

Brooklyn (Ridgewood) 27, New York

1727 Weirfield Street

Spring Spins Gyro (cover) ... 28 Use of a spiral clock spring in this gyro, designed for missiles and drones, helps cut down the weight. It is capable of being stored in a wound condition for indefinite periods without loss of accuracy.

DESIGN

d?

Improve Circuit Reliability ... 20

Statistical techniques are finding growing acceptance as important tools of analyses. This article provides some background information on statistical concepts and shows how component variations can be statistically handled in circuit design.

Designing Zener Diode Voltage Regulators 30

A wider choice of voltages and larger current ranges than with gastube types can be achieved with zener diode voltage regulators. And it doesn't require a firing voltage higher than the regulating voltage, as does a gas tube regulator.

Improving the Emitter-Coupled

An efficient phase-splitter with well stabilized operating points is described having a voltage gain of about 8000 and a power output of 10 mv. Only a slight modification of the conventional phase-splitter circuit is required to solve the difficult problem of drift.

EI

8

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering title, your company's main products, and description of your design duties. The letter must be signed by you personally.

ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECES-SITATES A RESTATEMENT OF THESE QUALIFICATIONS. Subscription rate for non qualified subscribers—\$15.00 for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y.

CONTENTS

Editorial	19	Dishonest Bidding Must Go				
Behind the News	3	AM Stereo Broadcasting Techniques Vie for Attention				
Washington Report	16	NASA's Policies				
Features	20	Improve Circuit Reliability, C. A. Krohn				
	26	Degauss Pulse Transformers, E. J. Watt				
	28	Spring Spins Gyro				
	28	Flat Rotary Switch Saves S	pace			
	30	Designing Zener Diode Voltage Regulators, R. G. McKenna				
	34	Improving the Emitter-Coupled Phase Splitter, M. Price				
	36	Rescue Millivolts of Signal from Volts of Noise, W. G. Royce				
	40	Improving Cable Design, W. J. Strauss				
Ideas for Design	98	Frequency Sensitivity without Reactors				
Russian Translations	112	Nonlinear and Parametric Phenomena in Radio Engineering, Part 15, A. A. Kharkevich				
German Abstracts	122	Bandwidth Reduction for Transmission of Radar Signals				
	124	Transmission of Speech				
	125	Automatic Speech Recognition				
Departments	44	New Products	92	Patents		
	76	Production Products	106	Report Briefs		
	80	Services for Designers	126	Meetings		
	82	New Literature	129	Careers Section		
		132 Adver	tisers' In	dex		

ELECTRONIC DESIGN is published bi-weekly by Hayden Publishing Company, Inc., 830 Third Avenue, New York 22, N.Y., T. Richard Gascoigne, President; James S. Mulholland, Jr. Vice-President & Treasurer; and David B. Landis, Secretary. Printed at Hildreth Press, Bristol. Conn. Accepted as controlled circulation publication at Bristol, Conn. Additional entry, New York, N.Y. Copyright 1959 Hayden Publishing Company, Inc. 32,000 copies this issue-

ELECTRONIC DESIGN • April 1, 1959

G-V thermal time delay relays.. protect cathodes in RCA's TV microwave relay system

When the industry required a portable microwave repeater station that behaved like a permanently installed, unattended unit, RCA developed its Television Microwave Relay Station, Type TVM-1A. In it, to protect the unit's cathodes, RCA design engineers rely on G-V thermal time delay relays to delay the application of plate voltage.

In both industrial and military equipment, G-V thermal relays are providing long, dependable, proven service in time delay applications, voltage and current sensing functions and circuit protection.

Write for extensive application data and catalog material.

G-V CONTROLS INC.

LIVINGSTON, NEW JERSEY

CIRCLE 2 ON READER-SERVICE CARD

low microphonics

quick heating - well under onehalf second

negligible heat dissipation

high efficiency – mutual conduc-tance as much as 4 times greater per watt of filament power than in comparable heater-cathode tubes

RAYTHEON SUBMINIATURE FILAMENTARY PENTODES

		the second se				
Туре	Description	If at rated Ef = 1.25V mA	Plate and Screen Volts	Plate Current mA	Sm <u>u</u> mhos	Output Power milliwatts
1AD4	RF Amplifier up to 200 Mc (1)	100	45	3.0	2000	-
1AG4	AF Power Amplifier	40	41.4	2.4	1000	35
CK512AX	Voltage Amplifier low microphonic	*20	15	0.05	105	37 (2)
CK5678	RF Amplifier up to 60 Mc (1)	50	67.5	1.8	1100	-
CK5886	Electrometer Voltage Amplifier with high input impedance	10	10.5	0.2	175 (3)	max I., 2.5 x 10-13A
CK6088	AF Power Amplifier	20	45	0.65	560	10.5
CK6397	RF Power Amplifier to 200 Mc or Doubler from 200 to 400 Mc	**125	125	7.25	1950	140 mW doubling to 225 Mc
CK6418	AF Power Amplifier	10	22.5	0.24	300	2.2
CK6526	AF Power Amplifier	125	110	6.5	1900	375
CK6611	RF Amplifier up to 100 Mc (1)	20	30	1.0	1000	-
CK6612	RF Amplifier up to 200 Mc (1)	80	30	3.0	3000	-
CK6999	AF Power Amplifier	**100	67.5	4.0	1650	150

(1) Fully shielded by metallic coating. (2) Voltage gain ratio. (3) Triode connected. *Rated filament voltage for CK512AX is 0.625 volts. *Filament center tap also permits 2.5 volt operation at half this indicated current.

NDU DIVISION RIA BE

RAYTHEON MANUFACTURING CO.

Reliable Miniature and Subminiature Tubes • Filamentary Tubes • VR Tubes • Rectifiers • Thyratrons • Cathode Ray Tubes New York, PLaza 9-3900 Boston, Bigelaw 4-7500 Chicago, NAtional 5-4000 Los Angeles, NOrmandy 5-4221 Baltimere, SOuthfield 1-1237 Cleveland, Winton 1-7005 Kanses City, PLazo 3-5330 CIRCLE 3 ON READER-SERVICE CARD

Editor	Edward E. Grazda
Managing Editor	J. A. Lippke
Associate Editors	L. D. Shergalis G. H. Rostky H. Bierman
Assistant Editors	T. E. Mount D. S. Viebig L. N. Tolopko M. M. Robinson A. E. Takacs F. Muehleck
Contributing Editors	S. H. Hubelbank E. Brenner B. Bernstein E. Kahn
Editorial Assistants	M. S. Buckley J. R. Feder A. M. Sickler
Art Director Technical Illustrator Art Assistant	R. A Schulze B. L. Armstrong C. Bonk
Production Manager Asst. Prod. Manager Production Assistant	T. V. Sedita M. P. Hedrick M. C. Alexich
Circulation Manager Asst. Circ. Manager	N. M. Elston A C Lovett
Reader Service	J. E. Medina

STAFF

CO-PUBLISHERS

T. Richard Gascoigne James S. Mulholland, Jr.

ADVERTISING REPRESENTATIVES

Advertising Sales Manager Bryce Gray, Jr.

New York: Owen A Kean

830 Third Avenue Robert W. Gascoigne PLaza 1.5530 Richard Porker Blair McClenachan James P. Quinn

Robert E. Ahrensdorf

John V. Quillman

Stanley I. Ehrenclou

Chicago: Thomas P. Kayooras 664 N. Michigan Ave. Berry Conner, Jr. SUperior 7-8054 Fred T. Bruce

Los Angeles: 3275 Wilshire Blvd. DUnkirk 2-7337

Southeastern: Lucien Neff 2808 Middle River Dr

Ft. Lauderdale, Fla 10gan 6 5656

> London, W. 1: Michael B. Horne 24 Baker Street England

ELECTRONIC DESIGN • April 1, 1959

FN bin des me and var

E

bee

ste

2

DESIGN

BEHIND THE NEWS

AM Stereo Broadcasting Techniques Vie for Attention

At the last count, fifteen different methods have been designed and developed for broadcasting stereo programs. Techniques range from multiplex FM systems to separate-sideband AM to combinations of FM-AM.

In the past month alone, four systems (twodescribed below) have been demonstrated to members of the industry. Are the demonstrations and press notices aimed at pointing to latest advancements in the state of the art? Or are the manufacturers revealing slightly-modified techniques in their desire to join the stereo-publicity bandwagon? Engineers and bystanders in attendance are tending to sense a message to the effect—"To prove that we are not napping, here is our method of stereo broadcasting."

NSRC Formed

To evaluate and study the rising number of stereo broadcasting schemes, Electronic Industries

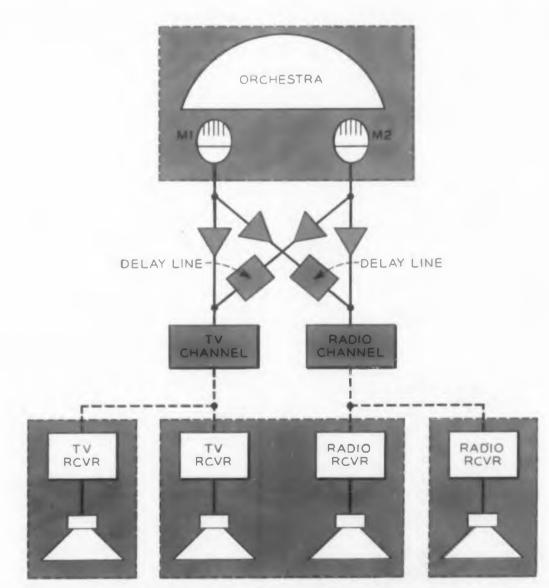


Fig. 1. Cross-connected delay lines between two stereo channels, A.T.T. system.

Association (EIA) has recently formed the National Stereophonic Radio Committee (NSRC). Six panels have been set up to investigate the following points prior to submission of proposals to the FCC:

• System specifications—consider and investigate system proposals and set up initial transmission specifications.

• Interconnecting facilities—recommend characteristics for lines, networks, studio links, and related facilities between program origination and transmitter sites.

• Broadcast transmitters—study feasibility of proposed transmission methods and means of adopting proposals to existing equipment.

• Broadcast receivers—carefully check compatibility (how will existing monophonic receiver sound when tuned to stereo program), reverse compatibility (how will stereo receiver sound when tuned to monophonic signal), and stereo performance.

• Field testing—examination of coverage, interference, channel utilization, and other field problems.

• Subjective aspect-provide scientific information on subjective aspects of stereo reproduction to the other panels.

Primary aims of the various schemes include low-cost equipment investment for the listener as well as the broadcaster, entertaining listening for the stereo and monophonic consumer with a minimum of compromise, and compatibility with existing F. C. C. standards for AM broadcasting.

Two methods, recently demonstrated to industry representatives, offer fine examples of the trend towards simplification and economy although approached from different viewpoints.

A.T.T. System

Stereo broadcasting techniques, when striving for utmost stereo effect, generally make use of two widely-spaced microphone pickups. While the stereo listener can then derive full depth and realism, the single channel listener hears the output of only one of the pickups and thus effecTRANSISTOR EXPERTS... are betting that this is the winning combination:

RELIABILITY

3000 0

AVAILABILITY

Fast delivery 10s or 1000s

FAIRCHILD SILICON

come through, fulfilling the extraordinary promises you've heard rumored about the new solid-state diffusion devices.

A ♦ SPEED — 80 milli-micro-second rise time affords the fastest switching yet available with silicon.

A ♥ POWER - 2 watts dissipation at 25° C. leaves plenty of power handling capability at higher temperatures too.

changes, assuring a large safety factor at operating temperatures. Mesa construction provides extraordinary ruggedness too.

A AVAILABILITY — Thousands of the 2N696 and 2N697 transistors have been delivered in the first months after announcement. Stock is available for immediate shipment.

2 LOWER PRICES — Fairchild is gearing for quantity sales and bringing prices down within reach of more users. A second large plant expansion is being made in response to demand.

Look to the future

FEE SA

Existence of Fairchild's multiple-diffused transistors is already having a profound effect on the breadboard designs of today. It means competitive improvements in the quantity production of tomorrow both in the race for military superiority and in various commercial bids for sales leadership. May we send you specifications?

BEHIND THE NEWS

tively misses a portion of the program material. To preserve satisfactory reception for the single channel listener, the broadcaster would have to dilute the stereo effect.

Through the use of a new "compatibility" circuit, developed by F. K. Becker of Bell Telephone Laboratories, the single channel problem can be eliminated without affecting the stereo listener. The circuit depends for success on a psychoacoustic phenomenon known as the "Precedence Effect", discovered in 1933. This effect operates in such a manner that when a single sound is reproduced through two separate loudspeakers, but is delayed several milliseconds in one, the listener will "hear" the sound as if it came only from the speaker from which he heard it first. He will judge the second loudspeaker to be silent.

In the new development, the circuits between the microphone pickups and their corresponding radio or TV transmitters are cross connected through two delay lines, each with its own buffer amplifier see Fig. 1. Because of these cross connections, music or voice signals from the left microphone are transmitted directly to the left loudspeaker in the listener's home, while the same signal is slightly delayed before reaching the speaker to his right. The stereo listener will hear the sound as if it came only from the left loudspeaker because of the Precedence Effect.

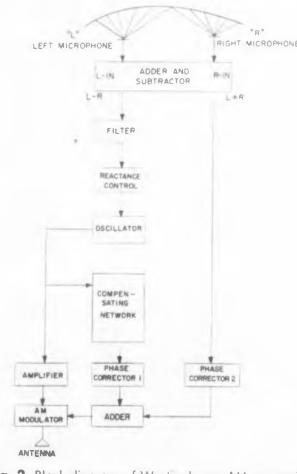


Fig. 2. Block diagram of Westinghouse AM compatible stereophonic transmitter.

Conve goes before unhea localiz each effect

comp hears a bal in ap accord Labo Thi

Ho

many stered effect who

We

stered tude is int the p Conra The

prope sterec micro is a fi (L - Rpensa

The nents tweer cut-of devia In

tion r the A phoni signal that produ pende Bas exact (L recep used; two } two ampl modu right is cla

rathe

effect

Conversely, the sound from the right microphone goes direct to the right speaker, but is delayed before reaching the left speaker, and is therefore unheard. Thus, the brain of the stereo listener localizes the sound he hears as coming direct from each of his two speakers, and full stereophonic effect is maintained.

al.

le

to

However, monophonic reception is completely compatible, since a listener to each single channel hears the total sound from both microphones in a balanced reproduction. The slight delay built in apparently does not affect his reception at all, according to subjective tests performed at Bell Laboratories.

This development should make it possible for many more broadcasters to offer double-channel stereo programming without diluting the stereo effect or penalizing the single channel listener, who will make up the majority of their audience.

Westinghouse Technique

Westinghouse's approach to simple, economical stereo broadcasting involves simultaneous amplitude and frequency modulation of the carrier. It is interesting to note that the initial patent for the present scheme was filed in 1925 by Dr. Frank Conrad, former research director of Westinghouse.

The amplitude modulation is predominately proportional to the algebraic sum of the two stereophonic signals (L-left microphone + R-right microphone) but includes a smaller signal that is a function of the stereophonic difference signal (L-R). This function to be developed by a compensating system.

The frequency modulation consists of components of the stereophonic difference signals between 300 and 3000 cycles per second. The filter cut-off rate is 6 decibels per octave; the maximum deviation is 3 kilocycles.

In the transmitter block diagram the compensation network, shown in Fig. 2. operates to modify the AM modulation as a function of the stereophonic signal. As a result, the envelope of the signal leaving the transmitter is precorrected so that a standard AM radio will receive and reproduce monophonic sound substantially independent of the stereophonic difference signals.

Basically, the monophonic listener would tune exactly on station and receive the sum of both (L + R) microphone signals. For stereophonic reception, two inexpensive AM radios would be used; one would be tuned to a frequency about two ke above the carrier with the other set about two ke below the carrier. A combination of amplitude modulation and slope-type frequency modulation would produce the separate left and right channel signals. Tuning of the receivers, it is claimed, would not require exact settingsrather broad tuning would still reproduce stereo effects.

ELECTRONIC DESIGN • April 1, 1959

SHRUNK BY EXPERTS

Burnell & Co. may not be experts in the art of head shrinking. But when it comes to toroids, filters and related networks. Burnell has the know-how to solve an infinite variety of small space problems. The new MICROID * filters by Burnell & Co. are a notable achievement in the shrinking of filters which can be designed for low pass or band pass applications.

For example, as a low pass filter. Type TCLJ starts at 400 cps. Physical size is 11/16" x 1-11/16" x 1/2" max. For higher frequencies from 7,500 cycles up to 100 kc. size is 3/4" x 1" x 1/2".

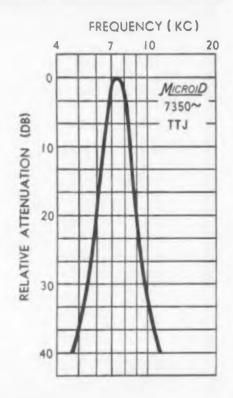
The band pass filter, Type TTJ pictured here, ranges from 7.350 cycles

R REGISTERED TRADE MARK

Burnell & Co. Inc.

PIONEERS IN TOROIDS, FILTERS AND RELATED NETWORKS CIRCLE 5 ON READER-SERVICE CARD

up to 100 kc. Physical size is 1/2" x 19/32" x 15/16", weight .3 ounces, band width 15% at 3 db and + 60% -10^c at 40 db. Wherever space and performance are critical requirements. miniaturized MICROID Is low pass and band pass filters provide utmost reliability as well as more unit surface economy on printed circuit boards. Completely encapsulated, they are ideally suited to withstand high acceleration, shock and vibration environments. Write for special filter bulletin to help solve your circuit problems.


EASTERN DIVISION

PELHAM. N. Y. PELHAM 8-5000

10 PELHAM PARKWAY

TELETYPE PELHAM 3633

DEF1 D-18

PACIFIC DIVISION DEPT. D-17 720 MISSION ST. SOUTH PASADENA, CALIF. RYAN 1-2841 TELETYPE PASACAL 7528

another Potter First

Now. a device that READS and **STOPS** faster, better

The compact '909' Perforated Tape Strip Reader now makes it possible to process information from perforated tape into digital data computer systems at high speed and low cost. Simple to operate by clerical personnel, the '909' is completely transistorized, and will give maximum performance with complete reliability.

The '909' is a compact unit, suitable for console or rack mounting. Here are some of the performance features, available for the first time in equipment of this type:

- · Character reading speeds up to 1000
- char/sec.
- Simple In-Line threading

mark of

- 3 Millisec starting time
- Stops on STOP Character, (0.2 millisec) and will read next character after start
- 100 x 10⁸ operation pinch roll
- · Photo Diode Head reads any tape (including oiled yellow teletype tape)
- Reads 5, 6, 7 or 8 level tape with
- sprocket channel • Ambient temperature up to 125° F. with
- 10,000 hour life · Built to meet requirements of MIL-E-4158A

Contact your Potter representative or call or write direct for further information.

Specifications

10 to 100 ips

Any Standard Width

Power Requirements: 115V, 60 Cycle, 1 Phase

Control: Remote/Level Inputs

Tape Speed:

Tape Width:

Potter has career opportunities for qualified engineers who like a challenge, and the freedom to meet it.

CIRCLE 6 ON READER-SERVICE CARD

BEHIND THE NEWS Russian Oil Lamp Powers Radio

Tens of thousands of low-power thermionic generators are being put into service in the U.S.S.R., according to latest reports. The Russians have encouraged the development in their efforts to provide radio reception at low cost for their "educational" broadcasting programs.

Principally intended for use in rural areas devoid of electricity, the power generator (originally described-ED, May, 1956) makes use of the heat generated by a lightsupplying oil-lamp. Enough energy is developed, from otherwise wasted calories, to operate a five or six tube radio receiver, according to Dr. A. V. J. Martin of the Carnegie Institute of Technology.

Construction

The usual glass chimney of the oil lamp is replaced by an aluminum tube carrying internal partitions so as to absorb a maximum of calories, VOLTS see Figs. 1 and 2. Around this tube

R+

Fig. 1. Thermoelectric generator installed on a lamp, with the connecting plug to a radio receiver.

Fig. 2. Method of assembling the lamp and the generator

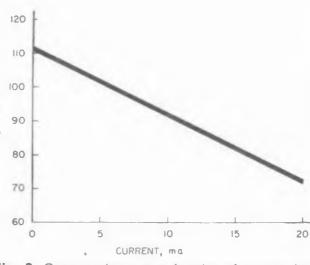


Fig. 3. Output voltage as a function of current drain.

Fig. 4. Generator can be taken apart for field maintenance or repair even by unskilled manpower.

ELECTRONIC DESIGN • April 1, 1959

Th posit of zi prop ment ganii assen part, is exc free,

see

meta

are p

one c conta

hence posite minu

two f x 75 total

about

tweer

them

of 23

powe

is at

62 C

Of th

used

and t

meas

conta

has a

There

vidin

1.4 \

goes

requi

than

made

selen

94 x

vertic

block

them

load

loade

(Fig.

Th

x 11

elem

this h

the 1

Th

Th

Th

are placed 14 thermocouple blocks, one of their faces being in intimate contact with the aluminum and hence at high temperature. The opposite face carries a U-shaped aluminum cooling plate. Each of its two fins measure approximately 100 x 75 mm, that is 4 x 3 inches. The total cooling area per block is then about 150 square centimeters.

The temperature difference between the two opposite faces of the thermocouple block is of the order of 233 C, providing the electrical power. The inner face of the blocks is at 295 C, and the outer face is at 62 C for normal room temperature. Of the 14 blocks, 1 is eventually used for bias, 3 for heaters voltage, and the remaining 10 for B+.

The heater supply voltage blocks measure $94 \times 25 \times 7$ mm, and each contains 18 elements. Each element has a cross section of 7 x 5 mm. There are in all 54 elements, providing a current of 0.4 ampere under 1.4 volt. At no-load, the voltage goes up to 2.45 volts, so that if the required heater current is lower than 0.4 ampere, provision must be made for some limiting device, two selenium cells being commonly used.

The high-voltage blocks measure $94 \times 25 \times 11$ mm. Each contains six vertical rows of 45 elements. The 10 blocks in series then represent 2700 thermocouples, and provide a no-load voltage of 111.5 volta. When loaded, voltage goes down as shown (Fig. 3).

The bias block measures $94 \times 25 \times 11$ mm and contains 4 rows of 45 elements. If no bias is necessary, this block is connected in series with the 10 high voltage blocks.

Thermocouple Composition

The thermocouples used have a positive element made of an alloy of zinc and antimony with a small proportion of lead. The negative element is either constantan or maganine, tinned for the ease of assembly. The unit has no moving part, is not subjected to wear, and is exceptionally rugged and troublefree, with an unlimited useful life, see Fig. 4. It uses only common metals readily available in USSR.

CIRCLE 7 ON READER-SERVICE CARD >

PHILCO Transistors operate 51,614,343 SERVICE HOURS*

in High-Speed Computer Circuits with only 8 Failures I[‡]

Total Transistor Service Hours To Date	Total Transistors	Total Failures‡	Report
1,068,111	99	0	ELECTRONICS, Oct. 1, 1957, pg. 167
5,460,000	600	1	ELECTRONICS, Oct. 1, 1957, pg. 167
1,250,000	125	0	PHILCO REPORT, Feb. 10, 1959
16,000,000	10,192	2	WJCC REPORT, Feb. 1957
8,640,000	8,000	2	PHILCO REPORT, Feb. 12, 1959
19,196,232	18,601	3	PHILCO REPORT, Nov. 19, 1958

Failures due to all causes including human error.

Carefully documented reports now reveal that Philco electro-chemical transistors have amassed more than fifty-million hours of operation in six computers under actual field conditions. Here is proof of the outstanding performance and reliability that electronics engineers and designers have come to expect from Transistor Center, U.S.A. Of course, these transistors are still operating in their original high speed computer switching circuits . . . extending service life data on these transistors beyond the limits of any previously published information.

When you think of transistors, think first of Philco. Make Philco your prime source for all transistor information.

Write to Lansdale Tube Company, Division of Philco Corporation, Lansdale, Pa., Dept. ED 459

*Documented service hours in these six computers only. Total transistors hours in similar circuits are many times this amount.

For jobs that demand utmost dependability... NEW SOLID-STATE FREQUENCY COUNTER

Frequency measuring range:	10cps to 200Kc
Counting intervals:	10 sec to 10 microsec in decade step
Period measurements:	in units as small as 10 microsec
Input amplitude range	100mv to 100v rms
Input impedance	100K ohms
Accuracy:	up to 1 part in 10°
Permissible ambient temperature:	-5°F to 150 F
Power consumption:	40 watts on 117-volt line
Panel dimensions:	544" high fitting a 19" rack
Weight	20 lbs (25 lbs with cabinet)

Built exclusively of solid-state components, this new Beckman/Berkeley Eput[®] Meter exhibits dependable operation at temperatures from $-5^{\circ}F$. to $150^{\circ}F$. under actual test – meets the most stringent requirements for both military and industrial use.

All circuits except the power supply are mounted on easily replaceable plug-in modules of only six different types. The time base is generated by digital circuits requiring no adjustment.

• Adapted to systems use by means of a 1-2-4-8 coded output supplied at a rear connector.

- Accurate determination of low frequencies, such as 60 or 400 cps, by making period measurements.
- Compact, lightweight, takes only 51/4" rack space.
- Battery powered model available for use where line power is not always handy.

Write for technical Bulletin 5310.

Beckman[•]

Berkeley Division 2200 Wright Avenue, Richmond 8, California a division of Beckman Instruments, Inc.

BEHIND THE NEWS

Sitting Pretty in \$7,000 Electronic Super-Bed

The latest furniture invention, a £2.500 (\$7,000) electronic bed, made its bow at London's Furniture Exhibition. A push of a button from either side of this twin super-bed will accomplish electronic wonders. It will open and shut the bedroom window curtains; control the room lights; switch the TV set at the end of the bed on and off; control the mattress heating units; adjust either mattress to any position; and connect the occupants by intercommunication system with the other room or the outside telephone.

According to its manufacturers. Shumberland Ltd. (Redfern Rd., Tyseley, Birmingham 2, England), the bed has been created . . . to herald the emancipation of the bedroom and a new era in relaxed living."

Additional items incorporated are—tape recorder for dictation or music, electric razor, builtin radios, and automatic tex (or coffee) maker.

Did someone ask if it will sell? It was purchased by a Frenchman on the first day of the exhibition.

Compact Geiger Counter Tubes

Thousands of average-size hospitals, industrial and medical laboratories can undertake research with radioactive tracers using reduced amounts of radioactive materials due to the development of two new Geiger tubes. A system, using two new Amperex tubes, weighs only 400 pounds as compared to 4,000 pounds for a conventional unit; only two tubes are needed whereas a conventional system may require as many as thirty. The Amperex type 18515 Geiger tube (bot tom) is the beta radiation detector tube and fits into the cup-shaped anode of the Amperex type 18517 (top) cosmic-ray guard tube.

dische

ELEC

CIRCLE 8 ON READER-SERVICE CARD

pany Presid Divisio amine **Hig Plas**

Hi at Be 4-fool system The from When

insula part (

arour its in consid

20,0

RCA's

tube

000) rniher lecbedhts; and just the rith

ind ng-

ald

era

reilt-

sed.

011.

nd

io-

es,

ds ed

he

p)

9

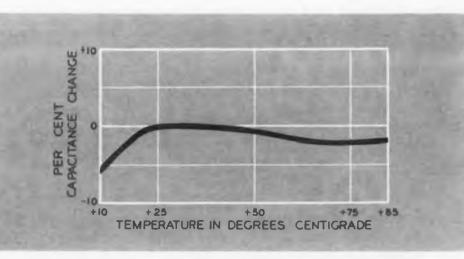
20,000,000th Tube

RCA's 20 millionth black and white television picture tube came off the assembly line Feb. 6 at the company's plant in Marion, Ind. D. Y. Smith (left) Vice President and General Manager, RCA Electron Tube Division, and L. Gillon, Plant Manager at Marion, examine the milestone tube.

High Altitude Simulated in Plastic Balloon

High-altitude antenna studies are being made at Boeing Aircraft Co., Seattle, Wash. in this t-foot-diameter plastic globe. The air-evacuation system can simulate altitudes up to 300,000 feet.

The amount of energy which can be radiated from an antenna is limited by corona discharge. When too much power is fed into an antenna, the insulating properties of the air break down and part of the energy is dissipated as heat and light around the antenna. As the air pressure is lowered, its insulating properties decrease—an important consideration in antenna design and development.


Note the antenna inside the globe and the corona discharge occurring in the thin air.

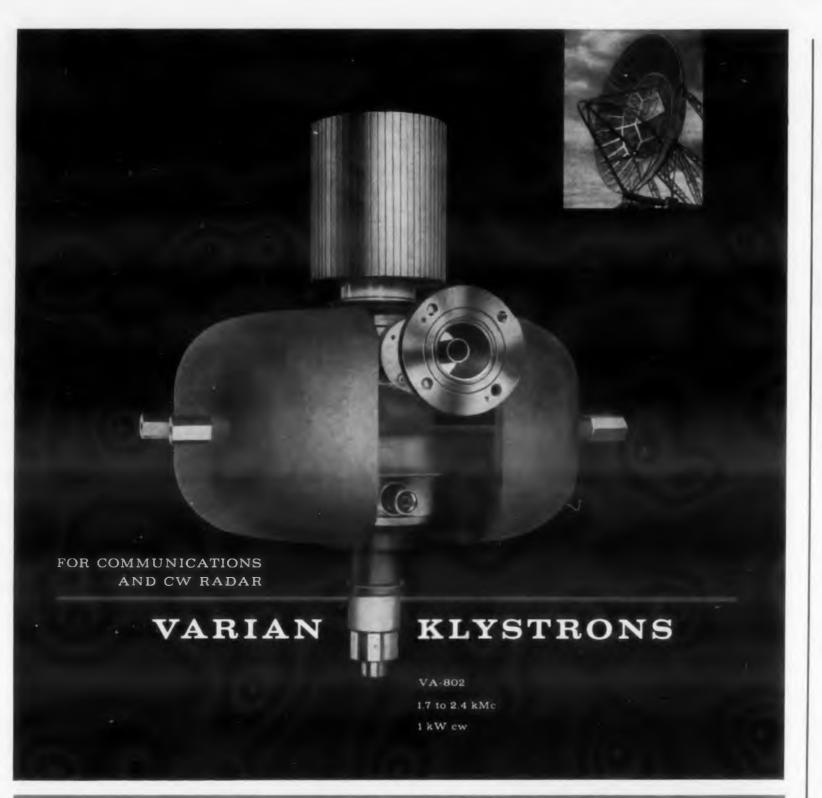
flattens temperature-stability curve

of Cera-mite Disc Capacitors

Cera-Mite Ceramic Capacitors are now smaller, more stable... thanks to Sprague's new ceramic body Formulation 40. The increased dielectric constant of this newly developed ceramic body gives Cera-Mite Capacitors *three* times the capacitance per unit size than heretofore possible. Capacitance change with temperature over the operating temperature range is negligible.

TYPICAL CURVE OF CAPACITANCE CHANGE WITH TEMPERATURE

SPRAGUE COMPONENTS:


CAPACITORS • RESISTORS • MAGNETIC COMPONENTS • TRANSISTORS • INTERFERENCE FILTERS • PULSE NETWORKS HIGH TEMPERATURE MAGNET WIRE • CERAMIC-BASE PRINTED NETWORKS • PACKAGED COMPONENT ASSEMBLIES CIRCLE 9 ON READER-SERVICE CARD

Cera-Mite Capacitors are now available in Formulation 40 from .001 to .02 μ F, 250, 500 and 1000 volts d-c. Engineering Data Sheets 6106 and 6120 list complete ratings and specifications.

Address literature requests to Technical Literature Section, Sprague Electric Company, 347 Marshall St., North Adams, Massachusetts.

SPRAGUE

THE MARK OF RELIABILITY

WIDE TUNING RANGE • AIR COOLED

The highly efficient VA-802 has been designed to meet the rigid demands of both fixed station installation, and transportable service. Simple to install and operate, it provides rugged reliability at low operating cost — with power output of 1 Kw, tuning range of 1.7 to 2.4 kMc. Features of this 18 Klystron with permanent magnet include: Trouble-free internal cavities, low noise and long life.

Varian makes a wide variety of Klystrons and Wave Tubes for use in Radar. Communications, Test and Instrumentation, and for Severe Environmental Service Applications. Over 100 are described and pictured in our new catalog. Write for your copy — address, Tube Division.

KLYSTRONS, TRAVELING WAVE TUBES, BACKWARD WAVE OSCILLATORS, HIGH VACUUM PUMPS, LINEAR ACCELERATORS, MICROWAVE SYSTEM COMPONENTS, R. F. SPECTROMETERS, MAGNETS, MAGNETOMETERS, STALOS, POWER AMPLIFIERS, GRAPHIC RECORDERS, RESEARCH AND DEVELOPMENT SERVICES

CIRCLE 10 ON READER-SERVICE CARD

BEHIND THE NEWS

Mountain to Mole Hill

The four-foot stack of papers at right represents the manufacturing data that was needed to bring in Navy's Aero 13 fire control system, for all weath interceptors, from blueprints to actual production. Westinghouse Electric Corporation's Air Arm Divisi However, after completion of a unique program drastically cul paperwork, save time and reduce cos the same work could be completed today with just the information being held here by R. J. Rattell, assista manager of manufacturing for the division.

0

ĊI

in pe

Ĵ.

N

in

E

Radioisotope Thermionic Converter

Electricity was directly produced from a radio isotope using a thermionic converter undo gamma radiation conditions in an experiment conducted at the General Electric Atomic Powe Equipment (APED).

This announcement follows closely the disclosure by the Atomic Energy Commission of the development of a small atomic generator which uses polonium as its radioisotope and thermolelectric energy conversion device.

General Electric engineers said that, like the thermoelectric device, their thermionic converte demonstration was designed primarily for space vehicle auxiliary electric power applications Results indicate that the system has the potential to produce an extremely high ratio of power by weight.

A power pack generating more than 100 wat of electricity, and lasting more than a year, could weigh less than 25 pounds.

The General Electric device operated at tert

horatures up to 1700 degrees fahrenheit on the hot side" and 800 degrees F on the "cool side."

Gold, used as the radioactive material, conisted of a small strip about one-sixteenth of an neh thick, four inches wide and six inches long, old was selected as the radioisotope because permitted an accelerated feasibility test under gamma radiation atmosphere.

The thermionic converter, employs two small lises about the size of half dollars to "boil" electons off a hot metal surface to produce an electic current. It has no moving parts and operates (a manner similar to the vacuum tube.

Anti-Collision Alert for Autos

14

The state of the s

11

Efforts to reduce the growing number of auto (cidents on turnpikes, super-highways, and exressways will be implemented by radar warning levices in cars of the future. Drivers will be worned when approaching another car too rapidly () when an obstruction or stalled vehicle lies dread.

Developed by the Delco Radio Division of Leneral Motors, the device consists of two 10 in Juminum reflectors mounted behind nose cones hour fect apart on the front of the car. A transuniter and receiver are concealed in the front Junders of the car.

Microwave power, at 16.14 kmc, is generated by a reflex klystron and piped through waveguides to one reflector; it is then beamed out ahead of the car. Reflected signals are collected by the other reflector and piped through waveguides to a stystal diode for comparison of outgoing and incoming signals. Doppler frequency shift depends on the relative motion and spacing between the device and an object ahead. The difference is detected and amplified to a level sufficient to lictuate a speaker or light-flashing device.

The equipment is sensitive to objects up to 1.000 feet ahead of the car and the intensity of warning increases with increasing rate of approach. It is presently being tested on the Cadillac Cyclone, GM's latest advanced design operimental car.

Note nose cones which house part of the experimental proximity warning device.

716,800 unit-hours for 1 MFD. Since the number of unit-hours of these capacitors is inversely proportional to the capacitance, 0.1 MFD El-Menco Mylar-Paper Dipped Capacitors will yield ONLY

1 FAILURE IN 7,168,000 UNIT-HOURS. voltage, depending upon working voltage.

 INSULATION RESISTANCE AT 25 C: For .05MFD or less, 100,000 megohms minimum. Greater than .05 MFD, 5000 megohm-microfarads.

• INSULATION RESISTANCE AT 100 C: For .05MFD or less, 1400 megohms minimum. Greater than .05MFD, 70 megohm-microfarads.

• POWER FACTOR AT 25 C: 1.0% maximum at 1 KC.

Write for Technical Brachure Giving Complete Information on the El-Menco Tubular Dur-Paper Line.

.018 to .5 MFD

.0082 to .33 MFD

.0018 to .25 MFD

.001 to .1 MMF

.001 to .05 MFD

SUPERIOR FEATURES!

apacito

200 WYDC ---

400 WVDC ----

600 WVDC ---

1000 WVDC ----

1600 WVDC ----

• Five case sizes in working voltages and ranges:

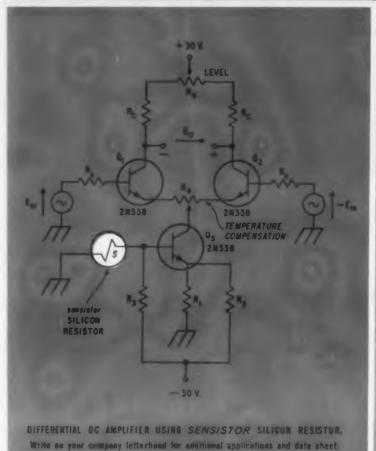
THESE CAPACITORS WILL EXCEED ALL THE ELEC-TRICAL REQUIREMENTS OF E.I.A. SPECIFICATION RS-164 AND MILITARY SPECIFICATIONS #MIL-C-91A AND MIL-C-25A.

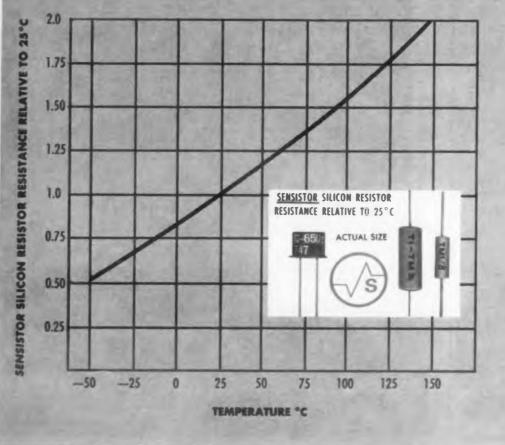
FOR FAILURE-PROOF PERFORMANCE . . . COUNT ON EL-MENCO MYLAR-PAPER DIPPED CAPACITORS . . . FROM MISSILE GUIDANCE SYSTEMS TO DATA PROC-ESSING EQUIPMENTI

*Registered Trade Mark of DuPont Co

THE ELECTRO MOTIVE MFG. CO., INC. WILLIMANTIC CONNECTICUT

Manufacturers of El-Mence Capacitors


• molded mica • dipped mica • mica trimmer • dipped paper • tubular paper • ceramic • silvered mica films • ceramic discs


Arco Electronics, Inc., 64 White St., New York 13, N. Y. Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada

El-Menca

CIRCLE 11 ON READER-SERVICE CARD

TI APPLICATION NOTE

HOW TO INCREASE DIFFERENTIAL DC AMPLIFIER STABILITY WITH <u>Sensistor</u> SILICON RESISTORS

Low drift transistor amplifier circuit using sensistor silicon resistor gives drift performance superior to vacuum tube amplifiers for low source impedance applications.

The sensistor silicon resistor has a unique positive temperature coefficient of $+0.7\%/^{\circ}C$ plus a constant rate of change as shown in the graph to the right. Over a 15°C temperature range, the sensistor silicon resistor's temperature-resistance curve approaches linearity to an extent that allows its use as a compensating component in a differential D-C amplifier.

This low drift amplifier finds a wide range of low source impedance applications in airborne telemetry where the performance of other types of D-C amplifiers is limited by weight requirements, acceleration, shock, and vibration. It is particularly useful with low level transducers such as thermocouples, strain gages and accelerometers.

DESIGN CONSIDERATIONS

TI 2N338 silicon transistor provides excellent performance as a low drift DC amplifier when used in circuits such as the one shown above.

For optimum performance keep $(2R_b + R_i)$ as small as possible, preferably less than 2000Ω , and the collector currents of Q_i and Q_i should remain below $100 \mu A$.

•TRADEMARK OF TEXAS INSTRUMENTS

from THE WORLD'S LARGEST SEMICONDUCTOR PLANT

Drift cancellation featured in an uncompensated differential configuration provides an amplifier with an equivalent input drift of 400 μ V/°C or less with standard production transistors.

Drifts as low as $6_{\mu}V/^{\circ}C$ will result if the compensating circuit composed of Q_{a} , sensistor resistor S and their biasing resistors is used with a matched pair of transistors.

CIRCUIT OPERATION

Sensistor resistor S and its biasing resistor R_3 serve as a voltage source which has an output linearly related to temperature...level potentiometer R_3 adjusts output voltage E_3 to zero when E_{1n} is zero...potentiometer R, adjusts for minimum output drift due to ambient temperature changes. As temperature increases, the resistance value of S also increases causing the base of Q_3 to go more negative, thereby reducing the collector current of Q_3 . This temperaturedependent current is fed into the differential amplifier through R.

Depending on the wiper position of R., the correcting signal may be positive, negative or zero. When the wiper is centered, zero correction results. As temperature increases, output voltage E_0 tends to go more positive if the R, wiper is placed nearer the Q_2 emitter and negative if the wiper is placed nearer Q_1 . The optimum setting for R, can be determined by cycling over the desired temperature range to give a minimum drift for changes in ambient temperature.

BEHIND THE NEWS Radar for Jet Airliners

A self-contained long-range navigation device for jet and turbo-prop airliners, providing for the first time a navigation system that operates anywhere in the world and requires no ground facilities, has been successfully flight-tested.

The new device, developed by the Radio Division of Bendix Aviation Corp. is a light weight, compact system based on the Doppler radar principle that has been used successfully on military planes. The system provides the airliner pilot with a direct reading of his true ground speed (as contrasted with air speed), drift angle, actual course over the ground and distance-to-go to his destination.

By directing four beams of radar energy toward the earth from an airplane and measuring the Doppler effect in each beam, it is possible to solve several complex equations with an electronic computer to determine exactly how fast an airplane is moving, both horizontally and vertically.

Global Weather Probe

New details of a global undertaking to unlock secrets of weather were revealed by Bendix Aviation Corporation.

The project, to be carried out for the U. S. Air Force, will test the latest inventions in scientific sensing with electronic equipment mounted in a Boeing 707 pure jet transport plane. Weather data from the ground up to 150,000 feet will be continuously collected, analyzed and transmitted to the ground.

The cabin of the 707 test plane is to be a flying laboratory. In their atmospheric search around the world, the observers of the Air Weather Service of the U.S. Air Force will maintain a flight plan of up to 55,000 feet. They will probe the weather below the plane with parachuted "dropsondes," and the weather above with rockets to carry an instrument package to the upper atmosphere.

These expendable instruments

✓ CIRCLE 12 ON READER-SERVICE CARD CIRCLE 296 ON READER-SERVICE CARD ►

S rs

ige navirbo-prop irst time operates requires een suc-

ped by ix Aviaompact er radar ed suc-The syslot with ground speed), ver the to his 🕯

f radar an airoppler ible to nations to deirplane nd ver-

undereather viation

ut for st the ensing unted isport the ill be d and

ine is their the Air Air an of orobe with the carry pper

RD >

ients

Precision Switches SWITCH MICRO

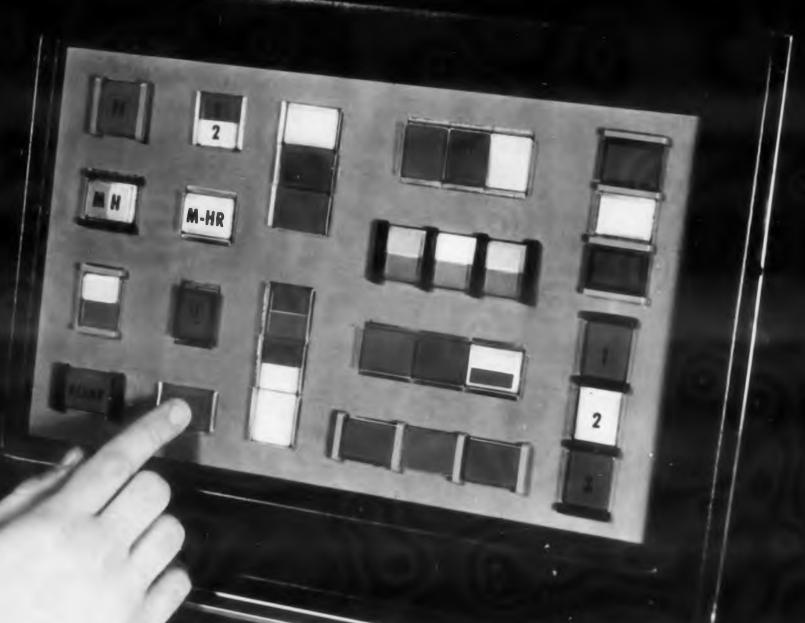
All new Series 2 lighted display and pushbutton switch devices offer new modular versatility in lighted display

The modular concept of Series 2 devices opens a new approach to design freedom in both front-of-panel lighted display and back-of-panel precision pushbutton switching. The demonstration panel shown above illustrates some of the variety in arrangement and color and labeling offered by these new devices.

Principal advantages of Series 2 units include these:

Operator-indicator and indicator units are assembled quickly and easily, without tools. Even the switching units simply snap into place as shown on the next page.

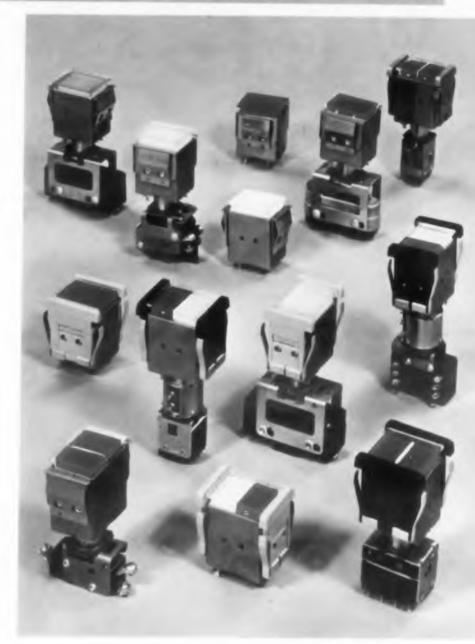
Units are available, flange mounted or barrier mounted, in long-flange, short-flange, long-barrier and shortbarrier types. All types can be combined in either rows or columns to provide eight group-mounting schemes.


Five colors of display screens are available-red, yellow, blue, green, and white. Two, three, or four lamps can be used in each unit. Color filter caps for the lamps are available to provide projected color on white frosted screens.

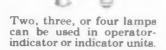
Two-color display screens may be split laterally or longitudinally, in any combination of the five colors.

Assemblies built up of the desired number and type of units, snap into pre-cut rectangular slots in the mounting panels, also without tools.

Panels may be from 1 16" to 5/16" thick. Flangemount units can be used with a mounting panel and overlay panel, or with mounting panel only.


Here is a new dimension of design freedom in illuminated switching equipment . . . an all-new system compatible with good human-factors engineering.

CRO SWITCH Precision Switches


All new Series 2 lighted display and pushbutton switch devices offer new modular versatility in pushbutton switching

Yes, you can have the panel arrangement you want (preceding page) and the switch unit the application requires. At right you see a few of the hundreds of available combinations of Series 2 switch units and operator-indicator units. To attach an operator-indicator unit with a switch unit, just snap them together. All such combinations are available with or without magnetic d-c holding coil. Switch units are offered with switches from eight different MICRO SWITCH series of basic switches-"TB", "SM", "HS", Type "A", "MT", "DT", Type "Z", and "V3". Included are switches for low-energy circuits, switches for handling d-c loads of up to 10 amperes, 125 volts, and for direct control of a-c motors of up to two horsepower ... alternateaction units, momentary-contact units, and units for control of multiple circuits.

Display screen, in four colors and white. Also available split lengthwise or across.

Operator-indicator unit, barrier type. Unit shown has long (side) barriers. Also available are short (end) barriers, and flange-type units without barriers.

Color filters in red, yellow, green. or blue fit over lamps, permit projected-color lighting.

"SM" switch unit—one of many Series 2 switch units—snaps onto base of operator-indicator unit.

Indicator unit, long flange type. Short flange and barrier types are also available.

New Catalog 67 describes Series 2 devices in detail. Split pages aid selection of components. Contains detailed switch unit data and helpful ordering and color selection information. Sent free on request.

MICRO SWITCH... FREEPORT, ILL. A division of Honeywell In Canada: Honeywell Controls Limited, Toronto 17, Ontario

wil ain bac und tion ten chu pac

7

for stor teet mil obs wit bas pre 000 # wit ma ente put

1.111

Aι M ing ma PCC ma by Ge ele cal per tar bri IDE rec tin ma thr pro lot be

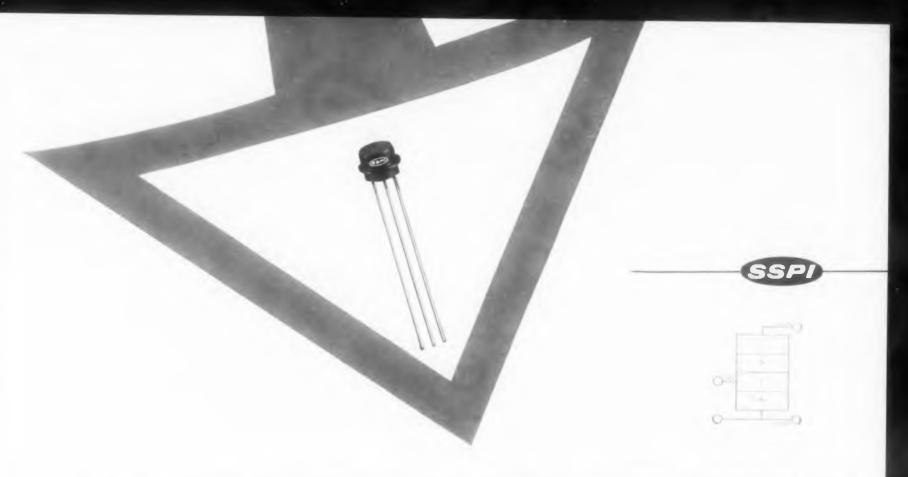
tar rev the cor siz the ma

*

will be ejected from the rear of the aircraft and will radio their data back to it for recording, computing and transmittal back to ground stations. The rockets will rise nearly ten miles before starting their parachute descent with their instrument package.

Two kinds of radar will be used for measuring cloud formations and storms. A "C" band will permit detection of storms as distant as 150 miles and allow 15 to 20 minutes observation of them. A "K" band with dual antennas will measure the bases and tops of cloud layers with precision from the ground to 100,-000 feet.

All data, both raw and processed, will be permanently recorded on magnetic tape. It will then be fed into a general purpose digital computer of extreme flexibility for correction, computation, and correlation as required.


Automation for Small-Lot Manufacturers

A versatile, automatic-tool-changing tape-controlled combination machine that makes automation economically tensible for small-lot manufacturers has been developed by Kearney & Trecker Corp. with General Electric Co. supplying the electronic program controls.

The new combination machine, called the KTNC Milwaukee-Matic, performs milling, drilling, reaming, tapping, and boring operations to bridge the gap between job shop mechanization and automation. By reducing setup time, production time, labor costs, and inventory, the machine can pay for itself in one to three years for any manufacturer producing goods in small or medium lots.

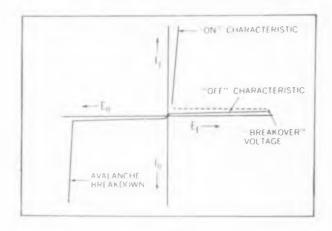
As many as 31 different tools can be loaded into the machine simultaneously-30 in a specially designed revolving storage drum and one in the spindle. There are 31 different combinations of 31 tools, ranging in size up to 2-5 8 inches in diameter, that can be utilized by the machine, making a total of 961 tools.

CIRCLE 13 ON READER-SERVICE CARD → CIRCLE 296 ON READER-SERVICE CARD

SILICON PNPN CONTROLLED SWITCH

... A completely new semiconductor component with

thyratron-like characteristics for high speed medium power switching


OPERATING CURRENT RANGE 10 - 1000 mÅ LESS THAN 2 mA GATE CURRENT TO "FIRE" VOLTAGE RATINGS TO 200 V "TURN ON" TIME TYPICALLY UNDER 0.2 //SEC LOW "ON" VOLTAGE, TYPICALLY UNDER 2 V O"ERATION TO 150° C MINIATURE SIZE, IN TO-9 PACKAGE MECHANICALLY RUGGED

WHAT THE PNPN SWITCH WILL DO

Within their power ratings, the PNPN switches can replace thyratrons, magnetic amplifiers, relays, vibrators, mechanical switches, diodes, transistors and unijunction transistors in a wide variety of applications, including:

Core switching Signal gating Pulse generators Modulators Static switching D.C. to D.C. converters Pulse shaping D.C. motor control Controlled rectification Servo systems Power supplies Power regulation Choppers Generator field control

Available now through your local SSPI representative or by contacting the factory direct.

The E-I curve above shows the "on" and "off" conditions of the forward characteristic. The switch is turned "on" when a small gate current is applied. When "on" the anode current is limited only by the external load and is independent of the gate current. The inverse characteristic is similar to that of a conventional silicon diode.

A high ratio (up to 500:1) of load current to control current permits high equivalent circuit gain and simplifies control circuitry. Switching efficiencies as high as 98% are possible.

Write for Bulletin C420-01

New techniques, new instrumentation, factually reported for you in the

HEWLETT-PACKARD

OURNAL

Typical subjects:

MICROWAVE DEVICE NOISE FIGURE. What it means, how to measure it, automatic noise figure recording, new meters and noise sources.

MEASURING DC VOLTAGES DOWN TO 1 µV. New techniques, new instruments permit direct readings of extremely small voltages.

TESTING QUARTZ PLATES FOR 5 x 10⁻⁸ WEEK ACCURACY in new 10 MC electronic counter. "NO-CONNECTION" MEASUREMENTS OF DC CURRENTS. New milliammeter approach requires no soldering; doesn't load circuit.

AUTOMATIC PRINTED RECORDS FROM DIGITAL VOLTMETERS; straightforward method of recording; new equipment available.

YOURS WITHOUT CHARGE FROM

The *p* Journal, reporting throughout the year on measuring developments in all spectra, is sent without charge to engineers in electronics and allied fields. Simply write:

EDITOR,

Hewlett-Packard Journal 5222K Page Mill Road Palo Alto, California

Complete Coverage in Electronic Test Instruments

CIRCLE 14 ON READER-SERVICE CARD

BEHIND THE NEWS

Combustion Checker

Knock, pre-ignition, rumble, and thud—odd sounding names for abnormal combustion processes that occur deep inside modern high compression engines—are ferreted out by this precision electronic equipment de veloped by duPont Company scientists and installed recently in the company's Petroleum Laboratory. The unique instrument permits instantaneous detection and recording of combustion phenomena simply by replacing the conventional spark plugs in the engine with special instrument plugs equipped with built-in, pressure-sensitive, piezo-electric crystals. The crystals transmit electronic signals which the instrument translates into accurate data on engine performance.

Thermoelectrically Cooled Diode Breaks All Barriers

Anybody can get excited about a small diode that can switch 54 amperes. With an average forward conduction of 17 amperes from -55 C to +385 C (without derating), this diode may well revolutionize the industry-especially with its 0.002 usec recovery time.

Clinging to his production secrets, the manufacturer, Rare Avis Co. (Dept EEG), of 39-21 222 St., Bayside, N.Y., refuses to divulge the nature of the junction materials in the diode. He refuses, also, to disclose how the rapid switching is accomplished.

He does explain how the diode achieves its remarkable temperature range. Thermoelectric cooling is employed to remove heat from the main diode junction. Part of the diode's forward current is forced through an auxiliary thermoelectric junction. As the current rises, so does the rate of thermoelectric cooling.

At temperatures up to about 175 C, no external heat sink is required, but beyond this level, an auxiliary heat sink will help prolong diode life.

After a prolonged discussion with editors of ELECTRONIC DESIGN, the manufacturer agreed to make more information available on next April 1st.

C

11

in

tit

30

hi

110

High-Speed French Computer

A top French industrialist declared recently that France is in the midst of an electronics revolution which has immeasurably strengthened the scientific and technical structure of Western Europe. Mr. Georges Vieillard, founder and general infinager of the Campagnie des Muchines Bull. Paris, largest producer of electronic computing equipment in Europe, said that "this revolution has helped France expand its plant and equipment at the highest rate on the continent."

The company's Gamma 60 computer, expected to be in production within a year, is understood to be the first data processing machine in the world which can handle several independent problems at the same time,

١g

ùτ

re

6-

bs

nd

th

15

15-

es.

de

)1'-

to ell

its

111-

22

ne

CS.

is

its

ric

the

rd

·('-

ite

al

an . of

to

st.

9

It can read 300 punched cards a minute, print 120-character lines at 300 per minute. Printing speed can be increased by using more than one printing unit. The Gamma 60 comprises ten types of units: arithmetic, logic, comparer, translator, printer, card reader, paper tape, magnetic tape magnetic drum, and card punch.

Time Reversal Studies

Engineers at Case Institute of Technology are attempting to turn back split seconds of time in order to improve long distance communication techniques. Their experiments depend on reversing the order of a series of signals sent over wires to improve the fidelity of transmission. A contract in the amount of \$29,600 for a year study of "Time Reversal Techniques" has been awarded to Dr. Harry M. Mergler by the Rome Air Development Cen-Jer. Under his direction, the scientists will attempt to implement the theory that signals transmitted over ong distances, if reversed in direcion of flow at the midpoint of the listance from transmitter to reeiver, will retain their fidelity over he entire route of transmission.

STEMCO TYPE MX' THERMOSTATS

especially designed for missile, avionic and electronic applications

New Stemco Type MX Thermostats are miniature snap-acting units designed to open on a temperature rise. Being compact, lightweight units able to withstand high G's under wide ambient temperature ranges, Type MX thermostats are ideal for missile, avionic and other electronic applications where close temperature control is mandatory.

Basic design flexibility of the Stemco Type MX Series means the units can be supplied from regular production runs in a wide variety of models, both semi-enclosed or hermetically sealed. Ceramic or metal bases for semi-enclosed units, round enclosures or CR-7 crystal cans for hermetically sealed units. Several types of terminal arrangements, mounting provisions, brackets, etc., are available.

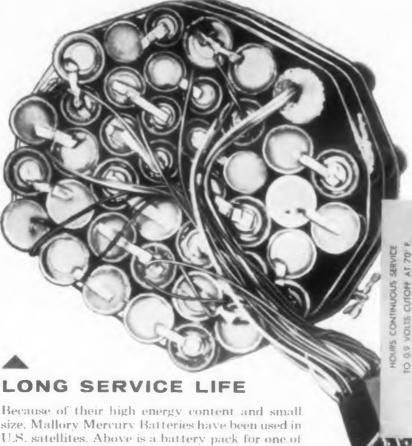
Stemco Type MX thermostats give you performance ... small cubage ... rugged reliability ... at a production price.

* 2° to 6°F differentials available

NASA's Policies

Engineering ingenuity will be a major by-product of U. S. efforts to explore space. As things stand, it is not likely that a large "space industry" will grow up in the near future. But the skills of electronic design engineers and technicians will be drawn upon heavily.

As progress is made, costs of the payloads—the instrument packages—carried by space-probing vehicles may become as large or even larger than the basic vehicle costs, according to space experts. The technical qualities of these far-ranging measuring and reporting devices, mostly electronic, will be "extremely advanced — but production is "more likely in the dozens than in the hundreds."

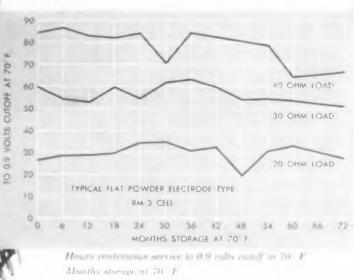

Though costs of space exploration pale when compared with the billions spent through the Department of Defense, they are far from picayune in terms of individual company activity. In the current fiscal year. National Aeronautics and Space Administration is committing \$220 million for procurement. It already knows where the "great bulk" of this is going, and has let contracts for more than half. In the coming fiscal year, it hopes to get another \$333 million from Congress for new procurement—and the legislators may vote more.

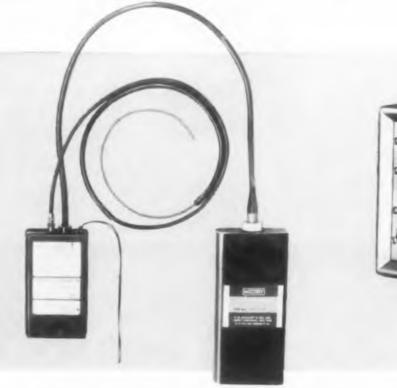
Fund Allocation

Tentative allocation of fiscal 1960 funds indicates: 50 percent, procurement of instruments, vehicles, and scientific investigations of space; 20 percent, space propulsion technology; 20 percent, development of technology for manned space flight: 6 percent, specific investigations of satellite applications in the fields of communications and meterology; and 4 percent, entracts for tracking and data acquisition and advanced space technology.

This subdivision of funds reveals that the electronics industry's share is small. How much of the 50 per cent is pure electronics is hard to determine. One of NASA's future space explorers, Vega —a combination of Atlas, Vanguard and 6000 lb final thrust—is expected to cost \$10 million; half of the dollars will go for electronics.

Design Extra Performance


the Vanguard projects. In Explorer 1, the mer-


cury batteries for the tracking transmitter functioned for 112 days . . . far beyond the 60 days

minimum life expectancy.

LONG SHELF LIFE

Tests recently completed prove that storage *for* as *long* as six years causes only slight loss of capacity of the unique Mallory mercury battery system. The curves shown here represent data on a typical group of RM-3 cells. Note how closely the milliampere-hour life stays to the "newly made" value for up to 72 months.

DEPENDABILITY

Mallory Mercury Batteries supply life-saving power for emergency beacon transmitter made by Telephonics Corporation. Carried by fliers, the transmitter turns on when the flier parachutes out . . . sends signals up to 100 miles to rescue crews. Compact battery pack operates up to 8 hours . . . stays at full strength for months, always ready to deliver power.

STABILITY

In the Megatrometer (insulation resistance tester by Mid-Eastern Electronics, Inc.) they give voltage stability better than 0.0005', change per hour. Ten RM-42 cells power tube filaments and the 1000-volt transistorized variable power supply. Same stability gives high precision in telemetering circuits and industrial potentiometers.

ELI

Into Battery-Powered Products

... by using the unique qualities of Mallory Mercury Batteries

Looking for ways to make battery-operated electronic equipment more miniature, more dependable, more stable, more convenient to use? Put the unusual properties of Mallory Mercury Batteries to work in your new designs, and in improvement programs on your present products.

Mercury Batteries—pioneered and perfected by Mallory—do things that no other commercial dry cell can. Their unique chemical system gives them shelf and service life several times that of ordinary batteries. They have high energy per unit volume, and broad temperature range. Their constant energy discharge exactly matches transistor requirements . . . makes them suitable for use as high-stability reference voltage standards.

A constantly growing list of new electronic products is making use of these batteries. A few typical examples are shown here. Our application engineers will welcome the opportunity to discuss how you can capitalize on them in your own equipment. An extensive line of standard single and multiple voltage batteries is available. Individually-designed packs can be engineered to your specifications. Write today for a consultation, and for latest engineering data.

In Canuda, Mallary Battery Company of Canuda, Limited, Toronto J. Oniaria

MINIATURIZATION Inconspicuous hearing aids and

pocket transistor radios are typical of the tiny products which Mallory Mercury Batteries help make possible. They pack a lot of energy into small volume. Latest and smallest model is the RM-312 cell, only 0.305" in diameter and 0.135" thick—rated 36 milliampere-hours.

SPECIAL BATTERY DESIGNS for MILITARY PROJECTS

Mallory engineers specialize in developing and manufacturing mercury battery packs for military equipment such as beacon transmitters, missile telemetering, portable communications, sonar equipment, and similar devices. Our extensive experience, and facilities for design, testing and pilot manufacturing are at your service. Call or write for a consultation. An additional supplemental \$48 million for 1959 is expected to come through. Of this \$12 million will be spent on tracking; \$3.4 million for minitrack stations, \$3.35 million for basic precision radar, \$5.25 million for precision radar and other tracking means.

