

For lasting dependability, specify...

EPON RESINS

When you are looking for outstanding reliability, even under severe operating conditions, you can count on Epon resins to give you the excellent electrical and mechanical performance you require.
For example-Epon resins have truly amazing adhesive qualities-form strong bonds to metal, glass, and plastic. They assure air-tight, moisture-tight enclosure for delicate components and vacuum tubes. Even when exposed to solder-bath temperatures, Epon resins retain their dimensional stability.
Epon resin-based insulating varnishes and potting compounds, in addition to prov iding
excellent moisture sealing, have outstanding resistance to attack by solvents and chemicals, even at high temperatures.
When reinforced with inert fibrous filler. Epon resins produce base laminates of superior dielectric properties that can be sheared. punched, drilled, and bath-soldered.

Solvent-free Epon resin adhesive formulations require contact pressure alone and cure at room temperature, or with low heat for accelerated curing.

Will Epon resins solve a production problem for you? For a list of resin formulators and technical literature write to:

POTTING

SEALING
ENCAPSULATING

LAMINATING

ELECTRONIC

COVER: Digital readout, joystick po sitioning, and electronic switching in X, Y, and Z axes are just a few of the features of this new oscilloscope. On the cover, our artist has shown his impres sion of the movement of the indexing and scaling dots, set up for digital read out of the waveform amplitude.

Selected Topics

 In This Issue
Systems

Threats to Reliability p 24
RFI Developments p 26
Techniques ior Measuring ...p 127

Materials

Selecting Shielding Materials p 48

Design

Reducing RFI in Design Stage p 38 How to Trouble-Shoo

Conveniently
p 44 Servo Offsets Tape Distortion p 58 Meter Relays Protect TWT's . . p 118

Instruments, Components

Control Regulates
Motor Speed
Digital Readout Scope p 56

Computers

Linking Computer Networks ...p 4

Semiconductors, Circuits
Tunnel Diode Circuits p 50
Pulse Decoding Multivibrator p 116
Tuned Transistor Amplifiers .. p 130

RFI-Peril to Progress

formerly scorned as a minor imperfect on, radio frequency interference (RFI) now looms as a major peril to electronic progress. Because of the dislurbances that result from interference, on impasse has been reached in the avest for higher sensitivity and greater reliability. The question many design engineers are now asking is, "How can RFI be effectively eliminated?"
Aware of the urgency of the problem, ELECTRONIC DESIGN is pleased to present a revealing Special Report on the subject. Howard Bierman, after conlocting experts in various phases of inlerference work, has organized their findings into a series of articles dealing with the latest developments made in the field. Beginning in this issue, developments in the critical areas of defign precautions, trouble-shooting, and measurement techniques are presented jnd discussed in detail. The series will continue in subsequent issues.

Selected Topics In This Issue (Cont.)

hicrowaves

FI) Jevelopments in Radar p p 26 Magnetron Packs 25 kw into
$2 \mu \mathrm{sec}$ Pulse
usec Pulse p 11 Crculator With Low
Insertion Loss p 17

At Macarr Inc....

After trying several other time delay devices in their automatic control equipment for carbon arc lamps, design engineers at Macarr Inc. turned to G-V Red/Line Timing Relays. By holding in a current limiting resistor in the circuit until the arc had struck, the Red/Line Relay provides complete continuity of operation and lengthens the life of the DC power supply feeding the carbon arc. As an added advantage, it also facilitates smooth, soft starting of the carbon arc. So, at Macarr, the high quality of G-V Red/Line Timing Relays is "paying off".

More and more companies are finding the reliable performance of G-V Red/Linestiming Relays makes them best for their products. G-V Red/Line Relays will "pay off" in your product, too. Your customers appreciate the importance of high quality, reliable components. G-V Red/Line Timing Relays are specially designed for industrial applications. They have the precision, reliability and long life needed to "pay off" in industrial use.
Your G-V distributor has them in stock now. Call him or write for Bulletin 131 today.

G-V CONTROLS INC. Livingston, New Jersey

> HOW WELDMATIC WELDING BEATS HEAT DAMAGE TO COMPONENTS...STOPS REJECTS! Case in point: Bourns TRIMPOT ${ }^{\circledR}$ potentiometers

Weldmatic welding means precise, controlled-heat welding. Each weld is made with a millisecond pulse of stored energy. No chance for heat to affect dimensions, temper, or temperature coefficient of materials. No danger of weak, "cold", or high-resistance joints, either. Weldmatic welding is the modern method of electronic assembly - used by hundreds of famous firms. Take Bourns Labora tories, for example:

This beryllium-copper clip must exert a constant pressure against the potentiometer element. Too much heat in attaching, the lead to it would destroy the spring temper, impair the accuracy of the instru. ment. Weldmatic's millisec. ond welding pulse solves the heat problem completely.

Dimensions of this Ushaped platinum-pal ladium contact bar are critical. Too much heat would warp the .003-inch-thin bar out of shape. How to attach the lead to it? Weldmatic is the solution the only solution.

This finely wound resist ance element is the heart of the potentiometer. In attaching leads to it, care must be taken not to apply extreme heat over too long a period - the temperature coefficient of the resistance wire might change. Safest solution: Weldmatic instantaneous welds.

Weldmatic precision welding cuts rejects, maintains accuracy, boosts reliability. It's faster, more economical, too. Often, it's the only way. Write today for further information.

WELDMATICDIVISION OF UNITEK CORPORATION 263 North Halstead Avenue - Pasadena, California SALES ENGINEERING REPRESENTATIVES IN PRINCIPAL CITIES 2

CONTENTS FOR FEBRUARY 3, 1960 VOL. 8 NUMBER
U. S. Must Demand Radio-Frequency Interference Control An Editorial

Radio Frequency Interference-An ELECTRONIC DESIGN Staff Report during initial design.

RFI—An Up-To-Date Survey G. C. Vallender

RFI Check-List early design stage-L. W. Thomas

Interference Trouble-Shooting With Clamp-On Devices

 injectors-T. H. HerringOptimum Shielding Of Equipments Enclosures

Designing With Tunnel Diode: Part 1 diodes-U. S. Davidsohn, Y. C. Hwang, G. B. Ober

Digital Readout Scope
A $35-\mathrm{mc}$ oscilloscope has three-digit readout of voltage and time

Worried About Tape Stretching?

Capstan-speed servo offsets distortions
Miniaturized Control Regulates DC Motor's Speed To
Accuracy Of 0.1 Per Cent is explained

ELECTRONIC DESIGN News

解

Wayp 4
Direct View Battery TV Due ..p 10
Electronic Sales Reach
$\$ 9.2$ Billion
$\begin{aligned} & \$ 9.2 \text { Bilionp } \\ & \text { U.S. Leads In Semiconduction ..p } 10\end{aligned}$

SPECIAL REPORT

Radio frequency interference, RFI, poses a serious threat to equipment and system reliability. Major steps are being taken to control RFI by consideration

A thorough coverage of RFI developments in communication and radar systems, measurement techniques and components-R. B. Schulz, H. M. Sachs,

Over 50 points to remember to reduce RFI where it does the most good-in the

How to trouble-shoot wire-coupled interference in complex electronic installations conveniently, without cutting cables, by using clamp-on ammeters and

How to select shielding materials and determine their effectiveness-A. L. Albin

A thorough, practical discussion of how to design working circuits using tunnel

The operation of this new control, which uses a reference frequency generator

Radar With 0.02 -musec Pulse So Sharp It Tracks Peoplep 11 A $\$ 100$ Citizens' Transceiverp 12 News Briefsp 14 Galeium Arsenide Tunnel Diodep 14

ELECTRONIC DESIGN • February 3, 1960
Ideas for Design
Modified One-Shot Multi Acts Square-Loop Core For Short As Pulse Decoderp 116 Circuit Protection p 116Meter Relays Protect TWT'sp 118
Russian Translations 124
Cascaded Reflex Voltmeter Yields High Input Z ,
Wide Range
Technique For Measuring Phase And Amplitude in Control Systemsp 127
German Abstracts 130
Tuned Transistor Amplifiers p 130
ELECTRONIC DESIGN Digest 132
Spurious RF Emissions Predicted From Output Stage Analysis p 132
Washington Report 18
Meetings 20
New Products 62
Services For Designers 104
New Literature 106
Patents 120
Books 122
Report Briefs 138
Your Career 140
Career Brochures 146
Advertisers' Index 150

Coming in the Next Issue

Paul Wrablica, industrial designer, begins a series of articles dealing with the introduction of human factor engineering in industry. No longer concerned with product appearance alone, industrial designers are focusing on the need to modify equipment to more functional styling. At the same time, serious consideration must be given to the human operator who will work with the product. Meet Paul Wrablica in our next issue and follow him through a series of articles in which he describes this fresh approach to knobs, panels, housings, and other electronic components.

HEE RONIC DESIGN in published bi-weokly by Hayden Publishing Compony, Inc., 830 Third Avenuo. Now York 22, N. Y., 7. R:hord Gascoigno, Prosidents Jamee S. Mulhollond, Jr., Vice-Prosidem \& Troasuror., Printed of Hildreth Pros, Bristol, Conn Accepled as controllod circulation at Bristol, Conn. Additional ontry, New York, N. Y. Copyright 1960 Hoyden obll ting Compony, Inc., 34,058 copies this issuo.

Engineering notes from the

REPORTER

By STANLEY M. INGERSOLL, Capabilities Engineer

Report No. 1 Pressure Switch

A new advance in pressure switching is embodied in our TR 2065. Through the use of solid state switching circuits*, SMI has developed a pressure switch which is extremely accurate and highly reliable. This new unit supplies a switch closure or opening on either an increasing or decreasing pressure and is ideally suited to applications where severe environments of temperature, vibration and shock are encountered.
For example, exhaustive tests of a 500 PSI unit have shown that it will For example, exhaustive tests of a 500 PSI unit have shown that it will
not chatter when subjected to 50 G's vibration when the pressure input is only 0.2% away from the switch point.
Essentially the TR 2065 is an SMI Bourdon Tube Pressure Transducer Essentially the TR 2065 is an SMI Bourdon Tube Pressure Transducer
coupled with unique solid state switching circuits. The result is a pressure switch which is friction free and contains no moving parts in contact.

Principles of Operation As switching pressure is applied to the interior of the helically twisted Bourdon Tube, the tube rotates the armature attached to its end. The armature is positioned in a miniature, balanced, inductive bridge. A solid state electronic circuit receives the signal from the bridge and periorms an extremely reliable switching
function using minute amounts of energy, due to the elimination of fricfunction using minute amounts of energy,
tion and the minimizing of inertial forces.
Additional switch points may be added to the TR 2065 without adding more pressure sensing elements. Thus, as the number of operations increases, the size, weight and cost per switching point decreases.

What are your needs? If your immediate or future applications call for pressure switching, write or wire for complete information. cald for pressure switching, write or wire for complete information.
Address your inquiry to Stanley M. Ingersoll, Capabilities Engineer.

-Patent applied for

SERVOMECHANISMS, INC.
Los Angoles Division
12500 Aviatlon Boulovard Hawthorne, Callfornia

Computer Networks Are on the Way

How two types of elements are connected in Thompson Ramo-Wool. dridge's polymorphic computer. At left are control modules and buffer modules. These connect with subordinate drum modules, peripheral buffers, display buffers, printers, plotters, and tape modules. If require, other computer elements can be similarly connected-high. speed buffers, Flexowriters, analysis consoles and control consoles.

DATA-PROCESSING scientists are wondering whether it's time to take a "system" look at current computing needs. Sometime soon, they reason, computers will have to be teamed to keep capacity abreast of increasing demands for data processing.
Computers and translators linked in a network could handle more work more efficiently and economically than the same equipment operating independently.

Some of the first steps toward computer networks have been taken: data-processing centers are in operation and more are being organized; digital computers have been linked by microwave radio, and the first "polymorphic" computer is nearing completion.

The polymorph, being developed by Thompson Ramo-Wooldridge, Inc., is made of many small modules of a few basic types that can organize themselves in different ways to do different jobs.

The first of these systems, the RW-400, is being built for the military at Dr. Simon Ramos's Intellectronics Laboratory, Canoga Park, Calif.
It has two kinds of controlling elements: digital computer and a buffer module. These are connected by a central "switchboard" to drum modules, peripheral buffers, display buffers, printers, plotters, tape modules, translating devices, high-speed buffers, Flexowriters, analysis consoles and control consoles.
more more and
more guys have
 problems to solve...

But as the number of guys and the number of problems increase, the machine gets huge-and .. .

The polymorphic computer being built for the military can transmit 13 information bits, one parity bit and three status bits to and from each control element and each subordinate element.

The switchboard is a transfluxor matrix capable of $5-\mu \mathrm{sec}$ switching. Through the switchboard, controlling elements-those with "dials" on their "telephones"-can talk to any subordinate component.
The central exchange matrix is not a bus bar: the computer doesn't have to "talk" to many different devices simultaneously. It needs only to communicate with one line, and there can be as many simultaneous conversations as there are

SYLVANIA MICROWAVE DIODES utilize the point-contact structure in those units specifically for MIXER and DETECTOR service, and the MESA structure in the VARACTOR types. Advanced processes and techniques developed by SYLVANIA assure MICRO. WAVE DIODES capable of withstanding the most severe environmental conditions of shock, vibration, and tem. perature. Extraordinary quality-controls assure low-noise figures, high sensitivity and high Q in units where those characteristics are essential to equip. ment design.

If you are designing radar, countermeasure, missile control, TV or telephone relay, test or special-purpose equipment operating at microwave frequencies, send now for your copy of "SYLVANIA MICROWAVE CHARACTERISTICS AND REPLACEMENT GUIDE." This valuable new booklet contains data for more than 125 Sylvania Microwave Diodes, the most comprehensive line in the industry. You are certain to find here the right unit for your design. Write to Sylvania Semiconductor Division, Dept. 18-2 Woburn, Mass.

For sales information on any Sylvania Semiconductor Device, contact your local Sylvania Field Office or your local Sylvania Semiconductor Distributor.

Subsidiar of GENERAL TELEPHONE \& ELECTRONICS
CIRCLE 5 ON READER-SERVICE CARD

10 m COUNER does everything without plug-ins

Berkeley Division
2200 Wright Avenue, Richmond 3, California a division of Beckman Instruments, Inc.

NEWS

So the users all wish they could divide the huge computer into little pieces and make a flexible loose "switchboard" connection, distributing the control and the memory and the arithmetic and everything else. Then they can all use it at once, with switching combining a large or small collection of computer units, as the case may require.

Then if users get the busy signal too often, they buy more capacity and connect the added components to the system-or connect new "subscribers" as they move in-or add more displays, so they can see what they have.

2CP

And, if one piece quits, it's no great catastro-phe-they switch over to another.
controlling devices. All elements talk in one common language in the switchboard complex.

Polymorphic computers have large memories useful because a minimum-size system installed as a starter can be expanded easily later. There are more profound implications. One is that with two buffer modules, the computer effectively has an infinite memory, says E. E. Bolles, associate head of the Digital Control Dept. at Intellec tronics Laboratory. Normally, with a program that requires much data, the data are pulled in and worked on until they are complete; then more data are pulled in and processed.

With a polymorphic computer having two buffers, the computer module can start by operating on the data gathered and supplied by one buffer, while setting the second buffer to gathering the next batch of data. When the computer is finished with the first batch, it ties to the second buffer memory and sets the first to sorting and accumulating data.

Therefore two intelligent buffer modules

And now-when you put together a complex of human brains and electronic boxes-you can start with a few components. When you need more and can afford them, you can build to a big, or even a really, really big system without over-investing early or throwing anything away. So you save money and all the while have better reliability and multiple use and better access.

lisu can't even join two complexes-or three or four-by means of switching like a telephone system. connected in a giant computer as an element. If the "super-system" scale justifies, you can also keep some lines private by opening some switches permanently, so sume information won't be available to "nosy" (inbscribers.
switching in and out, interpreting and sorting data to help the computer operate most efficiently, give the system what amounts to a very large memory.
In systems with more than one computer mudule, one is assigned the job of master. It then as signs tasks and subtasks to the other controlling elements, as well as to the subordinate elements. In this way different computers can be working on different problems or all working on subtasks of the same problem.
Che polymorphic system that Thompson RamoWooldridge is readying for the military comprises

Good anywhere in or out of this world

This system adds greatly to your credit when applied to the development of communications, telemetering, control and other devices. Under terms of membership, a wide range of toroids, filters and related networks are available. These include a complete line of inductors, low pass, high pass and band pass filters employing the new micro-miniature $M I C R O I D{ }^{\text {(0) }}$ coils so valuable in transistorized circuitry. Type $M L P$ and MHP MICROIDS are micro-miniature counterparts of the popular Burnell types TCL and TCH low pass and high pass filters. The band pass filter results when cascading a TCL with a TCH filter.
Sizes of MLP and $\left\{\begin{array}{l}400 \mathrm{cps} \text { to } 1.9 \mathrm{kcs}-{ }^{11 / 16 \times 1^{1516}} \times 1 / 2 \\ 2 \mathrm{k}\end{array}\right.$ MHP MICROIDS $\left\{2\right.$ kcs to $4.9 \mathrm{kcs}-11 / 18 \times 1^{5 / 8} \times 1 / 2$

Weight of all MLP and MHP Microids-approx. 3 ozs. each
Send now for your free membership card in the Space Shrinkers Club. And if you don't already have our

Catalogue \#104 describing Burnell's full line of toroids, filters, and related networks, please ask for it.

Note: First informal meeting of Club members will be held in Burnell Booths 2919-2921 during the IRE Show, New York Coliseum, March 21-24. See you there.

FIRST Airborne Doppler Radar Navigation System

 with Simplified Transistor Circuitry Uses HERMES CRYSTAL FILTER

Hermes Crystal Filter, Model 669 U. used in Collins Doppler Rodar Naviused in Colins Doppler Radar Navi$31 / 2^{\prime \prime} \mathrm{L}$. $31 / 16^{\prime \prime} \mathrm{W}$. $\times 11 / 6^{\prime \prime} \mathrm{H}$.

Collins DN-101 Doppler Radar Navigation System is an airborne radar transmitting and receiving system which directs three beams of X-band energy towards the earth and then accurately measures the amount of frequency change between the transmitted and reflected signals to determine the lateral, vertical, and horizontal velocities of the aircraft.
In order to eliminate an undesired leakage sideband in the Radar Sensor, a system selectivity with a very sharp cut-off on the lower frequency end of the passband had to be provided. Hermes Crystal Filter. Model 669 U , not only met this requirement by establishing the desired selectivity in the second IF amplifier but also made it possible to reduce the number of transistors in the accompanying circuit. Close cooperation between the engineering departments of the two companies contributed to the rapid solution of this critical selectivity problem. Hermes Crystal Filter characteristics. Model 669 U
Center Frequency is 159.0 Kc . Bandwidth at 2 db is 6 Kc min . Attenuation increases from 2 db to 53 db in 8.1% of the passband. Insertion Loss is 10 db max. Temperature Range is $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Whether your selectivity problems are in transmission or reception. AM or FM. mobile or fixed equipment, you can call on Hermes engineering specialists to assist you in the design of your circuitry and in the selection of filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.

A limited number of opportunities is available to experienced circuit designers. Send Résumé io Dr. D. I. Kosow'sky.

Hermes Electronics co.

And that's all there is to the dat processing approach known as "pol; morphic" (many shaped) or "multipl mode" or the "matrix concept" maybe just the common-sense switc \uparrow. board idea in data-processing systeme.
one computer module, two buffer modules, printer, a plotter, three tape units and a druin storage unit.
Thirteen information bits and one parity bit can be transmitted either to or from the module. Three additional "status" bits go along with the information, to give the receiving module advice on how reliable the information is.
This means that the transmitting module's best information about the validity of the in. formation is sent as status bits. If a tape breaks, for example, along with the noise of the break comes status information that alerts the computer elements. (Continued on opposite page)

The Language Problem in Computer Networks

In a paper delivered at the Northeast ElecIronics Research and Engineering Meeting in Boston last year, Jerry Rothstein of Edgerton, Germehausen \& Grier, Inc., discussed some aspects of computer networks. Here, in simplified form, are some of his observations on communication among computers:
For computers to cooperate, they must "speak" the same language. Very often this requires an intermediate "translator," which accepts the output of one system and changes it into a form suitable for use by the other system.
A translator can be considered part of either of the two computers, or all three elements can be viewed as a single system. Similarly existing systems can be broken down into many subsystems.
For n computers capable of individual operation, each with its own language and with co-operation required between every pair, there would have to be ($n-1$) one-way translators at each computer to permit any computer to understand any other.
There would be $n(n-1)$ translators required
altogether. If a common language were devised, however, each computer would need two one-way translators (2 n altogether): namely, those to translate its language to the common language and back again. Two-way translators could, of course, replace a pair of one-way translators in either case.
The common language is important because computers in existence speak different languages, and it is not likely that all computers of the future will speak the same language. A computer is generally built with some parficular class of problems in mind. The language chosen is appropriate to that class of problems. The economies inherent in an appropriate choice are too large to be sacrificed to a common language.
Fortunately computer languages have sufficiently simple and similar logical constructions to make translator design a soluble problem.
Unlike machine translation of natural languages, translation between computer languages is feasible in practce aind not just in princple.

If one of the elements breaks down, the computer is not disabled. The element's task is simply distributed among other elements. Clearly this means better reliability without duplicating the whole sys$t \in m$.
For the time being, Thompson Ramo-Wooldridge believes, the principle use of polymorphs will be for command-control systems. These have large enough problems to make the system a necessity. Airtraffic control, air defense and other large systems will also probably be polymorphs. For industry, the company sees the possibility of a network of computers communicating with one another by central exchanges and digital data-transmission links.
In one form or another, computer networks seem only a matter of time. Some problems within the reach of programers' capabilities, and others soon to be, are too large for individual computers and too important to be excluded from the schedule of problems to be analyzed automatically.
Jerome Rothstein of Edgerton, Germehausen \& Grier, Inc., put the problem this way to an audience of computer specialists at the Northeast Electronics Research and Engineering Meeting:
"In economic science the labor expended in treating data absorbs so many man-hours that relatively few penetrating questions are ever formulated, let alone answered. In public health and vital statistics there are dozens of hypotheses worth testing and mountains of data in hospitals, insurance companies and elsewhere that should be processed by high-capacity computer systems. Worldwide weather prediction and literature searching are other giant but vital problems that will probably be solved only by new ap ;roaches to data processing.

The chief technological problem of computer co-operation reduces to ons of organizing a number of indevendent computers into a cooper: ting network without prejudice to their ability to operate indepe idently when desired."

PHILCO ANNOUNCES NEW WHOHETM NEW
WIRA IIEH-SPEED SWITEAING TRANESTOR

WITH CADMIUM ELECTRODES

 ...IN TO-9 PACKAGE

colitector voitace va in volis
itpical gaim-bandwidth product, it vs. collector voltage

- madt . . trademark philco corporation for Micro Alloy Diffused-base Transistor.
-

New MADT* 2N1500 Provides

Increased Power Dissipation

Here is another Philco "break-through" in the design and manufacture of high frequency, ultra high-speed switching transistors ! This new Micro Alloy Diffused-base Transistor (MADT*) uses cadmium electrodes in place of indium. The higher thermal conductivity of cadmium insures cooler-running junctions for any given power dissipation and provides an extra margin of safety as added assurance of reliable performance.
The new 2 N1500 offere the designer these Important advantages:

- $100^{\circ} \mathrm{C}$ maximum junction - high Beta and excellent Beta temperature linearity with temperature and current
- low collector capacitance
- low saturation voltage
- low hole storage time (Typical: $7 \mathrm{~m} \mu \mathrm{sec}$)
In electrical characteristics, the 2 N 1500 is similar to 2 N 501 , which has been thoroughly field-proven in many military and industrial computer applications. It is manufactured on Philco's exclusive fully-automated production lines to the highest standards of uniformity. For complete specifications and applications data, write Dept. ED-260.

Max	tings	Typical Parameters				
$\mathrm{T}_{\mathrm{os} \mathrm{C}}$	$\begin{gathered} \mathrm{V}_{\mathrm{CR}} \\ \text { volts } \end{gathered}$	$\begin{gathered} \mathrm{l}_{\mathrm{r}} \\ \mathrm{~m} \mu \mathrm{sec} \end{gathered}$	$\underset{\mathrm{m} \mu \mathrm{sec}}{\mathrm{t}_{\mathrm{s}}}$	$\begin{gathered} \mathbf{t}_{\mathbf{f}} \\ \mathrm{m}_{\mu \mathrm{sec}} \\ \hline \end{gathered}$	$\mathrm{h}_{\text {PR }}$	$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CE}}(\mathrm{SAT} \\ \text { volts } \\ \hline \end{array}$
100	-15	12	7	4	35	-0.1

AVAILABLE IN PRODUCTION QUANTITIES... and in quantisies 1-99 from jour Pbilco Industrial Semiconductor Distributor.

PHILCO

BASIC
BUILDING
BLOCKS
FROM KEARFOTT

KEARFOTT

ANALOG-

TO-DIGITAL CONVERTERS

Kearfott's rugged shaft position-to-digital convert ers are resistant to high shock and vibration and high and low temperature environments. Ideally
suited for missile applicasuited for missile applications, these converters are available for many uses, including latitude, longiventional angular shaft displacement conversion and decimal count conversion. Exclusive drum design provides large conversion capacity in smallest size. Combination counter converter assemblies for both visual and electrical readout also available.
TYPICAL
CHARACTERISTICS
Kearfott Unit No. P1241-11A
Code Cyclic Binary
Range Cyclic Binar
$0.32,768$
Bits per Revolution _...........
Revolutions for Total Range ${ }_{2,048}$
Volts D.C. ...
Current (ma.)
Inertia (gm. cm. ${ }^{2}$)
Unit Diameter (in.)
Unit Length (in.)
life 10° Revolutions............... 3
Static Torque (in ors or 10^{3} hours Weight (02) ij (running)
Maximum Speed (RPM) 600
Write for complete data.

BASIC

BUILDING BLOCKS from kearfott

20 SECOND SYNCHRO

This synchro, just one of a broad line offered by Kearfott, provides the extreme accuracy required in today's data trans mission systems. Kearfott synchro resolvers enable system designers to achieve unusual accuracy without the need for 2 -speed servos and elaborate electronics. By proper impedance, matches up to 64 resolver control transformers can also operate from one resolver transmitter.
TYPICAL
CHARACTERISTICS SIZE 25
Tyoe Resolver Control Part Number \quad 25161-001 $25151-003$
Excit. Volts 25161
$\begin{array}{lll}\text { (Max.) } & 115 & 90\end{array}$ Primary Imped $\quad 400 \quad 400$ Secondary Imped $260 / 80^{\circ} \quad 8500 / 80^{\circ}$ $\begin{array}{lrr}\text { Secondary Imped. } & 260 / 80^{\circ} & 14000 / 80^{\circ} \\ \text { Transtorm. Ratio } & 7826 & 1278\end{array}$ Max. Error fr. E.2. 20 seconds 20 seconds Primary Rotor Stator

Write for complete data.

Engineers: Kearfott offers challenging opportunities in advanced component and system development.

CIRCLE 10 ON READER-SERVICE CARD

BASIC

BUILDING BLOCKS
FROM KEARFOTT

 INTEGRATING tachometers

Kearfott integrating tachometers, special types of rate generators, are almost invariably provided integrally coupled to a motor. They feature tachometer generators of high output-to-null ratio and are temperature stabilized or compensated for highest accuracy integration and rate computation. Linearity of these compact, lightweight tachometers ranges as low as $.01 \%$ and is usu ally better than $\pm .1 \%$.

TYPICAL

CHARACTERISTICS

Size 11 (R860)

Excitation Voltage (400 cps) 115
Volts at 0 rpm (RMS) 020
Volts at 1000 rpm (RMS) 2.75
Phase shift at $3600 \mathrm{rpm} \ldots . .0^{\circ}$
Linearity at $0.3600 \mathrm{rpm} \quad .07$
Operating Temperature
Range $-54^{\circ}+125^{\circ}$
Write for complete data.

KEARFOTT aivision

GP

GENERAL PRECISION ine.

LITTLE FALLS, NEW JERSEY

NEWS

Direct-View Battery TV Due

Fully transistorized, direct-view portable TV set made by Sony Corp. will be marketed in Japan next month and in the U.S. within eight months. It has an 8 -in. screen and weighs 13 lbs with its 2 llb battery. Thi model, to be priced at about $\$ 200$ on the Japanese market, operates on $100-\mathrm{v}$, 60 -cycle ac or on a self. contained, sealed-type rechargeable 12-v battery, using 15 w of power. Battery is a $3 \mathrm{amp}-\mathrm{hr}$ unit and lasts about $21 / 2 \mathrm{hr}$.

1959 Electronics Sales Reach All-Time High of $\$ 9.2$ Billion

Total 1959 factory sales for the electronics in dustry established an all-time high of $\$ 9.2$ billion, reported David R. Hull, president of the Elec tronic Industries Association, releasing the official EIA totals for 1959. He added that the industry is expected to pass the $\$ 10$ billion mark in 1960
"Manufacturers of consumer products made a substantial comeback from the 1958 recession with a 1959 sales total of $\$ 2.05$ billion, or $\$ 450$ million better than last year," Mr. Hull stated. "The 195 figure of $\$ 1.1$ billion for replacement parts, tubes, and semiconductors is $\$ 240$ million higher than 1958. Industrial and military products set new highs with totals of $\$ 1.55$ and $\$ 4.5$ billion. These were, respectively, $\$ 170$ and $\$ 400$ million over 1958."

U.S. Leads in Semiconductors Says Solid-State Conference Chairman

Assisted by heavy financial backing from gov ernment agencies, the U.S. is well ahead o Japan, Russia and the rest of the world in solid state technology, believes A. P. Stern, chairman of the 1960 Solid-State Circuits Conference, which is about to open in Philadelphia.

Mr. Stern, manager of General Electric's Electru nic Components and Applications Laboratory, also told Electronic Design that he thinks it's time for companies engaged in microminiaturization to co-operate in an evaluation of all microminiature programs.

The situation in microminiaturization is disturbing because of confusion in goals and nomenclature, Mr. Stern stated. He would like to see a schedule set up for each program, against which progress could be measured. This would permit, Mr. Stern said, concentration on the most promising work and elimination of many programs.
About 2500 engineers are expected to attend the conference, which will be held Feb. 10, 11, and 12. Over 43 papers, arranged for by program chairman T. J. Lynch of Bell Labs, will be presented.

Radar With 0.02-Musec Pulse So Sharp It Tracks People

A new magnetron that packs 25 kw of $8-\mathrm{mm}$ power into a $0.02-\mu \mathrm{sec}$ pulse has been developed for airport surveillance radars and other applications. Resolution of the tube in a millimetric radar system is so sharp that traces of people and of vehicles as small as jeeps can be displayed clearly.
Amperex Electronics, which is distributing the Philips-designed tube, reports that range and azimuth resolution of 4.5 yd at 1000 yd has been achieved.
The new magnetron, Type 7093, achieves the rise-time of 600 kv per $\mu \mathrm{sec}$ needed for a 0.02 $\mu \mathrm{sec}$ pulse.
"The short pulse length enables a radar to detect objects as close as 10 or 12 ft from the antenna," Amperex reports. "This makes the tube ideal for small-craft harbor vehicles and airport surveillance applications."

Jeep

Aircraft

People

Map-like ppi presentation, using new tube, shows p sople walking on airport apron and jeep rounding corner and heading along runway.

A techniclan probes radiated Interference from an aircraft hoist in the Los
Angeles laboratory of Sprague's Interference Control Field Service Dept.

Improved Service For Radio Interference Control

Fast-growing Department of Sprague Electric Company Greatly Expands its Measurement, Control, and Consulting Engineering Facilities to Provide Fast Service.

Contractors responsible for the design and manufacture of electric/electronic equipment and weapon systems which must conform to military interference requirements will get a major assist from Sprague Electric's expanded industry service in the field of r-f interference and susceptibility.
The service includes: interference and susceptibility measurements up to frequencies of $10,000 \mathrm{mc}$; complete analysis of all test results; and comprehensive recommendations of appropriate control techniques to bring about a suppression system having the lowest weight, the lowest cost, and the greatest reliability.
Sprague's consulting service applied at the design stage already has proven to be the best approach to interference and susceptibility control. Experisusced Sprague engineers invariably save valuable time in the preparation of test plans and their subsequent approval. Sprague engineers prefer to work from the design conception, analyzing original schematics and equipment drawings. This permits them to recommend optimum shielding, isolation,
and decoupling techniques before cases and layouts are finalized. Space allowances for suppression components can be made with proper attention to economy of weight and cost.
Once the equipment reaches the prototype stage, Sprague specialists will conduct tests either in the manufacturer's own plant or in one of Sprague's interference laboratories. Sprague will also direct compatibility tests on end equipment or complete weapons systems, and recommend solutions to any integration problems which might develop.

Sprague Interference Control Laboratories are located on the Pacific Coast, in the Mid-West, and on the East Coast. These laboratories are staffed by top interference and susceptibility control specialists, and are equipped with the most advanced instrumentation and model shop facilities.
For further information, write to Interference Control Field Service Manager, Sprague Electric Co. at 12870 Panama Street, Los Angeles 66, California; 224 Leo Street. Dayton 4, Ohio; or 347 Marshall Street, North Adams, Massachusetts.

SPRAGUE SUBMINATURE THRU.PASS ${ }^{\circ}$ CAPACITORS

solve noise filtering problems

Sprague THRU-PASS Capacitors display insertion loss characteristics that are truly remarkable, especially af very high frequencies.
THRU-PASS Capacitors reduce to a negligible value the effect of external connection inductance on the capacilor. They also provide a minimum length of internal path for radio interference currents. Their performance is closer to that of a theoretically ideal eapacitor than that of any other paper capacitor ever made! THRU-PASS Capacitors are designed to meet all the electrical, mechanical, and environmental requirements of MIL-C-1 1693.
Both Type 102P and Type 103P are impregnated with Vitamin $Q_{\text {}}$ Sprague's exclusive inet synthetic impregnant, in order to provido maximum insulation resisfance and minimum temperature / capacitance change. Type 102P units are processed for -55 C to 85 C operation: Type 103P for -55 C to 125 C. Maximum foed-thru current for which both are rated is 5 amperes d-e continuous or equivalent.
For complete data on THRU-PASS Capacitors, write for Engineering Bulletin 8015 to Technical Literature Section, Sprague Electric Company, 347 Marshall St., North Adams, Mass.

SPRAGUE*

the mark of reliability

CIRCLE 270 ON READER-SERVICE CARD

BALLANTINE'S MODEL 305A VOLTMETER

measures peak, or peak to peak

 PULSES
AT PULSE RATES AS LOW AS 5 pps ... VOLTAGES OF 1 mv TO 1000 v

Also measures

Complex Waveforms
having fundamental of 5 cps to 500 kc with harmonics to 2 mc .

Accuracy

is 2% to 5% OF
INDICATED
VOLTAGE, depending upon waveform and frequency.

Scale

is the usual Ballantine log-voltage and linear db , individually handcalibrated for optimum precision.

Input Impedance

is 2 meg, shunted by
10 pf to 25 pf .

Price: $\$ 395$

THIS "A" MODEL is the result of improvements and new features AFTER 11 YEARS OF MANUFACTURING THE VERY SUCCESSFUL MODEL 305

Write for brochure glving many more detalle

ballantine laboratories Inc.

CMECK with eallantime finst fon laboratory ac vacuum tube voltmetens, aegandess of your requiaements for AMMITUDE, FREQUENCY, OR WAVEIORM. WE MAVE A LARGE LINE, WITH AGDITIONS EACH YEAR. ALSO ACHC AND OC/AC
INVERTENS. CALIBRATORS. CALIBRATED WIOE BANO AF AMPLIFIER, OIRECT-REAOING CAPACITANCE METER, OTMER ACCESSORIES. CIRCLE 12 ON READER-SERVICE CARD

Micro-Pak Citizens' set made by Micro Electronics has a transmitter with a crystal-oscillator-driven, class-C power amplifier. Power output is 15 mw for $60-\mathrm{mw}$ input. Signals off by $\pm 20 \mathrm{kc}$ from operating frequency are attenuated 45 db . Sensitivity of single-conversion, superheterodyne receiver for useful audio output is $0.5 \mu \mathrm{v}$. This provides audio power output of 50 mw .

AM transceiver, Radio Manufacturing Engi neer's 4303, also uses only one transistor in the if portion of the transmitter. The 2 N38 operates a crystal-controlled oscillator with $90-\mathrm{mw}$ input. The local oscillator is continuously funable between 26.965 and 27.255 mc To switch circuits from receive to transmit, the operator uses a multipole switch, coupled to the press-to-talk button, instead of a relay.

Designers Producing \$100 CitizensTr

THE popularity of Citizen's Radio is triggering design of a new class of communications equipment-walkie-talkie sets that retail for about $\$ 100$, less than half the price of standard portable transceivers.

Designers are hitting the $\$ 100$ target by keeping circuits simple, leaving out frills, and by going to single-frequency operation.
Three low-priced sets have already been introduced, and manufacturers are reported developing similar devices in anticipation of a huge market. Available at present are:

- A 27 -mc transceiver made by Radio Manufacturing Engineers, Inc., with seven transistors and two diodes. Only one transistor is used in the rf portion of the transmitter. To reduce components, the designers made the receiver audio amplifier double as the transmitter modu-
lator system. The built-in loudspeaker also serves as the microphone.
- A WEPhone transceiver manufac tured by Wightman Electronic Engineering Co., with seven transistors and one diode. The WEPhone's designers provide a modulator system independent of the receiver audio amplifier. The receiver is a single-con:ersion superheterodyne designed for single-frequency operation With appropriate crystals, it can receive and transmit on any frequency in the 27 . mc Citizens' band.
- The Micro-Pak, a more elaborate low-priced transceiver developed by Micro Electronics. It has squelch operation, more complex circuitry than the other sets and a price tag of more than $\$ 100$. Receiver sensitivity for useful audio output is reported to be 0.5 uv. Receiver drain is 20 mw and transmitter drain, 70 mw .

w-Prit Transceiver Design

ensTransceivers

peaker

The Federal Communications Commission requires that sets for unlicensed operation transmit between 26.77 and 27.27 mc , restrict power input to the final rf stage to 100 mw or less, use a singleelement antenna not more than 5 ft long, and attenuate emissions outside the $26.97-27.27-\mathrm{mc}$ band by at least 20 db .
In addition to meeting these requirements, Citizens' equipment designers must meet these needs of the market:

- Transmitter range of at least one mile.
- No transmitter tuning adjustments for the "iser to make.
- Selectivity ample to avoid adjacent channel interference and adequate to permit reception Irom a similar unit one mile away.
- Small, light equipment operated by selfcontained batteries.
Despite the limitations, designers are delivering ets that give surprisingly good performance for the stringent requirements under which they must perate. - -

AMERICAN MARIETTA
 Announces

A Major Breakthrough in Plastic Molding

> Unique, versatile, plastic materials for advanced design and product development

EMC compounds incorporate the exceptionally versatile balance

- SElF-EXTINGUISHING of electrical, chemical and physical properties characteristic of epoxies in an easily-handled single component system. Thoroughly tested and evaluated, EMC compounds are available with built-in mold release and optional self-extinguishing properties, and in a wide range of fillers, reinforcements and colors readily adaptable to mass production needs. Send coupon today for the full story on how these remarkable new EMC compounds open vast new fields . . . provide greater profits for you.
- NO OUTGASSING
- outstanding balance of pHYSICAL, ELECTRICAL AND chemical properties

- Self-releasing

- one component system
- LOW PRESSURE TRANSFER \& COMPRESSION MOLDING

Our Research Trday. . fox Yyur PPrgress Tomerrear

AMERICAN-MARIETTA COMPANY

ILECTRONIC DESIGN • February 3, 1960

12 FT．DIA．COMBINATION PRESSURE AND RF GASKET DEVELOPED AND MANUFACTURED BY METEX．

METEX COMPLETE LINE OF SHIELDING PRODUCTS ■ electronic weather stripping \quad RF gaskets \quad combination gaskets heat dissipating tube shields

METEX DESIGN，ENGINEERING AND PRODUCTION FACILITIES customer engineering service available for design consultation complete program of research and new product development materials may be chosen from any alloy or metal capable of being drawn into wire．Metex now offers iridited electronic aluminum weather stripping，to conform to military specifications for salt spray and corrosion．

METEX REPRESENTATIVES：FIELD ENGINEERING AVAILABLE FROM THE FOLLOWING REPRESENTATIVES：
Thomas L．Steverts Co．
15222 South Gravillea Ave
Lawndale．Cal．
Osborne 9.1419

William J．Purdy Co． 312 Seventh St． San Francisco 3，Cal．

Esterbrook 9.2700
Jules J．Bressler
4808 Bergenline Ave．
IJnion Clity N．J．
Union 4.9577
J．M．Pettingill Assoc．
385 Concord Ave．
Belmont Mass．
385 Concord Ave
Belmont．Mass．
Ivanhoe 4.9220
Belmont．Mass．
Ivanhoe 4.9220
or contact one of 52 General Cable sales offices coast－to－coast

Our fact filled＂DATA FILE＂mailed on request．Metal Textile Corporation，

Electronics Division，Roselle，New Jersey．Phone Chestnut 5－3000．TWX Roselle，N．J． 760 ，及8，B8
 THE WORLD＇S LARGEST AND OLDEST PRODUCER OF KNITED WIRE PRODUCTS $\frac{1}{\text { MIETEX }}$ ．
 CIRCLE 14 ON READER－SERVICE CARD

NEWS

Gallium Arsenide Tunnel Diode Has 60－to－1 Peak－Valley Ratio

Latest from the tunnel diode labs is General Electric＇s announcement of a tiny gallium arsen． ide device with these features：
－Peak－to－valley current ratio of 60 to 1,5 to 10 times that of previously described tunnel diodes；
－The ability to handle current densities rang． ing from 5,000 to $10,000 \mathrm{amp}$ per sq cm ， roughly the capability of No． 12 gage cop－ per wire，and four times that of germanium tunnel diodes．Current densities handled by germanium tunnel diodes range from 0.4 to 0.45 v per sq cm ．
－Voltage swing of from 0.9 to 1.1 v ．
－Resistance to temperatures up to 500 C ．
Gallium arsenide，the company believes，per－ forms better than any other tunnel－diode mate－ rial tested so far，and may prove the ultimate material．
Company spokesmen report that the best peak－to－valley current ratio of germanium so far observed is 14 to 1 ．Silicon diodes have exhibited no greater than 6－to－1 ratios．
GE expects to have samples ready for circuit designers in six months；these will cost an esti－ mated $\$ 75$ each．

NEWS BRIEFS

THE INSTRUMENT SOCIETY OF AMERICA will collect and publish a＂compre－ hensive compendium＂of up－to－date information on all known transducers．Expected publication of the first volume is January 1961.

A NEW WATT－MEASURING DEVICE， the Hall multiplier，developed by Westinghouse Corp．，operates as a watt transducer，converting ac watts to a dc millivolt signal．In control cir－ cuitry，the unit has a response speed in microsec－ onds，compared with a time constant of about one second for a thermal converter，Westinghouse re－ ports．Two versions have been designed：one pro－ vides an unfiltered de current output in the milli－ ampere range；the other produces a filtered dc millivolt output．

THE AMERICAN POWDER METAL LURGY INSTITUTE has been formed for metal． lurgists and＂anyone having a bona fide interest in powder metallurgy．＂Address of the new organi－ zation is 60 E．42nd St．，New York 17，N．Y．

LUNAR GLOBES showing the moon's far ide as photographed by the Soviet's third cosmic satellite have been constructed at the Moscow ilanetarium and are being readied for mass proluction.

TELEVISION SETS AND ANTENNAS currently cause more than 4% of lightning-originated fires, reports the Lightning Protection Institute.

WESCON (Western Electronic Show and Convention) will be held in Los Angeles' new Sports Arena in 1960, Wescon's board of directors reports.

ELECTRONIC SYSTEMS engineering and electronic cabling contracts in excess of $\$ 500,000$ have been awarded to Pacific Automation Products, Inc., by Lockheed Missile Systems Div., Convair, Fischbach \& Moore, and Sperry-Utah. An initial Lockheed contract is for work on the Samos-Midos reconnaissance satellite program. The contract includes systems integration and systems engineering on Lockheed's satellite tracking and data-acquisition station.

DIGITAL AND ANALOG airborne magnetic tape recorders will be designed by OliverShepherd Industries, Inc., Nutley, N.J., under a $\$ 215,000$ contract from Airborne Instruments Laboratory.
. . RELIABILITY of communication equipment could be greatly improved if designers could use principles believed to underlie operation of the brain and nervous system, according to Kenneth W. Jarvis, a panel chairman at the Winter General Meeting of the AIEE. He told an audience of computer engineers: "Scientists have long been aware of the remarkable powers of the human brain and nervous system to utilize astonishingly small quantities of sense data to arrive at reliable decision regarding the external world. It seems that one factor in this remarkable capacity is that parallel sensory paths are utilized and their outputs compared at various levels. Most probable values of the sense data are computed and cross-compared, resulting in a high degree of reliability. In essence, operation is jarallel rather than serial."

Correction

Two captions were transposed on pages 3 and of the Dec. 23, 1959 issue of Electronic Design. The drawing on page 3 actually shows a Centralab flip-flop wafer; the schematic on Jage 4 illustrates a module made by Arthur .nsley Manufacturing Co.

for Tung-Sol 2N1313 Computer Transistor mean new freedom for designers

GUARANTEED DESIGN CENTER VALUES OF ALL MAJOR PARAMETERS

GUARANTEED MIN-MAX LIMITS FOR ALL MAJOR PARAMETERS

GUARANTEED DISTRIBUTION OF ELECTRICAL DESIGN CHARACTERISTICS

GUARANTEED DISTRIBUTION OF

 SWITCHING TIMES) GUARANTEED UNIFORMITY OF EVERY LOT

THERMAL BOND

And there's still another. For a nominal additional charge any specific electrical design characteristic will be 100% guaranteed not to exceed its distribution limits. These guarantees add up to a marked upgrade in circuit design accuracy . . . high reliability in operation . . . and consistent repeat performance. In specifying the Tung-Sol 2N1313 high speed switching transistor, you're selecting a transistor which features an ideal balance of the most wanted characteristics as revealed by a survey of computer designers. You're also choosing a transistor which offers improved performance at lower cost over most
f today's popular computer types.
The 2 N 1313 is designed to meet vigorous military environmental standards. It features "Thermal Bond" construction, exclusive with Tung-Sol. The transistor junction tab is securely joined to the base of the transistor. The bonding material provides high heat dissipation while maintaining complete base-to-case electrical isolation.

Tung-Sol Electric Inc., Newark 4, N. J. sales offices: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Texas; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Montreal, Canada.

and $2 N 327$ A series

IMMEDIATEIY AVALIABLE FROM STOCK

OUSTANONG PRODOCT FEETURES
highest device dissipation evice dissipation 400 mw at $25^{\circ} \mathrm{C}$
170 mw at $125^{\circ} \mathrm{C}$

highest

junction temperature $200^{\circ} \mathrm{C}$
guaranteed β at $150^{\circ} \mathrm{C}$ (2N1440 series, only)

guaranteed

high temperature $I_{\text {CBO }}$ $\left(2 \mathrm{~N} 1440\right.$ series af $150^{\circ} \mathrm{C}$) (2N327A series al $125^{\circ} \mathrm{C}$)

contamination-free...

no desiccants used
extremely low leakage
(2N1440 series, 25 mıa max.) (2N1440 series, $25 m_{\mu}$ a max.)
(2N327A series, $100 m_{\mu}$ a max.) guaranteed B at low currents (2N1440 series, al $\mathrm{I}_{\mathrm{c}}=1 \mathrm{ma}$) (2N327A series, at $I_{B}=0.1 \mathrm{ma}$ and $\mathrm{I}_{\mathrm{B}}=1.0 \mathrm{ma}$)
low saturation resistance
shock and vibration. exceed MIL-T.19500A

western region office

balto washington area C. M. Newson and Ansociates

CAMDEN.PHILADELPHIA AREA
C. M. Newron and Arsociates
minneapolis area

DISTRIBUTOR

NEWS BRIEFS...

.. A MATHEMATICAL FORMULATION that predicts microwave absorption in ferrites i: being evaluated for the Diamond Ordnance Fuz Laboratories by the National Bureau of Stand ards. NBS reports that prediction could cut th testing required to determine behavior and prop erties of ferrites. The work could also lead t more effective use of existing materials and to easier synthesis of new materials.
. . . ENGINEERS JOINT COUNCIL will invite foreign scientists to this country in the nexi six months to broaden engineering teaching and research. The scientists will exchange information with educational groups here and will receive an opportunity to visit engineering society meetings and non-university research organizations.
. . A COMPUTER able to operate at 500,000 operations per second is under development at the University of Illinois. The unit will provide high-speed storage for nearly 250,000 bits of information.
"RESEARCH AND DEVELOPMENT expenditures by industry, government, universities and private laboratories will rise to more than $\$ 20$ billion annually over the next seven or eight years, against $\$ 10$ billion today," predicts Donald C. Power, chairman and chief executive officer of General Telephone and Electronics Corp.

SCIENTISTS AND ENGINEERS employed by American companies totaled 780,000 in January, 1959, the National Science Foundation reports. A foundation survey found that industry accounted for two-thirds of the scientists and engineers employed in the nation. The other third work for government agencies, educational institutions and non-profit organizations, or are self-employed.

A TECHNICAL. ADVISORY COMMIT. TEE of university scientists has been established by Daystrom, Inc., to aid in long-range R\&D planning. The committee will review the programs of all Daystrom divisions and provide them with the latest research information.
... RECIPIENT of the annual National Reliability Award for the best technical paper delivered at the Fifth National Symposium on Reliability and Quality Control in Washington was H. G. Friddell of the Boeing Airplane Co. His paper, "System Operational Effectiveness (Reliability, Performance, Maintainability)", included a procedure for obtaining an operational-effectiveness value for systems.
. GENERAL CHAIRMAN for next year's reliability symposium will be W. T. Sumerlin of the 1 hilco Corp. He succeeds C. M. Ryerson of the I adio Corporation of America.

1959 ANNUAL AWARD of the IRE Professional Group on Reliability and Quality Control was presented jointly to J. A. Connor and H. L. Wuerffel in "recognition of their contributions to the profession." The citation recalled their work in report TR 1100, which included an assemblage of guiding principles, data and graphs for the design of reliable electronic equipment. Mr. Wuerffel, a systems engineer, is in the reliability analysis and measurement engineering section at RCA. Mr. Connor is manager of the Reliability and Component Engineering Dept., Communications Div., Hughes Aircraft Co.

PRICES AND AVAILABILITY...

TANTALUM POWDER, both "Lo-Cap" and "Hi-Cap," has been reduced 15 per cent in price by the Kawecki Chemical Co. of Boyerton, Pa. The powder is now available at $\$ 49.80$ a pound in minimum 200 -pound shipments.
... MULLARD, LTD., London, has developed an S-band Faraday rotation circulator with an insertion loss of less than 0.2 db . The circulator's low insertion loss represents an increase of less than 14 K in noise temperature. The circulator provides an isolation of more than 30 db in any unwanted transmission path. Bandwidth is about 30 mc . An S-band ferrite switch also developed by Mullard, and designed for a maser amplifier, has an insertion loss of 0.3 db . The device is designed for switching between two waveguide outputs, isolation between the paths being greater than 20 db . Bandwidth is 100 mc and switching time is less than $100 \mu \mathrm{sec}$.
.SILICON-CONTROLLED rectifiers have boen reduced 20 to 40 per cent in price by General Electric Co., Liverpool, N.Y. The new prices range from $\$ 18.50$ to $\$ 95$ each on the eight models in the $16-\mathrm{amp}$ line; from $\$ 14$ to $\$ 71$ each on the eight types in the $10-\mathrm{amp}$ line, and from $\$ 24$ to $\$ 114$ each on the seven devices in the inverter sries. All prices are for production quantities to 0 iginal-equipment manufacturers.

Is your company making changes in prices or availability of its products? Send the details to ELECTRONIC DESIGN, 830 Third Ave., New York 22, N.Y.

....and now, COAXICON fits a wider range of cable sizes

COAXICON offers not only the fastest method of attaching disconnects to your shielded wire . . . it is not only the most reliable disconnect you can buy -for either free hanging or panel mounted applications . . . not only the most economical on the market . . . but . . . COAXICON now fits shielded cable sizes up to $1 / 4^{\prime \prime}$ O.D. with interchangeable contacts that permit a wide variation of inner conductor diameters in each cable size.

Further, COAXICON mounting clips accommodate a wide range of panel thicknesses for through-panel applications. Whether your requirements include RG type coaxial cable, standard coaxial cable or other shielded cable types, with solid or stranded conductors, look to AMP for the precise Coaxicon Disconnect you need.

If you're not now using the A-MP Coaxicon, send for literature today. It can solve many shielded circuit problems for you.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA A.MP products and engineering assistance are available through subsidiary companies in: Australie • Canada • England • France • Holland • Japan CIRCLE 17 ON READER-SERVICE CARD

Roller leaf actuator for rapid cam or slide actuation

for use where cam
action is infrequent
or not rapid

Basic＂SM＂switches are
Basic＂SM＂switches are
available in over 300 available in over

Integral roller－leaf actuator for use with fast moving cams and slides

Roller lever actuator for high－speed，low－ friction applications

Leaf type actuator with special bend to follow slow－moving cams or slides ator for use with slow－moving cams and slides

Ten different waysto aciuate this small，dependable switch

Here are ten＂SM＂subminiature switches equipped with ten different integral and auxiliary actuators that contribute to the great versatility of these dependable，small switches．For ten years micro switch sub－ miniature switches have been the choice of designers who require switches of high electrical capacity which can be mounted in small space．
For complete information on the micro switch lines of subminiature and sub－subminiature switches，we invite you to contact your nearby micro switch branch office，or send for Catalog 63.

MICRO SWITCH ．．．FREEPORT，ILLINOIS
A division of Honeywell
In Canada．Honeywell Controls Limited．Toronto 17．Ontario

H
 homerwell
 Honeywell
 MICRO SWITCH Precision Switches

CIRCLE 18 on reader－service card

WASHINGTON h REPORT

IIIIIVIII

fin
Ephraim Kahn
．．．RECORD R\＆D spending is planned by the Government during the fiscal year that starts July 1．The Defense Dept．alone will be ready to com－ mit $\$ 5.8$ billion，while the National Aeronautics and Space Administration contemplates $\$ 600$ mil－ lion worth of R\＆D．The Federal Aviation Agency will allot $\$ 56.2$ million，much of it for electronic development and modernization of air－traffic－con－ trol and navigation systems．President Eisenhow－ er＇s new budget includes a request for total Gov－ ernment R\＆D spending of $\$ 8391$ billion， 5 per cent more than was requested for the last fiscal year． Basic research accounts for $\$ 600$ million of this．
．．ELECTRON TUBE procurement procedures proposed by the Air Force as purchasing agent for the military have been submitted to the De fense Department for approval．If they satisfy the Assistant Secretary for Supply and Logistics，the Air Force will first compile total military require－ ments of types of tubes used by all the services， work out a buying schedule and place contracts． Expectations are that the Air Force will be ready to do its first buying before March 31.
．．．BIDDING MODIFICATIONS for military electronic contracts have been urged by J．K． Sprague，president of Sprague Electric．He sug． gests weighting bids by grading manufacturers on the quality of their products and their past records in meeting military specifications．At present，he asserts，producers of top－quality items must compete on a straight price basis with those ＂who have not demonstrated a capability for pro－ ducing to the required standards．＂
．．COMPONENT RELIABILITY is the key－ stone of a successful weapons system，says the Navy＇s chief of development，Vice Adm．J．T Hayward．Components＂have been overlooked completely＂in the glamor of many large systems， he charges，adding that＂the results have shown we should have paid more attention to our home－ work on the components．＂He notes，too，that re－ liability starts with＂the lowest component＂and that＂all the quality control in the world＂cannot compensate if engineering and design are inadc－ quate．

ELECTRONIC DESIGN • February 3， 1960
. JAPANESE COMPETITION may soon make it self felt in color TV sets. A major incursion of the U.S. market is believed planned. The competit ve weapon is believed to be a $21-\mathrm{in}$. color set priced to retail in the U.S. market at less than $\$ 300$ (with a short margin for the seller). Production capacity is expected eventually to exceed 5il 0,000 sets a year.

