm{hp}$ motor uses 3 -phase, 400 -cps power, measures 6.50 in. in diameter by 7 in . long and weighs 30 lb . At normal speed of $24,000 \mathrm{rpm}$, efficiency is 90%. Pumps are made for pipe sizes of 1 to 8 in ., flange-mounted or welded.
Pesco Products Div., Borg-Warner Corp., Dept. ED, 24700 N. Miles Road, Bedford, Ohio.

Thermostat Module

Miniature, liquid-in-glass thermostat offers direct switching of $1,4.7$, and 10 amp or larger loads without external relays or amplifiers. Unit handles output voltages to 400 v at frequencies from 25 to $1,000 \mathrm{cps}$. Setting accuracies to 0.1 C and differential of 0.0 .5 C can be provided. Package is 0.4 in . in diameter by $1-1 / 2 \mathrm{in}$. long for ac, slightly larger for de.
Precision Thermometer \& Instrument Co., Dept. ED, 1434 Brandywine St., Philadelphia 30, Pa.

This is the time of our annual subscription renewal; Return your card to us.

CAMHON g PLUGS

 Schweber

ANNON uthonizeo

ELECTRONICS SO REARICKB MOAO, MINEOLA, LL. N. N. Y MONEEN 8-8S20, TWX A-CV-NY-SEOU CIRCLE 90 ON READER-SERVICE CARD

CANNON MS PLUGS

meet the most specialized and stringent demands - Cannon MS Plugs are built for rugged service! From general duty ground use to specialized missile applications, these plugs fulfill the requirements of MIL-C-5015...are also suitable for many commercial and industrial applications where quality and dependability are required. Our full line of environmental resisting MS plugs gives you the optimum in interchangeability, variety of contact arrangements, and shell types and sizes. The MS series, MS-A, MS-B, MS-C, MS-E, MS-R, MS-K, are available from authorized Cannon Distributors everywhere; or write:

CANNON ELECTRIC COMPANY - 3208 Humboldt St., Los Angeles 31,Calif. CIRCLE 92 ON READER-SERVICE CARD

GRACE UNIFORMITY...now in Silicon Slices and Lapped Slices to reduce your device manufacturing costs

Do-it-yourself crystal growing, slicing and lapping involves extensive expenditures in labor, space, and machinery. Besides tieing up your capital, you absorb the material losses. No wonder so many cost and quality-conscious device manufacturers are turning to Grace for slices and lapped slices . . . where they get 100% usable product to their exact specifications.

Another reason is uniformity. Grace ultra-high purity silicon in all forms is produced under standards far more exacting than even the most particular customer's specifications. This insistence on perfection assures you savings. You don't have to change your manufacturing process with each silicon order. Perfection is standard at Grace . . . where the quality control is constant from the basic chemistry to the delivered product.

Grace has all forms and grades of silicon. Call collect today for full details and price information Even if you are doing your own slicing and lapping. you should have the facts on this valuable second source of supply.
Poutcrustaulime sulicon -a) Bulk for Crochralski crystal growing. P or \mathbf{N} type. Grades I, II, III and Solar. Large uniform lots. b) Poly-Rods for zone refining. Diameters up to $1^{\prime \prime}$. Length to 15 Resistivity to 1,000 ohm -cm . with correspondingly high lifetimes. MOMOCRYSTALS-Czochralski and Float Zone monocrystals grown o your specifications.
SLICES AME LAPPEE SLICES-Precise control assures uniform slice thickness, parallelism and surface perfection to your specifications.

GRAGE
West Coast Rep: Chafin 8 Asso ciates. Los Angetes. San Francisco Subsidiary of W. R. Grace \& Co
10IM. Charles St, Baltimore, Md. PL. 2-7699 - TWX: BA. 390 DUntirk 5 -3955 - †WX: LA 2170
GRACE ELECTRONIC CHEMICAL8, INC.

NEW PRODUCTS

Crystal filter

With A $2.0-\mathrm{cps}$ bandwidth at $100 \mathrm{kc} f_{0}$, model BP-104D crystal bandpass filter is designed for vibra-tion-analyzing equipment. The crystal is housed in a thermostatically controlled oven to maintain 135 C . Specifications are: insertion loss, 22 db ; impedance, output and input, 1.2 K ; size, 4 in . in diameter x 5 in.; maximum drift, 0.0005% of f. over operating temperature range.

Electronic Laboratories Corp., Dept. ED, 4221 Spencer St., Torrance, Calif.

Rotary-Actuated Switch

High-temperature, hermetically sealed switch uses a rotary linkage actuator for positive operation regardless of dust or ice conditions. Lever can lo. adjusted through 360 deg. Rating is 2 amp inductive, 28 v dc and 1 amp inductive, $115 \mathrm{v}, 60$ or 400 cps . Temperature range is -65 to 600 F .
Minneapolis-Honeywell Regulator Co., Micro Switch Div., Dept. ED, Freeport, Ill
Price d Availability: $\$ 1.30$ ea; stock.

Data Recorder

Analog data tape recording and reproducing sys tem 102A is designed for general industrial and re
search use. Accuracy is 0.2% from 0 to 400 cps. The system may be used for time scale contraction and expansion, dynamic simulation, programing and computer read-in and read-out. The portable, twochannel unit has three tape speeds, wide dynamic range, independent record and reproduce channels, low noise and low crosstalk.
Mnemotron Corp., Dept. ED, 3 N. Main St. Spring Valley, N. Y.

Silicon Rectifier

Low cost of the MR322 diffused-junction silicon rectifier enables wide application. Rated at 18 amp , unit operates at case temperatures from -65 to +175 C . Welded case of $5 / 8-\mathrm{in}$. OD is designed for press-fit mounting.
Motorola Semiconductor Products Inc., Technical Information Center, Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz
Price: $\$ 0.58$ ea, 10.000 rfuantily.

Frequency Converter

A frequency-to-voltage converter, the IIP Magacycler produces an output voltage or current directly proportional to input frequency or pulse rate. Full scale outputs range to 10 v with accuracy of $\pm 1 / 2 \%$. Standard units cover the audio range from 5 cps to 12 kc , with up to 100 kc on request. Intemal impedance is low. The converter meets military requirements. Can size is $3-1 / 8 \times 2-5 / 16 \times 2-5 / 16 \mathrm{in}$.
Pioneer Magnetics Inc., Dept. ED, 850 Pico Blvd., Santa Monica, Calif.

Don't miss an issue of ELECTRONIC DESIGN; Return your renewal card.

Nowhere is this closeness more apparent than at Lockheed. Here, with each passing day, new technological advances help bring nearer the exploration of Mars, the Moon and Venus.

As the time grows shorter, the pace grows faster. New designs in Spacecraft and Aircraft are rapidly being developed -and the number continues to mount. Included are: Missiles: satellites; hypersonic and supersonic aircraft; V/STOL; and manned spacecraft.

For Lockheed, this accelerated program creates pressing need for additional Scientists and Engineers. For those who qualify, it spells unprecedented opportunity. Notable among current openings are: Aerodynamics engineers; thermody-
namics engineers; dynamics engineers; electronic research engineers; servosystem engineers; electronic systems engineers; theoretical physicists; infrared physicists; hydrodynamicists; ocean systems scientists; physio-psychological research specialists; electrical-electronic design engineers; stress engineers; and instrumentation engineers.
Scientists and Engineers are cordially invited to write: Mr. E. W. Des Lauriers, Manager Professional Placement Staff, Dept. 1304, 2407 N. Hollywood Way, Burbank, California. All qualified applicants will receive consideration for employment without regard to race, creed, color, or national origin. U.S. citizenship or existing Department of Defense industrial security clearance required.

LOCKHEED

Reading clockwise: Venus, Moon, Mars. Approximate distance Irom Venus to Earth, $25,000,000$ miles; from Moon, 240,000 mıles; from Mars, $50,000,000$ miles.

SMALLEST MYLAR* CAPACITORS... PRECISION MOLDED UNIFORMITY!

GET MICRO-MOLDED MINIATURE MYLAR CAPACITORS FROM...

*•DUPONT

PAKTRON

PACKAGEDELECTRONICS if DIVISION OF ILLINOIS TOOL WORKS 1321 LESLIE AVENUE ALEXANDRIA, VA.

NEW PRODUCTS

Capacitance Measuring System

Accuracy is $\pm \mathbf{0 . 0 1 \%}$ plus one dial division on the three intermediate ranges of model 700 capacitance measuring system; $\pm 0.02 \%$ plus one dial division on the highest and lowest ranges. Two- or three-terminal capacitors from 0 to 0.12 uf can be measured with a resolution of 0.0001 pf on the lowest range. Five ranges with 120,000 dial divisions of resolution on any range are provided.

Electro Scientific Industries Inc., Dept. ED, 7524 S. W. Macadam Ave., Portland 19, Ore.

Temperature Controls

Series $\mathbf{7 0 0 0}$ electronic temperature controls are available in ranges from -300 to $+2,000 \mathrm{~F}$. Standard range is 0 to 800 F . A special plug-in "anticipator" actuates the relay by anticipating, on a proportional basis, the actual set-point, either high or low. The control circuit is encapsulated in epoxy.
Electronic Processes Corp., Dept. ED, 436 Bryant St., San Francisco, Calif.

Laminar Diodes

440
A multi-layer construction is used in silicon laminar diodes. Type IN 3257 has greater than 30 ma forward current at 1 v , reverse recovery time of less than 3 nsec, and rectification efficiency of 45% at 100 mc . Type IN 3258 has more than 100 ma forward current at 1 v , reverse recovery in less than 4 nsec , and rectification efficiency of 40% at 100 mc . Both types have saturation voltage greater than 100 v at 2.5 C Core driver types are also available in laminar construction.
Pacific Semiconductors, Inc., Dept. ED, 129.955 Chadron Ave., Hawthorne, Calif
PdA: $\$ 4.3 .5$ and $\$ 5.00$ ea, 100 to 999; immediate delivery.

Have you sent us your subscription renewal form?

a good way to measure 0.00003 ohm

The Kelthley 502 Milliohmmeter offers speed, ease, and accuracy in the measurement of low resistances. Typical uses are corrosion tests, checking resistivity of metals, semi-conductors, printed circuits, switch and relay contacts.
Battery operation, a ruggedized meter, and protective cover make the 502 ideal for field tests of squibs, carbon bridges and other explosive devices. Features include:

- 13 overlapping ranges from 0.001 ohm to 1000 ohms full scale.
- accuracy wthin 3% of full scale: a fourterminal measuring system eliminates errors due to clip and lead resistance
- 2 micrewatls maximum dissipation across sample.
- no callbrathon or zero adjustments
- Instantaneous indication of resistance without zero drift or errors due to thermal EMF's.
- lightwaight and partable. Furnished with protective cover and set of four test leads.
- price. $\$ 390.00$

Write for complete delails

IT

KEITHIEY INSTRUMENTS

12415 EUCLID AVENUE CLEVELAND 6. OHIO CIRCLE 95 ON READER-SERVICE CARD

Forward and reverse dc characteristics of diodes and rectifiers are measured by model 1808 diode test set. The forward current supply is metered and adjustable from 50 ua to 3 amp . The forward voltage is measured in three ranges of 1,3 , and $10 v$ full scale. Reverse voltage is metered and adjustable from 0.5 to $2,000 \mathrm{v}$. Reverse currents from less than 1 na to 3 ma are read directly.
Dynatran Electronics Corp., Dept. ED, 178 Herricks Road, Mineola, N.Y

Servo Mofor

Size 5 precision serto motor tupe 5351.01 is 1 in . long, weighs 0.7 oz. and has 0.12 oz-in. torgue at stall. Operating temperature range is -5.5 to +125 C . Motor has 47,000 rads per sec' $^{\prime}$ torque-to-inertia ratio. No-load speed is $9,500 \mathrm{rpm} \mathrm{min}$. Power required is 26 v at $400 \mathrm{cps}, 1.7 \mathrm{w}$ at stall.
John Oster Manufacturing Co., Avionic Div., Dept. F.D. Racine, Wis.

Miniature Relays

477

Rotary and time-delay relays are available in volume of less than $1 / 3$ cu in . The solid-state time-delay relay TD- 181 operates on 21 to 30 vdc ; delays range from 100 msec to 10 sec , with accuracy to $\pm 10 \%$. Single-pole, normally open contacts are rated at $150 \mathrm{ma}, 30 \mathrm{v}$. The M 200 rotary unit has 2 pdt contacts rated at 2 amp resistive, I amp inductive, 26.5 v de or $115 \mathrm{v}, 400 \mathrm{cps}$. Operate time is 0.005 sec max. Weight is 0.6 oz . The two units combine to form a 2 pdt timing relay. Environmental tests are met.

Leach Corp., Controls Div., Dept. ED, Azusa, Calif. Availability: 4 weeks

CIRCIE 96 ON READER-SERVICE CARD $>$

New Improved CBS PNP Power Transistors 0
 2N538(A) • 2N539(A) • 2N540(A) FEATURE MORE POWER, LESS WEIGHT, LESS SPACE

The CBS 2N538(A), 2N539(A) and 2N540(A) have a maximum dissipation of 30 watts at a base mounting temperature of 25 deg. Centigrade. Yet, each transistor weighs less than 5 grams and requires only $1 / 3$ square inch of chassis space.

Compact and rugged, these hermetically-sealed CBS PNP Germanium Power Transistors are ideal for military and industrial power applications demanding high reliability. They are especially suited for servo motor controls, power amplifiers, converters, power supply regulators and low-speed power switches.
Note the major characteristics and advantages. Call or write today for complete technical data and delivery information from your local sales office or Manufacturer's Warehousing Distributor.

ELECTRICAL CHARACTERISTICS

Prpe	Max.	$\operatorname{ming}_{\substack{\text { Mici. } \\(d=1)}}$					$\left\lvert\, \begin{aligned} & \left(10=G_{i}(\text { minos }\right. \\ & \text { min. } \end{aligned}\right.$	
2N538	-80	-55	20	50	1.33	3.33		
2N538A	-80	-55	20	50	1.33	3.33	17.5	52
2N538	-80	-55	30	75	1.00	2.50		
2N539A	-80	-55	30	75	1.00	2.50	35	105
2NS40	-80	-55	45	113	0.75	1.88		
2N540A	-80	-55	45	113	0.75	1.88	71	213

CBS semiconductors

More Reliable Products through Advanced Engineering
CUS PNP Power Transistors with an im. proved industrial male package offer:

- Single, sturdy 8.32 mounting stud
- Matched glass-to-metal seal for greater mechanical strength and resistance to thermal shock
- Rugged welded construction through the selection of matched materials having excellent welding properties
- Typical leakage three to five times lower than specification limits.
- High dissıpation with minimum size
- High collector-to-base voltage
- High collector-emitter breakdown
- Wide range of operating and storage temperatures

CBS ELECTRONICS, Semiconductor Operations, Lowell, Massachusetts A Division of Columbia Broadcasting System, Inc. - Semiconductors • tubes • audio components • microelectronics Sales Offices: Lowell, Mass., 900 Chelmsford St., GLenview 2-8961 • Newark, N. J., 231 Johnson Ave., TAlbert 4-2450 Melrose Park, Ill., 1990 N. Mannheim Rd., EStebrook 9-2100 • Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9081 Toronto, Ont., Canadian General Electric Co., Ltd., LEnnox 4-6311.

Link Division of General Precision, Inc. specified ITT capacitors for this vital portion of its Tracer Identification and Control System, which demands utmost reliability and long life expectancy from every component.

TOTAL PROCESS CONTROL AND DISCIPLINED PRODUCTION DELIVER

HIGH-RELIABILITY WET-ANODE TANTALUM CAPACITORS FROM ITT

ITT wet-anode tantalum capacitors meet MIL-C-3965B-a fact proved by independent laboratory qualifications tests on ITT capacitors. The reliability and long life expectancy of these competitively-priced capacitors are direct results of ITT's total process control and disciplined production procedures, above and beyond testing standards more stringent than normal industry practice-and backed by ITT's world-wide facilities and experience.

COMPDMEMTS DIVISIOM

Phone these ITT-CD Capacitor Sales Olfices

Albequerque	ax 9.0013	Les Aageles	MI 0.6325
sorton	CA 7.2980	miami	M14.3311
Chicoge	SP 7.2250	Minneapolis	WE 9-0.57
Clevoland	CR 5.3080	New Yerk	10 5-1820
Dallas	EM 1.1765	Philadelphia	TR 0.3737
Dayten	. 4 A 8.5493	Preaniz	WH 5.2481
Denver	. KE 4-5091	Rochaster	F1 2-1413
Detroit	. 108.3322	San francisco	LY 1.7321
Fert Wayne	Ma 0641	Seatlie	ma 2.5433
Mansas City	If 1.5335	98. Lewis	EV 2-3500

IN STOCK AT ITT DISTRIBUTORS:

- two types - M-Type and P-Type, for applications from - 55 to 85 and 125 C . respectively
- 29 values - from 1.75 to 330 mids over a working voltage range to 125 VDC and maximum surge voltages to 140 VDC
- compact and rucged-sintered tantalum slug in fine-silver cases for 2000 -hour life at maximum temperature and working voltage
- guaranteed - to $80,000 \mathrm{ft}$. and accelerations of 20 G 's with a 0.1 in . excursion in $50-2000 \mathrm{cps}$ range
- long storace life-tantalum-oxide dielectric is completely stable; assures trouble-free operation
COMPLETE SPECIFICATIONS ON ITT wet- and solid-anode tantalum capacitors are available on request. Write on your letterhead, please, to the address below.

ENGINEERS: Your ITT representative has a complete set of qualifications and quality control tests for your inspection.

NEW PRODUCTS

J-W Resistor

Vitreous-enameled, wirebound 1-w resistors are made in axial-lead configuration. Length is $9 / 16 \mathrm{in}$. max, diameter $1 / 8 \mathrm{in}$. max. The resistor shows stability under constant full load, low noise, long life and good overload capability. Resistance range is 1 to 6,000 ohms, tolerance $\pm 5 \%$.

Ohmite Manufacturing Co., Dept. ED, 3657 Howard St., Skokie, IIl.

Coaxial Latching Relay

Magnetic latch assembly and balanced rotary armature provide positive latching action in a compact coaxial Jatching relay. Size is $2-1 / 8$, $1-1 / 2 \times 0.86 \mathrm{in}$., weight 5.5 oz . Environmental specifications are met. The pulse-operated relay has a low standing-wave ratio. Armature travel is 0.040 in .

Electro-Actuators Div., Omega Precision, Inc., Dept. ED, 757 N. Coney Ave., Azusa, Calif
P\&A: On request; 6 to 8 weeks.

Voltage-To-Frequency
 472

Converter

Solid-state voltage-to-frequency converter develops output frequency pro-
\& Circle 97 ON reader-service card
portional to the input voltage. Used with a standard frequency counter, the device measures de voltage to 0.1% accuracy. Four-decade voltage ranges cover 0 to $\mathbf{1 k v} \mathrm{dc}$, positive or negative. Sawtooth output wave amplitude is 3 v rms.

Lome Electronics, Inc., Dept. ED. 8526 N. New Braunfels. San Antonio 9, Tex.
Price: $\$ 3.9 .5$.

Radiation Instruments

Four chassis comprise the Logic 801 system for measuring radioactivity. Preamplifier accepts pulses from Geiger, scintillation, or proportional detectors and provides gain of 1 or 20 . High-voltage supply is continuously variable, with positive output from 350 to $5,000 \mathrm{v}$ and negative output from 350 to $1,500 \mathrm{v}$. The 6 -digit scaler has a resolution of $1 \mu \mathrm{sec}$. Timer chassis records duration of count or provides preset stop; drift is 1 ppm per week max.
Nuclear-Chicago Corp., Dept. ED, 3.59 E. Howard Ave., Des Plaines, III.

Magnetic Tester

 471

Automatic tracing of flux density vs magnetic force curves is done by the Ferrotracer. Used with an X-Y recorder, the unit makes a permanent record of the core under test in less than 60 sec. Magnetic values can be read directly in kilogauss and oersteds. The solid-state tester has over-all accuracies of $\pm 2 \%$.
Lumen, Inc., Dept. ED, P. O. Box 90.5 , Joliet, 111 . P\&A: $\$ 1,575,60 \mathrm{cms} ; \$ 2,300,400$ eps; 14 weeks.

SPECTROL SOLVES EQUATIONS LIKE THIS...

to design non-linear potentiometers -faster, more accurately

The above equation is the mathematical - expression for the non-linear function required of a precision pot to relate voltage ratio $\frac{e_{0}}{E_{1}} \begin{gathered}\text { to potentiometer shaft } \\ \text { position } 0 .\end{gathered}$

This is a typical non-linear problem applied to Spectrol's new 1BM 1620 digital computer ... equipment which eliminates days of design time. provides errorfree results and makes it possible for Spectrol to issue free results and makes it possible for Spectrol to issue
quotations a day or two after receiving your request. quotations a day or two after receiving your request.
For the past three years Spectrol-and only Spectrolhas used this technique
Basically, it works this way: Computer input data is in the form of programmed equations or tabulated X and Y coordinates. Previously programmed tapes with general equations for non-linear applications (on file general equations for non-linear applications (on file
at Spectrol) operate on the data. to compute output in terms of winding equipment settings, cam angles

03366110312900001 $03378 \quad 260339603952$ 03390160000000070 03402430331800000 03414110395200002 03426260344403952 03438160000000090 03450260348003952 03462260348503957 03474250000000000 03486110395700001 03498140395703137 0351047,0341401100 $03522 \div 40354603137$ 03534150387600002 03546420000000000 $0355813031290000{ }^{2}$ 03570220395200099 03582260360003952 03594160000000070 03606260363603952 $036182603641 \quad 03957$ 03630250000000000 03642110395200002 03654110395700001 $036661403957 \quad 83137$ 03678470377401100 03690140395203855

for reliability

specify

RIBBON CABLES INSULATED WITH TEFLON

- REQUIRES LESS SPACE
- lighter in weight
- GREATER HOOKUP fLEXIBILITY

Precise separation-distance between conductors can be varied to provide a dependable set of circuit constants. Cables are available in any combination of conductors and wire sizes including shielded and coaxial constructions . . . and with Teflon insulations that RESIST ABRASION (Type AR) . . RESIST CORONA STRESS (Type CR)-or in combinations of both.
harnesses using multi-tet cables
CAN BE MADE TO YOUR SPECIFICATION
Another example of .
Advanced Technology in Fluorocarbon Products

W.L. GORE \& ASSOCIATES, INC. 555 PAPER MILL ROAD NEWARK, DELAWARE ENOICOTT 8 9183

CIRCLE 99 ON READER-SERVICE CARD

MINIATURE Electrolytic CAPACITORS

- Wide range of copacitios and voltages.
- Stable, how leakage, high tomperature charectoristics.
- Rugged, excollont under severest operating conditions.
- Non-polarized rypes available for audio, eross-over, and other AC applications.

"Formane monutocturers of turectice Capocilore for almont 20 years"

[^4]
NEW PRODUCTS

Pulse Generators

Modular subsystems are combined as required to form pulse- and time-delay generating equipment. A wide range of repetition rates, delays, and pulse widths are possible through use of rate, delay, width, pulse-forming, and power supply packages. The model B-9 systems use accurate, largely transistorized circuitry.
Rutherford Electronics Co., Dept. ED, 8944 Lindblade St., Culver City, Calif.

Four-Terminal Clips

Designed for rapid, low-resistance, high-accuracy measurements using four-terminal techniques, model ESI Kelvin Klips are constructed of beryllium copper with gold plating. The units may be used with any bridge employing Kelvin circuits and the fourterminal method.

Electro Scientific Industries, Inc., Dept. ED, 7524 S. IV. Macadam Ave., Portland 19, Ore.

Encapsulated Inductances

For printed wiring applications, the J302 series of miniature encapsulated inductances range in value from 10 mh to $22 \mu \mathrm{~h}$ with $\pm 5 \%$ tolerance. Maximum dc current rating is 60 ma to 1.21 amp . The units are wound with high-temperature wire and encapsulated in epoxy for -55 to +125 C ambient temperature operation. Lead spacing is 0.2 in .
James Millen Manufacturing Co., Inc., Dept. ED, Malden, Mass.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

464

- GROUND SUPPORT
- COMPUTERS
-TEST EQUIPMENT
MID-EASTERN
SC SERIES
TRANSISTORIZED
POWER SUPPLIES
- Migh Power - Small Package
- No External Heat Sint Required
- Completely Iransistorized, Iramsient free
- Designed for Maintainability
- Steck Delivery
- 0.05\% Regulation, 1 wv Ripple
- Sealed Case, Gold Anadized

8 MODELS $\$ 149.00$ each

Order directly from Mid-Eastern or Irom our representative in your area (see EEM catalod).

MID-EASTERN ELECTRONICS, INC.

32 COMMERCE STREET SPRINGFIELD, NEW JERSEY CIRCLE 101 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961

Ampex data recorders on the newly announced lease program can help you in two ways. Leasing lets you pay for the use of your data recorder only as you need it.
Through installment purchases. you are investing in your Ampex data recorder while it works for you.
Either way, pressure on your working capital is reduced to the minimum. Complete program details and equipment specifications from:

AMPEX

ampex insthumentation products co. Box 5000 Redwood Cily. Calilornia

Thermosetting Tape

Pressure-sensitive, thermosetting resin adhesive in glass cloth tape No. 7020 cures in $1 / 2$ hour at 350 F. Tape operates at Class B temperatures. Other features are high tack, high initial adhesion, and excellent resistance to solvents, abrasion, aging, and chemicals.

Mystik Adhesive Products, Inc., Dept. ED. 26635 N. Kildare Ave., Chicago 39, Ill.

P\&A: $\$ 7.94$ to $\$ 6.35$ per roll, I in. $x 60$ yd; stock.

Daia Plotter

452

For analog as well as digital inputs, series 3100 dataplotter provides accuracies up to 0.175% of full scale on $11 \times 17 \mathrm{in}$. plots. Plotting speeds are up to 80 points per min. It is equipped with transistorized control circuitry, provisions for "off-board" origin, and is able to accept punched card, tape or keyboard input.

Electronic Assoxiates. Inc., Dept. ED, Long Branch, N.J.

Operational Amplifier

Octal-base, plug-in, operational dc amplifier model $\mathrm{C} / 100 / \mathrm{B}$ is for analog computer and instrument applications. Specifications are: gain, 30,000 de open loop; output, 3 ma over $\pm 100 \mathrm{v} \mathrm{dc}$; bandwidth, over 400 kc with 0.6 -usec risetime as unity inverter.
Embree Electronics Corp., Dept. ED, 993 Farmington Ave., West Hartford 7, Conn. $\boldsymbol{P} \mathcal{A} \boldsymbol{A}: \$ 25$ in 110.5 quantities; 10 days.

CIRCLE 103 ON READER-SERVICE CARD \rightarrow

precision

RED/LINE

 fiming relays "Pay Off"!The design engineers at Victor's Electric-Car Division sought a way of making their Dyna-Powered Maintenance Truck accelerate automatically and smoothly through the three forward speeds. The answer: Two G-V Red/Line Thermal Relays, each providing a twosecond delay between steps. This assures smooth, even acceleration every time. A third Red/Line Relay shuts off the dynamic brake after a fixed time interval, conserving battery power. So, at Victor, G-V Red/Line Timing Relays are "paying off".

More and more companies are finding the reliable performance of G-V Red/Line Timing Relays makes them best for their products. G.V Red/Line Relays will "pay off"' in your product, too. Your customers appreciate the importance of high quality, reliable components. G-V Red/Line Timing Relays are specially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use.

Your G-V distributor has them in stock now. Call him or write for Bulletin 131 today.

G-V CONTROLS INC. Livingston, New Jersey

New B/A model NC-1 performs transistor tests up to

50 amps at peak power levels!