Patent ownership for inventions made under contracts with the National Aeronautics and Space Administration is slowly becoming clearer. Though the law allows NASA to take title to such patents, the agency realizes that industry would be under a heavy burden if the fruits of its efforts were invariably grabbed automatically by the government. This, in turn, would place NASA in a bad light. Many companies, hoping to achieve scientific breakthrough—or seeing them in the offing—might elect to avoid working under NASA contracts. They could decide to pay for exploratory research themselves or seek contracts with other agencies that have more liberal patent rules.

NASA Plans "Reasonable Interpretation"

To avoid finding itself in an "unworkable situation," NASA is planning a "reasonable interpretation" of the law. Thus, the mere purchase of a standard component with NASA funds will not involve any question of the possible loss or patent rights. On the other hand, much creative engineering, scientific, and technical work will be covered by the agency's sweeping powers to take title to patents. Even here, however, NASA will not exercise its authority to the fullest extent. As things stand, it is planned to have some, but not necessarily all, contractors make complete and prompt technical reports when an invention, discovery, improvement, or innovation is made. Most likely to be subject to this requirement are firms working under contracts with NASA (or financed by NASA) which contemplate that the contractor will work in accordance with the agency's specifications or special requirements.

Property rights in patents are to be decided on an individual basis. When a contractor files required information concerning new data, the agency will decide whether to exercise its legal right to take title. Officials say that NASA "will make every effort to administer its legal requirement concerning patents fairly and objectively with due consideration to the interests of both government and private industry."

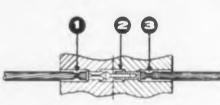
Criteria For Granting Waivers

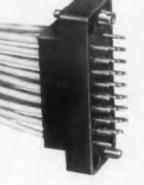
Some of the rules that will be discussed at a Waiver Regulations Meeting May 18 include these prima facie cases for waiver:

invention conceived prior to contract.

• invention has only incidental utility to NASA and has promise of commercial utility.

• contractor has spent considerably more of his own funds on the work than did NASA.


Precision hand, pneumatic, or automatic tooling guarantees uniform and complete crimp for each connection -a measurable quality control -at a high speed production rate.


SNAP-LOCK

Pins and sockets are easily and quickly snap-locked into plugs and receptacles. They may be removed with a simple extraction tool for circuit changes or checks.

CONNECT ... only 3 points of contact

The HYFEN method provides the minimum number of contacts-3-thereby reducing reliability problems. Exceeds the requirements of MIL-C-5015C and MIL-C-8384A

HYFEN connectors with crimp-type snap-locked contacts

BURNDY's HYFEN method, already widely accepted in the industry, speeds the wiring of electronic harnesses and systems, and achieves greater dependability and versatility than has heretofore been possible. Crimp-type connections eliminate time-consuming solder operations and the disadvantages in the use of solder.

For complete information, write: OMATON DIVISION

CIRCLE 17 ON READER-SERVICE CARD

ACCEPTED!

ME rack and panel HYFEN connector, 8 or 26 place configuration. One-piece shell and one piece block. Also available for coaxial or shielded cable.

Feed-thru, modular design, multiple insert connector. 35 contact inserts can be removed from frame for easy contact insertion or removal. 5 or 8 insert frames available

Printed circuit connector in either 31 or 45 place configuration. Accommodates single wire or combinations of wire sizes

HYFEN types illustrated are typical of those already supplied to the industry by BURNDY. HYFEN connectors are engineered to meet specific requirements. For other types or sizes, contact BURNDY

NEW PRODUCT

Printed Circuit Connector With Crimped, Snap-locked Contacts

(Advertisemen)

A new addition to the HYFEN® line a printed circuit connector, has been announced by the Omaton Division of the Burndy Corp.

This connector, type MC, was designed to combine the high reliability and the wiring technique embodied in the HYFEN principle for us with printed circuits. This principle allows crimping to be done before or after the hamess or wires are in place. It also allows sockets to be easily and quickly snapped in to be removed with a simple extraction tool for circuit changes or checks, and to be reinserted.

The printed circuit HYFEN is available in 31 and 45 place configurations. The male side of the connector utilizes right angle pins with one side assembled to the board and the other to the receptacle. The side assembled to the board is held in place mechanically and the connection to the circuit is usually dip soldered with the other components on the board. Guide pins align the place and receptacle, which is mounted on the chassi-Three sizes of HYFEN solderless crimp-type snap locked sockets, accommodating wire sizes #2: #14 and combinations of these sizes, are available for the receptacles. These crimped connections eliminate time-consuming solder operations and the high rejection rate inherent in the use c^{-1} fluxes and dissimilar metals characteristic of solde-

Both hand-operated and semi-automatic instalation tooling can be used for crimping thes sockets. The blocks are made of diallyl phthala

Burndy Corporation, Norwalk, Connect. CIRCLE 18 ON READER-SERVICE CARD

E

EDITORIAL

semen

inted

the

10 JUI

with

4 lu

411

and

nph

the

10

eld

the

(11)

sis

ιp

25

Dishonest Bidding Must Go

Many engineers know that the only way to get a cost plus fixed fee (CPFF) contract from the government is to underoid. This is because it is usually the lowest reasonable bid that gets the contract. You bid low knowing that later you will ask for the additional funds to meet your costs.

It is therefore calculated dishonesty that pays off. Such dishonesty is so prevalent that it is unfortunately becoming recognized as normal procedure.

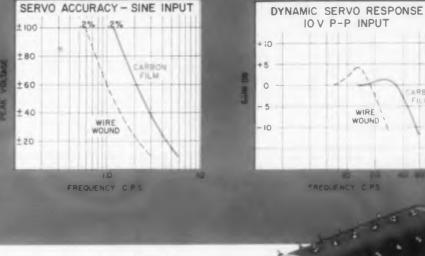
You know you can get money if needed and so does your competition. You also know that if you bid too low, your bid can be tossed out as irresponsible. You therefore bid to outguess your competition knowing that if you come in with a "justlower price and have a justifiable technical approach, you get the job. What you finally are paid for this job may be far higher than the honest bids that were refused.

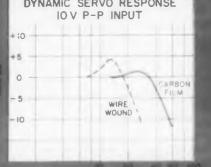
The government knows this practice is going on and decries it but so far they have been unable to curb it.

Elimination of CPFF contracts in favor of fixed price contracts is often recommended by contracting officers and Congressmen but engineers know that such contracts do not offer the flexibility so often needed. The answer would seem to be to award a CPFF contract more on the basis of technical soundness and less on price.

One solution is to put a weighting on all the various points that are supposedly considered before a contract is awarded. With every factor, including price, worth only a few points, the more honest, straightforward and clear the proposal, the better are its chances of being accepted.

Admittedly it is no simple task to come up with a point system for evaluating a bid. But here engineers and only engineers can point the way. Who else can judge?


It may be that we need a panel of several technical judges to determine who is the winner of this best technical proposal contest. With rules for playing the game allowing, say only 25% of the total points to be influenced by price, such things as technical considerations and past performance of the contractor will assume their necessary importance.


Everyone will gain by an improvement in CPFF negotiations. Let's encourage our managements to press for a solution that would meet the approval of an engineer.

Jame & Kipphe

WITH CARBON FILM POTS Servo 100% Faster

SIX - GANG POT MODEL 205

PROBLEM

Poor resolution and loss of output signal due to wiper bounce of its wire-wound pots limited the speed of servo multipliers in an Analog Computer. This poor dynamic performance, due to the use of wirewound pots, threatened to obsolete the entire Analog Computer.

SOLUTION

The substitution of the C.I.C. Carbon Film Pot, with its infinite resolution, low torque, and zero wiper bounce at high speeds, permitted a great increase in amplifier gain with a 100% improvement in dynamic response of the servo multipliers.

Maximum Velocity Maximum Acceleration **Multiplication Accuracy**

OLD WIRE-WOUND 1400 volts/sec 56000 volts/sec² + .24%

NEW CARBON FILM 1000 volts 'sec 150000 vo!ts/sec .2%

The performance of your servo system will also be improved if you use C.I.C. Carbon Film Pots. Send us your specifications today.

MORE THAN 3 MILLION C.I.C. CARBON FILM POTS HAVE BEEN MANUFACTURED FOR MILITARY AND INDUSTRIAL USE

CIRCLE 19 ON READER-SERVICE CARD

Circuit failures result from either catastrophic failure of components, or from components changing their values. By realistically analyzing value changes during the design of a circuit you . . .

Improve Circuit Reliability

Charles A. Krohn Senior Electronic Engineer Motorola Inc. Phoenix, Arizona

Component Part Value Distribution

component parts whose values are distributed.

statistical techniques.

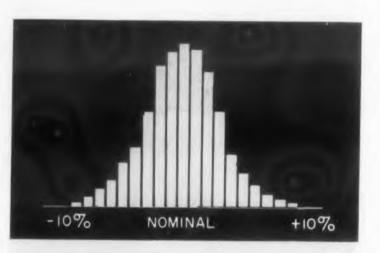


Fig. 1. Resistance distribution.

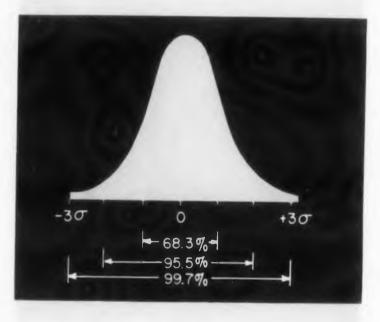


Fig. 2. Normal distribution.

HANCES are very remote that all component Most of the components will have values near Cparts in a circuit will simultaneously exist at some nominal value. And a few will have large their maximum tolerance. This point forms the deviations from the nominal value. Suppose that basis for a scientific rather than artistic approach measurements were made of a large quantity of to handling component value variations in circuit resistors of the same nominal value and ± 10 design. The approach involves using some simple per cent tolerance. Plotting vertically the number of resistors in each 1 per cent interval of resist-Overall variations in component part values ance will usually result in a configuration shown under operating conditions are caused by factors in Fig. 1. It is called a frequency distribution or such as environment and aging. Changes will histogram. As the number of resistors measured result from unidirectional tolerances (coefficients) increases and the resistance interval is narrowed. and from plus-or-minus tolerances (distributions). the envelope of the histogram will form a normal or Gaussian distribution curve as shown in Fig. 2. This curve is symmetrical about the average A manufacturing process typically produces and asymptotic at the base.

Total area under the curve represents all the

Table 1. Variations to be expected in Resistors and Capacitors

		Resistors	Capacitors		
	Deposited CarbonComposition (1 megohm or less)Precision Wirewound		Danaa		Glass
Typical manufacturing tolerance	± 1%	± 5%	±0.25%	± 507	± 5%
Change at +125°C	-3.5%	+11%	+0.25%		+1.3%
Change at +85°C	-2.1%	± 4%	+0.15%		+0.8%
Change at -54°C	+2.8%	+12%	-0.20%	- 60%	-1.07
Aging change	$-0.4\% \pm 1\%$	- 5% = 2%	± 0.20%	- 6% ± 2%	= 1.0 %
Change with heavy loading (near max rating)	- 1.8%			- 2 /0	- 1 %
Change due to volt- age coefficient	- 1.8 %	+7%	+0.1%	_	-
(100 v dc applied)	-	-1.5%	-	-	_
Soldering change Change with high	-	-2%	-	-	-
frequency operation	_	- 5%	_	_	_

*Composition resistors may suffer a +10% additional change if exposed to 95% relative humidity, 55°C, for 100 hours.

esist he The ent he r ive i nelu nclu ill u - pe mtr

Ar

In nost abl been Othe he a The fact E add whi port squ met tion Res Wir Cas ten Mai Ten Agi Loc

> Mc Ter Ag

> > iF

126

Par or ou

el.

Ē.

esistors. Sigma (σ), the standard deviation, is the measure of variation of the distribution. The area bounded by ± 1 sigma covers 68.3 per cent of the total area. That is, 68.3 per cent of the resistors are included by ± 1 sigma. Ninetytwe and one-half per cent of the resistors are included by ± 2 sigma. And 99.7 per cent are included by ± 3 sigma. Manufacturing tolerance ill usually correspond to ± 3 sigma, or greater, the pending upon the degree of production introl.

Variations in Component Values

An estimate of resistance and capacitance hue changes that may be expected of some nost common component parts are presented in Table 1. Typical manufacturing tolerances have been listed to permit calculation of examples. Other values of manufacturing tolerances will be applicable when different from these shown. The reference value is that given by the manutation. The variations tabulated are not apphicable to all component part manufacturers.

Effects of a given situation are combined by adding the portion of each appropriate change which has a single sign, and by combining each portion which has a \pm sign according to the square root of the sum of the squares. This method of handling component part value variations will be used in all examples given here. *Resistors.* As an example, consider a precision wirewound resistor that has a varying and occasionally heavy load, and must work at any temperature between -54 and +125 C. The drop in value will include:

Manufacturing tolerance		± 0.25%
Temperature effect (-54 C)	— 0.20 %	
Aging effect		±0.20%
Loading effect (lightly loaded)	-	-
Total drop	-0.20%	±0.32%
Further, the rise in value	will includ	e:
Manufacturing tolorganso		+ 25%

Manutacturing tolerance		± .25%
emperature effect	+0.25%	
Aging effect		±0.20%
oading effect	+0.10%	
fixed heavily loaded)		
Total rise	+0.35%	±0.32%

The extreme values encountered will be -0.52per cent and +0.67 per cent. For any component part, if the manufacturing tolerance is adjusted out or compensated, it can be omitted from the sombined tolerance.

Tubes. An estimate of changes in vacuum tube parameters is given in Table 2. It is assumed that environmental high temperatures will be compensated by operating the tubes at no more than and preferably less than 70 per cent of If you have this problem, investigate

GRIP-EZE

—an example of Phelps Dodge's realistic approach to Magnet Wire research

To develop a solderable film-coated wire without fabric for windinuniversal lattice-wound coils without adhesive application.

The surface friction for lattice-wound coils that provides mechanical gripping between turns and keeps wire in place.

Coils wound with (a) conventional film wire; (b) Grip-eze. Note clean pattern of Grip-eze as compared to fall-down of conventional film wire-

> Anytime your problem is magnet wire, consult Phelps Dodge ...!

FIRST FOR LASTING QUALITY — FROM MINE TO MARKET !

INCA MANUFACTURING DIVISION

CIRCLE 20 ON READER-SERVICE CARD

normal rated plate dissipation. It is also assumed that the tubes are used near their design center values. This data is pertinent to tubes procured to the MIL-E-1 specifications. If the manufacturing tolerance is adjusted out, it can be omitted from the combined tolerance.

Suppose you want to know the lowest and highest values of plate current to be expected when the manufacturing tolerance will not be compensated and the filament voltage may vary ± 10 per cent. The drop in plate current will be:

Manufacturing tolerance Filament voltage effect Aging effect Random change		±20% ±3% ±5% +10%
Total drop	- 30%	±23%
Plate current rise will be:		
Manufacturing tolerance	+15%	<u> </u>
Filament voltage effect	+ 5%	± 3%
Aging effect (new tube)		
Random change		±10%
	-	

Total rise $+20\% \pm 23\%$ As indicated, sizeable variations in tube performance may be expected and should be anticipated early in circuit design.

Circuit Design

Circuits must be designed to properly perform when the coefficient effects combine to produce the greatest deviation in the component part's nominal value. The discussion and examples below show several of the common types of tolerance calculations needed for electronic circuit design.

Most circuits can be represented by an analytical expression that relates the performance variable to the various component part values. The performance variable and the component part values in this type of analytical expression are continuous variables. When the component part values have a normal frequency distribution and are randomly combined in production to form circuits, the performance variable will also have a normal frequency distribution. Applying statistical methods for tolerances to the analytical expression will yield a realistic tolerance for the performance variable that will be obtained in production and usage.

The assumptions are that the component part values are normally distributed, that the component part tolerances are not large relative to the component part's nominal value, and that the component part values are not dependent or interacting.

Sum (or Difference) Tolerance. Tolerances of sums can be combined directly if the tolerances contain the same number of sigmas. If t denotes

	Transconductance		Plate Current		Amplification Factor	
	Low	High	Low	High	Low	High
Manufacturing Tol- erance 10% Decrease in Filament Voltage 10% Increase in Filament Voltage Aging change Random change	$-10\% \pm 10\%$ $-5\% \pm 3\%$ $-6\% \pm 5\%$	$+10\% \pm 10\%$ $+5\% \pm 3\%$ 	$-15\% \pm 20\%$ $-5\% \pm 3\%$ $-10\% \pm 5\%$	$+15\% \pm 20\%$ - $+5\% \pm 3\%$ -	−8% ±7% Negli Negli	gible
when First Ener- gizing	± 10%	±10%	±10%	±10%	Neglig	gible

tolerances containing the same number of sigmas, then:

 $(t_y)^2 = (t_{xy})^2 + (t_{xy})^2 + \dots + (t_{xy})^2$ (1)

When items are combined in series, the familiar expression "square root of the sum of the squares" refers to actual values of the distribution and not the percentages of the nominal value.

Tolerances of differences or combinations of sums and differences are similarly combined.

Consider resistors combined in series as in Fig. 3. The resistor values have normal distributions, and the tolerances are the limits of the 3 sigma distribution.

The nominal resistance sum is:

$$R_1 = R_1 + R_2$$
 (2)

$$= 150 \text{ K} + 100 \text{ K} = 250 \text{ K}$$

and the distribution of the sum is:

$$(t_{R_1})^2 = (t_{R_1})^2 + (t_{R_2})^2$$
 (3)

 $= 1500^{2} + 1000^{2}$

$$t_{B_1} = 1800 \text{ ohms}$$

The nominal value and 3 sigma distribution limits of the sum are 250 K ± 1.8 K or ± 0.72 per cent. This example illustrates that when items having a normal distribution are combined in series, the resultant sum distribution will exhibit a tolerance advantage. Resistors with a ± 1 per cent tolerance combined in the example with a ± 0.72 tolerance.

Product (or **Quotient**) **Tolerance**. Tolerances of products can be combined directly if the tolerances contain the same number of sigmas and are expressed as percentages. The basic equation for products is:

$$(T_y)^2 = (T_{z_1})^2 + (T_{z_2})^2 + \dots (T_{z_n})^n$$
 (4)

For products the familiar expression "square root of the sum of the squares" refers to the tolerances expressed as percentages and should not be confused with the case of sums in which

	Resistor, C	Composition		conductance inge
	Low	High	Low	High
Manufacturing tolerance	± 5%	± 5%	$-10\% \pm 10\%$	+10% = 10%
Change at +85°C	= 4%	-	-	-
Change at -54° C	-	+12%	-	-
Aging change	$-5\% \pm 2\%$	-	-6% ± 5%	
Change with heavy loading	+7%*	+7%*	-	-
Soldering change	-2%*	-2%*	-	-
High frequency change	- 5%*	-5%*	-	-
Filament voltage change	-	-	$-5\% \pm 3\%$	$+5\% \pm 3\%$
Random change when			/~ /~	10 10
first energized	-	-	±10%	±10%
Totals	$-5\% \pm 6.7\%$	$+12\% \pm 5\%$	$-21\% \pm 15\%$	$+15\% \pm 15\%$

*A fixed change that will affect both the low and high conditions.

 Table 3. Expected Changes for Realistic Example

ie t f qu uoti Th t ans iquo ig.

11

ind

The limit 440 Tole

ili o disc

F

af th

te tolerances are the actual values. Tolerances quotients or combinations of products and uotients are similarly combined.

The tolerance of the output of an idealized t ansformer is used as an example of this techique. Values and tolerances are as shown in 'ig. 4; the tolerances are the 3 sigma normal distribution limits.

The nominal output voltage is:

$$E_{\rm e} = N E_{\rm s}$$
$$= 4 \times 110 = 440 \text{ v}$$

(5)

(7)

and the distribution of the output voltage is:

$$(T_{E_0})^2 = (T_N)^2 + (T_{E_0})^2$$
(6)
= 5² + 15²
 $(T_{E_0}) = 15.8^{C_0}$

The nominal value and 3 sigma distribution finits of the output voltage are 440 ± 69.5 v or 40 ± 15.8 per cent.

Tolerances of Other Expressions. When the lytical expression relating the performance mable to the various component part values of a different form from the situations just decussed, the general expression:

$$\mathbf{f} = \left(\frac{\partial y}{\partial x_1}\right)^2 (\sigma_{x_1})^2 + \left(\frac{\partial y}{\partial x_2}\right)^2 (\sigma_{x_2})^2 + \dots \left(\frac{\partial y}{\partial x_n}\right) (\sigma_{x_n})^2$$

must be used to obtain the distribution limits of the performance variable.

For example, consider the tuned resonant cirmit shown in Fig. 5. The resonant frequency is:

$$f = 1/2\pi \sqrt{LC} \tag{8}$$

the tolerances are the 3 sigma normal distribution limits.

The nominal resonant frequency is:

$$f = 1/6.28 \sqrt{50 \times 10^{-6} \times 30 \times 10^{-12}}$$

= 4.12 × 10⁶ cps

to determine the tolerance of the frequencies the general expression is used:

$$(\sigma_{I})^{2} = \left(\frac{\partial f}{\partial C}\right)^{2} (\sigma_{C})^{2} + \left(\frac{\partial f}{\partial L}\right)^{2} (\sigma_{L})^{2}$$
$$(3\sigma_{I})^{2} = \left(\frac{-1}{4\pi\sqrt{LC}L}\right)^{2} (3\sigma_{C})^{2} + \left(\frac{-1}{4\pi\sqrt{LC}L}\right)^{2} (3\sigma_{L})^{2}$$
$$(3\sigma_{L})^{2} = 23 \times 104$$

be nominal value and 3 sigma limits of the onant frequency are 4.12 x $10^6 \pm 0.23 \times 10^6$ is or 4.12×10^6 cps $\pm 5.6\%$

Tolerance of Realistic Situations. Examples illustrated thus far consider only initial variations due to tolerance distributions. Under realistic operating conditions component part value variations will result from both negative and positive coefficient effects, in addition to distribution variations. In these situations the low and high conditions resulting from coefficient effects in the range of operation conditions are separately treated. And distributions are computed around each condition.

For example, take a high frequency amplifier with a large output signal range for gain limits under conditions encountered in military applications. Changes to be expected in the tube and resistor in operating conditions are shown in

$$= \sqrt{\left(\frac{600}{3160} \times 100\right)^2 + \left(\frac{121}{1710} \times 100\right)^2}$$
$$= \sqrt{19^2 + 7.08^2} = 20.2\%$$

For high conditions:

Tube contribution:

$$G_m$$
 high by 15% \pm 15%, $G_m = 4000 (1.15 \pm 0.15) = 4600 \pm 600$ micromhos

 R_1 high by 12% ±5%, $R_1 = 1800$ (1.12 ±0.05) = 2020 ±90 ohms

Nominal gain is:

$$A = (4600 \times 10^{-6}) \ 2020 = 9.29$$

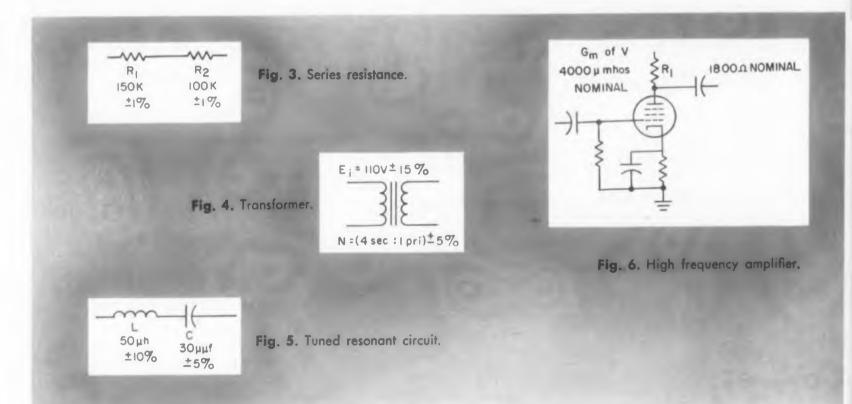


Table 3. All tolerances cited are in the 3 sigma normal distribution limits.

For low conditions:

Tube contribution:

 G_m low by 21% $\pm 15\%$, $G_m = 4000 (0.79 \pm 0.15)$ = 3160 ± 600 micromhos

 R_1 low by 5% ±6.7%, $R_1 = 1800 (0.95 \pm 0.067)$ = 1710 ±121 ohms

Nominal gain is:

$$A = G_m R_1$$

= (3160 = 10⁻⁶) (1710) = 5.4

Gain distribution is:

$$T_A = \sqrt{(T_{G_m})^2} \pm (T_{R_1})$$

Gain distribution is:

$$T_A = \sqrt{\left(\frac{600}{4600} \times 100\right)^2 + \left(\frac{900}{2020} \times 100\right)^2}$$
$$= \sqrt{13^2 + 4.5^2} = 13.8C_4$$

The gain nominal values and 3 sigma distribution limits at the low conditions are 5.4 ± 1.09 and at the high conditions are 9.29 ± 1.28 . Therefore, the gain of this amplifier under production and operating conditions will be between 4.31 and 10.57.

Non-Normal Distributions. Occasionally component part values are not normally distributed. This condition exists when component parts are selected to small tolerances from a manufacturing process that has large tolerances. If component part value distributions are very nonsymmetrical

LECTRONIC DESIGN • April 1, 1959

PHALO engineered PUINT Power Supply cord and phono plu 13 15 1-2 two stranded tinned capper conductors, color coded vinyl plasti inded in Aat multiple 0

to fill the needs you specify...

Recognized engineering diversity... new, greatly enlarged capacity ... new, maximum efficiency of production. Very simply, that is Phalo 1959.

Producing For All Industry From The Most Modern Plant In The Wire and Cable Industry!

Complete Product Data and Sales Service Information On Request

PHALO ENGINEERED PRODUCTS: INSULATED WIRE AND CABLE, CORD AND CORD SET ASSEMBLIES, CUSTOM PLUGS, TUBING, WIRING HARNESSES, ETC.

Representatives in Leading Cities Throughout The U.S.A. CIRCLE 21 ON READER-SERVICE CARD they will result in performance value distributions that are non-normal. This is particularly true if the component part values are all distributed in the same lopsided manner. Such a condition exists when oversized values representing half or more of a normal distribution are screened out. The method of handling this type of component part value distribution will depend on the factors present in the particular situation.

When the component part value distributions are rectangular, or near rectangular, the standard deviation, sigma, of the part value to be used in the general expression for finding the standard deviation of the performance is computed from:

$$= B/\sqrt{3} \tag{12}$$

where B is as indicated in Fig. 7.

The rectangular distribution has statistical properties that are far from the normal distribution. Certain precautions must be taken to get reasonable results. As a general rule, if there are only 2 component parts represented in the analytical expression and either or both has a rectangular distribution, design for both component parts simultaneously at their tolerance limits and in such a direction as to produce the greatest deviation in the performance variable. If there are 3 or more component parts, and any of the parts have rectangular distributions, the general technique shown previously for obtaining the standard deviation of the performance variable can still be used.

The 3 sigma normal distribution limits obtained from application of the general technique will actually be close to the worst possible deviations when there are only in the order of 3 or 4 component parts and most of these have rectangular distribution. However, the fact that the performance variable will be nearly normally distributed should be reflected in subsequent calculations and advantageously used.

As an example, the scaling factors of the 2-tap voltage divider shown in Fig. 8 are obtained at the upper tap from:

$$S_2 = \frac{E_{v_2}}{E_i} = \frac{R_2 + R_3}{R_1 + R_2 + R_3}$$
 (13)

and at the lower tap from:

$$S_1 = \frac{E_{\theta_1}}{E_{\gamma_1}} = \frac{R_3}{R_1 + R_2 + R_3} \tag{14}$$

The tolerance limits shown in Fig. 8 are the absolute tolerances (beyond which no value shall exceed) of the rectangular distribution. Considering only the smaller scaling factor of the lower tap, the nominal scaling factor is:

$$S = \frac{22,000}{(56,000 + 27,000 + 22,000)}$$

$$S = 0.2095$$

Fig. 7. Rectangular distribution.

$$K_{1} = K_{2} = K_{3}$$

$$K_{2} = K_{3}$$

$$K_{2} = K_{3}$$

$$K_{2} = K_{3}$$

$$K_{3} = K_{3}$$

The standard deviation of the resistor's rectangular distributions are:

$$\sigma_{R_1} = \frac{B}{\sqrt[6]{3}} = \frac{280}{\sqrt[6]{3}} = 162 \text{ ohms},$$

 $\sigma_{R_2} = 77.9$ ohms, and $R_3 = 63.5$ ohms.

To obtain the standard deviation of the scaling factor, which will be nearly normally distributed, the general technique is used:

$$(\sigma_s)^2 = \left(\frac{\partial S}{\partial R_1}\right)^2 (\sigma_{R_1})^2 + \left(\frac{\partial S}{\partial R_2}\right)^2 (\sigma_{R_2})^2 + \left(\frac{\partial S}{\partial R_3}\right)^2 (\sigma_{R_3})^2 = \left(\frac{-R_3}{[R_1 + R_2 + R_3]^2}\right)^2 (3\sigma_{R_1})^2 + \left(\frac{-R_3}{[R_1 + R_2 + R_3]^2}\right)^2 (3\sigma_{R_2})^2 + \left(\frac{-R_3}{[R_1 + R_2 + R_3]^2}\right)^2 (3\sigma_{R_2})^2$$

 $+ \left(\frac{-R_1 + R_2}{[R_1 + R_2 + R_3]^2}\right)^2 (3\sigma_{R_3})^2$

ELECTRONIC DESIGN • April 1, 1957

E tion app on i ana and form part One that T pop 116-11 2007 DOD of is b If a Tale the lion T

colle dim

3

T

sma

0.20

larg

 $= (3.96 \times 10^{-12}) (23.6 \times 10^4)$ $+ (3.96 \times 10^{-12}) (5.46 + 10^6)$ $+ (56.6 \times 10^{-12}) (3.63 \times 10^3)$

 $\Im \sigma_s = 17.9 \times 10^{-1}$

0.

100

ling

ated.

57

The nominal value and 3 sigma limits of the smaller scaling factor are 0.2095 ± 0.00179 or $0.2095 \pm 0.86\%$. Similar calculations on the larger scaling factor yield $0.4667 \pm 0.57\%$.

Empirical Techniques

Electronic circuit or system design problems occasionally occur where the analytical expresion or model is unknown. Situations also arise where the analytical expression used is a gross opproximation and little reliance can be placed on it. Another similar situation occurs when an analytical expression is known but is complex, and obtaining the partial derivative of the performance variable with respect to the various part values by analytical techniques is difficult. One approach is the use of a simple technique that yields limited but useful results.

The technique is simply to vary a single component part's value over the range of typical variations and at various values of this componeut part to simultaneously measure the component part's value and the performance variable's value while holding all other compouent part values constant. Au approximation of the partial derivative of the performance variable with respect to the component part that is being varied can be obtained in this manner. II all other component part values were at their nominal value and remained stable, an accurule estimate would be obtained. Therefore, the approximation error is determined by the illiviation of the values of the remainder of the component part values, will yield an approximation of the performance variable's standard ibviation.

Acknowledgment

The author is indebted to other Motorola Reliability Components Group staff members who assisted in the component part variation information docussed in this paper.

References

A Reliability Handbook for Guided Missile Electron-Designers, Fred E. Dreste, presented at IRE WES-ION, Aug. 20-23, 1957.

- Reliability Report-Parts Reliability Curves, ELEC-UNIC DESIGN, Feb. 19, 1958, page 66: 11-23.
- Evaluation and Prediction of Circuit Performance Statistical Techniques, AR Inc. Monograph No. 5, mautical Radio, Inc., Washington, D. C.

A Second Statistical Method for Analyzing the formance Variation of Electronic Circuits, Ralph michs, Convair (San Diego) Report ZX-7-010, tract No. AFO4(645)-4. Tung-Sol moves ahead!

High power transistors with new **cold-weld** seal

Improved cold-weld seal gives new Tung-Sol high-power transistors three-way quality boost

True hermetic, copper-tocopper seal improves transistor thermal characteristics.

Elimination of heat-damage, heat-caused moisture and "splash" increase reliability.

Vacuum-tight, moisture-proof cold-weld seal lasts even through "breathing" over long life operation.

Once again Tung-Sol shows the way. Now, for the first time, Tung-Sol brings designers high-power germanium transistors with quality benefits of the advanced cold-weld seal.

The new Tung-Sol types feature a stud-mounted package and maximum collector current of 13 amps. Military environmental tests combine with the radioactive gas leak detection test to assure maximum reliability. Technological advancements such as this keep Tung-Sol ahead of the field. For full data on the new high-power switching transistors . . . to meet any need with the latest in transistor design and efficiency, contact: Semiconductor Division, Tung-Sol Electric Inc., Newark 4, New Jersey.

metic, copper-to-copper seal

Photomicrograph (45X) shows circled area

of cross section of Tung-Sol high-power

germanium transistor cold-weld seal. Note

absence of seam, indicating actual integra-

tion of copper molecules and a true, her-

SAVE TIME-MONEY-LABOR

OUTSTANDING FEATURES

- Reliable, dependable, no moving parts.
- All digits displayed on front surface viewing screen . . quickly seen from any angle of viewing
- All digits uniform in size and intensity easier and faster to read
- High-contrast viewing screen insures utmost visual sharpness.
- Digit style of your choice to complement manufacturer's original equipment.
- Colored digits of your choice for special environmental lighting.
- Individual units may be assembled in groups for convenient panel
- mounting. • Dimensions: 1-9/16" wide, 25%" high, 55%" long.

PRICE

PER UNIT

QUANTITY PRICES

WRITE TODAY FOR COMPLETE DETAILED SPECIFICATIONS Representatives in principal cities

For Better Circuit Performance:

Degauss Pulse Transformers

Edward J. Watt PCA Electronics, Inc. Sepulveda, Calif.

Although useful and necessary in many applications, residual magnetism is undesirable in pulse transformers. In this article, E. J. Watt provides some background on the polarization of pulse transformers and how to get rid of it. In a succeeding article the author explains how to measure pulse transformer parameters.

R ESIDUAL magnetism in pulse transformers often results in poor circuit performances; degaussing the transformers will remedy this situation.

Residual magnetism can be of a plus or minus polarity. The polarity depends on the direction of current which previously passed through the transformer. This current also determines at what point on a magnetization curve the residual magnetism is located. COM

deer

volt

sub

the

trar

An ideal magnetization curve, or hysteresis loop, is shown in Fig. 1. The narrower the curve, the better the transformer. A more typical magnetization curve is shown in Fig. 2.

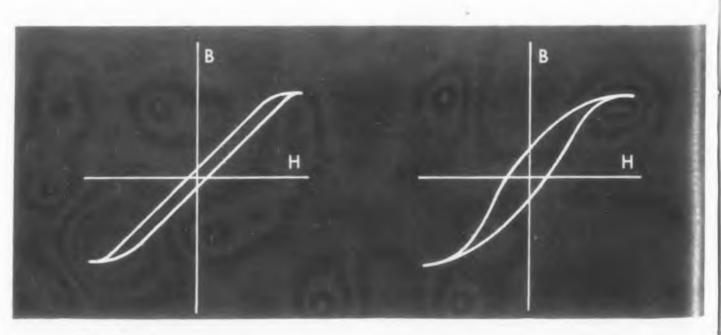


Fig. 1. An ideal magnetization curve.

Fig. 2. A typical magnetization curve.

ELECTRONIC DESIGN • April 1, 195

26

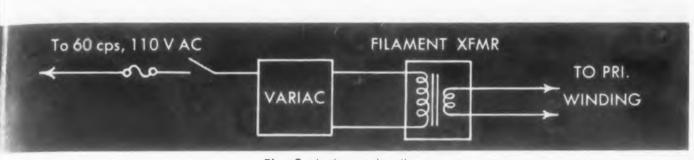


Fig. 3. A degaussing jig.

auses of residual magnetism are many, the king the continuity of a transformer with a ter will do it. Frequently, incoming inspection es the transformer into some sort of text fixfor an electrical test. High powered radar muss in the immediate vicinity may sweep the beam across a transformer lying on a bench. Allo, a transformer may be placed next to some the through which a large amount of 60 cycle ment is flowing.

ions.

iers.

1 on

t rid

v to

what

nag-

resis

rve.

hig.

Contraction of the second s

57

The inductance of a transformer depends on the number coil turns and the amount of core. There is a limit to how much each can be varied. To certain applications, more core and less turns may be necessary for a given quantity of inductance. More core and less turns will (1) raise the cutration point, (2) decrease the core losses, (3) therease interwinding capacitance, (4) increase intrawinding capacitance, (5) and increase the obtage breakdown between turns, as each turn will increase its potential gradient with respect to an adjacent turn. Somewhere optimum compromises are made.

Effects of Residual Magnetism

When a transformer is placed in a circuit and subjected to a current flow in a given direction, the core will maintain a certain amount of residual magnetism after the current source is removed. If this same current is reapplied, the transformer will continue to give repeatable performance.

If this same transformer should then be used in a different circuit, it will receive a new magnotic set. Returned to its original circuit, the pertormance of the transformer will not be the some as it first was.

In blocking oscillator applications slight maguization of the transformer can cause 50 to 200 cent variations in performance. When used a coupling transformer, the difference in perunance is not so noticeable.

The Solution

Trequently it may solve an engineer's blocking Illator problem to polarize a transformer; positive if he wants to decrease output pulse width, and negative to increase pulse width. This is a short-cut solution, as little guarantee is had that the transformers assembled into a production item will be polarized in the proper direction and in the desired amount.

Using depolarized pulse transformers will provide consistent performance in every circuit. Depolarization will insure the transformer starting out from a neutral condition and establishing a residual magnetic set which it will maintain from the balance of its life.

Degaussing A Transformer

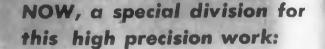
To depolarize, or degauss a transformer, the transformer is subjected to an alternating voltage of magnitude sufficient to saturate the core in each direction. The signal is gradually reduced to zero before the transformer is disconnected.

The basic magnetics formula is

 $E = 4.44 fNBA (10)^{-8}$

where *E* is volts maximum; *f* is applied frequency in cps; *N* is number of turns on winding being energized; *B* is saturation flux density (20,000 lines per cm² for grain oriented silicon steel); and *A* is the cross section area of core in cm².

Values of voltage *E* sufficient to saturate the various transformers at 60 eps (primary windings) are as follows:


1 mh	0.18 v
4	0.66
7	1.08
10	1.50
16	2.28
25	2.88

Values in between the above numbers can be extrapolated.

A simple degaussing jig is shown in Fig. 3. It is only necessary to have the Variae at zero volts when the primary winding is connected across the output of the filament transformer. The Variae is then turned by hand to near 100 v and back down to zero. This should be done in 1/2 to 2 seconds total time.

MILITARY CIRCUITS

by

- Separate management and operating team specializing in reliable production of precision printed circuits
- Special facilities for accurate and uniform short run punching and fabrication of printed circuits
- Complete precious metal electroplating department to handle all finishes
- The newest in equipment with the industry's largest manufacturing capacity devoted to printed circuitry
- A number of important projects for missiles, radar and airborne ordnance continuously in production

For further information address

MILITARY CONTRACTS

COORDINATO

Chicago

Manufacturina

7467 W. Wilson Ave

CIRCLE 24 ON READER-SERVICE CARD

Yes, another Sealectro "First"! Here's a flat-mount subminiature jack (SKT-PC Series) for printed-wiring boards. Mounts in three holes forming a triangle. Takes standard .080" probe or matching plug. Simply dip-soldered from under side of board for rugged mechanical and electrical installation.

MOUNTING

CIMENSIONS

- Mounts flat on top side of printedwiring board.
- For dip soldering in grid coordinate ÷ spacings.
- Matching subminiature plug available.

au

an

- Long-life contacts of heat-treated Beryllium copper.
- In ten different code colors.
- -4-Takes standard .080" probe or matching plug. Teflon*-centered entry relieves contacts from mechanical strain.

New Manual containing the up-to-date listings of hundreds of "Press-Fit" terminals, jacks and plugs, sent on request.

> Reg. Trademark of E. I. DuPont de Nemours & Co., Inc.

CIRCLE 25 ON READER-SERVICE CARD

Spring Spins Gyro

SPIRAL "clock" spring spins the A rotor of this roll reference gyro into action. Use of the spring as an energizing element reduces the weight of the gyro, which was designed for missiles and drones that must be maintained in operational readiness for long periods of time. Advance energizing of the gyro is not necessary. Once wound and armed at the factory, the unit is capable of being stored in this condition for an indefinite time without loss of accuracy.

The frame-mounted spring brings the rotor to operational velocity in less than 10 msec after launching. Then the spring disengages and permits the gyro to funetion as an inertial reference. The units were developed by Telecomputing Corp., Whittaker Gvro Div., 16217 Lindbergh St., Van Nuvs, Calif.

1/ . g 1 ISES

di lio 1113 i b

1 ch 0.01

0.000

00.151

ing b

dec 1

and 1

5.10

quitte

the s

Fo

(und)

 F_{ic}^{1}

octal.

terize C. mit

45 V

octa

1/1

EI

TL

Dr

Weighing 3.5 lb, the gyro is hermetically sealed, but is available in a tape dust-seal for proving tests. Control period for the unit is 30 sec.

Flat Rotary Switch

Fig. 1. Using a printed circuit element, this flat rotary switch converts visual decimal numbes to binary or octal codes.

28

Solenoid Triggers Gyro

\ solenoid, when energized, triggers
 gyro into operation. The solenoid re ses a trip hammer that lifts the latch
 ding the main accelerating spring.
 tion of the trip hammer is strong
 ugh to overcome any cold-flow weld between the latch and the restraining
 hanism. A cold-flow weld may result
 the tremendous force exerted by the
 ng on the latch over a long time.

the gyro is available in a cylindrical spee measuring 4 in. in diameter and 7 in. in length, and a rectangular shape in suring $3.5 \ge 4 \ge 5.5$ in. And its operattemperature range is -65 or +160 F. Drift rate of the gyro is within 0.625desper min, averaged over a 10 min period. It can withstand a shock of 10 g and has been able to take a vibration of 5 to 55 cps at 10 g during a sweep frequency of 1 min. Long storage periods have negligible effects on the power of the spring to perform as intended.

the

than

oring

lune

units

orp.

ergh

neti-

tape

riod

(E15)

59

For more information on this springdiscen gyro turn to the Reader-Service can and circle 101.

Fig. 1. Caging and winding of the gyro is done with a removable key at the factory. The unit is capable of being stored for an indefinite period in this condition.

F LAT AND small in construction, easy to set and read, simple conversion of visual decimal numbers into binary or octal code—all these properties characterize this rotary switch.

Called the Digiswitch, Series 7300, the unit was primarily designed for computer and control systems by the Digitran Co., 45 West Union St., Pasadena, Calif.

The switch can be used in place of a 10-position or octal switch unit of the conventional rotary construction. And, because a printed circuit board is used, the unit permits binary code (1, 2, 4, 8) or octal code (1, 2, 4, 7) to be set from a visual decimal number.

Attached to the rotating wheel of the switch is either one or four brushes, depuling on whether the switch is demed for decimal, binary or octal opera-For decimal operation one brush is but there are four for binary or octal puts.

the brushes rotate across a printed cirboard. On the rear of the board are d-through holes to which wires are fired for connection purposes. There are 11 connections for decimal operation, 5 for both binary and octal.

Ganging Possible

The switch is designed on a modular basis which permits ganging. Number of modules that can be ganged is limited only by panel space. Twenty switches can be mounted in the normal space required for five conventional rotary switch units.

Contacts on the switches are rated for 200 v at 1 amp. And contact resistance is 0.5 ohm. For decimal operation the 10 contact positions can be either single or double pole. The unit can operate in an ambient temperature of up to about 125 C.

Overall height of the switch is 2.32 in. as viewed from the panel side. Width per section is 1/2 in. Behind the panel the switch extends 1.61 in. and is 1.86 in. high. Overall extension in front of the panel is 0.2 in. Detents hold the switch securely in each position.

For more information of this switch, turn to the Reader-Service card and circle 102. Photocircuits printed circuit cards

Vital Component in Sage Air Defense Computers

The Sage System, vital to our nation's security, relies on IBM-built computers to display accurate pictures of hostile and friendly aerial action.

IBM uses printed circuit cards with *plated-thru holes* by PHOTO-CIRCUITS to help do the job. IBM experience indicates that through-circuitry—using both sides of a printed card—saves space and costly assembly time.

Printed circuit cards by PHOTOCIRCUITS have plated-thru holes that help eliminate troublesome intermittents caused by vibration and temperature changes...increase solderability, too.

PHOTOCIRCUITS produces *reliable* printed circuit cards...builds them with strength to spare for all applications.

"Bonus" copper, on the right-size hole wall, is just one of the reasons you can depend on PHOTOCIRCUITS printed circuit cards. Proper design, precision production, and advanced quality control techniques are others. All add up to outstanding reliability... often at lower cost.

Check the advantages of printed circuit cards with *plated-thru* holes by PHOTOCIRCUITS...the largest and most experienced manufacturer in Printed Circuitry. For full information, write our Engineering Department PS-1 today.

PHONES GLEN COVE 4-8000 FLUSHING 7-8100 CABLE PHOCIRCO

CIRCLE 26 ON READER-SERVICE CARD

Designing Zener Diode

Voltage Regulators

R. G. McKenna

Texas Instruments Inc. Dallas, Tex,

A few equations, a set of curves make the design of a zener diode voltage regulator easier. And too, they help predict the regulator's performance.

ZENER DIODES are well suited for shunt regulator applications. The power regulator diode provides a wider choice of voltages and larger current ranges than do gas-tube regulators. In addition to these advantages, it does not require a firing voltage higher than the regulating voltage, as does a gas-tube regulator.

A voltage regulator circuit employing a power regulator diode is shown in Fig. 1. The diode is connected across the load, R_L . This combination is fed from the unregulated supply voltage, V_i , through a series dropping resistor, R_s . The flat voltage characteristic of the diode holds the load voltage essentially constant as the load current or supply voltage changes. A change in load current results in a corresponding change in diode current. Therefore, the voltage drop across R_8 remains unchanged with variations in load current. A change in input voltage, Vi, produces a corresponding change in diode current which causes the change in voltage drop across R_s necessary to cancel the change in input voltage, thus holding the load voltage constant.

Designing Zener Diode Regulators

For a specific regulator application, the load voltage and current requirements are known.

The percentage variation in the unregulated supply voltage is estimated. The design of the regulator is accomplished by selecting the proper regulator diode and determining an input voltage and series resistance that will provide regulation over the required load current and input voltage changes without overloading the diode.

The diode voltage is determined by the load requirement. It must have a larger range between its maximum and minimum current limits than the expected range of load current variations. The maximum diode current is determined by the dissipation rating and is a function of case temperature. A curve of the maximum dissipation vs case temperature is obtainable from the diode data sheet. The maximum current may be expressed as:

$$max = \frac{P_{dmax}}{V_L^*} \tag{1}$$

where

 P_{dmax} = maximum dissipation rating of the diode.

1

$V_L = load voltage$

The minimum diode current, for regulator de-

sign, is the current at which avalanche breakdown occurs, and is also a function of temperature. A practical minimum for most applications is approximately 1 ma.

An equivalent circuit for the voltage regulator of Fig. 1 is shown in Fig. 2. The fundamental equations involved in the operation of the regulator are:

$$V_{i} = (R_{S} + r_{d})I_{d} + R_{S}I_{L} + V$$
(2)

$$\Gamma_L = r_d \Gamma_d + \Gamma_d \tag{3}$$

$$P_d = V_L I_d \tag{4}$$

$$-1$$
.

where

I, is the unregulated input voltage

- R_s is the series resistance
- r_d is the resistance in series with the fixed voltage, V_d , constituting the equivalent circuit of the diode

 I_d is the diode current.

- I_L is the load current
- 1°_{L} is the output, or load, voltage
- P_{L} is the load power

To calculate the proper values for V_4 and R_8 , from these equations, refer to the operating region of the regulator shown in Fig. 3. It is assumed that the full current range of the diode will be utilized in providing regulation over the entire operating region, bounded by the maximum and minimum load currents and by the maximum and minimum input voltages. This region is contained between the load lines, representing the series resistance, R_8 , drawn through the maximum allowable diode current and the minimum diode current required for regulation. The input voltage may be any value within the range of $V_{10} = \pm \Delta V_1$. If the ratio, $\Delta V_i/V_{10}$, is defined as k, permissible input voltages are

$$V_{i} = V_{ii} \left[1 \pm k \right] \tag{6}$$

It is clear from Fig. 3 that a compromise between load current variations and input voltage range must be made for a particular diode (i.e. a reduction in load current range, from that shown in Fig. 3, will provide a wider input voltage range or a reduction in input voltage range will provide a larger current range).

The important points in the operating region are the two corners through which the series resistance load line passes. The point representing the maximum input voltage and minimum load current determines the maximum diode current and the point representing the minimum input voltage and maximum load current determines the minimum diode current. An expression for the ratio, k, in terms of the coordinates of these two points may be obtained from Eq (2) as follows:

$$2 V_{lo}k = \langle R_S + r_d \rangle (I_{diagx} - I_{dials}) - R_S (I_{Lindx} - I_{lindy})$$
(7)

Since the nominal input voltage, V_{to} , is the average of the maximum and minimum input voltages, a second expression may be obtained from Eq (2), involving these quantities. It is:

$$V_{io} = (R_S + r_d) (I_{dimiz} + I_{dmin}) + R_S (I_{Lmax} + I_{Lmin}) + 2 V_d \quad (8)$$

The values of input voltage, V_{io} , and series resistance, R_s , calculated from Eqs (7) and (8), are:

$$V_{is}\left[\alpha - k\right] = \beta \tag{9}$$

$$R_{S} = \frac{2 V_{io} - [r_d(I_{dmax} + I_{dm(n)}) + 2 V_d]}{I_{dmax} + I_{dm(n)}) + (I_{Lmax} + I_{Lm(n)})}$$
(10)

where

0

$$\alpha = \frac{I_{dmax} - I_{dmin} - (I_{Lmax} - I_{Lmin})}{(I_{dmax} + I_{dmin}) + (I_{Lmax} + I_{Lmin})}$$

$$\beta = 1/2 \alpha [r_d (I_{dmax} + I_{dmin}) + 2 V_d] - r_d (I_{dmax} - I_{dmin})]$$

The maximum and minimum diode currents are determined by the design and rating of the diode. For fixed values of maximum and minimum load currents, the only variables in Eq (9) are V_{io} and k. This is the equation of a hyperbola, in standard form, with asymptotes of $V_{io} = 0$ and $k = +\alpha$. Since the load current excursions, I_{Lmax} and I_{Lmin} , and the percentage input voltage changes, k + 100, are known, the nominal input voltage, V_{io} is determined by Eq (9). Its value may therefore be directly calculated from known quantities. The series resistance may then be calculated from Eq (10).

It will be observed, from Fig. 3, that low values of series resistance and input voltage are desirable for large load current changes, provided there is no change in input voltage. However. in this case, no regulator is needed. On the other hand. large values of input voltage and series resistance are desirable for wide input voltage changes. The values of V_{io} and R_{s} , calculated from Eqs (9) and (10) are the lowest input voltage and series resistance that will provide regulation for simultaneous changes in load current and input voltage specified by ILmax, I_{Lmin} , and k. Therefore, these values represent the most efficient and economical diode regulator that can be designed to satisfy the load and input voltage requirements. It should be noted that R_s , calculated from Eq (10) includes the effective internal resistance of the input voltage source. The actual series resistance inserted in

the circuit should be reduced in an amount equal to the internal resistance of the input voltage source.

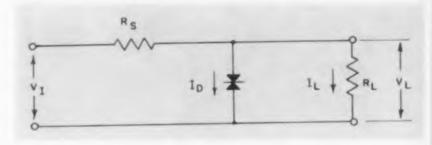
Design Curves and Equations

If both sides of Eq (9) are divided by the load voltage, V_L , a dimensionless equation is obtained. Eq (10) may be reduced to a dimensionless form by following a similar procedure. The constants associated with these equations may be expressed in terms of voltage and power ratios, thus obtaining a set of generalized diode regulator equations that may be used for a wide range of zener diode voltages and power ratings. They are as follows:

$$\frac{V_{ii}}{V_{ii}}[\alpha - k] = \delta \qquad (11)$$

$$\frac{R_{s}P_{dmax}}{V_{L}^{2}} = \frac{2\left[\frac{V_{tw}}{V_{L}} - 1\right] + \frac{V_{L}}{V_{L}}}{1 + \frac{P_{Lmax} + P_{Lmin}}{P_{dmax}}}$$
(12)

where


$$\alpha = \frac{1 - \frac{P_{Lmax} - P_{Lmin}}{P_{dmax}}}{1 + \frac{P_{Lmax} + P_{Lmin}}{P_{dmax}}}$$
$$\delta = \left[\alpha - \frac{(1+\alpha)}{2}\frac{\Delta V_L}{V_L}\right]$$

These equations neglect the minimum diode current which is very small (1 ma or less). V_L is the voltage across the diode for maximum diode current and ΔV_L is the change in diode voltage for the full diode current swing, from I_{dmax} to I_{dmin} . While the ratio $\Delta V_L/V_L$ is not quite constant for all diodes, an error of only about 1 or 2 per cent is introduced by assuming an average value for this term.

Generalized design curves, for zener diode regulators, are shown in Figs. 4 and 5. The curves of Fig. 4 are obtained from Eq (11) and represent a minimum load power of zero. The input voltage regulation, k, is shown as a function of V_{io}/V_L for maximum load powers of 0.1 through 0.9 times rated diode power. Similar curves, obtained from Eq (12), representing $R_s P_{dmax}/V_L^2$ as a function of V_{io}/V_L are shown in Fig. 5.

Example

A regulated dc voltage of approximately 45 v and 35 ma peak current is required. The input voltage regulation, including ripple, is 20 per cent. It is desired to determine the nominal input voltage, V_{io} , and the series resistance, R_s . A zener diode, having a voltage of 46.85 v at $I_{dmax} = 110$ ma was selected for this application.

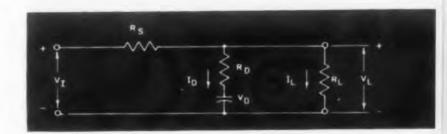
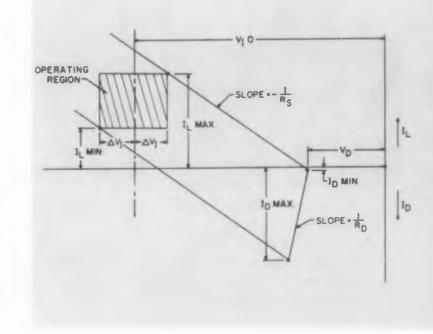
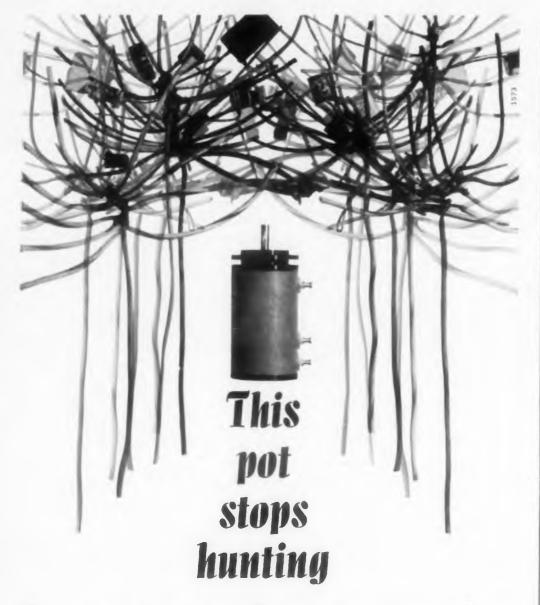



Fig. 2. Equivalent circuit for zener diode voltage regulator.


The ratio of load to maximum diode power is:

$$\frac{P_L}{P_d} = \frac{V_L I_L}{V_L I_{dmax}} = \frac{46.85 \times 0.035}{46.85 \times 0.110}$$
$$\therefore \frac{P_L}{P_d} = 0.318$$

 $V_{io}/V_L = 1.525$ is obtained from Fig. 4 and

$$V_{10} = 1.525 \times 46.85 = 71.4 \text{ v}$$

 $R_8 P_d / V_L^2 = 0.815$ is obtained from Fig. 5 and

$$R_S = \frac{0.815 \times (46.85)^2}{5.15} = 348 \text{ ohms}$$

There are no magic components. The familiar type of servo-hunting can be avoided only by overall system design.

But, by specifying the HELIPOT R 7/8" Series 7200, you can stop another, equally serious kind of hunting...for the buried ten-turn pot whose sheared stop or seized shaft has caused a system failure.

The all-new Series 7200 blocks servomotor overshoot with 128 oz. in. of stop strength. Shaft bearings, front and back, resist radial loading.

Priced for the parsimonious, this instrument-quality potentiometer has 18" of high resolution coil neatly helixed in its 1-1/2" long case. Your accuracy requirements are answered by linearities to ± 0.05 %.

Interested?... You should be! This volume-produced pot is long on everything but price and delivery!

> For your further enlightenment resistance range 25 to 125,000 ohms power rating 1.5 watts at 40°C noise 100 my maximum starting torque 0.6 oz. in. maximum moment of inertia 0.2 gm. cm.

Applicable sections of NAS 710, MIL-R-19, JAN-R-19 and MIL-R-19518 are met or exceeded ... and we have certified test data to prove our every claim. To enrich your leisure hours, write for Data File C42.

Beckman Helipot

Helipot Division of Beckman Instruments, Inc. Fullerton, California Engineering representatives in 29 cities

potentiometers : dials : delay lines : expanded scale meters | rotating components - breadboard parts CIRCLE 27 ON READER-SERVICE CARD

The performance of the regulator was pretty much as predicted. For $V_i = 57.12$ v and $I_L = 35$ ma, the calculated and measured values of the diode current agreed, 0.1 ma. For $V_i = 85.68$ v and $I_h = 0$, the calculated diode current was 110 ma, while the measured diode current was 108.5 ma.

A small series resistance is indicated, from diode regulator curves. Voltage reg-Fig. 6, for $V_{to}/V_L = 1$. This resistance is necessary to protect the diode when the maximum input voltage, $V_{in}(1+k)$, is obtained with no through 0.9 times rated diode power.

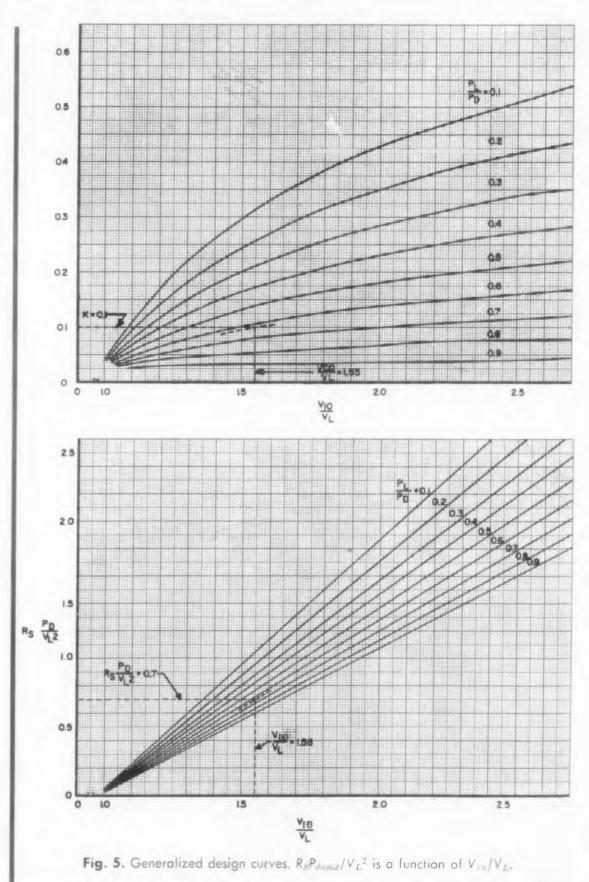
Fig. 4. (below) Generalized zener ulation, k, is a function of V_{11}/V_1 for maximum load powers of 0.1

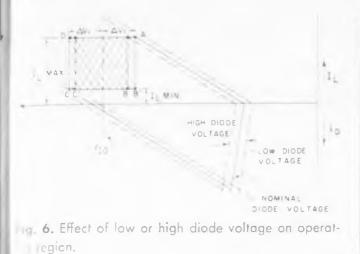
dior

Due

înpi

CHE


sipi


from

01

.6

1

ner eg-

0.1

57

I current. The smallest value of k associated Th these curves is about 0.025.

since the regulator components are selected intilize the full operating range of the diode, is desirable to evaluate the operation of a cirand, designed for a nominal value. The effect in the regulator operating region of this condiion is shown in Fig. 6.

For nominal diode voltage the operating renon will cover the area abcd, in Fig. 6. This in a is bounded by the maximum load current, on the top, the minimum load current, I on the bottom, and the maximum and momum input voltages, $V_{io} \pm V_i$, on the sides. If the diode voltage is too high, say by 10 per cent, the minimum input voltage that will provide regulation will be reduced from point "b" to point "b". This point is reached when the diode current drops to the smallest value that will provide regulation. If the input voltage drops below the point "b", the circuit ceases to function as a regulator.

If the diode voltage is too low, the maximum loput voltage, that produces maximum diode furrent, will be reduced from point "c" to point This condition may not be too serious, since the diode current rating is based on power dissipation. A low voltage diode can therefore tolerate a higher current than one of nominal voltage. The effect of high or low voltage diodes, repremoting the normal manufacturing spread, is to induce the effective input voltage regulation from b-c to b'-c'. The estimated input voltage ingulation should therefore be increased to allow Im spread in diode voltages. The reduction in mowable input voltage change is exactly the lieviation in diode voltage from its nominal value. Thus, the allowance in input voltage regulation diode spread will depend upon the ratio of unit voltage to diode voltage. For example, if $V_L = 2, \pm 5$ per cent should be added to estimated input voltage regulation to allow 11 = 10 per cent diode voltage spread. This owance should be determined for each appliion and will always be less than the percentdiode spread.

TANDEM ASSEMBLIES EXCLUSIVE WITH OHMITE

Tandem Assemblies in all three sizes of **Ohmite Variable Transformers**

VT2

VT2N

VT4

VT4N

Variable Transformers Give a "Bonus" in **Current Capacity**

VT8N

EXPANDED LINE-Ohmite now offers industry six basic models with current ratings sufficient to meet a large percentage of industrial applications. The new line includes enclosed units and tandem assemblies. Two models, VT2 and VT4, offer capacity greater than competitive units of comparable size and price. An additional and sizeable "bonus" in current is given in all sizes when the overvoltage feature is not required ("N" suffix, see below).

ADVANCED FEATURES Positive current transfer achieved with direct brush to slip-ring, pig-tailed connection; table or panel mounting-on VT4 and VT8 sizes, adjustable shaft moves to brush or base side; interchangeable with other popular types both electrically and "mounting-wise"; durable rhodium plating on brush track for longer life.

SPECIALS ENGINEERED FOR YOUR NEED5-Transformers can be modified to meet different requirements such as special shafts for nonstandard panel thicknesses, auxiliary switches, taps on transformer winding for fixed intermediate voltages, and motor drives for remote control or servo-operation. The only manufacturer in the industry concurrently producing power rheostats, tap switches, and variable transformers, OHMITE can also offer in-tandem combinations of these items.

BASIC MODELS (with overvoltage) All inputs 120 v ac*

QUALITY

MODEL VT2 Volts output: 0-120/132 Amps output: 1.5 BASIC MODELS (without overvoltage) All inputs 120 v ac

MODEL VT2N Volts output: 0-120 Amps output: 1.8 *Units available for 240-volt input also

Available from

Ohmite

Distributors or

factory

direct from

Volts output: 0-120/140 Amps output: 3.5 MODEL VT4N Volts output: 0-120 Amps output: 4.75

MODEL VT4

Amps output: 7.5 MODEL VT8N

MODEL VT8

Volts output: 0-120 Amps output: 10.0

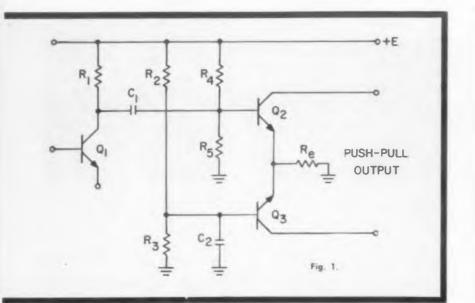
Volts output: 0-120/140

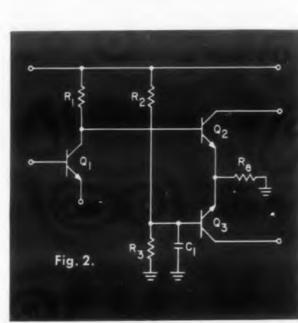
Write for Bulletin 151

OHMITE MANUFACTURING COMPANY RHEOSTATS RESISTORS RELAYS VARIABLE TRANSFORMERS TANTALUM CAPACITORS

CIRCLE 28 ON READER-SERVICE CARD

3643 Howard Street Skokie, Illinois TAP SWITCHES


R.F. CHOKES DIODES


Improving the Emitter-Coupled Phase Splitter

An efficient phase-splitter using transistors can be designed with well stabilized operating points. The difficult problem of drift is solved by only a slight modification of the conventional phase-splitter circuit.