Your move to

INDUSTRIAL TUBES

The CBS tubes described offer you many moves to greater reliability and improved circuit performance. They represent just a few types from the rapidly growing CBS indus. trial tube line.
For v-r . . . reliable miniature and larger allied receiving . . . krytron . . . secondaryemission . . . ultrahigh-resolution cathoderay . . . frame-grid . . . and special-purpose industrial tubes, call your local sales engineering representative or your Manufacturers Warehousing Distributor. Ask for data.
Many new CBS industrial tubes are being developed to help solve your design problems. Your CBS sales engineer will be glad to keep you posted.

CBS ELECTRONICS
 A Division of Columbia Broadcasting System, Inc.

Sales Offices:

Daveres, Mex., 100 Endicot St., SPring 4-2360. Manath M. J. 32 Green St., MArket 3.5832 - Marcen Park. In., 1990 N. Manahecim Rd., Estebrook 9-2100 - Les Ameche, Cmily., 2120 S. Gartiold Avo.,

Rd., Estobrook 9-2
RAymond 3.9081
. RETALIATORY FORCES must be "economital enough to support without undue drain on the Treasury," according to the director of the Navy's Guided Missile Div. Endorsing "a modest force of approximately 45 Polaris submarines" as the keystone of U.S. defense, Adm. K. S. Mastersin nevertheless asserted that the U.S. should n :ver become completely dependent on a single in eapor become system.

IDEAS FOR DESIGN—entry blank

To the Ideas-For-Design Editor of RLECTRONIC DESIGN 830 3rd Are., New York 22, N.Y. - PLaza 1-5530

Here is my design idea for possible publications in your Ideas For Design department I can expect $\$ 10$ for this idea if accepted for publication.
(Ideas suicable include: 1. new circuits or circuit modifications, 2. new design rechniques, 3. designs for new production methode, 4. clever use of new materials or new components in design, 5 . design or drafting aids, 6. new methods of pechaging, 7. design short cuts, or 8. cost saving tips)

STATEMENT OF THE PROBLEM-

MY SOLUTION. AND WHY_(Please be explicit. Include sketches or photos that will heip the idea across)
(Place illustrations on separate sheet if necessary)

MEETINGS

Calendar of Events

February

3-5 1960 Winter Convention on Milltary Elec. tronics, PGME, Ambassador Hotel, Los Ar. geles, Callf.
10-12 7th Annual Solld-State Circults Conference, IRE, AIEE, Hotel Sheraton, Philadelphla, Pe:.
11-12 7th Annual Cleveland Electronics Conference, IRE, ISA, AIEE, Engineering and 8cientific Center, Cleveland, Ohlo.
11-13 1st Annual Electronlcs Representatives Asso clation, Drake Hotel, Chicago, III.
*14-18 Annual Meeting of the American Institute of Mining, Metallurgical, and Petroleum En. gineers, Sheraton Atlantic Hotel \& StatlerHilton, New York, N.Y.
16-18 1st National Symposium on Nondestructive Testing of Aircraft \& Misslle Components, SRI, Hilton Hotel, San Antonio, Tex.
*19-23 3rd International Electronic Parts 8how, Paris, France.
25-26 ScIntillation Counter Symposium, PGNS, AIEE, AEC, NBS, Washington, D. C.

March
6-9 Gas Turbine Power and Hydraulic Conference, ASME, Hotel RIce, Houston, Tex.
21-24 IRE National Convention, All PG's, Waldorf. Astoria Hotel and New York Coliseum, New York, N.Y.
23-26 Electrical Industry Show and Lighting Exposition, EMEA, Shrine Exposition Hall, Los Angeles, Calif.
$24-25$ 1st Annual Symposium on Human Factors in Electronics, IRE, New York, N.Y.
29-31 22nd Annual American Power Conference, Illi. nois Institute of Technology, Hotel Sherman, Chicago, III.

April
3.8 6th Nuclear Congress, N. Y. Collseum, New York, N.Y.
6-8 Structural Design of Space Vehicles Confer ence, ARS, Biltmore Hotel, Santa Barbara, Calif.
18-19 3rd Annual Conference on Automatic Tech. niques, ASME, IRE, AIEE, Cleveland-Sheraton Hotel, Cleveland, Ohlo
19-21 International Symposium on Active Networks \& Feedback Syjtems, Department of Defense Research Agencles, Polytechnic Institute of Brooklyn, IRE, Engineering Societles Bldg., New York, N.Y.
20-22 1960 Southwestern IRE Conference, Shamrock Hilton Hotel, Houston, Texas
20-22 National Symposlum on Manned Space Stations, IAS, NASA, Ambassador Hotel, Los Angeles, Calif.
*Includes meetings described herewith
Annual Meeting of American Insfifufe of Mining, Mefallurgical, and Pefroleum Engineers, Feb. 14-18

A special forum on Navy Materials problem;

7th Scintillation Counter Symposium, Feb. 25-26
The objective of the Scintillation Counter Symposium is to bring together those interested in scintillation counters for the purpose of exchanging information on advanced techniques, recent equipment developments and new components. The meetings are on a high technical level and treat both the theoretical and practical aspects of the field. The symposium will consist of four sessions of a half-day each treating the following tupics: scintillators, photomultipliers and associated electronics, scintillation track imaging, and astrophysical and space applications of scintillation counters.
The symposium to be held at the Hotel Shoreham in Washington, D.C. is sponsored by the American Institute of Electrical Engineers, the Atomic Energy Commission, the Institute of Radio Engineers, and the National Bureau of Standards. Committee Chairman is G. A. Morton, Scintillaton Counter Symposium Committee, RCA Labor.tories, Princeton, N.J.

Optional Chopper Stabilization

ONLY ${ }^{\circledR}$ REGATRON

PROGRAMMABLE POWER SUPPLIES

HAVE ITI

0.01% or 0.003 V from no load to full load . . . this is the conservative regulation specification for Regatron Programmable Power Supplies equipped with chopper stabilization. And just as important, chopper stabilization assures a higher order of regulation and stability at every output voltage, even at fractions of one volt.

There are other advantages too: Chopper stabilization provides for exceptionally high repeatability of voltage control settings . . . enhances
remote control operation.
And chopper stabilization can be specified at any time. The compact plug-in unit can be installed at the factory as an original accessory, or it can be installed in the field. A complete kit is available for field installations. Instructions and all hardware are included.

Ask your local E / M representative for more information, or write . . .

- registered u.s. patent office. patents issued and pending.

ELECTRONIC DESIGN • February 3, 1960

...flexible molded nylon cable hangers that solve almost any problem in wire and cable support, whether it's STRENGTH (hold over 200 lbs .), WEIGHT (only 30% of comparable metal clips), insULATION (will not ground or short), environmental resistance (withstand temperatures from- $60^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}$, oils, gasoline, other fluids), PROTECTION (fully protect cable insulation), RANGE (17 sizes for single cables or groups from $1 / 8^{\prime \prime}$ to over $2^{\prime \prime}$ diam.).

Get your free NYLOCLIP sample from OMATON DIVISION

Versatile Crimped Connector For Miniature Coax Cable

A highly versatile crimp-type snap-locked modular HYFEN ${ }^{\text {® }}$ connector for miniature coaxiald cable has been introduced by the Omaton Division of the Burndy Corporation, Norwali, Connect. This modular HYFEN offers the facility of simple removal of individual snap-locked contacts or gang disconnect.

Both inner and outer contacts are crimped to the conductors, simplifying a previously complicated and difficult process. In addition this process eliminates many of the parts formerly used, and also eliminates any heat in the connection process. The result is a reliable coax connection, easily and quickly installed.
The new plug-and-receptacle unit will presently connect RG195U and \#24 shielded miniature coax cable. Connectors for other sizes of miniature coax will be available soon.
Connector frames, of die-cast anodized aluminum, accommodate three, five, or eight inserts, snapped in from either front or back. Inserts for coax cable, of glass-filied diallyl phthalate, accommodate up to 21 contacts. A plug or receptacle insert may hold male or female contacts, or they may be intermixed. Coax cable inserts and standard wire inserts (35 contacts) may be mounted in the same frame.
Contacts can be crimped to cable ends either before or after the harness is in place. Engaging and disengaging forces of low magnitude make it easy to insert, remove, and replace contacts and inserts individually for flexibility and economy in circuit changes and checks.

Burndy Corporation, Norwalk, Connect. CIRCLE 23 on reader-Service card
ELECTRONIC DESIGN • February 3, 1960

EDITORIAL

U. S. Must Demand Radio-Frequency Interference Control

Just how important is the problem of radio-frequency interference?

On boarding an airliner at Chicago last fall, I, along with all the passengers was reminded over the PA system that all portable radios were to be turned off during flight. It was World Series time, however, and several passengers could not resist "sneaking a listen" from transistor radios concealed under their jackets.

Departure was delayed. Soon the stewardess announced that take-off was impossible; the flight engineer was picking up extraneous signals. Again the passengers were requested to cooperate, and this time they complied. The trip proceeded.

Could serious consequences or a major disaster have resulted if just one avid fan decided to check the score? How scornful can we become of the seriousness of radio-interference? Already missile failures, loss of key communication in defense links, computer errors and blanked radar screens demonstrate the havoc resulting from radio-frequency interference.
Considerable engineering effort has been expended to create receivers with less than one-tenth microvolt sensitivity. Similar zeal has been applied to engineer sharp-pulse, high-power transmitters, complex military systems, and high-speed computers.
At the same time the number of electronic devices for office, home and industry is increasing. But these achievements only aggravate the problem of RFI; each new device is a potential source of interference.

All major countries except the U.S. impose close restriction on radiation and have engineering teams checking and locating RFI sources. While U. S. military agencies limit and control interference in defense equipment and installations, the Federal Communications Commission ruling on non-military devices does not make it mandatory that the manufacturer produce in-terference-free devices. Instead the consumer or user is responsidle for controlling interference!
Why approach the problem from the wrong end? Interference complaints pile up under this system, and only the most flagrant can be checked and corrected through the limited facilities of the FCC.

It is up to the Government to insist on strict interferencecontrol by the manufacturer. The sooner the better!
Noward/Biermen

MODEL DS SERIES DEKASTAT " - Precision decade resistors for panel mounting, featuring the exclusive ESI DEKADIAL concentric dial assembly for convenient straight line readings. Total resistance values available from 1,200 to 120,000 ohms with accuracy of $\pm 0.05 \%$. Power rating, $1 / 2$ watt per step. 3 or 4

MODEL DB SERIES DEKABOX Pres decade resist series DEKASTAT units, but conveniently mounted on an adjustable base with series DEKASTAT units, but conveniently mounted on an adjustable base with binding posts. Features ESI DEKADIAL design for straight line readings. Total resistance values available from 12,000 ohms to 1.2 megohms with accuracy of ± 0.05 a a from stock. Price: $\$ 73.00$ to $\$ 151.00$.
MODEL RS SERIES DEKASTAT ${ }^{n}$ - Rack-mounted precision decade resistors. Adjusted to very close tolerances for use as laboratory resistance standards. Independently operated dials provide both coarse initial steps for quickly approximating the required value and progressively finer steps for more exact settings. Less than 10 $\mathrm{ppm} / \mathrm{C}^{\bullet}$ temperature coefficient. Total resistance values to 1.2 megohms. Accuracy 0.02\%. Six decal
Price: $\$ 550.00$.

ESI has outstanding fob opportunities for experienced design and applications angineorf. Call or write C. Dovifo CIRCLE 24 ON READER-SERVICE CARD

Radio Frequency Interference

An ELECTRONIC DESIGN Staff Report
Howard Bierman
Associate Editor

Causes and Effects

Suppression Techniques
Measurement Methods

Prediction Approaches

Trouble Shooting Procedures

MOUNT a costly, highly sensitive receiver near equipment containing pulse and switching circuits, relays and oscillators and what do you have? An expensive and impressive guarantee of unreliable and ineffective performance-unless pains have been taken to eliminate radio-frequency interference.
Years ago many design engineers who were cautioned on the need for RFI suppression in-
quired, "Why bother?" After viewing missile failures, listening to garbled communications and inspecting blanked radar screens, their question has now changed to, "How can RFI be effectively eliminated?"

Interference Sources

Before attempting to eliminate it, however, let's examine its nature.

Radio interference may be defined as any electrical disturbance that causes undesirable response or malfunctioning of electronic equipment. Basic sources of interference include:

- Sine-wave signals from transmitter harmonics, diathermy or oscillator leakage.
- Wide-band output from bearings, belts or fluorescent fixtures.
- Impulse or sharp-pulse waveforms from high-voltage supplies, ignition systems or switching transients.

Basic Phases of RFI Efforts

Interference control and suppression may be basically subdivided into four categories:

- Prediction-by careful analysis and examination of circuit parameters, equipment charac-
teristics and operating frequency, it is possible to predetermine the location and level of interference. Steps can then be taken to allocate frequencies and separate systems for minimum interaction.
- Early design precautions-by keeping RFI in mind during each phase of development, inter-ference-free "building blocks" can be tied to gether in a final package relatively free of RFI.
- Trouble-shooting-crowding many systems in a small area, such as aircraft, submarines or remote base shacks, often poses problems due to mutual interaction. Cables may require rerouting or power line feeds additional filtering. Individual shielding enclosures may also be necessary. Rapid and direct pin-pointing of trouble spots is a must for effective trouble-shooting.
- Measurement techniques-methods of measuring and tolerable limits must be established and followed. Standards set by the mili tary are presently adhered to, since the Government is the biggest buyer of electronic equipment.

'Brute Force' Vs Planned Attack

Two basic methods of attack are possible. First is the "Christmas tree" approach of hanging
hokes and capacitors on equipment previously de igned without regard to RFI. This is expensive, cre ates additional size and weight problems and is conducive to inefficiencies since it is generally applied in a frenzied haste.
Preventive design steps in the early stages of equipment or system development offer a second means of control, one more professional and intelligent. Careful evaluation of shielding needs, late developments in components and circuit layout can be coupled with previous experience in RFI problems to meet even the most rigid specs. By carefully guarding interference leakage at individual stages of progress, the possibility of overall deterioration at the project's completion is drastically reduced. Also, a steady, well-planned uippression program is always more efficient than the last-minute "brute-force" remedy.
This does not mean that final touchup will be unnecessary; minor modifications often arise due to interaction when several units are interconnected. But such changes are obviously more readily applied than those resulting from designs devoid of RFI forethought.

Growth of RFI 'Missionaries'

The military was introduced to the destructive effects of RFI during World War II. Radar and communication transmitters created havoc with nearby receivers, airborne equipment and sensilive instrumentation. Messages were distorted or lost completely, radar displays were blanked out, and tragic losses were directly attributed to intererence.
Consequently specifications were prepared by he military branches, and tolerable limits with nethods of measurement were outlined. UnforInnately only a handful of engineers were experienced in the rather ticklish task of locating and :ontrolling RFI. Government manuals were disributed as an aid to the design engineer conronted with curbing RFI on a crash-program pasis.
A giant step in the dissemination of RFI suppression techniques and measurements was made n 1954 through the organization of the First Conerence on Radio Frequency Interference, jointly ponsored by Government agencies and the Arnour Research Foundation of the Illinois Institute ff Technology. In 1957 the Professional Group on Radio Frequency Interference was established vithin the IRE. More recent conferences have ince been sponsored by the Government, the Hnour Foundation and the IRE group. From these meetings, heavily attended by engineers to n all parts of the country, important advances rave been announced. Suppression techniques av e been presented as an extremely helpful guide design engineers, and moves have been
launched to standardize measurement definitions and methods.

Rigid Specifications Demanded

Almost every piece of electrical equipment now purchased for military use must comply with rigid specifications. Generators, hand tools, motor vehicles and table radios are typical potential interference sources; each could conceivably disrupt communications, computer accuracy or telemetry -hence the rigid specs. Needless to add, electronic equipment must pass a wide variety of tests to qualify as trouble-free. As difficult as these specs may appear, experienced RFI engineers realize
that careful consideration during initial design offers the means to success.

RFI Elimination a 'Must'

To escape chaos, complete control of RFI will be a necessity in the coming years. More computers, TV sets, electronic toys, space vehicles, communication links, machinery and countless other devices will be crammed into an already crowded spectrum. Or, as Rexford Daniels, president of Interference and Testing Laboratory, Inc., put it: "Mankind can no longer hope to operate a micro-volt civilization in a millivolt environment." - ■

There's More Ahead ELECTRONIC DESIGN RFI Series Will Appear in Several Issues

Thousands of design engineers are directly or indirectly involved in suppressing radio frequency interference. Because editorial material for the engineer seeking theoretical and practical RFI information is somewhat limited, ELECTRONIC DESIGN invited specialists in the field to prepare a series of special RFI articles. Inferference-control engineers, who have spent years trying to get other engineers to heed their warnings, responded with enthusiasm. The opportunity to "spread the word," many felt, would help hammer home the serious message predicted at recent IRE conferences:
"Unless interference control is completely effective, communications and electronic automation will be severely limited in operation and reliability."
ELECTRONIC DESIGN's RFI report will include articles covering the important phases of interference work: prediction, preventive design, troubleshooting and measurement. The articles will appear in several issues. Following are the titles and authors of the articles devoted to RFI:

RFI-Today and Tomorrow

- RFI-AN UP-TO-DATE SURVEY, R. Schulz, Armour Research Foundation.
FCC CONTROL OF RFI, J. Deitz, Federal Communications Commission.
RFI IN SPACE VEhICLES, J. Lee, Melpar, Inc.
Prediction Techniques
methodology of interference prediction, W. Floyd of Melpar, Inc.

Bailey, Georgia Institute of Technology. prediction of receiver intermodulation, C. E. Blakeley, Georgia Institute of Technology.
PREDICTION OF TRANSMITTER INTERMODULATION, R. N. Preventive Design and Trouble Shooting

- Checklist of rfi, L. W. Thomas, Navy Bureau of Ships.

RFI Gasketing, O. P. Schreiber, Technical Wire Products, Inc.

- OPTIMUM SHIELDING DESIGN, A. Albin, Filtron Co., Inc. DISSIPATIVE FILTERS FOR SWITCHING CONTACTS, R. Schulz, Armour Research Foundation
generation of high-power sin² video pulses, A. f. Standing, Avco Corp.
- interference trouble shooting, t. H. Herring, Boeing Airplane Co.

Measurement Techniques
government specifications and measurement techNIQUES, A. R. Kall, Ark Engineering Co.
CALIBRATION OF RADIO NOISE Interference meters, M. J.
Rodriguez, Polarad Electronics Corp.

- appearing in this issue.

R. B. Schulz, H. M. Sachs, G. C. Vallender

Armour Research Foundation of
Illinois Institute of Technology
Chicago, III.

With government agencies insisting on tighter RFI control, design engineers are becoming increasingly aware of the need for interference reduction in early design stages of equipment and systems. Since many interference-suppression devices, components and techniques have been innovated recently, this roundup of the latest in RFI developments brings the design engineer up-to-date in all important phases of a relatively new field.

Fig. 1. Block diagram of a variable-gain device which permits if-bandpass control. Desired signals cannot pass through bias-supply filter and therefore no rectified bias voltage appears to cut of the auxiliary amplifier. Undesired signals are passed by the filter and develop sufficient bias to cut off the auxiliary amplifier to prevent output to the detector stage.

WITH THE ever-increasing number of electronic system installations, interference problems associated with operation of electronic devices in close proximity have multiplied drastically. Missile failures, communication jamming and radar blanking are but a few of the direct catastrophies traced to radio-frequency interference.

To maintain a semblance of order and intelligence in the growing chaos of spurious signal radiation, considerable research and development efforts have been devoted to the suppression and control of RFI. Recent advances in communication and radar systems plus latest instrumentiltion techniques are presented to acquaint the design engineer with the up-to-date "state-of-the art" picture.

CommunicationsSystems

Theoretical and experimental investigation of the interference problems in the area of communications systems has shown that a major callse of interference is receiver intermodulation. Inter modulation is defined as the production of a signal at a receiver response frequency by the mixing of two undesired signals in the receiver's rf amplifier and/or converter stages. Receiver intermodulation susceptibility can be decreased by improved if-circuit dynamic range, improved rf preselection, and use of if-circuit bandwidths no greater than necessary for information-hathdling requirements.

Ref-circuit dynamic range can be improved by the extensive utilization of age circuits. Although other specialized circuits can be used, age is the simplest method of implementation.

Rf preselection can be obtained by active of passive devices which reduce the bandwidth o rf stages. The state-of-the-art is such that coupling networks and cavities can be produced which

Dek Schulz has devoted the past 15 years to the task of keeping RFI under control. H became involved in interference work as a research associate at the University of Pennsylvania, followed through as a consultant in private practice and joined ARF in 1955. He holds several patents on RFI suppression devices and has authored and delivered numerous papers on the subject. ARF Conferences on Radio Interference Reduction and Electronic Compatibility are well-known for high quality papers and presentations-Dick is one of the active organizers responsible for their success and popularity.
f elcc- provide improved selectivity; however, the major problem lies in the "ganged tracking" of tunable rf and converter circuits. Within the past year, narrow-band cavities have been used in uhf equipment, resulting in improved off-frequency rejection, even though tracking techniques require lurther development. $\left.{ }^{51(}\right)$ In addition to reducing intermodulation effects, preselection also helps in reducing local oscillator radiation.
The third intermodulation-reduction technique requires the use of if-circuit bandwidths that are minimized with respect to the various modes of intelligence transmission. An example is the different number of sidebands required, and hence different bandwidths necessary, for voice and cw operation. A second example is a search recciver where a wide if-circuit bandwidth is needed to search a given band as rapidly as possible to find desired signal; afterwards, a narrow bandwidth is used to reduce the sensitivity of the receiver to near-channel distracting signals.
In present-day systems, mechanical and cryst?| Filters are being used to provide necessary bandwidth. Recently, circuits have been devised which nake possible an electronically controllable bandpass for if amplifiers. One method ${ }^{14}$ provides a change in bandpass as high as 20 to 1 in a $30-\mathrm{mc}$ strip with very little change in the on-frequency \&ain. The circuits varies the bandwidth by adjusting the bias of a control tube. The output of this stage results in an effective change of circuit Q in a narrow-band amplifier stage.
The block diagram for a variable-gain circuit shown in Fig. 1. ${ }^{5(a)}$ The signal from the last stage of the if amplifier is fed into both the unitygain auxiliary and bias-supply amplifiers. When the incoming signal is at the center frequency of the if system, it passes through the auxiliary an plifier to the input of the second detector. The rivents the signal from reaching the bias-supply which rectifier. If the signal is not at the if center fre-

...Everything's small but the ratings

When the "package" calls for something smaller . when the circuit calls for dependability . . . Stackpole F-Series Controls lead the way. Used on everything from transistor auto sets and pocket portables to electronic organs, these fully-proved miniature variable resisitors provide quiet, reliable operation.

Stackpole F Controls are conservatively rated at 0.3 -watts. They're available with threaded bushings or fold-tab mounts as well as with standard lugs or printed wiring terminals.

DP-ST and SP-ST "B"-Series Switches perfectly complement the small size of F Controls and give the tease-proof, positive feel and audible "click" only a true snap-action switch can provide. They're U.L. Inspected for 1 ampere at 125 volts ac-dc; 4 amperes at 25 volts dc.
For those who have no miniaturization problems, however, Stackpole also produces a complete line of standard-size single and dual controls. Send today for full details. Electronic Components Division, STACKPOLE CARBON COMPANY, St. Marys, Pa.

STACKPOLE

VARIABLE composition RESISTORS

CERAMAG* FERROMAGNETIC CORES - SLIDE AND SNAP SWITCHES - FIXED COMPOSITION CAPACITORS - COLDITE 70+0 FIXED COMPOSITION RESISITORS - ELECTRICAL CONTACTS - CERAMAGNETD CERAMIC MAGNETS • BRUSHES FOR all rotating electrical equipment - hundreds of related carbon graphite and metal power products

Üp-to-Date Survey cont.

Fig. 2. Block diagram of a gating arrangement to eliminate interference from antenna side lobes.

Fig. 3. Hall-effect sensor on a ceramic mount
quency, it is amplified in the bias-supply amplifier, passed by the stop-band filter, rectified and fed as a negative voltage to the auxiliary amplifier. By adjusting the gain of the bias supply amplifier, the circuit allows control of the if bandpass. Some information can be lost if the desired and undesired signals appear simultaneously. To minimize the loss, the recovery time of the circuit must be small.

Radar Systems

In recent years, many methods have been proposed and investigated to reduce the effects of if interference relative to radar systems. These include blanking techniques, moving-target indicators, pulse length and/or interpulse length selection, pulse compression, pulse shaping, noise correlation, delay-line video integration, and others. ${ }^{15}$ A discussion of all these techniques would fill many pages; therefore, only a few will be mentioned.

Infra-Site Systems

One of the most serious problems confronting radar operators is intra-site radar interference. The problem is very critical at air fields and longrange radar sites where several radars of different pulse-repetition rates are being operated. Two basic methods are used to reduce the interference.

In the first method, all the radars at a site are synchronized. The technique requires all radars to operate at the same or at a multiple of the pulse-repetition rate of the slowest. If all radars are operated at the same repetition rate, all mutual interference will be eliminated. In the case of synchronized high- and low-repetition-rate ra-

Fig. 4. Sensitivities better than 10^{-8} oersted are prs sible with Hall-effect sensors using flux collecting roils.
dars, interference will appear as fixed range targets.
The second method, which is proving more successful, is receiver blanking. A pre-knock pulse from the interfering radar is sent to the viction, This pulse is used as the trigger to blank the victim receiver for the duration of the interference period. The effect of target return loss due to blanking reduces the range of the radar. ${ }^{564}$ However, a very weak relationship exists between the number of returns lost and the decrease in range. Therefore, a reasonable degree of blanking will not have a serious effect upon the ef ficiency of the radar.
Interference received via antenna side lobes can be eliminated by the system shown in Fig. 2. The overall gain of the secondary channel is adjusted so it is more than that of the primary receiver at any side lobe, but less than the primary receiver at the main lobe. In operation, the signal passes through both channels; if the output of the primary channel is the larger, no gate is generated and the signal is applied to a presentation system. However, if the secondary channel produces the larger signal, a gate is generated to blank the video.

Table I. Commercial and military RFI equipment.

Pulse Shaping

Energy distribution resulting from the highamplitude sidebands associated with rectangular pilses can cause interference to other nearby radars and communications-electronic systems. Reducing the amplitude and/or number of these silebands allows operation of more equipments without mutual interference within a given frequency band.
One technique for reducing the rf spectrum bandwidth is the use of shaped pulses. Theoretical investigations have shown that an ideal shape is the gaussian shape, ${ }^{18}$ however, the major obstacle to the use of this shape pulse is its generation at high power levels. The cosine-squared shape is a somewhat more practical pulse shape
pulse to produce, and offers good narrow-spectrum claracteristics. The major obstacle to the use of slaped pulses is the inability to modulate highpower microwave tubes.

Instrumentation

liecent development work on radio-interference field-intensity meters has been concerned largely with improved accuracy of measurement and an cxtended frequency range. The major efforts in the latter case have been in the 30 cps to 15 kc and the 1 - to 15 -kinc regions. Present system development efforts include improved calibration methods and application of miniaturization techniques. Some of the latest commercially available and military interference-measuring equipments are tabulated in Table I.

Pickup Devices

In order to measure conducted radio interference, a clamp-on type rf transformer has been developed by Stoddart Aircraft Radio Company (Model 91550-1). The transformer serves as an accessory for use with interference instrumentation over the frequency range of 14 kc to 100 mc . It measures rf current up to 1 amp with power line currents (dc or ac) of up to 350 amp .
The necd for greater accuracy in the measurement of interference fields has accelerated ressarch and development work in another area of special probe design. One device presently under development uses the Hall effect to measure mag${ }^{11}$.tic fields ${ }^{18}$ in the range of 30 cps to 15 kc . A sensor based on this principle has the advantage of being small (Fig. 3), gives good signal-to-noise ratio and has a sensitivity which is independent of frequency down to zero frequency. The output of the Hall device is fed into a low-noise preanplifier to increase the level of the signal at the input of a noise meter. Present sensitivities are of the order of 10^{-4} oersted for the Hall-element alone, and less than 1()$^{-6}$ oersted for the element with flux-collecting rods added to it (see Fig. 4).

Philco, one of the world's leaders. demanded reliability, design versatility and production ease in the contact selected for the very "heart" of its InputOutput Processor-the matrix panel. And that is why Philco selected Elco's Series 5201, from our

Plug-in module, shown mounted on matrix panel utilizing Elco Varicon contacts.

these fork-like contacts with 4 mating coined surfaces, not only act as electrical contacts providing 352 switching lines when staked to the boards, but also as retaining devices to hold modules in position on the matrix. Interesting? No, astounding! Write for Bulletin 108A and our complete Catalogs-just to prove: if it's new, if it's news. it's from Elco!

"M" Street below Erie Avenue, Philadelphia 24, Pa., CUmberland 9-5500 Elco-Pacific: 2200 Centinela Avenue, West Los Angeles 64, Calif., GR 8-0671

Increased sensitivity is possible using refined technicues.

Thermistor Bridge

The accuracy of amplitude calibration of radio-interference/field-intensity meters frequently sutfers because the input impedance of the instrument may vary with frequency and may not provide a matched load for the calibration generator being used as a known source. Consequently, the voltage across the interference meter input terminals may not be that indicated by the generator output controls. Even for cases of proper loading of the signal generator, its output may be incorrect due to a change in its calibration since its previous calibration check.
A calibration instrument containing a thermistor bridge is being developed to measure the rf voltage directly across the terminals of the interference meter. ${ }^{(6)}$ In order to achieve $5-\mathrm{mv}$ sensitivity with good stability, temperature compensating thermistors are used in the bridge proper. When the bridge is used with coaxial attenuators in a special measurement procedure, the overall calibration instrument is useful to 50 mv .

White Noise Generator

Inconsistencies had been noted in the calibration of random noise generators. A generator is presently being developed as a laboratory standard source of noise from which other types of noise generators can be calibrated. ${ }^{18}$ The generator, which is useful up to 1000 mc , uses the basic Nyquist relation to determine the noise power available from a heated resistor. This noise power is proportional to the resistor temperature, a quantity which can be controlled and measured.

Traveling-Wave Tubes

There are many advantages which can be obtained by employing an rf amplifier in a microwave interference meter. In a recent paper by J. L. Smith, ${ }^{(6)}$ the particular advantages of a low-noise traveling-wave tube for this purpose are presented. A TWT with low-noise figure and adequate amplification will make the overall system noise figure independent of the properties of the mixer crystal. In addition, such an amplifier has the ability to saturate, and will provide the crystal mixer protection during periods of of overload.

The tube can provide 40 to 60 db of isolation between the instrument input and its local oscillator. TWTs have been built with 3 - to 4 - db noise figures. When such units become commercially available, they should be well suited for

Fig. 5. Construction of a coaxial device to measure the shielding performance of conducting materials.
use in microwave interference-measuring equipments.

Shielding Measurements

In order to measure the performance of conducting materials as shield against electromagnetic radiation, a coaxial testing device was recently developed. ${ }^{6(d)}$ Within the coaxial structure, the field of a TEM mode has an impedance equal to that of a plane wave. When such fields are incident upon a lamina inserted in the samplereceiving portion of the device (Fig. 5), the measured ratio of the transmitted-to-incident waves is a measure of shielding performance for planewave impedance fields.

Fig. 6. (right) One technique of obtaining antennapattern data involves the use of a reflecting target from which radiated energy is redirected to ground and recorded.

When the shielding material is used as the walls of an enclosure, the effects of power inlets. metallic junctures, and other imperfections will cause the shielding capability of the room to be less than might be predicted on the basis of material alone. New techniques have been investigated for evaluating the performance of complete shielded enclosures over the frequency range of 14 kc to $10 \mathrm{kmc} .^{(6)(y)}$ Tests at three different portions of this spectrum are suggested.
At 15 kc , large transmitting loops which surround the enclosure are used to immerse it in a low-impedance field. An average indication of shielding effectiveness is obtained by the use of a pickup loop in the center of the room.
In the mid-frequency range, the shielded enclosure is illuminated by radiation from a halfwave antenna at the enclosure's lowest natural resonant frequency, which generally occurs in the region of 20 mc to 100 mc . The field inside the shielded enclosure is detected by a short-dipole antenna.
Tests near 9 kmc include the illumination of the shielded enclosure by plane waves from a high-energy source. The effect of shield separation, in the case of cloubly shielded rooms, and the size of perforation openings, in the case of screening-type material rooms, were investigated.
These techniques are presently being examined as a basis for revision of military specification MIL-STD-285, and also as a basis for an IRE specification on techniques for measuring shielded enclosures.

RF Leakage of Transmitters

Substitution techniques are certainly not new. but their application to the measurement of in-
trference radiated from cabinets and external viring of high-power transmitters is a novel approach. ${ }^{6(e)}$ The transmitter is operated into a "ell-shielded dummy antenna to obtain only case and wiring radiation. The substitute power is an rf signal source used in conjunction with a dipole antenna located at a distance within three feet tennas are used at an adjusted frequency of operation. It is not possible to build models which are scaled exactly in physical or electrical characteristics. Sciled analysis at other than the fundamental system operating frequency has not been attempted.
Mounting the antenna whose pattern is to be measured on a special platform which, in turn, can be oriented so that the antenna will effectively be laying on its side. Then azimuthal pattem cuts with respect to the platform can be related to elevation cuts of the antenna. In addition to requirements im-

ELECTRONIC DESIGN • February 3, 1950
of the transmitter. Thus, essentially the same path

 \section*{WRIGHT
 \section*{WRIGHT

 buality

 buality

 FOR REQUIREMENTS UNUSUAL

 FOR REQUIREMENTS UNUSUAL

 GHT}

 GHT}

These stator and rotor combinations in flat design illustrate Wright Machinery's motor engineering and production capabilities. They are ideal components where the motor is built in and a conventional motor housing is not needed.

One class is the torquer, where the motor never attains running speed. They are made with 20 poles, generally two-phase 400 cycles; and are used, for example, to slave or precess a gyro. A skeleton type multi-pole slow speed servo may have real merit as compared with a high speed control motor with large ratio gearing. Currently, we are producing a two speed motor to operate at 600 and 300 rpm synchrous speeds on 60 cycles.

Another class is for gyro spin motors wherein the stationary wound element is inside, and the rotor is embodied in a fly wheel for high inertia. Wright "pancake" type units can also be supplied as synchros and resolvers.

If your precision motor requirements go beyond the catalog type, consult Sperry Rand's Wright Machinery division.

> RIGHTMCennay COMPANY oIVIIION OF SPERRY RAND CORPORATION DURMAM, NORTM CAROLIMA

Sales Offices in Durham, N. C.; New Hyde Park, Long Island, N. Y.; and El Segundo, Calif. circle 27 ON reader-service card

Up-to-Date Survey cont

posed on a platform, one must be able to interpret the recorded patterns in terms of the actual antenna orientations.

- Use of a reflecting target from which the antenna radiated energy may be redirected toward the ground ${ }^{\text {(1/f }}$ and there recorded. (See Fig. 6.) A field-intensity meter is used in conjunction with a highly directional antenna
to measure the reflected signal. This approach is currently being evaluated.
- Representation of the statistical distribution of antenna gain, instead of the gain characteristic itself. Fig. 7 shows the normal representation of antenna gain versus azimuth for a given antenna. Fig. 8 shows the statistics of the pattern of Fig. 7, that is, the probability that the gain of the antenna in any particular direction (where any direction is equally likely) is above a specified level. ${ }^{22,23}$ It is hoped that this approach will lead to considerably simpler methods of obtaining and
describing three-dimensional antenna cha acteristics.
New communications-electronics applications radar, radio astronomy and the reception of we: k signals emanating from orbital vehicles and spare probes have led to the development of very larg : high-gain electronically and mechanically stetrable antennas. At the same time, more emphas is has been placed on decreasing antenna side lob:s and reducing major-lobe beamwidths. These larset gains and physical sizes may require modification of the above methods before the gain information can be obtained.

Table II. Shielding Effectiveness Factor (SEF) data, for coaxial cables at 350 mc , show good agreement between a new triaxial technique and the free space method.

Type of Cable		Free-Spofe Method (Electric Field Basis)	Tri-Axial Tesfer
RG-59/U	(S)	1.2×10^{-3}	2×10^{-3}
RG.8/U	(S)	8.5×10^{-4}	9.2×10^{-4}
RG-29/U	(S)	7×10^{-4}	1.1×10^{-3}
RG-158/U	(D)	8×10	1.8×10^{-4}
RG-6/U	(D)	$1.3 \times 10^{-}$	1.1×10^{-5}
RG.55/U	(D)	9×10^{-1}	1.0×10^{-5}
RG-13/U	(D)	8×10^{-6}	7.3×10^{-7}
RG-X9B	(D)	8×10^{-6}	1.2×10^{-5}
RG-5/U	(D)	$1.3 \times 10 \%$	1.1×10^{-5}
RG.9/Ua	(D)	1.3×10^{-7}	
RG-9/U	(D)	5×10^{-13}	9.4×10^{-7}
$\begin{aligned} & (S) \text { - Singl } \\ & \text { (D) - Doul } \end{aligned}$	Bra		

Components

Within the past few years, many advancements Inve been made in the development and evaluation of components. Again, the list is extremely long and only the most recent and useful will be discussed at this time. These include areas of microwave filters, rf coaxial cables, semiconducturs, ferrites, and low-noise components.

Filters

Filters have been developed, for operation in the S-band microwave region, ${ }^{-4}$ with a harmonic rejection ratio of 60 db and are capable of handling approximately 1 megawatt of peak rf power. It has been noted that, on the average, the strongest harmonic of a transmitter is 4.5 db below the output of the fundamental; thus, application of such a filter would reduce the maximum harmonic output to 10.5 db below the fundatmental. It is expected that present developmental (ffort will reduce the level to -150 db by the mid-sixties. One program, in progress to develop ligh-powered filters, is also investigating the sources which gencrate spurious and harmonic frequencies, and considering methods for decreatsing these undesired outputs.

Rf Coaxial Cable

A study has been undertaken by Robl and Schatz to define the shielding effectiveness of braided coaxial cable. ${ }^{5(y)}$ The triaxial measurement system which has been used previously provides information for frequencies below 350 mc . At higher frequencies, measurements are more difficult and the complex results are often hard to interpret. With the new technigue, measurements are made of the leakage fields from a shortcircuited coaxial cable radiating as a monopole artenna above a ground plane, and the results are compared with a theoretical analysis of radiation due to a current source having the same distribution as the current within the coaxial cable. t Shielding Effectiveness Factor (SEF) has been defined as the ratio of the experimentally determined leakage field to the theoretical calculation, for a given current. For perfect shielding, the SEF is zero and for no shielding it is one. In the far field, either the electric or magnetic fields can be used as a reference for SEF. Table II provides SiF data for the axial component of the electric field. The data showṇ in column three, which W, s taken using a triaxial technique, shows good asreement with the free space method. ${ }^{24}$

Silicon Diodes

Radio-interference measurements performed on

- RISE TIME OF LESS THAN 2.5 MILLIMICROSECONDS - REPETITION RATE OF 10 cps to 10 Mc

plus these other features

- PRECISION PULSE WIDTHS 2.5 to 25 millimicroseconds
- INDEPENDENT OUTPUTS Two fully controlled 0.8 volt outputs
- FLEXIBLE Internal or external drive, provision for external gating and single pulse operation
Here is a new all-electronic instrument with the performance features and quality engineering - you need for advanced applications.
The 120B's fast rise time and high repetition rate make it unexcelled for general laboratory use in development, production and testing of diodes, fast transistors, cables, pulse transformers, delay lines and video amplifiers... for development and check-out work in the computer field, for rf applications, and in nuclear test work. For more information on the $120 B$ or other E-H pulse generators, write or wire $E-H$.

SPECIFICATIONS

RISE TME (10% 10 90%)
Less than 2.5 millimicrose
Less than 2.5 millimicroseconds
PuISE WIOTH
PUISE WIOTH
2.5 to 25 millim
REPETHTION RATE (External or Internal)
LO
10 cps to 10 Mc
outpurs
TTwo Independent Output Channels).
Amplitude, 0 to minus
volts (use E.H
Amplitude, o to minus 8 voltrs (use E -H
model IT
pulse
transiormer for
polarity inversion and impecance

trigere output
Positive 15 volt pulse
COMMECTOAS
All
日NC tyye
All BNC type
TRIGGER AOVANCE
120
millimicroseconds
EXTERMAL DRIVE
Delay. 50 millimicroseconds
Amplitude required, 3 volts rms

Gating time. less than
100 millimicicoseconds
100 millimicroseconds

E-H RESEARCH LABORATORIES, ING.
1922 PARK BLVD. - GLENCOURT 2.1314 • OAKLAND 6, CALIFORNIA

Up-to-Date Survey

tremely high-far in excess of military specification M1L-1-6181C. An oscillogram of diode current shows that interference is produced by a large reverse-current spike. In an investigation by Nichols, ${ }^{5(h)}$ two different diodes were evaluated, and it was found that the IN 333 was a much better unit than the IN 345 from a radio-interference standpoint. Nichols also gave some important "rules of thumb" to help the design engineer to select the proper diode:

- Select a diode which will operate at the lowest current density in proportion to the manufacturer's maximum rated current.
- Select a diode with the highest rated working and peak inverse voltage.
- Use the lowest possible switching rate. This approach is contrary to normal application since the maximum switching rate, that is a three-phase bridge over a simple bridge, is usually preferred to reduce ripple and the need or subsequent ripple filtering. However, in most applications, the auclio filter and rf filter combined will be smaller in size than the ripple capacitor-rf filter for the higher ripple frequency.
- Select diodes with the slowest recovery time
- After several diodes have been selected on the above basis, they should be measured to determine which is the best diode from an rf standpoint.

Fig. 10A. Power-transmission line wrapped with high-mu tape to attenuate RFI radiation.

Fig. 10B. Measured data on experimental power-line conductors wrapped with high permeability tape.

- Corrective measures for reduced rf outp it can be taken, as shown in Fig. 9. All of the circuits or component additions reduce bo h the current spike and/or present a low in pedance load to the high frequency oscill 1 . tions of the current spikes.
Circuits A and C should be used for currents w. der 1 amp while circuit C is preferred as $t / 1$ power line frequency is increased. The capacit, rs shown are in addition to the normal electrolyt es used to regulate ripple. Foil or pellet types of tantalum capacitors can be used for both rf bypass and ripple filter. Table III gives the ran se

(a)
(c)

(e)

-

(b)

Fig. 9. Corrective measures to reduce RFI in full-wave bridge rectifiers.

Table III. Component values for the corrective circuits shown in Fig. 9.

Fig. 9	$\begin{array}{\|c\|c\|} \hline \text { Comen- } \\ \text { ponent } \end{array}$	60 cps	400 cps
A	L	100 to $300 \mu \mathrm{~h}$	250 to $750 \mu \mathrm{~h}$
B	C	0.1 to 0.5 mfd	0.1 to 1.0 mfd
C	b	$\begin{aligned} & 100 \text { to } 300 \mu \mathrm{~h} \\ & 0.1 \text { to } 0.5 \mathrm{mfd} \end{aligned}$	$\begin{aligned} & 250 \text { to } 750 \mu \mathrm{~h} \\ & 0.1 \text { to } 1.0 \mathrm{mfd} \end{aligned}$
D	C_{1} C_{2} L	0.1 to 0.5 mfd Ripple capacitor Ripple and rf inductance	0.1 to 1.0 mfd
E	R	1 to 10 ohm	1 to 10 ohm
	c	-	0.05 to 0.25 mf
F	c	0.05 to 0.25 mfd	0.05 to 0.25 mfd

Table IV. Basic characteristics of recent low-noise devices.

Techniques	Frequency Range	Typical Operation			Remarks
		Noise Figure	Gain	Band Width	
A. Maser	300 MC to 30 KMC	Nearly ODB	13 DB	67 MC (116 KMC	Super Cooling Needed
B. Parametric 1. Ferrite	$\begin{aligned} & 1.5 \mathrm{KMC} \\ & \text { Up } \end{aligned}$?	60 DB	2 MC (11 6 KMC	Electromagnet Needed
2. Semiconductor Diode	Up to 10 KMC	<2 DB	20 DB	2 MC (11 6 KMC	Most Advanced Design
3. Electron Beam		<2 DB	30 DB	150 MC (11600 MC	In Early Development Stages
C. Low Noise TWT	$\begin{gathered} 1 \mathrm{KMC} \\ 12^{\mathrm{Ko}} \mathrm{KMC} \end{gathered}$	2 DB	25 DB	$2 \mathrm{KMC} \mathrm{(112} \mathrm{KMC}$	Significant Improvement over Past Performance

.

R_{1} low-
 low-

take
and
locit
muc
strue
sthap
stap
mini
shou

loss
D

the ${ }_{T l}^{\text {gitio }}$
Th
tape
resul
ergy
nerm
lines. ans
ne
nerm
of th
on rm
on
ects
ent
of values required for effective suppression. Whenever possible, electrostatically shielded trinsformers ${ }^{1}$ should be used to reduce radio interference conducted along the ac lines.

Ferrites

Recent investigations into the use of ferrites for low-frequency filter systems have been undertiken, since the combination of high permeability and dielectric constant cause the propagation velocity of electrical energy within the ferrite to be much lower than that in air. The reduced propagition velocity allows resonance within small structures. This property permits small ferrite shapes to be combined with capacitors for use in miniaturized radio-interference filters. Such filters should be additionally effective because of the loss characteristics ${ }^{5(i)}$ of ferrites.
Despite the apparent advantage of ferrites as the dielectric in coaxial filters, results of investigations have not yet arrived at practical units. ${ }^{5(j)}$ The application of a high-permeability SiFeMg tape to a transmission line, as in Fig. 10A, can result in high attenuation of radio-frequency energy in the range of interference frequencies normally encountered on power transmission lines. ${ }^{641}$ Analysis of conductors coated with a high-permeability material shows a large increase in skin-effect losses at frequencies above the power transmission frequency. Experimental data made on three conductors wrapped with a thin, highpermeability tape is shown in Fig. 10B. A small helical air gap was formed in the wrapping of two of the transmission lines to reduce saturation effects which might occur on lines distributing power. The attenuation measured on these lines was about half that of the fully wrapped line, but gave much lower standing wave ratios and a low characteristic-impedance phase shift. The attenuation of these lines was large compared to the attenuation of a bare line. It is expected that highpermealility tape coatings with a gap will prove to be a useful and practical technique for reducing interference on power transmission lines.

Low-Noise Devices

During the past several years, radically new types of microwave amplifiers have been developed. These include low-noise traveling-wave tubes; masers; diodes electron beam, and ferrite p.rametric amplifiers noted in Table IV. In the viry near future, these extremely low-noise devices will find applications in communications and ridar equipments, and may impose problems in
 poblems are treated, the significant improvement ii the noise level of these devices over conven(i) nal components will require the investigation 0. new and refined methods of improving the e ectromagnetic environment. - -

Experience-the added alloy in A-L Electrical Steels

Greater permeability for Allegheny Ludlum's AL-4750...and it's guaranteed

promises more consistency, higher predictability for magnetic cores

AL-4750 nickel-iron strip now has higher guaranteed permeability values than ever before. For example, at 40 induction gausses AL-4750 now has 57% higher permeability than in the past, using the standard flux density test.

This greater permeability means better consistency and predictability for magnetic core users . . . and allows careful, high performance design.
This improvement in AL-4750 is the result of Allegheny Ludlum's continuing research on electrical alloys and
nickel-bearing steels. Moly Permalloy has been similarly improved in permeability. A-L constantly researches silicon steels, including A-L's well-known grain-oriented silicon, Silectron, and other magnetic alloys.
Complete facilities for the fabrication and heat treatment of laminations are available at Allegheny Ludlum. And A-L's technical know-how guarantees you close gage tolerance, uniformity of gage throughout the coil and minimum spread of gage across the coil-width.

If you have a problem on electrical steels, laminations or magnetic material, call A-L for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa. Address Dept. ED-26.

Export distribultion, Laminations: AD. AURIEMA, NYC 4

HETHERNGTON
 SWITCHES • INDICATOR LIGHTS • SPECIAL ASSEMBLIES

ENGINEERINGNEWS

Space-Saver Toggle Gives Big Switch Performance

When it comes to making a real saving in space, this new SP-DT Hetherington Toggle Switch is the answer. It is only 11/2.2" in diameter by $1 \% 2^{\prime \prime}$ long. It weighs less than $1 / 4 \mathrm{oz}$. Yet it breaks 5 amp . resistive loads at 28 volts dc ($21 / \mathrm{amps}$ @ 115 v ac) for 50,000 operations.
Best of all, Hetherington's teaseproof cam-roller snap-action gives the T3103 the "feel" of a real heavy-duty switch. Details are in Data Sheet S-3a.

The Swifch Design That Says

"NO FOOLIN"

No Tease . . . No Deceptive Clicks

Higher ratings in smaller, lighter-weight switches are made possible by this little beryllium device . . . the heart of every Hetherington snap-action switch.

A polished tapered rod operates through two compression springs in the shorting bar and against the return spring. Its lightning-fast, double-break snap action reduces arcing and contact welding to negligible proportions-even with high momentary overloads. Contact pressure is actually greatest at the point of "make" or "break" thus preventing deceptive "clicks" or contact teasing.

CIRCLE 827 ON READER-SERVICE CARD

Relay, Switch, arsd Pilot Light Functions in One Unif Only $15 / 16^{"} \times 33 / \mathbf{n}^{\prime \prime}$

This "control engineer's delight" does the work of two conventional switches plus a holding relay and an indicator light. All of this is accomplished in only a fraction of the space, weight, and wiring needed for separate components.

Once the button is pressed, a built-in 28 -volt solenoid holds the switch on contact until either the coil circuit is externally interrupted or the button is pulled out. A built-in indicator light shows when the coil circuit is energized

Modifications of this basic Hetherington Holding Coil Switch design include a variety of circuit arrangements. Pull-on and push-on pushbutton types as well as a toggle type are available. Their many aviation and industrial uses center

CIRCIE

around jobs where the switch is manually "closed" to start an operation; then electrically "opened" at the end of the sequence. In an emergency. the switch may be manually opened in the middle of the sequence if desired.

W-I-D-E Angle Visibility from Indicafor Lights only I $1 / 6 a^{"}$ Long

Almost 50 percent of the surface of these tiny units is useful illumithese tiny units is useful illuminated area. Thanks to a speciallybeveled lens cap, light is "piped" evenly throughout the entire lens.
Full 180 -degree visibility is assured Full 180 -degree visibility is assured on either standard or edge-lit panels.

These miniature Hetherington Series L6000 lights come in both 2-terminal ungrounded or 1-terminal case-ground styles. Single piece terminals and contacts cannot be torn loose by heavy wires. Request torn loose by

CIRCLE 829 ON READER-SERVICE CARD HETHERINGTON INC. DEIMAR DRIVE, FOLCROFT, PA. - I39 Illinois St., El Segundo, Calif.

Over 455 PRECISION push-button Switch Types

Up-to-Date Survey

Bibliography

1. R. B. Schulz, "Shielded Transformer", U. S. Patent 2,904,762, issued 15 September 1959.
2. "Proceedings of the First Conference on Radio Interference Reduction", Vol. 1, Armour Research Foundation Chicago, Ill., Dec. 1954.
3. "Proceedings of the Second Conference on Radio Interference Reduction", Vol. 2, Armour Research Foundation, Chicago, Ill., March 1956.
4. "Proceedings of the Third Conference on Ratlio Interference Reduction". Vol. 3, Armour Research Foundation, Chicago, Ill., Feb. 1957.
(a) J. Berliner, and J. Augustine, "Results of UHF Mutual Environment Test Program at Rome Air Development Center", pp 222-266
5. "Proceedings of the Fourth Conference on Radio Interference Reduction and Electronic Compatibility," Vol. 4, Armour Research Foundation, Chicago, Ill., Oct 1958.
(a) P. G. Varlashkin and F. J. Morris, "Variable-Gain Interference Reduction Device", pp 154-166.
(b) H. N. Kritikos and W. J. Messmer, Jr., "Target Return Losses Due to Blanking', pp 140-153.
(c) B. Rosen, "Microwave Field Intensity Meter", pp 242-256.
(d) M. W. Levine, "Receivers for Interference Meas urements in the 20 to 4000 Mc Range", pp 230-241. (e) W. Jarva, "Application of Field Theory to the Solution of Practical Radio Interference Problems", pp 357-371.
(f) F. C. Tormollan and F. J. Morris, "Three Dimensional Radiation Pattern Craphical Display Techniques", pp 283-310.
(g) R. F. Robl and E. R. Schatz, "A Free Space Method for Measuring Coaxial Cable Shielding Effectiveness", pp 372-386
(h) F. J. Nichols, "Radio lnterference Control Semiconductor Circuitry", pp 487-510.
(i) J. C. Senn, "Ferrites in Radio Interference Filters" pp 458-474.
(j) R. M. Janowiak and R. E. Saxe, "Low Pass Filters Using Ferrites", pp 475-486.
(k) J. Berliner, "Concepts of Electromagnetic Interference Analysis and Control", pp 387-411.
6. "Proceedings of the Fifth Conference on Radio Interference Reduction and Electronic Compatibility", Vol. 5. Armour Research Foundation, Chicago, Ill., Oct. 1959 (tentative publication Jan., 1960)
(a) J. P. McNaul, "Low Noise Devices as System Elements"
(b) R. B. Schulz, L. J. Greenstein, and D. Fryberger "A Thermistor Bridge for Calibrating Interference Meas uring Instruments"
(c) J. L. Smith, "Application of the Low Noise Trave ing Wave Tube to Interference Instrumentation"
(d) D. P. Kancllakos and L. C. Peach, "A Coaxial De vice for Measuring the Performance of Shielding Materials".
(e) V. J. Mancino, "A Method of Measuring Transmitter Cabinet and External Wiring Radiation"
(f) E. Jacobs and O. M. Salati, "The Gain of Large iperture Antennas at Harmonic Frequencies".
(g) D. P. Kanellakos, R. B. Schulz, L. C. Peach, and d. P. Massey, "New Techniques for Evaluating the Performance of Shielding Enclosures"
(h) D. B. Clark and R. D. Hitchcock, "Contiguous Wrapping of Transmission Line Conductors with HighMu Tape for Large Radio Interference Attenuation".
7. "Mutual Electromagnetic Interference" (Secret), Air Force Manual 100-47, to be published early in 1960 .
8. "Radio Interference Suppression Techniques", Suppression and General Engineering Branch, Coles Signal Laboratory, Fort Monmouth, New Jersey, Nov. 1953. 9. "Navy Radio Interference Instruction Manual" (Preliminary Draft), Prepared for Navy Department, Bureau of Ships, Electronics Code 695B, under Contract NObsr 63224.
9. "Design Techniques for Interference-Free Operation of Airborne Electronic Equipment", United States Air Force, Wright Air Development Center, Wright-Patturson Air Force Base. Dayton, Ohio, Copyright 1952, by the Frederick Research Corporation, Bethesda, Maryland. 11. "Standard Practices Manual, Location, Identificalion, Suppression of Communications-Electronics Interference", Air Force Technical Order 31-1-48, Nov. 1, 1957. 12. "Standard Practices Manual, Engineering Inter-frence-Free Communications-Electronics Systems", Air Force Technical Order 31-1-49, 15 Jan. 1958.
10. "Radio Interference Suppression", Army Technical Manual 11-48:3, Oct. 25, 1956.
11. G. W. Clevenger, 'Electronically Controllable Bandpass for IF Amplifiers", Electronic Design, Volume 6. Number 19, pp 22-23, Sept. 17, 1958.
12. D. B. Brick and J. Galejs, "Radar Interference and Its Reduction", The Sylvania Technologist, Volume MI, No. 3, pp 96-108, July 1958.
13. S. O. Newman and K. H. Chase, "The Radar Interfrerence Problem"', Proceedings of the (1958) National Electronic:s Conference, Volume XIV, p 811.
14. M. Epstein and R. B. Schulz, "Magnetic-Field Pickup for Low-Frequency Radio Interference Measuring Sets", Part 8, 1959 IRE National Convention Record, pip 64-76, March 23, 1959.
15. H. Zucker, Y. Baskin, S. I. Cohn, I. Lerner, and A. Rosenblum, "Design and Development of a Standard White Noise Generator and Noise Indicating Instrument", IRE Transactions on Instrumentation, p 279, Dec. 1958. 19. "Radio Interference Measuring Set AN/URM-85 ". Final Report, Contract No. DA 36-039 SC-63126, Empire Devices, Inc., Bayside 61, New York.
16. "Instruction Book for Radio Interference Measuring Set AN/URM-42", NAVSHIPS 92363.
17. "Instruction Book for Radio Interference Measuriig Set AN/URM-41", NAVSHIPS 92739, Sept. 25, 1956. 22. "Research Investigation of Radar Interference" (ecret), Interim Final Report, Contract DA 36-039 SC1220, May 31, 1957, p. 957.
18. "Research Investigation of Radar Interference" (Confidential), Fourth Quarterly Report. Contract DA 31i-039 SC-75008, Feb. 1959.
19. "Image-Parameters Design of S-Band Wave-guide Filter", Report 765A, Wheeler Lal)s., Inc., Great Neck, \.Y., March 14, 1958.
20. "Measurement and Control of Harmonic and S surious Microwave Energy", Final Report, Plase 1, Cintract AF 30(602)-1670, G. E. Microwave Lab, Palo A to, California
21. "Final Report on Contract DA 36-039 SC-7208, S. Army Signal Corps Engineering Laboratories", - epartment of Electrical Enginecring, Carnegie Institute if Technology, July 15, 1958.

