

SYNCHROS for GYRO PLATFORMS

Pancake Resolver for Gimbal Mounting
clifton Precision produces special pancake resolvers for direct gimbal mounting. They were developed for use in cascaded amplifierless resolver systems and have been tems and have been
trimmed for 10 K intrimmed for 10K input impedance, 0°
phase shift and a phase shift and a
constant transforma. tion ratio, with temperature, at 900 cy . Accuracies of 4^{\prime}, per pendicularities of 3^{\prime} and nulls of $1 \mathrm{mv} / \mathrm{v}$ of output or less can bo held.
Special techniques
Special techniques maintain concentricity between rotor and stator - thus reducing difficulties commonly encountered in gimbal mountings.

6' max. error spread Synchro

 for Gyro Pick-OffThe SG-17- and ST-17. type pancake synchros (SG-18- and ST-18- with housings) are our most standard line for gyro pick-off applications.

These units have been manufactured in large quantity and are readily available for prototype breadboarding. The high accuracies shown on the left are obtainable in standard 26 v or 115 v units.

ENGINEERS - Joln tho leador in the rotating componente fiold. Write David o. Brown, Dimetor of Parsonnel, Dopt d7

CDDC CLIFTON PRECISION PRODUCTS CO., INc.
 $C L I F T O N$ HEIGHTS, PENNSYLVAN/A

ELECTRONIC

COVER: A wide variety of precise timing and logic functions is available in new solid-state timing modules. On the cover, our artist has used an hourglass to symbolize time and a variety of pulses to symbolize the flexibility of these timing modules.

Selected Topics In This Issue

Military

Experts Discuss Reliability p 8
Molectronics in the Future p 18
NASA Launches Satellite p 26
Materials
Thermoplastic Recording p 4 Selecting RFI Gaskets p 46

Semiconductors, Circuits,
Components
Microdiode Reliability
28
Dissipative Filters
LC Matching Pads
Tunnel Diodes
p 50
... p 66
Solid-State Timing Modules .. p 74
Rise, Storage, Fall-Time Meter p 76

Design

Good Design is Good Business p 56
Direct A-D Converter p 62
RC-RL Nomographs p 167
Communications, Radar
AM Stereo with One Transmitter p 16 Tubeless Radars Predicted p 30 VORTACS Installed p 33
Line-Type Modulator p p 42

Computers

Magnet-Twistor Memory p 13
Cores Arrays p 27
Computer Tape to Words p 54
Nuclear Science
Ractiation Detector
p 10

MA: -31560

Highlights of this issue

Exclusive series of radio frequency terference (RFI) developments and unnel-diode circuits continue in this ssue
"Don't accept a new job until you evaluate . . . the concern you intend to oin," says Eugene B. Shea, employment counselor for Cadillac Associates, Inc. He answers seven important questions that may help you determine the career potential of an electronics company. Read his methods of job measurement on page 236 .

Human factor engineering in industry is becoming more and more of a challenge to industrial designers such as Paul Wrablica. No longer concerned with product appearance alone, industrial designers are now focusing on the need to modify equipment to more functrional styling. At the same time, serious consideration must be given to the human operator who will work with the product. Meet Paul Wrablica in this issue and begin his series of articles in which he describes this fresh approach to knobs, panels, housings, and other electronic components.

Renewed inferest in reliable radar modulator circuits has prompted ELEC. TRONIC DESIGN to present a step-bystep designer's guide to line-type modulators. This three-part series contains all the practical data needed to solve design problems. Part 1 appears in this issue and gives a detailed description of the discharge circuit.

Catastrophe will result unless makers of components start working on molecular electronics, says Col. W. S. Heavner, chief of the Wright Air Development Division. Read what he has th say to manufacturers on page 18.

Reliability is everybody's problem, but exactly who is at fault for the lack of reliability? Bureaucracy, lack - foresight, red tape, lack of time and n. oney, too many people, lack of co-odination-all have been blamed at ore time or another. Read what mililary and industrial specialists concerned wth the problem had to say to ELECONIC DESIGN at the recent Reliaty Symposium.

NEW RAYTHEON

MAGNETOSTRICTION BANDPASS FILTER ARRAYS

cost less...weigh less...take less space

In addition to advantages in economy, size and weight, new Raytheon Magnetostriction Filters have better selectivity characteristics than equivalent electrical filter circuits and, once adjusted, remain permanently tuned. They are operable over a wide temperature range and will withstand considerable shock and vibration.

These features make them ideal for any applications involving single or multiple narrow-band filter channels. For example, they are used on Shock and Vibration Test Equipment (for frequency analysis or, using feed back, for smoothing out wave forms); Spectrum Analyzers; Underwater Sound Analysis Equipment (for identifying vibration frequencies); Telemetering Equipment, Oscillators and Wireless Paging Systems (to actuate selected receivers).
Sample orders for Raytheon Magnetostriction Filters are available with no minimum quantity restrictions. For data sheets write Dept. 2527.

INDUSTRIAL COMPONENTS DIVISION

53 Chapel Street

Newton 58, Massachusetts

Feafures of Raypheon

 Magnefosfriction Bandpass Filfer Arrays Unlimited combinations can be arrayed at aceuratoly paced frequency intervals - At 50 kc ., center freunctMore economical for arrays in 45 ke to 300 ke range Priced from $\$ 16$ to $\$ 39$ per filter, depending on quantity nd type.
Arrays are smallor and lighter - A bank of ten filters can be mounted on a $3^{\prime \prime} \times 5^{\prime \prime}$ panel - total assembly weighs only ten ounces.
Higher \mathbf{Q} and higher frequencies than toroldaf coils Q from 2000 to 15,000 . Resonant frequencies from 45 o 300 kc .
Wide dynamic range - 40 to 55 db .
Stable over wide temperature extromes - Over range from $-60^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$, maximum resonaat frequency variation is only $8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Ideal impedances for transistor circuifs - Single filter input impedances from 15 to 90 ohms, output mpedances from 600 to 2000 ohms (depeading on resonant frequency).

RESPONSE CURVEOUENCY (thC) TYHITER AREAYS

SWEEPING OSCILLATORS for RADAR and TELEMETERING SYSTEMS ALIGNMENT 200 cycles-3800 me by

- Wide Range, Wide Sweep
- High Output
- Fundamenfal Frequency
- Continuously Variable Centers
- Fixed, Crystal-Controlled Markers
- All Electronic Operation

The Kay sweeping oscillators are a line of high level laboratory field test and production instruments designed for the alignment of radar and telemetering IF's and front ends, 200 cycles to 3800 mc .

tustramont	Creme.	Roses	8 mmop Wiotan	ar outper	manters	Pricen +
Cigma-Smeet SkV	935.A	200 cycles. 220 m		$\begin{aligned} & 1.0 \mathrm{Vms} \\ & A \mathrm{ACCO}^{\circ} \mathrm{Om} \\ & 70 \text { ohms } \end{aligned}$	$\begin{aligned} & \text { customer } \\ & \text { selecter } \end{aligned}$	8995. (tyrysitan)
Vari-Smap ${ }^{\circ}$	106-A	$\begin{gathered} 2.220 \mathrm{mc} \\ \text { icentert } . \end{gathered}$			Mone	\$795.
$\begin{aligned} & \text { Veri-Smaxp } \\ & \text { Monol If } \end{aligned}$	866-A*	$\begin{gathered} 4120 \mathrm{mc} \\ \text { iceniter } \end{gathered}$	Variable to 60\% center 50 me 30 mc	$\begin{aligned} & 10 \text { V rms } \\ & \text { AGC'd. } \\ & 70 \text { ofins } \end{aligned}$		
$\begin{aligned} & \text { Vori-Swryy } \\ & \text { motor numar } \end{aligned}$	865-A*	10.145 mc (conter)			T) Fixed Crysals i Variubie Oiret resoing dial	$\begin{aligned} & \text { spas. } \\ & \text { (wisit. } \\ & \text { cystals) } \end{aligned}$
$\begin{aligned} & \text { l'ari-Surer } \\ & \text { motol aep } \end{aligned}$	867.A	$\begin{aligned} & 15 \cdot 470 \mathrm{mc} \\ & \text { in } 10 \text { cands } \end{aligned}$	Same as above to 400 me 20 mc mar. above 400 mc		None	sase.
. Hap_{0} - Smax ${ }^{\text {a }}$	$110.4{ }^{\circ}$	50 nc .950 mc	50 nc 40 mc		Mone	\$515.
Ren-Sumer	$380 . A^{\circ}$		$\begin{aligned} & 2 \text { Switched } \\ & \text { banos. Wo. } \\ & 20 \mathrm{mc} \text { Wor, Wor } \\ & 3 \mathrm{mc} \end{aligned}$	${ }_{70}^{250} \mathrm{ompms} \mathrm{ms}$.	${ }_{9}^{9}$ Firysed	
Rada-Sures Sr.	385-A	1.260 me center) 6 Swiched bands	$\text { Approx } 70^{\circ}$ of center freq.	$\begin{gathered} 5.5 \mathrm{rms} \\ \hline 1010 \mathrm{omms} \\ \hline 0 \text { on } \end{gathered}$		$\begin{aligned} & \text { 8650. } \\ & \text { (wintous } \\ & \text { crystalsi } \end{aligned}$
, 1/agn-Smat	3500	$\begin{array}{r} 5.1000 \mathrm{mc} \\ 2200 \cdot 3800 \mathrm{mc} \end{array}$	Full range of swept band		$\begin{aligned} & \hline-0.1 \% \text { accurate } \\ & \text { adrect eeaning } \\ & \text { digital wavemeter } \end{aligned}$	se.sse.

see us ai the ire show Booths \#3512, 14, 16, 18

write for new ray catalog

Dept. ED-2, Maple Avenue, Pine Brook, N. J. CApital 6-4000

CIRCLE 3 ON READER-SERVICE CARD

We Need To Find The Right Problem
An Editorial
Line-Type Modulator Design, Part 1
Step-by-step procedure for designing high-power pulse modulator-I. Limansky

RFI Gasketing

RFI gasket properties, comparison of gasket materials and tips for proper type selection are presented-O. P. Schreiber

Dissipative Filters For Switching Circuits
A comparison of various filter schemes plus design details for a simple dissipative device capable of $\mathbf{4 0 \mathrm { db }}$ or better attenuation-R. B. Schulz

Computer Tape To Words . . . Fast
High-speed recording system puts characters on microfilm
Good Design Is Good Business
56
Meet the industrial designer and follow his approach to knob design-P. Wrablica
Resistance Ratios Simplify Impedance-Matching Network Design
A simple procedure for designing and understanding LC matching padsA. C. Norwine

Unique Pattern Provides Direct Digital Readout In A-D Converter
No supplementary coding needed to go from analog to digital
Designing With Tunnel Diodes, Part 2
Measurement of tunnel diode characteristics and their relation to circuit design-U. S. Davidsohn, Y. C. Hwang, G. B. Ober

Isomodulator Kills Double Moding
Does away with need for repeller modulation of klystrons
Controllable Solid-State Timing Modules Can Implement Logic
Functions
New timing modules can be adjusted and controlled externally to satisfy many timing and logic applications

Rise, Storage And Fall-Time Meter
Rapid measurement of diode and transistor parameters on panel meters rather than scopes

7 Questions That Can Shape Your Job Future

50

How to evaluate the career potential of an electronics company-E. B. Shea
ELECTRONIC DESIGN News

Many Applications Await Thermoplastic Recordingp 4
What's Holding Back Reliabilityp 8
Radiation Detector Counts
Nanosecond Pulses

No Change In TV Color Signal p 25

X-Band Waveguide Has low Loss p 25 Satellite Launched by NASA ..p 26

LECTRONIC DESIGN
 Hayde Publishing Co. Inc.
 Haydon Publishing Co., Inc., 830 Third Avenue, Now York 22, N. Y.

ELECTRONIC DESIGN News (Cont.)

News In Picturesp 12
Magnet-Twistor Memoryp 13
Transmitter Provides AM Stereo p 16
Trucking Industry Moves To Set
Up Private Microwave System p 17
TV Sent Via Circular Waveguide p 17
Molectronicsp 18
Navy's Moon-Relay System ...p 22
News Briefsp 23
Core Arrays Form Memory Stack p 27
Bcost Microdiode Reliabilityp 28
Negatives Transfer Circuitry ..p 29
Electroluminescencep 30
Worldwide Cable Netp.p 31
Airborne Digital Timerp 32
FAA Expects 1000 VORTACS ..p 33
Ideas For Design ...
New Drafting Technique Prepares
Reduce Delay Time In Binary Printed Circuits Fasterp 186

Index Card Aids Breadboarding p 189
Terminal Plate Connects
Common Wiresp 190
Measure Slopes Quicklyp 192 Circuit Delays Pulse Trainp 196
Germanium Transistors Drive Solenoid Magnetp 197
Engineering Data . 78, 167
Flow Graph Rulesp 78 RC-RL Curves and Nomograms p 167
Russian Translations ... 206
Semiconductor Sweep-Current Generatorsp 206
German Abstracts .. 214
Bandpass Half Sections .. 214
ELECTRONIC DESIGN Digests .. 216
Delay-Line Oscillatorp 216 Barrier-Grid Tube Memoryp 218 Graphical Method Determines Radio Noise Characteristicsp 223

Washington Report 35 Books 204
Meetings 36 Report Briefs 226
New Products 80 Letters 230
Services For Designers 164 Careers 236
New Literature 172 Your Career 240
Patents 198 Career Brochures 250
Advertisers' Index 252

-TRONIC DESIGN is published bi-weokly by Hoyden Publishing Company, Inc., 830 Third Avenue, New York 22, N. Y. Richord Garcoigno, Prosidont; Jomes S. Mulhollond, Jro, Vice-Prosident \& Troasurrer. Printed at Hildrath Proess, Brithol,
 Plishhing Compony, Inc., 34,400 copies this issue.

Microwave energy normally travels on a two way street. Because power flow has the
habit of being reciprocal, it often becomes vitally necessary for microwave systems
engineers to isolate the load from the transmitter or to control power channeling.

Rantec LOAD ISOLATORS directionalize the
power flow with a minimum loss in one direction of propagation and with extremely
high loss in the other. Rantec manufactures a
large number of "off-the-shelf" LOAD ISOLATORS which range from low power to
liquid-cooled high power units and cover broad band as well as specific frequencies.

Rantec engineers welcome the opportunity of solving specific problems or undertaking
special design projects.

calabasas, california
microwave ferrite components/antennas/r-f devices CIRCLE 4 ON READER-SERVICE CARD

E ECTRONIC DESIGN • February 17, 1960

Many Applications Await Thermoplastic Recording

THE HIGH-RESOLUTION, wideband recording process recently announced by General Electric Co. could help designers solve many long-standing design problems in all areas of electronics when perfected. Some of these problems, as outlined by GE, are:

- Displays of radar, sonar and infrared projected in real time.
- Projected displays that make use of time-lapse photography techniques to show slow-moving images.
- Simplified optical correlation to extend the range of radars.
- Recording of radar and other wideband signals in defense and civilian applications.
- Efficient guidance systems based on convenient map-matching methods.
- Video recording offering high-resolution, instant playback in color and black-and-white.
The potential value of thermoplastic recording (TPR) to designers stems from the success with which it can combine fast processing with the storage capacity of photography. General Electric claims its TPR system will be able to:
- Record signals of great bandwidth-up to 50 mc-more than 10 times the bandwidth of magnetic recording techniques.
- Store data at great densities-40 million bits per square inch-more than 100 times the capacity of magnetic systems.

W. E. Glenn of General Electric adjusts the thermoelectric recorder he developed for highdensity, immediate-playback data storage. To enable his equipment to record color, Dr. Glenn designed a special electron gun and a Schlierentype optical system. The electron gun is mounted in the vertical compartment to the left of the reels.
- Use relatively inexpensive plastic tape, on which an image can be seen with a viewer.
- Provide a tape record ready for viewing, reading or projecting in about 0.01 sec .
- Record on relatively simple equipment in color or black and white.
- Permit either optical or electrical readout.
- Erase and record on the same tape "as desired."
Where GE Stands in TPR
Most of the potential applications of TPR described by General Electric are intended for the armed services, reflecting the company's concentration on military development. GE reports that it plans to demonstrate a TPR system to the mili-

How GE's TPR Recorder Works

In brief, a special electron gun fed by digital or scanner input writes a charge in narrow bands on a moving film, which is coated with a low-melt plastic. The film is transported to an rf heater that melts the plastic coating, permitting it to be deformed by electrostatic and surface-tension forces.
Deformation produces ridges in the plastic coating proportional to the charge laid down by the beam of the electron gun. The ridges cool and form a diffraction grating that can be viewed or projected by suitable optics or read out by a flying-spot scanner.

Gun's Grid Structure is Special

Dr. W. E. Glenn, inventor of GE's TPR process, reports that an ordinary electron gun will do the job, but not as well as one designed with a special grid structure. In the GE system, the signal being
recorded modulates the electron gun, producing a beam that is divided by a splitter grid. The split leam is then modulated by a set of electrodes that control separation and amplitude of the sepaate beams.
This flexible control of the beam permits writing he diffraction-grating charge pattern necessary or color recording and playback.
To use the full potential of electron-beam preision, Dr. Glenn designed his recorder so that the lectron gun writes in a vacuum. Continuous umping holds the vacuum at about 0.1 micron, ermitting a writing density of 40 million bits her square inch. Vacuum operation also provides ister processing and better eventual reproducion.
The character of the film is not critical, GE ports. At present, a standard film with a high

The KIN TEL Model 501 4-digit, over-ranging digital voltmeter measures DC from ± 0.0001 to ± 1000.0 volts with $0.01 \% \pm 1$ digit (of reading) accuracy. An extra fifth digit in the left decade indicates " 0 " or " 1 " to provide ten times greater resolution at decade $(1,10,100)$ voltage points than standard 4 -digit voltmeters. Ranging and polarity indication are entirely automatic. The measured voltage, decimal point and polarity symbol are displayed on an in-line readout in a single plane-no superimposed outlines of "off" digits

An adjustable sensitivity control permits decreasing sensitivity to allow measurement of noisy signals. Ten-line, parallel input printers can be driven directly, and converters are avail able for driving other types of printers, typewriters, and card or tape punches. The input may be floated up to 25 volts DC above or below chassis ground with no degradation in perform ance, and up to 250 volts DC with slight decrease in accuracy. Stepping-switch drive coils are energized with DC as in telephone-type service to provide long, trouble-free operation The 501 is one of a complete line of kIN TEL digital instruments. Others include AC converters, AC and DC preamplifiers, ratiometers, and multi-channel input scanners.

IMPORTANT SPECIFICATIONS
Display...Six decades display 5 digits polarity symbol. Ranging and polarity indication are automatic. Projection system readout employs bayonet-base lamps with 3000 hour minimum life rating. Readout contains no electronic circuitry and can be remotely mounted.
utomatic Ranges... ± 0.0001 to ± 1000.0 19.999. 02000 . 0.029 .000

Accuracy $\ldots 0.01 \%+1$ digit (of reading).
Input Impedance ... 10 megohms on all ranges at null. Reference Voltage ...Chopper-stabilized supply, continuously and automaticaliy roferenced
to standard cell.
Stepping-Switch Drive...DC voltage within stepping-switch manufacturers rating applied by transistor drive circuit at rate of
Controls...Three: on-off; sensitivity; and mode of operation (standby, normal, print auto, print remote).
Printer Drive... Built-in for parallel input Printer Drive... Built-in for par
printers. Automatic or remote.
Dimensions and Net Weights... Control unit:
$45 \mathrm{lbs}, 51 / /^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 16^{\prime \prime} \mathrm{D}$.
Readout: $10 \mathrm{lbs}, 3^{1 / 2} \mathbf{2}^{\prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 9^{n} \mathrm{D}$.
Price: $\$ 2995$

KIN TEL manufaclures electronic instruments for measurement and control. and closed circuit TV Representatives in all major cities. Write for detailed literature or demonstration

KIN TEL
OOHU
5725 Kearny Villa Road, San Diego 11, California. Phone: BRowning 7.6700 CIRCLE 5 ON READER-SERVICE CARD

A general purpose laboratory instrument...
The Model 351A will satisfy the most exacting requirements for accuracy and stability. This is achieved by an advanced circuit design incorporating electronic regulation plus chopper stabilization against a standard cell reference.
direct in-line readout with illuminated decimal point
SPECIFICATIONS
Outpu Current.
Ouput Volloge:
Votiogos Limititer)
(Panel Swinth Solectiod)
Oupu Polarity:
Rooulation wa. Lino
Colibration Aesevacy:
Curent Rosolvion
Stabilly
Prikot
$0-100$ milliamperes in 1 microampere step
100 volts maximum
Providea maximum protection for meter calibration. Limiter in:
out put voltage will not rise above 600 mv . Limiter output volage wion places instrument in atandby condition when
voltion
output voltect output voltage attempts to rise above 120 v .
Floating or negative grounded
0.01% or 0.1 u amp , whichever is greater, for 10% line voltage change to maximum
0.05% or 0.5 uamp., whichever is greate 0.05% or 0.5 ua
microampere
0.005% per hour after short warm-up,
$\$ 845.00$, Co.b. Seattle, Washington
WIDE RANGE OF APPLICATIONS

Write us direct or contact our engineering representative in your area.
> john fluke MANUFACTURING COMPANY, INC. (15)

> PO BOX 7161 . SEATTLE 33. WASH

Prices and fechnical data subject to change whthout notice. CIRCLE 6 ON READER-SERVICE CARD

UNITED STATES AND CANADIAN

 REPRESENTATIVES| albuquerque, n. m. Gene French Co 120 San Pedro S. E Albuquerque, N.M. | MINNEAPOLIS, MINN. Pinkney \& Hine Co. 1925 Nicollet Ave. Minneapolis 3 , Minn. |
| :---: | :---: |
| atlanta. ga Bivens \& Caldwell, Inc. 3133 Maple Drive N.E. Allanta 5, Ga | NEW YORK, N. Y G. Curtis Engel \& Assoc. 210 So. Broad St. Ridgewood. N.J. |
| BALTIMORE, MARYIAND Horman Associates, Inc. 3006 W. Cold Spring Lane Baltimore 15, Md. | ORLANDO, FLA. Bivins \& Caldwell, Inc. P. O. Box 7942 Orlando, Fla. |
| BOSTON, MASS.
 Technical Instruments, Inc. 90 Main St Reading, Mass | PHILADELPHIA, PA. C. Curtis Engel \& Assoc. P. 0 . Bor 4383
 Philadelphia 18, P_{2} |
| BRIDGEPORT, CONN. Technical Instruments, Inc. 1115 Main St. Bridgeport, Conn. | PHOENIX, ARIZ. Gene French Co. 1644 W. Hatcher Rd. Phoenix, Ariz. |
| CHICAGO, ILL Cozzens \& Cudahy. Inc. 125010 Orchard Arcade Skokie, III. | RICHMOND. VA Bivins \& Caidwell, Inc. P. O. Box 6514 Richmond $30 . \mathrm{Va}$ |
| CLEVELAND, OHIO
 M. P. Odell Co
 26614 Center Ridge Rd.
 Westlake, Ohio | RIDGEWOOD, N. J G Curtis Engel $\&$ Assoc. 210 So. Broad St Ridgewood, N. J. |
| DALLAS. TEXAS Wallace-Gluck Co . P. O. Box 1320î Dallas 20, Texas | san diego, calif. MeCarthy Assoc, Inc. 3460 Ingraham St San Diego I, Calif |
| DAYTON. OHIO M. P. Odell Co. 2676 Salem Ave. Dayton, Ohio | SAN FRANCISCO, CALIF. McCarthy Assoc, Inc. 635 Oak Grove Ave. Mento Park. Calif. |
| DENVER COLO.
 Gene french Co 3395 So. Bannock St. Englewood, Colo | SEATTLE, WASH. Rush S. Drake Assoc. 1806 Bush Place Seattle 44, Wash. |
| DETROIT, MICH. M. P. Odell Co. 10531 W. McNichols Rd. Detroit 21, Mich. | ST. LOUIS, MO. Harris-Hanson Co. 2814 S. Brentwood Blva. St. Louis 17, Mo. |
| HIGH POINT, N. CAROLINA Bivins \& Caldwell, Inc. P, O. Bor 5187 Migh Point. North Carolina | SYRACUSE, N. Y.
 J. D. Ryerson Assoc., Inc. P. O. Box 1400 Syracuse 1, N. Y |
| KANSAS CITY, MO
 harris-Hanson Co.
 7916 Pasco Ave.
 Kansas City 32. Missouri | TORONTO, ONT, CANADA
 Allan Crawford Assoc.
 P. O. Box 214
 Willowdale, Ontario |
| LOS ANGELES, CALIF. McCarthy Associates. Inc. 1055 E. Walnut St. Pasadena, Calit. | VANCOUVER, B.C. CAN.
 Rush S. Drake Assoc.
 1806 Bush Place
 Seattle 44, Wash |
| WASHINGTON, D. C. Horman Associates, Inc. 941 Rollins Ave. Rockville. Md. | |

NEWS

melt point is used as a base. This is coated with : thin conducting layer and topped with a thin filn of low melt point. The outer film of plastic is les than 0.5 mil thick. A channel less than 0.25 in wide is sufficient for ordinary black-and-white recording.

As the electron beam scans the thermoplasti film it lays down a charge pattern that is a func tion of the information being stored. When the film is transported to an rf heater, its thermoplas tic layer melts. Electrostatic forces between the charges on the film and the ground plane depress the film surface along the lines of charge until the forces are in equilibrium with the surface-tension restoring forces.
When it moves away from the heater, the film cools and the deformations or ridges are fixed Once fixed the film is ready for monitoring or projecting. Immediate fixing is not necessary-the charge pattern can persist for days. Writing and fixing takes less than ten millisec. Reheating and recooling erases the ridges. By confining the rt heating fields, areas only a few mils square can be erased, reports Dr. Glenn.

Schlieren Optics for Viewing

Because the recording technique translates an original image to a series of ridges that vary in depth and spacing with the brightness of the original image, the viewing system must be able to retranslate ridge characteristics to tones. This is done in the GE process with a modified Schlieren optical system.
For color, a light is projected through a grating and then through a condensing lens before it passes through the film. The film's ridges break up the beam, passing it on to a second grating that matches the first. Wanted light passes through the gratings and is condensed by another lens onto a screen.

Smooth film sends light onto the bars of the second grating. Ridged areas diffract light through the grating's slots to a position on the screen corresponding to the light's position on the film and the grating. Grating spacing determines the color of the picture element; the amplitude of the grating determines the intensity of the diffracted light.

Grating for each of the primaries can be superimposed to provide colors that are the sum of primaries. The electron gun modulates the split electron beam to provide the necessary spacing and amplitude pattern.
Black-and-white images can be recorded and viewed more easily. The slots and light sources are made wide enough for the entire spectrun
to be passed by the optical system. The charge pattern is laid down in a television-type rasterfilm motion provides the vertical sweep, the electron gun provides the horizontal sweep.

Signal Readout with Scanner

A flying-spot scanner can be used to provide an electrical output. The scanner sends light of a single color through the film and lens system to a group of photocells placed to receive diffractions from different angles and at different spacing.

Analog and Digital Recording Possible

To record signals in analog form, the electron beam is modulated by the signal to be recorded. A single beam modulates intensity, a split beam modulates both intensity and grating spacing, as described above.
Dr. Glenn has this to say on recording digital data, "For binary digital data, a single split beam may be used. In this case, it is desirable to use only two colors, one for the 0 's and another for the l's. In this way all data bits appear as the presence of a single color. Since a dust speck scatters light randomly, it appears as white light. A coincidence in the 0 and 1 detectors can thus be made to reject dust. Coordinate data can be recorded as the absence of a color. Because coordinates can be recorded in with the data, high mechanical tolerances are not required to realize the high solution of the system."
GE states that the dust problem in recording high-density data with its system is no greater than with other systems. - ©

frames of film produced by experimental model of ermoplastic recorder are about width of paper clip. his film was made by feeding signal directly from TV t if stage to recorder.

NEM 1E1EANDPASS FILTER The new Bulova 1 E1 Bandpass Filters give today's radar microscopic eyes. Shaving the broad frequency range of returning signals into tiny segments, they help reconstruct signals faithfully for maximum information, for accurate measurement of Doppler effect ... all at greatly reduced noise levels.
With characteristic Bulova precision, bandwidths and insertion losses are closely controlled, so that many filters may be paralleled to cover an almost unlimited frequency spectrum.
Now in production for virtually all leading manufacturers in the radar field are filter packages of 200 cps bandwidth with crossovers at the $1 / 2 \mathrm{db}$. point, and with insertion losses equal to within 0.3 db . from filter to filter.
For full information on Bulova standard and custom design filters, on crystal, ovens or packaged oscillators, write Sales Engineering Department, Bulova Watch Company, Electronics Division A-1254, Woodside 77, N.Y.

Typical specification of a single filter in 10 K .C. spectrum Center frequency: 144.400 KC
Lower 1/2 db. point: 144.330 KC
Ower 1/2 db. point. 144.470 KC
Upper 1/2 db. point: 144.470 KC
Lower 3 db . point. 144.300 KC
Upper 3 db . point: 144.500 KC
40 db . bandwidth: less than 2 K
Insertion loss: less than 1 db .
Ripple in pass band: less than $1 / 2 \mathrm{db}$.
Frequency variation of pass band: less than 10 cps
over temperature range of $0^{\circ} \mathrm{C}$. to $+70^{\circ} \mathrm{C}$.
Size: $2 \%_{2}^{\prime \prime} \mathrm{W} \times 2^{\prime \prime} \mathrm{D} \times 13^{\prime \prime} \mathrm{H}$
Weight: less than 7 oz .
Visit our booth numbers 1719-1721 IRE Now York Ciry.
CIRCLE 7 ON READER-SERVICE CARD

new rows surues

Arnoux has consistently proved its versatility and
reliability in providing either a few prototypes or reliability in providing either a few prototypes or
thousands of power supplies - quality in quantity thousands of power supplies-quality in quantity.

In fact. wherever reliability and design integrity are taken for granted, there you'll find Arnoux power supplies, static converters, and inverters.

For airborne applications and for GSE, Arnoux power supplies have these outstanding features: precision regulation...temperature stability ... low ripple . tight packaging ... light weight. . . and they meet, exceed, or are qualified under specification MIL-E-5272A.

For highly precise, static and dynamic regulation of line and load changes when accuracy is vital. Arnoux power supplies provide a wide range of output voltage and current. Depending on specific models, this range is from 5 to 500 vdc and from 30 ma to 15 amperes. Bulletin 102.

Arnoux Corporation
11924 W. Washington Blvd. • Los Angeles 66, California

NEWS

What's Holding Back Reliability?

Abstract

Is it faulty coordination between industry and government, not enough money, too many people, slow exchange of data? Does anyone know?

L. N. Tolopko
Associate Editor

EVERYONE KNOWS that the big problem in reliability is how to apply existing know-how, but hardly anyone agrees on who is blocking action and what needs to be done. This is one conclusion carried away from the Sixth National Symposium on Reliability and Quality Control, which was held in Washington last month.
The keynote speaker, J. K. Sprague, president of Sprague Electric Co., outlined some of the issues clearly: "It has proved very difficult to get agreement" among organizations on "what their various responsibilities are." The organizations are the "Department of Defense itself down through the military departments, prime and subcontractors, and suppliers of parts and materials."

- It is the responsibility of the DOD to emphasize to the entire military establishment that quality and reliability are the most important ingredients of weapons systems.
- The military departments must develop "complete and uniform specifications, without loop-holes, which will apply the same set of ground rules to all suppliers." Also, they should disseminate "all information available to them on parts, materials and design practices as they bear on systems reliability."
- The equipment producer must "instruct his systems people, including product designers, that they are to make an honest, all-out effort to achieve the reliability levels called out by their contracts."
- "It is equally the responsibility of the military departments and the DOD to
bear an appropriate share of the cost" of appropriate environmental and qualityacceptance test equipment and personnel.
- The system of open competitive bidding should "be modified by suitable restrictions on those contracts which require high levels of reliability. This would limit bidding to those manufacturers who have demonstrated their ability to produce to required reliability levels."
- The Government's Qualified Product list is inadequate. It does "not guarantee that a given manufacturer either has a production capability, or, if he does, that he consistently maintains a satisfactory quality level in his production."

The Navy Takes Some Blame

The Navy is partly to blame for the lack of reliability in some of its equipment, said Vice-Admiral J. T. Hayward, who spoke at the symposium banquet. "We should have paid more attention to our homework on the components," he added. Components have been "overlooked completely in the glamour of the many large systems."

Is There Enough Data Exchange?

"An important thing really needed," said R. G. Fitzgibbons, Division Reliability and Quality Control Engineer, Raytheon Co., "is more data exchange of reliability." But, like others, Mr. Fitzgibbons was not sure who was more responsible for insufficient data exchange-government agencies or industry.
This point was made by another reliability engineer at the symposium, who stated that companies hold back on data
exchange not because of restraint-of-trade laws but in fear of sacrificing a potentially advantageous position. The engineer offered to give a reason a minute why companies don't distribute data-"and none of the reasons would be fear of restraint-oftrade laws."

Is the Industry Properly Coordinated?

If we had more coordination between the four tiers of the electronics industry, we could get more reliability, said C. M. Ryerson, general chairman of the symposium. He described the four tiers as the materials, parts, equipment and weapon-systems manufacturers. "What we need, perhaps," he said, "is a non-profit, impartial, independent agency that would coordinate these four tiers and act as a catalyst." The purpose of the organization would be to evaluate the reliability techniques and the products of companies.
There should be more coordination in government agencies, Mr. Ryerson said. There is no coordination, he added, between those who procure a product and those who maintain it. He deplored the fact that government contractors are often forced to specify components before a prototype unit has been tested and qualified.

Are There Too Many People?

"Man, we're being peopled to death," said a spokesman in the Department of Defense who preferred to remain anonymous. "It's so easy to criticize and say that other people are at fault. But it takes more than that to get reliable electronic equipment. It takes people. Everything, in the end, boils down to people. It's not bureaucracy, lack of foresight, red tape, lack of coordina-tion-it's too many people.
"It takes time to educate them and time to train them about what a reliability program means. Oitside the industry, who's interested in spending money on reliability? There's no hardware involved. Nobody will ever read about it.
"You don't get reliability by instituting progr ams for the military and industry to follow. You gct it by persuading people how important it is. A d that takes time-lots of time. We're getting tl re, though."

Is it the Same Old Problem?

"Time and money-that's what we really need," 5. d George Peratino, reliability engineer, Bureau o Naval Weapons. "Reliability can't be achieved v hout additional funding. We need money to tr t prototypes."

 with Tuf-Plate

Miniaturization of electronic components put the pressure on circuitry to keep pace. Photocircuits took up the challenge and turned an idea into the space and weight saving reality of Tuf-Plate plated thru holes - reliably interconnecting conductor patterns on both sides of the circuit board.
Where even greater component density is required - up to 50% - Photocircuits now offers printed circuit boards with miniaturized conductor patterns using landless Tuf-Plate - another first by P/C.

The inset at left offers a visual comparison between outdated eyelets and new landless Tuf-Plate. Get the whole exciting Tuf-Plate story today - it's likely that conventional or landless - Tuf-Plate can save you space, weight p... often at lower cost. Write Department A-1590, Photocircuits Corporation, Glen Cove, New York.

FROM PHILCO SILICON TRANSISTORS

For Proven Performance in High Speed Circuits at High Temperatures

High inpur impedance Amplifier- $\mathrm{Z}_{\mathrm{IN}}>2$ megohms (25 C-125 C)

SAT* offer 4 outstanding features:

1. Low Leakage Current
2. Very Low Saturation Resistance (Choppers, Switches)
3. High Base-emitter Breakdown Region
4. Controlled Input Characteristics

2N1428 and 2N1429 are Lower-priced Units with Comparable Characteristics for Low Voltage, High Befa Application.
*Trademark Philco Corp. for Surface Alloy Transistora

Philco continues its leadership in the Silicon high speed PNP field with these highly reliable field-proven SATs. In addition to their other superior characteristics, they have adequate frequency response to fill a large percentage of silicon transistor applications in both military and commercial circuits operating at high ambient temperatures. They are environmentally tested in accordance with MIL-T-19500 A. These two new types supplement and are the electrical equivalents of the widely used 2N495 and 2 N 496 , offering the designer a choice of packages (TO-1 and TO-5). For very high speed switching applications, designers should consider Philco's NPN Diffusedbase Transistor 2N1199. Write for complete information, Lept. ED260.
Immediafoly Available in Producfion Quantifios and 1-999 trom your Philco Industrial Semiconductor Distribufor.

LANSDALE DIVISION. LANSDALE, PENNSYLVANIA

 PHILCO

NEWS

Tiny Radiation Detector
Counts Nanosecond Pulses

A new approach to design of charged-particle detectors has resulted in a solid-state device that can count 10 million particles per second and provide energy resolution ranging down to 0.6 per cent.
Hughes Aircraft Co., which developed the novel detector, has already distributed several hundred experimental models to radiation laboratories for evaluation and expects to make available in a few weeks the first commercial units from a limited production run.
The detector is essentially a diffused pn junction device in which the junction is about 1 micron from the surface. The device operates with reverse bias and functions as an ionization chamber, detecting charged particles.

Applications are Varied

Because the device is tiny, fast, rugged, sensitive and linear, it is expected to be applied in:

- Military detectors-troops would be issued cigar-sized detectors that would be rugged and cheap.

Inexpensive dosimeters could also be made with the tiny detector.

- Industrial process control-sensitivity of the device would provide high accuracy and would permit reduced use of radioactive material.
- Medical electronics-Hughes has demonstrated detector elements the size of a pin head and believes these cells may be lodged in living tissue to measure radiation dosage.
- Space instrumentation-The detectors can be made so small that Hughes says it is feasible to construct three-dimensional packages of thousands of them to measure types < CIRCLE 10 ON READER-SERVICE CARD
-INCIDENT PARTICLE RADIATION

New and novel detector of charged particles is a pn silicon junction device in which the junction lies just 1 micron below surface to trap a maximum of particles. X_{m} and X_{p} show n and p depletion regions. X area is total depletion region. The detector is reported able to operate with extremely small power drain.
and characteristics of incident radiation. In such packages, the detectors arranged in coordinate array would signal the presence of a charged particle working its way through the array. This procedure would provide data for almost-instantaneous analysis of radiation, and would be a great improvement over the photographic plates now used in similar analyses.
Hughes predicts that the basic detecting cell could be sold for about $\$ 10$, once quantity production is started. Designers would then have an extremely stable, inexpensive device that would sut-perform present charged-particle detection devices, some of which must be operated at liquidair temperatures. Gain does not drift, in contrast with relatively unstable photomultipliers.
At present, the detectors do not respond to Lamma rays, Hughes reports. However, the company is investigating how dc current changes unler a large gamma flux, and hopes that its detector can be modified for use with individual rhotons.

Resolution is Very Great

Energy resolution of the detector, defined as he ratio of full width, in volts, of the pulse height listribution at half the maximum counting rate livided by the mean pulse voltage, is presently thetter than 1 per cent at 5.5 Mev for alpha partiles, reports Hughes. This figure is the limit imosed by associated electronic systems. Voltage ange is from 50 kv up. $=$ =

miniature pulse transformers

Sprague Miniature Pulse transformers give the circuit designer the flexibility he needs to meet the varied requirements of low-power, high-speed computers. Sprague literature details more than 800 standard units in a wide variety of mounting styles, shapes, and encasements for conventional or printed wiring board assembly. Many special types can also be furnished to match specific circuit and packaging requirements.
Sprague pulse transformers handle pulse widths of 20 millimicroseconds and wider...at repetition rates as

For application assistance on your pulse transformer problems, write to Manager, Special Products Division, Sprague Electric Company, Union St., North Adams, Mass. A complete series of Engineering Bulletins covering Sprague's standard pulse transformers is available from Technical Literature Section, Sprague Electric Company, 347 Marshall St., North Adams, Mass
high as 10 megacycles ... with pulse levels ranging from fractions of a volt to several hundred volts.

Typical circuits utilizing Sprague Pulse Transformers include pulse amplifiers (for current or voltage step-up, impedance matching, decoupling, pulse inversion and push-pull operation); pulse shaping and differentiating; blocking oscillators (in regenerative circuits of the triggered and self-triggered type); general transistor circuits.

MAGNETIC COMPONENTS - TRANSISTORS • RESISTORS • CAPACITORS • INTERFERENCEFILTERS • PULSE NETWORKS - HIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS - PACKAGED COMPONENT ASSEMBLIES CIRCLE 11 ON READER-SERVICE CARD

....and now for the sealing test!
If the pots you need must function in a dust or sand environment. you could build 'em yourself to make sure they stay clean! But before you move heaven and earth while testing your creation, exactly what have you planned, to give you a tight seal, yet low torque? And if that isn't enough of a problem, how do you keep foreign matter out of the bearings?

But why move heaven and earth, mostly earth, to test your own dirtfree pot, when Ace has the pots with the dust-free features? Special O-rings seal sand, dust and other foreign matter eliminating abrasion damage. Our wound nylon packing delivers excellent sealing with lowest torque. Also, a special silicone-type grease. located in shaft pockets, captures foreign particles before they ever get a chance to do any damage. So if grit's a problem for you, come to Ace for the answer. See your ACErep!

This 3" AIA Acepot (shown 1/3-scale), meeting all MIL spec's on sealing, incorporates these exclusive anti-dirt and dirt-trapping features. Mandrels are also fungicide-varnished, to insure long life.

NEWS IN PICTURES

Timepiece in Japa nese-designed clock radio has spring wind.up to minimize battary drain. Pentron, U. S. dis. tributor, reports the seft: 9 -v battery will give 150 hr of operation.

In radiation room at Sperry Gyroscope, Great Neck, N. Y., engineers test new infrared detection device. Eighty-six-ft long tunnel is painted completely black.

First photos of Centaur's space vehicle instrumentation show a digital guidance computer and an $\mathrm{fm} / \mathrm{fm}$ telemetry system. The transistorized digital computer, designed by Librascope, Inc., (left) weighs 32 lb , occupies 0.55 cu ft . It will accept inputs from Centaur's inertial platform, perform the necessary guidance compilations, and provide steering signals to the missile's control system. The telemetry system was designed by Texas Instruments, Inc., to operate without adjustment for 500 hr continuously. $\ln 0.5 \mathrm{cu} \mathrm{ft}$, the $20-\mathrm{lb}$ package houses a miniaturized subcarrier oscillator, a 3.3 -w transmitter, a $50-\mathrm{w}$ power amplifier, and associated power supplies.

Solid-state mixer-oscillator held by designer Dr. Vladimir Vodicka has demonstrated mixing gains of 40 to 60 db at a $2-\mathrm{mc}$ bandwidth using a typical MADT transistor at 450 mc . Signal-to-noise ratio with a $1-\mathrm{mv}$ received signal is better than 12 db , reports Lenkurt Electric Co.

SNAP-3 midget atomic generator is producing elecity after a year of continuous operation. The Martin has developed and built eight SNAP-3 generators, ich are now undergoing environmental and other it s .

Sangamo Type D mica capacitors combine the excellent electrical performance characteristics of silvered mica with a multi-layer, protective case of high moisture-resistant thermo-setting resins.

The Type D is designed to operate over the temperature
temperature range
tolerances
insulation resistance
moisture resistance
thermal and immersion cycling range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ at rated working voltage without derating.

Available in capacitance tolerance values of $\pm 20 \%$, $\pm 10 \%, \pm 5 \%, \pm 2 \%, \pm 1 \%$ (or $\pm 1 \mathrm{mmfd}$, whichever is greater).

The insulation resistance of these capacitors will exceed 3,000 megohms at $125^{\circ} \mathrm{C}$.

Insulation resistance shall be greater than 1000 megohms as measured in accordance with paragraph 2.6.2 of EIA specification RS-186-A, Method 2. Paragraphs 2.4 and 2.6.1 do not apply. The test shall continue for 10 cycles, as described in paragraph 2. 5.

Insulation resistance shall be greater than 3000 megohms after being subjected to temperature cycling between - $55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$, as outlined in Method $102-\mathrm{A}$, Test Condition D, and followed by Method 104-A. Test Condition A, of MILSTD 202A.
Write for Bulletin TSC-118C

SANGAMO
 ELECTRIC COMPANY

$\stackrel{\omega}{L}$		
D-15	500	5-400
	300	5-800
D. 20	500	100-2000
	300	100-4000
D.30	500	1000-10000
	300	1000-20000

SMALLEST LIGHTEST CARCINOTRONS

with wide band sole tuning

Though it has just recently made its debut into the high society of Litton microwave tubes, this carcinotron (our model L-3298) has already been commended by the military for its exceptionally clean design. Every engineer concerned with upgrading the performance of ECM equipment will surely find much of interest in this medium-power tube, with which Litton takes a major stride toward truly simultaneous noise-jamming capability by affording faster tuning rates than any previously attainable.
The Litton family of eight electrically-compatible carcinotrons is the first to incorporate the critical capability of wide band sole tuning without frequency or power holes when the tube is operated into as much as a $1.5-\mathrm{to}-1$ mismatch. Litton carcinotrons are the first to use wider-than-normal-band RF output couplers, minimizing many system components such as antennae, waveguide plumbing, and load isolators.
We cite these firsts not for glory's sake, but rather for their meaningful contribution to more efficient system design, smaller size and lighter weight.

The notable suitability of these carcinotrons is not limited to ECM. You can also consider them for other military applications such as drivers for communications links-in fact, wherever medium-power tubes with extremely rapid tuning and low tuning power are required.
Because of their mechanical and electrical compatibility the eight tubes in the family are interchangeable, as shown.

$$
7 / 2 \text { diameter }
$$

$6 / 2^{\prime \prime}$ diameter

output mates UG45/U co-ax
output mates DR-19 wave guide
These versatile tubes are not just drawingboard products you can order them now.
Write concerning voltage-tuned power oscillators of whatever nature to Litton Industries, Electron Tube Division, Office E2:3, 960 Industrial Road, San Carlos, California. Your request for our Carcinotron Catalog or for answers to your specific questions will be honored promptly.

CAPABILITY

NEWS

Magnet-Twistor Memory Readied for Production

In the brief span of 14 months, Bell Laboratories and Western Elec. tric have taken the Permanent-Magnet-Twistor memory out of the laboratory and prepared it for preduction. (ED, April 15, 1959, p]) 35-45).
As described in Electronic DfSIGN, the memory is a multilayer sandwich.
A pattern of 1-mil-thick Vicalloy I bar magnets is photo-etched on a plastic card (not shown in the adjoining drawing). The card lies over a grid of 60 -mil wide copper strips which form parts of single-loop word coils.
Perpendicular to the word coils, an array of Twistor elements and current-return wires (not shown), embedded in Mylar film, form the next layer. This layer is followed by the other halves of the singleloop word coils. These are bonded to the mounting board.
In use, a pulse through a word coil generates a pulse in the Twistor if there is no magnet at the particular Twistor-word coil intersection. The Twistor can deliver a $1-\mu \mathrm{sec}$ long, $6-\mathrm{mv}$ pulse to a 10 -ohm impedance.
The memory suggests itself for program-store applications. As a random-access store, it has a $5-\mu \mathrm{sec}$

Twistor-permanent magnet memory provides rapid, random-access, nondestructive memory. Ferrite core switches (or transformers) provide access to the copper-strip word coils.

Bell Labsmen H. L. Stadler and D. G. Clemons iron out some fine points of the Twistor memory. A partially assembled module is in the foreground, with a completed unit behind it.
access time. A new magnet card can easily be inserted in the Twistor memory to change a program.
To mass produce these memory modules, Bell Labs and Western Electric had to develop some unique manufacturing equipment. The tolcrances required for photo-etching the magnet boards were far tighter than normal photo-etch tolerances.
Wrapping tape on the Twistors called for a specially designed machine that could wrap the lowstrength permalloy around the $3-\mathrm{mil}$ copper wire with high uniformity. The machine can deliver 300 ft of Twistor per hour.

Basic Twistor has a barber-pole perm--lloy-tape wrapping around a copper wire. The tape is wrapped at a $45-\mathrm{deg}$ ngle for helical magnetization. Length f wire is 60 mils per bit.

hewlett (hp. PACKARD Specifies Tung-Sol tubes for high stability calibration generator

The Hewlett-Packard Voltmeter Calibration Generator calibrates high impedance voltmeters and oscilloscopes with extreme accuracy. An exceptionally stable source for a wide range of precision voltages, the premium instrument speeds up production and maintenance testing.
To assure high stability and low distortion performance, which are listed among the unit's principal advantages Hewlett-Packard selected Tung-Sol 6550's for the 400 cycle power amplifier. As Hewlett-Packard reports: "Tung-Sol's 6550 shows unusual insensitivity to load changes."

What this means, of course, is that under varying loads the 6550 drive, with its tight characteristics, holds to a minimum any change in the unit's already minimal distortion (less than 0.2%). In addition the 6550 helps to provide long-term stability.
Like all Tung-Sol components, the 6550's optimum performance and dependability stems from

Tung-Sol's deep-rooted component know-how. Every step in the manufacturing process is carefully disciplined. Stringent quality control guarantees uniformly high performance in any one lot or from lot to lot. And exhaustive life tests under severe overload assures adequate safety margins.
Maybe you're up against some exacting component requirements. If so, you'll be steering a wise course by getting in touch with Tung-Sol applications engineers. They're component experts who will gladly study your design and recommend the units that will do the job ... precisely. Tung-Sol Electric Inc., Newark 4, New Jersey. TWX:NK 193.
For prompt and competent technical consultation on Tung-Sol components call ine Tung-Sol Commercial Engineering office near you. Sales Offices: Atlanta, Ga.: Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, Ill.: Newark, N. J.' Philadelphia, Pa.; Seattle, Wash. Canada: Montreal, P. Q.

(5) TUNG-SOL

Only Grant's wide experience as the leading manufacturer of slides could yield the know-how needed to produce the Budgeteer! The first low cost chassis slide with features found only in the most expensive slides. If your product or product-to-be must be designed or fabricated to a cost-conscious appropriation, you'd be wise to check the Budgeteer's features-features that can put the most advanced maintenance-efficiency ratings on the most modest budget jobs. full extension - parts interchangeability •quick-disconnect - low cost • ball bearing action • 150 lb . load capacity

Write for complete literature \& prices.
The nation's first and leading manufacturer of slides GRANT INDUSTRIAL SLIDES

grant pulley \& hardware corporation

Eastern Division/ 21 High Street, West Nyack, N.Y. Weatern Divicion/ 2ss Long Beach Ave., Loe Angeles 21, Calif.

NEWS

Single Transmitter Provides AM Stereo in New System

AM stereo broadcasting, in which the listene may use two ordinary home receivers rather than special types, will be put in use shortly in Mon treal, Mexico City and Venezuela.

A stereo adapter system, developed by Kahr Research Laboratories, Freeport, L.I., N.Y., cal be installed on standard am transmitters in a matter of hours without engineering modifications. A full carrier and two independent sidebands are developed with each sideband capable of separate modulation by each stereo channel. The resulting envelope complies with the spectrum requirements of conventional am.

Independent upper and lower sideband de modulation is accomplished by tuning each receiver to the respective upper and lower sideband Compatible monaural reception of stereo programs, with complete balance, is obtained by sin-gle-set owners tuning to the carrier in the usual way.

Stereo adapter develops two independent sidebands, which are individually modulated by the two stereo inputs. Each sideband of the envelope wave can be demodulated by a standard am receiver. Stereo reception can be achieved by simply tuning two receivers to the respective upper and lower sidebands, reports Kahn Research Laboratories, developer of the system.

Trucking Industry Moves to Set Up Private Microwave System

The Executive Committee of the American Trucking Associations has approved a plan to help set up private microwave communications systems for motor carriers. The plan calls for:

- A study of trucker pioneering in the establish ment of microwave systems. These groups in clude 60 companies in California, and about 21) carriers operating between Chicago and St. Paul.
- A survey of possible users to determine their interest in combining to develop such systems. - The scheduling of meetings in New York and Chicago for carriers operating between these key cities. The Committee hopes to stimulate interest among the carriers by acquainting them with the advantages of microwave systems over lines leased from American Telephone and Telegraph and Western Union.
The Committee acted despite the suspension of microwave rights by the Federal Communications Commission pending its decision on an appeal by AT\&T and Western Union. These companies are appealing the FCC decision that permitted the trucking industry and other private users to build and operate their own microwave systems.

Here's the Answer

The unlettered block diagram of an RFI gating arrangement, shown is Fig. 2, p 28 of the Feb. 3, 1960, issue of Electronic Design, is not really classified information. Omission of the block functions is an error; the complete drawing is shown below.

TV Sent Via Circular Waveguide

This picture of a live TV broadcast was transmitted biy pulse code modulation through a 3600-ft loop of 275-in. diam circular waveguide developed by Interational Telephone and Telegraph Corp. In its waveiide system, IT\&T uses the circular electric mode the signal to hold down attenuation losses. Ultiately, the system may be capable of handling 400 channels or several hundred thousand telephone iversations, reports the company.

VARIAN ANNOUNCES

A KLYSTRON POWER SUPPLY

EXTREMELY LOW RIPPLE •WIDE OUTPUT RANGE

This Yerian refiex alystian power funply matcher the queliny of Veriat
klystrons themselves. Built to meet the exacting rogulemmour of kiyntrome in critical applications such as low noise or cw dopplar monacumenta Extremely good ripple characteristics, <80 pVrme beam and -20 pT rias rereflector supply from 20 to 800 volts. 60 cps sine wave, and square weve \quad, sawtooth modulation 300 to $3,000 \mathrm{cps}$ with $1,000 \mathrm{cps}$ vernier control. Fur complete data, address RADIATION DIVISION.

MAEIAN aneoolates

F.WClisom Coning

Condlifon:
Unusual Conflguration

Today's electronic systems invariably require specialized cooling equipment that is compact, lightweight, fits into unusual configurations, and still meets the most difficult environmental conditions (MIL-E-4970\%).
Custom air-conditioning is our business at Ellis and Watts. For example, our MIL-AC air conditioning units can be square, oblong, L-shaped, T-shaped, curved, pyramid-virtually any shape your conditions require. They can be designed for integral mounting in electronic consoles or computer racks; or for use as adjacent or remote equipment to air condition entire systems. MIL-AC units are self-contained, compact, lightweight, readily air-transportable. They can be designed to cool, heat, humidify, dehumidify, filter, and can incorporate air-cooled or watercooled condensers. Units are manually or automatically controlled. We are staffed with specialists who will analyze your requirements, submit a proposal, complete your installation promptly and to your complete satisfaction.
Write for helpful load calculating Nomograph and other technical data for use in making time-saving preliminary calculations.
-Military specification dealing with the following climatic and environmenta. conditions: Temperature, humidity, altitude, salt spray, vibration, fungus, sunshine, rain, sand and dust, explosive atmosphere, acceleration and shock

Euls mil wins pmolecs.IIIC.

P.O. Box ssD, Cincinnali s6, Ohio

Ellis and Watts also design and build custom air conditioners, liquid coolers and heaters, dehumidifiers, wave guide dehumidifiers, laboratory temperature and humidity control unils.

NEWS

AF Lab Chief Says Molectronics Handwriting is on the Wall

Component parts will be replaced by moleculi r electronics. And unless makers of resistors, capac tors and other parts start working on solid circuits they may be in for serious trouble.

This warning was sounded by Col. W. S. Heas ner, chief of the Wright Air Development Div Electronic Laboratory, Dayton, at an Air Force Westinghouse status meeting on molecular elec tronics last month.
In making his point, that standard parts, includ. ing diodes and transistors will gradually disappear, Col. Heavner said: "We are not using components such as these now, and we will never use them on this program."

Many Circuits Now Working

At the meeting, held in Washington, D.C. Westinghouse displayed about a dozen circuits fabricated by molecular techniques. Purpose of the demonstration was to show that the concep is feasible.

Among the working circuits displayed were amplifiers, both audio and video; multivibrators; switching circuits; and logic circuits. Most of the circuits consisted of a monolithic block of material about the size of a pinhead. Air Force and Wèstinghouse officials noted that the molecular elec-

These working molectronic devices were displayed in Washington by Westinghouse last month: (top to bottom) an audio amplifier, a free-running multivibrator, and a two-stage video amplifier.

How two resistive domains are combined by Westinghouse to get a capacitive effect at the interface. The entire block forms a time-delay circuit.
tronics concept offers about a 1000 to 1 size reduction over transistors.
So far the Air Force has paid about $\$ 2$ million to Westinghouse on the program. Work will be accelerated to put working units in general use in 3 to 5 years. Westinghouse is now developing a molecularized transceiver to show that the concept can provide an integrated system in one block of material.

Motorola at Work on Solid Circuits

Motorola, which has started work on "molecular integrated devices," supports, in effect, Col. Heavner's position. In an Electronic Design interview, Dr. D. E. Noble, vice-president of Motorola's Semiconductor, Military and Communications Div., said "Solid-state electronics, particularly microelectronics, offer the only promise for a sound solution to the problem of reliable equipment."
"We are already approaching a limit for complexity with an acceptable level of reliability," said Dr. Noble in commenting on the excessive number of interconnections and components in military equipment. "Continuing this line of development will lead us to the ultimate catastrophe-a sistem of maximum complexity which will never work. ${ }^{\text {" }} \mathrm{He}$ added that only by abandoning the use of interconnected components can future highpriformance, multifunction equipment be built.
Dr. Noble believes that solid circuits will not be mature enough to be put in wide use in electronics for some years. "Although the revolution in solid-state electronics has clearly begun, for the nost few years integrated circuitry will be directed

At-to-dc power supply uses Seebeck effect for 1 rmoelectric generation of electricity. The resistive - nain is heated when ac passes through, thus heating fi: thermoelectric domain.

long-term stability...ONE YEAR

MODEL 1310N A-to-D CONVERTER/VOLTMETER

There's never any need for exasperating knob twiddling with a Franklin Model 1310N. Magic? No, just plain practical design. All operating potentials, including the line voltage, are regulated before they're put to work. What's more, there are no stepping switches, relays or other mechanical components to introduce noise or delays . . . it's all-electronic for whispersmooth voltage conversion . . . and with a stability never before equalled. The brief specs tell more.
request
data sheet 2006

NEWS

Laboratory thin-film deposition equipment is part of Motorola's molectronics program. The company believes sophisticated monolithic devices could be in use before 1975 .
almost exclusively toward high-reliability military and space electronics requirements."

Sophisticated Units Before 1975

Dr. Noble predicted "Multilayer thin-film functional devices could be available between 1962 and 1965; integrated semiconductor devices between 1965 and 1970; and the more sophisticated monolithic forms some time before 1975."

Companies planning to work in solid circuits, Dr. Noble said, need four prime capabilities: a well-developed semiconductor facility; mastery of surface-passivation techniques; thorough competence in electronic ceramics like ferrites, ferroelectrics and piezoelectrics; and a fundamental research capability in "the thin-film art."

Nary's Moon-Relay System Ready Though Still Experimental

The Navy's moon-relay system is now ready for use during periods when solar conditions upset normal communications. Though still classified an experimental facility, the system has several times demonstrated its capability in communicating between Hawaii and Washington, D.C.

At present, the moon relay has a 4 -channel mul-tiplex-teletype capacity and is adaptable to sending and receiving pictures. Error rate is about 1 in 10,000 . The number of channels that can be carried by time-sharing on a single antenna can be readily expanded, reports the Navy.

SILICONE NEWS from Dow Corning

As Environments Grow Toughe

SILASTIC RTV

Supplies Both Physical and Electrical Protection

The ideal encapsulating material should prevent mechanical damage to sub-assemblies and at the same time improve electrical properties. It should retain these protective qualities in all operating environments and put no stress on delicate parts. Just such a material is Silastic ${ }^{\circledR}$ RTV, the Dow Corning silicone rubber that vulcanizes at room temperature.

Take the case of the Radio Sondes manufactured by the General Instrument Corporation, Newark, N.J. These meteorological instruments linked to integral transmitters are designed to be launched from aircraft at altitudes up to 60,000 feet and speeds up to 565 knots. This means reduced air pressure and a definite hazard of arcing and corona due to the high potentials involved. It also means slipstream shock and vibration at launch.
As shown in the photos, critical areas of these Radio Sondes are encapsulated with Silastic RTV, applied with a calking gun into reusable retainer rings. By encapsulating the most vulnerable areas with Silastic RTV. excellent protection is achieved with no degradation of power factor.

Silastic RTV is easy to apply, has dielectric and physical properties, resists moisture, arcing, corona. and ni Rapidly changing ambients will not c Silastic RTV to put excessive stres fragile parts . . . it remains resilient soaks up shock. Silastic RTV is avail in different consistencies, set-up time he varied from minutes to hours, depent upon the RTV system.

Typical Properties of Silastic \mathbb{R}

- Temperature range . . $(-70$ to 260 C$)-10010$
- Dielectric strength, volts/mil $300=$
- Surface resistivity at $\mathbf{5 0 \%}$ relative
humidity, ohms
- Dielectric constant, 10° cycles per second
- Dissipation foctor, 10^{6} cycles per second
- Moisture absorption after 7 days at
room temperature, \%

Your nearest Dow Corning office is the number one source for information and technical service on silicones.
first in
sillicones

he. silicones provide required service

ventless Resin For Top Heat Stability
n you need a rigid potting or encapsulating material, e sure the resin you choose is one that will keep its erties under adverse conditions. Dow Corning solvent. silicone resins will withstand temperatures above 260 C F). With no solvent to evaporate, they set up to a inuous bubble-free mass. The capacitor in the picture good example. After potting with one of these thermomaterials, it was sawed in half . . . notice the excellent free fill between plates. Solventless silicone resins dear, tough solids; they accept a variety of fillers. lyzed pot life is over 6 months.

CIRCLE 801 ON READER-SERVICE CARD
ghly Stable Diffusion Pump Fluids
Curning silicone diffusion pump fluids resist oxidation When exposed to air at operating temperatures. They it decompose into gums and tars . . . can be cycled thless times. They recover far faster than organics and very short pump-down times.
Sone fluids produce vacua in the range of 10^{-5} to 10^{-7} of mercury, are chemically inert, non-corrosive, non, free from impurities.
n ire vacuum pump jet assemblies that were tested real down on various pump fluids. The pump operating O Corning fluids still had not broken down after cles, with exposure to air between cycles!

A Varnish With Greater Heat-Resistance Dow Corning 997 Varnish permits operation at temperatures up to $250 \mathrm{C} .$. gives electronic and electrical equipment protection against overloads, moisture, many chemicals, corrosive atmospheres and other hazards.
The unit pictured is a servo motor that actuates controls in aircraft automatic pilots. Insulated throughout with high temperature materials, and dipped in 997 Varnish, such motors have proven much more reliable operation in United Airlines planes . . . running as long as 5 years without need for replacement, as against scheduled replace. ment after 1000 hours for Class A insulated motors.

CIRCLE 802 ON READER-SERVICE CARD

CIRCLE BO3 ON READER-SERVICE CARD

First official photo transmitted from Hawaii to the continental U.S. by the Navy's moon-relay system shows effects of attenuation caused by $480,000-\mathrm{mi}$ signal path.

Transmitter power is 100 kw conventional transmission, or 70 kw with frequency diversity. Each transmitter and receiver site uses an equatorially mounted, high gain, fully steerable dish-type antenna 84 ft in diameter.

Is a 1-in-10,000 Error Rate Enough?

The Navy calculates that its moon relay teletype system has an error rate of 1 in 10,000 . But when the following moon-relayed message, sent by ELECTRONIC DESIGN's Washington correspondent, was received during a demonstration of the system, the Navy may have had second thoughts:
electronic design magazine gets all the material engineers want to readn even if it has TO GO TO THE MOON FOR ITM
However, it turned out that the system was blameless. Our correspondent is "not very good at operating a teletype."

Atmospheric Ducts May Carry Wideband Signals Over Oceans

"A transoceanic atmospheric duct capable of trapping and propagating radio waves at low loss" has been discovered by Navy and Air Force researchers. The duct, which was discovered during a study of world-wide atmospheric data, runs from Brazil to Africa.
The military researchers hope that investigation of atmospheric ducts might lead to extendeddistance vhf and uhf communication, including duct-carried television.

In tests conducted by the Naval Research Laboratory and the Air Force Cambridge Research Center, $220-\mathrm{mc}$ signals were sent from Brazil toward Africa over a distance of more than 1,400 mi with only 100 w of transmitter power.
Similar ducts are known to exist between California and Hawaii, Cape Verde (Africa) and Puerto Rico, and the Philippines and Australia.

The beauty of this Capacitor is more than skin deep!

Type A Capacitor...

One size
 for all values...

Allen-Bradley Type A capacifors are available in the most frequently used types and capacilance values.
General Purpose Type in capacitance values from 10 mmf 10.01 mmf . stable Type in capocirence values from 10 mmf 100.1 mmp .
Temperature Compenrating Type in characteristics from N4700 to P100,
and in capacitance values from 10 mmf to 510 mmf .

10 5\% NPO
AB

560 10\%
$A B$

Compare the attractive Allen-Bradley Type A ceramic capacitors with all the rest... you'll see instantly why more and more engineers are specifying them and will not accept substitutes because there aren't any! The exclusive "Auto-Coat" process makes possible-for the first time-a capacitor of real beauty, precise physical uniformity, plus consistent and reliable quality and performance.
The smooth, tough insulating coating and the inherent mechanical uniformity of Type A capacitors permit easy hand or accurate automatic insertion on printed boards. Also, the "Auto-Coat" process prevents rundown on leads-costly wire cleaning and crimping to prevent soldering failures are unnecessary.
For full information on the superior physical and electrical properties of A-B Type A capacitors, send for Technical Bulletin 5401.

ALLEN - BRADLEY

Quality Electronic Components
Allen-Bradley Co., 1344 S. Second St., Milwaukee 4, Wis.
In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

Curve of GaAs Tunnel Diode Shows Swing of 1.1v

Gallium arsenide

Curve of gallium-arsenide tunnel-diode shows much wider voltage swing than do curves of germanium and silicon tunnel diodes. GE reports the GaAs curve was made by a diode with a peak-to-valley current ratio of over 35:1. Shown on the scope is a voltage swing of 1.1 v -the horizontal scale is marked in $0.1-\mathrm{v}$ increments, the vertical scale, in 5 -ma jumps. GE has had gallium-arsenide tunnel-diodes working at 4400 mc and expects that for frequency the GaAs diode is "as good as germanium tunnel-diodes," which have been measured of $10,000-\mathrm{mc}$, "and may be better than germanium." The company expects to have samples ready for designers in about six months.

A fluff in Electronic Design, Feb. 3 resulted in the odd statement that appears on $p 7$. The caption under the bottom illustration should read, "You can even join . . ."

NEWS BRIEFS...

THE NAVY'S EARLY WARNING, over-the-horizon radar system, Madre, now being built near Chesapeake Beach, Md., will operate in the high-frequency band, between 3 and 30 mc . With average and peak power of only 100 and 5000 kw , and advanced correlation circuitry, the novel radar is expected to detect targets as far away as 2600 mi .

LIEMC, a regional organization of the Long Island Electronic Manufacturers Council, has been formed to promote the electronics industry of that area of New York. Announced goal of the organizution is a 100 per cent rise in the area's electronic siles in the next five years-from $\$ 750$ million last year to $\$ 1.5$ billion.
"THE CHEMISTRY of aging in humans is lated somewhat to the chemistry of aging in rtain plastics," Johan Bjorksten, a plastics expert, , ld the Society of Plastics Engineers' 16th annual chnical meeting. Mr. Bjorksten feels that polyer chemists may one day stumble upon the secret the aging process.

Smaller filters ease the squeeze!

Filter designers! First 160-mu moly-permalloy powder cores pack high performance into smaller space

Filter and inductor designers specify our $160-\mathrm{mu}$ molypermalloy powder cores for low frequency applications. Where space is precious, such as in carrier equipment and telemetering filters, the high permeability of these 160-mu cores cases the squecze.
In many cases, $160-\mathrm{mu}$ cores offer designers the choice of a smaller core. In others, because inductance is 28 percent higher than that of 125 -mu cores, at least 10 percent fewer turns are needed to yield a given inductance.
If Q is the major factor, 160 -mu cores permit the use of heavier wire with a resultant decrease in d-c resistance.

Like all of our moly-permalloy powder cores, the 160 's come with a guaranteed inductance. We can ship eight sizes from stock, with a choice of three finishes-standard enamel. guaranteed 1,000-volt breakdown finish, or high temperature finish. Further information awaits your inquiry. Magnetics Inc., Dept. ED-78, Butler, Pa.

MAEMETICS inc.

Another Tinnerman Original．．．

Self－retaining＂U＂and＂J＂SPEED NUTS＂ cut assembly costs up to 50% or more！

If you are worried about rising assembly costs， let one－piece＂U＂and＂J＂Speed Nuts keep costs down．．．and improve your product．
They can＇t fall off，once they＇ve been pressed into screw－receiving position．No welding， staking or other secondary fastening devices needed．You eliminate lock washers－spring steel Speed Nuts are self－locking，make vibra－ tion－proof attachments．
Speed Nuts are ideal for blind assembly or hard－to－reach locations．Apply them before you paint panels without danger of paint－clogging． Or after porcelainizing，without damage to finishes．The＂U＂type is similar to the＂ J ＂type， shown above，but is used where full bearing surface on the lower leg is required．

A free Fastening Analysis can tell where Speed Nut brand fasteners belong on your
products．Call your Tinnerman representative －he＇s listed in most major telephone directories． Or write to：
TINNERMAN PRODUCTS，INC．
Dept． 12 ．P．O．Box 6688 －Cleveland 1，Ohio

NEWS BRIEFS

GERMANIUM TUNNEL DIODES are n factory production on a pilot line at General Electric＇s Syracuse，N．Y．，semiconductor plat t ． Type ZJ56，with a minimum peak－to－valley cur－ rent ratio of $8: 1$ ，will sell for $\$ 12.50$ each；tyje ZJ56A，with a minimum ratio of $5: 1$ will sell f ir $\$ 10$ each．Production will increase with demand， reports GE．

CITED BY Eta Kappa Nu as 1959＇s out－ standing electrical engineer was Dr．E．A．Sack Jr．of Westinghouse．He received the citation for ＂his notable contributions to solid－state－device re－ search and development，particularly in the field of electroluminescence，and his exceptional leader－ ship in the civic and social life of his community．＂
．．．THE PLASTIC TRANSISTOR reportedly announced by the Soviet，which may be only a polyacrylonitrile that exhibits semiconduction，has led to disclosure here that many companies，both electronic and chemical，are investigating plastic semiconductor devices．The idea is to change the characteristics of a polymer by heating it，as the Soviet has done，or by radiation bombardment， to obtain p and n－type material．Researchers here report little progress and not much hope for plas－ tic transistors competitive with conventional types．

CHANGES IN PRICES AND AVAILABILITY

．．．SILICON DIODES in the 1N690－1N693 series have been reduced in price by up to 37 per cent．Price for the 1N690 in 100－999 quantities has been reduced from $\$ 4.45$ to $\$ 3.05$ ．Other price re－ ductions range from 32 to 37 per cent．
．．TANTALUM POWDER has been reduced in price to $\$ 30$ per lb by Fansteel Metallurgical Corp．Large reductions have also been made in tantalum－nxide and tantalum－carbide prices．
．TANTALUM CAPACITORS have been re－ duced 5 to 10 per cent in price by Mallory Capaci－ tor Co．，partly as a result of recent price cuts in tantalum powder．
．．．METAL－CLAD solid－electrolyte tantalum capacitors have been reduced in price by 5 to 10 per cent by Sprague Electric Co．The price of ± 20－per－cent－tolerance，Type 150D sintered－ anode capacitors，Case size A has beem reduced from $\$ 0.86$ to $\$.77$ each．

Is your company making changes in prices or availability of its products？Send the details to electronic design， 830 Third Ave．，New York 22，N．Y．

iNo Change In TV Color Signal Urged 3y Group Studying Land Color Work

An EIA subcommittee studying the binary c.lor theory advanced by Dr. E. H. Land, of Folaroid Corp., has recommended that the Federal Communications Commission color television signal be left unchanged "at this time." The group aiso urged that "Dr. Land and others be encouraged" to continue their basic studies.
The subcommittee reports that "since the FCC color television signal carries simultaneously the information for three-color reproduction and for the methods outlined by Dr. Land, and since it does not result in a large increase in the cost of receivers, it permits continued investigation of Dr. Land's method without deterioration of pictures reproduced by receivers making full use of the information present in the signal."

The group reports also that the methods outlined by Dr. Land, who contended that two colors would suffice to give an impression of full color, might result in a receiver based on the present FCC color television signal but using simpler display based on Dr. Land's techniques. The group believes that a transmitter designed exclusively for color pictures by Dr. Land's methods would be simpler than one built for the present FCC signal.
"However, the subcommittee states, "such a transmitter would be unable to transmit pictures having as faithful a color rendition as is possible by the present state of the art."

X-Band Waveguide Has Low Loss

A new waveguide with only 10 db attenuation per 1000 feet provides transmission of X-band energy over lor 3 distances reports the Airtron division of Litton Indu lries. The system is composed of three-inch copper $\mathrm{cu}: \mathrm{ng}$, flexible rubber-covered tubing and mode absc zers. A special transition converts if energy from th standard rectangular waveguide to the TE , Ol made in 'e circular waveguides and reconverts the wave at the terminal.
\& rCLE 22 on reader-service card
El CTRONIC DESIGN • February 17, 1960

ELECTRONIC TUBE DIVISION, SPERRY GYROSCOPE COMPANY, GREAT NECK, NEW YORK. DIVISION OF SPERRY RAND CORPORATION Address inquiries to Great Neck or Sperry offices in Brooklyn, Boston, Chicago, Philadelphia, Los Angeles and Montreal. Export Dept., Great Neck, N.Y CIRCLE 23 ON READER-SERVICE CARD

Cannon has prepared a new engineering catalog containing valuable in formation about dc solenoids. Theory, principles of operation, and advantages of dc solenoids are presented simply and authoritatively. Write for your free copy to:

DC SOLENOID PROBLEMS

Cannon is one of America's largest producers of dc solenoids... a pioneer in engineering a wide range of special types, including hermetically sealed and high-temperature models. Multiple-strip solenoids for keyboard operationlocking types requiring no holding current-and miniature and sub. miniatures as small as $1 / 2$ inch in diameter are now in standard production. If you have a problem involving dc solenoids, Cannon offers a complete selection...for any application.

CANNON © PLUGS

CANNON ELECTRIC CO. 3208 HUMBOLDT STREET, LOS ANGELES 31, CALIFORNIA •.PLEASE REFER TO DEPT. 438

NEWS

Passive Communication Satellite Will be Launched by NASA

The National Aeronautical and Space Agency plans to orbit this spring the first of three $100-\mathrm{f}, 0$ reflecting spheres for communications experi ments. The objective: "to test the feasibility c passive-reflector communication system on global basis."
The launching and experiments have been dubbed Project Echo. Radio messages are to be relayed between Europe and the East Coast of the United States and between Hawaii and the West Coast by bouncing them off the orbiting sphere.
The sphere will be a Mylar balloon 0.0005 of an inch thick, coated with vapor-deposited aluminum to provide radio-wave reflectivity of at least 98 per cent up to frequencies of 4000 megacycles. Weighing about 150 pounds, the payload package will be carried defated into a 900 -mile-high, $1: 0$ minute orbit by a three-stage Delta launch vehicle.
When orbiting altitude is reached, the balloon will be exploded from its container and will start expanding under pressure from residual air. Pressure to complete expansion will be provided by

Balloon satellite for NASA's Project Echo is 100 -fool in diameter and 0.0005 in. thick. The sphere is made of Mylar plastic and coated with vapor-deposited alumi. num to provide very high reflectivity at frequencies up to 4000 megacycles.
witer in the balloon; this water will turn to vapor when heated by the sun.
Receiver and transmission stations are now bcing prepared by Jet Propulsion Lab at its Goldstone Tracking Station in Califormia and Bell Labs at Holmdel, N.J.
The Goldstone station, using an 85 -foot-diameter dish moving in azimuth and elevation, will transmit on 2390 megacycles. The receiving antenna operating at 960 megacycles, will also employ an 85 -foot dish.
Bell Labs will transmit a 960 -megacycle signal from a 60 -foot azimuth-elevation mounted paraboloid. At Holmdel, a special horn reflector, equivalent to a 28 -foot paraboloid in terms of gain, will receive at 2390 megacycles.
Assuming an average transmitter power of 10 kilowatts at both facilities, NASA scientists calculate that the received signal level at 960 megacycles will range between -112 and -124 dbm at distances of 1500 to 3000 miles from the satellite.

Core Arrays Form Sturdy Memory Stack

This new magnetic memory stack, an assembly of core arrlys, is designed for ruggedness. The MIL STAK units are unaffected by acceleration to 10 g and vibration to $Z 00 \mathrm{cps}$, according to Telemeter Magnetics, Inc. The co sore wired on a molded plastic frame to form an ort \%. After stacking, the wired arrays are interconnec d by a locked-link method and encapsulated in pol urethane.

RHEEM / SILICON
MESA
TRANSISTORS

2N696-2N697
Utmost versatility, maximum reliability, 25 millimicrosecond switching, 5 ohm saturation resistance, 2 watt dissipation

PRODUCTION QUANTITIES FROM STOCK

RHEEM SEMICONDUCTOR CORPORATION
A SUBSIDIARY OF RHEEM MANUFACTURING COMPANY Dept. A1, P. O. Box 1327, Mountain View, California - YOrkshire 8-8391 Eastern Regional Office: 610 E. Palisade Ave., Englewood, N. J. - LOwell 7-4336

CIRCLE 25 ON READER-SERVICE CARD

MEASURE TIME; $0.1 \mu s e c ~ A C C U R A C Y!~$

Time measurement and pulse simulation in radar, loran, Tacan, DME, oscilloscopes, computers fast gates, pulse code systems-almost any kind of time measurement single- or double-pulse simulation is now yours quickly and accurately with 218AR Digital Delay Generator.

Built along strict military standards, 218AR uses a pulsed crystal oscillator synchronizable in constant phase with an initial trigger pulse (zero time) and two positionable terminating pulses. Time is counted with a 1 Megacycle pre-
set counter, and two independent output pulses are available in any relationship.

PULSE GENERATOR PLUG-INS

For utmost versatility, output pulses are generated in various arrangements by three plug-in pulse generators. These include 219A, supplying two positive pulses, 219B providing two pulses, each positive or negative and variable in amplitude, 219 C , providing a high power pulse, positive or negative, digitally controlled as to delay and duration, variable in amplitude.

Condensed Specifications

(Basic 218AR Generator; plug-ins essential)			
Time Interval Range:	1 to $10,000 \mu \mathrm{sec}$	Recovery Time:	50 usec or 10% of interval, whichever is greater
Accuracy:	$\pm 0.1 \mu \mathrm{sec} \pm 0.001 \%$	Sync Output:	50 v pos. pulse, $0.1 \mu \mathrm{sec}$ rise time
Interpolation:	Variable 0 to $1 \mu \mathrm{sec}$	1 MC Output:	1 v pulses, 500 ohm impedance
Input Trigger:	Internal 10 cps to 10 KC ; External 0 to 10 kc pulses, also sine wave		-hp-219A Dual Trigger Unit, $\$ 100.00$ -hp-2198 Dual Pulse Unit, $\$ 450.00$ -hp-219C Digital Pulse
Jitter:	$0.02 \mu \mathrm{sec}$ or less		Duration Unit, $\$ 350.00$

HEWLETT-PACKARD COMPANY

1010K Page Mill Road • Palo Alto, California, U.S.A.
Cable "HEWPACK" • DAvenport 5-4451
Field representatives in all principal areas
World leader in precision electronic counting

NEWS

Surface Passivation Process Boosts Microdiode Reliability

One reason for the order-of-magnitude inprovement in the reliability of Pacific Semicenductor's microdiode (ED, Nov. 11, 1959, p 74) is the "chemical surface passivation" technique us d in its production, the company reports.

In this process the silicon of the semiconductor is used to form an inert, stable molecular film over the surface of the diode. The device is hermetically sealed and is barely larger than the seniconductor crystal itself-about one-fortieth as large as the conventional computer diode.

According to Pacific Semiconductor's enginecr. ing manager, Elmo Maiden, conventional methods of constructing diodes require bottling the semiconductor in a glass jar and sealing the ends of the jar around the leads. This invites substantial production difficulties, he said, centered on parts tolerances, sealing temperature and glass-to-metal bonds. The company's approach is to sandwich a small diffused silicon die between two gold-plated ribbons.
The clie-to-lead attachment is a silicon-to-gold eutectic bond, having a melting point at 370 C and made without flux. Both nickel and Kovar have been used as base leadwire materials. Generally Kovar is favored, because it matches the thermal expansivity of silicon. Gold plating the surface of the Kovar reportedly gives good corrosion resistance and power dissipation.
Power dissipation of the diode itself is helped by the relatively large area of ribbon-to-die contact on both sides of the pn junction.
In packaging, the silicon is passivated. Subsequent treatments molecular-bond semi-organic films to the surface matrix. There is no definite interface between the silicon crystal and its cover-

Sandwich construction of Pacific Semiconductor's microdiode, said to eliminate bottling and to avoid production problems of parts tolerances, sealing temperature and glass-to-metal bonds, with resultant high reliability.
ig. Pacific Semiconductor says the entire process s controllable.
By limiting the package surface area and the umber of packaging materials exposed to the device, the potential for foreign particle exchange between the silicon element and its housing environment is restricted. Thermodynamic changes are siharply restricted, too, says Mr. Maiden, since the chemical bonds tie up the surface-energy states. One source of degradation in conventional diodes is caused by mobile particles and thermodynamic changes on the surface of the diode, particularly under operating load, thermal shock or high-temperature storage.
Electrically, microdiodes are reported to perform as well as other computer diodes. But failure rates are said to be only 0.19×10^{-4} units per hour at $150-\mathrm{C}$ storage, where failure is a onetime change in reverse leakage current. Power handling is reported exceptionally good. When the leads are soldered in a good heat sink close to the body, Mr. Maiden says, as much as 500 milliwatts can be dissipated. A normal rating for the microdiodes would be 250 milliwatts.
Any other silicon microminiature device, such as a transistor, could be made with the same process. The use of other materials would require a study of inert films incorporating molecules of the material to be covered.

Thin Negatives Transfer Circuitry

N gatives of thin, transluscent paper stock are being u-d at Librascope to transfer circuitry patterns onto copper-clad glass epoxy-laminated boards. The compriy developed the process to reduce alignment and d. nage problems and to insure dimensional stability o) the negative.

taper technique points the way to greater reliability

Magnetic Amplifiers, Inc. of New York carefully manufactures its Static Inverters with a step-by-step quality control and testing program to build in the reliability required for aircraft and missile applications.

It found that AMP Taper Technique simplified this procedure. A high speed AMP Automachine pre-terminates circuit leads with crimp-type. pre-insulated solid Taper Pins. Components are then easily tested in the modular stage before final assembly. Crimping eliminates difficult soldering operations and the danger of burning wound components while Taper Technique permits checking and trouble shooting without destroying the main cable. After final assembly, when the Pins are inserted into the Blocks, this Technique provides rugged vibration resistance and operational reliability.

AMP solderless Taper Pins are made in formed and solid types, with or without pre-insulation and mate with a wide range of one or two piece stackable Taper Blocks. You'll find that AMP Taper Technique is ideal for your quality control or circuit density problems too.

AMP
AMP
Pre-Insulated Pre-Insulated
Taper Pins and slackable Taper Blocks

Write for our new Taper Technique brochure.

AMP INCORPORATED

GENERAL OFFICES: HARRISEURG, PENNSYLVANIA
AMP products and engineering assistance are available through subsidiary companies in: Australia • Conada - England • France - Holland - Haty - Japan - West Gormany CIRCLE 27 ON READER-SERVICE CARD
E ECTRONIC DESIGN • February 17, 1960

Two Major Obstacles Outlined

But he noted two major areas of difficulty in achieving these improvements: the problem of witching controlled elements, and the present limited understanding of the basic materials. Not loo much is known about the physics of electroluminescence. Advances in basic understanding, he suggested, will flow from present work in the field: from the development of adequate theoretical models and other theoretical work.

We are now in the position of the copper-oxide rectifier of a few years ago," Mr. Boyd explained. "The Esaki diode is a shining example of what can happen if we have a good theoretical understanding of the device."
Production techniques must also improve, he said. Present element-by-element building of display surfaces cannot be competitive with other methods of display. But if elements could be formed on large areas by evaporation-a single crystal of cadmium sulfide over a large area, for example-a display better than anything available today could be built, he pointed out.
Switching looms as the biggest problem. The switching rates necessary for e-l TV are completely impracticable at present, Mr. Boyd asserted. Microminiaturization was cited as a help here. The amount of driving equipment necessary for switching will have to be reduced-which will take more fundamental work in the computer field. In this case, microminiaturization alone is not enough, Mr. Boyd said. Circuits have to be simpler; delay lines or ring counters might have to be used to switch elements on down the line.
Other problems to surmount involve reliability and life of the e-l panels. Brightness and efflciency must be increased.

Lighting to be First Big E-L Application

The big application of electroluminescence in the next few years will be as a lighting source, Mr. Boyd said-for homes, businesses, clock dials, radar consoles to facilitate maintenance and repair. Novel possibilities include the use of a twisted pair of phosphor-coated wires to direct traffic in theaters, signs of all kinds and do-ityourself mosaic kits for light-giving murals.

Worldwide Cable Net to Link Entire British Commonwealth

The British are planning to link their entire C immonwealth with an undersea cable network c pable of carrying slow-scan TV as well as telep ony. First link is to be a Britain-to-Canada cable, scieduled for completion by 1961. The second tie, (mada to Australia, is due by 1964. Later will (wue links from Australia to Malaya, India, Pakist. and Ceylon. Those countries will be tied to K nya, South Africa, and, finally, Britain.

ARNOLD: WIDEST SELECTION OF MO-PERMALLOY POWDER CORES FOR YOUR REQUIREMENTS

For greater design flexibility, Arnold leads the way in offering you a full range of Molybdenum Permalloy powder cores . . . 25 different sizes, from the smallest to the largest on the marker, from $0.260^{\prime \prime}$ to $5.218^{\prime \prime} \mathrm{OD}$
In addition to pioncering the development of the cheerio-size cores, Arnold is the exclusive producer of the largest 125 Mu core commercially available. A huge 2000 -ton press is required for its manufacture, and insures its uniform physical and magnetic properties. This big core is also available in three other standard permeabilities: 60, 26 and 14 Mu .
A new high-permeability core of 147 Mu is available in most sizes.

These cores are specifically designed for low-frequency applications where the use of 125 Mu cores does not result in sufficient Q or inductance per turn. They are primarily intended for applications at frequencies below 2000 cps .
Most sizes of Arnold M-PP cores can be furnished with a controlled temperature coefficient of inductance in the range of 30 to $130^{\circ} \mathrm{F}$. Many can be supplied remperature stabilized over the MIL-T-27 wide-range specification of -55 to $+85^{\circ} \mathrm{C} \ldots$ another special Arnold feature.
Graded cores are available upon special request. All popular sizes of Arnold M-PP cores are produced to a standard inductance tolerance of +
or -8%, and many of these sizes are available for immediate delivery from strategically located warehouses.
Let us supply your requirements for Mo-Permalloy powder cores (Bulletin PC-104C). Other Arnold products include the most extensive line of tapewound cores, iron powder cores, permanent magnets and special magnetic materials in the industry. - Contact The Arnold Engineering Co., Main Office and Plant, Marengo, Illinois. adoness dipl. ED-OI

II $\|$ EXTRA QUALITY AT NO EXTRA COST WITH BENDIX TRANSISTORS $\|^{2}$ ||

Up-to-the-minute news about transistors

NEW DRIVER TRANSISTORS SWEEPING THE FIELD

Extra-versatile Bendix units beat high costs, design limitations over wide front

Called the "workhorse of the transistor industry," the new Bendix* Driver Transistor series is winning the nod from more and more engineers daily. These men find it the answer to audio frequency and switching applications requiring extra performance withrequiring extra
out extra cost.
Here is a special device for use where reliability, versatility, and where reliability, versatility, and low cost are primary requirements. The Bendix units combine higher gain with more linear current gain characteristics for low distortion and more efficient switching.
They're now in high production for rapid delivery in JEDEC TO-9 packages.
NEW BENDIX SEMICONDUCTOR CATALOG on our complete line of power transistors, power rectifiers, and driver transistors available on request. Write semiconductor PRODUCTS, BENDIX AVIATION CORPRODITS, BENDIX AVIAT ON CORPORATION, LONG BRANCH, N. J. For opportunities write personnel opportunities write
manager.