Maurice Price

Computing Devices of Canada Ltd. Comdevcan, Ottawa

D ESIGNING a phase-splitter with transistors, the engineer is faced with the problem of stabilizing the operating points. This is the source of most of the difficulty. In this article an efficient phase-splitter is described having a voltage gain of about 8000 and a power output of 10 mv. It can be designed with well stabilized operating points. di Fi

Q tic

R

T

th

fo

of

510

Th.

th

In

111

for

off

Fi

fre tiv

ton

th

2N

10.

Ve

000

118

EL

Conventional Phase-splitter Circuit

A convenient starting point for developing a well-stabilized circuit is the emitter-coupled pair shown in Fig. 1. Transistor Q_2 is driven from the single-ended first stage, while Q_3 is fed from the common emitter resistor R_e . The base of Q_3 is bypassed to ground by capacitor C_2 to achieve this feed. Both transistors Q_2 and Q_3 are shown with identical bias networks R_2 , R_3 and R_4 , R_5 . The efficiency is adversely affected by the shunting effect of these networks on the signal and by the loss of dc power in them.

Fig. 1. An emitter-coupled phase splitter.

Fig. 2. Transistor $Q_{.2}$ has been directly coupled to $Q_{.1}$.

Fig. 3. Improved circuit has both Q_2 and Q_3 supplied with bias from the Q_1 collector circuit. The bypass capacitor C_1 may be omitted with an attendant loss of gain.

Improving Operating Point Stabilities

An improvement can be made by coupling Q_2 directly to the single-ended driver, as shown in Fig. 2. The disadvantage of this scheme is that Q_2 and Q_3 do not operate under identical conditions as far as the dc circuit is concerned. The operating point stabilities will be different and dc power is still wasted in the bias network R_2 , R_3 .

A further improvement is suggested in Fig. 3. The collector load of Q_1 has been split into a bridge arrangement of the four resistors R_4 through R_7 . These four resistors may be made out although the only rigid requirement is that $R_4 = R_6$ and $R_5 = R_7$. The bases of Q_2 and are then at the same dc potential as required or their biasing. Capacitor C_3 bypasses the base of Q_4 to the positive supply bus and thence to pround. For signal frequencies, resistor R_2 acts and was an undesired attenuator in series with the base of Q_2 , and is therefore bypassed by canector C_4 . If the loss of gain can be tolerated, C_1 may be omitted.

Note that the direct coupling of the two pushpull transistors to the first stage enables both their operating points to be equally stabilized. In this type of connection, the resistor values muy be so chosen that the first stage compensates for the operating point drift of the second stage. There is no loss of signal through the shunting flect of the bias arrangements. The scheme of Fig. 3 will operate satisfactorily down to that frequency at which C_1 and C_3 fail to act as effective bypasses. The operating point stability factors are given by:

$$S_{1} = \frac{\partial I_{e1}}{\partial I_{eo}} = \frac{1 + \frac{R_{3}}{R_{1}} + \frac{R_{3}}{R_{2}}}{(1 - \alpha) + \frac{R_{3}}{R_{1}} + \frac{R_{3}}{R_{2}}}$$
$$S_{z} = \frac{\partial I_{e2}}{\partial I_{ro}} = S_{3}^{*} = \frac{\partial I_{e3}}{\partial I_{eo}} = \frac{1 + \frac{2R_{e}}{R_{4}} - \frac{\alpha S_{1}}{2}}{(1 - \alpha) + \frac{2R_{e}}{R_{4}}}$$

It has been assumed in these equations that all three transistors have identical I_{co} and α .

Sample Design

A sample circuit is shown in Fig. 3 using type N479 silicon transistors with an u of about 0.98. The output collectors are transformer coupled a load measuring 7.2 K collector-to-collector. The attempt was made to maximize gain or power tput. The stability factors are $S_1 = 5.4$ and $= S_3 = -4.3$. The two push-pull transistors we thus been slightly over-compensated. The oltage gain of the circuit measures about 8000, d some 10 mw of power output is available.

Clevite offers new types with improved reliability and power handling capacity.

EIA REGISTERED TYPES WITH:

- Improved seal for long life.
- Saturation voltage less than 1 Volt at increased maximum rated current of 15 amperes.
- Average thermal resistance 0.7 °C per watt.
- Current gain controls: 60-150 at 5 amperes.
- 100% test for resistance to transient burn out.
- Either standard pins or solder lugs.

TECHNICAL DATA

Typical Electrical Chara	cteristics at 25°C
---------------------------------	--------------------

2N1147 Series has solder lugs 2N1146 Series has standard pins	2N1147 2N1146	2N1147A 2N1146A	2N1147B 2N1146B	2N1147C 2N1146C
Collector to Emitter Voltage Shorted Base ($IC = 1 \text{ amp}$)	30V (Min)	40V (Min)	60V (Min)	75V (Min)
Saturation Voltage $(IC = 15 \text{ amps})$	1.0V (Max)	1.0V (Max)	1.0V (Max)	1.0V (Max)
DC Current Gain (IC = 5 amps)	60-150	60-150	60-150	60-150
DC Current Gain (IC = 15 amps)	35	35	35	35
Absolute Maximum Ratings				
Collector, Current Collector to Base Voltage Collector to Emitter Voltage Power Dissipation at 70°C	15 amps 40V 40V	15 amps 60V 60V	15 amps 80V 80V	15 amps 106V 100V
Case Temperature Junction Temperature	25W 95°C	25W 95°C	25₩ 95°C	25W 95°C

OTHER CHEVITE DIVISIONS

Cleveland Graphite Bronze • Brush Instruments Clevite Electronic Components • Clevite Harris Products Clevite Ltd • Clevite Ordnance • Clevite Research Center Intermetall G.m.b.H. • Texas Division

CIRCLE 29 ON READER-SERVICE CARD

William G. Royce has been with Kin Tel over nine years working principally in the design of low drift, precision dc amplifiers, both single-ended and differential, for data handling systems.

F LOATING differential de amplifiers are better than single-ended amplifiers for rejecting noise in an instrumentation system. The differential amplifier can distinguish between millivolts of signal and volts of noise.

The disadvantage of the single-ended amplifier is that it needs a filter in its input to reject noise. The filter attenuates noise, but it also attenuates the signal.

In the system shown in Fig. 1, the signal output of the transducer might be 10 mv peak-topeak. If the system is to have an overall resolution of 0.1 per cent, which is not unreasonable today, then the total allowable error can not exceed 10 μ v peak-to-peak at the amplifier input. This error includes noise introduced into the system prior to the amplifier, amplifier performance, and other miscellaneous contributions.

If the amplifier is a good one, it will probably have an error equivalent to slightly less than 5 µv peak-to-peak input. This error within the amplifier is caused by drift, low frequency noise, and hum. The remaining contribution of approximately 5 µv peak-to-peak comes primarily from hum picked up in the wiring of the instrumentation circuit exterior to the amplifier.

Differential amplifiers can Rescue Millivolts of Signal From Volts Of Noise

To reject unwanted noise in such a system so that less than 5.6 uv peak-to-peak gets to the input terminals of the amplifier, the instrumentation wiring must be installed so that maximum ground loop impedance exists, with accompanying minimum ground loop current. Such precautions are mandatory; but even when grounding is properly taken care of, noise amplitudes of several volts often appear on the wires leading to an instrumentation de amplifier. This noise is caused by ground loop current, which inevitably exists in the system. Sometimes the system lends itself to the inclusion of a series filter, but unfortunately, a noise filter always limits the band pass or frequency response of the circuit. Therefore, in many dynamic instrumentation installations a filter is not practical. In these cases the amplifier itself must be able to reject noise.

Ground Loops and Common Mode Voltage

The consideration of grounds involves comparing the relative merits of single-ended and differential amplifiers. A typical, conventional singleended amplifier has one of its input terminals and one of its output terminals joined as a common ground connection. This ground terminal is William G. Royce

nting

tl

12

13

te

pl

to

11

111

Ie.

Fi

HC

in

In

in

As

en ber

1h

01

ΞĹ

Project Engineer Kin Tel Division of Cohu Electronics San Diego, Calif.

usually connected to the amplifier frame. Such an arrangement results in a good amplifier, but often provides many headaches when either the transducer or the recorder, or both, must be tied to system ground. In a differential amplifier, the input and output terminals may be floating with respect to system ground, providing greater flexibility in wiring the instrumentation system.

One way to keep the noise low in the system shown in Fig. 1 is to keep the common mode voltage as low as possible. Common mode voltage is the difference in potential between widely separated ground points. Any grounding material connecting two points has some finite impedance —even so-called buss bars. Unfortunately, the use of heavy wire in the connecting cable does very little good. The reason for this is that the thermocouple resistance is relatively high.

The scheme shown in the illustration reduces noise considerably. The shield of the connecting cable is connected to ground at two points, providing a shunt circuit for the ground loop current I_1 . The amplifier and the load are well isolated from ground. In addition, it is significant that the reference cold junction is in the line connected to the high side of the circuit; such placement is

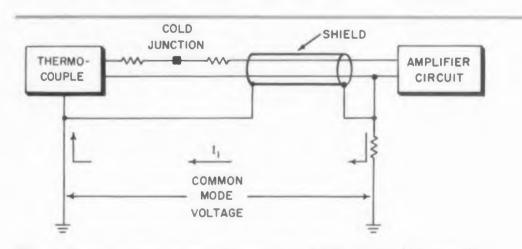
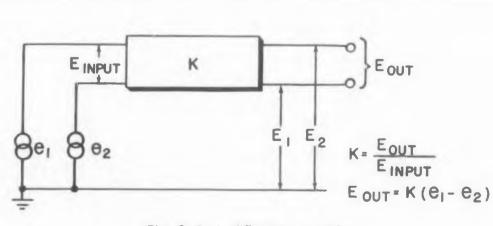



Fig. 1. Typical instrumentation system utilizing shielded cable "grounded" at both ends.

made because this line has more impedance than the other wire emanating from the thermocouple. The low-impedance line is chosen for the low or ground side.

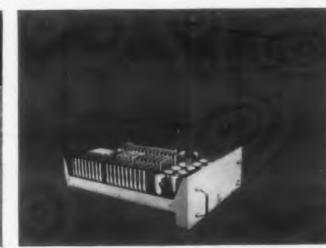
With the circuit arrangement shown in Fig. 1, the ground loop current I_1 flows through the parallel paths of the cable shield and the low ide of the thermocouple output wire. Since the shield has a much lower impedance than the instrument lead, most of the unwanted ground loop current flows through the shield. Such an arrangement will provide noise figures within the may peak-to-peak limitation mentioned above. The only rule of thumb broken by the circuit nown is that the shield is not unipotential; that the shield shown is grounded at both ends. this difficulty can be circumvented by using a double-shielded connector cable. The outer shield can be used for the ground connection, while the muer shield is connected at the amplifier end only.

Differential Amplifier Limitations

To make such a precision instrumentation system possible, a well-designed differential amplilier is highly desirable. A basic differential amphilier is shown in Fig. 2. In this theoretical circuit, the output voltage is proportional only to the difference between the two input voltages. These input voltages are referred to a common, invarying ground potential, which is entirely arbitrary.

However, such a theoretical circuit cannot be converted into actual hardware. A practical difterential amplifier becomes the circuit shown in Fig. 3. Common mode voltage appears in this actual equipment, since there is a finite isolation impedance to ground inherent in any amplifier. In practice, though, this impedance can be made as high as 10¹⁵ ohms and 0.6 µuf.

The biggest advantage a differential amplifier possesses over a single-ended amplifier in many installations is its inherent ability to reject noise better than a single-ended amplifier. The priniple of noise rejection is illustrated in Fig. 4. Assuming that two wires emanate from the transbluer, and that both wires have identical impedluce, the noise that is induced by electromagtic pickup travels along both wires. This noise inters the amplifier via two terminals. The two trainals are connected so that the net difference woltage between them is amplified. Since the noise voltage on each wire is the same, the net ofference between the two is zero, and no noise isses through the amplifier.


Another way to look at what is happening is lustrated in Fig. 5. The currents i_1 and i_2 in Fig. are noise currents. Each flows to ground brough what amounts to a center-tapped transtimer primary winding. The secondary of the

Assemble...a radar performance monitor...

or a complete weapon checkout system ...

with Sperry modular components

Sperry's new standardized test modules adapt to any electronic checking job

Newest trend in electronic testing is development of "universal" equipment adaptable with minor modifications to many different systems. This "building block" concept is encouraged by the armed services to eliminate the need for expensive test equipment designed exclusively for a single weapon system.

TEST ANY ELECTRONIC SYSTEM

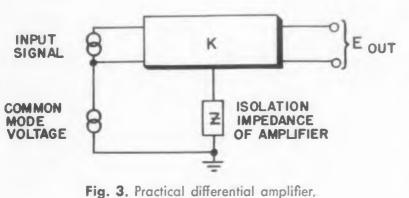
Ready with the answer is Sperry's Microwave Electronics Company which has developed a wide range of *standard-ized* test components of the modular

type. Physically and electronically compatible with each other, these advanced modules combine to form precision testing equipment capable of checking any kind of electronic system – either the over-all system or subsystems and components.

FOR LAB, BENCH OR FIELD

These Sperry modules require only minimum adaptation to tailor them to even the most advanced radar or electronic system. Sperry is also ready to take on the design and development of test modules to fit specific or unusual needs.

Write for more information on this latest Sperry contribution to more effective and reliable operation of electronic systems.

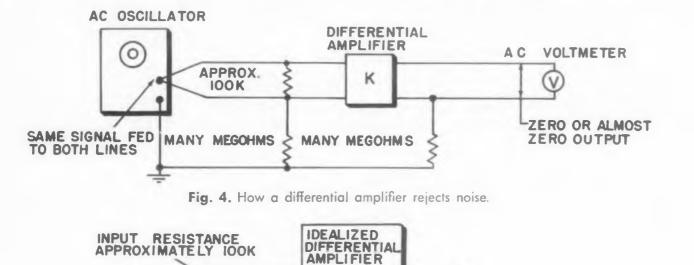

SPERRY MICROWAVE ELECTRONICS COMPANY, CLEARWATER, FLORIDA • DIVISION OF SPERRY RAND CORPORATION Address all inquiries to Clearwater, Florida, or Sperry Gyroscope offices in Great Neck • Cleveland • New Orleans • Los Angeles • San Francisco • Seattle CIRCLE 30 ON READER-SERVICE CARD

37

mythical transformer has no signal induced by the equal and opposite input noise currents. Meantime, a signal current flows through the entire primary winding of the mythical transformer, resulting in output signals.

High Noise Rejection

Because of the line unbalances and incomplete isolation from ground of the amplifier, the two


61

62

5

circuits into a differential amplifier are not identical, and some noise always comes through. The measure of the ability of the amplifier to reject such noise or keep it to a minimum is termed the common mode rejection of the amplifier. Common mode rejection is the principal figure of merit of a differential amplifier. A very good de differential amplifier will have a common mode rejection of 120 db for noise at a frequency of 60 cps. This means that the ratio of rejection is a million to one. The same amplifier can have a dc common mode rejection of 160 db. With such rejection figures, it is possible to rescue microvolts of signal from volts of noise. If, for example, a 5 v peak-to-peak noise signal is induced on the lines in Fig. 5, the output of the amplifier reproduces noise that looks like only 5 uv peak-to-peak of input added to the actual wanted information. Suppose a 0.1 per cent accuracy system con-

tains a transducer that provides a 10 mv peak-topeak usable signal. The resolution required, then,

200

is 10 µv peak-to-peak. Assume further that noise and drift generated within the amplifier account for half the system inaccuracy, or 5 uv peak-topeak equivalent input signal. The noise induced on the line can be 5 v peak-to-peak in amplitude, and the amplifier will reject it satisfactorily if it has a common mode rejection of 120 db. If the amplifier used in the system has a common mode rejection of only 60 db (representing a thousandto-one ratio), then a 5 mv peak-to-peak noise amplitude induced on the lines will not be seen in the 0.1 per cent system. However, it is quite difficult to extend long cables and have only 5 my peak-to-peak of noise induced in the lines. In most practical installations, the induced hum is much higher. In these circuits, 60 db of common mode rejection would not be enough if 0.1 per cent accuracy is the overall target. Therefore, verv high common mode rejection is essential in a de instrumentation amplifier where high precision is a requirement.

fu

ch

si

ne

ga

ar

ga

th

fe

111

fe

53

12

10

 \mathcal{D}

 $\{t\}$

19

(P)

d

τc.

Ū.

ė

51

31

101

11

Gain Stability Considerations

If gain settings in a dc instrumentation amplifier are to be significant, the source and line resistances must be considered in great detail. In the case of a typical chopper-stabilized dc amplifier with 100,000 ohms input impedance, if the gain settings must be stable to 0.1 per cent accuracy, then the combined source and line resistances must not vary more than 100 ohms. This requirement may not be too stringent under any given set of static ambient conditions; but when temperature and humidity changes are brought into the picture, the 100 ohm figure may become a severe handicap. For this reason, it is generally better to provide an amplifier with as high an input impedance as possible for any given circuit under consideration. The higher the input resistance of the amplifier, the higher can be the source and line resistances-and the changes in them-without affecting the gain of the amplifier too severely.

Of course, the gain of the amplifier itself is a

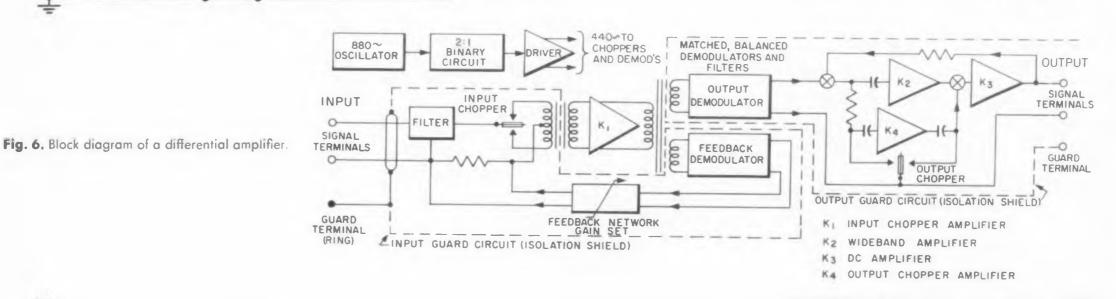


Fig. 5. Isolation action of differen-

OUTPUT

MANY

MEGOHMS

tial amplifier.

3

NOISE GENERATOR

MANY

MEGOHMS

function of many components. The effect of gain changes during operation, however, can be considerably reduced by utilizing a large amount of negative feedback around the amplifier. If the gain of the basic amplifier is high, and a large amount of inverse feedback is used, then the gain of the combined amplifier plus feedback circuit is, of course, primarily dependent upon the values of the circuit components within the feedback circuit.

Precision components, carefully aged and matched with care during the construction of a differential amplifier, go a long way toward insuring gain stability of the amplifier under field erating conditions. In some cases, the feedback circuit is external and housed in a separate trea under carefully controlled environmental conditions. Many commercially-available amplifiers have provisions for switching from internal teedback to external feedback circuits, for flexbility in various instrumentation situations. In any case it is the feedback circuit that must be controlled in order to maintain a true precision system.

DC Drift

Even when source impedance is kept as low as possible and amplifier input impedance is made extremely high, a margin of safety must be left in the design of an instrumentation system to allow for inevitable drift. This change in impedince values for practically all components within the system occurs, for the most part, because of changes in temperature. However, vibration and humidity can also seriously affect the many parameters in an instrumentation circuit. Add to these the possibility of unregulated power supply voltages, and the drift picture is complete.

If the transducers in a dc installation require isolation from the recording equipment, and especially if voltage gain is required, the dc differential amplifier becomes the logical item to perform the task.

Chopper-stabilized, as shown in Fig. 6, a de Implifier is a dependable link in the instrumentation chain. Zero drift is minimized by the use of the chopper to electromechanically convert dc into ac. The ac signal is amplified with all the officiency of an ac amplifier. Then the amplified lignal is demodulated with carefully balanced semiconductor circuitry to provide an output de signal proportional to the input de signal, and completely isolated from it. This isolation is chieved by shielding the input circuits and sepantely shielding the output circuits. In this manmer, stray voltage effects are reduced to a minimum, and ground current problems depend intirely upon the circuit configuration of the ustrumentation system external to the ampliler.

RESEARCH ACTIVITIES APPROACH IDEALIZED TRANSISTOR RELIABILITY

A bright new chapter in transistor history is being recorded at GT's research laboratories, resulting in progressive transistor design of unprecedented reliability, performance and stability. Advanced production control techniques have made possible the New "A-Types" with specification refinements providing ...

New process controls highlighted by high sensitivity hermetic seal testing, pre-tinning of internal parts, automatic welding of the hermetic seal case and individual handling of units in process insure improved reliability, uniformity of electrical properties, high mechanical strength and superior hermetic seal. All transistors are pre-aged for 100 hours at 100 °C.

TIGHTER PARAMETER CONTROL HIGHER OPERATING VOLTAGES

CN

HIGHER SWITCHING SPEEDS WIDER APPLICATION RANGES

	CUT-OF	CUT-OFF STATE		CONDUCTING STATE (SATURATED)		TYPICAL SWITCHING CHARACTERISTICS WITH CIRCUIT GAIN OF 20 AT IC LISTED UNDER CURRENT GAIN		
	Collector- Base Rating BVCBO	Oper. Volt V_{CER} min. $I_{CMAX} \equiv 10 \mu a$ $V_{BB} \equiv 1.5 V$ $R_{BB} \equiv 62 K$	hfe	D.C. Current Gain Conditions	$\begin{array}{c} \text{Delay} \rightarrow \\ \text{Rise Time} \\ t_d \rightarrow t_r \\ \mu \text{SEC} \end{array}$	Storage + Fall Time ts + tr µSEC	MC MC Typical	
2N317A	PNP	25V	12V	20 - 60	$I_{c} = 400 ma, V_{cE} = 25 V$	0.3	0.7	20
2N316A	PNP	30V	18V	20 - 50	$I_{C} = 200 \text{ma}, V_{CE} = 2 \text{V}$	0.4	0.9	12
2N358A	NPN	30V	20V	25 - 75	Ic = 300ma. Vc = 25V	0.4	0.9	9
2N357A	NPN	30V	25V	25 - 75	$I_{C} = 200 ma, V_{CE} = 25 V$	0.5	0.9	6
								Мілітил
2N523A	PNP	20V	10V	100 - 400	Ic = 20ma, Vcz = 25V	0.2	0.6	21
2N522A	PNP	25V	12V	80 - 300	$l_c = 20 ma. V_{ce} = .25 V$	0.3	0.8	15
2N521A	PNP	25V	15V	60 - 250	$I_c = 20ma$, $V_{ce} = 25V$	04	0.9	8
2N447A	NPN	30V	15V	80 - 300	Ic = 20ma. VcE = 25V	04	0.7	9
2N446A	NPN	30V	18V	60 - 250	$I_C = 20 ma \cdot V_{CE} = .25 V$	0.7	1.0	5
2N445A	NPN	30V	20V	40 - 150	Ic = 20ma, Vcm = .25V	1.0	1.3	2

WRITE FOR BROCHURES G-140A AND G-150A Popular computer types 2N311, 2N312, 2N404, 2N426, 2N427, 2N428, 2N439 and 2N440 are also available.

You grow fastest with the products that serve you best. Prove it to

N

CIRCLE 31 ON READER-SERVICE CARD

"YEARS AHEAD

Cable Design Concepts

A "harness" is not necessarily a "cable." A cable must have uniform flexibility throughout its length. Flexibility is achieved by laying the conductors in a helical pattern around the cable core. If the conductors are not helical but are pulled straight through the jacket, the resulting assembly is stiff.

Cable design begins with the schematic of the basic circuit that requires cables of optimum configurations and materials for maximum reliability. It is important that system design, while still in the breadboard stage, consider the relationship between the cables and other components of the system. Frequently, through proper cable design, the number of subcomponents within the black boxes can be reduced. This results in increased reliability and lower cost. For example, high-impedance, low-loss shielded cable circuits may eliminate the need for an extra cathode follower or transformer. Similarly, rf, dc, and ac conductors can often be incorporated into the same cable. This can save both cable and connector costs, and at the same time improve reliability and performance.

Important parameters which must be considered in cable design include size and type of conductors, arrangement of conductors within the cable, filler material, tape, jacketing, connectors, sealing compound, flexibility and size of the cable assembly. Material choice is most important and depends to a great extent on the environment and application of the particular cable.

improving cable design

A handy nomograph and a handful of working equations make cable design easy.

A KNOWLEDGE of cable characteristics like flexibility, tension loading and sheathing facilitates proper cable design. Knowing the "hows" and "whys," the engineer can then meet any rigid electrical, mechanical and environmental requirement.

Cable Flexibility

Unfortunately, there are no definite standards for flexibility or cables. Environmental and performance standards such as temperature, size, content, chemical resistance or current rating can be specified with precision. However, the terms "flexible" and "extra-flexible" are not precise and depend on their usage.

Nevertheless, flexibility can be engineered into a cable. The force required to bend a cable is lessened by winding individual conductors in a helical pattern along the length of the cable. The ratio of the length of one spiral turn to the diameter of the turn is defined as the lay ratio and is illustrated in Fig. 1. The lay ratio of cable generally ranges from 10 to 15. This results in an increase in wire length of from 2 to 5 per cent. The curve of Fig. 2 indicates the increase of wire length as the lay ratio decreases. In practically all cases, the increase in length, and consequently resistance, is either negligible or within the range of acceptable tolerance.

The outer lay of conductors in a multilayer cable will always have a left-hand lay, that is, the conductors spiral around the core in a lefthand direction. The next succeeding layer will have the opposite, or right-hand lay, with the third layer again reversing direction resulting in a left-hand lay. The actual lay ratio of each layer will depend on the number of conductors in each layer, but will, in general, remain constant from lay to lay within a cable.

Cable Tension Loading

Cable tension loads are limited by the allow-

William J. Strauss Pacific Automation Prod. Inc. Glendale, Calif.

able elongation of the individual conductors. For example, the permissible elongation of annealed copper conductors is 0.2 per cent. The maximum safe load in tension per conductor is equal to five times the wire weight per 1000 feet. For multiple conductor cables, the maximum allowable pulling force is given by the product of the number of conductors in the cable and the allowable force per conductor. In these calculations, the wire insulation has been excluded to provide a safety factor of approximately 15 per cent. The factor of wire weight has been reduced from 7.7 to 5.0 to provide an additional safety margin of 15 per cent for pulling loads only.

For vertically suspended loads on cables, the weight of wire insulation and jacketing must be added to the load weight of the wire. Insulation weight is approximately 20 per cent of the wire weight for conductors conforming to MIL-W-16878C, Type B, and MIL-W-5086A, Type I; 35 per cent of the wire weight for conductors conforming to MIL-W-16878C, Type C, and MIL-W-5086A, Type II; and 60 per cent of the

Fig. 1. Lay ratio defined and illustrated.

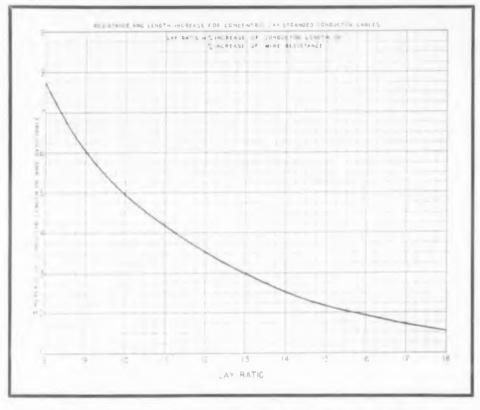


Fig. 2. Relationship between increase of wire and lay ratio.

wire weight for conductors conforming to MIL-W-16878C, Type D.

Neoprene jackets conforming to MIL-R-6855 will not significantly affect these figures since neoprene has a Young's modulus close to that of copper. Neoprene jackets for cables made in accordance with MIL-R-6855 have a density ratio to the amount of copper in the cable of approximately 75 per cent.

Resistance and Voltage Drop

Wire resistance varies with temperature and stranding as well as length. Table 1 lists the characteristics of number 10 AWG wire at 68 F.

These values are approximate because of the wide variation in data available from wire manufacturers, but they serve to illustrate that considerable difference does exist in the values for a given size wire.

Where cable operation takes place at other than standard temperature, correction must be made to compensate for the difference in resistance at the operating temperature. These factors can only be determined after analysis of a particular situation. But in general they become more critical as the current rating of the conductor is approached or the voltage drop becomes excessive because of long cable runs.

The nomograph of Fig. 3 has been prepared to assist the designer in voltage drop determinations and is based on stranded copper conductors operating at 68 F. For example, let us determine the voltage drop in a cable run of 200 ft carrying 50 amps in a 1 0 conductor. First place a straight edge along the line joining 200 ft on the left-hand scale and 50 amps on the second scale from the right. Then rotate the straight edge about the pivot line until it lies on the conductor size of 1/0 on the right-hand scale. The intersection of the straight edge and the voltage drop scale gives the result directly as 1.3 volts drop. This nomograph can be used to determine any of the four values when the other three are known or assumed.

Jacketing or Sheathing

Cable jacketing may be supplied in any material required to meet the environmental condi-

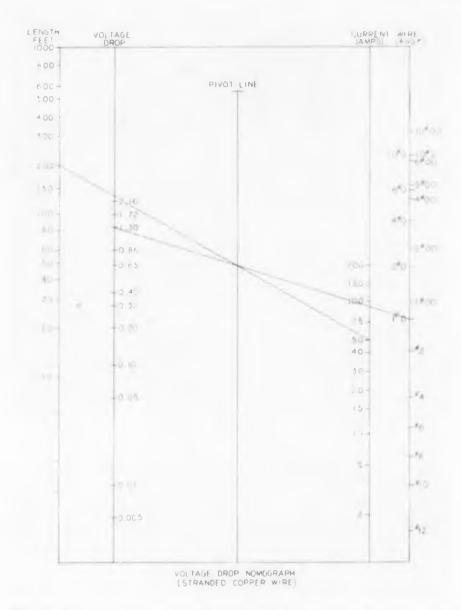


Fig. 3. Voltage drop nomograph for stranded copper conductors operating at 68 F.

tions of the system into which the cable is installed. However, certain neoprene compounds have been found to provide the best all-around resistance to the severe environmental conditions encountered in the field. They are better than either rubber compounds or other plastics. It is a matter of record that neoprene jacketed umbilical cables for missile launching, normally considered expendable items, have been successfully used for several firings.

Paprene, the proprietary neoprene compound used in combination with the unique technique of cable fabrication employed, results in a compact, flexible cable with properties that assure optimum performance and maximum reliability. Among the advantages of this combination is the case with which "breakout" cables are fabricated. Breakout cable, illustrated in Fig. 4, provide systems engineers with greatest flexibility of design and maximum economy of hardware.

A further improvement in breakout cable design is provided by the "clamshell" joint shown in Fig. 5. This exclusive design produces a smaller, stronger, lighter joint than the former

Temperatures from -150°F to 1250°F Altitudes to 350,000 feet

The range of uses is just as wide! Altitude,

temperature, humidity, alone or in com-

binations, as well as explosion, sand, dust,

fog and any other possible environment, can and have been accurately simulated

in Tenney chambers. No wonder Tenney

produces more chambers than any other

Write for a descriptive catalog and complete information on Tenney's research and development, engineering consultation, and design services.

company in the field!

TENNEY OFFERS WIDEST RANGE OF ENVIRONMENTAL TEST EQUIPMENT

Picture a test chamber as large as a house; imagine another as small as a typewriter; then think of the range of sizes between these extremes. Now you have an idea of the tremendous size-range of environmental chambers that Tenney has produced for companies all over the world.

ENGINEERING, INC. WORLD LEADER IN ENVIRONMENTAL TEST EQUIPMENT 1090 Springfield Road, Union, N. J. PLANTS: UNION, N. J. AND BALTIMORE, MD. CIRCLE 32 ON READER-SERVICE CARD method provided and affords greater flexibility in the area near the joint. The clamshell joint consists of two cast pieces of neoprene filled with a potting compound that has the same compositions as the cable jacket.

Of the many materials used as cable jacketing, each possesses certain physical and chemical properties for certain advantages in application. For example, some jacketing materials have excellent resistance to sunlight, while others are seriously deteriorated by sunlight's effects. Temperature, corrosion, contamination and radiation, as well as numerous other environmental factors affect each material differently. For this reason, consideration must be given to the actual en-

Table 1. 10 AWG Wire Characteristics

Stranding	Diameter	Circular Mil Area	Weight /M Ft.	Resistance M Ft.
Solid	0.1019	10380	31.52	1.04
105 imes 30	0.132	10553	32.99	1.10
55 × 28	0.119	10322	32.37	1.10
37 × 26	0.1113	9402	28.89	1.17

vironment to be encountered in service when specifications are being prepared, and to materials which will withstand these environmental conditions.

Shielded and Coaxial Cables

Shielded and coaxial conductors can be fabricated into special cables or used with other conductors in any combination. Although coaxial cables are less flexible than other cables, this is normally not a problem unless extreme flexibility is required.

Low capacitance signal leads are often used to advantage in long signal runs. To determine the capacitance between them conductor and

Fig. 4. Breakout cable.

i. n.

two i

mula

Hattor

lit oin vitl osi ing.

ical ion exare emion, tors

son. en-

nce

ŧ.

)

hen

ate-

ntal

bri-

.011-

xial s is

lity

sed

line

and

157

Fig. 5. Clamshell joint.

and or ordinary shielded wire, to find out ther this wire can be used or special low application the second state of the second sta can be applied:

onoritance/vondurine is shadd) =

 $\frac{7.354\times10^{-4}\,K}{\rm Log_{10}}\frac{D}{2}\,\mu\mu{\rm fd}~100~{\rm ft}\,.$

where:

$$D = 1D$$
 of shield
 $d = OD$ of bare wire
 $k = Dielectric constant of insulation$

To determine the capicitance between wires of two conductor shielded pairs, the following formula is used:

$$\frac{3.677 \times 10^{-3} \vec{K}}{\log\left(\frac{2a}{d}\right) \left(\frac{D^2 - a^2}{D^2 + a^2}\right)} \,\mu\mu \text{fd}/1000 \text{ ft}$$

When shielded or coax wire is used, signal loss in be determined from the formula for atten-

Monuation =

$$\frac{1.6 f (d_1 + d_2)}{d_1 d_2 \operatorname{Log}_{10} \frac{d_1}{d_2}} \times 10^{-6} \text{ db/ft.}$$

$$d_1 = \text{ID of shield}$$

$$d_2 = \text{OD of shield}$$

$$f = \text{frequency (mc).}$$

Cable Testing

guarantee performance and reliability, should be subjected to a wide variety of wal and mechanical tests, such as impact, lon, twist, bend, high and low temperature, static, as well as a number of other chemind electrical testing procedures.

Low-Power **Switches**

LOW COST: Up to 12

positions; staked or strut

SIMPLE SWITCHING: UP

to 4 positions; numerous

SOLENOID SWITCH: Oak

wafers with G. H. Leland

type of Rotary Solenoid.

variations.

Series OH

Series 20

screw construction.

GENERAL PURPOSE: Up

to 12 positions; 30", 45",

SIMPLE SWITCHING: UP

to 5 positions combined

Endless

Variety

from

Standing

Tools

SINGLE BUTTON-1 to 4

poles; spring return and

Series 170, 175

push-push.


PUSHBUTTON

Series 52, 54

with AC switch.

Series H

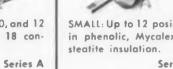
60° throw.

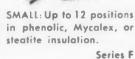
18-POSITION: Single or

double .eyelet fastening

Series L

of clips.


SLIDE


2-POSITION: Shorting

type with floating slider.

Series 70

tacts per wafer.

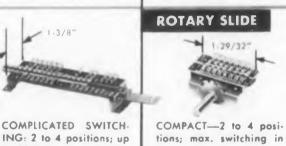
ADAPTABLE: 8, 10, 12, variations: economical.

and 14 positions; many Series J, K, N

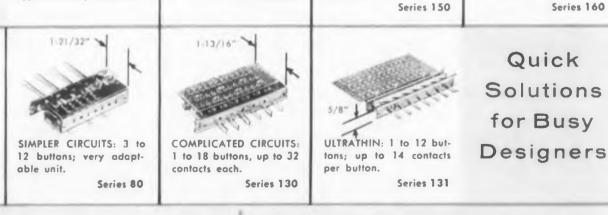
LOW COST: 2 to 5 positions; fits in limited space. Series 50, 53

24-POSITION: 15° throw

handles complex circuits.


Series ME

LEVER OPERATED: 2 to 5 CONCENTRIC SHAFTS: positions; numerous ver-Dual and triple shafts sions using std. wafers. with many wafer types. Series 185



FOR PRINTED CIRCUITS: Special lug designs for direct insertions.

min. space.

ING: 2 to 4 positions; up to 20 poles; very thin. Series 150

1260 Clybourn Ave. Dept. D, Chicago 10, Illinois Phone: MOhawk 4-2222

Designing a low-power switch can sometimes turn into a real tussle. Before this happens, call in Oak specialists. From a vast store of past designs and experience they are able, many times, to offer a readymade solution . . . whether it be for a standard unit, something unusual, or a complete package of circuitry. The result is the exact switch you need, representing top engineering and optimum economy.

CIRCLE 33 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

the

of a N

Mai

Mod

1900

a la

VIBRATION SYSTEM

Power generator of this vibration testing system is rated at 175,000 va output and the model A-182 shaker has a force output of 25,000 lb from 5 to 2000 cps. Model PP-175/240 amplifier is a 4-cubicle assembly that measures 18 ft in length and is 5 ft in depth while the shaker is almost 6 ft high. The system is completely self-contained and all control circuitry is included in the power generator cabinets. But all important controls and meters can be duplicated on a control console for remote control. The same basic power generator and control assembly can be applied to driving acoustic transducers.

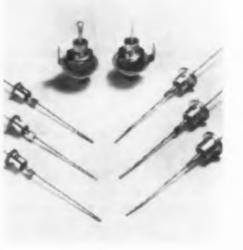
Ling Electronics Inc., Dept. ED, 9937 W. Jefferson Blvd., Culver City, Calif.

CIRCLE 34 ON READER-SERVICE CARD

PRECISION FILM RESISTORS

These precision film resistors are epoxy coated and are applicable to transistorized circuitry. Model N65 is rated at 1–4 w and has resistance values from 10 to 500,000 ohms. Voltage rating is 300 v. The N70 is rated at 1–2 w and has resistance values from 10 ohms to 1 meg. Voltage rating is 350 v. The N style resistors will meet MIL-R-10509C, characteristic B. The coating will withstand chlorinated hydrocarbon solvents used in cleaning flux from printed circuit boards.

Corning Glass Works, Electronic Components Dept., Dept. ED, Bradford, Pa.


CIRCLE 35 ON READER-SERVICE CARD

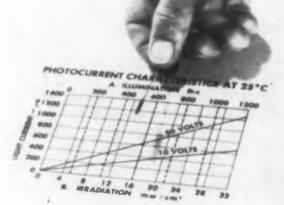
SILICON ZENER DIODES

These silicon zener regulator diodes are available in four nominal basic power ratings: Series B,750 mw; Series T, 1 w; Series G, 3.5 w; and Series K, 10 w. The first two come in an axial pigtail top hat package and the higher power devices in 10-32 stud-mounted cases. Zener breakdown voltage ranges cover from 3.6 to 30 v in each power rating.

International Telephone and Telegraph Corp., ITT Components Div., Dept. ED, 100 Kingsland Road, Clifton, N. J.

CIRCLE 36 ON READER-SERVICE CARD

SUBMINIATURE TRANSFORMERS


the Weecoil H. F. line consists of a single tuned and an oscillator coil for transistorized printed monit use in frequencies from 1 to above 10.7 Overall height is 0.5 in. and base dimensions 0.55 square. Both top and bottom tuning are possible, Normally-treated units stand 95% relative lumidity at 120 F for 500 hr, and are suitable for use between -40 to 185 F. Fully encapsulated units are available for military applications. Q's at up to 100 are possible in shielded versions. Wells Electronics Co., Dept. ED, 1701 South

Man St., South Bend 23, Ind. CIRCLE 37 ON READER-SERVICE CARD

introduces a new dimension in power supplies

epco

WITH VOLTAGE RANGE OF 125-325 VOLTS 200-400-600 MA.MODELS

PHOTO-DUO-DIODE

Model 1N2175 photo-duo-diode passes up to 1200 namp when exposed to 1200 ft-c. In darkthe unit passes less than 0.5 µamp. Dissipais rated at 250 mw at 25 C, and any biasing lige up to 50 v will operate the device. It will nute equally well on either ac or dc, and is ited to 125 C with a minimum operating temture of -55 C. The single-ended glass case stures 0.5 in., and has a diameter of 0.085 in. was Instruments Inc., Dept. ED, Post Office 312, Dallas, Tex.

CIRCLE 38 ON READER-SERVICE CARD

O. 7 REGULATION and STABILITY

MODEL	VOLTAGE	MA.CURRENT	RIPPLE
HB-2	125-325	200	VE00.0
HB-4	125-325	400	0.003V
HB-6	125-325	600	0.003V

0.01% MODELS AVAILABLE ON SPECIAL ORDER

All this adds up to MAXIMUM:

- SPACE ECONOMY
- OUTPUT CAPACITY
- QUALITY PERFORMANCE

Write for complete specifications.

CIRCLE 39 ON READER-SERVICE CARD

CE CONCENDENTE SANFORD AVENUE + FLUSHING 55, N Y + INDEPENDENCE 1-7000

NEW PRODUCTS

High Fidelity Speakers

Use Ticonal steel magnets

Series T-7 twin-cone loudspeakers use Ticom steel voice coil magnets and have a long air gaso that the coil is completely enclosed by a hemogeneous magnetic field even at peak ampltudes. The Ticonal 7 magnet provides a high concentration of flux densities in the voice coil ar gap and is about 30% more powerful than conventional magnets. Besides the cone for middland low notes, the speakers are equipped with high note cone which extends the frequency rang to about 20 kc.

North American Philips Co., Inc., High Fidelit Products Div., Dept. ED, 230 Duffy Ave., Hick ville, N.Y.

CIRCLE 71 ON READER-SERVICE CARD

Ben-Har "1258", a completely new extruded silicone rubber insulating tubing, uses a new formula and a new (patent pending) extrusion process that permits accurate dimensional control.

700% MORE FLEXIBLE THAN TEFLON TUBING

Ben-Har "1258" is the toughest, most flexible, most resistant and resilient unsupported tubing ever developed. It has high tensile strength — over 1200 pounds per square inch. It will withstand continuous operation from -85° C. through 260°C. Ben-Har "1258" has a higher rated temperature performance than conventional Class H tubings that cost more. It is highly resistant to heat-aging, never losing its flexibility. Its elasticity permits a snug fit over wires and connections. Ben-Har "1258" is resistant to

- 1) abrasion
- 2) cut-through
- 3) corona attack
- 4) harmful radiation

Available in standard wall thicknesses of .015 and .035 in a complete color range. Special dimensions can be custom engineered. Write for samples and data — or ask to see a Bentley, Harris representative.

BENTLEY, HARRIS FLEXIBLE SLEEVINGS

BENTLEY, HARRIS MANUFACTURING CO. 400 BARCLAY STREET CONSHOHOCKEN 3, PA. Telephone, Norristown, Pa.: TAylor 8-7600 CIRCLE 70 ON READER-SERVICE CARD Silicon PNPN Controlled Switches

Replace thyratrons

fr

Series 3A silicon pnpn controlled switches have electrical characteristics similar to those of thyra trons and provide high speed medium power switching in a wide variety of applications. The have three junctions and can replace magnetic amplifiers, thyratrons, tubes, semiconductor di des rectifiers, and transistors. Particularly suited 10 ac static switching and control circuits, they may also be used in magnetic core switching, logic circ itr pulse generation and shaping, inverters, 1 oto controls, power supplies, servo systems, and high level demodulators. The units have voltage r. mg to 200 v, peak current ratings to 1 amp, a d typical turn-on time of 0.2 usec. In the for an direction they will either conduct heavily or 1 ock depending on whether or not a gate current ap plied. The reverse characteristic is similar to that of a conventional silicon diode.

Solid State Products, Inc., Dept. ED, 1 Pi gree St., Salem, Mass.

CIRCLE 72 ON READER-SERVICE CARD

Transistorized Power Supply

0 to 1 amp range

Supplied with or without a meter, the LT 1095 transistorized power upply has a range of 0 to 1 amp and 0 to 32 v de. Convection cooled, at has no moving parts or internal blowers.

Lambda Electronics Corp., Dept. (D. 11-11 131st St., College Point 56 N.Y.

CIRCLE 44 ON READER-SERVICE CARD

DC Insulation Testers Portable

Series VON portable high voltiege de insulation test instruments and power supplies have ranges from 30 kv at 40 ma to 250 kv at 7 ma. All models are sectionalized to provide maximum portability and minimum weight, and supplemental stages may be added to the base power units to increase voltage ratings.

The Hewson Co., Inc., Dept. ED, B Broad St., Newark 2, N.J. CIRCLE 45 ON READER-SERVICE CARD

Circuit Breaker

For 220 or 440 v ac systems

A thermal type, three phase ciruit breaker. Klixon model D6760-5 perates on 220 or 440 v ac at 60 or 00 cps. With ratings of 5 to 60 up, it will handle short circuits tween 800 and 1000 amp at 440 Trip time is 2 to 6 msec on short cuit interruption.

Metals & Controls Corp., Spencer A., Dept. ED, Attleboro, Mass.

CIRCLE 46 ON READER-SERVICE CARD

ESC delay lines

take off with America's talking satellite

On December 18, 1958, the world entered a new era of communications with the successful orbiting of an Atlas ICBM—the Talking Satellite that broadcast President Dwight D. Eisenhower's Christmas message to the world. Circling the earth at a speed of more than 17,000 mph, the Talking Satellite repeated the President's message, erased it, and received and rebroadcast new messages in both voice and code.

ESC Corporation is justifiably proud that its delay lines were selected to aid in this electrifying triumph for America and her electronics industry. Especially designed by ESC, these delay lines were used in the timing sequence for propulsion, the guidance system and the telemetering system.

As America's largest manufacturer of custom-built and stock delay lines, ESC has continually met the responsibility of leadership by providing virtually every type of delay line needed by defense and industry. If you have a delay line problem, let ESC is design staff suggest a custom-built answer.

ceptional employment opportunities for engineers experienced in computer components ... excellent profit sharing plan

CORPORATION 534 BERGEN BOULEVARD, PALISADES PARK, NEW JERSEY

Distributed constant delay lines • Lumped constant delay lines • Variable de'ay networks • Continuously variable delay lines • Pushbutton decade delay lines • Shift registers • Pulse transformers • Medium and low power transformers • Filters of all types • Pulse forming networks • Miniature plug in encapsulated circuit assemblies

rons

es have

Ticon.

air ga

y a ho

amph

igh con

coil ar

an con

midd

with by rang

Fidelit

Hick

1 , 59

Find the missing memory plane

The seven memory planes above each solved some special memory problem. There is one plane missing. It's the one which will solve your problem. You'll find the plane at General Ceramics which offers a complete memory plane service, backed by broad experience in the design, engineering and mass production of planes, frames and cores.

DESIGN SERVICE – An experienced design engineering staff stands ready to analyze your memory plane requirement, recommend and develop the plane that will meet your application in the most efficient and least expensive manner.

MANUFACTURE – Skilled factory personnel, utilizing the most advanced equipment and techniques and continually working in all phases of memory plane development and manufacture will produce the plane. General Ceramics has developed and wired memory planes containing from 64 to 16,384 cores each. (Core sizes range from 50 mil OD to 80 mil OD.)

QUALITY CONTROL – An expanded testing department with fully automatic and semi-automatic testing equipment, developed at General Ceramics, assures you complete quality control and the highest standards of manufacture.

STANDARD LINE – Perhaps some of General Ceramics' line of standard memory frames will meet your requirements. Write for literature on General Ceramics standard planes. Address inquiries to General Ceramics Corporation, Keasbey, N. J.-Dept. ED.

NEW PRODUCTS

Stabilized Amplifier

Provides outputs to ±100 v

Using no electrolytic capacitors in glow tubes, this modular stabilized amplifier provides an average open loop de gain of over 50 million, with a minimum of 10 million. Long and short term drift is under 100 μ v and output voltage is up to ± 100 v. The unit requires a plus and minus 300 de supply and a 6.3 v ac filament source.

Applied Technology Corp., Dept ED, 475 Fifth Ave., New York 17 N.Y.

CIRCLE 49 ON READER-SERVICE CARD

Shielded Trailers and Trucks

For on the spot interference testing

Completely self-contained, these shielded trucks and trailers are cus tom designed for radio interference testing. With one, two, or three shields, they provide over 100 dl attenuation at all frequencies from 15 ke through 1000 me. They will closely approximate 100 db at 10 000 mc, exceeding the attenuation requirements of MIL-E-4957A Provisions can be made for mount ing antennas, shock-mounting test equipment, and installing intercommunication systems and coasial connector panels. The units can be equipped with a power control panel and a diesel driven gener tor with outputs up to 20 kw. External power connections can also be ur nished. The trucks can be built with living quarters that have all the facilities necessary for the conjuct of operating personnel, including heating and air conditioning. ingineered to provide high atternation and efficient performance units are also designed to meet he legal specifications of all states.

. Wit

Ace Engineering & Machine Inc., Dept. ED, Tomlinson Huntington Valley, Pa.

CIRCLE 50 ON READER-SERVICE CALL

Manufacturers of FERRAMIC CORES, MAGNETIC MEMORY CORES, MEMORY PLANES, MICROWAVE FERRITES, SOLDERSEAL TERMINALS, HIGH TEMPERATURE SEALS, STEATITE, ALUMINA and CHEMICAL STONEWARE

Power Supplies

0 to 60 v

!r

٧

tors o

oilized

open

, with

g and

v and

v. Th

300 \

ani

Dept

rk 17

ARD

d

e cus

)0 dl

from

v will

t 10.

ration

957A

iount-

g test

recin

sa ia

an be

on'ro

or tor

ternal

e ur

ith

1 the

mort

n ing

er 13-

2, the

st the

: 20.

18.3

3d.

ž.,

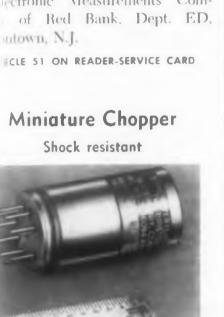
-20-

Transistorized and short circuit 1 oof, these power supplies can be sed from less than 1 v up to 60 v ithout loss of regulation or stabil-Three models are available with aximum ratings of 2.5, 5, and 7.5 und. Regulation is 0.1 per cent or 101 y no load to full load with 105 o 125 y lines.

Measurements Comp.m. of Red Bank, Dept. ED, ontown, N.J.

three from -65 to +125 C.

mry 20, Conn.


Twin-Triode Tube

mine-pin miniature twin-triode

type WL-7025 is designed for mice as a low-level input voltage olifier for tape recorders and odio preamplifiers. Interchangewith tube types 12AX7, 12DF7. ECC83, it can withstand high age surges.

Vestinghouse Electric Corp., tronic Tube Div., Dept. ED, Box 284, Elmira, N.Y.

RCLE 53 ON READER-SERVICE CARD

This miniature dpdt Syncroverter hopper affords good tracking and busistant to shock and vibration. It has a contact rating from dry unuit to 100 v. and its phase angle virtually unaffected by tempera-The Bristol Co., Dept. ED, Water-

CIRCLE 52 ON READER-SERVICE CARD

Low-level

Often standard switches can be modified to do the job. If a special switch is required,

Electrosnap engineering can create new switches in any quantity to your specifica-tions. Send us your problem ...our answer

can save you time and money.

Call Or Write For Specific Details On Any Switch Type

ELECTROSNAP CORPORATION

SWITCH DIVISION · 4216 W. Lake Street, Chicago 24, Illinois Telephone: VAn Buren 6-3100, TWX No. CG-1400

Industrial Laminates from General Electric - the company that stands for

reliability in the electrical and electronics industry

2-second flame-out time. Textolite Grade 11559 is

Consult Sweet's Product Design File, Cat. 2b Gen., for

technical information on the complete line of Textolite

laminates. Or for a brochure showing test data on Grade

11559-or engineering assistance for special problemscall or write: Technical Service, Laminated Products

Textolite

GENERAL (# ELECTRIC

Live Better Electrically-Electricity Builds Jobs

Dept., General Electric Company, Coshocton. Ohio.

available unclad or clad with 1 or 2 oz, copper.

after torch is removed

SELF-EXTINGUISHING G-11 EPOXY-GLASS LAMINATE RETAINS HIGH FLEXURAL STRENGTH AT 150°C.

New high-temperature transparent General Electric Textolite" 11559 has exceptional mechanical and electrical properties ... developed especially for computer and military electronic printed circuits

High insulation resistance and flexural strength even at 150°C.-that's what you get with new General Electric Textolite Grade 11559 epoxy-glass electrical laminate. Self-extinguishing 11559 exceeds NEMA G-11 requirements and Specification MIL-P-18177, Type GEB. Here's how Grade 11559 performs:

- Insulation resistance: 20,000,000 megohms at 50°C.; 500,000 megohms at 165°C.
- Flexural strength: retains 65', of room temperature strength at 150°C.
- High peel strength: 9 lbs. in. for 1 oz. copper-clad; no blistering after 30 seconds in molten solder at 500°F.

The base laminate withstands the effects of concentrated nitric acid and all conventional etching and plating solutions. In addition, 11559 is the only G-11 laminate that is self-extinguishing—has approximately

CIRCLE 55 ON READER-SERVICE CARD

NEW PRODUCTS

Circuit Breaker Protects fhp motors

Fr In

1.06

CIRC

Model MP-1600 circuit breaker is a remote mounted, manual reset unit designed to provide overload protection for thp motors in ratings from 5 to 20 amp. It employs a snap action thermal element that trips and shuts off a motor when carrent exceeds a predetermined limit. Once the motor is shut off, it cannot resume operation until the breaker has been reset.

Mechanical Products, Inc., Dept. ED, Jackson Mich.

CIRCLE 56 ON READER-SERVICE CARD

Beryllium Oxide Ceramic Insulator

For use to 4600 F

A high purity, high density beryllium oxide ceramic. Berlox is an electrical insulator with they thermal conductivity equal to that of brass. It was a can be used at temperatures up to 4600 F. It also and the withstands corrosive media and has maximum able thermal shock resistance. Fabricated, fired to shape, and extruded forms of this material can be used in nose cones, metal processing, wave guide windows, pyrometer sleeves, electron tube spacers and envelopes, heat exchangers, and reactor moderators. A variety of standard size Berlox crucibles and laboratory ware is also available.

National Beryllia Corp., Dept. ED, 4501 1101 Ave., North Bergen, N.I.

CIRCLE 57 ON READER-SERVICE CARD

Solid State Rheostats

Resistances to 500 meg

Designed for panel mounting, these st tic rheostats have no windings or sliding contacts. They are moisture proof. In a variety of s down to units that weigh 7 g, they have reader ance values from a few ohms to 500 meg.

Clark Electronic Labs, Dept. ED, Box 55 Palm Springs, Calif.

CIRCLE 58 ON READER-SERVICE CARD

Strain Gages

Fr medical and other electronic use

Initially designed for viewing the weetorm of arterial blood pressure firing heart surgery, these strain ges have many other uses. They made from polycrystalline bium alloys and permit the almg of very small tension inges on simple instruments. urk Electronic Labs, Dept. ED 185, Palm Springs, Calif. CI CLE 59 ON READER-SERVICE CARD

kson

tor

I can

VEV

etron

, ath

5120

also

Dell

ta ts.

5 15

e st-

\$5.

mole

ovide

from

ermal

n cui

e the

ation

Epoxy Resins

Have high heat resistance

for casting, laminating, and ada we uses, these liquid epoxy resin whems come in two formulations. from 617-A is aluminum-filled and MT-C is clear. Both have low viscosity, which can be maintained at norm temperature for as long as 30 munutes after mixture with a hardover. They have a heat distortion point of 425 F and show heat remetance at operating temperatures

oxide 100 to 500 F. At higher temperatures with they retain elasticity and have a ss. It maximum deformation of 0.01 in. take her in, which is partially recovermun able ed-to-

Mablette Corp., Dept. ED. 37-31 Oth St. Long Island City I. N.Y. CIRCLE 60 ON READER-SERVICE CARD

Capacitor Clip Vibration proof

by use with any capacitor that as a diam between 31/32 and 5 % in., these clips provide vibration proof retention that cannot female or damage the capacitor. Each of the second se with no loss of holding power, st fie and all mounting is quickly done from the top of the chassis without In of special tools. The clips tab in he used for cable, tube, or retention.

forman Products, Inc., Dept. O. Box 6688, Cleveland, Ohio, E 61 ON READER-SERVICE CARD

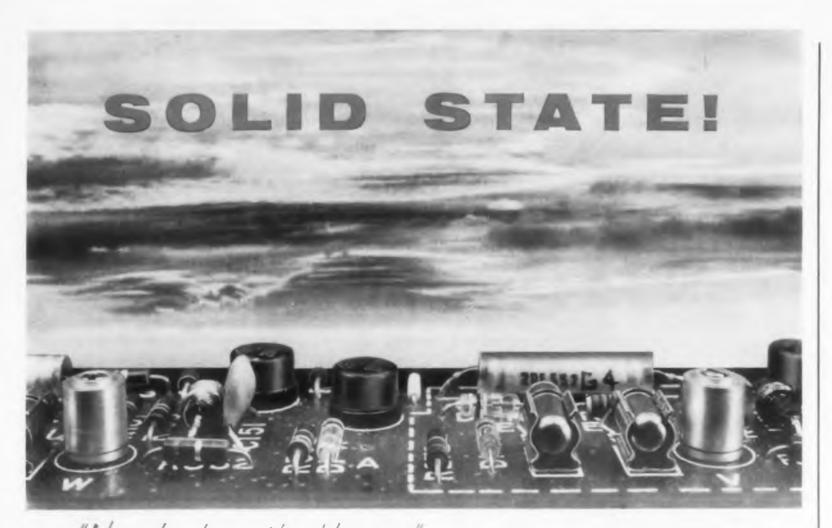
That's all the time we need to tell you about the NEW RCA-6DE4 damper tube and its extraordinary reliability

The new RCA-6DE4, half-wave rectifier tube uses a new cathode coating assuring uniform emission. It has a plate-to-cathode structure with a very low and uniform voltage gradient. In addition, the 6DE4 offers improved performance at lower cost in 110[°] black-and-white TV. Interested?

Well, here's why RCA thinks so much of the new 6DE4. A new technique of cathode processing is the chief answer. A smooth, hard, low impedance coating is applied that assures negligible heating effects from the high-voltage pulses and provides uniform emission and reduced sputtering. Too, the emissive cathode material operates at lower than usual temperature...heater needs less power...the cathode has the lowest current density for its rating of any damper tube. The plate-to-cathode structure and special styling of the mica reduce voltage gradients...insure against high voltage breakdown. Slots in plate surrounding cathode minimize possibility of sustained arcs. It is such an unusual tube that you might also be RCA FIELD OFFICES interested in its companion type, RCA-17DE4, which has a controlled warm-up time for series-string use.

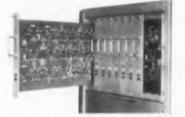
Now, take just 1 minute more. Call your RCA Field Representative for full details on how the unusual new RCA-6DE4 can cut costs and improve reliability of your TV damper designs. Technical data? Write RCA Commercial Engineering, Section D-18-DE-1, Harrison, N. J.

EAST 744 Broad St., Newark 2, N. J. HUmboldt 5-3900


MIDWEST: Suite 1154, Merchandise Mart Plaza. Chicago 54, Ill. WHitehall 4 2900

WEST 6355 E. Washington Blvd Los Angeles 22. Calif. RAymond 3-8361

RADIO CORPORATION OF AMERICA Harrison, N. J. **Electron Tube Division**


CIRCLE 62 ON READER-SERVICE CARD

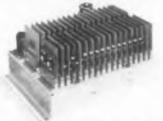
5 9 ELE RONIC DESIGN • April 1, 1959

New Look on the Horizon-completely TRANSISTORIZED

DIGITAL COMPUTERS, CONVERTERS, SYSTEMS AND MODULES

TRICE (Transistorized Realtime Incremental Computer, Expand-able) — THE WORLD'S MOST ADVANCED COMPUTER

TRICE is a completely solid state high speed (100,000 iterations per second) incremental computer that operates at the speed of analog computers with the accuracy and flexibility of digital devices. Independent computing elements, operating in parallel, permit the computer's size to be adjusted to meet varying applica-tions. Completely digital, TRICE can be used in simulating nonlinear and open loop systems without the limitations of analog methods. Because of its very high speed, it is particularly applicable to various operational systems including the computation of coordinate transformations, missile trajectories, Fourier spectra and satellite orbits. PACKARD BELL COMPUTER CORP



MULTIVERTER - Voltage Digital **Converter and Related Products** The MULTIVERTER was developed by Packard Bell Computer to meet industry's need for fast. accurate and reliable conversion between voltage and digital information representation for use in data collection and transmission systems, in digital control systems and in interconnecting computers such as TRICE with analog devices. The MULTIVERTER is the first completely solid state high speed (4 microseconds per bit) conversion system accurate to .01%. Accessories include a compatible solid state multiplexer and the first high speed solid state Sample and Hold device.

A subsidiary of Packard Bell Electronics

CIRCLE 63 ON READER-SERVICE CARD

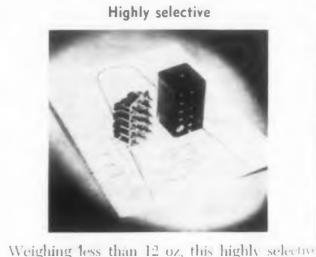
1905 S. Armacost Ave. • Los Angeles 25, California • GR 8-4247

TRANSISTORIZED AND MAG-NETIC DIGITAL MODULES

A variety of solid state modules are available for the construction of special systems. The following transistorized types are available: medium speed (nominally 200KC) AC coupled modules, high speed (nominally 4 mc) AC coupled modules, medium speed DC coupled modules, special high temperature modules and magnetic modules at low (20KC) and medium (100KC) speed together with the first commercially available transistor driving circuits.

CUSTOM DIGITAL CONTROL AND COMPUTING SYSTEMS Packard Bell Computer uses the components and techniques described to produce custom digital systems for Missile Impact Prediction, On Line Data Processing, Data Recording, Coordinate Conversion, Stable Platform Calculations, Orbit Predictions, Guidance and Control and Solid State Automatic Checkout.

NEW PRODUCTS


Transistorized Tachometer Measures speeds to 60,000 rpm

The Transi-Tach transistorized tachometer is available in a 19 in. rack panel version, a portable version, or a remote indicator version. All units are self-powered by a 9 v battery and can also be used with 115 v ac, 60 cps. Speeds up to 60,000 rpm can be accurately measured, and rpm is read directly on a large meter scale which can be calbrated in any speed range with up to 120 linear scale divisions. Essentially a frequency meter, the unit can be supplied for audio or ultrasonic free quency measurement and may also be adapted for use with any transducer which converts flows, pressures, or other physical forces into electrical signals of variable frequency. Accuracy is 22 of full scale.

Kahn and Co., Inc., Dept. ED, 547 Windsor St., Hartford 1, Conn.

CIRCLE 64 ON READER-SERVICE CARD

I-F Filter

i-f filter has a center frequency of 460 kc and aut

passes MIL-T-27A vibrational, shock, and hundid

ity specifications. Insertion loss is about 14 db. The

filter permits a high degree of selectivity before

appreciable signal amplification with resultant re-

duction in intermodulation effects. Change in

selectivity due to regeneration in the i-f amplifier.

or to Miller effect, are readily corrected by remini-

ing. Temperature stability equals 0.1% or be ter-

The unit provides 100 to 6 db bandwidth r tios

of less than 2, depending on shape and imped not

mismatch of from about 5 to 25% of center in-

quency. At 500 kc center frequency, there is less

than 1 db per section insertion loss. Peak to v lley

ratio is less than 0.5 db, and the unit can be sed

Hermetic Seal Transformer Co., Dept. ED.

CIRCLE 65 ON READER-SERVICE CARD

above 50,000 ft.

