

EPONTRESINS

If potting, laminating, sealing or encapsulation are factors in your operation, you should investigate Epon resins. Because they provide a unique combination of desired electrical and physical properties, they are finding increased use in many phases of the electrical industry.

Potting and Encapsulation . . . Epon resins offer remarkable adhesive properties, forming strong bonds to metals and glass, and creating airtight enclosures for sensitive components and vacuum tubes.

Sealing . . . Epon resin-based compounds are ideal for moisture sealing even at elevated temperatures.

Laminating . . . Epon resin, laid up with inert fibrous fillers, produces laminates with superior dielectric properties and moisture resistance. Epon resin laminates can be dip soldered, sheared, punched and drilled, and provide excellent dimensional stability.

And, solvent-free Epon resin adhesive formulations . . . between glass, metal, or plastic . . . cure at room temperature with contact pressure alone.

Can Epon resins solve a production problem for you? For assistance and technical literature, write us now.
preferred for potting

These miniature electronic components potted in Epon resin will withstand solder bath temperatures and retain excellent dimensional stability.

Sections of magnetic amplifier coils, when embedded in Epon resin, have exceptional resistance to solvents and chemicals

Two Watt Amplifier in a Size 8 Can (Cover) p 3
In diameter, no larger than a size 8 servo motor, this new servo ampli fier packs a lot of power for its size To achieve an 85 per cent space foc tor, it uses a very novel packaging technique.

Graphical Method Simplifies Wien Bridge Oscillator Design

Here is a reliable, effective, design procedure for Wien Bridge oscilla tors. It gives better and faster result than the more common trial-and error approach.

Overlap Method Makes Fast Pulses In Transistor Circuits

By taking a pulse as the overlap between a positive and negative step, displaced by the desired pulse width, Mr. Mark Smith has achieved unusually fast, flat-łopped pulses ir transistor circuits. His peculiar use o logical diagrams suggests many way to obtain the overlap.

Optimum Design of Power Transformers and Safurable Reactors, Part $2 \ldots p$ p 48
Here's the concluding part of Mr Nisbet's article on how to design th most efficient transformer. In thi part, he presents some nomogr solves some very messy equat

DATA REQUEBT PROQEBE OARD Uee Belore July eth, test

Homs Address

Cils
(Nos. 550-599)
ELLECTTRONIIC |DESIIGN|
 use botorg gadit oth, 19

Name
Company
Company Address For Change of Addross: Old Company Name

10ill -

	10	20	30	40	100	110	120	130	140
1	11	21	31	41	101	111	121	131	141
2	12	22	32	42	102	112	122	132	142
3	13	23	33	43	103	113	123	133	143
4	14	24	34	44	104	114	124	134	144
5	15	25	35	45	105	115	125	135	145
6	16	26	36	46	106	116	126	136	146
7	17	27	37	47	107	117	127	137	147
8	18	28	38	48	108	118	128	138	148
9	19	29	39	49	109	119	129	139	149
50	60	70	80	90	150	160	170	180	190
51	61	71	81	91	151	161	171	181	191
52	62	72	82	92	152	162	172	182	192
53	63	73	83	93	153	163	173	183	193
54	64	74	84	94	154	164	174	184	194
55	65	75	85	95	155	165	175	185	195
56	66	76	86	96	156	166	176	186	196
57	67	77	87	97	157	167	177	187	197
58	68	78	88	98	158	168	178	188	198
59	69	79	89	99	159	169	179	189	199

Abstract

$\begin{array}{lllll}200 & 210 & 220 & 230 & 240\end{array}$ 201211221231241 $\begin{array}{llll}202 & 212 & 222 & 232 \\ 242\end{array}$ $\begin{array}{lllll}203 & 213 & 223 & 233 & 243\end{array}$ 204214224234244 $\begin{array}{lllll}205 & 215 & 225 & 235 & 245\end{array}$ $206 \quad 216226236246$ $\begin{array}{lllll}207 & 217 & 227 & 237 & 247\end{array}$ $\begin{array}{lllll}208 & 218 & 228 & 238 & 248\end{array}$ $209219 \quad 229 \quad 239 \quad 249$ $250 \quad 260 \quad 270 \quad 280 \quad 290$ 251261271281291 $\begin{array}{llllll}252 & 262 & 272 & 282 & 292\end{array}$ $\begin{array}{llllll}253 & 263 & 273 & 283 & 293\end{array}$ 254264274284294 255265275285295 $256 \quad 266 \quad 276 \quad 286 \quad 296$ $\begin{array}{lllll}257 & 267 & 277 & 287 & 297\end{array}$ 258268278288298 259269279289299

300310320330340
State $\begin{array}{llllll}301 & 311 & 321 & 331 & 341\end{array}$ 400410420430440 $\begin{array}{llllll}500 & 510 & 520 & 530 & 540\end{array}$ $303 \begin{array}{lllll}313 & 323 & 332 & 342\end{array}$ 40141142143141 $\begin{array}{lllll}500 & 510 & 520 & 530 & 540 \\ 501 & 511 & 521 & 531 & 541\end{array}$ $\begin{array}{lllll}502 & 512 & 522 & 532 & 542\end{array}$ $\begin{array}{lllll}503 & 513 & 523 & 533 & 543\end{array}$ $\begin{array}{lllll}502 & 512 & 523 & 532 & 542 \\ 504 & 514 & 524 & 534 & 544\end{array}$ $\begin{array}{lllll}504 & 514 & 524 & 534 & 544 \\ 505 & 515 & 525 & 535 & 545\end{array}$ $\begin{array}{llllll}506 & 516 & 526 & 536 & 546\end{array}$ $\begin{array}{llllll}507 & 517 & 527 & 537 & 547\end{array}$ $\begin{array}{lllll}507 & 517 & 527 & 537 & 547 \\ 508 & 518 & 528 & 538 & 548\end{array}$ 509519529539549 $\begin{array}{llllll}550 & 560 & 570 & 580 & 590\end{array}$

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrlal consultante, and government agencies. If design for manufacturing is your responsibility, you qualify for subscrip. tion without charge provided you send us the following information on your company's letter head: Your name and engineering title, your company's main products, and description of your design duties. The letter must be signed by you per. sonally. Any address changes for old subscribers necessitates a restatement of these qualifications. Subscription rate for non. qualified subscribers- $\$ 15.00$ for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y

CONTENTS

Editorial 19 ELECTRONIC DESIGN Breakthrough
Engineering Review 5 5 Diode, Rectifier Point to Smaller Missile Controls
Washington Report 12Features 20 Graphical Method Simplifies WienBridge Oscillator Design, E. D. Grim
24 Using Transistors in Demodulator Circuits,Part 1, A. N. DeSautels
28 High Voltage Semimetal Thermocouples, R. W. Fritts
32 Two Watt Amplifier In A Size 8 Can
34
Radar Refiectors of Reinforced Plastic, R. L. Mondano38 New Delay Line40 Pitfalls in Precision AC Measurements,Part 1, H. A. Poehler
44 Overlap Method Makes Fast Pulses in Transistor Circuits, M. Smith
48
Ideas for Design 78
Russian Translations 88 What The Russians Are Writing
93 Russian Book Review: Intermediate FrequencyAmplifiers
German Abstracts 94 Noise Voltage Measurement in Low ImpedanceElement
96 All-Pass Filter Time and Frequency Response
97
Approximation of Logarithmic Functions
Abstracts 98
Departments 14

Letters	$\mathbf{7 4}$	New Literature
Meetings	$\mathbf{8 2}$	Report Briefs
Production Products	$\mathbf{8 4}$	Patents
New Materials	$\mathbf{8 6}$	Books
New Products	$\mathbf{1 0 0}$	Careers Section

102
Advertisers' Index

with Robertshaw to detect

harmful vibration...

Abnormal and persistent vibration in rotating equipment usually means costly trouble. Robertshaw.Fulton's Vibraswitch Detectors and Model 651 control units detect vibration and shut down valuable equipment before damaging trouble develops

Two G.V Red Line Thermal Time Delay Relays are used in each control unit. One blocks out the vibration detector while the protected equipment is starting up. The second times the duration of vibration and permits shut-down only if trouble persists
Absolute reliability of every component is vital in a protective system of this sort. G-V Red Line Delay Relays meet this requirement for reliability . at surprisingly low cost. Apply them in your equipment and be safe.

Write for Publication 1.31 .

New

RAYTHEOL

RELIABLE COMPUTER TRANSISTORS switch 1 ampere
$H_{F E}$ controlled at high currents
Temperature range $-65^{\circ} \mathrm{c}$ to $+85^{\circ} \mathrm{c}$

Type	Punch through Voltage max.	fab ave. Mc	He, ave. $\begin{gathered} \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA} \\ \mathrm{v}_{\mathrm{cE}}=-0.25 \mathrm{v} \end{gathered}$	$\begin{gathered} \mathrm{H}_{\mathrm{EE}} \\ \text { ave. } \\ \mathbf{I}_{\mathbf{B}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}}=-0.35 \mathrm{v} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{co}} \\ \text { at }-12 \mathrm{v} \\ \mu \mathrm{~A} \end{gathered}$	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$ ohms	Cob $V_{C B}=-6 v$ $\mu \mu \mathrm{f}$
2N658	-24	5	50	40	2.5	60	12
2N659	-20	10	70	55	2.5	65	12
2N660	-16	15	90	65	2.5	70	12
2N661	-12	20	120	75	2.5	75	12
2N662	-16	8	25 min .	50	2.5	65	12

These new PNP Germanium Computer Transistors made by Raytheon's reliable fusion-alloy process add to the already comprehensive line of Raytheon Reliable Computer Transistors which include several in the Submin ($0.160^{\prime \prime}$ high, $0.130^{\prime \prime}$ dia.) package. Write for Data Sheets.

Newton, Mas \qquad Ave. Plaza 9.3900 Chieage: 9501 Grand Ave., Franklin Park, NAtional 5-6130 Los Angeles: 5236 Sanla Monica Blvd., NOrmandy 5.4221 CIRCLE 3 ON READER-SERVICE CARD

	Editor
Managing Editor	Edward E. Grazda
Associate Editors	J. A. Lippke
	L. D. Shergalis
	G. H. Rostky

CO-PUBLISHERS
T. Richard Gascoigne
lames S. Mulholland, It

ADVERTISING REPRESENTATIVES

Advertising Sales Manage
Bryce Gray, Jr.

New York:
830 Third Avenue
Third Avenue Plaza 1.5530 Robert W. Gascoigne Blair McClenachan Richard Parker James P. Quinn Charles C. Wadsworth

Chicago:
664 N. Michigan Ave SUperior 7.8054
\qquad

London:
Thomas P. Kavooras Berry Conner, J Fred T. Bruce

Robert E. Ahrensdorf John V. Quillman Stanley I. Ehrenclou Michael M. Horne 56 Deane Croft Road Eastcote, Middlese

England
\qquad

ENGINEERING REVIEW

For more information on developments described in "Engineering Review," write to the address given in the individual item.

Open-Shut Case

Radome on Lockheed's propjet Electra swings open on topmounted hinges for easy maintenance of C-band weather radar unit. Radome consists of a $1 / 2$ in. honeycomb core covered with laminated plastic. Support braces on each side, at the mid-section, hold unit away from joint. It is fastened in place by four quickdisconnect latches.

Approximately 4 ft deep, the $76-\mathrm{in}$. diam radome is covered with a high-grade rubber foot to prevent rain erosion. Thoroughly checked in static tests, it withstood maximum aerodynamic strains anticipated in actual flight, Lockheed engineers said.