- Minimizes heat sink requirements.
- Under optimum conditions, requires only 6 10ths of 1% of the input power used in conventional DC current tests. - Permits 750 watts max. power with max. current of 50A or max. voltage of 250V.
- Provides DC meter readings of V_{aE}, $I_{B}, V_{c r}$ and $I_{c}-$ common emitter configuration under pulse conditions.
- Measures leakage currents and $I_{c o}$ and I.o by standard techniques.
- Allows breakdown measurements to be performed under variable bias conditions.
- Evaluates switching capabilities of device under dynamic conditions

Here's the only direct reading, variable duty cycle test set for non-destructive messurement of medium and high-power transistors. The B A Model NC-1 applies suitable pulse drive signals to the transistor under test and then peak detects the resulting current pulses at the same measuring value as steady state DC. Because the average pulse signal power is considerably lower than that of steady state DC, less stress is put on the transistor. This permits power tests to be made at a level many times that of rated device dissipation. Write today for additional information and name of your nearby Baird-Atomic representative.
Engıneers and scıentists - investigate challengin@ opportunities with Baird-Atomic.

GAIRD-ATOMIC,INC.
.3.3 unitersit? road cambridge 38 . mass.

NEW PRODUCTS

Digital Converter

Used with pointer instruments, digital converter provides input data for digital computers or control systems. Photoelectric scanner operates at up to 10 scans per sec. An electronic unit houses circuitry and display. Typical accuracy is 0.1 ± 1 count, resolution 1 part per 1,000 .
MacLeod Instrument Corp., Dept. ED, 4250 N.W. 10th Ave., Fort Lauderdale, Fla.
DC Amplifier
A chopper-stabilized vacuum tube type, type 98 dc amplifier completely isolates the recorder from the signal source. Designed for use with the firm's IMA or 100 -ua recorders, it will increase sensitivity up to 10 times. Input resistance is 1 megohm; accuracy and linearity are 0.1\%; drift is less than 0.5\%.

Rustrak Instrument Co., Inc., Dept. ED, 130 Silver St., Manchester, N. H. Price: $\$ 109.50$.

Static Converters

441

Rated at $100 \mathbf{w}$, dc-to-dc static converters type CN are designed to withstand shock and vibration. Input is 6 , $12,18,24$, or 28 v dc with an allowable variation of $\pm 20 \%$. Output voltages are $600,300,150$ and 100 vdc at 100 w . Ripple is less than 0.5% rms. Units are potted in MIL-T-27A transformer cans; transistors are accessible for service.

PRL Electronics, Inc., Dept. ED, 232 Westcott Drive, Rahway, N. J. P\&A: $\$ 70.00$ to $\$ 81.25$; delivery from stock.
< CIRCLE 104 ON READER-SERVICE CARD

Rack Blower
470

Two-speed blower for electronic racks is designed to provide greater air turbulence over the entire rack inter ior. Output of the $19-$ in unit is 500 cfm. Various rack depths are available Washable filter can be serviced with out removing the blower
McLean Engineering Laboratorics Dept. ED. Princeton, N. J.

Soldering Instrument

Twin heating elements in this tweezer soldering instrument develop 572 F temperature at the $1 / 32$ in tips. Used with low-temperature solders, the instrument weighs 1 oz , is B in. long, and operates on 6 v dc Oryx Co., Dept. ED, 13804 Ventura Blvd., Sherman Oaks, Calif.
Price d. Availability: \$14.9.5; immed iate.

Post-IF Amplifiers

Military requirements of temperature and service life are met by post-if amplifiers A 106-108. The silicontransistor units have center frequencies of 30,45 , or 60 mc . Gain is 60 db , bandwidth 9 mc . The amplifiers are capable of -125 C operation, with storage to +1.50 C .

Orion Electronic Corp., Dept. ED, 108 Columbus Ave., Tuckahoe, N. Y. P\&A: \$550 ea, 1 to 9; 2 to 4 weeks.

CIRCIE 105 ON READER-SERVICE CARD

Mach 5...Mach 10...and Beyond

STEVENS Certified THERMOSTATS

Up where the "wild blue yonder" becomes inky black, you can't afford to gamble on precise, reliable temperature control. And that's the natural domain of Stevens Thermostats. They are compact and lightweight... withstand high G’s...are utterly reliable even under wide temperature swings. For Stevens Thermostats are a product of creative engineering. . . coupled with the most stringent environ mental testing and quality control programs in the industry. If space is your dimension, take the measure of Stevens Thermostats first.

2° to $6^{\circ} \mathrm{F}$ Differential Standard
 Γ° to $4^{\circ} \mathrm{F}$ Differential Special

*Maximum spread of $6^{\circ} \mathrm{F}$ including differential

[^5]
MII type rectifiers from General Ilectic

The industry's IRST MII type Medium Current Silicon Recififiers...

13

Trpe	MIL Spee	$\begin{aligned} & \text { Max } \\ & \text { Single Phose } \\ & \text { PRV (voliss) } \end{aligned}$	Mox. Single Phase loc @ Tomp.
USA IN2498	MIL-S.19500/134	125	20 A @ $150^{\circ} \mathrm{C}$ cas-
USA IN2508	MIL-S.19500/134	250	20 A @ $150^{\circ} \mathrm{C}$ case
USA IN2I35A	MIL-S.19500/134	500	$20 \mathrm{~A} @ 150^{\circ} \mathrm{C}$ case

The industry's EIRSI MII type Silicon Controlled Rectifiers...

Type	MIL Spee	$\begin{gathered} \text { Max. } \\ \text { Single Phase } \\ \text { PRV (volis) } \end{gathered}$	Max, Single Phase loc @ Temp.
USN 2NG81	MIL-S.19500, 108	25	$25 A$ © $57^{\circ} \mathrm{C}$ Stud
USN 2NGE2	MIL-S-19500/108	50	25 A @ $57^{\circ} \mathrm{C}$ Stud
USN 2N683	MIL-S.19500/108	100	25 A @ $57^{\circ} \mathrm{C}$ Stud
USN 2NG64	MIL.S-19500/108	150	25 A @ $57^{\circ} \mathrm{C}$ Stud
USN 2N685	MIL-S-19500/108	200	25 A @ $57{ }^{\circ} \mathrm{C}$ Stud
USN 2N686	MIL-S.19500/108	250	25 A @ $57^{\circ} \mathrm{C}$ Stud
USN 2N687	MIL-S-19500 108	300	$25 \mathrm{~A} @ 57^{\circ} \mathrm{C}$ Stud
USN 2NGEE	MIL-S.19500/108	400	25 A @ $57^{\circ} \mathrm{C}$ Stud

and a complete line of Low Current Rectifiers...

Trpe	Mil Spoe	Max. Single Phase PRV (volts)	Max. Single Phase loc © Tomp.
Germanium			
USN IN93	MIL.E-1/895B	300	75 mo @ $55^{\circ} \mathrm{C}$
USAF IN315	MILE- $/ 1088$	100	100 ma @ $85^{\circ} \mathrm{C}$
Silicon			
JAN IN253	MIL-E-I/1024A	100	1A @ $135^{\circ} \mathrm{C}$ case
JAN IN254	M LLE 1/9898	200	400 mo @ $135^{\circ} \mathrm{C}$ case
JAN IN255	MIL--1/990B	400	400 mo @ $135^{\circ} \mathrm{C}$ case
JAN IN256	MILE-1 9918	600	200 mo @ $135^{\circ} \mathrm{C}$ cas*
JAN INS38	MILEEI/1084A	240	250 mo © $150^{\circ} \mathrm{Camb}$.
USAF INS38	MIL-E-1/1089	200	250 ma @ $150^{\circ} \mathrm{Camb}$.
JAN INS40	MIL-E. $/$ / 1085A	480	250 ma @ $150^{\circ} \mathrm{C} \mathrm{amb}$.
USAF INS40	MIL-E-1/1089	400	250 ma @ $150^{\circ} \mathrm{Camb}$.
JAN INS47	MIL-E. $/ 1083 A$	720	$250 \mathrm{ma} @ 150^{\circ} \mathrm{Camb}$.
USAF INSA7	MIL-E-1/1089	600	$250 \mathrm{ma} @ 150^{\circ} \mathrm{Comb}$.

For complere information coll your Semic anductor Disiric Sales Manager or write to Rectifier Components Department Section 23D12, General Electric Company, Auburn, Now York. In Canada: Canadian General Electric, 189 Dufferin St. Toranto, Ont. Export: International General Electric, 150 East 42nd Street, Now York 17, N. Y.

For Factory-Low Prices on Selenium, Germanium and Silicon Rectifiers in Quantities up to 999 Call Your Local G-E Somiconductor Distributor.

GENERAL ELECTRIC

Hermetically sealed connectors type EHMM will mate with all standard corresponding plastic connectors having socket contacts. Bodies and pins are sealed with glass for reliability which meets or exceeds MIL-C-8384. Current rating is 3 amp ; voltage breakdown is 1.200 v rms at sea level.
Escon, Inc.. Dept. ED, 3.35 Branch Ave.. Providence, R.I.

Metallized Glass

A metallized surface for soldering makes this glass suitable for applications in hermetically sealed units where it is desired to view the operation of components. Details of the process for assembly and design of suitable apertures are available.
Electro-Seal Corp.. Dept. ED, 9ł6-A North Ave., Des Plaines, Ill.

Bobbin Resistor

Mechanical strength is said to be greatly increased in precision resistors through strain-free bobbin construction. Made in sizes $1 / 4 \times 1 / 4 \times 1 / 8 \mathrm{in}$. (No. 20 lead wire) and $3 / 16 \times 3 / 16 \times 1 / 8 \mathrm{in}$. (No. 22 lead wire), the units operate in temperatures from -65 to +125 C . Environmental specifications are met. Rating is $1.50 \mathrm{v}, 1 / 8 \mathrm{w}$.

National Resistance Corp., Dept. EI). Pearl River, N. Y.

Don't miss an issue of ELECTRONIC
DESIGN; Return your renewal card.

A quadruple unit, for memory or data storage functions in pulse logic systems, this flip-flop circuit module has an operating frequency of 9 to 250 kc . Specifications are: input, 6 to 9 v ; rise time for input, 0.1 to $1.0 \mu \mathrm{sec} ;$ rise time for output, 0.2 to $1.0 \mu \mathrm{sec}$. Two modes of operation are possible: reset-set and trigger.

Electro-Logic Corp.. Dept. ED, 515 Boccaccio Ave., Venice, Calif.
$P \& A: \$ 65$ for 1 to 100 quantities; two weeks.

Rack Cabinet

Designed for maximum flexibility, model FT-192-A standardized electronic rack cabinet has adjustable channels to facilitate mounting slides or chassis. It has a completely adjustable ventilating system for cooling electronic equipment. Height is 77 in ., depth and width are 24 in .

Falstrom Co., Dept. ED, 185 Falstrom Court, Passaic, N.J.

Tantalum Capacitors

Designed for polar operation, in low-voltage transistorized circuits, the Faratan series is a tantalum solid-electrolyte type. Each unit undergoes a $250-\mathrm{hr}$ life test at rated voltage at 85 C . They are available in two sizes: case A, 0.125 in . diam $\times 0.250 \mathrm{in}$. length; case B, 0.175 in . in diameter $\times 0.438 \mathrm{in}$. length.

Faradyne Electronics Corp., Dept. ED, 471 Courtlandt St., Belleville, N.J.

NEW DEPARTURES IN MINIATURE

HOW TO GIVE ON-THE-NOSE GUIDANCE TO MODERN "FISH" UNIQUE N/D LINEAR MOTION BEARING FREES GYRO CAGING ACTION

The bearing illustrated is an N/D linear motion precision instrument ball bearing. It was specially designed and built to help solve a critical problem in the guidance system of a high speed anti-submarine torpedo.
PROBLEM : Loss of accuracy in torpedo's guidance system due to hang-up of caging arm in gyro assembly.
SOLUTION: N/D Sales Engineer, in cooperation with manufacturer, found that wear of bushing on caging arm caused hang-up, delaying guidance activation. N/D Engineers set to work to design and build an instrument bearing that operates virtually frictionfree. The result: Preservation of the guidance system's pin-point accuracy and reliability. Should you require ball bearing design information, invite the local N/D Sales Engineer to participate in your early design discussions. He represents one of the industry's largest engineering staffs devoted exclusively to the design and development of miniature and instrument ball bearings. Or, write for new Miniature and Instrument Ball Bearing Catalog, Department L.S., New Departure, Division of General Motors Corporation, Bristol, Connecticut.

This special N/D linear motion instrument ball bearing increased guidance reliability of ASTOR torpedo weapon system developed by Westinghouse.

NEW
 MINIATURE AND INSTRUMENT BALL BEARINGS
 -

 CIRCLE 107 ON READER-SERVICE CAROYou can put $1 / 2$ TON on this slide

New Heavy-Duty Slide from Chassis-Trak

Now you can rack-mount your heaviest electronic gear, yet keep it readily accessible for checking and servicing. A new heavy-duty Circulating Ball Slide, developed by Chassis-Trak, will easily support equipment in the 1000 lb . range, ceen under extreme shock and cibration conditions. Secret of the slide's strength is its Circulating Ball design (sec phantom view above). Weight is distributed evenly over the balls which rotate in the direction of the pull, resulting in easy sliding action.

The new Circulating Ball Slide is permanently dry-lubricated with Poxylube 75, a bonded molybdenum disulfide film which assures smooth operation for the life of the slide. Easily assembled with standard hardware, the slide is available in lengths from $16^{\prime \prime}$ to $24^{\prime \prime}$ in two-inch increments and in lengths up to 60" in six-inch increments. Each track is ouly $1^{1 / \prime \prime \prime}$ wide and $3^{\prime \prime}$ high, requiring much less chassis space than other slides in this heavy-duty range.

Get full details on the new CB Slide today.
for further informiation contact:
525 South Webster Ave., Indianapolis, Indiana
 CIRCLE 108 ON READER-SERVICE CARD

NEW PRODUCTS

Force Gage

Three force transducers are incorporated in the same plane in the model 2106 force gage to accurately simulate point force loading. Sensitivity of 7 peak mv per peak lb is obtained. The entire top and bottom surfaces are load-bearing members with stiffness of $2 \times 10^{2} \mathrm{lb}$ per in.
Endevco Corp., Dept. ED, 161 E. California Blvd., Pasadena, Calif.
Price: \$42.5.

Switch Ligh

Rebuilding and modification of the Twist Lite may be done without special tools. Switches include 2 pdt and 4 pdt momentary action, 2pdt alternate action, and magnetic holding. Display area may be split horizontally or vertically. Unit accepts 4 bulbs at 28,12 or 6 v . Designed for military or commercial application, the unit meets military requirements. Master Specialties Co., Dept. ED, 9.56 E. 108th St., Los Angeles 59, Calif.

Film Capacitors

CANT PAT

Designed for rapid insertion in printed-circuit boards, series F207 capacitors have right-angle leads. These double-dipped, Mylar film capacitors are available in capacities of 0.01 through 1.0μ f, with ratings of 200,400 and 600 v dc .
John E. Fast and Co., Dept. ED, 3598 N. Elston Ave., Chicago 18, III.

This is the time of our annual subscription renewal; Return your card to us.

467

EXCITATION:

115-VOLTS...400.CYCLES...FOR BOTH MOTOR AND GENERATOR
Now, n Size 8 servomotor-generator with both motor and generator wound for 115 -volt, 400 -cycle supplies. It's beckman Model 9008-1106-0, ready now to help cut costs in your systemaid in achieving greater reliability and economy.
Generator specs show an output of 0.30 volts per $1,000 \mathrm{rpm}$, phase shift is $0^{\circ} \pm 10^{\circ}$. The servomotor turns $6,000 \mathrm{rpm}$, no-load speed, its stall torque is 0.33 oz . in., and acceleration at stall is $70.700 \mathrm{rad} / \mathrm{sec}^{2}$. Iength of this motor-generator complete is 1.850° and maximum weight is 2.6 ounces.

For complete facts on beckman Model 9008-1106-0, contact your nearest Helipot Sales Representative, or write directly to us.

Helipot Division of
Beckman Instruments. Inc Fullerton, California

CIRCLE 109 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961

A wide range of crystals is accommodated by the RD- 135 mercury thermal switch crystal oven. Useful in low-frequency applications, oven takes crystals up to $1-3 / 8 \mathrm{in}$. long. Temperature control is $\pm 0.005 \mathrm{C}$ at fixed room ambient, and $\pm 0.025 \mathrm{C}$ from 0 to 60 C . Weight is 7 oz , size $5-3 / 18$ by $1-3 / 4 \mathrm{in}$. OD. Unit meets military shock and vibration tests.
Manson Laboratories. Inc., Dept ED, Stamford, Conn.

Foot Switch

Positive control of reversible operations is provided by the Clipper twin foot switch. Each of the switches has momentary contact for spdt circuits rated at $20 \mathrm{amp}, 125-250 \mathrm{v} \mathrm{ac}$, and $1 \mathrm{hp}, 115-230 \mathrm{v}$ ac. Only one external power cable is used. Variations include maintained contact or dpdt in momentary or maintained contact, one or both sides.

Linemaster Switch Corp., Dept. ED, 432 Woodstock Terrace, Wood. stock, Conn.

Magnetic Drum

Contact read/write heads in mag netic storage drums provide large capacity, nonambiguous storage of digital data. Surface air movement separates the heads from drum surface at operating speed. Write current is low, with $300-\mathrm{mv}$ signal amplitude. A $1-v$ read signal is obtainable.
Computer Systems Laboratory, Litton Systems Inc., Dept. ED, 5500 Canoga Ave., Woodland Hills, Calif.

CIRCLE 110 ON READER-SERVICE CARD $>$

I

YOU'RE THE CIRCUIT JUDGE...

SPERRY SEMICONDUCTOR DIVISION
of
SPERRY RAND CORPORATION NORWALK, CONNECTICUT

... and it's up to us to present the facts.

Here's evidence on Sperry's PNP alloy junction silicon transistors:

1. All units are baked af $200^{\circ} \mathrm{C}$ for 200 hours and each device is doubly tested for a perfect hermetic seal - through a $150^{\circ} \mathrm{C}$ hot oil check and a separate hydrostatic test at 100 psi.
2. Sixiy-three QC checks are performed before and during mechanized manufacture.
3. Our newly-built 65,000 square foot facility in Norwalk, Connecticut incorporates the latest techniques to produce the quality and quantity you require
4. We offer you a wide variety of PNP types from which to choose.

May we have your verdict?

MICRO-STRESS IMSTRUMENTATION

Orders of Magnitude More Sensitive

 SEMICONDUCTOR STRAIN GAGE MICRO-SENSOR MS 105-350For Application to: Structurnal Members. Transíucer Sonsors FEATURING

- Sensitivity - gage factor 130
- Easily bonaed to all types of surfaces for military, industrial, and space applications
- Integral terminal construction
- Superior signal-to-noise ratio
- Resistance - 350
- Size: Element-5/8" $\times .020^{\prime \prime} \quad$ Complete Gage - $1^{\prime \prime} \times 1 / 2^{\prime \prime}$
- Radius of Curvature - $1 / 2^{\prime \prime}$
- Maximum Operating Strain-over 3000 microstrain

Immediately available -
ADDITIONAL INFORMATION ON REQUEST

incorporateo

CIRCLE II ON READER-SERVICE CARD

with POWER to spare...

sealed cells
 VENTED CE NICAD
NEW Nickel Cadmium Rechargeable Batteries

SEALED CELLS
Hermetic and rechargeable, boasting excepbatteries are always ready to operate in any position-with power to spare-cven under adverse operating

NICAD DIVISION
Gould-National Batteries, Inc.
SL. Paul I, Minnesola

CIRCLE 113 ON READER-SERVICE CARD

NEW PRODUCTS

Power Rheostat

Enclosed, dustproof power rheostat is readily adaptable to any linkage for either manual or automatic operation. Design allows operation at full power rating with as little as 25% of the winding in use. The unit is available with standard or tapered windings in ratings of 100,200 and 300 w . Center tap is optional
Milwaukee Resistor Co.. Dept. ED. 800 W . Virginia St., Milwankee 4, Wis.

Thermistor Probe

Made of stainless steel, this 27 -gage hypodermic needle will accommodate a variety of thermistors and is useful as a fast time-constant temperature probe. It has a diameter of 0.022 in .
Fenwal Electronics, Inc., Dept. ED. 51 Mellen St., Framingham, Mass.

Ratiometer

A Give-digit de/de digital ratiometer, type 3500 CR has a ratio range of 0.00000 to 0.99999 . Average balance time is 2 sec . $A_{11} 80-\mathrm{db}$ input filter allows the instrument to operate in the presence of a 10,000 to 1 noise-to-signal ratio. The unit consists of a power module and as switch module.
Electro Instruments Inc., Dept. ED. 8611 Balboa Ave., San Diego 11, Calif.

Epoxy Resins

Class H, single-component epoxy resins sustain continuous temperatures of 180 C . Made for impreg-
nating, potting and casting, the resins have long pot life and low viscosity during cure. Type ER 4251 is clear and unfilled, ER 4287 is opaque and filled. Flexibility allows thermal cycling.
Permacel, Dept. ED. New Brunswick, N. J.

Servo Amplifie

In a volume of 1 cu in ., the model 1035 servo amplifier can drive a $40-4,2$-phase servo motor up to $3-1 / 2 \mathrm{w}$ input. The amplifier weighs 1 oz , uses silicon transistors, and operates at 400 cps . Tem perature range is -55 to +125 C .
Melcor Electronics Corp., Dept. ED, 48 Toledo St., South Farmingdale, L. I., N. Y
PL゙A: $\$ 190$ to $\$ 200$, sample quantities; 30 days

Tachometer Pickup

Explosionproof magnetic tachometer pickup model 2040 produces high-amplitude, low-moxlulation sine wave signals proportional to speed. Standard frequencies are 60 or 120 impulses per revolution, adaptable to a range of 1 to 240 impulses per revolution. Speed range is 75 to $10,000 \mathrm{rpm}$; output is more than 1 v rms at 100 rpm . Weight is $2-1 / 2 \mathrm{lb}$
Electronic Div., Meriam Instrument Co., Dept. ED, 10920 Madison Ave., Cleveland 2, Ohio

Regenerative Divider

A 100 -kc output signal is provided from $1-\mathrm{mc}$ input by the RD)-126 regenerative divider. Output signal stability of the transistor unit is equal to that of the input. Amplitude of output is 1 v rms , impedance 50 ohms. Power required is $24 \mathrm{vdc} \pm 5 \%$ at 30 ma . The $6-\mathrm{oz}$ chassis measures $5-3 / 8 \mathrm{in}$. high, $4-1 / 4 \mathrm{in}$. wide, and $2-3 / 4 \mathrm{in}$. deep.

Manson Laboratories. Inc., Dept. ED, Stamford, Conn.

Have you sent us your subscription renewal form?

Motor meets specs with 70\% cut in weight and space...thanks to insulation of TEFLON

CAN YOU AFFORD NOT TO USE TEFLON?
Insulation of TEFLON resins is your logi cal and most economical choice when ever you encounter problems of corrosion . . heat . . . space or weight limitations Even when environmental conditions are not extreme, these most reliable of solid ucts to set the pace for dependable per formance.
In your next application involving wire cable or component insulation. it will pay you to evaluate the design improvements made possible by TEFLON resins, and the dollars-and-cents savings in installation service lifo they can afford you.

Space and weight were at a premium in this new motor, designed to drive a camera on a missile-tracking radar antenna. Requirements were for a synchronous motor, $1 ; 40 \mathrm{HP}$ at $8,000 \mathrm{rpm}$, to withstand $180^{\circ} \mathrm{C}$ for a min. mum of 2,000 hours life. Using conventional insulation (Class F), a unit 3 $1 / \mathrm{s}$ inches diameter weighing over 3 lbs would have been required. By using cell insulation of a Du Pont TEFLON TFE fluorocarbon resin, and magnet and lead wire insulated with TEFLON, the manufacturer is able to meet the specifications called for with a motor 2 inches in diameter weighing less than 1 lb .
The high insulating properties of TEFLON resins, coupled with their high resistance to temperature extremes, make possible the miniaturization of electrical and electronic equipment without sacrifice in performance. In addition, tough insulation of TEFLON is completely inert to virtually all chemicals, assuring maximum reliability under a variety of severe environmental conditions. With the advent of new melt-processible TEFLON FEP resins, the remarkable properties of TEFLON are now available in a variety of complex molded shapes and in long continuous wire insulation. For more information, write to: E. I. du Pont de Nemours \& Co. (Inc.), Dept. ED-426, Room 2526T, Nemours Bidg., Wilmington 98. Del. In Canada: Du Pont of Canada Ltd., P.O. Box 660, Montreal, Quebec.

$$
\begin{aligned}
& \text { TEFLON is Du Poni's registered srade- } \\
& \text { mark for its family of fluorocabon } \\
& \text { resins, including TFE (letrafluoroethyl- } \\
& \text { ene) resins and FEP (fluorinated ethyl- } \\
& \text { ene propylene) resing. }
\end{aligned}
$$

BETTER THINGS FOR

Erie Diffused Junction Silicon High-Conductance, General Purpose and Switching Diodes

$\tau_{\text {row }}$			Mx			
			03^{350}	-1800		B1900
	$\stackrel{3}{20}$	${ }_{10}^{\circ 0}$			$\stackrel{\text { coid }}{\substack{20}}$	
	-	${ }^{15}$			\cdots	

II SILICON HIGH-CONDUCTANCE DIODES

Type	MAXIMUM DPERATING vOLtage (volts)	maximum average FORWARD CURRENT (mA)		MAXIMUM FORWARD VOLTAGE DROP (c) 100 mA . $25^{\circ} \mathrm{C}$ (volts)	MAXIMUMInvERSE CURENT(μ A © volts)	
		$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
1 N 482	36	100	25	11	0.25 © 30	30 © 30
IN485A	180	200	50	1.0	0.025 © 175	15 © 175
IN488A	380	200	50	1.0	0.1 C380	25 © 380

Type		MINIMUM FORWARDCURRENT (mA)25 aSDeciniodVoltage	MAXIMUM REVERSE CURRENT af SPECIFIED VOLTAGE ($\mu \mathrm{A}$) volts)		reverse recovery	
					Reverse$\begin{gathered}\text { Resistance } \\ \text { (hilohms) }\end{gathered}$	MaximumRecoveryTime $(\mu \mathrm{sec})$
			(2) $25^{\circ} \mathrm{C}$	C $100^{\circ} \mathrm{C}$		
14663	100	100 © 1.0	5.0 © -75	50 © $0-75$	200	0.5
	30	10 © 1.0	1.0 © -20	30 e-20	200	05
1N796	60	100 © 1.0	5.0--50	30-50	100	0.5

IV SPECIALS

1. Matched diodes: tested to individual specifications.
. Assemblies: Series and parallel combinations with leads connected and encapsulated to customer specitications.
Note: Silicon diodes ate packated on reel packs for automated insertion or lead forming and cutting, or bulk packed.

Erie Diffused Junction Silicon, Epoxy Encapsulated Rectifiers

| Style |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Erie Gold Bond and Indiumples avalable Gormand direct reguest on your letterthead.

Soles offices in princigal cities of U.S.A. Canada. Europe
Erie Diodes are also available in quantities under 1,000 pieces from leading electronic distributors.
CIRCLE 115 ON READER-SERVICE CARD

Continuous duty, solid-slug tantalum ac capacitors are made for military and industrial applications. Ambient temperature range is -80 to +125 C. Case sizes range from 0.155 in . diameter and 0.600 in . length to 0.350 in . diameter and 1.600 in . length Capacitance range is $\mathbf{1 . 2}$ uf to $\mathbf{1 7 0}$ uf. The hermetically sealed units operate at up to 35 v peak, 60 cps . General Instrument Corp., Micamold Div.. Dept. ED. 65 Gouverneur St., Newark, N.J.
Price: $\$ 1.70$ to $\$ 5.00$.