555 N. Fifth St., Garland, Tex.

The other cratio with 4 am one s peak and in a hard

Cra lister

Usir colt, th ali e tyre to 10 % t ci e

E T

Altitude Simulation Chambers

Ranges to 100 miles

TI

table

units

o be

0.00, 0

read

cali-

incar

, the

fred for

lows, trical

2% 0

adsor

activ 1 still

mid

. The

HC ON

n' n

C- 10

alifier

n-tun-

ie ter

r. tios

1 nev

r fre-

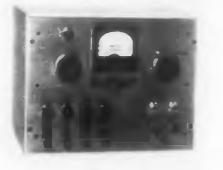
s less

· ile

ED.

759

A.


vailable in sizes from small laboratory units large walk-in chambers, series 900 highitude simulation chambers simulate altitudes to 100 miles. They incorporate automatic tems for recording and controlling at conint altitude or programmed climb and descent; d-throughs for power, instrumentation, gas liquid sampling; locks for specimen introtion or removal; and high-capacity highnum pumping systems.

General Vacuum Corp., Dept. ED, 400 Border St East Boston 28, Mass.

CIRCLE 66 ON READER-SERVICE CARD

Relay Life Test Generator

Provides pulses to 4 amp peak

The model 25 relay tester operates relays and other magnetic actuators under life test. In operation, a cycling transistor switch is combined with a de supply to generate pulses of up to 4 ump peak. Three square wave frequencies and one short duty pulse wave are available. The peak output voltage is adjustable from 6 to 35 v, and input is 115 v, 60 cps. The unit is housed in a hardwood case $11-1/2 \ge 9 \ge 9$ in.

Crane Electronics Co., Dept. ED, 4345 Hollister Ave., Santa Barbara, Calif.

CIRCLE 67 ON READER-SERVICE CARD

Resistance Ratio Recorders

Operate with 1 to 10 K transducers

Using a ratio form of Wheatstone bridge circhilt, the Speedomax Type H indicates and records me surements of pressure, flow, and other variall detected by three-terminal potentiometer type transducers. Designed to operate with 1 to It is supplied in round or strip t models and can be equipped with any of sed the company's automatic control systems.

> eds & Northrup Co., Dept. ED, 4939 Stenton Philadelphia 44, Pa.

CIRCLE 68 ON READER-SERVICE CARD

COAXIAL

DISCONNECT

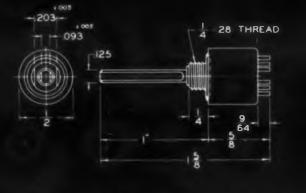
SECONDS!

COAXICON-brand new. One stroke of the A-MP precision tool does it. Two strokes and you have the pin and receptacle units permanently attached to coaxial cable. For low level circuitry, either panel mounted or free hanging.

- Reliability-the highest. Cost-lower than anything you're now using.
- Further, coaxial cable is fully supported against vibration.
- All this in seconds . . . no more burned insulation . . . no more tedious soldering ... no more doubtful connections. Attachments at unbeatable speed that
- give you the finest termination at the lowest total installed cost.

Write for more information today.

CORPORA


HARRISBURG, PENNSYLVANIA GENERAL OFFICES: A-MP products and engineering assistance are available through subsidiary companies in: Canada • England • France • Holland • Japan CIRCLE 69 ON READER-SERVICE CARD

The ever made!

Daven's New Series G Sub-Miniature Switch...1/2" Diameter!

A new sub-miniature rotary selector switch, developed by DAVEN, is specifically suited for application in missiles, aircraft, handy talkies, field pack sets, frog-man communication equipment, and all types of mobile apparatus. This explosion-proof, waterproof switch has the same reliability as its bigger brothers... but in a fraction of the space. It meets applicable military specifications on temperature, humidity, corrosion, vibration, acceleration. shock and immersion.

This unit is available as a single pole, 10 position switch and can be obtained with up to four poles on a single deck.

Write today for comprehensive technical report on the new Series G Sub-Miniature Rotary Switch.

Contact Resistance: Less than 008 ohm

- Contact Rating: 1 ampere, 250V D C. into resistive load. 350 MA, 100V D. C. into inductive load.
- Insulation Resistance: 200,000 megohms between any two terminals or between any terminal and shell. Measured at 25° C., 50% RH, at sea level.
- Life Expectancy: 50,000 cycles minimum Shaft and case: Stainless steel Panel and hub: Glass filled epoxy Contacts and terminals: Silver alloy Rotors: Rhodium plated beryllium copper

| NEW PRODUCTS

Insulation Resistance Tester

Range of 0 to 10,000 meg for 6 voltages

Rectifier operated, this Megger insulation resistance tester has a single range of 0 to 10,000 meg for output voltages of 500, 750, 1000, 1500, 2000, and 2500 v.

James G. Biddle Co., Dept. ED, 1316 Arch St., Philadelphia 7, Pa CIRCLE 41 ON READER-SERVICE CARD

Resin Fluxes For printed circuits

Finely demarcated for increased solderability and low corrosion potential. Lonco resin fluxes are designed for printed circuit production. They permit the soldering of badly oxidized surfaces and become active at heats ranging from below the melting point of solder to any higher temperature desired. Maintaining properly balanced-wetting for low temperature soldering, these fluxes permit filleting of the solder in and up the holes for reliable connections. They are available in five grades of solderability value, corrosion potential, and specific gravity. London Chemical Co., Dept. ED.

1535 N. 31st Ave., Melrose Park, III

CIRCLE 42 ON READER-SERVICE CARD

Transistorized Motor Operator

For control application

This transistorized motor op-rator is designed for damper and valve control in heating, ventilating and air conditioning systems. It affords a choice of sensing elements, selection of compensated control and wide adjustability of range and ratio settings.

Barber-Colman Co., Dept. J.D. 1300 Rock St., Rockford, Ill.

CIRCLE 43 ON READER-SERVICE CAR

TODAY. MORE THAN EVER, THE DAVEN 💿 STANDS FOR DEPENDABILITY!

(below) One of the Santa Cruz test simulate flight environment. Vibration

2

gger as a g for 1000.

ED, a. RD

ased

po-

de-

tion. adly

ctive

the

gher

ning low uxes and nec-

five TTOvity ED

, 111

20

0.53

nd

12

It

łs,

t ol. nd

D.

- 11

stands with dynamic thrust mount to oscillator functions during the static firings

> (above) Navy Polaris AX-1 flight test vehicle at beginning of launch. Lockheed's Polaris fleet ballistic missile is more than a year ahead of original schedule.

> > (right) Large centrifuge for environmental testing has unique shaker attachment to provide vibration simultaneously with high G-loadings.

TEST

Expanding the Frontiers of Space Technology

Testing is a vital part of every stage in the development of missile and space programs at Lockheed Missiles and Space Division.

The Division maintains one of the most completely equipped missile and space test laboratories in the world. Equipment includes: altitude, temperature and humidity chambers; shaker and vibration systems; G-accelerators; and apparatus capable of performing chemical, metallurgical, plastic, heat transfer, hydraulic, pneumatic. shock, acceleration, sinusoidal and random vibration, structural, electrical, and electronic tests. Static field testing; research and development testing on controls; testing in ordnance and hydraulics and high-pressure gas and propulsion systems are conducted at the 4,000 acre, company-owned test base in the Ben Lomond mountains near Santa Cruz, California.

As weapon systems manager for such major, long-term projects as the Navy Polaris FBM; Discoverer Satellite; Army Kingfisher; Air Force Q-5 and X-7; and other important research and development programs, Lockheed is engaged in expanding the frontiers of technology in all areas.

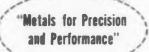
Flight testing is conducted at Cape Canaveral, Florida; Alamogordo, New Mexico; and Vandenberg AFB near Santa Maria, California; in a unique manner. All components and sub-systems of a new project are initially tested on known-performance, production missiles. Thus, when the final system is ready for first flight, its individual components already have flight-tested reliability. This new concept of flight testing is a major contribution and has enabled Lockheed to produce extremely complex missile systems in record time and at greatly reduced expense.

Underwater launch tests-including studies of cavitation, wave simulation and skip motion – are carried on at the Sunnyvale facility and at the Navy test base on San Clemente Island. Structural and other tests are performed at Hunter's Point Naval Shipyard, California.

If you are experienced in any of the various phases of testing, we invite your inquiry. Positions also are available in physics, mathematics, chemistry, or one of the engineering sciences. Write: Research and Development Staff, Dept. D-21, 962 W. El Camino Real, Sunnyvale, California.

"The organization that contributed most in the past year to the advancement of the

art of missiles and astronautics." NATIONAL MISSILE INDUSTRY CONFERENCE AWARD


LOCKHEED MISSILES AND SPACE DIVISION

SUNNYVALE, PALO ALTO, VAN NUYS, BANTA CRUZ, BANTA MARIA, CALIFORNIA CAPE CANAVERAL FLORIDA ALAMOGORDO, NEW MEXICO

Quality begets quality — it's an established axiom that premium products must begin with quality components. BISHOP has been producing platinum and precious metal products since 1842 . . . precision stainless steel tubing since 1931. The BISHOP family of metal products includes a broad variety of components for the designer, engineer . . . just to mention a few:

Copillary Tubing—stainless grades, standard sizes up to .130" OD Platinum & Platinum Alloy Wire—#50 to #3 B & S Gauge Clad Metals—base and precious metals in various combinations Glass-To-Metal Sealing Alloys—low expansion alloys Thermocouple Wire—noble metal and noble metal alloys Tubing—nickel, stainless, platinum, special alloys up to 1" OD Tubular Fabricated Parts—all varieties—conventional forming operations Composite Wires—base and precious metals in various combinations Platinum Contacts, Discs, Laboratory Apparatus

CATALOGS, DATA SHEETS SENT PROMPTLY ON REQUEST

Begin your next design with *unexcelled* quality BISHOP component materials. Write, wire or phone Malvern 3100.

platinum works MALVERN, PENNSYLVANIA

J. BISHOP & CO.

CIRCLE 73 ON READER-SERVICE CARD

NEW PRODUCTS

Modular A/D Converter Weighs seven pounds

Designed mainly for airborne use, the model CG 591 analog to digital converter can scan 12 input channels at a 120 cps rate, or as many as 50 channels at a slower rate. This completely solid state system uses PCM to provide accuracies of 0.2 per cent. Output, from a three digit, decimal coded binary register, can drive Nixie readout tubes, punched tape or cards, or can be used for telemetry transmission. The miniaturized system is completely modular, using 2 in. by 3 in. plug-in etched circuit cards.

C. G. Electronics Corp., Subsidiary of Gulton Industries, Inc., Dept. ED, Albuquerque, N. Mex. CIRCLE 74 ON READER-SERVICE CARD

50 Ohm Coaxial Terminations

Have type TNC connectors

Model 535 50-ohm coaxial terminations are available with type TNC male or female connectors. They can also be supplied with types N, C, SC, and BNC connectors. The units have a de to 10 kmc frequency range; 1 w average and 1 w peak power handling capacity: and individ al vswr calibrations of dc. 400, 1000, 2000, 400, 7500, and 10,000 mc. The film resistors used are artificially aged for maximum stability.

Weinschel Engineering, Dept. ED, 10503 Metopolitan Ave., Kensington, Md.

CIRCLE 75 ON READER-SERVICE CARD

EIE

FLIGHT DATA and CONTROL ENGINEERS

nds

iodel

n 12

us 511

solid

es of imal

dout

d for

m is

112-10

ilton

Mex.

are

e n.

s N.

n de

11 i al

0.1

:rê

0

259

Cross new frontiers in system electronics at The Garrett Corporation.

High-level assignments in the design and development of system electronics are available for engineers in the following specialties:

1. ELECTRONIC AND FLIGHT DATA SYSTEMS AND CONTROLS A wide choice of opportunities exists for creative R & D engineers having specialized experience with control devices such as: transducers, flight data computers, Mach sensors, servo-mechanisms, circuit and analog computer designs utilizing transistors, magamps and vacuum tubes.

2. SERVO-MECHANISMS AND **ELECTRO-MAGNETICS** Requires engineers with experience or academic training in the advanced design, development and application of magamp inductors and transformers.

3. FLIGHT INSTRUMENTS AND TRANS-DUCERS

1) **DESIGN ANALYSIS** Requires engineers capable of performance analysis throughout preliminary design with ability to prepare and coordinate related proposals.

2) DEVELOPMENT Requires engineers skilled with the analysis and synthesis of dynamic systems including design of miniature mechanisms in which low friction freedom from vibration effects and compensation of thermo expansion are important.

4. PROPOSAL AND QUALTEST **ENGINEER** For specification review, proposal and qualtest analysis and report writing assignments. Three years electronic. electrical or mechanical experience required.

Forward resume to: Mr. G. D. Bradley THE GARRETT CORPORATION 9851 S. Sepulveda Blvd. Los Angeles 45, Calif. -DIVISIONS

AiResearch Manufacturing-Los Angeles AiResearch Manufacturing-Phoenix AiResearch Industriai Air Cruisers . Airsupply Aero Engineering AiResearch Aviation Service

The AiResearch Centralized Air Data Computing System will sense, measure and automatically correct for air parameters affecting flight of the North American-Air Force F-108 Interceptor and will supply simplified air data to the pilot. Eliminating duplication of components, the system will cut down space and weight requirements over decentralized systems by many times.

The centralized combination of transducers, computers and indicators

THE GARRETT

represents an integrated system concept combining electrical, electronic. pneumatic, hydraulic, electro-mechanical and mechanical servo capabilities. Technical experience in each of these fields enables AiResearch to achieve optimized systems covering a wide range of functions while meeting the most rigid specifications. Systems management is an integral part of each Central Air Data program enabling AiResearch to assume the overall re-

CIRCLE 76 ON READER-SERVICE CARD

CORPORATION

AiResearch Manufacturing Divisions

Los Angeles 45, California • Phoenix, Arizona

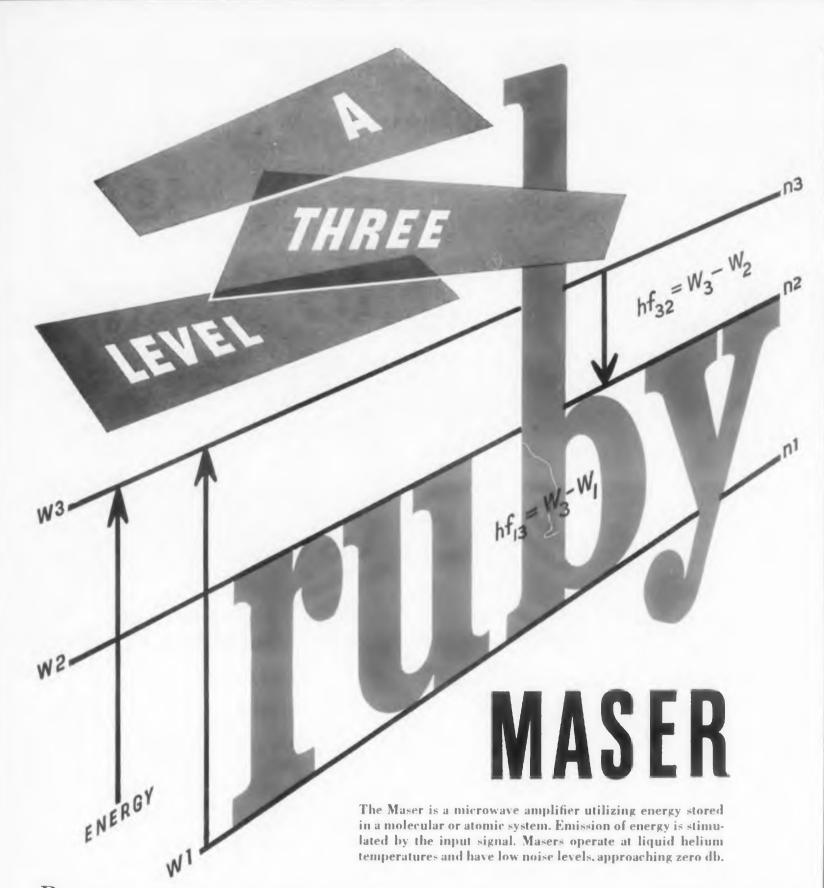
AiResearch creating

data system

for USAF

F-108

central air


Also latest data control concepts for missile and undersea applications

> sponsibility for systems or subsystems. The first fully optimized central air

data system is already operational aboard the Navy's supersonic F4H-1, the first aircraft to fly with such a system. Similar equipment is on the Navy's first weapon system, the A3J "Vigilante." This broad AiResearch systems capability is now being applied in the fields of military aircraft, commercial jet transports, missiles and submarines.

Systems, Packages and Components for: AIRCRAFT, MISSILE, ELECTRONIC, NUCLEAR AND INDUSTRIAL APPLICATIONS RCLE 870 ON READER-SERVICE CARD CTRONIC DESIGN • April 1, 1959

57

Recently, a university research laboratory[†] used LINDE single crystal synthetic ruby $(Al_2O_3 \text{ with } Cr_2O_3 \text{ additive})$ in a three-level solid state Maser. The ruby crystal was placed in the Maser's tuned cavity and a magnetic field of 4200 gauss was applied. To bring electrons from a ground state into a permissible higher energy level, a pumping frequency of 24 kMe was used and the Maser amplified signals at 9.3 kMc.

LINDE supplies other crystals, including rutile, spinel, and sapphire. (Al_2O_3) . Sapphire is used in infrared optical sys-

†Maser Action in Ruby, by G. Makhov, C. Kikuchi, J. Lambe, and R. W. Terhune, "Physical Review," Vol. 109, No. 4, p. 1399, Feb. 15, 1958.

"Linde" and "Union Carbide" are registered trade marks of Union Carbide Corporation.
CIRCLE 77 ON READER-SERVICE CARD

tems, windows for higher power microwave tubes, spacers and supports in vacuum tubes, radiation pipes. It has strength at elevated temperatures, melts at 2040° C., is hard, inert, nonporous, and can be sealed to metals and glasses. Sapphire is available in the shape of domes, windows to $4\frac{1}{2}$ inches in diameter, rods and special configurations.

For more information, write Crystal Products Department, LINDE COMPANY, Division of Union Carbide Corporation, 30 East 42nd Street, New York 17, N. Y.

NEW PRODUCTS

Automatic Spectrometer

Scans between any two levels from 0 to 85 v

> 254 log

oF.

tin

518

de

12

10.

W

seq

0Ē.

to 3

lice

CEIN

talk

10

put

ind

200

the

his

Thus

Self

PO)

ELE

The model 50-1 automatic spectrometer consists of the company's model 33-1 single channel pulse height analyzer; its model 39-2 electronic sweepcount rate meter; a high voltage supply; and a Brown ElecktroniK recorder. An electronic sweep circuit automatically scans the spectrum between any two predetermined levels from 0 to 85 v and then resets and repeats the cycle. The data is automatically plotted on the recorder. An automatic sample changer, the model 48-1, can be used to change the sample when the sweep circuit resets. The system may also be operated as a manual spectrometer.

Radiation Instrument Development Lab, Inc., Dept. ED, 5737 S. Halsted St., Chicago 21, Ill. CIRCLE 78 ON READER-SERVICE CARD

Analog Computer Kit

For educational and industrial use

This kit contains parts for the model EC-1, an analog computer designed for educational and industrial laboratory use. The computer is completely self-contained with nine dc operational amplifiers, three initial condition power supplies, five coefficient potentiometers, four sets of relay contacts, an electronically regulated power supply, and a repetitive oscillator for automatic operation. Included with the kit are assorted precision resistors, Mylar capacitors, special silicon dio es, and patch cords for setting up complex proble ns. Problem results are read directly from the m^{ter} supplied or with an external readout device.

Heath Co., Dept. ED, 305 Territorial Rd., Tenton Harbor, Mich.

CIRCLE 79 ON READER-SERVICE CARD

58

256-Channel Analyzer

Has interchangeable logic units

٩r

two 5 v

nsists

pulse

veep-

nd a

weep

ween

7 and

ita is

auto-

n be

weep rated

Inc.,

Ill.

1. an

d in-

com-

ional

plies,

relay

pily,

tion.

) re-

o es,

(15

h. ter

] (M)

959

Completely transistorized, the model CN-110 56-channel analyzer has interchangeable plug-in logic units for pulse height analysis, neutron time flight studies, and counting as a function of tune. It has a complete magnetic core data storage system, a 3 in. crt display, analog address and arithmetic readout, and preset count. Average dead time with the pulse height analyzer unit is 42 usec. The unit is $19 \ge 20 \ge 8-3/4$ in. and weighs 10 lb.

Technical Measurement Corp., Dept. ED, 441 Washington Ave., North Haven, Conn.

CIRCLE 80 ON READER-SERVICE CARD

Crossbar Scanner Self-stepping

The model SC-4 self-stepping crossbar scanner sequentially connects a six-wire circuit with each of 100 sets of six-wire terminals at speeds of up to 50 sets per sec. It also has a facility for random access. It has a life of 20 million operations per crosspoint without adjustment and offers low crosstalk between adjacent circuits at frequencies up to 10 mc. Insulation resistance is 10,000 meg; conductor resistance is 0.3 ohm through the longest path; and current carrying capacity is 100 ma noninductive at 50 v dc. Contact bounce is less than ²⁰⁰ usec on make, none on break. For scanning, SC-4 needs two mercury-wetted contact relays ides the crossbar switch. One drives the select mugnet chain, the other the hold magnet chain. Sci-stepping of these chains is effected by a set of control contacts on each magnet.

ames Cunningham, Son & Co., Inc., Dept. ED, P.O. Box 516, Rochester 2, N.Y.

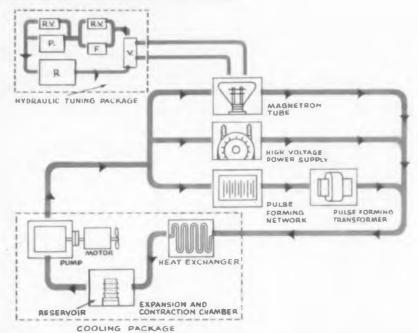
CIRCLE 81 ON READER-SERVICE CARD

A NEW 50 VOLT SUBMINIATURE PAPER CAPACITOR

requirements of MIL-C-25A K characteristic meets FOR TRANSISTORIZED APPLICATIONS PARTIAL LIST OF RATINGS AVAILABLE Astron's new 50 volt hermetically CAP. MF **DIA. x LENGTH** sealed subminiature paper capacitors have the reliability required by .235 x 3/4 0.027 specification MIL-C-25A. 0.068 .312 x 7/8 These units operate at temperatures 0.1 .312 x 7/8 from -65° C to $+125^{\circ}$ C without 0.27 .400 x 1.3/8 derating. The capacitance variation 0.47 .500 x 1-1/4 is less than $\pm 3\%$ over the entire .562 x 1-5/8 1.0 operating temperature range. High 2.0 .750 x 2-1/8 insulation resistance, low power factor, unusually low resonance loss are combined in this new light-weight subminiature unit. In response to a definite engineering TYPICAL CAPACITANCE VS. TEMPERATURE need, Astron's new type AQF is compactly designed and offers superior performance characteristics for low voltage transistorized applications. Write today for complete technical information. Available from your Astron authorized stocking distributor SPECIALISTS IN CAPACITOR MINIATURIZATION EXPORT DIVISION ROCKE INTERNATIONAL CORP. 13 EAST 40TH ST. IN CANADA: CHARLES W. POINTON OR P ORA TIO ALCINA AVE 255 GRANT AVENUE, E. NEWARK, N. J. TORONTO, ONTARIO NEW YORK. N. Y ASTRON

CIRCLE 82 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959


Design Tips on liquid cooling

PROBLEM: Cool magnetron tube, power supply, pulse forming network, pulse forming transformer, and supply hydraulic power for tuning.

SOLUTION: Use Coolanol 45 as the coolant-dielectric for all components and also as the hydraulic fluid.

DESIGN EXAMPLE:

Standardize! Miniaturize! Simplify! Liquid-cooling with Coolanol 45 can help you do all three. The above system design shows one way these three goals can be achieved when you rely on the fluid properties of Coolanol 45: efficient heat transfer for accurate temperature control...dielectric properties for safe operation . . . dependable power transmission for the hydraulic tuning circuit. Its complete compatibility with standard materials keeps costs down.

By standardizing on Coolanol 45, you can liquid-cool all the components with one heat transfer system and tie in a Coolanol 45 hydraulic system for tuning. One fluid instead of two or three means less complexity . . . greater reliability for your system's operation. Coolanol | Monsanto Trademark

SEND FOR NEW DESIGN BOOKLET

"Design Tips on Liquid Cooling with Coolanol 45" describes cooling approaches, fluid properties essential to equipment reliability, a typical design, and other important design aspects. For your copy of this new booklet, circle the reader-service number . . . or write:

MONSANTO CHEMICAL COMPANY, Organic Chemicals Division Aviation Fluids Department, St. Louis 66, Missouri

When you need a synthetic fluid, come to Monsanto - creator of fluids for the future CIRCLE 83 ON READER-SERVICE CARD

NEW PRODUCTS

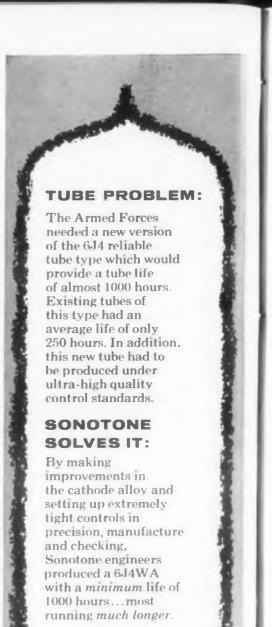
Elapsed Time Indicator

Measures missile component reliability

This elapsed time indicator is designed to measure equipment reliability. It is 0.665 in. in diameter and 1.415 in. long, weighs 1.2 oz, and draws 0.018 amp at less than 1 w. The unit contains an electric motor that operates from 115 v, 400 cps, single phase and a jeweled gear train with a 180 million to one ratio. It records up to 1000 hr. Suited for inclusion in the black boxes of missile and aircraft components, it stands vibration up to 10 g to 500 cps, shock up to 15 g, and temperatures from -40 to +165 F. It contains an internal reset and is enclosed in a hermetically sealed case with solder pin terminals.

Elgin National Watch Co., Elgin-Micronics Div., Dept. ED, 366 Bluff City Blvd., Elgin, Ill. CIRCLE 84 ON READER-SERVICE CARD

Panel Instruments


For ac and dc use

These panel instruments feature the Cormag mechanism for positive shielding from external magnetic fields. Model 1741 is a 4.5 in. dc unit and model 1724 is a 2.5 in. ac unit. Also available are three ac moving iron type instruments capable of obtaining controlled ballistics characteristics.

Weston Instruments, Div. of Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N.J.

CIRCLE 85 ON READER-SERVICE CARD

RESULTS:

The Sonotone 6J4WA is one of three reliable tubes now being manufactured under U.S. Army Signal Corps RIQAP (Reduced Inspection Quality Assurance Program), monitored by the U.S. Army Signal Supply Agency. And the same rigid quality standards apply to Sonotone's entertainment type tubes as well. Let Sonotone help solve your tube

problems, too.

Ea

alp

9 a

get

ter

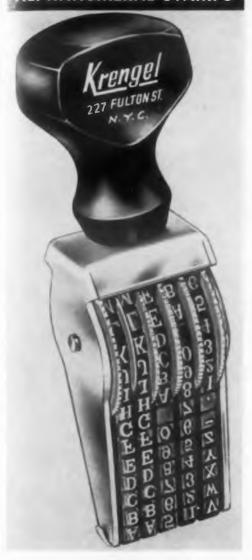
the

wit

bar

size

bols


cort

mak

Sonotone. nic Applications Division, Dept. TGG-49 ELMSFORD, NEW YORK Leading makers of fine ceramic cartridges, speakers, micro-phones, tape heads, electron tubes.

In Canada, contact Atlas Radio Corp., Ltd., Toronto CIRCLE 86 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 1, 1959

CLEARER LONGER - LASTING markings on your parts with KRENGEL ALPHANUMERAL STAMPS

FROM 3 to 16 bands on each stamp. Each band contains the complete alphabet (A to Z) and figures 1 thru 9 and 0 plus a period and dash. You get all possible combinations of letters and figures by simply moving the wheel-on each band. Available with roman or gothic type style bands in a large variety of type sizes. Write for FREE Catalog.

MADE TO ORDER BANDS If your requirements call for special symbls...or you prefer stamps with only rtain numbers and letters...we will ke them to order for you at reasonable prices. Just tell us your needs—we'll do the rest.

KRENGEL IG. CO., INC. • 227 FULTON STREET W York 7, N.Y. • COrtlandt 7-5712

9.9

CIRCLE 87 ON READER-SERVICE CARD

Tachometers and Frequency Counters

Accuracy of ±1 count

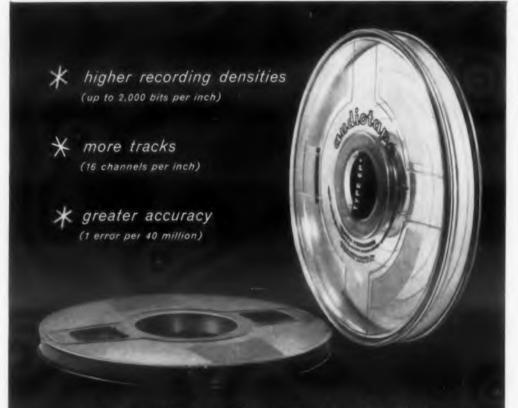

The 1300 series of electronic tachometers and frequency counters includes types for remote indication, for explosion-proof installation, and for dual readout requirements. Time bases available have fixed selectable times of 0.1, 0.5, and 1 sec. The units have an accuracy of ± 1 count, a display time that is adjustable from 0.1 to 10 sec, and a sensitivity of 50 mv rms. They have an input impedance of 1 meg and automatic or manual reset.

I-L-S Instrument Corp., Div. of The Meriam Instrument Co., Dept. ED, 4527 W. 160th St., Cleveland 35, Ohio.

CIRCLE 88 ON READER-SERVICE CARD

Impact Recorder

Measures up to 7 g



Designed for use in the carrying cases of various missiles, this impact recorder is adaptable for all types of ground and air transportation. It measures and records on-off digitized acceleration data from impacts, shocks, or gravity loads up to 7 g in temperature ranges from 0 to 160 F and at altitudes to 20,000 ft. The unit can operate for 30 days or for 36,000 impacts on its integral rechargeable battery and can respond to 30 discreet shocks or impacts per sec. It is housed in a portable aluminum case $14-1/2 \ge 11-3/4 \ge 8-3/4$ in.

Lockheed Aircraft Service, Inc., Special Devices Div., Dept. ED, Ontario, Calif.

CIRCLE 89 ON READER-SERVICE CARD

Tape specs are getting tougher every year

... but not too tough for Audiotape

Keeping *ahead* of its customers is the only way a magnetic tape manufacturer can meet the rapidly rising standards being set for its product. And often the standards are as varied as they are exacting. Special slitting tolerances, coating thicknesses, base materials and magnetic oxides are rapidly becoming more usual than novel. Audio Devices' battery of Automatic Certifiers is one of the unique means used to make sure EP Audiotape always meets customer specifications.

Type EP Audiotape is the *extra precision* magnetic recording tape for applications in computing, automation, telemetering and seismography. The Automatic Certifier records and plays back every inch of the EP Audiotape under test. These tests can be so demanding that if the tape fails to reproduce a single test pulse out of the 40 million put on a single reel, the entire reel is rejected. There are no ifs, ands or buts.

This is one of many special quality-control operations to which EP Audiotape is subjected. From raw materials to hermetically sealed containers, every reel gets individual attention.

EP Audiotape quality is so well verified by instruments like the Automatic Certifier that every reel is guaranteed to be defect-free! For more information write for free Bulletin T112A. Write Dept. TD, Audio Devices, Inc., 444 Madison Avenue, New York 22, N.Y.

CIRCLE 90 ON READER-SERVICE CARD

Engineered by Tinnerman ...

Easier to assemble...easier to operate... SPEED CLIP® costs 50% less, too!

Assembly of the SUPER-FILER^{*} Divide-a-File mechanism was considerably simplified when the General Fireproofing Company switched to a special SPEED CLIP design. Sightless people do the assembling without former difficulties of fitting spring wires into non-uniform stampings.

With this SPEED CLIP, the "self-adjusting" *Divide-a-File* slides more smoothly back and forth in the channel. Locking in the desired position is more positive, too.

This is another example of how Tinnerman Engineering goes far beyond the original fastening idea – how we work with customer engineering departments to produce better working units. And in the above case, a per-part cost reduction of 50% was achieved. In only 4 months, General Fireproofing had saved enough through lower assembly and parts costs to write-off new tooling needed to produce the SPEED CLIP.

You, too, can achieve savings and improvements like these on your assemblies. Invite your local

62

Tinnerman sales representative in for a discussion of the SPEED NUT methods of better fastening at lower cost. He's listed in most Yellow Pages, under "Fasteners". Or write to:

TINNERMAN PRODUCTS, INC. Dept. 12 + P.O. Box 6688 + Cleveland 1, Ohio

CANABA: Dominion Fasteners Ltd, Namitton, Ontario GREAT BRITAIN. Simmonds Aerocessories Ltd., Treforest, Wales, FRANCE: Simmonds S.A., 3 rue Salomon de Rothschild, Suresnes (Seine). GERMANY: Mecano Bundy Gmbil, Neidelberg. CIRCLE 91 ON READER-SERVICE CARD

NEW PRODUCTS

Signal Source Provides remote tuning

nie

lor

hw

173

001

cer

In

Th

dia

mo

ED

nin/t

 p_{00}

ELE

A remotely tuned signal source, the model 301 is especially suited for antenna test applications. It consists of the company's model 301 carcinotron power supply; a series C rf head; and a model 301R remote tuning panel. The power supply is designed for cw operation and the carcinotron backward-wave oscillator is voltage tunable over its full frequency range. The weatherproof rf heads are available for the 100 to 16,000 mc range, and power output varies from 500 to 5 mw.

Scientific-Atlanta, Inc., Dept. ED, 2162 Piedmont Rd., N.E., Atlanta 9, Ga.

CIRCLE 92 ON READER-SERVICE CARD

Magnetometer Portable

Model M-6 magnetometer measures strength direction, and polarity of weak magnetic fields. The portable unit is ruggedly built for field use, with the magnetometer element hermetically sealed in plastic. It can be used for magnetization of steel studies, measurements of magnetic pile strengths, determinations of current flow through conductors, and factory inspection of aircraft parts for residual magnetism. The 8 lb unit is calibrated on the strength of the earth's magnetic field. Its power requirements are 40 w, 115 v, 60 cps.

Irwin Labs, Inc., Dept. ED, 1238 S. Gerlart Ave., Los Angeles 22, Calif.

CIRCLE 93 ON READER-SERVICE CARD

AC and DC Voltmeters

Expanded scale

These expanded scale ac and de voltmeters linearly expand a selected, narrow voltage range with ±0.3% accuracy. They are available with up in three separate ranges in one meter. The ac meters read true rms regardless of input waveform and may have any center scale value between 5 and 230 v. The voltage range that can be expanded across the full meter scale is 5 to 17% to each side. The dc multirange models are completely self-contained and may have any center scale value between 5 and 300 v. Voltage range is 5 to 20% of center scale value to each side. The units are available in 2.5, 3.5, and 4.5 in. diameter round models; in 2.5 and 3.5 in. square models; and in 4 x 6 in. rectangular models.

Beckman Instruments, Inc., Helipot Div., Dept. ED, 2500 Fullerton Rd., Fullerton, Calif.

CIRCLE 94 ON READER-SERVICE CARD

10,000 Watt Ceramic Tetrode Water cooled

The model 4CW10,000A 10,000 w ceramic and metal tetrode is a water cooled version of the computy's model 4CX50000A. Maximum plate ratings of 7500 v and 3 amp apply to 30 mc. From 30 to 100 mc, 5500 v and 2 amp may be used. The unit 1.4 in. long and 4.7 in. in diameter.

Litel-McCullough, Inc., Dept. ED. San Carlos, C lif.

CIRCLE 95 ON READER-SERVICE CARD

CIRCLE	95 UN REAL	EK-	SERVICE	CAR	0	 	
ECTRONIC	DESIGN	•	April	1,	1959		

Now... **262 Square Inches** of information in $\frac{1}{20}$ Square Inch!

New CBS-Hytron ultrahigh-resolution tubes, for example, can compress into 0.047 square inch all the detail on a 21-inch picture tube screen. This is twice the resolution previously attainable . . . resolution far beyond the capabilities of the unaided human eye and modern printing. And the closest yet to the resolution of modern photographic film.

MANY APPLICATIONS NOW POSSIBLE Many new and advanced applications become practical in strip radar • photo reconnaissance

- visual indication photo reproduction information transfer
- industrial and medical closed circuit TV remote data pick-up
- information conversion etc.

More reliable products through

Advanced-Engineering

tubes **CBS-HYTRON, Danvers, Massachusetts**

A Division of Columbia Broadcasting System, Inc.

CIRCLE 96 ON READER-SERVICE CARD

and three

PERSISTENCE

Very Short

Very Short

Very Short Very Short Short

Very Short Very Short

Very Short Short Very Short

Very Short

Short

TYPE

3AVP5

3AVP11

3AVP16

3AWP5

5CQP5 5CQP11

12 CBS-HYTRON UHR TUBES IN PRODUCTION

RESOLUTION

(Lines per Inch)

1500 1**000**

500 2000

1500 1000 500

2000

1500

1000

2000

500

These tubes offer a choice of four resolution levels ... three screen sizes .

screen phosphor characteristics. They are even more rugged and dependable than standard

oscilloscope tubes. And they can be supplied with interchangeable yoke, focus coil and video driver stage to achieve maximum resolution. Check the table for summary data. Write for

SPECTRAL

Blue Blue Near UV

Blue

Blue

Blue

Blue

Blue

Blue

Blue

Near UV

Near UV

complete technical Bulletin E-330 and information regarding your particular application.

959

ngth

iel ds

1:58.

Cally

ation

p le

ough

parts.

ated

L. Its

rl ut

e

ning

301

ions.

otron

odel

ily is

otron

over

ieads

and

Pied-

NEW PRODUCTS

Vibration Indicator Hand instrument

The Vibrometer is a light hand-held instrument which can be used to measure vibration frequency and amplitude; to determine the direction of maximum transmitted disturbances; to locate the cause of unwanted noise due to resonant vibration; and to measure the speeds of rotating equipment where shafts or rotors are not readily accessible by placing the probe against the machine housing. The unit can also be used to analyze component frequencies of complex vibrations. The output of the built-in pick-up can be attached to an oscilloscope or oscillograph. The Vibrometer achieves a full range from 120 to 15,000 cpm by using a weighted reed up to 600 cpm and a free reed above. Accuracy is within 10% with a weighted reed and within 3% with a free reed.

The Korfund Co., Inc., Dept. ED, 48-22H 32nd Place, Long Island City 1, N.Y. CIRCLE 98 ON READER-SERVICE CARD

Transistor Tester

In-circuit

The model 219 A transistor tester permits the measurement of transistor beta parameters with transistors in the circuit. Beta and collector leakage current parameters may be measured with the transistors removed from the circuit. The unit is packaged in a compact carrying case and operates from either a self-contained battery supply or 110 v, 50 to 60 cps.

Sierra Electronic Corp., Dept. ED, 3885 Bohannon Dr., Menlo Park, Calif.

CIRCLE 99 ON READER-SERVICE CARD

Advice Resistance Quickly—Easily CURTISS-WRIGHT DORTABBLAB BRIDBBBBB BRIDBBBBB Wheatstone Bridge Model 7009 313.00

right

ther

ØS

lold

ld

10

WX

10

11. 0

R.C

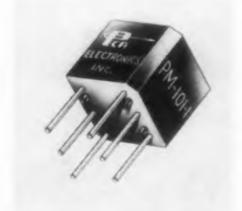
959

Here are two bridges that are especially well suited for measuring resistances accurately when relatively unskilled workers must be used. And they're extremely handy for day-by-day measurements in the laboratory.

The Wheatstone Bridge covers a range of 0.05 to 50,000 ohms with only two knobs — a large scale calibrated from 0.5 to 50 and a smaller range selector with five positions: 0.1, 1, 10, 100 and 1000. A 4.5V battery provides power.

The Kelvin Bridge measures low resistances from 0.0001 to 2.1 ohms. Two dials, the larger calibrated from 0.0001 to 2.1 and a four position range switch provide readings.

ELECTRONIC DESIGN • April 1, 1959


The C-400FSI go, no-go frequency sensor provides automatic instrumentation of frequency for aircraft, missiles, ground control installations, telemetering equipment, and industrial control equipment. The unit is accurate to 0.25% and has a red and green light readout. Several sensors may be connected to a logic circuit so that one readout will indicate the no-go condition if any one of the readings is out of tolerance. The unit operates at 115 v and has nominal frequency and tolerance limits made to customer specifications. The 2 w output drives 24 v lamps or relay drives and will also work with an annunciator system.

Magnetic Circuit Elements, Inc., Dept. ED, 3722 Park Place, Montrose, Calif.

CIRCLE 111 ON READER-SERVICE CARD

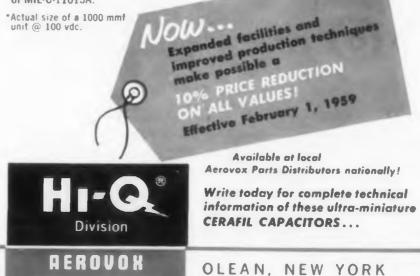
Pulse Transformers

For varied applications

These permanent magnet pulse transformers are applicable in blocking oscillators; in triggering, low voltage, and counting circuits; for dc isolation; for pulse shaping; and for use as wideband input and output transformers. The units have a core of grain oriented silicon steel and a chamfered band 0.062 in. wide which keys it for automatic mounting by soldering into etched circuit boards. They are available in three sizes: $0.4 \times 0.4 \times 0.4$; $0.562 \times 0.562 \times 0.562 \times 0.5$; and $0.7 \times 0.7 \times 0.65$ in.

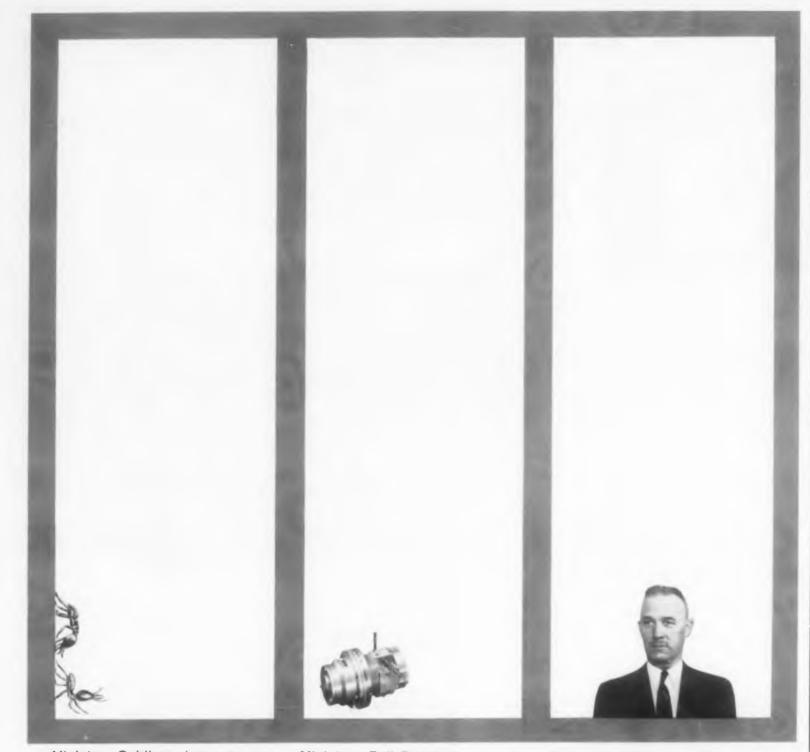
PCA Electronics, Inc., Dept. ED, 16799 Schoenborn St., Sepulveda, Calif.

CIRCLE 112 ON READER-SERVICE CARD


EXTREME MINIATURIZATION! HIGH RELIABILITY!

Aerovox CERAFIL Capacitors

Remarkable new design concepts and modern construction features of Cerafil Capacitors make it possible to obtain **extremely high capacities per unit volume.** These ultra-miniature ceramic capacitors offer a logical solution to circuit designers concerned with extremely miniaturized assemblies and equipments.


Cerafil Capacitors are the **smallest** ceramic units manufactured in the electronic industry. They are designed specifically for airborne and space-borne equipments, computer circuits, hearing aids and other critical applications where space and weight requirements are at an absolute premium.

Cerafil capacitors are available in working voltages of 30, 50 and 100 VDC, and in capacities from 10 mmf to 100,000 mmf. Type C80 (100 VDC) of this **rugged** ceramic unit of **high reliability** is designed for operation at temperatures from -55° C to $+85^{\circ}$ C. Type C80T (50 VDC) is rated at 125°C. Types C80 and C80T will meet or surpass all the applicable requirements of MIL-C-11015A.

CIRCLE 113 ON READER-SERVICE CARD

CORPORATION

Miniature Soldiers. Army ants carry out intricate maneuvers of wheeling, flanking, and envelopment with faultless precision. Their columns are led by "majors", preceded by "scouts". Raids are conducted by "skirmishers". Between campaigns, they form "bivouacs". Army ants are nature's tiny troopers.

Miniature Ball Resolver, approximately 3³/₈" x 2¹/₂" O.D. continuously calculates position of aircraft and missiles traveling at supersonic speeds. MPB bearings at critical points keep torque low, and help make possible an accuracy of 0.33 of 1%. This is another man-made miracle in miniaturization

Man with Miracles. This is Jim Mitchell, one of MPB's technical representatives, whose close liaison with the manufacturer of the ball resolver facilitated its design and development. MPB's technical staff, most experienced in its field, can assist you with your own miniaturized miracles.

New Worlds for O Miracles in Miniaturization ATTING BUTE OF THE MER DEADINGS IN BALL REDOLVER IN

Every day man's advances, both on this planet and beyond, are opening new and challenging areas of application for miniature components and mechanisms. And at each step forward, MPB is ready to help with research, engineering and manufacturing facilities unsurpassed in the miniature bearing industry. MPB makes

more than 500 types and sizes of bearings ranging from 3/8" O.D. down . . . designed to meet requirements of the most exacting nature. Specials are developed on request. For a confab on design problems or our latest catalog write Miniature Precision Bearings, Inc., 904 Precision Park, Keene, N. H.

CIRCLE 114 ON READER-SERVICE CARD

NEW PRODUCTS

Scaler-Analyzer

Has 128 channels

A completely integrated system, the RCLiac-128 is a 128 channel scaler-analyzer that performs nuclear data processing operations from gross counting through scintillation spectroscopy. It is of plug-in modular construction and has a magnetic core memory capacity of 1 million counts per channel; an instant number or curve crt display; preset time from 0.19 sec to 28 hr; and preset count from 2^1 to 2^{24} . Negative high voltage is 600 to 1500 v, stable to 50 ppm; overall amplifier gain is 1000; and integral linearity is $\pm 1\%$ for channels 5 through 128.

Radiation Counter Labs, Inc., Dept. ED, 5121 W. Grove, Skokie, Ill.

CIRCLE 115 ON READER-SERVICE CARD

Heat Sinks For JETEC 30 transistors .111

elo

ici

tes

Co

rat

16

12

1

sizi

the

(W)r

1.1

. 1.1

Ele

The 1101-A is an insulated stud mounted h at sink for medium power transistors in JETEC 30 round welded packages. It is easily attached to the transistor, converting it to a double ended package, and heat dissipated in the transistor is conducted to the chassis through the 10-32 st d. Electrical insulation is provided by the addition of a hard coat anodize finish which furnishes o er 400 v breakdown and eliminates the electrical problems in heat sinking transistors which have the collector common to the case.

Jadaro Machine Products, Dept. ED. P.O. Lox 155, Garland, Tex.

CIRCLE 116 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959

66

Vacuum Transfer Relay

For high voltage applications

The model RB4 transfer relay is designed for high voltage applications involving antenna switching, pulse forming networks, and similar rf and de circuits. The 4pdt unit has a vacuum dielectric, sapphire actuating rods, and removable actuating coils for 26.5 or 115 v de operation. Peak test voltage is 25 kv de or rf and rated operating voltage is 20 kv at 2.5 mc and 10 kv at 16 mc. Contact resistance is under 0.01 ohm and current rating is 13 amp rms at 60 cps and 8 amp at 16 mc.

-125

orms

gross

It is

mag

unts

dis

pre-

ge is

lifier

for

5121

stors

heat

30

l to

aled

): 15

t d.

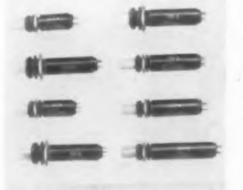
n of

oler

r al

ve

ZC

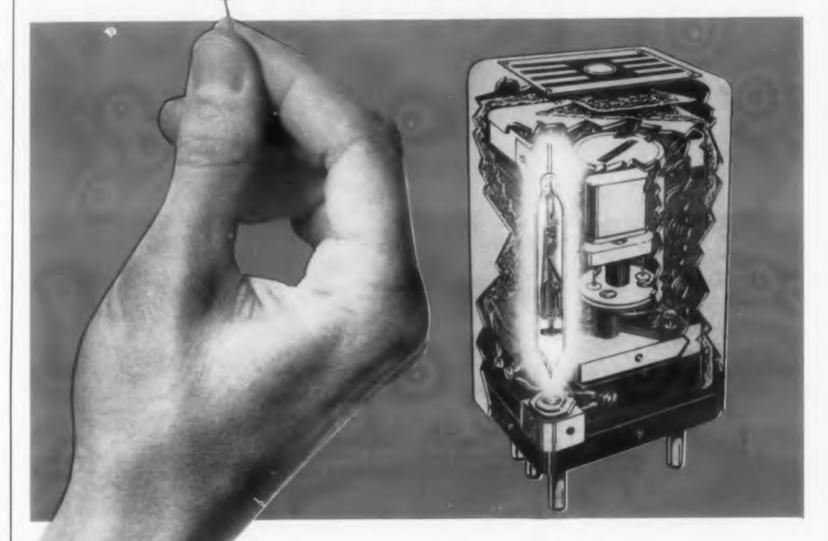

259

Jennings Radio Mfg. Corp., Dept. ED, P.O. Box 1278, San Jose, Calif.

CIRCLE 117 ON READER-SERVICE CARD

Indicator Lights

Incorporate transistorized driver circuits


These indicators have built-in transistorized driver circuits that operate directly from low level signals. Filament type R-441 is a high gain unit using a low voltage, plug-in incandescent lamp that lights when the input level is 11 v. High temperature types R-561 and R-661 have silicon trantion circuits for -55 to +100 C operation. Also valiable are model R-901, a memory light; model 1004, which has an encapsulated plug-in insert; d miniature models R-121 and R-221, which ount in a 3/8 in. hole.

Engineered Electronics Co., Dept. ED, 506 E. 1 st St., Santa Ana, Calif.

CIRCLE 118 ON READER-SERVICE CARD

EDISON

sealed thermostats feature close control, lasting stability

Edison Sealed Thermostats are widely used in crystal ovens, electronic ovens and oscillator compartments—and many other electronic components adversely affected by temperature variations. Capable of maintaining temperatures within 0.2°C, Edison sealed thermostats offer these special features:

- · Slow-make, slow-break principle, insures small temperature differential.
- Protective gas atmosphere minimizes effects of contact arcing under heavy loads, resulting in high stability.
- Radiant energy, and conducted or convected heat is rapidly transmitted to the bimetal by the highly conductive gas fill.
- Long bimetal arm is highly sensitive to temperature changes and assures accurate control, predictable performance.

For complete data on Edison Sealed Thermostats, write for Bulletin No. 3009B.

Thomas A. Edison Industries

55 LAKESIDE AVENUE, WEST ORANGE, N. J.

EDISON ENGINEERING OFFICES ARE LOCATED IN: WASHINGTON-BALTIMORE: CHICAGO: DALLAS: DAYTON LOS ANGELES

DRAMATIC REDUCTION IN GYRO DRIFT...

CONDENSED PERFORMANCE DATA

Trimmed drift rate: 0.1°/hr. rms 0.3°/hr. max.

Mass unbalance: 5.0°/hr./g Anisoelastic constant;

0.025°/hr./g² rms Maximum command turning rate:

over 20°/sec. Dimensions: 2″ dia., 4″ long

IN NEWEST DESIGN 20 IG INTEGRATING GYROS

Representing a major breakthrough by Reeves' gyro research laboratories, these advanced instruments show a small fraction of the drift rate hitherto considered low for high-performance units in this class.

Other characteristics are also outstanding, including extremely low anisoelastic constant and high command turning rate.

Of equal importance is the fact that these instruments measure up in every way to well-known Reeves standards of precision, ruggedness and RELIABILITY in regular production models. They are now available, and we invite your inquiries for detailed information.

Other Reeves Gyros and Accelerometers meeting equally exacting standards for performance and reliability include a comprehensive series of 10 IG, 20 IG and HIG 5 Integrating Gyros; 20 PIG Pendulous Integrating Gyros and 10A and 20A Linear Accelerometers. Technical information on request.

REEVES INSTRUMENT CORPORATION

A Subsidiary of Dynamics Corporation of America Roosevelt Field, Garden City, New York

n TERS and SHIFTERS ERVO MECHANICAL PARTS ENGINEERS: Rewarding careers at Reeves in the fields of radar, guidance, and computer systems.

CIRCLE 120 ON READER-SERVICE CARD

NEW PRODUCTS Contact Inserts

Push-in type

With Mod. 2 inserts, contacts are crimped automatically or semiautomatically to wires outside of the connector. A cross-hole in each contact permits ready inspection of the termination joint to determine the depth of the wire engagement. A special hand tool is available for inserting the contacts into the premounted resilient insulation within the connector barrel shell. Retention of the insulation exceeds the requirements of MIL-C-5015 D after many reassemblies. The units can be furnished with up to 100 poles for wire sizes 16, 12, or 10.

The Pyle-National Co., Dept. ED, 1334 N. Kostner Ave., Chicago 51, Ill.

CIRCLE 121 ON READER-SERVICE CARD

Microwave Power Meter

and

KI:

pin

E

Has 0.001 to 10 mw range

Self-balancing and transistorized, the model 440 microwave power meter provides automatic dire treading measurements of cw or pulsed power. It may be used with all 100 or 200 ohm bolometers or thermistors, of positive or negative temperature coefficient, requiring any bias current up to 18 ma in any frequency range for which there are bolometer or thermistor mounts. It has 0.001 to 0.01 mw and 0.003 to 0.03 mw scales in addition to the five standard scales up to 10 mw.

Narda Microwave Corp., Dept. ED, 118-130 Herricks Rd., Mineola, N.Y.

CIRCLE 122 ON READER-SERVICE CARD

uto-

le of

per-

it to it. A the ition the L-Cn be

: 16.

N.

440

e t-

r. It

ters.

he

I a

0')-0 01

t e

.] 30

159

General purpose digital voltmeter model 410 Wers a range of 0 to 1 kv dc. It has 0.5% full scale Wuracy and a three column vertical readout. Franklin Electronics Inc., Dept. ED, Bridge-Pt, Pa.

CIRCLE 125 ON READER-SERVICE CARD

Why permanent magnets are only temporary

Magnetic Materials Section reports on a continuing search for better permanent magnets ... and on what this means to your new product designs

Permanent magnets are getting better. In fact, since the introduction of Alnico magnets by General Electric in 1934, there has been a constant flow of stronger, more efficient G-E magnetic materials. General Electric developed directional grained magnets to provide higher energy potential. Then, by sintering Alnico V and Alnico VII, General Electric was able to create magnets with better flux distribution and vastly improved tensile strength. P-series alloys, with consistently uniform flux for use in hysteresis motors, marked another step forward. And these are just part of the important advances that have come from General Electric in the past 25 years.

Watch General Electric for even more advanced magnetic materials that will soon give you a freer hand in bold new product design. If you would like the design assistance of a G-E engineer, write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Street, Edmore, Michigan.

ELECTRONIC DESIGN • April 1, 1959

ENGINEERING NEWS

A NON-SNAP SWITCH FOR "KEYBOARDS"

Developed specifically for the keyboards of electronic computers, calculators, and other business machines, the Hetherington B5023 gives the smooth, yet precise action necessary for fast manipulation. Operating pressure is a scant $\frac{1}{2}$ pound — just enough to retain the familiar keyboard "feel."

The versatile 2-circuit, momentary-contact circuitry of the B5023 can also be used as SPST or SPDT. Recent tests have shown a life of better than 1.7 million operations at 5 amps., 30 volts dc. This is far greater than the conservative rating you'll find in Bulletin S-6 if you write for it.

CIRCLE 103 ON READER-SERVICE CARD

Wherever switches and indicator

lights are used on the same panel,

Hetherington Switchlites can play a

major part in improving panel legi-

bility and operating convenience. For the pushbuttons of these com-

pact snap-action switches contain

their own built-in indicator lights

for easy, direct association of switch

and light functions. Moreover, they

save greatly on panel space, wiring.

So many different Hetherington

Switchlites are now available that

installation and removal time.

THUMB-OPERATED "TOGGLE" CONTROLS 4 SEPARATE SWITCHES +-><>>

A familiar sight to helicopter pilots is this versatile Hetherington Type F441 Four-Way Switch. Here it is housed, along with other Hetherington Switches, in a handgrip which fastens to the flight control stick. Moving the Switch's thumb-type knob up or down, right or left, operates control motors for hoists or lateral trim

Housed in the 1-1 64" by 7 8" phenolic case of the F441 are 4 separate momentary-contact switches arranged 90 degrees apart around the base of a thumbcontrolled toggle lever. Normally, all switches are "open" and the toggle is centered.

Usually the switch is mounted dimension so that the lever projects through on reques CIRCLE 104 ON READER-SERVICE CARD

New SWITCHLITES®

for "Human-Engineered" Panels

can be mentioned here:

iliary momentary on "push."

only a few of their many features

Switch Circuits: SPST, SPDT, DPST, DPDT, or 2-circuit. Up to 15 amps (a 28 v. dc.

Snop-Action: Push, momentary ; Pull, momentary ; Push-Pull, maintained ; Push-Push, maintained ; Push-Pull, maintained with aux-

Long Circuit: Case ground or separate gnd terminal. "Hot" lead to separate terminal. thru main sw. contacts, or thru separate built-in sw. circuit. 6, 14, 18, 28 volt AN3140type lamps. a cloverleaf gate that restricts operation to one switch at a time. Without the gate however, any two adjacent switches may be closed simultaneously. The toggle may also be held outward and moved in an arc to actuate all 4 switches in succession.

Admittedly, the F441 Switch is rather specialized. However, it offers industrial users interesting opportunities to simplify equipment design and operation — by saving space, by "foolproofing" critical circuits, or by making operations easier to understand.

No bulletin is available on this switch as yet, but ratings and a dimension drawing will be sent on request. Ask about the F441.

Now! AT LEADING PARTS DISTRIBUTORS

Need Hetherington products for prototypes, breadboard models, special projects, or small production runs? Most popular Hetherington items are available at local electronic parts distributors everywhere.

For the name of your nearest parts distributor and bulletins of the Hetherington Switches, Indicator lights, and Switchlites he carries, write directly to: DISTRIBUTOR'S DIVISION, HETHERINGTON INC., 26 Rittenhouse Place, Ardmore, Pa.

Pushbutton Lenses: 10 styles, each in 10 transparent or translucent colors. Lettering may be engraved on all. New Bulletin S-7 gives complete details on all Hetherington Switchlites.

CIRCLE 105 ON READER-SERVICE CARD

HETHERINGTON INC. DELMAR DRIVE, FOLCROFT, PA. . 139 Illinois St., El Segundo, Calif.

better switch engineering for a pushbutton world A Controls Company of America Subsidiary

NEW PRODUCTS

CARRIAGE, MACHINE BOLTS.-Complete selection of hex head machine and carriage bolts in a range of 500 sizes. Machine bolts are supplied with or without finished hexagon nuts and have a minimum tensile strength of 55,000 psi. Stock sizes include diameters from 1/4 to 1-1/4 in; lengths from 1-1/2 to 24 in. Carriage bolts have no. 10 to 3 t in. diameters; 1/2 to 18 in. lengths.

Standard Screw Co., Stanscrew Fasteners, Dept. ED, 2701 Washington Blvd., Bellwood, Ill.

CIRCLE 128 ON READER-SERVICE CARD

PELLET TEMPERATURE INDICATORS.-These pellets melt at 525 and 650 F, filling the gap in a series covering 100 to 2700 F in 90 spaced intervals. Tempil Corp., Dept. ED, 132 W. 22nd St., New York 11, N.Y.

CIRCLE 129 ON READER-SERVICE CARD

THIN SLIDES.- Designed to carry a 50 lb maximum load, these lightweight slides are 1.687 inhigh. They are available in the nontilt model 300-S or the basic model 300-B.

Chassis-Trak, Inc., Dept. ED, 525 S. Webster St., Indianapolis, Ind.

CIRCLE 130 ON READER-SERVICE CARD

PULSE, SWEEP, AND TIME DELAY GENERA-TOR.-Type 1391-B generates pulses, time delays, and linear sweep voltages with wide ranges of operation. Pulse rise time is 15 musec.

General Radio Co., Dept. ED, 275 Massachusetts Ave., Cambridge 39, Mass.

CIRCLE 131 ON READER-SERVICE CARD

Te

B

C

W

10

D

EL

SOLDERING IRON TIPS.—These low cost tips are plated with a Tifeni alloy. They feature long life and high heat and come in all standard shapes and sizes.

Altimag Inc., Dept. ED, P.O. Box 20148, Indianapolis 20, Ind.

CIRCLE 132 ON READER-SERVICE CARD

MAGNESIUM OXIDE REAGENT.-Electronic grade M-300 features high purity, small particle size, and low reactivity. It can be used to coat tapes for winding magnetic amplifier cores, and uso to prevent surface currents on mica punchings used to mount vacuum tube filaments.

Fisher Scientific Co., Dept. ED, 717 Forbes St., Pittsburgh 19, Pa.

CIRCLE 133 ON READER-SERVICE CARD

DOUBLE TRIODE.—Dissimilar-section type 7.47 combines in a single envelope the first two states of preamplification for high fidelity disc or type equipment.

CBS-Hytron, Dept. ED, Danvers, Mass. CIRCLE 134 ON READER-SERVICE CARD selecs in a l with minizes ins from to 3 1

Dept.

These of the theorem is the theorem

max-87 in.

New

300-S

ERAlelays, of op-

usetts

ps are

ig life

es and

ndi.m-

tronic:

article

coat

d also

s med

es St.,

7. 17

stages

t.pe

waveguide terminations, attenuators, and loads, becosorb CR has, when cured, a high attenuation inver the full microwave frequency range. Temperature range is -70 to +350 F.

Emerson & Cuming, Inc., Dept. ED, 869 Washington St., Canton, Mass.

ANAR TRIODE.-Developed for use in teleone relay stations, type 6280 can be used in all pes of microwave communications equipment. It

erates in the 4 to 5 kmc range and is a direct re-

cement for type 416B. Acorn sized, it has a gain

9 db at 50 mw output and a transconductance

Allen B. Du Mont Labs, Inc., Dept. ED, 750

CIRCLE 135 ON READER-SERVICE CARD

MECISION RC OSCILLATOR.—Model G.432 Applies sine and square wave output, balanced or anbalanced, plus a subsidiary control providing a

mult incremental frequency variation independent

the main dial. The main dial covers 25 cps to

Furzehill Labs Ltd., Dept. ED, 550 Fifth Ave.,

CIRCLE 136 ON READER-SERVICE CARD

CASTING RESIN ABSORBER.-For molding

(50) ke in four decades and is calibrated to 1%.

ting of 50,000 µmho.

York 36, N.Y.

bomfield Ave., Clifton, N.J.

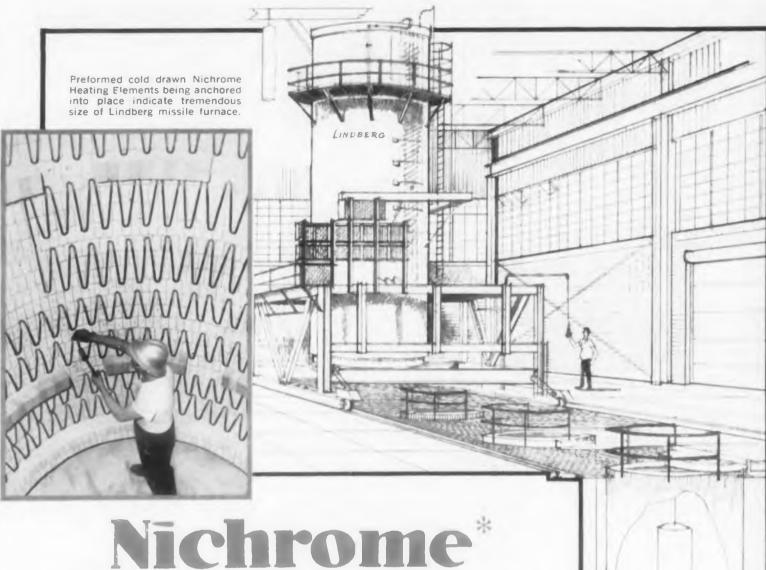
CIRCLE 137 ON READER-SERVICE CARD

UHF INSULATING MATERIAL.-An irradiated polyolefin, Enrad II has a dielectric strength of 1000 and a dissipation factor of 0.0005. It has good form stability to 300 C and can be used as a microwive strip line material and in electrical insulators, tube sockets, connectors, and wire insulation. It is available as a powder or as bars, rods, and sheets for ready machining.