The radome was manufactured by H. I. Thompson Fiber Glass Co., to design specifications by Lockheed Aircraft Corp., 745 Chrysler Building, New York 17, N.Y.

Developmental high-temperature gallium arsenide microwave diodes are examined by Dr. D. A. Jenny of RCA who developed new semiconductor device.

Diode, Rectifier Point To Smaller Missile Controls

Two new RCA-developed high-temperature semi-conductor devices use gallium arsenide. They may pave the way to smaller, more compact radar equipment, electronic computers, and control systems for aircraft and missiles.

High temperature characteristics of gallium arsenide have made possible the construction of a number of microwave diodes and power rectifiers. These devices are capable of operating efficiently at temperatures substantially higher than those at which present germanium or silicon devices will function. The developmental rectifier will operate effectively at temperatures above 572 F , as compared to a maximum of about 392 F for silicon rectifiers.

The microwave diode, developed by Dr. D. A. Jenny has been operated at a frequency of 6000 mc and has been raised to temperatures of 200 C . This device, however, reportedly has an optimum temperature "way beyond this figure" but higher temperature operation has been restrained by the temperature
(Continued on following page)

Raytheon - World's Largest Manufacturer of Magnetrons and Klystrons

550 Mc

60,000 Mc

ENGINEERING REVIEW

limitation of supporting equipmert. Diode application is forseen in ultra-high-speed switching operations and radar system hf detection.

According to RCA officials, these and other new semiconductor devices presently under development will reduce substantially the prob lem of cooling in the design of many electronic systems, permitting close packaging of components or higher power level operation of present equipment. Substantial ad vances also are being made at RCA Laboratories in the application of gallium arsenide to transistors. In addition, new ground is being broken in the growth and processing of gallium arsenide in the pure crystal form.

Multi-Channel SSB System Operates at 900 Mc

A multi-channel single-sideband radio system operating in the 900 me region has been successfully produced and tested by Federal Telecommunication Labs., Nutley, N.J. Although designed primarily for line-of-sight transmission, the single-sideband equipment is adaptable to over-the-horizon microwave radio through the use of bigger antennas and larger power amplifiers. Proposed development plans will push the operating frequency up to 2000 mc .

The system will accommodate up to 120 telephone channels within a 500 kc bandwidth, alloting just over 4 kc to each channel. Present systems using other types of modulation, such as frequency or pulse modulation, are characterized by bandwidths, of the order of 30 to 40 kc per channel.

The new equipment was looptested over a 4 mile experimental circuit with losses inserted to simulate a normal 30 -mile line-ofsight circuit. Total power required to light all the filaments and operate both transmitter and receiver is about 65 w .
< CIRCLE 4 ON READER-SERVICE CARD

This continuous seam welding machine can furn out 800 parts in one hour when hand loaded.

Continuous Seam Welder Seals Transistors

A welding machine has been developed for ealing semi-conductor devices. The new techhique eliminates presoldering preparation and all deaning. It also stops high-temperature penetraion of the working parts and prevents glass reakage.
A specially constructed hollowed ring surrounds the glass stem of the transistor. One electrode is applied to the inner portion of the ring and one to the outer by means of which a continuous seam weld is accomplished. The machine weighs 30 lbs and requires 1 kva . Power is supplied from any standard 110 v ac outlet. Production rates of 300 per hour are possible with hand loading of parts. The machine which has undergone two years of successful tests at RCA was developed by Sidney S. Steriess, 1307 Edward L. Grand Highway, Bronx, N.Y.

Transformers Rated at 150 Kva Easy on the Ears

Dry-type transformers rated through 50 kva single-phase and 150 kva three-phase having low-noise sound levels of 45 db or below are being built by General Electric, Fort Wayne, Ind. Noise analyses are made by sealing the transforners in a laboratory which has an ambient noise level of less than 10 db measured on NEMA spec ified equipment. It is a five field chamber that exceeds NEMA's recommended specifications: The sound level of a transformer is determined by taking the arithmetic average of five mea surements. One each is taken at intervals of approximately 90 deg around the transformers. One measurement is taken above the transformer on the vertical axis.

For MISSILE Applications! NOW...-200, 300, 400 \& 500 AMPERE

 DC POWER SUPPLIESwith wide continuously adjustable 24 TO 32 VOLT RANGE by $\square \square \mathrm{A} T \mathrm{~B}$

APPLICATIONS:

- Centralized Laboratory or Plant DC Power. - Missile Check-Out and Launching
- Aircraft Engine "Soft" Starting and Testing. - Battery Charging \& Standby Service , and other heavy duty 28 volt DC Power applications.

CIRCLE 5 ON reader-service card

There is
No Substitute for
Reliability -

Magnetic Modulators

All Magnetıc Modulators
strictly conform to MIL

T 27 A Some typical cir
cuit applications for
cuit applications for
Magnetic Modularors are
algebraic addition, sub algebraic addition, sub
traction. multiplying rassing to a power, con trolling amplıfier gaıns, mechanical chopper re placement in DC to fun damental frequency low signal level amplifi
cation.
ow signal level amplion

miniaturized

FASTER RESPONSE TIME NEGLIGIBLE HYSTERESIS EXTREME STABILITY (Ambient Temp. Range from $-65^{\circ} \mathrm{C}$ to $\lrcorner 135 \mathrm{C}$) COMPACT SIZE LIGHTWEIGHT INFINITE LIFE COMPLETE RELIABILITY

	Input	Input Modulator	Thermocouple Converter
TYPE NUMBER	IMM-436-2	IMM-436-3	MTC.435-2
Excitations Frequency-Carrier	400 cps	400 cps	400 cps
Signal Winding DC Resistance	1000 ohms $\pm 15 \%$ each signal winding	1000 ohms $\pm 15 \%$ each signal winding	10 ohms $\pm 15 \%$
AC Excitation Volts	5.5 V . @ 400 cps	2.5 V. @ 400 cps	6 V . RMS
Input DC Signal Range	0 to $\pm 100 \mu \mathrm{a}$.	0 to $\pm 80 \mu \mathrm{a}$.	0 to $\pm 10 \mathrm{mv}$.
AC Output Range	$\begin{aligned} & 0 \text { to } 2.2 \mathrm{~V} \text {. @ } 400 \mathrm{cps} \\ & \text { (sine wave) } \end{aligned}$	0 to 1.5V.@ 400 cps (sine wave)	$0 \text { to 2.7V. @ } 400 \mathrm{cps}$ (sine wave)
Overall Dimensions (Inches)	27/32×27/32×1 5/16	27/32×27/32×1 3/16	$11 / 4 \times 7 / 8 \times 5 / 8$
Null Amplitude (Noise Level)	20 mv . RMS	15 mv. RMS max.	25 mv. RMS max.
Output Impedance	7000 ohms	7000 ohms	10,000 ohms
Null Drift (In terms of input signal) $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 0.5 \mu \mathrm{a}$. max.	$\pm 0.5 \mu \mathrm{a}$. max.	$\pm 0.1 \mathrm{mv}$. max.
Hysteresis - \% of maximum input signal	0.5\% maximum	0.5\% maximum	0.5\% maximum
Type of Mounting	Male Stud	Female Insert	Male Stud
Maximum \% Distortion in Output	25\%	15 \%	20\%
Weight Ounces	1.3 oz .	1.2 oz .	1.5 oz.

Miniaturization of the new Magnetic Modulator makes it possible to in
corporate this compo nent into wafer type structures and transis assemblies without sacri icing ruggedness or reliability

CONSULT GENERAL MAGNETICS On magnetic amplifier components for automatic flight, fire con trol. analog computers. guded missiles. nuciear gun turrets. commercial power amplifiers and complete control sys rems. Call ur write for Cat aloge B on miniature and

Weight Ounces

ENGINEERING REVIEW

BuShips Picks Ungrounde Electrical Systems

Ungrounded neutral ele tric systems are chosen over th grounded systems on naval ship where the voltage is 600 v (ir les and where continuity of power sur ply is vital. This policy was di cussed in a paper delivered it t Middle Eastern District HIE meeting by E. W. Lusby and C. Straub of the Bureau of ship U. S. Navy Department. Groung faults are the most common caus of power failure, they pointed ou The ungrounded system require more maintenance, however, it wa said, and additional facilities and personnel must be provided. Th grounded system, which has les maintenance requirements, can b used "on those ships that do no depend on continuity of power sup. ply." The grounded system is als better where there are abnorma voltages to ground, the authors sai but "test results and analytical in vestigations have indicated tha abnormal voltage to ground occu infrequently on Naval ships."

Heat Energy Converted Directly to Electricity

Heat is being converted directl to electricity with a new engine designed at the Massachusetts In stitute of Technology.
The device, called the thermoelectron engine, consists of two plates, one hot and one cold. Elec trons possessing sufficient energ, to overcome a potential barrie stream from the hot plate which is at a temperature of perhaps 2000 F to the cold plate.

The model built at MIT by Dr. Joseph Kaye and Dr. George N Hatsopoulos is based on a repor made by Dr. Hatsopoulos two years ago. It appears that an efficient power plant could be built to yield 5000 to $15,000 \mathrm{w}$ in each cu ft of plant volume.
\& CIRCLE 6 ON READER-SERVICE CARD

New Collision Avoidance System Unveiled

A new collision warning and anti-collision :ommand computer for piloted aircraft has reently been devised. The operation of this equipnent is based upon the principle that the relative elocity vector between two aircraft must coinide with the line-of-sight between them in order or a collision to occur. The relative velocity beween two aircraft which are near enough the ame altitude to collide potentially is computed fom altitude, speed and heading information xchanged between airplanes. Line-of-sight beween the two aircraft is determined by direction inding equipment. When the relative velocity is ound to lie within a few degrees of the line-ofight, warnings are given that a collision with the other airplane may be imminent. It is only necespary for the pilot to maneuver according to the teering command given to eliminate the colliion threat. This device does not measure range since it is not required in the computation. Nor does it require an operator's attention. Designed by the Aerosystronics Corp., Los Angeles, Calif., the system is expected to weigh approximately 30 lbs and occupy about 1 cu ft .

Escape Velocity Exceeded

Jpstream view of Hotshot II shows technicians preparing to fire the electric arc-driven wind tunnel in which escape velocity has been exceeded at the Arnold Engineering Development Center near Tullahoma, Tenn. Man in foreground sights high-speed camera on test object in 50 -inch-diameter test section while another echnician works on arc chamber. Unipolar generator, beyond and to left of arc chamber, builds up electrical energy in inductive coil (out of picture at right) until level required for test run is reached. Test flow at escape velocity lasts about $1 / 10$ th of a second. The arc which produces the airflow creates pressures of more thar 15 tons per sq. in. Friction of air flow past the test objuct produces temperatures exceeding $40,000 \mathrm{~F}$.

$\Theta_{\text {Іасан }}$

balanced-armature relays solve environmental problems

LEACH RELAY DIVISION s915 avalon bivo. los angeles 3, california
DISTRICT OFFICES AND REPRESENTATIVES IN PRINCIPAL CITIES OF U.S. AND CANADA - INTERNATIONAL DIVISION, 7240 WISCONSIN AVENUE, WASHINGTON 14, D.C. CIRCLE 7 ON READER-SERVICE CARD

ENGINEERING REVIEW

Nuclear Instrumentation System Built

Instrumentation for nuclear reactors has been shipped to the Atomic Energy Commission's Knolls Atomic Power Lab in Schenectady, N.Y. Designed to serve as control and safety equipment in either land or marine installations, the equipment is to be used in a land-based prototype of a nuclear powered submarine. The nuclear instrumentation system is capable of measuring from one to 10 billion units of neutron flux per sec. The reactor is constantly monitored by the system which gages and indicates the density and rate of change of neutron flux of the atomic reactor from "start up" to "full power."
The system basically consists of three channels of reactor monitoring equipment: source range channel; intermediate range channel; and a power range channel. All channels are provided in duplicate as an additional safety precaution. Each channel is built into a separate, interchangeable drawer, allowing quick replacement without plant shut down.