Solenoid Valve

Service to 200 psi is provided by solenoid value for use in fluid control. Available in standard ac and de voltages, the valve operates in any position with a maximum rate of 1,000 cycles per min at 100 psi. Temperature range is -65 to +350 F . The $5-\mathrm{oz}$ valve measures $2-5.8 \mathrm{in}$. long with a diameter of 1-3/8 in. Inlet connection is $1 / 2 \mathrm{in}$., outlet $1 / 8 \mathrm{in}$. General Magnetics, Inc., Dept. ED, 2641 S. Louisiana Ave., Minneapolis 26, Minn.

Hydrogen Thyratron

Peak power of 48 megawatts is provided by the GL-7890 hydrogen thyratron. The tube operates at an anode dissipation factor over $55 \times 10^{3 \prime}$ with forced air or other coolants. Peak forward anode voltage is 40 kv , peak current 2,400 amp. Average current capability is 4.0 amp , average power over 70 kw . Hold-off capability is over 35 kv dc.
Ceneral Electric Co., Power Tube Dept., Dept. ED, Schenectady 5, N.Y. Availability: immediate.

Have you sent us your subscription renewal form?

505

509
ELECTRIC WAVE
 TIT: W. 12

ORTHO HAS EXACTLY THE FILTER TO DO EXACTLY THE 108 YOU WANT! Select from many low pass, high Select from many
pass, band pass, and band eliminate types - each designed to yield networks with a minimum number of elements. Why buy more filter than you need when Ortho offers a wide choice of shape factor and minimum stop band loss. All are tested for use from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all are hermetically sealed; all meet MIL.F18327A. Elements are temperature cycled to prevent aging. Standard
impedances available: 600,1500 $3,000,10,000$ ohms unbalanced. Min. iaturized and ruggedized versions for iaturized and ruggedized versions for
missiles and printed circuits also available. All are economically priced and ready for immediate delivery. For complete specifications and prices, write to:

Of ortho filter

CORPORATION
a division of ORTHO INOUSTRIES Inc. Oi
7 Paterson st. - paterson 1, N. J.

Induction Motor

 B-5I

Totally enclosed induction motor B-5-1, designed for blower applications, provides $1 / 100 \mathrm{hp}$ at 5,200 rpm . The $7.55-0 z$ motor is powered by $208 \mathrm{v}, 400$ cps, 3 phases. Full-load torque is 1.87 oz -in. Start ing torque is 214%, pullout torque 222%.
General Precision. Inc., Kcarfott Div., Dept. ED Little Falls, N.J.

Power Supplies
503

Voltage-regulated power supplies SM $75-5 \mathrm{M}$ and SM $75-2 \mathrm{M}$ provide 0 to 75 v dc at 5 and 2 amp respectively. Ripple is less than 1 mv mms , regulation and stability 0.1%. Input power is 105 to $125 \mathrm{v}, 60$ $\pm 1 / 2 \mathrm{cps}$. Unmetered models and units with 0.01% regulation are also available.
Kepco, Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y.
P\&A: SM 75-5M, \$670; SM 75-2M, \$505; 3010 60 days.

Tape Recorder/Reproducer

Wideband, magnetic tape recorder/reproducer VR-2600 has frequency response to 500 kc on direct record, 40 kc on fm , and 1,000 bits per in. parallel recording with pom techniques. Six selectable speeds are in two ranges from 1-7/8 to 120 ips . The unit has all solid-state modular construction.
Consolidated Electrodynamics Corp., Dept. ED 360 Sierra Madre Villa, Pasadena, Calif.

 sum..... single, double Hermetically sealed dip out ratios. CPS .50 g shock 30 g to 10 amps critical putlimin to dion (ai) 10.2000 cps , to 2 amp , 15 features very accepts 30 BC crystal can. dry arching, operates DPDPT
 millisec to to 2000 cps . $8 R-9$ circuit to 10 amp 30% vibration range $-65^{\circ} \mathrm{C}$ to vibration nom pulse, dry amp contacts.
milliset teas. temp.
200 grid cryst, $5.7 / 2$ of 10 amp request

 D) utuUGi CIRCLE 118 ON READER-SERVICE CARD

Daven's New Rotary Switch with Adjustable Stop

For flexbbility in all types of circuit experimentation, laboratory work, breadboard setups, and in circuitry where the exact number of switch positions might be changed at a later date, the new DAVEN Rotary Switch with an Adjustable Stop is ideal, This unit, as a single pole switch, can have a maximum of either 24 shorting positions with 15° spacing or 32 shorting positions with 116° spacing. One, two, three, and four pole units are available in this design.

In common with all other DAVEN Rotary Switches, the Adjustable Stop Switch features sturdy, dependable construction; silver alloy contacts and slip rings; tamper-proof.

KNEE ACTION * silver alloy rotor blades; high grade, accurately machined dielectric; and gold flashed turret-type ter. minals for ease of soldering.
-Perented

Magnetic core instruction memories are made in several standard sizes. Units operate at 1 mc , with access time of 0.4 usec , using nomdestructive readout. The BIAX systems are available in 2 standard sizes, 128 and 512 words, with 24 bits per word. Other sizes up to 1,024 words and 36 bits per word can be built. Standard input is punched paper tape. Semiconductors are used throughout; ambient operating temperature is $0,10.50 \mathrm{C}$.

Computer Products Operations, Aeronutronic Div.. Furd Motor Co., Dept. EII, Ford Road, Newport Beach, Culif.

Resistance Bridges

Accuracy of synchros or resolvers is measured by the proportional voltage method with these resistance bridges. Stable, dependable units have accuracy of ± 2 arc-sec. Synchro bridge KT 427775-2A and resolver bridge KT 427771-2A can each be indexed to any multiple of 5 deg throughout a range of 0 to 360 deg by light, fingertip control. Standard frequency is 400 eps.

Kcarfott Div., General Precision, Inc., Dept. ED, Little Falls, N.J.

Soldering Iron

Midget soldering iron offers improved performance, a new handle design and redesigned tip and heater assembly. Irons are available in $1 / 8$ to $1 / 4 \mathrm{in}$. tip sizes with $6 \cdot \mathrm{v}$ supply, 18 to 35 w .
General Electric Co., Dept. ED Schenectady 5, N.Y.
Availability: May 1.
CIRCLE 120 ON READER-SERVICE CARD \rightarrow

Random-Noise Generator

- ELECTRICAL MEASUREMENTS - ACOUSTICAL MEASUREMENTS - ENVIRONMENTAL TESTING - STATISTICAL INVESTIGATIONS
 freguencr ramee:
$20 \cos$ to $20 \mathrm{kc}, \pm 1$
20 cos to $20 \mathrm{Kc}, \pm 1 \mathrm{db}(51020 \mathrm{cps},=2 \mathrm{db})$;
20 cps to $500 \mathrm{kc},=38 \mathrm{~b}$:
20 cps to $500 \mathrm{kc}, \pm 3 \mathrm{db} ; 500 \mathrm{kc} 105 \mathrm{Mc},=8 \mathrm{db}$.
Output voltage: 3 volis, $20 \mathrm{kc}, 2$ volls, 500 kc
1 voll (minimum), 5 Mc
OUTPNT mpedance: Source 2 for max output is
approximately 9000:; lor attenuated output, 200 R . ACCESSORIES SUPFLIED: Panel eritensions for relayrack mounting (7 -inch height for 19 -inch rolay-rack).
The Random-Noise Generator, mounted in a test console, aids in checking out automatic astro-navigation systems for the Convair supersonic B-58 "Hustler" built for the Air Force.
Since the photoelectric cell used as the primary sensing element in this navigation equipment must detect very weak star signals in the presence of existing large background noise, any additional random signal which may become superimposed is of paramount importance. The Random-Noise Generator's output simulates such operating noise making this instrument an essential component for determining the effect of photomultiplier or other noise.

The Generator also serves as an important unit in various other Kollsman laboratory and production test consoles. It is used for aligning signal amplifiers, filters, and other elements of the "Astro Compass," to test rotary components, and to check fast switching relays to see
 where noise is being emitted.

If you would like to know whether the Random-Noise Generator will fit your needs
GENERAL RADIO COMPANY

			WEST CON		ACHUSETTS	The Eat Instruaments In Electronics
NEW YORK, WOrt 4.2722 NEW dEREEY, Ridgofold, Whimey 3-3140	chicago Ook Park Vlloge 8.9400	PHILADELPWIA Abinglon HAreost 4-7419	WASHINGTON, D.C. Silver Spring Uniper 5-1088	SAN FRANCISCO Lor Altor Whitecliff 8.8233	LOS ANGEAES Los Angoles HOllywood 9.6201	$\begin{aligned} & \text { IN CANADA } \\ & \text { Toronto } \\ & \text { CHerry } 6-2171 \end{aligned}$

 -rotor bearings and stator support rods are actually soldered
directly to the heavy $3 / 16^{\circ}$ thic directly to the heavy $3 / 16^{\circ}$ thick steatite ceramic end frames. Parts can't break loose . . . capacity can't
fluctuate? fluctuate!
Specially designed split-sleeve tension bearing and silver-plated beryllium copper contact provide constant torque and smooth capacity variation. Plating is heavy nickel-plate spacing $.020^{\circ}, .060^{\circ}$ and $.080^{\circ}$ spacing as well as special platings, shaft lengths and terminal locations in production quantities.

A complete variable capacitor line ... from tiny sub-miniafures to large heavy duty types!
From the tiny Type "U" sub-miniature, which requires less than 0.2 sq . in for chassis or panel mounting-10 the rugged heovy-duly " C " and " D " iypes line is designed for more copacity in line is designed for more copacity in less space-offers you one of the
widast standard capacitor lines in the widess ssandard capacitor lines in tor detoiled specifications on all Johnson variable capacitors, write for your free copy of our newest components catalog, described below.

Now Catalog
Write today for ous nowent dectronic
Componothe cataleg-complese spaxincel

- CAPACTORS - TUBE SOCKETS - CONNEETORS - PLOT LGMTS
INSULATORS KNOES, DIALS © INOUCTORS MARDWARE

E.F. JOHNSON CO.

2914 Tenth Avenue S.W. - Waseca, Minnesota
circle 121 on reader-service caro

NEW PRODUCTS

Capacitor Test Set

Fully automatic capacitor test set type 61 is for low voltage measurement of tantalum capacitors, Ca pacitance range at 120 cps is 1 to 11,000 uf in four ranges. Test voltage is 0.7 v rms ; accuracy is $\pm 1 \%$ over entire range
Barnes Development Co., Dept. ED, 213 W. Baltimore Pike, Lansdowne, Pa

Flat Cable Connector

Flat conductor cable can be connected to printedcircuit boards or to flexible etched circuitry by means of POS-E-CON connector. A continuous one-piece spring locks the cable into the connector and produces direct contact without solder. It provides a pressure point at each conductor contact.
The Thomas \& Betts Co., Dept. ED, Elizabeth, N.J.

Converter

485
A four-decimal digit, solid-state, voltage-to-digital converter, the Transicon Datrac has both automatic and programed ranging. It is fully transistorized and meets MIL specifications. Specifications are: signal input, 0 to $0.9999,0$ to $\pm 99.99,0$ to 9.999 ; conversion speed, 10 usec per bit; accuracy, $\pm 0.015 \%$ of full scale ± 1 significant digit.

Epsco, Inc., Dept. ED, 275 Massachusetts Ave., Cambridge, Mass.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

GLIDELINE " 70 "
DRAFTING MACHINE

for NEW draffing SPEED and NEW draffing EASE, in any position,
because
Olldoline has brought to onginoesing the fisst mojer chenges in drofting mechine design in 50 yoars lossons fallguo. Changes that domend your ummodiate investigation.

CIRCLE 122 ON READER-SERVICE CARD
phillips \& slofted

1 ल) H1 H1 ©
right off the shelf.

Immediate delivery on ALL SIZES COARSE \& FINE • ANY QUANTITY Made to AN \& MS SPECS. 100° FLAT HEADS available. Send for your STAR catalog today, on letterhead please

If STAR STAYNLESS SCREW CO.

 CIRCLI 123 ON READER-SERVICE CARO

ELECTRONIC DESIGN • April 26, 1961

A practical ides for every engineer who wants to save time In circuil layout, assembly, and packaging ... Aldon "Cir-kits" are practicat "get started" kits

 requirements. ALDEN
 CIRCLE 124 ON READER-SERVICE CARD

Brady Pressure-Sensitive. All-Temperature Wire Markers for small gage wires are exactly $3 / 3^{\prime \prime}$ lon to fit wires under $1 / 4^{\prime \prime}$ o.d. They cut your small gage wire marking costs in half because:

1. They cost half the price of Standard Markers, and
2. Thay go on the wire twiee as fast.

You can't drop Brady Wire Markers - they stick to your finger from Card to wire.* Stick and stay stuck - at temperatures to 300° F ! Choose from over 3,000 different stock markers-both Standard and Small GageSize. Stocked by Brady Distributors in all principal cities. Specials made to order. Write for big new bulletin and free testing samples today! -Romember, too, Brady makes the only marker that can bo machine applied.
W. H. BRADI $\mathrm{CO}_{2}, 787$ West Glendale Ave,, Milwoukee 9, Wis.
 CIRCLE 125 on reader-Service card
ELECTRONIC DESIGN • April 26, 1961

Wide-Band Oscilloscope

Bandwidth of de to 70 mc is provided by the LA-27() oscilloscope. Designed to military specifications, unit has $6-\mathrm{cm}$ vertical deflection. Display size is $6 \times 10 \mathrm{~cm}$. Single and dual channel plug-in vertical pre-amplifiers aand plug-in sweep delays are used. Horizontal sweep circuitry has 24 calibrated ranges with 10 X magnifier extending the fastest sweep to $0.01 \mu \mathrm{sec}$ per cm .

Lavoic Laboratories, Dept. ED. Morganville, N.J.

IF Amplifier

Wide-band if amplifier molel IF301 has a detector and a cathode follower for video output. Typical noise figure at 30 mc is 1.5 db , input vswr less than 2: 1. Standard 30 or 60 mc models have $90-\mathrm{db}$ gain, $10-\mathrm{mc}$ bandwidth, and 50 -ohm input.
LEL. Inc., Dept. ED, 75 Akron St., Copiague, N.Y.

Limif Switch
498

Snap action limit switch is designed to bridge the gap between the very small and larger, enclosed limit switches. Ratings are as follows: ac, $4(1)$-amp make, $15-\mathrm{mp}$ break; dc, 2 -amp make and break on single throw forms with $0.040-\mathrm{in}$. gap.
General Electric Co.. Dept. EI), Schenectady 5, N.Y.

LERMER PLASTIC CONTAINERS

Exceptional printing makes the difference...

Helps make the sale!

Package semiconductors, resistors, switches, relays, etc.

- Printed or decorated up to 4 colors on erystol clear, transparent or opaque colors
- Also evaileble unprinted
- Largest line of RIGID plastic confoiners
- 1/5 the weight of glass-greotly reducing ever-increasing shipping and handling costs
- Lightwoight and shotterproof-with rigid wall protection
- Economical-with customer re-use value

Write for full-color cafalog, samples and prices.
LERMER PLASTICS, INC.

572 South Avenue
Garwood, New Jersey
PIoneers and specialists in PLASTIC CONTAINERS SINCE 1919

IN ADVANCED DIGITAL INSTRUMENTS EPSCO DELIVERS ITS SPECIFICATION

SIMPLIFIED BLOCK DIAGRAM

Important features:

1) No stepping switches, no relays
2) Speed: 2 millisec. per conversion (100 independent measurements per sec.)
3) Fully transistorized, plug-in construction
4) Parallel decimal and 4221 BCD output
5) In-line, in-plane display
6) Internal and external conversion trigger
7) Requires no modification, adjustment or calibration
8) Mount two, side by side, in a RETMA rack

DVOM DIGITAL VOLT-OHM METER MEASURES AC, DC VOLTS\& OHMS (ONLY $8 \frac{3}{4}{ }^{\prime \prime} \times 5 \frac{1}{4}{ }^{\prime \prime} \times 13 \frac{3}{4}{ }^{\prime \prime}$)

KEY SPECS:

- Full Scale Ranges:

AC and DC Voltages, 0100 ± 1000 (4 ranges) Resistance: 1 K to $\pm 1000 \mathrm{~K}$ (4 ranges)

- Accuracy: DC $- \pm 0.1 \%$, AC $- \pm 0.25 \%$. Ohms - $\pm 0.25 \%$
- Readout: 3 digits (plus 1 overflow digit)

For full details, call or write Epsco. Ask for Bulletin 26002.
Epsco

INSTRUMENTS

[^6] CIRCIE 127 ON READER-SERVICE CARD

NEW PRODUCTS

Torque Transducer

Variable inductance transducers, series C-B4, measure angular twist proportional to torque. Electrical measurement of a torsional strain and a mechanical assembly for producing the strain are provided. Speeds are to $20,000 \mathrm{rpm}$ and torque ranges from 0 to 50 in . -lb through 0 to $12,000 \mathrm{in}$. lb full scale.

B \& F Instruments, Inc., Dept. ED. 3644 N Lawrence St., Philadelphia, Pa.

Terminal Boards

Miniature terminal boards on 0.100 grid patterns, in any shape, are available with glass-filled epoxy, melamine or silicone insulation. The terminals are brass, phosphor bronze or beryllium copper and are silver or silver and gold plated. Terminals measure $0.062-\mathrm{in}$. OD $\times 0.026$-in. ID; height above board is 0.156 in . and they are bifurcated with slots $0.025-\mathrm{in}$. wide $\times 0.068$-in. deep.
Accurate Electronics Corp., Dept. ED, 169 S. Abbe Road, Elyria, Ohio.

Power Supplies
494

Solid-state, convection-cooled, $12-\mathrm{v}$ power supplies, models ZA-723, $-724,-725$ and -727 have less than $0.001-\mathrm{v}$ rms ripple. Ratings are from $12-\mathrm{v}, 100 \mathrm{ma}$ (1) $12-\mathrm{v}, 3$-amp. All units have an operating range of -20 to +65 C

Engineered Electronics Co., Dept. ED, 1441 E. Chestnut Ave., Santa Ana, Calif.

ELECTRONIC DESIGN • April 26, 1961

Tube Sockef Preservers

$-1+2$

Designed to prevent permanently wired sockets from wearing out under constant use, the Thinline socket preservers plug directly into existing sockets. The low silhouette makes them especially suited for portable equipment where space is at a premium. Forway Industries, Inc., Dept. ED, 122 Green Ave., Woxdbury, N.J. Pd: \mathbf{A} : $\$ 2.20$ to $\$ 2.80$ in 1 to 9 quantities, from stock.

Motor Control

Fractional horsepower motor control relays type CRI20E are rated at (fin) v. They are available with cnils from 6 to $550 \mathrm{v}, 60$ or 50 cps . They may be used for power devices such as horns, burzers and lights, solenoids and valves.
(ieneral Flectric Co., Dept. ED, Schenectady 5, N. Y.

Amplifier Modules

Three-transistor, RC-coupled, printed-circuit modules type APC weigh only 0.148 oz . They measure $0.458 \times 0.413 \times 0.728$, including case. Output is 4) mw into a 300 -ohm inductive load at over-all distortion of 10% max. Gains are up to 93 db with a frequency response flat within 3 db from 100 cps to 10 ke at signal to noise ratios of -48 db .
Fidelity Electronics, Ltd., Dept. ElJ, 4120 W: Lawrence Ave., Chicago 30, III.

Don't miss an issue of ELECTRONIC

 DESIGN; Return your renewal card.PUTTING MAGNETICS TO WORK

Here's frce help to enable you to improve yourself-and your position as a magnetic circuit designer. You need it if: You don't know how to work with $\mathrm{E}=\mathrm{n}-\frac{\mathrm{d} \phi}{\mathrm{dt}}$ to reduce the size of magnetic amplifier circuits. Most men who design amplifiers for cramped operation in missiles have found it invaluable.
What's more, you may only vaguely remember $\mathrm{H}=.4 \pi \frac{\mathrm{NI}}{\ell_{\mathrm{m}}}$, so how can you use it to cut circuit size by two to ten times, and shorten response time proportionately?
It's quite possible that you, like many engincers, may have bypassed or been bypassed by magnetic circuit theory as a working tool while you were in school. Yet this science has opened frontiers of static control which makes an understanding imperative if you are to do your job-and further your carecr. For your sake (and for ours, too, because we manufacture and sell high perme-
ability tape wound cores and bobbin cores which are used in amplifer circuits), we have started this course. Lesson 1, "How to Reduce Magnetic Circuit Size and Response Time," will be on its way to you immediately if you use the coupon below.

maGEETICS inc.

MAGNETICS INC., OEPT. ED-86, BUTLER, PA.

Please onroll me in your free self-improvement course, and send me "How To Reduce Magnelic Circuir Size and Reuponse Time."
nome
nine
compony
oddrose

High selectivity,

 attenuation and precision matching of ...
NEW HILL FILTERS ASSURE FAST, PRECISE MEASUREMENT OF INTER-MODULATION DISTORTION

These two highly stable, precision-matched Hill Electronic filters permit fast, exceptionally accurate measurement of inter-modulation distortion in communications systems. A band elimination filter places a narrow, deep notch in the white noise being passed through the equipment under test. Distortion generated in the notch is then isolated for measurement by the narrow band filter.
The high degree of selectivity and attenuation of these filters, and the excellent alignment of one within the other are demonstrated in the actual operational curves shown above. Used together, these filters provide 80 db attenuation from 6 to 252 kc .
This is a typical example of Hill's creative engineering that develops outstanding solutions to customers' specific problems involving LC and crystal control filters as well as precision frequency sources and other crystal devices.

WRITE FOR BULLETINS 34800/900
They cantain detaik and spacifketions concorning the filters described above.

HILL ELECTRONICS, INC.
mechanicsburg, pennsyivania
CIRCLE 129 ON READER-SERVICE CARD

NEW PRODUCTS

Synchro Transmitter

This positive-indexing synchro transmitter has 48 positive detents at 72 deg intervals on the input shaft. The transmitter is electrically zeroed on the 5 th detent. The package is $1-17 / 64 \mathrm{in} . \mathrm{s}_{1} \times 2-1 / 2 \mathrm{in}$. long; it weighs 3-1/2 oz.
Clifton Precision Products Co., Dept. ED. 50.50 State Road, Drexel Hill, Pa.

Test Set

Five-megawatt positive grid region test set is for design, development and production quality control testing of high-power triodes and tetroxles. Peak grid pulse is $10 \mathrm{kv}, 500 \mathrm{amp}$ at $2 \mu \mathrm{sec}$; prf is adjustable. from "one shot" to 60 pps. All supplies are controllable from the front panel.
FXR, Ince, Dept. ED. 25-26 50th St. Woralside it N.Y.

Pressure Transducer
491

Absolute, gage or differential pressures of corrosive or noncorrosive gases or liquids in the 0 to 5 and 0 to 500 psi full-scale range can be measured by pressure transducer TP-200. Standard performance data includes the ability to withstand shock of 7.5 g ; a static error band, including independent linearity, hysteresis, repeatability, resolution and friction, of $\pm 2.5 \%$ in the 0 to 5 to 0 to 10 psi range and $\pm 1.5 \%$ in the 0 to 15 to 0 to 100 psi range.

Fairchild Controls Corp., Dept. ED, 22.5 Park Ave., Hicksville, N.Y.

Now-faster service on complete line of top quality Hipersil ${ }^{8}$ cores

Eight stocking locations for Hipersil cores give fastest possible service: Greenville, Pa.; Bustun; Chicago; Cleveland; Dallas; Hillside, N.J.: Los Angeles; Minneapolis. Line includes new ESA, RS- 217 sizes.

- Type C: 12, 4, 2 and 1 mil sizes, in single- and 3 -phase, fraction of ounce to 300 pounds.
- Ring Cores: Untreated, edge bonded, impregnated and epoxy resin-coated Polyclad.
- Special Cores: To any sperification and shape requirements. Top quality: Performance of Hipersil cores in "iron-core" components is guaranteed to meet or exceed specifications.
Write Westinghouse Electric Curporation, P.O. Box 868, Pittsburgh 30, Pa., for new catalog. You can be sure... if it's

Westinghouse

CIRCLE 130 ON READER-SERVICE CARD

TANTALUM FOIL

ELECTROLYTIC CAPACITORS

as you like them, when you want them

- 30\% More Foil Area in oll standard cases Higher capacities-to $5200 \mu \mathrm{~F}$
Lower D-C leakage
Longer life, greater stability Reliability data available on request.
- 10 Case Sizes including 5 MIL standard cases, thus
704 standard units
Save space
Save weight
Sove money
- 4 More Mojor 'Pluses'

No external lead weld
Hermetically sealed cathode
Best shock and vibration resislance
Polar, partial Non-Polar, and Non-Polar types
Take your choice of reasons for specifying iel miniature Tantalum foil Capacitors. . you will be right every time. Only iol, pioneer developer and long-time specialist in miniature electrolytics, can give immediate attention to your needs for long runs, short runs, standards and specials. Iel also offers expedited shipment of stock items when needed. Write for Product Data Bulletin 2745. International Electronics Industries, Inc. Box 9036-12, Nashville, Tennessee

where reliability replaces probability

Power Supply

Packaged indicator power supply model 91.3 pro vides 4 kv de at 500 wa with an input of 11.5 v 400 cps. Measuring $5-3 / 8 \times 2-1 / 2 \times 2-1 / 4 \mathrm{in}$., supply has an operating temperature range of -5.5 to +100 C . Other units at 60 or 400 cps inputs are available with outputs from 1 kv to $20 \mathrm{kv}, 50$ ua to 1 ma .
Burmac Electronics Co. Inc., Dept. ED, 142 S Long Beach Road, Rockville Centre, L.I., N.Y.

Shaft Coupling
488

Designed for light duty electromechanical applications, these zero backlash flexible couplings employ torsion spring elements to cushion starting and braking loads. Shaft to shaft misalignment may be up to 5 deg angular and $1 / 32-\mathrm{in}$. parallel offset.
Fourdec, Inc., Dept. ED, P.O. Box 6006. Orland(). Fla.
Price: $\$ 1.90$ ca.

Delay Lines

Encased in a 1332 -in. diam tube, these distributed constant delay lines have an impedance of 500 ohms. Delay times are 0.05 to 1.0 usec, with rise times from 50 to 120 nsec. Operating temperiature is from -5.5 to +125 C .
Richard D. Brew and Co., Dept. ED, 90 Airport Road, Concord, N.H

This is the time of our annual subscription renewal; Return your card to us.

WITH A. P. I. METER-RELAYS YOU CAN MONITOR AND CONTROL JUST ABOUT ANYTHING!
Handy gadget, the A.P.I. meter-relay. You can use it to indicate, monitor, and control practically any electrically transduceable variable. Things like moisture content, pH . motor load, radiation level, temperature, speed, light, sound. And, because it's so highly sensitive ($0-5$ microamps or millivolts is the minimum range), you can pipe-in thermocouple, strain gauge and other low-level signals directly, without amplification.

It's a highly reliable device, too. You can reasonably expect to get at least $10,000,000$ perfect make-break operations. You'll probably get twice that many. We have.

You can spec A.P.I. meter-relays in any range you want, from the minimums mentioned up to $0-50 \mathrm{amps}$ or $0-500$ volts, $A C$ or DC. We can calibrate scales in any units you require. Control setpoints can be either single (high or low) or double (both high and low). Catalog 4J will give you much useful and interesting information about meter-relays. It will also give you detailed, explicit specs and prices. Yours for the asking, of course.