Enflo Corp., Dept. ED, Fellowship Rd. and Rt. 73 Maple Shade, N.J.

CIRCLE 138 ON READER-SERVICE CARD

VANEAXIAL FAN.—This motor driven unit has an impeller less than 2 in. in diameter and provides a flow of 46 cfm under 2-1/2 in. water pressure and 37 w input. A 400 cps three phase version delivers 75 cfm. The unit may be used as a direct cooling device or with a heat exchanger.


The Garrett Corp., Dept. ED, 9851 Sepulveda Blod., Los Angeles 45, Calif.

CIRCLE 139 ON READER-SERVICE CARD

CONTACT CLEANING SPATULAS.—Covered with an abrasive surface of diamond particles, Diatrop spatulas are designed specifically for cleaning mays and contacts. They do not become clogged or first the normal gap between contact points.

Donard International Corp., Technical Tools Div., Dont. ED, 624 Madison Ave., New York, N.Y.

CIRCLE 140 ON READER-SERVICE CARD

ELEMENTS HEAT WORLD'S LARGEST MISSILE FURNACE 2500 feet of extra heavy Nichrome V Wire

provides 5-zone heating up to 2050°F

HARRISON, NEW JERSEY · BRANCHES: Chicago, Detroit, Cleveland, Louisville

MAKERS OF THE MOST COMPLETE LINE OF ALLOYS FOR THE ELECTRICAL, ELECTRONIC, AND HEAT-TREATING INDUSTRIES

CIRCLE 141 ON READER-SERVICE CARD

Distributor: ANGUS-CAMPBELL, INC., Los Angeles, San Francisco . In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario

This giant 500 KW gantry type Lindberg⁺ hardening furnace is the newest and largest ever built to meet the most exacting heat treating requirements of today's, and tomorrow's, missile metals. It accommodates an effective work load nearly 7 ft. in diameter and 24 ft. long.

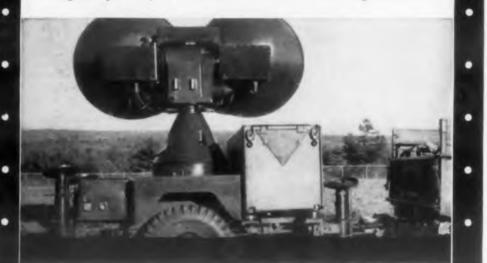
Now in operation at Lindberg Steel Treating Company's Melrose Park Plant, the controlled atmosphere installation is both bottom loading and bottom quenching. The 19' by 57' pit—28' deep, beneath the towering electrically heated furnace, houses the loading station, 2 quench tanks (atmosphere and salt) and water wash tank. Work loads pass from furnace to quench through an airtight seal, permitting complete control and pre-

DRIVER-HARRIS

cise duplication of atmospheres and treating cycles. In the hardening furnace there are five control zones

which operate between 250 F and 2050°F. Saturable core reactors automatically vary the voltage to the Nichrome*V heating elements between 2.2 and 220 volts, depending on temperature and load.

The selection of Nichrome V by Lindberg to supply reliable and closely controlled heat and temperature in this furnace is further evidence of the confidence that industrial leaders have in the quality and performance of Driver-Harris high-nickel alloys. Why not benefit from their experience. Tell us about your requirements. •T M Reg U S. Pat Off. •Lindberg Engineering Company


COMPAN

1959 ELECTRONIC DESIGN • April 1, 1959

COMBINE LIGHT WEIGHT WITH HIGH PERFORMANCE

... Bendix Radar Antenna Pedestals specified for "Hawk" missile system

To locate, track and destroy low-flying, high-speed attacking aircraft is the mission of the Army's "Hawk" missile system now in production by Raytheon Manufacturing Company, the prime contractor. Speed, accuracy and dependability are mandatory.

When Raytheon needed pedestals for the system's illuminator and acquisition antennae, Bendix had the answer—a proved basic design that was readily tailored to the application at a great saving of time and money.

The design combines the reliability, high response and accuracies (0.5 mil or better) of famed Bendix rotating components with the ruggedness of Bendix-designed and -cast magnesium housings. Experienced component packaging coupled with unique construction save weight and space—ease transportation problems.

THE "HAWK" PEDESTAL IS JUST ONE EXAMPLE from E-P's family of radar antenna devices developed for a variety of airborne and ground applications, including mortar and meteorological tracking, missile seeker and countermeasure types. Write for information.

CIRCLE 331 ON READER-SERVICE CARD

NEW PRODUCTS

GUSSET MOUNTING ASSEMBLIES.—For front reel rack and cabinet mounting, these gussets are designed to fit all four of the company's standard slides. They are furnished preassembled and can be quickly installed.

Chassis-Trak, Inc., Dept. ED, 525 S. Webster St., Indianapolis, Ind.

CIRCLE 332 ON READER-SERVICE CARD

VHF FREQUENCY METER,—Model LA-70 is available in a redesgned version. The unit has a 10 ke to 3 kme range and is accurate to 1 pm from 20 me to 3 kme.

Lavoie Labs, Inc., Dept. ED, Mattawan-Freehold Rd., Morganville, N.J.

CIRCLE 333 ON READER-SERVICE CARD

LOW PASS FILTER.-The Microid type TCLJ starts at 400 eps and measures 11/16 x 1-11/16 x 1 2 in. For frequencies from 7.5 to 100 ke, size is 3/4 x 1 x 1/2 in. The unit is fully encapsulated. Burnell & Co., Inc., Dept. ED, 10 Pelham Pkwy., Pelham Manor, N.Y.

CIRCLE 334 ON READER-SERVICE CARD

LAMPHOLDERS. In molded Bakelite housings with built-in wire leads, models 14-71 and 14-72 are designed for intermediate screw base lamps. They are UL and CSA approved for 75 w, 250 v and utilize a square shoulder as a permanent locking device. Other mountings are available, and wire leads can be supplied in any length with a variety of insulations.

Leeeraft Mfg. Co., Inc., Dept. ED, 60 Greene St., New York 12, N.Y.

CIRCLE 335 ON READER-SERVICE CARD

OSCILLOSCOPE RECORDING CAMERA.—This has a 75 mm, F/1.9 lens and reduces linear distortion to less than 0.5%.

Beattie-Coleman, Inc., Dept. ED, 1000 N. Olive St., Anaheim, Calif.

CIRCLE 336 ON READER-SERVICE CARD

FIXED COMPOSITION RESISTORS.—Model GBT-1/2 and GBT-1 are designed for trouble-free use in standard automation insertion equipment. International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.

CIRCLE 337 ON READER-SERVICE CARD

PERMANENT MAGNET.—A highly oriented ceramic permanent magnet material, Indox VI is especially suited for traveling wave tubes. It has a coercive force of 2550 oersteds, a residual reduction of 3200 gauss, and a peak energy product of 2.4 x 10⁶.

The Indiana Steel Products Co., Dept. ED, Valparaiso, Ind.

CIRCLE 338 ON READER-SERVICE CARD

GYROS Directional, Free, Rate, Roll and Vertical Gyro Transmitters + Stable Platforms MOTORS AND GENERATORS Gear Head Motors and Motor Generators • Low-Inertia Servo Motors • Motor Generators • Precision Induction Tachometer Generators • Rate Generators PACKAGED COMPONENTS Analog-Digital Converters • Azimuth Counters • Cam Compensators • Clutched Synchros • Dual-Speed Synchros • External Slip-Ring Synchros • Follow-Up Mechanisms • Miniature Differential Gear Assemblies . Servo Assemblies RADAR DEVICES Airborne Radar Antennae YCBIBS You Can't Beat The Bendix "Supermarket". Try us. **Eclipse-Pioneer** Division Teterboro, N. J. BENDO CIDEDMADKE

P.S. and don't forget these other quality products at the

BENDIX

With our greater variety and

greater volume of the precision

components listed below, we

have become the "supermarket" of the industry. We feature fast delivery and mass-production

economy-plus the highest pre-

400-CYCLE SYNCHROS

(Frame sizes: 8, 10, 11, 15, 22)

Control Transformers • Differentials • Receivers • Resolvers

pull

USEC

CHIU

eval

C

MO

tain

of a

to

MR

DIF

sist.

Har

FO

with

NI

SI

2:

EL

cision quality

• Transmitters

"SUPERMARKET

CIRCLE 339 ON READER-SERVICE CARE ELECTRONIC DESIGN • April 1, 1999

V CUUM TUBE BRIDGE.—For precision measment of vacuum tube and transistor parameters, h type 1661-A can be used to measure twin tris and pentodes without change in external connections.

le

d

-li

General Radio Co., Dept. ED, 275 Massachusetts A., Cambridge 39, Mass.

CIRCLE 340 ON READER-SERVICE CARD

E OXY RESIN SYSTEM.—A flexible system with a value range of possible cures, Hysol 6621 can be a d for potting transistorized circuits and transformers with strain sensitive cores. It is also adapted to the casting of large masses.

Houghton Labs, Inc., Dept. ED, Houghton Ave., Olan, N.Y.

CIRCLE 341 ON READER-SERVICE CARD

SCANNER AND PLOTTER.-Model 115 converts the uncorrelated information collected on IBM punched cards into visual plotted form. It can be used for structural test work where strain gage data can be plotted as strain vs load; for wind tunnel data such as temperature vs time; and for proper evaluation of data against design specifications and limits.

Gilmore Industries, Inc., Dept. ED, 13015 Woodland Ave., Cleveland 20, Ohio.

CIRCLE 342 ON READER-SERVICE CARD

MOBILE POWER SUPPLY KIT.-Model MP-1 contains everything required for complete installation of a heavy duty transistorized de supply that delivers 120 w. The unit furnishes all power required to operate the company's MT-1 transmitter and MR-1 receiver. Chassis size is 9-1/16 x 4-3/4 x 2 in. Heath Co., Dept. ED, 305 Territorial Rd., Benton Harbor, Mich.

CIRCLE 343 ON READER-SERVICE CARD

DIRECT-READING COUNTER.—Designed for continuous operation at 6000 rpm, this unit is resistant to corrosion, humidity and vibration. Case size is $2-3/4 \ge 2 \ge 1-1/2$ in.; figures are 0.25 in. high. Veeder-Root Inc., Dept. ED. 70 Sargeant St., Hautford 2, Conn.

CIRCLE 344 ON READER-SERVICE CARD

FOOT SWITCH.-Cast iron model VH is available with a guard and comes in ratings from 15 to 40 anip.

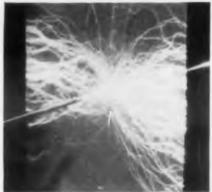
Vemaline Products Co., Dept. ED, Hawthorne,

CIRCLE 345 ON READER-SERVICE CARD

SIL NAL GENERATORS.—These units feature dire digital readout of frequency, accuracy to $\pm 1\%$, and a wide range of modulation capabilities, both an and fm.

Polarad Electronics Corp., Dept. ED, 43-20 34th St. Long Island City 1, N.Y.

CIRCLE 346 ON READER-SERVICE CARD



valuable for electrical design

is the strongest plastic film. Instron tester shows an average strength of 20,000 lbs. psi-

"MYLAR" offers a unique

combination of properties

HIGH DIELECTRIC STRENGTH. Average of 4.000 volts per mil...average power factor of 0.003 at 60 cycles.

Is there a thinner pressure-sensitive tape that's better-performing ... and at a lower cost?

Yes, there is such a tape, and it's made with Du Pont "Mylar" polyester film. For most applications, tough, durable pressure-sensitive tape of "Mylar" actually cost less, per linear foot or yard, than tapes made of other materials. That's because "Mylar" permits tape manufacturers to use thinner gauges without any loss in performance.

And what about performance? Here are some of the outstanding properties of "Mylar" found in pressure-sensitive tape:

THIN, YET STRONG

average tensile strength of 20,000 psi.

... under both high and low temperature use,

BETTER THINGS FOR BETTER LIVING ... THROUGH CHEMISTRY

F	1	F	X	1	R	1	F

... gives snug wrap over irregular surfaces. HIGH DIELECTRIC STRENGTH

	٠	. a	ver	age	4.000	voits pe	r mit.
n		M	INS	ION	ALLY	STARLE	

... can be used in areas of high humidity.

MOISTURE-RESISTANT

- ... resists mildew, most chemicals.
- RESISTS EDGE FRAYING

RESISTS HEAT AND COLD

... can be used in class B insulation systems. NO PLASTICIZER

... can't dry out or embrittle with age.

You name the job . . . electrical insulating, color coding, masking for electroplating, harness-wrapping coils . . . and you're sure to find pressure-sensitive tape of "Mylar" can improve performance while lowering costs, What's more, this thinner tape can help decrease weight and size of finished products without any loss in performance!

Pressure-sensitive tape of "Mylar" can now be obtained in a wide variety of gauges, widths, colors, and with different adhesives. Ask your supplier to help you evaluate all the factors involved in cost and performance of tape made with "Mylar". Or, send today for a list of tape manufacturers and a booklet on properties and applications.

Please send me information on the advantages and uses of pressure-sensitive tape made with "Mylar" (MB-6).	-
with wiylar (wib-0).	
Please send me information on properties, applications and types of "Mylar" available (MB-11),	State

CIRCLE 347 ON READER-SERVICE CARD

abso only with EPSCO VOLTAGE SOURCES

• 0.005% stability

• 1.0 Microvolt resolution down to zero volts

● ±111.112 volts d-c range

> VR-607 (illustrated) — portable, 5 decade switches plus vernier and divider VR-6078 — portable, 17 binary-coded toggles plus vernier and divider VR-608 — rack-mounting, 5 decade switches plus vernier and divider, and front panel null meter

• Out-perform any other voltage reference source on the market • contain highest quality components: certified standard cells, oil-immersed ultra-stable resistors, high-gain chopper-stabilized amplifiers • being used in the most demanding and critical applications across the country, such as at Convair Astronautics, North American Aviation, Argonne National Laboratory, Massachusetts Institute of Technology, Bell Telephone Laboratories, Goodyear Rubber, Patrick Air Force Base.

Want the full story? Write today for new technical brochure, covering circuit design details, specifications, operating instructions.

PRINTED CIRCUIT RESISTOR.—Type PC5 is a low operating temperature, 5 w unit for aircraft and missile applications. It has alloy coated leads secured to a resistance element uniformly wound on a glass fibre core and sealed in a rectangular ceramic case.

International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.

CIRCLE 349 ON READER-SERVICE CARD

SELF-FASTENING DEVICE.—The Pushlock principle permits quick insertion and locking of a wide variety of plastic parts including standoff and feed through terminals, drawer glides, casters, bearings, cable support clamps, and tip jacks. Pushed through a punched or drilled hole, the parts lock into place by means of a series of molded flutes extending radially from a plastic stud.

Whitso, Inc., Dept. ED, 9330 Byron St., Schiller Park, Ill.

CIRCLE 350 ON READER-SERVICE CARD

HANDLES.-Die or sand cast of aluminum alloy. these handles have a chip resistant finish which passes a 1000 hr salt spray test and a 200 hr 100% humidity test.

Chassis-Trak, Inc., Dept. ED, 525 S. Webster St., Indianapolis, Ind.

CIRCLE 351 ON READER-SERVICE CARD

PLASTIC CONTROL KNOBS.—Made to conform with MS-91528 specifications, these knobs are available in round, pointer, and spinner types with or without skirts, and also with the dial skirted round. Each type comes in three shaft sizes and a variety of colors and finishes.

National Co., Inc., Dept. ED, 61 Sherman St., Malden 48, Mass.

CIRCLE 352 ON READER-SERVICE CARD

SERVO ACTUATOR.-Designed for use in hydraulic or pneumatic servo systems, the Roto-Drive provides direct rotary drive without the use of bell cranks or other mechanical linkages. In a range of sizes with power ratings from less than 1 w to 10 hp, the unit has a frequency response up to 100 cps and positioning accuracy within 1 min of arc.

Parameters, Inc., Dept. ED, 195 Herricks Rd., New Hyde Park, N.Y.

CIRCLE 353 ON READER-SERVICE CARD

PHASE SEQUENCE INDICATOR.—Panel mounted model VA7 provides a means of rapidly determining the order in which the voltage peaks occur in a three phase power source. Voltage and frequency ranges are 104 to 480 v and 30 to 1000 cps. The unit has two pilot lamps for both 1-2-3 and 3-2-1 sequence and will operate continuously at maximum rated voltage in -65 to +160 F temperatures.

Opad Electric Co., Dept. ED, 69 Murray St., New York 7, N.Y.

CIRCLE 354 ON READER-SERVICE CARD

PI

1

М

m

le

tir

p;

E

SI

1(

fe

1

0.

R

ki

E

"I honestly didn't think it could be done," said our customer when we delivered the 2", 4-wiper sinecosine potentiometer with .35% peak-to-peak conformity.

We've heard these flattering words so many times before, we're beginning to think that designing "firsts" is second nature to us. Here's what we mean:

We designed the first 2" pot in which the user can install taps and buss bars in the field-we produced the first complete do-it-yourself Kit for pot modifications --- the first switch in a pot housing for ganging with pots----the first 2" sine-cosine pot with .5% peak-to-peak accuracy with .25% peak-to-peak accuracy-the first 500K single turn in a 2" pot. We created the first gear reduction unit in a 2" pot housing that permits variable speeds in a gang of pots. These, plus our 4-wiper pot, give us a record total of 8 "firsts."

Next time you require a precision component that "can't be done," let us know and perhaps we can develop another *first* for you.

CIRCLE 355 ON READER-SERVICE CAR

FReeport 8-3222

IME DELAY GENERATOR.-Type 1392-A pronces an accurately known time delay continuously flustable over a range from 0 to 1.1 sec with a equency from 0 to over 300 kc. It can be used as a inge calibrator for radar, sonar, and radio navigaon systems.

General Radio Co. Dept. ED, 275 Massachusetts Cambridge 39, Mass.

CIRCLE 356 ON READER-SERVICE CARD

FANDARD RESISTORS .- For use with the comunvis Megatrometer, these units are available in alues of 10, 100, 1000, and 10,000 meg. Each is ortified to 0.2% and is supplied with a temperature curve. They are mounted in a Faraday box which mugs directly into the megatrometer.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.

CIRCLE 357 ON READER-SERVICE CARD

ıld

ien

ne-

1%

ds:

re

ng

15.

ir

S

959

PHONE AND PHONO PLUGS.-Designed for high Idelity, stereophonic, tape recorder, and audio use, this line includes the M-1054 straight phono plug; the M-1058 right angle phono plug; the M-1059 straight phone plug; and the M-1060 right angle phone plug.

Phalo Plastics Corp., Dept. ED, Shrewsbury, Mass

CIRCLE 358 ON READER-SERVICE CARD

MULTIFREOUENCY OSCILLATOR.-This thermostable oscillator has up to six different switch seleted frequencies in the 4 to 16 mc range. Warmup time is less than 2 min and thermal stability is 5 parts in 10⁸ per deg C.

Marconi Instruments, Dept. ED, 111 Cedar Lane, Englewood, N.J.

CIRCLE 359 ON READER-SERVICE CARD

SPECTRUM ANALYZER.-Model SA-84W covers 10 to 40,880 mc in one self-contained unit and offers the choice of dispersion bandwidths for wide and narrow pulse analysis.

Polarad Electronics Corp., Dept. ED, 43-20 34th St., Long Island City 1, N.Y.

CIRCLE 360 ON READER-SERVICE CARD

TUNGSTEN WIRE FORMS.—These preformed shapes and coils include all types of heaters for outhode ray tubes and electron tubes and coils for weuum metallizing.

Mansol Ceramics Co., Dept. ED, 104 Little St., Relleville, N.J.

CIRCLE 361 ON READER-SERVICE CARD

OIOPPER CONVERSION KIT.-For modernizing do company's old de vacuum tube voltmeters, this e contains a 60 cps untuned chopper with low ontact noise characteristics and a 10,000 hr life extaney.

Millivac Instruments, Div. of Cohu Electronics, Dept. ED, Box 997, Schenectady, N.Y.

CIRCLE 362 ON READER-SERVICE CARD

What every E. E. should know about Thermistor Stability

ALLISON

VARIABLE

FILTERS

in years of service*

Allison Continuously Variable Passive

Network Audio Frequency Filters have

been in constant use for a wide range

of laboratory and production applica-

tions for nearly a decade. Their reliability through years of service and their

high performance characteristics have

led to improved operations and to the

development of many valuable new

Allison Filters have no vacuum tubes; no power supply; a wide dynamic range;

low level or high level operation; low

pass, high pass, or band pass; and no

time again by such firms as Armour Research Foun-

dation of Illinois Institute of Technology, Chicago,

III.; Avco Manufacturing Corp., Lawrence, Mass.; and

Bell Telephone Laboratories, Inc., New York, N. Y.

applications.

ringing effect.

Proved dependable

... it's a constant in Fenwal Electronics Thermistors

You can always precisely predict the operating characteristics of a Fenwal Electronics Thermistor throughout its working range. Reason: it's stable. What's more, you get identical thermistors, whether in lots of 10 or 10,000.

This stability is the result of the modern processing and quality control methods employed at every stage in the manufacture of these advanced "thermal resistors." And it's the reason they permit such precise meas-

urement and/or control of temperature.

Here's graphic proof. Fenwal Electronics Bead Type Thermistors used with the Fenwal Electronics Model 123 Temperature Indicator measure temperatures at 10 different locations over a range from 60 to 90°C with an accuracy of 0.1°C! Why not let us solve your design and development problems with equal precision? FENWAL ELECTRONICS, INC., 33 Mellen Street, Framingham, Mass.

MAKING PRECISION THERMISTORS TO MAKE YOUR DESIGN IDEAS COME TRUE

CIRCLE 363 ON READER-SERVICE CARD

ALLISON FILTER 2B SPECIFICATIONS

- Frequency range from 60 cycles to 20,160 cycles
- Designed for use in 600 ohm circuit
- Passive network
 No power supply
- Low loss approximately 2 db in pass band
- Plug-in or built-in input-output transformers available for other impedances
- Attenuation rate 30 db per octave
- Size-14" high, 7" deep, 5¼" wide
- Weight—16 pounds. Fully portable
- Model 2BR, rack panel also available
- Basic price for Model 28—
- \$345.00 F.O.B.

Write for Engineering Bulletin with complete technical data.

14185 E. SKYLINE DRIVE . LA PUENTE, CALIFORNIA

Allison Laboratories, Inc.

AILISON

ABS.

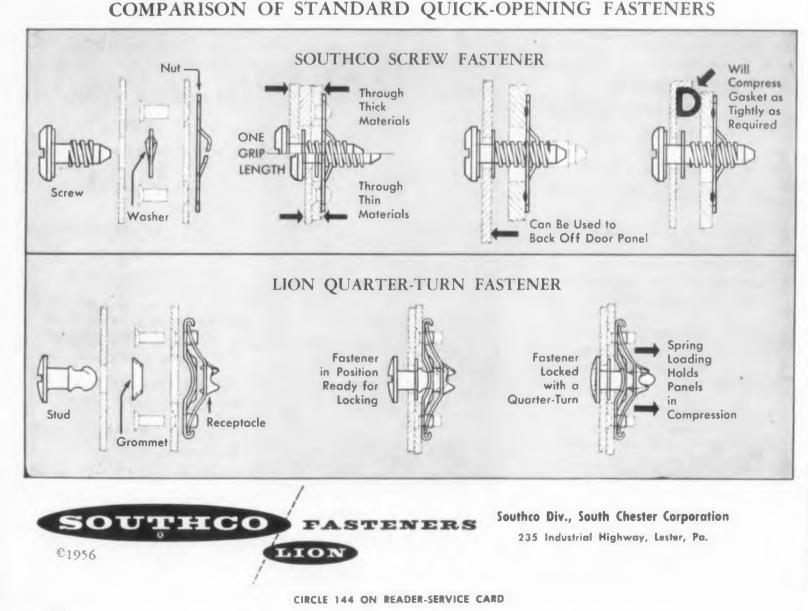
Quick-Opening Fasteners: Screw Type or 1/4 Turn?

Know the features of each before you specify.

M. R. TUOZZO

The selection of a quick-operating door fastener usually involves a choice between two basic designs; the quickacting screw fastener and the V4 turn fastener. Both are relatively inexpensive. Each has advantages that make it the logical choice for certain applications.

THE SCREW FASTENER is a rugged, square threaded screw assembly engaging in a special heavy stamped nut. The nut is clipped, riveted, or welded to the door frame. A special washer behind the thread captivates the screw in an oversize hole in the door.


Because of its exceptional "float," it is installed without precision measurements and will always line up with ease. Where a variation in material thickness may occur or a gasket must be compressed, the screw fastener is preferred, since a single grip length can be used throughout. Under most conditions it will completely disengage in two to four turns. It offers excellent resistance to vibration and forms a solid joint with no "give."

The screw fastener can be backed all the way out of the door frame without moving the door. If required, it can be installed so as to jack the door open as it is unscrewed.

THE QUARTER-TURN FASTENER is usually selected for application on aircraft (under Army-Navy-Air Force specification MIL-F-5591A) where instantaneous removal of fastened parts is required. As the name implies, it is quickly locked or unlocked by a fractional turn.

Its strength characteristics also are very high when the stud is formed from a single piece and no thin springs, wires, or cross pins exist in the assembly. The stud is retained in the door panel by a metal grommet, and engages in a full floating spring-loaded receptacle, riveted or welded to the door frame.

Where the thickness of door and frame are fairly constant through an entire production run, the quarter-turn fastener is a wise choice. Its design affords maximum speed in fastening, and excellent vibration resistance.

PRODUCTION PRODUCTS

Bench Punch Press Has 4 ton capacity

Model BM-4 is a bench type punch press with a capacity of 4 tons. Originally designed for automatic electrical terminal crimping, it can be used for any standard punch press operation such as shearing, blanking, forming, drawing, riveting, and cutting. Die space is 6-1/2 in. open height and 4 in. throat space. The opening in the bed is 2×2 in. and the opening between uprights is 4×3 in. The ram has adjustable, replaceable V-type gibs and easily adjusts for die settings. The punch chuck hole in the ram is 1 in. in diameter. Standard stroke is 1 in. The unit weighs 223 lb and measures $10-5/8 \times 17-1/2 \times 24-5/8$ in.

of

Zin

loci

inc

))ro

St.

1

CON

CUL

dia

SI

EL

Alva Allen Industries, Dept. ED, 1001-15 N. Third St., Clinton, Mo.

CIRCLE 145 ON READER-SERVICE CARD

Automatic Memory Core Handler

For testing 80 mil ferrite cores

Model 4012 core handler is designed for fully automatic or manual rate feeding of standard, 0.08 in. OD ferrite memory cores to a testing point. It has a maximum handling rate of 36.0cores per hr and provides for the separation of the tested cores in five different grades. T e TS

with

for

ı be

tion

ing,

pen

g in

up-

re-

die

n is

The

-1/2

N.

r

ully

a l,

big

6.0

1 of

Ге

159

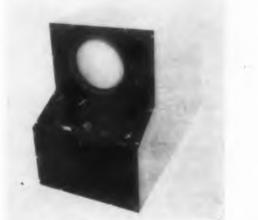
ades, as well as the rate of handling, are seted by an operator or by a fully automatic re analysis equipment such as the company's LACT. For laboratory analysis of moderate antities, provision is made for holding the core the test contacts for an indefinite length of ne to observe its voltage response. The core ndler is 12 x 12 x 12 in. The control unit is x 18 x 17 in. and operates from a 115 v, 50 60 cps line.

Rese Engineering, Inc., Dept. ED, 731 Arch Philadelphia 6, Pa.

CIRCLE 146 ON READER-SERVICE CARD

Toroidal Coil Winder

For miniature units


The model U-2 Torovd is a bench machine designed to provide accurate windings on miniathree coils. It handles 28 to 41 wire at shuttle speeds of 0 to 500 rpm. It is furnished with a 0.06 in. megazine and geared predetermining and magame loading counters. A self-releasing shuttle locks the magazine to the shuttle gear for loading and automatically disengages when winding proceeds. The unit operates on 110 v ac, 60 cps.

Universal Mfg. Co., Inc., Dept. ED, 1168 Grove St. Irvington, N.J.

CIRCLE 147 ON READER-SERVICE CARD

Inductance Comparator

For toroidal coil winding

Designed as an attachment for the company's Sources winding machines, the 1C-601 inductance comparator provides a means of winding toroidal colls to preset inductances on permalloy powdered Trite cores. The unit eliminates core grading and inductance adjustments and permits accuracies up to 0.5%. It has built-in decade inductances which allow a setup range and provides inuous monitoring of the winding process. niversal Mfg. Co., Inc., Dept. ED, 1168 Grove Virvington, N.J.

CIRCLE 148 ON READER-SERVICE CARD

What every E. E. should know about Thermistor Applications

Fenwal Electronics Thermistor Probe Assemblies are designed to meet specific temperature measurement and control needs. Easy to install, they can cut assembly costs.

... they're trouble-free using Fenwal Electronics Thermistors

Stable, high-accuracy performance is a lasting quality of Fenwal Electronics Thermistors. Completely free from "drift" and capable of operating with compact, rugged control units, they provide practically limitless life in permanent fixtures or installations.

Typical use is as a liquid level sensing probe assembly (left). When liquid reaches probe, its higher thermal conductivity cools thermistor, increasing its electrical resistance and triggering

nwal lectronics

Fenwal Electronics Thermistor Probe Assemblies give you the advantages of complete, ready-to-mount packages for measurement and/or con-

alarm or control action. Such action

can occur in fractions of a second after

trol of ambient temperatures, "skin' temperatures, liquid level and flow, gas analysis, and hundreds of other variables. FENWAL ELECTRONICS, INC., 33 Mellen Street, Framingham, Mass.

CIRCLE 149 ON READER-SERVICE CARD

MAKING PRECISION THERMISTORS TO MAKE YOUR DESIGN IDEAS COME TRUE

liquid touches probe!

ELECTRONIC DESIGN • April 1, 1959

News from Raytheon's Semiconductor Division...

ELECTROLYTIC SLICING-

This engineer is slicing a germanium crystal by electrolytic means. Up to now semiconductor wafers have been formed by mechanical processes, such as cutting with diamond saws or lapping with abrasive powders. The resulting mechanical damage to the critical surfaces reduces the quality and effectiveness of finished semiconductor devices. Electrolytic slicing of crystals, producing surfaces which are free from the mechanical damage resulting from other methods, is one of the many pioneering activities initiated and carried forward by the scientists and engineers of Raytheon's Semiconductor Division.

THE PLACE FOR THE MAN WHO IS GROWING FASTER THAN HIS ASSOCIATES

There are openings at Raytheon's Semiconductor Division for scientists and engineers with semiconductor experience and a desire to find more room for personal and career growth. Opportunities exist in the following areas:

> Device Design and Development Material Development Mechanization

> > **Circuit Design**

Application Engineering

You are invited to explore the advantages for yourself in associating with Raytheon's Semiconductor Division. Write to Mr. Allen D. Moorhead, RAYTHEON MANUFACTURING COMPANY, Semiconductor Division, 150 California Street, Newton 58, Massachusetts.

The place for the man who is growing faster... SEMICONDUCTOR DIVISION of

Excellence in Electronics

PRODUCTION PRODUCTS

Surface Finish Tester Semiautomatic

Model 100 Talysurf is a portable, semiautomatic instrument for production inspection and precision testing of surface finish. The assembly includes work table, pick-up, stylus, support, and motorized drive. It can carry small work in universal work-holding fixtures or be fitted with quick loading production tooling. The same unit, inverted, can be used to check large flat or cylindrical work.

Engis Equipment Co., Dept. ED, 431 S. Dearborn St., Chicago 5, Ill.

CIRCLE 366 ON READER-SERVICE CARD

Production Marker

Prints on variety of materials and shapes

The Anderpress is a high speed, foot operated production marker which prints on metal, plastic, wood, and other materials. It can mark parts of many shapes, including those with projections such as studs and brackets. The printing coverage area is 2.5×5.5 in.

Anderson-Stanley Stamp Co., Dept. ED, 4101 W. Grand Ave., Chicago 51, 111.

CIRCLE 367 ON READER-SERVICE CARD

Shock Testing Equipment

Provides variety of pulses

le

SUI

th.

E

Designed to comply with pulse defining specfications, Varipulse machines permit independent variation of the pulse with respect to its configurtion, peak acceleration, and duration. Accurate uniform half-sine waves, saw tooth pulses, and other tailored wave shapes can be produced and repeated. In specimen capacities of 100 and 400 lb, the machines can apply the essential shock testing requirements of specifications MIL-5272A and MIL-E-5400. They also meet the Ramo-Wooldridge GMRD-E-56-1 specification Barry Controls Inc., Dept. ED, 700 Pleasant S

Watertown, Mass.

CIRCLE 368 ON READER-SERVICE CARD

Diffusion Pumps

For low pressure use

Handling large gas loads at low pressures, se oil and mercury diffusion pumps can be ed in particle accelerator work, environmental t chambers, and jet propulsion work. Maxi-Im pumping capacity of the MCF oil pump is 000 micron liters per sec at $4 \ge 10^{-4}$ mm Hg. r speed is about 45,000 liters per sec in the 10^{-5} 10⁻⁴ mm Hg pressure region with an ultimate ssure of 4 x 10⁻⁷ mm Hg. The MHG mercury mup has an air speed of 53,500 liters per sec at 10⁻⁴ mm Hg.

Consolidated Electrodynamics Corp., Roches-Div., Dept. ED, 1775 Mt. Read Blvd., Roches-1: 13. N.Y.

CIRCLE 153 ON READER-SERVICE CARD

nto-

and

ably

and

uni-

vith

init,

cyl

ear-

ited

stic. s of ions

ver-

101

ec:-

let

11.1-

ate,

and

a: 1

4(1)

0 5

the

S,

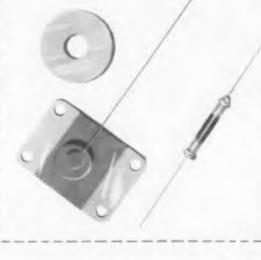
159

m

Welding Probe

Designed for thermocouples

Model HP-3030 pressure-sensitive resistance welding probe is designed for welding thermocouples. A handpiece, it consists of a welding load with a pressure-sensing mechanism and a separate ground lead. The probe fires at a preset pr ssure from 1 to 25 lb, producing a heavy cur-In the for millisecond durations of exact repeatabil-The unit may be plugged into any of the to pany's power supplies or welders. It has a In mum power capacity of 500 w-sec. Besides ill imocouples, it may be used to weld honeyco b sections and special electrical and electic assemblies.


nitek Corp., Weldmatic Div., Dept. ED, 380 lalstead Ave., Pasadena, Calif.

CIRCLE 154 ON READER-SERVICE CARD

What every E. E. should know about Thermistor Variety

Fenwal Electronics Washer, Disc, and Rod Thermistors are available with solder leads or terminals in a wide range of resistances and time constants.

Ranges: most increased 10 fold

D (series capacitance): 0 001 to

D (parallel capacitance): 0.1 to

Q (series inductance): 0.02 to 10 at 1 kc

Q (parallel inductance): 1 to 1000 at 1 kc

CIRCLE 156 ON READER-SERVICE CARD

R 1 milliohm to 10 megohms

C: 1 µµf to 1,000 µf

1 at 1 kc

50 at 1 kc

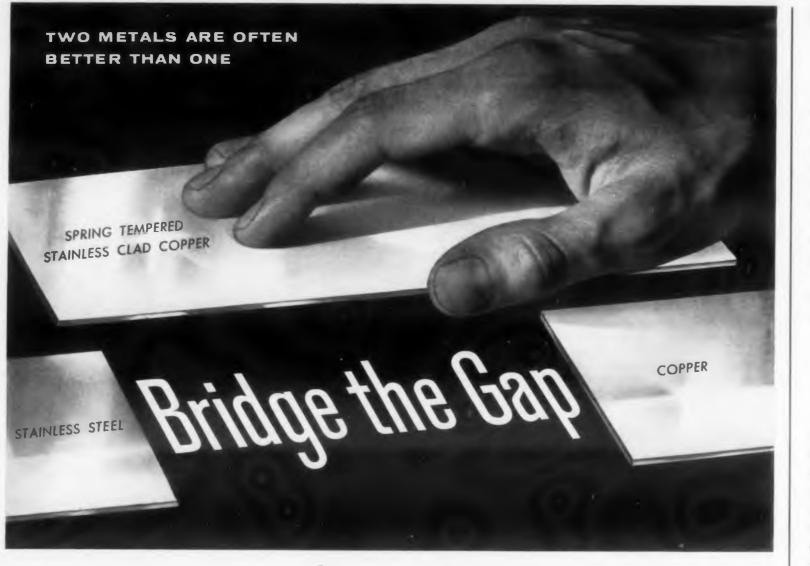
L: 1 µh to 1,000 henries

... it's greater in the Fenwal Electronics Thermistor line

Designers can easily select the thermistor most suitable to space, shape, and operating requirements from the wide variety of Fenwal Electronics Thermistors. In addition to beads and probe assemblies, they're available as washers, discs, and rods in a broad range of sizes and resistances. For example, one "standard" thermistor is only .014" in diameter!

Fenwal Electronics Thermistors

are widely used in electronic equipment for temperature compensation, volume limiting and surge suppression. They're available with time constant ratings ranging from 2 to 350 seconds.


Simplify your design and circuit problems with Fenwal Electronics Thermistors, Get complete details on this full line. FENWAL ELEC-TRONICS, INC., 33 Mellen Street, Framingham, Mass.

MAKING PRECISION THERMISTORS TO MAKE YOUR DESIGN IDEAS COME TRUE

CIRCLE 155 ON READER-SERVICE CARD

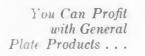
E CTRONIC DESIGN • April 1, 1959

... between the Limitations of Single Metals with GENERAL PLATE CLAD METALS

General Plate Division

CIRCLE 158 ON READER-SERVICE CARD

FIELD OFFICES: NEW YORK . CHICAGO . DETROIT . INDIANAPOLIS . MILWAUKEE . PASADENA


The performance of a single metal will go so far . . . but frequently not far enough. And to bridge the gap between the limitations of single metals and the desired results, clad metals are used to obtain the requirements, or to do the job better . . . often at lower cost. That's why manufacturers of all

METALS

types of products turn to General Plate for recommendations on their metal requirements. For instance . . . for electrical spring manufacturers, General Plate has developed:

Bronco^{*}, phosphor bronze double-clad on copper to provide higher electrical conductivity without increasing cross-sectional area of spring blades.

Conflex* hardenable steel clad on one or both sides with sheet copper to obtain a superior spring material with

better electrical conductivity and greater strength — at lower cost — than comparable copper alloys. And the copper surface is excellent for electroplated finishes.

Spring Tempered Stainless Clad Copper for spring blade service in applications requiring high electrical conductivity and excellent resistance to various types of corrosion.

If you are seeking metals with useful characteristics that can't be found in a single metal or alloy, investigate clad metals. If you want stronger or lighter components — or better electrical and mechanical properties — or fewer corrosion problems — or if you are interested in conserving critical metals or reducing parts costs, you can profit by using General Plate Clad Metals.

Write for a General Plate catalog today. Or better yet, why not talk over your requirements with a competent field engineer. His knowledge of the applications of clad metals is yours for the asking. No obligation, of course.

704 Forest St., Attleboro, Mass.

*Reg. Trade-Mark U.S. Pat. Off. and Foreign Countries

SERVICES FOR DESIGNERS

Coils Built to Your Specifications

The new fine wire plant of Deluxe Coils, Inc. will supply the miniature 48-56 gage wire coils you need for applications from hearing aids to missile systems. The coils will be built to your specifications for precision and accuracy. Newest facility of this company, spanning 15,000 sq. ft, is air and sound conditioned and completely equipped to produce all types of miniature fine wire coils, 40-47 gage, ultra fine wire coils, 48-56 gage, and components.

Information on the firm's fine wire production capabilities will be supplied by Deluxe Coils, Inc., P.O. Box 318, Wabash, Ind.

Reliability Laboratory

Forces as high as 500 g will be hurled against missile components and systems in a deliberate effort to destroy them in a new reliability center established in Los Angeles, Calif., by Leach Corporation. Goal of the laboratory is plus 99.9% performance under space operating conditions to meet the increasingly higher reliability demands of jet and rocket airplanes and missiles and space satellites. The destruction laboratory, now in the final stages of completion, will be made available to all manufacturers including component companies. Extremes of both heat and cold in environmental chambers, vibrational intensities of 70 g and shock up to 120 g are some of the other trials to which systems and components will be subjected.

Leach Corporation, Dept. ED, 18435 Susana Rd., Compton, Calif.

CIRCLE 159 ON READER-SERVICE CARD

tr

cl

ō.

Testing Facilities

The Electronics Laboratory of the United States Testing Company conducts tests and evaluations on electronic components, units, systems and products. Typical of these operations is the ASESA program where components are tested in strict comformance to MIL specifications. Automated facilities for reliability testing and failed analysis include a high-speed digital, self-bilancing readout system which automatically meures and records resistance or voltage value, either ac or dc, to within 0.1 of 1% or better.

United States Testing Co., Inc., Dept. E J. 1415 Park Ave., Hoboken, N.J.

CIRCLE 160 ON READER-SERVICE CARD

Design and Development Facilities

RS

ns

Inc.

coils

ds to

your

ewest

1. ft.

etelv

: fine

18-56

ction

Coils,

ainst

erate

enter

Cor-

per-

s to

ands pace

the

able

:om-

ivir-

i of

ther

1 be

sana

ited

1.11-

er is

112

n E

lu c

3.14

31.54

33,

17

A complete digital instrumentation engineering ice for the electronic and missile industries is seing offered by Franklin Electronics, Inc. Servinclude every phase of engineering from inidevelopment to manufacturing. Individual Lital instruments as well as complex systems in be handled. Main site of the engineering vice is Van Nuvs, Calif., and most manufacang is done at Bridgeport, Pa.

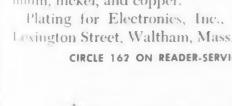
Franklin Electronics Inc., Dept. ED, Commuations and Control Div., Bridgeport, Pa.

CIRCLE 161 ON READER-SERVICE CARD

Precision Plating Techniques

New and improved techniques for precision plating of precious metals for the electronics and related industries have been developed by a new company in Waltham, Mass., Plating for Electronics, Inc. Services offered by this new firm include modern facilities using the latest plating equipment for precision plating to specifications of precious metals such as gold, silver, and rhodium anodizing; and precision plating of cadmium, nickel, and copper.

Plating for Electronics, Inc., Dept. ED, 249


CIRCLE 162 ON READER-SERVICE CARD

Ultrasonic Machining

Special report on ultrasonic machining and machining service offered by Connecticut Instrumunt Corporation points out that hard and brittle materials such as glass, ceramics, crystals, tung-In, carbide and the like can be machined with ecision and that any shaped hole or cavity can produced. The service includes assistance in terial selection and production design, as well ultrasonic machining in both experimental and oduction quantities.

Connecticut Instrument Corporation, Dept.). Ultrasonics Div., Wilton, Conn.

CIRCLE 163 ON READER-SERVICE CARD

What every Thermistor user should know about Fenwal Electronics

Typical of the advanced Fenwal Electronics measuring instruments designed around the Fenwal Thermistor is the Model 116 Temperature Indicator shown here.

NEW

MINIATURE

time delay relay

for missile, aircraft and

INSTANTANEOUS RECYCLING ...

electronic applications

AGASTAT[®]

... it provides complete thermistor engineering service

You can solve circuit problems involving thermistors with maximum efficiency and economy by calling on the extensive facilities of Fenwal Electronics, Inc., for assistance.

As background material on thermistor problems, Fenwal Electronics offers a wide variety of literature such as catalogs, nomographs, and reprints of articles by leading authorities on thermistors. In addition, Fenwal Electronics Thermistor Experimental Kits are available to expedite operations at the "bread board" stage. Finally, Fenwal Sales Engineers are

ectronics

CIRCLE 164 ON READER-SERVICE CARD

Ratios from 3:1 to 2700:1 Whether you require a Universal, Induction or Shaded Pole Gear Motor or individual Gear Reduction Units, Howard can fill your mechanical and electrical requirements from a complete line of standard models that assures you of minimum cost and delay. One of the many Howard models is shown below. Check your specs first with Howard or write for our free complete catalog.

MODEL 3000-2 Pole **Shaded** Pole with Gear Unit DIAMETER: 3716"

LENGTH: 35%" to 412"

MAX. CONT. TORQUE:* RPM (at 1¹2" stacking length) 45 in. lbs.

MAX. INTER. TORQUE*: RPM (at 1¹/₂ stacking length) 70 in. lbs.

BEARINGS: Porous bronze sleeve type with oil reservoir. With external fan. Torques at other speeds from 1 to 400 RPM also avail-able.

POWERED BY

HOWARD

There's a HOWARD fractional h.p. gear motor

tor every application!

HOWARD INDUSTRIES, INC. 1725 State St., Racine, Wisconsin

Motor Corp., Cyclohm Motor Corp., Racine Electric Prods., Loyd Scruggs Co CIRCLE 166 ON READER-SERVICE CARD

reset time—less than .020 seconds UNAFFECTED BY VOLTAGE VARIATIONS ... time delay remains constant from 18 to 30 volts DC

ADJUSTABLE . . . time delays from .030 to 120 seconds CHOICE OF OPERATION ... for either energizing or de-energizing

SMALL ... height-45%"... width-113/6"... depth-11/2"

LIGHT maximum weight-15 ounces

MEETS ENVIRONMENTAL REQUIREMENTS OF MIL-E-5272A

This new AGASTAT time delay relay is an externally adjustable, double-pole, double-throw unit. It incorporates the basic AGASTAT timing principle, proved by a half-century of reliable operation on automatic aids to navigation, in a space-saving miniature unit built to withstand the rugged environmental conditions of missile and aircraft applications.

For specific information on the new AGASTAT relay for your application, write to Dept. A30-424.

ELASTIC STOP NUT CORPORATION OF AMERICA AGA 1027 Newark Avenue, Elizabeth, New Jersey Pioneers in pneumatic timing CIRCLE 165 ON READER-SERVICE CARD

In short, everything you need to help in the selection of the best Fenwal Electronics Thermistor for the application at hand can be obtained from

your plant.

Fenwal. Of course, if you prefer, we'll handle the whole research and development job ourselves. For any of the above material or a list of factory representatives strategically located from coast to coast, just drop a line to FERWAL ELECTRONICS, INC., 33 Mellen Street, Framingham, Mass.

ready to lend a hand personally when-

ever called upon. There's one handy to

MAKING PRECISION THERMISTORS TO MAKE YOUR DESIGN IDEAS COME TRUE

The EG&G Type 2236A Milli-Mike Oscilloscope •••

... the only oscilloscope capable of measuring the performance of high-speed semiconductors.

The Milli-Mike Oscilloscope reproduces pulse rise time on the order of a tenth of a millimicrosecond at relatively low signal voltages without the use of amplifiers. Frequencies as high as 3,000 megacycles and voltage levels of 40 to 50 millivolts can be detected and recorded.

PERFORMANCE DATA

Sensibility Nominal Spot Size (trace width) Deflection Frequency Response

Input Impedance

Writing Speed

Let EG&G's experience in sub-millimicrosecond measurements assist you in the development, inspection and quality control of high-speed semiconductors.

The EG&G Milli-Mike Oscilloscope — one of a family of millimicrosecond instruments — is now being used to solve problems in measurement of recovery time of diodes, decay times of scintillators, discontinuities in transmission lines and as a synchroscope in high resolution radar systems.

160 BROOKLINE AVENUE, BOSTON 15, MASS. 1622 SOUTH "A" STREET, LAS VEGAS, NEV.

CIRCLE 200 ON READER-SERVICE CARD

NEW LITERATURE

201

202

203

Computer Services

General Electric Co.'s Computer Dept. with headquarters in Phoenix, Ariz. and its specialized Computing Services Center, are described and illustrated in two attractively illustrated brochures. "Computing Services" is a 12-page brochure presenting the computing services offered to clients in business, military, or government, including: problem analysis, mathematical analysis, programming, coding, machine time, training, and full operation of customer's computer facility. Personnel. details of services and applications, and advantages of computing services are covered. "Military Competence," 14 pages and photographically illustrated, discusses plant facilities, personnel, manufacturing facilities, computing services center, and products of the Computer Department. Military projects undertaken by the Department are emphasized and products and services available from the Computer Department are briefly described. General Electric Co., Computer Dept., 1103 N. Central Ave., Phoenix, Ariz.

Precision Gears

This 100-page catalog on "Fine Pitch Precision Stock Gears" lists stainless steel and aluminum spur gears, 48 through 200 pitch with solid and clamp type hubs to A.G.M.A. precision class 2 and precision class 1 standards. Other types of gears are also included. U. S. Gear Corp., 81 Bay State Road, Wakefield. Mass.

Ultrasonic Delay Lines

Bulletin TD58, 35 pages, is a mimeographed manual entitled "Procedures For Testing Ultrasonic Delay Lines." It covers basic inspection, single terminal impedance measurements, overall insertion loss, bandwidth, ripples in the band pass, secondary signals, multiple travel signals, direct feed through, sum of secondaries, delay time, absorption in medium, temperature effects and other variables. Applications to high speed computers, radar MTI and integration kits, as well as timing devices are considered. Arenberg Ultrasonic Laboratory, Inc., 94 Green St., Jamaica Plain 30, Mass. Cost is 25¢.

Electronic Equipment

In 34 pages, and with pictures, the catalog provides the specifications and dimensions of such units as attenuator, potentiometers, matching networks, decade units, bridge units, switches and other miscellaneous equipment. Tech Laboratories, Inc., Bergen and Edsall Boulevards, Palisades Park, N. J.

204

205

206

207

20

EL

Wire Cloth and Mesh

Fully illustrated, this booklet describes the many uses of nickel alloy wire cloth and mesh in 15 pages. It describes the physical advantages of wire cloth and indicates the range of weaves and sizes available for various purposes including microwave applications where it is used to minimize electrical harmonic interference. The International Nickel Co., Inc. 67 Wall St., New York 5, N. Y.

Semiconductor Catalog

Included in this semiconductor products catalog are a transistor chart, a transistor replacement chart, price lists, as well as data sheets on many germanium transistors and silicon rectifiers. Bendix Aviation Corp., Red Bank Div., 201 Westwood Ave., Long Branch, N. J.

Design Data

This 2-page data sheet, with graphs provides practical data for the dimensional design of quarterwave coaxia (TEM) cavities. The data is simplified forapid use and theoretical relationshiphave been altered to conform with observed results. Radar Design Corp., P. () Box 3S, Pickard Dr., Syracuse, N. Y.

Pushbutton Actuators

Data Sheet 155, with pictures, mounting information, and electrical specifications, describes the 12MA series of push button actuators. Micro Switch, Division of Minneapolis-Honeywell Regulator Co-Freeport, Ill.

ELECTRONIC DESIGN • April 1, 1959

lotor Controls

204 thit and ators, deeand Tech Sdsall

205 ribes eloth s the and sizes iding used

rfer-

Inc.,

206

wood-

tran

715

ium

ndis

Vest

207

phs.

nen

INIa!

fo

hip

(

!0

1111

ic.

ish

io

30.

55

trols

Motor Controls Catalog No. 14, 80 ges, is illustrated with product pictures d contains wiring diagrams, dimennal drawings and prices. It gives comte size, weight and rating information the manufacturer's complete line of nor controls and accessories. The catahas an index which lists catalog numits and type identifications about the nipment. One section lists and describes placement parts available and another tion contains heater tables and motor darts. Industrial Control Div., The Aritw-Hart & Hegeman Electric Co., 103 Hawthorn St., Hartford 6, Conn.

Equipment Data Sheets

Containing pictures, block diagrams, operating specifications and descriptive text, Bulletins 7004A, 7006A, 7003A, and 1500A cover the following, respectively: Model 15A ac Electronic Voltmeter, Model 21A Test Oscillator, Model 14A True root mean square Voltmeter, and Ceramicite, a high-temperature ceramic insulator. Consolidated Electrodynamics Corp., 300 North Sierra Madre Villa, Fasadena, Calif.

Silicone Rubber

Bulletin CDS 170 describes RTV (room temperature vulcanizing) silicone rubber, used in electrical potting and encapsulating. The material is also used for flexible mold-making and for high and low temperature sealing and caulking. Complete product and application data for three new RTV compounds is included in the bulletin. Silicone Products Dept., General Electric Co., Waterford, N. Y.

Potentiometers

his catalog covers single turn, wirewind precision potentiometers from 1/2 in diameter. Complete specifications with as size and dimensions, mechanical in tirement and electrical properties are in. These high reliability units are in to applicable requirements of Milito A, NAS 710, Mil-R-19518, Mil-E-A, Mil-R-12934B. Maurey Instrument D, 7924 S. Exchange Ave., Chicago III.

EL CTRONIC DESIGN • April 1, 1959

209

210

211

212

Filled Teflon Bearings

Bulletin CP-558 covers the Chempro line of filled Teflon bearings. These filled materials have electrical and electronic applications, including molded and machined spacers, inserts, connectors and other parts for use in high voltage, high temperature and high frequency. Chemical & Power Products, Inc., 11 Broadway, New York 4, N. Y.

213

214

215

216

Antenna Coupler

In 14 pages, this illustrated booklet describes the operation of the CU-483 Antenna Coupler. The coupler is designed for the 2 to 32 mc range. The booklet contains pictures, schematic diagrams and a table of operating specifications. An analysis of the circuits is also given. CGS Laboratories, Inc., 391 Ludlow St., Stamford, Conn.

Logis Modules

Entiled "Simplified Design of Digital Logic Using Magnalog System," this 8page brochure, in two colors, describes 12 typical applications for logic modules. Each application, with recommended power supply circuitry, is illustrated by a logic diagram, wiring diagram and waveshape photograph. Hoffman Electronics Corp., Semiconductor Div., Dept. K, 930 Pitner Ave., Evanston, Ill.

Strain Gages

A new catalog of SR-4 Strain Gages, Instruments and Accessories contains over 250 types. This latest catalog is a complete and authoritative listing of bonded filament resistance strain gages. Complete electrical and physical specifications of each gage type are included, together with prices and quantity discounts. A separate section provides data useful in the selection of gages for various applications. A wide variety of etched foil gages for high, intermediate and room temperature applications are listed, as well as all standard, semi-standard and special purposes SR-4 Wire Gages. In addition to strain gages, the new publication lists strain gage instruments and a variety of strain gage kits and accessories. Baldwin-Lima-Hamilton Corp., Electronics & Instrumentation Div., 42 Fourth Ave., Waltham, Mass.

HOW BENDIX SPARK GAPS Can protect Your radar equipment

Bendix Red Bank "Spark Gap" Tubes are specially designed to do two big jobs in electronic circuits.

First, to act as a "triggering" switch as on jet ignition systems. Here, Bendix * Spark Gaps pass high currents with relatively low voltage drop and have the advantage of being able to handle high voltages in small space. Further, these tubes can be made insensitive to ambient temperature variations and are not normally affected by pressure, altitude, or humidity changes.

The second function of Bendix Spark Gaps is as a *protective element*—guarding radar equipment against voltage overload, to name one example. Here, Bendix Spark Gaps keep high voltage surges from getting through to damage circuit components.

Our design and manufacturing experience with spark gap tubes is extremely broad. If our extensive line of these tubes . . . ranging from 750V to 50KV in DC breakdown voltages . . . does not already contain a type to fit your needs, we are in a position to design one to handle the job with the exact degree of efficiency that you require.

To find out more about what we can do to help you with your spark gap problems, get in touch with RED BANK DIVISION, BENDIX AVIATION CORPORA-TION, EATONTOWN, NEW JERSEY.

* TRADEMARK

West Coast Sales and Service: 117 E. Providencia Ave., Burbank, Calif. Canadian Affiliate: Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ont. Export Sales & Service Bendix International, 205 E. 42nd St., New York 17, N. Y.

Bes Bonk Division Bendin

Built to aircraft and missile specifications

Aximax

The Aximax 2 vane axial fan is designed for tightly packed "black boxes" aboard aircraft or missiles where maximum cooling is mandatory with a minimum of space and weight loss due to the fan. Air delivery of 60 cfm free air is attained from a fan only 2" in diameter by 1.5" in axial length. Weight is 4.5 ounces Variation in driving motors include constant speed 20,000 rpm. 10,000 rpm as well as variable speed Altivar versions. The latter vary their speed inversely with density thereby approaching constant cooling with a minimum of power drain and noise Power requirements vary from 400 cps for the standard unit to 1600 cps for special designs. 1 or 3 phase, sinusoidal or square wave. The Aximax 2 meets MILE-5400B and other individual missile specifications. Write today for complete technical information to -

CIRCLE 218 ON READER-SERVICE CARD

NEW LITERATURE

Constant-Temperature

A new 60-page, fully illustrated, Constant-Temperature Catalog describes a complete line of baths, conditioned-air devices, and temperature-humidity cabinets. The new two-color catalog lists over 100 constant-temperature laboratory instruments applicable to every field of research, materials testing, quality control and production. Included in the new catalog are baths, ovens, sterilizers, incubators, environmental test equipment, steam-generating humidifiers, dry-ice cabinets and various types of thermometers, as well as many unique accessory items designed to provide utmost flexibility. A convenient temperature-conversion table (Centigrade to Fahrenheit) is incorporated. American Instrument Co., Inc., 8030 Georgia Ave., Silver Spring, Md.

Flexible Shafting

A new bulletin on their Circle Ess flexible shafting explains briefly the advantages and the simplicity of designing a flexible shaft into products having an application which requires control from remote places. Included within the pages of this bulletin are the latest specification charts on both remote control and power drive cables plus complete data charts of the Circle Ess casing materials. A brief explanation of the uses of adapters for flexible shafting and illustrations of a number of these adapters are also given. F. W. Stewart Corp., 4311-13 Ravenswood Ave., Chicago 13, 11.

Button Cell Batteries

Publication of a brochure on the smallest, most complete line of button cell batteries, is announced by Gulton Industries, Inc. This four-page, colored and illustrated brochure on button cell batteries, highlights the features, design potentials and specifications of the VO-Series, nickel cadmium, button cell battery line which includes types from 100 MAH to 1750 MAH capacities in more than 50 distinct sizes and voltages. Specify request for bulletin No. VO-110, Sales Manager, Alkaline Battery Div., Gulton Ind., Inc., Metuchen, N.J.

Fan and Blower Catalog

219

220

221

The 1959 McLean catalog features packaged fans, blowers, and accessory equipment used in conjunction with the cooling of electronic or electrical apparatus. Many new and improved models, construction features and specifications are included in the new 36-page catalog. Shown are ready-to-use cabinet cooling units available in panel heights ranging from a space saving 1-3/4 in. up to 10-1/2 in. and with air deliveries ranging from 100 to 1200 cfm. Prices, quantity discounts and terms on all models are included as well as complete price information on accessories. McLean Engineering Laboratories. P.O. Box 228, Princeton, N.J.

Contact Switches

In this specification sheet are details of design, construction and operation of the 1901 Series 30 amp momentary contact switches. McGill Mfg. Co., Inc., Electrical Div., Valparaiso, Ind.

Potentiometer Definitions 225

In this illustrated, 6-page brochure are functional definitions as a guide to users of Clarostat products. Included in the brochure are diagrams and graphs to clarify concepts. Clarostat Mfg. Co., hug. Dover, N. H.

Wires and Cables

226

223

Ma

Po

1h

224

A six-page folder on "Plasticote" wires and cables for military and commercial electronic service is a condensed catalog listing coaxial cables, military hook-up wire, multi-conductor cables, appliance wire, miniature and audio wires a d cables, high voltage and frequency with s. antenna loop, rvc-300 apparatus and nunciator (bell) wire, also televis in transmission lines-primary and secondary lead-in cable, "parallead" and "prsac" lead-in wire and TV rotor cal-These cables are available in a vari y of conducting, insulating, jacketing, shielding and armoring materials. Chilter Cable Corp., 159 Oakland Av . Chester, N.Y.

Velding Equipment

Sulletin 2-100 covers in 16 pages ding heads, controls and power sups and welding accessories. Applicais of this equipment includes use with uum tubes, relays, capacitors, meters, stors, instruments, transistors, and tronic chassis. Raytheon Mfg. Co., 100 fer St., Waltham 54. Mass

227

228

Electronic Equipment

In condensed form, this catalog provises the essential operating characteristics, in 12 pages, of such units as pulse equipment, oscillators, signal generators, budges, filters, meters, amplifiers, vbf, ind measuring equipment, coaxial eleients, frequency standards and RLC components. General Radio Co., 275 Missachusetts Ave., Cambridge 39, Mass.

Polyester Glass Laminates 229

Fitled "Polyester Glass Dilecto and Geloron," this four-page, two-color bullatin completely describes the various grades and properties of CDF polyester glass Dilecto and suggests applications. The bulletin also describes custom molding available with CDF Celoron Polyester Glass, and presents in tabular form all physical, mechanical, and electrical properties of polyester glass Dilecto. Continental-Diamond Fibre Corp, Newark, Del.

Power Supplies 231

Information and specifications on the company's full line of transistor-regulated and tube regulated power supplies is contained in this 36-page catalog. In addition, the brochure explains the background of firm's exclusive five-year guarantee, gives detailed outline drawings of the equipment and pictures various company power supplies in use. The catalog is available from Lambda Electronics Corp., 11-11 131 St., College Point 56, N.Y.

Electronic Catalog

A new 1959 catalog of electronic parts and equipment contains 244 pages devoted to complete details on company's comprehensive selection of electronic parts and equipment for industrial replacement, high fidelity, audio, and ham applications. Herrlinger Distributing Co., 15th and Vine St., Cincinnati 10, Ohio.

232

PRECISION Geared To Your Product Needs

APPCO Certified STOCK GEARS

32 TO 120 PITCH ... A.G.M.A. PRECISION #1, 2 & 3

Every tooth a masterpiece in finish and motion . . . every gear to the most exacting A. G. M. A. precision standards . . . all meet Government specifications —that's the quality of APPCO Certified Precision Stock Gears. The precision of every gear Certified to assure engineers and production men of their exact requirements for every precision product.

APPCO Certified Precision Stock Gears are available for quick deliveries in 32, 48, 64, 72, 96 and 120 diametral pitches of 141/2° and 20° pressure angles. Each gear designed with dimensions proportional to their diametral pitch for minimum weights and space considerations. The fine precision and certified testing permits the use of APPCO Gears in precision assemblies of all types—airborne, shipboard, missile or stationary. APPCO Gears are usable in the engineering prototypes or breadboard design... will qualify uniformly for use in actual model pre-production or production manufacturing areas. Each gear is completely sealed on a shipping tray with plastic cover ... always "factory fresh" and free of dust, corrosion and scratches.

Put extra precision into your products. Write for APPCO catalog to Atlas Precision Products Co., Castor and Kensington Avenues, Philadelphia 24, Pennsylvania.

con-Inc., 225

223

29 THITE

SSOTY

h the

appa-

odels,

tions

talog.

oling

iging

p to

nging

intity

re in-

nfor-

Engi-

228,

224

etails

m of

s are isers the s to Inc.,

rcial alog s-up moe and in s,

10.

5. 11

nod-

Dir-

F.a.

ivy

it to

he -

V ...

119

226

vires

NEW LITERATURE

Electronic Tubes

Specifications on the company's complete line of electronic tubes for industry and communications are given in a six page brochure. Illustrated in two colors, the brochure contains detailed applications and performance data covering power triodes, rectifier and clipper diodes, gas noise source tubes, TR tubes. pressurized waveguide windows and ionization gauge tubes. Data on the company's model 3050 vacuum gauge, designed to measure pressures of 1/1000 to 1/10,000,000 mm. of mercury, are also included. Central Electronic Manufacturers, Denville, N.J.

Keyer

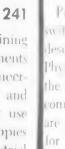
Providing the essential electrical characteristics, this 2-page data sheet describes the F-1B Kever. It is designed for use with one or two warning lights and when energized, a flashing signal is given. General Electronics Co., Inc., 4200 Mobile Road, Montgomery, Ala.