Device Prevents "Shorts" Up to 100,000 A

A current limiting fuse, which protects circuit components having available currents as high as 100 ,000 a , was described during the Great Lakes District Meeting of the AIEE.
In his paper, Norman Shackman of the Bulldog Electric Products Co., Detroit, Mich., explained that the current limiting fuses are used in fusible devices, in series with circuit breakers, or as a part of a circuit breaker to protect individual loads and groups of loads. The device, which increases short circuit energy by limiting the magnitude and duration of fault current, is constructed to be dependable and permanent.

There's a "one-best voltmeter" for every job... and you'll find it here!

Makeshift measurement-where you stretch a faithful but outmoded instrument to or beyond its limitations-this takes time. Save engineering time by choosing and ordering now the "one-best" -hp-voltmeters fitting your measurement need. -hp-offers a complete array of precision, dependable voltmeters, each specifically suited to a given type of voltage measuring job. Check the brief data here, then ask your -hp-representative for demonstrationon your bench and on your problems!

WIDE RANGE- 10 cps to 4 MC -hp-400D, probably the best $-h p$ voltmeter ever built. Covers all frequencies 10 cps to 4 MC . Extremely sensitive, accurate within $\pm 2 \%$ to 1 MC , measures 0.1 mv to 300 v . Direct reading in dbm. 10 megohm input impedance insures negligible loading on circuits under test. New amplifier circuit with 56 db feedback insures maximum stability and freedom from change due to external conditions. $\$ 225.00$.

MULTI-PURPOSE TO 600 KC-\$200
-hp- 400AB, unique value, broad utility and long-term dependabil ity in a low cost laboratory instru ment. Covers 10 cps to 600 KC , measures from 0.3 mv to 300 v in 11 ranges. High stability, high sensitivity, accuracy $\pm 2 \%$ full cale from 20 cps to 100 KC .10 megohm input impedance; $25 \mu \mu \mathrm{f}$ shunt. Meter reads direct in volts and dbm. \$200.00.

EXTREME ACCURACY of 1% $-h p-400 \mathrm{H}$, designed for users who need highest accuracy within \pm need highest accuracy within \pm
1% to $500 \mathrm{KC} \pm 2 \%$ to 1 MC and $\pm 5 \%$ full range. Covers frequency range 10 cps to 4 MC . Has $5^{\prime \prime}$ meter with mirror scale, measures voltages 0.1 mv to 300 v . High 10 megohm resistance minimizes circuit disturbances; amplifier with 56 db feedback insures lasting stability. Direct reading in db or volts. Extremely high quality throughout. $\$ 325.00$.
-hp-also offers a broad variety of voltmeter accessories including voltage dividers, connectors, shunts and multipliers to extend the useful range of your equipment. Details on request from your -hp-representatives or direct; or see page 46 of current -hp-catalog.

STANDARD OF INDUSTRY-

20 cps to 700 MC
-hp-4108, perhaps the most widely used of all precision voltmeters. In addition to 20 cps to 700 MC ac coverage, serves as a dc voltmeter with over 100 megohms in put impedance. Also is ohmmeter for measurements 0.2 ohms to 500 megohms. For ac measurements input capacity $1.5 \mu \mu \mathrm{f}, 10 \mathrm{meg}$
ohms input impedance, employs radical-hp-developed diode probe which virtually eliminates circuit loading. $\$ 2+5.00$.

NEW!

$-h p-400 \mathrm{~L}$ Logarithmic Voltmeter

High accuracy
10 cps to 4 MC
$5^{\prime \prime}$ true log voltage scale
Linear 12 db scale
10 db range steps

Generous scale overlap

New, convenient $-h p-400 \mathrm{~L}$ is a unique instrument combining a specially designed logarithmic meter movement with the many desirable features of -hp400 D and 400 H voltmeters.

Model 400L's logarithmic voltage scale plus unusually long scale length provides an instrument of maximum readability and an accuracy which is a constant percentage of the reading. Voltage scales are more than $5^{\prime \prime}$ long, with a 12 db scale spread across the full scale length. The meter is mirror backed for maximum accuracy. A range switch changes voltage sensitivity in 10 db intervals. This feature, together with the 12 db scale, provides generous overlap and is of particular convenience in work involving decibel levels.
Other features of the new 400 L include exceptional long term stability, high sensitivity, high input impedance, large overload capacity, compact size and highest quality construction.
Model 400L may also be used as a stable amplifier.

SPECIFICATIONS -hp- 400 L

Voltage Range: Frequency Range: Accuracy:

Long Term Stability:
Calibration:
Input Impedance:
Amplifier Usage:
Power Supply:
Price:

0.3 mv to 300 v , 12 ranges, 1-3-10-30 sequence.

10 cps to 4 MC
$\pm 2 \%$ of reading, or $\pm 1 \%$ of full scale, whichever is more accurate. 50 cps to $500 \mathrm{KC} ; \pm 3 \%$ of reading, 20 cps to $1 \mathrm{MC} ; \pm 5 \%$ of reading, 10 cps to 4 MC (Includes line voltage changes 103 to 127 volts.)
G_{m} reduction in amplifier tubes 1075% nominal causes less than 0.5% error, G_{m} reduction in
20 cps to 1 MC
Calibrated in RMS value of sine wave. Log voltage scale, 0.8 to 3 V and 0.3 to 1 v . Db scale $-12 \mathrm{to}+2 \mathrm{db}$. 10 db intervals between ranges.
10 megohms shunted by $15 \mu \mu \mathrm{f}, 1$ to $300 \mathrm{v} .25 \mu \mu \mathrm{f}$ shunt on 0.001 to 0.3 v range. Output terminals permit 400L to amplify small signals or monitor waveforms with an oscilloscope.
$115 / 230 \vee \pm 10 \%, 50 / 1,000 \mathrm{cps}$, approx. 100 watts.
-hp- 400L (cabinel) $\$ 325.00$. hp. 400 LR (rack) $\$ 330.00$.
Data subject to change without notice. Prices f.o.b. factory

HEWLETT-PACKARD COMPANY

4650K PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U. S. A. Cable "HEWPACK" - DAvenport 5-4451 FIELD ENGINEERS IN ALL PRINCIPAL AREAS

Rectifier Operates At 1300 F

Silicon carbide rectifiers have been made to operate at temperatures up to 1300 F. This marks the highest temperature yet achieved at which solid state rectifiers will perform, according to scientists at Westinghouse, Pittsburgh, Pa. The grown junction silicon carbide crystals are prepared in a specially designed furnace operating at temperatures higher than 4500 F . The furnace contains an atmosphere of pure helium or argon to prevent contamination of the crystals as they grow inside the furnace. Once the crystals are prepared, they are cut, etched, and otherwise treated for fabrication.

Drone Guidance System Tests Air Defense

An electronic guidance system designed to help the Air Force test U. S. defenses against the most modern air weapons available to an enemy has been successfully demonstrated, the U. S. Air Force and Sperry Gyroscope Co. announced. The microwave command guidance system was specifically engineered for use with Q-4 and Q-5 supersonic drones. It now is being considered as a universal system for controlling other target drones for test purposes, pilotless aircraft, and missiles.
The system enables a control team anywhere on the groundor in the air-to track a drone, command its engine and flight controls, and receive flight data. All three functions of the system are carried out on a single radar frequency band. The system also is the first to provide remote control of aircraft at low altitudes and great distances, because it incorporates use of an air director (control aircraft) which, like the master ground control station, is fitted out completely with radar range, tracking, command, plotting, and data receiving equipment.
< CIRCLE 8 ON READER-SERVICE CARD

NEW 8LB. SILCAD BATTERY RUNS DRILL 2 HOURS ...and makes it really portable!

Now there is a way to make a really portable power tool! Redesign with exciting, new YARDNEY SILCAD(R) SilverCadmium batteries that are far lighter, smaller and much more powerful than nickel-cadmium and conventional lead-acid batteries.

Imagine the increased versatility and wider applications possible in a power hand drill, for instance, that can run continuously up to 2 hours on a single YARDNEY SILCAD® battery...without the need for plugs, outlets, cords, or other electrical connections. The YARDNEY SILCAD® can be recharged quickly, easily, and inex-
pensively, too, for added economy. Its voltage output remains constant throughout discharge. The YARDNEY SILCAD® will operate at peak efficiency under a wide variety of adverse environmental conditions such as shock, vibration, moisture and wide temperature ranges. And they are available in a wide choice of capacities from . 1 ampere-hour to 300 ampere-hours and larger.

Remember the exciting advantages of this new battery when designing portable power equipment. No other portable power source offers so many opportunities for imaginative application. Write for complete technical data today.

YARDNEY ELECTRIC CORP.

'Pioneers in Compact Power'
40-50 LEONARD STREET. NEW YORK 13. NEW YORK
Associate Laboratories throughout the world.

Patents granted and pending throughout pending thr
the world.
Copyright 195
Yardney Electric Corp.

YARDNEY SILVERCELE BATTERIES ARE USED IN IS U.S. MISSILES...INCLUDING MAJOR INTERCOMTIMENTAL AND INTERMEDIATE-RANGE MISSILES. CIRCLE 9 ON READER-SERVICE CARD

WASHINGTON REPORT

Herbert H. Rosen

Cockpit Instrumentation Declassified

The Office of Naval Research has unwrapped more details on its Army-Navy Instrumentation Program-ANIP. Described were the functions of two black boxes-a central control computer and a contact analog generator. The pilot of a jet airplane will watch an instrumented TI screen. On display will be the averaged data from the ILS, Doppler radars, Tacan, Omni, Vortac, or any other navigation aids-or combination of aids, coming from the control computer. It will even operate on dead reckoning data and feed it into the analog display. Superimposed on the position data will be graphic information on fuel consumption, flight path or plan, present position, destination, and Tacan stations.

Cmdr. G. W. Hoover, ANIP project officer, predicted the whole system will be in produc. tion within two years. Although the first systems will use a standard CRT display, later models will incorporate an improved version of the Ross Aiken flat CRT.

Besides the flat tube, the ANIP program has been responsible for other significant developments. One member of an unique service-industry team, VARO Manufacturing, has come up with some very clever techniques called microcircuitry. This is microminiaturization carried another step. It utilizes an atmospheric evaporation technique to place circuits on dime-sized ceramic pallets.

The analog display system developed by Kai ser Electronics also represents a novel departure A picture is presented to the pilot which gives him just the right feel to confidently guide hi craft down the "highway" displayed before him

Departure from convention is standard operat ing procedure for the ANIP. When Litton Indus tries needed a new kind of material to store it computer logic, it called on fellow team member Servomechanisms, to find the material.

Rather than modify existing materials and possibly come up with a marginal answer-a staf of eight researchers decided to tear oxygen atoms apart. As a consequence, they have come up with insulating and semiconducting materials, such as $\mathrm{TiO}_{1.95}$ and call them suboxides. Breaking into the atomic and molecular lattice is easy now. Servomechanisms has done so to all kinds of metallic oxides-zirconium, nickle, chromium, molybdenum, cesium, manganese, and others.