ENGINEERS KNOW the new Bendix Driver Transistor line-up meets an unusually wide range of circuitry applications. Bendix Applications Engineering Department suggestions on circuiry problems are helpful, too.

TYPE numbens	maximum ratings					typical operation		
	Vce	Ic	Pc	Tj	T storage	hie	fab	Vce(Sat)
	Voc	mAdc	mW	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$		mAdc	$\begin{aligned} & \mathrm{Ic}=100 \mathrm{mAdc} \\ & \mathrm{Ib}=10 \mathrm{mAdc} \end{aligned}$
					$-6510+85$			0.15 Vdc
2 N 1008 A	-40	300	400	85	-65 to +85	90	1.2 mc	
${ }_{2} \mathbf{N} 1008 \mathrm{~B}$	-60	300 300	400	85	-65 to +85	90	1.2 mc	0.15 Vdc
${ }_{2}^{2 N 1176}$	-15 -40	300 300	300 300	85 85	$-6510+85$ $-6510+85$	65 65	1.2 mc	0.15 Vdc 0.15 Vdc
2N11768	-60	300	300	85	-65 to +85	65	1.2 mc	0.15 Vdc

Ideal for such applications as:
TRANSISTOR DRIVER - AUDIO AMPLIFIER (CLASS A OR B) POWER SUPPLY - SERVO CONTROL • AUDIO OSCILLATOR MOTOR CONTROL - RELAY DRIVER • POWER SWITCH
semiconductor products Red Bank Division long aranch, N. J.

 E Providoncio Avervo, Buvionont, Colfiomia
 2N56S Yorth Rood, Elmurrer, llinoin Now Enalond Solen Ofice: 4 Lloyd Rood, Tombibury, Mosisctuvems Exxort Solo. Oficio: Bondix hiomotional Division.
 Canadion Affiliote: Computing Dovices of Conada,
P, O. Bo久 SOB, Ottawa 4, Ontorio, Conoda

NEWS

Two Signals Provided by Compact Real-Time Airborne Digital Timer

A newly developed airborne digital timing sy;tem said to be accurate to 1 part in 10° provid ss both six-digit numerical clocks for visual readirg and a video signal for audio and graphic recorling. The unit was developed for data correlating. Its signal is a binary coded decimal (BCD), which furnishes real-time referencing.
The system may be started manually by inserting any chosen time, or automatically by syinchronizing the time-generating process with U . S. time signal WWV or a suitable BCD transmission.
It automatically corrects for propagation delay time, insuring exact time relationship for correlation of data obtained simultaneously at any number of remote points. The unit, which can accommodate up to 20 remote clocks, weighs 78 pounds with one remote clock and one reader control.
The system, developed by Temco Overhaul \& Aerosystems (Div. of Temco Aircraft Corp.), functions as its own decoder and readout device for previously recorded binary-coded video sig. nals. It provides real-time display in decimal form to the nearest second with use of the remote reader control. Time referencing may be reduced below the one-second level with $0.1,1,10$ and 100 -millisecond markers. Temco engineers place

New airborne digital timing system provides visual six-digit numerical clocks as well as a video signal suitable for audio graphic recording.
ystem accuracy at one part in $10^{\overline{7}}$ and starting sccuracy within two milliseconds of setting.
Five basic components make up the digital iming system: time-encoder, reader, remote lock, junction box, remote control and power supply.

FAA Expects 1000 VORTAC'S
 To Aid Air Navigation by 1965

The Federal Aviation Agency expects 1000 complete VORTAC facilities to be in operation as air navigation aids by 1965.
Last year the agency had 550 VOR's in operation and plans for 13 additional VOR's, 62 VORTAC's and about 150 VOR-to-VORTAC conversions.
Under its program to modernize air traffic control, the FAA is gradually introducing improved equipment and techniques. The agency is confident that the VORTAC system is superior for instrument flying and will have the immediate effect of expanding available air space and eliminating numerous points of traffic conflict.
The number of airport surveillance radars capable of detecting aircraft within a 50 to 60 mile radius at altitudes up to $25,000 \mathrm{ft}$ will be increased by the FAA from the present 47 to 82 by the end of 1961. Both the long-range and the airport-surveillance radar systems will be equipped with radar-beacon capability.
The FAA had five long-range radars operating in 1958. It added eleven during early 1959 and had 24 more scheduled for later commissioning. These high-powered radars are capable of detecting aircraft up to a range of 200 miles and at 60,000 feet high.
The FAA hopes that three of its specially designed air-traffic, data-processing systems, now under development, can be established annually beginning in fiscal 1961.

These improvements and others lead the Electronics Industries Assn. to believe that the electronics portion of FAA's cumulative budget through 1970 will total more than $\$ 1.6$ billion, hout 21 per cent of all cumulative spending.
The EIA forecast is predicated on an increase ${ }^{1}$ FAA authorizations from the present yearly vel of about $\$ 530$ million to $\$ 700$ million by 170 and a rise in electronic spending from today's亏 per cent to 25 per cent by the end of the tenear period.
The industry group also foresees at least a $\$ 30$ illion sales potential for the electronics industry equipment to be carried by nearly 110,000 nonilitary, non-commercial aircraft by 1970.

PERFORMANCE-PACKED PRECISION POTENTIOMETERS

 clarostat SERIES 57

UP TO 50K OHMS
Resistance range: 50 ohms to 50,000 ohms $\pm 5 \% .1 .5$ watts @ $40^{\circ} \mathrm{C}$.

MINIMUM CiECTRICAL LEAKAGE High dielectric materials employed throughout with nickel-silver body.

COMPLETELY SEALED
Meets and exceeds military moisture and humidity requirements.

RESOLUTION
. 08% resolution permits extreme accuracy in read-out and setting.

$\pm \mathbf{2 \%}$ INDEPENDENT LINEARITY $\pm 2 \%$ deviation for actual angular displacements. Tops for $1 / 2$ " diameter potentiometers.

MECHANICAL/WELD TERMINATIONS
Windings terminated with tapered-pins and electronic weld. Terminals molded in place.

NEW FROM CORNING

C-42 low-power, low-cost film-type resistor

What this Country needs is a good fivecent resistor-and here it is.
At the heart of the C-42 you'll find a glass core coated with a very thin film of metallic oxide. It's this construction that gives you the exceptional performance you've come to expect from metallic film-type resistors.
In every characteristic, this new C-

42 outperforms the requirements of MIL-R-IIB; for example:

Load life stability (1000 hrs .) : 5% max. -3% average
Humidity: 1% max. resistance change Shelf life: 0.2% per year, maximum Noise output: 0.1 microvolt per volt

Nominal length of the $\mathrm{C}-42$ is " $110 \mathrm{I}^{\prime \prime}$
$\pm 1 / 3 y^{\prime \prime}$. Power rating is 2 W at $70^{\circ} \mathrm{C}$.

You can get the new C-42 in resistances from 200 ohms to 1.4 megohms.
These resistors are stocked by Erie Distributor Organization for immediate delivery in small quantities.
For data, write Corning Glass Works, 540 High Street, Bradford, Pa. Or contact our sales offices in New York. Chicago, or Los Angeles.

COMPONENTS

WASHINGTON k REPORT simumbs IIIIINIII $\sqrt{14}$

Ephraim Kahn

. ANTITRUST POLICY is toughening at tle Justice Department. Odds now favor adoption of a policy of fighting almost all merger cases through the courts instead of seeking a mutualiy agreeable compromise with the companies concerned. The Antitrust Division feels hampered by the belief of some courts that they, as well as the Justice Department, can arrange compromise settlements in antitrust cases. If the Supreme Court holds that the Justice Department has this discretion but that lower courts do not, the Justice Department will probably reverse its present tendency to refrain from consent settlements in antimerger cases. The Federal Trade Commission, another antitrust arm of the Government, apparently will not go along with any move to abandon consent agreements in merger cases.

PATENT PRACTICES of a Federal agency have again been scored by a Congressional group. This is part of a drive, gaining steam among the lawmakers, to put tighter controls on the fruits of research paid for by the Government. In this case, exception is taken by the Senate patents subcommittee to an action by the Dept. of Health. Education and Welfare. It is accused of "virtually abandoning an established policy of patent dedication to the public." Instead, private companies are reported to have kept title to patents developed under research programs paid for by the Government, "subject to complex and untried provisions for compulsory licensing." Chairman Joseph C. O'Mahoney (D., Wyo.) of the Senate subcommittee asserts that Congress, not Government officials, should set standards for protecting the public interest in licensing.

ELECTRONICS SHARE in the fiscal 1961 budget has been clarified a little, but not much. by the Defense Department. "Independent" electronics and communications devices are scheduled for about $\$ 1.1$ billion, up almost $\$ 200$ million. To this must be added the large amounts that will go for electronics incorporated in weapons systems and spending for R\&D. Total spending for military electronics in the 1961 fiscal year could reach $\$ 5.5$ billion, about 20 per cent greater than the 1960 figure.

TOP R\&D projects will receive a special push from the Army: It has set up a super-priority rogram to help engineers and scientists crack the :ough problems that won't yield to routine development. The new procedure will be invoked only lor major items "necessary to the security" of the U.S. Note, too, that the Army also will give vigorous support to applied research "to facilitate the application of new basic knowledge to develop ment programs, and to allow prompt, critical analysis of what it is possible to create with the knowledge available."

INDUSTRIAL DISPERSAL program, de signed to reduce plant vulnerability to enemy attack, has virtually gone by the board. Though Covernment buyers consider dispersion as one factor in placing contracts, its effect is marginal. Officials attribute this to such other factors as price and to "the fact that procurement is concerned primarily with capacities in place rather than new construction."

DESIGNERS' ROLES in the development of weapons systems assume even greater importance as the military places greater stress upon cutting lead-times. Lt. Gen. Bernard Schriever, conmmander of the Air Research and Development Command, says it would be "costly in time and lead to early obsolescence should we follow a polic y of not initiating a weapon-system development program until all subsystems of which it consists tre fully developed and on the shelf."
"THE GOVERNMENT is robbing our country of its full technological potential in the space race, because of its current attitude on patents and proprietary rights," Robert R. Lent, chairman of the Patent and Proprietary Rights Committee of the Strategic Industries Assn., told a press conference. He added that the Atomic Fnergy Act and the National Aeronautics and Space Act were "denying to individual citizens the fruits of their creative endeavors." The assoriation holds that inventors have a constitutional ght to the rewards of their inventions regardless of the sponsorship of detailed development. In e same vein, the Aerospace Industries Assn. told House of Representatives subcommittee that e patent provisions of the space law were deny fur the National Aeronautics and Space Adminration the freedom to promote U.S. space techlogy' efficiently. "The law removes any incentive a contractor to make inventions," an associal. In spokesman said.

EEECTRONIC DESIGN • February 17, 1960

Resolution up to 800 lines per diameter possible with new HUGHES flat-face TONOTRON ${ }^{\star}$ Tubes!

These newest products of HUGHES are especially designed to give you dramatically improved resolution in applications such as: shipborne and ground based radar, sonar, air traffic control, instrumentation, industrial TV, and many others HUGHES flat-face storage tubes, now available in quantity enable you to increase display capability by a factor of 4 Display readouts are easier and more accurate because of the new picture clarity, sharper focus and finer detail pro vided by the optically-flat face and high light output of these new TONOTRON ${ }^{\text {® }}$ Tubes from HUGHES.

Write loday for full information and engineering assistance on your applications: HUGHES, Vacuum Tube Products Division, International Airport Station, Los Angeles 45. California. For export information, please write: Hughes International, Culver Cily, California.

FEATURES

- Axial writing gun
- Electrostatic focusing
- Electromagnetic deflection
- P20 aluminized phosphor

FIRST 7"\& 10" FLAT-FACE STORAGE TUBES

another FIRST from HUGHES!

HUGHES

VACUUM TUBE PRODUCTS DIVISION

Creating a new world wilh ELECTRONICS

NEW FROM NARDA

Operates more Klystrons than any comparable unit!

This new Narda Wide Range Klystron Power Supply operates virtually all medium and low voltage Klystrons, as well as some high voltage tubes (at reduced power output). It literally operates more Klystrons, including Sperry and Varian tubes, than any other unit in its price range!
What's more, all components, including tube sockets, are operated within manufacturers' ratings. (Many other supplies exceed plate-cathode.
cathode•filament or socket-ground voltage ratings.)

Want more information about this new Power Supply that gives you greater versatility and longer trouble-free service at lower cost? Then write us for complete spec sheets. Ask, too, for your free copy of our complete catalog. Address: Dept. ED-6.

FEATURES

- 250-700 volt Beam Supply, $\mathbf{0 . 6 5}$ ma.
- 0-1000 volt Reflector Supply
- Accurate Ten-Turn Dial Calibration
- 5 mv max. Reflector Ripple
- Diode Protection Circuit
- Oil Filled Capacitors in High Voltage Filters
- Square Wave Modulation 0-150 Volts, 300 to 3000 cps.
- Saw Tooth Modulation 0-150 Volts, 30 to 180 cps.
- Sine Wave Modulation 0-150 Volts, 60 cps.

artan
 the narda
 microwave
 corporation
 118-160 HERRICKS ROAD, MINEOLA, L. I., N. Y. • PIONEER 6-4650

MEETINGS

February
19-23 3rd International Electronic Parts Show, Paris, France
*25-26 Scintillation Counter Symposium, AIEE, AEC, IRE, NBS, Washington, D.C.
29-3/2 Special Electronics Meeting, AMA. Statle: Hilton, New York, N.Y.

March
6-9 Gas Turbine Power and Hydraulic Conferenc:, ASME, Hotel Rice, Houston, Tex.
9-11 Temperature Measurement Symposium, ISA, Deshler-Hilton Hotel, Columbus, Ohio
16-18 Electronic Industries Assoclation Spring Coin. ference. Statler-Hilton, Washington, D.C.
17-18 Synchro Design and Testing Symposium, Department of the Navy Bureau of Weapons, Department of Commerce Auditorium, 14th \& Constitution Ave., N.W., Washington, D.C.
*21-24 IRE International Conventlon, All PG's, Wal. dorf Astorla Hotel and New York Coliseum, New York, N.Y.
21-24 Electronic Representatives Association, Park Sheraton Hotel, New York, N.Y.
23-25 Ground Support Equipment Conference, ARS, Statler-Hilton, Detroit, Mich.
23-26 Electrical Industry Show and Lighting Exposition, EMEA, Shrine Exposition Hall, Los An. geles, Calif.
2425 1st Annual Symposium on Human Factors in Electronics. IRE, New York, N.Y.
29-31 22nd Annual American Power Conference, IIlinois Institute of Technology, Hotel Sherman, Chicago, III.

April

3-7 National Association of Broadcast Engineer. ing Conference, Conrad Hilton Hotel, Chicago, III.
*3-8 6th Nuclear Congress, New York Coliseum, New York, N.Y
4-6 AIEE Southwest District Meeting, Houston, Tex.
5-8 National Aeronautic Meeting, Society of Auto motive Engineers, Hotel Commodore, New York, N.Y.
5-9 Electrical Engineers Exhibition, Earls Court, London, England
6-8 Structural Design of Space Vehicles Confer ence, ARS, Biltmore Hotel, Santa Barbara, Calif.
7-8 Management Engineering Conference, SAM ASME, Statler-Hilton Hotel, New York, N.Y.
12-13 14th Annual Spring Technical Conference held with American Rocket Society, Hotel Alms, Cincinnati, Ohio
18-19 3rd Annual Conference on Automatic Tech niques, ASME, IRE, AIEE, Cleveland-Sheraton Hotel, Cleveland, Ohlo
19-21 International Symposium on Active Network \& Feedback Systems. Department of Defense Research Agencies, Polytechnic Institute of Brooklyn, IRE, Engineering Societies BIdg., New York, N.Y.
20-22 Southwestern IRE Conference, ShamrockHilton Hotel, Houston, Tex.
20-22 National Symposium on Manned Space Sta-

Si

tions, IAS, NASA, Ambassador Hotel, Los Angeles, Calif.
20-22 Electronic Conductivity in Organic Solids Conference, OOR \& ONR, Duke University, Durham, N.C.
27-29 AIEE Great Lakes District Meeting, Milwaukee, Wis.
27-29 6th Annual ISA Southern Conference \& Exhibit, Pensacola, Fla.

May
2-4 AIEE Northeastern District Meeting, Providence, R.I.
2-4 National Aeronautical Electronics Conference, PGANE-IRE and Dayton Section IRE, DaytonBiltmore and Miami-Pick Hotel, Dayton, Ohio
2-5 6th Natlonal Flight Test Symposium, ISA, San Diego, Calif.
2-6 Western Joint Computer Conference, PGEC. IRE, AIEE, ACM, Fairmont Hotel, San Francisco, Calif.
3-5 8th National Conference on Electromagnetic Relays, Student Union Bldg., Oklahoma State University
5-6 1960 Conference on Protective Relaying, Georgia Tech's School of Architecture Auditorium, Atlanta, Ga.
9-11 National Symposium on Microwave Theory \& Techniques. Hotel del Coronado, San Diego. Calif.
9-12 Instrument Automation Conference \& Exhibit, ISA, Brooks Hall, San Francisco, Callf.
10.12 Electronic Components Conference, IRE, EIA, AIEE, WEEMA, Hotel Washington, Washington. D.C.
16-18 Guidance \& Navigation Conference, ARS, Santa Barbara, Calif.
16-18 Electronic Parts Distrlbutors Annual Show, Conrad Hilton Hotel, Chicago, III.
18-20 Electronic Industries Association, Annual Convention, Pick-Congress Hotel, Chicago, III.
23-25 9th National Telemetering Conference, ISA, AIEE, ARS, IAS. Miramar Hotel, Santa Monica, Calif.
23.25 IRE 7th Regional Technical Conference \& Trade Show, Olympic Hotel, Seattle, Wash.
23-26 Design Engineering Conference \& Show, ASME, Statler-Hilton Hotel, New York, N.Y. *Includes meeting described herewith.
7th Scintiliation Counter Symposium, Feb. 25-26
The program for the 7th Scintillation Counter Symposium is as follows:

Thursday, February 25-9:30 A.M.
Session 1. Scintillators
The Organic Scintillation Process, J. B. Birks, Manchester University
Recent Contributions to the Theory of Scintillaion in Organic Solutions, W. L. Buck, ANL
Rise-Time Characteristics of Organic Solution intillators, D. F. McDonald, Fordham Univer-

Scintillation Response of Activated Ionic Cryswils to Charged Particles, A. Meyer and R. B. MurORNL
CSI(Tl) as a Gamma Ray Spectrometer, C. T. limidt, Harshaw Chemical Co.
New Cerium Activated Scintillating Glass, R. J.

A real heel might test a Fusite Terminal like thisbut he won't make if leak!

The adherence between glass and metal in a Fusite Hermetic Terminal is an easily demonstrated fact. There are several theories as to why our exclusive V-24M glass act ually chemically bonds to the metal components. Cobalt and certain other metallic oxides in the glass oxidize the iron in the metal which is taken into solution. It is believed that through the solution of iron, a gradual decrease of the difference of thermal expansion
 between the glass and metal takes place at the glass-metal
interface. This inter-fusion of the two dissimilar materials gives Fusite Terminals their ability to withstand great mechanical and thermal shock and still pass Statiflux tests for glass cracks, hydrostatic pressure tests and helium mass spectrometer leak detection.
This fusion is reinforced by a strong compression of the metal ring around the glass made possible by a favorable thermal expansion balance of the glass, pins and housing.
The combination of fusion and compression provides a terminal so rugged that leaker rejection rate of components into which our terminal is fabricated is practically nil, even when roughly handled and subjected to extreme temperature changes.
Samples for your own testing are yours for the asking.
Write Dept. C-1.

CORPORATION 6000 FERNVIEW AVE., CINCINNATI 13, OHIO Woodford Mrg. Co., Vorraillos, Koniveky. In Luropes fusirit N. V. Konigewog 16, Amolo, Holland

Ginther, NRL
High Pressure Gas Scintillators, Charles Engelke, Columbia University

Thursday, February 25-2:00 P.M.

Session 2. Photomultipliers and Associated Electronic:s

Developments in Photomultipliers, Image Amplifiers and Scintillation Instruments, J. Sharpe, EMI

Photomultiplier Development Program at RCA Lancaster, R. W. Engstrom and R. M. Matheson, RCA Lancaster

Investigation of Cathode Uniformity and Transit Time Spread of PMT's, Y. C. Kim, Dumont

Development of Photomultipliers for Scintillation Counting, B. Linden, CBS

New Rugged High-Temperature Photomultipliers, J. P. Causse, Schlumberger Well Surveying Corp.

Dark Current in Photomultipliers, J. A. Baicker, RCA

A Three-Dimensional Analyzer using Digital Recording on Magnetic Tape for Gamma-ray Spectroscopy with $\mathrm{NaI}(\mathrm{Tl})$ Counters, J. R. Bird, J. R. Waters, F. H. Wells, AERE Harwell

Transistor Counting Systems for Scintillation Detectors, S. C. Baker, H. G. Jackson, D. A. Mack, LRL

Unscrambling Scintillation Spectrometer Data, W. R. Burrus, Ohio State University

A Portable Gamma Ray Spectrometer, A. 12. Jones, Chalk River

Scintillator Counter Gamma-Spectra Unfolding Code for the JBM-650 Computer, H. I. West, B. Johnston, LRL

Friday, February 26-9:30 A.M.
Session 3. Scintillation Track Imaging
Present Status of Scintillation Chambers, George T. Reynolds, Princeton University
Present Status of Image Intensifier System, A. K. Mann, University of Pennsylvania
Image Intensifiers, W. L. Wilcock, Imperial College
Image Intensifiers for Nuclear Track Imaging, R. G. Stoudenheimer, J. C. Moor, H. L. Palmer, RCA Lancaster
Present Status of the Channeled Image Intensifier, Jay Burns, University of Chicago
A Nuclear Track Camera Employing Transmission Type Intesifiers, G. Goetze, H. Kantor, Westinghouse Research Laboratory

Bevatron Experience with a Homogenous Luminescent Chamber, L. W. Jones, K. Lai, R. Newsome, M. L. Perl, University of Michigan
Optical Properties of Fibers and Optical

Instruments that Stay Accurate

After More Than 600 Separate Inspections - One Panel Instrument

Sounds like a lot of inspecting, but it's one of the things that makes possible Simpson's fine panel instruments.
Take pivots, for example, which support the rotating armature of a meter movement. Because Simpson quality standards are so high, Simpson makes its own pivots which require more than 60 separate inspections during manufacture. Among these are 100% inspection under a 100 X microscope and sampling inspection under a 400 X microscope to check radius, cone angle, finish and other characteristics. One result is pivot points with a radius tolerance maintained to within $.000010^{\prime \prime}$. Moreover, Simpson inspects each and every group of pivots for correct hardness so they won't deform under rough use.
Through such meticulous care as this, Simpson is able to offer you panel instruments with accuracy limits that are 100% guaranteed . . . instruments with conservative ratings on which you can rely ... instruments that stay accurate . . instruments you can specify with confidence. Write for Catalog 2059A.

Simplicon

5202 West Kinzie Street • Chicago 44, Illinois Phone: EStebrook 9-1121
In Canada: Bach-Simpson Ltd., London, Ont.

The relay that doesn't know how to fail!

We got tired of waiting for this General Electric Miniature sealed relay to stop. It just kept switching ... and switching t just kept switching . . . and switching 750 and switching ... through more than we finally gave up and took it off test.

Frankly, we just don't have the time or patience to find out what its actual mechanical life really is. We're too busy building highly reliable relays for computer machine tool instruments, and other industrial electronics jobs.

But, this doesn't mean we're "asleep at the switch" and don't know why the G-E Miniature relay performs so remarkably. It all stems from a superior E-frame magnet making possible larger gaps and more overtravel . . . a molded stack for mechanical rigidity . . . Beryllium copper contact springs assuring long spring life . . . and, a knife-edge pivot which eliminates pivot wear

Now don't get the idea that this re-
liable performance is confined to a me-chanical-life test T o the contrary this rugged relay is pre-conditioned to a life of "hard knocks." Built-in shock and vi bration resistance (ranging to 50G's shock, and 10G's vibration at 5-500 cps) mean that the G-E Miniature can cope with just about any industrial demand. And, under typical conditions a G-E Miniature relay will switch the coil of a similar relay through at least a hundred million operations. It can switch size " 0 " or " 00 " contactor coils more than 40 million times!

What's more, a General Electric in dustrial Miniature requires less than one watt of power-a significant bene fit when a number of relays are in the circuit. And, operating times as short as 10 milliseconds are possible, accom panied by a sustained repetition rate of 2000 operations per minute!
Add to all of this the fact that a G-E

Miniature's small size saves valuable panel space . . . that it's not positionsensitive and can mount in any plane
that wiring is convenient . . . that the clearance and creepages on the header and socket meet NEMA requirements . . . and you know why the G-E Miniature sealed relay will out-perform any other type of relay in many industrial electronic applications.

Why not see your G-E Apparatus Sales Engineer today? He has all the details on the seven forms of General Electric Miniature sealed relays-each in a wide variety of terminations-for virtually every industrial switching need. Or, if you prefer, mail the coupon at right. General Electric Co., Specialty Control Dept., Waynesboro, Virginia.

Progress Is Our Most Impontant Product
GENERAL ELECTRIC

Unique construction features give 6-E Miniature relays unmatched reliability in industrial electronics jobs

LONGER MECHANICAL LIFE of G-E in dustrial relays is due-in part-to G.E.'s exclusive use of molded contact stacks which won't loosen or shift to the degradation of relay performance.

DEPENDABLE PERFORMANCE is contributed by the powerful G-E E-frame magnet-another exclusive design providing higher contact pressures, larger contact gaps, more contact overtravel

GREATER STABILITY of G-E relays is a result of G.E.'s unique support design with the relay actually supported by its can. Other relays use a cantilever support from the base only.

```
General Electric Company
Section A 792-15
Schenectady, New York
Please send me a free copy of
Bulletin GEA-6665A, Sealed Re-
lays for Industrial Application.
Name
Address
City
State
    GENERAL ElECTRIC
Name
```


EDITORIAL

We Need to Find the Right Problem

The future of electronic companies will depend more on their marketing ability than on their technology, according to marketing experts. Right now there is more systems capability in the U.S. than there is demand for such service; more companies to design missiles than dollars to buy them. It is incumbent upon companies, therefore, to determine just what is needed and to organize themselves so that they can produce products fulfilling that need. Engineers will have to play a key role in determining this market.

This era which will be dominated by marketing is a fourth phase in history, according to Salvatore F. Divita, Consultant to the Director of Procurement, WPAFB. In the late 1800's it was the financier who was the dominant force; in the early 1900's and through World War II, it was the mass production expert. In the post war period it has been R\&D, or technology. Now a company must do more than engineer a solution to a problem; it must first find the problem. This is not easy. What is the real problem of defense? It is not building every missile that has been conceived by engineers. The nation cannot afford it.

The need then is to find primary problems and not to be led astray by secondary ones. For example, the company that bases its future only on the need for mechanical inertial guidance devices may find itself without customers if dollars for missiles go instead into optical navigation systems for true space vehicles. Component manufacturers who do not envision the day of solid circuits may wither.
It is the marketing department that must find the problems facing the military services, government agencies such as the National Aeronautics and Space Administration, and the business world in general. And although the consumer may not have a major problem, he has wants and desires and these too the marketing department must find.
The engineer will play a vital role in finding problems, selling problems, and then selling solutions to problems. His analytical, problem-solving mind is needed. His skill in articulately explaining a complex problem or solution will determine how funds will be spent. He must be correct in his analysis or the nation's wealth will be wasted.

BEHLMAN

COMPLETELY ELECTRONIC AC POWER SOURCE

Lets you select the power you need, quickly and easily. No "re-engineering" or preparation of diagrams for proper connections. BEHLMAN INVERTRON conserves the valuable time of your engineering talent,
simplifies procedure, saves space and makes work more productive.

For further information ...WRITE or CALL VIctoria 9-5733

2911 WINONA AVENUE - burbank, CaLIFORNIA
Representatives in all principal cities and Canada CIRCLE 39 ON READER-SERVICE CARD

This three-part article presents a step-by-step procedure for designing line-type modulators. These circults are enjoying renewed Interest as high-power pulse modulators high-power pulse modulators operation and intrinsic small size.

While exhaustive analyses are presented in the ample literature ${ }^{1}$, author Igor Limansky feels that something more concrete is needed to save the designer from timeconsuming calculations and false starts. This "something" Is practical design experience. It le imparted in the nomographs and formulas of this series in sufficient detall to series in sufticient detall to arrive at a roughed-out modulator design. This design can then be verified and refined by caiculations to yield the
final design. inal design.

The operation of the modulater can be divided Into two separate phases: charging, and discharging of the pulse forming network. Part I of thls series of articles is concorned with the discharging of the pulse forming network, while Part II is devoted to the charging circult. Part III diecusses the cllpper diode, trlg ger circuit requirements, and provides a check-list for the complete modulator deslgn.

How to Design a Line-Type Modulator

Part I-Discharge Circuit

Igor Limansky*

Electronics Research and Development Section

The Martin Company

Baltimore, Md.
Now with Special Electron Devices Section, Air Arm Div.
The Westinghouse Corp., Baltimore, Md.

T
HE BASIC line type modulator circuit, using de charging, is shown in Fig. 1. Designing a circuit of this type to fit a particular application is the subject of this series of articles. First, let us review the operation of the basic circuit.

The pulse forming network (PFN) is charged to a peak forward voltage $e_{p u}$, through the charging choke and hold-off diode. The switch tube, usually a hydrogen thyratron, then discharges the PFN into a load when triggered by a suitable pulse

Fig. 2. Discharging circuit-functional diagram.

PEAK
CURRENT (matched conditions)
from the trigger generator. The PFN and the pulse transformer determine the length and shape of the modulator output pulse.

Discharge Circuit Efficiency

The first step in designing a line-type modulator for a specific application is to determine the efficiency of the discharge circuit. The discharge of the PFN into the load is described functionally in Fig. 2. The energy in the PFN is connected to the pulse transformer and load through the switch tube. The discharge circuit efficiency ηd, determines the amount of energy available to drive the magnetron load. The efficiency of the magnetron, in turn, determines the power delivered to the output as microwave energy.
Often, the peak microwave power output, po, pullse repetition rate, $p r r$, pulse width, $t p$, and microwave frequency are the only parameters given tie designer. In this case, the first step is to choose a suitable magnetron, and from its characteristic cirves find the value of peak voltage e_{L}, and peak (crrent i_{L}, necessary for proper operation. If loads ther than a magnetron are involved, their $i_{L}-e_{L}$ ciaracteristics must be known. These values lead i) rectly to the peak power output of the modu1 tor p_{L}, through the formula:

$$
\begin{equation*}
p_{L}=e_{L} i_{L} \tag{1}
\end{equation*}
$$

The discharging circuit efficiency ηd, includes
the pulse transformer efficiency, effect of mismatch between the PFN and load, and $I^{2} R$ losses in the switch tube and circuitry. A value of 75 per cent is usually chosen ${ }^{2}$ as representative of "normal" (say, $1 \mu \mathrm{sec}$ pulse width, 0.001 duty cycle) modulator operation.

Choosing a Switch Tube

The choice of a switch tube involves a choice of PFN impedance Z_{N}, and calculation of the conditions imposed on the switch tube by this choice. Four steps are needed for this calculation:

1. A value of network impedance Z_{v}, is chosen, and the peak forward voltage $e_{p y}$, is determined using Fig. 3.
2. This value of peak forward voltage is used in Fig. 4 to determine the hydrogen thyratron peak current i_{b}.
3. All the values necessary to determine the hydrogen thyratron dissipation factor P_{b}, are now at hand. This value is a measure of anode heating, and limits the pulse repetition rate that may be applied to a thyratron having a certain combination of peak current and peak voltage imposed upon it. ${ }^{3,4}+$ It is defined as:

$$
\begin{equation*}
P_{b}=e_{p v} \cdot i_{b} \cdot p r r, \tag{2}
\end{equation*}
$$

and must not be exceeded for proper operation. The nomograph in Fig. 5 computes this value, and lists the Mil-E-1C values for various tube types.
4. One additional value must be computed to determine whether or not the hydrogen thyratron is operating within ratings. This value ${ }^{4}$ is called the hydrogen thyratron heating factor I_{p}, and is defined by:

$$
\begin{equation*}
I_{p}=\sqrt{I_{b} i_{b}}=i_{b} \sqrt{d u} . \tag{3}
\end{equation*}
$$

The peak current i_{b}, is known, and the duty cycle $d u$, is merely

$$
\begin{equation*}
d u=p r r \cdot t_{p}, \tag{4}
\end{equation*}
$$

where t_{p} is the pulse width. Hence, the heating factor may be obtained from Fig. 6. This nomograph also supplies the value of average current I_{b}, required later in the design.

These four steps may need to be repeated a number of times to permit the optimum choice of switch tube and PFN impedance.

An Example

At this point it would be useful to go through a sample calculation to point up the mechanics of the procedure. Assume that pulsed microwave power of 15 kw at a frequency of $9375 \mathrm{mc}, 1.75$ $\mu \mathrm{sec}$ pulse width at a repetition rate of 1000 pps , is required for a certain application.

One possible candidate for a magnetron is the Sylvania 6027. From the manufacturer's characteristic curves (for a standard attached magnet of 5670 gauss) the peak voltage e_{h}, to be supplied by

Fig. 5. Use this nomograph to determine dissipation factor p_{b} and to select the right thyratron switch tube.

CURRENT
Fig. 6. Use this nomograph to determine switch-heating factor I_{p} and average current I_{b}

Nomograph Mechanics

Two types of nomographs have been provided for the convenience of the designer: two and three-variable nomographs. The two-variable nomographs (figs. 4 and 6) require a line drawn from the iwo variables on the outermost scales. This line will infersect the inner seale
of the value sought. In the case of Fig. 6, two inner scales ore provided, but only one line connecting the variables on the outermost scoles, is required.
The three-variable nomographs (Figs. 3 and 5) require two lines. One line is drawn from the iwo outer-
most scoles, and determines a point of intersection on the reference axis. The other line is drown from this point of intersection to one of the innermost scales. Intersection of the latter line with the other innermost scale will determine the value sought.
the modulator should be 6.6 kv , at a peak current of 4.4 amp . The power output of the modulator p_{L}, is therefore:

$$
p_{L}=6.6 \times 10^{3} \times 4.4=29 \mathrm{kw}
$$

A commonly used value for the PFN impedance Z_{N}, is 50 ohms. Assuming a discharging circuit efficiency ηd, of 80 per cent, from Fig. 3, the peak forward voltage across the thyratron $e_{p y}$, is 2.7 kv . Using Fig. 4 the peak current i_{b}, is 27 amp . From Fig. 5, the dissipation factor P_{b}, is 73×10^{7}, while from Fig. 6 the heating factor L_{p}, is 1.1. The average current I_{b}, also from Fig. 6, is 47 ma .
The limiting factor may be seen to be the value of the peak forward voltage, indicating the use of the 3C45 hydrogen thyratron. The other values are comfortably below the maximum ratings of the 3C45.
One reason for using a 50 -ohm PFN impedance
is, if the magnetron and pulse transformer combination is at a remote location from the PFN and switch tube, it will have to be supplied by a highvoltage pulse cable that must be matched to the load and PFN impedance. The standard impedance values for this application are nominally 50 and 70 ohms. ${ }^{5}$

Procedure for Mismatch Conditions

Although Fig. 3 and Fig. 4 are based upon formulas derived for matched conditions (i.e., PFN impedance, $Z_{N}=Z_{L}$, the input impedance of pulse transformer when loaded by magnetron), they may be used for mismatch conditions as well, ${ }^{\circ}$ by using the value given by the expression

$$
\begin{equation*}
Z_{1}^{\prime}=\frac{\left(Z_{N}+Z_{L}\right)^{2}}{4 Z_{L}} \tag{5}
\end{equation*}
$$

as the "corrected" network impedance, in place
of Z_{N} in Fig. 3 and the value given by the expression

$$
\begin{equation*}
Z_{2}^{\prime}=\frac{Z_{N}+Z_{L}}{2} \tag{6}
\end{equation*}
$$

as the "corrected" network impedance, in place of Z_{s} in Fig. 4. Under matched conditions, when $Z_{L}=Z_{s}$, the above expressions reduce to the PFN impedance Z_{s}.

This adaptation is mentioned, since it is often desirable to design the modulator with a slight amount of negative mismatch (i.e., load smaller
${ }^{\circ}$ Only, however, if a clipper-diode circuit (described in Part III of this series) is present to discharge the inverse voltage left on the PFN. Otherwise, the peak forward voltage $e_{p y}$, will be a function of the Q of the charging choke and the inverse voltage (see p. 424 of Radiation Lab. Scries, Vol. 5, "Pulse Generators"). This design procedure assumes the eventual inclusion of a clipper-diode circuit.
han PFN impedance), to insure that the thyratron is shut off at the end of the pulse. This mismatch should, of course, be within the Mil-E-1C ratings of the thyratron, and at most should be aimed at compensating for variations in manufac(ure of the PFN, pulse transformer, and magnetron. Therefore, if Z_{L}, as seen at the input of the pulse transformer, can be as much as 5 per cent high, and the PFN impedance can be 5 per cent lower than nominal, it is better to increase the PFN impedance 10 per cent (or decrease $Z_{L} 10$ per cent), so that in the worst case, the PFN and load are matched.
In our case, the PFN impedance would therefore become 55 ohms. The value of Eq. 5 would be 55.1 ohms, and from Fig. 3, $e_{p y}$ would become 2.8 kv . Since Eq. 6 would be 52.5 ohms, from Fig. 4, i_{b} would become 27 amp . The average current I_{b}, needed at a later stage in the design, is found to be 47 ma (Fig. 6).
The value of peak inverse voltage left across the PFN, $e_{p x}$, should be checked against the tube ratings, and is given by the formula:

$$
e_{p x}=e_{p y} \frac{Z_{L}-Z_{N}}{Z_{L}+Z_{N}}
$$

For this case:

$$
e_{p x}=2.8 \frac{50-55}{50+55}=0.13 \mathrm{kv}
$$

Other Considerations

Through the procedure outlined so far, enough data have been collected to specify the type of hydrogen thyratron to be used, as well as the ratings of the pulse transformer and pulse forming network. Certain important considerations have been omitted from this design procedure.
For example, the pulse voltage rate-of-rise characteristics of the magnetron will determine the final design of the pulse transformer and the PFN, as will the imposition of unusual operating conditions such as large pulse width, or high duty cycle. The procedure described in these articles is intended to help the designer make a quick estimate of the basic modulator. He then must tum to the special problems of the particular application. ■ -

References

Radiation Lab Series, Vol. V, "Pulse Generators"
See for instance, the example worked out on page 454 the Radiation Lab Series, Vol V, "Pulse Generators." S. Martin, "Operation of Hydrogen Thyratrons at Conions Other than JAN Test," Technical Minutes, Third lydrogen Thyratron Symposium, 27-28 May 1953, p. 118.
4. S. Goldberg, "Research Study on Hydrogen Thyratons," Vol. II, Edgerton, Germeshausen and Grier, Inc., E ston, Mass., pp. 3-8, 27.
5 Armed Services Index of R. F. Transmission Lines and F tings, ASESA 49-2B, (Navyships 900-102B).

PUSH BUTTON PANEL controls opera-
tions rapidly, even at remote locations.

FLAT VACUUM PLATEN assures positive hold down of roll or sheet paper yo to
width. Plot area, standard $10 \times 15^{\circ}$.

PRINTING FEATURES: Multiple symbol printing head-12 symbols... self contained
ink supoly. ink supply. Pen System-capillary action; splatter-proof
Point joiner available

INTERCHANGEABLE MODULES add versatility... interchange with basic control section.

engineered for ease of operation...new ․․․ PRASCOBE

point plotting or continuous trace

Slimmer, flatter, push-button fast... Librascope's newest, most advanced plotter is the result of per-sonally-conducted field research by Librascope engineers. Compact design permits rack mounting in groups, saves desk space. Many new conveniences have been added to answer your needs.

OPERATING INFORMATION

POWER: 115 -volt, 60 cycle
INPUT: X and
isolated from each other and
from ground from ground.
INPUT RESISTANCE:
2 megohms niominal
2 megohms riominal on
most scales 11 megohm per
volt on 5 millivolts per inch
INPUT SENSITIVITY: 5 millivolts per inch to 50 volts per inch with calibrated push
button scales at $.5, .1,5,10$ and 50 millibutton scales at $.5,1,5,10$ and 50 milli-
volts per inch and. $1.5,1,5$ and 10 volts per
inch. Vernier controls permit continuus sen inch. Vernier controls permit continuous sensitivity adjustment between fixed scales, per-
mitting full scale plotting for any sensitivity. ACCURACY: Static. 1%, dynamic $.2 \%$ at 10° pLOTTER CALIBRATION ACCURACY: . 05% on all scales. SLEWING SPEED: 20° per second.

For full details - dimensions, applications, list of accessory equipment, call our Sales Engineering Department or send for illustrated brochure on Model 210. XY Plotter.

For information on career opportunities at Librascope, write Glen Seltzer, Employment Manager.

E ECTRONIC DESIGN • February 17, 1960

RFI Gasketing

O. P. Schreiber
Vice-President
Technical Wire Products, Inc.
Springfield, N. J.

To reduce RFI leakage in equipment, all seams, joints and openings must be sealed tight. Various schemes are discussed and practical methods of selecting materials and gaskets are outlined.

Paul Schreiber has devoted much time in the past ten years to the application of knitted wire mesh to rf gaskets. He is current Chairman of the Publications Committee of the IRE Profes. sional Group on RFI and is in charge of engineering at Technical Wire Products.

SUCCESSFUL radio-frequency-interference control depends upon filtering to reduce conducted interference and shielding to minimize interference from radiated signals.

The Ideal Shield

A continuous boundary of an infinitely conductive material would be the ideal shield. This condition cannot be obtained in a practical situation; compromises on conductivity and continuity must be made. At all but the very lowest frequencies, any metal structure thick enough to be mechanically suitable will be thick enough and conductive enough to attenuate possible rf penetration through it. Obviously, in any practical situation, it will not be possible to make a completely continuous shield. The container will have to be in at least two parts for ease of manufacture and access, and openings must be provided for ventilation, indicating devices, controls and other access panels. The problem of maintaining rf tightness thus involves the re-establishment of continuity at all necessary seams, joints and openings.

Re-establishing Electrical Continuity

The re-establishment of electrical continuity in the rf shield is analogous to making joints fluid tight, usually solved by using a gasket. By definition, a gasket is made of a material which is impervious to the sealed fluid, resilient enough to conform completely to the irregularities of both surfaces and strong enough to resist the pressure differences. Thus joint infegrity is maintained.

For example, the mating parts of the valve in the faucet of a kitchen sink could possibly be machined to such accuracy that a watertight seal could be obtained. It is far more practical, economical and reliable to use ordinary machining plus a replaceable, inexpensive gasket.
This same, simple, inexpensive and dependable solution can be used to re-establish continuity in a shield by using gaskets. Rf gaskets should be:

- Resilient enough to conform to the irregularities of both mating surfaces.
- Conductive enough to prevent penetration through them.
- Hard enough to contact both surfaces through nonconductive surface films.
- Truly resilient so that the gasket replacement is not necessary after every opening.

Various methods of creating gaskets, with their relative advantages and limitations, are outlined in Table 1.

RF Properties

Insertion loss is the most meaningful measure of an rf gasket's effectiveness. This term is defined as the reduction of rf leakage which results when an rf gasket is inserted into a previously ungasketed joint, all other parameters remaining the same. Fig. 2 shows a typical insertion loss characteristic for a knitted-wire-mesh gasket. This curve shows that additional applied pressure above 20 psi does not produce much more insertion loss. Therefore 20 psi is suggested as a rule(continued on page 48)

B

C

Fig. 1. (a) (left) RFI source S electrically connected to units $1,2,3$, and noise-sensitive unit NS. RFI reaches NS not only as conducted energy but also as spurious radiation.
(b) Conducted :nterference suppressed by the use of RFI.
(c) Completely shielding the RFI source with an if tight enclosure does not prevent conducted energy from reaching NS; in addition, radiated energy from the external wiring also reaches NS.
(d) By application of filtering and shielding, complete RFI suppression is achieved.

Fig. 2. (right) Typical shielding effectiveness curve for knitted wire mesh gaskets.

Table 1. Relative Merits of Various Gasket Materials and Methods

Material	Chief Advantages	Chief Limitations	Temperafure Limiting Material	Remarks
Compressed Knitted Wire	Most resilient allmetal gasket. Most points of contact available in variety of thicknesses and resiliencies.	Not available in sheei form from which to cut odd shapes. Must be .040 or thicker.	Monel	Knitted wire mesh, with many loop shoped springs interlocked in hinge-like manner, combines resilience, flexibility, cohesion and conductivity.
Aluminum screen impregnated with Neoprene or silicone (Duolastic)	Combines fluid and rf seal. Thinnest gasket which can be cut to intricate shapes	Very low resiliency	Neoprene or Silicone	Woven aluminum wire cloth impreg. nated with neoprene or silicone ground down to expose the aluminum mesh on both surfaces. Known as Duolastic.
Metal over Rubber	Takes advantage of the resiliency of rubber or other elastomer used. Combines fair to good rf and pressure seal in least space.	When foil is used, it inay crack or shift position.	Silicone	Metal can be knitted wire mesh, or foil.
Conductive Rubber or Plastic	Combines rf and pressure seal.	Generally poor rf properties.	Silicone	
Soft Metals	Cheapest in small sizes.	Cold flows.	Lead or Copper	
AEEL Gasket	Best "Break-through" on corrosion films.	Not truly resilient Not generally reusable.	Brass or Stainless Steel	Made by puncturing a thin metal sheet in both directions with a nail, thus raising sharp points.
Armour Research Gaskef	Combines fluid and rf seal.	Space consuming ($1 / 4 x^{1 / 2}$ in.) Crosssection for optimum shielding. Not commercially available.	Silicone	Many wires in a very open " V " shape with the angle between the legs at least 135 deg and so positioned that the "V" lies parallel to the mating surfaces, and imbedded in silicone.
Contact Fingers	Best suited for sliding confact	Easily damaged. Fewest points of contact.	Beryllium Copper	Contact strips usually made of beryllium copper with serrated fingers to make contact with an uneven surface.

Fig. 3. RFI gasket strips are available in various configurations.
of thumb figure for desirable applied pressure. More or less pressure can be applied, of course, depending on insertion loss needed and available mechanical force.

RF Gasket Design

The basic purposes of an rf gasket is to make continuous contact with two irregular mating surfaces. It does this by being resilient and compressing until sufficient contact is made at all points. The degree of this irregularity, called total joint unevenness, is an important gasket design param(ter and is defined as the largest distance between the mating surfaces when they are just touching at their closest points in the absence of a gasket. Most rf gasket materials will take some com-
pression set and will not return completely to their uncompressed state when pressure is released. This affects re-use of the gasket. For this reason joints are classified as follows:
Class A-Permanently closed: The gasket is compressed only once, as in mounting a feedthrough interference filter. Since the gasket will not be used after this one and final time, compression set is no problem, and maximum available pressure can be applied.

Class B-Fixed position: Both mating surfaces compress the gasket in the same manner and at the same points many times. Stated differently, the gasket goes through the same compression cycle on every compression. A door or hinged lid is a good example of a class B joint. The point of
maximum compression will take a set and on al subsequent compression cycles this point will again be the point of maximum compressior. Unless the compression set is so severe that the surfaces barely make contact on recompression, gasket set is of minor concern in class B joints.

Class \mathbf{C}-Completely interchangeable: In this class, the relative position of the two mating surfaces and the gasket may change from one compression cycle to the next. Interchangeable waveguide gaskets are a good example. The point of maximum compression, and therefore maximum set, on the gasket in one cycle may be at a point of minimum compression in some future compression cycle. Compression set is a very important consideration in Class C joints.
These factors are all considered in designing an rf gasket for a specific use and have resulted in some useful rule of thumb design aids when applied specifically to knitted wire mesh gaskets. These are tabulated in Table II.

Using Knitted-Wire-Mesh Gaskets

While knitted-wire-mesh gaskets could be made from almost any metal or alloy, Monel, aluminum and silver-plated brass are the most commonly used. Each has its advantages and limitations which are summarized in Table III. In most cases, the Monel will be present in much smaller total mass than the aluminum enclosure, which tends to reduce galvanic corrosion. Protective coatings on aluminum degrade the rf effectiveness of the gaskets: however, if unprotected aluminum gaskets are used, they will corrode. Therefore Monel

Fig. 5. Integrated assembly, combining a knitted-wire gasket strip and mounting frame, facilitates installation.
ELECTRONIC DESIGN • February 17, 1960
is generally a better choice for gasket material. Protective finishes such as Iridite and Alodine are more or less nonconductive and since they can degrade the rf tightness of a joint, they should be eliminated wherever possible.

Forms Available

Five standard types of wire mesh RFI gasket strip are shown in Fig. 3. Typical round crosssection sizes are $1 / 16$-, $1 / 8$-, $3 / 16$-, and $1 / 4$-in. diameter with sizes to 1 -in. diameter possible. Rectangular cross-section strips can be made in a variety of height and width combinations from $1 / 16 \times 1 / 16$ to $1 / 2 \times 1 / 2 \mathrm{in}$.
The fins on strip types Fig. 3 c , and d are for ease of attachment. Some typical mounting methods are shown in Fig. 4. A new integrated product, combining a knitted wire gasket strip and mounting strip in a single unit is shown in Fig. 5. It can be attached directly by riveting, screws or spot welding, thus eliminating additional metalwork or hardware. ■ ■

Table 3. Comparison Between Materials Used For Knitted-Mesh Gaskets

Material	Advanfages	Limitations
Monel	$\begin{array}{c}\text { Highly corrosion } \\ \text { resistant. } \\ \text { Greatest tensile } \\ \text { strength. } \\ \text { Best surface } \\ \text { hardness. } \\ \text { Best rf properties } \\ \text { in presence of } \\ \text { corrosion. }\end{array}$	$\begin{array}{c}\text { Not compatible } \\ \text { with aluminum } \\ \text { enclosures. }\end{array}$
Aluminum	$\begin{array}{c}\text { Compatible with } \\ \text { aluminum } \\ \text { enclosures }\end{array}$	$\begin{array}{c}\text { Not corrosion } \\ \text { resistant. } \\ \text { Lowest tensile } \\ \text { strength. }\end{array}$
Lowest surface		
hardness.		

Exceed Painted Resistor Performance at NO Increase in Price!

Now... deposited carbon resistors with exclusive Aeroglaze conformal coating offer superior performance and greater mechanical protection over conventional painted units at NO increase in price.

Aeroglaze coating applied as a 100% solid eliminates weakened coatings through use of solvents and provides uniform sizes and appearance. Aeroglaze coating will meet all moisture requirements of MIL•R-10509B. Mechanical protection is superior to any other method and special tubes, sleeves and jackets are eliminated.

Aeroglaze resistors are available for immediate delivery in production quantities in the following ratings and sizes:

TYPE CPX-AEROGLAZE CARBOFILM RESISTORS						
Type	$A \pm \%$ 。	B Max.	Watts	Res. Range	MII Designations	Max. Votts
CPX \%	1%	. 125	\%	50 nms to 1 meg.	RN10	300
CPEX 1/2	1/2	. 203	\%/2	10 ohms to 2 meg.		350
CPSX $1 / 2$	\%	. 203	1/2	10 ohms to 2.5 meg.	RN20	350
CPX 1/2	3%	. 250	1/2	10 ohms to 5 mes.		350
CPLX 1/2	1	. 250	1/2	5 mes. to 7.5 mes.		500
CPX 1	1\%6	. 328	1	10 onms to 15 mes.	RN25	500
CPX 2	21/0.	. 328	2	15 onms to 50 mes.	Rn30	1000

Write for new descriptive literature to...

AEROVOX CORPORATION

CIRCLE 41 ON READER-SERVICE CARD

Dissipative Filters for Switching Contacts

RADIO-FREQUENCY interference generated by the opening and closing of electrical contacts can be reduced by more than 40 db using a filter suppression technique involving low-cost components.

Basic Considerations

When a switch in an operative circuit is closed, current will flow through the switch contacts and when the switch is opened, current will cease to flow. For the present discussion, dc conditions will be assumed, and a later explanation will cover the same procedure applied under certain conditions of ac flow.
The electrical current flow during a switching operation is obviously a function of the circuit in which the switch is connected. Consider, for instance, an inductive circuit in which a switch is opened. There will be a tendency for current to continue flowing, and consequently, a tendency
for arcing to occur at the contacts of the switch as it is opened. On the other hand, for a circuit essentially capacitive, sparking is likely to occur upon closing of the switch contacts due to the tendency for the capacitance to discharge.

Frequently it is not realized that much of the cause of RFI from switching contacts is due not only to the connected circuit but also to the switch itself. In many makes of switches, particularly those which are toggle or snap action, a considerable amount of contact bounce exists at the make of contacts. Thus, instead of one switching operation, an entire sequence of switching operations occur and suppression techniques are rendered much less effective.

Conventional Suppression Techniques

Many techniques have been used to suppress RFI arising from switch contacts. One of these makes use of an inductance-capacitance combina-

The simple dissipative filter described is easy to design, simple to install, is much less expensive than conventional rf filters and has a useful radiation reduction value exceeding 40 db when properly applied.

Richard D. Schulz
Research Engineer
Armour Research Foundation
Illinois Institute of Technology
Chicago, III.

tion in order to form a low-pass filter, as in Fig. la. Such filters are theoretically capable of good performance but actual practice proves them to be otherwise. Stray inductances and ca. pacitances in such circuits cause resonances to occur at some frequencies and, any current component at these frequencies will accentuate the difficulty rather than suppress it. Since this type of filter can be made to appear inductive from the switch contacts, it is sometimes used to operate circuits that are primarily capacitive in nature.
For circuits that are primarily inductive, series R-C combinations across switching contacts. Fig. lb, are frequently used in order to decrease the tendency for current to continue flowing through the contacts as they are opened. Such current results in ionization at the switching contacts and causes a very unstable and erratic conduction path with high resultant interference.
A technique often used to reduce keying tran-

(a) L-C FILTER

(b) CONVENTIONAL R-C FILTER

(c) KEYING FILTER

Fig. 1. Conventional suppression techniques.
sients at a transmitter is an R-L-C combination such as shown in Fig. lc. The bulky inductance required for this approach is prohibitive in many miniaturized circuits.
Sometimes, nonlinear elements find use as suppression devices (for instance, transistorized switching ${ }^{\bullet}$) and may also be used to reduce interference by approximately 40 db . Such approaches are more expensive and more complicated than the method t_{1}) be described.

Dissipative Filtering

A dissipative filter, shown in Fig. 2, consists of a resistance $R / 2$ in series with each switch contact and a capacitance C in parallel with the combination. It is obvious that use of the series resistance reduces somewhat the total current which is switched. However, the effect of reduced current flow is negligible compared to the effect of reduced rate of change of current.
It is obvious that the series resistance will affect the time constant of a connected circuit. For a capacitive circuit, the time constant will be increased by increasing the R-C product and, conseguently, initial current on the make of contacts will increase less rapidly. Similarly, for an inductive circuit, the resistance will decrease the L / R
${ }^{\circ} \mathrm{R}$ G. Gray, Interference-Free Switching, Electronic De gn, Jan. 8, 1958, p. 102.

IMACHIN
TAKING A DOG'S
VOR̄D OVER
MEIN!

If Professor von Bomb had run a frequency curve before torturing his dog, he might be out of captivity now. SIE's ARP-2A Audio Response Plotter records everything in the audio range in chart form in seconds - keeps the SPCA from the door.

Frequency coverage $\quad \mathbf{2 0 - 2 0 , 0 0 0} \mathbf{c p s}$ AC signal levels, linear 0.40 db DC volts, linear
$0-1$ v Maximum sensifivity

10 mv full scale
"Zing Out" loud and clear for the SIE representative.

Write today for prices and specifications.

Fig. 2. Dissipative RC filter.

Fig. 3. Induced dissipation filter.
time constant and cause the current on break of contact to decrease more rapidly, with less tendency to arc. The capacitor performs the same function of absorbing current changes on opening of contacts as the series R-C configuration of Fig. 1 b.

In actual use, the total resistance R is composed of two separate units $R / 2$, each adjacent to one contact. The reason for so doing is to place dissipative units close to the contacts to keep to a minimum any radiation from leads. In this manner, both conducted and radiated interferences are minimized.

Design Procedure

The greater the series resistance, the greater would appear to be the reduction in radio interference accomplished with the suppression circuit. As a practical matter, the region of diminishing
returns occurs when the resistance is approximately 10 per cent of the total circuit resistance. Since a majority of circuits can tolerate a 10 -percent increase in resistance, the result of much experience with such circuits is to use this figure as a design criterion.

For those circuits where such a resistance would be prohibitive, other considerations may lead to a solution of the problem. In some instances, the original circuit resistance is separable such that 10 per cent can be removed from it and inserted at the switch contacts. On other occasions, it is possible to increase the driving voltage in a manner such that the increased drop across the suppression resistance R will be compensated.

When neither approach is feasible, it is always possible to reflect dissipation into the switch leads by means of a transformer. In this situation, a circuit modification corresponding to Fig. 3 may be
used. The transformer is designed to be lossy at radio frequencies.

One version used with success utilizes a $1 / 4$ in. diameter, 1 in. long, soft iron core chosen deliberately to maximize hysteresis and eddy current losses. (Material from a common nail is excellent for this purpose.) Both primary and secondary are found for $3 / 4 \mathrm{in}$. in the same direction and consist of 3 layers of closely-spaced No. 26 enameled wire. The secondary may be wound directly over the primary, separated only by a single layer of insulating tape.
This induced dissipation technique is less desirable than the others that may be applicable since some experimentation may be required to obtain the optimum number of turns.

The capacitor C used in the suppression combination is not at all critical in value. Experience indicates that a 0.25 mfd capacitor is optimum

Fig. 4. Interference radiated from foot-switch of office dictation machine.

52

Fig. 5. Interference conducted from foot-switch of office dictation machine.
for most suppression requirements, although values as low as 0.05 mfd have been found useful for very high resistance circuits; values as large is 3 mfd have been found advisable for extremely iow-resistance circuits.
An attempt to design the dissipative filter for ac operation may seem impractical since capacitor C will permit the flow of current in a circuit when the switch is opened. However, if the current can be kept low enough to prevent malfunction of the circuit, often the case for two-state devices such as relays, the technique may still be used.

Application of Suppression Circuit

The method by which components are physically connected into the circuit is extremely important in the overall effectiveness. It is necessary that all leads be kept quite short. In particular, capacitor leads to the resistor elements should be kept to $1 / 8 \mathrm{in}$. length if at all possible. The resistor leads should also be kept short, but are not quite so critical. Minimizing the radiating elements in this manner will render the circuit most effective.

Example of Results*

In order to illustrate the effectiveness of the dissipative R-C suppression technique, let us consider its application to a modern office dictating machine. Fig. 4 illustrates the benefits to be derived by the use of dissipative suppression circuitry to two different switches located in a foot switch of the equipment. The solid curve illustrates the total interferencet coming from the various operations of these two switches, within a frequency range of 250 kc to 25 mc . In this case, some degree of suppression had already been achieved by use of the L-C filter of Fig. la. After change of the suppression techniques to use the dissipative filter of Fig. 2, the interference from each of the two switches was that illustrated by the remaining heavy lines. The maximum of the radiated interference at 1.2 mc was reduced from $600 \mu \mathrm{v} /$ meter to below the ambient level of $17 \mu \mathrm{v} /$ meter for each of the two switches, an improvement of well over 40 db . The corresponding curves of conducted interference are given in Fig. 5. The original conducted interference level of more than $10,000 \mu \mathrm{v}$ has been reduced to less than $30 \mu \mathrm{v}$ for each switch, again an improvement of well over 40 db . -

- With slightly reduced effectiveness, the suppression circuitry of Fig. 2 has been applied to high-current circuits yrmitting only approximately one ohm of resistance but, in this case, the capacitor \mathbf{C} used was increased to the order of 3 microfarads. One such application has been for the suppression of interference due to thermostat (1) cration in a commercial refrigerator where motor startins current was suppressed.
4.) easured in accordance with military specification MIL1. 9910 A .

E ECTRONIC DESIGN • February 17, 1960

DESIGN FORUM

Fig. 1. Block diagram of Kodak's DACOM system for direct printing of data from computer magnetic tape.

Computer Tape To Words . . . Fast

COMPUTER data stored on magnetic tape can be converted into the printed word at the rate of 16,500 characters per second. Eastman Kodak Co. has developed this high-speed recording system that reads computer tape and puts highquality characters on microfilm. The system is called DACOM, for Datascope Computer Output Microfilmer. Recordak Corp., 415 Madison Ave., New York, Kodak subsidiary, will handle marketing of the new system.

Binary coded data is read by a standard mag. netic tape reader and fed to a decoding diode matrix as shown in the block diagram, Fig. 1. Codes are standard computer codes. DACOM is designed for use at present with an IBM 705 computer. In the present system, seven channels (one for parity check) are fed into the matrix and 64 out.

At the present time a character generating monoscope tube is provided for each character to be displayed. Thus, all letters of the alphabet, numerals, and such characters as dollars-and-cents symbols, slant lines and special configurations are provided.
Target of the monoscope, Fig. 2, is an aluminum character on a carbon ink background. When this target plate is scanned by the electron beam, a video signal representing the character is produced, Fig. 3.

In operation, all the monoscope tubes are scanned once each time a tape code group is read. But only the output of the tube whose gate is en. ergized is fed to the video amplifier. Fourteen scanning lines are used. Scanning rate is 2.5 microseconds for each of the 14 scanning lines. The same scanning signal is applied to both the monoscope and to the electrostatic deflection plates of the display tube.
From the video amplifier, the signal is fed to a specially designed cathode ray display tube. Screen persistence is necessarily very short. The scanning raster for each character image occupies a very small portion of the face of the display tube, Fig. 4. Thus the face of the display tube contains as many raster positions as characters to be copied on one page.
Position of any given character on the face of the display tube is determined by current applied to the magnetic deflection coils. Magnitude of this current is controlled by electronic step generators responsive to the magnetic tape input data.
Each time a new code comes in, the raster moves one position to the right. There can be a total of 130 characters in one line and 66 lines vertically. An entire page on the face of this 16 inch tube occupies about 8×9 inches.
Time required to write each complete line of characters is the time required to form each of

Fig. 2. Monoscope target showing scanning of one character.
the characters in the line plus two more character times. One of the extra character times is the end-of-line code; the other is a control code. The system will skip a line if so coded.
A 16 mm microfilm camera is synchronized with the display. Each page occupies one frame on the film. An end-of-page code pulse advances the film. Kodak engineers admit that a continuous film advance would have made their job easier but they would have sacrificed flexibility of operation. The camera shifts immediately to the next frame as soon as the contents of the page has been displayed. Actual film advance time is 17 milliseconds.

A clever system of mirrors and flash-tube projectors permits printing of letterheads and ruled forms on each frame. The computer tape does not contain this information. Frame identification marks can also be added.
One of the features responsible for the system's
remarkable speed is that no delay is required at the end of a line. This system is a character-per-unit-time printer rather than a line-per-unit-time printer. Thus, after printing a shorter-than-full length line, the character positioning circuits go to the next line immediately. With every character position filled, the system prints about two pages per second. It can run as fast as 20 pages per second (the total film advance cycling time) where each page contains very little information. The system can print two million lines of characters in about 8 hours.
Quality of printing is a very important consideration. To achieve good speed of operation, only 14 scanning lines per character are used. But with so few scanning lines, quality of reproduction of the characters could suffer.
Therefore, Kodak attacked the problem, using the novel approach of designing the type to fit the scanning raster. A complete type style was designed so that a 4 -per-cent variation in monoscope tube power supply centering voltage could be tolerated. Voltage variation is held to better than 1 per cent, however.
With the special typeface, all lines are reproduced with equal weight. Even periods look round, not elliptical. Overall appearance is that of a clean, good-quality printing job.
For maximum accuracy, 12 to 15 check circuits are incorporated in the system. A tape parity check channel is used and a check is made at the end of each line. Whenever an error occurs, a special symbol is printed on the film from one of the monoscope tubes. Nixie tubes on the operator's control panel give an indication of where the error occurred. The operater then decides whether to go back and check for defective tape or whatever else mav have caused the error. -

Fig. 3. Comparison of monoscope output signal and input signal to display tube

Fig. 4. Size of scanned character and one position on the face of the display tube.

LERMER PLASTIC CONTAINERS

Exceptional printing makes the difference...

Helps make the sale!

- Printed or decorated up to 4 colors on crystal clear, transparent or opaque colors
- Largest line of RIGID plastic containers
- 1/5 the weight of glass-greatly reducing ever-increasing shipping and handling costs
- Lightweight and shatterproof-with rigid wall protection
- Economical-with customer re-use value
- Also made of new high density polyethy-lene-Poly-Opal*. Are chemically inert, stain resistant and have lower permeability to moisture and gases than conventional polyethylene.

Write for full-color catalog, samples and prices. LERMER PLASTICS, INC.

572 South Avenue
 Garwood, New Jersey
 pioneers and specialists in

 PLASTIC CONTAMERS SIMCE 1919Reprints of this series will be available from Paul Wrablica Associates, 120 E. 56 St., N. Y. 22, N. Y.

Good Design Is Good Business

Paul Wrablica
President
Paul Wrablica Associares
New York, N. Y.

The industrial designer has long passed the point where he is consulted for product appearance alone. He is a team member of a design group striving for most efficient production, simplified assembly and maintenance, human factor engineering and, of course, styling. Examples of knob design are discussed in terms of functional considerations and versatility of construction.

Previous to establishing his own firm six years ago, Paul Wrablica served as design consultant for the U.S.A.F. and was head of the Training Aid Section, Mechanical Equipment School at Fort Belvolr, Va. Mr. Wrablica was formerly director of industrial design for Engineering Man. agement Co., N. Y. and taught design at Pratt Institute, N. Y.

He is presently a member of the Fullbright Committee on Education and is a direc tor of the International Fine Arts Councli.

MOST RECENT member of industry's engineering team is the industrial designer. Formerly entrusted with the sole job of styling, he is now being called upon to introduce the human factor into the over-all design-considering man as an operating component in a complete system. In addition, he must apply knowledge of materials plus production techniques to achieve low cost fabrication at highest possible quality.
While appearance is obviously a key factor in consumer product design, increased attention is being focused on the need to modify laboratory and industrial equipment from the "black box" look to more sophisticated, functional styling. At the same time, serious consideration must be given to the human operator who will work with the product. Accessibility of jacks and terminals, convenience of knob placement, and visibility of dials and meters are but a few of the factors involved in formulating an industrial design solution.

To achieve fresh and attractive product appearance, the designer must be creative and have artistic talent; yet these qualities alone do not suffice. He must be aware of modern methods of manufacturing, component pricing, parts interchangeability, tooling problems and similar engi-
neering aspects in order to avoid excessive final costs and needless warehouse and stock inventories.

No more than does the engineer or draftsman work in a scientific vacuum, does the qualified industrial designer work in an aesthetic vacuum. What is desirable from a design point of view must be balanced against what is functionally necessary, what is commercially required, and what is economically feasible.

Knobs

In many of today's products, knobs are an example of the failure to correlate the appearance of an object with the function for which it is intended.

Knobs are a means of passing information to a machine-turning it on or off, making adjustments or selective switching. Often, the efforts of the unqualified designer lead to attractive styling devoid of any functional relationship to the equipment.
Working with the three basic shapes-circle, triangle and square-the designer must apply principles of form, plane, and line along with the embellishments of texture and color. The knob
created must suggest the equipment for which it will be used; the knob shape must suggest its ap. plication.

Is the knob to be pulled, pushed, rotated or flipped up and down? The knob itself should reflect the action demanded. As shown in Fig. 1, each shape signifies its function.
Series of experiments have been conducted, for example, on the design of knobs for aircraft cockpit controls. Testing was carried on with the subjects blindfolded and wearing heavy gloves Knob designs have resulted which permit the pilot to recognize panel functions merely by touch.
Proper usage of color in knobs has become an increasingly important psychological factor in equipment design. In ultrasonic cleaning equipment, for example, a color band on the control dial could be used to indicate the degree of agita-tion-pale yellow for subtle mixtures changing to brilliant red for more active states.
For the smaller scale manufacturer who, of necessity, can only carry a limited stock of parts, one basic knob shape, as shown in Fig. 2, can be endlessly modified with refills, snap-ins and inserts of different shape and color. In this way, variety can be realized at low cost. - \quad

Fig. 1. Several examples illustrating how knob shape spells out its function-(a) push type for on/off switching (b) slide-switch knob (c) knob for rotary applications such as selector switches or potentiometers.

ROTO-TELLITE's advanced circuitry* eliminates the need for transformers; operates directly from 115 v ac at any frequency. Master press to test and dimming features included. Uses standard MS-25237-327 bulbs.
*Pat. applied for

> COMPLETELY QUALIFIED
> FAIL SAFE CIRCUITRY FLUSH MOUNTED

5 FRONT REMOVABLE BULB AND LEGEND $\& H O R I Z O N T A L ~ \& / O R ~ V E R T I C A L ~ S T A C K I N G ~$

Write for complete specifications
MASTER SPECIALTIES CO.
956 EAST 108 th STREET
LOS ANGELES 59, CALIF. CIRCIE 45 ON READER-SERVICE CARD

Resistance Ratios Simplify Impedance-Matching Network Design

A. Courtney Norwine
Bell Telephone Labs., Inc.
Murray Hill, N. J.

"Why design from inexact nomograms," asks A. C. Norwine, "when it's so easy to design simple impedance transformers exactly?" Author Norwine feels that the much-neglected LC matching network makes an excellent experimental tool. "Making a single-winding coil," he says, "beats designing a transformer, especially for high-impedance ratios or for nonintegral ratios. For example, a 12 -turn coil in a ferrite cup core can help match 5000 ohms at 10 mc ."

MANY ENGINEERS hesitate to use reactive coupling for impedance transformation. They feel that the bandwidth of these simple LC networks may be too narrow, the phase shift may be too great, and the effects of mistermination and element tolerance may be too uncertain. ${ }^{\circ}$

Fig. 1. Basic LC impedance transformers. (a) Type 1 with shunt inductor and series capacitor.

(b) Type 2 with shunt capacitor and series inductor.

In the special case of pure resistance source and load these factors can be understood much more readily if computations are based on resistance ratios rather than their absolute values. The fundamental relations are so simple that exact

[^0]values of elements can be calculated more easily than with a nomogram. A feeling for what to expect may be gained from the illustrations in this article.

Given any pure resistance source and load whose ratio is X, one can match impedances, providing maximum power transfer, by either form of the network of Fig. 1. The network will look like a pure resistance equal to each of the two resistances it faces. Theoretically, this occurs at only one frequency, but in most cases, bandwidth to the $3-\mathrm{db}$ points is quite wide.

To match impedances, all that one has to remember is the simple pair of relationships in Fig. 1 and the fact that the shunt element is at the high-resistance end of the network. Either a series capacitor and shunt inductor or the opposite pair may be chosen, depending upon physical realizability or required terminal reactance.

Note that the series arm may be expressed as

$$
\mp j A=\mp j R_{1} \sqrt{X-1}
$$

and the shunt arm as

$$
\pm j B= \pm j \frac{X R_{1}}{\sqrt{X-1}} .
$$

Thus it is easy to see that maximum response does not occur at the frequency for which A equals B, but approaches that case for large values of impedance transformation ratio X. Hence, for large values of X, both $A=R_{1} \sqrt{X-1}$ and $B=X R_{1} / \sqrt{X-1}$ approach $R_{1} \sqrt{X}$.

Furthermore, in this form, some values of elements can be obtained by inspection. Thus for $X=10, A=3 R_{1}$ and $B=3.33 R_{1}$. The readily remembered approximation that $A=B=R_{1} \sqrt{X}$ is in error 16 per cent for $X=10$ but only one per cent for $X=50$.
For easy reference other characteristics are summarized here and illustrated in the accompanying curves.

Impedance

Suppose that Type 1 of Fig. 1 has terminals 3 and 4 connected to $K R_{1}$ rather than R_{1}, where K expresses the degree of mistermination. Looking into terminals 1 and 2 , we see

$$
Z=X R_{1}\left(\frac{K X+j \sqrt{X-1}\left(K^{2}-1\right)}{K^{2}(X-1)+1}\right)
$$

When $K=1, Z=X R_{1}=R_{2}$, as it should.
For the opposite type network in Fig. 1, with A, an inductance, and B, a capacitance, the re active term in the expression for Z is negative. Any impedance looking into terminals 3 and 4 has exactly the same form if K expresses the accuracy of termination at the higher resistance R_{2} end.
Since Z is in the form of $a \pm j b$ the two terms may be plotted as functions of mismatch K, with

Fig. 2. Impedance variations as a function of mismatch, K, for two values of resistance ratio, X.
as a parameter. These are shown for a Type 1 t in Fig. 2, for $X=10$ and $X=101$, with the erninating resistance from one tenth to 10 times hormal value.
The resistance term of the input impedance tends to vary inversely with the output terminating resistance and the reactive component goes to pero for $K=1$, the correct termination. For Type 2 the resistance component is exactly the same as for Type 1, but the reactive component is opposite in sign. An "incorrect termination" can be chosen deliberately, to introduce a reactive component that can compensate for an opposite reactance in the source or load. That, in fact, is the property used in the more general case for matching complex impedances.
For the resistive case, a ± 10 per cent termination error varies the effective network resistance about ± 8 per cent and varies its reactance about 6 per cent of the resistance value for $X=10$. When X becomes as high as 100 , these variations approach ± 10 per cent and 2 per cent. Special Case. When X equals 2 the impedance simplifies to

$$
Z=2 R_{1}\left(\frac{2 K \pm j\left(K^{2}-1\right)}{K^{2}+1}\right)
$$

whose absolute value is $2 R_{1}$ for any value of K, that is for any resistive termination. The input current changes in phase by plus or minus 90 degrees as K varies from zero to infinity. This was proposed years ago as a phase shifter of current.

Input-Output Voltage Ratio
Looking into the network, as in Fig. 3, from an

Fig. 3. Basic circuit for calculating E_{o} / E.
E volt generator, with internal resistance $R_{2}=$ $X R_{1}$, and with the correct termination R_{1}, we find

$$
\frac{E_{0}}{E}=\frac{1}{(X+1)-(X-1)\left(\frac{f_{0}}{f}\right)^{2} \mp \frac{j 2 f_{0}}{f} \sqrt{X-1}}
$$

the negative signs being for Type 1 and positive sign for Type 2 coupling.
When $f=f_{0}$, the absolute value becomes

$$
\left|\frac{E_{0}}{E}\right|=\frac{1}{2 \sqrt{X}}
$$

wh ch is the value obtained with an ideal trans-
EL:CTRONIC DESIGN • February 17, 1960
 oscillator compartments - and many other electronic components adversely affected by temperature variations. Capable of maintaining temperatures within $0.2^{\circ} \mathrm{C}$, Edison sealed thermostats offer these special features:

- Slow-make, slow-break principle, insures small temperature differential.
- Protective gas atmosphere minimizes effects of contact arcing under heavy loads, resulting in high stability.
- Radiant energy, and conducted or convected heat is rapidly transmitted to the bimetal by the highly conductive gas fill.
- Long bimetal arm is highly sensitive to temperature changes and assures accurate control, predictable performance.

For complete data on Edison Sealed Thermostats, write for Bulletin No. 3009B.
Thomas A. Edison Industries
INSTRUMENT DIVISION
33 LAKESIDE AVENUE, WEST ORANGE, N. d.
 CIRCLE 46 ON READER-SERVICE CARD
 leak into his treasure chest, because it is well sealed.
He may never have to design another product for Davy Jones locker, but Sam knows that when he's concerned about critical sealing he can rely on Constantin glass-to-metal "leak proof" seals for all his needs - and he is confident that no matter what his requirement - multi-headers, all-in-one assemblies, transistor mounts, covers, single terminals, crystal mounts or all standard type seals - he can specify Constantin for
"Quality with Confidence"

WRITE FOR ADDITIONAL INFORMATION

MANUFACTURING ENGINEERS
STH AND CAPITOL 3 TS.
former coupling $X R_{1}$ to R_{1}. When transmitting in the opposite direction, the same expressions api ly if multiplied by the impedance transformation ratio X. That is, voltage step-up is obtained.
By equating the absolute value of the gen ϵ ral expression to $0.707 / 2 \sqrt{ } X$, we can solve for the frequencies at which response is 3 db less tlan peak value. This occurs when

$$
\left(\frac{f}{f_{0}}\right)^{2}=\frac{(X-1)^{2} \pm 2 \sqrt{X}(X-1)}{X^{2}-6 X+1}
$$

whose values are plotted in Fig. 4 for \boldsymbol{X} from 1 to

Fig. 4. Upper and lower 3-db points as a function of resistance ratio X
100. The 3 db bandwidth is extremely large for small step-up (or step-down) ratios, say, less than five. Even for a ratio of 100 this band is approxi mately 10 per cent of center frequency f_{0}. That is, effective Q is

$$
Q=\frac{f_{0}}{2 \Delta f}=5 . \text { approximately. }
$$

In fact, for any ratio greater than 25 , the effective value of Q is quite close to $\sqrt{X / 2}$.
Phase Changes. For Type 1, the phase of E_{0} with respect to E is

$$
\theta=\arctan \frac{2 \sqrt{X-1}}{\frac{f}{f_{6}}(X+1)-\frac{f_{0}}{f}(X-1)}
$$

which reduces to

$$
\theta=\arctan \sqrt{X-1} \text { at } f_{0}
$$

A similar expression applies to Type 2 coupling Perhaps most often one wants to know what phase change results if the applied frequency differs from the design value of f_{0}. The represen. tative value of one per cent error gives results

Fig. 5. Phase shift for 1 per cent frequency change.
as shown in Fig. 5 for different values of X.
For a step-up ratio of 15 the phase change is about two degrees, mounting to some five or six degrees when X reaches 100 , which is appropriate for a tuned circuit with a Q of five.
For smaller frequency deviations the curves are almost identical to that of Fig. 5 if the ordinate is divided by the appropriate factor. Thus, for a 0.1 -per-cent frequency change, the ordinate should be divided by 10 .
Corresponding to these phase changes there are amplitude changes, but they are negligible for frequency changes of about one per cent, and X less than about 1000 .

Element Changes

To evaluate the effect of errors or changes in elements, another expression for E_{0} / E may be derived. Using the error factor of Δ_{1} for the capacitor and Δ_{2} for the inductor in Type 1 coupling, for example, this comes out as
$\frac{E_{0}}{E}=\frac{1}{(X+1)-\frac{\Delta_{1}}{\Delta_{2}}(X-1)-j \sqrt{X-1}\left(\frac{1}{\Delta_{2}}+\Delta_{1}\right)}$.
Allowing only one element at a time to vary we find for $X=10$, an L or C variation of 10 per cent cuts transmission about one per cent and varies phase about eight degrees. For $X=100$, and L or C variation of 10 per cent cuts transmission about 11 per cent and varies phase about 26 degrees.
If both reactances vary equally and oppositely we have the variable frequency case of section 2 , for then $\Delta_{1}=f_{0} / f$ and $\Delta_{2}=f / f_{0}$. If they vary in the same direction there is a tendency for the inaginary component to vary and the real part to remain constant, with reduced effects on loss and phase.
In general we might say that the accuracy of ements becomes important for large values of but requirements are fairly lenient for step-up step-down ratios of about $10 .=$

INCREASED RELIABILITY PLUS HIGHER OPERATING TEMPERATURES with Westinghouse Silicon POWER Transistors*

Westinghouse 2N1015 and 2N1016 Silicon Power Transistors offer positive, proved benefits to designers of inverters, series regulators, and A.C. Amplifiers.

INVERTERS..

Extremely low saturation resistance (typical .3 ohms) minimizes power losses in the transistor. High temperature $\left(150^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}\right.$ max.) operation permits compact inverter designs for missiles, aircraft, and other military equipment.

SERIES REGULATORS

 High voltYout age ratings andhigh temperature operation, plus internal power dissipation of 150 watts made possible by low thermal resistance of $.7^{\circ} \mathrm{C} /$ watt make the 2N1015 and 2N1016 an ideal choice for constant voltage and constant current regulators.
A.C. AMPLIFIERS...

Perfect choice for high power audio and A.C. Amplifier applications, thanks to their high power dissipation capabilities and common emitter frequency response to 20 KC .

PLUS TRUE VOLTAGE RATINGS...

guaranteed by 100% power testing. Means you can operate these transistors continuously at the V_{CE} listed for each rating without the risk of transistor failure.

Production quantities of Westinghouse Silicon Power Transistors are available in 2 and 5 ampere collector ratings. Both are availablein 30,60 , 100,150 , and 200 volt ratings for immediate applications. Contact your local Westinghouse Apparatus Sales Office, or write directly to Westinghouse Electric Corp., Semiconductor Department, Youngwood, Penna.
-Designed to meet or exceed military specifications and currently being used in many military. industrial, and commercial applications.

Tpe	Vcı*	0 (min)	n_{8} (max)	Ic A (mar)	$\begin{gathered} \mathrm{r}_{1} \text { max } \\ \text { cyuratide } \end{gathered}$	Therent trep
2N1015 2N1015A	30 60	$\begin{gathered} 10 \\ \text { (a) } \mathrm{I}_{\mathrm{c}}=2 \mathrm{amp} \end{gathered}$	$\begin{gathered} .75 \text { ohms } \\ \left.@\right\|_{c}=22 \mathrm{mp} \\ l_{\Delta}=300 \mathrm{ma} \end{gathered}$	7.5	$150^{\circ} \mathrm{C}$. $70 / \mathrm{C} / \mathrm{W}$
2N10158	100					
2N1015C	150					
2N10150	200					
2N1016	30	$\begin{gathered} 10 \\ \text { © } \mathrm{I}_{\mathrm{c}}=5 \mathrm{amp} \end{gathered}$	$\begin{gathered} .50 \text { ohms } \\ \text { (ala }\left.\right\|_{c}=5 \mathrm{amp} \\ 1_{s}=750 \mathrm{ma} \end{gathered}$	7.5	$150^{\circ} \mathrm{C}$. $7^{\circ} \mathrm{C} / \mathrm{W}$
2N1016A	60					
2N10168	100					
2N1016C	150					
2N10160	200					

-TRUE voltage rating (The transistors can be operated continuously at the Vae listed for
You can re SURE.... mis Westinghouse CIRCLE 48 ON READER-SERVICE CARD

AC RATIO MIGASURHMENTS?

THERE'S A
 NORTH ATLANTIC INSTRUMENT TO MEET YOUR REQUIREMENTS, TOO...

Now - from North Atlantic - you get the complete answer to AC ratio instrumentation problems - in the laboratory, on the production line, in the field.

Specialists in ratiometry, North Atlantic offers the only complete line of precision instruments to handle any ratio measurement task. All are designed to meet the most demanding requirements of missile age electronics - provide high accuracy, flexibility, component compatability and service-proven perforformance. Some are shown above.

If your project demands total solution to ratio measure ment problems, write for Date File No. 10J. It provides complete specifications and application data and shows how North Atlantic's unparalleled experience in ratiometry can help you.

	2. COMPLEX VOLTAGE RATIOMETERS
	Integrated, single-unit system for applica. tions where phase relations are critical
	Accuracy to 0.0001%. unalfected by quadra.
	ture. Three frequency operation. Direct read.

3. PHASE ANGLE VOLTMETERS	4. RATIO TEST SETS
Versatile readout sys.	Ratio reference and
mor all ratiometry	venient package for
direct reading of	production line and
phase, null. quadra.	ilar applications.
ture, in-phase and	an be supplied with
total voltage. Broad- band, single, or	any desired combination of ratio box and
multiple-frequency operation.	phase angle voltmeter.

NORTH ATLANTICINDUSTRIES, INC. 603 MAIN STREET, WESTBURY, N.Y. - EDGEWOOD 4.1122

Shaft-to-digital converter as part of a servomech. anism for voltage-to-digital conversion.

Unique Pattern Provides Direct Digital Readout In A-D Converter

CONVERSION of analog information to digital without supplementary coding or additional translation circuitry is possible with a novel directreadout, printed commutator.
The pattern of the commutator supplies the digital signal for output-equipment operation. Extra coding or translation circuitry found in other shaft-to-digital converters is avoided. Design features include magnetic detenting and a lag-lead circuit, integral to the pattern.
Now in small production by its developer, In ternational Business Machines Corp., the commutator is for use in computing or control operations, such as IBM's Automatic Production Recorder.

Difficulties Noted

Logical numerical progression is lacking to some degree in all shaft-to-digital converters, but especially in those using gearing. As multiple brushes move over the various paths of a commutator, it is difficult to ensure that at points of simultaneous digit change, such as from 19 to 20 or 299 to 300 , the different brushes will simultaneously change their electrical connections.
Ingenious solutions have been proposed to correct the deficiency. One is the use of a reflected code, but the means for translating the reflected. binary code to straight binary are complicated and expensive. Another method of avoiding switching ambiguity is to read the higher-order digits with two brushes following the same electrical path.
One brush lags behind the other, establishing a lag-lead relationship. With two brushes, there are,
in effect, two possible higher-order digits. The lower-order digits are then able to change the higher-order value in accordance with their own transition from 9 to 0 or 0 to 9 . Switching between brushes is usually accomplished by diode or relay circuitry.
Drawbacks here are that a number of diodes or relays are required for each commutator digit, and since there is inadequate output current from the diode circuits, some amplification is required to drive conventional output means.

Disadvantages Avoided

The printed circuit commutator designed by C. A. Walton of IBM includes two significant design innovations to avoid the disadvantages imposed by reflected codes or diode-relay switching. One innovation is a cyclic winding-in-and-out pattern for the units position, including an integral switching sector; and the other innovation is a pattern-controlled lead-lag brush arrangement. The two innovations together make it possible for the pattern to carry the total punching and printing currents.
The cyclic winding in-and-out is shown in Fig. 1. Note that four brushes (which in practice are arranged as two 180 -degree opposed pairs) are necessary, the pair active being chosen by the "switching sector" at the center of the figure. The "On" pair connects the switching sector to either the 0 to 4 conductors or the 5 to 9 conductors. The "Off" pair is open circuited by the switching sector and therefore avoids the inadmissible connection to the returning 5 to 9 or 0 to 4 conductors.
The lead-lag brush arrangement, although well established in the commutator design art, is handled in a novel manner by this pattern. The choice of the leading or lagging brush is made not by diodes, relays, or auxiliary mechanisms, but by supplementary patterns integral with the commutator design.
The concept is illustrated by Fig. 2. As in other lag-lead designs, a lag circuit is associated with the $50-99$ units position, and a lead circuit is associated with the 00-49 units position.
The lag-lead circuit choice is made by the split sector at the center of the figure. The sectors are connected through the insulating card to solid cormmons in the hundreds pattern.
The lag (50-99) sector in Fig. 2 is in line with the 50-99 digit positions of the units-tens tracks. Thie hundreds-digit circuit is then: hundreds com$\mathrm{me} \cdot \mathrm{n}$ to lag-control sector to lag common-a solid ritis around ring around the hundreds-pattern

Fig. 2. Schematic solution to ambiguity problem, using ag-lead brush configurations. Lag common, lead comnon and hundreds contacts are printed on reverse ide of circuir board. Brushes on each side are aligned.