Model 791D

ccuracy: stortic

Automatic Testing

238


239

240

This delightful, illustrated booklet de scribes a new approach to the problem of checking complex electronic systems An automatic electronic tester denotes by means of red and green lights whether the equipment is operating properly. The booklet includes a humorous presentation of equipment checkout problems and their solution. Bro chure is called "Fourteen Men in a Boy." Checkmate Automatic Test Equipment Co., Ridgefield, Conn.

Components Catalog

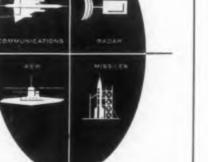
A new 24-page catalog, containing hundreds of products and components for use in electronics, science, engineering, also includes telephone, radio and inter-communication equipment for use in plants, warehouses and offices. Copies may be had by writing to the Industrial Products Div., Herbach & Rademan Inc., 1204 Arch St., Philadelphia 7, Pa.

Satu

Butl

HERE is where you come in . . .

is where


we came

in

. . . on the ground floor of these exciting, long-range projects. Write now . . . arrange for confidential interview with R. E. Eary, Technical **Staffing Director, The Magnavox** Company, 2131 Bueter Road, Fort Wayne, Indiana

CIRCLE 237 ON READER-SERVICE CARD

... back in 1911 Magnavox

developed and patented the

first loudspeaker. Since then,

the name Magnavox has

been synonymous with sight

and sound the world over.

Today, Magnavox is a dy-

namic, moving force in government and industrial electronics and would like to hear from engineers who qualify in these expanding

activities.

Carrier Freq. Range 4-1024Mc, xtal locked Mod. Freq. Range: 25cps to 35kc Deviation Ranges: 0.5, 25, 75, 125kc. 25cps to 35kc 0-5, 25, 75, 125kc. 3%. Xtal standardized

DEVIATION MEASURED 10cps to 125kc

to 10cps deviation. Used with a 'scope, it measures peak deviation of complex wave-forms. Very easy to operate, Model 791D speeds deviation measurements

Less than 0.2% 6AK5, 6C4, 0B2, 5651, 6CD6G, 5Z4G, 5647, 6AS6

St boscopes

2 40 let de oblan stems. enotes lights erating a hucheck-Bro-Box.' pment

Pa.

243

244

vo-color data sheet describes a III l-size, high-intensity stroboscopic μ) and power unit for visual and phoaphic strobe work. Unit is used for in inuous slow-motion observation of il iting or rotating specimens for preis in measurement of rotary or oscillaor speed, or as uniform, fast illuminain photographing high-speed objects. The unit can use a wide variety of triggoing modes as input. The lamp produe is 0-100 flashes per sec, and is visually effective even in a normally lighted room. Childwick-Helmuth Co., 472 E. Duarte Road, Monrovia, Calif.

Saturable Reactors

Poportioning reactors, transductors, 241 whiching reactors and preamplifiers are aining described in this 4-page bulletin (C-15-S). ments Physical and electrical characteristics of ineer the four product lines are covered. Also, o and complete dimensional outlines and tables)r tise are provided, in addition to instructions Copies for ordering Control, Magnetics, Inc., istrial Butler, Pa. eman

Model 50 transistorized chopper is described in this 4-page data sheet. Topics covered include electrical operating characteristics, various applications and a general description. Block diagrams are provided. Solid State Electronics Co., S158 Orion Ave., Van Nuvs, Calif.

Electronic Chopper

Cold Drawn Wires 246

245

A new booklet describing the properties and applications of a wide variety of cold drawn fine wires lists both the physical and chemical properties of the company's alloy, plated and clad wires. The booklet analyzes factors which determine the most economical and efficient wires for specific applications. In addition to cold drawn wire, the division manufactures formed metal parts, strip material for electronic tubes, radio tube and fluorescent lamp bases and sockets. plastic closures, tools, dies and many other electronic component parts. Copies of the brochure may be obtained from Sylvania Electric Products Inc., Warren, Pa.

Now you can pick the right handle design from Chassis-Trak

If you want panel handles solely for pulling your equipment from its cabinet. Chassis-Trak plain blank handles are just the ticket. But don't forget that Chassis-Trak also offers eight other handle designs to meet any tilting, locking and special installation needs.

The complete Chassis-Trak line includes handles with push button panel locks, trigger tilt controls plus positive clamp-type models for installation where extreme shock and vibration are encountered. In short, there's a Chassis-Trak handle design that fits the bill exactly no matter where or how your equipment is mounted.

Chassis-Trak handles are die cast or sand cast of aluminum alloy. Chip resistant finish is aluminum slurry baked on over a clear lacquer-base sealer. Finish has successfully passed salt spray

For further information contact:

525 South Webster, Indianapolis 19, Indiana CIRCLE 248 ON READER-SERVICE CARD

(1,000 hours) and humidity (200 hours at 100%) tests. Offset design permits maximum use of panel space. All handles furnished complete with hardware and mounting instructions.

All models can be finished to your specification. Get details from Chassis-Trak engineers.

Chassis-Trak "Detent" slide, shown in one of seven different tilting positions.

Where only the **best** is good enough ...

MODEL 440-A

Krohn-Hite oscillators are used

In basic electronic instruments for lab or test work, less than the best may be a dangerously bad bargain. Unexpected limitations - of reliability, range, precision - can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable.

The best instrument of its type is probably a bit more expensive, but it's worth buying ... because you can believe in it today. and will rely on it tomorrow. An example is the Krohn-Hite Model 440-A wide range push-button oscillator. Here are some facts about it.

FREQUENCY RANGE: 0.001 cps to 100 kc, continuous coverage.

CALIBRATION ACCURACY: $\pm 1\%$ from 1 cps to 10 kc, $\pm 3\%$ from 0.01 to 1 cps and from 10 kc to 100 kc.

RESETABILITY: exact for push-button resetting, subject only to drift of less than 0.05% per hour.

SINE WAVE OUTPUT: 10 volts rms open circuit, 100 milliwatts into 1000 ohms; amplitude constant within \pm 0.25 db from 0.1 cps to 10 kc.

SINE WAVE DISTORTION: less than 0.1% from 1 cps to 10 kc, less than 1% from 0.01 to 1 cps and from 10 kc to 100 kc.

SQUARE WAVE OUTPUT: 10 volts peak to peak open circuit, 5 volts peak to peak across 1500 ohms; amplitude constant within \pm 1% at any frequency; rise time less than 0.5 microsecond.

There's a lot more you should know about the 440-A ... and about the other Krohn-Hite oscillators, tunable electronic filters, power supplies and amplifiers. In all of them, you'll find the same far-ahead engineering, design and construction. Because K-H instruments are good enough even for tomorrow's most critical work, they are increasingly chosen today where reliability and precision are needed.

Write for your free copy of the new Krohn-Hite Catalog.

Krohn-Hite corporation

580 Massachusetts Avenue, Cambridge 39, Mass. CIRCLE 249 ON READER-SERVICE CARD

NEW LITERATURE

Electronic Equipment

With pictures, prices and technical specifications, this bound catalog covers the principal products which Scientific-Atlanta offers as standard items. A number of products for industrial and military applications are also covered. Units include: antenna pattern recorders, recording consoles, plug-in balancing potentiometers, wide range receiving system and signal level monitor. Scientific-Atlanta, Inc., 2162 Piedmont Rd., N. E., Atlanta 9, Ga.

250

Lamps

A 24-page industry-wide booklet, provides listings of all available panel, flashlight, neon glow, automotive and multipurpose lamps. The new booklet is a composite listing, arranged numerically, of lamps manufactured by Chicago Miniature Lamp Works, General Electric, National Carbon (Eveready), Oxford Components (Hudson), Radio Corp. of America, Raytheon, Tung-Sol and Westinghouse. Simply by checking the land number the user can determine at a glance the respective manufacturers. bulb type, base, volts, amps and bead color. All bulb types are illustrated with physical dimensions. Send 10¢ to cour the cost of handling to The Radio-Electronic Master, Dept. ED, 60 Madison Are., Hempstead, L.I., N.Y.

FI

6.

M

tion

(...

For

mo

am

bre

tim

22.2

EL

251

Plug/Harness Systems

These Plug/Harness Systems (special lengths of cable, custom-made for specific applications, terminating at each end with one or more electrical plugs) are used in missile circuitry and other applications where unusual ruggedness and reliability are required. Catalog HC-1, illustrated, describes the tangible and intangible factors that go into the system, such as plugs and conductors, soldering, cable lay, jacketing and junctions. Cannon Electric Co., P.O. Box 3765, Terminal Annex, Los Angeles 54 Calif.

Chesterland 17, Ohio CIRCLE 252 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 19.3

F | Data File

lamp

at a

ureis,

bead

with

COUT

-Ele-

idison

251

secial

spe-

each

olugs other

dness

talog

gible

) the

ctors.

junc-

Box

s 54.

157

Data Sheets RF-1 through RF-7 cover h topics as: What is RFI; Standard 1 I strips available with models and dim nsions shown; Formed Gaskets; RFI Logaskets and Duostrips. Technical V re Products, Inc., 48 Brown Ave., S ringfield, N.J.

C ramic Magnets

This 4-page, two-color bulletin (#1-59) describes Barium Ferrite material F-300. Mignetic data, curves, design informato n are given, D. M. Steward Mfg. Co., Chattanooga, Tenn.

Footswitches

The 1959 Footswitch catalog shows a complete line of 40 footswitches from light application to heavy duty cast iron models. Ratings are from 7 amps to 40 amps. Over fifteen new models have been added and are shown for the first time in this new catalog. Price list ineluded. Vemaline Products Co., P.O. Box 222, Hawthorne, N.J.

Selenium Rectifiers

253

254

255

This 10-page catalog describes selenjum rectifiers designed for efficient, economical ac to de rectification in the widest range of sizes in industry. The illustrated catalog presents complete descriptions, data and specifications for cell sizes in a range from one inch square to 12 x 16 in. and for stacks of practically any size. Also illustrates rectifier circuits and gives four pages of continuous de current ratings for 26, 33, 36, 40, 45 and 52 v rms cells. Syntron Co., 1186 Lexington Ave., Homer City, Pa.

256

257 **Differential Transformers**

Literature on the applications of linear variable differential transformers include information on the use of LVDT's with universal analyzers, null balance systems. rectifier diodes, strain gage amplifiers. and in the measurement of very small displacements. The publications issued include application notes and bulletins summarizing standard LVDT's and rotary accelerator specifications. Schaevitz Engineering, Route 130 & Schaevitz Blvd., Pennsauken, N.J.

... the world's most modern broadband amplifier pentode

featuring the unique

Amperex

Amperex 6688

a **RELIABLE** premium-quality tube for military systems requirements and exacting industrial applications

- completely ruggedized
- construction figure of merit of 250 Mc as broadband amplifier
- saves entire stages in IF and video amplifiers
- improves signal-to-noise ratio
- preferred for new equipment design, particularly airborne applications
- long-life cathode

It's the FRAME GRID CONSTRUCTION

that makes the difference!

The frame grid is the closest approach to the ideal "physicist's grid"- the grid with only electrical characteristics but no physical dimensions.

It results in:

6922

5842

- higher transconductance tighter G_m and plate current
- tolerance
- low transit time
- Iow capacitances
- lower microphonics
- rugged construction

Other Amperex Premium Quality (PQ) frame grid tubes available in production quantities 5847.....broadband amplifier pentode

..ruggedized high-gain twin triode high-gain single triode

premium-quality tubes special reliability requirements plus other PQ and frame grid tubes for special relia bility requirements and exacting industrial applications

Semiconductor and Special Purpose Tube Division

ask Amperex

about

for

AMPEREX ELECTRONIC CORP. 230 Duffy Avenue, Hicksville, L. I., N. Y.

In Canada, Rogers Electronic Tubes & Components, 116 Vanderhoof Avenue, Taranto 17, Ontario CIRCLE 259 ON READER-SERVICE CARD

Transconductance 16.500 µmhos (min. 14.200; max 18,800) **Amplification Factor** Amplification ractor Equivalent Noise Resistance 460 ohms Grid Voltage (rms) 0.5 volt Amperex FRAME GRID The grid-to-cathode The grid-to-cathode spacing tolerance is determined by the carefully controlled diameter of grid sup-port rods (center-less ground) and by frame crossbraces between these rods. Extremely fine grid wire eliminates the "island effect" usually encoun-tered in conventional tubes with equally close grid-to-cathode spacing. Rigid support of fine wires reduces mechanical resonance and micro-phonics in the grid.

190 volts

+9 volts

13 ma

630 ohms

Plate Supply Voltage

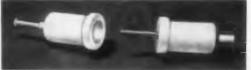
Grid Supply Voltage

Plate Current

Cathode Bias Resistor

Chemelec* STAND-OFF and FEED-THRU INSULATORS

A DEFENSE SYSTEM IS ONLY AS RELIABLE AS ITS SMALLEST COMPONENT



ompression-Mounted Type

Metal-Base Type

Patented Metal-Base Type

Off and Feed-Thru Insulators! Reliability under any condition makes them ideal for missile guidance, fire control, tracking, and radar systems . . . nearly all critical electronic circuits. DuPont TEFLON*--unmatched for electronic applications-is used as the insulator body. TEFLON has exceptional dielectric properties, is chemically inert, resists heat to extreme temperatures, won't break under severest shock or vibration. And, Chemelec Compression-Mounted Stand-Off and Feed-Thru Insulators are designed for quick and easy installation and replacement without danger to supporting panel. You simply compress them into pre-drilled holes: they become self-fastening, requiring no additional hardware for adjustment. Available in compression-mounted, metal-base, miniature or subminiature types . . . standard R.M.A. colors with a wide range of sizes and terminal designs.

What better reason is there to choose Chemelec Stand-

*Registered Trademark +DuPont Trademark

Fluorocarbon Products Inc

CIRCLE 260 ON READER-SERVICE CARD

Chemelec CONNECTORS – Teflon insulated for outstanding high-frequency service.

Chemelec TERLON-insulated male and female connectors are used mainly as breakaway connectors ... plug-in crystal diodes, plug-in coils and forms, test probes. Once compressed into chassis holes, the connectors need no further adjustment or hard-

ware. Chemolec Connectors have all the line TIFLON characteristics, and are uvailable in the 040, 050, and .064 pin size. Female connectors are also available in the .080 size. For further information, write for Catalog EC-558. Fluorocarbon Products, Inc., division of United States Gasket Co., Camden 1, N. J.

NEW LITERATURE

Laboratory Furnaces

A data sheet briefly describes various heating, treating, processing, production and laboratory furnaces and two series of forced convection ovens for laboratory and production use. This literature is a guide on the various types of heating equipment available for the modern processes. L & L Manufacturing Co., 202 Sth Street, Upland 43, Delaware Co., Pa.

Resistors and Capacitors

Bulletin 162 describes three assortments of precision resistors and tantalum capacitors. One assortment consists of tantalum wire capacitors in a variety of case sizes, capacitance and voltage values. Another consists of power type, precision resistors and another of metal film precision resistors. Each assortment is offered in a handy 5-drawer. 40-compartment plastic case in values most commonly encountered in modern circuitry. Ohmite Mfg. Co., 3670 Howard St., Skokie, Ill.

Rectifier Catalog

261

262

This 16-page catalog gives rating, electrical characteristics and descriptive data on 405 types of silicon and selenium rectifiers and diodes. Specifications cover more than 140 types of silicon rectifiers (including 63 zener diode types), 47 silicon cartridge rectifiers, and more than 130 selenium rectifier and contact protector types. Write on letterhead for "Short Form Catalog," International Rectifier Corp., Dept. ED, El Segundo, Calif.

Phenolic Products

Booklet CDC-358, S-pages, describes a complete line of phenolic resins, varnishes and molding powders. The catalog includes product features, special properties, and detailed technical data on GE phenolic molding powders, phenolic laminating varnishes and phenolic foundry resins. General Electric Co. Chemical Materials Dept., One Plastics Ave., Pittsfield, Mass.

263

I druded Teflon Tubing

Titled "Extruded TFE Teflon Tubing," is bulletin describes and illustrates the Il line of CDF Teflon Tubing. Comte tables of sizes and tolerances are en. This 4-page, 2-color brochure also esents in tabular form complete lists of ctrical and physical properties of the bing. The test method is indicated for ch property. Continental-Diamond I bre Corp., Newark, Del.

Nicro Volt-Ammeter

itin s.

ripti (e

enium

COVer

tifiers

7 sili

thin

t prod for

itional

undo.

263

cribes

var

cata-

pecial

data

phe-

enolic

Co

astics

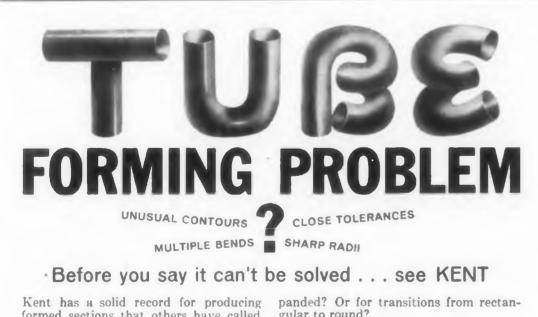
75

Keithley Engineering Notes, Vol. 7 No. 1, 4-pages, features the Model 150 Micro Volt-Ammeter for measuring voltages as low as 0.03 microvolt and currents down to two micromicroamperes. The bulletin gives a detailed description including circuit design considerations, shematic diagram and actual reproductions of stability performance tests. Also included are specifications, prices and ordering information. Copies are available upon request on your company letterhead from Keithley Instruments, Inc., 12415 Euclid Ave., Cleveland 6, Ohio

Production Tools

265

266


This catalog fully describes and illustrates, in 12 pages, a complete line of solenoid-operated impact hammers, punches, stakers and Geneva Action indexing tables. Included is a section on custom engineering automatic production machinery. The tools are used in a multitude of operations including riveting, staking, crimping, swaging, punching and marking. Black and Webster, Inc., 445 Watertown St., Newton 58, Mass.

267

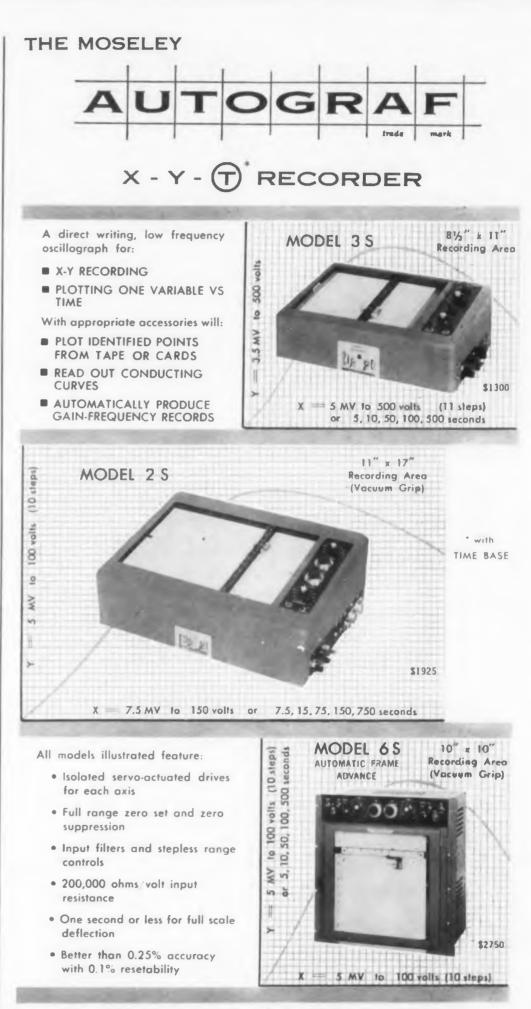
268

Test Instruments

Fully-illustrated Catalog 558 covers such precision laboratory test instruments as Low Frequency "Q Indicators, Comparison Bridges, Incremental Inductance Bridges, Universal Bridges, Null Detector & Vacuum Tube Voltmeters, Harmonic Distortion Meters, Megohmmeters, Decade Inductors, and Decade Capacitors. The Catalog gives complete specifications for each test unit, plus a full description and suggested uses. Freed Transformer Co., Inc., 1727 Weirfield St., Brooklyn 27. N.Y.

formed sections that others have called "impractical" or plain "impossible. Chances are Kent can apply its 40 years of specialized experience in bending and forming tubes to precision standards to solve some knotty problem of your own.

Do you need tube forming with seven or eight different bends in a single tubing length ... in different planes and with sharp radii? Do your assemblies call for tubing to be twisted, offset, tapered, ex-


gular to round?

Kent works with tubing in sizes from .500" x .250" O.D. to 6.660" x 3.410" O.D.—in brass, silver-laminated brass, coin silver, aluminum, copper, stainless steel and magnesium. Kent customers include leaders in military radar, missile guidance, test equipment, and com-mercial tele-communications equipment. Kent facilities are available for experimental and prototype quantities as well as production runs.

> Technical inquiries welcomed. Write for illustrated catalog of representative parts.

F. C. KENT CORPORATION

135 Manchester Place, Dept. E. Newark 4, New Jersey

All prices f.o.b. factory Prices and specifications subject to change without notice

Call our sales representative in your area or write direct for additional information.

F. L. MOSELEY CO. 409 N FAIR OAKS AVE .. PASADENA. CALIFORNIA CIRCLE 270 ON READER-SERVICE CARD

E CTRONIC DESIGN • April 1, 1959

NOW DROP TUBE TEMPERATURES

prolong tube life—increase reliability

atiee FULL-CONTACT TUBE COOLING SHIELDS provide MAXIMUM tube cooling through

- FULL CONTACT with tube
- FULL CONTACT with shield
- FULL CONTACT with chassis

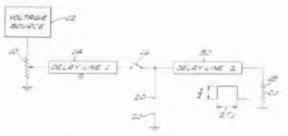
The new **atlee** FULL-CONTACT tube-cooling shield, with exclusive "delta-wave" SZSZZ insert and flat-mounting shield base, provides a spectacular reduction of envelope temperatures even under extreme operating conditions. Tests prove a drop of 130°C below bare-bulb temperatures, and 80°C below levels reached with JAN shields and standard N.E.L. inserts.

Here is a significant advance in the fight against equipment failure even under conservative operating conditions. Further, where tubes must operate close to maximum ratings, it means a real reduction in the inevitable penalty of shorter tube life.

DESIGN FOR RELIABILITY WITH atlee — a complete line of dependable heat-dissipating holders and shields of all types, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

47 PROSPECT STREET • WOBURN, MASS. CIRCLE 271 ON READER-SERVICE CARD Get the complete story

in your free copy of this fact-filled Bulletin!


PATENTS

Pulse Generator

Patent No. 2.863,072. Mathew Arnold Alexander. (Assigned to Telemeter Magnetics Inc.)

By discharging a delay line into a matched line terminated by its characteristic impedance, a truly flat-top pulse is generated.

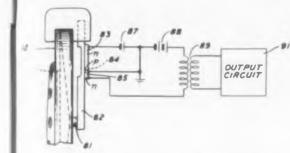
In the schematic shown, the two delay lines may comprise equal sections of a line having twice the desired delay time. Delay line I is charged by voltage source I2 and then microswitch I6 connects this line to delay line 2. An impulse travels back along line I and is reflected back to junctions 20 terminating the pulse. There is no reflected wave along delay line 2 since the line is matched by the load.

Stabilized Signal Translating Circuits

Patent No. 2,866,017. John Paul Jones, Jr (Assigned to Navigation Computer Corp.)

Temperature stabilization in a common emitter circuit. The tap, located experimentally, depends upon the desired stability. In operation, as the temperature increases, a larger fraction of the input signal is diverted to ground to maintain the output current independent of temperature.

Piezoresistive Acoustic Transducer


Patent No. 2,866,014. Fred P. Burns. (Assigned to Bell Telephone Labs. Inc.)

Change of resistance in a semiconductor due to applied stress is used in a microphone to convert acoustical energy linearly to a change in electrical current. For N-type germanium, as an example, resistance increases with compression; P-type germanium shows the opposite effect. Hence, when complementary type

ns. c.) Tre B gy sey

the

s miconductor elements are clamped in somes to opposite sides of the vibratory member, a large change in resistance re-

In a practical application, a transistor and a sthe piezoresistive element and, in addition, produces amplification. As beam 82 bends, the current through the clongated emitter \$3 varies substantially and the change in collector current flowing through the primary of transformer \$5 is coupled to the output circuit.

Transistor Gating Circuit

Jr

uter

101

peri

ired

era

the

l to

lent

rns nc.)

luc-

n a

TEV

ent.

ple,

ion:

osite

NDG

75

Patent No. 2.848,653. Luther W. Hussey. (Assigned to Bell Telephone Laboratories, Inc.

Complementary transistors, used as a switch and as current limiters, improve the characteristics of gas tube circuits

Npn transistor T_1 and pnp transistor T_2 are in series with the power supply applied to gas tube 22. Initially, the transistors are nonconducting and the gas tube is off. A negative pulse to terminal 17 causes transistors F_1 and F_2 to flip with transistor F_1 now conducting. The base of T_1 is now positive and the base of T_2 is negative such that the two transistors carry saturation current and the gas tube fires. To extinguish the gas tubes, a negative pulse applied to lead 18 reestablishes the original condition by shifting transistors T_1 and T_2 to cut off.

A New Addition

The model 1016A is the newest addition to the growing Bryant line of standard magnetic storage drums. Like other Bryant drums, it can be provided with custom designed patterns of storage, and recirculating register tracks.

A full line of Bryant standard or special magnetic read/record heads meets the varying requirements of all computer manufacturers.

The exclusive foolproof Bryant head-setting design means real economy for original set-ups or change-overs.

Every leader in the electronics field has benefited from Bryant's 25 years of experience in ultra-high-speed precision rotating equipment.

Features:

- 10" Diameter by 16" long magnetic surface. (cabinet dimensions 25 x 25 x 35")
- Guaranteed accuracies of drum run out to .00010" or less.
- Integral drive-Bryant precision motors (900 to 3600 RPM).
- Capacity over 1,500,000 bits.
- Up to 350 KC.
- Accommodates up to 20 magnetic read/record heads per inch with standard designs.
- Precision ground high density magnetic oxide coating. (Another Bryant exclusive)
- Super precision ball bearing suspension.
- Vertical mounting for trouble-free operation.

Special Models: If your storage requirements cannot be handled by standard units, why not let Bryant assist you in the design and manufacture of custom-made drums? Available speeds from 60 to 120,000 R. P. M., with storage up to 6,000,000 bits.

BRYANT COMPUTER PRODUCTS DIVISION

P. O. Box 620-M, Springfield, Vermont, U. S. A. DIVISION OF BRYANT CHUCKING GRINDER CO.

CIRCLE 274 ON READER-SERVICE CARD

EL TRONIC DESIGN • April 1, 1959

Low in cost... easiest to program and operate... most in demand

Optimizes electronic component and system design!

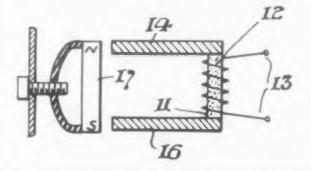
Operating from any convenient wall outlet, the LGP-30 helps you increase your productivity by taking the tedium out of mathematical analyses. It facilitates the optimum design of electronic tubes and circuitry, servo systems, radar and antennae... is an important Research and Development tool in magnetic field applications, microwave and semi-conductor studies.

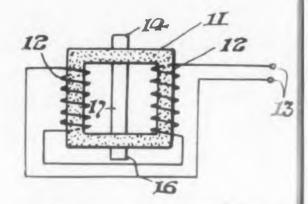
The lowest-priced complete computer your company can buy, the LGP-30 gives you memory (4096 words) and capacity comparable to computers many times its size and cost – yet it is by far the easiest to program in basic machine language. What's more, you operate the LGP-30 yourself. Solutions are printed out in any desired alpha-numeric format – require no deciphering. Auxiliary high-speed input-output equipment is available for system expansion.

No expensive installation or air-conditioning. Sales and service available coast-to-coast. Customer training is free. An extensive library of programs and subroutines is available-as well as membership in an active users organization.

For further information and specifications, write Royal McBee Corporation, Data Processing Division, Port Chester, N. Y. In Canada: The McBee Company, Ltd., 179 Bartley Drive, Toronto 16.

data processing division


PATENTS


Inductive Tuning Device

Patent No. 2,860,313. Dorman D. Israel. (Assigned to Emerson Radio & Phonograph Corp.

Radio frequency coils are tuned by adjusting the reluctance of the cores on which the coils are wound. The variation in inductance may be 50 to 1, which is equivalent to a 7 to 1 change in frequency in the broadcast band. Various mechanical arrangements are suggested to make the tracking linear.

To tune a single coil 12, mounted on core 11, magnetic pole pieces are attached to the core and a bar magnet 17 is rotated in the vicinity of the pole pieces. With the maximum area of the

magnet opposite the ends of the pole pieces, a large magnetomotive force develops, producing a large steady flux through the core and minimum inductance results. Rotation increases the air gap, less flux passes through the core and the inductance increases.

Oscillator-Modulator Circuit

Patent No. 2.866,162. Charles Rosen, Charles J. Weidknecht Assigned to Tele-Dynamics Inc.)

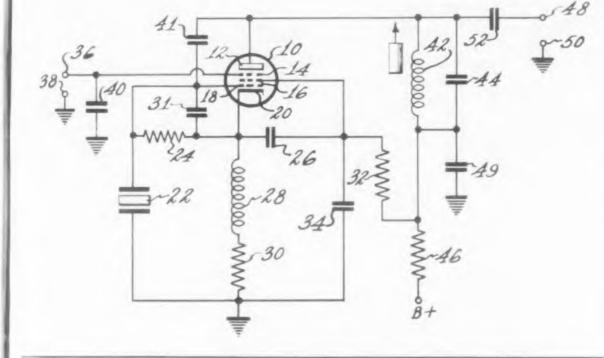
Phase modulation occurs in the inductive plate load of an oscillator-modulator pantode stage when constant-ampli-

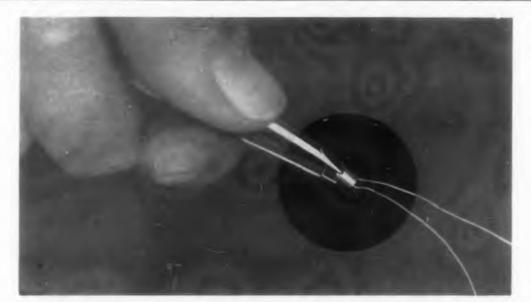
ide crystal-controlled oscillations are ixed with amplitude-modulated osciltions at the same frequency.

Cathode 20, grid 18 and screen 16 are the triode elements producing the conant-amplitude oscillations fixed by cystal 22 and inductance 28. The electon stream to plate 12 is amplitude odulated by the signal applied to high

13

e pole rce dely flux inductthe air


re and


Rosen, ed to

inducodulaampli-

19.9

transconductance suppressor 14. Capacitor 41 couples the constant amplitude signal from grid 18 to plate 12. Since the a-m signal lags the signal on the control grid 18 by substantially 90 deg, and the signal coupled by capacitor 41 leads by about 180 deg, the vector addition of these voltages is a signal phase modulated with the modulating voltage.

NOW - 48-56 Gauge Wire Coils built to YOUR specifications

Whatever your application—from hearing aids to missile systems—Deluxe Coils' new fine wire plant can supply the miniature coils you need . . . built to your specifications for precision and accuracy.

Deluxe Coils' newest facility spans 15,000 sq. ft. It is air and sound conditioned and completely equipped to produce all types of miniature fine wire coils, 40-47 gauge, ultra fine wire coils, 48-56 gauge, and components.

Write for information on Deluxe Coils' fine wire production capabilities—and how they can be put to work for you, right away.

DELUXE COILS, INC. POST OFFICE BOX 318 • WABASH, INDIANA

CIRCLE 277 ON READER-SERVICE CARD

Now in production by Bendix are eight new 15-ampere power transistors capable of switching up to 1000 watts —and you can get immediate delivery on all eight types.

New in design, the transistors have a higher gain and flatter beta curve. The series are categorized in gain and voltage breakdown to provide optimum matching and to eliminate burn-out. Straight pins or flying leads can be supplied on request.

Ask for complete details on this new Bendix transistor series . . . and on the complete Bendix line of power rectifiers and power transistors. Write SUMICONDUCTOR PRODUCTS, BENDIX AVIATION CORPORATION, LONG BRANCH, NEW JERSEY.

Current Gain at	Collector-to-Emitter Voltage Rating*				
10 Adc	30	40	70	80	
20-60	2N1031	2N1031A	2N1031B	2N1031C	
50-100	2N1032	2N1032A	2N1032B	2N1032C	

West Coast Sales: 117 E. Providencia Ave., Burbank, Calif. Midwest Sales: 4104 N. Marlem Ave., Chicago 34, III. New England Sales: 4 Lloyd Rd., Tewksbury, Mass. Export Sales: Bendix International, 205 E. 42nd St., New York 17, N. Y. Canadian Affiliate: Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ont.

LONG BRANCH, N. J.

CIRCLE 278 ON READER-SERVICE CARD

test...test...test...

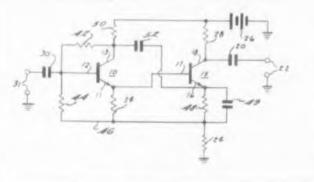
If you feel you *must* make your own pots to get exactly what you need, don't overlook quality control along the way! And this can be a messy business, what with special elaborate techniques to quality-check every production stage! Oh, you'll get involved in maddening bouts with visual comparitors, ratiometers, environmental testing labs — and when you've finished — and made a few hundred revisions — you *might* have the quality you want!

So, before you go fly a kite - consider Ace. We've been all through

this before, and have what is regarded to be the finest quality control system in the industry. It enables us to keep our final costs down by rejecting sub-standards at each stage, without waiting for the final inspection. Although it's more work this way, we can offer a higher degree of resolution and linearity at a lower price. So, for precision-at-price, see your ACErep!

Here's 0.5% linearity in a ¹/2" pot: the Series 500 ACEPOT®. Singleturn, = 55° to 1.25°C range. As with all Ace components, tested in every stage of its manufacture!

Acepot R Acetrim* Aceset® Aceohm® *Reg. Appl. for CIRCLE 279 ON READER-SERVICE CARD


PATENTS

High Input Impedance Transistor Amplifier Circuits

Patent No, 2,858,379. Thomas O. Stanley. (Assigned to RCA)

A transistor amplifier, comprising a common collector stage in cascade with a common emitter stage, exhibits an input impedance of 500,000 ohms. The bias network and collector of the first transistor stage are driven essentially by the input voltage such that loading of the input circuit is reduced.

The bias network of resistors 42 and 44 in series, as well as collector 13, are driven at signal frequency by emitter 15 by the voltage developed across resistor 24. As a result, the currents of collector

13 bias network are both kept small and the input current therefore consists only of the emitter-base current of transistor 10. An additional improvement is obtained by coupling to the output through collector 18.

Note: An identical circuit using a 12A17 tube gives an input impedance of 10 megohms (see *Patent 2.839.618* as *ce*ported in ELECTRONIC DESIGN, Oct. 29, 1958, page 86).

Transistor Bistable Circuit

Patent No. 2,850,646. William Ellis Ingham. (Assigned to Electric and Musical Industries, Ltd.)

Binary counters, comprising a single transistor, are triggered alternately from low conduction to high conduction by negative pulses.

If the transistor is in the low conduction state, the next input pulse through diode 28 drives the base below ground, while the emitter voltage is fixed by capacitor I7; this causes the transistor to

ELECTRONIC DESIGN BINDER

. . KEEPS YOUR BACK COPIES FOR HANDY REFERENCE

These strong, $12\frac{3}{4}$, $12\frac{1}{4} \times 5^{"}$ binders offer an easy means of filing your back copies of *Electronic Design*. Each binder holds 13 normal size issues, and permits substitution of magazines if desired. Cost to *Electronic Design* subscribers is only \$3.25.

TO OBTAIN YOUR BINDER . . . SIMPLY CIRCLE ED NO. 596 (We will bill you later)

If you wish more than one binder, write to "Binders," Hayden Publishing Company, Inc., 830 Third Avenue, New York 22, NY, enclosing check or money order. Binders will be sent to you postpaid. all and ts only insistor is obhrough 12AT7 of 10

of 10 as reoct. 29

is Ing-

fusical

stor to

19 9

luct hard. Capacitor 17 now charges diode 4 becomes conducting. The

26

1: +10K

-12

pulse causes diode 4 to become a high impedance and the transistor ply cuts off. The base returns to cound voltage, its initial state.

Dinde Gate and Sampling Circuit

single Parent No. 2,866,103. John T. Blake, Mustin L. Ely. (Assigned to Bell Teleanne Labs., Inc.

ion by In the logical And device, diodes in scries-shunt configuration control passonducirough durance accelerates the switching acround, by ca-

Initially, the gate is open since battery Sends current through diodes 15 and 12 in series with inductance 16, to set P_1 and P_2 voltages to cut off diodes 11 and 14. However, a positive-going pulse from source 23 cuts off diodes 12 and 15 and the voltage across inductance 16 reverses to quickly bias diodes 11 and 14 to conduction. As long as the control pulses are present, a positive going voltage from generator 17 will pass to load 19 by the path includue: diodes 13 and 17 plus inductance 16. A negative-going voltage will pass through inductance 16 by means of diodes 10 and 14 in series.

Full Measure of Precision...

In addition to their space and weight saving advantages, RVG Precision Potentiometers provide high accuracy characteristics you'd ordinarily expect only in conventional, larger pots. These units meet or exceed all applicable MIL specs, are rugged and resistant to extreme shock and vibration. All can be ganged. Plenty of design potential! For outline of suggested applications, write THE GAMEWELL COMPANY, Newton Upper Falls 64. Massachusetts.

RVG-8T — $\frac{1}{2}^{\circ}$ diam. Trimmer and precision servo types. Rated 2 watts at 85°C derated to 0 watts at 150°C. Resistance ranges from 20 ohms to 50K ohms (100K available). Linearities: standard for trimmer $\pm 3\%$; servo $\pm 1\%$ ($\pm 0.5\%$ or better available when resolution permits). Trimmers stocked in 10 values from 100 ohms to 75K.

RVG-10 — 5_{8}° diam. Threaded bushing standard. Servo mount and ball bearings also available. Max. Res. 30,000 ohms: $\pm 5\%$. Min. Res. 25 ohms: $\pm 5\%$. Linearity (standard) $\pm 0.5\%$.

RVG-14 — $\frac{1}{6}$ " diam. Servo mount with sleeve bearings standard. Ball bearings also available. Max. Res. 50,000 ohms: $\pm 5\%$. Min. Res. 40 ohms: $\pm 5\%$. Linearity (standard) $\pm 0.5\%$, (special) 0.25\%.

PRECISION POTENTIOMETERS

The only VOM with 100,000 OHMS SENSITIVITY

Here's a VOM with so much capability, you'll find yourself using it more than any tester in the lab or shop. The 10 microampere movement handles tests other VOMs can't touch . . . even outdoes a VTVM on some checks. And, because the movement in the 269 is built with springbacked jewels, you don't have to baby it. Through the toughest service, it's always accurate and sensitive. The 269 is handy, too. Being self-powered, there's no plug-in required. You can make tests anywhere. A big, w-i-d-e 7-inch scale makes the 33 ranges easy to read and you select them merely by turning a knob. Your Electronic Parts Distributor will be glad to demonstrate these and other features like the Adjust-A-Vue handle and explain the *self-shielding* of its rugged core-type movement. Call him up about this super-sensitive VOM today.

DC Volts: 1.6, 8, 40, 160, 400, 1600, 4000... 100,000 ohms per volt.

AC Volts: 3, 8, 40, 160, 800 . . . 5000 ohms per volt.

AF Output Voltage: 3, 8, 40, 160 volts. Volume Level in Decibels: -12 to +45.5 DB in 4 ranges.

DC Resistance: 0-2K ohms (18 ohms

Simpson Electric Company

5202 W. Kinzie St., Chicago 44, Illinois Phone: EStebrook 9-1121

In Canada: Bach-Simpson Ltd.

London, Ontario

center); 0-20K ohms (180 ohms center); 0-200K ohms (1800 ohms center); 0-2 megohms (18K ohms center); 0-20 megohms (180K ohms center); 0-200 megohms (1.8 megohms center).

DC Current: 0-16, 0-160 ua; 0-1.6, 0-16, 0-160 ma; 0-1.6, 0-16a.

Model 269 with Leads and S8800 Operator's Manual.....

VOMs and VTVMs

A complete line for every job. Shown here is the world-famous 260.

CIRCLE 282 ON READER-SERVICE CARD

CIRCLE 281 ON READER-SERVICE CARD

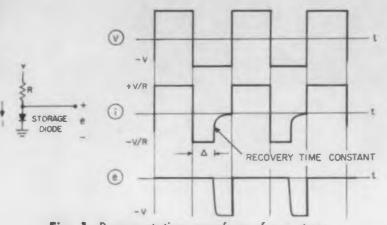


Fig. 1. Representative waveforms for a storage diode.

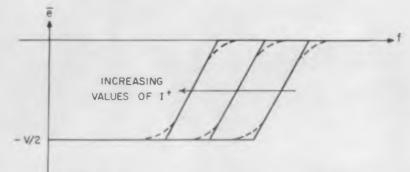
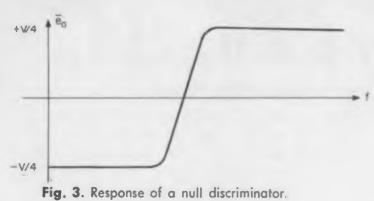



Fig. 2. Average voltage across storage diode as a function of frequency and forward current.

 $+ \frac{1}{\sqrt{2}}$

Fig. 4. Circuit and response of a null discriminator.

IDEAS FOR DESIGN

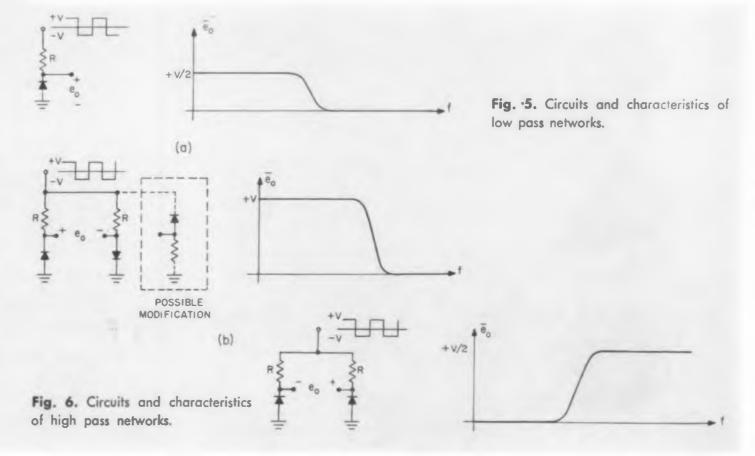
Get \$10.00 plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

Frequency Sensitivity without Reactors

CIRCUITS which are frequency sensitive can be built without reactive elements by employing the phenomenon of minority carrier storage time that exists in semiconductor diodes and transistors. Storage time results from the fact that minority carriers injected during the forward conduction of a diode cannot be dispersed instantaneously when the junction is reverse biased.

If a "storage" diode is subjected to an alternating potential, current flows in the reverse direction until the net charge injected during forward conduction has been removed, at which time the diode assumes an open state. Somewhat idealized sketches of the current and voltage waveforms obtained with such a diode are shown in Fig. 1.

If the recovery time constant is negligible compared to the excitation period, then the storage time, Δ , is given by $\Delta = S I^+$, where I^+ is the magnitude of the forward conduction current, and S is a constant which is a function of diode properties and temperature.


For the circuit of Fig. 1, with fixed values of l_{-} , the average value of output voltage, e, varies with excitation frequency as shown in Fig. 2.

Ideally, the drop-off in average voltage should be a linearly decreasing function of excitation period and consequently an inverse function of frequency. In actual practice however, the curvature indicated by dotted lines is obtained because of device nonlinearities and non-zero recovery time.

This effect can be used in a number of circuit configurations to provide interesting and useful circuit responses. Some of these applications are described in the following paragraphs.

A Null Discriminator

This circuit uses a storage diode such as a 1N91

EL

HOW HIGH RELIABILI

е

ıf

'S

d

n ,f

е

v

f

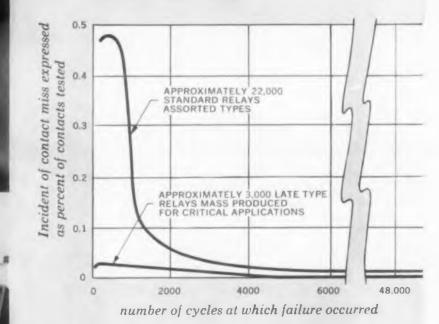
Unique Leach Production Reliability Center offers the ultimate in active component testing

The new \$100,000 Leach Production h liability Center – first in the relay industry – is designed as an integral put of the Leach assembly operation.

Its purpose; testing to customer requirements – up to a checkout of 100% of the total production run of components.

This laboratory checkout system was created to meet the ultimate in critical reliability requirements. Its facilities and equipment are available for testing to exacting customer specifications. Any customer may specify the types of testing and the sequence of testing procedures he requires within the tolennces and limits of the capability of the Leach equipment described and puttured here. **COLD TEST** is conducted in a chamber where temperatures may be specified in a range of -100 °C to +25 °C.

HEAT TEST subjects components to specified temperatures ranging from $\pm 25 \,^\circ\text{C}$ to $\pm 550 \,^\circ\text{C}$ in a heat chamber.


SHOCK TEST in each of three mutually perpendicular planes is available up to 150 G's - with concurrent electrical testing.

LEAK DETECTION TEST subjects components to minute inspection of hermetic sealing with a mass spectrometer type leak detector.

VIBRATION TEST checks units from 5 cps to 3,500 cps up to 50 G's. This test normally is performed with direction of vibration applied through each of three mutually perpendicular axes. ELECTRICAL TESTS fall into many categories. These are typical: measuring coil resistance, testing pickup and dropout current, checking dielectric characteristics, and testing millivolt drop across contacts.

RELIABILITY TEST

ACCELERATION TEST places components in a centrifuge for acceleration testing to 500 G's. While undergoing this test, units may be subjected to electrical testing

as well.

W ite today for Information and design and construction details or Leach Balanced-

- A mature Relays. Ask for
- R *ability* Brochure.

SP15 AVALON BOULEVARD, LOS ANGELES 3

DISTRICT OFFICES AND FIELD REPRESENTATIVES IN PRINCIPAL CITIES OF U. S. AND CANADA • EXPORT: LEACH CORPORATION, INTERNATIONAL DIVISION CIRCLE 283 ON READER-SERVICE CARD

Double triode, low hur gain tube.

Supplies available from :

International Electronics Corporation 81 Spring Street, N.Y.12, New York, U.S.A. Worth 6-0790.

In the U.S.A.

U.S.A.

In Canada

Miniature triode pentode as audio amplifier itput tube. Two n ultralinear push

EL84 6805

Miniature 12 watt high slope pentode. medium power high fidelity tube particularly suitable for compact Highly sensitive 25 watt pentode. Two tubes in ultralinear push-pull pro-viding up to 34 watts output, particularly suited can supply up to atts of stereo power stereo circuits, 17 watts per cha

EZ81 6CA4 GZ34 SAR4 Miniature full cathode type r Bantal full wave cathe le high voltage good regular up to 150m oltage

Mullard

ELECTRONIC TUBES used throughout the world

npact integrated

EL34 6CA7

"Mullard" is the Trade Mark of Mullard Ltd., and is registered In most of the principal countries of the world.

MULLARD OVERSEAS LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, ENGLAND CIRCLE 284 ON READER-SERVICE CARD

IDEAS FOR DESIGN

and a high frequency diode such as a 1N100 (or having break frequencies much greater than the in the desired operating range) to produce a c output voltage which varies with frequency as shown in Fig. S.

This characteristic is produced by the circuit of Fig. 4a by taking the difference of the two bridge arm outputs shown in Fig. 4b.

A limiter must precede the circuit to prevent breakpoint frequency shift. This is, of course, also necessary for a conventional discriminator, though for a different reason.

A Low Pass Network

As in the previous case, this network normally requires limiters. Two configurations have been developed, one a series circuit similar to Fig. 1 and the other a bridge. The circuits, together with their characteristics are shown in Figs. 5a and 5b. It is evident that the sensitivity of the latter circuit is twice that of the former, and that it can be modified as shown in dotted lines to give an identical response.

A High Pass Network

rc)

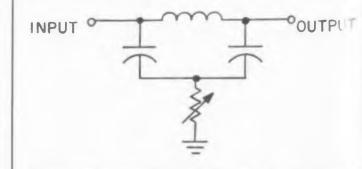
0.5

mi

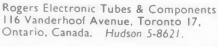
N.

Fig

EU


A simple modification of the network in Fig. 4b results in the circuit of Fig. 6 having the high pass characteristic shown. This circuit can also modified for greater sensitivity.

Donald W. Boensel, Electronic Research Engli neer, La Crescenta, Calif.


Network to Pass 30, Stop 60 Cps

Quite often a designer encounters a problem with a low frequency amplifier when he needs flat response to say 30 cps but must attenuate 60 cps because of hum pickup. The big problem is to design a circuit which will attenuate 60 cps but pass 30 cps without attenuation. It can't be done using conventional components because of the low Q of most components at that frequency,

The circuit shown really works. When R is all justed for minimum output at 60 cps, it is different cult to measure the amount of 60 cycle voltage 100

Resistor in center leg of T network allows relative flat low frequency response, yet attenuates 60 cr

) (01 tho e a d ICV .

circut e two

revent e, also hone

mally been ig. 1

r with id 5h er cirit can ve an

ig. 4h high

Iso be

C

oblem

needs

Engi Number 7 is placed just slightly to the right of midway between 6 and 8, as shown in Fig. 2.

> This method may appear crude, but reference to a log table shows that the method is correct to better than one per cent. It is also easy to memorize.

scope. Voltage at 58 cycles is, however, up to

Here is how it works. When changing a *pi* to a

network the center leg of the T network comes

at with a capacitor, an inductor and a negative

sistor whose resistance is a function of the dc

sistance of the choke. By placing a positive sistance in series with the center leg it becomes

series resonant circuit with an almost infinite Q.

he product of L and C should be 24 for 60 cps

John Massey, Reliability Eng., Barber-Colman

Making a Log Scale **On Linear Paper**

Without a slide rule, one can easily construct

The whole trick rests in the fact that the

logarithm of 2 is pretty close to 0.3. If 10 equal

spaces represent a factor of 10, then 3 spaces

represent a factor of 2. This permits dividing the scale for points 1, 2, 4, 5, 8, and 10 as in Fig. 1.

It remains to place 3, 6, 7, and 9 on the scale.

Since $3 \ge 3 = 9$, 3 should occur midway be-

tween I and 9 on the scale, or at 4.75 spaces from

9 can be placed midway between 8 and 10, or at

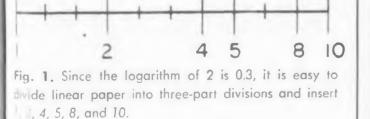
logarithmic scale from uniform squared graph

and is inversely proportional to frequency.

5 per cent of level at 30 cps.

(). Rockford Ill.

95 spaces from 1.


uper.

Elliott Barr, Taylor Instrument Co., Rochester, N.Y.

nuate oblem i0 cps i't be ise of enu is a di ge 1 PUT

itive

) (

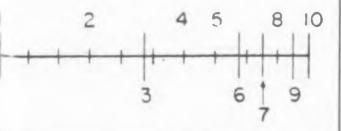


Fig 2. Remaining numbers 3, 6, 7, and 9 are easily nscreed.

Solving switch problems fast...

your job...and Centralab's

Rating: 0.5 amp. at 6 VDC, 100 ma at 110 VAC Breakdown: 750 V. R.M.S. Up to 12 positions/section

Series 100: 1% diameter

Series 20: 15/16" diameter Rating: 2 amp. at 15 VDC, 150 ma at 110 VAC Breakdown: 1500 V, R.M.S. Up to 12 positions/section

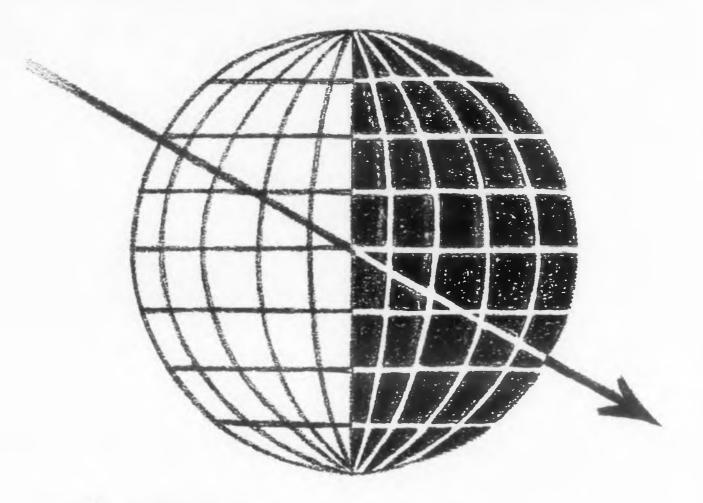
Series 275: 1%" diameter Rating: 2 amp. at 15 VDC, 150 ma at 110 VAC Breakdown: 1500 V. R.M.S. Up to 23 positions/section

Series 230: 3¹/₄" diameter Rating: 25 amp. at 6 VDC, 7¹/₂ amp. at 110 VAC Breakdown: 3000 V. R.M.S. Up to 24 positions/section

Your switch problems can be solved quickly and efficiently at CENTRALAB. No matter how unusual or difficult the switch, you can get samples fast, quotations fast, and production fast! This is a result of years of specialized experience and superior facilities for designing and manufacturing a wide variety of switch types.

Typical of the extensive range of units available to you are the four CENTRALAB ceramic section switches shown here. These switches, and many others, are also available with phenolic sections, for economy applications, or where a larger number of positions is required.

DESIGN AIDS FOR ENGINEERS


CENTRALAB'S unique Switch Visualizer, which simulates actual switch operation, will help you simplify and speed up switch design. Used in conjunction with our detailed layout sheets (available for all CENTRALAB switch types), they greatly facilitate your job in switch design (and ours, too). Write for them today-along with a copy of **CENTRALAB** Switch Catalog 42-405.

A Division of Globe-Union Inc. 960D E. KEEFE AVE. . MILWAUKEE 1, WIS. In Canada: 669 Bayview Ave., Toronto 17, Ont

VARIABLE RESISTORS . ELECTRONIC SWITCHES . PACKAGED ELECTRONIC CIRCUITS . CERAMIC CAPACITORS . ENGINEERED CERAMICS CIRCLE 285 ON READER-SERVICE CARD

ELI CTRONIC DESIGN • April 1, 1959 195

IT'S ALWAYS "WINTER" SOMEWHERE

Heating Blankets and other Woven Heating Elements by SAFEWAY can make your COLD problems OLD problems!

To keep sensitive equipment, fuels, propellants and lubricants at correct operational temperatures in any cold environment, controlled heat must be delivered with utmost dependability. SAFEWAY delivers it — *everywhere*.

Among the wide variety of heating blankets and woven-wire heating elements successfully engineered by SAFEWAY to meet tailor-made specifications are:

heating blankets for honeycomb and metal-to-metal bonding

de-icing units for airfoil surfaces

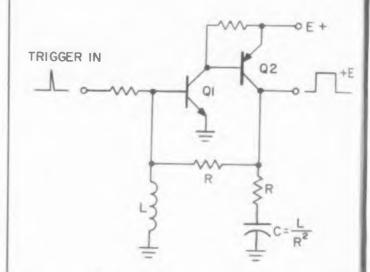
heating elements for launching equipment and for airborne gyros, cameras, computers, servos and batteries – for missiles or aircraft

radiant heating panels for industry

defrosting units for industrial and commercial refrigeration

FOR YOUR COPY OF A FACT-FILLED FOLDER, PLEASE WRITE:

If it has to be heated (and the "it" can be just about anything), you can rely on SAFEWAY engineers to study your problems and — without any obligation — submit an appropriate recommendation.


680 Newfield Street • Middletown, Connecticut CIRCLE 286 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Near-Perfect Output From Fast, One-Shot Multi

RC timing is far more popular than RL timing. Yet, it's possible to get faster rise times if inductors are used instead of capacitors. In the circuit shown, the capacitor can be used to compensate for the load, and make the load look like an almost pure resistance.

McKenny W. Egerton, Jr., Hoover Electronics Timonium, Md.

Using RL timing instead of RC allows the capacitor to be used to compensate for the load at the collector of Q2.

3-In-1 Meter. The French firm Le Boeuf hit upon a good idea when it decided to produce this triple that meter.

It is more economical and a good deal less angainly than three separate meters. Moreover, the close grouping of the dials gives, at a glance, a complete indication of the operation of an entire stage.

Of course, all combinations of units and ranges available, a number having been standardized.

Dr. A. V. J. Martin, Carnegie Institute of Technole W. Pittsburgh 13, Pa.

Wet Felt Sinks Heat

Everybody knows that when components are Idered into a circuit, heat is conducted along e soldered joint to the component. Heat-sensiwe components, like transistors and diodes, can ruined if precautions are not taken.

imin

indus

circult

ensa e

ke an

ronicy.

L+E

pacitor

ollector

)le dai

imp te

nole y,

19.9

n ess

+

The latest suggestion for preventing such image comes from a manufacturing research gineer at the Boeing Airplane Co. in Seattle, ash. He uses a standard metal clamp (alligator p) lined with felt (Fig. 1). He saturates it with ater and attaches the clamp to the lead wire b tween the soldered joint and the component Fig. 2).

Heat traveling along the lead wire is dissipated by evaporation of water from the felt, thus prote ting the component.

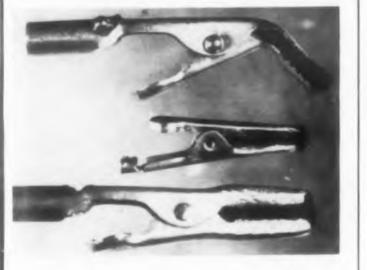


Fig. 1. Simple, effective, wet-felt heat sink.

Fig 2. The wet-felt heat sinks, to the right of the sole ring iron, protect the diode from thermal damage dur g soldering.

TIME DELAY TOLERANCES AS TIGHT AS 1/10th OF 1% th DELAY LINES BY PCA

Time Delay: $40 \pm .04$ microseconds (4 25 C. Temperature coefficient of delay: < 20 P.P.M. C. Attenuation: 4 db. Rise time: 0.4 microseconds (10% to 90%). Size: 50 cubic inches.

design engineers are specialists in the research and development of delay lines custom built to meet the most exacting military specifications. The above example is only one of hundreds of difficult delay line problems cracked by PCA engineers. When stability low attenuation, minimum size, and high ratio of delay to rise time are critical requirements tor vour delay line - let PCA engineers give you technical data and specifications.

	A Marine A
	To: PCA ELECTRONICS, INC. Dept. ED-49 16799 Schoenborn Street Sepulveda California, U.S.A
	Please send data on Delay Lines: Complete Catalogue Specification sheet on which we will indicate our special requirements
CAELECTRONICS,INC.	Name
16799 Schoenborn Street Sepulveda, California, U.S.A.	Company
CA Electronics, Inc. is also a leading manufacturer of pulse transformers	Street
	City State
CIRCLE 287 ON READER-SERVICE O	ARD

Two of the four Sel-Rex Jet Platers —complete electroplating facilities in 34 x 28" x 33 cabinets. This equipment is used as a step in the process of producing some of the printed wiring boards for the SAGE computer, and for experimental equipment currently under development.

IBM Plating operator removes printed wiring board from Sel-Rex Jet Plater where it has been plated with Sel-Rex Bright Gold. The Jet Platers assure optimum conditions for the electrodeposition of Sel-Rex Bright Gold for this exacting application.

Heart of the SAGE System is the 275 ton IBM computer, one of the world's largest and most reliable. Shown here are some of the computer frames containing pluggable electronic units that perform the data processing involved in solving air defense problems.

SEL-REX BRIGHT GOLD AND 4 JET PLATERS HELP PROVIDE "BUILT-IN" RELIABILITY TO **IBM** SAGE COMPUTER

When it comes to protecting our country from possible surprise air-attack, only the best, most reliable instruments and equipment will do. Understandably, IBM was chosen to build the 275 ton computer pictured in part at the lower left, which is the heart of our SAGE System. The SAGE computer performs millions of computations at lightning speed, and continuously checks them—automatically.

Approximately 7,300 pluggable units containing printed card assemblies are used in this computer. Needless to state, the proper functioning of these units is essential. Sel-Rex Bright Gold, in four Jet Platers, is used in the manufacture of the IBM SAGE computer, and other military equipment under development. Built-in reliability—for which IBM equipment is famous the world over assures us all of constant electronic watchfulness 24 hours a day.

Sel-Rex can offer built-in reliability to your product through the unique metallurgical properties of a precious metal—or by designing plating or metal finishing equipment to your specific requirements...from a single piece of equipment to a complete facility. Our latest catalog—#CHP—gives details.

Manufacturers of Exclusive Precious Metals Processes, Metallic Power Rectifiers, Airborne Power Equipment, Liquid Clarification Filters, Metal Finishing Equipment and Supplies.

CIRCLE 288 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Sensitive, Stable Bridge with Reversible Polarity and Low Output Impedance

In regulating and servo systems it is necessary to have an error detector to compare the measured or detected signal with a reference source and provide an error signal proportional to the difference.

The internal resistance of the detector determines the power that will be available at the output terminals without distortion introducing nonlinearity in the output.

By inserting double-ended silicon voltage regulating diodes d in two legs of the bridge, two objectives are attained.

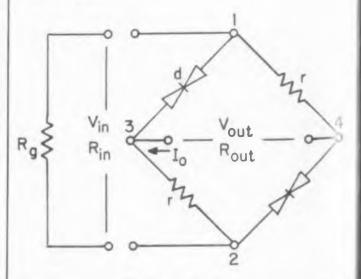
1. The diodes feature a low dynamic impedance (approximately two ohms), and provide the voltage reference.

2. By proper choice of **diodes**, the temperature drift of the bridge can be minimized.

Efficiency, economics, power availability and specific system dynamics will determine the input impedance to the bridge R_{im} .

If the diodes d are operated at approximately 10 per cent of their rating, their self-heating will be low and so will the initial drift of the bridge output. The diodes, though, should be operated above their *V*-*I* knee. The bridge resistors *r* should be selected to limit diode current. As an example, a bridge for a 28 v dc line is computed here.

The source impedance R_g is small compared with r. The equivalent Theorem resistance of the bridge R_{gs} with R_{in} about 56 ohm is


$$R_a = 2 R_d = 4$$

Fer

Train

ELE

For ± 0.05 per cent regulation of the 28 v dc line, the error voltage available will be ± 0.007 v dc = V_{cut} .

Double-ended diodes in the legs of a bridge provide voltage regulation and low output impedance.

essar measource o the

ucing regu-, two npedovide

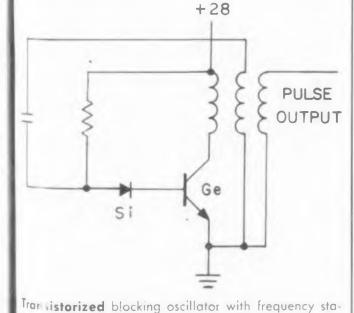
leter-

t the

· and ie in-

nately g will oridge rated hould examhere, pared

here, pared a single power supply is used. The negative swing of the base varies with B plus changes. The silicon diode raises the back resistance of the base junction. Since the period of oscillation is a function of the RC time constant, it is not affected by B plus. David H. Bryan, Project Engineer, Fenske,


tuations.

v dc 0.007

e pr -

1959

ce.

Fudrick and Miller, Inc., Los Angeles, Calif.

It can easily be seen from the figure that the plarity of V_{out} will depend on whether the input

above or below rated input. With the line be-

To prevent loading of the bridge circuit the

e or current I_{o} , required to swing the load from

m nimum to maximum, should be made low. The

W. ALK.

Baruch Berman, Group Engineer, Acion, Die

Stable Pulse Generators

It's easy to build a pulse generator whose out-

put frequency is constant within one per cent

with power supply variations of 50 per cent and

Any transistorized relaxation oscillator, block-

ing oscillator or multivibrator is good for a fre-

quency stability of two to three per cent, but if

special care is taken, one per cent is a practical

limit-even with 50 per cent power supply fluc-

In the blocking oscillator shown in the figure.

with operation at temperatures up to 70 C.

Toput impedance to the load should be high.

 $\frac{dV_{\theta}}{dV} \gg R_{0}^{2}$

di

ACF, Paramus, N.J.

 1 ± 28 v + 0.014 v, the voltage V_{out} is positive point 3 and negative at 4; with 28v - 0.014 v,

is positive at terminal 4.

bility to one per cent.