Slim. trim and compact. The speCially shaped winding is of extendeld
foil construction-equal in all regards to high quality Good-All tubular desizns. These two types differ
in that the 602 incorporates a base in that the 602 incorporater a base
of enoxy-klass laminate for flush mounting on circuit boards.

G63F G63FR EDGE MOUNTING
axial or radialleads
Thene surecial- purpose versions of popular Good-All Tyne 6 6.3UW use
precious space efficiently. Their ratings are conservative, and are equally suited for military and instrument grade applications.

SPECIFICATIONS

Hermetically Sealed

Ideal transistor "companions" where
hermetic sealing is required. Both hermetic sealing is required. Both
types are amaller than comparable MIL-C-25A design= yet exceed al
requirements of this specification. DPelectric SECIFICATIONS Dieloctric
Case Dielect
Case
Windin
Win Windin Hermetically Sealed Wermetically Sealed
Exinding
IR af 255° Type 627 C Temperature Range Full rating to DC Voltage Rating $\quad 85^{\circ} \mathrm{C}, 50 \%$ derating at $125^{\circ} \mathrm{C}$ Type 617c Temperature Range Full rating to

$1255^{\circ} \mathrm{C}, 50 \%$ derating at $1500^{\circ} \mathrm{C}$ DC Voltage Rating. 150, 400 \& 600 | TYPICAL SO VOLT SIZES | | |
| :---: | :---: | :---: |
| TYPE | | |
| C27C | | |

Good-All Capacitors Are Available at Authorized Distributors
Write for detailed literature
ϵ

AN OUNCE of prevention is worth a pound of cure"-Perhaps radio-frequency interferconce suppression and control engineering is the most Hagrant example of this old cliché.

Top experts engaged in RFI suppression

Fig. 1. Protective finish must be removed to achieve reliable metal-to-metal contact essential for shielding.
quickly point out the easy road to freedom from interference.-"To avoid interference, don't generate any." Vast amounts of energy, time, and money are expended in searching out RFI offenders in equipment: often, outlandish cost and size increases accompany the final steps of eliminating interference sources.

A remarkable number of interference problems arise in carly design stages due to simple oversights and forgotten basic engineering theory. In an effort to recall the more important, although seemingly obvious, areas and sources of potential interference, the following check-list has been prepared from the "Standard Inspection Procedures for Interterence Control", compiled for the Dept. of the Navy, Bureau of Ships, Electronics Division.

Preliminary General Check-List for Equipment

- The chassis or frame must be grounded or a means of grounding must be provided.
- Shockmounts must be by-passed with ground straps.
- Whenever a metal-to-metal contact is required for shielding or grounding, the insulated protective finish must be removed (Fig. 1).
- All openings for access, ventilation and casemounted components shall be shielded to prevent case leakage. (See Fig. 2).
- Blower motors should be ac non-commutating types.
i) All access doors should be metal textile or finger strip type, as shown in Fig. 3.
- Drawer- and door-locking devices must provide firm pressure against metal gaskets.

Communication Transmitters

- Heaters should be wired with twisted or isolated leads. (Field report data point to heater wiring as a major RFI culprit.) Two heater leads should be used and twisted together to cancel interference fields. The practice of using one "hot" lead and the other connection grounded should be avoided. Examples are illustrated in Fig. 4.
n Isolate the oscillator stage from other stages.
- Use interstage decoupling networks to reduce transfer of undesired harmonics and spurious radiations.
- To avoid undesired signal transfer to the high power stage of a transmitter, use link or paralleltuned circuits.
- Apply parasitic suppression devices such as plate and grid resistors or chokes.

Communication Receivers

- Keep local oscillator power at a minimum level. - Decouple oscillator heater and B supply sources.
- Isolate the oscillator from the antenna by rf amplifiers or preselectors.
- Use a shielded oscillator compartment when necessary.

Radar Transmitters

- Magnetrons should be contained in a shielded
- iclosure located as close to the pulse transf irmer as possible.
- Kecp the pulse transformer close to the pulse calle entry. Rf shielding integrity must be maintined where the waveguide enters the cabinet. - Direct coupling of the waveguide into the magnetron should be made whenever possible. - The "keep-alive" voltage should be isolated and decoupled.

Radar Modulators

The square wave pulse used to fire the magnetron is the major source of interference from radar equipment. In many cases, the sharp leading edge of this pulse may shock excite the magnetron into oscillating at more than one frequency. In addition, the modulator pulse can sluck and often overdrive the input stages of radio receivers, resulting in severe interference. - The pulse network shall be isolated and all leals associated with the pulse network should be decoupled.

- The pulse transformer should be isolated so that the magnetic field of this transformer will be prevented from modulating the thyratron kever tube.
- The grid despiking network shall be isolated and all leads associated with this network shall be decoupled.
- The pulse cable inside the thyratron-shiedled enclosure and inside the pulse-transformersliedled enclosure should be kept to a minimum length.
- A multiple-shielded pulse cable should be used to prevent pulse circulating ground currents. Multiple-shielded calle is a triaxial cable with the two inner shields of the cable connected to the thyratron cathode at one termination and to the low side of the pulse transformer at the other termination.
- The blower motors and the motor-driven pulse rate mechanisms should be synchronous type ac motors. If dc motors must be used, these motors shumld be designed with interference reduced to acceptable levels.
- Sharp projections in high-voltage circuits are pussible sources of corona or arcing and thus are portential sources of interference. Construction with sharp projections therefore should be al sided.
- Sharp bends should be avoided in high-voltage "ring. The possibility of insulation breakdown is increased and, in the case of coaxial cable, the claracteristic impedince of the cable may be d.anged and the attenuation increased.

Antenna Control Unit

This unit generally contains thyratron-rectificr ci cuits for the anternna servo system and antenna

drive motors. Many of the interference problems could be eliminated through the use of an ac servo system and the possibility of using ac should be fully investigated.

Particular attention given to the following items will greatly aid in designing an antenna control unit with low interference levels.
a The thyratron-rectifier circuits should be isolated from other circuitry.
e The thyratron-filaments leads shall be decoupled at their entry to the tube base shield. The tube-base shield should be constructed in a manner which will provide complete shielding of the thyratron-tube base.

- The output leads from the thyratron to the antenna motor should be decoupled. These output leads can be decoupled without affecting antenna rotation.
- The antenna control unit should not be used as a terminal box for wiring not associated with this unit. The practice of using the antenna control unit as a terminal box for wiring from other sources only complicate the problem of providing complete isolation of the thyratron.
- Pulse and rf rotary joints should be thoroughly shielded.

Pulse Generators

- Waveforms in the pulse-generator circuits should be checked for unnecessary spikes. The presence of these spikes may not affect the operation of the circuit but may produce interference.
- Pulse-circuit wiring should be kept as short as possible.
- Return for the pulse stage should go to the cathode of the stage rather than to ground in order to reduce pulse ground currents.
- All pulse energy should be fed to succeeding
stages in coaxial leads where possible. Precautions should be taken to guard against distortion of the waveform introduced by the capacitance of the coaxial cables.

Radar Receiver

In the radar receiver, as in the communication receiver, the principle area of concern is the oscillator unit. Parasitic oscillations are not uncommon in receivers and every effort should be made in the design stages to prevent them.

Radar Indicator

Unless special precautions are taken, the radar indicator may be the source of many magnetic fields which can be serious interference problems. The problem is primarily that of isolating the fields at their sources. If attention is given to the following design principles, interference from the indicator unit can be kept within allowable limits. - Control and power leads must be decoupled by the use of feed-through bypass capacitors. - The deflection coils for the cathode-ray tube must be isolated.

- Glass or plexiglass with a coating of conductive material should be used to cover the opening for the indicator-tube face. This, in conjunction with the indicator case, provides a continuous shield for the indicator.
- The range-oscillator coils and the coils used in the blocking oscillator must be individually isolated to confine the magnetic field to the coil producing that field.
- The rf high-voltage power supply should be isolated. Input and output leads must be decoupled at their entry into the shielded enclosure isolating this power supply.
- All stages of the indicator should be decoupled

Tips on better
designing with
flexible shafts

REMOTE CONTROL AND POWER DRIVE:
Retractable hard top simplified by flexible shafts.

Check List

to prevent interference signals from being con ducted between stages.

DC Machines

Among rotating electrical equipment, the pris. ciple offenders as a source of interference are de machines. In the design of de machines (either generators or motors), care must be taken to minimize the effects of the commutation process. This is essentially a switching process in which high currents are continuously switched. Thic problems of good interference-free design are then, in reality, the problem of good commutator design.

- Commutation transients can be reduced by use of interpoles. A more rapid change in the armature-coil current at the beginning of the commutation period is achieved, reducing the steep) ness of the transient at the cond of the commutat tion period.
- Compensating windings produce the same effect as interpoles but to a smaller degree. Field distortion is also minimized.
- A greater number of armature coils and com mutator bars can reduce interference by lessening the current broken per bar.
- The use of laminated brushes will reduce arcing and interference by lowering the resistance presented to the approaching commutator bar and raising the resistance presented to the receding har. This would favor the load-current flow in the approaching bar and introduce a higher resistance in the coil undergoing commutation thereby reducing circulating currents.
- Commutation interference can be caused by the generation of thermo-electric voltage which is proportional to current density in the contact areas. With an increase in current density, greater heat is gencrated in the contact resistance with : resulting rise in temperature of the brush and commutator surfaces. Since current density is the important factor, large brush surface areas should be used. However, if to obtain low current density it becomes necessary to make the brush size excessive, grooving and rapid wear of the commutator surface may occur. General design prac tice calls for a current density of 55-65 amps per sq. in. at full load for graphite-carbon brushes and 65-90 amps per sq. in. for metal-graphite brushes. Use of the design figures should give a brush which has good "wear" qualities as woll as low-interference gencration properties.
- Proper mechanical design and construction will reduce inherent interference. Electrical and mee-

Fig. 4. Examples of proper and poor heater wiring techniques.
hanical symmetry, accuracy of machined parts and good quality control will aid in eliminating the de machine as a source of interference.

AC Generators

Ac rotating equipment as a source of interfercuce does not present nearly the problem as do de machines. The principle problem lies with ac generators. This problem is that of the prevention of harmonic generation and the prevention of resonant conditions within the circuits associated with the ac generator.

- If in the design of an ac generator, the designer considers the criteria of obtaining a pure sinewave output as one of his most important design objectives, the resulting product will present very little difficulty as a source of interference.
- A simusoidal distribution of the flux around the armature is necessary.
- Mechanical and electrical symmetry cause cancellation of even order harmonics; electrical pole piecees and uniform winding of the armature will provide symmetry.
- In three-phase alternators, the use of "Y" or star connection with a grounded neutral will cause the third harmonic to be present in the whlage from any phase to neutral. The use of deltat connections will cause the third harmonic and its multiples to be cancelled within the in.chine.
- By making the number of armature slots per px le pair an odd mumber. tooth ripples can be dininated.

AC Motors

nduction and synchronous motors are practily free of interference sources. These sources

SPECIFIC TUBES FOR EVERY DOPPLER SYSTEM

Checklist
when they do exist can generally be traced mechanical failures. Loose laminations in tle armature and pole pieces, and loose or faulty sl p ring or brushes may cause interference. An ciception is that several instances have arisen whe

Fig. 5. Various methods used to reduce arcing due to switch and break transients. (a) simple RC network (b) low-pass filter added to RC network (c) double-pi filte (d) high resistance across an inductive circuit (e) rectifie used in place of the high resistance in (d) for dc appli cations (f) back-to-back rectifiers and (g) negative voltage characteristic resistors.

From 25 to 300 watts these VITROHM ring rheostats are engineered for longest life, maximum reliability

To be sure about smooth, trouble-free control in the 25 - to 300 - watt rangejust specify a vitrohm rheostat.
You get smooth control: Close-laid turns (A) of special high-stability, low-temperature-coefficient wire or ribbon to insure smooth gradual resistance change from zero to maximum.
You get reliability: vitrohm ring rheostats are engineered for permanence from highest-grade ceramic base and core (B), durably bonded, tinned-alloy terminals (C), to final craze-proof, shock resistant, long-lasting vitrohm bonding (D).

You get positive action: Self-lubricating twin-shoe contacts-exclusive with W/L-on balanced beryillium copper contact arm (E) eliminate backlash, contribute to smooth operation, minimize wear on resistance wire (A), assure positive contact to collector ring (F).
You get many more features than we can detail here. Check them all in W/L Bulletin 60RR (and, above 300 watts, check "plate rheostats" in Bulletin 60A). Either bulletin, yours for the asking. Ward Leonard Electric Co., 77South St. Mount Vernon, N. Y. (In Canada: Ward Leonard of Canada, Ltd., Toronto.) 0.6 Write for list of stocking distributors CIRCLE 34 ON READER-SERVICE CARD

WARD (1) LEONARD
 \section*{ELECTRIC COMPANY}

 MOUNT VERNON, NEW YORK
LIVE BETTER...Electrically

Recult-Erpinened Cintide Since 1892

h hisl-speed rotating electrical machinery (above $22(10 \mathrm{rpm})$, employing antifriction (ball or roller) bvarings, has exhibited an impulsive type of raliated interference, the frequency distribution Hh was reled to loush sha "lich was a quarter wavelength. Such interfercince has been termed "bearing static", and research is continuing one means for its control or reluction.

Electrical Contacts

- Many methods are available to reduce the arcing that occurs when a switch or contact makes or breaks. There is no single method of interference reduction which is universally applicable, so various methods which can be used are given in Fig. 5; these methods can be used either singly or in combination, depending upon the particular case upon the interference reduction required. - If the methods shown in Fig. 5 do not sufficiently reduce interference levels, shielded enclosures and shielded leads should be employed. The addition of feed-thru capacitors in the input and output leads of the shielded enclosure may be required. The mechanical design or a relay slowuld be such as to prevent chattering or bouncing of the contacts.

Power Supplies

- The most common type of interference associated with electronic power supplies results from hish impedances in filters. If the power-supply filter impedance is low for rf as well as for power line frequencies, this trouble is reduced. Additionally, line filters and electrostatically shielded power transformers are recommended.
- Gas-tube rectifiers are prone to generate interference. In addition to line filters and electrostatically shielded transformers, hash-suppression chokes are required in the plate and cathode leads of these rectifier tubes.
- Electronically regulated power supplies should be provided with decoupling circuits to prevent oscillations in the regulator. Long lead lengths should be avoided in plate and grid circuits.

Gas-Tube Equipment

The category of gas-tube equipment includes such items as rectifiers, sweep generators, electronic switching devices, relay controls, modulaturs, and pulse generators. Unless the proper ste phs are taken in the design of this type of equipment, serious interference problems may revilt. Isolation and decoupling are of prime in orrtance in circuits employing gas tubes.

- The heater supply of a gas tube should be well de (supled and isolated. The output leads should be isolated and decoupled to prevent interference Ifr in being conducted and radiated along those le. 1s. $\quad=$

COUNTERMEASURES and the diodon hystrix

NOT ALL COUNTERMEASURES ARE SUBTLE obvious disaster is normally avoided

Commonly known as the porcupine fish, the Diodon possesses one of nature's best countermeasure systems. When danger is imminent he takes in both water and air expanding to several times his original size. He also presents another defense in the sharp spines that completely surround his body. Truly an efficient countermeasure system by nature.

The world is a mass of defensive "bristles" but none are longer or sharper than ours.

The deterrent striking force of SAC could well be likened to the spines of the Diodon. Most certainly anyone foolish enough to try to gobble up this country would experience a fatal case of indigestion. Many SAC attack bombers are equipped with countermeasure devices of types built by I.F.I. which assure completion of their missions.

INSTRUMENTS FOR INDUSTRY. Inc. 101 New South Road, Hicksville, L. I., N.Y.

[^0] CIRCLE 35 ON READER-SERVICE CARD

Interference Trouble－Shooting with Clamp－On－Devices

Thomas H．Herring
Interference Group Control
Boeing Airplane Co．
Seattle，Wash．

Abstract

Magnetic clamp－on devices are well adapted for the electronic installation trouble－shooter who must cope with the characteristic inaccessibility of interconnecting circuit terminations， generally with a lack of detailed knowledge of the installation．Many practical problems are described and their solution outlined．

I
NTERFERENCE resulting from magnetic cou－ pling is difficult to reduce by shielding；proper cable bundling and re－routing are generally the most effective means of suppression．Clamp－on ammeters and injectors permit rapid and conven－ ient radio－frequency interference measurements without the need to clip wires or open cable harnesses．

Clamp－On Devices

A clamp－on device is an incomplete transformer． The ferro－magnetic core may be easily opened to admit one or more turns of wire，thus completing the transformer．When the clamped wire is the primary，the device is termed a＂clamp－on am－ meter＂and when the clamped wire is the sec－ ondary，a＂clamp－on injector＂．Clamp－on ammeters measure current and clamp－on injectors inject voltage．Used separately or together these devices can perform many measurement and analysis functions．
The physical size of clamp－on devices is deter－ mined by the amount of iron needed，the size of the largest cable to be clamped，and the over－all rule that compactness is essential if the full po－ tential of convenience is to be realized．A bulky unit that cannot be clamped around cables in tight places is of little use．

Ammeters

Clamp－on ammeters operate on various prin－ ciples．Some operate on the principle of the ＂current transformer＂，used in accurate high－
power measurement wherein the secondary is heavily loaded so as to minimize the range of core flux changes．Others use an unloaded（vtvm load） secondary：Rf clamp－on ammeters work into a 50 －ohm load．Also，there are de clamp－on am－ meters which make use of various ingenious prin－ ciples．

Those ammeters having a nearly unloaded sec－ ondary coil will have a voltage output heavily de－ pendent on frequency．Rf units are of this type and the impedance reflected into the line is very low．Clamp－on ammeters with unloaded secondar－ ies will reflect a reactive impedance into the line． Clamp－on ammeters other than those of the＂cur－ rent transformer type do not need low reluctance cores because close coupling is not required．
Two properties of clamp－on ammeters are com－ mon to all types and are the basis of their utility in trouble－shooting．First is the ability to sense a current without opening the circuit under test． The advantage of this property in testing installed systems is quite evident．Second is the ability to perform a vector addition of all currents which are simultaneously linked and to thus read the net current．Using this property，one can，in a single measurement，determine whether two currents are complementary（whether or not they differ by exactly 180 deg in phase and are otherwise identical）．This property makes it possible to de－ termine if all wires of a circuit are included in a given bundle．This knowledge is often useful in locating the path taken by either an interference producing current or by a sensitive circuit．

If a current is contained entirely in a bunclle （the smaller the better）it will cause less interfer－ ence and／or will be less susceptible to interfer－ ence than if it is spread out over a wide area．Used ass a simple ammeter，the clamp－on ammeter call accurately measure interference producing cur－ rent．Comparison of this measurement with previ－ ously established limits will give an indication of whether or not a given current is cansing trouble．

Injectors

Clamp－on injectors as discussed here may be used in two ways．With the jaws closed around a wire（ N turns may be taken），a known flux \downarrow is caused to link the wire resulting in an induced voltage in the wire
$V($ Volts $)=$－π 似中（webers per sec） This voltage can be calibrated in terms of the energizing current，or，almost as conveniently． a wire turn may be taken around the core and lead to a monitoring voltmeter which reads the injected voltage directly．The accuracy with which the injected voltage is measured depends on the degree to which the region surrounded by the core is free of flus．Moving the wire around in the core space should not change the amount of volt－ age induced in the wire by more than a percent or so．If the injector is linked around all wires of a circuit，and if structure is not carrying part of the circuit，then no amount of flux linkages will induce a voltage in the circuit．This is a good test of the actual path taken by a circuit．

When the clamp－on injector is applicel to a

After RFI trouble-shoot- designers who don't know ing the interior of a bumber literally "wallpa. pered" with wiring, Mr Herring became a dedi. cated interference control engineer. During the past eight years devoted to this work, he (and others) wove been plagued
or don't care what paths their interference may take. With clampon vices, lengthy and costly checks can be accelerated without extensive studies of circuit configuration or system details; splicing wires is unnecessary.

cable with the jaws open, the flux is no longer concentrated in a well-defined path but spreads out over a wide region. Thus the number of lines linking the cable under test is not known. However, this mode of operation is very useful for rapid qualitative analysis of cables which are well tied, or in a sheathing, and which are not to be cut open. Only with the jaws open can flux be threaded between the wires of the cable without untying the cable. This usage approximates actual wire coupling since actual wire coupling is strictly an "air-core" transformer situation. Cables which do not respond to the closed-jaw test may respond to the open-jaw test and may in practice be quite susceptible. Thus, with the clamp-on injector, we have both an accurate producer of flux linkages and a handy qualitative source of diffused flux.
For audio-frequency injectors, a magnetic circuit of reluctance comparable to that of a good power-transformer core is required. The iron slould be able to handle at least 200 amp -turns of excitation. The phase of the injected voltage cin be controlled by energizing the injector from the system power supply.

Applications

Typical problems which are tailored to the use of clamp-on devices are grouped into categories 0 :
(a) measurement of interference sources
(b) threshold determination
(c) circuit pathfinding and
(d) re-routing recommendations.

Measurement of Interference Sources

Problem: Several bundles of wires are suspected of generating interference in the audiofrequency band. Locate the wire or wires at fault.

Approach: Select a clamp-on ammeter responsive to the frequencies of interest and clamp each bundle. Readings below 0.5 amp generally indicate innocence. Untie the guilty bundle and clamp individual wires. The best fix is to twist together together the complementary wires-if both are available.

Problem: An rf noise source has been located, but the means of coupling to the affected equipment is not known.
Approach: To tell whether the wires to the source are carrying the interference, clamp them with an rf ammeter. Compare the readings with the limits given in specification MIL-I-26600. Generally, readings within these limits indicate innocence.

Threshold Determination

Problem: The ripple on a dc reference voltage is suspected of causing trouble. The ripple is measured at $100 \mathrm{mv} \mathrm{mms}, 60 \mathrm{cps}$. Is the ripple really causing any trouble?

Approach: Control the ripple by injecting additional ripple and check the system for any change in the observed trouble. Use a closed-gap injector energized at 60 cps with a monitor turn around the iron. The monitor turn is connected to an ac
voltmeter which cam read 100 to 500 mv . Inject, if possible, either in or exactly out of phase with the ripple. If phase cannot be controlled, simply inject several times the $100-\mathrm{mv}$ existing ripple so that the injected ripple dominates.

Problem: A wire connected to a sensitive equipment is suspected of being sensitive to interference at 50 kc . The wire cannot be cut or opened and is shielded. What is the threshold sensitivity of this wire?
Approach: Use a closed-jaw injection energized at 50 kc having a monitor turn connected to an ac voltmeter. Inject increasing amounts of voltage until an equipment response is obtained.
Problem: A system shows signs of interference. Cable coupling is suspected as the cause. Is this a reasonable supposition?
Approach: Energize an injector to its maximum rated number of ampere turns (with the jaws open) at the frequency or frequencies of interest. At power frequencies, about 1000 lines of flux in the gap is a good figure. Apply the open gap to each cable of the system. If there is no response, then cable coupling is not involved. The injection flux should be a few times larger than any actual flux linkage which could exist. If both wires of a two-wire sensitive circuit are linked by the injection flux lines, less voltage is induced than if most of the injection flux threads between the wires. Hence, the injector would be moved around a bit to cover both these possibilities. (To estimate the actual flux linkages which could exist, assume the worst case, that is, both the source circuit and

Fig. 2. Only a few minutes time is required to locate current carrying wires using a clamp-on ammeter.

Fig. 3. For threshold determination, an open jaw injector (at right) is threading 400 cps flux through the cable at simulated environmental level. The injector (at left) is being used as an ammeter to detect the resultant RFI current flowing in a signal return wire of a sensitive circuit.
sensitive circuit consisting of single wires with structure return, spaced an inch apart. This situation has a coupling of about 200 linkages per 10 $\mathrm{ft} / \mathrm{amp}$.).

Circuit Pathfinding

Problem: A circuit is known to be highly sensitive. Can this be corrected, or is it an intrinsic property?

Approach: Use an injector to determine whether the circuit is confined to as small a space as possible. If it is not so confined, then considerable improvement can be gained by this confinement. Use a closed-jaw injector on the cable at the signal frequency and apply a very large injection voltage. Lack of circuit response shows that the circuit is confined to the cable. A response will prove that an additional, possibly remote, circuit path exists. Locate this path, if any, and re-route it with the circuit cable. (If this path is structure, one is confronted with a somewhat classic problem.)
If one is working with a non-energized system, the above approach can be used if a clamp-on ammeter is placed on the signal return wire or around the entire bundle. Either location should show no response if the circuit is complete in the bundle. The lack of response should be equivalent to an isolation resistance of 1 megohm.
Problem: A bundle is known to contain a power circuit, or at least part of it. Is the circuit completely contained in the bundle, and if not, where
is the rest of it?
Approach: The clamp-on ammeter will read zero if the circuit is complete (all wires of the circuit linked). If not complete, clamp all likely bundles for the missing wire while cycling the power circuit on and off. If this search fails, structure is probably carrying the rest of the current. Any power bundle which has a clamp-on net current reading over 0.5 amp is a potential source of interference. If the clamp-on reading is 0 , the bundle may still have an appreciable induction field, but twisting will reduce it greatly.

Problem: A continuity check is being made on a circuit, and/or the loop impedance of a circuit is to be determined.

Approach: Inject a small ac voltage at a convenient location by clamping one wire of the circuit and use a clamp-on ammeter nearby (but not too near) to measure the induced current.

Re-Routing Recommendations

The problem of re-grouping wires and of rerouting the groups in order to reduce interference is basically a mutual inductance (M) calculation problem. One starts with the flux sensitivity threshold (in webers) (Φ_{t}) of the sensitive circuit. If the voltage threshold $\left(V_{t}\right)$ was measured, then $\Phi_{t}=V_{t} \div 2 \pi f$. The aim is to reduce the flux linkages to a figure less than Φ_{t} by reducing the effective width of the sensitive circuit (proper bundling, choice of cable type, twisting), reducing the effective width of the source circuit (proper
bundling, choice of cable type, twisting) and by increasing the separation between the circuits. The following method is suggested:
Consider a model pair of circuits, each of two wires, with the circuits in parallel planes spaced a distance X apart. Let the width of the sensitive circuit be D_{v} and that of the source circuit be D_{n}. With proper choice of parameters, this model configuration is equivalent to the actual case. The mutual inductance, or flux linkages per ampere, of the model arrangement is easily figured by handbook methods. All one needs to know to solve the problem is the flux threshold of the sensitive circuit, Φ_{t}, the "noise" producing current I_{s}, the coupled length L, the existing values of D_{v} and D_{0} and the minimum values of these latter quantities which can practically be obtained.

Clamp-on devices can measure all five existing quantities, $I_{k}, \Phi_{t}, L, D_{k}$ and D_{v}. The first two are obtained directly from ammeter and injector data. The circuit widths D_{s} and D_{v} are obtained through the "Circuit Pathfinding" methods previously described in which the paths of the current and return current are located. When the ammeter reads 0 around a bundle, one merely assumes the circuit width to be the width of the bundle; if one knows that the circuit is twisted, then a width of approximately 0.02 in . may be assumed. The coupled length L, common to both source and sensitive circuits, likewise is found by the "Circuit Pathfinding" methods. To solve the problem one first assumes that D_{s} and D_{v} are re-
fuced to a minimum by bundling and twisting. Then, calculate the flux linkages Φ. If Φ is still too lirge, increase the separation X until the calcu1.ted Φ does not exceed Φ_{t}.

Actual Field Problem

An airborne air data computer was reported to give inconsistent output. The interference engineer who was called in knew only that the computer used a signal carrier frequency of 400 cps (the same as the aircraft's power system), that three "black boxes" were involved, and that the interconnecting cables were numbered CA-30, CA-121, CA-122 and CA-60.
The engineer first selected a clamp-on injector to use in finding the sensitive cable, if any. He energized the injector at 400 cps to a standard number of ampere-turms, energized the computer, opened the jaws of the injector about 1 in . and started to probe the computer cables. It was found that two cables, CA-121 and CA-129, produced computer responses many times more intense than those of the other cables. Next, completely closing the magnetic circuit around each cable in turn, the engineer obtained large and expual responses from each cable. No response was obtained when the injector was closed around both cables simultaneously.
By these three steps, the engineer had located the sensitive cable, and further, had learned that the sensitive circuit was divided, with signal "high" in one cable and signal "return" in another cable, and that the circuit was entirely contained in these two cables. To check that electrostatic coupling was not involved, a wire energized to $110 \mathrm{v}, 400 \mathrm{cps}$, was laid parallel to the computer cables in turn; no response was obtained.
To locate the source of the interference, the interfering circuit was identified by systematically turning aircraft circuits on and off until computer response was obtained. The culprit proved to be the wing-flap-position indicating circuit. Location of the interfering wires was made evident immediately by using a clamp-on ammeter (on the 5amp range) on all aircraft cables in the vicinity of cables CA-121 and CA-122. The path taken by the interfering wires was traced by having a person cycle the flap-indicator power on and off while the trouble-shooter worked along the interfering cable with the clamp-on ammeter. The interfering current was found to be contained in a a single cable. Since the ammeter had a non-zero rt ding with its jaws shut, the return current was, it part, returning by some other (evidently rem, te) path. The investigator now knew the precise p th taken by all wires of the sensitive circuit and h knew that the interference was magnetically c apled from a cable carrying a net, unbalanced, 4) $)$-cps current. It was then a simple matter to s) cify the re-cabling and re-routing required. . -

Announcing...

 from

High Quality

High Performance

Extreme Reliability

From the leading manufacturer of power transistors, new Silicon Power Rectifiers to meet your most exacting requirements. Even under conditions of extreme temperatures, humidity and mechanical shock, these diffused junction rectifiers continue to function at maximum capacity! Thoroughly dependable, completely reliable-new Delco Rectifiers are an important addition to Delco Radio's high quality semiconductor line.

Conservatively rated at 40 and 22 amperes for continuous duty up to case temperatures of $150^{\circ} \mathrm{C}$.

For full information and applications assistance, contact your Delco Radio representative.

> Newark, New Jersey
> 1180 Raymond Boulevard
> Tel: Mitchell 2.6165

$$
\begin{array}{ll}
\text { Chicago, Illinois } & \text { Santa Monica, California } \\
5750 \text { West } 51 \text { st Street } & 726 \text { Santa Monica Boulevard } \\
\text { Tel: Portsmouth } 7-3500 & \text { Tel: Exbrook 3.1465 }
\end{array}
$$

Division of General Motors • Kokomo, Indiana

CIRCLE 36 ON READER-SERVICE CARD

Optimum Shielding of Equipment Enclosures

Abstract

Electromagnetic shielding may be applied to radiating devices to prevent escape of rf energy from an enclosure or may be used in receivers to minimize extraneous pickup. The factors influencing shielding material selection and the use of design curves to determine shield thickness are discussed.

Arnold L. Albin

Project Director
Systems Engineering Div.
Filtron Co., Inc.
Flushing, N. Y.

RADIATING equipment is shielded to limit the transmission of spurious signals which may caluse objectionable interference to nearby devices; receiving equipment is housed in shielded cabinets to minimize pickup of external rf fields which might produce direct or heterodyne interference and render communication useless.

Shielding Theory

One concept of shielding theory is that an rf field is produced by a wave which impinges on the shield, which in turn induces a current in the shield; the induced current is in a direction opposite to the original current. An opposing magnetic field results, which reduces the transmission of energy.
The classical shielding theory relates a shield to a transmission line. ${ }^{1}$ An rf field is reflected and attenuated in passing through a metal. See Fig. 1. This is analogous to propagation of traveling waves on a transmission line. It is possible, by
consideration of the transmission-line analogy, to compute the attenuation and reflection which will be experienced at each surface of the shield, and in passing through the shield. ${ }^{2}$

The relationship is shown in Eq. 1:

$$
S=R+A
$$

where:
$\mathrm{S}=$ total shielding efficiency (db)
$R=$ total deflection loss (db)
$A=$ dissipation or absorption loss (db) These losses depend on the frequency involved and the thickness of material. Losses are also functions of material resistivity, permeability, and conductivity; reflection losses are related to the electromagnetic field characteristics. Since these losses vary with the characteristic "wave impedance" of the field, they may also vary with distance.

Low impedance or magnetic fields occur in the vicinity of coils or small loop antennas. (An rf field has both electric and magnetic components; the
ratio of the components is what permits description as either an "electric" or "magnetic" field.) Since reflection losses for magnetic fields are small for most materials, the shielding depends primarily on absorption losses. High impedance or "electric" fields are easy to shield against, since large reflection losses are easily obtained. The absorption loss, which is essentially independent of the wave impedance, is the same for both electric and magnetic fields.

Material Selection

Figs. 2 and 3 show typical values of reflection and absorption losses for selected shielding materials (copper and iron). It is seen that at reasonably high frequencies, the dissipation of the field by absorption loss in metals of reasonable thickness is by far the most important factor in shielding. Reflection losses play only a minor role in this regard.

For the electric or high-impedance field, the

Fig. 1. Reflection and absorption in an of shield.

Fig. 3. Attenuation due to reflection.

Fig. 2. Attenuation due to dissipation or absorption losses.

Fig. 4. Dissipation loss for one-mil thickness material.
shields, composite layers of copper-iron are used in commercial shield enclosures. Such shielded rooms provide optimum performance over a wide frequency range.

Design Procedure

As a rule of thumb, any shield which is structurally sound will be thick enough for shielding at radio frequencies. This approximation does not hold at audio-frequencies or for critical applications; however, Fig. 4 shows representative values of absorption loss per mil thickness of material. By multiplying the thickness and the absorption loss factor, and then adding the reflection loss, the total shielding effectiveness can be computed.

For example, suppose it is necessary to determine the shielding effectiveness for magnetic fields at 100 kc , using 0.025 in . copper.
Procedure: From Fig. 3, the reflection loss at 100 kc is 50 db . The corresponding dissipation loss for 1 mil copper, as obtained from Fig. 4, is 1 db .

Hence, from Eq. I:

$$
\begin{aligned}
& S=R+A \\
& R=50 \mathrm{db} \\
& A=\alpha t=1 \times 25=25 \mathrm{db}
\end{aligned}
$$

Therefore

$$
\mathbf{S}=50+25=75 \mathrm{db}
$$

When it is necessary to provide a given degree of shielding, say $60-80 \mathrm{db}$, reference to the curves permits quick estimates of the required material and thickness. In most applications, however, it is required to reduce the interference field to some specified level. By measuring the field without the shield, and comparing with the specific limits, the shielding requirements can be determined.

Reforences

1. S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Co., Inc., 1956, pp 303-315.
2. C. S. Vasaka, Problems in Shielding Electronic Equipment, Proceedings of the First Conference on Radio Interference Reduction, Armour Research Foundation, 1954, pp 86-103.

Designing with Tunnel Diodes

Part I

U. S. Davidsohn Y. C. Hwang G. B. Ober Semiconductor Products Dept. General Electric Co Syracuse, N. Y.

Three experts have pooled their talents to write this first practical design article on tunnel diodes published anywhere. In Part 1, these GE authors discuss characteristics of the tunnel diode, operational limitations imposed on the designer by these characteristics and their effect on circuitry stability. In order to include some special examples of practical amplifier design, the article is somewhat longer than usual. Part 2 will describe methods of measuring tunneldiode characteristics.

WITH THE advent of the tunnel diodel ${ }^{1,2,3}$ the circuit designer has been supplied with a new tool which promises to be extremely valuable in producing entirely new circuit characteristics; or which will simplify the design of present special circuitry.

Inspection of the voltage-controlled negativeconductance characteristics shown in Fig. 1 (as distinguished from the current-controlled nega-tive-resistance devices; such as the unijunction transistor, the controlled-rectifier, the 4-layer and avalanche switching devices, etc.) suggests applications as oscillators, mixers, autodyne converters, logic switching and storing elements, detectors and feedback elements in operational amplifiers.

As with any component, the eventual applications of the device are limited by the ingenuity of the circuits engineer, who is in turn limited by the reproducibility of the components in his circuit complex.

Fig. 1. Negative conductance characteristic of the tunnel diode.

Equivalent Circuit

As has been mentioned in the literature ${ }^{3,5}$ a reasonable equivalent circuit of the device may be represented as shown in Fig. 2.
For an equivalent circuit to be useful it must be physically meaningful for a range of frequencies (even if only for a limited range), so that we will be able to mathematically predict the response of the device within this range.
In order to prove that our equivalent circuit is, in fact, an analog of the device, we shall have to measure the parameters of the device at different frequencies. However, measurements of a twoterminal active element are complicated by the obvious requirement that the device "hold still" to be measured. We must insure that the tunnel diode will not oscillate in the measuring circuit; and for this reason we shall first consider the cir-cuit-stability requirements.

Stability Criteria

Successful linear operation of a tunnel diode depends critically on the stability of the complete system; including, in particular, the internal impedance of the bias supply and the source impedance of the signal, if any. In the following we shall examine the condition of stability either as a sinusoidal oscillator or as an amplifier. The basic circuit can be reduced to that shown in Fig. 3, where R_{l} represents the load resistance; R_{a}, the generator resistance; L, the sum of the inherent lead inductance of the diode, l_{s} and the load inductance $l_{1} ; C$, the diode capacitance; $-g$, the diode negative conductance at the specified bias current and voltage.

Fig. 3b is the equivalent of Fig. 3a, with the following substitutions:

$$
\begin{aligned}
& L=l_{1}+l_{s} \\
& R_{T}=R_{u}+R_{l}+R_{s}
\end{aligned}
$$

It is well known that the system stability can be determined by examining the distribution of the poles or zeros of the circuit determinant in the complex S-plane. ${ }^{4}$
Suffice it to say that if the zeros of $Z(s)$ seen at " X " of Fig. 3b, fall in the right half side of the S-plane, the system is instable and nonlinear operation results. Further nonlinear analysis will not be considered. If the zeros fall on the real frequency axis, the system will have a "free" sinusoidal oscillation. If the zeros are in the left half side of the S -plane the system is stable.
Now the input impedance is given as

$$
Z_{(s)}=\frac{S^{2} L C+\left(R_{T} C-L g\right) S+\left(1-R_{T} g\right)}{S C-g}
$$

L_{3} - Lead inouctance
$\mathrm{r}_{\mathbf{s}}$ = bulk resistance
c_{0} = lllooe barrier capacitance
g_{d} * negative tunneling conductance
Fig. 2. Equivalent circuir of a funnel diode.
ind zeros are
$\lambda=-\frac{1}{2}\left(\begin{array}{l}R_{T} \\ L\end{array}-\frac{g}{C}\right)=\sqrt{\frac{1}{4}\left(\frac{R_{T}}{L}-\frac{g^{2}}{C}\right)-\frac{1-R_{T V}}{L C}}$
Then S will have a negative real part only if both

$$
\begin{gathered}
\quad R_{T}-\frac{g}{C}>0 \\
\text { and } 1-R_{T G}>0
\end{gathered}
$$

(1) it may be written

$$
\frac{L g}{C}<R_{T}<\frac{1}{g}
$$

This is the condition for stable operation, and is shown graphically in Fig. 4.

Free Oscillation

The condition for free oscillation requires the real part equal to zero, namely

$$
\begin{aligned}
\frac{R_{T}}{L}-\frac{g}{C} & =0 \quad(\omega=2 \pi F) \\
\text { and then } \quad \omega_{0} & =\left(\frac{1-R_{T}!}{L C}\right)
\end{aligned}
$$

Evidently, one cannot change the frequency by changing one of the four variables alone and still maintain free oscillations.

Amplifier

For amplifier design, we are interested not only in stability, but also in the gain and the frequency bandwidth. This can best be explored by examining the Nyquist plot of the input impedance (impedance is used here for convenience; one can equally use admittance analysis if he wishes) ${ }^{4}$.

${ }^{\prime}$ 'g. 3. Basic circuit of an oscillator or amplifier. With si stitutions for L and R_{T}, (b) becomes equivalent of (a).

Table 1-Number of Positive Encirclements (P-N) of the Origin of the Plots in Fig. 5.

Case	P-N	P	N	Stable
1	-1	1	2	No
2A	-1	1	2	No
2 B	+1	1	0	Yes
3	0	1	1	No
4	0	1	1	No

Note: $\mathbf{P}=$ Number of poles and $\mathbf{N}=$ number of zeros in the right half of the " s " plane.

The input impedance $Z(s)$ on the real frequency axis of the contour integration in the S-plane is obtained by substituting $j W$ for S. Thus (replacing ω by W):

$$
\begin{aligned}
Z(W)= & \frac{W^{2} R_{r} C^{2}-\left(I-R_{T} g\right) g}{W^{2} C^{2}+g^{2}} \\
& \quad+j \frac{W^{2}\left(L g^{2}-()+L \cdot C^{2} W^{3}\right.}{W^{2} C^{2}+g^{2}} \\
= & R_{T}-\frac{g}{W^{2} C^{2}+g^{2}} \\
& \quad+j W\left(L-\frac{C}{g^{2}+W \cdot C^{2}}\right)
\end{aligned}
$$

The Nyquist plots for the above are shown in Fig. 5.
As given by Bode, ${ }^{4}$ the number of times the plot encircles the origin in the positive direction (counterclockwise) is equal to the difference of the number of poles minus the number of zeros in the right half of the S-plane. By inspection of the equation for $Z(s)$ we see there is one pole in the right side of the S-plane, when

$$
S=+\frac{g}{C}
$$

and the number of zeros can be obtained as shown in Table 1.
The only stable case is 2(b), Fig. 5. Fig. 6 is an conlarged picture of 2(b).

Defining two critical frequencies:
$W_{1}=W_{R}$ is the frequency at which the real part

Fig. 4. Condition for stable operation shown graphically.
of $Z(W)=0$
$W_{2}=W_{X}$ is the frequency at which the imaginary part of $Z(W)=0$
then

$$
W_{R}=\frac{g}{C} \sqrt{\frac{1}{g R_{T}}-1}
$$

and

$$
W_{x}=\sqrt{\frac{1}{L C}-\frac{g^{2}}{C^{2}}}
$$

In general, three possible conditions may exist, provided:

$$
\left.\begin{array}{ll}
& W_{R} \\
W_{X}
\end{array}\right\} \neq 0
$$

3. $W_{R}<W_{X}$

When $W_{R} \leqslant 0$, the device can only be a switch since $R_{T} \geqslant|1 / g|$. When $W_{X} \leqslant 0$, the device can only operate as a nonlinear relaxation oscillator.

For the sake of clarity, these three conditions are compared graphically in Fig. 7 in S-plane, Z-plane, and a plot of effective negative " R " and reactance vs frequency to show the direct correspondence of these methods of presentation. (One may consider the effective negative resistance as an energy source driving the reactances of the circuit; when this source disappears at increasing frequencies the entire circuit becomes passive.)

Circuit Stability Limitations

From the preceeding we have shown that the circuit will be stable when::

$$
L_{C}^{\cdot / \prime}<R_{T}<\frac{1}{g}
$$

or:

$$
1<\frac{1}{R_{T} g}<\frac{C}{L g^{2}}
$$

so that when $L<\boldsymbol{R}_{T} C / g$ we can have a stabl amplifier.

Power Gain

Several definitions of Power Gain have come into common usage. Some of these are:
(1) Transducer gain:

$$
G_{T}=\frac{P \text { load }}{P \text { available from the generator }}
$$

(2) Insertion gain:
$G_{i}=\frac{P \text { load with network inserted }}{P \text { load with only generator and load }}$ connected

Fig. 6. (above) Enlarged version of the only stable case, $2(b)$, of Fig. 5.

Fig. 8. Series circuit, right, compared with its parallel counterpart.

Fig. 9. Basic circuit to determine power gain.

Fig. 7. (below) Comparison of three possible conditions which may exist.

Fig. 11. Process by which circuit may be changed to increase gain af a particular frequency.
3) Maximum available gain:
$G_{M A}=\frac{P \text { available from output }}{P \text { available from generator }}$
(Complex conjugate match at input and output)
4) Effective operational gain or efficiency:

$$
G_{e}=\frac{P \text { load }}{P \text { delivered by generator }}
$$

Definition 3 is normally used to describe 4-terninal active elements and does not seem to be particularly useful for a 2-terminal device.
Definition 4 ceases to be meaningful when the net resistance or conductance of the complete network is negative; since in this event the generator s absorbing power from the network instead of delivering power to it. (One must remember that negative resistance or negative conductance is source of energy.)

For the sake of simplicity in measurement and calculations, and because the definition agrees with a practical method of using the device, we will define power gain in terms of insertion gain in preference to transducer gain.

It should be noted that while the authors have treated the series-insertion amplifier for the purpose of illustration, a similar approach to the stability and design procedures may be applied to the parallel amplifier.

A comparison of the series circuit shown in Fig. 8 with its parallel counterpart is shown in Table 2 (assuming no reactances).

Let us consider the circuit shown in Fig. 9 and the power in the load with no diode in the circuit (switch closed).

As shown in Fig. 10, a vector such as $O A$ represents the $Z(j W)$ at any frequency. Vector $O D$ is the series resistance of the load and generator. E ard F are the limits at which the negative resist-

Table 2 - Comparison of Parameters of Series and Parallel Circuits of Fig. 8.

Series	Insertion Gain			Available Gain
		$\left[\frac{R_{l}+R_{g}}{R_{i}+R_{u}-r_{d}}\right]^{2}$		$\frac{4 R_{l} R_{g}}{\left(R_{l}+R_{s}-r_{d}\right)^{2}}$
Parallel		$\left[\frac{g_{l}+g_{0}}{g_{l}+g_{t}-g_{D}}\right]^{2}$		$\frac{4 g_{l} g_{a}}{\left(g_{l}+g_{0}-g_{D}\right)^{2}}$
Ratio of:	$\frac{G \text { insertion }}{G \text { available }}$	$=\frac{g_{0}}{4 g_{i}}$	$\left(1+\frac{g_{0}}{g_{l}}\right)^{2}$	$\frac{R_{e}}{4 R_{l}} \quad\left(1+\frac{R_{l}}{R_{g}}\right)^{2}$

Fig. 12. Characteristics of a typical tunnel diode.
ance contribution of the diode is equal to zero. Then the current-gain in the load is inversely proportional to the ratio $O A$ to $O D$ that is:

$$
\left|\frac{i_{1}}{i_{o}}\right| \alpha \frac{O D}{O A}
$$

Where i_{o} is the current in R_{l} with shorted diode and where i_{1} is the current in R_{l} with diode in the circuit.

Since the current flowing $\left|i_{0}\right|=\frac{e_{0}}{\left|Z_{0}\right|}$
then

$$
P_{l_{o}}=\left|i_{o}\right|^{2} R_{l}=\frac{e_{o}^{2} R_{l}}{\left|Z_{0}\right|^{2}}
$$

with the switch open $\left|i_{1}\right|=\frac{e_{0}}{\left|Z_{T}\right|}$ and $P_{l_{1}}=\frac{e_{0}^{2} R_{2}}{\left|Z_{T}\right|^{2}}$ where $\left|Z_{T}\right|=$ magnitude of the total loop impedance, including the tunnel diode. Defining the power gain ("insertion" power gain) then

$$
\begin{aligned}
& G=\frac{P_{l_{1}}}{P_{l_{0}}} \\
& G=\frac{\frac{e_{0}{ }^{2} R_{t}}{\left|Z_{0}\right|^{2}}}{\frac{e_{0}^{2} R_{t}}{\left|Z_{0}\right|^{2}}}=\frac{\left|Z_{o}\right|^{2}}{\left|Z_{T}\right|^{2}}=\left|\frac{Z_{o}}{Z_{T}}\right|^{2}
\end{aligned}
$$

For the sake of simplicity and for purposes of illustration:

$$
Z_{\theta} \equiv R_{\theta}, Z_{l} \equiv R_{l}, Z_{o} \equiv\left(R_{l}+R_{v}\right)
$$

With the simplification stated, we see that $\mid Z_{T}$ may be determined by constructing the tunnel-

diode characteristics with frequency as shown in Fig. 10, offsetting the original origin by the magnitude of $R_{l}+R_{g}$ and comparing the square of the vectors from the new origin, of Z_{T} and $\left(R_{l}+\right.$ \boldsymbol{R}_{g}) at the desired frequency. In Fig. 11 we illustrate a process by which the design of the circuit can be changed to emphasize the gain at a particular frequency.
A set of circles corresponding to different $\left(\boldsymbol{R}_{l}+\right.$ R_{g}) values are superimposed on a diode characteristic with the centers $o(\alpha), o(\beta), o(\gamma)$ located inside the loop to insure stability. We can see that circle γ intercepts the diode characteristics at $\pm W \gamma$. Above this frequency the current amplification is positive, while below this frequency the amplification is negative. For circle a, the intercepts are at $\pm W$ a. This means that current amplification is positive for all frequencies up to $W \boldsymbol{\alpha}$.

Amplifier Design Procedure

Let us consider the characteristics of a typical tunnel-diode with the specifications and response shown in Fig. 12.

Example 1:

Required: $100-\mathrm{mc}$ amplifier to operate between two 50 -ohm transmission lines.
Let:

$$
R_{T}-\frac{g}{g^{2}+W^{2} C^{2}}=0
$$

Then:
$R_{T}=\frac{1}{g\left(1+\frac{W^{2} C^{2}}{g^{2}}\right)}$
for

$$
\begin{aligned}
\frac{C}{g}= & \frac{\pi \times 10^{-12}}{\sigma \times 10^{-3}}=7.1 .5 \times 10^{-10}, \\
& \left(\frac{C}{g}\right)^{2}=51 \times 10^{-20} \\
\frac{W^{2} C^{2}}{g^{2}}= & 39.4 \times 10^{16} \times 51 \times 10^{-20} \\
& =3.94 \times 5.1 \times 10^{-2}=0.21
\end{aligned}
$$

Fig. 14. Final practical circuit of a $30-\mathrm{mc}$ amplifier.
$R_{T}($ required $)=\frac{143}{1.21}$
$=118 \Omega, R_{r}-\left(R_{1}+R_{n}+R_{s}\right)=16 \%($ to be added $)$
allnd $L=\frac{R_{T} C}{!}=1.18 \times 10^{2} \times 5.1 .5 \times 10^{-10}$

$$
=8.43 \times 10^{-8}=84.3 \mathrm{~m} \mu \mathrm{~h} y
$$

Therefore: the ac circuit is as shown in Fig. 13a, and for de bias, Fig. 13b.

$$
V_{2}=7.5 \times 10^{-4} \times 6 i 6=49.5 \mathrm{mv}
$$

therefore $V_{1}=12.5+49.5 \mathrm{mv} \cong 175 \mathrm{mv}$
so that $\quad I_{a}=\frac{175}{50} \mathrm{ma}=3.5 \mathrm{ma}$
and $\quad I_{n c}=I_{n}+I_{n}=4.2 .5 \mathrm{ma}$
Assume we wish to use a $6.3-\mathrm{v}$ battery, then

$$
R_{B}=\frac{6.12}{4.2 .5} \times 10^{3}=1.44 \mathrm{~K}!
$$

We should decouple the dc supply from the amplifier by at least a 10 K -ohm inductor.

$$
I_{B} \geqslant \frac{1}{11} \approx \frac{10^{4}}{6 \times 10^{8}} \approx \frac{10 \times 10^{-5}}{6} \approx 1.5 \mu h y
$$

or: (allowing for battery changes), the final prac-
tical circuit is shown in Fig. 13c. Experimental re sults obtained were:

$$
f_{0}=100 \mathrm{mc}, G=332 \mathrm{db} \text {, bandwidth } \cong 20 \mathrm{mc}
$$

When L was increased so that $G=40 \mathrm{db}$, band width was approximately 8 mc but very nonsymmetrical.
Example 2:
Required: A $30-\mathrm{mc}$ amplifier to operate be tween two 50 -ohm transmission lines. Following the procedure in Example 1:

$$
\begin{aligned}
& R_{T}=\frac{1}{\left.7 \times 10^{-3}(1+39.0) \times 9 \times 10^{14} \times 51 \times 10^{-20}\right)} \\
& \left.R_{T}=\frac{14.3}{(1+(0.018)} \cong 140.5\right)!
\end{aligned}
$$

Now this is entirely too close to $|T /-g|$ for rea sonable stable dc operation.

We can approach this problem from a differen aspect and attempt to increase the parallel capaci tance, thereby reducing g / C. However, Fig. shows us that W_{X} internal $<W_{R}$ internal; and therefore merely paralleling the tunnel-diodi with a capacitor will inevitably cause oscillation Therefore: Consider the stability requirement the device at very high frequency.

Assuming that the distributed inductance socket and leads (including capacitor leads) is the orler of 30 muh .

$$
\text { with } l=: 3 \times 10^{-8} h y
$$

$$
\begin{aligned}
W_{x}^{\prime} & =\left(\frac{1}{3 \times 10^{-8} \times 5 \times 10^{-12}}-2 \times 10^{+18}\right)^{\prime} \\
& =(6.67-2)^{\frac{1}{2}} \times 10^{9} \\
f_{x}^{\prime} & \cong \frac{2.2 \times 10^{9}}{(6.28}=3.50 \mathrm{mr}
\end{aligned}
$$

If we add a new $\boldsymbol{R}_{T}^{\prime}$ in series with the capacito
such that
$K_{T} T^{\prime}>\frac{L g}{C_{D}},\left(\frac{3 \times 10^{-8} \times 7 \times 10^{-3}}{5 \times 10-12}=\frac{21}{5} \times 10\right)$
>42 ohms, the second loop will also be stable at 350 mc .
To be safe let us use $\boldsymbol{R}^{\prime}{ }_{T}=47 \mathrm{ohms}$. Since W_{X} $<W_{s}$ internal we can neglect l_{s}
Now the required C Cotal $=\frac{3}{W}\left(\frac{1}{g R_{s}}-1\right)^{1}$

$$
=\frac{7 \times 10^{-3}}{1.88 \times 10^{8}} \sqrt{0.43}
$$

$C_{T}=3.73 \times 10^{-11} \times 0.655=24.4 \mu \mu \mathrm{f}$.
$C_{R \mu 4}=C_{T}-\left(C_{D}+C_{\text {кerayn }}\right) \cong 24.4-6.5 \cong 18 \mu \mu \mathrm{f}$
Y_{c} at $\quad 30 \mathrm{mc}=\frac{1}{1.88 \times 10^{8} \times 1.8 \times 10^{-11}}$

$$
=\frac{1}{3.38 \times 10^{-3}}=296 \Omega \cong 300 \Omega
$$

$X_{\text {c at }} 3.50 \mathrm{me}=\frac{1}{2.2 \times 10^{9} \times 1.8 \times 10^{-11}}$

$$
=\frac{1}{3.96} \times 10^{2} \cong 25 \Omega
$$

Since $X_{r}=6.3 R_{T}^{\prime}$ the apparent capacitance will only be reduced by about 3 per cent or $1 / 2$ uuf at 30 mc .
From the proceeding we can now design the 30-mc amplifier:

Wïh $l_{r}=100$ ohms. $\left.C^{\prime}=24 \mu \mu f, g=0.00\right)^{-} \mathrm{mho}$

I tutal $=L_{1}-L_{\text {siraly }} \cong 300 \mathrm{~m} \mu \mathrm{~h}$ y
The same procedure as in Example 1 is now Gollowed for the de supply and decoupling rf thoke and Fig. 14 shows the practical amplifier circuit. Results were: $G=32 \mathrm{db}$ at 30 mc for landwidth of 10 mc .

Alignment

To align the amplifier, one first reduces L_{1} to is minimum value. A 0.1 mv signal at 30 mc is inectid and the generator is "rocked" in frequency chije adjusting C_{1} for a peak at $30 \mathrm{mc} . L_{1}$ is then morcased until the required gain is obtained. The ten rator should be turned off at this point to ther k that the amplifier is not oscillating. (Othervist one must reduce L_{1} slightly, and/or increase lightly). Since the amplifier becomes critical ljustment when more than 30 to 50 db of G_{1} equired, it is not recommended for higher-
gain operation.
One precaution in the use of this amplifier must be mentioned. From the characteristic curve of Fig. 1 one sees that the peak linear current excursion is approximately 0.5 ma . Therefore the peak-to-peak voltage across the 50 -ohm output must be less than 25 mv for linear operation (that is, $e_{\text {out }} \leqslant 8.5 \mathrm{mv}$ rms).