ASSEMBLY PRODUCTS INC.
CHESTERLAND 17 OHIO

0.1 ниa to 1 amp. 10-13 TO 1 CURRENT RATIO

 1 wiv to 1000 volts10^{-9} TO 1 VOLTAGE RATIO

Sensitive DC Meter

- $0.1 \mu \mu$ a to 1 amp . in 25 ranges - Drift: $\pm 2 \mu \mathrm{v} /$ day max.
- $1 \mu \mathrm{v}$ to 1000 v in 17 ranges
- Fast response
- Simplicity of range switching
- Floating input
- 10 megohms constant input resistance on all voltage ranges

Also Available Rack Mounted on a $51_{4}^{\prime \prime} \times 19^{\prime \prime}$ Panel. Price $\$ 520$.

Boonton ELECTRONICS Corp.

Morris Plains, New Jersey • JEfferson 9-4210
CIRCLE 133 ON READER-SERVICE CARD

NEW PRODUCTS

Deviation Calibrator

Fm-monitor deviation calibrator, "Monocal 500", provides better than 0.5% deviation accuracy. It combines the functions of five instruments previously needed to determine the peak deviation of an fm signal by the carrier drop-out method. It can be used directly with any fm monitor tuning to 12 mc . Deviation ranges are: $10-, 30-, 100$-, and $300-k c$ peak.
Advanced Measurement Instruments, Inc., Dept. ED, 109 Dover St., Somerville 44, Mass.

Crystal Oven

Thermostatically controlled oven, model 1206, has internal temperature stability of $\pm 0.5 \mathrm{C}$ at 70 C over an ambient range from 0 to 50 C . It is for housing crystals. filters and other circuitry requiring temperature stabilization. Specifications are: power supply, $24 \mathrm{vdc} ;$ external dimensions, $2-\mathrm{in}$. $\mathrm{s} q \times 3$ 3-1/2 in.; weight, 7 oz.
Airtronics, Inc., Dept. ED, 5522 Dorsey Lane, Washington 16. D.C.

High-Befa Thermistors
Beta of $3,000 \mathbf{K}$ is a feature of a new series of thermistors. Units are made in rod form at 200 to 1,000 ohms, 2.5 C , with $0.050,0.112$, and 0.173 in . in diameter, and in disk form at 1 and 2.5 ohms at 25 C , with $3 / 4$ and 1 in . in diameter. Beta tolerance is $\pm 5 \%$. Maximum standard thermistor temperature rating is 1.50 C , with higher ratings available on request.
General Electric Co., Specialty Resistor Project, Dept. ED, 7842 S. Neff Ave., Edmore, Mich.

Don't miss an issue of ELECTRONIC DESIGN; Return your renewal card.

495

508

- a wide range of standard sizes
- colored tubing and special sizes
- a wide range of wall thicknesses
- prompt deliveries of

SPAGHETTI TUBING
MADE FROM TEFLON
by Pennsylvania Fluorocarbon
To obtain outstanding results from sheathing for wires, slip-on insulafion and bushings, use the unique electrical properties of spaghetti tubing made from Teflon plus the outslanding engineering and manufacturing lechniques developed by Pennsylvanio Flworocarbon.
The unique oloctricel prepertios of speghoml iubins mede from Tofion Include: good dieloctrie strongth (1000. stont (2.0) and dissipation factor (0.0002) of any solid dielectric; ne change of electrical propenties wim tomperoture ($-25^{\circ} \mathrm{C}$. $10+250^{\circ} \mathrm{C}$.) , orfre. quency $(60$ cycles to 100 mc .) : unaffect. od by moisturo. In addition, PF Tofon is not hormed by the hot zoldering tron so assombly work is spooded up considerably.
The outstending engineoring and menufecturing lechniques dovalop--d by Ponnaylvanla Fluarocarbon Includo: the roiloring of Tofion wim colors for identifceation or with modif. cotions for improved toxture and mechanicol propertios, stross rolioving spaghoritubing for minimum zhrinkage; manufacture of a wide range of wall micknesses and special sizes.
Werite, wire or call end loe us quate on your requiromonte. Wo can prosizes and many spocial sizes al sompotillive pilces.

PENNSYLVANIA

FLUOROCARBON CO., INC.
$1115 \mathrm{~N}, 38 \mathrm{th}$ Streat, Phila. A, Po.
EVorgroen 6.0603 TWX: PH 252
-OUPom roobitored rodemork
CIRCLE 134 on reader-service caro ELECTRONIC DESIGN • April 26, 1961

Analog-To-Digital Converter

With a conversion rate of 0.5 usec , analog-todigital converter model 101 has accuracy of $\pm 0.5 \%$, $\pm 1 / 2$ least significant digit. Input amplitude is 10 v at impedance of 250 ohms. Visual display is 2 binarycoded decimals. Size is $6-1 / 2 \times 3-1 / 2 \times 6-1 / 4 \mathrm{in}$ General Data Corp., Dept. ED, 11602 Ninth St., Garden Grove, Calif.
Price \& Availability: $\$ 750 ; 4$ to 6 weeks.

Image Infensifier

High-gain image intensifier tube provides a photon gain of 100,000 to 200,000 . It has an input photocathode, five secondary emitting dynodes, and an output fluorescent screen. Dynode usable diameter is 1 in .
English Electric Valve Co. Ltd, Dept. ED Chelmsford, England.

Plug-Socket Set

499
Subminiature plug and socket combinations for low-current circuits are molded of low-loss, micafilled phenolic. They may be swaged into metal chassis, cemented to bakelite chassis, mounted with retaining ring. or potted. Units are available with glass-filled diallyl phthalate insulators. Made with 3 to 7 contacts, sets have EIA standard electrical ratings.

Cinch Manufacturing Co., Dept. ED, 1026 S. Iloman Ave., Chicago 24, Ill.

Angle Position Indicator

Angular displacement of anv remote rotational device to which a synchro or resolver transmitter can be coupled is measured and indicated by the KT 427566 angle position indicator. Accuracy is $\pm 6 \mathrm{~min}$, resolution 1.0 min , and repeatability is 2 min . Inclicator operates from $11.5 \mathrm{v}, 400 \mathrm{cps}$ power.
Kearfott Div., General Precision, Inc., Dept. ED. Little Falls, N.J.

High-Voltage Rectifier

Ratings up to $\mathbf{6 3 6 , 0 0 0}$ piv are available in a variety of rectifier stacks. A typical assembly is capable of delivering 600 kv at 20 ma dc . Air-cooled units are combined as required.
Selenium Div., Radio Receptor Co., Inc., Dept. ED, 240 Wythe Ave., Brooklyn 11, N.Y.
 wired, ready-to-use memory stacks to meet your most complex system requirements.

Now, RCA memory stacks, in custom and standard designs, are available to help you solve computer assembly problems and mee loday's exacting performance specifications. Incorporating RCA ferrite memory cores and planes, with specified wide margins of operation... up to 8 percent...RCA stacks can cope with broad variations in power levels.
RCA magnetic-memory specialists are ready 10 custom design and deliver virtually any stack you specify. Stacks ranging from 16 words by 5 bits to 16,304 words by 34 bits have been built and are now in operation for coincident-current, word-address, and imReliability: All RCA
Reliabily : Alre memory stacks are designed and built to meet stringent environmental specifications of shock and vibra-

The Most Trusted Name in Electronics ridio corporation of cimirica

ion. And all are 100 percent dynamically tested to assure the utmost dependability under actual computer operating conditions. Adaptability: All RCA memory stacks are compactly assembled to assure most efficient space utilization. In addition, they are designed to provide superior rigidity and accessibility. Stacking frames are available in a wide range of materials.
Service: Your local Semiconductor and Materials Division Field Representative is prepared to provide a completely coordinated application service, covering transistors, tunnel diodes and other semiconductor diodes, ferrites and memory systems. Call him today. For further technical information, write RCA Semiconductor and Materials Division. Commercial Engineering. Sec. D-18-NN-2,
Somerville, N. J.

RCA SEMICONDUCTOR \& MATERIALS DIVISION FIELD OFFICES: EAST, Newark, N. J., 744 Brood St, HU 5-3900. Eoriton, N. J., 005 Marilon Pike, EAST: Needham Hoights 94, Mosc. 04 . ${ }^{\text {A. }}$. Stroes, H1 4-7200. SOUTHEAST, OrIando.
 714 Now Conter Bldg., TR 5 . 5600 . CENTRAL: Chicogo. III., Suite 1154, Morchandise
Mort Ploxa, WH 4.2900. Minnoopolis, Minn., S80s Excelsior Bivd., WE 9.0676 .

\qquad

A REVOLUTIONARY ALL-ANGLE BLOWER TO SAVE YOU MONEY

Air flow directed ot ony ongle
 rurned end-for-end
gives this patlern OWE SOURCE TOR VENTILATEO RELAY RACK CABINETS,
COMTROL CONSOLES. BLOWERS, CMASSIS
CHASSIS.TRAK. RELATED COMPNEMTS HASSIS.TRAK REL

These remarkable new MIL quality All-angle blowers will not only do your cooling jobs more efficiently by more accurately directing air to your exact needs, but their inherent versatility can eliminate purchase of special blowers for many of your applications.
You can rotate their iwin scrolls to the angle of your choice through 230°-or, by simply reversing the motor-rotor assembly end-for-end in its housing, create a new and equally diverse air flow pattern.

- Assured 400 CFM output - Mounts as $83 / 4^{\prime \prime} \times 19^{\prime \prime \prime}$ stand ard EIA rack panel-14" max. depth "MIL quality heary duty construction and finish-or finish to Customer specs Interference-free operation per MIL-I-16910A - Cushion Inlerference-free operation per MIL-1-10910A Cushion long life - Cleanable filter-disposable available.

Reeves. Hoffman transistorized. proportionally controlled ovens din give
Imost miraculous service-in providing closer frequency control. There ilmowly relable viens have no mechanical contacis There are no There
producing gaps. Radio interierence is eliminated. Although it is difficult to measure iem
producing gaps Radio merrerence is eliminated. Although in is dicult io measure lem provide control in the order of $\pm 001^{\circ} \mathrm{C}$. If you have a problem involving reliable cempera r of $\pm 001{ }^{\circ} \mathrm{C}$. If you have a problem involving reliable tempera-

WRITE FOR BULLETIN VIO9O.

Division of

OYNAMICS CORPORATION OF AMERICA CARLISLE, PENNSYIVANIA
CIRCLE 137 ON READER-SERVICE CARD

NEW PRODUCTS

Balun Transformers

Broad-band balun transformers match 50 to 75 ohm coaxial lines to 600 -ohm balanced transmission lines over the hf range. Devices operate from 2 tc .30 mc and display essentially flat input impedance vs frequency curves. Model 517 is designed to pas 10 kw c.w, and may be pole-mounted. Model 5.32, a receiving type, passes 500 w .
Granger Associates, Dept. EI). 974 Commercial St.. Palo Alto, Calif.

Cooling Modules

Thermoelectric solid-state cooling modules are made for military and industrial use. The F1, F4, F§ and F32 Frigistors, designated by a number corresponding to the number of thermocouples in the module, are available in quantity. Heat pumping capacity is about 1 w per couple. The devices, made from Neelium, are capable of producing a no-load temperature difference as high as 80 C . The series operates with currents of 10 to 15 amp . Couples are connected in series, each requires 0.1 to 0.3 v
(ieneral Thermoelectric Corp., Dept. ED, Prines ton, N.I.

Silicon Diode Assemblies

High-voltage, silicon diocle assemblies designed for use as clippers, holding diodes, or power supplies are available with inverse voltage ratings of 1 to 50 kv . Current ratings range from 1 to 7.50 ma . Units are epoxy cast and hermetically scaled, and measure $3 \times 1 \times 1-5 / 8 \mathrm{in}$. approximately.
Burmac Electronics Co., Inc., Dept. ED, 142 S. Long Beach Road, Rockville Centre, L.I., N.Y.

Have you sent us your subscription renewal form?

518

486

. . . accurate

D-C resistance measurements with L\&N's 4735 Guarded Wheatstone Bridge

Perform laboratory experiments, make routine resistance measurements or calibrate resistors faster-more accurately - with L\&N's 4735 Guarded Wheatstone Bridge.
This advanced instrument has many new features including: high accuracy with a wide ojerating range . . .guarding of detector circuit to prevent resist ance errors due to humidity effects minimizing of thermals by special construction features . . . elimination of tedious plug and block ratio settings due to use of a single rotary switch.
List No. 4735 Guarded Wheatstone Bridge, normally available for delivery from stuck.
Range-().01 ohm to 1,111 megnlims. Limit of Error- $\pm(0.05 \%+0.001 \mathrm{oh} \%)$ up) 10100 megrohms; $\pm 0.5 \%$ uhove.
Rheostal Switches-Five decarles of en closed switches in steps of 1115 (1)(111) $+100+10+1+0.1)$.
Multiplier Dial-Eilecen-position encluserl switch. Multipliers: 10^{-5} to $10{ }^{2}$,
Current Raling (of rhenstat arm used as resistunce hor. determined b!! highist decade in use) -For $1.1!!, 1.1$ amp; for 1.0!!, 0.3.5 amp; for 10!!, 0.11 umb); (ou100!!, 0.0 .0 .3 .5 amp ; for $1000!!, 0.1011 \mathrm{lamp}$). Galvanometer Sensitivity Keys - Three tup keys provide sensitivitics of "11-
proximately 1, $1 / 100$ and $1 / 1000$. proximately 1, $1 / 100$ and $1 / 11000$
buttery reverse kejs is pronided.
Case-Metal, gray enamel finish; 19" $x 9^{\prime \prime} \times 7^{\prime \prime}$ for bench use. Wt. in 13 lbs. Price- \$475.00 f.o.b. Phila. or Norll, W'ales. Pa. (subject to clienge without motice) Orrer List No. 4908 Stenton Ave., Philu. 44 , I'ra.

CIRCLE 138 ON READER-SERVICE CARD
ELECTRONIC. DESIGN • April 26, 1961

METERS

You can SEE and READ

H/PW Series 1025-1026 /IE Marrhangeable winh Round Bakelite Case Iypes

Brilliantly new in their high visiblitity polyStyrene cases are these modern type Metcrs by HOYT which give a true reading at a grance. Here longer seate length and the
ellimination of shadows plus clean design add up to topnotch combination to incorporate in any panel. The Famous HOYT high torque movement
with precise and rugged craft ${ }^{2}$ manship gives you what you've been looking or in in Melers. These models are directly interchangeable with all round Bakelite meters, and Are available in all AC and DC ranges as Ammeters, Minammeters, Microammeters, styles $\# 103733^{\prime \prime}$ and $\# 10606^{\prime \prime}$ meters are also available for any modern panel meter application.

The HOYT square plastic case series (\#649 and \#653 shown) is available in $21 / 2^{\prime \prime}, 31 / 2^{\prime \prime}$ and 41/" types. Just right for use where equipment needs to be revised to meet modern design requirements. These instru-
ments are interchangeable with square ments are interchangeable with square frosted or colored band on the case front in any AC and DC range. Extra long scales in shadow free cases give you the most
value and quality for your money.

Write us for the NEW HOYT PANEL METER Brochure showing a complete line of plastic and Bakelite models.

BURTON-ROGERS COMPANY

Sales Division, Depl. ED-4
42 Cariefon Street, Cambridge 42, Mass. Circle 139 on reader-senvice cand ELECTRONIC DESIGN • April 26, 1961 Md.

Normally open, spdt push-on, pull-off switch No. 30-16 has a positive detent action. Life expectancy is over $100,0 \%$ cycles, Contact rating is $1 \mathrm{amp}, 115$ - resistive, contact resistance 0.010 ohm. Base and button are molded phenolic.

Grayhill, Inc., Dept. EID, 561 Hillgrove Ave. Lalirange, III.
Price: \$1.15.

Bridging Amplifier

516
For trunkline installation behind repeater amplifiers, bridging amplifier model BA-4C has 4 isolated distribution line outputs, each providing $3-\mathrm{db}$ gain at channel 2. Bandwidth is 54 to 88 mc , impedance 75 ohms, vswr 1.2:1. Power is $115 \mathrm{v}, 60 \mathrm{cps}, 25 \mathrm{w}$
Entron. Inc., Dept. ED. Box 287, Bladenshurg.

Insulating Rod
512
A Class H insulating rod stock, Vitac combines fiber-glass reinforcement with a high-temperature resin system. Properties are said to equal or exceed those of silicone-glass rod, at 25% less cost.

The (:lastic Corp., Dept. EI). 4.321 Glenridge Road. Cleveland 21. Ohio.

Servo Moior

521
Size 5 servo motor J126-06 is $1 / 2 \mathrm{in}$. in diameter by 0.968 in . long and weighs 0.68 oz . Phase 1 voltage is 26 v , phase $2,36 \mathrm{v}$, at $4(0) \mathrm{cps}$. No-load speed is 9.500 rpm , stall torque $0.12 \mathrm{oz}-\mathrm{in}$. Operating temperature range is -54 to +125 C .

General Precision. Inc., Kearfott Div., Dept. ED, Little Falls, N.J.

Nuvistor Sockets

517
Phenolic sockets for nuvistor tubes are supplied with solder washer for solder fastening or tabs for mechanical mounting. Fastened sockets will resist a pressure of 20 lb . Contacts are copper alloy with cadmium plating.
Cinch Manufacturing Co., Dcpt. ED. 1026 S. Itoman Ave., Chicago 24, Ill.

Teflon-Lined Tubing

438
Neoprene rubber tubing with Teflon liner combines the best features of both materials. Size ranges from $1 / 8$ to 1 in . inside diameter, with $1 / 8-\mathrm{in}$. coating of Neoprene or other clastomer. Tubing withstands service temperature of 200 F

Pennsylvania Fluorocarbon Co., Inc., Dept. ED. 1115 N. 38th St., Philadelphia 4, Pat.

ALPHA WIRE CORPORATION subsidiary of loR AL Electronics Corporation 200 Varich street, New York 14. M. Y. PaCIFIC DIVIISION:

Circle 140 ON READER-SERVICE CARD

Autronex Gold Plated transistor headers were suspended in C.P.-4 solution (nitric, acetic and hydrofluoric with bromine) for several hours...the header's glass seals dissolved, the Gold Plate remained intact.
This dramatic experiment, carried out by one of the country's prominent manufacturers of semiconductor prosuperior metallurgical properties of electroplate produced with the electropiate produced with the
AUTRONEX ACID GOLD PLAT. ING PROCESS-for all industrial The simple.
The simple to prepare bath is mildly acidic ($\mathrm{pH} 3.5-4.5$), operates at room
cmperature, and produces deposits which are mirror-bright in any thick ness. AUTRONEX electroplates also ofier approximately 75% greater resistance to abrasive wear over conventional Gold plate.
For complete details on uses, bath preparation, equipment required, etc., ask for \#EG-1.

AUTROMEX EASILY PASSES ALL RIGID PERFORMANCE-ACCEPTANCE TESTS

- SALT-SPRAY TEST
- MANDREL-BEND TEST - boiling water test

For original use . . . For incorporation into laboratory equipment. In 55 . to 400 -cycle systems. The Trans Electronics Model RS305A Power Supply provides voltage regulation of $.05 \%$ load and $.05 \%$ line over the 0.50 ma , continuous duty, with filament output of 6.3 volts CT AC @ 3 amps. Units feature low ripple and noise (5 mv peak to peak); fast recovery time (25 to 50 microseconds). Three versions of Model RS305A offer respectively, modular construction in package 5 $41 / 8 \times 61 / 2$ inches; rack-mounting; and rack-mounted models with $31 / 4$-inch meters, in case with $31 / 2$-inch panel height. Input is $105-125$ volts AC.

SPECIFICATIONS

modal ${ }^{\circ}$	voltage ranco	current ma	filament volts/amps	price
$\begin{aligned} & \text { RS-110 } \\ & \text { RR-110 } \\ & \text { RM- } 110 \end{aligned}$	0.100	6-100	6.3/3	$\begin{array}{r} \$ 108.00 \\ 133.00 \\ 169.00 \end{array}$
$\begin{aligned} & \text { RS-205 } \\ & \text { RR-205 } \\ & \text { RM-205 } \end{aligned}$	150-225	0-50	6.3/3	$\begin{array}{r} 55.50 \\ 80.00 \\ 115.00 \end{array}$
$\begin{aligned} & \text { RS-217A } \\ & \text { RR-217A } \\ & \text { RM-217A } \end{aligned}$	150-225	0.175	6.3/8	$\begin{aligned} & 87.50 \\ & \begin{array}{l} 112.50 \\ 147.50 \end{array} \end{aligned}$
RS. 305 RR. 305 RM-305	225-325	0.50	6.3/3	$\begin{array}{r} 55.50 \\ 80.00 \\ 115.00 \end{array}$
$\begin{aligned} & \text { RS- } 317 \\ & \text { RR } 317 \\ & \text { RM- } 317 \end{aligned}$	225-325	0.175	6.3/8	$\begin{array}{r} 87.50 \\ 112.50 \\ 147.50 \end{array}$
RR. 450 RM-450 DUAL TRACKING	$\begin{aligned} & +300 \& 00 \\ & -300-400 \end{aligned}$	0.50	$\begin{aligned} & 6.3 / 2 \\ & 6.3 / 1.5 \\ & 6.3 / 1.5 \end{aligned}$	155.50 196.00
RR-473 RM-473 DUAL TRACKING	$\begin{aligned} & +300-400 \\ & -300-400 \end{aligned}$	0-25	$\begin{aligned} & 6.3 / 2 \\ & 6.3 / 1.5 \\ & 6.3 / 1.5 \end{aligned}$	140.00 175.00
$\begin{aligned} & \text { RS-505 } \\ & \text { RR. } 55 \\ & \text { RA. } 505 \end{aligned}$	300.5002	0.50	6.3/3	$\begin{array}{r} 81.50 \\ 106.50 \\ 141.50 \end{array}$
$\begin{aligned} & \text { RR. } 303 \\ & \text { RS. } 303 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.300 \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 6.3 / 15 \\ & 6.3 / 15 \end{aligned}$	320.00 360.00
$\begin{aligned} & \text { RR-550 } \\ & \text { RM } 550 \\ & \hline \end{aligned}$	$\begin{array}{r} 300.500 \\ 300-500 \\ \hline \end{array}$	$\begin{array}{r} 0.500 \\ 0.500 \\ \hline \end{array}$	$\begin{aligned} & 6.3 / 15 \\ & 6.3 / 15 \\ & \hline \end{aligned}$	310.00 350.00

TRANS ELECTRONICS, Inc.

 7349 Canoga Avenue. Canoga Park, California
NEW PRODUCTS

Photoconductive Cells

Similar to the human eye in its sensitivity variation with the color temperature of light sources, this cell measures light accurately, whether the light is tungsten or daylight or whether the color temperature is 2,700 or $6,500 \mathrm{~K}$. A footcandle meter incorporating the cell needs no correction filter
Clairex Corp. Dept. ED, 22 E. 17th St. New York 3, N.Y

Thermistor

620
This positive-temperature-coefficient unit can be used for temperature compensation, sensing and control in many applications including motors, transistorized circuitry and crystal ovens. Diameters range from 0.82 to 0.2 in ., thicknesses from (). 12 to 0.06 in . and resistances at 37.8 C from 1.50 to 1,200 ohms.
The Carborundum Co., Refractories Dis., Dept ED, Perth Amboy, N.

Cable Breakout Boxes
602

Designed for operating circuit tests, these devices connect in series between existing cables and operating equipment, making test points available at each wire for voltage and waveform checks. Hi-pot, continuity, dielectric or resistance tests can be made.

Angler Industries, Dept. ED, Metuchen. N.J. P勺A: $\$ 16.50$ to $\$ 110 ; 2$ weeks.

Silicon-Glass Diodes

679
Forward current is $\mathbf{2 0 0}$ ma. For general-purpose use, types 1 N 456 A through 1 N 464 A also have surge capability. They are compact and can be used in severe environments.

Princeton Electronics Corp., Dept. ED. P. O. Bex 127, Princeton. N.J.

Modular-constructed types C-25 and C-40 are for power switching and motor control. Type C-2.5 is for 25 hp at 600 v , three-phase; type \mathbf{C} - 40 is for $\mathbf{4 0}$ hp. Each stage has two isolated double-brcak, silver alloy contacts, up to 24 contacts can be provided.

American Solenoid Co., Dept. EI). Union, N.J.
P's A: 5 to 10 days.

Frequency-Deviation Meter

One part in 10^{10} is measured by BTK-36.A meter. It consists of two units, having a recorder to pilot the difference in frequency between the primary and secondary standards. Except for a crt. it is completely transistorized.

Aircraft Radio Corp., Dept. ED. Bermentor. N.I.

Scale Corrector

 603

In-line data linearizers operate on binary or lied data and translate the data into engincering units. Applications are with multiplexers, digitizers, timers and programmers creating advancerl data-acruisition and handling systems.

Applied Development Corp. Dept. FD, 12838 Weber Way, Hawthome, Calif.

PdA: From $\$ 1,200,6$ ureks.

Frequency Meters

680
Ranges are $\mathbf{3 . 9 5}$ to $\mathbf{4 0} \mathbf{k m c}$ in these full-waveguideband units 532 through 538 , with each unit covering one waveguide bandwidth. Accuracies are to 0.08 \%. A 100 -in. helical scale is provided.

PRD Electronics. Inc., Dept. ED. 202 Tillary St. Browklyn 1, N.Y.

TANTALUM CAPACITORS...NEW HEIGHTS IN RELIABILITY ENGNEERED BY PYRAMID

When Pyramid tantalum capacitors with proven dependability are incorporated into essential electronic equipment you manufacture . . greater reliability of your product is assured.
To design engineers searching for miniature electrolytic capacitors with unusual capacitance stability and a low dissipation factor over a wide temperature range, soundly constructed tantalum capacitors are gratifying discoveries.

Canada: Wm. Cohen. Ltd., 8!00 Park Ave., Montreal

If the equipment you make demands small capacitors with explicit reliability and peak performance look to Pyramid for tantalum capacitors that meet your most exacting requirements.
For full details urite or call: Sales IDepartmont

- CAMAD APEC 5 ECCIMC

Export: Morhan Exporting Co., 485 Broadway, N.Y. 13, N.Y CIRCLE 144 ON READER-SERVICE CARD

Better Coils begin with PARAFORMED PAPER TUBAS

CIRCLE 145 ON READER-SERVICE CARD

Standard pawei sup. plies ant transformers availatile fram stoch Others built to your specific requirements frow steck compenents. WRITE FOR COMPLETE SPECIFICATIONS

I20KV DC at 5MA

- Zero start
- Revorilble Polariey
- Inpur ilsv- 60 eyce
- Safory Interlock
- Electronle overlead elrevitis provido full range protere
- Automatie storad enargy discherge switeh
- Mo exposed high valtage components
 Mocal PSC 120-5-2 30 KV DC at 5 MA
or 35 KV DC at
- Completaly Self-Containod-Portable
- Ideal as Insulation Test Sel
- Mo "Mi-Per" TESTER

Components

- Eloctronie averload eirctita sotroble from 0.120% of
- rated current end veltage
- Many ether teatures

DEL electronics corporation

NEW PRODUCTS
Atsorptivity Recorder
601

An auxiliary unit, model 2015 is for use with Cary spectrophotometers to record extinction coefficient on a logarithmic scale. It provides spectra with shape unaffected by sample concentration or pathlength. Uses are sample identification and qualitative multi-component analysis.
Applied Physics Corp., Dept. ED, 2-24 S. Peck Revad, Monrovia, Calif.

Meter-Relays

575
Having a taut band movement, these relays call be used with accuracy in the range of 50 wa. They are particularly suitable for control applications with full-scale sensitivities of 0 to 5 na or 0 to 2 mv .
Assembly Products, Inc., Dept. ED. Chesterland. Ohio.

Stepper Mofors

With increments of 15 and 7.5 deg and rates of 200 to 5.50 steps per sec, these motors work in conljunction with a logic circuit which controls rate, sequence and direction. They may be driven by electromechanical or electronic logic
American Electronics, Inc., Instrument Div.., Dept. ED. 9.503 W'. Jefferson Blid., Culver City, Calif.