Prime contractor for the fixed wing part of the ANIP is Douglas Aircraft. They are now flying

Navi T2V with the system (and a flat CRT) installe!. Douglas has also built a simulator on which tentative solutions to problems were tested before hardware was developed.
Teaming with Litton, DuMont, Bendix Pacific, and the Franklin Institute, is Bell Helicopter, which is dealing with helicopter instrumentation. Fortunately, ONR demands that all members of all the teams get together and crossfertilize. Thus in five years, a whole new concept of cockpit instrumentation has become a reality.

DOD To Monitor Missile Reliability

After a year of studying what could be done to improve reliability specifications in military contracts affecting guided missiles, the Department of Defense has come up with an interim plan. According to D. H. Patterson, of DOD's Guided Missiles Office, a reliability monitoring program will be attempted.
"The proposed reliability assurance program," as Patterson calls it, "begins when the contract is awarded and continues through the phases of design, development, production, and major product improvement in the life cycle of the missile weapon system." Stages at which reliability is to be predicted, assessed, or measured have been formulated to provide a basis for the monitoring program. These are: detailed design study; breadboard; prototype; preproduction demonstration; demonstrations of service readiness; service evaluation; full-scale production; and demonstration of major product improvement. Obviously, reliability will have to be written into the very first guided missile system contract and progress with the system up to the point of correcting for obsolescence" in a modification ontract.
Patterson and his ad hoc committee have not set up this program unilaterally. More than 200 replies from industry association members have been received in answer to a request for comments on the first draft of the proposal. A final draft reflecting some of the replies will be submitted to the Military Services "for consideration and comment on how it may be incorporated into future guided missile weapons systems contracts."
Patterson cautions that the monitoring prograin is designed to "permit a minimum of interference with the contractor's work and to be compatible with the Military Services' specifications and practices in progress reporting."
And, as in the form of a prayerful hope, Pat ters in adds, "I hope the time will be short when we will think no more of specifying and achieving reliability than we do of specifying and ach eving performance factors such as altitude or 1 .unge."

Weston traditional QUALITY!

Weston presents a new look in panel instruments! You'll see the difference at first glance. The price will delight you . . . the performance will confirm that Weston's unequalled craftsmanship has scored again!

ULTRA-MODERN STYLING! Crown Instruments, with their handsome contours and sparkling prismatic cases, will enhance your most advanced panels and equipment. They're available in a variety of custom-colors, too.
EXTRA-LONG SCALES! Crown's 2.5 -inch, 100° scales are longer than those of most 3%-inch diameter panel instruments. Clear plastic top, front and sides provide exceptional natural scale illumination.
CORMAG ${ }^{*}$ PROTECTIONI Weston's famous Cormag mechanism permits close grouping of instruments on magnetic or non-magnetic panels. No special adjustments need be made. There's no danger of magnetic intereffects.
WESTON ACCURACYI Crown D-C Instruments are accurate within $\pm 2 \%$ of their full scale values; rectifier-type A-C models within $\pm 3 \%$.

INTERCHANGEABILITYI All Crown models can be mounted interchangeably with any 2.5 -inch JAN or MIL spec instruments.

For accuracy, appearance, readability and cost, your best buy is CROWN. Your local Weston representative will be glad to quote on your requirements and arrange prompt delivery of prototypes. Contact him for full information, or write to Weston Instruments, Division of Daystrom Inc., Newark 12, N. J. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 10, Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N. J.

CIRCLE 10 ON READER-SERVICE CARD

Save design time, avoid assembly headaches with General Electric custom-designed DC power supplies

Subcontract your power supply problems to General Electric! Whether your requirements can be met by the existing, completely engineered supplies we have on hand-or involve custom-packaging of "building blocks"-or call for altogether new designs-give us the power supply system responsibility! Consult your local Apparatus Sales Office, or write for bulletin GEA-6690 to Section D465-5, General Electric Co., Rectifier Dept., Lynchburg, Va.

Progress /s Our Most Important Product GENERAL (3) ELECTRIC

Your editorial in the April 16, 1958 issue of Electronic Design is much appreciated. For years my wife has been very emphatic on the poor quality of presentation made by engineers at technical meetings.
Our ISPE [Illinois Society of Professional En. gineers] just completed their annual convention at Decatur where four out of five general meeting speeches were "read." It took a member of the faculty of the Business School from the University of Illinois to give the key speech in such a way that 200 men and 200 women were sitting on the edge of their chairs. His topic, "Inflation, Deflation, and Flation," included conversation on business statistics. His style of presentation was amazing and, even though he had reference sheets on the speakers stand, you never felt he was "reading."
Dr. Robert O. Harvey, Professor of Business Administration, could certainly be looked at as an example. He took a subject in which the usual "professor" would go down deeper, stay down longer, and come up drier than any other in dividual and held his combined audience in humorous stitches for more than 45 minutes. He was able to impress his points on economic changes and still leave you with a feeling that you would like to hear him continue.
Could you please send further information on the new Professional Group on Engineering Writing and Speech referred to in the last paragraph of your editorial.

Warner A. Johnson, P.E
Micro Switch
Freeport, Ill.

- Information about the Professional Group on Engineering Writing and Speech may be ob-

ETTERS

ained from Eleanor McElwee, Secretary, PGEWS, Commercial Engineering, RCA Tube Div., Harrison, N.J. For membership, write to IRE headquarters at 1 E. 79th St., New York,

Uniterm Filing System

Centlemen:

Congratulations to an article which may help Ill a crying need.
We've started a similar system on our own, but find it is beyond our resources of time and secretarial help. Perhaps by publishing this letter we may find a like-minded company in our own area which would like to join in a cooperative effort.

Stephen V. Hart, Vice-President Electronic Control Corp.
Detroit, Mich.

Dear Sir:

I have read with interest Mr. Bell's article in the April 16 issue concerning the Uniterm system of filing.
There is no doubt that the article is a step in the right direction on a problem that has vexed us considerably in the past; a problem that is, no doubt, shared by most engineers.
My suggestion at first thought is that each article in a periodical has already been Unitern ed by the author. This information can be printed in a box in the upper right hand corner of the title page of the article with a space reserved for the appropriate filing number as detern ined by the reader or filing clerk.

Joseph Salvatore
Control Systems Lab.
University of Illinois Urbana, Ill.

Now, Tung-Sol offers designers a complete line of high reliability Germanium PNP Transistors!

Tung-Sol types and ratings are listed below with the types they replace. From these, spot your needs! Then, for long-life operation, specify
Tung-Sol!

NOTE, Similar type roforoncos are listed at hime of printing and should be interproted as opproximate equivalents

To fill your special transistor requirements or for full facts on any of these standard Tung-Sol types, write or phone: Semiconductor Division, Tung-Sol Electric Inc., Newark 4, New Jersey. Sales Offices: Atlanta, Ga., Columbus, Ohio, Culver City, Calif., Dallas, Tex., Denver, © TUNG-SOL Newark, N. J., Seattle, Wash. . . . Canada: Toronto, Ont.

CIRCLE 12 ON READER-SERVICE CARD

MEETINGS

June 5-6: 2nd National Symposium on Production Techniques
Hotel New Yorker, New York, N.Y. Sponsore by PGPT. For information write John W. Trin kaus, Sperry Gyroscope Co., Great Neck, N.Y.

June 8-12: National Association of Electrical Distributors
San Francisco, Calif. For more information abou the convention write to the National Association of Electrical Distributors, 290 Madison Ave New York 17, N.Y.

June 9-13: 6th Annual Technical Writers' Institute Rensselaer Polytechnic Institute, Troy, N.Y. Fur details contact William E. Price, News Burean Rensselaer Institute, Troy, N.Y.

June 9-13: 4th International Automation Exposition and Congress
Coliseum and Barbizon-Plaza Hotel, New York N.Y. Included in this exposition and congre will be over 100 clinic sessions, 15 technical ses sions, plus the Military Automation Expositio Conferences on "Human Factors in Systems En gineering," and "Plant Layout for Automation will also be held in connection with the expos tion and congress. For further information writ to Harrison Gilmer, Director of Public Rel tions, 4th International Automation Exposition and Congress, 845 Ridge Ave., Pittsburgh 12, P

June 15-19: Semi-Annual Meeting of the ASME Detroit, Mich. Write to ASME, 29 W. 39th St New York 18, N.Y., for further information abou the meeting.

June 16-18: 2nd National Convention on Military Electronics
Sheraton Park Hotel, Washington, D.C. Sponsored by PGMIL. Contact Dr. J. McLaughlin, Naval Research Labs., Washington 25, D.C

June 18-20: Statistical Methods in Radio Wave Propagation
University of California, Los Angeles, (alif. Sponsored by the University of California En-
gineering Extension. Participants from England, Prance, India, and the United States will present papers in three major fields, statistical theory and techniques of use to scientists and engineers, phenomenological investigations with both stabistical and physical structure, and instrumentation for the rapid reduction of large quantities of radio data. Inquiries should be addressed to Dr. W. C. Hoffman, Engineering Building, Room 3116, University of California, Los Angeles 24, Calif.

June 22-27: AIEE Summer General Meeting Buffalo, N.Y.

June 23-27: ASTM 61st Annual Meeting Hotel Statler, Boston, Mass. Highlighting the meeting will be the 12th Technical Photographic Exhibit of the ASTM. Entries will be accepted from members of ASTM, employees of company members, and engineering students. For further information, contact E. W. Walsh, Chairman, Narragansett Electric Co., 15 Westminster St., Providence, R.I.

July 24-25: 5th Annual Symposium on Computers and Data Processing
Albany Hotel, Denver, Colo. Sponsored by the Denver Research Institute, Electronics Div., University of Denver. Symposium will consist of technical papers on basic problems in the field of data processing, particularly in the areas of formalized analysis techniques, logical design techniques, automatic programming, systems organization, digital communications, and components and devices. Queries concerning the symposium may be addressed to C. A. Hedberg, Head, Electronics Div., Denver Research Institute. University of Denver, Denver 10, Colo.

Aug. 6-8: Special Technical Conference on Non-Linear Magnetics and Magnetic Amplifiers Hotel Statler, Los Angeles, Calif. Sponsored by AIEE. The four technical sessions will include technological and theoretical aspects of nonlinear magnetics and magnetic amplifiers, computer applications, special purpose devices and applications, and "new frontiers" in the field. Exhibits will be displayed by 40 manufacturers selected for their contributions to the industry. For more information about the conference write AIIE, 33 W. 39th St., New York 18, N.Y.

Aug. 13-15: Conference on Electronic Standards and Measurements
NBS Boulder Labs., Boulder, Colo. Sponsored

5-megawatt ferrite isolator

for high-power radars

FORCED AIR COOLED!

Another Sperry contribution to improved performance of radar systems is this new Model D44S1 ferrite isolator. It boosts efficiency of S-band radars by allowing optimum operation of high-power tubes.

In addition, this isolator protects high-power tubes from load mismatches, and eliminates frequency and power variations due to changing load impedances. It is rated at 5 megawatts peak, 5 kilowatts average, and features insertion loss of less than 0.3 db . Compact and small, the Model D44S1 measures only 6 inches in length and 8 inches in diameter. And its aircooled design eliminates the extra expense and weight of liquid-cooling accessories.

Currently Sperry has under development or in production a wide variety of ferrite devices in addition to those shown here. These include megawatt duplexers, coaxial duplexers, octaveplus bandwidth isolators and attenuators, highspeed switches, modulators and choppers.

Sample quantities of the listed units are available immediately from our stock for test and evaluation in your system, with a view to production tailored to your specific requirements. Contact our nearest district office for further information.