Fig. 1. Solution to commutator-design problem requiring four brushes.

Ell CTRONIC DESIGN • February 17, 1960
shaft-to the 500 sector. The number readout is 599.

If the units-tens brushes rest on 00 rather than 99 (an intermediate units position is, prevented by a magnetic detent), the hundreds-common input is connected through the brushes to the lead ($0-49$) sector, and the hundreds circuit is: hundreds common to lead-control sector to lead commona second solid ring around the hundreds-pattern shaft-to the 600 sector. The number readout is 600.

Lag-Lead Arrangement

An actual arrangement for accomplishing a laglead operation, as above, is shown in Fig. 3. The upper righthand pattern for the most significant (thousands) digit closely resembles the layout of Fig. 2. Note the two internal solid rings, one for lag and one for lead. The outer data sectors are formed in a continuous repeating interlocking \mathbf{Z} shape rather than in the rectangular shape of Fig. 2.

The Z shape, Mr. Walton says, forces the pattern, rather than the brushes, into lagging and leading positions. The consequent radial alignment of the brushes simplifies their manufacture: without the Z shape an angular displacement of about 18 degrees between them would be necessary.
A combination of the patterns of Fig. 3 and Fig. 4 allow a four-digit readout. The fourth and fifth paths from the center of Fig. 4 are the thousands lag-lead and hundreds lag-lead control sectors. These are each split at two-transition points, 99 to 00 and 49 to 50 , respectively.

Thousands and More

Because all digits must be referred to the primary (units-tens) shaft in an isolated manner, a thousands lag-lead path is added-the fourth brush path of Fig. 4. This is done in two phases. The thousands lag-lead control sectors around the units-tens shaft are wired through the insulating board to the thousands lag-lead common sectors around the hundreds-digit shaft (lower left, Fig. 3).

Thousands-digit lag-lead brushes transfer the signal to a second thousands lag-lead control sector around the hundreds shaft. The interconnections are completed by through-wiring-since this is the only means of passing from the center of the hundreds pattern-to the thousands pattern (upper right, Fig. 3).

Magnetic Detenting Used

To ensure that the reading brushes do not fall between two conductors, a magnetic detenting method is used. The stop is produced when a sector of magnetic gear teeth-the detent magnetattracts similar teeth on a 100 -tooth detent gear. As the detent magnets are energized immediately
prior to a reading, the magnetic gear teeth send flux in and out of the detent wheel, causing tooth alignment. Simultaneously, because of an axial offset between magnets and the detent wheel, a vertical motion takes place which brings the brushes down onto the commutator pattern. Brush life is prolonged, because the brushes are raised above the pattern during slewing.

Another method sometimes used by IBM, Mr. Walton notes, involves a "check pattern." Ambiguity or non-validity of a point on the commutator pattern is signaled to a detent magnet. If it
is non-valid, a one-half-bit brush motion is used to bring the brushes into a valid area. Because the check pattern is an integral part of the commuta. tor pattern, it is accurately aligned and costs il most nothing extra.

Applications Cited

The assembled patterns of Figs. 3 and 4 and the gear-tooth detent, together with brushes, gears and back and front plates, comprise an analog-todigital converter capable of measuring shaft poiitions or displacements, such as length, when con-

Fig. 3. An actual pattern showing hundreds and thousands digit tracks and lag-lead tracks for gearing backlash compensation. Two phases are used for thousands lead control. Counterrotation is used between the two patlerns; it is impossible, in two dimensions, to interconnect two patterns advancing in the same direction.
verted to rotation.
Mr. Walton mentions other uses of the pattern. Voltage-to-digital conversion can be done by connecting a precision pot to the output shaft of a servo-driven converter. A great variety of voltage inputs can be reduced to digital form in the system shown in the head photo.
Printed-commutator patterns designed for minutes, hours, A.M and P.M., tenths of minutes, hundredths and thousandths of hours readout are used as central elements in the Automatic Production Recorder commutator clock. Patterns have
been suggested as multipole switches for columnshifting in small electrical calculators or for mechanical switch-type multiplication table lookup. If the pattern controls a digital-to-analog converter, a stable analog function of position can be generated. The function may be exponential, sinusoidal or logarithmic. With a logarithmic pattern, a servo-driven electrical readout "slide rule" is practical. - -
The history of developments leading to the new commutator has been reviewed in the IBM Journal of Research and Development (July, 1958).

Where Quality is important LEADING INSTRUMENT MAKERS Select

STANDARD BUD HOUSINGS

Bud has the widest variety of standard housings appli cable to the needs of producers of testing and control instruments. leading manufacturers find it's more economical to buy from Bud than to build their own.
When none of the housings described in our catalog meet your requirements, we invite you to take advantage of our custom designing and fabrication services.
Write for our catalog, see what Bud has to offer in its extensive sheet metal line.

mot meooucts
BUD BUD RADIO, INC.
2118 East 55th St. - Clevoland 3, Ohio Dopt. ECD

Fig．15．Voltage vs．current for paralleled negative and positive conductances．

Fig．16．Voltage vs．current for series connected nega－ tive and positive conductances．
 ＂linear＂operation． R_{s} ．

Fig．17．Curve－fracer circuir and plug－ins．

EASUREMENT of tunnel－diode characteris－ tics begins with the information available from the voltage vs current curve in Fig． 1 （Part 1，ED，Feb．3，1960，p50．We are interested in the peak and valley currents，（ I_{P}, I_{v} ）and the peak－to－valley current ratio，I_{P} / I_{∇} for switching purposes．We would like to know the magnitude of the negative－conductance，and its rate of change with voltage，so that we can determine the maximum voltage swing consistent with

We shall need to measure the diode capaci－ tance in the negative－conductance region，and de－ termine how it is affected by voltage．In the analysis of circuit stability，the need for this knowledge becomes obvious．As was shown，the limits of operating frequency and stability will be determined by the circuit inductance，and a knowledge of l_{e} will be mandatory．In addition， we will be concerned with methods of measuring

Before discussing the curve tracer，it is neces－ sary to show the requirements for the circuit．
First consider a negative conductance paralleled with a positive conductance of various values．${ }^{5,6}$
Since the voltage is common to both elements we will add the currents and the various curves of Fig． 15 will result．We see that only when $g>\left|-g_{D}\right|$ will we have a stable intercept for a current source；and that the variation in voltage
with current changes is largest when the $g_{p}=$ $\left|-g_{D}\right|$ and decreases as g_{p} is increased．
Second，a similar approach may be applied for the series circuit as shown in Fig．16．For increas． ing series resistance the current change for a change in voltage becomes progressively larger until $R_{B}=\left|-\tau_{D}\right|$ ．Increasing R_{B} beyond this point will generate a curve with no stable intercept for any voltage．
Obviously the curve－tracer circuit shown in Fig 17 is a combination of both these first and second considerations，and（ $R_{1}+R_{2}$ ）must be less than $(1 /-g \mid$ for the curve to be displayed．

Curve Tracer

The circuit for a curve tracer suitable for 1－to 10－milliamp（ I_{P} ）tunnel diodes（by changing plug ins）is shown in Fig．17．Use an oscilloscope with at least $50-\mathrm{mv} / \mathrm{in}$ ．sensitivity．
By using a simple calibration technique we can measure both I_{P} and I_{V} on the displayed curve Fig． 18 shows the calibrator circuit．
Calibrate horizontal（voltage）on scope（will nothing attached）using terminals $1^{\prime}-3^{\prime}$ ．Attaci curve tracer to scope and calibrate current by in serting calibrator terminals $2^{\prime \prime}-3^{\prime}$ into like－num bered terminals on the curve tracer（with no tur nel diode in test socket）and adjusting the verti－ cal sensitivity for the desired deflection．
The approximate magnitude of $-g$ may be de

Designing with Tunnel Diodes

Part 2

Abstract

In Part 1 of this two－part series，the authors analyzed circuit and device stability and showed how this analysis leads into design procedures for practical high－frequen－ cy amplifiers．

It is also necessary to have a knowledge of the mag． nitude of the tunnel－diode parameters．Therefore，in this second part，the authors discuss methods of measur－ ing these parameters and how stability considerations apply．

ELECTRONIC DESIGN • February 17， 1950
termined as shown in Fig. 15 by inserting a calibrated potentiometer in parallel with the tunnel diode and adjusting it for a horizontal line in the "active" voltage region of the diode. The principle is that of parallel positive and negative conductances discussed previously.
Defining the measured quantity (the required resistance of the pot)

$$
R_{p}=\left|\frac{1}{-g^{\prime}}\right|, \text { then }\left|\frac{1}{-g_{D}}\right|=\frac{1+R_{S} g^{\prime}}{g^{\prime}}
$$

If $R_{8} \ll|1 /-\mathrm{g}|$ we may neglect the error (that is $R_{0} g^{\prime}$ \& 1)
Note that in the construction of this equipment one must take extreme pains to keep lead length in an absolute minimum; as the additional inductance may cause oscillations. When the tunnel diode is oscillating the characteristics appear as shown in Fig. 19.

$\mathbf{I}_{P}, I_{V}, V_{P}, V_{\nabla} D C$ Test Set

A dc test circuit which will permit more precise measurements of I_{P} and I_{∇} may be constructed as shown in Fig. 20.
Since the tunnel diode can switch at extremely high speeds, a capacitor is used to suppress the transient charging currents through the distributed capacitance of the $75-\mathrm{K}$ ohm source resistor when voltage is being changed. The normally closed switch across the diode circuit is used for the same purpose when inserting the tunnel diode in the test socket; or for "resetting" the diode to check the current at which it switches to the high-voltage state.
The forward current of the silicon-diode clamp (which prevents the open-circuit voltage from appearing across the test socket at any time) is small enough at the operating voltage of a germanium tunnel diode that it may usually be neglected.
In operation, the forward current in the tunnel diode is increased until it switches, and the peak current required is read on the series milliammeter. The current is reduced very slightly and the diode reset with S_{1}. The peak voltage may then be read on the de vacuum-tube voltmeter. S_{2} adds series resistance to the circuit to reduce the current when measuring I_{V}. Switch S_{3} is used to set the diode in the high-voltage condition by mo:nentarily permitting two or three times the peak current to flow through it. After the diode has been switched, the forward current is gradually reduced until the voltage across the device drops back to the low-voltage condition. The "su taining" current is measured, increased very slightly and the diode again set with S_{3}. The valley voltage is then read on the vtvm.

Theasurement of Tunnel Diode Capacitance

The measurement of the capacitance of an

Fig. 18. Calibrator cir cuit for use with curve tracer.

Fig. 19. Tunnel-diode characteristic when oscillating.

Fig. 20. Dc test circuit for very precise measurements.
active two-terminal device presents problems over and above those encountered in measuring a complex circuit alone.
Let us consider the latter for a moment; from the equivalent circuit of Fig. 2. (ED, Feb. 3, 1960, p50) we can arrive at certain conclusions as to the proper measuring frequency and the test circuit requirements.
From the equations for the series impedance and the two critical frequencies discussed in the section on circuit stability (Part 1, ED, Feb. 3, 1960, p 50), we may define a measuring frequency
$W_{A K}$ and a $Q=W C / g$, such that

$$
Z_{(W)}=R_{S}-\frac{1}{g\left(1+Q^{2}\right)}+j w\left[l_{s}-\frac{C}{g^{2}\left(1+Q^{2}\right)}\right]
$$

Now at $\quad W_{C}=\frac{g}{C}$ then $Q=1$
at
$W_{R}, R_{S}=\frac{1}{g\left(1+Q^{2}\right)}$
at
$W_{X}, l_{s}=\frac{C}{g^{2}\left(1+Q^{2}\right)}$

Fig. 21. Test circuir for active element measurement (a), and its equivalent circuir (b) at measuring frequency WM.
 then at $W_{M} \ll\left[\begin{array}{l}W_{C} \\ W_{R} \\ W_{X}\end{array}\right.$
The admittance of the circuit can be written as
$Y=\frac{g^{2}+W^{2} C^{2}}{g^{2}+W^{2}\left[l\left(g^{2}+W^{2} C^{2}\right)-C\right]^{2}}$

$$
\left\{g+j W\left[C-l\left(g^{2}+W^{2} C^{2}\right)\right]\right\}
$$

Since at $W_{M}, g^{2} \gg W_{M^{2}} C^{2}$
then $Y \approx g+j W\left(C-l g^{2}\right)$
Now if $\lg ^{2}$ « C the equivalent circuit is that of a capacitor and negative conductance in parallel. For the tunnel diode specified, this is only true

at the peak and in the valley region. Below the peak and in the negative-conductance region the apparent capacitance will be reduced. (Howev 3 r, we must consider the additional inductance of $t_{\text {ne }}$ connecting leads from the bridge to the device, as will be discussed later.)

The problem of active-element measurement, of course, includes the stability consideraticns discussed previously.

Now consider the test circuit shown in Fig $21(\mathrm{a})$. The equivalent circuit at W_{μ} may be rep. resented as shown in Fig. 21(b).

Aside from the problem of insuring a sufficiently low level of rf signal at the unkown in order that our measurements be "small-signal;" we see im. mediately that the analysis of poles and zeroes becomes extremely complex, and that if $C_{\boldsymbol{n}}$ is large enough with respect to lead inductance the device may oscillate at a very high frequency. This can be determined by monitoring the signal level at the device using a very sensitive rf volt. meter, or by touching the case of the tunnel diode and noticing if the measured values are affected (The case is grounded at $W_{\boldsymbol{y}}$ but not entirely so at the very high frequency of the oscillation.)
It may be of interest to note that when oscilla. tions are present the apparent capacity measured! on the bridge rises to several times the actual capacitance in the $-g$ region, as is shown it Fig. 22(b).
An alternate and more satisfying method involves the use of transmission line techniques.

Fig. 22. Variation of capacitance with voltage (a), and apparent capacity when oscillations are present (b).

Fig. 23. Approximate circuif of rf bridge.

Namely the measurement of the reflection coeffcient on a 50 -ohm transmission line driven by a 50 -ohm generator and terminated in the tunnel diode. From the relationship:

$$
\mathrm{r}=\frac{Z_{x}-Z_{o}}{Z_{x}+Z_{o}}
$$

we can calculate the capacitance seen at the end of the transmission line. (Provided that $\left.\frac{1}{-g} \right\rvert\,>50$ ohms so that the device can be biased in the active region. This limits the method to diodes of less than $2-2-1 / 2$ ma for a $50-\mathrm{ohm}$ s:stem.)
Provided that lead inductance is kept to a minimum, the 50 -ohm series resistance in the loop is constant to very high frequencies; and is usually large enough to provide a stable system, so that the probability of oscillation is greatly reduced.
We must still find equipment capable of making redection coefficient measurements at sufficiently luw frequencies and low levels to satisfy the recuirements mentioned before. Fortunately such eq, uipment is commercially available. ${ }^{10}$
The variation of capacitance with voltage for
a typical 1.0-ma tunnel diode is plotted in Fig. 22(a).
The reason for the variation in apparent capacity in the negative conductance region can be shown to be due to the additional inductance between the bridge and the tunnel diode and bias resistor. Defining the terminal values of the tunnel diode as

$$
g_{D}^{\prime} \text { and } C_{D}^{\prime}\left(g_{D}^{\prime} \approx g_{D}, C_{D}^{\prime} \cong C_{D}-l_{, g_{D}^{2}}\right)
$$

then $C^{\prime}=C^{\prime}{ }_{D}+C$ case $+C$ strays
The circuit of the bridge is approximately as shown in Fig. 23, where g_{B} is the conductance of the bias resistor. Let $g^{\prime}=g_{B}+g_{D}^{\prime}$ and notice that g_{D} varies with voltage as is obvious from the V / I curve, going from positive to negative and back to zero. Again then;
$Y^{\prime} \simeq g^{\prime}+j W\left(C^{\prime}-l_{1} g^{2}\right)$,
$Y^{\prime} \simeq\left(g_{B}+g_{D}\right)+j W$

$$
\left[\begin{array}{l}
D \\
D
\end{array}+C_{D}-l_{g} g_{D}^{2}-l_{1}\left(g_{B}+g_{D}\right)^{2}\right]
$$

or C measured $\cong C_{X}+C_{D}-\left[l_{1}\left(g_{B}+g_{D}\right)^{2}+l_{g} g^{2} D\right]$ where $C_{x}=C$ case $+C$ strays
The final test circuit (for use with the RX meter) where l_{1} has been kept to a minimum, is
shown in Fig. 24 showing radial layout of components.
For the sake of simplicity and expediency, we suggest measuring the diode capacitance in the valley region at approximately 0.3 dc .

Measurement of R_{s}

Without resorting to microwave measurements, only approximate values of R_{s} can be measured. However, an estimate of the maximum value is readily determined.
Since R_{s} is the total internal resistance of the device, we are describing the contact and lead resistance as well as ohmic resistance of the semiconductor bulk.
Firstly, we may inspect the V-I curve and note that (as in Fig. 16) an appreciable series resistance will shift the apparent V_{P}. This effect is often noticeable in very high current devices.
Secondly, we can make a small-signal measurement of slope in a region where the slope is not appreciably affected by changes in voltage.
At very low voltages and currents, the slope is affected by the same changes of the density of states that causes the negative-conductance region itself (conduction in the reverse direction is also due to quantum-mechanical tunneling) and is therefore not an induction of ohmic resistance.
We cannot measure at a high current in the forward direction since strong minority carrier injection will conductivity-modulate the bulk resistance and give erroneous results.
All that remains is a small-signal measurement at high current in the reverse direction, pictured in Fig. 25. Forward and reverse currents are not to the same current scale. The circuit used is as shown in Fig. 26.
By removing the dc supply, inserting a precision 5 -ohm resistor in place of the tunnel diode, and

Fig. 26. Circuit for obtaining results shown in Fig. 25.
adjusting the signal level for a reading of 5 mv on the vtvm, we have a simple measurement of the slope in millivolts per ohm. By measuring at a reverse current 100 times larger than I_{P} we are reasonably sure that we are in the "ohmic" region.
The obtained reading is indicative of the maximum value of R_{B} and can only be conservative when used in our calculations.

Measurement of I_{s}

Of all of the required parameters, l_{s} has proven to be the most difficult to measure precisely. Our first measurement was made (using a General Radio admittance-meter at 500 mc) on an internally shorted case and allowing approximately $1 / 4$-in. lead lengths. However, the measured value of 10 muhy is only of zero order significance, since we are concerned with the total circuit-as-itstands inductance; which may be either much larger or appreciably smaller than the indicated values, depending on the circuit configuration.
For example-the inductance of even a $1 / 10-\mathrm{w}$ resistor with the shortest possible leads is still significant; as is the lead inductance of even a highfrequency bypass capacitor; and we may certainly not neglect the leads of the socket should one be used.
In addition, the particular tunnel diodes being investigated have been designed to permit mounting in "microstrip" transmission lines with the case itself inserted into the ground-plane of the line. (The pellet is case mounted and two leads are attached to the junction material.) With both junction leads paralleled and connected to the strip line we estimate that the residual inductance is in the order of 2 muhy. (To date this has not been measured.)
We can attack this problem from another angle by examining the maximum frequency of oscillation.

Let us assume $\boldsymbol{W}\left(=\frac{g}{C}\right) \ll W_{X} \leqslant W_{R}$
let:

$$
Q=\frac{\boldsymbol{W} C}{g}, \frac{c}{g}=\tau
$$

since at W (oscillation),

$$
l=\frac{c}{g^{2}\left(1+Q^{2}\right)} \text { then } l=\frac{\tau}{g\left(1+W_{0}^{2} \tau^{2}\right)}
$$

and since $Q \gg 1$ then $l \cong \frac{1}{W_{0}{ }^{2} \tau g}$, hence $l \cong \frac{1}{W_{0}{ }^{2} C}$
Note that for the Bogey values given $g / c \cong 250$ mc , so that to calculate to within 10 per cent the inductance of the circuit from the frequency of oscillating frequencies must be above 750 mc .

We have not considered the Noise-Figure of the amplifiers designed, although a mention of some very promising results obtained may be found in the literature. ${ }^{7,8,9}$ Nor have we considered the innumerable applications of the tunnel diode in circuits where stability is deliberately violated, that is, oscillators, autodyne mixers, switching circuits and the like. ${ }^{2,3,5}$

Our purpose has been to familiarize the circuit designer with a method of approaching the design of a two-terminal active-device amplifier; and show that even for such a device (which acts like an amplifier with very strong positive-feedback) one can design stable circuits. - a

Appendix

For the circuit shown in Fig. 3(b) (Part 1, ED, Feb. 3, 1960, p 50), we can write the set of mesh equations:

$$
\left\{\begin{array}{l}
e_{1}=R_{T} i_{1}+l \frac{d i}{d t}+\frac{1}{C} \int\left(i_{1}-i_{2}\right) d t \\
0=-\frac{1}{g} i_{2}-\frac{1}{C} \int\left(i_{1}-\cdots i_{2}\right) d t
\end{array}\right.
$$

By Laplace Transformation

$$
\left\{\begin{array}{l}
E_{1}=I_{1}\left(R_{T}+L S\right)+\frac{1}{C S}\left[I_{1}-I_{2}\right] \\
0=-\frac{1}{g} I_{2}-\frac{1}{C S}\left[I_{1}-I_{2}\right]
\end{array}\right.
$$

Re-arranging in Matrix Notation

$$
\left[\begin{array}{l}
\left(R_{T}+L S+\frac{1}{C S}\right)\left(-\frac{1}{C S}\right) \\
\left(-\frac{1}{C S}\right)\left(-\frac{1}{g}+\frac{1}{C S}\right)
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
E_{1} \\
0
\end{array}\right]
$$

The currents can be solved as:

$$
\begin{aligned}
& I_{1}=\frac{\left|\begin{array}{cc}
E_{1} & -\frac{1}{C S} \\
0 & -\frac{1}{g}+\frac{1}{C S}
\end{array}\right|}{\left|\begin{array}{ll}
R_{T}+L S+\frac{1}{C S} & -\frac{1}{C S} \\
\frac{-1}{C S} & \frac{-1}{g}+\frac{1}{C S}
\end{array}\right|} \begin{array}{l}
\left|\begin{array}{ll}
R_{T}+L S+\frac{1}{C S} & E_{1} \\
-\frac{1}{C S} & 0
\end{array}\right| \\
I_{2}=\frac{R_{T}+L S+\frac{1}{C S}}{} \begin{array}{l}
-\frac{1}{C S} \\
-\frac{1}{C S}
\end{array}
\end{array},
\end{aligned}
$$

Let us examine I_{1},

$$
I_{1}=\frac{E_{1}\left(\frac{1}{C S}-\frac{1}{g}\right)}{\Delta}
$$

where

$$
\Delta=\left(R_{T}+L S+\frac{1}{C S}\right)\left(-\frac{1}{g}+\frac{1}{C S}\right)-\left(\frac{1}{C S}\right)^{2}
$$

By simplification,

$$
I_{1}=E_{1}\left[\frac{C S-g}{L C S^{2}+\left(R_{T} C-\operatorname{Lg}\right) S+\left(1-R_{T} g\right)}\right]
$$

Alternately, one can obtain this result directly by writing the input impedance at " X " of Fig. $3(\mathrm{~b})$, and replacing $i W$ by S.

$$
\begin{aligned}
& Z(s)=R_{T}+S L+\frac{1}{S C-g} \\
& I(S)=\frac{E_{1}}{Z(S)}
\end{aligned}
$$

whence:

$$
i_{1}(S)=E_{1} \frac{C S-g}{C L S^{2}+\left(R_{T} C-L g\right) S+\left(1-R_{T} g\right)}
$$

Let the roots of the denominator be

$$
S=\alpha \pm j W
$$

Then $i_{1}(t)$ must contain a pair of terms:

$$
\begin{aligned}
i_{1}(t) & =K \mathrm{e}^{\left(a+j W^{\prime}\right) t}+K^{*} \mathrm{e}^{(a-j W) t}+. \\
& =2[K]_{\text {Real }} \mathrm{e}^{\alpha!} \cos W t+\ldots
\end{aligned}
$$

The zero of $Z(S)$ in the right half S-plane indicates that α is positive and in general this term $\mathrm{e}^{a t}$ represents a growing function of time. The system is therefore unstable.
If the zeroes are $S= \pm j W$ it implies that:
$i_{1}=K e^{j w t}+K^{*} e^{-j w t}+\ldots=2(K)_{\text {real }} \cos W t+\ldots$ This is a steady oscillation.
Note that the analysis is only for linear, or smallsignal operation. Hence the parameters of the diode are assumed to be constant.
Nonlinear operations have been excluded here. In other words, a stable relaxation type oscillator, for instance, is a system which is unstable in nature.

References

1. L. Esaki, Phys Rev, 109, 603 (1958).
2. H. S. Sommers, Jr., Proc IRE, 47, P 1201, 1959.
3. I. A. Lesk, N. Holonyak, Jr., U. S. Davidsohn, and M. D. Aarons, Germanium and Silicon Tunnel DiodesDesign Operation and Application, 1959 Wescon Conv Rec.
4. H. W. Bode, "Network Analysis and Feedback Am-plifer-Design".
5. I. A. Lesk, N. Holonyak Jr., U. S. Davidsohn; "The Tunnel Diode-Circuits and Applications", Electronics Vol 32 \#48 P 60, 1959.
6. J. W. Horton, A. G. Anderson, Full-Adder using Neg. Res. Diodes. IBM Journal July 1958.
7 K. K. N. Chang (Letters to Editor) Proc. IRE 47, P. 1268, 1959.
8 J. J. Tiemann and R. L. Watters, Noise Consideraticias of Tunnel Diode Amplifiers presented at the 1959 IRE-AIEE Solid State Devices Research Conference, Corne!! University, June 17, 1959.
${ }^{9}$ H. S. Sommers, et al Tunnel Diodes for Low-Noise A: plification, 1959 Wescon Conv. Rec.
7. (A) Operating Instruction Manual, VHF Z-G Diagreph, Model ZDU, Rhode and Schwarz, Munich, Germ. 7 y.
(B) R. P. Abraham and R. J. Kirkpatrick, "Transistor Cl racterization at VHF", Semiconductor Products, Jan.,

INHERENT STABILITY Assured in a DALOHM 750 or 1000 Trimmer Potentiometer

The ability to perform reliably under extreme conditions of heat and humidity is only one mark of the inherent stability that is standard in Dalohm trimmer potentiometers.
Stored on the shelf for months . . . or placed under continuous load... operating in severe environmental, shock, vibration and humidity
conditions . . . Dalohm precision trimmer potentiometers retain their stability because it has been "firmly infixed" by Dalohm design and methods of manufacture.
For all applications demanding trimmer potentiometers that meet or surpass MIL specifications, you can depend on Dalohm.

WIRE WOUMD - SEALED - HIGH POWER • DALOHM TYPE 750 and 1000 TRIMMER POTEMTIOMETERS
Miniature and standard sizes with completely sealed cases. Three terminal configurations provide the solutions for demanding design problems.

750	1000
Rated at ... 2 wotts	2.5 walts
Resistance	
range 10 ohms 10 30K ohms	10 ohms to 50k ohms
Slandard	
telorance ... $\pm 5 \%$ Size $180^{\prime \prime} \times .300^{\prime \prime} \times 1.000^{\prime \prime}$	
Screw	25 ± 2 revolutio
Weight 2 grams	2.5 grams

Write for Bulletins R-41A and R-44, with handy cross-reference file cards.

- Completely sealed
- Meets humidity requirements of MIL-STD-202A, Method 106A or MIL-E-5272A, Procedure 1
- End resistance is 3%, maximum
- Nominal resolution is from 0.1% to 1.2%
- Temperature coefficient is 50 PPM / ${ }^{\circ} \mathrm{C}$.
- Meets load life requirements of MIL-R-19A
- Surpasses applicable paragraphs of MIL-R-1 2934A

CIRCLE 51 ON READER-SERVICE CARD

SPECIAL PROBLEMS?

You can depend on DAIOHM, too, for help in solving any special problem in the realm of development, engineering, design and production. Chances are you can find the answer in our standard line of precision resistors (wire wound, metal film and deposited carbon); trimmer potentiometers; resistor networks; colletpotentiometers; resistor networks; collet-
fitting knohs; and hysterevis motors. If not, just outline your specific situation.

from DALOHM
 Better things in smaller packages

daLE PRODUCTS, IIC.
1328 28ih Ave., Columbus, Nebr.

PESCO
 STATIC INVERTERS

hichiv RELIABLE

Isomodulator Kills Double Moding

$\boldsymbol{F}^{\text {LIMINATING the need for repeller }}$ - modulation of klystrons or grid modulation of backward-wave oscillators, a new microwave modulator-isolator combination does away with measurement problems like double moding, frequency modulation, output power instability and broad spectra.
Built by Rantec Corp., Calabasas, Calif., the Model EXM-10 Isomodulator
s a self-contained package comprising a ferrite amplitude modulator, ferrite isolator and enough electronic circuitry to drive the modulator. It works off a $115-\mathrm{v}$ 60 -cps power outlet, requires no other input.
Using the Isomodulator with a cw klystron or a bwo signal source results in a clean, narrow spectrum containing only the carrier frequency and two sidebands.
 fans or coolers. Built-in short circuit protection, automatic or manual (local or remote) reset, is accomplished without fuses or circuit breakers. Other outstanding characteristics include: Voltage Regulation to $\pm 1 \%$; Frequency Regulation to $\pm .005 \%$; Inherent sine wave output.

STATIC INVERTERS avallable from 250 VA to 3000 VA.

PESCO PRODUCTS DIVISION
Borg-Warner Corporation
3310 Vanowen Street • Burbank, California 24700 No. Miles Road • Bedford, Ohio

Used as a klystron or bwo modulator in vswr, reflectivity or insertion loss measurements, The Isomodulator does away with repeller modulation of klystrons or grid modulation of bwo s.

The isolator section combats frequency pulling and power fluctuation due to changes in load.
Two uses of the Isomodulator are shown in the drawing. In a standard bench setup for measuring vswr, the unit is inserted directly between the klystron or bwo and the slotted line.
Previously on-axis reflectivity measurements were made by using time sharing techniques to separate the transmitted and received signals, requiring specialized equipment. Using a circulator is possible, but requires extreme frequency stability and low spurious levels-reflections due to mismatch of the antenna-circulator connection have to be cancelled by some device like a slide-screw tuner.
A perfect match can be had at one frequency only. Any spurious signal not at the discrete frequency tends to mask the reflected signal being measured. Using the Isomodulator, says Designer Sam Rosen, Head of Rantec's Electronics Laboratory, reduces the spurious level and incidental frequency modulation to a point so low that the circulator-Isomodulator technique will measure reflectivity over a $40-\mathrm{db}$ dynamic range.
Frequency range of the EXM-10 is 8.5 to 11.0 kmc ; isolation is 15 db minimum. Modulation is from zero to 100 per cent. With no modulation, insertion loss is 4.5 d. max. With 100 per cent modulation the output is the same as with repeller st lare-wave modulation within one db . Midulating frequency range is from 900 t. 1100 cy .

Price of the EXM-10 Isomodulator is $\$ 35$; delivery is within 30 days of order. For further information, turn to the F ader-Service Card and circle 101.

Plastic Mierophone Cables

Shielded Inferconnecting Cables

Multiple Pair

Community TV Antenna

CELULINE® Lead-in Cable

Magnet Wire

Juke Box Control Cable

Rubber Microphone Cables Hook.Up Wires

Duplex Priming Wires

Lamp Cordage

MIL-SPEC WIRES

TEFLON• Wires - DuPont trodemark

Here is just part of the

WORLD'S MOST COMPLETE LINE

 of Electronic Wire and Cablel Avallable from StockOne Wire Source for Everything Electronic and Electrical
magnet wire - lead wire - power supply cords - cord sets - portable cordage - electronic wire - automotive replacement wire and cable - aircraft wire - electrical household replacement cords

new DYKOR* all-solid state photo-electric reader offers optimum reliability, faster stops and higher reading speeds...

For applications such as digital computers, machine tool control and tape conversion, the fastest, most accurate Tape Reader available is the unique DYKOR 3500. Built by pioneers in data processing technology, the 3500 provides high reliability at high tape speeds.

FEATURES . . .

- STOPS FASTER-Before the next charactor at 1.000 char $/ \mathrm{sec}$ - READS FASTER-1,500 chor./sec. (or fostor if required)
- RELIABBLITY ASSURED-By use of silicon photo-diodes, com
plotely transistorized circuitry on otched circuit boards,
simple integrated optical system with regulated lamp current, - Simple integrated optical system with regulated lamp current. - VERSAFILITY-5, 6, 7 or 8-channel tapes handled inter.
changeobly. Reads ony standard tape material including oiled changeably. Reads ony standard tape material including oiled
yellow Tolotype paper. - SIMPLE HANDLING -
- CHOICE OF SINGLE OR DUAL SPEEDS. Spooler unit avail able.

DIGMMPRONICS CORP.
103 Albertson Avenue - Albertson, L. I., N. Y. - Ploneer 7-5090

N
EW solid-state timing modules provide a wide variety of precise timing and logic functions. These modules are available with fixed or adjustable time delays ranging from $50 \mu \mathrm{sec}$ to 300 sec .
Control points can be brought out of the timers to satisfy many specific requirements. For example, one can fire a circuit before the completion of a timing cycle. one can recycle the timer at will, or one can prevent the unit from timing till a prescribed signal arrives.
In the adjustable units, the time delay caln be varied over a 20 to 1 range. The manufacturer, Tempo Instrument Inc., Commercial St., Hicksville, N.Y., supplies equations and curves to help the user determine the external resistance required for a specific time delay.
The timers can operate with a supply voltage from 18 to 31 v dc. The supply must deliver 20 ma for the timer in addition to the load requirements which can
be as high as 100 ma .
Under worst conditions, wich as ambient temperature as high as 125 C and maximum load current, the timer will deliver full supply voltage to the load minus the drop across an equivalent 20 . ohm resistor.
Tempo guarantees the accuracy of maximum delay, available from 3 to 10 per cent, over the full voltage range, over a temperature range from -55 C to +71 C or +125 C , and under severe conditions of shock, vibration, and acceleration.

Available in a variety of package and terminal configurations, the units are all encapsulated in polyurethane foam and are hermetically sealed.
The versatility inherent in these modules allows them to be used for many applications such as counting, timing, pulse-train generation and sensing, re-peat-cycle timing, programming, and sequencing. Used with standard external

ELECTRONIC DESIGN • February 17, 1960

Basic configuration of the timing modules allows control flexibility.
gates, they can implement many types of logic functions.
Prices of the modules range from about $\$ 100$ to $\$ 400$ depending on requirements for high temperature operation, length of time delay, and timing accuracy. Modifications such as multiple outputs or multiple controls can raise the price.
Some of the standard units are available in 72 hours. Units designed to special requirements may require 4 to 6 weeks. The smallest modules in current production come in the size of a l-in. cube and weigh about 1.3 oz . Before the end of March, a miniaturized module, $7 / 16 \mathrm{in}$. x $/ 8 \mathrm{in} . x 1 \mathrm{in}$., will be available, weighing 0.6 oz .

For more information, turn to the Reader-Service Card and circle 100.

Wised terminal boards of the timing module prior to ncapsulation in polyurethane foam.

A Full Four-Digit Voltmeter at a Pointer Meter Price!

FOR THE FIRST TIME you can have the accuracy, speed and reliability of an NLS digital voltmeter with full four-digit resolution . . . for the price of a quality pointer meter. That's the dramatic story of the new NLS V64! Only NLS high-volume production techniques make it possible. Use the low-cost, versatile V64 for a wide range of measuring jobs. See the V64 in action ...contact NLS today!

BRIEF SPECIFICATIONS: Accuracy \pm ($.02 \%$ of reading plus I digit) . . full 4-digit resolution . . . measures DC voltages from one
 sories permit measuring $A C$ or low-level DC voltages . . . available from stock for immediate delivery.

Originator of the Digital Voltmeter
non-linear systems, inc.
 CIRCLE 54 ON READER-SERVICE CARD

with easy-to-use EAGLE CYCL-FLEX reset timers

A highly accurate and dependable easy-to-use timer, designed for mounting in control panels. Sealed dial protects timer when exposed to oil and dust conditions. Timer switches control four load circuits. Interlocking contacts are provided without the use of auxiliary relays. Synchronous motor drive insures accurate timing.

WRITE for descriptive Bulletin 120. Address Dept. ED-260.

EAGLE HAS 24 TYPES TIME-COUNT CONTROLS

EAGLE

SIGNAL COMPANY MOLINE, ILLINOIS
representatives in principal cities CIRCLE 55 ON READER-SERVICE CARD

Rapid, Direct Readout With

Rise, Storage and Fall Time Meter

for Transistors, Diodes, High-Speed Devices

Block diagram of one of the three time measurement channeis in the Model 140. Pulse amplifiers take $0.2-\mathrm{v}$ input, produce $10-\mathrm{v} / \mathrm{m} \mu \mathrm{sec}$ output. To measure turn-on time of a transistor, discriminator at output of test transistor can be adjusted to conduct at 90 per cent of full ampliiude
musec. Relatively unskilled personnel are heeded for meter readout as compared to the attention required for scope interpretation.
Designed by E-H Research Laboratories, Inc., 1922 Park Blvd., Oakland 6, Calif., the Model 140 uses a mercury wwitch to generate a fast-rising square wave at 60 cps . The square wave is applied to the test module, such as a transisfor with the input to the base and the output from the collector, as shown in the block diagram.
At the same time, the mercury pulse is applied through a voltage discriminator to a fast pulse amplifier and a one-shot multivibrator. The result is a steep-front pulse of long duration. Similar circuitry is figgered by the test module output via a liscriminator and is applied through a gate together with the direct pulse. The butput width of the gate is integrated; the current applied to the meter is a linear function of time.
Instead of using a low resistance to generate fast RCs, the Model 140 makes use of a combination of fast diodes and ransistors. Sensing is accomplished by using transistors as amplifiers to make witching time a function of gain.
Three separate channels of time measwrement are provided, each containing djustable voltage discriminators for selection of times of interest. For example, to measure turn-on time of a transistor (delay plus rise time), the discriminator of pne channel would be set to conduct at 90 per cent of full amplitude.
The Model 140 Meter, priced at \$37.50.00, includes one of three available teries preamplifiers; Model 141-PNP for testing pnp transistors, 141-NPN, and Model 141-DI for diode measurements. Each preamplifier is separately available at $\$ 300.00$. The equipment is applicable o the measurement of transient response of cables, pulse transformers, amplifiers, dely lines and other high-speed devices. Fir more information, turn to the Rea er-Service Card and circle 102.

You can depend on high performance and dependability at all times with the complete line of control synchros (transformer differential and transmitter), produced by the Instrument Division of American Electronics, Inc. Used as a family or independently in system applications, these units will operate over a temperature range of -55° to $+125^{\circ} \mathrm{C} \ldots$ and can be supplied to operate up to $200^{\circ} \mathrm{C}$.
Available in frame sizes from 8 to 25 these synchros meet and exceed the stringent standards of MIL-SPEC. 20708.
The key to proven reliability lies in the quality features engineered and manufactured into each unit. Greater stability and corrosion resistance is accomplished by stainless steel housings. Encapsulated unit construction and hermetically sealed windings are used to withstand the extremes of vibration and shock. Through-bore construction means fewer parts and less space in which damaging moisture may collect.

SIZE 11 ELECTRICAL DATA

	11E22M.81G (Transformer)	11E22M-01F (Transmitter)	$\begin{gathered} 11 \mathrm{E} 22.81 \mathrm{~J} \\ \text { (Differential) } \end{gathered}$
PRIMARY	Stator	Rotor	Stator
INPUT (VOLTS)	11.8	115	11.8
TEST (VOLTS)	10.2	115	10.2
FREQUENCY (CPS)	400	400	400
$Z_{\text {R() }}$ ROTOR IMPEDANCE (STATOR OPEN CIRCUITED) (OHMS)	3340 1720	2000 /80 ${ }^{\circ}$	$107<78^{\circ}$
$Z_{\text {so }}$ STATOR IMPEDANCE (ROTOR OPEN CIRCUITED) (OHMS)	570180°	$18 \quad 779.5^{\circ}$	$92 / 80^{\circ}$
MAX. NULL VOLTAGE (FUNDAMENTAL) (VOLTS) (TOTAL) (VOLTS)	$\begin{array}{r} .030 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & .015 \\ & .020 \end{aligned}$	$\begin{aligned} & .015 \\ & .020 \\ & \hline \end{aligned}$
MAXIMUM ERROR (MINUTES)	3	3	3
TRANSFORMATION RATIO (R/S) $\pm 4 \%$	2.203	. 103	1.154
PHASE SHIFT (DEGREES)	5	6	6
D. C. RESISTANCE (OHMS) $\begin{aligned} & \text { STATOR } \\ & \text { STATOR } \\ & \text { ROTOR }\end{aligned}$	$\begin{gathered} 60 \\ 385 \end{gathered}$	$\begin{gathered} 3 \\ 185 \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ 19.0 \end{gathered}$

For complete information on the outstanding performance of the complete line, write

American Electronics, Inc.

INSTRUMENT DIVISION

9503 WEST JEFFERSON BOULEVARD, CULVER CITY, CALIFORNIA circle 56 on reader-service card

THE AMCO MODULAR INSTRUMENTENCLOSURE SYSTEM

two completely new lines added in steel and aluminum to give 3 COMPLETE MODULAR FRAME LINES IN ONE OVER-ALL SYSTEM

A Ameo Custom Line. Removable multi panels and cowlings based on 19° incre ments of width. Custom, single-unit ap pearance for frames mounted in series deally suited for complex console arrangements. The space in series mounting of frames. Constructed of double-channel 16 gaug cold-rolled steel. Conforms to EIA mounting standards.
B Amee Somi-Custom Line. Removable multi-width cowlings provide a semicustom, single-unit appearance fo wide box-type channel frames provide greater internal mounting area. 19° wide panels of any thickness can be recessed -from a fush-mounted position to any desired depth. Box type channel conConforms to EIA mounting standards.
C Amse Aluminum Line. This system of aluminum box extrusions and cast corners allows easy assembly of cabinets in any size from 7° to 20^{\prime} in height, width or depth. Corners and extrusions
lock together by hand with built-in locking device. All sizes are standard lockfor stocking and odd-ball sizes. Cast and hardened corners of 356 -T6 aluminum as described in Federal Spec. QQ-A-596a. Extrusions of 6061-T6 QQ-A-270a.
Amco Accessories. A full line of Amco integrated accessories such as blowco chassis slides and mounts, lighting, doors, drawers, dollies and many more available for A, B and C shown.
Cost savings. All the above-or any part thereof-may be ordered under one combined discount schedule base determined by order dollar value. Orders date may also be combined. Free preassembly by Amco provides additional savings in time and installation.
3 wook delivery on all standard parts. We welcome inspection of our plant and facilities. Send for your free literature

AMCO ENGINEERING CO.

7333 W. Ainslle Street, Chicago 31, Illinols CIRCLE 57 ON READER-SERVICE CARD

Presented here in one convenient form are the basic rules for flow graph analysis. The flow graph method of writing equations offers distinct advantages over standard equations. Flow graphs simultaneously display all of the equations of a system and can be read to obtain a broad view of the functional dependences. It can then be read in detail to obtain precise pieces of information.
The rules presented here are summarzed from the four-part series, "Visual Engineering Mathematics" by T. R. Nisbet and W. W. Happ, which appeared in Electronic Design, Dec. 9, Dec. 23, Jan. 6, and Jan. 20. Table 2 is a new table which was not included in the original series.
Note on Rule 6, Table 2. The proced ure for evaluating Path $\times \mathbf{\Sigma}$ non-touch-ing-loops is as follows:

1. Write down the product of all the transmittances in the path concerned
2. Erase the path from the flow graph.
3. Erase any loops that touch the path.
4. Regard what is left as a new flow graph and find the sum of the loops in the usual way.
The product of 1 and 4 gives the required answer.

A Quick Summary Of

 Flow GraphRules

Many subjects lend themselves to flow graph notation; some do not. The mathematical proof of the formula for an in finite series can be written in two lines from a simple flow graph. Transistor "h" parameters can be converted to " z " parameters by a single manipulation of the flow graph. Amperes, ohms, volts, and watts, however, cannot be embodied si multaneously in the same flow graph. - "

Table 1. Fundamental Flow Graph Rul

adotion	0	
		y $\quad 1$
suetraction		y
multiplication	O- -O	y \quad "
oivision	$x \mathrm{O}-\frac{1}{\frac{1}{6}} 0$	y $\cdot 1$
IDENTITY OR unit transmittance	$\begin{array}{ll} 1 \\ 0- & - \\ 0- \end{array}$	y=
negative unit transmittance	$\begin{array}{ll} 10- & =1 \\ \times 0 & =00 y \end{array}$	

Table 2. Specific Flow Graph Rules

$\begin{aligned} & 2 \text { Feedbock About } \\ & \text { - Transmillance } \\ & \text { 1 See Ea \| } 25 \mid \text {) } \end{aligned}$	$\underset{O}{\text { Exomole }}$	
	Example 	
	t.ames	
5 Topology Equalion llor a closed Flow Groph) (S00 Eq \|34)	$\left.\begin{array}{c} \Sigma_{\text {copss }}=\left[1-\Sigma_{L_{1}}+\Sigma_{L_{2}}-\Sigma_{L,}+\Sigma_{L_{l}}\right. \end{array}\right] \cdot 0$
6. Nonlouching Lood Rule flor an Open [See Eq [37]	Transmiliance befween ifo nodes : T $=\frac{\sum \mid \text { Path } \times \sum \text { nonlouching looes } \mid}{\sum \text { 1000s }}$	

Table 3. Active or Passive Network Parameters

Originality in design concepts. your job...and

Centralab's
$1 / 4$ watt

MULTIPLE MINIATURE

 VARIABLE RESISTOR (Component Density: 18.2 per cu. in.) *The Model 5 is a new proven design concept, not merely an improvement of an existing component. This is typical of centralab's approach to product design. It is available with up to 4 variable and 9 fixed resistors on a single steatite plate measuring $21 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times{ }^{15} / 3_{2}{ }^{\prime \prime}$, including knobs . . . proportionally smaller when fewer variable resistors are required. This remarkable increase in component density is another centralab "first," setting the example for the electronics irdustry.

A wide range of mounting styles and types Model 5 Radiohms ${ }^{\text {® }}$ are available with horizontal or vertical mounting brackets, plug-in terminals for printed circuit boards or wire leads for metal chassis.

SPECIFICATIONS

Resistance Range: 1000 ohms to 5 megohms, linear taper Wattage Rating: $1 / 4$ watt at $70^{\circ} \mathrm{C}$. ambient
Breakdown Voltage: 1250 volts RMS, between adjacent sections and to bracket

End Resistance: Less than 1\% of total
Initial Torque: 2 inch ounces average

Complete specifications and design data are given in centralab Bulletin EP-539; write for your copy today.

* Cubic inch, rather than cuble foot, is uced
to provide a more realistic and more readily to provide a more realistic and more readily visualized standard of compariaion.

Centralab,

ELECTRONICS DIVISION OF GLOBE-UNION INC. 960B E. KEEFE AVE. - MILWAUKEE 1, WIS. In Canada: 669 Bayview Ave., Toronto 17, Ont.

YARIABLE RESISTORS • ELECTRONIC SWITCHES • PACKAGED ELECTRONIC CIRCUITS • CERAMIC CAPACITORS • ENGINEERED CERAMICS circte 58 on reader-service card

NEW PRODUCTS

Covering all new products that might gener ally be specified by an electronics engineer engaged in the design of original equipment.

Reflex Klystron Provides Minimum Of 3 Mw From 88,000 to $92,000 \mathrm{Mc}$

Type QK673 mechanically tuned reflex klystron oscillator is designed for operation in the 88,000 to $92,000-\mathrm{mc}$ range and provides a minimum output of 3 mw. The rf output is through waveguides sealed by a mica window. Heater voltage is 2.5 v and heater current is 1.45 amp . Resonator voltage and current are 1400 to 1700 v and 40 ma . The unit has a dwarf octal base and cooling is by forced air.

Raytheon Co., Microwave and Power Tube Div., Dept. ED, Waltham 54, Mass.
Price \& Availability: Delivery is 90 days from receipt of order, and price is $\$ 4000$. These will be changed as the unit gets into production.

Price and Availability

PRICE AND AVAILABILITY data is now being added, whenever possible, to the New Product descriptions that appear in ELECTRONIC DESIGN. This data will help you to:
-Evaluate the products more intelligently. -Decide which products to buy now and which to wait for.
-Schedule your orders wisely.
-Get an insight info prices and savings for similar products.

Most manufacturers have been very cooperative in providing us with Price and Availability data. Since some of the data arrived after our deadlines, it was impossible to add it to all of the products. The data represents the latest information at the time of publication.

Variable Attenuators Available For K, V, Q, M and E Bands

These variable attenuators, although low cost, are claimed to offer precision and accurac nearly comparable to expensive, precision attenu ators. They are designed for the $\mathrm{K}, \mathrm{V}, \mathrm{Q}, \mathrm{M}$ an E bands. The direct-reading dial is accurately cal brated to within 1 db up to 10 db and 1.5 db us to 20 db over the entire waveguide frequenc range. Maximum attenuation exceeds 25 db an minimum insertion loss is under 0.5 db . All model are well shielded.

Narda Microwave Corp., Dept. ED, 118-16 Herricks Road, Mineola, N.Y.

Price d Availability: All are available from stoct Price for the K and V bands is $\$ 150$ and $\$ 180$, 1 spectively. Price is $\$ 200$ each for the Q, M and bands.

Creative Microwave Technology NOOOON

Published by MICROWAVE AND POWER TUBE DIIISION, RAYTHEON COMPANY, WALTHAM 54, MASS., Vol. 1. No. 9

NEW RAYTHEON MAGNETRONS FOR A WIDE RANGE OF APPLICATIONS

Transistor Amplifier Has Servo, Audio, Pulse Applications
Model 207G germanium-transistor umplifier is designed for servo, audio, pulse applications. Its operating temperature range is -50 to +50 C ; it measures $1-1 / 4 \times 3 / 4 \times$ $3 / 8 \mathrm{in}$. Open-loop gain is over 40 db and closed-loop gain is 10 to 26 db . Enclosed in a stainless steel case, it can withstand a vibration of 400 g at 2 kc without microphonic noise.
Taber Instrument Corp., Dept. ED, Tonawanda, N. Y.
Price \& Availability: Price is $\$ 89$ cach; availability data on request.

Tantalum Foil Capacitors 719 Operate From -55 to +125 C
The TH-type line of miniaturized tantalum foil capacitors is designed to operate in the temperature range of -55 to +125 C . Capable of operation at 150 v or less, they are available with plain or etched foil, and polar or nonpolar construction, insulated or not. The capacitors can be stored at temperatures of -55 C or !ower. They are available for 10 , 15 and $150-\mathrm{v}$ operation in all 5 case sizts which are $3 / 4,1-1 / 4,1-9 / 16$, $2-1 / 4$ and $2-7 / 8 \mathrm{in}$. in length.

Tansistor Electronics, Inc., Dept. ED Bennington, Vt.
Price \& Availability: Prices range from $\$ 2.34$ to $\$ 10.18$ per thousand, de, nding on size. Five case sizes are sept in stock.

FIRC 832 TO 836 ON READER-SERVICE CARD

Designed for C-band systems requiring tunability, the RK-7156 magnetron has a min= imum peak power output rating of 250 kilowatts over a frequency range of 5,450 to 5,825 megacycles. Applications include a plighttested, revolutionary airborne weather radar system. The RK-7156 is in quantity production.

CIRCLE 832
Reader Service Card

X-band magnetron for airborne search radar provides one megawatt minimum peak power and 875 watts average

power within a frequency range of 9,340 to 9,440 Mc. Designated QK-624, this pulsed-type tube is liquid cooled and should give at least 1,000 hours of reliable service.

CIRCLE 833
Reader Service Card

For ground-based and airborne radar systems, the RK7529 magnetron provides a 2.0 microsecond pulse of 3.5 megawatts minimum peak power over 2,700 to 2,850 Mc. This liquid-cooled tube is interchangeable with other fixed-frequency S-band tubes operating at similar power levels.

CIRCLE 834
Reader Service Card

A one kilowatt beacon magnetron, the RK-7578 weighs only 14 ozs., yet will with stand vibrations of 15 G's at 20 to 2,000 cycles and shock up to 100 G's. It is

mechanically tunable and covers the 5,400 to 5,900 Mc range.

CIRCLE 835
Reader Service Card

Developed to withstand extreme environmental condi$\frac{\text { treme }}{\text { tions, }} \frac{\text { environmental }}{\text { the } R K-7449} \frac{\text { condi- }}{\text { magne- }}$ tron is a lightweight, compact tube with a minimum peak power output of 45 kilowatts at the operating frequency of 24 kmc . The RK-7449 is required to withstand re-

peated shocks of 50G. Stable operation is guaranteod at vibration Prequencies up to 2,000 c.p.s. With 30G applied.

CIRCLE 836
Reader Service Card

When requirements are rugged:

only Weston RUGGEDIZED

Instruments

are so consistently

Sure, lots of instruments are offered for use under rough conditions. But how many make the grade? How many can you count on to give consistently dependable service over the years? And how many manufacturers provide a line of such instruments broad enough to satisfy a wide range of applications?
ONLY WESTON! Yes, not only does the Weston Ruggedized Line conform to the broadest range of MIL specs . . . it delivers the stability, accuracy and near-invulnerability that the most finicky user requires.

LOOK AT THESE NEW FEATURES!

Sturdy new plastic windows and advanced case design permit the use of practical zero correctors in all models. And the well-known Weston Ruggedized Instruments have now been expanded to include 250° scale instruments, with improved accuracy and legibility. Together with Weston exclusive up-front scales, this insures the utmost in readability. These features, and those listed at the right, are the reasons for the high recognition Weston Ruggedized Instruments have earned

For full information, contact your local Weston sales office . . or write to Daystrom-Weston Sales Division, Newark 12, N. J. In Canada: Daystrom Lid., 840 Caledonia Rd., Toronto 19, Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N. J.

WESTON

WORLD LEADER IN MEASUREMENT AND CONTROL
Vight un at the Dapytrom Boethe
ThE show, Wow Yoptr Collowim, Monch 21-24

NEW PRODUCTS

Time Code Generators

These solid-state-circuit time code generators have an accuracy of 3 parts in 10^{8} per day or 1 sec per month. Model ZA-801 binary-coded decima readout unit and model ZA-802 straight binary readout unit are available. Outputs are suitable for recording on oscillographs, strip-chart recorders, magnetic tape or as drivers for neon flash lamps. Time-of-day code and 8 pulse rates are produced. A serial binary code is supplied as a de level shift and am carrier. A complete unit, including power supply, it measures $7 \times 19 \times 16$ in
Electronic Engineering Co. of Calif., Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif.
Price \& Availability: Models ZA-801 and ZA-80? are priced at $\$ 7650$ and $\$ 7050$, respectively, plus tax, fob Santa Ana. Delivery time is 60 days.

DC Preamplifier

ALL Weston ruggedized instruments offer ALL these advantages:

- Dependable service, even under extremes of shock, vibration, temperature, humidity and general abuse.
- Highest ratio of scale area to casing size.
- Mechanisms feature spring-backed jewel construction. Internal shock mounting plates are integrally molded and bonded to cases in specially compounded rubber.
- Rigid steel housings provide excellent shielding against external magnetic fields. Instruments may be mounted interchangeably on magnetic or non-magnetic panels.
- In the 250°-scale Model 1539 , accuracy is available to within $\pm 1 \%$ of full scale range.
- New cases with sturdy plastic windows permit use of practical zero correctors.

100 mv for 1% linearity. Response is flat from dc 15 kc . The unit has a self-contained battery. Dimensions are $3.75 \times 3.25 \times 2 \mathrm{in}$.
Ramapo Instrument Co., Inc., Dept. ED, 8 First ., Bloomingdale, N.J.
Price \& Availability: Price is $\$ 75$ ea; quantity discounts are offered. Units are available from stock.

Terminals

533
For easy insertion and fastening

The Wrap-A-Wire terminals, for use in electronic assemblies, connectors for coil forms, and printed circuit boards are easily inserted and fastened, eliminating hand tie and soldering. Each terminal can take one or more wire leads. Special plating or material can be supplied to individual specifications.
Malco Manufacturing Co., Dept. ED, 4025 W. Lake St., Chicago 24, III.
Price \& Availability: The product is available from stock: prices can be furnished.

Connector Insulator

The Zipboot is easily wrapped around a connector which terminates a cable. Made of 105-deg F vinyl with a shrinking factor of about 30%, it slirinks to a snug fit over the connector and the jucket of the cable. When the ends are sealed to the connector shell and cable jacket, it prevents moisture from penetrating the interior of the backs'ell. Thus, potting may not be necessary.
Zippertubing Co., Dept. ED, 752 San Pedro St., I os Angeles, Calif.
1 ice \& Availability: Price varies with quantity (.) Il is furnished on request. The product is avail"Ite from stock and can be delivere:l in 3 days.

THE INDUSTRY'S FIRST CHOICE
Miscrotemsafts. for ultra-precision slicing and dicing of semiconductor materials

Today more than 60% of all transistor elements are being cut on Microtom-atic machines. This indus-try-wide preference was won through sheer performance - dependable accuracy, high production rates, and trouble-free, continuous-duty operation. Now the new Microtom-atic MTA-7 brings even greater accuracy and increased production at lower cost. Unique cross-feed mechanism co-ordinates mechanical and hydraulic movements to achieve ultra-precision indexing. Fracture-free cutting of extremely thin wafers with excellent parallelism is no problem on the MTA-7. Simple, accurate controls expedite setup with minimum waste and then the MTA-7 automatically repeats the indexing and cutting cycle until the crystal is completely sliced.
The new MTA-7 is extremely rigid throughout with heavy base, saddle, table and column construction. Long life and continued accuracy are assured through generous bearing areas, hand-scraped ways and posi tive, automatic lubrication of all contact areas and lead screws. If your work involves slicing of hard, brittle and shock-sensitive materials, DoALL can help you. Call your local DoALL Sales-Service Store and discuss your problem. A corps of specialists and the DoALL Demonstration Test-Center are at your disposal.

Model MTA-7 provides index stroke from 0 to $.100^{\prime \prime}$ per index with posifive table rates as low as $1 / 6^{\text {pos }}$ per minute. Other models available.

DoALL diamond slicing wheels are produced by an exclusive process that insures positive rim bond to the core. These wheels deliver extreme
accuracy... save time and materials.
 Microtom-atic is is anken
from hewerd micto Trom the word microteme
defined by Webter defined by Webster as
An instrument for culting sections.

Large silicon crystal being wafered on an MTA-7. Wafers . $030^{\prime \prime}$ thick are being cut at 1 sq . in. per min. with

CIRCLE 60 ON READER-SERVICE CARD

NEW PRODUCTS

"THIS RELAY WILL AIVE US 300 MILLION OPERATIONS, JOE"

Model RS450 power supply delivers two outputs of +300 to +400 v dc and -300 to -400 v dc, or a single output of 600 to 800 v . Output current is to 50 ma . Of modular design, the unit can be supplied for bench use or as a flat plate for installation in original equipment. Input is 105 to 1.25 v ac, 60 to 400 cps , internal impedance is less than 1 ohm, load regulation is 0.03%, line regulation is 0.02%, and ripple is 7 mv max peak-to-peak. Recovery time is less than $25 \mu \mathrm{sec}$.
Trans Electronics, Inc., Dept. ED, 7349 Canoga Ave., Canoga Park, Calif.
Price \& Availability: Price is $\$ 135.50$ for bench type, $\$ 130.35$ for plate module. Delivery is from stock.

Husky Armature Arm
prevents sagging
or bending.
BS SERIES TELEPHONE TYPE

Measure the thickness of the BS series armature arm. You will find the cross section area is greater than ordinary relays of this type. Here is the kind of quality that spells dependability.

Observe that the stainless steel hinge pin runs the full width (not just half) of the armature, providing optimum bearing surface. This pin, operating in a stainless steel sleeve, shows only minimal wear during nearly a third of a billion operations.
Best of all, P\&B quality costs no more. A whole new plant is being devoted to the production of high performance telephone type relays. Your nearest $P_{\&}$ B sales engineer will be happy to discuss your relay problems. Call him today.

gemeral:

Braxdown Vatrace: 1000 volts rms 60 cy . min
between all elements.
Ambient Tomprature: - 55° to $+85^{\circ} \mathrm{C}$.
$+125^{\circ} \mathrm{C}$ available on special
weight: 9 to 16025.
Torminalas: Pietced solder lugs;
Coil: One : 16 AWG wire
Contacts: Two "18 AWG wires
Endoserres: Dust covered or sealed
ONTACCS:
Araneements: DC-up to 28 springs
Arancements: $D C-$ up to 28 springs
material: 1
Up or dia single silvel
Other materials on special order.
Load: 4 amps at 115 volls. 60 cycle resistive Pressurc: 15 grams minimum
Res stance: 100,000 ohms maximum Powe: DC -50 Milliwatts per movable arm. Greater sensitivity on special order. AC-17.9 volt-amps. Duty: Continuous
Treatment: Centrifugal impregnation Vollages: $\mathrm{DC}-\mathrm{UP}$ to 300 volts with series
resistor. AC-Up to 250 volts. 60 cy .
Other materials on special order. mountime: Two 8.32 tapped holes $3 / 90 . c$.

GS SERIES-Excellent sensilivity: 50 mw per movable arm ions requiring many switch ing etements in small space.

LS SERIES Medium coil relay with short springs and light weight arimatiure for fast
action, reliability and long life.
is SERIEs Short coil relay is available in $A C$ and $D C$ versions.
Long life construction. C an bs Long life construction. Can be
supplied (DC) with ui to 20
springs (10 per stack). CTRONIC PARTS DISTRIBUTOR

F Fequency Converter 514 Transmitter

Provides 9.96 kc

This transmitter, when furnished with an input signal of 1 w in the range of 108 to 118 mc , delivers an output signal of 50 w cw at 9.96 kc higher than the original input frequency. Stability is maintained within ± 10 cps. Spurious frequencies are suppressed down to at least 60 db ; harmonic frequencies are held to about 80 dt . The line voltage is 115 or 230 v at 55 to 65 cps . Over-all dimensions of the unit are $22 \times 24 \times 18 \mathrm{in}$
Control Electronics Cu., Inc., Dept. ED, 10 Stepar Place. Huntington Sta., N.Y.

Molding Compounds 536

Have soft flow, low pressure properties
These epoxy molding compounds combine soft flow and low pressure characteristics and make possible high-speed molding of a variety of electronic parts. They have a balance of physical, electrical, and chemical properties (characteristic of epoxies) in an easily-handled, single-component system. The material can be used to mold miniature parts.
American-Marietta Co., Adhesives, Resins, \& Chemical Div., Dept. ED. Seattle, Wash
Price d Availability: Standerd compo nds in stock. Experimental compo:nds made on order. Stock itcms delicered in 5 to 7 days, slightly lonser for experimental compounds. Price is between \$1.50 and \$1.95 for val ous components when ordered in c uantities of 400 or more.
CCLE 62 ON READER-SERVICE CARD $>$

Transitron

announces a NEW computer element for: Greater Reliability. Circuit Simplicity

The Transwitch is a new bistable silicon device that can be TURNED OFF with gate current.

This PNPN latching device "remembers" its last gate signal. High current gain, both turn-on and turn-off, leads to greater circuit simplicity and inherent reliability. Excellent linearity of electrical parameters over a wide current range fulfills both low logic level and medium power needs.

Here is a unique device that replaces two transistors plus resistors in most bistable circuits and permits increased component density.

Furthermore, the transwitch is FAST . . . requiring only 0.3 microseconds to turn ON or OFF!

The Transwitch is now available from Transitron in the popular JEDEC TO- 5 package, ready to solve your switch-on-switch-off requirements.
For further information, write for Bulletin TE-1357A

For research and more accurate production of hyperpure materials for semi-conductors-the new Lindberg Floating Zone Scanner

This newly developed Floating Zone Scanner is a product of Lindberg's technical staff, widely recognized for many significant developments in the application of heat to industry. Expertly designed, it provides more accurate and more precise production of semi-conductors as well as serving as ideal research equipment. Already, a number of important companies in the semi-conductor field are using this equipment for research and production. Lindberg Induction Heating Units have been specifically designed for use as research and production equipment for crystal growing and zone refining of semi-conductors and other materials. Write for our Bulletin No. 1600.

High Frequency Division

LINDBERG ENGINEERING COMPANY
2456 WEST HUBBARD STREET, CHICAGO 12, ILLINOIS Los Angeles Plant: 11937 South Regentiview Avenue, at Downey, California In Canada: Birlefco-Lindberg, Ltd., Toronto

LINDBERG heat ior induatry

NEW PRODUCTS

Relay Retainer
Height is from 1-5/8 to 2-5/8 in.

This relay retainer comes in five sizes with heights ranging from $1-5 / 8$ to $2-5 / 8 \mathrm{in}$. The device consists of a post which screws through
one of the two socket-mounting holes in the standard microminiature relay socket; it also serves to secure the socket to the chassis with a spring loaded cap. The cap swings up and out of the way for servicing the relay. The unit is made of steel with a cadmium plate finish.
The Birtcher Corp., Industrial Div., Dept. ED, 4371 Valley Blvd., Los Angeles 32. Calif.
Price \& Availability: The product is acailable from stock for two weeks delivery. Prices will be quoted on request.

Ultrasonic Cleaners

539

Six types available

This series of ultrasonic cleaners includes: Sonic Duo Solve, a twophase cleaner used cold to remove carbon, paint, and other contami-
nants; Sonic Solv, a metal and light soil remover; Sonic Copper Brightener; Sonic Acid Strip for acid cleaning of metal; Sonic Alka Strip for heavy duty cleaning of steel parts and magnesium alloys; and Sonic Aluminum Brightener.
Clarkson Labs, Inc., Dept. ED, 930 N. Darien St., Philadelphia 23, Pa.
Price \& Availability: Available from stock. Delivered 5 days after order is received. Prices are: Duo Solve, \$2.75; Solv, \$2.35; Copper Brightener, \$4.00; Aluminum Brightener, \$2.75. All prices are per gal when ordered in 5-gal pails. Prices for Acid Strip and Alka Strip are $\$ 34.50$ and $\$ 20.00$ per hundred lb, when ordered in 25 lb drums.

Panel Meters

For military use
Built in accordance with MIL-M10304 A , these $2.5-\mathrm{in}$. panel meters come in 61 different models, includ-
ing voltmeters, ammeters, microammeters, and milliammeters. Accuracies of 2% full scale on dc models and 3% full scale on ac rectifier types are offered.
Beckman Instruments, Inc., Heliput Div., 2500 Fullerton Road, Fullerton, Calif.

Switching Diodes

Rated at $0.3 \mu \mathrm{sec}, 1 / 2 \mathrm{omp}$
Designed for operation to 175 C, the series $1 \mathrm{~N} 920-1 \mathrm{~N} 923$ diodes provide $0.3 \mu \mathrm{sec}$ switching of $1 / 2$-amp pulses with a peak power dissipation of 800 mw . Forward conductance is 500 ma at 1 v max drop, and leakage is 50 pa max at 150 C . All units take 0.3μ sec to return to 10 K when switched from a forward current, 2 . !usec pulse of 500 ma to a reverse voltage of -50 v with a loop impedance of 1 K .

Sperry Semiconductor Div., Sperry Rand Corp., Dept. ED. South Norwalk. Comn

NEW! ENGRAVED Deep-Kut ${ }^{\circ}$ PIN \& PEG STAMPS

 are better than ordinary rubber 3 ways* ENgraved Deop-Kup is Acid-Proof
* Engraved Deep-Kup Stamping gives Razor-Sharp impressions every time
- ingravid deop-Kur ha Eushion-like resilience
Engraved Deep-Kut stamp faces are adaptable to any marking device. They can be used fo stamp on every surface, meial, wood, fabric, paper, plastic, etc.

THE KRENGEL
INSPECTION POCKET STAMP THE PIN \& PEG

krengel manufacturing co., inc. Tel Co 7.5714
Dept. ED
227 fulton St. New York 7, N Y
NAM
Please check the following free engraveo o Somple \& Price Ls!
Ploose hove solesman

For basic research, pilot plant studies and the more efficient production of semi-conductors-new Lindberg Diffusion Furnaces

Here is a new Lindberg Furnace designed specifically for basic research, pilot plant work, or production of solid state devices. It is offered in a variety of sizes and capacities to enable industries in the semi-conductor field to have higher powered equipment adequately insulated and designed for its specific use. With this type of furnace available, it is not necessary for industry to attempt to adapt ordinary furnaces to the highly specialized requirements of the semi-conductor field. For complete information on Lindberg's standard line of furnaces specifically designed for gaseous and solid diffusion uses write for our Bulletin No. T-1081.

Pilot Plant Equipment Division

LINDBERG ENGINEERING COMPANY 2456 west hubbard Street, chicago l2, illinols Los Angeles Plant: 11937 South Regentview Avenue, at Downey, California In Canada: Birlefco-Lindberg, Ltd., Toronto

Since their introduction more than ten years ago, clare Type J Relays, with their small size, twin contact design and superior performance, have been first choice of design engineers for applications where component failure is intolerable.

Sensational demand for these relays has resulted in numerous imitations. Similar in appearance and published specifications, many have been represented as "just as good" as the original clare Type J Relays.

An independent laboratory has just completed exhaustive tests of clare Type J Relays and copies made by other well known manufacturers.
The results are here. Tests of the clare relays were discontinued at $70,000,000 \mathrm{cy}$ cles... with no contact failure whatsoever. All the other relay groups showed failure of 10% of their contacts before the end of $60,000,000$ cycles (see graph). Some had 22% contact failure at $5,000,000$ cycles.

> Let us tell you more about this important test. Call or write: C. P. Clare \& Co.,
3101 Pratt Blud., Chicago 45. Illinois, In Canada: C. P. Clare Canada Limited, P. O. Box 134, Downsuicw, Ontario. Cable Address: CLARELAY
> CLARE RELAYS
> FIRST in the industrial field

Independent

 tests*\section*{prove There are no copies "just as good"as | CLARE |
| :---: |
| type |
| | RELAYS}

CLARE RELAYS (8 Form C)

 BRAND
GFanco

BRAND X7 ${ }_{8}^{8}$ Form C)

- Failure of 10% of the total contacts involved eliminated any group from the test. Additional data available on request.

NEW PRODUCTS

Digital Readout
Life expectancy is $60,000 \mathrm{hr}$

Model SGS-106 in-line, in-plane digital readout has a life expectancy in excess of $60,000 \mathrm{hr}$ at 5.5 v . Miniature incandescent lamps provide legibility over distances, under ambient light, and from wide viewing angles. The characters displayed are 0 through 9. Over-all dimensions per digit are $9 / 16 \times 1-1 / 8 \times 2-7 / 8 \mathrm{in}$. Character size is $5 / 16 \times 1 / 2 \mathrm{in}$. The unit weighs 1 oz and requires a maximum of 2 w .
I.D.E.A., Inc., Electronic Equipment Div., Dept. ED, 7900 Pendleton Pike, Indianapolis 26, Ind.
Price \& Availability: Price is as low as $\$ 45$ ea for production quantity orders. Units will be available after April 1, 1960.

PNP Silicon
 Transistors

548

Have betas from 15 to 50
This series of pnp silicon highspeed switching transistors, designated types 2 N 1254 through 2 N . 1259, provides betas from 15 to 50 and collector-to-emitter voltages from 15 to 50 v . Able to operate over the temperature range of -65 to +160 C , the units are of double diffused mesa construction. Applications are in digital computers, data processing systems, and if strips for missile telemetering systems. The transistor bodies are gold-plated, have TO-5 packages, and the complete units meet MIL-T-19500A.
Hughes Aircraft Co., Semiconductor Div., Dept. ED, Newport Beach, Calif.
< CIRCLE 67 ON READER-SERVICE CARD A ${ }^{2}$ Y York 17, N.Y.

For airborne infrared detectors
For airborne infrared detectors, the following types of liquid nitrogen cooling systems are available: an integrally mounted cell; a liquid f ed, vacuum insulated line; a liquid
t) high pressure generator; and a ${ }^{1}$ 亿uid feed, uninsulated line. Detec1 I cells of each system are cooled
1, heat exchange with liquid nitron at -320 F .
Linde Co., Div. of Union Carbide (rrp., Dept. ED, 30 E. 42nd St.,

Analog-to-Digital
 Converter

Compact design

Model M4 airborne analog-digital converter is claimed to be about $1 / 2$ the size and weight of previous converters. A 12-bit, one-pole device, it performs conversion at an accuracy of $\pm 1 \mathrm{mv}$ in $65 \mu \mathrm{sec}$ over the temperature range of -55 to +70 C . Available for 3-decimal digit as well as 12-bit binary conversion, the unit meets MIL-E-5400B and MIL-E005272.

Packard Bell Computer Corp., Dept. ED, 1905 Armacost Ave., Los Angeles 25, Calif.
Price \& Availability: Units are priced at $\$ 9290$. They are made on order and require from 90 to 120 days for delivery.

DC Power Supplies
 535

Deliver 200, 400, and 600 ma
Models HB-2, HB-4, and HB-6 power supplies deliver 200,400 , and 600 ma . Variable output range is 0 to 325 v dc and regulation is 0.1% for line and load. Ripple is 3 mv rms. Units are convection cooled; their dimensions are 3-1/2 x $19 \times$ 14-3/8 in.

Kepco Labs., Inc., Dept. ED, 13133 Sanford Ave., Flushing 55, N.Y. Price \& Availability: Models HB-2, HB-4, and HB-6 are priced at \$265, $\$ 320$, and $\$ 365$. They can be delivcred in less than 60 days.

Cooling Systems

\qquad
\qquad

W

 plications Engineering Section, Dick Peterson is constantly putting himself in your shoes. It's his job to study new tube designs from your point of view in a variety of circuits under the most difficult conditions. Then he recommends design modifications to meet your most exacting requirements.Recently Dick's group conducted a study to determine the most desirable characteristics for a beam power tube to be used in mobile and airborne communications equipment. After consultation with our Design Section, the basic characteristics of such a tube were agreed upon. These characteristics were incorporated in a design which was then evaluated for use in this type of equipment. On the basis of the evaluation, changes were recommended to assure top performance in rf service up to and beyond 175 Mc . Result: our new 7551 beam power tube for VHF driver and low-level power amplifier applications. Then Dick and his group helped an aircraft electronics manufacturer modify a circuit to take advantage of the full capabilities of this new tube.

Such continuous studies by Dick Peterson and his section are your assurance that even the newest RCA Industrial Receiving Tubes are thoroughly use-tested and proven before you get them. For more information on RCA Industrial Receiving Tubes, get in touch with your RCA Field Representative.

RCA RADIO CORPORATION OF AMERICA Electron Tube Division

EAST: 744 Broad Strcot, Nowark 2, Now Jorsey HUmbold 5.3900
MIDWEST: Suito 1154, Merchandies Mart Plaze Chicoge 54, Illinoit-WHitohall 4.2900 WEST: 635s E. Washington Blvd. tos Angeles 22, Cellf.-RAymend 3-8361

NEW pokËR" CONNECTOR

features removable POKE HOME contacts

Check these other important features!

Like the Stub R, amphenol's new POKE " R " lightweight environmental connectors offer "plus" features above and beyond the minimum established by specifications. It offers you the added advantage of removable crimp type contacts that simplify wiring, assembly, circuit modification and reassembly if necessary
Due to special design, Poke " R " will also pass "Altitude Immersion" in addition to meeting R requirements of MIL-C5015D.CRIMP TYPE contacts eliminate solder and electrical problems from poor solder techniques. open inspection . . crimped contacts can be inspected befor being poked home into connector.

(1)FASTER ASSEmbly . . . contacts shipped separately from connector . . permitting fast crimp wiring by hand or machine.

(4)ease of replacement ... removability of contacts allow re-loca tion of circuits without replacing connector.
higher electrical safety . . . using crimp contacts eliminates the chance of solder overflow to short contacts.metal to metal bottoming provided by construction of grommet clamp reduces possibility of compression set.LOWER ASSEMBLY COST ... Grommet removal is not necessary for either assembly or disassembly, reducing handling and production time.improved reliability of wire termination due to crimping of contact with AMPHENOL four-indent crimp.
three shell styles are available . . . ms3100, ms3101 and ms3106 in sizes 10 sl thru 36.
Remember . . . Amphenol provides the best and biggest integrated line of connectors and cables in the world.

CHOOSE FROM THESE MATERIALS.
Vulcanized Fibre: 10 standard grades; many special grades.
Phenolite o Laminated Plastic: over 80 standard and modified grades; paper, cotton fabric, nylon, asbestos. glass fabric, cotton and glass mat bases; phenolic, melamine, polyester, epoxy, teflon or silicone resins.
Peerless Electrical Insulation: coil, strip, corrugated.
Extruded Nylon, "Delrin", "Penton": rod, strip, tubing, special shapes.
Polyester Glass Mat: 4 standard sheet grades; custom molded shapes.
Phenolite Copper-Clad Laminates: 10 standard grades.
Combination Materials: RubberPhenolite; Rubber-Fibre; Wood-Fibre; Metal-Fibre; Asbestos-Fibre; PeerlessPhenolite.

BACKED BY These services...

Fiold Application Assistance
Completo Fabricated Parts Service
Stock Program for Immediato Shipment
BY CALLING THESE OFFICES...
Baltimore Tw VAlley 3.0393 Boston. TW inbrook 4-3500 Chicage. GArfield 1-0632 Clovaland ERieview 1.0240 Dallat. Denver Datrolis. Dain MA Min 3-2077 Grimn, ©a. 8-1308 Indianapolis.............. WAInut 3-6381 Los Angoles RAymond 3.0291 Milwaukee. BRoadway 6-6995 Now Haven. Nowark Now York. COrtandt 7-3895 Philadelphia Pinsburgh FAirfax 1-3939 Rochestor St. Louis. St. Louis PArkview 5-9977 St. Potorsburg DÄvenport 6 . 55067
San Francisco Soattle MElrose 2-7298 Wilmington OLympia 5.6371
IN CANADA:
National Fibro Co. of Canada, Lid.
Toronto LEnnox 2.3303
Montreal
LEnnox 2.3303
AVenue 8.7536

NATITOMAE
 vULCANYIED FIBER CO

WIIMINGTON 99, DEIAWARE in Conoda:

> '6From transistor radios to computersone of National's 115 materials and grades will give you optimum performance in your design."

Why go on a wild goose chase from supplier to supplier for the special plastic material you need for your design? A time- and trouble-saving check with National gives you unbiased help and a material best suited to your property requirements.
National offers the broadest line of basic engineering materials in the industry . . . over 115 materials and grades You can select the one best material to fit your design electrically . . . mechanically . . . chemically. For example:
If you are looking for a new printed circuit material with self-extinguishing properties against fire, National offers XXXP-475. It is made without costlier resins-can be punched at warm temperatures ($130^{\circ} \mathrm{F} .-150^{\circ} \mathrm{F}$.).
Vulcanized Fibre, extruded thermoplastics and Phenolite ${ }^{\circledR}$ laminated plastics offer a wide range of property combinaCIRCLE 69 ON READER-SERVICE CARD
tions, such as high electrical-mechanical values plus excellent water absorption and dimensional stability character istics. Or, electrical properties plus rigidity and heat resistance. Or, electrical properties plus chemical resistance and dimensional stability under load.

You will also find three other important "properties" at National: an understanding of your needs; a willingness to work uith you; and a facility to fill your requirements fast and efficiently.

You can obtain National materials in standard formssheet, tube, rod-in precision fabricated parts to your design, or special-molded polyester shapes. For objective assistance, contact your nearby National Sales Engineer today. Or write us direct, Dept. E-2, Wilmington, Delaware.

NEW PRODUCTS

Decade Counter
For 150-kc operation

Model 1301 150-kc decade counter is designed for digital and test systems. It uses a binary-quinary cascaded circuit that employs seven transistors. A supply voltage of +100 v at 3 w is required. The unit has decade output, electrical zero reset, and plugs directly into a standard 10 -pin printed circuit connestor. It measures $3-9 / 16 \times 1 \times$ $3-1 / 4 \mathrm{in}$. and weighs $3-1 / 2 \mathrm{oz}$.
Robotomics, Dept. ED, 4624 E. Garfield, Phoenix, Ariz.
Price \& Availability: Price is $\$ 69$ ea for 1 to 4, \$66 ea for 5 to 24, and $\$ 62$ ea for 25 to 99 . Units will be in stock after March 1, 1960; delivery is in 7 to 14 days.

Cold Heading Machine 666
For the manufacture of electronic parts

The model 0 cold heading machine is for mass production of long thin pins, lead wires, and similar from 0.02 to 0.09 in . in diameter and electronic parts. It can handle wire produce headed parts to $2-3 / 8 \mathrm{in}$. long. From 60 to 100 pieces per min can be made. Equipped with a 1.5 hp motor drive, the machine meastres $41 \times 20 \times 40 \mathrm{in}$.
REM Sales, Inc., Dept. ED. The Robert E. Morris Co., W. Hartford 7, Conn.
Price \& Availability: Price is between $\$ 5500$ and $\$ 6500$. Delivery is about 150 days after receipt of order.

DuMOMT 425

Only the very latest concepts known in the art of cathode-ray oscillography have been incorporated in the Du Mont 425 High -Frequency Oscilloscope. This new scope will outperform any commercial oscilloscope in its class-now, yet its entire design concent is based on the future-the 425 will always bo a modern scope.
By ease of operation, and elimination of chances of human error in making measurements, the 425 becomes simplified enough for a non technical person to use. At the same time, with the extreme versatility provided by a series of plugs ins, and replaceable module construction, the 425 will satisfy every laboratory or scientific need within its range.
Such features as: simultaneous use of two plug-ins; digital ReadOut of measurement parameters; joystick control of traces; a unique, highly-accurate "to o-dot" measurement system; thplazeable, moduar construction; a new lailorio callode-ray lube; output facilities to teed information to external

Write for technical details

the result of 44,000 engineering hours!

a DC to 35 mc oscilloscope

 with digital and printed ReadOutversatility exceeding all other scopes.Within its range, every job requiring an oscilloscope can be accomplished with the 425. Each electronic circuit and mechanical facet has been designed for versatility-for present and future needs. From production line go-no-go gauging and external statistical recording of production records, to the most complicated laboratory or hospital investigation-the 425 Oscilloscope is the answer-for today and tomorrow.

- Digital ReadOut on two axes
- Simultaneous use of two of a selection of plug-ins
- Electronic switches on X, Y, and Z axes
- Accurately repeatable two-dot measurement system
- No selected tubes
- Joystick control of traces

SPECIFICATIONS
Rise Iime-10 millimicroseconds
High Resolution Vertical Scan-5 cm
Main Time Base-
Max Sweep rate- 10 millimicrosecond/cm Max Sweep time-l minute full scan Delaying Sweep-

Min delay- $0.5 \mu \mathrm{sec}$
Max delay- 10 sec .
Digital Readout Repeatability -0.5%
Accelerating Voltage-12 KV
24 Calibrated Sweep Speeds Digital Contact Closure Output and 100 mv Analog ReadOut Output
 Engineers interested in employment opportunities at Du Mont, contact the Industrial Relations Department.

ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J., U. S. A.
international division - 515 Madison avenue, new york 22, n. Y. - CAbles: AlaEedu, new york CIRCLE 70 ON READER-SERVICE CARD

Type DLI-208 decade frequency source provides six switch-selected frequencies in decade steps from 100 kc to 1 cps . The unit consists of a 100 -kc crystal oscillator, a 5 -phantastron frequency divider, and a dc power supply. Two modes of operation are possible: in mode 1 , the output is a continuous chain of negative pulses at the selected frequency; mode 2 provides for gating the output from a binary plate or similar sources. Application of 150 v to the gate control opens the gate and $75 v$ closes it. Stability is 1 ppm . The output is a $2-\mu s e c$ negative pulse of -70 v amplitude.

Electro Precision Corp., Dept. ED, P.O. Box 669, Arkadelphia, Ark.
Price d Availability: Price is $\$ 370$. The unit is available from stock and can be delivered in 10 days.

Accelerometers

Frequency range is 2 cps to 2.5 kc

These miniature accelerometers, models 200 and 201, have a frequency range of 2 cps to 2.5 kc and an acceleration range of 0.03 to $40,000 \mathrm{~g}$. Model 200 has a sensitivity of 20 mv per g and weighs 5.5 g. Model 201 has a sensitivity of 15 mv per g and weighs 2.7 g . Both units measure $0.437 \times 0.345 \mathrm{in}$. They have low transverse response and may be used for extensive dynamic measurements without distortion due to loss of low or high frequency components. Detachable steel or phenolic studs permit either direct mounting or isolation of the accelerometer case.
Columbia Research Labs., Dept. ED, MacDade Blvd. and Bullens Lane, Woodlyn, Pa.

HIRTEEN

- NDISPENSABLE

 θHARACTERISTICS FOR Precision servo pots

PRECISION SERVO
POTENTIOMETERS have all 13 FEATURES

Your Assurance of Superior System Performance

A few of the many applications of TIC Precision Servo Potentiometers are as input-output transducers in servo systems for airborne navigation and flight control, fire control, fuel control, shipboard gun directors, missile aiming and fight control, analog computing, air traffic control and telemetering.

TIC Precision Servo Potentiometers are available in 21 types with diameters from ${ }^{1,2 "}$ to $3^{\prime \prime}$, giving design engineers a wide range from which to select. Included are single and multi-turn types with either wirewound or infinite resolution metallic film resistance elements, as well as types designed for ganging without a shaft. And TIC Precision Servo Potentiometers are engineered to withstand the severe environmental conditions imposed by military equipment operation.

7. TEGHNOLOGY INSTRUMENT CORP. 555 MAIN STREET, ACTON, MASS.

SUESIOIARIES: ACTOM LABORATORIES. INC. ACTON, MASS. ALTOMAC CORP., CANTON, MASS. TECHMOOOGY INTRUUMENT CORP, OF ARIZONA. TUCSOM, ARIZ

CIRCLE 71 ON READER-SERVICE CARD

NEW PRODUCTS

Transistor Parameter Test Set
531
For npn and pnp transistors

Model 1803 transistor-parameter test set, for both npn and pnp transistors, measures the h-parameters for both the grounded emitter and the grounded base connections. Accuracy of the instrument is 3%. The collector leakage current can be read from 5 mu a to 1 ma . A wide range of parameter values and bias conditions can be preset by means of front panel switches. The unit is supplied with a steel cabinet and can be used in laboratory and production applications.
Dynatran Electronics Corp., Dept. ED, 178 Herricks Road, Mineola, N.Y.
Price \& Availability: Price is about $\$ 700$ per unit. Delivery requires from 30 to 60 days.

Phase-Angle Voltmeter
For use to 4500 cps

Model VM-204 phase-angle voltmeter, designed to measure complex voltages where a number of test frequencies are used repeatedly, is for use at any of three frequencies from 60 to 4500 cps . Other frequencies can be supplied on special order. It reads null, phase angle, total, quadrature, and in-phase voltages directly. Voltage range is 1 mv to 300 v in 12 steps. Nulling sensitivity is $10 \mu \mathrm{v}$. Designed for bench or rack mounting, the instrument measures $19 \times 5.25 \times 9 \mathrm{in}$. It can be used by semi-skilled personnel.
North Atlantic Industries, Inc., Dept. ED, 603 Main St., Westbury, L.I., N.Y.
Price \& Availability: Prices will be quoted on request as the unit is made on order only. Delivery is in 30 to 45 days.