NEGLIGIBLE CROSS COUPLING

A-C VARIABLE RELUCTANCE PICK-OFF

> MAGNETIC DAMPING

OPERATING TEMPERATURE-65 F to+250°F

NO WARM-UP

HERMETICALLY

A C Linear Accelerometer, Type LA-600, for aircraft and missiles. Shown actual size.

NEW LINEAR ACCELEROMETER FEATURES FRICTIONLESS OPERATION for greater accuracy, ruggedness and reliability

In the Honeywell A-C Linear Accelerometer, Type LA-600, friction introduced through bearings and potentiometer slide wires is eliminated. This unit consists of a non-pendulous seismic mass supported on a frictionless spring suspension and incorporates an a-c variable reluctance type pick-off.

Inherently insensitive to cross-coupling accelerations both when at null and when at an acceleration along its sensitive axis, the Type LA-600 also features magnetic damping for near-constant damping ratio throughout its wide range of operating temperatures. Mechanical stops prevent damage from input accelerations beyond the specified full scale range. Write for Bulletin LA-600, Minneapolis-Honeywell, Boston Division, Dept. 10, 40 Life Street, Boston 35, Mass.

DESCRIPTIVE DATA FULL SCALE RANGE: ± 0.5 to ± 40 G FULL SCALE OUTPUT: Up to 10v, 400 cps into 100 K load; Up to 8v, 400 cps into 10 K load THRESHOLD-RESOLUTION: .0001G CROSS-AXIS SENSITIVITY: .005G maximum VIBRATION: 10G, 0-2000 cps SHOCK: Up to 60 G WEIGHT: 1.2 pounds maximum

CIRCLE 289 ON READER-SERVICE CARD

U.S. Army Signal Laboratory designs computer to measure wind effects on missile launchings... Near-surface winds at a launching can easily force a missile off course, with the result that the missile lands outside the target area. To counter the effect of such surface winds, the missile launcher is tilted to a corrective angle. Calculating the wind effect and the proper angle of tilt of the launcher, however, can be mathematically quite complex and a time-consuming operation. The United States Army Signal Research and Development Laboratory at Ft. Monmouth, New Jersey has developed a compact computer for this job. Quickly and accurately, from pilot halloon data, the computer calculates both wind displacement on the missile and the proper tilt of the launching stand.

... and Vernistat* is there!

Since different types of pilot balloons have different rates of rise, and wind effects vary with each type of missile, signal inputs to the computer must be easily and quickly adjusted. That's one reason why USASRDL engineers chose two Vernistat Adjustable Function Generators. Only seconds are required to change from one function to another.

Doesn't Vernistat thinking belong in your system design too?

Nonlinear servo system and computer inputs are easily adjusted with the Vernistat Adjustable Function Generator. In addition, the Function Generator enables nonlinear system characteristics to be corrected with a minimum of time and effort. The Function Generator, a variation of the unique Vernistat a. c. potentiometer. can generate mathematical or empirical functions, even those with multiple slope reversals. The function is displayed graphically on a 6 x 8 inch panel which allows for instant visualization and adjustment.

Connected to a 34-pole printed circuit switch are 101 voltage levels. Any of the 34 poles can be connected to any desired voltage level to within 0.5%. The Generator's X-axis represents shaft position of an interpolating Vernistat potentiometer, and the Y-axis represents percentage of input voltage.

Linear interpolation between each adjacent pair of the 34 selected volt-

age levels is provided by a Vernistat interpolating potentiometer. Minimum slope of voltage output curve is zero, with a 20-volt maximum between adjacent poles. Maximum output impedance is 130 or 470 ohms. Units are designed for operation over a wide range of frequencies.

Write now for full details on Vernistat Adjustable Function Generators, a. c. potentiometers, and variable ratio transformers.

*** vernistat** – a new design concept that unites in one compact device the best features of both the precision autotransformer and the multiturn potentiometer.

CIRCLE 290 ON READER-SERVICE CARD

765 Main Avenue, Norwalk, Conn.

REPORT BRIEFS

Solid Electrolyte Battery Systems

This report describes the work leading to the development of the Ag AgCl KICI, cell system and the cup-shaped cell configuration. This combination results in a cell of outstanding properties which appears to be capable of meeting the original goals of the contract. The various cell systems studied and the important features of each of these reported in detail in the main text. Supplementary material is discussed in the various Appendices: (a) Detailed discussion of currentvoltage relations in mixed conductors. (b) Discussion of the silver-iodine tarnishing experiments. (c) Reaction with iodine and chlorine of silver containing cadmium. (d) Effect of ultraviolet radiation on the tarnishing reaction. (e) Effect of small additions of cadmium chloride on the protective action of silver chloride. (f) Anodized films of silver chloride as the solid electrolyte. (g) Electrical contacts at the silver-silver chloride interface. (h) Test results of Ag/AgCl/Agl/lg batteries. (i) Shorting of solid electrolyte batteries by a common electrolyte. (j) Modification in cup-shaped cell assembly. (k) Fluoride cell systems. Solid Electrolyte Battery Systems, Donald Smyth, Sprague Electric Co., North Adams, Mass. Final report. June 1, 1954-Nov. 30, 1956. December 26, 282 pp. \$4.00. Order PB 131796 from OTS, U. S. Department of Commerce, Washington 25, D. C.

Ant

Ana

Germanium-Silicon Alloys

An isothermal solidification technique was developed for preparing homogeneous germaniumsilicon alloys in polycrystalline form for all the compositions and in single crystal form for the low silicon allovs. Theoretical studies were made on the rate of solidification and furnace conditions necessary to make homogeneous alloys. The energy gaps of the alloys were calculated from data on the temperature dependence of resistivity and intra-red absorption measurements. Calculations showed the energy gap to increase rapidly with the addition of silicon and approach the value lor pure silicon at about 50 atomic per cent silicon. The mobilities of the low silicon alloys were found comparable to germanium, while those of pulycrystalline, high silicon alloys were low. Alloy life times were low as compared with germanium. Semiconductor devices made of germanium-sil on allovs were shown to operate at temperatiles. higher than those of germanium. Investigation of Germanium-Silicon Alloys: Final Report. C. C. Wang, Sylvania Electric Products, Inc. for Bur m of Ships, U. S. Navy, Feb. 1955, 48 pp, \$1 5. Order PB 131422 from OTS, U. S. Department of Commerce, Washington 25, D. C.

106

Simiconductors Devices Research Program

silicon power transistors can be fabricated by d using impurities in from the surface to form

o the ystem COL oerti s On · stems ch III upplearious rrent-)iscusnents. silver let raect of e pro-I films Elecintertteries, t comhaped I Elecmagne report. 'S2 pp

as de-

anium-

all the

he low

ide on

energy

lata on

tv and

f pos

rat C

tion 0

1959

base and emitter regions. Of the number of in purities which can be used to form transistor st icture, galium and phosphorus were most theroughly studied. The simultaneous diffusion pr cess was used for transistor fabrication in pilot periments, and the effects of external variables in on this process were determined. Emitter, base, and collector contacts were made using titanium or tungsten support plates. The transistors were mounted in a hermetically sealed, welded package of low thermal resistance. The fabrication proc consisting of diffusion, lead attachment, etching, and packaging, is described. The character istes of preliminary laboratory units and of twenty production prototype units made by the process are given, and the performance of the units in typical circuits is shown. The transistors are said to be capable of dissipating over 25 w at a mount be base temperature of 85 C and delivering large over at relatively high temperatures. Semicon-Inctors Devices Research Program, J. E. Keister, General Electric Co. for Wright Air Development Center, U. S. Air Force, July 1958, 151 pp, \$3.00. Order PB 151201 from OTS, U.S. Department of mmerce, Washington 25, D. C.

Antennas and Radomes)cpart-

Seven topics in applied electromagnetic theory thre investigated: (1) Surface waves and anisopic propagation, (2) Techniques for measuring o field data at close distances, (3) Mutual coupling of slots in waveguide, (4) Radome survey. 5) Microwave filters, (6) Electromagnetic field half space, and (7) A new type of lens. Topics Antennas and Radomes, Alan F. Kay, Technical Mearch Group, New York. Final report Jan. 1958. ditions pp, microfilm \$2.70, photocopy \$4.80. Order 18 134992 from the Library of Congress, Wash ugton 25, D.C.

ilations Analysis of Junction-Diode Capacitance y with

This paper is the result of an attempt to exhie or ore the possible uses for the capacitance found silic n. pen junctions, and to analyze the various pafornd ters which might be controllable in the design and manufacture of these junctions. The circuits V IV in obtaining data are but one of many postaniun. arrangements for which the capacitance of -sil m unction can be used. Analysis and Applicaon of a Variable Capacitance Junction Diode, an ence Roesler, Air Force Institute of Technol-C. C. 💵 Dayton, Ohio. Thesis, Mar. 1958, 36 pp. Burn merofilm \$3.90, photocopy \$10.80. Order PB \$1 3. 13435 from Library of Congress, Photoduplica nent of m service, Publications Board Project, Washing 1 _ 5, D.C.

We promise you will receive a reply within one week!

NEW OPENINGS AT HUGHES RESEARCH & DEVELOPMENT LABORATORIES

Mr. Robert A. Martin, Supervisor, Scientific Employment

Hughes Research and Development Laboratories

Please airmail to:

Culver City, California

Hughes has several hundred openings for engineeers and physicists whose training and experience are applicable to the research, development, design and testing of airborne electronic equipment for use in supersonic military aircraft; in solid state physics, nuclear electronics, industrial dynamics, and related areas.

Use of the following form will, we hope, reduce to a minimum the inconvenience of submitting an employment inquiry, yet will still permit us to give you a reasonably definitive reply.

HUGHES

Name					
Address					
City		Zone	State		
College		Degree	Year		
am interested in one o	f the following types of assig	gnment:			
RESEARCH	PRODUCT ENGINEERING	SYSTEMS	OTHER:		
DEVELOPMENT	TECH. ADMIN.	FIELD TEST			
have had professional	experience in the following	specific areas:			
CIRCUIT ANALYSIS AND DESIGN	STRESS ANALYSIS	R-F CIRCUITS	ELECTRO-MECHANICAL DESIGN		
DIGITAL COMPUTERS	INDUSTRIAL DYNAMICS	RELIABILITY	OTHER:		
GUIDANCE DEVICES	MATERIALS	ATOMIC AND/OR SOLID STATE PHYSICS			
MICROWAVES	SYSTEMS ANALYSIS	INSTRUMENTATION			

PUTTING MAGNETICS TO WORK

How to keep your cut-off sharp! Audio filter designers use molybdenum permalloy powder cores

when they want razor sharp attenuation that will hold

Audio filter designers, faced with a crowded frequency spectrum, specify molybdenum permalloy powder cores to rigidly define channel cut-offs . . . with sharp, permanent attenuation at channel cross-overs.

Moly-permalloy, with virtually no resistive component, makes a core with almost no core loss. The resultant high Q means sharp attenuation of blocked frequencies in both the high and low band pass ranges. This is permanent-moly-permalloy cores were developed specifically to provide a very long term inductance stability.

Compare molybdenum permalloy to powdered iron. See the smaller size and the superior stability despite unusual fluctuations in current or temperature. Even unstabilized permalloy powder cores are more stable with temperature swings than cores made of any other material. And . . . stabilized cores are at least four times more inductance-stable than unstabilized cores.

What's more, there's no longer any guesswork! We have published limits within which the designer can depend on core performance. These limits—and full information on our Performance-Guaranteed permalloy powder cores—await your inquiry. Magnetics, Inc., Dept. ED 61, Butler, Pa.

CIRCLE 292 ON READER-SERVICE CARD

REPORT BRIEFS

Directional Glide Path

"Encouraging results" are reported from tests of a directional glide path which provides pilots with vertical guidance during an approach over rough terrain under the Instrument Landing System. In operation, the glide path utilizes a transmitter which energizes an antenna system from which a carrier and sidebands of 90 cps and 150 cps are radiated. Airborne equipment presents an indication for on-path, above-path, or below-path which is a function of difference in depth of modulation. The system was developed specifically to produce a straight path where rough terrain prevented effective use of either the equisignal or the null-reference glide paths. The system performed satisfactorily in tests over rough terrain, providing a path which terminates essentially when the aircraft reaches an altitude of about 30 feet above the runway. Long-term stability of path position was found acceptable. A Directional Glide Path. (CAA l'echnical Development Report No. 336.) T. H Bottoms, H. C. Hurley, L. N. Spinner, and J. W. Watt, Technical Development Center, Civil Aeronautics Administration, Feb. 1958, 23 pp, \$0.75. Order PB 131742 from OTS, U.S. Department of Commerce, Washington 25, D. C.

Study of Universal Function Generator

Design and development of universal function generators for use in analog computing circuits are discussed. In order to simulate operational characteristics of a weapon on an analog computer, several types of function generators are necessary. Circuitry for the elliptical function generator and the ring spring generator is presented. Feasibility and Evaluation Study of A Universal Function Generator, E. H. Jakubowski, Springfield Armory. Mass. Oct., 1957, 12 pp, microfilm \$2.40, photocopy \$3.30. Order PB 134279 from Library of Congress, Washington 25, D.C.

Transistor Admittance Measurements

This report covers the modifications of the Wayne-Kerr R. F. Admittance Bridge Type B-601, the test used, and precautions found necessary to measure transistor short-circuit admittance pareters. Measurements were made of several to the sistor types for their complex admittance pareters over the frequency range of 100 ke/s to 5 Me/s. Transistor Admittance Measurements in 0.1 to 5 MC Range Using the Type B-601 Way Kerr R. F. Bridge, G. N. Kambouris, Diamo Ordnance Fuze Labs., Washington, D. C., My 1958, 23 pp, microfilm \$2.70, photocopy \$40. Order PB 134634 from Library of Congr Photoduplication Service, Publications Bed Project, Washington 25, D. C.

VHI

Defocus Characteristics of Microwave R flectors and Lenses

The initial purpose of this contract was to inw tigate the on-axis and off-axis defocus charactests te istics of microwave reflectors with apertures of pilots b h the circular and the rectangular types. The 1 OVer mestigation developed into three major tasks, g Sysn nely: (1) Simulation of Fraunhofer radiation, transpatterns in the Fresnel region by a defocusing from te hnique; (2) Determination of phase errors in nd 150 an aperture plane of any given reflector with an nts im ar itrarily located primary source; (3) Determinav-path tion of aperture-field distributions for defocused moduilly to microwave lenses which included metal-plate lenses, homogeneous dielectric lenses, and the n preor the Luneberg lens. Defocus Characteristics of Microormed wave Reflectors and Lenses, David K. Cheng, viding Syracuse University Research Institute, N.Y., Final Report. July 1, 1954-Sept. 30, 1956, Nov. 1956, he air-62 pp, microfilm \$3.90, photocopy \$10.80. Order we the PB 135189 from the Library of Congress, Washon was (C.A.A meton 25, N.Y.

Field Emission Cathode Ray Acro- Tube Development

T. *H*

J. W.

\$0.75

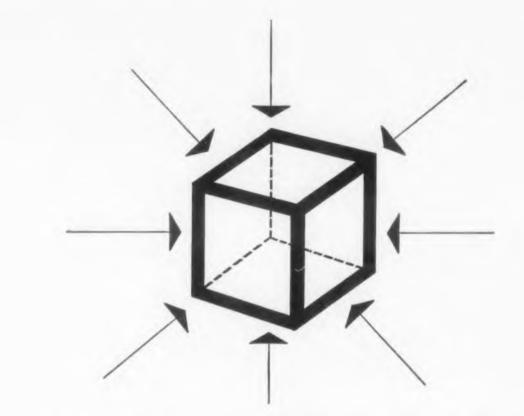
rmorij.

photo-

ary of

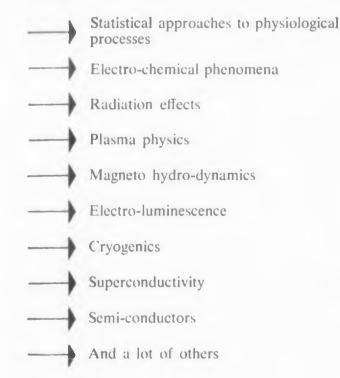
Way -

19 9


18

÷

The design, construction and preliminary testing nent of a cathode ray tube utilizing a field emission authode constitute the subject matter of this report. Magnetic focusing of the field emission beam as investigated and experimentally demonstrated, inction but the chief emphasis of the work was placed nits are upon electrostatic focusing. A detailed analysis of l char- the corresponding electron optical problem was nputer. made. Based upon this analysis, a tube was deessary, ligned, built, tested and demonstrated. Its peror and lonnance indicates favorable possibilities for sibility hurther development of such tubes, taking advaninction the attractive features of the field emission source. Field Emission Cathode Ray Tube Detdopment, Joseph W. Griffith, Winthrop W. Dolan, Linfield Research Institute, McMinnville, In July 1958, 37 pp, \$1.00. Order PB 151246 from OTS, U. S. Department of Commerce, Washington 25, D.C.


of the VHF and UHF Balum Transformer B-601,

sary to A transformer is described which may be used parative phase inverter, differential transformer, or as il tron- balum transformer. Practical models have been parate built which operate nearly three decades of freste 5 mency with bandwidths approaching one kilos in the cycle. Very Wide Band Balum Transformer Way - In 'IIF and UHF T B O'Meara B L Sudnor In 'IIF and UHF, T. R. O'Meara, R. L. Sydnor iamond University of Illinois, Electrical Engineering Re-May Ward Laboratory, Urbana, Ill., July 1957, 55 pp, \$4 0. micr film \$3.60, photocopy \$9.30. Order PB mgr s, 146 5 from Library of Congress, Washington 25. Bo d D (

YOU MAY BE JUST THE MAN TO HELP BURROUGHS SQUEEZE A MILLION TRANSISTORS INTO A CUBIC INCH

OR EXPLORE FIELDS LIKE THESE:

Right now-today at Burroughs: plenty of room for exceptional engineers to help create the successors to Burroughs' big line of advanced electronic and electro-mechanical data processing equipment. Equipment that ranges from giant electronic computer systems to automatic accounting machines and more.

We need men who can help us put the functional equivalent of a million transistors into a cubic inch of material. Or men who can help us produce equally advanced results in fields like those mentioned at the left.

Men who can thrive on working without strait jackets.

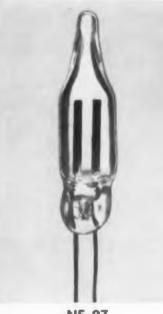
Men who can get the most out of our heavily budgeted research facilities.

Men who can welcome the security of our cohesive research programs. How cohesive? Because their common aim is to improve information processing for both commercial and military use. How do the programs offer security? Because their cohesiveness allows you to shift readily from one to another without learning a new technology.

We want men whose creativity will help us double our \$300 million yearly sales rate fast-and then redouble it even faster.

Men who are frankly interested in increased responsibility. In swift promotion in careers that offer a wide choice of location. And, yes, in money.

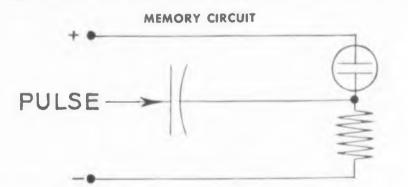
Are you as outstanding as these opportunities? Then outline your education and experience as briefly or fully as you wish. name the field you'd like to help us explore, and get that information to A. L. Suzio. Administrator. Corporate Placement Services, Dept. 102, Burroughs Corporation, Detroit 32, Mich.


Burroughs Corporation

NEW DIMENSIONS / IN ELECTRONICS AND DATA PROCESSING SYSTEMS"

CIRCLE 874 ON READER-SERVICE CARD

ELEC RONIC DESIGN • April 1, 1959


New G-E Glow Lamp permits less critical biasing ... provides wider margin in circuit designs

This General Electric NE-97 (and its first cousin, the NE-96) look exactly like the familiar NE-2... but each of these General Electric Glow Lamps has a wider differential between starting and operating voltage. This feature provides a margin of safety against false starting caused by transients in the circuit, since at least a 30-volt pulse is needed to put the lamp in operation.

NE-97

DIRECT CURRENT CHARAC	TERISTICS	NE-97	NE-96
Starting Volts		125 ± 15	135 <u>+</u> 15
Operating Volts		70 ± 10	70 ± 10
Design Current		0.5 m.a.	0.5 m.a.
Life—Change in Starting and	Operating Volts at 0.	5 m.a.— 5-Volts i	n 1,500 hrs

APPLICATIONS—Because of the wide spread between starting and operating voltage, the General Electric NE-96 and NE-97 are well suited for use in switching circuits and counters, where the lamp may function both as the transfer element and an indicator of state or sequence. For full information on G-E Glow Lamps, write for "G-E Glow Lamps As Circuit Control Components". General Electric Co., Miniature Lamp Dept., Nela Park, Cleveland 12, Ohio.

REPORT BRIEFS

Phase Plane Analysis in Missile Control System

The application of phase plane analysis to a missile jet relay control system is reviewed, explained, and illustrated. Only a single lead network is considered under conditions in which aerodynamic damping is negligible. The assumption that all forces occur as step inputs is used to simplify analysis techniques and does not constitute a significant limitation on the application of this method for design purposes. An analytic method for the solution of phase plane plots is developed which reduces the time necessary to evaluate a system design by minimizing the necessity for construction of phase plane diagrams. A summary of general principles which may be used to optimize a jet relay control system is presented. Project Vanguard Report No. 34: Application of the Simplified Phase Plane to the Analysis and Design of Missile Jet-Relay Control Systems, J. L. Hieatt, U. S. Naval Research Laboratory, Sept. 1958, 34 pp, \$1.00. Order PB 151-059 from OTS, U. S. Department of Commerce. Washington 25, D. C.

Heterodyne Generation of UHF Local Oscillator Signals

Investigation of the possibility of heterodyning a BFO with a fixed frequency oscillator to obtain a beat frequency signal in the 400- to 1000-me range (for use as a local oscillator in a superheterodyne receiver). Intermediate frequencies of 30 mc and 350 mc are considered. The results have shown that spurious responses from the mixer operation make this method impracticable for receivers of sensitivity greater than about minus 75 dbm. Heterodync Generation of UHF Local Oscillator Signals, Hugh Gottfried, Sylvania Electric Prod Inc., Electronic Defense Lab., Mountain View, Calif. May 1956, 17pp. Order PB 134833, from Library of Congress, Washington 25, D.C., microfilm \$2.40, photocopy \$3.30.

Pulsed Traveling Wave Tubes

Two cases are considered in this study. The first is the case where rf is pulsed and the electron beam kept on for a period considerably longer than the length of the pulse. The second is the case where the beam is pulsed and the input rf signal applied for a considerably longer time than the pulse width required. *Pulsed Traveling Wave Tubes, Gordon S. Kino, Levinthal Electronic Products, Inc., Palo Alto, Calif., Oct.* 1955, 17 pp, microfilm \$2.40, photocopy \$3.30. Order PB 135259 from Library of Congress, Washington 25, D.C.

STRAITS TIN REPORT

New developments in the production, marketing and uses of tin -----

A giant 55-gal. tin can is being successfully used to pack and ship fruit and vegetable concentrates. It might even replace the conventional No. 10 size tin can which has for so long supplied the food remanufacturing market. Lining is of electrolytic tin plating. A special centrifugal spray process permits application of enamel over the tin-plate.

Corrosive attack under severe atmospheric conditions is a serious problem now solved by two tin alloy coatings. A 75 tin-25 zinc coating has been used with considerable success on hydraulic brake parts and landing gear equipment. 25 tin-75 cadmium coated on reciprocating engine parts overcomes low corrosion resistance of normal steels.

Organotin compounds, such as dibutyl tin dilaurate, are added as stabilizers to vinyl plastic sheet to make it heat- and light-resistant when used as windows.

A tin-plate printing machine handling 4-color work is reported by a British firm. It will inexpensively print full-color labels directly onto all sizes of cans up to one gallon to a single operation. The labels will we astand great extremes of temperature.

Write today for data on these ite for a free subscript TIN NEWS—a n bulletin on tin s prices and new us:

The Malayan Tin Bure U Dept. 12D, 1028 Connecticut Ave., Washington 6. C CIRCLE 295 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 1, 1959

is hed ship es. It itional for so acturtic tin spray

namel

severe

erious

alloy

ng has

uccess

anding

linium

parts

nce of

, such

led as

eet to

when

hine

ted by

isively.

nto ill

n i a

wh-

cature.

910 10

ite of

ript tu

n hl

1.0.10

15 59

KLYSTRON POWER SUPPLY

with a

Ξ

No more fiddling with reflector voltage adjustments when you switch between cw and square wave...because of just one of the typically advanced features of this low-medium voltage Klystron Power Supply.

Ever double-mode a Klystron? Not with our model 809! Again. the thoughtful engineering that goes into every PRD product assures the user of self-protection against errors.

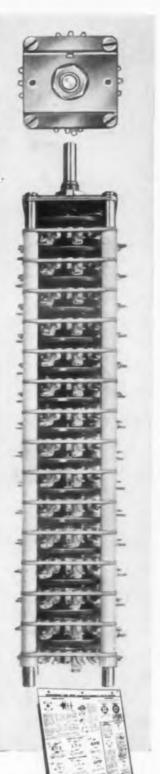
Even little things like the built-in beam voltage and current meter prevent guessing and doubt during runs. And when it comes to 'scoping the Klystron...compare the CRT display of a tube powered by the 809 and you'll see for the first time what a really sharp trace looks like!

For complete details, send for our data sheet F-10.

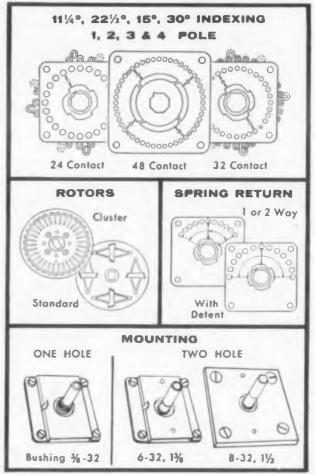
P.S. In case you don't have our latest catalog, E-8...160 pages, chock-full of useful data ... dash of a note on vour company letterhead.

POLYTECHNIC RESEARCH & DEVELOPMENT CO., INC. 202 Tillary St., Brooklyn 1, N.Y. ULster 2-6800 CIRCLE 299 ON READER-SERVICE CARD

LECTRONIC DESIGN • April 1, 1959


"L" and "T" Type Dissipative **Network Design**

An arbitrary load is perfectly matched over a prescribed broad frequency-band to a constantresistance generator by means of a linear, passive, reciprocal, dissipative two-terminal pair network which is composed of an ideal transformer in tandem with an L-, π -, or T-pad of lumped elements. The problem of designing the matching network to dissipate a minimum of power is considered and solved in a number of cases. An analytic method of determining the limitation on the optimum matching is presented in the case of an L-type matching network employed so that a designer is able to predict the best possible performance for any given load. Design of "L" and "T" Type Dissipative Networks for Broadband Matching of an Arbitrary Load, Marian Tsai Wang, Microwave Research Institute, Polytechnic Institute of Brooklyn, N.Y., Thesis, Aug. 1957, 87 pp, microfilm \$4.80, photocopy \$13.80. Order PB 135095 from Library of Congress, Washington 25, D.C.


Last Days of Sputnik II

The track of Russia's Sputnik II, or Earth Satellite 1957 Beta, between April 1, 1958 and April 14, 1958, the day of its disintegration, is traced in an Air Force report which analyzes the Soviet artificial earth satellite's final two weeks of orbit. This preliminary study is based on all positional observations available to Project Space Track prior to May 22, 1958. The purpose of this Air Force activity is to track artificial earth satellites and space vehicles. Observations were collected from observers and stations in all parts of the world. They include such data as positions of the satellite on the celestial sphere and velocity in the line of sight, obtained with directionfinding antennas and Doppler-effect measuring radio receivers used while the satellite transmitters were active; visual observations made with and without optical equipment; and radar and photographic reports. In addition to these observations, which are presented in catalog form, the study includes descriptive reports dealing with the decay-phenomena as observed during the last phase of the re-entry from ships and islands in the Caribbean. Added in an appendix is a short summary on the decay of Sputnik I (Satellite 197 Alpha) produced in December 1957, shortly after the satellite's end. Project Space Tracks The Orbital Motion of the Earth Satellite 1957 From 1 April 1958 to its Decay 14 April 1958, G. R. Miczaika, E. W. Wahl, Air Research and Development Command, U. S. Air Force, June, 1958, 47 pp, \$125. PB 151249 from OTS, U. S. Department of Commerce, Washington 25, D.C.

NEW Compactness... NEW Versatility in **ROTARY SWITCH DESIGN**

SHALLCROSS Miniature ROTARY SELECTOR SWITCHES give the long-lasting dependability of multi-leaf wiper, button-contact design . . . and the added advantages of compactness and new versatility. The sketches below detail some of the many unusual features of this new switch series ...

ELECTRICAL SPECIFICATIONS: Operating Voltage-10 2000 volts; Breakdown Voltage—to 3000 volts; Breaking Current-5 amp @ 125 V. ac.; Carrying Current-15 amp.

Write for complete specifications on the new Shallcross "Miniature Series".

SHALLCROSS MANUFACTURING COMPANY, 4 Preston St., Seima, N. C. CIRCLE 300 ON READER-SERVICE CARD

Shallcross

Westinghouse tube engineering... serving the nation through imagination

THIS IS THE PERMACHON.

a new concept in storage tubes

The Permachon is a new class of tube which will store an image written optically or electrically, and will scan out many copies of that image. Stored resolution is extremely high for the size of target, and is not limited by storage mesh as in conventional storage tubes. The WL-7383 1" Permachon stores a resolution of 500 lines per diameter (by shrunken raster method) and eight shades of gray. It will operate in a standard vidicon camera. Optical images of vidicon quality can be stored and over 10,000 copies read out at 30 copies per second.

YOU CAN BE SURE ... IF IT'S

SAMPLE ORDERS INVITED. WRITE FOR DATA.

Westinghouse Electronic Tube Division Elmira, N.Y.

The WL-7411 3" Permachon stores an image exceeding the resolution of the image orthicon, and eight shades of gray. It will operate with standard image orthicon components. Storage and readout are comparable to the WL-7383.

CIRCLE 301 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

du

pai sta bu

itv

ity dej

is of

he dia

the by the

wil dit

era mu osc

hig

ten

tm

ren We the

the I

1

are

des

Nit.

fro

ode

act

I

Nonlinear and Parametric Phenomena In Radio Engineering

> Part 15 A. A. Kharkevich (Translated by J. George Adashko) Chapter 2

Generation of Oscillations

22. Delay Nonlinearity

In Section 20 we investigated the steady state of an oscillator in which the growth of the selfoscillation amplitude was limited by the nonlinearity of the triode characteristic $I_a = f(U_g)$. This characteristic expresses the relation between the instantaneous value of the anode current and grid voltage. Therefore, even if the voltage applied to the grid is purely sinusoidal, the ac component of the anode current is nonsinusoidal in principle.

The voltage on the tank circuit (and consequently on the grid) is practically sinusoidal only because of the filtering action of the tank circuitiself. The change to the quasi-linear form of equation consists of formulating an equation for the first harmonics of the current and voltage and introducing an average slope (transconductance defined as the ratio of the amplitudes of the first harmonics of the current and voltage.

A nonlinearity is an essential feature of a self oscillating system. It is possible, however, to design an oscillator on a different basis, by introducing into the self-oscillating system a nonlinear parameter whose value depends, not on the instantaneous values of the current or voltage, but on the effective (or maximum) values. A nonlinearity of this type is called a delay nonlinearity.

INS

g

state

self

non

 (U_g)

veen

and

ap

:om

al in

inse

onl

cui

1 0

1 fo

an

ice

fir

sell

d

tro

255

An example of a device with a delay nonlinearity is a thermistor. The resistance of a thermistor depends on its temperature, and the temperature s determined by the balance of power, namely the power liberated in the thermistor in the form of Joule heat and the power dissipated by the thermistor to its ambient by convection and raliation.

The time rate of the heat exchange between the thermistor and the ambient is characterized by a time constant which increases directly with the heat capacity of the thermistor and inversely with the heat conduction to the surrounding medium. The time constant is on the order of sevcral or even several dozens of seconds, i.e., it is much longer than the period of high-frequency oscillation.

Therefore, if the thermistor is heated with a high-frequency current the thermistor temperature cannot follow, within a single period, the time variations of the instantaneous power, but remains constant to a high degree of accuracy. We can therefore assume that the resistance of the thermistor is a function of the effective amplitude (and not of the instantaneous value) of the current or the voltage.

It is quite important that this is attainable to any degree of accuracy (since it is quite easy in practice to make the time constant rather large). This signifies that the resultant self oscillations are sinusoidal to an accuracy that is as high as desired. This is a substantial feature of systems with delay nonlinearities.

Let us now consider an oscillator which differs from the one previously discussed in that the trimle is assumed to be ideally linear, i.e., its charinteristic is assumed to be linear with a constant transconductance S_{μ} . The nonlinearity required to limit the amplitude is introduced into the system by including in the tank circuit an active n istance in the form of a thermistor with a timedependent (and hence amplitude-dependent) restance R_T.

Thermistors can be of either metal or of semiconducting material. The resistance of the former increases with temperature and that of the latter dominishes with temperature. The former can be Onnected in series with a tank circuit while the lefer must be connected in parallel. We shall time in either case that the resistance R_T repents the equivalent series resistance of the k circuit.

We can thus use the complex form of the quasi-

FIELD-PROVED HONEYWELL COMPONENTS

for measuring, balancing and positioning applications

CONVERTERS

These synchronously driven choppers handle d-c signals as small as 10-8 volt. Sensitive, stable performance. Available with special features such as fungus proofing, grounded housing, mica-filled base, various contact percentages.Weight: 10 oz. Prices from \$39.

	ELECT	RICAL CHAP	ACTERISTIC:		_			
Part No.	354210-2	354210-3	354210-1	354210-4	355081			
Modulation Frequency	20-30 cyrles	40-45 cycles	5'.65 cycles	50-65 cycles	360-440 cycles			
Switching Action (SPDT)	Each conta	(Make-before-break) Each contact closed 55% of each cycle (± 2%) Other actions, as specified (2 2 50 mm st each d framework) (Break-before- make), Each contact closed 47% of each cycle						
Driving Coil Requirements		6.3 v, 60 ma at rated frequency						
Contact Rating		100 micro	watts at 6 v max	10 ma max				
Electrostatic Stray Pickup	2 x 10	" volts per ohm o	input circuit in	npedance	2 x 10 ⁻¹⁰			
Electromagnetic Stray Pickup	Less tha	Less than 2 x 10^{-6} volts. constant to within 2 x 10^{-6}						
Phase Shift	Outpu	t voltage lags di	iving phase by	17 ± 5°	Lags driving phase by 45° to 50°			
Symmetry		With	in 2%		Within 7%			
Shielding	Frame	Frame and coil shield, grounded through pin No. 2						
Load Characteristics			Resistive or Indu	ictive				
Vibration Resistance	Output v	oltage varies less	than 2% with ra	ates of vibration fr	om 0 to 10g			

MOTORS

Designed for chart drives, servos and balancing circuits, these motors are available in three general types: Stack type, with easily maintained sectional housing: self-lubricated, oil-sealed type; and fungus-proofed, oil-sealed military motors. Prices from \$40.

Nominal No Load R.P.M *	R.P.M.*	Gear Ratio	Intermittent Rated Load (02.—in.)	Max. Starting Torque (oz.—in)	Pull-ta Torque Min (oz.—in.)	Continueus Torque (02 —IN.)	Power (Watts) Loaded	Corrent (amps_) Loaded	Temp Rise of
			Two Ph	ase Ind	uction M	otor			
330 144 48 23		44:1 10:1 30:1 60:1	4 5 15 30	10 20 60 110			11.5 11.5 11.5 11.5	0.11† 0.11† 0.11† 0.11† 0.11†	70 70 70 70
				Synchro	nous				
	180 180 90 60 30	10:1 10:1 20:1 30:1 60:1			12 2.0 14 21 42	12 2.0 12 18 36	24 11.5 11.5 11.5 11.5 11.5	0.21 0.11 0.11 0.11 0.11	100 65 65 65 65

1 6 less at 50 cycles + Field winding 11 0 watts, balance in amplifier winding Note: Some speeds available at 25 cycles All motors are available in two phase and synchronous models

AMPLIFIERS

They amplify a d-c or a-c microvolt input signal sufficiently to drive one field of a two-phase balancing motor. Three stages of voltage amplification are followed by the power-output phase discriminator stage, which supplies power for the motor. Extremely low stray pickup . . . adjustable sensitivity . . . fast response. Priced from \$110 to \$250.

Gain	Sensitivity Nominal Input (Microvolts) (Ohmi				
104	4.0	400, 2,200, 50,000			
4 x 10°	1.0	400, 7,000, 50,000			
12 x 10°	0.4	400, 2,200, 7,000			
40 x 10°	0.1	2,200			

POWER SUPPLY-115 v., 60 cycles (fused power line)

OUTPUT-2 to 18 ma. into 12,000 ohm load

SENSITIVITY-Continuously variable screwdriver adjustment. Recessed slot protects setting

MOUNTING—Operation unaffected by mounting position

OPTIONAL FEATURES-(a) thermocouple burnout protection, (b) without desensitizing adjustment, (c) parallel T feedback, (d) velocity damping, (e) special connecting cables and plugs, (f) without tubes, shields, and converter, (g) for 25 cycles.

MINNEAPOLIS-HONEYWELL, Wayne and Windrim Aves., Phila. 44, Pa.

CIRCLE 302 ON READER-SERVICE CARD

ECTRONIC DESIGN • April 1, 1959

BURROUGHS COMPUTER SYSTEM COMPONENTS

MANUAL TAPE PUNCH

Eliminates the problem of re-inserting perforated tape for repunching in the main perforating unit A precision unit with particular application as a method for insertion of information into an already prepared tape. It accommodates standard Teletype and Commercial Controls Elexowriter tapes, and corrects up to an 8-hole code. Tape is easily inserted through a guided slot and held in perfect register.

DECIMAL KEYBOARDS

The answer to the widespread need for a modestly priced, versatile manual-input device. Thoroughly proven with the Burroughs 205 and 220 computing systems, the Decimal Keyboard is a 13-key unit that can be readily integrated into a wide variety of data processing and communications systems. Compact, with feather light touch which provides high speed of input A 16-key unit is also available

PINBOARD PROGRAMMING ASSEMBLIES

DIGITAL MAGNETIC TAPE TRANSPORTS

Several transports are offered to meet a variety

Bi-directional units operate at speeds up to 75

available. Ten speed transport handles tape at

speeds from $1\frac{1}{2}$ to 90 inches per second. All

transports incorporate vacuum controlled reel

sensing, fast start and stop, remote and local

control, easy threading and dust free operation

A file protection device and air-conditioning

in Burroughs computer systems and other

servo systems for gentle tape handling, end-of-tape

manifolds are available. Years of proven reliability

inches per second. Multiple speed units are also

of tape speed and tape width requirements.

Used in the Burroughs E101 desk size computer, now individually available as a basic control unit or stored program device. Simple and versatile: a single pin completes a circuit. Complete programs can be quickly changed by inserting previously prepared plug in units. Expandable, with three types of pinboard receptacle units Compact 11 by 33/8"

MAGNETIC STORAGE DRUM

A small, high speed magnetic drum for intermediate storage-proven in use with Burroughs 205 and 220 computing systems. It buffers information between the computer and various input-output units. Revolves at 21, 600 rpm, permitting access to stored data in average time of 1.4 milliseconds. Easy matching with either transistor or vacuum tube circuitry. Furnished complete, including 10 dual read-write head assemblies and drive motor

RUSSIAN TRANSLATIONS

RIOL

Fig. 74. The steady state amplitude of oscillations in a tank circuit using a thermistor can be determined with a graph like this one. Rr represents the equivalent series resistance of the tank and $R_1(O)$ is the thermistor resistance in the obsence of oscillations.

(i))i

C.I.

the 1 1111

ord upii

515

Siv

ph

dep

of .

OTC

LOI

de

(TH)

PDD

of

COL

-1

1

linear equation of Sec. 20, rewriting it as

 $\omega_{v}^{2} - \omega_{v} + j\omega \frac{1}{L} \left(R_{T} - \frac{MS_{v}}{C} \right) = 0$

The frequency of an oscillator containing thermistor described by this relation is always w_o for all amplitudes. It consequently does not change while the oscillations are being established. The self-excitation condition is written as

 $R_T(0) < \frac{MS_s}{C}$

where $R_{T}(0)$ is the thermistor resistance in the absence of oscillations. This resistance depends only on the ambient temperature. The steadysteady amplitude is found from the equation

$$R_T(U_m) = \frac{MS_n}{C}$$

The thermistor characteristic $R_T(U_m)$ must naturally be known. The equation can be solved graphically as shown in Fig. 74. The fact that it is possible to obtain steady-state sinusoidal selfoscillations with the aid of a delay nonlinearity is of great importance.

First, in many cases it is essential to have a good waveform, free of harmonics. Second, the presence of harmonics causes frequency shifts. The smaller the Q factor of the tank circuit, the more noticeable this effect. The use of delay nonlinearity makes it possible to obtain sinusoidal oscillations ever in the case of a low-Q tank circuit. The latter is particularly important in *PC* oscillators (see Sec. 27), in which combinations of capacitances and resistances only are male equivalent to aperiodic tank circuits.

23. The Phase Plane

In the usual graphic representation of oscillatory

PHOTOREADER

Reads 1.000 characters per second stops on a single character, then reads the next within five milliseconds after restart. The finest and fastest precision perforated paper tape reader commercially available as a component. Developed as an input unit for the Burroughs 220 computing system, the Photoreader may be mounted in any standard 19" cabinetry-or ordered already housed in the 220 cabinet, as pictured

For complete details on these or other Burroughs Computer System Components, write to Component Sales, ElectroData Division, Pasadena, California.

Burroughs Corporation

"NEW DIMENSIONS in electronics and data processing systems"

CIRCLE 303 ON READER-SERVICE CARD

digital applications

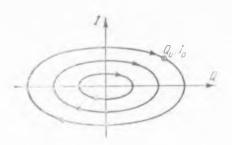


Fig. 75. A phase portrait for a linear lossless tank circuit.

illa-1 be pre-

ank

ing .

Iways

s not

stab

on as

n the

send

eady.

111151

olved

nat II

self

NP d

. the

hills , the

nonpical

tink

110

fiens

na le

tery

959

n

theorem in any system, all the time varying quantities (such as currents and voltages) are spressed by suitable time functions. Plots of these functions are called oscillograms.

It is possible, however, to proceed in a different manner, namely to choose as the rectangular coordinates the instantaneous values of the variable quantities which jointly define the state of the system. We thus define a certain space, in which each point represents the state of the system at a given instant of time. This space is called the phase space.

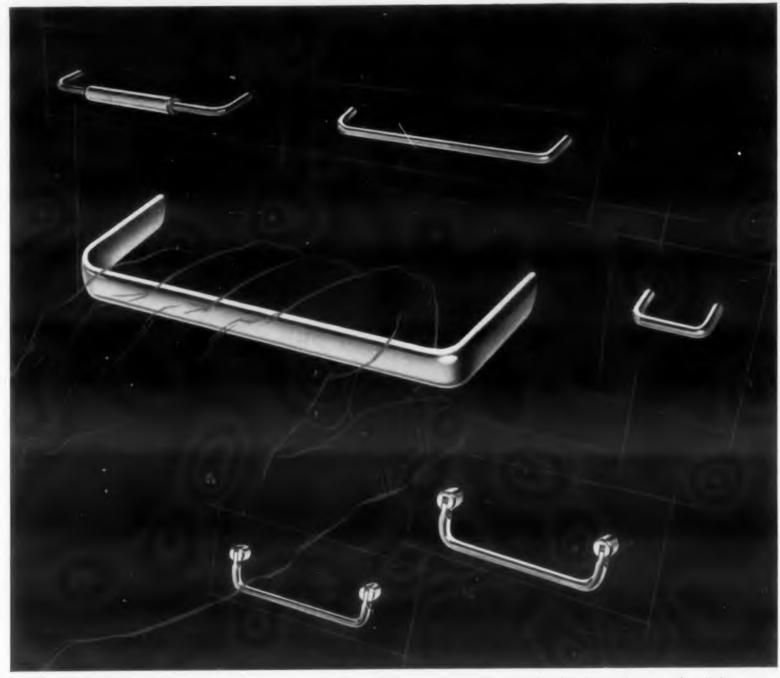
The number of dimensions of the phase space depends on the number of differential equations of the system. We know that to solve an nth order equation it is necessary to specify, as initial conditions, the values of the function and of its derivatives up to order n-l, i.e., a total of nindependent quantities.

We shall deal essentially with second-order equations. In this case, the number of dimensions of the phase space is two, i.e. the phase space becomes in this case a phase plane. Oscillating phenomena in a system described by a secondorder equation can be represented by diagrams in the phase plane.

Let us examine by way of an example the free uscillations in a linear lossless tank circuit. The differential equation for this case is

$$L\frac{dI}{dt} \pm \frac{1}{C} \int I dt = 0 \tag{1}$$

 $\frac{d^2Q}{dt^2} + \omega_c^2 Q = 0 \tag{2}$


The solution of this equation is

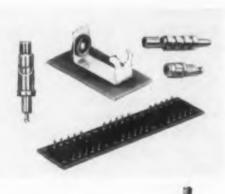
$$Q = M \sin \omega_0 t + N \cos \omega_0 t \qquad (3)$$

where M and N are arbitrary constants deternued from the initial conditions. For the current have

$$I = \frac{dQ}{dt} = M\omega_a \cos \omega_a t - N\omega_a \sin \omega_c t \qquad (1)$$

Let us take the current and the charge to be de coordinates of the phase plane, and let us apress one quantity directly in terms of the

Materials used in the quality-controlled manufacture of CAMBION handles include aluminum, brass and stainless steel. Finishes are of polished nickel, black oxide, and black alumilite. Types available are rigid, adjustable and folding. Folding types are in two different models — designed to fold against the panel in either one or two directions.


How to handle things better -28 ways

Made in 28 different standard combinations, CAMBION^B panel handles are also custom-made to any specifications, in any quantity. All are of quality materials which meet or better government specifications. In addition to a firm grip, all have an attractive appearance. Polishing before plating removes all surface imperfection, and color buffing after plating adds lasting luster.

Expert engineering and manufacturing skill control production of the complete CAMBION line — terminal boards, solder terminals, insulated terminals, coils, coil forms, capacitors, swagers and hardware. In any quantity of CAMBION components you order you get top quality — with every component guaranteed.

Available locally through Authorized CAMBION Distributors. Or write to Cambridge Thermionic Corporation, 457 Concord Avenue, Cambridge 38, Massachusetts. On the West Coast: E. V. Roberts and Associates, Inc., 5068 West Washington Blvd., Los Angeles, California. In Canada: Cambridge Thermionic of Canada, Limited, Montreal, P.Q.

The CAMBION line of panel and chassis hardware is recognized as the best looking, best behaving, most polished family in its field. Besides handles, other popular members are terminal boards, diode clips, battery clips, miniature plugs and jacks. CAMBION custom hardware can be designed and manufactured on request.

New Humphrey free gyro has stainless steel gimbals and spindle to resist shock

For attitude sensing applications in missiles and torpedoes where severe shock and vibration are a problem, this new Humphrey FG01-1300 series free gyro is recommended. High strength stainless steel is used in the one-piece spindle and gimbal assembly. This construction is stronger and more rigid than conventional construction.

In the torpedo application in which this model is now being used, it was easily able to meet the customer's requirements of resistance to severe vibration and 60G shock. The all-steel design also eliminates differences in coefficients of expansion, eliminating balance and bearing fit changes.

- Other important features of this new ruggedized free gyro are
- Extremely small size only 23/4" diameter by 51/4" long.
- Extra high angular momentum to static weight ratio.
- Heavy duty gimbal bearings.
- Choice of motors for 28 vdc: 115 v, 400-cycle ac: or special 800-cycle ac. For 800-cycle motor, Humphrey, Inc. can furnish a transistorized power supply suitable for operating one or two gyros.

• Available with either electrical caging and uncaging or manual caging and electrical uncaging.

• Precision potentiometer or outer-gimbal synchro pick-off.

• Choice of electrical connectors for convenient installation

If your free gyro application requires high performance under extra severe shock and vibration, it will pay you to look into the Humphrey FG01-1300 instrument. Humphrey welcomes the opportunity to discuss your gyro, accelerometer or precision potentiometer requirements with you. Write or phone today

DEPT ED-49, 2805 CANON STREET · SAN DIEGO 6, CALIFORNIA CIRCLE 305 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

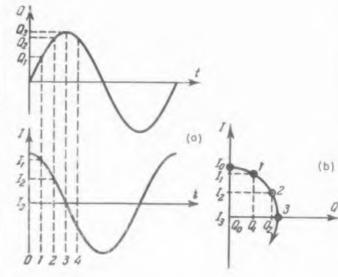


Fig. 76. Charge and current oscillograms (a) of a linear, lossless tank circuit, and how the phase trajectory is derived from them (b).

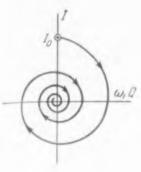
other, i.e., let us climinate the parameter t. For this purpose we divide eq (4) by m_0 square it, and add it to the square of (3). This yields the equation

$$\frac{1}{\omega_z^2} I^2 + Q^2 = M^2 + N^2$$

which is the equation of a family of ellipses (Fig. 75).

Note that by changing the scale, for example, by plotting m₀Q instead of Q along the abscissawe can obtain a family of circles. Each point on one of the ellipses represents the state of the system at a given instant of time (since the coordinates of the point are instantaneous values of the current and voltage). This is why the point on the diagram is called the representative point.

This point moves with time, describing a line called the phase trajectory. If a periodic process is plotted in the phase plane, the phase trajectory will be the closed contour covered by the representative point during one period.


A family of phase trajectories representing the oscillations possible in a given system, is called the "phase portrait" of a given system. Thus, Fig. 75 is the phase portrait of a linear lossless tank circuit.

The coordinates used in Fig. 75 are Q, and l = dQ/dt. With such a choice of coordinates the representative point moves clockwise, a noted in Fig. 75.

The phase portrait of Fig. 75 was obtained analytically. Let us show how to plot the phase portrait from oscillograms.

Fig. 76a shows the charge and current oscillo-

EL

(b)

a)

10

For e it.

the

Fig.

ple, issa, t on

sys-

rdi-

the

the

line

es

ory

DIC

the

lle-

Tig

an

m

tes

a

160

ast

110

59

0

Fig. 77. The phase portrait of a lossy tank circuit with damped oscillations

Frame. If we read the instantaneous values of Q and I (i.e., the ordinates of the corresponding curves) at the specific instants marked on the diagram and use these ordinates as coordinates of the representative point on Fig. 76b, we can plot the phase trajectory.

$$\omega_1 = \sqrt{\omega_1^2 - i}$$

where $\omega_1 = \sqrt{\omega_0^2 - \alpha^2}$ is the natural frequency.

Let us determine the current

$$t = \frac{I_{\alpha}}{\omega_1} e^{-\alpha t} \left(-\alpha \sin \omega_1 t + \omega_1 \cos \omega_1 t \right)$$

If the damping factor α is small, it is possible to neglect the first term in the parenthesis and assume

$$I \cong I_a e^{-gt} \cos \omega_i t$$
 (7)

To eliminate the time t from (6) and (7), we write the relation between the current and the charge in polar coordinates. We put

$$I = I_{\mu} e^{-\alpha t} \cos \omega_{t} l = \rho \cos \theta$$

$$\omega_{t} O = I_{\mu} e^{-\alpha t} \sin \omega_{t} l = \rho \sin \theta$$

tro we put

$$\rho = I_n e^{-i\omega}$$
 $\theta = -\omega_0 t$

hence

 $\mu = I_{\mu} \epsilon^{-\frac{m}{d+}\theta}$

This indeed is the polar equation of a phase trajectory that represents a converging logarithmic spiral (Fig. 77). For other initial conditions we obtain other spirals. All these will fit one inthe the other and will converge at the point t = Q = 0. Each spiral represents a damped willation. A family of spirals with different initial conditions forms the phase portrait of a may tank circuit. The construction confirms that c representative point moves clockwise.

We shall now explain the role of the initial inditions. As is known, the initial conditions if a second-order equation of type (2) are the dues of the function Q and of its first derivative dQ/dt at the instant assumed to be the start

I the time reference (in particular, at t = 0). Consequently, a specification of the initial con-

ALL NEW, the CMC Model 400C is a reliable, economical instrument for permanently recording digital data from counting, timing, frequency measuring, and data handling systems.

EIGHT OPTIONS OFFERED

Optional features which broaden the area of application for the CMC digital printer:

10 line output for operating punches and electric typewriters • analog output for driving strip chart and other pen type recorders
• huilt-in inline readout for visual monitoring at a distance • accumulator for totalizing • code converter to accept any digital code,
Model 400C is compatible with any make of counting equipment
• transistorized drive which accepts low voltage input • an add-subtract solenoid which prints plus and minus numbers • print-line identification for coding printout.

New Standard Features

Standard features designed to improve reliability and flexibility include elimination of stepping switches, 4 line per second printout, parallel entry, and rugged unitized construction.

Key Specifications

Print-out capacity 6 digits standard, up to 12 on special order • Accuracy determined by basic counting instrument • Display time 0.2 seconds minimum, maximum controlled by the counter • Weight 64 lbs. • Price \$950. Add \$10 for rack mount.

CMC engineering representatives are located in principal cities. For more information on this versatile instrument, phone your nearby representative or write directly to Dept. 194

5528 Vineland Ave. • No. Hollywood, Calif. Phone Stanley 7-0401 • TWX: N HOL 8290

CIRCLE 306 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

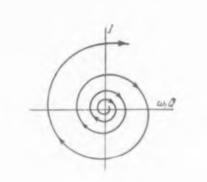


Fig. 78. The phase portrait of a tank circuit with negative damping.

litions determines the initial coordinates of the representative point. Fig. 75 shows the free oscillations in the form of an ellipse passing through the point whose coordinates Q_0 and L_0 represent the initial conditions.

Let us turn now to a lossy tank circuit. The equation of such a tank circuit is of the form-

$$\frac{d^2Q}{dt^2} + 2\alpha \frac{dQ}{dt} + \omega_0^2 Q = 0 \qquad (5)$$

A solution of this equation for the initial conditions

$$Q(0) = 0, \quad I(0) = I,$$

is of the following form

()

$$= \frac{L_{\sigma}}{\omega_1} e^{-\sigma t} \sin \omega_1 t \qquad (6)$$

To conclude this section, let us consider still another tank circuit in which the damping becomes negative as the consequence of feedback. Such a system is described by an equation that differs from (5) only in the sign of the term for the first derivative of the charge with respect to time. A solution of the equation is given by (6) and (7), and the equation of the first trajectory is given by (8); it is merely necessary to reverse the signs in all three formulas.

This means that we have oscillations with exponentially rising amplitudes, and the phase trajectory is an evolving unwinding spiral (Fig. 78) Were the system really linear, the amplitude would increase without limit. This would correspond to an unbounded increase in the radius of the spiral.

24. Phase Portraits of Oscillators

In the preceding section we used examples of linear systems. Yet we are interested in the phenomena occurring in oscillators which are known to be nonlinear systems, since no steady state self-oscillations are possible in a linear sys tem.

Rapid, precise emf measurements with this L&N Type K-3 Universal Potentiometer

0006 Emf's read as digits plus scale value

ope

WIE

Nev

tem

uni des gro

FIL

Mor

a lo

bris

HIG

Мо

sist

ran

MEI

Mor

PLL

Mor

RI

ser

101

MIN

EE

Fast, accurate d-e voltage measurements free of effects of static. humidity and leakage are made with L&N's Type K-3 Universal Potentiometer. In calibrating d-c wattmeters or voltmeters, checking thermocouples, etc., measurements are speeded as emf's are read di rectly as a single row of digits plus a scale value.

Ranges High: 0 to 1.611 v. Medium 0 to 0.1611 v. Low: 0 to 0.01611 v.

Limits of Error Standardized and read on range in use: High range: $(0.01)^{i}$ = 20 μ v). Medium range: $\pm (0.015)^{i}$ = 2 μ v). Low range: $\pm (0.015)^{i}$ = $(0.5 \mu$ v)

Internal Resistance Changes from about 180 at full scile to about 110 at zero setting

Galvanometer Sensitivity Keys Fou tap keys provide sensitivities of approx 1, 1–20, 1–400 and 1–10,000. Fifth key for reversal of connections,

Standard Cell Dial 1.0171 to 1.0205 v

Case Aluminum, 191, Jong x 121 wide x 51, " high to top of panel.

Price \$693.00, f.o.b. Phila, or North Wales, Pa., (subject to change withou) notice). Specify Lis: No. 7553 when of dering from Leeds & Northrup Company 4908 Stenton Ave., Phila 44, Pa.

CIRCLE 308 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 1, 1959

Probing **Electronic Frontiers** With MELPAR

Our mission is simply stated: advancing the state of the art in electronics to satisfy the demands of the space age and the increasingly complex problems of defense.

To the experienced engineer with an inquiring mind we extend an opportunity to blaze new technological trails and to constantly explore the parameters of his personal ability.

> Opportunities are available in the following areas of Melpar's diversified activities:

Reconnaissance Systems Engineer-**Communication & Novigation** ing Department

Airborne Equipment Ground Data Handling Equipment **Ground Support Equipment** Simulation & Training Systems

Systems **Detection & Identification Systems Chemistry Laboratory** Antenna & Radiation Systems **Applied Physics Laboratory** Analysis & Computation Laboratory

For details about these openings and facts on a dynamically growing organization, write to: **Technical Personnel Representative**

se its λN a er

EECO

with built-in high-sensitivity tranistorized driver circuits to operate directly from low-level signals, where -ignal excursion is too small for direct operation of neon or incandescent lamps. Most Minisigs have adjustable operating characteristics controlled by bias voltage.

WIDE SELECTION

New Minisigs now include filament-type, hightemperature-type, memory-type, and plug-in-type units, as well as miniature and subminiature designs. Here are some typical additions to the growing Minisig family:

FILAMENT TYPE

ure-

atic

uade

TRU

d-c

ing

mt-

di

plus

ium

read 011 154

W4

ron

110

iros. kary

15.V

212

orth

1011

1.01

ans

CP3

RD

959

Model R-441 is a high-gain indicator employing a low-voltage plug-in incandescent lamp. Gives bright light when input level is -11.0 volts.

HIGH-TEMPERATURE TYPES

Models R-561 and R-661 incorporate silicon transistor circuits for operation in the temperature range - 55 C to - 100 C

MEMORY TYPE

Model R-901 employs a Raytheon CK-1050 lamp. Anode current of 3.0 ma yields much brighter light than an NE-2 glow lamp at max. rating.

PLUG-IN TYPE

Model R-1004 assembly includes outer shell and R- 005 encapsulated plug-in insert for easy Tervicing. Provides basic flexibility of application of R-101 and R-201. Extends 114" behind panel; mounts in 1/2" hole.

MINIATURIZED DESIGNS

Models R-121 and R-221 require only 11/4" x 1/2" dim. over-all behind panel and mount in 3%" h01-4

AND NEW LOWER PRICES on R-101 and R-201.

Write for specifications, operating range harts, and prices. And remember, we're always ready to work on your specials.

NGINEERED ELECTRONICS COMPANY

(a subsidiary of **Electronic Engineering Company** of California) 506 EAST FIRST STREET

SANTA ANA, CALIFORNIA

CIRCLE 309 ON READER-SERVICE CARD ECTRONIC DESIGN • April 1, 1959

Fig. 79. The phase portrait of an oscillator showing only iwo values of a corresponding to a change of 27

Our next task is to plot the phase portraits of oscillators. We start with an oscillator with soft excitation, this being the simpler case. The phase portrait should give a complete picture of the possible operating modes of the oscillator, both steady state and transient under all initial conditions.

We shall not derive the equations of the phase trajectories. We shall confine ourselves merely to a qualitative discussion. For this purpose we explain first how attenuition can be represented on the phase plots.

For a simple tank circuit we have the following quation of a spiral

$$\rho = I_n \epsilon$$

Let us take two values of the radius g corresponding to a change of 2π in the value of θ i.e., radii of two neighboring turns of the spiral (Fig. 79)

$$\rho_1 = I_{\theta} e^{-\frac{\theta}{\theta c} \theta}, \ \rho_2 = I_{\theta} e^{-\frac{\theta}{\theta c} (\theta + 2s)}$$

and let us determine the ratio of these radii

$$rac{
ho_1}{
ho_2} = \epsilon^{rac{m}{\omega_1} 2r} = \epsilon^{\sigma T} \cong \epsilon^{\sigma t}$$

where *d* is the attenuation of the tank circuit.

Thus the radius of the spiral changes from turn to turn as a geometric progression, whose denominator depends on the attenuation. The same applies also to an evolving spiral. (This is the property of a logarithmic spiral. In the case of an Archimedean spiral, the radius varies as an arithmetic progression.)

Let us now consider the phenomena in a soft generator. In the initial self-excitation stage, when the oscillations are still small, the phenomena can be described with satisfactory accuracy by the linear equation (2) of Sec. 17. If the selfexcitation condition is satisfied, the attenuation factor is negative and the self excitation process

TO SERVE YOUR EXACT NEED HIGH POWER LOW POWER **BROAD BAND** LOW INSERTION LOSS **HIGH ISOLATION** SMALL SIZE LIGHTWEIGHT

Added to the broad range of current Ferrite Isolators is an intensive program to conduct research and development in advanced ferrite devices for the frequency bands proposed for space navigation and communication.

Our design and engineering group will welcome an opportunity to work on your microwave problems.

TYPICAL SPECIFICATIONS										
MODEL	FREQ. RANGE	ISOLATION	INSERTION LOSS	V. S. W. R.						
W-568 3A-2	12.5-18.0 KMC	20 DB Min.	1.0 DB MAX	1.15 MAX						
W-177-1K-1	9.5 KMC ±100 MC	25 DB Min.	.7 DB MAX	1.15 MAX						
W-277-3A-3	5.2-5.9 KMC	17 DB Min.	1.0 DB MAX	1.15 MAX						
W-859-11A-1	930 <u>+</u> 60 MC	25 DB Min	2.0 DB MAX	1.25 MAX						
W-668-1A-2	8.5 -9.6 KMC	10 DB Min.	0.4 DB MAX	1.10 MAX						

23 W. Calendar Ave.

La Grange, III.

KEARFOTT COMPANY INC. A Subsidiary of General Precision Equipment Corporation **Microwave Division** 14844 Oxnard Street Van Nuys, California

Eastern Office 1500 Main Avenue Clifton, N. J.

SALES OFFICES Midwest Office South Central Office

Northwest Area Office 530 University Avenue Palo Alto, California

Dallas, Texas CIRCLE 310 ON READER-SERVICE CARD

6211 Denton Drive

EXPANDED RESEARCH

to advance new concepts of SPACE FLIGHT

Expanded Research programs to meet the most complex technological requirements of the Space Age are only one of the far-reaching objectives of the new multi-million-dollar Lockheed Research Center, near Los Angeles. Destined to become one of the nation's major research installations, its programs are broad in scope and designed to investigate new frontiers of space flight.

A primary consideration in planning the new Research Center was to provide environment for scientific freedom and ideal research conditions -using the most advanced equipment available. This modern, integrated research facility will touch almost every aspect of aviation and transportation-leading toward exploration into completely new or relatively undeveloped fields of science and industry.

On completion, most of Lockheed's California Division's research facilities will be located in this single area. The Center will provide complete research facilities in all fields related to both atmospheric and space flight-including propulsion, physiology, aerodynamics and space dynamics; advanced electronics in microwave propagation and infrared; acoustics; mechanical and chemical engineering and plasma/magnetohydrodynamics; thermal electricity; optics; data communications; test and servo-mechanisms.

• The first phase of the advanced research building program has already begun-with initial construction of a \$5,000,000 supersonic wind tunnel and high-altitude environmental test facilities.

Scientists and engineers of high caliber are invited to take advantage of outstanding career opportunities in this new Lockheed Research Center. Openings now exist for thoroughly qualified personnel in: Electronics; aero and thermo dynamics; propulsion; servo-mechanisms; materials and processes; structures and stress; operations research; research in optics, infrared, acoustics, magnetohydrodynamics, instrumentation, mechanics and hydraulics; mathematics and in all phases of design.

G Write today to: Mr. E. W. Des Lauriers, Manager Professional Placement Staff, Dept. 13041, 1708 Empire Avenue, Burbank, California.

BURBANK, CALIFORNIA

RUSSIAN TRANSLATIONS

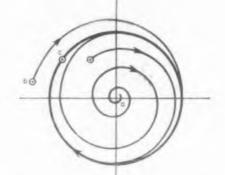


Fig. 80. The phase portrait of an oscillator with self excitation. The closed contour represents the steady state (the limit cycle). The points (a), (b), and (c) represent three ways of starting oscillations

is represented by an evolving spiral as in Fig. 78.

