

HAR 171959

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industria consultants, and government agencies. If design for manufactur. ing is your responsibility, you qualify for subcription without charge provided you send us the following informition on your company's letterhead: Your name and engineering title, your company's main products, and description of your design duties. The letter must be signed by you personall ANY SITATES A RESTATEMENT OF THESE QUALIFICATIONS Subscription rate for non qualified subscribers- $\$ 15.00$ for 1 year

Hayden Publishing Co, Inc., 830 Third Avenve, New York 22, N.Y.

CONTENTS

Editorial
Behind the News Washington Report Meetings 182
Features

Design Preview
Ideas for Design Russian Translations

German Abstracts , 178

180 Polynomial Approximation for Complex Transfer Function
Departments
12
142 Patents 172 Standards and Specs

150 Books 173 Careers Section
176 Advertisers' Index

ELECTRONIC DESIGN is published bi-weekly by Hayden Publishing Company, Inc., 830 Third Avenue, New York 22, N.Y., T. Richard Gascoigne, President; James S. Mulholland, Jr., Vice-President \& Treasurer; and David B. Landis, Secretary. Printed at Hildreth Press, Bristol, Conn. Accepted as controlled circulation publication of Bristol, Conn. Additional entry,
New York, N. Y. Copyright 1959 Hayden Publishing Company, Iwc. 32,000 copies this issue.

NOW! A telephone type DC relay for industrial application

Kellogg AK relay

Highly sensitive: adaptable for marginal operation
Long coil construction: permits use of high resistance coils
Low current: operates on as little as . 002 amps
Slow operate (Type AKSO), or slow release
(Type AKSR) models also available
Coll Characteristics:
operating voltage-up to 230 volts D.C. single or double wound

Contact Assembly:
single or double pile up
forms A to E
14 springs maximum in each pile-up
alternative: single or double microswitch
standard terminals also available
Operate and Release time
.002 sec . minimum operate
.100 sec . maximum operate delay
.400 sec . maximum release delay
Weight: 8-12 oz. net (approx.)
Inquiries are invited. Send for a free catalog on relays, components.

Kellogg Switchboard and Supply Company, 6650 South Cicero Avenue, Chicago 38, III. Communications division of
International Telephone and Telegraph Corporation.
See the Kellogg-ITT Display at the IRE Show: BOOTHS 2510-2625.

Raytheon Sillcon Rectillers easily pass these Important environmental tests: Temperafure: every rectifier is cycled 8 times from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Samples are tested for: second
 Shock: 500G, 1 mil
 shock: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
 500 hours at $175^{\circ} \mathrm{C}$ 500 hours at $-65^{\circ} \mathrm{C}$

Operating Life: 1000 hour and 4000 hour tests at $250 \mathrm{~mA}, 150^{\circ} \mathrm{C}$ and rated PIV. 1000 hour and 4000 hour tests at $750 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ and rated PIV.
Moisfure Resistance: per MIL stand. ard 202, method 106 (M.

Salf Spray: 96 hours
Centrifugal Force: 20,000G
Vibration Fatigue: 10 G
Drop: 30" on maple block, per MIL, 19500A

Readily available in production quantities. Write for Data Sheets.

SEMICONDUCTOR DIVISION

 RAVTHEON MANUFACTURING CO. SILICON AND GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS Ealthmere, SOuthnold 1.1237 Cloveland, Winton 1.7005 Kansas City, Plazo 3.5330
CIRCLE 3 ON READER-SERVICE CARO

Editor
Managing Edifor
ssoriate Editors
J. A. Lippke
L. D Shergalis G. H. Rostky

Assistant Editors
E Mount
D. S. Viebig
N. Tolopko
N. Tolopko
A. E. Takacs
F. Muehleck

Contributing Editors
H. Hubelbank Brenner B. Bernstein

Editorial Assistants M S. Buckley

Art Director R A Schulze
Technical lllustrator B L Armstiona
Art Assistant C Bank
Production Manager T. V. Sedilo
Asst. Prod. Manager M. P. Hedric Production Assistant M. C. Alexich

Business Manager M. C. Young
Circulation Manager N. M. Elston
Asst. Circ. Manager A C lovell
Reader Service J Medina

CO-PUBLISHERS

James S. Mulholland.

ADVERTISING REPRESENTATIVES

Advertising Sales Manager
Bryce Gray,
New York: 830 Third Avenue Roberl W. Gascoig

Plozo 1.5530
Richard Porker Blair McClenochan James P Quinn
Chicago: Thomas P Kavo Superior 7.8054 Fred T. Bruce
Los Angeles: Roberl E Ahrensdo
3275 Wilshire Blvd John V. Quillman
DUnkisk 27337 Stanley 1. Ehrenclou
Southeastern: Lucien Nef
2808 Middle River Dr
Ft . Louderdale, Flo
1Ogan 6.5656
London, W. 1: Michoel B. Horne 24 Baker Street

England

D E.S I G N

BEHIND THE NEWS

Fig. 3. Comparison of contact set wear. Conventional (left); Transistor (below).

Transistorized Ignition Systems

for ... Reliability ... Cold Weather Starting . . . Increased Engine Efficiency

S
 on coil, a complete. self-contained transistor ized ignition system promises lifetime distributor contact service, reliable starting in temperatures as low as -20) \mathfrak{r}, and constant voltage output for spark plug firing throughout the engine speed range.
Shortcomings in the conventional ignition system wre eliminated in the new development announced by The Electric Auto-Lite Co., Toledo, Ohio

Conventional Ignition System
The conventional ignition system for a simple four-cylinder engine is shown in Fig. 1. Current through the primary of the ignition coil, or transformer, is interrupted by the primary switch. This switch is mechanically operated by a cam, driven by the engine shaft through a gear train. Evers time the switch opens, high voltage appears across the secondary of the coil and is applied to the rotating "finger" of the distributor. This finger is
driven by the same shaft as the primary switch and the distributor contains as many equallyepaceed fixed contacts as there are cylinders.
No actual contact exists between the rotating finger and the fixed contacts-the spark jumps across the air gap every time the finger comes in front of a fixed contact and, simultaneously, the primary switch opens
Each fixed contact is connected to a spark plug (o) that the high-voltage circuit comprises the sec-

Creative Microwave Technology

Published by MICROWAVE AND POWER TUBE DIVISION, RAYTHEON MANUFACTURING COMPANY, WALTHAM 54, MASS., Vol. 1, No. 2

NEW ONE-WATT COMMUNICATION KLYSTRONS COVER GOVERNMENT AND COMMON CARRIER BANDS

Designed primarily for use in microwave relay links, the QK-661 and the QK-754, one-watt transmitter klystrons, operate at frequencies of 7,125 to $8,500 \mathrm{Mc}$ and 5,925 to $6,425 \mathrm{Mc}$, respectively. The QK661 is the first tube of its kind to cover the entire government band. The QK-754 is the first of a planned series of tubes to cover the entire communications band.

Both are mechanically tuned, integralcavity, long-life, reflex-type tubes. The QK-754 uses a coaxial output; the QK-661, a waveguide output.

To insure efficient operation the tubes are available with integral cooling fins or with a heat-sink attachment suitable for connection to the chassis.

Excellence in Electronics RAYTHEO

You can obtain detailed application information and special development services by contacting: Microwave and Power Tube Division, Raytheon Manufacturing Company, Waltham 54, Massachusetts

A LEADER IN CREATIVE MICROWAVE TECHNOLOGY

BEHIND THE NEWS

ondary of the coil, the distributor finger, atn air gap, fixed contact, spark plug, and return to coil secondary. Most of the troubles due to the ignition system originate in the primary switch or in the coil.

Shortcomings

In a mile of average driving, the distributor contacts make and break at rates ranging from 12.(O)N to $24,(000)$ times a minute, depending on engine speed. With primary currents as high as four amps. current densities exceed $1,(0)(0)(0)(0)$ amps in. ${ }^{2}$ during "break." The resultant heat created erodes the contact surface until ignition failure reguires comtact replacement.

During average climate comditions, the emgine turns wer rapidly during starting so that the rate of contact operation does not permit the heat created to raise the contact surfaces to oxidizing temperature. In extremely cold weather, the engine turns over slowly, the contact surfaces remain together longer. and the excessive heat will bring the tungsten surface to red-heat, resulting in build-up of tungsten oxide. This bluish rust-like scale, "blue" points, accounts for poor cold weather starting and is responsible for a large majority of "down" time.

Finally, at high speeds the contacts open and close too rapidly to permit full build-up of input current. This results in reduced output when the engine speed is increased: up to .50 percent drop off in available ignition power may occur. for example, when a driver swings out to pass another car.

Transistor-Switched Transformer System
As shown in Firs. 2. a power transistor is placed

Auto-Lite "Transicoil" package with transistor and heat sink visible.

ELECTRONIC DESIGN • March 18, 1959

Fig. 4. Conventional system primary current rises relatively slowly (2.5 amps P-P). Transistor base current rises rapidly (250 ma P-P).

Fig. 5. Transistor system output voltage remains constant despite engine speed changes.
between the battery source and the primary coil; the distributor contacts, triggering the base circuit, handle less than 2.50 ma while controlling 7.5 amps flow through the primary coil. This results in greatly increased contact life. Prolonged endurance tests of over $35(0)$ hours and 100,000 miles show practically no wear, see Fig. 3. Cold weather starting tests have shown oxidation to be (ompletely eliminated.
The input current of the transistor system rises rapidly to maximum value while the conventional system rises slowly from the time the contacts close, shown in Fig. 4. This rapid rise of current, regardless of engine speed, is responsible for an almost constant output voltage throughout the speed range; comparison between output voltages for both systems is shown in Fig. 5.

A new development in contact set design, called "Power Points," further improve reliability by reducing high speed bounce approximately 15 percent over previous designs.

Applications

The new system can be installed, in a matter of Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

Digital Computer Techniques-State of the Art

Failure of computers has been known to force scientists back to more primitive forms of calculation. (Note the extra digit which comes in handy when numerical concepts need to be "carried".) However, at Hughes, we have developed and are producing components which insure you against breakdown even under the most severe operational conditions. Our most powerful ally is an almost unreasonable passion for quality control.

On the three following right-hand pages you'll find specific examples of Hughes reliable compo-
nents - Parametric Amplifier Diodes, TONOTRON* Storage Tubes, and mem 0 -scope ${ }^{*}$ Oscilloscopes.
In addition to these, other Hughes Products devices which offer you this "built-in" reliability include: Precision Crystal Filters for selective tuning...Rotary Switches...Thermal Relays... MEMOTRON* and TYPOTRON* Storage Tubes... Microwave tubes...Diodes, Transistors and Rectifiers with uniform performance...and Industrial Systems which automate a complete and integrated line of machine tools. -Trademark of H.A.C.
I. R.E. SHOW: See the Hughes Exhibits Number 2801-2807.

SEE THESE NEW COMPONENTS IRE Booth No. 3823
U. S. Semcor "know-how" launches new

SOLID TANTALUM capacitors

Tiny . $0005 \%{ }^{\circ}$ C Tc Reference Silicon Diode
The only reference dioxic up (1) $.0005 \%{ }^{\circ} \mathrm{C}$ Te from - 55° to $+185^{\circ} \mathrm{C}$. A range 35° higher than other available devices. Case size only $.290^{\prime \prime}$ long x. 2501 " in diameter. Less than $1 / 10$ the size of existing competitive devices. W.S. Semeor diffused triple waler sandwiching method provides greatl? increased reliabilits at low
 prices.

Double Anode

MEDIUM POWER Zener Diode
U.S. Semer amounces anohter of its cominual parade of new products with the only MEDIUM POWER double anode silicon /encr dionde for clipping, pulse forming, and voltage regulating application with lower Tc. Offered in same stmall packages available in Semeor's standard medium power line Zener voltages trom $71 / 2 \mathrm{~V}$ to $35 \mathrm{~V}, .038 \mathrm{~s}=; 10.01065 \%$ per ${ }^{\circ} \mathrm{C}$ Tc. Sencor's exceptional talent in diffused junction technique provides commercial and military users superior performance for their applications.

IRE Booth No. 3823

Other U. S. Semcor Products:

Hi-Voltage Rectifiers - Alloyed Junction Silicon Low Power Rectifier and Zener Diodes - Diffused Junction Silicon Medium Power Zener and Rectifier Diodes - Dry Electrolytic Solid Tantalum - Infra-red Silicon Components.
U. S. SEMICONDUCTOR PRODUCTS. INC. 3536 West Osborn Road • Phoenix. Arizona

Fig. 6. Block diagram for a typical transistorized ignition system.

Fig. 7. A typical pulse generator for the new system uses a conventional alternator (driven by the engine), a phasing circuit (to provide spark advance), and a limiter (to clip the sine waves).

Fig. 8. The time difference d, corresponding to the automatic advance, is provided automatically by the difference in the sine wave amplitudes at different engine speeds.
minutes, in any battery ignition system by removing the existing ignition coil and capacitor and mounting the new transistor assembly. Applications include passenger, commercial and military cars, trucks, boats, and tractors.
The complete package, consisting of the transistor, its heat osink, the transformer and associated circuitry, will be available as optional equipment for 1961 passenger cars. The initial cost is estimated to be in the range of power steering.

Foreign Design Approach

A leading French automobile manufacturer, ucording to A. V. J. Martin of the Carnegie Institute of Techmology, is conducting tests on I transistorized oscillator supply for high voltage generation. The primary switch is replaced by in electromechanical pulse generator triggering
Have you sent us your subscription renewal form?
 and precious research dollars. Never again need this happen. With the Hughes memo-scope* oscilloscope you may instantly "freeze" wave forms with brilliant clarity for careful study, comparison and analysis. The Hughes memo-scopen oscilloscope retains these frozen transients until intentionally erased. Selected transient information may be triggered externally or internally. Successive wave forms may be written above. below or directly over the original information.

SWEEP SPEED FOR STORAGE. 10 microseconds to 10 seconds per division 10.33^{*} FREQUENCY RESPONSE: OC to 250 KC down 3 db .
SENSITIVITY: 10 millivolts to 50 volts per division or with optional high sensitivity preampla her 1 millivolt to 50 volis per division.
APPLICATIONS: Trouble shooting data reduction equipment, , switch and relay contac study...ballistics and explosives research... ultrasonic flaw detection... physical testing shock - stress - strain.

A Hughes representative will gladly demonstrate the memo-scopeo
oscilloscope in your company. Simply address your request to:
Hughes Products, Marketing Dept.-memo-scole:
International Airport Station, Los Angeles 4.5, California

Creating a new world with ELECTRONICS HUGHES PRODUC'TS

O195B HUGHESAIRCRAFT COMPANY
SEMICONDUCTOR DEVICES . STORAGE AND MICROWAVE TUBES . CAYSTAL FILTEAS - OSCILLOSCOPES • PELAYS . SWITCHES . INDUSTRIAL CONTMOL SYSTEMS CIRCLE 7 ON READER-SERVICE CARD

WITH FAFNIR MINIATURE BALL BEARINGS YOU GETALL FIVE IMPORTANT FEATURES

VACUUM MELT 440C. Balls and rings of Fafnir miniature bearings are made from vacuum melt 440C stainless steel.

ADVANTAGES. Since vacuum melt steel is extremely clean, balls and races are free from pits and inclusions providing better finishes which result in super sensitive bearings with low torque values.

BALANCED DESIGN. Each size
bearing has its "tailormade" retainer of predetermined weight and dimensions.
ADVANTAGES. Pitch circle of the balls is centered between bore and O.D. and bearing is symmetrical in design.

HARDENED RETAINERS. All retainers are made of hardened 410 stainless steel.
ADVANTAGE. Precise hardening, insured against brittleness and easy breakage by quality control, provides springiness.. eliminating bending or distortion.

SWAGED RETAINERS. In manufacture retainers are swaged so that ball pockets of retainers are ironed outwardly.

ADVANTAGE. Ball runs against a hardened, smooth surface not a rough edge

heat stabilization. All rings and balls are heat stabilized to 600 degrees.

ADVANTAGE. Standard Fafnir bearings may be used for high temperature applications as well as regular applications.

All Fafnir miniature bearing tolerances are to ABEC. 7 standards except for the inner ring bores where tolerances are $+.0000-.0002$ to provide greater flexibility in selective assembly. Bearing balls are lapped to 2.5 millionths for sphericity and 5 millionths for size variation. Fafnir Miniature Ball Bearings are available in the following types: open; flanged; two shields and flanged two shields. Complete details and dimensions in bulletin No. 469. Write for copy. The Fafnir Bearing Company, New Britain, Conn.

FAFNIR
BALL BEARINGS
Most Complete Line in America

BEHIND THE NEWS

Fig. 10. This screen, driven by the engine, pulses the oscillator when a slot allows coupling between the wo oscillator coils.

Fig. 11. In the magnetic circuit method, the spokes of magnetic material close the oscillator circuit.

Developmental ignition system built inside the usual high voltage coil can. The two transistors can be clearly seen in the foreground.
the transistor oscillator, as shown in Fig. 6.
The electromechanical pulse generator can taki a number of forms. For example, in Fig. 7 a conventional alternator, driven by the engine, provides a sinusoidal voltage whose frequency is equal to a multiple of the rotation speed. A simple limiting circuit will then change the sinusoids into a square
waveform. The phase (and hence the advance) can be adjusted manually or automatically by a phasing circuit connected between the alternator and the limiter.

Moreover, the amplitude of the sinusoidal voltage varies with the speed of rotation. This makes for ant antomatic increase of the advance, since the same limiting level will cut a large amplitude sinusoid sooner than a small amplitude sinusoid (Fig. 8). The time difference " d " corresponds to the automatic advance. The transistor oscillator, using a ferrite core step-up transformer, operates between 50 to 80 kc .

Direct Pulsing of the Oscillator

The electromechanical pulse generator can be integral with the oscillator, with corresponding simplification and economy. An example is given Fig. 9. A metallic screen is placed between the (wo coils of the transistor oscillator and prevents oscillation. However, this screen is of the shape indicated in Fig. 10 and rotates with the engine When the shaft position is such that no metallic part is placed between the coils, the oscillator functions and provides the high voltage. The circular screen has as many slots as there are cylinders.
Another possibility is indicated in Fig. 11. The rotating part is now a star of magnetic material, with as many spokes as there are cylinders. When the shaft position is as indicated on the figure, the magnetic circuit of the oscillator is closed, and the oscillator functions. When the rotation of the star opens the magnetic circuit, the oscillations cease.
In both Figs. 9 and 11, the shaft carrying the rotating screen or star also carries the finger of the distributor

Practical Advantages

The system indicated in Fig. 11 can be of. small dimensions, and has been constructed as a small unit which takes the place of the usual primary switch-distributor combination, and does away with the separate coil, see Fig. 12.

The new ignition system takes less current from the battery for better results at all speeds. It can be parasitic-suppressed to reduce radio interference by virtue of its fixed low frequency and undecaying oscillation during pulses.
The automobile industry has been concerned with the deficiencies of the classical circuit, and several ideas have been put forward embodying some electronic equipment. Before, however, systems using vacuum or gas tubes suffered from the limitations of the tubes themselves, especially as regards ruggedness, life expectancy, and supply voltages. In aircraft, where safety is at a premium, two complete and entirely distinct ignition circuits of the conventional type are now necessary. The solid state devices seem ideally suited to this kind of problem.

PARAMETRIC AMPLIFIER DIODES

FOR LOW-NOISE MICROWAVE AMPLIFIERS

Now Hughes Products brings you high perform ance parametric amplifier diodes at a price in the same range as good microwave mixer crystals. These Hughes diodes have been designed to solve your problems associated with low-noise para metric amplifiers, modulators, frequency con verters, harmonic generators, electronic tuners, switches, etc., at microwave as well as at lower frequencies.
Used in a 3000 Mc high gain parametric amplifier with both signal and idler channels as inputs, these diodes have produced at room temperature in
techmical specifications and data

*At breakdown voltage $\quad *$ Breakdown voltage ($10{ }_{\mu} \mathrm{A}$ point)
Address inquiries to:
Hughes Products, Semiconductor Marketing Dept.
P. O. Box 278, Newport Beach, California.

CAPACITANCE BIAS VOLTAGE

Reverse Blas Voltage $0 v$
$3 v$
$7 v$
3 V
7 V
7
the laboratory a noise temperature of $1(0) \mathrm{K}$ above absolute zero. Noise temperatures of 50 K above absolute zero were obtained when diode was cooled by liquid nitrogen.

The Hughes I'arametric Amplifier Diodes are available in two rugged, hermetically sealed versions. One has a miniaturized glass package (type HPA 2800) ; the other has been adapted to a conventional microwave package (type HPA 2810). Both are hermetically sealed in glass and have the same cutoff frequency.

Creating a new world with ELECTRONICS

HUGHES PRODUCTS

ELECTRONIC DESIGN • March 18, 1959

Because HIGH RELIABILI'TY is A "Must" ...
Missile Engineers Specify
IATLIALITL
CAPACITORS
"Viiramon" Capacitorn for bigh reliability applications are tesied to meet the most stringent requirements for performance. Every ments for performance. Every
capacitor ordered under the new High Reliability Specification High Reliability Specification
S-1002 undergoes tests encom-S-1002 undergoes tests encom-
passing 300,000 UNIT, HOURS passing 300,000 UNIL, HOURS
OF LIFE AT $125^{\circ} \mathrm{C}$ to assure an A. Q. L. 12 times higher than Mil Specifications - and every shipment against an S-1002 order is accompanied by tabulated results to verify extreme reliability.
Inherent characteristics are built into "Vitramon" Capacitors through the fusing of quality through the fusing of quality porcelain ename! and fine silver to produce a dense, homogenous,
truly monolithic unit that requires no case or hermetic seal. If you have capacitor appllications requiring high reliability, write for High Reliability Specification S-1002, describing materials used, manufacturing process, as well as all tests and failure rates.
""utramon" Capactions OF PROVEN QUALITY ARE USED IN THESE MISSLLES:

	JUPITER
LACROSSE	TALOS
TARTAR	
NIKEZEUS	ATLAS
BULLPUP	BOMARC
CORVUS	FALCON
POLARIS	MACE
REGULUS II	SNARK
TITAN	
SPARROW II	VANGUARD
SPARROW III	EXPLORER

CIRCLE 10 ON READER-SERVICE CARD

Co-ordinating Computer Networks for

Increased Efficiency

0NE APPROACH to developing more useful computing systems is that of connecting together several computers into an integrated network. Techniques have been under study at the National Bureau of Standards for attacking and solving the logical problems encountered in organizing such a network. These problems include devising a scheme for making all the computers collaborate efficiently, and designing an instruction system for carrying out such collaborative operations effectively.

Problems

In organizing such a network, many
logical problems are encountered that do not ordinarily occur in the usual singlecomputer system. One problem is that of levising an efficient scheme for enabling all the computers to share among themselves. automatically, the total workload undertaken by the network. Another problem is that of designing a machine instruction system which can carry out these complex operations effectively and yet is simple enough to code easily. Investigations of the Bureatis data-processing systems laboratory has resulted in the design of the new NBS Pilot Data Processor, a multi-computer network with powerful data-processing capabilities.

Two-computer network
ELECTRONIC DESIGN • March 18, 1959

Initial Approach

One mode of approach for increased efficiency is to connect together several computers into an integrated network so that all of the machines in the network could be made to work together on large-scale problems. By dividing up the total task into different pieces, and by having all the different computers in the system work on different pieces of the task simultaneously, an increase in the speed of solution can be achieved.
Under ideal circumstances, the entire job could 're split up into pieces that are completely independent, and each computer could carry out its ussigned portion of the work without interacting on the other machines in the network. In actual practice, however, this ideal of complete independence cannot be attained because the results of one set of computations will, as a rule, be needed as input data for another set, and the tarting of one phase of operations will have to ait for the ending of another phase. When these IIccessive phases are carried out by several difrent computers, one machine may have to stop ad wait idly for data from another if the diflerent steps are not properly coordinated-thereby .rasting time.

Multi-Computer System

The new NBS multi-computer system is made up of several independently operating units that run concurrently: From time to time, as the need uises, they can exchange data and instructions.
The primary computer of this system is a fullvale machine that performs a wide variety of arithmetical and other operations. The secondary computer, though an independent internally programmed machine, is more limited in scope and is intended mainly as an adjunct to the first machine. While the primary is performing the major arithmetical processing manipulations, the secondary concurrently carries out specialized procedures that assist the primary's program; these (correspond to the "jol) requests" delegated by the primary.
Associated with the secondary computer is the secondary storage unit containing a certain number of short word-storage locations. Some of these locations are used as "base registers" by the primary computer. These base registers contain numbers used by the primary as automatic address modification constants, or as alternative addresses for its next instruction. Loading of the base registers and manipulation of the numbers stored in them are carried out by the secondary computer.
To make a "job request," the primary instruction program inserts a new instruction in the secondary's computer's instruction register. Alternatively, the primary program can also order data transferred betwen the primary storage unit and

the finst 21"storage tube

High light output! Controlled Persistence! Full gray scale!

The Hughes $21^{\prime \prime}$ tonotron* tube offers you a new level of sophistication in displays for: Air traffic control, Combat situation plotting, Radars, Large-scale read-out, Medical diagnosis, Industrial television, and Slow-scan displays.

This new tonotron tube provides high light output, integration abilities, full gray scale, controllable persistence, and a very large display area-all in one envelope!
Hughes also announces a $21^{\prime \prime}$ character-writing TypoTRON ${ }^{\text {n }}$ storage tube, which gives you the added capability
of high-speed digital character display. The 21" typotron tube is ideally suited for any of your digital read-out requirements. In addition, this unique typotron tube offers you either character read-out or spot writing modes-or a combination of both capabilities.

Both the $21^{\prime \prime}$ tonotron Tube and the $21^{\prime \prime}$ typotron tube are now available for delivery. For additional information please write: Hughes Products, Electron Tubes, International Airport Station, Los Angeles 45, California.

See the new Hughes 21" tonotron tube in action at the I.R.E. show (Booths 2801-2807)

Creating a new world with ELECTRONICS

HUGHES PRODUCTS

*Trademark of Hughes Aircraft Co

 CIRCLE 11 ON READER-SERVICE CARD

LIBRASCOPE

SHAFT-TO-DIGITAL ENCODERS
meet and surpass rigid requirements of airborne analog-to-digital translation despite environmental extremes. Shock, vibration, and severe temperatures do not affect their conitinuous, noise-free operation.
they're direct Librascope encoders provide a simple, one-step means of digitizing analog data.
thev're rugged Operation is unaffected by 30 g shock, 0 to 2000 cps vibration, throughout a range of -55° to $+100^{\circ} \mathrm{C}$.
thevrre reliable Multi-million turns at high spgeds with constant contact resistance.
tiveyrre versatile 14 basic models in a wide range of capacities with special function codes built-in to simplify computer requirements.

OUTPUT COOE	MODEL NO. @	TOTAL CAPACITY	resolution PER TURN	dIMENSIONS DIA. x LENGTH
Parallel ainary (LINEAR)	$\begin{aligned} & 740 \\ & 743 \end{aligned}$	10 bits (1024) 13	$\begin{aligned} & 1024 \\ & 128 \end{aligned}$	
SERIAL (LINEAR) (LINEAR)	$\begin{aligned} & 707 \\ & 713 \\ & 717 \\ & 719 \end{aligned}$	7 bits (128) 13 bits (1892) 17 bits $(131,072)$ 19 bits $(524,288)$	$\begin{aligned} & 128 \\ & 128 \\ & 128 \\ & 128 \end{aligned}$	
SERIAL BINARY (SIN-COS	757 758	7 bits per quadrant* (4 quadrants) 8 bits per quadrant* 4 quadrants)	512 1024	$\begin{aligned} & 21 / 4 " \times 4 K_{6} " \\ & 41 / 0 \times 3 \% / 0 \end{aligned}$
binary CODED (8-4-2-1)	$\begin{aligned} & 723 \\ & 724 \\ & 733 \\ & 734 \\ & 735 \\ & \hline \end{aligned}$	$\begin{array}{r} 2,000 \\ 20,000 \\ 3,600 \\ 36,000 \\ 360,000 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	
GRaY	708	8 bits (256)	256	3 $\%_{0} \times 11 \%_{0}$

@All models available with internally mounted isolation diodes for sequential multiplexing ap. plications.
†Available in hermetically sealed servo-driven package as Models 757-S and 758.S.
*Including limit 1 and polarity information. Sine and cosine functions zenerated simultaneously and cosine functions generated simultaneously
and independently. One turn of shaft generates and independently. One turn
4
quadrants of information.

For full details on Librascope shaft-to-digital encoders write for catalog E 11-1.

BEHIND THE NEWS

the secondary storage unit.

To synchronize the actions of the lwo come puters properly, the programming system cat marks certain selected instructions in the primary program. Instructions so marked are intended to be performed after certain ke! instructions hw been carried out by the secondary computer. When an earmarked instruction is reached in the. j primary program, control of the relative time s:quencing of primary and secondary operat.onff passes to the secondary program. This program can then regulate the relative priority of execution of subserfuent instructions in either program f by special seduence-regulating instructions(alled an rp) (regulate primary program) instruction.

Operation

In operation, the primary computer, upon reaching an carmarked instruction, will check, beaz fore executing this instruction, to see whether the secondary computer is stopped and wationg wifी? ath r_{p}) instruction. If this is not the case, the pre mary waits until the secondary reaches ann rp, AS soon as both programs have reached a mutua Waiting status (that is, with the primary waitin: With an unexecuted earmarked instruction and the secondary waiting with an mexecuted rp instruction), the sequencing will take place accore. ing to an explicit code written in the secondary (rp) instruction word. Various altematives are available, under which priority mat be accorded to either computer depending on whatever order of sequencing is most appropriate to the logic of interchange. Possible sequencies include repetition or skipping of the primary instructions.
When both computers are in a mutual watiting condition, the secondary computer can also refer to the various base registers and control counters that the primary computer has just referred to or is about to refer to. The secondary computer can make these reterences either directly, that is, as a result of explicit register numbers written in the secondary instruction or indirectly that is, according to the locations specified in the currentiy waiting primary instruction. In consequence, the secondary computer can be used to monitor or in terpret the program of the primary in a highly Hexible fashion.
The new NBS Pilot Datal Processor contain not only a primary and secondary computer but also a third independent computer, which specializes in operations that control and interpret the data flowing between the system's internal memory and its external storage and display devices. In the future development of these network systems, it is expected that even larger numbers of independent machines will participate cooperdtively in the performance of stringent tasks.

Circle 498 for Ohmite spread
ELECTRONIC DESIGN • March 18, 1959

Photos: Courtesy Ernst Norman Laboratories and Bodine Electric Co.

\uparrow
 Ultra Precise Ball Bearings Help "Clock" A Satellite!

CUSTOMER PROBLEM:
Require ultra-precise bearing design for Bodine electric motor used in satellite-tracking microclock. Bearings must provide uniformly low starting torque, precise location of rotor shaft and minimum maintenance, to help mechanism achieve time determinations to 0.001 second.

SOLUTION:

N/D Sales Engineers studied special bearing requirements, and recommended New Departure ultra-precise ball bearings. These ball bearings measured up to every requirement for micro-clock motors . . . thanks to New Departure's advanced equipment for research, devel-
opment and production. N/D equipped microclocks, selected by the Smithsonian Institute, are operating in a dozen locations around the world right now, keeping track of vital satellite movements . . . to accuracies of one millisecond and better!

If you're manufacturing or designing electric motors for any high precision applications, including instruments, why not call on New Departure? N/D engineering and research facilities are turning out the latest in high precision instrument ball bearings and advanced ball bearing designs. For more information write Department J-3.

NEVV
DIVISION OF GENERAL/MOTORS, BRISTOL, CONN. CIRCLE 496 ON READER-SERVICE CARD

NEWS BRIEFS

- - ELECTRONIC TOPICS, ranging from computers to communication systems to semiconductor devices, comprised almost 40 per cent of the program offered at the Winter General Meeting of the AIEE, held in Now York City during F(b). 1-6. Over $5(0)$ papers wore presented to all estimated 6500) engineers. Consensus of opinion amone members indicates the growing populatity of the informal prescentation and panel discussion as contrasted with the stift, fommal reading of prepared papers encomatered in the past. Discussions after paper presentations were particularly lively and pointed. In addition. there appeared to be marked, and healthy: increase in participation by students from varions miversities thronghout the country:
- - FOURTEEN NATIONS are in active competition for positions in the program of the First Intemational Conference on lntormation Processing to be Weld in Paris during Jume 15-20. So far. approsimately one-third of the selected papers have been prepared he U.S. emoineers and five of the thirteen plamed sympesia will be con ordinated by Americall computer experts.

In conjunction with the five day techmical session. a worldwide ehbibition of intormation proc essing equipment will be on display from Jume 1:3-2:3. The exhibit called Auto-Math 19.59, will be limited to the latert in erpmipment and technieques in the field.

- - PLEASURE: CRAFT, vachts, and work boats can be outfitted with a new line of marine "duipment ramging from how-cont Loran to a portable, transistorized direction finder. Recentl! intreduced by Sperre Piedmont Co.. Charlattes ville. Via. division of Sperry Rand, the navigational instruments feature a sleek nantical appeatrance as contrasted with the "black-box" look common to earlier styling. A ten inch radar unit, with range extending to 20 miles. a compact five inch radar with a onc- and five-mile range. an antomatic pilot. converters, and miniature aurocompasses round out the full line.
- - WRITERS OF GHOST STORIES and horror movies may som lose a fanorite device for setting anl exerie atmosphere . . . the "squeaky hinge" is on its way out. An application for its successor-a silent, nom-sticking all-my lon plastic hinge-is now in the U. S. Patent office. The new hinge, developed by American Plastics Corporation, will require mol lubrication and is expected to outwear its comentional metal counterpart many times.

This is the time of our annual sub scription renewal.
< Circle 498 on reader-service caro
ELECTRONIC DESIGN • March 18, 1959

> What is the true value of high purity aluminum foil in electrolytic capacitors?

Since the word "purity" is relative, the term "high purity" in describing the foil used in electrolytic capacitors has been often misused. Twenty years ago, $\mathbf{9 9 . 8 0 \%}$ aluminum was the highest purity commercially available. A few years later, 99.85% aluminum anodes became available and for a period of time were considered "high purity" foil.
Today, 99.99% aluminum is readily available for applications where the cost differential between 99.99% and standard purity anodes is justifiable. In some technical circles, purities of 99.85% to 99.87% aluminum are still referred to as "high purity". At Sangamo Electric Company high purity means 99.99% aluminum or better anode foil.
From the engineer's viewpoint, the advantage of 99.99% aluminum over 99.87% aluminum in elec trolytic capacitors is both tangible and intangible Most of the benefits are derived from the fact that there are fewer crystals of metal impurities on the surface of the higher purity foil. Crystal impurities such as iron do not form an insulating dielectric oxide and produce points of high electrical leakage. In a circuit where capacitors of lower anode aluminum purity are used, voltages are set up between the dissimilar metals and deformation, or point corrosions, slowly takes place. This action decreases the shelf life of the capacitor.
Other benefits provided from the use of 99.99% alumi num foil include longer life, better high temperature operation and lower dissipation factor. When variable factors are equal, the summary advantages of 99.99% anodes versus 99.87% anodes can be shown as follows

DC leakage	99.87% Anodes Per Mil-C-62A or EIA-RS-154	EIA-TR-140 or about $1 / 2$ leakage for 99.87% anodes
Shelf life	2 years	$21 / 2-3$ years

99.99\% Anodes

EIA-TR-140 or about $1 / 2$ leakage $21 / 2-3$ years 7-12 years expectancy

Where extremely low leakage is important, where tem perature of operation is between $65^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, or where exceptional long life is required and something better than standard electrolytic capacitors is desired, 99.99% aluminum anodes are well worth the additional cost
Capacitor manufacturers, like Sangamo, pay a pre mium of approximately 60% more for 99.99% alumi num foil. To obtain this near-perfect purity, the alumi num ingots used to produce 99.99% anodes must be reprocessed from a good supply of bauxite and a well run electro-chemical process.

Sangamo TYPE TR High Reliability ELECTROLYTIC CAPACITORS HAVE 99.99\% ALUMINUM FOIL ANODES

The use of 99.99% high purity aluminum anodes in Sangamo Type TR Twist-Tab Electrolytics, surgically clean papers, and a highly effective end seal gives these capacitors excellent operating life and superior elec trical characteristics. They are designed to operate in a temperature range from $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and are available in ratings from 3 to 450 volts D.C.
Engineering Catalog Number 2227 gives full informa tion and is available upon request for your files.

SANGAMO ELECTRIC COMPANY, Springfield, Illinois

SHRUNK BY EXPERTS

Burnell § Co. may not be experts in the art of head shrinking. But when it comes to toroids, filters and related networks. Burnell has the know-how to solve an infinite variety of small space problems. The new MICROID filters by Burnell \& Co. are a notable achievement in the shrinking of filters which cam be designed for low pass or band pass applications.

For example, as a low pass filter. Type TCLJ starts at 400 (ps . Physical size is $11 / 16^{\prime \prime} \times 1.1116^{\prime \prime} \times 1 / 2^{\prime \prime}$ max. For higher frequencies from 7.500 cycles up to 100 kc . size is $3 / 4^{\prime \prime} \times 1^{\prime \prime}$ $\times 1 / 2^{\prime \prime}$.
The band pass filter. Type TTJ pictured here. ranges from 7.350 cycles
(5) hegistered trade mark
up to 100 kc . Physical size is $1 / 2^{\circ} \mathrm{x}$ $19 / 32^{\prime \prime} \times 1.5 / 16^{\prime \prime}$, weight .3 ounces, band widh 1.5% at 3 db and $+60 \%$ $-40^{\circ} \mathrm{c}$ at 40 db . Wherever space and performance are critical requirements. miniaturized MICROID "in low pass and hand pass filters provide utmost reliabilit! as well as more unit surface economy on printed circuit boards. Completely encapsulated, they are ideally suited to withstand high acceleration. shock and vibration environments. Write for special filter bulletin to help solve your circuit problems.

See these and other sulmminiature components on display at 13ooth 2919-29:2I. IIRE Fxhilit.

PACIFIC DIVISION

DEPR D. 17
720 MISSION
SOUTH PASADENA, CALIF. RYAN 1-2841 TELETYPE PASACAL 7528

WASHINGTON复 REPORT

Ephraim Kahn

Loose U. S. Patent Policy

 to be TightenedGovermment patent policies. inconsistent and "contradictory", atre being examined by the Senate's Subcommittee on Patents, Trademarks and Copyrights. The group's chairman, Senator Joseph (. OMahoney (I). Wyo.) points out that the federal government is the "largest single investor in scientific research and development, and both the amount of money it spends and the number of agencies administering its research programs are steadily increasings."

Voting that this activity is presently "producing a large number of discoveries and inventions which may be patentable, and will produce an ceen greater number in the future," the Senator adds that "the public has a very substantial interest in what the quvernment does with its patent richts."

New Legislation

Leerislative action may be suggested "to bring order to this presently chaotic field of important government activity" after the sulbommittee completes its study, states Senator O'Mahoney Though the nature of such recommendations is not yet known, the group has cited, with apparent approval, a report made in 1947 by the Justice Department. This urged that the government take title to all patents produced under research contracts or grants, except in special cases. In the exceptional instances where the government did not take title to the patent, it was to receive an irrevocable. royalty-free non-exclusive license and if the contractor failed to place the invention in adequate commercial use within a designated period, he was to offer mon-exclusive licenses at a reasonable royalty to all applicants.

The Government Patents Board, created in 1950, was not given power over the disposition of inventions made by contractors or granteses, according to the subcommittee, and practices with regard to inventions be employees vary. For example, the National Science Foundation (which is considering a change in its rules) has so far taken the view that in no case is it desirable for title to patents produced through government-financed research to rest in the government; it feels that a non-exclu-
sive perpectual license to use an invention is all that it needs. On the other hand, the Tennessee Valley Authority retains all patents produced by govermment research but grants non-exclusive royalty-free licenses.

NASA Has Long Reach
In the meantime, business and govermment are trying to unsnarl some of the tangles that result from varying official patent policies. The situation secmis particularly acute under contracts let by the Natiomal Acronautics and Space Administration. Which is in the business of developing new technology: Under the Space Act, any invention made in the course of work under a NASA contract normally becomes the exclusive property of the government. The NASA Administrator may find, however that the public interest would be sersed be having the contractor keep the patent. Furthermore, NASA's reach is long-it covers insentions under subcontracts even though the inventor may be umaware that he is working on a space agency project.
The Space Act's patent provisions require the Commissioner of Patents to untify NASA of amy application received-whether stemming from govermment- or privately-financed activity-which seems to have "significant utility" in the conquest of space. NASS then cam take title to the patent for the government within (s) days. or wave this right in the "public interest."
I new tederal patent polie? seems to be implied in this-that the sowermment has pre-emptive rights to inventions of importance to the national interest regardless of the fact that cosits of development may have been borne by industry. It also raises the question of possible retroactive application of the NASA Administrator's ability to buy, condemn, lease, or otherwise obtain title to, or use of, patents that he needs or wants.

ASPR More Lenient

Industry by far prefers the Defense Department's patent mules. The Armed Services Procurement Regulation demands only that the government be given a nom-exdusive rovalty-free license to all patents on inventions made or reduced to practice in the course of performance of a contract with the military. Sceveral industry associations are trying to hate this ASPR rule substituted for the current space Act provision.
NASA is aware that the law makes it difficult to write patent regulations which will stimulate broad business participation in the space research program. To do so, it will evidently have to take advantage of the latitude given to its Administrator by Congress. NASA is not required to take title to patents; it can settle for a license to use the patent. In addition, provision is being made for special awards to inventors whose patents are

In this corner! the most reliable fractional ounce in your guidance package!
Wheelock SIG Y $\mathcal{Y} A$ L.S

these wr wave guide seals provide positive SEALING; PREVENT R/F LEAKAGE, ARCING \& BURNING

Parker seal company

CULVER CITY, CALIFORNIA and CLEVELAND, OHIO A DIVISION OF PARKER-HANNIFIN CORPORATION

WASHINGTON REPORT

taken ower by the agency
NASA has already gotten ideas both from individuals and companies for projects that may be useful in space exploration. At the end of January 365 itleas had been received, of which 145 came in during that month alone. The asemey stamps cach with a time and date. Hereby setting prionity of submission and authorship. None are to be published withont the auther's permission. The asene: can give awards to anthors (individual or corporrate') of accepted ideas. They may, of course, also lead to development contracts, thenigh this is he: III) means certain. In view of the scate of rewards for ideas that is probable, the momes anpect is far more likely to be of interest to ann individual than th) a corperation. But companies might find value in the prestige of hawing had an idea aceerpted. particularly for institutional :adnerticing purposes.
Transistor Supply Planning
Possible transistor shortages are being felt out by the Defense Department. Quentimmaires are being sent to prime conitractors for cortain clectronic devicen becanse the military want to hnow which (if any) transistors and related items are likels tw be in showt ulplels. Contractors will be arked to tatte their meeds for tramistors by category and mumber. Reppomse to the yreestionaine will be manchaters
New Security Bill
New Industrial Security Bill, cndorsed by the Administrations. hise been introduced by semator John M. Butler (R., Md.). Purpose of the bill is ti) protect vital detemse facilition. Inchuding plants. asaint whotares. ©ppionate. .nnd other acts of mblarsiom.

The bill provides that ann inditidual whon is barred from aecess to a defense lacilit? wall be. notified in writing of the chargen against him and given adequate opportumity to defend himself against stch charges. It also provides that aus such person summarily barred from access to any defense facility but in whose case the bar is re moved as a result of the proceedings shall be compensiated by the U'S. Soverrment for his los of camimes. The meanure states, tom, that it is now intended to deprive any individual of any right or bencfits conferred by the federal lator law: Penaltios imposed for vielation would be fines e up to $\mathrm{S}(0)$ (KK) or imprisomunent up to five year: Chances of passage of the proposed law ar considered slim.
Don't forget to mail your re newal form to continue receivins ELECTRONIC DESIGN.

EDITORIAL

Let's Standardize Diodes Now!

You can spend many precious hours seeking the diode you need among the $350(0)$ now avaikable. And then, you miss one that does a better job, or an equal joh at half the price

In last year's July 23rd issue. Electroner Desion urged manufacturers to standardize more quickly. Manufacturers have been trying, through committees of IRE, AIEE, EIA, and the military, but progress has been painfully slow, and the number of available diodes grows steadily.
"Why:" we asked, "cant manutacturers agree on how to define and measure recovery time, peak inverse voltage, reverse leakage current, and torward conduction? And why cant they get torether and diminate duplicate diode types?

The reple, though it someded like passing the boch. made sense: "It's up to the users.
 rolling. (Our readers are all clectronice design emgineers and. almost to a mant, diode users.
Readers, wed like your help. Wed like to know what are sour favorite diodes for cath general application (mixer. genceral purpose. rectitier, computer, photediode, variable capacitor diode ente.) Tell us whe manufactures your favorite dionde tepes. his price for one mit and for Iow. Tell us what son like abont the diedes you prefer and what !oudon't like. You may like the high back resistance and dislike the patckage or the pricee. for (xample.
If you fer ats strongl! about diode standards as we do, if you spend too much time searching for the diede you need, if yond like to see a "semsible" diode list, send us your own "Prefered List" right away. Wed publish the results of this "IDiode Popularits Poll in Ele: trone Desios.
If all the letters you send us show a significant trend, our joint efforts may well result in the first major step) towards standardizing diodes

If you prefer to enter your contribution on our prepared form. please pick one up at our IRE Booth No. 1727, or turn to the Reader-Service Card and circle 104.

Impedance Matching

Having been intimately involved over the past ten years with the design of communication networks, Elmer W. Schwittek, currently head of the Communication Laboratories at Stromberg-Carlson, shows how to eliminate drudgery from impedance matching problems.

Fig. 1. Simple L network

MATCHING: an rf power amplifier to a load can be considerably simplified with just several handy equations and a few design insights. It is not necessary for the engineer to refer to cumbersome reference charts. And. although the casse of matching an rf power amplifier to a load is discussed. the procedure is equally adaptable to other impedance matching problems.

Impedance Matching Problem

To, illustrate a more simplified approach to impedance matchings an output network will be designed to match a 4×150 class C rf power amplifier to a load which contains a resistance in series with a reactance. The resistance call assume any value between 1 and $2(O K)$ ohms and the reactance can assume any value between + , $2(1)(6)$ to $-i$ O(KK) ohms. Frequency range is from - tos me.

The value of resistance inte which the PA (power amplifier) tube delivers maximum power within its ratinges has to be calculated. This value. of course, is the required input impedance of the output network. However, this calculation will not be discussed, since Eitel-McCullough (Eimac) has made this graphical procedure available in their tube catalog. The treatment is excellent and vields extremely accurate results. For the sake of this example assume that the proper load for the

Fig. 2. Pi network
1×150 is 2500 ohms.
The design of this network will be considered first on the basis of the load being a pure resistance having a value between 1 and $200(0)$ ohms. This will aroid some confusion throughout the example. After all, the network must at least perform this function and in most cases including a reactance in the load will only effect component magnitude, not this configuration

If in a P'. \mathbf{I} output network design only the load resistance needs to be transformed to the desired input impedance (2.50 (ohms a simple L network of the form shown in Fig. I would suffice.

Howewer since the value of r can sary between 1 and $2(M)$ ohms. Iet us examine the () of this circuit as determined by the following equation:

$$
\left.R=Q^{2}+1\right)
$$

(1)

It varions balues of r are substituted in $\mathrm{Eq}(1)$. it will be found that () < 5 for all values of between \mathscr{F} and $2(x)$ ohms. With a \& less than 5 the harmonic attemuation of this circuit would be low: so low, in fact, that a sizalble portion of the tube output would be present in the form of harmonic power in the load and poor tube efficiency would be apparent as far as the fundamental frequency is concerned. A Q of 7 should be considered to be the lower margin of good engineering practice. Higher values of minimum () may be required if specific harmonic attemuation specifications exist.

Avoiding Low Q Condition

To insure against the above low operatine Q condition it is necessary to consider a more complicated network-a pi network, for example. A convenient means of comtrolling operating Ω is to select a fixed value of input capacitance such that () will never be lower than 7 . See Fig. 2 .

$$
\begin{aligned}
Q & =\begin{array}{l}
H \\
X
\end{array} \\
X_{1} & =\frac{K}{!}=\frac{2500}{7}-2537
\end{aligned}
$$

If this value of X_{1} is what is reguired to assure a () of 7 at 2 mc , and the value of input capacitance remains constant, the © at the upper come of the frequency range (8 mc) will be:

$$
Q=\frac{n}{x}=\frac{-3.5 n)}{357}=20
$$

The efficiency of all L, networh (assuming lossless (apacitors) is related to (operatine © and coil () an follows

$$
\text { Percent Eff. }=\frac{Q \operatorname{conl}-Q) 100}{Q \operatorname{con} \mid}
$$

Assuming a coil ef of 150 . the efficiency of the L network (which will form the first half of the pi network) at S me will be
Percent EIf. $=\frac{1.50-28) 100}{1.50}=81.3$ per cent
This degree of efficiency is not considered particularly high. For this reason a maximum () limit of 20 is considered good engineering practice.
To eliminate the high Q condition at 5 mc without, at the same time, reducing the () below 7 at 2 mc , it is desirable to employ band-switching of the network input capacitor. Two bands covering the range $2-4 \mathrm{mc}$ and $4-5 \mathrm{mc}$ would be
a reasonable choice. Under these new conditions the value of X should be reselected to provide a reasonable compromise between harmonic attemuation and network efficiency. If X were reselected to be 300 ohms at 2 mc (band 1) and 4 me (band 2), then:
$\left(\Omega=\frac{2.50()}{3(\mathrm{~N})}=8.333\right.$ at $2 \mathrm{~m} \cdot$ (hand 1$)$ and $4 \mathrm{me} \cdot($ hand 2 ? $Q=\frac{2.500}{1.50}=1(6.7$ at $4 \mathrm{~m} \cdot$ hand 1$)$ and $\mathrm{sm} \cdot($ thant ?

From this point on only the -4 hand will be "atmined since the $4-5$ me hand calculations would be identical.
The following calculations are only pertinemt to the first half of the pi-network shown in Firs. 3.

> 2 me (Band 1$)$
> $R=\left(Q^{2}+1\right) Y_{n}$
> $r_{h}=\frac{R}{1+Q^{2}}=\frac{1+00(1)}{1+8.33=}$
> $1=\left(8 r_{1}-8.33 \times 35.5-23 m_{1}\right.$
> Assuming roil Q of 150
$E_{U I}=\frac{U \text { coil }-U}{!\text { coml }}=\frac{1.011-8.33}{1.51}=91.5$ per inent
4 me (Band 1)
$l \equiv Q^{2}+, \quad Q=10$

$$
r_{n 1}=\frac{. . .000}{16.7^{2}}=9
$$

$i_{1}=\left(11_{1}\right)=16.7 \times 0=150$
Asuming wiil Q of 150

Summarizing:

- To prevent the possibility of a low () condition a network more complee thatn a single L
network must be used.
- The value of X_{1} was selected so that the limits of operating Q of the first L section are firmly established. Regardless of what network follows this L section or regardless of what load is present it is certain that an operating () of less than 8.33 is not possible when the tube has been loaded to its proper plate current, i.e.. presented with a $25(0)$ ohm resistive load.
- The problem remaining is to determine what must follow the first L. section in order to transform any of the possible load resistances to π_{1} which is 35.5 ohms resistive at $2 \mathrm{mc}, 9 \mathrm{ohms}$ resistive at 4 mc , and has resistive values between 35.5 and 9 ohms at frequencies between 2 and +mc .

Matching Load Resistance $>\boldsymbol{r}_{\text {, }}$

To fulfill part of the above requirements another L section following the first will successfully transform all resistive loads greater than $\boldsymbol{r}_{\boldsymbol{\prime}}$ (t) the value of $r_{t_{1}}$. (See Fig. 4 .

The matching capabilities of a pi-network are definitely limited to those load resistances greater than r_{1}. The maximum value of x_{2} may he found as follows:

$$
\begin{aligned}
x_{2} & =\left(\ell r_{1}\right. \\
(\ell & =\frac{K}{x_{2}} \\
x_{2} & =\sqrt{R r_{\prime_{1}}}
\end{aligned}
$$

The matching capabilities of a pi-network required when R and $r_{\prime_{1}}$ are at their largest values, i.e., $2(0)(1)$ ohms and 3.5 .5 ohms, respectively.
$x \geq$ max $=2657$,hma
Total value of maximum reactance recquired in the pi-network coil would be:

$$
x_{1}+x_{2}=264=246 ;+4.8 \mu \mathrm{~h} \text { at } 2 \mathrm{mc} .
$$

The value of x_{2} will approach zern as the load resistance approaches r '1

Minimum value of X_{2} will occur when the load resistance is equal to twice the minimum value of $r_{\prime_{1}}$. This fact is obtained as follows:

$$
\begin{gathered}
R=\left(1+Q^{2}\right) r_{f_{1}}, \text { but } Q=\frac{R}{X_{2}} \\
R=r_{f_{1}}\left(1+\frac{R^{2}}{X_{2}^{2}}\right), X_{2}^{2}=\frac{R^{2}}{R-r_{f_{1}}} \\
\frac{X_{2}{ }^{2}}{R}=\frac{\left(R-r_{f_{1}}\right) 2 R-R^{2}}{\left(R-r_{f_{1}}\right)^{2}}
\end{gathered}
$$

Setting this quantity to zero and solving for R in terms of r_{1} :
X_{2} is minimum when $R=2 r_{r}$.
Since minimum r_{1} occurs at 4 me and is equal to $9, X:$ is minimum when $R=18$ and this minimum value of X_{2} is,

$$
\begin{aligned}
K & =\left(1+Q^{2}\right) \boldsymbol{r}_{1} \\
15 & =\left(1+Q^{2}\right) 9 \\
! & =1=\frac{K}{X_{2}} \text { Since } R=18, \\
X_{2} \text { min. } & =\frac{K}{Q}=\frac{18}{1}=18=2: 2(0) \text { mmil al } 4 \mathrm{mc}
\end{aligned}
$$

To determine if this is actually the largest capacity required, the minimum value of X_{2} at 2 mc is determined.

$$
\begin{aligned}
& R=2 r_{r_{1}}=2 \times 35.5=711 \\
& R=\left(1+Q^{2}\right) r_{f_{1}} \\
& 71.0=\left(1+Q^{2}\right) 35.5 ; \quad Q=1=\frac{R}{X_{2}}
\end{aligned}
$$

since $R=-1.2 . X_{2}=\begin{aligned} & R \\ & !\end{aligned}=71.2$;i.e., $11(N) \mathrm{mmad}$ a $12 \mathrm{~m} \cdot$

The maximum reduired value of X_{2} will occur when the load resistance is equal to $r_{r_{1}}$. At this condition $X_{2}=\%$. Since X_{2} in a practical case cannot equal infinity some additional calculation

Fig. 4. The addition of another L section transforms all resistive loads greater than $r_{1 / 1}$ to the value of $r_{1 / 2}$.
is required using the maximum value of X_{2} that is possible to determine what the minimm value of resistive load actually can be. This can become important in the 10 to 30 me frepuency range. However, since this example is concerned with freyuencies no higher than $\$$ me. we will assume that X_{2} (all $g(0)$ to infinity.

Matching Load Resistances $<\mathbf{r}$.

We have succereded in determining the cirenit required to match load resistances which have a vallee greater than r_{1}. The problem remaining is to transform those load resistances below r a to the required value of $250(0)$ ohms.

The most efficient means of matching to resistive loads less thatn $r_{\text {f }}$ is merely to use one I. section. (Sere Fig. 5.)

$$
\begin{array}{ll}
R=\left(Q^{2} r\right. & (Q>10) \\
U=\therefore 11 &
\end{array}
$$

$$
X_{1}=. .11
$$

However, since the salue of X_{1} has been previously selected so that () (an be controlled when matching higher load values we ne longer have the option of employing the above circuit to perform this matehing function. Since the load resistance range is so great, since we have alread! arrived at a practical circuit to match resistive loads greater tham $r_{1,}$ and since it is desirable to keep the number of tuned and switched elements to a minimum, it is advisable to maintain the orisinal circuit configuration to ats great a degree as possible and saterifice some network efficience

An approach that is reasomable is to add ant additional L secetion which has the function of stepping up the low load resistance values to values which can be matched by the pi-section. That is. the combination of x_{3} and X_{3} (the additional L. section which has the function of resistance so that the value of r en is equal to or qreater than $r_{\text {r }}$. (Ser Fig. (6.)

This immediately means that the demands on the $x_{3} . X_{3}^{*}$ section are quite fle vible. There is a considerable choice as to just what value of r res we should demand. Since the pi-section was designed to transform ans value of load from $r_{f 1}$ to $2(0) 0$ ohms. oh ionsly r_{12} could fall amywhere between the walne of r_{1} and $2(x) 0$ ohms and the $x_{2} X_{2}$ section could accomplish the matching function. Though any choice will function properly, one approach is to demand that $r_{f 2}$ always equals r_{11}. This means that x_{2} can be zero and that X.. be infinits.
It should be noted. however. that miless the output network tumine procedure is adequately outlinert, there is a definite possibility that the tramsmitter operator will minnowingly choose
the valuce of $r^{\prime 2}$ in spite of what the designer does. It should be the designer's responsibility so to outline toming procedure and so to limit the value of x_{3} and X_{3} so that the value of r is limited to those values which will yiedd reasonable efficiences.

To illustrate this llexible matchimes sitmation issimme a load resistance of 1 ohm, all r_{1} of 9 $(4$ mec band 1) and all r re of 9 . As previously mentioned if $r_{12}=r_{n}$, then $x_{2}=1$ and $X^{2}=x$
This would demand an X : capacitor of an impractically large value.

By similar calculations. if $r \frac{2}{2}$ is chasen to be 200() ohms. the value of X_{2} is quite practical. but then network efficiency is at its least desirable point. A compromise value of $r_{/ 2}$ is then determined based primarily upon motwork afficienter and the practicality of the value of capacite cor responding to $X_{2} X_{3}, X_{2}+X_{3}$
If a value for roe equals $5(0)$ obms is chosen it will mean at least a practical value for X, X.

Fig. 5. Matching resistive loods less than $r_{/ / 1}$ with one L section.
$X_{2}+X_{3}$. But this choice opens up new possibilitiess since it is mow possible to match load resistances in the ramge from 1 to $\overline{5}$) shmes with the pi-L matching circoit. This me:ans that it is not longer essential that the original pi-nctwork be required to match load resistance values down to the value of r_{1}. This sitnation call further assist in making the value of output capacit? more practical.

From the above example it has been shown that the network shown in Fig. 7 would suffice. Nomally X_{2} and X_{3} will be combined into one capacitor and that x_{3} is zero except when the complete pi- L circuit was required for matching. It also has been shown that pi-L, network will transform all resistive loads between 1 and $20(0)$ ohms to the desired input impedance of $2.5(\mathrm{~K})$ ohms. The pi-L network was chosen since it performs this function without change in network configuration while at the same time preserving control of minimum network ()

Reactive Loads

Up to this point reactive loads have been ignored. This has been done primarily to simplify this example. Basically the mothod of approach for reactive loads is merely to separate the load into its resistive and reactive components, treat the resistive components as the load resistance, and treat the reactive component ans a portion of the matching network. This sounds simple comough on the surface, but to illustrate the procedure let us investigate the following example. Assume the load to be $1+i 4.9$, a leat impedance which is included in the range of those impedances that this output network should be calpable of matching. Fig. 8 indicates the series and shant representation of this load impedance.

Assume that we are operating the pi-I, networh
 tion arises as to whether we should class the $1+i+.9$ load impedance as being in that cate gere of resistive loads below m_{2} (simere in the series representation the value of resistance is I (ohm). (or abowe r (since in the shant repre sentation of the value of resistance is 2.5 ohms i.c.. whether we catl match it with the pi-l net work onls or whether it ean be matcher with the pi-metworh ($x_{3}=0$). Is a matter of fact the reactive pertion of the load allows this kad to be matehed with either notwork ats shown in Fige Ya and (9h). Load matched with pi-I, networh (re, chosed to be 50) ohm

It mans seem that the required ontput capacit? is less when msing the pi-L metwork to mate ha this load while calculations will show that the efficiency is just slightly greater when the pi-met work is used. If re.. were chosem to be 100) olmes rather than 5 () the value of required output d:apacits would be further reduced with a slight additional loss in efficience

The point of the above example is to indicate that reatetive loads allow the network designer some additional choice in design. Utilizing the load reactance may present an opportunit! to provide more practical values of network components. Some reactive loads may reguire additional ratuge in some of the matching components.

Room for Ingenuity

Completely different approache's are possible to provide a solution for the design problem. The solution shown is practical, but there remains considerable room for ingenuity in providing ant output network that is simple and casy to tume. Antemnas are the usial load for the PA. If antemna impedance characteristics are well estahlished it is (puite possible to utilize this information to simplify the network and to further restrict component range. - -

Fig. 6. The addition of an L section steps up the low load resistance values to values which can be matched by the pi section.

Fig. 7. A more practical pi-L matching circuir

Fig. 8. Series and shunt representation of a load impedance, $1+1$ 4.9.

Fig. 9 a and 9 b . Reactive portion of the load allows the load to be matched with either network, 9a or 9b.

> NEW IDEAS IN PACKAGED POWER
for lab, production test, test maintenance, or as a component or subsystem in your own products

New, fast, a-c regulator cuts line \& load transients $\mathbf{1 8 ~ d b}$

- Steady-state line and load regulation to $\pm 0.5 \%$ o Transients attenuated at least 8:1 (18 db) = Fast response-less than 1 cycle (0.02 sec) for 63% recovery $=$ Less than 0.35% distortion

The new Sorensen Model FRLD750 fast response, low-distortion a-c regulator is ideal for critical applications like null testing, meter calibration, and the powering of pulse-type circuits, such as those used in computers, where false triggering is not permissible.

Since there is no phase shift between input and output, the FRLD750 can also be used in multiples for the regu. lation of multi-phase power. Line and load transients are reduced by at least

8:1. regardless of their magnitude. Both cabinet and 19" rack-mounting models available. Write for technical data or see your Sorensen representative

And don't forget, Sorensen engineers will be glad to discuss your special power requirements with you. They can help you select the proper a-c or d-c power supply, regulator, or frequencychanger from the widest transistorized line on the market, or assist you in designing special power systems.

SORENSEN \& COMPANY, INC.
Richards Avenue, South Norwalk, Connecticut
WIDEST LINE OF CONTROLLED-POWER EQUIPMENT FOR RESEARCH AND INDUSTRY

IN EUROPE, contact Sorensen Ardag. Zurich, Switzerland. IN WESTERN CANADA, ARVA IN EASTERN CANADA, Bayly Engineering. Lid. IN MEXICO, Electro Labs. S. A Mexico City, CIRCLE 18 ON READER-SERVICE CARD

TYPE RH POWER RESISTORS

Wire Wound, Precision, Miniature, Ruggedized

atant tratora cinticenat
JUST ASK US
 sistors (Wire wound and deprosited car
henl: (rimmel putemthmeters. resisto networks. colle. tholog hathe and hs: adtanced deletromb tiraum adsanced elotrome trat fomee of the DAl.ontil standard lom ment にread to hell, sula be wor proble in the reatm of development. engimeernis design and prodacture

Desibned for the specific application of hish power reguirements, coupled "ith precesion tolerance Mounts on Thassis for maximum heat dissipa tom. Operates under severe envirn mental conditons as outlined in - recelficatons below

- Rated al 10, 25, 50 and 250 walts.
- Resistance range from 0.1 ohm 10175 K ohms. dependina on type.
- Tolerance $0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%$, $1 \%, 3 \%$.
temperature coefficient: Within
- 0.00002 degree C

COMPLETE PROTECTION: 100% impervious 10 moisture and sall spray

WELDED CONSTRUCTION: Complete welded construction from terminal to terminal.

RUGGED HOUSING: Sealed in silicone
inserled in radiolor finned aluminum housing.

SMALLEST IN SIZE: $7 / 16 \times 3 / 4103 \times 4-1 / 2$ inches.

MILITARY SPECIFICATIONS: Surpasses applicable parographs of MIL P. 185468 Visit the Dolohm Booths 2742 -44 af the I.R.E. Show

Windings, laminations,
bracket held together by epoxy

Potting

Rotor includes stacks, and blades centrifugally cast

Casting

used to produce Low-Cost

THE MAIN portions of this fan-iron laminations, coil windings, bearings lead wires and holding bracket-are on integral piece, held rigidly together by an encapsulating epoxy resin. Because of this cost saving design approach and others the electronic engineer can bus 100 CFM of cooling air for $\$ 6.85^{\circ}$-about one tenth the usual price for guality blowers.

The 60 cycle-powered unit can fit almost anywhere as it is 5 in . sq and $1-1 / 2$ in. deep. Because of a well-engineered propeller design the unit delivers high volume at high pressure at low noise (42 db on the A scale; about 10 db lower than average room air conditioners) Pressure is sufficient to drive air through a dust filter and tightly-packed electronic equipment (see graph).
Called the Muffin Fan by its producer Rotron Mfy. Co., Inc., Woodstock, N. Y. the motor is the inside-out type with cantilevered bearings. The air-impeller is integral with the rotor. This patented de-
${ }^{\circ}$ Ouantities of one thousand. Approximately 20 per cent higher for small orders.
sign, which was used successfully to pro duce miniature military blowers (Aximax
and the Saucer. Elfachonse Design, March 5. 1958. p 106), has been further perfected so that it can be made by antomatic means. As a result there are only three pieces in the new fan, the molded stator, the centrifugally-cast rotor, and the molded phenolic venturi block. It takes but 15 minutes of latbor to inspect

Three pieces of fan assemble without screws or bolts. Bezel with grill clamps onto molded venturi block

Molded venturi block
Molded venturi block
reeds no machining

Molding

Cooling Fan

and assemble the piecte produced by Intomatic processes,

Unusual Product Design Cuts Cost
Molded stator. The entire stator assemlily comprising motor laminations, stator stack, and wound stator is completely encapsulated. Development of the methot to mold this assembly was the liggest tooling problem licked by the manufacturer. The spider arms, or mounttug bracket, has embedded in it fiber glass mods for reinforcement. Molds were designed to dispense epoxy on a production s.hedule. Conveyors, and convection and

f erformance curves of fan shows high volle and relatively high pressure.
infrared ovens are used to process the assembly at a fast rate. The epoxy encapsulant is a special mix which maintains its dimensional stability and withstands severe thermal shock.
Rotoprop assembly. This assembly is comprised of rotor laminations, cast propeller and a hardened-and-ground shaft.

The normal manufacturing method to produce this sub-assembly would be to stack the rotor laminations and centrifugally cast the retor stack and then machine the piece for pressing into the propeller. The propeller would normally be purchased as a die casting and machined carefully to accept the rotor stack and shaft. To save machining cost, the shaft was changed to a hardened and ground part and a method devised to stack the rotor laminations into a mold with the hardened shaft in place for casting. The rotorprop assembly was then centrifugally cast complete in one operation. No additional machining operations were re(quired.
Extrome accuracy as to concentricity tretween the shatt and the inside diameter of the motor can be maintained
Venturi block. This part was originally designed to be an aluminum die casting but again to eliminate machining operations the part was changed to a plastic. A dimensionally-stable phemolic that can be molded to blueprint tolerances requiring to machining or finishing operations was used. The multi-cavity mold used to produce the venturi block was no more expensive than the die-casting die would have been.

Other Features
The bearings in this fan are unique and came about as the result of a careful re-evaluation of what the industry has been doing in the past ten years. Since only minute quantities of lubricant are actually needed, provided that the lubricant is there when wanted, and that it does not chemically deteriorate, a design using a Teflon seal is used which holds a small quantity of oil and seals air out. Because the quantity of oil is small compared to other motors, the most expensive lubricants can be used-the $\$ 20$ a gallon variety for example. This approach reverses the trend of other motor designners to produce oversize oil reservoirs.
For more information on this low noise and low cost fan turn to the ReaderService number and circle 101

New Speed...Versatility... Reliability

> Transistoonteo Digital MAGNETIC TAPE HANDLER MODEL 906

- Check these new standards of reliability and performance

roliability

Trouble free brushless motors
Over 50,000 passes of tape without signal degradation
linear servo syste of pinchroll mechan Life expectaney of pinchroll mechan ism: over 100,000,000 operarions
of 100 i.p.s.
Vacuum loop buffer
Confinuous Auffer free cyeling 0 io 200 cps

Normal speed up to 100 i.p.1. Rewind or search speed constant of 300 i.p.s.
Six speed forward or reverse up to 150 i.p.s.
Betler than 3 milliseconds stert, 1.5 milliser slop

Front panal accossibility
In line threoding
End of tape and rape break sensing All functions remotoly controllable Tape widths to $11 / 4$

The 906 is usually supplied with the Potter 921 transisforized Record-Meyback Amplifier; a unip that features:

Pulse or leval outputs
Output gating
1 i.p.s. to 150 i.p.s.

Manual, relay, or
eloctronic function switching
Dual read-write operation

Potter also manufoctures a complete line of Perforated Tape Readers, High Speed Prinfers and Record-Playback Heads
Confact your Pofter representative of eall or write direct for further information.

POTTER INSTRUMENT COMPANY, INC. Sunnyside Boulevard, Plainview, N. Y OVerbrook 1.3200
Enginecring Qwality

Porter has career opportunities for qualified engineers who like a challenge, and the freedom to meet it. CIRCLE 20 ON READER-SERVICE CADD

Microwave Test Instruments Part 7

The microwave engineer should bear in mind that a number of manufacturers produce test equipment and accessories on a custom basis, fulfilling special needs, and that the companies in the field are not restricted to those mentioned in this series. - -

Miscellaneous

MICROWAVE measurements are made with wide array of test equipment. Some are of very specialized nature. In this concluding part, echo boxes, standard horns along with a number of other specialized microwave test instruments are covered.

Standard Gain Horns and Echo Boxes

Echo boxes are high-Q resonant cavities which give, in a single reading, an indication of the overall performance of a radar system. Signal generators and power meters are widely used in measurements on radar systems where detailed knowledge is required, but the echo box is convenient for a single overall performance measurement.

The echo box consists of a high-Q resonant cavity which is coupled to the radar by means of either a directional coupler or a pickup antenna. The cavity stores energy during the transmitted pulse, and continues to oscillate after the end of the pulse period, with an exponential rate of decay. This exponentially decaying signal is returned to the radar receiver. It initially saturates the receiver, and eventually decays into the noise level. The total elapsed time between the transmitted pulse and the time the noise level is reached is called the "ring time," and is a measure of overall radar performance. Typical loaded Q's of echo boxes are of the order of 50,000 to 90,000 .
Standard horns are used in measurements concerned with antenna design and development. They may be used as standards for calibrating other antennas, as feed horns for reflectors and lenses, as pickup horns for sampling power, and as receiving and transmitting antennas for point-to-point communications. The method by which standard-gain horns are used to calibrate other antennas is essentially one of substitution. The
gain standard and the unknown antenna are alternately connected to a well-matched receiver and the difference in level between them is measured-for example, by using a precision attenuator. Horns are available in gains of 10 to 25 db , and the gain at any frequency in a band can readily be computed when it is known at a given frequency. Standard horns along with echo boxes are listed in Table 1 according to manufacturers.

Receivers and Field Intensity Meters

Receivers have many applications in microwave work, including radio noise measurement, field intensity measurements, antenna pattern measurements, and numerous others. Generalpurpose laboratory receivers feature wide tuning range, accurate frequency and signal level calibration. Receivers intended for antenna pattern measurements are designed for wide frequency range, and maximum sensitivity and linearity.

Field intensity meters are receivers designed for accurate frequency and power calibration and high sensitivity. An internal signal calibrator permits accurate voltage and power measurements. Calibrated antennas are included so that signal level readings can be accurately related to field intensity. Receivers and field intensity meters are listed in Table 2 according to manufacturers.

Miscellaneous Instruments

Microwave test bench is an integrated system for performing laboratory and production tests. It can include such subunits as attenuators, frequency meters, detectors, slotted lines, and directional couplers. Such setups can, also be made by using standard units and assembling them into a complete system by means of mounting stands, supports. Mierowave test benches along with a
number of other microwave equipment are listed in Table 3.

Traveling-wave tube amplifiers have a number of uses in design and testing of microwave s!stems. They can be used wherever there is a requirement for broad-hand gain, pre-amplification, high-speed pulse generation, or signal amplitude or phase modulation. Microwave amplifiers making use of traveling-wave tubes protide high gain and moderate power outputs, and can modulate the amplitude or shift the phase of the input signal. The units are completely selfcontained units incorporating all the power supplies and controls necessary for their operation.

Radar moving target simulator is another type of unit for calibrating radar system performance.

Table 1. Standard Horns and Echo Boxes

Manufactureo	Standord Morns	Echo Bonec
Airtron, Inc.	X, KU, K, V	--
Amerac, Inc.	--	2.7-2.9 KNC
De. Mornoy.Bonordi	$\begin{aligned} & S, C, X N, X B, X, K U, K, \\ & V, Q, M, E \end{aligned}$	--
Diamond Antenno 8. Microweve Corp.		--
Douglas Microwove Co.	Loz	--
F.R Machine Works, Inc.	$\begin{aligned} & L, S, C, X N, X B, X, K U, \\ & K, V, A, M, E \end{aligned}$	--
Microwave Associotes, Inc.	X, KU, K, v, M	34.36 KMC
Nardo Microwave Corp.	$\begin{aligned} & L, S, C, X N, X B, X, K U, \\ & K, V, A, M, E \end{aligned}$	$\begin{aligned} & 5.35-5.45 \mathrm{KMC} \\ & 9.20-9.45 \mathrm{KMC} \end{aligned}$
Polarad Electronics Corp.	4. 19.7.74 KMC: 736.100 KMC	--
Polytechnic Reseorch ond Development Co., Inc.	--	15.8.16.2 KNC
Rodar Design Corp.	S, C, XN, XB, X, KU, K	--
Sperir Gyroscope Co.	8.5-9.6 KNC	-
Woveline, Inc.	$\begin{aligned} & S, C, X N, X B, X, K U, \\ & K, V \end{aligned}$	

hereas the echo box may be used for checking insmitter and receiver performance, the movi target simulator tests the radar range trackis circuits. It provides a microwave return mal with the same pulse characteristics as the insmitted radar signal, which may be adjusted that it has a continuously varying range and in used to check the radar range tracking cirits. It also provides a series of accurate fixed - uge echo pulses that may be used to calibrate the radar range markers. The simulator may be an mected to the radar set directly through a dino tional coupler, or it may be used with a (0) kup horn antenna.

Intenna-pattern transmitter is a cousenient 1 band source, particularly designed for antenna weasurements. It consists of an antenna assembly, a modulator, and a remote control unit. A notor-tuned magnetron is mounted on the antinna assembly. The unit has variable antenna pmlarization through 360 deg , two azimuth positions 10 deg apart for dual-range use, and manmilly adjustable elevation.
Peak power test set provides direct reading of pak power by comparison between the unknown signal and a known reference on a syndiroscope. The test set consists of a signal generathor and a crystal video receiver, and can also be wed as either one. In making power measurements using this unit, the comparison is made by muans of an external synchroscope, and the power read-out of the reference source is made lis means of an external wattmeter bridge. The vimal generator pulses are first matched with He height of the unknown pulse, then the test set is switched to cw operation and the power measured with the power bridge.
Microwave stability tester measures drift and frequency modulation of a microwave signal. It uses a digital type of discriminator, so that very small frequency variations can be quantized and measured as a dc voltage. Any frequency change causes a change in the number of pulses quantired and a change in the voltage level of the integrator, whose amplified output is calibrated
in cycles per second on a frequency deviation meter. The amplified output of the quantizer, after filterning and demodulation, also drives a drift meter calibrated in kilocycles per minute.

Microwave Q -meter is useful in measuring the Q of echo boxes and other forms of cavity resonators. Its operation is based on an accurrate comparison of the rate of decay of oscillations in the cavity under test with a rate of discharge of precision capacitors into a highly stable known resistor. It therefore does not require highly stable oscillators. accurate tuning of the cavity, nor precise setting of the ouptput signal to a particular level.

In addition to the measurement of Q, this unit can also be used for a number of other types of measurements, such as measurements of conductivity of metals and dielectric losses of materials at high frequencies.

Precision attenuator calibrator may be regarded as a reference standard for signal levels, and is used for the accurate calibration of signal generators. Signals through the attenuator under test and through a precision reference piston attenuator in the instrument are each modulated by alternate halves of a square wave generator. By adjusting the standard piston, equality of the signals is obtained. The difference is displayed on a cathode ray tube and also operates a phase sensitive rectifier which shows this difference on a meter.

Noise figure indicator, when used with an auxiliary noise generator, continuously and directly indicates the noise figure of a receiver under test. A square wave modulates the noise generator, causing it to go on and off alternately for equal periods. The bursts of noise from the generator are fed into the receiver under test, and the i-f output of the receiver is taken to the noise figure indicator. The signal is detected, and amplified by a video amplifier. From the relative signal levels during the on and off periods of the square wave, the unit computes the noise level of the receiver under test. - m
(Tables continued on following pages.)

Table 2. Receivers and Field Intensity Meters

Type of Instrument	Menufocturer	Model No.	Frequency Range	Sensitivity	Price	Accessory Equipment	General Comments
	Engineering Associates	AN/APR.4	$\begin{aligned} & 38-4,000 \mathrm{MC} \\ & \text { in } 5 \text { funing } \\ & \text { units } \end{aligned}$	--	Approx. 33000	--	Accuracy of frequency colibration $\pm 1 \%$; I.F bondwidths 0.6 and 4.0 MC . penoramic, video and audio outputs, outomatic motor-operated sector sweep funing at voriable speed on all funing units; originally rodor search receiver boing sold for use as general purpose laboratory receiver.
Receivers	Polarad Electronics Corp.	R	100-46,700 MC using 8 plug. in tuning units	85 dbm (ot 400 MC) to $.55 \mathrm{dbm}(0 \mathrm{t} 46.7 \mathrm{KMC})$	Basic unit and power supply $\$ 1500$ Tuning units $\$ 2500-\$ 4410$ -ach	--	Accurocy of frequency colibration $\pm 1 \%$; I.F bandwidth 3 MC , video bondwidth 2 MC ; lineor dynamic range 60 do with $A G C$; receiver $A M, F M, C W$, MCW, pulsed signals; 60 db image reiection $400-11,260 \mu$, bandpass and high-pass filter used in higherfrequency funing units.

cuncom pinnea MISSILE CIRCUITRY

A problem in management organization, engineering coordination, and producrion skill

Problems:

182 Kits of Parts, too few
for production tooling, too many for hand means.
23 kit. printed boards per
31 different circuit con$3 \begin{aligned} & 31 \text { differe } \\ & \text { figurations }\end{aligned}$
4 Close mechanical roler-
ances
5 Duo.meral elecroplat
ing, gold ond solder.
6 Running changes.
Solutions:
1 A separate precision cirCuir organization.
2 Close customer liaison.
Personnel and know-how 3 geared to military qual. ity requirements.
4 Outstanding plant and 4 equipment.
5 Large rooling and pro5 duction resources.
6 High production momen-
METHODE
has the same solutions for YOU for further information address: MILITARY CONTRACTS COORDINATOR
ETHODE
Manufacturing Corp.
7447 W. Wilson Avo., Chicago 21, III.
CIRCLE 480 ON READER-SERVICE CARD

Table 2. Receivers and Field Intensity Meters (continued)

UNJAMMABLE

MAGNETIC MEAD!

Certain mechanical tolerances on Westrex magnetic heads can most precisely be expressed in Angstrom units. One such magnetic head, designed and built for the Jet Propulsion Laboratory, is part of the guidance system for the Sergeant missile. Actually, it is seven separate magnetic heads in one package the size of a pack of cigarettes. It records, reproduces, or erases three channels of information under the severe environmental conditions of a missile in flight. Its function in storing complicated information on tape, and transmitting the information to a self-contained, unjammable guidance system, might be applicable to your work. You may be particularly interested in its ability to reject prerecorded data which has become useless and to make available to the system fresh data - without the necessity of disassembly of the system. A brochure outlining our capabilities with magnetic heads, film pulling mechanisms, and synchronous multi-channel recording will be sent to you on your request. Westrex Corporation, 6601 Romaine Street, Los Angeles 38, California.

Westrex Corporation
A DIVISION OF LITTON INDUSTRIES CIRCIE 21 ON READER-SERVICE CARD

Table 3. Miscellaneous Instruments (continued)

Type of	Manutacturer	Model No .	Frequency Ronge	Special features	Accuracy	Price	General Comments
MiscromoroLevolor	Atred Eloctronies	$\begin{aligned} & 702 \text { ic } 708 \\ & 16 \text { unis) } \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{KMC} 10 \\ & 12.4 .18 \mathrm{KMC} \end{aligned}$	100 MW max power (mor 708 has 1 W max), RF con. prol ronge =2 10.30 db mos level mon level	$\leqslant 1 \mathrm{db}$	$\begin{aligned} & 5750 \text { 10 } 5950 \\ & \text { each } \end{aligned}$	Maintains constont output from microwave signal sources; 0 db 100 MW level; less than 1.5 db insertion less; DC to 100 KC hequency response; $C W$ or squerewave internal modulation.
	$\begin{aligned} & \text { Rogee Whire, } \\ & \text { Ince. } \end{aligned}$	TwA.PIM	0.81 .2 kNC	$\begin{aligned} & \text { I NW oulpul } \\ & \text { oower } \end{aligned}$	--	--	Noise figures 25 db for w series (1 watt), 20 db for M series (I MW) inimum goin 25 db (oxeept TWA. SIM has 30 db gain); includes pro. visionfor modulating ourput of the raveling-wave lube
		twabliw	10.20 kNC	$\begin{aligned} & 1 \text { w output } \\ & \text { power } \end{aligned}$			
		T*ALIM		$\begin{aligned} & 1 \text { Mroutout } \\ & \text { Dower } \end{aligned}$			
		T*A.SIW	20.0 KNC	1 w outpul power			
		TAASIM		$\begin{aligned} & \text { I NW oulpul } \\ & \text { power } \end{aligned}$			
		TMA.Clm	10.00 kHC	08 woulpul			
		TWA.CIM		1 Nw outout poner			
Moving Target simulator	$\begin{aligned} & \text { Aircraf } \\ & \text { Apmoments, Inc. } \end{aligned}$	668		Power oulpul .25 dbm . mainiained constoni by jain control: manually ad. Iusiable over $=70 \mathrm{db}$ ran 30	Variable delay occuracy ± 10 fi, range marker occuracy $=5$ yards -5 yords	--	Designed to rest radar range track. ing circuits and perform other lests microwave repurn signal with the same characteristics as the trans. mitted signal, provides fixed or varying range echo pulses, AFC maintains output frequency within 200 KC of input frequency
Antenne Putern Trensmittes	$\begin{gathered} \text { Colitionnono } \\ \text { Tochical } \\ \text { Industricies } \end{gathered}$	119	$8.5 .95 \mathrm{k}=\mathrm{C}$	Peak power OUTDUT 20 KA	\sim^{-}		Consisis of onienno assembly. modulator, and remote conirol unit; motor-funed magnetron is located on the anienno assembly; pulse width 1 microsecond. pulse rope 1000 pps
Peol Power Pese So	Cubic Corp.	100x		Poak power range 0.0110 3 MW Pomer ourput as siznol zen. erapar: 0.01 103 NW Sensulivily as crysial - deoreceiver NW	As peok pown meter 0.2 do	\$1150	Con be used as peak power test set, signal generator, or crysial nals hoving same peak emplitude as the unknown, and comparison is made with an exiernal synchro. scope and watimeter bridge.
Microwave Stability Tester	Laborofory For Elecpronics, Inc.	5003		Ninimum measurable Fon peak de. for S band io 10 eps loe X band Mar measure. oble FM de. viation 1000 cps lusing internal meter); 5000 cps (using ex. rernal oscilloscope)	2 cos of 5 band 10 cps or X band	Bosic R. 53030 oo 53500 occ	Indicators peak F. M deviation on one meter, drift on onother; also ne asures af 30 MC , and $30-230$ KC; oupputs may be viowed on an K-band head (23.0.25.0 KMC) available on special order.
$\underbrace{\substack{\text { M.Merer }}}_{\text {Micrownve }}$	Worme Kout	--	$\begin{aligned} & S \text { bond } \\ & X \text { bond } \end{aligned}$	6 range. 10,000-60.000 for 5 band; $30,000 \cdot 150.000$ for X band	$\pm 1 \%$	--	Compares rate of decoy of free oscillations in cavity under tesi ith pote of dischorge of precision RC circuil; frequency occurocy =0.05\%; maximum range of tronsmission loss of coviries with which instrument will operote is 26 db .
	Wayne Kerf Lebs.	--	2.7-3.8 KMC		$\begin{aligned} & 0.015 \mathrm{db} 10 \\ & 0.02 \mathrm{db} \end{aligned}$	--	Infended as reference siandard for measurement of levels in the power and frequency range indicated; may be used to 10^{-15} walts fo occuracy $\pm 0.1^{\circ} \mathrm{C}$.
Automenie Noise:Figure Indicapor	Aidterne Instrument Laboretery, Inc	72	--	$\begin{aligned} & \text { Moesurable } \\ & \text { ronge of } \\ & \text { aie fige figure } \\ & 0 \text { 1o } 20 \text { db } \end{aligned}$	$\therefore 0.5 \mathrm{db}$	51490	Used with Pype 70 Noise Generator, minimum accepiable noise inpu (source off) 50 microvolis into 50 ohms; I-F inpur 30 MC or 60 MC specify which): I.F amplifier bandwidth 1.0 MC.

Simney presents...

a Standard Production Unit for Operations in ULTRA-HIGH VACUUM

For the first time-a completely practical production unit that enables the researcher to oper ate in the ultra-high vacuum

range. Pressures to $1 \times 10^{-9} \mathrm{~mm}$ Hg attained and maintained with thoroughly realistic time cycles.
AND

floAting zone refiner AND CRYSTAL PULLER
This new. improved equipment makes it possible to attain purities in Silicon Crystals far higher than the most exacting present standards. Now, you can eradicate impurities to 1 in 140 BILLION!
ture today. ture today

W DEVELOPMENTS SEE NEW DEVELOMAT THE IN HIGH VACUUN 1.R.E. SHS 4502-4504

KINNEY BOOTHS 4502-4504
UWEMFG. DIVISION
THE NEW YORK AIR BRAKE COMPANY (CIRCLE 22 ON READER-SERVICE CARD

solve

YOUR LOGIC CIRCUIT PROBLEMS WITH EPSCO'S NEW

COMPONENTS

AVAILABLE CIRCUITS
Flip-Flops and Counters
Diode AND Gates
Diode OR Gates
Nor Gates - An Epsco Exclusive
Parallel Gates
Cascade Gates
Inverter Amplifiers
Non-Inverting Amplifiers
Emitter Followers
Power Drivers
Delay Multivibrators
Pulse Shapers
Level Converters
Neon Indicators
Incandescent Indicators
Blocking Oscillators
Leveł Shapers
6, 12, 18 volt Power Supplies
Clock Multivibrators ($0-200 \mathrm{KC}$)
Coming soon: complete 1 mc . logic circuit fomily
ond we're odding others all the time

tosco

COMPONENTS

Available now... a complete

 line of fully encapsulated highloading transistor digital CIRCUITS . . . plug-in components to give you true reliability a very low cost. Epsco TDC's save you engineering time . . . slash space requirements . . . provide flexible, compatible operation.- Save Time and Space
- Cut Costs
- Permanent Encapsulation
- Vibration-Moisture Resistont
- Field Proven Circuits
- Low Powar Requirements
- High Looding
- Completely Comparible
- In-Line or Tube Socket Mounting
- Easy-Access Test Points

SPECIFICATIONS

 Frequency Ronges.up to 400 KC Swith ing timatCode leot - $\quad 0.7$ mece mat Tromintor logic...... 1.5 mese mox Signol Voliage Lovcto

Tomperature Rang

$$
-55^{\circ} \mathrm{C} \text { 10 }+75^{\circ} \mathrm{C}
$$

WRITE FOR FREE BROCHURE complete illustroted color brochure olus complete set of engineering inquiry dofo sheels with detailed performance chorocterisitics, Epsco Inc., Components Division, Dept E128, 108 Cummingion St. Boston 15, Moss.

Solid

State Operates in the Microsecond
Relay
With no moving parts, this solid state relay closes in five usec, (lrops out in 30). The croil circuit is completely isolated from the switching
circuit and can switch several independent circuits within the same unit. Contact bounce, are ing. chatter and contamination are, of course, totally oliminated.
Life expectancy of the relay, it properly applied is hoped be Pendar. Inc.. 14744 Arminta St.. Van Nuys, Calif., to be indefinite-meaning millions of coveles and unlimited sholf life. It should find application in sweep tube switching, gating; wher cwor fast switching and resistance to high vibrat tion is required; and where shelf and operating life are at a premium.
Procluction unsits are rated to switch ac or do from 10 mils to 10 amp) in the spst category, and 10 mils to 0.5 amp in the (1pst category. Operating on 28 v de, the coil circuit pulls in at 18 v and drops out at 11 v or less, 14 ma and 6 ma , respertively: Transfer time is better than $50 \mu \mathrm{sec}$.
The block diagram of Fig. 1 demonstrates the operation of the new relay: A zener reference element is used to set the pull-in and drop-oul

Fig. 1. Block diagram of solid state relay. Rectifier and filter changes ac square waves from the oscillator drive circuit to smooth de for transistor switch operation. Adjustment of zener diode reference controls pull-in and drop-out voltage.

- olid state relay has coil circuit isolated from transtor switch, can handle from 10 ma to 10 amperes, b st, 10 ma to 0.5 amperes, dpst. Transfer speed is less tion 50 ! isec

Range

wiltage, while an inductively conpled multivibrator weds a square wave ac voltage to the isolation wansformer. This set-up provides a choice of pick-up and drop-out woltages mot easily accomwhished by eecectronechanical relays-the spread can be extended over $7 \cup$ by adjusting the driver current to remove the possibility of a transient witching the relay.
A rectifier converts the transformed voltage back In de and a filter element removes ac components; mooth de is delivered to the tramsistor switch. At room temperature noise level on the contacts at $12.5 \mathrm{v}, 10 \mathrm{ma}$, is only 50 mv peak to peak.
The switch consists of one or more transistors of diodes with rating and circuit arrangement ampatible with the desired contact voltase. current, switching speed and whether it is to be used co or de. Voltage drop, at the contacts is 19 mv at $22.5 \mathrm{v}, 10 \mathrm{ma}$.
There is some contact leakage when the "conlacts" are open: with 30 v and 10 mils on the contuets there is 11 !a leakage (25 C). For 30 v de with 1 a on the contacts there is 25 ma leakage. The relay will handle its rated load at 0.5 s thove the drop-out voltage and will contime to arry this rated load up to 30 r . At the $2+\mathrm{v}$ nornal level it has an overload factor of four on curent and a factor of two on voltage. Entirely notted, temperature range is from -55 C to 125 C . Six basic units are available: switching 10-100 ta spst NO: $10-11$ ma dpst NO; 100 ma- 0.5 amp pst NO; $100 \mathrm{ma}-0.5 \mathrm{amp}$ dpst NO; $1-5 \mathrm{amp}$ spst (O); 5-10 amp spst NO.

For further information on this solid state relay, urn to the Readers Service Card and circle 102.

BULOVA CRYSTAL CONTROLLED VARIABLE FREQUENCY OSCILLATORS

Visit our Booth Nos. 1502 and 1504 I.R.E. Show N.Y.C

Bulova Crystal Controlled Variable Frequency Oscillators are the advance in electronics most engineers have been seeking.

Why? . . . Because Bulova VCF packages combine small size and high repeatability with automatic frequency control or with a variation of nominal frequency by application of external voltage.
The ranges available extend from 10 kc to 20 mc . Variation at 10 kc is up to 6 cps , at 20 mc up to 12 kc . Resolution on these shifts is infinite, it's dependent on stability and resolution of modulating voltage. only. Drift, after stabilization, can be kept to less than $1 \mathrm{pp} 10^{\circ}$.

These unique crystal controlled variable frequency oscillators are only one of many recent advances made by Bulova Electronics. For information on these units, or on how Bulova experience in mastering component and system reliability can help your program, write Department A-1231, today.

Bulova

WATCHCOMPANY
ELECTRONICS DIVISION.WOODSIDE 77. NEW YORK CIRCLE 24 ON READER-SERVICE CARD

An exclusive Bendix Red Bank product, the Type TE-67 Rackward-Wase Oscillator Tube generates microwave energy at extremely high frequencies never before available.
This new tube provides a wide range of usable frequencies for applications in: advanced types of multichannel telephone and television systemis, high definition short-range radar, highly directive communications, microwave spectroscopy and other fields where low power, voltage-tuned millimeter wavelength radio frequency energy is required. As the backward-wave tube is voltage tuned. frequency is automatically changed by varying the voltage input. No mechanical tuning adjustment is required.
For more detailed information on the tubes described here, write to: red bank dimion, bendis aliation corporation, eatontown, new jersey.

ELECTRICAL DATA

Frequency Range
Anode Voltage
Power Output
Beam Current
Current $\begin{array}{r}1000-3000 \text { volts } \\ 5 \mathrm{mw} \text { average }\end{array}$
Magnetic Field $\quad 1300$ gauss (minimum)
MECHANICAL DATA
Output Flange Special adapter to RG-98/U
Maximum Diamet
Length
Mounting Position
Weight
$8^{8 \prime}$
$5 \mathrm{oz}^{*}$
Additional tubes are under dovelopment to extend the trequency range to 75 kmc .

West Coast Soles \& Sorvice: 117 E. Providencia Ave.,
 notionol Division, 205 E ,42nd St. New York 17, N. Y
Conodion Ditributor: Computing Devicos of Conado, adian Distributar: Computing Devices of Ca
Lox SOB, Otrowa 4, Ontario

ABed: Bnk Division

CIRCLE 25 ON READER-SERVICE CARD

KEEP JUNCTION TEMPERATURES DOWN-

Mount Diodes on Fins

Diodes can be effectively cooled when mounted on fins-if the fins are efficient. Here, Werner I uft outlines steps to be taken to achieve good performance, and provides the design engineer with a graph to enable him to determine the efficiency of a fin. As a result, diode current capacity is increased.

Werner Luft
Froduct Analyst Engineer
International Rectifier Corp. El Segundo, Calif.

T
\int WEEP THE junction temperature of a silsbit the germanium diode below its uppe cooled bu ooled br free or forced comsection of air or liquid.
Factors intluew ing the cooling efficiency of a fin are varsed. Fin edficiency is defined as the tatio of the heat nctually dissipated by a fin to that which would be dissipated by an identical fin of infinitely conductive material. In practice, it is the ratio of the average fin temperature to the fin temperature at the hottest point.
Is the maximum temperature of a fin is genarally known, the total heat dissipation from the fin can be calculated if the fin efficieney is nbtained.

Temperature Distribution
Heat dissipated from a fin is approximately proportional to the temperature difference between the average fin temperature and the temperature of the enviromment. Fig. 1 qualitatively illustrates the temperature distribution in square fin of constant thickness. The temperatury is shown along the ordinate and the fin is extended in a plane perpendicular to the ordinate. In the center of the fin, where the diode is placed, there is a temperature rise above thi environment of T_{0} degrees. At the edges of the fin, the temperature difference above the ambien has dropped to T_{L} degrees. The average tempera ture difference will be somewhere between thes two points.

Magnitude of the temperature drop from th
Fig. 1. Three-dimensional surface illustrating tem perature distribution in square fin of constant thick ness, with highest temperature near center. (Equatio of curve is complex-shape shown is qualitative.
nter or base of the fin to the edges, per unit of eat dissipated by the fin, depends on
, the material of the fin, i.e. the thermal conducvity of the fin material-a material of higher (sermal conductivity will decrease the tempera(ure difference:

- thickness of the fin-a thicker fin will decrease the temperature drop;
- size of the fin-a larger fin will increase the temerature drop; and
- heat transfer cnefficient between the fin and en-(iromment-better cooling methods will increase lic temperature difference

Keep Drop Smali

Good design requires a fin with high efficiency a fin where the temperature drop from center 10 edge is small. To have the same efficiency as is small fin, a large fin either must be thicker, made of a material with higher thernal conductivity, or both.
Tiwn fins of the same size therefore must be of different thicknosses to have the same efficiency, If one has better conoling-a higher heat transfer enefficient-than the other. I fin cooled by forced convection of air. for instance, must be thicker than a fin of the same size and material cooled by iree convection, if the same efficiency is expected. To avoid confusion, it must be remembered that the fin efficicmey does not give an actual measurement of the dissipated heat for different sizes of fin or for different cooling methods. A larger fin will dissipate more heat than a smaller

IISTANCE FROM FIN CENTER-IN.
Fig. 2. Temperature distribution in 5×5 in. fins of fferent materials and thicknesses. Heat transfer coficient: 0.016 w per sq. in. per deg C. Quarter-inch opper is most efficient fin shown here.

TESTED AT $125^{\circ} \mathrm{C}$ UNDER FULL LOAD FOR 1,000 HOURSLESS THAN 1\% CHANGE

New ELECTRA Series 125 Precision Resistor

Here is a brand new carbon film resistor that represents a greater-than-ever achievement in combining precision, stability and small physical size. Here is the kind of superior performance that formerly was available only in much larger, more costly components. It
is a resistor that opens up a whole host of new possibilities in your design and engineering work. Unfortunately, space does not permit us to tell the whole story here. But your request will bring complete details by return mail . . . including prices.

CHECK THESE OUTSTANDING TEST RESULTS*

EXCLUSIVE NEW COATING IS THE KEY - Developed only after long study and experimentation, it is Electra's exclusive new Type R. 5 coating that is primarily responsible for the superior performance of the new Series 125 Resistor. It is a coating that offers a new high in protection against heat, moisture, rough handling and other enemies of reliability.

WRITE TODAY FOR COMPLETE LITERATURE

MANUFACTURING COMPANY

4051 Broadway
Kansas City, Missouri
circle 26 ON READER-SERVICE CARD

distance from fin center-inches
one of the same thickness and material, with the same cooling method. A fin cooled by forced convection will dissipate more heat than the same fin cooled by free convection.
Fin efficiency gives only the ratio of the heat a fin actually dissipates to that which the same fin under identical conditions would dissipate if

Fig. 4. Efficiency graph for annular fins of constant thickness.

Fig. 3. Temperature distribution in $1 / 8$ in. thick aluminum fins of different areas, cooled by free convection and radiafion.
there were no temperature drop from the center of the fin-where the heat source is mounted-to the edges of the fin.

Influence of Material, Dimensions

Influence of fin material and fin thickness on the temperature drop within the fin is shown in Fig. 2. All curves in the figure refer to fins 5×5 in., cooled by forced air of such velocity that a heat transfer coefficient of 0.016 w per $\mathrm{s} q \mathrm{in}$. per deg C is obtained. The heat comes from a silicon diode International Rectifier type 45L30, mounted in the center of these fins.
On the ordinate is plotted the ratio of the temperature difference above the ambient at each point of the fin to the corresponding temperature difference at the center. The abscissa gives the distance from fin center.

Temperature distribution within the fin from center to edge thus is pictured. The temperature drop from center to edge for the $1 / 4$ in. thick copper fin is only five per cent of the temperature difference between fin center and entironment

Table 1 Approximate Thermal Conductivity for Some Materials in W/in. ${ }^{\circ} \mathrm{C}$

Material	k
Copper	9.6
Aluminum	5.2
Brass (70\% Cu, 30\% Zn)	2.6
Steel, sheet carbon	1.1
Steel, stainless	0.4

Table 2 Approximate Heat Transfer Coefficient* on Vertical Fins for Different Cooling Methods in Wisq. in. ${ }^{\circ} \mathrm{C}$

Cooling Method

Free convection of air
with impeded radiation
Free convection of air
and radiation
Forced convection of air 1000 LFM
0.023

Free convection of transformer oil0.08

Average values of those encountered for rectifier cooling. The heat transfer coefficlent varles greatly with temperature, temperature difference from fin to will therefore only indicate the magnitude of expected heat transfer.

Fig. 5. Cross-section of silicon diode mounted on fin (symbols as used in text).

This, therefore, is a very efficient fin.
The corresponding temperature drop fur the $1 / \mathrm{S}$ in. thick aluminum fin is a less efficient 17 per cent; and for the $1 / 8 \mathrm{in}$. thick steel fin an inefficient 42 per cent.

Comparing Three Fins

Intuence of fin size is illustrated in Fig. 3. The curves refer to $1 / 8 \mathrm{in}$. thick square aluminum fins cooled by free convection of air and radiation, giving an approximate heat transfer coefficient of 0.008 w per sy in. per deg C. Mounted in the centers of the fins are the same silicon diodes shown in Fig. 2.

Inspecting the temperature distribution for the three fin sizes-5 $\times 5 \mathrm{in}$., $8 \times 8 \mathrm{in}$., and $12 \times 12 \mathrm{in}$. we see that the temperature drop from center to edge for the $5 \times 5 \mathrm{in}$. fin is 10 per cent of the temperature difference between center and environment. For the 8 a 8 im . fin, the corresponding drop is 26 per cent, and for the $12 \times 12 \mathrm{in}$. fin, 52 per cent. Thus, while the $1 / 8 \mathrm{in}$. fin thickness gives an efficient $5 \times 5 \mathrm{in}$. fin under the stated conditions, this thickness results in a low efficiency for a $12 \times 12 \mathrm{in}$. fin.

Efficiency Graph

The graph (Fig. 4) is calculated tor circular fins of uniform thickness with the heat sourcethe diode-placed at the center of the fin. For practical engineering purposes, it can be used equally well for square fins. For rectangular fins the graph is not especially valid. It will, however, give at least an estimate of the relative fin efficiency of families of rectangular fins having the same dimensional ratio of long side to short side. Rectangular fins with the long side not more than twice the short side can be treated, for practical
urposes, as square fin, of equivalent area. But ctual efficiency will be somewhat lower than the raph indicates.
In the graph,
r_{L} designates distance in inches from the center o the edge for circular fins, and the shortest disance from center to edge for square fins. For ectangular fins, r_{L} is equal to half the geometric nean of one long and one short side.
r_{0} designates the distance in inches from the eometric center of the heat source to the point where the heat enters the fin. For diodes with upered threads, r_{0} is equal to half the pitch dimeter of the thread. For diodes like the one hown in Fig. 5, r_{0} is $\left(r_{1}-r_{2}\right) / 2$ (dimensions are lesignated in the Figure)

$$
R=\downarrow k s 2 h
$$

where k is the thermal conductivity of the matenal in w per in. per deg C ; s is fin thickness in inches and h is the heat transfer coefficient between fin and environment in wer sq in. per deg C.
The graph (Fig. 4) is dimensionless. The ab cissa of the chart is the ratio r_{I} / r_{0} and the ordimate is the ration $\mathrm{K} \quad r_{\text {I.. The }}$ The curves represent the fficiency, η.

Example

Assume a $12 \times 12 \times 1 / 8 \mathrm{in}$. aluminum fin, to be cooled by free convection and radiation. The diode to be cooled by the fin is an International liectifier Corp. silicon diode type 45L30.

- What is the efficiency of the fin?
$r_{t}=6 \mathrm{in}$.
$r_{0}=(0.5 .5+0.25) 2=0.4 \mathrm{in}$.
$s=0.125 \mathrm{in}$.
$h=0.008 \mathrm{w} / \mathrm{sq}$ in. C (cf. Table II)
$R=\sqrt{(5.18 \times 0.125) / 2 \times 0.008}=6.36 \mathrm{in}$. (cf. Tables I and II)
$r_{L} / r_{o}=15$, and
$R / r_{0}=15.9$.
Entering the graph tor these values, we find the point of intersection at $\eta=54$ per cent.
- How many watts can the fin dissipate if the diode case temperature must not exceed 100 C and the fin is placed in an ambient of 40 C ? (The diode is soldered to the fin so the case temperalure of the diode will be the same as the temlerature of the fin center.)
T_{n}, the temperature difference-fin center to a nbient is 60 deg C and A, the total fin area, is 2 18 sq sin .
Total heat dissipated by the fin is

$$
Q=\eta T_{0} h \dot{A}=75 \mathrm{w}
$$

Reference
crmal Impedance of Cooling Fins, E. J. Diebold and Luft. AIEE Transaction.: Vol. 77, Part 1, November 38, pr. 739-74.5.

Stell antar

amothor "demand" member has joined U.S.C.
family of Printed Card Connectors
the new, dual row taper pin Series UPCC
FDTP bringing the total of different available types to over 400

- Conforms to MIL-C. 8384 and NAS specs.
- Molding materials-melamine and diallyl phthalates
- Die cast aluminum shells-aluminum hoods
- Ideal for critical environmental conditions
- Silver plated-gold flash contacts
- Screw lock elements-stainless steel-double lead for double speed

UPCC.M \& - - units available with wire solder turret type.
Solderless AMP 37 or dio solder terminals $\left(1 / 16^{\prime \prime}, 1 / 8^{\prime}, 1 / 4\right.$ solderles
boards).
UPCC. FDTP units take AMP 53 taper pins.

U.S.COMPONENTS, INC. associated with U. S. Tool \& Mig. Co., Inc. 454 East 148th Street - New York 55, N. Y. - CYpress 2.6525 circle 27 on reader-seavice card

Automatic Focusing System

This strange looking device is an automatic focusing mechanism. In this design the lens is moved back and forth by a servo-motor. Setup shown is capable of two per cent accuracy in ranging-7 in. at 60 ft . It focuses on any object at which it is aimed

Sometimes, in our efforts to get news and design information to you first, we find ourselves in possession of data about products that are still in the laboratory or design stages -and which you can't buy! When this happens we're frankly baffled. What shall we do with it? Suppress it? Tell you about it? In this case we resolve our dilemma by giving you

a Design Preview.

You can't buy the OAR . . . yet. It will take numerous forms, we are sure-its applications are limited only by the imagination of the user.

DESICNEI) direct from the equations, the Optical Automatic Ranging system will focus a lens on any object it is pointed at, and will tell its range with two per cent accuracy

Prospective applications include automatic focusing for TV. motion picture or still cameras. microscopes, automatic proximity warning devices, precision inspection for mass-produced items which need to be held to dimensional tolerances of $10^{2} \mathrm{in}$., continuous automatic control of color processes, detection, measurement and con-
trol of temperature, and many others.
Mell Greene, research director for Comapeo Inc., 17071 Ventura Blud., Encino, Calif., explains that the laboratory device shown in the photo is a "straightforward mechanical formulation of the equations." He derived the mathematics and turned them directly into a mechanical process without wasting time for frills

Design

A special case of the OAR system is shown in

Fig. 2 to demonstrate the principle. Where R_{0} is the radius of the unstopped lens, R the radius of the lens stopped by an aperture, r the radius of the aperture, f the focal distance, a the offset of the focal surface and the centroid of a vibratile aperture, $x_{\text {" }}$ the excursion of the vibratile aperture along the optical axis and $x_{0} \sin \omega t$ is the excursion with respect to time (simple harmonic motion), then

$$
E_{w g}=E_{\text {ana }} f^{2} r^{2} / R_{0}{ }^{2}\left[a^{2}+2 a x_{0} \sin \omega t+\right.
$$

$$
\left.\frac{x_{0}{ }^{2}}{2}(1-\cos 2 \omega t)\right]
$$

$E_{\text {sig }}$ is the energy on the surface of the photoresponsive element, and $E_{m n z}$ is the maximum energy through the lens system.
In the pilot model a photocell is oscillated back and forth along the optical axis, instead of vibrating the aperture. It has the same effect and there is less inertia to contend with. When

Fig. 2. Principle of automatic focusing. In this derivation, aperture is considered to vibrate; in practice the photocell is oscillated.

Fig. 1. Mell Greene, coinventor of the device, claims that the transducer used in the prototype is responsive to broad areas of color.

Fig. 3. The OAR system, adapted to ranging devices. Lens as sembly shown is the reflecting type. The "stop" is a static aper ture, behind which a vibrating photoresponsive element is driven along the optical axis. When the midpoint of the sensor's motion coincides with the image focal surface, the signal emitted has twice the frequency of vibration; shifting of the focal surface decreases the frequency and shows a phase shift indicative of the direction of movement.
the midpoint of the sensor's motion coincides with the image focal plane, the sensor's signal varies at 120 (ps-twice the 60 cps vilration. If the tocal conditions alter and the plane of image ocus moves, the signal frequency diminishes oward 60) cps. This shift of frequency, which is out of phase with respect to the displacement of The centroid of the sensor element. yields an ideal ignal for servo command.
A servo motor focenses the lens. Part of the tignal can be used to activate a computer or disNay to give range directly. Setup) for ranging and lirection finding is blocked out in Fig.

Operation

We wemt down to see the OAR system in "peration. The prototype shown in the photo is loulky and not very beautiful; it's not meant to be. It was built just to demonstrate the automatic rocusing principle. Greene says the whole device could be packaged in around 100 (ou in. $-4 \times 5 \times$亏in., for example-exclusive of the lens system, with a suitable choice of components.
In operation. the device was aimed at some cars in the parking lot. It gave a preliminary: multer and sat humming quietly to itself. The range indicator showed that it was focused on an outomobile a hundred teet away.
1 car drove past, the OAR system growled and the lemen moed to foecus on the new object. himuse: $2+\mathrm{ft}$. When the car had qone by, the OAR mit moved back to focus on the original our. It did this several times, looking very impessive.
The OAR whtem's aceuracy, daim the invenures. is limited only by the focal length and aperture of the lens. the wavelengeth-shortuess of the rudiation it is required to detect and the optical ynality of the lens system. At 30 miles it should the able to detect and range an oljeect the size of In airliner with two per cent accuracy
Greene estimates that it should resolve dimensional differences as small as $40 \times 10^{-6} \mathrm{~cm}$. This means that precision parts could be monilured durine grinding and controlled with a merance simaller than anything we know of
If a Plos detector or other heat-sensitive cleurnt is used instead of a photocell and a quartz I sapphire lens instead of glass, the OAR sysmm is suited to detecting, locating and measurig heat sources.
Comapeo. Inc... is not a manufacturing concern; is set up to do research. The applications ited alove are not at present in process-they re so far speculation. Comapeo plans to license e manufacture of the OAR system for a variety applications
For further information on this automatic fousing system turn to the Readers-Service Card ad circle 103

CIRCLE 28 ON READER-SERVICE CARD

TABLE 1 Receiving and Amplifier Tube Symbols

This article presents the key to tube type symbols used by most European tube manufacturers. Using these tables, the filament characteristics, structure and other pertinent data can be quickly determined.

Interpreting European Tube Symbols

Gerardo Gerardi
Boston, Mass.

First Letter (Filament)	Subsequent Letters (Structure)	Figures (Socket)
$\begin{aligned} & \mathrm{A}-4 \mathrm{~V} \\ & \mathrm{C}-200 \mathrm{mo} \end{aligned}$	A - rf single diode B-rf double diode	30-39-Octal 40-49-Rimlock, special European
D $-1.4 \vee \mathrm{dc}$	C - triode, except	
$\begin{aligned} & E-6.3 v \\ & G-5 v \end{aligned}$	D - triode, output E - tetrode, except output	80-89-9 pin min. 90-99-7 pin min.
$\mathrm{H}-150 \mathrm{ma}$	F - pentode, except output	All other numbers in. dicate special sockets
$\begin{aligned} & K-2 \mathrm{v} d \mathrm{de} \\ & M-2.5 \mathrm{v} \\ & \mathrm{O}-\mathrm{no} \text { fil. } \end{aligned}$	H - hexode or heptode K- octode or heptode L - output tetrode	
$\begin{aligned} & \mathrm{P}-300 \mathrm{ma} \\ & \mathrm{U}-100 \mathrm{ma} \end{aligned}$	or pentode M — tuning indicator P - tube with secondary	
	emission system Q - enneode X - full-wave gas-filled rectifier Y - half-wave vacuum rectifier Z - full-wave vacuum rectifier	

Receiving and amplifier tubes are keyed as shown in Table 1. Special tubes (ruggedized, high reliability, long life) are keyed according to the same table, but the figures are placed be tween the letters.
For example, an EF 80 is a 6.3 v filament pentode, 9 pin miniature. An E80F would be ruggedized, long life, or other special versian of that type. An ECC. 83 is a 6.3 v , dual triode, 9 pin miniature Equivalent U.S. tube type for an ECC. 83 is a 12AX7.

TABLE 2 Cathode Ray Tube Symbols

First Letter (Focusing)	Second Letter (Screen)
D - Electrostatic focussing and deflection in two directions M - Electromagnetic focussing and deflection	B - Bluish, short persistence, 1% max brightness after 0.01 sec . F- Orange, long persistence, 0.1% max brightness after 75 sec. G - Green, medium persistence, 1\% max brightness after 0.05 sec . N - Green, long persistence, 0.1% max brightness after 6.4 sec . P - Double layer screen, short persistence blue followec: by very long persistence green-yellow, 0.1% ma* brightness after 80 sec . R - Green-yellow long persistence, 0.1% max brightness after 20 sec . W-White, medium persistence; direct view; $8000 k$ color temp; projection: 5500 k color temp.

First group of figures-screen diameter in cm
Second group of figures-serial number
Cathode ray fube symbols indicate focussing method, type of screen, screen diameter and serial number (Table 2). A type DG13-2 is an electrostatic type, green, medium persistence, with a screen diameter of 13 cm .

TABLE 3 Transmitting and Rectifier Tube Symbols

\begin{tabular}{|c|c|c|}
\hline First Letter (Classification) \& Second Letter (Filament) \& Third Leffer (Cooling) \\
\hline \begin{tabular}{l}
D - Rectifier (including grid-controlled) \\
M - Triode, amplifier or modulator \\
P- Pentode \\
Q - Tetrode \\
\(T\) - Triode, rf, of or oscillator
\end{tabular} \& \begin{tabular}{l}
A - direct, fungsten \\
B - direct, thoriated tungsten \\
C - direct, oxide coated \\
E - heater-cathode
\end{tabular} \& \begin{tabular}{l}
G - Mercury filled \\
L - Forced air \\
W- Water cooled \\
\(X\) - Zenon filled
\end{tabular} \\
\hline First Group of Figures \& \multicolumn{2}{|c|}{Added Letters (Socket)} \\
\hline watts or kw , for tube
in 3 -phase half-wave
circuit
RF Tubes
- Approx. power output,

watts or kw , in
Class C telegraphy
Modulators - Approx. dissipation,

watts or kw. \& \begin{tabular}{l}
E-Medium 7 pin

ED - Edison

EG - Goliath

G - Medium \& pir

 \&

GB - Jumbo 4 pin

N -Medium 5 pin

P - P base
\end{tabular}

\hline | Transmitting and rectifier tub iwo sets of figures. Tube classificatio of a dual type. In Table 3, the seco Likewise, the third letter (cooling) fourth) letter is given, the tube is ra |
| :--- |
| Transmitting type QQE 04/20 is voltage is 4 kv ; output power is 20 be interpreted in the light of the tube | \& | s are designated by two dicated by the first letter er becomes the third let the fourth letter for d cooled. |
| :--- |
| etrode, indirectly heated It is important to note ication. | \& | hree letters followed by two letters in the case dual tube designation. es. Where no third for |
| :--- |
| hode. Maximum anode ese characteristics musi |

\hline
\end{tabular}

TABLE 4 Phototube Symbols

First Figure (Base)	First Leffer (Cathode)		Second Letter (Type)
$\begin{aligned} & \text { 2- Loctal, } 8 \text { pin } \\ & 3 \text { - Octal, } 8 \text { pin } \\ & 5 \text {-Special } \\ & 8 \text { - } 9 \text { pin miniature } \\ & 9 \text { pin miniature } \end{aligned}$	A - Cesium antimony, blue sensitive C - Cesium on oxidized silver red sensitive		G-Gas filled V - Vacuum
Phototube type numbers consist of two figures followed by two letters. Tube base is indicated by the first figure; second figure is the serial number. Type of cathode is indicated by the first letter, while the second letter gives the class of tube ITable 4). A 90AV is a miniature 7 pin, blue sensitive, high vacuum type,			
TABLE 5 Voltage Regulator Symbols			
Number (Voltage)	First Letter (Max current)	Figure	Second Letter (Base)
Average operating voltage	$\begin{aligned} & \text { A } \quad 8 \mathrm{ma} \\ & \text { B } 20 \mathrm{ma} \\ & \text { C } 40 \mathrm{ma} \\ & \text { D }-100 \mathrm{ma} \\ & \mathrm{E}-200 \mathrm{ma} \end{aligned}$	Serial number	$\begin{aligned} & \mathrm{K} \text { — Octal } \\ & \mathrm{P}-\mathrm{P} \text { base } \end{aligned}$

Voltage regulators are coded by a number followed by a capital letter, a second figure, and often by onother letter. Operating voltage is given by the first number. Current range is indicated by the first letter. The second figure indicates the serial number, and the last letter, if given, is the base type.
For example, according to Table 5, a type 85 A 2 operates at $85 \vee$ and 8 ma max current. Type 150 Cl K is a 150 v fube, 40 ma max current, with an octal base.

Design Flexibility with Economy

Choose from over 340 Standard Joy Axivane Fans
Over 340 models with 1300 designs give the aircraft designer the flexibility of custom fans with the economy of standard fans. Horsepowers as low as $1 / 500$ th, fan efficiencies as high as 86%, and pressures up to $70^{\prime \prime} \mathrm{WG}$ are available.
Joy Axivane Fans meet most applicable government specifications being used by a majority of airframe and missile manufacturers, including Boeing, Lockheed, Martin, Douglas and North American. Joy Axivane Fans have only three basic parts, and motors are flange mounted inside the fans to permit mounting in ducts. This simplicity of design makes the fans lightweight and compact, yet vibration and shock resistant.

Special designs to meet unusual requirements also can be furnished to your specifications. Whatever your air movement problems, Joy can provide the solution. Joy Manufacturing Company, Oliver Building, Pittsburgh 22, Pa. In Canada: Joy Manufacturing Company (Canada) Limited; Galt, Ontario.

wsw : 7362:264

WORLD'S LARGEST MANUFACTURER OF VANEAXIAL TYPE FANS

This is one of a series of papers presented at the Symposium on Microminiafurization of Electronic Assemblies sponsored by Diamond Ordnance Fuze Laboratories late last year. Because symposium at tendance was limited to government personnel only, ELECTRONIC DESIGN is publishing these papers as a special service to our readers. In addition, all of the symposium papers will be published in their entirety in bound form available only from ELECTRONIC DESIGN For further information on these Proceedings Auin to Reader-Service Card and circle 100.

Design of a

Two-Transistor Binary Counter

P. Emile, Jr
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.

Three levels of design are suggested by the author. Each level is aimed for circuit operation under different conditions and the author discusses the various factors important to this operation.

DESICN of a binary counter of the EcclesJordan Hip-flop type can be regarded as a three stage problem. First is the design of the basic circuit for laboratory breadboard operation. Second stage involves design of the circuit in field equipment where checking and replacement are possible. The third level of design is that of a circuit to go into a piece of field equipment where unit replacement is not possible due to inaccessibility or microminiaturization.
A typical saturated two-transistor flip-flop equipped with set and reset networks is shown in Fig. 1 (a).

If the "set" and "reset" inputs of the circuit of Fig. 1 (a) are tied together, Fig. 1 (b), the circuit will operate as a binary counter. In this case the positive input pulse goes to both transistor bases, but can only cut "off" the conducting transistor. This circuit is sensitive to the relation of the size of the cross-coupling capacitors, C_{C}, and the shape and duration of the trigger pulse. Wider variations in this pulse may be tolerated, and
cross-coupling capacitors may be omitted, if the input pulse is steered to the proper transistor. The input circuit may be converted to a steering circuit by connecting the diode biasing resistors $R_{K_{1}}$ and $R_{K_{2}}$ to the collectors of T_{1} and T_{2} respectively. In addition, the resistors R_{s} may be returned to a positive voltage source, $V_{n B}{ }_{n B}$, to insure cut-off of the tansistors.
In many applications the input to the binary counter is a square wave from a previous stage as shown in Fig. 1 (b). In this case the time constants $R_{T} C_{S}$ and $R_{T} C_{17}$ also play a part in deter-
mining the recovery time of the counter. Waveforms during operation (Fig. 2) illustrate what happens at various points in the circuit for a square-wave input.

First Level Design

In the first level of design of a binary combter. one needs to consider only

- Output signal power required
- Input signal power available
- Speed at which the stage must count

The maximum speed at which a binary comenter

Fig. 1. Two-transistor flip-flop with set and reset networks (a) and reconnected (b) for operation as a binary counter.
will operate depends on the alpha cutoff frequency of the transistors used, in addition to other factors to be discussed. In this type of circuit, a good "rule of thumb" is that the maximum speed at which a counter will run reliably is approximately $1 / 10$ the alpha cutoff frequency of the transistor.

To realize this speed, cross-coupling capacitors must be used. For instance, in the case of the surface barrier transistor, the maximum speed of operation is about 300 kc without capacitors and about 2 mc with cross-coupling capacitors of the proper value.
By employing emitter-follower coupling and faster gating this factor of $1 / 10$ can be increased to about $1 / 5$. If complementary-symmetry circuits and high-speed gates are used, this factor can be increased to about $1 / 3$ or $1 / 2.5$. 1,2 if one chooses the maximum frequency of operation of the binary counter to be $1 / 10$ alphat cutoff, the minimum alpha cutoff of the transistor to be used is specified. To decide exactly what transistor to use one may also wish to consider size, β, and material (germanium or silicon).

Another good "rule of thumb" is that the output voltage obtained from a circuit of this tope is from $0.7 V_{c o}$ to 0.8 $V_{c c}$, where $V_{c c}$ is the collector supply voltage. Therefore when the desired output voltage is specified the supply voltage can also be immedi. ately specified.

Fig. 2. Waveforms in the two-transistor binary counter shown in Fig. l(b). Letters refer to points on the circuit of Fig. 1(b).

It may be shown that the relationship

$$
R_{B} \cong \frac{\beta}{4} R_{C}
$$

gives a safety factor ($S=4$) to allow for decrease in β and still insure saturated operation for a grounded emitter switch as used in the basic Hip-flop. ${ }^{3}$ In the basic Hip-flop the size of the collector resistor. R_{c}, is limited by several factors. The minimum R_{e} e is limited by the maximum current rating of the transistor and/or the allowable power dissipation by the flip-flop. The maximum R_{C} is limited by the load R_{L}, which must be driven from the collector.

$$
R_{h}=\frac{R_{B} R_{E X T}}{R_{B}+R_{E X T}}
$$

where R_{B} is a base biasing resistor and $R_{E A T}$ is the external load resistance. Assuming that the maximum R_{r} is desired, one can compute R_{C} to be:

$$
R_{c}=\frac{\beta-3 S}{3 \beta} R_{E E M}
$$

The value of R_{C} is thus specified in terms of the β of the transistor to be used, the safety factor S and the external load to be driven. If the load is capacitive it is well to specify R_{C} such that

$$
R_{C} C_{L} \leqq \frac{1}{10 f}
$$

where C_{b} is the loading capacitance and f is the maximum freguency at which the circuit is to operate. This will insure reasonably stuuare output waveforms.
Results of sample calculations indicate that if all other factors are equal, the use of a transistor with the higher β will result in a larger R_{C} (and therefore lower power dissipation for the counter). An expression for R_{b} in terms of the external load, the β of the transistor and the safety factor is:

$R_{B}=R_{E X I}(\beta: 3,-1)$

Resistor R_{s} is chosen to limit the effect of $I_{\text {croo }}$ in the "off" transistor. It should be five or more times larger than $R_{B}\left(R_{g} \geqq R_{B}\right)$ to prevent loading of the "on" transistor. Often R_{S} is returned to a positive voltage $+V_{B B}$ rather than to ground.

For shortest recovery time of the binary, R_{κ} should be small. However, a lower limit for R_{κ} of about $5 R_{C}\left(R_{K} \geqq 5 R_{C}\right)$ is necessary to limit feed-through and loading. A value often used is $R_{\kappa}=10 R_{C}$.

The cross-coupling capacitors C_{C} should be large enough to transfer enough charge to switch the transistor from "off" to "on." They should not be so large as to transfer appreciable charge to
the collector, of say, T_{1}, when T_{2}, is "on" and the reset diode, D_{2}, is pulsed. Theory predicts that for the highest speed of operation $V_{C} C_{C}$ should be greater than Q_{A}, the charge stored in the base region of the "on" transistor, excluding charge due to saturation.
If highest speed of operation is not of importance the cross-coupling capacitors are unnecessary with the type of steering described in this article. In the event that the cross-coupling capacitors are omitted the transition time of the Hip-flop is approximately equal to the time for the "off" transistor to turn on with current drive through R_{B} only. This switching time may be computed from Ebers' and Moll's equations.

It is difficult to calculate the transition time if the cross-coupling capacitors are included. However, experimental results show that the transition time for a circuit with cross-coupling capacitors can be less than $1 / 3$ the transition time for the same circuit without cross coupling capacitors.

The input capacitors C_{s} and C_{1} should be as small as possible to allow shortest recovery time of the binary counter. However, for good operation of the binary counter described herein, the input pulse must completely switch the "on" transistor to "off." This requires that

$$
V_{1} C_{S}=V_{T} C_{R} \geqq Q_{T}
$$

where V_{I} is the minimum input voltage to the binary counter and Q_{T} is the charge required to turn "off" the "on" transistor. In cases where the turn-off charge and minimum input signal are known the values of C_{S} and C_{R} may be computed directly. If Q_{T} is not known then

$$
C_{S}=C_{R} \geqq \frac{3 Q_{A}}{V_{t}}
$$

will give usable values of C_{s} and C_{R}. In circuits which use cross-coupling capacitors it is well to specify $C_{S}=C_{k}=3 C_{c}$. Much larger values of C_{s} and C_{R} are sometimes used but one must insure that the time constants $R_{K 1} C_{S}$ and $R_{K 2} C_{k}$ are small compared to the time between input pulses.

For room temperature operation and at collector current levels high compared to $I_{\text {cbn }}$, e.g. $I_{C}{ }^{\circ}$ 1 ma for 2 N 76 type transistors, practically any diodes will suffice, e.g. 1N99, 1N34, 1N56. For operation at high temperature or at collector current $I_{C}{ }^{\circ}$ comparable to $\beta I_{C \text { 敨 }}$ the back impedance of the diodes must be high (greater than 10 megohms). Otherwise voltage leakage to the transistor bases from points C and D will offset the effect of the positive bias voltage and cause the circuit to fail. Silicon diodes have performed satisfactorily in some low current circuits.
(continued on following page)

VOLTAGE

DECREASE, \%

Fig. 3. Lower limit of input voltage before failure versus counting frequency.

Second Level Design

The second level of design is that of a circuit to work in a field system, such as a computer in which marginal checking and unit replacement are allowed. At the second level of design additional factors enter. such as

- Total power consumption
- Circuit tolerances
- Temperature considerations
- Total number of componients
- Cost per unit

Often in large systems, although impedance levels may be fixed. the supply voltages and current levels may be Hexible. In such cases a generalized common-cmitter NOR cirenit may be considered. This circuit may then be designed for minimum power dissipation. ${ }^{4}$
Circuit tolerances of a binary counter must be known if the circuit is to be used in a large system. For example, will the circuit fail to operate (1) if the input voltage decreases 20 per cent. (2) if the supply voltage drops 10 per cent. (3) if the collector resistors are different by 30 per cent?
The curves in Fig. 3 show one concept of margins. The plots are allowed percentage decreases of input voltage before failure occurs vs. counting frequency: The curve labelled " A " is for a type of direct-coupled binary counter. The curve labelled " B " is for an optimized emitter-followercoupled binary counter. Either of the circuits will operate if the input voltage is above the lines.
Consider the case of operation at 10 me . This is practically the upper frequency limit of circuit A. A 1 per cent decrease in the input signal from
the nominal 100 per cent input level would cause this circuit to fail. Circuit B. on the other hand, will operate if the signal decreases 15 per cent from its nominal input value at 10 me. However, at I me the situation has changed. At this point the circuit A will operate if the input voltage is decreased 50 per cent from the nominal value while circuit 13 must receive a signal within 30 per cent of its nominal value to operate properly. For 10 mc operation it is clear which circuit would be used for reliable operation. For 1 mc operation there is a choice.
In marginal checking, the problem is to find a so-called "handle" to vary which will cause circuits which are near failure, or "marginal." to fail. In the case of the binary counter a good "hamdle" in many cases proves to be the positive voltage supply, $+V_{k B}$. If a circuit is near failure because of high $I_{\text {CBo }}$ due to temperature or age. lowering the positive voltage will callse the ciranit to fail. If the circuit is near failure due to a decrease in f, increasing the positive voltage above the design value will cause the circuit to fail. Upper and lower limits before failure may bee set in both cases.

The design value of the positive voltage in particular, must be determined by the highest expected temperature of operation and the exprected $I_{\text {rim }}$ at that temperature. However, if low temperature operation is also anticipated the satety factor (S) must be chosen high enough that the decrease in 8 with lower temperature will not canse circuit failure. Silicon tramsistors must almost certainly be used if high temperat thre operation is desired, e.g. 150) (.
The momber of component parts used in a binary comber circuit is a compromise between . comsertative design using S-10 transistors per stage with each transistor performing a simple separate function (e.g. logical binary counter and a design using only 2 transistors. Reliability may be higher tor the more conservative design, but. on the other hand. it may not be becanse longterm reliathility varies inversely with the number of active components. Local experience has hown that the binary counter design (without the cross-coupling capacitors) performs very well for low frequency operation (less than 10 kc) "ith the 2N204 audio transistor. With crosscoupling capacitors and using surface barrier transistors the circuit performs with greater than 10 per cent margins up to 2 mc .
If emitter-followers are added and higher upeed steering gates used, the circuit will operate up to 20 mc . This last is a maximum frequency and 10 mc or 16 mc is thought to be a more practical limit, i.e., 10 per cent or greater margins on input voltage and other design values. The binary counter presented here represents a good compromise among the various
factors mentioned. There are circuits which operate faster and there are circuits which theoretically would be more reliable for random counting in that RC: time constants would not be used, e.s. the logical binary comenter. ${ }^{5,6}$

The arerage cost of assembly of several breadboard sistems at 1 OOFI has been 10 per transistor and associated components. Considering the cost of the transistors, diodes, resistors, and capacitors, the type of binary counter described herein hats cost about $\$: 30$ peer stagee in a breadboard version. If the cost per transistor remained unchanged the logical binary comuter would cost approximately $\$ 1(0)$ per stage in a breadboard version. Microminiaturized binary counter modules now under investigation inay eventually cost in the range of $\$ 1$ to $\$ 3$.

Third Level Design

The third level of desisn is that of a circuit to be used in a system where unit replacement is impossible. This sithation ocenrs in microminiaturization.
The design reguirements for a circuit to go in sealed system are more rigorous than for a circuit which can be replaced if defective. After the circuit has been designed and thoroughly tested in a breadboard model, it is necessary to specity a rigorous acceptance or rejection test for the field models. Analysis of the circuit mas be so complete that off-value, weak, or defective compements can le identified merely by observing a single-output waveform. This should be possible eren if the circuit is not malfunctioning at the time of the observation. The circuit may then be rejected before potting or final sealing. or at least restricted to use's in which its weaknesse's will not endanger future operation of the ystem. For instance, if it were discovered that the $I_{(n \prime \prime}$ of the transistors was higher than the design value, the circuit might still be used in low temperature applications if all its other characteristics were acceptable.
If the circuit uses standard size components, the waveforms at several points may be monitored. In the case of this binary counter, the waveforms at points C and I, Figs. 1 (h) and 2. give much information about the circuit. For instance, the decay times of the step waveforms indicate the time constants $R_{K} C_{B}$ and $R_{K} C_{R}$. These time constants compared to the input frequency show how close the circuit is to its maximum frequency of operation. The voltage levels at points C and D indicate the collector voltage of the off transistor and thereby indicate the $I_{\text {Cbo }}$. The height of the positive spike can be used as a measure of the charge required to turn off the "on" transistor if the input signal and diode characteristics are known. This height indirectly measures the alpha cutoff frequency of
the transistors in the binary comuter. The points C and D in a binary counter would then be good points to monitor for an acceptance test.
In the microminiaturized DOFL-21) binary comuter wafers now being studied only one output terminal is available. ${ }^{7}$ This point is the output of one collector which would normally drive the following stage. The resistors in this wafer are (arl)on deposited strips, the capacitors are silver fired areas, the diodes are germanium dots and the transistors are bits of germanium mounted in lines in the $1 / 2$ inch by 122 inch by $1 / 50$ inch stamic plate. Checking the internal comections with a probe and an oscilloscope is difficult unless the probe is very small. If the wafers are poutted or stacked, this becomes impossible.
Three different approaches have been made to lueck the individual circuits through the use of the external connections only
First. resistance measurements have been made between all terminals taken two at a time. This tuethod can identify some catastrophic failures and is good to detect "leakage paths." However ther test is a de test and somewhat limited.
Secondly, a series of so-called "standard tests" "as set up as follows:
(1) Output voltage was measured; waveshape moted
(2) Positive voltage decreased to zero or until circuit fails to operate correctly. Output voltage at $V_{n n}=0$ or plus bias voltage when failure uccurs was measured.
3) Upper and lower limits on input voltage before failure was measured.

1) The collector voltage was lowered until the circuit failed. Operation at -3 volts was also checked.
2) Maximum resistive load and maximum capacitice load before failure was measured. (6) Upper frequency limit was determined. Also resistor R_{T} was varied from 100 to 10 K and the upper frequency limit was noted at each value of K_{T}.
3) Circuits were labelled and any anomalies noted.
The expected results of the standard tests can be computed from the circuit design. These results are then compared with the results obtained Grom a breadboard model. Any differences are corrected by improved theory and redesign. Next, the results from the 21) wafers are compared with the breadhoard circuit results. Any differences will be due to offi-value. weak or defective components. In some cases the values of the components in the 2D circuit can be determined and if they are ton far off, the information can be fed back to the makers of the 2D wafers.
A third method of analysis has also been tried. Resistors_capacitors and-diodes in a breadboard model of the binary counter were systematically

Twist It 'til It Smaps and It Still

 WON'T LEAKThe new improved Fusite V-24 Glass is so solidly fused to the stainless pins that 180° twisting won't break the bond between glass and metal.

Here is the line of hermetic terminals that is so resistant to both mechanical and thermal shock that terminals require no special nursing in application. Weld them, solder them, treat 'em rough-your assembly will remain hermetic, free of cracks under Statiflux testing.

Only V-24 Glass developed and smelted here in our own plant can produce terminals that give you such latitude in your production operation.

Wide variety of combinations of size, flange treatments, pin types and placement.

Write Dept. C-1 today stating your application and we'll send appropriate samples for your own testing.
bridged, shorted or opened. Also, transistors with very high β and very low β were substituted in the unit. The effect of these mutations was observed on the accessible waveforms, in the case of the 2 D binary counter, the output waveform. Knowing these casual relationships a first order analysis of the circuit condition can be made by carefully observing pips, slopes and amplitudes of the output waveform.

More detailed information on the processes described in this article will be found in the complete piper to be published in our Proceedings of the Symposium on Microminiaturization of Electronic Assemblies. For further information
on the Proceedings, turn to Reader Service Card and circle 100

References

1. Buosting Transistor Switching Speed, R. H. Baker Electronics, 30, No. 3, pp. 190-3, 1 March 1957.
2. High Sperd Counter Uses Surface Barrier Transistors Euyen Gott, Electronics, 29, No. 3, pp. 174-8 March 1956 3. Design Considerations for Two Types of Transistor Multivibrator Circuits, P. Emile, DOFL Report No. TR487,1 Now. 1957.
3. The Design of a Transistor Noh Circuit for Minimum Power Dissipation, E. L. Cox, a paper presented before the Symposium on Microminiaturization of Electronic Assemblies, Diamend Ordmance Fize Laboratorics, Oct. 1958.
4. Higher Speed Computer Circuits, A. K. Kapp, and M. M. Fortini, Digest of Technical Papers, 1958, Transistor and Solid States Conference, pp. 12-14.
5. DCTL Complimenting Flip-Flop Circuits, E. Gray Clark, Electrovic Design, 5. No. 12, pp. 24-27, 15 June 1957. Also, "Part II," 5, No. 15, p. 34, I August 1957.
-. Microminiaturization of Internal Electronics 'Alicroelectronics'. T. A. Prugh, Proceedings of the Sceond National Comention on Military Electronics, sponsored by the P(CNE, IRE, at Washington, D. C., 17 June 1958.

Acknowledgments

Hie auther wishes to acknowledge the helpful discusbions with T. A. P'rngh during the preparation of this paper. The :uthor also wishes to thank N. J. Doctor, Amiel I. Conedman and E. L. Cos for help in devising test proceduren described in this paper

Designing a Transistor NOR Circuit for Minimum Power Dissipation

Elbert L. Cox
Diamond Ordnance Fuze Laboratories
Washington, D. C.

Computers make extensive use of NOR circuits because they perform all of the logic functions. In this article, the author describes a method of designing a transistor version of a NOR circuit.
$A \mathrm{O}$ "NOT" FUNGTION
A

Fig. 2. (above) Basic transistor NOR Circuit.
\qquad

B
"OR" FUNGTION

Fig. 1. (left) English logic functions performed by NOR circuits.

BECAUSE the transistor NOR circuit is capable of performing all of the English logic functions AND, OR, and NOT, it is extremels useful in computer systems. The N(OT function is performed by a NOR with one input. The ANI) function is performed by three NOR cirenits and the OR function is performed by two NOR circuits as shown in Fis. 1.
The basic building block. the tramsistor NOR circuit as shown in Fis. 2. employs a junction transistor in the common comitter connfiguration, The transistor is msed as a two-position switch rather than as a linear deviee

As shown in Fig. 2., the circuit consists of 19 input lines with input resistors R_{1+} a basse bial resistor R_{1}, and a collector resistor R_{6}. The positive bias V'un supplied through R, camses the transistor to be turned off if all of the inputs (A, B, and C) are near zero voltage. The transistor is on if one or more of the inputs (A. B. C) are at a negative voltage $V_{i c}$. V', must be sufficiently large such that the current $I_{:}$through h_{1}, is equal to or greater than I_{c}, B, where B is the base to collector short circuited current giain, and I_{C} is the maximum current in the collector resistor \boldsymbol{R}_{C}.
When the transistor is cut-off, the output voltage is approximately the same as the supply voltage $V_{c c}$. When the transistor is in the saturated state most of the collector supply voltage $V_{C C}$ appears across R_{C} and the output is near ground potential. A voltage signal is present on the output if voltage signals are not present on any of the inputs. Conversely, a voltage signal is not present on the output if voltage signals are present on any or all of the inputs.
A basic question encountered in using the NOR circuit is "vill the circuit operate properly when a single collector is required to drive a certain desired number of output circuits?" An expression for this number of ontputs, \mathbf{N}, in terms of

ELECTRONIC DESIGN • March 18, 1959
the circonit components. was derived by W. D) Rowe. ${ }^{1}$
$V=I_{r}\left[\frac{1}{v I_{c}+I_{c m u}+\frac{(0.2 . \overline{0} \cdot / /-1)}{R_{i}}}+\frac{R_{1}}{V_{C c}}\right]$
Where I_{1} no is the maximum expected base to collector leakatge current with the emitter open circuited. 0.25 is the base to emitter soltage for germamimm transistors. and S is the safety factor amploved to compensate for a decrease in gain of the transistor and other circuit parameter tolcrances.
It was assumed that $V_{\text {raf }}$, the base to emitter wltage when the transistor is in the "on" state, was wery much smaller than Ver, the collector oupply wiltage and that the leakage current $I_{\text {cin }}$ was ven much smaller thatu I_{c}, the maximum current flowing in the collector resistor. It was also atsomed that the transistor acts as a perfect switch when the transistor is in the saturated wate. Consequently: under saturated comditions $-V_{r}{ }^{\prime}=I_{c} R_{r}$. All results will be based on these astumptions
(iven at certain mumber of imputs to a NOR circuit which is to drive a certain number of ontput circuits. it is desired to minimize the oower dissipation $l_{1}-2 R$, in the collector resistor $R_{\text {s. }}$ sulject to the restriction that er (1) be satisfied. The ohjective here is to minimize $I_{4}-2 R_{c}$ with respect to base resistor. R_{1} and collector comrent ls.

Input Current Limiting Resistor
from in I the expression for $R_{1}{ }^{\circ}$ maly be derived.
$0.40 .25(1 /-1)$

$$
l=\frac{1}{1}\left(\frac{I_{n n \prime}}{I_{H}}+\frac{s}{B}\right)-\left[\begin{array}{c}
I_{n n} \\
I_{1}
\end{array}+\frac{s}{B}\right]^{(2)}
$$

This expression gives the value of the input-current limiting resistor for a minimum R_{r} and also minimum power dissipation $\left(I_{G}=R_{C}\right)$, if such a minimmon exists. The expression for power dissipation is

Collector Current

Collector current for minimum power dissipation $\left(I_{C}{ }^{\circ}\right)$ is

$$
I_{C^{*}}=\frac{\operatorname{libu}\left(-1+4 \cdot \frac{S}{B}+\sqrt{1+8 N \frac{S}{B}}\right)}{2\left[\frac{S}{B}-N\left(\frac{S}{B}\right)^{2}\right]}
$$

\inimum power dissipation will be designated is $\left(I_{c}{ }^{2} R_{C}\right)^{\bullet}$.

1-A.MP Molded Edge Connector affords a solderless, reliable multi-circuit connection on printed circuit board edges.
-AMPin split tip firmly holds pin in board during solder dipping, assures good capillary flow. AMPin attaches to your leads with high speed A-MP tooling.
-AMP-edge fits edge slotted boards giving high conductivity without scoring paths. Low cost board edge connections.
-A.MP Component Tips crimp to component leads for firm mounting during solder dip. Permit stacking of units, protect semi-conductor leads from heat
-AMP-Iok-economical multiple quick connect/disconnect of harness to board.
-A.MP Printed Circuit Connector, for gruelling aircraft environments, is sealed against moisture and arcing, attaches with right angle pins to circuit board edge. Dual leads for each contact.

Visit us at The IRE Show
March 23-26, 1959 Booths 2234-2238

DID YOU SAY PRINTED CIRCUITS

No matter how you approach printed circuit problems-with single or multiple connector units, with board-edge or face attachments, with or without solder dipping, with or without eyeletting-AMP has just the product you'll need for low-cost top reliability.

Production and assembly speeds are miles ahead of most other techniques. Versatility is unbeatable, permitting A-MP products to be used on different applications and in combination with each other

For complete information on electrical characteristics, application methods and other specifications, send for our new Printed Circuit Applications Catalog.
A.MP products and engineering assistance are available through subsidiary companies in: Canada - England . France - Holland - Japan CIRCLE 31 ON READER-SERVICE CARD

Standard Crems or Custom Designs

 FROM ONE COMPLETELY INTEGRATED SOURCEWhether specifications call for standard types of ceramic-metal bushings or specially designed assemblies for unusual applications. designers and electronics equipment manufacturers can rely on the uniform high quality and dependability of Alite ceramic-to-metal seals.
Vacuum-tight seals and bushings made of high alumina Alite are ideal for use in electronic applications where service conditions are extremely severe or critical. Alite has superior mechanical strength and thermal shock resistance. It maintains low-loss characteristics through a wide range of temperatures and frequencies. It resists corrosion, abrasion, and nuclear radiation. The extra-smooth, hard, high temperature glaze on Alite seals assures continuing high surface resistivity and dependable operation.
Another important reason for outstanding reliability of Alite components is our ability to perform and carefully supervise. in our own
plant, every manufacturing step. From design to finished assembly-including formulating, forming, firing and testing-Alite is equipped to develop and produce high precision hermetic seals and bushings at one location. This permits an exceptionally high level of quality control, and results in what we sincerely believe to be the finest ceramic-to-metal seals available.

Our ceramics specialists are anxious to assist you on problems involving ceramic-to-metal seals. Tell us about your specific requirements today.

ALITE DIVIIION
Orrville, Ohio

U. S. STOMEMARE

Now York Office 60 East 42nd St.

Fig. 4. Effect of B / S on collector current
tion is linearly related to $I_{\text {CBo }}$ and $0.25(M-1)$; Specifically if a transistor NOR (ircuit is to have two inputs ($M=2$), drive nine circuits $N=9$), employ transistors with Betas of 50 ($B=50$) and $I_{\text {chan }}$'s of 10^{-6} amperes, correct values of Vicc, R_{C}, I_{C} and R_{1} can be ascertained In effect minimum power dissipation. For this particular design situation a safety factor of 2 is imployed. The B/S factor is therefore 2.5. Values of $I_{C B O}, B$, and M used in this typical example were chosen because of their practicability to current design situations.
If the above values for $I_{\text {cno }}, B / S, 3$ and V are whbstituted in expressions (4) and (5) the calculatlions yield

$$
R_{1}{ }^{\circ}=250 \mathrm{~K} \text { and } I_{C}{ }^{\circ}=47 \mu \mathrm{a} .
$$

Therefore minimum power dissipation using eq, 3) is 177 mwatts. The collector supply $V_{\text {re }}$ is then calculated to be 3.75 v . Consequently $R_{C}=$ 9.9 K.

If $V_{B E}$ is not very much less than $V_{C r}$ and $I_{\text {CBo }}$ is not very much less than I_{c}, the NOR circuit may be capable of driving but, say, eight outputs lather than nine. In this case, design for one more mitput than actually needed.
More detailed information on the processes lescribed in this article will be found in the omplete paper to be published in our Proceedugs of the Symposium on Microminiaturization if Electronic Assemblies. For further informaion on the Proceedings; turn to Reader Service fard and circle $\mathbf{1 0 0}$.

Reference

The Tramsistor \OR Circuit, W. D. Rowe, Electronic IEsIG., Feb. 5. '58, p. 26.

IN '59:

NEW нoк... NEW features... NEW

for the famous

WESTON

panel instrument series!

es ...the trusted familiar WESTON 301 LINE ha undergone a big change this year. You'll find these $31 / 2$ inch, pace-setting instruments looking different doing more for you . . . working better and longer.

The renowned Cormag ${ }^{(10}$ mechanism, now standard. permits mounting on magnetic or nonmagnetic panels. close to other instruments, without special adjustments. It makes the " 301 " immune to the effects of stray magnetic fields.

The new 301 line is available in D-C, R-F and A-C rectifier types, as well as in moving iron A-C types with capabilities of obtaining controlled ballistic characteristics - even including critical damping.

WESTON

 DnstrumentaVisit us at Booths 1802 and 1901.
Radio Engineering Show...New York Coliseum... March 23-26.

Standard

Thomas A. Prugh
Diamond Ordnance Fuze Laboratories Washington 25, D. C.

Transistor Switching Circuits

Circuits described in this article were designed as compatible building blocks to be interconnected to perform complex functions. This is a preliminary effort to solve the standard-circuit problem for circuits to be used at frequencies up to 15 kc and temperatures below 45 C . Future effort will be aimed at adding new and more efficient circuits.

STANI.ARI) (ircuits and modules are being increasingly considered be the electronics industry becaluse they avoid repetitions design Also from the standpoint of mass production a fow widely applicable standard circuits would permit low mit cost and hich reliability. And as the circuits get smaller and are manufactured by printing or vacumedeposition methods. the system designer will become primarily interested in the functioning of logical blocks rather than the individual component part values. In order to achieve reliable buidding blocks. the circuit dedign can and should be considered in detail only daring the orerall design of the particular wafer: or modules. These modules then are stocked as the smallest component to be handled in development and production activities.

Work at the Diamond Ordnance Fu\%e Laboratories has resulted in circuits useful for rapid assembly of working systems. The circuits are primarily of the low power level, information handling type. Typical applications include digital computing and timing operations. The circuits
are restricted to those using the transistor as an off-on or relay-type device.

Specific Circuits

Standard circuits that have been designed are: Inverter
Inverter less load
NOR
Flip-Hop)
Binary counter
Monostable multivibrator Free-rumning multivibrator Lamp control
Power switch
These particular circuit types were chosen, in part, because the have been studied extensively. As a result. detailed information is asailable or calculable on the design, performance, and limitations of the circuits. Specific component part whes are shown in the schematics. From the standpoint of presently used techniques of making microminiature assemblies, the resistor elements are the easiest to handle. Accordingly the circuits are designed to use no inductors and as few capacitors as possible.
Inverter (IN). The inverter circuit ${ }^{1}$ shown in Fig. 1, as its name implies, inverts the input signal. For - 1.5 volts in, the output is 0 ; for 0 in, -1.5 volts out. One inverter stage can drive several other inverter stages or similar type loads. Inverter (INLL). A degenerate form of the in verter is shown in Fig. 2. The load resistor of 1 K ohm. normally found in the collector circuit, is omitted. This circuit is used to couple a signal to a common load resistor fed by several circuits. NOR. The NOR circuit ${ }^{2,3}$ is similar to the inverter except for the number of inputs. The NOR
shown in Fig. 3 has two inputs. In principle, any number could be used. In practice, the two-input bersion is a compromise between versatility and noncriticalness. The two-input version is a compromise between versatility and noncriticalness. The two-input NOR has many similar logical properties to the two-grid pentode gating circuit. The logical function performed by the NOR is shown beside the schematic of Fig. 3. When neither A nor B is present an output exists. The NOR is an elemental building block. With one or more NOR circuits all the logical functions including NOT, AND, OR can be performed. Flip-Flop (FF). A bistable circuit can be formed by connecting two inverter circuits together to form a toggle or Hip-flop. ${ }^{4}$ The schematic is shown in Fig. 4. Information can be coupled into the flip-flop by connecting the collector of an INLL circuit to one of the collectors of the FF. Binary Counters (BC and BCR). The flip-flop can be modified by the addition of input pulse steering circuits to obtain a binary counter ${ }^{5,6}$ as shown in Fig. 5. The added capacitors, diodes and resistors provide alternate feeding of the input pulses to one transistor, then to the other.

When initial conditions need to be set into the binary counter, diodes coupled to the base of each transistor can be added as shown in Fig. 6. Monostable Multivibrator (MMV). The monostable multivibrator ${ }^{7}$ is used to generate a gate or time delay following an initiating trigger pulse. The design shown in Fig. 7 has the delay time adjusted by choice of the coupling capacitor between the two transistors. The start pulse is coupled into the "normally-on" transistor by means of a capacitor, resistor, and diode network. Free Running Multivibrator (FRMV). The free running multivibrator ${ }^{8}$ of Fig. 8 is a source of two

Fig. 1. (above) Inverter (IN)
Fig. 2. (right) Inverter less load (INLL)

Fig. 6. Binary counter resettable ($B C R$)

Fig. 7. (right) Monostable multivibrator IMNW]

$T_{M S}=15.4 \mathrm{C}_{\mu} \dagger$ $C_{\mu f}=.065 \tau_{M S}$

TMS = TIME
DURATION IN MILLISECONDS

symmetrical square waves of opposite polarities. The fregneney is set by the cross-coupling catpacitors.
Lamp Control (LC). The lamp control circuit of Fig. 9 is used when visual indication is required of the binary state of flip-flops or binary counters. A two-stage circonit is used because the lamps have a drain of about 50 ma. A single transistor could not reliably give enough current gain. Both this circuit and the following power switch circuit are designed to be driven by an output signal from one of the previonsly described circuits.
Power Suitch (PS). The power switch circuit of Fig. 10) is similar to the lamp control circuit except for the output load. The power switch circuit will provide a heavy duty positive step in voltage at its output. One use of the circuit is to set or reset a number of binary counter stages simultaneously.

Design and Performance

Choice of Transistor Type. The specific circuits shown are designed for pnp transistors. Simple changes in the polarities of capacitors, diodes, and power supplies would permit the use of npn types. The pup alloy germanium types are the most common transistors mamufactured and are well suited to the circuits. Typical transistors are the $2 \mathrm{~N}^{-7}, 2 \mathrm{~N} 105$, and $2 \mathrm{~N} 2(0)$. The latter transistor has been used extensively in making small etched board modules. Higher frequencr tupes include the 2N139 and those of the series 2 N112-2N114. The microalloy 2 N 393 is a type of even higher frequency. For high-temperature operation, a silicon alloy type would be necessary.
Transistor Specifications. Two paraneters are of major importance to the proper operation of the circuits: common emitter current gain (β) and collector cut-off current ($I_{\text {cbo }}$). The drop in β with decreasing temperature sets the lower temperature limit of circuit operation. The increase in $I_{C B O}$ with increasing temperature sets the upper temperature limit for the circuits. Beta values of 50 or greater are required for all transistors except the output transistor in the lamp control circuit. This latter transistor was chosen to have a β greater than $1(0)$.
The β of the 2 N 20 O drops to about 50 per cent

CHOOSE C FOR DESIRED FREQUENCY

Fig. 9. (right) Lamp control (LC)

Fig. 10. (below) Power switch (PS)

$$
c_{\mu f} \cong \frac{32.4}{f_{\mathrm{Cps}}}
$$

Fig. 11. (below) Block diagram of electronic timer. Code letters refer to the circuits pre viously described.

of its room-temperature value of - 10 C. The circuits should perform properly down to this temperature although this has not been verified experimentally. The circuits ate designed to operate with transistors having an $I_{\text {rm }}$ value up to 30nal. For the $2 \mathrm{~N} 20-\mathrm{tape}$, this value is reached at (1)proximately 60 O

Choice of Diodes. The diodes used in the binary counter are noneritical in terms of the characteristies of presently available diodes. Point contact termanium diocles of minimmon quality have been used. The $1 \mathrm{~N}(\mathrm{x})$ is typical. It has a minimum forward current of 5 ma al 11 and a maximum reverse courent of . $5(X)$ paa at $\overline{3}(0)$
Junction diodes of erpuivalent de characteristies homld operate as well as point contact types in the low-frequency circuits considered se far. If the mavimmon upper operating temperature is desired for the eirenits. the dinde shomld be chosen for minimum reverse (arrent at the иpper temperature point.
Choice of Supply Voltages. The ciremits are designed to operate from two simgle calls, one for the mesative sontrer and one for the positive surce. Either 1.3 - mercury cells or 1.5 v dry (e.lls are satisfactory. Tuon wht lead-acid cells can be bead if the lamp control circuit has a 2 -volt lamp (No. 15 or 49).
Upper Frecguenc! Limit. The circolits have not been designed for optimum fregucucy response. Cirenit simplicity and reliable low-frequency operation were stressed in these designs. The Binaty Comenter. using transistors such in the
 of approximately 15 kc . The input capacitors Were chosen for these transistors and would need (1) be reduced in value to permit higher connting rates with higher frequency transistors. The lamp control circuit is limited in speed be the thermal response-time of the lamp. Observation of several switching eycles per second is possible. The other switchine circuits have a thansiont response-time of about 20 microseconds.
Upper Temperature Limit. If $2 \mathrm{~N} 2(1) /$ transistens and $\mathbb{N O}(\mathbb{N}$ diodes atre employed in the circuits with otheit component parts as shown. the upper temperature limit is approvimately 4.5 C. It is stressed that the particular design-values are not thosen to sive hish-temperature performance.

Techniques For Improving Performance

The circuits presented in the schematics have upper limits in frequency of tens of kilocycles and in temperature of approximately 4.5 C . The natural question is how to improve these limits. if necessary, for a particular application.
The upper fropucney limit can be raised by two approaches. The first is to keep the previously described circuit topology and use higher Irequency transistors and correspondingly lower

High power tronsistors with new cold-weld seal

Improved cold-weld seal
gives new Tung-Sol
high-power transistors
three-way quality boost

True hermetic, copper-tocopper seal improves transistor thermal characteristics.

Elimination of heat-damage, heat-caused moisture and "splash" increase reliability

Vacuum-tight, moisture-proof old-weld seal lasts even through 'breathing" over long life operation.

Photomicrograph (45 X) shows circled area of cross section if Tung-Sol high-powe of cross section isf rung-Sol high-p. Wer absence of seam, indicating actual integra metic, copper-to-copper seal

Once again Tung-Sol shows the way. Now, for the first time, Tung-Sol brings designers high-power germanium transistors with quality benefits of the advanced cold-weld seal.

The new Tung-Sol types feature a stud-mounted package and maximum collector current of 13 amps. Military environmental tests combine with the radioactive gas leak detection test to assure maximum reliability.
the right capacitor for the application．．． your job \ldots and Centralab＇s

choose from

in a wide range of values，voltage ratings tolerances and physical sizes
Wherever you need a feed－thru capacitor，you can be sure that centralab can meet your needs．The table below shows the many varieties that make up the most complete line in the industry－and you get the added benefit of centralab＇s unequalled experience in the design and manufacture of ceramic capacitors．Whether it＇s for high frequency，filtering，bypass，or coupling，you＇ll find the unit you need in this group
Centralab Engineering Bulletins（FT Group）give you all the details．Write for your copies today．

TEN TYPES of Centralab FEED－THRU CAPACITORS

TYPE	$\begin{aligned} & \text { ACTUAL SIZE } \\ & \text { ILLUSTRATION } \dagger \end{aligned}$	CAP．RANGE mmf	vocw	VDCT	APPLICATIONS
Bushing type DA－717	$G \square)_{\text {mumin }} 5$	10－4000	500	1000	High frequency filtering，bypass，etc． $\pm 5 \%$ tolerance in lower values
$\begin{gathered} \text { Bushing type } \\ \text { DA. } 720 \end{gathered}$		10.5000	$500-1500$	1000－3000	
Step type DA－728	目	10－1500	500	1000	Med．freq．use， bypass，TV tuners，etc． $\pm 10 \%$ tolerance below 200 mmf ．
Step type DA－729	ris	10－1500	500	1000	
Ring type DA－740＊	Sis	10－1000	500	900－1300	Symmetrical design． Inserts from either end ．．．ideal for automatic insertion
Ring type DA． 741^{*}	M目	10－1000	500	$900-1300$	
Eyelet type DA－ 784	θ	25－1000	500	1000	For high frequency filtering and bypass，where size is important
Eyelet type DA． 785	$0 \cdot \square 10$	25－1000	500	1000	
$\begin{aligned} & \text { Eyelet type } \\ & \text { DA-787 } \end{aligned}$	号白	25－1000	500	1000	
Resistor Capacitor type 732	S	$\begin{aligned} & 470 \text { gmv. } \\ & .3 \text { to } 1.0 \text { meg. only } \end{aligned}$	1000	＊＊	Resistor－Capacitor in parallel． －＂ 1500 VAC test when immersed in Silicone oil cooled with dry ice．

Centralab，
 A Division of Globe－Union Inc．
 960 C E．KEEFE AVE．－MILWAUKEE 1，WIS In Canada： 804 Mt ．Pleasant Rd．，Toronto 12，Ont．

VARIABLE RESISTORS • ELECTRONIC SWITCHES • PACKAGED ELECTRONIC CIRCUITS • CERAMIC CAPACITORS • ENGINEERED CERAMICS circle 35 on reader－service card
capacitors ${ }^{6}$ in the binary counter stages．Most the circuit speeds are limited by the transistor and not by wiring capacitances．The upper speec is roughly proportional to the alpha cutoff fre quency of the transistors．
The second approach is to use a more comples circuit ${ }^{2}$ and more efficiently utilize a particular tramsistor－type．Specel－up or commutating capaci tors catl be used to provide better coupling be tween stages．The transistor can be operated in ： non－saturating mode，thus reducing switchin time appreciably：Complementary－symmetry op eration can be used to obtain positive drive in the rise and fall times of a waveform．
In an analogous manner，the upper tempera ture limit can be improved．Keeping the sams circuits，transistors with lower $I_{\text {cho }}$ currents can ise used（if available）．The silicon alloy types will prove attractive as they become more readil awailable at modest prices．The base biats resiston and＇or positive supply woltage call be modified for higher temperature operation．More involved circuitry can he used to boost the upper te，nrera ture limit

Application Example

An example of the use of the standard circuits to comstruct a more imolsed sistem is shown it Fig．11．The system is an electronic timer for gen－ ratting $\overline{5}, 10$ or 1.5 second intervals follow ing the activation of a push buttom．
One－second pulses are generated he dividing down the for eps line woltage through a six－stage binary divider（BCR－1 throush BCR－6）with feedback to reduce the dis ision ratio from $64 t$ 60．The input power line voltage is shaped to drive the binary comuter by feeding through the two ituverter stages（ $1 \mathrm{~N}-1,1 \mathrm{~N}-2$ ）．The NOR bloc is a gate described later on．
The basic counting register is another set 1 binary counter stages（BCR－7 through BCR－10） Three time－periods are provided．i．e．， 5,10 and 15 seconds．Using the one－second pulses as an it－ put，the 4 －stage binars counter has sufficient en－ pacity（ 16 comis）to connt the maximum time The four stage counter is preset to the propal comet to permit reaching its maximum count at the desired time．The＂SET TIME＂switch sets up the proper path for preset pulses at the stan of the time interval
The time interval is initiated by pressine the ＂START＂push button．This flips BCR－12，usu d as a Hip－fop，to a position which causes thi NOR－1 circuit to pass 60 cps pulses to the 601 divider chain．This change in state of BCR－ also triggers a monostable multivibrator（MM of approximately 1 ms duration．This 1 ms pule is amplified in the power switch（PS）and us to preset all the BC C stages to their proper F itions．The preset pulse is fed through the＂SET

ELECTRONIC DESIGN • March 18， 1959
"IME" switch to the proper terminals of the BCR stages in the counting register to give the desired time interval. For example, to generate a 10 -second interval, BCR-8 and BCR-9 are preset to their non-zero positions. Since BCR-8 has a value if 2 counts, and BCR-9 has a value of 4 , a total of 6 counts is subtracted from the total capacity if the 4 stages. Thus, 16 less 6 , or 10 one-second oulses are required to cycle the counter to a point where BCR-11 is flipped.
The fitth stage (BCR-11) of the cominting regiser is used as a temporary memory to show that the time interval is over. This stage flips at the oud of the time interval and Flips back again 16 econds later. This second change is used to reset 13CR-12 and thus stop pulses from passing through the VOR-1 circuit. This completes the acle of the timer. Pressing the START button nitiatcs a new cycle
\backslash istral indication of the counter operation is frovided by the lamp control circuits (LC-1 hirough L(i.-5). Onc is connected to each of the binary counter stames in the counting register BCli-7 through BCR-II). The stages LC-1 through LC-4 indicate the instantaneous binary count in the register, LC-5 operated by BCR-11 indicates the end of the time interval.
More detailed information on the processes dewribed in this article will be found in the complete paper to be published in our Proceedings of the Symposium on Microminiaturization of ElecIronic Assemblies. For further information on the Proceedings, turn to lisader Scrvice Card and fircle 100.

Acknowledgments
The corouits doseribed are the result of the contribut unns of maneme prople. Helputil dicenssions were held with Mhlip) Emile. Ir and E. I.. Con. specific thanks are dur Imied Cometman and Jack Ximint, for comulluctive lown urature studios on the c ircelits.

References

Handlowk of Semitenductor Electronics, L. P. Munter p. $15-30$, Mct, raw- Hill Brook Co, Inc, New York, N. Y.
2. The Application of Transistors to Computers, R. A Henle and I. L. W.a木, Proc. IRE, 46, pp. 1240-54, Jun

The Design of a Tr.unsistor Nor Cirenit for Minimum ower Dissipation. E. L. Cox, a paper presented before he Symposium on Microminiaturization of Electronic ssemblice, Diamond Ordnance Fur I aboratories, Oct 1958.
I. P. Honter on) (il., P. 15-38
L. P. Humter, op. cit., p. 15-40

Design of a Two-Transistor Binary Counter, P Emile, - paper presented before the Symposium on Microminiaurization of Electronic Assemblies, Diamond Ordnance Fuze Lahoratories, Oct. 1, 1958.

1. P. Ilunter. op) cit. p) 15-44

Design Consideration for Two Types of Transistorized lultivibrator Circuits, P. Emile, DOFL Report No. TR57, Nov. 1, 1957.

the pencil that's as good as it looks
Sold at all good engineering and drawing material suppliers - J. s. STAEDTLER, INC. - Hackensack, N. J. CIRCLE 36 ON READER-SERVICE CARD

Results of a literature survey indicate that it is possible to eliminate large-volume components by employing various circuit techniques. In this article, the authors disclose some of these techniques as related to amplifiers, simulated reactances, and filters and oscillators.

Circuit Techniques to Eliminate Large Volume Components-a Literature Survey

Jerome I. Cooperman and Philip J. Franklin
Diamond Ordnance Fuze Laboratories
Washington 25, D. C

ENGINEERS have attempted to eliminate large component parts by employing various circuit techniques. While most of these techniques were initially developed for use with vacnum tubes, the extension of these principles to transistor circuits is logical. This paper is a result of a literature survey conducted to uncover and collect in one body some of these techniques; it will disclose their basic operating principles and how they might be applied in the field of microminiaturization. The presentation is given in three main groups: amplifiers, simulated reactances. and filters and oscillators.

Amplifiers

Positive feedback techniques. In designing amplifiers for miniature circuits, it is generally desirable to get maximum amplification per stage, using a minimum number of components, and yet have the system relatively free from instability or oscillation. A controlled amount of positive feedback incorporated in the amplifier design can achieve these ends in vacuum tube circuits, and to some extent in transistor circuits.

In a typical two-stage resistance capacitance coupled amplifier, to establish the proper dc operating conditions for the tubes, cathode bias is generally employed. The cathode by-pass capacitors are the most bulky of the components employed since values of the order of $10 \mu \mathrm{f}$ and larger are required for audio-frequency applications. If these capacitors are omitted, a great reduction in gain results from negative current feedback in the cathode bias resistor. Sulzer ${ }^{1}$ de-
scribes a method of applying controlled positive feedback between the stages to offset this reduction in gain, Fig. 1. Positise feedback is applied by a resistor R, connected between the cathodes. A similar method of applying positive feedback between the screen grids of two pentode stages to eliminate the acreen by-pass capacitors is also described.

Anspacher" gives an analysis of a two-stage pentode amplifier circuit without by-pass capacitors, the resulting degeneration being nullified by means of positive feedback between the two screen grids.
Unlike vacuum tubes, transistors require a forward bias to establish the proper de operating conditions. This may be supplied in several different ways. In order to stabilize the transistor against thermal runaway, de feedback which tends to bias the transistor toward cutoff as the collector current rises, is commonly used. A resistor is connected in the emitter circuit to stabilize emitter current. The emitter resistor is generally by-passed to prevent loss in gain due to degeneration, as in vacuum tube circuits.

Alexander ${ }^{3}$ describes a transistor andio amplifier. (Fig. 2), similar to the previous vacuum tube circuits, where positive feedback between the emitters is used to obviate the requirement for large by-pass capacitors across the emitter resistors.

An additional economy involves the climination of the two-resistor forward biasing network in each base circuit. This function is accomplished by the voltage drop that appears across
the base-emitter junction as a result of the leahage comrent of the tramsistor. This biasing method is not recommended. sincee it is semsitive not only to temperature variations, but also tol differemes betweed transistors.

Direct-coupled amplifiers. I somewhat diflerent technigue for eliminating large-solume components and improsing the low-frequency response: of ant amplifier is to employ direct-coupling. Vuch of this information is smmmarized by fandere et al.'
"The use of PNP transistors made by fusion techniques and surfaco-barrior tramsintors permits a direct connection of the collector of one stage to the base of the following stage without the use of interstage biasing arrangements. This is possible since the collector resistance is high and the current gain is close to its nominal value when the collector-to-base voltage is \%ero or slightly positive. At low level stages, the use of this technique results in wery simple circuitry. However, the collector-voltage swing of any stage directly coupled to the base of a following stage is rostricted to a very small voltage (0.2 to 0.6 v). Since the transistors are operated as current amplifiers. the small allowable collector-voltage swing does not adversely affect the operation of low-level stages. In many practical amplifiers this technique may be emplosed for coupling the first two or three stages of a high-gain amplifier Hurtig." An amplifier circuit of this type is shown in Fig. 3. It has a power gain of 70 dl and incorporates de feedback for stabilization.?

As in the case of the vacuum tube, de drift camnot be ignored. It is unfortunate that the temperature sensitivity of transistors increases the drift. However, if this circuit is employed as a low-level, high gain pre-amplifier, capacitive coupling at the output will remove the de component without affecting its properties as an ac amplifier. The cconomy of component parts and the ligh gain camot he overlooked for application in microminiature subassemblies.

Another type of direct-eoupling scheme used with transistors is called complementary symmetry, and is discolssed loy Sziklai. This method is shown in Fig. 4 and can deliver a voltage gain of the order of 25 per stage.

Perhaps the most popular use of the principle of complementary synmetry is in Class B power amplificr applications. The advantage of Class B operation is that the circuit draws negligible current until signal is applied. In the usual configuration, both ant input and output transformer are recquired. Sziklai describes a circuit of a Class B power amplifice with a direct-coupled compli-mentary-symmetry driver (Fig. 5). This amplifier dees met contain amy parts other than the transistows themselves and operates trom a high impedancer signal worree directly into :a 16 -ohm loudapeaker voice coril. The low sutput impedance and the stable oppration are made possible by the wer-all feedback which extends down to de. Incidentally, this is a zero-center de amplifier. Its cennomy of component parts recommends it for microminimature power amplificr applications.

Simulated Reactances

With cerrain circuit configurations, an active (lement such as a tacumum tube or transistor may behave as a reactance. Some well known applications of this phenomenon are the reactance modulator used in frequency modulation, and the Miller integrator and operational amplifiers used ill atmalog computer work. Very often, however, the reactance effects are not pure. but also introduce resistive effects. For purposes of power supply filtering, the resistive effects are not considered to be as important as the reactive properties of the device. Linvill- gives theory on $R C$ active filters using transistors.
Inductance. Towncr'" describes a circuit which is composed of resistive and capacitive elements, and three tubes as amplifiers. The device behaves as a true inductance in that it differentiates spuare waves, integrates triangular waves, and resonates with capacitance across its terminals. Some of the applications described are for a low frequency sine wave oscillator and as a filter circuit for tone control purposes in audio amplifiers.
Tomer" describes a circuit wherein a pentode tube may be used in place of a high in-

Fig. 1. Two-stage resistance-capacitance coupled amplifier with positive feedback.

Fig. 6. Transistor-simulated series inductance.

Fig. 5. Complementary symmetry Class B power amplifier with direct-coupled driver.

Fig. 7. Transistor-simulated shunt capacitance.

Fig. 9. Three-section high-pass ladder network with attenuation and phase characteristics.

Fig. 10. Hadfield's null network

ductance choke in a power supply filter. While not a pure inductance element, the high ac plate resistance and low dc drop through the tube permit the circuit to fulfill the requirements ordinarily imposed on a filter choke.

Stern ${ }^{12}$ describes a transistor simulated inductance using only capacitance as the reactive parameter. A series simulated inductance is shown in Fig. 6.

Capacitance. The Miller integrator is a particular kind of operational amplifier. It is basically an amplifier stage with a capacitive feedback path from plate to grid. The apparent capacitance be-
tween grid and cathode terminals is a fluction of the size of the feedback capacitor and the gain of the stage. In effect, the plate-to-gridl capacitance is amplified by the tube. Thus, it is possible to use a relatively small capacitance with a high gain stage to obtain a large circonit capacitance of low volume.

Stern': shows a circnit for a transistor simnlatted shount capacitance, Fig. 7. The value of the capacitance used in the base path is multiplied by the transistor gain. As in the simulated inductance case, these circuits are inoperable abose the transistor cut-off frequency. Oakes and Lawson ${ }^{13}$
use a similar capacitance multiplier circuit in a transistor power supply filter.

Filters and Oscillators

The usual inductance-capacitance filters and oscillators assume ver! large physical proportions when designed for low frequency operation. In addition, at sub-audio frequencies, the circuit Q of the inductors is so low that induct ance-capacitance filters and oscillators are not practical. Both these factors have spurred circont designers to develop alternative approaches.

When resistance-capacitance networks are used in the feedback loop of an amplifier, it is possible to achieve steeper corves of amplitude vs. frequency (higher Q) than the passive casc, or even to invert the transmission characteristice of the network.

Resistance-capactitance oscillators are similar in theory: Sulficient in-phase feedback is employed to overcome the attenuation in the coupling network, and the amplifier then supplies its own input. The frequency stability, of course, is determined by the rate of change of phase with frepueney at the resonant frequency of the net work.

Ladder networks (cascaded L sections). The simplest network to be considered here is the single Lection, shown along with it transmis sion and phase characteristic in Fig. S .

It has an attenuation asymptotic to 6 db per octave beyond the "corner" frequency of $10=$ $1 / R C$. and a maximum phase shitt of (x) dees. Depending on the configuration, either low or high Frequency attemation may be obtained.

The attenuation rate of these networhs may be made steeper by cascading two or more sections. For each section, an additional 6 (th per octave slope, and (9) dey phase shift are obtaimed. Thus. for example, a three-section ladder has an attenuation of is dh per octave beyond its corner frequency, and a maximum shift of 2io deg. One such network is shown with its characteristics in Fig. 9.

It call bee seen that there is a phase shift of 180) deeg at a trequenc: $f=1 / 2, \pi C, \sqrt{6}$ for this hish pass filter. Athough the three-section ladder network has no "resomant" frequency, it has been used in a tumed amplifier circuit by Hansel, ${ }^{14}$ and is commonly employed in resistance-capacitance (phase-shift) oscillators as described by Ginzton and Hollingsworth. ${ }^{18}$ The network is connected in a negatise feedback path between the input and output of atn amplifier stage. At some frequency there is an additional 180 phase shift contributed by the network. Thus, positive feedback is obtained, and the amplifier response will show a peak at this frequency:

If the amplifier gain is made sufficiently large
to overcome the attenuation in the network, the circuit will oscillate. For a network composed of equal resistances and equal capacitances, there is an attenuation of 29 at a phase shift of 180 deg, requiring a loop gain of at least this amount for the circuit to oscillate. Sulzer ${ }^{16}$ suggests a modification of the ladder network by "tapering" the sections so that the succeeding sections do not load the input sections. The attenuation in this network is only about 8 for a phase shift of 180 deg and so low mu tubes may be used in the oscillator.
Hooper and Jackets ${ }^{17}$ have reported on a transistorized $R C$ phase shift oscillator.

Epstein ${ }^{18}$ describes a variation of this ladder network which has a gain greater than unity with 180 deg phase shift. Thus it is possible to construct an oscillator with only a cathode follower as the active element. Waidelich ${ }^{19}$ gives a practical design procedure for oscillators of this type.

Smiley ${ }^{20}$ describes another variation of the phase shift oscillator in which the ladder sections separated by active vacuum tube stages. Use is made of the Miller effect to increase the effective value of the capacitances in the network, permitting ultra-low-frequency operation with relatively small components. A further advantage of this oscillator is that three-phase output is available.

Sturm and Cottrell ${ }^{21}$ developed a transistorized three-phase, phase shift oscillator in which the ladder sections are separated by active transistor stages.
Hadfield ${ }^{=2}$ describes a null network composed of two ladder networks connected to a common source (Fig. 10). The null frequency is controlled by means of a very high resistance potentiometer connected across the output terminals of the individual networks. One of these networks is a phase lead network: the other is a phase lag network. The voltages at the respective outputs of these networks are opposite in phase at all frequencies and a zero output or cancellation can be obtained at any frequency by a suitable setting of the potentiometer. A more detailed analysis is presented by Clothier ${ }^{23}$ and a variation called the variable-T is discussed by Reid. ${ }^{24}$

Zero phase shift netuork. A simple selective network, sometimes referred to as a zero phase shift or twin $R C$ network, and discussed in detail by Punnett, ${ }^{25}$ is shown in Fig. 11 along with its phase and transmission characteristics. Superficially, it appears to be a Wien bridge, and it has been referred to as such many times in the literature. Actually it is not, since the true Wien bridge is a four-terminal network having no common connection between the input and output. The network is a three-terminal network and it has a common connection between the input and output. It has a peak in transmission and

The SF-2, Ponoramic's Synchronous Frequency Anolyzer, is all electronic, instantaneously tracks speed changes in dynamic balance and resonance analyses of rotating and reciprocating devices. A single run yields a complete plot of frequency vs. amplitude. Used in conjunction with the LP-1a, it has a frequency
range up to 7500 cps. . . tracks fundamentol or 2 nd , ronge up to 7500 cD
3 rd
4th and $5 t h$ \qquad hrd, 4th and 5iv. ity adjustable from lity adjustable from
$10 \mathrm{cps}-1 \mathrm{kc}$.Lin and 40 db log calibrated amplitude.

The G-6, Ponoramic's Broad Band Response Indicator, extends the range of Panoramic's Curve Tracing shows response to fundamental frequency only gives a single line presentation discriminates against moise and hum and has virtually unlimited dynamic range. $0-15 \mathrm{mc}$ range in 0.3 me segments. I v. into 72 ohms output with up up to 60 db attenuation

The LF-2a, Ponoramic's Improved Subsonic Spectrum Analyzer, has a redesigned pen recorder, stabil ized baseline, a second (externally activated) pen for marker injection, on optional internal $3^{\prime \prime}$ CRT, a more precise center frequency control and all the features that made the LF-2 ideal for applications where exceptionally high resolution is required or where analyses are made over extended peri
range $0.5-2250 \mathrm{cps}$.

The New Function Selector Panel for the LP-10, Panoramic's Sonic Spectrum Analyzer, permits critical analyses of random and other complex waveforms. adjustable IF bandwidth, 1-0.1 cps adjustable video
PANORAMIC'S SPECTRUM ANALYZERS
0.5 cps through 44,000 me

SEE how they can solve your measurement and analysis problems

Panoramic's forward thinking, long and specialized experience in the development of spectrum analyzers, brings to you the human engineering and stable, direct reading displays that make possible rapid and reliable analysis for your measurement problems... Whether it be subsonic parasitics, studies of harmonic outputs or your own special problem.

Here are just a few of Panoramic's long line of
widely accepted and completely dependable in struments. If you won't be of the Show. write NOW for technical bulletins, new CATALOG DIGEST and ask to
be put on the regular
PANORAMIC ANALYZER SPECIFICATIONS featuring application data.

524 South Fulton Ave., Mount Vernon, N.Y
Phone: OWens 9.4600 Cables: Panoramic, Mount Vernon, N.Y. State

The SSB-3, Panoramic's New Rapid Test Instrument for SSB Transmissions, combines in one convenient packoge a sensitive spectrum analyzer (the SBhead a motone senater and in ternal calibrating circuitry to set up, adjust, monitor and trouble. shoot SSB and AM Pransmissions. Simple to operate, compact and exceptionally low-priced.

The SPA-2, Panoramic's New Microwave Spectrum Analyzer, was specifically designed for high resolution analysis of broad pulse spectra. Two tuning heads with $\mathrm{mc}, 200$ cy range from $50-4000$
sweep width continuously re, ducible to 0 with IF bandwidth, control, $40 \mathrm{db} \log , 20 \mathrm{db}$ lin and square law amplitude scales, calibrated and continuously variable differential markers.

The SPA-4, Panoramic's Advonced High-Frequency High-Sensitivity Spectrum Analyzer, has a range of 10 mc to $44,000 \mathrm{mc}$ with one runing head, many unique
features and tremendous flexibil. reaty. Resolution continuously variable from I kc to 80 kc 70 mc wide sweep width continuously od justable to 0 . Careful shielding to avoid interference. Calibrated power, voltage and log amplitude scoles.

Fig. 11. The zero phase shift network with attenuation and phase characteristics.

Fig. 12. Two variations of the zero phase shift
zero deg phase shift at its "resonnont" trequency Its attemation is assmptotic to 6 db per octave each side of this frequency. If the general case for this network is considered, it is found that the hishest selectivity occurs when $m=n=2$ The resonant freguency obeys the relation $f=1$ •• R R
Two other networks composed of the same basic elements in different configurations, but having the same transmission characteristics are shown in Fig. 12
Whitmer ${ }^{26}$ describes a three-stage, broadl tuned bandpass amplifier emploving two of these networks for interstage coupling. While not as se lective as other circuits, the simplicity of the net work and the absence of critical tuning require ments are advantageous.
Beatie and Conn. ${ }^{-7}$ and Punnett ${ }^{2 \pi}$ employ thi network as the interstage coupling in a two stag amplifier with a positive feedback loop, thereb obtaining a tuned amplifier system with Q's up ti 20. Transistorized versions, while fcasible, hav not yet been described in the literature.
If the loop gain of the amplifier system is mad.
ELECTRONIC DESIGN • March 18, 1955
greater than 3, the circuit will oscillate at a frequency determined by the network and the amplifier phase shifts. Such a vacuum tube oscillator has been described by Terman. ${ }^{2 \times}$ Transistor oscillators of this type have been described and analyzed by Achuthan ${ }^{29}$ and Hooper and Jackets. ${ }^{17}$

Another variation of this network is also described by Punnett ${ }^{25}$ and consists of connecting the network to the ouput of a phase splitter. The operation approaches that of the Wien bridge by being more sharply tuned than the simple selective network and having zero output at its resonant frequency.

Wien bridge. A popular tuned RC network, the Wien bridge, is shown in Fig. 13 along with its transmission characteristics. It is more sharply tuned than the previous network, with a theoretical infinite attenuation and a discontinuous phase shift at its resonant frequency. It has been employed in tuned amplifiers by Shaw ${ }^{30}$ and in oscillators by Clarke. ${ }^{31}$ It has a rather serious disadvartage in that it is a four-terminal network haning no common connection between input and output, thus requiring an isolating transformer in many oscillator and amplifier circuits. However. it is possible to employ this network without a transformer. The network may be tuned by varying either the two capacitors or the two resistors in the right-hand branches simultaneously. The resonant frequency obeys the relation $F=$ $1 / 2 \pi R C$.

Parallel-T network. Probably the most widely used $R C$ selective network is the parallel-T or twin-T network. It has a higher Q than the previously discussed simple networks, less than the Wien bridge. and has a theoretical infinite attenuation and a discontinuous phase shift at its resonant frequency. A carefully constructed unit can have atn attenuation of 120 db at this frequency. This network. invented by Augustadt, ${ }^{32}$

Fig. 13. The Wien bridge network with attenuation and phase characteristics.

Same high-speed switching capabilities with which Fairchild startled the industry are now available in PNP - 80 milli-micro-second rise time, 2 watts dissipation, $300^{\circ} \mathrm{C}$. survival. Fairchild Silicon Transistors are multiple solidstate diffused. Their mesa construction affords excellent heat dissipation and extraordinary ruggedness.
Complementary symmetry within computer circuit designs now affords another technique for reducing number of components and increasing reliability. The advantages of complementary symmetry have been well known, but the high performance silicon transistors that could take advantage of the technique have not been available.

PNP - 2N1131, 2N1132

Symtol	Specification	Rating	Characteristics	Test Conditions
$\mathrm{v}_{\text {cE }}$	Collector to Emitter voltage ($25^{\circ} \mathrm{C} .1$	30 v		
${ }^{\text {P }} \mathrm{C}$	Total dissipation at	2 watts		
${ }^{\text {F }}$ FE	- C current gain		2N1131-15 to 45	Ic 150ma
			2N1132-30 to 90	V_{C} 10v
${ }^{\text {R CS }}$	Collector saturation		6 a typical	${ }^{\text {c }} \mathrm{C}$ - 150 ma
	resistance Small signal current		$10 \sim$ max	B-15ma
${ }^{\prime}{ }_{\text {fe }}$	Small signal current gain at f 20Mc		2.5 typical	

Direct replacement of germanium by silicon is feasible now that high performance silicon PNP mesa transistors are readily available. In silicon transistor circuits, you need no longer hesitate to make use of the particular advantages of PNP polarity. Availability is firmly assured.
COMPETITIVE ADVANTAGES FOR YOUR DESIGNS either in terms of price or functional efficiency are a likelihood that you should investigate. PNP silicon transistors with these speed-power characteristics have not been generally available, hence until now it has not been possible to design circuits using the complementary symmetry concept. Special attention will be given to inquiries received on tompany letterhead.

844 CHARLESTON RD. • PALO ALTO, CALIF. • DA 6.6695

The case of the missing mesa . . .

Mesa, mesa, who's got the mesa transistor? Recent announcements have created indus-try-wide excitement and confusion-and the inevitable disappointment of delayed delivery. What is the true status of mesa? Does it belong to any one or two companies and why is it so hard to get? The circuit designer has good cause to ask these questions, and we'd like to make our contribution to industry enlightenment.

Mesa is such a major development, it can only belong to the industry at large. Some experts feel that mesa will soon supplant most other transistor types in most applications. Certainly its potential is broad, and the barriers it unlocks are many.

At Sylvania, we share this enthusiasm. The mesa transistor is one of our top priority programs-as it
is with most manufacturers of major industry stature.
Our pilot runs on amplifier, mixer, oscillator, and switching types have been most gratifying. And we're proud that we are developing new manufac turing techniques which will make the mesa commer cially practical.

While none of our pilot runs have yet been sampled to our customers, at this point we are satisfied that we've avoided the disappointments of broken promises. We are not in any race to be first with false starts-rather our objective is to get mesa off to the right start.

We will be announcing availability of commercially practical mesas later this year. If you would like to be one of the first to hear, drop us a note or call one of our sales offices.

Fig. 17. Attenuation and phase characteristics of a parallel-T network with various values of n.
ters must be adjusted simultaneously and with perfect tracking to maintain the sharpness of rejection. White and Morgan ${ }^{35}$ have made an ingenious modification that permits adjustment of the null frequency over a two-decade range without changing any of the circuit parameters. They split the input to the parallel-T, and in the case illustrated in Fig. 1.5. each T is fed from one section of a dual potentiometer. The null frequency is then only a function of the ratio of the voltages applied to the two T's and the null frequency of the basic network.
The use of the parallel-T network in vacum tube tuned amplifiers was first described by Scott, ${ }^{30}$ but subsequent articles by Feleisher, ${ }^{\text {is }}$ Punnett,,25 Stanton, ${ }^{34}$ and Hyde, ${ }^{3 K}$ are more detailed. The tuned amplifier consists basically of a stage of gain with the parallel-T network in the negative feedback loop and is shown in Fig. 16. There is degeneration at all frequencies except at the resonant frequency of the network which is a transmission mull. At this frequency, the amplifier gain is a maximurn, resulting in a peak in the amplifier response. Among the articles showing practical circuits of tuned amplifiers employing this network are those by Dixon and Phillips, ${ }^{13}$ (Bitzendanner, ${ }^{111}$ Rayner, ${ }^{41}$ and Roualt. ${ }^{42}$

Bowers ${ }^{43}$ calls attention to an interesting variation of the parallel-T network. If the multiplying factor, n, of the shunt arms of the network is less than 0.5, there is only a partial null and the network phase shift attains a value of 180 deg at the resonant frequency. The phase vs. frequency characteristic is degraded from the discontinuous function of the infinite attenuation network to a less rapid change, the slope becoming smaller as n is decreased. Attenuation and phase shift for various values of n are shown in Fig. 17. In the previously described amplifier, this phenomenon results in positive feedback or regeneration at the resonant frequency of the filter, thus increasing the amplifier gain at that frequency. Bowers, ${ }^{43}$ McGaughan, ${ }^{44}$ and Smith ${ }^{45}$ have shown practical tuned amplifiers based on these principles. A similar circuit, but using transistors, is described by Sohrabj. ${ }^{46}$
If the loop gain of the amplifier is made large enough to overcome the transmission losses of the network, the system will oscillate at a frequency determined by the network and the phase

DRAFTING TRENDS

Color overlays using POST's new Vapo Chromtex color foils give this intricate drawing maximum readability with consistent color fidelity

Color overlays tell faster visual story

Broader use of color overlays is more and more in evidence every day. Many engineers and designers have discovered that color provides a faster visual communication of highly complex subjects in technical manuals, intricate drawings, flip charts, "exploded" views and schematics.

Of course, color overlays are not new But, until recently multiple sets had not reached their maximum performance potential. The Post laboratory has devoted more than two years in perfecting a series of ten color foils that meet the most rigid standards. Multicolor sets of films are now produced easily and quickly on any standard white print machine (dry diazo proc. ess). These new Post products are called Vapo Chromtex.

Post's technicians successfully eliminated difficulties previously encountered in some of the diazo films on the market, developing consistent color fidelity and the proper brilliance for most effective readability. Post's Vapo Chromtex films come in ten vivid colors: black, red, green, blue, orange, brown, magenta, cyan, yellow, and violet. These clean, bright colors offer a range that is broad enough to cover even the requirements of the most intricate

Unusually sharp image detail

Post Vapo Chromtex has n special acetate base which gives the necessary strength to resist buckling, and has desirable extra stability to insure accurate registration. Use of this base also provides a flat, uncurled print. Equally important, Post's Controlled Coating formulations assure unusually sharp image detail with clear, unclouded backgrounds.

Chromtex also offers good resistance to normal light, hence less image fade. This color foil series falls naturally into your normal reproduction routine. Each of the ten colors fully develop in one pass, and can be conveniently handled by any operator of ammonia process reproduction equipment.

Sample prints, processing data sheet available

If you want to know more about color overlays or if they have been a problem in the past, we will be glad to send you Post Vapo Chromtex sample prints and processing data sheet. Write to Frederick Post Company, s662 N. Acondale Avenue, Chicago 18, Illinois. graphic communication.
Sensitized papers \& Cloths - tracing \& drawing mediums - drawing instruments \& sllide rules engineering equipment \& drafting supplies - field equipment \& drafting furniture CIRCLE 41 ON READER-SERVICE CARD

a big step forward in broadband RF amplification OCTAVE RF AMPLIFIERS 40 to 600 mos

- low noise figure • low power drain
- high gain - broadband operation
- flat gain characteristic

Model HFW Octave RF Amplifiers feature low noise, high gain, low power drain plus dependability and easy maintenance. Four basic amplifiers are available, with the following frequency responses:
40 to 80 mcs - 80 to 160 mcs 160 to 320 mcs - 300 to 600 mcs

Two additional units cover the $100-400 \mathrm{mcs}$ region as follows:
100 to 200 mes - 200 to 400 mes
Conservatively speaking, these equipments offer a practical and realistic answer to nearly all broadband amplification requirements.

IYPICAL PERFORMANCE CHARACTERISTICS ModeI HFW-303
Input frequency:
Input, output impedance: Input, output V.S.W.R.: Noise figure (overage): Gain power requirements Size (L.W.M.):
$300-600 \mathrm{~m}$
50 ohms
Less than 1.5 in bandpass region 7 db
30 db
30 db
$115 \mathrm{VAC}, 60 \mathrm{cps}$
$19^{\prime \prime} \times 1212^{\prime \prime} \times 7^{\prime \prime}$
Mounting dimensions:
Write for further Information.

Appliad liseatich inc.

76 South Bayles Avenue, Port Washingion, N. Y Soe us of Booth M25 of IRE Show CIRCLE 42 ON READER-SERVICE CARD
shift in the amplifier. The choice of n of the net work is dictated by the open loop gain of the oscillator and the frequency stability that is desired. Vacuum tube oscillators of this type have been described by Smith ${ }^{45}$ and Tucker. ${ }^{47}$ A com plete design procedure for parallel-T oscillators is given by Lynch and Robertson. ${ }^{44}$ A transistor version is shown by Sohrabji. ${ }^{46}$
Frequency discriminators utilizing parallel-T $R C$ networks are advantageous for low frequency applications. There are two basic methods: two networks may be used directly, on in the inverse loops of feedback amplifiers. Tillman 49 and Stine ${ }^{50}$ describe practical circuits and design techniques for these discriminators.
Bridged-T network. Still another frequency se lective $R C$ network is the bridged-T, described by Sulzer ${ }^{51}$ and others. The network and its transmission and phase characteristics are shown in Fig. 18. It has a minimum of transmission and zero deg phase shift at its resonant frequency, $f=1 / 2 \pi R C$. The unsymmetrical networks are characterized by a higher Q than is available from other networks containing only four components. Its relative simplicity and ease of fre quency adjustment also make this network at tractive for use in a tuned amplifier or oscillator.
Tisdale ${ }^{52}$ used the bridged-T network in conjunction with $R C$ ladder sections to obtain a continuously adjustable low-pass filter. Sulzer has used this network in a vacuum tube ${ }^{53}$ and a transistor ${ }^{54}$ audio oscillator which feature low harmonic distortion.
More detailed information on the processes described in this article will be found in the complete paper to be published in our Proceedings of the Symposium on Microminiaturization of Electronic Assemblies. For further information on the Proceedings, turn to Reader Service Card and circle 100.

Acknowledgement
Not work response curves shown in this paper were computed from the network formulas, and with one exception appear on identical scales. The authors wish in thank Louis Nardizzi for his untiring efforts in computing data for the preparation of these curne's.

References

1. Circuit Techni¢pues for Miniaturization. P. G. Sulzer, Electronics, 22, 98-99 (August 1949).
2. Miniaturizing Pentode Amplifiers by Positive Feed back, II. B. Anspacher, Proc. Nat. Electronics Conf., 6, 103.111 (1950)
3. Tramsistors Use Emitter-Coupled Feedback, F. C Alexander. Jr., Electronics, 27, 188 (December 1954). 4. Electronic Designers' Handbook, R. W. Landee, D. C Davis, and A. P. Albrecht, pp. 3-69 to 3-86, McGrawHill Book Company, Inc., New York 1957
4. Handbook of Semiconductor Electronics, L. P. Hunter editor. 1st ed., pp. 13-12, McCraw-Hill Book Company, Inc.. New York, 19.56.
(i. Philco Semiconductor Data Sheet, type 2 N 207 Ger minimm PNP Transistors (September 1957)

Fig. 18. The bridged- T network with altenuation and phase characteristic
7. Symmetrical Properties of Transistors and Their Appli cations, G. C. Sziklai, Proc. IRE, 41, 717-724 (1953)
8. Transistor Negative-Impedance Converters, J. G. Linvill, Proc. IRE, 41, 725-729 (1953),
9. RC Active Filters, J. G. Linvill, Proc. IRE, 42, 555564 (1954).
10. Artificial Inductor, G. H. Towner, U.S. Patent 2,800 , 568 (July 23, 1957).
11. Electronic Filter Choke, R. B. Tomer, Radio-Electronic Engineering edition of Radio News, 19, 11 (December 1952).
12. Transistor-Simulated Reactances, R. II. Stern, Elec thonic Desicen, 6, 24-27 (March 5, 1958).
13. Transistor Ripple, F. Oakes and F. II. Lawson, Elec tronices, 31, 95 (April 11, 19.58).
14. Dippler-Effect Omnirange, P. G. Hansel, Mroc. IRE 41, 1750-1758 (1953).
${ }^{15}$. Phase Shift Oscillators, E. L. Ginzton and L. M. Hol lintsworth, Proc. IRE, 29, 43-49 (1941). 16. The Tapered Phaise-Slift Oscillutor, P. G. Sulzer Pruc. IRE, 37, 1302-1305 (19:8)
17. Current Derived R-C Oscillators Using Junction Tranvistors, D. E. Hooper and A. E. Jackets, Electroni Engng., 28, 333-337 (1956).
18. Synthesis of Passive RC Networks with Gains Greate than U'nity, H. Epstein, Proc. IRE, 39, 833-835 (1951) 19. Design of Optimum Plase Shift Oscillators, D. L Waidelicth, Proc. Nat. Electronics Conf, 11, 222-22 (1955)
20. Ultra-Low-Frequency Thre-Plase Oscillators, G Smiley, Proc. IRE, 42, 67T-680 (1954).
21. Transistors and RC Networks Produce Three-Phas A-C, R. E. Sturm and D. E. Cottrell, Electrical Desig Vens, 3,16 (July 1958).
22. Selective Amplifier or Oscillator, B, M. Hadfele U.S. Patent 2,386,892 (October 16, 1945)
23. RC Filter Networks with Single-Component Fre queney Control, W. K. Clothier, Trans. IRE. CT-2, 97-10 (1955)
24. New Null Transmission Networks, E. M. Reid, Elec tronic Engng., 26, 444-446 (1954)
25. Audio-Frequency Selective Amplifiers, S. W. Punnett, I. Brit. Instn. Radio Engrs., 10, 39-59 (1950).
6. Application of Interstage RC Networks to Provide Selectivity in Low Frequency Amplifiers, W. C. Whitmer, NRL Keport No. 3506, (July 13, 1949).
27. A Simple Low Frequency Amplifier, J. R. Beattie and G.K.T. Conn, Electronic Engng., 25, 299-301 (1953). 25. Some Applications of Negative Feedback with ParIncular Reference to Laboratory Equipment, F. E. Terman, R. R. Buss, W. K. Hewlett, and F. C. Cahill, Proc. IRS, 27, 649-655 (1939)
29. Transistor RC Oscillators, M. K. Achuthan, Electronic Rudio Engr., 34, 309-310 (1957).
31). A Tunable Audio-Frequency Amplifier of Variable selectivity, F. A. C. Shaw, J. Sci. Instrum., 27, 295-298 (1950).
31. Wien-Bridye Oscillator Design, K. K. Clarke, Proc 1RE, 41, 246-249 (1953).
32. Electric Pilter, H. W. Augustadt, U. S. Patent 2, 106, TS5 (Feb. 1, 19:38).
33. Analysis of A Resistance-Capacitance Parellel-T Network and Applications, A. E. Hastings, Proc. IRE, 34, 126P-129P (1946).
3.4. Theory and Application of Parallel-T Resistance-Capacitance Freguency-Selective Networks, L. Stanton,
Proc. IRE, 34, 447-456 (1946).
35. The Dual-Input Parallel-T Network, C. F. White find K. A. Morgan, Proc. Nat. Electronics Conf. 8, 588 597 (1952).
36. A New Type Selective Circuit and Some Applications, II. II. Scott, Proc. IRE, 26, 226-2.37 (1.938).
37. Vacuum Tube Amplifiers, G. E. Valley and H. Wallman, editors, 1st ed., M.I.T. Radiation Laboratory Series Vol. 18, pp 384-408, McGraw-Hill Book Company, Inc., New York, 1948.
38. Selective Amplification at Sub-Audio Frequencies, F. J. Hyde, Electronic Engng., 29, 260-265 (1957). 39. Some Methods of Improving the Performance of Twin-T Feedback Amplifiers, T. O. Dixon and D. T. Phillips, NRL Report No. 4444, (November 19, 1950).
40. Analysis of Twin-T Filters, L. G. Gitzendanner, Proc

Nat. Electronics Conf., 6, 121-128 (1950)
41. A Selective Detector Amplifier for $10-10,000 \mathrm{cps}$, G. H. Rayner, J. Sci. Instrum., 30, 17-20 (1953)
42. Voice Frequency Tone Signaling for Mohile Radio Systems, C. L. Ronalt, Tele-Tech, 11, 66-68 (November 1952)
43. RC Band Pass lrilter Design, J. L. Bowers Electronics, 20, 1.31-1.33 (April 1947).
44. A Variation of an R-C Parallel-T Network, H. S. Mc. Gaughan, Tele-Tech, 6, 48 (August 1947).
45. The Characteristics of Parallel-T RC Networks, D II. Smith, Electronic Engng., 29, 71-77 (1957),
46. RC Filters and Oscillators Using Junction Transistors,
V. Schrabî, Flectronic Engng., 29, 606-608 (1957)
47. A Twin-T RC Oscillitor, M. J. Tucker, Electronic Engng., 27, 346-347 (1955).
48. The Devign of Parallel-T Networks for R-C Oscillalors. L.E.V. Lynch and S. Robertson, A.W.A. Tech. Rev. 7, 7-25 (1946).
49. Linear Frequency Discriminator, J. R. Tillman, Wire less Engr.. 23, 281-286 (1946).
Parallel-T Discriminator Design Techniques, P. T. Stine, Proc. Nat. Electronics Conf., 9, 26-39 (1954).
51. A Note on a Bridged-T Network, P. G. Sulzer, Proc. IRE, 39, 819-921 (1951)
52. Continuously Adiustable Electronic Filter Networks,
G. E. Tisdale, Proc. IRE, 38, 796-798 (1950).

F3. Audio Oscillator Has Low Distortion, P. G. Sulzer, Electronics, 28, 158-159 (May 1955).
54. Low Distortion Transistor Audio Oscillator, P. G Sulzer, Electronics, 26, 171-173 (September 1953).

ELECTRONIC DESIGN • March 18, 1959

the teflon "cover-allls" of conrinentar wixe

heat resistant Teflon insulated wire and by heat aging at temperc tures up to $260^{\circ} \mathrm{C}$. The superb "tailoring" of Continental insulated wire and cable is assured by skill. experience and modern facilities. Example Continental Wire can combine Teflon and Asbesia operating temperatures.

COLD DEFIANT
Continental's Teflon "cover-alls" laugh at ex. tremely low temperatures Teflon insulated co and bends without crack-s ing. Proven insulating techniques make a big difterence Continental engineers know and appreciate Teflon-and how to use it best.

SMUGLY

IMPERMEABLE
A lubricant shower disturbs not the efficiency of a
Teflon insulated wire cable. These Continenta wire and cables withstand such penetrating fluids as hot transformer oils Weather is no worry either nor ultraviolet rays nor salt spray. Think of how important this is i certain spots.

WILT NOT The waxy surface of the Continental Teflon protection is water repellent. (Less than 0.01° 。 water absorp. tion by ASTM test). And of course. relatively imper. meable to nearly all chemicals and corrosive atmos. pheres. Applications by the score demand his imporion in Teflon insulated wires in Teflon insulated wires Continental Wire.

ELUDES ABRASION
No small measure of superiority is the superior abrasion resistance of the Continental Teflon "cover alls". Chating and cracking service life is lengthened An ideal characteristic in tight bends. Teflon insu lated wire's low surface friction prevents chafing o harnessed wires and twisted pairs.

NEED

ELBOW ROOM?
Where space saving is the problem, consider this: Teflon insulation permits over standurd insulations. Smaller Continental con ductors transmit equivalen power with less insulation Continental Teflon insu lated wires register weight savings ol 210 lover man standard insulations, too.

There's a complete selection of Continental insulated wires and cables. Many stock types and sizes. And. of course engineered to specific requrrements Furnish details on amperage, voltage, diameter limitations and operating temperatures for prompt answers Direct all inquiries to Continental Wire. Wallingford.

Tefone is Du Pont's registered rademark for its fluorocarbon
 virize corporation

CIRCIE 43 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

SILICON RECTIFIER
An operating life of $\mathbf{1 0 , 0 0 0} \mathbf{h r}$ is expected for this silicon rectifier. For general purpose use in power supplies, magnetic amplifiers and variable speed motor controls, the unit's all welded hermetic package can function in temperatures that range from -55 to +150 C . Labeled the S-16, the rectifier provides an output of $5(0) \mu \mathrm{amp}$. In the back direction it can stand 400 v and a maximum reverse current of $100 \mu \mathrm{mp}$. Semicon, Inc., Dept. ED, 258 East St., Lexington 73, Mass. circle 44 on reader-service card

FLAT COAX COUPLER

Limiting frequency response variation to only 0.2 db over a full octave, this series of flat coaxial couplers also present a deviation of mean value from nominal of only $\pm 0.3 \mathrm{db}$. Six models, designated $3(1) 40$ through 304.5, cover frequency bands from 240 to $11,000 \mathrm{mc}$ with a nominal coupling value of 20 db . Four models are available with 10 dh values, covering $5(\mu)$ to $80(x) \mathrm{mc}$. Primary vswr is 1.1 to 1.25 , and secondary visw is 1.2 to 1.3 , depending on model.

Narda Microwave Corp., Dept. ED, 118-160 Herricks Road. Mineola, N.Y. CIRCLE 45 ON READER-SERVICE CARD

SUBMINIATURE TERMINAL BLOCKS

Made with 1 to 21 terminals, these subminiature terminal blocks are only $5 / 16$ in. wide. Called the Series 409, they are molded of high tensile strength bakelite for commercial use. To meet Mil-M-14 they are made from other materials which includes CFG, MFE, MME, MDG and MAI60, a special reinforced Alkyd for great tensile and impact strength.

Kulka Electric Corp., Dept. ED, 633.
 643 S. Fulton Ave., Mt. Vernon, N. Y.

CIRCLE 46 ON READER-SERVICE CARD

MICROMINIATURE LAMP

This microminiature incandescent indicator lamp operates directly from the output of a transistor. Developed by the Diamond Ordinance Fuze Laboratories (see EDD, Mar +p 78), the lamp operates on less than 1.5 1 and has al steady-state current drain of about 30 mat . It measures 0.0 .35 in. in diancter and is 0.1 in . long.
Minitron Components Corp., Dept. ED, $15 /$ Washington Place, Passalic, N. J.

CIRCLE 47 on reader-service card

HIGH TEMPERATURE ACCELEROMETERS

Without cooling or correction, this line of crystal iccelerometers operate in an ambient temperature range of $-(65$ to +540 F . Using a new piezoelectric crystal in a true compression type seismic system, they have an accuracy of $\pm 5 \%$ over broad acceleration and frequency range. The line confists of 16 units with sensitivities ranging from $30 \mathrm{mv} / \mathrm{g}$ to $1 \mathrm{mv} / \mathrm{g}$.
Columbia Research Laboratories, Dept. ED, IIcDade Blvd. and Bullens Lane, Woodlyn, Pa. circle 48 on reader-service card

RELIABILITY
IN THE PALM OF YOUR HAND...

EECO N-Steries 7 ransistorized

for extremely reliable pulse-counting and frequency-division applications in the frequency range of 0 to 2:50,000 pulses per second.

FEATURES

The new EECO N-Series miniaturized and transistorized plug-in decimal counters feature simple power-supply requirements, low power consumption, small size, and extreme reliability. Saturation techniques, along with consistent derating of component tolerances result in a group of Transistorized Decades that will work dependably from $(0)-250 \mathrm{kcs}$ even under adverse conditions of environment and power supply variations. All units are completely compatible with EECO T-Series Germanium plug-in circuits. In addition, an auxiliary 9 -step staircase output is available. Most units are designed to plug into a special 13-pin miniature tube socket: other units plug into a standard 29-pin socket (Continental No. MM-29-22S). Mating socket is furnished with each decade.

WIDE SELECTION
EECO N-Series plug-in Transistorized Decades are available in a wide range of models. The counting circuitry is standardized for the various models Provisions for visual readout and/or preset controls are as follows

model oescription
 N-101 No readout.

N-102 Incandescent readout.
N-104 Incandescent readout (remote). Typically a projection readout module.
N-105 Nixie readout. (Can be cabled to remote Nixie.)
N- 106 Nixie readout with preset control switch. (Can be cabled to remote Nixie)
N -107 Incandescent readout with inputs for external preset control
N -108 Incandescent readout (remote) with inputs for external preset control
N-108 Incandescent readout (remote) with

TYPICAL SPECIFICATIONS The N. 102 Transistorized Decade (with in ternal incandescent readout) employs four binary stages operating in a $1 \cdot 2 \cdot 4-2$ code. Visual readou consists of the numerals 0 through 9 displayed vertically and illuminated by incandescent lamps.
Totai power consumption is approximately on watt. Outputs include ($N / 10$), ($N / 10$)', and a 9 -step starrcase, which may be adapted for visual display by means of an emitter follower and DC voltmeter
ELECTRICAL SPECIFICATIONS inPuT
Minimum Trigger input: ($0-100 \mathrm{kcs}$): 7 volts positive pulse or step at $0.5 \mu \mathrm{sec}$. rise time:
(100 kcs to 250 kcs : : 7 volts positive pulse or step at $0.2 \mu \mathrm{sec}$. rise time. Maximum Operating Frequency: 250 kcs . DC Reset Input is provided (normally supplie DC Reset Input is provided (normally supplied
by T-129 DC Reset Generator). OUTPUT (No Load)
Amplitude: $\mathbf{8}$ volts, peak to peak.
Output Levels: $(N / 10)$ and $(N / 10)^{\prime}$: -11 volts DC and -3 volts DC, nom. Staircase: - -1 volts $D C$ to -3 volts $D C$ in 9 steps. Rise Time: ($\mathrm{N} / 10$): $0.5 \mu \mathrm{sec}$.; $(\mathrm{N} / 10)^{\prime}: 0.5 \mu \mathrm{sec}$ ype: Typical, two N. Series decates T.Series flip.flops. (Load information avail able on request.)

PHYSICAL SPECIFICATIONS
Dimensions: $1.5 / 16^{\prime \prime}$ wide $\times 3^{\prime \prime \prime}$ deep $\times 3.7 / 8^{\prime \prime}$
seated height (including handle). Dimensions ext exclusive of external addenoa
external preset and Nixie models.
Mounting: Plugs into standard 9 -pin miniature socket. (Some other models require a special 13-pin miniature socket, which is furnished with each such unit.)
Pin Connections: Arranged for in-line wiring of
perating Temper
Operating remperature Range: $-54^{\circ} \mathrm{C}$ to

NOTE: 0 to 5 megacycle models available soon.

Additional information on N -Series Transistorized
Decades and other EECO mroducts arailable on request.
P.S. - See all of our new products, in. cluding Relay Drivers, Minisis Indicators. LaE show, New York City, March 23-26, Booth 3333.

Introducing a NEW FAMILY OF miciowave D00.ES

PHILCO sets the pace with outstanding crystal performance

Announcing a new family of low-noise microwave diodes. Here is a major step forward in the development and control of germanium and silicon crystal diode performance. Philco microwave diodes are designed to meet the most stringent military environmental and electrical requirements for shock, vibration, torque and strain. Each of these new diodes is unsurpassed for performance. When only the best will do . . . the experts choose Philco.

- Exceptionally Low Noise Figure
- Oufsfanding Performance at $150^{\circ} \mathrm{C}$
- High Resistance 10 Burn-Out
- Absolute Hermetic Seal

TWIEss

These Silicon Mixer Diodes bring tremendously These Silicon Mixer Diodes bring tremendously improved performance to this family designed for As a result of Philco's unparalleled engineering activity in this area, existing performance limits in the 1 N 26 series have been greatly extended by addition of the $1 \mathrm{~N} 26 \mathrm{~B} \ldots$ maximum operating remperature more than doubled (to $150^{\circ} \mathrm{C}$.) VSWR reduced to 1.5; IF impedance range narrowed (400 to 600 ohms). All members of this family have a metal-to-ceramic hermetic seal guarantecing reliable performance under extreme environmental conditions.

Write Special Components Dept., ED 359 Lansdale Tube Company Division, Philco Corporation, Lansdale, Pa.

PHILCO

LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNA

NEW PRODUCTS

VTVM

Has 6-in. meter

The VT-10 VTVM has an edgelighted 6 -in. meter for accurate reading. Sensitivity of the unit's movement is $400 \mu \mathrm{a}$, with 2% accuract. For measurement stability 1\% precision resistors are throughout the range switch. The unit has 7 ac (rms) and de ranges, 0 to 1500 v. Also 7 ac peak-to-peak ranges, () to 2000 v . Other ranges include resistance, 0 to $10(H)$ megohms, and db .

Arkay, Inc., Dept. ED, 88-06 V'an Wyck Expressway, Richmond Hill 18, N.Y.

CIRCLE 51 on reader-service card

MS-E pin or socket types, Seal-E electrical connectors are supplies in sizes through (). Constructed with partitive hermetic glass seals they also have interfacial seals for internal moisture-prooting.
Connector Seals Corp., Dept ED, Rosemead, Calif.
CIRCLE 52 ON READER-SERVICE CARD
«CIRCIE 50 ON READER-SERVICE CARD

Gyros
For various uses

Flexible design of the series 1080 tyros allows the unit to be made into a directional gyro or a free дyro as well as a vertical gyro. Weighing a maximum of 4.75 lb , Hee unit's maximum dimensions are $3-7 / 8 \times 3-7 / 8 \times 6 \mathrm{in}$. Standard exditation of the gyro motor is 115 v , 100 cps, 3 phase. Optional excita. tion: $26 \mathrm{v}, 400 \mathrm{cps}, 3$ phase; 115 v or $208 \mathrm{v}, 400 \mathrm{cps}, 3$ phase, 4 wire. standard pickoff is $11.51, f(0) \mathrm{cps}$, 1 phase, with optional rated at 26 , $400 \mathrm{cps}, 1$ phase.
Lear, Inc.. Dept. EID, 110 Ionia Ave., N. W.. Crand Rapids $コ$, Mich. circle 53 on reader-service card

Double Plug Accessories

For multiple stacking
These three molded $3 / 4$ in. douWe plug accessories are built for multiple stacking. Model MDP is designed for cable attachment and ieatures a built-in cable guide to act is a strain relief. Internal set screws provide a.rapid means of connection. The plug is rated at 15 amp ontinuous duty and 5 kv working soltage. Capacity is 0.8 muf. Model IIDP'S has an internal shorting bar. and model MDPR has precision 17 esistors molded in. In all models the molded plug body is mubreakable plastic and the banana plugg springs are one piece nitkel plated beryllium copper
Pomona Electronics Co.. Inc, Dept. ED, 1126 W. Fifth Ave., Ponona, Calif

CIRCLE 54 ON READER-SERVICE CARD CIRCLE 55 ON READER-SERVICE CARD \geqslant
high strength
ceramic-to-metal assemblies

COORS CAN FURNISH COMPLETE CERAMIC-TO-METAL ASSEMBLIES TO YOUR SPECIFICATIONS

The finest in manufacturing facilities and technical know-how are available to you at Coors - whether your requirement calls for a simple terminal bushing or a complex assembly of ceramic and metal parts. Coors high strength ceramic parts, metalized using high temperature techniques, are brazed to metal parts to provide the combination of physical, electrical and heat resisting characteristics needed for so many appli-
cations today
Ceramic-to-metal bond strengths range normally from 9,000 to 12,000 p.s.i- or higher depending on design. Brazes can be made at temperatures as high as $1083{ }^{\circ} \mathrm{C}\left(1981^{\circ} \mathrm{F}\right.$.) using copper.

Extremely close dimensional tolerances can be maintained where Coors manufactures the ceramic components, does the metalizing and makes the final assembly of the
ceramic and metal parts. Also, this places responsibility in one place.

However, for those who do their own assembly work, Coors will supply the ceramic parts only-either plain or metalized.

Coors engineers will help you work out the mechanical design details of your metalized ceramic parts or ceramic-to-metal assemblies. Contact us at the earliest possible stage of design in order to save time.

COORS PORCELAIN COMPANY GOLDEN, COLORADO

COORS PORCELAIN CO., 600 9th St., Golden, Colo.
Please have your sales engineer see me to discuss ceramic. to-metal assemblios.
Name.....
...Title.
Company
Address.
City...
..State

true hermetically sealed solenoids

Just like a sealed vacuum tube! True hermetic sealing around a solenoid...glass seal terminals, lugs, and connectors. All welded and brazed construction. Completely plated after assembly. Exceed most requirements of military specification MIL-S-4040 (USAF). Priced at approximately the same level as conventional types.

high-temperature solenoids

These moden new solenoids give you a reasonable life expectancy at temperatures as high as 350° C. A by-product of hermetic sealing. Class H insulation combined with inert gas filling add those necessary extra few degrees needed in your temperature limits... make these solenoids exceptional high-quality, high-temperature units.

....and those unusual specialties you look for!

Having trouble finding solenoid specialties? Here at Cannon, we'd like to help you. Standard production now includes multiple-strip solenoids for heyboard operation, locking types requiring no holding current, and miniatures and sub-miniatures
$1 / 2^{\prime \prime}$ diameter. In addition, our expanded solenoid engineering department is ready to serve you at any time.

GNMNON PINGS

C.ANON ELECTRIC CO.. 3208 Humboldt St.. Los Angeles 31. Calif. Please refer to Dept. 438
Factories in Las Angeles Sulem Mass Toronto. London Mcllourni Munuturduring Factories in Los Angeles. Satem, Mass, Morombo. London, Melburne Manulacturink licensees in Paris and Totive. Repre
see vour Telephone Sellou Bowh.
Please ask for latest SR-S release's and/or Solenvid Bulletin.
CIRCLE 58 ON READER-SERVICE CARD

NEW PRODUCTS

Coaxial Termination

Dc to 10 kmc

These terminations are miniaturized low power loads designed to operate from de to 10 kmc . They are for use with airborne and other applications requiring compact, lightweight components. The units consist of a resistive film center conductor terminated within a matched housing. Their nominal power rating is 2 w , which can be increased by providing an external heat simk iof forced air cooling. Known as the TA series, they are provided with either male or female connectors of type $\mathrm{N}, ~ B \mathrm{NC}$ or TNC. Impedance is 50 ohms and the input vswr over the entire frequency range is 1.1 , maximum.
Microlab, Dept. ED, Livingston, N.J.
circle 56 on reader-service card

Infrared Detector

Sensitive to six microns
The lnsib infrared detector usis the photoconductive effect of indium antimonide. Operating at doy ice temperature, it is sensitive to sid microns and has a time constant of less than one preec. Used with then companys anxiliary low noise tranformers and preamplifiers, the now erpuivalent power of the detector 5. $\times 10^{-11}$ 16. Low microphonic noi and circuit simplicits make the wit suitable for high speed scamnir systems as well as infrared detectio devices and remote temperatel measurement units.
Radiation Electronics Corpo.. Del ED. SO-41 N. Kimball Ave.. Skoh III.

CIRCLE 57 ON READER-SERVICE CARD

LCR Comparison Bridge

Direct reading

Parameter deviations of 1 part in 10,000 may be detected between electronic components with the morlel 544 I.CR comparison bridge. The unit compares and measures resistances, capacitances, and inductances at a frequency of 60 cps . Percentage deviation is read directly. Resistance measurment limits are 3 ohms to 5 meg; capacitance, $\delta(k)$!uf to $10(k)$ uf; and inductance, 3 mh to 10,000$)$ h. The instrument has five meter ranges, inclicating full scalle differences of $1,2.5,5,10$, and 25%. Acturacy on rance 1 is ± 0.18. This instrument (ann serve ats an wectronic go no-go gage; determine absolute electrical parameter values when used with a decade standard; and indicate or adjust the tracking characteristics of two or more variable resistors or capacitors mechanically coupled by a commen slaft. It can also match components that must be duplicated. Either a level or foot operated switch protects the meter circuit from overload while compornents are being inserted or removed.
Metronix, Inc., Dept. ED, Chesterland, (Ohio.
circie 59 on reader-service card

Counting Modules
Plug-in

This decimal counting unit has a single-digit display 1-1/4 in. high that is packaged as ant integral part of a plus-in comuting module. The modulus atre wed in a series of electronic contiters. timers. and frequency meters. Digits are formed bo illuminating from 5 to 11 character segments, and maximum counting rates of $1(0)$ ke and 1 me are available.
Beckman histruments, Inc.. Berkcley Dis, Dept. EI). 2e(k) Wright Ave, Richmond 13, Calif. circie 00 on reader-service card

ELECTRONIC DESIGN • March 18, 1959

The men who represent ESC in the field are all top-flight tech. nical people in their own right. Each is thoroughly conversant with the very latest developments in the fast-moving delay line field and each stands ready to apply the combined knowledge of the entire ESC organization to your particular problems.
Whether you want advice on a standard delay line application,
or something special from ESC's modern research laboratory, you can be sure of receiving top engineering talent, prompt delivery, and expert, local service. There's an ESC engineer-rep very close to you, wherever you are. Why not discuss your current delay line problem with him now.

COMPONENTS SALES CORPORATION 218 East Hartsdale Avenue Hartsdale. Now York Carsdale 5-1050 New York State, New Jersey except Camden and Moorestown, Westchester County 44 Brattle Street Cambridge 38, Massachusetts UNiversity 4-1727 New England	KAY SALES COMPANY 2600 Grand Avenue Kansas City 8. Missourı 8Altimore 1.3800 7603 Forsyth. Suite 206 Clayton 5. Missourn PArkview 7.3414 Kansas, Nebraska, Missouri, Oklahoma, Arkansas. Albuquerque, N. M. and the following counties in illinois: Monroe, Calhoun, Jersey. Madison and St. Clair	MAGNUSON ASSOCIATES 3347 West Irving Park KEystone 9.7555 Teletype CG 913 Illinois (except Monroe, Calhoun. Jersey, Madison and St. Clair counties), Indiana, lowa and 5 . Wisconsin 1359 West Maynard Drive St. Paul 16. Minnesota Minnesota and N . Wisconsin	HARRY J. WHITE COMPANY 121 Covered Bridge Road Haddonfield. New Jersey HAzel 8-2304 Camden and Moorestown. New Jersey; Eastern Pennsylvania and Delaware Mr. Richard Trainor 115 Greenbrier Road Towson 4, Maryla VAlley 3.6184 Maryland. Virginia as far south as Alexandria, and Washington, D.C.
ELECTRODESIGN 736 Notre Dame Street West Montreal. Canada UNiversity 6.7367 Canada	A. l. livera and assoc. inc. 144. 15 hillside Avenue Jamaica 35. New York OLympia 8. 1828 . New York City, Long Island	WEIGHTMAN AND ASSOCIATES 4029 Burbank Boulevard Burbank, California VIctoria 9.2435 1436 El Camino Real. Sulte 0 Menlo Park. California DAvenport 6-3797 Arizona. Cali:fornia. Nevada and New Mexico except Albuquerque	TEX.O.KOMA SALES COMPANY 235 S E 141h Street Grand Prairie. Texas Dallas: ANdrew 2.0866 Ft Worth: CResiview $\mathbf{4 . 4 5 3 0}$ Texas

5きら

WRITE TODAY FOR COMPLETE TECHMICAL DATA
exceptional employment opportunities for engineers experienced
in computer components...excellent profit-sharing plan.
CORPORATION 534 Bergen Boulevard, Palisades Park, New Jersey
Distributed constant delay lines - Lumped-constant delay lines. Variable delay networks. Contınuously variable delay lines. Pushbutton decade delay lines. Shift registers. Pulse fransformers. Medium and low-power transformers. Filters of all types. Pulse forming networks. Miniature plug in encapsulated circuit assemblies See you at the I.R.E. Show, Booth \#2409

NEW PRODUCTS

X-Y Recorder

Accurate to 0.05\%

The HR-9ㄹ. \mathbf{N} - recorder is used for computer readout and for plotting stress is strain: magnetic material, tube and semiconductor characteristics; pressure is temperature; speed is torgue; ur any other two related variables. It is designed for use with standard $8-1 / 2 \times 11 \mathrm{in}$. graph paper. The unit is ruggedly built and uses self-balancing potentiometer serus to assure 0.055_{6} accuracy and dift-free performance at available sensitivities of up to 1 mv per in. Three turn rebalance slide wires are Iubricated to provide years of operation. The pen speed is 1 see full seale without overshoot
Houston Instrument Comp)., Dept ED, 1717 Clay Ave. Honston 3 Tex.

CIRCLE 62 on reader-service card

Miniature Signal Lamp

For production control boards
The Perlite miniature signal lamp is designed for use in production control or power dispatcher boards. It is particularly adapted for metal boards where perforations are made on $1 / 4 \mathrm{in}$. centers on a spuare pattern, or $3 / 16 \mathrm{in}$. on a staggered pattern. It operates on 20 v , and a resistor, mounted on the socket, permits the use of a 110 v power supply. At low voltage, maximum lamp life is 2 years to indefinite

Power Dispatchers Equipment Co., Dept. ED, P. O. Bo: 1947, Milwaukee 1, Wis.

CIRCLE 63 ON READER-SERVICE CARD

Here's a compact honey! The new RCA "VC" (Very Compact) Picture Tubes-now 2 inches shorter than their prototypes!
Now commercially available in the new "VC" 110° designs are the RCA-17DKP4 and RCA-21EQP4, all-new premium types. They utilize conventional 110° components and circuitry. And, with only slight changes in focusing-voltage control, they are unilaterally interchangeable with previous 110° types. RCA "VC" 110° types employ the same heater cathode assembly that has been used and proven for reliability over the past decade in RCA Picture tubes.

So, when the need arises for a slim, very compact TV-set design, contact your RCA Field Representative. Your pass words are RCA "VC" 110° Picture Tubes. For technical data, write RCA Commercial Engineering, Sec. (-18-I)E-2, Harrison, N. J.

RADIO CORPORATION OF AMERICA - Electron Tube Division

Designated Model PS-30T, this kv , full-wave voltage-doubler power supply operates on $117 \mathrm{v}, 60$ if $4(K)$ cps. The unit delivers 1 ma cminuous and 1.75 ma peak currint. Ripple is 1.5% at 1 ma and ri gulation is approximately 7% from (iin) load to full load. It has replaceWhe 1B:3 rectifier tubes and plastic dielectric (alpacitors. Dimensions of the case are $5-1 / 4 \times 11-3 / 8 \times 9-1 / 2$ ", and the unit has oil-tight solder--al terminals.
Film Capacitors, Inc., Dept. ED), Fink) Park Ale., New York jab, N. Y'. CIRCLE 64 ON READER-SERVICE CARD

AC VTVM

Covers 0.001 to $300 v$ in 12 ranges
Model VA- 104 ac vacuum tube whtmeter has a 10 (ps to 4 mc frequency range and 12 voltage ranges frum 0.001 to 300 v . Calibrated to rand the ims value of a sine wave, it has an overall accuracy of ± 2 ? 11 consumes. 70 w and can be used (o. lines of 11.5 or $230 \mathrm{v}, \pm 10 \mathrm{~F}$, at in or 1000 eps. The unit incorporites long life electrolytic capacHors and output jacks which perullt its use as a high gain, 4 mc Wheband amplifier with a maximim gain of 50 db . A portable insomment, it is $7-38 \mathrm{in}$. wide, 1-3 16 in. high, and $11-58 \mathrm{in}$. ep.
Republic Electronic Industries (rp.. Dept. ED, 111 Gazza Blvd., F rimingdale, N.Y.
circle os on reader-service card

General Electric Announces for Missile Use

New Lectrofilm*-B Capacitors for 44,000 Hours of Reliable Life

Vew (;-E Lectrofilm-B capacitors offer you maximum reliability at lowest posishle cost . . . results of ower 3.(10),(H)() unit-hours of life test data (per (;-E Speec. ITT(.-3) indicate a probability of survival in excess of 0.99 for 41.000 hour life under rated voltage at 85%. I mder rated voltage at 12.5 C , the indicated prohability of -urvival is in excess of 0.98 for 41,0 (O) hour life.

LOW FAILURE RATE AND LONG LIFE of these in-

expensive C-F caparitors result from using only the highest quality materials and the closest of process controls... units are tightly wound with high-purity aluminum foil and capacitor-grade Mylart film dielectric. No solder is used. and introduction of contaminants through impregnation is eliminated.
SMALL, LIGHTWEIGHT ENCLOSURE consists of tape wrapped around the compact roll and sealed with epoxy resin. forming a rugged case which resists humidity, ibration and shock.

TO MEET YOUR APPLICATION REQUIREMENTS, I! (aser sizes are available in five ratings-l(O)-, 2())., 3(K). 40) , and $6(\%)$-volts. Capacitance range within sach rating is: 0.01. to 0.68 uf in 100 wolts; 0.010 to 0.47 uf in $2(\mathbb{K})$
 $4(K)$ volts: and 0.0010 to 0.10 uf in 600 volts.
GET A QUOTATION TODAY ON NEW LECTROFILM-B CAPACITORS by contarting your General Electric rep. resentative. Ask for your copy of life-test data and C.E. Speceification MTY:.3. Or. write to Section 11:-4, Ceneral Electric Co., Schenectady, N. Y.
Trode mork of Gomerol flectricic C_{o}.
Progress /s Our Most Impontant Product general (electric

NEW PRODUCTS

Miniature Crystal Diodes All glass

These all-glass miniature crystal diodes are designed for radio, telcevision, data processing, and other military and commercial clectronic applications. They have a maximun body length of 0.265 in. and a maximum diam of 0.105 in . The line includes: computer types 1N191. 1N192, and 1N198 which offer rapid recovery, good stability, and high conductance; gold bonded types 1N270, 1N276, 1N279, 1N281, and 1N283 which combine high temperature capabilities with high forward conduction; point-contact types $1 \mathrm{~N} 126 \mathrm{~A}, 1 \mathrm{~N} 127 \mathrm{~A}$, and 1 N 128 which have a wide reverse resistance and voltage range; and silicon junction types 1N251, 1N252, 1N456, 1N464, 1N625, and 1N629 which operate with rapid recovery and high reverse resistance at temperatures up to 150 C .
Sylvania Electric Products Inc., Semiconductor Div., Dept. ED, Woburn, Mass.

CIRCLE 67 ON READER-SERVICE CARD

Portable Calibration Unit

Accurate to 0.01%

A portable, all semiconductor calibrator, model TC-10 is designed for precision alignment and calibration of electronic equipment such as fm record-reproduce systems. With a voltage standard accurate to 0.01%, it provides working calibration voltages in nine steps, each adjustable over a range of 10%. Nine precision oscillators and seven binary dividers provide 63 accurate calibration frequencies ranging from 1012 cps to 151.2 kc . These can be introduced into a system for discriminator alignment or for comparison with the output of a voltage-controlled oscillator. Supplied in a figerglass case, the unit weighs 25 lbs.
Ampex Corp., Instrument Div.. Dept. ED, 934 Charter St., Redwood City, Calif.
CIRCLE OB ON READER-SERVICE CARD

SHASTITC rtv

जायCONE RUEFER

... seals and cushions delicate circuits

High impedance circuits in Northrop's Snark missile are coated with Silastic RTV for protection against moisture and vibration at temperature extremes. Silastic RTV is easy to apply . . . vulcanizes at room temperature.

TYPICAL PROPERTIES OF SILASTIC RTV
Temperature range, ${ }^{\circ} \mathrm{C}$. . -70 to 260 C
Dielectric strength, volts/mil . . 300 to 500
Surface resistivity at 50% Relative humidity, ohms Dielectric constant, 10^{5} cycles per second
Dissipation factor 10^{3} cycles per second
2.8×10^{13} - 2.5 0.0
0.003

Sensitive electronic components are sealed against moisture and cushioned against vibration with a coating of Silastic* RTV, the Dow Corning silicone rubber. Silastic RTV forms a rubbery silicone solid in 24 hours at room temperature. Stays resilient from - 70 to 260 C. This "do-it-yourself" material is used for a wide range of encapsulating, potting and caulking applications. Write for free sample and complete information.
If you consider ALL the properties of a silicone rubber,
you'll specify SILASTIC.

CIRCLE 500 ON READER-SERVICE CARD
Visif Booths 4308-4310 at IRE Show
Dow Corning

CORPORATIC N
MIDLAND, MICHIG N

Dow Corning Silicone Dielectrics

SIIICONE-GLASS LAMINATES INCREASE LIFE AND DEPENDABILITY

Laminates made by bonding glass cloth with Dow Corning silicone resins have high arc resistance, low loss factor, low moisture absorption, excellent retention of dielectric properties at high temperatures. Strong, lightweight—produced by leading laminators.

CIRCLE 501 ON READER-SERVICE CARD

> SILICONE FLUIDS PROTECT ASSEMBLIES FROM MOISTURE

A protective film of Dow Corning 200 Fluid spray coated on electronic assemblies protects terminals, clips, switches and other exposed connections from the harmful effects of condensation. Glass and ceramic insulators coated with silicone fluid have low current leakage and a high degree of surface resistivity, even under very humid conditions.
circle 502 ON READER-SERVICE CARD

SILICONE COMPOUND PREVENTS ARCS, GROUNDS, SHORTS

Nonmelting, nongumming Dow Corning 3 Compound stays in place . . . provides an effective, moisture-proof dielectric seal for all types of electronic equipment. As a potting or filling material for electronic components and assemblies, silicone compounds flow into place with gentle pressure . . . have a serviceable temperature range of -40 to 205 C. Free sample available.

CIRCLE 503 ON READER-SERVICE CARD

Fir further information on these products write Dept. 1615

Resolver Function Error Bridge
0.01% full scale sensitivity

Resolver function bridge model RF-1 tests computing resolvers for deviation from an ideal sine or cosine function. The result, expressed directly in percentage error, is shown on a 4-1/2 in . zero-center meter. The output voltage from each resolver winding is measured by comparison to a standard voltage. Taps from the standard voltage circuit represent the cosine function at 5 deg intervals. High balance sensitivity is achieved since the carrier phase of the standard is precisely matched to that of the resolver output. The detector blocks all harmonic and quadrature voltages. In a cabinet $19 \times 7 \times 8$ in., the unit accommodates any range of resolver inputs and outputs. Accurate to 0.002%, it has a full scale sensitivity of 0.01%.
Theta Instrument Corp., Dept. ED, 48 Pine St., East Paterson, N.J.

CIRCLE 69 ON READER-SERVICE CARD

Shift Register Package

$1-1 / 4 \times 11 \times 1-1 / 8 \mathrm{in}$

Model TRA-25-10 register assembly consists of ten core-transistor shift register elements driven by one core-transistor shaper-driver element. Test points are provided for observation of all pertinent waveforms. The unit measures 1-1/4 x $11 \times 1-1 / 8 \mathrm{in}$. and requires pulse signals from 0 to 25 kc and a 12 v power supply. Custom registers of any size or configuration are also available These are designed around the TRA-25-10 with packaging densities up to 2000 bits per cu ft at 55 C .
DI-AN Controls, Inc., Dept. ED, 40 Leon St., Boston, Mass.

CIRCLE 70 ON READER-SERVICE CARD

NEW PRODUCTS

Amplifier

$1 / 4$ million voltage gain

Model 4300 amplifier provides voltage gain of $1 / 4$ million, a noise level of less than $0.0 .25 \mu \mathrm{v}$, and an S-hr drift of less than $0.1 \mu \mathrm{v} \mathrm{rms}$ referred to imput with a 5 cps gal vanometer installed. It employs an optical beam-splitter, twin mutualload photocells, a cathode-follower output and a galsanometer. Galvanometers are available in natural frequency ranges from 2 to 50 cpls. Maximum output voltage is 30 v , peak to peak into ant upen circuit and 16 v peak to peak into 10 K . Dynamic range is 70 db , noise level to clipping level, and linearity is $\pm 2 \%$, noise level to 50% clipping level, based on best straight line.

The Geotechnical Corp., Dept.
ED, P. O. Box 28277, Dallas 28,
Tex.
CIRCLE 71 ON READER-SERVICE CARD

Feed-Through Connector

One-piece

The type 3006 Conhe X connector is a grounded-shield, feed-through, one-piece unit which serves as a cable lock. It holds coaxial cable while grounding the braided conductor to the chassis and passing the insulated center conductor through to the other side. This miniature connector is available in 50, 75 , and 95 ohm sizes

Sealectro Corp., Dept. E1), 610 Fayette Ave.. Mamaroneck, N.l. CIRCle 72 on reader-service card

SEMICONDUCTOR PROGRESS

(6)

THROUGH RESEARCH

An artist's conception entitled "Semiconductor Progress through Research" depicts the flow of solid state devices from the raw state to products, to applications of the future. A reproduction of this painting, suitable for framing, is available on request.

Literature describing the progress of General Transistor's products, also developed through research, is available, in the form
of technical engineering bulletins, on request.
germanlum HIGH SPEED COMPUTER SWITCHING transistors BULLETIN 6-140A

GERMANIUM high frequency TRANSISTORS BULLETIN
G-1500

GERMAHIUM GENERAL PURPOSE TRANSISTORS

BULLETIN	
G-160	e.

Creative Imagination enabled Benjamin Franklin to orient all the observed electrical phenomena to his own "one fluid" theory - the basis of all our comprehension of electricity today.
At National Co. creative imagination is continuing to broaden our comprehension of the physical universe and apply it to the realization of such new means of communication as Ionospheric scatter systems.

The implications and applications of such new means of communication are vast.
National Co. is a community of minds and talents that enjoys the challenge and the prestige of success in such advanced fields as multipath transmission, noise reduction, correlation techniques for signal processing, Tropospheric scatter systems, lonospheric scatter systems, molecular beam techniques, long range micro-
wave transmission, and missile check-out equipment using microwave and digital techniques.
At National Co. there is balance-an outstanding line of commercial receivers and components keeps National Co.'s business steady.
National Co. has grown with the Tradition of New England electronics. Your needs and problems receive exceptional attention at National Co. because, here, creativity is required, recognized and rewarded.

Write or phone

OmelameneNationate.

[^0]
NEW PRODUCTS

Multiplexer

For 7 analog data channels

Model 3515 standard multiplexers will transmit 7 analog data channels, 1 reference frequency channel, and a full-duplex communications channel. Additional channels are possible. System accuracy is $\pm 1 \%$. Output impedance is nominally 600 ohms, and output level is adjustable from 0 to 5 v , peak to peak. From 1 to 8 adjustable and service able voltage-controlled fm subcarrier oscillators may be plugged into the unit. Dimensions of the unit are $8-3 / 4 \times 19 \times 15 \mathrm{in}$., it weighs 30 lb .

The Geotechnical Corp., Dept. ED, P. O. Box 28:277, Dallas, Tex.
circle 78 on reader-service card

Insulated Terminals

For diversified uses
These molded insulated electronic terminals are available in three types. The first is a scries of mela-mine-insulated feed-through terminals with molded outer threadings which mount directly in a tapped hole without additional hardware The second is a series of diallyl phthalate insulated terminals with tapped inserts and metal flanges This type is designed for spot welding or soldering onto a metal shell The third is a series of printed cir cuit board receptacles designed for plug-in mounting of transformers relays, switches, and other assimblies. These units are made of hilfhard brass and accommodate sta id ard pin sizes up to 0.125 in .
Lerco Electronics, Inc., Dept. ED,
501 Varney St., Burbank, Calif.
CIRCLE 79 on reader-service cari \& CIRCLE 77 ON READER-SERVICE CARD

Soldering Iron

Pencil size

This low wattage, miniature pencil soldering iron operates from 110 to 120 v without a transformer and has tips which slide on over the heating element so that all the power converted to heat is radiated through the tip rather than wasted in space. The heating element maintains a constant temperature at around 626 F . With 50 meg of insulation between element and tip and the element grounded through a third terminal, this device is especially suited for use around semiconductors. The whole tool weighs less than 1 oz .
M. M. Newman Corp., Dept. ED, 59 Clifton Ave., Marblehead, Mass. CIRCLE 80 ON READER-SERVICE CARD

Precision Calibrator

 For thermocouplesPrecision model TC-2 thermocouple calibrator incorporates a platinum and platinum-rhodium thermocouple calibrated by the Bureau of Standards on 12 points for temperatures to 2200 F . For cold junction compensation it uses a constant-temperature thermocouple reference junction. The unit is $40 \times 30 \times 70 \mathrm{in}$., and is equipped with a 24 point rotary switch for crror free switching from couple to couple. It also has an F-4 furnace $20 \times 20 \times 36 \mathrm{in}$.
Arcweld Mfg. Co., Dept. ED, Grove City, Pa.
CIRCLE 8I ON READER-SERVICE CARD

Nylon Bobbin

Has insulated lead slot
A slot for insulating starting leads i an integral part of this nylon hobbin. This slot eliminates the need for washers or lead taping and lakes the bobbin particularly suitble for automatic coil winding.
American Molded Products Co.,
'ept. ED, 2727 W. Chicago Ave., hicago 22, Ill.
CIRCIE 82 ON READER-SERVICE CARD CIRCLE B3 ON READER-SERVICE CARD \geqslant

105 db gain in 60 mc I-F strip

Write on your company letterhead for 105 db gain, eight stage, $60-\mathrm{mc}$ i-f amplifier applications brochure.

...with Tl 3 N35 silicon transistors

105 db I-F STRIP CHARACTERISTICS
 Bandwidth: 20 mc at 3-db down

Center Frequency: 60 mc No neutralization required

The high gain of TI $3 N 35$ transistors at high frequencies permits mismatch in the interstage coupling networks to eliminate complicated neutralizing circuitry. You save extra component costs, design with ease and gain added reliability because the mismatch in this application sacrifices only 2.55 db gain per stage!

Designed for your high frequency oscillators, i-f, $r-f$, and video amplifier circuits, the TI 3N35 features . . 20-db power gain at $70 \mathrm{mc} .$. . typical 151 -mc alpha cutoff . . operation to $150^{\circ} \mathrm{C}$. These characteristics make transistorization feasible for radar, communications, missile, and other high reliability military applications.
In commercial production at TI for tuo years, the 3 N35 has a product-proved record of high performance and high reliability. These units are in stock now! For immediate delivery, contact your nearby TI distributor for 1-249 quantities at factory prices... or call on your nearest TI sales office for production quantities.

Texas Instruments INCORPORATED EEMICONDUCTOR-COMPONENTS DIVISION POST OFFICE BOX 312 , 3500 N. CENTRAL EXPRESSWAY

LAMBDA'S ALL-TRANSISTOR LINE

Delivered now • Guaranteed for five years

FOUR NEW POWER SUPPLIES

1-AMP and 2-AMP•CONVECTION COOLED

No internal blowers • No moving parts 0-32 VDC

0-1 AMP

0-2 AMP

- Ambient $50^{\circ} \mathbf{C}$ at full rating.
- High efficiency radiator heat sinks.
- Silicon rectifier.
- 50.400 cycles input.
- Special, high-purity foil, long-life electrolytics.
- Compact. Only 3½" panel height.
- Short-circuit proof.
- Protected by magnetic circuit breakers.
- Hermetically-sealed transformer. Designed to MIL-T27A.

Model LT 1095	$\$ 285$
Model LT 1095M (metered)	$\$ 315$
Model LT 2095	$\$ 365$
Model LT 2095M (metered)	$\$ 395$

All transistor. No tubes.

- Fast transient response
- Excess ambient thermal protection.

Excellent regulation. Low output impedance.
Low ripple.

- Remote sensing and DC vernier.

CONDENSED DATA

Voltage Bands ... 0-8, 8-16, 16-24, 24-32 VDC Line Regulation.
load Regulation.
Better than 0.15 per cent or 20 millivolts Better than 0.15 per cent or 20 millivolts
(whichever is greater). For input variations from 105-125 grea
Better than 0.15 per cent or 20 millivolts (whichever is greater). For load variations from 0 to full load.
AC Input 105-125 VAC, 50-400 CPS

Electrical Overload Protection

Thermal Overload Protection load Protection
size

Magnetic circuit breaker, front panel mounted. Unit cannot be injured by short circuit or overload

Thermostat, manual reset, rear of chassis. Thermal overload indicator light, front panel. $3^{1 / 2^{\prime \prime}} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 14^{3} / 8^{\prime \prime} \mathrm{D}$.

New! 1959 CATALOG NOW AVAILABLE
New 36-page edition contains information and specifications on Lambda's full line of transis-tor-regulated and tube-regulated power supplies.

NEW PRODUCTS

28 V DC Motor

For aircraft and missile use
Operating at 28 v dc and 69 amp . model D-1000 motor delivers 1.6 hp at 2000 rpm . Output speeds to $25,000 \mathrm{rpm}$ are available in units without a reduction gear box. Of explosion proof construction, the unit incorporates flame quench rings per MIL-E-5272 and a radic noise suppression filter per MIL-E 6181. AND-20000 mounting flanges are standard, but others are avail able. The motor has a life of over 1500 hr and withstands continuous starting at rated load at 2 sec intervals under severe inrush conditions. Ictuator operation is at 260 F am bient at $60,000 \mathrm{ft}$ altitude. Motors for ambient temperatures to 500 F and altitudes of over $200,000 \mathrm{ft}$ are a ailable for missile applications.
Hoover Electric Co., Dept. ED $2(0)$ S. Stoner Ave., Los Angeles 25. Calif.

CIRCLE 85 ON READER-SERVICE CARD

Polarized Relays No contact bounce

Bistable type 51A and center stable type 51M polarized relays have 0.7 msec response and no contact bounce. They withstand 4010 shocks at 40 g , and operate frcm -40 to +70 C. Sensitivity is 1 to 3 amp-turns for the 51M; 2 to 5 amp turns for the 51A. The units are 5.4 $\times 1.5 \times 0.8 \mathrm{in}$. and come with 12. pin plug or solder lug bases.
C. P. Clare \& Co., Dept. ED, 31)11 Pratt Blvd., Chicago 45, Ill.

CIRCLE 86 ON READER-SERVICE CARD - CIRCLE 84 ON READER-SERVICE CARD

Available with impedances of 50 to 150 ohms , these $3 / 4 \mathrm{in}$. diameter size 8 step-servo motors contain two center-tapped stator windings and a permanent magnet rotor. They may be operated through voltage ranges of 20 to 40 v dc and have a holding torgue range of from 0.5 to 1 oz-in. Stepping rates of up to 120 pulses per sec are achieved through shaft increments of 4.5 deg . N 0 mechanical detents are used, assuring a long life limited only by the bearings. The units , perate over a temperature range of -55 to +125 C and meet the environmental requirements of MIL-E-5272B and MIL-E-5400).
Induction Motors of California, Dept. ED, 6058 Walker Ave., Maywood, Calif.

Circle 87 on reader-service card

Coaxial Attenuators

For use with Type N connectors
For applications using Type N comectors, type HFA/N-50 fixed pad coaxial attenuators have a nominal impedance of 52.5 ohms and are usable in a frequency rimge from de to 2500 mc . Maximum visur through this range is 1.2 . With an average power rating of $1 / 2 \mathrm{w}$. the units are available in tandard models for attenuation values of $1,2,3,4,6,10,12,15$, and $2(1) \mathrm{db}$.
Applied Research Inc., Dept. EID, 76 S. Bayles Ave., Port Washngton, N.Y.
CIRCLE 88 ON READER-SERVICE CARD

Generate the full excitement of High-Fidelity!

 Specify the new RCA-7027 for your amplifier designsStronger and stronger grow the chords, the fervent expression of the artist-yet the sound is sweet, most pleasing to the listener's ear. The Concert Grand makes stringent demands upon high-fidelity amplifiers for high power and low distortion. Can your designs meet these demands? They can if you "design around" the RCA-7027!
RCA- 7027 is a glass-octal type beam power tube. Two 7027's in Class AB_{1}, push-pull service with 450 volts on the plate can handle up to 50 watts of audio power with only 1.5 percent distortion. Structural features contributing to the exceptionally high plate dissipation (25 watts) of this compact tube are: button-stem construction, heavy stem leads having high heat conductivity, heavy plate material, radiating fins on control grid, and double base-pin connections for both control grid and screen grid. Achieve for your hi-fi designs the advantages of high dissipation, exceptionally low distortion, and high power amplification offered by the new RCA-7027. Ask your RCA Field Representative for further details. For technical data, write RCA Commercial Engineering, Section C.-18-1)E-is. Sommerville, N.J.

RCA Field Offices

[^1]
NEW PRODUCTS

Silicon Rectifier Test Set

For 1 to 500 amp units

Model 128A silicen rectifier test set is a laboratory and production unit designed specifically to evaluate the dymamic characteristics of silicon rectifiers in accordance with ASESA recommendations. It employs a simulator circuit which permits selection of any forward current or reverse voltage within its range. The set tests rectifiers with forward current ratings between 1 and 500 amp half-wave, and reverse voltage ratings to 2 kv peak. It is equipped with multi-scale instruments to measure all rectifier parameters and includes plug-in provisions for oscilloscope observation of wave shapes.
Wallson Associates, Inc., Dept. ED, 35 F E. Rumyon St., Newark 8, N.J.

CIRCLE 89 ON READER-SERVICE CARD

Counter Scanner
Transfers multiple data to one recorder

Operating from staircase voltages produced by up to six counters, the DY-2513 counter scammer automatically transfers the information displayed on each counter to one Hewlett-Packard model 560)A digital recorler. It also automatically records preset decimal information manually selected by six decimal dials on the front panel. Readings from the scamned counters are recorded sequentially on adding machine tape with ant identifying digit for each source. The unit may be used with the company's counters or with Hewlett-Packard models.
Dymec, Inc.. Dept. ED, 39.5 Page Mill Rd. Palo Alto, Calif.
circle go on reader-service card

The HOTTEST thing in COOLING...
QMUFFIN FAN

Now you can cool economically - less

Unlike conventional or phonograph-motor-assemblies. the MUFFIN ${ }^{\circledR}$ FAN boasts a high air performance of 100 CFM free delivery from a hasic package unl! 4-11/16" square and only $1-1 / 2^{\prime \prime}$ deep while the weight is hut 1-1/2 pounds. The completely original aerodynamic design permits operation through a dust filter and tightly packed electronic equipment.

Unbelievably thin . . .entire fan assembly is only 1-1/2" thick! Protrusion into cabinet is $1-1 / 2^{\prime \prime}$ MINUS the panel thickness. The MUFFIN® FAN will mount into wall of cabinet imposing practically no space reguirement inside the enclosure.

The MUFFIN® FAN is a completely integrated cooling unit. The propellor and stator assemblies. venturi block. grille
assembly and ingenious all-purpose mounting clips combine (1) form a complete package. The MUFFIN® FAN can be installed in a rectangular cutout in a panel in just seconds. When installed it represents the ultimate in cooling efficiency and a distinct asset to equipment appearance.
In addition. the MUFFIN® FAN provides the following distinct features . . extremely quiet operation . . . will fit any panel thickness from 1/32" up . . . no capacitor, commutator or slip-ring . . exclusive no-maintenance motor . . . flow direction quickly and easily changed by turning fan end-for-end . . all electrical parts including terminal lugs are molded into watertight shell.

The high performance level of the MUFFIN® FAN together

JUST A FEW OF THE MANY APPLICATIONS FOR THE ROTRON MUFFINO FAN

ACTUAL SIZE

than \$8 in Quantity!

with its extremely compact size and economical cost provides for the first time efficient forced-air cooling in equipments where space or cost limitations previously made cooling prohibitive.

write today for complete technical details to ...

Rotary Switch
Has spring locked into switch

A steel alloy spring is built into the index mechanism of the PA-070 switch and it controls the spring return action. Siwitches with this feature can be supplied as single or double section units, or as single section units with line switch. Up to six positions per section, including the spring return position are available. Spring return can be placed in either the first or last position, and sections are laminated phenolic type PBE per Mil-P-3115, voltage breakdown 1000 v rms.

Centralab, Div. of Globe-Union Inc., Dept. ED, ($\mathfrak{K}) \mathrm{E}$. Keefe Ave., Milwaukee 1, Wis. circle 92 on reader-service card

Phase Generator
Covers 5 cps to 200 kc

Phase generator model 410) is a combination phase shifter and phase difference generator that covers 5 cps to 200 kc . The addition of an external capacitor extends this range down to 0.1 cps. Accuracy is 0.1 deg over the andio frequency spectrum, decreasing above and below. The unit can be used for the calibration of phase measuring devices. or, with an external phase detector, as a precision phase measuring device.

Dytronics Co.. Dept. ED, 78 Sunnyside Lane, Columbus 14, Ohio.

CIRCLE 93 ON READER-SERVICE CARD

NEW PRODUCTS

Miniature Bellows Motor
Works around curves

This miniatures squil)-actuated bellows motor is designed for mis siles, weapons, and weapons sys tems. Actuated by as little as 100 ergs at 1.5 v , or 0.3 amp , the motor is capable of providing 10 lb o thrust over a 1 in . minimum stroke within ant elapsed time of 1 msec In addition, the bellows can be gnided around a 9) deg curve. The $0.3: 2 \mathrm{in}$. diameter motor is 1 in . lone functions properly from -65 to +16.5 F , and withstands 20,000 shock and acceleration. Shelf life is measurable in years

Atlas Powder Co., Ordnance Ma teriel Dept., Dept. ED, Wilming ton 99, Del.

CIRCLE 95 ON READER-SERVICE CARD

Transformer

Shell type

The shell type Donut transformer is used for isolating high voltages on filaments and cascaded high voltuse power units. The cost of the unit is reduced by the elimination of ac ramic bushings, oil, and tank. comparison with conventional tank units, its size and weight reduced about 40 per cent.
Nothelfer Winding Labs, In Dept. ED, P.O. Box 4.55 Trentou N.J.

CIRCLE 96 ON READER-SERVICE CARD CIRCLE 495 ON READER-SERVICE CARD * - CIRCLE 94 ON READER-SERVICE CARD

SEMICONDUCTORS

 Transistors Rectifiers Germanium - Silicon O Selenium - Copper Oxide - Unijunctions Controlled Rectifiers - Fixed-bed Mounting USAF JAN- USN - Low Frequency Audio and Switching O High Frequency Switching Low-Medium-High
Current - High and Low Temperature

TRANSISTORS Germanium •Silicon \bullet Fixed-Bed Mounting •Unijunctions • Tetrodes • High Frequency Switching \bullet Low Frequency Audio and Switching USAF

NEW TECHNOLOGY
As a result of recent technology advancements in such areas as product engineering, manufactur-ing-line processing, and quality-control systeming, General Electric Company again offers you the avant garde in present-day transistor quality.

EXAMPLES

PNP low-frequency survival records have been shattered by the accomplishment of one-million unit-hours of life survival with the G-E 2N43A transistor.
Higher gain and improved saturation characteristics have been created for high-frequency switching. This was brought about by G.E. through recent improvements in d-c beta at higher collector currents, made with Types 2N123 and 2N450 transistors.
With a collector current of $11 / 2 \mu \mathrm{a}$ max. at 15 volts, G.E.'s germanium NPN high-frequency 2 N 167 gives an ultimate in $\mathrm{I}_{\text {In }}$. It also has a low collector capacitance of $3 \mu \mu \mathrm{f}$.
The mechanically rugged golf-club/shotguntested ceramic fixed-bed transistor mounting has been expanded, product-wise, beyond the Series 2N489-494 unijunction line, and is now also offered in the NPN high-frequency transistor series (2N332-338).

MILITARY TYPES

G-E quality advances are also exhibited by General Electric's over-all success in supplying to an increasing number of military specifications covering semiconductor products. G-E MIL transistors include the USAF-types $2 \mathrm{~N} 43 \mathrm{~A}, 2 \mathrm{~N} 44 \mathrm{~A}$, and 2 N 167 . The G-E Types 2 N 123 A and 2 N 396 A are certified to meet military specs. (See adjacent rating chart.) For G-E military rectifiers, see next two fold-out pages.
ADDITIONAL INFORMATION
For more-detailed information, please contact your nearest G-E Semiconductor Products District Representative. (See back page.)

	USE	OUTIINE DWG. NO.	TYPE NO.
$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & H \\ & H \\ & 0 \end{aligned}$	AMPLIFIER AND COMPUTER NPN (Coramic Fixad-bed Construction)	1	2N332
		1	2N333
		1	2N334
		1	2N335
		1	2N336
		1	2N337
		1	2N338
	UNIJUNCTION NPN (Coramic Fixed-bod Conatruetion)		
		2	2N489**
		2	2N490*
		2	2N491*
		2	2N492*
		2	2N493*
		2	2N494*
			*A PN Device
	AUDIO PNP	3	2N43
		3	(USAF)2N43A Per MIL-T-19500/18
		3	2N44
		3	(USAF) 2N44A Per MIL-T-19500/6
		4	2N524
		4	2N525
		4	2N526*
		4	2N527
			- Also supplied as cortined to meot MLT-T-19500/80
	COMPUTER PNP	5	2N123
		5	2N123A Cortined to meot MIL-T-19500/30
		4	2N395
		4	2N396
		4	2N396A Certined to meot MTL-T-19500/84
		4	2N397
		4	2N404
		5	2N450
		5	2N518
		3	2N1056
		3	2N1057
	HIGH FREQ. AMLIFIER NPN	6	2N78
		6	2N169A
	COMPUTER NPN	6	2N167
		6	(USAF)2N167 Per MIL-T-19500/11
		4	2N634
		4	2N635
		4	2N636
	TETRODE NPN	7	3N36
		7	3N37

RECTIFIERS! Fold out next page

RECTIFIERS

and Low Temperature－Controlled Rectifiers

 Low－Medium－High Current•JAN•USN•USAF
BASIC RATING CHART

Chmene the performance range required for your particular needs from one of the must compre hemsive lime of rectitiers in the industry．Complete sperifications are available throuphe your dis－

RECTIFIER CELLS

JEDEC or G－E Type No．	PIV	Max． $\text { IIN of } T^{\circ} \mathrm{C}$	Max． 1 Cycle （ 60 cps ） Surge	Max． Oper． Temp． ${ }^{\circ} \mathrm{C}$	Max． Storage Temp． ${ }^{\circ} \mathrm{C}$	JEDEC or G－E Type No．	PIV	$\begin{gathered} \text { Max. } \\ \text { Jof of } \mathrm{T}^{\circ} \mathrm{C} \end{gathered}$	Max． 1 Cycle （ 60 cps） Surge	Max． Oper． Temp． ${ }^{\circ} \mathrm{C}$	Max． Storage Temp． ${ }^{\circ} \mathrm{C}$
$1 \mathrm{Na\mid}$	100	$1.510 \mathrm{~ms} \mathrm{al} 5.55^{\circ} \mathrm{amb}$ ，	2.54	95.	$8 .{ }^{\circ}$	1 Nallas	800	H00manat $10100^{\circ} \mathrm{amb}$	1114	150	$175{ }^{\circ}$
1へ9？	200		2.14	$19.5{ }^{\circ}$	8：\％${ }^{\circ}$	1 \かっ：	50		151	$1.51{ }^{\circ}$	$1: 0^{\circ}$
1 y 03	3001	－ima at $5.55^{\circ} \mathrm{amb}$	254	0.90	45°	－vars：a	il）		151	1.510°	$1: 10^{\circ}$
1sへ1さ゚．3	300	－5tma at $5.50^{\circ} \mathrm{nmh}$	254	5.50	43°	1 NaOR	100	Hollma it $13.50^{\circ} \mathrm{H}$－ud	1.11	1510°	170°
	1001	S010ma at 5.50 amb		45°	8.5°	（ 10.1084	100 150		154	1.500° 1.510°	$1: 11^{\circ}$ $1: 10^{\circ}$
1 V 1.5	201	jolma at 5.50 ami，	2 A	45°	88°	－VヵハリA	1.50		1：1	1.510°	170°
1 V1．5．	31011	500 mrat al $55^{\circ} \mathrm{amt}$ ．	251	9．9 ${ }^{\circ}$	85°	$1 / \mathrm{n} 11$	2011		1.14	1.310°	1710°
1 V158	380	500ma at $.35^{\circ}$ amh，		$4.5{ }^{\circ}$	45°	｜（大｜1）	300		1.5	1.510°	170°
1 V 5 T						1 Noll	301 3001 100	800ma at 13，	1in	1510	1：10
203	9.9	1000ma nt 1335° vtuld	14	$150{ }^{\circ}$	$150{ }^{\text {c }}$	IVhlla	3010	Hollman ht 13．50 जnd	1.4	1－10	
1 V 2.51	190	flllme at 13.55° stud	154	1510	1.511°	INhI？	1010	Summa at $13.55^{\circ}+1.01$	1.9	1.100°	1：100
1 125．	3811	tillman at 135°－fud	1.4	$1.51{ }^{\circ}$	$150{ }^{\circ}$	1 \h1ご	100	Hoblana at 13.55° vtud	1：A	1.510°	1：100
1 V2．56	3：11	200 ma at $1355^{\circ} \mathrm{rard}$	1 in	$1.50{ }^{\circ}$		1 Vhl？	5010	6．010ma at 1850 uthid	1.54	1500°	1710° 1710°
1 V 15	1011	100 ma Ht $8.5^{\circ} \mathrm{aml}$ ，	54	$8.5{ }^{\circ}$	$4 .{ }^{\text {c }}$	IVhi	\％1010		151	$1.50{ }^{\circ}$	$1: 10^{\circ}$
INAFIN31．5	1111	100 mant $855^{\circ} \mathrm{amb}$	51	$8{ }^{\circ}$	1010	1 いい14	r．010	gotema al $135^{\circ} \mathrm{stud}$	154	1.510°	$170{ }^{\circ}$
1533	1016	H00ma at 1.50° slud	1.14	$1: 0^{\circ}$	1700°						
1－3336	1011 300	2010 ma at 1.50° stud 100 matat 1.50 atud	1114	1710	1700° $1-110$	1）1005 illown	500 6,100	！2．ma at $1000^{\circ} \mathrm{mml}{ }^{\text {a }}$	1.54 1.54	${ }_{150} 1.510^{\circ}$	$\begin{aligned} & 175^{\circ} \\ & 1755^{\circ} \end{aligned}$
1． 33.5	300	200mat at 1.50° stuid	1.114 114	${ }_{1}^{17111^{\circ}}$	1：110						
1 ± 336	200	S0luma ht 1500 atud	1.14	1\％11－	$1710{ }^{\circ}$	15110	1010	500 man a1 $1600^{\circ} \mathrm{ram}$ ，	1.14	16.3°	1750
10338	200	200 ma at 1511° stur	1184	1：11＇	170	1 $\because 1101$	2010	S0ltme at 1010$)^{\circ}$ uent，	1.54	$16.3{ }^{\circ}$	17.5
1 N3．39	100	1011 ma at 1.511° stur	1.54	1710°	$170{ }^{\circ}$	1才10：	300	500tmu at $10100{ }^{\circ} \mathrm{armb}$	$1: 4$	16.0°	17.50
$1 \mathrm{~N} 3+11$	100	2100 ma at $1500^{\circ} \mathrm{ylud}$	1114	171＊	$1.10{ }^{\circ}$	INlos	1101	S00ma at $1000^{\circ} \mathrm{amh}$	1.54	16.0°	$17.5{ }^{\circ}$
1 N3．11	400	lin）ma at $150^{\circ} \mathrm{stand}$	1.54	$1710{ }^{\circ}$	1710°	$1 N 1115$	100	1.54 at $85^{\circ}{ }^{\circ}$－	151	$170{ }^{\circ}$	17.50
1 N3．42	400	200 ma at 1.510° stiud	111	$1 \% 11{ }^{\circ}$	$170{ }^{\circ}$	1v116	2010	1 IA at 8.5° stud	$1: 1$	$1: 10^{\circ}$	1750
1 N313	300	f00ma al 1.510° ulud	154	$1: 11{ }^{\circ}$	$170{ }^{\circ}$	1才1に	300	1.54 at 8.50 slud	1.54	$1: 0^{\circ}$	$17{ }^{-3}$
$1 \times 3+1$	304	200ma at 150° uthed	1114	$120{ }^{\circ}$	1710	1N118	100	154 日t 8.5° जud	154	1：10	175°
1 N 3.5	200	200 mm at 15.50° stur	15A	1.10°	$170{ }^{\circ}$	1才11＂	5010		1.54	1：10	$1.5{ }^{\circ}$
1 N 38 n	200	200 ma at 1.510° slud	1114	$110{ }^{\circ}$	1710°	1N1120	B1010	154 at $8.5{ }^{\circ} \times 1$ ud	1.54		
1N：36	101 100	201ma at 1.500° stud	1.104 104	$\begin{aligned} & 1: 01^{\circ} \\ & 1: 0^{\circ} \end{aligned}$	$\begin{aligned} & 1: 0^{\circ} \\ & 1 \div 0^{\circ} \end{aligned}$	1才18：	100	2.51 mm at $12.50{ }^{\circ} \mathrm{amb}$ ，	1.54	11110°	$1: 30$
						1．N1888	200	2.30 mb 日t 1250 amb	1.54	110°	17.5
1N36\％	200	$100 \mathrm{ma} \mathrm{at} 8.5{ }^{\circ} \mathrm{amh}$ ．	104	$0.5{ }^{\circ}$	83°	1才140	301	250 （tha at 1250 ${ }^{\text {amb }}$	1.19	110°	$17.5{ }^{\circ}$
iNitor	101	300 ma at $100^{\circ} \mathrm{rmh}$	1．14	150	17.50	V191	． 010	2.50 ma at $110^{\circ} \mathrm{nmb}$	1.4	120°	$17.5{ }^{\circ}$
｜${ }^{\text {［1］}}$｜	200	300）mat Ht $100^{\circ} \mathrm{ambl}$	15.	${ }^{16.5}{ }^{\circ}$		1．V142	0100	250 mas al $9.3^{\circ} \mathrm{amb}$ ．	1.94		$1 .{ }^{\circ}$
INitil	200	S01）ma al $100^{\circ} \mathrm{amb}$ ．	1.54	$16.5{ }^{\circ}$	1.50	－160\％	1001	6eroma at $100^{\circ} \mathrm{aml}$	204	11.0°	125°
1 N 12	301	$300 \mathrm{ma} \mathrm{at} 1000^{\circ} \mathrm{amh}$	1.54	$150{ }^{\circ}$	$1: 50$	1N1693	200	f00tria at $100^{\text {a }} \mathrm{Hmb}$	2104	11.8°	125°
1 N 412 H	300	$500 \mathrm{mant} 100^{\circ} \mathrm{amb}$	154	$10.5{ }^{\circ}$	1：50	1 －1601	31010	6000 mat nt $1000^{\circ} \mathrm{amot}$	204	11.50	125°
1 NH	100	300 ma at $100^{\circ} \mathrm{amb}$	15 A	1510°	$1.5{ }^{\circ}$	$1>1605$	100	600ma at $1000^{\circ} \mathrm{amh}$	204	$11: 5^{\circ}$	$12.5{ }^{\circ}$
1 N 4.3 B	100	500 ma at $100^{\circ} \mathrm{amb}$ ，	154	165°	$1.5{ }^{\circ}$						
$1 \mathrm{~N}+11$	500	$300 \mathrm{ma} \mathrm{at} 100^{\circ} \mathrm{mml}$ ，	1.54	$150{ }^{\circ}$	$175{ }^{\circ}$	1 V21．51	511	2.5 A at 11．50 utur	3004	2010	2000°
IN1．413	500	12.5 mn at $100^{\circ} \mathrm{amb}$	1.54	$150{ }^{\circ}$	$175{ }^{\circ}$	1N215．\％	1010	2.54 at 11.5° athid	30104	$2(11)^{\circ}$	2010
IN4．5	600	$300 \mathrm{marat} 100^{\circ} \mathrm{amb}$	$1: 14$	150°	$12.5{ }^{\circ}$	1 y 2156	2011	254 at $185^{\circ} \mathrm{utus}$	3004	$2111{ }^{\circ}$	$200{ }^{\circ}$
1N14513	600	350 mn at $100^{\circ} \mathrm{amh}$	1.54	1.50°	$1.5{ }^{\circ}$	1N2157	3010	254 al 1185° wtud	30014	2010	$200{ }^{\circ}$
1 N5．36	50	500 ms at $100^{\circ} \mathrm{amb}$		165°	$175{ }^{\circ}$	（N2158	1010 5010		30114 3004 304	$2010{ }^{2}$	$\underline{20100}$
1N53：	100	500 mb at $100^{\circ} \mathrm{amb}$ ．	15A	$16.5{ }^{\circ}$	17：50	1 N2160	600	25 A at 1150 stud	3004	2010°	200°
IN5．38	200	500 ma at $1000^{\circ} \mathrm{amb}$ ．	154	16.0°	$175{ }^{\circ}$						
USAFINS38	200	$500 \mathrm{ma} \mathrm{at} 100^{\circ} \mathrm{nmb}$	1.54	1.50°	$17.5{ }^{\circ}$	HAg04＊	100	F11A al 1200° atul	90004	2010°	200°
1N539	300	$500 \mathrm{mn} \mathrm{ht} 100^{\circ} \mathrm{amb}$	154	165°	$175{ }^{\circ}$	1146013＊	200	－0A at 120 0° stur	9rond	200°	$200{ }^{\circ}$
1N540	4011	500 ma at $1010^{\circ} \mathrm{nmb}$ ，	1.5 A	165°	$175{ }^{\circ}$	リ4600\％	300	－0A at 1200° vend	9004	$200{ }^{\circ}$	2100°
USAFINSm	100	500ma at $100^{\circ} \mathrm{amb}$	15A	150°	175°	\＄4 460 D＊	100	\％nA at 1200° stud	9004	200°	2110°
1N5：	600	500 ma at $100^{\circ} \mathrm{amb}$ ．	154	$16.5{ }^{\circ}$	17.50	HAG0¢：＊	150	\％o4 at	9004	2110°	2010°
1N550	100	800 ma at 1.35° stud	154	$1.50{ }^{\circ}$	1750	1JA6）IV＊	250 350	ind at 120° stud ind at 1210° stud	9004	200°	3000°
［N551	200	800 ma at 1.35° stud	154	1.50°	$17.5{ }^{\circ}$						
1N552	300	800 ma at $1: 35^{\circ}$ stud	15A	$1.50{ }^{\circ}$	$175{ }^{\circ}$	HAG2A＊	100	104 at $120^{\circ} \mathrm{stud}$	9014	15.50	2010°
1 N553	400	800）ma at 13.35° stud	15A	1.50°	$175{ }^{\circ}$		200	114 at $1200^{\circ} \mathrm{stud}$	90014	$1.50{ }^{\circ}$	21110°
1 N5．54	500	600 ma at 135° stud	15 A	150°	$17.5{ }^{\circ}$	4JA62C＊	300	104 at 1200° stud	9004	150°	20110°
1N555	600	$600 \mathrm{ma} \mathrm{at} 1335^{\circ}$ stud	15 A	150°	$175{ }^{\circ}$	1JA62I）＊	100	104 ut 1200° stud	900 A	1.50°	200°
1 N560	800	250 ma at $100^{\circ} \mathrm{amb}$ ．	15A	1510°	$17.5{ }^{\circ}$	1JA62ト＊	50	10 A at 1：20 stud	90104	$150{ }^{\circ}$	$\underline{200}{ }^{\circ}$
1 N561	1000	250 ma at $1010^{\circ} \mathrm{amb}$	154	1511°	$175{ }^{\circ}$	＋JAG2G＊	150	1114 at 120° atud	9004	1.50°	200°
1 NS62	800	800 ma at 100° stud	154	$1.50{ }^{\circ}$	$17.5{ }^{\circ}$	1JA6211＊	250	104 at 120 shat	9004	1.510°	200°
1 N563	1000	400 ma at 100° stud	154	1510°	175°	\＃54623＊	350	80.4 at $120{ }^{\circ}$ suad	900 A	$1.50{ }^{\circ}$	$201{ }^{\circ}$

＊Also available with reversed polarity．

RECTIFIERSTACKS

G－E Pype	PIV（up to）	Max． $\mathrm{I}_{\text {pre }}$ af $\mathrm{T}^{\circ} \mathrm{C}$（up to）
1JA211	630 V	6 amps at 55° umb
1JA 111	33601	18 amps，ht $25^{\circ} \mathrm{amb}$
HA 3011	6301	Ithamps at $5.5{ }^{\circ} \mathrm{amb}$
4JA3611	1800 880 I	6．5 ampux at $55^{\circ} 5^{\circ} \mathrm{amb}$
\％AST11	819！	i 30 amps．at $35^{\circ} \mathrm{amb}$

Sorios: IN836-540, 1N547, 1N1095-90-Provide
 temperaturns ($165^{\circ} \mathrm{C}$.). $1 \mathrm{~N} 440-445,1 \mathrm{~N} 440 \mathrm{~B}-445 \mathrm{~B}$ -Similar to IN536-5 so series, but with oxtremely low reverse current. Ieal for magnetic-amplifier
applications. IN1100-1103-Similar to IN440Bapplications. INT100-1103-Similar to 1 N440B-IN5.36-540 series, except provides lower-cost units for lower-temperature roquiremaents (140° C. IN599-60n, 1 N599A-608A-similar to IN536-5.40 and $1 \mathrm{~N} 440 \mathrm{~B}-445 \mathrm{~B}$ seriee. respectively, except for somewhat lower forward-current ratinks. 1 N1e92165 5- Provides lower current and temperature operation ($115^{\circ} \mathrm{C}$.) than any of above series-very emnomical

Sorios: 1N1118-1120-A vailable for stud mountink direct w chasais, or finned. Similar, in characteristics, to 1 N536-5to lead-mounted series. Provide maximum forward conductance at high operating temperatures. $1 \mathrm{~N} 253-268$ - Hizh power-handling ability. Primarily for power supply and magneticamplitier applications. Type
apme. $1 \mathrm{NB} 50-555-$ Similar to
N 440 NH series, except for stud mounting, Extremely low reverse current. purticularly suited for magnetic-amplifier applications. 1N332-340-Industry-popular series. For applications requiring high reliability at moderate currents operating up w $170^{\circ} \mathrm{C}$.. IN807-614. in 807 A- 14 14-Another widely-used industrial line. Ideal for applications requiring high currents at up
to $150^{\circ} \mathrm{C}$.

 4JA411 Stacks: Combine hich temperature operaLion (up w $150^{\circ} \mathrm{C}$.) with increased ratings (up to mpet f variety of circuit conditions. High elficiency

 plus excellent regulation.POTNED RFPCTIFIER CIRCUITS

1JA220-221, 4JA420-421 Sories: Mounted in standord eight-pin tube twase (\$JA220-420 Series) or in melmnkular design with solder lug connections (f ciz2-421 Series). Available in a larke number circuit configurations. One to 20 cells may be potted in a single circuit. Individual cell speciticarermanium IN $91-93$ cells.
 140: cells. (Soe BASIC RECTIFIER-CELL LIST. ing at lert.)

in2184-2160 Sories: First series of silicon medium current rectifiers to be made free from thermal fatigue, Designed for individual cell applications in the 2 -to-25 amp range High junction-temperature ratings. Extremely low forward voltage drop and thermal impedanca. May be mounted directly, or electrically ining kit provided with wech unil.

41 A3611 Stacke: Provide a wide-range of power applications with $d-c$ outpuls up to 6.5 amps.

4JABO, 4JAB1, UJAE2, IJA63 Serles: Large-aree junction stud-mounted rectifiors. Operating lomperaturet to $200^{\circ} \mathrm{C}$. D-c outputs as high ns 85 amps por ure forg ejement. Lower-cont bj 62 . current ratings of \&JA60 line. Reverge polarities provided in \$JAG1 and NA63 units. 4 JABO11, 4 JAG211 Stacks: Hundreds of combinations availahlo in various circuit contigurations. D-c outputs up to 573 amps. The iJA6211 series for lowes-current. lowercnet operation.

SILICON CONTROLLED RECTIFIER
CONTROLLED RECTIFIER RATING CHART

$\begin{aligned} & \text { G-E } \\ & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { PIV } \mathrm{V} \\ \begin{array}{c} \text { and } \\ \mathrm{V}_{\text {no }} \end{array} \end{gathered}$	Max. $\mathrm{I}_{\text {bc }}$ at Temp. ${ }^{\circ} \mathrm{C}$.	$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Temp. } \\ \\ \hline \end{array}$		Max. Rog'd Gate Signal
			${ }^{\text {Opp}}$	$\left\lvert\, \begin{aligned} & \text { Stor } \\ & \text { age } \end{aligned}\right.$	
C35U	25	Up to 16 A - $87^{\circ} \mathrm{C}$. stud	125	150	3V, 40ma 25°
C35F	50	Up to 16 A © $87^{\circ} \mathrm{C}$. stud	125	150	$3 \mathrm{~V}, 40 \mathrm{ma}-25^{\circ}$
C35A	100	I'p to 16A 8 $87^{\circ} \mathrm{C}$. stud	125	150	3V, 40ma 25°
C35G	150	Up to 16 A - $87^{\circ} \mathrm{C}$. stud	125	150	3 V . 40 ma - 25°
C35B	200	Up to 16 A @ $887^{\circ} \mathrm{C}$. stud	125	15.	$3 \mathrm{~V}, 40 \mathrm{ma}$ (a) 25°
C 35 H	250	Up to 16 A © $87^{\circ} \mathrm{C}$. stud	125	150	3V, 40ma $25^{\circ} \mathrm{C}$
C.35C	300	Up to 16 A © $87^{\circ} \mathrm{C}$. stud	125	150	3V. 40man © 25°
C35D	400)	Up w 16 A) $87^{\circ} \mathrm{C}$. stud	125	150	V. 40 ma

*Max. PIV and Min. V no

C35 Series: Hevolutionary silicon control device introduced by fieneral Electric. Can do jobs of thyratrons, iknitrons, maknetic amplitiers, sower transistors. relays. switches. contactors, circuif breakers. in many power-control and power-suitching applications. Modium-curront C35 serios provides blocing voltages vides blocking voltares to toll and load currents to lo amperes. High-current, developmental-type 2 jgo series is now available on a prototype-sample basis.

GERMANIUM LOW CURRENT
GERMANIUM MEDIUM CURRENT

4JA3011 Series: For een-eral-purpoee pown supplies. control devices. many other applications. Extremely low power dispation and forwerd voltage drop provide orceollent regulation and olfciency. Available is tacks up to 12 tins, proidine ratings in pousands of watts, depending with operation to $85^{\circ} \mathrm{C}$. Aloo, available in singlofin mounting. Tranaiont PIV's up to 600 volte per cell.

JA211 Stacks: The industry moat wid-ly-used semiconductor rectifier series. Hundreds of thouands in use. May be arranged in alacks up to 12 fins to produce more than 160 various circuit oonfigurations. Small. lightweight, excellent resuhtion.

EATINGS

TYPICAL VALUES

$\begin{gathered} \text { D-C } \\ \text { CURRNT } \\ \text { GAIN } \\ \text { hil } \end{gathered}$	AlpHA FREQ.	$\begin{aligned} & \text { POWER } \\ & \text { GAIN } \\ & \text { (db) } \\ & \text { G. } \end{aligned}$	saturation:		ollector to SE CURRENT
			voitage		
			voits)	APA	
			$V_{1,} \text { (SAT) }$	($\mu \mu$)	max (μ a)

RECTIFIERS Selenium
 Copper Oxide - Miniature
 Intermediate-Large Stacks Vac-u-Sel • High Efficiency
 Low Voltage
 - Rrgistored Trademark of Gemeral Electric is

General Electric: Company's Var-th-Sel rectifiers are produced through the unique spherical nacuum-rwaperation process- - the quality-advancement pioneered in this commIry by G.E. Briefly, the vacuum-evaporation process makes it possible to closely control the thichness of the selenium layers to satisfy varying requirements, and to obtain a pare, more even deposition of selenium over the entire cell surface

VOLTAGES AND CELL SIZES

G-E: Vac-t-Sel rectifiers are available in cells of 26,36 and 15 volts (rms), and in refl sizes up to Iwn int less square. larger sized colls ner available in the 26 - and 36 -volt ranges. Fightem-volt cells are available ins off-standard unit- in all cell sizes.

FINISHES AND MOUNTINGS

Yaccu-Sel rectifier stacks are supplied with 3 bavie finishes: staridard commercial, heary duty, and mililury. Sefected colls are stud moumted, eyedet and tabe momentat, siil immersed or embedoled.

miniature cellas

Ninfatares (cells up to ${ }^{19}{ }_{32}{ }^{\prime \prime}$ diameter) huve no center mounting hole and are mounted without spacer wabhers. assuring compact asemblios.

FEWER PAKTS improsed G-E Cup-Washer Assembly comsists of (1) Vut. (2) Metal Washer. (3) Spring Washer, (1) Pressure Washer, (5) Insulating Washers, (6) Terminal. (T) Cup Wastore.

COPPER OXIDE RECTIFIERS

General Electric copper-oxide rectifier stacks oqerat- as eflicient, econotrical devices for converting a-c to d-c. They are particularly ideal for such applications as:

Blocking
Magnetizinz
Electrolytic reduction
Polarizing relays
Metering

Circuit breakers
High-speed relays
Electroplating
Telephone and telegraph equipment

Headquarters
General Electric Company
Flectronies Park
Syracuse, N.Y.
GRanite 6-4
GRanite 6-4411

For more information, contact your nearest $G-E$ Semiconductor Products District Sales Representative

TRANSISTORS

1. A. BARSETT General Electric Co
701 Washington 81 Newtonville b0, Maw DEsatur 2-7120
A. WOOLAVER A. IT. DALt. tenemal Flectric Co
poo Main Axe
200 Main
Clifton.
ve
GRegory 3 -63:
2. A. MOONKY Cieneral Electric Fo 3800 N. Milwatike Avv Chicano, III APrink $7-1600$
F. E. FARRELI.
E. E. FARRELI,
General Electric Co General Electric
Electronics Park Electronics Park
Syracume, N Y. Syracuse, N-
IArrison ?-2640 (; Ranite 6-4411 Fixt 2305

RECTIFIERS

D. W. IICKIE General Electric Co 200 Main Ave Cliftom, ${ }^{2}$ J
C) Hegory 3-6387

Syracuse, N.Y
A. F I.AHMANN, JH

General Electric: 1 oo
Electronics Park
fiAanite 6-1111 Est 3257
H. C: ROGERS

General Flectric Co
3800 N . Milwanken Ave
Chringo, III.

TRANSISTORS \& RECTIFIERS

J G WALTON, JR.	\|Gieneral kJectric Co, 777 14th Strent. N. W Washington 5. DC EXecutive 3-3600	R. E. RERRY R. R. FAULLIN G. R. SAIIL	Cieneral Electric Col 3800 N. Milwaukee Ave Chicago. III SPrim 7-160"	H W OLSEN	(ieneral Flectric (\%o 42 Peninsular Ave San Mates, Calif Dlamond 2-;201
E. W IfOOKWAY, JR.	$\begin{aligned} & \text { Cieneral Elestric Co } \\ & \text { 2111 So. Gireen Rood } \\ & \text { CCleveland 21, Ohio } \\ & \text { KV erkeen 2-0880 } \end{aligned}$	H. W. GEBHARDT II. J. HENDERSON	$\begin{aligned} & \text { Cieneral Electric Co, } \\ & 11840 \mathrm{~W} \text { Olympic Mivi } \\ & \text { 1on Anseles, Catif. } \\ & \text { SRanite 9-755 } \end{aligned}$	G. R. CURTISS W. J. HALLEEY	Gieneral Flectric for Flectronics Park Syracusw, N Y GRanite 6-6111 Est $25: 4$

GENERAL

FLIGHT CONTROLS

Expanding the Frontiers of Space Technology

Transistorizing missile flight control systems by Lockheed scientists has meant significant reductions in weight and space requirements.

Flight Controls offers one of the most challenging areas of work at Lockheed': Missiles and Space Division
From concept to operation, the Division is capable of performing each step in research, development, engineering and manufacture of complex systems. Rapid progress is being made in this field to advance the state of the art in important missile and spacecraft projects under development at Lockheed.
Flight controls programs include: analysi of flight data and sub-systems
performance, design and packaging of flight control components, development of transistorized circuits, operation of specialized flight control test equipment. and fabrication of flight control prototypes. Other work deals with the design, development and testing of rate and free gyros; accelerometers;
programmers; computer assemblies; guidance control systems; circuitry; and hydraulic systems and components
In the flight controls simulation
laboratory. mathematical representations of elements in a control system are replaced one by one with actual hardware to determine acceptability of specific designs. From these studies, Lockheed obtains information which is used in further refinement and improvement of ${ }^{f}$ final control systems designs
Lockheed Missiles and Space Division is weapons systems manager for such major long-term projects as the Navy Polaris
FBM; Discoverer Satellite; Army Kingfisher; Air Force Q-5 and X-7; and other important research and development programs.
Scientists and engineers desiring rewarding work with a company whose programs reach far into the future are invited to write: Research and Development Staff, Dept. C2-21, 962 W El Camino Real, Sunnyvale, California, or 7701 Woodley Avenue, Van Nuys, California. For the convenience of those living in East or Midwest, offices are maintained at Suite 745, 405 Lexington Avenue, New York 17, N. Y. and at Suite 300,840 N. Michigan Avenue. Chicago 11, III.
"The organization that contributed most in the past year to the advancement of the art of missiles and astronautics.'

NATIONAL MISSILE INDUSTRY
CONFERENCE AWARD

Pre-flight check-out on final assembly on X-7 missile. The X-7 holds free-world's speed and altitude records for air breathing missiles.

One of L.ockheed's test stands with dynamic thrust mount to simulate flight environment.

NEW PRODUCTS

Strain Gage Plotters
High speed

High speed strain gage plotters 220 and 221 designed for plotting structural, engine load, and other tests, cam scam and record up to 20 channels per sec and plot up to 96 chamels. They automatically plot individual graphs for each chamel while a test is in progress. There are three zero positions per chamel, separate range selectors, and separate gage factor selectors. Switching is accomplished by heavy duty, large contact, low noise, rotary type multideck switches. Positive gearing to the chart drive insures synchronization between the chart graphs and their particular input channels. The units can be modified for millivolt inputs, such as thermocouples, for use on temperature period tests.
Gilmore Industries, Inc., Dept. ED. 1:3015 Woodland Ave., Cleveland 20, Ohio.

CIRCLE 97 ON READER-SERVICE CARD

Series M-105 reversible motors are rated at $1 / 75 \mathrm{hp}$ for intermittent duty or $1 / 125 \mathrm{hp}$ for continuous duty. The various models have ac or 6 to 48 v de inputs. They are $1-3 / 4 \mathrm{in}$. in diameter and 3 in . long.
Carter Motor Co., Dept. ED, 2764A W. George St., Chicago 18, Ill.
circle 98 on reader-service card
Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

These studies of aerodynamic damping coefficients on an airframe were made by engineers at ARO. Inc. They were conducted in the Cas Dynamics Facility at the U.S.A.F.'s Arnold Engineering Development Center. Tullahoma, Tennessee, wind tunnel center of the Air Research and Development Command.The studies were directly recorded on a Honeywell 906-A Visicorder.

The problem: Tomeasure damping-in-pitch derivatives for a clipped-delta-wing-body configuration over a Mach number range of 2.0 to 5.0 so that these measurements could be compared with the Mach number trend predicted by theory.

The set-up: A model of the delta-wing body, mounted
on its cross-flexure pivot support, was forced to oscil late through a linkage by an electro-magnetic shaker Resistance strain gauges were bonded to the input torque member and to one of the pivot supports. These gauges supplied torque and displacement signals through a carrier amplifier to two galvanometers in the Visicorder. An oscillator, driving a third galvanometer, established a time hase for the oscillogram.

The values discovered through this forced-oscillation balance system experiment showed some discrepancies from values predicted by theory, because the theory pertained to simpler bodies than that used in the tests. The experiments provided a new set of data which will result in more accurate predictions for future design.

in aerodynamic research

the Io isionader in the measurement of aerodsnamic damping coeficients.

The Honeywell Visicorder is the pioneer and unques. tioned leader in the field of high-frequency, high-sensitivity direct recording oscillography. In research, development and product testing everywhere, instantlyreadable Visicorder records are pointing the way to new advances in product design, rocketry, computing, control, nucleonics . . . in any field where high speed variables are under study.

The new Model 906A Visicorder, now available in 8 and 14 -channel models, produces longitudinal grid lines simultaneously with the dynamic traces, time lines, and trace identification by means of new accessory units
To record high frequency variables-and monitor them as they are recorded-use the Visicorder Oscillograph. Call your nearest Minneapolis-Honeywell Industrial Sales Office for a demonstration.

Reference Data: Write for Visicorder Bulletin Minneapolis-Honeyuell Regulator Co.,
Industrial Products Group. Heiland Division 5200 E. Evans Ave., Denver 22, Colo.

Honeywell

Inherently simple design of the Sola Constant Voltage DC Power Supply is shown by this general schematic diagram. Its hasic simplicity of design and its reliable components make

Just three reliable components make Sola's regulated dc power supply simple and rugged

Sola Electric Co. (an outfit where complexity-for-itsown sake wins no promotions) has combined three simple, reliable components - a special type of Sola Constant Voltage Transformer, a semiconductor rectifier, and a high-capacitance filter - to make a regulated dc power supply that is rugged and dependable.

Electrical characteristics of the special CV transformer maximize most of the advantages of the semiconductor rectifier and the capacitive filter, while virtually eliminating their disadvantages. This particularly happy combination of components gives output in the ampere range, regulation within $\pm 1 \sigma_{\%}$ even under $\pm 10 \%$ line voltage variation, and ripple less than $1 \% \mathrm{rms}$. It handles variable, pulse, or high-amperage loads without a second thought . . . it even puts up with dead shorts.

Size? Maintenance? Cost? Sola's simplicity drive permits the units to occupy minimum space, to do without movable or expendable parts, and to sell at a reasonable price.
Simple construction, reliability and compactness are benefits common to the entire line of regulated dc power supplies. Sola designs and produces hundreds of ratings to meet widely varying electrical and mechanical requirements of equipment manufacturers; and also produces complete power supply systems to specification. It is set up to handle specific needs in production quantities. Your nearby sales engineer can supply all the facts.
In addition to custom service, Sola currently stocks six fixed-output models ranging from 24 volts at six amps to 250 volts at one amp. Six adjustable models are stocked, too.

For complete data write for Bulletin 31C-CV-235
Sola Electric Co., 4633 W. 16th St., Chicago 50, III., Blshop 2-1414 • Offices in principal cities • In Canada, Sola Electric (Canada) Led., 24 Canmotor Ave., Toronto 18 , Ont.

NEW PRODUCTS

Panel Switch Light

1-3/8 in. long

This dpedt double break switch-light combination has an independent 28 v lamp circuit for panel mounting. It is supplied in momentary shap action or push-on push-off shap action with contacts rated at 25 v de, 5 amp , inductive. Operating pressure is approximately 4 lb with $5 / 32$ in . overall travel. The unit has a 58 in . mounting thread, a $7 / 8 \mathrm{in}$. case diameter, and a $1-3 / 8 \mathrm{in}$. length from mounting surface to and including terminals.

Pendar, Ince, Switch Div., Dept. ED, P.O. Box 3.355, Van Nuys, Calif.

Circle 110 on reader-service card
Servo Motors
Size 10 and 11

These size 10 and 11 servo motors are avail able for 26,55 , or 115 v ac, 400 cps operation They are 6 pole units with a stall torque of 0.1 oz-in. minimum and a no load speed of 6500 rpm Rotor inertia is $1 \mathrm{~g} \mathrm{~cm}^{2}$, and acceleration at stal is $42,(O K)$ radians per sec:. The units are 1-11/3: in. long and designed to operate in ambient tem peratures from -6.5 to +125 C. Special voltag requirements are available on order.

Western Gear Corp., Electro Products Dis Dept. EID, 1.32 W. Colorado St., Pasadena, Calit circle 111 on reader-service card

ELECTRONIC DESIGN • March 18, 195

FLIGHT DATA and CONTROL ENGINEERS

Cronss urn fromtiers in sv:strm rlectrumics "t The Giarrell Cirrp". rution.
Highlelerel ussignments in the de. sign and derolopment of swstem wher tromirs are arvilable for cuginerers in the forllowink specialtics:
I. Electronic and flight data SYSTEMS AND CONTROLS A wide choice of opportunities exists for creative R \& 1) engincers having specialized experience with control devices such as: transducers, flight data computers, Mach winwer, servo-merif. anisms, eircuit and analog computer designs utilizing transistors, magamps and vacuum tubes,
2. SERVO-MECHANISMS AND ELECTRO-MAGNETICS Requires engineers with experience or academic trainink in the advanced design, development and application of makamp inductors and transformers.
3. Flight instruments and transDUCERS

1) DESIGN ANALYSIS Requires engineercapable of performance analysi, throughout preliminary design with ability to prepare and coordinate related proposals.
2) Development Requircs engineers skilled with the analysis and synthesis of dynamic systems including design of miniature mechanisms in which low friction freedom from vibration effects and compensation of thermo expansion are important.
4. PROPOSAL AND QUALTEST ENGINEER For specification review, proposal and qualtest analysis and report writing assignments. Three years electronic, electrical or mechanical experience required.
forward resume to:
Mr. G. D. Bradloy mes Gampert
> comporantion

9851 S. Sepulved alyd.
Los Angeles 45, Calif: divisions.
Research Manufacturing Los Angeles
 AiResearch AiResearch Industrial Air Cruisers - Airsupply Aero Engineering

Advanced electro-mechanical

 systemsAiResearch Spoiler
Servo Control System for Canadair's
CL-28 and CL-44

A ubstantial increast in aileron "ffectiveness is achieved by the AiResearch Spoiler Servo Control System which augments the function of the aileron by increasing the rate of roll of the aircraft. Full spoiler surface travel is achieved in 0.5 sec onds by electromagnetic clutching of the 4 H.P. power servo.
The added control surface of the Spoiler Control Servo System operates on the inboard side of each aileron. This AiResearch electromechanical system automatically synchronizes the spoiler control surface to move simultaneously with the lace to move simultaneously with the
aileron by utilizing a magnetic amaileron by utilizing a magnetic am-
plifier and position transducers in the closed loop servo system.

This new Spoiler Control System but one of the many types of elec iro-mechanical systems developed and manufactured by AiResearch. Other recent examples include radar antenna positioning equipment magnetron and Klystron tuning devices. and safe-arm mechanisms for missile igniting.
The company's more than 20 years of experience in the development and manufacture of electro-mechanical equipment extends into aircraft. ground handling. ordnance and mis. sile systems of all types. AiResearch sile systems of all types. AiResearch capability and system responsibility ran meet your specific electro-
mechanical requirements. Your inquiries are invited.

AiResearch Manufacturing Divisions

Los Angeles 4.5, California • Phoenix, Arizona

Are you a victim of SPECIPHOBIA?*

* That martyred, hands-tied feeling you get when your specification is loaded.

Did your contract specify that you use unproved devices instead of tubes? For a reason? Or just because something "new" was available? (Which meant derating your whole circuit just to get the performance you know tubes will give!) Well, mister designer, you are al victim of speciphobia!
Don't feel bad. Lots of circuit designers are in the same quandary. But why not do something about it? Summon your manly courage, and go ask this specifier whether he wants novelty (at an awful price), or
known performance, known reliability, safe design, good logistics, systems flexibility,
and economy (all of which you can prove). In short...a design that doesn't apologize!
Then, when he innocently asks ". . . Why of course. How can you get this?", just tell him to get out of orbit and specify tubes. As a matter of fact, General Electric 5-Star Receiving T'ubes. And tell him that you'll apply them with all your up-to-date know how on how to care for an electronic circuit

If he's still skeptical, just ask him to come see us. We've got some data we'd be glad to show, and match with anything he's got. And while we're at it, don't forget to have us show him the tubes we're working on for the circuits you'll be designing next. Wiant small size? Well, you ain't seen nothin' yet! Receiving Tube Dept., Owensboro, Ky.
P. S. Come on over to Booth 2908 at the IRE Show, and we'll show you tubes

Progress /s Our Most Important Product

NEW PRODUCTS

Altitude Test Chamber
Has low loading level

This self-contained altitude test chamber has a low loading level to simplify the testing of heavy units or components. The bottom of the 6.4 cu ft test space is less than desk height, or 29 in . from the floor. The low test area also enables the operator to reach the back of the test space more readily. The chamber provides temperatures from - 100 to +300 F , simulated altitudes to $150,000 \mathrm{ft}$, and relative humidity from 20 to 95%. It has all necessary instrumentation for completely automatic operation and recording.
The American Research Corp., Dept. ED, Farmington, Conn.
CIRCLE 113 ON READER-SERVICE CARD

Miniature Lowpass Filters

Have 50 db attenuation
These small filters have 50 db minimum attenuation at the critical frequency. Attenuation of 25 db or more is maintained up to ten times this specified frequency. The passband insertion loss falls to 3 db at (). 01 times the maximum attenua tion frequency. Encapsulated in epoxy resin for stability in environmental extremes, the units are $13 / 16 \mathrm{in}$. in diameter and $1-1 / 2$ in high. Mounting is accomplished with three no. 18 solid coppes tinned leads. Rejection frequencie down to $\mathfrak{2}^{(0)}$ cps may be specified.

T T Electronics, Inc., Dept. ED P.O. Box 180. Culver City, Calif. CIRCLE 114 ON READER-SERVICE CARE

- CIRCLE 112 ON READER-SERVICE CARD

UHF Broadband Amplifier
Provides 100 w output

When driven by a suitable signal, type RA-7 broadband amplifier is capable of providing an output power of 100 w or more in the 470 to 890 me trequency range. The unit has a variable bandwidth, full metering, and a self-contained power supply and provides a method for adjusting the position ,f the feed point along the cathode line to insure proper drive impedance and low iswr. Operating as a translator amplifier, the 1RA-7 makes television services possible for communities shielded from originating TV stations and beyond the range of 10 w translators.
Adler Electronics, Inc., Dept. ED, 1 LeFevre Lane, New Rochelle, N.Y.
CIRCIE 115 ON READER-SERVICE CARD

Underwater TV Camera Cable

Has 0.99 in. diameter
This inderwater TV camera able is composed of two RG-59/U oaxial cables, two insulated and ucketed 7 -wire control cable troups, and two 4 -wire shielded ontrol cables. A polyvinylchloride lelt over the assembly is extruded (1) fill all voids, and the whole is vrapped in cadmium bronze shieldug braid which is in turn covered y a lead cured neoprene sheath. he cable diameter is 0.99 in .
Rome Cable Corp., Dept. ED, iome, N.Y.
Circle 116 on reader-service card
CIRCLE 117 ON READER-SERVICE CARD \rightarrow
this is Cable Systematics

Advanced cabling techniques developed by Robertshaw provide the reliability demanded by today's complex missile site requirements. Whether your needs involve short lengths of custom multiconductor cable or elaborate electronic cable assemblies, Robertshaw's progressive approach to cable design and fabrication mean faster delivery and less cost. Success of these concepts is being evidenced daily on the launching pads at Canaveral and Vandenberg. They can be adapted to help solve your cable assignment. Write for Cable Facility Brochure... Aeronautical \& Instrument Division, Robertshaw-Fulton Controls Company. Santa Ana Free. way at Euclid Ave., Anaheim, Calif.

NEW PRODUCTS

Thermostats
For limit protection

For operating temperatures up to 3.350 F . series 11-T thermostats have a high electrical rating and occupy a minimum of space. For limit protection, temperature control, or fan control. they can be used in central heating furnaces, air conditioning and rentilating equipment, aircraft equipment, and miscellaneous devices. The snap action units are designed for both spst and spedt operation and are available with nomally opern or normally closed contacts. They have surface or watertight mountings and enchosed or exposed bimetal dises and come in a choice of terminals that include inclined blades, vertical blades, or screw types. Temperature calibration is factory preset and nonadjustable.

Therm-()-1)isc, Ince, Dept. ED, Wansfield, Ohio.

CIRCLE 119 ON READER-SERVICE CARD

Flat Cable
Voltage ratings from 300 to 3000 v rms

Designed to customer specifications, Turbo Ribbon Cable may be assembled from single conductors, twisterl and jacketed pairs, triples, coaxial cables, shielded and jacketed wires, or any combination of these. Conductor sizes are 28 to 8 AWG; stranded or solid, and voltage ratings are $3(0)$ to $: 3(H)(0) \mathrm{v}$, rms. Widths up to 2 in . are available.
The Willian Brand \& (o). Inc., Dept. EI). Willimantic, Comn.

CIRCLE 120 ON READER-SERVICE CARD
Have you sent us your subscription renewal form?

A book every technical man should have

Sets forth the basic principles and techniques of lechnical writing for handy reference or serious study
1)ruwing upen tuany years of ex perience. the editurs of Phiko vele this practical kuide tor techni cal wroting A useful berok for the (11).al who occasionnally writes tech. mical explatations and procedures or the carter techntal writer Govers the subiect from baste fundamentals, writing circuit ex planations and procedural instruc (toms, to) preparing a manuscrip for printing . . With spectal em Mhasis one equipment manuars. Over 200 pades, spiral bound,

Prue $\$ 3^{75}$ Pustage Prepaid.
MAIL COUPON TODAY FOR PROMPT DELIVERY
22n phico TECHNOLOGICAL CENTER
22 Phlladelphio 32. Po.
Please send the TECHNICAL WRITING GUIDE poske chect make check or money order payable io
Philco Technological Cenler. Sorry. No C.O.D.'.)
name
ADDRESS
CITY-

CIRCLE 121 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 18, 1959

Ultrasonic Delay Line
Has 10 mc bandwidth

This ultrasonic delay line has: delay of 900 usec; an average maximum secondary level of over 70 db below the main delay; triple tratel signals of 60 (th: and direct feed through over 80 db . It has a 10 mc bandwidth centered at 40 mc . The bandwidth to the 3 db points is 22 inc. Insertion loss into $\overline{5}$) ohms is .35 db with a capacity of $60 \mu \mu \mathrm{fat}$ input and output. The unit is designed with a mid-transducer tap for optimizing matching network problems. It weighs under 7 ll and is supplied in a 14-1/2 in. diameter evacmated alumimun case 1 in. deep.

Aremberg Ultrasonic Lab, Inc. Dept. ED. 94 (ireen St., Jamaica Plain 30, Mass.

CIRCLE 122 ON READER-SERVICE CARD

Phenolic Laminate

Shock-resistant

A glass-reinforced XXXP lamimate, NELCO 230-R equals or exceeds the requirements of MIL P-3115-B. Type PBE-P grade. Cat pable of being cold-punched in thicknesses to $3 / 32$ in., it has low moisture absorption, good electrical characteristics. and ill impact strength eight times the standard NEMA requirement. It is furnished plain or copper-clad in thicknesses from 0.0.32 to 1 in . Standard sheet izes are from 36×42 in. to 36 a i2 in.

New England Laminates Co. Inc., Dept. EI), 181 Canal St. Stamford, Conn.
CIRCLE 123 ON READER-SERVICE CARD CIRCLE 124 ON READER-SERVICE CARO \rightarrow

THE ONLY ULTRASONIC CLEANERS WITH A CHOICE OF TRANSDUCER POWERS!

All prices include tank and matching generator

Choose the correct cleaner for your purposel

In determining which ultrasonic cleaning unit to buy, remember that all ultrasonic cleaning systems are not alike. The principle is the same, but the results are not. The power and frequency of the transducer are the key factors in determining the success or failure of applying ultrasonic energy for solving industry's cleaning problems. Acoustica research has developed two types of transducers for its ultrasonic cleaning unitsthe General Purpose 40 kc barium titanate transducer and the Multipower heavy duty 20kc transducer. Expert Acoustica engineers are ready to advise you which type will better suit your needs. Mail the coupon below for information-there is no obligation.

```
Acoustica Associates, Inc.
26 Windsor Ave., Mineola, N. Y., Dept. ED
```

Send information to help us determine the correc ultrasonic cleaner for our purpose.

NAME
TITLE \& COMPANY
ADDRESS
CITY

NEW PRODUCTS

RF Coaxial Lobing Switch

Has 1.2 to 1 vswr

Type SP2T is a 0.7 lb rf coaxial lobing switch with a range of 100 to $\mathbf{1 0 , 0 0 0} \mathrm{mc}$, a maximum vswr of 1.2 to 1 , and an isolation rating of 50 db down. Make hefore break or break before make switching is available. The unit is hermetically sealed, glass to metal, and has a minimum life of 1000 hr . Several models are available with a choice of type N, HN, or SC rf connectors.
Don-Lan Electronics Co., Dept. ED, 1101 Olympic Blid., Santa Monica, Calif.
CIRCLE 126 ON READER-SERVICE CARD

Precision Dial Comparator
 Direct reading in 0.00005 in .

This precision dial comparator is drect reading in 0.0000 .5 in . and has a range of 0.004 in . Fully jeweled and shock resistant, it provides dual gaging contact pressure and fine adjustment on both stand and gage.

Hamilton Watch Company, In dustrial Dis.. Dept. E.D. I ancaster Pa .

CIRCLE 127 ON READER-SERVICE CARD

Model 310 a complete miniature V-O-M with single switch selection and the ranges and accura: of units Model 10 mes its size. Used with in it becomes one of the world's most versatile pieces of test equipmenteven measuring current llow without stripping wires.

Model 630-PL V-O-M with such ad vanced features as an unbreakable anced leatures as an unbreakabic shadowless, instant vision, polarity reversing switch, single king size knob for selecting both range and circuit, continuous resistance read

Model 690-A. a new Transistor Teste with more Aripiell pius in accurac and simplicity, for testing leakage and
gain of all tow and medium power PNP and NPN transistors. Small, rugged. battery-operated, it measures DC Beta from 5 to infinity. Alfords exact tests for shorts, checks forward \& reverse leakage tion of transistor types. positive "off" to tion of transistor types, positive "olf to "calibrate" and "gain" buttons eliminate errors, transistor socket and external
leads for any basing arrangement.

New Unimeters-a great step ventory tle ibility while cutininventory cost These cuttin Your-Range unimeters consist of only two basic meter movements, which can be combined with an one of a number of separate dial of meter ranges. Movement quickly and simply slide onto dialcomponents and lock togetherno soldering, no wiring. Exclusive Triplett Bar-Ring construction fo seli-shrelding, greater accurac
and sensitivity.

Catadioptric Light Screen

Sensitive to hypervelocity projectile

Using the catadioptric tech nique of reflection and refraction this light screen is sensitive to hypervelocity projectiles as smal

* CIRCLE 125 ON READER-SERVICE CARD
as 0.22 caliber. Designed for ballistic range instrumentation, the device sets up a screen of light consisting of a collimated light beam which is reflected many times between parallel mirrors before passing into a photoelectric detector. The effective width of the beam interrupted by a projectile is $3 / 4 \mathrm{in}$. in any part of a $6 \times 6 \mathrm{in}$. field. This gives a maxi mum phototube output signal over a wide range of projectile sizes. A current change is camsed in the detector when a hypervelocity projectile breaks the light screen at any point. The current change is amplified and is used to trigger
shadowgraph system. These systems can produce photographic records of missile models in flight.
Aveo MIg. Corp., Research and Advanced Development Div. Dept. ED, 201 Lowell St., Wilmington, Mass.

CIRCLE 128 ON READER-SERVICE CARD

RF Choke Coil

Occupies 0.0066 cu in.

Occupying a volume of less than 0.0066 cul in.. the Wee-Ductor rf choke coil covers a full range of inductances from 0.1 to 1000) wh and has a high current rating at 1.2 .5 C . It consists of a high permeability ferrite sleeve and core sealed in epoxy resin for moisture resistance per MIL-C-15305A. The unit is 0.15 in . in diameter and 0.375 in . long.
Essex Electronics, Dept. ED, Berkeley Heights, N.J.
circie 129 on reader-service card CIRCLE 130 ON READER-SERVICE CARD \geqslant

AC to DC-regulated $\pm 0.1 \%$ for 6 months

Characteristics

Iaput: 115 V AC 60 cps or 400 cps or
$115 / 208$ V AC 3 phase 60 cps or 400 cps
Output. Available in discrete steps of 0.5 volt from
Alther: a. 12.0 volts $0 C$ to $28.0 \mathrm{~V} D C$ at 1.0 ampere
of be 28.0 volts $D C$ to 50.0 V DC at 0.5 ampere
Output is floating and can be used either as a positive or negative supply.
Load Regulation: Output voltage is regulated within $\pm 0.1 \%$ from 0.5 to 1.0 ampere.

Line Rezulation: Output voltage is regulated within $\pm 0.1 \%$ for line varia tions of $\pm 10 \%$ in voltage and frequency.
Tomperature: Output voltage is regulated within $\pm 0.1 \%$. under full or minimum load, over the temperature range of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Ripple: Less than I milli-volt RMS or 3 milli-volts peak to peak.
Stability: 0.1% for a period of 6 months under a fixed load and line.

Read about this unit and many other mıssile and airborne types in the new Daven Catalog of Transistorized Power Supplies!

Roliability: Better than .95 for a period of 365 days, at 8 hours a day with life expectancy of 10 years.
Output Impedance: Less than 20 micro-ohms at $D C$.
This unit can be supplied as a DC to DC Power Supply.

Applications

- Voltage reference in computers and complex networks.
- Laboratory voltage standard.
- Cascaded to provide higher voltages without degradation of performance

THE $D A V E N$ co. (D)

LIVINGSTON, NEW JERSEV

Why it pays you to specify

Bendix QWL Electrical Connectors for use with Multi-conductor Cable

For use with multi-conductor cable on missile launching ground radar, and other equipment, the Bendix* QWL Electrical Connector meets the highest standards of design and performance.

A heavy-duty waterproof power and control connector, the QWL Series provides outstanding features: - The strength of machined bar stock aluminum with shock resistance and pressurization of resilient inserts. - The fast mating and disconnecting of a modified double stub thread. - The resistance to loosening under vibration provided by special tapered cross-section thread design. (Easily hand cleaned when contaminated with mud or sand.) - The outstanding with the case hardening effect of Alumilite 225 anodic finish proofing provided by the cable-compressing gland used within the cable accessory. - The watertight connector assembly assured by neoprene sealing gaskets. - The addi
ional cable locking produced by a cable accessory designed to accommodate a Kellems stainless steel wire strain relief grip. - Prevention of inadvertent loosening insured by a left-hand accessory thread. - The high current capacity and low voltage drop of high-grade copper alloy contacts
ntact sizes. 16 and 12 are closed entry desig.
These are s few of the reasons it will pay you to specify the Bendix QWL electrical connector for the job that requires exceptional performance over long periods of time. *trademar.
 Conodian Afiliote: Aviotion Electric tit., 200 Lourentien Blvd., Montreal 9 , Quebec
Factory Branch Offes: Burbank, Colif.; Orliondo, FIorida: CCicogo, III.; Teaneck,

Scintilla Division

CIRCLE 131 ON READER-SERVICE CARD

A PHASE SENSITIVE NULL METER WHEREIN NOISE AND HARMONIC VOLTAGES ARE EFFECTIVELY ELIMINATED

Allows separate balance of inphase or quadrature in null circuits.

- Eliminates the necessity for filters.
- High sensitivity.
- Direction of null clearly shown on zero centered meter.
- Synchro zeroing without recourse to coarse and fine switching.

For further information contact your nearest representative or write for brechure

INDUSTRIAL TEST EQUIPMENT CO.

55 E. Ilth ST. . NEW YORK 3 - GR. 3-4684 Visit Booth 3200 IRE Show-Now York Colisoum CIRCLE 132 ON READER-SERVICE CARD

NEW VARIGRIP...
 ESNA ${ }^{\text {quidk-relesse }}$ FASTENER

Consider these unique advantages:

1. Two-piece unit consisting of a self-locking Elastic Stop nut as the latch-lock and a retainer basket.
2. Stop nut fits any standard $1 / 4^{\prime \prime}$-20 bolt. User supplies bolt in head style to suit job needs.
3. When bolt is installed, the nut is held in basket and tightened to the exact setting required by structure thickness. Infinite adjustment possible for full threaded length of the bolt.
4. Eliminates inventory of multiple length studs.
5. Bolt-nut latch-lock can be tightened or reset at any time.
6. One quarter-turn lock and unlock action; high re-usability.

Available in $1 / 1^{\prime \prime \prime} .20$ size only. For complete design information write to Dept. s33.357

ESMI ELASTIC STOP NUT CORPORATION OF AMERICA

2330 Vauxhall Road, Union, Now Jersay CIRCLE 133 ON READER-SERVICE CARD

NEW PRODUCTS

Slip Ring and Brush Assembly Has 2 mv noise level

With all 40 circuits tied in series and with 50 mia of current flowing through this slip ring and brush assembly, the total combined noise level of the 40 slip rings and 80 brushes is under 2 inv. This noise level can be maintained through 1000 hr of operation at $5(x) \mathrm{rpm}$ with 10 cpss viluration and temperature extremes of $-65 \mathrm{to}+300 \mathrm{~F}$. The breakaway friction level of the 40 circuit assembly, including ball bearings, is under 75 g cm . Capacitance is less than 2() puf and insulation resistance is greater than $\overline{J O}(0)$ meg circonit to circuit and cirenit to ground. The assembly meets all MIL-5 400 A requirements.
Slip Ring Company of America, Dept. E1). 5456 IV. Washington Blvi., Los Angeles 16, Calif.

CIRCLE 134 ON READER-SERVICE CARD
Solid State Relays
Withstand heavy surges

Included in this line of solid state relays are current, voltage, temperature time delay, and many other types for both automatic and remote control and for ac and de operation. These unit have no moving parts or magnetic circuits, anc do not depreciate with time. Unlike transistors they are uninjured by heavy peaks and surges.
Clark Electronic Labs, Dept. ED. Box 165 Palm Springs, Calif

CIRCLE IJS ON READER-SERVICE CARD
CIRCLE 136 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 18, 1959

2½-inch size

ACTUAL SIZE

31/2-inch size

IN SMALL PANEL INSTRUMENTS

Truly distinctive appearance, plus excellent readability and reliable operation in a modern new design; BIG numerals, BIG scale, BIG look, yet they will fit into the same usable panel space as ordinary instruments.

Progress /s Our Most Important Product GENERAL ELECTRIC

THE

IN GENERAL ELECTRIC'S SMALL PANEL INSTRUMENTS

Now, you can improve the appearance of your finest switchboards and panels with General Electric's dramatic BIG LOOK in small panel instruments. Backed by more than twenty-seven years of leadership and experience in creative panel instrument design, they give you these outstanding advantages:

DISTINCTIVE APPEARANCE

Functional new beauty in a graceful, clean-line design results from a modern blend of round and square elements. Although this attractive design makes the new instruments look much bigger, they will actually fit into the same usable panel space as ordinary instruments. Big border-to-border scale is "framed" in aluminum for better color blending and less reflectance. The color area of the window helps to channel the eye for quick reading. This dis-
tinctive color area is available in standard colors or the color of your choice in quantity orders.

EXCELLENT READABILITY

New design makes possible up to $28^{\circ} \%$ increase in scale length over types replaced. Shadows are eliminated by cover design which admits natural light from all sides. Big, clear, upper-case numerals are positioned above the scale graduations (except three-digit end points) and cannot be obscured by the tapered pointer. The absence of arclines contributes to the pleasing appearance and facilitates quick, accurate readings.

RELIABLE OPERATION

Built-in General Electric quality assures extra long, trouble-free life with these outstanding features:
Shielded Mechanisms-Self-shielding of
all d-c movements allows mounting on magnetic or non-magnetic panels without special calibration-cluster mounting bezel-to-bezel without interactionand the effects of stray magnetic fields are minimızed.
Completely Sealed-Internal parts and movements are protected from dirt. dust and water. Cases are sealed with neoprene gaskets in ar-conditioned assembly areas.
Pivots and Jewels-Moving parts are supported on rugged steel pivots which rotate in low-friction. highly-polished glass jewels.

NEW LOW PRICE

Improved manufacturing techniques and facilities enable General Electric to offer you these new instruments at a new low price. See pages 3 and 4 for list prices.

ALL D-C MECHANISMS ARE SELF-SHIELDED

Exclusive moving-magnot mochanism, used in all d-e ratings oxcept ammotors bolow 5 MA , olimi nates noed for zero-sot because convontional control springs are roplaced by a control magnef. When do-onergized, moving magnet aligns with control magnet, bringing pointor to zero.

Core-magnet, used in d-e milliameters below 5 MA and all microammeters, has conventional confrol springs and requires a zero-sef.

PRICING INFORMATION-Direct-current Types

Rating	Scale	Approx Terminal Resistance	DW.91, $21 / 2$-inch		D0.91, $31 / 2$-inch		Reting
			Cor. No.	Lis1 Price, 60.87A	Cot. No.	List Price, G0.87A	
D.C VOLTMETERS							
Volm	Vols						Vols
$\begin{gathered} 1.5 \\ 3^{5} \\ 10 \end{gathered}$	$\begin{aligned} & 0.1 .5 \\ & 0.3 \\ & 0.5 \\ & 0.10 \end{aligned}$		$\begin{aligned} & 810 \times 84 \\ & 810 \times 86 \\ & 810877 \\ & 810 \times 89 \end{aligned}$	$\begin{aligned} & \$ 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	640×84 640×86 640×87 640×89 \qquad	$\begin{array}{r} \$ 18 \\ 18 \\ 18 \\ 10 \end{array}$	$\begin{gathered} 1.5 \\ 3 \\ 5 \\ 10 \end{gathered}$
$\begin{aligned} & 15 \\ & 30 \\ & 50 \\ & 80 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.30 \\ & 0.50 \\ & 0.80 \end{aligned}$	1000 ohms per voll	$\begin{aligned} & 810 \times 90 \\ & 810 \times 93 \\ & 81094 \\ & 810 \times 95 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 840 \times 90 \\ & 640 \times 93 \\ & 640 \times 94 \\ & 640 \times 95 \end{aligned}$	$\begin{aligned} & 18 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & 50 \\ & 80 \end{aligned}$
$\begin{aligned} & 100 \\ & 150 \\ & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.150 \\ & 0.300 \\ & 0.500 \end{aligned}$		$\begin{aligned} & 810 \times 96 \\ & 810 \times 97 \\ & 811 \times 1 \end{aligned}$	18 18 19	640×96 640×97 643×1 643×2	$\begin{aligned} & 19 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & 300 \\ & 500 \end{aligned}$
D-C AMMETERS (Self-contained)							
Amperes	Amperes						Amperes
$\begin{array}{r} 1 \\ 2 \\ 5 \\ 10 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.5 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.0500 \\ & 0.0250 \\ & 0.0100 \\ & 0.0050 \end{aligned}$	$\begin{aligned} & 810 \times 29 \\ & 810 \times 31 \\ & 810 \times 33 \\ & 810 \times 35 \end{aligned}$	$\begin{aligned} & \$ 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 640 \times 70 \\ & 640 \times 72 \\ & 640 \times 74 \\ & 640 \times 76 \end{aligned}$	$\begin{aligned} & \$ 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{array}{r} 1 \\ 2 \\ 5 \\ 10 \end{array}$
$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.20 \\ & 0.30 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.0033 \\ & 0.0025 \\ & 0.00167 \\ & 0.00100 \end{aligned}$	$\begin{aligned} & 810 \times 36 \\ & 810 \times 37 \\ & 810 \times 38 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 640 \times 77 \\ & 640 \times 78 \\ & 640 \times 79 \\ & 640 \times 80 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 30 \end{aligned}$
D.C AMMETERS (For use with extornal shunts-prices do not include shunt or shunt leads.)							
Millivalts	Amperes						Millivolts
50 50 50 50	$\begin{aligned} & 0.50 \\ & 0.75 \\ & 0.100 \\ & 0.150 \end{aligned}$	2.5 2.5 2.5 2.5	818×34 818×39 818×4 818×45	$\begin{aligned} & \$ 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 813 \times 52 \\ & 813 \times 58 \\ & 813 \times 58 \end{aligned}$	$\begin{array}{r} \$ 16 \\ 16 \\ 16 \\ 16 \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$
50 50 50 50	0.200 0.250 0.300 0.400	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	818×46 818×47 818×48 818×48 818×50	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { so } \\ & \text { so } \\ & \text { so } \\ & \text { so } \end{aligned}$
50 50 50 50 50		$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	818×52 818×54 818×58 818×62	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	813×65 813×67 813×71 813×75	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$
$\begin{array}{r} 50 \\ 50 \\ 50 \\ \phi 100 \end{array}$	0.1 .2 KA 0.15 KA 0.2 KA	2.5 2.5 2.5 5.0	$\begin{gathered} 818 \times 96 \\ 818 \times 99 \\ 819 \times 5 \\ \phi \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 813 \times 77 \\ & 814 \times 13 \\ & 814 \times 14 \end{aligned}$	16 16 16 16	$\begin{array}{r} 50 \\ 50 \\ 50 \\ \phi 100 \end{array}$
D.C MICROAMMETERS							
Mieroampares							Microampores
$\begin{array}{r} +20 \\ +50 \\ +100 \\ +200 \\ +500 \end{array}$	$\begin{aligned} & 0.20 \\ & 0.50 \\ & 0.100 \\ & 0.200 \\ & 0.500 \end{aligned}$	$\begin{array}{r} 3400 \\ 1600 \\ 1525 \\ 225 \\ 30 \end{array}$	810×1 810×3 810×5 810×7 810×9	$\begin{array}{r} \$ 35 \\ 27 \\ 23 \\ 20 \\ 18 \end{array}$	$\begin{aligned} & 698 \times 1 \\ & 698 \times 3 \\ & 698 \times 5 \\ & 6989 \times 7 \\ & 698 \times 9 \end{aligned}$	$\begin{array}{r} \$ 36 \\ 28 \\ 24 \\ 21 \\ 19 \end{array}$	$\begin{array}{r} +20 \\ +50 \\ +100 \\ +200 \\ +500 \end{array}$
D.C MILLIAMMETERS							
Milliamperes							Milliamperes
$\begin{aligned} & +1 \\ & +1.5 \\ & +1.3 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 .5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.6 \\ & 2.6 \end{aligned}$	810×11 810×12 810×14	$\begin{gathered} \$ 17 \\ 17 \\ 17 \end{gathered}$	698×11 698×12 698×14	$\begin{array}{r} \$ 18 \\ 18 \\ 18 \end{array}$	$\begin{aligned} & +1 \\ & +1.5 \\ & +3.3 \end{aligned}$
$\begin{aligned} & 5 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.10 \\ & 0.20 \end{aligned}$	$\begin{gathered} 13.6 \\ 3.0 \\ .52 \end{gathered}$	810×15 810×16 810×17	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 640 \times 56 \\ & 640 \times 57 \\ & 640 \times 58 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 20 \end{array}$
$\begin{aligned} & 30 \\ & 50 \\ & 80 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.50 \\ & 0.80 \end{aligned}$	$\begin{array}{r} 1.7 \\ 1.0 \\ \hline \end{array}$	810×19 810×20 810×21	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 640 \times 60 \\ & 640 \times 61 \\ & 64 \times 062 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$
$\begin{aligned} & 100 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.150 \\ & 0.200 \end{aligned}$	$\begin{aligned} & .5 \\ & .4 \\ & .3 \end{aligned}$	$\begin{aligned} & 810 \times 22 \\ & 810 \times 23 \\ & 810 \times 24 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 640 \times 63 \\ & 640 \times 64 \\ & 640 \times 65 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & 150 \\ & 200 \end{aligned}$
$\begin{aligned} & 250 \\ & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.250 \\ & 0.300 \\ & 0.500 \end{aligned}$	$\begin{aligned} & .25 \\ & .2 \\ & \hline \end{aligned}$	810×25 810×26 810×27	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 640 \times 66 \\ & 640 \times 67 \\ & 640 \times 68 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 500 \end{aligned}$

* External resistors are used on DW. 91 obove 300 volts and DO. 91 obove 600 volts.
ϕ When instruments ore required for 100 MV external shunt, order 100 MV roting and give scole
\dagger These ralings have core-magnel movaments (see Mechonisms)
NOTE: To astablish your quantity discount, contoct your ncen est G-E Apparatus Seles Office range desired.

PRICING INFORMATION-Alternating-current Types

Rating	Scole	Approx Terminal Resistance Ohms	AW-91, $2^{1 / 2}$ - -inch		A0.91, $31 / 2$-inch		Rating
			Cot. No.	List Price, GO.87A	Cor. No.	List Price, GO-87A	
A.C VOLTMETERS Self-contained							
Volis	Volts						Volis
$\begin{gathered} 1.5 \\ 3 \\ 5 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 0.1 .5 \\ & 0.3 \\ & 0.5 \\ & 0.10 \\ & 0.10 \end{aligned}$	$\begin{array}{r} 3.0 \\ 11.1 \\ 29 \\ 110 \\ 251 \end{array}$	$\begin{aligned} & 823 \times 54 \\ & 823 \times 57 \\ & 823 \times 58 \\ & 823 \times 61 \\ & 823 \times 62 \end{aligned}$	$\begin{aligned} & \$ 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 54 \\ & 824 \times 57 \\ & 824 \times 58 \\ & 824 \times 61 \\ & 824 \times 62 \end{aligned}$	$\begin{aligned} & \$ 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{gathered} 1.5 \\ 3 \\ 5 \\ 10 \\ 15 \end{gathered}$
$\begin{array}{r} 30 \\ 50 \\ 150 \\ 300 \\ 500 \end{array}$	$\begin{aligned} & 0.30 \\ & 0-50 \\ & 0.150 \\ & 0.300 \\ & 0.500 \end{aligned}$	$\begin{array}{r} 779 \\ 2500 \\ 15000 \\ 54000 \\ 118000 \end{array}$	$\begin{aligned} & 823 \times 65 \\ & 823 \times 66 \\ & 823 \times 70 \\ & 823 \times 74 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 21 \end{aligned}$	$\begin{aligned} & 824 \times 65 \\ & 824 \times 66 \\ & 824 \times 70 \\ & 824 \times 74 \\ & 824 \times 76 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 22 \\ & 29 \end{aligned}$	$\begin{array}{r} 30 \\ 50 \\ 150 \\ 300 \\ 500 \end{array}$
A-C VOLTMETERS Transformer-rated (Scale marked in terms of transformer ratio)*							
Volts	Volts						Volis
$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.600 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 15000 \\ & 15000 \\ & 15000 \end{aligned}$	$\begin{aligned} & 823 \times 81 \\ & 823 \times 82 \\ & 823 \times 83 \end{aligned}$	$\begin{array}{r} \$ 19 \\ 19 \\ 19 \end{array}$	$\begin{aligned} & 824 \times 81 \\ & 824 \times 82 \\ & 824 \times 83 \end{aligned}$	$\begin{array}{r} \$ 20 \\ 20 \\ 20 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$
A-C AMMETERS Self-contained							
Ampores	Amperer						Amperes
$\begin{array}{r} 1 \\ 3 \\ 5 \\ 8 \\ 8 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0-9 \\ & 0.8 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.015 \\ & 0.007 \\ & 0.003 \\ & 0.0024 \end{aligned}$	$\begin{aligned} & 823 \times 20 \\ & 823 \times 24 \\ & 823 \times 25 \\ & 823 \times 28 \\ & 823 \times 29 \end{aligned}$	$\begin{aligned} & 517 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 20 \\ & 824 \times 24 \\ & 824 \times 25 \\ & 824 \times 8 \\ & 824 \times 29 \end{aligned}$	$\begin{array}{r} \$ 18 \\ 18 \\ 18 \\ 18 \\ 18 \end{array}$	$\begin{array}{r} 1 \\ \mathbf{3} \\ 5 \\ 8 \\ 10 \end{array}$
15 20 30 50	$\begin{aligned} & 0.15 \\ & 0-20 \\ & 0.30 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.0016 \\ & 0.001 \\ & 0.0006 \\ & 0.0004 \end{aligned}$	$\begin{aligned} & 823 \times 31 \\ & 823 \times 32 \\ & 823 \times 34 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 31 \\ & 824 \times 32 \\ & 824 \times 34 \\ & 824 \times 35 \end{aligned}$	18 18 18 20	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 50 \end{aligned}$
A.C AMMETERS - Transformer-rated (Scale marked in terms of transformer ratio) *							
Amperes	Amperes						Amperes
$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0-50 \\ & 0.75 \\ & 0.100 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.007 \\ & 0.007 \\ & 0.007 \end{aligned}$	823×39 823×40 823×41 823×42	$\begin{aligned} & \$ 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	824×39 824×40 824×41 824×42	$\begin{aligned} & \$ 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	5 5 5 5
5 5 5 5 5 5	$\begin{aligned} & 0.200 \\ & 0.300 \\ & 0.300 \\ & 0.500 \\ & 0.500 \end{aligned}$	0.007 0.007 0.007 0.007 0.007	$\begin{aligned} & 823 \times 43 \\ & 823 \times 44 \\ & 823 \times 45 \\ & 823 \times 46 \\ & 823 \times 47 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 43 \\ & 824 \times 44 \\ & 824 \times 45 \\ & 824 \times 46 \\ & 824 \times 47 \end{aligned}$	18 18 18 18 18	5 5 5 5 5
$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	0.800 0.1 KA 0.1 .5 KA 0.3 KA	0.007 0.007 0.007 0.007 0.007	$\begin{aligned} & 823 \times 48 \\ & 823 \times 49 \\ & 823 \times 50 \\ & 823 \times 51 \\ & 823 \times 52 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 48 \\ & 824 \times 49 \\ & 824 \times 50 \\ & 824 \times 51 \\ & 824 \times 52 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	5 5 5 5 5
A-C MILLIAMMETERS							
Milliamperes							Milliamperes
$\begin{aligned} & 10 \\ & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.25 \\ & 0.50 \end{aligned}$	$\begin{array}{r} 2158 \\ 341 \\ 84 \end{array}$	$\begin{aligned} & 823 \times 4 \times 4 \\ & 823 \times 7 \\ & 823 \times 9 \end{aligned}$	$\begin{aligned} & \$ 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 4 \times 4 \\ & 824 \times 7 \\ & 824 \times 9 \end{aligned}$	$\begin{array}{r} \$ 18 \\ 18 \\ 18 \end{array}$	$\begin{aligned} & 10 \\ & 25 \\ & 50 \end{aligned}$
$\begin{aligned} & 100 \\ & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.200 \\ & 0.500 \end{aligned}$	$\begin{gathered} 21 \\ 4.1 \\ 0.70 \end{gathered}$	$\begin{aligned} & 823 \times 12 \\ & 823 \times 14 \\ & 823 \times 17 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 824 \times 12 \\ & 824 \times 14 \\ & 824 \times 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 500 \end{aligned}$

- Cot. No. and prices are only for instruments and do not include external accessories such as po For AW-91 above 300 volts and 40.91 above 500 valfs order 150 voll transformer-rated tentiol and current ronsformers. instrument for use with enternal potential transformer
For AW. 91 above 30 amperes and AO. 91 above 50 amperes order 5 -amp Iransformer rated Distributor

GENERAL SPECIFICATIONS FOR PANEL INSTRUMENTS

Dimensions (in Inches)		00.91	DW. 91	40.91	AW. 91		
Flange dimensions		3.5×3.5	2.69×2.69	3.5×3.5	2.69×2.69	Accuracy:	All instruments are accurate 10 within : 2% of full-scale value. (Moving-magnet-types are calibrated for mounting within 45° of vertical and can be calibrated for other positions on request.)
Barrel diameter		2.80	2.21	2.80	2.21		
Barrel depth		1.31	1.30	1.31	1.30		
Scale lengths Moving magnel Core magnel Iron vane		$\begin{aligned} & 3.0 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 2.1 \end{aligned}$	2.9	2.0	Mounting:	Interchangeable with JAN, MIL, and ASA $21 / 2$ - and $31 / 2$-inch round sizes.
Weight	Nel		Shipping		2.0	Burden:	AO. 91 and AW. $91.5 \mathrm{amp}, 60$ cycle: 0.5 VA at 0.5 P .5 .10 g .
All types (maximum)	8 oz.		1202.				AO-91 and AW. 91 voltmeters have approximately unity power factor at 60 crcles

INCLUDING BOTH A-C AND D-C TYPES

An iron-vane repulsion-type mechanism is used for all a-c ratings. Two vanes are employed: one is attached to the moving shaft and the other is fixed to the field-coil frame. As current flows through the coil, both vanes are magnetized in the same polarity and the repelling force causes the moving vane to rotate. The pointer attached to the movable vane indicates deflection on the scale.
A substantially uniform scale distribution is obtained because the repelling force varies both as a square of
the current and inversely as the square of the distance between vanes.

MAGNETIC DAMPING
 MAGNETIC DAMPING

All a-c movements utilize magnetic damping to bring the moving mechanism quickly to rest. Alternating-current instruments are accurate to within 2% of full-scale value.

As with any iron-vane instrument, optimum accuracy is obtained when leads are brought down vertically to terminals. nism quickly to rest. Alternating-ar-

Order General Electric small panel instruments by catalog number from your nearest G-E Apparatus Sales Office or Distributor. For catalog numbers, ratings, and pricing information, see inside fold.

Old round design with $31 / 2$-inch diameter has relatively small scale and numbers.

Now BIG LOOK design fits into same usable panel space as older style instrumonis.

Moving-iron mechanism, used in all are ratings, consists of field coil, fixed and movable vanes, and control spring.

Completely sealed cases protect internal parts of instrument from dirt, dust and water. Even zero-set is sealed with a neoprene O-ring.
af Booth 2928, I.R.E. Show, New York Coliseum, March 23-26

WRITE NOW FOR A QUOTATION

Your nearest G-E Apparatus Sales Office or Distributor can give you all the facts on BIG LOOK small panel instruments, including those with custom-marked scales. Most ratings are available for immediate delivery. Or, write direct to General Electric Co., Section 593-302, Schenectady, New York

Use these dimensions and paneldrilling specifications to plan your panel instrument needs

Type DO-91, Moving -megnes

Typo DW-91, Movine megnel

Type DO-91, Core-magnet Type AO-91, Iren-vene

to meet all your measurement needsGeneral Electric offers this complete line of precision instruments ELECTRIC-QUANTITY INSTRUMENTS-voltage, current Wans, vars, Hequency and power hario
Indicators
Switchboard and panel-mounted
Portables
Hook-ons
Switchboard Indicators can be furnished with con tacts or "control initiation to operate alarms o

Recorders
Switchboard and panel-mounted
Portables
Auxiliaries
Corrent transformers
Potential transformers
D.c "current transformer

LABORATORY INSTRUMENTS
Migh.sensitivity recorders
Resistance bridge
Spectropholometer and tristmulus integrator
Instrument standardization console
Photo cells
Vacuum
process instruments
Indicotors
Precision, potentiometric type
Precision, potentiometric type
Precision, A.c bridge type
Prrometer
Resistance thermometer
Recorders (potentiometer and A.c bridge types
Strip-chart
Recorder-Controllers
Strip-chart-recorder, electric control Pyrometer, seven control forms Resistance-thermometer, seven control forms Speed measuring systems DYNAMIC MEASURING EQUIPMENT Automatic oscillograph Strain gage amplifiess, carrier types TELEMETERING EQUIPMENT, torque balance and requency types Thickness gages
Poper tensiometer
Surface roughness scoles
SUPERVISORY INSTRUMENTS FOR ROTATING
MACHINERY
Vibration detectors and recorders
Speed and camshatt-position recorders
reactor instrumentation
leak detectors
Malogen-types
timing devices
Time Switches
General-purpose types
Process types

Servo Motor Generator Size 10

This 2.75 o\% motor generator is designed for peration directly from transistor servo ampliiers and will develop a stall torque of 0.3 oz-in. The size $10,4(0)$ cps unit has a free speed of 6500$)$ pm and viscous damping of 31.1 dyne-cm per adian per sec. (ienerator output is 0.16 v per (1)O) rpmat 10 om vinut, and 0.41 v per 1000 rpm 126 y input.
Daystrom Transicoil, Dept. El), Worcester fontgomery Co., Pal.

CIRCLE 137 ON READER-SERVICE CARD

Light Image Intensifier Tube Brightens 10^{-7} ft-c 1000 times
Light images at levels of 10^{-7} ftec can be inunsified over $10 \times($ times with the WL- 7257 intensifier tube. The unit produces an image of rehuced size having a brightness increase of 1000 time's minimum for input color temperature of 2570 K . and 2500 times minimum for actinic blue imput. The light quantum gain is approximately inf for input color temperature of 2870 K tungsten und $1(k)$ for actinic blue input.
Westinghouse Electric Corp), Electronic Tube Div., Dept. EI), P.O. Box 284, Elmira, N.Y. CIRCLE 138 on reader-Service card

Rotary Relay
Rated at $5 \mathrm{amp}, 30 \mathrm{vdc}$

Type 4C rotary relay is a hermetically sealed folt de unit with a contact rating of 5 amp , i) ${ }^{\circ}$ de. It weighs 3.2 oz , operates at 125 C , and withstands $2(M)$ (p) '(1)n.
Couch Ordnance, Inc., Dept. ED, 3 Arlington ©, North Quincy, Mass.

CIRCLE 139 ON READER-SERVICE CARD
)on't forget to mail your renewal form - continue receiving ELECTRONIC IESIGN.
Circie lis on reader-service card
LECTRONIC DESIGN • March 18, 1959

specialists in fasteners for industry

speed • versatility • positive performance

Outstanding creative engineering at Camloc has produced a variety of fastening devices. For access panels, doors, other closures, for simplified replacement of components and sub-assemblies. There are other fastening devices, designed for a variety of specialized applications, all of them retaining the three important features that characterize all Camloc products...speed, versatility and positive performance.
2. 2600 Series Quarter-Turn
3. Miniafure Toggle Tension Lotch
4. 91F Heavy Duty Quarter-Tum
5. Electronic Chossis Latch

6. Push Button Lotch
7. 28 F Series Quarter-Turn
8. 7C Horness Clamp
9. 4002 Series Quarter-Turi
10. SPF (Stressed Panel Fostener)

?

CAMLOC FASTENER CORPORATION • 61 SPRING VALLEY RD., PARAMUS, N. J. • LOS ANBELES, CALIF. • FT. WORTH, TEXAS

IN-LINE READOUT

minimizes operator error and fatigue

megacycle. microsecond. counter-timer MODEL 1031
Industrial Reliability - Laboratory Versatility - get them both in Systron's Model 1031 Counter-Timer. In just one glance you have the answer - and you get the answer in just one unit. 50,000 hour rated life Beam Switching Decades aid reduction of tube complement by 50% - increase reliability, decrease failure rate. This is just half of the story - 7 digit readout :3 DC amplifiers - and increased crystal oscillator stahility assures true versatility. Counting decades can drive 2 sets of NIXIE indicators and the Model 1401 Digital records without buffer tubes, relays or diodes - thus simplifying components for use in complete measuring and recording svstems.

Systron manufactures In-Line Counters for laboratory, military and industrial applications, as well as complete Data Processing and Control Systems tailored to meet individual specifications.

Write today for complete specifications of Model 1031 and your free copy of sur new Short Form Catalog.

CIRCLE 141 ON READER-SERVICE CARD
 readable... wide ranee sensitivity Modern MEDALIST design provides for greater readability and modern styling in
minimum space. Unique core and magnet structure provides $1,2 \mathrm{va} / \mathrm{mm}$ sensitivily at null point with shorp square law alte nuation 10 100 va at end of scale in Type A. Internal resistonce is 2000 ohms, Other sensitivities ond special colors. Bulletin on request. Marion Instrument Division, Minnoopolis. Honerwell Regulator Company, Manchester N. H., U. S. A.

T:M Rey $\mathrm{C}=\mathrm{B}$ Pat on U \& \& Foretan Patents

marion meters

H
CIRCLE 144 ON READER-SERVICE CAPD
immediate shipment on 295 Bodine stock motors!

Design Engineers.

295 standard types of Bodine reducer and non-reducer motors are available at once .. from stock. Reducer torque ratings up to 219 in . lbs.

FREE ENGINEERING BULLETIN

Stock models, specifications and ratings are included in 12-page engineering bulletin. Distributors in major industrial centers

Bodine also offers 3500 standard built-to-order motors
Bodine Electric Co., 2506 W. Eradley Pl., Chicogo 18

BODINE

tractionol/horsepower
MOTORS
...the power behind the leading products CIRCLE 145 ON READER-SERVICE CARD

NEW PRODUCTS

Pressure to Voltage System

Provides signal output of 0 to 5 or $\pm 2.5 \mathrm{v}$ dc
The unregulated model DCS-2 pressure to voltage system is a single package that operates from standard unregulated 28 v dc aircraft and missile power supplies. It combines the company's model S-30 variable-reluctance transducer with stable transistorized electronic circuitry and has a signal output of 0 to 5 or $\pm 2.5 \mathrm{v}$ dc over the rated pressure range. Because the stiff metal diaphragn: is the only moving part, the instrument is resistant to shock and vibration. With no de or ac amplifiers in the circuitry, drift problems are eliminated. In operation, a transistorized multivibrator works into a completely passive circuit which includes a temperature-stable, phase-sensitive demodulator with matched silicon diodes. This circuitry confines the necessary ace to within the shielded package, making it unnecessary to run ac lines elsewhere in the system. The resultant de signal mas be used as the input to voltage-controlled oscitlators and de computers as well as to other do input systems.

Ultradyne, Inc., Dept. ED, I.O. Box 3308, Albuquerque, N. Mex.

CIRCLE 146 ON READER-SERVICE CARD

Rotary Switch
Has 1 in. diameter

Series 1900 Rotary selector switch is totall. enclosed and built to exceed MIL-S-6807A re quirements. It will carry 10 amp continuously and $5 \mathrm{amp}, 115 \mathrm{v}$ ac or 3 amp 28 v de intermit tently. Dielectric strength is 1800 v . The unit available with a single wafer or up to 16 wafer and with continuous rotation or 2 to 10 poss tions with stops.
Janco Corp., Dept. ED, 3111 Winona Ave Burbank, Calif.

CIRCLE 147 ON READER-SERVICE CARD

Rated at $1 / 100 \mathrm{~h}$ p at 4500 to 9000 rpm , this dc motor is equipped with a governor that controls shaft speed variation within 1%. Rotor torque s rated at $3.5 \mathrm{oz} \mathrm{in} .\mathrm{for} \mathrm{intermittent} \mathrm{duty}. \mathrm{Over-}$ all dimensions are approximately $1-1 / 2 \times 3 \mathrm{in}$, including the shaft which protrudes about $1 / 2 \mathrm{in}$. bevond the frame. Weight of the unit is about 7 oz. Body of the M-120 unit is solid aluminum with anodized finishes available in 6 colors.
Carter Motor Co., Dept. ED, 2761 A W. Ceorge St., Chicago 18, III.

CIRCLE 148 ON READER-SERVICE CARD

Vernier Variable Resistor
Has 13.5 to 1 reduction

Designed for fine tuning applications, this vernier variable resistors contact arm rotates 1 Heg for each 13.5 deg of shaft rotation. Total contact arm rotation is $300 \pm 5 \mathrm{deg}$, and total haft rotation is approximately 4000 deg. Desigmated $\backslash 1-45$, it has a 0.25 to 0.5 w dissipation. Resistance range is 250 ohms through 10 megWhms, linear taper, with standard tolerance $=30 \%$ for 250 ohms through 5 megohms, and $=40 \%$ for 5 to 10 megohms. Voltage rating across nd terminals is 500 v dc. Available in many pers and shaft specifications.
Chicago Telephone Supply Corp., Dept. ED, thhart, Ind.
circie 149 on reader-service card
ELECTRONIC DESIGN • March 18, 1959

SEE US AT THE IRE SHOW-

BOOTHS 4527-4529

Electronic Wire for Every Application

Service Rated-Quality Controlled Every Electronic Wire you need in easy-to-use packages.

Aircraft and Auto Radio Wire
Antenna Rotor Cables
Broadcast Audio Cables
Bus Bar Wire
Community TV Cables
Cords
Hi-Fi and Phono Cables Hook-Up Wires Intercom Cables

Ask Your Belden Jobber
Magnet Wire
Microphone Cables
Mil-Spec Hook-Up Wires
RG/U Cables
Shielded Power Cables
Shielding
Sound and PA Cables
Strain Gauge Cables
Transmission Line Cables
TV Camera Cables

One Wire Source for Everything Electrical and Electronic

Magnol Wire - Lood Wire - Powor Supply Corde, Cord Sots and Portable Cord - Aircraft Wires Eloctrical Housohold Cords - Eloctronic Wires Woldine Coble - Automotive Wire and Coble

NEW PRODUCTS

Silicon Transistor

Operates at 200 C

The ARA-46P silicon composite pup transistor is thermally compensated to operate at temperatures u) to $2(X)$ C. It has the general charac teristic's of a small signal transistor at the input and that of a power transistor at the output. Operating specifications are: collector voltage. 4) v: collector current, i3 amp; power dissipation at 25 C, 3.3 to 50) w; power dissipation at 150 (2 to 5 w ; current gain, 10,000 ; input impedance. $2(1) 0$ ohms; output impedance, $5(0)$ ohms.
Advanced Research Associates, Inc., Dept. ED Semiconductor Disi. P. O. Box 68. Kensington Md.

CIRCLE 164 ON READER-SERVICE CARD

Pegboard Kit

For circuit development

Available on atn individual parts basis or in de velopment sets with over 850 components, ErecTronic systems consist of precision drilled Duron pegboards, electrical and electronic components mounted on high-impact polystyrene bases with dual plug-in pins, and phosphor bronze Jiffy connectors. They are designed to permit quick check out of circuitry ideas without soldering or wire preparation. The sets can be used to buid transistor and tube circuitry for audio, servo, pulse, video, computer, and radio frequency applications up to 20 mc
Science-Electronics, Inc., Dept. ED, 195 Massachusetts Ave., Cambridge 39, Mass. CIRCLE 165 ON READER-SERVICE CARD

AMPEX: turning point for tape

Magnetic recording has reached the point where a better tape, by itself, can significantly improve the performance of your equipment. Anticipating this, Ampex has developed its Instrumentation Tape to assure the highest capability that the state of the art requires.
Precision tape reliability comes principally from the properties of its coating. And Ampex combines oxide preparation and careful coating techniques with the exclusive Ferro-Sheen process to produce the smoothest, most cohesive, most uniform of precision tapes. The result is measurably higher signal-to-noise ratios, and much less tape wear.
This, with its squared-up hysteresis curve, makes Ampex Instrumentation Tape ideal for all recording systems: direct, FM-carrier, PDM, and NRZ-digital.
Ampex Instrumentation Tape is available on hubs, NAB-type or die-cast magnesium - alloy Precision Reels. Widths of $1 / 4 \prime$, $1 / 2$ are standard on yylar* or acetate base, in the fo owing lengths, reel diameters, and base thicknesses:
ampex standard tape lengths (hout)
REEL
IAMETER
base thickness (mils)

7^{*}	1800	1250
$101 \mathbf{3}^{*}$	3600	2500
14^{*}	7200	5000

For complete specifications or additional tape literature, write

AMPEX

MAGNETIC TAPE
on or CIRCLE 166 ON READER-SERVICE CARD

Voltage Controlled Oscillator

For airborne use

Airborne voltage controlled oscillator model OV-4S is a rugged, transistorized unit comatible with many existing airborne packages. It neorporates silicon junction diode networks and licon transistors which permit operation in :amnents to 125 C . The mit has -0.5 linearits, low mewer (lrain, and high stability in cases of supply whate variations. Dimensions are $3 \times 1.62 \times 1.87$
 I ambury: Comn.

CIRCLE 154 ON READER-SERVICE CARD

Thermistors
Interchangeable and matched

This line of interchangeable and close tolerance matched thermistors come in five major groups. Yore than 30 units are available. Resistance matched units are available such that at 25 C II units are within 1% of the R_{n} of the highest "sistance unit. Voltage matched units are such What the \mathbf{R}_{0} of the lower resistance unit is within a specified percentage of the higher mit. Other ypes of matched units include: series-parallel natched; resistance temperature matched: resistnce ratio-temperature matched.
Victory Engineering Corp., Dept. ED. 519 pringfield Road, Union, N. J.
circie is5 on reader-service card
his is the time of our annual subcription renewal.

Demonstrated Precision and Reliability

"Workhorse" of the world's airlines, the famed Douglas DC-7 employs Clarostat Series 42 Precision Potentiometers for flapposition indication. This is one more example of Clarostat precision, proved under day-in day-out working conditions.

CLAROSTAT PRECISION POTENTIOMETERS Series 42

Series 42 potentiometers are wire-wound and of fer resistance tolerance of $\pm 5 \%$, linear or tapered. Closer tolerances on special request. They are available in a wide variety of electrical and mechanical characteristics to meet application and environmental conditions. Standard units are rated at 3 watts @ $40^{\circ} \mathrm{C}$., while special high-temperature units are available for operation up to $230^{\circ} \mathrm{C}$., with a rating of 0.25 watt. Units may be ganged by means of threaded rods and end plates. Switches for limited or continuous rotation models are available.

SPECIFICATIONS
Power Rating: 3 watts @ $40^{\circ} \mathrm{C}$. 25 watt @ $230^{\circ} \mathrm{C}$. (high-temperature type) Typical weight: 0.196 ld . Insulation Breakdown Tests: Between terminals and ground for 1 minute, 1000 v.a.c @ 3.4 Hg .
Resistance Range: Linear, 1 to 100,000 Resist Tapered, 350 ohms per degree of rotation Resistance Toierance: $\pm 5 \%$.
Taps: To requirements.
Rotation: Mechanical and electrical.
Rotation: Mechanical and electrical,
$291^{\circ}, \pm 3 \%$. Effective, 280° to $\pm 3 \%$.
Torque: 1 to 6 02./in.

WRITE FOR COMPLETE DETAILS...
CLAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE.
Clarostat Means Precision You Can Count On CIRCLE 156 ON READER-SERVICE CARD

MINIATURE AND
SUB-MINIATURE
PULSE TRANSFORMERS

These transformers are designed to become an inherent part of the circuitry in which they are used. Designs developed feature good, low-frequency response with minimum droop of the output pulse amplitude during pulse period as well as having good high-frequency response to minimize rise and decay times. Write for Bulletin PT 315 outlining mounting types, general specifications and outstanding features. Our facilities assure exceptional deliveries.

ACME ELECTRIC CORPORATION

903 Water street
CUBA, NEW YORK West Coast Plant: 12822 Yukon AVE., HAWThORNE, CALIF PO 3254

NEW PRODUCTS

Vibrating Reed Electrometer
Measures $10^{1 i}$ amp

Current as low as 10^{17} amp, and voltages as low as 0.02 m can be measured with the Cary Model 32 electrometer. It also measures C^{14} activity to 5×10^{15} curies per mg BaCO_{3}, and H^{3} actisity as low as 10^{-110} curies per mg H^{3}. The unit accommodates ionization chambers from $5(0)$ to $1.5(\mathrm{~K}) \mathrm{ml}$, as well as solid and liquid
 10) \because. Accuracy of the onit is $=0.25 \%$. It consumes

Applied Physics (orp). Dept. EI), 2724 South Peck Road. Monrovia, Calif.
circle 158 on reader-service card

Servo Amplifier

Weighs 10 oz

This magnetic amplifier. 4.5 in . long and weighing 10 oz , is a wide band pass servo unit designed to drive standard servo valves. It has a low emissivity finish for operation at high radiant energy levels and meets Mil-E-52-2.A. Input range for the two control inputs (one may be feedback), is -1 to +1 b. Maximum output is +15 ma and +15 r . Gain may be adjusted externally; supply of $115 \mathrm{v}, 2400 \mathrm{cps}$.

Vickers Inc., Electric Products Div., Dept., Dept. ED, 1815 Locust St., St. Louis 3, Mo.

CIRCLE 159 ON READER-SERVICE CARD

most complete

- Design Forum
- Product Features
- Ideas for Design
- Engineering Review
- Standards and Specs
- Russian Translations
- Background for Design

More and more electronic engineers report: I read Electronic Design first. It's complete, timely, easier to read, and I can depend upon getting all the new product information."
Electronic Design's 8 full time editors, plus staff of assistants, contributors, and correspondents scan the electronic horizons to bring you the complete design picture.
With reading time at a premium, ED's every-other-week frequency assures the prompt delivery of topical material; keeps up with this rapidly moving industry.

ELECTRONIC DESIGN

a HAYDEN publication
830 Third Ave., New York 22, N. Y. PLaza 1.5530

Tape Wound Cores

Epoxy encapsulated
Packaged, ready-to-wind, and poxy encapsulated, these aluminum ased tape wound toroidal cores are or use in magnetic amplifiers, satuble reactors, and special transonners. No taping or supplemenary insulation of the core case is ecessary, and breakdown rating etween the winding and the case above $1500 \mathrm{v}, 60 \mathrm{cps}$, rms.
G-L Electronics, Inc., Dept. EI) 921 Admiral Wilson Blvd., Camien 5, N.J.
CIRCLE 160 ON READER-SERVICE CARD

Volt-Ammeter
Measures $0.03 \mu \mathrm{v}$

Vodel 150 micro volt-ammeter measures down to 0.0:3 ($10^{12} \mathrm{amp}$, de. It may be used is an amplifier, micro-microammeter, and with an external voltage upply as a meg-megohmineter. As i de voltmeter it measures from I (i) to 1 v full scale. As an ammeter " measures from 10^{-3} to 10^{-10} mp full scale. Gains of 10 to 10^{-} are possible when used as an am lifier. The unit has zero stability is a voltmeter within (). 1μ ver lay, within $2 \times 10^{-11} \mathrm{amp}$ as an immeter. The zero center scale inlicates polarity and amplitude as vell as mull point, with 0.5 to 2 © period.
Keithley Instruments, Inc., Dept D. 12415 Euclid Ave.. Cleveland Ohio.
ooth 3414
CIRCLE 161 ON READER-SERVICE CARD

Engineers/Designers! Ask for this G-C

MICROWAVE FERRITE APPLICATION CHART

MICROWAVE FERRITE APPIICATION CHART

MATERIAL	BAND	LOWEST OPERATING FREQUENCY**	TYPICAL APPLICATION	TYPICAL POWER LEVEL
R.1	x	8.500 megacycles	Phase Shifter	Low Power
R. 4	x	7,000 megacycles	Phase Shifter	Can be used above resonance at peak power > 1 Megawatt (2)
R. 4	s	2,500 megacycles	Resonance Isolator (1)	Low Power
R-5*	c	5.000 megacycles	Phase Shifter	Can be used above or below resonance at peak power > 1 Megawatt (2)
R-5*	s	2,500 megacycles	Phase Shifter	Can be used above resonance at peak power > 1 Megawatt (2)
R-5*	L	1.000 megacycles	Resonance Isolator	Low Power
R-6*	S	2,500 megacycles	Phase Shifter	Similar to R-5
R.6*	L	1.000 megacycles	Resonance Isolator	Low Power

REMARKS
*NEW PRODUCT
(1) R-4 saturates more rapidly than R-1 resulting in faster reduction at low field losses. See hysteresis loop data.
(2) Operating power levels reported by customers. It has also been reported that R-5 and R-6 can be used as low as 500 Mc /s in certain phase shifter applications.
$R-1$ and $R-4$ are $\mathrm{Mg}-\mathrm{Mn}$ ferrites. $\mathrm{R}-5$ and $\mathrm{R}-6$ are $\mathrm{Mg}-\mathrm{Mn}-\mathrm{Al}$ ferrites.
**Lowest Recommended Frequency - can be used at frequencies above published value

- it's included in the new General Ceramics Data Bulletin on Microwave Ferrites

This new comprehensive bulletin contains technical data on the most complete cross-section of materials in the industry, including two grades introduced for the first time. Included are hysteresis loops, magnetic and dielectric properties vs. frequency, and magnetic induction vs. temperature curves on ferrite materials R1, R4
and newly-developed R5 and R6. Application data, magnetic properties tables, and drawings and dimensions of available stock parts are also contained in new Bulletin 259. Request your copy of this informative literature. today; please address inquiries to General Ceramics Corporation, Keasbey, New Jersey-Dept. E.

See us at the RADIO ENGINEERING SHOW OOTHS 2221 New York Coliseum
March 23 23d to 265 t

GENERAL GERAMICS

The World's Largest Producer of Microwave ferrites

NEW OPPORTUNITIES FOR ENGINEERS Positions are now open at al levels at General Ceramics-

all the news at the show

.and at no charge. You'll find your copy of Electronic Daily either direct in major hotels, or at Hayden's booth \#1727 at the Coliseum. Use the Daily to select the booths and products you want to be sure to see . . . plan your time to best advantage. The Daily is printed overnight for distribution early each morning during the convention. It's written by engineers for engineers; contains all the new products to be exhibited, lists booths by products, meetings, events. papers by subject, plus the significance of all the latest news. announcements, and behind-the-scene trends at the show. There's a special section on job opportunities and interviews. This year, don't miss Electronic Daily, it's free to all registered exhibitors and attendees.
-Bonth 172:
both Sirece silde, int theor rear of cioliseum under mazzanine.

NEW PRODUCTS

Trimmer Potentiometer

For high temperature use
Miniature model W -10 trimmer potentiometer has a variable micrometer adjustment which give a precise selection of resistance from 10 ohms ti 150 K . For high temperature use, the unit has an epoxy encapsulated winding and ann epoxy sealed case that withstands. 500 F .

Atohm Electronics, Dept. ED, 7648 San Fet nado Red.. Sum Valler: Calif

CIRCLE 151 ON READER-SERVICE CARD

Commutator-Gating Units

In standard IRIG sampling rates

Available in all standard IRIG; sampling rate and chamel configurations, series CAG commu tator gating minits accommodate high level inputs rangine from () to $+\boldsymbol{5}$ - full scale. Typical signal sources which may be used with the unit are potentiometers, cathode followers, and voltage references. The output may be fed directly to a standard subcarrier oscillator or to ann rf trans mitter.
General Dewices, Inc., Dept. EID, P.O. Bux 253 Princeton, N.J.

CIRCIE 152 on reader-service card

Aluminum Clad Copper Wire

For high temperature use
Composed of ann aluminum alloy cladding own a high conductivity copper core, this wire has at plications both as magnet wire and as high ten perature lead-in wire. Suited for use in aircral missiles, and high speed industrial equipment, has about 70 per cent the conductivity of copp at room temperature.
Sylvania Electric Products Inc., Dept. ED, Wa ren, Pa .

CIRCLE 153 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 195

Telemetry Wave Dropout Analyzer
For magnetic tape

Designed primarily for telemetering instrunentation, this instrument measines: the drop out characteristics in a magnetic tape recording wer a range of operating frequencies from 7.5 o 80 kc ; a dropout amplitude range from 1.5 to . 5 ic: and a dropout width range from 38 to 360 usec. For each dropont detected with respect to 1 predetermined amplitude and width, a 70 v muition going, rectangular pulse is emitted. It measures dropouts in accordance with Mil-T. 21029 (Ships).
Acoustronics, luc. 1)ept. EI), 156 Olive St. mumtington Station, N. Y

CIRCIE 167 ON READER-SERVICE CARD

Differential Transformers

Linear stroke

These differential transformers have a linear troke of Totk of coil length, and high output and low impedance secondary windings. Linear displatcement is from $\pm 0.5 \mathrm{to} \pm 8 \mathrm{in}$. Ratio of output voltage, at range limit, to null voltage is $1000: 1$. I incarity of $=0.5 \%$ over a temperature range of -60 to 250 F is attainable. The units are mag. netically shielded, potted and furnished with Teflon insulated leads.
Automatic Timing \& Controls, Inc., Dept. ED,)ept. 213. King of Prussia, Pa.

Circie 168 on reader-service caro

Jon't forget to mail your reewal form to continue receiving LECTRONIC DESIGN.

(A) Vinyl jacket (B) Tinned copper shield (C) Mylar tape wrap (D) 12 color coded groups. Each group: 2. 3, or 4 color coded conductors, shielded, jacketed (E) color coded groups. Each group: 2, 3, or 4 color coded conductors, shielded, jacketed (F) 6 color coded pairs cabled around vinyl filler. Each pair coded thermocouple wire, shielded, jacketed.

THE WILLIAM BRAND \& CO., INCORPORATED WILLIMANTIC 2 TUREO CONNECTICUT
slectrical and electronie wiren and eables - harnesese and cable zesemblies - plastic and coated insulating tubings. idantification markers

BRAND TEAMS WITH MARTIN TO MEET TOUGH CABLE SPECS FOR TITAN TEST FIRING

Absolute reliability! A must for the control and telemetering cables used for transmitting high fidelity signals during missile development static test firings. The data collected must be absolutely accurate if it is to establish the validity of the missile design or become the basis for necessary changes. The Martin Company found the solution to these tough signal transmission problems with three special multiconductor cables produced by Brand. Here's how Brand teamed with Martin to meet these new and difficult cable specifications:

Series 1 Instrumentation Cables: - Problem: Cables to have approximately the same uniform diameter with varying numbers of conductors. to fit into standard connectors. To meet critical electrical requirements, especially low loss characteristics. Solution: Use color coded Turbolene (polyethylene type) insulation to meet electrical and physical requirements. Give twisted pairs a uniform circular cross section by using specially developed extruded Turbolene fillers.
Series 2 Instrumentation Cables: - Problem: Cables to operate up to $100^{\circ} \mathrm{C}$ and to have approximately the same finished diameter with varying numbers of conductors. Solution: Use insulated wires meeting MIL-W-16878, manufactured with Turbo 540 vinyl compound and nylon jacketed. Carefully control lay lengths during cablings, and outer jacket wall thicknesses.
Series 3 Thermocouple Cables: - Problem: Non-hygroscopic, funginert cables, each six thermocouple pairs. Solution: Develop extrusion and cabling techniques to economically process hard and springy chromel, alumel, iron, constantan and copper conductors. Use Turbo 540 vinyl compound as primary insulation and as filler.
There were additional problems common to all series. (1) A vinyl jacketing material for the shielded groups to operate at both high and low temperatures, and to have an IR value comparable to those found in vinyl primary insulation. Turbo 570, a new custom formulation, was developed to meet these requirements. (2) All groups of conductors laid in a predetermined pattern to facilitate termination. The cables were manufactured on large two-bay planetary cablers to control positioning. (3) Long, unbroken, uniform lengths - all control and instrumentation circuitry is carried in steel reinforced concrete tunnels between test stands and blockhouse as shown in the above drawing.

Whether in missiles, aircraft, business machines or electronics - Turbo cables are custom engineered for specific operating conditions; manufactured by quality-conscious technicians; tested foot by foot for specification compliance. We invite you to call on our extensive engineering experience to solve your cable problems. No obligation, of course. Send your specifications or requirements.

Visit us of Booth M-19 of the IRE Show
ITT HIGH DENSITY SELENIUM RECTIFIERS FOR HOME ENTERTAINMENT EQUIPMENT Long lite, Full range of current ratings Smaker slze. High output voirage mechanical construction... Available with mountings and terminals to meet all requirements $\quad .85^{\circ} \mathrm{C}$ UL acceptance.

IRE SHOW
\qquad Many cell sizes and voltages make possible watts to kilowatts of power.. Stable operation over wide temperature range . Avalable for high temperature operation to $125^{\circ} \mathrm{C}$. . . Long life . . . Good voltage reg. ulation ... Withstand temporary overloads.

CIRCLE 170 ON READER-SERVICE CARD
ITTP

NEW PRODUCTS

Scintillation Counter

For X-ray diffraction studies
Model 10-7 is a low noise, high speed counter for X-ray diffration studies. Mounting flanges are available to match the counter to standard commercial X-ray diffraction systems. The unit includes a gain of 10 preamplifier, a selected photomultiplier tube, and a thin $\operatorname{NaI}(T 1)$ crystal. It measures $1-5 / 16 \times 6 \times 4-1 / 2 \mathrm{in}$. and weighs 4 lb .
Radiation Instrument Development Lab., Inc., Dept. ED, 5737 S. Halsted St., Chicago 21, Ill. CIRCIE ITI ON READER-SERVICE CARD

Wirewound Resistors
Highly stable

Hermetically sealed type RSH-2B precision wirewound resistors have resistances from 1 to 4200 ohms and stability levels of $1,0.5,0.25$, and 0.1%. Depending on the stability level, power ratings are 0.75 to 1.5 w at 25 C , derating to 0 between $1(0)$ and $1: 30$ (.. Temperature coefficient is $0.0(0) 02$ per deg C , and tolerances are between O.().5 and $\pm 3^{\prime \prime}$

Dale Products, Inc., Dept. ED, Columbus, Nebr.

CIRCLE 172 ON READER-SERVICE CARD

Dual Recorder

Plots two quantities on one chort
The CH-37 Duplex Recorder plots two related clectrical quantities side by side on one chart. Its two separate recording mechanisms are housed in a $15 \times 16 \mathrm{in}$. case designed for semiflush panel mounting. The unit is provided with either a single speed synchronous motor giving 11 chart speeds from 1/4 to 30 in . per hr or a double speed motor offering 28 speeds from $1 / 4 \mathrm{in}$. per hr to 120 in . per min.

General Electric Co.. Dept. ED. Schenectady 5, N.Y.

SAVE IME

Get Expert HELPon
Electronic Design, Development and Production

We design and produce hoth simple and complex components and assemblies. Electronic. Electro-Mechanical and Mechanical for commercial and mili tary applications in Radio. Television Radar. Guided Missiles and olllied field also. Pulse Amplifiers. Triggered Cir cuits. Wide Band Circuits. Toroida Windings and Transformers. Write for brochure giving complete information.

These are Typical of the Products we Manufacture

Growth Opportunity for ELECTRICAL ENGINEERS To meet the growing demand for our servemployment. high base salary plus profit
sharing. paid vaciation. group life and hossharing, paid vacation. group life and hosretirement program. eic. Located on shore of Lake Erie. Fishing, boating, swimming at your doorstep. Ideal community life.
Thirty minutes from Buffalo via thruway Thirty minutes from Buffalo via
Replies held in strict confidence.

Skived Teflon Tapes

For high temperature insulation

Made by skiving Teflon billets, these unsuported fused tapes have good electrical properies, resistance to all common chemicals, a low cofficient of friction, and a surface to which nothing rill stick. Mainly for high temperature and high requency wire and cable insulation, they also rue as stock for gaskets, seals, and other small rarts. They are available in four grades desig. ated ST-X. ST-C, ST-1, and ST-2; in widths from $/ 4$ to 12 in .; and in thicknesses from 0.00$)_{2}$ to 1 in .
(Continental-IDiamond Fibre Corp., Dept. EI) (ewark, Del.

CIRCLE 175 ON READER-SERVICE CARD

Data Processing Equipment

Punched tape

An integrated processing device, the Data funch consists of a 20 digit per sec tape punch und a full-keyboard adding machine which actiates the punch. It produces two records simulaneously: a detailed strip for immediate accountuse data; and a punched tape which can be lirected to digital computers and processors. Information of the punched tape can be converted to punched cards or magnetic tape for further procsing.
Victor Adding Machine Co., Dept. ED, 390 (Rockwell St., Chicago 18. III.

CIRCLE 176 ON READER-SERVICE CARD

Antenna Pattern Analyzer

Uses if crystals
Using of crystals in a video detector system, the 11.7 antenna pattern analyzer requires a maxinum of 1 !!w rf power to achieve a maximum "Icasurement range of 4.5 db in one step. A dc biasug circuit is included to permit the use of conentional barretters, requiring a dc bias between i and 10 ma . The unit can be used to measure gh power ratios; to determine the rejection coficients of rf filters; and to calibrate attenuators. has a wide dynamic linear range, a low noise vel, and a wide rf frequency range where video vstal mounts are available.
Weinschel Engineering, Dept. ED, 10503 etropolitan Ave., Kensington, Md.

CIRCIE 177 ON READER-SERVICE CARD
E ECTRONIC DESIGN • March 18, 1959

IT GOLD CROWN

S I L I CON D I FF U S E D JUNCTIO ZENER REGULLTORS

ITT Gold Crown silicon zener regulators are designed for maximum stability of characteristics over the entire operating range of - $65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$. Hermetic sealing insures complete en vironmental protection and utmost reliability.
Gold Crown zener regulators feature:

- Four power ratings
- Eleven voltage ratings ($3.9-27$ volts)
- $\pm 10 \%$ and $\pm 5 \%$ tolerances
- Axial lead and stud mounting

SERIES T SERIES G SERIESK

CIRCLE 178 ON READER-SERVICE CARD

Whatever you need in silver you can find at the

 HANDY \& HARMAN SILVER SUPERMARKET

Special today - and every day silver in every form and grade you can name. By the ounce, inch, foot, and every other measure known to man.
All are of the consistent quality that has made - and kept-Handy \& Harman first in the manufacture and development of silver and silver alloys for industry.
At the right are some of the general forms of silver made by Handy \& Harman (what you don't see, ask for):

- Fine Silver (wire, strip and foil)
- Silver Anodes and Grain for plating
- Silver Contact Alloys
- Silver Powders
- Silver Flake and Paint
- Silver Brazing Alloys
- Silver Electronic Solders
- Silver Sintered Metals
- Solder-Flushed Silver Alloy:
- Silver Chloride and Oxide
- Coin Silver (wire and strip)
- Silver Bi-Metals
- Gold, Platinum and other precious metals also available in every form you need

> VISIT OUR BOOK DEPARTMENT

We have five Technical Bulletins giving engineering data on the properties and forms of Handy \& Harman Silver Alloys. We would like you to have any or all of those that particularly interest you. Your request, by number, will receive prompt attention.

Fine Silver
Silver-Copper Alloys
Bulletin A-1 Silver-Magnesium-Ni. Bulletin A-2 Silver Conductive Coatings Bulletin A-4 Silver Powder and Flake . Bulletin A-5

Your NO. Source of Supply and Authority on Precious Metal Alloys

CIRCLE 179 ON READER-SERVICE CARD

A new way

new cost-cutting measuring techniques
made possible by new-concept
(hp) instruments

RESPM MEE

New electronic sweep oscillators (left). 5 units cover 2 to 18 KMC. Quick, accurate, convenient response measurements of all types of circuits such as masers, parametric amplifiers, TWT's, couplers, attenuators. Also new microwave wavemeters (right), including K and R bands, provide complete coverage 8.2 to 40.0 KMC.

Direct, instant, in-line readings; bright, steady numerals on new counters. New reading ease, wide range, improved sensitivity and accuracy.

11 E

New clock and divider circuit for control of extremely accurate frequency standards and comparison with station WWV within 10 microseconds accuracy ($1 / 10^{10}$ accuracy).

All-new, transistorized wave analyzer-20 cps to 50 KC . compact, versatile, featuring new control simplicity, new tuning ease, automatic features never before in any wave analyzer. Operating at -hp-display with new low cost, dual trace oscilloscope.

19)

New, moderately-priced digital voltmeter providing true "touch-and-read" convenience, automatic range and polarity selec. tion; permits readings to be recorded automatically. Also: new, portable transistorized ac voltmeter.

Revolutionary design approach provides new "clip-and-read" dc current measurement ease-no soldering. no circuit loading, no direct connection. Also new plug-in for -hp-150A series oscilloscopes permits viewing ac current and voltage simultaneously - ideal combination for transistor circuit testing.

there

a new way! see it...test it at (4) IRE SHOW

2 nd floor-head of escalators

other NEW WAY instruments you can see and operate at the (7p. I.R.E. exhibit

NEW IN-LINE 220 MC COUNTER
New model 524C with plug-ins measures frequency to 220 MC , time interval $1 \mu \mathrm{sec}$ to 100 days. period dc to 10 KC . New in-line readout, brightly visible under any lighting conditions. Resolution $0.1 \mu \mathrm{sec}$. stability $3 / 10^{3}$ short term, no calculation or complex setup, highest quality; regarded by many as premium commercial counter offered $\$ 2.300 .00$

NEW TRANSFER OSCILLATOR FOR To COUNTERS
Together with hp 524 series counter measures frequency to 12 KMC quickly. easily, with counter accuracy. Guess. work, trial and error experimentation, expensive setups are eliminated. Measure on pulsed, AM, FM, CW or nossy circults. Overall accuracy better than 10 times that of best microwave wavemeters; accuracy on clean CW signals is about 1/1,000,000. Stability better than 0.002% /minute. $\$ 750.00$

NEW IN-LINE
 12 MC COUNT:R

Model 523C Electronic Counter provides all-purpose versatility plus the time saving convenience of bright, steady in-line readout. Measures frequency 10 cps to 1.2 MC , time interval $1 \mu \mathrm{sec}$ to 27.8 hours. period 0.00001 cps to 10 KC Stability $2 / 1,000.000$ per week. Results displayed in sec. msec, $\mu \mathrm{sec}$ or KC, automatic decimal. Display time vari able, accuracy - 1 count - stability Price on request

PRECISION FIXED ATTERNJTATOR
-hp- 372A series provide fixed standards of attenuation for waveguide measurements for all bands and wave guide sizes from 2 to 40 KMC. Their precise accuracy is not affected by temperature, humidity or other ex ternal factors. $\$ 100.00$ to $\$ 375.00$
at IRE • head of escalators • 2nd floor
If you aren't attending this year, please call your -hp-represen. tative or write direct for information on any new -hp- equipment.

HEWLETT-PACKARD COMPANY
5029K Page Mill Road • Palo Alto, Calıfornia, U.S.A.
Cable "HEWPACK" • DAvenport 5-4451
Field engineers in all principal areas

ELECTRONICDESIGNRENEWAL FORM Enniting Qualified Re 1. \square Continue sending ELECTRONIC DESIGN bi-week \square I do no design work ERTIC CATEGORY I do design work \square I supervise design work s.I.C. No.
\qquad - Audio 3. The primary end product prat is

The primary electronic product produced at my plant is
\square Computers
Aircraft
The primary electronic product produced at my plan is Componen 7 Materials

5. Stencil shown is O.K. OUT ALL QUESTIONS IN ORDER TO AUTOMATICALLY QUA

FILL OUT ALL QUESTIONS IN OROE

YOUR SUBSCRIPTION

HAS EXPIRED

Its Time To Renew Your Free

Subscription To

ELECTRONIC DESIGN

Regardless of when your subscription started, you must fill out and return a renewal card.

When you receive your I B M renewal card, please fill if out completely . . . and mail it immediately to insure uninterrupted receipt of ELECTRONIC DESIGN.

Our circulation policy requires that all subscribers requalify each year to continue receiving their free subscription to ELECTRONIC DESIGN.

Please help us to serve you better by requalifying as soon as you receive your card.

NEW PRODUCTS

Pancake Synchros and Resolvers

Accuracies to 5 min

Available in size 20 and 27 , these pancake synchros and resolvers feature accuracies down to 5 min and are made for instruments such as inertial guidance systems. Their electrical properties are designed to meet specific applications or to match standard components for accuracy, voltage gradient, and impedances. They may be obtained with integral flanges and hubs.
Luther Mfg. Co., Dept. ED, 7312 Varna St., North Hollywood, Calif.

CIRCIE 182 ON READER-SERVICE CARD

AC Voltage Calibrator

Has 0.1\% accuracy

Absolute voltages accurate to 0.1% may be obtained by setting the digital controls of this precision ac voltage source. This accuracy is maintained at all frequencies from 35 cps to 10 kc . The unit will provide up to 30 w of power. Output wave form is sinusoidal with less than 0.15% distortion.
Holt Instrument Labs., Dept. ED, Oconto, Wis.

CIRCLE 183 ON READER-SERVICE CARD
This is the time of our annual subscription renewal.

THE RAW MATERIALS OF PROGRESS

FLUOROCHEMICALS, STABLE BELOW 0°

Polar cold! "Hot Spot" heat! To meet environmental and operational extremes like these, the RCA high-output transmitting tube shown above, needed a coolant superior 10) water. That coolant is FC 75, an inert fluid, one of the :3M Fluorochemicals. RCA found that FC is safely cooled tubes with plate dissipations in the order of 1,000 watts per sq. con., and permitted essentially the same power out put to be obtained at temperatures below $32^{\circ} \mathrm{F}$. as that obtained with water cooling at temperatures above $32^{\circ} \mathrm{F}$. The most stable fluid ever offered to electronics, FC 75 properties make it excel as a coolant and insulating fluid.

It has high dielectric strength, high heat transfer capability, is self-healing. It has wide liquid range with a pour point of $-148^{\circ} \mathrm{F}$. and low viscosity. It is thermally stable in excess of $800^{\circ} \mathrm{F}$. As an evaporative coolant it is all these nonexplosive, nonflammable, nontoxic, odorless, noncorrosive. Check the other properties at the right - then investigate FC 75, as well as other 3M Chemicals for the electronics industry: KEL-F ${ }^{\circledR}$ Molding Powders, KEL-F ${ }^{\kappa}$ Dispersions, KEL-F ${ }^{\circledR}$ Elastomers, Cardolite ${ }^{\circledR}$ NC 513, KEL-F ${ }^{\mathbb{E}}$ Oils, Waxes and Greases, Acids and Alkanes.

CHEMICAL DIVISION

Minnesota Mining and Manufacturing company

... WHERE RESEARCH IS THE KEY TO TOMORROW

3M COMPANY

2MFLUOROCHEMICAL FC 75 pours at $-148^{\circ} \mathrm{F}$. It has a wide liquid range of $-148^{\circ} \mathrm{F}$. to $212^{\circ} \mathrm{F}$. at atmospheric pressure, with low viscosity. In addition, it offers these useful properties: high dielectric strength of 37 KV ; selfhealing, maintaining dielectricstrength after repeated high voltage arcing. Compatible with most materials used in high temperature equipment. Thermally stable in excess of $800^{\circ} \mathrm{F}$., it prevents development of hot spots in equipment. Prevents sludge formation due to hydrolysis or oxidation.

or at $800^{\circ} \mathrm{F}$.

Fir free literature, write on your compiny letterhead, specifying product inerest to 3 M
hemical Divi n, Dept.WD-39, Paul 6, Minn.

3A Chemical division, manufacturers of: Icids • Resins • Elastomers • Plastics • 7ils, Waxes and Greases - Dispersion loatings • Functional Fluorochemcals - Inert Liquids and Surfactants

Range and Balance Instrument

For bridge arm resistances

The BR 111 range and balance unit is a full scale, adjustable instrument that balances out small inequalities in bridge arm resistances. It is equipped with gold contact relays that minimize dry circuit problems; a front panel switch for changing to auxiliary power supplies; pushbuttons for controlling both range and balance; and a remote switch for setting all channels into two standardization modes. Built to withstand adverse environments, it contains six independently adjustable, identical channels, constructed on a single chassis for mounting in standard 19 in . racks. It is engineered to permit adjusting bridge current to the proper value by precision calibrating resistors. The unit is designed as a control center for use in coupling strain gages or resistive-bridge-type pickups to direct writing oscillographs, standard meters, chart recorders, and analog-to-digital converters. When coupled with high sensitivity galvanometers in a multichannel photographic recording oscillograph, it permits direct recording without amplifiers.

Computer Engineering Associates, Inc., Dept. 1:1), 350 N. Halstead, Pasadena, Calif.

CIRCLE 186 ON READER-SERVICE CARD

Alarm System

For industrial processes
Designed with no moving parts, the FaultFinder alarm system monitors electric sub-stations, industrial plant operations, and unattended microwave repeater stations. The basic system contains a transistorized ring counter scanner that monitors up to 20 separate items at a scanning rate of 10 points per second. Each monitored item is represented by a switch which sounds an alarm for abnormal conditions at the receiving-annunciator unit. The system requires only one communications channel, ranging from a pair of wires to a subcarrier radio or microwave channel. It has plug-in circuit boards and operates from $115 \mathrm{v}, 60 \mathrm{cps}$ current or a 125 or 48 v dc source.

Applied Science Corporation of Princeton, Dept. ED, P.O. Box 44, Princeton, N.J.
circie 187 on reader-service card

When WEIGHT and SIZE

 are Critical...... consider
ARNOUX's new, transistorized, highsensitivity, miniature temperature-measurement subsytems for missile and aircraft flight testing.

This newest series - TME-1SD and TME-2SD are for use with fast-response, 100-ohm resistance temperature transducers to produce a full 5 -volt output for a span of only 75 F . TME-ISD is a single-channel model; TME-2SD, a dual-channel model.

The unit contains a regulated power supply, transistor amplifier, and gain and zero controls. No additional power source or controls are needed.

Nominal, overall accuracy is ± 2.5 percent throughout MIL-E-5272A environmental conditions. Power consumption is 26 watts (TME-ISD) or 27 watts (TME-2SD), at 28 vdc . Output impedance is approximately 10.000 ohms. The bridge can be balanced for zero output setting at any temperature from -320 F to +250 F . Gain adjustment allows full-scale span to be varied. Maximum drift over the environmental temperature range is ± 2 percent of full scale.
designers and manufucturers of precision instrumentation

arnoux ARNOUX corporation

1924 WEST WASHINGTON BLVD. LOS ANGELES 60. CALIF.

"1PB600' Series pushbution switch one of many in the "One-shot" line.

NEW PRODUCTS

Differential Transformer Indicator
Has 1\% accuracy

Accurate, large scale indication and recording of linear motion, size, weight, force, pressure, and other quantities measurable by differential transformer transducers is achieved with the model 300A differential transformer indicator Completely self-contained, the instrument has a 10 in . Weston panel meter, a constant current excitation supply, self-checking features to elimi nate drift errors, and five calibrated sensitivity ranges which cover all usual scientific and industrial requirements. Accuracy is 1% with maximum resolution of 0.000005 in . of core displacement. Special dial marking are available as required and a suitable electrical output is provided for direct operation of standard potentiometer re corders.

Daytronic Corp., Dept. ED, 216 S. Main St. Dayton 2, Ohio.

CIRCLE 190 ON READER-SERVICE CARD

Cable Cutter

Nonshorting
Individual conductors in the cable bundle are not short-circuited when the cutting action of this propellant-actuated guillotine takes place. The unit uses a ceramic cutter blade that is driven through the cable bundle onto a ceramic anvil. Driving power comes from a standard screw-in explosive cell. Designed to eliminate all switches, plugs, relays, contactors, or rece: tacles, this cutter permits the solidly permaneat wiring of all circuit elements to an unactivat d battery. Activating the battery energizes the circuit and firing the cutter de-energizes it. Potential applications exist where electrical circu ts should be severed with no electrical contact tetween separate circuits.

Beckman \& Whitley, Inc., Dept. ED, 985 E. San Carlos Ave., San Carlos, Calif.

CIRCLE 191 on reader-service card
ELECTRONIC DESIGN • March 18, 19.59

Permanent Magnets

Have continuously variable field strengths
With the Variflux magnet, field strengths connuously variable over a 20 to 1 ratio of maxium to minimum are obtained at any chosen up by means of adjustable magnetic shunt ngs. Variability of the gap is 0 to $4-1 / 2 \mathrm{in}$. Stock ole faces, readily interchanged, are: 10 cm dimeter flat field shimmed pole faces suitable for uclear magnetic resonance and beta spectromcers; 5 cm diameter high intensity field poles; ind 10 cm radius 60 deg sector poles suitable for aass spectrometers. Typical unshunted fields re 3000 gauss at 1 cm separation of the 5 cm liameter pole faces; and 1200 gauss at 2 cm paration of the 10 cm diameter pole faces. The units have negligible hysteresis.
Laboratory for Science, Dept. ED, 5431 Colge Ave., P. O. Box 2925, Oakland 18, Calif. CIRCLE 192 ON READER-SERVICE CARD

Precision Multiplier-Divider Analog computing component

Model K5-M multiplier-divider is a precision malog computing component with long term stability: Based on an all-electronic semiconductor network, it accepts three variable inputs, ${ }_{1}, e_{2}, e_{3}$, and provides as output $e_{1} e_{2} / e_{3}$. Its accuracy as a multiplier, including drift, is better than 0.1 v in all four quadrants. A three-digit Jecade provides an adjustable voltage which may he added to numerator, denominator, or output. This voltage also serves as an adjustable scale factur for operations involving only two variables. l)ynamic response is determined by an adjustable witch setting. The unit is mounted on a standard 7 in . rack panel. In addition to filament power at 115 v ac, it requires 100 ma at plus and minus 300 v dc. The standard range of inputs and outputs is plus and minus 50 v . Typical applications include analog computation, correlaon, precision modulation, and control. No exrnal equipment is necessary to obtain products, tios, squares, square roots, or absolute values. George A. Philbrick Researches, Inc., Dept. 1), 285 Columbus Ave., Boston 16, Mass. CIRCLE 193 ON READER-SERVICE CARD

TARGET DISCRIMINATION

 IN INFRARED DETECTION SYSTEMSThe pioncering field of infrared detection offers many challenging opportunities to scientists and engineers al Ramo-W'ondridge for advanced stadies in the solution of target discrimination problems. Research is continually under way at Ramo-Wiooldridge in the integrating of infrared detection devices with the latest electronic sistems techniques for onhanced target detection on the ground and in the air.

The phosphor bronze reticle, or image chopper, illustrated above was developed by RamoWooldridge. It indicates a marked stride in space filtering discrimination concepts, and is used for target signal enhancement in guided missiles, anti-aircraft fire control and air collision warning applications.
The reticle is used in the focal plane of an infrared optical system and is rotated to chop the target image for the desired space filtering. It is also employed in time filtering, such as pulse length discrimination, or pulse bandwidth filtering.
Space filtering is critical to infrared systems, because of its ability to improve the detection of
objects located in the midst of background interference. In a manner similar to that used in the modification of electronic waveforms be eleer trical filtering. space filtering enhances the twodinensional space characteristics of a target. The size and features of the target are highlighted and the undesired background eliminated.
Scientists and engineers with backgrounds in infrared systems-or any of the other important areas of research and development listed below - are incited to inguire about current opportunities at Ramo-Wooldridge.

Electronic reconnaissance and countermeasures systems
Analog and digital computers
Air navigation and traffic control Antisubmarine warfare
Basic research
Electronic language translation Information processing systems Advanced radio and wireline communications
Missile electronics systems

New High-Performance Electrolytics

for Printed Circuits and Miniaturized Equipment

A new line of Mallory electrolytic capacitors latest refinement of the industry-standard FP WP, and TC models . . . now brings extra performance and compactness to designers of printed circuits and miniaturized products. High temperature shelf life, operating life, and capacitance stability have been substantially increased, by the use of new Mallory low-impedance elertrolyte.

Typical temperature characteristics of Type PET and PET-A capacitors.

The new design gives more capacity per unit size than previously possible with comparable aluminum electrolytics. Leakage current, power factor and impedance are exceptionally low. Models are rated for temperatures from - 30 to $+85^{\circ}(\mathrm{C}$
Two designs are available. The PET series, specifically for printed circuits, has all leads coming from one end of the case, and is available in single, dual and triple ratings. The PET-A series has axial leads suitable for printed circuit or conventional wiring ... comes in single and dual ratings.
Excellent performance and protection against humidity are obtained by a plastic case with epoxy end seal.
Case sizes range from " $s^{\prime \prime} \times{ }^{5} y^{\prime \prime}$ to ${ }^{5} y^{\prime \prime} \times 18^{7} s^{\prime \prime}$. Maximum capacity is $23 \mathrm{mfd} / 3 \mathrm{VDC}$ to $3 \mathrm{mfd} / 50$ VDC for the smallest size: $1500 \mathrm{mfd} / 3 \mathrm{VDC}$ to $238 \mathrm{mfd} / 50$ VDC for the largest size. A complete range of ratings is available. Get full details and a consultation on your circuit applications, by writing to Mallory today.

MALIORY

P. R. MALLORY \& CO. Inc.. INDIANAPOLIS O. INDIANA

NEW PRODUCTS

Coaxial Terminations
50 to 300 w ratings

These high power coaxial terminations cover the dc to 10 kmc range with a maximum vswr of 1.2. Models RDL-30N and RDL-31N have a dc to 4 kmc range and are rated at 200 and 50 w , respectively, without forced cooling. Model RDL-6N(H) covers 2 to 10 kmc and has a 300 w rating. All units are designed for use with type N connectors.
Radar Design Corp., Dept. ED, P.O. Box 38, Pickard Dr., Syracuse, N.Y.

CIRCLE 196 ON READER-SERVICE CARD

Miniature Indicator

For edge-lighted panels
For all edge-lighting applications, type 8555-E Color-Lite has a $1 / 2 \mathrm{in}$. opaque cap, designed for flush mounting, which prevents any light from showing in front of the panel. It uses a standard GE 327 or 328 incandescent bulb, and is available with or without a red filter. The front is removable for easy replacement of bulbs. In both screw body and flange types, the units are $3 / 8 \mathrm{in}$. in diameter and have nylon coding collars in standard RETMA colors to simplify wiring be hind the panel.
The Sloan Co., Dept. ED, 4029 Burbank Blvd. Burbank, Calif.

CIRCLE 197 ON READER-SERVICE CARD

Automatic Circuit Evaluator

Self-programming
The SPACE Mark Ia. self-programming auto matic circuit evaluator is designed for rapic checking of production line electrical equipment No patchboard arrangement or tape punching is required to place the system in operation

When a verified wiring harness is connected to he instrument, a punched tape program is genrated in the analysis mode of operation. This ape is then used to verify harnesses of similar -ircuit configuration in the verification mode. Errors are printed out as leakage, resistance, upen, or short, together with the appropriate cordinates. The primary function of the instrunent is testing for leakage and continuity beiween two test points which are automatically clected from all combinations of 420 inputs by i scanning unit. The system operates at seven lests per sec and is housed in a cabinet $52 \times 4.4 \times$ 22 in .
Brooks Research, Inc., Dept. ED, P.(). Bus 67 , rinchester 10, N.Y.

CIRCLE 198 ON READER-SERVICE CARD

Stereophonic Cartridges

Have dual tips
Type 8T ceramic stereophonic cartridges have a response that is smooth from 20 to $20,000 \mathrm{cps}$ and flat to $12,000 \mathrm{cps}$ with gradual rolloff beyond. Output voltage is 0.3 v ; compliance, 2×10^{-6} $\mathrm{cm} /$ dyne; recommended load, 1 to 5 meg. Tracking pressure is 5 to 7 g ; cartridge weight is 7.5 g : and channel isolation is 20 db . The cartridges have two jewel tips, a 0.7 mil for microgroove and a 3 mil for 78 rpm . They mount on standard $7 / 16$ and $1 / 2$ in. centers.
Sonotone Corp., Dept. ED, Elmsford, N.Y.
circle 199 on reader-service card

Deposited Carbon Resistors
Rated of 5 w

In values from 100 ohms to $1.50 \mathrm{meg}, \mathrm{DCH}-5$ leposited carbon resistors are rated at 5 w to ${ }^{1} \mathrm{C}$, and derate to 0 at 160 C . Hermetically sealed, the units have a standard tolerance of $=1 \%$ and measure $4-1 / 4 \times 9 / 16 \mathrm{in}$.
Dale Products, Inc., Dept. ED, Columbus, lebr.

Circle 200 ON reader-service card
ELECTRONIC DESIGN • March 18, 1959

custom-designed Lord mounting systems for:

inertial guidance systems analog and digital computers primary navigational systems integrated electronic systems radio receivers, transmitters, transponders magnetrons pressure transducers airborme controls and instrumentation
 integrating accelerometers

positive protection for sensitive equipment

The mounting system shown here was designed, developed and produced by LORI) for the inertial guidance platform of an IC BM. It clearly demonstrates LORID's capability to meet the most sophisticated requirements for shock and vibration protection.
You can assure optimum reliability for your missile or advanced jet project by utilizing LORI) skills and experience. Integration of Lorid abilities with those of your staff will result in an economical system design providing maximum protection for given weight and size
Complete research, engincering, test and production facilities-staffed with personnel of outstanding capabilities-can provide vital assistance for your program. Full information is available from your nearest Lord Field Engineer or the Home Office. Erie, Pennsylvania.

High-performance mounting system protects $180-\mathrm{Ib}$. guidance platform against Highly original design weighs only 18 lbs . weighs only uses Lord BTR elas. tomer for broad temperature operation.

LORD

FIELD ENGINEERING OFFICES ATLANTA. GEORGIA.CEdar 7.9247 DETROIT, MICH. Dlamond 1.4340 BOSTON, MASS. HAncock 6.9135 CHICAGO, ILL. - MIChigan 2.6010 DALLAS, TEXAS - RIverside 1.3392 DAYTON. OHIO-BAIdwin 4.0351 SAN FRANCISCO.

LORD MANUFACTURING COMPANY . ERIE, PA. CIRCLE 201 ON READER-SERVICE CARD

WOW MICRO-MINIATURE SENSITIVE RELAYS

by Iron Fireman

Sensitivity down to $\mathbf{2 5} \mathbf{~ m w}$.

The semstivity ratengs. vitration and shock immor nucs hown abole are achesed for the first lime in
a mero-mmathere pathage
Where onls limbed power is atable the Iron
 of unpolarted excitng power and a high wegree
reliability and environmental immunities.
When space, weight and sensitivity are a problem specify the Iron Fireman R 800 Relay ments of M11-R 5757 (, the pertormance and relit
 scalling the colls within the outer shell.
Complete performance data datable on reyuest. Write (1) the address below.
oblem tpecify the toon firemon Reoo reloy

MIERO MIN. RELAYS
mah speed relays SLIPRINGS a brushes
frie and vertical gyros

IRON FIREMAN
r foot mounts. The foot mounts may be rotated 0 deg in either direction. The stainless steel Iput and output shafts are $3 / 16 \mathrm{in}$. in diameter nd the housing is $2-5 / 8 \mathrm{in}$. long.
Metron Instrument Co., Dept. ED, 432 Lincoln t., Denver 3, Colo.

CIRCIE 205 ON READER-SERVICE CARD

Thyratron Tube

Has 6.4 amp anode current rating
Type VTP 7386 thyratron has a peak anode urrent rating of 100 amp and is adaptable to any ircuit employing a C6J, C6JA, 5685, or 5C21 ibe. It can control current pulses to the welding ransformer in spot and seam welding machines, nd convert ac current to dc for running variable peed motors. It can also serve in adjustable dc ower supplies and replace lower-rated types in rid controlled rectifier service. The unit triggers when the potential on the control grid falls beween -3 and -7.5 vdc , assuming a maximum orvard voltage on the plate of 1000 v . It will Iso pass current with less than +75 v on the late if the grid carries a positive voltage of at ast 3 v . Continuous anode current rating is 6.4 inp. The tube operates over a broad range with maximum recommended frequency of 440 cps nd withstands ambient temperatures from - 55 +75 deg C.
Vacuum Tube Products Co., Inc., Dept. ED (120) Short St., Oceanside, Calif.
circle 206 on reader-service card

Computer Power Supply
Has multiple outputs

This computer power supply svstem provides different dc output voltages that are electrically isolated from one another and two ac outputs, one regulated and one unregulated. It (1) free from transients and provides a total of 4.75 kw dc from six individual rectifier supplies. Bogue Electric Mfg. Co., Dept. ED, 52 Iowa ve., Paterson 3, N.J.

CIRCLE 207 on reader-service card

Don't forget to mail your renewal form to continue receiving ELECTRONIC D)ESIGN

RF INTERFERENCE SUPPRESSION FILTERS been the suppression of radio frequency interference. This abjective heo been fulfilled thousands of times in maling customer's equinment conform to specifed tomer eque levels wher Milary performance levels, whether Military, F.C.C. or Industrial.

Filtron first determines what form and magnitude of suppression is necessary to meet specifications. This is accomplished in our modern fully-equipped screen rooms and engineering laboratories, situ-
ated in Fushing, N. Y., and Culver City,
Calif. Next, each phase of deaign and production is company controlled, as our capacitor manufacturing division, coil winding division, metal fabrication shop and metal stamping departments are exclusively producing the highest quality components for Filtron's RF Interference Filters.

If you have a RF Interference Filter problem, consult Filtron-the most reliable name in RF Interference Filters.

Send for your copy of our NEW CATALOG.
CO., inc. FLUSHING, MEW YORK - CUIVER CITY, CALIFORMIA
Visit our Booths 2841-43 at the IRE Show
CIRCLE 208 ON READER-SERVICE CARD

NEW FUSION-SEALED glass capacitors defy environmental stresses

Corning's new CYF-10 capacitors are guaranteed to be four times better than MIL specs require on moisture resistance.

All the data we ve gathered to date indicates that with the new CYF-10 you have a capacitor that is practically indestructitle under severe environmental stresses.

For example. these (YF-10's will withstand MII-STD 202A moisture conditions for over 1000 hours with no signs of deterioration.

To make the CYF-10 impervious to environmental stresses wève completely encapsulated the glass dielectric capacitor element in a glass casing. This encapsulation is completely fusionsealed against moisture, salt. corrosion and weathering.
If you need both high reliability and miniaturization, the new CYF-10's-the only Fusion-Sealed capacitors avail-able-are worthy of your investigation. For complete details, write to Corning Glass Works. Bradford. Pennsylvania.

$$
\text { CIRCIE } 209 \text { ON READER-SERVICE CARD }
$$

CORNING MEANS RESEARCH IN GLASS
CIRCIE 209 ON READER-SERVICE CA

NEW PRODUCTS

Preamplifiers
Low noise

Of weatherproof construction, these low noise preamplifiers measure $3-5 / 8 \times 12 \times 5 \mathrm{in}$. Model PRU-L is available for any frequency from 400 to 1000 mc and has a 3 db bandwidth of 10 mc . Noise figure is $6 \mathrm{db} \pm 1$ from 400 to $600 \mathrm{mc}, 7$ $\mathrm{db} \pm 1$ from 700 to 1000 mc . It provides 10 db gain and has a self-contained power supply rated at $117 \mathrm{v}, 50$ to $60 \mathrm{cps}, 10 \mathrm{w}$. Model PR is available for use from 50 to 250 mc in 6 mc bandwidths. It has a noise figure of 3 db from 50 to 150 mc and 4 db from 150 to 250 mc .
Community Engineering Corp., Dept. ED, Box 824, State College, Pa.
circie 210 on reader-service card

Heat Exchanger

Dissipates up to 7000 w

Model CR-2, CR-5, and CR-7 heat exchangers dissipate 2000,5000 , and 7000 w , respectively, but they can be adapted to any intermediate rating. Designed for airborne, shipboard, and ground support electronic equipment, the largest exchanger measures $10-11 / 16 \times 19-9 / 16 \times 15-1 / 2$ in.

The Hallicrafters Co., Dept. ED, 4401 W. Fifth Ave., Chicago 24, Ill.

Circle 211 on reader-service card

Plastic Capacitor

Has 0 temperature coefficient from -55 to +55 C
Type KYA plastic film dielectric capacitor is a rugged hermetic bathtub enclosure with a tem perature coefficient of $0 \pm 10 \mathrm{ppm}$ per deg C uniform from -55 to +85 C . Capacitance rang is 0.01 to $1 \mu \mathrm{f}$; voltage, to 1000 wvdc. The uni has a long term stability of $\pm 0.05 \%$ and a powes factor of under 0.1% at 25 C .

Diamond Electronic Corp., Dept. ED, 6 White St., New York 3, N.Y.
circle 212 on reader-service card
ELECTRONIC DESIGN • March 18, 195s

Movie Cameras

Incorporate digital recording devices

These cameras incorporate a Magnavox digital ecording device which provides a 96 -bit matrix mage on each frame of film and correlates coded lata with pictorial records in real time. The camras can be operated at any rate up to 80 frames per sec and are useful in engineering tests, missile racking, reconnaissance, flight tests, and microfilm locument recording. They can record time, temperature, pressure, vibration, stress, deflection, thaft position, elevation, azimuth, altitude, range, and similar coded digital data. The Magnavox recorders are offered with the 35 mm 75 Fototracker and the Bell \& Howell model 71 Eyemo cameras. Cameras of this type now in use can also be provided with the recorders.
Traid Corp., Dept. ED, 17136 Ventura Blvcl., Encino, Calif.

CIRCLE 213 ON READER-SERVICE CARD

Right Angle Adapter

Has maximum insertion loss of 0.1 db
Built to USAF specifications, this right angle ddapter has a maximum vswr of 1.15 to 1 , a maximum insertion loss of 0.1 db , and a power liandling capacity of 500 w . Its frequency range is 350 to 5000 mc . The $2000-\mathrm{UG}-1264 / \mathrm{U}$ adapter leatures a captivated continuous center conducfor covered with a continuous Teflon dielectric. It is qualified according to MIL-E-5272, fits LT male and female connectors, measures $3-3 / 4 \times 3$ m.; weighs 7 oz .

Tamar Electronics, Inc., Dept. ED, 2339 Cotner Ave., Los Angeles 64, Calif.

CIRCLE 214 ON READER-SERVICE CARD

Portable Communication Test Set

For audio and carrier frequencies
Model JK audio and carrier frequency test set consists of a transistor oscillator and a meter. The oscillator supplies a stable 1000 cps constant voltage and provides outputs of $0,-13$, and -16 db into a 600 ohm line. Output impedance is 600 ohms. The db meter is designed for testing it frequencies from 60 cps to 600 kc and is readable from -20 to +43 dbm . It has a rotary witch for range changing and voltage ranges of 1, 5, 25, and 125. Self contained loads of 150 and 600 ohms can be selected by switch. Both inits fit into one leather case with space for loads.
Stewart Bros., Div. of Instrument Labs, Dept. L:D, 315 W. Walton Place, Chicago 10, Ill. circle 215 on reader-service card

FLECTRONIC DESIGN • March 18, 1959

How to make
a Magnetic Core
that's really
SMALL?
use AL
PERMENDUR

This 32-page book contains valuable data on all Allegheny Ludlum magnetic materials, silicon steels trated in full color, includes essential information on properties, characteristics, applications, etc.
chat Your copy gladly sent free on request.

ADDRESS DEPT. ED-15

When the conditions of service make it imperative for you to hold the size and weight of magnetic cores at an absolute minimum, that's the place to use Permendur. With it you can push the flux density up to 20 kilogausses, and practically eliminate weight as a consideration.

Along with its suitability for cores wherever the premium is laid on compactness, Permendur is just the thing for sonar magnetostriction applications, too. We maintain proper annealing facilities for this
alloy. Write for technical data on it, and let our engineers help you to cash in on its possibilities.
In addition to Permendur, we offer a range of high-permeability alloys, oriented silicon steels and other electrical alloys that is unmatched in its completeness. Our services also include the most modern facilities for lamination fabrication and heat treatment.

Let us supply your requirements. Allegheny Ludlum Steel Corporation. Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

U.S. Army Signal Laboratory designs computer

 to measure wind effects ... and Vernistat* is there!

Since different types of pilot balloons have different rates of rise, and wind effects vary with each type of missile, signal inputs to the computer must be easily and quickly adjusted. That's one reason why USASRDL engineers chose two Vernistat Adjustable Function Generators Only seconds are required to change from one function to another.

Near-surface winds at a launching can easily force a missile off course, with the result that the missile lands outside the target area. To counter the effect of such surface winds, the missile launcher is tilted to a corrective angle. Calculating the wind effect and the proper angle of tilt of the launcher, however, can be mathematically quite complex and a time-consuming operation. The United States Army Signal Research and Development Laboratory at Ft. Monmouth, New Jersey has developed a compact computer for this job. Quickiy and accurately, from pirot barioon data, the computer calculates both wind displace missile and the proper tilt of the launching stand.

NEW PRODUCTS

HIGH TEMPERATURE SURFACE COATING.Clear epoxide Eccocoat C 26 can be used continuously at 500 F and for short periods up to 600 F . Surface resistivity is above 10^{15} ohms at room temperature and about 10^{14} ohms at 500 F . Moisture and chemical resistant, the material is used for coating printed circuit boards, electronic circuits and components, metals, and ceramics. It can also be used in place of varnish for dipping or impregnation of coils or motor windings. It is applied by dip, brush, or spray and adheres to a wide variety of materials.
Emerson \& Cuming, Inc., Dept. ED, 869 Wash. ington St., Canton, Mass.

CIRCLE 218 ON READER-SERVICE CARD
OSCILLOSCOPE TUBE.-For visual or photographic observation, crt type 5WP11 has magnetic deflection and electrostatic focus.
Sylvania Electric Products Inc., Sylvania Electronic Tubes, Dept. ED, Seneca Falls, N.Y. CIRCLE 219 ON READER-SERVICE CARD
(:ALVANIZEI) STEEL TOWER.-For two-way, broadcast, and microwave use, model 1810 has a triangular cross-section with an 18 in . face. It is produced in standard $10-\mathrm{ft}$ sections for heights up to 290 ft and meets RETMA specifications for a 100 mph wind load.

All Products Co., Dept. ED, Mineral Wells, Tex. CIRCLE 220 ON READER-SERVICE CARD

MOLIDED NYLON HEX NUTS.-In ten sizes from no. 2 through $5 / 16 \mathrm{in}$., these nuts have washer faces and are double countersunk. They are made with a single chamfer and, except for the $5 / 16 \mathrm{in}$. sizes which are jam nuts, are standard thickness with unified series Class 2B threads.
Gries Reproducer Corp., Dept. ED, 168 Beechwood Ave., New Rochelle, N.Y.

CIRCLE 221 ON READER-SERVICE CARD
COMPONENT HOLDER.-This spring loaded device is used to hold the leads of resistors, condensers, and dials for test purposes. It is gold plated for low contact resistance and maximum corrosion resistance and will handle wires from 0.005 to 0.09 in. in diameter.
General Components Inc., Dept. ED, 225 East 144th St., New York 51, N.Y.

CIRCLE 222 ON READER-SERVICE CARD
FLYING SPOT SCANNER.-Flat face type 5ZP15 has high resolution, electrostatic focus, and magnetic deflection. It uses a P15 phosphor with blue-green fluorescence and short persistence.

Sylvania Electric Products Inc,, Sylvania Electronic Tubes, Dept. ED, Seneca Falls, N.Y. CIRCLE 223 ON READER-SERVICE CARD

Have you sent us your subscription renewal form?

CAS FLOWMETER.-Accommoditing flow rates ip o Mach 8, this unit call measure contaminated gases with a low pressure drop. It has an accuracy of $\pm 0.5 \%$ of reading and good repeatability over a 0 to 1 linear range. Temperature range extends -425 F
Pottermeter Co., Dept. ED, Union, N.J. CIRCLE 224 ON READER-SERVICE CARD

IIEDICAL PREAMPLIFIER.-This EEG preamdifier makes it possible to display electroencephalotraph signals on standard medical cardioscopes and sectrocardiographs by increasing their sensitivity by factor of 30. It is designed so that the EEG and SCC signals may be delivered simultaneously to an iscilloscope through a single cable. Noise level is μv peak and 60 cps rejection is 1 million to 1 . Levinthal Electronic Products, Inc., Dept. ED, itanford Industrial Park, Palo Alto, Calif.

CIRCLE 225 ON reader-service card

LITERNATE PULSE RELAY:-Designed for easy installation on long production runs, the PA relay mounts with a single bolt in a tapped $8-32$ core. It transfers contacts when pulsed for about 30 msec . Contacts are rated at $7.5 \mathrm{amp}, 11.5 \mathrm{v}, 60 \mathrm{cps}$, reistive. Length is 2 in.; height, $1-34$ in.; weight,
-1/2 oze. Bramfield, Inc., Dept. ED, Prince-
Potter de (om, Ind.

CIRCLE 226 ON READER-SERVICE CARD

THERMAL TIME DELAY--Series TH fixed time delays have snap action load contacts in many arrangements and switch up to 20 amp . They are casily adjustable and provide automatic ambient tomperature compensation. Available cither hermetcally sealed or in explosion proof housings, they are suited for air conditioning, refrigeration heater ontrols. computers, and recycling applications. Industrial Timer Corp., Dept. ED, 1407 McCarter Hichwal. Newark 4, N.J.

CIRCLE 227 ON READER-SERVICE CARD

TEMPLATES.-Four lettering aids and one elecfromic drawing aid have been added to the Leroy lue: Spartan Medium forms solicl or outline capital b-tters and mombers; Shadow forms shadow type (apitals and mumerals; Isometric forms caps and numbers sloped for isometric drawings; the Standard Lettering Template forms A. 0.5 in . capitals in vertical or slanting style; and the Electronic Tube Symbol forms practically all the sumbols used for various t pes of electronic tubes and semiconductor devices. Keuffel \& Esser Co., Dept. El)., Adams and Third Sts., Holroken, N.J.

CIRCLE 228 ON READER-SERVICE CARD
ElECTRONIC DESIGN • March 18, 1959

They all arrived the SAME DAY!

All the necessary precision components for a closed-loop control system arrived the same day, in one shipment, just 3 days after being ordered from Servomechanisms' Mechatrol Division. There was no waiting on the part of the engi-neer-he started his breadboarding within a few days after ordering.

Our new MDA ${ }^{\circ}$ program - the result of eleven years of design and production experience-enables engineers to order, from a single catalog, the precision mechanical and electronic components they need for the development of control systems. Immediate, off-the-

SERVOMGOMANISMS
 CIRCLE 229 ON READER-SERVICE CARD

shelf delivery is assured. Most of these components were developed for SMI's own subsystems and have been proven by years of service in the field. To supplement the SMI line, the quality products of other leading manufacturers have been selected.
It will pay you to take advantage of this new, exclusive service. A single source means only one purchase order, one invoice-and, no waiting. Get started by writing for your copy of the New Mechatronic Development Apparatus Catalog, MDA 5, today.

- Mechatronic Development Apparatus

MECHATROL DIVISION
1200 Prospect Avenue, Westbury, L. I., New York
WESTERN OFFICE
1000 West El Segundo Blvad., Hawthorne, Cal.

Electonic Products NEWS by carborundum

High Energy Resistor Delays Fuse OpeningCollins Radio uses GLOBAR resistor to handle short-time overload

A unique application of a globar high energy resistor is made in a radio power supply unit manufac tured by Collins Radio, Cedar Rapids, Iowa. The resistor is used for delay ing the opening of a fuse under a short-time overload current cordition. Requirements are rigo ous. The resistor has to be capable of handling 21 amps for 3 seconds (140 times rated must not arc burn, char or change in must not arc. burn, char or change in subjected to 5 seconds of the specified overload currents for 5 cycles on with 5 minutes off. It must operate con-
tinuously under 35 watts loading for 1,000 hours in a room temperature am bient, the resistance change being no more than 10 .
A globar'type SPresistor, $31 / 4$ " long, $3 / 4^{\prime \prime}$ O.D. and $5 / /^{\prime \prime}$ I.D. is used. This resistor will operate continuously in ambients up to $1,000^{\circ} \mathrm{F}$. It is supplied with metalized ferrule type ends for fuse clip mounting. For information on Globar resistors for similar high temperature, high energy applicatons. Wieio Globar Plant, Rerrac ories Division, Dept. EDR 39, The Carborundum Company, Niagara Falls, N.

CERAMIC IGNITER for oil and gas burners A development of high temperature resistors

The versatility of silicon carbide for high temperature resistors is further demonstrated by its application as a ceramic igniter for fuel oil and gas furnaces.
Conventional igniters utilize either a hot wire, which has a relatively short life, or a spark discharge system, necessitating a high potential transformer.
Requirements for the ceramic igniter were that it should operate directly from 12,24 and 115 volt

ources, have high stability be inex

 pensive and effective for up to 25,000 cycles of operation. A composition similar to that of the globar Type SP resistor proved to be the answer. By varying resistivity, operation is possible on any of the desired voltages. To alert electronics engineers, the ucct the many possibilities of utilizin gest the many possibilities of utizizing milar resistors in high temperature Terminals which can be spot-welded erminals wich caits spo-welded veloped. Prototypes of such been de are now actually being evaluated by several customers as potential components for missiles anid other critical applications. Technical assistance and information can be secured by writing toGlobar Plant. Refractories Division. Dept. EDIR 39, The Carborundum Company, Niagara Falls, N. Y

Matched or Compression Seals?
Which metal-to-glass combination should you choose for packaging rectifiers and other housings?

Two types are available. The first type is represented by Kovar ${ }^{(8)}$ matched seals in which the identical thermal expansion characteristics of kovar Alloy and borosilicate hard glasses result in a fused hermetic bond. pansivity as silicon and germanium. pansivity as silicon and germanium stability in operation is assured. The second type is represented by th compression seal which relies on dif and metals, like mild steel, to provide a tight joint.
Both types give excellent service depending upon the design and application of the unit. Compression seal applications are often those where the use of heavier metal parts is advantageous.
Among other advantages, KOVAR "top hats" have special value as high voltage seals. The insulating glass does not need to be contained within a compression band and thus can be extended for higher flash-over voltage ratings.
For help in your choice of seals write Latrobe Plant, Refractories Division, Dept. EDK 39, The Carborundum Company, Latrobe, Pa.

NEW BULLETIN DESCRIBES FIXED NON-INDUCTIVE CERAMIC RESISTORS
 Types A, B , and ex resistors recommended purpose applications in electronic and eleccuits. A wide range of sizes, shapes and compositions provide desired resistivities and watt ratings. For a copy, write: Globar Plant, Refractories Division. Dept. ED 39, The Carborundum Company, Niagara Falls, N. Y

NEW PRODUCTS

LIQUID LEVEL GAGE.-Model 0358-1 makes continuous level measurements of a wide range of elec trically conductive liquids and granular solids with accuracies of up to $1 / 10 \mathrm{in}$. over a 10 ft . range. All electronic, it uses a capacitance circuit which requires no moving mechanism in the material being measured. Readout may be in dial or counter form, or it may be built into a standard 11 in . strip chart recorder.
Magnetic Instruments Co., Inc., Dept. ED, 546 Commerce St., Thornwood, N.Y.

CIRCLE 231 ON READER-SERVICE CARD

ELECTRONIC TEST SET.-The Checkinate auto matically tests electronic systems for overall performance. Each test set is designed for a specific system and automatically tests it when the press-to-test button is pushed.

CGS Labs., Dept. ED, Route 7 at .35. Ridgefield Conn.

CIRCLE 232 ON READER-SERVICE CARD

VINYL INSULATION REPAIR KIT.-Contains Vyna-Kote, a liquid vinyl that repairs all kinds of damage to vinyl insulated wires. Consists of twelve 2 oz bottles, one each of ten colors, one clear, and one thinner Spectra-Strip Wire \& Cable Corp., Dept. ED P.(). Box 415, Garden Grove, Calif. CIRCLE 233 ON READER-SERVICE CARD

IINIATURE TRIODE-PENTOIDE.-Momel GEAS comb:ination medium-mu triode and sharp-cutofi pentode is a 9 -pin miniature type utilizing a 450 ma heater with controlled warm-up time. Each unit has its own separate cathode with inclividual base-pin terminal. The tube is intended for use as a com bined oscillator and mixer tube in TV receiver with 40 mc i-f circuits.
Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J.
circle 234 ON reader-service card

COMPRESSOR AND VACUUM PUMP.-A com pact, two-stage. motor driven air pump for airborn radar systems, ground support, and electronic tes equipment. Operation is entirely oil-free, and re quires no lubrication. Operating temperature rang is -6.5 to +200 F ; and compressor capacity is 0.02 ppm at 30 psi absolute outlet with $7 \mathrm{in} . \mathrm{Hg}$ absolut inlet pressure.
Great Lakes Mfg. Corp., Dept. ED., 422.3 Mont collo Blvd., Cleveland 21, Ohio

CIRCLE 235 ON READER-SERVICE CARD

ELECTRONIC DESIGN • March 18, 195

BONDED CONTACTS.-Dense, nonporous, stressfree contacts permanently bonded to rivet or backing. Bonding holds up to the melting temperature of the metal, provides maximum strength and corrosion resistance, and improves electrical and thermal conJuctivity. Contacts are more economical than brazed contacts of medium to large size silver or silver alloy.

Contacts. Inc.. Dept. EI), 1500 Silas Deane High"al: Wethersfield. Comn.

CIRCLE 236 ON READER-SERVICE CARD

REUSABLE SHIPPING CONTAINERS.-Interiors of CIDF instrument cases are padded with polyurethane foam 1-1 2 to 2 in. thick. Inside dimensions we $7-34 \times 2-38 \times 14-18 \mathrm{in}$.; $7-3 / 4 \times 3-5 / 8 \times$ 14-1/8 in.: and $7-34 \times 5 \times 24-1 / 2 \mathrm{in}$.
Continental-Diamond Fibre Comp., Dept. FID. रewark, Del

CIRCLE 237 ON READER-SERVICE CARD

ROLLING; RULER.-Pocket drafting tool for small drawings. Roller construction carries the rule in a straight line, heceping the edge parallel. Incorporates a protractor, a template for umall circles, and inch seales divided min tenths and sixternths: draws parallel and perpendicular lines, angles, and circles with up to 6 in radii. Overall siec is $6 \times 2 \times 1 / 2 \mathrm{in}$.
Fullerton Enginerring Sales Co., 1)ept. El), 4623 York Blad. Les Augeles 41. Calif.

CIRCLE 238 ON READER-SERVICE CARD

POPPET VALVE.-A miniature precision safety pressure relief mechanism designed to protect electronic combanem from ambient pressme sariations due to altitude and temperature changes. It weighs 7.4 g and is presed to contemer recpuirements between 1 and 20 psi .
Glacser Engmeering, Dept. ED., S(642 Bamkfield Ave. Culor Cit!, Calif.

CIRCLE 239 ON READER-SERVICE CARD

PRESSURE SCANNING VALVE.-High pressure. high speed 48J Scanivalve is designed for measuring turbo-engine pressures. It makes one $1 / 2 \mathrm{in}$. diameter Hush diaphragm transducer scan tis pressures in one secomed. Varions motor speeds are available. Diameter is 2 ill : length. 6.5 in .
(eneral Design. Dept. ED), (631 Both St., San (1)iego 2. Calif.

CIRCIE 240 ON READER-SERVICE CARD

COLOR FLYING SPOT SCANNER.-Type 5ZP24 has a clear, nonbrowning faceplate, an aluminized screen, and a P24 phosphor of blue-green fluorescence and short persistence.
Sylvania Electric Products Inc., Sylvania Electronic Tubes, Dept. ED, Senecta Falls, N.Y. CIRCLE 241 ON READER-SERVICE CARD

Open Circuit

 Regulation Maintained at $71^{\circ} \mathrm{C}$.

- with Honeywell's Power Tetrode

Shown above is a voltage regulator circuit using Honeywell's H200E Power Tetrode. This circuit is designed to supply 22 volts output with 1% regulation, with inputs of 24 to 32 volts and load currents of zero to 3 amperes. The system has short circuit protection.
Circuit values can easily be adjusted to maintain regulation at other voltages and through other current ranges. The base 2 circuitry can be modified to give varying degrees of leakage current stability.

The Tetrode makes possible an improved series
voltage regulator for systems where current requirements are apt to vary widely. It offers overload protection, improved high temperature operation, and controlled regulation characteristics. Its second base connection provides control of the total system leakage.
For complete voltage regulator circuit description along with component values, write Honeywell, Dept ED-3-58, Minneapolis 8, Minnesota. Regional representatives may be reached in Union. New Jersey, (MU'rdock 8-9000), Boston (AL.gonquin 4-8730), Chicago (IRving 8-9266), and Los Angeles (RAymond 3-6611 or PArkview 8-7311).

Honeywell

PACE TRANSOUCERS CAN TAKE IT!

PACE Model PI transducers were used by a missile component manufacturer to measure pressure during a centrifuge test. The transducer shown above broke loose, and was repeatedly batfered against a concrete wall until the centrifuge stopped.

Upon being returned to the factory, the transducer was tested and found to be still holding its original calibration. With a new cover and electrical connector, it was as good as new.

PACE builds a complete line of rugged, reliable magnetic reluctance transducers, designed to withstand extreme pressure overloads and the abuse encountered in normal and abnormal applications.

For detailed information on these transducers and related equipment, phone or write to the factory or contact your local PACE Engineering Company representative.

> PACEengineering company
> 13035 Soltcoy Street \quad North Hollywood, California STanley 7-7139

CIRCLE 243 ON READER-SERVICE CARD

NEW PRODUCTS

SSB RAIIO TELEPIIONE: RECEIVER.-High fre quency type 5 2 is compatible with existing transoceanic sth systems and has two independent sidebands that deliver up to four simultaneous 3 ke telephone and teletype chamnels. Up to ten crystalamtrolled freduencies may be pretuned in the 3.7 (1) 30 me range. These can be manually or remotely (omitrolled.
Wistrex Corp. Dept. EI), 111 Eighth Ave, New lowh 11, N.l.

CIRCLE 244 ON READER-SERVICE CARD

LUBRICANT.-Supplied in a spray cam, Paralese mold release and lubricant climinates sticky and marked molds. Applications result in no build-up. Foundry Rubber Inc., Para Products Div., Dept. ED). SO()O River Rd., Washington 16, D.C

CIRCLE 245 ON READER-SERVICE CARD

NUT DRIVERS.-Line of nut drivers with hex shaped heads and color coded handles. Designed to get into tight places inaccessible to standard mut drivers. Avalable individually or in kits in $3 / 16$ throngh 1 2 in. sizes.

Honter Tools, Dept. EI)., P. O. Bex 56.t. Whittier, Calif

CIRCLE 246 ON READER-SERVICE CARD

COAXIAL TERMINATION.-For Type N comenector application, type HFT/N-50) has an impedence of 52.5 ohms and a maximum iswr of 1.2 from de to 2500 mc
Applied Research Inc., Dept. ED, 76 S. Bayles Ave., Port Washington, N.Y

CIRCLE 247 ON READER-SERVICE CARD

SINCIRONOUS WELD-TIMER. - Transistorized model T:3, called the Tweore-Weld Trans-Syne Timer, hass a 1 kra capacity and is especially suited for precision welding where contact resistance baries "idel! A rotary switch adjusts the welding time from 0.5 (p)s to 10 eps of line frequence: Mordels T-6 and $\mathrm{T}-2.5$ are larger versions.
Fecterall Tool Engineering Co., Dept. ED, Cedar Grove, N.J.

CIRCIE 248 ON READER-SERVICE CARD

AIR-TO-LIQUID HEAT EXCHANGER.-Designed to provide (cooling for Klystron anodes, model LC-s dissipates $\mathbf{2 0 0 0} \mathbf{w}$ of heat from Monsanto type OS-45 wil at a circulation rate of 3 gal per min. Normally mounted within an electronic rack, it uses room air of up) to 125 F at altitudes of up to $10,000 \mathrm{ft}$ as the cooling medium. It is built to MIL-E-4158, MIL-T-4807, and MIL-STD-170 specifications.
Ellis \& Watts Products, Inc., Dept. ED, Cincinnati 36, Ohio.

CIRCLE 249 ON READER-SERVICE CARD

Three miniature stationary field clutches function as automatic power links between the timing cams and drive shafts in this com pact, wing-mounted firing sequencer for all-weather fighters Less clutches operate at remperarures from $-67^{\circ} \mathrm{ro}+27$. Withstand repeated shocks during landings. Stationary fiel . chey purt wacruation facilizare remore control Self-2 ing, they put all wear on low-cost, replaceable elements-simplify maintenance. Write for Catalog No. 6292.

WARNER

Warner Electric Brake \& Clutch Co
Beloit, Wisconsin
CIRCLE 250 ON READER-SERVICE CARD

SMALLEST TRANS.ELEC (patent applied for) MINI-LITE
New Miniafure fransisforized confrol panel light that mounts in just 30 seconds!
Simply insert this indicator light in a $3 / \mathrm{s}^{\prime \prime}$ panel-hole, tighten the collar nut and plug in the taper pins. It s completely mounte and hooked up in 30 seconds . . . no soldering needed! Enclosed transistor and 3 resistors can control the NE-2E neon lamp with unit is available in a variety of circuits for computers, data pro cessors, signal systems and transistorized automatic contro devices. Body only $1 / 2^{\prime \prime}$ in diameter and $11 / 4^{\prime \prime}$ long. For complet data on the Mini-Lite and other control panel components, write u or phone W Est 9-6754.

TRANSISTOR ELECTRONICS
 CIRCLE 251 ON READER-SERVICE CARD
ElECTRONIC DESIGN • March 18, 1955

YLON CABLE CLIPS.-These Nylon molded-type lips have a ribbed reinforcing edge that holds in efinitely against the strains of vibration, weather ooisture, and chemical corrosion. They are electrially nonconductive and have mo sharp edges to amage insulation or tubing.
Commercial Plastics Co., Dept. ED, 94.5 George
Chicago 14, Ill.
circle 252 on reader-service card
dUAL HEAT SOLDERING; GUN.-Model 8200 K as a Triggermatic control which provides 90 and 25 w . A prefocused spotlight illuminates the work thile the gun is in use.
Weller Electric Corp., Dept. ED, 601 Stone's rossing Rd., Easton, Pa

CIRCLE 253 ON READER-SERVICE CARD

IIOTOELECTRIC CONTROLS.-These units proide automatic control of lights regardless of time f day, weather, or season. Lights are automatically witched on at the same darkness value of each ught and off again when daylight returns. Model 1200 turns on at $35 \mathrm{ft}-\mathrm{c}$, off at $55 \mathrm{ft}-\mathrm{c}$; model B200 ums on at $0.5 \mathrm{ft}-\mathrm{c}$, off : at $1 \mathrm{ft}-\mathrm{c}$.
White Engineering Cu., Dept. ED, 2:38 Grand Rutherford, N.J.
circie 254 on reader-service card

PEG BOARIDS.-These two additions to the SeeZak electronic component line measure 4×7 and 4×12 iil. They are designed for electronic systems planning and development.
M. \& F. Mfg. Co. Dept. EI), 109.29 Vanowen North Hollywood, Calif.

CIRCLE 255 ON READER-SERVICE CARD

POWER SILICON RECTIFIERS,-This unit features diffused silicon junction, a solid copper base, a hot tin dipped terminal, a hermetic seal for the licon chamber, and tough epoxy protective coating. Vickers Inc., Electric Products Div.. Dept. ED, 515 Locust St., St. Louis 3, Mo

CIRCLE 256 on reader-Service card

LASS PROBE THERMISTOR KIT.-Designed for Ircuit planıing, the KP50 kit contains thermistors decade steps from 100 ohms to 10 meg. Complete chnical characteristics and resistance vs temperare curves are furnished for all six units
Victory Engineering Corp., Dept. ED, 519 Spring. id Rd., Union, N.J.

CIRCLE 257 ON READER-SERVICE CARD
ECTRONIC DESIGN • March 18, 1959

CUT COSTS OF TEST EQUIPMENT BY 20\% WITH Technical Information Service

Case histories have shown that companies waste up to 20% of their annual expenditures for test equipment.

A prime cause is the failure to make the best buy ohtainable because each company did not know the full range of available equipment. Collecting and maintaining complete, timely, and as $\$ 25,000$ a year to service - and yet could be incomplete and inaccurate.

A prodigious number of crucial engineering and purchasing man-hours are squandered in test equipment procurement. Tracking down sources of supply takes days and, often, weeks. Key pertervicus while obtaining full specifications and prices. When modifications are involved worklods increase geometrically This costly routine must be repeated every time new purchases me made.
C máa

Now, for the first time, you can plug these hidden profit leak: through the use of a completely new concept in instrument walluation for procurement.

Technical Information Service (TIS) provides you with com plete, timely product information about all available electronic test equipment. In a matter of minutes you can possess detailed devcriptions of equipment produced by every manufacturer in the business. from the largest to the smallest. Without hias in
favor of either. What's more, the descriptions include the full specilications, price, and the names and addresses of local sales repreventatives-all you need to initiate procurement.

Consider the benefits enjoyed by clients of Technical Information Service.

SINGLE SOURCE OF SUPPLY INFORMATION

Clients have the only central source of supply information designed specifically for their electronic test equipment require ments. Completely categorized, up-to-the-minute information makes the user a technical experr capable of quickly evaluating complete spec-hy-sec comparions of comperive equipmen. since iss maintains accurate iles by constant check of all sources make inquiry hy phone or leter on any test insrument problem make inquiry hy phone or at any time.

With such information at their fingertips, clients can make their purchases with total awareness of what the market has to offer. Procurement is made with minimal demands on key personnel and their time. Many clients find that this accelerated tight-schedule projects for which the test equipment is needed.

COMPLETE, ACCURATE IMFORMATION

Clients receive detailed data on more than 4,500 separate instru ments manufactured by some 400 different companies. Constant data on specifications. prices and models up to date at all time
data on specifications, prices, and models up to date at all times.

Technical Information Corporation

41 Union Square, New York 3. New York. WAtkins 4-2111

NOW... VTVM's for all applications
...panel-
mounted ...
small-size
ELECTRONIC
VOLTMETERS

SEND FOR CATALOG IOA which gives complete specifwhich gives complete specifi-
cations and prices on panelcations and prices on paner-plug-in models.

Build accuracy into all your equipment, lest and production alike, with Metronix DC and AC E'ectronic Voltmeters.

These Metronix instruments are no larger than conventional volt meters, cost little more. They offer higher accuracy because they don't load the circuit. In AC applica
tions, they respond accurately over a frequency range of 20 CPS to 100 KC .
Selective, step-ranges run from $0-10 \mathrm{MV}$ to $0-300 \mathrm{~V}$ AC, and $0-1$ to 0-1000V DC. Metronix Electronic Voltmeters can be furnished in MIL-spec, rack-mounting and plug-in models.

Metronix inc

m

 a subsiomary ofASSEMBLY PRODUCTS, INC.
Chesterland 17, Ohlo
circie 259 on reader-service card
MINIATURE AND SUB-MINIATURE

Rugged and reliable relays are manufactured at $\mathrm{Hi}-\mathrm{G}$ in a wide range of standard units and to customer order with special designs to meet your particular requirements.
Complete experimental and prototype facilities permit Hi -G engineering personnel to study and evaluate your relay needs.
New, complete illustrated specification sheet available. Write for your free copy today.
And for information on special relay units, send your specifications to Hi -G for
study ond recommendations of no obligation.
rugged/reliable/shock and vibration resistant
a few of the wide range of hi-g standard relays

Visir Hi-G booth \#2106 at I.R.E. show CIRCLE 260 ON READER-SERVICE CARD

NEW PRODUCTS

SURFACE TEMPERATURE PROBE.-Model 116D measures skin and gas temperatures and is useful for Hight testing manned aircraft, rockets, and missiles. The sensor is platinum wire and has 500 ohms resistance at () C. The unit's upper limit is 760 C
Rosemount Engineering Co., Dept. EI), 4900 W 78th St., Minneapolis 24, Mim. CIRCLE 261 ON READER-SERVICE CARD

WIRE TIES.-Rubber "Mouse Tails" are available in two forms. One type, in 1 to 4 in. lengths, is tapered at both ends. It is installed by passing one end through a hole in the chassis, looping the shank over the wire bundle, and inserting the other tapered end through an adjacent hole. When clinched up tight, expansion of the rubber holds the "tail" firml? in place. The other type are for intermediate bundle ties between tie down points and are designed to eliminate wax string ties.
Rubber Teck, Inc., Dept. E1), 1911.5 S. Hamil ton Ave., Cardena, Calif.

CIRCLE 262 ON READER-SERVICE CARD

CATHODE RAY TUBES.-Types 5AHP14, 5AHP 14A, 5AHPI9, and 5AHPI9A are round glass, high resolution tubes "ith electrostatic focusing and magnetic deflection. They use tarious screen phosphors.
Sylvania Electric Products Inc., Sylvania Electronic Tubes, Dept. ED, Seneca Falls, N.Y circle 263 on reader-service card

LIGHTWEIGHT NUT.- ln 1/4 through $1 / 2 \mathrm{in}$. sizes, type FN-22 has 220,000 psi tensile strength, good fatigue characteristics, and high reusability It is cadmium plated either with or without molybdenum disulfide coating.

Standard Pressed Steel Co., Dept. ED, Jenkintown, Pa.

Circle 264 on reader-service card

FLAT FACE OSCILLOSCOPE TUBE. - Type 3RPIA cathode ray tube has electrostatic focus and deflection, uses a PI phosphor with green fluorescence and medium persistence.

Sylvania Electric Products Inc., Sylvania Electronic Tubes, Dept. ED, Seneca Falls, N.I circle 265 on reader-service card

RADAR INDICATOR TUBE.-Type 7MP14 is a clear face, round glass, non-ion trap tube with magnetic focus and deflection.

Sylvania Electric Products Inc., Sylvania Electronic Tubes, Dept. ED, Seneca Falls, N.Y. CIRCLE 266 ON READER-SERVICE CARD

Acic:
 Brich

LIKE THE
SUN

OROSENE 999

24K ACID BRIGHT GOLD

OROSENE

999 is an entirely new gold complex. Ie produce
mirror brighe, hard elecroplares in eather rack or barrel placing.

OROSENE

999 produces a bright, hard $24 \mathrm{Karat}(998 \%$) gold plare. It is the ONLY 24 Karat brighe gold.

OROSENE

99924 Kurat Gold elecroplates are cwice as hard as ordinary 24 Karat gold plates-this is produced by preferred orienation of the gold micro crystals it is hard as ordinary brighe alloy golds. (125 Knoop)
OROSENE
99924 Karar plates are ducule; as ductile as ordi nary 24 Kurae plates. This is achieved by the preferred orientation of cryseal larcice.

OROSENE

999 conrains NO silver, NO sulfur compounds and NO antimony. It has exceptional carnish and

OROSENE
999 barrel solutions bave the best throwing powe and leveling of ANY brighe gold or ordinary gold for barrel plating.
OROSENE
999 brighe gold has only ONE addicion ageot It is self-regulatiog and simple to control.

OROSENE

99924 Kant Haed Brighe Gold offers the elecro plecing meallurgise a new dimension in gold plecing theolves many plating problemss wh
hand or 24 Karre golds hove fuild
is Patent Pending
Technic

EIECTRONIC DESIGN March 18, 195

NEW LITERATURE

Transducers

269
A new four page two color brochure is available on request to furnish useful information for users of strain gages, load cells, resistance ther mometers, pressure transducers, or other resist ance bridge transducers. This brochure describes in detail how the resistance bridge indicator (RBI) is set up to provide a visual digital display with readout in any desired units such as microin. per in. for strain gages, pounds, tons or ounces for load cells, etc. The brochure also contains schematic diagrams and information on typical applications with complete specifications of the RBI. Datran Electronics, 1836 Rosecrans Ave. IIanhattan Beach, Calif.

Limit Switches

An all new 16 -page catalog number 84 , covcring a complete line of Heavy Duty Limit Switches Catalog 84, a 16 -page illustrated booklet covers a complete line of heavy duty limit witches and gives complete details of three types of Micro Switch heavy-duty limit switches for industrial uses-the plug-in "200LS" series, featuring quick replaceability; the compact "LS" sories; and the rugged "ML" switches, available in regular or explosion-proof types. Switches with a varicty of contact arrangements for either direct or alternating-current applications are listed and several actuator designs in each switch type are shown. The new catalog is published as an aid to the plant engineer and maintenance man, as well as the designer of original equipment. MicroSwitch. Div, of Minneapolis-Honeywell Regulator Corp., Freeport, Ill.

Magnetic Amplifier Design Manual
 271

Engineering Bulletin \#403-A is a 16-page Magnetic Amplifier Design Manual. The new design manual has 45 schematic diagrams and graphs lescribing magnetic amplifier design and application techniques. Some of the topics covered in the new inanual are: Signal Mixing, Voltage and Current Comparators, Automatic Pilor Systems, Electrohydraulic Valve Drives, Gyro and l'osition Pickoffs, Insulation \& Cable Barriers Checker, Integrators, Limiters, Sweep Generator Potentiometric Amplifier Circuit, Relay Tester, LaPlace Transforms, Transform Generation, V'elocity Servos, etc. The new 403-A Design Tanual is available without charge to qualified lesign engineers. Requests should be made on ompany letterhead to Aeromag, Inc., 22519 Telegraph Road, Detroit 41, Mich.

Westinghouse tube engineering serving the nation through imagination

WESTINGHOUSEDEVELOPED

special vidicon for slow scan

This new Westinghouse vidicon WL-7290 has been designed with extremely high dark resistance, permitting picture retention for both slow- and delayed-scan transmission

THE WL-7290 FEATURES

Standard vidicon quality with normal scan - Dark current $1 / 100$ of standard vidicon

Retention of 450 TV line resolution for minimum of 45 seconds with scan off

- Will operate in a standard vidicon camera

The WL-7290 is ideally suited to Narrow Band Transmission such as telemetering or telephone line transmission.
you can be sure...IF It's
Westinghouse

CIRCLE 272 ON READER-SERVICE CARD

Engineers! Designers!
THERE IS NO SUBSTITUTE FOR RELIABILITYI
Specify-
PERFORMANCE PROVEN "MAG MOD"

MAGNETIC MODULATORS Actual
Size
ander

Miniaturized design permits engineers to employ these new components in transis. orized printed circuit assemblies and wafer type
structures. All models offer structures. All models offer ruggedized construction and conform to MIL-T-27A specifications.

COMPLETE RELIABILITY

- infinite life
- faster response time - NEGLIGIBLE HYSTERESIS - EXTREME STABILITY (Ambient Temp. Range - COMPACT SIZE - COMPACT SIZE

Typical circuit applications for Magnetic Modulators are algebraic addition, subtraction, multiplying, raising to a power, mechanical chopper replacement in DC to funda. mental frequency conversion, filtering and low signal level amplification.

GENERAL

 MAGNETICS•INC 135 BLOOMFIELD AVENUEBLOOMFIELD, NEW JERSEY Telephone: Pilgrim 8.2400

CIRCLE 353 ON READER-SERVICE CARD
for maximum reliability

PREVENT
THERMAL RUNAWAY

Prevent excessive heat from causing "thermal runaway" in power diodes by maintainin ollector junction temperature at, or below, levels recommended by manufacturers, through the use of new Birtcher Diode Radiators. Cooling by conduction convection and radiation Birtcher Diode Radiators ar inexpensive and easy to install in w or existing equipment. To ft all popularly used power diodes.

FOR CATALOG
and
test data write

with NEW
BIRTCHER
D1ODE RADIATORS
 TCHER CORPORATION industrial division
371 Valley Blvd. Los Angeles 32, California Sales engineering representatives in principal cities.

NEW LITERATURE

Miniature Transformers

A new short form catalog listing complete specifications on the company's products include miniature, subminiature, transistor, MIL-T-27A and industrial transformers that are available from distributor stock. The short form catalog serves as a ready reference for a quick run-down on the transformers offered by company, showing the wide range of models at a glance. Harold Edelstein, Microtran Co., Inc., 145 E. Mineola Ave., Valley Stream, N.Y.

Precious Metals Plating

The cost of precious metals plating per unit area to specified thicknesses may be seen at a glance with this Metals Data Chart. The slide chart also tells at a glance: cathode efficiency data; milligrams per sq in. and grams per sq ft of particular precious metals for 0.0001 in . deposits; recommended current densities and actual plating time required for nine different precious metals plating formulations; and corresponding thicknesses. The chart is a a ailable for $\$ 1.00$ (shipped post-paid) from Sel-Rex Corp., 75 River Road, Nutley 10, N. J.

Plastics Catalog

This 64 -page plastics catalog is designed to supply plastics buyers with the best and latest information in a detailed manner. The catalog's 12 sections include: Plexiglas. Vinyls, Acetates, Phenolic Laminates, Nylon, Teflon, Kel-F, Poly ethylene, Polystyrene, Rexolite. Fiberglas and "Supplies." The latter section includes all necessary data on coatings and accessories. Write on company letterhead to Mr. Morton French, General Sales Manager, Commercial Plastics a Supply Corp., New York City, N. Y

Germanium Diodes

276
Bulletin 158 describes company's line of goldbonded germanium diodes. It lists many types for general purpose and computer use, where from one to four operating characteristics are specified. Special computer types with ten specified characteristics are also shown. These incorporate many superlative features for computer applications. The bulletin features a new system devised by company to classify diodes for ease in selection by number and value of characteristics. It should arouse considerable interest among diode users frequently confronted with the complex listings that sometimes make selection, on the basis of operating characteristics. quite a chore. Ohmite Mfy. Co., 3683 Howard St., Skokie, Ill.

275

DIALCO

Hermetically Sealed
Rugged-built to meet conditions of
high altitude
high vibration
high temperature
dIALCO RELAYS exhibit no resonance from 5 to $1,000 \mathrm{CPS}$ at 10 G 's; are not damaged by 50 G's shock; are fully compensated for temperatures from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Available in delays from 1 to 300 seconds; heater voltages up to 150 Vo interchangeable on DC or AC of any frequency with a power drain normally closed contacts are rated 6amps at 115 V AC or 3 amps at 6 amps at 115 V .
$28 \mathrm{~V} . \mathrm{DC}$ resistive.

SUB-MINIATURE
Lightweight
$(3 / 400$.
Standard 7 -pin plug-in or solder
terminals with terminals with
mounting flange
Dialiron Corp., 203 Harrison PI., Brooklyn 37, M. Y. \square Send data on Thermal Time Delay Relays to:

Position
ompany

DH:H2ON

203 Harrison Pl., Brooklyn 37, N. Y.
HYacinth 7-7600
CIRCLE 277 ON READER-SERVICE CARO ELECTRONIC DESIGN • March 18, 195

ube Standards

Two international standards recommendations ffecting electronic tubes are now available. The hird supplement to International Electrochemial Commission (IEC) Publication 67, Dimenions of Electronic Tubes and Valves, provides he basis for the interchangeability of electronic quipment among the 3.3 participating nations. EC Publication 100 lists recommended methods or the measurement of direct interelectrode apacitances of electronic tubes. The methods pply to receiving, cathode-ray, gas and photo ubes, photocells and multiplier types, and highrower vacuum tubes. Copies of IEC Publication if (Third supplement) at $\$ 2.40$ each and of IEC rublication 100 at $\$ 4.00$ each are available from Imerican Standards Association, Dept. PR 37, () East 45th St., New York 17, N. Y.

Magnetic Amplifier Systems

An 8-page color brochure entitled, "Magnetic Implifier Systems For Nuclear Reactor Installalions" describes the rod programmer amplifiers designed for the nuclear electric power plant at Shippingport, Pa. A functional diagram outlines (11) integrated static control system for a nuclear reactor power installation. Illustrated with photographs and charts, bulletin S-963 gives the details uf magnetic amplifier servo drives and applications in nuclear drive systems, covering control rod drives, hydraulic valve control and remote handling control, as well as engineering specifications and transfer characteristics of the units are included. Also described are the manufaclurer's STAT-PACK static magnetic switching systems used in reactor control circuits, programming a nd simulators; magnetic amplifier voltage/current regulators and regulated de power supplies; and low level linear magnetic amplifiers, which have applications in control system instrumentation, console measurements and laboratory experimentation. Magnetic Amplifiers, Inc., 16.3 Tinton Ave., New York 55. N.Y

Logic Unit Board

280
An 8-page illustrated booklet describing the versatile new logic unit board discusses many pplications, and pointedly illustrates the fact that the logic unit board actually represents an improved technique for development of digital somputers and data handling systems. This ransistorized digital component is a highly veratile array of basic computer elements which an be connected simply and rapidly to serve whole logic and control functions of complex ligital computers. Mechanical Division of Genral Mills, Inc., 1620 Central Ave., Minneapolis 3. Minn.

NIKE HERCULES
With deadly accuracy the U.S. Army's new Nike Hercules ground-to-air guided missile streaks out to meet an approaching enemy air iorce. Its nuclear warhead can wipe out an entire formation.
Western Electric selected Teflon* insulated wire for use in buiding the alert guidance and control systems of this faster, higher climbing Nike.
As leading specialists in high temperature insulated wires and catses, the men and women at Hitemp are proud of this choice. and the role Teflon wiring plays in giving America a strong new perimeter of defense.

HITEMP WIRES, INC.
1200 Shames drive, westbury, new york
Du Pont's trade name forTetrafluoroethylene
CIRCLE 281 ON READER-SERVICE CARD

CHART-PAK precision tapes and die-cut symbols made these conductor paths and terminal pads for a printed circuit layout in 9 minutes 40 seconds!

soldering is EASIER FASTER BETTER with Smerican Beauty Soldering Tools

CIRCLE 283 ON READER-SERVICE CARD

NEW LITERATURE

Ceramic Capacitors

A new 16-page Ceramic Capacitor CrossReference Guide is now being made available to engineers and purchasing agents in the electronics industry. This guide lists all units that are stocked and available for immediate delivery from Company distributors. "Special" or specification capacitors are not covered by the guide. The Guide lists over 600 ceramic capacitors by type and rating. These units are stocked in production quantities at factory prices, by industrial distributors. Equivalent units of other manufacturers, where available, are listed next to the company's capacitors, providing an easy method of determining sources for any given capacitor. The Guide contains separate sections devoted to general purpose discs and tubulars, temperature compensating discs and tubulars, high voltage discs, dual capacitors, buffer capacitors, low voltage capacitors, stand-off and feed-thru, transmitting, high accuracy and trimmer capacitors. Centralab, A Division of Globe-Union Inc., 900 E. Keefe Ave., Milwaukee 1, Wisc.

Vibration Meter
A new illustrated technical bulletin, No. WK-B-731A, describes Company's new Type B-731A vibration meter, an instrument with wide electronic, industrial and aircraft application that offers a new method of measuring distance and vibration. The new technical bulletin lists features, brief specifications. and design features, and illustrates the vibration meter. This latest instrument development may be used for vibration tests to mect JAN-MIL specifications in electronic components; to measure vibration in rotating shafts or bearings, on a production line for determining sizes and grades of parts for tolerance; and for testing airframes, either in wind tumels or on actual airframes. The technical bulletin points out that the new Type B-731A vibration meter avoids hazards and makes remote testing possible. The instrument is particularly suited to the measurement of vibration where direct physical contact is not possible, and for measuring the dilation and eccentricity of rotating parts. Wayne Kerr Corp., P.O. Box 801, Philadelphia 5. Pa.

Cables

A six-page folder on plastic insulated and jacketed control cable (rated 600 v) lists the specifications of small diam-station-flexible and supervisory control cables with 2 to 19 conductors. Also IMISA municipal signal cables Specifications 19 and 20-1956 with 3 to 12 conductors. Chester Cable Corp., 159 Oakland Ave., Chester, N. Y.

285

286

*Statham Pa324 Pressure Transducer
Because of its outstanding performance in severe
missile environments,
the Statham Model PA324
Absolute Pressure Transducer has been chosen to play the key role in important new thrust control systems based on accurate measurement of thrust chamber pressure.
For further information write for
Data File ED-600-1.
statham imstruments, imc. 12401 West Olymplic Boutievard

CIRCLE 287 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 18, 195°

hermostat Metals

"Graphical Determination of Element Size d Performance" Technical Data Bulletin TRUsaves engineering time in determining the rrect thermostat-metal element size and propties for new applications. This 4-page techniI data bulletin provides graphical solutions, curate enough for first sample determinations. table gives Truflex thermostat metal types, "ir thermal deflections, mechanical and rerained forces. By using this table, the size and erformance of simple beams, cantilever beams, necial and helix coils and U-shapes can be dearmined for any of 40 different Truflex thermotat metals. Metals and Controls Corp., General Mate Division, Attleboro, Mass.

RFI Shielding

290
Comprehensive technical data and product information on RFI gasketing are now available it a handy, new RFI Designers Data File. Prepared to help designers solve specific shielding problems, this fully illustrated reference file offers both technical data and practical information about RFI gasketing materials. Also included are RFI problem outline sheets which may be used by designers to indicate specific problems, and forwarded to the company headquarter's staff of design service engineers for immediate recommendations. Copies from Technical Wire Products, Inc., 48 Brown Ave., Springfield, N. J.

Power Supplies Folder

A 4-page folder covers the uses and specificatums of Electro Model PS-2 dual purpose filtered de power supply. The new power supply powers transistor circuits, hybrid sets, $12 / 6 \mathrm{v}$ auto radios without hum. The illustrated folder features tahulated information on percentage of ripple, coutinuous maximum current rating, and special fratures for transistor circuit servicing provided by Model PS-2 as well as other power supplies. According to the manufacturer, the information in this table demonstrates that Model PS-2 outperforms all units in its price class. Two output ranges are provided -0 to 20 v at a rating of 75 far operating transistor circuits, and 0 to 16 with a rating of 5 amps for operating $12 / 6 \mathrm{v}$ radios and hybrid sets. A special pi-type input Ilter holds ripple down to 0.15 per cent up to 75 a (well below the critical requirement for low irrent loads in servicing transistor radios) and 5 per cent up to 5 amps .
A separate milliameter for each range detects inute variations in transistor current. Each nge has its own output terminals. Write R. C. ossley, Electro Products Lab., 4500 N. Ravenssod Ave., Chicago 40, Ill.

Cot a problem that calls for thread-cutting screws?

PARKER-KALON offers three new, improved thread-cutting screws for every application in ever!y material

1New, Improved P-K Type F^{*}
hardened thread-cutting friable, graws developed for use in Triable, granular or brittle material. The pilot, with its five tapping flutes, cuts a machine screw thread as the
screw is turned in. The Type F is ideal for making fastenings to ferrous and non-ferrous castings, bronze or brass forgings, heavy gage sheet metals, structural steels, plastics and resin-impregnated plywood.

The five cutting flutes on the new, improved P-K Type "F" and "BF" reduce pressure development by 80 percent! The completely formed threads on these screws have sharper cutting edges, and 5 deep flutes that are of continuous depth. These features make for better clearance of the accumulated material and assure minimum stresses in driving, and avoid the possibility of stripping or galling.

8

P- \mathbf{K}^{\oplus} Type L ${ }^{\dagger}$

is a completely new and improved thread-cutting screw developed by Parker-Kalon especially for use in Nylon. The Type L functions as a combination threadcutting and thread-forming screw in that it cuts a small amount of the Nylon to allow the full diameter threads to form. Type L offers a particular advantage in Nylon assemblies which must be disassembled for service, because the P-K Type L can be removed and replaced without stripping or galling.

FOR SEMS . . . and Neoprene or Nylon washer STAPSe in thread-cutting and thread-forming tapping screws, or machine screws in any kind of preassembled fastener-washer combination, P-K can supply them, too!

KEEP AMERICAN INDUSTRY AT WORK . . . Buy P.K. . MADE IN U.S.A
-Premi Pending tu. S. Patone 2,350,3m

FOR SAMPLES OF P-K THREAD-CUTTING SCREWS ANO SEMS. CALL YOUR LOCAL P-K "BULK-STOCKING" DISTRIBUTOR

PARKER-KALON' fasteners

PARKER-KALON DIVISION, General American Tranyportatson Corporation. Clifton. New Jermey - Ofices and Warehousen in

PUTTING MAGNETICS TO WORK

Want a billion-position switch?

Magnetic amplifier manufacturers turn to Orthonol ${ }^{\oplus}$ tape cores for precise proportioning control or switching action

Orthonol is a switching material that can be turned all the way on-or part way on-with vast precision.
The rectangular B-H loop of the $50_{6}^{\text {m}}$ nickel, grain-oliented alloy provides an amplifier output which is linear and directly proportional to control (reset) current. This response is so linear that the amplifier acts as a valve with an infinite (at least a billion) number of steps from full off to full on.
Full off and full on can be achieved with snap action, because the horizontal saturation characteristic of the B-H curve means a very low saturated impedance. Thus, when the amplifier is on. it is on; when it is off, it is off. On-to-off impedance ratios of at least 1000 to 1 provide complete assurance of this absolute characteristic.
Should your manufacturing facilities prevent the use of

Orthonol in tape wound core form, you can still take ad vantage of this excellent material in laminations. An Orthonol laminated core has characteristics almost identical to those in toroidal form.
Like all Magnetics, Inc. products, Orthonol tape wound cores and laminations are Performance-Guaranteed. Full details await your inquiry. Magnetics, Inc., Dept. ED-60, Butler, Pennsyluania.

MAEMET/CSIMC.

NEW LITERATURE

Ultrasonic Cleaners

294
A new data sheet is now available on the giant size Series 5000 Narda SonBlaster ultrasonic cleaner, which consists of 23 systems for applications to mass-production cleaning or degreasing of mechanical, electronic, optical, horological aircraft or missile parts or assemblies; to rapid cleaning of radioactive elements, "hot" lab apparatus, medical instruments, ceramic materials, electrical components and technical glassware and to expediting metal finishing and chemical processing of many kinds. The clata sheet describes Model G-5001, a $40-\mathrm{kc}, 500-\mathrm{w}$ average output Sonblaster generator designed for energizing a wide range of cleaning tanks, and the (.-5002, a $20-\mathrm{kc} 500$-w average output generator which will operate magnetostrictive transducers for such functions as drilling, dip soldering and other high-intensity or high-temperature applications. Owing to Narda's mass-production tech. niques this equipment is available at the lowest prices in the history of the ultrasonic industry, starting from $\$ 1140$. Most items of the series can be shipped from stock. In addition to complete data on the 23 systems of the Series 5000 . detailed! information is given on applications and processes for which this eguipment can be used. Tanks of different sizes, submersible transducer arrangements and metal-working tools are illustrated. Bulletin on Series 5000) Narda Somblaster ultrasonic cleaner from the Narda Ultrasonics Corp., 625 Main St., Westhury, N.Y.

High Temperature Wire

295
The 1959 Super-Temp catalog on Teflon insulated wires and cables is now available. This elaborate, 64 -page publication is completely new and contains 8 sections of the latest engineering information and prices on high-temperature magnet wire, lead wire, cables, tubing, and Teflon tape. Each section is preceded by detailed general information on the products cata loged. This information is consistent from section to section facilitating quick, easy reference or military specifications, temperature ranges, wir and cable constructions, colors, tests, etc. Th catalog also contains technical bulletins an other information that provide engineers wit design criteria for high temperature wirinf American Super-Temperature Wires, Inc Winooski, Vt.

Don't forget to mail your renewal forn to continue receiving ELECTRONIC DESIGN.

ecording and Plotting Systems

296
Two basic systems with time-tested features or recording and processing the multitude of rains required to evaluate complex structural stems in laboratory and industrial applications nd tabulate strains on a typewriter, IBM cards r punched tape are illustrated and described in new two-color. four page folder. The two basic stems available are: the " B " system, described s printing strain values in sequence together ith channel number while the "C" system, is lescribed as plotting strain vs. load for each hannel on an exclusively designed continuous op of paper reeved over powered sprocketed bllers with flanged floating idlers. The folder describes the many advantages of this new paper loop system and also describes the unique leatures common to both. Systems can be assembled in multiples of 24 channels utilizing the 24451 scanning module which is described as the building block of $\mathrm{B} \& \mathrm{~F}$ systems. It is designed to balance, calibrate, control and scan the output of 24 strain gage channels containing 1, 2 or 4 active arms and convert these variable resistances to variable voltages. General specifications are described in the folder as well as specifications under the headings: Power Supply, Programmer, Accuracy and Housing. B \& F Instruments, Inc.. 3644 North Lawrence St., Philadelphia 40, Pa.

Contactors and Relays

482
New line of special purpose contactors and rlays, engineered and designed for the computer, power supply and electronic inclustries, lire covered in 16 -page booklet. Also, there are designs for the air conditioning and heating and refrigeration fields. Type F, B, B and $B R$ relays we described. This folder contains engineering and cataloging data which will be of interest and help to electrical engineers. The Rowan Conroller Co., 2313-2:315 Homewood Avenue. Baltimore 1s, Md.

Test Equipment

483
New Test Equípment Catalog No. 38-T describes latest electronic, electrical, radio, televixlon and industrial testers. Triplett Electrical Intrument Co., Bluffton, Ohio.

Electronics Catalog

299
Detailed product listings on a wide variety of lectronic parts and equipment are included in a (19-page catalog. Items for industrial, service, igh fidelity, sound, and amateur radio use are sscribed. Curle Radio Supply Co., 439 Broad reet, Chattanooga, Tenn.

Available Now in production quantities!

The Westinghouse Silicon Power Transistor pictured above is a highly efficient device which greatly increases the range of applications for transistors which must operate without high losses in the "true power range." Thanks to a remarkably low saturation resistance-less than . 750 ohms at 2 amperes and .5 ohms at .5 ampere-these transistors possess very low internal dissipation, and can be efficiently used in applications where they must handle as much as 1000 watts. For example, as a DC switch, handling 750 watts (1.50 volts at 5 amps) the internal dissipation is about 9 watts, with an efficiency of better than 99%.
Alditionally, and unlike germanium units which are limited to approximately $85^{\circ} \mathrm{C}$. these transistors can operate in ambient temperatures up to $150^{\circ} \mathrm{C}$. Thus, even where the higher power rating is not required, these units may be used for their high temperature capabilities.
There are a great many applications for which this new type of silicon power transistor is ideally suited. It will find use in inverters or converters (AC to AC ; AC to DC ; DC to AC; DC to DC), regulated power supplies, servo output, and other aircraft circuits, as well as in certain amplifiers and switching applications.

Westinghouse Silicon Power Transistors are available
in 2 and 5 ampere collector ratings. Both of these are available in $30,60,100$, and 150 volt ratings in production quantities for your immediate applications. Sample quantities are available in higher voltage ratings. Call your Westinghouse representative or write directly to Westing. house Electric Corporation, Semiconductor Department, Youngwood, Pennsilvania.

low saturation resistance
important improvements in silicon purification and transistor fatrication have produced a new series of Westinghouse Power Transistors of exceptionally low saturation resistance.

YOU CAN BE SURE...IF TT'S

Westinghouse CIRCLE 300 ON READER-SERVICE CARD

MICROWAVE INSTRUMENTS

NEW LITERATURE

Relays

30°
A unique series of relays designated Model T^{\prime} and TS is described in Bulletin No. 160. Thes advanced units incorporated "Molded Module contact springs, that is spring combination which are molded into a single compact assembly for permanent alignment and unsurpassed oper ating stability. Very high sensitivity for their siz, and high ambient operating capability are other features of these units discussed in the bulletin For a free copy of Bulletin 160, write to Ohmite Manufacturing Company, 3679 Howard Street Skokie, Ill.

Right Angle Connectors

303
Illustrated 6 -page brochure gives specifications, outline dimensions and general information on right angle pin and socket connectors for printed circuit applications. These miniature right angle comectors are available in various contact sizes and molding compounds. Right angle pins dip solder to printed circuit board. Solder cups on receptacle accept \#20 AWG wire. Electronic Sales Dis... D(Jur-Amsco Corp), 45-01 Northern Boulevard. Long Island City 1, Nil:

Resistance Thermometer Wire
304
To aid in better resistance thermometer design, a new brochure has been prepared on resistance thermometer wire, showing graphically resistance versus temperature from 0 deg to 50) deg C with various pure metals and alloys used in thermometry. Also included in this brochure are the varions types of enamel that can be applied to the wire best suited for your particular wiring requirements, whether it be the standard oleoresinous which is rated for continuous use at 105 deg (, or the Secon Ceramic Insulation which is rated for continuous use at 500 deg C. Secon Metals Corp., 7 Intervale Street, White Plains, N.Y.

Soldering Iron Tips

305
Data sheet catalogs Long-Life Soldering Iron Tips (No. 601, superseding \#600), showing 81 new shapes and sizes-a total of 124 . Include are plug tips, from $1 / 16 \mathrm{in}$. to $1-1 / 8 \mathrm{in}$. diametı r and screw tips from $7 / 16$ in. to $1-3 / 4 \mathrm{in}$. diamete . Various tip shapes are illustrated, complete d. mensions given, as well as advice on use ar 1 care; includes list prices. Gives detailed specit cations on the new Extradur Tips which give up to 20 times longer life than copper tips. He acon Electric Co., 161 W. Clay Ave., Rosele Park, N.J. molded-type cable assemblies as well as field, special and coaxial types. illustrates 34 standard types utilizing common comector ends and standard molded terminal ends. Cable assemblies are supplied in lengths as required. There are three pages of tabular reference data giving types, cable numbers, coromal levels and special remarks. Corona levels range from 2 kv ac to 15 kv ac and 15 kv de to 40 kv de. These cable assemblies are used for missile, aircraft and general applications. H. H. Buggie, Inc., Bor 817, Toledo 1. Ohio.

Pressure Transducers

307
Three new instrumentation bulletins technically describe a series of rugged, high performance pressure transducers: Model IDP-7 pressure transducer, (Bulletin 58-131), Model GP-151) high range pressure transducer (Bulletin 58-135) and Model DP-15D high range differential pressure transclucer (Bulletin $58-140$). Each data shect contains instrument descriptions, application information and performance specifications. BI Electronics. Borg-Warner Corporation. 330\% Newport Blvol. Santa Ana. Calif.

Rectifier Kits
308
A four-page folder, illustrates and describes a new kit for on-the-spot conversion of LeeceNeville alternator systems with selenium rectifiers to utilize newly developed. more economical silicon reetifiers. According to the literature, the new silicon rectifiers, which consist of six tiny cells in lien of the previous separate unit, provide greatly improved alternator performance and higher rating: and require only minimum maintenance. The folder pictorially presents the details of the silicon rectifier. what it is, and very importantly, how it is easily installed. Detailed information on its desgn and construction, plus application data is likewise included. Copies may be oltained from the Leece-Neville Co.. 1374 East 51st St., Cleveland 3. Ohio.

Digital Systems

309
A new 4 -page short-form catalog on the complete digital systems line, as well as a twopage flyer on the digital voltmeter lists product features. brief specifications, and ordering information on the company voltmeter, control unit. pre-amplifier, ac/de converter, ohmmeter, scanners, printer control units and ratiometer. The dc measurement instrumentation flyer is the beginning of a series of publications on individual units in the Cubic digital line. Cubic Corp., San Diego, Calif.

Partial systems

Save design time, avoid assembly headaches with General Electric custom-designed DC power supplies

General Electric can meet your power-supply lems, General Electric can handle your power requirements-your requirements from indi- supply system responsibility and save you vidual packages to complete systems. These can be supplied from (1) completely engineered equipment in stock, (2) by custom packaging of components, or (3) with completely new designs. Whatever your prob-
design time and assembly problems. FOR MORE INFORMATION contact your nearest General Electric Apparatus Sales Office or write to General Electric Company. Section A535-1. Schenectady. New York.

Progress Is Our Most Important Product GENERAL (96) ELECTRIC

CIRCLE 310 ON READER-SERVICE CARD

Microwave Component News from SYLVANIA

/ $\sqrt{/ \xi[\xi]}$ / Subminiature Microwave Diodes

Sylvania opens the way to advanced miniaturization concepts in microwave and radar design with new smaller Silicon Microwave Diodes

Major step in the trend to ever smaller radar and microwave equipment to meet today's military and commercial demands is represented by Sylvania's new line of subminiature microwave diodes. The new diodes meet the electrical performance of their larger counterparts and are equivalent in ruggedness and reliability. They combine in one unit Sylvania's unmatched experience in diode packaging and proven technical excellence in microwave diode design.
The subminiature metal-to-glass package opens the way to new possibilities in strip-line and slab-line transmission designs. Included among the new types are Detector Diodes ranging in frequencies from 100 mc to $9,000 \mathrm{mc}$ and Mixer Diodes in frequencies from $3,000 \mathrm{mc}$ to $9,000 \mathrm{mc}$. Contact your Sylvania representative for full information on the new subminiature microwave diodes-or write Sylvania directly.

NEW SYLVANIA MICROWAVE DIODES

```
D 4050-UHF Detector
D 4064-S Band Mixer D 4050 -UHF Detector
D 4063 -X Band Video Detector D 4065-X Band Mixer
```


NEW LITERATURE

Potentiometers

312
A 4-page brochure summarizes key information on Trimpot ${ }^{\circledR}$ and Trimit ${ }^{\circledR}$ lead screw actnated potentiometers. Designed for quick reference, this brochure features a specification table listing available resistances, terminal types, and settings, power ratings, operating temperatures, and dimensions of the more popular models. Cut-away drawing illustrates the internal construction and design features of Trimpot. Bourns Specification Summary \# 4 from: Bourns Laboratories, Inc., P.O. Box 2112, Riverside. Calif.

Molded Fiber Glass

A 2-color, 32-page brochure illustrates and describes in detail the mechanical. electrical and chemical properties of molded fiber glass. Fabricating and finishing operations which call be performed on this material are also described. Write directly to: Molded Fiber Glass Companies, Dept. ED, 4826 Benefit Ave., Ashtabula, Ohio.

Switches

313
Revised $2 t$-page catalog covers the representative line of precision snapaction and mercury switches manufactured by this company: Data on hightemperature, maintained-contact, explo-sion-proof, high capacity, proximity, oiltight, invironment-free and multicircuit types are included. Has photos, dimensions, electrical ratings, characteristics and application information. Micro Switch, Freeport, III.

Plastics

314
Folder gives information on Kel-F, a fluorocarbon plastic with a combination of interesting physical, chemical, electrical and mechanical properties, which is now processed in all forms by this company: The versatile material has improved pertormance of electronic, aircraft. missile, chemical handling and processing equipment. Development and properties of Kel-F are covered in this booklet. Fluro-Plastics, Inc., Division of Flework Co., Philadelphia 1. Pat
 100 Sylvan Road, Woburn, Mass. CIRCLE 3II ON READER-SERVICE CARD

SYLVANIA

Sylvania Electric Products Inc.
Semiconductor Division catures of the new, large-scale Univac II ata-processing system. The computer ffers a new, high-speed memory sys-em-the magnetic-core memory, which rovides instantaneous access to 24.0)() pphabetic or numeric characters. It is he only system to provide direct recordgg of information on magnetic tape and ecords information at a pulse density If 2.50 (haracters per recording inch. (emington Rand Div. of Sperry Rand orp., 315 Fourth Ave., New York 10, N.Y.

Bearings and Bushings

Fully illustrated, fopage catalog oovers graphex. coprex and woodex oiliess and self-lubricating bearings. bushnges and mathine parts mathufactured by this company. A reference guide for sintered metal parts, this comprehensive calalog details Wakefield alloys and their recommended usage; a complete section is devoted to properties of powered metal compositions determined by test: tables illustrating the standard sizes of bearings atailable from tools on hand:
and plant facilities. Metal structures in various stages of development, which helps buyers compare good and bad sintering, is graphically illustrated with a group of microphotographs. Copy available by uriting on company letter. head to: Wakeficld Bearing Corp., Dept. ED, 2.9 Foundry St., Wakefield. Mass.

Pulse Control Instruments 317
This 8-page condensed catalog provides capsule technical descriptions of more than 25 pulse control instruments, including pulse generators. Hip-Hops, coincidence detectors, delays, mixers, counters and power supplies. Burroughs Corp., Electronic Tube Div., P.O. Box 1206, Plainfield, N.J.

DC Measurements

318
This 9-page brochure, "Low Level DC Measurements." details instrmmentation and circuit design applications. Low de potentials in the microwolt ranges can now be read easily by means of a new precision chopper inverter. Microdyne 300 West Washington, Chicago 6, III.

See us at the I.R.E. Show in Now York-booth \#1327. CIRCLE 319 ON READER-SERVICE CARD

Microwave Component News from SYLVANIA

N/ $/ E T /$ space Saving

 Ferrite Devices

Coaxial Ferrite Isolator,
Model FD-155

Sylvania introduces new ferrite devices covering UHF through K band

Sylvania scientists and engineers have developed advariced ferrite devices with new utility and reliability. They are the results of pure research and product development by the Microwave Physics Laboratory, now a part of Special Tube Operations.

Now, new Tee circulators are available that perform the same electrical function as standard phase shift circulators, yet occupy only 25% of the space and cost much less. The devices can also be used as isolators and as fast-acting switches.

New isolators, available in coaxial and standard design, incorporate exclusive space-saving features in addition to outstanding electrical performance. The $81 / 2$-inch FD-151, for example, provides $15-\mathrm{db}$ isolation across the band from $2-4 \mathrm{kmc}$. Whatever the degree of isolation required, you'll get a smaller package and top reliability from Sylvania.

Data on Sylvania ferrite devices available from stock may be obtained from your Sylvania representative or by writing to the address below. Devices can also be custom designed to meet your specific requirements.

∇ SYLVANIA

Sylvania Electric Products Inc. Special Tube Operations
500 Evelyn Avenue, Mountain View, California Circle 320 on reader-service card

Now you can obtain high magnetic permeability alloys such as 4.79 Moly Permalloy, Alfenol, and HyMu "80" in cold rolled strip and foil in production quantities! The unique and newly expanded facilities of Precision Metals Division are geared to produce ultra-thin metal strip and foil in any quantity and in virtually any alloy.
Precision Metals strip and foil for development and production offer these special advantages:
uniform magnetic properties thicknesses from . $010^{\prime \prime}$ to $.0001^{\prime \prime}$ dimensional uniformity
extremely close tolerances excellent surface characteristics

For specific requirements, Precision Metals can also furnish custom alloys to your own specification in the form you need. Write today for fully illustrated facilities booklet, ED-3.

HAMILTON WATCH COMPANV/Precision Metals Division H
Lancaster, Pennsylvania CIRCLE 321 ON READER-SERVICE CARD

NEW LITERATURE

Glass, Asbestos Woven Tapes 322

"Atlas Asbestos and Glaspun Woven Tapes" describes and contains samples of untreated continuous filament Fiberglas all-purpose electrical insulating tapes. "Atlas Asbestos and Fiber Class Textiles for Electrical Insulation, Thermal Insulation, Plastic Reinforcement. Pipe Lagging, Filter Fabric and Packing and Gasketing" describes the performance characteristics, uses and sizes of the entire Atlas line of Claspun and asbestos textiles. Brochures and samples of the products described available from: Atlas Asbestos Co., North Wales, Pa.

Electronic Catalog

This comprehensive 1959 catalog contains complete listings on the wide variety of electronic parts and equipment for industrial use carried bo Federated Purchaser. Inc., as well as sections devoted to replacement, audio, high fidelit! and ham parts and equipment. Federated Purchaser. Inc., 1021 U.S. Hwy. 29. Mountainside. N.J.

Microwave Measurements

This 36 -page application booklet describes the latest techniques and instrumentation for making various microwave standards measurements. It presents a detailed description of the techniques used in the general areas of standards measurement, including frequency, attenuation, impedance and power. Mr. R. Whitburn, Hewlett-Packard Co., 275 Page Mill Road, Palo Alto. Calif.

Service Offered

This is a 20 -page, three color, illustrated booklet, which describes the serv ices of the St. Louis Car Company. Resources, capacity, location, diversified facilities, technical staff, and past achievement are factors described and pictured. Compan! produces transportation equipment, military vehicles, and materiel, and industrial and commercial items ranging from major assemblies to special fabrication. St. Louis Car Co. SOOO North Broadway, St. Louis 15, Mo.

NEW REEVES-HOFFMAN LOW FREQUENCY CRYSTALS
New Reeves-Hoffman low frequency crystals, type RH8-DP, offer excellent frequency stability over a temperature range of -55° to $+105^{\circ} \mathrm{C}$. Available from 4 to 15 kc , they tre desisned for use not on! in telephone carrier and communications systems. but ir aircraft navigation, guided missle. sonar, telemetering and test equipment as well. These crystals meet MIL
C. 30988 Bpecifications for shock, vibration, aging and moisture resittance

WRITE FOR BCLLLETIN RHS-DP
SEE US IN BOOTH 1809 at The ire national convention

DIVISION OF
DYNAMICS CORPORATION
OF AMERICA
CARLISLE

REEVES. HOFFMAN SPECIALIZES IN VOLUME PRODUCTION OF CRYSTALS FROM I MC DOWN
CIRCLE 326 ON READER-SERVICE CARD

A 4-page, 2-color brochure describes dd illustrates this firm's standard line f precision components for computers, istruments and control systems. Engicered to high military and commercial tandards, these components are availble for early delivery. The brochure rovides detailed specifications and perormance data on cams, synchros, mehanical differentials, oldham couplings nd 10 -w low-inertia servo motors. Ford nstrument Co., Div. of Sperry Rand jorp., 31-10 Thomson Ave., Long Island ity 1, N.Y.

Transformers

More than half of this 24-page catalog devoted to a description of the many upes of transformers that can be prolineed as "custom" units. The catalog Iso gives a comprehensive idea of the mounting types and electrical ratings !ussible in custom units. New transistor ransformers are described in detail. Harold Edelstein Microtran Co., Inc., 145 E Mineola Ave.. Valley Stream, N.Y.

Winding Machines

329
Six-page Condensed Catalog 58A is a shortened, convenient, quickly-read form of the 16-page Catalog 58. Specifications, features and full descriptions of the company's automatic, semi-automatic and subminature toroidal winders, the tape winding machine, the high speed bobbin winder and the new permeameter are present in this condensed catalog-much of this information in the form of comprehensive, wee-at-a-glance tables. Boesch Mfg. Co. Inc., 4.5 River St., Danbury, Conn.

Bobbin Cores

330
Bulletin BC-20:3, illustrated and containing 16 pages, provides preliminary information which designers may use to tentatively complete circuit designs without the need for expensive experimentation. Included are the first published guaranteed maximum-minimum limits for tape wound cores, measured according to industry accepted pulse tech niques which are detailed in the test. Magnetics, Inc., Butler, Pa

DIALL

50-51
plastic molding compound

-for absolute reliability in plastic molded parts
Here is the toughest plastic that money can buy - a Dacron*filled, diallyl phthalate compound. Diall 50-51 does not crack around inserts even under thermal shock. It has high impact and structural strength, and exceptional dimensional stability. It is completely unaffected by moisture.

Now in granular form, Diall $50-51$ is easily molded into the most intricate shapes. Used in thousands of rocket and missile parts. Certificates of military and other approvals furnished on request. Write for Bulletin 50-51.

Du Pont Trade Name
MESA PLASTICS COMPANY

ADVANCED DESIGN COMPONENTS

New ULTRASONIC DELAY LINES

Low cost - Small size

Development engineers can now employ new concepts in existing and proposed applications. These Curtiss-Wright delay lines are extremely small, hermetically sealed and vibration proof. They are ideally suited for use in computers, coders and decoders, telemetering and navigational systems.

```
SPECIFICATIONS
```

Delay range $\ldots 5$ to 6000 microseconds
Tolerance............. microsecond
Signal to noise ratio...Greater than $10: 1$
nput \& outputimpedance. . $50-2000 \mathrm{ohms}$ Carrier frequency.......... $100 \mathrm{kc}-1 \mathrm{mc}$ Delay to pulse rise time.... Up to $800: 1$

DIGITAL MOTORS
for high reiiability applications

These stepping motors meet the requirements of assured reliability and long life for aircraft, missile and automation systems.

FEATURES
Dynamically balanced
Bi-directional - Positive lock Simplicity of design High pulsing rate

TIME DELAY RELAYS For high vibration applications

'H" Series thermal time deay relays are designed to meet the high shock and vibration conditions of today's military applications.
FEATURES

Time delays from 3 to 180 seconds Temperature compensated Hermetically sealed - Miniature Meets rigid environmental
specifications

WRITE FOR COMPLETE COMPONENTS CATALOG 159
ELECTRONICS DIVISION

CORPORATION - WEST CALDWELL. N.J.

11751 Mississippl Ave., Los Angeles 25, Callf.

Smallest MOLDED* MICA CAPACITOR 73\% Smaller ${ }^{+}$

 Micamold Missilmitefor $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operation

Micamold's Missilmite subminiature molded mica capacitors are the Smallest Molded Mica Capacitors Ever Produced...73\% SMALLER! Due to radically new engineering design, new materials and assembly methods, Perfectly Symmetrical Missilmites MEET and EXCEED MIL-C-5A and MIL-C-11272A, Characteristics "C," "D" and "E." These subminiature molded mica capacitors will withstand operating temperatures of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (standard range is from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$), and weigh only ${ }^{1 / 2}$ gram.

Reliable and stable Missilmites permit greater design flexibility to the engineer, and are especially desirable in critical miniaturized. assemblies. Recommended for use in missiles, delay lines, pulse networks, computors, transistorized assemblies... or wherever minimum size and weight, with stability, are required.

Send for Bulletin 114A to:
 also includes Automatic Manufacturing Automatic Manufacturing
F. Wickles Division Radio Receptor Co., Inc Radio Receptor
(subsidiary)
MICAMOLD ELECTRONICS MANUFACTURING CORP. (Subsidiary of General Instrument Corp.)
1087 FLUSHING AVENUE, BROOKLYN 37, NEW YORK - HYacinth 7.5400
Visit our Booths 2211-17 at the IRE Show
CIRCLE 484 ON READER-SERVICE CARD

NEW LITERATURE

Miniature Plugs

485
MS miniature plugs, Series KM, designed to qualify to Mil-C-25955 (USAF) are described and illustrated in Catalog KM-1. The KM series is used in airborne applications where extremes of humidity and barometric pressure are experienced. The plugs feature crimp-type, snap-in contacts. The 12 -page catalog details, among other things, materials and finish, alternate insert arrangements, and endbell and connector shell variations. Cannon Electric Co., 320)s Humboldt St., Los Angeles 31, Calif.

"Photo-Voltaic" Cells

Complete design details, theory of op(ration and application notes on a newly developed line of silicon "photo-voltaic" readout cells is given in 4-page Bulletin No. 3:3-58. Illustrated are typical currentvoltage curves, variation of available power according to temperature changes and spectral response curves. Hoffman Electronics Corp., Semiconductor Dis.. y:30) Pitner Ave., Evanston, III.

Dry-Type Transformers

487
Bulletin GEA-6723, consisting of 2 pages and illustrated, gives original equipment manufacturers a complete reference for selecting small power and control, general-purpose and special purpose transformers. It contains a complete description of each transformer type including typical ratings, prices and detailed application information. Gen eral Electric Co., Schenectady 5, N.Y.

Digital Voltmeter

488
Kin Tel Model 4()? ac/de digital volt meter is described in this 1 page bulletin. The new digital voltemeter provides $1(k)$ II resolution in de, 1 mi in ac. 1 chopper-stabilized control unit drives : projection-type readont which presents 1-1 8 in. digits on a black screen. The readont is comenected to the meter by cable and may be rack-momited at a re mote location if desired. I ata Sheer No 19-24 from: Kin Tol. 5i-5 Kcamy Villa Road. San Diegolo. Callif.

CIRCLE 489 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 18, 195

f \sin Finish

Properties of "Poly-Ep," a polyamideoxy resin finish, including dielectric rength; resistance to moisture, abrasion, ganic and inorganic chernicals; adheon to synthetic materials and metals id other technical data are included in Illetin \#82. This 4 -page bulletin is ailable from D. J. Peterson Company, reboygan, Wis.

RFI Strip Shielding

This data folder of 4 pages lists $3: 30$ standard RFI strips of different sizes. shapes and materials. It covers over 80 pren cent of all RFI shielding requirements. Technical Wire Products, Inc., 48 Brown Ave., Springfield, N.J.

Special Charts

Bulletin No. Y1906 describes charts for special requirements (including preprinted photo charts for oscillographic recording). Engincering information and chart samples are included. Manufacturers or users of special instruments may obtain Bulletin Y1906 by writing to The Bristol Co., Waterbury 20, Conn.

Teflon Catalog

This 28-page Teflon Stock Catalog and Machining Handbook, prices 1087 sizes of Teflon tubing and rod available for machining into parts, sizes from $3 / 16$ in. to 18 in. diam. All stock prices are on a unit basis, eliminates weight estimating. The manufacturer lists the same sizes as used by them and also details machining methods, speeds, feeds and tool design for machining this unique material. Included are detailed methods for both engine lathe and automatic screw machine work. The catalog also tells how to make envelope gaskets, " 0 " rings, etc. Write for Catalog C-1, Halogen Insulator and Seal Corp., 9960 Pacific Ave., Franklin Park, Ill.

Ceramic Disc Capacitors

333
This 6-page folder includes complete specification data, charts and graphs on the performance capabilities of the company's ceramic disc capacitors. It covers temperature stable, semistable, general purpose and temperature compensating calpacitors. Electro Motive Mfg. Co., Inc., Willimantic, Conn.

Continuous

 thinking......research and experience developed Magnetic Research Corporation's all new DC-DC CONVERTER . . . a converter whose versatility is adaptable to telemetering, guidance, control and communication groups ... or any other application where the DC regulated power is required. DC-DC CONVERTER specifications

OUTPUT POWER: MULTIPLE 150 WATT MAX. SIZE: $5.0^{\prime \prime} \times 3.5^{\prime \prime} \times 3.7^{\prime \prime}$. WEIGHT: 3.5 lbs . EFFICIENCY: GREATER THAN 75% LINE REGULATION: LESS THAN + 1% SHORT CIRCUIT PROOF . . 28 V DC INPUT
inserted in the transmitter feed line, passes the transmitter frequency and rejects two receiver frequencies. It makes possible both frequency and space diversity in a tropo scatter system.

$$
\begin{aligned}
& \text { Visit us of the IRE Show at } \\
& \text { Booths } 2532 \text { and } 2637
\end{aligned}
$$

ANTEMNA EQUIPMENT

D. S. KENNEDY \& CO.

Cohasset, Mass. EVorgreen 3-1200,

NEW LITERATURE

Terminal Boards

337
Complete specifications, outline dimensions and general information on Continental Connector series MT terminal Boards are given in a new, illustrated bulletin. This series is available with four or eight turret terminals molded directly, into the body material. Optional mounting holes are available in either size. Molding compounds include mineral filled melamine, glass reinforced plaskon or diallyl phthalate, and mineral filled diallyl phthalate. For a copy of Series MT technical bulletin, write to Electronic Sales Division, DeJur-Amsco Corp., 45-01 Northern Boulevard, Long Island City, N.Y.

Photoelectric Controls

New Tubeless Photoelectric Control Catalog describes controls with Cad Cell sensing element; with transistor and with magnetic amplifier, including suitable light sources. This 4 -page, 3 -color, cata$\log 58-1$ available from: Autotron. Inc., Box 722 HA, Danville, Ill.

Ceramic Design Handbook

The technical information in this $1 t$. page handbook is intended to enable de. signers to determine which Centralab en. gineered ceramics are best suited for existing applications, or for new devices which require their unique electrical and mechanical properties. It describes the clectrical and environmental characteristics of the ceramics and contains information on the advantages and disadvan. tages of various fabricating techniques. Centralab, 900 East Keefe tve., Milwaukee 1 , Wis.

Thermostats

Comprising 4 pages and printed in two culors, Bulletin $84(\%)$ pictures all major thermostat types and gives condensed technical information on operating ranges. electrical ratings. optional mountings and terminal arrangements of the company's complete line. Stevens Manufacturing Co., Inc.. P. (). Bo. 100%. Mansfield, Ohio.

Shatterproof, Clear Plastic Containers

- For individual packaging or kits - Wide range of sizes • $1 / 5$ the weight of glass • Lower shipping costs • Can be printed or decorated • Low cost - Reusable - Also Available in Color. Write for complete prices and literature

LERMER PLASTICS, INC.

572 South Avenue, Garwood, N. J.
piomeers ano specialists in plastic containers since 1919 CIRCLE 341 ON READER-SERVICE CARD

ectronics Catalog

Catalog No. 101, is a 160 -page volume hich includes prices and detailed data , a wide variety of electronic parts and , uipment for service and sound applitions, as well as particularly compreinsive listings of products for industrial e. The Merquip Catalog, c/o Eleconic Publishing Co., Inc., 180 N . acker Drive, Chicago 6, Ill.

Fadiation Meters

A new bulletin describing the comI iny's line of portable radiation surve? meters, consists of 8 pages, is printed in (wo colors, and is profusely illustrated with photographs. Equipment covered includes gamma dose rate meter. Cutic pie, Thyac. Scintillac, Victor series of ariger counters and scintillation detecturs, and the Vic-Tic. Detailed specificathens, performance data, optional accessuries, sizes. weights, etc., are given. Copies of "Victoreen Portable Radiation Survey Meters." Form 3(1413, are available on request. The Victoreen Instrument Co., Instruments Dit., 5906 Hough Ave., Cleveland 3, Ohio.

Control System

344
Bulletin 106 (16 pages, 2-color) illustrates and describes the design approach, materials, construction and modern facilities used in manufacturing a variety of Centralized Control and Data Presentation Systems. Panellit, Inc., 401 N . Hamlin Ave., Skokie, III.

Silicones

345
The 1959 Reference Guide to company's silicone products describes what silicones can best meet the needs of ant unbelievable variety of problems ranging from adhesives to release agents, resins to rubbers, dielectrics to water repellents. It contains graphic examples showing where many of these silicone products are currently being used, and it gives information on how to get specific data on the silicone material best snited to any application. This 16 -page 2 -color, up-to-date reference guide is heavily illustrated and features an expanded indexing system to facilitate quick and easy location of the more than 1.50 silicone products now commercially available. Dow Corning Corp., Midland, Mich.

CIRCLE 346 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

'DIAMOND H'

 - RELAYS
NEW . . . High Speed Polarized Relays

Fast action with freedom from bounce, plus high sensitivity and consistent operation with low distortion, are provided by small, rugged Series P Polarized Relays. SPDT, with two independent coils, they will handle over 1,000 pulses per second. Various coil resistances up to 5,000 ohms each coil. Contact ratings vary with switching speed but range from 60 MA to 2 A with voltages to 120 AC or DC , dependent upon amperages employed.

Aircraft-Missile

Series R \& S Relays

Miniature, hermetically sealed 4PDT. Series R\&S relays provide excellent reliability over their long service life. Electrically and physically interchangeable, the two series differ only in that Series S coils are separately sealed within the sealed cases, with organic matter eliminated from the switch mechanism for greatest reliability in dry circuits. Contacts MA to 10 A

General Purpose AC, DC Relays

Series W Power Relays are DPDT, double break-double make; measure only $11 / 2^{\prime \prime}$ x $11 / 2^{\prime \prime} \times 1 / 8^{\prime \prime}$, but are rated to 25 A, cesistive, at $112-230 \mathrm{~V}, \mathrm{AC}, 1 \mathrm{HP} 115 \mathrm{~V}, \mathrm{AC}, 2 \mathrm{HP}$. 230 V, AC. Socket, panel and sidewall mountings are standard: others available to meet special needs. 12 possible contact arrangements, including sequencing.

"Diamond H"e engineers are prepared to work with you to develop variations on these relays to meet your specific requirements. Tell us your needs . . . by phone or lefter.

THE

TABI MANUFACTURING
210 Bartholomew Ave., Hartford 1, Conn.
Phone JAckson 5-3491
CIRCLE 347 ON READER-SERVICE CARD

FIRST 920 Channel Single Conversion VHF Mobile Receiver Uses HYCON EASTERN CRYSTAL FILTER

IRE SHOW Booth Nos. $3038 \& 3039$

Hycon Eastern 11.5 Mc Crystal
Fillers Measure $2^{\prime \prime \prime} \times 11 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$

Bandwidth at 6 db attenuation: 33 Kc Bandwidth at 60 db altenuation: 60 Kc Insertion Loss: 4 db
VHF, 920 Channels, fully transistorized Rodio Receiver by Avco

Ultimate attenuation: $\mathbf{8 0} \mathbf{d b}$

Mobile communications for today's fast moving military operations require equipment which is rugged, compact, highly accurate and dependable. Filling this need is the Avco-Crosley fully transistorized, 920 channel, mobile VHF-FM Radio Receiver incorporating a Hycon Eastern 11.5 Mc Crystal Filter and matching Discriminator.

The use of only one frequency conversion provides excellent image rejection in combination with high adjacent channel selectivity. By eliminating multiple conversions, cross modulation and receiver desensitization are reduced even in the the presence of strong interference from any of the other 920 channels.

High Frequency Crystal Filters for mobile applications offer the advantages of small size, freedom from microphonic behavior, and ability to maintain their characteristics throughout the entire temperature range of $-60^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Hermetically sealed. no realignnient or readjustment is ever required

There are Hycon Eastern Crystal Filters designed to solve selectivity problems in AM or FM receivers and SSB transmitters, whether fixed or mobile. Hycon Eastern engineers can assist you in choosing filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.

NEW LITERATURE

Data Loggers

A new four-page brochure describes the features, applications, and specifications of company's Data Logger linc. These data loggers are used for recording weight, strain, force, flow, pressure, or temperature. Data is automatically recorded and printed out in visual form for "on-the-spot" evaluation or for later calculating and computing. Model 166 supplies a single range typewriter readout and Model 167 includes the necessary additional circuitry for multirange selection. Gilmore Industries, Inc., 13015 Woodland Ave., Cleveland 20, Ohin.

Precision Gears

350
High-performance, precision gears with tooth-to-tooth spacing accuracies of two ten-thousandths of an inch are described in this 24-page Bulletin (CEA6430). Typical applications of these precision gears include radar power and data gears and guidance controls. General Electric Co., 1 River Road, Schenectady 5, N.Y.

Circular Slide Rule

A handy circular Slide Rule for engi neers and for other plant and offic executives has been introduced. Any ex ecutive who must perform simple calcu lations will find this convenient, pocket size calculator extremely useful in his work. Operation is simple and the results are accurate. Used to multiply, divid, and find proportions, the circular slide rule has complete easy-to-follow instruc tions printed on the reverse side. For your free Circular Slide Rule, write to General Industrial Co., 57.38 Elston Ave. Chicago 30, Ill.

Servo Motors, Amplifiers

352
Bulletin $501 \mathrm{~A}, 4$-pages and illustrated covers synchro transmitters, transform ers, receivers and differential transmit ters. With specifications and outline drawings it describes size 8 servo motor and size 8 amplifiers. Merchandising. Ketay Dept., Norden Div., United Aircraft Corp., Commack, L.I., N.Y:

BE SURE TO SEE

Heemco's remarkable, new

3-PHASE FREQUENCY SOURCE

(and crystal filters from $\mathbf{4 0 0} \mathrm{cps}$ up)
at BOOTH 3940

HILL ELECTRONICS, INC.
300 N. Chestnut St.
Mechanicsburg, Pa.

Four-page Bulletin EPD 1296-5 gives full specifications on company's new 1290 series super power gapless core magnetic amplifiers. This series consists if 18 standard sizes with power outputs if $5(0)$ va to ower 32 kva. Bulletin indude's tables of electrical characteristics, urves, basic circuit diatrams, and outline and mounting dimensions for both implifier reactor mits and rectifiers. Vickers Inc., Electric Prod. Dis.. 1815 Locust St., St. Louis, Mo.

Transformer Catalog

355
This 24-page catalog, titled "Pulse Transformers," is designed to assist engineers in the application of transformers to their specific needs. Complete with many tables, charts, and schematics, this mannal covers a bricf history of low-level pulse transformers, their measurements, specifications, applications, interchangethility: dielectric ratings manufacturing ind other data. Included is information on some of PCA's 2000 standard design transformers. PCA Electronics, Inc. 16799 Schoenborn St., Sepulveda, Calif.

Silicon Rectifier Handbook

356 A 2 -color, 48 -page silicon rectifier handbook contains electrical ratings, performance data and dimensional drawings for every type of silicon rectifier offered by firm. Designated as catalog No. 69. this 19.59 handbook also deals with silicon rectifier theory of operation. mannfacture and characteristics and offers the design engineer valuable help) in silicon rectifier application. Sarkes Tarzian, Inc.. Rectifier Div:, Bloomington. Ind.

Components, Instruments

357
A new, short-form catalog folder of electronic components and instruments contains condensed descriptive informations and applications data on company's beam switching tubes, Nixie ${ }^{\left({ }^{(8)}\right.}$ indicator tubes, decade counters, pulse control instruments, optimeters, beamplexers and tisual decoders manufactured by the company. A complete listing of more than twenty items of available literature is included on a convenient literature request card. Burroughs Corp., Electronic Tube Div., P. O. Box 1226, Plainfield, N.J.

CIRCLE 358 ON READER-SERVICE CARD

8 \& \& 888 8
 DIT-MCO
 MATRIX CHART
 ERROR LOCATION
 SYSTEM
 SAVES UP TO 90\%

CORRECTION TIME!

Pinpoints All Circuit Flaws Instantly...Plots and

 Simplifies Test Procedure...Provides a Permanent Record!DIT-MCO's revolutionary marrix Chart is the only error location device which puts all circuit information . . . errors, circuit numbers, type of flaws, etc. . . . directly in front of the operator of this Automatic Electrical Circuit Analyzer. If plots the entire test sequence and pinpoints every circuit flawinstantlyl Horizontal and vertical indicator lights cross reference to indicate the exact error location, circuit number and type of flaw. As errors ore detected, they are recorded on the proper matrix square and the test continues.

Once the test sequence has been completed, all corrections are made direct from the Matrix Chart. This group correction feature saves up to 90% of error correction and/or interpretation time by eliminating time-consuming searches through complex manuals and wiring diagrams. After corrections have been noted on the Matrix Chart, it provides a complete record of test circuits, test specifications, instructions, results and modifications. This concise, understandable record improves interdepartmental communications and provides co-ordination through all stages of planning, production and maintenance. Non-technical personnel easily master operation of the Analyzer and use of the Matrix Chart System. The final Matrix Chart can follow the product for future overhaul and maintenance use.

DIT-MCO, Inc. employs an experienced staff of sales engineors in the field. Contact your field soles facts about DIT.MCO Automatic Electrical Circuit Analyzers.

DIT-MCO, INC.
ELECTRONICS DIVISION • BOX 03-20
Jumper-wired plugboard programming parmits une of simple, straightforward adapter cables. Circuit
modifications modifications never present hoodaches becouse all
changes ore esaily made by re-iumpering the readchonges ore easily made
ily occessible plugboords.
911 BROADWAY - KANSAS CITY, MO.
Partial List of DIT-MCO Users
Aircraft Rodio Corp. © AiRosearch Manufacturing Co. © American Bosch Armo Corp. American
Machine \& Foundry Co. Americon Motora Amphenol Electronica Corp. Autonetics, A Division of North American Aviotion. Inco Moll Aircroft Corp. E Endix Aviotion Corp. © Booing Airplane Co. © Cessma Aircraft Co. © Chance Vought Aircroft, Inc. © Chrysler Corp. © Convair Douglos
Aireraft Co., Inc. Dukane Corp. Eletronic Products Corp. Foirchild Aircraft Division

 Aircraft Engineoring Corp. Hazoltine Electronics Division, Hazolting Corp. Mughes Aircraf! Corp. Missile Systoms Dirision © Martin, Boltimorse Minneapolis.-Honoyswell, Aoronautical Division © Motorola, Inc. Northrup Aircrafa, Inc. © Pacific Morcury Tolovision Mfg. Corp. Radio Corp. of Aircraft © Sperry Gyroscope Co. Summers Gyroscope Co. Sun Electric Co. The Swortwout Co.
 Airlines © U. S. Naval Air Stotion Ovorhaul and Repair Dopots We U. S. Naval Ordanance

CIRCLE 359 ON READER-SERVICE CARD

AIRPAX ELECTRONICS
 I NCOR P O R A T E D

displays these products at the
I R E Show, Booths 2306-2308

MAGNETIC CIRCUIT BREAKER
 MAGNETIC DC AMPLIFIER

The items pictured above, several shown for the first time, all carry the Airpax unqualified guarantee of high quality, superior performance and long life. Airpax is first with the latest advances in design, circuitry and packaging.

PATENTS

Transistor Trigger Circuis
Patent No. 2,864,(א)7. Genung L. Clapper. (Assigned to IBM.
Contact bounce is filtered and gated out in a cam-controlled transistor square wave generator.
With switch is open. transistor 10 is conducting and transistor 11 is cut off. The impulse at closure of contact 18 causes the transistors to flip such that transistor 10 is cut off and the conduction current through resistor 30 forces transistor 10) bevond cut off. Subsequent contact bounce is filtered by the RC integrator in the input. The reversal of
transistor 11 comples a voltage to terminal I) to callse complementary transistor 33 and 34 to reverse and a positive step appears at output terminal 37 ; the positive step is fed back wia cable 4.9 to force transistor 10 further beyond cut off.

The bounce of contact 18 , upon opening, is similarly decoupled from the output. Transistor I() conducts, cansing transistor 11 to cut off and the step voltage in the output falls to zero. The reversal in output voltage coupled by cable 49 forces transistor 10 to conduct harder to insure cut oft of tramsistor 11 so that no ringing appears in the output.

deep drawn aluminum boxes and covers

11,600 Standard Sizes and Shapes

WITH NO TOOLING COST!

Choose from more than 11.60 n sizes, shapes and heights of square, round. rectangular boxes and covers
pay no tooling charge! All can be trimmed and modified to your specification... brackets and fasteners can be installed. holes and louvers punched, etc. Complete facilities
for welding and painting too! Send print or contact your
Zern Representative for quote on custom deep drawn
parts using the exclusive Zero-Method tooling.
Zero ZERO
MANUFACTURING CO.
1121 Chestnut Street. Burbank, California Telephone Vlctoria 9-5521 •TWX 986z
representatives in 26 ke!! cities covering the U'.S

WRITE FOR NEW ZERO STOCK box catalog

CIRCLE 361 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

Zompensated Plate Type Limiter
'atent No, 2,861,185. Andrew L. Hopper Assigned to Bell Telephone Laboraories)
Any tendency of an a-m limiter to proluce phase modulation is effectively diminated by circuitry which adjusts the eference level of the clipper stage according to the applied signal.
An improved plate limiter circuit is hown: Diodes 2.5 and 26 , hiased by bat(ere supplies 27 and 30 , asymmetrically limit the amplitude modulation at the
output of amplifier tube 21. However, since diode resistance decreases with increase in drive voltage, the output without compensation will have a nonlinear phase characteristic. The novelty lies in the circuit arrangement wherein the diodes are returned to ground through cathode follower resistor 29. As the signal varies in amplitude, the output signal is compared with an in-phase component of the applied signal and the diode threshold level is antomatically adjusted to completely cancel all of the a-m in the output.

FOR CRaftSmanshil - SERVICE - RELIABLLITY - SPECIFY ASHLAND MOTORS•FANS and BLOWERS

C ASHLANO is your ane source for precisionengineered and preci-sion-made custom. crafted Synchronous, Torque, Induction or Gear Motors: Centrifugal Blowers and Axial Fans Ashland's quality-controlled rotating electrical components are compact. rugged and designed
for the utmost efficiency and long
life under specified conditions. Both standard and custom designed models are available to order for critical commercial or military applications.
One of the nation's leading suppliers of Synchronous Motors to the Recorder, Electronics and Instrumentation industries, Ashland is well qualified and equipped to satisfy your most precise specifications and delivery requirements.
WRITE FOR ASHLAND'S NEW CATALOG ED-3189 TODAY

ASHLAND
ELECTRIC PRODUCTS, INC. 32 :02 outens blvo. L. I. C. 1, ल. y.

CIRCLE 362 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

Heli-Coil ${ }^{\text {² }}$ Screw-LOCK Inserts ${ }^{\circ}$ permanently protect critical lapped holes in this transducer assembly-and at the same time lock screws against impart and vibration.

Critical Electronic Controls Get Permanent Threads In Light Materials
 with

 Screw-LOCK Inserts

Principle of Heli-Coil Screw. toCk Inserl. Locking center coil
grips internolly, holds screw

Electronic control devices for aircraft and missiles, like this angle of attack vane transducer made by U. S. SCIENCE CORPORATION, LOS ANGELES CALIF., have to withstand severe vibration, impact, corrosion and temperature change. They must be made of light materials and still have strong threadsable to stand frequent assembly and disassembly U. S. SCIENCE insures rock-solid screw assemblies by protecting vital tapped holes with one-piece internal-locking Heli-Coil Screw-LOCK Inserts. These precision formed, stainless steel wire inserts eliminate thread wear, lock screws securely without resort to clumsy, external lock nuts and lock wiring.

Simple Installation Procedure

U. S. SCIENCE finds it easy to install Heli-Coil Screw-LOCK Inserts Drilled holes are tapped with a Heli-Coil tap and the Inserts wound in with a prewinder inserting tool. Conventional screws are used in assembling the unit.

Heli-Coil Screw-LOCK Inserts

- positively lock fasteners against loos- - permit repeated disassembly and ening under impact and vibration
- prevent thread wear, stripping, corrosion, galling and seizing
- eliminate lock nuts, lock wiring, reassembly
- can be used in standard proportion bosses without need for redesign
other supplementary locking devices
- save assembly time, space, weight and cost
- meet government specs for locking torque and vibration
*Patented
HELI-COIL CORPORATION
DANBURY, CONNECTICUT
HELI-COIL CORPORATION, 403 Shelter Rock Lane, Danbury, Connecticut Send complete design data on Heli-Coil Screw-LOCK Inserts
name
FIRM
address
cirr
IN CANADA. W R WATKINS CO, Ltd, 41 Kipling Ave S. Toronto 18 , CIRCLE 363 ON READER-SERVICE CARD

For the Teflon* part of your design.... CALL ON R/M, HEADQUARTERS FOR TEFLON PRODUCTS

Whether your design calls for "Teflon in sheet, rod. lube or tape form or a specially fabricated "Teflon" part evtruded, molded or machined to your specifications \qquad $\mathbf{R} \mathbf{M}$ has the e. perience and facilities to meet your needs. And R M sales engineers are aluays available to help solve any
problems you may have concerning this remarkable substance . . . its properties. application or manufacture. Make R M your headquarters forallyour"Teflon" needs. For friendly, competent assistance, contact your nearest R / M district office. Or write Plastic Products Division. Manheim. Pa. for literature.

A Du poni trademark

R_{M}RAYBESTOS-MANHATTAN, INC. PLASTIC PRODUCTS DIVISION FACTORIES: MAMHEIM, PA.; PARAMOUNT, CALIF. Contact your nearest R/M district office listed below tor more information or write to Plastic Products Division. Raybestos-Manhattan. Inc. Manheım, Pa. Birmingham 1 - Chicago 31 - CLEVELANO 16 - DALLAS 26 - DE NVER IS - oltroit 2 - houston I
 rayeestos-manhattam, inc., Engineeted Pastics - Asbestos Tentlies - Mechankal Packings - Industrial Rubber Sintered Melal Products . Rubber Covered Equipment. Abrasive and Diamond Wheels Brake Linings Brake Blochs - Clutch Facings - Laundry Pads and Covers . Industrial Adhesives - Bowling Balls CIRCLE 364 ON READER-SERVICE CARD

PATENTS

Triad Transistor Amplifier
Patent No. 2,863,957. Robert B. Hamilton. (Assigned to Ryan Aeronautical Co.)

Negative feedback in an ac transistor amplifier minimizes variations in the network parameters. Shunt feedback by resistor 40 between output and input and also series compensation by emitter re-
sistor 42 stabilize transistor 10 . Any drift in transistors 20 and 30 is cancelled in the de path between collector 24, base 32 , emitter 36 base 29 and emitter 26. In addition, temperature compensation is obtained by temperature sensitive resistor 50 which adjusts the input impedance of transistor 20 according to temperature change

Armed with the data in this folder, you can create an optimum design for a 12-watt magnetic amplifier... get the closest possible control over its design and construction... for control of servo motors, regulated power supplies, etc.
You build the amplifier around its basic component the saturable reactor. Twenty-four ARNOLD saturable reactors are described in the folder. There's full information as to what associated components are necessary, and how to use the components in a proper magnetic amplifier circuit.
In buying just the saturable reactor, you get far more latitude than in buying a whole black box. And you won't have to prepare comprehensive specs, or depend on an outside source for the complicated designs.

Write for Data Sheet M 8-1 It's yours for the asking.

requency Divider Circuit

'atent No. 2,866,104. Frank 1). Biggam. Assigned to Teletype Corp.)
By means of a transistor step charging counter, the frequency of a pulse source s divided. Rectangular pulse generator 10 charges capacitor 31 negative through ransistor 13 , differentiating capacitor 14 and diode 18. Transistor 30 feeds back a

Write for Engineering Bulletins on

PHILLIPS SOLENOIDS

Designed for industrial control applications where long life and reliability are prime requirements. A wide range of types and sizes.

Manufacturers of Sub-Miniafure, telephone, power, general purpose relays - solenoids.

Phillips Control Corporation, Joliet , III

IIlinols-an allied paper corporation

 CIRCLE 366 ON READER-SERVICE CARD
voltage to linearize the step charging. When the bias on diode 32 is overcome, the succeeding pulse cuts off transistor 24. Transistors 34 and 39 conduct and transistor 41 discharged capacitor 31. Thereafter, a positive going pulse through differentiating capacitor 21 flops transistor 24 back to conduction and transistors 34 and 39 cut off to reset the circuit to repeat the count.

IFA
 makes computers REMEMBER

Time was when the problem of "remembering" placed practical limitations on the speed and capacity of computers. Not so, today, because of a FXC-developed component called the coincident current memory slack. Main reason for the outstanding success of this important advancement in magnetic ceramics rests in FXC's ability to meet the computer industry's requirements for ferroxcube cores for recording heads. pulse "ransformers...coincident current planes, stacks and similar precisely engineered products. Call FXC's Computer Engineering Dept. whenever you need help on a ferroxcube application.

50 East Bridge Street, Saugerties, New York

New THERMA-flex liner makes
IERC's heat-dissipating tube shields cool electron tubes more efficiently!

IERC and government testing", using latest techniques, proved THERMA-flex tube shield liners to be the most efficient heat-dissipating liners available! IERC THERMA flex liners and tube shields will meet all requirements of MIL-S-9372 (USAF) and MIL-S. 19786 (NAVY). In the shield, the broad areas of the liner attain a particular semi-eliptical precision spring curve. Tube insertion causes spring curve to flex and adjust to contours of bulb. This action grasps a major portion of tube surface, absorbing heat from hot spot which is transferred to shield and heat sink and dissipated by conduction, radiation and convection.
THERMA-flex high-efficiency tube shield liners are available now for most sizes and types of IERC Miniature Heat-dissipating Electron Tube Shields.

See NEL Reliability Design Handbook, Sec. 502 -"Improved Type
Miniature Tube Shields. OTS - Jan. 15. 1959

… us rmat wan pathat rending

International Electronic Research Corporation 145 West Magnolia Boulevard, Burbank, California

Write for helpful, FREE, IERC Tube Shield Guide with over 1,200 tube and tube shield combinations to help you avoid thermal problems in your new equipment designs or retrofitting plans!

PATENTS

Stabilized Transistor Amplifier

Patent No. 2,860,193. James E. Lindsay (Assigned to Radio Corporation of America.)
Class 13 transistor amplifiers are stabilized by means of a series combination of diode and resistor in the emitter-base circuit. The diode provides high degenerative resistance to emitter current under static conditions and relatively low resistance for signal currents.
The basic circuit shows complementary transistors 10 and 18 comnected in a class B push-pull output stage driven by a balanced source connested to terminals

40 and 43. A pair of diodes, 17 and 19. is connected between ground and emitters 14 and 22 , respectively. Forward bias of each transistor is obtained by means of resistors 30 and 36 comnecting base electrodes 15 and $2: 3$ to the negative terminal of battery 26. Under quiescent conditions, the diodes impede the emitter currents to stabilize the de operating point When signal is applied. however, the increase in emitter current reduces the diode resistance and degeneration of sig. nal current is effectively reduced.
Current Supply Apparatus for Load Voltage Regulation

Patent No. 2,850,695. John D. Bishop. (Assigned to Bell Telephonc Labora tories).

Transistor regulatur action maintains output voltage at $2 \Omega \mathrm{v}$ for a maximum load current of 0.1 amp over the temperature range of -40 F to -140 F .
At room temperature, the network comprises a simple degenerative controller. A reduction in output voltage due to an increase in load current is finally

3 to 1000 VDC, with excellent regulation

You get the versatility that comes with a wide volt age range. Unit is continuously variable from 3 to 1000 VDC with one twist of the knob. There's a ver nier voltage control for fine settings. And you can draw the full 500 MA output current from this supply at any voltage setting down to the lowest.

Advanced circuitry in this D-B unit, plus highest quality components and mechanical ruggedness, pro vides exceptional reliability.
Price $\$ 695.00$

SPECIFICATIONS
Outputs: $\quad 3.1000 \mathrm{VOC}$ as 500 MA 6.3 VAC a 10 Amps

Load: 450 MV
Line: 450 MV
Regulation (DC) Line: 450 MV
Size: $\quad 19^{n} \mathrm{~W} \times 17^{\prime \prime} 0$.
Weight: 118 lbs
Bulletin 62-126 on request.

Clressen-barpes
DRESSEN-BARNES CORP. . 250 North Vinedo Avenue, Pasadena, Calif. CIRCLE 369 ON READER-SERVICE CARO

compensated bey reducing the emitter current of transistor 20 which is in shunt with the load. When the emitter current of transistor 2() is reduced to zero, the network is controlling the maximum load current. However, at +140 F , the emit ter-collector current of tramsistor 20 is not
zern even though the base current is \%ero. The circuit therefore allows the base current to reverse so as to effectively balance out the emitter-collector current. Diode 45 clamps the operating conditions of the transistors within safe limits to prevent overload and possible damage.

MILLER

small, adjustable

 R. F. COILS- built with top quality materials, impregnated with moisture-resistant varnish, and 100% tested to exacting specifications.

SUB-MINIATURE RANGE:

- 15 items, with inductances from .17 to 300 - İcrohenries. Form dimensions: $3 / 16^{* \prime}$ diameter $\times 5 / 8^{\prime \prime}$ long. Mounting hole: $11 / 64^{\prime \prime}$

miniature range:

- 15 items, from . 4 to 800 microhenries. Form dimensions: $1,4^{\prime \prime}$ diameter $\times 7 / 8^{\prime \prime}$ long. Mounting hole: $3 / 16$
STANDARD RANGE:
- 13 items, from 9 to 2100 microhenries. Form dimensions: $3 / 8^{\circ}$ diameter $\times 1-1 / 16^{\prime \prime}$ long Mounting hole: $1 / 4$

Immediate deliveries on larger quantities from the factory. Over 400,000 catalog items carried regularly in stock. Smaller quantities from any leading parts distributor. Miller R.F. coils are competitively priced
Specials - send us your requirements for prompt quotation. We also build to Military Specifications. Write for the Miller industria catalog.

J. W. MILLER COMPANY
5917 S. Main St., Los Angeles 3, Callf

CIRCLE 370 ON READER-SERVICE CARD

Whatever your needs may be, chouse from complete and ample stocks of these materials . . . and enjoy fast delivery.
Nylon Rod and Tubing. (iuaramteed bubble free, light weight Chemseal Nylon has excellent mechanical properties, resistant to chemicals, oils, grease, solvents. Available in many diameters and lengths.
Teflov Sheet, Tape, Rod, Tubing, Bars, Cylinders. Impervious to all chemicals except molten alkali, Teflon is suitable for use at temperatures from $-110^{\circ} 10+500^{\circ} \mathrm{F}$. It's lough and abrasive resistant, has a low coeflicient of friction, zero water absorption, excellent diclectric properties. Comes in widest variety of types and sizes.
Kel-F Sheet, Rod, Discs, Bars, Cylinders. Resists chemicals, alkalies, solvents. Offers high compressive strength, low cold-flow characteristics. All sizes on hand to meet your needs.

You'll get prompt service anytime, anywhere. Just call or write the nearest of the Garlock Packing Company's 30 salles offices and warehouses throughout the L.S. and Canada.

- DuPont Trademark for TFE Fluorocarbon Resin iM. M. \& M. Trademark

> United States Gasket

Plastics Division of GFIEIUOCI

CIRCLE 371 ON READER-SERVICE CARD

PATENTS

Gate Reset Circuir
Patent No. 2,864,034. John E. Adams. (Assigned to Sylvania Electric Products, Inc.)

Sylvania type 6476 glow discharge transfer counter tube is used in a simple circuit to count only a predetermined quantity and thereafter to reset itself so that the count may be repeated.

REDUCE BREAKDOWN FAILURES

The use of a thermo-plastic insulation material has resulted in an economically priced molded carbon resistor of markedly improved endurance and long term stability.

Type N resistors subjected to several one-hour cycles of immersion in boiling water - while DC polarized - have revealed only negligible changes in resistance. Continuous operations at $150^{\circ} \mathrm{C}$ caused no damage to the component.

The new Type N resistor, a deposited carbon film fired onto a porcelain rod, is first tropicalized with multiple coatings of panclimatic lacquers to give it long term moisture resistance, and is then molded in a thermo-plastic material.

This molded insulation has an effective resistance in the order of 10^{13} ohms. Its inherent thermal conductivity is approximately ten times that of air, resulting in substantially improved load life under conditions involving excessive or high wattage dissipation. Similarly, Type \mathbf{N} resistors may be soldered as close to the insulation as desired without fear of melting or deforming the cover.

One added advantage of the Type N is that the original markings on the resistor body remain visible and legible through the trans. parent molded material.

Welwyn Type N carbon resistors meet the requirements specified by MIL-R-10509B, and are available in all values, ranging from 10 ohms through 1 megohm. For complete data and specifications write to Welwyn International, Inc., 3355 Edgecliff Terrace, Cleveland 11, Ohio.

SAMPLES AVAILABLE ON REQUEST. CIRCLE 372 ON READER-SERVICE CARD

Initially, triode 49b is conducting and the voltage on cathode $12 a$ is thereb: made sufficiently negative so that the discharge is directed to this cathode. A positive pulse applied to the grid of triode $49 a$ canses multivibrator tube 49 to switch; trinde 4.9 h cuts off and the voltage on cathode $12 a$ rises. Now pulses applied to triode 37 will cause the discharge to switch sequentially in the counter tube mentil the discharge is directed to cathode $12 b$. On the next pulse to be counted, the glow leaves cathode $12 b$ swinging this cathode negative and the negative pulse coupled to the multivibrator cuts off triode 49a. With triode 4.9b again conducting, the glow discharge is toward cathode $12 a$ and this condition is maintained until the multivibrator is switched to renew the counting.

Linear Amplifier

Patcut No. 2,859,25:. (iarret 1: Ziffer (Assigned to Tracirlat) Inc.)

Linear amplification of pulses int the dynamic rames of 0.2 .5 i to $2(0) \mathrm{c}$ is ob)

$\mathrm{HIGH}-\mathrm{Q}$

KELVIN TOROID INDUCTORS

rapid delivery on prototype and production quantities
High Q factors, excellent stability vs. remperature and
current, and self-shielding effects are the main
fearures of Kelvin toroid inductors wound on
molybdenum permalloy dust cores.
The coils are supplied to the exact inductance required at
nis extra charge. Standard inductance molerance is $\pm 1 \%$.
Available in three forms:
UNCASED, with protective wax coating.
hermetically sealed in steel cases to MIL-T-27A specifications.
fincapselated in hi-temp plastic to withstand extreme humidity and severe mechanical shock.

5907 Noble Ave., Van Nuys, Calif. • STanley 3-2666•STate 2.6662

CIRCLE 373 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 18, 1959

ained by means of a pentude-triode feedback amplifier.
The preamplifier output is amplified y pentode tube 10 and approximately 10 per cent of the amplified signal is coupled back to cathode resistor 1:3 by means of voltage divider resistors: 16,17 . and the unity gain inverter totbe 11. For a flat frequency response. serios capacitors 18 and 19 are individually in shunt with the indicated resistors. The compor wents of a typical amplifier are given in tabulation
Electronic Protective System
Patent No. 2,8fi0, 28:3. Irving Horowit= (Assigned to Irting Horouitz, Eatonlown, N.J.)
Cathode-ray tube screen burnout is

HOPKINS

metallized Mylar* film capacitors

- high performance in small size

These film-wrapped units are built to meet exacting requirements. For example: High insulation resistance-100,000 megohms is typical.
Operating temperature-units operate to $125^{\circ} \mathrm{C}$
Sub-miniature size-a Hopkins .1 mfd capacitor rated at 200 volts is only $5 / 32^{\prime \prime}$ thick $\times 7 / 32^{\prime \prime}$ wide $\times 3 / 4^{\prime \prime}$ long.
Construction. These units have copperweld leads for maximum vibration resistance... are built with the highest quality materials available, and produced under rigid quality control.

Available as film-wrapped types, and in all case styles in hermetically sealed brass tubes and bathtubs. Rated .005 to 8 mfds ., 200 to 600 VDC. Prompt deliveries. Send for catalog C-103A.

Hopkins

DuPont Trade Name

yqunemy COMPANY

12900 Foothill Blvc.. San Fernando. Calif. . Tel. EMpire 1-869 CIRCLE 374 ON READER-SERVICE CARD

Don't get lost in a maze of wires!

Cut cost of assembly by as much as 65%, with printed circuits on TAYLOR copper-clad laminates

Conventional circuitry is a maze of wire and spaghetti. It is costly to assemble and unpredictable in performance. A printed circuit on Taylor rolled copper-clad laminate is a strong prefabricated part of known reliability. This quality is largely due to the new finish on the copper. Both solder and ink go on uniformly. The handling of one part alone can cut assembly costs as much as 65%. And there is an important passalong benefit: field repairs, when necessary, can be made easier and more economically. Write Taylor Fibre Co., Norristown 48, Pa., for complete details.
cIRCLE 375 ON READER-SERVICE CARD

AC
 RATIO STANDARD

RATIO ACCURACY: I PART PER MILLION 6 PLACE RESOLUTION 0.0001\%

-Gentsch $=$
GERTSCH PRODUCTS, Inc.

IRCLE 376 ON READER-'ERVICE CARD

for the measurement of insulation resistance and Capacitor leakage up to 5,000 million megohms peatures: - Wide Range - 14 K to 5×10^{15}

- Builf-In Colibration standard
- Transistorized Power Supply. 0 to 1000 Volts Your particularly difficull measuring problem may hove its onswer in the new Mid-Eastern very brood range Megoltomeler \#710. This brood ange, logether with continuously variable test polential, make the 2710 sspeciolly ssiviole cortoccurate onolysis of ihe elfrects of 1emperalure, odiation ond rest pootentiol variation in insulating, semmicondector

and other materiols.
elit information ano melp on reouest Write for Eulletins and Price Schedule

Reps Localed In Every state

$$
\text { See Us At the IRE Show - Booth } 3009
$$ CIRCIE 377 ON READER-SERVICE CARD

Process Dynamics: Dynamic Behavior of the Production Process

Donald P. Campleell, John W'iley d́ Sons, Inc., 440 Fourth Ace., New York 16, N.Y., $316 \mathrm{pp}, \$ 10.50$.
Emphasizing a general approach to process dynamics, this book examines the characteristics of processes during un-steady-state conditions or in response to periodic disturbances. The author views process design and control design as an integrated problem in process systems. He also considers the use of linear network theory as a means of predicting the dynamic performance of a plant before it is built. Tramslating process dynamic performance into mathematical form. the text features applications of feedback control theory to industrial processes. particularly chemical and petroleum operations. It also provides a practical
approach to problems in process dymamics such as automatic process control and the damping of pressure and flow pulsation. and suggests methods for controlling process operations involving moving filaments, sheets, and webs. Appendices cover block diagrams and signal-flow diagrams and the use of Fourier and Laplace transformations in treatment-process eontrol problems.

Guide to the Literature of Mathematics and Physies including Related Works on Engineering Science ISecond Revised Edition)
Nathan Grier P'arke III, Doter Publicafions, Inc., 920 Broaduay, Now York 10,

A handy, comprehensive bibliography, representing every branch of physics, mathematics. and related engineering

CIRCLE 378 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

science, the Guide is an invaluable aid to the researcher. Part I, an orientation to library techniques, is provided in a 74-page section. An extensive listing of bibliographical aids includes: abstracts, indexes, periodicals, reviews, bibliographies, directories, encyclopedias, documentary reproductions, guides, and library sources. Part II contains the literature to 1956 and lists more than 5500 key works, included under 120 subject headings, which are subdivided into an average of 6 sulheads. Discussion of the literature under each heading defines the subject matter and provides numerous cross-references and suggestions for further investigation. A complete author and subject index facilitates immediate location of any book. Features many recently available works in Russian and an up-to-date listing of agencies and individuals engaged in Russian translation programs. Translations of all foreign titles are listed.

Physical Laws and Effects
C. Frank Hix, Jr., Rolhert P. Alle'y, John Wiley むे Sons, Inc., 44) Fourth Avenue, Now York 16, N.Y., $291 \mathrm{pp}, 57.95$.
Useful as a quick reference source for
the experienced engincer and scientist, this volume provides a convenient centralized source of information on the subject. Compiled so that a search of laws and effects could become a practical part of the engineering approach to problems, an alphabetic listing of subjects is supplemented by three different cross reference systems. The systems include: a description of laws and effects, including an indication of the expected magnitude and references for further investigation; a cross reference index according to fields of science, which lists laws and effects by the discipline to which they are most applicable; and an index by physical quantities. listing not only the law or effect pertaining to the physical quantity under question, but also other quantities covered by the same law.

The reader will find this volume a handy dictionary, a thought stimulator and a problem approach tool. The anthors stress. however, that the text is not complete and is not intended to be since a continuing compilation of background information is necessary to produce a suide which can be utilized in problem synthesis.

From the manufoctureer of tho
widery unod ome woll known
FM. 3 Frequency Meter ond the FM. 3 Frequency Moter ond the comen the newest oddition to a growing fomily of fine instrument
The mewest, Mo FM. 7 provides The newest, the FM. 7 provid essentions for the maintenence mobile communications systems

MEASURES AND GENERATES: $\mathbf{2 0} \mathrm{mc}$ to 1000 mc
ACCURACY: $\mathbf{0 . 0 0 0 1 \%}$ exceeding FCC requirements 5 times MODULATION: AM, 30\% af $1000 \mathrm{cps} ;$ FM, 1 kc af 30 mc 5 kc of 150 mc , or 15 kc af 450 mc max.

CIRCIE 380 ON READER-SERVICE CARD

 1922 park blud. - glencourt 2.0732 - oakland G, california

E•H RESEARCH LABORATORIES

Pyrofilm's new MIL Series is the latest achievement in maintaining exceptionally high precision under the most severe conditions. Far exceeding military spec. ifications, the MIL Series combines ultra-stability and miniaturized physical size . . . plus . . . an excep. tionally high degree of accuracy, reliability and con. trolled temperature coefficients. Like all Pyrofilm resistors . . . the MIL Series are Pyro-Seal constructed . . . an exclusive process that fuses shock resistant borosilicate glass to metal end caps. The result - complete sealing out of gases, solder flux and other contaminants that spell death to ordinary resistors. If you are designing for extremely critical circuits . . . specify Pyrofilm's MIL Series.

SPECIFICATION	MIL-R 10509C Characteristic E	PT-60	PT-65	PT-70
Power Rating/ Watts Maximum Voltage Volts Resistance Range	$-$	V/6 250 10 Ohms 1 Meg	$\mathrm{V} / 4$ 300 10 Ohms 10 Meg	$\mid 1 / 2$ 350 10 Ohms 30 Meg
Voltage Coefficient Temperature Coefficient Shock Test Acceleration Test Vibration Test	$\begin{aligned} & \pm \overline{05 \% / \cdot \mathrm{C}} \\ & 50 \mathrm{G} \\ & 50 \mathrm{G} \\ & 15 \mathrm{G} \end{aligned}$	$2 \times 10-$ Volt max.$\begin{aligned} & -.02 \text { to }-.05 \% /^{\circ} \mathrm{C} \\ & 500 \mathrm{G} \\ & 100 \mathrm{G} \\ & 15 \mathrm{G} \text { min. } \end{aligned}$		
Temperature Cyçling Low Temp. Exposure Overload Migh Humidity Terminal 5trength	$\begin{aligned} & \pm .5 \% \\ & \pm .5 \% \\ & \pm .5 \% \\ & 3 \% \\ & 5 \text { Pounds } \\ & 5 \text { Twists } \end{aligned}$		$\begin{aligned} & \pm .02 \% \\ & \pm .01 \% \\ & \pm .01 \% \end{aligned}$ No effect 15 Pounds 10 Twists	

On Display At The I. R. E. Convention - Booth \#3834
PYROFILM RESISTOR COMPANY, INC. U. S. Highway \#46 © Parsippony. New Jersey CIRCLE 382 ON READER-SERVICE CARD it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

Component Holder

Speeds Breadhoard Circuits

ASIMPLE SPRING clip device promises further time savings in breadboard circuitry. This device, developed by the Shockley Transistor Corp., Palo Alto, Calif., consists of a phosphor bronze band, shaped like a horseshore, with a coil spring fastened over the comeex top. A rod extends vertically from one leg of the device.

In use, the device, called a component holder. is pushed into a sheet of polystyrene foam. Components, such as resistors, diodes, transistors, or capacitors, are clamped under or within the coils of the spring. The vertical rod is useful for comnecting a voltmeter, oscilloscope, or other measuring device to the circuit. Each component holder will hold several component leads, alligator (lip) leads, or meter leads.

Component holders are readily moved and repeated use does not destroy the polystyrene foam. Furthermore, the coefficient of friction between the legs of the component holder and the polystyrene foam is such that components can be puilled out of the spring without pulling the component holder from the foam.
Many variations of this holder have been fabricated. some of them simpler and less expensive. Some of the simpler devices pull out of the polystyreme foam too easily, dont have enough space for clip leads and are too filmsy.
An engineer working with ten of these component holders and one siguare foot of two-inch polystyrene foam can assemble a simple low frequeney circuit, such as a transistor amplifior, in

Fig. 2. Components are easily withdrawn from the holder withoui removing the holder from the polystyrene foam.

Fig. 1. Simple component hoider saves breadboarding time.
about five minutes. The circuit can be revised or salvaged in much less time.
With some of the existing methods of making breadboard circuits, a simple circuit may take from thirty minutes to several hours to construct before tests can be started. On one occassion, some one telephoned a laboratory equipped with component holders, and asked if a certain semiconductor device would work in a certain circuit. He was told, "Just a minute-we'll try it." Within five minutes he was told that the application was satisfactory-at least at room temperature.
Oftentimes a designer is reluctant to try a small circuit change that will take a half an hour of reassembly to accomplish. He may spend an hour calculating or thinking out the problem before attacking it with a soldering iron. A breadboarding device that allows fast changes can save time in assembly, soldering, and unsoldering, and can help overcome time-consuming mental inertia.
Walter F. Dimmik, Shockley Transistor Corp. Palo Alto, Calif

Bright Field \uparrow
\downarrow Interference

INTERFERENCE FRINGES are useful in determining slight changes in elevation and measurement of thin coatings such as those that might be laid down by vacuum evaporation. The above photomicrographs (112x) show gallium diffused silicon used in making Raytheon diffused base NPN silicon high frequency transistors. The silicon is at the bottom of each picture. The depth of the gaocoos ". The bright field picture shows how the junction step arter etching is a metallurgical microscope. The interference picture shows how this same junction looks under an interference microscope.

STRICTLY IN CONFIDENCE...

If you would like to explore the growth possibilities for yourself, please send your resume to Mr. David D. Haynes, RAYTHEON MANUFACTURING COMPANY, Semiconductor Division, 150 California Street. Newton 58, Mass.
who is growing faster than his associates

Here is where transistors were first mass produced to open up the fast-growing semiconductor industry...where a major "all-out push" is under way . . . where 1,008 new people were added in the last half of 1958 ... where 220,000 sq. ft. of new modern facilities are being added . . . where management says: "Here are the tools you asked for!"... where men with growth potential play a recognized role.

In the major league now with a broad line, Raytheon's Semiconductor Division will continue to be a leader in the research, engineering and manufacture of semiconductors.

For the man who is growing faster than his present associates and who seeks diversified assignments, there are exciting growth opportunities in:

- Device Design and Development
- Material Development
- Product Design
- Product Evaluation
- Mechanization
- Automatic Electronic Testing
- Application Engineering

If you are looking for a place to grow faster, there's plenty of elbow-room for you at Raytheon's Semiconductor Division.
"The place for the man who is growing faster..." SEMICONDUCTOR DIVISION of

Excellence in Electronics
CIRCLE 873 ON READER-SERVICE CARD

A FULL LINE OF SERVOSYSTEM ANALYZERS

Choose from 5 dependably accurate models covering ranges from .001 to 100 cps .
SERvoscopt * makes preproduction prohlem-solving on serto systems. equip ment. and components accurate-and flexible.

Wide range coverage. Fast direct-setting and read-out. Highaccurac! measuring of phase, transient response. and gain. Plus-rapid plotting of Nyquist, Bode, or Nichols diagrams

The result: safe. dependable control system evaluations-in advance-of ultimate operating hehavior patterns

The SERVOSCOPE servo analyzer is a versatile precision instrument with a full range of applications.
for the laboratory - in design and test suges of control swerm. on the production line - for system inspection, quality control and as a teacher - in the university and in industry. A prosen training aid in theory and practice.
SERVOSCOPE-most widely used method for control behavior analysis -because of features, according to the model selected, like these:
(w) crs in eqe choice of tive ion $(M) \mathrm{cm}$ in the choice of five standar models

- Evaluates AC carrier and DC servo systems.
- Generates sine wave, modulated carric wave, and symare wave phaseable signal with respect to either electronic linear

eep or sinusoidalls mod at reference

 signal.- Frequency calibration accuracy of $\pm 2 \%$ phase measurement accuracy of $\pm 1 \%$. - Accents any carrier frequency from 50 to S(O)O cpr.
- Indicates by means of servoscopp Indicator or oscillograph recording.

Discover the full henefits of the SERVOSCOPE

Write for complete specifications: and application tips-today!
 Of AMERICA

See latest Servoscope
models at the
I.R.E. ©HOW-

Booths \#3015-3617.

IDEAS FOR DESIGN

Manual Input Circuit For Digital Equipment

The circuit designer must often provide pushbutton input for digital equipment. He has three basic problems: contact bounce in the switch; noise pickup when the electronic circuit is far from the pushbutton; and the need for a fast sig nal transition which will be independent of circuit packaging.
The Schmitt trigger is an ideal solution. In the diagram, ()1 and Q2 together with their resistor networks form a normal Schmitt trigger. R1 and $R 2$ are chosen so $Q 1$ conducts, holding $Q 2$ olf when the pushbutton is released. When the button is depressed, the base of $Q 1$ is grounded, causing the trigger to reverse, turning Q1 oft and Q2 on.
Capacitor (C is discharged almost instantly through the low contact resistance of the pushbutton. But it must recharge through R1 before QI will conduct again when the pushbutton is released. A suitable time constant will eliminate contact bounce from the output.
The capacitor also bypasses the wire connecting the electronic circuit and the pushbutton, thus reducing stray pickup.
Since Schmitt transitions are essentially independent of the rate of rise or fall of the input waveform, the transitions at the collectors of Q1 and $Q 2$ provide very reliable triggers.
Norman E. Peterson, Project Engineer, Stelma Inc., Stamford, Conn.

Manual input for digital equipment. These values are typical for $C=0.1 \mu \mathrm{fd}$.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

STODDART

COAXIAL ATTENUATORS AND TERMINATIONS
made with exclusive Stoddart Filmistors for highly accurate and stable resistive values from dc to 3000 mc .

2, 6 and 10 -position TURRET ATTENUATORS
with simple "PULL-TURN-PUSH' operation, small and rugged.

ATTENUATOR PADS

Available in any conceivable combination of male and female Type C and Type N connectors. Maximum length of zor any attenuation value GENERAL SPECIFICATIONS
VSWR: Less than 1.2 to 3000 mc . Characteristic Impedance: 50 ohms.
Attenuation Value: Any value from 0 Attenuation Value: Any value from 0 Accuracy: $\pm 0.5 \mathrm{db}$, values above 50 have rated accuracy of attenuation through 1000 mc only.
Power Rating: 1.0 watt sine wave.

COAXIAL TERMINATIONS

Small-stable-50 or 70 ohms
1/2-Watt: 50 ohms impedance, TNC or BNC connectors, dc to 1000 mc , VSWR less than 1.2.
1-Watt: 50 ohms impedance, dc to 3000 mc or dc to 7000 mc , Type N or Type C connectors, male or female; VSWR less 70 ohm, Type N, male female terminations available

Fast delivery on all items. Send for complete literature

STODDART
 AIRCRAFT RADIO CO. INC

 6644 Santa Monica Blvd., Hollywood 38, Calif HOllywood 4.9292

HOW T• USE REGOHM

the plug-in device that regulates input voltage down to $\pm 0.05 \%$

Wherever system perfurmance requires precision regulation ot inplut voltage, REGOHAL earns incluiles vacuum tuhes. REG,OHM will substantially ex. tend tube life. The regohm is a voltage regulator of creat sensitivity and stalililty, providing stepless continuous control over a wide frequency
range Likht in weight. Iow in cost. its applications are almost unlimited. Here are typical applications

- General Electric Co.-for
- Empire Der Products

Corp.-for Noise \& Field Intensity Meters

- Consolidated Electro dynamics - for Diatron Mass Spectrometers
- Stoddard Aircraft Radio -for Power Supplies
- Hevi-Duty Electric Company - for Airport Ligh

How you may use Regohm in your own applications will become clear to you from design Jara. perrormance specs and case histories, available t you on request.

REGOHM
 (致)
 ELECTRIC REGULATOR CORPORATION

 NORWALK CONNECTICUT CIRCLE 386 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 18, 195

Union Relays meet all requirements of Talos guidance system

The Talos, the Naw slong-range guided missile, is very important to the nation's defense. And Bendix Aviation Corporation, huilder of the Tatos. chose a relay made hy Union Switch ASignal to meet the extreme reliahilits needs of that missile's guidance control system. That relay is the UNION miniature 6PDT.
Its clean, simple, rotary design gives it fewer inherent problems than other relays. Probability of flight failure of a contact pair is only once in 600,000 operations. In vibration tests.
it is absolutely solid to 2.000 C.P.S. at 15G. In temperature tests, it has performed reliahly for six minutes at up to $177^{\circ} \mathrm{C}$
Union Switch \& Signal makes : complete line of dependable miniature relays, manufactured to meet MIL-R-25018, MIL-R-6106C, and MIL-R-5757C requirements. Advanced design and close quality control have made Union Switch \& Signal a leading supplier of relays for missile control. Write today for complete technical information.

Three UNION miniature 6PDT relays positioned in part of the Talos guidance control system.

"Pioneers in. Push-Button Science"
0
UNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18, PENNSVLVANIA

 VOLTRON now offers -a portable wattmeter for refined, low-power measurements of gyros, synchros and servomotors

- Rugged Taut Band Suspension
- Low Power Factor
- Full-Scale Range: 0.1.2 Watt
- Low Current Circuit Consumption

SPECIFICATIONS:

CONSTRUCTION Meter consists of d'Arsonval type D.C. milliammeter and one A.C. power to D.C. current transducer for each phase. Taut band suspension eliminates the static friction and the delicacy of conventional jewels and pivots. Solid state circuit components are used in the transducer.
input voltage $26 / 115 \pm 10 \%$
wattage range 26 volt input - 1.2/3/12/30
115 volt input - 1.2/3/12/30/120
frequency range Flat from 50 to 2000 cycles
accuract 1.0% of full scale watts
Phase 1,2, or 3 phase. The 3 -phase meter is suitable for 3 -phase,
3 -wire, or 3 -phase 4 -wire measurements.
WAve form Calibrated for use with both sine and square wave. For distorted
FACTOR waveforms, the error will be less than 2% for 5%
error due to voltage circuit: 0\%
JURRENT CIRCUIT: Max. Error
Max. Error
$\%$ watts indicated)
linear between these values
OVERLOAD VOLTAGE CIRCUIT: 100% continuous overload without damage CURRENT CIRCUIT: 25% at 0.1 PF continuous without damage
SIZE $81 / 2^{\prime \prime} \times 12^{\prime \prime} \times 4^{\prime \prime}$
weight 15 lbs.

OREERING Model No. PHASE
PRICE

PW-1
${ }_{\$ 385.00}^{1}$
PW- 2
$1 / 2$
$\$ 485,00$
PW-3 $1 / 2 / 3$
$\$ 585.00$
delivery: From stock subject to prior sale.
VOLTRON Products
1010 Mission St., South Pasadena, California

IDEAS FOR DESIGN

Faster, Linear Sweeps On Larger Pedestals

Unless large B supplies are used when designing large pedestals for sweep circuits, sweep linearity and fall time are usually sacrificed. The circuit shown, however, provides a much faster fall time and better linearity with large amplitudes, all with one dual triode

In this circuit, $P 2$ could be the positive pulse output plate of a ppi radar sweep gate generator, and e_{i} the negative pulse output of the same tube. At time $t 1$, the triode $V 1_{4}$ cuts off and $P 3$ starts to charge toward $E_{\text {bb }}$. Through resistive addition, parts of the pulse in the ratio

$$
\frac{R 2}{R 1+R 2+R_{L}}\left(E_{b t}-v_{h}\right)
$$

and the sweep in the ratio
$R 1+P 2$
$R_{1}+R 2+R_{l} C_{m 2}-E_{2}$
are superimposed on each other.
Hence,

$$
\begin{array}{r}
\frac{R 2}{R 1+R 2+R_{L}}\left(E_{b b}-N_{0}\right)+\frac{R 1+R_{l}}{R 1+R 2+R_{L}} \\
\mid E_{b b}+\left(E_{i}-E_{b_{0}}\right) e^{\left.-R 1+n_{2+2}+R_{L}\right) \mid}
\end{array}
$$

The de level of E_{u} can be adjusted by varying the ratio R.3/R4. At t2, V1, conducts fully again and C discharges through the plate resistance of $V 1_{\text {, }}$ in series with the parallel combination of $R: 3$ and $R 4$. Therefore ($R .3 R 4) /(R: 3+R 4)$ should be kept as low as possible. The cathode follower $V 1_{k}$ prevents loading of the sweep generator
Irving Bayer, Project Engincer, Skiatron Elec tronics and TV Corp., New York City.

Without very large B supplies, this circuit provides good sweep linearity and fast fall time on a large pedestal.

a good way to measure 0.00003 ohm

The Keithley $\mathbf{5 0 2}$ Milliohmmeter offiers speed, calse, and aceuracy in the measurement of low resistances. Typical uses are corrosion tests. checking resistivity of metals, semi-conductors, printed circuies. switch and relas contacts
Battery oneration, a ruggedized meter. and protective coler make the 502 ideal for field tests of syubibs, carbon bridges and other explosive devices. Features include

- 13 overlapping ranges from 0001 ohm to 1000 ohms full scale.
- accuracy within $3 x$ of full scale: a fourterminal measuring system elimmates errors due to clip and lead resistance
- 2 microwatts maximum dissipation across sample.
- no calibration or zero adjustments
- instantaneous indication of resistance EMF's
- lightweight and portable. Furnished with protective cover and set of four test leads.
Details about the Model 502 Milliohmmete are available in Keithley Engineering Notes Vol. 6 No. 3. Write for your copy today

KEITHLEY
 INSTRUMENTS. INC.

12415 Euclid Ave., Clevelund 0. Ohin

CIRCLE 389 ON READER-SERVICE CARD

HEXSEALS

Modular (Explosion-Proof*) SWITCH and SHAFT SEALS

- Fit all industrial electrical controls.
- Meet Military Specifications: MIL-B-005423A (ASG), MIL-B-19257 (Ships), SCL-6303 (Sig. Corps), Paragraph 183.10-20,
Part (B)
U.S. Coast Guard.
eDISCLAIMER: We cannot assume responsibility for explosion-proofing any equipment
not entirely designed by APM, therefore no not entirely desisned by APM.
guarantee is made or implied.

A. P. M. Corporation

(Automatic ond precision meg.)
252 Hawthorne Ave.,Yonkers, N.Y. YOnkers 8-2010
Designers and Manufacturars of high pressure static and movable seals HEXSEALSD. SEELSKREWSO. SEELIOLTSO. SEELRIVITSO Vistif our Booth 3939 of the IRE Show CIRCLE 390 ON READER-SERVICE CARD

Fuse Wound Peaking Coils For Faster Breadboarding
The usual process for adjusting peaking coils to the correct value in a circuit involves unsoldering one lead, peeling off a number of turns of the coil wire, skinning the insulation, then resoldering to a terminal. This process is tedious and often damages the coil.
A more convenient method involves winding a number of test coils on burned out fuses, prefcrably of the glass AC type. The wire is wound to the proper inductance and the ends soldered to the metal caps of the glass fuse. Each coil can be color cooded. Instead of normal terminals, the breadboard caln be equipped with a plug-in type fuse holder (except in very high frequency circuits, where the added capacitance may affect (ircuit performance).

The coil fuse forms can then be changed as easily as ordinary fuses.
Sol Abrams, Design Ensineer, Polarad Electronics Corp., Long Island City, N. Y.

Missile telemetry package, designed for Boeing's IM-99 Bomarc by Texas Instruments, Inc., must operate to beyond 145 deg. F. Since the transistors in the package will not work well beyond 145 F , and since the missile's surface temperature, at Cape Canaveral, may reach 160 F , cooling was required.
Engineers at the Boeing Airplane Co. solved the problem by designing an auxiliary cooling system for ground use only. It blows a jet of cool air through the interior of the wing where the equipment is housed. In flight, a small methyl alcohol evaporator keeps the equipment cool for the relatively brief period necessary.

Don't miss an issue of ELECTRONIC DESIGN; return your renewal card today.

a spot of welding!

Still at it? Trying to improve potentiometer reliability by building em yourself? Well. you ire on the right track about one thing welding's a sure way to eliminate a lot of operational headaches - like gassing contamination of contact metals at high temperature, from orpanic solder flux. No chance of "cold joints", either, to increase circuit resistance. No soldered connections to come loose under vibration and shock. Welding is the way to reliability!
But why set the wife's drapes afire to get a reliable, all-welded pot? Utilizing welding techniques. Ace produces reliable potentiometers operable at temperatures exceeding $150^{\circ} \mathrm{C}$ and able to withstand $50 \mathrm{G}^{\prime}$ sat 2000 cycles. All this. plus extremely low contact resistance and long er rated life. All taps, end connections, resistance elements, contact assemblies and terminal leads are specially prepared beforehand - then welded with pure nickel or palladium silver. So. for built-in reliability through sounder construction
 techniques, see your Λ CErep!
This $2^{\prime \prime}$ AIA Acepot ${ }^{(8)}$ (shown $1 / 2$-scale) incorporates all these exclusive welding construction features. for superior reliability.

FOR CHARACTER DISPLAYS

YEARS AHEAD IN DESIGN PERFORMANCE

For critical applications, many of our customers have saved years of trial and error in YOKE selection by specifying . Colco YOKES.

The construction of our yokes makes it possible to achieve sensitivities, linearhites, responses and disfortion-free deflecting fields not possible with the usual types of yoke.
For precision military and commercial displays, Celco also offers standard yokes in $7 / 8^{\prime \prime}, 1^{\prime \prime}, 1$ K" $6^{\prime \prime \prime}$, \& $2^{112^{\prime \prime \prime}}$ CRT neck diameters.
Write for CELCO DEFLECTION YOKE Cotologue a Daslgn Shoots or for immediate enginoering assistanco Call your noarest CELCO Plant:

Celco

Constantine Engineering Laboratories Co. Mahwah, N. J. Miami, Fla. Cucamonga, Calif. Davis 7.1123 Plaza 1.9083 CIRCLE 392 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Standard horizontal deflection coils and toroidal vertical deflection coils are wound on a ferrite wedgeshaped ring in this TV yoke made by the Videon Com. pany in France.
Two small Ferroxdur permanent magnets are sup. ported by the yoke, along the horizontal axis. By bending or twisting the long lugs to which they are attached, any pincushion or barrel distortion on the sides of the raster can be corrected to within five per cent.
Dr. A. V. J. Martin, Carnegie Institute of Technology, Pittsburgh 13, Pa.

Battery Savers Be Careful

On page 69 of the Dec. 24 ' 58 issue of Elfctronic Design, Mr. Robert W. Blanchard suggests a warning light in series with a diode between the automobile ignition switch and the main light switch in such a manner that the warning light will be illuminated if the lights are on and the key off. thus acting as a battery saver to hurried drivers.
There is a note of caution to be recalled, however. Although many modern automobiles ground the lead to the ignition coil when the key is off, still others let the lead float. Even with a small panel lamp in series from the battery supply to the otherwise floating ignition lead, sufficient current may flow to keep the spark plugs firing under the condition of key off, lights on, with Mr. Blanchard's circuit.
One solution is to connect the lamp not to the ignition coil wire but to the accessory terminal of the switch. Then a 15 ohm or so resistor from the accessory terminal to ground will complete the circuit even with no accessories (heater fan, radio, etc.) turned on. This is convenient for

MINIATURE THERMAL RELAYS

with
99.99\% Plus

Reliability
service-fited SERVICE-TESTED service-approved

Our complete environmental testing laboratory samples and certifie
daily production.

New NORMALLY CLOSED RELAYS NOW AVAIL. ABLE. They both meet or exceed requirements for guided missiles and complex electronic gear.
They are hermetically sealed by bonding meta headers to high thermal, shock resistant glass housings.
They open or close a circuit positively in 0.1 second or other delay times.
They can also be safely used as a "squib" liming mechanism.
Typical Characterisuce
Temperature: $\quad-100^{\circ} \mathrm{F}$. to $+450^{\circ} \mathrm{F}$
Vibration: $\quad 20.3000 \mathrm{CPS}$ at 40 G 's
Shock:
250 G's
Brochure containing complete chai acteristics and specifications availabl

pon request.

NETWORKS ELECTRONI

 CORPORATION14806 OXNARD ST., VAN NUYS, CALIF. Original desions for hiohest reliability in olass

CIRCLE 393 ON READER-SERVICE CARD
DESIGN - March 18, 1959

AN INSIDE LOOK AT SAGE

Unretouched photograph of SAGE Unretouched photograph of SAG
Resistor (Magnifled 6 times)

Take a Sage Precision Resistor apart and you'll discover how a new brazing technique enhances SAGE's reputation for trouble-free performance Close inspection shows that resist ance wire is literally "floated" into silver-braze connections at the time of winding, thus eliminating possibility of weakening deformities or variable contacts. This in-process procedure is but one of many which support Sage's claim - "quality built-in first . . . To Last"

For the present. applicable 1
$\pm 1 \%$ and closer tollerances onls
If you are looking tor the operating dependability your product needs, vou'll find the answer with Sage Precision Power Resistors.

TYPE " S "-Axial Lead Units (2-10 Watts) (. 1 to 175.000 ohms) to MIL-R-26C (Insulated) Specifications-Char. G

TYPE "M"-Metal Clad (Chassis-Mounted) Units (10-25-50 Watts) (. 1 to 175.000 ohms) to MIL-R-18546B (Ships) Specifica. tions-Char. G.

Literature, samples and prices on request

SAGE

ELECTRONICS CORP.

P.O. BOX 126 - ROCHESTER 10, N. Y.

CIRCLE 394 ON READER-SERVICE CARD

those cars that have separate terminals on the ignition switch, as is the case usually when the ignition key is used also to actuate the starter If, however, the car doesn't ground the ignition coil lead with the key off and doesn't have a separate accessory terminal on the switch, some method of more elaborate safety feature must be installed. On my car I found it convenient to interconnect the light and ignition circuits so that, under normal operation, turning off the lights completely will drop out a holding relay to the ignition circuit, thus turning off all lights, radio etc., with one switch. Either circuit can be oper ated independently: however
There is no end to the gadquetry one can profitably add to the electrical circuit of a vehicle. At any rate letting even a small amount of current (such as from a warning light) leak into the ignition circuit may be hazardous and should be avoided.
Roger L. Boyell, Hempstead, New Sork

Another Battery Saver

The operation of the "battery saver" curcuit given in the December 2 -th issue depends on the ignition circuit having a ground when it is shut off. This is true only in three cases

1. When there are other loads connected to the ignition circuit.
2. When the ignition switch intentionally srounds the circuit.
3. When the engine happens to stop with the breaker points closed.

Possibly you will receive sad letters from readers who install this circuit and disenver that it does not always work.

The circuit shown here has its nwn grouncl. The buzzer works as a logic device, wot merely as in indicator. Blocking voltage for the buzzer is taken from the auxiliary power circuit instead of the ignition circuit, so that the headlights may be left on quietly, if desired, by leaving the auxiliary power on. There is nothing in the circuit to impair the reliability of the headlights.

Marriott Dickey, Richmond, California.

HEADLIGHT
-

The buzzer in this automobile "battery saver" serves as a logic device as well as a warning device. (The buzzer is an Edwards Model O. Its frame is insulated from the car.)

Look to AMCO for enclosures that - in appearance and quality - are truly worthy of your instrument engineering achievements!

Abstract

Only Ainco has the wide background in turing to assure your complete satisfaction in the appearance, strength and durability o every unit supplied. An exclusive custom appearance is achieved through use of Amco multi-width panels, cowlings and writing surfaces. They're all factory assembled for your convenience (and shipped within three weeks!)

A complete selection of basic frames can be assembled in endless variety for utmose versatility. All frames are direct floor-bearing, meet or exceed rigid structural test requirements, and do so independent of exterior

surface support! Amco, too, makes all needed accessories like blowers, chassis slides, heavy: duty dollies. One blower, for example, delivers 350 CFM of filtered air and takes only $31 / 2$ inches of panel height, more than $30^{1 / 5}$ less than other types. Amco chassis slides. on ball bearings, support up to 200 pounds. And all these components, purchased from one source, can be obtained at a big savings under a combined discount rate!
For enclosures with complete service ac cessibility and maximum operator conve. nience, for true quality and economy send for your Amco catalog.

AMCO ENGINEERING CO.
7337 W . Ainslie street - chicago 31, ilLINOIS Factory-trained representatives in all principal U.S. cities and Canada CIRCIE 395 ON READER-SERVICE CARD

When low noise level is vital..."

Microwave Associates - developers of the famous low noise
"E" series silicon diodes - now brings you

COAXIAL DIODES

with noise figure improvement of:
1.5 db at 16 KMC with the IN 78B
3 db at 25 KMC with the IN 25A
3 db at 35 KMC with the IN 53B

Simple substitution of these new coaxial diodes for existing types should improve your overall receiver noise figures as shown. No holder or IF amplifier redesign is required to realize system improvements with these improved versions of the standard coaxial mixer diodes.

Microwave Associates is now delivering these diodes as well as the new tripolar types. Typical of these breadboard types is the IN630 which covers the frequency range of 1 KMC to 12.4 KMC .

Our factory or the sales representative nearest you will gladly handle your specific requests by wire, phone, or mail.

fisit l's at Booths 2301-2303

REPORT BRIEFS

Transistor Magnetic Amplifier Circuits
Advantages and disadvantages of transistor and magnetic amplifiers. A combination of the two is discussed and schematic diagrams are given for various example circuits and applications which utilize the better points of each Transistor Magnetic Amplifier Circuits, Niels Jasper, James C. Taylor, and William T. White. U. S. Army Ballistic Missile Agency, Development Operations Division, Guidance and Control Laboratory, Huntsville, Ala. Mar. 1957, 21p, microfilm $\$ 2.70$, photocopy $\$ 4.80$. Order from Library of Congress, PB 132806, Washington 25, D. C.

Dielectric-Filled Waveguides

Dielectric-filled waveguides were developed in an effort to eliminate the decrease in power handling capacity of waveguides in airbornc equipment at high altitudes and temperatures. Although they exhibited temperature limitations, the new waveguides proved suitable for high altitude operation. The temperature limit of 71 C could be raised to 150C at the expense of slightly increased attenuation. The report also discusses the problem of maintenance of sea-level power handling capacity of the waveguide at high altitudes and wide temperature ranges. A DielectricFilled Waveguide Development, J. I. Meulemans, Wright Air Development Center for the U.S. Air Force, April 1958, 19p, \$0.75. Order PB 151213 from OTS, U.S. Department of Commerce, Washington 25, D.C

Airborne Data Recorder Development

An improved airborne data recorder was developed for recording aircraft environmental conditions and physiological measurements of fight personnel. The device, developed during a study of cockpit air conditioning, is described as being reliable and accurate in extreme environmental changes. The NS-2 is a small, direct-writing, 20 -channel recorder which employs special transducers to measure relative humidity within the aircraft and physiological temperature of the flight personnel. Operating, calibration, and maintenance instructions are included in the illustrated report. Development of Type NS-2 Airborne Data Recorder, W. B. M. Clark, Douglas Aircraft Company, Inc., for Wright-Air Development Center, U. S. Air Force, Feb. 1958, 30 pp, \$1.00. Order PB 131806 from OTS, U. S. Department of Commerce, Washington $25, D$. C

This is the time of our annual subscription renewal.

RAPID, ECONOMICAL, NON-DESTRUCTIVE TESTING OF COMPONENTS AND INSULATION

Two MEGPOT® models offer a choice of instruments: a high potential tes set and megohm-meter, or the high potential test set alone. The combia polen unit quickly and etticiently test components and insulation provides non-destructive testing provides limiting circ lesting win curren 0.3000 V AC 0 . spoc AC, 05000 V AC, or other it secilied Voltage read directly across pot fut leads. As megohm meter, Meg por reatures 10 million megohms a 100 , or 200 and 500 V DC

MEGPOT MODEL 5 provides all the
efficiency, conve efficiency. con
and speed for nigh potentiai lesting of components or omplete assemblies. but without the resulting in even
 more compactness
and economy. Both
models are seli-conta asily portable.
The MEGPOT substontially reduces the cost of Write for Megpot specifications now

	GENERAI
${ }^{\text {GHS }}$	HERMETIC
	SEALING
e strom.	valer stream 5.6383

CIRCLE 397 ON READER-SERVICE CARD

If your printed circuit is vital to the flight of a guided missile it must the flight of a guided missile it must 100% inspection at every stage of manufacture.
Bureau quality control is more than a method of inspection. It is also a check on the causes of rejects to weed them out. Our production techniques eliminate even "acceptable" flaws because we are striving to produce perfect boards. This is why Bureau circuits, whether tested 100% or on a scientificsample basis, are consistently better than statistics predict. To put investigate the Industrial Division of the Bureau of Engraving, Inc.

CIRCLE 398 ON READER-S

Vanguard Sequence Diagram

Featured in this report is a description of the Vanguard sequence diagram, a system which shows at a glance the state of every component in a complex device as well as all events occurring and the components involved in each event. According to the report, the sequence diagram fills a need for a means of graphically presenting the operation of a complex device in which a predetermined sequence of events occurs. The diagram represents system components and their changing states as they interact sequentially. Utility and applications of the sequence diagram are discussed and method of interpreting the diagram is illustrated. A complete application of the diagram to the complete nominal flight opertion of the first Project Vanguard rocket test vehicle is also presented. Project Vanguard Report No. 31: The Vanguard Sequence Diagram, a Graphical Method of Presenting Complex System Operation, W. J. D. Escher and R. W. Foster, U.S. Naval Rescarch Laboratory, Aug. 19.58, 15 p, \$1.75. PB 131922 from: OTS, U.S. Dept. of Commerce, Washington 25, DC.

Cooling Design of Airborne Electronic Equipment

Design data, methods, and principles for cooling of airborne electronic equipment with both gaseous and liquid coolants are presented including application to the redesign of four typical equipments for which design procedures and thermal evaluation of the constructed equipment are shown. The first five sections contain general thermal design principles and thermal classification of electronic equipment. Cooling Design of Airborne Electronic Equipment, Charles D. Jones, Ohio State University Research Foundation, Columbus, Ohio. Dec. 19.57, 458pp, photocopy $\$ 69.60$, microfilm $\$ 11.10$. Order PB 135164 from Library of Congress, Washington 25, D.C.

Ferrite Loop Antenna Theory

Simplified theory for electrically small ferriteloaded loop antennas is presented. The theory is based on the principle of reciprocity and known solutions for fields in and about an ellipsoidal core. Approximate methods are given which extend the theory to cores of almost arbitrary cross section. Example calculations for antenna Q and efficiency show good correlation with experiment. Research in Magnetic Antennas. Final report under Contract No. DA 36-039-sc-73189, J. L. Stewart, California Institute of Technology, Pasadena, Calif. Sep. 1957, 70p, microfilm $\$ 3.90$, photocopy $\$ 10.80$. Order from Library of Congress, PB 132459, W'ashington 25, D. C.

NEW BENOIX DRIVER TRANSISTORS

AUDIO AMPLIFIER (CLASS A OR B) - AUDIO OSCILLATOR - POWER SWITCM TRANSISTOR DRIVER - SERVO CONTROL - RELAY DRIVER • MOTOR CONTROL

Slated to be the "workhorse of the transistor industry", this new Bendix series consists of three models-each with a different voltage rating and each in high-volume production.
Contained in the JEDEC TO-9 package, this tiny transistor dissipates 400 mW of power at $25^{\circ} \mathrm{C}$ and 67 mW a $75^{\circ} \mathrm{C}$. The higher voltage rating and high current gain are combined with more linear current gain characteristics more linear current gain characteristics lower distortion output. Featuring low saturation resistance, the typical values saturation resistance, 1 ohm measured at 100 MA . The are 1 ohm measured at 100 MA . The
2Nin0 gain of 40 and a maximum of 150 .

Eliminating the internal connection between transistor and case allows circuit isolation. Long life and stable operation are assured by welded construction and a vacuum-tight seal.
absoluti maximum ratings

Write today for the new Bendix Semiconductor Catalog for more information on our complete line of power transistors, power rectifiers, and driver transistors, semicondictor products, bendis adiation corporation, long branch, n.

West Coast Sales \& Service: 117 E . Providencia Ave., Burbank, California - Midwest Sales Office: 4104 N . Martam
 ow York 17, N. Y. - Canndian Affil
P. O. Box So8, Ottowo 4, Ontario.

MPULSE

A DIGEST OF NEW DEVELOPMENTS IN ELECTRONICS AND AUTOMATION

PUBLISHED BY ROME CABLE CORPORATION, ROME.N. Y. PIONEERS

FLAME-RETARDANT POLYETHYLENE. Just published, and now available to IMPULSE readers, is an interesting 12 -page bulletin entitled "Flame-retardant Polyethylene for Wire and Cable." Co-authored by R. C. (iraham of Rome Cable and C. A. Neros of Diamond Alkali Company, this paper was presented at the 7th Annual Wire and Cable Symposium, held under the auspices of the U. S. Army Signal Corps. Contact your nearest Rome Cable salesman for a copy of this paper.

FREE INFO. You can get this free 9-page illustrated bulletin that discusses cable insulation and jacketing material and lists typical multi-conductor cable constructions available for use with telemetering equ,pment, data recording equipment, cirengineer working with electrical cable should have a copy! To obtain yours, get in touch with the Rome Cable salesman near you.

"BLUE SKY" DEPT. The National Inventors Council, speaking for the military services, let it be known recently that the Military needs inventions to answer some of its more baffling "blue sky" problems. One of the most unusual inventions requested was a man-made "electric eel" generator to power repeater amplifiers in undersea cables. The point is to emulate the generation process used by the electric eel. That start you thinking? If so, the NIC might like to hear about it. They also would like to hear about a whole list of items they have recently released ... you can probably get a copy by writing them at the Department of Commerce, Washington, D.
CABLEMAN'S CORNER. The subject of circuit identification in cables is somewhat complex. Its purpose is obvious - to identify a particular circuit, phase, polarity or other end use, thus bringing about easier installation and maintenance. The means of circuit identification range all the way from the most conservative, in which all the conductors are alike, to the most liberal, in which each conductor has its own distinctive color combination
Industry standards for a particular type of circuit identity have been established by many groups such as IPCEA, NEMA, NEC, ASA, IMSA and Underwriters' Laboratories. Military specifications written to cover specific cable constructions indicate the required color coding. Military specifications written to cover a general class of cable constructions many times list a coding table and a recommended method of conductor identificatimes list a coding table and a recommended method of conductor identification. Caution should be exercised in referring to these particular specifica-
tions to make sure that the coding combinations will do the job you are tions to make sure that the coding combinations will do the job you are
after. For instance, Table V of MIL-C-3432A makes provision for 21 color after. For instance, Table cof MiL-C-3432A makes provision for 21 color combinations. For cables containing more than 21 conductors, these color combinations are repeated. Therefore, in a 45-conductor cable you will
3 colors repeated 3 times and 18 color combinations repeated 2 times.
colors repeated 3 times and 18 color combinations repeated 2 times.
Under today's rather hectic conditions, delivery schedules are always of prime importance. When circuit identification requires a variety of solid base colors, delivery schedules have to be adjusted accordingly to compensate for machine setups and change-overs, etc. Careful consideration should be given to the use of a solid neutral base color and colored identifying stripes. A very satisfactory combination has been the use of solid white as the base color. With the employment of one or two colored stripes, a total of 73 color combinations can be achieved.

The ways and means of circuit identification are numerous. The methods employed to gain the desired objectives must result in quick and clear inelligible information, conveyed in a method which is reasonably permanent and economical to achieve. Circuit identification is important in your work. Make sure you have competent cable identification. Call in a cable specialist. Our number is Rome 3000 .

These news items represient a dikest of information found in many of the publications and periodicals of the electronic industry or related industries. They appear
in briel here for easy and concentrated reading. Further information on each can the found in the orizinal sourren material. Sourress will te forwarted on requesit. CIRCLE 400 ON READER-SERVICE CARD

REPORT BRIEFS

Training Devices to Motivate Trainee

Training devices designed to furnish varied training may provide greater transfer to operational equipment, and may also help to maintain interest and motivation of the trainee, according to the results of this study. Transfer among per-ceptual-motor paired-associates tasks was studied as a function of the two variables: the degree of variation in training, and the amount of training. It was found that transfer increased as a direct function of the number of sets of training stimuli. The transfer superiority of varied-over-constant training was not significantly affected by variations in the amount of training. Another conclusion was that training with different sets of stimuli leads to the development of general skill which facilitates dealing with new stimuli. It is suggested that this skill is an observational or perceptual nature. The Effect on Transfer of Varying Stimulation During Training, C. P. Duncan and B. J. Underwood, Northwestern University for Wright Air Development Center, U. S. . 1 ir Force, Dec. 1957, $38 \mathrm{pp}, \$ 1.25$. Order PB 1:31-653 from OTS, U. S. Department of Commerce, Washington 2.5, D

Synthesis of Voltage Transfer Functions

The synthesis of voltage transfer functions in the form of linear, lumped, finite, passive, bilateral networks containing no ideal transformers or mutual coupling, is considered. The basic realizability conditions are derived and realization procedures are developed based on these conditions, showing them to be both necessary and sufficient. Synthesis of Voltage Transfer Functions, Philip M. Leuis, II, Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Mass. Jun. 1956, 107 p, microfilm $\$ 5.70$, photocopy $\$ 16.80$. Order from Library of Congress PB 133460, Washington 25, D. C.

Frequency Swept Oscillator

Principal advantage of slot antenna-oscillators are their simplicity of circuit and mechanical construction. They also present possibilities as wide-range tuning systems. Their principal disadvantage, as compared to "lumped-circuit" units, lies in the presence of dragloops which generally make it impossible for a specific unit to generate certain frequencies. Frequency Swept Oscillator, Ellis L. Roney, Sylvania Electric Products, Inc., Mountain View, Calif. Mar. 1956, 56 pp, microfilm \$3.60, photocopy $\$ 9.30$. Order PB 134884 from Library of Congress, Washington 25, D.C.
solve your phasing problems with
DAYSTROM PACIFIC GANG-TYPE POTS

ADJUST TO EXACT REQUIREMENTS. Each wiper can be positioned independently to solve complex phasing, reliability, resolution and linearity problems.
NEED LITTLE SPACE. Sections only $7 / 8^{\prime \prime}$ in diameter. Each section adds less than $1 / 4$ " to overall case length.
EXCEPTIONAL STABILITY. No clamping rings needed to gang sections. Pots remain stable despite the rigors of temperature, altitude, and vibration encountered by aircraft and missiles.
for complete spec/ifications, contact the representative in your aree...or write the factory direct.

YSTROM PACIFIC
division of DAYSTROM, INC.
320 LINCOLN Boulevard
dis angeles 45, California
CIRCLE 401 ON READER-SERVICE CARD

Sonotone.

 Electronic Apolications Division, Dopt. TGG-392ELMSFORD. NEW YORK

CIRCLE 402 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

ULTRA-STABLE

New standard signal generator sg-54a

No other signal generator in the 4 to 410 mc frequency range can match these features: INCIDENTAL FM LESS THAN 300 CPS AT 50% MODULATION, VSWR LESS THAN 1.1, FREQUENCY DRIFT LESS THAN $.001 \%$, 3-STAGE RF SECTION, FREQUENCY CALIBRATION ACCURACY WITHIN 0.5%,

RESETTABILITY BETTER THAN .05\%, REL. ATIVELY SMALL SIZE. At last, the instrument you have been waiting for is here. For the first time in the signal generator field, PERFECTION OF PERFORMANCE has been achieved.

STANDARD SIGNAL GENERATOR SG-25

 In world-wide use - thousands used by the Armed Forces alone (as AN URM-25D) - and universally approved for ACCURACY, RELIABILITY and STABILITY. Covering the 10 kc to 50 mc range, it features a 3 -stage RF section. A truly STANDARD signal generator of precision laboratory quality, yet portable for field use.
COAXIAL SWITCH CS-200

2 to 12 positions. 0 to 1000 mc . Low VSWR and crosstalk. Direct or geared drive. Model CS-220 (6 positions) may have internal 50 ohm terminations.

STEP ATTENUATOR AT-120

Up to 10 steps. 0.1000 mc . Up to 120 db total attenuation. Low VSWR. 50 or 75 ohm output impedance. Direct or geared drive. Used by leading equipment manufacturers.

Standard signal generator sg-26

Covering the 4 to 405 mc range, the SG-26 utilizes an ingeniously simplified circuit, designed around the highest quality precision components. An extremely accurate, reliable and stable instrument, packaged in a small-size, portable case.
-

Visit us at the Park-Sheraton during the IRE Show.
Reps welcome - territories available.
Write for details and specifications.
ITl ELECTRONICS CORPORATION . ASLURY PARK, M.s

PHOTOCIRCUIT'S TUF-PLATE PLATED-THRU HOLES

NOW MAKE POSSIBLE THE

1st MAJOR CHANGE IN MOTOR DESIGN IN 50 YEARS

Revolutionary new motors using a thin inexpensive printel circuit as the rotating electrical element are now available. Heavy inon armatures, and cumbersome windings are eliminated; insulation breakdow is no longer a problem, insuring reliability in product design.
More exciting features .
low armature inertia - mechanical time constants of a fex milliseconds negligible armature reactance - no iron in armature
low impedance - suited for operation with power transistors
smooth torque - no cogging, direct drive in servos
internal damping - motors can be furnished with a damping torque proportional to speed
high temperature operation - conductors are uninsulated
wide horsepower range - fractional to several horsepower
Why delay, contact Photocircuits, exclusive manufacturer of printed motor components for Printed Motors, Inc. (holder of North American patent rights for the printed motor technique)

$$
\begin{aligned}
& \text { GLEN COVE, NEW YORK } \\
& \text { PHONES } \\
& \text { ORIOLE } 6-8000 \text { FLUSHING } 7-8100 \\
& \text { Visit OUR BOOth NOS. 2201 OAD 2203 IR.E. Show N.Y.C. } \\
& \text { CIRCLE } 404 \text { ON READER-SERVICE CARD }
\end{aligned}
$$

RUSSIAN TRANSLATIONS

Nonlinear and

 Parametric PhenomenaPart 14
A. A. Kharkevich
(Translated by J. George Adashko)

Chapter 2

Generation of Oscillations

21. Excitation of Oscillations in a Generator

After considering the steady-state mode of the generator, we examine how the steady-state is excited. We shall trace the development of the oscillations from the instant the circuit is turned on until the instant when the amplitude and the frequency are practically constant. i.e., when the oscillations can be considered steady.
The problem reduces to tracing the time variation of the quantities that characterize the oscillation, i.e., of the amplitude and frequency The waveform of the oscillations will be assumed to be close to sinusoidal.
The problem will be solved by a method known as the method of slowly varying amplitudes. This is essentially a quasi-linear method; the possibility of applying it to this problem is based on the fact that the amplitude, although not as constant as in the steady state case, is

in Radio Engineering

 "ill be given brlow
lat us write the ascillater ("flattion in the form

$$
1 \cdot \frac{d I}{d I}+m I+\frac{1}{c} \int I m=\| \frac{d I_{a}}{\frac{I}{I}}
$$

We have already vemplowed this cyprationn in Secetions 17 and 20. But in Section 17 we assumed $L=S$, U and thus redhuced eq (1) to a linear me since our purppose was to find the self-excitition condition. In Section 20) we wrote the eqpuation tor the first harmonic in complese form. introduc tus the average transcomdinctancer into the eyprat tion. Our problem then was that of investigations the steridy-state mode. Now. howeverer. we shall write ega (1) in ai semeral nomlinear form.
The dependence of the plate current on the srid voltage is reppresentecl ty the nomlinear the tion
1.ct is write the right haill of "el (1) in the torme

But
is the differential transconductance. expressed

It's great to be proud of the place you work

1 Ind misses a lot if his jol means only a pat. dheck. He ought to be excited about the work he's doing. He ought to feel proud of his company of its past achievements. its current projects. its future.

That's the way our engineers and scientists feel at Autonetics. Thes 're young men. Most of them got their 13S since 194\%. In ten memorable years thes have made their company a leader in elec. tronics and electromechanics.

Today there is room for engineers and scientists who want to share the unusual creative problems that lif ahead - in inertial navigation. dig. ital romputers. armament control. flight control. and a host of special military and commercial products.

If roud like to join Autonetics. please send bour resume to Mr. \. C. Bemning. 91.50 East Imperial Highwas. Downey. California.

Autonetics
A DIVISIO

Free samples • write WECKESSER CO.
5703-05 Norlnwest Hignway . Chicago 46, III.
CIRCLE 406 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

graphically by the slope of the characteristic of the triode at a given point i.e., (at a point with abscissa U). Introducing, as before

$$
U=\frac{1}{C} \int I d t
$$

we obtain instead of eq (1), the initial oscillator equation in the form
$\frac{d^{2} U}{d t^{2}}+\frac{1}{L}\left[R-\frac{M}{C} S(U)\right] \frac{d U}{d t}+\omega_{0}^{2} U=0 \quad(2)$
Assume that the system considered is soft. In this case the nomlinear characteristic can be approximated by a third-degree polynomial

$$
I_{\mathrm{a}}=a_{4}+a_{1} U+a_{3} U^{\mathrm{a}}
$$

Differentiating, we obtain an expression for the transeonductance

$$
S=\frac{d I_{n}}{d U^{\prime}}=a_{1}+3 e_{s} C^{2}
$$

Inserting this in eq (1) we obtain a nonlinear equation

$$
\frac{d V}{d t^{2}}+\left(2 \beta_{0}+\gamma U^{2}\right) \frac{d^{2} V^{2}}{d t^{2}}+\omega_{0}^{2} V^{2}=0 \quad \text { (3) }
$$

Here

$\beta_{n}=\alpha-\frac{1}{2} \omega_{z^{2}}^{2} M S$
is the initial damping factor (taking the feedback into account), and γ is shorthand for
$\gamma=3 \omega_{0}{ }^{2} M a$
The method of solving eq (3) consists of assuming a solution in the form

$1=A(t)$ xin ωt

The quantity A is the variable "amplitude" of the oscillation; the function $A(t)$ represents what is called in electronics the envelope. As to the still unknown frequency 0 , we shall assume it constant. ${ }^{\circ}$
Differentiating the assumed solution in eq (3) twice
$U^{\prime \prime}=A^{\prime} \sin \omega t+A \omega \cos \omega t$
$U^{\prime \prime}=A^{\prime \prime} \sin \omega t+2 A^{\prime} \omega \cos \omega t-A \omega^{2} \sin \omega t$
and inserting the values of U and its derivatives into eq (2) we get
${ }^{\circ}$ This is omly a first approximation. Actually both the amplitude and the frequency of the osecillations vary during the transient. But the change in the frequency is ustually smill. Allowance for this change would yield in second approxination only a slight correction to the amplitude variation.

DO YOU AVOID

 Plastic Injection Molding of small parts like above because you think it's too complicated, expensive? It's easy with the MINI-JECTOR(©) No need to in. est heavily in costly machinery, expensive toolingor skilled personnel. Develoo and produce small parts in all thermoplastics, including Nyton. Catalog shows how simple plastic injection molding is with MINI-JECTOR. There's a model to fit your special
needs. Write for free catolog today.
NEWDURY INDUSTRIES, INC.

CIRCLE 408 ON READER-SERVICE CARD

CIRCLE 409 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

NEW! BEATTIE-COLEMAN PROGRAMER ...provides $4 \% 2$
HOLR
HROGRAM on 13 channels

160 feet of punched Mylar tape is accommodated in the new BeattieColeman MLPR-13 Programer, providing a completely random program of 252 minutes duration on 13 channels. Extremely accurate time control with no cumulative error. Adjustable to five speeds: Y $6^{\prime \prime}, 3 / /^{\prime \prime} ; 3 / 4^{\prime \prime}, 1^{1 / 2^{\prime \prime}}$, and $3^{\prime \prime}$ per sec. Weighs less than 5 lbs ., is easily removable for loading. Programs can be initiated or altered in a few minutes. Compatible with most missile guidance systems.
Write for complete data on the MLPR-13 and other multi-channel Beattie-Coleman Programers for either repeat cycling or random operation.

B BEATTIEー

1000 N. Olive St., Anaheim. California 37 Fifth Avenue, New York, Now York CIRCLE 410 ON READER-SERVICE CARD
$1^{\prime \prime} \sin \omega t+2 A^{\prime} \omega \cos \omega t-A \omega^{2} \sin \omega t$
$+\left(2 \beta_{0}+\gamma A^{2} \sin ^{2} \omega t\right)\left(A^{\prime} \sin \omega t+A \omega\left({ }^{\prime}() \sin \omega /\right)\right.$ $+\omega_{0}^{2} A \sin \omega t=0$
After trigonometric transformations and equatiner to zero the coefficients of sin wit and cos cot separately, we obtain the two equations
$A^{\prime \prime}+\left(2 \beta_{n}+\frac{3}{4} \gamma \cdot 1^{\prime 2}\right) \cdot 1^{\prime}+\left(\omega_{12}^{2}-\omega^{2}\right)^{2} \cdot 1=0$
$2 A^{\prime}+\left(2 \beta_{0}+\frac{1}{4} \gamma A^{2}\right) A$
Here the terms containing the triple argument (300t) are discarded by virtue of the initial als sumption that the osceillation is simusoidal / see er (4) $]$.

Equation (5) can be simplified further. The point is that the various terms of these erpuations have different orders of smallness. We assume that the function $\mathrm{A}(t)$. which represents the vari ation of the amplitude. is a slowly-varyinge fune tion.
This means that the changes in the amplitude are much slower that the voltage ascillations themselves. The function $f_{1}(1)$ is assumed to be slowly-varyine compared with any other function $f_{s}(t)$, if its derivative $f^{\prime},(t)$ is much less thatn the derivative $f^{\prime}:(t)$. For comparison it is first mecen sary to normalize the derivatives. for example. In dividing be the rms values of the functions themselves.
The absolute value of the derivative of the function that represents the oscillation, i.e.. of $U=A$ sin (1) t, does not exceed (1)A. Demoting the derivative of the envelope $A(O)$. by A^{\prime}. we call write the enndition for the slowness of $A(f)$ in the form

In other words, the quantity A^{\prime} is of first-order of smallness compared with (1)d. But if this is so. then the second derivative of the function $A(1)$ will now become a second-order quantity compared with the second derivative of l, which is of the order $(1)^{2} A$

On the basis of these considerations, it is possible to eliminate from the first equation (5) the term $\mathrm{A}^{\prime \prime}$, which is of second order compared with the last term.

As a result we obtain instead of (5)

$$
\begin{array}{ll}
\left(2 \beta_{1}+\frac{3}{4} \gamma A^{\prime 2}\right) \cdot \prime^{\prime}+\left(\omega_{0}^{2}-\omega^{4}\right) \cdot 1=0 \\
2 A^{\prime}+\left(2 \beta_{1}+\frac{1}{4} \gamma A^{\prime}\right) A & =0
\end{array}
$$

The equations obtained by crossing out the higher-order terms are called simplified equations. The simplification of equations is a general procedure in the method of slowly-varying amplitudes. It makes it possible to reduce the order of

RESEARCH and PRODUCTION FACILITIES

for Electrical Power Systems to meet Military Specifications

Motoresearch electrical equipment and power systems are designed and produced to meet unusual requirements. Our facilities include original development, production to existing design and the ability to modify for specific application.

Typical Motoresearch equipment is illustrated. Direct current Power Supply is a component of Air Force Ground Control Approach System. A requirement for very close regulation under extreme conditions prompted the development. High Frequency Motor shown is for turret fire control. It develops $1 / 2 \mathrm{HP}$ and weighs 2.5 pounds. Engine Generator is a self-sufficient 400 cycle power unit for Military application. Similar equipment includes Motor Generators, Control Units, and Geared Induction Motors.

Send us detailed specifications and schedule quantity needs for your weapon system or related application. We will appreciate the opportunity to offer a proposal for your consideration.

$7 \prod_{\text {otore5 EARCH }}$ ГIMPANY

1600 JUNCTION AVENUE, RACINE, WISCONSIN

Designers

Special Electrical Equipment CIRCLE All ON READER-SERVICE CARD

CIRCLE 412 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

the equation and simplify the structure. Incidentally, in our case these advantages will remain minused, since we shall employ only the second of the two equations in (6). This has not been simplified.
Eqs. (6) are menlinear. since the cerefficients depend on the amplitude. Let us first find the steady-state amplitude and frequency from these equations.
In the steady-state mode $A^{\prime}=0$ and $A=A_{0}$. The first equation gibes immediately
and from the second equation
or expressing β_{0} and y in terms of the initial parameters

This is the same value we would have obtained from ex ($\overline{6}$) of section 20 by putting $a_{2}=0$. We see that the uscillation amplitude is determined by the nonlinearity, which is expressed in our case by the coefficient a_{s}; the amplitude depends also on the attenuation of the tank circuit proper, on the initial trimscomductance and on the extent of the Feedthach
If we examine eq (S) we see that the amplitude diminishes with increasing nonlinearity (i.e., with increasing a): the greater the margin with which the self-excitation condition, i.e., condition

is satisfied, the great Let us now find th
 (a)

(b)

(c)

Fig. 73. Steady state oscillations may be established after various initial conditions.

RELIABILITY...
 THE SOLUTION TO YOUR ELECTRONIC COMPONENT PROBLEMS

Designing reliability into electronic components and instrumentation is Borg Equipment Division's business Borg's reliable engineering research and production facilities are at your service for commercial or military projects. Bring your componemt reliability problems to Borg. You'll enjoy working with our cooperative, creative engineering staff. The result will be a sound. practical and reliable solution at a considerable saving of time and money. Here are just a few of the products manufactured by Borg

FREQUENCY STANDARDS

AIRCRAFT INSTRUMENTS

POTENTIOMETERS

MULTI-TURN COUNTING DIALS

FRACTIONAL H. P. MOTORS

SPECIAL DESIGNS
WRITE FOR COMPLETE ENGINEERING DATA
Bult

BORG EQUIPMENT DIVISION Amphenol-Borg Electronics Carporation JANESVILLE, WISCONSIN
CIRCLE 413 ON READER-SERVIC: CARD
thede assumes it stady state. i.e., the function A(1). using the second equation of (6). To solve this equation we multiply cach term by A, wh that IIC (all write

$$
\frac{A .1}{\prime \prime}+\left(2 \beta_{n}+\frac{1}{1} \gamma \cdot A^{2}\right) \cdot 1^{2}=0
$$

separating the variables

$$
\left(23+\frac{1 / 1^{\gamma}}{1} \gamma \cdot A^{2}\right) \cdot 1=-11
$$

We expand the left hand side of this equation into partial fractions

$$
\frac{d .3)}{A=}-\frac{11\left(2 \beta+\frac{1}{+} \gamma \cdot 1^{2}\right)}{2 \beta+\frac{1}{1} \gamma \cdot 1}=-2, \cdot 11
$$

Integrating, we get

$$
\ln 1-\ln \left(2,+\frac{1}{1} \gamma .1\right)=-2 \alpha_{n 1} 1+c
$$

or

$$
\ln \left(\begin{array}{ccc}
1 & \gamma+2 d & 1 \\
1 & & 1
\end{array}\right)=2 \cdot 1-1
$$

lience
and finally \{sece (7) $\}$

$$
I_{101}=\frac{1}{\sqrt{1+V_{e}}}
$$

In this (apmession 1$)=B A^{2}$ is a constant of intereration. determined by the initial comeditions. () epenending on the value of D), the amplitude at the first instant call have values of $\mathrm{A}_{\text {. }}$ which are wither less or greater thatn the stead!-state ones, (ar may be exactly equal to the steady-state value "hen D (0). The quantity β_{0} is the resultant initial attemuation factor. This quantity is always mesative-this is inherent in self-excitation. Takine this into accoment. We see that the exponential term under the radical will diminish with time. and we will obtain in the limit (when t approache's infinity) the steady-state value of the amplitude, as given by eq (7).

Fig. 73 shows the establishment of the steadytate oscillations for various initial conditions. The physical meaning of the various initial conditions is best determined by using a graphic representation of the settling process, as will be done ill Section 23.
(Tobe continued.)
ELECTRONIC DESIGN • March 18, 1959

TREAT 'EM ROUGH..

MICROPOTS

CAN

IT

TAKE

BORG SERIES 205

BORG
SERIES 1100
MICROPOT

We're rough on Borg Micropots, too - when it comes to testing for reliability. Take Series 205 and 1100 Micropots for example

	Mechanical Rotation
Series 205	$3600+15^{2}-0$
Series 1100	$3600+30-0$

Electrical Rotation	Linearity Accuracy
$3600+14.4-0^{\circ}$	$\pm 0.1 \%$
$3600+15^{-2}-0$	$10 \pm 0.05 \%$

Torque Starting	Torque Running
$-3.0^{\circ} \mathrm{oz}$.	$-1.5 \% \mathrm{oz}$.
$-3.0 \% \mathrm{oz}$	$-1.5 \% \mathrm{oz}$.

Expectanc 1,000,000 evolutions plus

500,000

Testing of this type tells us how life and reliability are
affected . . . the environmental limitations for each model . . . which series to recommend for your specific job!

You may be using high-priced pots unnecessarily in your present project. You may be able to reduce the number of components in your circuits. Remember . . . the fewer the components,
the greater the reliability!
Let us send you the name of your nearest Borg "Tech-Rep" and a complete rundown on all Borg Micropots today.

BORG EQUIPMENT DIVISION
AMPHENOL-BORG ELECTRONICS CORPORATION

JANESVILLE, WISCONSIN

MICROPOTS microdials MOTORS

CIRCLE 414 ON READER-SERVICE CARD

and provides better measurements
and assures more accurate reading of VSWR
and allows direct reading of reflection coefficient angle and high-power models automatically reject source harmonics

Sound impossible"? Not at all. Thank to a major advance in the science of vtanding wate measurements
These new measuring devices, called Rotary Standing Wave Indicators, represent a bold solution for VSWR and impedance measurements for waresuide and conaxial s. tem from $100 \mathrm{me} s$ through 7 kmes . The resulting reduction in insertion length alone completely makes ohsolete the use of slotted sections in this frequency range. The PRI) model 223 RSWI (shown here) for use with WR-210) waveguide systems mealure 10 inches as compared with slotted sections inches as compared
measuring over + feet

The PRD Type 219 for use in comaial us Ierns from 100 to $1.000 \mathrm{mc} / \mathrm{s}$ weighs only the pounds and adapts to most types of connectors: Typer N, BNC, C, 7s" coaxial, LT, and TNC.
The waveguide RSWIs are available on special order in two power-handling models:
the - IW moxtels are low power hroathand and can handle mort lahoritury hench powel requirements: the - HN models are high -powel $12 c$ handwidth units and can operate under hw and megawatts of power. All the RSWI are available for ue in waveguide sptem. from WR-159 through WR-4200.
Specifications and details for the waveguide RSWl's can be found on page $\mathrm{H}-5$ of the latest PRD catalog. E-8. Specs and data tor the PRI) Type 219 call be found on page B-13. If you do not happen to have reatly accen to this 1 fil-page reference mannual. at complimentary copy can be obtained through your local PRI) reprecentative or hy dropping
It a line on your company: letter checud.
Complete information on the principles of rotation of a prohe in the circular plane of polarization and a full. technical deccription of the Rotary Standing Wave Indiciators are contained in the latest PRI) REPORT, VOL UNE 6. Number I. For sour free copy send soull request to

Type 223-LW Waveguide Rotary Standing Wave Indicator for standing wave and re-
flectivity measurements in WR-2100 woveguide systems over the frequency ronge
from $3500530 \mathrm{mc} / \mathrm{s}$ Residual VSWR Iess ${ }^{\text {thom }}$ thon 1.030 .

Type 219 Rotary Standing Wave Indicator Yope 19 Retary Standing Wave indicator
for usial ssitems for standing
wave and reflectivity measurements over wave and reflectivity measurements over
the frequency forge from 100 , 10000
mc / s. Residual VSWR less than 1.03

POLYTECHNIC RESEARCH \& DEVELOPMENT CO., INC.

IRE SHOW BOOTHS 3602.3604

See these and the hundreds of other PRD PACEMAKER products. Have a microwave problem? Have it answered right af the boorh. CIRCLE 430 ON READER-SERVICE CARD

Metallurgical Memo from General Electric

LETTERS

measurement exist. But the problem is having manufacturers interpret them properly.

Lack of Communication

1) car Sir:

While perusing the article concerning communication in the Jamuary 7. 1959 issue of Elec. inesic Desien, it was rather disconcerting to read inf the section on meteor commminiation the statement that "design engineers will have to come up with something to detect a useable trail, start a transmitter, etc . . .". This in view of the fact that meteor-burst communication links for both teletype and voice have been developed and op(ratted successfully by the Canadian Defense Research Board, National Burean of Standards. Nival Electronics Laboratory, Stanford Research Institute (for AFCRC), and others; in the case of the Canadian group, as long ago as 1955.
This work has been described in many of the leading electronic and scientific periodicals notably the IRE Proceedings for December 1957. Ferranti Electric Litd. of Canada even markets a package meteor-burst teletype system. This dows fint mean to imply that the meteor-trail propatLation mode is understood sufficiently to make poossible optimum system design. On the contrary, a tremendous amount of theoretical study and experimentation will be required to achieve this end. But the contributions already made have been most encouraging and to say the least, spectacular. Russell Wollram, Research Enginecr Stanford Research Institute
Menlo Park, Calif.

- True, meteor-burst systems have been in limited nse for some time. But the real problem is to determine when to turn them on. That is, detecting a useable meteor trail, then sending as much intormation as possible over the link while the trail is still in existence. All this involves, for evample, ways to store the necessary information and have it available for instant transmission. There is still a great deal of work to be done to make the method practical.

How a tiny thermistor takes temperatures in outer space

Magnetic Materials Section reports on thermistors and on new production facilities that permit them to be tailor made for any application

One critical piece of information relayed from space by Explorer I was its external skin temperature as it orbited. This exacting job was assigned to a G-E high temperature thermistor RF-111.
Thermistors are thermal-sensitive semi-conductors with large negative coefficients of resistance. In electrical circuits G-E thermistors measure and control temperatures, suppress initial current surges,
trip time delay devices, and regulate voltages. Now, G-E, through new production facilities, can tailor-make thermistors to your specifications with resistance values from 1 to $10,000,000$ ohms and temperature coefficients of resistance from -1% to -5% at 25 C . For more information-or the assistance of a G-E engineer-write: Magnetic Materials Section. 7820 N. Neff Road, Edmore. Michigan.

MAGNETIC MATERIALS SECTION

general (6

Cakboloy. cemented carbides - man-made diamonds - magnetic materials - thermistors - thyrite = - vacuummelted alloys CIRCLE 431 ON READER-SERVICE CARD
 Illuminant uses, DRAKE's quick-reference catalor simplifiles selection of just the right Miniature Lighting unit. 16 picture and fact-packed pages include detailed specifications; plus highly useful data on basic unit elements, best choices for various uses, etc. Project Data Sheet makes it easy to get speinc specialized experience in all make DRAKE first choice for make DRAKE first choice for top results, best SEND FOR YOUR COPY!
DRARB
MANUFACTURING COMPANY 1711 WEST MUBBARD St. . CMIGAGO 22, ILL. MINIATURE LIGHTING SPECIALISTS circle 432 on reader-service card

速

STANDARDS

 ANDSPECS
Sherman H. Hubelbank

FM Receiver Measurements
IEC No. 91. Recommexped Methons of Meas urement on Regeners for Frequency-Monulathen Broabcist Tbansmishons
Use of this publication enables comparison of the performance of radio receivers for fm sound broadcasting in the range of 97.5 to 108 mc , as determined by different observers. A catalos of selected measurements recommended for assessing the essential properties of these receivers is neither mandators nor limiting. A choice of measurements and additional measurements can bo made in each case. Methods proposed in this standard assess the performance of the particular receiver without suing into the details of the apparatus or its components. Sensitivity, interfer ence. frequenc: response. distortion. stabilit. and other aspects are covered. Copies of this pul) lication may be purchased from ASA

Measurements

isule pTC 19.14. Lineab Meastrbileats. 195 b Contains descriptions and illustrations of the Following tepes of instriments which are used tw obtain the linear dimensions of objects: tapes. rules and scalles, calipers, dividers. slide calipers. depth gases, vernier calipers. vernier depth qater. micrombeter calipers. thickness gages. gage blochs. cte. Copies of this publication are arailable from the American Socicty of Mechamical Eusineers, 29 West $39 t h$ Street. New York 15. N.Y'. for $\$ 1.50$ per cople.
asme pot 19.12. Meascrenent of Tine, 195 s Describes the following types of time keepers: general purpose clocks, chronometers. clocks or regulators for indicating time to the nearest seecond. astronomical docks, watches, stop) watches. timers, chronographs. and oscillographs. Methods that are available for measurine time and time intervals are also included. Copies of this publication are available from the American Society of Mechamical Engineers, 29 West 3.9th Street, New York 18, N.Y., for $\$ 1.50$ per copy.

printed circuit tapes \& shapes

REDUCE DRAFTING TIME

AS MUCH AS 70\%
New Brady self-sticking Tapes and Shapes with transparent. smudgeproot adhesive are pre-cut to exact and precise tolerances. Master layouts are made quickly, accurately, economically - without pens. ink. erasers or adhesives. Dull black maximum opacity guaranteed. Stick and stay stuck 10 glass. MYLAR ${ }^{\circ}$ acetate.
Over 100) , andard shapes and sizes available on handy Blue Streak Dispenser Cards. Connector Strips in 18 and 60 yard long rolls from .015" (1). $500^{"}$ "wide. Write for Bulletin 163 and FREE SAMPLES. Manufacturers of Quality
Pressure-Sensitive

759 Glendale Ave., Milwaukee 9, Wis.
CIRCLE 434 ON READER-SERVICE CARD

Engineering Challenge Across the Spectrum-

 FROM DC TO IRLight Military demonstrates a breadth of professional opportunity unique in the industry - opportunity created by a range of products which span the entire electromagnetic spectrum.

Equally important however. to engineers seeking long term futures, is the fact that this diversity contributes to a high order of growth in staff. contracts and facilities.

These two factors - diversification and growth - provide the engineer joining LMED with a firm career foundation, whether he seeks professional advancement in managerial or scientific consulting positions.

LIGHT MILITARY ELECTRONICS DEPARTMENT

GENERAL ELECTRIC

POSTAGE WILL BE PAID BY

Mr. William Gilmore
General Electric Company Light Military Electronics Department French Road, Utica, New York

LET'S GET SPECIFIC ABOUT DIVERSITY

A few examples of projects now in progress at Light Military are described below. Each of them provides opportunities for - and often demands contributions advancing the state of the art

A SOUND BASIS FOR CAREER GROWTH

Because of I ipht Military's wide-ranging diversification, our future - and yours too, when you join (.M1:I) - is not dependent on the success or continuation of any single program. This is well docuraented by light Military, 600's growth in I ngencering Stall since the Departmentis inception. 6 year ago,

- " four moro adrallongos al I. WI: to consider:
Graduate Study Plan that covers the cost of tilition and textbooks at a local graduate school.
An Opportunity to Consult with top scien tists in GE laboratories and gain access to the newest technical concepts
In. Plant Courses provide broad coverage technical and managerial subjects - are open to all protessional personnel
Comprehensive Orientation Program assists new professional personnei in feeling "at home immediately
Top Salaries that range to $\$ 16,000$ for cur rent professional openings.
G.E.'s Famous Benefit Program that includes comprehensive insurance and the valuable s.avings and security plan.

For your family Utica is a modern. growing city located in New York State's famous Mo hawk Valley Close at hand are sking, hunt ing. hockey fishing swimming, boating golf. tennis. City and suburban housing of all types. well staffed schools and excellent stores round out a picture of full family liv ing in an invigorating 4 seasons climate Re location assistance is furnished to help you find a home (house or apartment) and offe counset on all aspects of your relocation in addition. we pay moving and transportation costs for you and your family

MAJOR PRODUCT GROUPINGS

AT LIGHT MILITARY INCLUDE:
Airborne Early Warning and Control Systems
Airborne Electronic Warfare Systems Airborne Fire Control and Bombing Equip ment / Airborne Navigation Systems and Equipments / Automatic Test Equipment Aircraft and Space Communications Sys tems / Digital and Analog Computers / Mis sile Guidance and Control Equipment Undersea Warfare Systems

Inventigate the career opportunities that wast hor sou at Light Military right now. Tu make four mital contact most convenient. wee the ponteard at right. Simply fill it out. and manl today

CLAIRVOYANT" COUNTERMEASURES

Light Military's 'intelligert' airborne ECM Intercept System will have the capability of detecting and defeating enemy radar devices automatically. The system will appear clairvoyant by instantly analyzing radiations from enemy systems. making decisions and immediately responding with counter-radiations to provide continuous protection for our aircraft

MASTERING THE VARIABLES FOR POLARIS TRAJECTORIES

> As one of its functions. the fire control computer now under developmen at LMED keeps the submarine borne Polaris in constant readiness to tre. with a freshly calculated trajectory lowards its pre programmed target. The system will operate continuously, calculating new trajectories as a function of the submarine s location and allitude and inserting them into the memory circuits of the missiles guidance system

AEW WITH THE AUTOMATED VOICE OF COMMAND
This new concept in Airborne Early Warning and Control will provide protection for a mobile unit by detecting enemy aircraft at unprecedented ranges, tracking, adapting itself to changing combat situations. and transmitting tactical data automatically to combat information centers The system will match a 3.Dimensional radar with novel correlation techniques and an automated data handing system which - for the first lime - will piaclically eliminate Man from the control loop

PROGRAMS WE'RE PROUD OF BUT CAN'T REVEAL
There are a number of highly classified programs under way at Light Military that embody some of the most advanced electronics concepts. Among them are Bomb: Nav, Survellance, and Fire Control Radars that utilize such techniques as frequency diversity. signal correlation and signal analysis methods of obtaining high order resolution

IGHT MILITARY ELECTRONICS DEPARTMENT

GENERAL sig_{6} ELECTRIC

FRENCH ROAD UTICA NEW YORK

Mr. William Gilmore
I am interested in professional career opportunitics all I ight Military

Name

Home Address

City \qquad

Phone
Degree (s)

I am particularly interested in the following technical areas

Airborne Radio

Revisions to the following were issued by the Radion Technical Commission for teronantics， dated 1：3 Nowember 19．5s：
 arids Amboline Radio Communication Trans－ umpone Equpment，Operating Withen tim：R－F Raver：of 1．5－30Me
 arids Amboree Radio Comanuification Recein－ ing Equipariat；Opfrating Within the：Range of 1．5－30 Mr：
 ards Ambobine Radio Marker Rrotaving Eecipinat Operating on 75me
 mins Amborife Radio Cominusication Receiv－
 RANGE of 118－1832me
 bins Amborie Ramo Comidunication Trans－
 Rianac of 118－1：32ve

89－5t 1）（）－59．Monimea Probobmange Stand－ abis Ambonte Il．S Localizfar Recinvic：Equib－ いたい
 arids Amborae VOR Regeiving Equipiment（or－ hrating：Within the R－F Range of 108－1lSme：

4．5－5t／（）（）－is，Minimum Performance Stand－ ards Aircraft Audo and Interphone Ampin－ hiers

S：3－56 1）（）－70，Minmilem Prrformange Stand－ ards Ambiornf：Raimo Receining and Direction Finding Equipment Opmating Within the： Ravof of 2010－415kg

100－54／DO－60．Environalental Tist Proce－ dures，Aibborne Radoo Equipnient

Copies of these revisions may be obtained from the Radio Technical Commission for Aeronautics， Room 1072，Building T－5， 16 th \＆Constitution A e．．．N．IW．，Washington 25，1）．C．

Don＇t forget to mail your re－ newal form to continue receiving ELECTRONIC DESIGN．
－CIRCLE 881 on reader－service card ELECTRONIC DESIGN • March 18， 1959

ENGINEERS／EE／ME／AE
FOCAL POINT FOR CAREERS IN SYSTEMS ENGIMEERING

General Electric＇s New Defense Systems Dept．

From many diverse disciplines in engineering and the sciences，ca－ pable men are coming together to form the nucleus of the new De－ fense Systenis Department－an organization devoted exclusively to conceiving，integrating and managing prime defense pro－ grams，such as

Whether you are a systems engi－ neer now or not，the inauguration of this new department presents a rare opportunity for bringing a rare opportunity for bringing
your own career into sharp focus your own carcer into sh．
in systems engineering．

Immediate assignments in
systems program management WEAPONS ANALYSIS
WEAPONS SYSTEMS INTEGRATION ELECTRONICS－DYNAMICS COMPUTER LOGICAL DESIGN PRELIMINARY DESIGN applied mathematics
advanced systems development systems evaluation THEORETICAL AERODYNAMICS

Please direct your inquiry in strictest confidence to Mr．E．A．Smith，Dept．3－C

Engineers

 and scientists return to the midwestwhere there＇s time and op－ portunity to enjoy yourself while climbing to the top in the field you like best．

It＇s spring in Minneonta！The mapl， is running－thick，weet，ahundants． There＇s still a bit of crispmess in the morning air．but the ice has gone out of most of the rivers．Everywhere you ＂if most of the rivers．Lverywhere yong see people repairing lwats－or flight of mallards heading nurth．You should mallards heading north．Yons shom he in winmesta in the spring－

The Research and Engineering Labo ratories at the Mechanical Division of General Mills in Mimeapulis－neen senior level－taff members for creation design，research and development work in the following fields：

P＇osition－available are for purely ded． nical and technical－supervisory work－ iol bilfes and salars provide egtal opportunity for advancement in bort Our peopple enjoy their anowrate． ral company benchts and mome． projects．as evidencer

If you have from three to lise vear experience in any of the above field－ wed like to tell you more about op portunities at（ieneral Mill－．Send today for all the facts．We＇ll keep woll inquirs in－tricl confidence

Ci．P．Lambert，Manager
Profrosional Fimployment

MECHANICAL DIVISION
I＇ersonnal Deparmatent
2003 E．Hennepin，Minncapoli，13． Minnesota
CIRCLE 876 ON READER－SERVICE CARD

COMPUTER ENGINEERS

here are the types of engineers we need:

- senior systems engineers
- SENIOR CIRCUIT DESIGNERS

- senior logical designers

- SENIOR ELECTRONIC DESIGN ENGINEERS

COMPUTER ENGINEERS:
Senior Systems Engineers-Strong Theoretical and Design Knowledge in Electronic Engineering, including familiarity with electromechanical digital machines. Prefer experience with commercial application of digitalprocessing equipment, will consider scientific or defense application. Operational experience distinct asset. Advance degree desired.
Your Work of NCR - analyze and direct product improvement of digital computers.
Sonior Circuif Designers - experienced in the design, development and analysis of transistorized computer circuits, including application of magnetic cores to high-speed memories.

Your Work of NCR-opportunities involving decision making concerning reliability, cost and component selection are offered.

Senior Circuir and Logical Designers -similar experience and duties as noted for Senior Circuit Designers plus evaluation and debugging arithmetic and control areas of computer systems.

DATA-PROCESSING ENGINEERS:
Senior Electronic Design Engineersexperienced in the development of logical design using standard computer elements.
Your Work of NCR - to evaluate and design transistorized circuits including voltage regulated power supplies and circuitry related to decimal to binary coding.

THE NATIONAL CASH REGISTER COMPANY, DAYTONO, OHIO
ONE OF THE WORLD'S MOST SUCCESSFUL CORPORATIONS
75 YEARS OF HELPING BUSINESS SAVE MONEY CIRCLE 87I ON READER-SERVICE CARD

WHERE YOU WILL WORK at NCR's NEW Engineering Re search Center, Dayton, Ohio. You'll be working under the most stimulating and advanced R and D facilities with broad creative freedom in the engineering field which is !!ours.
HOW DO I APPLY?
Simply send your résumé to: Mr. K. C. Ross, Professional Personnel Section C, The National Cash Register Company, Dayton 9, Ohio.

- thademank hra, U.b. PAt, off

veesatili pata moocessinc LODIUE BACHINET - CASH BICISTRES ACCOUNTIME ACHINLS - HCR PAPIB

ENGINEERS
A FINER CLIMATE

TO WORK IN...

F
.TO LIVE IN
At Sylvania's
Mountain View Operations
in California
(SAN francisco bay area) you'll discover more than just one kind of climate.

PROFESSIONAL CLIMATE - Advanced programs will challenge your technical creativity. You'll make major contributions in the fields of electronic defense, radar, communications and data processing systems. Because Sylvania is one of the nation's fast est growing electronics organiza of growth opportunities.

LIVING CLIMATE-You and your family will enjoy the healthful atmosphere and sunny climate of the San Francisco Peninsula. You'll find plentiful housing, excellent shops, fine schools and year round recreation.
Openings in:
System Studies / Circuit Design / Computers Data Handling / Electronic Packaging / Development Engineering / Concept \& Planning / Advanced ECM Circuitry / Equipment Development / Product Ensineering / Tube Eng ineering / Tube Application Engineering Eninering / Theoretical physics / Explorio
 mental Phys

You may communicate in confidence to Wayne L. Pearson mOUNTAIN VIEW OPERATIONS

F SYLVANIA 5

P.O. Box 188

Mountain View, California

Tektronix, Inc.

Portland, Oregon

A manufacturer of universal recognition in cathode ray oscilloscopes and allied instrumentation, Tektronix is continually seeking to advance the oscilloscope art. To this end we rely on internal design of fundamental components as well as complete instruments.

Creative physicists and engineers with experience in vacuum and cath-ode-ray tube design, semi-conductor research, and circuit design will be intere.sted in a program of major expansion in our Engineering Division.

For further information please contact Mr. Robert Mitchell, BarbizonPlaza Hotel, New York Ciry, March 20, 21 and 23 through 27.

CIRCLE 872 ON READER-SERVICE CARD

Whatever your sport, you'll find it in abundance in Florida and you can enjoy an interesting career to boot with fast-growing Radiation, Inc. The climate here is ideal for outdoor sports the year around.

We have many openings for challenging and rewarding work in electronic design and development. Radiation is wall known in DATA PROCESSING, TELEMETRY, ANTENNAS, INSTRUMENTATION, and other areas of MISSILE ELECTRONICS. Our stable growth indicates a secure fufure with professional advancement for qualified electronic engineers with ideas and energy.

Write today for complete details on opportunities available

FROM CONGEPT
 TO HARDWARE

See your personal efforts integrated into the total flight system with a prime contractor...

REPUBLIC AVIATION

It's an unnerving experience, in this era of systems engineering, for a man to work long and hard on a subsystem or component project and then see the product of his labol cave the plant in a packing case on its way tion. How different is the picture at Republic Aviation! Working for this prime systems contractor you will have the opportunity to see the total flight system take shape and the satisfaction of seeing your personal efforts become an important part of it. You'll broaden your experience and professional interests by working with capable men from varied disciplines on advanced electronics for every type of flight vehicle-from guided missiles to helicopters.
Decide NOW to join this Prime Contractor Gain accelerated advancement by becoming a ground floor participant in Republic's $\$ 35$ million R\&D program aimed at bringing about substantial breakthroughs in aeronautics and space technology. A new order of career progress is waiting for engineers

Investigate these electronic opportunities with Republic
Inertial Guidance \& Navigation / Digital Computer Devolopment / systems Engineering / Information Theory Telemetry-ssa Technique / Doppler Radar / Countermeasures Radome \& Antenna Design / Microwave Circultry \& Components Receiver \& Transmitter Design / Airborne Navigational systems Jamming a Antl-Jamming / Miniaturization-Transistorization Ranging systems / Propagation studies

Ground Support Equlpment
NEW YORK INTERVIEWS DURING IRE NATIONAL CONVENTION
Plan now to visit Republic representatives
at the Convention Hotel (March 23-26)
Please send resume in complete confidence to:
MR. GEORGE R. HICKMAN
Engineering Employment Manager , Dept. 12C-3

Farmingdale, Long Island, New York

ADVERTISERS' INDEX
March 18, 1959

Adeertiser

AllP Ime
Ace Electronics Asomeiat Acousticat Associates. in
Aipax Proxluctt Coo siee Con H1phar Notals Co.
Amer Engincering

Andrew Comp.
Applied Research
Armuld
Magnetics
Armux Curp.

Beattic-Colman

 Mendix Aviation Corp., Red Bank Div
Bendix Aviation Corp, Scintilla Div.
Bircther Coit Birtcher Corp.
Biin Wix
Borm.

Bownton Rardio Corpy,
Burs. (eeorge W.
Bramel: William C
Buldewa Wateh Co
Bureat of
Bureal of Engraving
Burnell of
of Co.. Ine.

Camloe Fastener Corp.

Curler Culdum Constantine Tihe :nginering Laborato (inutralol, inc.
Chart-Pak Inc.

Comn. Sigmund dioubier
Comnecticut Hard Rubler Co. $\quad . \quad 150$
Comtinental Wire Corp. Laboratories Co 1.58
Coming Glass Works
Coming Glass Works

Dale Proclucts, Ine Daventrom Puacific Corr

Drawentarne Comb
E.H Research Co.
ESC
Corp

Escon Corp

Electric R.c.sulatur Corl

1.tnir Barang Co

Forlme a Wishier

Garre"l Corp.
Ceneral American Transportation Ceneral Crramice Corp inparatus obic Comicral Eleetric (ion, Capactiors Dept
Connerai
Divil

You'll grow faster with a growing

*At TI in the past decade: Personnel has increased

Texas Instruments

I N C O R P O R A TED

6000 LEMMON AVENUE

Advanced facilities permit work of highest caliber
company*
from over 800
to almost 8,000
and Sales have increased from under \$5,000,000 to over $\$ 91,000,000$.

Six major resorts and fishing lakes are within one hour of Dallas. Dallasites own 38,700 outboards ; are served by a dozen boat manufacturers and 40 boat retailers.
Houston, of course, is "next door" to Galveston, nationally known seaside resort.

Expand your professional potential where you and your work are recognized as vital. Enjoy a favorable engineering climate, major factor in the swift, steady growth of this dynamic company now in its 29th year and still expanding! If you have a high order of ingenuity, technical skill and engineering ability, you can hit your stride at Texas Instruments - now one of the 500 largest industrial companies in the country. In association with outstanding colleagues, you can explore new horizons in any of a wide choice of fields:
apparatus division Design, development and manufacture of systems -reconnaissance, airways control, antisubmarine warfare, missile and anti-missile, countermeasures, airborne early warning, navigation, attack control, and engine control. Equipments, including: radar, infrared, sonar, magnetics, digital circuits, timers, telemetering, intercom, microwave, optics, detector cells, engine instruments, transformers, time standards, and other precision devices.
Please write J. R. Pinkston, Dept. 1101 circle 877
semiconductor-components division Design, development and manufacture of semiconductors - transistors, diodes, rectifiers - and other electronic components including capacitors and resistors. Special studies in materials purification and analysis, surface treatment, circuit design, and circuit applications. Design of mechanized production and test equipment. Supervisory positions in manufacturing engineering and production management.
Please write H. C. Laur, Dept. 1101 CIRCLE 878
central research laboratory Basic and applied research in solid state physics, materials, devices, data systems, and earth sciences with particular emphasis on semiconductors, electroluminescence, ferromagnetics, resonance, low temperature phenomena, dielectrics, infrared, geophysics, digital techniques, masers, memories, and transistors; physico-chemical studies of diffusion, alloying, crystal growth, and crystalline structure.
Please write A. E. Prescott, Dept. 1101 circte 879
industrial instrumentation division Design, development and manufacture of commercial electronic and geophysical instrumentation including data gathering, recording and processing; circuit and instrument packaging; meter movements and transducer elements; remote measurement and control systems. (NOTE: This dirision is located in Houston.)
Please write D. G. Turner, Dept. 1101 circle seo
Come grow with us in the pleasant climate of highly sophisticated Southwestern cities, Dallas or Houston each large enough to be urbane, small enough to be neighborly. Modern plants are within the city but away from downtown traffic ... near fine residential areas. You will live within minutes of year-around recreational, amusement and cultural activities.

Grayhill, Inc.
Gries Reproducer Cirp)

Hanclv \& Harmon
Harr Mts Co.
Harvey-Wells Co
Heiland Dict

Howlet-Packard C.... ioi, ins ixt, Cover
$\xrightarrow{\text { Hi-G. Inc. }}$ Hi-...
Hill Electronics
Holuh Indlustries
Hughes Aircratt
Hycon EaillorII

Iny Mfr. Cin.
 K. Ivin Electric Co.

Kennedy Solder Co.
Keystone Products © ©
Kings Electronics Co.
Kinney Mig. Div., the Nou lirk Air
ahoratory for Electromics
Lambda Electronics Co
Leandis \& Cyr, In

Magnetic Research Corp.
Mannetics
Mallory, P. R.
M.
Marion Electrical Instriument
Methode Mfg. Co.
Mesa Plastics
Metronix, Inc. $\ldots \ldots \ldots$
Micro Switch Div. Minneapolis Honevwell
Microwave Associates. Inc.
Mid-Eastern Electronics Co.
Mide-Easterm
Miller, J . Wectronics
Minneapo
.
Minneapolis Honcywell
Minnesota Mining \&
Pdts. Div.
Mntor Research Corp

National Cash Register Co.
National Coic The
Networks Electronics
$\begin{array}{ll}\text { New Departure 1)ivision of Cieneral Motors } & 12 \\ \text { North American Aviation } \\ \text { Co. }\end{array}$

Ohmiter Mfy. Co. 12, 13

Pace Eingincering Cu
Packard-Bell Electronits
Panoramic Radio Products
Panker Seal Co. .i.
Philen Corp., Lansciale Tube Div
Philco Corp., Techrep Div.
Phillips Cuntrol Cor
Phntocircuits Corp.
Continued on Coter

Complete captive assembly; all sizes. Comprised of slotted-head thumb screw, insert bushing, captive nut assembly, splash-proof seal.
FOR FREE FACTS
on this stainless steel hardware, write:
RAYTHEON, Commercial Equipment Div., Dept. 6120 , Waltham 54, Massachusetts

Excellence in
Electronics
CIRCLE 481 ON READER-SERVICE CARD

Here Is The Answer To Every COIL FORM REQUIREMENT

High dielectric kraft, fish paper, cellulose acetate, DuPont Nylon, Resinite and combination tubes for any electrical/electronic application.

Ask obout our special mandril ond fabricating services Request Arbor List and Bulletin today. Send specifications for free samples.
PRECISION PAPER TUBE CO. 2055 WEST CMARLESTON STREET - Chicago 47, ILI. Plont No. 2: 79 Chapel Stroot, Hartford, Conn CIRCIE 4SE ON READER-SERVICE CARD

Any shape - round square oval rectangu lar, triangular or spe cial.Any I.D. O. or length. All promptly vailable.

GERMAN ABSTRACTS

Regulated Transistor

Power Supplies

E. Brenner

cONSTANT supply voltages, required in tramsistorized equipment, demand regulated power supplies which can be well attained with transistor circuits. A comparison of three regulator methods shows that circuits in which transistors are used as switches have certain advantages over those circuits in which a control transistor is continuously in the circuit.

A typical regulator, in which a transistor is continuously in series with the load ("series compounding") is shown in Fig. 1. A reference voltage is derived from a zener diode and compared to a fraction of the output voltage. The difference is amplified and used to control the series transistor so as to minimize the error. The circuit is characterized by comparatively large power dissipation in the control transistor (see Table) but has low hum content in the output.
The losses in the control transistor can be reduced materially by use of a switched transistor as in the "two-point" circuit, Fig. 2. The error voltage in this circuit activates a Schmitt trigger which gates the control transistor as the tolerated error is exceeded. At full load and overvoltage, power loss occurs in the series resistor R_{k}. The efficiency is the same as in Fig. 1 but the
transistor loss is reduced. The maximum current is limited be the peak collector current of the series transistor. A continuously varying output

Comparison of the Properties of Three 12v 100 ma regulated transistor power supplies.

Output Impedance ohms	Continuous Regulator Fig. 1 0.3	Two-point Regulator Fig. 2 0.3	Controlled Rectifler Fig. 3 0.5
Voltage variation for 10% input variations (\%)	0.2	0.2	0.2
Overall Efficiency at full load and 10\% overvoltage (\%)	45	45	60
Loss in control transistors at full load and 10% overvoltage (mw)	600	50	100
Control speed	high	high	low
Output noise voltage af full load (mv eff.)	1	20	60

Fig. 1. Regulated power supply using a continuously active transistor.

Fig. 2. Regulated power supply using transistor two point control.

Fig. 3. Transistor controlled rectifier
oltage is necessary for operation (see output wise voltage in Table)
In the controlled rectifier (Fig. 3), the conduction angle is controlled in the same manner as in power Thyratron circuits. Hum voltages are therefore not reduced by the regulator action: only the filter counteracts this component of the noise. Except for this error, it is possible in practice to obtain perfect regulation with this circuit.
Comparison between the three circuits is made in the Table. The efficiency values include a 66 per cent transformer efficiency figure.

Abstracted from an article by G. Meyer Broetz, Elektronische Rundschau, Vol. 12, No. 10, October 1958, pp 342-344.

Grant Slides have been the pattern for all slide designs. While Grant is flattered, it is important to point out to designers and engineers that Grant research, design and sales engineering have been and are the factors that place the nation's leading industrial manufacturers on our list of customers.
If you require imaginative assistance in determining the proper slide for your equipment - or, if you'd simply like to discuss the possibilities for slides in your units, Grant sales engineers are at your service - as they have been ever since the first industrial slide (a Grant slide!) was marketed.

The nation's first and leading manufacturer of slides

GRANT INDUSTRIAL SLIDES

grant pulley and Hardware corporation 21 High Street, West Nyack, New York 944 Long Beach Avenue, Los Angeles 21, Cal. CIRCLE 459 ON READER-SERVICE CARO

BIWAX-EPOXY FORMULATIONS

- MIL and Industrial Specifications.
- Single component systems
- Thixotropic formulations.
- Packaging service minimizes waste-can be keyed to your production schedules.
- Encapsulating service facilities.

Send for Informative
BIWAX-EPOXY COMPOUNDS Dara Sheet
Send for GENERAL SPECIFICATIONS CHART on INSULATING and SEALING COMPOUNDS
 CIRCLE 278 ON READER-SERVICE CARD

Silicone Sponge Rubber

for sealing, gasketing, pressure pads, vibration dampening - $100^{\circ} \mathrm{F}$ to $480^{\circ} \mathrm{F}$
Low density COHRlastic R-10470 silicone sponge rubber is completely flexible after 72 hrs . at $480^{\circ} \mathrm{F}$, shows no brittleness after 5 hrs . at $-100^{\circ} \mathrm{F}$. High tensile, tear and elongation. Closed cell construction is non-absorbing. Called out on aircraft and electronic drawings and specifications. Available from stock in sheets $1 / 11^{\prime \prime \prime}$ thru $1 / 2^{\prime \prime \prime}$, in rod $180^{\prime \prime}$ thru $.585^{\prime \prime}$. Special extruded shapes made to order.
FREE SAMPLES and folder-write, phone or use inquiry service.
COMMECTICUT HARD RUBBER

CIRCLE 460 ON READER-SERVICE CARD

E. Brenner

Noise

In Silicon Diodes

And Transistors

0N THE BASIS of the Shockley diffusion equation, it can be shown that, for a p-n junction, noise current through noise resistance R_{n} is given by
$\bar{i}{ }_{n}=4 K^{\prime} T \Delta f / R_{n}$
where

$$
\left.2 k=R \|+\operatorname{cxp}(-e)^{\prime} k T\right) \|
$$

and

$$
R=\frac{k T}{\epsilon\left(I_{D}+I_{o}\right)}
$$

$I_{\text {.. }}=$ saturation current
$I_{t}=$ diffusion current
While this formula is adequate for alloyed germanium diodes. significant deviations occur for silicon junctions. One of the reasons for these deviations is the recombination and generation of carriers in the depletion layer. On the basis of this theory, the equivalent noise resistance can be shown to be half of the total (differential) resistance in the forward direction.
The mean squared noise current is calculated (using certain simplifying assumptions which are eventually justified by experimental confirmation) by adding the contributions due to recombination and diffusion. The result is the formula

$$
\overline{i_{n}}=+k T\left(R_{c}(Y) \Delta!-2 c I \Delta f / m\right.
$$

where Y is the total junction admittance, l is the total current through the junction and m is an empirical parameter which is determined by fitting the dc volt-ampere curve of the diode to the form $I=I_{0}{ }^{\prime} \exp (e V / k T m)$. Usual values of m are between one and two. At low frequencies,
for $I » I_{0}$, an adequate approximation for Y is
$\operatorname{Rr} Y+r I m k T$
and then
$=211 \quad 1111$
so that using an equivalent noise resistance $R_{n,}$,
$2 R_{n}=1 / R C=$
To take the recombination effect into account for transistor noise calculations, two separate diodes are calculated. Eq. (3) applies to the emitter noise if Y^{\prime} is replaced by Y_{11}, the short circuit iuput admittance of the intrinsic transistor and I and m are replaced correspondingly by I_{c}, m_{c}. The collector noise can be approximated by
$\bar{i}_{n}^{2} \mathrm{C}=2 \cdot I_{C}-j$
The noise factor is approximated by
 $4 k T R_{0}$
where
$R_{b}=$ base resistance
$R_{0}=$ source resistance
${ }_{c_{j / b}}=$ ace current amplification factor in the common base configuration.
The original paper includes experimental results as well as other analytical work and proofs.
Abstracted from an article by B. Schncider and M. J. O. Strutt, Archiv der Elektrischen Uehertragung, Vol. 12, October 1958s, pi $429-440$.

Polynomial Approximation for

Complex Transfer Functions

ITHE synthesis of two-ports, it is often the practice to approximate the desired amplitude response and subsequently to correct the phase response with cascaded all-pass two-ports. It is, however, possible to form polynomials so that in a given band of frequencies, both amplitude and phase response can be approximated with any desired degree of accuracy.

The frequency band over which the approximation is to hold is normalized to be the band $0 \leqslant \omega \leqslant 1$. The problem can then be formulated as follows:
A given complex function $F(j \omega)$ is to be ap-
proximated in the stated band by an nth order Hurwitz polynomial. Since the roots of this polynomial $F^{(n)}(p)$, where p is the complex frequency variable, must have negative real parts, the angle of $F(j \omega)$ must increase monotonically with increasing frequency and the locus of $\boldsymbol{F}(j \omega)$ must encircle the origin $n / 4$ times where n is the order of the approximating polynomial. If ϕ_{0} is the angle of $F(j), n$ is chosen by the rule
where the inequality is used for $n>6$.
According to the scheme mentioned below, m points on the complex locus $F(j \omega)$ are chosen and it is desired that the approximating polynomial exhibit least squared error property. Using the substitution
the approximating polvomial can be written as
 where the cerefficients a_{k} are real for even values of k and imaginary when K is odd. While these coefficients can be evaluated analytically by expanding the real and imaginary parts of $F(j \omega)$ in fourier series when I^{\prime} is known analytically, the schedule type method of Fourier analysis is well suited to this problem. The scheme for choosing the m points mentioned above consists then of calculating $F\left(j_{11}\right)$ at the radian frequencies

$$
k=(\cdot \sin (1: \pi \cdot m)
$$

and the equation

$$
\begin{equation*}
F(\omega=1)=\sum_{t=1}^{*} u_{1 x}+j \sum_{k=1}^{n} a_{2 x} \tag{4}
\end{equation*}
$$

serves as a check of the numerical work
Once the coefficients a_{k} are known, the polyamial is obtained by the use of the nth order Tschebyscheff polynomial, $T_{n}(\omega)$, i. e.

$$
T_{n}(\omega)=\left(\cdots-\left(n, \cdots n^{-1} \omega\right)\right.
$$

iin Eq. 2 so that

Then, $F(p)$ is obtained by setting $\omega=-i p$ and the result is checked using the Routh criterion. In the original paper, the procedure is illusrated in detail. The function

$$
F=\operatorname{cxp}\left(\omega^{2}+j i \omega \pi / 1\right)
$$

approximated by
$f^{2(5)}=1.0: 32+4.012 p+7.3\left(12 p^{2}+(6.824 p)^{2}\right.$ $+4.317 p^{4}+0.877 p^{5}$
1 bstracted from an article by E. Schuon, Frequenz, Vol. 12, No. 10, October 1958, pp 318-323.

Characteristics

independent Electron beams

Separate vertica ond hormontal detle

FAST-RISE MAIN VERTICAL AMPLIFIERS

Passbands - de-10-30 me with Type K Units.
Risetimes -12 musec with Type K Units
All Tekironix Plug.in Preamplifiers can be used in both vertical channels

WIDE-RANGE TIME-BASE GENERATORS

Evher ime tiME BASE GENRATORS deflect either or both beams

Sweep ranges- $0.1 \mathrm{usec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm} 5$ x magnifiers increase calibrated sweep rates to $0.02 \mu \mathrm{sec} / \mathrm{cm}$.

SWEP DELAY-iwo modes of operarion.

riggered-Delayed sweep started by signal under observarion
Conventional-Delayed sweep started by delayed trigger
Delay range- 0.5 usec to 50 sec in 24 calibrated steps, with continuous calibrated adiustment between steps.
HIGH WRITING RATE
1O-KV Accelerating potential provides bright traces at low repetition
REGULATED POWER SUPPIY

PRICE, Type 555 without plug-in preamplifiers . . $\$ \mathbf{2 7 0 0}$. Includes Indicator Unit, Power Supply Unit, Scope-Mobile, $-10 \times$ atten. probes. Price fob. factory

Tektronix, Inc.

Phone CYpress 2.2811 - TWXPD 311 - Cable TEKTRONIX

TEKTRONIX FIELD OFFICES \qquad NY - Bufialo - Clevelond - Dallas - Dayton. Elmwood Parth. Ill . Endwell, Nr . Houston Lathrup Villoge, Mich - Eost Los Angeles. West Los Angeles - Minneapolis - Mission, Konsas
Ne wronville, Moss. Orlando. Fio. Polo. Allo. Colif. Philadelphia. Phoenis - San Diego TEKTRONIX ENGINEERING RERESENTATIVES: Howthorne Electionics, Portlond Oregon TEKTRONIX ENGINEERING RIDRESENTATIVES: Howthorne Electionics, Portlond Oregon Tektronix manufactures seventeen other laboratory oscilloscopes ten of which are olso available as rack-mounting instruments. Several new oscilloscopes will be introduced of the Mareh IRE Show. Be sure to see them at Booths 3027 to 3030

TIME/FREQUENCY CALIBRATOR

A Compact, Accurate and Inexpensive Frequency Standard

* Crystal-controlled fundamental frequencies of $10 \mathrm{kc}, 100 \mathrm{kc}, 1 \mathrm{Mc}$ and 10 Mc ; usable harmonics above $1,000 \mathrm{Mc}$
* High stability of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ after warm up when used with Type 1201-A Regulated Power Supply
* New crystal-mixer circuit produces and detects beats over entire 1,000 Mc range; with self-contained audio amplifier locates calibration points for r. oscillators with no additional equipment
* Internal video amplifier supplies accurately known multivibrator square waves giving time pulses at intervals of $0.1,1.0,10$ and $100 \mu \mathrm{sec}$ for triggering scope sweeps and pulse-generating equipment

Type 1213-C Time/Frequency Calibrator: \$260 Type 1201-9 Unit Regulated Power Supply: $\$ 85$

GENERAL RADIO Company

275 Massachusems Avenue. Cambridge 39. Massachusars, U. 5. A.
 1182 los Allos Ave Los Allos. Calit SAN FRANCISCO rons w Nooth Ave Oak Park ill chicaco CIRCLE 440 ON READER-SERVICE CARD

1. Any number may be installed in series to form o multi-digit
2. Addition or subtraction with remote zero reset.
3. Transmission of numbers to a remote location with or withou
4. Remote predetermining by dial or punched cards, with contoct operation at zero, with the possibility of recycling to on originally predetermined number
SODECO ITD ten or twentr-five impulse/sec. countors are compact 1% $\times 13 / 4^{n 1} \times 4 \% / a^{\prime \prime}$), rugged units suitable for fush mounting. The large eosy 'o read numbers are $5 / 32^{\prime \prime}$ wide and $13 / 32^{\prime \prime}$ high. Power requirements are low-permitting their installation in electronic circuits. Their cost is reasonable, 100.

Complete foctulteal date
dravilur presiminodiod
∞ in wide roveriloif
-10 wit the
LANDIS \& GYR, INC. 15 Woat sesh smoet. Now Yant 26 , Now Yort

MEETINGS

1959 IRE National Convention Technical Program

All A. M. sessions begin at 10:00;
P. M. sessions at $2: 30$: Eve. sessions at $8: 00$ Abbreviation Key: Waldorf-Astor Gallery (A), Empire Room (E), Grand Ballroom (G), Jade Room (J), Sert Room (Se), Starlight Roof (St). Hall (Ma),
Coliseum-Morse Hall (Mo), Marconi Coliseum-Morse
Faraday Hall (F).

Session and Number Time and Location

Audio

Contributions to Stereo Sound Reproduction (12) Speech and Circuits (20)

Automation and Control System

> Adaptive Control Processes
and Allied Systems (1)
Theory and Practice in
Russian Technology (40) Frontiers of Industrial Electronics (44

Broadcasting
Broadcasting-1 (11)
Broadcasting--1 (19)
in Broadcasting (52)

Circuit Theory
New Techniques fo
Analysis (9)
The Statistical Theory of Signals and Circuits (25
Symposium on Sequential
Circuit Theory (34)
Circuit Theory I1-Analysis
and Synthesis (41)
Circuit Theory 11 -
Applications (49)

Communications

Vehicular Communica
\qquad
Communication by HF Radio and by Wire Line (37) Communication Engineering in Broadcasting (52)

Components

Component Parts-1
Component Parts-11

Concepts

Concepts and Programs (51) Thur pm-Se

Education

Symposium: Psychology and and Electronics In the Teaching-Learning
System (29)

Mon pm-St
Thur am.St
Thur am-E

Tues am-J
Thur pm-Mo

Wed am-St
Wed pm-A
Thur am-A
Thur pm-A

Mon pm-A
Wed am-Mo
Thur pm-Mo

Wed am-J
Wed pm-J
.
Wed am.G

$L_{o c k-G R P P_{L I E R}}$

OCKING KEY FREE OOTH HANDS: Pushing automatically locks the laws Jows released in.
stanlly by pulling back on stan ly by pulling back on
the locking key.

Multi- Purpose Tool serves as:
(1) Plier
(2) Vise
(3) Wire Cut
(3) Wire Cutter
(4) Stripper
(5) Crimper
(6) Tweezer
(7) Wrench
(8) Heot Sink

New multi-purpose fool to pick up and grasp small parts for soldering or other operations; as a vise to free both hands to secure rivets; to cut small wire; to strip ONE HAND ACTION: Quick sener ustm HAND ACTION: Quick one hand ad ustment for size and lock-up leaves the other hand entirely free
New Catalog of X-N New Catalog of X-ACT
PRECISION HAND TOOLS for
INDUSTRY. FREE on request.

handicraft tools, inc. a division of X-ACTO,INC.

RHATMS ormand ive

OVER 1,200,000 IN STOCK

\qquad

CLARE TYPE 20
STEPPERS

 all merciandise is guarANTEDD AND MAY BE RE-
TURNED FOK GILI, CREDIT

Prices Usted with asterisk (") are subject to QliAntity discointa $\underset{\substack{10.9 \\ 10.49}}{\substack{\text { as } \\ \text { quoter } \\ 105}}$
$\stackrel{50-99}{\substack{50 \\ \text { over } \\ 100}} \quad 15^{15}$,

Prices subject to change without notic

SEND FOR LATEST
CIRCULAR

CIRCLE 443 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 18, 1959

GRC Be sure to see GRC of the IRE Show BOOTH 4108 made in one fast automatic operation..simple or intricate parts, high in quality, low in cost
 substantial sovings. GRC die trimmed, ready-for-use. single cority die casting rechniques offer new hortcuts in assembly product design throug our exclusive
Write for foct filled booklet Alloy Die Cospings,"includes

tiny zinc die castings

 s check Ust.NO SIZE 100 SmALL!

GRIES REPRODUCER CORP

40 Second St., New Rochelle, N. Y.
愈 CIRCLE 444 ON READER-SERVICE CARD

ELECTRONIC DESIGN BINDER

KEEPS YOUR BACK COPIES fOR HANDY REfERENCE
These strong, $123 / 4,121 / 4 \times 5^{\prime \prime}$ binders offer an easy means of filing your back copies of Electronic Design. Each binder holds 13 normal size issues, and permits substitution of magazines if desired. Cost to Electronic Design subseribers is only $\$ 3.25$.

TO OBTAIN YOUR BINDER . . . SIMPLY CIRCLE ED NO. 596 (We will bill you loter)
If you wish more than one binder, write to "Binders," Hayden Publishing Company, Inc., 830 Third Avenue, New York 22, NY, enclosing check or money order. Binders will be sent to you postpaid.

Session and Number

Computers and Data Systems
Digital Telemetering (28) Wed am-Se Electronic Computers:
Systems and Applica.
tions (33)
Symposium on Sequential
Circuit Theory
Theory and Practice in Ru Theory and Practice in
sian Technology (40) Electronic Computers: Components and Circuits
(48)
Instrumentation for High Speed Data Acquisition (54)

Electronic Devices (8) Panel: Widening Horizons in Solid State Electronics (16)

Mon pm-F Tues am-F

Human Engineering
Man-Machine System Design (45)

Thur am-Mo

Information Theory Information Theory (17) The Statistical Theory of Signals and Circuits (25) heory and Practice in Rus
sian Technology (40)

Tues pm-St Wed am.St Thur am-St

Instrumentation

Nuclear Instrumentation Techniques-1 (10)
Nuclear Instrumentation
Techniques-II (18)
Instrumentation: Devices and Circuits (47)
nstrumentation for High
Speed Data Acquisition
(54)

Interference
Radio Frequency
Interference (4)
Mon pm-Se

Land and Space
Navigation and Traffic
Control (7)
and and Space
Panel: Future Development in ${ }^{2}$. Future
Space Electronics (36
Military Electronics-Looks
Forward (43)
Communication by HF Radio
and by Wire Line (37)
Tues am-A
Tues pm-A
Thurs am-F
Thur pm-F

Management

Engineering Management Engineering Mana
Engineering Management-
II (13)
Time and Location Wed pm.St Wed pm-A Thur am-St

Thur pm-St Thur pm-F

SYSTEM FOR LES8 THAN \$3,000

- Up to 30,000 gauss
- Adaptable
- Stability exceeds $1 / 10^{5}$
- Compact

NMR instrumentation. electromagnets and power supplies.
error signal comparator . . . digital components.

- Nuclear Magnetic Resonance

HARVEY-WELLS ELECTRONICS, INC.
Research and Development Division
5168 WASHINGTON ST., W. ROXBURY 32, MASS. CIRCLE 446 ON READER-SERVICE CARD

MEETINGS

Session and Number

Medical Electronics

Medical Electronics-I (14) Tues am-Mo Medical Electronics-II (21) Tues am-Mo Panel: Future Developments in Space (24)

Mierowaves

Microwave Tubes (23) Microwave Devices (32) Microwave Theory and Techniques (39)

Military Electronics

Panel: Future Developments in Space (24)
Mitrary Electronics Looks
Forward (43)
Tues eve-St

Navigation and Traffic Control
Navigation and Traffic
Control (7)
Panel: Future Developments
in Space (24)
Mon pm.Ma Tues eve-St

Production

Production Technlques (6)
Mon pm-Mo

Propagation

Communlcation by Scatter
System (30)
Propagation and Antennas1 (38)
46)

Antennas-ll (46)
in Broadcasting (52)
Antennas-III
Tues pm-F Tues pm-F
Wed am-F Wed am-F Wed pm-F

Wed am-Mo
Wed pm-Ma Thur am-Ma

Thur pm-Mo Thur pm-Ma

Radio and TV Receivers

Speech and Circults (20) Radio and Television Receivers (26)

Tues pm-Se Wed am.A

Reliability

Reliabllity Techniques (22) Mathematical Approaches for Tues pm-Ma Wed am-Ma

Russian Technology

Theory and Practice in Russian Technology (40) Thur am-St

Telemefry

Digital Telemetering (28) Wed am-Se

Ultrasonics

Ultrasonic Engineering-I
Ultrasonic EngineerIng-II
Thur am-J
(50)

Thur pm-J
Writing and Speech
Engineering Writing and Speech (3) Mon pm.J

Now enjoy totally new speed, simplicity and accuracy in measuring and optimizing radar receivers and components, and making related measurements involving noise figure. Tasks previously requiring hours of professional engineering time now can be done in minutes by non-technical personnel. Receiver performance often can be improved over the best adjustment ever before possible. Frequently, receiver improvement equals doubling transmitter output. With accurate alignment simplified, equipment is better maintained and peak performance obtained regularly.

Again throughout 1959, a parade of

Figure Instruments

TWO NOISE FIGURE METERS

- mULTI-FREQUENCY; UP TO 5 SEPARATE INTERMEDIATE FREQUENCIES
- SPECIFY I-F'S YOUR SYSTEMS REQUIRE
- DIRECT READINGS, "NON-TECHNICAL" SIMPLICITY

THREE NOISE SOURCES

- I-F, VhF AND WAVEGUIDE NOISE SOURCES

SPECIFICATIONS
Model 340 B Noise Figure Mete
Depends on norse source used
infinity, with vhi and If Noise Sources.
Permits low values to be read on sensitive
external meter

Gas Tube Scale, 05 db 10
-60 to -10 dbm (noise source on Corre-
sponds to gain between noise source and
hi or Noise Source Appror 50 to 100 db
vhe of If Noise Source. Approx 50 to 100 db
Waveguide Noise Source. Approx 40 to 90 db
30 and 60 MC. Any two trequencies between
and 60 MC on special order
MC minimum.

Input Impedance: 50 ohms

 Price: $\$ 7700.00$ (rack mounNote This instiument is available in the U.SA and Canada only
Model 342A Noise Figure Meter
Input Frequency \quad 30, 60, 70, 105 and $200 \mathrm{MC}, 30 \mathrm{MC}$ and any
four other frequencies between 38 and 200
MC are available on special order
Price: $\quad \$ 80000$ (rack mount).
iNote: This instrument is available in the U.SA. and Canada only Data subject to change without notice. Prices 10 D factory HEWLETT-PACKARD COMPANY

S189K page mill road - palo alto, california, u s Cable hewpack - davenport 5.445 field representatives in all principal area

major new instruments from

TWO NEW RCA "FIRSTS"

0.6-watt heater-power Vidicons

RCA-7262 for Moderate Environmental Conditions

Lowest heater-power Vidicons in television today, these new short-length types are opening a new era in compact tran sistorized TV camera designs. Only 5^{18} inches long. these re markatle camera tubes operate with only 0.6 watt of heater power-actually one-third less than any other commercial type Vidicon. Both types feature fast cathode warm-up time. And thanks to a closely controlled photoconductive layer. both types proride pictures with uniform background-and consistent performance from tube to tube
RCA-i263 is for use especially in new TV cameras designed for operation under severe environmental conditions involv-

ing shock. vibration. humidity, and altitude. This Vidicon type is tested in combination with associated components under environmental conditions according to the techniques of military specifications MIL-E-52i2B and MIL-E-5400
RCA-i262 is for use in new, compact camera designs for industrial and broadcast applications-where environmental requirements are moderate.
Want more details on these remarkable low-heater-powe Vidicons? Just call your RCA Field Representative. Or. for comprehensive technical data on either or both types, write to RCA Commercial Engineering. Sec. C-18-R2. Harrison. N. J.

RADIO CORPORATION OF AMERICA
Electron Tube Division

Marrlson, N. J.

[^0]: National Company, Inc., Malden, Mass.

[^1]: Visif the RCA exhibition at the I.R.E. Show, Booths 1602-4-6, 1701-3-5-7.