Corona Test Set

Shows corona charge and current
Composed of a high voltage section within an oil tank and a control cabinet for remote operation, this corona test set indicates apparent corona charge and relative corona current. The unit has a capacity of S kiva, and may be used as a straight dielectric breakdown tester. Other uses of model CT50-8 include testing of high-voltage bushings, ceramic terminals, wire and cable, electrical insulating materials, transformers, and capacitors.
Peschel Electronics, Inc., Dept. ED, RFD 1, Patterson, N.Y.
Price \& Availability: Made on order only. Delivery is 45 days after order received. Price is $\$ 4200$.

Relay

Has independent twin contacts
Designed for dc operation, type 5 telephone relay has twin-contact points of Palladium that have a combined rated current carrying capacity of $4 \mathrm{amp}, 150 \mathrm{w}$. Operating speed is 1 to $2 \mathrm{msec}, \mathrm{min}$. The coil is single or double-wound and can be provided with a choice of time delay features.
Lakewood Controls Corp., Dept. ED, Industrial Road, Crystal Lake, III.

Power Relay

667

Rating is 15 amp

Series ST dpdt power relay, for stirting motors having up to 1 hp , has a contact rating of 15 amp at 115 \because, fi0 cps. Voltages can be 6 to 110 v le and up to 440 v ac. The device features a one-piece, molded-base construction with shielded screw type electrical connections. Contact material is gold-flashed fine silver.
ine Electric Co., Dept. ED, 271 S. Sixth St. at 14th Ave., Newark 3, N.J.

Price \& Availability: Price is $\$ 6.25$ or $\$ 5.50$, depending on unit ordered. U_{1} is will be available from stock in smull quantities early in March. Mimum delivery time for items no in stock is 7 to 8 weeks.

IRCLE 73 ON READER-SERVICE CARD $>$

FROM SOLID STATE

For control circuit application in the 10 to 1250 ma output current range

- HIGH SENSITIVITY
only 2 mA input to control one ampere (continuous) at $100^{\circ} \mathrm{C}$.
- HIGH TEMPERATURE stable operation to $150^{\circ} \mathrm{C}$.
- LOW LEAKAGE

10 UA cutoff current at full voltage.

- SIMPLIFIED MOUNTING
no need for insulating hardware stud is electrically isolated.

Type	Maximum Anode Voltage (DC or Peak AC) \pm Volts	Maximum Average Forward Current $100^{\circ} \mathrm{C}$ Case Amps	Maximum Gate Current to "Fire" mA	$\begin{aligned} & \text { Gate Voltage } \\ & \text { to Fire } \\ & + \text { Volts } \end{aligned}$	
				Min.	Max.
3e30S	30	1.0	2	. 40	2.5
38605	60	1.0	2	. 40	2.5
38100s	100	1.0	2	- 40	2.5
$3 \mathrm{B150S}$	150	1.0	2	. 40	2.5
382005	200	1.0	2	. 40	2.5

These devices offer significant circuit advantages in that they are specifically designed for operation in the 10 to 1250 mA current range. It is no longer ${ }^{\circ}$ necessary to derate higher power units, with attendant losses in efficiency.
The miniature SCR combines a current rating of 1 ampere at $100^{\circ} \mathrm{C}$ with extremely small size. It features high peak recurrent and surge current ratings. Switching efficiency up to 98% is practical. High gain, low loss control of loads up to 300 watts can now be achieved along with significant miniaturization. The internally insulated junction eliminates the need for external mica washers. Assembly is therefore simplified and reliability improved.
The miniature SCR is useful in applications such as AC and DC static switching, proportioning control, D.C. to D.C. converters, servo motor driving, squib firing, protective circuits, and related applications.
Encapsulated in the unique SSPI cold welded copper case, the SCR offers a high degree of mechanical ruggedness and long term reliability.

WRITE FOR BULLETIN CA15-01

NOW TEST TRANSISTOR BETA IN THE CIRCUIT WITHOUT POWER ON!

> New Sierra 219A Transistor Tester reads Beta directly in the circuit; also measures $I_{c o}$ and Beta out of circuit. Simple operation, completely portable. Battery powered; easily used anywhere.

Consider the real advantages of testing transistors in the circuit. Downtime, and damage to transistors, is greatly reduced. Complete assemblies are quickly checked out. Quality control "ounce of prevention" is simplified during manufacture.

Beta is read simply and directly in or out of the circuit; a basic function of the Sierra 219A is to electrically isolate the transistor under test permitting accurate in-circuit tests. Ico is measured on a straightforward dc basis; collector potentials of 3,6 , or 12 vdc may be selected.

For complete information and demonstration, telephone your Sierra representative now.

DON'T TAKE IT OUT!

NEW PRODUCTS

Band-Pass Filter

Frequency range is 1 to $10,000 \mathrm{cps}$

Model 720 band-pass filter is designed for operation over a frequency range of from 1 to 10,000 cps. The frequency is selected by a digital selec. tion technique using a set of four dials. Gain settings of $-20,0$, and +20 db are available. The filter sensitivity is adjustable with a maximum of $\pm 2.3 \%$ to the $3-\mathrm{db}$ down points. The filter offers 37 db rejection to the third harmonic with a maxi. mum attenuation rate of 250 db per octave. This filter is suited for separation of closely spaced fre quency components not necessarily harmonically related.
Dytronics Co., Dept. ED, P.O. Box 3676, C0lumbus 14, Ohio.
Price \& Availability: Price of the unit is $\$ 525$. De livery is in 21 days

Magnetic Tape System
For field use

This loop delay and reel storage magnetic tape system, designed for field use, consists of a continuous loop tape transport, a reel-type transpor a master control unit, and a power supply. It for continuous monitoring and recording of analog diata. The loop stores 30 sec of data before passing over to the reproducing, erasing and recording heads. Output of the reel-type transport can be transmitted at 600 ohms or can be switched to ? 100 -ohm output. The reel transport records tw tracks on 1/4-in. magnetic tape at 7.5 in . per sec Flutter is 0.25% rms max.
Consolidated Electrodynamics Corp., Dept. ED 360 Sierra Madre Villa, Pasadena, Calif.
Price \& Availability: The unit is made on order only. Information is quoted on request.

CIRCLE 75 on reader-service card* ELECTRONIC DESIGN • February 17, 1960

High Permeability Powder Cores 445 For audio filter low frequency applications

These 160 -mu moly-permalloy powder cores are for audio filter low frequency applications. They come in eight standard sizes, with OD from 0.5 to 1.57 in . and ID from 0.3 to 0.95 in . They offer an inductance 28% higher than that attained with 125 -mu cores and have a higher Q. Fewer turns of wire are needed to yield a given inductance.
Magnetics, Inc., Dept. ED, Butler, Pa
Price \& Availability: Price is quoted on request; units are available from stock.

Capacitor

Designed for use in missiles, computers, and airborne equipment, this $300-v$ foil-type tantalum electrolytic capacitor is available in 7 case sizes and both polar and nonpolar construction. Capacitance change does not exceed 10% after 2000 hr operation at rated voltage and temperature. The maximum capacitance change at -55 C is 20%.
General Electric Co., Dept. ED. Schenectady 5, N.Y.

Dual Flip-Flop

Operates at speeds to 500 kc

Type 4209 dual flip-flop, containing two idenlical flip-flops with built-in output amplifiers, perates as speeds to 500 kc . It is for use in buffer and control registers and other applications. Each lip-llop has a direct and gated input to the zero and one side; each also has one pulse gate interrally connected to the gated one-input terminal. The static type flip-flops used have continuous dc tput signals
Digital Equipment Corp., Dept. ED, Maynard, Miass.

- circle 75 on Reader-Service Card

E ECTRONIC DESIGN • February 17, 1960

Distributed constant delay lines - Lumped-constant delay lines - Variable delay networks - Continuously variable delay lines - Pushbutton decade delay lines • Shift registers •

Pulse transformers - Me dium and low-power transformers - Filters of all types • Pulse-forming net works • Miniature plugin encapsulated circuit assemblies
 Model 61-34, was specifically designed for a specialized communications application calling for the exceptionally high delay time/rise time ratio.

ESC, the world's leading manufacturer of custom built and stock delay lines, is already widely recognized in the electronics industry for its exceptional engineering advances. In October, 1958, ESC broke through an existing design barrier and produced a delay line with a 145 to 1 delay time/rise time ratio. It had been thought, prior to the announcement of the Model 61-34, that ESC had reached the ultimate in this type of delay line.

SPECIFICATIONS OF NEW DELAY LINE

 MODEL 61-34Delay time/rise time ratio: 170/1
Delay: 200 usec.
Rise time: 1.16 usec.
Attenuation: less than 2 db
Frequency response: $3 \mathrm{db}=325 \mathrm{KC}$
50 taps with an accuracy of ± 0.2 usec. at each tap.

Complete technical data on the new unit can be obtained by writing to
ESC Corporation, 534 Bergen Boulevard, Palisades Park, New Jersey.

NEW PRODUCTS

Cathode Ray Tubes
Dual-beam type

Designed to have a high resolution, types K1880P and K1917 dual-beam cathode-ray tubes are replacements for types 3 ABP and 5 AFP , respectively. Type K1880P 3 -in. tube has a maximum line width of 6 mils when operated at normal accelerator and post accelerator voltages of 2 and 4 kv . The maximum line width of type K19175-in. tube, under the same conditions is 10 mils, according to MIL-E-1.

Allen B. Du Mont Labs., Inc., Dept. ED, 750 Bloomfield Ave., Clifton, N.J.

Tape Demagnetizer

702
Reduces residual sound level

Model HD-11 tape demagnetizer reduces the residual sound level of fresh unrecorded tape by 3 to 15 db , depending upon previous exposure to stray magnetic fields. It provides a $75 \mathrm{db} \min$ erasure of saturated magnetic tape. Dimensions of the unit are $3 \times 5 \times 8 \mathrm{in}$., and its weight is $8-1 / 2 \mathrm{lb}$. Reels from 5 in . through $10-1 / 2 \mathrm{in}$. in diam may be used with the unit.
Microtran Co., Inc., Dept. ED, 145 E. Mineola Ave., Valley Stream, N.Y.
Price \& Availability: Units available through electronic distributors. List price is $\$ 27.50$.

Broadband Attenuators 444
Come in waveguide sizes of 2.6 to 18 kmc

Model 372 broadband precision attenuators are

TEST INSTRUMENTS for ELECTRICAL EQUIPMENT $\underset{\text { Production }}{\substack{\text { Laboratory } \\ \text { PR }}}$ Maintonance

Volfage Breakdown Tests Bench HYPOT® Test Sets, a-c and d-c models, have outputs to 30 kv . Sop arate $41 / 2^{\prime \prime}$ meters for tost voltage and leakage current. Wide selection of models.
Model 424 Bench HYPOT® provides densers, coils, fransformers, motors and assemblies. Measures leakage current from 0.1 microampere to 100 microamperes over four scale ranges. Rapid testing of capacitors with output of 5 milliamperes under short circuif. Operates from $110-120 \mathrm{~V}$ $50 / 60 \mathrm{c}$ outlef with long-life selenium high voliage supply. Net complete

- Insulation Materials Test Dielectric strength determined to laboratory precision. Inferchangeable test fixtures for varnishes, porcelain tape, acetate sheet, films, fubing and cloth. Writo for Bulletin, Model 450 HYPOT* Materials Tester.
- Insulating Oils Tester

Now portable design, only 42 lbs. for tosting insulating oils at point of application as well as in the laboratory. Test potential variable from 0 to 35 kv , with 2 kvo rating. Write for bulletin Model 4505 HYPOT* Oil Tester.

- Measure Resistance to FIVE MILLION MEGOHMS VIBROTEST ${ }^{8}$ megohmmotors provide direct reading measurements to FIVE direct reading measurements to fillion megohms and higher with electronic power supply that eliminates tedious cranking. Write for bulletin "VIBROTEST"
- Test Electrical Grounds VIBROGROUND measures resistance to ground of electronic, telo phone, and power equipment. Direct reading. Operates from self-con tained battery. Write for Bulletin "VIBROGROUND"••
- Special Instruments
A. R. I. engineers have developed A. R.I. engineers have doveloped cialized research, devolopment, and production applications. Your inquiry for special equipment will receive prompt attention.
Complete Catalog Write today!

ASSOCIATED RESEARCH

3769 W. Beimont ave., Chicoge 10, Illinole CIRCLE 78 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 17, 1960
offered in six waveguide sizes from 2.6 to 18 kmc with nominal attenuations of 10 or 20 db . Attenuation is a function of the coupling-hole array between two permanently-joined waveguide sections. The attenuation accuracy is better than $\pm 0.4 \mathrm{db}$ from nominal. Variation across the band is less than $\pm 0.5 \mathrm{db}$ from mean. The standing wave ratio is $1.05: 1$.

Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Price \& Availability: Prices are $\$ 115$ to $\$ 375$, depending on the waveguide band. Availability data is furnished on request.

Crystal Mounts

590
Have high tangential sensitivity

These crystal video detector mounts provide a high tangential sensitivity down to 50 mc . Ranges covered are 50 to $120 \mathrm{mc}, 120$ to 300 mc , and 300 to 600 mc . Tangential sensitivity can be better than -55 dbm with selected MA408B or 1 N23B crystals.

American Electronic Laboratories, Inc., Dept. ED, 121 N. Seventh St., Philadelphia 6, Pa.
Price \& Availability: Price is $\$ 80$ ea; for orders of 16 to $30, \$ 65$; and for orders of 31 to $50, \$ 60$. Sample quantities are available for prompt delivery. Larger quantities can be delivered in 21 days.

Phase-Sequence Indicator

355
Operates on 24 to 480 v at 400 cps

Model K-6 phase-sequence indicator is especially designed for use with the current characteristics found in aircraft, missile, and military components. The device operates on 24 to 480 v at 400 cps . Upon pushing the safety button, the proper or improper connection of three-phase equipment is indicated by the direction a disc ro1. tes within three round windows in the face of t e instrument.
Knopp, Inc., Dept. ED, 1307 66th St., Oakland δ Calif.

New Electra Precision Metal Film Resistor

Here is an entirely new achievement in electronic components; one of the biggest diove forward in years. This precision metal film resistor offers you pracision gand glwathy they formerly was available only in a wire wound resistor, yet it is much smaliar in alke, wuc lower in cost, also has far superior high frequency characteristics. Avallallie) from $1 / 8$ to 2 watts, the new Electra Precision Metal Film Resistor meetu Mil-R-10509C, Characteristic C, and can be supplied in any of olght stat it ture coefficient tolerances. Why not let us supply you full dintalla ture coefficie

CHECK THESE BUTSTANDING TEST MESUL

ELECTRONIC DESIGN • February 17, 1960

NEW PRODUCTS

Voltmeter

Covers 110 to 130 v range
Calibrated from 110 to 130 v , in $1 / 2$-v intervals, this voltmeter is intended for laboratories, and other industrial applications. The instrument uses a milliammeter element fed by a Zener diode circuit which spreads $110-130 \mathrm{v}$ over 95% of the scale length. It is available for both 60 and 400 cps duty, and has a response time of 2 sec .

General Electric Co., Dept. ED, Schenectady 5, N.Y.
Price \& Availability: Immediately available. Price on request.

Silicon Diode

391
For use as Ku-band mixer
Type IN918 silicon diode is a point-contact microwave mixer for use in the Ku-band frequency spectrum. Maximum conversion loss of the component is less than 7.5 db , and the output noise ratio does not exceed 2.5. Hermetically sealed in miniature glass envelopes, type IN918 operates at $16,000 \mathrm{mc}$.
Semiconductor Div., Sylvania Electric Products, Inc., Dept. ED, 730 Third Ave., New York 17, N.Y. Price \& Availability: Available from stock. Price is $\$ 23$ per unit in quantities of 1 to $9 ; \$ 18$ per unit for 10 to 99; $\$ 14.40$ per unit for 100 and up.

Power Supply

378
Delivers 0.04 to 5 amp of up to 8 v
Model PCR-101 power supply delivers 0.04 to 5 amp at up to 8 v . The current output is constant with line variations from 105 to 125 v ; this range may be shifted to 99 to 117 v or to 111 to 132 v. Designed specifically for laboratory use in battery development and electro-deposition, it can also be used in lamp and filament development, thermistors, diodes, meter calibration, low resistance measurement, and magnetic devices.
Industrial Measurements Laboratory, Dept. ED, 40 Great Jones St., New York 12, N.Y.

Haid stale, nacum mananalicic derex

 IN MULTIPOSITION SWITCHING,COUNTING AND DISTRIBUTING

THE	The BEAM-X*eliminates
BEAM-X*	Multicomponent size
IS AN	
Multicomponent weight	
ALLELECTRONIC	Multicomponent power
MULTIPOSITION	Multicomponent cost
SWITCH	and

A technological breakthrough in the design of Beam Switching Tubes eliminating external magnets and shields has resulted in a low cost revolutionary device BEAM-X * outperforms all existing solid state, magnetic and vacuum components for electronic switching applications. In aircraft, missile, commercial instrumentation, control systems and other industrial applications, BEAM-X offers far superior design flexibility and reliability design flexibility and reliab
than existing conventional components
BEAM-X* type BX- 1000 is the first of a new family of multiposition
 GEAM-X SWITE

Burroughs Corporation
ELECTRONI

Spdt Coaxial Switch
352
Weighs 1.25 oz

The type $90-01$ spdt coaxial switch weighs 1.25 oz and is designed for 50 -ohm cable. It can be directly inserted into a miniaturized circuit without adapters. Mating connectors are available for applications at, above, or below 400 mc . The vswr is less than 1.2 to 2 kmc and insertion loss is 0.5 db at 2 kmc . Operative life is 50,000 cycles minimum.
Microdot Inc., 220 Pasadena Ave., Dept. ED, South Pasadena, Calif. Price \& Availability: Price is below $\$ 50$ when ordered in quantity. The unit will be available from stock by Feb. I and it can be delivered 30 days after order received.

Variable Frequency
 386 Generator

Miniature, permanent-magnet type
Type 3200 variable frequency generator is a miniature permanentmagnet type generator which provides a two-phase ac output. The output voltage is 8 v rms at 3600 rpm into a balanced 10,000 -ohm load. The useful range is 0 to 15,000 rpm, the distortion is 3% max, and the impedance is 300 ohms per phase at 3600 rpm . It is used as a reference generator to provide information on the rotational speed and angular position of a shaft, as in constant-velocity servo systems.
Cedar Engineering, Div. of Control Data Corp., Dept. ED, 5806 W. 36th St., Minneapolis 16, Minn. Price \& Availability: Price will be quoted on request. Standard units are immediately available; special units can be delivered in 2 to 4 weeks.
(Circle 80 on Reador-Service Card

תعcti/תiter recorders prove what every engineer knows . . . SIMPLICITY MEANS RELIABILITY

What simpler and more reliable actuating device can you employ in an amperage-voltage-frequency recording instrument than a d'Arsonval galvanometer . . . a trouble-free horseshoe magnet and a coil of wire? The same is true of the exclusive "recti/rite" ${ }^{(B)}$ system a simple, shock resistant trigonometric linkage that straightens the arc described by the galvanometer metering arm, changing curvilinear motion to rectilinear motion.
All the other "recti/riter" recorder features which contribute to this instrument's multi-industry acceptance and hardworking reliability are equally simple: The optional a-c or d-c drives couple directly with chart speed change gears to allow ten chart speeds; all routine operations and adjustments are performed "up front"; the non-corrosive, honed metal alloy pens, closed ink system, and large capacity ink well give you long, consistent writing performance.

With all their simplicity and reliability, "recti/riter" recorders are offered in extremely wide and useful Basic Recorder Ranges (Dual channel recorders offer combination of any two ranges):
Two Cycle Pen Response
D-c Milliampere Ranges
$1 / 4 \mathrm{ma}$ to 100 ma
A-c Ampere Ranges $\quad 0.25$ A to 25 A D-c Ampere Range 100 mv for use with standard shunts Expanded Scale A-c Voltage Ranges $\quad 80-130 \mathrm{~V}$,

A-c and D-c Voltage Ranges 10 V to 1000 V Frequency Ranges

50, 60, 400 cps Five Cycle Pen Response
D-c Milliampere Range
Ask the TI engineer about customized recorders for your OEM applications. Don't settle for any recorder until you know all the facts on the complete "recti/riter" recorder line.
geosciences a instrumentation division
3609 BUFFALO SPEEDWAY• HOUSTON 6. TEXAS - CABLE: TEXINS

The proved "recti/riter" recorder is a companion to the new "servo/riter"" recorder.
" "servo/riter" is a trademark of Texas Instruments

NEW PRODUCTS

Motor Generator

Model V842-22 motor generator weighs 28 oz and has a rotor moment of inertia of $18 \mathrm{~g}-\mathrm{CM}^{2}$. Generator excitation current, measured at stall, is 0.8 amp . The $60-\mathrm{cps}$ motor generator may be used in remotecontrol servo systems for weighing operations and dangerous processes, indication of water levels and gate valve positions, and automatic con trol of liyuid levels and machine tool operations.
Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N. J.
Price \& Availability: Delivery and price data on request.

Chart Recorder-
 Controller

Accuracies are 0.25%
This round chart recorder-con troller has accuracies of $\pm 0.25 \%$ Minimum accurate scale span is mv dc. Response times available ar 4,10 , and 24 sec , full scale. Zener diode offers a constant vol age reference accurate to $\pm 0.05^{2}$, The temperature coefficient is 0.001 per deg C. The recorder is a null balance, potentiometer type. The central portion of the recorder fea tures trip switch cams that are in dividually adjustable; a single can can be reset without upsetting the others. Concentric scale length 27.5 in . and the dimensions of the entire unit are $17-11 / 16 \times 16-3 / 1$ x 17-1/16 in.
General Electric Co., Dept. ED Schenectady 5, N.Y.
Price \& Availability: After April 1 1960, units can be supplied in 4 6 weeks. Price of the standard mode. is about $\$ 750$.
\& Circle 81 on Reader-Service Card

Chassis For 422
Electronic Equipment Is 17 -in. wide
This flexible chassis for electronic equipment is 17 in . wide and from 9 to 26 in. long. Side frames are made of $1 / 8-\mathrm{in}$. aluminum extrusions or $0.075-\mathrm{in}$. cold rolled steel. The chassis is designed to allow maximum opportunity for cooling air to circulate; components are accessible from top, bottom, sides and tear.
Electro-Pack, Inc., Dept. ED, 11505 Jefferson Blvd., Culver City, Calif.
Price \& Availability: Prices begin at \$24. Delivery is in two weeks.

Metallized Paper385 Plastic Capacitor

For operation from -55 to +125 C
Made for both military and industrial use, type MTWK metallized paper-plastic capacitors operate in the temperature range of -55 to -125 C without voltage derating. They can be used in power supply bilter circuits, bypass functions, and Applications where occasional momentary voltage breakdowns can be tolerated. They come in sizes of 200. 400 , and 600 v dc .

Cornell-Dubilier Electric Corp., Dept. ED, South Plainfield, N.J. Price \& Availability: Units will be cuailable from stock after July 1, 1961.) Price can be quoted on request.

Wire Stripper
 383

Has a continuously variable heat control
Model G thermal wire stripper cas a continuously variable heat fontrol for precise tempreature adfistment required in stripping any iie or type of plastic-insulated vire. Designed for production line peration, it can be used as a benchpersted tool or as a hand tool.
U IVstern Electronic Products Co., Dept. ED, 655° Colman St., Altar April d in 4 urd mode

Pric Availability: Price is $\$ 69.50$ he product is available from

- Six individual floating power supplies can be interconnected in many combinations.
- Regulation is outstanding.
- Ripple is negligible.
- Voltages and frequencies can be preset with extreme accuracy.

it has everything...

EXR'S Model Z817A, UNIVERSAL MICROWAVE POWER SUPPLY

is a single power source for microwive tubes.

26.12 Borough Place 26.12 Borough Place
Woodside 77, N. Y.

Erectrop.SET simpliciry

 EMCOR
 Pre-engineered CABINETS AND ENCLOSURES

EMCOR pre-engineered cabinets and enclosures bring Erector-Set simplicity to control center construction. A Phillips Head Screwdriver and handy EMCOR hardware kit introduce an ease and flexibility never before attained in control center assembly, alteration or rearrangement. Costly modification of units of custom type construction is eliminated. EMCOR units with their exclusive combination of patented custom quality features bring a new concept to instrument housing. Advanced design, greater load carrying capacities, combined with modern fabricating techniques and high craftsmanship standards are just a few of the many reasons why dollar for dollar you get more from EMCOR. Take the guesswork out of your packaging problem, let EMCOR engineering know-how give you the solution. Your request for current information will be promptly answered.

Originators of the Modular Enclosure System ELGIN METALFORMERS CORP. 630 CONGDON. DEPT. 1221 - ELGIN, ILLINOIS -Registerad Trademark of Elgin Metalformers Corporation

VISIT US AT 8OOTH 4420-4424 DURING I.R.E. SHOW, NEW YORK COLISEUM CIRCLE 83 ON READER-SERVICE CARD

NEW PRODUCTS

VSWR Amplifier

Has nickel-cadmium batteries

Model 441B vswr amplifier is transistorized and battery operated; it has a built-in provision to show the state of battery charge. It uses nickelcadmium batteries providing independence from line voltage fluctuations. Standard operating frequency is $1000 \mathrm{cps} \pm 1 \%$ with plug-in networks available for 315 to 4000 cps and broadband applications. Bandwidth is 25 to 30 cps and range is 72 db .
Narda Microwave Corp., Dept. ED, 118-160 Herricks Road, Mineola, N.Y.
Price \& Availability: Unit available from stock. Price is $\$ 225$.

Insulation Tester
Measures to 5×10^{16} ohms

Model 710 H insulation tester is capable of measurements from 140 K to 5×10^{16} ohms. A direct reading instrument, it can be used for measuring insulation resistance in ceramics and insulating materials, and capacitor leakage. The upper half scale accuracy is 3%. Test potential range is 0 to 1000 v , continuously variable. Mercury cells provide voltage stability with less than 0.0005% change per hr at 1000 v . Repeatability is better than 0.2%. Weight of the unit is 40 lb .
Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.
Price \& Availability: Price is $\$ 1495$ fob Springfield, N.J. Delivery is in 45 days.

Molded Fiberglass

Insulation

Stands continuous temperatures to 300 F
This molded fiberglass insulation requires $1 / 3$ of the cool air ordinarily needed for an astro-tracker used in a current high speed bomber navigation system. Able to stand continuous temperatures to 300 F , it replaces a sewn blanket-type assembly weighing about 4.5 lb . This insulation weighs 2.25 lb , is contourfitted, and comes in several large sections.
Fibrous Glass Products, Inc., Dept. ED, Alpa Plaza, Hicksville, N.Y.

Price \& Availability: Data will be furnished on request.

Mounting Clips

For diodes and rectifier cases
For top-hat diodes and rectifier cases with an 0.245 to 0.27 OD , these spring tempered mounting clips are made of beryllium copper. They may be secured by eyelets or rivets. Circuit contact is provided by an integral lug passing through the mounting surface for connection to printed circuit leads or for solder connection.
Atlee Corp., Dept. ED, 47 Prospect St., Woburn, Mass.

Timing Switch

384
For tracking and control of missiles
For the tracking and control of missiles, this timing system can be incorporated in missile range intrumentation to provide time refrences for the correlation of events and measurement of missile position ond performance. It is composed basically of a master oscillator which terves as a time base, combined with an oscillator which is stable to 5 pirts per $10,000,000,000$ per day. Hermes Electronics Co., Dept. ED, Cambridge, Mass.
Price \& Availability: Units have a ixel price of $\$ 12,000$ ea. They are rust, n made and can be delivered in 9 to 120 days.
specify the leading line.. Choose from the most complete zener diode line in the industry Contact your nearest Authorized Industrial Distributor for "off-theshelf" delivery, or our Industrial Representative in your area.

NEW PRODUCTS

Magnetron

Nonintegral magnet type

Model OK798 fixed frequency pulsed X-Band magnetron, a nonintegral magnet type, has a probe output. The tube fits in a magnet and waveguide assembly which is supplied by the firm or can be made from the firm's drawings. Heater voltage and current are 5 v and 0.65 amp . Frequency is $9410 \pm 50 \mathrm{mc}$ with a pulse duration of $0.2 \mu \mathrm{sec}$. Life of the unit is 500 hr min .
Raytheon Mfg. Co., Microwave and Power Tube Div., Dept. ED, Waltham 54, Mass.

Volt-Amp Meter 368

Accuracy is better than $\pm 0.05 \%$

Model VA-100A volt-amp meter measures dc voltages to an accuracy of better than $\pm 0.05 \%$ absolute and currents to an accuracy of better than $\pm 0.1 \%$. Below $10 v$ the meter has an infinite input resistance at null; above 10 v the input resistance is 2 meg. When currents are measured, the maximum voltage drop across the shunts is 100 mv . The instrument has a five-digit readout with the last three digits read on a 10 -turn potentiometer. His resolution is obtained by using a multi-turn potentiometer at the end of the KelvinVarley divider.

Calibration Standards Co., Dept. ED, 1079 Coronet Ave., Pasadena, Calif.
Price \& Availability: The price is \$545. The instruments are usually kept in stock. Small orders can be supplied within two weeks. For large orders, delivery time is 30 days.

The Emerson Research Laboratories at Washington, D.C., directly-recorded this chart on a Honeywell Model 906 Visicorder. The chart shows a canceller test of a number of letters through a new mail-handling machine developed by Emerson for the U.S. Post Office Department.
In this test, the Visicorder took only 3 hours to reveal information that would have taken 3 weeks to get by any other means: what factors were responsible for the chang. ing speeds of letters as they traveled through the machine at the rate of $\mathbf{3 0 , 0 0 0}$ letters per hour. Constant lettertravel speeds were necessary in order to register the cancellation mark on the stamp every time.
This Visicorder record revealed that motor speed variations, belt slippage and slippage of the letter in the drive rollers were responsible. A synchronous drive motor, a timing belt drive and a better grade of rubber in the drive rollers were added to solve the problem-at a vast saving in engineering time.

Milton Stovall. Emerson Project Engineer. ases she Visicorder to measure roller bounce caused by various letter thicknesses, and the consistency of lefter
speed tbrough the new Emerson Automatic Mail Cancelling and Facing Machine. speed sbrough the new Emerson Antomatic Mail Cancelling and Facing Macbine.

rds high-speed letter travel

Recent Models of the 906 Visicorder incorporate time lines and srid lines and record up so 14 simultsanenus chan. nels of data.

The NEW Model 1108 Visi. corder, with many antomatic Yeatures and the convenience of
pusbbuttom confrols, is ideal for intermediate wses requiring wD to 24 chasnels of data.

The Honeywell Visicorder is the pioneer, completely proven, and unquestioned leader in the field of high-frequency, high-sensitivity, direct-recording ultra-violet oscillography. Here are some of the reasons why Visicorders provide the most accurate analog recordings available: constant flat response and sensitivity of galvanometers; grid-lines simultaneously recorded with traces to guarantee exact reference regardless of possible paper shift or shrinkage; flash-tube timing system for greater accuracy of time lines; superior optics for maximum linearity of traces.
No matter what field you are in ... research, development, computing, rocketry, product design, control, nucleonics the high-frequency (DC to 5000 cps) Visicorder Oscillograph will save you time and money in data acquisition.
Call your nearest Minneapolis-Honeywell Industrial Sales Office for a demonstration.

Reference Data: write for Bulletins 1108, 1012, and HC906B
Minneapolis-Honeywell Regulator Co.
Industrial Products Group, Heiland Division 5200 E. Evans Avenue, Denver 22, Colorado

The Model 1012 Visicorder is the most versatile and conven recording as many as 36 chan . nels of data.

Cycle Timer

Contains 12 spdt switches

Type HYS repeat cycle timer measures $2.25 \times$ $2.25 \times 7 \mathrm{in}$. and contains 12 spdt independently adjustable and removable load switches. The time cycle is 90 sec. Built for ground support equipment, the timer withstands a vibration of $0.06-\mathrm{in}$., double-amplitude displacement from 5 to 55 cps and shock of 30 g for 11 msec . The cams have an OD measuring $1-1 / 8 \mathrm{in}$. which allows for time settings with 1% accuracy or better. The unit operates on 115 v 60 cps power.

Eagle Signal Co., Dept. ED, Moline, Ill.
Price d Availability: For example, one unit in the scries is priced at $\$ 198$ ea in quantities to 99 ; for orders of 100 or more, the price is $\$ 108.90$. Price varies slightly with specifications. Units are made on order and can be delivered in 30 days.

Circuit Card Handles
Short-circuit and shock-resistant

Made of high impact plastic, these circuit card handles, called Pul-E-Ze, pull up to 70 lb and are short-circuit and shock-resistant. They automatically adjust for various board thicknesses by means of a flip action that grips cards tightly and releases easily. Designed to rest naturally in the grip of the hand, they may be used in labs, production, or field maintenance.

Products For Industry, A Div. of Western Lithograph Co., Dept. ED, 220 S. Rose St., Los Angeles 54, Calif.
Price \& Availability: Immediate delivery. For quantities exceeding normal use, delivery is 3 to 4 weeks. Price per unit is $\$ 10.50$.

For proven reliability in severe environments, select your seals from the E-I standard line of application tested hermetic terminals. E-I offers designers the complete flexibility and economy of standardized production on all types of seals... from single lead terminals to sub-miniature closures. Proof of their reliability is the fact that leading manufacturers specify E-I for every type of seal application. Request catalog on standard types, or send drawings on seals for special requirements.

ELECTRICAL INDUSTRIES

 A Division ofPhilips Electronics
\& Pharinaceutical A Pharinaceutical MURRAY HILL, N.J. Patented in Canada, No. 523,390; licensed in U.S. under No. 2561520

CIRCLE 87 ON READER-SERVICE CARD

NEW PRODUCTS

Static Flip-Flop Tester

Requires -16 v at 65 mo

Model FT-10 static flip-flop tester, consisting of control switches, a microammeter, and oscilloscope test points, requires -16 v at 65 ma and 1-mc clock pulses. The flip-flop to be tested is plugged into the female connector provided on the tester. The instrument can be mounted on any T-block slot.

Computer Control Co., Inc., Dept. ED, 983 Concord St., Framingham, Mass.
Price \& Availability: Units are available from stock at \$450.

Temperature Controller
404

Has ± 1 F control stability

Available with standard temperature ranges of 200 to 600 and 0 to 200 F , model 8251-203 temperature controller has $\pm 1 \mathrm{~F}$ control stability. The unit is furnished with an anticipating section for closer control, and comes with a load relay rated at $25 \mathrm{amp}, 230 \mathrm{v}$. All circuitry, except tubes and relay, is completely encapsulated in epoxy plastic. The box is suitable for wall mounting.
Electronic Processes Corp. of Calif., Dept. ED, 436 Bryant St., San Francisco 7, Calif.
Price \& Availability: Available from stock; can be delivered 2 days after order received. Price is $\$ 106$ per unit; $\$ 68.90$ when ordered in quantities of $25 ; \$ 58.30$ in quantities of 100 .

Contact one of these PSI Distributors for fast delivery at factory prices!
ACK SEMICONDUCTORS, INC. Birmingham, Alabama

ACK RADIO SUPPLY OF GEORGIA, INC. Atlanta, Georgia
allied radio corporation Chicago 80, Illinois
almo radio corporation Philadelphia 7, Pennsylvania CRAMER ELECTRONICS, INC Boston 16, Massachusetts
DENVER ELECTRONIC SUPPLY CO Denver 4. Colorado
ELECTRO SONIC SUPPLY CO., LTD Toronto 5, Ontario, Canada ELECTRONIC SUPPLY Melbourne, Florida
ELECTRONIC SUPPLY CORP Pasadena, California
ELECTRONIC WHOLFSALERS, INC Washington 1, D.C.
ELMAR ELECTRONICS, INC Oakland, California
ferguson electronic supply co. Detroit 38, Michigan
GENESEE RADIO \& PARTS COMPANY, inc. Buffalo 16, New York
graham electronic supply, inc. Indianapolis 25, Indiana
KIERULFF ELECTRONICS, INC Los Angeles, California lew bonn company Minneapolis, Minn.

OIL CAPITOL ELECTRONICS Tulsa 16, Oklahoma
PEERLESS RADIO DISTRIBUTORS, INC. Jamaica 33, New York
PIoneER ELECTRONIC SUPPLY CO. Cleveland 15, Ohio
radio specialties company, inc Alamogordo. New Mexico radio specialties corp Phoenix, Arizona Radio specialties, inc. ROCHESTER RADIO SUPPLY CO., INC. Rochester 5, N.Y
SREPCO, inc.
Dayton 4. Ohio
STANDARD RADIO PARTS, INC. rucson, Arizona
STANDARD SUPPLY COMPANY Salt Lake City 10, Utah Sterling radio product, inc. Houston 1, Texas
syracuse radio supply co Syracuse, New York
TERMINAL ELECTRONICS INC. New York 11, N. Y.
wholesale electronic supply Dallas, Texas
wholesale radio parts company Baltimore, Maryland

ancond FAST RECOVERY

 LOW CAPACITANCE SLILCON COMPUTER DIODES ER
1N925•1N926•1N927•1N928

5 M $_{\curvearrowright}$ sec RECOVERY! 4 mf CAPACITANCE Max. \curvearrowleft Zero volts! 500 mW DISSIPATION! DIFFUSED JUNCTION Ruggedness!

Electrical Specifications

$\begin{aligned} & \text { TYPE } \\ & \text { NO. } \end{aligned}$	MIN. SAT. voltage @ $100 \mu \mathrm{a}$ @ (volts)	MIN. CUR. 1.0 vol (mA)	maximum reverse CURRENT ($\mu \mathrm{a}$)		REVERSE RECOVERY CHARACTERISTICS			
					REVERSERESIST. (Ohms)	$\begin{gathered} \text { MAX } \\ \text { RECOV. } \\ \text { TIME. } \\ (\mu \mathrm{S}) \end{gathered}$	TYPICAL RECOV. ($\mathrm{M} \mu \mathrm{s}$)	
			$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$				
1N925	40	5	10 (10v)	20 (10v)	20K	0.15	5.0	4.0
1N926	40	5	0.1 (10v)	10 (10v)	20k	0.15	5.0	4.0
1 N927	65	10	$\begin{aligned} & 0.1(10 \mathrm{v}) \\ & 5.0(50 \mathrm{v}) \end{aligned}$	$\begin{aligned} & 10(10 \mathrm{v}) \\ & 25(50 \mathrm{v}) \end{aligned}$	20k	0.15	5.0	4.0
1 1928	120	10	$\begin{aligned} & 0.1(100) \\ & 5.0(50 \mathrm{v}) \end{aligned}$	$\begin{aligned} & 10(10 \mathrm{v}) \\ & 25(50 \mathrm{v}) \end{aligned}$	20K	0.15	5.0	4.0

*Switching from 5 mA to -10 volts $\left(R_{L}=1 K, C_{L}-10 \mu \mu \mathrm{f}\right)$
-'Switching from 5 mA to -10 volts
These new Very Fast Recovery, Very Low Capacitance types are added to the broadest line of silicon diffused computer diodes in the industry . . . a complete line that also features these high performance PSI originations:

IN643 IN662 IN663
(MII.E.1/1171) (MII-E.1/1139) (Mil-E.1/1140)

1N789 thru 1N804 High Conductance versions of previously available types.

All iypes are immediately available in production quantities. Phone, wire or write one of these PSI sales offices for detailed information, prices and delivery schedules.

SALES OFFICES

NEW YORK-2079 Wantagh Ave Wantagh, L. I., SUnset 1-7470 BOSTON - 471 Washington Stree Wellesley 81 - CEdar 5-017

PHILADELPHIA - 320 Huntington Pike, Rockledge • PIIgrim 2-8089 TWX: ROCKILEDGE PA 1064 BALTIMORE - 1811 North Rolling Road, Windsor Building WIndsor 4-3622
Madeira beach, fla. - P.O. Box 8215•WAverly 1.9735

OTtAWA - 227 Lauier Ave., West
CE 2-8504
CHICAGO-6957 W. North Avenue, Oak Park, Ininois Vllage 8-0751 TWX: OPK 1547 DALLAS - 954 Magellan Circle P.O. Box 6067 • Riverside 7-1258 DETROIT - 1204 No. Woodward

Royal Oak - LIncoln 8 -4722 LOS ANGELES-8271 Melrose Ave. PALO ALTO - 701 Welch Road Suite 305 • DAvenport 1-2240

PSI Authorized Distributors from coast-to-coast can supply up to 999 units at factory prices. See Distributor List in adjacent column.

Pacific Semiconductors, Inc.
A Subsidiary of Thompson Ramo Wooldridge, Inc. 10451 West Jefferson Boulevard, Culver City, California CIRCLE ss on reader-service card

NEW PRODUCTS

Digital-to-Analog Converter
Operates X-Y plotters

Series 4700 converter translates digital data from a variety of input devices into analog voltages to operate X-Y plotters. It also generates control signals for both the input devices and the X-Y plotter. Input from punched cards, punched paper tape, and magnetic tape is accepted. Output features include scaling, output multiplier, and symbol generation. The unit accepts coded data and automatically plots any of eight symbols; selection of the symbols can be manual or automatic. All circuitry is transistorized and the unit can operate to 55 C .
Electro Instruments, Inc., Dept. ED, 3540 Aero Court, San Diego 11, Calif.

Motor Generator

For industrial control systems
Model V841-22, 60-cps motor generator is designed specifically for use in industrial control systems. It may be used as a damping tachometer, rate generator, or as an integrator in industrial servo loops. Minimum no load speed is 3000 rpm , and stall torque is $5 \mathrm{oz}-\mathrm{in}$.
Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.
Price \& Availability: Delivery and price data on request.

Frequency Standard
10 signals available

Providing a stability of $5 / 10^{8}$ parts per week and $3 / 10^{8}$ over short intervals, model 100 ER frequency standard offers six sinusoidal frequencies of 10 and $100 \mathrm{cps}, 1,10$, and 100 kc , and 1 mc . Four pulse signals of 10 and 100 cps , and 1 and

Select from the Line with ADVANCED DESIGN

OHMITE

10 kc are also available. Rated load of the instrument is 50 ohms at 1 mc and 100 kc , and 5000 ohms at the lower frequencies. The unit measures $8-3 / 4 \times 19 \times 18$ in. and weighs 35 lb .
Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Price \& Availability: Availability is currently 10 weeks. Price is $\$ 900$.

Vertical Gyroscope

For aircraft and missile use

Model NV3705 Gyroscope is for aircraft and missile applications where reliable vertical accuracy under extreme environmental conditions is required. Made of non-magnetic cast stainless steel, it is a self-contained two-axis, torquererected type. Vertical reference is obtained by sensitive electrolytic switches. Pitch and roll displacements are referenced by synchro pick-offs on the gyro axis.
Iron Fireman Mfg. Co., Electronic Div., Dept. ED, 2838 S.E. Ninth Ave., Portland 2, Ore.

Data Plotting System

Provides graphical output from cards or tape

Model 3033D data plotting system provides graphical output of digital information from punched cards or paper tape. A digital-to-analog converter is self-contained in the unit. A $400-$ cps servo motor drives the pen. The keyboard is installed directly in the panel and 12 automatically selected symbols are used. The plotting board circuitry is transistorized.

Electronic Associates, Inc., Dept. ED, Long Branch, N.J.
Price \& Availability: Price and time required for delivery will be quoted on request.

By combining a fresh approach in design with traditional Ohmite quality, "v.t." variable transformers offer convenience features and performance not found elsewhere. They offer top efficiency and high output for their size. Through Ohmite's engineering design, a sizeable bonus in output is available in the "no-overvoltage" types where voltages above line voltage are not required. These units deliver rated output current at any trush setting . . . freedom from wave-form distortion
. excellent regulation at any point within the rated load . . . unusually long life . . . smooth, maintenancefree operation. They are interchangeable with other makes. Adjustable shafts permit ready conversion to
table or panel mounting. Offered in a diversified choice of cased models.
Moreover, you can get fast delivery from stock on 35 different models covering ratings up to 10 amps . Or, if you desire, select your special requirements from the many modifications possible. Among these are special windings, custom enclosures (including "explosionproof"), motor-driven assemblies, auxiliary switches, numerous shaft styles, special tandem units, and combination assemblies with other components.
On your next order for variable transformers, try the line with advanced design-Ohmite.

Be Right with

Write for Bulletin 151

OHMITE MANUFACTURING COMPANY

3643 Howard Street, Skokie, Illinois
rheostats - resistors - relays - tap switches Rf. Chokes - VarIable transformers tantalum capacitors. Germanium diodes

CIRCLE 89 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

For schematics and printed circaitrs
This anodized aluminum foil, designated Metal-Cals, is for schematics and printed circuitry purposes as well as for product identification. It is resistant to salt and oil solutions and withstands abrasion with no loss of color or legibility. Made only on individual order, it can be supplied in sizes and shapes to fit individual applications. It comes in thicknesses from 0.0002 in .

C \& H Supply Co., 415 E. Beach Ave., Inglewood, 3, N.J.
Price \& Availability: Price depends on the size and colors used. Products having one color plus aluminum and measuring 2×1 in. are priced at $\$ 5.59$ per 100 in quantities of 1000; those measuring $2 \times 1 \mathrm{in}$. are priced at $\$ 5.59$ per 100 in quantities of 1000; those measuring 2.5×1.5 in. are $\$ 5.82$ per 100 in quantities of 1000. Delivery time is 18 days.

Laminated Plastic
Flame-retardant
Fireban X is a flame-retardant paper-base laminated plastic that may be used for structural parts in radio, switchgear, terminal boards or panels, and insulating washers. Tensile strength of a sheet $1 / 8-\mathrm{in}$. thick is $20,000 \mathrm{psi}$, and dielectric strength is 25 kv . Operating temperatures range to 275 F. Essentially a Grade X laminate with a phenolic resin, the plastic comes in sheets $49 \times 49 \mathrm{in}$. with thicknesses from $1 / 32$ to 1 in .

Taylor Fibre Co., Dept. ED, Norristown, Pa .
Price \& Availability: Delivery 1 week to 10 days after receipt of order. Price is slightly less than a dollar per $l b$ in quantity orders.

Toroidal Ferrite Cores 622
For coincident-current magnetic memory devices
These toroidal ferrite cores are for use in coincident-current, magnetic memory devices. At a full
driving current of 380 ma , type ?26M1 has a switching time of about $1.3 \mu \mathrm{sec}$. Type 228 Ml has a switching time of about $1 \mu \mathrm{sec}$ at a full driving current of 600 ma .
Radio Corp. of America, Semiconductor \& Materials Div., Dept. ED, Somerville, N.J.

Silicon Rectifiers

44 diode types available
Types IN846 through 1N889 silicon rectifiers are divided into 4 basic groups, with maximum surge current rating of $0.5,1.0,1.5$, and 2.0 amp . Maximum average rectified current ratings are $50,100,150$, and 200 ma . The entire line is designed with the standard diode glass body. Temperature limitations for storage are -65 and +200 C .
Semiconductor Div., Hughes Products, Dept. ED, Box 278, Newport Beach, Calif.

Diodes

605
Switching and high-conduction types
Among the switching and high conduction diodes available are: 1N645, 1N648, 1N643, 1N658 1N659, 1N662, and 1N663. All diodes have a forward conductance up to 400 ma at lv , and low reverse leakage. Recovery time characteristic of the high-conduction diodes is $0.3 \mu \mathrm{sec}$ with a resistance to 400 K
Sperry Rand Corp., Sperry Semiconductor Div., Dept. ED, South Norwalk, Conn.

Chart Recorder

Designed for lab use

Specifically designed for lab use this recorder measures such variables as pressure, temperature, mofion, flow, density, and electric nower. The 4 -position input selecfor switch provides for millivolt, volt, microampere, or milliampere imput. Span ranges of 0 to $2,5,10$,
2.5 , and 50 are offered. An alternate span, continuously adjustable from 1 to 2 and 0 to 50 , is available.
The Bristol Co., Dept. ED, Wa1 rbury 20, Conn.
Sirele 925 on Career Inquiry Form page 239

Optically as far as the first obstruction. For some, the same applies to mental vision. By seeing beyond the apparent obstacles, established theories or accepted principles, Fairchild Semiconductor Corporation has been able to achieve spectacular product innovations in transistors. Because of this faculty, the company has grown from an original nucleus of eight scientists to a complement of more than fourteen hundred in little more than two years.
From continuing research and development work through engineering, tooling, manufacturing and testing of products on the line, the success of Fairchild is built on the abilities of its men to see around the obstacles and move beyond. It has resulted in products more advanced than any others of their type and in a solid reputation for quality workmanship. In a rapidly growing company with many challenging programs (e.g. current work on Esaki diodes and micro-logic circuits), there is a constant need for men who can see beyond the first obstacles. If yours is a relevant background and you find our approach attractive, we would like very much to hear from you.

545 WHISMAN ROAD / MOUNTAIN VIEW. CALIFORNIA / YORKSHIRE 8-8161

ENGINEERING

ON BENDIX COMPONENTS

NON-BUFFERED CASCADED RESOLVER CHAINS

for mavigational, guidance, and fire control computers

Newly-developed techniques enable Eclipse-Pioneer to solve coordinate transformation problems using size 10 (or smaller) resolvers with performance exceeding resolver chains using size 23 resolver and feedback buffer amplifiers.
Our design philosophy is based on the premise that all component parameters will be allowed to fluctuate with variations in excitation
voltage, frequency, and ambient conditions. All resultant signal variations can be closely predicted through digital computer analysis. As a result of Eclipse-Pioneer's experience in utilizing resolver chains in its navigational systems, considerable data has been compiled which may be helpful in solving your problems. Write us today for complete information.

TYPICAL PROBLEM

PROBLEM: Design a computer to pro vide an aircraft with continuous bearing and range information along the arc of a great circle
C_{A}-Bearing
$\mathrm{LO}_{\boldsymbol{T}}$ - \triangle Longitude measured from present position to target L_{p}-Latitude of present position L_{T}-Latitude of target
D-Great Circle distance from present position to target.

SOLUTION

Eclipse-Pioneer Division Teterboro, N. J.

 CIRCLE 91 ON READER-SERVICE CARD

NEW PRODUCTS

Power Supplies

For portables and mobile use

These two power supplies are transistorized units suitable for portable and mobile transmitters and receivers. Model 12 TP 12 is a transmitter power supply which converts 10.5 through 14.5 v dc to 500 v dc at 240 ma (120 w), or 500 v dc at 150 ma and 250 v dc at 100 ma . Model 12TP3 is a receiver power supply which converts 10.5 through 14.5 v dc to 300 v dc at $100 \mathrm{ma}(30 \mathrm{w})$, or 300 v dc at 70 ma and 150 v dc at 60 ma . Both units are circuit protected against transients and overloads.

Cornell-Dubilier Electric Corp., Dept. ED, South Plainfield, N.J.

Scrape Tester

Determines abrasion resistance of wire

Model TS-2 scrape tester determines the abrasion resistance of film-insulated, high-temperature magnet wire. The device is equipped with an electrical circuit that detects failure and shuts off the instrument when the film is worn through to the copper. A mechanical counter indicates the number of scrapes which were required to abrade the wire sample. The scrape is done with a No. 11 steel needle; the length of the scrape motion in one direction is $3 / 8 \mathrm{in}$.
Peschel Electronics, Inc., Dept. ED, RFD 1 Patterson, N.Y.
Price d Availability: Made on order only. Delivery 30 days after order received. Price is $\$ 550$ per unit.

gear heads
Compact units that provide oupput motor speed reductions.

These easily detachable heads are available in various frame sizes, and supply reductions in ratios ranging rom $7.22: 1$ to 42,471.90:1. Ball bearngs are Class A. B. E. C. 5 , or better and gears are cut to AGMA Precision II tolerances, or better, with backlash held to 30 minutes, or better. Adapt able to variety of motors and motor generators. Write for details

CODED COMMUTATORS

shaft posifion-fo-digisal converfers in miniafure.

For use with digital control systems, data processing equipment, or computers, these small devices convert analog information to binary digital form. Size particularly suits them to airborne applications. Unit shown consists of 7 -digit converter utilizing linear, doublebrush, natural binary code. Each track brush is split for better contact. Unambiguous output giving shaft resolution to 1 part in 128 can be provided. Ask for details on the many models available.

Manufacturers of
GYROS - ROTATING COMPONENTS RADAR DEVICES - INSTRUMENTATION PACKAGED COMPONENTS
Eclipse-Pioneer Division

CIRCLE 92 ON READER-SERVICE CARD

Solderless Terminal

This solderless terminal uses an annealed, tinplated brass sleeve to add extra barrel strength and permanently anchor the wire insulation to the terminal. The Avikrimp also employs a permanently attached nylon insulation sleeve which extends beyond the metal support sleeve, making no extra insulation necessary.
Waldron Electronics Inc., Dept. ED, 4625 W. 53rd St., Chicago 32, Ill.
Price \& Availability: Available from stock. Prices range from $\$ 7.12$ per 100 to $\$ 49.21$ per 1000 .

Side Grip Fastener

This fastener is adjustable for material thicknesses ranging from 0 to $15 / 16 \mathrm{in}$. Work may be held in the 1-1/16 in. deep-jaw throat or $3 / 8 \mathrm{in}$. deep-jaw heel. Zinc based alloy gripping jaws are provided for use on soft aluminum production parts.
Monogram Manufacturing Co., Kleko Clamp Div., Dept. ED, 8557 Higuera St., Culver City, Calif.
Price \& Availability: Available from stock. Prices range from $\$ 1.86$ per unit for quantities of 1 to 11, to $\$ 0.97$ per unit for quantities of 250 and up.

Nylon Tubing

428
Continuous lengths of this nylon tubing are available in sizes from $0.01 \times 0.06 \mathrm{in}$. to 0.28 x 0.5 in . Special sizes are available on request. Applications include flexible cable casing, heater and vent control cable casing, and wire cladding. The material is shipped in reel form.

Garlock Packing Co., Dept. ED, 440 Main St., Palmyra, N.Y.
Price \& Availability: Units up to 1/2-in. $O D$ available from stock. Prices on request.

Instrument Cam Assembly

429
Type 260 two-cam assembly has these combinations of rises: two sharp, two gradual, and one sharp and one gradual. Uses are in industrial and servo systems.
Gap Instruments Corp., Dept. ED, 116 E. Merrick Rd., Freeport, L.I., N.Y.
Price \& Availability: Units are available from slock at a price of \$6 ea.

Internal Cushion Packaging Material 430
Called Resilo-Pak, this plastic material can be used from -85 to +175 F . Offered in thicknesses of $1 / 16$ to 20 in . in increments of $1 / 16 \mathrm{in}$., it can te used as positioning material for electronic 1 rts, radio tubes, and delicate instruments. Armstrong Cork Co., Dept. ED, Lancaster, Pa.

$\square \square \square \square \square$

Eyelets give you unlimited opportunities for savings as connectors, fasteners, terminals, bushings, contacts for switches and hundreds of similar applications. Only with United Eyelets do you have such a wide choice of standardized sizes, special designs for cutting costs on unusual production problems, combined with a comprehensive line of the most versatile eyelet setting mahines available.
In no other way can you get the flexibility obtainable us today for more informe installed costs. Call or write service organization is ready to help with your most challenging problem.

NEW MINIATURIZED EVELETS OS connectors ond fosteners for low coss,
high speod insertion in components, PW, boords, miniature oquipment. Dessigned for high speed outomatic freeding with
United Machinos. Copper or brass.

CUT COSTS WITM SMEARED EYILETS as stond-off lerminals. Sol o os Cuts soldering time too.
 Simplify design, purchasing, inventory,
ond production. Deeide the hole size ond production. Decide the hole $2 / 20$
ond gripu, ond sel the colculator 10 find
the exact eyelet you need. Send lor ond
the exact evelet you ne
your foe copy loday

NEW FUNNEL FLANGE eyelets designed especially as connectors for W boards. Solves two-sided circuitry and solder problems. Speeds
insertion. Are fed and set automatically on United Machines.

Simultaneous multiple eyoleting from aithor or both sides of machine. Typical six eyelet application illustrated. 50 yeors' experience is your
assurance of complete dependability.

United

UNITED SHOE MACHINERY CORPORATION
Boston 7. Massachusots • Llberty $\mathbf{2 - 9 1 0 0}$

. . . still the biggest value . . . still the workhorse . . . still the most widely used of all tantalum electrolytic capacitors ... the Fansteel "PP" Type capacitor. Here's why-
unquestionable reliability proved in millions of applications since their introduction in $1949 \ldots$ exceptional shock and vibration resistance because of special anode base support ... meets MIL-C-3965B for grade 3 capacitor ... outstanding Low temperature characteristics . . operating range -55° to $+85^{\circ} \mathrm{C}$ at full rated voltage \ldots high ratings in minimum CASE SIZES with oustanding frequency stability and negligible electrical leakage.

Get complete specifications, application data and typical performance curves in Bulletin 6.100.

C601A

FANSTEEL METALLURGICAL CORPORATION North Chicago, III., U.s.a.

CIRCLE 94 ON READER-SERVICE CARD

NEW PRODUCTS

Frequency and Pulse Rate Transducer

Full range linearity is $\pm 0.5 \%$

The transistor amplifier megacycler, a self-contained frequency and pulse rate transducer, has a full range linearity of $\pm 0.5 \%$ and a temperature sensitivity of 100 ppm per deg C. Special units have a linearity better than $\pm 0.1 \%$ and a temperature sensitivity less than 50 ppm per deg C. Units operate with input signals as low as 0.1 $\mu \mathrm{w}$; the input voltage range is 10 mv to 5 v ms and the input impedance is 2000 ohms nominal. Standard outputs are: 0 to 5 v filtered, 0 to 200 ma filtered, and 0 to 1 ma unfiltered. Suitable for military applications, these units operate over the temperature range of -60 to +71 C .
Pioneer Magnetics Inc., Dept. ED, 5858 Wilshire Blvd., Los Angeles 36, Calif.

Power Supply
Delivers 25 to 32 vdc

Model PS4019 heavy duty power supply is a general purpose source of 25 to 32 v dc and provides a load current of up to 1.5 amp . Input is from 105 to 125 v ac. Line voltage may vary ± 10 without affecting the output. The ripple and noise level at the output is less than 2 mv . The output voltage is kept within 0.2 v for load changes from 0 to 1.5 amp with the line constant. Output impedance is less than 0.2 ohms from dc to 100 kc . The supply is designed so that momentary or intermittent short circuits do not affect the life of components.

Power Sources, Inc., Dept. ED, Burlington, Mass.
Price \& Availability: Price is $\$ 585$. Units can be delivered in 30 to 45 days after receipt of order.

MINIATIIRE cincills

TRANSISTORIZED

DID YOU KNOW . . That Walkirt has achieved package densities of over ONE MILLION PARTS PER CUBIC FOOT? The popular "cartridge" style module pictured above has "flown" with many Missiles and Satellites where small size and high reliability are mandatory. Nothing etched or deposited here only standard components of proved reliability. We have hundreds of digital and logic circuits that are available in this popular package style which is a logical compromise between Micro-Min. iaturization and cost. May we send you a price list and technical data? You'll be surprised at the performance, econ. omy and the huge selection of Walkirt Circuit Modules.

Potentiometers

the key to a truly clean vacuum without fluids or other contaminants, is an IlteVac electronic pump. Can operate inattended for months or years on a sealed system; requires no traps, batifles, or
refrigeation. Maintains vacuums of $10^{-9} \mathrm{~mm}$ Hg and below; power failure does not harm system since it is sealed after UlteVac slarts. Serves as its own vacuum gauge. Operates in any position; no hot fiiaments, no cooling water.

Series $327 \cdot 2701 / \mathrm{sec}$.

ULTEK CORPORATION, only manufacturer devoted exclusively to ion pump technology offers stock pumps 1 to 1000 liters/second capacity plus sorption pumps, foreline traps, and SealVac fittings which provide easy-connecting rotatable flanges. Ultek invites comparison of product, service, and delivery time, on either standard or modified pumps and accessories. Literature on re-quest-specify application.

Conlact ULTEK. or its exclusive representative. Kinney MIg Div. of
The New York Air Brake Co. Sales The New York Air Brake Co. Sales
offices in major U.S. cities.
oflices in major U.S. cities.

CII GLE 96 ON READER-SERVICE CARD

lectronic DESIGN - February 17, 1960 Skokie, Ill.

Epoxy Sheet

 Maplewood, N.J.The Panastat operates on standard ac or dc, maintains continuous duty at $\pm 20 \%$ nominal voltage, and meets all class I, division II requirements. This solid state unit has low energy control circuits. Inductance is below 0.001 h .

Panellit, Inc., Dept. ED, 7401 N. Hamlin Ave.

559
These sheets are used to make headers, strips, panels, mounting boards, and shells when encapsulating components in epoxy resin. Available in 8×8 in. and 12×12-in. sizes, they are $1 / 16,1 / 8,3 / 16$, $1 / 4,3 / 8$, and $1 / 2 \mathrm{in}$. thick.

Republic Plastics Corp., Dept. ED, 2 Hixon Pl.,

Subcommutator Channel Separator

560
Type SCS-1B decommutates ten duty-cycle channels, one of which is used as a full-scale reference channel. Outputs drive oscillographs, pen amplifiers, meters, and servo channels. Wave trains from 30 to 120 pps at 0 to 40 v are accepted.

Arnoux Corp., Dept. ED, 11924 W. Washington Blvd., Los Angeles 66, Calif.

New FANSTEEL Silicon Rectifier Stack Assemblies

Now you can get complete stack asemblies incorporating Fansteel's famous silicon rectifiers -35 amp . Type 4A or 22 amp . Type 6A-whose reliability and performance are assured through "white room" production and 100% testing. Fansteel can now supply staek assembliesbridge, center tap or dioubler circuitsassemblies engineered and guaranteed for the application.

Rectifier stack using Fansteel 6A rype silicon units mounted on 5×5-in aluminum heat sinks. This assembly was designed to deliver 5 Kw at 500 volts $\mathrm{d}-\mathrm{c}$, convection cooled. Lower unit is a half-wave rectifier stack, connected 1-3-1, using the same silicon units.

For complete information, call your local Fansteel representative or confact Fansfeel direct.

FAN TEEL'

RELIABILITY

FANSTEEL METALLURGICAL CORPORATION North Chicago III. u.SA
CIRCLE 97 ON READER-SERVICE CARD

on this oscillator and you cover a frequency range from $0.001 \mathbf{c p s}$ to 100 kc !

Here's a combination of wide frequency range (0.001 to $100,000 \mathrm{cps}$). low distortion (less than 0.1%), and high stability (less than 0.05% drift per hour) - in one highly convenient oscillator. The Model 440-A also provides both sine and square waves simultaneously over this entire frequency range.

Three banks of push-button switches give positive control of frequency with ease, and reset accuracy of better than 0.01%. The frequency multiplier switch covers the entire range in six decade steps. A vernier control varies the frequency continuously by an amount equal to the increment between adjacent third-bank buttons. This time-saving push button feature insures freedom from error, and enables use of untrained personnel for routine checking.

The 440-A's wide range offers more measurement flexibility. Its constant signal-to-noise ratio allows effective use of small signals in low level applications. Its low distortion eliminates troublesome harmonics in precise measurements.

Other Krohn-Hite oscillators include log dial-tuning Models 400-A ($0.009-1,100 \mathrm{cps}$) ; 420-A (0.35-52.000 cps) ; 430-A B (4.6-520,000 cps) and others. Write for full information on Krohn-Hite Oscillators, as well as Krohn-Hite Amplifiers, Filters and Power Supplies.

KROHN-HITE CORPORATION
580 Massachusetts Avenue - Cambridge 39, Mass. Pioneering in Quality Electronic Instruments

NEW PRODUCTS

Miniature Voltage Regulators

598 For severe environments

Made for operation in severe environments, these voltage regulators withstand ambient temperatures in the range of -55 to +125 C and meet MIL-E-5272. Output voltages are 35 to 150 v dc at load currents up to 500 ma . Regulation is 0.1% for input variations of $\pm 20 \%$ and load variations from zero to full load. Units having 0.05\% regulation are also available. Dimensions are $2.5 \times 2.5 \times 2.75$ and weight is 15 oz . The units are transistorized.

Power-Tronics Systems, Inc., Dept. ED, 10 Pine Court, New Rochelle, N.Y.

Relay Meter

Is a measuring and controlling instrument

Measuring and controlling functions are housed in this one panel instrument. There is no physical interaction between functions. The measuring instrument comes in moving coil and single, electrodynamic movements, with accuracy of all movements at 1.5%. The controller consists of a maximum and minimum marker which can be positioned over the full scale. Holding-control, auto-matic-control, and pulse-control switching assemblies are available.

National Electronics, Dept. ED, Box 1237, Sheridan, Wyo.
Price \& Availability: Made on order only. Delivery is 60 to 90 days, reduced to 4 to 5 weeks by April 1960. Price is between $\$ 70$ and $\$ 150$ when ordered in quantities of 1 to 5 .

INDUCTOR

FOR VERTICAL OR HORIZONTA MOUNTING IN PRINTED CIRCUIT BOARDS
This new, ultra tiny Variable Inductu with amazing subminiature characte istics, has stable inductance at extrem temperature variations and high reability, along with light-weight and mim iature size features.

- Inductance range: 0.10 to 4700 - INDUCTANCE ADJUSTABLE: $\pm 20^{\circ}$
- ENVIRONMENTAL: Encapsulated epoxy resin for protection against c matic and mechanical conditions.

WRITE TODAY
Free Descriptive
Literature Available

ESSEX ELEGTRONIC

550 Springtield Ave., Berkeloy Meights, N . CRestview $3-9300$
CIRCLE 99 ON READER-SERVICE CARO ELECTRONIC DESIGN - February 17, 196

Conduit and Voltage 418
Markers
For use over a wide temperature range
For identifying communication quipment, these self-sticking conluit and voltage markers are stable ver a wide temperature and hunidity range. The printed legends re permanently protected from grease, oil, dirt, acids, and solvents. The markers are non-conductive.
W. H. Brady Co., Dept. ED, 727 N. Glendale Ave., Milwaukee, Wis.

Portable Oscilloscope
 556

Cart

Carries 500 lb

Able to carry 500 lb , model ICB-1 portable oscilloscope cart is made of 1 -in. tubing and 5 -in. swivel casters. The top deck measures $29-1 / 4 \times 14$ in. and has a 17 -deg tilt. The cart veighs 52 lb .
Mobil-Tronics Co., Dept. ED, 3409 W. Venice Blvd., I os Angeles 19, Calif.

PNP Silicon Transistor 414
$I_{\text {co }}$ is below 1 mua at 25 C
This pnp alloyed silicon transistor las a maximum $I_{c o}$ of 1 mua at 25 C and at -12 v . The maximum $I_{c o}$ at 125 C is 1μ a. Typical $I_{c o}$ values
are 0.2 mua at 25 v and $0.2 \mu \mathrm{a}$ at 125
C. The beta spread is from 10 to 25 nd the maximum voltage rating is -25 v.
Crystalonics, Inc., Dept. ED, 249 Fifth St., Cambridge 42, Mass.

to 4700

E: $\pm 20 \%$
sulated
gainst
Jitions.

DNIC
ज्.
dizhts, N.

Guided-entry design
Type SKT-50 jack, an improved version of SKT-5BC, features a guicled-entry design. This jack holds the probe more rigidly and offers greater electrical insulation properties. The contact is heavy goldflashed beryllium-copper. The jack acce pts a probe 0.08 in . in diam and 0.31 in . long.

S alectro Corp., Dept. ED, 139 Hov St., Mamaroneck, N.Y.

RHEEM ONE-SOURCE ORDERING CONVENIENCE

NEW PRODUCTS

Servo Amplifier

Has a 40 db power gain

Designed to receive signals from a synchro control transformer and to operate a $400 \mathrm{cps}, 3.1 \mathrm{w}$ per phase servo motor or equivalent, model 1800 . 0900 servo amplifier has a power gain of 40 db The unit is potted and hermetically sealed. Powe: requirements are 28 v dc at 150 ma .
M. Ten Bosch Inc., Dept. ED, Pleasantville N.Y.

Price d Availability: Available about 6 week after order received. Price on request.

Shift Register

Operates to 300 kc

Model 308 shift register is a 5 -stage transis torized unit capable of operating at frequencie up to 300 kc . Set and reset inputs, and One an Zero outputs are available for each flip-flop stage Fabricated on a $5 \times 6 \mathrm{in}$. glass-epoxy, printe circuit card $1 / 16-\mathrm{in}$. thick, the register require -12 v . Standard output levels are -6.8 v fo One and -0.2 v for Zero.
Navigation Computer Corp., Dept. ED, 16^{3} Snyder Ave., Philadelphia 45, Pa.
Price \& Availability: Available from stock. DC livery 30 days after order received. Price is $\$ 14$ per unit.

Circle 107 on Reader-Servics Cand ELECTRONIC DESIGN • February 17, 196

The Handy Hand, designed for welding or soldering small assemblies, holds up to 3 lb and clamps to any 2 -in. table. It is rigid for working, but is quickly changed to any position.
Superior Welding Co., Dept. ED, 3410 E. 14th St., Los Angeles 23, Calif.

Displacement Transducers

Models DT500 and DT2000 measure linear displacement from 0.5 to 2 in . with a frequency response from 0 to $10,000 \mathrm{cps}$.
Photocon Research Products, Dept. ED, 421 N. Altadena Drive, Pasadena, Calif.

Frequency Response Slide Rule

Scale set No. 2 includes scales for non-minimum phase functions, quadratics with damping ratios in 0.05 increments to 0.95 , and time function scales.

Boonshaft and Fuchs, Inc., Dept. ED, Hatboro Industrial Park, Hatboro, Pa

Electronic Gage

Measures coatings of any type and thickness. In addition to measuring, it will compare the hardness and grades of metals and other materials. Unit is housed in an aluminum desk type cabinet.
Ferro Corp., Dept. ED, 4150 E. 56th St., Cleveland 5, Ohio.

Indicator Lamp

583
Designed for a life of 5000 hr , type 63L lamp was engineered to operate as a channel indicator light on TV receivers.

Chicago Miniature Lamp Works, Dept. ED, 1500 N. Ogden Ave., Chicago 10, Ill.

Push Button Switch

For use on hand-operated power equipment. model PBS two-circuit switch is rated for up to 600 v ac or dc. Operation is break-before-make.

Vemaline Products Co., Dept. ED, P.O. Box 222, Hawthorne, N.J.
Price \& Availability: List price is $\$ 9$ ea; delivery is from stock.

Jacks

411
These molded nylon tip jacks have a metal shell which prevents stripping threads during assembly. Herman H. Smith, Inc., Dept. ED, 2326 Nostrand Ave., Brooklyn 10, N.Y.

Tefon Terminals

Having a solid Teflon outer insulator, these terHinals range in size from $11 / 64$ to $1 / 2 \mathrm{in}$. in diam a d from $15 / 16$ to $3 / 4 \mathrm{in}$. above the mounting p nel. They are supplied in any standard lead style. Sphere Co., Inc., Dept. ED, 25 Amity St., Little F lls, N.J.

- Sircle 107 on Reader-Service Card

E ECTRONIC DESIGN • February 17, 1960

NEW Couch Relay isolates Contacts from Contamination

Organic material can't contaminate the contacts in the new Couch Type 2 M micro-miniature relay. They're hermetically sealed in a separate chamber - and without rosin flux.
Also contributing to reliability is Couch's patented rotary armature, pivoted on two sapphire jewels and virtually immune to present day levels of shock and vibration.
Designs like this, produced within an unusually narrow range of manufacturing tolerances, help explain why Couch relays are being called on to provide reliability in many complex systems.
Write for additional information.
ENGINEERING DATA:

COUCH ORDNANCE, INC.

A Subsidiary of S. H. Couch Company, Inc.
3 Arlington St., North Quincy 71, Mass. Tel.: (Boston) BLuehills 8.4147 CIRCLE 109 ON READER-SERVICE CARD

NEW PRODUCTS

DC Voltage Regulator 420

Load is 60 ma max

Operating from an input of 28 $\pm 4 \mathrm{v}$ dc, this solid state voltage regulator can handle a maximum load of 60 ma . It regulates at 4 v dc with less than 0.1% ripple. The regulation for combined line, load, and temperature changes is $\pm 0.5 \%$. Output impedance is less than 0.5 ohms. Available in a hermetically sealed container, it complies with MIL-E5272. The unit occupies 5 cu in. and weighs less than 7.5 oz .
Networks Electronic, Dept. ED, 14806 Oxnard St., Van Nuys, Calif. Price \& Availability: Units are available from stock. Prices will be furnished on request.

Epoxy Resin

For high temperature service
For use in systems functioning at temperatures above 400 F , this epoxy novolac resin, designated D. E. N. 438, combines the physical and handling properties of conventional epoxies with the high temperature performance of phenolic resins. The applications include adhesives, structural laminates, fila-ment-wound structures, printed-circuit boards, and electrical insula. tion.

Dow Chemical Co., Dept. ED, Midland, Mich.
Price \& Availability: Available from stock, the product is priced at $\$ 0.68$ per lb.

Test Adapter

 388Gives single 1/2-wave sinusoidal surges
Adjustable between 5 and 75 amp at a maximum repetition rate of 4 per min , model 142 surge-test adapter supplies single, 1/2-wave sinusoidal surge currents. It may be used alone or with types 138A and 141A silicone rectifier test sets. Provisions are made to monitor the output through a $50-\mathrm{mv}$ shunt with
an oscilloscope using the sync sig. nal provided. The unit measures $21-1 / 4 \times 8 \times 16 \mathrm{in}$. and weighs 25 lb .
Wallson Assoc., Inc., Dept. ED, 912-914 Westield Ave., Elizabeth, N.J.

Price \& Availability: Delivery is 4 weeks from stock. Price is $\$ 700$ rack mounting, $\$ 725$ complete in self contained cabinet.

Framing Camera

380

Shutter speed is 0.1 to $10 \mu \mathrm{sec}$

Model 1 framing camera weighs 40 lb and occupies about as much space as an oscilloscope. The electronic shutter has a speed range of 0.1 to $10 \mu \mathrm{sec}$; other ranges can be supplied. Each of the four channels has an independent time delay adjustable from 1 to $1000 \mu \mathrm{sec}$. Four photographs can be taken in sequence or simultaneously. A portable unit, this camera can be used in electrical discharge studies.

Abtronics, Inc., Dept. ED, Livermore, Calif.
Price \& Availability: Price is $\$ 8000$ fob Livermore, Calif. Delivery is in 30 days or less.

Crystal Slicer

Uses downward plunge cut
This crystal slicer combines a variable feed, downward-plunge cut with a synchronized automatic increment cross feed. It has Bijur mist-lubricated spindle construction that is good for 10,000 or more rpm. driven by balanced flat-belt pulleys and a 2 -hp reversing motor. When plunge cutting is not desired, the machine may be equipped with automatic variable table feed.
National Distributors, REM Sales Inc., Subsidiary of Robert E. Morris Co., Dept. ED, Box 41, West Hartford 7, Conn.
Price \& Availability: Made on order only. Delivery is within 60 to 90 days. For basic machine, price is under $\$ 6000$; accessories available at extra cost.

Bourns Trimpot ${ }^{\circ}$ Trio

MODEL 236 HUMIDITY-PROOF TRIMPOT
Completely sealed to meet Mil Specs for humidity, sand, dust and salt spray, this proved wirewound potentiometer dissipates 0.8 watt at 70 C ., operates reliably at temperatures up to 135 C . Resistances from 10 ! to 100 K . Choice of terminals and mounting types.

MODEL 260 HIGH-TEMP
HIGH-POWER TRIMPOT
A favorite Mil Spec wirewound unit for hot spots. Use it where you need depend able, continuous operation from -65 C. to $=175 \mathrm{C}$. Dissipates 1.0 watt at 70 C . Resistances from 10!! to 100K. Choice of terminals and mounting types.

MODEL 200 GENERAL-PURPOSE TRIMPO Up-to-the-minute version of the original wirewound Trimpot-used in more military and commercial programs than any other leadscrew-actuated potentiometer.
Maximum operating temperature is 105 C Dissipates 0.25 watt at 70 C . Resistances from10!! to 100K. Choice of terminals and mounting types.

NEW PRODUCTS

Miniature Probe
Is easily inserted

Type PR-302 miniature probe provides greater ease of insertion and withdrawal. Similar to the PR-300 in-line plug, this probe takes the stripped wire end to its tip where it can be neatly dipsoldered without interfering with ready insertion and withdrawal. Also, the tip has a shoulder for gripping the probe, making it easier to push in or pull out of a Press-Fit jack.
Sealectro Corp., Dept. ED, 139 Hoyt St., Mamaroneck, N.Y.

High-Voltage Rectifier

Average plate dissipation is 800 w

Rated at 75 kv piv and 800 w avg plate dissipation, type 5973 high-voltage rectifier is suited for applications where low tube-drop-voltage is necessary. In radar applications, it can be used as a charging diode or limiter. It is also suitable for high-voltage power supplies used in dielectric or cable testing. As a rectifier, it operates at an average of 1.25 amp to 40 kc and 1 amp to 75 kv . As a limiter, it has a peak current of 20 amp at 75 kv . PEK Labs, Inc., Dept. ED, 4024 Transport St., Palo Alto, Calif.
Price d Availability: Price is $\$ 330$ per unit. Small quantities are available from stock.

Computer Diodes

Switch in 4 musec max

The types 1N914 and 1N916 diffused silicon

THE NEW BONDEZE ${ }^{\circledR}$ WIRE FOR SELF-SUPPORTING
 COILS...PHELPS DODGE

Bondeze

A self-bonding wire-now with improved and added properties!

Improved in three important ways:

- Extra resistance of underlying film to temperature-pressure "cut-thru." Reduces shorts.
- Crazing negligible when solvent bonded.
- Underlying film gives better thermal life.
... and with this newly added property:
- Easy solderability . . . solders or dip-tins at low temperatures without cleaning or stripping. No damage to copper conductor.

Phelps Dodge S-Y Bondeze ${ }^{\star}$ magnet wire bonds turn to turn with a single application of heat or solvent. This important property, combined with improved thermal characteristics and easy solderability, opens a new and wider range of applications for self-supporting coils or bobbin-less coils and windings.

Any time your problem is magnet wire, consult Phelps Dodge for the quickest, surest answer!

PHELPS DODGE COPPER PRODUCTS

CORPORATION
INCA MANUFAGTURING DIVISION
FORT WAYNE, INDIANA
mesa diodes switch from 10 ma forward current to 6 v reverse in $4 \mathrm{~m} \mu \mathrm{sec}$ max. Designed for computer applications, they have a capacitance of $2 \mu \mathrm{f}$ max. For frequencies to 100 mc , both units provide a minimum rectification efficiency of 45% and have a guaranteed maximum leakage of 25 muamp at 20 v . They dissipate 250 mw at 25 C and have a piv rating of 75 v .

Texas Instruments Inc., Semiconductor-Components Div., Dept. ED, P.O. Box 312, Dallas, Tex. Price \& Availability: They are available immediately. Price of the 1 N914 is $\$ 6$ ea for 1 to 99, $\$ 4.50$ for 100 to 999. Price of 1 N916 is $\$ 8.04$ ea for 1 to 99, \$6.02 for 100 to 999.

DC Power Supply

Delivers 125 to 150 v

Model PS4018 transistorized power supply provides a regulated source of 125 to 150 v dc for general purpose use. Operating from a nominal input of 105 to 125 v ac, it has a load current range of 0 to 1.5 amp . The output varies less than $\pm 0.2 \mathrm{v}$ for line changes of $\pm 10 \mathrm{v}$, with load held constant. There is less than 0.2 v change in the output for load changes from zero to full rated current. Ripple and noise figure is less than 2 mv rms, efficiency is 65% of full rated load, and a $30-\mathrm{sec}$ high voltage delay can be furnished on the unit.

Power Sources, Inc., Dept. ED, Burlington. Mass.
Jack Panels
402
3 types available

Types 921, 928, and 929 jack panels are made of aluminum and are all 19 in . wide. Type 921 is $1-3 / 4 \mathrm{in}$. high; both other types, although similar in construction to the 921, are 3-1/2 in. high. The 921 provides for 12 type 925 jacks, the 928 , 24 , and the 929 , for 48 jacks.

Nems-Clarke Co., Dept. ED, 919 Jesup-Blair Drive, Silver Spring, Md.
Price \& Availability: Delivered 14 days after receipt of order. Price of 921, \$130; 928, \$200; 929, $\$ 325$; 925 plug, $\$ 5.75$.

largest selection, standards \& specials

AMPHENOL pioneered Teflon extrusion; we researched, developed and perfected a technique of fabrication resulting in the finest Teflon dielectric cables available, cables capable of meeting the most exacting requirements of industry and the military.
Today, AMPHENOL Cable \& Wire Division's Cable-bilities provide you with the largest selection of RG-/U and special Teflon cables anywhere. Whatever your Teflon requirement, AMPHENOL is your best source for (1) availability, (2) fastest delivery and (3) reliability, based upon pioneering and experience.

AMPHENOL Cable \& Wire Division's leadership in Teflon cables is another example of Cable-bility at work!

(AMPHENOL

CABLE \& WIRE DIVISION S. harlem ave. at 63 RD St., chicago 38

 Amphenol-Borg Electronics Corporation
NEW PRODUCTS

Test Set

For tachometer generators and servo motors

This test set tests a variety of tachometer generators and servo motors. It consists of a switching panel, a modular ac vtvm with an accuracy of 2%, a modular $3-\mathrm{in}$. oscilloscope, and a subassembly phase shifter. Model TGSM-284 measures $28 \times 21-3,4 \times 12 \mathrm{in}$.

Building Blocks Electronic Co., Dept. ED, 2172 East 36th St., Brooklyn 34, N.Y.
Price \& Availability: Made on order only. Delivery 4 weeks after order received. Price is $\$ 1750$ per unit.

Recording System

Measures environmental parameters

Designed to measure environmental parameters, model ES-102 recording system can be used with any transducing element having contact closures as the output presentation. It provides 24 channels for recording up to 20 events per sec, and one time channel for correlation. Typical system applications are in monitoring large control systems, transportation impact and temperature recorders.
Santa Barbara Instrumentation Corp., Dept. ED, 411 State St., Santa Barbara, Calif.
Price \& Availability: Basic system available from stock. Unit made on order when special transducer is required. Delivery is 30 to 60 days after order received. Prices range from $\$ 4000$ up.

New NAVCOR Series 300 completely transistorized $5^{\prime \prime} \times 6$ card modules available from stock to efficiently perform all major pulse generating and programming functions.

Write for Series 300 Bulletin

MAVIGATION COMPUTER GORP. 1621 SAYDER AVE., PHILADELPHIA 45, PA. PHONE: HOward 5-7700

WIDEST

 RANGE

Why other bridges can't match the accuracy, range or versatility of the
Wayne Kerr Universal Bridge, Type B-221

- Measures Capacitance to $0.1 \%-.0002 \mu \mu$ i-11 1 i - Measures Cond
$110 \mathrm{Q}-100 \mathrm{ma}$
- Measures Inductance $100.1 \%-1 \mathrm{mH}$-infinity - Frequency Range- $50-20,000 \mathrm{cps}$ linternal oscillotor and detector for operation o+ 1000 cpsl Exlended range using Low Impedance Adaptor: I $\mu \mathrm{i}$ to $250,000 \mathrm{\mu}$ - $-50 \mu \mathrm{O}$ to $100 \mathrm{D}-5 \mathrm{~m} \mu \mathrm{H}$ to 10 mH
- Price- $\$ 880$ F.O.B. Philadelphía

Measures RC in Paral-

Zu Measured in cirevir $1 \&$ Ql
Wayne Kerr Universal Bridge, Type B-221 is a highly accurate transformer ratio arm bridge providing 2, 3 or 4-terminal measurement of impedance or transfer admittance over an extremely wide range. An impedance between any two terminals may be easily measured regardless of other impedances from either or both terminals and a third point. Measurement is unaffected by impedance of test leads.

OTHER INSTRUMENTS: Audio to VHF Bridges; Ossillators; Attenuators; Microwave Equip. ment; Vibration and Distance Meters; WoveToin Analyzer.

Send for complete W-K-02 catalog sh , wing other instruments.

WAYNE KERR

 CORPORATION1633 Race St., Philadelphía 3, Pa.
Ry resentatives in major U.S. cities and Canada CI CLE 115 ON READER-SERVICE CARD

Ferrite Single-Sideband Modulator

Conversion losses are less than 20 db

Model MX 200 ferrite single-sideband modulator produces frequency translations of the incoming signal by means of two ferrite balanced modulators. These units produce frequency offsets with conversion losses of less than 20 db . Operation from 9.6 to 10.6 kmc is possible with slight adjustments for carrier suppression. Sidebands not wanted are suppressed below 20 db over a 2% band without adjustment.

Rantec Corp., Dept. ED, Calabasas, Calif. Price \& Availability: Price is $\$ 815$. Delivery requires 45 days.

Subcarrier Oscillators

Three models offered

For use in extreme missile environments, these transistorized voltage-controlled oscillators come in three models to cover conventional signal, frac-tional-volt, and millivolt ranges. Type 1250 is used for signals of 0 to $+3 \mathrm{v}, 0$ to $+5 \mathrm{v}, \pm 1.5 \mathrm{v}$, and $\pm 2.5 \mathrm{v}$. Type 1251 operates with $0.25-\mathrm{v}$ inputs and is compatible with $1 / 4-\mathrm{v}$ output pressure transducers. Suitable for bridge instrumentation, type 1252 needs 20 mv for full deviation. All units operate from an unregulated $28-v$ source. They operate over the temperature range of -55 to +125 C and are able to stand $30-\mathrm{g}$ random vibration, $150-\mathrm{g}$ acceleration, and $200-\mathrm{g}$ shock.
Tele-Dynamics, Inc., Dept. ED, 5000 Parkside Ave., Philadelphia 31, Pa.
Price \& Availability: Units are available from stock and prices will be furnished on request. Type 1252 has a delivery time of 30 days.

SAUGER FAN

 280 CFM

The Saucer Fan represents an entirely new design concept whereby the driving motor is built within the propeller hub limiting its axial length to the minimum measurement required by a highly efficient motor. Ideally suited for tightly packed electronic packages, where space is critical, the Saucer Fan will provide cooling air to the amount of 280 cfm . Power requirement is 115 vac . Power requiren
$50-60 \mathrm{cps}, 10$

The fan's pressure performance is tailored to the requirements of a modern, washable dustfilter. "Servo type" mounting flanges at each end of the venturi ring permit simplicity of mounting without loss oermit space. Direction of airflow may be of space. Direction turning the fan end for easily reversed by turning the fan end to
end. Electrical connections are made to end. Electrical connections

For complete technical details write to ...