Jack-fo-Plug Adapter
681
Nickel-plated, completely shielded, with straight through connections, no. 370 is for connecting cord ends with a phono plug. It has an output $9 / 64 \mathrm{in}$. in diameter and $9 / 16 \mathrm{in}$. long for the phono-jack input. Switcheraft. Ince. D(pt. ED, 5.55 .5 N. Elston Ave. (hicago 30, Ill.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

With these
Fairchild-Polaroid Oscilloscope Cameras you can . . .

PERMANENTLY RECORD OSCILLOSCOPE TRACES in 2 to 10 seconds!

No special photographic skills are needed with a Fairchild. Polaroid Oscilloscope Camera. Two models are available. One records single, direct-reading. full-size scope images; the other two half-size images on on print. Operation of both is fast and simple, hardly interrupt lab procedures. You can evaluate prints as fast as you can pull photo evidence into reports at photo
For literafure and prices write to Industrial Products Vi vision. Fairchild Camera and Instrument Corp., 580 Midland Ave., Yonkers, N. Y. Dept. ED-4

CIRCLE 147 ON READER-SERVICE CARD

Nylan BOBBINS ${ }_{\text {FORMS }}^{\text {foll }}$

For PAM or PDM standard IRIC; and nonstandard inputs, type 3201 operates with pulse repetition frequencies of $\mathbf{7 5}$ to 2.700 pps . It has automatic drift and gain correction. Fingertip selection of 10 from up to 99 channels is possible.

American Bosch Arma Corp., Dept. ED, 5000 Parkside Ave., Philadelphia 31. Pal.

Spectrogroph Equipment

576
A complete line of mod ular units, including model 29000 direct-reading spectrometer is offered. Chemical analysis can be made on nearly every material; up to 48 elements can be analyzed simultaneously: It is suited to industrial quality control.

Applied Research Laboratories. Inc., Dept. ED. P O. Box 1710, (:lendale 5, Calif.

Repetitive Scan Accessory

577
Specifying filters to meet the more sophisticated performance requirements has its frustrations. Greater sophistication breeds more complexity, especially when compounded by miniaturization within even more critical limits. Put these all together and you have filter design problems tailor-made for our engineering department. Try us.
E. G. - We produce a Low Pass Filter with less than 2\% overshoot on square waves and more than 30 DB/Octave attenuation.

Wrile today for ymur portfotio of performance characterities.

COMPONENTS CORPORATION

2855.57 N. HALSTED ST. CHICAGO 14. ILINOIS EASTGATE 7.6566

circle 148 on reader-service card ELECTRONIC DESIGN • April 26, 1961

Your coil winding can be more efficient by using American Molded Nylon Bobbins with these exclusive feafures:

INSULATED LEAD SLOT

 Automatically insulates start of lead as an integral part of the bobbin Eliminates washers or manual taping of leadsAdaptable to automatic coil winding Leading machine manufocturers have automatic winding equipment to utilize this feature
Permits uniform winding traverse. No ire distortion due to tape bulge
INSULATED LUGS

Fully insulated on all sides
Eliminates taping
Withslands over twelve pounds pull Adaptable to most coil forms and bobbins Forward your blueprints or sample coils to us for our engineering design suggestions.
Send for samples and catalog of our complete line of bobbins and coil forms.

American Molded Products Company 2721 WEST CHICAGO AVENUE - CHICAGO 22, ILINOIS

CIRCLE 149 ON READER-SERVICE CARD

YOURS TODAY-

A frequency standard so accurate that it measures time with a rate of change of less than one second in sixty years!
5×10^{-10} DAY

Toted Dimenstions, Stendard and Power Supply: $\mathrm{T}^{\prime} / \mathrm{a}^{\circ} \mathrm{W} \times 8^{\circ} \mathrm{H} \times 122^{\circ} \mathrm{D}$. Shown mounted in $7^{\circ} \times 19^{\circ}$ reck penel.
THE JK.SULZER FS. 1100 F FREQUENCY STANDARD is a spandard of frequency and time . . . born of and for the age of space. It is fully pronsisporized. A double proportional control oven houses a 1 mc precision quartz crystal having a Q exceeding 2 million. Each unit is built, aged, and calibrated at Washington, D.C., against groundwave signals of WWV. Simultaneous outputs of 1.0 mc and 100 kc . A companion power supply permits operation from 115 volt AC plus automatic 12 hours minimum of emergency or portable operation from batteries. Today, you can order this 5×10.10 /Dey or pobilisy. for early delivery, for a wide range of research and sesp ap. plicapions. Write for technical literature.

The James Knights Company, Sandwich, Illinois

SPECIALISTS IN FREOUENCY MANAGEMENT for space exploration programming, high speed navigation, and soectrum conservation in the growing communications field. CIRCLE 150 ON READER-SERVICE CARD

CIRCLE 151 ON READER-SERVICE CARD

The little IO-10 has big applications. Use it in industrial, medical and general service fields for computer "read out" and for oltage, frequency and phase shift measurement. It features identical vertical and horizontal AC or DC coupled amplificrs. external sync terminal, external capacity binding posts for sweep rates lower than 5 cps , transformer-operated power supply, voltage-regulated B + and bias and excellent specifications. 3RP-1 CR tube included. Send for free Heathkit catalog or sec your nearest Heathkit dealer.

HEATHKIT ${ }^{2}$ |

HEATH COMPANY Benton Harbor 60, Michigan
Proose send the Froe Heathkit catalog
NAME
ADDRESS
cirr \qquad

NEW PRODUCTS

Generator

Triple-function type LRG 051 produces these synchronously initiated output waveforms: positive $100-\mathrm{v}$ sawtooth, positive $10-\mathrm{v}$ pulse and positive $10-\mathrm{v}$ pulse delayable within the duration of the sawtooth. Operation can be triggered or gated from an extemal waveform.

Argonaut Associates Inc., Dept, ED, P. O. Box 273, Beaverton, Ore
PdA: \$200; f weeks.

Magnetic Amplifier

For controlling heater power, model FAP-T-601 amplifier mects MIL-E-5272A. Temperature accuracy is $\pm 0.05 \mathrm{~F}$ using a 760 -ohm sensor with a temperature coefficient of 0.002 .5 ohms per deg. Efficiency is 75 per cent at full output. Input is 11.5 $\pm 6 \mathrm{v}, 60 \pm 3 \mathrm{cps}$

American Research and Manufacturing Corp., Dept. ED. 920 Halpine Ave., Rockville, Md.

Adapter for Scope Camera

For the firm's Oscillotron, this adapter permits the camera to accept holders for standard 4×5 films. It also permits ground-glass focusing and can be interchanged with the Polaroid back.

Beattie-Coleman, Juc., Dept. ED, 1006 N. Olive St., Anaheim, Calif.

Frequency Meter

683
Range is 2.4 to 3.7 in the 583-D calibrated precision unit. Accuracy is $\pm 0.3 \%$ at room temperature and $\pm 0.8 \%$ from -40 to 50 C . Connectors are type N jack. Insertion length is 3-23/32 in

PRD Electronics, Inc., Dept. ED, 202 Tillary St., Brooklyn 1, N.Y.
Have you sent us your subscription renewal form?

Having a built-in computer to solve strain-to stress equations automatically, the SR-4 gage provides elrectrical responses proportional to stress or strain by . ing two independent, axial strain-sensing elements oriented 90 deg apart.
Baldwin-Lima-Hamilton Corp., Electronics \& In strumentation Div., Dept. ED, 42 Fourth Ave., Waltham 54, Mass.

Miniature Fittings

580
For use at 111 to 25 kv at low currents, these fittings are for power supplies, infrared detectors, test equipment and instrumentation. Temperature range is -65 to +150 F , they can be exposed to 100% relative humidity and contour tolerance is $\pm 0.002 \mathrm{in}$.
American Research and Manufacturing Corp., Dept. ED, 920 Halpine Ave., Rockville, Md.

Mofor Generator

581
Brushless, synchronous and with ratings of 3 to 150 kw , series 32 has a voltage regulation of 1%. Closer regulation is possible. Frequency is held to $400 \mathrm{c} \cdot \mathrm{ps}$. Standard harmonic content is 2 per cent. Little maintenance is nceded.
American Electronics, Inc., Dept. ED, 1598 E. Ross Ave., Fullerton, Calif.

Precision Potentiometers
618

With $\mathbf{1 0}$-turn design and a diameter of $7 / 8 \mathrm{in}$., series $59 \mathrm{M} 14-10$ units have resistance values of 1,000 to 100,000 ohms in linear functions. Standard resistance tolerance is ± 5 per cent; independent linearity is ± 0.25 per cent. Power rating is 4.5 w at 40 C . Clarostat Manufacturing Co., Inc., Dept. ED, Dover, N . 11 .

Transisfor Tester

684
For testing $\mathbf{3 , 6 0 0}$ units per hour, the Vast I is a 20 -parameter, go/no-go test unit. Information is recorded on a 2,000 -bit program card and is assimilated by card-reader circuits and transposed into circuit adjustments. Two operators are usually neerled.

Philco Corp., Lansdale Div., Dept. ED, Lansdale, Pa .

ELECTRONIC DESIGN • April 26, 1961

CONTROL DATA

COMPUTERS business machines data reduction data processing machine control INDUSTRIAL CONTROL

High Speed Punched Paper Tape Reader

- Unsurpassed Reliability
- Advanced Mechanical Design
- 350 Char/Sec Read Rate
- Start-Stop or Continuous Mode
- 5. 7, or 8 Level Tape
- Tape Widths: ${ }^{13 / h e^{\prime \prime}}, 7 / 8^{\prime \prime}, 1^{\prime \prime}$
- Instantaneous tape width selection
- Reads all punched tape Paper-Plastic Oiled or Non-oiled
- Complete freedom from programming limitations

The Control Data Model 350 Paper Tape Reader employs the most advanced tape con- trols and reading techniques. Multi-colored tapes can be read interchangeably without the need of bias adjustments, and new specially designed light guides in the reading head eliminate dirt collecting holes. The precise control system eliminates troublesome resonances and provides complete freedom from programming limitations. These and other features combined with careful attention to details and quality, result in a paper tape reader which provides new high standards of reliability and versatility.
4 CONTROL DATA CORPORATION

```
CEDAR ENGINEERING DIVISION
TWX-MP 974 - 5806 36th SI. Wost - Minneapolis, Minn. - WEst 9-1687
CIRCLE 154 ON READER-SERVICE CARD
```

 CIRCLE 155 ON READER-SERVICE CARD

BUILD - YOUR - OWN ELECTRONIC ORGAN
STEP UP TO AN

PIPE-LIKE TONE AND APPEARANCE
DIRECT FACTORY TO OWNER SAVES 50\%

PAY-AS-YOU
G EATEST
NA ME KN
ORGAN KITS
20th CENTURY
SUCCESSORTOTHE PIPE ORGAN STEP-BY-STEP INSTRUCTIONS

HOME, CHURCH AND CONCERT MODELS 2-3-4 MANUALS FROM
\$1,750 fo \$12,500

WORLO S LARGEST SELECTION OF ORGAN KITB
Send for free lierofure AND custom- Blit onganics, INC.
ELECTRONIC ORGAN DIVISION
4949Y YORK BLVD., LOS ANGELES 42, CALIF, CIRCLE 156 ON READER-SERVICE CARD

Tranaistorized circuitry with high pre-
cision glase-sealed crystal
stamility:

Standard frequencies . . . 1000 kc (Type
at room temperature: 1×10^{-8} CCO-7M) and 5000 kc (Type CCO.7L)

- over range $0^{\circ} \mathrm{C}$. $10+60^{\circ} \mathrm{C}$.: 3×10^{-8}

Beiley

BLILEY ELECTRIC COMPANY UNION BTATION BLDG., ERIE, PENNSYLVANIA CIRCLE 157 ON READER-SERVICE CARD

Application data on

75

BAIRD-ATOMIC,INC.
33 university road • cambridge 38 mass. CIRCLE 158 ON READER-SERVICE CARD

NEW PRODUCTS

Indicator Tubes

New design of Nixie tubes provides flattened tube face and cutaway anode to permit higher positioning of the cathode numerals. Viewing angle is increased from 90 to 160 deg . Life is $200,000 \mathrm{hr}$. Type B5092 replaces B5031; type 136091 replaces B6033. A completely new large tube is also offered.

Burroughs Corp., Electron Tube Dix., Dept. ED. Plainfield, N. J.

Recorder-Reproducer

A two-speed, magnetic-tape unit, model R168-C is for mobile use. It accepts $1 / 4-\mathrm{in}$. tape on reels to $10-1 / 2 \mathrm{in}$. Speeds are $7-1 / 2$ and 15 ips . Signal-tonoise ratio is 40 db or better. Bias frequency is 125 kc. A number of configurations can be furnished.
American Concertone, Inc., Dept. ED, 9449 W. Jefferson Blvd., Culver City, C.alif.

Epoxy Pencil

A no-mix, single unit, this epoxy pencil can be used in bonding, cementing, sealing and insulating. The epoxy requires no special storage and provides a permanent, waterproof bond that cures in 7 min at 401 F. The pencil comes in an aluminum, collet-type holder.
Cetron Electronic Corp., Plastics Div., D(pt ED. 2265 E. Foothill Blvd., Pasadena. Calif.

Power Transistors

Provide fast switching. The 2N1.907 high-fre-quency/high-current germanium power transistors can switch 5 amp at a typical time of 2.5 usec. Guaranteed $\min \mathrm{h}_{1}$ is 50 at 5 amp and 10 at 15 amp . making possible reduced input drive current.

Texas Instruments. Incorporated, Dept. ED. Dallas 22, Tex.

582

614

638

plastics

SPIRAL WRAP tacıng cord zippertubing sleeving cable clamps harness board posts

HARNESSING MATERIALS

 STOCKED IN DEPTHAlso Rod, Sheet \& Tube and AIR DUXE air wound coils for $\mathrm{P} \& \mathrm{~d}$, prototypes and production. From jobber stocks or direct.
SEND FOR FREE CATALOG

CIRCLE 159 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961

Mobile Antenna

578
This $\mathbf{3 0}$-ft, scanner antemma is designed for easy transport and is erected by a winch or a hydraulic lifting device. It is operable under normal wind conditions without guys ancl comes with a mesh or a solid surface. Designation is model 111

Antenna Systems. Ince, D(pt. ED), IIngham, Mass.

Planar Acceleration Switch

583
: rom 0.25 to $\mathbf{1 0 0}$ is the range of sensitivity for tuis device. Accuracy is $\pm .5$ per cent. The switch closes a circuit upon the application of a predetermincel vector acceleration. Units are produced with almost any vector diagram

Aerolyne Controls Corp., 90 Cazaa Blved., Farmingdale, N. Y.

Pressure Transducers

Having ranges of $\mathbf{2 0}$ to $\mathbf{1 0 , 0 0 0} \mathbf{~ p s i g}$, these units (all be over-pressured by a factor of 10 without neeeding callibration. Nominal output resistance is 3.50 ohms; power needed is 280 max. Bonded silicon, strain-gage construction is msed. Units are called i.50. Century Electronics \& Instruments, Inc., Dept. ED. 1:33.3 N. L'tica Ave., Tulsa 10, Okla.

Phase Meters

584
With ranges of 500 kc to 1 cps , the 40.5 serie phase meters provide direct indication of phase angle. Symmetrical waveforms of any shape can be accepted. Drilt is less than 0.001 deg for 10 hr of operation. Relative accuracy is ± 0.25 per cent: absolute accuracy is ± 2 per cent at most frectuencies. AD.j't Electronics Lalb, Inc., Dept. ED, 24!) Terhume Ave., Passaic, N. J
PseA: s.5ts to s.59.5; 1 to 2 wreks

Ganged Capacitors

686
For precision tracking, these mits come in close tolerances. Made to customer specifications, they permit tracking in booth directions of rotation. The entire assembly is shielded. Terminations may be solder or screew type or coaxial.
Dammarlund Manufacturing Co., Inc., Dept. ED 460) W. 3th St., New York 1, N.Y.

NEW MINIATURIZED LIGHTED PUSH-BUTTON SWITCHES SAVE PANEL SPACE

MICRO SWITCH . . FREEPORT. ILLINOIS A division of Honeywell

The new "302PB" Series combines control and visual indication in one completely assembled unit that requires less than one cubic inch of panel space. These miniaturized lighted push-buton assemblies can be mounted or removed withour tools.
The display screen, mounting flanges and two single-pole double throw basic switches are all integral components, permanently assembled to make a mechanically strong unit built for long life Fifteen display screen color combinations are available, obtained by use of a split screen. A separate miniature lamp illuminates each half of the screen. These lamps are designed for infinite service life "302PB" Series switches conform to the applicable requirements of MIL-S-6743, MIL-S-6744 and MIL-E-5272A. Check the nearby micro switch Branch Office, listed in the Yellow Pages for full information or write for Data Sheet 182

Honeywell

Canada: Honesuell Controls Lemited. Toronto 17, Ontario
MICRO SWITCH Precision Switches

THE VOICE OF EXPERIENCE SAYS -

The most valuable lesson an upcoming engineer, architect or draftsman learns is "Use the best tools!" This means Castell \#9030 Black Gold graphite-saturated lead that stays black without flaking, feathering or "burning out." Gives you crisp, opaque lines on all surfaces, including Cronar and Mylar base films. Castell \#9030 never hesitates because of gritty spots. Remarkably uniform in all degrees, 7B to $\mathbf{1 0 H}$, each as precise as a machine tool. Erases without leaving ghosts. Plastic tube with gold cap.

FITS ALL STAMDARD HOLDERS. Piek up a tube from your supplier today.
A.W.FABER-CASTELL Poncll Co., Inc., Nowark 3, N. J.

[^7]
NEW PRODUCTS

Wirewound Resistor

Preset and variable, type INS-110 has a mounting plate to insulate the control. It is for hot-chassis or other potentiometer uses and can be furnished with a molded shaft. Diameter is $3 / 4 \mathrm{in}$. Rating is $\mathbf{1 - 1 / 4}$ w at 40 C , derated to no load at 105 C .

CTS Corp., Dept. ED, Elkhart, Ind.

Pressure Switch

587
With settings of 5 to 5,000 psi, absolute or gage, this switch has a temperature range of 6.5 to 250 F . It has metal-welded construction and needs no synthetic seals. It can be used in severe environments. Designation is P / N series 58520.

Century Geophysical Corp., Dept. ED, 515 S. Main, Tulsa, Okla.

Revolution Counfer

Offered in 11 standard ranges, series 312 shaftdriven counter has a repeat-count accuracy of 0.25 per cent of the dial range. The shaft requires an operating drive torque of $1-1 / 4 \mathrm{oz}-\mathrm{in}$. Applications include process, batch system and automatic flow control.
Automatic Timing \& Controls, Inc., Dept. ED, King of Prussia, Pa .

This is the time of our annual subscription renewal; Return your card to us.

CIRCLE 162 ON READER-SERVICE CARD

HUMIDITY
ACCURATELY CONTROLLED THROUGH
Custoon Engineered Design

Testing for reliability of relays is accomplished by The Hartman Electrical Manufacturing Co. of Manstiold, Ohio in this throe cu. f. environmental chamber.

It provides Low Temperature to minus $120^{\circ} \mathrm{F}$. High to $500^{\circ} \mathrm{F}$. Altitude to 150,000 feet and Humidity 20% to 95%.
noser-100.sm
Environments, chamber sizes and styles are available in accordance with your specificetions. Our enginoering

CINCINNATI

 SUB-ZERO PRODUCTS3930 Rooding Rood, Dopl. ED3, Ciment
circle 163 on reader-service card ELECTRONIC DESIGN • April 26, 1961

WHERE'S THE RECESSION? 508 COMPANIES demanding men

It's a fact that we can prove, since Cadillac is retained by all of the nation's best electronic firms-from coast to coast. Our clients aren't worried about a recession. They need hundreds of men in the electronic field-and immediately! These positions offer salaries ranging from $\$ 6,200$ to over $\$ 50,000$. If your present position doesn't offer the long range opportunities that you expected, contact Cadillac today.
Remember, Cadillac's service is COMPLETELY CON FIDENTIAL and available to you ABSOLUTELY FREE OF CHARGE.

FREE-Mont'y Opportunities Bulletin

If you wish to receive - monthly bulletin of the finest available electronics opportunities, simply send us your nome and home oddress (ond, if you wish, a review of your qualifica tions). Our services are without cost to you through our Chicago office and our Las Angeles subsidiary, Lon Barton

Associates.

CIRCLE 873 ON READER-SERVICE CARD

Isolation Transformers

595
Electrostatically shielded. Designed to closely approach battery performance in freeing laboratory instruments from stray pick-up, these isolation transformers are available in three ranges: 50 va ; 150 va ; and 500 va . Units are hermetically sealed and meet the requirements of MIL-T-27A.

Newport Scientific Co., Dept. ED, 638 W. 17th St., Costa Mesa, Calif.
PúA: \$33 for the 50 va model; from stock.

Monitor-Receiver

Fm-crystal controlled, this unit comes in model RA-52 for low band with a sensitivity of less than $0.5 \mu \mathrm{v}$ for $20-\mathrm{db}$ quieting and high-band model RA-1.50 with less than $0.75-\mu \mathrm{v}$ sensitivity for $20-\mathrm{db}$ quieting. Both have a selectivity of $\pm 30 \mathrm{kc}$ greater than -40 db .

Checker Electronics Corp., Dept. ED, P. O. Box 251, Grayslake, III.

Environmental Chamber

588
Capacity is 0.5 cu ft ; standard low temperature range is -10 to -60 F . A high temperature range to +500 F can be furnished. Called PENGUIN $/ 5$, the unit is suited for transistor testing, miniature bearing manufacture and other uses where space is at a premium.

Cincinnati Sub Zero Products, Dept. ED. 3932 Reading Road, Cincinnati 29, Ohio.

Hermetic Feed-Through Seals

593
Able to operate at 900 C , these seals are for electronic components in high-altitude, military aircraft egulipment. Shock limit is $10,000 \mathrm{~g}$. Composed of a threaded ceramic, a flange and a solid feedthrough, the units are 1 in . long and $1 / 2 \mathrm{in}$. in diameter or $1-3 / 16 \mathrm{in}$. long and $3 / 4 \mathrm{in}$. in diameter. Ceramics International Corp., Dept. ED, 39 Siding Place, Mahwah, N. J.
$\boldsymbol{P} \in \boldsymbol{A}: \$ 2$ in lots of 2,$000 ; 8$ to 14 days.

Computer Diodes

687
Diffused silicon mesa types 1N914 and 1N916 operate at $75-\mathrm{ma}$ rectified forward current. Maximum recovery time is 4 nsec ; capacitance is low. Internal construction meets military specifications.

Princeton Electronics Corp., Dept. ED. Princeton, N..

1001 Ways to
 Machine Laminated Plastics

An Example of

Synthane You-shaped Versatility

There are many fast, economical ways to machine laminated plastics-if you have the equipment to do the job. We have! Synthane is just about tops in U. S. for plastics fabrication. That's our business. We have all the standard tools plus many machines designed especially for the fabrication of laminated plastics. Why bother to improvise when we have what it takes to do the job-quickly and economically.
You-shaped Versatility makes Synthane a Better Buy in Laminates
 Synthane Corporation. 42 River R1., Oaks, Pa. Gentlemen:
Please send me information regarding the facilities of Synthane for fabricating laminated plastic.

Name.
Address
city. \qquad
CIRCLE 166 ON READER-SERVICE CARD

PRECISION - Square, Flat

 and Rectangular Wirewith Controlled Edges
(.)

For WIRE-WRAP and PLUG or PIN type CONNECTORS for computors, control systems, missiles, etc., Also for springs, terminals, forms, fit tings, prongs, contacts and clips.

Silvercoate © Beryllium Copper - Brass - Bronze - ni-clad-ti Titanium - Aluminum - Hot Solder Dipped - Tinned - etc. Square and rectangular shaped wires are frequently used in modern "wrapped" terminal and pin or plug type connectors. For this application the edges must be finished quite sharp (usually .003 radius corners or less) but without a burr or flashing. Also required are closoly controlled dimensional tolerances and smooth finish. Uniformity of temper is essential. Therefore close control of all facets of wire manufacturing is of paramount importance.

CIRCLE 167 ON READER-SERVICE CARD

SPECIAL OFFER FOR ELECTRONIC DESIGN SUBSCRIBERS
These sturdy attractive box files are ideal for keeping copies of Electronic Design within easy reach for reference, and will keep them looking as good as new. Two box files will hold 26 issues - a year's worth of practical design information. Order two now while this special low rate of ONLY $\$ 2.00$ EACH* still applies.

```
Please send...........Electhonic Desic.n Box Files.
    Name & Title
    Company
    Address
    City..
            State
    Electronic Drsign, 830 Third Ave., N. Y. 22, N. Y.
    Cash enclosed }\square\mathrm{ ($2.00 per unit)
    Bill me }\square\mathrm{ ($2.50 per unit)
    -Regular price $2.50, save 50c if cash enclosed with order
```


NEW PRODUCTS

Angle-Beam Transducers

Offered in a variety of types, these transducers are for use with ultrasonic flaw-detection equipment. Type ZSL, for example, can be used to produce angles of 45 to 90 deg , as specified. Its operating frequencies are $1,2.5$ and 5 mc .
Branson Instruments, Inc.. Dept. ED, 40 Brown House Road, Stamford, Conn

Punched-Tape Reader

Having a readout speed of almost 8,000 bits per min , this reader provides 132 parallel, form A contacts rated at 28 v and 1.50 ma . Forward or reverse operation is possible. Reliability is 99.99997 per cent. It uses $70-\mathrm{mm}$ Mylar tape.
Chalco Engineering Corp., Dept. ED, 15126 S. Broadway, Cardena, Calif.

Vector Analyzer

With a range of 20 eps to 100 kc at an accuracy of 2 per cent or 0.02 deg , type 202 measures very small phase angles, phase error between an unknown component and a standard component, voltage across two points both above ground potential and vector relations to 500 mc

AD-YU Electronics Lab., Inc., Dept. ED, 249 Terhune Ave., Passaic, N.J.
P屯A: $\$ 588$, I to 2 weeks

Don't miss an issue of ELECTRONIC DESIGN; Return your renewal card.

585

Tough-as-tortoise-shell Armag armor is an exclusive Dynacor development. It is a thin, non-merallic laminated jacket for bohbin cores that replaces the defects of nylon materials and polyester tape with very definite advantares -and you pay no premium for Armag extra protection
Tough Armag is suitable for use with normal encapsulation techniques on both ceramic and stainless steel bobbins. It withstands $180^{\circ} \mathrm{C}$ without deteriora tion-is completely compatible with poured potted compoindshas no abrasive effect on copper wire during winding-fabricates easily to close-tolerance dimen-sions-inner layer is compressible to assure tight fit on bobbin-does not shrink, age or discolor.
Write for Engincering Bulletins DN 1500, DN $10(6)$ A, DN 1003 for complete performance and specification data covering the wide range of Dynacor lou cost Standard, Special and Custom Bobbin Cores-all available with Armag non-metallic armor.
DYNACOR/
DYNACOR,INC. a subsidiary of sprague electric co 1012 Westmore Ave. Rockville, Morylond CIRCLE 168 ON READER-SERVICE CARD ELECTRONIC DESIGN•April 26, 1961

Crystal Unit

Size is intermediate, between $/ A . N$ HC-6/u and HC-18/u. The range of 250 to 800 kc is covered with DT or CT cuts and the range of 1 to 1.50 mc , with AT-cut quartz crystals. Principal applications are filters, discriminators and oscillators.

Clark Crystal Co., Inc., Dept. ED. Marlhero, Mass.