As the amplitude increases however, the nonlinearity comes into play. Its influence manifests itself in that the absolute value of the attenuation becomes smaller. The radius of the spiral increases at a slower rate. Finally an energy balance is reached.

In this case the attenuation becomes equal to zero, and the amplitude no longer increases. The representative point now describes a closed contour in the form of an ellipse (or a circle, if the scale is properly chosen). This is exactly the steady state of the oscillator.

If the initial conditions specified for the oscillator are represented by a certain point outside the contour corresponding to the steady state mode, the damping will be positive, and the representative point will move along a winding spiral, whose radius diminishes slower and slower until the trajectory begins winding on the same contour of the steady-state mode.

All this is shown in Fig. 80, which represents the phase portrait of an oscillator with self excitation. The closed contour that represents the steady-state periodic oscillations (heavy line of Fig. 80) is called in oscillation theory the limit evele.

The phase portrait of Fig. 80 is characterized by the fact that any phase trajectory, no matter where it begins, winds up in the final analysis on the limit cycle. This means that any disturbance to the steady-state mode is automatically equalized after the cause of the disturbance is removed. Under such conditions the limit cycle is called stable. It can be readily seen now that the three methods of establishment of oscillations, shown in Fig. 73, correspond in Fig. 80 to the following initial points on the phase trajectory, a) at the origin, b) outside the limit cycle, and c) on the limit cycle.

Let us now turn to a hard oscillator. This case

E.

Outstanding RELIABILITY from - 60°C. to +125°C. sea level to 70,000 ft.

Air-Marine's new S frame motor offers outstanding reliability even at extremes of temperatures and altitude. Two models are available: the Hi-Slip which increases speed with altitude lower densities, and a CONSTANT SPEED, 11,000 rpm or 20,000 rpm.

T5

α.

ARD

1959

Both models are available in 2 or 4 pole units up to 1/150 h.p. These rugged design, epoxy-potted. 400 cps induction motors are obtainable for 115 V. 1Ø or 208 V. 3Ø operation.

air · marine motors, inc. Amityville, New York Los Angeles, Calif.

For further information about our complete line see page 292, I.R.E. Directory -IRCLE 313 ON READER-SERVICE CARD E ECTRONIC DESIGN • April 1, 1959

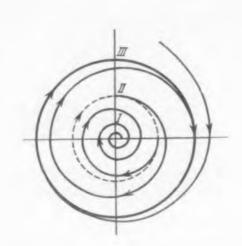


Fig. 81. The phase portrait of a hard oscillator showing the regions—inside the unstable cycle (1), between the stable and unstable cycles (11), and outside the stable cycles (111).

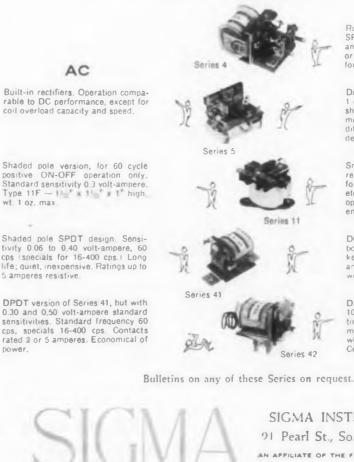
differs from the one just considered only in that the attenuation is positive with small amplitudes and the phase trajectories wind towards the origin. There exists an amplitude for which the attenuation vanishes the first time. This value of the amplitude corresponds to its own limit cycle.

However this cycle is unstable. The phase trajectories do not wind towards it, they evolve away from the limit cycle, either inside towards the origin or to the region outside the unstable limit cycle. In this region the attenuation is negative and the amplitude increases until the attenuation again vanishes. There, a second limit cycle is produced, which now is stable.

The difference between the stable limit cycle and the unstable one, from the point of view of the phase plots, is that the phase trajectories move towards the stable cycle and move away from the unstable one. This is illustrated by the phase portrait of a hard generator shown in Fig. 81.

The phase plane can be broken up into three regions; *I*-inside the unstable cycle, *II*-between the stable and unstable cycles, and *III*-outside the stable cycles. No self-excited oscillations will be launched if the initial conditions are represented by a point in region *I*. They will be launched, however, if the initial point lies in region *II* or *III*.

The difference between the last two cases is that in the former case the amplitude will build up to a steady-state value, and in the second it will diminish to this value. The difference between a soft and hard oscillator, represented by Figs. 80 and 81, was explained previously by Figs. 70 and 71 and by Figs. 56 and 57. It is useful to compare all three pairs of diagrams, for they are different representations of the same relations.


(To be continued)

UNSUNG HEROES

We wish we could afford a newer automobile with an emblazoned banner for *each* of these gentlemen*, to tell the whole relay-using world of their accomplishments. For these are the souls who design that seldom-heralded product – the plebeian Sigma relay. Unlike more renowned Sigma engineers, they can never go home at night and say "Today I built a relay that will make history"; instead, their efforts will only keep someone's juke box, remote-controlled toy, electric blanket or burglar alarm working.

Here are five of their achievements that are about as experienced as relays can be; the "4", "5" and "41" have proved themselves since early WW II days, the others almost as long. Being old standbys also means they're for sale and deliverable in quantity.

> Perhaps you recognize the man on the spare tire as Mackinaw L. Mundane of April 1958 fame

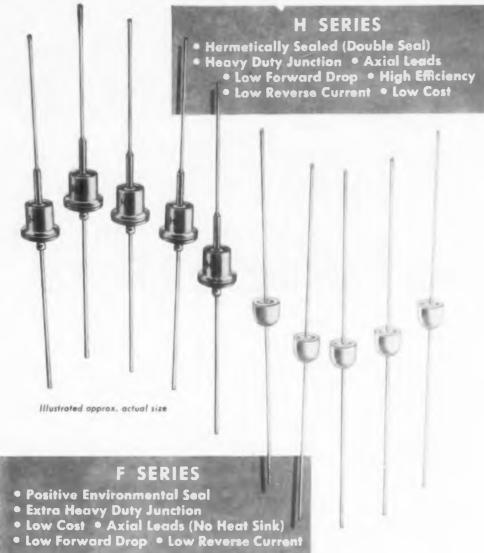
DC

Rugged, lightweight general-purpose SPDT design with adjustable pull-on and drop-out. Standard sensitivity 20 or 50 mw., rated 2 amperes resistive for 100,000 operations.

Dual colls, SPDT, sensitivities from 1 mw. to 2 watts. High stability and shock resistance. Available adjustments include precision DC, close differential, meter protection, breakdelay, etc.

Small, low cost (\$1.50-2.45) SPDT relay. Ideal for remote control units for toys and TV sets, door openers, etc. Mechanical life 100,000,000 operations. Four mtg. styles, unenclosed only.

DC sensitivities 40 to 200 mw. Fast, bounce-free switching; useful for keying; speeds to 100 pps. Shock and constant acceleration up to 100 g will not cause damage.


DPDT version of Series 41, but with 100 and 200 mw. standard sensitivities. Can serve as output relay of many electronic controls; often used where UL approval is required. Contacts rated 2 or 5 amperes.

SIGMA INSTRUMENTS, INC. 91 Pearl St., So. Braintree 85, Mass.

AN APPILIATE OF THE FISHER PIERCE CO. (Since 1939)

CIRCLE 314 ON READER-SERVICE CARD

750 MILS TO 55°C-100 TO 600 PIV

Tarzian F&H SERIES SILICON RECTIFIERS

F SERIES-ELECTRICAL RATINGS-Capacitive Loads

	Moz.		Current Ratings-Amperes												
S. T.		Peak	RMS	Max	D. C.	Load	M	as. RA	45	Mox.	Recurren	t Peak	Surge	- 4MS	Max.
	Volts	55 C	100 C	150 C	55 C	100 C	150 C	55 C	100 C	150 C	55 C	100 C	150 C		
F=2	200	70	75	5	.25	1 875	1.25	625	7.5	5	2.5	75	75	35	
F-4	400	140	75	.5	25	1.875	1 2 5	625	7.5	5.	25	75	75	35	
F-6	600	210	75	.5	.25	1.875	1.25	.625	7.5	5	2.5	75	75	35	

H SERIES-ELECTRICAL RATINGS--Capacitive Loads

	Mox. Peak S. T. Inverse		Current Ratings-Amperes											
S. T.			Mox. D. C. Load		M	Max. RMS /			Max. Recurrent Peak			Surge - 4MS Max.		
	Vells	55 C	100 °C	150 C	55 C	100 C	150 C	55 C	100 C	150 E	55 C	100 C	150 C	
10 H	100	35	.75	.5	.25	1.875	1.25	.625	7.5	5	2.5	75	75	35
20 H	200	70	.75	.5	.25	1.875	1.25	.625	7.5	5	2.5	75	75	35
30H	300	105	75	5	.25	1.875	1.25	.625	7.5	5.	2.5	75	75	35
40 H	400	140	75	.5	.25	1.875	1.25	.625	7.5	5.	2.5	75	75	35
50 H	500	175	.75	.5	.25	1.675	1.25	.625	7.5	5.	2.5	75	75	35
60H	600	210	.75	5	25	1.875	1.25	625	7.5	5	2.5	75	75	35

Write for design notes No. 30 and 31

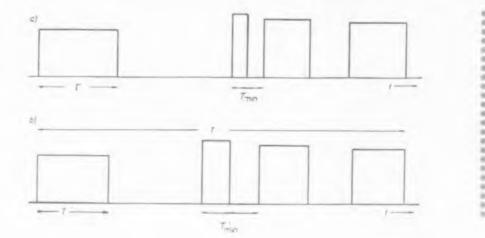
SARKES TARZIAN, INC., Rectifier Division DEPT. C-3 415 NORTH COLLEGE AVE., BLOOMINGTON, INDIANA

In Canada 700 Weston Rd., Toronto 9, Tel. Roger 2-7535 • Export: Ad Auriema, Inc., New York City CIRCLE 315 ON READER-SERVICE CARD

GERMAN ABSTRACTS

E. Brenner

Bandwidth Reduction for Transmission of Radar Signals



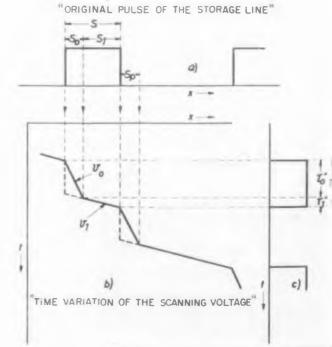

Fig. 1. (a) Pulse train of a radar signal (b) Effect of free quency compression in (a)

Fig. 2. Scheme for pulse stretching using a storage tube and a scanning beam with va-

riable-slope deflection voltage.

SING storage techniques, it has already been shown that the bandwidth for the transmission of signals from panorama radars can be rethiced by a factor of about 100 to 200 kc for harbor control and to 50 ke for air communication safety. These techniques are based on the recognition of the information content of the radar signal (See ED, German Abstracts, Sept. 1. 1957). It is possible to compress the information into an even narrower band, the eventual goal being 4 kc, the band of ordinary telephone channels.

The information of the radar signals is contained in the duration and spacing of pulses

"TIME VARIATION OF THE OUTPUT SIGNAL

lown in Fig. 1a. The lowest frequency comment of the signal, f_{min} , is the reciprocal of the tational speed of the antenna. The largest freency, fmax, is determined either through the ration of the shortest pulse or the shortest "no lse" interval, whichever is the shorter time. noting this interval by τ_{min} , the maximum freency, $f_{max} = 1/(2 \tau_{min})$.

The compression of the bandwidth beyond at has already been described above, depends stretching the shortest pulse (or "silent") inval to τ_{min} as shown in Fig. 1b. Choosing the ear relationship

$$\tau^* = a \tau + b \tag{1}$$

he original signal can be reconstructed at the ceiving end by using the inverse transforma-0.011

$$\tau = \tau \quad a - b \quad a \tag{2}$$

Denoting by T the transmission time of a line the picture and defining the compression ratio results in

$$\mu = T |\tau_{min}| \qquad (3)$$

$$k = \tau^*_{min} |\tau_{min}| \qquad (4)$$

(5)

(6)

I Jun

anis e reharttion COLadar t. 1. ation goal han-

been

COD ulses

61

ti

SNAL

95

The linear transformation from τ to τ° can be (complished by using a scanning beam whose mizontal deflection is controlled by two speeds in shown in Fig. 2. During the writing interval here exists on the storage line a charge distribufrom which in the x-coordinate corresponds to the niginal, uncompressed signal. A pulse of length is transformed into a pulse of duration τ° , by controlling the speed of the scanning beam as indicated in Fig. 2b. The lengths s_0 is chosen to merespond to the shortest original time inter-

and checkerboard pattern is obtained.

 $m = \frac{1 - mk}{1 - m} \frac{p}{p}$

 $h = \tau_{mm} \times \frac{k-1}{1-m/p}$

where *m* is the number of picture elements per

me. Evidently $k_{max} = p m$, corresponding to

l=0 and b=T/m, represents the limiting value

the compression ratio since in that case all

mlses are equal in length, all information is lost

Vil Tmin-The maximum frequency compression which upears to be practical is below 10, the value 8 ng typical.

The original paper also includes detailed deption of the apparatus used for the signal opression.

ibstracted from an article by H. Meinke and Rihaczek, Nachrichtentechnische Zeitschrift, 11, No. 8, August 1958, pp 398-404.

Some Ideas for your file of practical information on drafting and reproduction

One of the ways to judge a skilled craftsman is by the tools he uses. They're invariably the best he can find - chosen to lighten his work, sharpen his skills. And, if the craftsman is a draftsman, they are, more often than not, products of K&E.

It may be that some of these products have escaped your attention (after all, we offer something over 8000 items). That's why we suggest you pay a visit to your K&E dealer whenever you can. It's a liberal education on what's new - as well as what's tried and true - in drafting equipment.

You'll find many products like these which can be highly useful in your work ...

K&E "Quick Set" Bow Compass

The most remarkable feature of this compass is the speed and ease with which you can change settings-from diameters of 12 inches to 1/16 inch. With one hand, you can increase or decrease radii instantly and exactly. To go from small to larger radius. just press a spring release, and the legs will leg pencil compass, and the N1070 combination with interchangeable pen and pencil inserts. Both come with a box containing leads and spare needles. And with the N1070, a pen handle is provided for the pen insert which permits its use as a ruling pen. The compass can also be used as a divider by substituting one of the spare needle points for the lead in the pencil insert

from

KEUFFEL & ESSER CO .----

Marathon[®] Ruling Pens

K&E Marathon Long Line and Wide Line Ruling Pens (1092) hold an extra large

CIRCLE 316 ON READER-SERVICE CARD

expand automatically. Stop approximately where you want, and make precise adjustments with a micrometer screw. To go from large to small, simply squeeze the legs of the compass together, then adjust precisely.

The K&E Quick Set combines the rigidity and precise adjustment of a standard how compass, the simplicity and speed of a friction type compass, plus the finger tip control of K&E's unique design. You have to try the Quick Set to appreciate it fully. Two types are available. The N1071 fixed

	knob, move the scriber arm to the desired combination of height and slant, and tight- en. That's all there is to it.
	Stop in to see your nearest K&E dealer and ask to see these three products—small, perhaps, but mighty handy in the drafting room. Or drop us a line by mailing the coupon below
KEUFFEL & ESSER CO., Dep I'd like more information on:	ot. ED-4, Hoboken, N. J.
 K&E Quick Set Compass Marathon Ruling Pens 	Leroy Height and Slant Control Scriber nd address of my nearest K&E Dealer.
Name & Title	i
Company & Address	
	-1618

ink supply = draw lines up to eight times longer than ordinary ruling pens. And because they are pre-set, line widths are always uniform, easy to match with complete accuracy. Ink flow is regular and even, lines are always sharp and clean edged.

An important feature of K&E Marathon Ruling Pens is that they will not leak. They can be laid on the work surface without risk of ink flowing out. That means you can fill several pens of different widths, use them as freely as you'd use pencils. They're easy to clean, too.

K&E Marathon Long Line Ruling Pens are available individually in line widths of .006, .009, .013, .020 inch - or in sets of three pens in line widths of .009, .013, .020 inch in a Leatherite case. Marathon Wide Line Ruling Pens come in line widths of .030 and .060 inch.

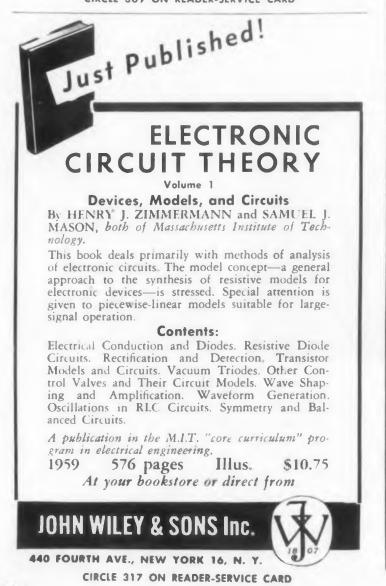
Lerov[#] Height and Slant Control Scriber

A versatile new Leroy scriber is now available which greatly expands the variety of lettering possible from a standard Leroy template.

Now, with the new Height and Slant Control Scriber (3237-12), you can form characters from vertical to slanting at any angle up to 45°

forward. You can vary height from 60% to 150% of the size of letters on the template used. The width of letters remains the same.

Combinations of height and slant can be set quickly and easily. You just loosen the


E CTRONIC DESIGN • April 1, 1959

cators. Compact, low cost, tamper-proof. Standard ASA MIL dimensions, $21_2^{\prime\prime}$ and $31_2^{\prime\prime}$ sizes. Easy to read standard size counter registers 1/10 hour steps to 9999.9 or hour steps to 99999. Hermetically sealed. Shielded. Starts, operates continuously from -55° C to $+85^{\circ}$ C. For 110-125 or 220-250 volts 60 cycle A.C. Bulletin on request. Marion Electrical Instrument Co., Manchester, N. H., U. S. A.

Copyright @ 1958, Marion

meters

GERMAN ABSTRACTS

E. Brenner

Transmission of Speech

WHEN a message is transmitted by means of pulse apprelia it of pulse-amplitude modulation (PAM), a train of pulses with pulse spacing 2T is used to represent the signal if the highest significant frequency component in the message is 1/27. The message is reconstructed without distortion when the PAM signal is passed through a distortionless low pass filter with cut-off frequency 1 2T. Since transmission using pulse code modulation (PCM) is particularly insensitive to noise in the communication channel, information from the PAM is encoded into binary signals. For this purpose it is necessary to subdivide the amplitudes into discrete levels and transmit the PCM signal through a channel whose cut-off frequency is at least $(\log_2 m)/2T$ if m levels are used. The use of discrete steps results in signal distortion which is generally described by a distortion factor k. where

$$k = \frac{1}{(m^2 - 1)^{1/2}}$$
(1)

if it is assumed that all amplitudes in the original message are equally probable.

While a small value of m, when used in Eq. 1, results in a large value of k, the ease with which speech can be understood is not related to this "distortion factor" in a simple manner.

In order to investigate this feature of PCM, a device with the step-type transfer characteristics shown in Fig. 1 can be constructed. Even if only one step is used, words and sentences can be understood with surprising consistency. While this has been explained by noting that the information contained in the zero crossings of the speech signal (frequency modulation) is preserved with the one-step transfer characteristics, it is also true that the harmonic amplitudes in the output due to the signal are larger than the distortion components generated by the limiting. If more than one step is used, it is found that optimum values of step intervals $(x_1, x_2, \ldots, y_1, y_2, \ldots)$ correspond to each situation. These values become less critical as the number of steps is increased. In general, an even number of steps gives better results than does an odd number. When the

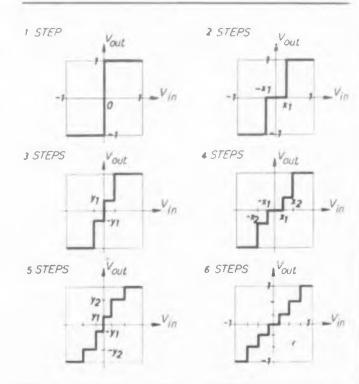


Fig. 1. Step-type transfer characteristics used to investigate the effect of levels of PAM signals which represent a spoken message.

step transfer curve has only four steps (see Fig. 1 even meaningless syllables are understood with 65 per cent success, although Eq. 1 indicates distortion factor of 26 per cent.

Abstracted from an article by K. Kuepfmuelle and W. Andrich, Nachrichtentechnische Zeit schrift, Vol. 11, No. 8, August 1958, pp 389-392.

Why the new interest in flame retardance of plastic laminates?

Sheet of Synthane to which blowtorch is being applied

Automatic Speech Recognition

A SURVEY of the published literature which deals with the automatic recognition of poken speech reveals four motivations for investigation of the problem. The first of these is the narrower frequency band which can be used in transmission; thus the Vocoder (H. Dudley, *Jour. Acoust. Soc. Amer.*, 11, 1939, p 169) makes possible the transmission of speech within a 50 cps band and 40 db signal noise ratio while ordinary telephone transmission requires a 3100 cps band with 48 db signal noise ratio. Sound-code telegraphy requires only a 15 cps band and 10 db signal/noise ratio with correspondingly greater loss in "personalized" secondary information conreming the speaker.

Second application for automatic speech recognition devices lies in the area of input devices for intomatic computers. While a digit recognition apparatus has been constructed at RCA, it cannot as yet be termed fully successful because it must be readjusted to recognize the speech "peculiarities" of individual speakers. The problem of the automatic typewriter forms the third class of potential applications and the transcribing of speech for the deaf is the fourth class.

Three approaches to the problems can be distinguished. The first of these is the analysis of the frequency spectrum of spoken language. While a great deal of progress on vowels has been made, the spectrum of a consonant is deternined to a great extent by the vowels which bracket it. A second approach deals with the bracket it. A second approach deals with the bracket it information bearing elements of preech. A third line of investigation is concerned with the physiological process of speech and the presponding coding.

The original paper includes a brief summary the 43 references which are cited

Abstracted from an article by K. Steinbuch, chrichtentechniache Zeitschrift, Vol. 11, No. 9, ptember 1958, pp 446-454.

Vin

-Vin

Vin

to ir

which

ig. l

wit

ites

uelle

92.

Zeit

1959

that

/1, 1/2, alues

> While it is unlikely you will ever take up your blowtorch to sample the flame resistance of laminated plastics, this property emerges as a lively topic for discussion among engineers

> discussion among engineers. Admittedly its import is for the councils of those whose equipment is flame-exposed or is powered, amplified or controlled by vacuum tubes and upon which, clustered or confined, you could properly fry an egg.

> Under the circumstances, it is appropriate to ask what laminated plastics (or Synthane, to name our choice) have to offer in the way of flame retardance, and how this property relates to the other, and more widely used, advantages of laminates.

Two Specific Flame Retardant Laminates

There are two grades of Synthane laminates specifically earmarked for flame retardance—Grades FR-1 and FR-2. Except for its flame retardance, Grade FR-1 closely resembles standard paper base phenolic Grade XX Synthane. Grade FR-2 is similar to Grade FR-1, but may be readily hot punched and would be used where flame retardance with emphasis on punchability was desired.

Many Grades of Synthane Self Extinguishing

Many standard grades of laminates though they contain no flame retardant additives—are self extinguishing. That is, they do not support combustion when the flame is removed.

For example, the fabric and glass melamine grades are excellent for their self-extinguishing characteristics. The same is true of the asbestos grades. Why, then, special flame retarding grades? The answer is partly financial. The flame retardant grades FR-1 and FR-2 offer good electrical and mechanical properties (similar to Grade XX) plus excellent flame retardance and at a moderate cost. When the electrical or mechanical requirements are severe it is they that may control the choice of laminate even though flame retardance is still necessary. And it just so happens that the cost of producing grades with superior electrical and mechanical properties tops the cost of producing flame-retardant Grades FR-1 and FR-2.

Comparison of Properties of Synthane Laminates with Relation to Flame Retardance

reididdiice

Property	FR-1	FR-2	XX	С	L	C-M	L-M	G-5	6.8	A-M	AA-N
Flame Retardance	E	E	Ρ	ę	Ρ	E	E	E	E	E	E
Heat Resistance	F	F	P	Ρ	Ρ	G	G	E	E	E	E
ARC Resistance	Ρ	P	Ρ	P	Ρ	E	E	E	E	E	E
Mechani- ical Strength	F	F	F	G	G	G	G	E	E	8	G
Dimen- sional Stability	F	F	F	Ŧ	F	G	G	E	E	E	E
Moisture Resistance	£	E	G	G	G	G	G	ε	Ε	E	E
Dielectric Strength	E	E	G	F	F	F	F	E	E	F	F
Machina- bility	E	E	E	E	E	E	E	F	F	F	F
Cost	Low- est		ow-	Low	Mod	Mod	High- er	High-	Mod	Low-	High- er

Obviously there is more to this business of selecting an electrical insulation than flame retardance. In any spot where flame retardance is a factor it is prudent to counsel with us, directly or through our representatives, to secure

CIRCLE 318 ON READER-SERVICE CARD

for yourself the Synthane Grade which supplies all of the properties you need in combination and at a reasonable cost. Our aim is to help you obtain the most for your money so that you may find coming to us a profitable habit. For further information about

For further information about Synthane standard or flame retardant grades write Synthane Corporation, 42 River Road, Oaks, Pa.

Flame retardant test on Synthane for switchgear application. Heat is supplied by coi' circling the sample. Temperatures up to 1600°-1800°F are measured with optical pyrometer.

LECTRONIC DESIGN • April 1, 1959

WHITE ALICE

POLE VAULT

TEXAS TOWERS

EIMAC KLYSTRONS performance proved in original Tropo-Scatter systems

Eimac klystrons are used in nearly every major military and commercial tropo-scatter system in the world. The list is impressive: Pole Vault, Texas Towers, Dew Line, White Alice, SAGE, NATO, Florida-Cuba TV, and numerous commercial networks. They have been selected for systems from Norway to North Africa, from the Arctic Circle to the Andes, from the United States to the Far East.

In most of these systems Eimac klystrons are used exclusively. The reason is simple: Eimac-pioneered external-cavity klystrons make it possible to generate high power at ultra-high frequencies simply, reliably and at low cost. With the Eimac externalcavity system, tuning cavities, couplers and magnetic circuitry are all external to and separate from the tube. This permits ex-

ceptionally wide tuning range and simplifies equipment design.

Cost is lowered because this external circuitry is a permanent part of the transmitter and is not repurchased when tubes are replaced.

The reliability of these high-performance devices is exceptional. Some of the original Eimac klystrons installed in Project Pole Vault—the first major tropo-scatter network ever established — are still going strong with more than 25,000 hours of air time logged to their credit.

Eimac manufactures a complete line of amplifier and pulse klystrons covering the most important areas of the UHF spectrum. Write our Application Engineering Department for specific information.

MEETINGS

Calendar of Events

March

31-2 9th Symposium on Millimeter Waves, New York, N.Y.* April

- 1-29 World Meteorological Organization, 3rd Session of Congress, Geneva, Switzerland
- 2-3 Electrically Exploded Wires Conference, Boston, Mass
- 2-4 Association for Computing Machinery, Cleveland, Ohio
- 5-10 5th Nuclear Congress, Engineers Joint Council, Cleve land, Ohio'
- 6-8 3rd Annual Astronautics Symposium (AFOSR), Washington, D.C.
- 6-9 16th Annual British Radio and Electronic Component Show, London, England
- 8-10 AIEE Southern District Meeting, Atlanta, Ga.
- Southeastern Section, American Physical Society, New 9.11 Orleans, La.
- 12-19 1st World Congress of Flight, Las Vegas, Nev.
- 13-15 Hydraulics Conference (ASME), Ann Arbor, Mich.
- 13-17 29th Annual National Packaging Conference (AMA) Chicago, III.
- 14-15 Electrical Heating Conference (AIEE), Philadelphia, Pa
- 14-15 Conference on Industrial Instrumentation and Control Chicago, III.
- 16-18 Southwestern IRE Regional Conference and Electronics Show, Dallas, Tex.
- 16-30 Engineering, Marine, Welding, and Nuclear Energy Exhibition, London, England
 - 17 Current Developments in the Production of High Vacuum Symposium, London, England
- 18-22 27th Annual Meeting ASTE, Milwaukee, Wisc.
- 20-21 Techniques in Electronic Instrumentation (IRE), Phila delphia, Pa.
- 20-22 1st Annual Southeastern Regional ISA Conference & Exhibit, Gatlinburg, Tenn.
- 21-22 Technical Conference on Electronic Data Processing (IRE), Cincinnati, Ohio*
- 22-24 AIEE East-Central District Meeting, Akron, Ohio*
- 28-30 13th Annual Power Sources Conference, Atlantic City N.J.
- 29-1 AIEE Empire District Meeting, Syracuse, N.Y.

May

- 3-7 Symposium on Electrode Processes, Philadelphia, Pa
- 4-6 11th National Aeronautical Electronics Conferen (IRE), Dayton, Ohio
- 5-7 URSI Spring Meeting (PGI, PGIT, PGGT), Washin ton, D. C.
- 5-7 7th National Conference on Electro-Magnetic Relay Stillwater, Okla.
- 1959 Electronics Components Conference (IRE, AIE 6-8 EIA, WCEMA), Philadelphia, Pa.
- 6-8 7th Regional Technical Conference and Trade Sho (IRE), Albuquerque, N. Mex.

S

ork, N.Y.*

ession of

on, Mass

and, Ohio

il, Cleve

- 11–12 Symposium on Industrial Uses of Radioisotopes, Atlanta, Ga.
- 11-13 National Power Instrumentation Symposium, Kansas City, Kan.
- 11-13 National Symposium (PGMT, IRE), Boston, Mass.
- 11 13 2nd Annual Joint Conference on Automatic Techniques, Chicago, III.
- 18-20 5th Annual National Symposium on Instrumental Methods of Analysis, Houston, Tex.
- 8-20 Electronics Parts Distributors Show, Chicago, III.
- 19-21 AIEE Middle Eastern District Meeting, Baltimore, Md.
- 25-27 National Telemetry Conference (IAS, ISA, AIEE, ARS), Denver, Colo.
 - 15-29 International Convention on Transistors and Associated Semi-Conductor Devices, London, England

1-3 National Symposium on Microwave Theory and Tech-

3-5 Armed Forces Communications and Electronics Assoc.,

4.5 3rd National Conference on Production Techniques

10 12 2nd International Symposium on Gos Chromatography

15-18 Summer Meeting, Institute of Aeronautical Sciences,

15:20 1st International Conference on Information Process-

16-18 International Symposium on Circuit and Information

21-26 Summer and Pacific General Meeting AIEE, Seattle,

24-26 2nd Nuclear Instrumentation Symposium, Idaho Falls,

29.1 National Convention on Military Electronics (IRE),

9th Symposium on Millimeter Waves, March 31-

Ungineering Societies Bldg., New York, N.Y. Spon-

wored by IRE with the support of the AFOSR,

Office of Naval Research, and the U. S. Army signal Research & Development Laboratory the

Vent will be held without a charge for admission

registration. As in the past, recognized auorities will summarize the present state of the

t and recent outstanding advances will be pre-

nted by research workers from university, in-

istrial, and government laboratories throughout

e world. Further information may be obtained

om: The Microwave Research Institute, Poly-

chnic Institute of Brooklyn, 55 Johnson Street,

17-27 International Plastics Exhibition, London, England

Semi-annual Meeting, American Rocket Society, San

niques (IRE), Cambridge, Mass.

(ISA), East Lansing, Michigan

Theory (IRE), Los Angeles, Calif.

(IRE), San Mateo, Calif.

Diego, Calif.

Los Angeles, Calif.

ing, Paris, France

Washington, D.C.

Items described herewith

Wash

Idaho

April 2.

Annual Meeting, Washington, D.C.

), Wash June

8 11

- omponent
- iety, New
- Aich.
- (AMA),
- lphia, Pa
- I Control,
- lectronics
- r Energy
- of High
- E), Philo
- erence &

rocessina

hio*

- ntic City
- iia, Pa onferen
- Washin
- ic Relay
- RE, AIE
- ...,
- ide Sher
- ECTRONIC DESIGN April 1, 1959

BELDENAMEL* Magnet Wire

105C (Class A), oleoresinous, P.E.

Iden

Engineered Wire for Engineered Products Supported by Complete Factory Stocks

- 1. Low cost.
- 2. Most uniform diameters of any film-coated wire (except CELENAMEL).
- 3. Outstanding electrical qualities—continuity of film (mercury test)—voltage breakdown.
- 4. Particularly suitable for paper section coils.
- 5. Extremely close wire tolerances—uniformly accurate coil resistances.

Other Magnet Wires-For Every Requirement

- 105C (Class A), Vinyl Acetal-Nylon-NYLCLAD*
- 130C-155C (Class B-F), Polyester-BELDTHERM*
- 105C (Class A), solderable Polyurethane-BELDSOL*
- 105C (Class A), solderable Cellulose acetate-CELENAMEL®
- 180C-130C-105C (Classes H, B, & A)-SQUARES & RECTANGULARS

*Belden Trademark Reg. U. S. Pat. Off.

One Wire Source for Everything Electrical and Electronic

Magnet Wire • Lead Wire • Power Supply Cords, Cord Sets and Portable Cord • Aircraft Wires Electrical Household Cords • Electronic Wires Welding Cable • Automotive Wire and Cable

01A01H8 CIRCLE 323 ON READER-SERVICE CARD

127

ooklyn 1, N.Y.

How do you suppress R. F. interference without complicating design?

At Metal Textile, we've been helping design engineers do just that since 1943! We've tackled RF suppression problems in applications ranging from radar cabinets (shown below) to highly sensitive navigational guidance systems—and we solved them all... without complicating the design factor. With over 600 proven electronic weather-stripping materials already to their credit—our engineers are equipped and ready to take on your particular shielding problem. For pest results, of course, we prefer to be called in during the development stage where shielding can be conveniently integrated into overall design. Yet even when RF leakage is detected in the actual production model—our experience can often help you solve the problem quickly, economically and without major redesign. Write or call without obligation: Metal Textile Corporation, Electronics Division, 647 East First St., Roselle, New Jersey.

METAL TEXTILE CORPORATION ...world's largest and oldest producer of knitted wire products A DIVISION OF GENERAL CABLE CORPORATION

CIRCLE 324 ON READER-SERVICE CARD

MEETINGS

5th Nuclear Congress, April 5-10

Public Auditorium in Cleveland, Ohio. Theme: For Mankind's Progress. Sponsored by more than thirty leading engineering, scientific and management groups, forty sessions are to be held. Features of the meeting will be engineering papers dealing with advances in reactor technology and the use of radioactive materials, a trade show, the ATOMFAIR, talks devoted to problems of industrial management in the nuclear field and papers devoted to laboratory problems in radioactive materials. For information: Engineers Joint Council, 29 West 39th St., New York 18, N.Y.

Technical Conference on Electronic Data processing, April 21-22

Enginering Society Bldg., Cincinnati, Ohio. Conference Theme: Electronic Data Processing. Papers to be presented on applications of data processing to such fields as communications, radar, computers, missile technology, chemical engineering, machine tools, and nucleonics.

AIEE East-Central District Meeting, April 22-24

Sheraton Hotel, Akron, Ohio. To be held in conjunction with the 11th Annual AIEE Rubber and Plastics Technical Conference, there will be a program of more than 50 technical papers and discussions. A special symposium on "Heating for Plastics Extrusion" has been scheduled together with such topics as: industrial heating and lighting; automation; computers; communications; high voltage cables and transmission; electric drive equipment; relaving and distribution; static components; nylon tire cord processing; rubber processing; standards for the rubber and plastics industry; its atmospheric contamination problems: and its use of new machines and processes; magnetic amplifiers, transistors, and semi-conductors.

Paper Deadlines

May 1: Deadline for papers to be presented at WESCON, Aug. 18-21 to be held in San Francisco, Calif. Required are 100-200 word abstracts, together with complete texts or detailed summaries which should be sent to Dr. Karl R Spangenberg, WESCON, 60 West 41st Ave., San Matco, Calif.

Lear offers unlimited opportunities for advancement and greater responsibilities to creative minded, electronic engineers because ...

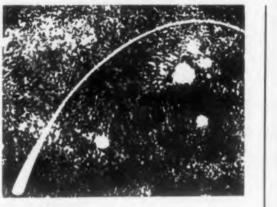
You aren't submerged in a "chain of command." You are in direct contact with the decision makers.

Lear, for twenty-eight years a pioneer in precision flight equipment, is moving ahead in many new fields. Investment companies recognize Lear as a prime "growth" company.

If you are experienced in the design and development of air and/or ground based communication and navigation equipment, you can look for immediate recognition.

If you would like to work in sunny Southern California (just minutes from world famous Santa Monica beaches); write to:

L. S. PECK, Manager Industrial Relations

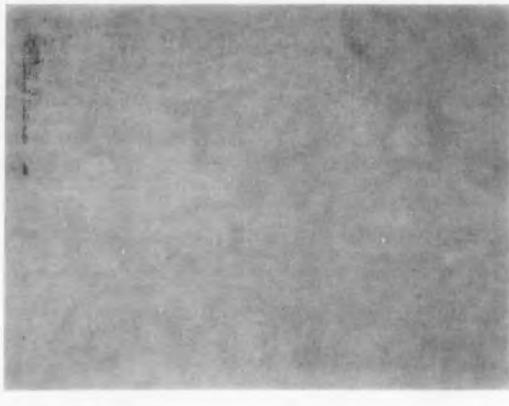

INC., Dept. ED-4 3171 South Bundy Drive, Santa Monica, Calif. CIRCLE 877 ON READER-SERVICE CARD ELECTRONIC DESIGN • April 1, 1959

, April

be held Annual chnical ram of nd dis-"Heatbeen nics as: utoma-; high electric stribue cord ndards try; its blems: procsistors.

to be quired er with maries *arl* R *st* 41st

1959



Bendix YORK

offers the opportunity and the challenge of key assignments in...

GUIDED MISSILE ELECTRONICS ELECTRONIC ENGINEERS MECHANICAL ENGINEERS

Here is your chance to prove your ability doing *important* work on missile fuzing, beacons, guidance, packaging and related test equipment. We have key openings that offer you the opportunity to move ahead rapidly in your profession. At Bendix York, you benefit from the advantages of a small company atmosphere in a growing division of one of the nation's largest engineering and manufacturing corporations. Also, you'll enjoy the "good life" in our beautiful suburban community. Good salaries, all employee benefits.

It's great to be proud of the place you work

To some engineers, a job is a job is a job. But it doesn't have to be. It *can* be a career to take pride in, the way the engineers and scientists at Autonetics do.

These young men have already made Autonetics a leader in electronics and electromechanics. For example, they designed the inertial navigation systems for the USS Nautilus and Skate and the monopulse radar system for the Air Force's F-105.

These same young men now are working on new developments—an even more advanced inertial navigation system for the first nuclear-powered Polaris-carrying submarines...the guidance and control systems for the Minuteman and GAM.77 missiles... and many more.

Today at Autonetics there is room for engineers and scientists who want to have a part in these history-making activities. Please send your resume to Mr. V. D. Benning. 9150 East Imperial Highway. Downey. California.

Autonetics

INERTIAL NAVIGATION / ARMAMENT CONTROL / FLIGHT CONTROL / DATA PROCESSING

Among the achievements of Autonetics' young men: the first successful airborne all-inertial navigation system ...first navigation system accurate enough to guide the USS Nautilus and Skate on their historic veyages beneath Arctic ice...first successful automatic star tracking by an inertial navigation system during daylight flight...first completely maneuverable, inertially stabilized gyro platform...first successful completely automatic landing system for supersonic missiles and aircraft...first transistorized portable digital computer with "big computer" capabilities.

CIRCLE 871 ON READER-SERVICE CARD E-ECTRONIC DESIGN • April 1, 1959 You can explore new areas at IBM in

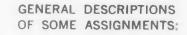
DATABCD EFGHIJK LMNOPQR STUVWXY Z&\$?!:; COMMUNICA

Creative people at IBM are hard at work on a problem that has vexed man since the dawn of history—communication with his fellow beings. The rapid transmission of precise data is vital in this fast-moving age. One group of engineers and scientists at 1BM is working on multiplexing techniques to channel data. This data has to be made available at maximum speed at desired times and places. Another group is developing computer systems that will control complete warehousing or industrial operations. For the military, IBM is designing a computer that will make available in real time, data concerning troop strength and dispositions. This important work needs imaginative people. If you want to be a part of this world of discovery and development, there are many opportunities at IBM.

A NEW WORLD OF OP: STUNITY. Both technical and administrative engineering careers offer parallel advancement op_t ortunities and rewards at IBM. You will enjoy unusual professional freedorn, comprehensive education programs, the assistance of specialists of diverse disciplines, and IBM's wealth of systems know-how. Working independently or as a member of a small team, your individual contributions are quickly recognized and rewarded. This is a unique opportunity for a career with a company that has an outstanding growth record.

CAREERS

For details, write, outlining background and interests, to: Mr. R. E. Rodgers, Dept. 555 D I IBM Corporation 590 Madison Avenue New York 22, N. Y.


INTERNATIONAL BUSINESS MACHINES CORPORATION

While in New York for the I.R.E. Show, you are cordially invited to visit the IBM booth and the IBM Product Display Center at IBM Headquarters, 590 Madison Avenue at East 57th Street.

CAREERS AVAILABLE

CIRCUIT DESIGN & RESEARCH COMMUNICATIONS COMPONENT ENGINEERING COMPUTER ANALYSIS & DESIGN CRYOGENICS ENGINEERING PHYSICS INERTIAL GUIDANCE INDUSTRIAL CONTROL INFORMATION THEORY LOGICAL DESIGN MATHEMATICS OPTICS PROGRAMMING RADAR REAL TIME STUDIES SEMICONDUCTOR DESIGN SOLID STATE DEVELOPMENT SYSTEMS DEVELOPMENT

Qualifications: B.S., M.S., or Ph.D. in Electrical or Mechanical Engineering, Physics, or Mathematics — and proven ability to assume a high degree of technical responsibility in your sphere of interest.

SYSTEMS ENGINEERS to analyze and design computer systems. Backgrounds required include analog to digital conversion; analyses and preparation of diagnostic programs; development of complex devices in servo-mechanisms or radar for advanced systems.

LOGICAL DESIGNERS with two to four years' experience outlining logical blocks. Previous computer experience desirable. Some experience in transistorized equipment specification helpful. Must have strong interest in the theoretical and practical aspects of checking means and various codes, redundancy, error detection and correction, information flow, and other factors.

SOLID STATE ENGINEERS AND SCIEN-TISTS to do applied research on precision linear circuitry employing solid state devices using analog to digital conversion techniques and sample data. Experience in feed-back amplifier design desirable. Also opening for engineers with experience in precision, low-level linear circuits employing solid state, to work on analog to digital conversion techniques.

INDUSTRIAL CONTROL ENGINEERS to perform precision AC and DC electric measurements. Assignments in amplifier design, relay circuit logic, test equipment development, analog to digital conversion, and noise reduction.

CIRCUIT DESIGNERS to design transistor amplifiers, relay lines, transistor tube conversion circuits. Develop systems circuit specifications, perform circuit evaluation experiments and reliability criteria. Other openings in circuit design for magnetic devices.

MATHEMATICIANS to do digital computer programming, handle analysisof variance and multiple-regression type problems. Design experiments for wide variation of engineering applications. Knowledge of application of probability or game theory desirable.

At MOTOROLA in PHOENIX it's YOUR PROJECT all the way through

Ideas are the life-blood of an operation devoted exclusively to diversified electronics research, development and production. So it's logical, we think, for the project engineer to see his idea to completion . . . from design through construction through field testing (and sometimes, alas, back to the drawing board). The effectiveness of this *project approach* is illustrated by our achievements in military and industrial electronics. If you generate sound ideas and would like the opportunity to follow through on them . . . and if you like the idea of living beneath bright, sunny skies the year around . . . write to Mr. Kel Rowan, Department B-4

Electronic Engineers, Mechanical Engineers, Physicists – SYSTEM ANALYSIS, DESIGN AND TEST-Radar • Missile Guidance • Navigation • Combat Surveillance • Communications • Field Engineering • Data Processing and Display-CIRCUIT DESIGN, DEVELOPMENT AND PACKAGING-Microwave • Pulse and Video • Antenna • Transistor • R-F and I-F • Servos • Digital and Analog TECHNICAL WRITERS AND ILLUSTRATORS, QUALITY CONTROL ENGINEERS, RELI-ABILITY ENGINEERS Motorela also effors opportunities at Riverside, California and Chicage, Illinois

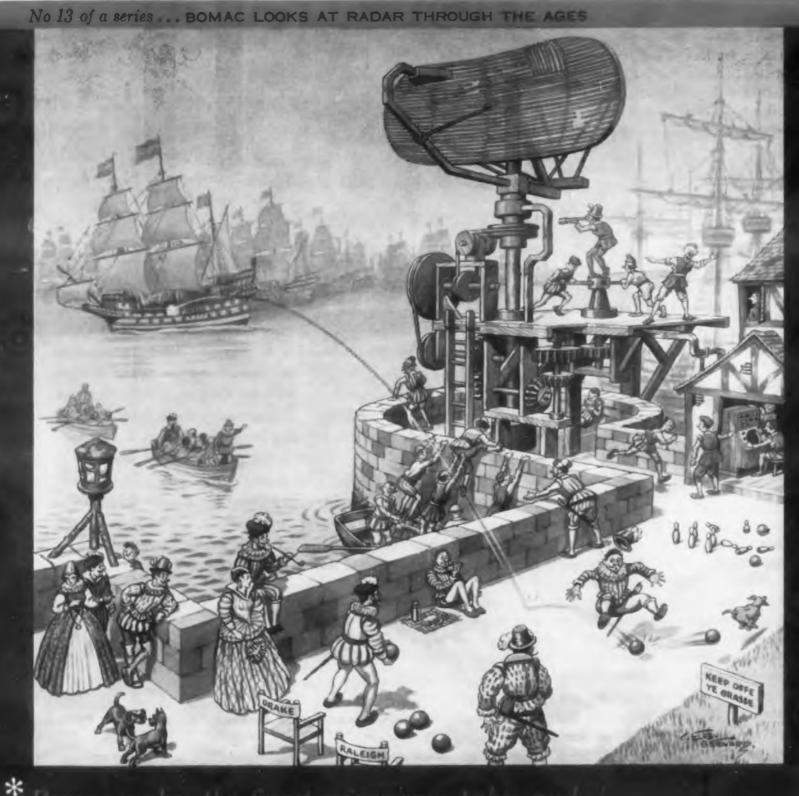
CIRCLE 873 ON READER-SERVICE CARD

1959

Sir Francis Drake Cracks a Case

One foggy day in 1588, a single ship of the Spanish Armada managed to sneak behind Drake's entire British fleet lying in the English Channel off Plymouth Hoe, and drop a 10 pounder smack in the middle of a bowling match between Sir Francis and his friend Walter Raleigh.

tubes? Drake was determined to find out. He was inside the shack in a "Yours is a razor-keen mind indeed!" marveled Sha trice, whatever that is. "Avast!" he roared at the radarman, "I must they led him away. "I haven't even written Macbeth yet!" inspect those tubes!"


Drake picked up a magnetron and looked at it. "Aha!" he ex- to bowl over the Armada.

claimed. "Just as my razor-keen mind suspected!" With that, he seized the hapless operator by the throat and shook him like a tumblerful of sidecars. "I arrest you for stealing Bomac tubes" and substituting of sidecars. these inferior substitutes, WILLIAM SHAKESPEARE!"

"I confess, how'd you guess?" said Shakespeare, ever the poet. "Elementary for a razor-keen mind like mine," answered Drake. The new radar was caught completely by surprise. Had the IFF (Identification: Francis or Foe?) system failed? Was the operator tuned to the wrong Channel? Was there something wrong with the your new play - Macheth!"

"Yours is a razor-keen mind indeed!" marveled Shakespeare as

"Plenty of time where you're going," said Drake - and went off

Leaders in the design, development and manufacture of TR, ATR, Pre-TR tubes: shutters; reference cavities; crystal protectors, silicon diodes; magnetrons; klystrons, duplexers; pressurizing windows, noise source tubes; high frequency triode oscillators; surge protectors.

Offices in major cities -- Chicago + Kansas City + Los Angeles + Dallas + Davton + Washington + Seattle • San Francisco • Canada: R-O-R Associates Limited, 1470 Don Mills Road, Don Mills, Ontario . Expert: Maurice I. Parisier, 741-745 Washington St., N. Y. C. 14, N. Y.

ADVERTISERS' INDEX April 1, 1959

Advertiser

AGA Div. of Elastic Stop Nut Corp. AMP, Inc. . . AMP, Inc. ... Ace Electronics Associates Acrovox Corp. Air Marine Motors, Inc. Allied Radio Corp. Allison Laboratories, Inc. Amperex Electronic Corp. Astron Corp. Atlas E-E Corp. Atlas Precision Industs Audio Devices, Inc.

Belden Mfg. Company Bendix Aviation Corp., Eclipse Pioneer Div Bendix Aviation Corp., Bed Bank Div.

Transistors Bendix Aviation Corp., Rod Bank Div.,

Bendix Aviation Corp., Red Bank Div. Tubes Bendix Aviation Corp., York Div. Bentley-Harris Mfg. Co. Berkeley, Div. of Beckman Instruments. Inc. Bishop & Co., J. Platian Work Bomac Laboratorics, Inc. Boonton Radio Corp. Bryant Chucking Grinder Co. Burndy Corporation Burnell & Co. Inc. Burroughs Corp., Industrial Instruments.

CBS-Hytron Cambridge Thermionic Corp. Centralab, Div. of Globe-Union Inte Ceramascal Co., The Chassis-Track Corp. Clevite Transistor Products Computer Instruments Corp. Computer Instruments Corp. Computer-Measurements Comp. Curtiss-Wright Corp.

Daven Co., The ... Deluxe Coils, Inc. Driver-Harris Company Du Pont, E. I. de Nemours & Co., Mylar Div.

ESC Corporation Edgerton, Germeshaus n & Gner, Inc Edison, Thomas A., Inc, Instrument Dr Eitel-McCullough Electro Data, Div. of Burnoughs Corp. Electro-Motive Mfg. Co. Electrosnap Corp. Engineered Electronics Company Epsen, Inc. (Components)

Fairchild Semiconductor Corp. Fenwal Electronics, Inc. 75, 77, 76, Freed Transformer Co., Inc. Court

Haydon, A. W. Co., Inc. Helipot Div. of Beckman Instruments Hetherington, Inc. Hewlett-Packard Company Howard Industries Hoghes Aircraft Co. Humphrey, Inc.

Industrial Electronic Engineers International Business Machines Corp. 130

Kearfott Co., Inc., Microwave Div. Kent, F. C., Corp. Kepco Laboratorics Kenffel & Esser Krengel Mfg. Co., Inc. Krone-Hite Corp.

Advertisor

Page

99 128 118 58 55, 120

 Maenetics Inc., Components Div.
 108

 Malavan Tin Bureau
 110

 Mallory, I. R. Co.
 16, 17

 Marconi Instrument Co.
 86

 Jarion Electrical Instruments
 121

 Methode Mig. Co.
 27

 Metronix, Inc., a Subsidiary of Assembly
 27

 Metronix, Inc., a Subsidiary of Assembly
 74

 Micro Switch, Div. of Micro Machine Works
 74

 Micro Switch, Div. of Minneapolis
 12, 13

 Miniature Precision Bearings
 66

 Minneapolis-Honeywell Co.
 105

 Minneapolis-Honeywell Co.
 105

 Monsanto Chemical Co.
 60

 Moseley, F. L. Co.
 91

 Motorola, Inc., Western Military Electronics
 131

 Mullard Ltd.
 100

 $\frac{131}{100}$ Mollard Ltd.

Oak Mfg. Co. 43

 PCA Electronics, Inc.
 103

 Pace Electrical
 90

 Packard-Bell Electronics Corp.
 52

 Phalo Plastics Corp.
 24

 Phelps Dodge Copper Products Co.
 21

 Philos Corp., Lansdale Tube Div.
 7

 Photoeirenuts Corp.
 29

 Polytechnic Research & Development Co
 111

 Potter Instrument Co.
 6

 hadio Corp. of America, Electron Tube Div.
 51

 Badio Corp. of America, Semiconductor &
 51

 Materials Div.
 Cover IV

 Faythean Mtg. Co.
 78

 Revest Instrument Corp.
 68

 Resistance Products Co.
 120

 Rotron Mtg. Co.
 84

 Royal MeBee Corp.
 94

Safeway Heat Elements, Inc.102Sarkes Tarzian, Inc.122Salectro Corp.28Sel-Rex Precious Metals, Inc.104Shallcross Mfg. Co.111Signa Instruments121Solid State Products13Sontone Corp.66Southco, Div. of South Chester Corp.76Sperry Gyroscopic Co.37Sprague Electric Co.9Stevens Mig. Co.15Synthane Corp.125

 Fechnic, Inc.
 64

 eletronics Labs.
 77

 enney Engineering. Inc.
 42

 exas Instruments. Inc.
 12

 ung-Sol Electric. Inc.
 62

 ung-Sol Electric. Inc.
 25

 64

Velch, A. W., Mfg. Co. 89 Vestinghouse Electric Corp., Electronic Tube Div. 112 Viley, John & Sous, Inc. 124

CIRCLE 327 ON READER-SERVICE CARD ►

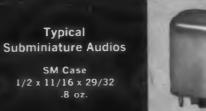
ARY AND INDUSTRIAL HERMETIC AUDIO AND POWER COMPONENTS. . FROM STOC

UTC stock hermetic units have been fully proved to MIL-T-27A, eliminating the costs and delays normally related to initial MIL-T-27A tests. These rugged, drawn case, units have safety factors far above MIL requirements, and are

ideal for high reliability industrial applications. Lister below are a few of the hundred stock types available for every application. Industrial ratings in bold.

> Typical **Compact Audios**

RC-50 Case 1.5/8 x 1.5/8 x 2.5/16


8 oz.

Typical	
Miniature Audius	
RC 25 Case 61/64 x 1-13/ 1-9/16 1.5	

H

Type No	Application	MIL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	Unbal. DC in Pri. MA	Response 2 db (Cyc.)	Max. lev dbm
H-1	Mike, pickup, line to grid	TF4RX10YY	50, 200CT, 500CT	50,000	0	50-10,000	+ 5
H-2	Mike to grid	TF4RX11YY	82	135,000	50	250-8,000	+18
H-5	Single plate to P.P. grids	TF4RX15YY	15,000	95.000 CT	0	50-10,000	+ 5
H-6	Single plate to P.P. grids, DC in Pri.	TF4RX15YY	15,000	95,000 split	4	200-10,000	+11
H-7	Single or P.P. plates to line	TF4RX13YY	20,000 CT	150/600	4	200-10,000	+21
H-8	Mixing and matching	TF4RX16YY	150/600	600 CT	0	50-10,000	+ 8
H-14	Transistor Interstage	TF4RX13YY	10K/2.5K, Split	4K/1K spli	t 4	100-10,000	+20
H-15	Transistor to line	TF4RX13YY	1.500 CT	500/125 split	t 8	100-10,000	+20

Type No.	Application	MIL Type	Pri. imp. Ohms	Sec. Imp. Ohms	Unbal. DC in Pri. MA	Response + 2 db (Cvc.)	Max. level dbm
H-20	Single plate to 2 grids, can also be used for P.P. plates	IF4RX15YY	15,000 split	80,000 split	0	30-20 ,000	+12
H-21	Single plate to P.P. grids, DC in Pri.	TF4RX15YY	15,000	80,000 split	8	100-20,000	+23
H-22	Single plate to multiple line	IF4RX13YY	15,000	50/200, 125/500	8	50-20,000	+23
H-23	P.P. plates to multiple line	IF4RX13YY	30,000 split	50/200, 125/500	8 BAL.	30-20,000	+19
H-24	Reactor	TF4RX20YY	450 Hys0 C 65 Hys10	DC, 250 Hys5 Ma Ma. DC, 1500 oh	a. DC, 60 ms	00 ohms	
H-25	Mixing or transistors to line	TF4RX17YY	500 CT	500/125 split	20	40-10,000	+ 30

Type No	Application	MIL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	Unbal. OC in Pri, MA	Response 2 db (Cyc.)	Max. lev dbm
H-31	Single plate to 1 grid, 3:1	TF4RX15YY	10,000	90,000	0	300-10,000	+13
H-32	Single plate to line	TF4RX13YY	10,000	200	3	300-10,000	+13
H-33	Single plate to low imp.	TF4RX13YY	30,000	50	1	300-10,000	+1
H-35	Reactor	TF4RX20YY	100 Henrie	s-O DC, 50 Henrie	s-1 Ma.	DC, 4,400 ohms.	
H-36	Transistor Interstage	TF4RX15YY	25,000 (DCR80	00) 1,000 (DCR1	10) .5	300-10,000	+10
N-39	Transistor Interstage	TF4RX13YY	10,000 CT (DC	R600) 2,000 CT	2	300-10,000	+15
H-40A	Transistor output	TF4RX17YY	500 CT (DC	R26) 600 CT	10	300-10,000	+15

Type No.	HV Sec. CT		C MA.	Military Rating Fil. Secs.	DC		Industrial Ratin Fil. Secs.	ng	Case		Typical Power
H-80	450	12	20	6.3V,2A	130		5.3V,2.5A.		FA		
H-81	500 550	e	65 55	6 3V, 3A-5V, 2A	75	5/65 6	6.3V,3A5V,2A.		HA		Transformers
H-82	540 600	11	10/65	6.3V,4A-5V,2A	180		6.3V,4A5V,2A.		JB		Pri: 115V 50/60 Cyc.
H-84	700/750	17	70/110	6.3V,5A6.3V,1A.,5V-3A	210	,	6.3V,6A6.3V,1		KA		*Choke/Cond. inp.
H-89	850/1050	32	20/280	6.3V,8A6.3V,4A ,5V-6A	400	0/320 6	6.3V,8A6.3V,4	A3V,6A.	OA	de la	"Choke/Cond. mp.
										(26.25 °)	the second s
Type No.	Sec. Volts	Amps.	Test Volts		Type No.	Sec. Volts	Amps.	Test Volts	Case	0000	Typical Filament
H-121	2.5	10(12)	10 KV		H-131	6.3 CT	2(2.5)	2500	FB	8000	Transformers
H-122	2.5	20(26)	10 KV		H-132	6.3 CT 6.3 CT		2500	JA	C	Pri: 105/115/210/220V
H-125	5	10(12)	10 KV	КВ	H-133	6.3 CT	7(8)	2500	HB		except H-130 (115) and
H-130	6.3 CT	.6(.75)	1500	A.J.	H-134	6.3 CT	10(12)	2500	HA		H-131 (115/220) 50/60 C

MIL Type	Ind. Hys.	@ MA DC	Ind. (Hys.	DC MA	Ind. Hys.	@ MA DC	Ind. Hys.	@ MA DC			Test V. RMS	Ca
TF1RX04FB	20	40	18.5	50	15.5	60	10	70	350	500	2500	
TF1RX04HB	11	100	9.5	125	7.5	150	5.5	175	150	700	2500	
TF1RX04KB	11	200	10	230	8.5	250	6.5	300	90	700	2500	
TF1RX04MB	10	300	9	350	8	390	6.5	435	60	2000	5500	
TF1RX04YY	7	800	6.5	900	6	1000	5.5	1250	20	3000	9000	71
	Type TF1RX04FB TF1RX04HB TF1RX04KB TF1RX04MB	Type Hys. TF1RX04FB 20 TF1RX04HB 11 TF1RX04HB 11 TF1RX04HB 11 TF1RX04HB 10	Type Hys. DC TF1RX04FB 20 40 TF1RX04HB 11 100 TF1RX04HB 11 200 TF1RX04MB 10 300	Type Hys. DC Hys. TF1RX04FB 20 40 18.5 TF1RX04HB 11 100 9.5 TF1RX04KB 11 200 10 TF1RX04MB 10 300 9	Type Hys. DC Hys. DC TF1RX04FB 20 40 18.5 50 TF1RX04HB 11 100 9.5 125 TF1RX04KB 11 200 10 230 TF1RX04MB 10 300 9 350	Type Hys. DC Hys. DC Hys. TF1RX04FB 20 40 18.5 50 15.5 TF1RX04HB 11 100 9.5 125 7.5 TF1RX04KB 11 200 10 230 8.5 TF1RX04MB 10 300 9 350 8	Type Hys. DC Hys. DC Hys. DC TF1RX04FB 20 40 18.5 50 15.5 60 TF1RX04HB 11 100 9.5 125 7.5 150 TF1RX04KB 11 200 10 230 8.5 250 TF1RX04MB 10 300 9 350 8 390	Type Hys. DC Hys. DC Hys. DC Hys. TF1RX04FB 20 40 18.5 50 15.5 60 10 TF1RX04HB 11 100 9.5 125 7.5 150 5.5 TF1RX04HB 11 200 10 230 8.5 250 6.5 TF1RX04MB 10 300 9 350 8 390 6.5	Type Hys. DC Hys. DC Hys. DC Hys. DC TF1RX04FB 20 40 18.5 50 15.5 60 10 70 TF1RX04HB 11 100 9.5 125 7.5 150 5.5 175 TF1RX04HB 11 200 10 230 8.5 250 6.5 300 TF1RX04MB 10 300 9 350 8 390 6.5 435	Type Hys. DC Hys. DC Hys. DC Hys. DC Ommonia Hys. DC Hys. DC Hys. DC Hys. DC Ommonia Ommonia Ommonia Ommonia Ommonia Ommonia Ommonia Ommonia Hys. DC Hys.	Type Hys. DC Omms Ch. Input TFIRX04FB 20 40 18.5 50 15.5 60 10 70 350 500 TFIRX04HB 11 100 9.5 125 7.5 150 5.5 175 150 700 TF1RX04KB 11 200 10 230 8.5 250 6.5 300 90 700 TF1RX04MB 10 300 9 350 8 390 6.5 435 60 2000	Type Hys. DC Ohms Ch. Input RMS TF1RX04FB 20 40 18.5 50 15.5 60 10 70 350 500 2500 TF1RX04HB 11 100 9.5 125 7.5 150 5.5 175 150 700 2500 TF1RX04HB 11 200 10 230 8.5 250 6.5 300 90 700 2500 TF1RX04HB 10 300 9 350 8 390 6.5 435 60 2000 5500

And Special Units to Your Specifications

TRANSFORMER CORPORATION UNITED 150 Varick Street, New York 13, N.Y.

PACIFIC MFG. DIVISION: 4008 W. JEFFERSON BLVD., LOS ANGELES 16, CALIF. EXPORT DIVISION: 13 EAST 40th STREET, NEW YORK 16, N. Y. CABLES: "ARLAB"

EX

Div.

nts,

Div

77, 79, Cover

iduct

Corr

180 1

ARD

RCA Ceramic-Metal Power Tubes

Harrison, N. J.

Known throughout industry and military services for highefficiency operation and ability to withstand high voltages at ultra-high frequencies, RCA Ceramic-Metal Power Tubes are the answer for the designer who requires higher power in a smaller, compact tube design. No other power tubes in this class combine features such as: coaxial-electrode design; low-loss ceramic bushings between electrode contact surfaces; matrix-type cathode; extra-sturdy heater, low screen current, virtually no primary screen grid or control grid emission!

RCA Ceramic-Metal Power Tubes merit the attention of new equipment designers for a wide variety of applications. Your RCA Representative will be glad to discuss with you your requirements for RCA Ceramic-Metal Tubes and the availability of developmental types on a sampling basis.

Typical RCA Ceramic-Metal Power Tubes CW Service Pulse Service max max. max max. Plate Input (Watts) Input (Watts) Input (MC) (Watts) Type No. A-2582 30 1215 25 A-2587 25 6816 180 115 1215 A 2543 A 9000 115 A-2572* 1250 1215 600 A-2585* 64000 600 7213 2500 1500 A-2576-A* 180000 1500 20000 A-2545* 400 10000 A-2581* 500 10000 RCA Developmental Type Available on Sampling Basis

HARRISON, N J. 415 S. Fifth St., HUmboldt 5-3900 DAYTON 2, OHIO 224 N. Wilkinson St., BAldwin 6-2366 WASHINGTON 6, D C 1625 "K" St., N.W., District 7-1260

INDUSTRIAL PRODUCTS SALES NEWARK 2, N. J. 744 Broad St., HUmboldt 5-3900 CHICAGO 54, ILLINOIS Suite 1154, Merchandise Mart Plaza, Whitehall 4-2900 LOS ANGELES 22, CALIF. 6355 E. Washington Blvd., RAymond 3-8361 DETROIT 2, MICHIGAN 714 New Center Building, TRinity 5-5600

058 HAYDEN Third PUBLISHING Avenue, New COMPANY, York 22

N.Y

.

U.

(I)

3

April

-

1959

INC