INDUSTRO

pnp alloy junction germanium COMPUTER sransistors to MIL-T-19500A

- Medium to high speed switching
- Medium gain
- Tight parameters
- Very linear current amplification factor

TYPE	VCER REE $R_{B E}=5 \mathrm{~K}$ volts	fab typ mc	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \mathrm{yyp} \\ \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{ma} \\ =-0.25 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \mathrm{Itg}_{\mathrm{typ}}=-10 \mathrm{ma} \\ \mathrm{VCE}=-0.35 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Rsat (typ) } \\ \mathrm{IB}_{\mathrm{I}=-10 \mathrm{ma}}^{\mathrm{IC}}=-100 \mathrm{to}-200 \mathrm{ma} \\ \text { ohms } \end{gathered}$
2N425	-30	4	30	20	2.2
2 N 426	-25	6	40	25	2.2
2 N 427	-20	11	55	25	1.3
2N428	-15	17	80	35	1.1

- Medium gain, fast switching
- High reliability at maximum ratings
- Tight parameters
- Low leakage current at high temperatures

TYPE	VCER $R_{B E}=1 K$ volts	fab typ mc	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \mathrm{typ} \\ \mathrm{IC}_{\mathrm{C}}=-10 \mathrm{ma} \\ \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{VV} \end{gathered}$	$\begin{gathered} \text { Ісво } \\ \max ^{\text {max }} \\ \mathrm{V}_{\text {CBO }}=-20 \mathrm{~V} \\ \mu \mathrm{a} \end{gathered}$	$\begin{gathered} \mathrm{IEBO}_{\mathrm{max}} \\ \mathrm{~m}_{\mathrm{EBO}}=-10 \mathrm{~V} \\ \mu \mathrm{a} \end{gathered}$	$\begin{gathered} \text { VCEsat } \\ =\text { typ } \\ I_{c}=-10 \mathrm{ma} \\ \text { volts @ } \mathrm{I}_{\mathrm{B}} \end{gathered}$
2N1284	-20	8	90	-6	-6	$-1.5-.5 \mathrm{ma}$

- General purpose HF switching
- Low leakage current at high temperatures
- Tight parameters
- High reliability at maximum ratings

TYPE		fab typ mc	$\begin{aligned} & \mathrm{h}_{\mathrm{ffe}} \\ & \text { typ } \end{aligned}$	$\begin{gathered} \mathrm{I} \text { Iво } \\ \max \\ \mathrm{V}_{\mathrm{CBO}}=-12 \mathrm{~V} \\ \mu \mathrm{a} \end{gathered}$	$\begin{gathered} \text { IEbo } \\ \max ^{2}=-12 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EbO}}=-12 \end{gathered}$	Cob typ $\mu \mu \mathrm{f}$
2 N 413	-25	2.5	30	5	-5	12
2 N 414	-20	7	60	-5	-5	12
2N414B	-24*	7	60	-6@-20V	-5	12
2N416	-15	10	80	-5	-5	12
2 N 417	-12	20	140	-5	-5	12

- High gain
- HF fast switching
- Low leakage current at high temperatures
- High reliability at maximum ratings

TYPE	$\begin{gathered} V_{\text {VCEX }} \\ \mathrm{V}_{\mathrm{BE}}=0.25 \mathrm{~V} \\ \text { volts } \end{gathered}$	fab typ mc	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \mathrm{typ} \\ \mathrm{I}_{\mathrm{C}}=-20 \mathrm{ma} \\ \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{CBO}} \\ \max _{\mathrm{max}}=-15 \mathrm{~V} \\ \mathrm{~V}_{\mu \mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{IEBO}_{\max } \\ \mathrm{V}_{\mathrm{EBO}}=-5 \mathrm{~V} \\ \mu \mathrm{a} \end{gathered}$	$\begin{gathered} V_{\mathrm{BE}} \\ \mathrm{IC}_{\mathrm{max}}=-20 \mathrm{ma} \\ \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{lV} \end{gathered}$
2N1344	-15	12	90	-10	-10	-.6V

- Medium to high gain
- HF switching
- Low leakage current at high temperatures
- Tight parameters
- Very linear current amplification factor

TYPE	$V_{\text {CER }}$ Rbe=1K volts	fab typ mc	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \mathrm{typ} \\ \mathrm{IC}_{\mathrm{Cl}}=-10 \mathrm{ma} \\ \mathrm{~V}_{\mathrm{CE}}=-1 \mathrm{VV} \end{gathered}$	$\begin{gathered} \mathrm{hFE}_{\mathrm{FE}} \\ \mathrm{IC}_{\mathrm{c}}=-200 \mathrm{ma} \\ \mathrm{VCE}=-0.35 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { VCEsat } \\ \text { typ } \\ \text { Ic }=-50 \mathrm{ma} \\ \text { volts @ } \mathrm{I}_{\mathrm{B}} \end{gathered}$
$\begin{aligned} & 2 N 1353 \\ & 2 N 1354 \\ & 2 N 1355 \\ & 2 N 1357 \end{aligned}$	$\begin{aligned} & -16 \\ & -20 \\ & =25 \\ & -20 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & 8 \\ & 12 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 80 \\ & 85 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \\ & 20 \end{aligned}$	-0.1 -5 ma -0.1 -5 ma -0.08 -3.3 ma -0.07 -2.5 ma

Floating base replacement for $2 \mathrm{~N} 394,2 \mathrm{~N} 395,2 \mathrm{~N} 396,2 \mathrm{~N} 397$

- Special selection to customer parameters - 100% test to all parameters - For critical

INDUSTRO

TRANSISTOR CORPORATION
35-10 36th Avenue, Long Island City 6. N. Y. - EXeter 2.8000
IN CANADA: Canadian General Electric Co. Ltd
EXPORT SALES: Roburn Agencies. Inc., 431 Greenwich St., New York 13, N. Y.
CIRCLE 117 ON READER-SERVICE CARD

NEW PRODUCTS

Modular Microwave Components 7C6
For the range of $\mathbf{1}$ to $\mathbf{2 k m c}$

These L-band components include hybrid rings, $3-$ and $20-\mathrm{db}$ couplers, and a 25 - to $50-\mathrm{ohm}$ transformer. These modules are suitable for computers, as well as radar, communications, radio astronomy, and countermeasures amplification. They are designed to mate with broadband transitions, power dividers, right angle vertical and horizontal bends, crystal mounts, and terminations now used with other TRI-PLATE modules. They can be quickly connected by thumb-screws.
Sanders Associates, Inc., Dept. ED, 95 Canal St., Nashua, N.H.
Price \& Availability: Hybrid rings: $\$ 230$ ea; 3-db couplers: $\$ 250$ ea; 20-db couplers: $\$ 125$ ea; transformers: $\$ 40$ ea. Delivery is in 30 days.

Silicon Rectifiers

Are stable at high temperatures

Offering stable characteristics at high temperatures, these silicon rectifiers are rated at 20 to 35 amp and 60 to 600 piv . They contain solders having a melting point in excess of 600 C . Reverse current is less than 5 ma and the maximum forward drop voltage at 25 C and at 20 amp dc is 0.65 v . The $11 / 16-\mathrm{in}$. stud construction houses a silver, heavy spring lead anode. These units are for power supply and magnetic amplifier applications.

Dallons Semiconductors, Dept. ED, 5066 Santa Monica Blvd., Los Angeles 29, Calif.
Price \& Availability: Units are available from stock; price will be quoted on request.

Noise Generator

Uses a 6D4 as a noise source

Suitable for many types of electrical testing, type 1390-B random noise generator uses a 6D4 gas discharge tube as a noise source. Noise output is amplified in a 2 stage amplifier, which has noise-spectrum shaping filters controlled by a 3 stage front panel switch. The unit may be used to test noise interference, servo amplifiers, radar, and meter response. Cabinet measurements are $12 \times 7 \times 8$ in.
General Radio Corp., Dept. ED, West Concord, Mass.
Price \& Availability: Available from stock by March 1, 1960. Price is $\$ 295$ net, fob, West Concord, Mass.

Tuning-Fork Oscillator
708 atel, available from stock. Units with non-standard 'requencies can be furnished in two to four wee s. Prices range from $\$ 162$ to $\$ 172$.

RISE TIME OF LESS THAN 2.5 MILLIMICROSECONDS

- REPETITION RATE OF 10 cps to 10 Mc
olus these other features
- PRECISION PULSE WIDTHS 2.5 to 25 millimicroseconds
- INDEPENDENT OUTPUTS Two fully controlled 0.8 volt outputs
- FLEXIBLE Internal or external drive, provision for external gating and single pulse operation
Here is a new all-electronic instrument with the performance features and quality engineering - you need for advanced applications.
The 120B's fast rise time and high repetition rate make it unexcelled for general laboratory use in development. production and testing of diodes, fast transistors, cables, pulse transformers, delay lines and video amplifiers... for development and check-out work in the computer field, for rf applications, and in nuclear test work. Formore information on the $120 B$ or other E-H pulse generators, write or wire E-H.

SPECIFICATIONS
RISE TIME (10% to 90%)
Less than 2.5 millimicrose
Less than 2.5 millimicroseconds
PULSE WIOTM
REPETITION RATE (External or Internal) REPE
10 cps to 10 Mc outpurs
(Two Independent Output Channels)
Amplitude Amplitude, 0 to minus 8 volts (use $\mathrm{E} \cdot \mathrm{H}$
model 1 IT pulse transforme for modarity inversion and impedance
pole matching)
Impedance, 93 ohms
thigen output
Positive 15 volt pulse
CONMECTONS
All BNC type
TRIGGER ADVANCE
EXTEPMAL DRIVE
EXIERNAL DRIVE
Oelay. 50 millimicrosecon Delay. 50 millimicroseconds
Amplitude required, 3 volts rms ElECTRONIC GATE
Gating time, less than
100 millimicroseconds
100 millimicroseconds
Amplitude required, positive 20 volts

E-H RESEARGH LABORATORIES, INC.
1922 PARK BLVD. - GLENCOURT 2-1314. OAKLAND 6, CALIFORNIA

CIRCLE 110 ON READER-SERVICE CARD
Ele :TRONIC DESIGN • February 17, 1960

More reliable products through Advanced Engineering

CBS ELECTRONIC8, Semiconductor Operations. A Division of Columbia Broadcasting System, Inc.
Sabe Offices: Lowell, Masa., 900 Chelmsford St., GLenview 4-0446. Newark, N. J., 231 Johnson Ave., TAlbert 4-2450. Melrose Park. Ill.in 1990 N. Mannheim
 Minneapolis. Minn., The Heimann Co., 1711 Hawthorne Ave., FEderal 2 -5457 - Toronto, Ont.,
CIRCLE 119 ON READER-SERVICE CARD

CBS NPN switching transistors have proved themselves in flight in many of our important "birds." They have been found to have the advantages of fast switching, high voltage, low cutoff current, and low saturation resistance. All 28 of these CBS transistors exceed the MIL-T-19500A specification.
This same proven reliability under the most adverse environmental conditions is yours for military or industrial core drivers, logic circuits or general switching functions. Write for complete data sheet E-353. Order from your local Manufacturers Warehousing Distributor.

Choose From . . .

2N306 2N357. 2 N388 2 2N439A $\quad 2$ N445 2 2N558 $\quad 2 N 1000$ 2N312 2 2N358 2 2N438 $\quad 2$ N44O \quad 2N446 $\begin{array}{llllll}2 N 634 & 2 N 1012\end{array}$ 2N356 2N377 2N438A 2N440A 2 2N447 \quad 2N635 $\quad 2 \mathrm{Nlogo}$ $\begin{array}{lllllll}2 N 356 A & 2 N 385 & 2 N 439 & 2 N 444 & 2 N 556 & 2 N 636 & 2 N 1091\end{array}$

The following Fairchild transistors are available from stock for same day shipment in quantities up to 10OO pieces per type. Standard NPN: 2N696, 2N697. High Voltage NPN: 2N699. High Beta NPN

2N1420. Low Stord NPN: 2N1252,2N1 3 . Standard PNP: 2N 31, 2N1132. Mesa: $\$ 706$.

TWX MERRICKS ROAD,
MINEOLA. L. L., N.Y. PIONEER 6-6520左
 TWX G-CY-NY-SBAD

\leftarrow - CIRCLE 120 On READER-SERVICE CARO

545 WHISMAN ROAD - MOUNTAIN VIEW, CALIFORNIA - YORKSHIRE \&-8161 - TWX: MOUNTAIN VIEW CAL 122

Symbol	Characteristic	Rating	Min	Typ	Max	Test Conditions	
$\mathrm{hreg}_{\text {fe }}$	$\begin{array}{ll} \text { D.C. pulse current } \\ \text { gain } & { }_{2}^{2 N 1252} \\ \text { 2N1253 } \end{array}$		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}$
${ }^{\text {P }}$ C	Total dissipation at $25^{\circ} \mathrm{C}$ case temperature	2 watts					
$V_{\text {be Sat. }}$	Base saturation voltage			0.96	1.3 V	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	$I_{B}=15 \mathrm{~mA}$
$V_{\text {CE SAT }}$.	Collector saturation voltage			0.6 Y	1.5V	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$
$\mathrm{n}_{\text {fe }}$	Small signal current gain at $f=20 \mathrm{mc} \begin{array}{r}2 N 1252 \\ 2 N 1253\end{array}$		$\stackrel{2}{2.5}$	$\begin{aligned} & 4.5 \end{aligned}$		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}$
${ }^{\text {'cbo }}$	Collector cutoff current			$\begin{gathered} 0.1 \mu \mathrm{~A} \\ 100 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 10 \mu \mathrm{~A} \\ 600 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & v_{C}=20 \mathrm{~V} \\ & v_{C}=20 \mathrm{l} \end{aligned}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \mathrm{C}=150^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{t}_{\mathbf{s}}+\mathrm{t}_{\mathbf{f}}$	Turn off time			$75 \mathrm{~m} \mu \mathrm{~s}$	$150 \mathrm{~m} \mu \mathrm{~s}$	$\mathrm{I}^{\prime} \mathrm{C}=150 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{Bl}}=15 \mathrm{~mA}$
						$\mathrm{I}_{\mathrm{B} 2}=5 \mathrm{~mA}$ Pulse width $=$	$\begin{aligned} & R_{L}=40 \Omega \\ & 10 \mathrm{~ms} \end{aligned}$

For full specifications, write Dept. B-2
HOW? - By using Fairchild's 2N1252 or 2N1253 lowstorage silicon mesa transistors. The guaranteed low storage characteristic permits a simple saturating circuit to achieve switching speeds that previously required complex non-saturating circuits.
WHY? - Improved reliability and reduced cost - one semiconductor instead of five and fewer soldered connections. Power dissipation is only $1 / 3$ rd to $1 / 5$ th as great, making possible much higher component densities in packaging. Cost and reliability are improved all the way from development through volume production.
WHERE? - Switching circuits in general. The 2N1252 and 2N1253 are ideally suited to high-speed high-current switching applications such as magnetic-core drivers, drum and tape write drivers, high-current pulse generators and clock amplifiers. In addition, the transistors are applicable to medium-speed saturated logic circuits.

FAIRCHILD 2N1252 and 2N1253 CIRCLE 121 ON READER-SERVICE CARD

NEW PRODUCTS

Precision Switch
Has two-way adjustable roller-lever actuator

This adjustable-roller-arm enclosed switch comprises a basic $2 \mathrm{HB}-5$ spdt precision snap-acting switch in a die-cast aluminum housing. The switch has a sealed overtravel plunger and is suitable for operation by either fast or slow cams or slide actuating devices. The basic switch is rated at 20 amp at 125,250 , and 480 v ac and can also be furnished with ratings of $3 / 4 \mathrm{hp}$ at 125 v ac and $1-1 / 2 \mathrm{hp}$ at 250 v ac.

Unimax Switch Div., The W. L. Maxson Corp., Dept. ED, Ives Road, Wallingford, Conn.

Circuit Board Holder

394

Adjustable to any width

Designed for use with model 344 work positioner, attachment No. 369 is a device consisting of horizontal bar on which are mounted 2 slotted vertical holders. Each vertical arm has a set screw that allows it to be adjusted to any desired width. Since the work positioner cannot be depressed below the horizontal, there is no need for a locking mechanism, and work pieces cannot slip from it.

Wilton Tool Mfg. Co., Inc., Dept. ED. 9525 Irving Park Road, Schiller Park, Ill.

Resistance Thermometers

For continuous operation of 1800 F

The MP series resistance thermometers, having platinum grids and lead wires, are for continuous

Features like these make Honeywell first in Power Transistors!

Dynamically tested to insure highest quality

Listed minimum and maximum current gain specifications to aid designers

Stud-mounted for simple installation and reduced interface thermal resistance

Alloyed junction, germanium PNP transistors

Will operate at junction temperatures up to $95^{\circ} \mathrm{C}$.

Solder terminals for wiring ease and high current carrying capability

Hermetically sealed for reliability and long life

For miniaturization and high power capabilities, Honeywell's complete line of power transistors is your best answer. Rugged, compact, versatile, Honeywell transistors give you smaller size per wate of power output. With a narrow span of character-
istics, you get superior electrical performance and high uniform power gain over a wide range of collector current values. For complete information, contact one of the Honeywell offices shown below, or write Honeywell, Dept. ED-2-34, Minneapolis 8, Minn.

Honeywell Semiconductor Products Sales Offices

UNION, NEW JERSEY - ORLANDO, FLORIDA - BOSTON, MASSACHUSETTS - LOS ANGELES, CALIFORNIA - TORONTO, ONTARIO OTTAWA, ONTARIO - CHICAGO, ILLINOIS • MONTREAL, QUEBEC • GENERAL SALES, MINNEAPOLIS, MINN.
Peerless Radio Distributors, Inc.
Jamaica, New York
Stark Electronics Supply Co.
Minneapolis, Minn.

Distibutors
Peerless Radio Distributors, In ark Electronics Supply Co

Elecironic Supply Co. Melbourne, Florida

Allied Radio Corp.
Chicago, III.

Electronic Supply Co. Miami, Florida

Oakl
Oakland, Calif.

Allas Electronics, Ine
San Diego, Calif.
T. F. Cushing, Inc.

Springfteld, Massachusetls

Flight Electronics Supply Corp. Inglewood, Calif.

DeMambro Radio Supply Co. Boston, Massachusetts

ell reliability and long transistor application!

High voliage (up to 80 volts), high current, high gain, low thermal resistance transisfors. Designed for use in high-power amplifiers (servo, audio, etc.), power converters, switching circuits, voltage regulators, and other similar applications. Their small size and simple stud mounting give these transistors a power rating (per unit volume) higher than any other commercially available units. 2N538, 2N538A, 2N539, 2N539A, 2N540 and 2N540A; 2N1202, 2N1203, 2N1261, 2N1262 and 2N1263. For less critical applications at lower costthe new 2N1501, 2N1502, 2N1503.

Tefrode power fransistors. Designed for use in applications where exceptional linearity or stability is required. These transistors have two connections to the base layer. 3 N 45 and 3 N 46 .

Low current fransistors ($1 / 2$ ampere). Designed for use in servo amplifiers, audio amplifiers, and all other relatively low-current power applications H3A and H4A.
Transistors approximately twice actual size

Honeywell H Fint in Cantal

 Circle 122 on reader-service cardoperation at 1800 F and intermittent operation to 2000 F . They are easily bonded with ceramic cement to flat surfaces. Type MP-100, the smallest unit, measures $3 / 8 \times 7 / 8 \mathrm{in}$. The time constant is as low as 1 sec .
Arthur C. Ruge Associates, Inc., Dept. ED, Hudson, N.H.

Price \& Availability: Price is $\$ 50$ ea for orders of 2 to 9 units and $\$ 41.50$ for orders of 10 to 49 . The unit shown is available from stock.

Electric Utility Ovens

Temperature range is 37.8 to 260 C

These recirculating electric utility ovens offer a temperature range of 37.8 to 260 C . The automatic hydraulic thermostat has a response sensitivity of $\pm 0.5 \mathrm{deg}$ C. A power selector switch controls wattage input of low, medium, and high temperatures. Fiberglas insulation 3 -in. thick is used on all six sides of the ovens. All wiring is complete and is enclosed.

Blue M Electric Co., Dept. ED, 138th \& Chat ham St., Blue Island, Ill.
Price \& Availability: Units are available from stock at a price of $\$ 335$ ea.

Monitor Panel

710
Accuracy is 0.1%

Designed for strain gage instrumentation model ENO-2 monitor panel reads bridge excitation voltage and bridge unbalance to an accuracy of 0.1%. The voltage to be measured is compared with an equal voltage selected from a Zener diode regulated supply. A portion of this reference is selected by a precision potentiometer and an as sociated digital dial. When the meter reads, "null," the unknown voltage is equal to that indicated by the digital dial. Each meter is preceded by an integral differential dc amplifier.

Video Instruments Co., Dept. ED, 3002 Pennsylvania Ave., Santa Monica, Calif.
Price \& Availability: Price is $\$ 559$. Units will be available from stock after January 20, 1980.

The scientific data that will some day enable us to probe successfully to the very fringes of the universe is being recorded and transmitted at this moment by the space laboratory Explorer VI, a satellite now in orbit around the earth This project, carried out by Space Technology Laboratories for the National Aeronautics and Space Administration under the direction of the Air Force Ballistic Missile Division, will advance man's knowledge of : The earth and the solar system ...The magnetic field strengths in space . . The cosmic ray intensities away from earth ... and, The micrometeorite density encountered in inter-planetary travel Explorer VI is the most sensitive and unique achievement ever launched into space. The $29^{\prime \prime}$ payload, STL designed and instrumented by STL in cooperation with the universities, will remain "vocal" for its anticipated one year life.

How? Because Explorer VI's 132 pounds of electronic components are powered by storage batteries kept charged by the impingement of solar radiation on 8,000 cells in the four sails or paddles equivalent to 12.2 square feet in area Many more of the scientific and technological miracles of Explorer VI will be reported to the world as it continues its epic flight. The STL technical staff brings to this space research the same talents which have provided systems engineering and over-all direction since 1954 to the Air Force Missile

Programs including Atlas, Thor, Titan, Minuteman, and the Pioneer I space probe.

Important staff positions in connection with these activities are now available for scientists and engineers with outstanding
capabilities in propulsion, electronics, thermodynamics, aerodynamics, structures, astrophysics, computer technology, and other related fields and disciplines.

NEW PRODUCTS

Gyro

Has 2 degrees of freedom

Model Q2315 gyro, a two degree of freedom unit, has ac synchro transmitters at each gimbal axis to provide angular displacement data. Ac torquers at each gimbal axis permit command po sitioning or slaving of spin axis to desired refer ence position. Intermittent torquing rate is 360 deg per min; continuous torquing rate is 40 deg per \min. The instrument has a squirrel-cage, in duction-type motor for low power consumption at operating speed.
Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.
Price \& Availability: Delivery and price data on request.

VHF Preamplifier

Noise figure is 3 db at 85 mc

Designed for use in the range of 50 to 200 mc . model 1001 vhf preamplifier has a noise figure of better than 3 db at 85 mc and 4.5 db at 200 mc with a nominal gain of 30 db . The bandwidth is 10 mc . Input and output impedance is 50 ohms. The unit is fixed-tuned to the required frequency. The amplifier sub-assembly and integral power supply are mounted in a light-weight chassis on a standard-size rack panel protected by an easily removable dust cover. Standard type N connectors are used.
Community Engineering Corp., Dept. ED, P.O. Box 824, State College, Pa.

Price \& Availability: Units are made on order only according to frequency requirements of the customer. Price is $\$ 295$ per unit; delivery is in 30 to 45 days.

How to design 250 mw at 140 mc transistorized power amplifiers

osciliator power output vs. frequency

This power rating for 1000 hours expected life at a case temperatu
of $25^{\circ} \mathrm{C}$ derated linearly to $+175^{\circ}$ case temperature at the rate of
$.125^{\circ} \mathrm{C}$ per mww lineariy to $+175^{\circ} \mathrm{case}$ temperature at the rate of
Maximum voltage ratings at an ambient temperature of $+25^{\circ} \mathrm{C}$.
Maximum voitage ratings at an ambient temperature of $+25^{\circ} \mathrm{C}$.
$\mathrm{VV}_{\text {CEO }}$: This is the voltage at which h_{FB} approaches one when th emitter-base diode is open circuited. This value may be exceeded in pplications where the dc circuit resistance ($\mathrm{R}_{\text {BE }}$) between base and
per When the emitter-base diode has a reverse voltage applied, peak collector to mitter voltage equal to $8 V$ CBO minus VEB^{2} may be allowed. Such conditions may be encountered in class B or C
amplifiers and oscillators.
Specify IEBU On commercial data sheel
Specify ICBŌ on commercial data sheet
the first silicon transistor manufacturer

.with NEW TI 2N716 silicon mesa transistors
Now . . . silicon high frequency transistors specifcally designed for your VHF power circuits . . . another addition to the industry's broadest line of silicon mesa transistors (now 16 TI types!). TI 2 N 715 and TI 2 N 716 guarantee $500-\mathrm{mw}$ amplifier output at 70 mc and provide $100-\mathrm{mw}$ typical power output at 200 mc .
These subminiature (TO-18) silicon units feature . . . 1.2 -w dissipation at $25^{\circ} \mathrm{C}$ case temperature . . . 10-50 beta spread ... collector reverse voltages of 50 and 70 v . . . maximum collector reverse currents of $1.0 \mu \mathrm{a}\left(25^{\circ} \mathrm{C}\right)$ and $100 \mu \mathrm{a}\left(150^{\circ} \mathrm{C}\right)$.
Check the guaranteed specs below and take immediate advantage of advanced performance in your designs. Both units are ready for your orders in every TI distributor's stocks today, and in quantities of 1,000 and up from your nearest TI sales office.

$\begin{aligned} & 1 \\ & P_{\mathrm{c}} \\ & \mathrm{~T}_{\mathrm{c}}=25^{\circ} \mathrm{C} \\ & \text { watt } \\ & 1.2 \end{aligned}$	Tste${ }^{\circ} \mathrm{C}$	$\stackrel{i}{V B}_{2}$			${\stackrel{2}{v_{E B}}}^{2}$			$\mathrm{V}_{\text {CE }}^{8}$			
		$\begin{gathered} v \mathrm{dc} \\ +70(2 N 716) \\ +50(2 N 715) \\ \hline 2 \mathrm{M} 716 \\ \hline \end{gathered}$			$\begin{aligned} & v d c \\ & +5 \\ & \hline \end{aligned}$ 2 NTIT			$\begin{aligned} & 1 c \\ & 40(2 N 716) \\ & 35(2 N 715) \end{aligned}$			
Pramotor	Tesi Candition	Min	Typ	Max				Min	Typ	Mar	Unis
${ }^{\bullet}{ }^{\text {BVV }}$ EBO	${ }^{1} \mathrm{EBO}=0^{-100} \mu \mathrm{~A}$	5			5			\checkmark dc			
${ }^{-\cdots{ }^{\text {BV }} \text { CBO }}$		50			70			\checkmark de			
${ }^{\text {hfe }}$	$\begin{aligned} & V_{C E}-10 \mathrm{vdc} \\ & I_{C}=15 \mathrm{madc} \end{aligned}$	10		50	10		50				
${ }^{\circ} \mathrm{V}_{\text {CE }}($ sat $)$	$\begin{aligned} & i_{B}=15 \mathrm{ma} \\ & i_{B}=3 \mathrm{ma} \end{aligned}$	12			1.2			v dc			
$C_{0 b}$	$\begin{aligned} & V C B=5 \mathrm{vdc} \\ & 1 E=0 \mathrm{mc} \\ & F=1 \mathrm{mc} \end{aligned}$		3	6		3	6	$\mu \mu \mathrm{f}$			
$\begin{aligned} & \hline \text { Amplifier } \\ & \text { Power } \\ & \text { Output } \\ & \text { and } \end{aligned}$					500	${ }^{600} 7.5$		$\underset{d b}{m w}$			
Transducer gain		300	400 8					dw			

Texas

INSTRUMENTS INCORPORATED semiconouctor.components division SEMOONDECTM.COMPONENT
POST OFFICE BOX 312 . DALLAS. TEXAS CIRCLE 124 ON READER-SERVICE CARD \rightarrow

ONE ORDER TO

- for Alf your ELECTRONIC SUPPLE NEEDS
SAME-DAY SHIPMENT next-dhy dallyery by air where required

on TEXAS INSTRUMENTS SEMICONDUCTORS

PRICES ON
Silicon Transistors: 1-999
Germanium Transistors: 1-999 Silicon Diodes and Rectifiers: 1-999 Carbon Film Resistors: 1-999 sensistor Silicon Resistors: 1-499 tan-T1-cap Tantalum Capacitors: 1-9

ALLIED RADIO CORP.

100 N. WESTERN AVE CHICAGO 8O, ILLINOIS

HAymarket 1-6800 TWX: CG-2898

REGATRAN SEMICONDUCTOR POWER SUPPLIES...

Here's reliability . . . Since their introduction, over 24 months ago, not one Regatran has lost a series transistor due to short circuits or overloading.

NEW PRODUCTS

High-Mu Triode frequency multiplier circuits. In such use, it operates to 2900 mc .
General Electric Co., Power Tube Dept., Dept. ED, Schenectady 5, N.Y.

Telemetering Discriminator

Linearity is 1% of bandwith

Model A-115 telemetering discriminator has a linearity of within 1% of bandwidth and a sensitivity of 50 mv to 10 v . The basic chassis includes a limiter amplifier and a driver amplifier with a front panel meter for reading subcarrier deviation. A gain pot is incorporated to adjust the dc output level. Each chassis accepts a plug-in subchassis containing the band-pass filter, discriminator, and low-pass filter.

Deeco Instruments, Inc., Dept. ED, 14737 Arminta St., Van Nuys, Calif.
Price \& Availability: Until May 1, 1960, the unit will be made only on order and will require a delivery time of 30 days. Price is $\$ 600$.
[igital Readout
Has rear-projection operation

Makes to 100,000 contacts per min

This rotary switch is able to make up to 100,000 contacts per min, with no contact bounce. Contact loss is less than 0.0003 ohms. Multiple sliding contacts reduce torque to a maximum of $1.3 \mathrm{oz}-\mathrm{in}$. per modular wafer. Switches may have 1 to 101 contacts per modular wafer; operating voltages range from 1 to 208 v . Up to 16 modules can be mounted in a panel 6 in. deep. Units are light in weight; a 50 -contact switch weighs 6.5 oz and nivasures 2.625 in . in diameter. Made to meet military requirements, the units stand 60 g shock ar 150 g vibration from 0 to 2000 cps . Uses include diode and transistor circuitry control, tel${ }^{\text {el }}$ etry and multiple circuit-testing readout; units ciit also be used with motor and gearhead motor drives.
;enge Industries, Inc., Products Div., Dept. E $; 1500$ E. Colorado St., Glendale 5, Calif. Prce \& Availability: Price will be furnished on re, uest. Delivery is in two to six weeks.

This miniaturized digital readout uses the rearprojection principle of operation. The light source comes from subminiature lamps, either No. 327, 328 , or 330 . Voltage is from 6 to 28 v . The aluminum case may be mounted on 1 -in. centers; rear wiring to the unit facilitates installation. Approximate weight of the unit is 4 oz .
Industrial Electronic Engineers Inc., Dept. ED, 5528 Vineland Ave., North Hollywood, Calif. Price \& Availability: Available from stock in units or assemblies. Price is $\$ 35$ each, quantity prices on request.

Rotary Switch

Save this

 Guide to Oak Choppers

miniature series 600-most stable in its class

No organic materlals Other than Toflion

All confact insulation and supports are metalitoglass construction

METICULOUS ENGINEERING combined with exhaustive testo ing provides a line of SPDT choppers which exhibir unusual stability and low noise. While the specifications shown here are necessarily abbreviated, they will help you make a pree liminary appraisal. For complete details on any unit, send us the type number and a description of your application with its circuitry.

SERIES 600 MII Series 600-MIL C4856, Class B, Type 1. Capacity between switch terminals and ground, 15 wuf average. Confact symmeiry, within 10 . Weighi, less man 102.
SERIES M-MIL C4856, Class B, Type 1, Grade 2. Capaciry between switch terminals and ground, 3-5 uuf. Contact symWeight, less than $3 / 4 \mathrm{or}^{2}$.

	SERIES 600						SERIES M For Shock and Vibration Condifions
	Types $\left\{\begin{array}{l}607 \\ \text { NC-600 } \\ 602 \\ 603\end{array}\right.$	Type 610	Type 604	Type 612	Type 605	Types $\left\{\begin{array}{l}608 \\ 609 \\ \text { NC-600A }\end{array}\right.$	Types $\left\{\begin{array}{l}\text { MS-1 } \\ \text { MS-2 } \\ \text { MS-3 }\end{array}\right.$
Nominal Drive Freq. and Voliagd	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { of } 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { al } 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 380.500 \\ \text { cps of } \\ 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { of } 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { of } 6.3 \mathrm{v} \end{gathered}$	$60 \pm 5 \mathrm{cps}$ at 6.3 v Aperiodic from 10.100 cps	4.8 Volts, 10-1000 cps. Aporiodic. Coil Curront 60 ma af 400 cps Coil Res. 85 Ohms
Phase Lag af Nominal Drive Freq. and Vollage	$\begin{gathered} 65^{\circ} \pm 5^{\circ} \\ \text { of } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 65^{\circ} \pm 5^{\circ} \\ \text { of } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \pm 10^{\circ} \\ \text { at } 100 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 90^{\circ} \pm 10^{\circ} \\ \text { at } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 180^{\circ}+10^{\circ} \\ -0^{\circ} \\ \text { of } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & 20^{\circ} \pm 5^{\circ} \\ & \text { of } 60 \mathrm{cps} \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	$10 \mathrm{cpss} 10^{\circ} \pm 5^{\circ}$ $60 \mathrm{cpsi} 15^{\circ} \pm 5^{\circ}$ $\left.400 \mathrm{cpsi} 55^{\circ}\right\}^{\circ}$ $\left.1000 \mathrm{cpssi} 110^{\circ}\right\} \pm 0^{\circ}$ $\left(25^{\circ} \mathrm{C}\right)$
Contact Dwall Time af Nominal Drive Freq. and Voltage	$\begin{aligned} & 150^{\circ} \mathrm{min} \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 140^{\circ} \text { max } \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{min} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & 150^{\circ} \mathrm{min} \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 160^{\circ} \pm 10^{\circ} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 165^{\circ} \text { io } 170^{\circ} \\ \text { of } 60 \mathrm{cps} \end{gathered}$	$\begin{gathered} 160^{\circ} 10170^{\circ} \\ 125^{\circ} \mathrm{Cl} \end{gathered}$
Contact Rating Into Rosistive Lead (Maximum)	CONTINUOUS: 10 r at 2 mo INTERMITTENT: 15 v of 2 mo	CONTINUOUS: 50 v at 2 ma INTERMITTENT: 100 v of 2 ma	CONTINUOUS: $10 \vee$ al 2 ma INTERMITTENT: $15 \vee$ of 2 ma	CONTINUOUS, $10 \vee$ at 2 ma INTERMITTENT: 15 v of 2 mo	CONTINUOUS: 50 r al 2 ma INTERMITTENT: 100 v of 2 mo	CONTINUOUS: 15 v al 2 mo INTERMITTENT: 50 v at 2 mo	CONTINUOUS: 10 r al 1 ma INTERMITTENTI 12 v of 2 mc
Lifo Expoctaney (Optimum Condifions)	$\begin{aligned} & \text { Up to } \\ & 5000 \text { hours } \end{aligned}$	$\begin{aligned} & \text { Up lo } \\ & 1000 \text { hours } \end{aligned}$	Up to 5000 hours	Up to 5000 hours	Up to 5000 hours	Up 10 10,000 hours	$\begin{gathered} \text { Up to } \\ 10,000 \text { hours } \end{gathered}$
Switching Speed With DC in Coll	Less than 1 Millisecond	Less than 1 Millisocond	Less than 800 Microsoconds	Less than 200 Mieroseconds			

The most complete single-turn pot line

Pick the single-turn pot to suit your circuit from the complete helipot standard line .. . scaled from a compact $1 / 2^{\prime \prime}$ to a high resolution $3^{\prime \prime}$ diameter.
These singular single-turns come in both economy and all-metal models... so name your temperature ... to $80^{\circ} \mathrm{C}$. to $125^{\circ} \mathrm{C}$.. to $150^{\circ} \mathrm{C}$.
Most models allow 8 cups to be ganged...standard linearity is $\pm 0.5 \%$, with $\pm 0.10 \%$ available for most... and, of course, you can have non-linears and spec models.
To help you single out the single-turn you need, we have prepared Data File C82. Write for it today.

NEW PRODUCTS

Variable Stub Tuners

Frequency range is $\mathbf{2 . 5}$ to $\mathbf{9 0} \mathbf{k m e}$

This line of variable stub tuners covers the frequency range of 2.6 to 90 kmc . Units have calibrated position controls for insertion and probe travel. A vswr as high as $20: 1$ can be tuned out with an accuracy of 1.02 . Flanges on all units meet Mil specs for each waveguide size. The tuners are used between a signal source and an attenuator to optimize impedance seen by the signal source. They can also be used to cancel reflections from other units in a test setup, to minimize reflection, and to measure reflection coefficients by the substitution method.

DeMornay-Bonardi, Dept. ED, 780 S. Arroyo Parkway, Pasadena, Calif.
Price \& Availability: Prices range from $\$ 162$ to $\$ 253$, depending on waveguide size. Delivery is in two weeks.

Coating Machine

Completely automatic spray coating of selenium diodes and other small electronic components is possible with this machine. The coating is confined to the desired area by 2 traveling strips, while racks loaded with diodes move continuously through the spray station. The diodes, while in the racks, are spun to assure application of an even coating.
Conforming Matrix Corp., Dept. ED, 476 Factories Building, Toledo 2, Ohio.
Price \& Availability: Unit is made on order only. Contact company for details.

Stands Still For Reliability
Next time you plan a product for market or the military - think of this A GHS hermetically sealed enclosure protects components and assemblies against 7 major causes of product failure for a lifetime of use... in fact, it would cc of air to penetrate it! Time virtualy stands still penetrate it. Time virtually moisture, dust, corrosion, fungus, moisture, dust, corrosion, fungus, etc., cannot interrupt the fine quality and performance of your products originally
designed into them. For complete designed into them. For complete the GHS system of product improvemen with hermetic sealing.

NON-DESTRUCTIVE TESTING MEGPOT
 A highly efficient, portable Megothm.Meter and High Potantia! Test Set for rapid testing Test Set for rapid testing of components and insulation. 10 million megohms, 100,200 or 10 million megohms, 100,200 er 500 V DC. automatic charge and and safety controls. UP to 5000V AC

WRITE OR CALL TODAY FOR HERMETIC SEALING BROCHURE, AND MEGPOT BULLETIN NO. 158A

Nontoxic, inert, malleable - all three are descriptive of tin. One of man's oldest metals, it is still vital in our modern economy. For example -
For product protection, $\mathbf{6 0 . 7 \%}$ of all tin consumed in the U.S. is used in manufacturing tinplate, largely for containers. 135 industries package a total of over 2500 products in more than 42 billion cans annually!
For joining and sealing, 14.8% of all tin used is in alloy with lead to form solder.
For strength and corrosion resistance, 6.5% is consumed in the tincopper alloy, bronze.
For anti-friction properties, 4.1% is consumed in the high-tin/lead alloy, babbitt. generic for bearing metals.
For protective coatings, tinning accounts for 3.9%. Hot-dipped tin provides a smooth, reflecting surface, particularly adaptable for food processing equipment.

For castability, white metal alloys of tin, antimony, lead, bismuth, and copper - account for 3.2% of U.S. tin consumption.

Miscellaneous alloys use 4.2%; chemicals, 1.1%; and collapsible tubes. 1.5%.
There's no substitute for tin and no substitute for Straits Tin from Malaya - recognized standard for quality and uniformity, available in raliable supply from sizeable reserves.

Write today for more data un these items or for a free subscription to TIN NEWS-a monthly bulefin on tin supdy

The Malayan Tin Bureau sept. 15-8, 2000 K Strout, M.W., Wasilington 6, o.c. EIRCIE 129 ON READER-SERVICE CARD

Plastic Wire Markers

396
Made of vinyl plastic with a wire core, PLAS-TIES are used for tying coils of wire and cable, marking wire for storing and marking cables in circuits. Lengths from 2 in . and widths from $1 / 8 \mathrm{in}$. are offered. They are waterproof.
Plas-ties Co., Dept. ED, 624 Poinsettia, Santa Ana, Calif.
Price 4 Availability: Price, which depends on size of product as well as quantity ordered, will be quoted on request. As a guide, the $5 / 32 \times 4 \mathrm{in}$. size is priced from $\$ 1$ to $\$ 1.75$ per 1000 . Deliveries can be made in 10 days.

Terminals

397
NAS, AN, and MS type terminals are made of molded barrier design. Screws are used to fasten terminals to the board.

General Products Corp., Dept. ED, Union Springs N.Y.

Price \& Availability: Certain types are available from stock, others are available in 30 days. Prices can be supplied.

Thermostat

399
Type AP thermostat permits cut-out of thermostatic control through manual operation of the adjusting stem. It provides positive make-break control of electrical circuits in response to temperature changes, and is designed for use with heating and ventilating equipment, and manufacturing machinery.
Norwalk Thermostat Co., Dept. ED, 52A Woodlawn Ave., N., Norwalk, Ohio.
Price \& Availability: Made to customer specifications. Delivery 45 days after order received. Price is between $\$ 0.45$ and 0.55 when ordered in quantities of 10,000 , exact price depending on customer requirements.

Blue Print Safe

400
Holds up to 1000 plans in a fire-proof, burglarproof compartment. Prints are retained on 30 in . long removable steel plan holders for vertical filing. The safe weighs about 1000 lb , and measures 58-1/4 $\times 23-1 / 4 \times 36-1 / 2 \mathrm{in}$. Inside dimensions are $53 \times$ 19-3/8 $\times 30 \mathrm{in}$.

Momar Industries, Dept. ED, 4176 W. Montrose Ave., Chicago 41, Ill.

Correction Notice

The description of the torquemeter indicator on page 89 of the December 23rd issue should read: "They have a calibrating circuit that standardizes over-all electrical gain to within $\pm 0.5 \%$ of full scale." The product is made by B \& F Instruments, Inc., of Philadelphia, Pa.

E ECTRONIC DESIGN • February 17, 1960

Choose from many sizes and designs to prevent breakdowns from self-generated heat in sensitive electronic equipment. All units can be modified. Or units can be built to fit your requirements. For individual specification sheets, write, detailing your needs, or send for Bulletin 5412. American-Standard* Industrial Division, Detroit 32, Michigan.

Miniaturized vaneaxial fan-a typical unit for cooling eloc tronic equipment in aircrafl

* Amoscem-Stumined and Standarde are trademarks of American Radiator \& Standord Sonitary Corporation

American-Standard INDUSTRIAL DIVISION

american blower products - ross products - kewanee products CIRCLE 130 ON READER-SERVICE CARD

General Dynamics corporation＇s CONVAIR Division speci－ Ges Gremar RF connectors for its new 880 commercial jet， the world＇s fastest airliner．For reasons of top reliability Gremar RF connectors are also on their military B－68．Here＇s why ．

GREMAR CONNECTRONICS concentrates engineering， production and quality control on RF connectors only． guarantees 100% conformance to your most exacting specs．
GREMAR DELIVERS ．．．by slocking America＇s most complete line of R F connectors and fittings ．．．by maintain－ ing a shelf stock of more than 500,000 assembled units ．．．of over 2,000 types ．．．and 4．000．000 component parts ready for assembly！

SPECIFY GREMAR for top－level reliability and performance in RF connectors．Write for litera－ ture on any series of standard RF connectors． or send us your specs on special requirements．

Specialized high potential teat equip ment developed by Gremar determipe voltage breakdown point up to 25 KV ． just one of the 142 separate quality checks that make Gremar RF connec－ tors apecifted on every major missile program．

NEW PRODUCTS

Tube Socket

Can be used to 1000 mc

Miniature Tachometer Generator 597

This miniature tachometer generator is capable of delivering 14 w at 4200 rpm ；various outputs may be specified．A two－pole，three－phase Y－con－ nected stator and the permanent magnet rotor furnish alternating three－phase output power with a frequency proportional to rotor velocity．Smaller than previous models，the generator has been de－ veloped for jet engine use and designed and tested under MIL－G－26611．
Globe Industries，Inc．，Dept．ED， 1784 Stanley Ave．，Dayton 4，Ohio． specs． accessories．

These relays have recently been re－designed－improved in performance and appearance．So you＇ll want up－to－date

This free folder gives complete details on all models．In it you＇ll find operating specs，timing ranges，contact ca－ pacities，dimensions，diagrams of contact and terminal arrangements，and data on mounting and installation

For your copy，write：Dept．A－34－224

ELASTIC STOP NUT CORPORATION OF AMERICA Elizabeth，Now Lermey CIRCLE 132 ON READER－SERVICE CARD

NOW AVAILABLE HAYDON Surith CATALOG

Catalog No． 12 describes a number of basic snap－action switches and switch－actuator assemblies．Types of switches available are

－Push button or plunger switches
－Toggle switches
－Lever or roller actuated switches
－Limit switches
Consult Haydon Switch engineering serv ice for special switch requirements． For your Catalog No．12，write to：

CIRCLE 133 ON READER－SERYICE CARD CONNECTICUT ELECTRONIC DESIGN • February 17， 1960

Tefion Film Tape

581
Type 423 tape is a 2 -mil Teflon film with pressure sensitive adhesive. It can be used in electrical applications where a class 180 C tape is required.
Permacel, Dept. ED, New Brunswick, N.J.

Communications Tower

714
Suitable for heights to 450 ft when guyed every 50 ft , No. 45 tower is constructed in an 18 -in. triangular pattern with zig-zag steel bracing. Each section measures 10 ft .
Rohn Manufacturing Co., Dept. ED, 116 Limesione, Bellevue, Peoria, Ill.

Automatic-Reset Circuit Breaker

424
Made to respond to rising temperature and excessive current draw of the motor, this device has ratings from 0.1 to 15 amp at up to 230 v ac. It can be built into the motor or used remotely.
E-T-A Products Co. of America, Dept. ED, 6284 N. Cicero Ave., Chicago 46, Ill.

Price \& Availability: The product is available from stock at a price of $\$ 0.65$ per 100.

Threaded End Seals

715
These threaded end seals are designed for use on capacitors and similar components. The hermetically sealed terminals are available in flared tubing types, lug types, and grooved flange types. All metal parts are tin-dipped to facilitate soldering.
Electrical Industries, Dept. ED, Murray Hill, N.J.

Radar Confacts

398
Made to increase the reliability of detection systems in military and commercial uses, these radar contacts can be used under environmental extremes. Self-lubricating, they will not stick or gum.
Morganite, Inc., Dept. ED, 3304-48th Ave., Long Island City 1, N.Y.

Punched-Card Sensor

For use in computers and automatic test equipment, this sensor statically reads all the information on punched card simultaneously.
Thurus Corp., Dept. ED, 8 Coryell St., Lambert ville, N.J.

Cor ection Notice

Types 7552 and 7554 high-mu triodes have a war n-up time of 12 sec , not 12 min as reported in the Vovember 25 th issue. They are made by Radio Cor. of America, Electron Tube Div., Harrison, N.J.

Here's how to pick the best IIIODES for your money

Price is no clue when diodes sell for about the same, and just looking at them tells nothing. But if you ask the right questions about the three key factors in the production of quality germanium gold bonded diodes, you have your clues to more long-term reliability for your money. Here they are:

BAKING TIME AND TEMPERATURE

bear a direct relationship to long-term stability. You get a measure of the quality of diodes by asking: "How long do you bake, and at what temperature?'" (All GT diodes are baked at $140^{\circ} \mathrm{C}$ for at least 96 hours-the highest and longest in the industry!)

STRICT, STATISTICAL, HISTORY LOGGING

traces the progress of every single wafer made from each ingot of germanium. At GT, if a few wafers fail to pass the stringent GT quality tests along the way, then all from the ingot are suspect and can be identified and pulled out. There are no "stowaways" in a shipment of GT quality diodes.

LEVEL OF TESTING STANDARDS

reveals the level of quality. Ask about "everyday" test standards. (In the GT Seal Test, diodes are submerged in a penetrant-dye solution for 24 hours under 75 psi . This test is so sensitive that it will reveal a leak so small it would take over 300 years for 1 cc of gas to diffuse through the case.) All GT quality tests-100\% electrical, 100% shock and vibration, and 100% temperature cycling
-are at the highest industry level... and as a final mark of quality, the color bands on GT Germanium Gold Bonded Diodes are baked on to stay. GT is equipped to supply diodes tested to individual customer requirements, such as JAN Qualification Inspection Tests and many others.
To get the full measure of quality in Germanium Gold Bonded Diodes, see your GT representative; or write directly to the company with know-how NOW.

CORPORATION
, New York

FOR immediate delivent pmom arock. contact youn nenamer authonizeo

CIRCLE 134 ON READER-SERVICE CARD
ELE :TRONIC DESIGN • February 17, 1960

WHY
 Amperex
 FRAME GRID TUBES ARE PREFERRED

for - radar

- test instruments
- microwave communications
- OSCILLOSCOPES
the frame grid is applied to the CONTROL GRID WHERE IT REALLY COUNTS. WHERE IT PROVIDES
- better vhe and - uhf tubes
- higher gain BANDWIDTH
PERFORMANCE - EXTREME UNIFORMITY - Lower noise
amperex frame grio tubes-proven FOR RELIABILITY BY MILLIONS OF TUBE HOURS (LESS THAN 0.1\% PER 1000 HRS. FAILURE RATE) - ARE NOW IN FULL PROdUCTION TO MLLITARY SPECIFICATIONS IN ONE OF THE WORLD'S MOST MODERN TUBE MANUEACTURING INSTALIATIONS-

CIRCLE 135 ON READER-SERVICE CARD

NEW PRODUCTS

Flat Multiconductor Cable
Has low inter-conductor capacitance

This flat multiconductor cable, called Verilocap, has a very low inter-conductor capacitance. Vinyl tubing which conforms to MIL-1-631C is used to separate the conductors. The spacing can be varied and different gages of wire can be incorporated in one cable.
Spectra-Strip Wire \& Cable Corp., Dept. ED, P.O. Box 415, Garden Grove, Calif.

Price \& Availability: The product is made on order only and price will be quoted on request. Delivery is about two weeks after receipt of order.

Position Encoder

Is accurate to 1 part in 1000

Type ADC-ST3-BCD binary-coded shaft position encoder is accurate to one part in 1000 , per turn of the input shaft. An analog-to-digital converter, it provides three decimal digits in binarycoded decimal digits for each revolution of the shaft. It measures 6 in. in diam.

United Aircraft Corp., Norden Div., Dept. ED, Stamford, Conn.
Price \& Availability: The price is $\$ 750$ fob Milford, Conn. Delivery time is 90 days.

Count Down Timer

358
Provides a 1-min interval

Model WC-601 count down timer provides a 1-min time interval from a 400 cps input, operating from 28 v dc. The dual gate output is arranged so that when one gate is closed, the other is open. When the time interval is initiated, the position of the gates will remain the same or can be reversed, depending on the header connections.

Electromechanical
Components and Systems Capability

AIRESEARCH POSIIIONIMG CONTROL SYSTEMS

One of the many types of high speed positioning control systems produced by AiResearch. the system above am. plifies electric signals from an inertial guidance source and adjusts the contro surfaces of the missile or drone to maintain a predetermined course.
AiResearch diversification and experience provide full capability in the development and production of elec. tromechanical equipment and avionic controls for aircraft. ground handling. ordnance and missile systems.
A.C. and D.C. Motors, Generators and Controls - Inverters - Alternators . Linear and Rotary Actuators - Power Servos - Hoists - Electrical Pyrotech. nics - Antenna Positioners - Position. ing Controls - Temperature Controls • Sensors • Williamsgrip Connectors . Static Converters.

Your inquiries are invited. Los Angeles 45, California

CIRCLE 136 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 17, 1960

KLYSTRON POWER SUPPLY

with a

 WEMORYNo more fiddling with reflector voltage adjustments when you switch between cw and square wave... because of just one of the typically advanced features of this low-medium voltage Klystron Power Supply.
Ever double-mode a Klystron? Not with our model 809! Again, the thoughtful engineering that goes into every PRD product assures the user of self-protection against errors.
Even little things like the built-in beam voltage and current meter prevent guessing and doubt during runs. And when it comes to 'scoping the Klystron . . compare the CRT display of a tube pow. ered by the 809 and you'll see for the first time what a really sharp trace looks like!
For complete details, send for our data sheet F-10.
P.S. In case you don't have our latest catalog, E-8... 160 pages, chock-full of useful data... dash off a note on your company letterhead.

PPOLYTECHNIC RESEARCH \& DEVELOPMENT CO, INC. 202 Tillary St., Brooklyn 1, N.Y. ULster 2-6800

At the completion of the time interval, the gate positions are reversed.

Webcor, Inc., Dept. ED, 816 N. Kedzie Ave., Chicago 51, Ill.
Price \& Availability: Units are made from stock modules to meet customer's requirements and can be furnished in 30 to 60 days from date of order. Price will be quoted on request.
Linear Variable Delay Lines
Are continuously variable from 0.05 to $1 \mu \mathrm{sec}$

These linear variable delay lines will accept 1 - μ sec elements and are continuously variable from 0.05 to $1 \mu \mathrm{sec}$. Hermetically sealed, they meet environmental, shock, and vibration requirements of MIL-E-5400C for airborne material and electrical equipment. Case dimensions are $7-5 / 8 \mathrm{x}$ $5 / 8 \times 1-1 / 8 \mathrm{in}$. The units are suitable for most applications requiring varying delays in distributed constant lines.

A-1 Precision Products, Dept. ED, 3807 W. Jefferson Blvd., Los Angeles 16, Calif.
Price \& Availability: Price is $\$ 25$ ea for orders of $10, \$ 10$ ea for orders of 1000 . Small quantities available from stock. Delivery is in 5 to 30 days.

Printed Circuit Connectors
434

Series $600-4 \mathrm{PCSC}-13,13$-contact unit, and series 600-7-1, an 18-contact unit, are miniature printed circuit connectors rated at 3 amp . Contact material is spring-temper phospher bronze, gold plate over silver plate. The 13 -contact units are for $1 / 32-\mathrm{in}$. board or cable; the 18 -contact units are for $1 / 32-\mathrm{in}$. board or cable.

DeJur-Amsco, Corp., Dept. ED, 45-01 No. Blvd., L.I.C. 1, N.Y.
Price \& Availability: Delivery within 6 to 8 weeks. Prices on request.

Phffebjfil tefon terminals The Complete Terminal System Concept

You buy more than a piece of hardware when you specify "Press-Fit" ter-minals-you buy a complete service that assures you the best terminal installed. Sealectro customer service in engineering, and delivery is the best in the industry.

CIRCLE 138 ON READER-SERVICE CARD

CLEVITE'S NEW

SPACESAVER

TRANSISTOR

112 actual size

TEST	$\begin{gathered} \text { CTP } \\ 1728 \end{gathered}$	$\underset{1735}{\operatorname{cTp}}$	$\begin{gathered} \text { CTP } \\ 1729 \end{gathered}$	$\begin{gathered} \text { CTP } \\ 1730 \end{gathered}$	$\begin{gathered} \text { CTP } \\ 1731 \end{gathered}$	$\begin{gathered} \text { CTP } \\ 1736 \end{gathered}$	$\underset{1737}{\operatorname{crp}_{1}}$	$\begin{gathered} \operatorname{crp}_{1733} \end{gathered}$
Min BVcbe @ 2 ma (volts)	40	so	so	100	40	60	80	100
Min BVeeo @ 500 ma (volts)	- 25	40	55	65	25	40	55	65
Min BVees @ 300 ma (volts)	35	50	65	75	35	50	65	75
Max Icto @ socc @ Max Vct (ma)	10	10	10	10	10	10	10	10
Max Icbe @ 2 V ($\mu \mathrm{a}$)	50	50	50	50	50	50	50	50
D. C. Current Gain © 0.5A	30.75	30-75	30-75	30.75	80-150	80.150	60.150	80-150
Max Veb @ 3.0 a (valts)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Max Vce (sat) @ 3.0A, 300 ma (volts)	1.0	1.0	1.0	1.0	0.8	0.8	0.8	0.8
Min fae @ 3.0 A (kc)	20	20	20	20	15	15	15	15
Max Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{w}$)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5

NEW PRODUCTS

AC-DC Converter
Linearity is better than 0.1%

For flow measurement, tachometry, and other frequency measurement applications, model 3:00 ac-dc converter has a linearity of better than 0.1%. Selection of full-scale frequencies from 500 cps to 100 kc is made by changing a plug-in circuit board. Drift with temperature change is les than $\pm 0.1 \%$ from -15 to +55 C. Signals as small as 5 v rms can be handled. The output signal level is $\pm 10 \mathrm{v}$ with a $\pm 20 \mathrm{ma}$ current capability Output impedance is less than 0.25 ohms.

Vidar Corp., Dept. ED, 2107 El Camino Road Palo Alto, Calif.
Price d Availability: Price is $\$ 575$; delivery is 90 days after receipt of order.

Shock Recording Accelerometer 59,

For airborne equipment

Designed for recording shock on recovery para chutes, aircraft landing gear, missile shipping containers, and delicate instruments, model A I accelerometer responds to short duration shock and indicates the greatest shock received on permanent record. The standard range is ± 10 to 50 g linear and 5 to 125 g usable with an accu racy of $\pm 5 \mathrm{~g}$. The ambient temperature range -30 to +200 F . The unit weighs 8.5 lb and 2.75 in . long.

Pace Engineering Co., Dept. ED, 13035 Saticoy St., North Hollywood, Calif.

The Mototator line of motor-driven commu tators offers speeds of 100 to 3000 rpm with ac a dc motors. These units range from a 5 -segment commutator with a $7 / 8-\mathrm{in}$. diam to a $50-$ seginen commutator with a $5-\mathrm{in}$. diam. Any number d gangs can be mounted. Model MG 215, 18 -seg

ELECTRONIC DESIGN • February 17, 1960
ment commutator (shown) has a minimum life of $30,000,000$ revolutions at 1000 rpm . It is driven by a $50-\mathrm{v}$ dc motor.
Computer Instruments Corp., Dept. ED, 92 Madison Ave., Hempstead, L.I., N.Y. Price \& Availability: Units are built to customer specifications and prices are quoted on request. Delivery is in 45 days.

Magnetostrictive Delay Line
 Delays range from 2 to $20 \mu \mathrm{sec}$

599

Model VM-1020 variable magnetostrictive delay line provides delays from 2 to $20 \mu \mathrm{sec}$. It accepts input pulse voltages of 5 v peak and input pulse widths of $1 \pm 0.2 \mu \mathrm{sec}$. The output pulse voltage is about 10 mv and spurious response is kept down, below 17 db . Input and output impedance is 700 ohms. Made to meet Mil specs, the unit is hermetically sealed and operates over the temperature range of -55 to +85 C . It weighs 3 oz and measures $5 / 8 \times 7 / 16 \times 7$ in.
Control Electronics Co., Inc., Dept. ED, 10 Stepar Place, Huntington Station, L.I., N.Y.

Shaft-Positioner Encoder

374 Provides 13-bit binary output

Model EP-13B shaft-position digital encoder has a 13-bit binary output, and uses a noncontacting magnetic readout. The readout method uses su miniature, ferrite toroids mounted above, but no touching, code tracks of magnetized spots on ba ium ferrite disks. Two disks are used, a 2^{7} disk co nected to a 2^{6} disk through a 64 to 1 gear reduation.

Zlectro-Mechanical Research, Inc., Ascop Div., Di st. ED, Box 44, Princeton, N.J.
Pr se Availability: Delivery about 90 days after ori sr received. Price presently being determined.

EVERYTHING you need for fast, easy
 GELENIUM RECTIFIER SELECTION

Over 1200 Rectifiers Fully Described

48 Pages of Solid Technical Data

Complete Information on
CIRCUITS SIZES DIMENSIONS CURRENT RATINGS VOLTAGE RATINGS

PRICES
INSTALLATION, etc.

$\sqrt{\text { ICKERS }}$ Grain-Oriented*SELENIUM RECTIFIERS

The unique characteristics of these rectifiers provide efficiency and economy unmatched by conventional rectifiers.

In Vickers rectifiers, the selenium is grain-oriented: crystals are aligned in the same direction, rather than in the random pattern found in ordinary rectifiers. The result? More working crystals, greater uniformity, better performance per square inch of cell area. Rectifiers provide higher current ratings without increase in cell size, and without danger of overloading; cost per watt of output is lower.

This 48 -page bulletin gives you the complete story.
Send for Bulletin EPD 3116-1. Letterhead requests only, please

VICKERS INCORPORATED ELECTRIC PRODUGTS DIVISION

1841 LOCUST STREET . SAINT LOUIS 3, MISSOURI

```
Sales ST. LOUIS-CEntral 1.5830 Engineering DETROIT-KEnwood A.8070 Offices
```

CHICAGO-JUniper 8.2125 NEW YORK-LE Nnox 9.1515 CLEVELAND-EDison 3.1355
COS ANCELESOAVERDOT 6.8550 LOS ANGELES-DAVOnport 6.8550

[^1]Ei ¿CTRONIC DESIGN • February 17, 1960

NEW PRODUCTS

Power Amplifiers 610

Use 4-cavity, water-cooled klystrons
These two power amplifiers, for use in scatter communications systems, space programs, and point-topoint data transmission systems, use 4 -cavity, water-cooled klystron tubes. Model 216A has a power output of 10 kw . Model 217 A is a l-kw unit. Both units can be continuously tuned over a range of 1700 to 2400 mc , and provide a minimum gain of 40 db when used as broadband amplifiers.

Sierra Electronic Corp., Dept. ED, 3885 Bohannon Drive, Menlo Park, Calif.

Test Rack
630
For traveling wave tubes

Model TR-1 test rack for traveling wave tubes provides operating voltages for most low and medium power traveling wave tubes and their associated solenoids. The unit is for both laboratory and production line use. It has separate power supplies for the following: filament, helix, collector, anode, solenoid, and blower motor.
Menlo Park Engineering Dept. ED, 711 Hamilton Ave., Menlo Park, Calif.
Price \& Availability: Information will be furnished on request.

Miniaturization means

 only active componentst G-E subminiatures user to give miniaturizationy
HOFFMAN TACAN: MEETS 780\%-HIGHER AGREE* SPEC!

"Advisory Group on Reliability of Electronic Equipment, which has set a new standard of 150 hours mean-time-to-fallure for TACAN

General Electric subminiature tubes with heat-resistant glass have played a key role in advancing the reliability of Hoffman Electronics Corporation's new ARN-21C to nine times that of older TACAN equipment.

Compactness is a feature...transmitter, receiver, and electronic computer functions all are grouped in one "black box" that meas ures only 8 by 11 by 17 inches. Heat build-up necessarily is substantial.

In General Electric subminiature tubes, Hoffman found the answers to their pressing need for tubes that would stand up to heat with no sacrifice in reliability. 28 G-E subminiatures are used in the ARN-21C.

nsheat. Tubes are the

tsthat can withstand heat.

senew heat-resistant glass
 nwith reliability.

WHAT TESTS SHOW

life tests of G-E subminiatures with new heat-resistant llass prove that high-temperature operation has no adverse ffect on reliability. Check the total absence of failures with G-E type 6021 after 1500 hours at 250 C , against the high ailure rate of ordinary 6021's under the same conditions!

SPECIFY FOR RELIABILITY

Small...smaller...smallest! The trend in electronic equipment is down in size, $u p$ in reliability requirement. Heat is the gremlin ready to play hob with your circuitry, unless you take steps to specify devices that are completely dependable when temperatures rise sharply.
General Electric subminiature tubes are proved performers at high temperatures. And their small dimensions give you the extra compactness you need to meet tight equipment size limitations. Telephone your nearest General Electric Receiving Tube Department office below!

NEW YORK	CHICACO	LOS ANOELES
WIsconsin 7-4006.6.7.8	SPring 7-1600	GRanite 9-7766

WIsconsin 7-4066,6,7,8
SPring 7-1600

Progress/s Our Most Important Product GENERAL

Detector Mount
Heater
Operating life is 2000 hr

Model 184 detector mount heater raises the temperature of the crystal mounts from -62 to +25 C in 10 min in an ambient temperature of -55 C . The operating temperature range is -55 to +100 C . Minimum operating life without maintenance is 2000 hr .
American Electronic Laboratories, Inc., Dept. ED, 121 N. 7th St., Philadelphia 6, Pa.
Price \& Availability: Sample quantities are available from stock. Normal time for delivery is 45 days. Prices are quoted on request.

Accelerometers

632
For operation at 500 F

These self-generating accelerometers, for operation at 500 F , have less than 3% cross-axis sensitivity. They are for missile and aircraft vibration testing and industrial measuring applications. Resonant frequency is 50 kc , internal capacity is $1600 \mu \mu \mathrm{f}$, and maximum acceleration is 5000 g . Standard models have sensitivities of 5,10 , and 20 mu per g.

Clevite Electronic Components, Dept. ED, 3405 Perkins Ave., Cleveland 14, Ohio.
Price \& Availability: Units are available from stock at a fixed price of $\$ 250$ ea.
< Circle 141 on Reordor-Soruce Card

SOLID STATE SOLINELAIN CAPACITORS

VITRAMON ${ }^{\circ}$ INCORPORATED

SOLID-STATE RELIABILITY
 MAKES THE DIFFERENGE

The exclusive "Vitramon" Procass fuess fine silver electrodes wievin a solid block of denss diolectric porcelain to form an inegral monolithic unit with outstanding eloctrical and phys.
The marcater
The molocular Dond of didectric, alectrodes and terminals and roat statility over a temperature range of $-55^{\circ} \mathrm{C}$ to $200^{-c} \mathrm{C}$.
The rillability is Inheront in the solid-stalo ocostruation of
 itan quality, procision and dopendability aro imporatives.

NEW PRODUCTS

Toggle Switch

Specifically designed for miniature applications, this toggle switch is rated at 5 amp at 115 v ac and is capable of handling a 100% overload. Other features are: life, over 100,000 operations; contact resistance, $30 \mu \mathrm{ohms}$; insulation, over $100,000 \mathrm{meg}$; and voltage breakdown, 1000 v ac. Dimensions are $1 / 2 \times 3 / 8 \times 1 / 4$ in.
Alco Electronics, Dept. ED, 3 Wolcott Ave., Lawrence, Mass.
Price \& Availability: Price of the spdt model is $\$ 1.65$ and price of the dpdt model is $\$ 2.15$. Units are available from stock.

Spectrum Synthesizer

Frequency range is 1 cps to 10 kc

This power spectrum computer has a dynamic range of about 8 decades of power for frequencies from 1 cps to 10 kc . Input signals, direct or from magnetic tape, are modulated into the pass-band of flat, triple stagger-tuned filters having fixed bandwidths of 1 to 100 cps . The filter output is squared and integrated to give the power density spectrum.

Applied Research Assoc., Dept. ED, 6541 N. Lamar, Austin, Tex.
Price \& Availability: Price ranges from $\$ 4800$ to $\$ 5800$. Units are made to customer specifications and can be delivered in 90 days.

Trimmer Potentiometers
Shaft torque is $30 z-\mathrm{in}$.

These trimmer potentiometers, designated Trimquate, are easily mounted in two planes without additional brackets. They have a shaft torque of 3 oz-in. and a friction clutch to assure precise setting. They are adjustable from either side. Selfphasing segmented units can be easily ganged.

Subminiature Instruments Corp., Dept. ED, 3705 Sunnyside Drive, Riverside, Calif.
Price \& Availability: Price is between $\$ 7$ and $\$ 20$ for all resistances and ierminations when ordered in quantities of less than 10 units. Quantity discounts are furnished. All units are available from stock.

Motor Generator

For industrial control systems

For precise industrial control systems, model V846-001 motor generator can be used for remote control of weighing operations, and indication of temperature and machine tool operations. It has a no-load speed of 2900 rpm min and a stall torque of $3 \mathrm{oz}-\mathrm{in}$. The rotor moment of inertia is 5.73 g m^{2}. The unit is constructed of corrosion resistant naterials and is sealed to prevent entrance of lirt or dust.
Kearfott, Dept. ED, 1500 Main Ave., Clifton, N. J.
?rice b Availability: Information is furnished on equest.

All the beauty and satisfaction of tube hi-fi performance-brilliance ...quietude...power-can be yours when you design your amplifiers around the RCA "balanced" line of hi-fi tubes. Only four types-but a big PLUS FOUR that covers every high-fidelity application.

Your preamplifiers can have the low-noise and low-hum features of the RCA-7025 high-mu twin triode. For other low-level stages, you'll like the versatility of the RCA-7199, a sharp-cutoff pentode and me-dium-mu triode in one envelope. Compact and powerful best describes amplifiers using the miniature RCA-6973 beam-power tube-a pair in class AB_{1} delivers up to 20 watts! And for that power output deluxe use the popular RCA-7027A beam-power tube-a pair in class AB_{1} can deliver up to 76 watts with only 2% distortion.

Ask your RCA Field Representative about these four RCA tube types. For technical data, write RCA Commercial Engineering, Section IS B-18-DE3, Harrison, N. J.
ANOTHER WAY RCA SERVES YOU THROUGH ELECTRONICS
RCA RADIO CORPORATION OF AMERICA

EAST: 744 Brood Stroel

MJDWEST: Suite 1154 Merchandise Mart Plazo

Marrison, N. J.
WEST: 6355 E, Washington Blvd os Angoles 22, Collf.
Los Angeles 22,

with new Hughes "20-20" Circulators!

With $\mathbf{2 0 \%}$ bandwidth and over $\mathbf{2 0} \mathbf{~ d b}$ isolation, the new Hughes " Y " and " T " Circulators are ideally suited for microwave reception and transmission applications. They also give you small size and weight... without sacrifice in performance. C. and X-Band models are available todayl

For information on the new "20-20" Circulators, or other advanced microwave components, please write Microwave Products Department, Advanced Program Development, Hughes Aircraft Company, Culver City 7 California. Or, phone UPton 0.7111, Ext. 6919

NEW PRODUCTS

Shaft-Position Encoder
Output is 3600 quanta per revolution

Model C-804 shaft-position encoder provides an output of 3600 quanta per revolution in Datex code or 4096 quanta in Gray code. Under normal operating conditions, the unit has a life of over $10,000,000$ operations. It uses an 8.5 in . disc, is capable of unlimited readout cycles, and has a sampling rate which is limited only by the readout device. The unit is 9 in . in diameter and 3.5 in. high, exclusive of the shaft.

Datex Corp., Dept. ED, 1307 S. Myrtle Ave., Monrovia, Calif.
Price \& Availability: The standard unit is priced at $\$ 950$. Most models are available from stock.

Transistor Amplifier

Type VS-64A transistor amplifier has an rms noise voltage, referred to the shorted input terminals, of 50 muv , when used with a bandpass of 20 to 300 cps . A typical audio bandpass of 20 cps to 14 kc generates 160 muv noise voltage. Total bandpass of the amplifier is 2 cps to 180 kc ; noise voltage with this bandpass is about $620 \mathrm{~m} \mu \mathrm{v}$.

Millivac Instruments, Div. of Cohu Electronics, Inc., Dept. ED, Box 997, Schenectady, N. Y. Price \& Availability: Price is $\$ 395$; quantity discounts are offered. Delivery is in two to three weeks.

ELECTRONIC DESIGN • February 17, 1960

Video Amplifier
Range is $\mathbf{1 0} \mathbf{c p s}$ to 10 mc

Model 1660 video amplifier is for low-level signals in the range of 10 cps to 10 mc . Using a Tconnector at the input, the amplifier becomes a high-input impedance-bridging amplifier suitable for sampling and amplifying signals from a coaxial input. Typical uses are amplification of weak TV signals and signal generator outputs. The unit is a non-inverting feedback type, having self-contained batteries. Voltage gain is 20 db , maximum input voltage without overload is 0.5 v rms , and maximum undistorted output is 1 v rms into a $75-\mathrm{ohm}$ load. The amplitude distortion is less than 5% and the input noise level is less than 5 mv rms.

Interstate Electronics Corp., Dept. ED, 707 E. Vermont Ave., Anaheim, Calif.

Trimming Potentiometer

640
Resistance ranges are 10 ohms to 50 K

Designed for missile and telemetry applications, the TVR-050 series of trimming potentiometers offers 14 standard resistance ranges from 10 ohms to 50 K . These miniature units have a basic power rating of 1 w . Insulating boots on the leads reduce breakage and provide good separation. A molded plastic case is used for high dielectric strength; units meet Mil specs for temperature, vibration, slock, and humidity.
Wells Industries Corp., Basic Electronic Contols Div. Dept. ED, 6880 Troost Ave., N. Hollywod, Calif.
l'ice d Availability: Standard units are available fom stock. Large quantities made to order can be d livered in about 30 days. Price is quoted on req est.

From the era of the " $\$ 2$ ride" to today's million dollar blast off's, the success of air vehicle performance has hinged on the reliability of components. Since 1933, Pesco products have been acclaimed for their proven dependability. As man prepares to meet the new challenges of flight, imaginative Pesco engineers are developing new concepts of reliability and . . . through creative engineering . . . are translating them into precision components to deliver volatile fuel, control the flow of hydraulic power, actuate guidance devices, generate and convert precise power, and cool vital working parts. Because today's high mach aircraft demand fail-safe operation, Pesco designs and builds components to meet and exceed all anticipated requirements to provide assured performance under critical operating conditions.

PESCO PRODUCTS ASSURE RELIABLE PERFORMANCE FOR AIRCRAFT, MISSILES, AND SPACECRAFT

smiop

CONSULT PESCO FIRST FOR YOUR SPECIALIZED REQUIREMENTS IN . .

- STATIC INVERTERS
- frequency changers
- CRYOGENIC COMPONENTS
- ENVIRONMENTAL COOLING
- auxillary power systems
- electric power generation
electric power generation

PESCO PRODUCTS DIVISION
BORG-WARNER CORPORATION 24700 North Miles Road • Bedford, Ohio

mushrak mac keeps track

John Turner needed to record the signal of an earth satellite. Manpower was at a premium . . . new equipment budget was almost depleted . . . Turner's solution . . . the new Rustrak Miniaturized Automatic Chart Recorder. Because it was automatic, he needed no additional manpower; because it cost $1 / 3$ the price of similar machines, he needed no additional budget allotment. Because it recorded on a chart, accurately and continuously, without smudges or smears, he had a complete, concise measurement of the satellite's signals at all times. at all points.
This is but one of hundreds of applications. Whatever your measuring or recording problem send for the New Rustrak Miniaturized Automatic Chart Recorder.
You're always sure to be on the right track when

industrial co., inc.
DIMENSIONS
35\%" W. X $546^{\prime \prime \prime}$
$43 \mathrm{~s}^{\circ} \mathrm{d}$.
I 3O SIIVEER STREET
MANCHESTER. N N. H.

- Miniaturized Automatic Chart Recorder

NEW PRODUCTS

Temperature Scanner

Monitors up to 50 points

This temperature scanner is a modular instrument which scans and monitors up to 50 assemblies of temperature-sensitive elements. If more than 50 points are required, additional scanners can be used. Each module may have a different temperature limit. The indicator sounds an alarm and lights the numbered module of any point exceeding the limit; the scanner continues to operate, regardless of how many points have exceeded the limit.
Tipptronic, Inc., Dept. ED, 510 E. Washington St., Chagrin Falls, Ohio.

Single Phase Inverter

642

Designed specifically to supply 400 -cps power to rate gyro packages, this single phase inverter is suitable for any application requiring small quantities of $26 \pm 1 \% \mathrm{v}$ ac power. The unit delivers 20 w at $400 \mathrm{cps} \pm 0.1 \%$ with an input of $28 \pm 4 \mathrm{v}$. Distortion is less than 4% and efficiency exceeds 60% at full load. Applicable portions of MIL-E5272 are met. The unit occupies 20 cu . in.

Temco Aircraft Corp., Dept. ED, P.O. Box 6191, Dallas 22, Tex.
Price \& Availability: Information will be furnished on request.

Unsealed, bakelite case design provides low cost. Self.-starting synchronous molor drives 5 -digit counter; records hours 10 99999 or hours ond tenths to 9999.9.
Square Model 53 SET $31 / 2$ olso available. Square Model 53 SET $31 / 2^{\prime \prime}$ olso available. For 110 or 220 volt, 60 cycle AC. Standard ASA/MIL $31 / 2^{\prime \prime}$ mounting. Data on request. Marion Instrument Division, MinneapolisHoneywell Regulator Co., Manchester, New Compshire, U.S.A. In Canada, Honey

Honeywell

7 Fion pioke \qquad H. Finst in Contal CIRCLE 146 ON READER-SERVICE CARD

New Low-Cost PLUG, \& RECEPTACLE

 CIRCLE 147 ON READER-SERVICE CARD
ELECTRONIC DESIGN - February 17, 1950

DC Power Supply
Provides 4 to 36 v at 500 ma

Model UVS-100 voltage-regulated power supply provides 4 to 36 v dc at 500 ma . Transistor and Zener diode regulation is maintained at better than 1% against line and load change. Ripple is less than 5 mv . The output, continuously monitored by a voltmeter and milliammeter, is isolated from the input line and the chassis ground. The unit measures $4.75 \times 4.5 \times 6.25 \mathrm{in}$. Three supplies can be mounted on a single panel rack.
Matthew Labs., Dept. ED, 3344 Fort Independence St., New York 63, N. Y.
Price \& Availability: Units are available from stock at a price of $\$ 99.50$ ea.

Frequency Counter
644
Range is from 1 cps to 1.2 mc

Model 521 G frequency counter provides a fiveplace registration and has a range from 1 cps to 1.2 mc . Display time is adjustable to approximately 15 sec , or readings can be held until man"ally reset. The counter also has a front panel witch for selecting automatic gate times of 0.1 or 1.0 , or the manual gate. With transducers, it provides measurement of such mechanical quanlities as speed, rpm, rps, weight, pressure, temerature, and acceleration.
Hewlett-Packard Co., Dept. ED, 275 Page Mill oad, Palo Alto, Calif.
Irice \& Availability: Availability is currently 4 ceks. Price is $\$ 650$.

The NEW $\frac{1}{2} \mathbb{C} T \subseteq$ FILM POT IS THE ANSWER LINEARITY 0.2\% • INFINITE RESOLUTION • LONG LIFE

SPECIFICATIONS:
This subminiature film pot has much greater accuracy than comparable wire-wound types and features the reliability inherent in film pots. Now you can meet tight space requirements without sacrificing accuracy. Send us your specifications.
territories open for qualified sales representatives

MODEL	
RESISTANCE RANGE	50
BEST LINEARITY OR CONFORMITY	0.2%
WATTAGE	1
GUARANTEED LIFE, REVS.	TO 30×10^{6}

FIRST IN FILM POTS

153

Hermes Solid State BINARY TO DECIMAL CONVERTER

for converting any 4 bil code to decimal illuminated display

Performs better

Costs less
 Binary to Decimal
 Convertor, Model 260 ,
 shown approx. 1/2 size
 NO FALSE READOUTS
 Relays and tubes eliminated
 MAXIMUM RELIABILITY
 \$95
 (Nixie Bulb not included)
 Discounts for quantily purchoses
 100% solid state circuitry
 LONG USEFUL LIFE
 No preventive maintenance required
 OPERATIONAL FLEXIBILITY
 Variety of four bit codes can be converted
 LATCHING CIRCUITS
 Provide memory for binary information

Write for Technical Bulletin 260
Hermes

CIRCLE 149 ON READER-SERVICE CARD

NEW PRODUCTS

Contact Switch

Is rated at 20 amp

For applications where repeated contact is required, this power contactor, called Mega-Switch, is rated at 20 amp . The contacts are between tungsten and mercury and are hermetically sealed in glass. Available in a range of voltages, the switch operates with low voltage on the primary side.
Energy Kontrols, Inc., Dept. ED, Geneva, Ill.
Price \& Availability: Priced at about $\$ 30$ ea, units will be available from stock in March, 1960. Sample quantities are available.
FM-FM Commutator 646
Samples up to 180 channels

This $\mathrm{fm}-\mathrm{fm}$ telemetering commu-
tator samples up to 180 MBB dat channels at 5 rps. A $28-\mathrm{v}$ dc moto drives all four poles through a pre cision gearing system. Two polt sample 30 channels per pole whil the other pair samples 60 channe per pole. Over-all size of the unit $3 \times 3 \times 6-11 / 32 \mathrm{in}$.
Instrument Development Labs Inc., Dept. ED, 67 Mechanic St Attleboro, Mass.
Price \& Availability: Price is about $\$ 2000$ ea for orders of 25 units. De. livery time is 90 to 120 days.

Tape Recorder For airborne applications

Developed for use in space vehicles where critical conditions prevail, model MTR-1200 tape recorder is completely self-contained and needs only external power for operation. Able to stand 200 g continuous acceleration, and vibration as per MIL-E-5272A, the unit operates from -50 to +200 F . The tape used can be 650 ft of 1 -mil Mylar tape or over 800 ft of $3 / 4-\mathrm{mil}$ pretensioned tape $1 / 2$ or 1 in . wide. The tape speed is 0.25 to 60 in . per sec.
Leach Corp., Dept. ED, 18435 Susana Rd., Compton, Calif.

Strain Gage

Nominal resistance is 70 ohms
Type DA-101 semiconductor strain gage has a nominal resistance of 70 ohms and a gage factor of 115. Its over-all dimensions are $5 / 16$ $x \quad 1 / 2 \mathrm{in}$. Other types have gage factors from 100 to 200
Kulite-Bytrex Corp., Dept. ED 50 Hunt St., Newton 58, Mass.
Price \& Availability: Price is $\$ 90$ for a package of six units. Delivery is in 30 to 60 days.

Waveguide Switch

For S-band applications

Model MA-788 rotary shutter is a magnetically operated waveguide switch for use in S-band applications. It provides 25 db attenuation in the closed position. In the open position, insertion loss is 0.2 db max and vswr is 1 max. Operating voltage is 20 to 29 v dc , current at 28 v is 560 ma , and coil resistance at 25 C is 50 ohms. The shutter operates at a temperature range of -40 to +100 C, and withstands vibrations of 5 g at 50 to 500 cps.
Microwave Assoc., Inc., Dept. ED, Burlington, Mass.
Price \& Availability: Made on order only. Can be delivered 45 days after order received. Price on request.

Relays

Have up to 10 K coil resistance

This series includes R 3 H spdt, R 6 H dpdt, and R9H tpdt hermetically sealed overload relays. Coil resistances are available to 10 K . For 26.5 v dc operation, coil resistance is 425 ohms. Contact rating is 5 amp at 250 v ac , or 4 amp at 26.5 \mathbf{v} dc. Operating temperature range is from -55 to +125 C , and the relays can withstand shock to 50 g . Dimensions are $1-5 / 8 \times 1-27 / 64 \times 2 \mathrm{in}$. high.
E.V. Naybor Labs, Inc., Dept. ED, Port Washington, N.Y.
Price \& Availability: Made on order only and delivered 30 days after order received. Prices are between $\$ 9.30$ and $\$ 17.40$ for components when ordered in quantities of 500 .

BY DEFINITION...

A PRECISE-POWER SET is a rotary electro-mechanical system, statically regulated, which performs one or more of the following functions:
Isolates the DC power system from static and/or transient power line changes.
Raises the power-line frequency, reducing the cost, size, and complexity of the system power supplies.
Performs the conversion to (regulated or unregu. lated) DC directly. Multiple outputs are common.

FOR LARGE ELECTRONIC SYSTEMS

Don't freeze your designs for large electronic power-supply systems until you have given mature consideration to the striking advantages obtained by interposing a PRECISE-POWER SET between the power line and your electronic-circuit loads.
Designers who worry about reliability, cost, size, and weight-particu. larly those working in the fields of computing, automation, telemetry, missile checkout and guidance, process control - will find our complete and authoritative 32-page technical bulletin S-59 of great interest
Why pay for, make room for, suffer for the $25 \%-55 \%$ of excess power dissipation forced on regulated DC power supplies by power-line fluctuations, when a compact maintenance-free PRECISE.POWER SET will pay for itself several times over. and virtually elimin. ate them?

Write today. The bulletin is free and immediately available.
(GCO) ELECTRIC SPECIALTY CO.

201 SOUTH STREET, STAMFORD, CONNECTICUT Fireside 8-6203
RI REGULATORS. INC.
 cathode-ray tubes for radar, now makes possible the same inherent fealures in a fine instrument read-out tube. The Du Mont electrostatically deflected K1951 provides full scan with defilection voltages of $9-15$ volts $D C /$ in.
If your cathode-ray tube applications call for even greater compactness and power savings-consult the CRT Engineering Specialists at Du Mont. Daily advances in the state-of-the-art are being recorded for your benefit. A tube to fit your exacting requirements can be designed, developed and produced at Du Mont Whatever your CRT requirements, check with Du Mont first.

precision electronics is our business

ELECTRONIC TUBES/INOUSTRIAL TV/MILITARY ELECTRONICS/MOBILE COMMUNICATIONS/SCIENTIFIC INSTRUMENTS/AUTOMOTIVE TEST EOUIPMENT

ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J., U. S. A. intermational oivision - 515 madison avenue, new york 22. M. Y. - CAbles: albeedu. new rork CIRCLE 152 ON READER-SERVICE CARD

NEW PRODUCTS

DC Power Supply

Output is 5 to 35 v

Designed for transistor circuit work and othes applications where recurrent spikes and othes transients would damage equipment, model PS 201 power supply delivers an adjustable output from 5 to 35 v at 2 amp max. Either the positive or negative terminal may be grounded or the output can be floating. The regulation is better than 0.1% and variation in output voltage is 30 mv max Ripple is less than 1 mv . The unit weighs about 14 lb and occupies less than 1 sq ft .
Solidyne, Dept. ED, 7460 Girard Ave., La Jolla, Calif.

Pulse Generator

Gives pulses 0.1 to $10,000 \mu \mathrm{sec}$ wide

Serving as a source of single or recurrent pulses model 4120B pulse generator provides main pulse widths from 0.1 to $10,000 \mu \mathrm{sec}$. Rise time is from 0.03 to $0.5 \mu \mathrm{sec}$, and the repetition rate may be varied from 500 kc to 0.5 cps . The unit may be used in the design of ac and dc amplifiers, memory and digital computers, video and pulse forming networks, and for checkout and test of pulse transformers and delay lines.

Electro-Pulse, Inc., Dept. ED, 11861 Teale St, Culver City, Calif.
Price \& Availability: Can be delivered 42 day after receipt of order. Price on quote.

Temperature Control

Occupies 28 cu in.

This positioning and temperature controller, veighing about 1.1 lb and having a volume of less than 28 cu in., operates standard dc electric valves or positioning actuators. Using silicon rectifiers as he output device, it is a proportional pulse, modlating control. It is able to tolerate a wide variaodel PS ion of frequency and voltage. The input is 115 v , output 100 cps ; operating temperature range is -65 to sitive of +250 F
e output Garrett Corp., Dept. ED, 9851 Sepulveda Blvd., ter than mv max hs about

Resistance Set
654
Consists of 2 voltage divider networks
 os Angeles 45, Calif.
Price \& Availability: Units are available from tock. Price, which depends on complexity of application is furnished on request.

Consisting of two independent voltage divider hetworks suspended in an oil bath in a hermeticIlly sealed case, model BMR-104S resistance set is lesigned for digital-to-analog conversion, and atio and resistance synthesis. Each network has 13 primury standard resistors with values coded in inary sequence; total series resistance is 29,996.37 hms. Both dividers are matched to within 2. ohms, over-all accuracy at 20 C .

Ju e Research Labs, Inc., Dept. ED, 556 W. 88t! St., New York 32, N.Y.
Pric b Availability: Made on order only and is vail ble in minimum sample quantities of 12. Deli 3 ry is 30 days. Prices are $\$ 349.60$ per unit for 10 to 19 units, $\$ 314$ per unit for 20 to 50 units.
tec TRONIC DESIGN • February 17, 1960

No's Unique "White Rooms" Improve Miniature Ball Bearing Reliability!

In these rooms the most infinitesimal air-borne contaminants are scientifically whisked from the air . . away from superprecision miniature ball bearing parts. New Departure introduced the White Room nearly twenty years ago. And today, New Departure's concept is a pace-setting standard in miniaturization industries. At N/D, miniature ball bearings are completely assembled in properly humidified, temperature controlled atmospheres that approach fantastic levels of cleanliness. The most advanced air filter systems available are employed. In addition, pressurized access air locks and individual counter-top pressurized chambers are used by N / D 's skilled technicians during
final assembly and statistical inspections. Air-borne particles rarely ever touch bearing surfaces. All N/D White Room equipment is of the most recent development and design-incorporating the highest order of today's technological know-how and reliability methods. These are just a few reasons why more and more major missile contractors rely on New Departure Miniature and Instrument ball bearings. If you are working on a new miniature ball bearing application where reliability is critical, include on N/D Sales Engineer in your design discussions. Call or write Department L.S., New Departure Division, General Motors Corporation, Bristol, Connecticut.