Since we can obtain over 30 db of gain, then the maximum input voltage to the amplifier is in the order of 0.5 mv .

It is to be noted that the solution of the quadratic equation for the g / C ratio required, results in two values; namely:

$$
\left(\frac{a}{C}\right)=\frac{1}{2 C h_{T}} \pm \sqrt{\frac{1}{4 C^{2} R_{T}^{2}}-U^{\prime \prime 2}}
$$

and $\quad\left(\cdot\right.$ maximum $\leqslant \frac{1}{2 W h_{T}}$
also if given a specific C (provided $C \leqslant 1 / 2 W R_{T}$) the permissible values of g are:

$$
y=\frac{1}{2 R_{T}} \pm \sqrt{\frac{1}{4 R_{r^{2}}}-\Pi \cdot C^{2}}
$$

so that for a $6-1 / 2 \mu \mu f C$ total, $|1 / g|=125$ olmms or 500 ohms which implies that a $1.0-\mathrm{ma}$ unit or a $0.25-\mathrm{ma}$ unit of the same capacitance may be used.
Since the amplifiers are bilateral, a possible application for those described is as a low-level "repeater" amplifier in transmission lines. - .
Part 2 of this article will appear in a subsequent issuc of Electronic Design, and will discuss measurement of tumnel-diode characteristics.

References

1. L. Esaki, Phys Rev, 109, 603 (1958).
2. H. S. Sommers, Jr., Proc IRE, 47, p 1201, 1959.
3. I. A. Lesk, N. Holonyak, Jr., U. S. Davidsohn, and MI. W. Aarons, Germanium and Silicon Tunnel-Diodes Design Operation and Application, 1959 Wescon Conv Rec.
4. H. W. Bode, "Network Analysis and Feedback Ampli-fier-Design".
5. I. A. Lesk, N. Holonyak Jr., U. S. Davidsohn; "The Tunnel-Diode Circuits and Applications", Electronics, Vol 32 \#48 p 60, 1959.
6. J. W. Horton, A. G. Anderson, Full-Adder using Neg. Res. Diodes. IBM Journal, July 19.58.
7. K. K. N. Chang (Letters to Editor) Proc. IRE, 47, p 1268, 1959.
8. J. J. Tiemann and R. L. Watters, Noise Considerations of Tunnel-Diode Amplifiers presented at the 1959 IREAIEE Solid State Devices Research Conference, Cornell University, June 17, 1959.
9. H. S. Sommers, et al Tunnel-Diodes for Low-Noise Amplification, 1959 Wescon Conv. Rec.
10. (A) Operating Instruction Manual, VHF Z-G Diagraph, Model ZDU, Rhode and Schwarz, Munich, Germany.
(B) R. P. Abraham and R. J. Kirkpatrik, "Transistor Characterization at VHF", Semiconductor Products, Jan., 1959.

For Reliable Voltage Control

NEW

General Electric Rack-Mounted Inductrol* Voltage Regulators
For Vollage-sensitive Electronic Loads
Ratings (automatic or motor-driven) up to 15 circuir kva- 100 load amps, single-phase $50 / 60$, and 400 cycles, 120 and 240 volis.

FEATURES

- Built to meet MIL specifications
- No brushes
- No harmful waveform distortion
- Driff-free fubeless controls
- 1% bandwidth accuracy
- Voltage adjustment up to 100%
- Compari--high capocity
- Temperalure, power factor, and frequency compensated
- Highly reliable

FOR MORE INFORMATION about the complete line of G-E Inductrol regulators to meet your application, contact the General Electric voltage regulator represenfalive af your nearby G-E Apparatus Sales Office, or write to Section 425-26, General Electric Company, Scheneclady 5, N. Y.
Reguriered Trademart of General Electri: ©c,
Progress /s Our Most Impontant Product
GENERAL (9\%) ELECTRIC

PRECISE COAXIAL TUNERS

TUNE TO

 VSWR $1.000_{\text {20.anoo ms. }}$

MAKES YOUR LOAD A REFLECTIONLESS TERMINATION
DESIGNED FOR USE whenever extremely accurate RF power terminations are required. This laboratory type Coaxial Tuner will tune out discontinuities of 2 to 1 in coaxial transmission line systems or adjust residual VSWR to 1.000 of loads, line systems or adjust residual to introduce a mismatch into an otherwise matched system.
M. C. JONES COAXIAL TUNER is designed for extreme ease of operation, with no difficult laboratory techniques involved. Reduces tuning time to a matter of seconds. Graduations on carriage and probe permit resetting whenever reusing the same termination.

Impodance
Froquency Range
RF Connectors
Powar Reting
Range of Correction

SPECIFICATIONS

$1 \begin{aligned} & 50.0 \text { ohms } \\ & \text { Modol } 151 \mathrm{~N}\end{aligned}$

E1A $7 / 1 / 50$ 500.4000 Ma.
100 wam
for more informaton on tuners, drectional couplers, r. f. loads, etc., please write to:
M. C. JONES ELECTRONICS CO., INC.

185 N. MAN STREE, BRISTOL, CONN. subsidiary of

No guesswork needed to read voltage and
time on the DuMont 425.

Digital Readout Scope

DIGITAL readout of voltage and time, joystick positioning controls, and modular construction are but a few of the features which make the $35-\mathrm{mc}, 50-$ $\mathrm{mv} / \mathrm{cm}$ DuMont 425 a most unusual oscilloscope.
Manufactured by Allen B. DuMont Laboratories of Clifton, N. J., the 425 provides unambiguous, accurate voltage and time readings from even the most complex waveforms. Of its many novel features, the most unusual is the digital readout.

Joystick Positioning

To measure the peak-to-peak amplitude of a complex waveform, for example, an operator sets the Display Logic switch to the Read Out position. He then moves the waveform and the two dots which appear with it to a convenient position on the screen with the Pattern Positioning joystick.

Using the Index Positioning joystick, he moves both dots till the indexing dot
coincides with the most negative level the waveform. He then maneuvers the voltage and time-scale thumbswitches till the scaling dot coincides with the most positive level of the waveform. Then the upper left readout area provides a three digit voltage reading.
He can use a similar technique to meas ure the period of a waveform or tim between points on the waveform. In thi case, the upper right readout area give a three-digit time readout while a vernit can supply a fourth digit.
For accurate rise-time measurement a push button under the voltage readout can automatically move the dots from the peaks of the waveform to the 10 - and 90 -per cent voltage levels.

Switches for Three Axes

Electronic switches in the X, Y and axes can provide unusual effects. For es ample, one can view the main sweep anf the delaying sweep simultaneously, will one positioned over the other. This pry
vid's a complete magnifier since one can see the entire signal time sequence. It can provide a sweep magnification of up to 10^{9}.
When the Dual Trace plug-in is used with the Delaying Sweep the scope can display two completely independent voltages against two completely independent sweeps.
The bootstrap sweep circuits in the main frame of the 425 , with a range from $10 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$ to $6 \mathrm{sec} / \mathrm{cm}$ provide sweep accuracy which is normally better than 3 per cent-always better than 5 per cent. The Delaying Sweep can provide delays from $0.5 \mu \mathrm{sec}$ to 10 sec .
Outputs from two 40-pin connectors on top of the 425 can be used to print out each voltage and time digit, decimal point, and multiplier. Also available at these connectors are analog voltages, proportional to the three-digit voltage and time readings. These may be used to drive a pen-recorder-type XY plotter or oo feed an analog computer.

There is not a single selected tube or non-standard part in the 425 or any of its plug-ins.

Available from stock, the main frame of the 425 costs $\$ 2750$. The most common plug-in units range from $\$ 100$ to $\$ 300$.
For more information, turn to the Reader-Service Card and circle 100.

At the touch of a bution

No multiple relay contact arrangements
Octal or decimal configurations Units can be stacked to form complete keyboards
three standard models =
DS. 1 Ten button decimal bank w.th
1.248 binary output contacts 12.48 binary output contacts
S. 1 Seven butten octal bank with 24 binaly outwut contabls OS-2 Seven button octal bank with 124 binary output con acts plus a single pole double throw switch
coupled to the zero irle a? pushbutton Special code arrangements'available on request

GOMPUTKR COHTROL CG.,

Main frame of the 425 and those plug-ins which are already available. Others will follow.

MADE FOR EACH OHEER

These motors and amplifiers are designed to operate together as a precise, hard-working team in all sorts of measuring, positioning and balancing applications. They serve dependably in Honeywell instruments, and will serve you well wherever you use them as components.

MOTORS

Designed for servos and balancing circuits, the motors are available in three general types: Stack type, with easily maintained sectional housing; self-lubricated, oil-sealed type; and fungus-proofed, oil-sealed military motors. Prices from $\$ 40$.

Nominal No Load R.P.M. ${ }^{*}$	Gear Ratio	Intermittent Rated Load (0z.oln.)	Max. Starting (oz.-in.) (02.-in.	Power (Watts) Loaded	Current (amps.) Loaded	$\begin{gathered} \text { Temp } \\ \substack{\text { Rise } \\ \text { of }} \end{gathered}$
330	4.4:1	4	10	$11.5 \dagger$	0.11	70
144	10:1	5	23	$11.5 \dagger$	0.11	70
48	30:1	15	56	$11.5 \dagger$	0.11	70
23	60:1	30	105	$11.5 \dagger$	0.11	70

Synchionous №tors aliso available enclosed in same type case designs.

AMPLIFIERS

They amplify a d-c or a-c microvolt input signal sufficiently to drive one field of a two-phase balancing motor. Three stages of voltage amplification are followed by the power-output phase discriminator stage, which supplies power for the motor. Extremely low stray pickup . . . adjustable sensitivity . . . fast response. Priced from $\$ 110$ to $\$ 250$.

manth

PIGNEERING THE FUTURE

Gain	Sensitivity (Microvolts)	Nominal Input Impedance		
10^{6}	4.0	400.	2.200,	50.000
4×10^{6}	1.0	400,	7.000,	50.000
12×10^{8}	0.5	400.	2,200,	7,000
40×10^{8}	0.1	2,200		

POWER SUPPLY-115 v., 60 cycles (fused power line)
OUTPUT-2 to 18 ma . into $12,000 \mathrm{ohm}$ load
SENSITIVITY -Continuously variable screwdriver adjustment. Recessed slot protects setting
MOUNTING Operation unaffected by mounting position
OPTIONAL FEATURES - (a) thermocouple burnout protection, (b) desensitizing (c) parallel T feedback, (d) velocity damping, (e) special connecting cables and plugs, (f) without tubes, shields, and converter, (g) for 25 cycles, (h) Tachometer leed back.

Minneapolis-Honeywell, Wayne and Windrim Aves., Pniladelphia 44, Pa.

Honeywell

Finst in Coutrol
CIRCLE 40 ON READER-SERVICE CARD

Worried About Tape Stretching? Capstan-Speed Servo Offsets Distortions

TO CANCEL the effect of temperature and humidity distortions in magnetic tape length, a speed servo system was developed to hold timing accuracy of the playback unit to ± 0.005 per cent. A $60-\mathrm{c} p \mathrm{~s}$ signal is recorded on one of the tape's channels and compared with the original signal during playback. If the recorded signal is low in frequency, capstan speed is increased.
Designed by engineers of the Mincom Division of the Minnesota Mining and Manufacturing Co., 2049 S. Barrington Avc., Los Angeles, the Cyclelock system

The Cyclelock system. Sixty-cps signal is recorded on tape along with data. During playback, recorded signal is compared with reference. Any difference in signal is applied to capstan-motor-speed control.

Cyclelock tape speed-control system holds timing accuracy to ± 0.005 per cent, according to designers, Mincom Div. of Minnesota Mining and Manufacturing
Co.
compensates for very small variations in tape length. These variations, which can be as small as 10^{-*} inches per inch for each degree F and 10^{-4} inches per inch for each percentage of change in relative humidity, can cause considerable inaccuracy of data reproduction.
With the speed control system, a 3.84-kc signal is generated by an oven-controlled crystal oscillator. It is counted down by a binary counter chain to produce a $60-\mathrm{cp}$ s reference, which in turn amplitude-modulates a 17 -ke carrier. The modulated carrier is recorded on the tape together with the data.
During reproduction the carrier is demodulated, the 60 cps recovered and compared with the original reference signall. If there is a difference in frequency, a dc correction voltage is sent to the cap-stan-speed control. Since the capstan motor is a dc shunt one, the correction signal controls the speed through a simple amplifier.
On some of the Mincom Division CV-100 Video Band Recorder-Reproducers the Cyclelock system is provided for the recording mode, too. The signal is taken from the flywheel on the back of the capstan and fed to the correction system to control speed variations during recording.
For further information on this tape speed servo system. turn to the ReaderService Card and circle 101.

"MYLAR"' offers a unique combination of properties valuable for electrical design

HIGH TENSILE STRENGTH. "Mylar" is the strongest plastic film. Insiron tester

HIGH DIELECTRIC STRENGTH. Average of 4,100 volts per mil....averago
power factor of 0.003 at 60 cycles.

Yes, there is such н tape, and it's made with Du Pont "Mylar"* polyester film. For most applications, tough, durable pressure-sensitive tape of "Mylar" actually cost less, per linear foot or yard, than tapes made of other materials. That's because "Mylar" permits tape manufacturers to use thinner gauges without any loss in performance.
And what about performance? Here are some of the outstanding properties of "Mylar" found in pressure-sensitivetape: THIN, YET STRONG
…average tensile strength of 20,000 psi. DURABLE
... under both high and low temperature use.

better things for better living
through chemistry

DU PONT
 MYLAR

fLEXIbLE
gives snug wrap over irregular surfaces. HIGH DIELECTRIC STRENGTH
. average 4,000 volts per mil.
DIMENSIONALLY STABLE
. can be used in areas of high humidity. MOISTURE.RESISTANT
. . resists mildew, most chemicals.
.. resisis mildew, most ch
RESISTS EDGEFRAYING
. . has great tear and impact strength RESISTS HEAT AND COLD
. can be used in class B insulation systems. NO PLASTICIZER
can't dry out or embrittle with age.
You name the job . . . electrical insulat ing, color coding, masking for electro
plating, harness-wrapping coils . . . and you're sure to find pressure-sensitive tape of "Mylar" can improve performance while lowering costs. What's more, this thinner tapecan helpdecrease weight and size of finished products without any loss in performance!
Pressure-sensitive tape of "Mylar" can now be obtained in a wide variety of gauges, widthe, colors, and with different adhesives. Ask your supplier to help you evaluate all the factors involved in cost and performance of tape made with "Mylar". Or, send today for a list of tape manufacturers and a booklet on tape manufacturers and a
properties and applications.
*"mylar" is Du Pont's registered trademark for its brand of polyester film.
E. I. du Pon: de Nemours \& Co. (Inc.)

Film Depl., Room E0-2 Nemours Building, Wilmingion 98, Delaware.
\square Please send me information
on the advantages and uses of pressure-sensitive lape made with "Mylar" (MB-6)

\square Please send me information on properties. applications and types of "Mylar" available	$\begin{array}{l}\text { types of "Mylar" available } \\ \text { (MB-11). }\end{array}$	City

Application
Name
Firm
Addross
City.

now... find,
 identify, analyze noise \&interference 200cps-25mc

FASTVII
.just one of the many ways to use

PANORAMIC's economical SPA-3/25 SPECTRUM ANALYZER

Widely used for high-speed location, identificaionols, the SPA-3/25 automatically discrete and measures the frequeney and amplifude o signals in spectrum segments up to 3 me wide selectoble onywhere berween 20 cps and 25 mc
Direct readouts of frequency distributions ond mplifudes of signals arency provided respectively on calibrated X ond Y ooxes of a 5" long-
persistence CRT. The SPA- $3 / 25$ samples the

. permits quick location of signals, minimizes chances of missing weak signals or holes in the spectrum
2. speeds up measurements by eliminating tedious point-by-point plofs
. enebles fest, meliable detection of com parativaly low lovel discrete signals presen in rondom spectre through use of adjustable narrow If bandwidths and corralation ©
4. allows identification and subsequent analysis of dynamic characteristics of modulated signals and noise.

Panoramic

Noise spectrum analysis using internal video moothing filler to present noise envelope average versus frequency in readily appreci-
ated form. Internal marker pips are 500 kc apart.

SPECIFICATIONS:

Srequency Range: 200cps-25mc in 2 bands sweepwidth: Variabie, calibrated from 0 to enter frequency: Variable, calibrated from Markers: crystal controlled, 500ke and harmonics to 25 mc Resolution: Variable, 200 cps to 30 kc weep rate: Variable, 1 CPS to 60 CPS Amplifude 10 db square law (powes) High sensitivity: 20 uv full scale deflection Attenuator: 100 db calibrated Response Fiotness: $\pm 10 \%$ or $\pm 1 \mathrm{db}$ npur Impedance: 72 ohms. High impedance The SPA-3/25's greot flexibility makes it a aluable tool in aq wide range of opplications. Write, wire or phone NOW for detailed speci-
lications and
NEW CATALOG DIGEST. Put your name on our mailing list for the tion doto.

524 So. Fulton Avenue, Mounf Vernon, N.Y. Phone: OWens 9-4600
Cables: Panoramic, Mount Vernon, N.Y. State

Miniaturized Control Regulates DC Motor's Speed To Accuracy of 0.1%

THE SPEED of dc motors can now be regulated to a reported accuracy of 0.1 per cent by a new control unit that uses, in effect, pulse-width modulation. Previous methods of control, which varied either the voltage or current, achieved regulation accuracies of only 1 or 2 per cent. No change in speed is required to initiate correction by the new control unit.

Unaffected by ambient temperature changes, vibration, shock, voltage and load fluctuations, the speed-control unit operates from the same power source that drives the motor. The device was designed by and is being manufactured b: Globe Industries, Inc., 1784 Stanley Ave. Dayton 4, Ohio

One version of the control is housed in a 2 -cu-in. enclosure that includes a re-sistor-capacitor time base and a transistorized regulating circuit. Motor speed is sensed by an electrical transducer (such as a coil) in the motor. This pickoff transmits pulses having a frequency function exactly equal to armature speed. In a logic circuit these pulses are compared with the pulses generated by the
time-base generator, and appropriate "off" or "on" signals are applied to the motor control. These integrated pulsed command signals are delivered at a high rate, on the order of 1000 per sec.

The motor remains in exact synchronism with the time base, and the only speed error is that introduced by the time base, according to the maker. The amplitude, duration or wave shape of the command pulses caused by various conditions are said to introdace no error into this system.

Since with this off-pulse-on-pulse technique the motor's speed is, in effect, locked onto the time base, the frequency generator is the main cost and accuracy variable.
When power is applied to the motor, it develops its full starting and running torque characteristics until the precise instant that the specified speed is reached. De motors characteristically develop about five times more starting torque than similarly rated ac synchronous motors, and this extra torque is available for both starting and running overloads. The designer is thus offered a

choice of improving torque for a given size of motor or of reducing the motor size while retaining the desired torque. And higher operating efficiencies are possible with the dc system, which is important in satellite and space vehicle applications.

Applications of this control unit include programing controls for missiles, satellites and space vehicles; controlling the memory drums of a computer in exact synchronism with one another and a time base; and controlling the driving motors on high-speed tape recorders, which would eliminate inaccuracies caused by ac motor slip.
The control permits synclaronization of any number of dc motors from one time base. It also permits synchronizing any number of slave motors to a master dc motor without the use of a time base.
Development is under way on a compact crystal-controlled oscillator that will have accuracies measurable in parts per million. This unit is presently housed separately from the control circuit in a 5 -cu-in. enclosure.

A number of the control units are being released on an experimental basis, while development of the principle continues. Each new application is engineered specifically for the job and necessitates several months of lead time. The techniques at present are not a substitute for applications adequately handled by other controls, primarily for economic reasons.

For more information on this control unit, turn to the Reader-Service card and circle number 102.

A 1.25-in. diam. permanent magnet motor fitted with a resistor-capacitor time base and motor control.

Now your present electronic counter becomes a really good, accurate DIGITAL VOLTMETER by simply adding this self-contained, inexpensive

2210 Voltage-to-Frequency CONVERTER

Now it is simplicity itself to read voltages in direct digital form using your present electronic counter and this new Dymec DY-2210 Converter. You can also measure the time integral of fluctuating voltages directly in volt-seconds - no more tedious, costly manual data reduction and analysis. Unique design principle of the DY-2210 makes it insensitive to most kinds of noise on the input signal.
The DY-2210 generates pulses at a rate accurately
proportional to the dc input voltage. Zero input produces zero output cycles, I volt produces $10,000 \mathrm{cps}$. A front-panel attenuator provides additional input ranges of $10 \mathrm{v}, 100 \mathrm{v}$ and 1000 v . Positive or negative inputs sensed automatically. Models available for ac inputs and remote programming applications. Price: $\$ 660$ cabinet, $\$ 650$ rack-mount.
For details and demonstration, see your Dymec/ Hewlett-Packard representative or write direct.

RACK MODEL, PANEL HEIGHT ONLY $3^{\frac{1}{2} / 2}$
$\int 1$ I 2 A DIVISION OF HEWLETT.PACKARD CO.
GOG3A PAGE MILL ROAD, PALO ALTO. CALIFORNIA. U.S.A. DAVEnport 6-1755
Dymec/(1) field representatives in all principal areas

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

Silicon Transistors Have
 Gain Of 6 At 20 Mc

Types 2N696 and 2 N 697 diffused-junction, drift-field, npn mesa transistors have a minimum gain of 6 or more at 20 mc and high currents. Both units are designed for use in high-speed switching applications. The 2 N 697 has a de pulse current gain that is a minimum of 40 and a maximum of 120 ; minimum and maximum gains for the 2 N 696 are 20 and 60 . Total power dissipation of the units is 2 w at 25 C . They have a maximum collector-base voltage of 60 v , col-lector-emitter voltage of 40 v , and an emitter-base voltage of 5 v .

Hoffman Electronics Corp., Dept. ED. 3761 S. Hill St., Los Angeles 7, Calif.
Price \& Availability: Both units cost $\$ 28.50$ each in quantities of from 1 to 9.9 units, $\$ 19$ each in quantities of 100 to 999 units. Availability data on request.

Price and Availability

PRICE AND AVAILABILITY data is now being added, whenever possible, to the New Product descriptions that appear in ELECTRONIC DESIGN. This data will help you to:
-Evaluate the products more intelligently. -Decide which products to buy now and which to wait for.
-Schedule your orders wisely.
-Get an insight into prices and savings for similar products.

Most manufacturers have been very cooperative in providing us with Price and Availability data. Since some of the data arrived after our deadlines, it was impossible to add it to all of the products. The data represents the latest information at th:e time of publication.

Weight And Size Of
 Transistor Reduced

630

These power transistors are said to be half the size and weight of present standard components. Called Spacesavers, they are adaptable io a wide variety of mounting requirements. The units come in eight 3 -amp) switching types with breakdown voltages of $40,60,80$ and 100 . Direct current gain ranges from 30 to 75° and 60 to 150 , and frequency responses are up to 10 and 15 kc . Leakage current at 90 C is 10 ma .

Clevite Transistor Products, Dept. ED, Waltham 54, Mass.
Price \& Availability: Price on request. Most units are readily available.

Creative Microwave Technology

Published by MICROWAVE AND POWER TUBE DIVISION, RAYTHEON COMPANY, WALTHAM 54, MASS., Vol. 1, No. 9

NEW RAYTHEON MAGNETRONS FOR A WIDE RANGE OF APPLICATIONS

Minialure Drum Counter 631 Is Reversible

Model 352:3 four-digit reversible counter has $1 / 8-\mathrm{in}$. high numbers and drums that measure 0.46 in . The gears are molded of impactresistant thermoplastic. Although furnished with a mounting bracket, the lugs may be clipped off and two screws used in the base for mounting. The dimensions of this package would be $1 / 2 \mathrm{in}$. wide and $5 / 8 \mathrm{in}$. long, not including the length of the drive shaft. Height is $11 / 16 \mathrm{in}$.
Haydon Instrument Co., Dept. ED, 165 West Liberty St., Waterbury 20, Conn.
Price \&゙ Availability: List price is \$4.80 with quantit!! discounts up to 50\%. Availalility data on request.

Tunnel Diode Samples

632

Made Available

These tunnel diodes have peak-to-valley ratios ranging from 3 to 1 to 10 to 1 . Peak currents range from 2 to 4 ma , average. They are packaged in JETEC 30 envelopes. Typical negative resistance is 35 ohms. At peak current, typical voltage is 50 mv ; typical voltage at valley current is 200 mv . The maximum power dissipation is 20 mw . Three or four types will be made available.
General Transistor Corp., Dept. ED, Jamaica, L.I., N.Y
Price \& Acailability: Only engilecring samples are available. Price in request.

Designed or c-band systems requiring tunability, the RK-7156 magnetron has a minimum peak power output rating of 250 kilowatts over a frequency range of 5,450 to 5,825 megacycles. Applications include a flighttested, revolutionary airborne weather radar system. The RK-7156 is in quantity production.

CIRCLE 832
Reader Service Card

* * *

X-band magnetron for airborne search radar provides one megawatt minimum peak power and 875 watts average

power within a frequency range of 9,340 to $9,440 \mathrm{Mc}$. Designated QK-624, this pulsed-type tube is liquid cooled and should give at least 1,000 hours of reliable service.

CIRCLE 833 Reader Service Card *

For ground-based and airborne radar systems, the RK7529 magnetron provides a 2.0 microsecond pulse of 3.5 megawatts minimum peak power over 2,700 to $2,850 \mathrm{Mc}$. This liquid-cooled tube is interchangeable with other fixed-frequency S-band tubes operating at similar power levels.

CIRCLE 834
Reader Service Card

A one kilowatt beacon magnetron $\frac{1}{\text { the RK }}-7578 \frac{\text { weighs }}{\text { we }}$ only 14 ozs., yet will withstand vibrations of 15 G's at 20 to 2,000 cycles and shock up to 100 G's. It is

C ICLE 832 TO 836 ON READER-SERVICE CARD $>$

Cusfom transformers for printed circuits are now available from ADC in five standard case sizes with terminals and inserts on $0.1^{\prime \prime}$ grid multiples. Audio, power, and ultrasonic transformers and inductors with maximum electrical per formance for each size are being custom designed for tranformance for each size are being custom designed for tran-
sistor and vacuum tube circuitry. Raised mountings prevent sistor and vacuum tube circuitry. Raised mountings prevent moisture from being trapped. Available in Mumetal cases.
They meet MIL-T-27-A Grade 5 Class R or S Life X, and They meet MIL-T-27-A Grade 5 Class R or S Life
can be designed to meet 500 and $2,000 \mathrm{cps}$ vibration.

Note: Other combinations ore availoble with 400 cps max. volt ompere ratings up to 15 for
Fig. 1,10 for Fig. 2,6 for Fig. 3, 4 for Fig. 4. and 1 for Fig. 5

WRITE TODAY FOR COMPLETE INFORMATION

AUDIO DEVELOPMENT COMPANY 2835-13th Avenue South - Minneapolis 7, Minnesota CKS a PLUGS. JACK PANELS TRANSFORMERS R ACTOR

NEW PRODUCTS

Precious Metal Paints 603

For electronic components
The Degussa line of precious metal paints and pastes, using silver, gold, and platinum, is for use in the manufacture of condensers, coils, capacitors, oscillators, and other electronic parts. They can also be used in high frequency applications. The coatings are solderable and can be electroplated.
Materials for Electronics, Inc., Dept. ED, 152-25 138th Ave., Jamaica 34, N.Y.

Transducer

Operates analog-to-digital encoders
This Dyna-Servo transducer converts various measurements into a shaft position for operating analog-to-digital encoders, transmitting slidewires, alarm switches, and other devices. A pointer positioned by the shaft indicates the measured variable on a $3.75-\mathrm{in}$. dial. Readout is any function of the measured variable, as determined by the type of cam used in the rebalancing system. Standard accuracy of the unit is $\pm 0.25 \%$ of span.
The Bristol Co., Dept. ED, Waterbury 20, Conn.
Price \& Availability: Information stated on request.

Ultrasonic Degreaser 616

Measures $44 \times 18 \times 36$ in.

Model AC-25 ultrasonic degreaser is self-contained in a stainless-steel cabinet and measures $44 \times 18 \times 36$ in. Using only water and a $110-\mathrm{v}$, 60 -cps connection, the unit removes metal chips, grease, and certain insoluble soils from intricate parts. Components such as small motors. electronic subassemblies, and bearings can be cleaned without dismantling.

Branson Ultrasonic Corp., Dept. ED, 40 Brown House Road, Stamford, Conn.
Price \& Availability: Delivery within 30 to 45 days after reccipt of order. Price is $\$ 1980$ per unit.

Transistors

Silicon-alloy types
Types $2 \mathrm{~N} 327 \mathrm{~A}, 2 \mathrm{~N} 328 \mathrm{~A}$, and 2N329A transistors are general-purpose silicon-alloy units. Series 2N1034 to 2N1037 and 2N1219 to 2N1223 are also silicon units. Highvoltage transistors, type 2 Nl 275 and several 60 and $100-v$ devices, have been added to the line. All transistors are baked at 200 C for 200 hr for thermal stability.
Sperry Rand Corp., Sperry Semiconductor Div., Dept. ED, South Norwalk, Conn.

Capacitors

Flat and round paper-dielectric type
Designated MF for flats, and MR for rounds, these paper-dielectric capacitors come in values from 0.00005 to 10μ. The flats include units from $3 / 8 \times 1 / 16 \times 1 / 8 \mathrm{in}$. to larger size;. Dimensions for the rounds include units from $3 / 8$ in in length and $1 / 8 \mathrm{in}$. in diam. Op erating temperatures range from -55 to +100 C , without derating. Working voltages are from 75 to 1000 v .
Capcon, Inc., Dept. ED, 61 Stan ton St., New York 2, N.Y.
Price dv Availability: Sample and small quantities available from stock; larger quantities made to order and delivered within 2 to 3 weeks. Prices vary from $\$ 34$ to $\$ 125$ when ordered in quantities of 1000 .

Motor Generator

For remote control servo systems
Engineered to operate as a damping tachometer, a rate generator, or an integrator. this $60-\mathrm{cps}$ motor generator, type V842-001, has applications in servo systems used for remote control. Generator excitation current measured at stall is 0.025 amp . No-load speed is 2800 rpm, and stall torque is $3.4 \mathrm{oz}-\mathrm{in}$.

Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.
Price \& Availability: Delivery and price data furnished on request.

Transistor Chopper Kit

This transistor chopper kit contains models $50 \mathrm{P}, 60 \mathrm{P}$, and 70 P plug-in choppers. These choppers can be inserted into a standard 7-pin miniature socket or can be soldered into a printed circuit board. They are made to alternately connect and disconnect a load to a signal source; they can also be used as demodulators to convert an ac signal to dc. Models 50P and 60P are germanium units for operation from -55 to +90 C ; model 70P uses silicon transistors for high temperature applications to 150 C . Able to stand shock and vibration, the unit is suitable for military use.
Solid State Electronics Co., Dept. ED, 15321 Rayen Street, Sepulveda, Calif.
Price \& Availability: As an introductory offer, the price is $\$ 199$; regular price is $\$ 232$. Units are available from stock and can be delivered three days after receipt of order.

Multiplier-Divider
586
For use with an analog computer

Model MU-500E 350-kc multiplier-divider is for use with a compressed-time-scale analog computer. Solution time is less than $2 \mu \mathrm{sec}$ and phase shift is 1 deg at 12 kc . Time lag, phase shift, and amplitude attenuation are zero for nearly all conrol and process simulation. Accuracy is 0.25% full scale and the output range is $\pm 50 \mathrm{v}$ at ± 10 na.
GPS Instrument Co., Inc., Dept. ED, 180 Needam St., Newton 64, Mass.
'rice \& Availability: Information will be furished on request.

The CMC 700 Series is the only major breakthrough in counting, timing and frequency measuring equipment in the past 10 years. Here is the first successful application of transistors to high frequency counting and timing. Transistors perform all the functions in CMC's 700 series that required 63 tubes in old style counting equipment. These are the most reliable counters ever made.

TRUE DIGITAL LOGIC CIRCUITRY

By answering an obvious need for a completely new, up-to date approach to counting and timing instrumentation, CMC has produced solid state instruments with greatly simplified circuitry, using logic "and" and "or" gates.

LIGHT AND SMALL,

LOWER POWER DRAIN

Each 700 series instrument weighs only 27 pounds, measures 7 inches high, 17 inches wide, and 14 inches deep. Power consumption is a meager 46 watts, $1 / 10$ the amount for vacuum tube models.

DO ALL THESE JOBs

Measure frequency from dc to 10 mc , time interval from $0.1 \mu \mathrm{sec}$, ratio 1 cps to 1 mc and unlimited multiple period selection. Frequency converters available for higher frequencies. The counter also generates time interval marker pulses from $1 \mu \mathrm{sec}$ to 1 second. Data can be presented on standard decades or inline Nixie tubes. The 700 series will operate digital recording equipment, punches, inline readouts, and other data handling gear.

These Features, Too-Decade count-down time base - frequency divider circuits never need adjustment. Accuracy, ± 1 count \pm oscillator stability. Sensitivity, 0.25 v rms: input impedance. 25 k ohms/volt.

And The Price-Higher than vacuum tube models. But you can save the difference on down time in the first year. Model 727A Universal Counter-Timer, $\$ 3,500$; Model 707A Frequency-Period Meter, $\$ 2.700$; Model 757A Time Interval Meter, $\$ 2,500$. Rack mount optional at no extra cost. All prices f.o.b. Sylmar, California.

More Information Ayailable - Your nearby CMC engineering representative will be happy to arrange a demonstration and provide you with complete sechnical information. Or you may write Department 19.
\square
$20 \left\lvert\, \begin{aligned} & \frac{3}{2} \\ & \frac{2}{1}\end{aligned}\right.$

Computer

Measurements Co.

A Dhislon of Pactflc Industrice
12970 Bradiey Avenue, Sylmar, California Phone: EMpire 7-2161

interfering

electromagnetic within the frequency range of

$30 \mathbf{c p s}$ to 10.7 kmc

...can be investigated, analyzed, monitored and measured
to the highest practical degree of accuracy with Stoddart
Radio Interference \& Field Intensity Measuring Systems.

Stoddart RFI Measuring Equipment is approved for use by all departments of the Department of Defense. Military and commercial equipments are identical ... were designed and manufactured to Military Equipment Specifications to meet the requirements of Military Measurement Specifications. Equipments are portable, dripproof, dustproof, and ruggedized for all-weather field use...precise and dependable for sensitive-selective laboratory measurements.

Applications include interference measurement and location, frequency conservation and allocation studies, spectrum signatures, antenna propagation studies, field intensity surveys, RF energy surveillance and monitoring, and verification of the electronic compatibility of modern weapons systems, i.e., missile firing and guidance, computer, telemetering and communications; the measurement of all rotating electrical devices, transmitting and receiving equipment, or any system or equipment capable of producing unwanted radiated or conducted electrical disturbances.

Stoddart instruments are available as individual self-contained units covering specific frequency ranges, or in rack-mounted console systems for laboratory, mobile, airborne and marine use.

NM.10A (AN/URM-68) 14 kc to 250 kc

NM- 208 (AN/PRM-1A) 150 kc to 25 mc

MM-30A (AN/URM-4T)

MM.52A
(AN/URM-17)
375 mc to 1000 mc

MM-60A
(AM/URM-42)
1 Kmc to 10.7 Kmc
our sales engineering department
will give you individual consideration and information in the areas of interference problems or measurement with which you are particularly concerned... provide engineering bulletins. military specification information, descriptions of new measurement techniques and applications ... class or
individual instruction in the operation, calibration, and maintenance of Stoddart instruments. For prompt service please call "Sales Engineering", HOllywood 4-9292.

Lease-purchase and lease-rental agreements available
Immediate delivery

Send for complete literature
AIRCRAFT RADIO CO., INC.
6644 Santa Monica Blvd., Hollywood 38, Calif., HO 4.9292

NEW PRODUCTS

Ceramic Components

Three types available

Among the ceramic components available are: ceramic-to-metal seals for use in connectors, headers and other electronic components; piezoelectric transducers for converting mechanical energy to electrical energy, or vice versa, in a wide variety of applications; and small parts that serve as insulators for high-temperature applications, in tubes or flame watcher, or as rigid mountings and spacers.

Minneapolis-Honeywell Ceramics Laboratory, Dept. ED, 1885 Douglas Drive, Minneapolis 22, Minn. Price \& Availability: Made on order only. Sample lots delivered in 30 days after order received. Price varies depending upon individual specifications.

Electronic
 Commutator

 609500 times faster than mechanical switches
This miniaturized switching device consists entirely of electronic circuits and is capable of operating more than 500 times faster than mechanical switches. For space exploration, the static commutator will consecutively open and close 60 different channels between sensing devices in a missile and the missile's radio transmitter.
Electronic Systems Development Corp., Dept. ED, 2200 Pacific Highway, San Diego 12, Calif.

Rotary Switch

For low-power selector use
Type 212 rotary switch has a body diameter of $1-1 / 8 \mathrm{in}$. and is designed for low-power selector applications. Terminals are firmly molded into the housing and cannot turn or twist out of place. Laminated coin silver contacts provide reliable contact life for a minimum of 100,000 cycles through 12 posi-
tions without appreciable increase in contact resistance.

Trolex Corp., Dept. ED, McHenry, Ill.
Price \& Availability: Delivery is about 3 to 4 weeks from receipt of order. Price based upon quantity and design requirements.

Magnetic Shields

618
Are slotted, overlapping cylinders
These cylindrical enclosures provide low-level shielding for mag. netically sensitive devices in electronic circuits. Slots in the cylinder walls permit simple assembly and facilitate bringing out leads. Maximum shielding from a minimum number of layers is obtained by the overlapping of the cylinder walls and butting joint covers. The Netic Co-Netic alloys are insensitive to shock and vibration and need no periodic annealing to maintain effectiveness.

Perfection Mica Co., Magnetic Shield Div., Dept. ED, 1322 N. Elston Ave., Chicago 22, Ill.
Price \& Availability: Many items available from stock. Others delivered 5 to 7 weeks after receipt of order. Price varies from $\$ 9$ to $\$ 50$ per unit. Discounts given for large quantity orders.

Vertical Gyro

Has 360-deg freedom about outer gimbal axis
This B2115 vertical gyro is a 2 deg of treedom instrument with 360 deg of freedom about the outer gimbal axis and ± 85 deg freedom about the inner axis. Normal erection rate is between 2 and 4 deg per min. The Scorsby drift rate in 5 min is 0.3 deg per min avg. Designed for missile environments, the gyro can withstand 5 g at 20 to 1000 cps , and 10 g at 1000 to 2000 cps .
Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.
Price \& Availability: Delivery and price data furnished on request.

Disc Thermistor 617

Has matched resistance within $\pm 5 \%$
Previously made only to order, ype 34I)4 disc thermistor is now vailable as a stock item. Its resistnce is matched to a nominal reristance versus temperature curve within $\pm 5 \%$ Resistance ranges fom 13,096 ohms $\pm 5 \%$ at 0 C to 270 ohms $\pm 5 \%$ at 100 C . The unit s suitable for applications in temperature compensation or temperaure measurement.
Victory Engineering Corp., Dept. ED, 519 Springfield Road, Union, N.J.

Price \& Availability: Delivery is 4 weeks after order received. Price is 3.20 per unit.

Receiving Tubes

5 types for TV available
Five receiving tubes for TV use include: type 10DR7, a T6-1/2 double triode; type 10EG7, a T9 touble triode; types 6GN8 and BGN8, each of which incorporates a high-mu triode and a sharp cutoff pentode in a T6-1/2 envelope; and type 12BZ6, a T5-1/2 semi-remote cut-off pentode.
Sylvania Electronic Tube Div. of Sylvania Electric Products Inc., Dept. EI), 730 Third Ave., New York 17, N.Y.

Silicon Transistor

For industrial control applications Suitable for industrial controls, type CK942 pnp fusion alloy silicon transistor offers 1-ua collector cutoff current, $250-\mathrm{mw}$ power dissipation, and close parameter control over the temperature range of -65 to +160 C. Intended primarily for use in high-temperature audio, switching and de-amplifier circuits, the unit features a low saturation voltage and good current gain at collector current levels at 50 ma .
Faytheon Co., Semiconductor Dii., Dept. ED, 215 First Ave., Ner dham Heights, Mass.
CIR :LE 818 TO 826 ON READER-SERVICE CARD \geqslant

Low Cost Miniature Trimmer Pot, Series 110.
3/4* dia. preset wirewound 1/2-5,000 ohms resistance range variable resistor. Exceptional reliability due to several unique design features.

Compact Vernier Variable Resistor, Type VA-45. 12-1/2 to 1 reduction. For fine tuning applications. Ball bearing rotation.

Higher Rellability Micro-Miniature Composition Control, Series m250.
9/32" dia. For miniature transistor hearing aids, miniature radios, telephone equipment and industrial applications requiring tiny size and exceptional rellability.

Space Age Hi Temp Military Control, Series 600. $1 / 2^{2}$ dia variable resistor with intinte resolution and better stability and higher reliability than presently avallable in carbonaceous type units. Uses new CTSdeveloped hi temp metal-ceramic resistance element.

Burca brounc adoctisia

67\% Smaller Side-By-Side Printed Circuit Ceramic Base Control, Type X153.
Compact space-saving self-supporting snap-in 2 or 3 section variable and fixed resistor network $1 / 3$ the size of previous units designed for printed circuit applications Push-Push Switches, Types SK-1 and SJ.
13/16- dia. In separately mounted styles for home appliances and other electrical and electronic applications

Circle 822

Highly Uniform Rugged Rotary Switches TROLEX Series.
Exceptionally high uniform reliability is achieved by an entirely new manufacturing concept. For military and commercial applicatıons

Compact Motor Driven Control, Type MD 45 For remote control functions.

CTS Specialists are willing to help solve your variable resistor and switch problems. Contact your nearest CTS office today.

Miniature Compact 5/8 Control, Serics 200. (Illus trated with switch).
For limited space applications., Available with standard bushing mounting (illustrated) or economical ear mounting. Special thin ear-mounted model available for portable pochet transistorized radios.

Factories in Elkhart \& Berne, Indiana; South Pasadena, California Asheville, No. Carolina; McHenry, Illinois and Streetsville, Ontario. Saies Offices and Representatives conveniently located throughou the world.

Founded
1896
GHIGAGO TELEPHONE SUPPLY
Coblenation

ELXHART - INOIANA

here's why centricores are PROBABLY THE MOST CONSISTENTLY UNIFORM CORES YOU CAN BUY:

The exceptional uniformity you get in tape-wound Centricores is not easy to come by. It's the result of painstaking precision at every stage of the manufacturing process -and, in fact, before manufacturing. Three principal factors help produce Centricore uniformity:
Careful classification of materials-Raw alloys are first "pedigreed"-meticulously selected, then tested for some 14 parameters, and classified by magnetic properties. We're the largest buyer of nickel alloy magnetic materials in the world... which permits us to choose material for Centricores from an unusually wide distribution of magnetic properties.
Special winding machines-We build our own machines, to die-making tolerances, for winding magnetic alloy tape into cores. We also build our own machines for applying insulating coating to the tape. These machines give us far greater uniformity in dimensions, insulation and ultimate performance of Centricores.

Closely-controlled annealing - Annealing-perhaps the most critical phase of the core-making process-is done under precisely regulated atmospheric and temperature stabilized conditions to hold Centricore magnetic performance to uniformly high levels.
Exceptional uniformity from core to core and lot to lot is further assured with Super Squaremu " 79 ", a new high-performance alloy we've developed. It has outstanding magnetic qualities and is remarkably uniform in squareness, thermal stability and gain. Super Squaremu " 79 " offers an effective solution to problems of variation in magnetic performance.
write for bulletin c-3

SIZE	MATERIAL	THICKNESS
1	HIGH NICKEL Hymu 80 Squaremu 79 Super Squaremu 79	$.001^{* *}$
THRU	LOW NICKEL Squaremu 49 Carpenter 49 GRAIN-ORIENTED SILICON Crystaligned Microsil	THRU
225	$.004^{\circ}$	

*Special sizes, shapes and thicknesses quoted on request.

NEW PRODUCTS

Transistor Tester

Covers a beta range of $\mathbf{0}$ to 200

Model 902 transistor tester covers a beta range of 0 to $200 ; I_{C B O}$ is from 0 to $50 \mu \mathrm{a}$, and $I_{\text {CEO }}$ is from 0 to 5 ma . Battery operated, the instrument performs tests at a constant collector voltage of 6 v . Designed to meet laboratory as well as pro. duction requirements, it is completely self-contained and incorporates a 50 -нa meter for direct reading of current. All functions are controlled by two switches.

Transistor Specialties, Inc., Dept. ED, Terminal Drive, Plainview, L.I., N.Y.
Price \& Availability: Price is $\$ 49.75$. Delivery is in 15 days.

Silver-Zinc Battery

For telemetering use in missiles

Suitable for telemetering use in missiles, mode 6173 silver-zinc battery has 19 15-amp-hr cells for high voltage and $510-\mathrm{amp}-\mathrm{hr}$ cells for filamen power. When discharged at the 7 -min rate, the sections yield 90 and 60 amp , respectively. A 30 min , the sections offer 30 and 20 amp respec tively. Normal discharge voltages are 28.5 an 7.5 v . Operating temperature range is 0 to 100 F shelf life is 2 yr , and the battery can be recharge 20 times. It weighs 23 lb and measures 5.5 7.5×8 in.
Yardney Electric Corp., Dept. ED, 40-50 Leon ard St., New York, N.Y.
Price \& Availability: Price is furnished on re quest; delivery is within 30 days.

Mercury-Wetted Relays eration at 50 cps . The propeller is a deep pitch blade protected by a heavy nickel-chrome guard. All hardware is stainless-steel or cadmium-plated The fan can be used in electronic racks, mobile or stationary generators, military vans, and field vehicles.
McLean Engineering Laboratories, Dept. ED, Princeton, N.J.
Price \& Availability: Units are immediately available from stock at the price of $\$ 33.50$ ea in quantities of 1 to 4. There are lower prices for larger quantities.

Pot Cores

For pulse transformers
Type 332P pot cores, for pulse transformers and sinilar applications, meet most assembly and mounting requirements. Having a $3 / 8-\mathrm{in}$. diameter, they are available in several varieties. One tyl e accepts a No. 1 screw.
lerroxcube Corp. of America, Dept. ED, Saugerties, N.Y.
Price \& Availability: The product is immediately aci ilable from stock. Price is $\$ 0.40$ ea for up to 50 pieces.

Distributed constant delay lines • Lumped-constant delay lines - Variable delay networks - Continuously variable delay lines - Pushbutton decade delay lines • Shift registers •

Pulse transformers • Medium and low-power trans formers . Filters of all types • Pulse-forming networks - Miniature plugin encapsulated circuit assemblies

ESC DEVELOPS DELAY LINE WITH 170 to 1 DELAY TIME/ RISE TIME RaTIO

Model 61-34 Perfected For Specialized Communications Application

PALISADES PARK, N. J.-An entirely new Lumped-Constant Delay Line, with a proven 170 to 1 delay time/rise time ratio, has been announced by the ESC Corporation, Palisades Park, N. J. The new delay line, known as Model 61-34, was specifically designed for a specialized communications application calling for the exceptionally high delay time/rise time ratio.

ESC, the world's leading manufacturer of custom built and stock delay lines, is already widely recognized in the electronics industry for its exceptional engineering advances. In October, 1958, ESC broke through an existing design barrier and produced a delay line with a 145 to 1 delay time/rise time ratio. It had been thought, prior to the announcement of the Model 61-34, that ESC had reached the ultimate in this type of delay line.

SPECIFICATIONS OF NEW DELAY LINE MODEL 61-34

Delay time rise time ratio: $170 / 1$
Delay: 200 usec.
Rise time: 1.16 usec.
Attenuation: less than 2 db
Frequency response: $3 \mathrm{db}=325 \mathrm{KC}$
50 taps with an accuracy of ± 0.2 usec. at each tap.

Complete technical data on the new unit can be obtained by writing to
ESC Corporation, 534 Bergen Boulevard, Paliades Park, Now Jorsey.
CIRCLE 48 ON READER-SERVICE CARD

The originator of bright lamps in the glow lamp field, Signalite has now re-created three of ats lamps, NE45, NE47 and NE48, developing them into three new models of astounding brilliance for use in high ambient light applica-
tions. Designated LNE45, LNE47 LNE48, these new lamps are 5 times brighter than the lamps from which they are patterned (still in the Signalite line).

New 5-TimesBrighter Lamps	Series Resistance (Ohms)	Watts (Nom.)	Circuit Volts A.C.*	Üseful Life Hours (Av. A.C.)
	$\begin{aligned} & 12,000 \\ & \text { in } \end{aligned}$	1/2	105-125	5,000
	$\begin{gathered} 12,000 \\ \text { EX } \end{gathered}$	1/2	105-125	5.000
LNE48	$\begin{gathered} 12,000 \\ \text { EX } \end{gathered}$	1/2	105.125	5,000

-Mox, breakdown voltage 100 V. A.C.
A complete line of circuir components for the APPLIANCE. ELECTRICAL AND ELECTRONIC INDUSTRIES FOR ENGINEERING SAMPLES WRITE
ON COMPANY LETTERHEAD

iarnalile INCORPORATED
PRospect 5.2490
37-4 1 Nepfune Highway, NEPTUNE, N.J.

NEW PRODUCTS

Pressure Transducer
Diaphragm is flush-mounted

Available in pressure ranges from 0-100 to 5000 psi, gage and absolute, type 4-327 transducer has the pressure-sensitive diaphragm flush-mounted. Provision is made for adjustment of bridge balance, temperature compensation, and sensitivity external to the unbonded strain gage sensing element. It may be used in missile test stands, aircraft and missile engine test cells, and nuclear reactors.
Consolidated Electrodynamics Corp., Transducer Div., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.
Price du Availability: Available from stock. Price quoted on request.

Miniature Telescoping
 Universal Joint

Backlash is zero

The design of this miniature telescoping universal joint, called Mini-Joint, assures no backlash for the entire assembly. Its applications are in magnetron and klystron drives, servo drives, and wherever precise transmission of information is necessary. Standard assemblies have 0.25 in . lateral travel. Torque ratings of 16,64 , and 256 oz-in. are available.

Falcon Machine \& Tool Co., Dept. ED, 209 Concord Turnpike, Cambridge, Mass.

Microwave Diode

627
Crystal noise figure is 13 db max
Type 1N2792 millimeter wave diode gives low noise mixer performance at $70,000 \mathrm{mc}$. The crystal noise figure is a maximum of 13 db . Primarily developed for radar and space communications applications, it is also suitable for video detector uses.
Philco Corp., Dept. ED, 4700 Wissahickon, Philadelphia, Pa.
Price \& Availability: Price is $\$ 250$ ea for orders of 1 to 99 and $\$ 166.66$ ea for orders of 100 and over. There is currently a delivery time of 35 to 40 days. Units will be available from stock after March 1, 1960.

CECD
 Low Noise
 VHF and UHF
 Amplifiers and Preamplifiers SERIES 1000

For application as receiver preamplifiers or wide band i. f. amplifiers . . . in scatter communications systems, laborafory, or nuclear research. Eight standard models cover VHF and UHF to 900 mc . High gain, low noise. Special pass bands available.

Advanced techniques permit modification of standard units af minimum cost.

Write for complete details:

COMMUNITY ENGINEERING CORPORATION

 P. O. BOX 824 state college, pa CIRCLE 213 ON READER-SERVICE CARD

New single-unit, non-turning, hermetic terminal

 cuts installation costs in HALF!- Voltage range -1500 V operating
- Meets MIL-T-27A specifications
- Uniquely constructed - torque resistant
- Single-unit assembly - has no loose parts
- Easy to install - saves at least
50% in installation costs
- No loose parts mean simpler inventory control

Send for Bulletin \#599

LUNDEY ASSOCIATES, INC.

 RELIABILITY IN COMPONENTS694 Main Sireet, Walfham 54, Massachusefls CIRCLE 214 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 3, 1960

Bilicon Solar Cells

Come in single units and shingle arrays

These silicon solar cells are available in a rectangular confguration, measuring $1 \times 2 \times 0.05$ cm , both in single units and shingle arrays. Series N2009 provides a typical efficiency of 9% and a spectral emissivity of 0.7 at 4 microns wavelength illumination, 0.4 at 11 microns. They are capable of 22.5 mw output at 56.5 and 0.4 v per cell when operated under sunlight levels as found in near space. Series N2000 includes units of several other efficiency levels.

Texas Instruments Inc., Dept. ED, Box 312, Dallas, Tex.

Relay

426
Measures $2-7 / 32 \times 1-3 / 32 \mathrm{in}$.
Engineered to operate on as little as 2 ma , the type 8 telephone relay is $2-7 / 32 \mathrm{in}$. long and $1-3 / 32 \mathrm{in}$. wide. The long coil construction of the relay permits the use of high resistance coils. It may be used in communication and military applications, as well as in a variety of data processing machines.
Phillips Control Corp., Dept. ED, 59-T W. Washington, Joliet, Ill.

Mechanical Integrator

Output torque is $10 z-\mathrm{in}$. max

Model 031-2000 mechanical integrator has an oltput torque of 1 oz-in. max with a disc input to rque (no load) of $0.33 \mathrm{oz}-\mathrm{in}$. The unit weighs $6 . \mathrm{Jz}$ and has a ball displacement of $\pm 0.750 \mathrm{in}$. It may be used as a breadboard item, or as a comp nent in computing systems.
M. Ten Bosch Inc., Dept. ED, Pleasantville, NY.
Pice d Availability: Available about 6 weeks af er order received. Price on request.
\because CIRCLE 55 ON READER-SERVICE CARD
E ECTRONIC DESIGN • February 3, 1960

General Motors pledges
ACQUESTMANSHIP

AC Seeks and Solves the Significant-Since GM has pledged its resources to this nation's defense, AC plans to forge to the forefront in the international race for technological superiority. The resolution of scientific problems even more complex than AChiever inertial guidance-that's what AC now has on its agenda / This is AC QUESTMANSHIP. It's an exciting creative quest for new ideas, methods, components and systems . . . to promote AC's many projects in guidance, navigation, control and detection / Questmanship is readily apparent in AC Manufacturing, headed by Mr. Roy McCullough, AC Works Manager. His group "offers an outstanding challenge to engineers capable of understanding the most advanced scientific concepts . . . and developing the techniques and tools to implement those concepts on a production basis" / There may be a position for you on our specially selected staff . . . if you have a B.S., M.S. or Ph.D. in the electronics, scientific, electrical or mechanical fields, plus related experience. If you are a "seeker and solver," you should write AC's Director of Scientific and Professional Employment, Mr. Robert Allen, Oak Creek Plant, Box 746, South Milwaukee, Wisconsin.

GUIDANCE/NAVIGATION / CONTROL/DETECTION / AC SPARK PLUO \& The Electronics Division of General Motors CIRCLE 900 ON CAREER INQUIRY FORM, PAGE 145 Vice-President, Research and Development Hoffman Electronics Corporation Semiconductor Division
The Hoffman mesa transistor is a high-fre quency, diffused-junction silicon semiconductor device, usable at temperatures well above the method of this device is unique in that it uses metusively photorraphic techniques for the pre cise registration of the contacts and mesa area. cow-resistivity. Low-resistivity, n-type (negative electrons) sili con slices are carerully lapped and polished io lionths of an inch Then an extremely compler cleaning procedure is performed, involving the use of high-turbulence ultrasonic agitation with relatively low average power, but peaks of 500 watts. This removes all trace of contamination yet does not mar the transistor finish. A total of 13 cleaning solutions is used in conjunction with the agitation to attain the required degree of micro-cleanliness and meet the specified Hoffman standard.
An oxide film only two millionths of an inch thick is grown on both surfaces by heating the silicon in wet oxygen at 2200° Fahrenheit. Then gallium is diffused through the oxide layer so that the material is converted from n-type to p-type (positive electrons) conductivity within 130 millionths of an inch.
A photo-sensitive coating is deposited on the silicon slice, and an image of the 260 emitters is photographically printed on the wafer. By means of acid treatment, the oxide film is re moved from the strips where the emitters are to be, the photographic emulsion serving as a protection for the remainder of the slice.
A phosphorus diffusion follows, converting the un-oxidized portions of the silicon to n-type conductivity with an approximate depth of 100 millionths of an inch.
At this stage of the Hoffman process, we have made 260 tiny transistors on each slice. However, some of the most difficult problems still remain to be solved.

