

rByy

MIL－T－27A TRANSFORMERS

POWER TRANSFORMERS－STANDARD All peimaries $105 / 115 ; 125$ v．， 60 c．p．s．									
cat.Mo.		$\text { ct } 0 \frac{0}{0}$		OE	Filament Filament $\# 1$				
				\％	完	$\stackrel{\square}{9}$	（e）M12		
MCP1 4	400／200	V	185		． 070	6．3／5	2	6.3	3 MA
MGP2	650	V	$\checkmark 260$	070	6．3／5	2	6.3	418	
MGP3	650	V	$\checkmark 245$	150	6.3	5	5.0	3 KB	
MGP4	800	0	$\checkmark 310$	． 175	5.0	3	6.3	［88	
MGP5	900	0	345	250	5.0	3	6.3	1 MB	
MGPS	700	0	255	250				KB	
MCP7	1100		419	． 250				18	
MGPs	1600	0	$\checkmark 640$	250				N8	
FILAMENT TRANSFORMERS－STANDARD All primaries $105,115,125$ v．， 60 c．p．s．									
Cat．		Secondary			Test VRMS		$\begin{gathered} \text { MII } \\ \text { Case } \end{gathered}$		
		Volt		Amp					
MGFI		2.5		3.0		2，500		E8	
MCF2		2.5		10.0		2，500		68	
mefs		5.0		3.0		．500		$f 8$	
MGF4		5.0		10.0		，500		H8	
mefs		6.3		2.0		2，500		$F 8$	
MEFS				5.0		2.500		68	
MEF7		6.3		10.0		2.500		18	
MGFE		6.3		20.0		2.500		K	
MGF9				10.0		0，000		18	
MGFIO		2.5 5.0		10.0		0.0		KB	

PULSE TRANSFORMERS						
关				$\begin{array}{\|l\|l} 2 \\ \vdots \\ \vdots \\ \hline \end{array}$	䢒	（1）
mprio		0.250230 .23	02.10	－00	． 1	550
		（023023	${ }^{0.2 .1 .10}$	${ }_{0}^{002}$		230
1 mmo	v	$03 / 83$	02.15	002	．	250
		0．5．05 095	0520	．022		300
	v		0.52 .0	．002	0	300
	vvo	0．7，0710，	0．3．1．5	002	，	200
mpro	$v v^{*}$	－0．70，	［0，	．002	2	${ }_{200}^{200}$
mprio	Vv	10,10	07.35	002		200
	该v	（13 0．150．03	1．0．5．0	－002	${ }_{1} 10.0$	500

AUDIO TRANSFORMERS					
－5 may		all cras Sam oit			
碇	Moncstase				
Cal		100	8，	－	
monz	Heme or voice coil	Soil	4．8．16	$1 \cdot$	
man	Lioe to singoo	Soit	13sk		
MGA4	Lies 10 Lion	Seit	spor	－	
MCas	sinots Plate io	ationt	sppio	－ 40	
m6	Siayle Plobe ove viece Coil	2，0\％	4．0．16	484	
Mcir	s．ap	13 L	spoit		
	p．p．	$23 \times$	soin		
	per．Moter intione		00		

TELEMETERING COMPONENTS

MINIATURE
COMPONENTS
For Delivery From Stock （MEET MIL－T－27A SPECIFICATIONS） MINIATURE AUDIO TRANSFORMERS

$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$					Impedonce Ohms									
					pri． $50 / 200 / 500$		sec．							
PMA． 1	v	＋	0	50			$\begin{array}{r} 8 \\ 8 \\ 0 \\ 80 \\ 80 \\ 0 \end{array}$							
PMA． 2	V	＋8	0	0	$\begin{array}{\|c\|} \hline 4 / 8 \\ \hline 50 / 200 / 500 \end{array}$									
PMA．3	v	＋8	0	50										
PMA．4	v	＋8	0	0	15，000									
PMA． 5	v	＋8	2	2	15，000									
PMA－6	V	＋	0	0	15，000		$\begin{aligned} & 8 \\ & 8 \\ & \text { ò } \\ & \text { ò } \end{aligned}$							
PMA．7	v	＋	2	2	30，000＜1									
PMA．8	\checkmark	＋	2	25										
PMA．9	v	$+8$	0	0	60.000									
PMA－10	0	＋8	0	0	50，200									
All units +2 D8 30 to 20.000 N ；PMA 5 and 7 ± 2 DB 200 to $10,000 \mathrm{~N}$ ．Cose sire $15 / 16^{\prime \prime} \mathrm{D} \mathrm{x}$ $11 / 2^{n \prime}$ high．Aanges $11 / 2^{\prime \prime}$ long．														
TRANSISTOR TRANSFORMERS														
$\begin{aligned} & 0.0 \\ & \frac{0}{\circ} \text { o } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & 08 \\ & 08 \\ & \end{aligned}$	$\left\lvert\, \begin{array}{ll} 2 & 0 \\ 0 & 0 \\ 0 & 0 \\ i n & 0 \end{array}\right.$			Impedance Ohms									
	DB	DB	MA	w．	pri．	sec．								
TMA－1	＋1		0	25	500									
TMA 2		± 2	3	25	50k	500								
TMA 3		± 2	3	25	Sok									
TMA 4		± 3	1	25	100k	1.2 Kct								
TMA－5	± 2		3	25	25K	1.2 K ct								
TMA－6		± 2	3	25	50K	1.2 Kct ．								
TMA． 7	± 1		4	25	600／150	1.2 K cl								
TMA． 8	± 2		3	25	25k	600								
TMA 9	± 1		1	25	4 Kct ．	600／150								
TMA－10	0 ± 2		10	25	2k	3.2								
TMA－11	1 ± 1		1	25	4 Kct ．	3.2								
TMA－12		± 2	－	25	20K	So								
TMA－13		2	8	25	IK	50								
TMA－14		± 2	0	10	100k	IK								
TMO．15		2	1	04	20k	50								
TMO－16		± 2	1	04	20k	600								
TMO－17		± 2	3	． 06	1 k	S0								
TMO－18		± 2	0	10										
IMA－19	19 ± 2		20	1.	100k									
Case size 1 ＂ 0×1＂ $5^{\prime \prime}$ high，nanges $11 / h^{\prime \prime}$ ．Specify TMO for open．TMC for encapsulated units．														
MINIATURE HIGH Q TOROIDS														
Cot． No．	Ind． MHY	$\begin{array}{\|ll} \text { Cal. Ind, } \\ \text { No. MHY } \\ \hline 10 \text { 10 } 50 \text { KC } \\ \hline \end{array}$		$\begin{gathered} \text { Cat. Ind. } \\ \text { No. MHY } \\ 301075 \mathrm{KC} \end{gathered}$		Cot．Ind． No．MHY								
1015 KC				3010200 KC										
F20s0	1	F2100	01			F2140	O 0.1	F2180	0.1					
F2051	3	F2101	02	F2141	10.2	F2181	0.2							
F2052	5	F2102	0.3	F2142	20.3	F2182	0.3							
F2053	10.	F2103	04	｜F2143	$3 \quad 0.4$	F2183	0.4							
F2054	15.	F2104	0.5	5 F2144	4 05	F2184	0.5							
F2055	30	F2105	10	F2145	510	F2185	0.6							
F2056	50.	F2106	2.0	F2146	620	F2186	0.7							
F2057	75.	F2107	30	F2147	730	F2187	08							
F2058	100	F2108	40	）F2148	84.0	F2188	0.9							
F2059	150.	F2109	50	F2149	9	F2189	．							
F2060	200.	F2110	75	F21 50	O 7.5	F2190	2.							
F2061	300.	F2111	10.	F2151	510	F2191	3.							
F2062	400.	F2112	215	F2152	3215.	F2192	4.							
F2063	500.	F2113	30.	F2153	320	F2193	5.							
F2064	750	F2114	30.	F2154	430									
F2065	1.000	F2115	50.	F2155	S 50.									
F2066	1，250．	F2116	6 75.	F2156	［156．	3／4＊＊11	11／32							
F2067	1，500．	F2117	100	F2157	7100	$\times 25 / 3$	32h．							
F2008	1，750	Encapsulated 1 ＂d $x^{\prime \prime} / 21 \mathrm{~h}$ ．When order． ing hermetically sealed units odd H units MR to Cat．No．												
$\begin{array}{\|l\|l\|} \hline \text { F2060 } \\ \hline \text { ncops } \end{array}$	2000													

Send for NEW 48 page transformer cafalog．Also ask for complete laboratory test instrument catalog．

Air－Operated Rotating Switch（Cover）

A jet of air，rotating at speeds d up to 20 cps inside this sampling switch，strikes contacts and close them in rapid succession．As de scribed on the cover，the jet of oi tends to deflect the reed－like movable contact，drawing it into contact wil the pin，which acts as the fixed con tact．

How To Design Pulse Magnetic Amplifiers
With just two basic equations and some characteristics of magnetic mo terial，you can design magnetic am plifiers for pulse work．Mr．Whitee lucid presentation shows how to g through the design and what the in portant design considerations are Here，in the first of a fwo－part artich he provides a step－by－step desigy procedure and a sample design．

Pulse Oscilloscope List
Forty－seven commersially availabie oscilloscopes having high frequenc responses and fast rise times on listed along with the thirteen many facturers producing these stander models．

Using Plastics in Electronics Look for this Special Report in our next issue September 3， 1958

SAME DAY SERVICE

To Speed Communication between Reader

\& Manufacturer

ECTRONIC DESIGN's new inquiry Indling system insures you the test possible service a magazine I give a reader. The same day t your request for further infortion is received in our offices, a el with your name and address processed for every number you e circled on our reader service d. Your labels are then air mailed st class within one-day delivery e) to each source of information. only does ELECTRONIC DESIGN ort all the new products in your d but, with our Same Day Service, will now receive the product rmation you requested as fast he mails can carry it.

SAME DA
SERVICE

To spoed
Communication
between Reade
\& Manufacture

ELECTRONIC DESIGN's new im handling system insures yor fastest possible service a mag, can give a reader. The same that your request for further mation is received in our office label with your name and ad is processed for every numbe have circled on our reader sa card. Your labels are then air (first class within one-day did zone) to each source of inform Not only does ELECTRONIC report all the new products is field but, with our Same Day Se you will now receive the pir information you requested a as the mails can carry it.

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering title, your compans 's main products, and description of your design duties. The letter must be signed by you personally.
ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECES. SITATES A RESTATEMENT OF THESE QUALIFICATIONS. Subscription rate for non qualifled subscribers- $\$ 15.00$ for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y.

CONTENTS

Your Design is better Your Product performs better

with this full line of

Germanium GLASS DIODES

4	TYPE	$\begin{gathered} \text { Working } \\ \text { Soltage } \\ \text { (max.) } \end{gathered}$	$\begin{gathered} \text { Formard } \\ \text { Curron } \\ \text { Ct } \\ \text { mA } 11 \end{gathered}$	Reverse Current $\mu \mathrm{A}$ at v	Type	$\begin{gathered} \text { Working } \\ \text { Voltage } \\ \text { anax. } \end{gathered}$	$\begin{gathered} \text { Forward } \\ \text { Current } \\ \text { at wolt } \\ \mathrm{mA} \end{gathered}$	Reverse $\mu \mathrm{A}$ at v
	1N35B	150	5	500 at -150	1N128	40	3	10 at -10
	1N66A	60	5	50 at -10	1N191	90	5	25 at -10
	1N67A	80	4	50 at -50	1N198	80	$5 \dagger$	75 at -10
	1 N68A	100	3	625 at - 100	1N294A	60	5	10 at -10
	1 N95	60	10	800 at -50	1N297A	80	3.5	100 at -50
	1 N126	60	5	50 at -10	1N298A	70	30*	250 at -40
	1N127	100	3	25 at -10	- 3 t+2v	$75^{\circ} \mathrm{C}$		

Germanium VIDEO DETECTOR Diodes

for TV video and portable radio application;
low capacity video detection; efficiency controlled at 50 Mc

Silicon DIFFUSED JUNCTION GLASS RECTIFIERS

	TYPE		Ave. Rectified		Reverse Current (Max.)in $\mu \mathrm{A}$ at Specified Voltage		
			$\begin{gathered} 25 \mathrm{C} \\ \mathrm{~mA} \end{gathered}$	${ }^{150}$	Volts	$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
	1 N645	225	400	150	225	0.2	15
	1N646	300	400	150	300	0.2	15
	1 N647	400	400	150	400	0.2	20
	1N648	500	400	150	500	0.2	20

Silicon DIFFUSED JUNCTION RECTIFIERS WIRE IN types
stud types

All illustrations some size. Ratings at $25^{\circ} \mathrm{C}$ unless otherwise indicated
1N253 through IN256 available to MIL Specifications.

Newton, Mass.............. . 55 Chapel Si., Blgelow 4.7500
New Yorkt. 589 Fifth Ave., PLaza 9-3900 Chicages 9501 Grand Are., Franklin Park, NAtional 5-6130 Les Angoless 5236 Santa Monica Blvd., NOrmandy 5-4221

Editor
Edward E. Grazda
Managing Editor J. A. Lippke
Associate Edifors L. D. Shergalis
G. H. Rostky

Assistant Editors
T. E. Moun
D. S. Viebig
E. T. Blake
M. M. Robinson
B. Patrusky
A. E. Takacs
F. Muehleck

Contributing Editors S. H. Hubelbank
J. G. Adashk
E. Brenner
M. S. Buckley D. M. Zuckerman

Ant Director S. Sussman
Asst. Art Director R. A. Schulze
M. M. Zaum

Production Manager T. V. Sedita
Asst. Prod. Manager M. P. Hedrick
Production Assistant C. D. Palmer
Business Manager M. C. Young
Circulation Manager N. M. Elston
Asst. Circ. Manager A. C. Lovett
Reader Service J. Medina

CO-PUBLISHERS

T. Richard Gascoigne

James S. Mulholland, Jr.

ADVERTISING

 REPRESENTATIVESAdvertising Sales Manager
Bryce Gray, Jr.
Now York:
830 Third Avenue
Plaza 1.5530
Owen A. Kean $\begin{array}{ll}\text { Third Avenue } & \text { Robert W. Gascoigne } \\ \text { PLaza 1.5530 } & \begin{array}{l}\text { Blair McClenachan }\end{array} \\ \end{array}$ Richard Parker Charles C. Wadsworth

Chicago:
64 N. Michigan Ave
SUperior 7-8054
Thomas P. Kavooras Fred T. Bruce

5720 Wilshire Blvd. WEbster 8-3881

Robert E. Ahrensdor Stanley I. Ehrenclou

London, W. 1: Michael B. Horne
24 Baker Street
England
Southeastern: Louis Neff
2808 Middle River Dr.
Fi. Lauderdale, Fla.
LOgan 6-5656

ENGINEERING REVIEW
 For more information on developments, described in Engineering Review, write to

Ceramic-in-Glass Tubes

May Improve Missile Performance

Development of a new "ceramic-in-glass" electron tube which puts a stacked tube into a conventional glass envelope, is expected to improve performance of guided missiles and satellites. As announced by Sylvania Electric Products Inc., Emporium, Pa., this new device is capable of withstanding extreme conditions of vibration, shock, and fatigue.
The tubes employ a planar structure in which tube parts and ceramic spacers are aligned on a ceramic post. The whole assembly is secured under compression by means of metal anchors
around the supports. According to Sylvania officials, the tubes are immediately adaptable to present automatic production techniques and equipment. There is no need for additional equipment tooling or circuit redesign. In addition, the stacked-mount-in-glass tubes will functionally replace existing tube types.
Two types for use in radar and ultra-high frequency communications, are presently available. Type 7244 is a dual triode, whose conventional counter-part is the 6J6WA, a medium-mu double
(continued on following page)

Partially exploded view of ceramic-in-glass tube of mounting arrangement. In assembly process various elements of mount are stacked one atop the other, a procedure radically different from that used on conventional tubes in which elements are built around a common axis.

Combining a glass envelope with the planar structure of the ceramic stacked tube, the ceramic-in-glass rubes are capable of surviving extreme conditions of shock, vibration, and fatigue. The new structure (below) is shown with standard ($751 / 2$) 6 J 6 mount (above) with which it is directly interchangeable.

ENGINEERING REVIEW

triode for use in an oscillator, amplifier or mixer up to vhf. Type 7245 is a single triode, whose conventional counter-part is Type 6 J 4 WA , a high-mu triode for use as a grounded grid amplifier in vhf ap. plications. Additional types are reported under development with an audio beam power pentode and an RF pentode scheduled to be introduced later this year.

May Eliminate Interference Problems

Communication interference problems may be partially relieved by a new power control device under development at General Electric, Syracuse, N.Y. Successful pilot tests in a two-way radio system operated by Niagara-Mohawk Power Corp. were reported by GE. Transmitted power of a base station is automatically adjusted to match the incoming power of a mobile radio. The outgoing power becomes inversely proportional to the signal received from a mobile transmitter.

Although initial tests were made with a 250 w station, the power control may be designed for operation with lower power base or mobile transmitters as needed.

It is hoped that the device will result in less co-channel interference and morc offective utilization of the radio spectrum.

Computer Aids

Missile Sub Construction

Construction of the new Polaris missile-launching submarine will be speeded by the IBM 705 computer at Mare Island Naval Shipyard, Vallejo, Calif.

The computer will be put to work immediately on such problems as pipe stress analysis for the nuclear power plant of the submarine project. This job requires some 35,000 computations and would take an engineer some 20 days to complete manually. The 705 can do the job in 20 minutes. The 705 will \& CIRCLE 4 ON READER-SERVICE CARD

Iso provide a current picture of the sork assigned to each area of proluction so that employment and material needs can be predicted and scheduled in proper sequence. Officials will also obtain a daily progress report on all construction under way from which potential trouble areas can be spotted and steps taken to avert costly delays.

Russian Electronic "Arrow" Uses Beam Memory Tubes

The Russians are now producing a new digital computer, Strela (Arrow), for mathematical work at industrial and scientific research institutions throughout the USSR. No information is available on how many Strelas have been made, but the machine has a performance rating as high as BESM, the high speed electronic computer developed by the Russian Academy of Sciences.
Strela was developed at the Design Bureau of the Russian Ministry of Instrument Building and Means of Automation, over the course of a few years. Details on the design and logic have only recently been reported in the Ministry organ, Proborostroyeniye (Instrument Building).
Strela has an internal core memory which uses 43 electron beam memory tubes. The memory can store 2047 numerical characters or instructions in the form of spot electrostatic charges on the plates of the 43 tubes.

The external memory uses two magnetic tape units with 5 in . wide tape, 328 feet long. Each tape can store 253 zones of information groups with up to 200,000 numerical characters. Reading and writing speed is 1000 characters a second.

The computer's 16 standard programs, with up to 256 instructions, and constants to 256 numerical characters are stored in diode memory units with provision for manual dialing and switching of plug-in ells. Strela uses a floating decimal in both its storage and in its nuperations.

two-channel rectilinear recording with direct time correlation!

Why synchronize two drive systems, handle two chart rolls, or for that matter, maintain two separate instruments? The DUAL "recti/riter" gives you two independent galvanometers, inking systems, and "recti/rite" linkageswith a single chart drive-enables you to record two variables simultaneously and visually correlate events to an accurate common time base. Record such variables as voltage and current, wind direction and velocity, temperature and pressure, torque and speed, input and output. and many others.
And, have the easiest of all recordings to read-true rectilinear side-by-side traces that you read at a glance with a simple ruler ... no difficult interpretations so highly subject to reading errors as with old-fashioned curvilinear recordings.
Add these to the other outstanding features of the
"recti/riters" . . . galvanometer accuracy, easy frontal access for all routine operations, fingertip control of 10 chart speeds, dependable closed inking system, AC, DC, spring, or external drives . . . and you have the most work-saving recorder available.
Remember, too, that only the "recti/riter" and matching accessories provide these wide ranges for recording clectrical parameters:

$$
10 \text { millivolts to } 1000 \text { volts }
$$

500 microamperes to 1000 amperes

$$
\text { Monitor standard frequencies }-40,60,400 \mathrm{cps}
$$

When you write for specific information on the DUAL "recti/riter", Bulletin R-502, ask TI to include facts on the SINGLE "recti/riter", Line Voltage Monitor, and Model 301 All-Transistor DC Amplifier. You will be interested in the complete versatile line.

Texas Instruments

I NCORPORATED

INDUSTRIAL INSTRUMENTATION DIVISION

3609 buffalo speedway . mouston, texas - cable: houlab CIRCLE 5 ON READER-SERVICE CARD

[^0]
" 14 Hi H .
 Faritidid silion trasisidus

Milli-micro-second switching speeds and high current too

Where applications require transistor performance beyond previously accepted high limits, Fairchild Silicon Trans. istors offer an exceptional three-way combination:

1) 50 milli-micro-second typical rise time - permits faster 1) 50 mili-micro-second typical rise time - permits faster switching rates in computing de
is typically 0.2 microseconds.
2) 1 watt dissipation at $100^{\circ} \mathrm{C}$. - Saturation resistance is 10 ohms maximum. Resulting high-current capability provides opportunities to increase equipment performance while reducing circuit complexity
3) Silicon temperature performance - Maximum junction temperature of $175^{\circ} \mathrm{C}$. gives low leakage and more safety factor at any lower temperature
These characteristics are the outcome of the solid-state diffusion technique used at Fairchild. Other important accomplishments of this process are excellent reliability and a high order of electrical uniformity throughout large
production runs.
The accomplishment of a research-production team Singleness of purpose did it. Fairchild assembled a uniquely experienced team of research scientists and production engineers whose objective was to bring the advanced solid-state diffusion process under close control. transistors into quantity manufacture with firm product specifications exceeding anything previously offered.

2N696 and 2N697 SILICON TRANSISTORS

Symbol	Specification	Rating	Characteristics	Test Conditions
$V_{\text {CE }}$	Collector to Emitter voltage ($25^{\circ} \mathrm{C}$.)	40v		
${ }^{P} \mathrm{C}$	Total dissipation Case temp. $25^{\circ} \mathrm{C}$. Case temp. $100^{\circ} \mathrm{C}$	2 watts 1 watt		
${ }^{\text {fre }}$	D.C, current gain		$\begin{aligned} & \text { 2N696- } 15 \text { to } 30 \\ & 2 N 697-30 \mathrm{~min} \text {. } \end{aligned}$	$\begin{aligned} & { }_{l}^{C_{C}=150 \mathrm{ma}} \\ & \mathrm{v}_{\mathrm{C}}=10 \mathrm{v} \end{aligned}$
${ }^{R} \mathrm{CS}$	Collector saturation resistance		$6 n$ typical, $10 n$ max.	$\begin{aligned} & C^{-150 \mathrm{ma}} \\ & '_{B}=15 \mathrm{ma} \end{aligned}$

For full information and spocificalions.
write Dept.

844 CHARLESTON ROAD • PALO ALTO, CALIFORNIA

ENGINEERING REVIEW

Six Digit Voltmeter Aids Research

The first six-digit digital voltmeter ever pro duced has been delivered to the National Bu reau of Standards. Developed by Non-Lineas Systems, Inc., which was selected by NBS to undertake the project, the instrument is not slated for production according to NLS officials.

Voltages from one ten thousandth of a volt to one hundred volts may be measured automatically, at approximately four readings per min Thesc precise measurements are instantly displayed in numerical form in a readout window on the front panel of the instrument. The illuminated readout numerals are one in. high and appear with the appropriate plus or minus sign and correctly positioned decimal point.
Instrument calibration is automatic. Provision is also made for a control device and connections to operate an IBM Summary Punch machine which automatically punches the voltmeter readings on cards that can be fed into a computer or stored for later use.

NBS will use this instrument in a research program involving the precise measurements of minute voltages that must be taken during basic research being conducted on extremely pure forms of rare substances.

World's Worst Weather Duplicated
The candy-striped bubble in the foreground is the radome of a Navy jet bomber's automatic armament system undergoing severe weather condition testing. The massive weather chambers that simulate the altitude of 90,000 feet, are capable of temperature ranges from - 105 deg to 500 deg and humidity approaching 100 per cent, even with salt spray. The $\$ 400,000$ apparatus resembles a two-car garage 10 feet high, 18 feet wide and 16 feet deep. The tunnel is installed at the Westinghouse Friendship Airport plant, Baltimore, Maryland.

CIRCIE 102 ON READER-SERVICE CARD \geqslant ELECTRONIC DESIGN • August 20, 1958

with MORE MODULATION

The extremely wide range of pulse width, delay and repetition rate are read directly on the front panel of Polarad microwave generators. In addition these units provide broadband internal FM and CW modulation, versatile external modulation capability and a sync output for all signals. These features provide the largest choice of microwave test signal combinations available in signal generators.

Internal pulse rise and decay: 0.1 microsecond.*
External pulse modulation: positive or negative polarity, 10 to 10,000 pps, 0.2 to 100 microseconds width. ${ }^{*}$
output synchronization pulses: positive polarity, delayed and undelayed.

Rugged construction. Quick, easy inspection and servicing. Continuous UNI-DIAL tuning in each frequency range. Noncontacting tuning cavity chokes.

For every application, 950 to $21,000 \mathrm{mc}$.

Model	Frequency Range	Power Output
MSG-1	950 to $2,400 \mathrm{mc}$	
MSG-2	2,000 to $4,600 \mathrm{mc}$	0 dbm (1 milliwatt)
PMX	4,200 to $8,000 \mathrm{mc}$	to -127 dbm , directly calibrated
MSG-34	6,950 to $11,000 \mathrm{mc}$	
PMK	10,000 to $11,000 \mathrm{mc}$ 	

AND MICROWAVE POWER SOURCES $-1,050$ to $17,500 \mathrm{mc}$.
High power output: 14 to 700 milliwatts depending on frequency. Modulation: Internal square wave or external FM and square wave.

43-20 34th Streef
Long Island City I, N. Y.
Representatives in principal cities
 Yellow Pages) for a copy of "Notes on Microwave Measurements."

MODULATION CAPABilities*

Generates CW , FM, internal pulse, internal square wave. Or can be externally modulated.

Pulse delay: adjustable from 2 10 2,000 microseconds.

Pulse repetition rate: adjustable from 10 to $10,000 \mathrm{pps}$.

Pulse width: adjustable from 0.2 to 10 microseconds.

Linear sawtooth internal FM modulation, 10 to $10,000 \mathrm{cps}$, 5 mc minimum frequency deviation.

Internal or external, pulse or sine wave synchronization.

POLARAD ELECTRONICS CORPORATION:

Please send me complete specifications for:
\square Microwave Signal Generators,
to

\square Microwave Power Sources,
to \qquad mc

My application is:

Name.
Title
Dept.
Company
Address

Recording Optical Tracking Instrument which sequentially photographed Sputnik II.

How Long The "Moon"

The entire Soviet Satellite, Sputnik II, conaining the dog "Laika", instrumentation, propellent tank, and motor, was from 74 to 84 ft long. This measurement was calculated from photographic evidence taken with the missile tracking camera, designed and built by the Perkin-Elmer Corp., Norwalk, Conn., for the Air Force Missile Test Center.
Trained on Sputnik II as it passed over Patrick Air Force Base, Fla. on December 21, 1957, the Recording Optical Tracking Instrument took the sequence of photographs necessary to determine the length.
Russian Satellite Beta (Sputnik II) passed within 200 statute miles of the Missile Test Center. Approximately 400 ft of 70 mm film was used by the tracking telescope. The telescope has a 24 in . aperture and focal length up to 500 in . Maximum focal length was used for this series. The accompanying series of enlargements shows typical frames from the best or middle part of the photographic series at intervals of two seconds of time. All enlargements have been magnified 27.7 times from the original film. This magnification was determined from similarly enlarged photographs of the sprocket holes of the film and their known dimensions and spacing. Image size was measured on the enlargements to one-hundredth of an inch. These values divided by the magnification of 27.7 gave the size of the image on the original film. Further corrections were then made for angle distortions.

Two-second sequence shots of "Laika" aloft.
© Circle 102 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 20, 1958

LEACH ELECTRONIC RELAYS

SOLVE THESE PROBLEMS:

malfunction due to vibration and shock Exclusive counterbalanced armature with rigid central pivot eliminates armature flutter, insures overtravel and high contact pressure.
internal contamination

Inorganic, contaminant-free ceramic actuator prevents formation of gases. Drawn aluminum can is crimped to header to prevent introduction of flux. Entire unit hermetically sealed and mass spectrometer checked.malfunction at elevated ambients
Magnet coil wound with Teflon insulated magnet wire on one-piece Kel F bobbin.

BALANCED ARMATURE RELAY

Type 92292 PDT 5 amp , 3 amp, microamp
features
Rectangular configuration Stud or bracket mountings Terminals-solder lug or potted leads
Silver alloy or gold alloy contact material
Solid or bifurcated contacts
Coils available for ac or dc

TYPICAL RATINGS
Contact ratings (resistive) @ 28 vdc or 115 vac single phase
$3 \mathrm{amp} @ 125^{\circ} \mathrm{C}$ ac and dc
5 amp @ $85^{\circ} \mathrm{C}$ (dc only)
Minimum operating cycles - 100,000 Weight-approx. -0.125 lbs . Shock-50 G's
Vibration- $\mathbf{1 5}$ G's to $2,000 \mathrm{cps}$
Temperature range $-70^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Applicable specifications-MIL-R-6106C Class A5, A8, B8,
Applicable specifications-MIL-R-6106C Class A5, A8, B8,
minimum current tests applicable; MIL-R-5757B Class A and B
Also available for special requirements such as microamp
switching, high vibration and special mountings.

LEACH'S COMPLETE LINE of Balanced-Armature electronic, missile and aircraft relays is described in our new catalog. Write today.

 5915 Avalon Boulevard, Los Angeles 3

CORPORATION CIRCLE 7 ON READER-SERVICE CARD

LEACH RELAY

A division of

the beginning of an exciting

 new transistor familyExtreme reliability - only high temperature materials used, process carefully controlled.

Higher operating femperatures.
Rugged -- withstands 50,000G acceleration.
New header design provides effective interelectrode capacitance isolation... smaller inductance

Low nuclear radiation susceptibility.
Modified JETEC 20 case . . . hermetically sealed.
Meets or exceeds mechanical and environmental requirements of MIL-T-19500A.

High uniformity - "Normal" instead of "selected" distribution.

A Revolutionary New Family

These are only the first of a wide variety of germanium Motorola Mesa Transistors coming your way soon.

Cmence 44, minors 1500 Whi fivmis
mo
 6555 Sumel loubvard
HOllywood $\$ 3230$

Silicon-Thin Sliced Loaves
Using a new diamond wheel Audio Devices' Rectifier Division, Santa Ana, Calif. recently revealed its silicon-saw. dust loss has been reduced 45 per cent.
At $\$ 5,000$ a pound, crystal silicon is not a material to be wasted. Conventional diamond wheels cut away 65 per cent or more of the substance during production of silicon wafers. The Di. atronic wheel, manufactured as a standard product by Navan, Inc., Santo Monica, Calif., has cutting edge widths ranging from 0.006 in . with a tolerance of +0.005 in ., -0 in .

The new wheels cut satisfactorily for 30 days or more. This compares with four hours to two days for conventional wheels. Silicon crystals cut by Audio are usually 0.10 in . sq and 0.13 in . thick. Clearly a diamond wheel with a maximum edge width of 0.0065 in . instead of the former $0.007 \mathrm{in} . \pm 0.001$ results in substantial production savings.

Unconventional Sources of Electrical Power Surveyed

Most practical unconventional power sources for converting solar, thermal, chemical, and mechanical energies into electricity, appear to be the oscillating electromagnetic generator, thermopile generator, ion exchange membrane, fuel cell, and photovoltaic battery. This was the conclusion of an Air Force sponsored survey which has just been released to industry. The

[^1]study involved the theoretical and practical limitations and capabilities of power generation by means other than rotating machinery, conventional batteries, or radio activity. The data, drawn from the literature and limited laboratory work, was intended to determine where emphasis should be placed in a possible development program. A. L. Betts and P. A. McCollum of Oklahoma A \& M College conducted the survey for Wright Air Development Center, U. S. Air Force. The report is Unconventional Power Sources divided into two parts (PB 131411 and PB 131218) each selling for two dollars from OTS, Dept. of Commerce, Washington 25, D.C.

Largest Radio Multi-
 Channel Link Opened

The largest radio telecommunications system capable of providing an ultimate capacity of over 50,000 channel miles has recently been opened in Nigeria. Constructed by Marconi's Wireless Telegraph Co., the system uses Marconi vhf multichannel equipment at all the 14 terminal and 25 repeater stations.

Utilize Body Heat in Cold Weather Operation

Development of a battery vest, utilizing human body heat to keep dry cells warm and active for radio operators in extremely cold weather, was announced by the Department of the Army.
Developed by the U. S. Army Signal Research and Development Laboratory, Fort Monmouth, N. J., the idea is to place dry cell batteries in a vestlike garment worn beneath parkas to capture body heat. A cord is used to plug in standard Army radios. With the vest batteries developed for lowtemperature use are expected to stay in service ten times longer in 40-degree -below-zero weather. Test models were built by Burgess Battery Co., Freeport, N.Y.
circle 9 on reader-service card \rightarrow

1500 Volts 400 ma at $150^{\circ} \mathrm{C}$!

Trangitron silicon rectifiers

Here for the first time is a 1500 volt rectifier proven in service at $150^{\circ} \mathrm{C}$ Case. Current levels up to 400 ma are handled by the TM155 ... the latest to join Transitron's expanding family of high voltage silicon rectifiers. And now this entire high voltage series is priced more attractively than ever!

Hermetically sealed in the standard $7 / s_{0}$ " hex package, these units are resistant to shock, vibration and environment changes. The new higher ratings make them useful in high voltage power supplies for magnetrons, klystrons, electronic precipitators and other applications requiring 600 volt output or higher.

> Send for our rectifier brochure, TE-1351.

FEATURES

- no derating at high temperature
- high power handling ability
- SMALL SIZE
- hermetically sealed

For still higher voltages at currents to 175 ma . Transitron makes rectifier assemblies in cartridges and in the convenient "2 W" axial lead package.

Type	Maximum Inverse Operating OIttoge (volts)	Maximum Average Forwerd Current (ma)	Maximum Average Cnverse Curront Full Load (ma)
TM155	1500	400	.5
TM156	1500	200	.5
TM124	1200	1000	.5
TM125	1200	400	.5
TM126	1200	200	.5
TM104	1000	1000	.5
TM105	1000	400	.5
TM106	1000	200	.5

Transitron

wakefleld, massachusetts

Now! Low coat! Fresh design approach!

Direct-Reading

 FREQUENCY METERS
8.2 to 40.0 KMC

A completely new engineering approach enables the new -hp-532A series Frequency Meters to provide you with low cost, direct-reading convenience and dependability not previously available in a microwave frequency meter.

These new general-purpose test instruments avoid the out-moded and error-prone sliding contact design. Instead, the 532 A series employs a high Q resonant cavity (TE_{111} mode) tuned by a choke plunger. The cavity is mounted on a special wave-guide section designed so that a very small amount of power is reflected at resonance, while the major portion is transmitted. Reaction at resonance is virtua!ly constant full range; there are no spurious modes or resonances; resonance is indicated by a dip of approximately 1.5 db in output. Scale divisions 5 MC apart insure a high order of resolution. Tuning is by a precision lead screw springloaded to eliminate backlash. Four separate models covering the $\mathrm{X}, \mathrm{P}, \mathrm{K}$ and R bands (see table) are offered.

HEWLETT-PACKARD COMPANY
GO7IK PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A. CABLE "HEWPACK" • DAVENPORT 5.445I
FIELD REPRESENTATIVES IN ALL PRINCIPAL AREAS

SPECIFICATIONS

Accuracy:

Frequency range, KMC:
Waveguide size, inches:
Resetability:
SWR at resonance (approximate):
Price:

X532A	P532A	K532A	R532A
0.08%	0.1%	0.1%	0.2%
8.21012 .4	12.4 to 18.0	18.0 to 26.5	26.5 to 40.0
$1^{\prime \prime} \times 1 / 2^{\prime \prime}$	$0.702^{\prime \prime} \times 0.391^{\prime \prime}$	$0.5^{\prime \prime} \times 0.25^{\prime \prime}$	$0.36^{\prime \prime} \times 0.22^{\prime \prime}$
0.01%	0.01%	0.01%	0.01%
$1.3: 1$	$1.3: 1$	$1.3: 1$	$1.3: 1$
$\$ 150.00$	$\$ 210.00$	$\$ 230.00$	$\$ 250.00$

Data subject to change without notice. Prices f.o.b. factory

offers complete coverage in microwave measuring equipment

ENGINEERING REVIEW

Gevic computer, for a typical fighter bomber appli. cation, will weigh only 45 pounds and occupy 0.8 cuft . Arithmetic module is being inserted in package.