Fused Mefers

Her /y-duty, multi-range meters in this series stand all o. erload of 10 times greater than normal for 1 hr . Included are the 410 triple-range ac voltmeter, the 420 dual-range ac ammeter, the 4.30 triple-range dc voltmeter, the 440 triple-range dc ammeter (shown) and the 450 galvanometer.

Buck Engineering Co., Dept. ED, 41 Marcy St. Freehold, N. J.
PdA: \$36 fo \$42

Digital Clocks

Up to three independent outputs can be provided by model 2600 or 2700 . Outputs are parallel. decimal contact closure patterns based on 12. or $24-\mathrm{hr}$ time. Seconds and tenths of minutes ontputs are obtained "ith a rotary switch.
Chrono-Log Corp.. 1)(pt. E1), Bux 4587, Philadelphia 31, Pa
réa: s490 to sfiti)

Measuring Device

590
For surface finishes of 1 to 1 ,(100 uin. on metals, plastics, ceramics, and organic materials, model MS IOMO Surfindicator can be used at any point in a production line or inspection area. It is transistorized and uses two 9 -v batteries
Brush Instruments, Div, of Clevite Corp., Dept ED), 37th \& Perkins, (leveliand 14. Ohio.
P's.A: $\$ 920$: 30 days

Thin-Film Systems

688
For microcircuits, EB-101 equipment offers standard tolerances and high reliability. This equipment is tor the production of complex circuits composed of thin-film conductors and multiple resistors.
(;'C Electron Heating Corp, Dept. ED, 81 Hicks Ave., Merdford, Mass.

CIRCUIT IDEA FILE

Looking for closer gain-matching?

PUSH-PULL IN
COMPLEMENTARY SYMMETRY

SILICON

looking for closer gain-matching in your push-pull com plementary Symmetry circuits, you will find the answer in these Honeywell Power Teriodes.

	the problem		the answer
POWER TRANSISTORS	PNP	NPN	TWO-8ASE PNP TETRODE
CURRENT GAIN	HIGH	AvERAGE	average*
transconductance	HIGH	AVERAGE	averace*
LEAKAGE	AVERAGE	LOW	LOW
			Controllable zain teature. Ower Tetrude is capable ing the current gain. the e. and the leak 1 lie of germanium NPN tranin the push-pull com- netry circuit sliown albuve.

Honeywell

H. Funt in Cantared

Sales and Service offices in all primoipal cities of the uorid.

[^8]CIRCLE 169 ON READER-SERVICE CARO

BENDIX-PACIFIC offers these excellent opportunities FOR ENGINEERS
"EAGLE" MISSILE PROGRAM
Senior Engineers are required with BSEE or MSEE with design experience in solid state circuitry on the Navy est include receiver, digital, microwave and servo systems; IF amplifiers, VCOs. discriminators, radar, missile control design. DC power supplies and digital to-analog circuitry.

SYSTEMS RESEARCH
Engineers with BSEE or MSEE with background in circuit analysis or mathe matical analysis
airborne radar
Senior Engineers with BSEE or MSEE and experience in all phases of microwave and radar transistor circuit design.
militarar mavication
Senior Engineers with BSEE and experience in low frequency electronic circuit specs or transistor techniques.

Please send resume to
W. C. WALKER, Engineering Employment Manager

Bendix-Pacific Division
11604 Sherman Way NORTH HOLLYWOOD CALIF
NOUIRY FORM, PAGE 163

NEW PRODUCTS

Variable-Speed Drive

Two new 5-hp electronic drive systems, models 1P11-20 and 1P81-20, are available to vary the speed of a $440-\mathrm{v}, 60-\mathrm{cps}$ motor. Either system, complete with motor, provides 2% speed regulation from 60 to $2,400 \mathrm{rpm}$ from no load to full load.
Electro-Devices, Inc., Dept. ED, P. O. Box 2308, Paterson, N. J.

Servo Analyzer

Modulation rates are 0.005 to $\mathbf{1 , 0 0 0} \mathbf{~ c p s}$, provided in sinusoidal, step and ramp functions, directly or in suppressed carrier form. Carrier frequencies of 50 to $10,000 \mathrm{cps}$ may be used. Designated model 101, this unit measures phase and gain response on servo systems, amplifiers and other equipment.

Chance Vought Corp., Dept. ED, Dallas, Tex.
PGA: $\$ 2.952$; 60 to 90 days.

High-Gain Preamplifier

586
Sensitivity is $\mathbf{1 0} \boldsymbol{\mu v}$ per chart line in direct-writing recorder use. Input impedance is $\mathbf{1 0 , 0 0 0}$ ohms and is foating and guarded. Response to a step input is 9 () per cent in 2 msec . In-phase rejection to a differential input is 120 db at dc, 60 and 400 cps . Linearity is 0.2 per cent. The unit is designated RD 421.520 ; model RD 421500 has $100-\mu \mathrm{v}$ sensitivity.

Brush Instruments, Div. of Clevite Corp., Dept. ED, 37th \& Perkins, Cleveland 14, Ohio.
PdA: \$550; from stock.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

Digital Clock

591
Requiring 3.5 in . of panel space, model 2500 is a time source for data loggers, computers and other applications where a parallel, decimal contact closure pattern representing 24 -hr time is required. Up to three independent outputs can be provided in one clock.
Chrono-Log Corp., Dept. ED, Box 4587, Philadelphia 31, Pa

Pass-Through Oven

Model 1405-M pass-through oven, with litt-sliding doors, can heat large loads of components continuously at 600 F . A 550 -cfm blower insures rapid heat transfer and maintains uniform temperatures through. out the $32-\mathrm{in}$. wide, $25-\mathrm{in}$. deep, $30-\mathrm{in}$. high chamber despite frequent loading and miloading. Standard controls include indicating-controlling thermostat, pilot light, three-heat selector, and main switch. Other models are available with chamber volumes up, to $80-\mathrm{in}$. wide, 30 -in. deep, and $4(0$-in. high.

Electric Hotpack Co., Inc., Dept. EID, Cottman Ave. at Melrose St., Philadelphia 3.5, Pa.
P\&A: Varies with temperaturer range, 451060 days.

Thermal-Shock Chambers

589
Accuracy is $\pm \mathbf{0 . 5} \mathbf{F}$. Model fion has a range of -100 to +500 F , with 5 -min pulldown and $30-\mathrm{min}$ warmup. Model 800 has a range of -320 to +500 F . Designed for bench-top use, the mits have inside dimensions of $16 \times 8 \times 8 \mathrm{in}$. The dexor is removable. Cincinnati Sul) Zero Products. Dept. EI). 3932 Reading Road, Cincinnati 29, Ohio.

Analog Confroller

Is accurate and stable. Analog computer-controller (M-3 provides real time control for petro-chemical processes, simulation, or operator guidance. Stability and over-all accuracy may reach 12%. Solid-state system provides 1 to 3 outputs from 5 to 10 inputs.
Dresser Electronics, Dept. ED, 10201 Westheimer Road, Houston 42, Tex. P\&A: $\$ 5,000$ to $\$ 10,000 ; 60$ days.

ELECTRONIC DESIGN • April 26, 1961

It seems there's a taber teledyne for practically Evenv applicationi"

The BONDED STRAIN GAGE PRESSURE
TRANSDUCER that resists vibration and acceleration

We also have a complete line of transistor amplifiers available from stock.

Write for Illustrated Literature

TABER INSTRUMENT CORPORATION
"Where the Accent is on Accuracy and Reliability" Section 161 North Tonawanda, N Y 107 Goundry Si. Telephone: NX 3-8900 Tonawanda, N. Y. TwX-TON 277

CIRCLE 172 ON READER-SERVICE CARO

SOLENOID VALVES OF
 FOR ETCHING, CLEANING!

5382 Carnegie Avenue - Kenilworth, N. J. - CH 5-1665

> In Trio Labs' new Standard Laboratory AC VTVM...the signal circuits are isolated from case and power circuits, to provide

- floating measurements previously impractical
- accurate voltage measurements to 5 cps
- shock safety: case isolated from circuit under test
The new Model 109.2 has 12 voltage ranges calibrated to RMS value of a sine wave: 0.001 to 300 VAC full scale, with frequency range of $5-200,000 \mathrm{cps}$. Accuracy is $\pm 2 \%$ full scale. Can measure accurately to 20 microvolts. Input impedance 10 megohms. Low distortion amplifier output voltage can be externally shorted without internal damage. Power: 105-125 VAC, $50-420 \mathrm{cps}, 25$ watts. Price: $\$ 220.00$
For free 36 -page Engineering Guide, write to Dept. ED-4
trible mio haoc ories, me.

circie 175 on reader-service card

NEW PRODUCTS

Photometers

Double-beam, ratio-recording Spectro-photometers DK-1A and DK-2A have a wavelength range of 18.5 to 3.500 mu and a resolution of $2 \AA$ at 220 m . The DK-2A is for bench-top use. A unit for far ultraviolet applications is also offered.

Beckman Instruments, Scientific and Process In struments Div., Dept. ED, 2500 Fullerton Rd., Full erton, Calif.

Size 8 Synchro

A sector switch provides a closed circuit when the position of the synchro exceeds $\pm 70 \mathrm{deg}$ from EZ. Adding 0.5 in . to the over-all synchro length, the unit can be used wherever switching is reguired in conjunction with synchro angular positions.
Clifton Precision Products Co., Dept. EID. 50.50 State Road, Drexel Hill, Pa.
P'A: 4 to 6 weeks.

Magnetic-Tape Plofter

Producing an X-Y plot of digital data. model 5 To plots calculated electron ballistics, reliability analyses and other computer outputs. The transport reads tapes with a linear density of 200 bits per in. The recorder uses a bi-directional, rotary step motor

California Computer Products. Inc., Dept. ED, sil4 Cleta St., Downey, Calif. P心. A: $\$ 24,500$; 90 days.

Porous Alumina

Used in high-power are applications, porous aluminal offers high impact strength and heat resistance. Material helps dissipate arc energy through outgassing and by providing a rough surface. Uses include circuit breakers, lightning arresters, arc diffusion systems, and other insulation applications.
Electronic Mechanics. Inc., Dept. ED, 101 Clifton Blod., Clifton, NJ.

This is the time of our annual subscription renewal; Return your card to us.

622

619

513

SQा.p

BY BRANSON
THE FIRST
4 pole crystal can relay

PROVEN IN CRITICAL MILITARY SYSTEMS

The Branson
Type AR APOT re-
lay. 2 amp. contacts. Withstands 2000 cps at 20G. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Hermetically sealed and dry nitrogen filled for high altitudes. Wt $15-20 \mathrm{gms}$. Dim. $.384 \times .784 \times .882$. Hook, plug-in or wire leads available. Std. 0.1 in. grid spacing. Suitable for dry circuit conditions. Meets specs: MIL-R-25018, MIL-R-5757C, MIL-E-5272C.
Delivery from stock, special orders in 4 weeks.

$=\operatorname{BRANSON} \approx$

 Coma41 South Jefferson Road Whippany, Now Jersey TU 7-1100
CIRCLE 176 ON READER-SERVICE CARD ELECTRONIC DESIGN - April 26, 1961

Accurate, stable cw signal for tracking of missiles or vehicles is provided by the TT-1001 Mod 7 uhf telemetering transmitter. Frequency is 225 to 245 mc . Accuracy and stability are better than 0.01%; power output is 260 mw . Silicon transistors are used throughout. Weight is 17 oz with battery, 6.5 oz without. Battery life is 1 hour min.
Frontier Electronics Co., Dept. ED 4600 Memphis Ave., Cleveland 9, Ohio

Tape Reader

Reading speed of 300 characters per sec is achieved by type 271 tape reader. Fully synchronous operation is possible up to 220 characters per sec. Fast advance and rewind speed is 1,000 characters per sec. The militarized reader is designed for slide or conventional mounting within a special console or standard rack.

Ferranti Electric, Inc., Dept. ED. Industrial Park No. 1, Plamview, N.Y. Pida: quote on request; 120-day de. livery.

Life-Test Oven

Up to 2,500 test stations are provided by a life-test oven for semiconductors. Design ensures exact exposure and balanced air velocity over all areas. Temperature range is 400 C ; oven is equipped with temperature limiting and air flow alarm. Through ports are provided for connections.

Forma Scientific, Inc., Dept. ED, Box 649, Marietta, Ohio.

DELAY RELAY? LOAD RELAY?

The Type A Silic-O-Netic Relay is a light, small timedelay relay. It weighs a mere three ounces, gives you any delay you spec from 0.25 to 120 seconds. Keeps at it, too, for several million operations; the time-delay element cannot stick, bind, or wear.

The Type A Silic-O-Netic Relay is a light, small load relay. The continuous-duty coil does the trick. The Silic-O-Netic can be energized continuously, eliminating lock-in auxiliary circuits. Saves wire. Saves work. Saves space. Saves money.

Here, then, is a time delay relay that doubles as a load-carrier. The Type A offers SPDT or DPDT switching, with contact capacity up to three amps. Consumes, at most, two watts of AC power, three watts of DC. Available for use on one of twenty standard AC and DC operating voltages, and on request, for others. Costs far less than the two relays you would need to replace it; well worth a closer look. Write for Bulletin 5003.

HEINEMANN ELECTRIC COMPANY

156 brunswick pike

NEW PRODUCTS

Timing Relay

Solid-state timing relay, for pulse or squib applications, can turn on a $50-\mathrm{amp}$ load within $10 \mu \mathrm{sec}$ of the application of a short, low-energy, voltage trigger having an amplitude of $+17 \pm 11 \mathrm{v}$. The relay, model TR-12-50-.050, operating from a 12 v dc source, shuts off the load after 50 msec .

Curtiss-Wright Corp., Dept. ED, Inter Mountain Instruments Branch, P. O. Box 8324, Albuquerque. N. M.

Shorting Switch

Progressive shorting-type switches have separate col-lector-ring connection for complete or continuous programing. Switches, which can be ganged, come in a $1-3 / 4 \mathrm{in}$. sy for 20 and 24 pocitions, and in a $2-1 / 4 \mathrm{in}$. sq for 24 and 32 positions.
Daven Co., Dept. ED, Livingston, N. J.

Magnetic Shifters
558

Two-way magnetic shift elements, type CTR $2 \mathrm{~W}-100-\mathrm{P}-12$, provide outputs in response to shift pulses on either of two shift lines at rates from 0 to

HOW RED IS A BLUSH?

CETRON

PHOTO CELLS DO HUNDRED8 OF JOBS
How red is red! How bright is a light! These answers. and hundreds of others are all possible-instantly with the use of Cetron Photo Cells.
For counting, color sorting, color registration, light intensity, Cetron Photo Cells do the job fast and accurately. Wherever circuitry for automation requires energy from changing light or color . . . you can be certain with Cetron.
Cetron Phote Cells are used in:

- Sound Reproduction
- Facsimile
- Counting and Sorting
- Burglar Alarms
- High Speed Color Registration
- Spectroscope Reproduction

Cetron Photo Tubes are available to meet requirements of JAN Specilications.
Curren Engineen are dwon availoble to holp ie
yew iube requirement, -ine write, wire ar phome.

YOUR DEPENDABLE SOURCE FOR
RECTIFIER, THYRATRON AND PHOTO TUBES
CETRON
ELECTRONIC CORPORATION
715 Hemilion street - Geneve, illinols CIACLE IB2 ON READER-SERVICE CARD

NOT AFFECTED by magnetic fields.

居 16

 panel meters
SELF-SHIELDED DC MECHANISMS FOR GREATER RELIABILITY

SELF-SHIELDED DC MECHANISM is one of the big built-in features you get with General Electric d-c BIG LOOK panel meters. Self-shielding eliminates special calibration problems . . . allows more flexibility in locating meters on panelboards through minimizing interaction. Here's why: Unlike many other designs, the BIG LOOK's core is around the magnet . . . where it belongs . . . and shields the entire d-c mechanism. This means that interaction is eliminated, even when meters are cluster-mounted. Also, stray magnetic effect is minimized! For the complete AC and DC BIG LOOK panel meter story, just contact your nearby General Electric Apparatus Sales Office or distributor; or write for bulletin GEA7034 direct to General Electric Company, Section 597-02, Schenectady 5, New York

instrument department

general $\sqrt[6]{6}$ electric

Circle 183 on reader-service cand
ELECTRONIC DESIGN • April 26, 1961 $\operatorname{deg} \mathrm{C}$. Conn.

100 kc . The elements can be used in arrays having two different information paths; hence, they can be used for bidirectional shift registers for reversible ring counters or for matrix registers.

Dian Controls, Inc., Dept. ED, 40 Leon St., Boston 15, Mass.
Price: Approx. $\$ 34$ in small quantities.
Availability: From stock to 30 days.

Induction Motor

New line of $400-\mathrm{cps}$ induction motors, available in frame sizes up to NEMA 215, uses aluminum construction for frame and end shields to cut weight by as much as 75 per cent. Unit pictured is a $12.5-\mathrm{hp}$ motor with $7,300-\mathrm{rpm}$ full-load speed. It weighs less than 25 lb and has a 6-1/2-in. frame diameter.
Doerr Electric Corp., Dept. ED, 507 N. Fourth Ave., Cedarburg, Wis.

Baftery Substitute
556

Constant voltage supply, model $\mathrm{BS}(\mathrm{TC})-2$ can substitute for dry and wet cells for use with precision laboratory potentiometers such as the L\&N types K2 and K3 and the Rubicon types B and S. Voltage stability is better than 0.01 per cent for 10 per cent variations in 117 v line. Over 15 C to 35 C temperature range, stability is 0.001 per cent per

Dynage, Inc., Dept. ED, is Laurel St., Hartford,
P\&A: $\$ 95.00$; from stock
CIRCLE 184 ON READER-SERVICE CARD \geqslant

How CONTINENTAL CONNECTORS show they can "take it"

Most of us think of connectors as merely an indifferent link in the assembly of modern electronic components. Today's critical military and commercial requirements, however, place extra stress on the reliability of every part. Electronic connectors are vital to all missile, aircraft, computer and communication applications.

The humidity test chamber (shown above) is one of many rigorous quality control test procedures Continental uses to make sure its connectors know how to "take it". Other key tests include salt spray, vibration, impact and endurance. Uncompromising quality control schedules with tests such as these assure proven reliability in dimensions, assembly, electrical specifications and dielectric properties.

Why not consult one of our Sales Engineers in the early stages of your next design problem. A condensed catalog of our complete line is available free on request. Write to:

Electronic Sales Division

DEJUR-AMSCO CORPORATION
Northern Boulevard at 45th Street, Long Island City 1, N. Y. Exclusive Sales Agent

NEW PRODUCTS

Model 356 trimming potentiometer provides resistance values from 10 ohms to 50 K in a $1 / 2 \times 1 / 2 \times$ 0.195 in . package. The unit can operate from -5.5 to +200 C . Circular mandrel design provides 0.086% resolution at 50 K . The trimmer can dissipate 1 w up to 50 C .
Daystrom, Inc., Dept. ED, Potentiometer Div, Archbald, Pa
Acailability: From stock.

Tachometer Indicators

Complete tachometer indicator systems use permanent-magnet, instrument-type, dc generators with precisinn indicating meters to show speed of motor rotation. Various circuit arrangements are available to provide for expanded or suppressed speed scales and automatic selection of speed scale for either direction of rotation.
Electro-Devices, Inc., Dept. ED, P.O. Box 2308, Paterson, N. J.

Transient Protection

The FS. 101 switch is a fail-safe, solid-state device that protects sensitive components from transients. It will disconnect the power source from the device under test within $1 \mu \mathrm{sec}$ after safe current limit is exceeded. The device is for incoming inspection of electronic modules and transistors, for development laboratories, and for training classes.

Alpha-Tronics Corp., 1033 Engracia Ave. Torrance, Calif.

DYNATRAN WIDE RANGE DIODE TEST SET

MODEL 1808

The Dynatran Model 1808 Wide Range Diode Test Set measures the d.c. characteristics of semiconductor diodes and rectifiers . . . forward currents to 3 amperes...reverse voltages to 2,000 volts . . . reverse current from less than 1 mua to 3 ma..
Complete self contained instrument ideally suited for laboratory, production, quality control and incoming inspection.

Write for information about industry's most complete line of stand ord and custom designed instruments for semiconductor testing.

DYNATRAN

electroxics carparation
178 HERRICKS ROAD
MINEOLA, NEW YORK
Ploneer 1.4141
circle ibg on reader-service card
ELECTRONIC DESIGN • April 26, 1961

"DRESSES-UP" your panels, swilchboards, other products.

Blg
 Look
 MODERN DESIGN IMPROVES END PRODUCT APPEARANCE

Now, General Eleare Bic Look panel meter styling can help improve the appearance of your switchboards, panels and other equipment. BIG LOOK styling is the result of careful planning, development and field testing. It represents more than 28 years of General Electric leadership in creative panel meter design.
Now, BIG LOOK panel meters are available in your choice of seven attractive color windows to complement the appearance of your ment the appearanc
products or equipment.
products or equipment.
For the complete AC and DC BIG LOOK panel meter story just contact your nearby General Electric Apparatus Sales Office or distributor; or write for bulletin GEA7034 direct to General Electric Company, Section 597 04, Schenectady, New York.

INSTRUMENT DEPARTMENT
GENERAL ELECTRIC
circie 187 on reader-service caro
ELECTRONIC DESIGN - April

Low-Cost Magnet
555

A 5-1b horseshoe magnet, rated at 2,000 gauss, can lift more than 125 lb . The magnet features a high strength-to-weight-to-cost ratio.
Edmund Scientific Co., Dept. ED, Barrington, N. J.

P\&A: \$9.9.5; from stock.
Airborne Cooling Pack

New heat-transfer system, type E/HT-200-214, can dissipate $3,400 \mathrm{w}$. Intended for equipment min iaturized to the point where neither convection cooling nor fan cooling is adequate, the $25-\mathrm{lh}$ system maintains the coolant (ethylene glycol and water) between 1.50 and 170 F . The unit operates from -55 C to +55 C and from sea level to $50,000 \mathrm{ft}$. It requires $208-\mathrm{v}, 3$-phase, 400 -cps power.
Eastern Industries, Inc., Dept. ED, 100 Skiff St., Hamden 14, Conn.

Current Integrator

551

Model A309A current indicator and integrator displays the integral of a wide range of input currents as well as the amplitude and polarity of these currents. For current amplitude, 12 switch settings provide full-scale meter deflections from 3×10^{-0} through $1 \times 10^{-3} \mathrm{amp}$ on a $4-1 / 2-\mathrm{in}$. panel meter. A five-digit counter shows the current integral (charge), with a $2-1 / 2-\mathrm{in}$. panel meter serving for interpolation between successive least significant digits on the counter.
Elcor, Inc., Dept. ED, 122.5 W. Broad St., Falls Church, Va.
Price: $\$ 1,674$ plus $\$ 32$ for calsinet.

THESE "WIRE-WOUNDS" ARE CIRCUIT SHRINKERS newly
expanded line lets AXIOHM $^{\circledR}$ power resistors go into smaller circuits!

Ward Leonard AXIoнm power resistors are now available in scren sizes - down to 2 watts, up to 12.5.
They're ideal for miniaturization in printed-circuits, industrial instrumentation and automation circuitry. But they're recommended for any electrical or electronic application where the highest stability and maximum overload capacity are required.

The seven AXIOHM sizes come in a
complete range of resistance values (see table) from 0.1 to as high as 75,000 ohms. Naturally, they feature the qual. ities Ward Leonard has made famous in power resistors:

Vitrohm vitreous enamel; Ward Leonaid's specially made ceramic core; specially selected and matched resistance wire; and strong, permanent, lowresistance, spot-welded, lead-to-end-cap junctions.

Get complete details in Supplement C to Catalog 15. Write for your copy and a list of stocking distributors today. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada, Ltd., Toronto.)
 RESULT-ENGINEERED CONTROLS SINCE 1892 WARD LEONARD
|PRODUCTION PRODUCTS

to specifications

- GARNER provides tighter tolerances... improved roundness and concentricity ... squarer and smoother end cuts.

Parts ultrasonically scrubbed, chemically cleaned, and rinsed in deionized water. Shipped ready for your production line.
Meeting your specifications is insured by continuous inspection, starting with raw material.
Fast dependable deliveries based on large stocks of redraw tubing advanced production equipment, and the ability to move quickly.

Specializing in the unusual

The Garner company provides a wide variety of precision glass parts to the electronics industry. If your requirements are too precise or too unusual for conventional production techniques, Garner may well provide the solution to your problems.

T. H. GARNER CO.

Serving the semi-conductor industry since 1954 177 S. INDIAN HILL BLVD., CLAREMONT, CALIF. - NAtional 6-3526

Dual-Purpose Fixture

Crystal pulling and floating zone attachments used with model HCP-D dual-purpose unit can be changed from one application to the other with a minimum of time and effort. Model consists of the basic unit with traverse mechanism and controls for operation of the induction heating generator. The same basic support, programing and control unit is used in each adaptation.
Lepel High Frequency Laboratories, Inc., Dept. ED, Woodside, N.Y.

Cartridge Spindle

-

Thinner, smaller diamond wheels usable with the type 2 cartridge spindle are said to speed production and reduce kerf loss. An accessory for automatic wafering machines, the device allows 40 to 100% more slices to be cut from a 1 -in. crystal, with kerf losses reduced by 28 to 47\%.
Micromech Manufacturing Corp., Dept. ED, 1020 Commerce Ave., Union, N.J.

Marking Machine

Compound concave or convex surfaces on molded plastic parts can be imprinted with trademarks and other information at production

for the latest advances in design and performance always specify
Coaxial Connectors by

Automatic

METAL PRODUCTS CORPORATION 323 Berry St., B'kiyn 11, N. Y. - Evergroen 8-6057

28\%

Kincrease in scale lengthà

UP TO 28 PERCENT incroase in scale length improves meter readability.

106\% panel meters DESIGNED FOR AT-A-GLANCE READABILITY

In designing the BIG LOOK panel meter, engineers placed particular emphasis on achieving an important balance between distinctive appearance and excellent readability.
This balance of aesthetic and functional design values makes BIG LOOK panel meters easier to read, relieves eye tension and stress-and reduces reading error.
Accurate, at-a-glance readability is a prime requisite for panel meters. To achieve it, G-E first eliminated the problem of shadows by designing a cover to admit light from top, sides and bottom. The color area of the window completely hides the distraction of the moving internal mechanism. This gives you exactly what you want . . . a clear uncluttered view of the scale and an accurate reading.

For the complete AC-DC BIG LOOK story just contact your nearby G-E Apparatus Sales Office or distributor; or write for bulletin GEA-7034 direct to General Electric Company, Section 597-05, Schenectady 5, New York.

INSTRUMENT DEPARTMENT

CIRCIE 191 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 26, 1961
speeds by the model 25AE marking machine. A direct ink-marking method is used with conforming plates. The imprint can be quickly changed. Specialized inks are available.
Markem Machine Co., Dept. ED, Congress St., Keene, N.H.

Wire Bonder

Thermocompression wire bonder model 402 is capable of bonding a wire 0.0002 in . in diameter to a transistor stripe measuring $0.001 \times 0.003 \mathrm{in}$. Developed for making mesa transistors, the bonder can be used in the production of other transistors and diodes. Precision controls allow manual positioning accuracy of 10 to 15 millionths of an inch.
Kulicke and Sofa Manufacturing Co., Inc., Dept. El, 401 N. Broad St., Philadelphia 8, Pa.

Resistor Grinder

567
Fully automatic. A completely automatic spiral grinding machine for carbon and metal film resistors, model SMA holds tolerance to $\pm 0.05 \%$. It will grind diameters from $1 / 16$ to $3 / 8 \mathrm{in}$., lengths from $5 / 16$ to 2 in . It will produce a resistor with 15 ground spirals at the rate of 2,500 units per day. Machine size is $24 \times 12 \times 14 \mathrm{in}$. over-all. A voltage-control unit and resistance bridge are furnished.