PHOTOGRAPHIC REGISTRATION
For example, aluminum emitter strips must be registered into each of the 260 diffused phosphorous regions. Here each of the emitter conwith a 001 " tolerance to the emitter region In addition none of the base contacts may short anto any of the emitter regions. Here again the tolerance is a maximum of 001 ". The registration itself is done under demanding optical conditions since the process is photographic. The aluminum is evaporated through photographi cally developed holes. Illumination must be restricted in wavelength, short in duration, and low in intensity. However, the highest accuracy of registration is still required, despite the fact that the emitter diffused regions show up as having only slightly different reflectivity than the base silicon. The registration is done on an aptical comparator under conditions of essentially monochromatic illumination. A special fix-

Base width is reduced to only ane micron by precisoly controlled lapaing and diffusion techniques to soost frequeney handline capability. Silicon slices for these transistors se pelished undar aptical control with an accuracy of 4×10^{-6} inch.

Gold wire bonds to omitter and base are falricated to mithstand 20,0000 asceleration Because parts are small (miros are only 1 pat the diam. eter of a human hair), bonding is dowe under a high-powar microscope.

Rogistration of emitter wit U-shaped haso makes optimum of emitter area, results in hizh ciency. This configuration is pessible by the precision of possible by the precision of Hofman technique.

Now... ion mew rizehbiliy IV TRaNSSTOMS ANNOUNGING THE HOFFMAN 2, 696 AND 2,697 NPN DIFFUSED-JUNCTION DRIFT-FIELD SILICON MESA TRATSISTORS

WITH THREE TIMES THE HIGH-FREQUENCY POWER GAIN OF SIWILLAR DEVIGES

By increasing the usefulness of the emitter area, Hoffman engineers have boosted the minimum high-frequency gain at large currents to 6 at 20 mc (Ic $=50 \mathrm{ma}$, $\mathrm{V}_{\mathrm{c}}=10 \mathrm{~V}$--more than three fimes the industry standard. Hoffman's unique base: emitter configuration, coupled with a photographic fabrication technique that offers control accuracy of the order of light wavelengths, has also lifted current and frequency characteristics well above industry specifications. Reasonable current gains at 40 mc have been measured. Since the photo process is far more
 uniform characieristics. Stability, too, is outsiancing, itecause Hoffman pre-ages
every A wide range of useful current gain and operating frequencies makes these units A wide range of useful current gain and operating frequencies makes these units
ideal for computer, radar and many ofther applications. You can count on them ideal for computer, radar and many other applications. You can
in your most important circuit. Reliability is built into every unit.

ture is provided so that the operator may precisely register the slice to the mask and then lock the slice into position. This operation takes two to three minutes. The fixture is designed so that the locking procedure itself does not cause any motion of the slice with respect to the mask. After the photographic image is imprinted on the emulsion, it is developed. Care must be taken at this stage so that no shrinkage of the emulsion occurs. The aluminum is now evaporated through the emulsion holes and thoroughly bonded to the silicon by means of a high-temperature process. When the slice is cooled, a single silicon crystal re-forms, with about one part per million aminum hetion soid solves to make a sound hon-rectifying contact. In the case of the emit. ter region there is much mere phosphorus than aluminum in the silicon. Therefore the recrystallized material remains strongly n-type after the alloying process despite the presence of the aluminum.
The mesa structures are now precisely registered to the base and emitter, and photographically printed onto each slice. This photographic emulsion protects the rectangular-shaped silicon mesa region from an acid solution attack so that only one to two ten thousandths of an inch of silicon is removed around the entire periph. ery of the slice except in the vicinity of the emitter and base. Thus, a raised mesa structure has been produced.

FINAL ASSEMBLY

a scribing machine, designed by Hoffman, with essentially zero backlash, accurately positions the slices, and a series of scratches is made by a diamond point. The scratches divide the slices into small (. $050^{\prime \prime} \times .050^{\prime \prime}$) squares which have the actual transistor structures on them
The individual units must now be alloyed onto the gold-plated bases which have the necessary seals for bringing the emitter, base and collec. or wires through glass insulators into the package. The reliable operation of these devices requires that the glass and the metal base form a perfect seal.
Fastening of wires onto the extremely tiny emiter and base aluminum strips is now periormed. Because of the minuteness of the units, this operation is conducted under a special microscope. In order to locate initially the approximate positions of the bonding chisel, transistor structure and gold wire, it is necessary to work at low magnification. However, the bonding operation itself requires high magnification. To avoid the necessity of refocusing, a stereoscopic 200 m microscope is used. The base and transistiny chisel-pointed tool squeeres a 50 (0007 "י) pure eold wire into the aluminum. This process produces an exceptionally strons bond In fact produces an exceptionally strong bond. ill stand acceleration in excess of 20,000 e.
Once the gold wires are fastened to the terminal posts on the base, a short acid treatment and a operation.
Hoffman then "pre-ages" the transistors by baking them in a high vacuum at about $300^{\circ} \mathrm{C}$. The units are never again exposed to room air. They are next transferred into a chamber filied with the hases so that the units are complotely sealed against contamination.

WHAT IS THE RECORD :EKINE HOFFMAN TRANSISTORS? 1 MORE EPPERIENCE IM SILICON TECHNOLOGY.
Fer seven yoars-practically the full span of semiconductor history Hoffman Semiconductor Division has warked exclusivaly with silicen devices. Company achievements in clude the world's first commercia silicon diodes, zener diodes and solar cells. Hoffman makes the mos oxtansive line of silicon devices in the industry.
2 MORE EXPERIENCE IN DIF. FUSED-JUNCTION DEVICES
The diffused-junction concept, one of the mest fmportant in transisto of the most important in transistor technology, was adapted by hofman

For further information and comdate technical specifications, contact the factory or your area Hoffman sales engineer.
pany has produced over five million diffused-junction devices-mere than any other company in the olectrenics industry.

3 - NEW CONCEPT IN QUALITY

 CONTROLHoffman has devaloped a cemplotely mew quality assurance and quality control concept which will matele the company to ship devices that meet the mest stringent mill-
tary and commarcia requirements. 4 ER BERS.
Hoffman has made and shipned more than ten million silicon semiconductor devices.
5 A FACILITY DESIGNED ESPE. CIALLY FOR TRANSISTORS. Hoffman's now 109,000-squarc-faot facility was designed especially for the development, production and testing of transistors. It houses ex-

Ceramic Disc
 Capacitors

Low voltage type

Type H miniature ceramic disc apacitors are designed to meet the low voltage requirements of transistorized radios, portable wire and tape recorders, electronic timing devices, and other miniature batterypowered or line-powered equip ment. Excellent for bypass and coupling, they are offered in these sizes: 0.35 in . in diam $\times 1 / 8 \mathrm{in}$. thick, $0.5 \times 1 / 8 \mathrm{in}$., and $0.625 \times 1 / 8$ or $3 / 16 \mathrm{in}$. Phenolic coating and high-temperature wax vacuum imregnation are used. Operating ange is +10 to +85 C ; working voltage is 50 vdc .
Cornell-Dubilier Electric Corp., Dept. ED, S. Plainfield, N.J. Price \& Availability: Units can be immediately furnished in production quantities; price is quoted on request.

Ultrasonic Delay Line 553

Delay time is 5 to $12,000 \mu \mathrm{sec}$
Made to launch and propagate coustic waves along a wire transmission media, the U.D. series of ultrasonic delay lines offer a range of delay times from 5 to $12,000 \mu \mathrm{sec}$. The temperature coefficient is 5 ppm per deg C over the range of -55 to +100 C . The center frequency ranges from 100 kc to 1.2 mc with a maximum bandwidth of 1 mc . The unit can be used with a carrier frequency or without, for pulsed operation. It has a wide range of input and output impedances to allow for uptimum impedance matching. It mects military requirements for vibration and shock; both standard and custom designs can be furnished for such applications as computer hit storage, coders, decoders, telemetering systems, radar simulators, missiles, and aircraft.
Curtiss-Wright Corp., Electronics Div., Dept. ED, 620 Passaic Ave., V. Caldwell, N.J.

Price \& Availability: The price ralige is $\$ 99$ to $\$ 1500$ for one unit. Mude on order only, it can be delivercl 4 to 8 weeks after receipt of oricr.
(RCLE 300 ON READER-SERVICE CARD
CIRCLE 59 ON READER-SERVICE CARD -

STIDMCC THEDRIOSTATS

RANK FIRST
IN

PRECISION TEMPERATURE CONTROL

A.891A

> In today's military and commercial projects, you can't afford to overlook any one of these important areas: Reliability, Size, Availability, Economy.

> And because Stevens is in production now on the largest number of different types and styles of bimetal thermostats, all these advantages are yours automatically when you specify Stemco thermostats.

> 1st in Reliability. Proven designs, latest production techniques, most stringent inspection procedures.

> 1st in Size. Stemco thermostats score in compactness and lightness without sacrificing performance.

> 1st in Availability. Tooling for most types is in existence. Flexibility of design cuts lead time on other types.

> 1st in Economy. Mass production of many standard Stemco types with hundreds of terminal arrangements and mounting brackets cuts your costs.
> *Refer to Guide 400EO for U.L. and C.S.A. opproved ratings.

ICS

TYPE A* seml-enclosed. Bimetal disc type snap action thermostats; give fast response to temperature changes. Can be made to open on rise or close on rise. Single-throw with fouble -20 to $300^{\circ} \mathrm{F}$ break contacts. Operation tures on special order Average non-inductive rating $13.3 \mathrm{amps}, 120$ VAC; $4 \mathrm{amps}, 230$ VAC rating 28 VDC. Various mountings and terminals available. Bulletin 3000 .

TYPE A hermetically sealed. Electrically similar to semi-enclosed Type A. Various mountings, including brackets, available. Bulletin 3000.

TYPE MX hermetically sealed. Snap acting bimetal disc type units to open on temperature rise 2 to $6^{\circ} \mathrm{F}$ differentials as standard. 1 to $4^{\circ} \mathrm{F}$ differentials available on special order. Depending on duty cycle, normal rating 3 amps, 115 VAC and 28 VDC for 250,000 cycles. Various terminals, mountings and brackets available. Bulletin 6100.

TYPE MX semi-enclosed. Construction and rating similar to MX hermetically sealed type. Bulletin 6100.

TYPE M hermetically sealed. Bimetal disc type, snap acting thermostats. Also available in semi-enclosed. Operation from -20 to $300^{\circ} \mathrm{F}$. Lower and higher temperatures available on special order. Depending on application, rated non-inductive $10 \mathrm{amps}, 120$ VAC; 3 amps, 28 VDC. Various terminals, wire leads and brackets available. Bulletin 6000.

TYPE C hermetically sealed. Also semi-enclosed styles. Small, positive acting with electrically independent bimetal strip for operation from -10 to $300^{\circ} \mathrm{F}$. Rated at approximately 3 amps , depending on application. Hermetically sealed type can be furnished as double thermostat "alarm" type. Various terminals and mountings. Bulletin 5000.

NEW PRODUCTS

Time Delay Relay

Preset delays are 10 to 180 sec
Developed to meet the reliability requirements of airborne, missile, and space vehicle applications, the STR series time delay relay has a preset time delay of 10 to 180 sec . It offers ambient temperature and voltage compensation. Contacts are instantaneous resetting, isolated load, spdt type. The uses include automatic reset on digital read-out equipment, computer sequencing as well as sequential timing and overload protection.
Curtiss-Wright Corp., Electronics Div., 620 Passaic Ave., W. Caldwell, N.J.

Price \& Availability: The price is $\$ 52.50$ ea for a single order; in quantities of 1 to 9, \$50. Reductions are made for larger orders. Delivery time is 4 to 6 weeks.

Spray Gun

For cathode coating

Coatings of any material which can be melted without decomposing can be applied with this plasma flame spray gun. In electronic applications, cathodes have been successfully coated. The control unit provides all necessary adjustments with complete push button operation and control.
Metallizing Engineering Co., Inc., Dept. ED, 1101 Prospect Ave., Westbury, Long Island, N.Y
Price \& Availability: Available by April. Price of complete assembly is $\$ 10,500$.

Terminals and Clips 575

Many types available

A wide variety of spring and fuse clips and lock washer terminals are offered. The lock washer terminals are manufactured with No. 4, 6, and 8 holes with 0.018 brass or phosphor bronze, hot tinned.
Zieric Manufacturing Corp., Dept. ED, 110 Beechwood Ave., New Rochelle, N.Y.
< CIRCLE 60 ON READER-SERVICE CARD

FM Basic Tuner Assembly

For use in original equipment
For use in original equipment, ype 579 fm basic tuner assembly has a tuned rf stage for good image rejection, stable permeability tuning, and dual limiters providing maximum noise control. The oscillator stage is completely shielded to maintain radiation well below FCC requirements. A six-tube unit, it has a tuning range of 86 to 110 mc . Typical sensitivity is $1 \mu \mathrm{v}$ for $20-\mathrm{db}$ quieting and $2.1 \mu \mathrm{v}$ for $30-\mathrm{db}$ quieting. The typical selectivity is 200 kc at 6 db , the frequency response is 15 to $25,000 \mathrm{cps}$, and the distortion is less than 0.5% at the $2-\mathrm{v}$ output. The oscillator stage is shielded, maintaining radiation well below FCC requirements. Completely fabricated, the unit is furnished with all critical circuits assembled and aligned.
J. W. Miller Co., Dept. ED, 5917 S. Main St., Los Angeles 3, Calif.
tan TI cap ${ }^{\dagger}$ CAPACITOR STABILITY ASSURED BY 250-HOUR PERFORMANGE LOAD TEST

...expanded TI line of type SCM solid tantalum capacitors meets MIL specs

Another assurance to you of Texas Instruments capacitor reliability -250-hour performance load test on a sample basis of all lots of the Type SCM series.
Your margin of design safety is greater with tan-TI-cap capacitors. Type SCM capacitors are 100% tested for capacity, dc leakage and dissipation factor, and are aged under load at elevated tempera-
ture. SCM units in all 203 standard ratings (6-35 volts, $1-330 \mu \mathrm{fd}$.) meet and exceed the electrical and mechanical requirements of MIL-C-55057 (Sig. C) and/or MIL-C-21720A (NAVY) specifications for solid tantalum capacitors.
Contact your nearest authorized TI distributor or TI sales office today for your immediate and future delivery requirements.
\dagger trademark of Texas Instruments Incorporated

The cane in the man's hand is a proximity guidance device designed by Franklin Institute for the blind.
Requirements called for the power supply to be small enough to fit in the handle of the cane, rugged enough to perferm well under abuse, and... to be rechargeable.
After extensive testing, designers chose the Gulton "VO" sealed nickel cadmium button cell battery to do the job.
How Can You Use These Batteries?
Powering this and other prosthetic devices is only one of many imaginative uses for these rechargeable batteries. Engineers have already designed them into transistorized radios, photo-flash power packs, missiles - wherever small sizc, strength, light ucight, long life complete reliability, no maintenance and easy recharging are desired. Like more information? Write us for Bulletin No. VO-103.

electrical SPECS.	Capacity (1 Mour rate): Charging Current (1c): Charging Time (Constant Current): Trickle Charge Rate: Cell Voltage During Charge: Maximum Peak Discharge Current:	VO .08 o 80 mah 2.10 ma $150 / \mathrm{Ic} \mathrm{hrs}$ 2.5 ma 1.4 V 1.5 A	$\begin{gathered} \text { Vo-. } 180 \\ 180 \mathrm{mah} \\ 4.18 \mathrm{ma} \\ 270 / \mathrm{Ic} \mathrm{hrs} . \\ 2.5 \mathrm{ma} \\ 1.4 \mathrm{~V} \\ 3 \mathrm{~A} \end{gathered}$	$\begin{array}{\|c\|} \hline v 0.250 \\ 250 \mathrm{mah} \\ 5.2 \mathrm{ma} \\ 375 . \mathrm{Ic} \mathrm{hrs} . \\ 2.5 \mathrm{ma} \\ 1.4 \mathrm{~V} \\ 5 \mathrm{~A} \end{array}$	$v o-.500$ 500 mah 10.40 ma $750 / \mathrm{lc} \mathrm{hrs}$. 5.10 ma 1.4 V 7.5 A
mechanical SPECS.	Diameter: Thickness: Weight:	$\begin{aligned} & .900 \\ & .200 \\ & .25 \text { ounce } \end{aligned}$	$\begin{aligned} & .975 \\ & .270 \\ & .35 \text { cunce } \end{aligned}$	1.375 .1875 . 5 ounce	$\begin{array}{\|l\|} \hline 1.375 \\ .3125 \\ .75 \text { ounce } \end{array}$

Available from stock- GLENNITE BATTERY DISTRIBUTORS

Gl
Gulton Industries, Inc.
Alkaline Battery Division, Metuchen, New Jersey CIRCIE 62 ON READER-SERVICE CARD

NEW PRODUCTS

Digital Voltmeter

Resolution is 0.01%

Designed for a wide range of dc measurement applications, model V64 voltmeter has 0.01\% resolution, high input impedance, and an average measuring time of 0.75 sec per reading. Used with accessories, it can make ac and low-level dc measurements. Its range without accessories is in three steps: $\pm 9.999,99.99$, and 500 v dc.

Non-Linear Systems, Inc., Dept. ED, Del Mar, Calif.
Price \& Availability: After February 15, units will be available from stock at the price of $\$ 825$.

Temperature Transducers
Stand 5000 psi

Able to stand an operating pressure of 5000 psi, type BA-9 temperature transducers have a resistance range of 50 to 5000 ohms at $77 \mathrm{~F} \pm 4 \%$. Response is 0.25 sec in fluid and repeatability is 0.5%. They can be supplied with a Balco element, or with platinum or tungsten.
Transducer Labs., Dept. ED, Glenwood Springs, Colo.
Price \& Availability: \$102; delivery is in 10 days.

Pressure Transducers

Stands 50 g at 3 kc

For control, telemetry, and propulsion pressure measurement systems, model 100 pressure trans-

455

449

NATIONAL HR KNOBS

Precision made of the finest quality materials and recognized for excellence in design, N ational's line of HR Knobs are long a favorite of electronics people everywhere. Available in a number of types, styles, sizes and colors, National's comprehensive HR knob (and dial line makes it possible to meet most of you knob requirements by ordering from catalog stock. A representative catalog listing:

TYPE HRS: Top quality Tenite, easy grip knurling, black or grey or to specifications; chrome plated bevel skirt, depressed numerals black enamelled; numbering 180° or 300°
TYPE HRT: Modern, large knobs designed for NATIONAL's receivers, now available by popula request. Deluxe, modern knob is made of blach or grey Tenite; chrome plated inlay.
TYPE HR: Tenite, easy grip knurling, with or without white dot, or with special markings; black or grey or to specifications.
TYPE HRB: Lever knob is ideal for band switching and for other applications where switch is turned to several index positions Highly polished, bright zinc alloy die cast, o anodized in a variety of special colors.
National Radio Co, also manufactures many other electronic and electromechanical compo nents. For catalog covering your needs . . . o for your special design or applications prob lems, write or call:
> ()
> National RADIO CO., INC. MELROSE 76, MASS. NORMANDIE 5-4800

> A wholly ownod subsidiary of Notional Co., Inc.
> Export: AD AURIEMA, INC., 85 Broad St., N.Y., N.Y., U S.A In Canada: CANADIAN MARCONI CO, 830 Bayview Ave. Toronto 17 , Ont.

CIRCLE 63 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 3, 1960
ducer stands 50 g at 3 kc . A potentiometric output type transducer, it yields infinite resolution. It is available for pressure ranges of between 0 and 15 psi and between 0 and 300 psi for corrosive and non-corrosive liquids and gases. It measures $1-1 / 2 \times 1-1 / 2 \times 1-1 / 4 \mathrm{in}$. and weighs 6 oz or less. White Avionics Corp., Dept. ED, Terminal Rd., Plainview, L.I., N.Y.

Position Encoder

Gives data in 17-digit cyclic binary code

Type RD-17 photoelectric shaft-position encoder gives angular position data in 17-digit cyclic binary code with ± 1 digit accuracy. The 17-digit accuracy for 1 shaft revolution is obtained in unambiguous form without the use of gears. Designed to meet applicable portions of MIL-E-4158B, the $26-\mathrm{lb}, 10-\mathrm{in}$. diam unit includes power supplies, amplifiers and control electronics. Solid or hollow shaft models are available.
Wayne-George Corp., Dept. ED, 588 Commonwealth Ave., Boston 15, Mass.

Precision Brake

For fhp motors

Designed for fhp motors, this precision brake is useful in computer mechanisms, tape transpurts, and other mechanisms where positive stop is necessary. Braking torque is 2 to $4 \mathrm{lb} / \mathrm{in}$. for shafts to $3 / 8 \mathrm{in}$. All parts, including the brake band, are made with special dies to eliminate variations in braking power. A constant duty solenoid is furnished for connection in parallel with the motor. Without load the motor is stopped in less than $1 / 4$ revolution.
Midwest Automatic Control Co., Dept. ED, 50 Third St., Des Moines 9, Iowa.

EEECTRONIC DESIGN • February 3, 1960

MInlature Might. Tiny Oyster Drills (Urosalpinx Cinarea) are noted destroyers of their much larger fellow-mollusks oysters. One of 80,000 mollusk species, the Oyster Drill feeds on his victims through a shell-piercing snorkel.

Maximum Precision for the entire mechanism of this electric limer is assured by MPB bearings mounted on shaft ends and in gear trains. By reducing torque, these stainless steel bearings mean longer life and less maintenance for the timer.

Man with Miracles. Sales Manager Ken Broman heads MPB Sales Engineers in their engineering and consultative service to industry. One of these highly experienced MPB technical men is always ready to help solve your miniaturization problems.

More Miracles in Miniaturization

Neruat siry or sitammas une
im tuecricic tiuth suown above

Designing and redesigning to meet modern requirements calls for miniaturization on a grand scale. Components for aircrafl or outer space missiles must be reduced to minimum size and weight. Greater precision is needed in complicated, compact mechanisms and expert miniaturization is sought throughout industry. MPB helps you perform miracles in
miniafurization by producing over 500 types and sizes of bearings ranging from $3 / 8^{\prime \prime}$ O.D. down to $1 / 10^{\prime \prime}$ O.D., with specials as required. For an illustrated catalog containing complete facts on these bearings, for engineering advice or both, write Minlature Precision Bearings, Inc., 902 Precision Park, Keene, N. H.

CIRCLE 64 ON READER-SERVICE CARD

Helps you perform miracles in minialurization

REMINGTON RAND USES AUTRONEX*ACID GOLD PROCESS TO PLATE UNIVAC PRINTED CIRCUITS

Remington Rand, Division of Sperry Rand Corporation, Utica, New York, uses the AUTRONEX ACID GOLD PROCESS to plate printed circuit boards for their world-famous UNIVAC Solid-State Computer Systems and Equipment. Installation of the patented AUTRONEX ACID GOLD PLATING PROCESS for this work, ". . . totally eliminated resist failures and rejects in the electroplating phase," according to a report from Remington Rand's Supervisor of Chemical Engineering.

This report goes on to say that "AUTRONEX ACID GOLD in printed circuit production offers definite advantages and promotes the highest quality production." Here are some of these advantages proved in Remington Rand's own laboratories:

1. Harder and more wear-resistant surfaces.
2. Elimination of one step in plating cycle - no cyanide gold strike required.
3. Promotes higher bond strength of circuit to dielectric base material by minimizing danger of damaging the adhesive layer.
4. Solder flow through plated holes is definitely better, thereby improving over-all quality
5. AUTRONEX ACID GOLD has totally eliminated circuit lifting and rejects on boards plated after etching. Formulations used previously attacked the adhesive and undermined the circuit paths.

The conclusion of the report we have been quoting needs no further comment: "We would like to commend the manner in which your company has serviced us in regards to materials, equipment and valuable advice. In many instances your promptness in making equipment and materials delivery has been instrumental in meeting vital production target dates."

The patented AUTRONEX ACID GOLD PLATING PROCESS has production-proved its unique advantages for over two years in the plants of leading manufacturers the world over. AUTRONEX can help you make a better, more reliable product-probably at far less cost than with any gold plating formulation at far less cost than with any gold plating formulation ACID GOLD ELECTROPLATE in your own plant, on your oun product. We'd be happy to plate sample parts for you at no obligation. Write... wire... or 'phone. We'll make all the arrangements.
-Trademark for Sel-Rex palented Actid Gold Plating Process
precious metals division
SEL-REX CORPORATION nutley 10, new jersey

The world's fastest and most advanced electronic data processing system for business and scientific use, the UNIVAC Larc Solid.
State computer, by the Remington Rand Division, Sperry Rand

Corporation. The new system, which operates up to 200 times
faster than any computer in existence, can perform 250,000 additions and subtractions of 12 -digit decinal numbers per second.
tion

NEW PRODUCTS
Decade Transformer
Has an accuracy of better than 0.001%

Developed to certify differential transformer displacement, model DRT-5 ratio transformer has a ratio accuracy of better than 0.001%. The resolution is 0.00001 , the output impedance is less than 8 ohms and the input impedance is 15,000 ohms at 400 cps . The frequency range is 50 to $10,000 \mathrm{cps}$ and the phase shift is negligible. The instrument is suitable for the calibration of ac meters, ratio boxes, attenuators, amplifiers, and transformers. It can also be used as a bridge circuit ratio arm or a variable ac voltage supply.
G. L. Collins Corp., Dept. ED, 2820 E. Hullett St., Long Beach 5, Calif.

Time Delay Switch
Handles up to 50 amp

This time delay switch handles up to 50 amp without arcing, contact damage, radio interfer ence, audible noise, or vibration. Completely solid state, it has no moving parts and weighs 3 oz Three types are offered: the light duty series with ratings up to 10 amp , the medium duty series with ratings to 16 amp , and the heavy duty series, with ratings to 32 and 50 amp . The maximum current required is 50 ma and the standard operating voltages are 24 and 31 v dc . The switch contains all hermetically sealed components and the entire unit is hermetically sealed in epoxy resin in an anodized aluminum case. Case dimensions are 1.25 in . in diam and 2 in . in length. The switch meets applicable parts of MIL-R-5757C, MIL-R. 6106A, and MIL-R-25018.
George Harmon Co., Dept. ED, 18232 Par thenia, Northridge, Calif.

Only 1 Failure in $7,168,0 \circ 0$ Unit-Hours for o. MFD Capacitors

Setting a new standard of reliability!

* Life tests have proved that El-Menco Mylar-Paper Dipped Capacitors - tested af $100^{\circ} \mathrm{C}$ with rated voltage applied have yielded a failure rate of only 1 per 716,800 unit-hours for 1 MFD. Since the number of unit-hours of these capaciiors is inversely proportional to the capacitance, 0.1 MFD El-Menco MylarPoper Dipped Capacitors will yield ONLY 1 FAILURE IN 7,168,000 UNIT-HOURS. SUPERIOR FEATURESI
- Five case sizes in working volfages and ranges:

200 WVDC -	.018 to .5 MFD
400 WVDC -	.0082 to .33 MFD
600 WVDC -	.0018 to .25 MFD
1000 WVDC -	.001 to 1 MMF
1600 WVDC -	.001 to . 05 MFD

specifications

- TOLERANCES: $\pm 10 \%$ and $\pm 20 \%$. Closer tolarances available on request.
- INSULATION: Durez phenolic resin impregnated.
- LEADS: No. 20 B \& $S\left(.032^{\prime \prime \prime}\right)$ annealed copperweld crimped leads for printed circuil application. - DIELECTRIC STRENGTH: 2 or $21 / 2$ times rated vollage, depending upon working voliage.
- insulation resistance at $25^{\circ} \mathrm{C}$:

For .O5MFD or less, 100,000 megohms minimum. Greater than . 05 MFD, 5000 megohm-microfarads.

- insulation resistance at $100^{\circ} \mathrm{C}$:

For .05MFD or less, 1400 megohms minimum.
Greater than .O5MFD, 70 megohm-microfarads.

- power factor at $25^{\circ} \mathrm{C}$:
1.0% maximum al I KC.

Write for Technical Brochure Giving Complefe Information on the El-Menco Tubular Dur-Paper line.

THESE CAPACITORS WILL EXCEED ALL THE ELECTRICAL REQUIREMENTS OF E.I.A. SPECIFICATION
RS-164 AND MILITARY SPECIFICATION8 \#MIL-C-OIA
AND MIL-C-25A.
FOR FAILURE-PROOF PERFORMANCE . . . COUNT ON EL-MENCO MYLAR-PAPER DIPPED CAPACITORS ON FROM MISBILE GUIDANCE SYSTEMS TO DATA PROC-
ESSING EQUIPMENTI ESSING EQUIPMENTI •Registered Trade Mark of DuPont Co

THE ELECTRO MOTIVE MFG. CO., INC. WILLIMANTIC CONNECTICUT
Monufocturers of El-Mence Capacifors

- molded mice e dipped mice - mice frimmer• dipped popes - iubular papar - ceramic - silvered mica films \bullet coramic discs Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada Arco Electronics, Inc., 64 White St., New York 13, N. Y.

Here's a NEW Booklet on Microwave Components - The facts and figures on many of Bomac's microwave components and test equipment are now available to you in a handy, easy-to-read booklet. Included are descriptions and specifications on: Waveguide and coaxial line duplexers - Coaxial line monoplexer - Keep alive and recovery electrode supplies - Coaxial load - Variable power dividers - C-band R.F. package - Noise source - Waterloads - Coaxial line to waveguide transitions • Directional waveguide couplers • Magnetron test sets \bullet Low level test set for spot display.

BOMAC laboratories, inc.

NEW PRODUCTS

Maser Amplifiers

For systems uses

These microwave maser amplifiers, for advanced systems applications, are particularly suitable for space vehicle communications and tracking, radio astronomy, and ground-to-ground communications. An amplifier noise temperature of less than 10 K is possible in the 1 to 15 kmc band with a gain of 20 to 30 db and a bandwidth of 5 to 30 mc . The large electromagnet of most previous masers has been replaced in this unit by a small permanent magnet. The addition of a second cavity to a conventional single-cavity maser increases the bandwidth to 18 mc when the over-all gain is 26 db .

Hughes Aircraft Co., Dept. ED, Florence Ave. and Teale St., Culver City, Calif.

DC Bridge

Sorts 5000 pieces per hr
Model AB-4-5 dc bridge can sort resistors into three groups automatically at the rate of 5000 pieces per hr. It operates with the following accuracies: from 10 to 100 ohms, $\pm 0.3 \%$; from 100 ohms to 2 meg , $\pm 0.1 \%$; from 2 to $10 \mathrm{meg}, \pm 0.2 \%$; and from 10 to $100 \mathrm{meg}, \pm 0.3 \%$. A built-in seven-dial resistance decade is set to the nominal value of resistance being checked. Tolerance limits for the three bins are set by plug-in units. Electromechanical counters show the number of pieces in each bin.

Inciustrial Instruments Automation Corp., Dept. ED, 89 Commerce Rd., Cedar Grove, Essex County, N.J.

Harness Board Posts 569

Made of nickel plated carbon steel
These nickel plated carbon steel posts are driven into the harness board as guides to permit rapid preassembly of wiring circuits. Stock sizes include $1 / 2,3 / 4$ and a heavier thickness in the $1-1 / 2 \mathrm{in}$. length.

$57 ?$

 available.John Hassall, Inc., Dept. ED, Cantiague Road, Westbury, Long Island, N.Y.
ampli pplicable for ns and and cations. lure of he 1 to 20 to 5 to 30 of most pplaced nanent second -cavity dth to gain is
tt. ED, Culver

mation

 ce Rd., N.J. Price \& Availability: Available from stock. Special sizes quoted upon request. Typical price per 100 of $3 / 4 x$ 0.072 in. in quantities of 1000 is $\$ 2.75$.
Temperature Sensors 568

For temperatures to 500 F

Models S8A and S8B sensors provide sensing of temperatures to 500 F . Resistance is 676 ohms at 25 C and varies at a rate of 3.06 ohms per deg C at 25 C . Model S8B is self adhering. Model S8A is furnisled with pressure sensitive installation tape, or can be cemented in place or held by mechanical means. Both type weigh less than 4 g and are calibrated within an accuracy of $\pm 1 \%$.
Minco Products, Inc., Dept. ED, 740 Washington Ave. North, Minneapolis 1, Minn.
Price \& Availability: Immediate shipment from stock in quantities to 25. Prices range from \$19.80 ea for 1 or 2 units, down to $\$ 11.90$ ea in quuntities from 51 to 100 .

Trimming

562

Potentiometer

Withstands 100 g acceleration
Model IW-STK trimming potentioneter withstands acceleration to 100 g , exceeding MIL-R-19, and shock to 50 g , exceeding NAS 710, Procedure III. Two to ten of these potentiometers can be stacked in a row, held together by a steel bolt and nut. They are furnished with longer than average leads. They operate over the temperature range of -55 to +140 C and are rated at 1.3 w at 40 C . A $360-\mathrm{deg}$ wiper maintains its setting. The inductive reactance is not measurable at 100 kc . They exceed NAS 710 for impedance and can be sealed to mect MIL-E-5272A.
Iiandley, Inc., Dept. ED, 2030 Colorado Ave., Santa Monica, Calif.

Portion of Eimac's extensive super-power klystron production and fest area

MORE EIMAC KLYSTRONS PRODUCED FOR UHF SUPER-POWER RADAR THAN ALL OTHER TUBES COMBINED

A decade ago Eimac decided that negative-grid tubes were impractical to generate high power at UHF. Instead, Eimac developed external cavity klystrons and opened the upper spectrum to high power propagation. With high power at UHF new applications and systems have been made possible.
Custom, laboratory-made tubes can't begin to meet the demands of systems such as UHF space radar. In keeping
with its pioneering tradition, Eimac was a leader in developing super. power, long-pulse klystrons for this system-and followed through with quantity production.
This combination of development and production has placed Eimac klystrons in more tropospheric communications and UHF super-power radar transmitters than all other makes of final amplifier tubes combined. And

Eimac will continue to convert its developments to production to meet the increasing demand.

For high power at ultra-high frequencies, investigate the many advantages of Eimac external cavity amplifier klystrons.

EITEL-MMCCULLOUCH, INC.

when you engineer in stampings. Save on material, labor and assembly costs. Here are just a few of the Advance Stampings, which have been fabricated in various materials to meet tolerance specifications, delivery and price.

- MAXIMUM 4" BLANKS •MAXIMUM 23/4" DRAW - CAPACITY TO 65 TONS

Advance Stamping has been helping metal working industries of various kinds, attain higher production at lower cost, for over 35 years.

Sond ue your blue peintes or samples for quatations. Advance engineors are availeble it consull on ways Writo for Small Stamping Specialists Brochure

> ADVANCE STAMPING CO.

12023 Dixie Ave., Detroit 39, Michigan CIRCLE 209 ON READER-SERVIICE CARD

NEW PRODUCTS

Communication Filters

With 21 channels

For use with multiplex systems, this line of standard-tone filters has 21 channels. The filters have high interchannel attenuation and flat pass band characteristics. They conform to Mil specs. Telemetering filters, from 400 to $70,000 \mathrm{cps}$, can also be furnished.
Torotel, Inc., Dept. ED, 5512 E. 110th St., Kansas City, Mo.
Price \& Availability: In quantities of 1 to 10, the standard-tone filters are priced at $\$ 4.5$ ea and can be delivercd in 10 days. For larger orders, price and delivery time will be quoted. Price and availability of the telemetering filters, made to customer specifications are also guoted on request.

Transistorized Choppers
463
Are plug-in type

Models 50P, 60P, and 70P plug-in transistorized choppers can be immediately inserted into a standard seven-pin miniature socket or can be soldered to a printed circuit board. They are designed to alternately connect and disconnect a load from a signal source, are capable of linearly switching or chopping voltages over a dynamic range from a fraction of a millivolt to 10 v , and may be used as demodulators to convert an ac signal to dc. They can be driven from de to hundreds of kilocycles. Able to stand shock and vibration, they are suited to military, missile, and portable applications. Model 70P is recommended for high temperature uses.

Solid State Electronics (o., Dept. ED, 15321 Rayen St., Sepulveda, Calif,

TADANAC BRAND High Purity SILVER

Approximately 99.9999% pure, this specially refined silver has only cadmium and lead as significant impurities, both in the range of to 0.2 ppm . There are three standard forms: 25 troy oz. bars, 10 troy 07 rods and shot.
Other high purity TADANAC Brand metals or compounds include: Special Research Grade antimony, indium and tin. High Purity Grade bismuth, cadmium, in dium, lead, tin, zinc and ram antc Brand High Purity Metals.
ine consoctoateo mining and smeltimg company of camada limited 215 St. Aames st w. montreal I, ouebec, canada - phone avenue e.3103

CIRCLE 210 ON READER-SERVICE CARD
 ELECTRONIC DESIGN • February 3, 1960

RELIABLE SILICON TRANSISTOR SWITCHING

9 COMPONENTS REPLACED BY 4

HOW? - By using Fairchild's 2N1252 or 2N1253 lowstorage silicon mesa transistors. The guaranteed low storage characteristic permits a simple saturating circuit to achieve switching speeds that previously required complex non-saturating circuits.
WHY? - Improved reliability and reduced cost - one semiconductor instead of five and fewer soldered connections. Power dissipation is only $1 / 3$ rd to $1 / 5$ th as great, making possible much higher component densities in packaging. Cost and reliability are improved all the way from development through volume production.
WHERE? - Switching circuits in general. The 2N1252 and 2N1253 are ideally suited to high-speed high-current switching applications such as magnetic-core drivers, drum and tape write drivers, high-current pulse generators and clock amplifiers. In addition, the transistors are applicable to medium-speed saturated logic circuits.

FAIRCHILD 2N1252 and 2N1253

For full specifications, write Dept. B-2

Lockheed's interest in the virtually unknown $360,000,000$ cubic miles of this planet's oceans, stems naturally out of its underwater environmental development work with the Navy's POLARIS Fleet Ballistic Missile.

Proposed studies in the increasingly important field of oceanography include: oceanographic research vessels; measuring instruments; data collection systems; underwater communication and navigation; and basic research regarding natural phenomena and military aspects of the deep sea.

EXPLORING THE WORLD OF WATER

Division Diversification - Oceanography is typical of Lockheed Missiles and Space Division's broad diversification. The Division possesses complete capability in more than 40 areas of science and technology from concept to operation. Its programs provide a fascinating challenge to creative engineers and scientists. They include: celestial mechanics; computer research and development; electromagnetic wave propagation and radiation; electronics; the flight sciences; human engineering; magnetohydrodynamics; man in space; materials and processes; applied mathematics; operations research and analysis; ionic, nuclear and plasma propulsion and exotic fuels; sonics; space communications; space medicine; space navigation; and space physics.
Engineers and Scientists - Such programs reach far into the future and deal with unknown and stimulating environments. It is a rewarding future with a company that has an outstanding record of progress and achievement. If you are experienced in any of the above areas, or in related work, we invite your inquiry. Please write: Research and Development Staff, Dept. B-21, 962 W. El Camino Real, Sunnyvale, California. U.S. citizenship or existing Department of Defense clearance required.
Lookheed/

MISSILES AND SPACE DIVISION

Systems Manager for the Navy POLARIS FBM
the Air Force AGENA Satellite in the DISCOVERER Program; and the MIDAS and SAMOS Satellites; Air Force X-7: and Army KINGFISHER

UNNYVALE, PALO ALTO, VAN NUYS, SANTA CRUZ, sANTA MARIA, CALIFORNIA

What's the latest score on cartridges?

Sonotone ${ }^{\circ}$

ELMBFORD, NEW YORK

In Canada, contact Allas Redio Corp., Ltd., Toronto
Leading makers of fine ceramic cartridres, speakers, microphones, electronic tubes. CIRCLE 74 ON READER-SERVICE CARD

NEW PRODUCTS

Field Strength Meter

Measures pulse, cw , or modulated carriers

Intended for Loran and similar services, this hf-vhf field strength meter measures pulse, cw , or modulated carriers. Having the military designation of AN/PRM-21, the instrument operates from a $12-\mathrm{v}$ battery or 115 v ac. A self-contained comparison pulse generator permits measurements of peak pulse field strength on the cathode-ray indicator. Identification of pulse rates is by means of an internally calibrated timing generator.
ITI Electronics, Inc., Dept. ED, 369 Lexington Ave., Clifton, N.J.
Price \& Availability: Both price and delivery time required are by quotation only.

Free Gyros

Operate in extreme environmental conditions

Models A2322-01 and A2311-04 free gyros are hermetically sealed and ruggedly constructed to operate in extreme environments. They stand 60 g of shock for 0.11 sec and 60 g vibration along any axis. Containing remotely operable caging and uncaging mechanisms, these units have 260 -deg of gimbal freedom at the outer axes and $\pm 85 \mathrm{deg}$ of freedom at the inner axes. They can provide output signals of pitch, roll, or yaw. The operating temperature range is -65 to +185 F ; the excitation is $115 \mathrm{v}, 400 \mathrm{cps}$, three-phase; and the run-up time is within 1 min . Applications are in missiles and other vehicles requiring guidance or stabilization.

Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.

Simplify Wire Assembly
with a

KINGSLEY Wire and Tube Marking Machine

Now you can mark each wire or piece of plastic tubing with its own ciccuif number... quickly...economically, right in your own plant!

You reduce wire inventories because you need only one color of wire for as many circuits as necessary.

Simplify your assembly methods and speed production with the same machine that has proved so successful in the aircraft and missile industries. Wrife for defails.

KINGSLEY MACHINES

850 CAHUENGA. HOLLYWOOD 38, CALIF

CIRCLE 75 ON READER-SERVICE CARD

Analog-to-Digital Converter
Direct reading type

This direct reading analog-to-digital converter displays time values in hours, minutes, and seconds. It transmits this information simultaneously as a coded electrical signal by means of coded drum assemblies and pick-off brushes. Step time is 40 msec max and 10 msec min . The brush load is 50 ma at 40 vdc . The operating pressure range is 14.7 to 0.55 psi. The unit has an operation life of 1000 hr and weighs 1.75 lb . It can be used for recording and simultaneous readout of continuous or interrupted industrial or aircraft procedures and processes, and generation of coded digital signals with equivalent visual numerical presentation.

Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.
Price \& Availability: Price is furnished on request. Delivery time is from 60 to 90 days.

Tough-as-tortoise-shell Armag armor is an exclusive Dynacor demor is an exclusive Dynacor dc-
velopment. It is a thin, non-metallic laminated jacket for bobbin cores that replaces the defects of nylon materials and polyester tape with very definite advantages -and, you pay no premium for Armag extra protection.

Tough Armag is suitable for use with normal encapsulation techniques on both ceramic and stainless steel bobbins. It withstands $180^{\circ} \mathrm{C}$ without deteriora-tion-is completely compatible with poured potted compoundshas no abrasive effect on copper wire during winding-fabricates wire during winding-faricates
easily to close-tolerance dimen-sions-inner layer is compressible to assure tight fit on bobbin-does not shrink, age or discolor.
Write for Engineering Bulletins DN 1500, DN $1000 \mathrm{~A}, \mathrm{DN} 1003$ for complete performance and specification data covering the wide range of Dynacor low cost Standard, Special and Custom Bobbin Cores-all available with Armag non-metallic armor.

- trademank

DYNACOR/

i) YNACOR, INC. subsidiary of sprague electric co. 1012 Westmore Avenue, Rockville, Maryland CIRCLE 76 ON READER-SERVICE CARD

Accelerometer Calibrator

451
Frequency range is 50 to $30,000 \mathrm{cps}$

Model 4290 calibration exciter vibrates accelerometers or other small vibration pick-ups at a constant test level over the frequency range of 50 to $30,000 \mathrm{cps}$. A small accelerometer acts as a monitor for servo regulations of the driving signal generator to obtain the constant level of vibration. Used with model 3301 response recorder, it automatically measures and plots an accelerometer frequency response calibration from 200 to 20,000 cps and indicates mounted resonance up to $50,000 \mathrm{cps}$.
B \& K Instruments, Inc., Dept. ED, 3044 W. 106th St., Cleveland, Ohio.

THE SMALLEST ASTRON
SOLID TANTALUM
CAPACITOR Musmintitufit:

OCCUPIES
ONLY $0.003 \mathrm{IN}^{3}$

Astron Tantalum Solid Electrolyte Capacitors are the smants of a given rating sealed available today.
Comparative sizes in cubic inches per microfarad-volt for various types of hermetically sealed and non-hermetically
sealed capacitors are shown in the table.

CAPACITOR	Relative cu. IN./MFD.V
Solio Tantalum	1.0
	. 5
Aluminum Electrolytic**	12
Metalized Mylart	${ }_{68}^{64}$
Paper*	1330

*inserte oualit

For complete information write
tooay for bulletin egita and for

 VOL. 50. NO. 2

LECTRONIC DESIGN • February 3, 1960

LOW-COST D-C POWER SUPPLIES

Standard output voltages from 3 to 1000 VDC at $\mathbf{3 0 \%}$ intervals . . . Maximum powers of $\mathbf{5 0}, \mathbf{1 0 0}, \mathbf{2 0 0}, \mathbf{4 0 0}, \mathbf{7 5 0}{ }^{*}, \mathbf{1 5 0 0}$ * $\mathbf{3 0 0 0}$ ** watts

These new Sorensen MD supplies form one of the most comprehensive and economical power supply series on the market.
More than $\mathbf{1 3 0}$ catalog models to choose from, providing 20 output voltages in the range from 3 to 1000 vdc , inclusive. Sorensen engineers welcome the opportunity to develop non-catalog models for unusual requirements.
simple, rugged design features magnetic voltage regulator to obtain $\pm 1 \%$ regulation against input line variations plus low impedance silicon rectifier for good load regulation. (Typical regulation from 50% load to full load is 2% to 10%, depending on load current rating. Additional data can be supplied upon request.) Ripple: 1\% rms max. (Some units can be supplied with 0.5% max. ripple.)
Dependable, tubeless construction. All parts are conservatively rated for continuous duty. Units will withstand output short circuits without damage to components.

19-inch rack-panel mounting for all units simplifies application in lab or custom built equipment.

Rugged MD series supplies are just one example of the outstanding power-supply models offered by Sorensen. Sorensen controlled power equipment, with the widest line, enables you to make the wisest selection. Included are: regulated d-c supplies, regulated a-c supplies, variable frequency power sources (frequency changers; for example, 60 to 400 cps), high voltage supplies (to 600 kv , ac or dc), and miniature converters and inverters. Available in an extremely wide variety of input-output combinations. Write for complete specs. Sorensen \& Company, Richards Ave., South Norwalk, Conn.
9.48

-Voltage range, these sizes:
**Voltage range, this size: 6.3 to 1000 vdc

12 to 1000 vdc

A ansiting of Poptran Comanary
CIRCLE 78 ON READER-SERVICE CARD

NEW PRODUCTS

Power Supplies

454
Come in recessed and table models

For industrial and laboratory applications where 115 v ac line voltage is available for input, these power supplies are for portable, recessed, or table top use. Models 187 and 189 provide 0 to 120 v ac at $1 \mathrm{amp}, 0$ to 12 v ac at 2 amp , and 0 to 12 v dc at 2 amp . Models 190 and 191 have the following outputs: 0 to 120 v ac at $3.5 \mathrm{amp}, 0$ to 10 v ac at $10 \mathrm{amp}, 0$ to 20 v ac at $5 \mathrm{amp}, 0$ to 6 v dc at 10 amp , and 0 to 15 v dc at 5 amp . All units also supply line voltage at 10 amp . Accessories can be furnished to increase the dc output to 0 to 300 v at 100 ma and reduce ripple to less than 1%.
Buck Engineering Co., Dept. ED, Marcy St. Freehold, N.J.
Price \& Availability: Models 187 and 189 are $\$ 79$; models 190 and 191 are $\$ 139$. They are available from stock.

Germanium PNP Power Transistor

Maximum current rating is 5 amp

Germanium pnp power transistor type 2N1011 has a maximum current rating of 5 amp , a current gain range of 30 to 75 when I_{c} is 3 amp dc, and a maximum collector-base voltage rating of 80 v . It dissipates 35 w at 25 C , mounting base temperature. It meets environmental testing requirements. Suited for power switching and power control circuits, it can be used in aircraft power supplies, missiles, and communications power supplies. Other uses are high current switching and audio amplification. It meets the requirements of MIL-T-19500/67.
Bendix Aviation Corp., Red Bank Div., Dept. ED, Long Branch, N.J.
Price \& Availability: In quantities of 1 to 99, the price is $\$ 10.50$ ea; 100 and up, $\$ 7$. Delivery time is two weeks on commercial items. When military testing is required, delivery time will be quoted.

CUSTOM CIRCUIT PACKAGING TRANSISTORIZED

GloDe netwonk

EveRyBody knows
. about Walkirt's popular Plug-in and Cartridge style Circuit Modules, but did you know that we do Custom Packaging too? We'll wrap up YOUR circuitry, or any of our hundreds of digital and logic circuits . . . in most any size ol shape that your application requires. The photos above illustrate just a few of the many special sizes, shapes and header styles that we've built recently. If you'll send us your requirements, we'd like to quote. You'll be surprised at the economy, and speed of delivery, too!

Custom packaging since 1040 141 W. MAZEL ST., INGLEWOOD 3, CALIF.
CIRCLE 79 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 3, 1960

LIGHTWEIGHT

YARDNEY SILCAD ${ }^{\circ}$ BATTERIES

Only $\frac{1}{2}$ the size, $\frac{1}{3}$ the weight of ordinary nickel-cadmium and lead-acid batteries
yet rugged enough for the most ad. verse conditions!
This is one reason industry is now de signing with the long.life, maintenancefree YARDNEY SILCAD - economical, compact, rechargeable power for missiles, rockets, satellites and drones for guidance, control, telemetering, storing energy supplied by solar energy converters ... for such airplane and helicopter applications as engine starting, emergency lighting, power and communications...for portable ground power...and numerous commercial applications.

Ya YARDNEY ELECTRIC CORP.

"Pioneers in Compact Power" (8) 40:0 LEOMARD STREET, MEW YORK 13. NEW YORK (C) Patents granted and pending. 1960 by Yardney Electric Corp. GIRCLE 80 ON READER-SERVICE CARD

TV Image Storage System
Provides instant recall

This TV image storage system, called Electrostore, stores a single frame of television at the touch of a button and makes the stored picture available for prolonged examination on a conventional monitor. The system records the signal in an electrostatic storage tube. The readout of the stored image, as well as the input, is a composite video having standard amplitude and polarity. The system has input and output video bandwidths of 8 mc . The over-all resolution exceeds that of conventional TV systems.

Image Instruments, Inc., Dept. ED, 2300 Washington St., Newton Lower Falls 62, Mass.

Voltage to Digital Converter
Linearity and accuracy are 0.01%

Model MTD-704 voltage-to-digital converter translates input analog voltages into four binarycoded decimal digits, plus sign and overflow digits. The input full scale range is $\pm 10 \mathrm{v}$ dc with provision for an extended range of $\pm 12 \mathrm{v}$ dc. Linearity and accuracy are rated at 0.01%. The maximum conversion rate is 5000 independent conversions per sec. A completely solid state unit, it meets the environmental requirements of MIL-E-4158B. Modular design is used. Applications are in automatic checkout systems, ground support equipment, and mobile data acquisition systems.

Epsco, Inc., Equipment Div., Dept. ED, 275 Massachusetts Ave., Cambridge, Mass.
Price \& Availability: The price can be furnished on quotation only. Delivery time is about 60 days.
the smallest lightest POWER DIVIDERS are from

most complete line too!...
Design features of Transco's Power Dividers include broad bandwidth and low VSWR.

Here are four examples that have 50 ohm impedance, VSWR less than 1.3 to 1 , and weigh only 2.5 to 4 oz :

"L" band
1100-1400 MC Type N
Coax Connector
Part No. 40011
"S" BAND 2700-3500 MC Type N Coax Connector Part No. 40013

Transco specializes in designing and manufacturing microwave components and systems for transmission control.
" X " BAND
8.2-12.4 KMC

Type UG 136
A/U Connector
Part No. 40015

Creative microwave engineers write for information about your future with this progressive, well established firm.

ELECTRONIC DESIGN • February 3, 1960

A new size has been added to the Lion family of quick-opening fasteners ... a miniature size. Small, compact, yet strong and rugged, these miniatures aid in reducing overall dimensions and weight without sacrificing the important advantages of larger Lion Fasteners.

ALIGNMENT NOT CRITICAL
Stud "floats" to accommodate misalignment. The hole in the sheet for the stud has an areal 60% greater than the stud diameter. This allows a .030 float in all directions.

WIDE VARIATION IN STACK HEIGHT Six different studsalcommodate total material thicknesses (both sheets) of .040 minimum to .159 maximum.

Total sheet thickness serted by any
one stud may vary as much as . 019 without affecting operation. A Lion Miniature Stud, specified for a thichness of .0s63, for example, will atcommodate total weet thicknesses from .0x0 to .099.

SWAGED-NOSE STUD

Extralstrength and smoothoperation are made possible by the exclusive Lion swaged nose design. All the metal is put to work. There are no holes, thin cross pins, or milled slots to weaken the cross-section. Case hardening assures long, trouble-free service "ithout wear.

LARGER SIZES AVAILABLE

Lion Fasteners are also available in two larger sizes-No. 5 (mil spec) and No. 2- to meet the needs of air-
craft, missile and ground support equipment. The heads are supplied in a wide variety of styles including oval, flush, wing, ring, notched and knurled.

FREE!

FASTENER HANDBOOK

Send for Your free copy of Southco
Fontener Handbook No. 9 . Gives com. Fastener Hondbook No. 9. Gives complete engineering data on Lion Fasteners and many other special fasteners. Write to Southeo Division, South Chester
Corporation, 235 Industrial Highway, Corporation, 235 Industrial Highway,
lester, Pennsylvania.

NEW PRODUCTS

Floated Rate Integrating Gyro

Linearity is 0.02%

Designed to be mounted directly on the frame of missiles or aircraft, model M2514-02 floated rate integrating gyro provides a linearity of 0.02% and an angular momentum of $250,000 \mathrm{gm}$ cm^{2} per sec. It can be used in place of a stable platform in some systems. It can be used in high speed aircraft or missile flights where severe environmental conditions are encountered.

Kearfott Co., Dept. ED, 1500 Main Ave., Clifton, N.J.
Price \& Availability: Prices will be furnished on request. Units are delivered in 60 to 90 days.

Phase Detector

446
Measures from 200 to 1000 mc

Type 205B2 precision phase detector has an accuracy of $\pm 0.05 \mathrm{deg}$ or $\pm 1 \%$ from 200 to 1000 mc. Resolution is less than $0.01 \mu \mu \mathrm{sec}$. A phase angle of less than $10^{-14} \times 360 \times$ frequency can be read on the dial. The maximum input signal depends on the sensitivity of the receiver; it is about $20 \mu \mathrm{v}$ for a receiver with a $5-\mu \mathrm{v}$ sensitivity, and about 3 v min when the panel meter is used as an indicator. The impedance is a nominal 50 ohms for input and output. In addition to measuring phase angle between two sine waves, this instrument can be used to measure phase angle of a pulse-modulated or a continuous sine wave, or two pulse-modulated coincident sine waves.
Ad-Yu Electronics Lab., Inc., Dept. ED, 249259 Terhune Ave., Passaic, N.J.
Price d Availability: Price is $\$ 2235$ fob Passaic. Delivery time is two weeks.
for immediate delivery of
GENERAL
INSTRUMENT
semiconductors
at factory phices
call your authorized stocking distributor

CALIFORNIA
Electronic Supply Corp.
Nawaden Electric Compony
locific Whelesole Co.
Shanks Franciseo Wright, Inc.
San Diogo
Valley Electronic Supply Co.
Bubank
CONNECTICUT
Sun Radio a Electronies Co., Inc.
Shombord Redio Supply, Inc.
Woterbury Woterbury
FRORIDA
Electronic Supply
Molbourre; bronches in
Miomi, Oriondo, Sf. Petorsburg
IUMNOIS
ILINYOIS Mempony
Merauip Compony
Chiveogo
Chicege
indiana
Srown Electronies, Inc.
Fort Warme
Grohom Electronics Supply, Inc.
Ididiomopolis
arohom Eivetro
MARYLAND
Rodio Electric Service Co.
MASSACHUSETTS
The Greene-Show Co., Inc.
NEW YORK
Delburm Electronics, Inc.
Hussem Rodio $\frac{\text { R }}{}$ Nelevision Corp.
Mew York City
Sun York City
OHIO
Buckeye Eloctronics Distributors
The Mytronic
Cincinnoti
Pioneer Electronic Supply Co.
omanoma
OKLAMOMA
Oil Capitol Electronics
PENNSYLVANIA
PENNSYLVANIA
De Distributing Co.
Herrisburg Radoman, Ine.
Herboch R Radoman, Inc.
texas
Secoter's Radio \& Supply Co. Fort Worth
WASHINGTON
Seottle Redio Supply Co.
WISCOMSIN
Radio Ports Co., Inc.
Milwankee

Distributor Division
GENERAL INSTRUMENT - ID CORPORATION 240 Wytho Avonue

CIRCLE 83 ON READER-SERVICE CARD

GENERALINSTRUMENT SEMICONDUCTOR DIVISION

When JAN type diodes are required, you can be certain that General Instrument's engineering skills and manufacturing facilities will enable us to deliver them at prices that reflect years of volume production experience.
The General Instrument line of silicon and ger-
manium diodes is the most complete available to the industry, with the widest possible range of characteristics. We also make a complete line of medium and high power silicon rectifiers, including all JAN types. Complete information and data sheets are available upon request.