MODEL D4481 BPECIFICATIONB
Power: 5 mw peak, 5 kw average Frequency: $2700-2900 \mathrm{mc}$ Insertion loss: less than 0.3 db

Isolation: 10 db min. Cooling: Forced air

COAXIAL FERRITE ISOLATORS

MODEL	USE	freg. fames	max.ay.power	Ims	OLArion	DIMEMSIOMS
A44L	Radar	1250-1365 m	400	1 db	10 db	$3^{\prime \prime}$ dia. $\times 13.25^{\prime \prime}$
A44S1	Radar	$2700-3100 \mathrm{mc}$	10 w	1 db	10 db	$1.5^{\prime \prime}$ dia. $\times 5^{\prime \prime}$
D44L1	Relay	$1700-2400 \mathrm{mc}$	30 w	1.5 db	21 db	$3^{\prime \prime}$ dia. $\times 13.25^{\prime \prime}$
A44S4	ECM	$2000-4000 \mathrm{mc}$	400 w	1 db	10 db	$3^{\prime \prime}$ dis. $\times 13.25^{\prime \prime}$

X-EAND FERRITE COMPONEMTE

MOAEL	usk	fREQ. RAMGE	max. AY. POWER	IMSERTIOM/ISOLATIOM	-1mEusious
A44X1	Isolator	$8200-12400 \mathrm{mc}$	400 w	1 db 10 db	$1.5^{\prime \prime} \mathrm{dia} \times 5^{\prime \prime}$
A43X1	Variable Attenuator	8500. 9600 mc	10 w	1 db 30 db var.	$1.5^{\prime \prime} \mathrm{dia} \times 2^{\prime \prime}$

Great Neck, New York
dIVIIION OF SPERRY RAND CORPORATION

CIRCLE 14 ON READER-SERVICE CARD

Now-guaranteed maximum and minimum performance limits for tape wound cores!

For the first time you can order tape wound cores with guaranteed performance to published limits.
All tape wound cores coming from the hydrogen atmosphere annealing furnaces at Magnetics, Inc. are tested by flux reset as proposed by the AIEE Working Group on Core Matching and Grading ${ }^{\circ}$. Thus, standard cores are given a standard test to give engineer-designers a standard component whose performance is guaranteed within fixed limits.
Magnetics, Inc. has established the limits to provide maximum, minimum and nominal $\mathrm{B}_{\mathrm{m}}, \mathrm{B}_{\mathrm{r}} / \mathrm{B}_{\mathrm{m}}, \mathrm{H}_{1}$ and gain performance data. It is published for one, two, four and six mil tape thickness for Orthonol ${ }^{\circledR}$ and Hy Mu 80.
Now it is possible for you to select and order cores specifically suited to your design (just as with any other standardized
component). You'll save many hours of experimenting, and because the reliability of the data is guaranteed, you'll be sure at every stage of design and production.
The published limits for Magnetics, Inc. tape wound core performance are ready now. Write for your copy: Dept.ED-45, Magnetics, Inc., Butler, Pennsylvania.

mAEMETICS inc.

- Paper No. TWC-45, Winter General Meeting, AIEE, February 1958 Flux Reset Test is one of two tests proposed for standardization

MEETINGS

by the Professional Group on Instrumentation o IRE, Electronic and High-Frequency Instrumen Committee of AIEE, and the Radio Standard Lab. of the National Bureau of Standards. S technical sessions will cover the following sub jects: The Relationship of Standards to Plysica Constants; Frequency and Time Interval Stand ards; Direct-Current and Low-Frequency Stand ards; Radio-Frequency Standards (Measuremen of voltage, current, power, impedance, attenua tion, phase shift, field strength); Microwal Standards (Measurement of power, impedanc attenuation, noise), and The Organization an Operation of Standards Laboratories. Write James F. Brockman, National Bureau of Stand ards, Boulder Labs., Boulder, Colo.

Aug. 19-22: Western Electronic Show and Convention
Los Angeles, Calif. Details will be announced later. For more information write Western Elec tronic Show and Convention, 1435 S. La Cienega Blvd., Los Angeles 35, Calif.

Paper Deadline

June 25: Deadline for papers to be presented a the 1958 National Simulation Conference. The conference, sponsored by the IRE, is planned for October 23-25 in Dallas, Tex. One hundred words abstracts and 500 word summaries of technical papers in the general field of simula. tion should be transmitted in duplicate to D. J Simmons, Rt. 8, Box 447, Ft. Worth, Tex.

Courses-Seminars

Aug. 4-15: Special Summer Program on Microwave Ferrites. Massachusetts Institute of Technology, Cambridge 39, Mass. Topics will include Electromagnetic Theory of Fields in the Pres ence of Ferrites, Measurements of Ferrite Characteristics, and Linear and Non-linear Ferrite Devices: Theory and Application. Write to Dr. Herman A. Haus, Assistant Professor. M.I.T. Department of Electrical Engineering for information.

Aug. 4-15: Summer Study Course in Microwave Theory and Technique. Case Institute of Technology, Cleveland, Ohio. The course will be directed toward the engineer in industry who has found a growing need for training in the methods of measuring and analyzing with microwaves. Requests for additional information on the course should be directed to the Director of Special Programs, Case Institute of Technology, 10900 Euclid Ave., Cleveland 6, Ohio.

EDITORIAL

ELECTRONIC DESIGN Breakthrough

Last month, after advertising lineage was counted, Electronic Design moved into first position in display advertising among electronics technical publications. In 64 months, Electronic Design has outpaced all electronics magazines-a record unparalleled among some 1200 business magazines. We're in first place because you, the reader, said we were the most helpful to you in giving you ideas to do your job better.

Being first in advertising makes our publishers and sales force jubilant. We editors don't deny we're pleased, but the fact is almost anticlimactic. We have for some time carried more engineering design information than other publications. It has been our goal to give you the best in helpful, practical design information. Whether we are first in advertising is immaterial except as it affects total space available for editorial.

As of last month, we were the only principal magazine, serving the electronics industry exclusively, with a square format. To you, the reader, this has meant attractively laid out articles, easy to read and to follow. The magazine lies flat on your desk. (Of course, we know the shape makes it more difficult to remove articles for filing, but we feel that quantity and quality are more important.) To the advertiser, the square format has meant editorial next to every page of advertising. If the editorial is interesting, his ad will be exposed to readers. Your response to his advertising has made him aware that Electronic Design is read. He gives us more advertising, we have more room for editorial-a happy cycle.

What makes being first even more significant is that our audience, exclusively design engineers, is not as wide as that of other publications. This goes to prove that you, the design engineer, are the key man. In this time of general recession, Electronic Design, which goes to design engineers with a design engineering message, is growing. Others are off.

Of course, much of the credit should go to our engineerauthors. It has been their desire to pass along helpful information that has enabled us to become so successful. It has not been easv for some authors-we have many times asked them to rewrite their material so that we could pass along only essential-to-know information in as short a space as possible. We trust the results of writing for us have been rewarding. One bit of satisfaction to the author comes from knowing that he is being exposed to the greatest number of design engineers.

As we toast the success of the magazine, we toast you, the reader, for the support and words of encouragement that you have given us as we were growing.

You saw it at the NewYork I.R.E. Show THE DEEWTRAN RATIO TRANSFORMER

The original concentric dial precision decade ratio transformer voltage divider for panel mounting. A three decade ratio transformer and an interpolating potentiometer provide 5 place readings of voltage ratio in one convenient straight-line.

FREQUENCY RANGE: 50 cycles to 10 kilocycles.
ACCURACY: $\pm 10.001 \%$ plus 1 dial division) below 3 kilocycles.
RESOLUTION: Continuous (10 ppm per dial division).
MAX. INPUT VOLTAGE: $0.35 \times f$ in cps (350 v max.).
MAX. OUTPUT IMPEDANCE: Ap-

ELECTRO-MEASUREMENTS, INC.
7524 S. W. Macadam Avenue - Portland 19, Oregon circie ig on reader-service card

Graphical Method Simplifies

 Earl D. Grim

 Earl D. Grim
 Radio Corporation of America RCA Victor Div.
 - Camden, N.J.
 Wien Bridge Oscillator Design

Here's a simple graphical method for the analysis and design of Wien Bridge oscillators. It avoids the "dogwork" of the rigorous mathematical design and the sloppiness of the trial and error method.

TTOO OFTEN, Wien Bridge oscillators have been designed by the "hit and miss and try again" method. This has resulted in oscillators with poor waveform or unstable operation. This article describes a reliable, effective design procedure. Curves are presented to enable the design engineer to outline the requirements for the feedback network and amplifier parameters to produce circuit oscillation at the desired frequency.

Basic Wien Bridge Oscillator

A simplified schematic of the oscillator is shown in Fig. 1. The gain of the amplifier is symbolized by $|G|$. The symbol A is defined as the ratio of R_{1} / R_{2} and C_{2} / C_{1}, and T is defined as $R_{1} C_{1}=R_{2} C_{2}$ where the R 's and C 's are defined in Fig. 1.

In Figs. 2 and $3, \Phi H$, the phase of H (the transfer function of the feedback network) is plotted against generalized frequency coordinates. Fig. 3 is an enlarged section of Fig. 2 in the region near $\omega=1 / T$.
Fig. 4 presents $|H|$, the gain factor of H, plotted against A, the feedback network parameter. This gain factor varies also with the phase shift through the network. Hence, three curves are plotted, with phase shifts corresponding to zero, ± 20 and ± 40 degrees.
There are two main points to note with these curves.

1. As A increases, the feedback network has a larger gain factor. As A gets very large, the gain factor approaches unity.
2. If the phase shift through the network is not zero, the gain factor is always smaller than the corresponding zero phase shift gain factor.

Fig. 2. The network phase shift is plotted here against generalized frequency (in radians per second) for various values of the parameter A.

fig. 1. Basic Wien Bridge oscillator. The ratios $R_{1} / R_{2}=C_{2} / C_{1}$ are symbolized by A. The time constant $T=R_{1} C_{1}=R_{2} C_{2} . C_{1}$ includes amplifier input and stray capacity and R_{1} includes the amplifier grid resistor.

If the closed loop representing the amplifier and feedback network is broken at the input to the amplifier, and if a voltage is fed to that input, then the closed loop will oscillate if the voltage at the output of the feedback network has the same phase and equal or greater magnitude than the amplifier input voltage.
Expressed mathematically:

$$
\begin{aligned}
& \phi G+\phi H=0 \\
& |G||H| \geq 1
\end{aligned}
$$

where ϕG and ϕH are the phase relationships of the transfer functions of the amplifier and feedback network respectively. $|G|$ and $|H|$ are the absolute values of their magnitudes. With these criteria, one can design an oscillator.

5 kc Oscillator Design

Feedback Network: For a 5 kc oscillator

$$
\begin{aligned}
& \omega=2 \pi \times 5 \times 10^{3}=\pi 10^{4} \\
& T=1 / \omega=R_{1} C_{1}=R_{2} C_{2}=10^{-4} / \pi
\end{aligned}
$$

In setting the impedance level of the feedback network, a compromise must be effected between the desirable high impedance which minimizes amplifier loading, and the equally desirable low impedance which minimizes the effects of changes in circuit capacity due to tube changes.
In this spirit of compromise, a value of 56 K is chosen for \boldsymbol{R}_{2}. Then

$$
C_{2}=\frac{1}{5.6 \times 10^{8} \pi}=560 \mu \mu f
$$

Now a value for A must be chosen. Notice in Fig. 2 that for values of A less than 0.25, the curve would have substantially the same slope as for $A=0.25$. Values of A greater than 5 are not

FOR VACUUM TUBE GRIDS

PLATINUM CLAD TUNGSTEN WIRE . . . Because of its superior physical properties af elevated temperatures, tungsten provides the more rigid, refractory core material required by high power fubes; it also exhibits lower interaction with platinum. Platinum clad fungsten is readily hot stretched to take a permanent setting and lends itself to fabrication info grids employing conventional fixfures and spot welding procedures. Available in diameters from. 001 " and up.
Baker Platinúm Division, 113 Astor Street, Newark, N. J.