Associated American Winding Machinery, Inc., Dept. ED, 750 St. Ann's Ave., New York 56, N.Y.

Sealing Machine

568
Tube-to-wire. Hermetic sealing of tube to wire is done without heat, soldering, or welding by this automatic machine. It may be operated by unskilled labor, with an output as high as 2,000 parts per hour. The standard model will seal terminals up to 0.10 in . OD, with larger capacities feasible. First use of the machine has been in the sealing of top-hat diodes.

Micromat Co., Dept. ED, 548 Piermont Ave. Hillsdale, N.J.
Price: About \$2,600.

POWER • PROTECTION • REGULATION ALL THREE IN ONE TRANSFORMERI

Does your power transformer protect semiconductor rectifiers?

How do you protect the silicon and germanium rectifiers in that advanced design power supply? Do you use elaborate circuitry or -like many power supply designers-are you using a Raytheon 2020 Voltage Regulating Transformer?

These versatile units provide stabilized voltages within $\pm 1 \%$ and are available in any of 2,020 standard models for solid-state and vacuum-tube rectifiers. You match your exact requirement from a full range of standard designs and ratings from 20 to $20,000 \mathrm{VA}$.
Write today for Catalog 4-265 with convenient Selection Guide and Power Supply Design Data. Raytheon Company, Commercial Apparatus \& Systems Division, Keeler Avenue, South Norwalk, Connecticut.

RAYTHEON

RAYTHEON COMPANY

COMMERCIAL APPARATUE \& BYETEMS DIVIBION
Raytheon voltage regulators are also avalleble from your local Raythoon diseributor CIRCLE 192 ON READER-SERVICE CARD

test... .test... test...

If you feel you must make your own pots to get exactly what you need. don't overlook quality control along the way! And this can be a messy business, what with special, elaborate techniques to quality-cherk every production stage! Oh. you'll get involved in maddening bouts with visual comparitors, ratiometers, environmental testing labs - and when you've finished - and made a few hundred revisions - you might have the quality you want!

So, before you go fly a kite - consider Ace. We've been all through this before, and have what is regarded to be the finest quality control system in the industry. It enables us to keep our final costs down, by rejecting sub-standards at each stage. without waiting for the final inspection. AIthough it's more work this way, we can offer a higher degree of resolution and linearity at a lower price. So, for precision-at-price, see your ACErep!

Herc's 0.3% linearity in a $1 / 2^{\prime \prime \prime}$ put: the Series 500 ACEPOT*. Single turn. -55° to $125^{\circ} \mathrm{C}$ range. As with all Ace components, tested in every slage of its manulacture!

PRODUCTION PRODUCTS

Soldering Machine

This machine soft-solders the ends of caps to fuse links at the rate of 3,000 fuses per hour. After soldering by induction heating, fuses are sized to uniform length and tested for continuity. A circuit is provided to feed all fuses on the belt after shut-off, so that no unsoldered fuses will leave the machine.

Induction Heating Corp., Dept. ED, 181 Wythe Ave., Bronklyn 11. N.Y.

Commutator-Fusing Machine

Eliminates soldering operation

This machine, for fusing commutators on fractional hp motors, eliminates the soldering operation. It is said to provide better quality work with savings in time and labor. Of the models available, 2 are automatic. All sizes of motor armatures can be accommodated. As many as 550 units per day may be produced.

Joyal Products, Inc., Warner Equipment Co., Dept. ED, 250 McWhorter St., Newark 5, N.J.

Soldering Machine

Semi-automatic or completely automatic soldering may be done on a variety of components with the SD-4 model 1 soldering machine. Used with Solderforms, the machine passes parts through a heating chamber for a preset period, then cools and ejects them for flux removal Speed and temperature are adjustable.

Kester Solder Co., Dept. ED, 4201 W'rightwood Ave., Chicago 31, Ill.

571

Aluminum cans for electronic applications are cast accurate, smooth and pressure tight by the unusual foundry methods of Morris Bean \& Company, Yellow Springs 24, Ohio.
aluminue
ductile iron
foundries
circie 194 on reader-service card
ELECTRONIC DESIGN - April 26, 1961

EASY-TO-READ panal metor scale is nearly 4 inches long.

panel meters

NOW INCLUDE NEW

41⁄2-INCH DESIGN

Designed with modern BIG LOOK styling, this new General Electric $4^{1}{ }_{2}$-inch panel meter features a snapon, snap-off cover for easy access to the scale face.

Improved readability, even at extreme distances, results from its expanded scale length . . . ideal for multi-scale applications on portable test instruments and panelboards. DC models of this new meter feature the same self-shielded mechanism available on 21_{2} - and 31_{2}-inch designs.
For the complete AC and DC BIG LOOK panel meter story just contact your nearby General Elertric Apparatus Sales Office or distributor; or write for bulletin GEA-7034 direct to General Electric Company, Section 597-10, Schenectady 5, New York.

INSTRUMENT DEPARTMENT

GENERAL ELECTRIC

circle 195 on reader-service card
ELECTRONIC DESIGN • April 26, 1961

Magazine Loader

An accessory for the HD-3 remote spray coater, model ML-1 stacks 40 loaded trays of axial-lead components in a portable magazine, after the parts have passed through the painting station. The loader is $57-\mathrm{in}$. high and requires a floor space of $14 \times 19 \mathrm{in}$.

Conforming Matrix Corp., Dept. ED, 841 New York Ave., Toledo 11, Ohio.

Automatic Tray Loader

For axial-lead components
Model TL-1 tray loader facilitates handling of axial-lead components. The unit automatically takes empty trays from a magazine, a hopper feeds them with straightened components, and stacks the loaded tray's into another magazine. Each tray holds 20 to 50 components and each magazine holds 40 trays, thus handling 800 to 2.000 components as a complete unit.

Conforming Matrix Corp., Dept. ED, 476 Toledo Factories Bldg., Toledo こ, Ohio.
Price: \$3,995 ca.
Availability: 2 to 3 uceks.

Lead Trimmer

For axial-lead parts
The model II 101 interchangeably cuts, forms, or cuts and forms lead wires of axial-lead components. It has a processing rate of up to 11,000 pieces per hour, a set-up time of 30 sec , and can be run by unskilled personnel. Settings for lead length, bend length, and body size are made with micrometer-type lead screws. Right-angle bend is standard; special dies may be added.

Heller Industries, Inc., Dept. ED, 70 S. Munn Ave., East Orange, N.J.
what's so different

AC,ASTATs are electrically actuated, but are pnoumntically timed, so their accuracy and reliability are unaffected by voltage variations, and recycling is instantancous. Adjustment is simple and stepless over loon-g time ranges. With moving parts held to a minimum, the life span of a typical unit is measured in millions of cycles.
Industrial models (left) are dial-adjusted for delays of .05 sec . to 15 min . in five ranges. Needle valve morlels are also available, covering the full range (. 15 sec .105 min .) in one unit. The Miniature Agastat on the right weighs as little as 15 oz . Hermetically sealed or unsealed types for MIL Spec or other demanding applications. Saves weight, saves space.

Timing accuracy and reliability are what you would expect from AGASTAT, pioneers in the development of time delay instrumentation. Single or double-pole versions, in all standard AC and DC coil voltages. Types to provide delay on pull-in or drop-out. Want complete specs, or further information? Just write Dept. 11-44.

ELASTIC STOP NUT CORPORATION OF AMERICA
 ELIZABETH DIVISION - ELIZABETH, NEW JERSEY

IN CANADA: ESNA CANADA LTO., 12 GOWER ST., TORONTO 16 CIRCLE 196 ON READER-SERVICE CARD

ULTRA-HICH VACUUM SYSTEMS

Varian's new Ultra-High Vacuum System is now available as catalog-item equipment. Provides base pressures to $10-9 \mathrm{~mm}$ Hg or lower. Eliminates necessity for custom design of complex systems. A completely integrated system, ready-to-operate. Optional power and electronic accessories are available for special installation requirements. Applications: hyper-altitude simulation, vacuum evaporation, vacuum firing and brazing, etc.
Varian's revolutionary Vaclon pump is a major component. No necessity for liquid nitrogen traps or continuous mechanical pumping. VacIon pumps are all-electronic: pumpdown cycles are automatically fail-safe.

SYSTEM COMPONENTS 1400 litre/second VacIon Pump IUltra high Vacuum Chamber IInstrumentation【Cabinet and Controls Bakeout Oven IRoughing Manifold for Mechanical Pump or VacSorb "Pump

If your design or processing requirements demand integrated equipment producing extremely low pressures, Varian's Ultra High Vacuum System may be just what you're looking for. For full technical data, write Vacuum Division.

IDEAS FOR DESIGN

The Most Valuable Ideas Need Your Votes

Be sure to vote for the Ideas which you think de serve the $\$ 50$ Most Valuable of Issue Award. You may vote for one or more by circling the corresponding number on the Reader-Service card. Choose the Ideas which suggest a solution to a problem of your own, or which stimulate your thinking. The Most Valuable of lasue Ideas will be ellglble for the $\$ 1,000$ Idea of the Year Award, with each Idea published recelving a $\$ 20$ honorarium.

Ungrounded Shield Reduces
Often it is inconvenient to locate a cathode follower stage near the high impedance circuit which drives it. But, if a shielded connecting cable is used with its shield grounded, the cable's

Fig. 1. Effective cable-input capacitance can be reduced by connecting shield to the cathode follower input.

Fig. 2. Similar cable connections can be made for amplifiers of two or more stages.
input capacitance can affect the circuit frequency response.
This equivalent input capacitance, and the effect on frequency response, can be reduced by tying the cable shield to the cathode follower input, Fig. 1, instead of to ground. Very little voltage difference then exists between the inner and outer conductors. Reactive current is reduced to a small value.

If phase shift in the cathode-follower is negligible, the voltage E_{1} on the inner conductor is in phase with the voltage \boldsymbol{E}_{2} on the shield. Reactive current I_{x} is equal to the difference between these voltages divided by the capacitive reactance of the cable \boldsymbol{X}_{c} :

Reactive current, $I_{z}=\frac{E_{1}-E_{2}}{X_{e}}$.
Equivalent input reactance, $X_{e}=\frac{E_{1}}{I_{2}}$;
Cathode-follower gain, $A=\frac{E_{2}}{E_{1}}$
These terms are substituted to yield the expression for the equivalent input capacitance, C_{e}.

$$
\begin{aligned}
& \frac{E_{1}}{X_{i}}=\frac{E_{1}-A E_{1}}{X_{r}}=\frac{E_{1}(1-A)}{X_{+}} \\
& \frac{X_{i}}{X_{i}}=\frac{C_{i}}{C}=\frac{E_{1}(1-A)}{E_{1}}=1-A \\
& C_{2}=C(1-A)
\end{aligned}
$$

Figs. 2a and 2 b show similar arrangements for amplifiers of two or more states. Resistance R_{2} is selected so that the voltage applied to the cable shield is equal to the voltage on the inner conductor.
H. W. McCord, Electron Tube Div., Radio Corporation of America, Harrison, N.J.

Short Trigger Pulse Turns On SCR, Fires Flash Bulb

A photoflash lamp had to be activated by a trigger pulse whose width was only $2 \mu \mathrm{sec}$-too narrov to fire the lamp directly. To effectively lengthen it, the pulse was applied to the gate of a silicon controlled rectifier as shown in the figure.

With no signal at the transistor input, the rectifier does not conduct. When the trigger pulse is applied, the rectifier's gate lead falls toward ground, and the rectifier fires. It remains "on" (continued on page 158.

BE SURE TO VOTE for all of the ideas you considor valuablel simply eirele on the Reader-Service Cord the numbers matehIng these next to the Idee which appears valuable to you.

SEVENTH ANNIVERSARY AWARDS

IDEAS-FOR-DESIGN

To: Ideas-for-Design Editor
Elbectronic Design
830 Third Ave.
New York 22, N. Y.
Idea (State the problem and then give your solution. Include sketches or photos that will help get the idea across.)

(Use apparcte chert if mescemary)

Here is my Idea for Design for possible publication in Erbctronc Design. I understand that it will be eligible for the Seventh Anniversary Awards- $\$ 20$ if published, $\$ 50$ if chosen Most Valuable of Issue, $\$ 1,000$ if chosen Idea of the Year.

I have not submitted may Idea for Deaden for publication ebowhere. It in eatirely origion with me and does not violatio or infringo any copyriotion

Name \qquad Title

Company Name
Address

MINIATUR
BUILDING
BLOCK
MODULES
5 times actual size to better show the 28 standard-sized components

IDEAS FOR DESIGN
(Continuced from pape 15\%)

Narrow $2-\mu \mathrm{sec}$ trigger pulse fires silicon controlled rectifier which stays "on" long enough to fire flash bulb.
even after the $2-\mu \mathrm{sec}$ input pulse has been terminated.
In less than a millisecond, the photoflash bulb is fired by the current i, and its filament opens. The current i is now zero and the silicon controlled rectifier is reset for the next cycle.

Note that when the bulb filament is opened, the battery voltage is removed from the transistor as well as from the rectifier. When a new bulb is inserted, the rectifier will remain "off" until the next trigger pulse.
Alfred W. Zinn, Engineer, Farrand Optical Co., Inc., New York, N.Y.

Transistor Trigger Pulses Fire

Tube \& Blocking Oscillator

Trigger sources of limited voltage swing and current capabilities are often regenerated by blocking oscillators. A vacuum-tube blocking oscillator can be triggered by a transistor as shown in the circuit diagram.

Transistor Q_{1} is turned on by negative pulses applied to its base. Collector voltage rises from $-E_{c o}$ to ground potential. The grid of V_{1} follows through $C R_{1}$. The tube is soon driven from cut-off into conduction and regeneration occurs through
 available packaged on plug-in circuit cards. And we can also supply circuits to meet your specific needs. For complete details, Just write our Sales Department. Physicists and electronics engineers: Join Delco Radio's search for new and better products through Solid State Physics.

PIONEERING ELECTRONIC PRODUETS THROUGH SOLID STATE PHYSICS
Division of General Motors - Kokomo, II liana
CIRCLE 198 ON READER-SERVICE CARD

DELCO RADIO
the action of T. As the grid potential of V_{1} rises above ground, Q_{1} is disconnected by $C R_{1}, R_{3}$ and $C R_{2}$ provide a load for the backswing of T. Resistor R_{3} is selected so that the collector potential of Q_{1} does not exceed its rating. Resistor R_{2} provides a return for $C R_{1}$ and the collector of Q_{1}. Typical values for the circuit are given in the figure.
Karl Springer, Member Technical Staff, Hughes Aircraft Co., Culver City, Calif.

Standard Joints Used In 742
 Improved Dual-Channel Antenna

Dual-channel conical scanning antennas have two major weaknesses. One channel is invariably a low power channel, while the other has a high vswr or a high phase shift which cycles with each rotation of the scamner. Consequently, the dual transmitter or dual receiver channels found in monopulse systems, cannot be accommodated.

These difficulties may be overcome by using standard commercial components in the antenna shown in the figure. The dual-channel scanner consists of a parabolic reflector and two rotary joints. One of the rotary joints is a standard type, while the other is an "in line" or L-type joint.

The standard rotary joint, located near the focal plane of the antenna, is fed by a transmission line in an outboard fashion. The L-type rotary joint, mounted in the center of the dish. is fed near the optical axis of the parabolic sys tem. Each joint has a radiating element in the focal plane of the dish and is mechanically joined near the radiating clements.

A drive motor and gear arrangement on the L-type joint canses both radiating elements to rotate about the optical axis of the antenna. This produces two conical scanning beans. The outboard feed line provides good mechanical stabilization for the outboard rotary joint, thus minimizing dynamic unbalance affects.

X-Band Antena Has 35 Db

Decoupling 900 -Mc Bandwidth
For best decoupling the radiating elements are placed on opposite sides of the optical axis. An X-band antenna has been constructed that had a decoupling figure in excess of 35 db over a 900 me bandwidth. The vswr of each channel was less than 1.2:1 over the same band. Because the rotary joints are conventional, the power handling capabilities of the scanner depend upon (Continued on page 160)
BE SURE TO VOTE for all of the Ideas you consider valuablel BE SURE TO VOTE for all of the Ideas You consider valuablel Simply elrele on the Reader-Service Card the numbers match

MicroSemiconductor
announces the
industry's smallest, most reliable diode

an entirely new concept produces the most significant advance in semiconductors since the invention of the transistor

MicroSemiconductor Corporation has perfected a revolutionary surface passivation concept making possible unprecedented size reduction resulting in virtually unlimited reliability in semiconductor devices. Success in stabilizing erratic surface properties of semiconductors has enabled MicroSemiconductor to eliminate more than 90\% of device failure mechanisms together with elaborate, bulky packaging and failure due to devicepackage interaction. In MicroSemiconductor products, circuit designers and packaging engineers now have available discrete, active, micro-size components suited to the ever more critical requirements of advanced electronics.

MICRO DIODE PACKAGES . . . SMALLER and more relable than ever!
 To fit your particular componont requiromonts. MicroSomiconductor
Corporation offers micro-miniature rectifiers and diodes in smaller. than evers packeges. in variefy of configurations, These
 construction. Detailed specifications are available to meat individual
requirements. M ICROSEMICONDUCTOR CORPORATION aco para court. culven cir. California
ACTIVE
Silicon diode micro-matrices
fully-passivated - designed to Tully-passivated - designed to
customer specified zeometry. customer-specified seometry,
size. electrical and contact re. size, electric
quirements.

CIRCLE 199 ON READER-SERVICE CARO

and look at the variety WRIGHT MOTORS offer．．．

quality Servos and Rotating Components

Wright of Sperry Rand offers design engineers faced with new challenges an exceptional source for meeting the most exacting demands．A wide variety of standard models plus superior en－ gineering and production capabilities bring you assured quality．

Write today for technical data and the name and address of your nearest Wright Motors representative．

IDEAS FOR DESIGN

（Continued from page 159）

Standard rotary and L－type rotary joints are used in dual－channel conical scanning antenna．
the design of the radiating elements．However， it is not difficult to achieve a $200-\mathrm{kw}$ handling capability at X－band．
An open waveguide provides an excellent ra－ diating element from the point of view of dish illumination，power handling and simplicity．The outboard waveguide and rotary joint produces very little shadowing if the diameter at the dish is more than 10 times the diameter of the rotary joint．
Made with conventional rotary joints，the dual channel scanner can be rotated at speeds up to $3,000 \mathrm{rpm}$ ．It can provide either broadband single or dual frequency operation for either transmitters or receivers，or both．
Robert B．MacAskill，Project Engineer，The Hallictafters Co．，Chicago，III．

Predetermined Input Level

 Cuts Off Transistor，Sets OutputA simple circuit was required that would recognize a predetermined voltage level．An or－ dinary cathode－coupled binary could not be used because a positive output signal was de－ sired during the time the chosen level existed， while at any other level the output had to be nearly zero．The circuit shown accomplishes this easily．
The reference is the negative of the level to be recognized．Thus the voltage at A becomes zero when the input and reference are equal When these voltages are unequal，the line is either positive or negative．

A net positive voltage causes the transistor

741

HIIGIEST PURITY PRECISELY DEFNED
to meet critical electronic manufacturing needs

J．T．Baker ELECTRONIC CHEMICALS

＇Baker Analyzed＇Ragentes

J．T．Baker electronic chemicals offer you the highest standards of purity in the industry－proved by the Actual Lot Analysis and Actual Lot Assay on the label．Your variables are minimized． rejections are fewer．．．product per formance is improverd．
Important，＇Baker Analyzed＇Reagenta have consistently met or exceeded the requirements of the electronics indus try．Through a continuing program of establishing additional and more strin gent specifications，the＇Baker Analyzed label consistently defines a degree of purity so high that special electronic labeling is unnecessary

YOURS FOR THE ASKING－

Impertant Guide to Electronic Chemicals
Describes J．T．Baker chemicals of excep tional purity for semi－conductors，vacuum tubes，errites．thermistors．etc．Also in cludes specification sheets that define the high standards for＇Haker
Analyzed＇Reagents．Write for your copy today．

J．T．Baker Chemical Co．

Phillipsburg．Now Jorcay

CIRCLE 201 ON READER－SERVICE CIRD

 ELECTRONIC DESIGN • April 26， 1961
KOHH:-NOOR
 PRECISION MATCHED IMSTRUMENTS

Koh-I-Noor offers drafismen an important new dimension in a comprehensive line of instruments and accessories meticulously matched to provide new high levels of professional performance, efficiency and convenience.

NOW... IWO KOH-I.NOOR RAPIDOGRAPH
techical
fountain pens
In 7 "color-coded" precision line woths: $00,0,1$, 2. e gulat) ink for ruling, letreguing, tracing or writing with equal facility.
mook no. 3065: A nem model with 7 interchangeable drawing point sections, each color-coded lo indicale a different line widith Best buy tor the orolessional who tequires frequent change of line widths. Each drawing point section complete with airtight refillable ink car-
tidge. Interchange is ac tidge. Interchange is ac
complished quickly, cleanly Comes in handy desk top container.
mookl ma. soce: The regu lar Koh $\cdot 1$. Noor Rapidograph "Technical" Fountain Pen with self-contained automatic filling system. and pocket clip is a standard diatting room tool.

KOH-I-NOOR RAPIDOGUIDE

 AND TEMPLATES Ior will morospentine Eupldograpt fountain Pea enplecgutbes High quality let. toring guldos with elovatine the seven different point slzes the seven different point sizos tain Pens. Each has upper and lower case letters, numerals. and characters all on oneEuida.

W rite Jor Descriptive Literuture
KOH-I-NOOR Bloomsbury 24, New Jersey
CIRCLE 202 ON READER-SERVICE CARD ELECTRONIC DESIGN - April 26, 1961 Ga.

"PRECISION/STABLE" RESISTORS

 MADE BEST VALUE by - savings from shorter lead time- reduced equipment rejects
- reduced customer rejects

$$
\begin{array}{ll}
\text { be pound wise } & \begin{array}{l}
\text { "Documented failure analysis as recorded by } \\
\text { conventional "Precision" Resistor, despite oc- } \\
\text { coptable initial accuracy for production-model }
\end{array} \\
\text { and penny foolish } & \text { onalog computor. }
\end{array}
$$

Accuracy is extremely important when you're specifying resistors - and the Stability of that accuracy is as important for your customers. Rejections due to lack of stability at assembly stage and at final test are intolerably costly in time, money and customer satisfaction. Julie Research has successfully developed another first - a new standard in practical resistor manufacture, "Precision Stable" wire wound resistors with 0.0025% absolute accuracy and 0.0025% stability per year. This $\mathrm{CH}-1$ resistor is a miniaturized production-model of larger laboratory-type resistors. Does reliability cost more - or do failures?
J. A. Webb, Aircraft Development Engineer Specialist, Lockheed Aircraft Corp., Marietta,

BE SURE TO VOTE for alf of the Ideas you consider valuable! Simply sirele on the Reader-Service card the numbers matching
these next to the Idoes which oppear valuable to you.

Write for JRL short form catalog, showing complete line of Precision/Stable resistors, 0.0015% to 0.05% and Precision/Stable laboratory standards

JULIE RESEARCH LABORATORIES INC.

603 West 130th St., New York 27, N. Y.
CIRCLE 203 ON READER-SERVICE CARD

Paper Tape Puzzler:
Start It, Read It, Check It, Stop It At 1800 Characters Per Second!

Abstract

 dented spirnd of 15 loel wat -riond utprecand -torting imstantanewnely al this rate withent tearmsk the tape was an electrome. hatural prollem of the lirat ander. neers ireveloperd a ungue direst drive which has indenendent "liang-liang" aprio moturs lur feed and lake up repl- C.anceltiona Wluthing io eliminatrd. A 3 -tuen seetion of tape remains slack for sale, fow-mertia startand a photuelect tric outem readn and cheik the delifed peord is eenemt the tarnh in hard Sanfordized alunumumi lorake soope ther tape without permittime ole ershowit to the neat hargeter. cientusts and engineres proble eiery promiing area of technology. If yutan mak, imaginative cuntrihutions in any of the birerinent hielide, it may well he to your adian. tage to investigate the expanding opportunitire at The National Cash Kegister Company CIRCIE 901 ON CAREER INOUIRY FORM

Dromal compt ter enganeers-
COMMERCIAL EXPANSION AT NCR CREATES OPENINGS IN LOS ANGELES FOR: Con

 Fiandidential interciets at the Heverth Joll

elatomat*
\section*{}

YOUR CAREER

NEWS AND NOTES

Get an advanced Degree and marry a home economics major. This is the advice given to June graduates by Lon D. Barton of the employment counselling firm, Cadillac Associates, Inc., Chicago. Mr. Barton believes that within five years the BA or BS degree will become as common as a high school diploma was 35 years ago.
On marriage, Mr. Barton says he has seen more problems among young men attributable to a wife making more money in a competitivetype job. He also advises delaying marriage for at while so as not to be restrained in job mobility at the start of one's career.

Key to Persuasion

Next time you have to sell somebody on an idea, remember: spotlight the benefits.

Why? Because people don't buy an idea. They buy what an idea will do for them. They buy enjoyment, satisfaction, pleasure, solutions to problems, advantages-in short, benefits. People never accept an idea just because it is new or different. They accept it for what it will do for them.
Want your boss to install a new com puter? Don't describe the operation of the special commands. Explain how the computer will eliminate errors, speed up projects, boost engineering department output.
Want a technician to be more workmanlike on your breadboards? Don't tell him how poor breadboard appearance can ruin the impression "your" project makes on your supervisors. Explain how "his" workmanship will create a good reputation for "him."

A reminder: people are most interested in profits (money, time, energy), safety, prestige and approval. Put your ideas in terms of any of these basic areas of self. interest and watch your powers of persuasion grow!

Company matching of employe gifts to col leges has been announced by Whirlpool Corp. St. Joseph, Mich. Whirlpool said it will match all gifts in cash or securities from $\$ 10-\$ 1,000$ a year made by its employees to colleges of their choice.

Don't forget to mail your renewal form to continue receiving ELECTRONIC
 DESIGN.

Advancement

 Your Goal?
Use CONFIDENTIAL

Action Form

ELECTRONIC DESIGNs Confidential Career Inquiry Service helps engineers "sell" them. selves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high proise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your sec retary, type neat duplicates of your applica tion and send them to all companies you select-the same day the resume is received
The standardized form permits personnel managers to inspect your qualifications rapid ly. If they are interested, they will get in touch with you.

Painstaking procedures have been set up to ensure that your application receives complete, confidentiol protection. We take the iollowing precautions:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is kept confidential and is proc essed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
- All original applications are placed in confidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.
If you are seeking a new job, act now!

electromic desson CAREER INQUIRY SERVICE use betoone wne 7 , rose

After completing, mail career form 1n ELECTRONIC ISF.SIC:V, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward coplies to the companies you select below.
(Please print uith a soft pencil or type.)

liecent Special Training \qquad

Employment History

Company	City and State	Dates	Title	Engineering Specialty

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

"EUREKA" IS HARDLY THE WORD FOR IT, ARCHIMEDES!

"Astounding" is more like it. because we use your principle to buoy the "heart" of our precision gyroscopic instruments. Floatation eliminates frictional forces on pivots and thereby reduces drift rates. Consequently, we are able to develop precise gyros and pendulous accelerometers for missile guidance and ship navigation.
If you are interested in putting ancient laws to work in the missile age, and if you have a BS, MS or PhD in EE, ME, Physics or Math, contact Mr. G. F. Raasch, Director of Scientific and Professional Employment, Dept. G, 7929 S. Howell, Milwaukee 1, Wisconsin. AC SPARK PLUG \& THE ELECTRONICS DIVISION OF GENERAL MOTORS MILWAUKEE - LOS ANGELES - BOSTON CIRCLE 902 ON CAREER inquiry form

CAREER NEWS

Revision of the Taft-Hartley Act through adoption of a "Freedom-of-Association" bill is supported by the National Society of Professional Engineers. At present, the society says, engineering-management informal soundingboard conferences violate the labor law restrictions on nonbargaining discussions.
In fact, says Paul H. Robbins, executive director of the 54,000 -member society, which has many engineers in supervisory positions, any informal management-engineer meeting violates the Taft-Hartley Act. The problem, he says, lies in the vagueness of the Taft-Hartley definition of a "labor organization."