NIMN

MINIATURE E INGTRUNEENT BALL BEARINGS
proved reliability you can build around
CIRCLE 153 ON READER-SERVICE CARD

$$
\boldsymbol{H}=\frac{m c}{2}
$$

Its Amazing Relationship To the Relativity Law

MORE than one reader has pointed out that there is a remarkable similarity between our new physical law $\mathrm{E}=\mathrm{mc} / 2^{*}$, and Einstein's famous equation. We don't wish to appear presumptuous, but there is a relativity effect embodied in our new machine, the FR-600. Unfortunately this information has somehow leaked out and now there's the devil to pay. The marketing people got wind of it and blamed us for revealing the clue in our last paper on the Ips Corollary. It seems they think this information will play hob with their sales curve. We have commitred ourselves, however, so there's nothing to do but make a clean breast of it.

As we pointed out, the FR-600, in many cases, can do the work of two machines. (Our engineering colleagues will remember that this is because the FR-600 can record 125 kc data at 30 ips , thus recording for 48 minutes on one 14 -inch reel. This eliminates the need for a second stand-by machine or a dual transport in most data runs.) As you might expect, the marketing people were worried that this might cut sales in half, since one machine could do the work of two. That wasn't the half of it, however. Now it seems that the FR-600 lets all of our other analog recorders do the same thing. So, whether we like it or not, all our AR-200's, Model 800^{\prime} s, FR-100's and 1100's can record the same bandwidehs at half the usual speeds - and record twice as long to boot. (The new engineer says this is because bandwidth is determined by the reproduce head and not the record head.)
So if you have an FR-600 to reproduce your data on you can record it at half the usual speed on all our other machines and get twice the recording time. There's no way we could stop you if we had to. As a result the marketing people are all up in arms. This will cut sales on all of our other machines in half, they say, since one machine can do the work of two. As far as we're concerned there's nothing to be done about it. The secret's out. We can only hope the profession won't abuse the privilege. A few communications from you in the field would certainly help the marketing people forget this whole ugly business.
(Regarding the answer to the trial problem in our first paper: If one of our readers has solved it would he please send us the answer in a plain envelope marked 'personal.')
*We still have a few extra copies of the papers on $\mathrm{E}=\mathrm{mc} / 2$ and the Ips Corollary.

AMPEX

NEW PRODUCTS

Differential DC Amplifier

655

Model 516 true differential dc amplifier features a low noise of $14 \mu \mathrm{v} \mathrm{rms}$ over the bandwidth of dc to 25 kc . It has an output of $\pm 100 \mathrm{ma}$ at 10 v and a continuously variable gain to 1000 times. A general purpose instrument, it is chopper stabilized.
Allegany Instrument Co., Inc., Dept. ED, 1091 Wills Mountain, Cumberland, Md.

Phase Detector

656

For use from 15 to 400 mc , type 205B1 phase detector measures phase shift in radar if amplifiers, transmission networks, and radar tracking systems. Its accuracy is $\pm 0.05 \mathrm{deg}$ or $\pm 1 \%$ of the dial reading. Impedance is 50 ohms nominal for both input and output.

AD-YU Electronics Lab., Inc., Dept. ED, 249259 Terhune Ave., Passaic, N.J.

Servo Control Assembly

Is completely prepackaged

This prepackaged modular servo control assembly consists of motor generator, gear train, synchro, and potentiometer. Type E-108A uses size 8 components. The motor generator is rated

> Short Term Frequency Stability measured with High Accuracy

THE AIL TYPE 392B
Frequency Stability Tester for Checking Drift, Jitter, Jitter rate

- Checks L- and S- band oscillator performance
- Responds to input levels as low as -45 dbm
- Checks frequency stability to 1 part in 10^{9}.

It is particularly useful for the measurement of MTI Stalo stability during the short time interval when Stalo drift may cause erroneous target information. It operates in the approximate bands of 1120 to 1700 mc and 2600 to 3200 mc . The AIL type 392B provides rapid design and production checks. Compact, lightweight and portable it is ideal for field testing.

Write for descriptive literature.

-

AIRBORNE INSTRUMENTS LABORATORY deEr park, long istand, new york A DIVISION
OF CUTLER-HAMMER, INC.
for 26 v per phase, or comes with 36 v center tap control phase. The gear train comes in any ratio u , to 6000 to 1 ; the synchro has a 7 -min accuracy; and the potentiometer is available in resistances (ij) to 100 K
John Oster Manufacturing Co., Avionic Div., Dept. ED, 1 Main St., Racine, Wis.

Micro-Microammeter
658
Covers 17 ranges down to $2 \mu \mu a$

Model 414 micro-microammeter presents 17 ranges in steps of 1 and $3 \mathbf{X}$. Accuracy is within 3% of full scale down to $10 \mathrm{~m} \mu \mathrm{a}$. The instrument has a 5 -v output at up to 1 ma , output noise of less than 1% of full scale peak-to-peak, and a response time of 0.2 sec .
Keithley Instruments, Dept. ED, 12415 Euclid Ave., Cleveland 6, Ohio.
Price \& Availability: Price is $\$ 280$ ea. Units are arailable from stock: delivery time is 60 days.

Solenoid Lock

Prevents accidental change of setting

Designed for use where unauthorized or accidental changes of control settings are to be avoided, this solenoid locking mechanism can be furnished with type JR multi-pole rotary switches. Coils are available for 12,24 , and 115 v dc operation and can be impregnated to meet MIL-T-152. Release is effected by energizing the solenoid or, whe:e fail-safe protection is required, by deene gizing it.
Electro Switch Corp., Dept. ED, King Ave., Wey mouth, Boston 88, Mass.
Pric \& Availability: Made on order only. Delivery approximately 60 days after receipt of order. Price is dependent upon individual customer requ rements.

ALLIED CONTROL'S NEW LINE OF Sub-Miniafure Telephone Type Relays

Now being manufactured entirely in the U.S.A., not only in its original West German design previously sold in this country by Allied Control Company, Inc. under an agreement with Siemens \& Halske Company A. G. Germany but with variations to meet American requirements as well.

TYPE-T-134

itpl-tan

H. 1 19/32 @ W. 61/04 @ 1.1 11/32

PERFORMANGE CHARAGTERISTIC

Confact Arrangemonf
Up to 12 springs maximum form A, B or C Confact Rafing
2 amperes resistive or 1 ampere inductive at 29 volts $\mathrm{d}-\mathrm{c}$ or 115 volts a-c
Low level or 5 ampere contacts available on request
Standard Coil Volfages
Suitable coil resistances can be supplied for operation at any voltage within the range of 0.5 to 130 volts d-c

Coll Power

Nominal: 700 milliwatts
Minimum Operate Power: 60 to 150 milliwatts depending on application, contact arrangement and coil resistance.
Timing af Nominal Volfage
Operate time: 7.5 milliseconds maximum Release time: 3.5 milliseconds maximum

Vibrafion

10-55 cps at . 062 inch double amplitude
$55-500 \mathrm{cps}$ at a constant 10 g
Shock: 25 g operational

Enclesure

Open, dust cover or hermetically sealed

Weight

Open type 1.0 ounce maximum
Sealed type 2.0 ounces maximum

ALLIEO CONTHOL COMPANY, INC., E EAST ENO AVENUE, NEW YONK E1, NEW YONK CIRCLE 155 ON READER-SERVICE CARD

NOW!

9 CARBON FILM RESISTORS IN ONE CUBIC INCH .
matched to $.01 \%$ in resistance... 1ppm/ ${ }^{\circ} \mathbf{C}$ in temperature coefficient

Networks designed, developed and produced by Pyrofilm Resistor Company furnish circuit designers with a small size compact package of resistors for use in high precision circuits. As many as 9 one watt resistors in values up to 30 megohms can be packaged in less than 1 Cubic inch. Precise lead spacing is maintained for printed circuit applications.
Pyroseal resistors are subject to close control at all stages, from pyrolytic deposition of the carbon film, to vacuum baking at $450^{\circ} \mathrm{C}$ before fusion sealing in glass, to $350^{\circ} \mathrm{C}$ aging of the completed resistors to assure perfection of the seals. The stability of Pyroseal resistors is unmatched by any other form of carbon film resistor.
Typical applications for Pyroseal networks are as voltage dividers for instrument input or reference voltage selection . . . feedback networks, whose ration determines the gain of an amplifier ... summing networks, for adding accurately known multiples of several input voltages.

Writo for Now 5 page articto on Notwork Application and Configuretions.

On Disploy of the 1960 I.R.E. Convontion - Booth \#2235
PYROFILM RESISTOR COMPANY, INC.
U.S. Highway \#46 • Parsippany, New Jersey • DEerfield $4-8282$

NEW PRODUCTS

Snap-Action Switches

Come in three terminal styles

These miniature snap-action switches come with three kinds of solder-lug terminals as well as snap-on terminals, and terminals for printed circuit wiring. The solder-lug terminals include the short type with holes for wires up to No. 18, a single-turret lug, and a double-turret lug. The turret lugs are flat. The snap-on terminals fit quick disconnect female terminals. The printed circuit terminals fit $3 / 32-\mathrm{in}$. slots in wiring boards and have holes for connection of component leads.
W. L. Maxson Corp., Unimax Switch Div., Dept. ED, Ives Road, Wallingford, Conn.

Magnetic Recorder

Provides tape speeds up to 150 ips

Model 59 digital magnetic recording system provides tape speeds up to 150 ips , rewind speeds as high as 400 ips , and start-stop time of less than 3 msec . The transport mechanism uses all solid state circuitry, and handles tape by linear reel drive servo systems, eliminating the need for step servos. The system meets the requirements of MIL-E-4158A.
Cook Electric Co., Data-Stor Div., Dept. ED, 2700 Southport Ave., Chicago, Ill.
Price \& Availability: Generally delivered 60 to 90 days after order received. Some versions can be delivered in 30 to 60 days. Price is dependent upon specifications.
...to meet your electromechanical switching needs

These are the very same twin contact relays proven outstanding ly successful through many years of precise, exacting operation in the telephone industry.
The following regular types are representative of our complete line:
Type A: a general-purpose relay with up to 20 Form "A" spring combinations.
Type B: a gang-type relay with up to 60 Form " A " spring combinations.
Type BB: accommodates up to 100 Form "A" spring combinations.
Type C: two relays on the same frame. A must where space is at a premium.
Type E: same characteristics as the Type A, plus universal mounting arrangement. Interchangeable with many other makes.

Types A, B and E are available in high-voltage models (insulation withstands 1500 volts A.C.) for test equipment and other high-voltage applications.
Details and snecifications are in our complete celay catalog. available on request. Write to Telecommunication Industrial Sales.

TROMEERG-CARLEON
-TROMEERG-CARLEON 116 Carlson Road • Rochester 3, N. Y.
circie 137 on reader-service caro

Vane-Operated Limit Switch
 Response time is about 0.001 sec

Designed for use in controlling machinery travel, this vane operated limit switch has a response time of about 0.001 sec. Providing the path of the vane is maintained, operation is consistent within $\pm 0.0025 \mathrm{in}$. Normal contact rating is $115 \mathrm{v} \mathrm{ac}, 0.2$ amp make or break; maximum rating is 115 v ac at 0.75 amp . Having spst design, the switch meets JIC requirements. It measures $2-11 / 16 \times 2-\% \times 2-\%$ in.

General Electric Co., Dept. ED, Schenectady 5, N. Y.
Price \& Availability: Units are available from stock. Price is $\$ 35$.

Transducers

Use platinum film as sensing element
Using a molecular film of platinum as a sensing element, series TT temperature transducers operate from -453 to +800 F . The size of the element is as small as $0.125 \times 0.04 \mathrm{in}$. Transducer output is up to 15 ohms per deg F, and it can withstand $40 \mathrm{~g}, 2500 \mathrm{cps}$ specified.
Nacimo Products, Dept. ED, 1090 Morena Blvd., Box 248, San Diego 10, Calif.
Price \& Availability: Units with certain configurations and resistance values are in stock. Delivery is 30 days. Price is between $\$ 300$ and $\$ 400$ when ordered in quantities of 25 or less.
Silver-Zinc Battery
353
For missile systems

Type 3381R-2 rechargable silver-zinc battery is a $10-\mathrm{amp}-\mathrm{hr}$ unit with a nominal voltage of 25 v when discharging at 45 amp in 12 min . It call also be discharged at 60 amp or at lower rales. Its dry shelf life is 2 yr min . Designed to meet the requirements for missile electric power syitems, it meets the test specifications of MIL-E5272 . The volume of the battery is 239 cu in. and the weight is 15 lb .

Yardney Electric Corp., Dept. ED, 40-50 Lconard St., New York 13, N.Y.
Prce \& Availability: Price quoted on request; urits can be delivered within 90 days.
ELECTRONIC DESIGN • February 17, 1960

Performance Proven in Hundreds of Thousands of High-Fidelity Loud-speakers

A leading high-fidelity loud-speaker manufacturer realized the above savings when his Alnico speakers were redesigned to use Indox V. Here is why he changed . . . and why you, too, may achieve substantial savings by changing to Indox V .

Indox V loud-speaker magnets are guaranteed to have a minimum energy product of 3.25 million BHmax. Made of highly oriented barium ferrite material, their energy level is comparable on an equivalent weight basis to that of Indiana's Hyflux Alnico V - the most powerful magnet material available.

Now with Indox V, designers and manufacturers can look forward to:

- Speaker assemblies that are less than half as deep
- Fewer magnet parts, simpler assemblies
- Less over-all weight, lower shipping costs

Yet the advantages of comparable Alnico magnets are retained:

- Highest sound level possible
- Best transient response, assuring a full range of tones and overtones
- Truest possible reproduction of sound

Indiana offers a wide range of INDOX V high-fidelity loud-speaker magnets... in both standard and special sizes.
Investigate the possibility of improving your loudspeaker designs with Indox V. Indiana's experienced design engineers are available to help you solve your speaker design problems - at no cost or obligation to you. Write for Bulletin 18 M-2, today for more detailed information.

INDIANA STEEL PRODUCTS
Division of Indiana General Corporation
Valparaiso, Indiana
In Canada: The Indiana Stool Products Company of Canada Limitod, Kitchoner, Ontario

INDIANA
PERMANENT MAGNETS

COLUMBUS ELECTRONICS C/ RPORATION DOUBLE DIFFUSED SILICO RECTIFIERS COLUMBUS ELECTRONICS JORPORATION DOUBLE DIFFUSED SILI JN RECTIFIERS COLUMBUS ELECTRON/S CORPORATION DOUBLE DIOUSED S/LCON RECTIFIERS COLUME CLLECT E CS CORPQRATION
 COLUMT LEC Sinc e PRATION DOUF/ DIFFUS.D SILIC collosbus el/ftronic:/ R RORATION DOUBLE DIFF/SED SILI/ RECTIFERS

Now . . . an extensive line of
high performance, hermetically sealed.
silicon power rectifiers UP TO 35 AMPS.
JEDEC types exceeding MII specifications.

NEW PRODUCTS

Silicon Rubber Tubing

For high temperature use

Type SR silicon rubber tubing stands long exposures to temperatures from -85 to +225 C and up to +315 C for short periods. Tensile strength, tear strength, resistance to corona, and resistance to weather conditions are excellent.
L. Frank Markel \& Sons., Dept. ED, Norristown, Pa.
Price \& Availability: Prices, which vary according to size and other physical characteristics, are furnished on request. Minimum order is \$10. Shipments of $\$ 150$ are fob.

Electronic Timers

Designed for applications where a time delay is required in circuit function, type D timer performs a delay after de-energization and type E timer performs a delay on energization. Type D comes in time ranges of 0.06 sec to 2.3 min ; type E comes in ranges of 0.05 sec to 2.4 min . They have dpdt, two normally open and two normally closed contacts with ratings of 5 amp at 115 v ac and 5 amp at 28 v dc. A supply voltage of either 115 v or $230 \mathrm{v}, 60 \mathrm{cps}$, may be used.
Gemco Electric Co., Dept. ED, 25685 W. Eight Mile Road, Detroit 40, Mich.

Frequency Divider

Furnishes sub-harmonic frequencies

Type FS-1100T frequency divider furnishes subharmonic frequencies. Normal outputs are 1 mc and 100 kc simultaneously with 1 v to 50 ohm loads. At these frequencies, the minimum stability is 5×10^{-10} per dav after initial aging. Other frequencies cam be furnished on special order. The unit is fully transistorized and has a double proportional control oven. It requires 24 to $32 v$. Type FS-1100TP companion power supply, operates on 115 vac.
James Kinights Co., Dept. ED, Sandwich, Ill. Price \& Availability: Price is \$49.5. Delivery time is 60 days.

HIGH RETSSANCE MEGOHMMETER

* Up to 50,000,000 meghoms!
* Test voltage variable 100.600 vdcl
* Uncrowded 41⁄2" meter scale!
\star Automatic capacitor discharge!
* Safe test terminals!
* Only $\$ 383$!

Here's the only high resistance megohmmeter selling at $\$ 383$ with features not found on instruments selling for twice as much. Measuring range up to $50,000,000$ megohms to meet the requirements of recent advances in insulating materials. The L-7 Megohmmeter is housed in a hardwood case with recessed vertical panel and convenient carrying handle.

Industrial Instruments has a wide selection of meg ohmmeters for both laboratory and high-speed production testing. Choose the model that bes suits your needs from this table of specifications

Write today for complete catalog of Electrical Test Equipment manufactured by...

Imdustrial Instrumemis inc 89 Commerce Roab. Ceoar Grove, Esser County, M. J. CIRCLE 165 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 17, 196

HOTE: PF TEFLON* advantages: good dielectric strength: (500 to 1000 volts/mil); low. est dielectric constant (2.0) and dissipation factor (0.0002) of any solid dielectric; no hange of electrical properties with tempera--re $\left(-25^{\circ} \mathrm{C}\right.$ to $+250^{\circ} \mathrm{C}$) or frequency (60 cles to 100 mc); zero moisture absorp. ton; unaffected by any commercial chemical.
WRITE, WIRE OR CALL:
PENNSYLYANIA FLUOROCARBON
Who 6.0603 - TWX PH 252

Linear Motion Potentiometer

Size is $1 / 2 \times 1-1 / 8 \mathrm{in}$.

Model 112 linear motion potentiometer, having an over-all size of $1 / 2 \times 1-1 / 8 \mathrm{in}$., is available with strokes from $1 / 4$ to 3 in . It contains two independent elements, either or both of which may be linear or conform to a required function. Where taps are needed, as many as 4 per in. per element can be supplied. Linearity is 0.2% the length of stroke, the resistance range is 250 ohms to 125 K per in. of stroke and resolution is $1 / 35,000$ per in. of stroke. The temperature range is -55 to +150 C. Wattage is 1 w per in. of stroke.

Computer Instruments Corp., Dept. ED, 92 Madison Ave., Hempstead, L. I., N. Y.
Price \& Availability: Prices will be quoted on request. Delivery is in 45 days or less.

Military Chassis

For electronic equipment
This military chassis for electronic equipment, built in accordance with MIL-STD-108 and MIL-E-2036, withstands vibration as per MIL-STD167, and shock as per MIL-T-17113. Side frames are made of $3 / 4 \times 3 / 4 \times 1 / 8 \mathrm{in}$. aluminum extrusions. Mounting plate and rear panel are made of $1 / 8$-in. aluminum and the front panel is $3 / 16$ or $1 / 4-\mathrm{in}$. aluminum. Lengths available are 10,14 , and 18 in . Angular construction is used for maximum strength. All hardware is stainless steel.
Electro-Pack, Inc., Dept. ED, 11505 Jefferson Blvd., Culver City, Calif.
Price \& Availability: Prices begin at \$57.60. Delivery is in two weeks.

Wire Stripper

Removes film or bonded insulation
Model 12 Twinwheel wire stripper is a power driven machine designed for the removal of enamel, Formvar, nylon, cerox, glass, Teflon, and other film and bonded type insulations of combinations of these insulations. It handles sizes from AWG No. 17 to No. 45, either single or stranded conductors. Stripping wheels measure 1-1/4 or $1-1 / 2 \mathrm{in}$. in diameter with either 1 or 2 in . wide fibre glass or wire wheels.
Carpenter Mfg. Co., Inc., Dept. ED, DeWitt 14, N.Y.

THIS SLIM-LINE, TRIM-LINE STYLIST

Have a look at the most distinctively different meter design in years. Start with styling (as your customers do): note the thoroughbred leanness, the crisply drawn detail, the overall look of precision. Consider function: see how the picture-window dial is recessed and angled back for easier reading. Ponder practicality: observe that the self-trimming case is installed with just a single panel cutout. Sample the specifications: choose from two sizes—Model 561, $5^{\prime \prime} \times 27 / 8^{\prime \prime}$, and Model $361,31 / 2^{\prime \prime} \times 2^{\prime \prime}$; both in satin-finish Bakelite; both available in standard microampere, ampere, millivolt and volt ranges, AC or DC. Prices and other data? Ask for Bulletin 107.

apf
 ASSEMBLY PRODUCTS, INC.
 Chesterland 17, Ohio

DOW FABRICATION PLANT SAVES WEIGHT, TIME, COSTS ON ICBM COMPUTER HOUSINGS

Because we are working in both magnesium and aluminum, The Dow Metal Products Company can offer the best solution to weight problems. Dow's experience, plant facilities and quality control system have helped many firms solve tough application problems. Production capacity is now available for fabricated parts and assemblies of magnesium, aluminum and other metals.

For more information contact your Dow Sales Office or write today for illustrated brochure describing Dow fabrication facilities and services. THE DOW metal products company, Midland, Michigan, Merchandising Dept. 1040BC2-17.

Abstract

Working closely with the customer, Dow engineers suggested design modifications for a three-deck computer housing that yielded improvements in both production and application. Over-all production costs were lowered $20 \%-30 \%$, compared to the original design. Per-unit tooling costs were also lowered. The new design resulted in better load distribution and increased interchangeability of parts. Delivery schedules were speeded. The use of magnesium permitted a weight savings of approximately one-third, weld joint efficiencies of 85% and more, and excellent resistance to thermal shock. The high damping capacity of magnesium alleviates vibration considerably.

SERVICES FOR DESIGNERS

Digital Design Service

Development of a general purpose computar program which generates wiring lists for newly designed digital equipment directly from the de tailed logical design has been announced by Marc Shiowitz \& Associates, Inc., an engineering consultant firm. Application of this new programming technique enables clients to receive complete point-to-point wiring lists within hours of logical design completion.

Design need only be carried as far as the logical equations which represent the internal operating functions. Manual preparation of schematic wiring diagrams or detailed wiring lists is not necessary
Marc Shiowitz \& Associates, Inc., Dept. EI), 1350 Crenshaw Blvd., Gardena, Calif.

Teflon Resins

170
Expanded facilities for the machining of Teflon fluorocarbon resins are announced by Chemplast. Inc., E. Newark, N. J. Finished parts can be ma chined either from standard shapes such as molded or extruded sheets, rods, and tubes, or from specially molded blanks. Typical machined components for the electronics industry include connector inserts, coaxial spacers, radomes, and antenna insulators.
Chemplast also machines nylon stock and Kel-F In addition, the company supplies sheets, rods tubes, and custom shapes of Teflon, wire coated with Teflon, and both colored and reinforced Teflon compositions.
Chemplast, Inc., Dept. ED, 3 Central Ave E. Newark, N. J.

Research Facilities

A brochure citing the advantages of using outside independent research teams to help develop a company's programs has been made available by the Manhattan Physical Research Group. Outside research facilities, they say, bring a fresh and unbiased look to company research programs with relatively little red tape. MPRG has done work in nongyroscopic inertial guidance, nuclear reactors, optics, and missile ship-motion simulators.
Manhattan Physical Research Group, Dept. ED 556 W. 191st St., New York 40, N. Y.

Measurement Instrumentation
 172

Specializing in electronic measurement instrumentation, Telemetering Corp. offers complete research, development, and production facilities to meet customer requirements. Results of all services, whether in the field or at Telcor's facilities, are presented in report form with substan-
fiating data. Trained personnel are available not only for the installation and testing of Telcor's products, but also to aid in the adaptation of standard models to unique applications.
Another service offered is production subcontracting. Personnel and facilities are available to assist in problems regarding prototype, pilot, or mass production of components.
Telemetering Corp., Dept. ED, Box 645, Mesa, Ariz.

Rapid Servo Construction

173
Gap Instrument Corp., Freeport, N.Y., has developed a servo construction system that permits rapid initial production as well as volume production.
The system depends on modular, jig-bored reference plates which can be stacked for maximum compactness, and are designed to accept standard, stock electrical, mechanical components and hardware. According to the firm, assembly of a unit having the compactness of an ultimate production unit proceeds directly from even a pencil sketch.
Gap Instrument Corp., Dept. ED, 116 E. Merrick Road, Freeport, L.I., N.Y.

Technical Literature

174
The firm's services range from conception of a direct-mail piece introducing a new transceiver through writing, illustrating and publishing a complex handbook on circuit design. At the clients' disposal are research, engineering-writing, layout, technical illustrating, and production staffs. It provides literature services that supplement conventional industrial agency capabilities. Folders, illustrated with photographs, describing the firm's services are available.
Miles-Samuelson, Inc., Dept. ED, 21 E. 26th St., New York, N. Y.

Plastic Moldings

175
A two-color, 12-page booklet discusses compression, transfer, and injection molding processes used by Continental-Diamond Fibre Corp. All molded parts produced by the company are made to requirements and specifications set forth by the cistomer.

Complete descriptions and a table of properties for nine molding materials are included in the buoklet. A selection of typical parts are shown to illustrate the variety of parts produced for electrical applications.
Continental-Diamond Fibre Corp., Dept. ED, N wark, Del.
 presentation available with Borg Direct-Reading Microdials. Indexed accuracy is one part in a thousand. Microdials are designed to minimize human reading errors under forced fast reading conditions. Extremely rugged, Microdials meet military specifications. Large numerals are in direct contrast to their backgrounds. Curved, one-piece windows permit wide-angle viewing. Compact size requires minimum space. Available in three, four and five digit models. Finger-tip brake optional. Contact your nearest Borg distributor or technical representative, or write us for full information.

ASK FOR DATA SHEETS BED-A135 \& BED-A136
BORG EQUIPMENT DIVISION
Amphenol-Borg Electronics Corporation

Janesville, Wisconsin

KEUFFEL \& ESSER CO.

NEW YORK - HOBOKEN, N. I. - DETROIT - CHICAGO - MILWAUKEE - ST. LOUIS • DALLAS • DENVER - SAN FRANCISCO - LOS ANGELES - SEATTLE - MONTREAL 166

SERVICES FOR DESIGNERS

Datacenters Rent Computers

Scientific and engineering organizations can now rent time by-the-hour on International Business Machines Corp.'s 709 computers at Datacenters in midtown New York and Poughkeepsie, N.Y.

The high speed and flexibility of the 709's make them ideally suited to the specific needs of scientific and engineering firms, according to Gilbert E. Jones, President of IBM's Data Processing Division. The systems can handle up to 42,000 additions or subtractions a second; multiplications or divisions are performed at speeds of up to 5000 a second.
Time at the Poughkeepsie center is immediately available. Customers may now reserve time at the midtown New York facility in the Time \& Life Building in Rockefeller Center. Datacenter users supply their own programmers and operators. The hourly rate for a standard system at both locations is $\$ 450$. An off-hour rate of $\$ 315$ is effective after 6:00 pm.

Data Processing Div., International Business Machines Corp., Dept. ED, 112 E. Post Road, White Plains, N.Y.

Environmental Test Lab

An environmental test laboratory to serve the electrorics, missile, and aircraft industries in southern California has been opened by Technology Instrument Corp. of Calif., announces President Joseph M. Looney, Jr. The facility is adjacent to leading centers of manufacturing, research, and development.
Shock, vibration, acceleration, temperature, pressure, humidity, corrosion, and life environments are provided in the lab.
Technology Instrument Corp. of Callif., Dept. ED, 850 Lawrence Drive, Newbury Park, Calif.

Printed Wiring

The recent merger of Electralab, Inc. and Printed Electronics Corp. has resulted in increased effectiveness in design, development, quality control, engineering, and sales.
Combined facilities, abilities, and experience of the new organization, called Electralab Printed Electronics Corp., are presented in a booklet illustrating the advantages of two plants now functioning as one expanded firm. A series of data bulletins on design, techniques, and application of printed wiring is now being prepared.
Electralab Printed Electronics Corp., Dept. ED, Industrial Center, Needham Heights 94, Mass.
 For Their Numerous Applications
The Handley Wee Poter, because of its mounting fle:ibility, unusual configuration and long leads, can be. momented in many ways... laid down, vertical, or even "suspended" above the board ${ }^{\circ}$. Furthermore, exacting engineers like Wee Pot's extreme accuracy, low impedance, and freedom from back-lash. Under 900 KC , inductive reactance is not measurable. The Wee Pot can be sealed to mect MIL-E-5272.

TEMPERATURE Wee Pot's temperature range is from -55 to 140 C with (1.3) watts at 40 C .
SHOCK Wee Pot withstands 50 G 's meeting MIL. 202...exceeding NAS 710 proc. III.

VIERATION Wee Pot takes 30 G's at 11 mill. seconds duration exceeding MIL-R-19
ACCELERATION The Wee Pot withstands 100 G's at 11 milliseconds duration exceeding MIL-R-19.

- \ddagger HANDルEY POTENTIOMETERS
2030 Colorado Avenue, Santa Monica, California CIRCLE 181 ON READER-SERVICE CARD

RC-RL Curves and Nomograms - III

Donald Moffat
Motorola, Inc
Western Military Electronics Center
Phoenix, Ariz.

Multiple RC or RL sections pose loading problems not encountered in the simple, single sections discussed in Parts 1 and 2 of this three-part series (ED, Nov. 11 and Dec. 9, 1959). Here are curves, circuit analyses and nomograms to help in the design of multiple-section networks.

T_{t}^{1}RANSFER equations for single $R C$ or $R L$ sections, like those in Fig. 1, were given in Part I of this series (ED, Nov. 11, 1959, p153). The equations were restricted to sections with negligible loading, since the load produced by one section following an identical section is enough to reduce the usefulness of the equations.

A familiar example is the phase-shift oscillator, where we cannot obtain 180 -deg shift simply by using three identical sections, each calculated for 60 deg . It is interesting to investigate the error that would result.
To shift 60 deg , equations for single sections (Fig. 2, of Part I) show that $R_{9} C_{s}$ should be 1.73 and attenuation 6 db per section. As a comparison, look at the actual transfer function for a three-section network:
$\frac{e_{o}}{e_{i}}=\frac{1 /-\arctan \frac{6 \omega R C-\omega^{3} R^{3} C^{3}}{1-5 \omega^{2} R^{2} C^{2}}}{\sqrt{\omega^{6} R^{5} C^{6}+13 \omega^{4} R^{4} C^{4}+26 \omega^{2} R^{2} C^{2}+1}}$

An evaluation of this equation for $R C=1.73$ shows that the angle is short more than 20 deg , and there is almost twice the attenuation expected. If there is enough gain to compensate the extra attenuation, the circuit will oscillate at a frequency that is in error by more than 40 per cent.
A little more mathematics will show that for 180 -deg phase shift, $R C$ should be 2.45 , and then the attenuation will be 29.2 db . It is therefore easy to see that if Eq. 1 or the curves to be discussed later are used for the initial design, considerable time will be saved in final adjustments.

It should be emphasized that Eq. 1 is for three identical sections. If the values in the first section will permit it, loading effects can be reduced by increasing the resistance and reactance of each succeeding section by an order of magnitude.
In the same way, equations can be written for two and four sections. For two sections we have

$$
\begin{equation*}
\frac{e_{o}}{e_{i}}=\frac{1\left\lfloor-\arctan \frac{3 \omega R C}{\omega^{2} R^{2} C^{2}-1}\right.}{\sqrt{\omega^{4} R^{4} C^{4}+7 \omega^{2} R^{2} C^{2}+1}} \tag{2}
\end{equation*}
$$

and for four sections,

$$
\begin{align*}
& \frac{e_{\omega}}{e_{i}}=1\left[-\arctan \frac{7 \omega^{3} R^{3} C^{3}-10 \omega R C}{\omega^{4} R^{4} C^{4}-15 \omega^{2} R^{2} C^{2}+1}\right. \\
& \div \sqrt{\omega^{8} R^{8} C^{8}+19 \omega^{6} R^{6} C^{6}+87 \omega^{4} R^{4} C^{4}+70 \omega^{2} R^{2} C^{2}+1} \tag{1}
\end{align*}
$$

(D)

(c)

(d)

Fig. 1. Four simple transfer circuits.

Fig. 2 shows attenuation and phase shift for one, two, three or four sections. The abscissa is written in four ways; the subscripts on the circuits in Fig. 1 determine which abscissa heading is applicable.

Optimum Number of Sections

At extreme values of frequency, the phase shift will asymptotically approach 90 deg times the number of sections. In this way if 160 -deg phase shift is required, it would be impossible with a single section-but the question still remains whether two, three or four sections would be most efficient.

A quick check on Fig. 2 shows there is prohibitive attenuation with two sections, but the decision
to use three or four sections must be examined in more detail. As an aid to this examination, the information in Fig. 2 is given in different form in Fig. 3.
A study of Fig. 3 suggests a rule of thumb for determining the optimum number of sections: use the minimum number of sections that will not average more than 30 deg per section.
Like any other rule, this one must be tempered with judgment. For instance at 100 deg , two sections would attenuate 12 db while three would attenuate 10 db . Unless the $2-\mathrm{db}$ difference meant additional circuitry would have to be added for gain, it would be unwise from the standpoint of reliability to use three sections, involving two additional components.

Fig. 2. Attenuation and phase shift for circuits made up of one, two, three or four sections.

What size is a quality fastener?

Here are two ELASTIC STOP ${ }^{\text {B }}$ nuts. Each has the familiar red locking collar.* Each is self-locking, vibration proof and reusable. Both stop nuts will maintain an accurate adjustment anywhere on a bolt . . . each prevents liquid seepage along bolt where on a bort . . each prevents iquid seepage along bolt
threads and protects against thread corrosion. Finally, each has an unmatched record for quality, both in manufacture and performance.
But one measures $1 / 10^{\prime \prime}$ across the flats; the other, $4^{\prime \prime}$. Between these two there are more than 530 different hex nuts in the ESNA line. Look to ESNA for a standard self-locking fastener to fit your special needs. Write Dept. S2257.

-The red locking collar is a Registored Trade Mark of ESNA

ELASTIC STOP NUT CORPORATION OF AMERICA
2330 Vauxhall Road, Union, New Jersey
CIRCLE 182 ON READER-SERVICE CARD

MICROWAVE COAXIAL CRYSTAL SWITCH

CLOSED INSERTION LOSS AS LOW AS $1 / 2 d b$
A new concept in microwave switching developed at the American Electronic Laboratories, Inc, has re sulted in the Microwave Coaxial Crystal Switch Closed insertion loss as low as $1 / 2 \mathrm{db}$. Open attenuaswitches if desired. The extremely low power require ment of as little as 16.5 milliwatts and high switchin speeds of over 10 millimicroseconds make this switch a natural for high speed antenna lobe switching, microwave chopping for crystal video detection of RF high speed commutation, and also as a high speed switching device for computers. Additional character istics are its virtual independence of its switching characteristics to temperature over a range from -55° to $+71^{\circ} \mathrm{C}$., its ability to dissapate up to 1 wat of power internally and its high degree of reliability ORE: DATA ON REQUEST

Investigate the opportunities at AEL for creative engineet LABORATORIES, INCORPORATED 121 N , 7 th ST., PHILADELPHIA G, PENNA. In Canada contact: Conway Electronic Enterorises Regd., Toronto, Canada CIRCLE 184 ON READER-SERVICE CARD

Fig. 3. Attenuation and phase shift for circuits described in Fig. 2. Curves part company every 30 deg.

Two more items are worth considering when deciding on the number of sections.
First is selectivity. Outside of the corner, roll-off will proceed at six db per octave for each section. If frequency discrimination is important, it might be worthwhile to add sections and increase the rate of attenuation of undesired frequencies.

Second is the rate of change of phase, which increases with the number of sections. If constant
phase shift is desired over a band of frequencies, every attempt must be made to reduce the number of sections.

RC Differentiator

For frequencies that are low compared with the corner frequency ($f_{c}=1 / 2 \pi R C$), the circuit of Fig. la will act as a differentiator. In the limiting case-dc-the circuit will be a perfect differentiator: there will be zero rate of change, and there

Fig. 4. Time and amplitude of pulse maximum varies directly with R_{g} and C_{ε}, inversely with τ, in circuit of Fig. 1a.
will be zero output.
If a square wave is applied to such a circuit, the output will consist of a pulse at each jump in the input, followed by a return toward zero during the square wave. It is helpful to investigate the dependence of the pulse amplitude and rise time on R_{g}, C_{s} and input rise time. Every voltage change must occur over a finite length of time, usually caused by charging of stray capacitances. A valid assumption therefore is that the square wave will be of the form

$$
\begin{equation*}
e_{i}=E(1-\epsilon)^{-u t} \tag{t}
\end{equation*}
$$

Where τ is the time it takes to reach 63.2 per cent of its maximum, Millman and Taub ${ }^{1}$ have shown that the output will follow the equation

$$
\begin{equation*}
e_{o}=\frac{E n}{n-1}\left(\epsilon^{-x / n}-\epsilon^{-x}\right) \tag{5}
\end{equation*}
$$

In this case $x=t / \tau$ and $n=R_{s} C_{s} / \tau$. As ex pected, the curve of this equation rises from zero to a maximum and then falls back toward zero. Further examination shows that the time of maxi mum will be $x=n \ln (n) /(n-1)$.

This tells us that the time of maximum varies with R_{g} and C_{8} and inversely with τ. Substitution of the above equation into Eq. 5 will give the pulse amplitude at maximum. Fig. 4 is a curve showing both time and amplitude of maximum.

If the objective is to pass a square wave rather than differentiate its edges, the time constant $R_{0} C_{8}$

Fig. 5. Decay of square-wave when passed through an RC differentiator.
is made much larger than the duration of the square wave. The leading edge will rise to the same amplitude as the input, but then the top will decay according to

$$
\begin{equation*}
d=E\left(1-\epsilon^{-t / R u C_{s}}\right) \tag{6}
\end{equation*}
$$

where the meaning of d is shown in Fig. 5. Expressed as a percentage tilt, this is

Per-cent tilt $=\left(1-\epsilon^{-t / R C}\right) 100$.

Nomograms

With Nomogram 1 the designer can quickly determine per-cent tilt for a given circuit, or a suitable combination of R_{g} and C_{8} for a specified tilt. In the latter case, draw a straight line from the square-wave duration on the t scale to the specified value on the Tilt Scale. Then rotate a straight edge about the point where this line crosses the Turning Scale. Every combination of R and C joined by the straight edge as it rotates will result in the specified amount of tilt.

Nomogram to determine per-cent square-wave tilt for a given RC circuit, or a suitable combination of R_{g} and C_{8} for a specified tilt.

NEW CMC
 UNIVERSAL Counter Timer

CMC's new Model 2268 Universal Counter Timer has a func ional panel layout that is human engineered to eliminate costly "cockpit" trouble. Inside, modular construction is used through out to simplify maintenance and reduce weight. Circuitwise, temperature and increasing reliability.
Direct reading, the 2268 measures frequency from 0 to 1.2 mc ime interval from 1 microsecond to 1 million seconds on period trom 0 microsecond to 1 , million seconds. Acthracy is
+1 count + stability. Stability is 2 parts in 10^{7} with an ± 1 count \pm stability. Stability is 2 parts in 10^{7} with an op
tion to 5 parts in los. Sensitivity is 0.1 volt rms over entire range. Oscilloscope marker signals simplify start and stop trigge level odiustment for TIM of complex wove forms. Unit will driv he CMC fast digital printer and most other types of printer Model $226 \mathrm{~B}-\$ 1175.00 ; 220 \mathrm{kc}$ Mode! $225 \mathrm{C}-\$ 900.00$. For 4 -page bullerin giving complete technical specifications. contact your
nearby CMC representative or write directly to Computer Measurement Company, 12970 Bradiay Ave., Sylmar, Californie urement Co

CIRCLE 194 ON READER-SERVICE CARD

Hi:MiNWAr
 © Bartlett

FLAT BRAIDED NM LOM LACING TAPE
ties a knot that holds tight!

Try this $1 / 8^{\prime \prime}$ Nylon Braided tape and you'll be convinced that no other tape ties

so easy and fast...holds so tightly without slipping! Yes, for harness tieing-be sure to specify Heminway \& Bartlett's Nylon Braided Tape. Fungus-proof, of course! Meets Govt. Spec. Mil-T-713A.

Available in Nylon or Dacron-waxed. wax-free or resin-coated finish.
Sold nationally by Alpha Wire, New York

STAR STANLESS DOWEL, COTTER \& TAPER PINS

 This is just one of the many lines in Star's stock of stainless steel fastenings listed in our 1960
 Catalog
 - STAINLESS STEEL 300 \& BOLTS \& NUTS
 - WASMERS - PINS
 - AN \& MS FASTENERS
 Send for YOUR Catalog today, letterhead please.

 New
 1960
 catalog
 Now

When $R C$ sections are used as filters, the cut-off, or corner frequency, is usually specified as the frequency at which attenuation is three db . Filters of one to four sections can be quickly designed with the aid of Nomogram 2. Draw a straight line through the selected number of sections and the desired cut-off frequency. Rotate a straight-edge
about the point where this line crosses the Turning Scale. Every combination of $R \& C$ connected by the straight-edge will yield the desired frequency response.

Reforences

1. Millman and Taub, "Pulse and Digital Circuits," Mc-Graw-Hill Book Co., New York, 1956, p35.
10 M

63 Union Blva., Patarson 2, N.J.
 $\begin{array}{lll}\text { CORROSION } & & \begin{array}{l}663 \text { Union Blvd., Paferson 2, N.J. } \\ \text { Tolephone Cliford } 6-2300\end{array} \\ \text { RESISTANI } & \begin{array}{l}\text { Direct New York phone: Wlsconsin 7-6310 }\end{array} \\ \end{array}$

 Direct Philadelphia phone: WAlnut 5-3660 CIRCLE 196 ON READER-SERVICE CARD

This is the Ryan Q-2C Firebee Drone's tolomotoring systom . . . packoged Dorsett engineors in a compect $8^{\prime \prime} \times 13^{\prime \prime} \times 51 /^{\prime \prime}$ configuration. Thos standard Dersett telemetry components ore used in the Model 1 ms- 106 systom: up to ten Modol 0-3 fube-1ype subrarrier oscillators, a Modol PS-31 solid state power supply, an R-40 voltage regulator, a Model TR-4 PM trans mitter, and a 25 -watt A-25 amplifier.
For your relemetoring requirement, whether missilo, aireraft, drone, of balloon, DORSETT provides provad capabilities and facilities for the dosign and production of $\operatorname{FM} /$ /PM, FM/PM, FM/FM/FM and PDM/FM systems and compononts. Geared to quantity production ordors, DORSETI also provido klose progressive fochnical liaison that assures cusiomer setisfaction. Whit
coday for specifications on provod-dasig, DORSETT ielemetry equipment.
DORSETT
Electranics Laharataries, Jac.
P. O. BOX 862

TEL. JE 4-3750 NORMAN, OKLA
CIRCLE 197 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

size 5 motor generator－JUST OUT！

Here it is ．．．the smallest－and lightest－motor generator combination in the industry today．And you can get it with the new Size 5 Gear Train，too．Weighing a mere 1.1 oz ．，the Size 5 develops a minimum stall torque of 0.11 oz ．in．and has a free speed of $10,000 \mathrm{rpm}$ ．Units are available for 400 cycle operation with 26 or 33 control phase winding．The control phase is split for operation directly with transistor amplifiers．
Write for complete specifications．And be sure to get all the details on our new synchro line．Daystron－ Transicoil Division，Worcester，Montgomery County，Pa．Phone：JUno 4－2421．

In Canada：Daystrom，Ltd．， 840 Calendonia Rd．，Toronto 18，Ont．
Foreign：Daystrom International Division， 100 Empire Street，Newark 12，N．J．

NEW LITERATURE

Power Connectors

Bulletin No．PL－2 illustrates and describes the N－UP 121M power connector．The unit has a pivotally－mounted grounding blade which pro－ vides automatic ground connection when plugged into either 2 or 3 pole receptacles．Specifications include construction materials，electrical ratings， and wiring instructions．A．P．M．Corp．， 252 Haw－ thorne Ave．，Yonkers，N．Y．

Adhesive Applicator

An adhesive applicator that feeds solvent and water－based adhesives through a flexible hose di－ rectly into a brush under ordinary factory air pres sure is described in this two－page bulletin．B．B Chemical Co．，Bostik Dept．， 784 Memorial Drive， Cambridge，Mass．

Telemetering Systems

This two－page data sheet describes and illus－ trates several models of airborne telemetering sys－ tems．Types of systems include $\mathrm{fm} / \mathrm{fm}$ and $\mathrm{fm} / \mathrm{pm}$ Specifications contain data on physical character istics，outputs，power requirements，and applica－ tions．Dorsett Laboratories，Inc．，Box 862，Norman， Okla．

Power Systems

192
Applications，engineering data，subsystems and system－component operating characteristics，and recommended standard system combinations of Precise－Power Sets are discussed in this 32－page bulletin．Sections are devoted to：Applications of Precise－Power Sets to Large Electrical Systems； Motor－Generators for AC－DC Power Conversion； Field Current Regulators for Motors，Alternators， and Generators；Sensing Elements；Signal Ampli－ fiers；Power Amplifiers；and Control Systems and Switch－gear．Electric Specialty Co．， 211 S．St．， Stamford，Conn．

Components

193
Catalog No．61， 512 pages，covers 20,000 items listed from stock．Some of the components in－ cluded are：gears and gearheads，precision dials， vernier and disc dial sets，slip clutch assemblies， alligator clips，test leads，banana and tip plugs， jacks，adapters，and terminals．The catalog con－ tains information on tolerances，materials，finishes， and prices of listed components．Sterling Precision Corp．，Component Div．， 17 Matinecock Ave．，Port Washington，Long Island，N．Y．

ELECTRONIC DESIGN • February 17， 1960

Checkout Equipments

An rms to dc converter, a voltage to digital converter, a timer-counter, and a digital printer are the automatic checkout equipment units that are described in this four-page brochure. The units are designed to meet the requirements of MIL-E-4158B. Epsco, Inc., Equipment Div., 275 Massachusetts Ave., Cambridge 39, Mass.

Micromodule Wafers

The production of micromodule wafers is described in this four-page bulletin, No. MMW. From a photographic reduction, glass is chemically machined and converted into a ceramic. The process produces four stock wafers: end wafer with hole; end wafer without hole; standard wafer with hole; and a transistor wafer. Design properties and an enlarged dimension drawing are included in the bulletin. Write on company lettrhead to Corning Glass Works, Receiver Bulb Sales Dept., Dept. ED, Corning, N.Y.

Tape Recording Terms

199
This booklet contains a glossary of high fidelity and tape recording terms. The four-page booklet is entitled, "99 Tape Recording Terms." Minnesota Mining \& Manufacturing Co., Dept. E9-5⒉ 900 Bush Ave., St. Paul, Minn.

Audio Switching Transistor

200
Type 2N1120 germanium pnp audio switching transistor is described in this two-page data sheet that includes electrical and environmental test data, maximum ratings, and storage temperature and thermal resistance data. Bendix Aviation Corp., Semiconductor Div., Long Branch, N.J.

Heating Elements

The firm's facilities and products are illustrated and described in this brochure, eight pages. In addition to flexible band heaters and strip heaters, the firm manufactures resistors. H. W. Tuttle \& Co., Tecumseh, Mich.

Waveguide Data Chart

202
Electrical and mechanical parameters for all waveguides in use today appear on this data chart. Some of the parameters covered are: cut-off frequency, theoretical attenuation for both brass and aluminum waveguides, and the waveguide wavelength from the lowest to the highest frequency in any given band. Military as well as EIA designation numbers are also listed. Narda Microwave Corp., 118-160 Herricks Road, Mineola, I.ong Island, N.Y.

The heart of every Hi-G RELAY is the ROTARY BALANCED ARMATURE, effectively designed to provide superior resistance to smashing shock and severe vibration. Permanent magnet stabilization allows full contact pressure, eliminating chatter and eventual relay failure. Standard vibration immunity of 20G to 2000 CPS. Special units to 50 G or more. For constant dependability under extreme operating conditions - see $\mathrm{Hi}-\mathrm{G}$.
Write for new catalog No. 259 for complete information and specifications

See Hi.G at the IRE Show Booth No. 2227

I NC

HIGE THE ONLY COMPLETE LINF OF BAIANCFO ROTARY REIAYS

Best proof of Dunco Type FC-6 reliability is the fact that these sturdy little relays are specially designed to play important parts in all of the missile programs illustrated aboveand several more besides.
Type FC-6 Relays are spotlessly clean. They have a new and outstandingly dependable contact material, and include unique design features that provide positive protection against extreme vibration and shock.

STRUTHERS-DUNM

Makers of the world's largest selection of relay types STRUTHERS-DUNN, Inc., Pitman, N. d.
sales Engimeriag omines in: Allanta - Boston - Buffalo - Cnicaso - Cincinnati - Cleveland - Dallas - Dayton - Detroit - Kansas City. Los Angeles. Montreal - Now Orleans - New York - Pittsburgn - SL Louis - San francisco - Seattle - Poronto CIRCLE 209 ON READER-SERVICE CARD

NEW LITERATURE

Electronic Pumps

210
This two-page bulletin describes the model 150 electronic high-vacuum pumps with corresponding power supplies which operate the units in general laboratory applications as well as vacuum tube processing and thin film work. A calibration curve is included with pump current plotted against pumping pressures. Ultek Corp., 920 Commercial St., Palo Alto, Calif.

Diode Semiconductors

211
A 17-page booklet entitled "Applications of New and Recently Developed Diodes" covers topics such as varactor characteristics and measurements, varactor computers, silicon mesa computer diodes, the Esaki tunnel diode, and thermoelectric devices. Emphasis is placed on the use of varactors as modulators and harmonic generators. Microwave Association, Inc., Burlington, Mass.

Fabricated Insulation

The firm complete line of fabs electrical insulation is listed in this eight. page bulletin, No. 32. Products include precision slit insulation, wedges, slot irsulation, and fabricated parts in a variety of materials, shapes and sizes. Fabricated products and operations are briefly described and illustrated. Inmanco Div. of Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, Ill.

Choppers

213
Series 310 choppers, designed for continuous 400 cps operation at temperatures from -65 to +125 C , are described in bulletin No. C-52, a one-page data sheet. Mounting styles and phase angle ranges are given in tabular form. An outline drawing of the high temperature chop. pers is included. Airpax Electronics, Inc., Cambridge Div., Cambridge, Md.
Welch TWO-STAGE DUO-SEAL. High Vacuum PUMP

Run-In To Perfection

- DEpendable
PERFORMANCE
- QUIET OPERATION
- LONG LIFE

Choice of Two Speeds		
Revolutions	300	525
Vacuum, microns	0.05	0.1
10.00005	10.000	
Capacity, litors/min.	33.4	58
Motor Horsepowor	1/3	1/2
WRITE FOR OUR		
Pump catalo		

Pot. No. 2,337,849
No. 1405-8
No. 14058. DUO-SEAL VACUUM PUMP, Motor Driven, 525.RPM. For 115 volts 60 〒cles,
No. 1405H. Duo-SEAL VACUUM PUMP, Motor Driven, 300.RPM. For 115 volte 60 celos,.$\$ 230.00$ $\$ 255.00$
Soe our Pump Cataleg for complote listing of this serles high vacuum pumps.
W. M. WELCH SCIENTIFIC COMPANY
division of w. m. welch manufacturing company
1515 Sedgwick Street, Dept. ED, Chicago 10, Illinois, U. S. A.

CIRCLE 214 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

Soldering Equipment

This four-page folder contains information on the firm's line of electric heating elements. Soldering tools, crucibles, and pots are included in the illustrated bulletin. Vulcan Eiectric Co., Danvers, Mass.

Relay

219
Coil and contact ratings and dimensional drawings of the model RH relay appear in this one-page data sheet. The unit employs a nylon blade lifter for long life and dependable operation. An actual size photograph is included. Artisan Electronics Corp., 171 Ridgedale Ave., Morristown, N.J.

Motors

220
Design characteristics of shielded, dripproof motors are given in this fourpage bulletin, No. 196. The motors are for use where adverse conditions of moisture, humidity, dust, oil, and chemicals prevail. Sterling Electric Motors, Inc. 5401 Telegraph Road, Los Angeles 22, Calif.

Servo Problem Calculator

This calculator permits solution of servo problems without lengthy calculations. It can be used to design and evaluate closed loop feedback systems such as servo drives, feedback amplifiers, power supplies, and radar loops. Typical problems solved include: system stability; effect of gain change on stability; determination of velocity and acceleration constants; gain and phase margins; and lead-lag networks. Price of the calculator plus plotting paper is $\$ 4.50$. Control Aids Inc., Dept. ED, Box 207, Woodmere, Long Island, N. Y.

RF Connectors and Cable

221
This 25-page reference guide lists rf cables and connectors, gives a cross reference between military and commercial code numbers, and contains descriptions and technical data on most types of commonly used connectors. Data on waveguides, waveguide flanges, and waveguide adaptors are also included. Western International Co., 45 Vesey St., New York 7, N. Y.

DIMCO-GRAY ShalisLDE FA PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!

This versatile, pasy-to-handle, adjustable triangle is made of vellow-tinted opticalgrade acrylic plasic. A clean-cut oval track fitfed with metal knurled linob assures ase of operation and lasting tight fit

New combination protractor-triangle speeds up drafting

Architects, Fingineers, Builders, Field Surveyors, Mathematicians-anyone who develops solutions to measurement problems indirectly to determine a wanted measurement graphicaliy or mathe Adjustable 'rianyle rend tool. It eliminates much of the graphic work necessary in estimating results or in checking for correct answers.

Versatility with accuracy

Hasically the new l'ost Tris-Matk Adjustable Triangle is a mathematician's tool-accurate to three decimal places.
It combines the functions of a proractor and a triangle into a simple unit, with two fundamental trigonometric relationships of a right triangle. The Trig-Matk provides accuracy within 0.1% in problems dealing with any of the six trigonometric ratios of the sides of a right triangle
The adjustable protractor has three sets of graduations. One set is grad uated in half degrees, labeled Degrees, and permits the use of the Trig-Maik a protractor setting for determinin ny angle from to 50 degrees
The second set of graduations, labeled Slope, shows directly the secant trigonometric ratio of the angle indicated abeled R ise indicates directly the Tan pent trigonometric ratio shown on the degree scale.

Examples

'Ihis new tool has a host of drafting and engineering applications. Highway designers find the Trig-Matk very use ful when making cross sections of road ways at ground level or below. By

An indicated angle of 40 degrees on the An indicated angle of 40 degrees on the Rise is 10) shows directly that the
setting the slope scale to the degree desired, road-curve grades are auto matically determined. The protracto can be used to determine the angle of highway ingress and egress lanes.
Siructural Engineers will find the Trif-Matk Adjustable Triangle simple tool, eliminating the use of both a scate and individual triangles. In addition (o) the time saved, many of the errors usually associated with the older method are avoided. The TrigMatk design eliminates the need of frequent reference to handbooks for information on various bevels.

Two Bases

'The Trig-Matk No. 1589-12 has a 12" base scale for handy calculation in terms of feet and inches. Number 1589 10 has a metric base scale of 10 .
Keep posted on all the latest trends in drafting. Consult vour local Post dealer or write to Frederick Post Co., 3644 North Aiondule Air., Chicago 18, III.

SENSITIZED PAPERS \& CIOThS - TRACING \& DRAWING MEDIUMS - DRAWING instruments \& SLIDE RULES ENGINEERING EQUIPMENT \& DRAFTING SUPFLIES - FIELD EQUIPMENT \& DRAFTING FURNITURE CIRCLE 223 ON READER-SERVICE CARD

NEW LITERATURE

Digital Components

229
This 12-page catalog includes specifcations for digital components such as: counter-timers, frequency meters, time interval meters, digital printer, time code generator, decade counting units, and totalizing and preset counters. A list of optional equipment appears in the illustrated booklet. Computer Measurements Co., 12970 Bradley Ave., Sylmar, Calif.

Synchros and Resolvers

230
This 25 -page handbook presents a detailed account of the application and measurement problems associated with synchros and control resolvers. It covers such topics as: What is a synchro; application problems; electrical zeroing procedures; electrical error measurement procedures; null measurement procedures; and phase shift and transformation ratio procedures. A synchro data chart is included. Theta Instrument Corp., 520 Victor St., Saddle Brook, N. J

Coiling Operations

This 16 -page manual describes the ba sic factors and variables involved it forming nickel-chromium resistance wir into helically coiled electric heating ele ments. Procedures for hand coiling op erations, as well as a trouble-shooting chart are included in the illustrated bro chure, entitled "Aids to Better Coiling. Hoskins Manufacturing Co., 4445 Law ton Ave., Detroit 8, Mich.

Plastic and Chemical Materials 232

A complete line of polycarbonat resins, phenolic resins, varnishes, and molding powders, and fused magnesium oxide is illustrated and described in this 12-page brochure. Physical, thermal, and electrical properties, in addition to molded and powder properties, appear in table form. Catalog No. CDC-370 includes suggested uses for the materials. General Electric Co., Chemical Materials Dept., One Plastics Ave., Pittsfield, Mass.

Slides in only $?$ minutes with this DEMTEE OSCILLOTRON

using a Polaroid ${ }^{\circledR}$ Land back

Now you can project transparents slides of oscilloscope traces just minutes after recording with Polaroid $\begin{gathered}\text { Land Projection Film. Type 46-L, }\end{gathered}$ used in this new Beattie Direct View Oscillotron. Also produces 60 sec . paper prints with the new very fast Polaroid 3000 Speed Film. Records up to 10 traces on a single rrame and many other advantages

- Direct binocular view of CRT while recording. - Non-reversed image.
- Camera swings back for easy access to lens and shutter, or lifts off completely. Can be rotated.
- Electric shutter-actuator available.
- Attaches easily to bezel of 5 " CRT Adaptable to other sizes. No special tools.

"Polaroid" a by Polaroid Corp.

Branch: 437 Fitth Ave. New York, N.Y

CIRCLE 233 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

Uses of Choppers

238
Part 7 of the "Contact Modulator" sries is entitled "Uses of Choppers in Systems." The 31-page booklet contains complete discussions and schematics of the chopper as used in precision operational amplifiers, digital tachometers, computer amplifiers, potentiometric and digital voltmeters, noise generators, and direction finding equipments. Airpax Electronics Inc., Cambridge Div., Cambridge, Md.

Transistors

239
A group of industrial transistors designed for applications in hf communications, control, instrumentation, navigation, and mobile equipment is described in this 12-page booklet. Characteristics tables, performance curves, and outline drawings are included. RCA Semiconductor \& Materials Div., Somerville, N.J.

Phase Sequence Relays

240
Specifications and outline drawings of models P/N 2001, 02, and 03 phase sequence relays are contained in bulletin

No. 2001, four-pages. The relays offer automatic monitoring of 3 phase power and prevent the application of incorrect phase sequence to equipment. Master Specialties Co.. 956 E. 108th St., Los Angeles 59, Calif.

Pressure Switches

 241Bulletin No. AV2015, two pages, describes subminiature pressure switches for switching circuits in response to gas and liquid pressure changes. Electrical data, contact ratings, dielectric strengths, and insulation resistances for 6 models are included. The Bristol Co., Waterbury 20, Conn.

Proximity Switch

242
Included in this four-page data sheet, No. 163, are photographs, dimensional drawings, and descriptive diagrams of sensitivity range, sensitivity envelopes, mounting requirements, and wiring instructions for the firm's proximity switch. The bulletin also contains operating and electrical characteristic data. Micro Switch Div. Honeywell, Freeport, Ill.

G-E WIRE SONIC DELAY LINES PROVIDE LOWER INSERTION LOSS HIGHER STORAGE RATE

Wire Sonic Delay Lines employ a special alloy wire as the delay medium. G.E. uses both piezoelectric and magnetostrictive transducers to provide the greatest possible range of system performance. Piezoelectric transducers assure minimum insertion loss for fixed inputs and/or outputs while the magneto-

Information storage up to $1.2 \mathrm{mc} / \mathrm{s}$ Delay up to Ten Milliseconds Adjustable Delay
Smack and Vibratiength of Delay
Stable over Wide Temperature Rang strictive transducers provide intermediate taps, both fixed and adjustable.
For complete development information write to Defense Industries Sales, Sect. 227-28A

GENERAL ELECTRIC

DEFENSE ELECTRONICS DIVISION
HEAVY MILITARY ELECTRONICS DEPARTMENT. SYRACUSE, NEW YORK
CIRCLE 243 ON READER-SERVICE CARD
Electronic design - February 17, 1960

NOW, FROM RIVERSIDE-ALLOY..

NICKEL WIRE IN PAY-OFF-PAK CONTROLLED TO $\pm .00025^{\prime \prime}$

Now from Riverside-Alloy you can obtain nickel and manganese-bearing nickel wire to tolerances as critical as plus or minus .00025" . . in continuous lengths to 60,000 feet. Diameters.$^{\circ} 20^{\prime \prime}$ to $.060^{\prime \prime}$ can be specified in Pay-Off-Pak at no additional charge. Credit for this product superiority goes to a new quality control unit used in conjunction with control unit used in conjunction with inch of wire is continuously "miked" inch of wire is continuously "miked" before entering the packing machines assuring a controlled wire diameter.

Pay-Off-Pak, itself, gives you added benefits . . . ends the jumble of tangled wire, jammed machines and excess handling. Bright smooth finishes produced from the new Riverside-Alloy annealing process and drawing equipment are fully protected under all shipping and storage conditions.

Riverside-Alloy is the outstanding
source for the finest in precision nickel wire.
Write today: Riverside-Alloy Melal Division, H. K. Porter Company, Inc., Riverside, N. J.

H. K. PORTER COMPANY, INC.

PORTER SERVES INDUSTAY: with Rubber and Friction Products - THERMOID DIVISION; Electrical Equidment-DELTA STAR ELECTRIC DIVISION, NATIONAL ELECTRIC DIVISION. PEERLESS ELECTRIC DIVISION: Specialty AIIoys RIVERSIDE-ALLOY MEFAL DIVISION: Refractorles - REFRACIORIES DIVISION: Electric Furnace Steel-CONNORS SIEEL
DIVISION. VULCAN-KIDD STEEL DIVISION. Fabricated PIoducts-DISSTON DIVISION. FORG AND FITTINGS DIVI SION. LESCHEN WIRE ROPE DIVISION. MOULDINGS DIVISION. H. K. PORTER COMPANY de MEXICO. S. A and in Canada. Refractorles. "D. K. PORTER COMPANY (CANADA) LTD.
H. K. PORTER COMPANY (CANADA) LTD.

CIRCLE 248 ON READER-SERVICE CARD

NEW LITERATURE

Instrument Cases

249
Reusable instrument cases for military and industrial use are listed in this catalog. Various kinds of protective packaging for electronic, optical, or mechanical devices are described. Detailed information is given so that an engineer may design a transit case to his own particular specifications. White Div., Zero Manufacturing Co., Palmer, Mass.

Binary Switches

250
Series TSB binary thumb-wheel switches are descril)ed and illustrated in this two-page data sheet. The switches show only one number at a time through a bezel window, and require $1 / 2 \mathrm{in}$. of panel space. Electrical specifications and dimensional drawings are included. Precision Products Div. of Chicago Dynamic Industries, Inc., 1725 Diversey Blvd., Chicago 14, Ill.

Instrument Translators

Models T-582 and T-583 instrument translators are presented in this two-page bulletin. The units are used with ac trans ducers, potentiometers, and some bridge type, strain gage transducers in systems having a 28 v dc power supply and rt quiring a dc output signal. The bulletin contains specifications, a block diagran and dimension drawings. Crescent Engineering \& Research Co., Electronics Div., 5440 N. Peck Road, El Monte, Calif.

Gyro Indicating System

A remote vertical gyro indicating system intended as a standby unit to replace an aircraft's primary indicating system is described in this four-page booklet. The system is composed of an inverter, rate gyro, and 2 -in. wide indicator. Engineering data and outline drawings appear in the brochure. Lear Instrument Div., 110 Ionia Ave., N.W., Grand Rapids 2, Mich.

19 IT

CIRCLE 253 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

ata Collecting Systems

A data collecting system called Colectudata is described in this 20 -page brohure No. SP-8665. The system facilitates he collection of data at a central procssing point from various points of origin. ections cover equipment used, their aplications, and system diagrams. Friden, nc., One Leighton Ave., Rochester 2,
ock Nuts
Catalog No. 592, 20 pages, covers the irv's complete line of spring tempered teel lock nuts, including regular hex, integral washer, acorn, wing, and adjusting put types. Details of design and locking principle, typical applications, dimenions, load ratings, materials, and finishes are given. The Palnut Co., 29 L Glen Road, Mountainside, N. J.

Capacitors
260
This 16-page catalog describes the FilCap line of subminiature feed-through capacitors with current rating of 5,10 ,
and 20 amp , with the 5 -amp types designed to meet MIL-C-11693A. The catalog covers typical dissipation and power factor, insulation resistance, attenuation and capacity curves, and mechanical and electrical characteristics. A line of specialty capacitors is also described. Filtron Co., Inc., Marketing Dept., 131-15 Fowler Ave., Flushing 55, N. Y.

Connector Directory

261
Comprehensive listings of the most widely used electronic connectors are contained in this 16 -page directory. Alphabetically arranged by manufacturers, all connectors are listed in numerical order. Prices are given for all included connectors. Allied Radio Corp., 100 N . Western Ave., Chicago 80, Ill.

Brazing Alloys

262
Compositions, melting points, and other data about the company's line of silver solder are given in this four-page brochure. Other brazing alloys are also described in the illustrated booklet. American Brazing Alloys Co., Box 11, Pelham, N. Y.

HOPKINS metallized paper capacitors

fit into compact circuitry

MICROMINIATURE SIZE - Hopkins phenolic-cased units rated .005 mfd . 200 volts are only $375^{\prime \prime}$ long $x .180^{\prime \prime}$ wide $x .110^{\prime \prime}$ thick. They're rectangular shaped for maximum space economy.
RELIABLE. These units withstand 125% of rated voltage for 1000 hours. The solid impregnant will not melt... insures a high dielectric constant. Leads are triple-tinned copper-clad steel that resists high vibration.

QUALIFIED. Hopkins metallized paper capacitors are used in 17 different missile systems. Supplied in phenolic coated, molded, and hermetically sealed construction. Rated .00 . to 20 mfd ., 200 to 600 VDC. Prompt deliveries.

O
Bendix
Craftsmanship
at work for you

SPECIALLY BUILT HARD GLASS TUBES THAT WITHSTAND SEVERE CONDITIONS

Visif us af the N.Y. IRE Show, Booth 2228
SPECIAL-PURPOSE TUBES DEPARTMENT

EATONTOWN, NEW JERSEY

Wort Coast Salos 8 Sorvico: 117 E . Providencia Ave., Burbank, Calif.
Export Saler a Sorvice: Bendix International Division, 205 E. 42nd St., Now York 17, N. Y. Conodion Distributor, Computing Dovices of Conoda, Ltd., P. O. Box 508, Otrowa 4, Onlario CIRCLE 264 ON READER-SERVICE CARD

Effective component protection is hard to supply under conditions of violent acceleration, high ambient temperature, and vicious vibration. But in military electronic gear. transistors must get unfailing protection against these threats to reliable operation.
They get it, most fully, with atlee mounting clips.
atlee clips are provably better in three ways: HOLDING POWER. Under severe shock and vibration. these clips actually mold themselves tighter to the transistors. There's no visible shifting or twisting, no lead-breaking resonance, and the dislodging force actually increases.
COOLING EFFICIENCY. With atlee clips, this approaches to within 10% of "infinity" - the ideal derating curve for a transistor with an infinite heat sink which keeps the case temperature from rising above the ambient level.
ELECTRICAL INSULATION. When required, these clips can be coated with Dalcoat B - an exclusive high-dielectric enamel that has twice the dielectric strength of Teflon but conducts heat as well as mica.
There are still more reasons why engineers who seek perfection choose atlee transistor clips. They know that Atlas E-E is the pioneering company in the development of component holders of all types, with unequalled years of specialized experience, and a complete line of clips for all case sizes and mounting requirements. They have learned it costs no more to get the best . . . and that Atlas E-E makes these "little things" as though they were the biggest things in the circuit.
DESIGN FOR RELIABILITY WITH atlee - a complete line of superior heat-dissipating holders and shields, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

CIRCLE 268 ON READER-SERVICE CARD

new Literature

Sweep Generators

269
A complete listing of the firm's line of sweep generators and accessories appears in this four-page, illustrated booklet. The instruments cover the entire frequency range from 1 to 2300 mc , in a variety of sweep widths and individual instrument ranges. Accessories described include plug-in markers, rf attenuators, and rf detector. Telonic Industries, Inc., Beech Grove, Ind.

Spray Technique

270
This eight-page booklet describes the firm's spray technique for cleaning components such as transistors, diodes, vacuum tubes, jewel bearings, pivots, electrical contact points, miniature slip-ring assemblies, high-fidelity transformers, dynamotor potentiometers, and other precision parts in the electronic, electromechanical fields. Cobehn, Inc., Passaic Ave., Caldwell, N. J.

Components and Systems

The firm's technical journal, which devoted to the study and theory of elcc. tronic components and systems, is now available for general distribution. Voll ume 1, No. 1 contains articles titled "The Dual Between Vacuum Tubes and Mag. netic Amplifiers" and "The Magnetic Amplifier as an Integrating Device." Airpax Electronics, Inc., Seminole Div., Furt Lauderdale, Fla.

Computer System

272
A transistorized, stored program, gen. eral purpose computing system is covered in this two-page bulletin, No. S-482. The basic system consists of the computer and a punched paper tape typewriter input-output unit. Storage capacity and access times of the RPC- 4000 are included in the specifications. Royal McBee Corp., Data Processing Div., Port Chester, N. Y.

ELECTRONIC DESIGN • February 17, 1960

Servo Design Report

278
Photographs, illustrations, and schematic drawings explain the use of the Servolab packaged assembly of electronic and electromechanical components. Step by step, the six-page report describes how this synthesis and analysis system is used to solve complex servo problems. The dynamic characteristics of control systems and feedback loops are simulated, demonstrated, displayed and completely analyzed in the report No. SDH-2. Servo Corp. of America, 111 New S. Road, Hicksville, Long Island N. Y.

Stepper Devices

279
Technical brochure SP9-1, 12 pages, describes the firm's stepper motors and pulsed stepping devices. Complete data are given for series 18100 motors, rotary stepping switches, pulse dividers, precision sequences, counters, interval timers, and positioning devices. Pulse profiles, schematic drawings, and application circuitry are included. A. W. Haydon Co. 232 N. Elm St.. Waterbury, Conn.

Subminiature Conneciors

280
Series SM subminiature connectors are described in this 12 -page catalog containing specifications and dimension drawings. Guide pins and sockets, aluminum hoods, polarizing screwlocks, protective shells, and panel cutouts are included. The units meet the requirements of MIL-C-5015 and MIL-C-8384. DeJur-Amsco Corp., Electronic Sales Div., 45-01 Northern Blvd., Long Island City 1, N. Y

Multivibrator Circuits

281
Detailed data on the design and operation of high speed flip-flop and multivibrator circuits using 4-layer diodes are given in this illustrated booklet No. AD-6, five pages. The booklet describes free-running, monostable and bistable circuits and a square wave generator circuit. Suggested circuit values are given and operations at high speeds and over wide temperature ranges are discussed. Shockley Transistor Corp., Customer Engineering, 1117 California Ave., Palo Alto, Calif.

with Chassis-Trak slides WEIGHT is no problem...

The slides above are only $.250^{\prime \prime}$ thin and weigh only 9 lbs ., yet they are and weigh only 9 lbs., yet they are lbs. This is a graphic illustration of rigid support at the full open position.
And Chassis Trak slides give And. Chassis-Trak slides give smooth slide action! They are produced from cold rolled steel. The per-manent-dry, dust-repellent finish is a pecial 400° "baked on" epoxy phenol ormulation that eliminates mainteTrak slides, the smoother they operate. A new desion feature on ChassisA new design feature on ChassisTrak slides increases the bearing area by almost 113% over previous models. This makes the slide even stronger. and is especially important on military or bration or shock conditions exist.
Chassis-Trak slides are available in ine lengths, designed to support from

525 South Websiter, Indianapolis 19, Indiana CIRCLE 283 ON READER-SERVICE CARD
"basic" model (pictured above), which tilts freely upward, or the "detent" model, which tilts and locks in seven different positions and they are available from stock now!
Before making a slide selection, investigate the extra-strong, pencil thin slide that is built for standard racks and cabinets . . Chassis-Trak.
"Detent" model, locked in one
of seven different positions.

NEW LITERATURE

VSWR Instrument

Model 712, an instrument for measuring the rf power and vswr of coaxial transmission lines, is illustrated and described in this two-page bulletin. Specifications include frequency range, nominal impedance, power range, and accuracy. M. C. Jones Electronics Co., Inc., 185 N. Main St., Bristol, Conn.

Tuners and Load Resistors

Data on the 150 series coaxial tuners, and the 601 and 603 series low power rf load resistors is contained in this bulletin, two pages. Specifications and illustrations of the components are given. M. C. Jones Electronics Co., Inc., 185 N. Main St., Bristol, Conn.

Meter-Relays

291
Schematics, dimension drawings, and illustrations of a line of expanded scale meter-relays appear in this 12-page catalog. Data on standard circuits, flutter cir-
cuits, and double contact automatic rese ${ }^{\dagger}$ circuits are given. Ordering specification: include contact arrangements, contac rating and life, accuracy and temperature range, frequency range, and sensitiv ity, among others. Assembly Products Inc., Chesterland, Ohio.

Laminated Plastic

292
This two-page data sheet contains a description of a flame-retardant plastic laminate called Fireban X. Maximum and minimum property values, including physical, mechanical, and electrical properties, are given. Taylor Fibre Co., Norristown, Pa .

Capacitors

293
This four-page catalog, No. NPJ-110, describes type QE computer grade electrolytic capacitors. Performance characteristics include low temperature impedance, dc leakage current, dissipation factor, and surge test results. Aerovox Corp. New Bedford, Mass.

SPECIFICATIONS

SILICON	GERMANIUM	
- Hardness	$750-2000$ (Knoop) Excellent	692 (Knoop) Excellent
- Indox of Refraction	3.50 high	4.10 high
- Melting point	$1420^{\circ} \mathrm{C}$ Excellent	$958^{\circ} \mathrm{C}$ Fair
- Density	$2.3 \mathrm{gm} / \mathrm{cm}^{3}$	$5.34 \mathrm{gm} / \mathrm{cm}^{3}$
- Ease of finishing	Excellent-very hard	Good
- Transmission cuf-off	Aboul 20 microns Excellent	About 23 microns Excellent
- Reaction to Thermal Shock	Good	Good
- Thermal conductivity	Excellent	Excellent

TYPICAL INFRARED TRANSMISSION CHARACTERISTICS OF UNCOATED KNAPIC-GROWN SILICON AND GERMANIUM

Also monufacturar of Silicon and Germanium erystals for solar call and semi-conductor devices.

Write for spocifications shoos

Knapic Electro-Physics, Inc.

936-938 Industrial Avenue, Palo Alto, Calif. • Phone: DAvenport 1-5544 CIRCLE 288 ON READER-SERVICE CARD

Write for Catalog
Copies of caption card available on request

565 Hill
थPIONEERS IN MINIATURIZATION..
CIRCLE 294 ON READĖR-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

Hipot Tester

Model 570 high potential test set is described in this two-page data shect. The unit has variable voltage ranges from 0 to 5000 v , with standard models from () to 3000 or 0 to 5000 v ac rms. Model j30RP, a companion line for rack panel mounting, is also described. General Hermetic Sealing Corp., 99 E. Hawthorne We., Valle! Stream, Long Islind, N. Y.

Resisfors

299
Wirewound microminiature and printed-circuit resistors are covered in this 6-page folder, No. LC1066. Tables give wattage ratings, physical dimensions, and resistances of the 200 and 400 series components. Aerovox Corp., Cinema Engineering Div., 1100 Chestnut St., Burbank, Calif.

Plastic Tubing

300
Flexible plastic material is described in this four-page brochure. Strip-a-Tube consists of multi-cell vinyl tubes extruded together in a flat, tape-like form.

The illustrated booklet contains dimensional data and application notes. Electric Storage Battery Co., Jessall Plastics Div., Kens.ngion 3, Conn.

Waveguide Windows

301
Frequency range, pressure differential, and overall dimensions for five types of ceramic, glass, and mica waveguide windows are listed in this two-page data sheet. Each type is illustrated by a drawing. Sylvania Electric Products Inc., Central Advertising Distribution Dept., 1100 Main St., Buffalo, N. Y.

Circuitry Planning

302
To assist design engineers plan and package circuitry, the firm offers this 20 page Quick Order Guide which lists off-the-shelf components used in making complete electronic systems. Also offered is a brochure entitled, "Alden Basic Building Blocks," which graphically describes the firm's method of modular construction of electronic units from off-the-shelf components. Alden Products Co., 159 N. Main St., Brockton, Mass.

FINGERTIP CONTROL GIVES

 VARIABLE SPEED wITHZero-max
A finger's touch instantly and accurately sets the control lever of your ZERO-MAX stepless variable speed drive anywhere from zero to 2000 RPM. These compact, low cost drives produce from 2 to 450 in.-lbs. of torque with 1800 RPM input motors of from $1 / 8$ to $3 / 4$ horsepower. They are available with or with out reverse, gearhead, motors. ZERO-MAX drives are priced from $\$ 37.00$. Write for our free 16-page catalog or refer to Sweet's
Product Design File.

Subsidiary of Revco Inc., 1926 Lyndale Ave. S., Subsidiary of Revco Inc., 1926 Lyndale A
Minneapolis 5, Minn., Phone: FR 4.5520 CIRCLE 303 ON READER-SERVICE CARD

IMPUISE A DIGEST OF NEW DEVELOPMENTS IN ELECTRONICS AND AUTOMATION

Published by rome cable div. of alcoa. rome, n. y. pioneers in instrumentation cable engineering

INSTANT MAIL. Not long ago, one of the wire services carried a story that should gladden the heart of letter writers from coast to coast. The big news is the use of microwave radio or coaxial cables for speeding letters to their destination. Naturally, much researching, development and experimental work are yet to be done before facsimile mail will be unveiled by Uncle Sam. However, as of December 1, a commercial service linking Washington, New York, Chicago, Los Angeles and San Francisco has been in operation. So instant mail joins the many other wonders and conveniences of the electronic world.
UHF GIVES WEATHER REPORT. High in the sky, all over the world, heliumfilled balloons carry radio-sonde transmitters which telemeter changes in air pressure, humidity and temperature. All three measurements are converted into radio signals . . . and measuring and reporting goes on and on until the balloons burst at 20,000 feet. The UHF signals are picked up by a ground antenna and fed to an FM receiver which has a tapper bar that records on special graph paper. If your work involves telemetering, data recording, circuit-control testing, or computers, you probably will want a copy of Bulletin RCD-400. It covers the cable you can get from Rome for such purposes. Write to Rome Cable Corp., Dept. 1120, Rome, New York. Or contact the Rome representative in your area.

NAME THE TONE. Any tone imaginable can now be generated electronically with an electronic music synthesizer recently installed at Columbia University. The synthesizer produces musical sounds in response to code signals fed into the system on perforated tape. It will be used in a program of composition and research in electronic music, conducted by Columbia and Princeton Universities under a grant of the Rockefeller Foundation.

WHO PAYS FOR WHAT? New ground rules have been handed down for electronic contractors handling defense work. The new way to figure who pays for what goes into effect July 1, 1960, and covers both negotiated and fixedprice contracts. All the details are wrapped up in "Revision No. 50 Armed Services Procurement Regulation." You can get the whole story by sending 35 cents for each copy you want to the Government Printing Office, Washington 25, D. C.
CABLEMAN'S CORNER. To help you in replacing or reordering cable, it has become standard practice for most cable manufacturers to identify their cable in one of several ways. These include the stamping of solid conductors, the inclusion of marker threads or tapes within the cable structure, and surface printing or molding the insulations or jackets. Of these methods, the use of marker threads or tapes is the most popular. Manufacturers of Under-writers-labeled products are assigned specific colors for their marker threads, and most manufacturers extend the use of these same threads in other cable products whenever it is practical. Other information appearing on marker tapes often includes unit length markings and the date that the cable was manufactured.

These news items repreesen a digest of information found in many of the publica-
tions and periodicals of the electronics industry or related industries. They appear in brief here for easy and concentrated reading. Furthor information on each can found in the original source material. Sources will be forwarded on requert. CIRCLE 304 ON READER-SERVICE CARD

The A. W. Haydon Co. designed this series of repeat cycle timers for engineers with tricky timing prob. lems and tight budgets. The low unit price on quantity runs will surprise you... and the savings we can offer on very large volume production sometimes surprises us! ■ Yet there has been no sacrifice in quality...it's all in the design. Special spring switches are supported in molded contact blocks; cams, cam followers and gears are molded nylon for long service life and ex. tremely quiet operation. Two printed circuit ca. bles supply internal wiring to 12 output circuits. and parallel cam shafts provide two cycling speeds. The A. W. Haydon Co. guarantees this repeat cycle timer for at least one year, con.

tinuous operation, and it will actu. ally run for much longer. © The unit shown operates at $115 \mathrm{~V}, 60 \mathrm{CPS}$. 2.5 watts power input. Its switch has been tested for 2 years (125 million cycles at 2 amps resistive 10VAC, 60 CPS) and is rated for 2.5 amp or a 7.0 amp inrush lamp load. \square To be sure, other variations are available. A. W. Haydon will be delighted to quote these long life, low cost repeat cycle timers in any one of 125 standard speeds, 5 volt. age ratings and 3 power supplies.
 minal plugs for fast in stallation, and a quick. change motor mounting forease of motor replacement. A clear plastic dust cover helps reduce noise level to a whisper. Write for information on your particular requirement.

NEW LITERATURE

Thermal Design

Technical report No. 7-8-9, four-pages, describes and analyzes thermal problems affecting electron tubes in modern electronic equipment. Applications of Thermion, a thermal analog tube, in quantitatively evaluating and experimentally alleviating these problems are presented. Research Council Inc., 1062 Main St. Waltham 54, Mass.

Panel Hardware

310
This four-page catalog describes and illustrates knob locks, test jacks, fuse and resistor clips, terminal board brackets, five-way binding posts, captive hardware, and pull handles. Dimension drawings are included. Raytheon Co., Industrial Apparatus Div., 100 River St., Waltham 54, Mass.

Spray Gun

311
Two metal spray guns are described in this illustrated brochure. The CA-30,
using compressed air, is for hard facing materials such as tungsten carbide cor1pounds; the AL-20, which operates witl|out air, sprays high temperature ceramic powders such as aluminum and zirconium oxides. Metallizing Co. of America, Inc., 3520 W. Carroll Ave., Chicago 2.t, III.

Components and Assemblies
 312

Electro-mechanical components and assemblies are described in this fourpage booklet. The firm's series of hysteresis, subminiature, and friction components are included. Military and indus trial trainers also appear in the illustrated booklet. Carmody Corp., 2360 Wehrle Drive, Buffalo 21, N.Y.

Resisfor Selector Chart

Rapid determination of values encountered in precision resistor applications can be made through use of this selector chart. Offered in the form of a

WEDGE LOCK BAND CLAMP...
once locked, it's got to be cut loose! Really permanent! Solid nylon. One size for diameters $1 / \mathrm{m}^{\prime \prime}$ to $1 \mathrm{~B} / \mathrm{s}^{\prime \prime}$
Separate Mounting Tab
... use only where and when needed. Can be pre-mounted for simplified planning. Solid nylon.

Try them... write for samples, prices, foll information.
See Us Al Booth 4003 I. R. E. Show - Now York

d facing ide conttes with ceram I zircoll cago 2

Components

319
RFI filters, radar pulse packages, pulse forming networks, specialty capacitors, and delay lines are described in this 20 page brochure. The booklet also illustrates the activities of the various operating divisions, and the production capabilities of the firm. Filtron Co., Inc., 131-15 Fowler Ave., Flushing 55, N.Y.

Terminals and Connectors

320
The firm's complete line of solderless terminals and connectors is listed in this catalog, 13 pages. Among the items listed are: ring, spade, and hook tongues; butt connectors; rectangular and flanged spades; and 3 and 4 -way connectors. Bulletin No. 5E9 includes dimension drawings and a cross reference chart. Waldom Electronics Inc., 46.5 W . 5.3 rd St.. Chicago 32, III

Digital Voltohmmeter

321
A digital roltohmmeter that is fully transistorized, contains no stepping switches or relays, and incorporates modular design, is described in this sixpage folder. The unit can measure voltages and resistances, count external events, provide analog input to digital computers, and provide digital outputs from analog computers. Specifications include scale ranges, electrical outputs, and accessories provided. Epsco, Inc., Instruments and Equipment Div., 275 Massachusetts Ave., Cambridge 39, Mass.

NEW
 DEAEPPETCHE

 MATERIAL FOR CHEMICAL MILLING

This photo sensitive resist ends time-consuming handwork, allows close-limit accuracy in deep-etch weight reduction and parts manufacture. Also reproduces fine-line detail as in plating, dial and nameplate making. Withstands acids, alkalies, elec trolytic fluids... adheres well to aluminum, titoMium, magnesium, stainless ond orher alloy steels Makes volume production possible because of its brochure: Etching Chemical Milling \& Plating with
 Kodak Metal-Etch Resist.
 nducomont of ony uite. manulacture
Graphic Reproduction Sales Division EASTMAN KODAK COMPANY
 Rochester 4, N. Y

CIRCLE 322 ON READER-SERVICE CARD

GLENNITE ${ }^{2}$ THERMISTOR DESIGN IDEAS

THERMOMETRY... electronically ...with instantaneous response

Glennite thermistors have been utilized for temperature detection from ocean floor to outer space. Temperatures of the earth directly below the ocean bed have been measured within $01^{\circ} \mathrm{C}$ to determine the nature of ocean bed have been measured within $.01^{\circ} \mathrm{C}$ to determine the nature of
l'adiant heat at the ocean floor. Glennite thermistors have also been radiant heat at the ocean floor. Glennite thermistors have also been
used to determine functional characteristics of missiles in outer space. used to determine functional characteristics of missiles in outer space.
Thermistors are temperature sensitive resistors with high coefficients of resistance. Incorporated in properly calibrated electronic meters, they will give instantaneous readings with a high degree of accuracy a response impossible to achieve by other thermometric means.

Mounted to specification, thermistors form one arm of a standard bridge circuit. A slight change in environmental temperature will cause a relatively large change in thermistor resistance. This in turn affects the current in the meter branch of the bridge. The meter or recorder can be calibrated to read temperature directly.
Thermometry is only one of many interesting applications for Glennite Thermistors. Other uses include time delay, fire control, voltage control, liquid measurement, etc.
Glennite wafer, bead and rod thermistors are available in a variety of resistance values, temperature coefficients and sizes to help you evalu ate circuit problems. They may be obtained from your local distributor, or from Gulton Industries in bulk quantities.