CodeNo.	Min. Fwd. DCcur. @ + iv	Max. Rev. DC Cur. @ Tost v.		$\begin{gathered} \text { Test } \\ \text { Voltage } \end{gathered}$	Max. Inv. Voltage	Min. Iroakdown Voltago ${ }^{\circ}$	Avg. Fwd. DC Cur. (Max.)
		$25^{\circ} \mathrm{C}$.	$150^{\circ} \mathrm{C}$.				
1 N457	20 mA	. $025 \mu \mathrm{~A}$	$5 . \mu \mathrm{A}$	60 V	60 V	70 V	75 mA
1N458	7 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125 V	125V	150 V	55 mA
IN459	3 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	175V	200V	40 mA

-Reverse voltage at which a reverse current of 100 uA flows.
All ratings and characteristics are at $25^{\circ} \mathrm{C}$. unless otherwise noted.
Operating temperature range $-80^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C}$.

NEW PRODUCTS

Cathode Ray Tube

For oscilloscope applications

Having a 3 -in. rectangular face-plate, type 3BDP cathode ray tube is for oscilloscope applications. An improved replacement for type 3SP, it has a pressed face-plate to minimize parallax errors and a gun structure which provides greater rigidity and improved electrical stability. Focus and deflection are electrostatic. Over-all length is $9 \mathrm{l} / 8 \mathrm{in}$.

Allen B. Du Mont Labs., Inc., Dept. ED, 750 Bloomfield Ave., Clifton, N.J.
Price \& Availability: Prices are furnished on request. Except for very large quantily orders, delivery is from slock.

Test Set
435
Checks transmission on audio circuits

Model TMS-0100 test set is for checking the characteristics of transmission lines and other voice-band equipment. Using swept-band techniques, it reduces the time needed to check-out a transmission network. A swept-frequency generator provides a sinusoidal wave of adjustable constant amplitude at all frequencies in the voiceband. A measuring system compares the network input and output regardless of the absolute power level. The information is displayed with a cathode ray tube. The unit is housed in a 19 -in chassis for rack-mounting or a portable cabinet. A typical use is to check the insertion gain or loss of transmission circuits in service.
Hallamore Electronics Co., Div. of Siegler Corp., Dept. ED, 714 N. Brookhurst St., Anaheim, Calif.

e
 Tantalums MALLORY line

... broadest selection in the industry

When you need tantalum capacitors for high temperature service, look first to the wide Mallory line. You're sure to find a Mallory model right for your requirements-right in reliability . . . and right in rating, size, mounting.
Pioneer in extreme temperature ratings, Mallory gives you a broad choice: $200^{\circ} \mathrm{C}$ Types XTL, XTH and XTO and $175^{\circ} \mathrm{C}$ Type XTV3.5 to 1300 microfarads; smaller $175^{\circ} \mathrm{C}$ Types XTM and XTK-2 to 140 microfarads; and miniature $150^{\circ} \mathrm{C}$ Type M2-11 to 140 microfarads. In a variety of hermetically-sealed, corrosion-resistant case styles . . . mounting and terminal arrangements for ordinary or highshock service.
Choose from 15 types of Mallory tantalums-microminiature to high capacitance, foil or pellet anode, solid or liquid electrolyte, encapsulated or metal case, medium or high temperature. Their reliability is proved by 18,000 -hour tests, by over a decade of trouble-free service -with unequalled stability of capacitance, equivalent series resistance and low leakage values.
Write today for technical data . . . and for expert consultation on your circuit requirements, see a Mallory capacitor specialist.

Mallory Capacitor Company Indianapolis 6, Indiana

a division of

See Mallory Capacitor Company for a complete line
of aluminum electrolytics, tantalum capacitors and motor capacitors

CIRCLE 85 ON READER-SERVICE CARD

Waterproof Markers

The Speedy-Marx line of pressure sensitive electrical markers now come on quickly released cards. These markers, which are unaffected by grease, dirt, and abrasion, are available in constructive and solid numbers, letters, and symbols. Special markers can be ordered.
North Shore Nameplate Inc., Dept. ED, 214-27 Northern Blud., Bayside 61, N.Y.
Price \& Atailability: Minimum order is 25 identical or assorted stock items or 50 identical special items. Stock items, in quantities of 25 to 99 , are $\$ 0.195$ per card. Special items, in quantities of 25 to 99, are $\$ 0.30$ per card. Delivery from stock is immediate; on special orders, one week. Prices are reduced for large quantity orders.

Alligator Clips

577
For heavy terminal use, these clips have matched jaws opening to $5 / 8 \mathrm{in}$. Both solder and solderless connections are available. They are made of cadmium-plated steel or solid copper.

Herman S. Smith, Inc., Dept. ED, 2:326 Nositrand Ave., Brooklyn 10, N.Y.

High Fidelity Speakers

Model K-12-HFC 12 in . coaxial speaker is a twoway extended range system with flat response from 30 to $18,000 \mathrm{cps}$. Impedance is 8 ohms. Power handling is 15 w program, 30 w peak.
Minneapolis Speaker Co., Dept ED, 3806 Grand Ave. S., Minneapolis 9, Minn.

Cable Clamps

579
Are made of cadmium-plated carbon steel, heat treated, for performance at temperatures up to 550 F. Presently designed in the $10-32$ thread size in 3 bracket lengths of $0.45,0.65$, and 0.85 in . Mounting holes 0.13 in . in diameter permit the use of $1 / 8$ in. aluminum alloy rivets.

Elastic Stop Nut Corp. of America, Dept. ED, 2330 Vauxhall Road, Union, N.J.

Mefal Stampings

580
Strips of base metals such as nickel, kovar, molybdenum steel, and others are clad with tin-lead solders, silver, gold, and related alloys. The clad strip is stamped into discs, washers, and special shapes for automatic joining operations. Other uses are heat sinks, base rings or tabs, diaphragms, and contacts for special electronic applications.

Alloys Unlimited, Dept. ED, $21-01$ 43rd Ave., Long Island City, N.Y.

Correction Notice

Type XR-5019 epoxy resin, (ED, Nov. 11, 1959, p 148), has an initial viscosity of 1000 cps at 76 C , and not 100 cps as stated. The product is made by Minnesota Mining and Manufacturing Co., 900 Bush Ave., St. Paul 6, Minn.

든

THE MOST COMPACT LOW-PASS, HIGH-PASS MICROWAVE FILTERS

Available for Rated Characteristics

Frequency Standards now introduces a standard line of low-pass and high-pass microwave filters, the smallest and lightest available for rated characteristics.
The filters can handle power capacities of up to 2 KW peak. All have a maximum insertion loss of 0.5 db in their pass-band. Input VSWR below the 0.1 db down point for low-pass filters and above it for high-pass filters is held to $1.5: 1$ or less.
Units are furnished with Type N RF connectors.

Filters having other 1 db down froquencies, different numbers of elequencies, different numbers of elements or other types of kr connect.

Write for Further Information
Frequency Standards
Division of Harvard Industries, Inc. 5 , Box 504, Asbury Park, New Jersey Phone: PRospect 4.0500 TWX A PK 588

NEW PRODUCTS

Directional Gyro

Provides attitude information in aircraft and missiles
Type A2215 directional gyro provides accurate attitude informaticn in aircraft and missile applications. A liquid bubble-type vertical sensing element generates error signals proportional to spin axis displacement from horizontal; wiring modifications enable the sensor to be connected to the leveling torquer to complete the inner axis leveling loop. Drift is 4 deg per hr max. The unit stands vibration of 5 g from 20 to 1000 cps , or 10 g from 1000 to 2000 cps . The operative temperature range is -54 to +71 C .
Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.

Dust Hood

Working area measures $34 \times 24 \times$ 19-1/4 in.
With a $34-\times 24 \times 19-1 / 4 \mathrm{in}$. working area, this dust hood, called Microvoid, removes airborne dust particles down to 0.5 micron in diam. An internal positive pressure prevents unfiltered room air from entering the open front. The unit is constructed of optically clear, $1 / 4$ in. Plexiglas with all edges fused and flame polished to eliminate shadows, rough surfaces, and leakage. The hood weighs 35 lb .
Air-Shields, Inc., Dept. ED, Industrial Div., Hatboro, Pa.

Shielded Air Vent

Attenuates rf 100 db min

This shielded air vent provides 100 db min attenuation of rf up to $10,000 \mathrm{mc}$ and beyond. Applications of the unit include: shielded enclosures, test equipment, computers, microwave cabinets, telemetry equipment, scintillation counters, and radiation measuring devices.
Shieldair, Dept. ED, Box 28H Riverton, N.J.
Price \& Availability: Delivery var ies according to special features required. Price on request.
\& CIRCLE 86 ON READER-SERVICE CARD

Motorized Rheostats 563
For remote control use
These motorized rheostats are ised in remote control applications or where a predetermined rate of resistance or voltage change must be smoothly achieved. Standard drives consist of a motor with integral gear reducer, and cam-operated limit switches to accomplish reversal of the control. Assemblies for horizontal and vertical mounting are available.
Ohmite Manufacturing Co., Dept. ED. 3677 Howard St., Skokie, Ill.

Environmental Chamber

 557Measures $12 \times 7 \times 10 \mathrm{ft}$
Measuring $12 \times 7 \times 10 \mathrm{ft}$, this walk-in environmental chamber handles all standard tests except altitude. Tests include temperatures as high as +185 F and as low as - 90 F soak and -65 F operational as well as fungus, salt spray, sand, dust, sunshine, rain, and humidity. The chamber has a mechanical refrigeration system and a 25 -ton CO_{2} cooling system. It is suitable for testing all types of mobile ground support equipment, test stands, load banks, and many other items.
American Electronics, American Labs Div., Dept. ED, 1536 E. Ross Ave., Fullerton. Calif.

Single Crystal Metal
 413 Specimens

Usual tolerance is $\pm \mathbf{2}$ deg
Single crystal specimens in aluminum, cadmium, copper, lead, nickel, silver, tin, and zinc are offered in many sizes and shapes. Almost any crystal orientation may be specified; the usual tolerance is ± 2 des. Unusual shapes such as hollow cylinders and tensile test specimens wilh enlarged ends can be furnislied. Electrical, magnetic, and phy sical properties are excellent. Ty ical applications are in ferrites, ser iconductors, and platinum cobalt crystals.
I low Corp., Dept. ED, 85 Mystic St., Arlington 74, Mass.

CIRCLE 87 ON READER-SERVICE CARD \rightarrow

for Study of Filters, Networks, Amplifiers, Equalizers, Loudspeakers, Microphones, and Transducers of All Types.

Frequency Range: Generator, 20 c to 20 kc on logarithmic scale, 20 kc to 40 kc . Recorder, traces rms level from 20 c to 200 kc .
Generator Output:flat within $\pm 0.25 \mathrm{db}$ from 20 c to 20 kc . Output is adjustable from 5 mv to 50 v open- circuit. Harmonic distortion is less than 0.25% from 100 c to $10 \mathrm{kc}, 0.5 \%$ below $100 \mathrm{c}, 1 \%$ above 10 kc .
Recorder Sensitivity: 1 mv , maximum (corresponds to 0 db). Can be varied from 1 mv to Iv in 10 steps with input attenuator.
Recorder Range: 40 -db full scale, with plug. in potentiometer supplied ; $20-\mathrm{db}$ and $80-\mathrm{db}$ pots also available.
Pen Writing Speed:20 in/sec maximum with $40-\mathrm{db}$ Pot $(200 \mathrm{db} / \mathrm{sec})$ with less than $1 \cdot \mathrm{db}$ overshoot. Slower speeds (1,3, or $10 \mathrm{in} / \mathrm{sec}$) overshoot. Slower speeds (1, i, ov
selected by panel switch to provide mechan. ical filtering of rapidly fluctuating levels.
Paper Speeds:2.5, 7.5, 25, and $75 \mathrm{in} / \mathrm{min}$. Optional slow-speed motor available for speeds from 2.5 to $75 \mathrm{in} / \mathrm{hr}$.
Recorder Accuracy: Static accuracy better than 0.4% of full scale. Fast servo system with low overshoot provides excellent dy-
Write For Complete Information
GENERAL RADIO COMPANY
Since 1915 - Manufacturers of Electronic Apparatus for Science and Indu PHILADELPHIA: Tel. HAncock 4-7419 WASHINGTON D. C.: Tel. JUniper 5-1088 SAN FRANCISCO: Tel. WHitecliff 8.8233 LOS ANGELES 38: Tel. HOllywood 9-6201 In CANADA, TORONTO: Tel. CHerry 6-2171

We introduced our first cathode-roy oscilloscope with a German-made fube in 1931, ond in 1933 substituted a better fube manufactured by Westinghouse. We introduced the lineor sweep circuit in 1932. That circuit is still used in today's scopes.

announcing

A "CIRCUIT EQUIVALENT" COMPONENT with flip-flop characteristics

THE SIILCON TRIGISTOR

Advanced diffusion techniques at SSPI have produced the Silicon Trigistor - the first commercially available "Circuit Equivalent" semiconductor component, with characteristics comparable to the flip-flop or bistable multivibrator.
The Trigistor is a silicon PNPN device with triggered turn off as well as triggered turn on control at its base. A low level positive trigger pulse applied to the base turns it on, and it remains on without sustaining base current. A negative trigger pulse on the base turns it off. The 3C Series is designed for bistable switching in the range of 1 to 8 mA collector current with collector voltage ratings to 60 V .
Usually the Trigistor will perform the same function as two transistors plus several associated capacitors and resistors. Thus through circuit simplification both smaller size and higher reliability can be achieved.
Available now through your local SSPI representative or by contacting the factory direct.

NEW PRODUCTS

Oscillator Control

Provides stable audio sources
Employing a zero temperature coefficient reed and ceramic ferromagnetic structural material, model J-610 oscillator control unit provides stable audio sources when used in recommended tube or transistor circuits. Stability is within 0.01% or 0.1 cycle, whichever is greater. Output voltage is essentially sinusoidal with distortions as low as 0.5% obtainable.
Security Devices Lab., Div. of Sargent \& Greenleaf, Inc., Dept. ED. Rochester 21, N.Y.

Oven

570
For testing and conditioning
Designed for temperature testing and conditioning processes, this forced air circulation oven has a temperature range from 35 to 350 C . The unit has through wall portholes for insertion of thermocouples or electrical test leads, indicatingcontrolling thermostat, and an automatic overtemperature controller.
Electric Hotpack Co., Inc., Dept. ED, Cottman \& Melrose St., Philadelphia 35, Pa.
Price \& Availability: Delivery 30 days after order received. Prices vary with unit size. Quotation on request.

Pressure Switch

552

Stands to 200 psi

This miniature, adjustable pressure switch exceeds the requirements of MIL-E-005272B for performance up to 200 psi under vibration, shock, and acceleration test conditions. A pressure capsule and a snap-action switch are contained in a stainless steel housing. The volume of the switch is less than 1 cu in. and the weight is slightly more than 1 oz .
The Bristol Co., Dept. ED, Waterbury 20, Conn.
Price \& Availability: The price is on quotation only; units are from stock after February 1st.
\& CIRCLE 88 ON READER-SERVICE CARD

Torquemeter

Provides adjustable full-scale torque
This torquemeter provides linear ddellection to any full scale torque within 50% to 100% of the sensor maximum torque. The sensor detects dynamic torque transmitted by shafts at speeds to $24,000 \mathrm{rpm}$ without brush contact with the rotating element. Accuracy is within $\%$ of full scale. Interchangeable sensors have maximum torque ratings of 0 to 1 oz-in. up to 0 to $500 \mathrm{lb}-\mathrm{in}$.
Rotiform Co., Dept. ED, 1509 Colorado Ave., Santa Monica, Calif.

Pilot Lights

416

Are water-tight

Type 101-8430W water-tight pilot lights measure $1-7 / 64 \mathrm{in}$. in length and mount in a single $15 / 32-\mathrm{in}$. clearance hole They have a flat neoprene gasket on the shank of the lens holder and a retained O-ring seal behind the flange of the mounting bushing. No special insulating washers are required. Able to accommodate a T-1-3/4 midget-flange-base incandescent lamp of 1.3 to 28 v , units meet all applicable Mil specs.
Dialight Corp., Dept. ED, 60 Stewart Ave., Brooklyn 37, N.Y. Price \& Availability: The price is quoted on request. Units are immediately available from stock.

Cleaning Equipment

422
Comes in 3 sizes
This cleaning system is available with up to four or more cleaning stages: a Freon distillate flush, sonic energy clean, sonic energy rinse, and Freon vapor rinse. It may be used for cleaning parts or assemblies which are incompatible with hydrous solution. The complete system has a stainless steel cabinet, and comes in 3 cleaning cha ner sizes of $9 \times 14,14 \times 20$, and 18: 25 in.
Sonic Energy Products, Dept. ED Bendix Aviation Corp., Davenpor Iowa.
Prie \& Availability: Delivery 90 day after order is received. Prices qui' ed on special order.

SIRCLE 89 ON READER-SERVICE CARD $>$

THE MOST TAPE HANDLER FOR YOUR MONEY

The Poffer 906 II, the high-speed digital magnefic tape handler that has come of age gives you higher performance, greater seliability and lower cest than any other ape handler on the market - bar none.
If you're inforested in computer efficiency, you'll appreciate the kind of high performance shown by the actual test results plofted to the right. The Pottor 906 II is the first and only tape transport to offor full for ward-reverse cycling at 120 ips with 1 " tape.
You'll be interested, too, in the other advantages that the 906 II now gives you for the first time. Among these are -

1. Low skew tape guide permits conventional recording at 400 bpi density.
2. Densities of 1500 bpi can be achieved by using this transport with the Potter Contiguous Double Transition system-450,000 8-bit charactors per second on ${ }^{1 "}$ tape.
3. Transistorized control of all functions simplifies computer design.
4. Simplified packaging for easy maintenance.
5. A price - far below other makes - that proves the economy of superior design. Compare them any way you like - spec for spec, dollar for dollar, space for space - and you'll agree that the high-performance, low cost, Poffer 906 II is the most tape transport at any price.

MODEL 906 II
Magnetic Tape Handler HERE'S PROOF

SPECIFICATIONS
TAPE SPEED
100 and 50 ips , standard.
Maximum speed, 150 ips.
Minimum speed: 1.0 ips .
START TIME
3 milliseconds or less.
STOP TIME
STOP TIME
sTOP DISTANCE 1.5 milliseconds or less.
OISTANCE
$0.100^{\prime \prime} \pm$
REWIND
300 ips constant speed either direction. $13 / 4$ minutes for 2400 feet, millise
$1 / 2^{\circ 0}$ lape.
INTERCHANNEL TIME DISPLACEMENT
± 2 microseconds at 100 ips from center clock to outside track on 1/2" tape.
COMPUTER INPUTS
All functions including speed
selection, FWD, REV, FAST FWD,
FAST REV, controlled with 0
alt "OFF," -5 volt "ON," leve
type signal. Other level or pulse control signals can be
BLOCK FEED REP RATE
FEED REP RATE
TAPE TENSION
3 oz. nominal, 1/2" tape.
Maximum tension in guide
system, approximately 6 oz.
SI2E $241 / 2^{\circ \prime}$ high swing-our
panal for $19^{\prime \prime}$ rack mounf.
Hinge mounts separately for
cose of installation.

Cramped quarters

don't cramp the style of ADVANCE midgets and miniatures. You can use them on loads from 1 to 10 amperes continuously . and at three times their rating intermittently with complete safety. They'll resist shock and vibration...stand up under temperature extremes. You'll find them readily adaptable to any mounting need... any
type of duty.
Some examples:

Miniature DC Type MK SERIES
Extreme light weight and small size -requires only .5 cu . in. mounting -reace. Switching is above ground insulation material is silicone glass. Beryllium copper armature hinges provide stability under shock and vibration.

Miniature Telephone Type

TO SERIES

Only . 94 cu. inches in size, yet this relay carries 3 -amp. loads in any combination up to 6 PDT. Mechanically secured throughout, it's extremely efficient. Non-gassing in sulation. Withstands $10 G$ vibration Temp. range: -50° to $+85^{\circ} \mathrm{C}$.

GH SERIES

Engineered for high efficiency in thousands of applications. The small size of these midgets allows installa. tion where space is a problem. Available in open types, 5 - and 10 -amp. ratings... in dustite plastic enclo. sures, 5 amps ., and 5 -amp. plate circuit types.
AVailable off the shelf
from your local
Elgin-Advance Distributor

ELGN-ADVANCE RELAKS

A PRODUCT OF ELECTRONICS DIVISION ELGIN NATIONAL WATCH COMPANY 2435 NO. NAOMI ST., BURBANK, CALIF. CIRCLE 90 ON READER-SERVICE CARD

NEW PRODUCTS

Potentiometer

Available with 0.05\% linearity

Designed to meet the environmental requirements of MIL-E-5972B and NAS 710, model 0610 M multiturn potentiometer measures $1 / 2 \mathrm{in}$. in diam. It has a stop torque-limit of $25 \mathrm{oz}-\mathrm{in}$. Operating temperature range is from -55 to +125 C . It is available with a linearity to 0.05%.

Analogue Controls, Inc., Dept. ED, 200 Frank Road, Hicksville, N.Y.
Price \& Availability: Standard catalog models available in 2 to 4 weeks. Prices on quote.

Wattmeter

512
Resolution to 0.01% of rated input

For measurements at sustained accuracy and resolution down to 0.01% of rated input, model 1483 electronic wattmeter provides a low impedance dc output. It can be used to actuate digital meters and to drive strip-chart recorders. Ranges are 250,500 and 1000 w . Input is 5 amp normal and 10 amp max. The unit measures about 20 x $14 \times 10 \mathrm{in}$., and approximate weight is 27 lb .
Weston Instruments Div. of Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 2, N.J.

Bandpass Amplifier
429
Has a 30 to 300 mc range

Bandpass amplifier model $330-\mathrm{M} 4$ has an rf gain of 6 db , noise figure of 8 db avg , and a 30 to 300 mc range. The unit is basically a distributed

L\&N's 4232-B High Precision Guarded Wheatstone Bridge measures to 11,111 megohms

Already, standardizing laboratories are using this L\&N Wheatstone Bridge as their prime measuring instrument for all d-c resistance measurements. In the manufacture of high quality resistors, it manufacture of high quality resistors, it
is being used for making accurate measurements on a semi-production basis.
Unique design features, never before obtainable in a bridge of this accuracy, include guarding to prevent errors resulting from leakage during adverse humidity conditions, and rheostat dial values direct-reading in digits.
List No.-4232-B High Precision Guarded Wheatstone Bridge.
Range-1 ohm to 11,111 megolims.
Ratio Arms-Plug and block controlled. Values: 1, 10, 100, 1000), 10011), 10,000, $10,0000^{\circ}$ and 100,000 ohms.
Rheostat-10(10,000 +10010$)+100+$ $10+1+0.1)$ olims.
Certificate-L\&N Certificate, supplied with each bridge, gives following data: Ratio Resistors: measured ralues of each resistor given to 0.001% at 2.5 C . Values will give ratios that are correct to with in $0.000 .5 \%$, excent 100,000 ohms and 1 ohm, which provide ratios correct and I ohm, which provide ratios correct
to, uithin 0.01%. Rheostat Dials: measured calues for each position of 10,000 , (1010), 100, 10, 1 and 0.1 ohm dials given at 2.5 C. Rheostat settings of 200 ohms or more are correct to within $0.00 .5 \%$; be lowe 2010 ohms, correct to 0.01 ohm .
Limits of Error-Overall error at 2.5 C uith minimum of 1000 ohms in rheostat arm: $\pm(0.01 \%+0.0111 \mathrm{ohm})$ up to 1.11 megohms. $\pm 0.02 \%$ ahove 1.11 me!gohm to 111 megohms. $\pm 0.2 / \mathrm{i}$ allore 111 megohms to 1111 megohms. $\pm 2 \%$ above 1111 megolims to 11.111 megolims. Case—Metal; $19^{\prime \prime} \times 10^{\frac{1}{2} \prime \prime} \times 9^{\prime} 2_{2}^{\prime \prime}$ for 19"' rela!! rack momnting. W't. is $331 / 2 \mathrm{lls}$ s. Price-\$2100.00 f.o.b. Phila. or North Wales, Pa. (subject to change without notice). Order List No. 42.32-B from L\&N 4.908 Stenton Ace., Philadelphia \&i, I'n.

LEED

 morthrup

CIRCLE 91 ON READER-SERVICE CARD
bandpass amplifier coupled to parallel grounded

Veco is first in the minds of most engineers whenever-and whereverthermistors and varistors are needed because VECO can always be relied upon for engineering know-how, quality, and fast reliable service as well as rigid quality control.

Manufactured to MIL-Q. 5923 and other applicable MIL standards.

VECO glass enclosed thermistors are not adversely affected by radiation.
VECO, a leader in solid state electronics, also manufactures a variety of electronic controls, gas analysis cells, electronic and thermal instruments, medical and biological instrumentation, experimentors and circuit design kits and temperature sensing devices.

Write for free VECO Technical Catalog with data on more than 650 VECO stock items.

Booth 1423 IRE Show N.Y. Ccliseum March 21-24
 Mantory

108 Springfield Rood, Union, N. J. MUrdock 8-7150
IRCLE 92 ON READER-SERVICE CARD grid amplifier stages having individual outputs. It measures 5-1/4×5-1/4 in. with a standard 19 in. relay rack panel.
HRB-Singer, Inc., Dept. ED, Science Park, State College, Pa.

Silicon Zener Diodes

Are rated at 10 w

ZENER

These 10 -w silicon Zener diodes have threelayer seals providing high resistance to temperature extremes, humidity and shock. Designed specifically for commercial equipment applications, they have low Zener impedance and sharp Zener knees. They are furnished in the standard RETMA 10% voltage steps from 5.6 to 27 v .
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

Price d Availability: Priced at approximatcly $\$ 3.40$ ea, units are acailable from stock.

Digital Module

Has 2 independent circuits

Containing 2 independent circuits, this transistorized module, model ST-102, is designed to drive the firm's line of M-Pac circuits. The output signal switches between 0.7 and 20 v as the input signal crosses the triggering level. Power requirements are 20 v at 7 ma , and -90 v at 0.1 ma .

Computer Control Co., Inc., Dept. ED, 983 Concord St., Framingham, Mass.
Price \& Availability: Available from stock. Price is $\$ 59$.

CIRCLE 93 ON READER-SERVICE CARD >

LOOK INTO CEC CONNECTORS

... see why they're

guaranteed to give you highest reliability

The only thing you can't see for yourself is CEC's design and manufacturing experience in multi-contact rectangular connectors with snap-in contacts. That experience is well represented in the following features:

- Portal-hood speeds final assembly, permits full inspection of interior.
- Firmly attached cable clamp secures all wires to each other and to the connector.
- Jackscrews lock plug and receptacle together to withstand 50 g shock and cycling from 54 to $2,000 \mathrm{cps}$.
- Sturdy hood holds the insulator block... houses and protects the mated connector.
- Insulator block has deeply recessed contact openings and an unusually long insulation creepage path.

Yes, we can deliver. The 50 -contact unit shown here is among many CEC types with $26,34,42$, 50,75 and 104 contacts.

For complete information, write for Bulletin CEC 4004-X21. Ask about CEC connector designs to your exact requirements.

Four prong retention springs on pin and socket allow each contact to snap into insulator blocks easily, yet resist an axial pull of more than 20 lb . Inspection holes provide built-In quality control, permit visual checking of each wire for profier contact prior to assembly of connector

Electro Mechanical Instrument Division

UPPER STRATA STRATEGY!

Friend of ours who always attends the sessions in the lecture halls, starts on the Fourth Floor with Production Items and works his way down to Components on the First Floor. Says his feet tell him it's easier to come down than to go upl And he never misses a trick this way. Sounds like good engineering logic. Why don't you join him this year and see if it doesn't work for youl

Wm. C. Copp Show Manager

CIRCLE 94 ON READER-SERVICE CARD

MINIATURE $7 / 16^{\prime \prime}$ INDICATOR
Micro-miniature moving coil, core magnet indicator; $7 / 16^{\prime \prime}$ diameter, $31 / 32^{-}$ length. Weight 10 grams; sealed. Available with a pointer or fag display in o wide variety of electrical sensitivities and functions. Data on request. Marion Instrument Division, Minneapolis-Honeywell Regulator Co. Manchester, New Hampshire, U.S.A. In Canada, Honeywell Controls Limited
Toronio 17, Ontario.

Honeywell
H Finst in Controd

NEW Fractional Horsepower Motor Handbook JUST PUBLISHED... to help the machine designer select and service froctianal horsepower mofors.
Here are 66 pages brimming with facts, figures and more than 75 diagrams, tables, charts and illustrations, for the first time brought logether in a single permanently bound book.
Contents include (1) Application fundamentals, (2) Economics and special features, (3) Care and servicing, (4) A glossary of ferms and definitions... plus 10 pages of reference material.

NOW available at $\$ 1.00$ per copy. Please send cash, check or money order only.
BODINE ELECTRIC CO., 2528 W. Bradloy PI., Chicago 18, III.
the power behind the leoding products

Technical Bibliographies

World Electronics makes it passible to receive specialized bibliographies in variety of subject areas. eliminating cross references and other time consuming activities.
You can subscribe to one or many areas of interest. Among the list of titles available for subscription are: semiconductors; transistors and diode circuits; transistor and diode sine and ana\log circuits; transistor and diode pulse and digital circuits. Each title is broken down into more specific areas of concentration.

Every month, except August, the company sends a list of articles and books covering the selected subject (s). The subscriber files the material in a folder furnished in the first mailing. Such an arrangement provides convenience and a bibliography that is automatically cumulative. All articles and books received during the previous calendar month are included in the list mailed to the subscriber. The lists are not only complete. but also up to date, being only 10 days behind the original published material. All major publications are scanned regularly, foreign as well as American.
World Electronics. Dept. ED.. 1505 6Sth St. Philadelphia 26. Pa.

Bondable, Dyeable, and Printable 98 Fluorocarbons Available

Raibond represents a class of fluorocarbons which have been treated by RAI to impart colorless bondable, printable and dyeable surfaces. It is an application of radiation-induced graft-copolymerization. By combining the effects of atomic radiation with specific chemical systems. it is possible to modify plastic surfaces to obtain specific and desirable surface properties without significantly altering the other characteristics of the plastic. Raibond can be supplied in many fluorocarbon shapes, and the process can be applied to many different configurations. Items such as large Teflon tubes for electrical tube cores, Tefon rods and plugs for waveguides, gaskets, molded blocks. and thin-wall molded shapes (such as radome covers) can be treated to impart clear, colorless. bondable, and dyeable surfaces on one, some or all surfaces. The firm can apply the Raibond process to the desired material, or supply Tefon and Kel-F sheets. film and rods which have been converted to Raibond.
Radiation Applications Inc., Dept. ED, 3 : 0 Lexington Ave.. New York 17, N.Y.

ELECTRONIC DESIGN • February 3, 1960

Metal Fabrication

105
Manufacturers can now take advantage of a pecialized service process that offers efficient rabrication of parabolic reflectors, and the Mecaorm spinning of Nu metal shields, chassis, high oltage heads, and electronic circular containers ff all types.
C. W. Torngren Co., Dept. ED, 236 Pearl St. omerille, Mass.

Test Instrument Information

Any question a purchaser may have pertaining o locating, comparing, evaluating, specifying. or procuring any one of the 5300 electronic test instruments made by 400 manufacturers on the market today will be answered promptly without cost or obligation through use of a new question outline form offered by Technical Information Corp., New York.
The full page outline, giving adequate room for posing problems in detail, is in the fomm of a postage paid reply letter which can be sent back to the company for answers. Questions on the firm's technical information service. a centralized source of authoritative instrument data, are also invited. Technical Information Corp., Dept. ED, 41 Union Square. New York 3, N. Y.

Patent Digests

Industrial Patent Research Co.. Columbus. Ohio. s offering a patent digest service for management and research and development staffs. These short summaries of patents. free of legal terminology and redundant detail. can be more easily understood by scientific personnel.
Patents to be analyzed are provided by the dient to IPR which prepares the anallyses in ex-tract-abstract form. and then distributes them to designated personnel of the client company. Examples of patent analyses in typical fields of interest are available.
Industrial Patent Research Co.. Dept. ED, ‥266 E Main St.. Columbus 9, Ohio.

Tape Recording

Sigma Electric Co.. New York N. Y.. offers delopment experience in tape recorder applicati ms involving: pulse operated switching; voice ar tuated relays: automatic telephone dialing; multinle point remote control, and continuous play or record systems with actuation for start and stop the end of each cycle.
iggma Electric Co.. Dept. ED, 11 E. 16th St.. w York 3, N. Y.

BENDIX SR RACK AND PANEL CONNECTOR

with outstanding resistance to vibration

The Bendix type SR rack and panel electrical connector provides exceptional resistance to vibration. The low engagement force gives it a decided advantage over existing connectors of this type.
Adding to the efficiency of this rack and panel connector is the performance-proven Bendix "clip-type" closed entry socket. Insert patterns are a a ailable to mate with existing equipment in the field.

Available in general duty, pressurized or potted types, each with temperature range of $-6 i^{\circ} \mathrm{F}$ to $+25 i^{\circ} \mathrm{F}$.
Here, indeed, is another outstanding Bendix product that should be your first choice in rack and panel connectors.

flatures:

Rosiliont Insent - Solid Shall Construction * Low Engagament Forces - Closad Entry Sockets - Positive Contact Alignmont Contacts-heavily gold plated Cadmium Pate-clear Irridite Anich : Earily Pres surized io latest MIL Specifleations.
scintilla division
SCINTILLA DIVISION

 Colif.; Oriando, Florida; Chicogo, Illinois; Toonech, Now Jersoy; Dollos, Tonos; Soanto CIRCLE 109 ON READER-SERVICE CARD

NEED A MANUAL POWER SWITCH THAT CAN BE ELECTRICALLY TRIPPED? HEINEMANN HAS IT

Applications are popping up all over for this popular variation on the circuit breaker. It seems that there's nothing that quite fills the same bill.

For want of better terminology, we've called it an electrically-tripped power switch.

First. it's a manual remote switch. Second, it can be electrically turned "off" by a remote contact ... a timer, an interlock circuit detecting malfunction or an overload condition.
"A switch" to the layman, this specialized breaker is everything to the designer looking for simplicity (switch and lock-out relay in one), interrupting capacity (2000 amperes at 125 V ., AC), compactness and low cost.

Typical applications include timing cut-off on an every-day copying machine; malfunction shut-down of a popular bowling pin spotter

If you have any product that should be switched "on" or "off" manually . . . and tripped "off" electrically you should know more about this Heinemann product.

Send for complete data; request Bulletin 3201.

helmemann electric company
156 Plum Street, Trenton 2. N.J.
circle 112 on reader-service card

NEW LITERATURE

Switches

Catalog 77b, 16 pages, contains data on a variety of sealed, environmentproof, and hermetically sealed switches. Applications of the switches include aircraft, spacecraft, rockets, missiles, launching and ground support, ordnance, and mobile use. Information is given on mounting, electrical ratings, operating characteristics, and contact arrangements. Micro Switch, Freeport, Ill.

Pressure Monifor System

This technical manual, five-pages, contains data on the model 203A digital pressure measurement and control system. A block diagram showing interconnection of the pressure transducer, power supply, preamplifier, and amplifier is included in the manual. Technical Industries Corp., 389 N . Fair Oaks Ave., Pasadena, Calif.

Vinyl Tubing

115
The firm offers samples of extruded tubing made from polyvinyl chloride resins. These samples are $2-1 / 2$ to 6 in . long, and cover 5 grades of tubing, three of which meet various MIL specifications. They come in a folder that is imprinted with charts giving information on the five grades. Insulation Manufacturers Corp., 56.5 W. Washington Blvd., Chicago 6, Ill.

Frame Grid Tubes

116
Production techniques used in the manufacture of frame grid tubes are illustrated and described in this 13-page booklet. Technical data include typical characteristics, limiting values, and base connections for a variety of amplifiers and mixers. Amperex Electronic Corp., 230 Duffy Ave., Hicksville, N.Y.

Selenium Rectifiers

117
The firm's line of selenium rectifiers is described in bulletin No. 295, an eight-page brochure. Basic rectifier information, product description, and methods of selecting rectifiers are covered in the bulletin. Outline drawings and terminal arrangement tables are included. Radio Receptor Co., Inc., 240 Wythe Ave., Brooklyn 11, N.Y.

Zener Diodes

118
This eight-page brochure contains articles on referencing and instrumentation with Zener diodes, and output regulation utilizing the switching action of Zener diodes. Detailed circuits, performance curves, and photographs appear in the booklet. International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif.

MALLORY Vibrators

Elkon Division, Du Quoin, III. Electromagnetic Department

MALLORY

CIRCLE 119 ON READER-SERVICE CARD

MRC proudly presents another series of quality products equally recognized for dependability, and performance. The Micromag, a low-level drift-free magnetic DC amplifier, completely solid state ... ideally suited for instrumentation applications where temperature, strain and pressure are to be measured. DC signals in the millivolt region are amplified to the 0 to 5 volts DC range required for telemetering and recording systems.
Typical Specifications:
Power / $26-31$ volts DC. 10 milliamps
Input Signal / $0-10$ millivolts $D C$
Voltage Gain $/ 500 \pm 10 \%$
Output Load / 100 K ohms
Linearity / $+2 \%$
Gain Stability $/ \pm 3 \%$ from $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Common Mode Rejection / At DC, 10°
At $60 \mathrm{cps}, 10$
At $400 \mathrm{cps}, 10^{\prime}$
For additional information on MRC's complite line of Micromags, write for Data File N. MA1001.

MIGNETICRESEARCH CORP. 3160 West El Segundo Blvd. Hawthorne, Callfornia
arcle 120 on reader-service card

Connectors and Cables

Rack-and-panel connectors made by Ampenol and type RG/U coaxial cables are described in this illustrated four-page brochure. Among the connectors listed are: cable clamps; barrier polarization types with and without shells; printed circuit connectors, and a series of plugs and adapters. Coaxial cables are listed in table form. Schweber Electronics, 60 Herricks Rd., Mineola, L.I., N.Y.

Power Stacks

122
Bulletin No. 308, four-pages, contains a list of selected power stack assemblies ranging in output from 3 to 30 kw dc. Design data are shown for 125 and 250 v dc units, convection and forced air cooling. The required ac input voltage and the rated output are given for each unit. Radio Receptor Co., Inc., 240 Wythe Ave., Brooklyn 11, N.Y.

Motor Generator

123
Two-page bulletin No. MO-3.14 provides performance data and design specifications on the RBG-2407 miniature motor-generator. The unit consists of a low inertia control motor and an ac drag-cup rate generator. Motor speed-torque and speed-voltage curves are included in the bulletin. National Pneumatic Co., Inc., 125 Amory St., Boston 19, Mass.

Gears and Pinions

124
Data on die cast gear and pinion combinations appear in tiiis 10 -page catalog. Combinations include: gear and pinion, flanged pinion, cup gear and pinion, plus special units. All are available with hole or shaft. Mechanical specifications and outline drawings are contained in the catalog. Gries Reproducer Corp., 125 Beechwood Ave., New Rochelle, N.Y.

Welding Equipment

125
Descriptions, design and performance data, and illustrations of electronic welding equipment appear in this four-page catalog. Among the units described are power supplies, welding heads, a control unit, a bench welder, and handpieces. Weldmatic Div. of Unitek Corp., 380 N. Halstead Ave., Pasadena, Calif.

Thermocouple Wire

126
Pure platinum, platinum-10\% rhodium, and platinum-13\% rhodium thermocouple wires are described in this four-page bulletin, No. TC-2. Physical and electrical properties for standard and premium grades of the 3 wire types are listed. J. Bishop \& Co., Platinum Works, Malvern, Pa .

THE MAGIC ALPHABET

Students of alphabetology will recognize these letters to he
"M.R.C." written in the magic alphabet. Engineers everywhere recognize MRC for quality, reliability and outstanding performance.
The airborne power supply shown
below is one of a series of highly
reliable stable power sources de-
signed to operate from a 115 volt,
400 cycle line and supply well regulated

- and filtered DC power. Dual magnetic regulation,
an exclusive feature of this series, supresses line
transients and compensates for changes in load.
The use of magnetic amplifier circuitry with tantalum capacitors, silicon diodes and rectifiers...coupled with inherent short circuit protection...combine to achieve a degree of reliability unattainable in other types of circuits.

SPECIFICATIONS
Model 40-103-0 is a typical 5 watt supply used exten-
sively in missile instrumentation.
Input/95-125 v; 380-420 cps
Output / 4.75 to 5.25 VDC (Adjustable), 0 to 1 amp
Regulation / $\pm 0.1 \%$
Ripple / 0.5% rms max. at full load
For additional information on MRC's complete line of airborne power supplies,
write for Data File PS 1000.

MAGNETIC RESEARCH CORPORATION

3160 West El Segundo Boulevard, Hawthorne, California CIRCLE 127 ON READER-SERVICE CARD

air-marine motors, inc.

369 Bayview Avenue Amityville, L.I., N.Y.

2221 Barry Avenue Los Angeles, California
in Canada AAE Limited, Weston, Ontario Write today for our new catalog Soe us af the I.R.E. Show-Booth 2601 CIRCLE 128 ON READER-SERVICE CARD

NEW LITERATURE

Sealing Alloys

129
Alloys developed for sealing metal to glass are described in this four-page booklet. Called Rodar, Niromet 46, and Niron 52, the alloys have a tensile strength of 150,000 psi. Minimum tensile strength for Niromet 46 and Niron 52 is 70,000 psi; for Rodar it is 65,000 psi. Wilbur B. Driver Co., 1875 McCarter Highway, Newark 4, N.J.

Threaded Fasteners

130Catalog 5918 is a guide to the selection of threaded fasteners for high temperature use. The 80 -page book contains a complete listing of fastener types, material and configuration for use in temperatures up to 900,1200 , and over 1200 F Detailed standard drawings of the firm's nuts are included as a further guide to the selection of the correct fastener for the iob. Elastic Stop Nut Corp. of America, 2330 Vauxhall Road, Union, N.J

Resin Cartridge

13
This one-page data sheet illustrates and describes type PPC TC-459 cartridge k for packaging epoxy resin. Applications include potting electrical connectors and cable junctions. Data on the preparation of the kit is contained in the bulletin Electronic Production \& Development, Inc., 501 N. Prairie Ave., Hawthome, Calif.

Electronic Chronograph

132
Data on a transistorized electronic chronograph that converts varying time intervals into digital coded electrical sig. nals is contained in bulletin No. 104a. The instrument measures time between events to a resolution of 20 musec with an accuracy of 1 part in 10^{7} per day. Applications for the quantizer, series LfQ, are included in this two-page data sheet. Computer Equipment Corp., 1931 Pontius Ave., Los Angeles 25. Calif.

Offers same ourstanding Ceatures as Series 10,000 Tour times larger. Easily viewed over 100 feet away

Industral electronic Encineers, Inc.
Engineers and Manufacturers of
fully Automatic Systems and Fully Automatic Systems and Machines
5528 Vineland Avenue, North Hollywood, Calif.
CIRCLE 133 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 3, 1960

Explosion-proof Controls

This two-color, four-page booklet contins information on indicating, nonindicating, and recording explosionproof contiols. The controls are available in a variety of temperature ranges up to 1100 F . Fhotographs of control models IVS, VS, and RVS appear in the booklet. Partlow Corp., New Hartford, N.Y.

Switches and Actuators

Detailed information on miniature and subminiature plastic-cased snap-action switches and actuators is contained in catalog No. 12. Among the switches described are: push button and plunger switches, toggle switches, lever and roller actuated switches, and limit switches. Haydon Switch, Inc., Waterbury 20, Conn.

Terminal Blocks

136
Catalog No. 76 contains data on the firm's line of sectional terminal blocks, terminals, and cable and conduit fittings. Complete technical data, detailed en-
gineering specifications and drawings, and photographs are included in the 12-page booklet. Buchanan Electrical Products Corp., Hillside, N.J.

Rigid Custom Extrusions

137
"A Guide to Rigid PVC Custom Extrusions" is a two-page data sheet that describes the advantages of polyvinyl chloride. The illustrated bulletin includes sections on polyvinyl chloride part design and factors in selecting the plastic material. Alpha Plastics Inc., 78 Okner Parkway, Livingston, N.J.

Electronic Buying Guide

Over 40,000 items are listed in this 312page catalog, No. 85, devoted to industrial electronic parts and equipment. Engineering specifications, schematic diagrams, and technical articles are included. The catalog also contains a complete index of products and manufacturers. Write on company letterhead to Radio Shack Corp., Dept. ED, 730 Commonwealth Ave., Boston 17, Mass.
 ONE FILCK RESETS this COUNTER
HIGH SPEDD Eleeric

DURANT

> Offered in TWO STYLES:
> 1. Quick PUSH-BUTION RESET
> 2. Electric REMOTE RESET

First high-speed electrically actuated counters with added advantage of electric reset. Clean-cul, legi-high-speed figures, white on black. Ideal for al rate of high, low or intermediate speeds. OURANT MANUFACTURING CO

CIRCLE 138 ON READER-SERVICE CARD
El ECTRONIC DESIGN • February 3, 1960

Give Your Family A Lifetime of Musical Joy With A Magnificent Schober ELECTRONIC Organ!

SPECIFICATIONS
P-205, P- 205 A

Output Impedance 50 ohms

PRE-AMPLIFIER MODEL P-205

The IFI P. 205 Series Pre-Amplifier is designed to be fed from a crystal mix. cr with a 200 to 300 ohm balanced output. The P-205A is designed to be used with 200 ohm unbalanced mixers. Either the P-205 or the P-205A will provide a gain of 20 db in a bandwidth of 10 mes. Both these units are designed to operate with either the Model 235 (10 mes If strip), of the Model 230 (2 mcs If strip). It is alse pessible to use thase units with ather standard 50 ohm input if amplifiers.

INSTRUMENTS FOR INDUSTRY, Inc.
101 Now South Road, Hicksville, I. I.s N.Y.

ifi

 See us at the I.R.E, Show-Booth 1424 CIRCLE 144 ON READER-SERVIC CARD

NEW LITERATURE

Industrial Controls

145
Containing charts, drawings, and diagrams, this booklet, entitled, "Industrial Temperature Measurement and Control," discusses the following topics: ways of responding to temperature; ways of putting temperature response to work; the firm's element for mercury-bulb instrumentation, and a score sheet for the mer-cury-bulb system. The 23 -page booklet also provides basic concepts of electrical, pneumatic, and mechanical controls. The Partlow Corp., 532 Campion Road, New Hartford, N.Y.

Electron Tubes

146
Trends in the design and manufacture of electron tubes for entertainment, industrial, and military applications are discussed in this 24 -page booklet, entitled, "A New Era of Sylvania Electronic Tubes." Sylvania Electric Products Inc., 1100 Main St., Buffalo, N.Y.

Crystals

This 12-page booklet includes an article entitled, "Induction Heating in Zone R" fining, Zone Leveling and Crystal Grow ing." Techniques of growing germaniun and silicon crystals are explained and illustrated. An article on coil design and construction also appears in the booklet. Lepel High Frequency Labs, Inc., 55th St. \& 37th Ave., Woodside 77, N.Y.

Tape Transports

148
Illustrated bulletin No. 1618 describes model 5-681 digital-tape recorder/reproducer transport that operates at speeds up to 30 ips , and model $5-682$, a transpor! that operates up to 150 ips. Both are designed for computer, industrial, military, and laboratory applications. Operating characteristics and specifications for both units are included in the brochure. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

PROTECT
DUST-SENSITIVE OPERATIONS

with mICRONOロロ* Dust Hoods

Dust can be disastrous! Particularly during assembly, potting, inspection, storage of semiconductors, servomechanisms, relays and the like ...products even "clean rooms"
can't adequately protect.
Optically transparent MICROvoID enclosures provide almost 9 cubic feet of dust-free research and production space. A "screen" of moving air-filtered to 0.5 micron
diameters-positively prevents dust from entering work area
Moderately.priced standard Microvoid Dust Hoods available for prompt delivery. Special types accommodate scopes or large instruments. Amber "Plexiglas" types shield against ultra-violet radiation. GET COMPLETE FACTS by writing today or call OSborne 5-5200.

AIR-SHIELDS, INC. industralal divsion

(5) HATBORO, PENNSYLVANIA CIRCLE 149 ON READER-SERVICE CARD

ELECTRONIC DESIGN • February 3, 1960

Gyroscope Manual

This technical manual on subminiature rute gyroscopes covers basic principles of 0_{i};eration, operating characteristics, standard types available, transformer pick-off, and use and design of one, two, and three axis sensors for rate and acceleration. General application and operating data are for design use in applications such as fire control systems, autopilots, missile homing, navigation, and instrumentation. The 63 -page manual includes a 20 -page appendix that contains a complete glossary of gyro technology. Send $\$ 2.00$ to Sanders Assoc. Inc., Dept. ED, 9.5 Canal St., Nashua, N.H.

Electronic Connectors

154
Catalog No. 60, 16 -pages, contains application data on electronic connector types including printed circuit, MS, rack and panel, triaxial, glass seal, BT miniature plugs, receptacles and cable assemblies. Special type connectors are also described. H. H. Buggie Div., Burndy Corp., Toledo. Ohio.

Ceramic Capacitors

155
Bulletin No. H-4 describes the firm's series of subminiature ceramic capacitors designed for $1 / 10-\mathrm{in}$. modular spacing in printed circuitry, and other tight packages. Mucon Corp., Dept. K, 9 St. Francis St., Newark 5, N.J.

Washers

This brochure contains measurements, weights, sizes, and a complete listing of flat steel, brass, finishing, and lock washers for internal and external use. Accurate Threaded Fasteners, Inc., 2901 W. Montrose, Chicago 18, Ill.

Games for Electronic Computers 157

This 12-page booklet describes 12 games for matching the machine against the human operator. Adaptation of these games to various computers, including the company's Sexiac electronic digital computer kit, is also explained. Willis G. McCormick Co., 15733 Septo St., Sepulveda, Calif.

STILL EASIER TAPER-PIN CONNECTIONS!

KULKA ELECTRIC CORP.
б́33-64̄̄3 So. Fulton Avenue
Mount Vernon, N. Y.
CIRCLE 158 ON READER-SERVICE CARD
El :CTRONIC DESIGN • February 3, 1960

SPECIFICATIONS

Center freq.	r-330A	30 me .
Bandwidth	T-330A	${ }_{10} 10 \mathrm{mc}$ me.
Gain	${ }_{\text {r }}$	
Output (max.)	${ }_{\text {r }}^{\text {r }}$-330	+ $100{ }^{\text {domm }}$
Input Impedance	T-3308	${ }_{50}{ }^{\text {chmm }}$
Noise Figure	+1.3308	S0 ${ }^{50} 80$
mean stage gain	+1.3308	1.5
Quantity		
11-25		${ }_{7800}$

A new series of complotoly transistorized I-F amplifiors offerod to fill the noed for standardized, high aunlity milts. These T-330 series amplifiers by I.f.I. are svallable in a varioty of center frequencies and bandwidths. Thay also ean be equippod with omilter follower, eathede detecter or low noise tube input.
The quality of construction is migh. Tho uso of orinted clrcultry ane guality emo trol procedures provide rigin stimiteris. Individual inspeetion smd testime of osenh unit prier to dellvery assure the superier quality of Ifi transistorized I-f amplilicers. These trasisistorized l-f amplifers moet all applleabile militery onvironmental specinientiens.

INSTRUMENTS FOR INDUSTRY, Inc. 101 Now South Road, Hicksville, L. I. N.Y. ifí

 Sote us at the I.R.E. Show-Booth 1424 CIRCLE 159 ON READER-SERVICE CARD

$$
\boldsymbol{H}=\frac{m c}{2}
$$

Or How To Find New Leisure
Even Though You're An Engineer

IIT seems you can't begin to please everybody these days particularly if they're all marketing people. Ours were L happy enough when we discovered the new physical law embodied in $\mathbf{E}=\mathrm{mc} / 2^{*}$ and then built the FR-600 analog recorder that embodied the principle. They groused a bit when it took us two years to finish it, but relations were still on a genclemanly level. Then we published the Ips Corollary and they flew off the handle because this showed that the FR-600 could record the same bandwidth at half the usual speed. (125 kc at 30 ips , giving 48 minutes recording time on a 14 -inch reel of tape.) They pointed out that this meant people wouldn't need a second stand-by machine to switch over to on most data runs. They wrung their hands and mumbled about the market being cut in half with one stroke. Things gor even worse when it leaked out that the FR-600 made this same doubled recording time possible on every one of our analog recorders ever built. (The new engineer says this is because bandwidth is determined by the reproduce head rather than the record head.) So everyone who had an FR-600 to reproduce on could record the same bandwidths at half the usual speed on our other equipment and get double the usual recording time. We had a hard time explaining that away. They threw some nasty phrases at us like 'planned obsolescence' and 'market saturation,' but there was no changing the facts.
Now it seems that instead of plunging down as they predicted, the sales curve is inching up, and they want more of the same kind of information we have published before. We will supply it, but it is not without some misgiving as to how fate may twist it and make it work against us. Perhaps this time the Labor Board will complain. Nevertheless, here it is in one flat unequivocal statement: The FR-600 will work twice as many hours in every working day. This is not to say, mind you, that you have to work twice as many hours - just the machine. In fact, you may find new leisure - as they say in the ads. The new engineer says it's because the FR-600 spends more time recording and less being adjusted and maintained. He says-and you might well have a chance at being the new engineer if it's not true-that the solid-state circuitry warms up in less than 10 minutes, and maintains FM calibration within 1% for more than 24 hours. That means one calibration a day instead of 3 or 4 . We've also eliminated a lot of adjustments by leaving out a lot of parts. Our motives in bringing you these benefits are completely altruistic but you can return the favor by helping to hold up your end of the sales curve.
*We'll never get rid of all the reprints of our earlier papers on $E=m \mathrm{c} / 2$, the Ips Corollary, etc. unless you write for them in your new-found leisure.

AMPEX DATA PRODUCTS CO, 934 CHARTERST., REDWOOD CITY, CALIF.

NEW LITERATURE

Connectors

165
Bulletin No. 115, four pages, contains data on the company's rack-and-panel or cable connectors. Series 8007 is available with 75, 100, and 130 contacts and a screw-actuating device for mating and vibration lock. Series 8008 is available with $80,95,110,125$, and 140 contacts, but has no screw-actuating device. The bulletin provides diagrams and photographs. Elco Corp., M St. below Erie Ave., Philadelphia 24, Pa.

Transistors

166
Complete specifications and characteristics of the firm's line of pnp and npn transistors appear in this 16-page brochure, No. G-200. Sections are devoted to: audio transistors for audio amplifiers and low speed computers; computer transistors; high current computer transistors; bilateral transistors; drift transistors; high voltage transistors; and silicon alloy junction transistors. General Transistor Corp., 91-27 1.38th Place, Jamaica 35, N.Y.

Components

167
Contained in this six-page booklet is data on the firms line of components. Included are: filters, networks, and deliy lines; rf and if coils and transformers; special coils and toroids; wirewound sistors, and subassemblies. The booklet is illustrated. Fugle-Miller Labs, Clark, N J.

Tube Sockets

168
This two-page data sheet describes 7 and 9 pin miniature tube sockets with shield base, saddle for top mounting, and snap-on base. Specifications and outline drawings for all types are included in the bulletin. Elco Corp., M St. below Erie Ave., Philadelphia 24, Pa.

Grommets

169
One-piece, solid, nylon grommets are clescribed in this four-page illustrated brochure. Specifications are given in table form. Photographs and outline drawings are included to facilitate installation. Western Sky Industries, 21301 Cloud Way, Hayward, Calif.

Connector Potting Form

Nylon potting forms from 1/2 to 1-1/2 in. ID are described in a one-page, illustrated bulletin. The forms mold compounds used to pot electrical connectors against the effects of moisture, oil, hydraulic fluid, salt spray, and fungus. Electronic Production \& Development, Inc.. 501 N. Prairie Ave., Hawthorne, Calif.