CIRCLE 201 ON READER-SERVICE CARD

Fig. 3. This is an expansion of Fig. 2 in the vicinity of $\omega=1 / T$.

Fig. 4. These curves are used to determine the required amplifier gain and feedback network gain, knowing A. They are especially useful for high and low frequency design.
too practical since they result in severe frequency changes for small phase changes. Again, in a spirit of compromise, a value of $A=2$ is chosen. Then

$$
\begin{aligned}
& R_{1}=A R_{2}=112 K \\
& C_{1}=C_{2} / A=280 \mu \mu f \text { (which must include } \\
& \text { amplifier input capacity) }
\end{aligned}
$$

This completes the design of the feedback network. The required gain and phase shift characteristics of the amplifier must now be determined.

Amplifier Phase Shift and Gain: Referring to Fig. 3, and recalling that $\omega=1 / T$ and $A=2$ were chosen as parameters to determine the feedback network characteristics, it can be seen that ϕH must be zero at the point defined by the values of ω and A.

Since $\phi G+\phi H=\mathbf{0}$ as an oscillation requirement, then ϕG must equal 0 .

Thus one amplifier requirement is that its phase shift at 5 kc must be zero. Of course, this may be 360 deg or multiples of 360 . Phase shift in the amplifier can often be found conveniently by plotting the break points in the amplifier frequency gain curve and computing the phase shift. (See the reference.)

The gain requirement of the amplifier can be found by referring to Fig. 4. This presents $|H|$ as a function of A with ϕH as a parameter. When ϕH is 0 and A is 2 , then $|H|=0.5$.

Since for oscillation the product of $|G|$ and $|H|$ is equal to or greater than 1 , then $|G|$ must be equal to or greater than $1 / 0.5=2$.
Thus the amplifier must have a gain of two or slightly greater for oscillation. This gain should
be measured with the feedback network and any other load impedance that might be present.

A 5 ke Oscillator

Fig. 5 shows a workable design for a 5 kc oscillator using a 12AT7. The actual amplifier design procedure will be covered in a forthcoming article.

Briefly, a few points in the schematic are worthy of note. C_{1} had been calculated to be $280 \mu \mu \mathrm{f}$. In the schematic, however, C_{1} consists of two capacitors having a total value of $259 \mu \mu \mathrm{f}$. The difference is accounted for by the input capacity of the amplifier. The first triode has a 100 K plate load to provide high gain, while the second triode has a total plate load of only 8.2 K to minimize the loading effect of the feedback network and reduce the gain to 2 . The $7.5 \mathrm{~K}, 1.8 \mathrm{~K}$ combination provides negative feedback to reduce gain and minimize changes in the open loop gain. The tap in the second triode's plate load is to compensate for variations in the amplification factor from tube to tube. The values of the coupling capacitors are chosen to balance lagging and leading phase shifts and to provide zero phase shift at 5 kc .

Output is taken from the cathode of the second stage of amplification so as to maintain a low impedance to minimize loading. Where severe loading is anticipated, this output should drive another cathode follower.

High and Low Frequency Oscillators

In designing very high or very low frequency oscillators, it is difficult to obtain zero phase shift
through the amplifier with any reasonable gain. In these cases, a design can be completed with phase shift.
Suppose an amplifier design has a gain of 3.5 with 20 degrees of lagging phase shift at the desired frequency of oscillation. Since the sum of the phase shifts of the amplifier and feedback network must be zero, and the amplifier has a phase shift of -20 deg , the feedback network must have a phase shift of +20 deg .

Also, since the product of the gain factors of the amplifier and feedback network must equal or be greater than $1,|H|$ must equal or be greater than $1 / 3.5=0.286$.
Referring to the ϕH curve of Fig. 4, one can produce oscillation with a value of A of about 1 or greater. In general, the lowest value of A should be chosen to provide the most stable circuit operation. This can be observed in Fig. 2. The slope of the curves increases as A decreases, which indicates that a smaller frequency change in the closed loop will occur for a given change in amplifier phase shift with smaller values of A.
Therefore the value $A=1$ is a good choice for a feedback network parameter. Now the two parameters, $A=1$ and $\phi H=+20$ define a point on Fig. 2 from which ω can be found. This value is $\omega=1 / 1.75 T$. Then $T=1 / 1.75(2 \pi f)=R_{1} C_{1}=$ $R_{2} C_{2}$.

Since f is known, T is defined by this equation and R and C can be found. Again these values should be chosen as a compromise between stray capacity effects and amplifier loading. After R_{1} and C_{1} are known then R_{2} must equal R_{1} and C_{1} should equal C_{2} since A was chosen equal to 1 .

Fig. 5. A 5 kc Wien Bridge oscillator. Capacitor values are in $\mu \mu \mathrm{f}$ unless otherwise designated.

Knowing the expected variation in the phase shift and gain of the amplifier, one can predict the frequency variation and the capability of oscillation. With A known, a given variation in amplifier phase shift will cause a specific frequency shift which can be found from Fig. 2 or 3. The oscillation capability can be determined from Fig. 4. If the gain $|G|$ is less than $1 /|H|$ at the chosen A value at any limit point, the circuit will not oscillate. If $|G|$ is much greater than $1 /|H|$ the output waveform will be distorted.
Since zero or 360 degrees of phase shift is required, two stages are generally necessary if the common cathode connection is used. However, one can get gain and the required phase shift in one stage if the common grid connection is used, or in the transistor, the common base connection. An obvious difficulty with this type design is the very low input impedance of the cathode or emitter circuit. Nevertheless, if this is taken into account an oscillator can be built with only one amplifier stage.

Variable Frequency Design

A variable frequency oscillator can be designed if, for example, C_{1} and C_{2} are varied simultaneously. The frequency of oscillation is:

$$
\omega=1 / T=1 / R_{1} C_{1}=1 / R_{2} C_{2}
$$

But this is true only if the phase shift through the amplifier is zero. If there is phase shift, then the actual frequency of oscillation can be found from Fig. 2 or 3. Thus the designer can predict deviations from linearity in the variable capacitor vs frequency relationship and establish specifications for the amplifier phase shift according to his design requirements.

Reference

Scromechanisms and Regulating System Design, Vol. I, Cliestnut and Mayer. John Wiley, New York, N.Y., 1951, pr 309-310.

Versatile pulse programming for MAGNETICS TEST and DEVELOPMENT

A complete system, Model 1020 Programmed Current Pulse Generator delivers precisely controlled, fully programmed, high amplitude current pulses for core analysis and laboratory design and development of magnetic planes, drums, twistors, logic circuits and digital systems. FLEXIBLE PROGRAMMING provides an 8 step periodic pulse pattern, with any one or two steps pre-selected to repeat up to 2000 times, adjacent step-pairs to 1000 times. 4 OUTPUT CURRENT DRIVERS allow a choice of amplitudes, pulse polarities and source impedances at each program step. Pulse width is variable from . 5 to $50 \mu \mathrm{sec}$.

10 AMPERE CURRENT PULSES permit one-turn testing of tape wound cores .8 ampere max. average pulse current. 525 VOLT OUTPUT POWER SUPPLY assures constant current when driving large reactive loads at high levels. FULL WAVESHAPE CONTROL yields exponential or linear leading edge, controlled from $70 \mathrm{~m} \mu \mathrm{sec}$ to $2 \mu \mathrm{sec}$ rise time. Fall time is continuously variable from 0.15 to $1 \mu \mathrm{sec}$. In all programmed applications, Model 1020 provides power, precision and versatility to engineers responsible for magnetics research, materials study and circuit development. For additional information, write for Bulletin 57-B.

A New Complete Line

...COMPETITIVELY PRICED
...ONE OR THOUSANDS
...SINGLE OR GANGED

GIANNINI

Precision

POTENTIOMETERS

Ready for rapid delivery...meet rigid requirements

"Giannini Technical Notes" announces various instruments and controls which are available for 24 hour delivery.

ITEM:

Model 1437 (NAS-710, style RRI5) RESISTANCE: 100 to $160,000 \Omega$ LINEARITY: 0.5% to 0.1% RESOLUTION: to 3900 wires

ITEM:

Model 1750 (NAS-710, Style RRI8) RESISTANCE: 100 to 300,000 s2 LINEARITY: 0.5 to 0.1% RESOLUTION: to 5,000 wires

ITEM:

Other Models from 7/8" to $3^{\prime \prime}$ diameter. Ganged units are externally phaseable.

Using Transistors

in

Demodulator Circuits

Albert N. DeSautels
Minneapolis-Honeywell Regulator Co.
Minneapolis, Minn.

Part 1

D
EMODULATOR circuitry uses the switching characteristics of the junction transistor. A transistor demodulator (Fig. 1) can be combined with a magnetic amplifier or transistor amplifier to produce an effective unit in a synchrocontrolled system.

In essence, when the base is positive with respect to both emitter and collector, the transistors will act as open switches with very low leakage. When the base becomes negative with respect to either, the transistors will act as closed switches with very little voltage drop.

When transistors are acting as switches rather than amplifiers, their characteristics are not critical and no need exists for matching. Low gain transistors can also be successfully used.

The demodulator (Fig. 1) is a stable device
ELECTRONIC DESIGN • May 28, 1958

wave differential dc current into a three-terminal or split load such as is found in the activating coils for hydraulic valves in automatic flight control systems. Discriminator action is furnished by the diodes D_{1} and D_{2}. Considering the NPN transistor shown, when the points A and B are becoming positive at the same time, T_{1} will conduct and current will flow through D_{1} and onehalf of the load L_{1}. On the negative half-cycle, T_{1} is cut off and no current will flow.
If the signal phase at A is reversed and points A and C are becoming positive simultaneously, T_{1} will again conduct with current flowing through D_{2} and the other half of the load L_{2}. Once again on the negative half-cycle, T_{1} is cut off and no current will flow.

The resistance R_{e} may be added to improve transistor interchangeability and performance with temperature variation. The ratio R_{1} / R_{2} would be independent upon the amplitude of the dc power supply and the amount of quiescent current acceptable in the load. It is necessary that the diodes D_{1} and D_{2} be matched for balanced phase response.

When one diode is conducting, a back voltage appears across the other equal to twice the peak reference minus the voltage drop in the load. Therefore, the nonconducting diode should have an inverse voltage rating in excess of $2 \sqrt{2}_{R}-V_{L}$.

When the transistor is nonconducting, the collector emitter junction is subjected to an inverse voltage equal to the peak reference voltage Therefore, the maximum collector voltage rating should be greater than the peak reference voltage value.

Often it is advisable to use full-wave rather than half-wave discrimination. The large fundamental ripple on the half-wave dc output may necessitate use of shunting capacitors in hy-
capable of operating at as low as 20 millivolts of signal. However, a fairly large signal is required to achieve respectable values of current through a load. In an experimental setup, an E_{s} of $1 / 2 \mathrm{v}$ produced $50 \mu \mathrm{mp}$ of dc.

Phase Discriminators

A half-wave phase discriminator (Fig. 2) is capable of furnishing much higher levels of dc current to a load. Transistors and diodes are combined to provide amplification, demodulation and discrimination with reliability and stability over a wide temperature range. Power handling capabilities are extensive and are limited primarily by maximum voltage and current rating of the transistors.
The circuit shown in Fig. 2 will produce half-

Fig. 3. Full-wave phase discriminator with threeterminal load.