MATERIALS \& CERAMICS DIVISION, Metuchen, New Jersey
Gulton Industries, Inc.
In Canada: Titania Electric Corp. of Canada Ltd., Gananoque, Ont.

Continental Connector Announces NEW PRINTED
CIRCUIT
CONNECTORS
4 New Designs for Computer Applications

A - 48-contact printed circuit connector for $116{ }^{-}$ inch printed circuit board; dual row, up to 96 connections. "Bellowform" contacts.
B-Test Point Connector. 28 closed entry contacts, threaded mounting inserts molded into body. For dip soldering to printed circuit board.

C-36-contact printed circuit connector for $1 / 16^{*}$ inch printed circuit board, featuring new "Bellowform" contacts.
D-Right angle plug and socket for dip soldering to printed circuit board; floating mounting bushings, 28 contacts.

Continental Connectors

Proven reliability . . . high precision . . . choice of molding compounds. Write for details on complete line of printed circuit connectors to Electronics Division, DeJUR-AMSCO CORPORATION, 45-01 Northern Boulevard, Long Island City-1, N. Y. (Exclusive Sales Agents).

IDEAS FOR DESIGN

New Drafting Technique
Prepares

Printed Circuits Faster

ANEW DRAFTING method for preparing printed circuit layouts outlines the lands and circuit paths with specially designed scribing instruments, and then strips them out through use of a photographic, resist-coated polyester-base film.
This technique eliminates opaquing and makes the usual inking and taping methods virtually

After the scribe master has been processed photo graphically, the film coating between each transluscent line is peeled away, leaving the finished circuit paths and connection pads. Use of this peel-coat technique, eliminates time consuming opaquing of large areas.

Falcon missiles travel "first class" in containers secured by LINK-LOCK

H. A. Knowlton, left, drafting supervisor in the General Electric Company's Heavy Military Electronics Department, Syracuse, N. Y., describes new scribe method for preparing printed circuit layouts to R. Ferrara, design draftsman. Shown, step one to three, are the scribe master on which the circuit elements are outlined, the peel coat or intermediate negative, and the final master print, which is twice the size of the actual printed circuit board.
obsolete for preparing large numbers of complex printed circuit layouts. The scribing method is especially suited to jobs requiring irregular shapes, long runs, and complex grounding and shielding to separate high frequency leads from one another.

Highly Accurate Scribing Method

Briefly, this is how the scribe system works:

1) Standard circuitry is scribed on scribe-coat Stabilene Film. This is called the scribe master.
2) Photographically, peel-coat Stabilene film is exposed to the scribe master. This produces a line image on the photo-emulsion layer of the sheet. The area between each translucent line, not the line itself, is actually the circuit path desired.
3) While in the developer, these image lines are eaten away down to the peel-coat layer.
4) The sheet is then wiped with an alcohol dampened cloth, further dissolving the image lines through the peel-coat layer and down to the Mylar base. Valleys two layers deep result.
) The photo-emulsion layer of the sheet is then washed away in a Clorox bath leaving valleys now only in the peel-coat.
) Finally, the coating between each translucent line is peeled away leaving finished

Before they take to the skies, Falcon air-to-air guided missiles are shipped or stored in containers sealed pressure-tight by Simmons LINK-LOCK fasteners.

These precisely engineered fabricated aluminum cases are produced to Hughes Aircraft Company specifications by the following companies: Vendorlator Manufacturing Co., Fresno, California; Allison Steel Manufacturing Co., Phoenix, Arizona; Avco Corporation, Crosley Division, Richmond, Indiana.

Features like these make the LINK-LOCK ideal for use on military cases made to rigid specifications as well as on inexpensive commercial containers:

- Impact and drop resistant.
- Positive-locking without springs.
- High preloading and high load carrying capacity.
- Compact design-lies flat open or secured.
- 3 sizes, for heavy, medium, light duty.
- Flexible engagement latch design...can be varied to suit different applications.
Write for Catalog \$1762. Contains complete details of LINKLOCK and other Simmons Fasteners with unlimited moneysaving applications. Samples and engineering service available on request.

Half-turn applies high closing pressure, counterturn disengages for opening. LINK-LOCK lies flat open or closed.

SIMMONS

FASTENER CORPORATION
North Broadway. Albany 1. New York
QUICK-LOCK • SPRING-LOCK • ROTO-LOCK • LINK LOCK
dUAL-LOCK - HINGE LOCK
See our 8-page catalog in Sweet s Product Design File

NEVER BEFORE SO VERSATILE AN INSTRUMENT AT SO LOW A PRICE! \$29500

Jerrold's Model 601 and 602 are unexcelled for laboratory and production field use-combining portability and ruggedness with precision performance and versatility usually associated with only the costliest laboratory equipment. NOW ... FULL PRODUCTION ASSURES FAST DELIVERY!

ONE INSTRUMENT COVERS MOST COMMONLY USED L. F. FREQUENCIES
For frequency ranges 12 to 220 mcs . . . specify Model 601
For frequency ranges 4 to 112 mcs . . specify Model 602

- All electronic . . . saturable reactor sweep circuit
- Fundamental frequency output on all ranges
- Output VSWR less than 1.1
- High output level adjustable by switch attenuators

For full details write:

ELECTRONICS CORPORATION, Industrial Products Division
Dept. ITE-3 Jerrold Building, Philadelphia 32, Pa. Jerrold Electronics (Canada) Limited, Toronto Export Representative: Rocke International, New York 16, N.Y. CIRCLE 330 on reader-service card

IDEAS FOR DESIGN

circuit paths. This final master and file copy can then be further reprinted.
Three basic controls provide the new scribing system with a high degree of accuracy.

First, the steel alloy scribing points (shaped like phonograph needles) are made in graduated widths and cut extremely sharp, precise lines. The use of constant-width scribe points eliminates minute variations in circuit line width s often resulting from pen and ink work, where the amount of ink in a pen can alter the line thickness and clarity.
Second, the Stabilene film on which the scribing is done contains grid lines for accurate positioning of the board element. It has exceptional dimensional stability and permits precise reproduction. A restabilized Mylar polyester-base film developed by Keuffel and Esser, Stabilene maintains constant line character under extreme temperature and atmospheric conditions.
The scribing tools are equipped with unique spring-type shock absorbers. These instruments maintain the same accuracies on curved as well as straight lines, eliminating ragged circuit paths which make the finished board unusable. Unlike ordinary scribers or drawing instruments, these scribing devices "outline" a circuit line. Thus, two extremely accurate, separated lines are scribed into the film to outline what will later be a solid line.
In addition to its high degree of accuracy, this new scribing method is extremely flexible. For example, optimum use can be made of the board area since the width and length of runs, as well as pad (connection) sizes are not limited by standard tape sizes.
Using specially formulated fluids, drawing changes can be made easily during any one of the three steps: the original scribed layout, peelcoat negative (intermediate step), or the final layout.
An additional advantage of this new method is

Original drafting layout is done directly on Scribecoat master which contains grid lines for accurate positioning of printed circuir board elements.

Specially designed scribing instruments equipped with unique spring-type shock absorbers are used to "outline" circuit paths and connection pads. These devices maintain precise accuracy on curved as well as straight lines.
that the printed circuit masters can be made in either positive or negative form, depending on which surface is to be stripped off.

Developed jointly by the Keuffel and Esser Company, Hoboken, N.J., and General Electric's Heavy Military Dept., this new technique will save the GE division many thousands of dollars annually. For example, use of this method in the preparation of 300 different circuit layouts, resulted in a saving of $\$ 27,000$. Company manufacturing experts also cite a recent production job involving several complex boards in which 30 hours were needed to prepare each printedcircuit layout using the new system as compared with 80 hours using the tape method, a saving of 50 hours per printed-circuit board. - -

Index Card Aids Breadboarding

An index card can be used to hold components in place during initial breadboarding work. The idea is to draw the circuit, to the scale size of the components, on a suitably sized index card. The components are placed in their proper positions

he schematic diagram is drawn on the index card, te components mounted and the soldered connections ade with the card still in place.

CRONAFLEX* DRAFTING FILM ... BEST SURFACE YOU CAN USE

"Best surface" is a broad statement. But you can prove it to yourself by mailing the coupon below; we'll send you a sample of Cronaflex Drafting Film for testing.

It's best for several reasons: it's the only drafting film that's made by one manufacturer-Du Pont-from start to finish. This means that Cronaflex Drafting Film is consistently superior, because we control every manufacturing step. Cronaflex Drafting Film is an exclusive combination of an outstanding surface on Du Pont's tried and proven Cronar* polyester film base.

The surface: ideal for pencil . . . erases easily . . . smearresistant . . . clearer than cloth . . . you get faster printthrough speed with greater uniformity . . . accepts recommended inks.

The base: holds size . . . flexible . . . unexcelled strength . moisture-resistant . . . easy to handle (.004" thickness) . lies flat.

Cronaflex Drafting Film is available matted one or two sides, in rolls or sheets.
Find out for yourself how good this new product really is. Just mail the coupon, and we'll send you some literature and a test sample.

Better Things for Better Living . . . through Chemistry
-Du Pont registered trademarks

High strength-fo-welght ratio. This printed wiring board for a phase failure relay (manufactured by Phase-Guard Co., Carnegie, Pa., and distributed by Stradley Engineering Co., Pittsburgh) was designed
with CDF Di.Clad 28E (epoxy resin laminated with medium weave glass cloth) for high mechanical strength, very low moisture-absorption, and good insulation resistance. Details upon request.

How CDF Di-Clad can solve your printed-circuit problems

The CDF line of copper-clad laminates in all grades is now known by a new name-Di-Clad. Di-Clad grades meet the varying needs of design, production, and operation of electronic equipment. Grades other than those described are also available.
Di-Clad 2350. An economy paper-base phenolic grade having good tensile, flexural, compressive, and impact strength. Adequate for most noncritical printed circuit applications. Can be cold punched and sheared up to $5 / 64$ of an inch in thickness.
Di-Clad 112T. A Teflon* glass-fabric laminate offering the best dielectric properties over a wide temperature and frequency range.
Send us your requirements and let our engineers help you select the right grade for your application.

Du Pont trademark for its tetrafuoroethylene resin

CONTINENTAL-DIAMOND FIBRE

a subsidiary of the -frumffe company - newark iot, del. In Canada: 46 Hollinger Road. Toronto 16, Ont.

IDEAS FOR DESIGN

and their leads are pushed through the card at the points shown by the large dots. Component and connecting leads can then be soldered together on the back of the card as indicated by the dashed lines of the schematic.
James Wightman, Harry E. Wood, Electrical Engineers, Lansdale Tube Co., Lansdale, Pa.

Terminal Plate Connects Common Wires

Connecting more than 3 or 4 wires to a common connecting point usually poses a problem. How can the wires be fastened securely to each

Fig. Ia. Multiple wire connections can be made to a terminal plate fashioned from a piece of metal.

Fig. Ib. Wires are soldered to the plate which can be insulated from the mounting surface by a ceramic standoff.

- De Poar Trademark

TYPICAL Di-Clad PROPERTY VALUES

CIRCLE 332 ON READER-SERVICE CARD
other without causing a messy, badly-soldered pile-up?
The usual methods use either a buss wire strung between two terminals or a terminal strip. A more compact and sturdier method is illustrated by the terminal plate shown in Fig. 1a. This plate can be cut from a piece of copper, or other conducting metal. Its thickness need by only about 0.032 in. Wires are connected to the terminal plate as shown in Fig. 1b. Note that the plate is insulated from the mounting surface by a ceramic stand-off. With the holes dimensioned and drilled as shown, up to 32 AWG \#22 wires or 8 AWG \#6 wires, or any comparable number of conductors can be securely held.
There are other ways in which the terminal plate can be used. Fig. $2 a$ shows it soldered into

Fig. 2a. The terminal plate can be soldered into cables as part of the harness assembly.

fig. 2b. Terminal plates can be stacked on an insulated or common stack.
cables at the harness assembly. Or, the plates can he stacked, Fig. $2 b$, to accommodate a larger number of wires than a single unit can.
Stephen Szczygiel, Design Draftsman, General lectric Co., Utica, N.Y.

IF YOU INSTALL

 LAMBDA POWER SUPPLIES NOW, 1964 YOU KNOW THEY'LL STILL PERFORM TO GUARANTEE IN

BECAUSE ONLY LAMBDA GIVES YOU A 5-YEAR GUARANTEE!

Each Lambda Power Supply carries a written guarantee that warrants full performance to specified ratings for five full years.

Lambda, alone, offers this unprecedented guarantee because Lambda specializes in the design and manufacture of just one product - power supplies.

Each unit is built from the ground up to rigid quality standards in a modern, completely integrated plant. Nothing is overlooked to provide you with the finest performance. When you buy a Lambda Power Supply, you are assured of a unit that is conservatively rated -
a unit designed to provide continuous-duty service at all specified loads and ratings.

Lambda power supplies are available in a wide range of rack, portable and bench models for laboratory and production service. Of particular interest to electronic designers are:

L-T Transistor-Regulated Series.-1 and 0.2 AMP, 0.32 VDC Com-Pak Tube Regulated Series 5 VDC
Write for free 32-page catalog for complete specifications, dimensions, performance ratings and prices on Lambda's full line of tube-regulated and transistorized power supplies.

4LAMBDA ELECTRONICS CORP. 11-11 131 STREET - COLLEGE POINT 56, N. Y. - INDEPENDENCE 1.8500

*SHOCKLEY 4-LAYER DIODES used in simple and inexpensive multivibrator circuit for high speed operation over a wide range of temperatures.

. A NEW FLIP-FLOP CIRCUIT

A new and simple method for building flip-flop or multivibrator circuits is to use two (just two!) Shockley 4-layer diodes. After all, the 4-layer diode is a solid-state switch...just what's needed in a flip-flop.
Because of low cost, wide range of power handling. and high speed, 4-layer diodes can be used for many flip-flop applications - handling currents from a few milliamperes to 20 amperes...repetition rates as low as 1 cps to hundreds of kc...voltages from 20 to 200 ...temperature ranges from $-60^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.
There is circuit versatility,too. It can be triggered or free running. It can be designed so positive pulses
drive it to one side, negative pulses to the other; or so each pulse drives it to one side for a specified time then reverts automatically to the other side until the next pulse. Best of all-only 9 components are required...the free running flip-flop has only 7 !

Our new Multivibrator Data Sheet will tell you more. Or, maybe you're interested in how the 4-layer diode can simplify and solve other circuit problems, such as pulse modulators, ring counters, alarm circuits, magnetic memory driving, d-c to a-c inverters, oscillators, detonators, or pulse amplifiers. Call your local Shockley representative or write Dept. 5-2.

Shockley tRANSISTOR CORPORATION
 Stanford Industrial Park, Palo Alto, Calif.

 A SUBSIDIARY OF BECKMAN INSTRUMENTS. INC CIRCLE 334 ON READER-SERVICE CARD
IDEAS FOR DESIGN

Measure Slopes Quickly

Investigation of the dynamic impedance characteristics of semiconductor diodes involves the measurement of the slopes of their characteristic curves. These slopes are not constant. The simplest method of displaying these curves is on an

$$
R=\frac{E}{I}=\frac{v / c m}{Q / C m}
$$

The differently sloped lines are scribed on a trans. parent piece of plexiglass which is placed over the ctt screen.
instrument such as the Tektronix Scope 570, Characteristic Curve Tracer.
The value of each slope can be easily determined by scribing lines on a plexiglass reticle and placing it over the crt screen. In operation, the trace is moved on the screen until it matches the proper slope line, giving an immediate impedance reading.
Gerald Solomon, Engineering Techniques Dept., Burroughs Corp., Research Center, Paoli, Pa.

Reduce Delay Time In Binary Counters

Standard binary counters consist of a series of flip-flops, each triggered by the output of the binary which precedes it. If the flip-llops 1 through 4, Fig. 1, have the count 15 (1111), then at the next input trigger pulse these flip-flops are reset to zero in consecutive order, and flip-flop 5 is set to one. Note that flip-flop 5 is triggered after the propagation delay time through the previous flip-flops.

To offset or reduce this delay time, the following technique considerably reduces the delay to flip-flop 5. Any flip-flop in a binary counter undergoes a change only if all the previous flip-flops change from one to zero states. Therefore at the
count of 16 , flip-flops 1 through 4 undergo a one o zero change. By introducing an "AND" gate

MPut $F F_{1} \int_{0}^{1} F F_{2} C_{c}^{1}$
Fig. 1. Flip-flop 5 is triggered only after the first four flip-flops have been reset from 1 to zero.

Fig. 2. The "AND" gate senses the outputs of the first four flip-flops. At the count of 16, both flip-flops 1 and 5 are triggered by the input pulse.
which senses the outputs of the first four fliplops, at the count of 16 , the input trigger pulse to the binary chain triggers flip-flop 5 along with flip-flop 1. This reduces the propagation delay time through the flip-flops and synchronizes flipflops 1 and 5 .

Reuben Wasserman, Hermes Electronics Co., Cambridge, Mass.

Missing Figure

The figure which should have appeared with an Idea for Design (ED, Jan. 20, 1960, p 120) by Lansing E. Tryon entitled, "An Uncomplementary, Exclusive-OR Circuit" was inadvertently not included with the article. The figure is shown below. Our apologies to Mr. Tryon and readers.

Ar. Tryon's Exclusive-OR circuit for two inputs does ot require complementary transistors.

CIRCLE 335 ON READER-SERVICE CARD

The plug-in component idea part of a continuing series

See it in action
Booths 1508, 1510 The IRE Show

(Iden plug-ins are beautifully. basically uncomplicated. The design engineer starts with planning and layout. Alden offers him basic building blocks to solve that particular problem. He wants to assemble his circuitry. Alden gives him everything he needs to tie that package up neatly - through a erminal card mounting system that unitizes circuitry in
compact planes.
He is now ready to package his card-mounted sub-assemblies. For this, Alden provides a variety of basic plug-in chassis, in which his circuitry is neatly deployed, function by function, in spacesaving vertical planes. (That's it plug in lock and eject with a half-turn of the wrist.
Where does he house his Where do
plug-ins?
plug-ins?
He can go to his own standard racks. Or, Alden has basi
Uni-Racks, that help him there
(See the next Alden ad - look for our engineer friend).
All along the way, Alden make
All along the way, Alden makes servicing and trouble shooting simple. Tell tales to spot traceable interconnections, with traceable interconnections, with all leads brought to a single color coded for quick testing.
What does it add up to?
What does it add up
We'll have more to say on this We'll have more to say on this subject next time we appear on
these pages. these pages
Write now for Alden's 250-page handbook

ALDEN

PRODUCTS COMPANY 2139 N. Main St., Brockton, Mass.

The Alden Basic Plug-in Chassis - with circuitry arranged in space-saving veritcal planes for oasy servicing, a typical chassis plugs in locks, ejects with a hall lurn of the wrist.

IDEAS FOR DESIGN

Summing Network Varies AC-DC Components of Input Saw Tooth

The ac and de components of a linear saw-tooth voltage wave can be varied by using a purely resistive summing network. Shown in Fig. 1, the network has fed into it the sawtooth voltage signal, V_{8}, the negative of the signal's dc level, E_{4}. and a dc voltage which sets the new dc level, E_{2}. Since no coupling capacitors are present, the circuit can be used for waveforms with very low repetition rates. Also, use of a summing network will bring about attenuation, but will cause no interaction of controls.
Assuming that the potentiometers used to vary voltages are zero impedance sources, the equivalent circuit of the network is as shown in Fig. 2. Summing the currents at the output junction:
$\frac{E_{1}-E_{e}}{R_{1}}+\frac{E_{2}-F_{0}}{R_{2}}+\frac{E_{3}-E_{0}}{R_{3}}+\frac{V_{L}-E_{0}}{R_{L}}=0 \quad$ (1)
In terms of the output voltage, E_{o}, this becomes:

$$
\begin{equation*}
E_{*}=\frac{\frac{E_{1}}{R_{1}}+\frac{E_{2}}{R_{2}}+\frac{E_{3}}{R_{3}}+\frac{V_{L}}{R_{L}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{L}}} \tag{2}
\end{equation*}
$$

The voltages E_{1} and E_{3} are set by a dual potentiometer. They are equal to some fraction X of the total voltage across them. That is:

$$
E_{1}=X\left(V_{c}-V_{c c}\right) \quad E_{3}=X\left(E_{4}+V_{c c}\right)
$$

Substituting Eq. 3 into Eq. 2 yields:
$E_{o}=\frac{\frac{X\left(V_{8}-V_{c c}\right)}{R_{1}}+\frac{X\left(E_{4}+V_{c c}\right)}{R_{3}}+\frac{E_{2}}{R_{2}}+\frac{V_{L}}{R_{L}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{L}}}$
It is readily seen that if $R_{1}=R_{8}=R$, the effects

Fig. 1. Resistive summing network allows the ac and dc components of a saw-tooth voltage wave to be varied separately.

Fig. 2. Equivalent circuit of the summing network assumes that E_{1}, E_{2}, and E_{3} are supplied by low-impedance sources.
of $V_{c c}$ is eliminated from the equation. This value R is substituted into Eq. 4 and the signal, voltage, V_{B} is replaced with its ac and dc components $\left(V_{s}=V_{a c}+V_{d c}\right):$

$$
\begin{equation*}
E_{*}=\frac{\frac{X\left(V_{a c}+V_{d c}\right)}{R}+\frac{X\left(E_{4}\right)}{R}+\frac{E_{2}}{R_{2}}+\frac{V_{L}}{R_{L}}}{\frac{2}{R}+\frac{1}{R_{2}}+\frac{1}{R_{L}}} \tag{5}
\end{equation*}
$$

From this iast relation it becomes apparent that if E_{4} is set equal to the negative of $V_{d c}$, the dc component of the signal will also be eliminated. Substituting $E_{4}=-V_{d c}$:

$$
\begin{equation*}
E_{0}=\frac{\frac{X V_{a c}}{R}+\frac{E_{2}}{R_{2}}+\frac{V_{L}}{R_{L}}}{\frac{2}{R}+\frac{1}{R_{2}}+\frac{1}{R_{L}}} \tag{6}
\end{equation*}
$$

If, furthermore, R_{2} is made equal to R, this equation simplifies to:

$$
\begin{align*}
E_{o} & =\frac{\frac{X}{R} V_{a c}+\frac{E_{2}}{R}+\frac{V_{L}}{R_{L}}}{\frac{3}{R}+\frac{1}{R_{L}}} \tag{7}\\
E_{o} & =\frac{X V_{a c}}{3+\frac{R}{R_{L}}}+\frac{E_{2}}{3+\frac{R}{R_{L}}}+\frac{V_{L}}{1+\frac{3 R_{L}}{R}} \tag{8}
\end{align*}
$$

Assuming that $R_{L}>R$ and $V_{L} \approx 0$ yields the simple relation:

$$
\begin{equation*}
E_{o} \approx \frac{X}{3} V_{a c}+\frac{E_{2}}{3} \tag{9}
\end{equation*}
$$

The ac and dc components of the input saw tioth are directly and independently variable.
R. L. Knox, Associate Engineer, StrombergCarlson Co., Rochester, N.Y.

This new Electro Instruments all-elec-
tronic Digital Voltmeter combines high conversion speeds, one digit accuracy, automatic ranging and polarity, high imput impedance and 9 other features you want, in a single totally transistorized instrument!

Complete control of the voltmeter from remote locations makes it the ideal instrument for systems applications.

50 conversions per second average
3 ranges: 9.999/99.99/999.9 volts
Automatic, manual and remote :anging
4 digit, in-line visual readout
BCD and decimal electrical output
Direct printer operation
$5^{1 / 2 "} \times 19^{\prime \prime}$ front panel
Modular internal construction
Provision for external reference voltage

ACCESSORY MODULES INCREASE ITS USEFULNESS

AC: All-transistorized Model 110; considerably faster AC/DC conversion than presently available models. Fully automatic ranging and direct AC voltage readout on the Model 8409.
Ohmmeter: All-transistorized Model KIM-000. Provides constant current through test resistor with negligible power dissipation.
Voltage measurements made across resistor with fully automatic ranging and read out directly in ohms on the Model 8409.
Scanners, code converters, print control modules and many other accessories to solve all digital problems-from simple instruments to complex data logging systems-are available. Get in touch with your EI Sales Engineer today for complete information.

Digital instruments for measuring $A C / D C$ voltages, $A C / D C$ ratios, resistances, capacitance, and frequency $X-Y$ Recorders $\cdot D C$ Amplifiers CIRCLE 337 ON READER-SERVICE CARD
E.ECTRONIC DESIGN • February 17, 1960

AD VESTRAM BIBLIOTHECAM!

order your fate catalog now I

FOR YOUR LIBRARY THIS FREE CATALOG COVERS OUR COMPLETE 1. INE OF TRANSISTOR. IZED, MAGNETIC AMPLIFIER, REGULATED AND UNREGULATED. MODU. LAR AND LABORATORY TYPE DC POWER
SUPPLIES. SUPPLIES

DRESSEN-EARNES CORP.
250 NORTH VINEDO AVENUE
PABADENA, CALIFORNIA
WX: PABACAL 4400

CIRCLE 338 ON READER-SERVICE CARD

big relay performance in crystal can size

A high precision, efficient sub-miniature relay. Constructed to withstand severe vibration, heavy shock and temperature extremes. For control systems, missiles, computers, aircraft and similar applications requiring miniature size and dependable performance.

SEND FOR DETAILS NOW!

Electric company
3349 Addison street chicago 18, illinois

Thyratron Provides Double \& Triple Coincidence Control

The KP-80 is a coincidence thyratron which may be used in double or triple control coincidence circuits, as well as conventional single-signal applications. Operating on the ion deflection principle (registered U.S. Patent Office), the KP-80 provides true symmetrical grid sensitivity in that large signals applied to one grid alone will NOT fire the tube, while small, low current signals applied simultaneously to both grids will cause conduction. The KP-80 is used as an "and" gate, a binary kp-so, Actual sizo lay counter, for relay closure, etc. Because it combines many circuit functions, the KP-80 eliminates from 14 to 25 precision circuit components, thus reducing space and weight, and contributing to improved equipment reliability. The KP-80 is found in conveyor selection systems, coding \& programming devices, automation control apparatus, etc. A subminiature version is also available (type KP-150) which also provides visual indication as well as double coincidence operation. For details on these and other special purpose electron tubes, contact:

KIP ELECTRONICS CORPORATION

Depf. 65, Box 562, Stamford, Connecticuł CIRCLE 340 ON READER-SERVICE CARD

IDEAS FOR DESIGN

A Cadmium Sulfide Photocell Indicator

The circuit shown is a photocell indicator fur use in a burglar alarm system. It was designed to avoid the use of dc amplifiers.

Element T is a Hupp CdS, class 2 cell, and varies the frequency of the free running mult vibrator in accordance with incident light varia tions. Fully illuminated, the oscillator produces a

pulse train with about a 15% duty cycle. When the beam of light is broken, the duty cycle changes to $60-65 \%$. Q_{3} is an amplifier which drives the output emitter follower Q_{4}. The relay is normally energized, but opens when power fails or the light beam is broken. The 25 -uf capacitor smoothes the pulses on the relay coil. With a small focusing lens, the device operates well with an ordinary 2 -cell flashlight over 200 ft away, even in the presence of rather high ambient light.
John Porter, President, Portronics, Inc., Tarzana, Calif.

Circuit Delays Pulse Train

A simple circuit was required which would delay a series of $4-\mu \mathrm{sec}$ negative pulses for about $1 \mu \mathrm{sec}$. The circuit shown below is essentially a modification of the clever delay circuit by W. L. Rumple which appeared in the July 8, 1959 issue of Electronic Design.
Initially the input terminal is at +10 v and sufficient current is flowing through R and the 9-v Zener diode to keep $T R_{1}$ saturated. Thus the collector of $T R_{1}$ is approximately at ground poten-

Resistor, capacitor and Zener diode combine to deloy $4-\mu \mathrm{sec}$ pulse train by $1 \mu \mathrm{sec}$.
ital. When a negative pulse appears at the input, the change of voltage at the collector of $T R_{1}$ is delayed about 1μ sec by the R and C elements and the storage time of the Zener diode and the aturated transistor.
At the end of the pulse the input voltage again ises to +10 v . $T R_{1}$ will not conduct until C has charged to the Zener diode voltage, delaying the change of $T R_{1}$'s collector voltage by about $1 \mu \mathrm{sec}$. The diode at the collector of $T R$, clamps this point and squares off the top of the waveform.
$T R_{2}$ is a combined clipping-inverting amplifier. The resultant output is almost identical to the input, but delayed by $1 \mu \mathrm{sec}$.
Richard B. McWhirt, Electronics Scientist, Naval Research Laboratory. Washington. D. C.

Germanium Transistors Drive Solenoid Magnet

The circuit shown was designed to energize a high-current, high-voltage solenoid from a positive voltage supply. Two inexpensive, germanium transistors were substituted for the high priced silicon unit which might be called for in an ordinary design of such a driving circuit.
In choosing the circuit values, voltage divider $R_{3}-R_{4}$ is selected to limit the collector voltage of T_{1} to within its maximum rating. Resistor R_{1} must be sufficiently small so that the input pulse saturates T_{1}. When T_{1} is saturated, R_{3} is effectively shorted out, permitting a base current large enough to drive T_{2} into saturation. The collector current of T_{2} is limited by the dc resistance of the solenoid and the current-limiting R_{5}. Diode D_{1} is required to damp out any high voltage induc-

tive spikes appearing at the collector of T_{2} when it is cut off. Emitter resistor R_{2} is selected to set the cut-off threshold of T_{1}.
To insure that the maximum collector dissipation rating is not exceeded, it is necessary to compute the collector power, taking into account the dity cycle. However, with the normally low duty (y) cles encountered in the usual application of such a device, $V_{C B}$ and $V_{C B}$ are often found to be more significant in transistor choice than the colle tor dissipation.
T. E. Cantor, Flight Test Engineer, General Precision Laboratory, Inc., Pleasantville, N.Y.

El ECTRONIC DESIGN • February 17, 1960

Available now-ceramic "extras" in more than 40 tube types

SMALLER SIZE

VIBRATION SURVIVAL

extreme heat survival

IMPACT SURVIVAL

EXACT DIMENSIONAL UNIFORMITY

LOWER DIELECTRIC LOSS

Superior performing Eimac ceramic negative-grid fubes and klystrons are available now for modern equipments.

EITEL-MCCULLOUGH, INC.
SAN CARLOS, CALIFORNIA
Elmac First with ceramic tubes that can take it

Cable address EIMAC
San Carlos
would r about tially a W. L. 99 issue
v and
nd the hus the poten-

40 cycle Servomofors (1, 3, 5 and 10 watts)
eyle Servomolors (3 and is watts) 00 cycle A.C. Tachometers
400 cycle A.C. Tachometers D.C. Tachomefers Gear Reducers Vacuum Tube Servo Amplifiers SERVOPOT (Combination of: Servomofor, gear train, slip clutch and potentiometer) Available separately or in any combination
1.5.A. Conforence and Exhibly Booth 673 International Amphitheotar Chicago, III.

DIEHL Instrument Servo Components have been developed to offer maximum performance, flexibility and reliability at minimum cost. These are the basic servo system building blocks which enable our military and industrial blocks which enable our military and industrial
customers to satisfy the demands placed on customers to satisfy the demands placed on
them for higher over-all response, accuracy them for higher over-all response, accuracy
and economy. Write for full details concerning any of these components.
 - A Trademark of diehl manupacturing company

DIEML MANUFACTURING COMPANY A SUBSIDIARY OF THE SINGER MANUFACTURING COMPANY

Somerville, Now Jersey

- ac servomotors - ac servomotors with ac tachometers - dC servo sets - ac servomotors with dC tachometers - ac and dC tachometers - resolvers

CIRCLE 342 ON READER-SERVICE CARD

PATENTS

Radio Frequency Window

Patent No. 2,894,228. Wilson S. Geisler (Assigned to Varian Associates)
An inclined microwave window for vacuum sealing provides a long path for the E vectors. High resistance to breakdown exists since the window will fail only by dielectric puncture. In addition, the flange connections are folded and springy to compensate for thermal expansion.
A rectangular waveguide 1 has a circular dielectric aperture 9 in a square

copper frame 4 inclined approximately 26 deg to the wide wall of the guide. Also, it is set at a convenient angle to the narrow wall.
The ceramic is bonded by a moly-man-

ganese joint and flexible flange 5 is silver soldered to the wall of the guide. To prevent reflections, the upper and lower walls of the guide may be internally tapered to a fine edge away from the flange.

Rodio Frequency Delay Line

Putent No. 2,916,615. F. J. Lundburg. (Assigned to International Telephone and Telegraph Corp.)
A delay line made of superconductive material has extremely low attenuation when operated at the temperature of liquid helium.
Transmission line 9 sits in a helium
bath which is surrounded by liquid nitrogen between walls 12 and 13. A portion of the signal from transmitter 8 is coupled, after predetermined delay through line 9 , to the receiver 7 for moving target comparison. Several elements and alloys suitable for cryogenic appliciations are tabulated.

Engineers! Designers!
THERE IS NO SUBSTITUTE FOR RELIABILITY! Specify-

PERFORMANGE PROVEN "MAG MOD"

MAGNETIC MODULATORS

Miniaturized design permits Miniaturized design permits
engineers to employ these engineers to employ these torized printed circuit as. semblies and wafer type structures. All models offer structures. All models offer maximum reliability, fully ruggedized conform to MIL-T-27A specifications.

- COMPLETE RELIABILITY - INFINITE LIFE - FASTER RESPONSE TIME - NEGLIGIBLE HYSTERESIS - EXTREME STABILERY - Ambient Temp. Rang (rom -75° to $+135^{\circ} \mathrm{C}$) - Compact size - LIGHTWEIGHT

Typical circuit applications for Magnetic Modulators are algebraic addition, subtraction, multiplying, raising to a power, controlling amplifier gains, mechanical chopper replacement in DC to fundamental frequency conver. sion, filtering and low signal level amplification.

GENERAL

MAGNETICS•INC

 135 BLOOMFIELD AVENUE Telephone: Pilgrim 8.2400

portable secondary standard

 with digital readoutQ3403 exclusive features:

- Permits direct parameter measurements and calibration of trans ducers (pressure, force, accelerometers and temperature) in field, plant or laboratory.
(v) $x 2$ and $x 4$ plug-in frequency multiplier, coupled with bandwidth ad just provides greater accuracy due to increased resolution and real data capability - speedier testing and checkout.
(v) Readily interchangeable plug-in units for absolute, gage and differential pressure heads - ranges 5 to 10,000 psi.
\checkmark Head adapter permits use of Wiancko force rings, accelerometer, pressure pickups, or temperature bulbs -500 feet distant from Standard.

Accuracy: ± 0.05 percent full scale; ranges 0.2500 psi
± 0.08 percent full scale; ranges $3000-10,000$ psi
For more information write for Product Bulletin 106A.

WIANCKO
 ENGINEERING COMPANY

255 North Malotesd Avenue • Pasadena, Callfornle
Precision with lasting reliability

This combination saves unlimited man-hours, speeds assemblies, reduces rejects and cuts production costs:

Malco quality terminals and receptacles are furnished on convenient spools-for electrical, electronic and military applications.

Malcomatic Electro-Crimp Machines assure fast, consistent and uniform crimping-are convenient, safe, foolproof and easy to operate even for unskilled operators.

Photograph shows Malcomatic Electro-Crimp Machine Model M2 -back feed type. Side feed type also available.
> thalso
> Request Bulletin 581 . Send prints-specs for prompt quotation.
> MANUFACTURING COMPANY 4027 West Lake Streot

> Chicago 24, Illinois

PATENTS

Current Supply Apparatus

Patent No. 2,906,941. S. J. Brolin. (Assigned to Bell Telephone Labs)
This current regulator consists of an array of transistors in shunt, connected to share a predetermined percentage of the load current.
If the voltage across the load decreases slightly, the base of transistor 26
becomes more positive. This increases ts emitter current and also the emitter current of transistor 15. The larger voltase drop across resistor 12 causes increasid emitter current in both transistors 16 ar d 17. These currents, combined with tle current through transistor 15, are the loid current required to reset the load voltaste to the prescribed value.

CAMBION Swaging Tools are designed to precisely seat and securely stake all CAMBION Terminals. For each type of terminal there's a CAMBION punch-and-anvil combination. Irecision-machined from fine steel for long wear, standard sets are available for only $\$ 5.00$ each to match the following CAMBION Swaging Machines:
HAND SWAGERS for small volume staking. Can be used manually, in a kick press, or in a riveting machine. PRESSURE sWAGERS for normal production. These sturdy, hand-operated, cam-action rolling tools are easily adjustable for a wide range of board thickness. HOPPER STAKERS for high production. These semiautomatic stakers faultlessly feed and stake thousands of terminals without interruption at a rate of approximately 100 a minute. Write Cambridge Thermionic Corporation, 457 Concord Avenue, Cambridge 38, Mass. for full details on these and other products in the wide line of

CIRCLE 347 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 17, 1960

Suppressed Carrier Modulating System Patent No. 2,915,711. R. C. Stanford. (Assigned to The Hallicrafters Corp.)
The carrier frequency is suppressed in a modulation circuit consisting of passive elements connected in a bridged-T tuned to the carrier frequency. An audio modulating signal unbalances the nonlinear network so that the upper and lower sidebands appear in the output.

As illustrated, the shunt leg of the bridged-T circuit contains diode 24 biased through variable resistor 28. Capacitor 21 is adjusted to completely attenuate the carrier frequency. However, the audio signal unbalances the filter with respect to phase and the sidebands are fed through capacitor 33 . Circuit components are tabulated for a carrier frequency of 5 megacycles.

NEW SILICON "PILLVARACTOR

GREATLY REDUCES THE PACKAGE AS A FACTOR IN CIRCUIT DESIGN
specifically developed for:

- amplifiers at the higher microwave frequencies (1000 mc and above)
- travelling wave parametric amplifiers
- microwave computers as sub-harmonic generators - amplifiers in which stray susceptance effects must be minimized - applications of varactors to stripline circuits
- modulators for frequency synthesis

Experimental quantities are available with these nominal specifications	$\begin{gathered} \text { TYPE } \\ \text { NUMBER } \end{gathered}$	CAPACITANCE TOLERANCE Zero Bias)	IYPICAL 0 AT 6 VOLTS
	MA-4255X	0.5-1.4 μ ¢ ${ }^{\text {f }}$	60.80
	MA-4256X	1.2-2.5 $\mu \mu \mathrm{f}$	50
	MA.4257X	2.5-4.0 $\mu \mu \mathrm{f}$	30

*Package shunt capacitance $\sim 0.2 \mu \mathrm{~m}$. Series lead inductance $<10^{\circ}$ henries.
Write or call:
MICROWAVE ASSOCIATES INC.
BURLINGTON, MASSACHUSETTS
BRowning 2-3000 • TWX Burlington, Mass. 942 CIRCLE 721 ON READER-SERVICE CARD

PATENTS

Attenuation for Traveling Wave Tubes

Patent No. 2,911,599. W. Klein and W. Friz. (Assigned to International Standard Electric Corp.)

The radio frequency energy, in a TWT attenuator, is dissipated by capacitive rather than conventional conductive coupling.

The attenuator consists of a thin layer of carbon between two mica tubes. Helix l is contacted by mica tube 2 which carries the carbon deposit 3. A second mica tube 4 seals the carbon layer and insulates the carbon from the outer metal body 5 . The thickness of carbon may be tapered to convenience and the structure is a rigid stable support for the lossy material.

Microwave Test System

Patent No. 2,887,661. Dale C. Brocker (Assigned to Sylvania Electric Produc:s Inc.)

The power level of a pulsed microwave signal generator is kept constant by changing the pulse width according to pulse amplitude changes of the fundimental frequency component.

This device simplifies vswr reflec tometer measurements, since its output power level is constant and independent of frequency.

The control circuit to maintain constant power applied to load 20 requires an amplifier 30 , tuned to the fundamental frequency of the periodic pulses, and a diode 44 , sensitive to changes in pulse ampli tude. Diode 46 rectifies the error voltage to adjust the voltage on the grid of triode 50. This changes the cathode-coupled multivibrator pulse width in the propel sense to stabilize the power delivered to the load.

ILIINOIS UP-RIGHT Miniature Electrolytic Capacitors . . . Type SMTU finest for TRANSISTORIZED CIRCUTRY
 Aluminum cased, with exclusive patentod hermetle soaling. Srable
 under tomporafure oxtromes, stable to shock and vibration. Guaranteod long life. Fully festod and approved. Millions now in use.

Type SMTUCN

Dual Common Negative

Separate Anodes
Compact construction permits exceptional space savings and economy which is highly desirable in modern transistor circuitry. One capacitor saves space where normally two individual capacitors were previously needed. These dual units are ideal for bypass, flitering or coupling where a common ground exists.

These dual section common anode construeted capacifors have cathodes which are electrically separated and isolated. Unique construction with "foating" cath odes makes these ideal for coupling, filter and bypass circuits for "above ground" applications.

ILLINOIS

CONDENSER COMPANY 1616 NORTH THROOP STREET CHICAGO 22, ILL. EV 4-1300

Export Dapartmont: 15 Moora Streot, New York 4. Now York
CIRCLE 722 ON READER-SERVICE CARD CIRCLE 722 ON READER-SERVICE CARD

ELECTRONIC DESIGN • February 17, 1950

Only one at this price with dual output of:

4 AMPERES AT 32 VOLTS • 8 amperes at 16 VOLTS Specially designed and constructed, using better-than-average components, for precision work in the laboratory . . . and for quality control operations.

- Less than $1 / 10 \%$ (10 mv .) AC ripple up to maximum load.
- Internal impedance: 4 ohms at 32 volts... 2 ohms at 16 volts.
- Continuously variable carbon brush-type auto transformer for smoother voltage control.
- Patented heat sink cooling, selenium rectifiers for longer life and overload protection.

Rack Mounted Model EFBR. .. . $\$ 145$ net Check its Performance at Your Distributor or... send for Proof-of-Performance Chart and Bulletin EFB! Electro Products Laboratories, 4501.U Ravenswood, Chicago 40 Canada: Allas Radio Corporation Lid., Toronto, Ontario
FOR TRANSISTOR DESIGN WORK
availability on the American market of HIRSCHMANN plugs • sockets terminals

Hirschmann precision made components, a standard of excellence in Europe for more than 30 years, are now available to meet your design, production and replacement needs from the Rye Sound Corp., its 20 sales offices and its national distributor organization. Hirschmann products are standard equipment on such well-known European brands as Norelco, Grundig, Nordmende, Blaupunkt, Lowe, Telefunken, Siemens, Braun, Uher and many others.
Hirschmann plugs, sockets and terminals offer two distinct advantages-American designed equipment for American consumption can use these products, and American designed equipment for European consumption can also use these products because they are designed to satisfy both American and European standards.
The Hirschmann line consists of miniature type plugs, connectors, and couplings for transistor and other small size applications, as well as standard sizes. The line includes multiple connectors from 2 to 36 poles, round types, flat types, wire mounts, panel mounts, wall mounts, etc. Depending upon the type of plug, they generally feature strain relief, axial and transverse wire connection, flexible sleeves, cord grips, unbreakable construction and shockproofing.

Included also are spring-loaded and insulated test prods, plus flexible and rigid types, alligator clips, banana plugs, continental type electrical plugs, universal multi-function panel terminals, spade terminals. A complete 52 -page catalog with detailed specifications dimensions and applications is available by writing to S . M. Scher

Exclusive U. S. sales agent RYE SOUND CORP., 145 Elm Street, Mamaroneck, N. Y. West Coost warehouse: 1113 El Centro, Hollywood 33, calif? Other precision Ryy Sound prodects ineluder: earphonor.

CIRCLE 724 ON READER-SERVICE CARD

Psychlo-swítch*

A multiple-strand precious metal brush fixed to a rotating arm . . .
engaging a flush printed circuit with nickel-rhodium plated conductors
... is a proven switching method.

Joined to the fast and durable Sigma Cyclonome ${ }^{\circledR}$ Stepping Motor .
results (obviously) in a fast and durable stepping switch, imaginatively entitled the Cyclo-switch. Since the principal component is the Cyclonome motor, all its characteristics apply to the Cycloswitch: operation on magnetic reversals (no reciprocating parts), with each reversal producing exactly 18° of shaft rotation. The Cycloswitch will seek out and stop at any one of its 10 and/or 20 positions on command. It will run at either constant or random rates, up to $240 \mathrm{steps} / \mathrm{sec}$. Power required varies from 1 to 10 watts, depending on speed and the number of brushes.

Brushes and switch segments will carry 1.5 amps in 250 VDC circuits; applications controlling Sigma relays with $20-40 \mathrm{ma}$ from 120 VDC , with proper arc suppression, have given long, trouble-free service. Life up to $75,000,000$ revolutions with light loads is possible.

All sorts of combinations of decks, arms, wipers, brushes and delivery schedules are possible. The simple one-deck two-brush model shown lists for $\$ 95$; in production quantities the price drops down to about $\$ 50$. By now we hope you're interested in inquiring further about the Sigma Series 9C "Cycloswitch.

- for psyncbooated swiiching

SIGMA INSTRUMENTS, INC. 91 Pearl St., So. Braintree 85, Mass. an affillate of the fismer-pierce co. (Sinco 1039)

Beam and Wave Electronics in Microwave Tubes

Rudolf G. E. Hutter, D. Van Nostrand Co., Inc., 120 Alexander St., Princeton, N. J., 378 pp, \$9.75.

The basic physical operating principles of microwave devices, from klystrons and magnetrons to the most recent traveling wave tubes, are analyzed in this new work. By using the unifying principles contained in the coupled-mode theory, space-charge wave theory, and energy exchange, the author points up the similarities and differences between the various kinds of microwave tubes. The mathematical treatment is kept simple; it brings out clearly the relations between electron streams and the circuit elements characteristic of these tubes.
After discussing the limitations of con-
ventional tubes, the author schematically describes certain classes of microwave tubes. He then develops microwave cir. cuitry in four chapters, including a full and new treatment of slow waveguides The two succeeding chapters on beams in gaps and beams in drift regions provide a background for understanding the be. havior of such tubes as two-cavity klystron amplifiers, velocity-jump tubes, electron wave tubes, and resistance-wall ampli fiers.
The principles of beam and wave elec tronics in longitudinal dc magnetic field and in crossed fields are detailed. Next discussed is the conversion of dc energ to rf energy, which must be understood before physical pictures of microwave tube operation are plausible. These phys. ical pictures are drawn, and the author traces the effect of the coupling of beam

${ }^{n}$ nodes and circuit modes on the operation of many of the tubes previously discussed. final chapter then systematically explores the subject of noise, using concepts developed earlier in the book.

Analysis of Electric Circuits

Egon Brenner and Mansour Javid, McGraw-Hill Co., Inc., 330 W. 42nd St., New York 36, N. Y., 703 pp, \$9.50.
Here is an introduction to linear electric circuit analysis on the sophomorejunior level which utilizes the reader's background in calculus, but does not require or introduce advanced mathematics.

An integrated treatment of network response is provided by the early introduction and application of the notion of complex frequency, network functions and their poles and zeros without sacrificing conventional skills, such as the solution of ac circuit problems. The analytical and graphical skills which are developed will serve not only in the application of "electronic" and "power" circuits, but also in more advanced study of linear system analysis and synthesis.
Instead of the traditional division of circuit analysis into de circuits, ac circuits
and transients, a general approach has been utilized to place dc and ac circuits in their proper perspective as important but special cases of circuit response. This general approach is made possible by first studying the simple circuits in detail. As a result, transients are not studied as a subdivision of circuit analysis but are integrated into the general problem of "response calculations." Thus, from the outset the relationships between transient and steady state response is made clear. The time domain behavior of circuit is emphasized so that the terms impedance and admittance have a broader meaning than in traditional books. In the chapter concerned with network functions both driving point and transfer functions are introduced.

This book contains an exceptionally large number of problems at all levels of difficulty, ranging from exercises to proofs of theorems. Many completely worked out numerical examples help to resolve the reader's numerical difficulties.
Egon Brenner, co-author of the book, is currently contributing the translated material for Electronic Design's German Abstracts department.

Safe . . . Accurate Controlled Area Heat!

 with Sherman HF Induction Heaters ,New Sherman Induction Heaters provide an extremely versatile tool for all manufacturing operations requiring controlled area heating. Modern 3 megacycle units supply instantaneous pinpoint heat with no contamination and no preheating, permitting a safer, more accurate and reliable method of sealing semiconductors, diodes and transistors, as well as soldering, brazing and heat treating. All Sherman Induction Heaters are designed for use on regular factory voltages and completely automatic units can be built to satisfy individual requirements.

 Write
for
detailed IIterature.

Automatic Production Unil

*Radio frequency Interference
Basic Teckstrip, which combines a resilient RFI gasket and a rigid, easy-to-install aluminum mounting strip, can be made in special cross-sections to solve difficult shielding problems. These special shapes make possible savings in fabricating costs and greatly simplify gasket installation.
Now, only from Tecknit comes a complete RFI gasket engineering service to aid you in the solution of the "impossible" problems. Staffed by outstanding authorities in the field, Tecknit Design Service stands ready to develop cost reducing special Teckstrip for you.

Write today for a Problem Oufline
Sheet and a copy of the new
Teckstrip Bulletin RF-9.

Technical Wire Products, Inc.
48 Brown Avenue, Spring field, N. J.
Gentlemen:
Send me complete information on Standard and Special-Shape Teckstrips.
Company
Name
Address
City \qquad
Zone Stote
IRCLE 728 ON READER-SERVICE CARD

Think about these 2 applications

Then you'll want a DO\|ી€R null voltmeter

Functional Diagram, Donner Model 5002

Donner Model 5002 Null Voltmeter costs only $\mathbf{\$ 2 4 5}$ for cabinet model. \$230 for rack mount.

f As a Sensitive 0.1\% Direct Reading dc Voltmeter

In operation, the user measures voltage by simply twisting the ten turn precision potentiometer dial until the meter nulls. Voltage is read directly off the potentiometer dial to a resolution of 0.1%. Operation over a range of 0 to +100 volts or 0 to -100 volts without range switching. Features negligible loading over whole range with infinite impedance at null. The meter is protected against burnout from overvoltage.

2 As a 0.1\% Reference Power Supply

Generates any dc voltage in the range of 0 to +100 volts or 0 to -100 volts at 10 ma . Voltage can be set at 0.1 volt with a ten turn helical potentiometer with direct dial readout. Other features include stability of 0.1% in 8 hours, 0.5% per year. A source voltage of ± 100 volts ($\pm 0.1 \%$) is always available for reference in addition to selected output voltage. Hum and noise is 2 mv rms maximum.

25

Your nearby Donner engineering sales representative will be happy to furnish you with complete information and arrange an opportunity for you to use the Donner 5002 in your own lab. For complete technical specifications
please address Department 19.

Semiconductor Sweep-Current Generators

GENERATORS of linearly-varying currents are extensively used as sweep generators in cathode ray tubes with magnetic deflection. A vacuum-tube generator of linearly-varying current is usually a combination of a generator of trapezoidal or linearly-varying voltage, with an amplifier for the sweep current. The load of the amplifier is the deflection coil of the crt. This amplifier is frequently called the output stage of the sweepcurrent generator.
Mere replacement of the vacuum tubes by transistors involves several difficulties because of the specific properties of the transistors. Thus, to match the low input resistance of the output transistor with the large input resistance of the sawtooth voltage generator it is necessary to use matching devices such as a transformer or an emitter follower. These are somewhat difficult to design with satisfactory frequency characteristics.

The low input resistance of the output stage makes it impossible to obtain the time constant for the $R C$ network which would be necessary for undistorted transmission of the trapezoidal pulse. This leads to a further deterioration of the frequency characteristics of the coupling circuits and to mismatch between the voltage generator and the output stage.
As a result, the nonlinearity of the deflection current increases sharply. In the case of stringent linearity requirements, this offsets the advantages of semiconductor equivalents of vacuum-tube sweep-current generators.

In this paper, we describe semiconductor sweepcurrent generators which are free of these shortcomings, and which generate the deflection current directly.
The high gain of a transistor amplifier with negative capacitive feedback insures a small (not more than five per cent) nonlinearity of the generated current, and high stability of the generator.

The Sweep-Current Generator

The proposed generator represents a combina-
tion of a generator proper, capacitive (wattless) negative feedback, and a commutating device that insures periodic charging and discharging of the capacitor. The generator proper consists of an $R C$ integrating network and a transistor amplifier whose collector load is the deflection coil.
The principal requirement that must be met hy a generator of this type is high linearity of the generated current. The linearity is determined largely by the generator proper, whose general circuit is shown in Fig. 1.

For convenience in the analysis, we show the amplifier load (the inductance of the deflection coil $L_{c o l}$) outside the two-port-network equivalent of a voltage amplifier with gain K_{0}.

As can be seen from Fig. 1, the sweep-current generator proper differs little from analogous vacuum tube generators with wattless feedback. Its distinguishing feature is that the load of the amplifier is a coil with resistance $r_{\text {rol }}$. To this, one may connect an additional active resistance, and the relatively small input resistance of the amplifier, resulting in the flow of input current i_{1}.

The resistance r is used to obtain the voltage jump, which is essential for the generation of a linearly-increasing current.

From Fig. 1 we obtain the following equations in operator form
$u_{1}(p)=-F_{c o l}+R\left[i_{c}(p)+i_{1}(p)\right]$

$$
=u_{2}(p)+u_{c}(p)-r i_{c}(p)
$$

$u_{2}(p)=-F_{c o l}+R_{c o l} i_{L}(p)+p L_{c o l} i_{L}(p)$

$$
\begin{equation*}
i_{c}(p)=p C U_{0}-p C u_{c}(p) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
u_{1}(p)=-R_{i n} i_{1}(p) \tag{4}
\end{equation*}
$$

where U_{0} is the initial voltage on the charged capacitor and $R_{\text {in }}$ is the real part of the input impedance of the amplifier.

The input and output impedances of the transistor are assumed to be active. The voltages u_{1} and u_{2} of an inertialless amplifier are related as follows:
$u_{2}(p)=-K_{0} u_{1}(p)+Z_{\text {out }}(p) i_{\text {out }}(p)$
where K_{0} is the no-load gain of the amplifier.

ig. 1. General circuit of sweep-current generator.

MOUNTING SYSTEMS

electronic equipment manufacturers for aircraft use
Here's why Lord is your best source for electronic mounting systems:
Complete line of ATR bases for both piston and jet aircraft . . . plus special systems.

Superior performance results from Lord's 35 -year background in vibration/shock/noise control. This assures positive protection for radio transmitters and receivers, radar, Doppler, Loran, ILS, antennae, controls and other equipment.

Good delivery is insured by proved designs, qualified components and complete modern facilities for engineering, production and testing.
Why not prove it to yourself? Contact the nearest LORD Field Engineering office or the Home Office, Erie, Pa.

FIELD ENGINEERING OFFICES ATLANTA. GEORGIA.CEder 7.9247 KANSAS CITY, MO. - WEstrort 1-0138

LORD MANUFACTURING COMPANY - ERIE, PA.

EECTRONIC DESIGN • February 17, 1960

FACTORY FRESH

 CERTIFIED PRECISION

APPCO PRECISION STOCK GEARS

32 TO 120 PITCH ...A.G.M.A. PRECISION \#1, 2 \& 3 SEALED IN PLASTIC...DIRT AND SCRATCH-FREE

Made to exacting specifications. Held to tolerances which are Certified to precision-fit standard instrument bearings, shafting, etc. Then sealed in plastic free of dust, dirt or corrosion on a shipping tray which identifies each individual gear. The unsurpassed accuracy of APPCO Precision Gears arrive at your plant "factory-fresh" ready to use on the most critical assemblies.

APPCO Certified Precision Stock Gears are available in 32, 48, $64,72,96$, and 120 diametral pitches of $141 / 2^{\circ}$ and 20° pressure angles. Spur gears, pin or clamp hub type . . . flat or hubless . . anti-backlash. Each is Certified to meet or surpass A.G.M.A. specifications. For complete technical data and catalog write to ...

CIRCLE 731 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

When $i_{\text {out }}=i_{c}=0, Z_{\text {out }}(p)$ is the output impedance of the amplifier, the value of which is

$$
Z_{\text {out }}(p)=\frac{\left(r_{\text {col }}+p L_{\text {ool }}\right) r_{i}}{r_{\text {col }}+p L_{\text {rol }}+r_{i}}
$$

The resistance r_{1} is the internal resistance of the transistor. It is easy to show that the differential resistance of a capacitor discharging almost constant current is active and its value is

$$
r_{c}=\frac{d u_{e}}{d i_{e}} \sim \frac{\Delta u_{c}}{\Delta I_{e}}=\frac{\Delta U_{e}}{\epsilon I_{e}}
$$

active and its value is where Δu_{c} is the voltage drop u_{c} during the discharge of the capacitor (approximately equal to $\left.E_{\text {col }}\right) ; \varepsilon=\Delta I_{c} / I_{c}$ is the nonlinearity coefficient of the voltage $u_{c} I_{c}=E_{\text {col }} / R$, the initial discharge current of the capacitor.
Consequently, $r_{e} \simeq R / \varepsilon » \bar{Z}_{\text {out }}(p)$, since even when $R=5 K$ and $\varepsilon=0.05$ we have $r_{c}=100 K$ which is much greater than r_{i}.
One can therefore assume that the amplifier of the sweep-current generator operates at no load and
$u_{2}(p)=-K_{0} u_{1}(p)$.
(5)

Solving Eqs. (1) to (5) with respect to $i_{L}(p)$ under the condition K_{o} » 1 , we obtain
$i_{L}(p)=E_{\text {cot }} \frac{K_{u} R_{\text {in }}+R}{L_{\text {cot }} C R\left(r+K_{0} R_{\text {in }}\right)} \frac{1}{p^{2}+2 \alpha p+\omega_{0}{ }^{2}}$
$+E_{\text {col }} \frac{K_{0} R_{i n} r+r R+K_{0} R_{\text {in }} R(1-\xi)}{L_{\text {coal }} R\left(r+K_{0} R_{\text {in }}\right)} \frac{p}{p^{2}+2 \alpha p+\omega_{0}{ }^{2}}$
where $\xi=U_{0} / E_{\text {cot }} \approx 1$.

$$
\begin{gather*}
2 \alpha=\frac{L_{\text {col }}+C C_{c o l}\left(r+K_{0} R_{i n}\right)}{L_{\text {col }} C\left(r+K_{0} R_{i n}\right.} \\
\omega_{0}^{2}=\frac{r_{\text {col }}}{L_{\text {col }} C\left(r+K_{0} R_{i n}\right)} . \tag{7}
\end{gather*}
$$

Considering that in practice the following inequalities hold,

$$
L_{\text {cot }}<C r_{\text {rot }}\left(r+K_{0} R_{\text {in }}\right) ; \quad r<K_{0} R_{\text {in }}
$$

then

$$
\frac{\omega_{0}{ }^{2}}{\alpha^{2}} \simeq 4 \frac{L_{\text {col }}}{K_{0} R_{\text {in }} C_{c o l}}<1,
$$

and the system of Fig. 1 is aperiodic. Then
$\frac{p}{p^{2}+2 \alpha p+\omega_{0}{ }^{2}}=\frac{1}{m-n}\left(e^{m t}-e^{n t}\right)$

These interlocking building blocks have double meaning when compared with the Crosby-Teletronics Diode Tester (Model DT-257A) and the Millimicroammeter (Model MA-259). Just as the blocks fit together in basic construction, the two units work together to make possible production testing of static characteristics of silicon as well as germanium and selenium diodes.

left: Model DT-257A. . . $\$ 295.00$ right: Model MA-259 . $\underset{\text { (less batteries) }}{\$ 125.00}$
Both shown in Model RA-81 Rack Adapter.
DT-257A Diode Tester - Separate forward and reverse power supplies with continuously variable outputs or pre-set regulated ously variable outputs or pre-set regulated reverse potentials allow complete measurepoints. The combination of controls and con points. The combination of controls and connectors with the circuits employed provide of operation. Accessory oven (Model OV-120) available . . . maintains fixed temperature of $65^{\circ} \mathrm{C}$.
MA-259 Millimicroammeter - Measures the low reverse currents of silicon diodes when used as an accessory to the DT-257A. As a used as an accessory to the DT-257A. As a the range from 0.01 microamperes to 1,000 microamperes. It is completely self-contained and battery powered.
Complete specification sheets are available for both units. Your letter will bring them by return mail.
Crosby- -5 Teletronics Corporation
54 Kinkel Street, Westbury, L. I., N. Y. CIRCLE 732 ON READER-SERVICE CARD

UPGRADE YOUR EQUIPMENT with

LAMINATED TRANSFORNERS and REACTORS

Because we custom design and build to your needs, we welcome the difficult assignments as woll as the more common requiromenta. Quality - rollability are plus
factors when you spocify C.A.C.

COMMUNICATION ACCESSORIES COMPANV
EESS SUMMIT, MISSOURI
where m and n are the roots of the equation $p^{2}+2 \alpha p+\omega_{0}{ }^{2}=0$, the values of which are, for ω_{0}^{2} * α^{2}, with (7) and (8) taken into account.:

$$
\begin{aligned}
& m \simeq-\frac{r_{c o l}}{L_{c o l}+r_{c o l} C\left(r+K_{0} R_{i n}\right)} \\
& \simeq-\frac{1}{C\left(r+K_{0} R_{i n}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\left.n \simeq-\frac{L_{\text {col }}+r_{\text {rot }} C\left(r+K_{0} R_{i, n}\right)}{L_{\text {col }} C(r+}+K_{0} R_{i n}\right) \\
\simeq-\frac{r_{\text {col }}}{L_{\text {col }}} .
\end{aligned}
$$

It is seen from Eq. (9) that the expression for i_{L} is the sum of two exponentials-one with a large time constant $C\left(r+K_{0} R_{i n}\right)$, and one with a small time constant $L_{\text {col }} / T_{\text {col }}$.
For the solution to contain only one exponential with a large time constant, we stipulate that the coefficient in front of the exponential with the small time constant must vanish. We then find from Eq. (6) to (10) that this takes place when

$$
\begin{equation*}
r=\frac{L_{r o l}}{C r_{c o l}}+R(\xi-1) \simeq \frac{L_{r o l}}{C r_{r o l}} . \tag{11}
\end{equation*}
$$

The expression for i_{L} becomes in this case

$$
\begin{equation*}
i_{L} \simeq I_{e_{4}}\left(1-e^{-t K, B_{i n} c}\right), \tag{12}
\end{equation*}
$$

where

$$
I_{\text {cq }}=\frac{E_{c o l}}{r_{c o l}} \frac{K_{0} R_{i n}+r}{R} \simeq \frac{E_{c o l}}{r_{c o l}} \frac{K_{0} R_{i n}}{R} .
$$

The coefficient of nonlinearity of the current i_{L} now becomes

$$
\epsilon \simeq \frac{I_{m}}{I_{e q}}=\frac{T_{\text {uork }}}{K_{0} R_{i n} C}
$$

where I_{m} is the amplitude of the sweep current. Considering that $\mu_{1} \approx \mu_{2} \approx 0$ when $t=T_{\text {work, }}$ we get
$I_{m} \simeq \frac{E_{\text {col }} T_{\text {tuork }}}{r_{\text {col }} T_{\text {work }}+L_{\text {col }}}, \quad T_{\text {work }} \simeq \xi C(R-r)$
and then

$$
\begin{equation*}
\epsilon \simeq \frac{R}{K_{0} R_{\text {in }}{ }^{\circ}+R} \simeq \frac{R-r}{K_{0} R_{\text {in }}}, \tag{14}
\end{equation*}
$$

The value of the coefficient K_{0} is determined by the collector load $\mathrm{r}_{\text {col }}$, since in the case of linearly-increasing coil current the voltage drop across $L_{c o t}$ is nearly constant and the role of the coil reduces thus to the role of a source of dc voltage.
It must be noted that the oscillations in a resonant circuit consisting of the coil $L_{o o t}$ and its distributed capacitance do not occur at the start of the operation because of the strong negative feedback. Hence, there is no need for additional shunt-

1 RECORDER Plus 5 NETWORKS Plus I PROBE EQUALS . . . INSTRUMENT DOLLARS SAVED ! ! !

REC's many Resistance Temperature Probes, when used with the Model 173 Plug in Trimming Network cover the entire temperature range from $-435^{\circ} \mathrm{F}$ to $+100^{\circ} \mathrm{F}$ and higher, with absolute accuracy and interchangeability of $\pm 0.1^{\circ} \mathrm{F}$.
Standard Networks are available to adapt any probe to the tem. perature spans indicated above.

- Probe and network fits master calibration curve TO $\pm 0.1^{\circ}$ F ... ELIMINATES CALIBRATION\$AVINGS
- ONE PROBE FITS MANY installations . . . FEWER SPare PARTS REQUIRED \qquad . . SAVINGS
- PROBE INTERCHANGEABILITY TO $\pm 0.1^{\circ}$ F, ELIMINATES costiy recalibration
\$AVINGS
- change plug in network to change temperature RANGE. REDUCE SYSTEM MODIFICATION COST . . \$AVINGS

Write for further information

ROSEMOUNT

ENGINEERING

COMPANY

4900 West 78 th St. Minneapolis 24, Minn. CIRCLE 735 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

Fig. 2. Basic circuit of the simplest type of sawtooth current generator.
ing of the coil. The recovery time of the circuit thus becomes relatively short. The character of the recovery process is similar to that of the oscillation process, and this tends to reduce the re covery time further.

Practical Sweep-Current Circuits
The simplest of the proposed versions is the generator shown in Fig. 2. In the absence of a control pulse, the duration of which should be equal to the time of the working cycle $T_{1 \ldots w h}$, the transistor is cut off, since

$$
u_{b}=E_{b}-\frac{E_{c o l}+E_{b}}{R_{1}+R_{2}+R}\left(R_{1}+R_{2}\right)>0
$$

(15)

The capacitor C is charged to a voltage U_{0} $\approx E_{\text {col }}$. Under the action of the control pulse the diode is cut off, and the transistor starts conducting. An almost linear discharge of the capacitor and an almost linear increase in the current i_{l}, are initiated.

During the instant of termination of the control pulse, the diode starts conducting and the transistor is cut off. The capacitor starts charging.
To determine the nonlinearity coefficient ε, we express the quantities K_{n} and $\boldsymbol{R}_{1 n}$ for the given generator in terms of the parameters of its circuit and of the transistor. Then, using the h parameters of a grounded-emitter transistor we get

$$
\begin{gathered}
K_{i 1}=\frac{h_{21} r_{r o l}}{h_{11}\left(1+h_{22} r_{c o l}\right)}=\frac{h_{21}}{h_{11}} r_{c o l} ; \\
R_{i n} \simeq h_{11}
\end{gathered}
$$

It is issumed here that the expression 1 "is prac-
a measure of perfection... IDEAL PRECISION Panel Meters
the complete line for every application

Here's the demand line that's set ting sales records across the nation ting sales records across the nation highest standards... assembled in highest standards. . assembled in controlled atmospheric and climatic conditions . 100% inspected a highest quality and dependability.

- Accurate to within $\mathbf{2 \%}$ of full scale
- All sizes and types available
- Scales to customers specifications
for complete information, write to

IDEAL

IDEAL PRECISION METER CO., INC.
214 Franklin Street, Brooklyn 22, N. Y.
Sold to Electronic Parts Distributors exclusively through

waidom

WALDOM ELECTRONICS, INC 4625 W. 53rd Street, Chicago 32, III.
CIRCLE 736 ON READER-SERVICE CARD

TUBE PROBLEM:

The Armed Forces needed a new version of the 6 J 4 reliable tube type which would provide a tube life of almost 1000 hours. Existing tubes of this type had an average life of only 250 hours. In addition this new tube had to be produced under ultra-high quality control standards.

SONOTONE
SOLVES IT:
By making
improvements in the cathode alloy and setting up extremely tight controls in precision, manufacture and checking, Sonotone engineers produced a 6J4WA with a minimum life of 1000 hours . . most running much longer

RESULTS:

The Sonotone 6J4WA
is one of three reliable tubes now being manufactured under U.S. Army Signal Corps RIQAP (Reduced Inspection Quality Assurance Program), monitored Program), monito by the U.S. Army And the same rigid quality standards apply to Sonotone's entertainment type tubes as well.
Let Sonotone help solve your tube problems, too.

Fig. 3. A composite Iransistor.
tically independent of $u_{\text {cot }}\left(h_{12} \simeq 0\right)$ and that. for power transistors, $h_{2 \sharp} r_{\text {col }}$ * 1 .

We thus olbtain on the basis of Eq. (14)

$$
\epsilon \simeq \frac{R\left(1+h_{22} r_{c o l}\right)}{h_{21} r_{c o l}+R\left(1+h_{22} r_{c o l}\right)} \simeq \frac{R}{h_{21} r_{c o l}}
$$

Considering that for power transistors we have $h_{21}>45$ when the current I_{m} is much less than the maximum permissible current $I_{\text {rol prrm }}$, we can obtain $\varepsilon \simeq 2 R / r_{c}$ per cent.

One can reduce the resistance R in this generator by increasing the voltage E_{b} and the ciapacitance C, but this leads to an increase in the recovery time.

To obtain a smaller coefficient ε it is possible to use a composite transistor, the diagram of which is shown in Fig. 3. Assuming $h_{12} \simeq 0$, we find that for h_{21} »l its equivalent parameters will be

$$
{ }_{21} \simeq h_{21_{1}} h_{2 \prime_{2}} ; \quad{ }_{11} \simeq h_{21_{1}} h_{212}
$$

In the case of identical transistors we ohtain

$$
\begin{equation*}
\epsilon \simeq \frac{l}{h_{21}^{2} r_{n o l}} \tag{17}
\end{equation*}
$$

When $K=5 K, h_{21}>40$, and $r_{\text {ro1 }}=250$ ohms, we get $\varepsilon<$ one per cent. While the first transistor must be a power transistor, a low power transistor can be used as the second transistor. It must be noted that when the coil is connected directly to the circuit the maximum amplitude of the sawtooth is determined by the relation

$$
\begin{equation*}
I_{m} \leqslant \frac{E_{\text {col perm }}}{r_{\text {rol }}+I_{\text {rol }} / T_{\text {work }}} \tag{18}
\end{equation*}
$$

For fast sweeps, when $T_{\text {work }}$ is small, the amplitude of the current I_{m} may be unacceptably low. In this case it is advantageous to use transistors connected in series (Fig. 4), where the lower transistor may be a composite transistor. Using the divider $\boldsymbol{R}_{3}, \boldsymbol{R}_{4}$ one sets the optimum operating conditions for the upper transistor. For this circuit it can be assumed that

$$
\begin{equation*}
I_{m} \leqslant \frac{2 E_{\text {co! perm }}}{r_{\text {col }}+L_{\text {col }} / T_{\text {uork }}} \tag{19}
\end{equation*}
$$

In this case, if the inequality $r_{\text {col }}<\left(R_{3} R_{4} / K_{3}+\right.$

Insures ULTRA-reliability under most extreme environmental and operating conditions.
Revolutionary new WEDGE ACTION supersedes
and surpasses "Wiping Action."
Contact pressure constantly increases during over-travel.

- Temperature range: $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$.
- Contact bounce: NONE.

Operating vibration: 5 to $2,000 \mathrm{cps}, 30 \mathrm{G}$'s. Operating shock: 100 G.

- Contact rating: dry circuit to 2 amps.
- Extremely low contact resistance.

BRIEF DESCRIPTION: Six pole, double-throw, hermetically sealed. Meets and exceeds specifications MIL-R-5757C and MII.-R-25018.
PAT. NO. 2,866,046
Write for illustrated literature.

E1FCTD TEC CDRD SLIP RIMGS - SWITCHES RELAYS
 P. O. BOX 378, SOUTH HACKENSACK, N. J. BLACKSBURG, VA., ORMOND BEACH, FLA.

17,1960

for unequaled resistance to

OILS •CHEMICALS

SOLVENTS •FUELS

AND TEMPERATURES OVER $400^{\circ} \mathrm{F}$.

At last . . . a high-strength flexible material that resists the effects of corrosive fluids at temperatures over $400^{\circ} \mathrm{F}$!! Viton . . . a newcomer to the synthetic rubber family . . . provides unparalleled resistance to many solvents, hydraulic fluids, lubricants, acids, bases and fuels . . . successfully withstands ozone, weathering, and oxygen. Viton custom rubber parts are now being used in the automotive, aircraft/missile, petroleum, chemical and appliance industries. Now Stalwart's modern plants are prepared to compound, mold, extrude, cut, calender and splice Viton parts to meet your

Viton is a trodemork of the exact specification . . . deliver them on schedule. Stalwart also fabricates rubber parts from Neoprene, Hypalon, Hycar, Buna N and other synthetic rubbers. Injection molded plastic parts are available from Stalwart's Plastics Division. Write for specific information.

RUSSIAN TRANSLATIONS

Fig. 4. Sweep-current generator with series-connected transistors.
R_{4}) is satisfied, we can use Eq. (7) for ε if a composite transistor is used.

Since power transistors usually fail by thermal breakdown, rather than voltage breakdown, one can recommend, in certain cases when I_{m} is much less than the permissible collector current $I_{\text {col perm }}$, that the generator operate if $E_{\text {col }}$ exceeds the permissible collector voltage $E_{\text {cot perm }}$

Finally, one may construct a sweep-current generator operating in a self-oscillation mode. This would work like a semiconductor generator of linearly-varying voltages of the phantastron type. Its diagram is shown in Fig. 5.

When the capacitor is charged the transistor T_{2} is in a mode close to saturation. The negative collector potential is such that transistor T_{3} conducts and T_{1} is cut off.

As the capacitor is charged, T_{2} 's collector potential decreases, causing T_{3} to cut off and T_{1} to conduct. This process is linear.

After linear discharge of the capacitor, the gen-

Fig. 5. A phantastron-like sweep-current generator.
$I_{\text {mproved }}$ Miniature LATCH-IN RELAY

Class 11L
Made of two miniature telephone type re lays mounted on a common lase. The relay armatures are mechanically interlocked when one is energized and pulls in it resets (releases) the other armature and become

Aside from the interlocking armature and common mounting each relay is complete the two relays can be furnished with en irely diferent contact arrangements and or operation from different voltages o currents.
The Class 11L Latch-in Relay is available for intermittent or continuous duty D.C operation and for intermittent duty A.C operation
operation.

Also available for plug-in mounting

and with dust-tight or hermetically sealed enclosure.

Send for catalog describing the Class 11 L and the complete line of reliable Magnecraft Relays.

3350 D W. Grand, Chicago 51, Ill..
CIRCLE 740 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 17, 1960

ure

IN

THE AIL TYPE 30

The AIL Type 30 Precision I-F Attenuator is a piston type attenuator operating in the waveguide below cutoff mode. It provides an attenuation range of 0 to 80 db above the minimum insertion loss to an accuracy of .005 db per db of increment.

Standard models are available at 30 mc and 60 mc center frequencies with nominal 50 ohms input and output impedances. Other frequencies and impedances are available on request.

The Type 30 is available in either cased, rack mounting or unmounted models.

Typical Applications

- Noise figure measurements
- Calibration of directional couplers
- Calibration of R-F Attenuators

Write for descriptive literature.

AIRBORNE INSTRUMENTS LABORATORY
Peer park, long istand, new york A DIVISION
OF CUTLER-HAMMER, INC.
alrcie 741 on reader-service card
E ECTRONIC DESIGN • February 17, 1960

NEW Time Delay Relays INSTANTANEOUS RESET... VOLTAGE-TEMPERATURE COMPENSATED

RUGGED CONSTRUCTION THROUGHOUT

Designed with an instantaneous reset feature, these relays provide the same time delay for a series of cycles when temperature and voltage vary.

They are pre-set from 3 to 180 seconds, are chatter-free and will withstand severe shock and vibration. Because of this unique combination of features, these relays are now being used in such new circuit applications as:
Sequential timing for missiles - Automatic reset on digital readout equipment - Oscillator stabilization

Overload protection - Computer sequencing

"DM" SERIES STEPPING MOTORS

Curtiss-Wright Stepping Motors convert digital pulses into mechanical work or motion. Units are bi-directional witt high starting torque.

Write for complete Components Catalog 260 to help you select CurtissWright electronic components for use where dependability is of prime importance.
COMPONENTS DEPARTMENT•ELECTRONICS DIVISION
time delay relays - delay lines - rotary solenoids - digital MOTORS - TIMING DEVICES • DUAL RELAYS • SOLID STATE COMPONENTS CIRCLE 742 ON READER-SERVICE CARD

SPEGMAL INTRODUGTORY OFFER CIRCUIT DESIGNERS PLUG-IN
TRANSISTOR CHOPPER KIT
GERMANIUM \& SILICON

INCLUDES TRANSISTOR CHOPPER APPLICATION NOTES

M M O D E	50 P	60 P	70 P
	Gormanium	Germanium	Silicon
Temperafure Range: Square Wave Drive Voltage: DC Input Voltage: DC Input Current: Chopping Frequency: Alpha Cufoff Frequency: Temperalure Drift: Random Noise: Dimensions: Woight:	$\begin{aligned} & -55^{\circ} \mathrm{C} \text {, to }+85^{\circ} \mathrm{C} \\ & \text { to } 15 \mathrm{v} \text {. peak-10-peak } \\ & \text { to } \pm 12 \mathrm{v} \text {. } \\ & 10 \pm 10 \mathrm{milliampores} \\ & \text { DC to } 100 \mathrm{kcps} \\ & 900 \mathrm{kilocycles} \\ & 3 \mathrm{ur} \mathrm{rms} / /^{\circ} \mathrm{F} \\ & 25 \mathrm{uv} \mathrm{rms} \\ & .50^{\circ \circ} \times .75^{\prime \prime} \text { dic. } \\ & 8 \text { grams } \end{aligned}$	$-55^{\circ} \mathrm{C} 10+90^{\circ} \mathrm{C}$ io 30 v . peak-lo-peak to $\pm 24 \mathrm{v}$. 10 ± 80 milliamperes DC 10100 keps One megacyele 1 uv rms/ ${ }^{\circ} \mathrm{F}$ 10 uv rms $.50^{\prime \prime} \times .75^{\prime \prime}$ dia. 8 grams	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ & 108 \mathrm{v} \text {. peak-lo-peak } \\ & \text { to } \pm \mathbf{v} \text {. } \\ & 10 \pm 40 \text { milliamperes } \\ & \text { DC to } 200 \text { keps } \\ & 5 \mathrm{magacycles} \\ & 2 \mathrm{uv} \mathrm{rms} /^{\circ} \mathrm{F} \\ & 50 \mathrm{uv} \mathrm{rms} \\ & .50^{\prime \circ} \times .75^{\prime \prime} \mathrm{dia} . \\ & 8 \text { grams } \end{aligned}$

EMPIRE 4.2271 devices, instruments, systems
th upper cut-off frequency, then f_{2} is above the in per cut-off frequency and f_{2}^{\prime} is below the lower cht-off frequency. If f_{1} is to influence the lower cul-off frequency then f_{1} and f_{2} are below this firquency and f:' is above the upper cut-off fregriency.
The two image impedances have the frequency viriation shown in Fig. ‥ Between the two cutoff frequencies (f_{1}, and f_{11}) the image impedances are real as indicated by the solid lines, Fig. 2. The clement values are determined as follows. Given: The frequencies $f_{1,}, f_{11}, f_{2}^{\prime \prime}<f_{1}<f_{2}$ and the image impediance at the frequency that is the sometrical mean of the two cut-off frequencies $\left(f_{m}{ }^{\prime}=f_{1} f_{n}\right), Z_{T}\left(f_{m}\right)=Z_{T_{m}}$
(Gilculate:
Nommalized band, a:

Frequency cariable, u:

$$
u=a \frac{f^{2}+f_{m}{ }^{2}}{f^{2}-f_{m}^{2}}
$$

Rialuate: $u\left(f_{2}{ }^{\prime}\right)=u_{2}{ }^{\prime}: u\left(f_{2}\right)=u_{2} ; u\left(f_{1}\right)=u_{1}$

$$
u_{1}{ }^{2}=1-u_{1}^{2} ;\left(b_{2}^{\prime}\right)^{2}=1-\left(u_{2}^{\prime}\right)^{2}
$$

The image impedance ratio at $f=f_{m}$ is

$$
\frac{Z_{T_{m}}}{Z_{s_{m}}}=\frac{1}{2}\left(1-u_{1} u_{2}^{\prime}+b_{1} l_{2}^{\prime}\right)
$$

and $u\left(f_{0}\right)=u_{0}$ is the frequency variable at the frequency at which $Z_{T}=Z_{\pi}$:

$$
u_{:}=\frac{1+u_{1} u_{2}^{\prime}+b_{1} b_{2}^{\prime}}{u_{?}-u_{2}^{\prime}}
$$

Obtain next, two parameters, K_{1} and K_{2} :
$K_{1}=\frac{\left(u_{n}-a\right) b_{1}}{\left(u_{2}^{\prime}-a\right)\left(u_{2}-a\right)\left(u_{1}-u_{0}\right)} \cdot 4 \pi \int_{l_{m}\left(i Z_{T_{m}}\right.}$
$K_{0}=\frac{\left(u_{1}-a\right)\left(u_{1}-u_{2}^{\prime}\right)}{\left(u_{1}-a\right)\left(u_{2}-a_{2}\right) b_{2}^{\prime}} \cdot 4 \pi a f_{m} Z_{m_{m}}$
The element values are:
$C_{1}^{\prime}=1 / K_{2} ; L_{1}^{\prime}=K_{2} f_{1}^{2} /\left(f^{2} \cdot f_{0}{ }^{4} f_{2}^{2}\right)$
$L_{1}=\frac{K_{2} f_{1}^{2}}{4 \pi^{2}\left(f_{2}^{2}-f_{1}^{2}\right)\left(f_{1}^{2}-f_{1}^{2}\right)} ;\left(2 \pi f_{1}\right)^{2}=1 / L_{1} C_{1}$
$C_{2}^{\prime \prime}=\frac{f_{2}^{2}-f_{2}^{\prime} 2^{2}}{K_{1}\left(f_{0}^{2}-f_{2}^{\prime}{ }^{2}\right)} ;\left(2 \pi f_{2}^{\prime}\right)^{2}=1 / L_{1}^{\prime} C_{2}^{\prime}$
$C_{2}=\frac{f_{2}^{2}-f_{2}^{\prime}{ }^{2}}{K_{1}\left(f_{2}^{2}-f_{0}^{\prime}{ }^{2}\right)} ;\left(2 \pi f_{2}\right)^{z}=1 / L_{2} C_{2}$
Two simple special cases may be deduced. If becomes zero, $u_{2}^{\prime}=-a$ and L_{2}^{\prime} is omitted. In tie second case $f_{2}{ }^{\prime}$ becomes infinite, $u_{2}^{\prime}=a, L_{2}^{\prime}=$ K_{2} and $C_{2}{ }^{\prime}$ is omitted.
Abstracted from an article by K. Stegemann, achrichtentechnik, Vol. 9, No. 11, November $1159, p p$ 502-505.

BASIC
 BUILDING BLOCKS国

 FROM KEARFOTT
ROTARY

 SWITCHKearfott's rotary switching devices for missile and aircraft systems are used to sequence or switch circuitry as a function of time or shaft position. Used in relays or solid state switchrelays or solid stateswitch-
ing techniques, high current loads can be handled. These switches consist primarily of shaft assembly and bearing mounted cylinder divided into conducting and non-conducting segments with continu ous track for common input. Multiple conductor "broom" type brushes ride on each cylinder track while number of tracks and segmentation of each is function of the number of circuits and type of "onoff" sequencing required.

TYPICAL

CHARACTERISTICS P1280-11A Number of switching tracks: 2 Angular Segmentation (both refer-
enced to 0^{\prime} start): enced to 0° start):
$\begin{array}{ll}\text { Track } \\ 0^{\circ} & 1 \text { - Non-conducting about }\end{array}$
$0^{\circ}+50^{\prime}$
Track 2-
Track 2-Conducting $0^{\circ}-180^{\circ}$
Non-conducting 180, $.0^{\circ}$
Mechanical Accuracy of
Segmentation:
$\pm 1^{\circ}$ (better as required) Starting and Running Torque: Current Capacit,
Current Capacity:
50 ma at $28 \mathrm{~V} /$ Brush (suitable for
any sensitive relay or solid state switching circuits)
Write for complete data.

KEARFOTT םIVIIION
G
GENERAL PRECISION inc. LITTLE FALLS, NEW JERSEY
Midwast Ofree 23 W Colendor Ave. Lo Grange. III.
South Centrol OTics b2ll Dention Dive. Doil os, Texos
Engineers: Kearfott offers challenging opportunsties in advanced component and system development.

CIRCLE 744 ON READER-SERVICE CARD

NEW MINIATURE A.C. MOTOR

high output for commercial use

This a.c. synchronous motor costs you only about half as much as its miniature precision counterpart for military applications. In production quantities it is so economical that you can design it into good quality products that now use induction motors. And because you can put this bigger performance motor in smaller spaces, it gives you a head start in miniaturizing your design at the same tıme you improve product quality.
Vital statistics: This Type CMC motor has a starting torque of 7 oz . in. and a continuous duty torque of 7 oz . in. at synchronous speed. It is $1 \frac{1}{4^{\prime \prime}}$ in diameter by $25 / 8^{\prime \prime}$ long, and weighs $6 \frac{1}{2}$ oz. The shaft is precision grouna stainless steel, supported by ball bearings. The epoxy-sealed design provides good resistance to normal environmental conditions.

If you have hesitated to design with precision miniature motors in the past, now's your chance!
The Globe motor line includes both a.c. and d.c. models. Globe is pleased to work with you to provide the exact motor you need for your commercial, competitive product. Please write for Bulletin CMC. Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio. BAldwin 2.3741.

GLOBE INDUSTRIES, INC.
GLOBE
hecision miniatune a.c. ac. motons. actuatons.
\qquad

ELECTRONIC DESIGN

D\|EEST of recent papers
and literature of interest to design engineers

Delay-Line Oscillator

ANOVEL USE for a variable delay line is illustrated in the schematic diagram of Fig, 1. The circuit uses the delay line as the feedback element of a triode oscillator. The delay line may be thought of as a phase-shift network having 180 deg phase-shift at a frequency corresponding to twice the delay time and its odd harmonics.

Fig. 1. Schematic of the delay-line oscillator.

A simpler physical picture of the circuit operiation is obtained from a time-domain description. Let us assume that the triode is suddenly biased to cut-off by a negative voltage step at its grid. A positive voltage step will occur at the plate. This positive step travels down the delay line and is coupled back to the grid by the coupling capacitor, turning the triode on. A negative voltage step then occurs at the plate, which travels down the delay line, cutting the triode off, and the process repeats.

With a large value of coupling capacitor, the grid and plate voltage waveforms are essentially rectangular, and the amplitudes are fairly constant over the entire range owing to the on-off nature of the oscillations. With a small value of coupling capacitor, the oscillations are more nearly sinusoidal and smaller in amplitude.
The circuit shown, utilizing a General Radio Type 314-S86 Variable Delay Line (0 to $0.5-\mu \mathrm{sec}$), oscillates readily up to about 30 mc . The grid

Fig. 2. Plot of frequency vs. delay setting.
wiltage waveforms at frequencies of 1,5 , and 20 me are shown in Fig. 3. The upper end of the frequency range is quite crowded because of the hyperbolic relationship between the frequency of uscillation and the shaft rotation of the linear delay line $\left(\mathrm{f}==\frac{\mathrm{L}}{2 \mathrm{~T}}\right.$). Up to about 20 mc , how-

Fig. 3. Grid-voltage waveforms. (a) 1 mc . Vertical scale, $2 \mathrm{v} / \mathrm{cm}$. Horizontal scale, $0.2 \mu \mathrm{sec} / \mathrm{cm}$. (b) 5 mc . Vertical scale, $2 \mathrm{v} / \mathrm{cm}$. Horizontal scale, $0.1 \mu \mathrm{sec} / \mathrm{cm}$. (c) 20 mc . Vertical scale, $2 \mathrm{v} / \mathrm{cm}$. Horizontal scale, 0.1 $\mu \mathrm{sec} / \mathrm{cm}$.
ever, operation is quite smooth and uniform. The lower end of the frequency range is limited by the naximum delay of the line (1 mc for the Type 314-S86). Since the frequency of oscillation depends primarily upon the delay line and is relatively independent of the tube characteristics, it is q ite stable at any particular setting of the line. Reprinted from Delay-Line Oscillator by H.T. 1 cAleer, General Radio Experimenter, Vol. 33, ^) 11, November, 1959.