Power Inverter

Transistorized power inverter, model TPI-3, designed for operation in any airborne environment, is described and illustrated in this two-page data sheet that outlines its specifications. A simplified circuit diagram is included. Southwestern Industrial Electronics Co., 10201 Westheimer Rd., Box 22187, Houston 27, Tex.

Switches and Relays

 176The firm's line of electrical switches and relays is described in this four-page brochure. Switches described and pictured include miniature, subminiature, appliance, open blade, general purpose, metal
clad, machine tool, and others. Several types of relays are listed in the brochure. Acro Div., Robertshaw-Fulton Controls Co., Box 449, Columbus 16, Ohio.

Optical Systems

177
Technical descriptions and photographs of a radar recording camera test set, fire control simulator, radar target folder viewer, and radar film assessor appear in this 16 -page booklet. Other systems described in the folder include data display equipment, photogrammetric devices, and visual simulators and trainers. Mast Development Co., Inc., 2212 E. 12th St., Davenport, Iowa.

PC Connector

178
Series 6003, card-edge type printed circuit connector, is described in a two-page bulletin, No. 116. The connector is available with $14,21,31$, and 37 contacts at 0.078 -in. centers. Specifications and outline drawings are contained in the bulletin. Elco Corp., M St. below Erie Ave., Philadelphia 24, Pa.
Higher

REGULATION

Quan-Tech's 120 Series units are transistorized, low-voltage d-c power supplies featuring low ripple and closely regulated output. Regulation is to within $\pm 0.01 \%$ or $\pm 3 \mathrm{mv}$ for line or load. All electronic circuitry protects each unit from overload or short circuit-recovery is immediate when the fault is removed.Valuable equipment connected externally is protected by presetting current levels of any of Valuable equipment connected externally is protected by presetting current tevels of anythe 120 Series. Provisions for remote error sensing are also incorporated. Where reliability rates equally with versatility-look to the 120 Series by Quan-Tech. Write for technical details.								
del	Output R	ge DC	Regulation				Ripple	
	Volts	Amps	Line		Loa		mvRMs	
121	0.1 1-15	0.5	$\pm 0.01 \%$ or	3 mv	$\pm 0.01 \%$ or	3 mv		
122	0.1-36	0.3	$\pm 0.01 \%$ or	3 mv	$\pm 0.01 \%$ or	3 m	5	495.
123	0.1-50	0.2	$\pm 0.01 \%$ or	3 mv	$\pm 0.01 \%$ or	3 mv	. 5	510.
124	0.1-50	0.5	$\pm 0.01 \%$ or	3 mv	$\pm 0.01 \%$ or	3 m	. 5	645.
Also Available								
101	0.8	0.2	$\pm 0.25 \%$ or $\pm 25 \mathrm{mv}$				1	195.
102	0.14	0.1	$\pm 0.1 \%$ or $\pm 10 \mathrm{mv}$$\pm 0.1 \%$ or $\pm 10 \mathrm{mv}$		$\pm 0.1 \%$ or	10 ח\%	1	190.
103	0.30	0.5			$\pm 0.1 \%$ or	10 mv	1	190.
1048	0.50	0.1	$\pm 0.1 \%$ or $\pm 10 \mathrm{mv}$				1	375.
105	0.50	0.25	$\pm 0.25 \%$ or $\pm 25 \mathrm{mv}$				2	205.
112	0.14	0.2	$\pm 0.1 \%$ or 10 mv$\pm 0.1 \%$ or 10 mv		$\pm 0.1 \%$ or	10 mv	1	240.
113	0.30	0.1			$\pm 0.1 \%$ or	10 mv	1	240.

[^1]
FAST, SLOW AND INTERMEDIATE TIME DELAY actions

Airpax series 500 miniature magnetic circuit breakers provide positive protection against damage to components in intricate or simple electronic circuits. Available in series, shunt, and relay types, they offer safety factors which can not be duplicated by fuses, relays or thermal breakers.
These miniature circuit breakers are hermetically sealed and withstand severe shock, vibration, extremes of temperature and a wide range of environmental conditions.
Available in 50 volt DC ratings from 50 MA to 10 AMPERES; 120 RMS volts at 60 or 400 CPS with current ratings from 1 to 10 AMPERES.
Request Bulletins B-07 and B-16 for complete information.

CIRCLE 180 ON READER-SERVICE CARD
flectronic Design • February 3, 1960

[^2]

NEW LITERATURE

Power Nomographs

 ulle nomographs in this eight-page bulletin. No. 5000 E, aid in predicting the long term performance of the firm's composition fixed resistors. The information shows how power input, temperature rise, ambient temperature, life, and permanent resistance changes are interrelated. Examples are included to illustrate the use of the nomographs. Allen-Bradley Co., 136 W. Greenfield Ave., Milwaukee 4, Wis.
Switches and Terminals

186
This 24-page catalog contains data on multi-circuit push button and stack switches in addition to range heater, motor-reversing, toggle, and slide switches. Details of handles, hardware, shaft styles, and terminals are included. Dimension drawings, wiring diagrams, circuit sequences, and electrical ratings appear in the catalog. Ark-Les Switch Corp., 51 Water St., Watertown 72, Mass.

Magnetic Triggers

Information on magnetic triggers for silicon controlled rectifiers is containes in this four-page brochure. A selectior chart showing specifications of full-wave half-wave and small-size 400 -cps models dimensional diagrams, and charts show ing transfer characteristics and output and control signals are included. Avion Div. of ACF Industries, Inc., 11 Park Place Paramus, N.J.

Environmental Testing

This 10-page brochure contains descriptions and capacities of apparatus required for military and commercial testing of electronic equipment. Tests include shock and vibration, temperature, altitude, humidity, salt spray, sand and dust, pressure, and electronic radiation. Equipment is capable of meeting requirements for most current military specifications. Stavid Engineering, Inc., Plainfield, N.J

Unique Duplexer Competence

Optimum radar performance depends upon selection of the best possible duplexer consistent with your specific requirements.
This is not easy. There are many possible combinations of duplexer devices, each with its own advantages and limitations. Also, components come in a variety of types and packages, each with different inherent characteristics:

FOR SWITCHING

- PRE.TR
- dual pre.tr
- 4.PORT CIRCulator
- baLanced atrs
- tee circulator

FOR CRYSTAL PROTECTION

- TR CRYSTAL PROTECTOR
- Semiconductor limiter

FOR SWITCHING \& PROTECTION

- dual tr

Microwave Associates can help you select the correct duplexer for your system with no second-guessing. Their long terin research and development programs on gas tubes, ferrites, semiconductors, solid-state devices, and duplexer assem-
blies means excellence in duplexer capabilities. Production facilities are geared to rapidly translate new advances into field availability.
No other manufacturer offers you such comprehensive consultation on duplexer problems without obligation. If you are designing, building, or modifying a system we will be glad to work with you. Write or call:

MICROWAVE ASSOCIATES INC.
Burlington, Mass. - BRowning 2-3000 - TWX. Burlington, Mass. 942
CIRCLE 184 ON READER-SERVICE CARD

Zipper Tubing

Catalog Z-2 discusses the characterisics, construction, applications and specifications of zipper tubing. How-to-use instructions, permanent sealing directions, accessories listing, and ordering information are also included. In addition, the forming, closing and sealing equipment are illustrated and discussed. Alpha Wire Corp., 200 Varick St., New York 14, N.Y.

Audio Line Amplifier

Model CA-5A audio line amplifier is described in this two-page bulletin. The amplifier powers up to 50 headsets in parallel so that audio impulses applied to any of the microphones are transmitted to all connected headsets. The bulletin covers application, specifications and technical description of the unit. Photographs are included. Flite-Tronics, Inc., 3312 Burton Ave., Burbank, Calif.

Differential Amplifier

Complete specifications and operating data of a differential amplifier appear in this six-page brochure, No. 3015-B. Powe
supplies, mounting modules, filters, and other accessories are described. The brochure contains photographs and a block drawing of the amplifier. Beckman Systems Div., 325 N. Muller Ave., Anaheim, Calif.

Word Indicator Lights

197
Catalog No. 159C, 16 -pages, describes the Roto-Tellite line of word indicator lights. They have a visible legend area of $15 / 32 \times 1-1 / 4$ in. that will accommodate up to 3 rows of 0.125 in . high characters, 14 per row. Circuit outlines and mounting dimensions are included in the catalog. Master Specialties Co., 956 E. 108th St., Los Angeles 59, Calif.

Miniature Pulse Transformers

198
Detailed description of miniature pulse transformers for blocking-oscillator pulse coupling, inverting and impedance matching is outlined in bulletin No. PT 160, two-pages. Grain oriented, thin metal core material is used in the transformers. Characteristics are presented in table form. Valor Instruments, Inc., 13214 Crenshaw Blvd., Gardena, Calif.

Please write direct to advertiser mentioning ELECTRONIC DESIGN
LECTRONIC DESIGN • February 3, 1960

$$
\begin{aligned}
& \text { 1. } z=f(x, y) \quad \text { 2. } z=f[g(x), h(y)] \quad 3 . z=f(u \cdot x, v \cdot y) \\
& \text { 4. } y_{1}=f_{1}(x), y_{2}=f_{1}(x), \cdots \cdot y_{20}=f_{20}(x) \\
& \text { 5. } z_{1}=f_{1}(x, y), \cdots z_{4}=f_{4}(x, y) \quad \text { 6. } u=z \cdot f(x, y) \\
& \text { 7. } z=f\left(x_{1}+x_{2}+\ldots y_{1}+y_{2}+\ldots\right)
\end{aligned}
$$

NOW... A NEW APPROACh TO FUNCTION GENERATION

The Link Analog Function Generator

Link's analog function generator offers a new level of performance for analog computation and simulation. Key to this outstanding performance...a Link-developed rectilinear servo motor with solid-state servo-amplifiers and a ceramic-film resistance element.

This new function generator eliminates the high drift and complex design of diodes generators, provides high-speed operation without the limited flexibility of optical techniques and the inherent backlash, friction and inertia problems of existing servo generators.

IT PROVIDES:

RELIABILITY-Modular design • Automatic failure protection • Simplified maintenance
ECONOMY-Standardized components • Printed circuits
FLEXIBILITY - Plug board programming - Rack mounted or table top use
VERSATILITY-Numerous functions or function groups can be generated with minor modification, or by connecting one or more generators in series.
The analog function generator, first of a line of DIALOG * com ponents and system building blocks to be introduced by Link, is another example of Link's unique computer capability. Thoroughly experienced in analog and digital techniques, Link can provide the most objective, economic solution to computation, simulation and control problems. For additional information on Link's new Function Generator or its broad computer capabilities - and your copy of Link's DIALOG* catalog - write to Industrial Sales Department.
DIALOG* (Link Digital-Analog System Components

LINK avimion

CIIICLE 199 ON READER-SEVVICE CARO

Modified One-Shot Multi Acts As Pulse Decoder

ASIMPLE method for pulse decoding and producing squared output pulses of predetermined duration is illustrated by the circuit shown. The functions of a coincidence circuit and a separate one-shot multivibrator are here combined in a modified multivibrator circuit.
The pulse decoder, pentode tube V_{1}, is connected in a gating circuit to produce single pulses from pairs of pulses spaced p microseconds apart. The design is such that V_{1} is cut off by the positive voltage on its cathode. This bias is established by the drop across R_{3} as a result of the current drawn by the normally conducting triode V_{2}.
Positive pulses are fed through coupling capacitor C_{1} to both the p microsecond delay line, $D L$, and the suppressor grid of V_{1}. The delayed pulse output from $D L$ is applied to the control grid. Conduction of V_{1} will not occur until positive signals of proper amplitude and phase are applied to both the control and suppressor grids. This takes place only when pulse input is spaced p microsecionds apart. When V_{1} conducts, a negative output pulse is produced at the plate.
This negative pulse is applied, through C_{2}, to the grid of triode V_{2}, cutting the tube off. It remains cut-off while C_{2} discharges. When the cut-

The modified multivibrator circuit acts as a pulse decoder and produces output pulses with a width determined by the time constant $\left(R_{4}+R_{5}\right) C_{2}$.
off point is reached, plate current in V_{2} again begins to flow. The turn-off time is determined by the time constant of the RC combination $C_{: 2}\left(R_{4}+R_{\overline{7}}\right)$. This also establishes the output pulse width. As soon as plate current starts to
flow in $V_{: 2}$, a second switching process occurs, and the normal condition (V_{2} on, V_{1} off) is re-established.
A. N. Clay, Senior Engincer, ITT Laboratories, Nutley, N. J.

Square-Loop Core for Short-Circuit Protection

ATRANSFORMER with a square-loop core was used to protect the regulating transistor in a regulated power supply. Basically, transistor regulated power supplies use a transistor in series with the load whose collector-to-emitter impedance is changed to compensate for load varia-
tions. If the regulated output is shorted, the entire unregulated output appears across this transistor. Where the unregulated output is greater than the transistor breakdown voltage, the transistor can be permanently damaged. A fuse in the output circuit will not help since the

Fig. 1. Isolator is placed between regulating transistor and load.
transistor breakdown will occur faster than any fuse will blow.
The position of the regulator "isolator" is indicated in Fig. 1; its circuit in Fig. 2. While this basic circuit has previously appeared in the literature (Shea, R. F. "Transistor Circuit Engineering", John Wiley \& Sons, p 422), the particular application described here is new.
If a short is placed across the output terminals 3-4 (assume Tl is conducting), the square-loop core material will immediately be saturated by the increased collector current. This current is limited by the base drive provided by windings

ELECTRONIC DESIGN • February 3, 1960

A HERITAGE IN ELECTRONICS

Of interest to the Electrical Industry

SINCE the establishment of our business in 1919 it has been our sincere desire to secure and maintain the good will of every customer using our equipment, by supplying relays of the finest quality-properly designed, accurately fabricated and carefully assembled. . . . We are constantly designing, developing and testing, with two objectives in view: First, to make our relays superior in every respect, and Second, to have new types and designs ready for each new requirement as the electrical industry progresses. . . . Realizing that an electrical control scheme is no better than any one relay used in it, we consider the design and materials first, and the cost last. Although we have many varieties of relays, we never sacrifice the quality of any type in meeting competition.

- We solicit your relay business and feel justified in saying that, "Tbe more you use Leach Relays, the more you will be convinced that they have created new high standards in accuracy and dependable performance."
\bullet -
LEACH RELAY COMPANY

Val Leach, founder of Leach Corporation, wrote the advertisement, left, 27 years ago. In it Mr. Leach laid down a business philosophy that is as valid today as it was in 1933. He knew there would be no room for "yesterday's heroes" among the companies supplying the vital, growing electronics industry. He knew that success would be in direct ratio to uncompromising product reliability. And he also knew that technological progress could only be based on the solving of tomorrow's problems.

Today, Leach continues to provide the industry of flight with reliable, high performance relays and contactors in the tradition of the original Leach Relay Company. Over the years, Leach has also pioneered and developed many other advanced technical products and services. Today, their scope greatly enlarged, Leach designs, engineers and manufactures:

ELECTRO-MECHANICAL AND ELECTRONIC COMPONENTS - relays, contactors, solid state devices

INSTRUMENTS - tape recorders, accessory equipment, recording accelerometers

POWER CONVERSION EQUIPMENT-motor generator sets, DC and special purpose power supplies

CONTROL AND DISTRIBUTION EQUIPMENT - control and distribution centers, load banks, bench panels, test benches
..... with the know-how to incorporate them into ELECTRONIC SUB-SYSTEMS AND SYSTEMS.

This year Leach Corporation celebrates its 40th anniversary in electronics with a reaffirmation of Val Leach's time honored principles:

Solving problems is the core of the Leach philosophy of doing business. Leach will continue to base its success on anticipating customer needs and meeting them with advancements tailored to specific requirements.

Fir electronic sub-systems and electro-mechanical components to meet the requirements of the space age

LOOK TO LEACH
LEACH CORPORATION, 18435 SUSANA ROAD, COMPTON, CALIF ornia - district offices and field representatives in principal cities of u. s. and canada - export: leach corporation. international division EIECTRONIC DESIGN • February 3, 1960

Specifications:
Input: 105 to 125 V AC, 45 to 420 cps , single phase Regulation: 0.1% (line or load) Stability: Better than 0.25% for 8 hours Ripple: $0.02 \% \mathrm{rms}$ Response time: less than 100 microseconds Low dymamic impedance

Designed primarily as a component power supply, units are widely used in computors, electronic instrumentation, production test equipment, and quality control check out systems. Best of all, the unique design makes these units available at the lowest possible cost to you.
(Unit pictured above: Model ${ }^{2} 1 \mathrm{R} \mathrm{90.1;} 85.95 \mathrm{~V} ; 0-100 \mathrm{ma} ;$ Price $\$ 145.00$ Prices on other units range from $\$ 100$ to $\$ 200$.

One piece finned aluminum extrusion achieving high heat dissipation. Most units need no external heat sink to $55^{\circ} \mathrm{C}$ ambient. All units have adjustable output. Platform mounted standardized subassemblies and components enable quick delivery of a wide range of voltages and currents.
 aide range or voltages and currents.

IDEAS FOR DESIGN

Fig. 2. Square-loop cored transformer causes short circuit at load to appear as a high impedance in series with regulating transistor.
$N a$. Since E_{8} is constrained to be zero by the short, and since $E_{s}=-N_{s} d_{\phi} / d t, d_{\phi} / d t=0$. The voltage induced in N_{a} will go to zero since it also is a function of $d \phi / d t$. Since the base drive is now zero, ideally the transistor's input impedance should be infinite. Actually, since the collector to emitter voltage becomes large (equal to the regulated voltage) some current will be drawn. However, the previously troublesome load short has been converted to a high impedance. The regulating transistor is in no danger of having an overload voltage placed on it.
Resistor R_{1} across the regulator output is usually needed since the near no-load condition during shorting is too stringent a design requirement on the regulator. The base resistor $\left(R_{b}\right)$ is selected for the desired bias point during normal operation. A value of 40 turns for N_{p} and 6-8 turns for N_{a} has been successful; with N_{s} determined by the output level desired. The transistors are determined by the power to be handled and the fact that the breakdown voltage should be about 240 per cent of the regulator output (twice the regulator output plus switching spikes).

Stanley Sokol, Design Engineer, Ford Instrument Co. Bldg., 4722, Rm. S9, Redstone Arsenal, Ala.

Meter Relays Protect TWT's

We have used meter-relays in two applications to prevent electrical damage to traveling wave tubes. The circuit in Fig. 1 is used to prevent helix burn-out due to excessive helix current. Fig. 2 prevents electron gun damage due to electron beam de-focusing caused by improper solenoid magnetizing current.

Fig. 1 uses a high-limit meter-relay. The meter movement is placed in series with the helix and ground. Excessive helix current (maximum helix

- simulates any amplifier stage
- ready-made circuits at your fingertips - pays for itself in no time

No breadboarding, no soldering. Your transistor circuit designs come to life in a matter of minutes with the Sprague LF-1 Transimulator. The circuit links you need are built right into the instrument. With the Transimulator, you'll be able to obtain a speedy and accurate evaluation of the operating parameters involved in your circuit design... without wasting valuable time with pliers, soldering, or screwdrivers.

sinly
 $\$ 79.50$

Slep-by-step mamal simplifes

SEE THE TRANSIMULATOR IN ACTIONI Write for the name and address of your nearest authorized Sprague dis. tributor to Sprague Products Company, 347 Marshall St., North Adams, Mass. ${ }^{\circ}$ Trademark

SPRAGUE"

THE MARK OF RELIABILITY
CIRCLE 207 ON READER-SERVICE CARD I LECTRONIC DESIGN • February 3, 1960

Fig. 2. A high-low limit meter-relay prevents electron gun damage caused by improper solenoid magnetizing current.
current for the tube type) will cause the meterrelay to lock closed, energizing the load relay K1. Energizing K1 removes the primary power from the high voltage TWT supply. Switch S1 in series with the locking circuit is used to clear the meterrelay circuit when the fault has been corrected.
Fig. 2 uses a high-low limit meter-relay. The meter movement is in series with the current regulated solenoid supply and the TWT solenoid. The limits are set to within 15% of the recommended solenoid currents. Should the current exceed the specified limits, the meter-relay will lock closed, energizing K1. This removes the high voltage TWT supply.
In both circuits high voltage is kept off the TWT's until the circuit is manually cleared by pushing push-button switch S1.
Walter W. Frey, Radar Systems, Airborne Instruments Laboratory, a Division of Cutler-Hammer, Inc., Huntington, N. Y.

Shock - testing on the rocks? If vibration and shock are your headache, you could build your ou'n pots to lick this problem! But look out for foul play in the shaft and bushings, under shock - you can lose your accuracy right there! And make sure your pet design includes a contact with no resonances, minimum mass, low wiper pressure - yet with excellent linearity! Oh, you'll be plenty busy!

But the easy way is to come to Ace! Our shockless pots incorporate, through exclusive precision production methods, fantastically close bearing fit. And our own specially balanced contacts place extremely low mass at the edge-wipe end, under low brush pressure. for steady contact under shock. Tempered precious metals and low contact resistance mean long. cor-rosion-free wear. Tested to 50 G 's at 2000 cycles.

Our complete pot line incorporates all these anti-shock design features. Under extreme servo applications, this $1 / 2^{\prime \prime}$ servo-mount Series 500 Acepot delivers 0.3% linearity. See us at WESCON

Booth 3414
 ELECTRONICS ASSOCIATES, INC. - Do Dovar Stroel, Somerville 44. Mosi. somorset 6.5130 TMX smve 1at west. Unien wux
 CIRCLE 208 ON READER-SERVICE CARD

FROM SYSTEM SPECS TO BREADBOARD

 TO FINISHED PRODUCT IN 75 DAYS!

Thar's the record set by the manufacturer of this complex airborne Time Code Generator - thanks to the compatibility of proven EECO T-Series Circuit Modules and the flexibility of the EECO Breadboard Kit.
Designed and developed for testing the fire control of manned supersonic aircraft under actual flight conditions at altitudes up to 80,000 feet, this Time Code Generator employs T-Series circuits throughout. Required accuracy of 1 part in 10^{5} was easily obtained.
high density. Light weight
The total package contains 96 T . Series Circuits, 14 filamenttype EECO Minisig Indicators. and power converters (the beginning of our line of compact 12 -volt EECO Power supplies for use with T -Series circuits) - all within a volume of $1 / 2$ cubic foot. In spite of this terrific packing density, the equipment still retains extreme ease of accessi. bility and weighs only 20 lbs . No cooling is required.
T-SERIES VS. VACUUM TUBE CIRCUITS The use of T -Series transistorized Germanium circuits throughout resulted in great savings as against equivalent equipment designed around vacuum tube circuits. Here are some startling comparisons:

T-SERIES		
SIZE	800 cu in. WEIGHT 20 IS (including power converters)	
POWER	77 watts	

vacuum tube

WEIGHT	$\begin{array}{l}20 \text { lds (including } \\ \text { powerc converters) }\end{array}$
POWER	77 watts

160 lbs. (plus fan and
650 watts (plus power for fan)

SAVE TIME AND MONEY

You, too, can develop the most complex equipment in record time with these proven EECO circuits and systems development aids. They'll save you time and money in four major areas:
1 DESIGN - You can devote full time to system design problems or unusual circuit requirements, knowing that routine circuit detail has been compatibly pre-engineered and packaged for you.
2 breadboard - The unique EECO Breadboard kit and plastic circuit cards enable you to set up, change, or take down experimental arrangements quickly - without waste of time or materials. Unit contains all necessary permanent wiring to accommodate any regular T-Series circuit. All other circuit inter-connections are made by patch cords or plugs. with prepunched circuit cards to guide you.
3 PRODUCTION - Your production problem is reduced to one of mounting sockets on panels or chassis and providing simple socket-to-socket wiring. Plug in the appropriate circuits and the system is complete.
4 CHECKOUT-The extreme reliability of T-Series circuits eliminates the need for circuit "debugging." Checkout time is reduced to a bare minimum.
Why not let proven EECO T-Series circuits and systems development aids help you solve your equipment design problems?
If you have not already requested your copy of ouv new Catalog No. 859, write us today on your company letterhead.
ENGINEERED ELECTRONICS COMPANY
(a oubsidiary of Electronic Engineering Company of California)
506 East First Street - Santa Ana, California
Look jor us at the ISA Instrument-Automation Conference / Houston, Texas, February 1-4 CIRCLE 220 ON READER-SERVICE CARD

Sawtooth Waveform Generator

Patent No. 2,897,453. Hugh Lyon Mansford. (Assigned to EMI Ltd.)
A capacitor is switched from charge to discharge in a manner which facilitates adjustment of the forward and reverse strokes of a sweep circuit

Capacitor 1 charges through diode 12 in a Miller fashion as set by resistor 13; triode 5 is cut off during the charging period. The voltage across resistor 18 and 19 rises until triode 5 conducts to switch

triode 6 off and, as a result, diode 12 cu off. Capacitor 1 discharges through tube 14 and resistor 16 in series until triode cuts off to reset the sweep cycle.

Power Supply

Patent No. 2,905,881. Samuel Aron (A signed to RCA.)
A regulated, negative, voltage-doubler power is supplied by making one rectifier an adjustable impedance sensitive to changes in the voltage across the load.
The circuit analysis is simplified b considering tube 14 essentially as a diode Capacitors 16 and 18 will charge to the voltage across secondary winding 20 of transformer 22. Amplifier 40, however, meters any change in the output voltage and adjusts the bias on tube 14 modifying the voltage across capacitor 18 to stabilize the output voltage.

for all your

CLIP, BLOCK and HARNESS STRAP needs!
ADEL offers the widest variety of LINE SUPPORTS in the World . . . 19.000 different types and sizes for safe, vibration-free positive support in all types of aircraft. missiles, rockets, ordnance, automotive and original equipment of all kinds.
SAFETY ... FLEXIBILITY . . . DURABILITY . . ECONOMY . . SERVICE FITTED . . . SERVICE TESTED . . SERVICE APPROVED Illustrated are but a few of the World's most complete line of Line Supports that meet or exceed all applicable specifications and/ or requirements. Whatever the application STANDARDIZE ON ADEL - the leader in completeness of line, service and reliability. Peliability
: Wir PRECISION
SPECIFICATIONS ARE AVAILABLE TO AIRCRAFT MISSILE AND ORIGINAL EQUIPMENT MANUFAC. TURERS . . . WHAT ARE YOUR REQUIREMENTS? Direct Inquiries to Huntington Division 1444 Washington Ave., Huntington 4, W. Virginis DISTRICT OFFICES: Burbank • Mineol
Dayton o Wichita o Dallas. TOronto
CIRCLE 221 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 3, 1960

Complete LAC designed by Electronic Specialists

 for
ELECTRONICS

Who knows better about lacing cord than the leader who has been designing and manufacturing electronic

- round cords and flat-braided tapes
- nylon, dacron and teflon-fiberglass
- finishes: micro-crystalline wax, synthetic rubber-like resin, teflon resin, synthetic rubber
- meets industrial specifications
and MIL-T-713A
- each spool individually packaged in boxes

ALPHA WIRE CORPORATION - 200 Varick Street, New York 14, N. Y.
 CIRCLE 223 ON READER-SERVICE CARD

General Electric can build reliable specialty heating devices in any shape, for any application

IF YOUR EQUIPMENT WONT OPERlow temperatures, General Electric ing equipment that will overcome intense cold and maintain uniform intense cold and mai
GENERAL ELECTRIC HEATING DEVICES have been used successfully on most major missile and jet aircraft pro duce in the United States. Typical applications: maintaining critical fuels at correct temperatures, heat ing optical, electronic and hydraulic airborne equipment, as well as gyros, dec amplifiers and batteries. THIS DEMONSTRATED VERSATILITY inremain flexible at temperatures rang and can be supplied in a wide range devices weigh as little as 0.05 pounds per square foot. These characteristics can be employed in heaters that must operate in fuels, solvents, or acids. They can incorporate their
own thermal insulation, and Gen-

ATE at peak efficiency in extremely heating devices are the answer. We can design and build reliable heatcludes heaters that will operate and ing from -65 F to 500 F . These units can be built as thin as 0.008 inches, of wattage densities. Some heating can be employed in heaters that
era Electric can make them in any configuration that's needed. A G-E SPECIALTY HEATING EXPERT is available to analyze your particular heating problem-assuring you of prompt service and a fast solution. Contact D. R. Barbour, ManagerEngineering, Specialty Heating Produts Section, General Electric Co., Coxsackie, N. Y. (Phone Coxsackie 6-5631), or mail the attached coupon.

142-2

GENERAL ELECTRIC COMPANY

Specialty Heating Products Section Coxsackie, Now York
Please send bulletin GEA-6283A on "G-E Specialty Heating Equipment."
[for immediate project

- for reference only

NAME
POSITION
COMPANY
CITY
STATE \qquad
Progress /s Our Most Important Product GENERAL (96) ELECTRIC

CIRCLE 224 ON READER-SERVICE CARD
Safayette Radio
its appointment as franchised distributor for
 GENERAL RADIO Variac®
Continuously-Adjustable Autotransformers with Exclusive DURATRAK (Pat. Pending) Contact Surface.
Factory Prices Up to 99 Pieces
Write or call for specifications to DEPT. EN. at any of the following addresses. Ask for your FREE copy of LAFAYETTE RADIO'S com plete catalog of electronic parts and equip. ment.

CIRCLE 226 ON READER-SERVICE CARD

A Technical Writer's Handbook

Margaret Norgaard, Harper \& Brothers, 49 E. 33rd St., New York 16, N.Y., 241 $p p, \$ 3.75$.
"The prime reguisites of technical writing are clarity, logic, and accuracy, embodied in a vigorous prose that awakens imagery and carries life, action, and conviction," says the author, who then goes on to show how these requisites can be achieved.
This book offers concrete help to engincers, scientists, businessmen, and government workers in writing a variety of clear and colorful reports planning effective visual presentations, and preparing speeches.
The Handbook covers all aspects of technical writing and answers such prac-
tical questions as: What is good technical writing? Who reads technical literature and what are the emotional factors that color understanding of technical fact: What are the basic methods of research: What are the modern practices in gram mar and punctuation, and the logica reasoning behind them? What is the ap plication of logic to technical writing What constitutes good writing style?
Included are a complete grammar sec tion, stressing modern usage, a punctua tion guide, and an analysis of the emo tional factors that sway readers. An ap pendix includes examples of differen types of good technical writing.

Economic Control of Interconnected Systems

Lcon K. Kirchmayer, John Wiley d Sons, Inc., 440 Fourth Ave., New York 16, N.Y. $2(07 \mathrm{p}, \$ 12.50$.
Mathematical methods, computers and controllers are applied in this text to ob tain the most economic operating conditions for interconnected electric utility systems. A number of important tools

136 resistors per ounce

 micro-miniature, wire-wound

The newly-developed Kelvin Type 301-P precision, noninduc tive wire-wound resistor measures only $1 / 8^{\prime \prime}$ dia. $\times 1 / 4^{\prime \prime}$ long, with axial or axial/radial leads. Resistors are encapsulated to withstand extreme humidity, severe mechanical shock. and a temperature range of $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature coefficient is $\pm .002 \% / \mathrm{deg}$. C; Wattage rating is 0.10 , 100 K ohms max., 1 ohm min ., 100 v max. All connections are welded. Kelvin "relaxed winding" techniques produce tension-free windings ... practically eliminating resistance drift with age and "shorts" or "opens" frequently caused by thermal shock. All units are temperature-cycled and tested, surpassing military requirements.
Send for complete literature on encapsulated and ceramic types.

KELVIN
ELECTRIC COMPANY 5907 Noble Avenue, Van Nuys, Calif.
CIRCLE 227 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 3, 1960
ior the development of optimalizing comyuter controllers are discussed. Specifically, these tools include: the use of theoretical and differential analyzer methods for predicting the dynamic performance of interconnected systems and associated controllers; the development of mathematical models of the process whose operation is to be optimalized; the use of mathematical methods to determine equations whose solutions result in optimal economic performance and the integration of computer and controllers to obtain computer-control systems.
The information given is based primarily on a course given by the author to participants in the General Electric Power Systems Engineering Course. The book is suitable for a senior or graduate level course in systems engineering.
Chapter 1 presents descriptive material conceming governing-system and control characteristics necessary for an analysis of the dynamic performance of interconnected systems. Chapter 2 describes various schemes for maintaining frequency, interchange, and economic allocation of generation within a given operating area by automatic computer-controller means.

Linear Circuit Analysis

B. James Ley, Samuel G. Lutz and Charles G. Rehberg, McGraw-Hill Book Co., Inc., 330 W. 42nd St., New York 36, N.Y., 567 pp, $\$ 12.50$.

The fundamental theory of linear lumped circuits is presented here for either the advanced undergraduate or beginning graduate student. One of the authors' main objectives is to present electric circuit theory as a general method of analysis for all physical problems specified by simultaneous linear integrodifferential equations. In order to accomplish this, electrical and mechanical analogues are treated, and mechanical problems appear throughout the book. In addition to the numerous examples worked out in the text, problems are found at the end of each chapter.
Those aspects of circuit theory that are a common basis for advanced courses are emphasized. Among the topics included are the formulation of network equations and their solution in the time domain by classical methods or in the frequency domain by Fourier or Laplace transforms.

sall buckbee mears

Micron range tolerances are standard practice with B.M.C. photomechanica techniques. Storage tube, mesh, transistor evaporation masks, intricate meta parts, mechanical filter screens, etched shaver combs, etched orifice plates, all are produced more perfectly by electroforming or mechanical etching.
advantages:

1. No fool distortion and burrs.
2. Processing of parts toe small or intricate for stamping or machining.
3. Ease of handling.
4. Parts or sheets of parts furnished pre-fooled for final processing.

EUCKEEE MEARS CO. ST. PAUL, MINNESOTA-CApilol 7.637
Etching on metal and glass, electroforming, manufacturers of fine mesh for storage and
image fubes, micron sieves, shadow masks for rolor TV.V., evaporation masks for tonsistors. CIRCLE 228 ON READER-SERVICE CARD
El :CTRONIC DESIGN • February 3, 1960

EDDYSTONE TUNES 19-500 Mc.

EDDYSTONE Receivers have die-cast frames and turrets, condensers milled from solid, silky fly-wheel tuning with no backlash. Sensitivity. selectivity and image rejection are controlled and guaranteed. These pre cise laboratory instruments monitor telemetering, aircraft and mobile radio. They have been chosen for tracking "Explorer" and "Discoverer" Satellites.

* Continuous coverage in 6 bands
* Receive FM or AM
» Continuous duty cycle
\star Accurate freq. cal. 34 foot vernier
* 2.5 and 600Ω outputs, with muting
\# 2.5 and 600Ω outputs,
* Effective noise limiter
- If and AF gain controls
* Table-top or rack mounting

11 CEDAR LANE - ENGLEWOOD, NEW JERSEY CIRCLE 229 ON READER-SERVICE CARD

heathkit v-7A xit odedes $\$ 2595$
heathkit w-v-7a wired model $\$ 3595$

NOW...THE WORLD'S LARGEST SELLING VTVM in wired or kit form

The fact that the V-7A has found its way into more shops, labs and homes around the world than any other instrument of its kind attests to its amazing popularity and proven design. A veritable workhorse, the instrument will measure AC volts (RMS), AC volts (peak-topeak), DC volts, resistance, and decibels for a peak), DC volts, resistance, and decibels for a multitude of applications. Order the factory
wired or kit model, you'll find it the best inwired or kit model, you'll find it the best investment you ever made!

Send for your Free Heathkit Catalog or see your nearest authorized Heathkit dealer.

CIRCLE 230 ON READER-SERVICE CARD

...IT GLOWS when the FUSE BLOWS!

NEW INDICATING

 3AG FUSE POSTS
EXAMINE THESE FEATURES

1 Now patented knob design Now patented knob design
to assure high degree of to assure high degree of blown fuse indication.
2 Posifive finger grip for knob extraction.
3 Quick service bayoner lock.
4 Constant rension beryllium copper coil \& leaf spring for positive contact \& lower millivoll drop.
5 Optional-at extra costneoprene "O" ring to assure splash-proof feafure.
6 Now high degree vacuum neon lamp for greater brilliance \& visibility.
7 Impac! black phenolis marerial in accordance with MIL-M-14E lype CFG
8 One piece brass hot fin dipped non-furning boHom erminal.
9 Double flats on body fo permit mounting versatility

SPECIFICATIONS:

PHYSICAL CHARACTERISTICS-Overall length $23 / 8^{\prime \prime}$ with fuse inserted - Front of panel length $13 / \mathrm{s}^{\prime \prime}$ - Back of panel length $10 / 1 s^{\prime \prime}$ - Panel area front $13 / 10^{\prime \prime}$ dia. - Panel area back $13 / 10^{\prime \prime}$ dia. • Mounting hole size (D hole) $5 / 8^{\prime \prime}$ dia. flat at one side.
TERMINAL-Side-one piece, .025 brass-electro-tin plated - Bot-tom-one piece, lead free brass, hot tin dipped.
KNOB-High temperature styrene (amber with incandescent bulbs $-21 / 2$ thru 32 volts-and clear with high degree vacuum neon bulbs-90 thru 250 volts) - Extractor Method-Bayonet, spring grip in cap.
HARDWARE-Hexagon nut-steel, zinc cronak or zinc iridite finish - Interlock lock washer-steel, cadmium plated - Oil resistant rubber washer
MILITARY SPECIFICATIONS-MIL-M-14E type CFG. Fungus treat ment available upon request per Jan-T-152 \& Jan-C-173.
TORQUE-Unit will withstand 15 inch lbs. mounting torque.

DES PLAINES, ILLINOIS CIRCLE 231 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS
J. George Adashko

Cascaded Reflex Voltmeter

 Yields High Input Z, Wide RangeYu. V. Mikhatskiy

THE REFLEX voltmeter circuit (Fig. 1) has been quite popular lately. This circuit is used for measuring de voltages from very high resistance sources. Thanks to its heavy negative feedback, the reflex voltmeter circuit has many valuable properties: (a) large input and small output resistance, (b) possibility of measuring a wide

Fig. 1. Basic reflex voltmeter.
range of voltages, (c) scale linearity, (d) high stability. These lead to permanence of calibration with variations in supply voltage and replacement of tubes.
However, the input resistance of the reflex voltmeter usually does not exceed 10^{*} to 10^{n} ohms.

Where a higher input resistance is necessary, circuits with electrometer tubes are used. However, electrometer tubes with high resistances, 10^{13} to $10{ }^{14}$ ohins, do not have many advantages of reflex circuits.
Circuits with electrometer tubes make it possible to measure voltages up to only two or three volts. The use of voltage dividers, in reflex circuits, to insure an input resistance of 10^{13} to 10^{14} ohms is practically impossible, because of the instability of the division coefficient.

However, the cascaded-reflex voltmeter has all the advantages of ordinary reflex voltmeters, but has an input resistance of 10^{11} to 10^{12} ohms.
The input resistance of the reflex circuit is de termined by the grid current of the input tube. The principal components of the grid current are the electronic and ionic component, the thermionic grid current, and the conduction currents. The remaining components play a secondary role. The curve of the total grid current is illustrated in Fig. 2.
A feature of the reflex circuit is in operation with large negative bias. In this case the grid current is negative. Consequently, a principal role is
played, in the reflex voltmeter, by the ionic current and by the thermionic grid current. The latter can be reduced substantially by reducing t:e filament voltage.
The magnitude of the grid current for a given tube depends on the anode current and on the anode voltage; as they decrease, the ion current also decreases. As the anode voltage is decreased, the grid current diminishes rapidly; ionization

Fig. 2. Grid current vs. grid voltage for the input tube of a reflex circuit.
ceases with the anode at 6 to 9 v . Such a mode is upical of electrometer tubes.
In the cascaded-reflex voltmeter (Fig. 3), the grid current of the first tube is greatly reduced by a substantial reduction in the plate current. This is attained by connecting a very large resist-

Fig. 3. The cascaded reflex voltmeter.
ance, $\boldsymbol{R}_{k 1}$, of tens or hundreds of megohms in the cathode circuit.
An experimental verification has shown that, in a type 6S1Zh tube, with $R_{k 1}=45$ megohms and with a simultaneous reduction of the filament voltage to 4 v , the grid current drops to $10^{-12} \mathrm{amp}$.
The resistance $R_{k 1}$ serves as grid resistor for the second tube, and must pass the grid-current of this tube. The resistance $R_{k 2}$ should be small but sufficient to permit inclusion of a measuring inst ument in the cathode of the second tube.
The cascaded-reflex voltmeter was used for a m del of a pulse voltmeter, for measuring the voltag: of single and repeated pulses with a very low $d_{1} y$ cycle. The diagram of the voltmeter is shown in Fig. 4.
onnected to the input of the circuit is a cathod follower, which makes it possible to measure

My name is Paul M. Platzman,

I pioneered the ultrasonic industry. Two well known ultrasonic companies were founded by me. Now, I have created a new organization, Ultrasonic Industries, Inc., based on a revolutionary approach to mass producing and selling ultrasonic equipment. No middleman's profit in this faco tory - direct-to-you deal.
Tremendous savings are passed on to you the customer bringing formerly high-priced ultrasonic cleaners within the range of everybody's budget. My products stand out because of their distinctive appearance, unbelievably low money-back-guaranteed prices-free five year service contract, and consistent trouble free performance under the most gruelling conditions. This is possible because my DiSONtegrator generators and transducers incorporate the latest advances in ultrasonic technology.

ULTRASONIC CLEANER

The lowest priced ultrasonic cleaner ever sold! Buy ONE or 100 and Save!

The DiSONtegrator System Forty ULTRASONIC CLEANER is attractively styled, ruggedly-built, and work-tested to give a lifetime of trouble-free service.

The DISONtegrator Features:

Simplified one knob control for easy operation. High Frequency sound waves disintegrate harmful soils and contaminants in seconds. Saves time and labor, boosts production rate, improves product. You can replace hazardous chemicals with safe solvents and even water.

The DISONtegrator works FAST

In SECONDS you can disintegrate soils on: radioactive lab apparatus; glassware; medical instruments; test tubes, syringes, hypodermic needles; dental instruments, drills, burrs, false teeth, bridges; needles; dental instruments, drills, burrs, false teeth, bridges; fossils and fossil foraminifera; electronic components, semi-conductors,
crystals, switches, precision potentiometers; optical parts, lenses, crystals, switches, precision potentiometers; optical parts, lenses, miniature printed circuit boards; and hundreds of other items.

In seconds you can remove:

rust, oxides, shop dirt, dust, lint, preservatives, finger prints, machning chips, extrusion lubricants, paraffin, wax, paint, varnish, lacquer, plastic residue, resists silicones, greases cooked food residue, blood, plaster of paris, lapping compounds, carbon, radioactive particles, polishine compounds, shale, diatomite, volcanic tuffs, clay and sand, graphite starches, culting oils, hear real scale, collt stans, foundry samd, jewelers rouge, tripoli, resin flux, acid flux, many others.

The DisONtegrator is VERSATILE

In addition to super speed, surgical precision cleaning it can be used to: brighten, quench, degrease, impregnate, decontaminate, pickle, etch dip coat, emulsify, degas liquids, anodize, dye, mix, accelerate reactions

Ultrasonic cleaners are widely used in production lines, maintenance departments and laboratories. You should have at least one DisONtegrator if your field is Electronic Optical, Glass, Clinical, Biological, Textile, Oil, Food, Paper, Dental Plastic, Drug, Rubber, Wood, Chemical, Isotope, Geological, Agronomi cal, Metallurgical, Anthropological, Paleontological, Petrochemical Ceramics, Dairy, Brewery, Beverage, Confectionery, Laboratories, Photographic, Paint, Bottling, Cosmetic, Pharmaceutical, Metal Working, me cratt Ho rological Jewely, Medical, Marie Minis, Uisilites, Power craft,
Plants, Instrogical,
ultrasonic industries 141 ALBERTSON AVENUE - ALBERTSON. L. I., N. Y.

IINTRODUCTORY OFFER

- Money Refunded (less shipping charges) if not completely satisfied.

6-DAY TRIAL

We will pay all shipping charges to any point within the continental limits of the United States (not including Alaska and Hawaii), if you enclose check with order.

UNPRECEDENTED FREE 5 YEAR SERYICE CONTRACT

The DisoNtegrator - System Forty is available from stock for immediate delivery in unlimited quantities.

SPECIFICATIONS

FOR THE FIRST TIME - you have a choice of 6 beautiful decorator colors to harmonize with your office or laboratory decor: Ivory, colors to harmonize with your office or laboratory decor: Ivory,
Wheat yellow, Turquoise, Desert sand, Pale green and Soft gray. Please specify color when ordering.

ORDER NOW

TO: Ultrasonic Industries, Inc., Dept. I-ED-2
141 Albertson Avenue, Albertsen, L. I., M. Y.
Gentlemen: Please ship \qquad DiSONtegrator® System Forty Unit(s) © 899.95 ea.: ㅁ Ivory Wheat yellow $\square \square$ Desert sand \square Pale green \square Soft gray satisfied after 5 day trial
satisfied after 5 day trial.
\square eneck anclosed (froight prepilid) a C.O.D.

Portable two channel Meterite Model BSA-250

- 40 mm amplitude Frequency Response, DC to 120 cps - Rectilinear recordings on economical ink chart paper (save more than $\$ 3000$ in 200 operating hours over other rectilinear charts, running at an average chart speed of $50 \mathrm{~mm} / \mathrm{sec}$.) - Choice of interchangeable plug-in preamplifiers* - Transistorized driver amplifiers with individual power supplies - 6 Chart speeds .5 to 200 $\mathrm{mm} / \mathrm{sec}$. - Event marker with internal push button control.

ACTUAL
REPRODUCTION
ON 40 MM
HART PAPER

Eight channel recording system,
Model BSA-850

- 40 mm amplitude - Frequency response DC to 120 cps - Rectilinear recordings on economical ink chart paper (save more than $\$ 6000$ in 200 operating hours over other rectilinear charts, running at an average chart speed of $50 \mathrm{~mm} / \mathrm{sec}$.) - Choice of interchangeable plug-in preamplifiers* - Transistorized driver amplifiers with individual power supplies - 18 speeds push button controls $.5 \mathrm{~cm} / \mathrm{hr}$ to 200 $\mathrm{mm} / \mathrm{sec}$.
* Preamplifiers - All Massa Recording Systems are designed to accept a wide choice of plug-in Preamplifiers to satisfy every recording requirement.

> Oiher MASSA Products RECORDING SYSTEMS ACCELEROMETERS MICROPHONES TRANSDUCERS

RUSSIAN TRANSLATIONS

pulse voltages arriving from sources with relatively large output resistance. The pulses are fed from the output of the cathode follower to a diode detector.
The dc voltage across the capacitor of the detector is measured by the cascaded-reflex voltmeter. The first tube in the reflex voltmeter is a 6 Sl Zh , since the grid leakage resistance of this tube can be made sufficiently large. Consequently the time constant of the discharge of the capacitor is sufficiently large even for a small value of the capacitance. This makes it possible to measure pulse voltages of relatively short duration.

The voltmeter has two ranges, 50 and 250 v . The ranges are changed by a switch at the $250-\mathrm{v}$ setting in Fig. 4 which changes the plate voltage

Fig. 4. A pulse voltmeter using the cascaded-reflex circuit.
and switches the resistance of a bridge circuit in the cathode circuit in tube T_{4}.

The switch S_{2} (in the "single-pulse" position in Fig. 4) serves to retain the same voltmeter calibration during the measurement of single and repeated pulses.
Variation of the resistance in series with the milliammeter compensates for the difference in the dc voltage produced on the grid of T_{3} during the charging of the capacitor. Pushbutton S_{1} (shown normally open in Fig. 4) serves to drop the voltage and permits rapid discharge of the capacitor. The instrument is fed from stabilized sources.
In the tests of the model the following was noted:

- The voltmeter scale is almost linear
- After the instrument has warmed up, no differences in readings were observed (the observations lasted for approximately 4 hr .)
- The voltmeter can be used to measure voltages

for tubes such as:

Designed for use with high-power transmitting tubes, these sockets are molded of low dielectric, loss-factor Kel-F plastic. Sockets are available in several designs-with or without screen grid by-pass capacitors, machined for greater alignment ac machined for greater alignment ac-curacy-all contacts are low-resistTube pin contacts are heat treated to provide positive contact pressure as well as extended life-annealed soldering tabs may be easily bent ol formed. High quality, heat resistant, steatite chimney also avail able to direct air flow through tube cooling fins.
For details and complete specifications write for free catalog listed below:

New Catalog

Write today for your copy of our Write today for your copy of our
nowest components cotolog, com-
plote specififations and prices! nowest components catalog, com-
plofe specifications ond prices!

- Capacilose o Knobs and Dials - Capacilose o Knobs and Dials Sockels o Induclory P Pilot
Sights - Connectors o Insulators E.F. JOHNSON CO. 1920 Second Arenue S.W. - Wasece, Mine
CIRCLE 234 ON READER-SERVICE CARD ELECTRONIC DESIGN - February 3, 1960

Resistance up to
100 Million
MEGOHMS ！

A．S．Lifshitz and I．A．Dedok

From a miniature $1 / 4$ watt resistor，rated at 250 volts， to the 100 watt resistor， rated up to 125 KV ． Tapped resistors and matched pairs also available．Low temperature and voltage coefficients．
Few can match－and none can exceed－the stability and performance of rpc HIGH VOLTAGE RESISTORS！ Ask anybody who uses them． Tolerance－15\％standard． 10\％，5\％and 3\％available． 2% in matched pairs．
Further information or engineering assistance gladly supplied．

RESISTANCE
PRODUCTS
OMPANY
of 3 －to 5 －$\mu \mathrm{sec}$ video pulses．
－The effect of input resistance，determined by the leakage resistance and by the grid current of the first tube is 2×10^{11} ohms（time constant of discharge is 400 secs）．
［Translated from an article＂Cascade Reflex Voltmeter in the October 1959 issue of Izmeritel－ naya Tekhnika（Measurement Engineering）．］

Simple Technique for Measuring Phase and Amplitude in Automatic Control Systems

High Voltage Resistors

14 S．13th St．，Harrisburg，Pa．
IRCLE 235 ON READER－SERVICE CARD

NEW

 NOW

A NEW CONCEPT IN RFI MEASUREMENT

The new STODDART NM－52A was developed to investigate，analyze， monitor and measure to the highest practical degree conducted or radiated electromagnetic energy within the frequency range of 375 mc to 1000 mc ．

OUTSTANDING FEATURES

SENSITIVITY OF 1 MICROVOLT ACROSS 50 OHMS，provides up to 40 db more than Military Measurement Requirements． SINGLE KNOB TUNING．
RAINPROOF，DUSTPROOF，RUGGEDIZED AND TOTALLY ENCLOSED，for all－weather field use or precise laboratory measurements．
NEW BROADBAND ANTENNA，for rapid detection and measurement of radiated energy over entire frequency range．
NEW POWER SUPPLY，0．5\％REGULATION，for filament，bias and plate voltages，and also for use as a standard laboratory power supply． OSCILLATOR RADIATION LESS THAN 20 MICRO－MICROWATTS，over 20 times better than Mil－Specs require．
TWO DECADE LOGARITHMIC METER SCALE，in reases range of voltage measurement without change of attenuator steps．
THREE DETECTOR FUNCTIONS，for peak，quasi－peak or average measurements．
PORTABLE OR RACK MOUNTING，no modification required for labora－ tory，mobile，airborne or marine installation．
IF OUTPUT FOR PANORAMIC DISPLAY OR NARROW BAND AMPLIFICA－
TION，for visual presentation or increased sensitivity．
OVER 100 DB SHIELDING EFFECTIVENESS，increases measurement capabilities in presence of strong fields．
VISUAL PEAK THRESHOLD INDICATOR，for accurate slide•back peak voltage measurements．
CONSTANT BANDWIDTH OVER ENTIRE FREQUENCY RANGE．
The NM－52A now joins the family of STODDART compatible instrumen－ tation covering the frequency range of 30 cps to 10.7 kmc ，to provide the finest RFI measurement tool for insuring the performance of modern weapons systems and equipment in basic design and oper． ational environment．

Mikhatskif, IU. V. CASCADED REFLEX VOLTMETER YIELDS HIGH INPUT Z, WIDE RANGE. Electronic Design, v. 8, no. 3:124127, incl. diagre. Feb. 3, 1960.

Translation of an article "Cascade reflex voltmeter" in Izmeritel'naia tekhnika, no. 10, Oct. 1959. 2 refs

FAIRCHILD TA-400 ACGELEROMETER SMALLEST EVER MADE

high shock and vibration resistance...
0.5% accuracy... self-torquing for system testing.*
This hermetically sealed linear accelerometer for missile and aircraft applications has an extremely sensitive differential transformer pick-off. It will measure accelerations from $1 / 4 \mathrm{~g}$ to 50 g . Viscous fluid damping is provided over a wide temperature range. *The pick-off is wired with additional taps to allow a DC or AC excitation (Filterable from pick-off excitation) to be superimposed. This torques the restrained pendulum in either direction from null.

CIRCLE 237 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

quency characteristics, it is possible to use a cathode-ray oscilloscope and at the same time to reduce the measurement time substantially.

The procedure is to read the phase shift of the phase-shift network, and to read the output-to-input-signal ratio on the voltage-divider scale.

The operating principle of this instrument is based on a comparison of the phase and the amplitude of the output signal of the tested element with the phase and amplitude of the phase-shift network signal.

The phase-shift circuit consists of standard do amplifiers $1,2,3$ and a dual sine-cosine potentiometer 4, 5 (Fig. 1).

Fig. 1. Equipment for phase and amplitude measurements in automatic control systems. 1, 2, and 3 are standard dc amplifiers; 4 and 5 are a dual sine-cosine potentiometer; 6 is a vibrator; and 7 is a voltage divider.

Potentiometers 4 and 5 receive, respectively, voltages $\pm U \sin \omega t, \pm U \cos \omega t$. These are applied from the low frequency generator.
The voltages picked off the sliders of potentiometers 4 and 5 respectively are $u_{1}=U \sin \omega t$, $\cos \phi$ and $u_{2}=U \cos \omega t \sin \phi$, which are then summed by amplifier 3.
$U_{3}=U_{1}+U_{2}=U \sin \omega t \cos \varphi+U \cos \omega t \sin \varphi$

$$
=U \sin (\omega t+\phi)
$$

The voltage from the tested link, $U_{\text {meas, }}$, and the voltage from divider 7 are applied to the cathoderay oscilloscope through vibrator-converter 6.
By rotating the slider of the potentiometer, the phase shift between the voltage $u_{\text {mcas }}$ and the voltage u_{3} from the phase shifter is reduced to zero, and the values of the amplitudes are equalized with the voltage divider.
If the voltage u_{3} is applied to the horizontal deflection plate of a cathode-ray oscilloscope, and the voltage $u_{\text {meas }}$ from the tested link is applied to the vertical deflection plate, an ellipse will be displayed on the cro screen in the general case when the phases and amplitudes do not coincide. (Fig. 2a.)

If the phases are equal, the ellipse degenerates

COMPATIBLE in One Self-Powered Case

Increase the reliability of your digital systems and cut design time - with Packard Bell Computer's newest solid state digital modules. Advanced design eliminates troublesome eyelets and etched-circuit connectors and reduces active circuit elements - 50 core stages can be driven by a single transistor. One selfpowered case provides all power and gating voltages for medium and high speed.

MAGNETIC MODULES

- Medium speed (50KC
- High speed (100KC)
- First commercially available transistorized driving circuits TRANSISTORIZED MODULES
- Medium speed (nominally 200KC)
- High speed (nominally 3mc)
- Special high temperature modules
- NOR logic modules

PACKARD BELL COMPUTER

into a straight line which makes an angle of 45 deg with the horizontal (Fig. 2b) if the amplitudes are equal. The accuracy of the measurement of phase and amplitude depends essentially on the precision of the sine-cosine potentiometer of the voltage divider, and on the accuracy of the read-

Fig. 2. When the voltage from the phase shifter is no in phase with the measured voltage, an ellipse results as shown in (a). When the voltages are equal and in phase, the pattern in (b) results.
ings. Fig. 3 shows the calculated and experimental values (circles) of the frequency characteristics plotted with this instrument for an element having a transfer function $W(p)=1 /(1+p T)$, with T $=1 \mathrm{sec}$.
As can be seen from Fig. 3, the experimental

Fig. 3. Gain and phase characteristics, calculated (solid lines) and experimental (circles).
results of the phase measurements agree with the calculated ones within one degree, regardless of the value of the measured phase.
The frequency range of the measured signal is limited by the operating frequencies of the vi-brator-converter, which is 400 cps , and ranges from 0 to 40 cps .
The instrument for determining the frequency characteristics is reliable in operation and can be used to investigate commercial automatic control systems.
[Translated from an article "Determination of Frequency Characteristics in the Design of an Automatic Control System" in the October 1959 issue of Izmeritelnaya Tekhnika (Measurement Engineering).]