The freedom-of-association bill, H.R. 412, which has already been proposed five times by Representative Carroll 1). Kearns (R-Pa.), would distinguish engineers and professional groups from labor groups.

The Gentle Art of Criticism

There is a definite art to criticizing others. If you want your criticism to yield positive results, observe these rules:

Get all the facts. Only then are you prepared to appraise the situation fairly. The best way to get a man to give you the facts is to ask, "What happened?" It boils down the whole issue to what went wrong rather than $w h o$ is to blame.

Stay calm. You'll create a climate of "let's-find-the-solution-together," in which you ally yourself with the other fellow against the common enemy-a mistake. He'll respond in kind.
Criticize in private. Test after test has proved this gets better results than criticism in public.

Commend before you criticize. That way you take the sting out of what is to follow. You provide assurances that you still have great regard for the person you are criticizing. And you subtly suggest that you recog. nize his error as merely a departure from the norm-his customary high-calibre performance. In short, you help him "save face."

Keep your criticism constructive. The purpose of criticism is to "teach better ways." Collaborate with the other fellow to discover "what happened" and indicate ways to prevent the mistake from happening again. That's positive, purposeful, criti-cism-the only kind that gets lasting results.

PAPER DEADLINFG
Convention Program Chairmen have issued the following deadlines
to authors wishing to have their to authors wishing to have their
papers considered for presentation.

May 1: Deadline for $100-200$ word abstracts and $500-1,000$ word summaries for the 1961 WESCON show, Aug. 22-25, San Francisco. In addition to regular IRE professional group topics, special sessions on radio astronomy and coherent and infrared electromagnetic radiation are planned. Send papers to E.W. Herold, WESCON Northern California Office, 701 Welch Road, Palo Alto, Calif.

May 1: Deadline for papers for 17th National Electronics Conference, to be held Oct. 9, 10, 11 at the International Amphitheatre, Chicago, Ill. Papers covering any subject in the entire range of interests of electronic engineers will be considered. Submit 12 copies of a 150 -word abstract, and send two copies of either the completed paper, or a $500-700$ word summary to W. L Firestone, Motorola, Inc., 4.501 W. Augusta Blvd. Chicago 51, Ill.

July 1: Deadline for 100 -word abstract and $500-$ word informal summary on "Kilomegacycle Coinputing Systems" for presentation at the AIEE 1962 Winter General Meeting, New York, Jan. 28 Feb. 2.
The papers should be oriented toward the entire system but may deal specifically with such system aspects as:

1. Applications for kmc computing systems; replacement of several machines by one ultra-fast machine; attacks on entirely new classes of problems
2. Components for kmc computing systems, and effects of their particular characteristics on configuration of the system.
3. Over-all systems aspects; problems of information rate mismatch with external equipment and with pcople; hierarchies of memories; use of complex programing technique to replace hardware (fixed wiring).
4. Methods of fabricating ultra-fast systems; problems of reliability, circuit modules and interconnections, propagation delays; description of complete computer designs.
Deadline for full text is Oct. 30 for those papers that will also appear in the transactions and Nov. 25 for papers which will only appear as conference reprints. Address papers to C. E. Day, Assistant Secretary for Technical Papers, AIEE, 33 W. 39th St., New York 18, N.Y. Other correspondence should be addressed to J. H Wright, papers chairman, Div. 12, U.S. National Bureau of Standards, Wash. 25, D.C.

ELECTRONIC DESIGN • April 26, 1961

texhicalauzon Iogic CIRCUITS ANO DIGTRAL COMPUUERS Smumamblde

In May, 1960 General Electric's Light Military Electronics Department announced a new concept in professional job selection ... in the form of a series of self-appraising technical tests covering the subjects of Radar, Microwaves, Electronic Packaging, Communications, and Administrative Engineering (a self-scoring psychological questionnaire).

To date, more than 7,000 scientists and engineers have written for and received one or more of these tests.

Now, LMED is pleased to announce the completion and immediate availability of a special new test devoted exclusively to the computer field. Developed with the same care and pre-testing as Light

Current Areas of Activity at The

 Light Military Electronics DepartmentSpace Communications and Telemetry - Missile and Satellite Computers - Space Vehicle Guidance - Undersea Warfare Systems • Thermoplastic Data Storage - Space Detection and Surveillance - Command Guidance and Instrumentation Infrared Missile Applications.

IGMIこう

light military electronics department
GENERAL (9) ELECTRIC
FRENCH ROAD, UTICA, NEW YORK

Military's other quizzes, the Computers test is also designed to be taken and scored for your self-appraisal only. The results need never be divulged to anyone - including LMED.

So, whether you're thinking about a change, or simply interested in finding out how you stack up against cther engineers in your field, any of these tests should give you a sound, objective means for appraising your abilities-in about an hour, at home.

Mail this coupon for your tests, answer sheets \& evaluation guides

- Advanced hydrogen systems being developed by The Garrelt Corporation solve the problem of keeping men alive and equipment operating for long periods of time in future satellites and space capsules.

Engineers at The Garrett Corporation's AiResearch Manufacturing Divisions are dealing with challenging problems in fast-moving fields.

Diversification of effort and vigorous leadership have made Garrett the world's largest manufacturer of aircraft components and systems and a leader in specialized missile and spacecraft systems.

Major fields of interest are:

- Environmental Control Systems-Pioneer, leading developer and supplier of air conditioning and pressurization systems for commercial and military aircraft, and life support systems for satellites and space vehicles.
- Aircraft Flight and Electronic Systems-Largest supplier of airborne centralized flight data systems; also working with other electronic controls and instruments including missile and submarine applications.
- Missile Systems-Largest supplier of accessory power units, AiResearch is also working with hydraulic, hot gas and hydrogen systems for missiles, liquid and gas cryogenic valves and controls for ground support.
- Gas Turbine Engines-World's largest producer of small gas turbine engines, with more than 9000 delivered in the $30-850 \mathrm{hp}$ class. Studies include industrial and nuclear applications.
Excellent positions are available for qualified men with M.S., Ph. D. and Sc. D. degrees for work in these areas.

CORPORRTHOM
AiResearch Manufacturing Divisions Los Angeles 45, Califernia - Phoenix, Arizona ENGINEER

Two years minimum experience MIL \& industrial power \& audio transformers. Suburban Long Island. Relocation expenses paid. Full benefits plus pension \& profit sharing plan.
MICROTRAN, CO. INC.
valley stream, N.Y. LOcust 1.6050

CIRCLE gOS ON CAREER INQUIRY FORM

ASSISTANT EDITOR WANTED

To Write New Products and Product Features

Electronic Design is eager to add a capable young man with some writing and electronic or science background to its editorial staff.

Principal duty will be to work on New Products, one of the most important and exciting aspects of the fast-growing electronics field. Ample opportunity for advancement to greater technical responsibility with America's largest electronic engineering magazine.

When: Immediately
Salary: Based on experience
Confact: Miss Neumann at Electronic Design:
PLaza 1 -5530

OIF YOU'RE
INTERESTED
in the engineering challenge of creating magnetic and electronic products and your future in a growth company then this may be your opportunity of a life time.

Acme Electric is interested in men who can apply their engineering talent to the design of

> MAGNETIC AMPLIFIER CONTROL DEYICES

- saturable REACTOR POWER CONTROL
$V A C$ and DC REGULATED POWER SUPPLIES

These are fast growing product lines
in which we have
a wealth of experience.
They may be your lines fo a successful fufure.

WRITE TODAY

ACME ELECTRIC CORP.
PERSONNEL DEPARTMENT
904 Water St.
Cuba, N. Y.

Acme Thin Flectric

CIRCLE 906 ON CAREER INQUIRY FORM ELECTRONIC DESIGN • April 26, 1961

April 26, 1961

Advertiser	Page
AMP, Incorporated	10
Ace Electronics Associates, Inc.	154
Acme Electric Corp.	168
- Alden Products Company	123
Allen-Bradley Co.	30
Alloys Unlumited Chemicals Inc.	144
- Alpha Wire Corporation	131
American Molded Products Company	135
Amper Instrumentation Products Co.	109
- Amperer Electronic Corporation	32
- Assembly Products, Inc.	127
Automatic Metal Products Corporation	152
Avnet System. The	25
Babcock Relays, Inc.	
- Baind-Atomic. Inc.	. 138
- Baker Chemical Co., J. T	
Bean Company, Morris	
Beckman/Helipot	
Belden Mfg. Co.	
Bendix Corporation, The, Pacific Div.	
Berkeley Div. of Beckman Instrume Inc.	
Birtcher Corporation, The	
Blitey Electric Co.	
- Boonton Electronics Corp.	
- Bourns, Inc.	61
Brady Co., W. If.	
- Branson Corp.	148
-Burndy Corporation	
Bumell \& Co., Inc.	
Burton-Rogers Company	131
CBS Electronics, Semiconductor	
Cadillac Associater. Its.	141
- Cannon Electric Company	101
Cedar Engineering Div.	
Cetron Electronic Corporation	148
Chassis-Trak, Lnc. . . .	114
Cincth Manufacturing Company	
-Cincinnati Sub-Zero Prolucts	140
${ }^{-}$Clarostat Manufacturing Co. Inc.	
Clary Corporation	
${ }^{-}$Clevite $\left.\begin{array}{c}\text { Transistor, A Div. of } \\ \text { Corp. }\end{array}\right]$	${ }_{8} \mathrm{~A}$-B
Communication Meavurements Laboratory. Inc.	
Components Corporation	135
- Computer Instruments Corporation	
Computer-Measurements Company	86, 87
Consolidated Reactive Metals. Inc.	141
Continental Connector Corporation	149
Control Data Corporation	
Convair-Astronautics, Convair Div. of General Dynamics	74 A-B
Corning Class Works	
-Daven Co., The	
Delcr) Radio, Div. of General Mreurs Corp.	
Del Electronics Corporation	34
De Jur-Amsco Corporation	22
Dorsett Electronics, Inc.	137
- Dow Corning Corporation	

 LECTRONIC DESIGN • April 26, 1961

Highly Reliable HITACHI "SEMI-CONDUCTORS"

CIRCLE 204 ON READER-SERVICE CARD
...reach for EDC Your copy of EDC lists 157 different types of potentiometers in its PRODUCT LOCATOR. 27 categories from "AC" to "Wirewound" are included. Each sub-listing such as "Clutch," "Linear Motion," "Microminiature," "Precision," or "Self-trimming" gives manufacturers' name and thumbnail specs to aid in rapid selection. 52 items are further described by special literature bound in sections 2 or 3 of EDC.
This is only one example of the more than 7,000 products from 2,212 companies which are displayed.
Handy Inquiry Cards or Application Data Forms are bound in to make it easier for you to obtain additional data - and manufacturers ${ }^{\circ}$ reps are also listed if you wish to phone for quick price and delivery nformation.
Electronic Designers' Catalog is one more service provided by the publishers of Electronic Design.

ESI/Electro Scientific33
Elastic Stop Nut Corp. of AmericaElco Corporation
Elcor Inenrporateddorado Electronics.Cover III
Ectronic Designer's Catalomenr Ingersoll Products Div.Epsco. IncorporatedErie Resistor
Escon, Inc.
Faber-Catell Pencl Co.A. \mathbf{w}.Fafnir Bearing Co., TheFairchild Camera and Instrument Corp.140
27
${ }^{\bullet}$ Fairchild Controls Corporation 134
70
Fork Standards. Inc.168
71
88118- G -v Controls, Inc109
Garner Co., T. H 168
General Electric Company, Capacitor 85
General Electric Company, Instrumenf
Dept.
$149,151.15$General Electric Company. Lishe Military
Electronics
Dept.
General Electric Company, Rectifier
Components Dept. 21. 112
General Electric Company, Silicone 169
General Electric C 169
18
General Instrument Corponation164
Plug Div. Corporation. A. C. SparkGeneral Radio Company 121
Genisco, Inc. .Globe Industries. InCond-All Electric M/s. Co.Gore Associates. Inc. W. L. .
Conuld National Batteries. IncConuld National Batteries, Inc.108Gries Reprnducer Comp. 140
Heinemann Electric Company 136 Hewlett Packard Company Hitachi. Lerd. 126
167
Herfiman Electronics Con 170
16 Hoskins Manufacturing Company
Hughes Aircraft Company 28 A-B-C-D
TT Compments Divsion Illinnis Conclenser Company Ilinnis Toml Works
Industrial Timer Corporat International Electronics Industries. I International Rectifier Corporation Itek Electm Products Co108

Advertiser	Page
Johnson Co., E. F. Julie Research Laboratories, Inc........ ${ }_{181}^{122}$	
-Kay Electric Company	
Keithley Instruments	
Kester Solder Compa	${ }^{36}$
Kintel, Div. of Cohu Electronics. Inc. .. 14	
Laboratory for Electronica, Inc. ${ }^{70}$	
Leeds \& Northrup	130
Lermer Plastics, Inc. 123	
Little Falls Alloys, Inc.	142
Linde Company 92	
Lockherd. Califormia Div.	103
Lord Manufacturing Co. 75	
Machlett Latoratories, Inc.. The 57	
Micro Switch, A Division of Honeywell . ${ }_{\text {Micro }} 1119$	
MicroSemiconductor Corporation	159
Microtran Company, Inc. .-......... 168	
Micrownve Associates. Inc.	
-Mid-Eastern Electronics, Inc. 108	
Motorola Semiconductor Products, Inc. .. 83	
National Cash Register Co. 162 National Radio Co. Inc. 119 National Semiconductor Corporation Cover 11 New Departure Div., General Motors Corporation	
-Non-Linear Systems. Inc. 80 8, 81	
Ohmite Manufacturing Company 19Ortho Filter Corporation 118	
Pacific Semiconductors, Inc. 94, 95	
Paktron Packaged Electronics 104	
Peansylvania Fluorocarbon Co., Inc. 128	
Power Designs, Lnc. 137	
Ravtheon Co., Commercial Apparatus . . 153	
Reevee Hoifman Div. Dynamics Corp. 130	
Robde \& Schwarz 99	
Rutherford Electronics, 1nc. ${ }_{3}$	

A cloar, solventless liquid, General Electric cloar ITV-602 cures at $75-80^{\circ} \mathrm{C}$ to form a resilient compound with excellent elec trical properties. Even thick sections are perfertly transparent. Useful from -65 to $175^{\circ} \mathrm{C}$, this self-supporting material

General Electric slear LTV silicome componmd for potting and embedding
Transparent, resilient, self-supporting and easy to repair

ITV-602 is easily epplied, flows freely in-andaround complicated parts. Having a low viscosity in the uncured state, $800-1500$ centipoise. ITV is ideal for potting and emberdding of electronic assemblies. Unlike "kel-like" potting materials, I.TV-602 cures to n flex-
ible molid. Oven rure is overnight, or from ihle solid. Oven rure is overnight, or from
6 to 8 hours at 85 to $80^{\circ} \mathrm{C}$.

ITV-602 is easy to work with and easy to repair. To repair parts embedded in ITV, merely cut out and remove sertion of material. repair or replace defertive part, pour fresh I.TV added extended with refriereration. Whens and may lie extended with refrigeration. When desiratule,

Resiliency offers excelient shock resistance. LTV'602 easily meets thermal shock tests described in M1I.-STD-202A test condition B which specifips five temperature cycles from -65 to $125^{\circ} \mathrm{C}$. Tests indicate that LTV retains protective properties even after 1800 hours aging at $175^{\circ} \mathrm{C}$. Other tests confirm LTV's
resistance to moisture and water immersion.
I.TV-602 is the newest addition to the broad line of G-E silicone potting and encapsulating materials which also include the RTV silicone rubhers. For more information, write to General Electric Company, Silicone Products Department, Section L414. Waterford, New York.

GENERAL (96) ELECTRIC

The illustration above is a clever art illusion. The illusion of comparable quality that different brands of wire and cable give is also clever. To the naked eye, they seem identical.

Most brands of wire and cable may be produced with similar materials and equipment. One brand, however, will outlast, outperform the others - Hitemp.

The reason? Because Hitemp has the greatest store of experience in the industry-two modern production facilities that are second to none-and more than one-fourth

At Hitemp-Quality is not an illusion
of its entire work force devoted solely to inspection and
quality control.
Hitemp products are for you, the wire and cable user who requires quality and reliability that is fact, not illusion. Hitemp is a Division of Simplex Wire \& Cable Co.

HITEMP MIRES CO.

1200 SHAMES DRIVE, WESTBURY, NEW YORK 1532 S. CALIFORNIA AVE., MONROVIA. CALIF.

Adeertiser
Sanborn Company -Sarkes Tarzian, Inc Schweber Electronic 69, 100, 101 Shockley Transistor, Div, of Clevite Corp. 2.3 Spectrol Electronics Corporatio Sperry Semiconductor Div. of Sperry Rand 107 Cperry Semiconductor Div. of Sperry Rand 115 Sprakue Electric Company Standard Press Steel. Star Stainless Screw Co.
-Stathem Instruments. Inc. Stathem Instruments. Inc Stevens Mifg. Co., Inc.
Swenson Co. Inc.. V. -Sylvania Electric Prolucts. Inc.
Semiconductor Div. -Sylvania Electric Products. Inc Syathane Corp.
Taber Instrument Corp. 145 Technology Instrument Corp. of America 81 Texas Instruments Incorporated Therm-O-Disc. Inc. Trans Electronies. Inc.
Transitron Electronic Corporation
Trin Lahoratories, Inc. Transitron Electronic Corporation
Trio Laboratories, Inc.

Valcor Engineering Curp.

$$
\begin{aligned}
& \text { Varian Associates. } \\
& \text { Victoreen Instrument Co. }
\end{aligned}
$$

Ward Leonard Electric Co
Weldmatic Div./Unitek Weldmatic Div./Unitek
Westem Devices. Inc. Westinghouse Electric Corp Wrighe Div. of Sperry Rand

Manufacturers' catalor, appeary in 1960-1961
ELectrosic DesicNens' Cataloc.

Advertising Representatives

Adv. Sales Manager: Bryce Gray, Jr Sales Service Super.: Alvin D. Ross New York: Robert W. Gascoigne Ruchard Parker, Blair McClenachan, James P. Quinn, Donald J. Liska. Charles J. Stillman, Jr Kenneth M. George, John N. Weber 830 Third Avenue, Plaza 1-5530

Chicago: Thomas P. Kavooras, Berty Conner, Jr., Fred T. Bruce, 664 N Michigan Avenue, Superior 7-8054 Los Angeles: John V. Quillman, Wayne Stoops, 3275 Wilshire Blvd. Dunkirk 2-7337
San Francisco: Stanley I. Ehrenclou, 292 Walter Hayes Drive, Palo Alto, Davenport 1-7646

Southeastern: Pirnie \& Brown, Morgan Pirnie, Harold V. Brown, G. H. Krimsier 1722 Rhodes-Haverty Bldg., Atlanta, Ga. Jackson 2-8113
London EC4: Brad Nichols, 151 Fleet Street

Tokyo: Karl H. Bachmeyer Associates, Morimolo-cho, lehome, Azabu. Minato-ku

10	10	20	30	40
1	11	21	31	41
2	12	22	32	82
3	13	23	33	43
4	14	24	34	4
3	15	25	35	45
0	16	25	36	46
7	17	27	37	47
8	10	28	38	40
1	18	29	38	49

50	∞	20	00	9	
51	$\\|_{1}$	71	11	91	
52	62	72	82	92	
53	63	73	03	93	
54	4	74	24	94	
55	65	75	15	95	
56	6	76	16	96	
57	67	7	07	97	
58	6	78	0	9	
59	60	79	39	9	

	Civy
1001101201301	150160170
101111121131141	151161171181
104114124134144	
105115125135145	155165175 les 195
	157167177107197
108118128138148	158168178188
109119129138149	150169179189190
400410420430400	$450460 \quad 40480$
40141142143141	451461471481
02412422432	452402472412492
403413423433443	453463473183
404414424434444	454464474484494
c05 415425435445	455465475405495
(1) 416426436846	456406470486496
[07 417427437407	457467477487497
408418428438448	450 4004784884808
400410420430440	450468470 4B5 499
700710720730740	750760770700790
-4 711721731741	751761771781791
702712722732742	752762772702792
703713723733743	753703773703793
704714724734744	754764774784794
705715725735745	755705775785795
706716720736746	756706776786796
707717727737747	757707777787797
700718728730748	7587017807808798
709719729739749	759709779789790

300310320330340 301311321331341 202 312322332342 $\begin{array}{llll}304 & 313 & 323 & 333 \\ 3\end{array}$
 208914325335345 307 317 327 139 346
 309310329339340 $600610<2063060$ 50101142163164 $\begin{array}{llll}602 & 12 & 122632642\end{array}$ 60561362363364
 C05 6141626436646 607517427637647 604 410 820638648 609519829639 449
$\begin{array}{llllll}350 & 300 & 370 & 380 & 390 \\ 351 & 361 & 371 & 301 & 391\end{array}$ $\begin{array}{lllll}352 & 362 & 372 & 362 & 392\end{array}$
 $\begin{array}{llll}354 & 364 & 374 & 384 \\ 355 & 394 & 375 & 395 \\ 354 & 364 & 376 & 305\end{array}$ 355365375385395 $\begin{array}{llllll}356 & 366 & 376 & 306 & 396 \\ 357 & 367 & 377 & 387 & 397\end{array}$ $\begin{array}{lllll}357 & 367 & 377 & 387 & 397 \\ 368 & 360 & 378 & 208 & 394\end{array}$ 358 369370389399 650600670650690 651 641 716161691 $\begin{array}{lllll}052 & 652 & 772 & 632 & 692 \\ 653 & 653 & 673 & 403 & 693\end{array}$ $\begin{array}{lllll}653 & 623 & 173 & 603 & 693\end{array}$

 $\begin{array}{lllll}657 \\ 657 & 677 \\ 650 & 697\end{array}$ \begin{tabular}{llll}
658 \& 658

\hline 78 \& 608 \& 698

659

659

609 \& 679 \& 699

\hline
\end{tabular}

For employment brochures give home address
Hon
Old Cemge or addrem:

Old Compony Addrees
Ciny
$20 n 9$
State

1

 Neme empeny

ния

Publisher: Robert E. Ahrensdorf Editor: Edward E. Grazda Managing Editor: James A. Lippke Technical Editors: G H. Rostks, H. Bierman. R. H. Cushman, M. W. Meisels, A. Rosenblat A. W. Solda

Ners Eiditors: R. Haavind, A. Corneretto

Washington Editor: J. J Christic Hest Coast Editor: T. E. Mount Contributing Editors: J. G Adashko E. Brenner, B. Bernstein
F.ditorial Assistants: R N Ross. C. H. Farley

Editorial Production: D S. Viebik. A. Abramoff

Art Director: R A. Schulze Art Assintants: O. Mitch. J Aruego Technical Illustrator: P. Rıos Production Manager: T. V. Seditia Asst. Prod. Mgr.: H. De Polo Production Assistants: P. Bergang. M. Spector

Circulation Manager: N. M. Elston Aset. Circ. Mgr.: H A. Hunter Reader-Service: A. J. Helfeld

Hayden Publishing Company. Ine
Chairman of the Board:
T. Richard Gascoigne

Prexident: James S Mulholland. Jr

Accuracy Policy

Recognizing the power of the printed word to influence, it is Electhovic esicn s policy
To make all reanonable efforts to insure accurack of editorial malter. To publinh promplly corrections brought to our attention.
To not knouringly publish mislead
ing adiertisements.
drertisement. airerinement.
Readers noting errors or misstatements of facts are encouraged to write the editor.

Subscription Policy

Electroxic Design is circulated only to qual-
ified design enkineers of $U \mathbb{U}$ manufacturink companies. industrial consultants and Rovernment agencies If design for manu
facluring is your responsibility. you qualify for subscription without charge provided you send us the following information on your
company's letterhead. Jour name and engi neering title, your companys main products and description of your design duties The ANY ADDRESS CHANGES pOR SUBSCRIBERS NECESNTATEOA OLD
STATEMENT OF THESE OUALIFICATIONS STATEMENT OF THESE QUALIFICATIONS Subscription rate for nonqualifed sub
scribers- $\$ 2500$ per year U S A.. $\$ 3500$ pe seribers
year all other countries Single copy $\$ 150$.

CIRCLE 208 ON READER-SERVICE CARD *

digital voltmeters and ratiometers feature...

- an 80 db input filter
enables measurements of millivolts of $D C$ in presence of volts of $A C$.
- a unique, 3-position, tilting readout with 10,000 hour readout life

and numerous other engineering improvements!

4 and 5-digit instruments to meet every applica tion for precisely measuring AC./ DC volt ige . A(: DC ratios, and resistance. A variety (of input-output modules are also available (1) give system capabilities to the basic measuring instruments
Transistorized circuitry - gives exceptionall reli uhilit!
New temperature controlled, twin-bridge, Zener diode relerence- $0.0(0) 5 \%$ stability for month 1000 megohm input impedance
IIC accuracy 0.01% of reading plus 1 digit.
AC accuracy 0.1% of reading plus 2 digits, from

30 to 10,000 eps-most stable
voltmeter commercially available. Easily yeter commerciany available. 0.0001 valt sensitivity on both AC and DC Pre-Amp inodule increases sensitivit! to one microtolt.
Automatic ranging on AC
Automatic polarity and ranging on DC
Remote operation-complete control of the instrument can be accomplished from remote locations.
Direct printer operation-no auxiliary equipment needed.

Ask for a demonstration The high accuracies, simple operation, versatility and exceptional reliability of the 3000 Series instruments result from the unequalled experience of more thatn 10.(0)() El digital instruments now in use. lour EI field engineer will be pleased to demonstrate their superior features. Call him today.

Electro instruments, inc.

E

8611 balboa AVE. san diego 11. calif

[^0]: 1. Dr. C. M. Barrack and M. C. Watkins, "Tunnel Diode Relaxation Oscillators," Electronic Desicn, June 22 , 1960.
 2. Erich Gottlieb and T. P. Sylvan, "Tunnel Diodes as Amplifiers and Switches, "Semiconductor Products Dept.,
[^1]: ${ }^{1}$ The resistive cut-off frequency of the device is the frequency at which the real component of the negative impedance goes to zero, hence the device becomes passive at this point.

[^2]: - U.S. Davidsohn, Y.C. Hwang, G.B. Ober, "Destgning with Tunnel Diode," Electronic Design, Feb. 3, 1960.

[^3]: - True Voltage Ratings to 150 volts
 - Power dissipation of 150 watts
 - Operating temperature to $+150^{\circ} \mathrm{C}$.
 - Low thermal impedance: $.5^{\circ} \mathrm{C} /$ watt

[^4]: CIRCLE 100 ON READER-SERVICE CARD

[^5]: * $6^{\circ} \mathrm{F}$ is difference between maximum open and minimum close.

[^6]: A division of Epsco. Incorporated. 275 Massachusetls Avenue Cambridge 39. Mass. Telephone UNiversity 4.4950

[^7]: Now celcbroling lis 2001 birthday
 CIRCLE 161 ON READER-SERVICE CARD

[^8]: MAY WE HELP YOU
 \square Please send me vour Application Data on Pauer Tetrodes
 $\square I$ bare all application problem uith Ponter Transistors. 1 uconld weliome the usvitance af your field engenner' and Applicatt in: Lah.
 Name
 Address
 Company-
 City
 Send coupon to Hone) uell, Dept. ED.4-120, Minneapulis 8, Minn.