Lightweight Digital Computer Designed for Airborne Use

Weighing 45 pounds and occupying 0.8 cu ft . of space, a new airborne digital computer has sufficient speed and capacity to handle all computations required by an advance fighter-bomber. Developed by the Light Military Electronic Equipment Department of the General Electric Company, Utica, N.Y., the computer, called GEVIC, has been designed with high solution and iteration rates, so that it can be incorporated directly into control system loops.

Design engineers stated that the same tech. nique could be applied to airborne multi-threat evaluation, pre-launch missile computation, or inflight missile inertial guidance.

The GEVIC computer is based on a newly. developed variable increment type of variable difference mathematics. This special mechanization permits very fast slew operation, yet provides high accuracy digital resolution during normal operation. The computer can select any one of numerous increment values to accommodate rapidly changing parameters.

GEVIC uses magnetic logic and subminiature techniques throughout. The magnetic core-diode circuits are driven in parallel from a single sinewave clock supply. The parallel connection enables the core units to operate over wide ranges of voltage and diode impedance values. Clock supply wave-shape is of minor importance. Components are mounted on only one side of the printed circuit boards to facilitate dip soldering techniques.

High-Purity Tantalum Produced Commercially

Achievement of commercial prodiction of very high purity tantalum metal was announced by the Research Corp., Cambridge, Mass.

The new tantalum product is very low in oxygen, carbon and other impurities which adversely affect melting and fabrication. High purity gives the NRC tantalum ingot unusual ductility and low hardness (60-65 Brinell), permitting size reduction from 3 -in. diam ingot to $0.0005-\mathrm{in}$. foil without intermediate annealing.

Attack Simulator Trains Anti-aircraft Crews

Nike missile-men and other antiaircraft crews are being trained in enemy interception and destruction by a new attack simulator. The device is housed in a 20 -foot trailer since it is designed to be moved from one weapons site to another It will be used at Nike guided missile centers and at 90 -millimeter and 120 -millimeter artillery sites both in the United States and overseas, for the continual training of fire-control and missile-guidance radar operators.
The device, developed by IT\&T, New York, N.Y., can inject six synthetic aircraft targets into the control radars, with each of the simulated targets having the characteristics of extremely fast, maneuverable planes. As each of the planes is detected and appears on the radar scope, the instructor can order into the system "jamming" by the "enemy" to simulate various types of interference. The speed with which the operators can solve each of the problems is indicated by a time scoreboard.
Target speeds up to 2300 miles an hour, with a maximum target range of more than 100 miles can be simulated. It also can simulate target altitudes up to 80,000 feet; maneuvers, including climb rates, up to $40,000 \mathrm{ft}$ a min and dive rates up to $80,000 \mathrm{ft}$ a min.

IN GENERAL ELECTRIC'S NEW PANEL INSTRUMENTS

DISTINCTIVE APPEARANCE

Clean-line design sparkles with functional new beauty-adds a distinctive touch to your fines switchboards and panels. Big border-to-borde scale is framed in aluminum for better color blend ing. Design innovation creates the illusion of big ness, yet they fit into the same useable space as old style instruments.
excellent readability
BIG LOOK styling provides up to 28% increase in scale length over types replaced. Easy-to-read numerals cannot be obscured by the slim, tapered pointer. Clear raised window allows natural light to flood scale area, keeping shadows out.

RELIABLE OPERATION
Self-shielding: Exclusive moving-magnet mechanism and the core-magnet mechanism can generally be mounted on magnetic or non-magnetic panels without special calibration.
Completely Sealed: All cases are sealed with neoprene gaskets to protect internal parts from dust, dirt, and water for extra-long, trouble-free operation. D-c movements and a-c iron-vane movement are accurate to within $\pm 2 \%$ of full scale value.

For complete information contact your nearby G-E Apparatus Sales Office or Distributor; or write for bulletin GEA-6678A, Section 582-31, General Electric Company, Schenectady 5, N. Y.

Progress Is Our Most Important Product GENERAL (96) ELECTRIC

Reporting uses for

COLLOIDAL GRAPHITE, MOLY-SULFIDE, VERMICULITE, AND OTHER SOLIDS

Typical application of colloidal graphite for the elimination of static charges on drive belts.

'dag' dlspersions for static

 ellmination are being used increasingly where accumulated charges prove hazardous or contribute to a high noise level. For years, cotton wicks impregnated with colloidal graphite in water have been installed along wing and fuselage surfaces of planes. These conductive wicks bleed off static charges into the airstream
'DAG' COLLOIDAL GRAPHITE... FOR BETTER PRODUCT DESIGN

High-purity, electric furnace graphite, colloidally dispersed in a variety of liquid carriers - this is the product gaining increasing use in the electronics and electrical manufacturing industries.
Design Engineers acquainted with the unusual properties of 'dag' colloidal graphite are adapting this versatile material to solve design problems that heretofore were difficult to overcome in any other way.
Films formed with dispersions of colloidal graphite are chemically inert, non-fusible, electrically and thermally conductive, and resistant to electron bombardment. In addition, it is one of few conductive materials having excellent lubricity.

Conductlve coating for grids

 and plates In vacuum tubesThe excellent thermal-radiation properties of graphite help keep grids cool enough to prevent undesired primary emission. The low photo electric properties of graphite render properly coated parts practically free from the effects of such electromagnetic radiations as light, X-rays, etc. Applied to grids (and frequently to plates) of thermionic tubes, a graphite coating offers protection from the impact of primary particles since it is resistant to electron bombardment. This greatly reduces or entirely eliminates emission of so-called"secondary"electrons. Colloidal graphite can be applied directly to parts which need not have undergone such preliminary treatments as acid etching, sand blasting, or oxidation. Where radiation effects are desired, it should be remembered that surfaces which are rough, as well as black, radiate more effectively. Graphite coatings can be applied by such convenient methods as dipping,

Colloidal grophite is spray-applied on grid plotes to in:rease radiation, reduce secondary emissio.?
spraying and brushing. Continuous strip stock for plates, for example, may be coated by guiding the strip into a dip tank, then withdrawing past wiper blades and through a drying tower. Graphite coatings on grids or plates are used in various types of power-amplifier tubes to increase radiation or reduce secondary emission.
before they build up to the danger point. Dust-collector bags used on pulverizing, abrading and grinding equipment also are coated with colloidal graphite in alcohol to eliminate this same fire hazard. Graphite dispersions applied to the pulley side of high speed drive belts also hold static
electric charges in check. There are many more uses for 'dag' colloidal dispersions in electronic and electrical applications. Write for Bulletin No. 433 or call in your Acheson Service Engineer for his recommendations. They can prove profitable. Address Dept. ED-88.

ACHESON Colloids Company PORT HURON, MICHIGAN

A division of Acheson industries, inc.

Also Achescon Industries (Europe) Ltd. and affiliates, London, England
Owices in: Boston - Chicago - Clevetand - Dayton - Detroit - Los Angeles - Milwaukee now York - Priladelphia - Punstargh - Recthester - St. Louis - Toronto
CIRCLE 12 ON READER-SERVICE CARD

WASHINGTON \& REPORT

IIII UiI UI

FH: Herbert H. Rosen

SAGE Becomes Operational

A new era opened on electronic automation recently with the dedication of the first operational SAGE center at McGuire Air Force Base, New Jersey. While technologically not represent ative of the most advanced electronics, SAGE does function as the foundation of another area of specialization in the electronics industry. One that will revolve around the air defense of the nation with some application to civilian air traffic control.

SAGE has also provided eight organizations with a solid entry into this new field-an entry that leaves little room for other companies. Western Electric acted as the prime contractor for SAGE-gathering all the loose ends together to form this giant complex. Burroughs provided radar data links with its AN/FST-2 units. The Lincoln Lab of MIT was concerned with the overall design of the system. IBM's AN/FSQ-i computer is the heart of SAGE. Bendix Radio supplied the FPS-20 long range radar, the gap filler radar FPS-14, and parts of the computer inputs. General Electric's power supplies feed the computers and other units. Lewyt has developed a transistorized display and read-cut printer for SAGE. And a newcomer to the team, Systems Development Corps-a Rand Inc. spinoff organization-worked on the programming of the data.

SAGE continues to be a very expensive and complex experiment. Its complexity dictated the selection of only large, deeply organized, well. financed principal contractors. Cost of SAGE has been reported to be between $\$ 2.4$ billion and $\$ 7.2$ billion. The latter figure includes every. thing in the Air Defense System associated with SAGE-radars, missiles, missile sites, control centers, observations posts, power, communica tions, etc. The $\$ 2.4$ billion represents the cost 0 bringing the radar link and the sample center to the point of dedication-as at McGuire.

Even spread over the six years spent in devel. oping SAGE, the finances of this program are staggering. The huge black house-and every thing in and around it-cost about $\$ 132$ million. A cost the Air Force anticipates will not be repeated at other centers. For the moment, however, about $\$ 27$ million bought the computer,

ELECTRONIC DESIGN • August 20, 1958
a^{1} out $\$ 10$ million the brick and mortar in the building, and the rest for power, air conditioning, land lines, data links, radar link, office space, etc.

McGuire is the first of 29 major SAGE Direction Centers. Nine of these will have duplicate S. IGE installations and will act as central control for regions consisting of four or more SAGE Centers. That brings the total up to 36 morenearly another billion dollars of equipment.
By the time the tenth or so center is built, the Air Force expects the average cost of each one to be reduced considerably. Engineers on the project also predict that the newest electronic tech niques will be more generally used-notably semiconductor technology.
Even then, the Air Force estimates that operations and maintenance costs of the 36 centers will be about $\$ 489$ million a year. Those costs should start in 1963, when all of the SAGE Centers are supposed to be operational.
An official estimate of the total bill the U.S. must pay annually for all of its air defense is $\$ 4-1 / 2$ billion. Of course, that includes both the manned and unmanned defensive forces being coordinated by NORAD-the North American Air Defense Command-at Colorado Springs.
Early next year, it is hoped, the first BOMARC squadron will be operational at McGuire. Part of the SAGE computer will be used to control and guide this medium range missile.
Meanwhile, a small-scale controversy rages over the relative roles of SAGE and Missile Master. The Air Force is more concerned with the long range intercept as typified by DEWline and the F-105. Missile Master and its 50 -mile Nike-Hercules are considered the last ditch stands.
Still, the two systems must be linked together. Within the next two years the differences between the two systems must be resolved. SAGE is digital. Missile Master is analog. And the data link connecting them cannot be as large as either installation.
Still others comment on the number of missions SAGE can control-in the 40 's. As an air control system for civilian traffic, this is an intolerably small rate. Moreover, SAGE requires people-it is semiautomatic.
As SAGE now stands it fits into the National Defense Plan against manned airplanes and airbreathing missiles-the subsonic kind. This is a condition the military planners expect to continue for a few years. After that what?
SAGE can be connected to BMEWS-the ballistic missile early warning system-just as it is now connected to the DEWline. And as it will be eventually to Missile Master. But there are grave doubts that unless there are some improvements, its ability to cope with supersonic ballistic missiles is weak.

TЗ series sub-sub-miniature basic switch
extreme small size--may be ganged in minimum space

long, long mechanical life--

 $21 / 2$ million cycleslonger electrical life than switches twice its size
no dead break--perfect for super sensitive applications
high repeatability--only one moving part besides button
consistent, close-tolerance mounting-in single or ganged set-ups
rugged, durable high temperature and impact-resistant case
wide range standard actuators available in leafs, toggles, pushbuttons, etc.
super long life model available with limited overtravel

OPERATING CHARACTERISTICS

Weight. Contact Operating Force Pretravel.. Contact Pressure. Overtravel. Differential Movement Differential. Release Force.. Mechanical Life.... Ambien Temperature Electrical Life Rating.
\qquad $-65^{\circ} 10+250^{\circ}{ }^{\circ}, 000$ eycles, approx ($350^{\circ} 10$ order) 6 amps, 125/250 VAC 30 VDC rivili 6 amps, $125 / 250$ VAC, 30 VDC resistive 3.5 amps, 30 VDC inductive sea level $3.0 \mathrm{mps}, 30$ VDC inductive $50,000 \mathrm{ft}$
2.5 amps, 30 VDC inductive $100,000 \mathrm{ft}$.

WRITE FOR MORE DETAILS

ELECTROSNAP CORPORATION SWITCH DIVISION
4216 W. Lake Streef Chicage 24, Illinois TELEPHONE: VAN BUREN 6.3100 TWX NO. CG-1400

过国四for Logic Design Hloffman Magnalog System

featuring

ZENER MAGNETIC LOGIC MODULE

＊Designed for miniaturization and simplicity of circuitry．
Typical applications include：bistable；binary half and full adder； shiff register；binary counters；decimal counters；＂one＂generator； ＂AND＂，＂OR＂，＂NOT＂functions．

FEATURES：

－ 100 KC information rate
－High Temperature Operation
－Silicon Zener Diodes
－Miniature Size
－ 7 pin，miniature plug－in cases
－Synchronous Operation
－All Static Components
－Low Cost
－Flexibility of Use
－Versatility of Application

｜loffman

 Electronics

CORPORATION

SEMICONDUCTOR DIVISION

930 Pitner Avenue－Evanston，Ill．－UNiversity 9－9850
Regional Offices：WASHINOTON，D．C．．．．CHICAGO ．．．LOS ANGELES
LEADING THE FIELD IN SILICON ZENER SEMICONDUCTOR DEVICES

MEETINGS

Sept．3－5：Ist National Conference on the Appli－ cation of Insulation
Cleveland，Ohio．Sponsored by AIEE and Na－ tional Electrical Manufacturers Association．Ses． sions will be divided according to equipment category，as follows：rotating equipment，trans． formers，controls and instrumentation，and elec－ tronics．Morning sessions will consist of papers delivered by representatives of electrical insu－ lating materials manufacturers；afternoon ses－ sions presentations will be made by electrical equipment manufacturers．For information write George Bamberg，Cleveland Publicity Committee，c／o The Glastic Corp．， 4321 Glen． ridge Road，Cleveland 21，Ohio．

Sept．12：Regional Technical Conference，Society of Plastics Engineers
St．Clair Inn，St．Clair，Mich．Sponsored by De troit Section of SPE．Arrangements have been made for papers on injection molding，compres． sion molding，thermoforming，reinforced plas－ tics，automotive lighting，and vacuum metalliz ing．For information write J．D．Young，E．I du Pont de Nemours \＆Co．， 13119 W．Seven Mile Rd．，Detroit 35，Mich．

Sept．12－14：7th Annual High Fidelity Show
Palmer House，Chicago，Ill．Write to Interna－ tional Sight and Sound Exposition，Inc．， 1 N ． La Salle St．，Chicago 2，Ill．，for further details．

Sept．15－19：13th Annual Instrument－Automation Conference and Exhibit
Philadelphia Convention Hall，Philadelphia，Pa Sponsored by ISA．Two technical sessions on the use of instruments in the nuclear field will high． light the 5－day conference．Ask Fred J．Tabery， Conference and Exhibit Manager， 3443 S．Hill St．，Los Angeles，Calif．，for further information．

Sept．22－24：National Symposium on Telemetering Americana Hotel，Miami Beach，Fla．Sponsored by PGTRC of IRE．Ken West， 1345 Indian Rives Dr．，Eau Gallie，Fla．，has additional information about the symposium．

Sept．24－25：7th Annual Symposium on Industrid Electronics
Rackham Memorial Auditorium，Detroit，Mich Sponsored by PGIE and AIEE．Address queries
to William R. Thurston, General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass.
Sept. 29-Oct. 3: ASTE Semi-Annual Meeting and Western Tool Show
Shine Exposition Hall, Los Angeles, Calif. Sponsored by American Society of Tool Engineers. Theme will be "Tooling for the Space Age." For more information write ASTE, 10700 Puritan Ave., Detroit, Mich.

Oct. 1-2: 2nd Annual Symposium on Engineering Writing and Speech
New York City. Sponsored by the IRE PGEW.
Oct. 13-15: National Electronics Conference
Hotel Sherman, Chicago, Ill. Tentative program includes sessions on transistors, servomechanisms, antennas, audio, filter design, solid state, microwaves, instrumentation, network theory, engineering writing and speech, computers, radar and radio navigation, magnetic amplifiers, engineering management, industrial electronics, television and communications. More information can be obtained from National Electronics Conference, Inc., 84 East Randolph St., Chicago 1, III.
Oct. 20-21: 4th National Aero-Com Symposium Hotel Utica, Utica, N.Y. Sponsored by the IRE Professional Group on Communications Systems. It will stress the requirements, progress and challenge of communications in all its phases.
Oct. 20-22: URSI Fall Meeting
Pennsylvania State University, University Park, Pa. Co-sponsors are IRE professional groups on information theory and antennas and propagation. Write U.S.A. National Committee, URSI, 2101 Constitution Ave., N. W., Washington 25, D. C., for more information.

Oct. 22-24: Fifth National Symposium on Vacuum Technology
Sir Francis Dïake Hotel, San Francisco, Calif. Sponsored by American Vacuum Society. For more information write American Vacuum Society, Box 1282, Boston, Mass.

Oct. 22-25: National Society of Professional Engineers Fall Meeting
St. Francis Hotel, San Francisco, Calif. Sessions will be devoted to hearing committee reports on such issues as the effect of the accelerated activity in space travel on the future of the engineering profession; effective utilization of present engineering manpower; encouraging capable high school students to consider careers in engineering; and the role of the Federal government in engineering education. J. A. Sontheimer,

highest quality, outstanding value complete coverage 0.008 cps to 10 MC each designed to do a specific job best stable RC circuit pioneered by -hp.

205AO - time-tested convenionce for high power fests, gain measurements. 20 eps to 20
5 watts output. $\$ \$ 75.00$

HEWLETT-PACKARD COMPANY
4056K Page Mill Road - Palo Alro, California, U.S.A. Cable "HEWPACK" - DAvonpori 5-4451

Fiold ongineors in all principol areas
Complete details from your -hp- representative or write direct

MEETINGS

Secretary, California Society of Professional Engineers, c/o St. Francis Hotel, San Francisco, Calif., has more information.

Oct. 27-28: East Coast Conference on Aeronautical and Navigational Electronics
Lord Baltimore Hotel, Baltimore, Md. Sponsored by IRE Professional Group on Aeronautical and Navigational Electronics and the Balti more Section. Technical papers to be presented will concern such things as new techniques in air navigation, new systems for air traffic control and radar. There will also be exhibits of navigational systems and test equipment and components. For additional information contact Harry S. Rutstein, Publicity Chairman, Eastern Associates, Inc., Baltimore, Md.

Nov. 19-20: Northeast Electronics Research and Engineering Meeting
Mechanics Hall, Boston, Mass. Sponsored jointly by the Boston, Connecticut, and Western Massachusetts Sections of the IRE. R. R. Leonard Datamatic Div., Minneapolis Honeywell Regulator Co., Newton Highlands, Mass., has more information.

Dec. 2-4: 3rd EIA Conference on Reliable Electrical Connections
Dallas, Tex. For information, write W. O. Rich ards, 224 Cedar St., Syracuse 3, N. Y.

Paper Deadline

Oct. 1: Deadline for papers to be presented at the 1959 Western Joint Computer Conference, to be held at the Fairmont Hotel, San Francisco, Calif., March 3-5, 1959. Theme of this conference will be "New Horizons with Computer Technology." There is particular emphasis on factual papers dealing with the newer applica. tions of computer techniques, such as information retrieval, operation control, pattern analysis, decision making, computer communications, learning concepts, as well as on papers dealing with advances in computer component and systems design. There will be two sessions of a speculative nature; one dealing with the extension of computer technology into areas not considered feasible at present, the other with the philosophis and/or social implications of the widespread application of automatic computer techniques. Papers should be prepared based on a 20 -minute delivery time. There are no format requirements for submission drafts. Three copies of proposed paper should be submitted to M. L. Lesser, IBM Research Laboratory, San Jose, Calif.

EDITORIAL

DOD Must Linear Program

Previous comment on this space, June 25 and August 6, dealt with the possibility of standardizing some aspects of digital computer design for weapons systems. The Department of Defense asked for voluntary industry standardization. From a survey on this subject we learned that industry felt it was too premature to standardize such a fluid industry, but that some benefits could be gained if it were possible. The complexity of the problem points to the need for a summit view to see everything that is involved. This means that if the Department of Defense wants standardization they will have to say what the specific goals are. Since they control funds for weapons systems work they can "put up" accordingly. Ignoring the 50 per cent who were unsympathetic to any idea of standardization as being premature, here are some constructive ideas leading to standardization advanced by respondents to our survey.
Overall Authority and Coordination. Only the Department of Defense can provide these functions. John Brown of the U. of Michigan says " . . . [The DOD must make] available to a standardization group ALL of the detailed requirements of ALL the computer circuits and components to be included in the standardization." Brown feels promising circuits that might work into a flexible standardization program are dynamic flip-flops, halfadders, shift register units, delay units.
Assigning Weight-Factors. J. H. Bigelow of the Institute of Advanced Study, Princeton, says "contracts must clearly indicate the relative importance of various performance parameters and also the sort of interchangeability needed for that particular class." Bigelow illustrated examples of weight-factors: a high one-comparable to tires or ammunition; a low one-research to see if the complicated solution could be done within specified constraints. Mr. Bigelow called this concept of assigning weight factors a linear programming technique. A team within the procurement department specifies the relative importance of weight factors and follows up by evaluating the results.
Start with Land-Based Computers. Airborne and shipboard requirements impose severe unusual shape and size limitations. Any start at standardization should be aimed at land-based computers. Evaluation First. We choose to list this item last as a closing thought. Study and evaluation of what is desirable and what can be done comes first. This is a Department of Defense job. They must show the way.

ACEPOT

SUB-MINIATURE, PRECISION, WIRE-WOUND

LINEAR

 POTENTIOMETERS
Small pot size - Big pot performance

Only $1 / 2^{\prime \prime}$ in diameter, the ACEPOT excels in a combination of all around top performance characteristics comparable to larger units. For example, these precision units feature $\pm 2 \%$ resistance tolerance and $\pm 0.3 \%$ independent linearity. Every potentiometer is completely sealed against sand, dust and foreign matter to avoid abrasive action between moving parts. All materials and metals are treated for maximum resistance to salt spray, corrosion, humidity and conform to shock and vibration tests. ACEPOTS are designed and assembled MIL-A-8625A, QQ-M-1512, JAN-T-152, MIL-E-5272A, MIL-R19A, NAS-710 and MIL-R-19518 (ships).

ACEPOT LINEARITY TEST
Plot of veliage ratio errer versus rotation illustrates linearity to better then $\pm 0.3 \%$.

ACEPOT RESOLUTION TEST
Section of escillogroph trace of olectrical resolution shows voliage change for each furn of wire.

ACE offers a wide variety of linear and nonlinear precision, wirewound potentiometers in standard, special and AIA sizes. Custom designs to meet special requirements can be made available on short lead time. Call, write or teletype Dept. G, ACE ELECTRONICS ASSOCIATES, INC., 99 Dover Street, Somerville, Mass., SOmerset 6-5130, TWX SMVL 181.

How To Design

Pulse Magnetic Amplifiers

Part 1-Design

Richard L. White
Hoffman Semiconductor Div. Evanston, III.

Richard White has years of experience developing commercial and military electronic equipment. He feels the application of magnetic core logic will help the instrumentation field go more and more to digital techniques.

Here, in the first part of a two part series, he gives a direct approach to designing pulse magnetic amplifiers. He winds up with a practical design procedure and a sample problem.

The second part of his article discusses logic.

Y
OU CAN design pulse magnetic amplifiers with two basic equations and some characteristics of the magnetic material. The equations are here. The characteristics are supplied by manufacturers.

Bobbin Cores

Pulse magnetic amplifier design centers around what is called a bobbin core. Physically, it resembles a small thread spool with an enlarged center hole. Several layers of ultra-thin magnetic material are wrapped where the thread would normally be. The bobbin, made of a ceramic material or stainless steel, gives rigid support to the fragile magnetic material.

Core Material

Fig. 1 shows the hysteresis loop of a 4-79 MoPermalloy $1 / 8 \mathrm{mil}$ bobbin core with important design parameters labelled. Three factors dictate the choice of material.

- High squareness ratio (B_{r} / B_{m} ratio approaches unity).
- Low coercive force $N I_{m}$ (involves power loss per core, hence, power requirements of the high frequency driving circuit).

Fig. 1. A typical hysteresis loop.

SWITCHINB CURRENT

(b)

Fig. 2. A typical switching signal

- High flux change (ΔB is large for a given crosssectional area).

For these quantities, 4-79 Mo-Permally has the following approximate values: squareness ratio0.98 , coercive force ($N I_{d c}$)-0.24 ampere-turns, flux change $(\Delta B)-10^{5}$ lines per square inch.

Switching Time vs Coercive Force

Fig. 2 shows a typical switching signal Switching time and coercive force are related by

$$
\begin{equation*}
N I_{\iota}=N I_{d c}+K_{\imath} / T \tag{1}
\end{equation*}
$$

where $N I_{t}$ has the units of ampere-turns per inch of mean length. The mean length L , is calculated from manufacturer's data on bobbin size. ($\mathrm{L}=\pi D$ where D is the average diameter of the magnetic material wrapped on the bobbin). K_{t} is a constant depending on the magnetic material. (For 4-79 Mo-Permalloy, $K_{t}=1$). T_{s} is the switching time in microseconds.
For 4-79 Mo-Permalloy, eq (1) becomes

$$
N I_{t}=0.24+1 / T_{s}
$$

A comparison of the data using this equation and experimental data using the circuit of Fig. 3 is plotted in Fig. 4. The curves agree closely.

Equivalent Resistance Concept

A saturable magnetic core presents a predominantly resistive impedance to an applied

Fig. 3. This circuit was used to provide the switching da'a plotted in Fig. 4.

The Hughes silicon capacitor is a new kind of device whose full impact upon semiconductor electronics has yet to be determined. Most certainly, the silicon capacitor uncovers an entire realm of possithe first time And equipry instance bonus benefits of reduced size and weight plus greater simplicity result.

Our brochure, "The Hughes Silicon Capacitor, discusses this series and many of its applications in detail. For your copy, please write:
Hughes Products, Semiconductor Division, International Airport Station, Los Angeles 45, Calif.

WESCON Exhibits booths 1401-2.

Creating a new world with ELECTRONICS

Some Suggested Applications:
Non-Mechanical Tuning: The effect upon tuned circuit design is tremendous. Hughes silicon capacitors replace bulky air condensors and permit remote-control tuning at the end of a long wire. With these capacitors, instantaneous and non-mechanical "sigrial seeking" features can be designed into tuned circuits. Automatic Frequency Controls: Here the silicon capacitors replace a reactance tube. Output voltage from the discriminator varies the voltage on the silicon capacitor-hence, the localoscillator frequency-to correct for any frequency drift.
Dielectric Amplifiers: Operation is based on the amplitude modduation of a high-frequency carrier source by a Huahes silicon ulation of a high-rrequency carrier source by a Hughes silicon the output.
Also: Pulse Circuits, Frequency Modulation, RC Oscillators, Modulators, Electronically Controlled Filters.

HUGHES PRODUCTS
-1958, Hughes Aircraft Company
CIRCLE 18 ON READER-SERVICE CARD

Fig. 4. Switching data for $1 / 8$ mil 4-79 Mo-Permalloy.
voltage or current pulse. The equation relating the various physical and electrical parameters to this resistance is

$$
\begin{equation*}
\bar{R}_{o}=\frac{\Delta B A 10^{-2}}{N I_{t} L T_{z}} \text { ohms } / \text { turn }^{2} \tag{2}
\end{equation*}
$$

where ΔB is the number of lines per square inch, A is in inches of cross-sectional area, $N I_{t}$ is in ampere-turns per inch, T_{s} is switching time in microseconds, and L is the mean length of the magnetic path in inches. This equation determines the power loss in the core and the voltage drop across the windings.

Fig. 5. The circuit and output waveshapes of a 100 ke transistor oscillafor. It can drive approximately 50 pulse magnetic amplifiers.

Pulse Magnetic Amplifier Operation

Fig. 6 shows a basic complementing pulse magnetic amplifier. The power connection at Φ_{2} is taken from the power oscillator in Fig. 5.

This amplifier is a binary device, capable of only two output conditions. The presence of a voltage pulse is called a " 1 " and the absence of a pulse is called " 0 ." If the core is in the set condition, at $+B_{r}$ in Fig. 1 when Φ_{2} is applied, a " 1 " appears at the output. The total voltage appears across the load resistor R_{L}. No voltage appears across winding N_{2} because the core is saturated.
If the core is in the reset condition, at $-B_{r}$ with Φ_{2} applied, a " 0 " appears at the output. The total voltage appears across winding N_{2}. This condition exists because the core is being set. The hysteresis loop is being traced from $-B_{r}$ to $+B_{n}$.

A small voltage does appear across the load resistor R_{L} of the amplifier (Fig. 6) due to the magnetizing current $I_{n 2}$.
The desired output is determined by the binary signal fed to the input. This input signal has a 180 deg phase relationship to the output signal. The input signal is in phase Φ_{1}, while the output is in phase Φ_{2}. Hence, the input places the core in a state that determines what the output will be one half cycle later. If there is no input during Φ_{1} positive, one half cycle later an output occurs during the positive excursion of Φ_{2}. An input during Φ_{1} positive resets the magnetic core so no output is present in the following positive Φ_{2} period.
This illustrates three important characteristics of the pulse magnetic amplifier.

- The amplifier is complimentary. When the in-
put is a " 1 " the next output is a " 0 ," and vice versa.
- The amplifier has intrinsic time delay. The output dictated by a given input occurs 180 degrees later.
- Power is not transferred through the core by transformer action. It is gated by controlled saturation. When the core is saturated, winding N_{2} offers only the resistance of the wire to Φ_{2}. When the core is not saturated, N_{2} offers the impedance determined by eq (2).

Design Considerations

Three factors must be determined first:

1. Switching time;
2. Pulse voltage amplitude;
3. Zero to one ratio.

Switching time is determined by the desired operating frequency.
Maximum pulse voltage is determined by the physical limitation of the number of wraps of magnetic material on the bobbin and the maximum turns of wire that can be wound on the bobbin. The amplifier is designed to have its output connected to the input of at least one identical amplifier. Also, the ampere-turn requirement for complete saturation is constant (for a given switching time) regardless of the number of turns on a given winding. Hence, $N_{1} I_{m 1}=N_{2} I_{m 2}$. Zero to one ratio is the ratio of the voltage pulses at the output for a " 1 " and a " 0 ". Since the output is a constant resistance, this voltage ratio can be expressed as a current ratio, and the ampereturn relationship can be re-written

$$
I_{m 1} / I_{m 2}=N_{2} / N_{1}
$$

Thus the minimum zero to one ratio can be expressed in terms of the windings on the bobbin core.

When the switching time, pulse voltage amplitude, and minimum zero to one ratio have been established, the design can proceed.

Design Procedure

Step 1. Select a bobbin size and number of wraps of $1 / 8$ mil 4-79 Mo-Permalloy. The maximum number of wraps for a given bobbin is given in the manufacturer's data sheet.
Step 2. Calculate $N I_{t}$ using eq (1). Multiply this figure by L to obtain the ampere-turns for the selected bobbin.
Step 3. Calculate the equivalent winding resistance using eq (2).

Step 4. Select a desired magnetizing current $I_{m 2}$, keeping in mind that $I_{m 1}$ will be at least the zero to one ratio times as great as $I_{m 2}$.
Step 5. Calculate N_{2} (using Ohm's law) and N_{1}. Select a wire size compatible with the window
area of the bobbin and the output current requirements.
Step 6. Calculate the series resistance $\left(R_{1}+R_{2}\right)$. U'se a current value of $1.5 I_{m 1}$ to assure complete resetting of the core during the switching time regardless of slight variations in manufacture.
Step 7. Calculate the power loss in the core and its associated components for a complete power cycle.

Sample Design

Given data:
Operating frequency $=100 \mathrm{kc}$
Switching time $=5 \mu \mathrm{sec}$ (selected primarily because of the frequency limitations on the power transistors in the power oscillator).

Pulse voltage amplitude $=9 \mathrm{v}$
Zero to one ratio $=5$ (A compromise. A larger ratio requires a higher $I_{m 1}$. A smaller ratio might enter an ambiguous area where partial setting of the following core could take place).
Step 1. Pick the bobbin size on the basis of the pulse voltage, wire size, number of wraps of magnetic material, and hole area to accommodate the wire. Good choice is Arnold Engineering \#17 with $\mathrm{ID}=.210 \mathrm{in}$., $\mathrm{OD}=.312 \mathrm{in}$.
Number of wraps $=15$
Mean length of magnetic path $(L)=.79 \mathrm{in}$.
Cross-sectional area $(A)=2.34(10)^{-4}$ sq in.
Step 2. $N I_{t}=.24+1 / 5=.44$ ampere-turns/in. $N I_{t} L=(.44)(.79)=.35$ ampere-turns
Step 3. $\bar{R}_{\circ}=\frac{2.34 \times 10}{(.35) 5}=.134 \mathrm{ohms} /$ turn 2
Step 4. Let $I_{m 2}=2 \mathrm{ma}$

$$
\begin{aligned}
& I_{m 1}^{m 2}=5 I_{m 2}=10 \mathrm{ma}
\end{aligned}
$$

Step 5. $E=\frac{N I_{t} L}{N_{2}} \bar{R}_{o} N_{2}{ }^{2}=N I_{t} L \bar{R}_{o} N_{2}$
and $N_{2}=\frac{E}{N I_{t} L \bar{R}_{0}}=\frac{8}{(.35)(.134)}=170$ turns
$N_{1}=N_{2} / 5=34$ turns
$N_{1}{ }^{2} \bar{R}_{o}=150$ ohms
$N_{2}{ }^{2} \bar{R}_{o}=4000$ ohms
Wire size $=\# 36$ heavy Soldereze
Step 6. $R_{s}+\nu_{1}{ }_{2} \bar{R}_{o}=\frac{E}{1.5 I_{m 1}}=\frac{9}{15} 10^{3}=600 \mathrm{ohms}$

$$
\begin{aligned}
& R_{s}=600-150-450 \mathrm{ohms} \\
& \bar{R}_{1}=R_{2}=220 \mathrm{ohms}
\end{aligned}
$$

Step 7. $2.25 I_{m 1}{ }^{2} N_{1}{ }^{2} R_{0}=34 \mathrm{mw}$ $2.25 I_{m 1}{ }^{2} \bar{R}_{t} \quad=100 \mathrm{mw}$
$\begin{array}{ll}I_{m 2}{ }^{2} N_{2}{ }^{2} \bar{R}_{o} & =16 \mathrm{mw} \\ \text { Power loss per stage } & =150 \mathrm{mw}\end{array}$
Results of this design are summarized in Fig. 6.

F E A T U R E S

- advanced diffusion techniques
- standard and proposed jetec case styles
- highest efficiency
- meets military specifications
- maximum rellability and stability

IT T's new concept in semiconductor device design has resulted in unique features which afford design engineers a superior silicon rectifier with highest electrical efficiency and maximum operating reliability.
These newly developed devices are available in styles shown and include these features ... dual positive hermetic sealing . . . standard case designs permit mechanical interchangeability...designed for optimum heat transfer . . . controlled environmental assembly conditions . . . and improved engineering techniques.
The quality of materials and production superiority of these silicon rectifiers is the same that has made Federal the leader in selenium rectifiers.
Write today for technical and engineering data.

Components Division
INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION P. O. BOX 412. CLIFTON. N. J.

SEE US AT BOOTH 1403 AND 1404 WESCON SHOW

BREW'S Complete Facilities

 offer Reliable Product Performance \& Economy with Quality Controlled Production!* Competent and Experienced Engineering Personnel plus the Latest Testing Equipment guarantee designs to your specifications.
* Modern Assembly Line of Thoroughly Trained Production Personnel assures quality on short or long runs.
- Brew's Quality Control Program insists on "Component Reliability" as a function of "Systems Reliability" from development to manufacture.
* Special Prototype Department works in conjunction with Brew's design engineers. Engineering reports accompany prototypes.

Founded in 1946 for design, development and manufacture of delay lines.
Brew offers you the "one source" for Distributed Constant, Lumped Constant, and Ultrasonic Delay Lines. You and your product will benefit from Brew's modern and complete production facilities, pioneer experience, and complete cooperation from our personnel.

High Speed Sampling Switch

"blows" contacłs closed

ARAPIDLY ROTATING jet of air provides gentle but firm contact closure in this sampling switch. Fortyfive isolated pairs of contacts are arranged barrel-stave fashion around the body of the switch. The air jet, rotating at speeds up to 20 rps , strikes each individual pair of contacts in quick succession.

Contact wear is a minimum, resulting in a service free life of 2000 hours at 20 rps. Noise is practically eliminated; at least, none can be observed on a scope with $1 \mathrm{mv} / \mathrm{cm}$ sensitivity using an input signal of 10 mv at 50μ a.

The sampling switch, called the Roto-

Jet, is being made available by Norman Hardy Assoc., P.O. Box 97, Wyncote, Pa The standard arrangement of 45 contact pairs can be easily adapted to other configurations. For instance, by tying all the output terminals together, the switch becomes single pole, 45 contacts per pole.

The structure of one contact-pair module is illustrated. The impact of a high velocity air causes the reed-like movable contact to deflect, drawing the free end into contact with a fixed pin. The arrangement provides good mechanical advantage, permitting a tiny jet of air to hold the contacts together with

A jet of air strikes the movable contact, causing it to deflect and be drawn into contact with the fixed contact pin.

more than satisfactory force. Closure time is fast, being in the order of $40 \mu \mathrm{sec}$. Contact is broken in about $20 \mu \mathrm{sec}$. These times represent the leading and trailing edge duration of the typical square wave pattern. Duty cycle (ratio of closed contact time to total time between successive contacts) can be adjusted from 30 to 90 per cent.
The Roto-Jet sampling switch has a contact resistance of 0.5 ohm . An air supply of $2-1 / 2 \mathrm{cfm}$ at 40 psi is needed for operation. Diameter of the switch is approximately $3-3 / 4 \mathrm{in}$.
For more information, turr to the Reader-Service card and circle $\mathbf{1 0 0}$.

Individual contact module.

NEW 400 cycle DEVR

 liminates distortion

Distortion Eliminating Voltage Regulator responds to transient surges and harmonics, as well as to normal variations caused by line and load changes. The Curtiss-Wright Model 104 DEVR corrects for any deviations of up to 20% from pure sine wave, regardless of their nature, in less than 125 microseconds.
It provides the answer where line fluctuations or distortion cause inaccuracies and loss of engineering and production man-hours in the design and manufacture of electronic systems for aircraft and missiles. In servos and computers, and wherever summing operations are performed, the Model 104 DEVR assures increased accuracy and stability. It is invaluable for standards laboratories and others where accuracy of instrumentation is pushed to extremes; it also increases equipment life by eliminating surges.
Write today for complete information. Price: $\$ 1875$ f.o.b., Carlstadt, N. J.
The DEVR is also available in 60 cps model.

- 1.4 KVA
regulation $\pm 1 \%$ electronically
response 125 microseconds
distortion elimination to less than 0.3\%
- 4 KVA
regulation $\pm 1 \%$ electro-mechanically response $20 \mathrm{~V} / \mathrm{sec}$

ELECTRONICS DIVISION
CURTISS-WRIGHT回

SWITCH HITTER!

SERVOSCOPE ${ }^{\circ}$

....most versatile servosystem analyzer

Covers the frequency range from 0.001 to 100 cps through choice of five models (0.005 to 100 cps in a single model).
Feeds In sine wave, modulated carrier wave, and square wave phaseable with respect to either electronic linear sweep or sinusoidally modulated reference signal. Applicable for both A.C. carrier and D.C. servosystems. According to model, accepts carriers within the range of 50 to 5000 cycles.

Reads Out for cathode ray indicator display or for oscillograph recording.
Measures phase, transient response, gain.
For Plotting as Nyquist, Bode or Nichols diagrams.
Used in the laboratory for design and testing; on the production line for inspection; in the classroom for training; in the field for checking.

Proved in missile testing; automatic flight and ship controls; electromechanical, electro-hydraulic, electro-pneumatic control systems; computers; fire control; airborne weapons; radar systems.

Send for the full story on SERVOSCOPE ${ }^{(1}$ Servosystem Analyzer. Just address your request on your company letterhead to Dept. WTC. 20-20 Jericho Turnpike, New Hyde Park, L. I., N. Y.

SERVO CORPORATION OF AMERICA

Engineering and Manufacturing of
INFRARED • SERVO DEVICES • COMMUNICATION • NAVIGATION systems - subsystems - instruments - components
For Industry and Defense
SEE US AT THE WESCON ShOW—BOOTH 1501-1502
CIRCLE 22 ON READER-SERVICE CARD

Resistor Noise Testing

Edmund Osterland
EO Electronics, Inc.
Mountain Lakes, N.J.

Fig. 2. Noise vs load characteristics for a typical lot of $80-1 / 2$-watt 50 K deposited carbon resistors. Some samples too noisy to be shown on the graph.

Fig. 1. (left) Circuit diagram of the system for measuring noise value.

Fig. 3. (right) Actual in struments used in the noise tests.

0BSERVATION of the wide variation of noise level in resistors from a given lot suggests that full incoming inspection is advisable. Described is a method which permits such inspection with minimum time and equipment.
Noise values for different types of resistors are detailed in Table 1. Note the high noise values found in groups which have a generally acceptable average noise figure.
The circuit diagram, Fig. 1, illustrates a system for measuring noise value. Direct current equal or near to the rated maximum for a particular resistor is passed through a matching resistor, R_{m} and the test resistor R_{x}. The matching resistor R_{m} should have approximately the same resistance as R_{x} for optimum sensitivity of measurement, and it must be a wirewound unit with welded or soldered end terminations so that it
will not contribute measurable noise currents. The extent of current fluctuations in R_{x} is then directly notad by measuring the ac voltage from the junction of R_{m} and R_{x} to ground.

The variation of noise currents as a function of dc load is shown in Fig. 2. This also illustrates the irregularity of individual units in a representative lot taken from new stock supplies.
The combination of an instrument pre-amplifier and a sensitive rms voltmeter serves as indicator. The response of the indicator should be limited to the low audio range, since current noise predominates in this region. The Min-Amp pre-amplifier in Fig. 3 incorporates filter circuits which aid in the delineation of resistor noise against a background of extraneous noise.
The inherent noise voltage generated by the resistor is given as

Tabulation of Resistor Types and Associated Noise Levels.

Resistor Type	$\begin{gathered} \mathbf{R} \\ \text { ohms } \end{gathered}$	Load Level	Inherent Noise in microvolis/volt			Remarks
			Low	High	Average	
1/2w. composition slug type	22K	1/3w.	0.31	0.37	0.34	10 samples
lw. composition slug type	22K	1/3w.	0.15	0.61	0.19	10 samples
1/2w. dep. carbon Mfr. (A)	20K	1/3w.	0.15	1.10	0.29	10 samples
$1 / 2 \mathrm{w}$. composition slug type	51K	1/3w.	0.20	2.30	0.56	10 samples
$1 / 2 \mathrm{w}$. composition film type	47K	1/3w.	0.46	0.90	0.62	10 samples
1/2w. dep. carbon Mfr. (A)	50K	1/3w.	0.09	9.20	0.30	80 samples
1/2w. dep. carbon Mfr. (B)	65K	1/2w.	0.11	3.80	0.51	20 samples
Wire-wound std. (1 sample)	50K	1/3w.	0.08	0.08	0.08	Nearly equiv. to thermal noise

Table 1. Noise values for different types of resistors are shown. Note how far the extreme vaives may differ from the average value for a given resistor type. Bandwidth of measurement is 5 to $250,000 \mathrm{cps}$.

Pulse Oscilloscope List

HERE IS a list of 47 scopes having high frequency responses, fast rise times, sweep generators calibrated in real time, and which are dc coupled to avoid low frequency distortion. All are commercially available standard models from among 13 manufacturers.
The oscilloscopes are arranged in ascending order of hf response (Column 3) from 1 mc up to 1 kmc . Within any group having the same upper frequency limit, the order is determined by the sensitivity (Column 5) with the most sensitive placed first. Within any such group where the sensitivities are the same, the order is determined by the sweep speed (Column 6) with the smallest minimum time placed first.
Sensitivities are peak-to-peak values. Figures separated by a dash show the range of sensitivity for the vertical channel. Where no dash appears, the second number is the sensitivity of the horizontal channel. Wherever specifications are given for the horizontal amplifier, this input is available externally. The scopes shown use 5 -in. cathode ray tubes, unless otherwise noted. All may be used on commercial single phase 60 cps input power of $105-125 \mathrm{v}$.
List is abstracted from Volume 3, Scalers, of the Directory of Technical Specifications, Electronic Test Instruments, © published by Technical Information Corp., 41 Union Square, New York 3, N. Y.
A 30-page list of oscilloscopes covering 146 items by 39 manufacturers in 21 columns of specifications and including manufactures' names and addresses is available for a limited time at $\$ 10$. A complete electronic test instrument service, which includes a four volume Directory, up-dating, and consultation on any instrument location problem, is available from the company for an annual subscription of $\$ 270$. For more information about the Directory service and the oscilloscope list, turn to the Reader-Service card and circle 305.

Manufacturer	Model	Amplifier 1	Freq Min. cps 2	ency Max. mc 3	$\begin{gathered} \text { Rise } \\ \text { Time } \\ \mu \mathrm{sec} \\ 4 \\ \hline \end{gathered}$	Sens. ${ }_{5}^{\mathrm{my}} \mathrm{S}$ in	$\begin{aligned} & \text { Sweep } \\ & \text { Speed } \\ & 6 \end{aligned}$	Special Notes
SOLARTRON	AD557-A	b	dc	1	ina	$\begin{gathered} 3 \mathrm{mv} \\ -100 \mathrm{~V} \\ / \mathrm{cm} \end{gathered}$	$\begin{aligned} & 1 \mu \mathrm{~s}- \\ & 1 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	6. Expansion 10 X . CRT: 4 inch.
Electronic tube	$\begin{aligned} & \mathrm{H}-23 \\ & \underline{\mathrm{a}} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\stackrel{1}{250 \mathrm{kc}}$	ina ina	$\begin{aligned} & 28 \\ & 700 \end{aligned}$	$\begin{aligned} & * 2 \mu \mathrm{~s}- \\ & 0.1 \mathrm{sec} \\ & \text { in } \end{aligned}$	6. Dual independent sweep generators.
RADIOMETER	OSG-42	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ina } \\ & \text { ina } \end{aligned}$	$\begin{gathered} 0.2 \mathrm{~mm} \\ 0.15 \mathrm{~mm} \\ / \mathrm{mv} \end{gathered}$	*20mm / Ms max	6. Expansion 3 X . CRT: 3 inch.
RADIOMETER	OSG-41	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\stackrel{3}{8}$	$\begin{aligned} & \text { ina } \\ & \text { ina } \end{aligned}$	$\begin{gathered} 0.7 \mathrm{~mm} \\ 0.3 \mathrm{~mm} \\ \hline \mathrm{mv} \end{gathered}$	$\begin{gathered} * 50 \mathrm{~mm} \\ / \mathrm{s} \\ \max \end{gathered}$	6. Expansion 3 X .
tektronix	310	Vert Horz	$\begin{aligned} & \text { dc } \\ & \text { ina } \end{aligned}$	$\stackrel{4}{i n a}$	$\begin{aligned} & .09 \\ & . \quad 0 \end{aligned}$	$\begin{gathered} 10 \\ 1.2 \mathrm{~V} \\ / \mathrm{div} \end{gathered}$	$\begin{gathered} * 0.5 \mu \mathrm{~s} \\ -200 \mathrm{~ms} \\ \hline \text { div } \end{gathered}$	6. Expansion 5 X . CRT: 3 inch, 4 div/in.
DU MONT	331	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\stackrel{4}{4}$	$\begin{aligned} & .08 \\ & \text { ina } \end{aligned}$	$\begin{gathered} \text { 400 mv } \\ 1 \mathrm{iv} \\ \text { is } \end{gathered}$	$\begin{gathered} * 0.5 \mathrm{~ms} \\ -500 \mathrm{~ms} \\ / \mathrm{div} \end{gathered}$	6. Expansion 3 X . CRT: 3 inch.
ADVANCED ELECTRONICS	$\begin{aligned} & 200 \mathrm{HP} \\ & 200 \mathrm{HR} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$5 \stackrel{4}{\mathrm{kc}}^{2}$	$\begin{gathered} 0.1 \\ 5 \end{gathered}$	$\begin{aligned} & 50 \\ & 30 \\ & / \text { div } \end{aligned}$	$\begin{gathered} * 0.5 \mu \mathrm{~s} \\ -150 \mathrm{~ms} \\ -\mathrm{div} \end{gathered}$	6. Expansion 5 X . CRT : 3 inch, 5 div/in.
COSSOR	1058	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & 20 \end{aligned}$	$\stackrel{4}{200 \mathrm{kc}}$	$\begin{aligned} & .09 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & / \mathrm{cm} \end{aligned}$	$\begin{aligned} & * 25 \mu \mathrm{~s} \\ & -250 \mathrm{~ms} \end{aligned}$	6. Expansion 5 X . CRT: 4 inch.
tektronix	$\begin{aligned} & 532-53 / 54 B \\ & \simeq \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\stackrel{5}{5}$	$\begin{aligned} & .07 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & * 5 \mathrm{mv} \\ & -20 \mathrm{v} \\ & / \mathrm{cm} \end{aligned}$	$\begin{aligned} & * 1 \mu \mathrm{~s}- \\ & 12 \mathrm{sc} \\ & / \mathrm{cm} \end{aligned}$	5. AC $5-50 \mathrm{mv}, \mathrm{AC} / \mathrm{DC} 50 \mathrm{mv}$ $20 \mathrm{~V} / \mathrm{cm}$, vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
tektronix	$\begin{aligned} & 532-53 / 54 \mathrm{~L} \\ & \underline{c} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	${ }_{300 \mathrm{kc}}$	$\begin{aligned} & .07 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & * 5 \mathrm{mv} \\ & -20 \mathrm{c} \\ & / \mathrm{cm} \end{aligned}$	$\begin{gathered} * 1 \mu \mathrm{~s}- \\ 12 \mathrm{sec} \end{gathered}$ $/ \mathrm{cm}$	5. AC $5-50 \mathrm{mv}, ~ A C / D C 50 \mathrm{mv}-$ $20 \mathrm{~V} / \mathrm{cm}$, vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5X.
tektronix	$\begin{aligned} & 532-53 / 54 \mathrm{~A} \\ & \underline{c} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$35{ }^{5} \mathrm{kc}$	$\begin{aligned} & .07 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & * 50 \mathrm{mv} \\ & -20 \mathrm{~V} \\ & \hline \mathrm{~cm} \end{aligned}$	$\begin{gathered} * 1 \mu s- \\ 12 \mathrm{sec} \end{gathered}$ $/ \mathrm{cm}$	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
DU MONT	327	Vert	dc	5	. 07	$\begin{gathered} 500 \\ \text { fs } \end{gathered}$	$\begin{aligned} & * \text { 1 } 1 \mu \mathrm{~s}- \\ & 1 \mathrm{sec} \\ & / \text { in } \end{aligned}$	6. Signal delay $0.4 \mu \mathrm{~S}$; expansion 2 , 3.4 or 5 X .
THE SCOPES CO .	301	Vert	dc	6	. 06	$\begin{aligned} & 100 \\ & / \mathrm{cm} \end{aligned}$	* $1 \mu \mathrm{~s}-$ 0.5 sec /cm	6. Expansion 10X. CRT : 3 inch.
SOLARTRON	CD523-A	Vert	dc	10	ina	$\begin{aligned} & \operatorname{lmv}_{-10 \mathrm{~V}} \end{aligned}$	* $0.1 \mu \mathrm{~s}$ -lsec /cm	6. Expansion 5X. CRT: 4 inch.
TEKTRONIX	$\begin{aligned} & 531-53 / 54 B \\ & \underline{c} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 10 \\ 240 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .035 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 5 \mathrm{mv} \\ -20 \mathrm{v} \\ / \mathrm{cm} \end{gathered}$	* $0.1 \mu \mathrm{~s}$ $-12 \mathrm{sec}$ /cm	5. AC 5-50 mv, AC/DC $50 \mathrm{mv}-$ $20 \mathrm{~V} / \mathrm{cm}$, vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5X.
HEWLETT-PACKARD	$\begin{aligned} & 150 \mathrm{~A}-151 \mathrm{~A} \\ & \underline{\mathrm{c}} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{aligned} & 10 \\ & 500 \mathrm{kc} \end{aligned}$	$\begin{aligned} & .035 \\ & \text { ina } \end{aligned}$		*0.1 s $-15 \mathrm{sec}$ /cm	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion X5, 10, 50 and 100 , max. $.02 \mu \mathrm{~S} / \mathrm{cm}$.
TEKTRONIX	$\begin{aligned} & 536-53 / 548 \\ & \underline{c} \end{aligned}$	b	dc	10	. 035	$\begin{gathered} 5 \mathrm{mv} \\ -20 \mathrm{v} \\ / \mathrm{div} \end{gathered}$	$\begin{aligned} & * 0.2 \mu \mathrm{~s} \\ & -2 \mathrm{sec} \\ & \text { /div } \end{aligned}$	5. AC $5-50 \mathrm{mv}, \mathrm{AC} / \mathrm{DC} 50 \mathrm{mv}-$ $20 \mathrm{~V} / \mathrm{cm}$, vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. With extra plug-in.
TEKTRONIX	524AD	Vert	dc	10	. 035	$\begin{aligned} & * 15 \mathrm{mv} \\ & -50 \mathrm{v} \\ & / \mathrm{cm} \end{aligned}$	$\begin{aligned} & * 0.1 \mu \mathrm{~s} \\ & -10 \mathrm{~ms} \\ & / \mathrm{cm} \end{aligned}$	5. AC $15-150 \mathrm{mv}, \mathrm{DC} 150 \mathrm{mv}-50 \mathrm{~V} / \mathrm{cm}$. 6. $0-25$ ms delay; exp. 3 or 10 X .
TEKTRONIX	$\begin{aligned} & 316 \\ & \text { RM16 } \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 10 \\ 500 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .035 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & * 10 \\ & \stackrel{1.4 V}{ } \\ & \text { div } \end{aligned}$	$\begin{aligned} & * 0.2 \mu \mathrm{~s} \\ & - \text {-sec } \\ & \text { /div } \end{aligned}$	5. AC $10-100 \mathrm{mv}, \mathrm{AC} / \mathrm{DC} 100 \mathrm{mv}$ 125V/div. 6. Exp. 5X. CRT: 3 inch, 4 div/in.
LABORATORY FOR ELECTRONICS	411A	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 10 \\ 400 \mathrm{kc} \end{gathered}$	$\text { . } 035$	$\begin{aligned} & 20 \\ & 4 \mathrm{~V} \\ & / \mathrm{cm} \end{aligned}$	$\begin{gathered} 0.1 \mu \mathrm{~s} \\ -10 \mathrm{~ms} \\ / \mathrm{cm} \end{gathered}$	
DU MONT	329-A	Vert	dc	10	. 035	$\begin{aligned} & * 200 \mathrm{mv} \\ & -400 \mathrm{v} \\ & \text { is } \end{aligned}$	$\begin{aligned} & * 0.1 \mu \mathrm{~s} \\ & -1 \mathrm{lecc} \\ & / \text { div } \end{aligned}$	5. $100 \mathrm{mv}, 5 \mathrm{mc}$ by switch. 6. Expansion by 50% notch, cal X10, uncal to X 100 .
DU MONT	323-A	Vert	dc	10	. 035	$\begin{gathered} 200 \mathrm{mv} \\ -400 \mathrm{v} \\ \mathrm{is} \end{gathered}$		6. Expansion by 50% notch, cal X10, uncal to X100.
tektronix	$\begin{aligned} & 531-53 / 54 \mathrm{~A} \\ & \underline{c} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 10 \\ 240 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .035 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 50 \mathrm{mv} \\ -20 \mathrm{v} \\ \hline \mathrm{~cm} \end{gathered}$	*0.1 $\mu \mathrm{s}$ $-12 \mathrm{sec}$ /cm	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X , delay available.
HEWLETT-PACKARD	$\begin{aligned} & \text { 150A-152A } \\ & \text { c a } \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 10 \\ 500 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .035 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & * 50 \mathrm{mv} \\ & -20 \mathrm{c} \\ & \text { /div } \end{aligned}$	*0.1 $\mu \mathrm{s}$ $-15 \mathrm{sec}$ /cm	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion X5, 10, 50 and 100, max. $02 \mu \mathrm{~s} \mathrm{~cm}$.

Manufacturer	Model	$\begin{aligned} & \text { Ampli- } \\ & \text { fier } \\ & 1 \end{aligned}$	Freq Min. cps 2	uency Max. mc 3	Rise Time μ Sec \qquad	$\begin{aligned} & \text { Sens. } \\ & \text { mv/in } \end{aligned}$	Sweep Speed 6	Special Notes
TEKTRONIX	$\begin{aligned} & 536-53 / 54 \mathrm{~A} \\ & \mathrm{c} \end{aligned}$	b	dc	10	. 035	$\begin{aligned} & =50 \mathrm{mv} \\ & -20 \mathrm{v} \\ & \text { /div } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 0.2 \mu \mathrm{~s} \\ -0.2 e c \\ \text { - } \mathrm{div} \end{array} \end{aligned}$	5. Vernier to $50 \mathrm{~V} /$ div. 6. With extra plug-in.
Electronic tube	$\begin{aligned} & \mathrm{H}-25 \\ & \underline{a} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 10 \\ 500 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .05 \\ & \text { ina } \end{aligned}$	$\begin{gathered} -300 \\ 4 V \end{gathered}$	$\begin{aligned} & 0.2 \mu \mathrm{~s} \\ & -20 \mathrm{~ms} \\ & \text { /in } \end{aligned}$	5. DC; . $05 \mathrm{~V} / \mathrm{in} . \mathrm{AC}$. 6. Dual independent sweep generators; 2nd sweep delayed from 1st.
tektronix	$\begin{aligned} & 531-53 / 54 \mathrm{~L} \\ & \underline{c} \end{aligned}$	Vort Horz	$\begin{aligned} & d c \\ & d c \end{aligned}$	$\begin{gathered} 11 \\ 240 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .031 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 5 \mathrm{mv} \\ -20 \mathrm{v} \\ / \mathrm{cm} \end{gathered}$	$\begin{aligned} & * 0.1 \mathrm{\mu} \mathrm{~s} \\ & -12 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	5. AC $5 \mathrm{mv}-2 \mathrm{~V}, \mathrm{DC} 50 \mathrm{mv}-2 \mathrm{VV}$, vernier to 4 or $40 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X , delay available.
tektronix		b	dc	11	. 031	$\begin{gathered} 5 m v \\ -20 \mathrm{c} \\ \hline \text { div } \end{gathered}$	$\begin{aligned} & 0.2 \mu \mathrm{c} \\ & -0.2 \mathrm{sec} \\ & \text { - div } \end{aligned}$	5. AC $5 \mathrm{mv}-2 \mathrm{~V}, \mathrm{DC} 50 \mathrm{mv}-20 \mathrm{~V}$, vernier to 4 or $40 \mathrm{~V} / \mathrm{cm}$. 6. With extra plug-in.
COSSOR	1065	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & 50 \end{aligned}$	$\begin{gathered} 11 \\ 300 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .04 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & 250 \\ & / \mathrm{cm} \end{aligned}$	$\begin{gathered} 10 \mu \mathrm{~s}- \\ 250 \mathrm{~ms} \end{gathered}$	6. Expansion variable to 5 X .
tektronix	$\begin{aligned} & 551-53 / 54 \mathrm{H} \\ & \text { a C } \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 14 \\ 240 \mathrm{kc} \end{gathered}$	$.025$	$\begin{gathered} * 5 m v \\ -20 \mathrm{v} \\ \mathrm{~cm} \end{gathered}$	$\begin{aligned} & * 0.1 \mathrm{\mu s} \\ & -12 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
Lavoie	$\begin{aligned} & \text { LA-260-S60 } \\ & \underline{c} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 750 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .02 \\ & \mathrm{ina} \end{aligned}$	$\begin{gathered} * 10 \\ 10 \\ 1 \mathrm{~cm} \end{gathered}$	$\begin{aligned} & 0.1 \mu \mathrm{~s} \\ & -5 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	5. Vert to $25 \mathrm{~V} / \mathrm{cm}$. 6. Vernier to $15 \mathrm{sec} / \mathrm{cm}$; exp. 10X. Dual trace plug-in available.
Lavoie	LA-259D	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 750 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .02 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 10 \\ 2 \mathrm{~V} \\ / \mathrm{cm} \end{gathered}$	$\begin{gathered} * .07 \mathrm{\mu s} \\ 100 \mathrm{~ms} \\ / \mathrm{cm} \end{gathered}$	5. Vert to $25 \mathrm{~V} / \mathrm{cm}$. 6. Expansion $10 X ; 0.2 \mu \mathrm{~s}$ delay.
electronic tube	$\begin{aligned} & \mathrm{K}-215 \\ & \underline{a} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	15 2	$\begin{aligned} & .025 \\ & \text { ina } \end{aligned}$	$\begin{aligned} & 50 \\ & 1 \mathrm{~V} \\ & / \mathrm{cm} \end{aligned}$	$\begin{aligned} & * 0.1 \mathrm{us} \\ & -1 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	5. To $20 \mathrm{~V} / \mathrm{cm}$ vert. 6. Dual independent sweep generators.
tektronix	$\begin{aligned} & 515 \mathrm{~A} \\ & \text { RM15 } \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 15 \\ 500 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .023 \\ & \text { ina } \end{aligned}$	$\begin{gathered} 50 \\ 1.4 \mathrm{~V} \\ / \mathrm{cm} \end{gathered}$	$\begin{aligned} & 0.2 \mu \mathrm{~s} \\ & -2 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Vernier to $6 \mathrm{sec} / \mathrm{cm}$; expansion 5 X .
tektronix	$\begin{aligned} & 551-53 / 54 B \\ & { }^{\text {c }} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{aligned} & * \\ & { }_{240 \mathrm{kc}} \end{aligned}$	$\begin{aligned} & .02 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 5 \mathrm{mv} \\ -20 \mathrm{v} \\ \hline \mathrm{~cm} \end{gathered}$	$\begin{aligned} & * 0.1 \mu \mathrm{~s} \\ & -12 \mathrm{sec} \\ & \hline / \mathrm{cm} \end{aligned}$	3. AC $2 \mathrm{cps}-10 \mathrm{mc}, .035 \mu \mathrm{~s}$ rise. 5. AC $5-50 \mathrm{mv}, \mathrm{AC} / \mathrm{DC} 50 \mathrm{mv}-20 \mathrm{~V}$ $/ \mathrm{cm}$, vernier to $50 \mathrm{~V} / \mathrm{cm} .6$ Exp. 5 X .
tektronix	$\begin{aligned} & 551-53 / 54 \mathrm{~A} \\ & \text { a C } \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 18 \\ 240 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .02 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 50 \mathrm{mv} \\ -20 \mathrm{v} \\ \mathrm{~cm} \end{gathered}$	$\begin{aligned} & 0.1 \mu \mathrm{~s} \\ & -12 \mathrm{sec} \\ & \hline 1 / \mathrm{m} \end{aligned}$	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
dU MONT	336-A	Vert	dc	18	. 02	$\begin{aligned} & 2 \mathrm{~V}- \\ & 500 \mathrm{~V} \\ & \text { is } \end{aligned}$	$\begin{gathered} * 0.1 \mu \mathrm{~s} \\ -1 \mathrm{sec} \\ / \mathrm{div} \end{gathered}$	6. Delay $0.2 \mu \mathrm{~s} ;$ exp. by 50% notch, cal X10, uncal to X100.
tektronix	$\begin{aligned} & \text { 541-53/54B } \\ & \underline{c} \end{aligned}$	Vert Horz	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{aligned} & 20 \\ & 240 \mathrm{kc} \end{aligned}$	$\text { . } 018$	$\begin{gathered} * 5 \mathrm{mv} \\ -20 \mathrm{v} \\ \text { /cm } \end{gathered}$	$\begin{aligned} & 0.1 \mu \mathrm{~s} \\ & -12 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	3. AC $5 \mathrm{cps}-12 \mathrm{mc}, .03 \mu \mathrm{~s}$ rise. 5. AC $5-50 \mathrm{mv}, \mathrm{AC} / \mathrm{DC} 50 \mathrm{mv}-20 \mathrm{~V}$ $/ \mathrm{cm}$, vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Exp. 5 X .
ROHDE \& SCHWARZ	OMF BN 1912	Vert	dc	20	ina	$\begin{gathered} 250 \\ \mathrm{~mm} / \mathrm{v} \end{gathered}$	$\begin{gathered} 0.1 \mu \mathrm{~s} \\ -110 \mathrm{~ms} \\ / \mathrm{cm} \end{gathered}$	
tektronix	$\begin{aligned} & 541-53 / 54 \mathrm{~A} \\ & \underline{c} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 200 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .018 \\ & \text { ina } \end{aligned}$	$\begin{gathered} * 50 \mathrm{mv} \\ -20 \mathrm{v} \\ -\mathrm{cm} \end{gathered}$	$\begin{aligned} & * 0.1 \mu \mathrm{~s} \\ & -12 \mathrm{sec} \\ & / \mathrm{cm} \end{aligned}$	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
tektronix	$\begin{aligned} & 551-53 / 54 C \\ & { }^{2} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \\ & 4 \text { chan } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\stackrel{22}{220 \mathrm{kc}}$	$\text { . } 016$	$\begin{gathered} * 50 \mathrm{mv} \\ -20 \mathrm{v} \\ \mathrm{~cm} \end{gathered}$	- $0.1 \mu \mathrm{~s}$ $-12 \mathrm{sec}$ /cm	5. Vernier to $50 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
tektronix	$\begin{aligned} & 551-53 / 54 \mathrm{~L} \\ & \mathrm{a} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} * 25 \\ 240 \mathrm{kc} \end{gathered}$	$\begin{aligned} & .014 \\ & \text { ina } \end{aligned}$		*0.1 1 s $-12 \mathrm{sec}$ /cm	3. AC $3 \mathrm{cps}-15 \mathrm{mc}, .023$ rise. 5. AC $5 \mathrm{mv}-2 \mathrm{~V}, \mathrm{DC} 50 \mathrm{mv}-20 \mathrm{~V}$, vernier to 4 or $40 \mathrm{~V} / \mathrm{cm}$. 6. Exp. 5X.
tektronix	$\begin{aligned} & \text { 541-53/54L } \\ & \underline{c} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{aligned} & * 30 \\ & 240 \mathrm{kc} \end{aligned}$	$\begin{aligned} & .012 \\ & \text { ina } \end{aligned}$	$\begin{gathered} \begin{array}{c} 5 \mathrm{mv} \\ -20 \mathrm{~V} \\ / \mathrm{cm} \end{array} \\ \hline \end{gathered}$	- $0.1 \mu \mathrm{~s}$ $-12 \mathrm{sec}$ /cm	3. $\mathrm{AC} 3 \mathrm{cps}-24 \mathrm{mc}, .015$ rise. 5. AC $5 \mathrm{mv}-2 \mathrm{~V}, \mathrm{DC} 50 \mathrm{mv}-20 \mathrm{~V}$, vernier to 4 or $40 \mathrm{~V} / \mathrm{cm} .6$. Exp. 5 X .
tektronix	$\begin{aligned} & 541-53 / 54 \mathrm{~K} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { Horz } \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} 30 \mathrm{~kg} \\ 240 \mathrm{k} \end{gathered}$	$.012$	$\begin{gathered} * 50 \mathrm{mv} \\ -20 \mathrm{v} \\ / \mathrm{cm} \end{gathered}$	$\begin{aligned} & * 0.1 \mu \mathrm{~s} \\ & -12 \mathrm{sec} \end{aligned}$ /cm	5. Vernier to $40 \mathrm{~V} / \mathrm{cm}$. 6. Expansion 5 X .
DU MONT	410	Vert	dc	50	$7 \mathrm{~m} \mu \mathrm{~s}$	$\begin{aligned} & 200 \mathrm{mv} \\ & -200 \mathrm{v} \\ & \text { is } \end{aligned}$	$\begin{gathered} .01 \mu \mathrm{~s} \\ -20 \mathrm{~ms} \\ / \mathrm{cm} \end{gathered}$	
tektronix	517A	Vert	dc	ina	$7 \mathrm{~m} \mu \mathrm{~s}$	$\begin{aligned} & 50 \\ & / \mathrm{cm} \end{aligned}$	$\begin{gathered} .01 \mathrm{ss} \\ -20 \mu \mathrm{~s} \\ / \mathrm{cm} \end{gathered}$	
EDGERTON, GERMESHAUSEN \& GRIER	2236	Vert	200kc	1 kmc	$\begin{gathered} 0.1 \\ m \mu \mathrm{~s} \end{gathered}$	30 V	$\underset{-5 \mu \mathrm{~s}}{25 \mathrm{~m} \mu \mathrm{~s}}$	CRT: TW Tubs, 0.4 in. vert by 0.6 in. horz. scan.

List of Pulse Oscilloscope Manufacturers

Advanced Electronics Mfg. Corp.,
2025 Pontius Ave.,
Los Angeles 25, Calif.
Cossor (Canada) Limited
301-303 Windsor St.,
Halifax, Nova Scotia

Allen B. DuMont Labs., Inc.,
760 Bloomfield Ave.,
Clifton, N. J.
Edgerton, Germeshausen \& Grier, Inc.,
160 Brookline Ave.,
Boston 15, Mass.
Electronic Tube Corp.,
1200 East Mermaid Lane
Philadelphia 18, Pa.
Hewlett-Packard Co.,
275 Page Mill Road,
Palo Alto, Callf.
Laboratory for Electronics, Inc.,
75 Pitts St.,
Boston 14, Mass.
Lavoie Laboratories, Inc.,
Matawan-Freehold Road,
Morganville, N. J.

Radiometer,
Welwyn International, Inc.,
3355 Edgecliff Terrace,
Cleveland 11, Ohio

Rohde \& Schwarz,
Federal Instrumente,
250 Garibaldi Ave.,
Lodi, N. J.
The Scopes Company, Inc., P. O. Box 56,

Monsey, N. Y.
Solartron, Inc.,
530-532 Cooper St.,
Camden 2, N. J.
Tektronix, Inc.,
P. O. Box 831,
P. O. Box 831,
Portland 7, Ore.

Taken from Scalers, Directory of Technical Specifications, Electronic Test Instruments.(®)

Concentrated Filter

Passbands
Frederick A. Schaner
The Daven Company
Livingston, N. J.

Crystal filters have been used commercially for about 25 years. Here, in the second part of Mr. Schaner's article, he describes their important properties.

In the first part, he discussed Mechanical Filters. In the concluding part, he will discuss the important qualities and applications of the Electrical or LC Filter.

THE NARROW passband characteristics of crystal filters make them ideal for telephone work and for data converter circuits in data link receivers. The reasonably wide passband characteristics which can be achieved with careful design also make them useful for single side band and $\mathrm{am} / \mathrm{fm}$ communication receivers. One can sometimes simplify communication receiver circuitry from double to single conversion by using a crystal filter ahead of the i-f amplifier if image and spurious rejection requirements are not too rigorous.

Crystal filters have been used commercially for about 25 years. They are manufactured with center frequencies ranging from 1.0 kc to 30 mc , and with passbands from 0.01 to 10 per cent of the center frequency. They are said to have excellent phase linearity across the passband.

Crystal filters are essentially electro-mechanical devices. Consequently, in airborne and mobile applications, care must be taken in design and fabrication so externally induced mechanical vibrations will not affect the electrically transduced vibrations and thereby degrade the com-

Fig. 3. Insertion loss of a crystal bandpass filter. The dotted curves show the effects of a one per cent change of the inductance of one of the crystal units in either lattice branch.
paratively low frequency intelligence in the received signal.

Crystal Properties

A crystal filter usually consists of a lattice network of carefully selected piezoelectric crystals. These crystals have a mechanical resonant frequency which depends on certain physical dimensions. Because of their very high equivalent Q (10,000 to 30,000 unloaded), one can make very narrow band filters and filters in which the attenuation rises very rapidly at cutoff. Curves for two bandpass filters are shown in Figs. 1 and 2.
While filter crystal units are like oscillator crystal units, in that they must have low internal dissipation and a close control of resonant frequency, they are different in that many additional characteristics of the filter crystal units must also be accurately controlled.

Characteristics Affect Performance

Impedance. Two typical illustrations show how characteristics other than resonant frequency and Q may react on filter performance. One of the major characteristics is the slope of the reactance vs frequency curve near series resonance. This slope is sometimes referred to as the impedance level of the crystal unit.

A convenient measure is the inductance of the equivalent electrical circuit. When this inductance departs from its nominal value, filter performance may undergo appreciable change. This is particularly true of filters in which the circuit has a lattice with crystal units in all bridge arms. For example, in Fig. 3, the solid curve shows the transmission characteristic obtained with a lat ice type filter in which both the series and

ALLEN-BRADLEY electronic components
 The standard of quality for long life and dependable performance

HERMETICALLY SEALED in ceramic tubes. Solid, hot molded resistor. less than 1% resislance change arter $250 \mathrm{hr}, 95 \%$ rel. hum., $40^{\circ} \mathrm{C}$.
Resistance values 1022 meghms

METAL GRID PRECISION RESIS. TORS-Hermetically sealed. Noninductive. $1,1 / 2$, And $1 / 4$ walts
at $100^{\circ} \mathrm{C}$. Tolerances 0.1% to 1.0%. Temp coef. $\pm 25 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.

COPPER CLAD-Metal panel mounting, insulated composition resistor supplied in two ratings:
3 and 4 walls at $70^{\circ} \mathrm{C}$ and 4 and 5 watts respectively at $40^{\circ} \mathrm{C}$

HOT MOLDED COMPOSITION RESISTORS-Quality standord of the industry. Rated at $70^{\circ} \mathrm{C}$, in 2 , io 22 meg. Tol: 5,10 , and 20%.

POTENTIOMETERS

STANDARD-Type J. Solid molded element. Quiet, reliable. Roted 2 waths, $70^{\circ} \mathrm{C}$. Values to 5 meg.cycles. Exceeds change in 100,00
yries. Exceeds Mil-R-948.
FILTERS

HIGH FREQUENCY low pass cascaded ceramic filters for elimina$500 \vee \mathrm{DC}$ of $125^{\circ} \mathrm{C}$; RF ratings: 0.25 amp; DC or Lf current 5 amp.

HIGH TEMPERATURE-TYPQK. Similar to Type 1 but rated 3 similar to
watts, $70^{\circ} \mathrm{C}, 2$ watts, $100^{\circ} \mathrm{C}$ s and 1 watt, $125^{\circ} \mathrm{C}$-derate to zero at $150^{\circ} \mathrm{C}$. Many types and lapers.

PRINTED CIRCUIT TYPE-Solid molded eloment. Roted $1 / 4$ wall at $70^{\circ} \mathrm{C}$. Type F is only $1 / 2^{\prime \prime}$ in Total resistance values to 5 meg

MINIATURE-TyPE G. Solid molded element. Only $1 / 2^{\prime \prime}$ in diam. Plain or lock bushings also at $70^{\circ} \mathrm{C}$. Values to 5 megohms.

POTENTIOMETERS

CAPACITORS

CERAMIC ENCASED capacitors for use where reliability and superior performance at high temp are $150^{\circ} \mathrm{C}$. Tol. 5%, 500 VC ol

FEED-THRU \& STAND-OFF discoidal capacitors for VHF and UHF range. No parallel resonance effects af $1,000 \mathrm{Mcps}$ or less.
Nominal values 4.7 to $1,000 \mathrm{mmf}$.

THIN TYPE-Uses molded cover as actuator. Type it has solid at $70^{\circ} \mathrm{C}$. life in excess of 50,000 cycles. Total values to 5 megohms

AARE DISC ceramic capacitors for direct mounting in printed circuil boards. Mechanically strong to avoid breakage in handling, in. stalling, and soldering.

Allen-Bradley Co.
1344 S. Second St.
Milwaukee 4, Wis.
In Canada:
Allen-Bradley Canada Lid. Galt, Onf.

0
ALLEN-BRADLEY

ELECTRONIC COMPONENTS
CIRCLE 25 ON READER-SERVICE CARD

NEW FLAT MOTOR / SMALLEST YET

Globe Industries announces a new precision miniature d.c. motor, the smallest we have made. Like all Globe motors, it can be modified easily and quickly to meet your electrical and mechanical requirements. It is called the VS, and takes its place with the SS, MM and LL in Globe's family of superb quality motors.
The VS weighs $13 / 4$ ozs., is $7 / 6$ in. thick. A breakthrough in miniaturization, it can deliver .2 oz . in. of torque at $10,000 \mathrm{rpm}$ and is the first precision motor of its size available. Multiple units can be gang-mounted in modules.
The fastest way to get full technical data on the VS motor is to phone or write direct: Globe Industries, Inc., 1784 Stanley Avenue, Dayton 4, Ohio, Telephone BAldwin 2.3741.
diagonal branches have two balanced crys'al units. A close impedance balance between the lattice branches provides high attenuation.

When the inductance of any of the units ceparts from its nominal value, the bridge balance is disturbed and the filter's transmission charecteristic is changed. The two dotted curves of Fig. 3 show the characteristics that result when the inductance of the crystal units in either branch depart from their nominal values by about one per cent.

A negative departure in one branch has about the same effect on performance as a positive departure in the other branch. The two dotted curves differ in that one assumes a positive departure and the other a negative departure for the inductance of one branch.
Resonant Frequency. A typical lattice filter has two double plated crystals. One crystal is used in the two series branches, while the other is used in the two diagonal branches. Due to the close balance required, the effect of small departures from resonant frequency produce large variations in the transmission characteristic. For example, departures of about 10 cps in the crystal units of either branch can vary the discrimination as do departures of inductance, to about the same extent.

On the other hand, if the units of both branches exhibit equal departures, the entire transmission characteristic is shifted by the frequency departure of the crystals and there is no loss in discrimination.
Resistance. Another way deviations in crystal properties can react on filter performance is shown in Fig. 4. Here, the schematic is the equivalent electrical circuit of a narrow band filter using two balanced quartz crystal units. This filter provides a passband of about 10 cps with distortion less than 0.2 db . The insertion loss characteristic show that the desired transmission can be obtained for various magnitudes of effec-

Fig. 4. Parameters of a narrow band crystal filter with two balanced quartz units.
a. The equivalent circuit.
b. The effects of variation in effective resistance

ELECTRONIC DESIGN • August 20, 1958

Fig. 5. A high relative humidity can ruin the discriminafion of a crystal filter.
tive resistance as long as resistances in the series and diagonal branches are equal.
However, if the effective resistance in one branch is twice as large as that in the other branch, a highly distorted characteristic results, as shown by the middle curve of Fig. 4 b.
Temperature Coefficient. Just as unequal branch departures from nominal values of effective resistance, resonant frequency and impedance can degrade filter performance, so can unequal temperature coefficients of resonant frequency.
Other devations in a single unit can affect filter performance. Such deviations include the presence of unwanted resonances, even weak ones, inadequate insulation resistance between the metalized coatings, or unbalance between the halves of plates on which the plating has been divided.

Manufacture of Crystals

High humidity and lack of cleanliness during manufacture can wreck the performance of crystal filters. The crystals must have extremely high impedances at their anti-resonant frequencies. These impedances can be as high as 100 megohms with crystal plates in a relatively dry atmosphere. Such values can be maintained up to fairly high frequencies.
For example, Fig. 5 shows the result of high relative humidity on the transmission characteristic of a typical crystal filter. The discrimination almost disappears for a relative humidity of 80 per cent. If the crystal plates are contaminated by solder flux, dirt, or some other foreign substance, bad discrimination may result from much lower humidity values.
It is impractical to manufacture crystal filters in an atmosphere with a relative humidity greater than 40 per cent. In all cases, the filters must be hernetically sealed. The housing must be evacuated, or filled with an inert gas, preferably under pressure.

yours free, if you can use it

If you are one of the relatively few, highly skilled engi. neers in America today whose job requires a knowledge of the mysterious, highly specialized alloys used in mag. netic, electronic and electrical applications, you'll want this new 64 -page booklet.

In it are the two kinds of vital information about these alloys electronic designers need most today-what they will do and where you can get them, fast.
The technical data and case histories for this booklet were compiled by the metallurgical staff of The Carpenter Steel Company. They're giving you, free, the benefits of their own wide experience in producing the
largest selection of these highly specialized alloys ever available from any one steelmaker.
In fact, there isn't a single Carpenter alloy mentioned in this booklet that you can't get in quantity right now.
These same skilled, experienced men are also available for work on special problems with alloys for electronic, magnetic and electrical applications.
Get your free copy of this booklet-and get in touch with the men who wrote it-by sending your request today on your company letterhead.

Curpentert EL

Alloys for flectronic, magnetic and electrical applications
The Carpenter Steel Company, 145 W. Bern St., Reading, Pa. Export Dept.: The Carpenter Steel Co., Port Washington, N. Y.-"carsteelco" CIRCLE 28 ON READER-SERVICE CARD

No Moving Parts in High Electronic

A
N ELECTRONIC solid state commutator with no moving parts is available from the Applied Science Corp. of Princeton, N.J. It can handle up to 1000 samples per sec with an input-to-output accuracy of 1 per cent or better for any mixed source impedance up to 25 kohms. This accuracy figure includes linearity and offset factors.

The multichannel sampling switch develops a back current of less than 1 ramp during the time a channel is "off." This negligible back rurrent eliminates the problem of transducer "loading."

Both the accuracy and non-loading features have been engineered as inherent parts of the ring counter actuated diode gating circuity which forms the heart of the commutator.
The electronic commutator is designed for long-life applications in data handling systems using time-division multiplexing. The device will handle 0 to 5 v input signals in all IRIG

ELECTRONIC DESIGN • August 20, 1958

Accuracy

Commutator

standard pulse amplitude (pam) and pulse duration (pdm) sampling rates. Standard channel configurations are 30 and 45 , including synchronization pulses.
ASCOP's commutator retains all the conventional advantages of solid state switching. Power consumption is less than 3 w . Design life expectancy is 5000 hours, without maintenance. Operating temperature range is -60 to +80 C with special packaging available for extreme intermittent temperatures. The commutator's size is approximately 45 cu in ., and the weight is approximately 2 lb , making it feasible for airborne applications. In addition, the unit offers better vibration resistance than mechanical switches. It is expected that this ASCOP design will replace some mechanical commutators now in operation.
For more information, turn to the ReaderService card and circle 101.

Electronic commutator has no moving parts and can handle 1000 samples per sec.

TEFLON* MINIATURE COAXIAL CABLE

Plastoid "Teflon" miniature coaxial cables are only about $1 / 4$ the outside diameter of comparable RG types, yet provide the same impedance char acteristics as standard types. Manufactured in three widely used impedance ranges (0,70 and 33 ohms) these Tres miniarure cables $200^{\circ} \mathrm{C}$ stable characteristics when operaced up to 200 C temperature and can be used successfully in conare present. They may be applied with any desired are present. They may be applied with any desired outer coating, and will withstand temperatures up fiber glass jacket.

CONSTRUCTION: Both the conductor and braid usually employ silver plated wire. The standard jacket material is "Teflon". Any desired jacketing materials such as Nylon, Fiberglass, Teflon Coated Fiberglass, KEL-F or any other suitable jacket are available to meet unique conditions and specifications.
APPLICATIONS: The ultimate in space conservation as compared to standard RG types. Rugged construction represents an important contribution to missiles plants or laboratories ohere insrrument hook-ups are subjected to chemical corrosion or abrasive treatment. TYPICAL CONSTRUCTIONS

HOOK-UP WIRE - EXTRUDED TEFLON INSULATION

MIL-W-168788 (Navy) Type E Voltage Rating: 600 Temperature Rating: $+200^{\circ} \mathrm{C}$ 1. Silver coated copper conductor. 2. Extruded teflon insulation - ten solid colors per spec. Also with conerasting helical color coding in single and double combinations. 3. May be supplied in single or multiple conductor cables with or withour shields - consisting of silver coated, tinned or bare copper as required.				
Plastoid	Spee. Designation	AWG 8ize	$\begin{aligned} & \text { Max } \\ & 0 . D . \end{aligned}$	$\begin{aligned} & \text { pprox } \\ & \text { t. } \# / \omega \end{aligned}$
PP12003	E-26	26/7x34	.043"*	2.0
PP12004	E-24	24/7x32	. $0488^{\prime \prime}$	3.
PPP12005	E-24	22/7x30	. $0544^{\prime \prime}$	4.0
PP12025	E-22	22/19x34	. 054 "	4.0
	E-20	20/7x28	. $062^{\prime \prime \prime}$	5.5
PP12026	E-20	20/10x32	$062^{\prime \prime}$	5.5
PP12027	E-18	18/19x30	074 "	8.0
PP12008	E-16	$16 / 19929$ $14 / 19 \times 27$	087" ${ }^{1010}$	

MIL-W-168788 (Navy) Type EE Voitage Rating: 1000

1. Silver cure Rating: $+200^{\circ} \mathrm{C}$
2. Silver coated copper conductor per spec. Also with contrasting helical color
3. May be supplied in single ormbinations. Muctor cables with or withour mhields con-
disting
sister sisting of silver coated, tinned or bare copper
as required. Plastoid Spoc. AWG8izo Max. Approx.
Part Dosignation A Stranding O.D. Wt. \#/ M/

MIL-W-T139A

 Voleage Rating: 60 Temperature Rating: $400^{\circ} \mathrm{F}$ Conforms to Dept. of Navy Bureau of Aeronautics requirements.1. Silver Coated Copper Conductor
2. Teflon Insulation
3. Glass Braid

Mill Mo.	Plastoid Part Mo.	AWG 8ize	$\begin{aligned} & \hline \text { Diel. } \\ & 0.0 \end{aligned}$	$\begin{aligned} & \text { Nom } \\ & \text { O.D } \end{aligned}$
RM-22	PP12.051	22/19x. 0063	. 0	
RM-20	PP12.052	20/19x.0079	. 0	09
RM-18	PP12.053	18/19x. 0100	. 080	. 110
RM-16	PP12,054	16/19x.0113	. 088	-118
RM1-12	PP12.055	14/19x. 0142	. 108	${ }^{138}$
	PP12,058	12/19x. 0179	. 132	. 162
	Outer Covering Conforms with Para. 3.2.3 M1L-W-7139A			

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

TANTALUM CAPACITORS

Withstand femperatures to 150 C and vibrations of 2000 cps , per MIL-C-3965B. Series M2 tantalum capacitors is hermetically sealed and measures $1 / 2 \mathrm{in}$. long. At 85 C , ratings are available from $11 \mu \mathrm{f} 90 \mathrm{v}$ to $140 \mu \mathrm{f} 6 \mathrm{v}$. At 150 C , ratings are $11 \mu \mathrm{f} 75 \mathrm{v}$ to $140 \mu \mathrm{f} 4 \mathrm{v}$.
P. R. Mallory \& Co., Inc., Dept. ED, 28 S. Gray St., Indianapolis, Ind.

CIRCLE 30 ON READER-SERVICE CARD

MASER AMPLIFIER

Extremely low noise figures can be achieved by using the Versitron solidstate maser amplifier. Operating in either the S-band or X-band, the Versitron has a noise temperature equivalent of approximately 25 Kel vin. Gain bandwidth products are 3 mc in the S -band and 10 mc in the X-band. The unit employs a regenerative type cavity amplifier and a nondestructible ruby crystal. Circulator input and output, liquid helium operating temperature and a stabilized magnetic field are other charácteristics.

Advance Industries, Inc., Dept. ED, 640 Memorial Dr., Cambridge 39, Mass.

CIRCIE 31 ON
CIRCLE
READER-SERVICE
ON
ELECTRONIC DESIGN • August 20, 1958

DC AMPLIFIER

A high current dc amplifier for driving recording galvanometers, model 1411 features output of $\pm 100 \mathrm{ma}$ up to 30 kc , electrical offset control, output metering, damping resistance selector, dummy loads with substitution by relay, and continuously variable voltage gains from 1 to 3000 . Other specifications include 100 K input impedance, $\pm 2 \mu \mathrm{v}$ drift limits, and less than 0.1 per cent non-linearity for the usual galvanometer frequency ranges.
Dynamics Instrumentation Co., Div. of Alberhill Corp., Dept. ED, 1118 Mission St., S. Pasadena, Calif.

CIRCIE 32 ON READER-SERVICE CARD

HYSTERESIS MOTOR

The sfator of this hysteresis motor is made of a continuous steel silicon strip, punched and coiled. Designed for the instrumentation and tape recorder field, model 6-10.20 runs at 360 and 720 rpm giving direct drive for $3-3 / 4$ and $7-1 / 2$ ips. Starting and running torques are 4 and 5 in .oz for 360 rpm and 5 and 6 in .oz for 720 rpm . A three speed motor is also available with speeds of $450-900-1800 \mathrm{rpm}$.
Charles B. Stegman Assoc., Dept. ED, 5757 Tobias Ave., Van Nuys, Calif.
circle 33 on reader-service card

Patont Ponding

TRANSISTORIZED SHORT CIRCUIT PROTECTED

- REGULATION: 0.1% for line changes $\mathbf{1 0 5 . 1 2 5}$ volts at any output voltage in the range minimum to maximum.
0.1% or 0.003 volt for load changes 0 to maximum (whichever is greater) at any output voltage in the range minimum to maximum.
- RIPPLE: 1 mv . RMS.
- RECOVERY TIME: 50 microseconds.
- STABILITY: (for 8 hours) 0.1% or 0.003 volt (which. ever is greater).
- AMBIENT OPERATING TEMPERATURE: $50^{\circ} \mathrm{C}$ maximum Over-temperature protection provided. Unit turns off on front panel resets unit.
- TEMPERATURE COEFFICIENT: Output voltage changes
less than 0.05% per ${ }^{\circ} \mathrm{C}$.
- SHORT CIRCUIT PROTECTION: No fuses. circuit breakers or relays! Designed to operate continuously into ashort cirrcuit. Returns instantly to operating voltage when overload is removed. Ideal for lighting
lamps and charging capacitive loads.
OVER-CURRENT CONTROL: Can be set from 0 to
120% of full load. Current is limited to preset value 120% of full load. Current is limited to preset value for any load including short circuit.

KEPCO

LABORATORIES, INC. 131.38 samford avenue - flushine 55, m.y. IMDEPEMDENCE 1.7000
for the most complete line of POWER SUPPLIES

- REMOTE PROGRAMMING at 1000 ohms per volt is provided. Remote programming allows mounting a voltage control at a remote point.
- REMOTE ERROR SIGNAL SENSING is provided to maintain stated regulation directly at load.
- CONSTANT CURRENT OPERATION: These units can be set up for constant current operation without in ternal modification.
POWER REQUIREMENTS: 105.125 volts, 50.65 cycles.
400 cycle units available.
- OUTPUT TERMINATIONS: DC terminals are clearly marked on the front panel. All terminals are isolated from the chassis. Either positive or negative terminal of each DC output may be grounded. A terminal is nals, the remote programming terminals and the remote error signal sensing terminals are brought out at the rear of the unit.
- CONTROLS: Power-on-off switch, one turn voltage con. trol, on front panel. Over.current control on rear of unit. Ten turn voltage control available on special order.
- Continuously Variable Output Voltage. No voltage switching.
- Suitable for square wave pulsed loading.
- Either positive or negative can be grounded

Units can be series connected

- High efficiency Low heat dissipation. Compact, light weight For bench or rack use.

ORDERING INFORMATION:
Units without meters use model numbers indicated in table. To include meters add M to the Model No. (e.g. SC-18-1-M).
"Rack adapter for mounting any two $81 / 4^{\prime \prime} \times 4 / z_{2 "}$ units is available. Model No. RA2 is $51 / 4^{* \prime}$ high 19° wide.
Rack adapter for mounting any one $811_{4^{\prime \prime}} \times 4 K_{2^{\prime \prime}}$ unit is
available. Model No. RA3 is $51 / 4^{\prime \prime}$ high $19^{\prime \prime}$ wide.
AN 0.01\% sERIES IS AVAILABLE IN 13 NEW MODELS KEPCO OFFERS MORE THAN 120 STAMDARO VOLTAGE REGULATED POWER SUPPLIES COVERING A WIDE RANGE OF MAGMETIC, TUBE ANO TRANSISTOR TYPES. MOST MODELS AVAILABLE FROM STOCK.

WIGH SPEFD SWITCHIING

". . with reliable T/l silicon transistors

New improved TI 2N337 and 2N338 specifications provide greater design flexibility for your switching circuits . . . nuclear counters . . . pre-amplifiers . . . RF amplifiers . . . 455 KC IF amplifiers . . . and many other high frequency applications.
You get high gain at low current levels with TI diffused silicon transistors. High alpha cutoff . . . 10 mc \min for $2 \mathrm{~N} 337,20 \mathrm{mc}$ min for $2 \mathrm{~N} 338 \ldots$ and extremely low collector capacitance assure optimum performance in your switching and high frequency amplifier applications.

NEW IMPROVED SPECIFICATIONS FOR 2N337 AND 2N338

	from	to
$\mathrm{BV}_{\text {CBO }}$	40 V max	$45 \mathrm{~V} \max$
$\mathrm{R}_{\text {CS }}$	$300 \Omega \max$	$150 \Omega \max$
$h_{\text {ib }}$	$90 \Omega \max$	$80 \Omega \max$

Consider TI's guaranteed specifications when you select semiconductor devices for your next transistor circuit.

- Measured at $1 \mathrm{mc}+$ Common Emitter $\left\{I_{\mathrm{B}}=1 \mathrm{~mA}\right.$ for $2 \mathrm{~N} 337,0.5 \mathrm{~mA}$ for 2 N 338

Includes delay time (l_{d})

NEW PRODUCTS

Manual Spectrometer

0.15 per cent linearity

A manual scintillation spectrometer for analysis of energy spectra of gamma emitting isotopes, model $\mathrm{N}-1260 \mathrm{M}$ has stability of 0.25 per cent per day. Linearity is 0.15 per cent, and background count is 25 cpm.
Hamner Electronics Co., Inc., Dept. ED, P.O. Box 531, Princeton. N.J.

CIRCLE 36 ON READER-SERVICE CARD

Recording System

Rectilinear readout and thermal writing

The 8-channel model RD 168400 ultralinear recording system has rectilinear readout and thermal writing. Frequency response is dc to 100 cps. The system features a choice of two individual plug-in amplifiers: one with sensitivity of 10 mv per chart line and stability of $1 / 2$ chart line per hour, the other with sensitivity of 50 mv per line, and stability of $1 / 10$ line per hour. Eight standard chart speeds from 0.4 to 100 mm per sec.

Brush Instruments, Dept. ED, 3405 Perkins Ave., Cleveland 14, Ohio.

CIRCLE 37 ON READER-SERVICE CARD

Programming System
Hus removable pre-patched boards

Removable, pre-patched boards allow fast reprogramming in the A-MP 240 patchcord programming system. Designed for shock and vibration resistance, the system has 240 contact holes. A patented wiping action assures pre-cleaning of contact springs and taper pins.
Amp Inc., Dept. ED, 2100 Paxton St., Harrisburg, Pa.
circle 38 on reader-service card

DC Insulation Tester

5 ma output at 100 kv
The VON 100 kv dc insulation tester checks and evaluates insulation of large motors, generators, transformers, cables and high voltage assemblies. Output is 5 ma at 100 kv.

The Hewson Co., Inc., Dept. ED, 443 Broad St., Newark 2, N.J.

CIRCLE 39 ON READER-SERVICE CARD
Frequency Standard
Crystal controlled

Transistorized, crystal controlled model 381 frequency standard has a frequency stability of ± 0.0002 per cent from -55 to +90 C am bient. It withstands shock of 100 g , acceleration of 20 g , and vibration of 10 g to 2000 cps . Total volume of standard at 50 cps pulse output is less than 13 cu in .
Gibbs Mfg. and Research Corp., Drpt. ED, 450 N. Main St., Janesvilie, Wis.

CIRCLE 40 ON READER-SERVICE CARD
CIRCLE 41 ON READER-SERVICE CARD $>$

how large is small?
 daven's new miniature wire WOUND RESISTORS PROVIDE AS MUCH AS 400 K RESISTANCE IN 1/4" $\mathbf{x}^{5} / 16$ " SPACE

DAVEN's fully encapsulated, miniature, precision wire wound resistors offer the design and development engineer the solution to critical space limitation problems. DAVEN's advanced techniques provide the needed resistance value in a minimum of space, without sacrificing reliability. Where space conservation is a prime factor in your design, specify DAVEN miniature wire wounds.
Types and Specifications

Type	Dia.	Length	Max. Ohms	Max. Watts
1274	$3 / 16$	$3 / 8$	100 K	0.25
1273	$1 / 4$	$5 / 16$	400 K	0.25
1283	$1 / 4$	$5 / 16$	400 K	0.25
1284	$1 / 4$	$27 / 64$.5 Meg.	0.25
1250	$1 / 4$	$1 / 2$	900 K	0.33
1170 A	$7 / 16$	$1 / 2$	1.2 Meg.	0.50
1170	$1 / 2$	$1 / 2$	1.8 Meg.	0.50

- Fuliy encapsulated - Meet and exceed all humidity, salt water immersion and cycling tests as specified in MIL-R-93A, Amendment 3 - Operate at $125^{\circ} \mathrm{C}$ continuous power without de-rating • Can be obtained in tolerances as close as $\pm 0.02 \%$ - Standard tem. perature coefficient is $\pm 20 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.

, Special temperature coefficients can be supplied on request. Write for our new resistor catalog.

R and D Labs
 Engineers...
 Servicemen...
 Hobbyists...

NEW

WORKBENCH HOOK-UP WIRE DISPENSER KITS

Belden Dispenser Kits solve the problems of waste and inconvenience for all users of Hook-Up Wire and are available in the 14 most popular assortments of Vinyl, Vinyl-Nylon, Textile, and Teflon ${ }^{\text {• insulated wire for every requirement. }}$
Each kit conlains on assorlment of Hook-Up Wire colors and lypes plus a portable melal dispenser rack for workbench or wall mounting. The dispenser rack provides a complete, compact, and convenient wire department for every working area of the user's finger tips, simplifies user Hook-Up Wire slock maintenance, and helps keep wire clean and orderly while keeping the workbench neat and efficient. Available at all Belden jobbers.

Du Pont Irademark
One Wire Source for Everyfhing Electrical and Elecfromic
Mognet Wire • Leod Wire - Powor Supply Cords. Cord Sats and Portable Card - Aircratt Wiren Electrikel Housohold Cords - Electronic Wiren Walding Cable - Automolive Wire and Cable

NEW PRODUCTS

Transistors

Germanium p-n-p alloy type
Germanium p-n-p alloy type transistors for various uses. Drift transistors 2N373 and 2N374 are for i-f amplifier and converter service respec. tively. Junction transistor 2 N 591 is for large. signal of driver service. Audio power transistors 2N301 and 2N301-A provide outputs to 5 w
Radio Corporation of America, Semiconductor Div., Dept. ED, Somerville, N.J

CIRCLE 470 ON READER-SERVICE CARD

Strobed Readout Amplifier

Transistorized

Designed as a readout amplifier for type S.3 ferrite magnetic matrix memory cores, the AI-600 is a two-transistor regenerative pulse amplifier. Signals above 18 mv cause the amplifier to generate a 10 v positive-going output pulse which has about $0.3 \mu \mathrm{sec}$ rise, $1.5 \mu \mathrm{sec}$ length, and 0.4 $\mu \mathrm{sec}$ fall across 2.2 K output load impedance Recovery is within $6 \mu \mathrm{sec}$. A strobe input terminal is provided to permit control of the amplifier on time.
Airtronics, Inc., Dept. ED, 5522 Dorsey Lane Washington 16, D.C.

CIRCLE 44 ON READER-SERVICE CARD

Polystyrene Capacitors
 No derating from -60 to 85 C

HD\&K Syncap polystyrene capacitors include these types: glass encapsulated, upright rectan gular in metal cans, bath tub fixed or adjustable metal tubular, bakelite encased, and uncased Maximum dielectric absorption is 0.05 per cent stability and retrace, 0.05 per cent. The units operate from -60 to +85 C with no derating Capacitances range from 0.01 to $10 \mu \mathrm{f}$.
Wesco Electrical and Mfg. Co., Dept. ED, 27 Olive St., Greenfield, Mass.

CIRCLE 45 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 20, 1958

DC Coupling Preamplifier

Single-ended or push-pull input

In model 450-1300 dc coupling preamplifier input is single-ended or push-pull, impedance 5 meg each input side to ground; 50 mv input produces 1 v at output jack. Frequency response is 0 to 10 kc ; linearity, 0.25 per cent.
Sanborn Co., Dept. ED, 175 Wyman St., Waltham 54, Mass.

CIRCLE 46 ON READER-SERVICE CARD

Isolation System

For shock and vibration problems
While steady loads to 50 g are applied, this isolation system isolates 50 g shocks and stands 20 g vibration from 5 to 2000 cps. It permits insensitive responses to temperatures from -85 to +500 F . Litton Industries, Maryland Div., Dept. ED, 4900 Calvert Rd., College Park, Md.

CIRCIE 47 ON READER-SERVICE CARD

Multicoupler
 Covers 2 to 32 mc

TRAK multicoupler model 21 couples one antenna to ten receivers and operates between 2 and 32 mc . It features 60 db isolation between outputs, 60 db attenuation of intermodulation components, and a 6 db noise figure.
CGS Labs, Inc., Dept. ED, Ridgefield, Conn.
CIrcle 48 on reader-service card

THE STANDARD FOR MICROWAVE COMPONENTS
 Standards, Inc. that offer a dependability and accuracy ($\pm 0.01 \%$) unmatched in the field.
For here you will find the highly specialized engineering experience and the intricate tooling and production facilities needed to produce such sensitive microwave components as the two pictured on this page.
picturese two Tunable Band Pass Filters, both passive frequency selective devices, are capable of
The providing large amounts of selectivity in the stop band consistent with low dissipation losses in the pass band. Our standard line includes 2 -, 3 - and 4 -section filters with a ganged tuning control feature, over a wide frequency range, assuring you of an accuracy of $\pm 0.01 \%$.
For details, contact Frequency Standards, Inc., and we will furnish information on our standard products, our custom products and our facilities for meeting all requirements, no matter how exacting, in the microwave components field.
Please address inquiries to Prequency Standards, Inc., Box 504A, Asbury Park, N. J., Prospect 4.0500 , or your nearest representative in all principal cities.

BOOTHS 1255 \& 1256, WESCON SHOW

NEW PRODUCTS

DC Amplifier
Delivers up to 6 w

Rack-mounted and transistorized, Model B-l dc amplifier delivers up to 6 w , at an output impedance of less than 0.1 ohm , over the fre. quency range from dc to 20 kc .
Southwestern Industrial Electronics Co., Dept. ED, 2831 S. Post Oak Rd., Houston 19, Tex. CIRCLE 51 on reader-service card

Electronic Counter

Measures frequencies from 10 cps to 1.1 mc

The model 13-20 counter measures fre quencies from 10 cps to 1.1 mc , periods from 0 to 10 kc , time intervals from $3 \mu \mathrm{sec}$ to 100,000 sec , and 1 to 999,999 total events. The instrvment also measures time and frequency ratios frequency drift, and similar quantities, and will count and totalize discreet electrical impulses Power input is $115 \mathrm{v} \pm 10$ per cent, $60 \mathrm{cps}, 280$ w.

Northeastern Engineering, Inc., Dept. ED, 25 S. Bedford St., Manchester, N.H.

CIRCLE 52 ON READER-SERVICE CARD
Bridge Balance
For strain gauges

This miniature strain gage balance box ir terconnects a power supply and 18 strain gage bridges to a multi-channel recorder. Means foo balancing the bridges are included.
Datran Electronics, Dept. ED, 1836 Rosecrans Ave., Manhattan Beach, Calif.

CIRCLE 53 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 20, 1958

Tape Recorder

For telemetering

Sturt and stop time is under 30 msee in model 707 tape recorder for ground station telemetering instrumentation. The unit has a frequency response to 130 kc and an output of 4 v rms into 180 ohms. Plug in modules provide direct analog, pdm , and fm recording. Models for $1 / 2-\mathrm{in}$. tape have 7 tracks; 1 -in. models have 14 tracks.
Midwestern Instruments, Dept. ED, P.O. Box 7186. Tulsa, Okla.

CIRCLE 54 ON READER-SERVICE CARD

Transducers
Pressure to frequency

Series P300 pressure to frequency transducers have infinite resolution and provide 1 per cent repeatability. Units can be supplied on any RDB standard subcarrier telemetering frequency between 1.7 and 70 kc .
Datran Electronics, Dept. ED, 1836 Rosecrans Ave., Manhattan Beach, Calif.

CIRCIE 55 ON READER-SERVICE CARD

Nuclear Battery
Safer to use

The model K nuclear battery delivers higher currents than Strontium- 90 models, but is much safer to use. It uses krypton-85, a low cost radioisotope that diffuses quickly upon contact with air. A miniature unit has a current rating of 10 to $1000 \mu \mu \mathrm{a}$, an open circuit potential of several thousand volts, and a linear charging rate to several hundred volts.
Uli:iversal Winding Co., Inc., Patterson, Moos Div, Dept. ED, 90-28 Van Wyck Expressway, Jami ica 18, N.Y.

CIRCIE 56 ON READER-SERVICE CARD

The FIRST and ONLY standard line of tunable Microwave Filters

Characteristics Model No.
Type of Resonalor
Tuning Range
3 db Bandwidth Max 30 db Bandwidth Max Insertion Loss Model No
Type of Resonant Cavity Tuning Range
Max 30 db Bandwidth
Max Insertion Loss
Price
Characteristics
Model No.
Type of Resonator
Tuning Range
3 db Bandwidth Max 30 db Bandwidth
Max Insertion Loss Price

Characteristics
Model No.
Type of Resonant Cavity Tuning Range
Max 30 db Bandwidth
Max Insertion loss
Price

Two (2) Section Resonafor	Three (3) Section Rosonator
27-BW	27-CW
TE E_{101} mode rectangular	TE ${ }_{101}$ mode reciangular
2700-3150 MCS	2700-2950 MCS
4.5-6.5 MCS	4.5-5.5 MCS
36 MCS	18 MCS
. 9 db	1.3 db
\$400.00	\$335.00
27-8C	27-CC
$\lambda / 4$ coax	$\lambda / 4$ coax
2700-3200 MCS	2700-3100 MCS
8.11 MCS	8-10 MCS
60 MCS	32MCS
1.6 db	2.4 db
\$350.00	\$475.00

C BAND FIITETS
Two (2) Section

54-BC
$\lambda / 4$ coax
5400-5950 MCS
8-11 MCS
60 MC
2 db
$\$ 360.00$
LEAND FILTERE
Resonator 96-8C
$\lambda / 4$ coox
960-1150 MCS
8.11 MCS

60 MCS
60 MCS
1.2 db
$\$ 370.00$

Three (3) Soction Resonator 54-CC $\lambda / 4$ coox
5400-5950 MCS
8-10 MCS
32 MCS
3 db
$\$ 185.00$
30.00 五

X BAND FILTERS

Resonafor
 75-BW

Model No.
Type of Resonant Cavily Tuning Range
Max 30 db Bandwidth
Max 30 db Bandwid
Price
Model No.
Type of Resonant Cavity
Tuning Range
3 db Bandwidth
Max 30 db Eandwidth
Max Insertion Loss
Price

Throe (3) Section Resonafor 96-CC $\lambda / 4$ coax d/4 coax 8-10 MCS 32 MCS 1.8 db Three (3) Section Rosonator
$75-\mathrm{CW}$
TE 111 mode cylindrical 111 mode cylindr

$7500-8250$ MCS | 8-10 MCS |
| :--- | $8-10$ MCS 32 MCS

2.5 db $\$ 625.00$ 85-CW
E_{111} mode cylindrical $1500-9300$ MCS 8-10 MCS 32 MCS 2.5 db
$\$ 625.00$

Four (4) Saction Resonator 27-DW
$T E_{101}$ mode reciangular
2700-2900 MCS
4.5-5.5 MCS

13 Mcs
$\$ 670.00$
670.00

27-DC
2/4 coox
2700-2950 MCS
$8-9$ MCS
21 MCS
3.2 db
600.00

Four (4) Section
Resonator 54-DC $\lambda / 4$ coax
5400-5750 MCS 8.9 MCS 21 MCS 4 db $\$ 610.00$

Four (4) section Resonafor 96-DC $\lambda / 4$ coax
960-1050 MCS 8.9 MCS

21 MCS
2.5 db
$\$ 620.00$

Four (4) soction Resonctor 75-DW
$T E_{111}$ mode cylindrical
E 111 mode cylindrical
$7500-8000$ MCS 8.9 MCS 8.9 MCS
21 MCS 21 Mcs
3.5 db $\$ 775.00$ 85-DW
$T E_{11}$ mode cylindrical $8500-9000$ MC $8-9$ MCS 21 MCS
3.5 db 3.5 db
$\$ 77.00$

All of the obove filters have Max VSWR of 1.5, and oither a single shoft or counfor dial for Tuning Control. Depending upon mode of operation, units are supplied with either Type \mathbf{N} Connectors or Waveguide hanges. DELIVERY IN 90 DAYS
SOOTHS \#1255 1256, WESCON SHOW
Frequency Standards. inc.
NATIONAL ELECTRIC PRODUCTS CORP:
P. O. BOX 504, ASBURY PARK, N. J. Telephone: PRospect 4.0500 TWX A PK 588

CIRCLE 57 ON READER-SERVICE CARD

One pot's

answer to tough requirements

5,000,000 cycle life

Precision potentiometers capable of living up to toughest circuitry demands! Built-in immunity to extremes of vibration, shock and acceleration... and finest quality materials assure maximum precision, exceptionally long life. A new concept proved in both military and commercial applications. Available from $7 / 8^{\prime \prime}$ to $3^{\prime \prime}$.

Precision single furn pofenfiomefers feafuring:

- Linear or functional windings - 0.1% standard linearity
- Rotational speeds to 3,500 R.P.M.
- $165^{\circ} \mathrm{C}$ standard... $225^{\circ} \mathrm{C}$ special
- Ball bearings, class 7 stainless
- No hygroscopic...no fungus supporting materials
- NAS 710, procedure III

Division of
Chicago Aerial induetries. Ine

NEW PRODUCTS

Voltage Regulated Power Supply
Range of 0 to $18 \mathrm{v}, 0$ to 0.5 amp .

The transistorized Model SC-18-0.5 delivers 0 to $18 \mathrm{v}, 0$ to 0.5 amp . Regulation for line or load is less than 0.1 per cent or 0.003 v , whichever is greater. Ripple is less than 1 mv rms. Recovery time is less than $50 \mu \mathrm{sec}$. Stability for 8 hr is less than 0.1 per cent of 0.003 v , whichever is greater.

Kepco Labs, Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y.

CIRCLE 120 ON READER-SERVICE CARD
Decade Amplifier Permits ac and de coupling

The frequency response of the Model 201 decade amplifier is flat within ± 2 per cent dc to 100 kc , and 1 db to 500 kc . Its input impedance dc-coupled is 400 K shunted by $30 \mu \mu \mathrm{f}$; output impedance is nominally less than 100 ohms. It is a gain of 10 , and its equivalent noise level is less than $20 \mu \mathrm{v}$.

Quan-Tech Labs., Dept. ED, Morristown, N.J. CIRCLE 121 ON READER-SERVICE CARD

Line Voltage Regulators

Recovery time of 35 msec

The eight standard models range from 0.5 kva to 2 kva and are available in two grades of

Now G-E "Bead Size" Thermistors -D-054 (1000 ohms at $25^{\circ} \mathrm{C}$) and D-051 (20,000 ohms at $25^{\circ} \mathrm{C}$)

BETTER TOLERANCES FOR LESS COST

G.E.'s new "bead size" D-050 series thermistors are available with resistances from 1,000-20,000 ohms at $25^{\circ} \mathrm{C}$. These .05 -inch diameter disc thermistors provide lower thermal time constants and are available for $250^{\circ} \mathrm{C}$ maximum operating temperature (standard, 150° C). You can buy them economically with resistance tolerances of only $\pm 5 \%$ (standard, $\pm 10 \%$).

NEW THERMISTOR MATERIALS

Extensive research has added many new thermistor materials to the G-E line. These can now be
used in a wide variety of design used in a wide variety of design applications not previously covered by grade 1 and 2 materials.

COMPLETE RESISTANCE RANGE

G-E thermistors can be supplied in sizes from .05 up to 3 inches with resistance values from 1 to $10,000,000$ ohms, and temperature coefficients of resistance from -1% to -5% at $25^{\circ} \mathrm{C}$. For more technical information or the assistance of a G-E engineer, write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Street, Edmore, Michigan.

Zugress is Our Mast Important Praduct GENERAL (96) ELECTRIC CIRCLE 122 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 20, 1958

MIL T-27A. The output is kept within ± 1 per cent of $115 \mathrm{v}, 60 \mathrm{cps}$, with an input range of 100 to $130 \mathrm{v}, 60 \mathrm{cps}$, and load variations of 0 to 100 per cent. The recovery time to the ± 1 per cent region after a 10 per cent line step or a 25 per cent load step is less than 35 msec .
NJE Corp., Dept. ED, 345 Carnegie Ave., Kenilworth, N.J.

CIRCLE 123 ON READER-SERVICE CARD
Ferrite Load Isolator
Gives 15 db isolation

Used to provide isolation between a microwave source and its load, model XL157 ferrite isolator removes the reactive loading effect caused by long transmission lines or the frequency pulling of magnetron or klystron. Operable over the band 8.5 to 9.6 kmc , it gives 15 db isolation with an insertion loss of 0.5 db .
Cascade Research, Div. of Monogram Precision Industries, Inc., Dept. ED, Los Gatos, Calif.

Circle 124 on reader-service card

Metal Bellows

Wall thinness down to 0.0008 in.

These flexible metal bellows range from 1 to 0.125 in . O.D. and come in any wall thinness down to 0.0008 in . The metal is a nickel alloy of high tensile strength and low hysteresis with resistance to corrosion and temperature.
Servometeı Corp., Dept. ED, P.O. Box 42, Clifton, N.J.
circle 125 on reader-service card

Quality begets quality - it's an established axiom that premium products must begin with quality components. Bishop has been producing platinum and precious metal products since 1842 . . . precision stainless steel tubing since 1931. The Bishop family of metal products includes a broad variety of components for the designer, engineer . . . just to mention a few:

Capillary Tubing-standard and special sizes
Platinum \& Platinum Alloy Wire- \#50 to \#3 B\&S Gauge
Clad Mefals-base and precious metals in various combinations
Glass-To-Metal Sealing Alloys-low expansion alloys
Thermocouples-noble metal and noble metal alloys
Tubing-nickel, stainless, platinum, special alloys
Tubular Fabricated Parts-all varieties
Composite Wires-base and precious metals in various combinations
Platinum Tubing, Contacts, Discs

CATALOGS, DATA SHEETS SENT PROMPTLY ON REQUEST

Begin your next design with unexcelled quality Bishop component materials. Write, wire or phone Malvern 3100.

J. BISHOP \& CO.
 platinum works
 MALVERN, PENNSYLVANIA

CIRCLE 126 ON READER-SERVICE CARD

From General Electric . .

PLAIN TALK ON TANTALYTIC* CAPACITOR AVAILABILITY

It's time for plain talk on the facts of tantalum electrolytic capacitor availability. There is no "availability" problem as far as General Electric is concerned.
Here's why:

- No metal shortage-Stocks of capacitor-grade tantalum have doubled within the past year.
- No production capability shortage-General Electric's production facilities have tripled in the past year
- No delivery bottlenecks-General Electric's improved manufacturing processes and techniques have virtually eliminated production rescheduling.
- Few military directive priorities-Since the supply of Tantalytic capacitors has met demand, the military requirements can be met without directive priorities.
This is why we say-now and in the future, General Electric will continue to provide Tantalytic capacitors in the types and ratings you want-when you want them.
For specific information on Tantalytic capacitor ratings, prices, deliveries, contact your nearest General Electric Apparatus Sales Office or write to General Electric Co., Section 449-4, Schenectady 5, N. Y.
-Registored Irado-mark.
of Genoral Electric Co. ${ }^{*}$ Gentado-mork of

NEW PRODUCTS

The SPACE self-programming automatic cable evaluator checks for leakage and continuity between wire ends of a cable harness. Using a computer type memory, it performs up to 10 tests per second and can generate its own tape program.
James Cunningham, Son \& Co., Inc., Dept. ED, P.O. Box 516, Zone 2, Rochester 8, N.Y.

CIRCLE 87 ON READER-SERVICE CARD

Rotator

Actuates large stabilized platforms
Torquer model ARTQ-1 actuates large stabilized platforms mounting heavy aerial cameras, infrared devices, and radar antennas. It is capable of high altitude continuous performance in ambient temperature of 130 C . The rotator develops torques up to $15 \mathrm{in} . \mathrm{lb}$ at a torquer weight of 6 lb .
The Aeroflex Corp., Aeroflex Labs Div., Dept. ED, 34-06 Skillman Ave., Long Island City 1, N.Y.

CIRCLE 88 ON READER-SERVICE CARD

Potentiometer

Low torque

Model HP-151 is a miniature, low torque 15-turn unit with standard resistance values from 50 ohms to 150 K . Linearity can be held to 0.05 per cent. The unit dissipates 4 w at 40 C and stands shock, vibration, acceleration, and temperatures from -65 to +85 C .

Hub-Pot Inc., Dept. ED, 1242 E. Transit St., Pomona, Calif. CIRCLE 89 ON READER-SERVICE CARD

TYPE 117
Designed to meet rigid space requiremenls, this compact two-coil interlock relay takes less space than any previously available models. A single impulse ro one coilly with holding until the second coil is energized and mechanically locked into position. Only 1% $\times 17 / 6^{\prime \prime} \times 21 / s^{\prime \prime}$ high ... available up to x
DPDT. Contacts are $.090^{*}$
diameter silver, palladium, or gold alloy rated up to 3 amps . Coil: fested for 1,000 V RMS Breakdown. $+85^{\circ} \mathrm{C}$ maximum temperature insulation standard. Insulation: NEMA grade XXXP Phenolic or Melamine. High temperature insulation available on special order. For complete in formation on this Miniature two-coil interloct relay write for descriptive data sheet.

CIRCLE 90 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 20, 1958

The VA-833A Klystron delivers in excess of 10 kw over a $1.4 / 1$ range of frequencies from 685 to 985 mc . The conversion efficiency ranges up to 50 per cent and power gain ranges from 40 to 60 db .
Varian Associates, Tube Div., Dept. ED, 611 Hansen Way, Palo Alto, Calif.

CIRCLE 91 ON READER-SERVICE CARD

Servomotor

Full speed in 0.004 sec
Model M-100 servomotor reaches full speed of 1450 rpm in 0.004 sec . Can be wound for Class H for transistor operation.
Dynamic Instrument Corp. Dept. ED, 59 New York Ave., Westbury, New York.

CIRCLE 93 ON READER-SERVICE CARD

Magnetic Memory Drums

 200 bits per in.

The OL-12-E features balanced low impedance windings, low record current, and high playback voltage for use with transistorized circuits. Bit densities of up to 200 bits per in., at 1 mil spacing, read and record information at high frequencies.
Midwestern Instruments, Data Storige Devices Div., Dept. ED, P. 0 Box 7186, Tulsa, Okla.

6 ? CLE 92 on reader-service card

- Ambient $50^{\circ} \mathbf{C}$ at full rating.
- High efficiency radiator heat sinks.
- Silicon rectifier.
- 50-400 cycles input.
- Special, high-purity foil, long-life electrolytics.

No internal blowers • No moving parts 0-32 VDC 0-2 AMP

- Compact. Only $31 / 2^{\prime \prime}$ panel height. - Short-circuit proof.
- Protected by magnetic circuit breakers.
- Hermetically-sealed transformer. Designed to MIL-T27A.

Introduced at the 1958 I.R.E. Show

Model LT 2095 \$365

Model LT 2095M (metered)

- All transistor. No tubes.
- Fast transient response.
- Excess ambient thermal protection.
- Excellent regulation. Low output impedance. Low ripple.
- Remote sensing and DC vernier.

CONDENSED DATA*

Voltage Bands
Line Regulation
. 0-8, 8-16, 16-24, 24-32 VDC
Better than 0.15 per cent or 20 millivolts (whichever is greater). For input variationa from 105-125 VAC.
Load Regulation. . . Better than 0.15 per cent or 20 millivolts (whichever is greater). For load variations from 0 to full load.
AC Input 105-125 VAC, 50-400 CPS

* Proliminary and tentativo specifications

Electrical Ovorm
load Profoction

Thermal Overload Protection

Magnetic circuit breaker, front panel mounted. Unit cannot be injured by short circuit or overloed.

Size

Thermostat, manual reset, rear of chassis. Thermal overlond indicator light, front panel. $31 / 2^{\prime \prime} \mathrm{H}=19^{\prime \prime} \mathrm{W}=143 / 3^{\prime \prime} \mathrm{D}$.

Send for complete LAMBDA L-T data.
See us at Booths 842-843 WESCON Show
LAMIBDA Electronics Corp. 11-11 131 STREET - COLLEGE POINT 56, NEW YORK INDEPENDENCE 1-8500

Cable Address: Lambdatron, Now York
circie 94 on reader-service card

Bring transistor circuits to life in a matter of ninutes with the Sprague LF-1 Transimulator. This new instrument lets you simulate any amplifier stage, a-c or direct-coupled, short of high power audio output; also multivibrator, switching, phasing, push-pull, Class A and B, and many others using cross-coupled Transimulators ... whether the circuit is common or grounded emitter, base, or collector . . . whether the transistors are PNP, NPN, or Surface Barrier. You can simulate circuits stage-by-stage for cascade operation... or use a separate Transimulator for each stage to get simultaneous multi-stage operation.

Bring Circuit Diagrams To Life In Minutes

Everything you need for RC amplifier circuits is built right into the LF-1, including coupling capacitors... bias and load resistors . . . battery voltage supplies ... Base Collector-Voltage Divider stabilization circuits .. . 5-way binding posts for transformer coupling and metering.
Whether you're designing audio circuits or switching circuits, you'll get a true picture of operating parameters minutes after you've drawn the circuit diagram... without wasting valuable time with breadboard and soldering gun.

Pays For Ifself In A Matter Of Weeks

An ideal laboratory instrument, Transimulators are inexpensive enough to justify several on every bench. You can even use the LF-1 to test transistors in the circuit... the only real proof of design parameters. And a complete step-by-step instruction manual makes operation fast, simple, and easy.

FEATURES OF THE LF-I TRANSIMULATOR

- TRANSISTORS - PNP and NPN Junction, and Surface Barrior
- CIRCUITS-Common or Grounded Emilfor, Base, Colloctor.
- RANGE-Audio, up to 100 kc .
- TRANSISTOR POWER - Through modium powor audio output.
- BATTERY SUPPLY-Separate bias and load. I.5, 3, 4.5

6 volis d-c. Polarity Roversing Switch.
COUPLING-2 μ f and 20 uf Diroct, and Ext. C. posts,
on both input and Output.

- BIAS RESISTANCE - Up to 555,000 ohms continuausly
variablo.
- LOAD RESISTANCE-Up to $\mathbf{2 7 7 , 5 0 0}$ ohms continuously variable.
- EMITTER RESISTANCE-Up to 2,500 ohms variable. Series resistor and bypass capacilor can be added.
- BASE COLLECTOR STABILITY - Up 10 250,000 0 hms
variable. Sorios resistor and bypass capacitor can be addod.
- VOLTAGE DIVIDER STABILITY-Up io 50,000 ohms variable.
- 5-WAY BINDING POSTS-For moters, transformor coupling. extornal supply volfage, cogenerarion, bypass, coupling, signalinput and nection required.

only ${ }^{5} 7950$

SPRACUE

SPRAGUE PRODUCTS COMPANY, NORTH ADAMS, MASSACHUSETTS

NEW PRODUCTS

Transistorized Preamplifiers

Provide 20 db gain

Light, rugged, waterproof, and easily connected, N -110 and N -120 transistorized preampli. fiers provide 20 db gain. Input impedance is meg; output impedance, 600 ohms; equivalent input noise, $10 \mu \mathrm{v}$. Frequency response is 100 cps to 80 kc .
Chesapeake Instrument Corp., Dept. ED. Shadyside, Md.

CIRCLE 74 ON READER-SERVICE CARD
Silicon Diode Package
Forward currents to 400 ma

This single silicon diode package offers pro tection against extremes and is qualified per MIL-T-5422C. It has forward current ratings up to 400 ma , and inverse voltage ratings up to 600 v .
Master Specialties Co., Dept. ED, 956 E 108th St., Los Angeles 59, Calif.

CIRCLE 75 ON READER-SERVICE CARD
Explosive Bolts
For missile use

Explosive bolts and bolt cartridges, bot fragmenting and non-fragmenting. They consist of special or standard bolts with provisions for integral or separately installed high explosive charge. Applications include multi-stage sepa*

ELECTRONIC DESIGN • August 20, 1958
ration, nose cone separation, missile launcher release, rocket sled release, and jettisoning of special devices.

McCormick Selph Associates, Dept. ED, Hollister, Calif.

CIRCLE 76 ON READER-SERVICE CARD

Germanium Diodes

0.9 and $0.6 \mathrm{~m} \mu \mathrm{sec}$ switching

Germanium diode S570G has a 0.9 musec switching time. It has a stored charge, after a 10 ma forward current, smaller than that of a $3 \mu \mathrm{f}$ capacitor at 6 v . The S555G diode is specified at 6 musec and offers better dc characteristics.
Transitron Electronic Corp., Dept. ED, Wakefield, Mass.

CIRCLE 77 ON READER-SERVICE CARD

Transistorized Power Supplies

Have microsecond transient response

A line of transistorized, precision laboratory power supplies with microsecond transient response. Shown is model 0-50-2 for 115 v ac, 60 cps input. In this model output is 0 to 50 vdc , continuously variable with resolution of 2 mv ; voltage regulation is better than 1 mv for input variations. Other models range from 300 ma to 20 amp . All have constant current short protecion and external sensing.
Transistor Applications Co., Dept. ED, 859 E. Alosta, Glendora, Calif.

CIRCLE 78 ON READER-SERVICE CARD
FLEC TRONIC DESIGN • August 20, 1958

NOW.. CLEVITE brings you:

ochnical Dota

Available now in the proposed JETEC power transistor package, new Clevite germanium PNP high power fransistors infroduce new design concepts info switching, power conversion, volfage regulafion and similar high-current applications.

> FACTS TO PEMEMEER

- Four new numbers: CTP 1511, 1512, 1513, 1514
* Tested to eliminate transient voltage breakdown

Curront gain: 60-120 of 5 amps; 50 of 10 amps
" Colloctor fo base breakdown voliago: 40, 60, 80, it00 V

- 13 amps switching

Design: ring emittor

- Standard package: plug in, diamond oufline, hormefic seal

Thermal resistance: less than $8^{\circ} \mathrm{C} /$ waft

- Controlled befa range: 2:1 at 5 amps

CHPDITI TRANSISTOR PRODUCTS

A DIVISION OF
RIF:LITH:

OTHER CLEVITE DIVISIONS: Cleveland Graphise Bronze * Brush Instruments * Clovite Eloctronic Componenls * Clovise Marris Producls - Clovile LId $=$ Clevite Ordnonce ${ }^{-1}$ Clevifo Research Center ${ }^{-}$Informetall G.m.b.H.

Tithamymi CAPACITOR's

NEW PRODUCTS

Selenium Rectifier

Grain oriented

The selenium in these rectifiers has parallel grains. This structure allows higher current ratings for a given cell size. The rectifier is available in cell ratings of 18 to 36 v .
Vickers Inc., Electric Products Div., Dept. ED, 1815 Locust St., St. Louis, Mo.

CIRCLE 81 ON READER-SERVICE CARD
L-C Tuners
Metallized glass

L-C tuners combine a variable inductance and a capacitor. The inductor winding, which doubles as capacitor plates, is metallized on a stable glass cylinder. A piston in the cylinder changes both inductance and capacitance.

JFD Electronics Corp., Dept. ED, 6101 16th Ave., Brooklyn 4, N.Y.

CIRCLE 82 ON READER-SERVICE CARD

Switching Transistors

> High frequency

Germanium high frequency switching transistors 2 N 425 through 2 N 428 feature the TO-9 package and are designed to MIL-T-19500A requirements.
Motorola Inc., Dept. ED, 4545 W. Augusta Blvd., Chicago 51, Ill.

CIRCLE 83 ON READER-SERVICE CARD

TERMINAL BOARD RV:IER

NEW HILL SPIN RIVETER

CONSISTENT RESULTS!
LOW MAINTENANCE!
INCREASED PRODUCTION!

Turret terminals of various types and configurations may be hopper fed into the boards from the underside, thu the riveting operation. The utilization of the apin rivet feature coupled with adjustable impact and timer control give consistent results. Cracking and splitting of terminals, particularly the stand-off and feed-thru types, has been virtually eliminated.

SEND SAMPLES FOR RIVETING HILL MACHINE COMPANI

1309 EDDY AVE., ROCKFORD, IL Representatives in Principal Citios CIRCLE 84 ON READER-SERVICE CARD ELECTRONIC DESIGN - August 20, 1955°

Vought Vocabulary

re.lent'lesS: a missile that pierces hostile sky to pinpoint its nuclear strike

When a target's latitude and longitude are marked on this missile's brain, an appointment has been made. To keep its rendezvous, the Chance Vought Regulus II performs miracles of navigation: it will launch stealthily from submarines - nuclear and conventional - from surface craft and mobile shore launchers. It will compensate automatically for wind and weather and for the earth's rotation. It will detour enemy strongpoints, outfox known counterweapons. Closing in on its quarry, it can plummet from over 60,000 feet to smokestack height to escape radar detection.
In minutes, Regulus 11 can pierce over 1,000 miles of hostile sky to score a nuclear bull's-eye.

The first of the Navy's nuclear-driven subs, designed to roam the seas as unseen Regulus II bases, is now in construction. The missile itself has made over 25 successful flights. Under Navy leash in key locations, it will be a relentless watchdog for peace.
Scientists and engineers: pioneer with Vought in new missile, manned aircraft, and electronics programs. For details on select openings write to: C. A. Besio, Supervisor, Engineering Personnel, Dept. W-2 .

KEY ENGINEERING

 OPENINGSAT VOUGHT

ELECTRONICS

Projects involve advanced guidance and Projects invoive advanced guidance and
control and fire control systems for miso contro and fire control systems for miss aircraft. They begin with investigations and theory and progress through systemization and packaging to detailed hardware design. Key responsibilities await additional men who are qualified in these areas. Advanced degrees preferred.
Stability and Control Engineer. E.E., M.E., or A.E., with emphasis on flight stability and control problems or dynamics. (Speextensive experience in transients or closed extensive experience sis.) To assist in desion of autopilot and control systems for highperformance missiles and aircraft performance missiles and aircraft.
Antenna Design Engineer. E.E., or Physics Degree with demonstrated aptitude for antenna design. To join active projects and external antennas at all frequencies for very high-performance aircraft and missiles.
Fire Control and Microwave Systems Engineer. Requires E.E., or Physics Degree; Engineer. Requires E.E.. or Physics Degree;
at least 2 years experience in radar, data at least 2 years experience in radar, data ability in this work.
Test Equipment Engineer. Requires E.E., Test Equipment Engineer. Requires E.E., or Physics Degree and at least 2 years
experience in this or related field. (Desirexperience in this or related held. (Desirdesign with emphasis on digital computers or microwave systems.) To join in the design of complete checkout systems for missiles and associated subsystems.
Reliability Analyst. Requires M.E., Physics, E.E., or Math Degree; broad knowledge of electronic and mechanical systems; experience in operations research or reliability. Helpful: statistical methods experience.
To arrange for a personal interview, or for a prompt report on these or other current openings, return coupon to:

CIRCLE 554 ON READER-SERVICE CARD

Mr. Cliff Horstman checks performance readings for Hipermag cores using the Roberts Dynamic Tester. This production-line test elimi nates costly and complicated testing at your plant. After the Roberts est, Hipermag cores are "pegged" here according to their perform ance characteristics. This practice assures perfect performance matching every time.

A very high reject ratio was strangling magnetic amplifier production at the plant of a large eastern manufacturer. Analyzed by the company's own engineers, the problem was found to be a case of inadequate core matching. A core-matching specification based on sine current dynamic testing was attempted. Howevr ; since the application was a voltage regulator using voltage reset, the problem of matching maximum permeability to the required tolerances was practically insurmountable for pro duction-line testing.
After Westinghouse engineers analyzed the problem, it was decided that matching cores at zero control point with the Roberts teste would help obtain the desired high yields.

Production-run cores matched by this procedure were flown to the manufacturer from the Westinghouse Greenville plant. These cores resulted in an immediate improvement in production-line performance.

The Roberts core-matching technique provides the closest approach to magnetic amplifier design for commercial testing of cores that exists today. This testing technique on standard Hipermag cores provides performance tailored to your magnetic amplifier application.

Let our engineers help you with your magnetic amplifier production problems. Call your Westinghouse representative . . . or write Specialty Transformer Department, Westinghouse Electric Corporation, P.O. Box 231, Greenville, Pa. Trade-Mark

Power Supply
 28 v dc output

Power supply model M-1188 operates from an ac input of $120 \mathrm{v} \pm 10$ per cent, single phase, 60 cps and provides a regulated dc output of 28 v , adjustable 27.5 to 28.5 v . It has a current capacity of 0 to 5 amp , and voltage regulation accuracy is ± 0.5 per cent for any combination of line and load changes within the foregoing range. Ripple is 1 per cent rms at room temperature, 2 per cent rms at -65 F . Ambient temperature ranges of -65 to +130 F .
Perkin Engineering Corp., Dept. ED, 315 Kansas St., El Segundo, Calif.
circle 67 ON reader-service card
Reflex Klystrons
For X, K, and C band

Two series of ceramic-metal reflex klystrons The 1 K 20 models cover the 8500 to $11,700 \mathrm{~m}$ range at output power levels to 50 mw . The withstand 15 g vibration with less than 100 kc frequency deviation. For use at any altitude they are rated at 250 C seal temperature.

The 1K125C series cover the 3700 to 5000 m frequency range, are capable of output power to 2.3 w . They are tuned by an adjustable dielectric slug to minimize shock and vibration sensitivity.

Eitel-McCullough, Inc., Dept. ED, San Bruno, Calif.

CIRCLE 68 ON READER-SERVICE CARD
ELECTRONIC DESIGN • August 20, 1950

Indicator

Calibrates transducers

The ElectroSyn model 850 precision indicator offers a fast, accurate way to calibrate pressure instruments. Its two dials provide 1000 calibration marks about 0.1 in . apart.
Norwood Controls, Dept. ED, Norwood, Mass.
CIRCLE 69 ON READER-SERVICE CARD

Digital Voltmeter

For ac or dc operation

Model 406 digital voltmeter measures ac voltages to 0.1 per cent. It also provides dc measurements within ± 1 digit. A switch selects ac or dc operation. Rack mounted and portable models available.
Zinn Instruments, Dept. ED, P.O. Box 733, Lomita, Calif.

CIRCLE 70 ON READER-SERVICE CARD

Accelerometers

Single- and two-axis types

These accelerometers come in single- and twoaxis units. Measurement range is $\pm 10 \mathrm{~g}$ adustable upward within amplifier limits. Output scale factor is 5 ma per g of applied acceleraion, linearity is within ± 0.01 per cent of applied acceleration, and the threshold is less than 0.00001 g .

Kearfott Co., Inc., Dept. ED, 1378 Main Ave., Clifton, N.J.

CIRCLE II ON READER-SERVICE CARD

NEW HERMETCCALY SEALED HIPERMAG CORE

PERMITS ENCAPSULATING, IMPREGNATING, OTHER PROCESSING . . . WITH NO CHANGE IN MAGNETIC VALUES

Newest development in cores for magnetic amplifier applications is the Westinghouse Polyclad hermetically sealed Hipermag core.* Polyclad insulation is applied over a new specially designed aluminum box housing the core. This hermetically seals the core and allows encapsulating, casting or impregnating without altering magnetic properties . . . Eliminates magnetic amplifier rejects caused by changed magnetic values.

Tested for all environmental conditions, Polyclad insulation is suitable for high temperatures, protects against humidity and high-voltage stress, provides high insulation strength, with breakdown values up to 3000 volts.
Polyclad coating eliminates the need for core taping; makes possible reduced insulation cost. Rounded corners prevent shorting wire to core, allow winding directly on the core.

These cores are supplied in special sizes or in standard AIEE sizes, in one-, two-, or four-mil oriented nickel-iron alloy Hipernik(8) V and in one- or two-mil 4-79 Permalloy. Complete listing in Westinghouse publication 44-720.
Hermetically sealed Hipermag cores are available in production lots with normal delivery. All Hipermag cores are tested - by Roberts constant-current, flux reset technique, or to your specifications.
For more information about Polyclad hermetically sealed Hipermag cores and other Hipersil8 or Hipermag cores, call your Westinghouse representative . . . or write Westinghouse Electric Corporation, P.O. Box 231, Greenville, Pennsylvania. -Patent applied for
J. 20892
wounursine-...ns Westinghouse

REX
 TEFLON* INSULATED WIRES AND CABLES

FOR HIGH TEMPERATURE APPLICATIONS AND WITH UNEQUALLED ELECTRICAL AND MECHANICAL PROPERTIES.

Made to MIL-W-16878 specifications with elfher wrapped or extruded insulation, and with complete cabling facilifies avallable to meet your exacting specifications.

cabling is a Pex specialty

Complete design and cabling tacllitios are available to handle all cabling probloms - oficiontly, porfocily. The Rex repuration os the foremost spocialist in dosigning and manuconfidence.

Pex offers you a complete line of wire AND CABLE FROM ONE SOURCE WITH CENTRALLY LOCATED WAREHOUSES FOR FAST EFFICIENT SERVICE.

- Milliary Specification Wires
- Coaxial Cables
- Microwall Wire and Cable
- Communication Wires

Electronic Control System Wiro
U.L. Wire plus specials of all Inpes with.
insulations.

E. I. dupont de Nemon

the Pex corporation
210 HAYWARD ROAD. WEST ACTON, MASS.
CIRCLE 95 ON READER-SERVICE CARD

NEW PRODUCTS

Trimming Potentiometer
Rectilinear

Rectilinear trimming potentiometers, series RP-125, are 1-1/4 in. long. They meet MIL-R-19 specifications and come in a complete range of resistances. They have completely enclosed glass reinforced Alkyd housings.

DeJur-Amsco Corp., Dept. ED, 45-01 Northern Blvd., Long Island City 1, N.Y.

CIRCLE 96 ON READER-SERVICE CARD

Tuning Fork Resonators

In frequencies from $\mathbf{4 0 0}$ to 2200 cps

For operation with transistors or tubes, MJ series tuning fork resonators take 15 g 11 msec shock. In frequencies from 400 to 2200 cps , and in $0.01,0.02$, or 0.05 per cent accuracy ratings in -55 to +85 C range. Accuracies unaffected under 5 g vibration to 40 cps .

Philamon Labs, Inc., Dept. ED, 90 Hopper St., Westbury, N.Y.

CIRCIE 97 ON READER-SERVICE CARD

Accelerometer

Needs no impedance matching devices

Model 2215 accelerometer needs no impedance matching deviecs. The high capacitance of piezite element, $7000 \mu \mu \mathrm{f}$, provides a sufficient time

TYPE TIC FOR DC OPERATION VIDEO CONTACTS Engineered specially for carrying video and other high fre. quency currents. Unusual flexibility of design permits a wide range of contact spring assemblies and combinations to be used. Fast operate, release and transfer time. Low interspring and spring-to-frame capacitance. Send for details,

ELECTRIC COMPANY 3349 ADDISON ST., CHICAGO 18, ILL.
relays. Solenoids. Coils. Switches. hermetic sealime CIRCLE 98 ON READER-SERVICE CARD

CIRCLE 99 ON READER-SERVICē CARD
con tant to give good low frequency response when fed into standard read-out devices with input impedances from 1 to 10 meg. The unit has 5 mv per g sensitivity and flat frequency response below 2 cps to above 10 kc . It is linear dynamically, ± 1 per cent, and useful from -300 to +200 F .
Endevco Corp., Dept. ED, 161 E. California St., Pasadena, Calif.
circle 103 ON reader-service card
Linear Amplifier
Non-overloading type

These non-overloading type linear amplifiers feature building block design with each major section packaged as a plug-in element. In three models: LA-600A, a basic amplifier with about the same performance characteristics as ORNL DD-2; LA-600B, which includes an integral/ differential pulse height selector offering $1 \mu \mathrm{sec}$ double pulse resolution; and LA-600C, a modification for use with the PA-400 multi-channel pulse height analyzer.
Eldorado Electronics, Dept. ED, 2821 10th St., Berkeley, Calif.

CIRCLE 104 ON READER-SERVICE CARD

Fluttermeter

For adjustment of recorder drives

Instrument to measure flutter or wow inherent in a recorder drive mechanism. A pre-recorded nominal 1000 cps signal is played on tape or dise through the recorder being tested. As the speed variations modulate the frequency of this signal, the fluttermeter amplifies this band of frequencies. The output of a magnetic discriminator is metered as a percentage of variation of the 1000 cps signal.
Kity Electric Co., Dept. ED, Maple Ave., Pine Brock, N.J. CIRCLE 105 ON READER-SERVICE CARD

GUARANTEED TO WITHSTAND 1,000 VOLTS!

GVB-finished tape wound core boxes drop your production costs

We have developed a radical new finish for aluminum boxes for tape wound cores. Your production department will glow with delight, for we guarantee this finish to withstand 1,000 volts (at 60 cycles) without taping!
GVB, for Guaranteed Voltage Breakdown (limits), is what we call this new finish. It is perfectly matched to our aluminum core boxes, for it will withstand temperatures from $-70^{\circ} \mathrm{F}$ to $450^{\circ} \mathrm{F}$. Potting techniques need not change, for GVB-finish lives happily with standard potting compounds.
By eliminating the need for taping the core box, you also eliminate a time consuming production step. By combining GVB-finish with our aluminum core box, we assure you a core capable of being vacuum impregnated down to 20 mm . of mercury.
And they are Performance-Guaranted! Like all tape wound cores from Magnetics, Inc., aluminum-boxed or phe-nolic-boxed, you buy them with performance guaranteed to
published limits. The maximum and minimum limits are for $\mathbf{B}_{\mathrm{m}}, \mathbf{B}_{\mathrm{r}} / \mathbf{B}_{\mathrm{m}}, \mathbf{H}_{1}$ and gain. This data is published for one, two, four and six mil Orthonol ${ }^{(8)}$ and Hy Mu 80 tape cores.
GVB-finished cores are ready for you now. So are the published limits for all Magnetics, Inc. tape wound cores. Write today for more GVB details, and for your copy of the guaranteed performance limits: Dept. ED-51 Magnetics. Inc., Butler, Pennsylvania.

NEW PRODUCTS

He's minding YOUR

 business

YOUR HEART IS HIS BUSINESS. He's a research scientist-one of thousands supported by the Heart Fund. His life is dedicated to finding the unknown causes of the heart diseases, and new methods of treating and preventing them. He and your Heart Association have made your heart their business.

YOUR HEART IS YOUR BUSINESS. Whatever your way of life, your future depends on your heart. Heart disease causes personal suffering and undermines the happiness and economic welfare of the family. No one-no child or adult-is immune.

THE HEART FUND IS EVERYBODY'S BUSINESS.
When you support the Heart Fund, you help all hearts. You support heart research-and you make it possible for your Heart Association to bring the latest advances in heart research to you and your family through your doctor.

Give Generously for Every Heart You Love
HELP YOUR HEART FUND \square HELP YOUR HEART

High-G Testing
Unit
Tests live circuits

By the use of a slip ring assembly, this unit can test a component under live circuit conditions while it is being spun at high speeds. One unit produces a speed up to $15,000 \mathrm{rpm}$ and creates a relative centrifugal force of $20,000 \mathrm{~g}$.
International Equipment Co., Dept. ED, 1284 Soldiers Field Rd., Boston 35, Mass. CIRCLE 110 on reader-service card

SPAGHETTI SLEEVING

 is Carefully Inspected and Controlled Dimensionally!

- PF spaghetti sleeving made from Teflon* is widely used for slip-on insulation, instrument tubing, bundle sheathing, medical tubing. pigtails and similar applications. It slips on easily, in long lengths up to 3 feet, can be used with tinned or bare wire rather than silvered and it wears longer. 25 sizes, 2 wall thick. nesses. 10 colors in stock, 100% inspected and controlled dimension. ally, are available, all with these important advantages:
- good diolectric strength (500 10 2000 -golls/mil)
- lowast dielectric constant (2.0) and dissipa-
- ne change of eletrical propentios whh no ehenge of electical properios winh quency (60 eycles to 100 mc)
- zero moisture absorption
- unamecied by eny commerciel chomied
- continuous servico tomperature of $250^{\circ} \mathrm{C}$ -- intonimuliment to $300^{\circ} \mathrm{C}$

Write, wire or call for further details and Write, wire or calt ror Aather too for infor. engineering assistance. Ask, too, for infor-
mation on Pr Teflon fexible tubing,
heavy-walled tubing and rod stock.
PENHSYLYANIA FLUOROCIRBON CO, 12
1113 N. 3ath Stroet, Phile. 4, Pe. EVergreen 6 -0001 -Tenon-DuPont trode nome for Tetranuoroathylene nien

CIRCLE 111 ON READER-SERMCE CNO

Voltage Divider

± 0.1 per cent linearity
Type 85-A Rinco-Pot voltage divider has resistance accuracy of ± 0.05 per cent of full scale resistance, ± 0.01 per cent linearity, and 0.002 per cent resolution. Frequency range is dc to 10 kc ; resistance value, 10 K .

Rinco, Inc., Dept. ED, 7962 S.E. Powell Blvd., Portland 6, Ore.

CIRCLE 112 ON READER-SERVICE CARD
SNAP ACTION SWITCH.-Hermetically sealed, precision SBS-100A Limit-Switch meets MIL-S-6743 specifications. For missile and other use.
Sealectric Switch and Relay Corp., Dept. ED, 6025 N. Keystone Ave., Chicago 30, Ill.
CIRCLE 113 ON READER-SERVICE CARD
TEMPERATURE INDICATOR.-In combination with Thermal-Ribbons, Thermal-Indicator gives direct reading of temperature. Has -100 to +200 C operating range.
Minco Products, Inc., Dept. ED, 740 Washington Ave. N., Minneapolis 1, Minn.
CIRCLE 114 ON READER-SERVICE CARD
MOMENTARY ACTUATOR.-A4-86 spdt switch for push-button application on panel mounting for instruments and components for ground support equipment.
Electrosnap Corp., Switch Div., Dept. ED, 4230 Lake St., Chicago 24, Dept.
Ill.

CIRCLE 115 ON READER-SERVICE CARD
POLYESTER FILM CAPACITORS. -Filmite E hermetically-sealed, metalclad capacitors are shorter in length, have improved capacitance vs temperature stability curve.
Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.
CIRCLE 116 ON READER-SERVICE CARD
MULTIPLE VARIABLE RESISTOR. -Model 5 miniature 0.25 w unit supplied with up to four resistors on single steatite base plate. Resistance range of 1000 ohms to 5 meg .
Centralab, Div. of Globe-Union Inc. Dept. ED, 900 E. Keefe Ave., Mi) vaukee 1 , Wis.
circle 117 on reader-service card

SEE THESE PRODUCTS
AND SERVICES OF
TELECOMPUTING CORPORATION
AT WESCON BOOTHS NO. 1718-19:

WHITTAKER CONTROLS advanced fuel control, hydraulic and pneumatic valves for aircraft and industrial uses.

WHITTAKER GYRO - rate, floated rate, and free gyros, including the new spring driven gyro.

BRUBAKER ELECTRONICS get the story on the nation's leader in IFF and related equipments.

DATA INSTRUMENTS - highprecision data reduction equipment for large film and glass plates for applications in photogrammetry, astronomy, and fight tests.

NUCLEAR INSTRUMENTS electronic test device for checkout and monitoring of nuclear weapons control systems.

ENGINEERING SERVICES learn about our complete facility for reduction of missile flight test data.

TELECOMPUTING CORPORATION

915 North Citrus Avenue,.Los Angeles, California
See, and get the facts on these products offered by Telco Electronic Sales Division: capacitors, microminiature relays, delay lines, switches, solenoids, and a complete family of magnetic amplifiers.
Specifically, look for Telco's new high temperature subminiature ceramic capacitor... operating temperature -55 C to $+155 \mathrm{C} . .$. variation in capacity only $\pm 10 \%$ over entire temperature range ...voltage rating 200 WVDC ...these rugged, reliable capacitors, product of a brand new Telecomputing facility, serve a critical need in the electronics industry.
See Neuron, the high speed electromechanical counter at WESCON Booth No. 752.

Guaranteed longer lengths of FLEXOLON high temperature wire reduce scrap at Remington Rand

Tensolite's Flexolon high temperature hook-up wire is setting new economy records throughout industry. For example, at Remington Rand where Flexolon wire is used in Univac II, the guaranteed 250 -foot minimum length of Flexolon wire has drastically reduced wire scrap.
Securing long, economical lengths of wire has always been a major problem of the wire industry because of the occurence of flaws in the dielectric material. With the revolutionary new technique utilized in Flexolon wire construction, flaws are greatly minimized and lengths are obtained that are far in excess of those produced by any other manufacturing process. Although a minimum 250 -foot length is guaranteed, the average distribution of new Flexolon wire is approximately 750 feet, assuring even greater savings. Longer lengths of Flexolon wire will also cut your production costs by minimizing set-uptime on automatic equipment.
To learn the many other benefits of Flexolon hook-up wire . . . its greater dielectric strength, extra flexibility, higher average concentricity . . . call the man from Tensolite. Or write for informative Flexolon hook-up wire bulletin.

Univac engineer wires central computer with new Flexolon high temperature hook-up wire. Greater flexibility of the new wire also reduces wiring time.

Audio Oscillators

Furnish signals of 1 kc and 400 cps

PO)-2 and CO-2 oscillators furnish audio signals of 1 kc and 400 cps at output levels of 0 and -60 db at an output impedance of 600 ohms . In the PO-2 output is available at two phone plugs; in the CO-2, at two clip leads.
Dunlap Electronics, Inc., Dept. ED, 764 Ninth St., Des Moines, Iowa.

CIRCLE 58 ON READER-SERVICE CARD

Drift Transistors
 For rf equipment

Types 2N247, 2N370, 2N371, and 2N372 germanium pnp drift transistors have good stability and minimum feedback capacitance. Designed for use in am broadcast band and short wave receivers, the units feature high gain at 1.5 mc to 20 mc , lower base resistance, and reduced collector capacitance.
Sylvania Electric Products Inc., Dept. ED, 1740 Broadway, New York 19, N.Y.

$$
\text { CIRCLE } 59 \text { ON READER-SERVICE CARD }
$$

Integrating Gyros

Fully floated

Trimmed drift rates of 0.1 deg per hour are guaranteed in this series of 20 IG single axis floated integrating gyros. Of fully floated construction, the gyros are contained within a housing 2 in . in diameter.
liseves Instrument Corp), Dept. ED, Roosevelt Ficht, Garden City, N.Y.
circle 60 on reader-service card
ELECTRONIC DESIGN • August 20, 1958

INSTRUMENTATION-In instrumentation, such as this geophysical measuring equipmont, where miniaturization and resistonco to onvironmontal conditions are
importamt, TFE resins are unsurpassed. Thay are unaffiectod by penatrating oik, important, TFE resins are unsurpassed. They are unaffiectod by penatrating oilh,
hoat, shock, vibration or rasoldering; thormal and dialectric proportios pormil hoot, shock, vibration or resoldering, thermal and diolectric p
miniaturization, resuling in substantial space and woight saving.

LECTRONIC EUSINESS MACHINES-Non-Rammability, safe emergency overlooding, and solder resistonce are three important reasons why TFE resins are used in machines such as this data-procossing equipment. Sorvicing of wiring panok can be done quiekly, with a minimum of downtime, bocause TFE resins are unoffected by soldoring temperatures.

PROCESS CONTROL EQUIPMINT-Procoss controls, instrumentation, and ather industrial eloctronic equipment can be more reliable and more easily serviced at roduced costs with TFE resins. They have zero moisture absorption, are nonhammable, and are chomically thert. Noither poling remperalures nor soldoring
iron heal will damage TFE resing.

OUTDOOR LQUIPMINT - TFE resins are ideal for ouldoor or undorground wiring applikations. Thoy have unmatchod insulation resistance, ond are com.
platedy unaffected by oxpoure to salf water, sunlight, or other oxtremes of weamer. poil, gosoline, and other solvonts have no offoct on TFE resins, and thay remain hexible in oxtromes of heat or cold.

For top performance in electronic circuitry specify wire

 and cable insulated with TEFLON TFE-fluorocarbon resinsAchieve utmost reliability and safety for your wiring. Reduce assembly and inspection costs. Cut weight and space requirements. These are a few of the advantages being realized by the use of wire and cable insulated with TFE resins.

TFE resins are almost ideal dielectrics, because they combine outstanding electrical and mechanical properties. They do not age, are non-flammable, have great flex life, maintain superior tear resistance, and display excellent dielectric properties.

Best of all, you can enjoy sales and cost advantages by using wire protected by Teflon TFE-fluorocarbon resins.

Look up your local supplier in the Yellow Pages (under "Plastics-Du Pont") . . . or for technical information write to: E. J. du Pont de Nemours \& Co. (Inc.), Polychemicals Department, Room 188, Du Pont Building, Wilmington 98, Delaware.
In Canada: Du Pont Company of Canada (1956) Limited, P. O. Box

660, Montreal, Quebec.

- Write for the "hOTTEST STORY IN WIRE insulation." It gives you the facts that can help make your design, your product, your installation-a winner.

TEFLON is Du Pont's registered Irademark for lts fluorocarbon resins, including the TFE (tetrafluoroethylene)

TEFLON ${ }^{\text {- }}$
TFE-FLUOROCARBON RESINS

MICROWAVE ASSOCIATES, INC BURLINGTON, MASSACHUSETTS • BRowning 2.3000 CIRCLE 127 ON READER-SERVICE CARD

NEW PRODUCTS

Power Supply
Multiple outputs

Output voltages for the model 308-B power supply as 0 to $+600 \mathrm{v} \mathrm{dc},-300 \mathrm{vdc}, 0$ to -150 v dc, and 6.3 v ac. For line voltage 115 v ± 10 per cent, dc regulated high voltage output has less than 50 mv change no load to full load at any output voltage.

Mercury Electronic Co., Dept. ED, Box 450, Red Bank, N.J.

CIRCLE 128 ON READER-SERVICE CARD

Gearheads

 For servo motors

 For servo motors}Size 11 gearheads for BuOrd servo-motor MK 14 model 2. Planetary types with ratios up to 2500 to 1 with a torque rating of $25 \mathrm{oz} \mathrm{in}$. maximum backlash of 10 min . Over-all length is 0.800 in . Spur type gearheads are available with ratios up to 20,000 to 1 .
U. S. Gear Corp., Dept. ED, 81 Bay State Rd., Wakefield, Mass.

CIRCLE 129 ON READER-SERVICE CARD

Lamp

60,000 hour life expectancy

Burning continuously at 5 v , this lamp can be expected to last 60,000 hours or 7 years. It measures $1 / 8$ to $1 / 4 \mathrm{in}$. in length. The lamp withstands voltage surges up to 30 v .

Chicago Miniature Lamp Works, Dept. ED, 1500 N. Ogden Ave., Chicago 10, Ill. circle 130 on reader-service card

Here's Your... TUBING "KNOW-HOW" BOOK

FACTS ON...

- HOW TO SELECT
- TEMPER...ALLOYS
- WORKING PROPERTIES
- TOLERANCES of TUBING

Here's a data book every engineer, purchasor and user of fine alloy tubing should have as a reference. Covers how to select fubing, the properties to look for, typical applications tolerances, temper and alloys. Discusses drawing, annealing, finishing and testing. Gives range of sizes, length tolerances. Data on Bourdon tubing, pointer tubing and the exclusive Precision Coaxitube.

This booklet is available for use as a reference and buyer's guide to those sending requests on company Company, North Wales, Pa.

GET YOUR COPY... NO CHARGE OR OBLIGATIONI

TUBE COMPANY

CIRCLE 131 ON READER-SERVICE CARO

High Speed Commutator
Takes $\mathbf{1 2 0 0}$ samples per sec

The Type 33-514 high-speed commutator will sample up to 100 inputs at a rate of up to 1200 samples per sec. In effect, the commutator is an automatic, high-speed spl00t switch.
Consolidated Electrodynamics Corp., Dept. ED, 300 N. Sierra Madre Villa, Pasadena, Calif. CIRCLE 132 ON READER-SERVICE CARD

Precision Resistors

Tolerance of $\pm \mathbf{0 . 0 5}$ per cent at 25 C

Packaged in two case styles, R-2 and R-5, these units range from 0.1 ohm to 750 K with a tolerance of ± 0.05 per cent at 25 C . The temperature range is -65 to +125 C . The power ratings of the R-2 and R-5 are $1 / 4 \mathrm{w}$ and $1 / 3 \mathrm{w}$ respectively.
General Transistor Corp., Dept. ED, 91-27 38th Place, Jamaica 35, N.Y.

CIRCLE 133 ON READER-SERVICE CARD

AC

 Voltage Regulator Contains adjustable outputsModel 2501, 2.5 kv ac line voltage regulator has a regulation accuracy specified at ± 0.01 per cent. Other specifications include an input voltage range of 95 to 130 v at 55 to 65 cps ; output voltage adjustable from 110 to 120 v ac ; 3 per cent maximum distortion; power factor from unity to 0.7 lagging; and time constant of 0.2 sec .
Soiensen \& Co., Inc., Dept. ED, Richards Ave.,
South Norwalk, Conn.
circle 134 on reader-service card

WHY DO MORE ENGINEERS READ ELECTRONIC DESIGN

ESC Corp. Photo

FIRST . . . to bring you ALL the new products normally encountered by design engineer in his work.
FIRST . . . to concentrate on 100% design information.
FIRST . . . to bring you every-other-week frequency.
FIRST ... to bring you 13 FEATURE REPORT issues on current design subjects.
FIRST . . . to offer translations and abstracts of Russian electronic articles.
FIRST . . . to bring you IRE and WESCON convention coverage \& previews.
FIRST : : . to design a fast and easy to use READER SERVICE CARD for use in obtaining additional electronic information.

Reader preference studies show that more and more Electronic Design subscribers are becoming "one publication" readers. ED is more timely, more complete, and of more direct interest to the electronic engineer than any other technical publication. You can save valuable reading time, and be sure to cover your field completely when you READ ELECTRONIC DESIGN FIRST.
\square A HAYDEN Publication,
830 Third Avenue, New York 22, N. Y.

HELIPOT's newest potentiometer ... the single-turn, 1-1/16" A. I. A. diameter, all-metal series $5200 \ldots$ fends off $2,000 \mathrm{cps}$ at 30 G 's, repels 10 cycles NAS 710 , procedure III humidity, rides out 50 G 's shock and 100 G 's acceleration.
We're tough, too ... on the 5200 's mechanical tolerances. Register face, diameter and shaft runouts are all held to $0.001^{\prime \prime}$ max . . . spring-loaded shaft eliminates endplay. All this with linearity to $\pm 0.15 \%$... power rating of 3 watts at $100^{\circ} \mathrm{C}$ (derating to zero at 150°) . . 250 to 100,000 ohms standard resistance range ... and certified test data to prove our every claim.

What a pot for airborne applications . . . at a down-to-earth price! Write for data file C 82 for the proven facts.

Helipot Corporation. Newport Beach, California a division of Beckman Instruments, Inc.
Engineering representatives in 27 cities.
potentiometers . . . dials . . . delay lines . . .
expanded scale meters.
rotating components . . . breadboard parts

NEW PRODUCTS

The model JP 400 mc precision coaxial directional coupler provides a forward output which is $50 \pm 0.3 \mathrm{db}$ down from the forward power at center frequency. Reflected output is $40 \pm 0.3 \mathrm{db}$ down from the reflected power.

Amtron Corp., Dept. ED, 17 Felton St., Waltham 54, Mass.

CIRCLE 137 ON READER-SERVICE CARD

Mercury Diffusion Pump

Measures 2 in.

The MHG-40 is an all metal, 2 -in. mercury diffusion pump with high limiting forepressure. The water cooled, 3 -stage unit can maintain a speed of 40 liters of air per second in the 3×10^{-4} to $2 \times 10^{-2} \mathrm{~mm} \mathrm{Hg}$ pressure range with a peak of 52 liters per second at 10 microns.
Consolidated Electrodynamics Corp., Rochester Div., Dept. ED, 1775 Mt. Read Blvd., Rochester, N.Y.

CIRCLE 138 ON READER-SERVICE CARD
TRANSFORMER.-Reference type with guaranteed accuracy of $\pm 10 \mathrm{ppm}$ at 400 cps . Encased in stainless steel.

Bush Transformer Corp., Dept. ED, 707 North St., Endicott, New York.

CIRCLE 139 ON READER-SERVICE CARD
POWER TRANSISTOR.-DT80 has an 80 v collector diode rating and offers a gain at 1.2 amp of 100. Gain spread is held to a two-to-one ratio.

General Motors Corp., Delco Radio Division, Dept. ED, 726 Santa Monica Blvd., Santa Monica, Calif.

CIRCLE 140 ON READER-SERVICE CARD
LINEAR POSITIONER.-Lineatrol is a gear motor which has a potentiometer to produce a remote indication of position or for use in automatic control circuits.

The Jordan Co., Inc., Dept. ED, 3235 W. Hampton: Ave., Milwaukee 9, Wis.

CIRCLE 141 on reader-service card

Highest standards of quality. Modern high speed automatic machinery, and up-to-date production procedures, based on over 15 years experience in the manufacture of precision parts for the Army, Navy, Air Force and Atomic Energy Commission.
More and more companies in the electronics and telecommunica-
tions industries are specifying
"Automatic's Connectors.".
Our engineers are always ready to discuss your special requirements.

RF FITTINGS - RF CONNECTORS COAXIAL RELAYS • COAXIAL SWITCHES COAXIAL CABLE ASSEMBLIES • DIREC IIONAL COUPLERS. INSULATED COH. HECTING RODS AND SHAFTS. POWEI PLUGS - AUDIO PLUGS • BAYONET LOEI AND PUSH ON SUB-MIN CONNECTORS

WRITE, WIRE OR PHONE FOR FURTHER INFORMATION.

METAL PRODUCTS CORP.
319 Berry Street, Brooklyn 11, M. Y. - EVergreen 8.03 CIRCLE 142 ON READER-SERVICE CARO ELECTRONIC DESIGN • August 20, 1059

SERVO-HANGERS.-Designed to mount most standard servo components, for both 60 cycle and 400 cycle systems. All necessary hardware is included with the hangers.
Reeves Instrument Corp., Commercial Products Division, Dept. ED, 207 E. 91st St., New York 28, N.Y.

CIRCLE 143 ON READER-SERVICE CARD

CIRCUIT BREAKER.-Protection for circuits from $1 / 2$ to 3 amp . It measures 0.68 by 1.14 in . and projects 1.81 in . behind the panel.
Mechancial Products, Inc., Dept. ED, Jackson, Mich.

CIRCLE 144 ON READER-SERVICE CARD

POWER SUPPLY.-Model PS38A-1 supplies up to 4 amp at 28 v dc output (variable from 24 to 32 v).
Magnetic Controls Co., Dept. ED, 6405 Cambridge Ave., Minneapolis 26, Minn.

CIRCLE 145 ON READER-SERVICE CARD

PRESSURE SWITCH.-Will close or open contant at any preset absolute pressure in the range of 0.2 psia to 15.0 psia. Repeatability is 0.1 psia.
Aero Mechanism, Inc., Dept. ED, 8938 Lindblade St., Culver City, Calif.

CIRCLE 146 ON READER-SERVICE CARD

SCALER.-Model 132, features universal high-speed counting for use in medical and industrial research. Capacity of 99,999 counts indicated on five cold cathode Dekatron glow tubes.
Baird-Atomic, Inc., Dept. ED, 33 University Rd., Cambridge 38, Mass.

CIRCLE 147 ON READER-SERVICE CARD

LOG CONVERTER.-Accessory for the RCL 256channel analyzer, Model 21006 precision converter gives logarithmic analog display on cathode ray tube or strip chart recorder.
Radiation Counter Labs, Inc., Dept. ED, Skokie, ill.

CIRCLE 148 ON READER-SERVICE CARD

INDICATOR LIGHTS.-Series L5100 units contain
two recessed rubber \mathbf{O} rings that afford watertight fit. They mount in a $1 / 2 \mathrm{in}$. panel hole.
Hetherington, Inc., Dept. ED, Folcroft, Pa. CIRCLE 149 ON READER-SERVICE CARD

RELAY.-The E420D 4pdt, 20 amp relay meets MIL-K-5757B and MIL-R-6106B requirements.
Electro-Mechanical Specialties Co., Inc., Dept. ED, 1016 N. Highland Ave., Los Angeles 38, Calif. circle iso on reader-service card

CRASSHOPPER FUSES.-Designed to carry their rated capacity for ten minutes.
Mt.Craw-Edison Co., Bussmann Mfg. Div., Dept. ED, ॥niversity at Jefferson, St. Louis 7, Mo. CIRCLE 151 ON READER-SERVICE CARD

"s" is for Signal, Safety and Synthane

N11/!

Typical pushers, machined from Synthane laminated plastics, used for railway signal relay.

Railroads can't even think in terms of failure. And that is why, among the many working parts that constitute railway signal relays, you find pushers made of Synthane laminated plastics.
These pushers, on which life itself depends, must in the words of one manufacturer have "excellent insulating characteristics-be durable and unchanging," must "not chip, wear and thus leave residual dust or particles which would cause trouble if they should lodge on the electrical contacts."

Synthane has all of these charac teristics plus a combination of many CIRCIE 152 ON READER-SERVICE CARD
other useful properties required for reliable performance. Equally inportant is the dependability of Synthane, the company, as a source of supply. You are urged to visit us and see for yourself the plant behind Synthane sheets, rods, tubes and fabricated parts-or to discuss this important point with our representative. Meanwhile, write for our new, complete catalog.

SYNTHANE

YNTHANE CORPORATION, 42 RIVER ROAD, OAKS, PA.

one of America's major sources of Chassis Slide Rails

JONATHAN

PROTOTYPE DELIVERY: 10 DAYS PRODUCTION: 2-3 WEEKS

NEW PRODUCTS

INSULATION BREAKDOWN TEST SET.-Portable Model MD-1 is a commercial version of military set. Operates from a $115 \mathrm{v}, 60 \mathrm{cps}$ power source or a 24 v de power supply.
Industrial Instruments, Inc., Dept. ED, 89 Commerce Rd., Cedar Grove, N.J.

Circle 154 on reader-service card
VOLTAGE REGULATORS.-Stabiline type TM automatic tubeless magnetic regulators come in 1 and 5 kva ratings for $115 \mathrm{v}, 60 \mathrm{cps} \pm 5$ per cent, single phase duty.

The Superior Electric Co., Dept. ED, Bristol, Conn.

CIRCLE 155 ON READER-SERVICE CARD
POLARIZED RELAYS.-Series P spdt relays will handle over 1000 pulses per sec. Various coil resistances up to 5000 ohms each coil. Contact ratings from 60 ma to 2 amp with voltages to 120 v ac or dc.

The Hart Mfg. Co., Dept. ED, 110 Bartholomew Ave., Hartford 1, Conn.

CIRCLE 156 ON reader-Service card
INSTRUMENT KNOBS.-Aluminum. In 12 different colors and $1 / 8$ and $1 / 4 \mathrm{in}$. shaft sizes.

Vemaline Products Co., Dept. ED, P.O. Box 222, Hawthorne, N.J.

CIRCLE 157 ON READER-SERVICE CARD
MAGNETIC DC AMPLIFIERS.-Model 100C3 Jow level amplifier is added to Series 100C. Power gain greater than 120,000 . In voltage gains of 250,500 , and 1000 .

California Magnetic Control Corp., Dept. ED, 11922 Valerio St., North Hollywood, Calif. CIRCLE 158 ON READER-SERVICE CARD

PIN HEADERS.-For use as tube bases, these solid headers can withstand 700 C .

Advanced Vacuum Products Inc., Div. of General Ceramics Corp., Dept. ED, Stamford, Conn. CIRCLE 159 ON READER-SERVICE CARD

PHOTOELECTRIC TACHOMETER.-DY-2504A transistorized unit measures rotation speed or accumulated turns. Comes with output-pulses/per revolution of $60,100,120,180,200$, or 360 .

Dynac, Inc., Dept. ED, 395 Page Mill Rd., Palo Alto, Calif.

CIRCLE 160 ON READER-SERVICE CARD
PRECISION GEARS.-Stock face widths of $1 / 16 \mathrm{in}$. Also $1 / 32$ and $3 / 32 \mathrm{in}$. face widths available.
Dynamic Gear Co., Inc., Dept. ED, 20 Merrick Rd., Amityville, N.Y.

CIRCLE 161 ON READER-SERVICE CARD
FERRITE ISOLATORS.-For $3 / 8$ and $7 / 8 \mathrm{in}$. coaxial systems. The $3 / 8 \mathrm{in}$. isolator operates over 2000 to 4000 mc range, provides 10 db isolation.
Airtron, Inc., Dept. ED, 1096 W. Elizabeth Ave., Linden, N.J.

CIRCLE 162 ON READER-SERVICE CARD

 28 STACK UP BEST

Daystrom Pacific Squaretrims— submin ature trimming potentiometers- stail up best because of these exclusive ant unique features:

Exclusive Square Design permits the stacking of a many as twenty 50 K poim into one cubic inch

More Accurate Trimming-is turns for one complete sweep of the wiper-almost one third more than conven tional pots

Gifater Stability-exclusive worm gear adjusting devica for rugged mechanical sts bility...unique circula design which eliminate resistance changes due th thermal expansion-contrac tion effects on the mandre

For complete specifications contact the representative tit your area...or write the fac tory direct.

YSTROM PACIFIC a division of DAYSTRO.11, IN 9320 Lincoln boulevari) los angeles 45. califorvia CIRCLE 163 ON READER-SERVICE CARO ELECTRONIC DESIGN • August 20, 1950°

CARZD-TAPE CONVERTER.-Digital to analog Model 275 converts codid decimal and straight decimal inputs to a proportional analog dc voltage.
Electro Instruments, Inc., Dept. ED, 3794 Rosecrans St., San Diego, Calif.

CIRCLE 164 ON READER-SERVICE CARD
METERS.-For 5 per cent accuracy requirements. In ranges of dc sensitivities from 1 ma to 100 amp ; in voltmeters up to 300 v .
Burton-Rogers Co., Dept. ED, 42 Carleton St., Cambridge 42, Mass.

CIRCLE 165 ON READER-SERVICE CARD
POWER SUPPLY TESTER.-For wide load conditions. Readily modified to test principal parameters of all supply types and makes having any number of dc outputs.
Western Design \& Mfg. Corp., Div. of U.S. Industries, Inc., Dept. ED, Santa Barbara Airport, Goleta, Calif.

CIRCLE 166 ON READER-SERVICE CARD
VACUUM GAGE.-Type GTC-110 single-station, thermocouple unit. Powered by 1.5 v battery; covers range from 0 to 1000 microns Hg .
Consolidated Electrodynamics Corp., Dept. ED,
300 N. Sierra Madre Villa, Pasadena, Calif.
circle 167 on reader-service card
CONVERTERS.-Series 1220 frequency to dc units provide selectable time constants from 1 msec to 2 sec . Full scale frequency ranges of 500,2500 , and $10,000 \mathrm{cps}$.
Systron Corp., Dept. ED, 2055 Concord Blvd., Concord, Calif.

CIRCLE 168 ON READER-SERVICE CARD
MOUNTING SCREW.-One-piece fastener elimirates retaining device and cross-threading.
Illinois Tool Works, Shakeproof Div., Dept. ED, St. Charles Rd., Elgin, Ill.

CIRCLE 169 ON READER-SERVICE CARD
CONNECTOR PLUGS.-Line of plugs to seal open ends of window connectors. Also spare wire caps Amp Inc., Dept. ED, 2100 Paxton St., Harrisourg, Pa.

CIRCLE 170 ON READER-SERVICE CARD
HEATING ELEMENT.-Wire mesh surface hea'ing dement is self mending in case of damage and gives heat source every 0.028 in .
Electrofilm, Inc., Dept. ED, P.O. Box 106, North Hollywood, Calif.

CIRCLE 171 ON READER-SERVICE CARD
RECTILINEAR POTENTIOMETER.-Model 110 lor measurement of linear motion. Nearly infinite lesolution, typical linearity of 0.05 per cent for a 1 in . stroke.
Computer Instruments Corp., Dept. ED, 92 Maditon A'e., Hempstead, N.Y.

CIRCLE 172 ON READER-SERVICE CARD

Now, look for replies to your inquiries as fast as the mails can carry them! Electronic Design's new inquiry processing system gets the catalogs and product data you request back to you sooner, ready for your immediate use.
Here's how it works:

1. All inquiries received on Reader Service Cards are now processed and air mailed* to manufacturer the same day received.
2. Inquiries are forwarded on pre-typed mailing labels ready for immediate reply. All the advertiser need do is affix the label and mail.
Same day processing and pre-typed labels put your reply-the information you request-on your desk days, in some cases, weeks, earlier than older methods.
Inquiry reply speed-up is another service to our readers . . . new in '58 . . . only in Electronic Design.
a HAYDEN publication
830 Third Avenue, New York 22, N.Y.

General Electric announces new "VERY LOW CURRENT" lamp for use as indicators for transistorized circuits

A possible use: as an indicator on a flip-flop circuit.

GE-344 incandescent lamp is rated at 10 volts, 15 milliamperes; has life in excess of $\mathbf{5 , 0 0 0}$ hours
General Electric's new GE-344 is designed for use in transistor circuits and many other applications where a small sized, low current indicator lamp is needed. Only $7 / 32^{\prime \prime}$ in diameter, $5 / 8^{\prime \prime}$ long, the GE-344 can be seen lighted under 100 footcandles of surrounding light. It uses only .15 watts (nominal), has a single con-
 tact midget flange base, and its electrical ratings allow significant savings in providing an indicator light in transistorized equipment. For additional engineering data on this new GE-344 lamp, write: General Electric Co., Miniature Lamp Dept. ED-88, Nela Park, Cleveland 12, Ohio. Ask for Bulletin No. 3-8066.

Progress /s Our Most Important Product

 GENERAL ELECTRIC
NEW PRODUCTS

CONDENSER ELECTROMETER.-Dynacon radioactivity measuring system for soft beta emitters such as tritium, carbon-14, and sulfur-35. Will accept and measure samples in solid, liquid, or gas phase.
Nuclear-Chicago Corp., Dept. ED, 229 W. Erie St., Chicago 10, Ill.

CIRCLE 174 ON READER-SERVICE CARD
CONNECTORS.-5-way binding post connectors with gold-plated machined brass parts. Have 30 amp current capacity, 1000 v working voltage.
The Superior Electric Co., Dept. ED, Bristol, Conn.

CIRCLE 175 ON READER-SERVICE CARD
CLOSED CIRCUIT TV.-Low-cost system combining TE-6-A camera, suitable lens, monitor or standard TV receiver, and required length of cable.
General Electric Co., Technical Products Dept., Electronics Park, Syracuse, N.Y.

CIRCLE 176 ON READER-SERVICE CARD
POWER SUPPLY.-The 301E features chopper stabilization and built-in standard cell reference. Output voltage is 1.02 to 512 v dc at 0 to 300 ma .
John Fluke Mfg. Co., Inc., Dept. ED, 1111 W. Nickerson St., Seattle 99, Wash.

CIRCLE 177 ON READER-SERVICE CARD
PRESSURE TRANSDUCER.-Type TR 719 operates in ranges from 15 to 3000 psi. Relatively good resistance to shock, vibration, and accelerations.

Servomechanisms, Inc., Dept. ED, 12500 Aviation Blvd., Hawthorne, Calif.

CIRCLE 178 ON READER-SERVICE CARD
CHARGING CHOKES.-Production models withstand -40 to +150 C. Encapsulated coil resists corona effects, voltage, and temperature shock.

Osborne Electronic Corp., Dept. ED, 712 S.E. Hawthorne Blvd., Portland, Ore.

CIRCLE 179 ON READER-SERVICE CARD
TRANSISTOR CLOSURES.-E-I standard line includes strain-free solderable types, compression weldable types, and compression solderable types.
Electrical Industries, Dept. ED, 691 Central Ave., Murray Hill, N.J.

CIRCLE 180 ON READER-SERVICE CARD
MULTIPLIER PHOTOTUBE POWER SUPPLY.Has output of 800 to 2000 v dc at 0 to 25 ma ; provides regulation of 0.015 per cent for both line and load, no load to full load.
Dressen-Barnes Corp., Dept. ED, 250 N. Vinedo Ave., Pasadena, Calif.

CIRCLE 181 on reader-service card
TOGGLE TENSION LATCH.-Model 30L for use on airborne equipment boxes and similar closures requiring minimum latch clearance.

Camloc Fastener Corp., Dept. ED, 61 Spring Valley Rd., Paramus, N.J.

CIRCLE 182 ON READER-SERVICE CARD

Stromberg-Carlson's new type " E " relay combines the time-proven characteristics of the type " A " relay with a mounting arrangement com mon to many other makes.

As the sketch above shows, our new frame mounting holes and coil terminal spacing allow you to spec. ify these relays-of "telephone qual. ity"-interchangeably with brands you have been using. Costs are com. petitive and expanded production means prompt delivery.

Welcome engineering features of the new " E " relay are-

* Contact spring assembly: maximum of X Form A, 18 B, 10 C per relay.
\star Coil: single or double wound, with taper tan or solder type terminals at back of relay. \star Operating voltage: 200 volts $D C$ maximun

You may order individual cancor ers in a choice of 3 sizes for the ner relay, as well as for our type " A " and "C" relays.

For complete details and specif. cations on the " E " relay ard other Stromberg-Carlson relays, send fot your free copy of Catalog T-5000R

STROMBERG-CARLSOI

TELECOMMUNICATION INDUSTRIAL SALES
216 CARLSON ROAD, ROCHESTER 3, M.Y. CIRCLE 183 ON READER-SERVICE CAN

The Beattie Oscillotron

TOROIDAL CORES.-Color coded Genalex III types in five standard permeability ranges: 14, 26, 60,125 , and 140 . Seven standard sizes from 0.5 to 1.35 in. O.D.

Wallace E. Connolly \& Co., Dept. ED, P.O. Box 295, Menlo Park, Calif.

CIRCLE 185 ON READER-SERVICE CARD
MOLDED NYLON SCREWS.-Expanded line includes machine screws with round, fillister, and flat heads. Also headless set screws with variety of points.

Gries Reproducer Corp., Dept. ED, 400 Beechwood Ave., New Rochelle, N.Y.

CIRCLE 186 ON READER-SERVICE CARD
PRESSURE SWITCHES.-Dual circuit units to actuate instruments, warning signals, and safety devices. For dc use.

John W. Hobbs Corp., Dept. ED, Yale Blvd. and Ash St., Springfield, Ill.

CIRCLE 187 ON READER-SERVICE CARD
TRANSISTORIZED DIGITAL MODULES.-Shift flip-flop model SF-101 and M-Pac plugboard model PB-101 are additions to series M transistorized dc to 100 kc digital modules.

Computer Control Co., Inc., Dept. ED, 92 Broad St., Wellesley 57, Mass.

CIRCLE 188 ON READER-SERVICE CARD
DIMPLE MAGNETS.-For loudspeaker and transceiver applications. Magnets utilize Alnico 5 Cb , need no pole tips or retainers, though pole tips may be used.

Thomas \& Skinner, Inc., Dept. ED, 1157 E. 23rd St., Indianapolis, Ind.

CIRCLE 189 ON READER-SERVICE CARD
TUBE BASE PLUGS.-In 7 and 9 pin miniature types with straight or bent pins, flat sides or stepped, and knurled inserts for side-screw applications.

Electronic Techniques, Inc., Dept. ED, 13761 Saticoy St., Van Nuys, Calif.

CIRCLE 190 ON READER-SERVICE CARD
INSTRUMENT DOLLIES.-Flat-top dolly for uses requiring level surface. Tilt-top for scopes.
P.B.R. Mfg. Co., Dept. ED, H and Luzerne Sts., Philadelphia 24, Pa.

CIRCLE 191 ON READER-SERVICE CARD
INDICTAOR LIGHT ASSEMBLY.-Type 50 extrashort horizontal assembly for use with the standard miniature bayonet T31/4 lamp.
Drake Mfg. Co., Dept. ED, 1711 W. Hubbard St., Chicago 22, Ill.

CIRCLE 192 ON READER-SERVICE CARD
MEMORY CORE ANALYZER.-Model 3303, 100 channel unit provides definitive analysis. Linearity better than 0.5 per cent; input counting rates greater than $10^{6} \mathrm{cpm}$.
Radiation Instrument Development Lab, Inc., Dept. ED, 5737 S. Halsted St., Chicago 21, Ill.

CIRCLE 193 ON READER-SERVICE CARD

Electrically pulsed and automatic. Adaptable for remote control. Interchangeable 35 or
70 mm cameras 100 for single frame or continuous motion record-
fill ing. All oscillotron cameras fit the standard K. 5 periscope.
for more information write to

ESBEATTIECOLEMAN inc.

1000 N . Olive St., Anaheim, California CIRCLE 184 ON READER-SERVICE CARD

NEW in Data Recording

 tioned carriages.

FORMATS for printed copy.
CARRIAGES. Programmable carriages accept narrow or wide forms up to 18 inches, with front feed carriages for card insertion.
CAPACITIES. From three to 14 digits for each print cycle.
ACCUMULATORS. Up to 4 accumula. tors with 14 digits each.
.FACILITY. Each DATA/LOG has its own control chassis, power supply, con. trol relays, and timing pulses.

Series MC 205, provides 5, 6, 7 or 8 bit punched tape, with any coding for computer input. The basic printer provides up to 10 digits printout on a $13^{\prime \prime}$ or $43 / 4$ "fixed carriage, with or without accumulators. imum each. 64 cycles per minute can be punched, and 140 cycles per minute printed.

DATA/LOG PRINTERS INCLUDE: Series MC 202, $13^{\text {n }}$ or $43 / /^{" 1}$ 6xed position carriage, with or without accumulators. Readout Speed up to 180 print
cycles per minute.

Series MC 203 \& 204 each providea up to 14 digits maximum, on an $181 / /^{\prime \prime}$. or $153 /$ " $^{\prime \prime}$ programmable tabulating car riage. Up to 150 print cycles per min
Serles 203 comes without accumula tors, Series 204 is available with up to liators of 14 digits each.

Write to:
MONROE Calculating Machine Company, inc. Electronics Components Division
60 Main Street, San Francisco, Calif.

CIRCLE 194 ON READER-SERVICE CARD

NEW, LOW FREQUENCY RELIABILITY IN GLASS-ENCLOSED CRYSTAL

Precision components of the new RHG-DP crystals are enclosed and hermetically sealed in glass holders to assure maximum internal cleanliness and most reliable evacuation. The result is a series of sturdy, miniature, low frequency units having excellent long-term stability and higher \mathbf{Q}.

TYPICAL VALUES FOR 2 KC UNIT*

Meets MIL specification
+.001\% max
-Reeves-Hoffman manufactures a broad line of crystals in the range from 1 to 1000 kc .

WRITE FOR BULLETIN RHG-DP
DIVISION OF
DYNAMICS CORPORATION OF AMERICA CARLISLE, PENNSYIVANIA
CIRCLE 268 ON READER-SERVICE CARD

DIGITAL VOLT-OHMMETERS combine readability with reliability and accuracy

For your laboratory, incoming inspection, or in-line test positions-or wherever accurate and reliable measurements must be made quickly-you need a HYCON Digital Volt-Ohmmeter
READABLE $1 / 2$ " digits, in line, with illuminated decimal point and polarity indicator for fast (2 second average) readout without interpolation error.
RUGGED AND RELIABLE with no delicate components -designed for continuous operation, and to withstand shock and vibration without loss of accuracy.
Complate Data in Bullotin 645
Model 645AR 0.1\% accurate, DC and Ohma............ \$876.00 Model 615AR 0.5\% accurate, DC and Ohma........... \$486.00 Both instruments are 1% sccurate on AC from 10 to 1000 volts : 2% accurate below 10 volto.

Onder from your HYCON
representative, or from
18-2n
ELECTRONICS, INC.

CIRCLE 195 ON READER-SERVICE CARD

3 oigital instruments in 1 The HYCON reads $D C$ volts in 4 decimal ranges strom. 001 V to 999
$\mathrm{~V} . \mathrm{AC}$ volts in 3 decimal ranges t.aC volts in 3 decimal ranges
from $1.0 \vee$ to $999 \vee$ RMS... resistance in 5 decimal ranges from 1 onm to 9.99 megonms. High Impedance (vaccuum tube) input. Sire sithe $\times 19^{\prime \prime \prime}$, $11^{\prime \prime}$ deep. Complete with probes.

NEW PRODUCTS

NEUTRON SURVEY METER.-Fast-slow model 20806 has 10 times greater neutron sensitivity than previous models. Fast model 20807 and slow model 20808 also available.

Radiation Counter Labs, Dept. ED, 5121 W. Grove, Skokie, Ill. CIRCLE 196 ON READER-SERVICE CARD

POWER SUPPLIES. -30 v output with ripple below 1 per cent rms for voltage or load within rating. Regulation from no load to full load is 12 per cent.
Gates Electronic Co., Dept. ED, 2090 Barnes Ave., Bronx 62, N.Y.

CIRCLE 197 ON READER-SERVICE CARD
CERAMIC CAPACITORS.-Double-cup high-voltage types 90C and 91C for use in rf circuits up to 10 kv .
Sprague Electric Co., Dept. ED, 347 Marshall St., North Adams, Mass.

CIRCLE 198 ON READER-SERVICE CARD
PRESSURE TRANSDUCER.-Model P-501 adjustable range, double-coil variable reluctance type with a flat diaphragm pressure sensing element.
Yuba Consolidated Industries, Inc., Yuba Research and Development Center, Dept. ED, Benicia, Calif.

CIRCLE 199 ON READER-SERVICE CARD
CONTROL PANEL ENCLOSURES.-Type 12, completely liquid-tight, in single and double door models.
Keystone Mfg. Co., Dept. ED, 23328 Sherwood Rd., Warren, Mich.

Circle 200 ON READER-SERVICE CARD
POWER PENTODES.-Models 6EH5, 12EH5, 25EH5, and 50EH5 for use in audio output stages of radio and TV receivers.
Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 471 ON READER-SERVICE CARD
TRANSISTORIZED POWER SUPPLY.-Model M-990 magnetic amplifier transistorized de supply. Output of 24 to 32 vdc at 8 amp .
Perkin Engineering Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.
circle 202 on reader-service card
EXPLOSION-PROOF DIGITAL INDICATOR.Type 6 3- or 4 -channel units for use in hazardous areas. Range is up to 9000 counts.

George L. Nankervis Co., Cox Instruments Div., Dept. ED, 15300 Fullerton Ave., Detroit 27, Mich. CIRCLE 203 ON READER-SERVICE CARD

HELICAL GEAR ASSEMBLIES.-Can be used to increase or decrease speed. Ratios from 1 to 1 up to 4 to 1 . Shaft sizes of $1 / 8,3 / 16$, and $1 / 4 \mathrm{in}$. diam.

PIC Design Corp., Dept. ED, 477 Atlantic Ave., East Rockaway, N.Y.

Circle 204 ON reader-SERVICE card

Using Thermistors

Edited by FENWAL ELECTRONICS
THERMISTOR PROBE ASSEMBLIES
Fenwal Electronics' new thermistor probe assemblies enormously simplify an engineer's design and development problems. Developed and built by Fenwal to your specifications, each assembly is a ready-to-use, easy-to handle unit incorporating all the qual ities that make Fenwal Electronies thermistors outstanding - sensitivity stability, reliability, fast response light weight, and small size.

Three examples of complete thermistor probe
Three examples of complere thermissor probe
Fenwal Electronics develops an builds complete assemblies to vario configurations and temperatur ranges for specific applications. Probe can be completely interchangeable, an have identical resistance-temperatun characteristics.
Engineers: Fenwal Electronics n has a thermistor kit No. G200, whid includes 12 different individually pacl aged thermistors, each with complet data, for development work. $\$ 19.9$ f.o.b. Framingham.

Write Fenwal Electronics, In 38 Mellen Street, Framingham, Mas for Bulletin EM-13, describing nine the many thermistor probe assemblia Fenwal Electronics can build for you Or write for the Fenwal Electroni catalog (EMC-2).

Design - Engineering - Production of Precision Thermistors CIRCLE 205 on reader-service caro
DESIGN - August 20, 1950
sWITCH.-Model PLH push type switc. enables the user to lock in a circuit and then release it by depressing the same button again.
The Capitol Machine Co., Switch Div., Dept. ED, 36 Balmforth Ave., Danbury, Conn.
CIRCLE 206 ON READER-SERVICE CARD
VENTED CABINET.-Measures 24 in. wide by 15 in . deep and holds standard contrasting silver grey hammertone panels.
WYCO Metal Products, Dept. ED, 6918 Beck Ave., North Hollywood, Calif.
circle 207 ON READER-SERVICE CARD

POWER SUPPLY.-Model 62-121 has a regulation of .05 per cent for a line change of 105 to 125 volts. Output range is $0.5-36 \mathrm{v}$ dc at 15 amps . Dressen-Barnes Corp., Dept. ED, Pasadena, Calif.
CIRCLE 208 ON READER-SERVICE CARD
FLEXIBLE COUPLINGS.-For closeiolerance use. Designed to eliminate pack-lash and transmit uniform anguar velocity at high speeds. Shaft sizes from $1 / 8$ to $5 / 16 \mathrm{in}$.
Robertshaw-Fulton Controls Co., Bridgeport Thermostat Div., Dept. ED, Milford, Conn.
CIRCLE 209 ON READER-SERVICE CARD
SELENIUM RECTIFIERS.-Federal lim-Line, in two sizes, covers range from 150 to 450 ma for half-wave ectifier applications and for B-plus upplies in voltage doubler circuits. International Telephone and Teleraph Corp., Dept. ED, Clifton, N.J. CIRCLE 210 ON READER-SERVICE CARD

ERVO GEAR CLAMPS.-Line conists of two piece T147 for use at high peeds; single piece T151 for speeds llow 1000 rpm ; and low-cost T143 or 200 rpm and under.
Sterling Precision Corp., Dept. ED, 7 Matinecock Ave., Port Washington, Y. Y .

CIRCLE 211 ON READER-SERVICE CARD
WO-POINT NUT.-Elimination of ex surfaces yields 40 per cent space ving in Kaylock H50 self-locking at. Threaded nut element has two tegral wrenching points.
Kayiar Mfg. Co., Inc., Dept. ED, 0x 2001, Terminal Annex, Los ngel.s 54, Calif.
Circle 212 ON READER-SERVICE CARD CIRCLE 213 ON READER-SERVICE CARD $>$

New Product Announcement

TYPE MX* THERMOSTATS
 especially designed for missile, avionic and electronic applications

New Stemco Type MX Thermostats are miniature snap-acting units designed to open on a temperature rise. Being compact, lightweight units able to withstand high G's under wide ambient temperature ranges, Type MX thermostats are ideal for missile, avionic and other electronic applications where close temperature control is mandatory.

Basic design flexibility of the Stemco Type MX Series means the units can be supplied from regular production runs in a wide variety of models, both semi-enclosed or hermetically sealed. Ceramic or metal bases for semi-enclosed units, round enclosures or CR-7 crystal cans for hermetically sealed units. Several types of terminal arrangements, mounting provisions, brackets, etc., are available.

Stemco Type MX thermostats give you performance . . . small cubage . . . rugged reliability . . . at a production price.

* 2° to $6^{\circ} \mathrm{F}$ differentials available 1

NEW PRODUCTS

SELENIUM RECTIFIER.-Low-cost unit for use in vibrating cushions and other appliances.

Radio Receptor Co., Inc., Dept. ED, 240 Wythe Ave., Brooklyn, N.Y.

CIRCLE 215 ON READER-SERVICE CARD

SERVO PNEUMATIC REGULATOR.-Model 192000-2 handles inlet pressures of 600 to 3000 psig with a flow rate of up to 40 lb of air per minute. For fuel pressurizing applications.
Wallace O. Leonard, Inc., Dept. ED, 373 S. Fair Oaks Ave., Pasadena, Calif. CIRCLE 216 ON READER-SERVICE CARD
SPDT CHOPPERS.-Line of 7 - and 4-pin miniature choppers for low noise applications.

James Vibrapowr Co., Dept. ED, 4050 N. Rockwell, Chicago 18, Ill. CIRCLE 217 ON READER-SERVICE CARD
RELAY.-The PE-3 is used with resistive type photoelectric scanning heads within 25,000 ohms to 1.5 meg resistance.

Farmer Electric Products Co., Inc., Dept. ED, 2300 Washington St., Newton Lower Falls, Mass. CIRCLE 218 ON READER-SERVICE CARD

ROTARY SWITCH.-Type JL multiple switch has eight contact positions and up to ten sections controlled by one knob.

Electro Switch Corp., Dept. ED, Weymouth 88, Mass.

CIRCLE 219 ON READER-SERVICE CARD
BREAD BOARDS AND HANGER UNITS.-Component and bearing hangers can be shifted to any position for highly accurate bread board mock-up.

Dynamic Gear Co., Inc., Dept. ED, 20 Merrick Rd., Amityville, N.Y.

CIRCLE 220 ON READER-SERVICE CARD
DIGITAL COUNTERS.-Feature low torque, low moment of inertia, high speed, and long life.
Durant Mfg. Co., Dept. ED, 1993 N. Buffum St., Milwaukee 1, Wis.

CIRCLE 221 ON READER-SERVICE CARD
JACK.-No. 2425 feed-through type accepts banana plug with 0.107 in . pin diam, $3 / 8 \mathrm{in}$. pin length.
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass. CIRCLE 222 ON READER-SERVICE CARD
SNAP-ACTING SWITCH.-Type A switch for use in automatic devices. Electrical rating, $15 \mathrm{amp}, 125$ and 250 v ac.
The W. L. Maxson Corp., Unimax Switch Div., Dept. ED, Ives Rd., Wallingford, Conn. CIRCLE 223 ON READER-SERVICE CARD

THERMISTOR THERMOMETER.-Model 46TUC multi-channel unit with range from 0 to 50 C in five over-lapping ranges 11 degrees wide.
Yellow Springs Instrument Co., Inc., Dept. ED, Yellow Springs, Ohio.

CIRCLE 224 ON READER-SERVICE CARD

Straits
 TiN
 REPORT

New developments in the production. mar-
keting and uses of tin

The Fish and Wildlife Service of the U.S. Department of the Interior has reported that "packaging frozen fish in tin results in superior storage life." Ondy tin prevents the deteriorating action of seeping oxygen on frozen fish in cold storage over a period of months.

Considerable laboratory prog. ress has been made in the electroplating of tin as a bright coating through the addition of certain wood tars to the electrolyte. Some observers feel there is a distinct possibility that this bright tin plating may take the place of metal polishing in many applications throughout the metal industry.

A new machine has been designed England to help speed up mass produc tion soldering. It consists of an elec. trically heated solder bath with motor. driven pump to provide a stationar wave of fresh solder, which is expose to moving printed circuit boards.

An invention was recently patenta which is expected to lengthen the lif of heavily stressed bearings from a fer weeks to several years. A mesh tinned wire is embedded just below the surface of babbitted bearings befor pouring . . . to prevent movement in the bearing surface leading to fatigle cracking and spalling.

Ask us to send you It NEWS, a monthy lelty It will keep you posited uses and applications

The Malayan Tin Bureav Dept. 13H. 1029 Connecticut Ave., Wastington 6, , 2. CIRCLE 225 ON READER-SERVICE CAIT ELECTRONIC DESIGN • August 20, 195

PLASTIC SCREWS.-Lexan plastic screws, with shanks threaded just enough for each application, provide greater strength.
Pylon Co., Inc., Dept. ED, Attleboro, Mass. CIRCLE 227 ON READER-SERVICE CARD

MOTOR TACHOMETER.-Model SJ9HLX7-1CC size 10 damping type motor has minimum stall torque of 0.5 in .-oz, operates from -54 to +105 C .
Eastern Air Devices, Inc., Dept. ED, 391 Central Ave., Dover, N.H. CIRCLE 228 ON READER-SERVICE CARD
WIRE HARNESS.-Copper shielded Zippertubing with plastic or metal zipper track. ID's start at 3/8 in.; put-ups are 25 to 300 ft .
The Zippertubing Co., Dept. ED, 752 S. San Pedro St., Los Angeles 14, Calif. CIRCLE 229 ON READER-SERVICE CARD

TRANSFORMER.-For industrial electronic tubes. Rated $30 \mathrm{kva}, 240 \mathrm{v}$ input with 3 secondaries, 10 v at 1000 amp .

Nothelfer Winding Labs, Inc., Dept. ED, P.O. Box 455, Trenton, N.J. CIRCLE 230 ON READER-SERVICE CARD

DELTA UNIT.-Model 902-1 measures any physical quantity that can be converted into a change in capacitance.
The Decker Corp., Dept. ED, Bala Cynwyd, Pa CIRCLE 231 ON READER-SERVICE CARD

INTERNALLY THREADED INSERT.-Self-aligning Keensert series designed to compensate for misalignment of bolt holes.

Newton Insert Co., Dept. ED, 6500 Avalon Blvd., Los Angeles 3, Calif.

CIRCLE 232 ON READER-SERVICE CARD
TRANSISTORIZED DC POWER SUPPLY.-Unireg model Q26-30-1 with output range of 26 to 30 v at 0 to 1 amp .

Universal Electronics Co., Dept. ED, 1720 22nd St., Santa Monica, Calif

CIRCLE 233 ON READER-SERVICE CARD
LINE VOLTAGE REGULATORS.-Claude Lyons automatic regulators weigh 11.5 lb , are independent of load from 0 to 100 per cent of rated value.

British Industries Corp., Dept. ED, 80 Shore Rd. Port Washington, N.Y. CIRCLE 234 ON READER-SERVICE CARD

VERTICAL OUTPUT TRANSFORMERS.-Types A-113X, A-115X, A-113Z, and A-115Z drive 90 and 110 deg yokes with 10 to 14 mh inductance and 11 to 15 ohm resistance.
Triad Transformer Corp., Dept. ED, 4055 Redwood Ave., Venice, Calif. CIRCLE 235 ON READER-SERVICE CARD

JACKS AND PLUGS.-Miniature jacks 2378 and 2515 and matching plugs 2379 for tight patch work on panel boards.
Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass. CIRCLE 236 ON READER-SERVICE CARD
for maximum reliability
reduce
tube
temperatures
up to
$40^{\circ} \mathrm{C}$
with

BIRTCHER KOOL KLAMPS

MATERIAL
MATERIAL alloy or Beryllium No. 25
FINISH FINISH
Silver none beryllium copper Rlated silver to Or black Ebanol SIZES Modifications subilable for all miniature tubes and components.

Write for catalog

Excessive heat is the number one cause of tube failure. Birtcher KOOL KLAMPS, made of $991 / 2 \%$ pure, tempered silver, can reduce tube temperatures by as much as $40^{\circ} \mathrm{C}$ while holding them secure against shock and vibration. Available also in beryllium copper where temperature is less critical.

Now A TRULY MULTIFUNCTIONAL PHASE ANGLE VTVM and PHASE-SENSITIVE NULL INDICATOR

DIRECT READING

- Voltage
- Phase Angle
- In-Phase
- Quadrature representatives.

FEATURES

- Direct reading $0-360^{\circ}$, ne ambigulty.
- 1 mv to 300v full scale.
- VTVM operation to 50 kc .
- 10 mierovali null sonsitivity.
- 10 meg input impedance.
- Available in any frequency to 10 kc .
- Unaffectod by harmonics with optional filiors. - Low nolse.
N. Y., NEW ENGLAND: J. P. Brogan Assoc. - MET. N. Y.: B. B. Taylor Corp. MID ATLANTIC: Fred F. Bortletl Co. MICH., OHIO, W. PENNAi Dayton-Andelson Elect. - KANSAS, MO., IOWA, S. ILt: Desco Soles - SOUTH EAST: Col-InsCo WEST COAST: Gerold B. Miller - CANADA: Electrodesign

NOETIEI ATIANTI industries,inc 608 main street, westbury, n. ע. EDgemood s-1182.

CIRCLE 239 ON READER-SERVICE CARD

D.C. POWER SUPPLIES by John Fluke

MODEL 3O1C
1.02-1012 V.D.C.
0.400 MA
$.005 \%$
.005\%
500 MICROVOLTS
FROM CALIB. CONTROLS
$171 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 151 / 2^{\prime \prime} \mathrm{D}$ $\$ 995$ FOB SEATTLE

John fluke manufacturing co., inc. 111 w. nickerson st., seattle ga, washington

NEW PRODUCTS

DECADE BOXES.-Line of ten models: three capacitance, three resistance, four inductance. Aerovox Corp., Dept. ED, New Bedford, Mass. CIRCLE 241 ON READER-SERVICE CARD

REVERSIBLE SYNCHRONOUS MOTOR.-Mode] RSM 80 in.-oz continuous duty motor, instantly re versible, in output speeds from $2 / 3$ to 3600 rpm . Weighs 14 oz .
Hurst Tool \& Mfg. Co., Inc., Dept. ED, Princeton, Ind.

CIRCLE 242 ON READER-SERVICE CARD
TRANSISTORIZED POWER SUPPLY.-Voltage regulated model SC-150-1 delivers 0 to $150 \mathrm{v}, 0$ to 1 amp. Regulation under 0.01 per cent or 0.002 v , whichever is greater.
Kepco Labs, Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y. CIRCLE 243 ON READER-SERVICE CARD

GROUNDING SWITCH.-GS-1 rotary switch for use where one or two circuits are occasionally connected to ground.
P. R. Mallory \& Co., Inc., Dept. ED, Indianapolis 6, Ind.

CIRCLE 244 ON READER-SERVICE CARD
HIGH PRESSURE SEALS.-Hexseals series N-5000 one piece units for use on miniature push-button and toggle switches. Operate from -160 to +500 F .
Automatic \& Precision Mfg. Co., Dept. ED, 252 Hawthorne Ave., Yonkers, N.Y.

CIRCLE 245 ON READER-SERVICE CARD
VIDEO MONITOR CRT.-Type 8FP4 90-deg crt for closed circuit and industrial TV receivers. Measures 11-7/16 in. front to back.
Sylvania Electric Products Inc., Dept. ED, 174.) Broadway, New York 19, N.Y.

CIRCLE 246 ON READER-SERVICE CARD
UNIVERSAL CRYSTAL SOCKET.-Tests crystals with variety of holder pins or leads. Usable from lowest frequencies to over 100 mc .
Lehigh Valley Electronics Engineering \& Mfg. Co., Dept. ED, 215 S. Third St., Allentown, Pa. CIRCLE 247 ON READER-SERVICE CARD

RETAINING RING KIT.-Contains 376 cadmium plated Truarc retaining rings. Sizes packed individually in numbered envelopes. Shaft sizes from $1 / 4$ to $2-1 / 2 \mathrm{in}$.

Bearings Inc., Dept. ED, 3634 Euclid Ave., Cleveland 15, Ohio.

CIRCLE 248 ON READER-SERVICE CARD
FLOW INTEGRATOR.-Model 26 square-root integrator automatically totals flow. Maximum rate of 300 counts per minute.
Librascope, Inc., Dept. ED, 40 E. Verdugo Ave., Burbank, Calif

CIRCLE 249 ON READER-SERVICE CARD

PROTECT YOUR COMPONENTS

ELIMINATE HOT SPOTS
ventlated
RELAY RACK
CABINETS

MIL Spec Quality
Comploro Packago Modular Construction

Fully Controlled built-in
Cross-ventilation Systom
Cool Exactly Where Needed

Cool Heat Load of 2-3 KW Input

Proven in
4 Years' Operation in Government

MODEL Dolly Optional STANDARD UNITS $19^{\prime \prime}$ 10 $24^{\prime \prime \prime}$ Pornols
$18^{\prime \prime}$ to $36^{\prime \prime}$ Doop Matching Consoles
Available OTHERS TO YOUR
SPECIFICATIONS NOTE:
Adjustable air-flow pattern to your exact needs is effected by snapes-no 'chimney' effect

- Available in cabinets or consoles
-with 12-gauge or $3_{6}{ }^{\text {- }}$ steel frame - Adjustable interior rails afford ready mounting for chassis slides - Front and rear doors with glass panels or cutouts - Paint finish to customer requirements

Writo for Complote Dafa: Sories FC/ED

ONE SOURCE...

for VENTILATED CABINETS, CONTROL CONSOLES, BLOWERS, CHASSIS, 'CHASSISTRAK'•, RELATED COMPONENTS

Western Devices, Ilic
600 W. FLORENCE AVE., INGLEWOOD, CAL *For Inavirios on 'Chassis-Trak'; East of Roctios: CIRCLE 250 ON READER-SERVICE CARD ELECTRONIC DESIGN • August 20, 1958

Now available in Vinyl, New Stretch Vinyl, Teflon, Nylon, Mylar, Neoprene. Major Advantages
I. Cables are made by you, on the spot, as needed, without machinery. Pro. duction delays eliminated.
2. New stretch compound provides tighter jacketing.
3. Highly abrasion-resistant. Temperature range, $-90^{\circ} \mathrm{F}$ to $450^{\circ} \mathrm{F}$.
4. Eliminates expensive lacing or tying of conductors.
5. Provides re-accessibility to conduc. tors, or can be permanently sealed.
6. New method permits cable termina tion with any type of connector.
7. Sizes from $1 / 4^{\prime \prime \prime}$ ID - continuous lengths to 1000 ft .
8. New metal laminations for shielded or co-axial cable construction.
9. Perforated type or molded "Ys" and "Ts" simplify branchouts.

Important

It you design or work with olectronic cables, it will pay you to try ZIPPER. TUBEING. Field representatives are nearby - or send for froe sample and
fechnical literature.

Offices \& Warehouses in All Principal Cities

THE ZIPPERTUBING CO 75250 San Pedro St - Los Angeles 14 Calıf TWX LA 840

ALLOY CONTACTS.-Mass-produced Cor-Bond contacts made in one heatless operation. Variety of types and shapes.
Fansteel Metallurgical Corp., Dept. ED, 2200 Sheridan Rd., North Chicago, Ill.

CIRCLE 252 ON READER-SERVICE CARD
HIGH CURRENT CONNECTOR.-Series C2 miniature hexagonal unit, two contact, for high altitude applications.

DeJur-Amsco Corp., Dept. ED, 45-01 Northern Blvd., Long Island City 1, N.Y.

CIRCLE 253 ON READER-SERVICE CARD
CYCLING TIMERS.-Type 511 and 521 have 1 to 8 independent timed intervals, quickly adjustable. Cycle times from 6 sec to 48 hr .
Cramer Controls Corp., Dept. ED, Centerbrook, Conn.

CIRCLE 254 ON READER-SERVICE CARD
TWO-STAGE REGULATOR.-Type GS has magnetic amplifier control input stage and grid-controlled rectifier power output stage. Three sizes: 5, 12.8 , and 36 amp maximum.

Clark Controller Co., Dept. ED, 1146 E. 152nd St., Cleveland 10, Ohio.

CIRCLE 255 ON READER-SERVICE CARD
CENTRIFUGAL BLOWER.-Turns about 3400 rpm, drawing 3.5 amp . Delivers about 285 cfm at 1.2 in . of back pressure.

Western Gear Corp., Dept. ED, P.O. Box 182, Lynwood, Calif.

CIRCLE 256 ON READER-SERVICE CARD
MAGNETIC SWITCHES. - Miniaturized types $6-81$, normally open, and 6-83, normally closed, operate 45 deg from vertical position.
The Mercoid Corp., Dept. ED, 4201 Belmont Ave., Chicago 41, III.

CIRCLE 257 ON READER-SERVICE CARD
MOVING COIL MECHANISM. - End-pivoted model MEP-7 for use with aircraft instruments needing flag or alarm indications with short deflection angle. Weighs $1 / 2 \mathrm{oz}$.
Marion Electrical Instrument Co., Dept. ED, Grenier Field, Manchester, N.H.

CIRCLE 258 ON READER-SERVICE CARD
CURRENT TRANSFORMER TESTER. - Type AL-1 provides tests at any load from light to 200 per cent. Current ranges are 10 to 2000 amp .
Knopp Inc., Dept. ED, 1307 66th St., Oakland 8, Calif.

CIRCLE 259 ON READER-SERVICE CARD
CHASSIS SLIDE.-Model 4000 needs 1 in. side space on each side. Pair holds 350 lb .

Grant Pulley and Hardware Corp., Dept. ED, High St., West Nyack, N.Y.

Circle 269 ON reader-service card
FANS AND BLOWERS.-F frame line for 115 or $220 \mathrm{v}, 1$ or 3 phase, 60 or 400 cps applications.
Air-Marine Motors, Inc., Dept. ED, 369 Bayview Ave., Amityville, N.Y.
circle 270 ON reader-service card

ARCRAFT Armaments. inc.
Cockeysville, Maryland

AAINC. MODEL 2830
 MISS-DISTANCE MEASURING SYSTEM

AN/USQ-11

- developed by Naval Ordnance Laboratory, Silver Spring, Maryland
- product-engineered and produced by Aircraft Armaments, Inc.
 under 2 lbs . Accuracy confirmed by field tests. TRANSPONDER
A SUBSIDIARY OF UNITED INDUSTRIAL CORP CIRCLE 271 ON READER-SERVICE CARD

A HELCO sector type potentiometer simplifles your overall design

This type is designed as a direct component of your product, tailored to individual product features. We adapt the potentiorneter moving member directly to the moving member of your assembly, and the non-moving member directly to your ings and couplings, giving you:
SMALEER SIIEE - because no nousings or boarings used. SMALLER SIZE - beccuuse no housings or bo
LESS WEICHT - many parts are olliminated.
MICHER RELIALIITY duo to roduced complexity.
LIENER RELIALLIN
LOWER OVERALL COST- no brackets or hardware needed, and units cost less to producc.

AEECO

write for literature

LAREE SECTOR TYPE for arborne
computer, manufactured to cus.
HELCO PRODUCTS CORP. tomer speces. and desien.

7832 Balboa Boulovard
Van Nuye, Callfornia
Tol: STanley 3-2766
CIRCLE 272 ON READER-SERVICE CARD

For airborne and missile cooling applications, the AXIMAX-3 when turning at $20,000 \mathrm{rpm}$ will deliver 165 cfm at free delivery. This performance is possible although the fan is only $2.8^{\prime \prime}$ in diameter, $2.3^{\prime \prime}$ in length and weighs a mere 14 ounces.

Variation in driving motors include constant speed and Altivar designs. The latter automatically vary their speeds inversely with density and thereby approach constant cooling with a minimum of power drain and noise.
Mounting is simplified by the provision of "servo" clamping rims at either end of the barrel. Airflow can be reversed by turning the fan end-for-end. Electrical connection is made to a compact terminal block. Power requirement is 400 cps , 1 or 3 phase.
Write today for complete technical details to . . .

ITA mfg. co., inc.

WOODSTOCK, NEW YORK
In Canada: The Hoover Co., Lid., Hamilton, Ont.

NEW LITERATURE

Deflection Components

Precision deflection systems and components designed for ITV and broadcast cameras and other cathode ray tube applications are described in 6-page Form 3R 3295. Pictures and text present commercial and ruggedized components for image orthicons, vidicons, TV monitors, radar, flying spot scanners, and compositrons. Radio Corporation of America, Commercial Electronic Products, Camden 2, N.J.

Hardware

Catalog W600 lists a full line of electronic and electrical components. It includes solder terminals, swagers, terminal boards, hardware, insulated terminals, coils, coil forms, and capacitors. Dimensional drawings and detailed specifications cover each product. Cambridge Thermionic Corp., 445 Concord Ave., Cambridge 38, Mass.

Precision Marking

A four-page pamphlet, "Precision Marking And Fabrication in All Metals, Plastics and Phenolics," is available. The bulletin describes the manufacture of precision engraved marking and fabrication of dials, scales, panels, instruction plates, and precision screen printing. Gray Pantograph Engraving Co., 200 Washington St., Hoboken, N.J.

Toroids and Filters

278
A 24-page, clip-bound catalog containing a table of operational functions, diagrams, and information on useful relationships for network design. Ortho Filter Corp., 196 Albion Ave., Paterson 2, N.J.

Power Supplies

279
A line of transistorized low-voltage high-current dc supplies, with outputs of 6,12 , or 28 v , at 15 or 30 w , is discussed in a product data sheet now available. Complete specifications for 6 different models are provided. Sorensen \& Co., Inc., Richards Ave., S. Norwalk, Conn.

Connector Test Report

280

Laboratory testing of miniature elec. trical connectors is the subject of a 29. page report now available. A complete series of tests for electrical, environ. mental, and physical characteristics is discussed with the aid of diagrams and tables. The Deutsch Co., 7000 Avalon Blvd., Los Angeles 3, Calif.

PC Facilities

281
A concise discussion of printed circuit facilities. The 4 -page brochure outlines the physical and engineering facilities for circuits used in missiles, guidance systems, computers, data processing equipment, radar and quality instruments. Electralab, Inc., Industrial Center, Needham Heights 94, Mass.

Clutches and Brakes

284
Described in a 4-page leaflet are the performance, specifications, and dimensional characteristics of miniature industrial clutches and brakes. The illustrated units feature high torque rating, rapid response, zero backlash, and light weight. Autotronics, Inc., Box 812, Florissant, Mo.

Semiconductors

285
Electrical and physical characteristics of semiconductor products are covered in a recently published folder. Product lines have been broken down into categories which include: silicon junction diodes, medium voltage diodes, zener reference diodes and elements, zener power voltage regulators, and silicon solar cells. Hoffman Electronics Corp., Semiconductor Div., 930 Pitner Ave., Evanston, Ill.

Resin Rods

286
Fact Sheet No. 1 is a 4-page brochure, which gives sizes available, new engl. neering data, tips on machining, and typical uses of Teflon rod stock. Diameters of these rods range from $1 / 32$ to 2 in., in extremely small increments. Chemplast, Inc., 3 Central Ave., E. Newark, N.J.

Decade Counter Tubes

287
An 8-page brochure is now available concerning electrical characteristics and application data on the most popular counter tube types. While listing min and max ratings on a variety of bi-directional counter tubes, it also contains information on the latest drive circuits, including an improved 0 to 4 kc driver and a simple circuit for counting rates of 30 kc and below. Sylvania Electric Products, Inc., 1100 Main St., Buffalo, N.Y.

Vibration Film

"Vibration and Its Measurement" is the title of a technical film, which gives viewers the opportunuity to see special equipment designed for measuring accelerometer sensitivity at 500 F while mounted to a standard shaker, in addition to the test procedures and special devices designed to measure lateral sensitivity. Design criteria for an accelerometer are compared with desired ranges of frequency, dynamic loading and environment. Endevco Corp., 161 E. California St., Pasadena, Calif.

PC Design Data

In an effort to define correctly certain special terms regarding high quality printed circuitry, a collection of design data sheets has been released. Entitled "Printed Circuit Design Data," it presents a more exact description of the various contributory factors and provides important definitions of such terms as: registration, silver migration, and bond strength. Electralab, Inc., Industrial Center, Needham Heights 94, Mass.

Resin Wall Chart

A compilation of data concerning various standard resins. The resin categories covered in the chart are: stycast casting resins, eccocoat plastic surface coatings, eccobond adhesives, cements and sealants, eccoseal impregnating resirs, and eccobild tooling resins. Such properties as thermal expansion coefficient and max and min use temperatures are shown. Information is given as to possible uses and expected results. Emt rson \& Cuming, Inc., 869 Washington Sit., Canton, Mass.

Printed Circuits

A 4-page booklet supplies information pertaining to printed circuits, copperclad laminates, base laminates, and fabricated parts. The bulletin provides tables, design recommendations, and tolerances. Northern Plastics Corp., Second \& Market Sts., LaCrosse, Wis.

Relays

A wide assortment of relays, steppers, solenoids, rectifiers, and related companents is described in a 16 -page folder. Universal Relay Corp., 42 White St., New York 13, N.Y.

Toroids and Filters

293
Toroids, filters and related networks for military, industrial and commercial applications. Catalog 104 consists of 16 color pages covering applications together with schematics and performance curves. Developments in the field of telemetering, including a new series of constant delay band pass and low pass filters, are featured. Burnell \& Co., 10 Pelham Parkway, Pelham, N.Y.

Mean Temperature Nomogram 294

To avoid the incorrect "easy method" of finding the average temperature difference, a nomogram for logarithmic mean temperature difference has been devised. It involves three columns: the initial temperature difference, the key, and the final temperature difference. Dean Products, Inc., Dean Thermo-Panel Coil Div., 616 Franklin Ave., Brooklyn 38, N.Y.

Transistor Chart

295
The availability of a revised transistor interchangeability chart has been announced. It covers all EIA registered types comparable to the company's own types. General Transistor Corp., 91-27 138th Pl., Jamaica 35, N.Y.

Resistance Soldering

296
The techniques of resistance soldering on a production basis are described in Bulletin 105M. Advantages of this type of soldering, application notes and equipment available are discussed in the 18-page illustrated brochure. Wassco Electric Products Corp., 204 S. Larkin Ave., Joliet, Ill.

WELDMATCC PRECISION WELDING IMPROVES COMPONENT RELIABILITY FOR EMERSON

Joining lead wires to magnetic amplifiers was a problem at Emerson Research Laboratories. However, using a Weldmatic Model 1012 welder, they found they could join materials like \#40 nickel iron resistance wire and \#24 tinned copper both quickly and easily. Resulting joints proved reliable - able to withstand severe vibration, acceleration and high temperature. With Weldmatic welders you can simplify miniaturization, speed production. Write for technical data on the Weldmatic line.
WE MMTIP DIVISION OF UNITEK CORPORATION 260 North Halstead Avenue - Pasadena, California NO REPRESENTATIVES IN
CIRCLE 297 ON READER-SERVICE CARD

1400 STANDARD SIZES TO CHOOSE FROM with no tooling cost!

Choose from more than 1400 standard sizes and save tooling cost. All can be trimmed and modified to your specification by secondary operations...brackets and fasteners installed, holes and loúvers punched, welding, painting, etc. Choose from rectangular, round, square boxes and covers. Custom deep drawn parts at nominal cost using exclusive ZERO-method tooling-send your print or contact your local ZERO representative for a quotation.

Write for complete new
ZERO catalog

1121 Chestnut, burbank, california
wire

insulated

all types conforming to SPECIFICATION MIL-W-16878B
Within the wide range of insulated electronic wires . . . conforming to Specification Mil-W-16878B . . .
Continental offers every type and size. Insulations in polyvinyl . . . Teflon . . . Silicone Rubber . . . and Nylon . . . assure a Continental wire to Mil-W-16878B specifications for practically every electronic operation where moisture, high and low temperatures, and corrosion present their problems.
Whether from stock or to your special order, Continental insulated wire is quality engineered to precise specifications. For help with your insulated wire requirements, write today. Be sure to give details on amperage, voltage, diameter limitations, and operating temperatures.
Direct all inquiries to CONTINENTAL WIRE, Wallingford.

WALIINGFORD, CONN. CIRCLE 260 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

What
 The Russians

Are Writing

J. George Adashko

MICROWAVES

Experimental Study of the Mutual-Synchronous Operation of Reflex Klystrons in the Three Centimeter Band by S. D. Gvozdover, A. I. Kostiyenko, and C. P. Lyubimov. REE 1/58, pp 105-111, 8 figs.

An experimental investigation is made of pair-by-pair mutual-synchronous operation of several reflex klystrons with shifted frequency characteristics, feeding a common load. It is shown that this operation can take place without jumps in the frequency and the oscillator power. The resultant range of electronic tuning of the system of several klystrons can exceed the sum of the ranges of the individual klystrons. This article is a continuation of work done by one of these authors and reported in Radiotekhnika i Elektronika, 1957, Vol. 2, page 1048, August issue.

Contribution to the Theory of a Spin Generator by S. S. Kurochkin. REE 2/58, pp 198-201.

The Bloch equations (Physical Review, 1946, 70, 460 and 474) are used to determine the conditions under which selfexcited oscillations can be maintained in a frequency modulated self-oscillator. The frequency of the oscillations is determined by a system of nuclear spins (specimen) placed in perpendicular crossed magnetic fields (this generator was proposed by Schmelzer, Lectures on the Theory and Design of an Alternat-
ing-Gradient Proton Synchrotron, Ge neva, 1953). See Figs. 1 and 2. The author also determines the oscillation frequency and explains the mechanism whereby the build up of the frequency amplitude is limited.

Effect of Load on Mutually-Synchronous Operation of Two Reflex Klystrons by A. I. Kostiyenko and G. P. Lyubimov. REE 1/58, pp 112-115.
Companion article to the one by Gvozdover, Kostiyenko and Lyubimov on page 104 of the same issue of Radio

Fig. 1. Spin generator with crossed coils.

Fig. 2. Spin generator with bridge.

tekl:nika i Elektronika. The authors have detcrmined experimentally the dependence of the bandwidth of synchronization and of the range of electron tuning of two mutually-synchronous klystrons in the three-centimeter band on the impedance-frequency characteristic of the load. It is shown that both the resulting range of electron tuning, as well as the bandwidth of the synchronization, depend very strongly on the form of the impedance vs. frequency curve of the load and the maximum occurs when the input impedance of the load changes little with frequency. Reference is made to an article by Reed in the Bell System Technical Journal, 1953, Vol. 32, No. 3, page 715.

CIRCUITS

Synchronization of Self-Oscillators by a Periodic Sequence of Pulses by P. N. Zanadvorov. REE 2/58, pp 202-213, 7 figs.
The author considers the possible ways of investigating the synchronization of self-oscillators by means of periodic sequence of pulses. The investigation is carried out by means of phasing functions. In the case of low-amplitude radio frequency pulses it is possible to effect synchronizations at frequency deviations corresponding to poly-harmonic beats. The stability region of the synchronization and of the stationary process are examined.

Radio Station for 420-425 Mc by B. Yelizarov. R 2/58, pp 24-26, 2 figs.

Description of a walkie-talkie, awarded first prize in the 14th-All-Union Exhibit for Radio-Amateur Equipment.
low Frequency Power Amplifier with High Efficiency by D. V. Ageyev. R 2/58, pp 45-47, 6 figs.
In 1951, D. V. Ageyev proposed the use of pulse power amplification for low frequency circuits for better efficiency, and proposed also a method of technical realization of this idea. A few years later R. Charbonnier proposed a different pulse-amplifier design. Both versions had certain shortages, which are claimed to be eliminated in the scheme described in this article.

ELECTRON PHYSICS

Experimental Investigation of the Electron Conductivity of a Space Charge Cloud in a Magnetron by V. P. Tychinskiy. REE 1/58, pp 116-130, 10 figs.
This paper was delivered on the day of radio conference held in May 1956. Electron conductivity was measured and cyclotron resonance curves of magnetrons were determined. These results were compared with calculated values obtained by the author in an earlier paper (Radiotekhnika i Elektronika, 1957, Vol. 2, No. 7, page 112). The author finds good qualitative agreement, and frequently quantitative agreement, with the calculations and explains the anomalies of the electronic efficiency of magnetrons, due to the resonant layers produced in the space charge cloud. Some of the most recently published work in this field (D. Reverdin, Journal of Applied Physics, 1951, 22, 257; L. E. S. Mathais (Journal of Electronics, 1955, Vol. 1, No. 1, page 18; and H. C. Nedderman, Journal of Applied Physics, 1955, Vol. 26, No. 12, page 1420) are found to contradict each other.

Electron Beam in a Helix Placed in a Dielectric Medium by V. P. Shestopalov. REE 1/58, pp 131-141, 3 figs.

The propagation of electromagnetic waves in a helix placed in a dielectric medium is investigated in the presence of an electron beam. An expression is derived for the components of the electromagnetic field in various regions of the system, and the resultant dispersion equation is analyzed. As the dielectric constant of the medium in which the helix is placed is increased, the gain of the system diminishes with increase in the range of electron-beam velocities for which amplification is possible.

Certain Laws of Electronic Current in Vacuum by M. D. Khaskind. Journal of Applied Physics, 2/58, pp 424-428, 2 figs.
The author uses the method of similarity and dimensionality to derive a substitute for the Langmuir "threehalves" law, which is known to be incorrect for low anode voltages. The author claims to establish a general law,

STABILITY?

Long Term Stability: 0.02% Owen Laboratories Type 550 Power Supply provides this stability at 1 to 40 Volts $\mathrm{DC}-1$ am pere. Completely transistorized, lightweight and portable.

REGULATION?

Against $\pm 10 \%$ line and 0-full load: $.002 \%$ Owen Laboratories Type 500-3 Power Supply (0-100 Volts DC) is chopper stabilized and voltage or current regulated.
MILLIVOLTS AT LOW

OUTPUT IMPEDANCE?

0 to 50 millivolts at .01 ohms Owen Laboratories Type 850 Power Supply is a secondary DC standard for millivolt measurements and system calibration.
Standard, general purpose "off the shelf" units are available for immediate delivery; special instruments for particular applications can be provided six weeks after receipt of order, and at low cost.

(1) wen

RUSSIAN TRANSLATIONS

which is obeyed by the voltage-current characteristic of the electron current in diodes, and which also explains saturation current in thermionic emission. The use of the dimensionality method explains why deviations in the characteristic from the "three-halves" law takes place both in the presence and in the absence of initial velocities of the electrons that leave the cathode This means that in addition to the initial velocities, there are other factors which are not taken into account in the "three-halves" law theory

Nonlinear Theory of Traveling Wave Tube. Part III. Effect of Space Charge Forces by L. A. Vaynshteyn and G. F. Filimonov. REE 1/58, pp 80-84 8 figs.

The nonlinear equations of the traveling wave tube, derived in the first two parts of the article (Radiotekhnika i Elektronika, 1957, Vol. 2, No. 7, page 883 and No. 8, page 1027) are used to investigate the effect of Coulomb repulsion forces on the operation of a traveling wave tube operating as an amplifier. The results are compared with the works of other investigators, who take the space charge forces into account differently. These other workers are Tien, Walker and Volontis (Proceedings IRE, 1955, Vol. 43 page 260), Rowe (Proceedings IRE, 1956, Vol. 44, page 200; Transactions IRE, 1956, ED-3, 39) and Tien (Bell System Technical Journal, 1956, Vol. 35, page 349).

Grid Integrators of Increased Accuracy for the Calculation of Fields in Electron-Optical Systems by G. V. Der-Shvarts. REE 2/58, pp 252-256, 3 figs.

The author gives the theory of grid electricintegrators that permits integration of the Laplace equation for plane-symmetrical and axially-symmetrical fields.

Mechanism Whereby the Efficiency of a Backward Wave Generator (Karsinotron-O) Increases with the Space-Charge Parameter by G. N. Rapoport. REE 2/58, pp 255 to 261, 4 figs.

Companion article to the preceding one, explaining the increase in backward-wave oscilla tor efficiency with increasing QC. The author uses a special model of backward wave tubes with separate sections of velocity modulation,

Torsion Springs

From a tiny hinge spring to a rugged auto starter spring, A.S.C. Divisions make countless varieties of torsion springs. Materials are round or flat wire wound spirally or on edge. Write for booklet "Spring Design and Selec tion-in brief."

Associated Spring Corporation General Offices Bristol, Connecticut
CIRCLE 265 ON READER-SERVICE CARD

UNIT OSCILLATOR 20 C to 500 Kc Range

* A Power Source for Sine-Wave Measurements at Audio, Ultrasonic and Low-Radio Frequencies.
* A Source of Square Waves at these Frequencies. * A Sine- or Square-Wave Modulator for R-F Oscillators. * A Square-Wave Trigger for Puise Generators.
* With G-R Synchronous Dial Drive, a Swept Oscillator for Directly Plotting Amplitude-Frequency Characteristics on a Graphic Recorder.
* Fast Responding AVC System. * Calibrated Output Control. * Output Constant with Frequency.
* Inexpensive, Compact, Rugged and Small in Size.

Write for
Type 1210.C Unit R-C Oscillator: $\$ 180.00$
GENERAL RADIO Company
275 Massachusetts Avenue, Cambridge 39, Massachusetts, U.S.A. Wiad A enve at Linden, Ridrelield, N. J. NEW YORK AREA 1000 N. Seward St. LOS ANGELES 38

 in CANADA: 99 floral Parkway. Toronto is CIRCLE 266 ON READER-SERVICE CARD
drift, and power taken from the electron beam. Besides the references listed in the first article, the author refers also to work by Sullivan (Proceedings IRE, 1954, 42, 1658) and Heffner (Proccedings IRE, 1954, 42, 1930).

SEMICONDUCTORS

Certain Possibilities of Employing the Diffusion Capacitance of Semiconductors by B. K. Kozlov. EC 1/58, pp 22-25, 6 figs.

The distributed diffusion capacitance in the p-n junction of semiconductors has been getting considerable attention in recent times. The author discusses the practical applications of this phenomenon, as applied to the automatic tuning of a heterodyne and to dielectric amplification. See Figs. 3 and 4.

Fig. 3. AFC for heterodyne. Changing the grid voltage of the tube by 0.1 v changes the heterodyne frequency by approximately 10 kc at a signal frequency of 250 kc . Thus, it is possible to obtain a very high AFC coefficient with a properly designed frequency detector and a dc amplifier. In this case the AFC is due not only to the change in the diffusion capacitance, but also the change of the active resistance of the emitter-base section. This circuit operates satisfactorily at frequencies up to 15 mc .

Supply gen

Fig. 4. Dielectric amplifier stage. A 24 mv signal (Uf) can be amplified to about $0.3 \vee$ at $F=1 \mathrm{kc}$, showing a good possibility of amplifying low-level signals. The author states that this is by far not the optimum design.

Certain Titanate Ferrites at Microwave Frequencies by R. G. Mirimanov and L. G. Lomize. REE 1/58, p 155.

Report on the measurements of the dielectric constant and losses at 3.2 cm .

ALPFRIT: preferred

by design engineers - because they're MOST COMPACT • MOST ECONOMICAL SIMPLEST • HERMETICALLY SEALED

Also - Amperite Differential Re lays: Used for outomotic overload un lays: Used for outomotic overload un
der volloge or under current poroection

Thermostafic DELAY RELAYS

2 to 180 Seconds

Actuoted by a heater, they operate on A.C., D.C., or Pulsating Current.

Hermetically sealed. Nol offected by alfifude, moisture, or climote changes. SPST only-normally open or closed Compensated for ambient temperafure changes from — 55 to 70 C. Heat. ers consume approximately 2 W . and may be operated continuously. The units are rugged, explosion-proof, longlived, and-inexpensive!
TYPES: Standard Radio Octal, and 9. Pin Miniature . List Price, $\$ 4.00$

PROBLEM? Send for Bulletin No. TR-81

BALLAST REGULATORS

Amperite Regulators are designed to keep the current in a circuit automatically regulated at a definite value (for example, 0.5 amp .) \therefore For currents of 60 ma . 105 amps . Operate on A.C, D.C., or Pulsating Current.

Hermetically sealed, they are not affected by changes in alfitude, ambient temperature (-55 to -90 (), or humidity. Rugqed light, compact, most inexpensive List Price, \$3.00 Write for 4-page Technical Bulletin No. AB-51 4 MPERIte Co.Inc., 561 Broadway, New York 12, N. Y Telephone CAnal 6.1446
In Canada Allas Rodio Corp. Ltd, 50 Wingold Ave, Toronto 10
CIRCLE 267 ON READER-SERVICE CARD

QUALITY BULLT WAVEGUIDE COMPONENTS for microwave applications

THE NETWORK shown in Fig. 1 can be designed so that the output voltages V_{1} and V_{2} differ in phase by 90 deg. in a frequency band f_{1} to f_{2}, within an error margin, L, which depends on the frequency ratio f_{2} / f_{1} and the number of all-pass sections, n. Darlington's graph shown in Fig. 2 relates L to f_{2} / f_{1} for various values of n. The theoretical
background for the design of such 2 network was reported in a previour paper (abstracted in ED, Nov. 1, 1957,
The networks N_{1} and N_{2} consist of all-pass lattice two-ports of the type 1 lustrated in Fig. 3. The element valued are related to the (real) characteristia impedance R_{0} and to the characterisid roots p_{m} by the formulas

Fig. 1. Two phase network.

Fig. 2. Curve to relate error in degrees, L, to frequency ratio and number of sections, n.
$R_{1}=R_{0}-\frac{(1-\alpha)}{(1+\alpha)} ; R_{2}=R_{0} \frac{4 \alpha}{1-\alpha^{2}} ;$

$$
C=\frac{(1+\alpha)^{2}}{4 \alpha R_{0} p_{m}}
$$

$R_{1}^{\prime}=R_{0}{ }^{2} / R_{1} ; \quad R_{2}^{\prime}=R_{0}{ }^{2} / R_{2} ;$
The parameter α is the attenuation of each lattice with R_{o} as the termination impedance. The value of the source impedance, R_{g}, is of no consequence.
For each lattice chain the output input voltage ratio is proportional to the ratio of polynomials $h(-p) / h(p)$ where $h(p)$ is a Hurwitz polynomial which, for the assumed structure, has real roots only.
The function which relates V_{2} to V_{1} has the form
$\frac{V_{1}(p)}{V_{2}(p)}=\frac{k_{1} h_{1}(-p) k_{2}(p)}{K_{2} h_{1}(p) h_{2}(-p)}$

$$
\begin{equation*}
=K_{3} \frac{H(p)}{H(-p)} \tag{2}
\end{equation*}
$$

The zero and pole location for the desired phase characteristics are given by

$$
\begin{equation*}
p_{m}=\frac{2 \pi f_{1}}{j} s n\left[j \frac{4 m+1}{4 n} K^{1} k\right] \tag{3}
\end{equation*}
$$

where K^{1} is the complete elliptic integral of the first kind with modulus $\left(1-k^{2}\right)^{1 / 2}=k^{1}$ and k is f_{1} / f_{2}.

Function $s n$ is the ellintic sine function. Equation 3 gives as many roots in the left half as in the right half plane. It can be shown that a root in the right half plane, $\boldsymbol{p}_{m}{ }^{(r)}$, is related to a root in the left half plane, $\boldsymbol{p}_{m^{(L)}}{ }^{(L)}$, through

$$
\begin{equation*}
p_{m}^{(r)} p_{m}^{(L)}=(1-2 \pi)^{2} f_{1} f_{2} . \tag{4}
\end{equation*}
$$

It frequently happens that the use of elliptic functions in equation 3 is inconvenient. In that case the roots $p_{m}{ }^{(r)}$ can be determined by expansion, using the Thetafunction. A rapidly convergent series is obtained:

$$
\begin{align*}
& P_{m}^{(r)}=2 \pi \sqrt{f_{1} f_{2}} . \\
& \sin \pi v_{m}-q^{2} \sin 3 \pi v_{m}+q^{6} \sin \\
& 5 \pi v_{m}-q^{12} \sin 7 \pi v_{m}+ \\
& \cos \pi v_{m}+q^{2} \cos 3 \pi v_{m}+q^{6} \cos \tag{5}\\
& 5 \pi v_{m}+q^{12} \cos 7 \pi v_{m}+
\end{align*}
$$

where
$v_{m}=\frac{1}{2} \frac{4 m+1}{4 n} ; m=0,1,2, \ldots n-1$
and

$$
q=\exp \left[-\pi \frac{K(k)}{K\left(k^{1}\right)}\right] \approx \epsilon+2 \epsilon^{5} .
$$

and

$$
\epsilon=\frac{1-\sqrt{k}}{2+2 \sqrt{k}}
$$

The roots $p_{m}{ }^{(L)}$ are then determined from (4). Except for the constant k_{3}, the expression (2) is now known. The factors in Eq. 2 are then assigned to either N_{1} or N_{2} according to the following rule: The factors $p_{m}{ }^{(r)}$ are assigned to one network; the factors $p_{m}{ }^{(L)}$ are assigned to the other. This is also equivalent to arranging the roots in order of increasing absolute value and assigning them to N_{1} and N_{2} alternately.

At this point the as are still arbitrary positive numbers, less than unity. They are generally chosen such that $\boldsymbol{R}^{\prime}{ }_{2}$ is the resistance of the coil whose inductance is L. The characteristic impedance R_{0} is chosen so that convenient inductance values are obtained.
The original paper includes a numerical example with $n=3$.

Abstracted from an article by G. Wunch Nachrichtentechnik, Vol. 8, No. 4, April 1958, pp 154-158.

P\&B MICRO-MINIATURE RELAYS LEAD IN performance

SHOCK: $100 \mathrm{~g} *$ VIBRATION: 30 g fo 2000 cps* *

New P\&B crystal-case size relays, the SC and the SL (magnetic latching), show amazing shock and vibration capabilities. They absorb shoçks of 100 g and vibrations 30 g to 2000 cps . without contact openings!
One watt of power for 3 milliseconds operates either relay. Transfer time is unusually fast- 0.5 milliseconds inaximum.

SL_dual ceil latching relay. Oppatas on a 1 watt, 3 ms pulse at nominal voltage. Permanent magnet lotch locks the armature in either position. SC-non-larching rolay with series-connoetod dual coils. Operatos on approximatoly I watt at nom. nal voltage. Coils must remain enorgized to hold the armature in the operate position.
SC and SL Sorios Enginooring Dete general.
insulation Resistance: 10,000 megohms, min Seakdown Vollage: 1,000 V. RMS.
Shock: 100g
Tomporalure Rango: $-65^{\circ} \mathrm{C} .10+125^{\circ} \mathrm{C}$

Vibrations 30s 55 to 2000 cps., $0.195^{\circ \prime}$ max excursions from 10-55 cps
Wolghts 15 grams without mounting brackel. Oporare Timas 3 MS max. with 550 ohm coil (a) 24 V . DC (SL, 630 ohm coil at $24 \mathrm{~V} . \mathrm{DC}$). Trensfor Timer 0.5 MS max.
Torminale: (1) Plug-in for microminioture recop-
tocle of printed circuit board.
2 \#24 AWG wiros.
nelosures Hormetically
CONTACTS:
Arrangemonti 2 form C.
Meteriel: Gold flozhed palladium.
Lead: 2 amps © 28 V . DC, rosistive; I amp (a)
115 V 60 cyclos AC, rosistive.
Prossuros SC-16 grams min, s St-20 grams min. COIL:
Power: Approx. 1.0 watt at Nominal Voltage. Rosistances SL-40 to 1400 ohmss SC -35 to Duty: Contimion MOUY: Coninas MOUNTINGS:
Bracket, stud and plua-in

POTTER B BRUNAFUELD ING。
PRINCETON, indIANA - SUISIDIARY OF AMERICAN MACHINE \& FOUNDRY COMPANY CIRCLE 307 ON READER-SERVICE CARD

WRITE TODAY FOR
 New Technical Data on MICROWAVE FERRITE MATERIALS \& DEVICES

 Raytheon's completely new line of microwave ferrite

Excelience in Electronics materials and devices including the exclusive highpower L-band load isolator, miniaturized X . K_{F}, and K_{u} band isolators and others for C and S bands.
Write to W. C. Plouffe at the address below.
RAYTHEON MANUFACTURING COMPANY
Special Microwave Device Group
Seyon St., Waltham 54, Mass.

CIRCLE 299 ON READER-SERVICE CARD

munaro of qunurn can you use this BARBER colman miniature d-c motor in your product?

Inexpensive, yet high in quality, this compact governed d-c motor is available in speeds from 1500 to 5000 rpm . Designed to operate over a voltage range of about 4 to 30 volts $\mathrm{d}-\mathrm{c}$, it is ideally suited for many applications such as: drive mechanisms in photographic equipment . . . marine navigation equipment . . . portable dictating machines . . . signal-seeking radios . . . tape players . . and many types of portable instruments. Is this the answer to your design problem, too?

WRITE FOR BULLETIN F-8792 for specifications and performance data

BAREER-COLMAN COMPANY

Dept. H, 1883 Rock Street, Rockford, Illinois
CIRCLE 300 ON READER-SERVICE CARD

速

STANDARDS

AND
SPECS

Specifying Core Materials
aiee no. 431, Proposed Standard for Presenting Data On Magnetic Amplifier Core Materials, April 1958.
The scope of this standard is to set forth the basic data on magnetic amplifier core materials that should be presented by manufacturers of core materials so that the magnetic amplifier will have available the parameters of the material that are particularly significant to magnetic amplifier design. The tests proposed are not intended as methods to be used for matching and grading magnetic amplifier cores. Copies of this proposed standard are available from the American Institute of Electrical Engineers, 33 West 39 Street, New York 18, N.Y. without charge.

Steatite Standards, 1958

Un-to-date information concerning the various grades of steatite is contained in this standard Steatite is defined as a generic term for kilnfired ceramic compositions composed chiefly of various magnesium-silicate crystals. Included in this standard are the electrical properties, mechanical properties, and manufacturing tolerances required for design applications of steatites. Included in the material on testing are test specimens, inspection by acceptance sampling, military spec qualification samples, loss factor tests, dielectric tests, flexural strength tests, resistance to thermal change test, and non-porosity tests. The appendix includes design fundamentals for steatite ceramic components, standard design recommendations, and typical values. Copies of this standard may be obtained from the Steatite Manufacturers Association, 53 Park Place, New York 7, N.Y. for $\$ 1.00$ per copy.

Connectors

MIL-C-25955(USAF), Connectors, Electrical, Environmental Resisting, Miniature, With Snap-in Contacts, 9 January 1958
Miniature electrical connectors, plugs, and receptacles are covered by this recently issued spec. These connectors are of an environment resisting class with snap-in contacts and receptacles of identical mating dimensions of a hermetically sealed class with non-removable contacts.

Geenalex III Torobalioits up to 140 ! !

Genalex III toroidal cores feature high stability of inductance with time, high stability of inductance after subjecting the core to a dc saturating flux. high Q. low harmonic distortion, low temperature coem small overall size.
Color coded Genalex III cores are available for im mediate delivery in five standard ranges of permeare stocked ranging from $0.500^{\circ \prime}$ O.D to $1.350^{\prime \prime}$ O Genalex cores are a product of Salford Electrical Instruments, Ltd., a subsidiary of The General Elec. Instruments, Lid., a subsid
tric Co. Ltd. of England.

For complete information and our free copy of the 12 page
Genalex design Genalex design
handbook on the use of oroidal cores please address Dept. E8
WALLACEE.

\& COMPANY
"National headquarters for Genalex toroidal cores" P. O. Box 295 - Menlo Park, California CIRCLE 308 ON READER-SERVICE CARD

These Handles Give A Lifetime of Service

Cambion ${ }^{\circledR}$ handle are made to last carefully manufac tured from stainles steel, brass, or alumi num, they are finishei with nickel plate highly polished to "jjeweler's finish," black oxide, or blacl alumilite.
Available in folding adjustable, and rigid models, in a wide variety of sizes with many special features, Cambios handles meet every specification requirement.
Newest additions are two folding handles with stand ing heights of $113 / 16^{\prime \prime}$. The X2062, a handle series de signed for pulling purposes, stands perpendicular to th panel or folds flat against it in either direction. The 190 designed specifically for lifting, stands perpendicular t the panel or can be folded flat against it in one direction
Other handles illustrated are X1884, with a standing height of $17 / 8^{\prime \prime}$, (1965 with a standing height of $134^{\prime \prime}$) 2111-D with a standing height of $19 / 32^{\prime \prime}$, and X 2006 standing $1^{19} / 32^{\prime \prime}$. For further information write to Cambridge Thermionic Corporation, 457 Concorl Avenue, Cambridge 38, Massachusetts.

Circle 309 on reader-service card
ELECTRONIC DESIGN • August 20, 1958

EXCEPTIONALLY POWERFUL

HOIVARD
FOR ITS SIZE AND WEIGHT

OIPT, ED- 11 HOWARD INDUSTRIES, INC. - RACINE, WIS. misions: Electanic moton conf. - crclohm moton conp - nacien aectric prooucts

CIRCLE 301 ON READER-SERVICE CARD
TORQUE WRENCH" MANUAL
Howard Model 3700 motors are available in Hysteresis, Synchronous and Normal Induction motor types in 2 pole versions, both single phase and polyphase.
As a Normal Induction motor, Model 3700 is used for laboratory equipment, vending machine and general service requiring h.p. ratings up to $1 / 4$ h.p.
As a Hysteresis Motor, 3700 series are used widely in recording and facsimile equipment. These motors are the ultimate in quiet operation. Resilient mounting base is normally supplied. For complete performance data, write today to Howard.

Pa. STuRTEVANTCO. AgDISON LQUALITY/ILLINOIS

 Monffocturers of over 85% of the torque wrenches used in industryCIRCLE 302 ON READER-SERVICE CARD

Toggle Switches

MIL-S-21195(SHIPS), Toggle Switches, 23 JanUARY 1958
Requirements for toggle-type switches for use in ac and dc applications are covered in this spec. A typical type designation of switches meeting this spec is ST42A.

Capacitors

MIL-C-0025B(USAF), Capacitors, Fixed, Pa-per-dielectric, Direct-current (Hermetically Sealed in Metallic Cases) 13 December 1957 This is a limited coordinated spec for use by the Air Force. It has not been approved as a revision to MIL-C-25A, dated 9 March 1953, however, pending its issuance as a coordinated spec it may be used in procurement. The spec covers d-c, paper-dielectric, fixed capacitors hermetically sealed in metallic cases, intended primarily for filter, bypass, and blocking purposes where the a-c component of the impressed voltage is small with respect to the d-c voltage rating. This spec also covers removable mounting brackets for use with the capacitors.

USAF Bulletin 134, Standardized Nomenclature, Symbols and Units of Radiometric Quantities in Specifications Concerning Infrared Equipments and Procurement Items, 13 January 1958
This document presents the radiometric nomenclature, symbols, and units along with the evaluation procedures to be used within the Air Force in the description and evaluation of infrared procurement items including equipments, devices, techniques, and research data.
MIL-T-9107(USAF), Preparation of Test Reports, Amendment 1, 21 January 1958
It is no longer necessary that the following notice be included as part of test reports: "The information furnished herewith is made available for study unon the understanding that the Government's proprietary interests in and relation thereto shall not be impaired. It is desired that the Judge Advocates' Office, WCJ, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, be promptly notified of any apparent conflict between the Government's proprietary interests and those of others."

Air Traffic Control

U.S. Standard Manual of Radar Air Traffic Control Procedures, 1 May, 1958
This standard has been officially adopted by the U.S. Army, Navy, Air Force, Coast Guard, and the Civil Aeronautics Administration to standardize the operation of the radar traffic conterol services.

Designed to fll the meod for on A.C. Standard Call. Rock mountod or operatod in an attractive laboratory bench atylo cabinat. Froquency: Conlinuously variable from 35 eyeles to 20 Kc . Voltage ac curacy: 0.1% of Absolute ams. Distorion: 0.1%. Outpul Powar: 30 watts. Output Voltage: Model AVs-320 (illiustrated) I volt, 10 volts 100 volis, or 300 volts. Modal AVS-321 Continuously variable volt 101000 volis callbrated on Ave docede attenuator awitches Want more detallis? Just ask C. P. DoWin, Director of Engineoring
 Booth No. 419 at the Woscon Show. I NSTRUMENT LABORATORIES OCONTO, WISCONSIN CIRCLE 303 ON READER-SERVICE CARD

10 power FLAW FINDER

Quick-focusing illuminated mag-

40-50-60 power

"PEN" MICROSCOPE

Pen size precision instrument with magnification equal to large lab models. With leather case, $\$ 17.50$ WRITE TODAY for illustrated literature.

[^2]

TODAY'S OPPORTUNITIES

with General Electric's Missile Guidance Section
CARRY IMPORTANT RAMIFICATIONS FOR SPACE TECHNOLOGY

Despite the magnitude of the undertaking, guiding a vehicle on a $>428,000$ mile return trip to the Moon...or directing an interplanetary probe into Mars' orbit depends fundamentally upon the basic technologies already developed to guide surfaceupon the basic technologies aiready developed to guide

The great technical challenges of guidance for space exploration lie in the unprecedented accuracies, reliabilities and long operative life-spans that must be engineered into the guidance systems.

ENGINEERS and SCIENTISTS at G.E.'s Missile Guidance Section - with their broad experience in creating highly reliable ICBM systems are well prepared to deal creatively and effectively with space problems.
If You Are Intorested In Joining a Group With These Capabllitios for work in frontier areas, look into the positions now open with the Section, on a number of stimulating, advanced projects.

Significant experience in 1 or more of these areas is required:

Radar		RF Circuitry
Communications	Transistors	Digltal Computers
Countormeasures	Tolemetry	Test Operations
Antonna Design		

Forward your resume in strict confidence to
Mr. E. A. Smith, Dept. 8-C
MISEILE OUIDANCE SECTION

GENERAL ELECTRIC

Court Street, Syracuse, N. Y
CIRCLE 550 ON READER-SERVICE CARD

Research and Development ENGINEERS

in Chicago

Here is opportunity unlimited for men who like challenges and the rewards that go with accomplishment. Grow right along with dynamic 2 -way radio communications, or work on important assignments from the armed forces.
You'll enjoy working at Motorola in well-instrumented laboratories, with men of the highest technical competence. Many liberal employee benefits, including an attractive profit sharing plan.

Living in one of Chicago's beautiful suburbs, you can choose from endless social, cultural and educational activities the year round.

MILITARY
 POSITIONS OPEN

- Radar transmitters and receivers

- Radar circuit design
- Antenna design
- Electronic countermeasure systems
- Military communications equipment design
- Pulse circuit design
- IF strip design
- Device using kylstron, traveling wave
- Device using kyistron, traveling wave
- Display and storage devices

CIVILIAN
 POSITIONS OPEN

2-way radio communications

- VHF \& UHF Receiver - Transmitter design \& development • Power supply - Systems Engineering - Selective Signaling - Transistor Applications Crystal Engineering - Sales Engineers PORTABLE COMMUNICATIONS
- Design of VHF \& UHF FM Communications in portable or subminiature development.
micRowave field engineers

> SEND FOR THIS 36 PAGE BOOK with the complete Motorola story
wrife Mr. L. B. Wrenn Dept. J OUNL TOS MOTOROLA, INC.

4501 Augusta Blvd., Chicago 51, Ill.

Engineering positions also available at Motorola
Inc. in Pboenix, Ariz. and Riverside, Calif.

ENGINEERS AND SCIENTISTS ,HART YOUR GROWTH WITH STROMEERG-CARLSON
ast-growing division of General Dynamics

Your opportunities for professional growth are closely related to the progress of your company.
Above is a dramatic illustration of the growth of Stromberg-Carlson since 1949. Our sales have increased by 249%, personnel by 221%. And our growth is continuing-stable, orderly growth because our business is well-balanced between consumer and military products.
If you want to grow with us, we'd like to hear from you. We're particularly interested in men with substantial experience in solid state circuitry. You may qualify for openings in some of today's most fascinating scientific and technical fields:

- Missile Electronics - Countermeasures
- Commercial Electronics
- Air Traffic Control
- Nucleonics
- Telecommunications
- Electroacoustics

You would be located in Rochester, N. Y., a beautiful, progressive city in the heart of the Upstate vacation area. You'd enjoy an invigorating four-season climate; unsurpassed facilities for education and such leisure-time activities as outdoor sports, music and drama.
To arrange for a personal interview at your own convenience, send a complete résumé now to:

Fred E. Lee, Manager
of Technical Personnel.

STROMRERG-CARLSON
406 N. GOODMAN STEET • ROCHESTER 3. N. Y.

COMMUNICATIONS ON A SPATIAL SCALE;

"shooting for the moon" at the Hughes Communications Systems Laboratories is more than just a figure of speech-it's an actual goal.
The Communications Laboratories have as one longrange objective the development of communications systems capable of deflecting their signals from meteors, artificial satellites and even the moon. Yet another is the development of systems which transmit intelligence through media impervious to radio frequencies by modulating frequencies far up in the electromagnetic spectrumlight, even gamma rays.

An example of advanced Hughes methodology is the use

Electronic and communication products for home, industry and defense
of digital techniques to overcome the multipath phenome-non-the tendency of radiations to be resolved by different layers of the ionosphere or other reflectors into two or more signal paths. Under certain circumstances, this situation in the past has produced a confused signal.

To extend its projects into advanced new areas, the Hughes Communications Laboratories must be staffed with engineers and physicists of high professional stature. Openings now exist for such personnel, and the salary structure will reflect the exceptional background required. Your inquiry is invited. Please apply directly to:

Dr. Allen Puckett, Associate Director,
Systems Development Laboratories.

HUGHES

Hughes Aircraft Co., Culver City 4, Calif.

cooling avionio systems

During World War II. Eastern Industries pioneered cooling systems for circraft electronic systoms Now. thousands of installations lator. and as the loader in this challenging field. Ecriom is still pioneering.
Experience has been a springboard to now dovolopments . . . compactness, simplification, retrigoration cycles. Research and development continue to play their vital parts in perfecting syatems to overcome the now problems as oxpanded carcraft performance produces fantantic rises in tomperatures.
If you have a challonging problom, come to the loador in the fiold for complote and creative engineoring holp.

PIONEER OF THE THERMAL FRONTIER

ELEGTRONIC TUBE COOLING UNITB

Custom-made units, with or without refrigeration cycles, provide a method of maintaining safe operating tomperature limits in electronic equipment. Standard sub-assemblies and components normally are used to create a custom-made dosign to fit your exact noeds. Costs are minimized for these completely self-contained units by combining heat exchomgers, foms or blowers, liquid pumps, reservoirs, flow switch, thermostat and other common compononts.
Write for Eastom AVIONICS BULIETR? 340

ADVERTISERS' INDEX
August 20, 1958

Advertiser
AEMCO, Inc
Ace Electronics Associates Acheson Colloids Co
Aircraft Armaments, Inc.
Allen-Bradley
Amperite Co.
Amperite Co.
Associated Spring Corp. Automatic Metal Products Corp.

Barber-Colman Co.
Beattie-Coleman, Inc.
Belden Mfg. Co
Bishop and Co., J., Platinum W.rks
Brew, Richard D. and Co., Inc.

Cambridge Thermionic Corp. Carpenter Steel Co.
Celco Constantine Engineering Labs Chance Vought Aircraft, Inc. Chicago Aerial Industries,
Clevite Comar Electric Co.
Commercial Plastics Co.
Connolly and Co., W. E.
Constantine Engineering Labs Co. . Continental Wire Corp.
Curtiss-Wright Corp. Curtiss-Wright Corp.

Daven Co., The
Daystrom Pacific Corp., Potentiometer Div.
DuPont, E. I. de Nemours and Co.,
Plastics Div.

Eastern Industries, Inc.
Electrical Industries
Electro Instruments, Inc
Electrosnap Corp.

Fairchild Semiconductor, Inc.
Fenwal Electronics, Inc.
Fluke Mfg. Co., Inc., John
Freed Transformer Co., Inc.

Frequency Standands, Inc.

G-V Controls, Inc.
General Electric Co., Voltage Regulators General Electric Co., Tantalitic Capacito General Electric Co., Lamp Division . General Electric Co., Missile Guidance ...
General Electric Co., Metallurgical Product General Electric Co., Metallurgical Products Globe Industries, Inc.

Helco Products Corp. Helipot Corp., Div. of Beckman Hewlett-Packard Co.
Hill Machine Co.
Hoffman Semiconductor Div, Hofmen Electric Corp. ...
Holt Instrument Labs
Howard Industries, Inc
Hycon Electronics, Inc.

These 3 New RCA Low-Cost Computer Transistors Can Open New Markets For You!

RCA now makes available low-cost high-quality transistors for reliable performance in electronic computer applications!

- Can low-priced, highly-reliable computer transistors help you expand into new markets?
- Can they enable you to profitably engage in the design of compact mass-produced computers?
- Are you looking for ways to revise your current designs to save costs?
If the highly desirable combination of reliable performance and low cost have been difficult for you to find, investigate these three new RCA units: RCA-2N581, RCA2N583, and RCA-2N585. They are specifically designed, produced and controlled for computer applications; life-tested for dependable service; electrically uniform; available in commercial quantities; and are unusually low in price.
In addition to these three new types, RCA offers a comprehensive line of transistors for your most critical computer designs. For additional information on RCA Transistors, contact your local authorized RCA Distributor or your RCA Field Representative at the office nearest you.
For technical data on RCA Transistors, write RCA Commercial Engineering, Section H-18-NN-2, Somerville, New Jersey.

[^0]: Identical Twins Ed and Gene Scroggins are II Engineers

[^1]: < CIRCLE 8 ON READER-SERVICE CARD

[^2]: E.W.PIKE \& CO., INC. 577 Penna. Ave., Elizaborh, M.J. Elizabeth 2.0630 CIRCLE 304 ON READER-SERVICE CARD