NEW MINIATURE RF FILTERS

 Model 524
 DESIGNED TO REJECT INTERFERENCE IN "L" BAND

When size and weight are important factors in your rf filter selection, turn to Bird Electronic for your source of supply. Our engineers will design an rf filter to serve your exact requirements with particular attention to component density, accuracy, ease of application and long-life performance.

Our physical facilities to produce and deliver quantity orders dependably can be relied upon to meet your production schedules.

SPECIFICATIONS

Model 524I
WEIGHT: 5 ounces
PASS BAND: 225 to 400 mc CUT-OFF FREQUENCY: 400 mc
POWER RATING: 50 watts
RF INPUT IMPEDANCE: 50 -ohm nominal
ATTENUATION: Less than $1 / 2$ in pass band; 80 db in stop band VSWR: Insertion loss and VSWR are very low in pass band

CONNECTORS: Most miniature types

 Western Representotive:Wan Geoos company Woodlond mills, Colif.

Bowmar gives you maximum reliability in precision miniafurized counting devices, ranging down to "penny" sizes. These tiny to perny sizes. These tiny counters can be designed for all lypes of readout purposes: Navigational, tracking, ranging, time, and positioning; or for any other application imaginable-all io your most exacting requirements.

SEND FOR DATA PACKAGE 125
 instrument corporation 8000 Bluffion Rd. - Forl Wayno, Ind. REPRESENTATIVES IN PRINCIPAL FOR CONTROLOFTHE ANDANAAN CIties CIRCLE 241 ON READER-SERVICE CARD

GERMAN ABSTRACTS

E. Brenner

Tuned Transistor Amplifiers

C INGLE tuned transistor amplifier stages S have finite complex input and output admittances whose resistive and reactive components depend on the operating point and the temperature. In the design of such stages one should distinguish between resistive and reactive matching. Resistive matching refers to the achievement of a desired over-all Q, with a given tank circuit Q,

Fig. 1. Ac circuit of narrowband funed amplifier.
under optimum power transfer conditions. However, the detuning due to the variation of reactance is neglected. Reactive tuning meets a specification for maximum detuning together with a corresponding optimum power transfer.
Considering a common emmitter stage (rig. 1) the equivalent circuit, Fig. 2, may be drawn. In

Fig. 2. Equivalent circuit of Fig. 1.
this circuit the transistor input and output admittances are capacitive, that is,

$$
Y_{i}=G_{i}+j \omega C_{i} ; Y_{o}^{\prime}=G_{o}^{\prime}+j \omega C_{o}^{\prime}
$$

Referring all values to the primary (n_{1}) winding, the equivalent circuit shown in Fig. 3 is drawn.

Fig. 3. Circuit equivalent of Fig. 2 at the terminals of i_{0}.

The resonant frequency used below refers to the resonant frequency obtained from Fig. 3.
The power delivered to the succeeding stage, $P_{o}\left(P_{o}=v^{2}\right.$ out $\left.G_{o}\right)$, is related to the maximum power which the stage can deliver by

$$
\eta=\frac{P_{o}}{P_{o_{\text {max }}}}, P_{o_{\text {max }}}=\left|i_{o}\right|^{2} / 4 G
$$

Using the normalized parameters:

$$
q=\frac{G_{p}}{G_{p}+G_{o}+G_{o}}=\frac{Q \text { of entire circuit }}{Q \text { of tank }}
$$

and

$$
g=G_{i} / G_{p}
$$

the general expression for η is:

$$
\eta=4 g q[1-q(1+g)]
$$

The optimum resistive match may be shown to occur when:

$$
G_{o}=G_{i}, G_{p}=G_{i} 2 Q /\left(Q_{\text {tank }}-Q\right)
$$

yielding the value:

$$
\eta_{o p t}=(1-q)^{2}
$$

In the left half of Fig. 4, $\eta_{\text {lopt }}$ and $1 / \mathrm{g}$ are shown as functions of q. The detuning due to variation of transistor input and output capacitance is shown, normalized with respect to bandwidth, for 100 per cent of C_{o} and C_{i} in the right half of Fig.

ELECTRONIC DESIGN • February 3, 1960

Fig. 4. Chart for resistive matching.
4. Normalized susceptance is used, that is, $b=$ ${ }_{\omega} \mathrm{C} / \mathrm{G}$.

Denoting by Δf the detuning due to 100 per cent change in C_{o} and C_{i},

$$
\frac{\Delta f}{\Delta f_{R}}=\frac{1}{4}(1-q)\left(b_{o}+b_{i}\right)
$$

In many transistors C_{t} / G_{i} is negligible compared to C_{o} / G_{o} and if base resistance is also neglected, one may write:

$$
\frac{\partial f}{\Delta f_{B}} \approx \frac{1}{4}(1-q) \omega_{o} \omega_{c}
$$

where (ω_{c}, is the cut-off frequency of the short-circuit current gain.
When the maximum detuning is prescribed, then Fig. 5 may be used to obtain the circuit

Fig. 5. Chart for reactive matching.
parameters for optimum design. In this chart

$$
\psi_{\mathrm{o}}=\Delta f / \Delta f_{B}
$$

For a given value ψ_{o}, the optimum q and suseptance values are found in the left portion of he chart. The family of curves at the right gives he value G_{p}. The optimum power transfer is

$$
\eta_{o p t}=4 \psi_{o}{ }^{2} / b_{i} b_{o}
$$

Abstracted from an article by H. Beneking Jachrichtentechnische Zeitschrift, Vol. 12, No. 11, lov. 1959, pp 543-546.

LECTRONIC DESIGN • February 3, 1960

ultimate

FREEDOM framplifer NOISE

WITHOUT THE NEED FOR COSTLY

 CORRELATION TECHNIQUES
AVAILABLE IN MILLIVAC'S VS-64A

 HUSHED TRANSISTOR AMPLIFIERCheck these specifications in the light of your own amplifier requirements
noise voltage,
REFERRED TO SHORTED INPUT:

Bandpass	E Noise
$20 \mathrm{cps}-300 \mathrm{cps}$	$50 \times 10^{-9} \mathrm{~V}$
$20 \mathrm{cps}-14 \mathrm{kc}$	$155 \times 10^{-9} \mathrm{~V}$
$20 \mathrm{cps}-90 \mathrm{kc}$	$445 \times 10^{-9} \mathrm{~V}$
$20 \mathrm{cps}-180 \mathrm{kc}$	$615 \times 10^{-9} \mathrm{~V}$

tomorrow
is our
yesterday

SELECTION OF INPUT IMPEDANCES:

10 K , low noise (as above) and 100 K , approximately 50% higher noise.

BANDPASS SELECTOR SWITCHES:

Upper Frequency Limiting Switch, 11 positions, 300 cps to 180 kc ; Lower Frequency limiting Switch, 11 positions, 2 cps to 120 kc.

GAIN:

Selectable in 8 steps, 10 db to 80 db .
EXTENDED FREQUENCY RANGE AND HIGHER INPUT IMPEDANCE AVAILABLE IN SPELIAL DESIGNS TO MEET SPECIFIC REQUIREMENTS.

MILLIVAO
A DIVISION OF

ELECTRONICS, INC.
Box 997
Schonectady, Now York CIRCLE 242 ON READER-SERVICE CARD

ELECTRONIC DESIGN
DIGEST ${ }_{\text {of reent papers }}$
and literature of interest to design engineers

Spurious RF Emissions Predicted From Output Stage Analysis

SPURIOUS rf energy emanating from a highfrequency transmitter can present great difficulties for the design engineer. He would be considerably aided if he could predict from his circuit parameters, what the frequencies and power levels of the spurious emissions would be. The following method of analyzing the transmitter's radiated spectrum seems to show promise of accuracy when applied to transmitters which:

1. Operate in the high-frequency range
2. Have a tuned single-ended output
3. Can be represented by lumped, constant parameters.
In analyzing the spectrum, only harmonics of the oscillator frequency are considered. Output frequencies caused by modulation splatter or carrier noise are not.

Equivalent Transmitter Circuit
This prediction method considers only the transmitter's final output stage. A stage-by-stage analysis, it is felt, does not produce results accurate enough to warrant its cumbersome and tedious calculations. This is because of the numerous random variables, such as lead length, lead placement, and normal component tolerances which are involved.
Fig. 1 is a constant-current equivalent circuit for a transmitter which meets the conditions given above. In this circuit Z_{L} represents the impedance

Is your pot in armor, too?

Choose from SPECTROL's complete new line of METAL Multi-Turn Precision Potentiometers

At first you may wonder what in blazes our friend in armor, Sir Spectrol, is doing in a serious magazine like this. Well, it's just a bit of trickery on our part to call your attention to Spectrol's 8 new metal multi-turn pots. The first complete line anywhere. Also. to remind you Spectrol makes many other pots. special and standard. There will be more trickery with Sir Spectrol in future issues, but you can easily see through it and there will be plenty of accompanying facts, figures, photos and specs.

SEND FOR YOUR FREE COPIES!

these exclusive features - standard with ta-save you time and cost
 3. Wide choice of standard handles. access 4. All standard Cases include panel 5. All cases protected by air relief valves. 6. Nasulabose in depths from $21 / 2$ to 18 inches. 7. Fast delivc Yy (prototypes in 4 weeks).

1. Ho tooling charges on standands. 1. . . Po tooling chazect
2. Reinforced aluminum construction.
3. TA cases are color matched to. and inte-
grated with, the instruments they are to grated
contain. If you make portable instruments or
equipment, you can't afford not to invesligate the TA line.
TA Cases come in TA Cases come in a diversity of stand-
ard lid sizes, and are sold al propter ard lid sizes, and are sold at proptietary
prices. During assembly the depith can be cui to your exact specifications. Or,
if you like. TA will furnish you free velIf you like. TA will turnish you free vel-
lums and iemplates so you can save your-
self money by designing self money by designing your proveduct to
fit one of the many standard sizes. Start saving bip muney righe away Seny for
your valuable Ifree TA manuals rodar:

Tin Mfg. Corp. 4607 Alger Street - Los Angeles 39 , Calif.
iwx 9863 Giendale, Calif. - wux CAT Los Angeles, Calif.
CIRCLE 243 ON READER-SERVICE CARD

CIRCLE 244 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 3, 1960

The Metal Pots

Spectrol offers four 3 -turn and four 10 -turn models. All feature anodized aluminum cases with $3 / 16$-inch thick walls. These 8 precision wire-wound pots absorb no moisture-dissipate heat fast and stay dimensionally stable. They operate from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and withstand relative humidity of 95%.

You can choose diameters of $7 / 8,1,1-5 / 16$ and 1-13/16 inches in both 3 and 10 -turn models. Resistance ranges to $1,000,000$ ohms with standard linearity tolerances of $\pm 0.25 \%$ (0.020% on special order). Like Sir Spectrol, the new multi-turns will take a respectable jolt. They function to 20 g vibration from 55 to 2.000 cps and withstand 30 g shocks.
 need when you need it. Recent custom deneed when you need it. Recent custom de-
signs include pots for airborne computers signs inclucte pots for airborne computers,
pots designed to be immersed in fuel, pots pots designed to be immersed in fuel, pots for high temperature application, pots with us know your requirements.
STANDARD POTS
Popular single and multi-turn models and turns counting multi-dials are stocked in 30 electronics supply houses in the U.S. and Canada. 200 k resistance ranges from
ohms to 2000 tolerances of $\pm 0.3 \%$ are available.

ELECTRONICS CORPORATION 1704 south del mar avenue - san gabriel, california

CIRCLE 245 ON READER-SERVICE CARD

THE CHOICE OF LEADING MANUFACTURERS for fan applications

HOWARD MODEL 108 2 Pole, Unir Boaring FRACTIONAL H.P. MOTOR

5 year guarantee
Avallable wish Open or Clesed Consiruction
 BEARING: Single, long. -lite, permanently lubricated. BEARING: Single, long-life, permanently lubrieated. STATOR: Vacuum varnish imprognated coil on molded
nulon bobbin. R)TOR: Dynam Rivn. RJTATION: Unidirectional (CW or CCW as specified). SiAFT.HUB: Assures positive and accurate location of einnecting part (es) poskich must sccurce occation of cinnecting part (tan) which must run concentric. C
alio be furnished with shaft extension from hub..
 NP: $1 / 750$ to $1 / 115$ Mo LOAL IPM: 348 FUIL LIAS APM:
$2600-3200$ $2500-3200$ Impur mats: $\mathbf{8 . 3 0}$ volis:
115 V .6 CIS V. 81 cy. AC sth. "Lomer mill lase syouts ${ }^{\circ} \mathrm{O}_{\boldsymbol{W}}$ En=0 Br^{2}

IOWARD INDUSTRIES, IIC.
HOWARD
J'25 State St., Racine, wiseensin
wisons: Electic Moter cox cyerin Mot
of the transmission line and the antenna network. The output circuit block consists of the final tuned circuit and the antenna coupling circuitry. It is assumed that the output impedance of the transmitter is large compared with the output circuit and is ignored.

Fig. 1. Constant current equivalent circuit of the transmitter's output stage.

From the network loop equations, the load current can be written as:

$$
I_{L}=I_{1} \frac{\left|Z_{T}\right|}{Z_{L}+Z_{22}}
$$

where
$Z_{T}=$ transfer impedance $Z_{12}=Z_{21}$
$Z_{22}=$ self impedance of loop 2
$Z_{L}=$ load impedance
Thus, to predict the output power spectrum, it is necessary to determine:

1. The harmonic currents generated by the tube $\left(I_{1}, I_{2}, I_{3}, \ldots I_{N}\right)$
2. The absolute value of the transfer impedance $\left(Z_{T}\right)$. Note that only its absolute value is necessary since it alone appears in the numerator.
3. The real and imaginary components of the output impedance Z_{22}.
4. The real and imaginary components of the load impedance Z_{L}.

Defermining the Harmonic Currents

General methods for obtaining the harmonic currents in tubes operating with various angles of plate current flow have been devised. One of these expresses the instantancous plate current as:

$$
\begin{equation*}
i_{x}=k\left[\cos b-\cos \frac{\theta}{2}\right]^{\frac{2}{2}} \tag{1}
\end{equation*}
$$

The Fourier current integral is:

$$
\begin{equation*}
I_{N}=\frac{2 k}{\pi} \int_{0}^{\frac{\theta}{2}}\left[\cos b-\cos \frac{\theta}{2}\right]^{\frac{3}{2}} \cos n b d b \tag{2}
\end{equation*}
$$

where: I_{N} is the current amplitude for each harmonic being considered
$b=$ carrier time angle
$\theta=$ angle of plate current flow with respect
to each cycle of the operating frequency.
The maximum value of plate current is:

THE AMCO MODULAR INSTRUMENT ENCLOSURE SYSTEM

two completely new lines added in steel and aluminum to give 3 COMPLETE MODULAR FRAME LINES IN ONE OVER-ALL SYSTEM

A Ameo Cusfom Line. Removable multi panels and cowlings based on $19^{\prime \prime}$ incre ments of width. Custom, single-unit ap pearance for frames mounted in seriesrangements. The 191_{16} width of frame saves space in series mounting of frames. Constructed of double-channel 16 gauge cold-rolled steel. Conforms to EIA mounting standards.

- Ameo Semi-Custom Line. Removable multi-width cowings provide a semicustom, single-unit appearance for frames mounted in series. Extra rugged, wide box-type channel frames provide greater internal mounting area. 19° wide -from a flush-mounted position to any desired depth. Box type channel contruction of 14 gauge cold-rolled steel. Conforms to EIA mounting standards.
C Amce Aluminum Line. This system of aluminum box extrusions and cast corners allows easy assembly of cabinets width or depth. Corners and extrusions
lock together by hand with built-in locking device. All sizes are standard. Ideal for stocking and odd-ball sizes. Cast num as described in Federal Spec QQ-A-596a. Extrusions of 6061 -T6 aluminum as described in Federal Spec. QQ-A-270a.
Amco Accossorios. A full line of Amco integrated accessories such as blowers, chassis slides and mounts, lighting, doors, drawers, dollies and many more avail-
cost 1 B
Cost sovings. All the above-or any part thereof-may be ordered under one combined discount schedule base de-
termined by order dollar value. Orders received at one time with one delivery date may also be combined. Free preassembly by Amco provides additional savings in time and installation.
3 wook dellivory on all standard pares. We welcome inspection of our plant and now. now.

AMCO ENGINEERING CO.

7333 W. Ainslie Streop, Chicago 31, Illinois CIRCLE 248 ON READER-SERVICE CARD

DIGEST

$$
\begin{equation*}
I_{M}=k\left[1-\cos \frac{\theta}{2}\right]^{\frac{3}{2}} \tag{3}
\end{equation*}
$$

Peak plate current can also be determined by plotting the load line on the tube characteristic curves.
In a problem involving a given transmitter, $I_{\text {max }}$ and θ can be specifically determined from the transmitter's operating characteristics. The absolute values of the harmonic currents can be obtained from Eq. 2.
If it is desired to determine the spurious spectrum for various values of θ and $I_{\text {mas }}$, a normalized plot of the ratio of I_{N} and $I_{\text {max }}$ is helpful. In Fig. 2,

Fig. 2. Illustrative plots of general harmonic current ratio curves.
the ratio I_{N} / I_{M} is plotted for the various angles of plate current flow. Thus, the absolute harmonic current values can be found by multiplying the current ratio corresponding to a certain θ, by the output tube's peak current.

This analysis indicates levels of currents associated with frequencies which are harmonically related only to the carrier frequency. If frequency multiplication occurs in a transmitter, frequencies which are harmonically related to the oscillator fundamental frequency must be separately inserted. These additional harmonic currents must be considered at all multiples of the oscillator frequency which are not multiples of the transmitter output frequency. They can be inserted in the equation at the appropriate frequencies, with magnitudes of 0.5 times the value of the envelope described by the carrier harmonics. The number 0.5 was empirically evolved as a correction factor after evaluation of several theoretical and actual test data, This is a rough approximation which

New3 3/4\% interest on U.S.Savings Bonds

The Treasury explains why the new ones you buy and the ones you own now are better than ever.

Q: How does the new $33 / 4 \%$ interest rate benefit me?
A: With Series E Bonds, the rate turns $\$ 18.75$ into $\$ 25.00$ fourteen months faster than the old rate Your savings increase faster, because your Bonds mature in just 7 years, 9 months.
With Series H Bonds, the 10 year maturity period stays the same but more interest is paid you each six months. With both E and H Bonds the new rate works out to $21 / 2 \%$ for the first year and a half; then a guaranteed 4% each year to maturity.
Q: When did the new rate become effective?
A: June 1, 1959.
Q: Does the new rate change the Bonds I bought before June 1, 1959?
A: All older E and H Bonds pay more now-an extra $1 / 2 \%$ from now on, when held to maturity The increase takes effect in the first full interest period after June 1.
Q: When my E Bonds mature, will they keep on earning interest?
A: Yes. An automatic 10 year exten sion privilege went into effect along with the new interest rate. This means your E Bonds wil] automatically keep earning interest after maturity
Q: How safe are U.S. Savings Bonds?
A: Savings Bonds are an absolutely riskless way to save. The United States Government guarantees the cash value of your Bonds will not drop, that it can only grow.

YOU SAVE MORE

THAN MONEY WITH

U.S. SAVINGS BONDS

The U.S. Government does not pay for this advertising The Treasury Department thanks The Advertisin:

SURE...I had a heart attack'

Jack Morgan, oil worker, is one of thousands back at work after a heart attack.
New drugs, new treatment, the latest knowledge developed through heart research helped pull them through.
You don't have to have heart disease to appreciate the story of Jack Morgan and the value of research supported by the Heart Fund. Whatever your job, your life depends on your heart. Whatever protects your heart is a sound investment in your future.
presently appears to provide adequate accuracy for most prediction purposes. If the worst case is desired, the magnitude of the oscillator harmonics can be made equal to the envelope of the carrier harmonics. The process of inserting these plate currents at the oscillator harmonic frequencies will be shown in the sample problem.

Sample Problem

To illustrate the technique just described, the power output spectrum of a high-frequency, 2 to 30 mc , three-stage, $100-\mathrm{w}$ cw transmitter was predicted and compared to measured data for the same transmitter. In the transmitter the $3-\mathrm{mc}$ oscillator frequency was multiplied to obtain a 6 -mc carrier frequency.
The transmitter's output tube was designed to operate with an angle of plate current flow slightly less than 180 deg . The output current was expressed as the $3 / 2$ power of the grid voltage, and the Fourier components were found as ratios of harmonic currents to the peak plate current. Peak plate current was determined by plotting the operating load line on the tube characteristic curves.
This peak current value was then multiplied by each Fourier harmonic current ratio to yield absolute values of harmonic current at frequencies which are multiples of 6 mc . Since it is known that the transmitter oscillator is operating at 3 mc , harmonic currents are to be expected at all multiple frequencies of 3 mc .
As an approximation, these harmonic currents were inserted in Fig. 3 with magnitudes empirically chosen to be half the magnitude of the

Fig. 3. Theoretical harmonic current content of a power amplifier tube plate current pulse.

prolong tube life-increase reliability

 atlee full-contact tube cooling shields provide MAXIMUM tube cooling through- FULL CONTACT with tube
- FULL CONTACT with shield
- FULL CONTACT with chassis

The new atlee FULL-CONTACT tube-cooling shield, with exclusive "delta-wave" $\Omega \Sigma \Sigma \Sigma<$ insert and flat-mounting shield base, provides a spectacular reduction of envelope temperatures even under extreme operating conditions. Tests prove a drop of $130^{\circ} \mathrm{C}$ below bare-bulb temperatures, and $80^{\circ} \mathrm{C}$ below levels reached with JAN shields and standard N.E.L. inserts.
Here is a significant advance in the fight against equipment failure even under conservative operating conditions. Further, where tubes must operate close to maximum ratings, it means a real reduction in the inevitable penalty of shorter tube life.
dESIGN FOR RELIABILITY WITH atlee - a complete line of dependable heat-dissipating holders and shields of all types, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

Get the comple copy of
in your free
this fact-filled Bulletin!

atlee corporation
(Formerly Atlas E.E Corporation)
47 PROSPECT STREET, WOBURN, MASSACHUSETTS
CIRCLE 251 ON READER-SERVICE CARD

CIRCLE 252 ON READER-SERVICE CARD

而

Hope and Opportunity
'Thousands of crippled children and adults-almost 250,000 last year-pass under signs that identify nearly 1,400 Easter Seal centers and programs. Regardless of race, religion or cause of crippling, they find here skilled care and treatment, help along the road to rehabilitation and independence.
Have you shared in this important humanitarian effort? Mail a generous contribution TUlDAY.

National Society for
Crippled Children and Adults
2023 W . Ogden Ave. Chicago 12, III

DIGEST

envelope described by the mathematically predicted currents. Fig. 3 represents the theoretical harmonic current content of the power amplifier tube-plate current pulse.
The output circuit of this transmitter consisted of a tuned LC circuit and a fixed coupling link as shown in Fig. 4. Z_{22}, the output impedance of this circuit, was determined by averaging a series of bridge measurements taken across the antenna terminals of the transmitter, with the plate lead of the power amplifier tube removed.

Fig. 4. Output circuit for the sample transmitter.

Much difficulty was encountered in measuring the transfer impedance $\left(\mathrm{Z}_{T}\right)$. The measuring technique is shown in Fig. 5. The tube-plate lead was connected to a signal generator and the output circuit was driven with a known current. The effective open-circuit voltage developed across

Fig. 5. Circuit for the measurement of the output circuit transfer impedance Z_{T}.
the antenna terminals (2) was measured with a high-impedance rf voltmeter. Z_{I} was determined by dividing this voltage by the current.
A calibrated dummy load having real and reactive components, provided a known load impedance $\left(Z_{L}\right)$.
The portion of the harmonic current reaching the load was calculated from Eq. 1, previously given.

Harmonic power dissipated in the load was

You can do two things to guard yourself against cancer: Have an annual health checkup. Alert yourself to the seven danger signals that could mean cancer:

1. Unusual bleeding or discharge. 2. A lump or thickening in the breast or elsewhere. 3. A sore that does not heal. 4. Change in bowel or bladder habits. 5. Hoarseness or cough. 6. Indigestion or difficulty in swallowing. 7. Change in a wart or mole.
If your signal lasts longer than two weeks, go to your physician. Give him the chance to give you the chance of a lifetime.

alculated from:

$$
\begin{equation*}
P_{N}=\frac{I_{N} Z_{T}}{Z_{22}+Z_{L}} R_{L} \tag{4}
\end{equation*}
$$

where
$R_{L}=$ the real component of the load impedance.

The resulting predicted power spectra are compared with the actual measured spectrum in Fig. 6. It was suspected that the impedance measuring technique yielded transfer impedance values which were too high at frequencies above 120 mc . The power spectrum calculated from the measured transfer impedance seems to uphold this view since Fig. 6 shows the calculated spectra to

Fig. 6. Measured and theoretical plots of transmitter harmonic output.
be much higher than the measured spectra in the upper range. The vertical lines on Fig. 6 represent the power levels for the oscillator frequency harmonics. These were plotted separately to show their level relative to the carrier harmonics. It was found that the oscillator harmonic currents as estimated were too large in this case to accurately predict the measured values.

Conclusions

From the results, it is realized that more measurements must be made before a completely accurate method for estimating these harmonics can bc applied to any transmitter. However, the prediction technique described appears to have great promise.
Digester from a paper, "Prediction Factors Infll encing Transmitter Power Spectrum," by James J. Crenca and Donald Berilla, Jansky \& Bailey, II., and Charles R. Miller, Rome Air Developm nt Center, presented at the Fifth Conference 01 Radio Frequency Reduction and Compatibilitl, October 1959. Chicago, Ill.

ON THE TARGET!

COMPARE SYSTEMS ERROR YOURSELF!

Typical example of Radar Tracking System Problem: To accurately locate target

Range to Target: 50,000 yards Radar Elevation Angle: 45°

| Error with |
| :---: | :--- |
| Wire-Wound Pots |\quad| Error with |
| :---: |
| C.I.C. Film Pots |

YOU DON'T HAVE TO ACCEPT THE ERRORS IN WIRE WOUND POTS!

Engineers recognize the obvious superiority of C.I.C. Film Sine-Cosine Pots; THOUSANDS are currently in use in Hawk, Atlas, Nike and other missile systems, as well as in the APS-81. ASG-15 fire control system and AN/ASB-4 Bombing/Navigation system, all used on the B-52 Bomber, AN/APA- 125 Radar Indicator, and many others. You too can have superior systems with C.I.C. Film pots. Send us your specifications todayl

92 Madison Avenue, Hempsicod, L. I., N. Y

Now MARK SMAII WIRES for $1 / 2$ your present cost!

Brady Pressure-Sensitive. All-Temperature Wire Markers for small gage wire; are exactly $3 / 4^{\prime \prime}$ long to fit wires under $1 / 4^{\prime \prime}$ o.d. They cut your small gage wire marking costs in half because

1. They cost half the price of Standard Markers, and
2. Thay cost half the price of Standard

You can't drop Brady Wire Markers - they stick to your finger from Card to wire.* Stick and stay stuck - at temperatures to 300° F.! Choose from over 3.000 different stock markers-both Standard and Small GageSize. Stocked by Brady Distributors in all principal cities. Specials made to order. Write for big new bulletin and free testing samples today! *Remember, too, Brady makes the only marker that can be machine appliod.
W. H. BRADI co., 787 Wost Glendale Ave., Milwaukeo 9 , Wis.
 CIRCLE 256 ON READER-SERVICE CARD

REPORT BRIEFS

Phase-Modulated Antennas

The resolution of a passive antenna system can be improved through phase-modulation, cross correlation, and synchronous detection. Possible methods for constructing radiation patterns of the form ($\mathrm{NKx} \sin \mathrm{NKx}$) by means of these techniques are presented. The relationship between the coefficients of a linear additive array and those of an equivalent product array is also stated. PhaseModulated Antennas, Charles J. Drane, Jr., Air Force Cambridge Research Center, Bedford, Mass., Apr. 1959, 19 pp, Micro-film \$2.40, Photocopy $\$ 3.30$. Order PB 142962 from Library of Congress, Washington 25, D. C.

Intermediate Frequency Amplifiers

Small-size, very high-gain, high-level-output intermediate frequency amplifiers for use in radio interference measuring sets were designed and constructed. Results of the study and design phase are given. Recommendations for electronic and constructural modifications which will result in better production results are made. The factual data section includes a description of the study program, a detailed description of the two types of amplifiers which were investigated. Intermediute Frequency Amplifiers, A. W. Pearson, General Electronic Laboratories, Inc., Cambridge, Mass. July 1, 19.54-July 1, 1957, 171 pp, Mircofilm \$8.10, Photocopy $\$ 27.30$. Order PB 143358 from Library of Congress, Washington 25, D. C.

Coupling Network Design

The problem of broadband coupling-network design is one of primary practical importance in electrical engineering. This report is concerned with the derivation of a method for such network design. The design problem may be stated as follows: "To design a two-port coupling network that presents some prescribed input impedance, $\mathrm{Z}_{i n}$, when terminated in a prescribed load impedance. Z_{L}, both input and load impedances being described over a certain band of frequencies." A method for the design of practical lossless ladder networks, based on a point-by-point matching in the frequency domain, is described. Coupling Network Design Using Discrete-Frequency Data, r. A. Ligomenides, Stanford Electronics Laboratories, Stanford University, Calif., Oct. 22, 1958, $195 p p$, Microfilm \$8.70, Photocopy \$30.30. Order PB 143066 from Library of Congress, Washington

Q: - What is a Kodak Ektron Detector?

A: It is a photosensitive resistor. The photosensitive area can be laid down in any pattern. Response extends to 3.5 microns in the infrared. Unaffected by vibration; high signal-to-noise ratio.

Q: What can it be used for?
A: For such applications as an infrared sensor in weapons systems, and in instrumentation for process control, anal. y sis, and safety.
Q:
How can I get the facts about spectral response, types availabilities, and the like?

A: By writing for a new brochure called "Kodak Ektron Detectors."

Write to:
Apparatus and Optical Division
EASTMAN KODAK COMPANY, Rochester 4, N. Y. CIRCLE 258 ON READER-SERVICE CARD

Thyratron Provides Double K

Triple Coincidence Control

The KP-80 is a coincidence thyratron which may be used in double or triple control coincidence circuits, as well as conventional single-signal applications. Operating on the ion deflection principle (registered U.S. Patent Office), the KP-80 provides true symmetrical grid sensitivity in that large signals applied to one grid alone will NOT fire the tube, while small, low current signals applied simultaneously to both grids will cause conduction. The KP-80 Kp-80. Actual size is used as an "and" gate, a binary counter, for relay closure, etc. Because it combines many circuit functions, the KP-80 eliminates from 14 to 25 precision circuit components, thus reducing space and weight, and contributing to improved equipment reliability. The KP-80 is found in conveyor selection systems, coding \& programming devices, automation control apparatus, etc. A subminiature version is also available (type KP-150) which also provides visual indication as well as double coincidence operation. For details on these and other special purpose electron tubes, contact:

KIP ELECTRONICS CORPORATION

Dept. 924, Box 562, Stamford, Connecticut CIRCLE 259 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 3, 1960

EICC instruments
use throughout
the world. $25, D . C$.
stereo and monaural tuners
preamplifiers power amplifiers integrated amplifier
speaker systems speaker sys cw transmitter
co
modulator-driver modulator-drive
grid dip meter OVER 1 MILLION OVER 1 MILLION
EICO instruments -

Technical News Editors

Wanted

ELECTRONIC DESIGN's editorial staff is expanding again...
we need men with solid engineering background and excellent news gathering experience to cover research and development news in the industry.

These men will . . . interview experts in all phases of electronics ... report on industry trends of significance to design engineers ... post readers on latest electronic thinking gathered from technical conferences and plant visits.

If you are a capable reporter and know electronics, we are interested in talking to you about our news editor openings in New York and Chicago.

Salary open.
Send complete resume to Edward E. Grazda, Editor ELECTRONIC DESIGN
Hayden Publishing Co., Inc.
830 Third Avenue New York 22, N. Y.

Broadband Components

Results are summarized for the development of ridged guide components in the 3.75 to 15 kmc range. The first objective was concerned with obtaining complete design information on the transmission line properties of the single ridged guide system, and the second objective was concerned with the building of a number of ridged guide components. General design information of single and double ridged guides is presented in graphital form and allows the determination of all the electrical properties of ridged guide transmission lines. The following components are discussed: ridged to rectangular guide adapters, coax to ridged guide adapter, H -bend, termination, crystal mount, tuner, variable attenuator, and slotted section. Performance of these components is in some respects below that of the conventional near-row-band devices. With additional engineering effort, these components are expected to be comparable in performance to the conventional items. Extremely Broadband Components Developmont, Samuel Hopper, Polytechnic Research and Development Co., Inc., Brooklyn, N. Y., Aug. 1954, 80 pp, Microfilm \$4.50, Photocopy $\$ 12.30$. Order PB 143102 from Library of Congress, Washington $25, D . C$.

Thermoelectricity Abstracts

This bibliography represents the accumulation of unclassified references to the literature on thermoelectric research, development, and application resulting from a search of abstract journals, indexes and bibliographies immediately accessible. Some early, as well as current, material are included. Additional bibliographies will be issued at intervals, the objective being to attain as complete coverage of the literature as possible. Arrangemont for periodical entries is alphabetical-by author, or by title if author is lacking; and for research reports by issuing agency. Each entry is numbered in preparation for an anticipated index. Abbreviations for journal titles are based on those used by the U.S. Naval Research Laboratory Library. A list of these abbreviations together with the journals which they represent appear on the pages following the introduction. The majorty of the joumals and books referred to should be available for consultation or borrowing at the larger public or research libraries. Research reports can usually be obtained through established borrowing procedures from the Armed Services Technical Information Agency and the Office of Technical Services. AD and PB numbers are included when known. Thermoelectricity Abstracts, Naval Research Laboratory, Washington, D. C., May 1959, $104 \mathrm{pp}, \$ 2.50$. Order from OTS, Washington 25, D. C.

SYMMETRICAL SILICON TRANSISTORS

THE NEAREST AVAILABLE TRANSISTOR APPROXIMATION TO A PERFECT SWITCH

- Crystalonics, Inc. offers the only
symmetrical P-N.P alloyed Silicon transistors. These units are ideal for bilateral switching circuits, choppers, demodulators, and unidirectional applications requiring extremely low saturation voltages.

- Typical "Off" resistance over $\mathbf{2 0 0 0}$ M $\leqslant 2$ at 10 Volts
- Typical "On" resistance under $5!2$ at 10 mA .
- Low offset voltage (typically 3 mV)
- Operation to 160° C.
- Fully hermetic sealing in JEDEC 30 package and rugged internal construction for maximum reliability

ALL PARAMETERS SPECIFY PERFORMANCE IN BOTH DIRECTIONS.

OTHER SYMMETRICAL TYPES INCLUDE:
C301 High voltage demodulator (Operation to 70 volts) C302 Low level switch (Max Iso at $25^{\circ} \mathrm{C} 0.0005 \mu \mathrm{~A}$)

Write for full details to: Crystalonics, Inc.
249 Fifth Street
Cambridge 42, Massachusetts
Telephone Kirkland 7-2750

GROW WITH AIRESEARCH IN ELECTRONICS

AiResearch expansion in electronics and elec tromechanical activity is creating outstanding positions at all levels for qualified engineers.

FLIGHT SYSTEMS RESEARCH

General problems in motivation and navigation in air and space; required background in astronomy, physics, engineering.
Openings also exist in the following areas: Data Systems Research... Controls Analysis... Flight Data Components... Electromaynetic Development...Instrument Design... Airlorne Instrumentation Analysis and Design.

Send resume to: Mr. R. K. Richardson

AiResearch Manufacturing Division

9851 So. Sepulveda Blvd., Los Angeles 45, Calif.

CIRCLE 901 ON CAREER INQUIRY FORM

URGENT

ELECTRONIC CIRCUIT and PACKAGING ENGINEERS
recent grads to seniors
NO FEES
TO \$14,000
PULSE RADAR—Mulit Channel, Peak Powor, and CW DIGITAL COMPUTER-Logical Design, Analog to Digital Conversion

Our clients have been carefully selected as growth companies where unusual opportunities for advancement exist, with individual performance the key factor.

ONE DAY!-These requirements are so urgent that you wil hear from our client within one day after we receive your resume.

Please send two copies of your resume, in confidence, to:

ACCREDITED PERSONNEL

America's Oldost Eloctronic Placement Servico-
Dept. E, 12 South 12th St., Philadelphia 7, Pa.

YOUR CAREER

NEWS AND NOTES

Demand for engineers rose appreciably last year in the U.S., resulting in spirited recruiting by industry. But a measure of stability was also evident in the employment picture: numerical shortages dropped and engineering turnover headed for a new decline.

These and other facts on the supply and demand of engineers were disclosed by the Engineering Manpower Commission of the Engineers Joint Council in its ninth annual report.
The commission noted that numerical shortages of engineers "were not widespread because of the large number of engineering graduates available for immediate employment." Last year's B.S. graduates were put at 38,162 , "the largest class since 1951; 36 per cent greater than in 1956, and 41 per cent over 1955, the period in which the shortage was most acute."

But the report warned that as the economy expanded, shortages might once more be pronounced, inasmuch as enrollments in engineering schools declined in 1958 and 1959.
"The demand for engineering graduates will increase," the commission said, "and by 1966 there will be 15 graduates recruited for every 10 hired in 1959."
As for engineering turnover, the report said it averaged 9.5 per cent in 1958, a drop from the 11 per cent of 1957, and when the final figures were in, would likely show a further dip to 8.6 per cent for 1959. The main causes of engineer losses were given as resignation, 55 per cent; death and retirement, 9 per cent, and military leave, 6.5 per cent.
Starting salaries last year were reported at new average highs: $\$ 510$ a month for B.S. graduates, $\$ 600$ for M.S. and $\$ 825$ for Ph.D.'s.

What can an electronics company do when it's (1) small; (2) situated in a farming area, and (3) desperately short of engineers? New Hampshire Ball Bearings, Inc., of Peterborough, N.H., like many rural electronics plants, has an answer.

As Arthur N. Daniels, president of the concern, explains it, the solution is to spread thin what engineering talent is available and open a school to train engineering assistants.
New Hampshire Ball Bearings operates the school. A graduate of the Massachusetts Institute of Technology and former War Production Board aide, Sid Doyle, is director of education. The course runs for a year, with work divided equally between the classroom and the laboratory.

The first class was recruited by visiting high schools in the area and explaining the program to seniors. Fifty students applied for training Twelve were selected. Eight earned diplomas and went to work at New Hampshire Ball Bearings.

The word spread among high school students after that, and they have competed to enroll. Trainees get paid for class work as well as duties in the plant. They can take a job anywhere after they graduate, but most stay and help the company turn out miniature and instrument ball bearings.

Mr. Daniels is pleased with the arrangement. "From cows to calculus," is the way he describes the students' progress.

Pass the word along to service technicians: free training in several aspects of transistor theory and trouble shooting is being offered by the Delco Radio Division of General Motors. Classes, which run a week, are conducted at 30 centers in the country. To apply, fill out an application blank, available from Delco distributors, or write for further information to Ted R. Hayes, Service Manager, Delco Radio Division, Kokomo, Ind.

For each of you lads with E.E., Now's the time to flog that degree!

Never stay in one town
But keep shifting around -
Transporting the family is free.

Reprinted With the Permission of Benson-Lehner Corp.

Advancement Your Goal?

Use New Form To Speed Action

ELECTRONIC DESIGN's new Career Inquiry Service form is designed to help engineers advertise themselves. This new service speeds applicants to the jobs they seek. It is the first such service offered in the electronics field and is receiving high praise from personnel managers.
To present your qualifications immediately 10 the personnel managers of companies that interest you, simply fill in the attached standardized short resume.
Study the employment opportunity ads in this section, and circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN's Reader Service Department will act as your private secretary and type neat, duplicate copies of your standardized resume and send them to all companies you may select . . . the same day the resume is received. IELECTRONIC DESIGN will detach the circle number portion of the form so that no company will know how many numbers you circled.)
The standardized resume will permit personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you directly. In the past much time has been lost through personnel-manager requests for resumes from applicants who proved ineligible.

MAIL CAREER INQUIRY SERVICE FORM TO REIDER SERVICE, ELECTRONIC DESIGN, 830 THIRD AV ., NEW YORK 22, N. Y.

ELECTRONIC DESIGN GAREER MANUPY GEDY/RE use before mar. 16, 1960

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York. N. Y. Our Reader Service Department will forward copies to the companies you select below.
(Please print with a soft pencil or type.)

Recent Special Training

	Employment History Company			
	City and State	Title		Engineering Specialty

Outstanding Engineering and Administrative Experience \qquad

Professional Societies
Published Articles \qquad
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal
data below this line. This section will be detached before processing.
Circle Career Inquiry numbers of companies that interest you

900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	820	921	922	923	424
425	928	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	948	947	948	949

Prodsect

紋选

(5x)

It takes less than a minute. But it could be the biggest project of your life when you dial CRestview 4-8884. Your future is literally at your fingertips, and it's an opportunity-filled future with the Bedford Laboratory of Raytheon Company in Bedford, Massachusetts. In this key laboratory of Raytheon Company's Missile Systems Division a man can literally "pick his spot". Ability is quickly recognized . . . achievement rewarded. And, working and living conditions are the finest available . . . in the heart of New England. If YOU can qualify for one of the following positions, act Now!

Immediate Openings for:

Dafa Handling Engineers . . . with experience in high speed, analog-to-digital conversion techniques, logic design, conconversion techniques, logic design, conthorough knowledge of tape recorder techniques and digital, servo, and digitalcomputer design.
Circuif Design Engineers. .. with experience in design of high-speed switching circuits, pulse techniques, and computer logic. Should be experienced in one or
more of the following areas: navigation guidance, control circuits, CCM, FM, PCM, PDM, and fusing circuitry.
Packaging Engineers . . . with a knowledge of packaging and production techniques in sheet metal and electronic equipment. Will design electronic por tions of guided missiles, radars com puters, test equipment. Should have thorough knowledge of circuitry
Electromechanical Designers . . . will de sign electromechanical equipment and electronic portions of guided missiles, in cluding coordination of effort through the shop. Will work closely with Design Engineers in developing electronic pack aging philosophies. Knowledge of elecging philosophies. Knowledge of elec tronics, electronic ty to read. have experi design and knowledge of current "stat
of the art" in electronic equipment.
Call collect CRestview 4-8884 and ask for Mr. Jerry Morris. He will arrange an appointment for you with key personnel at the Bedford Laboratory. If you prefer, send you postcard or letter to Mr. Morris, Raytheon Company, Missile Systems Division, Bedford, Mass.

... creates a climate for talent. CIRCLE 903 ON CAREER INQUIRY FORM

CAREER COURSES

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars in tended to provide the engineer with a better knowledge of various specialties. Our grouping includes several different types of meetings: National Coursesthose held on consecutive days and intended to draw attendees from all geographic areas; One-Day Seminars-one-day intensive seminars which move from city to city; and Regional Lec-tures-regional symposia or lecture series which generally run one night a week for several weeks.

National Courses

Course in X-Ray Spectrography, New York
The thirty-fifth Norelco X-Ray School will be devoted entirely to the subject of X-Ray Spectrography. Registration is open to chemists, metal lurgists, physicists, production supervisors, quality control engineers and others interested in the application of X-ray Spectrography. Monday through Thursday meetings involve classroom and laboratory work. On Friday, guest speakers discuss interesting problems and how they are handled by specific industries. There is no registration fee. Sessions will be held at the Henry Hudson Hotel, 353 West 57th St., New York, N. Y., during the week of February 15-19.

Regional Lectures

Managing the Development Engineering Function, AMA, Feb. 10-12, Dallas

In most industries other than chemical, research and development and development engineering are closely allied. In this seminar, the development engineering function will be analyzed and its relationship to research and development will be discussed. This seminar is of interest to all key personnel of both corporate departments and divisions. For turther information for this seminar and the following one write to: American Management Association, Hotel Astor, Times Square, New York, N.Y.

Evaluation and Measurement of R\&D,

AMA, Feb. 15-17, New York
The evaluation and measurement of research and development and the various aspects of this broad subject will be discussed at this seminar, as well as the techniques that have been developed for evaluation and measurement. The seminar has been developed for those in the finance area charged with these responsibilities, and for key members of the research and develop. ment group.

ELECTRONIC DESIGN • February 3, 1960

professional opportunities at Honeywell Aero

FIIGHT CONTROL SYSTEMS: Analytical, systems, and component engineers to work in areas such as dvanced flight reference and guidance systems. Positions range from analyzing stability and control problems, systems engineering through design, test-ment-including flight test and production tequip-ment-including fight test and production test.
GROUND SUPPORT: Electrical Engineers to design equipment for testing complex electronic systems, preferably with experience in digital techniques solid state circuitry, and logic circuit design as
applied to automatic checkout systems.
EVALUATION: Graduate engineers with electronic background desiring opportunity in development qualification and reliability testing. Must have ability to design and develop specialized equipment which can duplicate environmental conditions en countered by advanced projects. Assignment in this work leads directly to a career in design, research or dvanced s
ADVANCED GYRO DESIGN: Engineers with two and up to twenty years' experience in precision gyro and accelerometer development, servo tech niques, digital techniques, solid state electronic development, advanced instrumentation and mag netic component design
PRODUCTION: Electrical engineers to assume re sponsibility for placing complex devices such as platforms, floated gyros, accelerometers, vertical and rate gyros, calibrators and computers into pro duction. Work with design engineers to introduce production know-how and techniques into origina tooling desponsible for estimating, processing, and assembly calibration, and inspection efforts during nitial production phases intial production phases.
INSTRUMENTATION: Development and design in the critical areas of test instrumentation for Aero priducts. Two years' experience in test instrumentalion desired

To investigate any of the above professional op portunities at the Aeronautical Division, nlease write in confidence to Bruce Wood. Dept. 369.
Honeywell \mathbf{H}
AERONAUTICAL OTVISION 1433 Stinson BIva. N.E., Minneapolis 13, Minnesota To explore professional opportunities in other H neywell operations coast to coast, send your appli ${ }^{c}$ a on in confidence to H. K. Eckstrom, Honeywell,
M ineapolis 8 , Minnesota.

WEST COAST

No longer does the width of the oceans shield America.
Today an entirely new concept of defensive tools must link arms to guard us. Missiles protect cities and military installations. ASW units scour the seas. BMEWS alerts us to attack. Mach 3 interceptors, anti-missile missiles, listening posts on the floor of the oceans, atomic rockets - they all play a part in the defensive scheme of things, if not now, tomorrow.

A continuous flow of new and better defensive weapons must be developed, designed, and delivered to the armed forces by engineers - this is a must for survival. Never in our history have engineers been such a vital cog in this country's security. And this role grows daily.

RCA's own West Coast expansion program has created a number of exceptional career opportunities for creative electronic and mechanical engineers versed in systems, projects, and development and design engineering in these areas: information handling, data processing, electronic countermeasures and missile launch control and checkout systems. Our new, modern electronic center in the San Fernando Valley will be where you'll work and grow with RCA on the West Coast.

If you're interested in building your future on solid ground, RCA - the world leader in electronics - is the place to start. Let us hear from you very soon, in all confidence of course.

Call collect
or write:
Mr. O. S. Knox
EMpire 4-6485
8500 Balboa Blvd
Dept. 360-B
Van Nuys, California

 PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines to authors wishing to have their papers considered for presentation.

Those interested in presenting papers or in suggesting symposia for the 1st Annual Symposium on Human Factors in Electronics, scheduled for Mar. 24-25 in New York, should correspond as soon as possible with Mr. R. R. Riesz, Chairman, Papers Procurement Committee, C/O Bell Telephone Laboratories, Meetings Committer, C/O Bell Telephone Laboratories.
February 15: Deadline date for papers of $300-$ 2500 words for the 3 rd International Conference on Medical Electronics to be held July 21-27 in London. Papers should deal with problems encountered in the operation of equipment or with limited aspects of a wide subject. The committee has listed the following seessions in which they are particularly interested: instrumentation for biological needs; medical electronics in space research; ultrasonics; the respiratory system; the digestive system; the circulatory system; electronics aids to sight, hearing, and locomotion; the nervous system; and electronic aspects of human engineering. Papers must be double spaced and submitted in triplicate. Send to: Lee B. Lusted, M. D., Dept. of Radiology, University of Rochester, School of Medicine, Rochester 20, N. Y.
March 1: Deadline for rough draft manuscripts for the Joint Automatic Control Conference, scheduled for September $7-9$ in Boston, Mass. Papers may be on any significant aspect of automatic control. Possible topics might include: sampled data, theoretical aspects of computer control, operating results in computer control, nonlinear control, adaptive control, statistical control, cybernetics, super-slow control systems components, actuators, criteria objectives for control, maintenance in complex systems, component dynamics and techniques for testing dynamic system. Final copy deadline is May 1. Papers may be submitted to: Harvey A. Miller, JACC Program CommitteeIRE, Taylor Instrument Cos., 9.5 Ames St., Rochester 1, N.Y.
A call for technical papers for the 1960 West Coast Audio Engineering Society Convention scheduled for March 8-11 at the Alexandria Hotel, Los Angeles, Calif,, has been issued. Authors are urged to send titles and 25-50 word abstracts immediately to Walter T. Selsted, Ampex Corp., 934 Charter St., Reducood City, Calif.

> EXPLORE NEW AREAS ATIBM IN RESEARCH AND DEVELOPMENT OF

IBM's explorations in the semiconductor field include theoretical and experimental studies in basic semicon. ductor science as well as development of advanced devices example, a better physical understanding of the origin of the negative resistance characteristic of the Esaki diode is being sought. At the same time, development engineers are exploring applications of this device and have already produced a new solid state oscillator of exceptional simplicity in the 3,000 megacycle range. To date, this represents the deepest incursion into the microwave region via semiconductor electron. ics. In another project, an NPN double-diffused high-speed drift transistor has been developed that will greatly accelerate logical switching and high-power core driving. Both exploratory investigation and development of these and related electronic devices are expanding at a rapid pace at IBM. To further these programs, wellqualified specialists are required for all areas of device exploration.

An outstanding education program heads the list of benefits available to IBM employees. You'll find that an unusual potential exists for rapid advancement, due in part to an exceptional record of company growth and in part to promotion from within. Working alone or on a small team, you will be asked to assume considerable responsibility in advanced technical projects.

TYPICAL PROGRAMS:

Study of the fundamental photo processes in the wider gap III-V compound semiconductors. Abil ity to take primary responsibility, functioning with minimum of supervision.

Development of theory and technology of new, advanced solid state devices used in electronic computers. Theoretical device design and experimental proof of feasibility for a very high-speed transistor; P.N junction technology; surface studies. Optimization of semiconductor fabrication technology.

Physical investigations into semiconducting materials. Study of the nature of the impurities in these materials, scattering effects, and trapping mechanisms.

Analytical and experimental investigations in Avalanche Mode Switching Transistors for very high-speed applications in computers.
Analysis and synthesis of circuitry applications for new semiconductor devices. Knowledge required in electronic circuits; familiarity with computer problems and ultra-high-frequency techniques. Experience desirable in microwave applications of solid state devices

Laboratory facilities are located in Endicott, Poughkeepsie, Kingston, Owego, and Yorktown Heights, N. Y.; Lexington, Ky.; and San Jose, California.

Careers also available in these areas...
Applied math \& statistics
Circuit research
Cryogenics
Logic
Magnetics
Microwaves

Qualifications: B.S. or advanced degree in one of the physical sciences - and proven ability in your field.

For details, write-outlining background and in. terests-to:

Manager of Technical Employment
Dept. 555N1
IBM Corporation
590 Madison Avenue
New York 22, N. Y.
IBM
INTERNATIONAL BUSINESS MACHINES CORPORATION

Your Creative Ideas

Will Reach Tangible Form at Sanders

This company owes its surprising growth (from a handful of brilliant men 8 years ago to a 1200 -man organization today) to the originality of its conceptions in diverse electronic fields. (Examples of Sanders' firsts include PANAR ${ }^{\oplus}$ radar, TRI-PLATE ${ }^{\bullet}$ microwave products. FLEXPRINT ${ }^{\ominus}$ flexible printed circuits.)

If you have the capacity to father genuine technical innovations, you will find engineer-management receptive at Sanders Associates. You will be encouraged to demonstrate the practicality of a promising idea, and assisted in doing it. And you can rely on receiving professional and financial recognition for creative contributions.

Right now opportunities are available at Sanders on a variety of commercial and defense projects, in. cluding a very sophisticated seeker system for the U.S. Navy's Eagle Missile, which it is believed will provide superior performance in the face of increasingly effective countermeasure techniques.

To learn more about opportunities for you at Sanders - and the advantages of our location in the progressive New England community of Nashua, New Hampshire (less than an hour from downtown Boston). send a resume to Lloyd Ware, Stafi Engineer, Dept. 920.

CURRENT OPENINGS

SYSTEMS ENGINEERS

ECM, ASW, Missile, Telemetry, Microwave, Data Reduction and Communications.

CIRCUITS ENGINEERS

RF, Video, Audio, Data Processing, Transmitters, Receivers, Test Equipment, Power Supplies. Both transistor and vacuum tube experience.

ANALYTICAL ENGINEERS

Data Systems, Weapons and

 Countermeasures.
INSTRUMENTATION ENGINEERS

Gyre Devolopment
Gyros, Accelerometers and related products.

Systoms Dovolopment
Electromechanical and electrohydraulic systems. Analytical background helpful.

Serve Dovelopment

Develop electrohydraulic servo valves and other hydraulic and mechanical control components.

Product Engincering

Design evaluation for cost reduction and productibility; engineering assistance in tooling and production problems.

Something signifieant has been added to career potential at STROMBERG-CARLSON
Positions immediately available
on both Commercial and Defense Projects:

This something significant is the increased emphasis on interdivisional engineering programming between the 7 different Divisions of General Dynamics, of which Stromberg.Carlson is the Electronics Arm.
Pooling of knowledge in diverse fields of endeavor greatly enlarges the professional scope of the individual engineer. For instance, three divisions of the corporation are deeply involved in Anti-Submarine Warfare work: Stromberg. Carlson, Electric Boat and Convair (as well as General Dynamics' Canadian subsidiary, Canadair, Ltd.). In this endeavor all make use of research findings developed with the aid of Stromberg-Carlson's new sonar test facility in Rochester, N. Y. This is the nation's largest indoor, underwater acoustic facility.
Take other areas of special interest to Stromberg-Carlson engineers: Instrumentation and safety systems for nuclear reactors and ground testing equipment for missile systems. Here interchange of information with General Atomics, Electric Boat and Convair Divisions adds a new dimension to Stromberg. Carlson's electronics capability.
Long a solidly established growth company, Stromberg. Carlson can also add another plus value to its long-term opportunities for engineers-the financial strength of the large and diversified parent, General Dynamics Corporation.

RESEARCH SCIENTISTS

Advanced degree EE's and Physicists to handle conceptual studies in areas of solid state circuitry and semi-conductors; molecular electronics; hydro-acoustics; digital data transmission; and speech analysis. Also openings for advanced degree mathematicians for study projects in information theory and related areas.

DEVELOPMENT ENGINEERS

Current openings at intermediate through technical supervisory levels for men experienced in global and inter-global communications systems; microwave circuit design; digital handling and display equipment; doppler radar; and air navigation control instrumentation.

CONSUMER PRODUCT DESIGN ENGINEERS

Intermediate to senior level openings for engineers to work on stereo, hi-fi, auto radio and commercial sound systems, with experience in audio and R. F. field utilizing transistorized circuitry. Also openings for engineers experienced in design of special switching and electro-mechanical circuitry for telephone systems.

Also positions for:

Field Service Engineers; Production Test Engineers; Test Equipment Design Engineers; Military Sales Engineers.

If you are interested in qualified for one of these positions, send a complete resume to
Robert L. Ford, Manager of Technical Personnel
STROMBERG-CARLSON A division of GENERAL DYNAMICS

1423 N. Goodman St., Rochester 3, New York

CIRCLE 908 ON CAREER INQUIRY FORM

PAGES
MISSING
ARE NOT
AVAILABLE

[^0]: Graduate engineers with two or more years of eirecuit applieation in the feldm of electronlen or phyales are invited io meet with Mr.
 John Hieks in an informal interview or send complete resume to: Dir. Pernonnel, IFI, 101 New South Rond, Hiekeville. New Yort,

[^1]: CIRCLE 179 ON READER-SERVICE CARD

[^2]:

