\boldsymbol{J}

Epon resins are the number 1 choice for potting, laminating, sealing and encapsulating, because they provide an almost perfect combination of electrical and physical properties.

Potting and Encapsulating. Epon resins possess outstanding adhesive qualities . . . form strong bonds to metal and glass. They assure an air-
tight enclosure for delicate components and vacuum tubes. Even when exposed to solder bath temperatures, Epon resin retains its dimensional stability.
Sealing. Epon resin-based insulating varnishes and potting compounds provide excellent moisture sealing. They offer outstanding resistance to
solvents and chemicals even at elevated temperatures.
Epon resins also produce base laminates of superior dielectric properties when laid up with inert fibrous fillers. These laminates can be sheared, punched, drilled, and bath-soldered.

For complete information on Shell's family of Epon resins, write us now.

SHELL CHEMICAL CORPORATION
CHEMICAL SALES DIVISION
Allanta - Boston - Chicago - Clevelond • Detroit - Housion • los Angeles - Newark • New York - San Francisco - St. Louls
IN CANADA: Chemicol Division, Shell Oil Company of Canada, limited, Montreal - Toronlo - Vancouver
\qquad

SEP 151958

SUBSCRIPTION POLICY

ELECTRONIC DESION is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering title, your company's main products, and description of your design duties. The letter must be signed by you personally.
ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECES SITATES A RESTATEMENT OF THESE QUALIFICATIONS. Subscription rate for non qualified subscribers- $\$ 15.00$ for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y

CONTENTS

Editorial
Behind The News Washington Report Features

21
Can We Learn From The Russians?
5 Computer Simulation Speeds TV, Speech Research
14 Wanted: Research Ideas For Tubes and Parts
22 Electronically Controlable Bandpass For I-F Am plifiers, G. W. Clevenger
26 Design Curves for Stabilizing Transistors With Thermistors, T. R. Nisbef
30 How To Use Pulsactors, Thyractors, and Transactors, H. E. Thomas

34 New Digital System
36 Fluorochemical Cooling, L. K. Kilham, Jr., R. R. Ursch, J. F. Ahearn

40 Variable Speed Tape Drive
42 Airborne Electronic Transformers, G. R. Carl, R. A O'Connor

44 Power Dissipation In Class B Circuitry, C. F. Wheatley

50 Instrumentation System Design, E. F. Kiernan
Background for Designers 46 Parabolic Reflectors, A. S. Kramer
Design Forum
Engineering Dafa

Ideas for Design
Russian Translations
126 Nonlinear and Parametric Phenomena In Radio Engineering, Part 1, A. A. Kharkevich

German Abstracts
132 What The Russians Are Writing
142 Analog Solution of Mathieu Equations
144 Frequency Response of Cut-Off Attenuators
144 Modulated Light
Departments

16	Letters	114
18	Matents	
54	New Products	124
Report Briefs		
112	New Literature	146
Standards and Specs		
		Careers Section

150 Adverlisers' Index

ELECTRONIC DESIGN is published bi-weekly by Hoyden Publishing Company, Inc., 830 Third Avenue, New York 22, N Y.. T. Richard Gascoigne, President; James S. Mulholland Jr., Vice.President \& Treasurer; and David B. Landis, Secretory. Printed at Hildreth Press, York. N. Y. Copyright 1958 Hayden Publishing Company, Inc. 30,000 copies this issue. CIRCLE 2 ON READER-SERVICE CARD $>$
ElECTRONIC DESIGN • September 17, 1958

Type	Punch through max.	fab ave. Mc	$\begin{gathered} H_{r E_{1}} \\ \text { ave. } \\ \mathrm{I}_{\mathbf{C E}}=1 \mathrm{~mA} \\ =-0.25 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{I}_{\mathrm{co}} \\ \text { at }-12 \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} n_{0}^{\prime} \\ I_{c}=-1 \mathrm{~mA} \\ \mathrm{ohms} \end{gathered}$	$\begin{gathered} C_{o b} \\ v_{c:}=-6 v \\ \mu \mu 1 \end{gathered}$
2N658	-24	5	50	40	2.5	60	12
2N659	-20	10	70	55	2.5	65	12
2N660	-16	15	90	65	2.5	70	12
2N661	-12	20	120	75	2.5	75	12
2N662	-16	8	30 min .	50	2.5	65	12

Typical values at $25^{\circ} \mathrm{C}$ unless otherwise indicated
These new PNP Germanium Computer Transistors made by Raytheon's reliable fusion-alloy process add to the already comprehensive line of Raytheon Reliable Computer Transistors which include several in the Submin ($0.160^{\prime \prime}$ high, $0.130^{\prime \prime}$ dia.) package. Write for Data Sheets.

aAYTHEO. SEMICONDUCTOR DIVISION

Silicon and Germanium Diodes and Transistors. Silicon Rectifers
Newion, Mass \qquad .55 Chapel St., Blgelow 4.7500 Now Yorks. \qquad 589 Fifm Ave Plaza 93000 Chicages 9501 Grand Ave., Franklin Park, NAtional 5.6130 Los Angeles: 5236 Santo Monica Blvd., NOrmandy 5.4221

STAFF

Editor	Edward E. Grazda
Managing Edifor	J. A. Lippke
Asseciate Editors	L. D. Shergalis G. H. Rostky
Assistant Editors	T. E. Mount D. S. Viebig L. N. Tolopko M. M. Robinson B. Patrusky A. E. Takacs F. Muehleck T. J. KobyLarz
Contributing Editors	S. H. Hubelbank J. G. Adashko E. Brenner B. Bernstein
Editorial Assistants	M. S. Buckley D. M. Zuckerman J. R. Feder
Ant Director	S. Sussman
Asst. Art Director	R. A. Schulze
Preduction Manager	T. V. Sedita
Asst. Pred. Manager	M. P. Hedrick
Production Assistant	C. D. Palmer
Business Manager	M. C. Young
Circulation Manager	N. M. Elston
Asst. Circ. Manager	A. C. Lovell
Reader Service	J. Medina

CO-PUBLISNERS
T. Richard Gascoigne

James S. Mulholland,

ADVERTISING

 REPRESENTATIVESAdvertising Sales Manager

> Bryce Gray, Jr.

Now York: Owen A. Kean
830 Third Avenue Robert W. Gascoigne Robert W. Gascoigne Richard Porker James P. Quinn Charles C. Wadsworth

Chicage: Thamas P. Kavooras 664 N. Michigan Ave. Berry Conner,
SUperior 7.8054 Fred T. Bruce SUperior 7-8054
Los Angeles:
5720 Wilshire Blvd.
WEbster 8.3881
Southeastern:
2808 Middle River Dr
FI. Lauderdale, Flo
LOgan 6.5656
Lendon, W. 1:
24 Baker Street
England

BEHIND THE NEWS

With this issue, we are beginning a more comprehensive news department for the design engineer. Each major development will be probed for significance, implication and application. We're out to get the design news "behind the news." Our new format will permit a more cohesive and attractive presentation.

Computer Simulation Speeds TV, Speech Research

Use of general purpose digital computers in the simulation of new coding and transmission devices shows promise of accelerating and broadening speech and television research, according to scientists at Bell Telephone Laboratories. The simulation techniques also promise to reduce greatly expense and time lags, and thus make it easy to investigate a large number of approaches to coding and transmission problems.
In speech research, speech is sampled; each sample is quantized into 10 bits or 1024 amplitude levels and delivered to a magnetic tape recorder. These coded samples are recorded in seven parallel tracks, with 200 characters to the inch of tape. These tapes are then fed into the computer, where they are processed according to pre-assigned programs based on the coding or transmission scheme being investigated. The processed signals are then re-recorded, decoded, and played back for analysis and listener evaluation.

Computer memory requirements for speech processing are severe due to the large amount of data generated by even a short section of speech. Rapid access memory units must have a capacity of several seconds of speech to be useful. A speech transmission scheme known as the "Extremal" method, studied by simulation at Bell Labs, illustrates the advantages of the new technique. In its simplest form, only the extremes, or peaks and valleys, of a speech wave are sampled. The amplitudes and time of occurrence of these points are then transmitted, instead of a detailed representation of the entire wave. At the receiver, an approximation of the speech wave is generated by interpolating a suitable mathematical function between these points.
Listener evaluation of the simulated speech produced in initial tests showed that intelligibility is high-above 90 per cent sentence intelligibility-but that the
(continued on page 6)

Speech input from the tape recorder to the analog-digital converter in the background is checked (above). Photograph is made (below) of TV picture reproduction after computer simulation.

Raytheon - World's Largest Manufacturer of Magneitrons and Klystrons

550 Mc

60,000 Mc

BEHIND THE NEWS

quality is somewhat below that of commercial telephones.

Reports so far indicate that a to al of five minutes of speech was $s \backslash n$. thesized. Including "de-bugginy" about three hours of computer tine was expended at a cost of $\$ 15 \%$. About four man-months of time was spent, partly in programming, but mostly in determining what to investigate. These figures are substantially less than required to build an actual laboratory model to perform the same function, roughly 1-1/2 man-years and $\$ 50,000$ in equipment costs. Digital simulation has been applied to a number of other speech problems.

Picture coding research has also been carried on by computer simulation. In order to hold machine time and memory requirements to a reasonable level, the system uses an input picture of 100×100 elements, corresponding to an area about $1 / 25$ that of a conventional TV frame. This 10,000 element "window" has proven to be of sufficient size to allow critical evaluation of the processed images. For typical coding schemes, the total computer time required is 5 to 10 seconds per picture.

A magnetic tape recording of the video signal is prepared by scanning a square picture with 100 scanning lines in 2.4 seconds. Each picture dot is quantized to 10 -bit accuracy, providing 1024 amplitude levels, and recorded in the same form as the speech samples described above. The resulting signal is rooted, mixed with a synchronizing waveform in the conventional manner, and band limited to 2500 cps.
In playback, the computed picture signal is converted back to analog form. It is then passed through a low-pass filter, and displayed on a monitor with two kinescope tubes. One of these tubes has a show phosphor for direct view ing, while the other has a fast phosphor for photography.

1 coding scheme which may have widespread si nificance in TV transmission, known as "Predictive Quantizing," has been studied by both sinulation and conventional methods. This scheme takes advantage of the relatively low level of viewer perception during periods of scene change or motion, and in areas of picture confusion, these being the only regions in which predictive coding systems make significant errors. The method involves quantizing the difference between the original continuous signal and a predicted version of that signal. It employs fine quantum steps for small errors, and coarse steps for large errors, where the predictor and the viewer are surprised. This tapering of steps in the quantizing staircase allows the use of a smaller number of total levels, and thus reduces the channel capacity requirements.
A limiting case of predictive quantizing, in which the predictor is simply a one-sample delay, has been tested both with the simulation equipment described and with standard $525-$ line television, and found to afford a picture not significantly degrated from the original, and requiring only three bits per picture dot

Ice Glow By Cerenkov

Under the impact of two million velectrons from a high-voltage Van de Graaff accelerator, a 50 lb block of ice gives off a visible glow known as Cerenkov radiation. The radiation detector developed by Westinghouse, Pittsburgh, Pa., uses an "electric eye" to detect the same glow in ordinary water from which the int nsity of the atomic radiation causing the glow is reasured. For protection, the photograph was taken \dagger rough a circular three-foot-thick window containing a t insparent solution of zinc bromide. The window is e ibedded in the equally thick concrete walls surroundin \mathfrak{z} the Van de Graff machine.

LEACH RELAY

A division of

BEHIND THE NEWS

Roundup of recent developments in microwave amplifiers.

etric

Amplifier Offers 30 db Gain, Noise Figure 1 db

ifier

Promises 1000 to 10,000 mc Operation

Inside view of fast wave parametric amplifier.
certain amount of random motion. The fast wave component of this motion is given up to the input coupler and transformed into heat in the resistive portion of the signal source. At the same time, the beam absorbs signal energy and carries it in the form of a fast wave, thus inlerchanging beam noise and input signal. Spiraling electron motion which carries he signal is amplified during passage
through the quadrupole electrode, a structure that resembles the stator of a four-pole generator. A highly non-homogeneous transverse electric field of four-fold symmetry is produced. The quadrupole is connected to the "pump" which supplies about 10 mw at about 1120 mc .
One component of the alternating nonhomogeneous field pattern in the quadrupole appears to revolve in synchronism with the spiraling electrons. This causes the radius of their orbits to increase or decrease exponentially, depending upon their phase at the instant of entry. When the two processes are averaged, exponential growth always outweighs exponential decay and gain results. The gain for which the pump power is adjusted has no effect on the bandwidth. The tube measures four inches in length.
Application has been made for patent rights and commercial production will be undertaken "as rapidly as possible."
of a watt, compared to a hundred watts or more for present conventional microwave amplifiers. Moreover, extremely low temperatures needed in maser operation and magnetic fields for traveling wave tubes are not required by these solidstate devices. The amplifier can be packed into a space of four cu in., permitting its ultimate use in missiles, satellites, and airborne equipment. Principal application of the new technique lies in the centimeter and millimeter wave re-
gions, where higher-frequency local oscillator power for pumping is difficult to obtain.
K. K. N. Chang and Stanley Bloom of the RCA Princeton Labs who developed the new technique stated: "The parametric amplifier principle has been placed in an entirely new light, and the technique promises to push back the present practical frequency and signallevel limitations to microwave communications."

TWT Maser Operates at 25 mc ; Shows 23 db Forward Gain

Bell Laboratories developmental travling wave, non-regenerative maser amplifier operates at 25 mc with a forward gain of 23 db according to test reports. This maser offers high stability and unilateral gain. At 25 mc , a reverse loss of 29 lb was noted. The non-reciprocal device is quickly tunable over the 350 mc banilwidth, a noteworthy figure com-
pared to cavity type masers which are limited in bandwidth and gain by the microwave cavity circuit. Maser material used in the new device is ruby. Expectations are that this amplifier will be initially used in ground based equipment.

This development is another result of Bell Labs intensive investigation of microwave amplifiers.

high temperatures . . . up to $125^{\circ} \mathrm{C}$ and excessive vibrations

 2000 cps at 20 g

 2000 cps at 20 g}These now Wheelock Crystal Case relays will solve all your space problems! Wheolock engineers designed these precision-made relays smaller than small about the size of a quarter... lighter than lightwoight... approximately .35 oz. . . . and sensitive anough for milli-second operation, yot so rugged to withstand rigid military environmental specifications. For consistent reliability, extended life and noverfailing performance, specify Wheelock Crystal Case rolays for your electronic applications. Whoolock will holp you solve your relay prot!ams . . . they will glady recommend the relay ro suit your needs.

consistently high reliability

inherent in design and performance

Guaranteed: around-the-clock performance for five years

Freedom from worry about major maintenance or extensive replacement for five full years. That's the guarantee given with every Lambda power supply-the first such guarantee in the electronics industry. It proves the point engineers keep making in preference studies: When operating conditions make dependability a "must," they specify Lambda...
To check the full Lambda line yourself, send for the latest catalog.

BEHIND THE NEWS

Study Radiation 0

Characteristics of magnetic ma terials exposed to a radionctiv source can be measured by nev device. The instrument, a remote controlled "torque magnetomieter, is used by Westinghouse Electri materials engineers to measure and record the torque exerted on a thil disk of magnetic material sus pended in the gap of an electro magnet. As the sample of material is rotated, the torque exerted on th disk changes according to th change in magnetization of the ma terial. This is measured by th torque magnetometer and automati cally plotted on a strip chart re corder. The result is a curve 0 torque versus angular position o the disk, with respect to the dired tion of the applied field. The infor mation can then be used to deter mine the "anisotropy constants"-

Light Measure

Far more precise measurement of magnetic forces originating in side the earth and in outer space may now be possible with the per fection of a new measuring method by the Department of Commerce

A beam of light is sent through a tube containing a small quantit of vaporized rubidium. The man ner in which the light is absorbe indicates the strength of the mag netic forces. The explanation is tha the absorption of light depends on the spinning of the electrons in th rubidium molecule, and the spin it turn is controlled by the magneti forces, or field.

According to Commerce Dep officials, instruments embodyin! the principle will be simple, highl miniaturized, and capable of meas uring very small magnetic fields"perhaps one billionth of the mag netic force developed by the moto

0

Magnetic Materials

measurement of the ease with which a material can be magnetized

renote

 tometer, Electri sure and on a this rial sus natecrial d on th to th f the naz by th tutomati chart re curve o sition of e to deter :tants"
Telephone Diagnosis of

 Heart PossibleLong-distance diagnosis of heart ailments may soon be possible with the development of a 5-pound transistorized unit which transmits heart sounids and electrocardiograph signals by phone. No patient-to-phone conrections are neccssary. The trarismitter, attached to the patient, is al plied to the phone mouthpiece. At the receiving end a second unit cari es signal to another electrocardllograph machine for consultant' reading. The device was developed at the University of Kansas Medical Center.

CIRCLE 9 ON READER-SERVICE CARD -

IN GENERAL ELECTRIC'S NEW PANEL INSTRUMENTS

distinctive appearance

Clean-line design sparkles with functional new beauty-adds a distinctive touch to your finest switchboards and panels. Big border-to-border scale is framed in aluminum for better color blending. Design innovation creates the illusion of bigness, yet they fit into the same useable space as old style instruments.

EXCELLENT READABILITY

BIG LOOK styling provides up to 28% increase in scale length over types replaced. Easy-to-read numerals cannot be obscured by the slim, tapered pointer. Clear raised window allows natural light to flood scale area, keeping shadows out.

RELIABLE OPERATION

Self-shielding: Exclusive moving-magnet mechanism and the core-magnet mechanism can generally be mounted on magnetic or non-magnetic panels without special calibration.
Completely Sealed: All cases are sealed with neoprene gaskets to protect internal parts from dust, dirt, and water for extra-long, trouble-free operation. D-c movements and a-c iron-vane movement are accurate to within $\pm 2 \%$ of full scale value.

For complete information contact your nearby G-E Apparatus Sales Office or Distributor; or write for bulletin GEA-6678A, Section 582-31, General Electric Company, Schenectady 5, N. Y.

Progress Is Our Most Impontant Product GENERAL ELECTRIC

ACTUAL SIZE

Although they look bigger, these a-c and d-c unirs are actually $21 / 2$ - and $31 / 2$-inch sizes. Mounting is inferchangeable with JAN, MIL, and ASA (round) specifications.

BEHIND THE NEWS

All Quiet on Any Front With New Army Earphone

Development of an experimental electronic earphone, that shuts out loud noises which interfere with combat communications was announced by the Department of the Army.
The artificial quiet is created by adding more noise with a miniature microphone in the special earpiece to create a second noise, just as loud, but opposite in phase. This phase opposition greatly reduces the noise level. The earphones, which are expected to have many commercial as well as military uses, resulted from early noise reduction experiments conducted at RCA, Camden, N.J. and application of the concept to earphones was conceived at the U.S. Army Signal Engineering Laboratories, Fort Monmouth, N.J.

Experimental earphones contain a tiny circular microphone (lower disc) which picks up noise that leaks through ear cushioning. it then produces a second noise opposite in phase to first which cancels the first in large measure, and produces an artificial quiet.

Transistor Chart Correction

Our 1958 listing did not include many Texas Instruments Inc. and General Electric Co. types that originally appeared in our 1957 chart.

A complete listing of the missing transistors along with their characteristics will appear in the October 1st issue.

WINDABILITY
SOIDERABILITY
VARNISHABILITY
RELIABILITY...

UTTS PMELPS

- BETTER WINDABILITY -"lays in" easier.
- LOW TEMPERATURE SOLDERABILITV no damage to copper conductor.
- IMPROVED VARNISHABILITY - safer in hot varnish solvents.
* FIELD-TESTED RELIABILITY - uniquely balanced properties provide better thermal life.

Nyleze* is another example of the advanced magnet wires developed by Phelps Dodge through its Applied Research. It is a new combination of materials with highly desirable properties for use in such applications as series armatures and fields, stators, potted coils, random wound coils, toroids and other difficult winding designs. These properties suggest possibilities for cost economies and improved designs that result in better operating performance of your equipment.
*Nyleze is red in color

Japanese Atomic Clock

Uses Ammonia Gas

Second atomic clock developed in Japan again uses ammonia gas rather than the cesium beam of English and American clocks.
Although the United States and United Kingdom clocks provide far greater accuracy, this Japanese design marks the success achieved in controlling the molecular vibrations of ammonia. The announced accuracy of the British clock is two parts in 10,000 million, or an error factor of one second each 150 years. Atomichron, the U. S. product, has an accuracy of 5 parts in 10,000 million, or an error factor of 1 sec every 150 years. The Japanese clock has an error factor of one second in 50 years. Japan's first atomic clock, developed 15 months ago, had an error factor of one second in 15 years.
"American and British physicists consider ammonia gas unsuited for atomic clock use since they found the vibration frequency of the ammonia molecule was not as constant as that of the cesium atom," said Dr. George Michio Hatoyama, physicist at the Government's Electric Laboratory who developed both Japanese atomic clocks.

They found the frequency varied from time to time according to such conditions as room temperature, gas pressure, and gas purity, he explained.

The Japanese physicist learned to control these factors to get the consistency of frequency required. This latest development promises improved models in the not too distant future.

Dr. George Michio Hatoyama and his atomic clock.
the design engineers' dream becomes a reality -

AT LASTI
 A CATHODE-RAY TUBE with

SPOT SIZE: .001" MAX.*
. . . n o frills
...no gimmicks the
DU MONT K1725
cathode-ray tube

Here's super resolution for flying spot scanners and photo-recording - a cathode-ray tube with a spot size
of less than $.001^{\prime \prime}$. And best of all, the Du Mont
K1725 is no laboratory curiosity. It's a hard-working, practical, production component ready for the design engineer, requiring no super-size yokes and power supplies.

The K1725 cathode-ray tube is a five-inch,
electromagnetically focused and deflected tube, utilizing the exclusive Du Mont Extra-Fine P-16 screen for high light output at fast writing rates.
Another OUMONT:
NDUSTRIAL TUBE SALES CIRCLE 11 ON READER-SERVICE CARD

WASHINGTON \$ REPORT

Herbert H. Rosen

Wanted: Research Ideas For Tubes and Parts

A $\$ 34$ million program is about to be initiated by the Department of Defense aimed at improving electron tubes and electronic parts. Chief coordinator for the program is the Director for Electronics, J. M. Bridges, in the Office of the Assistant Secretary of Defense for Research and Engineering. The contracts for the separate projects will be awarded by the military services. Below is shown how the funds, in millions, are apportioned among the three services.

	Army	Navy	Air Force
Tubes:	$\$ 3.536$	$\$ 1.631$	$\$ 2.093$
Parts:	1.915	1.770	1.840

Bridges' office is seeking new ideas for tubes and parts. A thorough study is being conducted of existing projects by the advisory groups on electron tubes and electronic parts. These advisory groups will make the next-to-final deci sion on projects submitted to them by the military services or by private companies with ideas needing support. Final approval for each project of course, rests with Bridges and his staff.

This program has only recently been aug mented by $\$ 12.8$ million from the Defense Sec retary's emergency fund. However, if proven as successful as anticipated, similar amounts o money- $\$ 34$ million, total-will be budgeted for the next five years. Therefore, year-end progres reports will figure heavily in the future of the whole program.

Tacan for Civilian Planes Opposed

Opposition to the costliness of Tacan was off cially voiced recently by the Air Transport Association, spokesman for the scheduled air lines. AIA has come out strongly for a combination of VOR and a system called DMETdistance measuring equipment with certain Tacan capability. The association contends that DMET is considerably less expensive because it eliminates the need for the azimuth antenna in the Tacan system.

TM claims that by taking this position it is infurming the manufacturers of short range nal igation equipment of the future requirements of the airlines. However, being opposed to sonething, in this case, does not make ATA for something else. Its technical staff is still seeking the "ideal" navigation system. They will welcome any suggestions, whether they be doppler or conventional radar navigational aids.
Meanwhile, the major $\mathrm{R} \& \mathrm{D}$ agency concerned with the problem, the Air Modernization Board, continues its search for new ideas and equipment. Development contracts for terminal and enroute equipment systems have gone to General Equipment Laboratories. And the AGACS-air-ground-air communications system-contract has been awarded to RCA. Twelve other companies share in $\$ 12.6$ million worth of AMB contracts. Very shortly another contract will be awarded for the development of a system to aid in ground approach and touch down of civil airplanes.
One company very much interested in this area is Bell Aircraft. This company has successfully demonstrated the use of its automatic landing system with a Boeing 707 jet transport. Previous tests with the Navy have led to the tentative acceptance of the Bell system for carrier aircraft. Obviously, an all-weather automatic landing system is possible with the technical capability at hand. Even back in 1949, the CAA demonstrated capability with its ILS. But simple economics may impose obstacles that will not be as easy to hurdle.
AMB estimates that the $\$ 6$ billion airways we have today are closed down 15 per cent of the time because of bad weather. It costs the airlines about $\$ 6$ million each year because of resulting cancellations.
However, it would cost about $\$ 900$ million to equip all of the air terminals with all-weather equipment. On top of this figure are added the costs for brick and mortar.

ARPA Discloses Projects

Roy Johnson, Director of the Advanced Research Projects Agency, recently announced the types of programs his agency hopes to carry and the money allotted to each. Among these are: Anti-ICBM, $\$ 157$ million. The Nike Zeus portion of the project is budgeted for $\$ 57$ million. Communications, $\$ 9$ million. Navigation, $\$ 1$ million. Components development, $\$ 10$ million. Satellite tracking, $\$ 17$ million. Lunar probes and associated ground scanning equipment, $\$ 14$ million. Reconnaisance satellites, $\$ 186$ million. Solid prope lants development, $\$ 20$ million. Exploratory re earch in related fields, $\$ 13$ million. Maximizin payload capability, $\$ 6$ million. And man-insp ce experiments, $\$ 50$ million.

No stoop, no squint, no painful nagging backache*

Buy this Testmobile and tilt your'scope so you can read it!

Obsoleting all previous concepts in one brilliant breakthrough, -hp-engineers have achieved the ultimate device-the revolutionary 115A Oscilloscope Testmobile. Employing the radical Supermarket Cart principle (first described 1906.by A. and P.) -hp-115A actually tilts an oscilloscope so you can read it, and lets you push it from place to place! Scope may be tilted up to 30° in $71 / 2^{\circ}$ increments; heavy ch romed tube steel construction; big, locking, rubber-tired wheels; removable bottom basket; size $40^{\prime \prime}$ high $\times 23^{\prime \prime}$ wide x 29" deep, folds for shipment or storage; lightweight, only 28 lbs., $\$ 80$.
-with thanks to our frionds at Philco and Anacin

Still further probing the Unknown, -hpengineers achieved the $-h p-116 \mathrm{~A}$ Storage Unit and 117A Storage Drawers. The 116 A is a sophisticated cube known as a "box." It holds up to 3 plug-in units for -hp-150A/AR 'scopes; prevents dust and elbows in the circuitry. Yours for $\$ 22.50$. The 116 A also holds up to three 117 A drawers which in turn hold tools, solder, components and bubble gum. -hp-117A, a modest $\$ 10$.

HEWLETT-PACKARD COMPANY
4959K Poge Mill Rood - Pole Allo, Colifornic, U.S.A.
Coble "HEWPACK" - DAvonport 5.4451

Besides Testmobiles, -hp-makes oscilloscopes, too!

-hp- 150A/AR - to 10 MC Automatic trigger, directreading; plug-ins providing dual trace or differential input; or high amplification. hp150AR (rack) \$1,200. .hp150A (cabinets) $\$ 1,100$.

-hp- 130B/BR - to 300 KC 1 mv sensitivity, similar X / Y amplifiers, direct reading, auIomatic trigger, X5 magnifier, balanced on 6 most sensitive ranges. -hp- 130B (cabinet) or 130BR (rack), $\$ 650$.

-hp- 120A/AR - to 200 KC Sweeps $1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.5 \mathrm{sec} /$ cm; X5 sweep magnifier, automatic trigger, high sensitivity calibrated vertical amplifiers, regulated power supplies. -hp- 120AR (rack mount, $7^{\prime \prime}$ high) or 120 A (cabinet) $\$ 435$.

Data subject to change with. out notice. Prices f.o.b. factory
over 300 instruments for measuring speed and accuracy

o 0
 0

NEW HERMETICALLY SEALED HIPERMAG CORE

 PERMITS ENCAPSULATING, IMPREGNATING, OTHER PROCESSING . . . WITH NO CHANGE IN MAGNETIC VALUES
Abstract

Newest development in cores for magnetic amplifier applications is the Westinghouse Polyclad hermetically sealed Hipermag core. Polyclad insulation is applied over a new specially designed aluminum box housing the core. This hermetically seals the core and allows encapsulating, casting or impregnatingwithout altering magnetic properties . . . Eliminates magnetic amplifier rejects caused by changed magnetic values. Tested for all environmental conditions, Polyclad insulation is suitable for high temperatures, protects against humidity and high-voltage stress, provides high insulation strength, with breakdown values up to 3000 volts.

Polyclad coating eliminates the need for core taping; makes possible reduced insulation cost. Rounded corners prevent shorting wire to core, allow winding directly on the core.

These cores are supplied in special sizes or in standard AIEE sizes, in one-, two-, or four-mil oriented nickel-iron alloy Hipernik ${ }^{\circledR} \mathrm{V}$ and in one- or two-mil 4-79 Permalloy. Complete listing in Westinghouse publication 44-720.
Hermetically sealed Hipermag cores are available in production lots with normal delivery. All Hipermag cores are tested - by Roberts constant-current, flux reset technique, or to your specifications.
For more information about Polyclad hermetically sealed Hipermag cores and other Hipersil® or Hipermag cores, call your Westinghouse representative . . . or write Westinghouse Electric Corporation, P.O. Box 231, Greenville, Pennsylvania. *Patent applied for
rou can be sure....fris Westinghouse

Psychiatrists Plagued by "Read Papers", Too

Editor, The American Journal of Psychiatry
"Listening to papers" is one of the many trials and tribulations of a psychiatrist-by far not the least; and the pages of professional magazines are customarily reserved for the very same people who "read papers." Time and again I have sworn to myself never to attend another meeting or convention and never to listen to another paperever! But I end up like the man who stated: "To stop smoking is the easiest thing in the world-1 have done it hundreds of times." And so, sooner or later, I find myself at the receiving end of a "paper."
I always enjoy listening to a man who has something to say. But if a speaker has something to say-why does he not just go ahead and say it -why has he "to read a paper?" Psychiatrists who habitually inquire into the "why?" of human behavior seem to shun inquiries into the motivation of "paper-reading"-a rather amazing fact if one considers the usual intensity of their professional curiosity.
"Speaking" is one thing, "reading a paper" is something else. The former has its place as a valuable experience in interpersonal relationship; the latter is a rather irrational act, considering that the listeners are most likely all able to read themselves quite well, illiteracy being rare among psychiatrists. If the "reader of a paper" had the voice and the skill of a Charles Laughton, listening might be pleasurable. More likely, however, the reading is a stammering, fumbling, or monotonous production of complicated sentences, constructed for careful reading in one's own studio, but not intelligible at the high speed at which they are thrown at us at the meetings.
A few papers are rich in value-most of them are not. I have listened to many papers of considerable length, the pertinent content of which could have been summarized in a few sentences.

Others leave us with the strong impression that the speaker had "to give a paper" for some reason
or other, so that the reading of the paper is an end in itself and no longer serving any other purpose.
What does the listener get out of his attendance? A short while ago I attended a lecture given to teach techniques in group therapy. ifter the lecture one of my co-listeners, duly imressed by the famous name of the speaker, felt moved to give vent to his admiration of the performance. Since I myself felt disappointed I raised the question "what, if anything, did we earn?" Only then did several others dare to show their own disappointment. Only then did one after the other object that we had heard nothing but well known generalizations. The eulogist withdrew behind the statement, that he had enoyed the strong feeling: "Here is a man who is master of a difficult technique!" I felt I did not ave to come from far away to convince myself that some men master a technique well-I was ware of that fact. I came to learn .
Rarely do we meet a speaker who "speaks." If that happens it is an enjoyable experienceprovided he has something to say. Even if he occasionally should get mixed up in his syntactical constructions, if he has occasionally to stop and think for a moment, or to check his short notes before going on, even if he has sometimes difficulty to find the right word, I still prefer him a thousand times to the reader of a smooth paper; and so I think would most of us. For spoken language is the natural means of oral communication, as written language is designed to be read. Thoughts that a man can express in free speech can usually be understood by attentive listening; papers sometimes remain obscure even when one reads them slowly.
Why then are such "speakers" so rare? It seems that few men can handle their anxiety in facing an audience and that a rigidly fixed and prepared manuscript is their only defense.
There is no doubt a comer in Heaven reserved for us, the listeners, a corner where no papers are allowed to be read

Dr. Hans S. Unger Supervising Psychiatrist Buffalo State Hospital Buffalo, N.Y.

- Shortly after our editorial decrying the inefficiency of paper reading at conventions, we chanced to see the Convention issue of The American Journal of Psychiatry and Dr. Unger's discerning comments. We asked permission to reproduce them. In granting permission, Editor Farrar included this quote by the late science hi torian, George Sarton: "In my opinion, the re ding aloud of a written paper is a cardinal sin as deplorable as meretricious writing; it is a wi ked procedure, utterly contemptuous of the aulience and unfair to it."

Cominemalal Comnector TAPER PIN TERMINAL BLOCKS

MACHINE TAPERED FOR PRECISION

... MOLDED IN FOR RUGGEDNESS

Here is an improved terminal block design with permanently molded-in and precision reamed taper pin receptacles for maximum durability These receptacles maintain secure electrical and physical contact with AMP Series " 53 " solderless taper pin. The body is molded of high impact, glass reinforced Alkyd 446 (MIL.P-14E, Type MA160) Other molding materials on request. Taper receptacles are brass, gold plated over silver for low contact resistance.
Continental Connector can supply all types of taper pin blocks and connectors for conventional wiring and printed circuitry in any combination of feed-through shorting or non-shorting terminals. Our engi neering department is prepared to cooperate in solving your connector application problems. Write today for technical information.

4 DUAL TERMINAL CONNECYOR FOR SOLDERLESS WIRING 15 confact ... series 600-65

Developed primarily for Computer applications requiring dual solderiess wiring leads for each single contact. The right angle plue is dip soldered to the printed circuit board and matod with the dual terminal socket. Socket terminals are procision machine taperad for AMP "53" solderiess wiring. Contact rat 500 volts RMS.

Manufactured by Continental Connector Corporation, Woodside 77, M. Y.

electronic components

Exclusive Soles Agent DeJUR-Amsco Corporation 45-01 Northera Bombvard Long Island City I, N. Y.

MEETINGS

Calender of Events

Sept.
15-19 Instrument-Automation Conf., Phila., Penna. 22-24 Symposium on Telemetering, Miami Beach, Fla. 24-25 Industrial Electronics Conf., Detroit, Mich. 29. New York High Fidelity Show, New York Trade Show Oct. 4 Building

Oct.

1-2 Conf. on Radio Interference Reduction, Chicago 1-2 Engineering Writing and Speech Symp., N.Y.C. 6-8 Symp. on Extended Range and Space Transmission. Washington, D. C.
8-10 IRE Canadion Convention, Toronto
13-15 National Electronics Conference, Chicago, III.
20-22 Symp. on Aeronoutical Communications, Utica, N. Y.
27-29 IRE Radio Fall Meeting, Rochester, New York
27-29 Eost Coast Aero. \& Nav. Elec. Conf., Baltimore 30-31 Electron Devices Meeting, Washington, D. C.

Nov.

17-18 IRE Region 3 Convention, Atlanta, Georgia
17-20 Conf. on Magnetism and Magnetic Materials, Phila., Penno.
19-21 Elec. Tech. in Med. and Biology, Minneapolis

Dec.

2-4 Reliable Electrical Connections, Dallas
3-5 Eastern Joint Computer Conf., Phila., Penno.
3-5 Symp. on Global Communications, Florida

Sept. 24-25: 7th Annual Symposium on Industrial Electronics

Rackham Memorial Auditorium, Detroit, Mich. Sponsored by PGIE and AIEE. Address queries to Willam R. Thurston, General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass.

Sept. 29-Oct. 3: ASTE Semi-Annual Meeting and Western Tool Show

Shine Exposition Hall, Los Angeles, Calif. Sponsored by American Society of Tool Engineers.

ELECTRONIC PRODUCTS

The long experience of The Carborundum Company in the field of ceramic materials bonded at high temperatures, and the specialized facilities of its Globar and Latrobe plants make possible a wide range of quality products for the electronics industry

CERAMIC RESISTORS

GLOBAR ${ }^{\text {n }}$ resistors are supplied in three broad classifications as described below. Wide experience with many specialized applications insures you of expert engineering assistance.

FIXED, NON-INDUCTIVE RESISTORS

gIOBAR fixed, non-inductive resistors are available in three rypes and in a range of physical sizes, shapes and compositions. Type A, carbon composition body temperature coefficient, low voltage coefficient and normal dissipation capability. Type B, silicon carbide body has a moderate temperature coefficient (negative), moderate voltage coefficient (negative) and normal dissipation capability. Type $\mathbf{c x}$, silicon boron body has a low temperature coefficient (positive), practically zero voltage coefficient and exceptional dissipation
capability. Write for Bulletin GR-1.

VARISTORS

GIOBAR Type BNR varistors are nonlinear (voltage-sensitive) resistors for voltage control and stabilization applications. They are made from the highest electrical grade silicon carbide, ceramically bonded into disc, rod and cylindrical shapes. Flexible production facilities make possible a wide range of physical sizes, watt ratings and changes of resistance with applied voltage. For details,
write for Bulletin GR-2.

THERMISTORS

globar Types B, \mathbf{F} and \mathbf{H} thermistors are non-linear, negative temperanure coefficient resistors, available with coefficients from approximately $.3 \%$ to 5.1% at $25^{\circ} \mathrm{C}$. Disc and rod shape bodies may be manufactured in a wide range of sizes to provide desired resistance values, thermal time and dissipation constants and temperature coefficients for a variety of electronic circuits. For details,
ask for Bulletin GR-3.

Send to Cilohar Plant. Dept. CC98, Niagara Falls, N.Y.
CIRCIE 442 ON READER-SERVICE CARD

CERAMIC
TO-METAL, \&

CERAMIC PARTS AND METALIZED ASSEMBLIES

CERAMIC PARTS are made of Alumina, Cordierte, Steatite, Magnesia, Zircon and STUPALITH. These materials provide a range of characteristics hat meet practically all conditions of voltage, requency and temperature. Typical products are coil forms, insulators, vacuum-tube spacers, rubing and a wide variety of precision shapesplain, ground, metalized or assembled to indiidual specifications.

METALIZED ASSEMBLIES include terminals and other products in which metal and a special alumina are intimately bonded by an exclusive process to produce a strong, durable, vacuum. tight seal. These assemblies withstand exposure to elevated soldering temperatures for long periods. The bond is stronger than the ceramic itself. For details, urite to Latrobe Plant, Dept. DD98, Latrobe, Pennsylvania.

CIRCLE 15 ON READER-SERVICE CARD

by

Typical examples are shown here. Well-equipped laboratories, modern testing equipment and a staff of quality-conscious experienced engineers are at your service to help on your problems and to design products that will meet the most exacting specifications.

PARTS, METALIZED ASSEMBLIES, GLASSCOMPRESSION SEALS, AND KOVAR ALLOY

(ri-1i?
 GLASS-TO-METAL SEALS KOVAR AND COMPRESSION TYPES

kovar glass seals use an oxide bond between metal and glass. All components have matched thermal expansion characteristics to meet the most exacting standards of vacuum tightness, light weight and high voltage flashover requrests. These are made in all types of single terminal. multi-lead KOVAR glass seals
using tubular, solid and special formed leads. Also available are stand-off, strain relief, graded (KOvAR to laboratory pyrex), and special seals for all hermetic tealing applications.
COMPRESSION SEALS are designed to provide the strength, durability and electrical properties required for the most rugged applications. Carborundum's com pression seals are thermally pre-stressed and dimensionally controlled for ease of welding or soldering. Choice of tin-nickel-silver or gold plating for appear-
ance and corrosion resistance.
For details, urite to Latrobe Plant. Dept. DD98, Latrobe, Pennsylvania.

KOVAR ALLOY FOR SEALING TO GLASS

KOVAR is an iron-nickel-cobalt alloy especially developed to meet the requirement for the highest qualiry seals in combination with certain low expansion or hard glasses. It is easily formed. KOVAR seals readily, resulting in chemically-fused oxide bonds insuring ruggedness and permanent vacuum and pressure tightness under the most severe conditions of temper-
ature, vibration and handling.
During twenty-five years of experience many refinements in production have resulted. Stringent laboratory control insures uniform high quality and duplication from lot to lot. Among the outstanding features of KOVAR alloy are close match in thermal expansivity over the entire operating temperature range of high thermal-shock glasses. It provides ease of welding, brazing and soldering, and is capable of being readily plated with other metals, either by electrolytic or chemical methods.
Stocked in a large variety of forms and sizes-sheet, strip, rod, wire, tubing, cups, eyelets and special shapes. Technical service is available to help you solve processing and application problems.
For details. urrite to Latrobe Plant. Dept. DD\%s, Latrobe, Pennsiliania.

CARBORUNDUM

Registered Trade Mark
CIRCLE 15 ON READER-SERVICE CARD

Theme will be "Tooling for the Space Age." For more information write ASTE, 10700 Puritan Ave., Detroit, Mich.

Sept. 29-Oct. 3: Audio Engineering Society Trade Exhibit

Hotel New Yorker, New York, N.Y. Sponsored by the Society at its tenth Annual Convention. New devices and methods for the use of professional sound equipment under proper conditions for engineering appraisal. For moxe information get in touch with Sumner Hall, Amityville, N.Y.

Oct. 1-2: 2nd Annual Symposium on Engineering Writing and Speech

New York City. Sponsored by the IRE, PGEW.

Oct. 8-10: Canadian IRE 1958 Convention and Exposition

Toronto, Ont. Twenty-five sessions covering medical electronics and education, crsmic rays and microwave systems. Exhibits featuring nucleonic and electronic projects, products, and components will be displayed.

Oct. 13-15: National Electronics Conference

Hotel Sherman, Chicago, Ill. Tentative program includes sessions on transistors, servomechanisms, antennas, audio, filter design, solid state, microwaves, instrumentation, network theory, engineering writing and speech, computers, radar and radio navigation, magnetic amplifiers, engineering management, industrial electronics, television and communications. More information can be obtained from National Electronics Conference, Inc., 84 East Randolph St., Chicago 1, Ill.

Oct. 20-21: 4th National Aero-Com Symposium Hotel Utica, Utica, N.Y. Sponsored by the IRE Professional Group on Communications Systems. It will stress the requirements, progress and challenge of communications in all its phases.

Oct. 20-22: URSI Fall Meeting

Pennsylvania State University, University Park, Pa. Co-sponsors are IRE professional groups on information theory and antennas and propaga-

SIMPLE TO
 SUPER
 BREEZE SLIP RINGS MEET UTMOST PRECISION STANDARDS

When you specify Breeze slip rings, you start with these advantages: you may order custom assemblies built to the most exacting standards, or effect real economies by choosing fro:n Breeze-engineered stock items if they suit your applications. Both kinds can be depended upon for the utmost in precision and performance. As for size, Breeze offers a wide range, from small 2 -ring assemblies to 500 -ring giants.
Breeze slip rings will handle currents as high as 350 amps at 220 volts and 700 amps overload at 220 volts. Special designs are available for very high voltages, radio frequency requirements, high speed rotation types for strain gage and thermocouple applications.
If you have a problem that slip rings can solve, put it in the hands of our specialists.

Write for detailed literature.

CORPORATIONS, INC.

700 LIBERTY AVENUE, UNION, NEW JERSEY

flexible tubing

CIRCLE 16 ON READER-SERVICE CARD
 ence

Philadelphia, Pa. Sponsored by IRE, AIEE, and Univ. of Pennsylvania. Devoted to transistor circuit technology, applications and circuit techniques of a variety of solid state devices.

EDITORIAL

Can We Learn from the Russians?

If you've written anything of engineering importance, the chances are the Russians have read it-or will. They don't burden themselves with qualms about using only original thinking. If your design, your innovation, or your research can help them-they won't bother duplicating your efforts. And, if you've written a darned good textbook, they'll use that, too.

This is not accidental. It is the deliberate undertaking of a nation which, in a little over 40 years, has zoomed from semi-feudalism to the status of a leading world power. The All-Union Institute of Scientific and Technical Information of the Russian Academy of Sciences abstracts important scientific and technical papers from all over the world. It has some 2000 translators at work. They turn out an average of 10,000 abstracts a week, and translate the most important articles in full.
It is generally conceded that Russia's policy of monitoring the scientific and engineering output of the world in general, and the United States, in particular, has paid off.
Until Sputnik I, most people didn't feel it was at all important to check Russian developments. The possibility of our learning anything from the Russians was considered remote, if not absurd. But now, government and industry have become increasingly concerned with what the Russians are writing.

First Full Book Translation

We, too, have been concerned. Since 1955, we've been publishing abstracts of articles in leading Russian electronics journals. Now, for the first time, we present a full translation of a new Russian book, in serial form. Part l begins on page 126.

Nonlinear and Parametric Phenomena in Radio Engineering should help many engineers who view nonlinearity as an unavoidable evil which must be corrected for. These engineers design only on a linear basis, and correct for nonlinearities later. But there are many circuits which depend on nonlinearity-multivibrators, oscillators, switching circuits, etc. And nonlinear elements can actually improve linear system performance.

Where the few previous books on the subject reached for the system designer, the advanced researcher, or the mathematician-this one aims squarely at the electronic design engineer-and speaks his language. Information on nonlinear electronics has been available before-in scattered paragraphs, chapters, conference papers-but never in such unified and compact form.

We think this book is a fine introduction, and it helps answer the question, "Can we learn from the Russians?"

ELECTRONIC DESIGN • September 17, 1958

How to design

Electronically Controllable Bandpass For I-F Amplifiers

G. W. Clevenger
Bendix Radio
Baltimore, Maryland

Abstract

You can now change the bandwidth of an i-f amplifier merely by varying the bias of a single tube. The change in bandpass can be as high as 20 to $\mathbf{1}$ in a 30 mc i-f strip. Nor is the on-frequency gain affected. The bandpass shape assumes all intermediate shapes associated with the sharp single tuned and the flat topped, critically coupled cases. And as you will see, the circuit is easy to design.

HERE IS A variable bandpass that simplifies the design of radar and communication networks. The filter can be used in a number of circuits where the bandwidth has to be varied symmetrically around the center frequency. Obvious applications are:

- In a radar set having a choice of two or more pulse widths;
- As a replacement for mechanical devices used in certain communications receivers to vary i-f bandwidth;
- In a search receiver which must search a given band as rapidly as possible, find the desired
signal, and afterwards be insensitive to nearby distracting signals.

Operating Characteristics

A simplified schematic of the variable bandwidth amplifier is shown in Fig. 1, along with a vector diagram of the phase relationships which hold at the various points.

In the vector diagram, e_{1} is used as the reference. Assume a frequency which is on resonance for the two tuned circuits. We find e_{2} lagging e_{1} by 90 deg and attenuated by the factor G_{1}. The voltage at the plate of V_{1} is then 180 deg out of

Fig. 1. Schematic of variable bandwidth amplifier. The phase relationships at different points of the circuit are shown in the vector diagram.
phase with e_{2} or at +90 deg . The effect of the second phase shifter is to cause e_{4} to lag e_{3} by 90 deg , or make e_{4} again in phase with voltage e_{1}. The current $i_{f b}$ which is caused to flow in the direction indicated, byt the presence of e_{4} on the grid of V_{3}, constitutes a dynamic pure resistive loading across tank circuit Z_{1}. The solid lincd vectors indicate only the rcsonance condition.

Assume a frequency above the natural resonance of circuits Z_{1} and Z_{2}. The tank circuit Z_{2} is now capacitive. Therefore, e_{3} lags its former position by the angle ϕ, causing a corresponding lag of e_{4} behind its former position. The effect of the lagging current $i_{/ b}$ is as if a dynamic resistance and a dynamic inductance had been connected across tank circuit Z_{1}

As circuit Z_{1} is also capacitive, since a frequency higher than resonance was assumed, the sign of the inductive susceptance is correct to retune the circuit Z_{1} to the new higher frequency. This is the same effect as the tuned secondary interaction with the primary previously noted in the coupled circuit case. Furthermore, $i_{f b}$ is controllable in amplitude by carrying the gain within the feedback loop, that is, by varying transconductance of V_{2}. The variation of gain within the feedback loop is analogous to mechanically varying the coefficient of coupling between two tuned circuits.

One other feature of the circuit is worthy of mention. The Q of the first coil $\left(Z_{1}\right)$ sets the minimum bandwidth. Its Q should be made as high as possible, if wide excursions of bandwidth are desired. It is preferable to unload Z_{1} as much as possible by inserting a cathode follower between Z_{1} and the RC phase shifter G_{1}. Adding a small capacitor from cathode to ground on the cathode follower allows slightly more than 90 deg phase shift in G_{1}, to compensate for the slightly less than 90 deg shift in the simple RC shifter G_{2}.
Care must be exercised not to exceed the stable gain of V_{1}. As the bandwidth is narrowed, dynamic loading across Z_{1} decreases until V_{2} is cut off.

The performance of the variable bandwidth i-f amplifier is given in Fig. 2 in terms of bandwidth versus bias on V_{2}. Fig. 3 is a multiple exposure photograph of the bandpass of the circuit with several values of bias on V_{2}.

Constant Gain Feature

Referring to Fig. 1, we can immediately write the expression for the impedance paralleling Z_{1} due to feedback,

$$
Z_{f b}=\frac{1}{G_{1} G_{2} G_{m_{2}} G_{m_{3}} Z_{2}}
$$

The parallel impedance of Z_{1} and $Z_{f b}=Z_{1 p}$

Fig. 2. Bandwidth of i-f amplifier versus bias on tube \mathbf{V}_{2}.

Fig. 3. Oscilloscope pattern of i-f amplifier output, showing wide bandwidth variation with little gain variation.

$$
\begin{gathered}
Z_{1 \mathrm{p}}=\frac{Z_{1} Z_{f b}}{Z_{1}+Z_{f b}} \\
Z_{1 \bar{p}}=\frac{Z_{1}}{Z_{1} G_{1} G_{2} G_{m_{2}} G_{m_{\mathrm{s}}} Z_{2}}
\end{gathered}
$$

The gain through the variable bandwidth portion of the i-f amplifier $\left(\frac{e_{3}}{e_{0}}\right)$ can now be written

$$
\begin{align*}
\frac{e_{s}}{e_{0}}=G_{V B} & =j G_{m_{1}} Z_{1 p} G_{1} G_{m_{2}} Z_{2} \\
& =\frac{j G_{m_{1}} G_{1} Z_{1} G_{m 2} Z_{2}}{Z_{1} G_{1} G_{2} G_{m_{2}} G_{m_{3}} Z_{2}+1} \tag{1}
\end{align*}
$$

If we now assign some values to the terms in-
ElECTRONIC DESIGN • September 17, 1958

Temperature measurement posed no problems for Apollo
....and you'll have none with the MRC Universal Temperature Measuring System

When Apollo was ranging the heavens he had no temperature problems because he was God of the Sun. Today's missile engineers, being mortal men, have had to find the vital key to many temperature problems in the race to conquer space. Now... after years of development, Magnetic Research Corporation has solved these difficult problems with the Universal Temperature Measuring System. A system so reliable... so accurate... so versatile under all conditions, that it reduces the measurement of temperature to a routine procedure.

THE M R C UNIVERSAL TEMPERATURE MEASURING SYSTEM PROVIDES
Complete Channel Isolation . Wide Range Flexibility .
Versatile Pick-up Compatibility . Semi-Automatic Calibration Elimination of Temperature References *

Pacing the industry in Astro-Magnetics
MAGNETIC RESEARCH CORPORATION
3160 WEST EL SEGUNDO BLVD., HAWTHORNE, CALIF CIRCLE 18 ON READER-SERVICE CARD

TUNG-SOL POWER TRANSISTORS IMPROVED THREE WAYS BY:

NEW

Tung-Sol's new true cold-weld seal represents a major advance in transistor technology. An exclusive Tung-Sol development, cold-weld sealing increases TO-3 outline package efficiency and brings designers a threefold bonus in over-all transistor performance.
Improved thermal qualities. The cold-weld process produces a hermetic, copper-to-copper seal and makes possible a 100% copper transistor with thermal properties superior to previous high power types.
Improved reliability. Cold-weld encapsulation eliminates heat damage, "splash", and heat-caused moisture that can impair transistor performance.

Longer efficient life. Even through temperature fluctuations that cause "breathing", the cold-weld seal stays vacuum-tight, moisture-proof-result of actual integration of the copper molecules during sealing.

Tung-Sol power switches with the new cold-weld seal withstand the most rigid combination of tests given any transistor-the 100 psi "bomb" immersion test and the critically sensitive Mass Spectrometer leak test. Further, they meet all military environmental requirements. For full data on the improved Tung-Sol types . . to fill any transistor need, contact: Semiconductor Division, Tung-Sol Electric Inc., Newark 4, New Jersey.

THESE TUNG-SOL HIGH POWER (TO-3 OUTLINE) tRANSISTORS FEATURE THE NEW, COLD-WELD SEAL					IMPROVED SPECIFICATIONS OF TUNG-SOL COLD.WELDED HIGH POWER TRANSISTORS.
Type	BVCES $(\mathrm{VBE}=+1 . \mathrm{OV})$ Volss (Min)	$\begin{aligned} & \text { BVCEO } \\ & \text { (18=0 } \\ & \text { Volts (Min) } \end{aligned}$	$\begin{aligned} & \mathrm{hFE} \\ & (\mathrm{IC}=1.0 \mathrm{~A}) \end{aligned}$	hFE	Collector Dissipation @ $25^{\circ} \mathrm{C}^{*} \ldots 50$ Watts Collector Dissipation @ $55^{\circ} \mathrm{C}^{*}$... 25 Watts Thermal Resistance. $1.2^{\circ} \mathrm{C} /$ Wat Max
2N378	-40	-20	50	30	1 CbO @ VCb $=-25 \mathrm{~V} \mathrm{~T}=25^{\circ} \mathrm{C} \ldots 0.5 \mathrm{Ma} \mathrm{Max}$.
2 2379	-80	-40	50	30	1 CBO @ $\mathrm{VCb}=-25 \mathrm{~V} \mathrm{~T}=85^{\circ} \mathrm{C} \ldots .7 .5 \mathrm{Ma}$ Max.
2M380	-60	-30	70	50	Storage Temperature -55 to $+100^{\circ} \mathrm{C}$
2M59	-105	-60	50	30	-Mounting bose temperature

dicated in eq 1 and assume only on-resonance operation so that Z_{1} and Z_{2} stay resistive, a curve of gain $G_{\text {VB }}$ versus changing transconductance of tube $V_{2}\left(G_{m_{2}}\right)$ can be plotted.
Assume

$$
\begin{aligned}
& Z_{1}=27 \mathrm{~K} \\
& Z_{2}=3.3 \mathrm{~K} \\
& G_{m_{1}}=G_{m_{3}}=9000 \mu \mathrm{mhos} \\
& G_{1}=G_{2}=0.2
\end{aligned}
$$

$G_{m_{2}}$ varies from 0 to 9000μ mhos
The computed values of gain at resonance when $G_{m 2}$ is varied, Fig. 4, shows that the gain approaches 5 asymptotically as $G_{m 2}$ approaches large values.
Another important result is that even with the transconductance reduced to $100 \mu \mathrm{mhos}$, the gain through the variable bandwidth circuit has dropped only 3.81 or not quite 3 db . This result is not surprising because what is actually happening is a gain variation within a negative feedback loop.
It is desirable to vary the transconductance of the tube V_{2} to take advantage of the constant gain feature. If, however, the choice has been made to vary both $G_{m 2}$ and $G_{m 3}$ in a similar manner, eq 1 reduces to an analogous equation describing the action of two tuned, coupled circuits with a continuously variable mutual inductance.

Transfer Impedance

To make a comparison between this circuit and a double tuned circuit, the concept of transfer impedance is introduced. Transfer impedance in the latter case is defined as that impedance which, when subjected to the current which flows in the tuned primary, gives a voltage equal to that which appears across the tuned secondary.
The equivalent transfer impedance from Z_{1} to Z_{2} is gotten from eq 1 , by dividing out $G_{m 1}$ and substituting impedance forms. Then

Fig. 4. Computed variation of gain versus bias on tube V_{2}.
$Z_{1:}=\frac{G_{1} G_{m_{2}} R_{1} R_{2}}{G_{1} G_{m_{2}} G_{m_{3}} R_{1} R_{2}+1+j\left(Q_{1}+Q_{2}\right) n} \begin{array}{r}-\left(Q_{1} Q_{2}\right) n^{2}\end{array}$
The transfer impedance Z_{12} of a double tuned coupled bandpass circuit is ${ }^{2}$

$$
\begin{equation*}
Z_{12}=\frac{j S \sqrt{R_{1} R_{2}}}{\left(1+S^{2}\right)+j v \sqrt{b+2}+(j v)^{2}} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& S=K \sqrt{Q_{1}} \overline{Q_{2}} \quad K=\sqrt{L_{1} L_{2}} \\
& b=\frac{Q_{1}}{Q_{2}}+\frac{Q_{2}}{Q_{1}} \\
& v=\sqrt{Q_{1} Q_{2}}\left(\frac{W}{W_{o}}-\frac{W_{o}}{W}\right) \\
& v=\sqrt{Q_{1} Q_{2}}\left(\frac{w}{w_{o}}-\frac{w_{o}}{w}\right)
\end{aligned}
$$

For convenience we let $n=\left(\frac{w}{w_{o}}-\frac{w_{o}}{w}\right)$.
Therefore,

$$
\cdot n=\frac{v}{\sqrt{Q_{1} Q_{2}}}
$$

and the third term in the denominator of eq. 2 may be written as $j v\left(Q_{1}+Q_{2}\right)$, which in turn is

$$
\sqrt{Q_{1}+Q_{2}}
$$

equal to $j v \sqrt{b+2}$ in eq. 3 .
Similarly, by substituting the expression for v in the last term in the denominator of eq 2 we can write it as either $-v^{2}$ or $+(j v)$. 2
If we now assume a correspondence of S to $G_{m 2} G_{1}$ in eq 2 by restricting G_{1} to equal G_{2}, and $G_{m 2}$ to equal $G_{m 3}$, we can rewrite eq 2 in the same way as eq 3 . It should be noted that S in eq 3 is the only term containing K, the coefficient of coupling, assumed variable. Similarly the equivalent term, $G G_{m} \backslash R_{1} R_{2}$ is the only one with a variable term, namely G_{m}. We have therefore shown that by varying transconductances only, the exactly equivalent function to varying the coefficient of coupling between two coils has been performed. As was previously noted, however, the advantage of constant gain with varying bandwidth when only $G_{m 2}$ is varied, makes this desirable, as shown in Fig. 3 .

Roforences

1. C. B. Aiken, Vacuum Tube Amplifiers, p 168, Valley and Wallman.
2. C. B. Aiken, Two-Mesh Tuned Coupled-Circuit Filters, PrC. IRE, Feb. 1937.

Oor a free reprint of this article turn to the R_{ϵ} der-Service card and circle 388.

Today, creative engineering at Hughes is on the move to DEFEND . . . to counter the threat of aggressive action with electronic speed and precision.
Hughes in Fullcrton, California is now creating these systems for total defense:
electronic scanning radars, with beams that provide threc-dimensional protection.

DATE PROCEBEORE, which monitor the action of humdreds of aircraft and store the shifting tactical situations for high-speed assignment of defense weapons.
electronic dieplay eyeteme which present tactical information in symbolic or language form.

Also under development are new three-dimensional radar systems for installation on surface and subsurface naval vessels. Study programs have been initiated in radar, computers, displays and integrated defense systems.

To further these studies, creative engineers and physicists are now needed. These positions promise unusual reward and opportunity for growth. Inquire further . . for information write to Mr. L. C. Wike at the address at right.

HUGHES

GROUND EYETEMS
PERBONNEL SELECTION AND PLACEMENT
Hughes Aircraft Company
Fullerton, Orange County, Califormia

Design Curves for
 T. R. Nisbet Palo Alto, Calif.

Electronic Research Engineer Lockheed Missile Systems Development

Abstract

A popular contributor to Electronic Design, Mr. Nisbet again demonstrates his ability to make life easier for designers with another set of invaluable design curves. Here is a handy means of rapidly selecting thermistor values for transistor temperature stabilization.

TEMPERATURE compensation of transistors can readily be accomplished with thermistors. It is often a problem however, to select the appropriate thermistor values for the desired compensation. Using a series of curves presented here, derivation of thermistor values to counteract the variation in saturation current (I_{∞}) of germanium transistors becomes a simple matter. Silicon transistors can be accommodated to some extent in the same design curves. The thermistor curves can also be used for the compensation of many calculated or experimentally determined variations.
Variation of collector current $I_{c o}$ with temperature for a transistor (either germanium or silicon) is given by

$$
I_{c o\left(T_{1}\right)}=I_{c o\left(T_{0}\right)} \epsilon^{0.075\left(T_{1}-T_{0}\right)}
$$

Thermistor resistance is expressed by

$$
R_{T H\left(T_{1}\right)}=R_{T U\left(T_{0}\right)} \in-\left(\frac{1}{T_{o}}-\frac{1}{T_{1}}\right)
$$

where temperatures are in $\operatorname{deg} K$ and β is a constant of the material, usually valued between 3400 and 4000 .
The two exponentials are of different orders, and cannot be directly matched. It can be shown, however, that if the thermistor is placed between the base of the transistor and ground in Fig. 1,
a resistance parallel with $R_{T H}$ is required-both comprising R-but no series resistance. Some bleed current ($\left.I_{b}\right)$ is assumed.
The family of curves, Fig. 2, 3a and 3b permits a suitable combination of current and resistance ratios to be found so that the base is maintained at constant voltage, V, throughout the required temperature range. The current curves depict the combined current $I_{b t}+I_{c c}$ when $I_{b t}$ is a specific multiple of $I_{\text {co }}$ at 25 C . The thermistor curves show the combined conductance of the thermistor and shunt when the thermistor at 25 C is a specific multiple of the shunt resistance. The

Fig. 1. The thermistor forms part of R. Currents flow as in (b), so that the current in R is $I_{b e}+I_{c o}$
curves are all normalized at different levels (to facilitate comparison) and drawn on logarithmic ordinate scales, with a common temperature scale of abscissae.
Since the logarithm of current minus that of conductance equals that of voltage, the curves can be matched directly against each other. The matching process consists of placing the thermistor curves (or a tracing of the curve of interest) on top of the current curves and moving them up and down, keeping the temperature scales coincident, until a pair is found which match each other over the desired temperature range. From the ratio $I_{b /} / I_{c o s}$, the current in the branch can be determined, and from the voltage across the branch (V, Fig. 1) the combined resistance can be calculated. The thermistor ratio $R_{T H} / R_{B}$ then enables the precise values of thermistor and shunt resistance to be stated.

Example 1. A 2 N 43 amplifier (Fig. 4) with $I_{c o}=7 \mu \mathrm{a}$ at 25 C is to be stabilized from -30 C to +80 C . Comparison of the curves shows a reasonable match occurring between $R_{T H}=10 R_{s}$ and $I_{b t}=50 I_{c o}$, as shown in Fig. 5 . The current $I_{b l}$ plus $I_{c c}$ (Fig. 4) at +25 C is therefore $51 \times 7 \mu \mathrm{a}$. If a voltage of 4 v is to be maintained across the parallel branch of $R_{T H}$ and R_{S}, a combined resistance of $4 / 357 \times 10^{-6}$ ohms is required. With $R_{T H}=10 R_{B,}$, shunt of $10.2 \mathrm{k} \Omega$ and a thermistor of $\beta=3450 \mathrm{~K}$ and $R_{T H}=102 \mathrm{k} \Omega$ at 25 C are obtained.

Before calculation of specific values is actually carried out, several important details can be estimated directly from the curves if desired. By measuring the deviation against the scale on the left of Figs. 2 and 3, the matching, as shown in Fig. 5, is seen to be 10 per cent off at -30 C and +80 C , correct at 32 and $70 \mathrm{C}, 3$ per cent off at 25 C and 7 percent off at 52 C . The total current $I_{b t}+I_{c 0}$ has risen at +80 C to 1.6 times its room temperature value, or $560 \mu \mathrm{a}$. (It is assumed that the variation of $V_{b o}$ is negligible in this example.)

Effect of Mismatch

In the circuit of Fig. 4, it is probable that between base and ground the estimated voltage mismatch of ± 10 per cent could be tolerated. The same might not be true, however, if the emit-ter-to-ground voltage is fixed, since the mismatch could result in almost ± 10 per cent of $\left[I_{b t}+I_{c o}\right]$ variation in I_{b}. From Fig. 5 , this variation can be estimated at $\pm 0.1 \times 1.6 \times 7 \times 51$, or $\pm 56 \mu \mathrm{a}$ change in base current. While the nature of the mismatch is a function of the associated circuitry, its magnitude can be assessed directly from the graphs by measuring the mismatch against the logarithmic vertical scale on the left of both Figs. 2 and 3.

Fig. 2. Current curves which are superimposed on the thermistor curves (Fig. 3) to enable a matching pair to be selected for the required temperature range. Selected ratio of $I_{b e} / I_{c o}$ together with V, Fig. 1, give the 25 C value of the current in branch R of Fig. 1.

Production Spread

In the majority of germanium transistors, the production spread of $I_{c o}$ is quite broad. In a typical case, the $2 \mathrm{~N} 43, I_{c o}$ may equal anywhere from $1 \mu \mathrm{a}$ to $15 \mu \mathrm{a}$ at 25 C. Plainly, the best possible temperature compensation in such a case will leave a possible error of almost half the value that $I_{c o}$ may reach at the upper limit of temperature. A wide range of thermistor values can be found which give adequate compensation.
If, by selection or through the use of a low collector voltage, the spread of $I_{c o}$ can be restricted (in this example, say 3.7 to $7.5 \mu \mathrm{a}$ at 25 C), thermistor compensation improves.

Eight Rules for Using Graphs

The rules which follow refer to the construction and interpretation of a matching graph such as that for Example 2, Fig. 6 (below).
(1) As a preliminary guide, use the geometric mean of the production spread of $I_{c o}$ at 25 C , i.e. the square root of the product of high and low limits.
(2) By tracing or by visual simulation, superimpose the family of thermistor curves upon the current curves, keeping the 25 C verticals coincident, and find a pair which approximately match over the required tempeiature

Fig. 3(a) Curves for thermistors of $\beta=3450$ $\left(R_{o} / R_{\text {su }}=7\right)$. The selected curve gives the ratio $R_{t n} / R_{8}$ at $25 \mathrm{C}_{\text {; }}$ their parallel value is already known (Fig. 2) and their individual values can therefore be calculated.
range. Note the ratios $I_{b l} / I_{c o}$ and $R_{T H} / R_{S}$. Calculate $I_{b 2}$
(3) As in Fig. 4, trace the portion of the temperature scale which is of interest, extending it if necessary to the left to include - 30 C or the temperature at which both thermistor and current curves become horizontal. Draw the verticals representing 25 C and the upper and lower temperature limits.
(4) Using $I_{b l}$ as calculated in (2), find the ratio of $I_{b t} / I_{c o}$ at the upper and lower limits of the production spread of $I_{c o}$. Draw these in the tracing, using an arbitrary horizontal line (AB, Figs. 5 and 6) to represent the common convergence of the two curves. The area between the two curves may be shaded, as in Fig. 6, to represent all possible values of $I_{c o}$ over the temperature range.
(5) Decide from circuit considerations to what extent the permissible variation should be taken up as an increase and decrease respectively in I_{b}, and translate this into terms of the desired point of perfect match at high temperature. In most cases, the geometric mean, half way between the upper and lower limits in the tracing (see Fig. 6), will be used, so that the matching error for a transistor at one limit of the production spread will be

Fig. 3(b) Curves for thermistors of $\beta=3900$, i.e. whose resistance at +50 C is 9 times the resisiance at 0 C .
the same as that for one at the other limit.
(6) With 25 C verticals coincident, trace the thermistor curve (see (2) above) so that it passes through the point of perfect match at high temperature.
(7) Place the tracing over the log scale of Fig. 2 and, with one point at the scalemark 1, measure in a vertical direction the mismatch ratio at any temperature of interest. The mismatch at cold temperatures will normally be much less than that at high temperatures. Note that a new value of $R_{T H} / R_{S}$ may be selected, if desired, provided that the mismatch at the cold temperature limit does not exceed that at the high temperature limit.
(8) If desired, use the horizontal line of convergence of the current curves ($A B$) to repre sent $I_{b t}$, and set the logarithmic vertical scale to coincide with it. This gives a current scale, as illustrated in Fig. 6, from which $I_{b l}+I_{\infty}$ can be read for any desired temperature.
Example 2. The transistor of Example 1 is to be matched over 0 C to +110 C for an $I_{c o}$ spread of 3.7 to 7.5μ a. Referring to the rules enumerated above, (1) $\sqrt{ } 3.7 \times 7.5=5.3 \mu \mathrm{a}$; (2) $\boldsymbol{R}_{T H}=50 \boldsymbol{R}_{\boldsymbol{B}}$ $I_{b l}=700 I_{c o ;}$ (3) $I_{b l}=3710 \mu \mathrm{a}$; (4) $I_{b l}=1000 I_{c o}$ and $I_{b l}=500 I_{c o}$. The curve is constructed as in Fig. 6. Mismatch ratios are measured by placing

Keithley electrometers for every dc laboratory test

Model 610, line-operated, 59 ranges
The Keithley 610 Electrometer is a laboratory workhorse, doing the work of several instruments. It covers the extreme spans of dc voltage. current, and resistance tabulated below, and is a useful preamplifier as well. It has precise gains to 1000 , a dc to 500 cps bandwidth, and 10 -volt and 1 -ma outputs. Input resistance of the 610 is selectable from one ohm to over 10^{14} ohms. It checks its own resistance and voltage supply standards. Zero drift is comfortably within 2 millivolts per hour after warmup.

Model 600, battery-operated, 53 ranges The Model 600 is a small, portable, battery-operated sister of the 610 . Its many ranges also are tabulated below. Like the 610 , its input resistance may be varied from one ohm to over 10^{14} ohms, permitting an optimum balance of low circuit loading verus minimum pickup. Output is sufficient to drive potentiometric recorders directly, with a dc to 100 cps band-width, and zero drift is within 2 millivolts per hour. The 600 will check its own batteries; minimum battery life is 500 hours.

Need a few specials?

 Recent Keithley developments include instruments for the Navy's Vanguard, for Army research balloons, and for Air Force research missiles. Your special problem will receive a prompt reply.| MODEL | FULL SCALE RANGES | | | PRICE |
| :---: | :---: | :---: | :---: | :---: |
| | voltage | CURRENT | RESISTANCE | |
| 610 | 10 mv to 100 volts | $\begin{aligned} & 10^{-13} \mathrm{amp} \text {. to } \\ & 3 \text { amperes } \end{aligned}$ | 10 ohms to 10^{14} ohms | \$465.00 |
| 600 | 10 mv to 10 volts | $\begin{aligned} & 10^{-13} \mathrm{amp} \text {. to } \\ & 3 \mathrm{amperes} \end{aligned}$ | 10,000 ohms to 10^{13} ohms | \$380.00 |

THREE ACCESSORY probes are available to facilitate measurements and extend the measuring range to 30 kv (Model 610) or 10 kv (Model 600). A convenient accessory test shield permits rapid checks of small components. Write today for more details.

KEITHLEY INSTRUMENTS, INC.

12415 euclid avenue • cleveland 6, ohio
the tracing over the log scale on the left. It car be seen that $R_{T H}$ lying between approximately $3 \approx R_{8}$ and $65 R_{8}$, the percentage error throughout the temperature range is equal to or less than the at +110 C . (Note: 110 C , though beyond the m perature rating of the 2 N 43 , was used in order to facilitate illustration of this example.) For $4 v$ base-to-ground, at $25 \mathrm{C}, R_{T B} \| R_{B}=4 / 3.705 \mathrm{k} \Omega$, and from (2) $\boldsymbol{R}_{s}=1080 \times 31 / 30=1117 \Omega . \boldsymbol{R}_{T / 1}=$ $32.5 \mathrm{k} \Omega$ at 25 C .
Because of the inherent probable mismatcil at the upper temperature, the precise ratio of thermistor to shunt resistance in circuits such as Fig. 1 is seldom very critical. However, for match. ing a transistor of known $I_{c n}$. or for matching to a lower temperature than the 114 C used in Example 2, Fig. 5, the graphical method can supply the appropriate degree of accuracy.

Silicon Transistors

In silicon transistors, $I_{c o}$ is generally of a low value, but an additional significant temperature variation takes place in the base-to-emitter voltage. The graphs are not intended for use with silicon transistors, but if the base-to-emitter voltage change is taken into account, the same curves may be used.

Fig. 4. Typical temperałure stabilization problem (see Example 1).

Fig. 5. The selected design curves, superimposed, give a picture of the matching of Example 1. The extent of the mismatch is measured on the vertical log scales of Figs. 2 or 3.

General Use of Thermistor Curves

Calculated or experimentally derived resistance values over a temperature range can frequently be synthesized using the thermistor curves of Fig. 3. In a typical circuit, it was found that, across a $2 \mathrm{k} \Omega$ resistor, compensation ranging from α to $10 \mathrm{k} \Omega$ was required in parallel, over a temperature range from -20 C to +80 C . The conductance of the combined $2 \mathrm{k} \Omega$ and required parallel resistance at 10 C intervals was plotted on the same scales as Fig. 3(a). Sliding the plot vertically across Fig. 3(a), and keeping the temperature scales coincident, gave the nearest suitable ratio of thermistor to shunt resistance.
Experience with these curves indicates that for most transistor work, the use of a resistor in series with the thermistor is not desirable. Its effect would be to flatten the conductance vs. semperature curves at the upper temperature limits. This fact should be kept in mind for any application which may require a modification of this type.

For a free reprint of this article turn to ReaderService card and circle 389.

mize the error at the upper temperature limit. On the left is shown part of the log scale of Fig. 3(b) which was used in assessing the magnitude of the matching error.
Fig. 6. Two values of $I_{c o}$ are used (Example 2) representing upper and lower limits of production spread as the boundaries of the shaded a rea. A point of perfect match is selected to mini-

You Cant tear A 'SPEC' SHEET!

Sonotone's stereo cartridge has more than just good specs... it gives brilliant performance! More phono makers specify Sonotone for the top of their line-here's why:

Only Sonotone gives true sound without distortion...high frequency response without record cutting! Sonotone stereo gives a performance so superior you can truly hear the difference. The secret? Sonotone's four exclusive operating features:

1. Extremely high compliance.
2. Amazingly clean wide range frequency response.
3. Wide channel separation, due to Sonotone's pantagraph yoke.
4. Rumble filter to screen out vertical turntable noise.
SPECIFY...STOCK...SELL...
_ screen out yenill

ELMSFORD, NEW YORK
CIRCLE 23 ON READER-SERVICE CARD

How To Use

Pulsactors, Thyractors and Transactors

Harry E. Thomas
Federal Telecommunication Labs
A Division of IT\&T Nutley, N.J.

Pulsactors, thyractors, and transactors are gaining widespread use in pulse magnetics. A pulsactor is another name for a thyractor, which derives its name from "thyratron" and "reactor" for it combines properties of both. The transactor is a transformer, formed by adding another signal carrying winding to a pulsactor.
These devices are efficient and very reliable in pulse generators, multiplex circuits, radar modulators, and computers. They are simple. They are small. They have no moving parts and require no power supply. And they are available to handle milliwatts to megawatts.

Harry Thomas's wide experience seems to have shaped him for his present speciaity-the design of magnetic components and allied equipment. His previous experience included design of deflection components and TV studio equipment, and prior to that, receiver circuits.

THE PULSACTOR is a special type of saturable reactor-not quite like conventional ones. It may look like a transformer or toroid winding, and may have a similar schematic symbol, as shown in Fig. 1, but it's different.

In conventional saturable reactors, impedance changes are controlled by dc currents in a separate winding, and are used to vary currents in series connected loads. The pulsactor, on the other hand, provides a triple molded action during each cycle of operation.

How The Pulsactor Works

The pulsactor starts as a variable low frequency reactor. Then it becomes a switch. Finally it becomes a very small inductance in a high frequency resonant circuit.
This three moded type of operation can best be visualized with the equivalent switch diagrams in Fig. 2. Here, the pulsactor's low frequency (unsaturated) inductance is called L_{w}, its high frequency (saturated) inductance L_{s}, and its switching from L_{s} to L_{8} is pictured by single or double pole switches.

Fig. 2A pictures the pulsactor becoming a two-
pole single-throw switch with series inductance in each of the switch blades. In the switch position shown, L_{u} operates normally as a high inductance. With the switch thrown to the left, the circuit inductance between terminals 1 and 2 becomes L_{d}, which is much smaller than L_{u}

Fig. 2B shows L_{8} as an inductive switch. With the blades closed, L_{u} produces negligible shunting across L_{s} because it is so large a parallel inductance.

Fig. 3 shows the action in a simple pulsactor circuit. Sine waves excite an input resonant circuit consisting of L_{0} and C_{1} to a peak voltage. L_{0} is a linear charging reactor, followed by pulsactor $L_{u 1}$ which, when unsaturated, does not load the input tuned circuit.

At the point of peak voltage across C_{1}, the pulsactor becomes saturated and discharges the capacitor to produce a steep-sided voltage pulse. If C_{2} were replaced with a pure resistance, the voltage waveforms would continue with positive and negative charging and switching excursions as shown in Fig. 3C.

But the switching action shocks a tuned circuit into oscillation. This tuned circuit consists of pulsactor L_{81} (now in its saturated state) and the equivalent series capacitance of C_{1} and C_{2} which are connected across it. After switching, the pulsactor becomes a very small inductance. It resonates with C_{1} and C_{2} at a frequency much higher than the frequency of the input sine wave.

The unsaturated inductance may be 1000 times the saturated inductance, so the ringing frequency may be 30 times the initial sine wave resonant frequency of L_{o} and C_{1}.

Fig. 1. Schematic symbols for the pulsactor (thyractor) and the transactor.

fig. 2. Pulsactor equivalent circuits. A-as a DPST switch; B-as an SPST switch.

The circuit would continue to ring as shown in the dotted waveforms in Fig. 3E but its first positive excursion applies a sine wave across $L_{u 2}$. This ringing voltage in turn, actuates a resonant circuit consisting of $L_{u 2}$ and C_{2}.
As the voltage rises across C_{2}, and $L_{w 2}$ becomes saturated, another discharge cycle takes place in cascade with the first, so C_{2} is discharged into R by the switching action of the second pulsactor in its unsaturated conditions. The waveforms at Fig. 3E show the increased steepness of this pulse compared with the one after the first stage. These oscillations (dotted) would continue at a higher frequency than in the first part of the circuit if they were not damped by the load resistance. The output pulse across R_{L} is shown in Fig. 3F. It occurs later than the input sine wave and the first switching excursion. Since the coils associated with the initial resonance and with the first switching have returned to their unsaturated tates, their effect on later circuits and their voltage pulses cannot pass through to the output. Similar switching cycles can be repeated in successive pulsactor stages, the last of which can be made to deliver high amplitude, very narrow pulss. This compression is accomplished with constant voltage across the charging capacitors C_{1} and C_{2} and with increasingly narrow and higher amplitude pulses.
This current pulse compression ratio may be as ligh as 10 to 20 in a single stage. Thus, starting with a 2000 cycle sine wave, one half wave of , hich is 250 microseconds long, one may devel , a 25μ sec excursion after the first switching ycle, a $2.5 \mu \mathrm{sec}$ pulse after the second, and $a=\mu s e c$ pulse at the output.
(Continued on following page)

2 NEW OMMMITE Precision Resistors

 exceed Military Specificationsprovide Low Temperafure Coefficient of Resistance

NEW
MOLDED
WIRE-WOUND
POWER
TYPE
BULLETIN
153
Ohmite Molded Precision Power Resistors are exceptionally high-quality units providing excellent performance. They are wound in a single layer on ceramic cores. Temperature coefficient of resistance is low, 0 ± 20 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Tough, molded, silicone-ceramic covering-abrasion and mois-ture-resistant. Insulated units with high dielectric strength. Wide selection of resistance tolerances: $0.1 \%, 0.25 \%, 0.5 \%, 1.0 \%$, and 3.0%. Uniform size-ideal for automated assembly. Designed to meet MIL-R-26C. Maximum resistance: 3 -watt, 10,000 ohms; 5 -watt, 25,000 ohms; 10 -watt, 50,000 ohms.

NEW
METAL-FILM
TYPE

BULLETIN
155
Ohmite RITEOHM $^{\bullet}$ Metal Film Resistors feature full $1 / 4$-watt rating at $150^{\circ} \mathrm{C}$ ambient. These new units may be used at full rated wattage in higher ambients than other types of precision film resistors. Rated at $1 / 2$ watt at $125^{\circ} \mathrm{C}$. Excellent high-frequency characteristics; standard $1 / 2$ watt at $125^{\circ} \mathrm{C}$. Excelient high-frequency characteristics; standard temperature coefficient is $0 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over a wide temperature range
of $-55^{\circ} \mathrm{C}$ to $+190^{\circ} \mathrm{C}$. A T.C. of $0 \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is also available at lower cost; long term load and shelf stability. Resistance range: two sizes provide over-all range of 25 ohms to 350 K ohms. The smaller unit sizes provide over-all range of 25 ohms to 350 K ohms. The smaller unit
provides resistances from 25 ohms through 150 K ohms; larger unit

RHEOSTATS - RESISTORS • RELAYS TAP SWITCHES • TANTALUM CAPACITORS R. F. CHOKES - VARIABLE TRANSFORMERS

OHMITE MANUFACTURING COMPANY
3643 Howard Street, Skokio, Illinois

CIRCLE 24 ON READER-SERVICE CARD

Now for the FIRST TIME INEW FANSTEEL BLU.CAP

TANTALUM CAPACITORS

Developed by Fansteel to meet the current demand for a dependable, utility tantalum capacitor at prices that will fit it into almost any product where capacitor reliability in small sizes is desired.

Fansteel BLU-CAP Capacitors are inade in ratings from 1.75 to 325 mfd ., 6 to 125 wvdc .

Engineering samples are available. Full details in Bulletin 6.120.
*Trademark

FANSTEEL

FANSTEEL METALLURGICAL CORPORATION North Chicago, Illinois, U.S.A.

RELIABLE TANTALUM CAPACITORS SINCE 1930
CIRCLE 25 ON READER-SERVICE CARD

Fig. 3. Simplified pulsactor operation.

fig. 4. Magnetization characteristics and permeability of high permeability iron (dotted line) and standard transformer iron (solid).
steel (A to B). The improvement in switching is abvious.
The ratio of the steepness of the unsaturated part of the dotted curve in a typical high permeability iron compared with its flatness in the saturated region may be as high as $2000: 1$ compared with 20 or 40 to 1 for ordinary iron.
These high permeabilities make for better pulse performance and lower heating losses. Better pulse performance results from the fact that with high unsaturated inductance, the pulsactor coil may be kept small. At the same time the high frequency range of a coil is extended since It has fewer turns.
The lowered heating losses are a result of the narrow, steep-sided hysteresis curve. The small area of the loop indicates that the core generates less heat in high frequency applications. These lossis are further reduced by using very thin laminations and forming the iron into very thin lape wound cores.
Miny complex metal treating processes and a vast irray of alloys are required to produce these higl permeability irons.

21/2 Times

More Amperage at

 NO INCREASE
New FANTEEL SILICON RECTIFIERS

- Rated at 750 milliamperes yet so small in size.
- Peak reverse voltage range 50-600 volts
- Reliable performance in temperatures up to $165^{\circ} \mathrm{C}$

Write for New Bulletin 6.302
FANSTEEL METALLURGICAL CORPORATION North Chicago, Illinois, U.S.A.

DEPENDABLE RECTIFIERS SINCE 1924

SEMICONDUCTOR PLUS MICROWAVE COMPETENCE

Since 1952, Microwave Associates, Inc., has demonstrated a unique and effective effort combining solid state devices and microwave techniques. We have been the leader in the design and production of very low noise, reliable microwave mixer and video diodes to the extent that our silicon products are essential elements in almost all high performance microwave systems in use today

For your future use, programs are now in progress which will soon make available diffused junction mesa silicon varactors for microwave amplification, detection, harmonic generation and low noise duplex ing. If your microwave system planning will require a component involving sophisti cated solid state and microwave tech niques, why not avail yourself of our skilled team of physicists, metallurgists, and engineers now most active in this field.

New Digital System

solves problems in a "TRICE"

HERE'S THE fastest digital differential equation computer in the world. It solves problems in real time. The basic pulse repetition is 3 mc . Word length is 30 bits. Iteration is $100,000 / \mathrm{sec}$, regardless of problem length.
Stable sine waves up to 8000 cps have been generated by this computer, comparing with order-of-magnitude one cps for previous digital devices. In this way TRICE is the first digital computer to
operate at analog speeds. And where analog computers may produce an out put of 20 cps with one per cent accuracy, the new computer has an 0.1 per cen accuracy at its 8 kc . Reliable, too. As part of the checkout procedure e^{8} was run for two hours at 10^{5} iterations per scic-and at the end of that time no error was discernible.

TRICE-the Transistorized Realtime Incremental Computer, Expandable-

Fig. 1. Interrelation of segments of hardware required to solve Van der Pol's equation. The equation, $x^{\prime \prime}+K\left(x^{2}-1\right) x^{\prime}+x=0, d x^{\prime}=-K\left(x^{2}-1\right) d x-x d$, represents a voltage loop in an oscillator circuit. The resistance term is $K\left(x^{2}-1\right)$. Energy in the loop is increased when the resistance is negative, decreased when it is positive. Each stable solution will form a loop. The equation has a stable oscillatory solution with the energy gains and losses cancelled for each value of K.

manufactured by Packard-Bell Computer Corp., 11766 W. Pico Blvd., Los Angeles㫢 Calif., can be used as a design tool or as a special purpose computer for an operational system. For general computation and simulation it will solve problems in aerodynamic stability, missile trajectory studies, control system stability, and the like. Used as a system computer, it will make missile impact predictions, perform coordinate transformation for larget acquisition, stable platform calculation, airborne guidance and control.

How It Works

TRICE operates in parallel. This is how its great speed is possible. It is programmed by plugging independent computing elements into a board, like an malog computer. The size of the computer is dependent on the size of the equations to be solved
An incremental computer, TRICE has as its basic element an integrator, which eceives two incremental inputs, Δx and sy. An incremental output that is an approximation of $Y d x$ is generated. If the increments are summed, the result is a number.

$$
Z \approx \int Y d x
$$

ver the number of Δx^{\prime} s that have been used. Note that the independent variable can be any function, not necessarily time, a limitation of analog computers.
A simple form of integrator is shown in Fig. 2. A Δy is added to the first register ochange the value of \boldsymbol{Y}. When a Δx pulse comes in, $Y \Delta x$ is added to R, which value becomes $\Sigma Y d x$.
Instead of accumulating this entire sum, the integral portion becomes a eries of incremental outputs- Δz-which can he used as a Δx or Δy input to other ate crators.
T. generate $e^{x}, \Delta z$ is fed right back in, as $\Delta \%$. If the value in the Y register, e^{x}, is in egrated with respect to X, the result is $\varepsilon \| x$, or $d\left(e^{\infty}\right)$. But of course this repres is the increments which yield e^{8} whe summed. So the answer is used as

Fig. 2. Simplest form of integrafor. Δx and Δy are added to give $y \Delta x, \Delta z$ output is result.
the Δy of the integrator itself, closing the loop. If the \mathbf{Y} value is started at some initial condition, the integrator will generate e^{x}.

Computer Elements

As mentioned above, the TRICE's basic element is an integrator. This unit consists of three recirculating 30 -bit electrical delay line registers: Y, R and 1 . The I register stores initial conditions. Three adders are used to add $y+x, y$ $+R$ and to make the necessary trapezoidal correction. Output is stored in two fipflops that show the sign and existence of the output. If an overflow occurs, showing that the integrand has exceeded its preassigned full scale value, a light goes on and everything stops.
A digital servo generates an output whenever $-1 / 2 \leq Y<+1 / 2$. Output sign is determined by the product of the signs of Y and X. It has six input lines and three outputs. An initial condition register is provided.
The variable multiplier needs five delay lines for X, Y, R and the two initial conditions; and four adders for summing $X+\Delta x, Y+\Delta y, X+R$ and $Y+R$.
A clock generator with a crystal-controlled 3 mc frequency, a timing counter, control flipflops and an overflow detector are packaged together as the control unit. Constant multipliers and Δy summers are also included as TRICE plug-in units.
The integrator package measures 12-1/4 $\times 1-3 / 4 \times 20 \mathrm{in}$. Forty packages and their power supplies will fit in a 6 ft 19 in . relay rack. There are 110 transistors and 400 diodes in each integrator; 10 w are consumed. Thirty bits are stored in each line by a standard delay cable.

Dimensions for the digital servo are the same as for the integrator. However, it uses only seventy-five per cent as many components.
For further information on this digital differential-equation computer, turn to the Reader-Service card and circle 101.

WEBCOR

lst For Magnetis Laminations

Check these special Webcor advantages:
\checkmark A complete line of laminations for every need. Immediate delivery simplifies your inventory problems . . . speeds your production . . . saves you money.
\checkmark Standard and special shapes in all silicon grades, annealed electrically in controlled atmosphere continuous furnaces.
\checkmark Nickel alloys, hydrogen annealed and finished to your apecifications.
\checkmark Fastest service on special designs for all special customer needs.
\checkmark Use coupon below to send for catalogs which give full technical information.

MAIL THIS COUPON

IN TODAY!

CIRCLE 28 ON READER-SERVICE CARD

Making

Transformers
Smaller with...

Fluorochemical Cooling

An ELECTRONIC DESIGN interview with

L. K. Kilham, Jr., Ralph R. Ursch, J. Francis Ahearn
Raytheon Mfg. Co.
Waltham, Mass.

Until now, satisfactory reduction in transformer size could not be achieved because of limitations in conventional cooling liquids. Fluorochemicals, because of their thermal stability and good dielectric properties, have led to considerable reductions in size. Considerations in utilizing fluorochemicals for this purpose are discussed in this article.

How do the fuorochemicals compare with conventional cooling liquids?
Transformer oil, silicone oil, and fluorochemicals have all been proved compatible with materials commonly used in the manufacture of transformers. One of the outstanding characteristics of fluorochemical liquids is their ability to transfer heat from a solid surface. They are approximately twice as efficient as transformer oils in natural convection, (Fig. 1). Also, the heat transfer coefficient of boiling fluorochemicals is about ten times as great as the liquid or twenty times as great as the transformer oils in natural
cooling techniques.
Fluorochemicals also have a property of self healing after arc-over. Other transformer oils do not.
At one atmosphere, conventional oils and the fluorochemical vapors have equal dielectric strength. This means that it is not necessary to completely immerse a transformer coil in a fluorochemical liquid. If the liquid boils, the portion of the unit exposed to the vapor is protected against dielectric breakdown to the same extent as one completely under the liquid.
The plot of temperature gradient versus transformer losses, (Fig. 2), illustrates a comparison of cooling capabilities of various transformer coolants. Silicone oil, for instance, has a very high temperature gradient. For the same losses incurred in a transformer, transformer oil has a lower temperature gradient, and the transformer will operate at a lower temperature

How do they compare electrically?

Perfluoro compounds compare favorably with the silicone oil and transformer oil.
The dielectric constants, for instance, are about 1.90 for the fuorocoolants. The conventional coolants have a dielectric constant of about 2.5 . Power factors at 100 cps range about 0.0025 to 0.016 for perfluoro compounds. Transformer oils have power factors of about 0.012 at the same frequency. Resistivities, in ohms per cm^{3}, are approximately 6.3×10^{14} for fluorocoolants and conventional oils. Both perfluoro compounds have dielectric strengths of 40 kv . Conventional oils have dielectric strengths of 30 kv .

Would you explain how a coolant is decided?

Fluorochemical dielectric materials range in boiling point from -78 to 177 C . The selected
this field.

ABOUT THE AUTHORS:
R. R. Ursch (left) attended WashIngton University, St. Louis, from 1946 to 1949, where he received his B.8. in Electrical Engineering. Since 1951 he has been with Raytheon at Waltham, Mass., where he has been engaged in engineering design and development of mag. netic componente.
J. F. Ahearn (center) has a long and productive career as a physical chemist. In 1953 he Joined Raytheon as a physical chemist in the design and development of magnetic components. Mr. Ahearn's papers and lectures on heat transfer have won him recognition as an authority in
L. F. Kilham, Jr. (right) graduated from Tufts University In 1939 with a B.S.E.E. Since 1942 he has been employed by Submarine Signal Co. of Boston and by its successor, Raytheon. Mr. Kllham has been Chief Engineer of Magnetic Components since 1949.

heat transfer coefficient w/in²/DEG. c

Fig. 1. Heat-transfer coefficient obtainable with various cooling fluids.
(200)

Fig. 2. Comparison of coil-temperature rise above the container temperature with various dielectric liquids.
coolant depends on the requirements of the system. Ordinarily it is necessary to use a combination of low boiling materials and high boiling materials. The low boiling coolant insures protection at low temperatures. The high boiling perfluoro compound is employed for effective heat transfer. Operating ranges from -50 to 200 C have been achieved to meet certain military specifications. Combining a gas and a liquid las the advantage of saving weight while still providing dielectric protection and heat trans-

Besides liquid and gas combinations there are (wo other categories of cooling employed which should be mentioned.

- The first method is the use of a complete gas ell. This method is applicable where thermal problems are not encountered and the voltage does not exceed 5 kv .
- Another method is a complete liquid fill. This system can be used where extremely high voltages are involved, 10 kv and up, and where high temperatures are reached.
Are there any special considerations taken in enclosing transformers that contain fuorochemical coolants?
Because of the presence of vapors, it becomes necessary to make the containers as leaktight as possible. The materials, of course, must not react with the coolant. This is no problem, because Aluorochemicals are one of nature's most inert compounds. They are compatible with silicone resius, varnishes, and other materials used for insulation.
Since these transformers can operate in the 200 C region, low temperature solder must be avoilled. High temperature solder and brazing tech iques, which are impervious to gasses, must he ulilized throughout the construction.

The FIRST and ONLY standard line of tunable Microwave Filters

P. O. BOX 504, ASBURY PARK, N. J. Telephone: PRospect 4.0500 TWX A PK 588

CIRCLE 29 ON READER-SERVICE CARD
ELEC TRONIC DESIGN • September 17, 1958

> ... a complete miniature series mounting horizontally or vertically... stackable for higher delays, and with tap-off points for lower delays. Molded in epoxy.

DELAY BANDWIDTH product per cubic inch: as high as 7.5.
RANGE OF DELAYS - from 05 to $1.0 \mu \mathrm{sec}$. Higher delays when stacked.
IMPEDANCE RANGE - from 500 to 2000 ohms.
CHASSIS OR PRINTED CIRCUIT MOUNTING. MAINTAINS DELAY TOLERANCE over temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
WORKING VOLTAGE: 500 VDC.
HUMIDITY: Meets MIL-C-15305A, Grade 1, Class B. SPECIAL DELAY LINES - quotations on request.

NVy.
 Send for Bulletin 140
 ELECTRONICS, INC.

nufacturers of imductive devices from power to radio frequencies, PULSE CIRCUITAY COMPONENTS, MAGNETIC AMPLIFIERS \& POWER SUPPLY MODULES

Fig. 3. Standard audio-ou put transformer (left), re duced by about one-half size and weight (right).

Are there any limitations in using fuorochemicals for magnetic component or transformer design?
There is one pronounced limitation. This is that generalization must be avoided. To achieve a substantial reduction in size and weight of a transformer, the problems involved must be treated individually and in their entirety. This means each new transformer must have both its dielectric and its mechanical problem solved. The mechanical problem includes heat transfer with such aspects as the heat sink, which is the mechanism to help remove heat. If the heat sink is designed for optimum heat transfer, the magnetic component can be made for maximum miniaturization.

What are the conditions for best heat transfer?
The ultimate in heat transfer and the condition that permits maximum miniaturization is when the vapor, produced by the liquid near the core and the coil, condenses on the heat
sinks and the walls of the transformer. The condensed liquid is then returned to the system, This technique is about 100 times as effective as natural circulation.

How do fuorochemical coolants effect reliability? Utilization of these coolants increases the reliability of transformers in a number of ways.

- They are completely non-flammable so there is no danger of fire upon rupture as with the use of conventional hydrocarbon coolants.
- Fluorochemicals have excellent corona inhibit ing properties. Coronas generated with these coolants are considerably less than other higt temperature coolants.
- Fluorochemical coolants effectively reduce in ternal radiance in the components, which reduces the maximum operating temperature. Since equipment life is limited by its operating tem perature, a reduction in the temperature in creases the life and reliability.

Fig. 4. Construction details show reduction of standard transformer (left) to one-quarter size (right).

- The Penetration properties of fluorocoolants als increase reliability. Because of their capillary action properties, the fluorocoolants may rise as much as four or five inches against gravity. This permits wetting of nearly all the voids in the coil and core.
What precautions must be faken in handling these coolanfs?
Because the cost of these coolants can become ominous, the first precaution is not to use more than a design demands.
Fluorochemicals are very volatile and must be kept in closed containers. The chemicals are non-toxic, non-flammable, inert, and will not absorb moisture; therefore, they present no problems from these standpoints.
Fluorochemicals will be non-corrosive to metals if the system is dry. The equipment should be thoroughly dried before filling and filled preferably under a vacuum.

What is the relative cost of fluorocoolants as compared to conventional oils for cooling transformers?
No generalization can be made on this point. Under certain conditions, the cost of fluorocooling is less than that of a conventional method. For instance, a case where vapors are completely utilized, the cost can be as low as $\$ 3.00$ per gallon. Silicone oil costs $\$ 28.00$ per gallon. If on the other hand, the transformer were completely filled with a liquid fluorocoolant, its cost would greatly exceed that of conventional materials.
Would you give some examples where transformers using conventional coolants were miniafurized or improved by the use of fuorocoolants? One specific example that comes to mind with respect to this was an epoxy unit which operated at relatively high voltage. Because the design was pressed for extreme miniaturization the corona level was high. This contributed to field failures. The problem was: How can a reliable unit be made in the same amount of space? Vaporative cooling fluorochemical techniques were applied. Because of their corona inhibiting properties, the transformer was made more reliable and still maintained its miniature size.
Examples of reduction in size are:

- A standard output transformer was reduced to hetter than one-half in size and from 20-7/8 lb to $15-1 / 2 \mathrm{lb}$. This was performed through the use of a combination of heat-conducting copper shi. Ids and tabs with a liquid fill of FC43 and FC^{-5}, (Fig. 3).
- Another transformer was reduced to about on quarter size through the combined low diele ric constant and good dielectric strength of thu ochemical FC43, (Fig. 4).

adjustable, rugged, environment-free

Model HII-2
(Conforms 10 MS-24331)

operating characteristics

4216 West Lake Street VA.6.3100

Chicage 24, Illineis
 TWX No. CG-1400

for full details, write for Dala Sheal EC-6. And, for information on the many other Electro-Snap sealed switches.

- High operating and overtravel force provides posifive icebreaking characteristics to assure perfect, dependable operation.
- Light and Compact . . . yet rugged and impervious to all environment conditions.

Variable Speed Tape Drive Works without Capstan

HERE IS A tape mechanism that can search through a reel of tape faster than most computers can digest information. It allows a computer to locate information blocks at any speed, and includes high-speed search at 920 in . per sec (ips). Read and write speeds of 30 to 100 ips are reached in $1 / 2$ to $1-1 / 2$ sec.

But most interesting are the design features of this tape system:

- The transport does not use a constant speed capstan. Two conventional three-phase motors pull the tape in either direction.
- The control system varies the speed by modifying the torque on driving motors after comparing the timing track bit rate with the desired bit rate. By this means, the computer can select an appropriate speed for recording data in realtime over prolonged periods.
- A separate channel of block marks enables the computer to locate information at variable speeds.
- A permanent, constant-density timing track on the tape provides the speed reference for the control circuits. This makes possible fixed position addressing and a variable rate of information transfer.

The tape transports were developed at Lincoln Laboratory, MIT, by R. L. Best and T. C. Stockebrand. It was designed for use with the TX-2 computer, which has a core memory of 2.5 million bits.

How It's Designed

The tape transports used in this system are as simple and fool-proof as possible. They consist of a read-write head assembly, two reels, two drive motors, and a tape guide. The drive mechanism has no capstan. A good deal of
mechanical complexity is therefore eliminated, which makes possible a wide range of tape speeds. Fast starts and stops are precluded, however: $1 / 2 \mathrm{sec}$ and $7-1 / 2 \mathrm{in}$. of tape are required to reach 30 ips .
The figure shows the transport mechanism. The motors are flange mounted. Typical threephase induction motors, they are rated at 1800 $\mathrm{rpm}, 1 / 8 \mathrm{hp}$, and have roughly constant torque characteristics when operating well below syn-
chronous speed. The hp rating, and therefore the torque, is as high as possible, limited by the tensile strength of the tape. These motors, each driven by a magnetic amplifier, provide the proper torque to operate 10 in . reels mounted directly on the motor shaft. The reels are loaded with polyester tape, 0.001 in . thick and 0.5 in . wide.

The head assembly and guide are shown in the insert of the figure. The large, constant

Tape Transport Mechanism
radius of the guide reduces the pressure between tape and guide. At speeds above 20 ips the tape floats on an air cushion and is easy to edge guide. Skew, caused by non-uniform tape tension across the width of the tape and by variations in tape width, is minimized. There is no wrap around the head. Variations in tape tension (which are large in this transport) do not, therefore, cause excessive pressures on the head and wear is reduced. Because only short wave lengths (0.0025 and 0.005 in .) are used in the system, the area of tape-head contact need not be large.
The direction in which the transport is moving is determined by a sensing device mounted on the rear shaft extension of one motor. The sensor consists of an iron cup dragged against one of a pair of stops by hysteresis from a star shaped permanent magnet on the motor shaft. The cup operates a mercury switch by rotating an attached magnet. This scheme gives positive direction information even at the slowest tape speed. A mercury wetted contact switch provides com-puter-level signals to the control without contact bounce and with good reliability.

How Tape Speed Is Controlled
Each motor can generate torque in only one direction to pull the tape from one reel to the other. The control of the motors is therefore simpler than if torque had to be reversed. Since tension is limited by tape strength, acceleration is relatively slow. A sudden change of torque, which might allow a loop to form, is prevented by a long time constant in the control windings of the motor magnetic amplifier.
To stop the tape, full torque is first applied by the trailing motor until the tape speed falls below 20 ips . At that point dc applied to the trailing motor, brings the tape to a smooth stop. The direction sensor indicates which motor is trailing. With dc in the motor field winding the rotor will resist applied torque even at zero velocity due to the hysteresis in the rotor. Voltage is never completely removed from either motor. Some tape tension is always maintained. The end of the tape is sensed by a photoelectric call which receives light through transparent leaders at each end of the tape. The timing track is continued on the edges of the $100-\mathrm{ft}$ transparent strips. This lets the control element know when the tape has fallen below 20 ips.

Feedback is included to provide close control of minimum torque. Too much minimum torque fails to overcome static friction, and doesn't allow a loop of tape to form. The feedback prevents large variations in the output current of the magnetic amplifier which would be caused by unbalarced line voltage or small variations in reactor control current. This is especially true when the an polifiers are cut off.

Apletely independent capstans and storage baskets. th speed (2 ms) start-stop. No resonance or reel jitat any cycling rate to 150 /second.

Simultaneous record and reproduce at different speeds if desired.

- Either station can operate as closed loop or conventional reel transport.
- Speeds from $71 / 2$ to 60 ips either station (higher and lower on special order).
- Each storage bin adequate for more than 250 feet of tape.
- Head to head spacing (Station 1 to Station 2) less than 4 inches.
- Automatic (on command) transfer of message start from Station 1 to Station 2
- Very low flutter and wow.
- Tape tension controlled by unique vacuum pressure pads.
- Tape widths from $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$ (up to $2^{\prime \prime}$ on special order).
- Completely transistorized.
- Modular construction.
- Low power demand.

Model 424 as a closed loop system-Model 424R with supply and take-up reels. Detailed information and complete specifications are contained in Bulletin H-424, available upon request.
circle 32 on reader-service card
-

Airborne Electronic Transformers

G. R. Carl
R. A. O'Connor
General Electric Co.
Specialty Transformer Dept.
Fort Wayne, Ind.

Fig. 1. Logarithmic plot of operating temperapure and life of insulation system.

Fig. 3. Altitude plotted against spacing ratio.

Fig. 2. Altitude platted against per cent increase in temperature rise for two different ambients.

Aside from the usual parameters associated with general transformer designfrequency range, regulation, duty cycle, capacity, etc.-two additional considerations are necessary when designing transformers for airborne applications. The authors offer a terse and lucid definition of these additional parameters which should prove helpful in the design of highly reliable airborne transformers with higher operating temperature and life ratings.

TWO DESIGN parameters, not normally associated with ground based applications, must be considered when determining the size and weight of encapsulated transformers for airborne applications. These parameters are:

- Life expectancy rating
- Maximum altitude rating

By clearly defining these ratings, the circuit designer can obtain a transformer having the proper balance between reliability and minimum size and weight.

Life Expectancy

Recognition of life ratings has proved extremely beneficial in reducing size and weight of airborne transformers. Manufacturers are able to take advantage of the fact that the logarithm of life of an insulation system is approximately an inverse function of the operating temperature of the system (Fig. 1).

Thus, depending on the minimum life required, a single transformer insulation system may be qualified at various operating temperatures. Actual savings depend on both the maxi-
mum ambient temperature and the allowable ultimate temperature. Since military specifications call out two classes of transformers having 105 C and 30 C maximum ultimate temperature, a transformer rated for a 95 C maximum ambient has much more to gain by having its ultimate operating temperature increased from 105 C to 130 C (250 per cent increase in allowable temperature rise) than a similar unit rated for a 65 C maximum ambient (62 per cent increase in allowable temperature rise).
No exact relationship has been established for encapsulated transformer size reduction resulting from various percentage increases in allowable temperature rise. However, it is estimated that doubling the temperature rise will reduce the size by approximately one-third.

Maximum Altitude

While short life expectancy ratings tend to decrease the size and weight of airborne transformers, maximum altitude ratings have an opposite effect. As altitude is increased the radiation and convection coefficients for heat transfer from the transformer to the ambient air are adversely affected. A transformer designed for a specified temperature rise at sea level conditions will have a higher temperature rise when operated at increased altitudes (Fig. 2).
Transformer life could be downgraded from any prolonged period of operation at the combined conditions of maximum altitude and maximum ambient temperature. In most instances such a condition will not exist since ambient temperature tends to decrease with increased altitude. The circuit designed should determine and specify the maximum ambient temperature that exists at maximum altitude. Transformer designers can then design optimum transformers based on realistic conditions rather than provide safety factors to insure reliable operation at conditions which may never exist.
Altitude will also affect dielectric breakdown. As air density decreases, its dielectric strength also decreases. Transformers must be designed to provide sufficient spacing between terminals and between terminals and ground to prevent arc-overs or flash-overs under the conditions of maximum altitude and maximum working voltage.
The designed spacing must allow for a reasonable decrease in spacing resulting from the efguipment manufacturer's lead connections. An indication of required increases in spacing due to altitude is shown in Fig. 3. At times the combilation of working voltage and altitude require$m \mathrm{n}$ ts becomes the limiting feature of a transformer design. In these cases the required spacin rather than the volt-ampere rating determines the size of the unit.

FOR UNVARYING PERFORMANCE

PRECIOUS METAL CONTACTS . . . for long operating life and unvarying performance. Available in pure or alloyed forms of Silver, Platinum, Palladium, and Gold. These contacts provide extremely high resistance to atmospheric corrosion, deformation, arc erosion, sticking and metal transfer. They are supplied as wire, rod, sheet, and as fabricated forms.
Baker Contact Division, 207 Grant Avenue, East Newark, Harrison P. O., N. J.

CIRCLE 102 ON READER-SERVICE CARD

RHODIUM PLATING . . . an economical, hard, whife, corrosion-resistant surface. Extremely well-suited for many electrical and electronic applications. Resistant to corrosive afmospheres, oxidation, arc erosion. Reduces wear on moving surfaces, assures low noise level for moving confacts, no oxide rectification, low and stable contact resistance. Ideal when a low-resistance, long wearing, oxide-free contact is required.
Chemical Division, 113 Astor Street, Newark 2, N. J.
CIRCLE 103 ON READER-SERVICE CARD

FOR PRODUCING NITROGEN

BROADEN DESIGN HORIZONS with new pnp drift transistors

TYPICAL APPLICATIONS
TV CIRCUITS
FM RADIOS
SHORT WAVE RADIOS
high frequency oscillators
VERY HICH SPEED SWITCHING DEVICES

SEvEN NEW dRIft transistors for high speed switching AND HIGH FREQUENCY AMPLIFIER APPLICATIONS
General Transistor's new 2N602, 2N603, 2N604 provide the design engineer with guaranteed Switching parameters such as gain-bandwidth and DC current gain, while the 2N605, 2N606, 2N607 and 2N608 provide guaranteed power gains at high frequencies.
In addition to the great speed advantages offered by the drift transistor at no sacrifice of gain such additional features as higher voltages and lower capacity are available. Thus one can now drive higher impedance loads with no sacrifice of speed or pulse power.
The complete control of G. T.'s Drift Transistor assures longer life and maximum performance abily.
Other features include: high input-circuit efficiency, excellent high-frequency operating stability, good signal-to-noise ratio, good automatic-gain-control capabilities and the rugged mechanical construction of a positivé hermetically sealed JETEC 30 case.

DC Current Gain $h_{\text {fe }}$			$\begin{gathered} \text { Gain X } \\ \text { Bandwidth } \end{gathered}$		$\begin{gathered} \hline \text { Power Gain } \\ K_{p} \\ \hline \end{gathered}$		
2N602	$\mathrm{V}_{\mathrm{ce}}=1 \mathrm{v}$	*	$V_{c a}=5 v$	10.30 mc	2N605	$\mathrm{V}_{\mathrm{ct}}=7.5 \mathrm{v}$	20.25 db
2N603	$\mathrm{I}_{\mathrm{t}}=0.5 \mathrm{ma}$	25-100	$\mathrm{Ic}_{\mathrm{c}}=5 \mathrm{ma}$	30.50	2N606	$\mathrm{Ic}_{\mathrm{c}}=1 \mathrm{ma}$	25.30 db
2N604				50.70	2N607	$\mathrm{f}=2 \mathrm{mc}$	$30-35 \mathrm{db}$
					2N808		35-40 db

GENERAL TRANSISTOR
 $\begin{array}{llllllllll}C & R & P & O & R & A & T & I & O & N\end{array}$ 98.2713 BTH PLACE - JAMAICA 35 . NEW YORK

Power

Dissipation

 In
Class B Circuitry

C. Frank Whearley Semiconductor and Materials Div, Radio Corporation of America Somerville, N.J.

In a discussion of complementary symmetry audio amplifiers (ED, Aug. 6), the author showed how this principle can be applied to the design of a Class B sys. tem. This article analyzes in greater detail transistor dissipation in Class B op. eration.

WHEN A power amplifier is designed or tested, the most severe operating condition for the output stage is often considered to be "full drive." Under some abnormal conditions this assumption is true. With regard to dissipation, however, the assumption is erroneous.
The fallacy is obvious for a class A output stage because the output subtracts from the fixed power supplied, thereby reducing dissipation as the power output increases. For class B operation, however, the actual condition is not nearly so obvious.

Fig. 1. In this basic circuit, assume ideal transformers and linear transistors.

Fig. 2. How dissipation for each transistor varies with power output.

This article shows that the dissipation in a class B stage operating at 10 per cent of rated power output is greater than that at full power output (sine-wave excitation). The maximum dissipation occurs at approximately 40 per cent of rated power output.
For purposes of discussion, transistors are referred to as the output devices. However, the analysis applies equally well to electron tubes. In practice, transistors approach the assumption of zero saturation voltage more closely than electron tubes (relatively speaking) and, therefore, will agree more closely with the theory.
In the circuit of Fig. 1, it is assumed that the quiescent current of the transistors is zero and that the saturation voltage of the transistors is zero. Ideal transformers are also assumed, as well as linear transistors.
The collector voltage on a given transistor is given by:

$$
\begin{equation*}
v_{o}=V_{e c}(1-A \sin \omega t) \tag{1}
\end{equation*}
$$

The collector current is given by:

$$
\begin{gather*}
i_{c}=\frac{V_{e c} A}{R_{L}} \sin \omega t \text { from } 0 \text { to } \pi \tag{2}\\
i_{c}=0 \text { from } \pi \text { to } 2 \pi \tag{3}
\end{gather*}
$$

Dissipation for each transistor, therefore, is:
$P_{c}=\frac{1}{2 \pi} \int_{0}^{\pi}\left(V_{e c}\right)(1-a \sin \omega t)$

$$
\begin{align*}
& \frac{\left(V_{c c} A\right)}{R_{L}}(\sin \omega t) d \omega t \tag{4}\\
= & \frac{V_{c e}^{2} A}{\pi R_{L}}\left[1-\frac{A \pi}{4}\right] \tag{5}
\end{align*}
$$

The max dissipation can be determined as a function of A from the following relation:

$$
\begin{equation*}
\frac{d P_{c}}{d A}=\frac{V_{c c}^{2}}{\pi R_{L}}-\frac{V_{c c}^{2} A}{2 R_{L}}=0 \tag{6}
\end{equation*}
$$

Max dissipation occurs when:

$$
\begin{equation*}
A=\frac{2}{\pi}=0.636 \tag{7}
\end{equation*}
$$

The max dissipation, therefore, is given by:

$$
\begin{equation*}
P c_{\max }=\frac{V_{c c}^{2}}{\pi^{2} R_{L}} \tag{8}
\end{equation*}
$$

which may be normalized with respect to the theoretical max power output:

$$
\begin{gather*}
\left(P_{0}=\frac{V_{c c}^{2}}{2 R_{L}}\right), \text { as follows: } \tag{9}\\
P_{c_{\max }}=\frac{2 P_{0}}{\pi_{2}}=0.203 P_{0} \cong \frac{P_{0}}{5} \tag{10}
\end{gather*}
$$

The dissipation of a transistor as a function of power output is shown in Fig. 2. The power-output scale is plotted in per cent of

$$
\frac{V_{c c}^{2}}{2 R_{L}} .
$$

When a quiescent current flows, it may be shown that the max collector dissipation is given by:

$$
\begin{equation*}
P_{c_{\max }} \leq \frac{2 P_{0}}{\pi^{2}}+V_{e e} I_{0} \tag{11}
\end{equation*}
$$

The efficiency of the output pair may be determined to equal:

$$
\begin{equation*}
\eta=\frac{\pi A}{4} \tag{12}
\end{equation*}
$$

If you're a fanatic about resolution, you could wind your own pots' Of course. It is a bit of a nuisance having to design and build those special winding machines able to deliver 0.1% linearity Just dream up some fancy controls to keep the windings and spacing within microscopic tolerances. and you might make it!

But if you want to save all that fuss, just come to Ace Weंve already designed and developed our own special winding machines. and they're all running nicely. turning out the kind of close linearity and high resolution through winding and spacing accuracy that only these machines . . . and Ace know how
can produce. So don't build-it-yourself! For pots with the accuracy that pays off in performance. see your Acerepl

Here's highest resolution in a standard sub-miniature pot: The Series 500 Acepot Single-turn. $1 / 2^{\prime \prime}$ size, from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C} . \pm 2 \%$ resistance tolerance. 0.3% independent linearity. Special protolype section insures prompt delivery.
 CIRCLE 35 ON READER-SERVICE CARD

E!ECTRONIC DESIGN • September 17, 1958

BACKGROUND FOR DESIGNERS

Fig. 1. Four styles of parabolic reflectors.

PROPERLY focused and energized parabolic reflectors are equivalent to a very large number of dipoles, all polarized in the same plane and energized in phase. Fink ${ }^{1}$ refers to this effect as "current sheet of in-phase dipoles." And this effect gives the reflector its highly directional properties.
To assure good performance, these factors must be considered in design:

- Type
- Feed Methods
- Illumination
- Gain
- Radiation Pattern
- Mechanical Adjustments
- Reflector Material
- Manufacturing Tolerances

Types of Parabolic Reflectors

Parabolic reflectors come in several forms. Most common are the circular parabola, the orange peel parabola, the parabolic cylinder and the square or truncated parabola (Fig. 1). Characteristics of these various forms of paraboloid
are discussed by Reintjes and Coate. ${ }^{2}$ Most attention will be given here to the circular paraboloid or "parabola of revolution."

Methods of Feeding

Feed methods for parabolic reflectors can be divided into two general classes: (1) rear feeds, and (2) front feeds. Of the various rear feeds, the half-wave dipole and the "Cutler" ${ }^{3}$ ring-focus feed are the most commonly used. Front feeds are usually accomplished by using some form of electromagnetic horn. These horns are usually either rectangular or of the square "diplexer" type in shape. The aperture of regular front feed horns is so dimensioned that a certain "taper" of illumination across the face of the parabolic reflector is achieved. Magnitude of this "taper" has an important effect on the radiation pattern of the dish.

Illumination

Besides a smoothly tapered illumination, several other illuminations are of interest, even though some of them are unobtainable. Uniform
illumination, of course, gives not only maximum gain and minimum main-lobe beam width, but also maximum side-lobes. Reintjes and Coate ${ }^{2}$ have calculated curves showing beam width and side-lobe suppression for several illuminations. Another interesting method ${ }^{4}$ is called "Illumination in Accordance with Binomial Coefficients." No side-lobes whatsoever occur.

Most authorities agree that an illumination which is smoothly tapered from the center of the parabola to its rim, and which has an amplitude at the rim 10 to 15 db below that at the center will give a good compromise between gain, beam width, and side-lobe suppression. If a condition of "phase incoherence," (when the various components are not in phase across the dish diameter) exists in the illumination, changes will take place in major and minor lobes of the pattern.

Gain

Getting the maximum gain from any reflector is extremely important. Fig. 2 shows a power level chart for a typical tropospheric scatter propagation circuit.

A number of formulas and nomograms for quickly calculating the gain of a parabolic dish are given in the literature. Although they differ in details, it is clear that the area of the aperture is the governing factor for gain.
Gerks, ${ }^{5}$ RCA, ${ }^{\text {b }}$ and "Reference Data for Radio Engineers, ${ }^{7}$ all give equations for gain, the results of which differ only slightly.
The easiest method of measuring the gain of a parabolic dish in the field is by comparing its performance over a short unobstructed path with that of a "gain-standard" or reference horn, the gain of which has been carefully measured under ideal laboratory conditions.

Radiation Pattern

Two of the most important aspects of the radiation pattern of a parabolic dish are the 3 db (half-power) beam width and the side-lobe suppression. These two quantities jointly determine the width of the beam in the tropospheric medium, and the maximum bandwidth. Generally, the greater the beamwidth the greater the multipath effect, and the greater the multipath the more restricted is the bandwidth of the microwave circuit. For these reasons, every effort should be made to get narrow beam widths and high values of side-lobe suppression.
Richmond ${ }^{8}$ has done some work on the techniques of calculating patterns of horn antennas, which function in a manner similar to that of a parabola, both being aperture type antennas. He indicates that far-field patterns can be calculated through the main lobe in less than one hour on a desk calculating machine. It is safe to say that calculating the full pattern would be a very laborious job. It can be done, however, if an electronic computer and the services of a trained mathematician are available.

Mechanical Adjustments

Several adjustments are available to the engineer so that a good compromise may be obtained

Fig. 2. Relative attenuation from transmitter to receiver.

Like having two VTVM's connected into a circuit for comparison readings - the 405 permits instantaneous switching between two inputs - either ac or dc without disturbing a single probe in the circuit. The same switch provides a Meter Zero position for convenient, fast calibration; again, without disturbing test probes.
And that's not all! The 405 offers full-scale sensitivity of 100 millivolts, dc or ac, resulting in accurate read-outs down to . 002 volts dc, or . 01 volts ac.

Add these outstanding features to the following, and you'll quickly discover why the 405 is today's best buy in a VTVM . . .
-
©full scale ranges of .1, , , 1, 3 $10,30,100,300$ and 1000 volts dc. Accuracy $\pm 2 \%$ full scale. Full scale ranges of $.1, .3,1,3,10$, $30,100^{*}$ and 300^{*} volts ac. Accuracy $\pm 3 \%$ full scale. - Measurements from dc to 700 mc . ©Ohmmeter, 7 ranges, calibrated 500 ohms 500 megohms. Maximum short-circuit current 8.5 ma . Completely isolated ground circuit permits safe off-ground measurements up to 1000 volts dc.
-Very low drift. Less than ± 5 millivolts maximum on any scale. eRegulated dc and filament supply. - Amplifier output available for accessories
Clluminated, mirror-backed, 4" scale.

- Compact. Weighs only 12 lbs .

QBuilt-in probe storage compartment.

- with cat. Mo. 4050 Attenuator probe.

INSTRUMENT DIVISION
ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J., U.S.A. CIRCLE 36 ON READER-SERVICE CARD

(a)

Fig. 3. Reflecting properties of expanded metal parabola. Polarization parallel to long dimension (a), and polarization perpendicular to long dimension (b).

(b)
between gain, beam width, and side-lobe suppression. One is illumination taper which can be varied by using front feed horns of different aperture dimensions until the best conditions are obtained. Another adjustment is the focal distance. It has been found that the best way to adjust the focal distance is to start out with the calculated value and vary it until the best compromise is found. Several different feed horns with different apertures can be tested and the best combination selected for permanent use.

Materials Used in Construction

Several methods of construction are available to the designer of parabolic reflectors:

- Solid sheet metal reflecting surface, assembled together as sectoral pieces.
- Metal foil over plywood base. Somewhat lighter and cheaper to fabricate than the solid sheet-metal type. But plywood has a tendency to warp, causing a gradual deterioration in the parabolic surface. Side-lobe suppression and beam width suffer. Found only in parabolas of about 10 ft and smaller. An excellent way of making small, low-gain, inexpensive dishes which are easy to mount and feed.
- Open-mesh construction. Reflecting surface may be made of thin sections of expanded metal or parallel bars assembled to give an equivalent parabolic surface. Open mesh construction has the advantages of: (1) low wind resistance; (2) low cost; (3) ease of fabrication and assembly; and (4) ability to conform to parabolic shape. But: (1) gain is reduced; (2) cross-talk may be increased; (3) intensity of side-lobes with respect to main lobe may be increased, and there may be
a loss in isolation between the two cross-polarized feeds of a diplexer-type feed hom.
Curves (Fig. 3) showing transmission through an expanded-metal reflecting surface for both planes of polarization and for four sizes of screen mesh have been evolved by Richards and Devane. ${ }^{9}$ Harris ${ }^{10}$ claims that the open-grid or parallel-bar type of parabolic reflector is the equal gain-wise of a solid spun aluminum dish in the $\mathbf{6}$ and 10 ft sizes at 900 megacycles.
So far as can be determined, the relative resistivity of the reflecting surface has little or no effect on the gain and efficiency of a parabolic reflector. For this reason, at least from an electromagnetic standpoint, it is reasonable to believe that reflecting surfaces made from copper, untreated aluminum, anodized aluminum or stainless steel will perform equally satisfactorily. An interesting recent development consists of an air-inflated fabric balloon with parabolic contour. One surface is coated with aluminum particles to reflect electromagnetic energy. A 30 ft dia model weighs only 1700 lbs as compared to $10,000 \mathrm{lbs}$ for a conventional dish of the same size. The 30 foot model can be held to a tolerance of $1 / 16$ inch over the entire surface. In use, the inflated dish is housed in a plastic radome.

Tolerances in Manufacture and Adjustment

Friis ${ }^{11}$ claims that an error of Δ in the reflecting surface of the parabolic reflector will result in an error of about 2Δ in the phase front. He recommends that the maximum tolerance to be allowed in the reflecting surface should be held to $\pm \lambda / 16$. The primary feed should be placed as close as possible to the focal point of the dish. Defocussing will result in a circular curvature of the phase.

Reforences

1. Radar Engineering, Fink, p. 247, 1st edition, McGrawHill, 1947.
2. Principles of Radar, Reintjes and Coate, McGrawHill, 1952.
3. Parabolic Antenna Design for Microwaves, Cutler, p. 1284, Proceedings of the I.R.E., November, 1947.
4. U.S. Patent No. 1,715,433, John Stone Stone.
5. Factors Affecting Spacing of Radio Terminals in a UHF Link, Gerks, p. 1290, Proceedings of the I.R.E., October, 1955.
6. Point-To-Point Radio Relay Systems, R.C.A. Service Company.
7. Reference Data for Radio Engineers, I. T. \& T. Company, p. 700, 4th edition.
8. Simplified Calculation of Antenna Patterns with Application to Radome Problems, Richmond, p. 9, I.R.E. Transactions, vol. PGMTT-3.
9. Aluminum Mesh in R-F Reflectors, Ricardi and Devane, p. 72, Tele-Tech, March, 1956.
10. Iesigning Open Grid Parabolic Antennas, Harris, 1. 60, Tele-Tech, November, 1956.
11. Friis and Lewis, The Bell System Technical Journal, \therefore sril, 1947, p. 219.
Electronic design • September 17, 1958

All Hughes diodes resemble each other externally. Germanium point-contact or silicon junction, they are all glass-bodied ${ }^{\bullet}$ and tiny (maximum dimensions: 0.265 by 0.107 inch). But minute, meticulously controlled variations in the manufacturing process impart individual characteristics to the diodes, make them just right for specific applications. This gives you the
opportunity of selecting from a line which includes literally hundreds of diode types. So, when your circuitry requires varying combinations of such characteristics as... high back resistance...quick recovery... high conductance...or high temperature operation, specify Hughes. You will get a diode with mechanical and electrical stability built in. You will get a diode which
was manufactured first of all for reliability.

- Nowhere else have glass packaging techniques been developed to a comparable extent, for the Hughes process has many unique aspects. They are difficult to duplicate, yet are instrumental to the manufacture of diode bodies which are completely impervious to contamination and moisture penetration.

For descriptive literature please write: HUGHEs PRODUCTS. SEMICONDUCTOR DIVIBION
International Airport Station, Los Angeles 45, California

AEROVOX OORPORATION

NEW BEDFORD, MASSACHUSETTS

Technical Factors

Parameters

Environmental

Data Require.
Readout Immediate Transmit Store

DATA REQUIRED by the systems design engineer are in general the same as those needed by any design function plus a quantity of additional information which is generally considered as falling outside the technical domain. Considerable amount of coordination is, of course, necessary, inasmuch as a variety of items must be joined together to produce an operational ensemble. This joining process involves not only the hardware but also includes a meeting of the minds of all those concerned in the operation.
The various phases of system designtechnical and economic-are blocked out in the diagram. Assuming that the parameters to be instrumented are physical, such as acceleration, pressure, temperature, it is first necessary to know what is to be measured; where it is to be measured; and when the data is to be utilized. Here at the very start, coordination enters the picture. This involves a series of meetings and conferences to establish priorities of time and importance, i.e., who needs what and which comes first.

The question of data requirements enters at this point. The resolution of such a situation may require weeks before a duly authorized instrumentation list is issued. This list may be subject to modification from time to time as the system design progresses. The items listed will spell out such things as the name of the parameter to be measured (coded as to system relationship), the excursion range of the parameter, the units in which it is designated, the accuracy desired, priority, etc. Once a reasonably firm instrumentation list has been established, the systems engineer probably has a pretty fair idea concerning the economic factors indicated on the chart.
With the instrumentation list in hand, the next question involves environment; where are the transducers to be located? Here again, if the system involves air craft or a missile, the instrumentation list may call out a frame and a sector number. In any case, detailed information must be acquired as to the exact mounting point (if possible) and the method of attachment. The matter of fastening a

tionsystem Design

Kioms menlo Park, Calif.
transducer to the structure of a thinskinned missile may become quite involved. It may be that a suitable trans ducer is not procurable. If such is the case, a development program may be instigated within the company, or bids may be requested from other concerns.
Assuming that suitable transducers are available, detailed data on accuracy, repeatability, linearity, hysteresis, etc., must be analyzed. This particular phase of design may develop into a highly involved process. There is a universal lack of uniformity in the definitions of terms. In one particular instance involving a million dollars or more worth of transducers, a vendor is said to have spent two hundred fifty thousand dollars on standardization adjustments before the situation was resolved. The controversy stemmed from differences in term definitions.
Having selected a suitable transducer, airangements must be made to present the data therefrom in a form most suitatle for the purpose in mind. Quite often the readout must provide a quick look
as well as transmittal and storage. The quick look may involve a meter or a strip chart. Transmission may involve radio linkage if the pickup is moving, or simply a transmission line with suitable terminations, as in ground support installations. In both airborne and ground installations, magnetic tape and/or photographic film may be used for storage purposes.

The economic aspects of the problem may loom very large depending upon the time schedule and the urgency involved. If the program is on a crash basis, with no holds barred, costs can be ignored and procurement facilitated at least as far as purchasing is concerned.
Then again if the urgency is not quite so great, a target date, subject to revision may be established with specified limits on overtime, premium cost payments, etc.

Finally, the more normal approach is involved when a decision is made to develop a certain system with the schedule fitted into the programmed activities of a department.

From General Electric . . .

PLAIN TALK ON TANTALYTIC* CAPACITOR AVAILABILITY

It's time for plain talk on the facts of tantalum electrolytic capacitor availability. There is no "availability" problem as far as General Electric is concerned.
Here's why:

- No metal shortage-Stocks of capacitor-grade tantalum have doubled within the past year.
- No production capability shortage-General Electric's production facilities have tripled in the past year.
- No delivery bottlenecks-General Electric's improved manufacturing processes and techniques have virtually eliminated production rescheduling.
- Few military directive priorities-Since the supply of Tantalytic capacitors has met demand, the military requirements can be met without directive priorities.
This is why we say-now and in the future, General Electric will continue to provide Tantalytic capacitors in the ypes and ratings you want-when you want them.
For specific information on Tantalytic capacitor ratings, prices, deliveries, contact your nearest General Electric Apparatus Sales Office or write to General Electric Co. Section 449-4, Schenectady 5, N. Y.

Regittored frado-mark
of Gonorol Electric Co .
Genoral Eloctric Co

Model PMX is a versatile, portable signal generator with an extremely wide range of modulation capabilities. It is simple to operate, highly stable and accurate, and is de signed for quick, easy inspection and servicing.
Interchangeable Plug-In Units (Part of Model PMX): 4,200 to $8,000 \mathrm{mc}$ - Tuning Unit G 48 6,950 to $11,000 \mathrm{mc}$ - Tuning Unit G 711
Calibrated Power Dutput: 0 dbm (1 milliwatt) to - 127 dbm.

Modulation Capabilities: Internal or external pulse, square wave or $F M$.
Internal Pulse: Width, adjustable 0.2 to 10 microseconds. Repetition rate, 10 to 10,000 pps. Delay, 2 to 2,000 microseconds. Rise and decay, 0.1 microsecond.

Internal FM: Linear sawtooth output, 5 mc frequency deviation. Capable of internal or external, pulse or sine wave synchronization

Output Synchronization Pulses: Positive polarity, delayed and undelayed

ANNOUNCING NEW MICROWAVE GENERATOR

plug-in units cover:
4,200 to $8,000 \mathrm{mc}$ 6,950 to $11,000 \mathrm{mc}$

DESIGN FORUM

> Unusual output circuitry, an ultrasonic carrier, and combined feedback, help make a very stable, efficient power supply

WHEN a power supply can provide zero, or even negative output impedance-that's unusual. In our July 1, 1957 issue, we described the performance of this supply, its excellent regulation, its negligible drift, and its fast response.
Now we want to describe how it works. Manufactured by Optimized Devices, Inc., of White Plains, N. Y., the power supply uses negative voltage and positive current feed-back, and a modulated ultrasonic carrier.
It's well known how output impedance can be reduced with negative feedback, as in Fig. 1, by increasing the feedback-gain product, in the expression $Z_{\text {out }}=Z_{\text {int }} /(1-\beta K)$. But βK would have to be infinite to provide zero output impedance and large βK values can introduce

Fig. 1. Basic arrangement for negative voltage feedback.

Fig. 2. Basic arrangement for positive current feedback.

Fig. 3. Power supply biock diagram showing the two feedback paths.

Output Impedance-Zero

serious instability.
And that's where positive current feedback enters the picture. The output impedance in Fig. 2 is $Z_{\text {out }}=R(1-K)+Z_{\text {int }}$. With this scheme, R can be varied to make $\mathrm{Z}_{\text {out }}$ zero or negative.
The power supply block diagram of Fig. 3 and the schematic in Fig. 4 show how the combination feedback is used. This low voltage supply is a closed loop system with two main feedback paths.
The negative feedback is from the output, through R1 to the second grid of the differential input amplifier V1. This feedback helps reduce the output impedance and noise, and regulates the output voltage. The " Z_{0} " control provides positive feedback to reduce the output imped-
ance further to zero or small negative values. " Z_{0} " taps off the output driver where there is a square wave voltage proportional to the load current. The $0.1 \mu \mathrm{fd}$ capacitor across " Z_{0} " averages the square wave to provide dc.
The coarse and fine controls deliver a reference voltage from an OB2 105 v VR tube, while the $R 2,3,4$, combination supplies a line regulation compensating voltage.
The dual cathode bias arrangements in both V1 and V2, a second differential amplifier, help stabilize the output against the effects of filament voltage variations and tube aging.

V2 modulates V3, a free running multi-vibrator whose frequency varies inversely wtih load current from 20 to 50 kc . Thus, with light loads,
this carrier frequency is high, resulting in very low ripple. The frequency drops with heavier loads, resulting in increased selenium rectifier efficiency.

V4 amplifies the ultrasonic carrier and drives the output tube. The unusual drive circuitry and power output circuitry (V5) make for a highly efficient power amplifier. It can deliver high power output with an 80 per cent theoretical plate efficiency. Yet V5 dissipates very little power when lightly driven. Its average bias as a switch is proportional to the driving signal, with the tube operated as a switch (either saturated or cut off). Hence no fixed or cathode bias.

For more information turn to the ReaderService card and circle $\mathbf{1 0 0}$.

Fig. 4. This low voltage power supply uses negative voltage feedback, positive current feedback, line regulation, and a very unusual output stage. (Internal power supply not shown, uses traditional circuitry).

ELECTRONIC DESIGN•September 17, 1958

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

DC AMPLIFIER

A solid state chopper, consisting of a magnetostriction driven capacitor, is featured in the model 74 dc amplifier. The chopper provides $\mu \mathrm{v}$ per day stability. Chopper frequency is 8 kc , well outside the $1-\mathrm{kc}$ bandwidth of the amplifier, and therefore chopper intermodulation is prevented. Input is differential, with infinite impedance to dc, and it is entirely isolated from ground. Either side of the floating output may be grounded. Common mode rejection is $100,000: 1$ for common mode signals of 100 v .
Video Instruments Co., Inc., Dept. ED, 3002 Pennsylvania Ave., Santa Monica, Calif.
circle 42 on reader-service caro

CERAMIC CAPACITORS

Designed for 225 C operation, the Hi-T series of glass-coated ceramic capacitors have passed 1000 hour life tests at this temperature at twice rated voltage. The capacitors have an insulation resistance of 10,000 meg at +25 C and 100 v dc. Maximum capacity ratings range from 0.1μ, 70 wv de, to $0.035 \mu \mathrm{f}$, 500 wv dc.
Gulton Industries, Inc., Dept. ED, 212 Durham Ave., Metuchen, N.J.
circle 43 ON
READER-SERVICE CARD

ZENER DIODE

This double anode silicon zener is rated at 600 mw and designed for printed circuits. The unit provides symmetrical dynamic clipping characteristics for such applications as rate feedback limiting in servo control systems, maintaining the output of a gyro pickoff at a prescribed level, oscilliscope calibration, and similar functions. Available in zener voltage ranges of 4.3 to 30 v , the unit is also suitable for arc suppression and circuit protection uses. The device consists of two matched silicon zener junction diodes connected by a common cathode.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.
circle 44 ON reader-service card

MICROWAVE FILTER

This two-section preselector filter has high selectivity and wide range. The filter is useful in broadband image rejection or front-end selectivity applications requiring minimum size and weight. The unit illustrated tunes from 7500 to 8501 mc , with an insertion loss not exceeding 200 db for a 25 mc bandwidth.
Airtron, Inc., Dept. ED, 1096 West Elizabeth Ave, Linden, N.J.
circle as on reader-service card
ElECTRONIC DESIGN • September 17, 1958

WESTINGHOUSE TAKES A GIANT STEP IN SILICON POWER TRANSISTORS

Through major improvements in silicon purification and transistor fabrication, Westinghouse has broken down the previous limitations of Silicon Power Transistors. The result is a new serles of Westinghouse Power Transistors which can operate at high efficlencies in the "true power range."

LIFE-SIZE DRAWING shows how Westinghouse Silicon Power Transistor is designed for attachment to heat sink with a screw Stud. All leads are
in the base. in the base.

Thermal resistance-Junction to case, $0.7^{\circ} \mathrm{C} /$ watt typical. Current ratings based on the current at which current gain is equal to or greater than 10. It is possible to switch higher collector currents with some sacrifice in gain.

These are the first members of an entirely new family of Westinghouse Silicon Power Transistors, which have the advantages associated with silicon (high voltages and high operating temperature) without the disadvantages (high losses). As you can see from the chart below, these units possess exceptionally low saturation resist-ance-less than one half ohm. This low saturation resistance results in low internal dissipation. Coupled with high power handling capacity, it makes possible silicon transistors which can efficiently handle 1000 or 1500 watts. For example, as a DC switch, handling 1.5 kw (300 volts at 5 amperes) the internal dissipation of the units is about 12.5 watts with a resulting efficiency of better than 99%.
Like other silicon devices, these transistors can operate in ambient temperatures up to and exceeding $150^{\circ} \mathrm{C}$ while germanium units are limited to $85^{\circ} \mathrm{C}$. Thus, where the higher power rating is not required these units may be used for their high temperature capabilities. It also follows that wherever germanium power units are presently employed, a switch to silicon transistors will result in higher reliability of operation, because of the greater margin of safety with respect to operating temperature.
There are a great many circuits for which this new type of silicon power transistor is made to order. It will
yOU CAN BE SURE...IFIT'S
Westinghouse
find use in inverters or converters (AC to AC, AC to DC, DC to AC, DC to DC), to control frequencies for data processing, servo output, and other aircraft information applications. It will serve as a low frequency switch, as mentioned above; it will operate efficiently with low power supply voltages; and it will find a number of uses in class A amplifiers. There are also many additional applications-too numerous to list here.
These Westinghouse Silicon Power Transistors are available in sample quantities for your testing and immediate application. Call your Westinghouse representative or write directly to Westinghouse Electric Corporation, Semiconductor Dept., Youngwood, Penna.

low saturation resistance is exhibited in this graph showing values for a typical Westinghouse Silicon Power Transistor driven to 5 amperes. The values are fractions of those observed in other silicon transistors.

NEW PRODUCTS

Transistorized Circuit Packaging

High package densities

Semiconductor and passive circuitry packaging densities of 40 to 74 per cent are achieved with this cast instrument stick. Individual modules can be replaced or repaired. Used with printed circuit boards, the method permits three dimensional wiring.
Lind Corp., Dept. ED, 1181 Hughes Dr., Trenton 90, N.J.

CIRCLE 48 ON READER-SERVICE CARD

RF Coil

For automatic assembly

The X - L is a patented rf coil and transformer assembly for printed circuit board insertion. The coil has adjustable tuning and one or two windings. Inductive drift is 50 ppm per degree centigrade.

Essex Electronics, Dept. ED, 550 Springfield Ave., Berkeley Heights, N.J.

CIRCLE 49 ON READER-SERVICE CARD

Voltmeter
10 cps to 1 mc frequency range

The 21A voltmeter measures ac voltages over a 10 cps to 1 mc fre< CIRCLE 47 ON READER-SERVICE CARD

Negative Grid Tubes
Reflex and Amplifier Klystrons
Ceramic Receiving Tubes

Vacuum Switches

Includes the most extensive line of ceramic electron tubes
quericy range. Full scale accuracy is ± 2 per cent from 15 cps to 200 kc at 25 C and ± 4 per cent from 10 pps to 1 mc from -10 to +55 C . Stability is ± 1 per cent over line voltage variations of 105 to 125 v . The Daven Co., Dept. ED, Livingston, N.J.
CIRCLE 50 ON READER-SERVICE CARD
Electrometer
Has wide frequency response

The 201A electrometer amplifier combines wide frequency response with low current ranges. On the lowest range, $3 \times 10^{-14} \mathrm{amp}$, reponse time of under 0.1 sec are vailable, including the effects of apacity which may be introduced y input cables.
E-H Research Labs, Dept. ED, 161 Shattuck Ave., Berkeley 4, Calif.
CIRCIE SI ON READER-SERVICE CARD
Digital Shaft-Angle Encoder
Has built-in alignment cell

A 13-digit shaft-angle encoder, the DV-13A has a built-in alignment cell to establish opticalmechanical concentricity precise to 110 ppm . Reading accuracy is better than ± 2.5 minutes of arc, and maximum reading rate is 100 digital words per second. Without brushes or moving contacts, the Dychroverter instantly encodes the angular position of high-speed rotating shafts.
Dỵchro Corp., Dept. ED, 125 Mt. Auburn St., Watertown 72, Mass.
CIRCLE 52 on reader-service card
CIRCLE 53 ON READER-SERVICE CARD \rightarrow

ALLIED'S MHJ RELAY Built for Shock and Vibration $10-55 \mathrm{cps}$ at 0.125 inch double-amplitude $\cdot 55-2000 \mathrm{cps}$ at 20 g

Hore are the facts:

Comecter Refinges
Low level up to 5 amperes of 29 voits dec or 2 amperes at 115 volis oce non-inductive or 1 ampere inductive

Cenficet Arrunguma=13 MHJ-120: 4 PDT MHJ-18D: σ PDI

Tentperature:
Minus $65^{\circ} \mathrm{C}$ to plus $125^{\circ} \mathrm{C}$

Vilorefieme

$10-55 \mathrm{cps}$ ar 0.125 inch
double-amplitudo
$55-2000 \mathrm{cps}$ of 20 g
Operathes sheck: 1000

Woights

MH-12D: 3.0 ounces
MHJ-18D: 4.2 ounces
meulanions
1000 megohms minimum
Doloctik Stresse
1000 volis rms at sea levals 500 volts rms ot 70,000 feet
fillotel Combes Rosissampos .03 ofims maximum of .01102 ampo

Operwle Thes
10 milliuscondi or has
of toted rolloge of $29^{\circ} \mathrm{C}$
Rolocese Thmes
5 milliseconds or loss
of rated voltage at $25^{\circ} \mathrm{C}$

Now with

 5 amp Rating and Stabilized Construction*
*

Includes materials and processing necessary to minimize contact resistance variations and dielectric deterioration during life due to contact contamination, mechanical wear and shift of adjustments with temperature.

TYPE MHJ
ACTUAL SIZE

=	A	B	C	1)	E
MHJ-12D (1 Pole)	$13 / 4$ max	146	1/64	17%	1.406
MHJ.18D (6 Pole)	$13 / 4$ max	$1 \% 16$	1/16	1'46	1.562

WIDE FREQUENCY RANGE • HIGH POWER OUTPUT

NEW PRODUCTS

Pancake Clutch
For close coupled operations

Half as long as its mounting diameter, the model PC-8 precision clutch has encapsulated coils, fixed terminals, 1.000 servo mounting diameter, and guaranteed torque of 16 oz in .

Autotronics Inc., Dept. ED, Rt. 1, Box 812 Florissant, Mo.

CIRCLE 55 ON READER-SERVICE CARD

Precision Power Resistors

Rated to 275 C
Available in 2 to 10 w units, miniature Tech silohm precision power resistors are rated to 275 C . Temperature coefficient is 20 ppm per degree C.

Tech-Ohm Resistor Corp., Dept. ED, 36-11 33rd St., Long Island City, N.Y.

CIRCLE 56 ON READER-SERVICE CARD

Vibration Mounts

Have all-metal stabilizer unit

These metal mounts are designed for high, narrow-axis equipment subject to shock and vibration. They feature an all-metal stabilizer unit.

Ralph E. Cooper Co., Dept. ED, 233 S. Clinton St., Dayton 3, Ohio.

CIRCLE 57 ON READER-SERVICE CARD

Potentiometer
 Infinite resolution

Model 85175 potentiometer is available with either three or ten turns. It has resistances ranging from 2 to 250 ohms.
G. M. Giannini \& Co., Inc., Dept. ED, Pasadena, Calif.

CIRCLE 58 ON READER-SERVICE CARD

Wirewound Resistor
 Not derated at 200 C

In values from 1 ohm to 750 K , type 1400 wire wound resistors are rated at 0.5 w to 200 C , derating to 0 at 225 C . Temperature coeffcient is $\pm 30 \mathrm{ppm}$ per deg C from -50 to +200 C. Available in ± 1, ± 0.5, and ± 0.1 per cent tolerances.
The Daven Co., Dept. ED, Livingston, N.J.
CIRCLE 59 ON READER-SERVIC CARDE

Altitude Switch

Operates from 2000 to $70,000 \mathrm{ft}$

At any preset height from 2000 to $70,000 \mathrm{ft}$, this $3-\mathrm{oz}$ altitude switch will close or open contact. It operates from -65 to +250 F . Accuracy is 2 per cent of setting.

Aero Mechanism, Inc., Dept. ED, 89:3 Lindblade St., Culver City, Calif.

CIRCLE 60 ON READER-SERVICE CARD CIRCLE 61 ON READER-SERVICE CARD

The INCREDIBE SHRINKING RESISTOR...

Daven has always been the leader in the minia. turization of precision wire wound resistors. Now. due to further advances in resistor manufacture, Daven is able to offer higher resistance values in smaller sizes than ever before. Typical miniature units, with their new maximum values, are tabulated here.

For guided missiles, airborne radar, telemetering, and for any application where extremely small size
and dependability are of prime importance, specify Daven miniature wire wounds.

TYPE	DIAM	LENGTH	$\begin{aligned} & \text { max } \\ & \text { WATTS } \end{aligned}$	$\begin{aligned} & \max \\ & \text { OHMS } \end{aligned}$
1250	1/4	1/2	. 33	1 Megohm
1274	3/16	3/8	. 25	250 K
1284	1/4	27/64	. 25	1 Megohm

TAKE YOUR PICK FROM THE SPRAGUE TRANSI-LYTIC FAMILY

of tiny electrolytic capacitors

for every requirement in entertainment electronics pocket radios, wireless microphones, miniature tape recorders, auto receivers

 LITTL-LYTIC*
 CAPACITORS

Sprague's new Type 30D her-metically-sealed aluminum encased capacitors are the tiniest electrolytic capacitors made to date ... and their performance is better than ever. Their remark able reliability is the result of a new manufacturing technique in which all the terminal connections are welded. No pressure joints . . no "open circuits" with the passage of time. And check this for ultralow leakage current: for a 2μ f, 6 volt capacitor . . . only $1.0 \mu \mathrm{a}$ max.; for a $300 \mu \mathrm{f}$, 6 volt capacitor... 3.5μ max.! Engineering Bulletin No. 3110 gives the complete story. $85^{\circ} \mathrm{C}$ standard.

Trademark

VERTI-LYTIC* CAPACITORS

These space-saving Type 89D 'lytics are designed for easy manual upright mounting on printed wiring boards. Keyed terminals assure fast mounting and correct polarity. No reworking on the assembly line. Sturdy pre-molded phenolic shell with resin end-fill gives excellent protection against drying-out of the electrolyte or the entry of external moisture. The phenolic case eliminates the necessity for additional insulation. Reasonably priced for mass production receivers. Engineering Bulletin No. 3060 lists standard ratings with performance data.

FOR ENGINEERING BULLETINBOn the industry's first complete line of subminiature aluminum electrolytic capacitors, write Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS:
CAPACITORS • RESISTORS • MAGNETIC COMPONENTS • TRANSISTORS • INTERFERENCE FILTERS • PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE • PRINTED CIRCUITS CIRCLE 62 ON READER-SERVICE CARD

NEW PRODUCTS

Pressurizing Window

1.12 maximum vswr

The BL $777 \mathrm{~K}_{\mathrm{u}}$-band pressurizing window has a maximum vswr of 1.12 over a frequency range of 12.4 to 18.0 kmc . The BL 777 can be pres surized to a maximum pressure differential of 30 psi and will operate up to 100 kw maximum.

Bomac Labs., Inc., Dept. ED, Salem Rd. Beverly, Mass.

CIRCLE 63 ON READER-SERVICE CARD

Ceramic Capacitor Highly stable

Capacitance change from room temperature to +85 C is less than 2.5 per cent in the C 40 miniature ceramic capacitor. Units are available with ratings of 250,500 , and 1000 v .
Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.

CIRCLE 64 ON READER-SERVICE CARD
Temperature Indicator
Uses thermistor sensing elements

Using thermistor sensing elements, the model 109 temperature indicator covers a range of $6 i$ to 90 C . It indicates temperature at ten different points to 0.1 deg C accuracy.
Fenwal Electronics, Inc., Dept. ED, Mellen St., Framingham, Mass.

CIRCLE 65 ON reader-SERVICE CARD

VTVM
Logarithmic meter movement

Model 400L vtvm has a logarithmic meter designed to eliminate optical confusion and provide an accuracy which is a constant percentage of the reading. This was accomplished by expanding the lower portions of the voltage scale and by providing a linear decibel scale which spreads 12 db over the full scale length. The unit has two voltage scales ranging from 0.8 to 3.2 and from 2.5 to 1 . It measures any voltage from 0.3 mv to 300 v in the 10 cps to 4 mc range.
Hewlett-Packard Co., Dept. ED, 275 Page Mill Rंd., Palo Alto, Calif. CIRCLE 66 ON READER-SERVICE CARD

Electronic Timer

$\pm 1 \mathrm{msec}$ accuracy

For measuring time intervals between opening and closing of contacts on almost any instrument or control, the Dynatimer electronic stopwatch has $\pm 1 \mathrm{msec}$ accuracy. Contact time intervals range from 2 misec to 10 sec . The unit comes with glow counter tube or Nixie readout.
Dynapar Corp., Dept. ED, 5150 Chırch St., Skokie, Ill.

CIRCLE 67 ON READER-SERVICE CARD
CIRCLE 68 ON READER-SERVICE CARD $>$

Volume output makes Tung-Sol/Chatham 6528 available for widespread use!

Enthusiastic acceptance of the 6528 Twin Power Triode forced rapid expansion of production quotas, in turn resulting in lower manufacturing costs. These savings are reflected in lower prices to the user making Type 6528 economically practical for a vast number of new industrial and military applications.

Type 6528 requires fewer passing tube sections . . permits lower range control circuits ... and combines low internal tube drop with top control sensitivity - a definite advantage over previous series regulators. Also, 6528 triodes may be used in parallel or separately. This simplifies circuitry . . . saves space.

DESIGN FEATURES OF TUNG-SOL/CHATHAM TYFE 65201
I Hard glass envelope permits full out-gossing . . . Rakes higher femperatures without gas evolution . . . increases thermal shock resistonce.
2 Zirconium-coated graphite anodes assure excellent geplering. Graphite virtually unaffected by heat.
3 Oversize cathodes provide adequate emission reserve . . eliminato standby deforioration.
4 Extra-rugged grids. Slurdy chrome-copper side rods support gold-plated molybdenum lotaral wires
5 Overall ruggedness. Metal snubbers and coramic insulolors support mount. Heary button-stom has rigid support leads.

Tung.Sol Electric Inc. specializes in special-purpose tube development ... can match any design requirement you have. For full data on Type 6528 . . to fo fill any power tube socket . . . contact: Tung-Sol Electric Inc., Newark 4, N. J. Commercial Engineering Offices: Bloomfield and Livingston, N. J.; Culver City, Calif.; Melrose Park, IIl.

TYPE 6528 RATINGS

Max. plate dissipation per tube.................... 60 watte Max. plate dissipation per section. 30 watts Max. steady plate current per section................ 300 ma Max. plate voltage 400 volt Max. heater cathode voltage......................... 300 volt Amplification factor ${ }^{*}$... 9
*Average characteristics at $E_{b}=100 v, E_{c}=-40, I_{b}=185 \mathrm{ma}$
© 5 TUNG-SOL

-hp-500B Electronic Frequency Meter

Model 500 B is a rugged, precision instrument widely used for direct-reading laboratory or production line measurements of ac frequency from 3 cps to 100 KC . With -hp-508A-D Tachometer Generators or -hp-506A Optical Tachometer Pickup, the 500B also provides direct tachometry readings.

Typical applications include rf signal beat frequency comparisons, crystal frequency deviations, audio frequency and FM measurements, oscillator stability, machinery rotational speed, average frequency of random events, checking vibration or torsion in gear trains, etc.
Model 500 B has an expanded scale feature permitting
any 10% or 30% of selected range to be viewed full scale. It also offers a pulse output synchronous with an input pulse for measuring FM components of input signals or syncing a stroboscope or oscilloscope. Readings are independent of line voltage, input signal or vacuum tube variations. $\$ 285.00$.
-hp-500C Electronic Tachometer Indicator
Model 500 C is identical to 500 B except for meter calibration which is in rpm for greater convenience in tachometry measurements. With appropriate - $h p$ - transducers (506 A or 508A-D series), $-h p-500 \mathrm{C}$ will measure rpm from 15 to $6,000,000 \mathrm{rpm}$ in 9 ranges. $\$ 285.00$.

-hp- Rotational Speed Transducers

NO MECHANICAL CONNECTION -hp- 506A Optical Tachometer Pickup measures speeds 300 to $300,000 \mathrm{rpm}$ of moving parts Which have small energy or can not be connected mechanically to measuring devices. Em ploying a phototuhe and operated by reflectedon a shaft, -hp- 506 A may be used with -hp on a shaft, -hp-506A may be used with -hp-
500B Electronic Frequency Meter, -hp. Electronic Tachometer Indicator, -hp- 521 A or 521C Electronic Counters, and similar instruments. Output voltage is 1 volt rms minimum into 1 megohm; light source is a 21 candlepower, 6 volt automotive bulb; phototube is Type 1P41. \$125.00.
hEWLETT-PACKARD COMPANY
4870 K PAGE MILL ROAD - PALO AITO, CALIFORNIA, U.S.A. FIELD REPRESENTATIVES IN ALI PRINCIPAL AREAS

MECHANICAL CONNECTION

-hp-508A/B/C/D Tackomeler Generators are for use with electronic counters or frequency meters in rpm measurements from 15 to $40,000 \mathrm{rpm}$ where direct mechanical connection can be made to the rotating part under measurement. -hp-508A produces 60 output pulses per shaft revolution. When connected to an indicating instrument cali-
brated in rps, it permits direct readings in rpm. Relationship between output voltage and shaft speed is virtually linear to 5,000 pps, simplifying oscilloscope presentation of shaft speed as a function of time or analyzing clutches, brakes and acceleration rates.
$h p-508 B, C$ and D are identical to $-h p-508 \mathrm{~A}$ except output is 100 , 120 and 360 pulses per revolution respectively, and output voltage peaks at successively slower shaft speeds. -hp- $508 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ or D , $\$ 100.00$.

Data subject to change without notice. Prices f.o.b. factory
> hp Ask about new -hp- 200 KC oscilloscope-543500
point function generation. The slope of the curve at any particular breakpoint is adjusted by means of binary coded information punched into the card. Zero offset and slope scale are also cardprogrammed. Set-up can be effected in seconds independent of the generator proper. Repeatability is ± 0.02 per cent; accuracy, ± 0.1 per cent. Mid-Century Instrumatic Corp., Dept. ED, 611 Broadway, New York 12, N.Y.

CIRCLE 72 ON READER-SERVICE CARD

Multi-Contact Relay

Dissipates 1.2 w de or 2 va ac

The KF can be supplied to operate on ac or dc voltage. It is a continuous duty relay that dissipates 1.2 w dc or 2 va ac , and it can be adapted or 5pdt or 7pst arrangements. The relay is deigned with the movable contacts and relay rame electrically common.
Potter \& Brumfield, Inc., Dept. ED, Princeton, Ind.

CIRCLE 73 ON READER-SERVICE CARD
Metallized Paper Capacitors
Have double insulation

Type 118P difilm metallized capacitors have poth metallized paper and polyester film insulaion. Screw-neck mounting styles have large threaded neck mountings in case diameters 0.562 in. and above to improve performance under severe vibration. Type 121P capacitors are availble for use where high insulation resistance is rot required.
Sprague Electric Co., Dept. ED, 347 Marshall St, North Adams, Mass.

CIRCLE 74 ON READER-SERVICE CARD

\section*{Don't take | POT |
| :--- |
| JCK |} ... insist on SIRCURT SERVO POTENTIOMETERS for military applications

When equipment specifications are strict . . . when service conditions are tough... when you want extra design flexibility... CIRCUIT INSTRUMENTS helps you take the gamble out of specifying servo potentiometers.
The complete Circuit servo line, shown in actual sizes, makes available the following features to specification:

- Low torque operation
- Linear or non-linear windings

- Standard or high temperafure operation
- Multiple taps
- Six standard case sizes
- Precision machined phenolic case where economy is required
- Precision machined aluminum case where speciffcations require
- Ability to meot and surpass MIL specifications
- Ability to gang up to 8 sections
- Siandard specifications per section include:

Power rating: 1 to 6 watts
Resistance: 100 to 600,000 ohms
Linearity: 0.5% standard; 0.1 special
Rotation: Electrical ... 350°; Mechanical . . . Continuous
Weight: 0.5 to 6.25 ounces per section

Write for Data Sheets and information on CIRCUIT INSTRUMENTS' production flexibility for any size order.,

FOR ALI PRECISION POTENTIOMETER REQUIREMENTS, MINIATURE - SUB-MINIATURE - MOISTURE. SEALED. HERMETICALIY-SEALED. BALL BEARING - HIGH PRECISION - HIGH TEMPERATURE CIRCLE $7 S$ ON READER-SERVICE CARD

NEW PRODUCTS

Rivet Standoff
Variety of shank lengths

For mounting to terminal boards or panels, the X1246 rivet standoff comes in shank lengths to accommodate panel thickness from $1 / 32$ to $1 / 4$ in., and in eight mounted heights above the board, from $1 / 8$ to 1 in . Internally threaded, the rivet standoffs are finished with 0.003 in . cadmium plate.
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.

CIRCLE 77 ON READER-SERVICE CARD

Relay

Featuring large degree of wipe

This relay utilizes a novel contact configuration for maximum over travel and a large degree of wipe. Type BR8 exceeds applicable military spe cifications for miniature relays: $30 \mathrm{~g}, 10-2000 \mathrm{cps}$ operate and release less than 5 msec , with pull-in power 200 mw for dpdt and 80 mw for spd relays.

Babcock Relays, Inc., Dept. ED, 1640 Mon rovia Ave., P.O. Box 344, Costa Mesa, Calif.

CIRCLE 78 ON READER-SERVICE CARD

Diode Tester

Tests forward and reverse characteristics
A combination diode tester, model 997 tests both forward and reverse characteristics of ger manium or silicon semiconductors. Forward characteristics: voltage range, 0 to 5 v ; curren range, 0 to 1 amp ; meter ranges, 0 to 10 to 0 to

ELECTRONIC DESIGN • September 17, 1958

1000 ma . Reverse characteristics: voltage range, 0 to 1000 v ; current range, 0 to 10 to 0 to 1000 миа.
Trans Electronics, Inc., Dept. ED, 7349 Canoga Ave., Canoga Park, Calif.
circie 79 on reader-service card

Capacitors

Miniaturized

Miniaturized capacitors designed to save up to 80 per cent in space. Working voltages range from 100 to 600 vdc .
Potter Co., Dept. ED, 1950 Sheridan Road, N. Chicago, Ill.

CIRCLE 80 on reader-service card

Miniaturized Delay Lines

Close tolerances over wide range
These rugged, compact delay lines have close tolerances over a wide range of delays. They have a high delay to rise time ratio for their size and can be supplied in any reasonable specified impedance value.
Globe Industries, Inc., Dept. ED, 525 Main St., Belleville 9, N.J.

CIRCLE 81 ON READER-SERVICE CARD

VHF Multicoupler

90 to $\mathbf{2 0 0 ~ m c ~ f r e q u e n c y ~ r a n g e ~}$

This vhf multicoupler has a frequency range from 90 to 200 mc with maximum efficiency, and from 50 to 200 mc with reduced efficiency. It is available with a plug in preamplifier so that overall gain from input to each of the outputs can be approximately unity.
Westronics, Inc., Dept. ED, 3605 McCart St., Ft. Worth, Tex.
circle bl on reader service card
ELECTRONIC DESIGN • September 17, 1958

CLEVITE 'BRUSH' High Resolution Magnetic Heads

WITH GAPS AS NARROW AS 20 MICROINCHES

Clevite "Brush" high resolution magnetic heads permit major improvements in tape recording systems:

Greater packing density and/or higher frequency recording at your present tape or drum velocity. Less volume of tape required.
Up to 10 to 1 reduction in tape or drum velocity at your present frequencies or pulse repetition rate. More recording time on the same length of tape.
Reduced playback pulse width, allowing extended pulse width modulation (pwm) recording; for example, 10 microsecond pulse width at 120 inches per second tape velocity. Special high resolution heads were developed by Clevite to meet specific customer applications. They are now commercially available in 2 to 32 channel form in a variety of mechanical configurations. These heads, slightly modified, may fit your present design requirements. One of our specialists will be pleased to discuss your application by detailed correspondence or personal visit. Write: Product Manager, Magnetic Heads, Clevite Electronic Components, 3311 Perkins Avenue, Cleveland 14, Ohio.

Oscilloscope photos of pulse recordings on Clevite high resolution head. Pulse duration, 1 microsecond; tape speed, 60 inches/sec.

Typical Clevite narrow gap multi-channel head records more data on an equal length of tape.

Clevite 'Brush' High Resolution Heads for radar recording high density tape recording - high density drum recording • video recording - VHF instrumentation for missile telemetering

CLEVITE
ELECTRONIC
COMPONEMTS
DIVISION OF
transducers
CIIEVITE PIEZOELECTRIC CRYSTALS CERAMICS AND ELEMENTS

NEW PRODUCTS

Frequency Meter
Has 21 direct reading scales

Frequency meter T-2 has 14 ranges from 25 cps to 80 kc and 7 ranges from 1250 to $80,000 \mathrm{rpm}$, all in direct reading scales. Accuracy is 1 per cent. The unit accepts voltages from 10 mv to several hundred volts at high impedance. Jones-Porter Instrument Co., Dept. ED, Box 302, Millburn, N.J. circle 84 on reader-service card

Series ST-70NXS low frequency srystals cover a frequency range of 100 to 250 kc with a frequency tolsrance of ± 0.015 per cent from -55 to +90 C . They stand 100 g initial shocks and 20 g vibration up o 2000 cps .

Bulova Watch Co., Electronics Div., Dept. ED, Woodside 77, N.Y. CIRCLE 85 ON READER-SERVICE CARD

Transistor Tester
Measures switching time

The API 300 analyzes the time haracteristics of high speed tran-

> RADAR CAPABILITY BROADENED BY HIGHTUBES DEVELOPED AT GENERAL ELECTRIC

DEVELOPMENT of advanced high-power, pulsed traveling-wave tubes at the Power Tube Department's Microwave Laboratory at Palo Alto, California, is contributing substantially to the broadening of radar frequency ranges. Vital accomplishments provided are: high pulse powers over wide instantaneous bandwidths; periodic permanentmagnet focusing; novel, light-weight, rugged tube structures. In addition to systems-oriented work at \mathbf{X} band, developments are progressing at L, S, C, and K bands.
Traveling-wave tube pioneering is only one of a broad range of microwave activities being conducted at the G-E Microwave Laboratory. The Laboratory's fields of activities are applied research, advanced development, and product design in microwave tubes and microwave techniques. All development work is done with an eye to practical, economical manufacture - thus minimizing the time lapse between prototype development and quantity production-and to the realistic tube needs of future microwave equipment. Technical inquiries pertaining to advanced microwave tube development invited. Power Tube Department, General Electric Company, Schenectady, New York.
*
Professional opportunities available for engineering and scientific personnel. Inquiries invited.

Progress Is Our Most Important Product GENERAL ELECTRIC

The G-E Power Tube Microwave Laboratory is located at Stanford Industrial Park, Palo Alto, California where it was one of the Park's pioneer installations. IIs staff of scientists and engineers has the advantage of technical ex change with Stanford University faculty and research staffs, as well as with General Electric's own as with General Electric's ow ing Laboratories.

Extensive development work in the following classes of tubes is a continuing activity of the G-E Microwave Laboratory's staff of scientists, engineers and technical personnel.

Pulse klystron power amplifiers CW klystron amplifiers
High-power pulsed TWT amplifiers Medium-power CW TWT amplifiers Low-noise, broadband TWT amplifiers

Super-power klystrons Voltage-tunable oscillators High-power duplexers Microwave filters Frequency multiplier TWT amplifiers

POWER TRAVELING-WAVE MICROWAVE LABORATORY

Typical of traveling-wave tubes being developed at the G-E Microwave Laboratory is this S-band tube which has operated successfully at the 2 -megawatt pulse output level with 30 db gain.

These hermetically sealed, mul tiple filament transformers ar built to MIL-T-27A, Grade 4 Class R specifications. Minimur life expectancy is $10,000 \mathrm{hr}$; maxi mum operating altitude, $10,000 \mathrm{ft}$

Chicago Standard Transformes Corp., Dept. ED, 3501 Addison St. Chicago 18, Ill.

CIRCLE 87 ON READER-SERVICE CARD

Linear Inductors
Adjustable and fixed

Variation of inductance is lineas from -55 to +125 C in this line of fixed and adjustable inductors Temperature coefficients range from 55 to 161 ppm . Q variation is ± 10 per cent from -30 to $+88^{2}$ C , and inductance range is $100 \mu \mathrm{k}$ to 2 h .

Pulse Engineering, Inc., Dept ED, 2657 Spring St., Redwoor City, Calif.

CIRCLE 88 ON READER-SERVICE CARD \& CIRCLE 89 ON READER-SERVICE CARD

NEW-FROM SYLVANIA

Purified Silicon
 cuts the guesswork out of doping

NOW semiconductor-device manufacturers can dope silicon to the exact resistivity range desired without complicated doping procedures. New Sylvania purified silicon ingots are swept clean of virtually all impurities and are essentially uncompensated since only minute amounts of boron remain. Because the boron is present in known quantities, the amount of doping agent needed to obtain an exact resistivity range can be easily calculated. As a result, there is a higher yield of usable material per doped crystal.
Sylvania p-type purified silicon is available in three standard grades based on minimum resistivity $-1,40$, and 100 ohm cm . The ingot is 50 mm
half round in cross section by $25-30 \mathrm{~cm}$ (10-12 in) in length. It weighs approximately $15 \mathrm{~g} / \mathrm{cm}(40 \mathrm{~g} / \mathrm{in})$ which is practically of theoretical density.
In addition, Sylvania supplies germanium and silicon in cast rods 4 mm to 15 mm in diameter from $8^{\prime \prime}$ to $18^{\prime \prime}$ in length. Undoped single crystals and polycrystalline purified ingots and as-reduced ingots of n-type germanium are available, also. Both silicon and germanium are available in cut pieces to int crystal-growing boats or crucibles of all types. Contact Sylvania's Chemical and Metallurgical Division for further information on new purified silicon and on the full line of other semiconductor materials.

- SYLVANIA

Sylvania Electric Products Inc. Chemical \& Metallurgical Div. Towanda, Penna.

SEMICONDUCTORS

NEW PRODUCTS

Flexible Terminal Blocks

Have self-locking screws

Imported from West Germany, Flex-o-Block terminals are made of unbreakable, nonporous, completely flexible vinyl plastic. Blocks are in strips of 12 that can be cut with a pocket knife. Screws, enclosed in plastic molding, have a tapered head which gives locked-in protection without washers. Resistant to environments, the terminals withstand temperatures from -65 to +100 C . Resistance is 2.5×10^{15} per in.; dielectric constant is 3.5 at 60 cps . Units come in 10,20 , 30 , and 50 amp capacities.

American Electronic Products Co., Inc., Dept. ED, 202 W. 40th St., New York 18, N.Y. CIRCLE 91 ON READER-SERVICE CARD

Storage Tube

For radar use

In a fraction of a second, tube WL-7228 memorizes data received by radar and holds it for long periods. The tube stores over 100,000 pieces of information. It has three guns. One to receive and write information, a second to wipe it out, and a third to display it.
Westinghouse Electric Corp., Electronic Tube Div., Dept. ED, Elmira, N.Y.

CIRCLE 92 ON reADer-SERVICE CARD

Composite Transistors

High gain

These composite transistors and diodes feature stability, high gain, and the elimination of
ancilary circuitry. The 2 N 626 npn and ARA-25P pnp power transistors are for use in circuits where high impedance driving sources exist in cominon emitter, common base, or common collector configurations. The ARA-25N-H pnn and ARA-25P-H npp power transistors are ger manium-silicon power hook collector transistors designed to be used in their stable configurations. The ARA-D1528 shunt regulating diode consists of a Zener diode coupled to a high power composite transistor.
Advanced Research Associates, Inc., Dept. ED, P.O. Box 68, 4130 Howard Ave., Kensingon, Md.

CIRCLE 93 ON READER-SERVICE CARD

Multivibrator

Vibrator replacement

The Univistor transistorized astable multivi brator is used with an external vibrator transformer to deliver ac power output from dc input. Since the external vibrator transformer is part of the power supply circuit, the Univistor can be interchanged with a vibrator without change in circuitry.
Universal Transistor Products Corp., Dept. ED, 17 Brooklyn Ave., Westbury, N.Y.

CIRCLE 94 ON READER-SERVICE CARD

Transistorized Oscillator
High accuracy to 105 C

This transistorized sinewave oscillator has an adjustable frequency set range of 20 cps to 20 kc . Frequency is stable to ± 0.25 per cent, with under 1 pur cent distortion from -55 to +105 C . Construction is either plug-in or header type.
Ceneral Controls Co., Dept. ED, 801 Allen Ave, Glendale, Calif. CIRCLE 95 ON READER-SERVICE CARD

TODAY'S GREATEST VALUE IN ELECTRONIC COMPUTERS! ROYAL PRECISION LGP-30

Compare it, feature by feature, with the other computers in its class

Feature	$\underset{A}{\text { Computer }}$	$\underset{B}{\text { Computer }}$	Computer	Computer	LGP-30	
Memory Size	220 words for data only	2160 words	$\begin{aligned} & 1000 \text { or } \\ & 2000 \text { words } \end{aligned}$	84 words for data only	4096 words for data \& program (either or both)	LARGEST CAPACITY IN ITS CLASS
Max. Speed Add Multiply	$\begin{aligned} & \text { 20/sec. } \\ & \text { 4/sec. } \end{aligned}$	Comparable to LGP-30	Comparable to LGP-30	$\begin{aligned} & 3 / \mathrm{sec} . \\ & 1 / \mathrm{sec} . \end{aligned}$	Over 440/sec. Over 50/sec.	SPEED EQUAL TO MANY ROOM-SIZED COMPUTERS
Size	17 sq. ft.	$6.5 \mathrm{sq} . \mathrm{ft}$. plus table for typewriter.	$45 \mathrm{sq} . \mathrm{ft}$.	9.2 sq. ft. plus table for typewriter \& control unit.	$11 \mathrm{sq} . \mathrm{ft}$.	COMPACT, DESK-SIZED, COMPLETELY MOBILE
Input- Output	Keyboard only tape at extra cost.	Independent tape preparation at extra cost.	Extra cost peripheral equipment required.	Tape and typewriter for numerical inputoutput only. Independent tape preparation at extra cost.	Tape typewriter for alpha-numeric input-output standard equipment.	delivered complete. NO ADOITIOMAL ERUIPMENT MEEDED to prepare data, PROGRAM OR REPORTS
No. of tubes	165	450	2,000	248	113	FEWER COMPONEMTS MEAN LESS MAINTENANCE FEWER CHECKOUTS
Voltage	220 V	110 V	220 V	110 V	110 V	PLUGS INTO ANY regular wall outiet
Power	2.5 KW	3.0 KW	17.7 KW	1.65 KW	1.5 KW	NO SPECIAL WIRING OR AIR-CONDITIONINE REQUIRED
Ease of programming \& operation	Not alpha-numeric. No internal program storage.	Alpha-numeric at extra cost. 8 part instruction. Requires computer specialist.	Alpha-numeric at extra cost. Requires computer specialist.	Not alpha-numeric. No internal program storage.	Alpha-numeric.Complete internal program stopage. Standard typewriter keyboard. Simplest com. mand structure of all.	$\begin{aligned} & \text { EASY } \\ & \text { TO PROGRAM } \\ & \text { ANO OPERATE. } \end{aligned}$
Cost Sale Rental	$\begin{aligned} & \$ 38,000 \\ & \$ 1000 / \mathrm{mo} . \end{aligned}$	$\begin{aligned} & \$ 49,500 \\ & \$ 1485 / \mathrm{mo} . \end{aligned}$	$\begin{aligned} & \$ 205,900 \\ & \$ 3750 / \text { mo. up } \end{aligned}$	$\begin{aligned} & \$ 55,000 \\ & \$ 1150 / \mathrm{mo.} \end{aligned}$	$\begin{aligned} & \$ 49,500 \\ & \$ 1100 / \mathrm{mo} . \end{aligned}$	$\begin{aligned} & \text { LOWEST COST EVER } \\ & \text { FOR A } \\ & \text { COMPLETE } \\ & \text { GENERIL PUPOSE } \\ & \text { COMPUTER } \end{aligned}$

Nation-wide sales and service. Trained staff of applications analysts. Library of subroutines available, plus programs for wide variety of applications.

For further information and specifications
on Royal Precision LGP-30, call your nearby

Royal McBee office, or write Royal McBee Corporation, Data Processing Division, Port Chester, N. Y.

ROYAL MCBEE

WORLD'S LARGEST MANUFACTURER OF TYPEWRITERS AND MAKERS OF DATA PROCESSING EQUIPMENT

CIRCLE 96 ON READER-SERVICE CARD

INewr Transistorized

FRENUENCY DISCRIIINATOR AND

 SERVO DRIVEN CORRECTION LOOP

NEW PRODUCTS

Telemetry Antenna

Manually operated or remote-controlled

Model MAM-1000 telemetry antenna is for use where the antenna can be manually oriented. It also comes with a remote controlled motordriven mount. Unit pictured is a 4-turn helical beam antenna with a 50 deg acceptance angle and a 10 db gain over an isotropic source.
Nems-Clarke Co., Dept. ED, 919 Jesup-Blair Dr., Silver Spring, Md.

CIRCLE 98 ON READER-SERVICE CARD
Capacitor
Symmetrical feed-through

The DA-741 Hi-Kap symmetrical feed-through capacitor can be inserted from either end. There is no capacitance drop-off. The unit withstands 450 F soldering temperatures; comes in capacitance values to $1000 \mu \mu$.

Centralab, Div. of Globe-Union, Inc., Dept. ED, 900 E. Keefe Ave., Milwaukee 1, Wis. CIRCLE 99 ON READER-SERVICE CARD

Digital Voltmeter

Measures dc voltages from 1 mv to 1000 v

Low-cost model 481 digital voltmeter makes continuous automatic measurements of dc volt-
ages from 1 mv to 1000 v with a linearity and scale factor accurate to 0.01 per cent. It has a stabilized reference, and automatic range changing, polarity, and decimal point positioning. Visual presentation only.
Non Linear Systems, Inc., Dept. ED, Del Mar, Calif.

CIRCLE 105 ON READER-SERVICE CARD

Power Supply
Provides 60 ma at 300 vdc

Power supply which occupies 5 cu . in. and supplies 60 ma at 300 v dc from a $115 \mathrm{v}, 400$ cps ac input source. Ripple is less than 5 per cent at full output rating. Qualified per MIL-T5422C.
Master Specialties Co., Dept. ED, 956 E. 108th St., Los Angeles 59, Calif.

CIRCLE 106 ON READER-SERVICE CARD

Printed Circuit Connectors

Have straight-through terminals

The UPCC-ML series printed circuit connectors have straight-through terminals on the male member. Terminals are solder dip for $1 / 16$, $1 / 8$, or $1 / 4 \mathrm{in}$. boards, or solder eyelet or turret type. Insulation resistance is over 5000 meg , with voltage breakdown over 2500 v ac rms , and current rating 7.5 amp . With $7,11,15,19$, and 23 terminals.
U. S. Components, Inc., Dept., ED, 454 E. 148!h St., New York 55, N.Y.

CIRCLE 107 ON READER-SERVICE CARD

cale model "Redstone" misaile, courtesy U.S. AFmy BASIC RELABILLTY

Starts in the nerve system...wire!

Eliminate the possibility of wire failure and you've licked the first "if" of circuit functioning.
At Hitemp Wires, Inc., Teflon* wire, cable and tubing must pass grueling countdowns. Rigid inspections screen all incoming raw materials. During and after insulating with the mos modern equipment, more than 30 electrical, mechanical and environmental tests assure uniform high quality.
Such exhaustive procedures of continuous inspection and quality control are unequalled in the wire industry.

These extra steps, however, are well worth the time and effort. They give you a built-in safety factor-the factor of predictable dependability. Hitemp Wires, Inc. products more than meet MIL specifications.
The ability of Hitemp Wires, Inc. products to exceed the exceptionally high requirements of the military in virtually all key missiles-guarantees wire, cable and tubing users in other fields the highest order of basic reliability: Write Department 968 today for more information and our newest catalog.
-Dw Pont's trade name for Tetrafuoroethylene

dinets

 A RELIABLE SOURCEFOR PRODUCING YOUR
ELECTRONIC CONSOLE CABINETS

built to exact specifications utilizing the most

 modern fabricating techniques and materials METAL CABINETS for Computors-Electronic Testing UnitsProduction Line Control Units-Electronic Instruments ...* These illustrations offer a general idea of the variety of metal cabinets produced by Anets as single and sectionalized units, complete with shelving, roll shelves, roll racks, racks hung on door interiors and with special interior construction. These units are now being built by Anets for leading manufacturers of electronic console equipment. They are sturdy, lightweight, economical.
We fabricate cold-rolled, stainless steel, aluminum and Vinyl clad materials. Finishes include spray paint, baked-on enamel or special wrinkle finishes.

As new electronic devices are developed new cabinet requirements unfold. Anets has met the challenge with engineering advice and improved methods of fabricating cabinets designed to protect the most delicate electronic equipment. We invite you to submit your requirements.

ANETSBERGER, BROS., Inc.
185 NORTH ANETS DRIVE NORTHAROOK, ILIINOIS CIRCLE 109 ON READER-SERVICE CARD

NEW PRODUCTS

Electrical Impulse Counters

Have four 5-digit counting heads

ZDG series electrical impulse counters may be installed with up to four 5-digit counting heads printing on one tape. Counting time is 25 per sec; printing time, 0.1 sec ; and reset time, 0.5 sec . For dc current, 24 and 60 v .

Presin Co., Dept. ED, 12128 W. Pico Blvd., Los Angeles 64, Calif.

CIRCLE 110 ON READER-SERVICE CARD

Potentiometer

Up to 13 taps

Model 200-CEUS 2 in. precision potentiometer may have up to 13 preset taps or it can be tapped in the field by the user. Spacing of terminals facilitates direct attachment of padding resistors to produce nonlinear functions; nonlinear units can be wound to any specified function. All nonferrous parts are anodized or plated. Up to 15 units can be stacked without loss of accuracy. George Rattray and Co., Dept. ED, 116-08 Myrtle Ave., Richmond Hill 18, N.Y.

CIRCLE 11 ON READER-SERVICE CARD

Metallized-Paper Capacitors

Miniature

Type P83CZK metallized-paper capacitors feature a metallized dielectric which provides both \mid

and the field of

 ELECTRONICSBorg is well-known and highly respected for its sound, creative engineering. The precision qualities of Borg components for systems are widely recognized in both the commercial and military fields.

- AIRCRAFT INSTRUMENTS

Aircraft components, instruments and electronic sub-assemblies.

- FREQUENCY STANDARDS

Crystal controlled oscillator type frequency standards.

- MICROPOTS

Precision potentiometers in a wide range of single-turn, multi-turn and trimming models.

- MICRODIALS

Precision MICRODIALS for single and multi-turn devices. Indexed accuracy of up to one part in 1,000 .

- INSTRUMENT MOTORS

Precision motors, synchronous and induction types. Gear trains.

LET BORG HELP YOU

Borg can assist you in the design and construction of prototypes. Complete facilities for pilot runs and quantity production. Write for Catalog BED-A50 or call us today.

michopots

MICRODIALS
MOTORS

BORG EQUIPMENT DIVISION
The George W. Borg Corporation
120 South Main Street, Janesville, Wis.
circle 112 on reader-service card
ELECTRONIC DESIGN - September 17, 1958
the electrodes and the dielectric. Power factor is under 1 per cent when measured at 1 kc and 25 C . The miniature units operate to +85 C . Aerovox Corp., Dept. ED, New Bedford, Mass. CIRCLE 113 ON READER-SERVICE CARD

Power Relay

Has octal plug-in
In a clear polystyrene enclosure with octal plug-in header, series 26D miniature power relay is available up to 3pdt with contacts rated at 10 amp . It can be wired for double make or break operations, ac or dc coil. Units come with coil resistances to 15 K .
Kurman Electric Co., Dept. ED, 191 Newel St., Brooklyn 22, N.Y.

CIRCLE 114 ON READER-SERVICE CARD

Transformers

Operate to $70,000 \mathrm{ft}$ altitude

These 400 cps transformers are hermetically sealed and meet MIL-T-27A, Grade 4, Class S specifications. They operate at 85 C ambient, 45 C rise. Maximum operating altitude is $70,000 \mathrm{ft}$ and life expectancy is $10,000 \mathrm{hr}$. Included in the line are 10 power transformers with high voltage secondaries ranging from 40 to 300 dc ma and multiple filament secondaries ranging from 3 to 20 amp . All units have 2500 v rms insulation.
Chicago Standard Transformer Corp., Dept. ED, 3501 Addison St., Chicago 18, Ill.

CIRCLE 115 ON READER-SERVICE CARD

DC Chopper

Low drift

An spdt chopper, the DCM-99K-1 dc modulator has less than $5 \mu \mathrm{v}$ dc offset. It drifts less than $2 \mu v$ over a long period of time. Normal contact dwell time is 55 per cent, held within 2 per cent for the first 1000 hr . Life is 10,000 to $25,000 \mathrm{hr}$.
Millivac Instruments, Div. of Cohu Electronics, Inc., Dept. ED, P.O. Box 997, Schenectady, N.Y. circle 116 ON READER-SERVICE CARD
ELECTRONIC DESIGN • Sepiember 17, 1958
 dial he can read quickly, accurately . . Borg Direct-Reading Microdials. Borg's inline digital presentation provides the greatest accuracy of perception. when fast dial reading is required. Numbers are viewed through a one-piece, curved, sealed window. Available in 3 -digit 10 -turn models, 4 -digit 100 -turn models and 5 -digit 1,000-turn models.
also avait.able . . . Borg Concentric Scale Microdials to indicate the position of any multi-turn device of 10 -turns or less. Write for complete data on all Borg Microdials.
ask for catalog bed-a9

BORG EQUIPMENT DIVISION the george w. borg corporation JANESVILLE, WISCONSIN

CIRCLE 117 ON READER-SERVICE CARO

Where to lay the scalpel is rarely the result of engineering considerations alone．Those responsible for the successful operation of the system must consider：（1）the requirements of the system as a whole，and（2）the ability of suppliers to furnish that level of subassem－ blies or units which fulfill overall system requirements with maximum efficiency．

In the field of servo control systems and assemblies，Daystrom Transicoil has demon－ strated the necessary engineering and pro－ duction experience to achieve full optimiza－ tion of sub－systems and assemblies－ involving the use of servo motors and motor generators，gear trains，synchros，servo ampli－
fiers，servoed indicators，and other servo components．Our work，to date，has included missile guidance assemblies，autopilot sub－ systems，radar control systems for aircraft， position display devices for shipboard navi gation，air－borne camera control assemblies， flight control assemblies for supersonic air－ craft ．．．and our experience is growing as fast as the servo field itself．
The specialized help you need to turn modern system requirements into optimized working sub－systems and assemblies is part and parcel of our business．Contact us direct or through our local representative．And if you need servo motors and motor generators in a hurry，check into our 24 Hour Service．

DAYSTROM TRANSICOIL
 Division of Daystrom，Inc．

WORCESTER，MONTGOMERY COUNTY，PA．－PHONE：JUNO 4.2421 CIRCLE 118 ON READER－SERVICE CARD

[^0]
NEW PRODUCTS

Transistor Building Blocks
For digital systems

A pluggable pin－jack system quickly combines Data Blocs into special test equipment and complete digital systems．The 5 mc transistor building blocks can be used any number of times．Permanent equipment can be specified and built from the experimental block hookup by the use of Data－Pacs，the printed circuit plug． in card equivalent of the Data Blocs．
Harvey－Wells Electronics，Inc．，Dept．ED， 5168 Washington St．，West Roxbury，Mass．

CIRCLE 119 ON READER－SERVICE CARD

Printed Circuit Relay
Has gold flashed contacts

For printed circuits，series MKT relays have gold flashed silver or silver cadmium oxide con－ tacts in arrangements up to 3pdt．Ratings are 5 or 10 amp resistive at $115 \mathrm{v}, 60 \mathrm{sps}$ or 26.5 v dc ． Line Electric Co．，Dept．ED， 271 S．Sixth St．， Newark 3，N．J．

CIRCLE 120 ON READER－SERVICE CARD
Zener Reference Assemblies
Voltage range of 6.2 to 49.6 v

In these Zener reference assemblies，type 1N429 twin anode Zener reference diode is the basic building block．The strings have an operat－ ing voltage range from 6.2 to 49.6 v ；a maximum
change in voltage in the -55 to +100 C range of 0.05 to 0.2 v ; and a maximum dynamic impedance at 7.5 ma from 20 to 180 ohms.
Hoffman Electronics Corp., Semiconductor Div., Dept. ED, 920 Pitner Ave., Evanston, Ill. CIrcie 121 on reader-service card
Telemetering Filters Cover frequencies from 400 cps to 70 kc

Telemetering band pass filters, group TMN, covers frequencies from 400 cps to 70 kc with ± 7.5 per cent bandwidth. Group TMW covers frequencies from 22 kc to 70 kc with ± 15 per cent bandwidth. Impedance for all units is 100 K in and out. Insertion loss is less than 6 db .
United Transformer Corp., Dept. ED, 150 Varick St., New York 13, N.Y.

CIRCLE 122 ON READER-SERVICE CARD

Rectilinear Recorder

8 channel
Model 99.003 rectilinear recorder is for use with analog computers. It combines 8 channel capacity, hot-stylus recording, and push button sensitivity selection. It may be controlled from the computer console, or control of the computer itself may be obtained from the recorder.
Electronic Associates, Inc., Dept. ED, Long Branch, N.J.

CIRCLE 123 ON READER-SERVICE CARD

Film Resistor

200 ohm to 1.5 meg range

A low-cost, glass-based resistor bearing a tin oxide metal film, the C-42 has a 200 ohm to 1.5 meg resistance range and operates to 150 C . Fower rating is 2 w at 70 C .
Corning Glass Works, Dept. ED, Corning, N. Y

CIRCLE 124 ON READER-SERVICE CARD

Now-guaranfeed practical inducfance limits for regular and frequency-sfabilized permalloy powder cores

Call them frequency-stabilized or temperature stabilized, the important thing about these new molybdenum permalloy powder cores made by Magnetics. Inc., is our guarantee of core inductance within realistic limits. You can write-right now-for these guaranteed limits.
Filter circuit designers will take note that these guaranteed limits for permalloy powder cores are far tighter than those published before. Note also that they are guarantees on inductance which is the parameter of chief concern to the core user rather than on permeability.
This can save you dollars on your production line-by cutting down on adjustment of number of windings on coils.

And you know, too, that temperature stabilization eliminates difficult compensation problems.
But did you know that we guarantee these new inductance limits for all of our permalloy cores, whether stabilized or not? For all the facts, write us at Magnetics, Inc., Dept. ED.47, Butler, Pennsylvania.

CIRCLE 125 ON READER-SERVICE CARD

World's Biggest Eater Dines Without Interruption

You are looking at 3 million dollars' worth of power shovel, a 14 -story monster capable of biting off 70 cubic yards of dirt at a clip.
Continuous operation is essential because downtime on a shovel of this size could top 500 dollars an hour. Reliability is shared by many interrelated parts. Some are made of Synthane laminated plastics.
WhySynthane? BecauseSynthane laminated plastics have the right combination of properties-dielectric strength, mechanical strength, and ease of machining. And Synthane uses only first-quality raw materials, watches every step in the produc tion and fabrication of the laminate,

CIRCLE 126 ON READER-SERVICE CARD
is deeply concerned about delivery requirements.
Good materials, competent people, excellent tools and workmanship may not guarantee reliability but they're strong assurance of it.

If you are interested in a reliable source of laminated plastics-sheets, rods, tubes, or completely fabricated parts, write for an interesting catalog or call our representative near you.

SYNTHANE CORPORATION, 12 RIVER RD., OAKS,PA

NEW PRODUCTS

This heater extension for bipolar feed horns is designed for radar and tropospheric scatter communications systems in the arctic. The anti-ice uses two infrared lamps in the horn extension assembly. The lamps direct radiant energy through the window and heat air around its outer surface.

The Gabriel Co., Gabriel Electronics Div. Dept. ED, Needham Heights 94, Mass.
circle 127 ON reader-service card

Coaxial Couplers

0.2 db accuracy at 5 frequencies

The couplers cover a $2-1 / 2$ to 1 freq. range with flat coupling and high directivity from 4000 to $10,000 \mathrm{mc}$. Units include chart providing calibration to 0.2 db accuracy at 5 freq.
Narda Microwave Corp., Dept. ED, 118-160 Herricks Rd., Mineola, N.Y.

CIRCLE 128 ON READER-SERVICE CARD

Rotary Switches
High speed

These high speed rotary switches come in a variety of sizes and arrangements. Shown is a double rotor unit with 80 contacts per pole. It operates up to 600 rpm with a life of 1500 hr .

The Daven Co., Dept. ED, Livingston, N.J. CIRCLE 129 ON reader-service card

Disc Ceramic Capacitors
For printed wiring boords

Cera-Mite disc ceramic capacitors have multiple coating and clean lead wires, yet they seat snugly on printed wiring boards. Suitable for two-sided or plated-through boards, they withstand severe vibration. Units rated to 1000 v are available.
Sprague Electric Co., Dept. ED, North Adams, Mass.

CIRCLE 130 ON READER-SERVICE CARD

Substitution Box
For Zener diode selection

Quick selection of Zener diodes for experimental breadboard circuits is made with the Zeniac substitution box. Choice of 11 basic 1 w silicon Zener diodes covering 3.6 to 30 v range. May be inserted into any breadboard circuit.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif. circle 131 on reader-service card

Rate Switch Handles 1.5 amp

With directly-operated switches able to handle a 1.5 amp inductive load, RS01 rate switches come in ranges from 5 to 1000 deg per sec. Differential switch rate is low.
Ilumphrey, Inc., Dept. ED, 2805 Canon St., Sar! Diego 6, Calif.

CIRCLE 132 ON READER-SERVICE CARD

GUARANTEED PERMEABILITY... and at higher values than old average values in AL-4750

AL-4750 nickel-iron strip now has higher permeability values than ever before . . . and the new, higher values are guaranteed. For example, using the standard flux density test, at 40 induction gausses, AL- 4750 now ha6 57% higher permeability than in the past. And permeability values are guaranteed.

This guaranteed permeability means greater consistency and better predictability for magnetic core performance . . permits careful, high performance design.

The improvement in AL-4750 didn't just happen. It is the result of Allegheny's electrical alloy research and production program in nickol-bearing steels. A similar improvement has been made in AL Moly Permalloy. waw 7208

And research is continuing on silicon steels including AL's famous Silectron (grain oriented silicon steel), as well as on other magnetic alloys.
Another service of Allegheny Ludlum includes complete facilities for the fabrication and heat treatment of laminations. Years of experience in AL's lamination department means that Allegheny Ludlum has encountered and solved most problems common to core materials. This practical know-how is available to all. Call us for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750.
Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa. Address Dept. ED-9.

New Humphrey dual-rate gyros do the work of two units

Now important reductions in the space required for instrument and control packages can be made with the introduction of a new Humphrey rate gyro that replaces two ordinary gyros. The new design utilizes a single motor to drive two separate wheels in one unit. With this new development, it is possible to measure rates about two different axes with an RG-18 Series Gyro or cover two different rate ranges about the same axis with a single RG-20 Series instrument.
RG-18 gyros should find widespread use for applications now requiring two instruments. For example, one unit could be used to measure both pitch and yaw. The RG-20 Series, with its two different rate ranges, may be applied to instrumentation systems where greater accuracy is required. For example, a single unit can be furnished to cover the rate ranges from $0-20$ degrees/second and from $0-200$ degrees $/$ second. In effect, you expand the dynamic range of your instrumentation system from 100 to 1 to 500 to 1 . This expanded scale gives you far greater accuracy.

The new rate gyros are built with two independent pickoffs - one for each axis or one for each range. They meet tough environmental conditions, such as temperature from $-65^{\circ} \mathrm{F}$ to $180^{\circ} \mathrm{F}$ while operating, relative humidity 100%, unlimited altitude and excellent resistance to acceleration, vibration and shock. Phone or write today and let the kind of engineering that developed these new dual-rate gyros go to work for you.

4
Humphrey me
ELECTRO-MECHANICAL INSTRUMENTS DEPT. ED.98, 2805 CANON STREET SAN DIEGO, CALIFORNIA

FOR COMPLETE SYSTEMS, SPECIFY HUMPHREY GYROSCOPES, ACCELEROMETERS, POTENTIOMETERS CIRCLE 134 ON READER-SERVICE CARD

NEW.PRODUCTS

Ohmmeter
Checks igniters

The model 101-5A ohmmeter safely checks igniters used in solid propellant rockets. Current through the igniter under test cannot exceed 5 ma . The portable circuit tester has an accuracy of ± 0.01 ohm the 0 to 5 ohm range, and $\pm 0.02 \mathrm{ohm}$ in the 5 to 30 ohm range.
Allegany Instrument Co., Inc., Dept. ED, 1091 Wills Mountain, Cumberland, Md.

CIRCIE 135 ON READER-SERVICE CARD
Tantalum Capacitors
For hearing aids

Type 160D solid-electrolyte tantalum capacitors are for hearing aid use. Designed to operate from -55 to +65 C .
Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.

CIRCLE 136 ON READER-SERVICE CARD

Thermocouple Reference Junction

Long term stability of $\pm \mathbf{0 . 1 5} \mathbf{F}$

Series R thermocouple reference junction provides maintenance free, constant temperature
ovell which encloses the junctions of thermocouple and copper lead wires. Long term stability is $\pm 0.15 \mathrm{~F}$. The unit works in 40 to 120 F ambient temperature range. Nominal temperature set point is 250 F .
Cardinal Instrumentation Corp., Dept. ED, 1201 Redwood Ave., Los Angeles 66, Calif. CIRCLE 137 ON READER-SERVICE CARD

Test Block Connector

6 or 16 contacts

Right angle pins are designed for dip soldering to a printed circuit board. A choice of 6 or 16 contacts are available for insertion of standard 0.080 test probe. Current rating is 5 amp continuous and 7.5 amp max. Voltage breakdown at sea level is 2200 v rms .
DeJud-Amsco Corp., Electronic Sales Div., Dept. ED, 45-01 Northern Blvd., Long Island City 1, N. Y.

CIRCLE 138 ON READER-SERVICE CARD

Pressure Ratio Control Valve Sensitive

By means of a sensing mechanism, pressure ratio is measured to within 0.25 per cent over a pressure altitude range of 15 to 1 . Type 141VK14 has a rectangular stainless steel diaphragm 0.001 in. thick.
Consolidated Controls Corp., Dept. ED, Betliel, Conn.

CIRCLE 139 ON READER-SERVICE CARD

Quick-Opening Fasteners

Selecting Small Fastenings for Metal Closures

> "Use captive fasteners wherever feasible...A Avoid the use of loose washers and loose nuts .. Fasteners on equipment covers should be operable either with no sools or with standard band tools"*
> (John D. Folley. Jr. \& James W. Altman, Research Scientisss, American Institute for Research)

Quarter-Turn Fastener

Lion Fasteners open and close with a $1 / 4$ turn, hold sheets tightly under the compression of a rugged spring. Quickly operated and fully retained in the outer panel, they are approved under U. S. Government military specifications. Stud and receptacle float for easy alignment and simplified hole preparation. Flush, oval, wing, knurled, ring, and key head styles available. Sizes - No. 2, No. 5, and High Strength for extra heavy duty.

Cabinet Latch
Just drill a hole, push the fastener stem through, and slide the special push-on
clip into place. No welds. screws, bolts or rivets: the fastener is permanently installed in seconds!
Adjustable to any grip length or panel thickness, the pawl is fixed in place by a single set screw. The fastener's brightly finished knob is set off by a plated washer. Also furnished with screwdriver operated flush head.

Spring Tension Latch

For fastening slide-out drawers and hinged panels the Southco Arrowhead Latch is recommended. It locks or opens with a quarter turn yet occupies less than $1 / 2^{\prime \prime}$ inside space.
Doors are held under spring tensiona push against the arrowhead knob relaxes this tension, allows operation with fingertip ease. Drill a single hole for installation-no fastening to the door is necessary. No striker plate is needed.
Pawl stop is eliminated-arrowhead shows at a glance exact position of pawl.

Adjustable Panel Latch
Small doors and panels can be fastened with greatest speed and lowest cost with the Southco Adjustable Latch.
The entire fastener is quickly installed through two holes punched in the door; no bolts or rivets are needed.
It operates with a quarter turn, requires no striker plate. An extra twist aftes the nylon pawl is engaged pulls up the door to form a seal and eliminato vibration.
Available wisu wing, knurled, or Phillips head.

Send for your free copy of Fastenes Handbook No. 7, just released. Gives complete engineering data on these and many other special fasteners. Fifty-two pages, in two colors.
Write on your letterhead to Southco Division, South Chester Corporation, 235 Industrial Highway, Lester, Pa.

[^1]
...for as little as $\$ 148.50$
New K\&E Paragon Auto-Flow
gives you faster, easier drafting 5 ways...

The first time you use it, you'll know that K\&E's light-weight Paragon ${ }^{\otimes}$ AutoFlow'm Draftung Machine is a truly great advance in working ease and range. Here are 5 specific reasons why.

It's more versatile. Stays in perfect balance at any board angle, from vertical to horizontal. No adjustments needed, except a simple turn of a tension spring wheel for angles below 15 degrees.

It's more compact. The balance is built right into the machine itself. There's no need for counterbalances that project over the top of the board.
It's better made. Glides smoothly and easily on finely-ground, stainless steel rails with K\&E precision and quality in every detail.
It's more adaptable. You get a full sweep of every size of board.

It's far easier to use. The scales move smoothly, at the slightest touch. Long lines up or across can be drawn in a single motion. Scales lock in place to eliminate "drift". Greater rigidity produces truer lines.
The 30" by 40" Auto-Flow costs only $\$ 148.50 \ldots$ the $36^{\prime \prime}$ by $60^{\prime \prime}$ only $\$ 160$. All standard sizes; left-hand models available. Mail coupon for details. 1205

NEW PRODUCTS

Sound Level Meter
0 to $15,000 \mathrm{cps}$ frequency range

When used with a complete line of transducers, the DG-600 Dynagage measures sound levels from 50 db to pressures of 100,000 psig over the frequency range from 0 to $15,000 \mathrm{cps}$. Water cooled transducers can be used from -300 to +6000 F

Photocon Research Products, Dept. ED, 421 N. Altadena Dr., Pasadena, Galif.
circle 142 on reader-service card

This miniature attenuator has two switch sections with slip rings and 22 fixed resistors. It withstands vibration up to 2000 cps at 15 g and acceleration of 50 g . Available as 11 -position bridged T, 20-position ladder, or 20 -position potentiometer. Custom-made in any impedance and attenuation range.

The Daven Co., Dept. ED, Livingston, N.J. CIRCLE 143 ON READER-SERVICE CARD

Voltage to Frequency Converter

Reading insensitive to noise

Output of $10,000 \mathrm{cps}$ is produced for each dc volt fed into the DY-2210 voltage-to-frequency
converter. Ranges are 1, 10, 100 and 1000 v , at ${ }_{a}$ constant l-meg inut impedance. The voltage being measured is averaged over the period of a selected counter gate time giving a reading which is insensitive to noise.
Dynac, Inc., Dept. ED, 395 Page Mill Rd., palo Alto, Calif.

CIRCLE 144 ON READER-SERVICE CARD
Instrument Dryer
Avoids build-up of pressure

Model A-10 dryer conditions $1 / 2,1$, and 1-1/2 cu ft of air. It maintains pressure equilibrium during altitude changes and prevents dangerous build-up of pressure.
Deco Instrument Co., Dept. ED, Tillary \& Prince Sts., Brooklyn 1, N.Y.

CIRCLE 145 ON READER-SERVICE CARD

Miniature Relay

Sensitivities from 20 to 100 mw
In spdt or dpdt arrangements, type TQ miniature relays are designed to operate on dc coil sigpals at sensitivities from 20 to 100 mw . Contact rating with resistive load at 28 v dc or 115 v ac is 3 amp with silver contacts, 0.5 amp with palladium or gold alloy contacts.
Comar Electric Co., Dept. ED, 3349 W. Addison St., Chicago 18, Ill.

CIRCLE 146 ON READER-SERVICE CARD

Crystal Oven

Close temperature control

Temperature in the RD-134 crystal oven is kept within $\pm 0.01 \mathrm{deg} \mathrm{C}$ at fixed ambient, and $\pm 0.1 \mathrm{C}$ over a 0 to 50 C ambient range. The unit weighs 6 oz and accommodates an HC-6/U crysta holder.
Manson Labs, Inc., Dept. ED, P.O. Box 594, 207 Greenwich Ave., Stamford, Conn. CIRCLE 311 ON READER-SERVICE CARD

WESTON INSTRUMENTS: STANDARDS OF STABILITY IN SCIENCE AND INDUSTRY

Rough operating conditions?

 Corrosive atmospheres stray magnetic fields extreme temperatures. vibration impact

WESTON'S BROAD LINE OF RUGGEDIZED

 INSTRUMENTS WILL TAKE THEM EASILY IN STRIDENew design concepts, new materials and new production techniques ... these are the ingredients of Weston's '58 line of Ruggedize Instruments. Now more than ever, they insure dependable, accurate service under extremes of shock, vibration, temperacure, humidity and general abuse.
Mechanisms are mounted on metal decks. The decks and terminals are then molded into a specially compounded, shock-resistant rubber. This results in a well-insulated. leakproof, and virtually breakproof seal. Damage from impact to jewels and pivots is eliminated through spring-backed mounting. Tough
plastic windows make the use of zero correctors practical. The entire mechanism is housed in a rigid steel case which provides excellent shielding against externil magnetic fields. The instruments may be mounted interchangeably on either magnetic or non-magnetic panels without loss of accuracy.
Consult your local Weston representative for complete details . . . or write for Catalog A-38. Address: Weston Instruments, Division of Daystrom, Inc., Newark 12, N. J. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 10. Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N. J.

Take advantage of Weston's unusually fast prototype servicel

WESTON

CIRCLE 312 ON READER-SERVICE CARD

NEW CMC DUAL PRESET COUNTER FOR

coil winding . . . motor speed control ... shearing to length ... batching, packaging, and stacking by number... variable pulse interval generation ... process programming ... measurement of elapsed time berween selected number of events... and used with a CMC frequency meter, very
accurate frequency measurements.

Model 324A

Only CMC's new Dual Preset Counters have

4 Mades of popeation

New CMC Dual Preset Counters provide output information at any two pre-selected counts within the capacity of the unit up to 40 kc . Input pulses are obtained from any standard transducer. With an 0.05 v rms input sensitivity, external amplifiers are seldom necessary.
CMC's unique digit circuitry prevents miscounting and extends the capacity of the instrument beyond its apparent range - in some applications, a 4 decade CMC instrument offers the same operating performance as other 5 decade types.

KEY SPECIFICATIONS

DECADES 3, 4. 5 or 6 - COUNT CAPACITY Up to 1,000,000 INPUT FREQUENCY To 40 kc - OUTPUT Pulse and relay simultaneously - OPTIONS Rack mount, 400 cps operation, 5 digit mechanical register, 5 mv preamp, digital printer or inline readout output - PRICE 3 decade $\$ 615$; 4 decade $\$ 715$; 5 decade $\$ 815$; 6 decade \$915.

4. With recycle switch in the $A \& B$ position, the instrument provides output information and recycles alternately on the $\mathrm{A} \& \mathrm{~B}$ channels. For example, when the unit is recycling on A, B is ignored and when recycling on B, A is ignored. This position is ideal for generating a chain of variable spaced pulses.

CMC engineering representatives are located in principal cities. are located in principal cities. After you've checked the key
specifications, give your nearest CMC representative a call. He'll be happy to arrange a demonstration. For complete technical information, please write Dept. 199.

NEW PRODUCTS

Electrolytic Capacitors Vertically mounted

Type 89D Verti-lytic capacitors are plasticencased electrolytics for stand-up mounting on printed wiring boards. Terminals are easily identified by the larger size of the negative terminal. Standard ratings' range from 1 to 290 $\mu \mathrm{f}$ at 3 v dc to 1 to $25 \mu \mathrm{f}$ at 50 v dc.
Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.

CIRCLE 314 ON READER-SERVICE CARD

Temperature and Pressure Instruments

Indicate, transmit, and control
For indicating, transmitting, and controlling pressure and temperature, series 1450 small-sized instruments are cased in plastic-impregnated fiber glass. Temperature range of the series is -400 to +1000 F ; pressure range, $30 \mathrm{in} . \mathrm{Hg}$ vacuum to 5000 psi .

Fischer \& Porter Co., Dept. ED, 951 Jacksonville Rd., Hatboro, Pa.

CIRCLE 315 ON READER-SERVICE CARD

Vaneaxial Blowers
 Single or double stage

Single-stage blower is rated at $7 / 8 \mathrm{hp}$ at 5600 rpm. It delivers 700 cfm of air at 4 wg static pressure. Two-stage unit has $2-1 / 4 \mathrm{hp}$ blower and can deliver 400 cfm at 19 wg static pressure.
American-Standard, American Blower Div., Dept. ED, Detroit 32, Mich.

CIRCLE 316 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 17, 1958

Multiple Preset

 CountersUp to 30,000 counts per minute

For sequential predetermning, counting, and control, 2020 multiple preset counters can be supplied with various inputs, including photocell, mechanical contacts, or pulses. Units operate up to 30,000 counts a minute.
Freed Transformer Co., Inc., Dept. ED, 1727 Weirfield St., Brooklyn 27, N.Y.

CIRCLE 317 ON READER-SERVICE CARD

Phase Angle Meter
Accuracy of $\pm \mathbf{1}$ deg

Model 120 offers direct reading 0 to 360 deg with accuracy $\pm 1 \mathrm{deg}, 20$ to $20,000 \mathrm{cps}$, and makes possible continuous, unattended monitoring of phase angle by use of chart recorder. Control Electronics Co., Inc., Dept. ED, Huntington Station, N.Y.

CIRCLE 318 ON READER-SERVICE CARD

Glass Trimmer Capacitor
0.5 to $5 \mu \mu$ range

The Atlee direct traverse expanding core variable capacitor has a range of 0.5 to $5 \mu \mu$. It stands extreme vibration and shock and has good retrace characteristics. A full-floating piston assures positive mechanical alignment. These trimmer units are available in glass dielectric and silver plated brass.
Atlas E-E Corp., Dept. ED, 47 Prospect St., Woburn, Mass.

CIRCLE 319 ON READER-SERVICE CARD

STEREO STEREO STEREO STEREO

12W high slope miniature pentode

This medium power, high fidelity tube is particularly suitable for stereo equipment. Its high slope of $11,300 \mu \mathrm{mhos}$ allows two EL84s in push-pull to give over 10W output power at less than 1% distortion -all achieved for only 16 V of grid to grid drive.
The EL84 may also be used for the more economical higher powered equipments. Two tubes will provide an output of up to 17 W at an overall distortion of 4%.
A single EL84 will provide an output of nearly $6 \mathbf{W}$. It has a maximum plate dissipation of 12 W .
Typical performance details for this tube are given here-for further information and supplies write to one of the distributors listed below.

MEDIUM POWER

Distributed load conditions (screen grid
taps at 43% of primary)

HIGHERPOWER

Two valves in class $A B$ push pull

Dept. ED9 81 Spring street, N.Y.12, New York, U.S.A.

In Canada
Rogers Electronic Tubes \&
Components
Dept. 11116 Vanderhoof Avenue, Toronto 17, Ontario, Canada.

Mullard

ELECTRONIC TUBES used throughout the world
"Mullard" is the Trade Mark of Mullard Limited and is registered in most of the principal countries of the world.
mullard overseas lit, mullard house, torrimeton place, london, emaland

EVERYTHING UNDER CONTROL

Sequence Selecting - Circuit Selecting Counting - Programming - Pulse Multiplying Pulse Dividing - Automatic Homing - Latching Remote Homing - Automatic Resetting Slave and Master Sets - Continuous Rotation Add and Subtract - Multiple Level

The itandard stoppors shown to the right above are now vailabie ar rour nearby franchieded Guardion distributo locatod in principal aroan of the United Stotos ond
Conad. Write direct to Guardion for Jefails obout the On OIf Relay and Progrommer.

GUARDIAN, steppers are tho ultimate for integrated control of your product. They take over and handle perfectly any and every job of stopper control, save space, abolish excese cirof stopper control, seve space, abolish ozcess circuitry and sharply depress your costs. Guardian is
ready to draw on more than twonty-six yoars of ready to draw on more than twonty-six years of
stopper dosign and application experience to stopper dosign and application exporience to recommend and supply the correct stepper to meet your azact requiromont. If it's a Ratchot, Interlock, Snap-Action On/O世 Relay, a standard relay or apecial control, Guardian makes it, too!

We Invite Your Inquiry.
GUARDIAN (G)ELECTRIC
1622-K W. Walnut street CHICAGO 12. IllINOIS CIRCLE 32I ON READER-SERVICE CARD

NEW PRODUCTS

Regenerative Repeater

Reshapes signals

The Model 605C start-stop regenerative repeater is designed for use on telecommunication circuits where it reshapes and retimes distorted incoming signals. All components are packaged as plug-in subassemblies. A plug-in speed tuning network is furnisher for 60,75 , or 100 wpm operation.
Encapsor Products Corp., Dept. ED, 46 S. Bayles Ave., Port Washington, N.Y.
circle 322 on reader-service card

Cathode Ray Tube

11 in. from screen to base
For TV receivers, SF short crt's come in two versions: the 17DAP4/SF17 17-in. rectangular tube, less than 11 in . long from screen to base; and the $21 \mathrm{EAP} 4 / \mathrm{SF} 21 \mathrm{~A} 21-\mathrm{in}$. rectangular tube, less than 13 in . long. Aluminized, the tubes need no ion trap magnet.

Philco Corp., Lansdale Tube Co. Div., Dept. ED, Church Rd., Lansdale, Pa.

CIRCLE 323 ON READER-SERVICE CARD

Clutch-Brake
Operates in 1 msec

This line of clutches and brakes operates within 1 msec . Model C-400 illustrated has a full

CIRCLE 441 ON READER-SERVICE CARD
ELECTRONIC DESIGN - September 17, 1958
lorque of $30 \mathrm{oz}-\mathrm{in}$. at 12 v de input. Torque out put is linear with respect to voltage or current input.
Rainbow Engineering Co., Inc., Dept. ED, 312 New Hampshire Ave., Washington 12, D.C CIRCLE 324 ON READER-SERVICE CARD

DC MicrovoltAmmeter High sensitivity

Model 425A dc microvolt-ammeter measures lc voltages from $\mathbf{l} \mu \mathrm{v}$ to $\mathbf{l} \mathbf{v}$ and dc currents from $1 \mu \mu$ a to 3 ma . Accuracy is ± 3 per cent full cale. Full scale sensitivity is $\pm 10 \mu \mathrm{v}$ and ± 10 \#1. Drift is under $\mu \mathrm{v}$ per hr.
Hewlett-Packard Co., Dept. ED, 275 Page Mill id., Palo Alto, Calif.

CIRCLE 325 ON READER-SERVICE CARD

PNP Transistors

Medium and high power switching
Series 2N670 germanium pnp alloy-junction tansistors are for use in high-voltage, high-current pulse amplifier and switching circuits. The feries is rated at 40 v for emitter-base, collectorbase, and collector-emitter breakdown, 2 amp maximum collector current, and continuous maxinum power dissipation to 1 w .
Philco Corp., Lansdale Tube Co. Div., Dept. ED, Church Rd., Lansdale, Pa.

CIRCLE 326 ON READER-SERVICE CARD

Adjustable Polystyrene Capacitor

Rated at 200 vdc

Precisely adjustable, this $1 \mu \mathrm{f}$ polystyrene capacitor may be trimmed ± 1.5 per cent from nominal value. Rated voltage is 200 v dc and dissipation factor at 1000 cps is 0.01 to 0.05 per cent. The unit operates from 1 to 65 C .
Corson Electric Mfg. Corp., Dept. ED, 540 39th St., Union, N.J.

CIRCLE 327 ON READER-SERVICE CARD

from 0.010 to 100 amperes with just a turn of the wire

Simple ampere-turns of the overload coil accurately determine the current rating of a Heinemann Hy-draulic-Magnetic Circuit Breaker.
For this reason, Heinemann circuit breakers offer you tremendous flexibility in specifying overload and short circuit protection for your products. They are available with tiny ratings down to ten milliamperes; or higher ratings, up to 100 amperes. Included are odd and fractional ratings such as $0.20,23$ or 18.7 amperes.

In any rating, you have the choice of at least four
different time-delay characteristics . . . or instantaneous trip. And Heinemann ratings are stable ratings remain constant through any ambient temperatutu range.

With Heinemann, you can match protection precisely to the safe operating limits of any equipment.

줖TNMNNN

hEIMEMANN ELECTRIC COMPANY
156 Plum Sireet, Trenton 2, N. J.

A great help to engineers . . . the "Circuit Breaker Engineering Guide" is a valuoble aid to anyone applying protection to eloctricol or olectronic equipment Ast for Bulletin 201.

How can YOU use this simple, rugged SNAPSLIDE FASTENER?

This positive, quick-action fastener was originally developed to hold airborne equipment with security - even under severe stress and shock of carrier-based aircraft operations-and yet permit equipment replacement in a matter of seconds. A wide variety of industrial uses has been found for the fastener. Perhaps you can use it profitably. It requires no tools; thumb and finger fasten and release. Even with repeated use no adjustments are necessary. Available in two sizes, with parts to match different thicknesses of mounting plates.

Wrise for dofalls.

Dopondablo Altberne Eloctronic Equipment \&nce 1928
AIRCRAFT RADIO CORPORATION boonton, new jersey

CIRCLE 329 ON READER-SERVICE CARD

Curtiss-Wright ultra-sensitive DYNAMIC CAPACITOR ELECTROMETER

- 10-100-1000 mv scales
- 10.5 to 10.14 amps full scale
- Less than 1 mv drift per day
- Accuracy $\pm 2 \%$
- Input resistance 1015 ohms
- Short response time

MODEL NA100
Price \$1,075
FOB Carlstadt, N.J.

The Curtiss-Wright Dynamic Capacitor Electrometer is both a highly sensitive millivoltmeter and meter is both a highly sensitive milivolmeter read a micro-microammeter. It can be used to read
low potentials originating in high impedance low potentials originating in high impedance
sources, insulation resistance, grid currents, static sources, insulation resistance, grid currents, static
charges, etc., and as a null detector. In physics and chemistry, it provides measurement of pH ion currents in mass spectrometry. Its low drift permits reliable detection of radioactivity for health physics and reactor control. For complete information, write: Electronic Equipment Sales Dept.

NEW PRODUCTS

The V-71 phasemeter provides a simple compact and inexpensive measuring and phase calibrating instrument over a very wide frequency spectrum of approximately 100 cps to 5 mc . The instrument offers a 360 deg continuous phaseshifting system utilizing a Variogon phase-shifting transducer.

Nilsen Mfg. Co., Dept. ED, Addison, Ill.

CIRCLE 331 ON READER-SERVICE CARD

Preset Counter

Transistorized

Preset range of this transistorized counter is 0 to 180,000 counts per minute with instantaneous reset. Totalizing speed is 0 to 300,000 counts per minute. The unit features direct reading and long service life.

Dynapar Corp., Dept. ED, 5150 Church St., Skokie, Ill.

CIRCLE 332 ON READER-SERVICE CARD

Oscillograph

Features low price
Model ER-22 low-priced directwriting oscillograph will record signals from dc to 60 cps . Available

circle 333 on reader-service card
ELECTRONIC DESIGN • September 17, 1958
with coil resistances from 215 to 4000 ohms and with a resonant frequency of 30 cps , the pen galvanometer has a spring-leaf flexure and voice-coil design. Coil provides f full scale deflection of 40 mm with eper cent linearity.
Mandrel Industrial Instruments, Inc., Dept. ED, 5134 Glenmont Drive, Houston 36, Texas. circie 334 ON reader-senvice card

Double Pulse Generator 200 cps to 2 mc

Model 3460 A double pulse generator provides two separate or mixed rise time outputs at variable
repetition rates. Repetition rates are variable in four decade ranges from 200 cps to 2 mc .
Electro-Pulse, Inc., Dept. ED, 11861 Teale Street, Culver City, Calif.
circie 357 on reader-service card

Power Supply

300 to 1000 cps output

Model AE-400 power supply is variable from 300 to 1000 cps . It is designed as a power source for testing equipment.
Aeronautical Electronics Sales Co., Dept. ED, 3101 Pico Blvd., Santa Monica, Calif.
CIRCLE 358 on reader-service card

Engineers! Designers!
THERE IS NO SUBSTITUTE FOR RELIABILITYI Specify -

PERFORMANCE PROVEN "MAG MOD"

> MAGNETIC MODULATORS

Miniaturized design permits engineers to employ these new components in transistorized printed circuit assemblies and wafer type structures. All models offer maximum reliability, fully ruggedized construction and conform to MIL-T-27A specifications.

- COMPLETE RELIABILITY - infinite life - FASTER RESPONSE TIME - NEGLIGIBLE HYSTERESIS - extreme stability (Ambient Tomp. Range from -75° to $+135^{\circ} \mathrm{C}$) CIGHTWEIGHT Typical circuit applications or Magnetic Modulators are Igebraic addition, subtre power, controlling amplifier power, controlling ampleor ains, mechani DC to funda. replacement in DC to fundasion, filtering and low signal level amplification.

GENERAL

MAGNETICS•INC

135 bloompield avenue BLOOMFIELD, NEW JERSE Telephone: Pilgrim 8.2400

NEW

K—日 Vari-Sweep

MODEL 400
Cot. No. 867-A

WIDER RANGE, ALL-ELECTRONIC SWEEPING OSCILLATOR, OR (with sweep off) CONTINUOUSLY TUNED CW SIGNAL SOURCE

The new Kay VariSweep Model 400 is a highly versatile laboratory sweeping oscillator and ignal source. Its wider range of continuous frequency coverage is combined with accuracy and performance atandards previously associsted with limited, fired-frequency-band owoeping oscillators. The high RF output is held constant over the range by a fast acting AGC circuit. A variable sweep rate down to 10 cps permits checking of high-Q circuits.

SPECIFICATIONS

 switched overlopping bands. Variable in 10 frequency dial. 60% of center frea to $50 \mathrm{me}_{i}$ Swoep Widith 60% of centor frea to $50 \mathrm{mc}_{\mathrm{i}}$
of least 30 me max $50-400 \mathrm{mes}$ approx. 20 mc max above $400 \mathrm{mc}$.
Swasp Rate: Cont. variable, 10.40 cps; locks Sol line lireq.
RF
Output:

widest sweep ond ontire range to $\pm 0.5 \mathrm{db}$
Allenuatore: Switched $20,20,10,5 \mathrm{l}$ Altenuators: Switched 20, 20
plus cont. voriable 6 db
Sucep oscillotor. Amplitude 7.0 sowwooth in syne with Oseillotor. Amplitude 7.0 V opprox.
Power Supplys
Input approx. 100 wats, $117-\mathrm{V}$ $\begin{array}{lll}1 \pm 10 \% \\ & 50.60 & \mathrm{cps} \\ \text { oc. } & \text { B }+ \text { electronically }\end{array}$ regulated.
Dimentions: $91 / 0^{\prime \prime} \times 191 / 2^{\prime \prime \prime} \times 13^{\prime \prime}$.
Woight: 34 lbs. \times. factory.
Price: $\$ 799.00$ f.0.b. for
Write for 1958 Kay Catalog

MAM ELEETMRE COMPMAM

Dept. ED-9
Pine Brook, N. J. CApital 6-4000
CIRCLE 360 ON READER-SERVICE CARD

new FORK

 OSCILLATOR-Stability 1 part in 10,000,000

Improvements in the amplifier circuitry have minimized frequency excursions caused by variables such as temperature, plate supply voltage, tube aging, etc.
Fork employs compact oven developed for this unit.
Fork FK5-A Standard frequencies
(1600, 1800 or 2000 cps). $\$ 350.00$.
Also furnished without oven. Write for detailed specifications.

TIMES FACSIMILE
 \author{ CORPORATION

}540 West 58th Street, New York 19, N. Y.

U．S．Radium＇s Newest Instrument Dial

A current problem in integral instrument lighting is that of obtaining，at reasonable cost，a dial for a particular unit which will light within the brightness ratio spec of MIL－L－25467A．Since different instruments will have different lighting systems and will require different dial configurations and indicia，the dial contractor must be able to vary the opacity of his dials in order that the finished instrument assemblies will light to MIL spec，regardless of the internal light levels and the number and position of the lights．
U．S．Radium＇s new production process for MIL－L－25467A dials permits the variation of the opacity factors of the background and indicia within wide limits， to provide a compatible instrument－dial assembly．It also allows piece－to－piece uniformity which excels conventional methods for meeting this spec，and at lower unit cost．These advantages，plus the availability of U．S．Radium＇s light engineering service during the formative stages of light housing design，provide a foolproof working method for eliminating light engineering headaches，cutting costs and speeding delivery．

For information，contact Department D9．

解年年

UNITED STATES RADIUM CORPORATION
MORRISTOWN，N．J．\quad Offices：Chicago，Illinois and No．Hollywood，Calif．Affiliates：Radelin－Kirk，Lid． Toronto，Canada and United States Radium Corp．（Europe），Geneva，Switzerland

CIRCLE 362 ON READER－SERVICE CARD

NEW PRODUCTS

Voltage Monitors
 Accuracy within 2 per cent

These voltage monitors are made for any level from 1 mv to 500 v ，either ac or dc．Most ranges have accuracy within 2 per cent．More sensitive ranges at reduced accuracy go down to 0.1 mv or $0.2 \mu \mathrm{a}$ ．Ac ranges below 250 mv include a small step－up transformer．
Assembly Products，Inc．，Dept．ED，Dillon Rd．，Desert Hot Springs，Calif．
circle 363 on reader－service card

Dynamometer

Measures small motor torque
For torque measurements on gear trains，poten－ tiometers，and small instrument and servo motors， the 10－B dynamometer has ± 3 per cent accuracy． It measures torques between 0.1 and 15 in ．oz． at any speed where power developed is 20 w or less．The adjustable block holds motors up to 3 in ．in diameter．

Bischof Die and Engraving Co．，Dept．ED． 1405 16th St．，Racine，Wis．

CIRCLE 364 ON READER－SERVICE CARD
Miniature Relay
Dielectric strength of 1000 v ac

Unit can withstand temperatures of -65 to 125 C and vibration of 2000 cps at 20 g ．Dielec－ tric strength is $1000 \mathrm{v} \mathrm{ac}, 750 \mathrm{v}$ ac across contact gaps．
Wheelock Signals，Inc．，Dept．ED，Long Branch，N．J．
circle 365 ON reader－Service card

Why do it Yourself ？

It Pays to

Standardize on Jeffers R．F． Choke Coils
－You can save time，labor，and －money by stocking the wide range ： －of Jeffers R．F．choke coils just as － －you do resistors，capacitors，and －other similar components．You can＊ －forget tedious，expensive hand －assembly from miscellaneous －forms，wires，and coatings by using
－standardized Jeffers coils，com－
－pletely assembled for use．
－Jeffers coils are well made，using
－insulated copper wire windings．．．
－husky molded jackets．All windings
－are soldered to leads．．．shorted end
－turns are completely eliminated．
－Put these advantages to work in －your circuits！Jeffers Electronics －Your circuits！Jeffers Electronics －offers you ．．ready for delivery
－coils with a complete range of
－coils with a complete range of ${ }^{\bullet}$ －inductance values．Write today for＊ －our specification sheets．

Ohhar Soñore Produch axed composition capacitors Othor Spoer Producto onodos．Eentacts ．resistors dites brushes o moldod northedo coil forme： bariory carbon－graphito plotos and rode o．

JEFFRS EIECTBOTICS DIVISION
 or Speer Divisionse

 CIRCLE 366 ON READER－SERVICE CARD

Call Speer for a complete line of .fixed composition resistors. phenolic coil forms

For detailed information on specifications, characteristics and applications ask for this catalog of Speer Electronic Components!
Automation Soldering your concern? Be sure to send for Speer's Bulletin on this subject.

Other Speor Products
for the Eloctranics Indurtry R. F. coils - chokes - fixed composition
and عopacitors - Speer PAC made by Joffors Electronics.
 boltery corbocos. grophite platess and roos sos
grophite products for the steel and chemical grophite products for the st

SPEEP PESISTOR DIMISION SPEER RESISTOR DIVISION Bradford, Ponnaylvania
\square Send the Speer Resistor Catalog \square Send Automation Soldering Bulletin.
Name
rite
Addresa
City_Zー_Zone_- State_ーCIRCLE 147 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 17, 195

General Electric announces new "VERY LOW CURRENT" lamp for use as indicators for transistorized circuits

A possible use: as an indicalor on a flip-flop circuil.

GE-344 incandescent lamp is rated at 10 volts, 15 milliamperes; has life in excess of $\mathbf{5 , 0 0 0}$ hours
General Electric's new GE-344 is designed for use in transistor circuits and many other applications where a small sized, low current indicator lamp is needed. Only $7 / 32^{\prime \prime}$ in diameter, $5 / 8^{\prime \prime}$ long, the GE-344 can be seen lighted under 100 footcandles of surrounding light. It uses only .15 watts (nominal), has a single con-
 tact midget flange base, and its electrical ratings allow significant savings in providing an indicator light in transistorized equipment. For additional engineering data on this new GE-344 lamp, write: General Electric Co., Miniature Lamp Dept ED-98 Nela Park, Cleveland 12, Ohio. Ask for Bulletin No. 3-8066.

Progress /s Our Most Important Product
 GENERAL
 ELECTRIC

NEW PRODUCTS

Digital RecorderReproducers
Speeds from 7-1/2 to 100 ips

- Precision low friction butt welding fixture
- - Now widely used throughout the electronic industry
- Synchronous welding control
- Precision adjustments for aligning the wires
f Welding adapted to other Butt Welding applications

FEDERAL TOOL ENGINEERING CO. F 1400 Pompton Ave.

Cedar Grove, New Jersey

CIRCLE 155 ON READER-SERVICE CARD

most complete

Design Forum
Product Features
Ideas for Design

Engineering Review
Standards and Specs Russian Translations Background for Design

More and more electronic engineers
report: "I read Electronic Design report: "I read Electronic Design first. It's complete, timely, easier getting all the new product information."
Electronic Design's 8 full time editors, plus staff of assistants, contributors, and correspondents scan the electronic horizons to bring you the electronic horizons to brin
With reading time at a premium, ED's every-other-week frequency assures the prompt delivery of topical material; keeps up with this rapidly moving industry.

ELECTRONIC DESIGN

a HAYDEN publication
830 Third Ave., New York 22, N. Y. PLaza l-5530
the differential secondaries. The unit is electromagnetically shielded.
Schaevitz Engineering, Dept. ED, P.O. Box 505, Camden 1, N.J.

CIRCLE 156 ON READER-SERVICE CARD

Strain Gage Recording Systems
Modular construction

Strain gage recording systems for balancing, calibrating, controlling, scanning, and recording the output of 24 to 96 channels. Modular construction permits assemblies in multiples of 24 channels. Strain values are recorded directly on multi-point strip chart recorders. Two basic systems are available: the B system which prints strain values in sequense together with channel number, and the \mathbf{C} system which plots strains vs load for each channel.
B \& F Instruments, Inc., Dept. ED, 3644 N. Lawrence St., Philadelphia 40, Pa.

CIRCLE 157 ON READER-SERVICE CARD

Potentiometer

Provides high power dissipation at 200 C

Miniature model 875T precision potentiometer offers up to 0.06 per cent resolution with a standard linearity of 0.5 per cent. A wirewound, servo mount unit, it provides high power dissipation at temperatures to 200 C . Fesistances range from 200 ohms to 100 K per section, and up to four sections can be ganged on a common shaft. Torque is 0.1 oz-in.
G. M. Giannini \& Co., Inc., Dept. ED, 918 E. Green St., Pasadena 1, Calif.
circle 158 on reader-service card

The Saucer Fan represents an entirely new design concept whereby the driving motor is built within the propeller hub limiting its axial length to the minimum measurement required by a highly efficient motor. Ideally suited for tightly packed electronic packages, where space is critical, the Saucer Fan will provide cooling air to the amount of 280 cfm . Power requirement is $115 \mathrm{vac} .50-60$ cps, 10.

The fan's pressure performance is tailored to the requirements of a modern, washable dustfilter. "Servo type" mounting flanges at each end of the venturi ring permit simplicity of mounting without loss of space. Direction of airflow may be easily reversed by turning the fan end for end. Electrical connections are made to a compact terminal block.

For complete technical dotails writo to . . .

New

Ruggedized Westinghouse Image Orthicon!

DURABLE NEW WL-7198 WITHSTANDS SEVERE ENVIRONMENTAL CONDITIONS, SHOWS NO DEGRADATION AFTER 30 G'S!

Now Westinghouse has developed an image orthicon tube that's rugged enough to withstand 30 g 's . . . yet sensitive enough to perform efficiently at low light levels. The new WL-7198 is ideal for military, industrial and scientific applications subject to extreme environmental conditions.
tYpical characteristics of the wl-tige are:
Vibration: (1) Operable throughout MIL-E-5272A Procedure I (10 g 's from 50 to 500 cps)
(2) 350 lines horizontal resolution at 5 g 's from 50 to 500 cps with 3×10^{-2} footcandles on photocathode
Shock: No degradation after 30 g 's.
Low light level performance: 250 lines minimum
resolution 3×10^{-1} foot-
candles on photocathode.
Sample quantities of the WL-7198 are available for immediate delivery.
WESTINGHOUSE ENGINEERS WILL HELP YOU SOLVE YOUR IMAGE ORTHICON PROBLEMS UPON YOUR REQUEST.

YOU CAN BE SURE...IFIT'S

NEW PRODUCTS

Pulse ${ }^{\text {Ir ransformer Kit }}$
Contains wound core units

The H-58 kit includes one each of all H-45 through H-58 series pulse transformers. The units are wound core structures suited to service from -70 to +130 C . All 13 transformers are 1:1:1 type with pulse width ranging from 0.05 to $25 \mu \mathrm{sec}$. They are hermetically sealed by vacuum molding to meet MIL-T-27A Grade 5 specs.

United Transformer Corp., Dept. ED, 150 Varick St., New York 13, N.Y.

CIRCLE 161 ON READER-SERVICE CARD
Temperature Monitor Airborne

For monitoring critical temperatures sequentially in as many as 20 places, the CTI-10-2D flight-safety device uses combined magnetic and transistor circuitry. It requires no external amplification of signals. Range can be selected any where between 0 and 1600 F . Accuracy is ± 2 per cent.
Arnoux Corp., Dept. ED, 11924 W. Washing. ton Blvd., Los Angeles 66, Calif.

CIRCLE 162 ON READER-SERVICE CARD

Radome Boresight-Error System

Measures radar beam deflection
Model 150C radome boresight-error system measures radar beam deflections through aircratt and missile radomes and plots them in milliradians with an accuracy of ± 0.1 milliradian. It also measures radome transmission with ± 1 per
cent and plots antenna patterns on a linear scale with $\pm 0.5 \mathrm{db}$ accuracy. Measurements meet MIL-R-7705A(ASG) requirements.
California Technical Industries Div. of Texton Inc., Dept. ED, 1421 Old County Rd., Belmont, Calif.

CIRCLE 163 ON READER-SERVICE CARD

Wheatstone Resistance Bridge 0.02 per cent accuracy

For critical resistance measurements, the model $230-\mathrm{R}$ Wheatstone resistance bridge has an accuracy of better than 0.02 per cent for most measurements from 0 to 12,000 megohms. The owest range has a resolution of 10 micro-ohms er dial division. The unit features improved atio switching, adjustable ratios, internal guarding, and roving decimal point.
Electro-Measurements, Inc., Dept. ED, Portand, Ore.
circle 164 on reader-service card

Tape Recorder
14-channel

NOW...AUTOMATED PIGTAILING \therefore. AT 75% LESS COST - with the NEW AMP Automachine Shielded Wire Ferrule

- machine-fed ferrules and pigtail wire controlled compression termination, with AMP automachine technique dual applicator permits termination of two leads or double-ended jumper, simultaneously - pigtails cut to desired length, automatically!

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA A-MP products and engineering assistance are available through wholly-owned subsidiaries in: Canada • England • France • Holland \bullet Japan CIRCLE 166 ON READER-SERVICE CARD

most comprehensive line of NPN high-speed switching transistors

12 RELIABLE COMPUTER TYPES FEATURING:

- Faster switching
- Higher voltage
- Lower cutoff current
- Lower saturation resistance

CBS-HYTRON was first with the most flexible selection of over 100 PNP power transistors. Now, it offers the most comprehensive line of mass-produced offers the most comprehensive line of mass-produced
NPN transistors for high-speed switching and highfrequency amplification.
They are NPN alloy-junction germanium for greater uniformity, higher voltage and current, flatter gain, and lower saturation resistance. They employ the JETEC TO-9 package welded for reliability. They offer high frequency response, switching speed, operating voltage, current amplification factor, and dissipation rating. And low leakage current and collector capacitance.
The handy tables let you select for application, dissipation and frequency the types you need. Call or write your regional sales office or the Lowell general sales office for technical bulletin E-293-302 and for application and delivery information . . .today.
TYPES AVAILABLE
FOR LOGIC CIRCUIT

\% 12	2N440	2N440A
言 8	2N439	2N439A
5 4	2N438	2N438A

Maximum Dissipation in Milliwatts

	FOR CORE DRIVER	
	2N358	2N388
	2N357	2N385
	2N356	2N377
	100	150

*More reliable products
through Advanced-Engineering

CBS semiconductors

CBS-HYTRON, Semiconductor Operations
A Division of Columbia Broadcasting System, Inc.

Sales Offices: Lowell, Mass., 900 Chelmsford Street, Glenview 4-0446
Melrose Park, III., 1990 North Mannheim Rd., Estebrook 9-2100 - Los Angeles, Calif., 2120 S. Garfield Ave., Raymond 3-9081 CIRCLE 167 ON READER-SERVICE CARD

NEW PRODUCTS

Readout Oscillograph
Speed Range of $\mathbf{1 / 2}$ to 50 ips

This model, the $\mathrm{D} / \mathrm{R} 616$, has a recordin speed range of from $1 / 2$ to 50 ips with writing speeds above $30,000 \mathrm{ips}$. Photographic record of the galvanometer require no chemical devel opment. A light beam interrupter type of trad identification has been incorporated into the in strument to provide identification of the gal vanometer traces.

Midwestern Instruments, Dept. ED, Tulsa Okla.

CIRCLE 168 ON READER-SERVICE CARD

Miniature Magnetic Amplifier

Controlled by 5 mw power
With a control source of 5 mw , series 80 toroidal magnetic amplifier components permi control of the power flow from a 400 cps powe source to a load of up to 12 w , ac or dc. Standare output voltages range from 30 to 300 v ac or de Control voltages are from 0.7 to 20 vdc . The unit are 1.5 in . in diameter and 1.25 in . high.
Arnold Magnetics Corp., Dept. ED, 4613 W Jefferson Blvd., Los Angeles 16, Calif.

CIRCLE 169 ON READER-SERVICE CARD

Connectors

For rf coaxial cable

Designed for microwave service, these smal Cub series rf coaxial cable connectors handle frequencies up to $10,000 \mathrm{mc}$ with low vswr. Imped ance matched for 50,75 , and 95 ohm cable. There is no change in contact position from -65 to +300 F . Dielectric strength is 2000 v dc at sea level.

Dage Electric Co., Inc., Dept. ED, 67 N. Sec ond St., Beech Grove, Ind.
circle 170 on reader-service card
ELECTRONIC DESIGN • September 17, 1958

These assemblies, designed for use with printed commutators, potentiometer windings, slip ring assemblies and printed rotary switches, up ring assembles and printed rotary switches, are available in a line of standard molded brush assemblies. Advantages are a complete single or multiple brush assembly and elimination of welding or soldering.
The J. M. Ney Co., Dept. ED, P.O. Box 990, Hartford 1, Conn.

CIRCLE 171 ON READER-SERVICE CARD

Dual TR Tube
For X-band use

Rated at 200 kw , the MA-338 dual TR tube is for use in radar duplexers over the 8500 to 9600 mc band. Maximum recovery time is $5 \mu \mathrm{sec}$ and tswr is 1.2 over the entire bandpass. Temperature range is -55 to +85 C.
Microwave Associates, Inc., Dept. ED, Burlington, Mass.

CIRCLE 172 ON READER-SERVICE CARD

R-C Networks
Discs for printed circuit use

The capacitor sections of Multi-Comp R-C printed circuit discs are available in tolerances of +50 and -20 per cent. The resistors in the units have tolerances of ± 20 per cent. The discs are rated at 100 v dc and withstand a 250 v dc test for 5 sec . They are designed to operate at a maximum of 85 C .
Sprague Electric Co., Dept. ED, North Adams, Mass.

CIRCLE 173 ON READER-SERVICE CARD
ElECTRONIC DESIGN • September 17, 1958

Please send free copy of your folder, "Chemicals for the Electronic Industry."
Name
Title
Company
Address.
City
Zone State. \quad ED-88

FREE - - Revised IERC HeatDissipating Tube Shield Guide!

MORE THAN 1.200 ELECTRON TUBE AND SHIELD COMBINATIONS FOR IMPROVED ELECTRON TUBE RELIABILITY ADDED TO REVISED EDITION. Thousands of original IERC Guides are in daily use everywhere! Newest edition is sent FREE on request. Over 25 pages of easy, thoughtfully referenced listings and fold-out spread of photos designed for fast familiarization and accurate use of the IERC Guide. Latest IERC Heat-dissipating Tube Shields are included help you select proper shields for new design and retrofitting applications. You won't want to be without this valuable information package if you're designing for maximum equipment reliability - so easy to achieve with IERC Heat-dissipating Electron Tube Shields for effective electron tube cooling and retention under severest shock and vibration environments!

International Electronic Research Corporation 145 West Magnolia Boulevard, Burbank, California
matemtio or mats mino.

CIRCLE 175 ON READER-SERVICE CARD

NEW PRODUCTS

Ka-Band Magnetrons
Wide range

Models MA-210A, B, C, magnetrons tune 500 mc segements in the 34.2 to 35.5 kmc band. The tuning range of each tube is as follows: MA-210A 34.2 to 34.7 kmc ; MA-210B 34.6 to 35.1 kmc ; MA210C 35.0 to 35.5 kmc .

Microwave Associates, Inc. Dept. ED, Burlington, Mass.

CIRCLE 176 ON READER-SERVICE CARD

Frequency Sensing Cut-off Relay

Provides inverse time response

For protecting electronic equipment against damage from low frequency, model BS-5003 consists of a high-pass filter feeding a thermal sensing relay. Due to the inverse time characteristic of the thermal relay, the unit disconnects equipment only after the low frequency condition has existed long enough to be significant. The relays have time constants from 6 sec to several minutes. Nominal cut-off frequency is 370 cps .

G-V Controls Inc., Dept. ED, 28 Hollywood Plaza, East Orange, N.J CIRCLE 177 ON READER-SERVICE CARD

High Performance and Low Cost
Improve performance of your electrical
and electronic circuitry with this new RVG-8T $1 / /^{\prime \prime}$ Trimmer Potentiometer. Excellent performance characteristics for
its type and size. Windings are on cards or mandrels. usually with wire temperature coefficient of 20 ppm. Body is one-piece
phosphor bronze, nickel plated; terminala are gold plated; stop pins and shaft are of

THE GAMEWELL COMPANY Newton Upper Falls 64, Mass.
PRECISION POTENTIOMETER DIVISION
used throughout. Insulation is designed to Available now 1 RVG-8T is stocked in A vailable now I RVG-8T is stocked in
standard resistance ranges. 100 ohms to 50 K standard resistance ranges. 100 ohms to 50 K
ohms - up to 100 K ohms available. Can be supplied with precision potentiometer tolerances, servo-mount, or for $200^{\circ} \mathrm{C}$ inter-
mittent operation. Write for prices and mittent operation.
catalog sheet today.

CIRCLE 178 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 17, 1958

Miniature Crystals Operative from 300 kc to 125 mc

For operation from 300 kc to 125 mc , this miniature crystal is packaged in an HC 18/u case. The crystal wafer is suspended between the two terminals.
Sherold Crystals, Inc., Dept. ED, 1512 McGee Trafficway, Kansas City, Mo.
CIRCLE 179 ON READER-SERVICE CARD Silicon Rectifiers
Ratings up to 3 amp at 600 v

This line of silicon rectifiers includes home entertainment and in-
dustrial models. The former are rated to 500 ma dc at piv's to 500 v and 100 C ambient. The latter have ratings to 3 amp at 600 v and 150 C ambient.
International Telephone and Telegraph Corp., Dept. ED, 100 Kingsland Rd., Clifton, N.J. CIRCLE 180 ON READER-SERVICE CARD

Variable DC Power Supply Transistorized

Model 550 regulated dc power supply provides 3 to 45 v continuously variable at 0 to 5 amp . Output impedance is 0.01 ohm and ripple is less than 8 mv . The unit incorporates overload protection. Sila-Kon Eng'r Co., Dept. ED, 605 Hoyt Ave., El Monte, Calif. CIRCLE 181 ON READER-SERVICE CARD

for MILITARY and COMMERCIAL PRECISION DISPLAYS
Single units or production quantities immediately available for $1 / \mathbf{1}^{\prime \prime}, 1^{\prime \prime}, 1.1 / 16^{\prime \prime}$. $2^{\prime \prime}, 2-1 / \mathbf{8}^{\prime \prime}, 2-1 / 2^{\prime \prime}$, CRT nects.
Write tor Celco deflection foke calalogue or for immediale engineering assistance call your nearesl Celco plant.

Manwan, w. J
Mismi, Fla. PLoza 1-9003 rukon $2-2641$ ULysses $3-3500$ Celco Constantine Engineering Laboratories C_{a},
 EleCTRONIC DESIGN • September 17, 1958

You get it FASTER from Super:Teup

SUPER-TEMP has the industry's largest ready. SUPER-TEMP's large management team is to-deliver stock of high temperature insulated always available for advice and the solution wires and cables, and the most up-to-date of problems. Your orders, small or large, assures prompt delivery all the time. continuous supervision at all times.

SUPERTEF - Teflon magnat wire, oll sizes AWG 14 through AWG 50, in single, heovy, triple and quad coatings-meats Spec Mil W-19583, Type III. Standard colors and natural. Optional $\overline{\mathrm{T}}$ treatment improves abrasion resistonce and
SUPERSIL - Silicone magnat wire. Produced in all sizes AWG 14 through AWG 50. Single and heavy coatings. Meots Mil W-19583, Type II.
A complote line of Toflon Insulared High Temperature Wires, Cables, Tubing - Coaxial Cables, Miniature Cables, Multi-conductor Cables, to specified long lengths, Hook-Up Wires using Teflon, Glass and Sili TEFION TAPE (Unsintered) - SUPER-TEMP walcomes your inquiries on our now Toflon Tape production facilities. Exira long lengths available.

American Super-Temperature Wires, Inc.

20 West Canal Street, Winoeski, Vermont • Phone University 2-9636
General Sales Office: 195 Nassau Street, Princeton, N. J. * Phone Princeton 1-4450 Agonts in Principal Electronic Manufacturing Areas
CIRCLE 183 ON READER-SERVICE CARO

${ }^{*} B_{\text {max }}$ and $\mu_{\text {max, }}$ Frequency 16 Kcps.
**Useble fiux density-fux density of which the $115^{\circ} \mathrm{C}$ pormeobility is equel to $1 /$ of the $25^{\circ} \mathrm{C}$ permeobility.
iPermoobility of the core of $25^{\circ} \mathrm{C}$ at Bu.

Allen-Bradley has also developed new square-loop power ferrites ($\mathrm{R}-03$) and ferrites for transistorized medium frequency inverters (W-07). Our engineers will be glad to assist you with your ferrite problems.

Allen-Bradley Co., 1344 S. Second St., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

CIRCLE 184 ON READER-SERVICE CARD

NEW PRODUCTS

Panel Light

Transistorized

Panel display light Type TL-1 can be installed without solder in 30 sec . Using a NE-2E neon lamp, it has a self-contained transistor circuit that needs 3 v signal to control the light. Lamp circuit requires 200 vdc at 0.5 ma .
Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn. CIRCLE 185 ON READER-SERVICE CARD

Microwave Power Generator
1125 w peak power

An integrated packaged microwave power generator, the PGM-100 has a maximum power output of 800 w cw at 2450 mc . Peak power is 1125 w . The unit operates on 120 cps pulsed or 10 per cent modulated dc.
Raytheon Mfg. Co., Dept. ED, 100 River St., Waltham 54, Mass.

CIRCLE 186 on reader-service caro

Image Orthicon
Tube
Meets MIL-E-5272A standards

At 5 g acceleration, 50 to 500 cps , the WL-7198 image orthicon tube shows horizontal resolution of 350 lines with $3 \times 10^{-2} \mathrm{ft}$-c illumination. Per MIL-E-5272A, it operates under 10 g acceleration up to 500 cps .
Westinghouse Electric Corp., Electronic Tube Div., Dept. ED, P.O. Box 284, Elmira, N.Y. CIRCLE 187 ON READER-SERVICE CARD

Diode Insulator Mounts

 Rated to 4000 r

Insulator mounts, rated up to 4000 v , are designed for high altitude operation and efficient heat transfer to chassis or ground. In over-all thermal drop, the mounts are rated better than $1 \mathrm{deg} C$ per watt.
Thermo Materials, Inc., Dept. ED, 4040 Campbell Ave., Menlo Park, Calif.

CIRCIE 188 ON READER-SERVICE CARD

Soldering Iron

Has automatic temperature control

This soldering iron automatically controls its own temperature within ± 2 per cent. Its tip contains a special alloy that gains and loses magnetic qualities with changes in temperature, making or breaking contact.
Weller Electric Corp., Dept. ED, Easton, Pa. circle 189 on reader-service card

Rotary Selector Switch

Holds four 12-position wafers

Model BD2E rotary selector switch, actuated by a Ledex 2 solenoid, holds up to four 12-position wafers. Operating voltage, 3 to 300 v dc ; minimum pulse length, 20 msec . The unit can be self-stepped or externally impulsed.
G. H. Leland, Inc., Dept. ED, 123 Webster St., Dayton 2, Ohio.
circle 190 on reader-service card

a LOT of Relay in a little space

This latest Automatic Electric achievement compacts all the features of the famous Class " B " relay in minimum space and weight-with no sacrifice of quality or ruggedness.

LOOK AT THE IMPORTANT FEATURES

 THIS NEW CLASS "E" OFFERS:- miniaturized; telephone-style base mounting for rearconnected wiring • heavy-thickness armature arms prevent loss of stroke with large pileups - heavy-duty backstop that won't break or wear out eadequate terminal clearances for easy wiring • long-life, lubricant-retaining bearing arranged to provide a visual check of the heelpiece airline setting without disturbing the adjustment - twin contacts standard; all springs bifurcated for maximum independence - sturdy, strain-relieved heelpiece insures stability of adjustment $\bullet 13$ springs can be provided in certain applications

Class "E" Relays are avallable

In the following serles:
EQA-Quick Acting ESA-Slow Acting*
ESO-SIow Operate EFA-Alternating Current
ESR-SIow Release EMS-Snap Action Contacts
*slow operate and slow release
Class "E" Relays can be supplied plug-mounted (with or without cover) or hermetically sealed (maximum 4 springs per pileup) in enclosure AE-3300.

For more information, call or write Automatic Electric Sales Corporation, Northlake, Illinois. In Canada: Automatic Electric Sales (Canada) Ltd., Toronto. Offices in principal cities.

$\mathbf{9 9 \%}$ pure isn't pure enough - the relay iron we use at Automatic Electric must meet specifications of 99.8% purity, including, for example, carbon content limit of $\mathbf{. 0 2}$. To obtain highest magnetic permeability, material is treated for periods up to 7 hours in roller hearth annealing furnaces. Highest standards of quality control insure the well-known dependability of AE Relays and Switches.

AUTOMATIC ELEGTRIC subudidar of GENERAL TELEPHONE

CIRCLE 191 ON READER-SERVICE CARD
ElECTRONIC DESIGN • September 17, 1958

NEW PRODUCTS

Guaranteed

long-term accuracy 1\%

Closer to a laboratory standard than to a conventional test meter! Where accuracy and dependability are required, use the AvoMeter 8.
Accuracy Guaranteed,
$\mathbf{1 \%}$ DC current, 2% DC voltage. $2 \% \%$ AC current and voltage. Sensitivity: $20 \mathrm{k} \Omega / \mathrm{V} C, 1 \mathrm{k} \Omega / \mathrm{VAC}$ Hand Calibrated - Mirrored Scale Automatic Overload Protection AC Current Ranges . Reversing Switch 3 Zeroing Controls
Accessories Extend Rangea
Accessories Exiend Rankes
Moderate Price: $\mathbf{\$ 8 9 . 0 1}$ CIRCLE 192 ON READER-SERVICE CARD
 2. 0-300 V.D.C. continuously variable without 3. switching...current 150 MA . mox.
3. 4108 V.A.C. unregulated @ 10 amps mox. (varied by rapped switch).
Regulation
For outpur volrages: $500 \mathrm{~V} / 300 \mathrm{MA}=100 \mathrm{MV}$. change N.L. 10 F.L.; $300 \mathrm{~V} / 150 \mathrm{MA}=60 \mathrm{MV}$ change N.L. 10 F.l. For line voltage 115 V.A.C. $\pm 10 \%$, the vollage change is $.1 \%$ for 500 V . output, . 16% for 300 V .
Ripple - both his.
2 MV. R.M.S.
high volt- ither pos. or neg, of either high voltag
grounded. All 3 on a chassis only $83 / /^{\prime \prime} \times 19^{\prime \prime} \times 16^{\prime \prime}$, for rack or bench use. Here is a real workhorse for general laboratory use. You get this widely versatile, compact power supply at a saving over separately supplied units. Request literature on Model 5-300F.

Linear Accelerometer

Frictionless operation

Type LA-600 ac linear accelerometer eliminates friction. A nonpendulous seismic mass on a frictionless spring suspension, it incorporates an ac variable reluctance type pick-off. The unit is insensitive to cross-coupling accelerations both at null and under an acceleration along its sensitive axis. It also has a near-constant damping ratio from -65 to +250 F . Full scale range is ± 0.5 to +40 g ; full scale output, up to $10 \mathrm{v}, 400 \mathrm{cps}$; threshold, 0.0001 g ; cross-axis sensitivity, less than 0.5 per cent.

Minneapolis-Honeywell, Boston Div., Dept. ED, 40 Life St., Boston 35, Mass.

CIRCLE 194 ON READER-SERVICE CARD

ALPHLEX ${ }^{*}$ ZIPPER TUBING	
FRO	ALPHA W IRE
NEW CONSTRUCTIONS ALPHLEX ${ }^{8}$ ZIPPER TUBING PROVIDE GREATER VERSATILITY stock sizes: $1 / 2^{\prime \prime}$ to $4^{\prime \prime \prime}$ I.D. IMMEDIATE DELIVERY WRITE FOR FREE CATALOG ED-9	Alphlex Zipper Tubing is the modern way to harness, cable and protect wire. Just zip to close-and just zip to re-open! If you wish, permanent seal. Saves you time, labor, money. Strong, flexible, durable. Versatility unlimited. ZIP-31: polyvinyl sheet made from MIL-I-631C materials. All-purpose type, for general applications to $105^{\circ} \mathrm{C}$. ZIP-44: polyvinyl sheet made from MIL-I-7444A materials. Extremely flexible; for aireraft and low-temperature uses to $-67^{\circ} \mathrm{C}$. ZIP-50: "sandwich" of aluminum foil laminated between 2 sheets of polyvinyl. Por 100% RF shielding applications to $105^{\circ} \mathrm{C}$. ZIP-90: polyvinyl bonded to woven fiberglass sheet per MIL-I.3190A. For rough usage. abrasion resistance, and high-temperature uses to $130^{\circ} \mathrm{C}$.
	Division Alphe Wire Corperation 200 Varick Steeat Now York 14, N. Y.

Modular Connectors

Permit maximum power applications

Uno-Link connectors are avai able in variations for standard wire harness arrangements and printed circuit card receptacles. The mating in-line arrangement of plug pins and contacts utilizes nesting insulator segments, two to thirty of which can be combined. The modu. lar construction permits maximum power applications in high density packaging requirements.

Methode Mfg. Corp., Dept. ED 7447 W. Wilson Ave., Chicago 31, Ill.
CIRCLE 195 ON READER-SERVICE CARD

Power Supply

18 w dc output

Inputs for the $137 \mathrm{~A} / \mathrm{PS}$ power supply are $115 \mathrm{v} \pm 10$ per cent and 60 through 400 cps . Any cycle in this range produces a dc output of 18 w regulated within 0.5 per cent at +220 v and -220 v . Ripple is 0.005 per cent with 60 cps input. There is 6.3 v ac at 5 amp available.
Land-Air, Inc., Dept. ED, 7444 W. Wilson Ave., Chicago 31, Ill. CIRCLE 197 ON READER-SERVICE CARD

Filters

50 db attenuation at null frequency
Suitable for mounting on printed circuit boards, Twin-T filters have null frequencies of $30,60,120,400$,
and 800 cps. Attenuation at null frequency is 50 db or more. Impedance levels range from 53 to 850 K.

T T Electronics, Inc., Dept. ED, P.O. Box 180, Culver City, Calif.
circle 198 on reader-service card

TWT Amplifier

For use with type A 1079 tube

Designed for use with RCA type A 1079 tube, the TWT-10 CM traveling wave tube amplifier also accommodates six other RCA types covering a 1.1 to 4.3 kmc range. The amplifier features helix protection and noise figures under 7 db over a wide band of frequencies.
LEL, Inc., Dept. ED, 380 Oak St., Copiague, N.Y.

CIRCLE 199 ON READER-SERVICE CARD

Machlett ML-6198 Vidicon

Industrial Television Camera Tube
Machlett Laboratories, Inc. makes available to the designer the ML-6198, a small television camera tube intended primarily for industrial use. Tube design includes a
 photoconductive layer as a light sensitive
element characterized by a spectral reelement characterized by a spectral re-
sponse approaching that of the eye.
ML-6198 has a resolution capability of approximately 600 lines. Advantages include high picture quality, uniformity of signal, high picture quality, uniformity of signal,
maximum tube cleanliness and low micromaximum
Pertinent technical data follow:
General Characteristics

Typical operation
$\begin{aligned} & \text { Faceplate Illumination (Highlight) } \quad 10 \text { to } 20 \mathrm{ft-C} \\ & \text { Signal-Electrode Voltage } \\ & \text { Grid No. } 4 \text { (Decelerator) \& Grid No. } 20 \text { to } 70 \text { volts }\end{aligned}$
$\begin{aligned} & \text { Grid No. } 4 \text { (Decelerator) \& Grid No. } 3^{2} 250 \text { to } 300 \text { volts } \\ & \text { GriBeam } \text { Focus) Voltage } \\ & \text { Grid No. } 2 \text { (Accelerator) Voltage }\end{aligned}$
$\begin{aligned} & \text { (For picture cutiof) } \\ & \text { Highlight Signal-Output Current }\end{aligned}{ }^{-45}$ io 0.1 to 0.100 volts
Maximum Dark Curpent
$\begin{gathered}\text { Uniform } 2870^{\circ} \text { K. Tungsten Ilumination } \\ \text { on Tube Face to Produce Signal- }\end{gathered}$
$\begin{aligned} & \text { Outpube Face to Produce Signal- } 3 \text { to } 10 \mathrm{ft}-\mathrm{C} \\ & \text { Average "Gammao of Transfer Characteristic }\end{aligned}$
Average "Gamma"o of Transfer Characteristic
${ }_{0}{ }^{\text {for }} 2 \mu \mathrm{amp}$

PREVENT THERMAL RUNAWAY

Prevent excessive heat from causing "thermal runaway" in power diodes by maintaining collector junction temperatures at, or below, levels recommended by manufacturers, through the use of new Birtcher Diode Radiators. Cooling by conduction, convection and radiation
Birtcher Diode Radiatore are
inexpensive and enay to install in
new or existing equipment.
To fit all popularly need power diodes.
for catalog
and
test dete write:

Mema ta: COMPONENTS MANUFACTURERS

Electronics business is good in New England. Are you getting your share from the Nation's sixth largest electronic market?
Did you know that the top 10 giants in the electronic industry which serve the computer, missile, and aircraft fields all have large plants in New England?
ATLANTEX CORPORATION is an established manufacturers representative (New England and Long Island) with 15 years of successful marketing. Successful because its team of graduate sales engineers are thoroughly trained to sell at the applications and design engineers level. This seasoned group gives you the equivalent of 4 high priced sales engineers, with complete and thorough coverage.
If your components meet the highest standards for quality and performance why not write or call attention of Paul Wallins.

Atlantex corporation
625 MCGRATH HIGHWAY - SOMERVILLE 45 - MASS MOnument 6-5100
for maximum reliability

THE BIRTCHER CORPORATION industrial division 4371 Valley Blvd. Los Angoles 22, Calisornis
solea engineoring repreeentatives in principal eitiee.

CIRCLE 202 ON READER-SERVICE CARD

TPANSEQRMFPC FOR ELECTRONICALLY REGULATED POWER SUPPLIES

- ONE UNIT PROVIDES PLATE AND FILAMENT POWER FOR ENTIRE SUPPLY.
- ratings based on d.c. output of supply.
- APPLICATION BULLETIN WITH EACH UNIT.

NOTES 1. All Primeries 115 volls $50 / 60$ cps. Our industrial and government custom de2. Retings Based On Capacitor Inpul Filtars
3. Dielestrie Tost Vollages: Primarios: 1500 V. RMS All seconderies: 2500 V . RMS
partment is noted for its ability to solve special problems. No run is too small. Write for Typical Circuit and Complete Catalog

STERLING IRANSFORMER ORPORAIION

297 North 7th St. rooklyn 11, N. Y STagg 2-4200

CIRCLE 203 ON READER-SERVICE CARD

MEDALIST*

nullindicofors

readable ... wide rance sensitivity Modern MEDALIST design provides far reater readability and modern styling in minimum space. Unique core and magne null point with sharp square law attenuation o 100 ua at end of scale in Type A. Interna esistance is 2 MI ohms. Orher sensitivities and special colors. Bulletin on request. Marion Electrical Instrument Co., Manchester. N. H., U. S. A.
${ }^{*}$ T.M. R. Reg. U.S. Pat. Or. U.S. \& Forelen Pateate
pyright © 1958.

CIRCLE 204 ON READER-SERVICE CARD

your buying guide to the world's largest stocks of ELECTRONIC SUPPLIES FOR INDUSTRY

- Transisfors \& Diodas
- Relays \& Switches
- Receiving \& Power Tubes - Racks, Cabinels, Chassis
- Tools \& Mardware
- KNIGHT Public Address \& Paging Systems

Simplify and speed your purchasing of electronic supplies and equipment at allied. We make fast, expert shipment from the world's largest stocks of everything in Electronics. OEM prices are available on quantity purchases. Send today for your pree 1959 allied Catalog -the complete Buying Guide to Electronic supplies for
One Complete Dependable Source for Everything in Electronics
ALLIED RADO
E 100 N. Westorn Avo., Dopl. 69-J

NEW PRODUCTS

Capacitance Bridge

Three-terminal

Designed to calibrate capacitive, aircraft, and fuel-gage testers, Type P-582 3-terminal bridge is also suited to general capacitance measure ments at 400 cps . Capacitance range is $5 \mu \mu \mathrm{f}$ to $0.11 \mu \mathrm{f}$ with ± 0.1 per cent accuracy over mos of the range. Dissipation factor range is 0 to 0.11 with an accuracy of ± 2 per cent of reading ± 0.0002.
General Radio Co., Dept. ED, 275 Massachusetts Ave., Cambridge 39, Mass.

CIRCLE 206 ON READER-SERVICE CARD

Selenium Rectifiers

High density

Six types of selenium rectifiers cover current ratings to 650 ma and are rated at $130 \mathrm{v} \mathrm{ac}$. exception, the RR659, is a $650 \mathrm{ma}, 195 \mathrm{v}$ ac unit for color TV replacement. As an example of the smaller cell sizes, a 500 ma unit has 1.6 in . square cells.

Radio Receptor Co., Inc., Dept. ED, 240 Wythe Ave., Brooklyn 11, N.Y.

CIRCLE 207 ON READER-SERVICE CARD

Binary Decoder

Can eliminate memory circuits
This binary decoder can eliminate decoding

CIRCLE 205 ON READER-SERVICE CARD matrices and memory circuits. Its design utilizes a pulse to energize and a ground pulse to deenergize the circuit. This permits rapid scanning of the input terminals and unlimited retention of

ELECTRONIC DESIGN • September 17, 1958
information. New data may be impressed over old without a clearing signal.
Globe Industries, Inc., Dept. ED, 525 Main St., Belleville 9, N.J.

CIRCLE 208 ON READER-SERVICE CARD
Silicon Diode References
Low temperature coefficients

Axial lead 2-w packages, these silicon diode references have temperature coefficients down to 0.001 per cent per degree C. They provide a stable reference voltage from -55 to +100 C and may be operated in any position without voltage variation.
Transitron Electronic Corp., Dept. ED, Wakefield, Mass.
circle 209 on reader-Service card

Vibration Tester
For electronic equipment

The Goodmans 390A vibration tester operates on the principle of an electro-dynamic shaker driven by a power oscillator. It tests electronic equipment for fatigue and structural life.
Solarton, Inc., Dept. ED, 10761 Burbank Blvd., North Hollywood, Calif.

CIRCLE 210 ON READER-SERVICE CARD

Magnetostrictive Delay

Delay time of $130 \mu \mathrm{sec}$

With a nominal delay of $130 \mu \mathrm{sec}$, model 140 magnetostrictive delay line features continuous variation of delay, medium impedance, and insensitivity to temperature changes. Applications include high access rate temporary storage for conputers.

Deltime, Inc., Dept. ED, 608 Fayette Ave., M.maroneck, N.Y.

CIRCLE 211 ON READER-SERVICE CARD

TRICE, the world's most advanced computer, saves many minutes over time currently required for ballistic missile impact prediction. TRICE modules (Integrators, Multipliers, etc.) can be assembled as a special purpose computer for dynamic systems or as a digital differential analyzer. Its incredible speed of 100,000 iterations per second in parallel is unaffected by the size of the problem. The first model is in operation at the U.S. Army Ordnance Missile Command, Huntsville, Ala.

Write for literature describing TRICE and its many uses: aerodynamic stability, control system stability, impact prediction, stable platform calculations, satellite orbit predictors and others.

PACKARD-BELL COMPUTER CORP.

a subsidiary of
 PACKARD BELL ELECTRONICS

12333 w . Olympic Biva.
Los Angeles 64, Calif. BR. 2-2171

troubles?

This new, hermetically sealed, single pole, double throw DC Modulator is virtually free from DC drifts. Each individual unit has less than 5 microvolts DC offset and drifts less than 2 microvolts over long periods of time. Normal contact dwell time is 5.5%, other dwell times being available. Constancy of dwell time better than 2% for first 1000 hours operation, less change afterwards. Life expectancy 10,000-25,000 hours.
Due to their rigid production standards these modulators are freely interchangeable, normally not requiring re-zeroing after replacement.

A new magnetic driving system provides unprecedented freedom from magnetic and electrostatic interference between coil and contacts making hum immeasurably small. A radically new contact design and contact treatment keeps RMS
contact - noise voltage-generation well below 1 uV .
This DC modulator is used in the most stable
amplifiers and DC: vacuum tuhe voltmeters
available on the market today.
F'or further details write to:

MILLIVAC
I N STRUMENTS Division of Cohu Electronics, Inc.
BOX 997 SCHENECTADY, N. Y.
TOMORROW IS OUR YESTERDAY

NEW PRODUCTS
Preset Counters
Modular design

Series 320 preset electronic counters are available in every size from 2 to 6 digits. They consist of a pluggable amplifier and control unit plus any combination of pluggable 2 and 3 decade modules. Maximum rate is 5000 counts per second.
Erie Resistor Corp., Dept. ED, 644 W. 12th St., Erie, Pa.

CIRCLE 214 on reader-Service card

RF Power Dividers

100 to 400 mc

General purpose 100 to 200 mc and 200 to 400 mc dividers for connecting 2 to 12 loads to one source. Input vswr is less than 1.25 ; loss about 0.1 db ; power rating 500 w at 150 F .
Adams-Russell Co., Inc., Dept. ED, 292 Main St., Cambridge 42, Mass.
CIRCLE 215 ON READER-SERVICE CARD

Stitched Wiring
Modular circuit method

In this method, wire is stitched to a standard terminal board with
eyelets or eyelet terminals to $1, \mathrm{rm}$ complete circuits. Insulating sle ves allow wires to be crossed so that all wiring is stitched to one side ot the board. Changes may be mad. by cutting wires and soldering in new leads.
Electronic Techniques, Inc., Dept. ED, 13761 Saticoy St., Van Nıys, Calif.

CIRCLE 216 ON READER-SERVICE CARD

Mercury Push Button Switch

No contact bounce

Trapped pools of mercury slide in and out of contact to operate this push button switch. The spdt break before type unit has no contact bounce or chatter. It mounts in any position and stands 15 g shock and vibration.
Electrosonic Engineering Co., Inc., Dept. ED, 2120 Pontius Ave., Los Angeles, Calif.

CIRCLE 217 ON READER-SERVICE CARD

Directional

 CouplersFor 100 to 1000 mc use

For 100 to 1000 mc use, series DC directional couplers come with type N, BNC, and TNC connectors. Directivity is 20 db minimum above coupling factor. Vswr is 1.3 maximum in the primary arm and 1.5 maximum in the secondary. Coupling factor is 30 db at 100 mc and 10 db at 1000 mc .
Maury \& Associates, Dept. ED, 10373 Mills Ave., Pomona, Calif. CIRCLE 218 on reader-service caro

Accelerometers

Tri-axial

Three mutually perpendicular sensing elements are mounted in these small accelerometers. The units have 25 kc frequencies and 5 to 9 mv per g sensitivities. Model 2230 operates to 200 F; model 2243 to 500 F .
Endevco Corp., Dept. ED, 161
E. California St., Pasadena, Calif.

CIRCLE 219 ON READER-SERVICE CARD

Shorting Switch

Assures one position
Switch shorts out every position but the one in use. Useful in the metering of a single position or for
the gathering of pertinent information on it.
The Daven Co., Dept. ED, Livingston, N. J.
CIRCLE 220 ON READER-SERVICE CARD
Dual Servo Multiplier
Modular construction

Providing a static nulling error of 0.02 per cent, the DLI-101 servo multiplier has two channels, each of which multiply three variables by a fourth. Its automatic gain control feature maintains constant loop gain for reference voltage variation in the 2 to 100 v range. The unit is composed of Digitrol plug-in building blocks.
Electro Precision Corp., Dept. ED, P.O. Box 669, Arkadelphia, Ark.
CIRCLE 221 ON READER-SERVICE CARD

NEW CRYSTAL and COMPONENTS OVENS WITH snap-action CONTROL

FOR HIGH RELIABILITY AND MINIMUM INTERFERENCE WITH LOW LEVEL CIRCUITRY

Bliley TCO-141 Oven Series provide high reliability performance combined with snap-action thermostat feature for temperature control of crystals, transistors, diodes and other miniature electronic equipment. Dual heater windings permit 6 or 12 volt operation. Request Bulletin 515.

CIRCLE 222 ON READER-SERVICE CARD
ElECTRONIC DESIGN • September 17, 1958

BIG

PERFORMANCE

IN A COMPLETELY NEW

 SMALLER UNIT

Bandif-Fizific SUBCARRIER OSCILLATOR

Here is the all-new Bendix-Pacific TOE-40 Voltage Controlled Oscillator which offers new instrumentation accuracy and new freedom from inflight calibration. It is characterized by a high degree of frequency and sensitivity stability with exceptional linearity. In addition, the new Bendix-Pacific unit is reduced in size to almost half that of former equipment.

CHARACTERISTICS:

Available Bands: All standard IRIG telemetering bands for channels 3 through 18 \& A through E. Input Ranges: 0 to $+5 \mathrm{VDC}, 0$ to $-5 \mathrm{VDC}, \pm 2.5 \mathrm{VAC}, 0$ to $+3 \mathrm{VDC}, 0$ to $-3 \mathrm{VDC}, \pm 1.5 \mathrm{~V}$ AC. Bands 3 through 18 (3 and 5 volt ranges) - 1 megohm
Bands A through E (5 volt range)- 1 megohm
Bands A through E (3 volt range) - 600 kilohm
Input Intelligence Frequency Response: Within $\pm 0.5 \mathrm{db}$ from zero to five times
Input Intelligence Frequency Response. Wint
the IRIG channel signal frequency.
Output Amplitude: 2.0 volts
Signal Output: 200 kilohms.
Output Distortion: Less than 1% at maximum voltage over the bandwidth.
Linearity: Less than $\pm 0.75 \%$ bandwidth deviation from straight line.
Weight: Approximately 7.5 oz.
Bendix-Pacific provides a complete telemetering service consistin
Bendix-Pacific provides a compresterng consisting of transmitting and receiving components, application engineering, systems and field services.

Write for complete information
East Coast: (Eastern Representative) PO Box Ohio: 120 West 2 d. Washington D.C. Suite 8031701 "K" Street. N.W. nadian Distributors: Computing Devices of Canada, Ottawa 4, Ontario Export Division: Bendix International, 205 East 42nd Street, New York 17. N. Y. CIRCLE 223 ON READER-SERVICE CARD

PUBLISHED BY ROME CABLE CORPORATION, ROME, N. Y. pioneers in instrumentation cable engineering

POLITE POLICEMAN_Tomorrow's vehicle control system might parallel the electronic traffic control system of RCA's David Sarnoff Research Center. Transistorized detector units at the Center count passing cars on roads, measure their speed, and flash a polite warning saying "Slower Please" to drivers exceeding the posted speed limit.
AROUND THE MOON IN 208,000 WATTS-Data-seeking rockets and missiles present a new challenge to telemetry equipment. For example: with present equipment, Army missile experts estimate it would require 208,000 watts to relay a TV panorama of the moon back to earth. Needed: new concepts of conveying data through space.
INSTRUMENTATION CABLE BULLETIN-This 8-page illustrated bulletin discusses cable insulation and jacketing material and lists typical multi-conductor cable constructions available for use with telemetering equipment, data recording equipment, circuit control testing and electronic computers. Every design engineer working with electrical
 cable should have a copy! To obtain your free copy write to Rome Cable Corporation, Dept. RCD-400, 421 Ridge Street, Rome, New York.
WEE WIRING-Printed wiring boards, already small, might get even smaller soon! How? By eliminating the land area around the holes in the board. This is being done experimentally by some concerns by using plated-through hole techniques. Full-scale production of the new, smaller boards may not be far off.
the satellite scoreboard-At the date of this writing, the batting averages in the ORBIT LEAGUE looked a little onesided: ARMY (with 3 out of 4 EXPLORERS in orbit) .750*, NAVY (with 1 out of 6 VANGUARDS up) . 167.
*(This, incidentally, was better than Stan Musial's average of .339 at the same date.)
CABLEMAN'S CORNER-Not too long ago, a new TV quiz program, entitled "Anybody Can Play," made its debut. No special knowledge was necessary-anyone could answer the questions.

Fine-for TV quiz programs. Dangerous-if applied to cable engineering and manufacture. For 100% reliability in multi-conductor ca-bles-you must call on a specialist!

Why? Here are the reasons. If a cable is to be reliable, it must be: 1. Designed by an experienced cable engineer with a working knowledge of instrumentation problems. 2. Constructed of quality material-with the emphasis on solving the need-and not on the price. 3. Controlled and thoroughly tested during production. 4. Backed up by a reliable manufacturer who will stand firmly behind every cable produced.

Don't sacrifice reliability in cables for price. Call on a Cable Specialist. Our address is Rome Cable Corporation, 421 Ridge Street, Rome, N. Y. cIRcle 225 ON READER-SERVICE CARD

Amplifiers

Recording type

These amplifiers are airborne instruments designed to amplify signals from high impedance transducers. Operating at a temperature range of -65 to +240 F , models $\mathrm{F}-510 \mathrm{TU}$ and F-528LU have extremely high input impedance.

Gulton Industries, Inc., Dept. ED, 212 Durham Ave., Metuchen, N.J.

CIRCLE 226 ON READER-SERVICE CARD

Panel meter MM-5 occupies panel space of conventional $4-5 / 8 \mathrm{in}$. meters and mounting space of ASA/MIL 3-1/2 in. units, yet provides greater scale length and readability. Tracking can be held to 0.5 per cent of full scale, when plotted linearly or with a protractor reference for deflection angles up to 100 deg .
Marion Electrical Instrument Co., Dept. ED, Grenier Field, Manchester, N.H.

$$
\text { CIRCLE } 227 \text { ON READER-SERVICE CARD }
$$

Transformers

Miniature

Twenty of these transformers fit into a cubic inch. Suited for missile and transistor circuits, they are uncased, encapsulated, or molded plugin type.
Palo Alto Engineering Co., Dept. ED, 620 Page Mill Rd., Palo Alto, Calif.

CIRCLE 228 ON READER-SERVICE CARD

Since 1936, we have been consulte regularly by electronic enginee throughout the Midwest.
Today, we can save your time wi these important facilities:

4 well-staffed offices
12 factory-trained field engineers
3 service laboratories
4 maintenance technicians

We represent these top manufacturers

Boonton Radio Corporation Baldwin-Lima-Hamilton Corporation dymec, Inc.
Electro Products Laboratories Hamner Electronics Hewlett-Packard Company KinTel
Magnetic Research Corporation
F. L. Moseley Company

Sanborn Company
Technology Instrument Corporation Varian Associales

DAYTON 19•2801 Far Hills Ave. INDIANAPOLIS $20 \cdot 5420$ N. Colloge A -ST. PAUL 14-842 Raymond Avo.
-Maintenance and Repair Laboratories
CIRCLE 229 ON READER-SERVICE CA

Drift-Free

measurements of

 D-C voltage, current and resistance...
with L\&N's Stabilized $R-I-E$ Meter

Now you can make fast, drift-free measurements of voltage, current and resistance with L\&N's 5620 R-I-E Meter. Applications include: voltage measurements of vacuum tube electrodes... current measurements in photo-cells, ion chambers ... resistance measurements of high value resistors, rolumetric or surface resistance of samples of small sizes, etc.
Ronges-Volts D-C (4) : 0-0.5 to 0-500. Current (6): 0-5 to $0-5 \times 10^{-5}$ microamperes. Resistance (6): 2×10^{2} to $2 \times 10^{*}$ megohms.
Limits of Error-Current and voltage range, $\pm 3 \%$ of full scale. Resistance range, $\pm 6 \%$ of reading for meter reading of 20 or lower.
Amplifier Output-For use as pre-amplifier for Speedomax ${ }^{\circledR}$ G or H 10 mv Recorders. Provides 10 mv across 10Ω corresponding to full scale on any selected range.
Controls-Range Switch: 11 positions. Function Switch: 5 positions. Polarity Reversing Switch. Voltage Key: Internal power supply, 10 or 100 volts. Power Supply- 120 volts, 50 or 60 cycles. Case-Metal, $7^{1 / 2^{\prime \prime}}$ (h) $\times 10^{1 / 2 " \prime}$ (w) $\times 10^{1 / 4}$ " (d), with cover.
Price- $\$ 440.00$, f.o.b. Phila. or North Wales, Pa. (subject to change without notice). Specify List No. 5620 when ordering from nearest L\&N Sales Office or from Leeds \& Northrup Co. 498 Stenton Ave., Phila. 44, Pa.

CIRCLE 230 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 17, 1958

Proportional Amplifiers

Control 90 w

Designated the PA5A and the PA5C, these magnetic amplifiers are capable of proportional control of up to 90 w output power with input power of a few milli-microwatts. The PA5A has a cylindrical case, the PA5C a rectangular case to meet different mounting requirements.

Magnetic Controls Co., Dept. ED, 6405 Cambridge St., Minneapolis 16, Minn.

CIRCLE 231 ON READER-SERVICE CARD

Relays
With AN connectors

Series SL-AN relays have AN connectors, are hermetically sealed, and are available up to 4 pdt . Contacts are rated up to 10 amp for a wide range of voltages.

Hi-G, Inc., Dept. ED, Bradley Field, Windsor Locks, Conn.

CIRCLE 232 ON READER-SERVICE CARD

CABLE FERRULES.-For easy termination of Zippertubing and other sleeving, ZT ferrules permit attachment or grounding to standard AN plugs and connectors.

The Zippertubing Co., Dept. ED, 752 S. San Pedro St., Los Angeles 14, Calif.
circle 233 on reader-service card
MOTOR ASSEMBLY.-Contains a gearbox, clutch, and reset mechanism capable of 7 million to 1 reduction.
Yuba Consolidated Industries, Inc., Dept. ED, 351 Califormia St., San Francisco 4, Calif.

CIRCLE 234 ON READER-SERVICE CARD

RECEIVING TUBE.-The 6/12DT5 9-pin miniature power pentode is for use as a vertical output deflection amplifier in 110 deg TV sets.
Westinghouse Electric Corp, Electronic Tube Div., Dept. ED, Elmira, N.Y.

CIRCLE 235 on reader-service card

BIDDLE TONE SIGNALLING EQUIPMENT

 Packaged CircuitsA LOW COST, flexible means
OF OBTAINING MULTIPLE SIGNALS
OVER A SINGLE CHANNEL-
TELEPHONE WIRE OR RADIO

These complete tone generator and tone detector circuits, employing Frahm (8) Resonant Reed Oscillator Controls and Relays, are available as veritable "building blocks" for your communications system.
Applications for these packaged circuits include: selective calling, remote operation, supervisory control, data transmission, tele. metering, and monitoring.
The Tone Generators are complete packaged oscillator circuits capable of supplying any one signal frequency within the ranges of 20 to 250 cps or 250 and 1100 cps , with accuracy of $\pm 0.15 \%$.

The Tone Detectors or receiving circuits, which employ a Frahm Resonant Reed Relay, operate the contacts of the SPDT relay in the unit when a signal of proper frequency and voltage amplitude is applied to the circuit input terminals. They operate with signals having any one frequency in the range of 20 to 1000 cps .
We particularly encourage your inquiries and correspondence on special applications and problems. Complete details on these packaged circuits as well as specificationE, characteristics, etc., of our Frahm Relays and Oscillator Controls are available for the asking. Request Bulletins 33 and 34-EE.

Electrical Testing Instruments . Speed Measuring Instruments
Laboratory $\&$ Scientific Equipment
1316. ARCH STREET, PHILADEIPMIA 7, PA.

CIRCLE 236 ON READER-SERVICE CARD

TRANSISTOR TESTER

Accurafely Tests Transistors and Diodes Tests Power Transistors at High Currents

MODEL 150 transistor tester Net, $\$ 17950$

Tests all transistors, and diodes, within 5\% accuracy. Tests power transistors at high currents. Measures Beta with 1 KC a.c. signal. Reads β directly on 0-50 and 0-250 meter scales. Power transistor biased at 0.1 amp . collector current, others at 1 ma . Leakage current, Ico, is read on $0-2 \mathrm{ma}$ scale for power transistors, $0-50 \mu a$ and $0-200 \mu a$ for others. Built-in transistor oscillator and buffer. Accuately tests junction and other diodes for forward to reverse current ratio. Long-life mercury cell supply. Instrument and transistors protected against shorts and burn-outs.

SHORTED TURNS INDICATOR

Tests Coils for Shorts and Open Circuits
-before assembly
Quickly gives "Go-No Go" indication-for production testing, incoming inspection, or laboratory use. Prevents losses in material and labor by finding shorts and open circuits before coil is mounted onto a relay, transformer or other device. Adjustable sensitivity provides selective testing-permits passing or rejecting coils with any particular number of shorted turns. Actually measures the coil " Q " but under conditions whereby a small difference in "Q" can easily be detected. Fast, easy to use. Safeguards are built-in. No shock hazard to operator. For a fully automated production line, the relay control cirmated production line, the relay control cir-
cuit may be wired to kick out the rejected coil cuit may be wired to katically. $110-120$ volts, 60 cycle AC.

TEST EQUIPMENT CALIBRATOR

Voltage Accuracy 1\% or Betfer

Enables you to check and adjust your test instruments with laboratory accuracy. Accurately calibrates VOM, VTVM and other meters, signal generators, and oscilloscopes. Provides: DC and AC voltages for checking voltage ranges-standard resistances from 10 ohms to 10 megohms for checking reliability of resistance ranges-crystal oscillator generating harmonics over 300 mc for use as marker generator. Built-in tone generator for signal tracing amplifiers in all audio equipment. Complete with 5 mc crystal. Operates on 110-120 volts, 60 cycles AC.

Write for Bulletins to Dept. H
B\&K MANUFACTURING CO.
3726 N Southport Ave. - Chicago 13. Illinois

NEW PRODUCTS

VANEAXIAL BLOWER.-Miniature 20 v de unit with speed of $13,000 \mathrm{rpm}$. Produces about 45 cfm . Western Gear Corp., Dept. ED, P.O. Box 182, Lynwood, Calif.

CIRCLE 238 ON READER-SERVICE CARD
DIFFUSION PUMP.-Type EP4W 4 in. fractionating oil diffusion pump for high vacuum stations. Veeco Vacuum Corp., Dept. ED, 86 Denton Ave., New Hyde Park, N.Y.

CIRCLE 239 ON READER-SERVICE CARD
LINEAR AMPLIFIER.-Modified type 300-A for high power ssb, cw, and am operation.

Van Norman Industries, Inc., Electronics Div., Dept. ED, 186 Granite St., Manchester, N.H.

CIRCLE 240 ON READER-SERVICE CARD
TRANSISTORIZED POWER SUPPLIES.-Compact units that provide output needed to operate receiver installations. Variety of current ratings

Universal Transistor Products Corp., Dept. ED, 17 Brooklyn Ave., Westbury, N.Y.

CIRCLE 241 ON READER-SERVICE CARD
TRANSFORMERS.-For ultrasonic use, line includes 25 and 100 w driver transformers and output transformers for $100,300,600,1000$ and 2000 w

United Transformer Corp., Dept. ED, 150 Varick St., New York 13, N.Y.

CIRCLE 242 ON READER-SERVICE CARD
PRESSURE TRANSDUCER.-Model S-40 dual coil, variable reluctance units in ranges from 0.1 to 5 psi.

Ultradyne, Inc., Dept. ED, P.O. Box 3308, Albuquerque, N. Mex.

CIRCLE 243 ON READER-SERVICE CARD
VACUUM OVENS.-For high temperature, high vacuum drying, testing, or processing of small instruments and electronic parts.

Temperature Engineering Corp., Dept. ED, U. S. Highway 130, Riverton, N.J.

CIRCLE 244 ON READER-SERVICE CARD
RELAYS.-Coils are fully encapsulated for protection against corrosive, deteriorative atmospheres.
Ebert Electroncis Corp., Dept. ED, 212-26 Jamaica Ave., Queens Village 28, N.Y.

CIRCLE 245 ON READER-SERVICE CARD

DATA TRANSMISSION SYSTEM.-Model TE-206, when used with the company 768G-1 Kinecard converter and IBM 523 card reader/punch unit, reproduces and transmits punch card information at a rate of 100 cards per minute.
Collins Radio Co., Dept. EI), 2700 W. Olive, Burbank, Calif. CIRCLE 246 ON READER-SERVICE CARD
\% STIL OPERATING

If you want reliable transformers

 . don't overlook this old solutionRight now, you demand more from transformers than ever before. You must have high reliability, even at extreme altitudes, and you need smaller lighter units.
Used, and proved, for decades, oilencased transformers should not be forgotten in a search for new methods.

Everyone knows the advantages: effective convection of heat, excel. lent insulating properties, complete insurance against hidden leaks. Oil. sealed types (with a nitrogen bubble) are good, light, high-altitude transformers. Gas-free oil-filled types (with a bellows to allow for heat expansion) withstand very high voltage stresses. Except in the small. est sizes, they save space, too.

You can place several high voltage units close together in a single oilfilled case, and save case weight. Those connections moved inside the case no longer need large insulators. Even the units themselves can be smaller. This all adds up-particularly in high altitude service-to interesting savings in space and weight.

We make all sorts of transformers and special assemblies for the communication industry: encapsulated, cast in epoxy or foam, and just potted in pitch. But oil transformers still have an important place.
Whatever type you need, we'll be glad to hear from you. Our facilities in design, production, and quality control are at your service. Our experience, too.

CAIEDONIA
EECTRONICS ANO TRANSFORMER CORFORATIOM
Dept. ED-9, Caledonia, N. Y.
In Canoda: Hackbusch Bectronics, Lid 23 Primrose Ave., Toronto 4, Onfario CIRCIE 247 ON READER-SERVICE CARO ELECTRONIC DESIGN • September 17, 1958

HG-28M

HG-28MP
CONTACTS
1 or 2 pole, Form A. B, or C CONTACT CURREN
Dry circerie to SA rosititive or 3
induntiver Dry circtuir
induraive
CONTACT VOLTAGE
Up 10 250 V. deponding on curren)
$010115 \vee$ DC
coil resistance
UPD 10 5 5.000 ohm
SENSIITIVITY (MAX)
200 mw
Emperature range

SHOCK-OPERATING 100 G
NON-OPERATING
1000 G
VIBRATION
WIIT EXCEED © 20 G
REQUIREMENTS O
MIL-R-S757C - ML.R.25018

MAGIEY FIELD - WINDSOR LOCKS, CONN.
CIRCLE 248 ON READER-SERVICE CARD
ELECTRONIC DESIGN • Sepfember 17, 1958

SERVO AMPLIFIER.-Packaged thyratron control for two-phase induction servomotors from \% to 3 hp .
Diehl Mfg. Co., Dept. ED, Somerville, N.J. circle 249 ON reader-Service card

TEMPERATURE MONITORING SYSTEM.-Elim

 inates electronic scanning and substitutes continuous monitoring of large groups of temperatures by independent circuits. For aircraft use.Thomas A. Edison Industries, Instrument Div., Dept. ED, West Orange, N.J.
circle 250 on reader-service card
CONTINUOUS-WRITING STREAK CAMERA.Model 194 produces a documentation which is a space versus time plot. For studying explosions, shock-tube manifestations, and flash-tube and spark discharge phenomena.
Beckman \& Whitley, Inc., Dept. ED. 973 San Carlos Ave., San Carlos, Calif.

CIRCLE 251 ON READER-SERVICE CARD
METAL STRIP.-Cadmium-silver clad phosphor bronze strip for use in electrical contact springs.
American Silver Co., Inc., Dept. ED, 36-07 Prince St., Flushing 54, N.Y.

CIRCLE 252 ON READER-SERVICE CARD

AUDIO PLUG.-XLR series replaces XL line, provides quiet operation by use of resilient inserts and shock-absorbing, resilient ribs in all socket assem blies.
Cannon Electric Co., Dept. ED, 3208 Humboldt St., Los Angeles 31, Calif.

CIRCLE 253 ON READER-SERVICE CARD
PLUGS.- Miniature type KM plugs have crimp-type nap-in contacts to eliminate soldering.
Cannon Electric Co., Dept. ED, 3208 Humboldt St., Los Angeles 31, Calif.

CIRCLE 254 ON ReAder-service card
ACTUATOR.-A4-87 actuator for alternate action push-button applications on panel mounting. For use in ground support equipment.
Electrosnap Corp., Dept. ED, 4230 W. Lake St., Chicago 24, Ill.

CIRCLE 255 ON READER-SERVICE CARD
TEMPERATURE CONTROLLER.-Sifam Pyromaxim on-off temperature controller has reading accuracy of ± 1 per cent and control response within 0.25 per cent. Calibrated for any standard thermocouple.
Epic, Inc., Dept. ED, 154 Nassau St., New York 38, N.Y.

CIRCLE 256 ON READER-SERVICE CARD
SOCKET SAVERS.-The 7 pin SS-7, 8 pin SS-8, and 9 pin SS-9 are designed to prevent socket wear in tube checkers and other equipment.
Pomona Electronics Co., Inc., Dept. ED, 1126 W. Fifth Ave., Pomona, Calif.

CIRCLE 257 ON READER-SERVICE CARD

 BENDIX ANNOUNCES NEW 15-AMP POWER TRANSISTOR SERIESNow in production by Bendix are eight new 15 -ampere power transistors capable of switching up to 1000 watts -and you can get immediate delivery on all eight types.

New in design, the transistors have a higher gain and flatter beta curve. The series are categorized in gain and voltage breakdown to provide optimum matching and to eliminate burn-out. Straight pins or flying leads can be supplied on request.

Ask for complete details on this new Bendix transistor series . . . and on the complete Bendix line of power rectifiers and power transistors. Write SEMICONDUCTOR PRODUCTS, bendix aviation corporation, Long branch, new jersey.

CIRCLE 258 ON READER-SERVICE CARD

VSWR and RF WATTMETERS 25 mcs to 3000 mcs

These rugged, compact units accurately measure and indicate the RF power and VSWR of coaxial transmission lines. Each type combines a frequency insensitive bidirectional coupler and complete indicator circuit in one small case. Accuracy of power measurement is $\pm 5 \%$ of full scale.

Model No.	Frequency Range (Mcs)	Power Range (Watts)	RF Connectors
712 N	$25-1000$	$0-2.5,5 ; 10$ in 3 scales	N^{*}
723 N	$1000-3000$	0.12 in one scale	$\mathrm{N} \dagger$

* Also ovailable with UHF, BNC and Type C connectors \dagger Also available with BNC and Type C connectors

For more information please write for 68-page centalog No. 12 or 800 Electronics Buyers' Guido or Electronic Engineers Masfor.
> M. C. JONES ELECTRONICS CO., Inc. BRISTOL, COMNECTICUT

NEW PRODUCTS

LINT-FREE PACKAGE PARTITIONS.-For packaging electrical and electronic parts, these partitions come in a variety of sizes.

Paper-Wood Specialties Co., Dept. ED, 7900 Rockwell Ave., Philadelphia 11, Pa.

CIRCLE 260 ON READER-SERVICE CARD
TEST EQUIPMENT KITS.-Factory wired, tested, and calibrated, these kits are ready for use.

PACO Electronics Co., Inc., Dept. ED, 70-31 84th St., Glendale 27, N.Y.

CIRCLE 261 ON READER-SERVICE CARD
ELECTROLYTIC CAPACITORS.-Long life, vibration resistant single and multiple section units in capacitance values to 3000 ufd and 500 v dc.

The Magnavox Co., Dept. ED, Fort Wayne 4, Ind.

CIRCLE 263 ON READER-SERVICE CARD
EXPLOSION PROOF TIMING CONTROLS.-Single and multicam units with 1 to 19 switches, 10 amp rating, and time cycles from $2 / 3 \mathrm{sec}$ to 72 hr .
Industrial Timer Corp., Dept. ED, 1407 McCarter Highway, Newark 4, N.J. CIRCLE 264 ON READER-SERVICE CARD

MECHANICAL BOOSTER PUMPS.-Series 450 for high vacuum pumping applications. Standard sizes from 230 to $12,000 \mathrm{cfm}$.
General Vacuum Corp., Dept. ED, 400 Border St., East Boston 28, Mass.

CIRCLE 265 ON READER-SERVICE CARD
SWITCH.-Plunger actuated spdt unit for limit and control switching of noninductive loads up to 15 amp, 115 or 230 v ac.
General Controls Co., 8078D McCormick Blvd., Skokie, Ill.

CIRCLE 266 ON READER-SERVICE CARD
LOW FREQUENCY MONITOR.-Model 660 provides constant indication of frequencies between 50 and 1600 cps with 5 place resolution.
Erie Resistor Corp., Dept. ED, 644 W. 12th St., Erie, Pa.

CIRCLE 267 ON READER-SERVICE CARD
HIGH POWER SWITCH.-Mega-Switch breaks circuits as high as 10 kv . Hermetically sealed with contacts in an arc quenching gas atmosphere.
Energy Kontrols, Inc., Dept. ED, 11 S. First St., Geneva, Ill.

CIRCLE 268 ON READER-SERVICE CARD
MILLIVOLT AND MILLIAMPERE SOURCE.Run up source has two voltage ranges and two separate current ranges: 0 to 60 and 0 to 200 mv ; 0 to 5 or 0 to 25 ma .
Technique Associates, Inc., Dept. ED, P.O. Box 91, Indianapolis 6, Ind.

CIRCLE 269 ON READER-SERVICE CARD

- guaranteed effective permeabilities within $\pm 3 \%$, $\pm 2 \%$ or $\pm 1 \%$ of specifications, in. tead of usual 10% to 50% spread
- measured, adjusted and grouped for mag. netic characteristics at the factory
- a complete line of por-type ferrite cores from $\%^{\prime \prime}$ to $13 / 4^{\prime \prime}$ diameter, with bobbins and hardware for each size
- available in quantity to manufact:Jrers of communications, telemetering and computer equipment

ELECTRONIC DESIGN •September 17, 195

Control Electronics Co. Inc. is a leading designer and mass producer of electromago
netic Delay Lines. A representative group is netic Delay Lines. A representative group is
shown here with the available ranges of shown here wiays, oandwidths the avd availedie ranges of
impedances. Further information is readily available from our
Engineering BUILT TO MIL SPECS. FAST PROTOTYPE SERVICE . . . DELIVERY 1 TO 3 WEEKS.
Distributed Constant Delay Lines

CEC DISTRIBUTED CONSTANT DELAY LINE features

- Lowest cost - reliable performance - Maximum delay to rise time ratlos - Maximum delay per cubic inch

- Linear phase shift

Constant Delay Lines
DELAYS TO 20,000 MICROSECONDS.
BANDWIDTHS 10500 MCS
ZO FROM 50 TO 10,000 OHMS.

		Multi- tapped		
	\vdots		\vdots	\vdots
Lumped				

System Delay Lines

CIRCLE 271 ON READER-SERVICE CARD

RF-IF TRANSISTOR.-Type 2 N544 pnp transistor for frequencies to 1.5 mc . Power dissipation is 80 mw ; junction temperature, 85 C
Sylvania Electric Products, Inc., Semiconductor Div., Dept. ED, Woburn, Mass.

CIRCLE 272 ON READER-SERVICE CARD
RESISTORS.-Axial-lead Koolohm resistor line now includes a 3 w unit and reduced size $5,7,10$, and 14 w units with improved performance.

Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.

CIRCLE 273 ON READER-SERVICE CARD

INSULATION TESTER.-Model 103-MP automatic leakage tester with test voltage adjustable from 0 to 2100 v ac.

Slaughter Co., Dept. ED, Piqua, Ohio
CIRCLE 274 ON READER-SERVICE CARD
INSULATING VARNISH.-Ajax emulsion insulating varnish is water-reducible, will neither burn nor support combustion

Sherwin-Williams Co., General Industrial Div., Dept. ED, Cleveland 1, Ohio

CIRCLE 275 ON READER-SERVICE CARD
RECORDING HYDROGRAPHS.-Low priced hydrographs, thermographs, and hygrothermographs for industrial use.

Serdex, Inc., Dept. ED, 12 Bowdoin Sq., Boston 14, Mass.

CIRCLE 276 ON READER-SERVICE CARD
SWITCHES.-Series 4000 3-position aircraft type switches available in spst, spdt, dpst, and dpdt. In over 100 types of circuitry.
Sargent Electric Corp., Dept. ED, 630 Merrick Rd., Lynbrook, N.Y.

CIRCLE 277 ON READER-SERVICE CARD
PLUGS.-Phone plugs incorporating a set of ears that clamp over the cord jacket for secure anchoring. Screw type terminals.
Richards Electrocraft, Inc., Dept. ED, 4432 N. Kedzie Ave., Chicago, Ill.

CIRCLE 278 ON READER-SERVICE CARD
COUNTDOWN CLOCK.-The 90092-A digital system has a master clock and five slave displays. All transistorized with no moving parts.
Resdel Engineering Corp., Dept. ED, 330 S. Fair Oaks Ave., Pasadena, Calif.

CIRCLE 279 ON READER-SERVICE CARD
GEIGER COUNTERS.-Nonphotosensitive, all glass halogen quenched geiger counters with transparent nonmetallic conductive cathode surface.
Radiation Counter Labs, Inc., Dept. ED, Nucleonic Park, Skokie, Ill.

CIRCLE 280 ON READER-SERVICE CARD

NOW

 PRACTICAL and RELIABLE LOW LEVEL PDM* TELEMETERING
STRAIN GAGE THERMOCOUPLE PDM TELEMETERING FOR

MISSILE ENVIRONMENTS

General Devices, Inc. announces its Model 1204C-1, 45×20 Low Level PDM Multicoder This unit is characterized by high common mode rejection, excellent gain stability and reliable performance under the most severe environmental conditions.

The unit consists of a 45×20 Electro-mechanical Commutator, semi-transistorized D. C. Amplifier, solid state PAM/PDM Converter and solid state Power Supply. It may be supplied in any standard IRIG sampling configuration.

Complete and intimate system circuitry knowledge and experience makes possible the maximum performance in standard or custom designs at minimum cost.

Write on your company letterhead for our free 16 page booklet dealing with the choice and application of sampling devices, entitled. "Electronic and Electro-mechanical Sampling Devices for Instrumentation".

* GDI low level PAM/FM equipment also is available

ADDITIONAL
Equipment
SPECIFICATIONS

Sompling roles:
Standard IRIG Adiustable rensitivity, moximum 10 MV for full scale Common mode re-

3 V in phase signal input produces less scole outpul
\qquad 20 to 2000 CPS ot I5G peak Temperature: Up to $85^{\circ} \mathrm{C}$ Powor Source: 28 VDC or

28 VOC or
115 VRMS
400 CPS
Other GDI standard or custom ongineored ayztoms ond equipment ore

GOI is in need of soveral koy engineors, with backgrounds in systoms and rolomorry Sond CIRCLE 281 ON READER-SERVICE CARD

NEW ELECTRA SERIES 125 precision film RESISTORS

Now, when high temperature is the problem, you've got the answer . . . exclusive, new Electra Series 125, precision film resistors. Subjected to $125^{\circ} \mathrm{C}$ under full load for 1,000 hours, the change is less than 1%. Likewise, subjected to 95% humidity with full wattage using standard mil cycle for 250 hours, the change is less than 1%. Available in $1 / 8,1 / 4$ and $1 / 2$ watt sizes, values 10 ohms through 5 meg ohms meet or exceed all Mil-R105098 test requirements. Write today for full details.

See Electra Display Wescon Show Booths 408-409

NEW LITERATURE

ED Article Guide

283
Featured in the August 6 issue of this magazine, the Index of Articles lists and cross-references all articles, staff reports, Russian translations, German abstracts, abstracts, design forums, background for designers, product features, ideas for design, special features, and meeting reports published January 8 through June 25. Concise descriptions of all items (except ideas for design) follow each initial reference. Handy alphabetic key guides reader to type of article and bold face type indicates exact title of article as it appeared in Electronic Design.

1200 New Produces Indexed

284
Semiannual Product Index appearing in July 23 issue of Electronic Design lists over 1200 new products (except for product briefs at end of department), materials, and production products published during first half of this year. Index lists new products by category including components, microwave equipment, test equipment, and materials, production equipment, and systems. Following each category are issue and page numbers.

Wirewound Resistors

285
100 types of precision wirewound resistors are described in this 20 -page 14 RC catalog. Resistance values from 0.1 ohm to 20 meg are available in accuracies from 0.025 per cent to 1 per cent. Matched ratio sets and special temperature coefficient resistors are covered. Renumbering of some resistor series have been initiated for conformance with a specification system. Aerovox Corp., Cinema Engineering Div., Burbank, Calif.

Synchros and Servos

A 20-page catalog describes the company's line of synchros, precision computing resolvers, linear transformers, servo motors and motor generators. The catalog includes detailed tables giving the electrical and mechanical characteristics for an entire range of synchros (transmitters, receivers, resolvers, control transformers and differentials). Also included are mechanical and electrical characteristics for the company's line of linear transformers (induction potentiometers) plus ac servo motors and motor generators. Contained also in this catalog are brief descriptions of special rotary components, including frequency differentials, dc instrument motors, and a multi-pole re-

ELECTRA Manufacturing Co. 4051 Broadway WEstport 1.6864 Kansas City, Missouri

As everybody knows, space ships travel by cutting magnetic lines of force . . . and a supply of good permanent magnets is a "must" if you're going to make with the $\mathrm{E}=\mathrm{mc}^{2}$ in outer space. (Technical details on this are not quite ready for release.)
This wandering spaceman from Planet Plexippedes was making a routine flight over California and forgot to watch his flux density indicator. Suddenly -no power . . . and he had to limp home on his auxiliaries, to face an irate wife.
Too bad nobody told him about Thomas \& Skinner's complete line of magnetic materials -permanent magnets, wound cores, laminations and SiFeMag tapes. T \& S magnetic materials have proved ideal in literally thousands of industrial applications. No reason why they wouldn't be ideal for space ship installations, too.

SPECIALISTS IN
MAGNETIC MATERIALS
Permanent Magnets Q Magnetic Tapes © leminations Ef 0 and Wound Cores
solver. Clifton Precision Products Company, Inc., 9014 West Chester Pike, Upper Darby, Pa.

Resin Base

289
Fluorosint TFE resin is described in a 4-page illustrated bulletin. A polytetrafluoroethylene base composition, the resin is designed to improve the mechanical and thermal properties of pure polytetrafluoroethylene without materially affecting its electrical and chemical characteristics. The booklet contains charts and tables comparing the new resin to Teflon. Application data is added to that on mechanical, electrical, chemical, and thermal properties. The Polymer Corporation of Pennsylvania, 2140 Fairmont Ave., Reading, Pa.

Cooling Equipment

290
A 34-page catalog on fans and blowers describes units specially designed to fit standard electronic racks. The catalog also contains a section of engineering information for the design of forced convection cooling systems. Charts on performance limits, heat dissipation, etc., are included. A special section is devoted to blower housing variations. McLean Engineering Labs., Princeton, N.J.

Drinker's Nomograph

291
This nomograph is reprintcd through the courtesy of Sarkes Tarzian, Inc., "in the interest of preserving engineers (particularly those who attend conventions), during this period of scientific shortages." Sarkes Tarzian, Inc., 415 N. College Ave., Bloomington, Ind.

WELDMATIC PRECIIION WELDER BOOSTS RELIABILITY IN SUBMINIATURE COILS

You, too, can make reliable joints in millisecond time with a Weldmatic. Here, at the Advanced Engineering Laboratory of the General Electric Light Military Electronic Equipment Department, welding of a $0.005^{\prime \prime}$ terminal to \#38 copper wire in subminiature toroids is being done with a Weldmatic 1015. Weldmatic joints withstand high temperature, severe vibration and acceleration. Unit sets up fast, is simple to operate. Write for technical data on the Weldmatic line.
WELDMATIG
DIVISION OF UNITEK CORPORATION 2br, North Halstead Avenue - Pasadena, California CIRCLE 292 ON READER-SERVICE CARD

NEW, LOW FREQUENCY RELIABILITY IN GLASS-ENCLOSED CRYSTAL

Precision components of the new RHG-DP crystals are enclosed and hermetically sealed in glass holders to assure maximum internal cleanliness and most reliable evacuation. The result is a series of sturdy, miniature, low frequency units having excellent long-term stability and higher Q .

TYPICAL VALIIES FOR 2 KC UNIT*

Frequency range	1 to 15 kc
Holder	TS 1/2 glass bulb -Noval Base
Temperature range	-55 10 + $100^{\circ} \mathrm{C}$
Frequency tolerance	$\pm .015 \%$
Effective resistance ${ }^{\text {A }}$	75,000 ohms max
ing 8 hours- $100^{\circ} \mathrm{C}$	$\pm .001 \%$ max

*Reeves-Hoffman manufactures a broad line of crystals in the range from I to 1000 ke .

CIKLLE 293 ON READER-SERVICE CARD

for all your

CLIP, BLOCK and
 HARNESS STRAP needs!

ADEL offers the widest variety of LINE SUPPORTS in the World . . . 19,000 different types and sizes for safe, vibration-free, positive support in all types of aircraft, missiles, rockets, ordnance, automotive and original equipment of all kinds.
SAFETY . . FLEXIBILITY . . . DURABILITY . ECONOMY . . . SERVICE FITTED . . . SERVICE TESTED . . . SERVICE APPROVED Illustrated are but a few of the World's most complete line of Line Supports that meet or exceed all applicable specifications and/ or requirements. Whatever the application STANDAROIZE ON ADEL - the leader in completeness of line, service and reliability. Peliability
THPRECISION
SPECIFICATIONS ARE AVAILABLE TO AIRCRAFT, MISSILE AND ORIGINAL EQUIPMENT MANUFACTURERS . . . WHAT ARE YOUR REQUIREMENTS Direct inquiries to Huntington Division 1444 Washington Ave., Huntington 4, W. Virginla DISTRICT OFFICES: Burbank - Mineola
CIRCLE 294 ON READER-SERVICE CARD
Complex Ratio Bridge

MODELCRB-1 \& 2

The Complex Ratio Bridge is supplied in two models: The CRB-I covering a frequency range of 30 to 1000 cps with the input voltage limited to 2.5 times the frequency in cps lie: 150 volts at 60 cps); and the CRB-2 covering the frequency range of 50103000 cps with the input limited to 0.35 times the frequency in cps lie: 140 volts at 400 cps). The units are identical in all other respects.

3211 South to Cienego Boulevard, Los Angeles 16, Californio - TExas 0.2761. VErmont 9-2201

PATENTS

Loudspeaker Circuitry

Patent No. 2,832,828. Sidney E. Levy.
An array of l-f and h-f speakers is designed to permit maximum power transfer from the audio amplifier to the speakers. A simple modification of the circuit permits the selection of the transition frequency of the network. Since audio amplifiers having large negative feedback are essentially constant voltage sources, an increase of power delivered to a load at any frequency requires that the impedance of the load be made low at that frequency. Simple analysis of the invention illustrates how the impedance is reduced for the selected range of frequencies. For low frequencies the two woofers are in parallel since the reactance of the condenser is high and the reactance of the inductance is low. At higher frequencies, the woofers are in series and therefore the combination constitutes a high impedance which permits little power to be delivered by the amplifier. By contrast, for low frequencies, the tweeters are in series and for high frequencies the tweeters are in
L.F. AT MAX.

shunt. Maximum power transfer t, the tweeters is transferred properly a the higher frequencies.
The transition frequency may b se lected by modifying the capacit nce branch to a resistor and condenser either in series or in shunt.

Circuits for Controlling the Peak Amplitude of Electric Current Pulses

Patent No. 2,822,470. Ronald Charles Imm. (Assigned to the General Electric Co., Ltd.)
The circuit provides a convenient means to control the peak amplitude of electric current pulses in order to shock excite a pulse modulation system for production of pulses of progressively de.

creasing amplitude. In general, the constant amplitude pulses are produced by pulse generator 21 and tubes 24,15 and 29 suitably biased and clamped. Transformer 3 and diodes 12 and 13 develop the desired trains of positive and negative decremental pulses.
The constant amplitude pulses which excite the antiresonant circuit of transformer 3 are generated as follows.
Grid 23 is clamped to ground by diode 24. Diode 29 has its plate voltage at about 5 v below ground since cathode 28 returns to -150 v through the preset resistor 17. A positive voltage applied to grid 23 causes diode 29 to cut off and the current flowing in the primary winding is set by resistor 17 . When the input pulse terminates, there is an appreciable voltage drop in cathode 18 which causes diode 29 to conduct. As a result all of
the current through resistor 17 is bypa sed by diode 29 and triode 15 is cut off so that no current flows through primary winding 7.
Pulse current in winding 7 results in a pair of balanced signals at points 10 and 11. Each of these signals has a damped sinusoidal waveform. Diodes 12 and 13 are biased to pass only those portions of the waveforms which are respectively positive and negative with ground. The ratio of the amplitudes of adjacent pulses is determined by the time constant of the transformer secondary circuit.

The circuit illustrates the phase inverter consisting of npn transistor 18 connected in series with pnp transistor 8 , with emitter 18 joined to emitter 12. A single-ended signal is injected on base 10 of transistor 8 while base 20 of transistor 18 is held at ac ground. The equal and opposite signals are ac coupled to npn transistors 56 and 58 which comprise the push-pull output stage driving the load Z_{1}.

An essential feature of the circuit is that a single power source, battery 28 , is required for the phase inverter and pushpull output.

Transistor Switching Circuit

Patent No. 2,829,281. Adrianus Johannes Wilhelmus, Marie Van Overbeek. (Assigned to North American Philips Co., Inc.)
The circuit facilitates the opening of line $1-2$ when a negative gate is applied to terminal 17.
In the absence of a gate at terminal 17, transistor T_{1} is conducting and line 1-2 is closed through the low emitter to collector resistance of transistor T_{1}.
However, transistor T_{2} is nonconducting since the base b_{2} is at a positive voltage with respect to both collector C_{2} and emitter e_{2}.
A negative gate applied to terminal 17 causes transistor T_{2} to conduct and

featuring the unique

. . . the world's most modern

 broadband amplifier pentode
Amperex 6683

a RELIABLE premium-quality tube for military systems requirements and exacting industrial applications

- completely ruggedized
construction
- figure of merit of 250 Mc as broadband amplifier
- saves entire stages in IF and video amplifiers
- improves signal-to-noise ratio
- preferred for new equipment - design particularly airborne design, particularly airborne
- long life cathoda

$*_{\text {Ir }}$, the

FRIME RRID COHSTRUCTION

that makes the difierence!
The frame grid is the closest approach to the ideal "physicist's grid"- the grid with only electrical characteristics but no physical dimensions.

It results in:

- higher transconductance
- tighter G_{m} and plate current tolerance
- low transit time
- low capacitances
- lower microphonics
- rugged construction

TYPICAL OPERATION
Plato Supply Voltage 190 voite Grid Supply Voltage 190 volts Grid supply Vortage +9 volts Plate Current Transconductance 16.500 umhos (min. 14.200; max. 18.800) Amplification Factor 50 Equivalent Noise Resistance 460 ohms Grid Voltage (rms) 0.5 volt

Other Amporex Promium Quallit (PO Other Amporex Promium Qualliy (PQ)
frame grid tubes avaliable in production
quantities: quantitios:
5847broadband amplifiler pentode
plus other PQ and frame grid tubas for apociol relio.
plus other PQ and frame grid iubos for apeciol rolio
biliey requirements ond exocting induatrial applicotions CIRCLE 296 ON READER-SERVICE CARD

Anatomy can be fun indicates Sherman launching into his latest pressure point ecture with single－minded purposefulness． lightening than our more academic means lightening than our more academic means

pressure

 measure

Upper：Rocketdyne System． Lower Right：New D311 Single Point Data Processing System．
 of measuring pressure．Example：Rocket－ dyne，a division of North American Avia－
tion，Inc．，applauds（quietly）its success in measuring rocket combustion chamber pressure with BJ Electronics＇Single Point Dressure with BJ Elecessing System．
Essential is our Vibrotron ${ }^{\circledR}$ Pressure Transducer and Amplifier which comprise an oscillator sub－system．The transducer＇s fine tuned wire stretched in a magnetic field controls operating frequency；com－ bustion chamber pressure variations change the wire＇s resonant frequency， hence the oscillator system output．A fre－ quency output modulated by input pres－ sure is thus accomplished．
Readout instrumentation converts the output to numerical representation of pressure，prond ng scale adjusion in the process Visual display and／or printed process．Visuat results Happily for you
Happila data acquisition systems can be built to process any num－ her of inputs from pressure，temperature． requency and millivolt signals．For ex－ ample the new D311，Single Point Data Process System（shown lower right）ac－ cepts Vibrotron Transducer output and provides visual numerical output related to pressure as actual value，\％of full scale or any fraction thereof．We can help you． Our technical bulletins attempt to sub－ stantiate this premise．Write for yours．

BJ ELECTRONICS

BORG－WARNER CORPORATION
Reliability you can count upon

3300 NEWPORT BOULEVARD，P．O．BOX 1679 ，SANTA ANA，CALIFORNIA EXPORT SALES：BORG．WARNER INTERNATIONAL CORP．，CHICAGO，ILLIONIS CIRCLE 297 ON READER SERVICE CARD

PATENTS

the voltage at the base b ，becomes posi－ tive with respect to that of either col－ lector C ，or emitter e ，of transistor T_{1} ． Hence transistor T_{1} becomes non con－ ducting and line 1－2 is opened．In addi－ tion，transmission signals which may be coupled through the capacitance of emitter e ，and base b ，are shorted to ground through the low resistance exist ing between emitter e_{2} and collector C_{2}

Pulse Amplitude Discriminator

Patent No．2，821，626．Melvin B．Freed－ man．（Assigned to Tracerlab，Inc．）
The pulse height discriminator has a short recovery time．It is adapted to gen－ erate an output pulse of uniform ampli－ tude and duration for each of a random series of positive input pulses in excess of a predetermined threshold．The cir－ cuit has application in scintillation detec－ tors used with counting rate meters．
In the quiescent state both triode（or pentode） 33 and triode 36 are conduct－ ing in accordance with the voltage E on
the cathode of diode 40．A positive im－ pulse at terminal 30 is differentiated by the input rc circuit causing triode 33 to conduct．The negative－going voltage on the plate of triode 33 makes diode 40 nonconducting and also reduces the cur－ rent of triode 36．As a result，a negative voltage is coupled by condenser 39 to the cathode of triode 33 causing the lat－ ter to conduct even more．This action carries the circuit rapidly to a state wherein tube 33 conducts heavily and

IRCRAFT Armaments，inc．

Cockeysville，Maryland

ぎ号 글
Si
tin th wi
ca the

－developed by Naval Ordnance Laboratory，Silver Spring，Maryland －product－engineered and produced by Aircraft Armaments，Inc．

AAINC．MODEL 2830

MISS－DISTANCE

 MEASURING SYSTEMAN／USQ－II
under 2 lbs．Accuracy confirmed by field tests．
TRANSPONDER

CIRCLE 298 ON READER－SERVICE CARD
tulte 36 is nearly cut off. The system remains in this state until condenser 39 has alnost assumed the charge required by the new state. Thereafter, the tapering off of the charging current of condenser 39 reduces the voltage feedback and tule 33 becomes less conducting. The plate voltage of tube 33 rises, tube 36 becomes more conducting and the signal cross-coupled by condenser 39 to the cathode makes tube 33 less conducting. A cumulative pile up of voltages in the opposite sense reduces the current of tube 33 until the plate voltage assumes the voltage set the reference voltage \mathbf{E}. Now, the determining time constant of the circuit is the product of the capacitance of condenser 39 and the cathode resistances of tubes 33 and 36 in series. Since both tubes are conducting at all times, with consequent low impedance, the time constant can be made very short without recourse to an extremely small capacitor. Likewise, it is apparent that the voltage E sets the threshold below which an applied pulse will not produce an output pulse and this, in effect, permits a convenient means to adjust the pulse discriminator level.

Controlled Oscillator Means Utilizing

 Gated-Beam TubesPatent No. 2,833,990. Jack D. Van Tilburg. (Assigned to Collins Radio Co.)
A series circuit consisting of a resistor, a capacitor and a parallel resonant network in conjunction with a gated-beam tube such as a 6 BN 6 conveniently produces free oscillation, frequency division, frequency modulation or gated oscillation.
Gated beam tube 10 shown in the dia-

TWO SERIES: RXM, to MIL-C-14167A RXV. $\begin{gathered}\text { Specs } \\ \text { Specs } \\ \text { SpAF }\end{gathered} 26244$ Send for New
Engineerink

> SAN EERHANO
electric manufacturing co.
Telephone: EMpire 1-8681 $\begin{array}{cc}\text { CAPACITORS FILTERS } & \text { Teletype: San Fernando Cal } 7264 \\ \text { POTENTIOMETERS }\end{array}$ CIRCLE 300 ON READER-SERVICE CARD

> A HELCO sector type potentiometer simplifies your overall design

LARGE SECTOR TPPE for airborne HELCO PRODUCTS CORP.
7832 Balboa Boulovard Ven Nuye, Callfornia Tol: 8Tanloy 3-2768

. because the numbers are 212 times larger than before. What's more, the new extra digit of no extra cost gives you a more exact reading. Your G-E sales engineer can give you all the focts. Ask him for bulletin GEA. 6710 .

GENERAL (9\%) ELECTRIC

circle 302 on reader-service card

HUGHES AIRCRAFT COMPANY USES SEL-REX BRIGHT GOLD PROCESS

to plate guided missile components

Critical guided missile manufacturing requires the best materials. That's why BRIGHT GOLD and other SEL-REX Precious Metals Processes are pecified for this work.
We actually improve the metallurgical properties of precious metals elec troplate. BRIGHT GOLD, for example, gives six times more protection with $1 / 4$ the amount of Gold*, as compared with conventional 24 K Gold plate. - Tochnical dara on request.

SEL-REX CORPORATION nuter 10, new Jeaser rophices: ormoir. cmicaco, los anoeless Manufacturors of Exelusive Precious Moiols Processes, Metallice Power Rectifiors, Airborne
Power Equipment, Liquid Clarification Filtors, Metol Finishing Equipment ond Supplies. CIRCLE 303 ON READER-SERVICE CARD

PATENTS

gram contains cathode 11, accelerator 14, limiter grid 18, gating grid 19 and plate 12. Its operating characteristics are special since the cathode current is constant, the current through aperture 17 is determined by the limiter grid bias, and the plate current is prescribed by the gating grid bias. Thus the entire cathode current goes to either the accelerator alone or to the accelerator and the plate according to the voltages on the respective grids.
In the operation of the circuit as a free running oscillator, the gating grid is biased above cut off.
Voltage on the limiter grid increases with the positive going cycle and electrons pass to the plate. Accelerator current decreases, and hence the tank voltage increases causing regenerative buildup of the positive half cycle until the maximum portion of the electron stream reaches the plate. The tank circuit then swings negative, the limiter grid is cut off and the entire electron stream goes to the accelerator until the accelerator voltage reaches a maximum. Feedback is
thus maintained constant. The cycle re peats when the tank swings positive.

Frequency division is achieved by tuning the tank to f / N where N is a n l tiple of 2 and f is the frequency of he synchronizing voltage. The synchror izing signal drives the gating grid abut cut off f-times per second. The tank and the limiter grid, however, swing ne rative each even multiple of f so that the tank locks to an even division of f.

Signal Attenuator

Patent No. 2,835,867. Daniel Golden. (Assigned to Underwood Corp.)
Crystal diodes such as 1N34s are used in series or in parallel or in series-parallel combination to attenuate pulse signals which exceed the constant resistance range of the crystals. For the attenuator shown, voltages in excess of $\pm 10 \mathrm{mv}$ are attenuated in an inexpensive and effective manner.

The resistance characteristics of crystal diodes prescribe decreasing resistance with increasing positive applied voltage and rapidly increasing resistance as negative voltage increases.

An increase in voltage beyond the redetermined level causes the resistance one of the series diodes to increase ster than the resistance of the other iode decreases. In effect, the series cirnit shows higher resistance and therere attenuation of the input. As the inut voltage increases further, the resistnce of one of the shunt diodes decreases nd the resultant parallel resistance dereases to cause additional attenuation the applied voltage.
igh Fidelity Audio Amplifier
tent No. 2,828,369. Alpha M. Wiggins. issigned to Electro-Voice, Inc.)
An amplifier output stage is designed operate as a high fidelity push-pull utput having unity coupling between he tubes, a low impedance output trans-
former and full drive of the entire load by each tube. As a result, the amplifier may be operated Class AB or B with negligible distortion due to transients.
Plate supply of each tube is returned to the cathode of the other tube. Two power supplies obviously are required but the advantages of the circuit are likewise evident. Thus each tube looks into the total load impedance between the cathodes of the tubes as contrasted to one fourth of the total load impedance in a conventional push-pull circuit. Unity of coupling results thus obviating transient switch distortion. The lower impedance required enables the use of a transformer having fewer windings. This produces lower distributed capacitance and, therefore, better frequency response.

Here is a new high in rigid coaxial transmission line efficiency and performance! Now Prodelin has applied its fieldproved, reactance-compensated teflon pin insulator support proved, reactance-compensated tefin aluminum outer conductors.
This service-tested construction technique provides constant broadband impedance characteristics consistent with high power handling capability and low VSWR . . . and aluminum offers strength, corrosion-resistance, lightweight, and handling ease.

VHF SERIES "700" teflon pin supported inner conductor
UHF SERIES "900" service lested reactance compensated
inner conductor support
Both series lines are available in the $76^{\prime \prime}, 156^{\prime \prime}, 316^{\prime \prime}, 61 / 6^{\prime \prime}$ and $10^{\prime \prime \prime}$ sizes, 50 and 75 ohm impedances. EIA (RETMA) flanges are available.

FOR MILITARY AND COMMERCIAL SERVICES

 fEATURES```
- Highest Power Handling
- Low VSWR
- Low VSWR
- Performs up to \(2500^{\circ} \mathrm{C}\)
- Constant 50 or 75 ohm Impedanc
```

- Corrosion Resistant
- Migh Tonsile Strongth
- Lighiwoighe, Easy to Mandle
- Little Maintenance Required

WHEN COPPER IS PROPER
Prodelin still stocks rigid ceoxial Prodelin still stocks ngia cor outer
transmission lines with copper transmistor.
conductor.

## conducior. VHF SER1ES "609" teflon pin ivpported inaer conductor

 tvilon pin ivpponUMF SERES "AOO"

 all EIA (RETMA) sandardiase

WRITE TODAY

Manufacturer of the World's Finest Air Dielectric Transmission
Lines, Connectors, and Associated Components CIRCLE 306 ON READER-SERVICE CARD


Depf. ED-9
307 Eergon Ave., Kearny, N. J,


IN PRODUCTION NOW - COMMERCIAL QUANTITIES the 1802 hyordgen thyratron, with unprecedented performance and ruggedness, ceramic-enveloped aND FAR SMALLER

The new EG\&G Hydrogen Thyratron, Model 1802, delivers 30 megawatts peak power in a smaller package than any comparable unit. It supersedes many older types, and surpasses the performance of the Type 59481754 on all counts, in less than 17 th the size. The new 1802 is aircooled by convection and will tolerate ambient temperatures up to $100^{\circ} \mathrm{C}$. Yet its warm-up time is only 5 minutes. Other comparisons with the $5948 \quad 1754$

|  | $\mathbf{1 8 0 2}$ | $\mathbf{5 9 4 8 / 1 7 5 \mathbf { 5 4 }}$ |
| :--- | :--- | :--- |
| Input trigger power | 250 v at | 650 v at |
| Delay time | 400 ohms max. | 250 ohms max |
|  | $0.5 \mu \mathrm{~s}$ rated |  |
| (average is $0.25 \mu \mathrm{~s}$ ) | $1 \mu \mathrm{~s}$ |  |
| Jitter | .002 to $.005 \mu \mathrm{~s}$ |  |
| Reservoir Range | $\pm 10 \%$ | $.02 \mu \mathrm{~s}$ |
| Filament Power | 90 watts | $\pm 5 \%$ |
| Ambient Temp Max | 100 C | 200 watts |
|  |  | 75 C |

The hydrogen thyratron was invented by K. J. Germeshausen, President of EG\&G. Advanced research continues to keep this company in the forefront of hydrogen thyratron development. For specific data on the 1802 , and for the most authoritative information on gas discharge tube types and MILLI-MIKE* CRT's, TW oscilloscopes and systems, write to us on your company letterhead.
EDGERTON, GERMESHAUSEN \& GRIER,ING. $\therefore$ :lif

## 3948/1734

650 v at 250 ohms max $1 \mu \mathrm{~s}$
$.02 \mu \mathrm{~s}$
$\pm 5 \%$
200 watts
75 C

## S

in air at inimum arily to ation of rmining d on a voltage ressure, working breakvoltage e based - (50-60
tings at oltage is vel con-
akdown
(Fig. v and (b) Lo50,000
ea level (a) to voltage
akdown
tage at
, work
g volt
,000 ft.
breakkdown 25 v at

TEST VOLTAGE, RMS


Fig. 1. Solution to Example 1.


Fig. 2. Solution to Example 2.


Graph to determine multi-pin connector
voltage ratings at various altitudes.

## RCA RELAYS

## 350 SUBMINIATURE TYPES

4 and 6 Pole, AC, DC and Dry Circuits


Meet and exceed MIL-R-5757A, B, C and MIL-R-25018 (USAF)!

RCA Subminiature Relays are designed to give maximum reliability and superior performance in missile and airborne applications, as well as critical industrial uses.
More than 350 types are now available to meet the most stringent requirements-exceeding MIL-R-5757A, B, C and MIL-R-25018 USAF specifications.

RCA Relays are sold through leading electronic component manufacturers' representatives located conveniently throughout the country.

> Every RCA Relay is precision assembled and
> incorporates these important construction features

- Dependable slepped headers on 4 and 6 pole uniss for greater ease in wiring and inspection.
- Precision balanced rotary motors for high resistance to shock and vibration.
- "Getters," an original RCA development for lower conract resistance, longer life.
- Simultaneous switching of full rated loads and dry circuits.
- Special confact ratings for special purposes.
- Plug-in types in 4 and 6 pole units AC, DC and Dry Circuits.
- Tefon ${ }^{\circ}$ Splatter Shields for positive protection against shorting of contacts.
-Rogistered trademark of E. I. Du Pont De Nemown

Send for free copy of 12 page brochure on RCA Subminiature Relays. Includes specifications, type and rating, socket, heater and enclosure diagrams.


## RADIO CORPORATION OF AMERICA

industrial electronic products
CAMDEN, N.J.
CIRCLE 470 ON READER-SERVICE CARD

## NEW BLUE INSULATION

adds another refinement to CLARE
Springdriven
Stepping Switches

## STANDARD AT NO EXTRA COST



Type 26

## CONSIDER

## what these Superior Features will do for YOU!

- HIGH INSULATION RESISTANCE 100,000 megohms minimum between switch points and between each point and frame.
- STABLE INSULATION RESISTANCE

Maintains 100,000 megohms minimum resistance Maintains 100,000 megohms minimum resista

- LOW MOISTURE ABSORPTION

Maintains low leakage characteristics in humid environment. Water absorption: 48 hours at $50^{\circ} \mathrm{C}$, $0.5 \%$ (Astm Test D570)

- GOOD ARC RESISTANCE

Endures arcing from wiper contacts, maintaining high resistance to dielectric breakdown. Arc resistance: 140 seconds (AsTM Test D495).

- MECHANICAL STRENGTH \& STABILITY High tensile and compression strengths. Holds mechanical dimensions throughout age and temperature variations (vital to retention of stack tightness). Lifetime shrinkage: 001 in ./ in. (approx.)
- MEETS MIL SPECIFICATIONS

MIL-P-14D (Type MDG)
MIL-P-4389 (USAF)
This new Blue Insulation supplied as standard on all clare Springdriven Stepping Switches as soon as present stocks of Bakelite insulators are used up. No extra cost.

- Find out the many other superior qualities of clare Springdriven Stepping Switches. Call or write: C.P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Ill. In Canada: C. P. Clare Canada Ltd., 2700 Jane Street, Toronto 15. Cable Address: clarelay

Send for CLARE Englneerlng Bullofln 101
 CIRCLE 309 ON READER-SERVICE CARD

THE STANDARD method of attaching a panel in an instrument case involves screws through the panel to lugs within the periphery of the case. This usually results in poor front panel appearance, inaccurate fit, and awkward panel and chassis removal. Fig. 1 shows a scheme which avoids these problems and eliminates the unsightly gaps which allow dust and water to get into the chassis.
The panel and chassis are bolted together with screws which are invisible when the knobs and dials are in place. A casting, which forms the front of the unit, and requires no costly machining, covers the panel to case gap.
The unit, consisting of the panel, chassis, and casting is secured to the back of the case with two fast-lead screws. A strip of aluminum, spotwelded to the inside of the case, and protruding from its outside edge, locates the edge of the casting exactly with reference to the case by engaging in a slot in the casting. As the locating screws are tightened, the casting, front panel and chassis are firmly pulled into place. The package is completely dust-proof and can be water-proofed easily.

The unit is easily adapted for rack mounting In this case a rack mounting adapter panel is clamped between the front casting and the in strument case, and held by the fast-lead screws at the back of the case.
Kenneth Ricketts, Southwestern Industrial Electronics Co., Houston, Texas.


Fig. 1. This panel-fo-case mounting scheme eliminates unsightly gaps, keeps out dust and water, and makes it easy to mate the panel and instrument case.

Fig. 2. A rack mounting adapter can be secured between the front panel and case by tightening two thumb screws at the back of the case.

## Testing DPDT Choppers

Many circuit applications require a single DPI IT chopper rather than two SPDT choppers to obtain exact synchronism between the two chopper poles. Here's a circuit that can be used 10 check both poles simultaneously for phase lag, balance, dwell time, and tracking. The circuit is also useful for matching characteristics in SPDT choppers.
With tracking defined as the difference in phase lag between two switch sections, one can measure it to within one degree.
The circuit shown is simple and easy to assemble. The chopper coil voltage is fed to an $R C$ phase shift network. The coil voltage is sent to the scope $X$ plates and the 90 deg shifted


Fig. 1. This simple circuit can check the tracking of DPDT choppers or it can compare the operation of two SPDT units.
voltage to the $Y$ plates. A second circle is created by periodically reducing the voltage to these plates using an auxiliary SPDT chopper operating at a frequency other than that applied to the DPDT chopper under test.
The "phase control" adjusts the circle for roundness. An additional SPDT chopper, operating at the same frequency as the first SPDT chopper, alternately inserts each section of the DPDT chopper into the blanking circuit. Whenever the contacts of the DPDT chopper open, the trace is blanked. The inner circle represents one set of contacts, while the outer circle represents the other.
Warren E. Hodges, Project Engineer, The Bristol Company, Waterbury, Conn.


Fig. 2. Oscillogram of a typical DPDT chopper's perform ance.



- 2 Times the Insulation Resistance
- No Derating at $85^{\circ} \mathrm{C}$ or Less $-1 / 3$ Less Derating at High Temperatures

TVPICAL
APPLICATIONS:

- Low current power supply filters
- Oscilloscope, Geiger
counter, electro.
meter circuils
- Electronic computers
- Audio coupling and bypass
- High remperature AC and DC circuits, ele.

CAPACITAMCE: Standard $\pm 10 \%$, available of $\pm 5 \%$. Other tolerances available on request.
POWER FACTOR: At 60 cycles is approximataly $0.25 \%$ of $20^{\circ} \mathrm{C}$, approximatoly $0.3 \%$ or $85^{\circ} \mathrm{C}$.
INSULATION RESISTAMCE: 20,000 megohms por mfd. or 20,000 megohms whichever is lesser, measured at $20^{\circ} \mathrm{C}$ with 500 VDC applied.
TEST VOLTACE: 1 minute at $1 / 2$ times rated voltage of $25^{\circ} \mathrm{C}$.
TEMPRRATURE RANGE: Standard $-60^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
IMPREGMAMTS GSA copacitors are IQ160 imprognated and fillod.
CASE: Metal ferrules are soldered to silver bands fused to each end of heory walled glass fubes. The vacuum ligh assembly is fungus proof.

Metal caps are embossed to insure a flush contact.

## the potter company

Sectalists in Layer Wound Capacitors Since 1925

## REPORT BRIEFS

## Adiabatic Magnetization

A study has been made of the adiabatic suppression of super conductivity by the application of a magnetic field. The effects of specimen geometry, rate of magnetization, and departures from the isentropic magnetization path were studied. The excessive heating accompanying adiabatic magnetization was found to arise from thermal effects along the magnetization path associated with hysteresis in the magnetization path. When these hysteresis effects are included in calculations of expected values of cooling good agreement with experimentally observed values is achieved. The exact nature of the hysteresis effect is unknown. Unless control of this irreversibility is possible, the cooling of a superconductor by adiabatic magnetization cannot be utilized effectively for refrigeration nor for producing temperatures much below one degree Kelvin. Traversal of the Intermediate State of a Superconductor by Adiabatic Magnetization, by R. L. Dolecek, U. S. Naval Research Laboratory. Jan. 1958, 19 pages, graphs, table, \$0.50. Order PB 131485 from OTS, U. S Department of Commerce, Washington 25, D. C.

## PFM Response of Single Tuned <br> Parallel Circuit

The steady state expression of the voltage across a single tuned parallel circuit fed by a current source possessing periodic pulse frequency modulation is computed in the case of relative frequency deviation less than or equal to one. The corresponding envelope and instantaneous frequency are derived and plotted for certain numerical examples. Presented to a conference at the Symposium "La Theorie et la Technique des Impulsions," Paris, France, Oct. 1953. Steady State Response of a Single Tuned Parallel Circuit to a Sinusoidal Current Source with Periodic Pulse Frequency Modulation, by E. W'eber. Polytechnic Institute of Brooklyn, Microwave Research Institute, Brooklyn, N.Y. Apr. 1955, 35 pages, diagrams, graphs, microfilm $\$ 3.00$, photocopy $\$ 6.30$. Order PB 126150 from Library of Congress, Washington 25, D. C.

## Study of Semiconductor Materials and Devices

The effects of heat treatment at 1300 C on the infrared absorption of silicon have been investigated. Conductance measurements were made on p-type silicon samples before and after oxida-

The Beattie Oscillotron


PHOTOGRAPHS
a RECORD

crectricaily puised and auiomatic. Adaptable for remote control. Interchangeable 35 or 70 mm cameras. 100 ft . roll film magazines for single frame or continuous motion recoro ing. All oscillotron cameras fit the standart k-5 periscope.
for more information write to


CICLE Olive St., Anaheim, California CIRCLE 336 ON READER-SERVICE CARD ESIGN•September 17, 1958


## wound cores

Thomas \& Skinner's Orthosild Wound Cores are ideal for special applications and can be specially tested to customer requirements prior to shipment.
These T\&S Wound Cores meet and exceed customer requirements in respect to all magnetic characteristics.
Besides complete assurance of quality and specification conformity, T\&S offers its highly qualified engineering assistance -based on more than 50 years of experience in the magnetic materials industry-to help you select the core best suited for any given application.
T\&S's entire organization prides itself in anticipating a customer's problems in advance and providing the correct engineering recommendations to prevent such problems from materializing.

## SPECIALISTS IN

MAGNETIC MATERIALS
Permanent Magnets Q Magnetic Tapes © Lominations 否 and Wound Cores 3


1157 E. 23 rd S., Indiamopolle 7 , Indiana CIRCLE 337 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 17, 1958 25, D. C.

## COOS <br> SUB-MINIATURE R. F. CABLE CONNECTORS

fadio results to date; II. Long-range auroral zone echoes; III. Low-latitude auroral effect; IV. Recommendation for further study; V. Summary and conclusions. Appendices: (A) Previous radio studies of aurorae; (B) Equipment; (C) Plane-earth plane-ionosphere ray path derivations; (D) Curved-earth curved-ionosphere ray path derivations. Bibliographical references. Radio Echoes from Auroral Ionization Detected at Relatively Low Geomagnetic Latitudes, by R. L. Leadabrand, Stanford University, Radio Propagation Lab., Stanford, Calif. Dec. 1955, 203 pages, photos, diagrams, graphs, table, microfilm $\$ 9.30$, photocopy $\$ 31.80$. Order PB 126332 from Library of Congress, Washington

## Emissive Materials for Electron Tubes

Standard diodes, exhausted at a partial pressure of 2.5 mm during the exhaust cycle, show slumping or lower emission levels during the life burning cycle of the tube. The completed standard triode tests show that the emission levels of the tube are affected by variations in vacuum pressure at exhaust. Physical analysis of standard diodes exhausted at 5 mm pressure Hg show definite signs of non-adherence of cathode coating. Diodes exhausted at 15 mm pressure of mercury show signs of a chemical reaction between the cathode coating and the nickel sleeve. A test structure for evaluation of cathode sleeve sublimate by use of spectrographic means is presented at this time. The evolution and description of the sublimation structure are described in detail. The first analytical results are also presented. Investigation of Emissive Materials for Electron Tubes, Frederick T. Hill, Raytheon Manufacturing Company, Receiving and Cathode Ray Tube Operations, Newton, Mass. 1957, 32 pp, microfilm $\$ 3.00$. Order PB 126364 from Library of Congress, Washington 25, D.C
tion. Silicon npn diffused base transistors were made by diffusion and alloying. When germanium grown junction diodes are placed in 100 per cent humidity ambients, reverse currents 10 times or more higher than the saturation current are obtained. Study of Semiconductor Materials and Devices, Second Quarterly Interim Technical Report. Jan. 1, 1956 to Mar. 31, 1956, Raytheon Manufacturing Co., Research Div., Waltham, Mass. Apr. 1956, 47 pages, photo, diagrams, graphs, tables, microfilm $\$ 3.30$, photocopy $\$ 7.80$. Order PB 129686 from Library of Congress, Washington 25, D. C.

## Radio Echoes from Auroral lonization

Contents: I. Theories of aurorae and summary

| Type 3000 Cable Plug | Tvpe 3001 Cable Jack | Type 3002 Bulkhead Receptacle |
| :---: | :---: | :---: |
| Type 3003 Bulkhead Jack | Type 3004 Cable Feedihru | Type 3005 Right-Angle Plug |

## REVOLUTTIONARY because...

## EASE OF ASSEMBLY:

In factory, shop, lab, field. No special tools required.
INCREASED PULL-OUT RESISTANCE:
Cable-clamping construction withstands over $20-\mathrm{lb}$. strain.
CAPTIVATED CONTACTS:
Insure proper engagement with mating parts.
Especially important with short cable lengths.

The result of a decade and a half of intense specialization,"ConheX" connectors set brand new standards. Yes, revolutionary is the word.

In 50 -ohm impedance size as shown, including the unique rightangle plug. 75- and 95 -ohm sizes to follow. Designed for use with latest MIL sub-miniature cables. Suitable for use at microwave frequencies. Interchangeable with but superior to existing connectors of corresponding types.

Parts of machined brass except for female contacts of heat-treated beryllium copper. Genuine gold plating (not just gold flash) over copper. Insulators of Teflon.

JUST TRY" CONHEX"! Write for literature. If you are a design or specification engineer, write on business letterhead for free sample. Make your own comparisons and tests. And let us quote!
TM res. pend.


CIRCLE 338 ON READER-SERVICE CARD

## Nonlinear and Parametric

## Phenomena

# Radio Engineering 

A. A. Kharkevich<br>Translated by J. George Adashko

Part 1

We, at Electronic Design, are pleased to present, for the first time, a complete book translation in serial form. Unlike most of our "Russian Translations" this book is not intended to reveal the "state of the art" in the USSR.
It is an excellent and lucid introduction to an important aspect of electronic design-too long neglected by many American design engineers. It is brief, unified, and unexcelled in its clarity.
The Russians are past masters in nonlinear theory. Of American books on the subject, there are but four-three of which have appeared in the last few months. None have been written for the practicing electronic design engineer.
We believe that our translation of "Nonlinear and Parametric Phenomena in Radio Engineering" will provide a genuine service-not for the theorist, nor the mathematician, but for the practicing electronics design engineer.
-The Editors


Prof. A. A. Kharkevich was born in 1904 in Leningrad. He graduated from the Leningrad Electrotechnical Institute in 1930. A doctor of technical sciences since 1938, Prof. Kharkevich became a corresponding member of the Ukrainian Academy of Sciences in 1948. At present he holds a chair as professor of theoretical radio engineering at the Moscow Electrotechnical Institute of Communication. He is Director of the Communication Laboratory of the Academy of Sciences of the USSR.
Prof. Kharkevich's book Nonlinear and Parametric Phenomena in Radio Engineering, is the third part of a textbook, the first two parts of which were published under the title Theoretical Principles of RadioCommunications (State Publishing House of Technical and Theoretical Literature, Moscow, 1957).

## Translator's Foreword

For every electronic engineer exposed to a course on nonlinear mathematics or nonlinear circuit theory, there must be at least a dozen, whose knowledge of the subject does not go beyond the B-H curve, drawing a load line, or calculating harmonic distortion. Yet almost all electronic functions-rectification, oscillation, detection, and so on-are inherently nonlinear. A possible exception is amplification, and even there the linearity is more formal than actual.
There is good reason for this-the principle of superposition. As long as the electronic art was more interested in the circuit aspects, the powerful tools based on this principle (e.g., Thevenin's or the reciprocity theorem, Laplace or Fourier transforms) could not be given up readily, and the various linearization techniques were preferable to "pure" nonlinear analysis.
It seems inevitable, however, that electronics is doomed to leave the straight though not narrow path of linearity (to pitch a wild curve at the metaphor). In the case of transistors, for instance, the old work horse, the equivalent circuit, is frequently quite hard pressed to provide a satisfactory theory, even in the first approximation. It is most likely that twenty five years from now the electronic engineers will wonder how their parents managed to do without a knowledge of Poincarés theory, just as we marvel how it was possible to get through the EE course in 1933 without a knowledge of Maxwell's equations.
Russian work on nonlinear theory dates back to Liapunov's "Problème Général de la Stabilité du Mouvement" of 1892, but serious work began in the early thirties. The results are not our primary concern here; suffice it to point out that Andronov and Chaikin's "Theory of Oscillations" (Princeton, 1949) and Krylov and Bogoliubov's "Introduction to Nonlinear Mechanics" (Princeton, 1943) are among the most frequently re-ferred-to books when it comes to nonlinear theory.
It is little wonder, therefore, to those who have been following our abstracts in "What the Russians are Writing," that articles on nonlinear circuits or methods appear frequently in Russian electronic literature. There are several books exclusively devoted to "Nonlinear Radio Engineering," one of which is Prof. A. A. Kharkevich's monograph "Nonlinear and Parametric Phenomena in Radio Engineering." It is a brief and clear theoretical introduction to the subject, written for practicing engineers. Your translator liked it, your editors liked it-we hope you like it, too.-

## Author's Introduction

A characteristic of linear equations with variable coefficients is that the coefficients depend on the argument $t$, i.e., they are specified functions of time. The theory of such equations is more complicated and less fully developed. This is why phenomena described by equations with variable coefficients are frequently classified as "nonlinear."
From the physical point of view, equations with variable coefficients describe the behavior of systems with parameters that vary with time in some manner. Such systems, and the phenomena that take place in them will be called parametric. Examples of equations with variable cuefficients are

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+t!y=0 \\
\frac{d^{2} y}{d t^{2}}+(a+2 q \cos 2 t) y=0
\end{gathered}
$$

(Continued on next page)
thousands of combinations for REMOTE CONTROL SWITCHING

The variety of Oak switches is almost limitless. Combined with Oak rotary solenoids, they provide an assortment of Rotary Selectors that covers almost any low-current applicationsimple or complex, military or commercial. Oak Rotary Selectors give a positive stepping action, even under severe vibration and shock. To help you get the exact remote-control unit you require, Oak engineers will be glad to work out special recommendations. Write for copies of the Oak switch catalog and rotary solenoid bulletin with time-saving layout sheets.

SWITCHES - ROTARY SOLENOIDS CHOPPERS - SPECIAL ASSEMBLIES VIBRATORS - TUNERS


1260 Clybeurn Avenue, Dopt. D, Chieago 10, Illinels Phone: MOhawk 4-2222

## chassis-trak silides

## for rack-mounted electronic equipment

Either roller or solid bearing slides are available from stock. The "Detent" model locks in 7 tilt positions. The "Basic" model tilts with no lock assembly. The "EZ Mount" model tilts from mounting on front cabinet rail. These models are available in either lightweight or heavy-duty styles.
Chassis-Trak slides, formed from cold rolled-steel, give complete accessibility and faster servicing . . . and the ultra-thin design means you can cut engineering
costs by mounting $17^{\prime \prime}$ chassis in $19^{\prime \prime}$ standard stock racks. Plus, a wide bearing area design increases rigidity and reduces the possibility of binding due to misalignment.
In addition to the standard slides in stock, Chassis-Trak engineers will custom-build slides for special installations. All slides meet specifications for government or military projects and RETMA standards.

Select the right slide for your application

| rouer beaming shoes | modet | shoe lemoth |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Las. } \\ & \text { MAx. } \\ & \text { IOAD } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 11 | 12 | 14 | 10 | 11 | 20 | 22 | 24 |  |
| Basic | CTRB | x | x | x | $x$ | $x$ | $x$ | $x$ | X | x | 175 |
| Detent | CTRD |  |  | x | $x$ | x | $x$ | X | x | x | 175 |
| Cradie Track | CTEZ |  |  |  | $x$ | X | x | X | $x$ | x | 125 |
| Heary Duty Basic | CTHRB |  |  |  | X | $x$ | x | x | x | x | 275 |
| Heary Duly Detent | CTHRD |  |  |  | X | x | x | x | x | x | 275 |


| solid aeaming shoes | moder | shde lemeth |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Las. } \\ & \text { MAX. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 11 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |  |
| Basic | CTB | $x$ | $x$ | $x$ | $x$ | $x$ | $x$ | $\times$ | $x$ | $x$ | 175 |
| Detent | CTD |  |  | $x$ | X | $x$ | x | $x$ | $x$ | $x$ | 175 |
| Light Weight | CTL |  |  |  | X | x | X | $x$ | X | $x$ | 100 |
| Heovy Duty Basic | CTHB |  |  |  | x | $x$ | $x$ | $x$ | $x$ | $x$ | 250 |
| Heary Duiy Deient | CTHD |  |  |  | X | x | X | x | X | x | 250 |
| assis <br> rale <br> inc. <br> CII | For ad |  |  |  | ring | info |  |  | \% 1 |  |  |

The latter equation is called the Mathieu equation and plays a very important role in radio engineering.
Finally, nonlinear equations are distinguished in that their coefficients depend on the function or on its derivatives. This type of equation is the most difficult to solve. Several general methods will be considered as applied to various radio engineering problems.
Examples of nonlinear equations are

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+a y^{2}=0, \quad \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t} y=0, \\
\frac{d^{2} y}{d t^{2}}+f\left(\frac{d y}{d t}\right)+y=0 .
\end{gathered}
$$

The last equation is quite general; it is encountered in the theory of vacuum tube oscillators.

## Mathematical Analysis

We are interested in the mathematical aspects of this subject because mathematical analysis permits a quantitative investigation of various types of electronic apparatus and, in the final analysis, provides us with a design procedure.
As to the physical and engineering aspects of the subject, it must be mentioned that some of most important phenomena and processes used in radio engineering-oscillation, frequency multiplication and division, rectification and detection, modulation, and frequency conversionare nonlinear or parametric.
They are describable by nonlinear equations or equations with variable coefficients. These equations indeed constitute the mathematical formalism of "nonlinear" radio engineering.

## 2. Methods of Monlinear Theory

The principle of the superposition, which is the basis of linear theory, cannot be used for the investigation of phenomena in nonlinear systems.
Let us explain this statement briefly by starting with a linear system, describable by the linear algebraic equation $\quad y=a x$.
Here $x$ and $y$ are functions of time, $x$ being the input to the system and $y$ the output. The principle of superposition says that if the input to the system is
the output will be

$$
y=a x=a\left(x_{1}+x_{2}\right)=y_{1}+y_{2},
$$

i.e., the two components $x_{1}$ and $x_{2}$ act independently. Thus, the current resulting from several voltages in a linear system is the sum of the cur-
can
you afford to gamble with quality on parts like these?


ACTUAL SIZE
(produced in one operation on highspeed multi-slide equipment)

Our customer list always includes world leaders in electrical and electronic products
They depend on us year-in and year-out for stamped parts to match the quality they build into their products.
They refuse to gamble! . Can you afford to do so?


DETROIT STAMPING COMPANY Estobliched 1915
411 Midland Ave. - Defroil 3, Mich.
America's Leading Job Stamping Manwacturer
Dependon Deftruit!

CIRCLE 341 on reader-service card
ELECTRONIC DESIGN • September 17, 1958

ON THE SHELF! SINGLE SPIDER GEAR DIFFERENTIALS


AVAILABLE IN FOUR SIZES:
$Y_{6}^{"}, X_{0}{ }^{\prime \prime}, 1 / h^{\prime \prime}$, and $K_{6}{ }^{\prime \prime}$ Shatt Diameters
NOTE! Prices of $1 /{ }^{\prime \prime \prime}$ units
have been drastically reduced.
GUARANTEED SHIPMENT WITHIN:

##  <br> 3 WEEKS $\begin{gathered}\text { for units with shaff } \\ \text { lengths } \\ \text { to } \\ \text { customer }\end{gathered}$ lengths spects ans. <br> 4 WEEKS $\begin{gathered}\text { for units with stock ond } \\ \text { geors } \\ \text { C }\end{gathered}$ <br> 10 WEEKS $\left.\begin{array}{c}\text { for unis with and geors } \\ \text { to customer p pocs }\end{array}\right)$ (subject to prior sale)

-Note: $x_{0}$ units are not slocked with sot shaft lengths.
Ford Instrument produces single spider gear differentials to highest military and commercial standards, for exireme accuracy in addition and subtraction, and in servo loop applications.
Seven ways superior Call or wire $\mathbf{W}$ Seven ways superior. Call or wire W. Mohr,
Component Sales Division (STillwell Component Sales Division (STillwell $4-9000$ ) for prices, or check and mail cou-
pon below, stating quantity. Data bulletin pon below, stating quantity. Data bulletin
with performance curves and characteristics will be sent with the prices.

Component Sales Division ED
FORD INSTRUMENT COMPANY
division of sperry rand corporation 31-10 Thomson Avenue, Long Island City I, N. Y. | Please send me prices on the following: | Circle size of unit desired:
 (Check two If both apply)

| Name
frsition
Frsition
Compony
cy


CIRCLE 342 ON READER-SERVICE CARD ElECTRONIC DESIGN • September 17, 1958
rents produced by each voltage separately, in the absence of the others.
The principle of superposition is the basis of all general methods for solving many lineartheory problems. We are so used to constant application of this principle, that we must be especially reminded that this principle cannot be employed for nonlinear problems without causing serious errors.
Let us illustrate this with a simple example. Suppose we have a nonlinear, say quadratic, equation.

$$
y=a x^{2} .
$$

Let furthermore

$$
x=x_{1}+x_{2} .
$$

Then

$$
y_{1}=a x_{1}^{2}, \quad y_{2}=a x_{2}^{2} .
$$

But
$y=a\left(x_{1}+x_{2}\right)^{2}=a x_{1}^{2}+a x_{2}^{2}+2 a x_{1} x_{2} \neq y_{1} \times y_{2}$, i.e., the square of the sum does not equal the sum of the square.
Therefore, for example, when several voltages act on a nonlinear circuit, one can no longer reduce the solution of the problem to the summation of currents due to each individual voltage. It is necessary to take into account all the voltage components simultaneously.
The situation becomes more complicated when we go from nonlinear algebraic to nonlinear differential equations.

## Specialized Methods

The fact that we are forced to forego the principle of superposition causes us to lose many possible solution techniques. Unfortunately, such powerful and universal methods as are available to linear theory are still missing from nonlinear theory. A worker in the nonlinear field has at his disposal a variety of specialized methods and artifices, each of varying effectiveness and of differing range of applicability. We shall describe these methods briefly, for the moment; later we shall become better acquainted with their applications to various problems in radio engineering.

1. The algebraic problem of finding $y(t)$ for a specified $x(t)$ and for a given nonlinear characteristic

$$
y=f(x)
$$

can always be solved graphically with any degree of accuracy desired.
2. The same problem can also be solved analytically, i.e., it is possible to find a function $y(t)=f[x(t)]$,
(Continued on following page)

## 4 Ounce Contact Force Gives Relay Reliability

Contact force of 4 ounces per contact on 50 " $G$ " models and 2 ounces per contact on 30 " $G$ " models of "Diamond $H$ " Series $\mathbf{R}$ and Series $\mathbf{S}$ miniature, hermetically sealed, aircraft type relays is one of the most important factors in their proven high reliability.
Though absolute reliability of any similar device is impossible to guarantee - a bitter fact of life recognized by all electronic engi-neers-close approach to this goal by the relays manufactured by


The Hart Manufacturing Company is the basic reason they are found today on many of this country's headline-making missiles.
In addition to contact force far beyond that found on other relays, "Diamond $H$ " relays have greater contact cleanliness. Selfcontamination is virtually eliminated by a completely inorganic switch mechanism, as well as use of coil materials which will not dust, flake or out-gas.

Finally, the high degree of reliability that is designed into these relays is maintained in their manufacture by high quality workmanship and a stringent inspection policy at every stage.
In addition to missiles, and their ground control systems, Series R and S relays are designed for use in jet engine controls, computers, fire control, radar and similar critical applications.

4PDT units, they offer an extremely broad range of performance characteristics, including temperature ranges from - $65^{\circ}$ C. to $125^{\circ}$ and $200^{\circ}$ C.; ratings to 10 A., 120 V., A. C., and $26 \frac{1}{2}$ V., D. C., with special ratings to 400 ma . at 350 V., D. C., or down to millivolts and milliamperes. Dry and wet circuits may be safely intermixed.
For more information, write today for Bulletins R250 and S260. For quick facts about "Diamond H" switches, thermostats and other devices, ask also for a copy of the "Diamond H' Check List of Reliable Controls.

## ${ }^{\text {mt }}$ HART ${ }^{\text {manuervuano }}$ COMPANY

210 Bartholomew Ave., Harfford 1, Conn. Phone JAckson 5-3491


## MODEL 314 HIGH TEMPERATURE SUBMINIATURE POTENTIOMETER

The Daystrom model 314 operates in temperatures from -55C to +250 C withstanding shock to 20 G's in 3 axes and vibration from 20 G's to 2000 CPS. Meets MIL-E-5272 and other specifications for airborne applications.
size: Dia. 0.5 inches... Length $3 / 8$ inches
weight: 9.8 Grams
power rating: $2 \frac{1}{2}$ watts at $40^{\circ} \mathrm{C}$
linearity: (best practical) 0.5\%
Total resistance: $50 \Omega$ to 25 K (variations available on request) Resistance tolerance: $\pm 5 \%$
For further information contact the representative in your area or the factory direct.
provided an analytic expression is available for the characteristic of the system

$$
y=f(x) .
$$

Under these conditions it is usually possible to solve differential equations.
3. In must be noted that the characteristic of the system is quite frequently known from experiment, i.e., it is given in the form of a graph or tabulated data. The determination of an analytic expression, representing the actual relation with sufficient accuracy, is thus a very important operation in nonlinear theory. This operation is called the approximation of the nonlinear characteristic.

The approximation should, as far as possible, satisfy the following requirements: (a) The analytical expression should represent the approximated relation with sufficient accuracy, (b) it should be amenable to the performance of various required mathematical operations, and (c) it should be as short and simple as possible.

Unfortunately, the existing approximation methods do not satisfy these requirements to an equal extent. The following principal methods are used: (a) approximation by a polynomial, (b) approximation by a broken line, (c) approximation by transcendental functions.

The first methods consist of representing the function $y=f(x)$ in the form

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=\sum_{k=0}^{n} a_{k} x^{k}
$$

The number of terms of the polynomial depends on the required accuracy. In any case, the approximation must reflect at least the fundamental qualitative features of the phenomenon. This applies naturally to all approximations.
Approximation by a broken line, also called piecewise linear approximation, consists of replacing the plot of the actual relation with linear segments, the approximation improving with the number of segments employed.
Piecewise linear approximation is particularly suitable for representing characteristics of rectifiers, tube operation at cutoff, etc. This form of approximation is interesting because it permits a special method for solving nonlinear differential equations, the so-called "joining method."

This method consists essentially of representing the behavior of the nonlinear system by different linear equations for different intervals of the values of the variable, and replacing the nonlinear characteristic by a segment of a straight line within each interval. The solutions of the various linear equations must then be "joined" on the boundaries of the intervals, i.e., the value on the end of one interval must be equated to the value on the beginning of the next interval.


Suitable for use where specifications for low-power instrument servos call for small size, high gain, and high performance.


Sond for Lisorature


ELECTRONIC DESIGN • September 17, 1958
for Military Equipment and Commercial Applications


- Switching Capacities up to Sa., 30 v., d.c.
- Sensitivity down to 9 mw .
- Coil Resistances to 20,000 Ohms.
- Environmental specifications will meet latest revision of MIL R-5757 and MIL R-25018.
- Standard contact arrangement up to 4 Form A and 2 Form C.

For commercial and industrial applications ask about the now Series SC high sensitivity rolay
Write for relay data eulletin


BASO, INC.
Dopt. RN-1, Milwoukeo 1, Wirconsin CRCLI 346 ON READER-SERVICE CARD

As regards approximation by transcendental functions, for example, by exponential or hyperbolic functions, this method leads to very compact expressions, which give at the same time a very good approximation. Unfortunately the subsequent treatment of these expressions becomes quite difficult.
4. An important role is played in nonlinear radio engineering by so-called "quasi-linear" methods. In these methods the equation of the nonlinear system is replaced by an equation of linear form, but the coefficients of this latter equation are certain average parameters, determined with allowance for existing nonlinearities.
The average values of the parameters thus depend on quantities that characterize the performance of this system. Quasi-linear methods are particularly suitable for the investigation of steady-state response of nonlinear systems to nearly sinusoidal signals.
5. If we are interested in a system approaching steady-state, the quasi-linear method of slowing varying amplitudes can be used to advantage. The general idea of this method is to assume that the steady-state oscillations in the investigated apparatus have amplitudes and frequencies that vary slowly. This permits a substantial simplification in the problem. Subject to certain assumptions (which will be discussed in detail), we obtain as a rule, an equation of one order lower than the initial equation. The method of slowly-varying amplitudes is used principally in cases when it is known beforehand that the oscillation is nearly sinusoidal.
6. Perhaps the most general method is that of plotting integral curves for the given nonlinear differential equation. This is known as the isocline method. We note for the time being that the method permits a solution of nonlinear problems of most general character.
It is suitable for both steady-state and transient modes, both sinusoidal and pronouncedly non-sinusoidal, the so called relaxation oscillations. A convenient variant of this method, which reduces the determination of the slope of the integral curve to a purely geometrical construction, is known as the Lienard construction.
7. Finally, a general method, which leads (sometimes with great simplicity) to important conclusions of general physical character, is the energy method. It consists essentially of considering the energy balance of the nonlinear system, i.e., of direct application of the law of conservation of energy. This method does not always throw light on the details, but gives reliable generalizations concerning the nature of the phenomenon.
These, in brief, are the research tools which will be used henceforth.
(To be continued in next issue)


> Transistorized Power Supplies Turn Claims Into Specs!

- super regulated...

No derating ever! Specified regulation is valid over the entire range of input and load . . $0.1 \%$ or 0.01 V .

- short circuit proof...

An exclusive electronic (no moving parts) circuit breaker fully protects transistors against burnout.

## - remote sensing...

Brings votage regulation to the load where it's needed. Eliminates the effect of voltage drops in power leads.

## - all popular ranges...

Available in narrow or wide range models. Narrow range models cover all standard hattery voltages. Wide range models start at 0 to 7 volts and are available up to 0 to 60 volts. Various current ratings up to 15 amperes.
... plus all the other features you'd expect in an E/M Power Supply: low output impedance (approx. 0.001 ohm at 1 kc ); ripple free (less than .001 volt); negative, positive or ungrounded output; front panel calibration and null balance contruin . . . and the extras too, like printed circuitry; removable subassemblies . . . but why not get all the facts. Write for Preliminary Bulletin T.

## ELECTRONIC MEASUREMENTS CO., Inc.

 EATONTOWN • NEW JERSEY

## RUSSIAN TRANSLATIONS

## What The



## Are Writing

J. George Adashko

## NEW PERIODICALS

An ambitious undertaking of the Ministry of Higher Education in the USSR is the publication of 23 series of periodicals called "News of the Higher Institutions of Learning of the Ministry of Education, USSR." Those journals of interest to electronic design engineers cover radio engineering, radio physics, and instrument building. Others are devoted to mathematics, physics, electromechanics, and electric power.

We have just received the first issue of the radio engineering journal, Izvestiya MVO-Radiotekhnika, dated Jan.Feb. 1958. Published by the Kiev Order of Lenin Polytechnic Institute, and intended for teaching staffs of higher scientific institutions, graduate students, and technical personnel of commercial and scientific-research institutes, it has a heavy theoretical emphasis.

Electronic Design will expand its coverage to include abstracts of papers in these journals which are significant to our readers.

## MODULATION

Use of Controlled Surface Effect for Modulation by V. S. Etkin. RE 3/58, pp 66-69, 2 figs, 1 table.

In an earlier article by the same author (Radiotekhnika i elektronika, April 1957) it was shown that in systems containing ferromagnetic conductors it is possible to obtain modulation by using the dependence of the high frequency resistance of the conductor on
its magnetic permeability (skin effect). This article is a brief summary of experimental results on this effect.
Adoption of Auto-Anode Modulation by A. I. Miroshin. RE 3/58, pp 15-20, 6 figs. Auto-anode modulation was first developed by M. G. Kruglov in 1949. Extensive tests have been made on this method using short-wave, medium-wave, and long-wave broadcast transmitters, and the results of the tests are reported It is recommended that this system of modulation be more extensively used.

## ACOUSTICS

Investigation of an Electron-Acoustic Converter by Yu. B. Semennikov. AJ 1-3/58, pp 73-84, January-March 1958, pp 73-84.
Description of a mechanism of an electron-acoustic conversion. The fundamental relations are derived for the output signal of an electron-acoustic converter as a function of the applied sound pressure at a specified contrast of the electric image. A procedure is given for the experimental determination of the equivalent electric parameters of an electron-acoustic converter.

Possibility of Employing Maximum Amplitude Limitation of Speech Signals in Communication Systems by Yu. G. Roso foutsev. EC 6/58, pp 49-52, 5 figs.
The author gives the articulation characteristics of speech signals in the case of strong amplitude limitations. These characteristics were obtained by connecting various linear filters before


Fig. 1. Principle of the inductive linear potenfiometer. The voltage across the load resistance is proportional to the angular displacement between rotary transformers I and II.
and after the limiter. It is shown that the use of a limiter of more than 40 db increases the interference immunity of the reception to such an extent, that there is a 7-10 fold gain in power.

## COMPONENTS

Induction Linear Potentiometer for General Commercial Use by O. I. Aven, S. M. Domanitskiy, and Yu. M. Pul'yer. AT 3/58, pp 268-279, 11 figs.
The linearity of this potentiometer holds over a rotor angle close to $\pm 90$ deg. A procedure for the design of such a potentiometer and a procedure for experimental investigation is given. The results of the experimental tests are reported. See Figs. 1 and 2.
Miniaturized Transformers for MultiChannel Communication Apparatus by K. P. Yegorov and L. D. Paramonkova. EC 2/58, pp 51-58, 7 figs, 2 tables.
The authors consider the miniaturization of transformers intended for multi-
channel communication apparatus, and primarily for individual channel equipment. It is shown that the limit to which power transformers can be reduced is dictated by the nonlinear distortion, and that voltage transformers are limited by structural difficulties.
Certain Properties of Non-Solid Shields for a Symmetrical Line by N. S. Kochanov. EC 3/58, pp 58-62, 7 figs.
Discussion of the shielding action of a shield having periodically-repeating transverse annular slits for a symmetrical two-conductor line. A formula is derived and is confirmed experimentally. It is shown that for certain frequency range a shield with slits can be more effective than a solid shield.

Concerning Some Properties of Ferromagnetic Clutches by P. N. Kopay-Gora. AT 4/58, pp 366-375, 7 figs.
Ferromagnetic clutches are magnetic clutches whose working gaps are filled with powdered carbonyl iron to which a solid or liquid filler is added. The


Fig. 2. Construction of the potentiometer. $W_{21}$ and $W_{31}$ are rotor coils, while $W_{11}$ and $W_{12}$ are an analogous pair of stator coils.


FM Telemetering equipment is quickly and accurately checked with the unique instruments described below. All are immediately available against DX Priorities.


## FM DEVIATION METER model 928/2

Free. nange: 215 to 260 Mc , direectly callbrated. Feg. Range: 215 to 260 Mc , qirecil
Deviation Ramess
0 to
0 $\mathbf{1 0 0 , 2 0 0 \text { and } 4 0 0 \mathrm { kc } \text { , or to order. }}$ Accuracy of Measurement: 3\%.
Built in crystal standardization, aural and visual monitoring, counter type discriminator. Instrument is rugeedized and waterproof.
FM DEVIATION METER model 928.
similar to $928 / 2$, covers 20 to 500 Mc .

FM SIGNaL GENERATOR model 1066/1
Freq. Range: 10 to 470 Mc in 5 bands.
FM, continuousty yariables 0 to 100 kc . Higher to order. AFroqueney: 1 to 200 kc , calibrated. stablility: $.0025 \%$ per 10 min .
AMPLITUDE MODULATOR medel 1102 For use with any sieg Gen, Gives monitored AM, 0 to $80 \%$ with zere FM. Handlos any wave shape.


EDOYSTOME FM/AM RECEIVERS,
models 770 R. 770 U
Model 770 U covers 150 to $500 \mathrm{Mc}, 770 \mathrm{R}$ covers 19 to 165 Me. Both are semaitive, stable, dirrectiy callibrated and have excelilent logzing seales.

AS SUPPLIED TO: US Signal Corps, Wrient Patterion AFB, Navy Electrontes Lab, AEC, Convair, Martin, Dousles, McDoonell, GM, Chrysief, atc., atc.

## M/, MARCONI instruments

111 Cedar Lane - Englewood, New Jersey
CIRCLE 349 ON READER-SERVICE CARD

# DIALCO Pilot Lights 

with Built-in Resistor ${ }^{\text {asamo }}$ (a patentod Dinco foature) and the NEW High Brightness Neon Glow Lamp NE-51H


## A New Advance in Pilot Light Design by DIALCO:

Three basic advantages are incorporated in this series of DIALCO assemblies: (1) Built-in resistor for direct use on 125 to 250 volt circuits . . (2) Now plastic lens designed to give attractive "halo" effect. (3) New High Brightness Neon Glow Lamp NE-51H. This lamp may be operated at about 3
 may be operated at about

thes the level of current duce 8 times as much light-with lons life! Very low duce 8 times as much light-with long life! Very low
power is required, less than 1 watt on 250 volt circuit power is required, less than 1 watt on
Recommended for AC service only.
In the DIALCO assembly, the built-in current limiting (ballast) resistor ( 18,000 ohms) is completely insulated in moulded bakelite and sealed in metal (U. S. Patent No 2,421,321)... Small space required-units are available for mounting in $9 / 16^{\prime \prime}$ or $11 / 16^{\prime \prime}$ clearance holes ... A wide choice of optional features includes lens styles, shapes. and colors; terminal types; metal finishes, etc. ... Meet applicable MIL Spec and UL and CSA requirements.

## All Assemblies Are Available Complete with Lamp

SAMPLES ON REQUEST-AT ONCE-NO CHARGE
DIALIGHT CORP., 46 Stowart Ave., Brooklyn 37, N. Y. Send brochures
on Pilot lights
$\square$ for NE-SIH Neon Lamp $\square$ Sub-Min.atures $\square$ Oil-Tight

## Nome.

Address

## DTAMTGPT

46 STEWAKT A EE., BROOKLYN 37, N. Y. © HY دeinth 7.7600 CIRCLE 350 ON READER-SERVICE CARD

## RUSSIAN TRANSLATIONS

author compares such clutches with electric motor, friction, and hydraulic devices with regard to starting time, electromagnetic time constant, control power, and ratio of output to inertia torques. The ferromagnetic clutches appear to be superior to torque motors and friction clutches. Reference is made to "Characteristic of Some Magnetic Fluid Clutch Servo Mechanisms" by Pairiale and Tilton (Transactions AIEE, Volume 69, Part 1, 1950).

Calculation of an Adjustable Rectifier with AIlowance for the Effect of Phase Overlap by V. N. Aksenov. EC 12/57, pp 30-36, 5 figs, 1 table.
This appears to be the first attempt to analyze inductance loaded, grid-control rectifiers with allowance for the sector of phase overlap. The author gives a procedure for calculations in generalized coordinates of the characteristics, the short-circuit current, and the output ripple. Tables and graphs accompany the discussion.

Grapho-Analytic Method of Calculation of Transients in DC Electromagnetic Mechanisms by R. A. Agaronyants. EC 1/58, pp 34-42, 8 figs.

A rigorous grapho-analytical method is given for solving the dynamic equations involved in transients of moving-armature dc electromagnetic mechanisms. A solution is obtained by numerical integration. The calculations for a telephone relay are presented as an illustrative example.

Mechanism of Action of Cathode-Ray BarrierGrid Memory Tube for Digital Computers by N. L. Yasnopol'skiy and A. P. Alekseyeva. REE 1/58, pp 142-154, 12 figs.
The fundamental factor that limits the capacity of the memory and the permissible number of addresses in memory tubes for digital computers is the parasitic seeding of neighboring elements of the dielectric target. This is primarily due to secondary electrons, in the recording, reading and recovery of signals in any element. The article gives the results of a direct experimental investigation of the seeding using a grid-barrier tube as a model. On the basis of these results, the authors analyze the processes of recording, reading, and retrieval of binary symbols in this tube. The conditions under which maximum number of addresses are obtained for a specified size of signals are indicated. The increase in the pulse for the recording of a unit obtained by changing over to mode of unbalanced recording,


## Silicone Sponge Rubber

for sealing, gasketing, pressure pads, vibration dampening - $100^{\circ} \mathrm{F}$ to $480^{\circ} \mathrm{F}$
Low density COHR1astic R-10470 silicone sponge rubber completely flexible after 72 hrs . at $480^{\circ} \mathrm{F}$. shows no brittlener after 5 hrs . at $-100^{\circ} \mathrm{F}$. High tensile. tear and elongation Closed cell construction is non-absorbing. Called out o aircraft and electronic drawings and specifications. Availab Special extruded shapes made to order.
FREE SAMPLES and folder-write, phone or use inquiry servic
COMNECTICUT HARD RUBBEI:


CIRCLE 351 ON READER-SERVICE CARD


CIRCLE 352 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 17, 1958
makes it possible to obtain a gain in number of addresses of 5-10 times. References is made to work by Williams and Kilburn (Proceedings IEE, 1949, 96, 2, 50, 183-202) and Hines, Chryney and McCarthy (Bell System Technical Journal, 1955, Vol. 34, No. 6, page 1241).

Isochronous Traveling Wave Tube by G. F. Filimonov. REE 1/58, pp 85-93, 9 figs.
By artificial synchronization of the motion of the electron beam and of the wave it is possible to increase the power of the high frequency field in the traveling wave tube by three db . The effect of many parameters of the tube on the magnitude of this effect is investigated. Refers to work by Nordsieck (Proceedings IRE, 1953, Vol. 41, uages 630), Tien, Walker and Volontis (Proceedings IRE, 1955, Vol. 43, page 260), Rowe (Transactions IRE, 1956, ED-3, page 39) and Pierce's book on traveling wave tubes.

## PROPAGATION

Forward Scatfer Radio Communication at UHF, Employing Mefeoric lonization of the Atmosphere by M. N. Arone. EC 6/58, pp 40-48, 8 figs.
A survey is given of the essential factors that determine the effectiveness of a meteor-burst system for radio communication. Formulas are given for estimates of the power of the received signal. The block diagram, operating principle, certain results of an experimental system of meteor-burst communication are considered. Reference is made to several American and Canadian articles on the subject.

Correlation of Fading in Neighboring Sections of Radio-Relay Communication Lines by Yu. B. Sindler and A. S. Nemirovskiy. RE 11/57, Pp 2128, 4 figs, 2 tables.
The factors that affect the probability of failure of radio relay lines due to fading are analyzed. Certain problems in the statistical analysis of fading in radio-relay lines with a large number of sections are given, along with data on the operation of the Moscow-Gor'kiy radio-relay line during 1954-1956.

Effect of Correlation of Scatterer Velocity on Stalistical Properties of Scattered Radiation by G. S. Gorelik. REE 10/57, Pp 1227-1233, 3 figs.
The scattering of radio waves by irregularities, the velocities of which change in a stationary random manner and which are dependent on each other, is investigated. A formula is derived for the correlation functions (spectra) of the scattered field, of the components of its slowly-vary-


## "Moves in All Directions" to Braze

## Bus Bar Contact

Specialty Brazing Laboratory, Riverside, Connecticut, brazes, among other things, a bus bar contact for Rolock, Inc., Fairfield, Connecticut, makers of fabricated metal products. While a relatively simple assembly, it points up the remarkable fluidity of Handy \& Harman Silver Brazing Alloys.
Both assembly components are copper. Base plate dimensions are $1 / 4^{\prime \prime} \times 83 / 4^{\prime \prime} \times 23 / 4^{\prime \prime}$, and the $1 /{ }^{\prime \prime \prime}$ thick triangular piece is $3^{\prime \prime}$ on its base with $2 \frac{7 / /^{\prime \prime}}{}$ sides.
After cleaning, the joint area of the base plate is Handy-Fluxed and a shim of Easy-Flo 45 is placed on the base plate and the triangular piece set upon the shim. Heating by Selas gas-air burners is done on a 50 -second cycle. Alloy cost is approximately
four cents per assembly.
You'll notice, in the photo of the completed assembly, how smooth the alloy fillet is. The capillary action of Easy-Flo causes it to flow out in three directions, providing even joint penetration. This single fact (without going into the qualities of strength, conductivity, corrosion resistance, etc.) makes EASY-FLo a natural for electrical applications. Handy \& Harman has, readily at hand, extensive data on the advantages of silver brazed joints for electrical applications. We are always ready and happy to discuss joining requirements and techniques with you. Your call or inquiry will bring complete and beneficial details.

FIRST, BULLETIN 20
This informative booklet will get you off to a good start on the values, techniques and economies of low-temperature silve brazing. A copy awaits your request



## WITH FAFNIR MINIATURE BALL BEARINGS YOU GET ALL FIVE IMPORTANT FEATURES

1
VACUUM MELT 440C. Balls and rings of Fafnir miniature bearings are made from vacuum melt 440C stainless steel.
ADVANTAGES. Since vacuum melt steel is extremely clean, balls and races are free from pits and inclusions providing free from pits and inclusions providing
better finishes which result in super sensitive bearings with low torque values.


BALANCED DESIGN. Each size bearing has its "tailor-made" retainer of predetermined weight and dimensions. ADVANTAGES. Pitch circle of the balls is centered between bore and O.D. and bearing is symmetrical in design.


HARDENED RETAINERS. All retainers are made of hardened 410 stainless steel.

ADVANTAGE. Precise hardening, under rigid quality control, provides springiness without brittleness, eliminates bending or distortion.


SWAGED RETAINERS. In manufacture, retainers are swaged so that ball pockets of retainers are ironed outwardly.
ADVANTAGE. Ball runs against a hardened, smooth surface not a rough edge.

heat stabilization. All rings and balls are heat stabilized to 600 degrees.
ADVANTAGE. Standard Fafnir bearings may be used for high temperature applications as well as regular applications.

Fafnir Miniature Bearings—part of a broad line of Fafnir bearings for instruments and precision mechanismsare made to ABEC-7 standards except for bores where tolerances are $+.0000-.0002$ for greater flexibility in selective assembly. Balls are lapped to 2.5 millionths for sphericity and 5 millionths for size variation. Open and two-shield types, with or without flanges, are available. Write for Bulletin 469. The Fafnir Bearing Company, New Britain, Connecticut.


FAFNIR
BALL BEARINGS Most Complete Line in Amorica
CIRCLE 354 ON READER-SERVICE CARD

## RUSSIAN TRANSLATIONS

ing amplitude, and of its intensity. The general relations are illustrated with the aid of a twoscale model of partially correlated motion of the scatterers. This work extends the investigation, reported by the same author in the June 1956 issue of Radiotekhnika i Elektronika (Page 695), dealing with the connection between the theory of scattering of radio waves by wandering irregularties and the theory of turbulent diffusion.

Medium-Wave Radio Broadcast Antenna on Low Masts by B. S. Nadenenko. RE 7/57, Pp 46-55, 12 figs.

A popular article on the same subject appeared in Vestnik Svyazi for May 1957. The present article has an engineering description and various tuning schemes of a slot-type medium-wave antenna, and details a method for the analysis of all the parameters of the antenna.

Limiting Accuracy of Long Range Radar System by G. A. Zuykina. RE 12/57, pp 19-20, 2 figs, 1 table.

The author discusses the effect of propagation conditions on the phase and phase velocity of radio waves in the $100-150 \mathrm{kc}$ band. Results of calculation of correction for phase and phase velocity for the various types of grounds are given. Plots are given for the phase velocity as a function of the ground properties. An estimate is made of the limiting accuracy of long range radar with a phase measurement, as affected by a ground surface.

Calculation of Gain of Periscopic Antenna Systems by A. M. Pokras. RE 11/57, Pp 13-20, 5 figs.

Modern periscopic systems can be subdivided into two classes: systems with parabolic radiators, and those with ellipsoidal radiators. Each class can be subdivided into two subclasses, with either plane or parabolic reflectors. Formulas and universal graphs for the gain of a periscopic system with an ellipsoidal mirror radiator, having either a round or square aperture, are derived. Systems with plane and parabolic reflectors are also considered. Refers to an article by E. Bedrosian, Transactions IRE, page 168, 173, October 1955.

Investigation of Upper Layers of the Atmosphere by L. Karyakin. R 12/57, Pp 19-20.

Brief popular discussion of the effect of various ionized layers on the propagation of radio waves.

## A Unique COAXIAL ATTENUATOR

## . .... . from 0-1000 MCs.

Only Applied Research Inc. offers the fixedpad attenuator with BNC connectors as stock items. Thus, you can directly integrate it with existing equipment without the need for special adaptors.

## COAXIAL TERMINATIONS

From 0-1000 MCS.
ARI serminations have been designed to be used either separately or with the attenuators or impedance transformers.
characteristics

|  | Allonvelors <br> HFA-50 , HFA-7S |  | ImpedanceTronisformersHFAM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Impodonee (0hmu) | 523 | 75 | 50 | 75 | 52.5 | 75 |
| Ourpur Impodonces (ohmu) | 525 | 73 | 75,93, 250 or 3000 | $\begin{aligned} 50,93 \\ 250, ~ o r ~ \\ \hline 100 \end{aligned}$ | - | - |
| - Nominol Anmovotion (db) |  |  | minim | 1001 | 0 | 0 |
| Proo Rongo (mes) | 0.10 |  | 0.100 |  | 0.1000 |  |
| Mon Vswr (1000 m(s) | 1.2 |  | $\underline{-}$ |  | 1.2 |  |
| Connoctans |  | $\begin{aligned} & U G .260 / u / U \\ & U G-281 / u \end{aligned}$ | IN |  | UG-83/v | ve.280/U |

## Applieal Aresearah inc.

76 South Bayles Avenue, Port Washington, N. Y.

## CIRCLE 355 ON READER-SERVICE CARD

Direct-Traverse, Expanding-Core MINIATURE TRIMMING CAPACITOR


Illustrated same size
Designed for the coming space age, the ATLEE Variable Capacitor operates on new electro-mechanical principles to give a much greater range and higher stability with less space and weight than ever before.
Only $25 / 2_{2}^{\prime \prime}$ long and $3 / 16^{\prime \prime}$ in diameter, its capacitance range is 0.5 to 5.0 mmf . Has micrometer adjustment. Available in glass dielectric and brass for standard panel mounting or quartz and invar for special applications.
A rugged unit, it will maintain a set value under extreme vibration and shock without undue stress! Has excellent retrace characteristics. Full-floating piston assures positive mechanical alignment, eliminating run-out.

## ATLAS E-E CORPORATION

47 Prospect Street - Woburn, Massachusetts 3757 Wilshire Blvd. - Los Angeles, California CIRCLE 356 ON READER-SERVICE CARD

## MEASUREMENTS

Determination of the Error in the Constancy of the Phase Difference Over a Frequency Band by D. N. Vinogradov. EC 5/58, pp 35-43, 13 figs.

It is required to obtain, in a certain frequency band, constant phase difference between the output voltages of networks I and II in Fig. 3. Errors in the constancy of the phase will rise because of the inexact matching of the wave impedances of the networks to the load impedances. Measures of eliminating these errors are indicated in the article.

fig. 3. Two networks, whose output phase difference 11 is to be kept constant.

Contactless Method of Determining Specific Elecric Resistivity by G. G. Yarmol'chuk. AT 3/58, pp 257-267, 10 figs.
Description of a method for measuring specific resistivity. The method is based on the use of high frequency currents induced in a conducting body placed in an alternating magnetic field. The equivalent circuit of the tested body is first developed, and a bridge method is designed for the measurements. In addition, the use of this method for quality control of carbon brushes is described. Reference is made "Now a Useful Nondestructive Testing Tool" by H. Staats (Materials and Methods, Volume 38, No. 4, 1953) and "Eddy Current Testing" by R. Hochschild (Control Engineering, October 1954).

## TELEMETRY

Telemetering System With Pulse-Code Modulation by G. V. Burdenkov. AT 1/58, Pp 55-63, 11 figs.
Examination of a high speed pulse-code telemetering system. It is shown that it is possible to synthesize telemetering systems using magnetic elements with rectangular hysteresis loops in conjunction with transistors and crystal diodes. The fundamental parameters of the equipment are given and an estimate of the telemetering accuracy is made. Refers to "Oxford Pulse-Code Modulation System" (Proceedings IEE, Volume 41, No. 7, 1953), "Coding by Feedback Methods" (Proceedings IEE, Volume 41, No. 8, 1951).


## output meter and calibrated attenuator on front panel portable . tiltable . rackable

RANGE: $2 \mathrm{cps}-200 \mathrm{kcps}$ ACCURACY: 2\%
OUTPUT: 1 volt DISTORTION: less than 1\%

N-1 signal

## generator

Another in the line of SIE Advanced Design Instruments, human engineered for operating efficiency. Easier to set up - Easier to read - Adjustable viewing angle - Parallax free vernier funing Large, easily set control knobs - Protected front panel - Convenient carrying handle.

## SIE(11)

SOUTHWESTERN INDUSTRIAL ELECTRONICS COMPANV 2831 Post Oak Road - P. O. Box 13058 - Houston 19, texas CIRCLE 368 ON READER-SERVICE CARD

## Looking for 05 Frablibintion acunay?

 YOU NEEDSPECS!
WE INVITE YOU TO LOOK THROUGH THESE
Mod. 407: A High Resolution D C Power Mod. 407: A High Resolution D C Power
Supply with $.05 \%$ loraterm stability, 2 milli Supply with $.05 \%$ lorg-term stability, 2 millivolt resolution, and calibrated controls accurate to better than $.5 \%$ !

Mod. s01: A Potentiometric D C Volimeter with an accuracy of $.05 \%$, infinite input resistance at null, Stiandard Cell reference, and extremely stable chopper-slabilized null detector.
Each unit will perform all its independent functions with laboratory precision. Together functions with laborotory precision. .ogether they provide a calibration ream of extreme
accuracy for high or low resistance D C sources. Both units are self.contained, part. able, fast and simple to operate.


MODEL 107 - D C POWER SUPPLY -outpur voltage 0 to 535 vdc OUTPUT CURRENT 0 to 300 me REGULATION $.01 \%$ - line and load STABllity . $05 \%$ per day RESOLUTION 2 millivolts ACCURACY Betler than .5\% PRICE $\$ 335.00$
F. O. E. Seartle


MODEL 801 - D C VOLTMETER input voltage 0 10 500 VDC INPUT RESISTANCE Infinite at Null SEARCH RANGES 0.5; . . .5.5; 5.50;
NULL RANGES $10.0-10$; $1-1-0.1 ; 1.1-0.1$; $.01-0.01$
reference voltage standard Cell ACCURACY $.05 \%-.1 \mathrm{~V}$ to 500 V Pmor 50 mv , below 1 V PRICE $\$ 485.00$ F. O. B. Seattlo

Let us put these "SPECS" to work for you-and you'll SEE what we mean. Write for full details or request demonstration in your own laboratory.
 SEATTLE 99, WASHINGTON


## MINIATURE AGASTAT ${ }^{\text { }}$

## time delay relay

for ... missile, aircraft and electronic applications

INSTANTANEOUS RECYCLING . . . reset time-less than . 020 seconds
UNAFFECTED BY VOLTAGE VARIATIONS . . . time delay remains constant from 18 to 30 volts DC
ADJUSTABLE . . . time delays from 030 to 120 seconds
CHOICE OF OPERATION...for either energizing or de-energizing SMALL . . . height $-4 \%^{\prime \prime} \ldots$. . width-1-13/16" . . . depth $-11 / 2^{\prime \prime}$ LIGHT . . . maximum weight- 15 ounces
MEETS ENVIRONMENTAL REQUIREMENTS OF MIL-E-S272A
This new AGASTAT time delay relay is an externally adjustable, double-pole, double-throw unit. It incorporates the basic AGASTAT timing principle, proved by a half-century of reliable operation on automatic aids to navigation, in a space-saving miniature unit, built to withstand the rugged environmental conditions of missile and aircraft applications.
For specific information on the new AGASTAT relay for
vour application. write to Dept. A29.924. your application. write to Dept. A29.924.

AGA ELASTIC STOP NUT CORPORATION OF AMERICA 1027 Nowark Avenue, Elizabeth, New Jersoy Pioneers in pneumatic timing

CIRCLE 370 ON READER-SERVICE CARD

## RUSSIAN TRANSLATIONS

Optimum Frequency Deviation in a Single-Channel Telemetering System by Yu. I. Chugin. AT 4/58, pp 346-364, 6 figs.
The author shows that it is possible to obtain, for telemetering systems with idealized receiver characteristics, an analytic expression for the optimum deviation. The computation method is based on an analysis of the noise in the energy spectrum. Standard methods of the theory of random functions are used. Reference is made to "Statistical Properties of Sign-Wave Plus Random Noise" by S. O. Rice (Bell System Technical Journal, Volume 27, No. 1, 1948) and "The spectrum of Frequency Modulated Waves After Reception in Random Noise" by D. Middleton (Quarterly of Applied Mathematics, Volume 7, No. 2, 1949).

Telemetering Balanced Device For the Measurement of Linear Displacements by A. A. Kol'tsov and L. F. Kulikovskiy. AT 3/58, pp 280-284, 7 figs.
Description of an inductive follow-up system for linear displacements, suitable for automation and remote control. A theoretical analysis and construction data of the system are given. The transducers are essentially closed magnetic circuits having one coil, in which the induced voltage is proportional to the linear displacement.

## AUTOMATIC CONTROL

Optimum Transients in an Automatic Control System with a Limited Regulator Position by Ye. K. Krug and O. M. Minina. AT 1/58, pp 10-25, 13 figs, 3 tables.
Optimum transients are determined for control systems that contain objects with different dynamic characteristics, including delay elements, in which the regulator has limited positions. It is shown that it is quite difficult to realize optimum transients in a control system by using continuous-action regulators, since the characteristics of the nonlinear converters of these regulators depend on the magnitude and position of the disturbances and on the initial values of the limited coordinates. It is proposed to employ a discrete regulator for the production of the optimum transients. Reference is made to "Predictor Servomechanisms" by L. Silva (Transactions IRE, March 1954).
Concerning the Synthesis of Linear Dynamic Systems with Variable Parameters by A. M. Batkov. AT 1/58, pp 49-54.

A method is developed for determining the differential equations of a linear dynamic system with variable parameters from a specified pulse


MOIDED BLACK BIACK NYION
NYION SCREWS CAP NUTS
WRITE FOR GURTMER DETSAMS WASHERS


CIRCLE 372 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 17, 1958

## than

maximum electrical capacity minimum size and weight
transfer function. Reference is made to "Frequency Analysis of Variable Networks" by L. A. Zadeh (IRE, Volume 38, No. 3, March 1950) and "Properties of Impulse Responses and Green's Functions" by K. S. Miller (IRE Transactions on Circuit Theory, Volume CT-2, 1955).
Frequency Methods of Remote Control of Distributed Objects by V. A. Il'yin and K. P. Kurdyukov. AT 2/58, pp 174-186, 12 figs, 1 table.
The problems involved in the remote control of many small objects (rather than large concentrated objects) are quite different. For example, it is not so much a problem of signal to noise ratio or load capacity of the system (both are high in distributed systems), but a question of reliability of apparatus at unattended points of the system and the simplicity of the system as a whole. The author shows that the frequency method of selecting and controlling distributed objects, using a wire transmission channel, is preferable for such service. The construction of remote control devices, including frequency relays with series tuned circuits, is considered.
Increase of Speed of Certain Automatic Control Systems with the Aid of Nonlinear and Computing Devices by G. M. Ostrovskiy. AT 3/58, pp 208-216, 3 figs.
The problem of introducing nonlinear devices into certain automatic control systems for improving the quality of regulation are discussed. The analysis of a third order control system (one with derivative and acceleration feedback) is analyzed as an example.

## ELECTRON PHYSICS

Concerning the Drift Velocity Method by Yu. N. Obraztsov. Journal of Technical Physics. 2/58, pp 245-249.
The author considers the causes of the apparent discrepancy between the results of calculating the current density by strict solution of the Boltzmann equation and by using the driftvelocity method in the case when the mean free path time depends on the velocity. A correctly performed calculation by the drift-velocity method leads in this case to the correct results. This topic was also treated recently by R. B. Dingle (Physica, Vol. 22, page 671, 1956).

Volume Peltier Effect in Germanium by P. I. Baranskiy. Journal of Technical Physics (Zhurnal Tekhnicheskoy Fiziki), 2/58, pp 225-230, 6 figs.
The Peltier effect, developed on the boundary between two conductors or between a semiconductor and a metal, has been investigated in considerable detail. This article seems to be the

HAVING TROUBLE TESTING MAG. AMPS ?
Does your magnetic amplifier
load effect your AC input wave shape


For a wave shape like this try the

## BEHLMAN <br> 

This result is achioved by the use of wide band
ampliflers having excellent transiont response.
A variety of INVERTRON models cover the range from milliwatts to kilowatts, from subsonic to supersonic frequencies and for single or multiphase output. Frequencies may be variable or fixed.
For further information
write or call
In lour short yourn-the morld's -lectronic AC Manuracturer of Sources


Representatives in all principal cities and Canada circle 375 on reader-service card


## Coils, Connectors, Clips

Custom designed for use in electrical and electronic applications. Made from all metals to specific mechanical coatings where desired. Automatic equipment to produce varieties of shapes economically. Write for handy "Picture Book of Springs." ser:

Associated Spring Corporation General Offices Bristol. Connecticur

CIRCLE 376 ON READER-SERVICE CARD


## GENERAL RADIO Company

 coss 13th St Sivon Spring Md. washingeom, o. C. IISO York Rood. Abinglon, Pa. OMILADELPMIA
 In CAMADA: 99 flotal Pathwyy, ToRowto is
CIRCLE 377 ON READER-SERVICE CARD

## RUSSIAN TRANSLATIONS

first attempt in an investigation of the volume Peltier effect, which develops at irregularities in the specific resistivity of germanium single crystals. The experimental results show that the Peltier effect is proportional to the current.

Equilibrium Distribution of the Potential, Field, and Carrier Concentration on Fused-In Junctions by E. I. Adirovich, Yu. S. Ryabinkin, and K. V. Temko. Journal of Technical Physics (Zhurnal Teknicheskoy Fiziki), 1/58, pp 55-66, 9 figs.

The authors show that, except in special cases, the thermodynamic equilibrium distribution of the potential, field, and carrier concentration cannot be solved in general by the Shockley method (Bell System Technical Journal, Vol. 28, pages 435, 1949). One cannot neglect the concentrations of the electrons and holes in the junction region compared with the concentration of the dominating impurities, and proceed to give a mathematical formulation and a general solution to the problem.

Propagation of Electromagnetic Waves in Decelerating Systems Employing a Helix and a Dielectric by B. M. Bulgakov and V. P. Shestopalov. Journal of Technical Physics (Zhurnal Tekhnicheskoy Fiziki), 1/58, pp 188-201, 7 figs, 3 tables.

The article considers the propagation of electromagnetic waves in a helix, placed in a dielectric medium, in the presence of an electron beam. It also considers the properties of decelerating system, in which it is possible to vary structurally both the helix as well as the dielectric. This article covers much of the ground that is covered also in a similar article by one of the authors (Shestopalov) in the January 1958 issue of Radiotekhnika i Elektronika.

Preliminary Results of Nonlinear Theory of SelfOscillations of Backward Wave Tube with Longitudinal Field by G. N. Rapoport. RE 2/58, pp 249-254, 4 figs.
The nonlinear equations of a type O backward wave tube are formulated for the case of small space charges and small damping. The analysis of the solution is used to consider the bunching of the electrons in the backward wave tube and the causes that reduce the effectiveness of a backward-wave oscillator compared with that of an ordinary traveling wave oscillator. The dependence of the power on the oscillator parameters and the maximum efficiency are calculated. Refers to work by Johnson (Proceedings


## NEW <br> 

Genalex III toroidal cores feature high stability of inductance with time, high stability of inductance after subjecting the core to a dc saturating flux, high Q, low harmonic distortion, low temperature coemi cient of inductance, negligible external field, and small overall size.
Color coded Genalex III cores are available for immediate delivery in five standard ranges of permeability: $14,26,60.125$, and 140 . Seven standard sizes are stocked ranging from $0.500^{\prime \prime}$ O.D. to $1.350^{\prime \prime}$ O.D. Genalex cores are a product of Salford Electrical Instruments, Ltd., a subsidiary of The General Electric Co. Ltd. of England.


For compl informatia your free Genalex de handbook the use of the use of please add please ada
Dept. E9
WALLACE E.
 \& COMPANY P. O. Box 295 - Monlo Park, California CIRCLE 379 ON READER-SERVICE CARD


LOW INERTIA ... LONG LIFE FAST RESPONSE ... Iow as 10 milliseconds. HIGH CAPACITY ... up to 80 oz. in. ALL combinations of CROWN TOOTH and FRICTION COUPLINGS and BRAKES.

## avallable from sfock

in the following models:
Doublo-Ended-Input and output on opposite ends.
Simali-Ended-Input and output on same end.
Smale-Pole, Double. Throw-A unique clutch for switching or speed changing applications.
Miniature Model-Only $1^{\prime \prime}$ in diameter
Write for new catalog-data sheet.

## REEYES INSTRUMENTCORPORATION

a Subsidiary of Dynamics Corporation of America. Roosevell field. Garden City. N. Y. CIRCLE 380 ON READER-SERVICE CARD


New Miniature transisforized control pewel light that mounts in just 30 seconds! Simply insert this indicator light in a $3 / 8^{\prime \prime}$ panel-hole, tighten the collar nut and plug in the taper pins. It s completely mounted and hooked up in 30 seconds an anddering needed! Enclosed
transistor and 3 resistors can control the NE-2E neon lamp with transistor and 3 resistors can control the NE-2E neon lamp with
a 3.0 volt signal. This brand new self-contained display light unit is available in a variety of circuits for computers, data pro cosiors, signal systems and transistorized automatic control detices. Body only $1 / /^{\prime \prime}$ in diameter and $11 / /^{\prime \prime}$ long. For complete date on the Mini-Lite and other control panel components, wrtte ue thone West 9-6754.
सि TRANSISTOR ELECTRONICS (4) $\underset{3}{\mathbf{c}} \quad \mathbf{O} \quad \mathbf{R} \quad \mathbf{P} \quad 0 \quad \mathbf{R} \quad \mathbf{A} \quad \mathbf{T} \quad \mathbf{I}$ Drsigneas and Hanujuctwers of Electronic Equipment and Components CIRCLE 381 ON READER-SERVICE CARD ELECTRONIC DESIGN • September 17, 1958

IRE, 1955, 43, 684), Grow \& Watkins (Proceedings IRE, 1955, 43, 848) Palluel and Goldberger (Proceedings IRE, 1956, 44, 333) Nordsieck (Proceedings IRE, 1953, 41, 630) and Rowe (Proceedings IRE, 1956, 44, 200).

Calculation of the Dependence of the Current Gain Coefficient on the Emitter Current in Alloy Type Germanium Transistors for Injection and Extraction at High Temperatures by L. L. Makovskiy. Journal of Technical Physics (Zhurnal Tekhnicheskoy Fiziki), 1/58, pp 52-54, 1 fig.
A theoretical explanation is given for the experimental results reported previously in this journal. The explanation is based on work by W. M. Webster, Proceedings IRE, Vol. 42, No. 5, 1954. Reference is also made to work by R. N. Hall, Proceedings IRE, Vol. 40, No. 11, 1952.

Nonlinear Semiconductor Impedance, Sensitive to Magnetic Fields by G. Ye. Pikus and O. V. Sorakin. AT 2/58, pp 187-188, 1 fig.
A useful property of nonlinear resistances is that the sign of the change in resistance depends on the directions of the electric and magnetic fields. Since the dimensions of the individual resistances are small, a block of such resistances, assembled and oriented in a suitable manner, can be placed as a whole in the gap of a single permanent magnet.

## RADAR

Influence of Fluctuations On the Operation of an Automatic Range Finder by I. N. Amiantov and V. I. Tikhanov. AT 4/58, pp 325-333, 6 figs.

The article considers the operation of the simplest type of range finder used in automatic tracking systems, in the presence of fairly small fluctuations and a stationary target. Straightforward statistical theory is employed.

## RELIABILITY

Increase of the Reliability oi Systems with Spares by B. R. Levin. EC 11/57, pp 65-72, 6 figs.

The reliability of a system with many elements has been studied by many investigators. This article is devoted to methods of increasing reliability by introducing spare elements. One of the fundamental assumptions that any two elements of the system are independent, i.e., that when one element goes out of order it does not affect the reliability of the second element. Reference is made to work by Moskowitz and McLean "Some Reliability Aspects of System Design" IRE Transactions, PGRQC-8, September 1956.


Let Farlite Plastic Laminafes improve your products too!
All of the parts shown were made of high-pressure plastic laminates. In every case the selection of this material substantially improved product life and performance... or made a new application possible. A Farlite representative will be glad to analyze your requirements. FREE Technical Catalogs available Patis fabricated by industrial Plastics Division, Joseon t. Ryoeson a son, ine. plastics division
parley a lotischir mpo. co. dusuque, Iowa

CIRCLE 382 ON READER-SERVICE CARD


This new portable multimeter incorporates a new technique that protecte both meter and entire internal circuit against accidental burn-outs. In fact, any high voltage or current may be applied directly acrose any func-
tion, including ohms, without danger to the meter movement or aseociated components. Has a sensitivity of 20,000 ohms per volt IC
or AC. Has 6 -inch meter and full-wave bridge type
reetifer circuit. Teat leads aro included.
THE HICKOK ELECTRICAL INSTRUMENT CO.
10525 DUPONT AVENUE - CLEVELAND 8, OHIO
CIRCLE 383 ON READER-SERVICE CARD


## REGOHM REGULATOR MAINTAINS CRITICAL 0.05\% ELECTRONIC EMISSION IN DIATRON CIRCUIT

The final design was made possible by the Electric Regulator Corporation's ten step confact finger regulator . . ." That is the tribute paid to REGOHM'S multi-contact voltage control by Consoli dated Electrodynamics' engineers in speaking of their Type 24-210 Leak Detector.
The REGOHM regulator is used to pro. vide an accurately controlled voltage to the tungsten filament in the Diatron mass spec. trometer tube. It is this filament that produces the electron bombardment of the sampled gases passing through a magnetic field causing each gas ion to assume a distinctly different path. This selective action affords the means for detection, and quantitative measurement, of the specific gas concerned.
Tests with other regulating devices, such as thyratrons or metcury-wetted contact relays, were unsatisfactory - either because of poor performance or excessive costs.
The folloning distinct advantages were acclaimed for REGOHM by Consolidated Electrodynamics . .

1. The enormous pouer gain provided tbrough fat compounding; the current needed to operate all ten contacts being only $5 \%$ more than that required for the first stage.
2. Relatively low power dissipation in the parallel resssors in ratio to the pourer fed into the flament.
3. Adjustable dashpot to check oscillation tendency in the circuit.
a. A compensating relay by-pass provision for holding voltage in the regulator tube $u$ 'ben relays are open - to prevent destructive surging when filament is suitiched on.
The REGOHM'S unique combination of advantages-flexibility, plug-in design, compact size, outstanding reliability, and low cost - is providing the answer to difficult regulation problems in many eypes of circuit Why not consult our engineering staff to see how well it can fit your application? Please contact Electric Regulator Corporation, Norwalk, Connecticut.

CIRCLE 384 ON READER-SERVICE CARD
lease write for design data and perform. ance specs on REGOHM multi-stage regulators in applications similar to this.


ELECTRIC REGULATOR CORPORATION NORWALK

CONNECTICUT

GERMAN ABSTRACTS
E. Brenne

## Analog Solution of Mathieu Equations

THE PRINCIPLE of frequency division by use of mixers with feedback can be used to construct electronic circuits which solve Mathieu's, Hill's and similar linear differential equations with variable coefficients. Such equations describe physical systems with parametric excitations and serve as "auxiliary" equations to determine the stability of solutions of many nonlinear systems.
Frequency division by use of feedback-controlled mixers is illustrated schematically in Fig. 1. Assume a signal of frequency $f_{o}$ at the output is fed to a nonlinear circuit in the feedback loop so that harmonics are generated. A filter selects the $k$ th harmonic, $k f_{o}$. In the mixer the frequency $f_{i}$ is mixed with $k f_{o}$ and a beat frequency is filtered out. Hence, the frequency at the output, $f_{o}$, is an exact submultiple of the input frequency and may be represented by

$$
f_{0} / f_{t}=1 /(1 \pm k)
$$

For the case $k=1, f_{o} / f_{i}=1 / 2$ and the feedback channel is simplified as shown in Fig. 2 since


Fig. 1. Frequency divider using a feedbackcontrolled mixer.


Fig. 2. Schematic diagram for frequency division by two.
the harmonic generator and the associated filter may be omitted.
To show how this circuit is related to Mathieu equations, consider first the idcal mixer (which does not load the filter circuit and which has zero output impedance) as shown in the frequency divider circuit ( $k=1$ ) of Fig. 3. If the mixer is a multiplier so that $v_{m}=-v_{i} v_{0} / K_{m}$ then the differential equation for the circuit can be shown to be

$$
\frac{d^{2} v_{o}}{d t^{2}}+\frac{1}{L C}\left(1+\frac{v_{i}}{K_{\mathrm{m}}}\right) v_{v}=0
$$

If the input signal is sinusoidal, $v_{i}=V \cos \omega_{i} t$, then this equation is of the form

$$
\frac{d^{2} v_{o}}{d t^{2}}+\frac{1}{L C}\left(1+\frac{V}{K_{m}} \cos \omega_{i} t\right) v_{o}=0
$$

which is a special case of the Mathieu equation $y^{11}+(\alpha+\beta \cos x) y=0$
If the losses in the mixer and in the filter circuit are included in the calculations as indicated in Fig. 4, then the differential equation for the output voltage has the form

$$
\frac{d^{2} v_{o}}{d t^{2}}+2 \delta \frac{d v_{o}}{d t}+\nu^{2} v_{o}=0
$$

where

$$
2 \delta=(R / L+G / c)
$$

$$
\begin{gathered}
2 \boldsymbol{d}=(R / L+G / C) \\
\boldsymbol{v}^{2}=\left(1+G R \pm v_{i} / K_{m}\right) / L C
\end{gathered}
$$

Referring to Fig. 4,
$R=R_{L}+R_{i}$ and $G=G_{c}+G_{i}$
Abstracted from an article by H. Jungfer, Frequenz, Vol. 12, No. 6, June 1958, pp. 169-178.

Abstracter's Note: The abstract above is taken from the first part of a paper which is to be continued in a forthcoming issue of Frequenz.-E. B.


Fig. 3. Idealized circuir of a frequency halver using an L-C low pass filter.


Fig. 4. Similar to Fig. 3 but losses are represented by equivalent resistance.

## NEW Automatic Electronic Cable-making Machine Announced

(Los Angeles, California) After years of development, The Zippertubing Company announces production of a machine which automatically makes cables at speeds up to 900 feet per hour. This machine, occupying only 24 square feet of floor space, produces cables with up to 108 conductors and is so simple to operate that inexperienced personnel can make cables to any specification.
This new equipment utilizes the revolutionary Zippertubing cable jacketing, which is fed into the machine along with the required number of conductors. The Zippertubing then is automatically wrapped around the conductors, zipped closed and, if required, permanently fused with a chemical sealer. The completed cable automatically is wound on the take-up reel for storage or shipping. The machine will produce cable from " $/ s^{\prime \prime}$ to $2^{1 / 2 \prime \prime} \mathrm{O}$. D. with larger sizes on special order.


Complete unit with wire reels in place.

## multi-jacketed cables in one step

By using Zippertubing laminated materials, cables which require jackets of several different materials can be made in one step without costly re-handling. Available jackets include copper, aluminum or Co-netic steel in combination with such materials as vinyl, Mylar,* or fiber glass. Other laminates for high temperature exposure, abrasion protection, etc., also may be used in the machine.

## SUBSTANTIAL SAVINGS

Up to $90 \%$ of the labor costs formerly involved in fabricating cables are eliminated through the use of the Zippertubing Cable Machine. Only limited floor space is necessary for long-run continuous lengths, and material waste, skilled labor investment and expensive extruding equipment no longer are required. Expensive "minimum" orders for custom extruded cabling as well as delay in deliveries also are eliminated. Because of the flexibility of Zippertubing, small
*Tralemark of duPont.
cable runs for R \& D work are economically feasible. Zippertubing cables can be re-opened for additional work on conductors, virtually eliminating the great costs formerly incurred in correcting mistakes in prototype development.


Close-up, of head showing Zippertubing jacketing and conductors being formed into cable and automatically sealed.

## MEET MIL SPECS

Cables produced on this new equipment meet all necessary MIL specs, depending on the jacketing material and the purpose for which it is to be used.

## CABLE MACHINE FREE

One of the purposes of this new machine is to help manufacturers reduce their capital investment and inventory in electronic cables. A special plan has been developed whereby manufacturers who use 10,000 feet or more of Zippertubing jacketing per month will he provided with one of these machines at no cost. For those with more modest requirements, the machine may be leased very inexpensively with option to buy, or it may be purchased outright. A $100 \%$ lifctime guarantee is available under all plans. When ordering, allow three weeks for delivery.

## available in three parts

The Zippertubing cable machine may be ordered in three units: basic unit, which includes the head and sealing device; wire payoff unit, which contains the "tree" and spindles for holding the wire reels; power unit, which has the take-up reel spindle, frame and $115 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$ motor that pulls the cable through the complete process.
For complete catalog information or field engineering service, write to the manufacturer: The Zippertubing Company, 752 So. San Pedro St., Los Angeles 14, California. TWX LA 840. Sales offices and warehouses are located in all principal cities.
(adicrtisement)

## NEw EVEBEADY ENERGIZER with exclusive CATHOOIC ENVELOPE construction



ENERGY IN A SANDWICH - a new concept in battery design . . . doubles the active anode surface . . . gives high current, lower voltage required by transistor circuits . provides volume efficiency unknown to other carbon-zinc cells. And there are no side penalties for peak performance. You actually get more hours of power in one-third the space at the lowest possible cost!

## For new transistorized...

- Cordless Radios with up to a year's service on normal listening schedules.
- Pocket Portables use leakproof "Eveready" Energizer No. 2713 for these handy radios, easy battery snap-on connection.
- Standard Portables with longer service, fewer battery changes, trouble-free listening.
- Electronic Equipment, any transistorized batteryoperated device whose drain approximates that of transistor radios.

This, and other "Eveready" Energizers in this series,
take one-third less volume than round D-size cells for same service life!
For complete information write for our fully illustrated brochure : Manager, Battery Engineering Dept., National Carbon Company, Division of Union Carbide Corporation, 30 East 42nd Street, New York, N. Y.

The Ierms "Everecad" and "Union Carbide" are registered errade-marks of Union Carbide Corporation

## GERMAN ABSTRACTS

E. Brenner

## Frequency

## Cut-Of

|| N AN inductive attenuator the $H_{11}$ mode excited and received in a cylindrical waveguide whose length is made variable by use of a "line-stretcher" and which is excited by means of coupling loops. The basic arrangement is shown in Fig. 1. In Figs. 2 and 3 the two types of attenuators used are presented.
It can be shown that in a Type 1 attenuator the voltage ratio is proportional to the wavelength. Moreover for small values of distance 1 , the voltage division is proportional to sinh ( $4.81 \mathrm{l} / \mathrm{d}$ ).
For Type 2 attenuation is independent of wave. length. Both attenuators have similar characteristics as a function of 1 .
Abstracted from an article by A. Sander, Nachrichtentechnische Zeitschrift, Vol. II, No. I, Jan. 1958, pp. 1-5.

## Modulated Light

THE MODULATION of light by means of standing waves in a fluid is possible becaus the refractive index of fluids is a function of the degree to which it is compressed. To accomplish modulation an ultrasonic quartz crystal is placed at one end of a column of fluid as shown in the illustration. A reflector is placed at the other end If the crystal is excited, then standing waves, i.e. compressions and refractions, are set up in the fluid. In order to have the entire surface of the crystal oscillate with the same phase, an excitation frequency somewhat lower than the natura frequency of the crystal is used.

Because of the standing sound waves in the liquid, the refractive index, $n$, will vary in accordance with the law

$$
\frac{C}{n \pm \Delta n}=\Delta v \pm v
$$

where
$C$ is the velocity of light in vacuum, and $v$ is the velocity of light in the fluid under normal pres-

## ncyResponse of <br> OfAttenuators

mode is al wave. y use of by means ement wo types
ttenuator e wavestance l, to $\sinh$ of wave. haracter

Sander, II, No. I,


Fig. 3. Type 2 attenuator.
re distributed so that a simpler representation achieved. The effect which is observed when e collimated light beam is projected on a reen is analogous to the optical phenomena served with the aid of a diffraction grating. uctuations of light intensity occur at twice the equency of the crystal oscillations.
In the original paper detailed measurement ocedures and the results of these procedures cited.
Abstracted from an article by H.F. Reimann, ahrichtentechnik, Vol. 7, No. 11, Nov. 1957, 515-518.

Fig. 2. Type 1 attenuator.
Fig. 1. Cylindrical waveguide with coaxial terminations.

$\square$

Simplifiod diagram to illustrate the modulation of light by means of standing waves in a fluid. The shaded regions are regions of compression, the unshaded regions represent rarefactions. In place of the sinusoidal distribution of compressions abrupt steps fi.e. alternate regions of compressions) are shown to illustrate the principle.

## Fconomy and Quality with

## NEW

22 Cixcuit Centinalab.

## MINTATURE SWITCEIES

## ACTUAL SIzE


wher new switches are designed for application where costs must be kept to a minimum writhout compromising rigid electrical specifications. New aminated construction allows up to 22 separate switch points on a $11 / 6^{\prime \prime}$ diameter.

- Voltage breakdown, 1000 volts R.M.S. Back to back insulated clips, 500 volts R.M.S. Laminated phenolic sections type PBE perspecifications MIL-P-3115.
- Current rating 2 amp. at 15 volts DC; 150 milliamps at 110 volts AC (resistive load).
- Minimum life, $\mathbf{1 0 , 0 0 0}$ cycles.
- Supplied as single section, double section, or single section with line switch. 2-12 positions per switch.
For detailed specifications, write for Bulletin EP-90 or contact your Centralab contact your
- AC line switches for single section units in SPST, DPST and SPDT switching arrangements


## Centalab,

d DIVISION OF GLOBE-UNION, INC 960IE. KEEFE AYE. - CIIWAYKEE, IS


VARIABLE RESISTORS - PACKAGED ELECTRONIC CIRCUITS - ELECTRONIC SWITCHES CERAMIC CAPACTTORS - ENOMEERED CERAMICS - SEML-CONDUCTOR PRODUCTS CIRCLE 387 ON READER-SERVICE CARD


FOR DETAILS:
Please write to RAYTHEON Dept. 6120 Commercial Commercial quipment Waltham 54 Massachusetts

AAYTHEOM
Excellones in Electronice
CIRCLE 390 ON READER-SERVICE CARD


Reticles - Precise Photography - Precision Patterns on Glass \& Metal - Photoelectric Readout Devices - Optical Coincidence Reading Systems - Precision Circular, Cylindrical \& Linear Dividing - Electroforming of Precise Patterns - Precision Grids • Engineering \& Surveying Instruments - Hydrological \& Meteorological Instruments - Standard Weights \& Measures • Optical Instruments • Reticle Manufacturing Facilities• Paper Testing Instruments
W. \& L. E. GURLEY, 525 FULTON STREET, TROY, M.Y. CIRCLE 391 ON READER-SERVICE CARD


## Relays

MIL-R-25018(USAF), Relays, Miniaturized, Hermetically Sealed, Airborne Equipment, General Spectification for, Amendment 1, 12 February 1958
The requirements for Sealing Test 1 have been changed to read: the leakage rate shall not exceed an equivalent rate of 3 cc of helium (at standard conditions) in ten years. An alternate method for making this test may use a radioactive tracer method with an inert, nontoxic, radioactive gas such as Krypton.

## Switches

MIL-S-3950A, Toggle Switches, Amendment 1, 1 April 1958
Terminals not functionally required as indicated in the applicable standard need not be supplied. Group A inspection has been revised to indicate that quality acceptance levels shall be as specified in Table II. Major and minor defects shall be as defined in MIL-STD-105.

## Crystal Holders

MIL-H-10056C, General Spectfication for Crystal Holders, 20 March 1958
The scope of the spec has been changed so that the spec now covers only metal and glass crystal holders. The plastic crystal holder HC-5/U has been deleted. A metal holder HC-21/U, which is electrically and physically equivalent to $\mathrm{HC}-5 / \mathrm{U}$, has been added.

## Solenoids

MIL-S-4040C, General Specification for Electrical Solenoids, 23 January 1958
The general requirements for aircraft solenoids are covered in this spec. The solenoids may be either continuous duty or intermittent duty types. Solenoids meeting the requirements of this spec are of compact design and of sufficiently rugged construction to withstand the mechanical shocks and stresses incident to their use in aircraft. The solenoid coils are terminated with an electrical connector conforming to MIL-C-5015 on terminals of the screw-stud type. This spec supersedes MIL-S-004040B(USAF) and MIL-S4040A.
"MINI-GATOR" ASTOUN ELECTRONICS EXP\&R


Small, simple, neat, and complete, the Muc "Mini-gator" is the only clip of its kind.. the one truly miniaturized alligator clit already one of our best sellers.
More than indispensable, more than irrepl able...it's unique! Steel, cadmium plated solid copper. Separate skin-tight insulat WRITE FACTORY FOR FREE PACKET OF MINI-GATOR CLIPS AND INSULATOR at Jobbers everywhere


In Electronic Design, engineers find not only mor
products, but all the new products normally encoun the design of electronic original equipment. 26 -time ing frequency brings this information quickly to the neer's attention, timed to a fast-moving industry, $E$ Desis 3 is more up-to-the-minute, more complete, mo ful, and easier to read than any other electronic put No wonder more and more engineers read E Design first!
ELECTRONIC DESIC
a HAYDEN publication
830 third avenue, new york 22, n. Y.

CAPACITOR KNOBS
Uncoupling Knobs Types

| $c$ | $\frac{\Delta c}{c \Delta \theta}$ | Stability |
| :---: | :---: | :---: |
| $12 \leqslant c \leqslant 1000$ | $0 \leqslant \frac{\Delta c}{c \Delta \theta} \leqslant 70.10^{-6}$ | $\pm\left(5.10^{-4} \pm .1 \mathrm{pf}\right)$ |

Mica Capacitors
"STABILIDISC"

| $c$ | $\frac{\Delta c}{c \Delta \theta}$ | Slability <br> (high scobility $)$ |
| :---: | :---: | :---: |
| $12 \leqslant c \leqslant 1000$ | $15.10^{-6} \leqslant \frac{\Delta c}{c \Delta \theta} \leqslant 45.10^{-6}$ | $\pm\left(3.10^{-4} \pm .11 \mathrm{pf}\right)$ |

## an irrepl

m plated the high perlormance of the capacitors results from being hand-maad ht insulat rite for samples :
ar them and verify the quality ... and the price

ave time
ave dollars OLVE PROBLEMS Vrite today for TAR'S AAT

RIGHT OFF-THE-SHELF® . . More than 30 different sizes and types including continuous or piano type hinges, butt
hinges in blank, fixed pin loose pin types, etc.
$0-$ Direct New York phone: Wlsconsin 7-9041 Direct Philadelphia phone: WAlnut 5-3660 CIRCLE 394 ON READER-SERVICE CARD
17, $19 \%$ ECTFONIC DESIGN - September 17, 1958

## Capacitors

MIL-C-3965B, Capacitors, Fixed, Electrolytic (Tantalum) General Specification for, 3 April 1958
The overvoltage requirement has been replaced by a surge voltage requirement. The life test has been increased from 1000 hours to 2000 hours. Various electrical requirements have been changed. This issue supersedes coordinated spec MIL-C-3965 and single-service spec MIL-C003965(USAF).

MIL-C-26244(USAF), Capactitors, Fixed, Paper (or Paper-Plastic) Dielectric, D-C, High Reliability (Hermetically Sealed in Metallic Cases), 31 January 1958
This spec is intended for capacitors used primarily for filter, by-pass, and blocking purposes, where the a-c component of the impressed volt age is small with respect to the d-c voltage rating. It is the intent of this spec that the manufacturer shall control the quality of his production to an AQL of $0.4 \%$ or below. Capacitors having this quality will have a minimum failure rate ranging from $0.01 \% / 1,000$ hours to $0.97 \% / 1,000$ hours depending upon the manner in which used. Capacitors meeting this spec may be used a full rated voltage at $125^{\circ} \mathrm{C}$ with an expected failure rate of less than $1 \%$ per 1,000 hours. A typical type designation of capacitors meeting this spec is CPV08A1E1041

## Microfilm Storage

aSA PH5.4-1957, American Standard Practice for Storage of Microfilm
Humidity, temperature, dust, or gas will not ruin microfilm records if the microfilm is stored as outlined in this standard. All the problems involved in storge, ways to protect and methods of inspection to insure safety of microfilm, are outlined in this new standard. The standard gives storage provisions for commercial permanence, that is, for microfilm to be used within approximately 25 years; for archival permanence, for microfilm that must be kept safely for maximum period obtainable; and for protection against fire. The standard covers general principles of humidity during storage, temperature, impurities in the air, fire protection, reels on which microfilm is wound, containers for storing microfilm, storage housing, storage rooms, conditions of air and inspection. A comprehensive bibliography is also included. Copies of this standard are available from the American Standard Association, 70 East 45 Street, New York 17, N.Y. at 50 cents a copy.

## PRECISION ANGULAR DIVIDER

... a unique mechanism for exact angular positioning of Synchros and Gimbal-Mounted Components

- 20 SEC. ANGULAR ACCURACY obtained at the synchro shaft .... includes all positioning, coupling, and reading errors
- 

synchros can be tested without additional synchros can be tested without additional
fixturing ... all angular positions are directreading .... permits complete accuracy with reading . permits

- BETTER THAN 10 SEC. REPEATABILITY OF SYNCHRO ANGLES PRICE
$\$ 1,555.00$


48 PINE STREET AST PATERSON, N. d SWarthmore 7-7700

CIRCLE 395 ON READER-SERVICE CARD

## UNDER EXTREME ENVIRONMENTAL CONDITIONS..


can size: $.970^{\prime \prime} \times .785^{\prime \prime} \times 1.50^{\prime \prime}$
SENSItIVE 5-AMP O.C Relay - 30 g's Vibration to 3000 cps
The model R-9800, double-pole, double-throw, sensitive relay weighs 2 oz ., is hermetically sealed and operates in the temperature range of $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

For further information contact:
HI-SPEC
Electronics corp.
7328 ETHEL AVE., NORTH HOLLYWOOD, CALIF,
miniature relays / senstitive relays CIRCLE 396 ON READER-SERVICE CARD

SECTION HEAD, PHYSICISTS or EE To guide investigations in microwave network theory, information with goal of deriving basic com munications concepts leading to SENIOR ELECTRONICS ENGINEERS 5 years relative experience for one
of the following:

1. For theoretical systems and/or equiiment desisn. Requires
knowledge of entine lectron
 ing knowledge of propagation methods.
2. Design in 1 or more: advanced navigation techniques including niques; transistor circuitry; ddvanced sutomatic test equip-
ment; systems design; sonar: menti systems design; sonar and antenna techninuees; communications, includine
vanced pulse techniques.
3. For network design (modern synthesis filters, delay equalizers, loss and phase equalizizer)
and circuit analysis (transistor nd circuit analysis (transistor
mplifiers,
transistor
pulse orming networks. transistor witching circuitry).

If you qualify for one of the positions listed above,
write immediately to Fred E. Lee, Manager of Technical Personnel.


STROMBERG-CARLSON
1448 N. GOODMAN STREET. ROCHESTER 3. N. Y.

CIRCLE 550 ON READER-SERVICE CARD


## ELECTRICAL, ELECTRONIC ENGINEERS AND PHYSICISTS

We are seeking several outstanding individuals with demonstrated creative ability to work on our many diversified research programs. As a member of our staff you will enjoy the friendly atmosphere and cooperation which exists at Armour, plus the exceptional opportunity for original research coupled with excellent facllities, working conditions and stimulating staff associations.
Applicants should, preferably, have an advanced degree and at least 5 years of top level experience in one of the following areas:

- microwave component design
- PROPAGATION IN IONIZED MEDIA
- TRANSISTOR R.F. CIRCUITS
- RADIO-RADAR INTERFERENCE
- RADAR SYSTEMS ANALYSIS
- ELECTRONIC INSTRUMENTATION

Receive excellent salary, and liberal benefits includ ing generous relocation allowance, tuition free graduate study and an exceptional vacation program. Send complete resume to:
A. J. Paneral

ARMOUR RESEARCH FOUNDATION of Illinois Institute of Technology
10 West 35th St. Chicago 16, Ill.

IBM MAGNETICS ENGINEER

Excellent opportunity for Magnetics Engineer expe rienced in design and ana lysis of magnetic core circuitry for use in ad vanced digital computers Must understand applica tion of these circuits to logical connectives and systems and be familiar with basic fundamentals of nonlinear magnetics

Qualifications:
Bachelor's or Advanced De gree in Electrical Engineering or Engineering Physics; two to five years' experi. ence with magnetic circuits; strong interest in logical circuit application of magnetics.

Advantages of IBM:
A recognized leader in the electronic computer field
products used in both military and commercial applications . . . advancement on merit...companypaid relocation expenses. liberal company benefits
salary commensurate with ability and experience.

Immediate opening
at Owego, N. Y. WRITE, outlining qualifications and experience, to: Mr. P. E. Strohm Dept. 555W IBM Corporation, Owego, N. Y.
international BUSINESS MACMINES CORPORATION
data proctssing - Electric ivpewhiten mIITARY PRODUCTS Special enginering products
supplifs - time equipment

CIRCLE 556 ON READER-SERVICE CARD


## TODAY'S OPPORTUNITIES

with General Electric's Missile Guidance Section

## CARRY IMPORTANT RAMIFICATIONS FOR SPACE TECHNOLOGY

Despite the magnitude of the undertaking, guiding a vehicle on a $>428,000$ mile return trip to the Moon...or directing an interplanetary probe into Mars' orbit depends fundamentally upon the basic technologies already developed to guide surface-to-surface ballistic missiles into their trajectories.

The great technical challenges of guidance for space exploration lie in the unprecedented accuracies, reliabilities and long operative life-spans that must be engineered into the guidance systems.

Engineers and SCIEntists at G.E.'s Missile Guidance Section-with their broad experience in creating highly reliable ICBM systems are well prepared to deal creatively and eff ectively with space problems.
FOR WORK IN FRONTIER AREAS, look into the positions now open with the Section, on a number of stimulating, advanced projects.

Significant expericnce in 1 or more of these areas is desired:

Radar
Communicaslons
Countermeasures
Antenna Design RF CIrcuitry Dlgital Computors Test Operations Engineoring Analysis

Forward your resume in strict confidence to Mr. E. A. Smith, Dept. 9-C

## MISSILE GUIDANCE SECTION <br> GENERAL ELECTRIC

Court Street, Syracuse, N. Y.

## A Viking radoe

When the terrible green monster suddenly appeared alongside the jood ship Viking Queen, all hands save one promplly disappeared over the side into the chill waters of the North Atlantic. Only Lief Smorgasbord, radar operator, remained aboard to face the beast.

If we may take a trembling Lief from history, we will follow the conversation that ensued:
Lief (trembling): Why . . . why didn't you show up on my scope? Monster (in a high, Jeminine voice): I'm enchanted, that's why! Oh, Mr. Viking, I'm just a poor princess who has been bewitched and transformed into a teen-age she-sea serpent! If you could ansurer the

## ADVERTISERS' INDEX

September 17, 1958 Lief managed to answer the riddle, breaking the spell and instantly trans forming the monster into a lovely princess. And so they were married and lived happily ever after.*

* The single word was "Bomac," of course. Lief knew "Tube B or not Tube B" must refer to Bomac tubes, heart of any radar system ("that which has no ears, but hears, etc.") Smart one, that Smorgasbord.

No. 5 of a series ... BOMAC LOOKS AT RADAR THROUGH THE AGES


* Bomac makes the finest microwave tubes and components cither side of the Atkantic


## Comace

 dircerat
mis Condenser Co. y. M. Mry. Co. M. M .

 ulda Electronics Cor
 do Northiuiu Co. Can Electronics Co.
chiett Lainoratories (thett Lalsomatoriess cretics. Inc.

 lidure. Preceision Bearrings llard. Eltd. Thilicetronics
Hiwnal Cal Carbon Mffericetronics, İic
 Hard-Bell Electronics Corp. trad Electronic Corp.
Corp. of Americal
0
0

$\qquad$ Terthinical Components
 Urdd Electrocraft. Inc.




 erane Electric Co fry titnless Screw
 mhera-carssan Co neral Electramics Prodict Inc
anic
anconnutrotor Div. thaicend Corp.
a Instrument
Vacsimine Corp.
isar Electronics Corm
hat Em Eectrict. Inc., Dinces
as, Il Electric. Inc. Se I Itrunt Corp.
Corp. ..
or Inc.
tanke sr Co Electio Corp

in Muse Electric Corp.
Intruments.
Signals, Inc.
ing Co .

RCLE 367 ON READER-SERVICE CARD

Power curves based on setting output power at 1 KC



Cles PEn secomo

*DO-T units have been designed for transistor application only . . . not for vacuum tube service. Patents Pending SPECIAL UNITS AVAILABLE TO YOUR SPECIFICATIONS.

## TO MAKE YOUR EOUPMENT SMALler vet MORE RELIABLE

REVOLUTIONARY TRANSISTOR* TRANSFORMERS, HERMETIC TO MIL-T-27A

Conventional miniaturized transistor transformers have inhe:ently poor electrical character istics, perform with insufficient reliability and are woefully inadequate fer many applications. The radical design of the new UTC DO-T and DI-T transistor transformers provides unprece. dented power handling capacity and reliability, coupled with extremely small size.

$8 / 10$ Dia. $\times 13 / 2,1 / 1002$.

High Power Rating up to 1:50 times greater.
Excellent Response ...twice :s good. Low Distortion .. reduced 80\%. High Efficiency ... up to $30^{\circ}$ 。 better. Moisture Proof. hermetic to MIL-T-27A.
Rugged . . . completely cased.
Anchored Leads... will stand 10 lb . oull, plastic leads for printed circuits.

To fully appreciate DO.T transistor transformers, the curves indicate their performanse compared to that of similar size units now on the market. DI.T transformers are still smaller in size. Power rating and other characteristics are identical to DO-T, but low frequency response (3 db down point) is $30 \%$ higher in frequency. Units can be used for different impedances than those shown, keeping i:i mind that impedance ratio is constant. Lower source impedance will improve response and level ratings... higher source will reduce them. Units may be used reversed, input to secondary.

| DO.T No. | MIL | Application | Pri. Imp. | $\begin{gathered} \text { D.C. Ma. } \\ \text { isi Pri. } \end{gathered}$ | Sec. Imp. | Pri. Res. | Level <br> mw. | $\begin{gathered} \text { Di-T } \\ \mathrm{No} . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0-T1 | tF4RX13YY | Interstage | $\begin{aligned} & 20.000 \\ & 30.000 \end{aligned}$ | $\begin{aligned} & .5 \\ & .5 \\ & \hline \end{aligned}$ | $\begin{array}{r} 800 \\ 1200 \\ \hline \end{array}$ | 850 | 50 |  |
| 00.12 | TF4RXITYY | Output | $\begin{aligned} & 500 \\ & 600 \end{aligned}$ | $\begin{aligned} & 3 \\ & 3 \end{aligned}$ | $\begin{aligned} & 50 \\ & 60 \end{aligned}$ | 60 | 100 | 01.12 |
| 00.73 | TF4RX13YY | Output | $\begin{aligned} & 1000 \\ & 1200 \end{aligned}$ | $\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$ | $\begin{array}{r} 50 \\ 60 \\ \hline \end{array}$ | 115 | 100 | 01.73 |
| 00.14 | TF4RX17YY | Output | 600 | 3 | 3.2 | 60 | 100 |  |
| D0.15 | TF4RX13YY | Output | 1200 | 2 | 3.2 | 115 | 100 |  |
| D0-16 | TF4RX13YY | Output | 10,000 | 1 | 3.2 | 1000 | 100 |  |
| D0.57 | TF4RX16YY | Input | 200,000 | 0 | 1000 | 8500 | 25 |  |
| D0-18 | TF4RX20YY | Reactor 3.5 Hys.@ 2 Ma . DC, $1 \mathrm{Hy} @ 5 \mathrm{Ma}$. DC ( (DI- 7 s is $2.5 \mathrm{Hy} @ 2 \mathrm{Ma}$.) |  |  |  | 630 |  | Di-18 |
| D0.19 | TF4RX13YY | Output or driver | $\begin{aligned} & 10.000 \\ & 12.500 \end{aligned}$ | $1$ | $\begin{aligned} & 500 \mathrm{ct} \\ & 600 \end{aligned}$ | 800 | 100 | 01.18 |
| 00.710 | TF4RX13YY | Driver | $\begin{aligned} & 10.000 \\ & 12.500 \\ & \hline \end{aligned}$ | $1$ | $\begin{aligned} & 1200 \mathrm{CT} \\ & 1500 \mathrm{CT} \end{aligned}$ | 800 | 100 | D1.816 |
| D0.111 | tfarxi3y | Driver | $\begin{aligned} & 10,000 \\ & 12,000 \\ & \hline \end{aligned}$ | $1$ | $\begin{aligned} & 2000 \mathrm{CT} \\ & 2500 \mathrm{CT} \end{aligned}$ | 300 | 100 | D1.511 |
| 00.112 | TF4RX17YY | Single or PP output | $\begin{aligned} & 150 \mathrm{CT} \\ & 200 \mathrm{Cr} \\ & \hline \end{aligned}$ | $\begin{aligned} & 19 \\ & 19 \end{aligned}$ | $\begin{aligned} & 12 \\ & 16 \end{aligned}$ | 11 | 500 |  |
| D0-T13 | TF4RX17YY | Single or PP output | $\begin{aligned} & 300 \mathrm{CT} \\ & 400 \mathrm{Cr} \end{aligned}$ | $1$ | $\begin{aligned} & 12 \\ & 16 \end{aligned}$ | 20 | 300 |  |
| D0-114 | TF4RX17YY | Single or PP output | $\begin{aligned} & 600 \mathrm{CT} \\ & 800 \mathrm{Cc} \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 16 \end{aligned}$ | 43 | 500 |  |
| $\overline{00-715}$ | TF4RXITYY | Single or PP output | $\begin{array}{r} 800 \mathrm{CT} \\ 1070 \mathrm{CT} \\ \hline \end{array}$ | $4$ | $\begin{aligned} & 12 \\ & 16 \\ & \hline \end{aligned}$ | 51 | Sco |  |
| 00.716 | TF4RX13YY | Single or PP output | $\begin{aligned} & 1000 \mathrm{CT} \\ & 1330 \mathrm{CT} \end{aligned}$ | $3$ | $\begin{aligned} & 12 \\ & 16 \end{aligned}$ | 7 | 500 |  |
| 00.517 | TF4RX13YY | Single or PP output | $\begin{aligned} & 1500 \mathrm{CT} \\ & 2000 \mathrm{CT} \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 16 \\ & \hline \end{aligned}$ | 16 | 500 |  |
| D0-118 | TF4RX13YY | Single or PP output | $\begin{array}{r} 7500 \mathrm{CT} \\ 10.000 \mathrm{CT} \end{array}$ | 1 | $\begin{aligned} & 12 \\ & 16 \end{aligned}$ | 505 | 500 |  |
| 00.119 | TF4RX17YY | Output to line | 300 CT |  | 600 | $1!$ | 500 | 01.71 |
| 0.10 | TF4RX17YY | Output or matching to line | 500 CT | 5.5 | 600 | 3) | 500 | 01.52 |
| 00-121 | TF4RX17YY | Output to line | 900 CT | 4 | 600 | 53 | 500 |  |
| 0.122 | TF4RX13YY | Output to line | 1500 CT | 3 | 600 | 86 | 500 | 01.12 |
| 00.123 | TFARX13YY | Interstage | $\begin{aligned} & 20,000 \mathrm{CT} \\ & 30,000 \mathrm{CT} \end{aligned}$ | $\begin{aligned} & .5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 800 \mathrm{CT} \\ & 1200 \mathrm{Cr} \end{aligned}$ | 850 | 100 | 01.52 |
| D0-124 | TFARXIGYY | Input (usable for chopper service) | 200,000 CT | 0 | 1000 CT | 8500 | 25 |  |
| 00.725 | Tfarxi3y | Interstage | $\begin{aligned} & 10,000 \mathrm{CT} \\ & 12,000 \mathrm{CT} \end{aligned}$ | $\begin{aligned} & 7 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1500 \mathrm{CT} \\ & 1800 \mathrm{CT} \end{aligned}$ | 800 | 100 |  |
| 00.126 | TFARX20YY | Reactor 6 Hy . @ 2 Ma. DC, 1.5 Hy. @ $5 \mathrm{Ma} . \mathrm{DC}$ |  |  | 2100 |  |  |  |
| 00.127 | TF4RX20YY | Reactor 1.25 Hy . @ 2 Ma . DC, .5 Hy . © 11 Ma . DC |  |  | 100 |  |  |  |

DO-TSH Drawn Hipermalloy shield and cover for DO-T's, provides 25 to 30 ,


## UNITED TRANSFORMER CORIP.

## 150 Varick Street, New York 13, N. Y.

PACIFIC MFG. DIVISION: 4008 W. JEFFERSON BLVD., LOS AVCRLES 16, CALM
EXPORT DIVISION: 13 EAST 4OH STREET, NEW YORX 16, N. Y. CABLES, "ARLAB"

## A Viking rabre

If hen the terrible green monster suddenly appeared alongside the soad ip Viking Queen, all hands save one promptly disappeared over the sus into the chill waters of the North Aelantic. Only Lief Smorgasterd, tedar operator, remained aboard to face the beast

If ue may rake a trembling Lief from history, we urill follow the owver - ion that ensued:

I If (rembling): Why . . . why didn's you show up on my scope? Master (in a high, Jeminine noice): I'm enchanted, that's why! O. As Viking, I'm juss a poor princess who has been bewitched and rrasfor wed into a reen-age she-sea serpent! If you could ansurer the
*The single word was "Bomac," of course. Lief knew "Tube B or not Tube $B^{\prime \prime}$ must refer to Bomac tubes, heart of any radar system ("that which has no ears, but hears, etc.") Smart one, that Smorgasbord.


ADVERTISERS' INDEX
September 17, 1958

AGA Div., Elastic Stop Nut Corp.
AMP Electronics Associates
Ace Electronics Associates
Adel Precision Prolucts.
Adler Electronics

Aircraft Rudio Corp.
Allegheny Ludlum Steei Corp
Allied Control Co
Allied Radio Corp.
American Super-Temperittire Wiras, io
Amperex EElectronic Cor
Anetherger Bros., Inc.
Applied Research., Inc. 1 Inc.
Armour Research
Armour Research Foundatio.
Associated Spring Corp.
Atlantex Corp.
Atlas E-E Corp.
Altas E-E Corp.

 Baker \& Adamson, General Cliemical Jiv,
Allied Chemical Corp.
Baso, Inc. ..............
Behlman Engineering Co.
Bendix Aviation Corp, Pacific Div.
Bendix Aviation Corp,, Red Bank Div Biddle, James
Birtcher Corp.
Bliley Electric Co. Co..
Bonnac Laboratories, Tic.
Bonac Latoratories, Inc.
Bork, (ceorge W. Corp., The
Breeze Curp., Inc.

CBS-Hytrom
Caledona Electronics \& Trainstorner Curp
Cambridge Thermionic Con).
Carborundum Co.. The
Celco Constantine Enkineering Laiks Co,
Centralah, Div. of Glohe Union, I
Circsitit- Inastruments, inc
Clare. C. P. \&
Clarostat Mo
Co
Clevite Electronic Components
Coleman Enkineering
Colleman Envinerering
Computer-Measurements Corp.
Connecticut Hard Ruhler Co., Thi
Connolly

Curtiss-Wright Corp.

Daven Co.: The ©
Daystrom Transicoil Corp.
Dejur Amsco Corp.
Dialight Corp.

Industrial Tulee Div.
DuMont. Allen B. Laboratories, Inc:-

Edgerton, Germeshausen \& Grier, Inc.
Eitel-McCullough, Inc. Electra Mf, Co. Me.
Electric Regulator Corp
Electric Regulator Corp.
Electrosnalp Corp.
Electronic Measurements C
Engelhard Industries, Inc.
Fafnir Bearing Co.
Fansteel Metallurgical Cor
Farley \& Loetscher Plastics Div
Ferrox ${ }^{\text {F }}$ The Corp. of America
Ferroxcube Corp. Of Americ.
Fluke John Mfg. Co., Inc.
Ford Instrument Co. Inc.
Ford Instrument Coi. Inc.
Frequency Standards, Inc.
C,V Controls, Inc.
Gamewell Co.
General Devices
General
Electric
Co., Miniatur
General Electric Co., Miniature Lamp 1)
G.neral Electic Co. Missile Guidance
General Electric Co. Pad
General Electric Co., Missile Guidance
General Electric Co., Panel Instruments
Gewer Tuhes

General Magnetics, nc.
General Radio Co.
General Transistor Corp.
Gerrsch Praducts. Inc
Guardian Electric
\& CIRCLE 397 ON READER-SERVICE CARO

## $\int$ IAKE YOUP FDJDVTVT SMALLER YET REVOLUTIONARY TRANSISTOR* TRANSFORMERS, HERMETIC TO MIL-T-27A

Conventional miniaturized transistor transformers have inherently poor electrical characteristics, perform with insufficient reliability and are woefully inadequate for many applications. The radical design of the new UTC DO-T and DITT transistor transformers provides unprecedented power handling capacity and reliability, coupled with extremely small size.

TYPICAL DO-T PERFORMANCE CURVES
Power curves based on setting output power at 1 KC then maintaining same input level over frequency range.


5/16 Dia. X 1/32, 1/10 Oz.

High Power Rating . . up to 100 tımes greater.
Excellent Response ... twice as good. Low Distortion . . . reduced $80 \%$.
High Efficiency ... up to $30 \%$ better.
Moisture Proof hermetic to MIL-T-27A.
Rugged ... completely cased.
Anchored Leads... will stand 10 lb . pull, plastic leads for printed circuits.

DI-T

$8 / 10$ Dia. \& 1/4, 1/20 02.

To fully appreciate DO-T transistor transformers, the curves indicate their performance compared to that 0 similar size units now on the market. DI-T transformers are still smaller in size. Power rating and othe characteristics are identical to DO-T, but low frequency response ( 3 db down point) is $30 \%$ higher in frequency Units can be used for different impedances than those shown, keeping in mind that impedance ratio is constant Lower source impedance will improve response and level ratings ... higher source will reduce them. Units ma be used reversed, input to secondary.

Eliectronics. Inc
"Jolin Mf. Mo.

${ }^{-}$Co. The The
Corp, of Americal
Curb) of
Americi

leun Mry. Co.. Scmicondictor Di
lawicit Components
Instrument Corp

- Hofman Electrocrift ine

Cable Corp.
Is Associates. Inc.

Chemical Corn.
 C.arhon Co... Irffers Electronics D pat Electric Co fx T ......... C 0 Mrerginformer nerai Pleynamics aico inc Whine Corp.

- Instrument Faccimile Corp. Colp shol Electric. Inc.
anham Electronics Div
$\qquad$ ladium Corp.
d Transfonner
d Transf
k Corp.
Associates
- Inc.
n: house Electric Corp.
- trial Tubes
house Electric Corp.
Intronsinsts.
hing Co.
IRCLE 367 ON READER-SERVICE CARO

-DO-T units have been designed for transistor application only. . . not for vacuum tube service. Patents Pending SPECIAL UNITS AVAILABLE TO YOUR SPECIFICATIONS.



## UNITED TRANSFORMER CORP.

150 Varick street, Now York 13, N. Y.
PACIFIC MFG. DIVISION: 4008 W. JEFFERSON GVD., LOS ANGELES 16, CALIF. EXPORT DIVISION: I3 EAST 4OH STREET, NEW YORK IG, M. Y.

## RCA-6AW8-A -Preferred Tube TypeOffers You Extended Life, Improved Performance



The popular RCA-6AW8-A features highly improved performance and longer life in video-amplifier service -improvements resulting directly from RCA's Preferred Tube Types Program!
these improvements were made to the rca-gawe-a Precise control of heater coatings eliminates "thin spots"-assures durable heaters which minimize heater-cathode leakage and heater-cathode shorts. Speleakage and heater-cathode shorts. Spe-
cial-alloy cathodes offer better cathode cial-alloy cathodes offer better cathode
activation which reduces slump and asactivation which reduces slump and as-
sures stable operation. A new cathode sures stable operation. A new cathode
design reduces the number of weldsdesign reduces the number of weldsminimizing handling and contamination.
Heat dissipation is improved by the use of heavier side rods on pentode grid \#1. Pure nickel pins reduce pin-contact noise and facilitate insertion and re-
moval of the tube. From tip to stem, the glass is controlled for stress and strain to assure durability under wide variations in temperatures. Final test procedures include cycled operational life tests to simulate "on-of"" usage in the home.
Result: the highly reliable RCA. 6AW8-A for superior video amplifier performance. By designing your circuits "around" proved-in-service Preferred Tube Types, such as the 6AW8-A, you take advantage of the benefits of lower tube costs, more uniform tube quality and better tube availability.

RADIO CORPORATION OF AMERICA

There's a Preferred Tube Type to meet virtually all of your TV, AM and FM receiver requirements. Ask your RCA Representative for the up-to-date list of 62 Preferred Types. Or, write Commercial Engineering, Section 1-18-DE-2.

FREE! SLIDE-GUIDETO PREFERRED TUBE TYPES helps you quickly select the RCA Preferred Tube Type for a specific service. Gives base diagrams and characteristics. Call or write your RCA, Field Office for your "Slide-Guide"

> RCA Field Offices

East: 744 Brood Street
Nework 2, N. J. • HUmbold 9.3900
Midwest: Suite 1154, Merchandise Mart Plozo
Chicaso 54, III. WHitohall 4.2900
West: 6355 E . Washington Blvd
Los Angeles 22, Calif. • RAymond 3-8361


[^0]:    IN CANADA：
    Daystrom，Ltd．， 840 Caledonia Rd．， Toronto 19，Ont．

    ## FOREION：

    Daystrom International Div．， 100 Empire St．，Newark 12，N．J．

[^1]:    * Quocation from "Designing Electronic Equipenotation from "Designing Elecronic Equipsign, July 12, 1956.