El:CTRONIC DESIGN • February 17, 1960

Announcing a new service from Hughes

 CIRCUIT COUNSELINGTo help you meet the continually more complex problems of semiconductor circuitry, Hughes has created a Circuit Counseling activity. With its rapidly advancing technology, electronics-like the field of medicine-has come to rely on specialists. And now Hughes offers both present and prospective customers the services of CIRCUIT SPECIALISTS who are ready, willing, and able to tackle your circuit design problems-at absolutely no cost to you. This assistance, once requested, will come quickly. The Hughes Circuit Counselors will "hop a jet" and start to work on your problem within a matter of hours.
The Customer Technical Service Department is staffed by hand-picked men. Each member was especially selected for his wealth of experience in the field of digital, analog, video and RF circuit design for both small and complex systems. The knowledge of these specialists assures you of the proper applica- SEMICONDUCTOR DIVISION tion of semiconductor devices-thereby resulting in maximum system reliability.
To see a Hughes CIRCUIT SPECIALIST write, wire or phone: Customer Tech nical Service, \quad HUGHES PRODUCTS Hughes Semiconductor Division, 500 Superior Avenue, Newport Beach, California.

An analysis covering over four thousand custom slip ring assemblies designed and produced by Breeze Corporation during the past seventeen years has shown that a substantial number of these requirements have been for assemblies having similar size and operating characteristics.

Now . . . to meet these repetitive requirements more rapidly and at reduced costs, Breeze offers seven standard size slip rings with ring envelope diameters from $1^{\prime \prime}$ through $10^{1 / 2} 2^{\prime \prime}$.

SEVEN STANDARD SLIP RING SIZES

ELECTRONIC DESIGN D \quad C 5 and literature of interest to design engineer

A Barrier-Grid

Tube Memory

THE BARRIER-GRID tube is a temporary memory device, having high speed reading and writing ability, but a comparatively small storage capacity.

Basically, it consists of a beam-forming electron gun and a non-conducting target the beam must strike. The target, instead of being a phosphorcoated face plate, is of special construction. It is built like a sandwich, having: (1) a fine-mesh grid through which the beam must pass (the barrier grid), (2) a mica plate which the beam strikes. and (3) a metal plate (the back plate).

Information is stored in the form of electric charges on the mica plate. The mica can be thought of as divided into discrete areas about the size of the diameter of the electron beam. Each of these areas may be charged to a positive or negative potential, and since the mica is a nonconductor, these potentials will remain essentially unchanged as long as the beam is turned off. Thus, each area will store a single binary digit or "bit" of information. Because the beam is small therc may be as many as 16,000 such areas and each tube can thus store 16,000 bits of information.

Any of these areas can be selected by changing
(h) deflecting potentials while the beam is off so that when turned on, it will strike only the desired arca. Because the sequence of areas selected can be: completely arbitrary, this is known as a "random access" store. One of the principal circuit problems associated with the store is that of changing the deflecting voltages from one precise walue to another in less than a microsecond.

Equilibrium Potentials Represent Binary Digits
When the beam strikes a selected area, seconday electrons are emitted. These secondary electrons may fall back to the area or may flow to the harrier grid, depending on the relative potentials. Thus, if the mica area is more positive than the

Fig. 1. Photograph of a barrier-grid tube. Sixteen thousand bits of temporary information can be stored here.

Warrier grid, secondary electrons will return to the area. If the area is more negative than the rid, the electrons will go to the grid. Since the arrier-grid potential is held at a fixed value, the nica potential must adjust itself until the number f electrons leaving the area just balances the eam electrons arriving. This equilibrium potenal of the mica is very nearly equal to the potenlal of the barrier grid and, because of the small rea of the spots, is reached quite rapidly-under

Newly developed by Continental, these diodes open pos. sibilities of higher speed operation by minimizing the effect of shunt capacitance while providing fast recovery.

	CO2116	C02117	CD2118	C02119	Units
Max. Working Voltage	85	160	200	130	v
Min. Forward Current	4	6	50	10	mA
@ V ${ }_{\text {r }}$	1.5	1	1	1	v
Max. Reverse Current @ 50V	. 100	. 050	. 010	. 010	$\mu \mathrm{A}$
Max. Capacitance @ - 3	$3 V * 1.5$	-1.5	${ }^{*} 1.5$	${ }^{*} 1.5$	$\mu \mu \mathrm{f}$
Max. Recovery time	. 15	. 3	. 3	. 3	$\mu \mathrm{sec}$.

-Thls extropolates to $3 \mu \mu \mathrm{f}$ at 0 volts.
All diodes are "burned-in" at $200^{\circ} \mathrm{C}$ for 200 hours
Ratings and Specifications apply after "burn-in"
represents peak yields in its family so they are readily available in production quantities.

- LOW SHUNT CAPACITANCE

- FAST RECOVERY
- LOW REVERSE CURRENT
- 200 HOUR AT $200^{\circ} \mathrm{C}$ BURN-IN

These, like all Continental diodes, are manufactured by the Controlled Fusion Technique of junction formation which makes possible tight control of capacitance as well as other parameters.
The unusually low reverse currents, together with the "burn-in", give unequalled assurance of reliability.
Complete data on these types is available upon request. Your inquiry or request for technical assistance will receive prompt attention.

Four basic families, illustrated by the types in the table, have been developed to provide an optimum balance of characteristics for various computer functions. Each type

KEEP A COOL HEAD...UAP CAN SOLVE
YOUR ELECTRONIC CONTROL PROBLEM!

UAP has the specialized capabilities needed to analyze your overall problem; design the system technique; integrate components and subsystems into complete operational systems to achieve specific functions such as temperature, mechanical and mass flow control.

Example: Temperature control was assigned to UAP for the new shipboard radar tracking system developed by Sperry Gyroscope, which includes a TV Camera developed by DuMont Laboratories. Components of UAP Mechanical Refrigeration System for temperature control of TV Vidicon tube and associated electronic equipment are: condenser and evaporator, semi-hermetically sealed compressor, blower, controls and chassis. The envelope is $14^{\prime \prime}$ dia. $\times 10^{\prime \prime}$ long, with half the diameter reserved for tube circuit. Capacity of 26 -pound package is 275 watts at ambient $149^{\circ} \mathrm{F}$. Meets MIL environmental specifications.
Send us your requirements:
UNITED AIRCRAFT PRODUCTS, INC., Dayton, Ohio
(Contractual Ensineering Offices: California, Gardena FA 1-4810: New: York City MU 7-1283; Dayton, Ohio BA 4-3841; Canada, Montreal OX 7-081()) WESTERN DIVISION, UAP, Inc., Gardena, California

U-522477 Mechanical Refrigeration System

DIGEST

a microsecond. This high speed permits a short cycle time in the barrier-grid store.

The equilibrium potential of an area repre sents a bit of information, a binary 0 , while potential more negative than this can represent a binary 1. The process of charging an area to an equilibrium potential is used both in reading and writing.
For instance, to write a 0 , the area is selected and the beam turned on. After a microsecond the area is at equilibrium potential-it represents a 0 . From observation of the current flowing to the barrier grid during this interval, it may be determined whether the area was previously a 1 or a 0 . No pulse of charging current will be needed to reach equilibrium if the area was al ready at equilibrium, or was a 0 .
Note that this process of reading is destructive in the sense that by the time the original state of the spot is determined it is at equilibrium potential and thus always represents a 0 . For this reason, if a 1 is present and the system desires to continue to store this 1 , it must be rewritten. This is done by first raising the backplate above its normal potential and again turning the beam on. The act of raising the backplate potential places a positive charge on the area, but the beam removes this charge in the process of charging the area to equilibrium. Once at equilibrium the beam is turned off, and then the backplate is restored to normal potential. This final action places a negative charge on the area and leaves it more negative than the barrier grid-a stored 1.

Three-Phase Operating Cycle

The tube operates on a basic cycle of three phases. During the first phase-DEFLECT-the beam is off, while the voltages on the deflecting plates are being changed from some previous value to one that will direct the beam to the desired spot. Immediately following this, the beam is turned on and the stored information is read-the READ phase. The final, or WRITE phase consists of writing the area, or spot, to its next potential.
These three phases take approximately equal times of $0.7 \mu \mathrm{sec}$ and, allowing time for circuit recovery, the cycle may be repeated every 2.5 $\mu \mathrm{sec}$. The switching system initiates each cycle by supplying an address in pulsed form, plus a "start" pulse. The start pulse may appear on any one of four leads, depending on what is to be done during the WRITE phase. The four operations are:
(a) Write a 1 ,
(b) Write a 0 ,
(c) Rewrite the original information (REGENERATE).
(d) Write the opposite of the original information (REVERSE).

Barrier Grid "Store"

The use of a barrier-grid tube thus requires appropriate circuitry to generate the reading ancl writing actions as well as to deflect the beam to the desired spot. This assemblage of tube and circuits is what constitutes the "store."
The barrier-grid store has four major divisions -the addressing or deflecting system, the tube and its direct control circuits, a sequential con-

Fig. 2. Four major divisions of the barrier-grid store, and the cricuits that link them. Memory (the barriergrid store) receives its instructions from both the deflection system and sequential control.
trol section, and a readout section. A basic block diagram of the store shown in Fig. 2 indicates the four circuits needed. The store receives each deflecting address in the form of parallel digital p ilses. The deflection circuitry then must convert th is digital input into the two voltages necessary ts deflect the beam horizontally and vertically to the desired spot; it must do this rapidly and accir rately.
The accuracy required permits the beam to diviate no more than a tenth of a spot diameter

Output wave shapes under varying input and load conditions. Sola Catalog No. 23-13-150 used in this test.

Sola's moderate-cost static-magnetic voltage regulator has sine-wave output

Sola now offers sinusoidal output in every standard-type regulator with no price premium. This development a result of major design and production innovations greatly widens the field of use for static-magnetic voltage regulation. The new standard sinusoidal design is now ideal for use with electrical and electronic equipment requiring a regulated input voltage with commercial sine wave shape - especially where harmonic-free supply had previously been too costly. The sinusoidal output also contributes to ease of selection and ordering, since this Sola stabilizer is virtually universal in application.
The Sola Standard Sinusoidal Constant Voltage Transformer provides output with less than 3% rms harmonic content. It automatically and continuously regulates output voltage within $\pm 1 \%$ for line voltage variations of $\pm 15 \%$. Average response time is 1.5 cycles or less: The new line includes nine stock output ratings from 60 va to 7500 va .
Besides the improved electrical characteristics, these units are substantially smaller and lighter than previous models. Size and weight reductions were accomplished without any loss of performance or dependability.
With the Sola Standard Sinusoidal Constant Voltage

Transformer you also get all the proved benefits of a static-magnetic regulator. It is simple and rugged, There are no tubes . . . no moving parts . . . no replaceable parts. Maintenance and manual adjustment are not necessary.
Its current-limiting characteristic protects against shorts on the load circuit. It is available in step-up and step-down ratios, allowing substitution for conventional, non-regulating transformers. These units can be used in any electronic or electrical application requiring a regulated sinusoidal power source where the peak power demand does not exceed the capacity of the constant voltage transformer. Circuit design formulae based on sinusoidal wave shape are directly applicable. Custom units to specific requirements are available in production quantities.

SOLA ELEC JRIC CO
4633 West 16th Streot

Write for Bulletin CVS

A Division of Easlo Producta Corporation Corporation

Designing in miniature? Here's how to save space -

New G-C MICROSTACK* for coincident current memory systems has a physical volume just 10% that of conventional stack. MICROSTACK shown with 2560 cores measures only $1.125^{\prime \prime} \times 1.4^{\prime \prime} \times 1.4^{\prime \prime}$, a reduction in size from $31 / 2^{\prime \prime} \times 3^{11 / 2 "} \times 5^{\prime \prime}$.
This miniature stack consists of an array of $16 \times 16 \times 10$. Solder connections are greatly reduced (from 1192 to 104), thereby substantially increasing reliability.

Noise level in the new MICROSTACK is as low as that of conventional types. The new MICROSTACK is available with all standard memory cores. Standard packages are available with coincident current wiring in $10 \times 10 \times 8,16 \times 16 \times 8$ and $32 \times$ 32×8 arrays.
For further information, please write on company letterhead-address inquiries to Dept. ED.

- Trademark

GENERAL CERAMICS

obibimator or ine segane loop momirs

General Ceramics Corporation KEASBEY, NEW JERSEY.U.S.A.

DIGEST

from its desired location. For a large change it spot position this means accuracies exceeding 0.1 per cent. Since the heam must be within this fina error limit before completion of the 0.7 usee DEFLECT plase of the eycle. it must move a very high speed.
The sequence-control section of the store gen erates the train of pulses needed to carry out the cycle. It provides these pulses at the proper times to integrate the operations of the addressing, tubc and readout sections. In this section the operations are digital and may be carried out by the repeated use of small functional circuits as is dom in other digital systems.
The basic parts of the readout section inclucle an amplifier to raise the output signals of the tube to working level and detection circuits to pulse the proper output cable. Although the signals from the store can be low in amplitude initially, they should be relatively noise free to present no basic reading problem.

Deterioration of Stored Charges

Although the information stored in a barriergrid tube is very stable when the beam is turned off, in normal operation the low-level "spray" of electrons within the tube causes a gradual deterioration of stored charges. This effect is most severe adjacent to spots where the beam appears most often, but all spots must be periodically rewritten for long-time storage. How often this must be done is governed by a figure called the Read-Around Number, or RAN.

The RAN indicates the largest number of times a given spot may be used before its immediate neighbors must be rewritten. In the present bar-rier-grid tubes, the RAN varies from spot to spot from a value of 150 to several times this value. To avoid interference between spots the switching system is arranged to rewrite all the spots within one second and never let the usage ratio of adjacent spots exceed 150 .
Since a high order of reliability is essential to telephone systems, the "error rate" of the barriergrid store is also an important factor. Specific tests on present stores have indicated that the error rate is less than one in ten billion. This is a very low probability of error, but the high speed of the store permits this many operations in less than a day. Thus, in actual systems two stores would normally be checked against each other. Under these conditions the probability of simultaneous errors is practically non-existent.
A number of barrier-grid stores have been built and operated for laboratory switching systems and

AS NOISE, particularly atmospheric noise, is the limiting factor in radio reception, it is viry important to be able to predict its characteristics under various conditions throughout the ridio frequency range. Such a prediction, including an estimation of the possible interference to a given communications system, can be derived from an amplitude-probability distribution in which voltage levels are plotted against the percentage of time these levels are exceeded. However, although the amplitude-probability distrib ition is a particularly useful tool, its direct dete mination necessitates detailed measurements at all frequencies and at many locations. The co mplex equipment and the large number of per-

ENGINEERED COMPONENTS for the Electronic Industry

Garlock electronic components are skillfully engineered for high temperature, high voltage, high frequency service.

WHERE RELIABILITY IS CRITICAL

1. Chemelec* Stand-Off and Foed-Thru Insulators are easy to install, resistant to heat and breakage, and-above all -reliable under severest conditions . ideal for critical electronic circuits such as missile guidance, fire control, tracking, radar systems. Teflon**due to its excellent dielectric, mechanical and thermal properties-is used as the insulator body. And, Chemelec Compression-Mounted Stand-Off and Feed Thru Insulators are designed for easy installation. You simply press them into pre-drilled holes; they become self-fastening, requiring no additional hardware or adjustment. Available in compression-mounted, metalbase, miniature and sub-miniature types . . . standard R.M.A. colors, a wide range of sizes and terminal designs.
2. Chemelec Sub-miniature Tube and Transistor Sockets have body insulating material of Teflon; contact material of brass, silver-plated and gold flashed. Capacitance pin to pin . 6 MMF-pin to $\frac{1}{16}{ }^{\prime \prime}$ Chassis .7 MMF . Chassis retention 50 lbs min . in $\frac{1}{16}$ " panel. Contact retention 4 oz . per pin.
3. Chemelec Connectors are Tefloninsulated for outstanding high frequency service. Once installed, they require no further adjustment or hardware. $.040, .050, .064$ pin size, female also in .080 size.
4. Plastic Stock Shapes and Intricate Parts, inserts, thin sections, threaded parts to precision tolerances are available. Excellent facilities and experience in compression and injection molding, extruding, machining of Teflon, Nylon, Delrin**, Kel-Ft or other industrial plastics.

Garlock facilities and personnel are at your disposal for design and development of new electronic products.

G A R LOC KX

ELECTRONIC PRODUCTS

Garlock maintains complete electrical, chemical, and physical laboratories staffed by top-flight research and development engineers

Find oul more about what Garlock offers. Contact the Garlock Electronic Products representative near you. Call him, or write for Catalog AD-169, Garlock Electronic Products, The Garlock Packing Company, Camden 1, New Jersey.
QRegistered Tradomark ${ }^{\bullet}$ DuPont Trademart
\dagger Trademark, Minnosota Mining \& Manufacturing

Smallest MOLDED* MICA CAPACITOR 73\% Smaller ${ }^{+}$ Micamold Missilmite

for $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operation

Micamold's Missilmite subminiature molded mica capacitors are the Smallest Molded Mica Capacitors Ever Produced...73\% SMALLER!
Due to radically new engineering design, new materials and assembly methods, Perfectly Symmetrical Missilmites MEET and EXCEED MIL-C-5A and MIL-C-11272A, Characteristics "C," "D" and "E." These subminiature molded mica capacitors will withstand operating temperatures of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (standard range is from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$), and weigh only $1 / 2 \mathrm{gram}$.

Reliable and stable Missilmites permit greater design flexibility to the engineer, and are especially desirable in critical miniaturized assemblies. Recommended for use in missiles, delay lines, pulse networks, computors, transistorized assemblies...or wherever minimum size and weight, with stability, are required.

Send for Bulletin 114A to: MICAMOLD ELECTRONICS MANUFACTURING CORP.
(Subsidiary of General Instrument Corp.)
65 GOUVERNEUR STREET, NEWARK, N. J. HUmbolf 5-2100 VISIT OUR BOOTHS 1218-1224 af the IRE SHOW CIRCLE 753 ON READER-SERVICE CARD

DIGEST

sonnel required to carry out these observations make continuous routine measurements virtually impossible.
The National Bureau of Standards Boulder Laboratories has found a solution to this problem in an empirical graphical method. With this method, it is only necessary to measure three statistical moments-the average noise power, the average envelope voltage, and the average log. arithm of the envelope voltage. From these quantities, four parameters can be derived to describe completely the amplitude-probability distribution as plotted on special graph paper designed so that a Rayleigh distribution of thermal noise plots as a straight line. The curve is the usual plot of voltage in decibels against the percentage of time the level is exceeded.
As the initial step in developing this graphic method, it was found that the shape of the curve of over 100 recorded distributions, when plotted on the special paper, could be approximated by two non-parallel straight lines connected by the arc of the circle tangential to the two lines. The lower portion of this curve, representing low voltages and high probabilities, is composed of many random overlapping events, each containing only a small portion of the total energy. This portion of the curve approached the Rayleigh straight line distribution. The section representing very high voltages with low probabilities is, in general, composed of non-overlapping large pulses occurring infrequently. This section also was found to be well represented by a straight line.
Four parameters are needed to define this distribution: (1) a point through which the Rayleigh line passes; (2) a point; (3) a slope for the highvoltage, low-probability line; and (4) a parameter of some kind to determine the radius of the circular arc. Since four parameters are needed and only three statistical moments are measured, a dependency between two of the parameters was established. From experimentally measured distributions at eight frequencies and various bandwidths, a linear relationship was found between the radius of the circle and the slope of the highvoltage, low-probability line.

The experimentally measured distributions were then numerically integrated to ctiain the three measurable moments, so that the relationship between the three moments and the four parameters could be determined. It is this relationship which allows measured moments to be used to plot the amplitude-probability distribution.

As a check on the accuracy of this method, the numerically integrated moments were compared

Time has brought decisive prog ress in the fight against cancer. Tei years ago one in four persons with cancer was saved. Today it's one in three. But time alone will not conquer cancer.Time plus research will. And research needs your dollars. Send your contribution today to "Cancer," c/o your local post office
american cancer socien

10 moments which had been recorded at the same time as the distributions. Approximately 60 sets of distribution measurements were analyzed to determine the error, which was largely introduced by the recorder. The standard deviation in the rms voltage values was about 1.1 db , with an average error of -0.14 db . Ninety per cent of the values were within 2 db of the mean.

Graph illustrating the effectiveness of a graphical method developed by the National Bureau of Standards for obtaining the amplitude-probability distribufion of atmospheric noise. The distribution pred cled from three easily measured moments is seen to agree very closely with the distribution measured with complex equipment.

This method of obtaining an amplitude-probability distribution from the three measured moments results in a distribution which is valid only for the bandwidths in which the moments were ni easured. A study is now in progress to develop a: accurate method of bandwidth conversion.
Digested from Technical News Bulletin of the U. S. Department of Commerce, National Bureau of Standards, Washington 2.5, D.C., November 15.59.

Vol. 2, No. 1 Nickelonic News
developments in inco NICKEL AND NICKEL ALLOYS AND THEIR APPLICATIONS

Why Electronic Grade "A" Nickel is used in X-ray tube cathode head and nearly 400 other tube parts

SPRINGDALE, CONN. - Resistance to

 elevated temperatures and retention of elevated temperanares andcritical dimensions and position of parts critical dimensions and position of parts
are important reasons why Machlett Laboratories specify Electronic Grade "A" Nickel for the cathode head of their Dynamax 20-DF X-ray tube.

The sharp focus of this tube, says Machlett Laboratories, depends largely upon accuracy of the contours and dimensions of the nickel cathode head, as well as on positioning of the filament within the focusing slots. On every exposure, millions of electrons are focused at the nickel cathode head, then slammed against a tungsten anode target spinning in a vacuum. The heat is so intense that the target material would vaporize if it were not spinning.

Nickel undistorted

Machlett's tube designers know how much Nickel contributes to longer tube life. For Nickel resists distortion at elevated temperatures, and its low vapor pressure plays an essential role in maintaining a high vacuum over a wide range of temperatures. Resistance to oxidation and ready fabrication are further aids to processing. The outstanding characteristics of Nickel reduce the problems of quality control.

Pertinent Literature: Write for Technical Bulletin T-15, "Engineering Properties of Nickel."
Circle 837 on Reader-Service Card

ELECTRONIC GRADE "A" NICKEL SOLVES4 PROBLEMS IN NEW PULSE-MODULATOR 'HARD' TUBE

SPRINGDALE, CONN. - A high vacuum tube to pulse-modulate radio frequency generators for radar provides 1 megawatt output pulses with a peak driving power of 8 kilowatts. Developed for use in missile control equipment, and designated as the ML-6544, the new tube is being offered by Machlett Laboratories.

High magnetostrictive effect of Nickel proves useful in ultrasonic cleaners

NEW YORK, N. Y.: - Because Nickel has a large magnetostrictive effect, it's used to energize many varieties of ultrasonic cleaners. In atomic energy installations, for example, these cleaners remove radioactive particles from equipment. They clean surgical instruments; even entire jet engines!
An ultrasonic cleaner, developed by American Time Products, is used to clean tiny parts for electronic equipment.

Grade "A" Nickel laminations are used in the transducer to produce highfrequency cavitation in cleaning and rinsing pots of this "Watchmaster" unit, developed by American
 Inc., New York City.
Inc., New York City.
ATP's chief engineer writes: "Grade "A" Nickel enables us to produce a simple, economical transducer for converting electrical energy into high frequency vibration. The nickel transducer operates at elevated temperatures and withstands mechanical abuse and corrosive solutions, providing a long, stable life."
Nickel transducers operate up to 100 kilocycles per second, driving high impedance loads such as process liquids and cleaning solutions.
Pertinent Literature: "Design of Nickel Magnetostriction Transducers." Write

for a copy.

Cirele 83a on Reader-Sorvice Card

The fube design features a beamed oxide coated cathode structure, a rigid squirrel cage control grid, a shield grid internally connected to the cathode and a forced-air cooled anode. It operates with 18 KV D.C. on the anode, has a $m u$ of 90 , and develops 65 amps of plate current with a positive grid drive of 1200 volts.

The new tube, it is felt, reduces the shortcomings of older tetrode designs. The structure is radically different and quite rugged. The tube operates with stability at high voltages, and the amplification factor is high, therefore only a modest negative control grid voltage is needed for cutoff.
Grid and cathode supports of the ML6544 are made of Electronic Grade "A" Nickel. Several other materials were considered before Nickel was finally selected, according to a spokesman for Machlett. One was rejected, he said, because it was costly, difficult to draw and too brittle. Another was too soft, and still another excessively expensive. Only Electronic Grade "A" Nickel was found to offer all of the desired properties as well as low cost. And Nickel is easily fabricated, joined, and outgassed. It has excellent mechanical properties and is highly resistant to oxidation and corrosion.
Pertinent Liferafure: Electronic grades of Nickel and Nickel Alloys - with their characteristics and uses - are fully described in our booklet, Nickel Alloys for Electronic ['ses. Write us for a copy.

Circle 839 on Reader-Service Card
HUNTINGTON ALLOY PRODUCTS DIVISION The International Nickel Company 67 Wall Street Now York 5, N. Y.

Planning to use tantalum in your product? Already using it? In either case, you can count on immediate delivery from stock of Fansteel tantalum sheet.

A little over a year ago, we introduced an exclusive Fansteel service of stocking the more commonly used sizes of tantalum sheet. The demand was immediate. Now we've expanded our stocking program to include 7 more popular sheet sizes. To you it means that you'll get the tantalum you need... exactly as ordered... delivered when you need it. And this Fansteel service will save you time and money by giving you the flexibility of quick deliveries and lower inventory costs.
Molybdenum users get the same benefits from the Fansteel Molybdenum Sheet stocking program.

FANSTEEL METALLURGICAL CORPORATION North Chicago, III., U.S.A.

REPORT BRIEFG

Antenna Multicoupler Design

This is the fourth in a series of reports on th design of antenna-multicoupler systems for us where several transmitters and receivers are opet atted simultaneously with a single antenna systen The filter design formulas given in the third repor in the series are used in the present report to show how the choices of the coupling capacitances resonator parameters, and tuning methods in th narrow-band filters affect the extra-channel susceptance of the filters, which in turn affect the permissible number of channels for a given degree of mismatch. The present report also dis cusses the factors affecting the degree of isolation obtainable between the ports of the three-poit strip-line multiplexing antenna described in the first report in this series. Design Data for AntennaMulticoupler Systems, J. F. Cline and P. M. Sherk Stanford Research Institute, Menlo Park, Calif.. May 1958, 27 pp, Microfilm \$2.70, Photocopy $\$ 4.80$. Order PB 138731 from Library of Congress, Washington 25, D. C.

Crystal Oscillator Circuits

A complete design method is presented for the cathode coupled crystal oscillator, operating in the frequency range of 75 to 150 mc . Design information is presented in the form of graphs and tables. A reference circuit, having a single set of values for the frequency range covered has been devised, and by varying the circuit component values, performance has been determined and plotted. The resulting graphs are normalized with respect to the reference circuit component value and performance figures. In this way, output and crystal drive voltage variations were determined for specific changes in circuit parameters. The design method thus developed provides output prediction with an accuracy of approximately 10 to 15 per cent for changes in any one component. Accuracy of crystal drive voltage prediction is in the order of 20 to 30 per cent for the same conditions. Work on the capacitance transformer coupled oscillator using subminiature filamenttype tubes has been completed, and performance of this oscillator at 105.135 . and 150 mc is presented. Investgation of the two selected oscillator circuits in the frequency range of 10 to 75 mc has begun and certain characteristics peculiar to the lower frequency circuits are discussed. A Study of Crystal Oscillator Circuits, H. E. Gruen and A. O. Plait, Armour Research Foundation, Chicago, Ill., Nov. 15, 1956-Feb. 15, 1957, 66 pp, Microfilm \$3.90, Photocopy \$10.80. Order PB 142865 from I Lilorary of Congress, Washington 25. D. C

Nagnetic Amplifiers

This report is a discussion of an improved method of shaping the frequency response of magnetic amplifiers. Transistor circuits furnish the power for lead or lag characteristics with negligible effect on magnetic amplifier gain or drift. Transistor Circuits Alter Frequency Response of Wagnetic Amplifiers, James C. Taylor and Charles
Wyman, Army (Rocket and Guided) Missile Arency, Redstone Arsenal, Huntscille, Ala., Feb. 10. 1958, 19 pp., Microfilm \$2.40, Photocopy $\$ 3.30$. Order PB 139260 from Library of Congress, Wishington 25, D.C

Electron Tube Cooling

This manual was prepared under the sponsorship of the Dept. of the Navy, Bureau of Ships as part of a continuing study of methods of cooling electronic equipment. The findings of investigations of the heat flow paths within and adjacent to vacuum tubes are presented, with the history of the development of the Thermatron diode. Its application to the study of vacuum tube cooling techniques is also discussed. In particular, it was found that bulb temperature is not a reliable index of the thermal condition of a glass vacuum tube. The Thermatron permits the measurement of plate temperature and is recommended for use in determining the thermal effectiveness of vacunun tube cooling techniques. Development and Application of a Thermal Diode "Thermatron" for Ulse in Studying Methods of Cooling Electron Tubes, James P. Welsh, Cornell Acronautical Laboratory, Inc., Buffalo, N. Y., May 1, 1957, 70 ill., Microfilm $\$ 3.90$, Photocopy $\$ 10.80$. Order $P B$ 14.308.5 from Library of Congress, Washington 2.5. D. C.

Silicon Devices in Digital Systems

This report describes a group of circuits employing silicon semiconductor devices for use in digital systems operating in temperature environments between -55 degrees C and +100 degrees C. The designs emphasize simplicity, reliability, economy of power, versatility, and minimum sensitivity to variations among transistor parameters. These circuits have undergone extensive temperature tests within the prescribed limits, both as individual units and as components in logical sub-systems. Minimum specifications of citcuit performance within these temperature limits are presented. One-Megacycle Silicon Transistor Circuits Applicable to Airborne Digital S! stems, V. J. Sferrino and W. G. Schmidt, Lincoln Leboratory, Massachusetts Institute of Technology, Lexington, Mass., March 10, 1958, 33 pp, Mcrofilm $\$ 3.00$, Photocopy $\$ 6.30$. Order PB 102205 from Library of Congress, Washington 25 D. C.

HUGHES CHOOSES RUTHERFORD

Mr. O. E. Kienow, head of the Receiver Group, Electronic Section, Tucson Electronic Laboratory of Hughes Aircraft Company, one of the outstanding electronic laboratories in the Southwest, has selected by critical evaluation the Rutherford Model B-7 Pulse Generator.

A point for point comparison of pulse generators of comparable rating shows that: - The Rutherford Model B-7 Pulse Generator demonstrates less pulse jitter than any comparable instrument measured.

- Rise time characteristics compare favorably with instruments costing 50% more.
- Pulse shape and rise time are readily adjustable by means of a front panel control.
- The small size, for the output capability of this unit, is a major advantage in the construction of complex test equipment.
- The wide range of delays in this instrument makes it extremely versatile.

Engineers: If your field is pulse circuitry design, a brighter future awaits you at Rutherford Electronics
Company. Contart
Mr. G. M. Stout,
Personnel Director

Ruthertiod

ELECTRONICS CO.
nulse generators • pulse systems • accurate time delay generators / 8944 Lindblade St., Culver City, California CIRCLE 756 ON READER SERVICE CARD
El : ©CTRONIC DESIGN • February 17, 1960

THE C112...

Industry's Lowest Ico Silicon TRANSISTOR

MAX. Ico $=1 m \mu$ at $25^{\circ} \mathrm{C}$
MAX. Ico $=1 \mathrm{l} A$ at $125^{\circ} \mathrm{C}$
Through rigid process control and extreme junction cleanliness, Crystalonics now offers a P-N.P alloyed junction Silicon Transistor with extremely low Ico values. The low Ico is built into the transistor rather than obtained by selection. This is clearly shown in the Ico distribution diagrams taken on 650 typcal units.

The main porometers of the C112 are as follows:

V¢B	ce	Ve	.C. β	Max. Ico and IEO of $25^{\circ} \mathrm{C}$	Max. Ico and of $125^{\circ} \mathrm{C}$
$25 V$	-25V	-20V	10.25	- 1 mila	-1 in

All parameters can be held to tighter tolerances against specific requests
The extreme unit cleanliness also ensures exceptional stability, and this transistor is recommended for application, requiring unusuall! reliable components

THE CII 12 IS AVAILABLE FROM STOCK

Crystalonics, Inc. also offers symmetrical P-N-F' Silicon Transistors and the $2 \mathrm{~N} 327 \mathrm{~A}, 2.2328 . \mathrm{A}, 2 \mathrm{~N} 329.4$ series of silicon unit-

For full details. unitr or call
Crystalonics, Inc.
249 Fith Sireet, Combridge 42, Massochusetts
Teiephone KIrkland 7.2750

CIRCLE 757 ON READER-SERVICE CARD

REPORT BRIEFS

Soldering Standards

These soldering inspection standards with illustrations have been established for use at the Diamond Ordnance Fuze Laboratories to assist in the determination of acceptable solder joints in electronic equipment. Visuab Inspection Standards for Soldering, W, A. Atwell. Diamond Ordnance Fuze Lahoratorics, Washington, D.C., Apr. 15, 1958. 13 pp., Microfilm \$2.40, Photocopy \$3.30. Order PB 138892 from Library of Congress, Washington 25. D.C.

High Frequency Mognetic Amplifiers

An analysis of the amplistat circuit is presented based on a hysteresis loop in the shape of a parallelogram with flat top and sloping sides. The effect of loop width and rectifier reverse current on the control characteristics is determined qualitatively from the analysis. These effects are observed in the experimental results. A reactor desigu procedure is described based partly on the results of the analysis. Experimental data are presented for 1 and 5 -watt amplistat circuits and for the self-saturating doubler circuit. The data include the control characteristic power gain, time constant and figure of merit. Variations of these quantities with frequency. core material and rectifier type are shown. Most of the data are limited to 15 kc and lower but some data are given up to 40 kc . High Frequency Magnctic Amplifiers, Norman Balabanian and Joscph Dienst. Syracuse University, Research Institutc. N. I'. Dec. 15, 1955, 91 pp, Microfilm \$5.40. Photocopy \$15.30. Order PB 138954 from Library of Congress, Washington 25, D. C.

Information Systems

Use is made of the channel capacity formula $C=W \log (1+S / N)$, in comparing the relative effectiveness of increasing bandwidth or signal power on the channel capacity of an information system. Two cases are treated: (1) constant noise-per-unit bandwidth and (2) constant channel noise. It is shown for the first case that to avoid a saturation effect both bandwidth and signal power should be increased in such a way that $\mathrm{S} \mathrm{W}_{n}=$ \mathbf{S} / \mathbf{N} is maintained approximately constant. For the second case, increasing signal power alone is more effective at low S / N whereas the relative effect of increasing bandwidth is independent of S / N. Theoretical Capacity of Information Systems, Charles F. Hobbs, Air Force Cambridge Research Center, Bedford, Mass., Dec. 1957, 11 pp., Microfilm \$2.40, Photocopy \$3.30. Order PB 139299 from Library of Congress, Washington 25, D.C.

assistant ENGINEER available

Mis neme is STANPAT, ond though the is not humon he con swallow up your tedious
re-drowing ond re-lethering of slondard and re-drowing ond re-letrering of slondard and reper if need be-withoul firing. STANPAT is the remorkoble tri-acelote sheet that is pre-printed with youl specification ond re. pre-prinied woxes, stondard symbols, sub-assemblies, compononts and cross-sections with adhesive from ar bock, waiting to be prosed into position in 15 secondsl heproductions are unusually crisp and clear, guaranieed nol to wrinkle, dry oul or come off. STANPAT soves hundreds of hours in droffing time and money, allowing the engineer more time for creative work.

Alreedy employed in numerous firms, STANPAT can ge to work for you, tool Send STANPAT can 90 to work for You, 100 ! Send as your drowing detais now formp, no obligation.

ELECTRONIC DESIGN - February 17, 1960

Coblohile

MOLDED RESISTORS

retain their values!
S. S. White Molded Resistors retain their original values and never deteriorate due to age!
S. S. White resistors serve dependably in hundreds of commercial ... industrial \ldots and scientific applications. They are characterized by low noise revel... precision ... stability ... negative temperature and voltage coefficients. Non-hydro scopic base withstands temperature and humidity. They are compact, have ex cellent stability and mechanical strength For full details, write for our Bulletın 5409. We ll be glad to help you apply these high-quality "all weather" resistor to your product. Just drop us a line

FIXED RESISTANCE VALUES
RANGE FROM 1000 OHMS TO 10.000,000 MEGOHMS!
$65 \times$ Molded Resistor I watt 80X Molded Resistor 3 watts

s. s. white industrial division 10 Eass 40th Stroet, Now York 16, New Yor Western Office: Dept. 28R 1839 West Pico Bivd., Lot Angoles 6. Calif.

Representing Transfer Functions

DeClaris has shown that the transfer function of a network consisting of resistors, capacitors, and one inductor has no more than one pair of complex conjugate poles. This thesis shows that for every transfer function representing a grounded two terminal-pair RLC network that has only one pair of complex conjugate poles, a grounded two terminal-pair network can be found which realizes the given function within a constant multiplier and which contains only one inductor. New Techniques for Realization of Transfer Functions, Scifallah Louis Hakimi, Electrical Engincering Rescarch Iaboratory, University of Illinois, UTrbana, Jan. 30, 1059, 78 pp ., Microfilm \$4.50, Photocopy \$12.30. Order PB 143087 from Lihrary of Congrese. W'ashington 25. D.C.

Spurious Microwave Energy

To reduce unwanted microwave rf radiations to a negligible value, filter specifications concerning stop band insertion loss, power handling capacity, and pass band characteristics were determined. The filter mechanisms which were selected for study were the coupled resonator filters, the corrugated waveguide filters, the higher mode resonance filters. and the absorptive type filters (1) based on directional couplers, (2) using ferrite materials and (3) using the leaky wall principle Each of the types considered can find successful applications, but the leaky wall absorptive type is the most promising for use in high power systems and, therefore, was studied at greater length. Each type of filter is described and the advantages and shortcomings of each are discussed. Measurement And Control of Harmonic And Spurious Microwave Energy, Vernon G. Price, Richard H. Stone, and John P. Rooney, Gencral Electric Microwave Lab., Palo Alto, Calif., March 10, 1959, 113 pp, Microfilm \$6.00, Photocopy \$18.30, Order PB 142935 from Library of Congress, Washington 25, D. C

Coaxial Capacitor Circuits

Capacitor circuits representing a transmission line and feeding coaxially into an arc chamber are described. Inductances of approximately 1.1×10^{-9} are obtained for the complete circuit which includes capacitor, termination, and arc gap. Current pulses within the proximity of $26,000 \mathrm{amp}$ with a pulse width of $18 \mathrm{~m} \mu \mathrm{sec}$ are reported; the current rise is $2.8 \times 10^{12} \mathrm{amp} / \mathrm{sec}$. The complete apparatus weighs as little as 11 g. Coaxial Capacitor Circuits With Extremely Small Inductance, Heinz Fischer, Air Force Cambridge Research Center, Bedford, Mass., May 1959, 15 pp., Microfilm \$2.40, Photocopy \$3.30. Order PB 142984 from Library of Congress, Washington 25, D.C.

The 40 liter/second Vaclono High Vacuum Pumpa, empher sized above, is just one of a great variety of Varian Vacion Pump sizes available from stock. These include $1 / 2,1,5,40$, $100,140,280,1000,3000,5000$ and 10,000 liter/second capacities. Other sizes available on custom order.
All these pumps give extremely clean vecuums to below $10^{-10} \mathrm{~mm} \mathrm{Hg}$, have no moving parts of fluids, and operate without attention or service.
The Vaclon High Vacuum Pump is a fully electronic device and is a Varian "First." Unique both in principle and advan. tages, it has been accepted as an efficient, reliable laboratory and production tool by incustries throughout the world.
A comprehensive brochure and metrnical date sheets are available A comprenensive brochurets Division

MAFIAN aeeoolates

PALO ALTO 21, CALIPORNIA

NIKE HERCULES

With deadly accuracy the U.S. Army's new Nike Hercules ground-to-air guided missile streaks out to meet an approaching enemy air force. Its nuclear warhead can wipe out an entire formation.

Western Electric selected Teflon* insulated wire for use in building the alert guidance and control systems of this faster, higher climbing Nike.
As leading specialists in high temperature insulated wires and cables, the men and women at Hitemp are proud of this choice, and the role Teflon wiring plays in giving America a strong new perimeter of defense.

HITEMP WIRES, INC.

A 1200 SHAMES DRIVE, WESTBURY, NEW YORK

"Du Pont's trade name forTetrafluoroethylene
Visit our booth number 4213 IRE Show, Now York Cify. CIRCIE 761 ON READER-SERVICE CARD

7

Stop Feeling Sorry For Yourself

Dear Sir:
Your story of the Opinion Research Corpora tion survey among 620 engineers and scientist ($E D$, Nov. 25, 1959, pl81) interested me greatl? The complaints put forth are not unique, but rather reflect a view which is nearly universal among corporate personnel. Whether one suh). scribes to the engineers' theories or those of management usually depends on which side of the question he is located. I happen to hold opinions which place me somewhere in between the majority viewpoints you express.

Let us analyze the situation more deeply. As in the old parable of the dog with the bone most of us tend to feel that the other fellow's reward is somewhat greater than ours. This is not necessarily true, but the individual's ego is assuaged if he feels that the sole reason which prevents his financial advancement is the peculiar salary policies of his emplover. It is an attempt to fool one's self by placing the blame on the broad shoulders of the corporation rather than at a personal doorstep. Many of us play this little confidence game with ourselves.
One way to check the preceding statements is to check with friends who work for other companies. Ask them to reveal what they think you cam. Experience has taught that estimates from anch sources are universally high. They usually will be twenty to fifty per cent over the true figure. Everybody feels that the other fellow is better paid.
As to being hemmed in by corporate pressures, this is a specious argument. None of us are contained to the point of constriction. There are certain budgetary necessities of course, without which no business could function. There are reports to be written which are of inestimable value. The days of an Edison or a Ford, puttering around in a workshop and working out of a hat, are gone forever. Modern systems and projects are too vast for this antiquated type of approach. It is time engineers took themselves in hand and expressed a willingness to comply with the framework that management has prescribed.

Creativity is a word which is being bruited about quite frequently these days. In fact, the
isue of Electhonic Drsicis to which I refer has an article on this subject. Other magazines have t.aken up the cudgels and are declaiming loudly : ibout a lack of and a suppression of "creativity". Yost of the articles consist of an incomprehensihe goggledygook of psychological double talk. Vitural and true creativity always comes to the unface regardless of the circumstances.
I will agree that knowing the right person is of definite help in stepping out of technical and into management work. I know of one corporation which is now headed by the son of the previous president. According to the publicity on this indiidlual, his grades were "average" in college. This company has a policy which maintains that its hirelings mast have been "superior" in academic standing. This man is president of the company, yet lacks the qualifications held mandatory for the lowliest trainee.
I saw another example on television. Groucho Marx was interviewing a man who was a vicepresident of a large corporation. By coincidence, his name was a part of the company title, and further questioning elicited the information that his father was president and founder of the organization.
Groucho asked, "Do you think your family has anything to do with your being a vice-president?"
The man replied, "Positively not! I started at the bottom and worked up to this position."
The oddity is that this man imparted an aura of sincerity. In his mid-thirties at the time, he scemed to have deceived himself to the point where he actually believed that merit alone prompted his advancement. I was hoping that Croucho would ask how many other thirty-yearold vice-presidents existed in his company, but the interview was terminated at this point.

It is natural for management to feel that ability alone is responsible for their aggrandisement. To admit otherwise would be an admission of complicity by them. It is also natural for engineers to feel that connections, both family and social, are a concomitant part of advancement because they have seen many such cases.

However, two things have been neglected in the report. One is that there are many people totally without connection who do manage to set ahead. The second is the great factor of luck which is sometimes involved. There are many persons who were, by chance, transferred into a icpartment which suddenly started to expand. lieing there first, they naturally had preference "hen new managers were appointed.
There seem to be three rules in getting a promotion. One is to choose your parents carefully and only mix with those people who can be of lelp to you. Two is to possess a super ability hich cannot remain hidden under any circumfance. Three is to be in the right place at the
wary
watchman for

This giant early warning "watchman" is a prototype model-designed and built by Goodyear Aireraft under contract to the Radio Corporation of America for the U.S. Air Force. The project: BMEWS Ballistic Missile Early Warning System. You get some idea of the size and capatbility of the Goodyear Aircraft components when you consider these facts:
-The concave tracking "dish" and rotating components weigh more than 200,000 pounds, get it rotates and maneusers with fluid ease and perfect babance
-The supporting pedestal is three stories high, structured for the immense load it must carry, yet it is one of the most accurate mechanisms of its type ever made. -The 140 -foot-diameter radome can with-
stand gale-force winds and arctic storms, yet it offers almost complete electromagnetic tramsparency and requires no internal framework.
These achievements stem from Goodyear Aircraft's long experience in radar and radome design, development, fabrication and testing. Such experience provides an invaluable background for virtually any radar system assignment-from farseeing radar structures of unprecedented accuracy to massive radomes of advanced architecture.
Where can this experience solve t problem for you? WRITE for complete information 10 :

Goodyear Aircraft Corporation,
Dept. 916 TN , Akron 15, Ohio

CIRCLE 762 ON READER-SERVICE CARD
ILECTRONIC DESIGN • February 17, 1960
 EXPANDED SCALE METER RELAY
that is 4 to 10 times more accurate and reliable . . .
Accuracy $\pm 1 / 2 \%$ of center scale
$10,000,000$ make break cycles, with 100% perfect contact
Eliminates problem of load isolation in measuring circuits
Low current and voltage inputs required
Many additional advantages . . get complete details from either firm.

[^2] CIRCLE 763 ON READER-SERVICE CARO

LETTERS

right time. All three are factors in professional and managerial advancement.

A great deal of the discontent noted in your article is the fault of the engineer himself. He seems to shine forth as a misanthropic, self-pitying clod. Of those interviewed, four-fifths felt underpaid, three-fourths felt hemmed in, and two-thirds felt that connections were in direct relation to success. The only one of these that I find valid is number three, and in that case, it is a partial agreement.
Engineers! Stop feeling sorry for yourselves! Pitch in, co-operate, meet management halfway and you'll be surprised at the joys and pleasures life can hold. A happy outlook makes a happy person.

Frederick J. Rex, Jr. North Reading, Mass.

Flow Graph Analysis Clarified

Dear Sir:
My article, "Visual Engineering Mathematics," has stirred a lot of interest, judging by the number of requests for copies that I've received. A question which is often asked is how to evaluate the "Path x E non-touching loops" in a complicated flow graph. The full procedure is as follows:

1. Write down the product of all the transmittances in the path concerned.
2. Erase the path from the flow graph.
3. Erase any loops that touch the path.
4. Regard what is left as a new flow graph and find the sum of the loops in the usual way.

The product of 1 and 4 gives the required answer.
T. R. Nisbet Lockheed Aircraft Corp. Palo Alto, Calif.

Inside-Out Twin-T Described In Dual-Input Parallel-T Report

Dear Sir:
In a recent article in Electhonic Design ("In-side-Out Twin-T Varies Rejection Frequency," Oct. 14, 1959, p198), it is noted that a familiarity with the literature is strongly implied in the second paragraph.

I have enclosed copies of Naval Research Laboratory Report 4011 and reprints of the Proceedings of the National Electronics Conference,

E.M.I. MULTIPLIER PHOTOTUBES

For scintillation counters, spectro photometry, flying spot scanning. The range of phototubes made b E.M.I. is one of the largest in the world. It includes end-window types of 1° to 15° diameter. with S10, S1 S13 and S20 cathodes, with 10 to dynodes of venetian blind type or boxand gr dor focused construction Tubes for $\mathrm{C}^{\text {(}}$ and H^{\top} Scintillatio counting. also very low dark-curren types, are an E.M.I. speciality. Tubes can also be produced special order

FULL DETALS
OF ALL TYPES FROM:

CIRCLE 764 ON READER-SERVICE CAII ELECTRONIC DESIGN • February 17, 1960
$1: 52$ article "The Dual-Input Parallel-T Network" by the undersigned and Mr. Kenneth A. Morgan. Charles F. White, Consultant,
Equipment Research Branch, Radar Division U.S. Naval Research Laboratory,

Washington 25, D.C.

- In one step of developing the dual-input par-allel-T network, a circuit identical to the one described by Mr. Howden in the referenced article was analyzed, Fig. 1. This circuit was then incorporated as part of the dual-input parallel-T network, Fig. 2.

Fig. 1. An inside-out twin-T circuit was analyzed as part of an NRL program.

Fig. 2. Putting a conventional T and the inverted T together yielded the dual-input parallel T.

Don't Give Up the Project

Dear Sir:
I have been giving a bit of thought recently to one of the problems which I believe affects the security and progress of our country; namely. a project which is prematurely abandoned by individuals who are responsible for its successful completion.
There are the usual reasons given for leaving an incomplete project such as uninteresting work, visatisfactory conditions, insufficient salary, better -prospects and so forth. However, one should give onsiderable thought before leaving an undone project. I refer in particular to the military project. There are many project engineers of military ${ }^{\text {E }}$ [uipment who need to adopt a more positive

Electonic Products NEWS by carborundum

GLOBAR* Silicon Carbide Varistors create unique percussive effects in electronic organ

In the well known Thomas electronic organ, globar silicon carbide varistors perform a function as balanced modulators to produce instrumental percussive effects.

Clearly seen in the photo above, globar varistors are non-linear, voltage-sensitive resistors with the advantages of extreme ruggedness, small size and excellent performance characteristics. They are widely

CIRCLE 804 ON READER-SERVICE CARD

Motorola protects radic fube filaments

 with GLOBAR ${ }^{\text {© }}$ Thermistors

Motorola, Inc., protects the tube filaments of its table and clock radios, except for the low cost leader models, in a simple, inexpensive way. A globar silicon carbide thermistor is used in series with the tube filament string. Its negative temperature coefficient is utilized to limit the initial voltage surge during warm-up. Motorola expects tube life
employed for reducing arcing at relay contacts, suppression of RF interference, limiting voltage surges, back-voltage protection for diodes and transistors, and stabilization of rectifier circuits.

For types, ratings and other catalog data, write Globar Plant, Refractories Div., Dept. EDV-20, The Carborundum Co., Niagara Falls, New York.
Motorola profects radio fube filamonts
to be prolonged up to ten times. globar thermistors find many other applications where surge protection, time-delay operation, or temperature sensing and control are required. There is a wide range of sizes and ratings. Write: Globar Plant, Refractories Div., Dept. EDT-20, The Carborundum Co., Niagara Falls, N. Y.

CIRCLE 806 ON READER-SERVICE CARD

Vacuum-Tight High Voltage Connector poses ceramic-to-metal sealing problem

The connector shown above is designed to meet severe space limitations which necessitate maximum voltage protection with a minimum of ceramic insulation.
The 1552 alumina insulator has a metallized coating for corona protection. The housing is heavy stainless steel.
Making the insulator to the required close dimensional tolerances, accurately centering the electrode in the housing, and then providing a vacuum-tight seal, were some of the problems Carborundum had to solve. To add to the difrundum had to solve. To add to the difficulties, the center electrode had to be
a special high conductivity material to a special high conductivity material to
provide sufficient current capacity.
provide sufficient current capacity.
Ingenious methods had to be worked out to seal this high expansion material to the ceramic. The complete assembly is hydrostatically tested for vacuum tightness, and withstands an electrical test of 30,000 volts. For help on your sealing problems, write Latrobe Plant, Refractorics Div., Dept. EDS-20, Carborundum Co., Latrobe, Pa.

CIRCLE 805 ON READER-SERVICE CARD

LATEST INFORMATION ON KOVAR ${ }^{\circ}$ ALLOY

Kovar is the standard alloy for critical glass. to-metal sealing prob. lems. A comprehensive bulletin gives technical data and information on avail. ble forms, shapes and sizes. Write Latrobe Plant, Refractories Div., Dept. EDK-20. Carborundum Co., Latrobe, Pa.

CIRCLE 807 ON READER-SERVICE CARD

Heart of the Control System

"DIAMOND H" Relays

Look into the heart of the control system for a missile, a computer, a nuclear submarine, or a great many other critical applications. You.might be surprised how often you'll find "Diamond H" relays.
Unless, of course, you're one of the increasing number of engineers who've already selected "Diamond H " relays for a spot where they just have to work despite all sorts of adverse conditions.
Hart makes relays of three basic types: miniature, hermetically sealed, aircraft-missile relays (Series R / S); high speed, sensitive, polarized relays (Series P), and general purpose AC, DC relays (Series W).
Technical literature outlining the wide range of characteristics available with each type relay is yours for the asking. You'll find "Diamond H^{\prime} engineers uncommonly adept at working out a variation of the basic designs to meet your set of specific requirements.
Tell us your needs . . . by phone, wire or letter.

T] A PI manufacturing THE 工 1 COMPANY

210 Bartholomew Ave., Hartford 1, Conn. clircle 767 on reader-service card

LETTERS

attitude with regard to the completion of their projects.
Whether we like it or not, experience that we amass with respect to a project is not simply transferable to another replacement. One cannot, during the last two weeks convey that which required two years to accumulate. The result then of changing positions usually advances the delivery date and increases the cost of the equipment. This is very detrimental on a national scale, especially when competing with a country that may not have this problem because its citizens are not free to change their positions arbitrarily.

We must exercise self-discipline, a readiness to complete a job before transferring to another, even though it seems that we will be overlooking an opportunity. Gentlemen, there is no better recommendation than a previous job done well. You have a friendship of the company you leave and the respect of the one you join.
There are, of course, extenuating circumstances which occasionally compel one to leave a job unfinished. This is understandable. Our concern is with individuals who show no sense of responsibility for a project for which they are, in fact, responsible.
Every engineer is to some degree, responsible for his duties. Each one has, in addition to his technical contribution to the project, an ethical obligation to insure that his project will not suffer because of his untimely departure from it.
No one, it is said, is indispensible to anything or anyone. That may be true but practically considered, dispensability is usually coupled with wasted time, cost and effort.
Every man knows his importance to a particular assignment. Unless he can honestly say that his departure will not materially affect the project, or unless he feels that his presence on another project would be more important to his country's welfare, he should make every attempt to remain at his job until it is completed.

Alfred W. Zinn
Farrand Optical Company
New York, N. Y.

About Soldering Flat Cables

Dear Sir:
I have just finished reading the two articles "Making the Most of Flat Cables" in the Oct. 14

No more need to over-specifyl iel offers 10 case sizes-twice as many as other manufacturers

- Smaller sizes are available for most ratings.
- Low voltages (fo 3 WVDC)-both plain and etched foil.
- Exiremely close tolerances, down to $\pm 10 \%$ on plain foil if desired.
- Plain and etched $-55^{\circ} \mathrm{C} 1085^{\circ} \mathrm{C}$.

All electrical connections welded. Lead wires hove high resistance to stresses, bending. Cases fit fightly, for maximum vibration resistance, high reliability
Prompt service on special capacitors. Engineering service available for adapting standard capacitors or designing new ones 10 of miniature ands. electrolytic capacitors. electrolytic capacitors.
Write for bulletin 41858. International Electronic Industries, Inc., Box 9036-C, Nashville, Tennessee.
where reliability replaces probabilit! CIRCLE 768 ON READER-SERVICE CARD CIRCLE 768 ON READER-SERVICE CARD

MEASURING...

- Actual life span of your equipment?
- Consumption of rated life of critical equipment or components?
- Mean-time-to failure?

You can reduce the odds against failure by constant monitoring and timely replacebent of equipment approaching the end of ment
assured equipment approaching the end of application of the
GYAKTHERME
SUB-MINIATURE
ELAPSED TIME INDICATOR

11/6" 0.D. x $1^{15 / 16^{\prime \prime}} 30 Z$.

10,000 Hour Total Readout (Easily Read to Closest Hour) 400 CPS

Whether it's for reliability and life testing, design or system analysis, utilization studies or to continuously monitor and log critical equipment or components . . . when you incorporate the Waltham WT-1 in your plans, you add that "measure of reliability" so important for military acceptance.

The WT-1 meets MIL-E-5272A The WT-1 meets MIL-E-5272A
and is available "FROM STOCK" and is avallable
Write Now for Bulletin 5001!

MEMETHEAME unnのn

PRECISION INSTRUMENT COMPANY
Waltham 54, Massachusetts CIRCLE 769 ON READER-SERVICE CARD
LECTRONIC DESIGN • February 17, 1960

This phase-locked oscillator transfers the accuracy and stability of a VHF driver into the microwave region, giving continuous coverage.
You can drive the unit with Gertsch frequency meters FM-3, FM.6, or FM-7. Fundamental frequency range is 500 to 1000 Mcs , with harmonic output to at least 30,000 Mcs.
Ideal for calibration of cavity wavemeters... for precise measurements, or as an ultra-stable frequency source. Unitized construction. Adaptable for rack mounting.

Complete data in Bulletin FM-4A.

GERTSCH PRODUCTS, Inc.

3211 South La Cienega Boulevard. Los Angeles 16. Calitornis UMOn O-2761 - VErmont 92201
CIRCLE 776 ON READER-SERVICE CARD

These accurate, sensitive instruments detect cur- For information on rents as small as 1×10^{-17} amperes; charges to Cary electrometers 6×10^{-16} coulombs, voltages as low as 20 microvolts. Cary Electrometers provide proven unequalled performance and versatility or measuring charging phenomena, hysteresis and photo effects of semi-conductors and insulating materials. Applications include air ionization studies, measuren endion nents of solids,
write for data file RP 17.9

APPLIED PHYSICS CORPORATION • 2724 South Peck Road. Monrovia, Calif. CIRCLE 770 ON READER-SERVICE CARD

-
 7 Questions That Can Shape Your Job Future

An Employment Counselor Tells How to Evaluate the Career Potential of an Electronics Company

Eugene B. Shea started in the employment business parttime while studying mechanical engineering at the University of Minnesota after World War 11 . He received his B.M.E. In 1949, and three years later joined Cadillac Assoclates, executive and professional placement service.

The 37 -year-old manager addresses his advice in this addresses his advice in this article to employes. But, off the record, he has some words for employers, too:
"The engineering shortage, particularly in electronics, is becoming more acute every day, Yet we still find com. panies using antiquated hiring techniques, including the promiscuous use of applica. tion blanks, preliminary interviews with junior personnel men and all of the many screening practices that were started during the depression of the Thirties. These are are
"I predict that if the eng neering shortage grows much more acute, engineers will soon have application blanks printed up and sent out to companies to complete, requesting information as to age of company, years in business, reputation in the industry, type of jobs avail able, salary levels, products of the company, etc."

DON'T accept a new job until you evaluate thoroughly the job potential of the concern you intend to join."
I have attempted to pound this simple axiom into the heads of hundreds of our engineering applicants, but from the unhappy mental state of so many that we encounter, the message still must not be "taking."

It is difficult to preach when you have been guilty of the same sins. I speak from bitter personal experience. I went through all the standard motivations after obtaining my engineering degree at the University of Minnesota.
Many new graduates-and even experienced men-make the same mistake every time in evaluating a job. I can't emphasize how serious this mistake can be for you. A false move can set your career back many years and deprive you of salary increases.
To evaluate a job, you must first evaluate the company. Far too many engineers negate their own scientific background by evaluating an opportunity solely in terms of salary, title, apparent prestige of the company name and opportunities for off-hour leisure. There are much more accurate methods of measurement. I recommend that my clients ask seven key questions, all designed to rate the company. Other questions may be added, but if you find favorable answers to most of these, you will at least be able to consider the next, more specific area, the job itself. Without
numerical order of merit, I suggest the follow. ing questions:

1. Is it a growing company? "Growing" has been much misused of late. Diversification doesn't always mean healthy growth. Expansion of a research department, sales or marketing staff frequently does. Is the opening you are applying for available as a result of seniority (because the man who had it 20 years has moved up), or are you to be part of a new section? If it is for the latter reason, you are on the right track.
2. How well-balanced is the company? Simply because a company makes a respected product or has a good engineering reputation doesn't mean that it is a good one to work for. A company may have the best engineering department in its field, but that engineering is useless if it has no marketing department to evaluate potential for a product or an inadequate sales division to sell it. Imbalance in any of these departments can mean problems for you if you decide to join a company
3. What are the salary and promotion policies of the company? I have indicated earlier how falicious it is to base your evaluation of a company solely on the basis of salary. The mistake most commonly made here is to place too high an emphasis on the starting salary, when what is most important is the salary curve. It might be a lower salary initially, but what is its progression? I can best illustrate this in terms of calculus and the following graph:

The curves represent salary potential. At point A you are changing jobs. Too many engineers are concerned with maximizing the ordinate (starting salary) rather than seeking the optimum ordinate and the maximum rate of slope of the curve. Ob viously a higher slope rate will increase the integral of the earning curve (maximum income during one's entire working career). In other words, it may be better to accept a lower beginning salary if you know that it offers a greater future. In our diagram your earnings will obviously be greater in the long run on job 2 even though job 1 offers a higher starting salary.
Certainly other elements are important, too. Are you assured of a salary and job review on a regular basis? How does the company compare in salary with other organizations? Aie there incentive programs? Bonus arrangements? How does the salary appear in relation to work load or responsibility?
4. What is the attitude of your potential associates and past employes toward the company? Talk to employes who are not concerned with your joining the company. Beneath the corporate gibberish you should be able to translate from remarks made by these men and those you will he directly working with the exact worth of the company to you.
Do these men reflect a distinct "company line?" This can be a depressing situation for an independent thinker. It frequently leads, too, to a lack of originality on the part of top management. No man wants to work as an automaton for a faceless corporation.
Seek out those who have left the concern. You'll have a harder time with them. You'll have is discount much of what they say, because they would not have left had they been satisfied with the company, but the research can be rewarding. !eneath this prejudiced view you can often gain valuable clues to the worth of a company. Try to separate verifiable facts from opinions.
Talk to competitors, not necessarily customers. his leads to the fifth question.
5. What is the demand for former employes

Build Your RADAR Career On This Solid Foundation!

The Weapons System Concept is one more step forward in a long series of "firsts" for the men who pioneered this field with the SCR-270, the first long range radar. In ground, shipboard and airborne radar, Westinghouse is the recognized leader in advanced programs and techniques. As Westinghouse builds new levels of accomplishment on this solid foundation, new career opportunities in radar development are created. Westinghouse-Baltimore invites inquiries from radar engineers with experience or interest in the following fields:

- Operations Research and Analysis - Data Processing
- Systems Development and Evaluation - Liaison and Field Engineering
- Transmitter and Receiver System Development
- Advanced Antenna Systems
- Molecular Electronics
- System Synchronization
- Advanced Displays and Monitoring
- Network Synthesis
- Microwave Systems
- Systems Reliability Prediction
- Advanced Systems Automated Test

SEND RESUME TO: Mr. A. M. Johnston, Dept. 233

> Westinghouse BALTIMORE
> P. O. Box 746

> Baltimore 3, Maryland
> AIR ARM - ELECTRONIC8 - ORDNANCE CIRCLE 900 ON CAREER INQUIRY FORM

ELECTRONIC DESIGN • February 17, 1960

Do

engineering to develop advanced antisubmarine warfare systems in conjunction with the Navy Department. Projects on tap for the future offer experiences just as challenging and rewarding-not only in ASW, but in Communications, Missiles, Airborne Radar and Data Processing Equipment as well.

men

who refuse to get lost in the crowd. Engineers with a yen for challenge . . . who intend to see their ideas put into motion, These are the special breed of determined, creative, thinking individuals who staff the government and industrial division of the Magnavox Company. And Magnavox needs more people like them . . .

To

fill present openings at the three Magnavox military and industrial plants. In Fort Wayne, Indiana, where families enjoy the good life of a growing Mid-Western community. In Urbana, Illinois, home of the University of Illinois which has one of the largest communications, physics and radar research centers. Or in America's largest electronic community, Los Angeles, California.
 FORT WAYNE, INDIANA
 CIRCLE 901 ON CAREER INQUIRY FORM

Advancement Your Goal?
 Use New Form To Speed Action

ELECTRONIC DESIGN's new Career Inquiry Service form is designed to help engineers advertise themselves. This new service speeds applicants to the jobs they seek. It is the first such service offered in the electronics field and is receiving high praise from personnel managers.
To present your qualifications immediately to the personnel managers of companies that interest you, simply fill in the attached standardized short resume.
Study the employment opportunity ads in this section, and circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN's Reader Service Department will act as your private secretary and type neat, duplicate copies of your standardized resume and send them to all companies you may select . . . the same day the resume is received. (ELECTRONIC DESIGN will detach the circle number portion of the form so that no company will know how many numbers you circled.)
The standardized resume will permit personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you directly. In the past much time hos been lost through personnel-manager requests for resumes from applicants who proved ineligible.

MAIL CAREER INQUIRY SERVICE FORM TO READER SERVICE, ELECTRONIC DESIGN, 830 THIRD AVE., NEW YORK 22, N. Y.

ELECTRONIC DESIGN CAREER INQUIRY SERVICE

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York N . Y. Our Reader Service Department will forward copies to the companies you select below
(Please print uith a soft pencil or type.)

Recent Special Training \qquad
\qquad

Employment History

| Company | City and State | Dales | Title | Engineering Specialty |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you
$\begin{array}{lllllllllllllllllllllllll}900 & 901 & 902 & 903 & 904 & 905 & 906 & 907 & 908 & 909 & 910 & 911 & 912 & 913 & 914 & 915 & 916 & 917 & 918 & 919 & 920 & 921 & 922 & 923 & 424 \\ 925 & 926 & 927 & 928 & 929 & 930 & 931 & 932 & 933 & 934 & 935 & 936 & 937 & 938 & 939 & 940 & 941 & 942 & 943 & 944 & 945 & 946 & 947 & 948 & 943\end{array}$

RADAR ENGINEERS and SCIENTISTS

MITRE

Is Intensifying Its Activities in the Design and Development of Adranced Radar Systems and Jechniques

Abstract

Engineers and scientists with the ability to pursue independent activity will appreciate the opportunities available with The MITRE Corporation. Formed under the sponsorship of the Massachusetts Institute of Technology it is the primary function of this non-profit organization to provide the required technical support in the area of air defense.

As this systems responsibility accelerates, broad new areas in the design and development of advanced radar systems and techniques are constantly being investigated. MITRE's goal is major advances in

RADAR TECHNIQUES

- Low Noise Devices
- Waveform Modulation Techaiques
- Signal Extraction Theory
- Network Theory
- Delay Line

RADAR DEVELOPMENT

- Electronic Circuir Design
- Microwave Components
- Anticlutter Devices
- Pulse Circuitry
- Antennas
- Semiconductor Circair Design

RADAR SYSTEMS

- Space Radars
- Surveillance and Tracking Systems
- Multistatic Systems
- Advanced System Studies
- Early Warning Studies
- Active-Passive Systems

If you have experience of an interest in one of the above areas. we invite vor to address iour inquiries in complete confidence to Dana N. Burdette Personnel Director, Dept. 19-MI

THE MITRE CORPORATION 244 Wood Street - Lexington 73, Massachusetts

YOUR CAREER

NEWS AND NOTES

A new era of competition for the electronc industry has been pictured by Kenneth F. J ilu president of the Leach Corp. and chairman n : Domestic Trade Committee of the Los Angeti Chamber of Commerce.
The challenge, he says, stems from a rayi changing technology: "already well-advance" under the impact of transition from manned at craft to unmanned missiles and space vehicies Both small and large companies will be affecter he adds
"Smaller companies which prospered becaus of almost unlimited opportunities. despite ofte questionable management, will find themselve confronted with competition, ruinous to miam from large. monolithic corporations." Mr.]ulut predicts
"The large companies, strong in potential ant facilities. will find themselves confronted with equally grave problems in production becaus they lack the inherent flexibility of smaller manw facturers."

It may take a decade the executive savs, befon large and small companies resolve the battle to survival "and learn that certain jobs can be per formed better by large producers and other join better by smaller. highly specialized and flexihi suppliers,"

Mr. Julin also sees narrowing profits for elea tronic manufacturers despite their receiving larger share of the defense dollar-possibly a much as 20 per cent larger. What will throtti profits chiefly, he says, is bristling competition in the face of rising costs. both for $R \& D$ and prow duction.

A little bit of frustration in getting promntion is healthy in an emplove. a University of Michigan study concludes.

The study. based on questionnaires given th more than $2(K K)$ employes of an electronics manu facturer. was conducted by Dr David Sirota a the university's Survey Research Center.

He found that moderate frustration in getting ahead was accompanied by better understandin of management philosopby; goals and operating procedures.

On the other hand, employes who were highirf frustrated with promotional chances had the least information about the company, while those win were well-satisfied had only a medium amount

National Courses

Establishing Long-Range Goals for R\&D, AMA, Feb. 15-17, New York

One of the most complex and important problems confronting industry is the establishment of long-range goals for research and development. This group will discuss the reasons for estahlishing goals and the factors underlying their selection. It is intended for company presidents, executive vice-presidents, vice-presidents-research. and directors of research. Among the subiects for discussion will be: relating specific R\&D goals to over-all company objectives, selection of product fields for concentration of the R\&D effort. development of long-range goals in specific areas of R\&D. use of commercial and market research to guide $R \& D$ planning, planning to meet the internal needs of the R $\&$ D organization, utilizing basic and applied research to achieve R\&D goals. general need for more basic research. dereloping a stated long-range policy for the research department. and the importance of two", y communications.

One-Day Seminars

Creative Engineering Course, IEI, February 23

This one-day seminar has been especially desigued for engineers and managers. It will combine formal instruction with informal discussion ari 1 case study. The presentation will be practi-

Belous ate coutses and scminsts in tended to provide the engineer arith a better knoveledge of various specialities. Our grouping includes sevcral different tuppes of mectings National Courses-those held on consecutive days and inisnded in drau atrendees from all geographical areas: One-Day Seminars-one-day intensive seminars which move from city to city: and Regional Lectures -regional symposia or lecture scrics which generally run one night a week for several weeks.

EI : CTRONIC DESIGN • February 17, 1960

Will tomorrow be a challenge (1) ...or a bore?

Site Systems Reliability Engineer: This position calls for a seasoned engineer capable of integrating and directing on-site reliability assurance activities necessary to secure customer acceptance of the detection system. Unusual combination of technical ability, relations and communications (written and spoken) is
required. Desirable experience includes approximately ten years in design and field installation of transmitters on electronic systems with ability in both electronic. and mechanical fields. Ability to motivate technicians for optimum performance is necessary. Salary structure is equal to the challenge.

2Radar Equipment Systems Specialist: This position calls for a creative engineer capable of conceiving and directing the design of long-range radar systems. Desirable experience includes around ten years in
at least one of the following: radar systems design, antenna systems, R.F. components, radar receiver systems or radar data processing systems. Salary structure is equal to the challenge.

3Advanced Systems Engineer: This position calls for a creative engineer capable of defining future defense and space detection problems as well as the ability to conceive and establish the feasibility of optimum systems solutions to these problems-making use of the most advanced techniques and understanding. He must recognize the need for and coordinate the development of new techniques and the exploration of
new phenomena in the area of detection systems. Background desired: Bachelor degree plus a combination of advanced training and several years experience in both the theoretical and practical aspects of detection systems engineering. A desire to work in the conceptual phase of system design with the analytical ability required to evaluate and demonotrate the effectiveness of proposed systems.

4Advanced Radar Systems Analysis and Development Engineer: Engineers are needed who are able to visualize and define future defense and space prob-lems-conceive advanced radar systems to solve them. An advanced degree and/or strong background in system analysis and design is essential. Assignments open
include: analyze and define requirements for advance detection systems and determine broader parameters for such systems, establish their feasibility: analyze long range missile detection systems and sperify optimum configuration on the basis of utility, performance, cost and delivery.

If you feel that your present job is not fully tapping your potential, here are 4 new career opporlunities for Electronics Engineers that have every bit of the challenge you may be looking for

All of these openings are on General

 Electric missile and satellite detection proiects and will be filled with engineers having the capability and desire to makeWrite in confidence to T. M Gearge.
Supervisor-Porsoanel Adminiarration

Missile Detection Systems Section HEAVY MILITARY ELECTRONICS BIPARTMANT

CIRCUIT DEVELOPMENT ENGINEER

your future: a challenging opportunity with an industry leader

At Texas Instruments, your future is filled with specific, stimulating growth assignments in evaluating and characterizing transistors and special semiconductor devices. You'll participate in such transistorization projects as:

```
-AM, FM, and TV recelvers
- audio and video, luf and r-l ampliflers
- hl-81 and eloctronic organs
- nonllinear and ewifching circult=
- computor syetom loglc
- servo and power ampliflers
```

With TI .: . receive liberal company-paid benefits, including profit sharing (over last several years, an average of more than 12\% of base salary)...enjoy premium living in a moderate climate with excellent neighborhoods, schools and shopping facilities . . . work in a plant selected as one of the 10 outstanding U. S. industrial buildings of 1958.

Intervien's will be held in your area soon. If you have an Electrical Engineering degree and/or knowledge of transistor circuitry, please send a resume to:

C. A. Besio, Dept. 200 -ED

Texas ${ }^{\circ}$
Instruments
INCORPORATED SENICONDUCTON- COMPONENTS DIVISION
POST OFFICE EOX 312 . DALLAS. TEXAS

CAREER COURSES

One-Day Seminars (Cont.)

cal and non-academic; it will concentrate on the problem of stimulating technical and supervisory people to use their creative facilities.
Only methods that have been proved successful will be discussed, and registrants will learn techniques that will help make them more creatively productive as individuals, as well as better able to obtain creative effort from others.

The seminar will be conducted by A. L. Simberg, Supervisor of R\&D. AC Spark Plug Div, General Motors Corp., Feb. 23, at the Atlanta Biltmore Hotel, Atlanta, Ga. Mr. Simberg is familiar to our readers as author of three articles on obstacles to creativity. For further information on this seminar and the following two write to the Industrial Education Institute, 25 Huntington Ave.. Bostnn 16. Mass.

Drafting and Design Conference, IEI, February 24-26
This conference presents an opportunity to learn the newest developments and techniques in drafting and design practices and the latest techniques for reducing costs and increasing output
Group discussions are expected to present the facts and the perspectives by which engineering operations can be made to function more effectively', efficiently and economically. The conference will be conducted by Don Fuller, Director of the Institute's Drafting and Design Div., Feb. 24-26 at the Hotel Pick-Carter, Cleveland, Ohio.

Technical Writing One-Day Seminar, IEI, March 8th, 9 th and 10 th

This seminar is designed for people whose jobs include writing on technical subjects. It offers an excellent opportunity to learn the basic principles and practical application of techniques that can help the writer put his ideas on paper easier. faster and more clearly. The objective of the seminar is to give registrants a usable formula that will improve everything they write; a technique they can apply immediately to every job that involves writing on a technical subject.
Conducted by Robert Gunning, the one-day seminar will be held: March 8th, Hotel PickCarter, Cleveland, Ohio; March 9th, Hotel Sher-aton-Blackstone, Chicago, Ill.; March 10th, Hotel Sheraton-Gibson, Cincinnati, Ohio.

A Message to

Computer Engineers

Capable of Advanced Research and Development in

TRANSISTORIZED AIRBORNE DIGITAL COMPUTING SYSTEMS

Wide latitude is accorded the qualified individual team member at our Advanced Electronics Research and Development Laboratory. Under the direction of Dr. Arthur S. Robinson, a broad program of exploration is in progress in the development of new concepts in solid state airborne digital computers and digital control systems. This program is the logical extension of the Bendix developments which, in 1955, resulted in the first successful fully transistorized automatic flight control system.

If you find satisfaction in defining and solving advanced problems in computer technology, the work of this Laboratory has a great deal to offer. If you are currently qualified in one of the following areas..

Digifal Systems Synthesis High Speed Switching Logical Implementations Magnetic Memory

Pulse Techniques Input-Output Devices Transistorized Circuits Micro-Miniafurization

Logical Design
.we suggest that you send a brief resume of your experience and educational background to Dr. Robinson, or telephone Engineering Personnel at ATlas 8-2000 in New Jersey, or BRyant 9-8541 in New York.

ECLIPSEPIONEER DIVISION

AVIATION CORPORATION Route 46 at 17, Teterboro, New Jersey
(Located in suburban New Jersey, 10 minutes from New York City)

[^3]

Does it still hold its stimulating challenge? Are all oí your abilities being utlized? Have you gone far enough, fast eno gh? Today, Motorola's rapid expansion in the Chicago area has created an immediate need for experienced engirsering talent. Never before have secure career opportunitiss been arare abundant. challenging and rewarding-in a wide selection of elsctronic fields. A picture-packed 36 page booklet is waiting for you. It details the work, the people, the living at Motorola. If you are sincerely seeking broader career opportunities and responsioilities, investigate Motorola immediately.

- Rader rrensmitters a

- Radar circuit dosizn
- Military communications equipmont desien
- Pulse circuit design
- If strip design
- Device using kylstrom, trevoling wavo tribe
and bechward wave oscillates
- Display and storage devices

2-WAY RADIO COMMUNICATIONS

- VHF \& UHF roceiver
- Transmittor dosign and development
- Powor supply
- Systems anginooring
- Antonna design
- Selective signaling
- Tramartor apulicatio
- Cryata encineerin - Sales erginoerine
- Design is VHF \& UK. FM communiedions
in portoble ot subriniature developmont - Microwsvo fiold engineers
- Transistor switching circuil desiem
- Losic orevil design
- T.V. dr zuil daxign enaineering
- Mome radio design
- Now prsduct design
- Auto rasio desisn
- Sem ieranductor deari os

Som-ernarlor dovik a development

- Semi-cinductor applisetion werth

Also splondid opportunktes in
Phoenix Ariz., and Riverside, Calif.

Mr. L. B. Wrenn, Engineering Parsonnal Mgr., Dest. E 4501 Augusta Blvd., Chicago 51, Illinois

Without obligation, send copy of

```
"Solecting an Englncering Carcor with a Futuro"
```

NAME
ADDRESS
\qquad
CITY.
ZONE STATE

Look beyond the obvious...

. . . as you consider your future in the electronics industry. First, what is the obvious? It's obvious that you're in demand. You don't have to worly about getting your material wants satisfied.

But, when you look beyond the obvious, you realize that you want something more than simple "want satisfaction" out of your carcer. You want pride-pride in the importance of your personal, individual contribution.

At Melpar, where we are now working on 120 advanced defense and space exploration projects, we have significant opportunities for the professional engineer or scientist who wants to be proud of his contribution to advancing the state of electronic art.

Senior-level positions are available in the following areas of this time:

Reconnaissance Systems
Airborne Equipment
Ground Data Handling Equipment Simulation \& Training Systems
Communication \& Navigation Systems
Ground Support Equipment

Detection \& Identification Systems Antenna \& Radiation Systems Physical Sciences Laboratory Production Engineering
Quality Control
Field Service Engineering
interviews arranged in your locale

For details uire collect or urite to:
Professional Employment Supervisor

MELPAR $\overline{\overline{\bar{N}}} \mathbf{I}$ inc.

A subsidiary of westinghouse alr brake company
3324 Arlington Boulevard, Falls Church, Virginia
In Historic Fairfax County
10 miles from Washington, D. C.
CIRCLE 908 ON CAREER INQUIRY FORM

CAREER COURSES
 PAPER DEADLINES

Convention Prograin Chairmen have issued the following deadlines to authors wishing to have their papers considered for presentation.

new openings in Florida with Vitro

Vitro Laboratories' Florida operation, Vitro Weapons Services, is rapidly expanding its technical staff to operate the nation's newest missile test range, the EGLIN Gilaf TeSt range.

High level supervisory and staff opportunities xist at five Florida ocations: 1. Fort Wal on Beach: 2. Port St. Joe; 3. Tarpon Springs 4. Naples and 5. Ke:

April 1: Deadline for 150 -word abstracts for the 7th Annual Symposium on Computers and Data Processing scheduled for July 28-29 in Estes Park, Colo. Papers should deal with components and devices, logic design, and philosophy of computer design. Send to: W. H. Eichelberger, Denver Research Institute, University of Denver, Denver 10, Colo.

May 1: Deadline for 100-200-word abstracts, together with complete text or detailed summaries for the 1960 Western Electronic Show and Convention scheduled for Aug. 23-26 in Los Angeles, Calif. Send to: Richard G. Leitner, Chairman of the Technical Program, WESCON Business Office, 14.35 S. La Cienega Blvd., Los Angeles 35, Calif.

May 16: Deadline for summaries of papers for the 8th Hot Laboratory and Equipment Conference to be held simultaneously with the American Nuclear Society winter meeting scheduled for Dec. 11-14 in San Francisco, Calif. Papers may deal with all phases of hot laboratories and equipment for handling radioactive material; such as, design and construction of facilities and equipment, dry boxes, manipulators, shielding, operations, costs, etc. Write to James R. Lilienthal, Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, N.Mex., for information regarding the form in which the summaries are to be prepared. Accepted papers will be due Sept. 1, 1960.

ElecthoniC ENGineems - with degree(s) and several years experience in Automatic Tracking Radar. Electronic Instrumentation, Phase Comparison Space Positioning Systems, Data Recording and Conversion. Tele Instrumentation. Rang
radar Technicians -
with training and ex-
perience in one or more
of the following radar
systems: MSQ-1. MSQ
1A, FPS-16, Nike, M-
33. MPS-9. SCR-584 CPS-6, FPS-3 and FPS-20.

Electronic TeciniCIANS - with a solid hackground in elec. ronics and several vears experience in Telemetry. Data Con verters, Oscillograph Recorders or Range
Electronic InsitrumentaElectr
tion.

For your opportunity to relocate in Florida with an electronics industry leader, address a confidential resume to D. D. Cox, Personnel Director Vitro Weapons Services, 119 East Main Street. Fort Walton Beach Florida, Dept. ED.
division of vitro corporation of america Other laboratories at West Orange, N. J.

CIRCLE 909 ON CAREER INQUIRY FORM ELECTRONIC DESIGN • February 17, 1960

PAGES
MISSING
ARE NOT
AVAILABLE

CONSIDERING A CAREER CHANGE?

WHY NOT GROW WITH ELECTRONIC DESIGN?

Expansion of our news department has created openings for men to cover news in the electronic industries.
ts rews-reporter for ED you would
interblew experts in all phases of eiectromis
report on industry trends of of signuricante to design engineers.
pust readers on latest electronic tininking gathered from technical conferences and plant visits

Ii vou ate a "news hawk." if vou like to know what is going on th the insurty, and if you know electronics. you might very well be qualified for one of the staff openings in lew Yoris and Chicago.

Solany apen.

Send comaiete resume to
Esward E. Grozdo, Efitor
EEETRONIC DESIGM
Woyden Rublishing Co. Inc
830 Third Avenue
Mew York 22. New York

Extending existing moxulation systems to make more space available in the spectrum, and possibly even broadening the useful spectrum ... this is a fundamental problem in modern communications. It is the problem to which TTI Laboratories is devoting intensive effort.
At the low end we're designing a new type antenna for very low frequencies. With a conventional antenna this would require a tower more than three miles tall. On the top side - at the high end we're making radiation pattern surveys for the super high frequency bands. Here the entire antenna consists of a few millimeters of number eighteen copper wire. We're matching these efforts with advances in componentry . . . for instance, the parametric amplifier and now the ingenious ferroelectric converter which converts solar heat to high voltage
electricity to power new satellite communications. If you are a communications engineer who would like to be associated with some of the most significant programs in modern communications development . . . if you would like to work with men who are stretching the spectrum toward direct current at the bottom and the cosmic rays at the top write Manager Professional Staff Relations tell him your interests, your background and the hind of work you would like.

ITT LABORATORIES
A Duswon of Imernatumal Telephone and Telentaph (whoration

Sol Washongton Avenuc, Nutley, New Jersey Furi B ar ine, Indiuna - Palio Allor unid San Fernandes, California

FREE
 Monthly Electronics Opportunities Bulletin

Shows where you could be in the electronics field

CADILLAC. for thirty years the nation's largest Executive and Professional Placement Service, represents every "Blue Book" Electronies firm in America, over 350 in all. Their BEST jobs, at salaries from $\$ 6,000$ to $\$ 75,000$, appear monthly in our Electronics Opportunities Bullotin. Because you are an Electronics Engineer, BOTH the Bullotin and our COMPLETELY CONFIDENTIAL Placoment service are available to you absolutely FREE OF CHARGE.
For your free Bulletin, each month listing America's BEST Electronic jobs, send your name and address to:

EUGENE B. SHEA
Exocutive Vice Prasident

Cadillac

Associates, Inc.
29 East Madison Bldg.-Depf. E-2
Chicago 2 , III.

CIRCLE 916 ON CAREER INQUIRY FORM

you can help FIGHT CRIPPLING
Rehabilitation of the crippled is not accomplished in a day, a week or a month. It is a constant team process bringing together skills of medical science, abilities of therapists, under-tanding and guidance of other professional specialists and capable lay workers.
Moreover, it is a team that needs you. Since 1921 the Easter Seal program has been one of expansion in facilities and in numbers served because thousands of generous Americans recognized that through this all-inclusive teamwork, the handicapped have found a fuller, richer life.

Become a team member by sending your check TOD.AY.

National Society
for Crippled Children and Adults 2023 W. Ogden Ave., Chicago 12, III.

CAREER
OPPORTUNITIES BROCHURES

McDonnell Aircraft Corporation
"Introducing . . . McDonnell Aircraft Corporation" is a comprehensive 32-page illustrated brochure. McDonnell's widely diversified projects range from pure theoretical space studies to the practical design and final testing of all elements of airplane, helicopter, and missile systems.
Detailed discussions on the following divisions include: airplane engineering, missile engineering, helicopter engineering, general engineering, flight test, research, manufacturing and customer service.
Raymond F. Kaletta, Supervisor, Engineering Employment, McDonnell Aircraft Corp., Dept. ED, P. O. Box 516, St. Louis 66, Mo.
circle 870 on reader-service card

American Bosch Arma Corporation

In this 12-page brochure, the American Bosch Corp., introduces its four divisions located in Garden City, N.l., ()ak Lawn, Ill., Springfield, Mass., and Columbus, Miss.

Among its many activities the corporation designs, develops, and manufactures systems for the military, which include guidance, control, navigation, penetration, and detection. These integrated electronic systems combine the advanced arts of electronic, electro-mechanical, mechanical, and hydraulic engineering.
Howard G. Krogstad, American Bosch Arma Corp., Dept. ED, 7046 Hollywood Blvd., Hollywood, Calif.

CIRCLE 871 on reader-Service card

PAGES
MISSING
ARE NOT
AVAILABLE

[^0]: ${ }^{\circ}$ One of the early uses of reactance-coupled impedance transformers was disclosed by K. S. Johnson in his 1927 patent, No. 1628983.

[^1]: CIRCLE IUO ON READER-SERVICE CARO

[^2]: ASSEMBLY PRODUCTS, INC. Chesterland, Ohio
 VOLTRON PRODUCTS, INC. 1020 S. Arroyo Phuy., Pasadena, C'al.

[^3]: CIRCLE 906 ON CAREER INQUIRY FORM