This new portable multimeter incorporates a new technique that protects both meter and entire internal circuit against accidental burn－outs．In fact，any high voltage or current may be applied directly across any func－
tion，including ohms，without danger to the meter movement or associated components．Has a sensitivity of 20,000 ohms per volt DC or AC．Has 5 －inch meter and full－wave bridge type $\$ 76.50$
rectifier circuit．Test leads are included．

THE HICKOK ELECTRICAL INSTRUMENT CO

10525 DUPONT AVENUE－CLEVELAND 8，OHIO
CIRCLE 20 ON READER－SERVICE CARD

Directory of Technical Specifications
Over 800 pages in 4 volumes－the facts about more than 4000 electronic test instruments．
All instruments grouped by＂families＂for easy comparison．
－Specifications and prices are accurate and up－to－date．
－Data completely revised and reissued every six months（ 8 vol umes annually）．
－Permanently bound in hard covers－no looseleaf pages to bother with
－Additional supplemental materials issued as required．
－This is the new standard reference work for the field of elec tronic test instrumentation．

For full information，write or phone：

TECHNICAL INFORMATION CORPORATION

41 Union Square，Room 1003
New York 3，New York
WAtkins 4－2111
CIRCLE 21 ON READER－SERVICE CARD

Fig．4．Full－wave phase discriminator with two－terminal load
draulic valve or relay drive applications．Full－ wave discrimination would eliminate the need for any capacitor in most instances．

Half－wave magnetic amplifiers will present more stable performance with full－wave dc con－ trols．More efficient control of the full－wave magnetic amplifier can be obtained with full－ wave through the control windings．

Transistors can be used as well in full－wave discriminators as in half－wave．

The half－wave discriminator can be adopted to full－wave output into a three－terminal load （Fig．3）．Full－wave output is obtained through the summing of two half－wave actions．

When A and C become positive simultaneously， T_{1} conducts through D_{2} and the load L_{1} ．During this half－cycle，T_{2} is cut off because of the nega－ tive signal at B ．On the second half of the cycle． A and C become negative cutting off T_{1} while B and D become positive．T_{2} then conducts through D_{3} and the load L_{1} ．＇Thus，the load experiences two half－wave current pulses during the cycle， or a full wave of current．For a 180 －degree phase change in the signal，points A and F would be－ come positive simultaneously，and conduction would occur through T_{1}, D_{5} ，and the load L_{2} for one half－cycle．For the second half－cycle，A and F would become negative while B and E be－ come positive and T_{2} would conduct through D_{4} and L_{2} ，completing the full wave of current．

Since both transistors conduct during the cycle to provide an average or effective current， the transistors need not be matched．The same inverse voltage considerations associated with the half－wave circuitry will apply to full－wave circuitry．For balanced phase response，the diodes may have to be matched．
Constant bias voltage for the transistors is pro－ vided by D_{1} ．Control of forward current through D_{1} establishes a desired transistor bias voltage related to the forward diode voltage drop．Bias voltage is selected in accordance with the am－ plitude of quiescent load current permissible for a particular application．

An additional function of D_{1} is to provide some compensation for temperature changes． Transistor characteristics are such that with tem－ perature decrease，an increase in bias voltage is required to maintain constant collector current conditions．Conversely，with temperature in－ crease，a decrease in bias voltage is necessary to maintain constant collector current．The tem－ perature characteristics of the bias diode are such that the forward resistance increases with decreased temperature and decreases with in－ creased temperature．Therefore，with a constant current source to the diode，the forward voltage across the bias diode D_{1} would increase with lower ambient and decrease with higher ambient． In this manner，the drop across the diode would

号 E

Fig. 5. Load power vs input voltage
tend to compensate for the changing bias requirements of the transistor. R_{e} may be added to improve transistor interchangeability.
A two-terminal, phase-sensitive dc output from the full-wave discriminator can be obtained by adding bleeder resistors and connecting the load as shown in Fig. 4.
For best power transfer to the load, R is approximately equal to the load resistance. Onesixth of the output power is dissipated in the load; the remainder is lost in the bleeder resistors. Thus, this configuration is considerably less efficient than the three-terminal usage.
Current through the load will be full-wave with direction related to signal phase. When point C becomes positive, T_{1} conducts through D_{1}; and the current takes two paths, one through the load and the other through R. On the next half-cycle, points D and B become positive, and T_{2} conducts through D_{2} and completes the full wave of current through the load, With reversed signal phase, conduction would be through D_{4} and D_{3} with a reversal of current direction through the load.
Fig. 5 compares load power for half-wave, fullwave three-terminal, and full-wave two-terminal trarisistor phase discriminators as a function of input voltage. These curves show a favorable comparison between half-wave three-terminal output and full-wave two-terminal output.
miniaturization in antshell

STATHAM MODEL A52 linear *

STATHAM MODEL P222 flush
diaphragm pressure transducers.
gage, or differential pressures.
DIMENSIONS:.25" diam.x.x4" long
WEIGHT: 3 grams. approx.
RANGES: 0.10 to 0.200 psia, psig. or psid
IMENSIONS: $3^{* \prime}$ wide $\times 3^{\circ "}$ high
\times.84" long
WEIGHT: 8 grams, approx
RANGES: ± 5 to $\pm 100 \mathrm{~g}$ ± 5 to ± 25 psid.
NONLINEARITY \& HYSTERESIS:
NON-LINEARITY \& HYSTERESIS:
Not more than $\pm 1 \%$ fs
Not more than ± 1 R is
TRANSDUCTION: Resistive, complete
bridge; Statham unbonded strain gage
NON-LINEARITY \& HYSTERESIS
Not more than $\pm 1 \%$ is
TRANSDUCTION: Ralanced bridge;
complatham
unbonded strain complete, balanced brid
unbonded strain gage

Statham's line of miniature transducers for the measurement of pressure and acceleration are constructed to give accurate, reliable service
in applications which demand critical space requirements. These rugged,
laboratory-calibrated instruments are especially suitable for use
in the supersonic aircraft and missile fields.
If there are critical space problems in your instrumentation program, the requirement for accuracy and reliability need not be sacrificed...when you specify Statham. Our application engineers are always ready
to help with your instrumentation problems.

Compulate tectanical dala

INSTRUMENTS, INC.
12401 W. Olympic Blvd., Los Angeles 64, California circle 22 on reader-service caro

High Voltage

Semimetal Thermocouples

Robert W. Fritts

Assistant Director of Research
Baso Inc.
Milwaukee, Wis.

Fig. 1. Thermal emf for several specific pbTe alloys indicate the temperature and voltage ranges possible with various compositions.

Editor's Note: The semimetals discussed in this article were originally developed by Dr. Fritts for use outside the electronic industry. A semimetal thermocouple heated by a gas pilot light, was designed to provide direct control of a safety valve. Electronic Design feels that semimetals, which lie between metals and semiconductors in respect to electrical properties, have potential applications in electronics. The manufacture, properties, and new applications for the material are discussed.

THERMOELECTRIC materials, which generate enough power to operate relays, valves, and small motors, make possible the operation of equipment directly from a thermocouple junction. Composed of lead telluride (PbTe) modified by alloying agents, the new materials can generate power ten times more efficiently than conventional metallic thermocouples. They exhibit electrical properties between metals on the one hand and semiconductors on the other. The material used in the elements is called a semimetal to distinguish it from high resistance germanium and silicon devices.
Semimetal thermocouple elements are alloys composed principally of crystals of PbTe with minute concentrations of bismuth or sodium alloying agents to overcome the naturally high resistivity of the lead telluride. Desired electrical properties of the elements are obtained by varying the concentration of the alloying agent. The thermocouples can be manufactured at low cost since there is no need to prepare them in single crystal form, or with the high purity necessary for germanium and silicon. The elements are produced by casting ingots in carbon molds in a reducing atmosphere. They can be made with either positive or negative polarity depending on the kind of alloying agents used. Ready machinability is a further factor in low production and fabrication costs.
Positive and negative polarities in semimetals are obtained by varying the lead content in relation to the tellurium and by the addition of elements called positive promoters or negative promoters. In semimetals of positive polarity, P-type alloys, the amount of lead in the PbTe alloy ranges from 59 per cent to 61.8 per cent by weight, the positive promoter being less than 1 per cent. Semimetals of negative polarity, N-type alloys have a lead content of 61.95 per
ent to 63 per cent with a negative promoter ain of less than 1 per cent. Conductivity of oth materials can be varied over wide ranges y changing the amounts of the promoters added. ariations of the lead content within the ranges becified has negligible effect upon the conducrity.

Operating Conditions

Both P and N ingots can be used in open air up the melting point of tin (230 C). Above this mperature oxidation of the alloy becomes sigificant and hermetic sealing is necessary. The -type alloy is sufficiently stable for long time rvice up to 350 C when operated in a non-oxilizing atmosphere. The N-type alloy can be used or extended service up to 600 C .
For lower temperature applications, both the and N alloys may be soldered with tin or leadIn eutectic solders. For higher temperatures, speial electrode alloys have been developed to proide physically bonded ohmic contacts with a pegligible contact resistance.

New Applications

Sensitive relays have been operated directly fom a single P - N thermocouple from a temperawre difference of only 85 C . Accurate control of ong time delay relays can be effected by exmally heating the hot junction of the relay op-

Table 1. Electrical properties possible for various alloys. Voltage sensitivity and maximum power into a matched load depend upon different choices of \mathbf{P} and N alloys.

For High Voltage Sensitivity

$\begin{aligned} & \mathrm{T}_{2} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & T_{1} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	E mv	R	1	Matched Load Power mw	N alloy	P alloy
$\begin{aligned} & 550 \\ & 350 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 197 \\ & 116 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 81 \\ & 48 \end{aligned}$. 01 wt. \% Bi	. 002 wt. \% Na

For Maximum Power To Matched Load

$\begin{aligned} & 550 \\ & 350 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 117 \\ 65 \end{array}$	$\begin{aligned} & .0148 \\ & .0106 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 3.06 \end{aligned}$	$\begin{gathered} 230 \\ 99.7 \end{gathered}$. 10 wt. \% Bi	.035 wt. \% Na .021 wt. \% Na

id IN MISSILE GUIDANCE

IN TRACKING SYSTEMS

IN FIRE CONTROL

E IN AIRBORNE RADIO
IN COMPUTERS

IN RADAR

where it counts, it's Chemelec ${ }^{\circledR}$

 STAND-OFF \& FEED-THRU INSULATORS

Withstanding shock, vibration, temperature extremes, Chemelec Insulators-made of du Pont Teflon-are replacing components of brittle materials for high reliability in many critical electronic circuits.

Made in both compression-mounting and metal base, miniature and subminiature types, in standard R.M.A. colors and wide range of sizes and terminal designs.

Write for new catalog No. 358. Fluorocarbon Products, Inc., division of United States Gasket Co., Camden 1, New Jersey.

COMPRESSION MOUNTED TYPE

METAL DASE TYPE

PATENTEO

CIRCLE 23 ON READER-SERVICE CARD

now, with basic modules build...

DIGITAL VOLTMETERS

DIGITAL RATIOMETERS

or a COMPLETE DIGITAL, MISSILE ELECTRICAL CHECKOUT SYSTEM

for measuring DC to $0.01 \%, A C$ to 0.1%, Ohms to $0.01 \%, D C$ ratios to 0.01% and $A C$ ratios to 0.02%

Standard, off-the-shelf modules never become obsolete-provide maximum versatility. As needs change, simply regroup old modules or add new ones. Your system is always current at minimum cost and engineering. Internal construction is also modularized for ease of maintenance.
Fully transistorized circuits result in increased reliability, reduced power consumption, low heat dissipation, miniaturized packages, and eliminate radio noise and line transients.
Important new specifications - Wider, dynamic ranges cover all voltages from 100 microvolts to 1,000 volts; resistance from 10 milliohms to 10 megohms. Input power frequencies from 50 to 400 cycles. New balance logic speeds down ranging. Automatic AC ranging from 30 to 10,000 cycles. Use of transistors increases switch life by a factor of three.
Wide selection of input and output modules for operating printers, IBM punches, etc., can be accommodated without modifications. All contacts are accessible at rear panels with connectors. With All contacts are accessible at rear panels with connectors. With
plug-in modules, digitized data is provided in printed form, punched cards or tape without modification to basic measuring instruments.

CIRCLE 24 ON READER-SERVICE CARD

Temco
 AIRCRAFT DALLAS

fig. 2. Semimetal high roltage and high power fompositions have up to fen times more output han an iron-constantan hermocouple.
er. When positive and negative PbTe elements are used in a single thermocouple, the thermal emf developed is the sum of emf's for the two or the ordinate differential between mo curves. The electrical resistivity of these naterials exhibits a large positive temperature coefficient at ordinary temperatures, but at elerated temperatures this coefficient becomes negalive.
The shape of the resistivity-temperature curves of semimetal materials depends strongly upon the degree of alloying with negative or positive promotor. Some examples of composition and properties are shown in Table I.
A comparison of the data in Table I shows that high voltage sensitivity and maximum power delivery to a matched load cannot be obtained with a single choice of P and N compositions. High voltage sensitivity is obtained with P and N elements doped with small amounts of sodium and bismuth. High matched load power is obtained with elements doped with relatively higher amounts of these additives. The data for thermocouples designed for maximum power delivery to matched load illustrates how the selection of composition depends upon the temperature ranges to be encountered. A comparison of the roltage sensitivity of semimetal materials with contentional thermocouple alloys is shown in Fig. 2. Thermal emfs for two semimetal combinations are plotted with the voltage output of an iron constantan couple.
$A>$ is shown, semimetal high voltage sensitivity and high power compositions have up to ten times the output of the iron-constantan thermocouple.

..TITANIUM and TOMORROW

At Temco titanium is keeping its promises to the aircraft industry. No longer the intransigent metal, titanium in precision assemblies has become routine here. Through the development of Temco's Ti-Brite process, the tough titanium scale which once limited the material's usefulness is electrolytically removed without etching or disturbing the most precise dimensions.
And at Temco a successful process for chrome-plating titanium may be the major break-through in the feasibility study for extending its temperature resistance beyond the $800 \cdot 1000^{\circ} \mathrm{F}$ range. Forming, spot welding, precision machining are everyday operations. Temco's proven capabilities in precision automatic fusion welding have proved especially effective in the assembly of titanium parts. A case in point: the front compressor casings of Pratt \& Whitney's J. 57 engine, produced at Temco.
Quality and reliability of assemblies produced at Temco are assured by the extensive facilities of the Quality Control Department and Metallurgical Laboratory. These include the newest non-destructive spectographic and large X-ray equipment.
Capabilities in advanced metallurgy . . in titanium, aluminum, austenitic steel, stainless steel . . are typical of Temco progress. And now research and development capabilities are challenging the rare earths .. berylium. columbium, tantalum. molybdenum . . for tomorrow's needs. As the aircraft industry grows, so do Temco's capabilities to design, tool and produce for it. Whether your neod is for a component, a subsystem or a complete system ... an inspection of Temeo will bo informative and profitable.

CHALLENGE TEMCO...TODAY!

AEROVOX-ACME SGREEN ROOM FILTERS

Choose from a wide range of attenuation patterns from 14 kc to $\mathbf{1 0 , 0 0 0} \mathrm{mc}$.

Aerovox offers a complete selection of high attenuation screen room filters in single, double and triple section units to comply with the rigid specifications of advanced type screen room designs. Each filter is hermetically sealed and terminals at both ends are shielded. Easy mounting arrangements plus high attenuation performance assures you of the finest equipment specifically designed for screen room use.

Write for technical details to . . .

AEROVOX CORPORATION

NEW BEDFORD•MASSACHUSETTS CIRCLE 26 ON READER-SERVICE CARD

Two Watt Amplifier

In A Size 8 Can

IT'S HARD to believe that anybody could build a two watt amplifier in a size 8 shell. It's harder still to believe the amplifier could deliver two watts of 400 cycle power continuously in a 100 deg C ambient-and with no heat sink.
But it's been done. The new amplifier provides enough power, in push-pull, to drive the new size 8 servo motors. It has the same diameter, and is not much longer. Requiring only a 28 vdc power supply, it can deliver 40 v rms to an 812 ohm center-tapped load. The input
impedance is 5000 ohms.
Its gain can be adjusted from 200 to 1000 with an external resistor. The entire assembly weighs only an ounce and 0 . cupies only 0.8 cubic inch.

The Precision Components Div., of Norden-Ketay Corp., of Commack, N.Y., wanted this miniature amplifier to re. semble a servo motor as nearly as pos. sible. To pack so much power capability in so small a space required a novel packaging technique.

The result was a sandwich type struc-
we, ea The ' wit bo 4 in . ase, a Ind tra The ens of nit co nodule bard ins.

Size 8 motor and amplifier to drive it.

wre, easy to assemble, and very rugged. The construction uses five printed ciriit boards, each $1 / 16$ in. thick with a 4 in . diameter. A standard header and ase, and standard resistors, capacitors, Ind transistors (four of them) are used. The arrangement embodies parallel th of printed circuit boards with cirgiit components between. The sandwich podules are assembled first. The fifth poard brings connections to the header pins. The amplifier assembly is then completed by feeding peripheral leads flrough outer holes at the edge of the poards for interconnection between poards and connections to the header. The entire assembly is then resin tipped, evacuated and filled with a Monsanto liquid coolant. Finally, it is sealed in its case.
The cylindrical package lends itself ideally to the use of standard resistors Find capacitors, and to the use of the tandard JETEC-30 transistor case.
For more information turn to the Reader-Service card and circle 27.

Printed circuit wafers help unusual packaging technique provide 85 per cent space factor.

or ANY MAGNETIC MATERIALS JOB ...

This 32-page book contains valuable data on all Allegheny Ludlum mag. netic materials, silicon steels and spe. cial electrical alloys. Illustrated in full
color, includes essential information color, includes essential information
on properties, characteristics, applica. tions, etc. Your copy gladly sent free.

ADDRESS DEPT. ED-5

You can rely on core materials like the Allegheny 4750 components illus. trated above, in your receivers, record. ing heads or microphone assemblies.
In fact, whether your equipment is small or large, the extra-broad line of A-L magnetic materials will solve your magnetic core problems. It includes all grades of silicon steel sheets or coil strip, as well as Allegheny Silectron (grain-oriented silicon steel), and a wide selection of high-permea-
bility alloys such as 4750, Mumetal, Permendur, etc.
Our service on these materials also includes complete facilities for the fabrication and heat treatment of laminations. (For users of electrical sheets and strip, our lamination know-how is a real bonus value!) Either way, we'll welcome the chance to serve you. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

CIRCLE 28 ON READER-SERVICE CARD

Radar

Reflectors

of
Reinforced

Plastic

Ralph L. Mondano Raytheon Manufacturing Co. Waltham, Mass.

> The application of reinforced plastics in the fabrication of radar reflectors can be primarily traced to the facility with which glass-resin layups can be accurately shaped to a compound curvature. Radar reflector designers were immediately intrigued by the idea of being able to make an accurate male form upon which they could position some woven glass fabric, paint it with the new magic liquid thermosetting resins and obtain a good mechanical structure.

PROPERTIES not obtainable or economically unobtainable in metal radar reflectors are now available in reflectors made of reinforced plastic. At Raytheon Manufacturing Company's Plastic Research Division, practical plastic reflectors have been produced which resist corrosion, are easily reproduceable, can be molded with good surface finish and are dimensionally stable. But the one most important feature is light weight. Yet, the strength-weight ratio is comparable to or better than for metal reflectors.

Development of a reflector in reinforced plastics, which would have all the desirable properties indicated above plus reasonable cost (competitive position cost-wise will depend on quantity), required the solution of a number of formidable problems.

Problems Encountered

In the design of plastic radar reflectors, the following questions had to be answered:

- How would the necessary metallic reflecting surface be obtained?
- Would this structure have enough rigidity when mounted and gimballed at high accelerations?
- What are the aging characteristics as well as creep problems?
- How should metal attachments be made to these reflectors?
- Is a sandwich construction more desirable than a single laminate?
- How close could these reflectors be held to the mold?
- What would be the actual tolerances of reproducibility to the mold with respect to each reflector?

Design Evolution

To make a reasonably inexpensive mold having a compound curvature with a tolerance of plus or minus 0.003 in .-and able to withstand the handling and usage encountered in making a reinforced plastic part-phenolic tool resin was decided upon. This mold was hand worked and completed to required tolerances by the use of several sets of accurately finished metal templates. But, in trying to get a reinforced plastic piece reproduced from this mold resulted in disaster. An attempt was made to fabricate the reflector by laying up and curing the outside skin, the honeycomb, and the inside skin on the mold all in one step. The approach was to use a rubber blanket technique, put the sandwich construction assembly in an autoclave, subject it to the steam temperature and pressure and, presto, complete the part. This proved a costly venture. The large heat differential caused by the rapid introduction of heat to the outside surface of the mold caused it to shatter and to fracture into many pieces. Further afterthought suggested that more reinforcement should have been used in the fabrication of the plastic mold.

A second plastic mold was fabricated and a reflector made using the vacuum-bag technique. The assembly was laid up in steps and each layup was cured under heat lamps. Dimensions of the plastic mold changed from week to week, however, distorting under average atmospheric conditions. Changes were not on the order of thousandths but tens of thousandths of an inch.

By natural sequence, an all-metal mold was built. Most reinforced plastic manufacturers have concluded, and in some cases the hard way, that a good reinforced plastic part requires a well-designed metal mold. This holds true regardless of the process, whether it be press molded or vacuum-bag formed.

On this metal mold it was possible to successfully fabricate the first sandwich reinforced plastic reflector, but, unfortunately, not suitable to the radar people. Polyester resin, glass skins, and polyester glass-based honeycomb were used. Mechanical checks were run on the completed reflectors to compare them to the molds. It was found that the plastic reflectors were out as much as 0.030 in . This again was in no way uniform and resembled a distorted effect. Several
polyester-glass honeycomb sandwich reflectors were fabricated, each of which exhibited poor performance when subjected to radar tests. At this time aluminum wire screening was being used, embedded in the face laminate of the reflector for the necessary radar reflecting surface. Every effort was made to avoid using epoxy resins to make radar reflectors-mainly because of the difficulties encountered in handling and releasing of the epoxy part from the mold.

But, eventually it proved necessary to fabricate an epoxy resin reflector using aluminum screening as the reflector face. This reflector performed better electrically than any of those previously made, apparently due to lower shrinkage and better stability of epoxy resins. Further work with epoxy resins made it clear that a need existed for accurately controlled curing temperature and time schedules in order to obtain a minimum of distortion.

Reinforcing Considerations

Up to this point no consideration was given to internal and external ribbing and reinforcing. A honeycomb sandwich was made with an epoxy front skin involving a special edge reinforcement, glass polyester honeycomb and a top skin of epoxy and glass, the reflector face being aluminum screening. In some reflectors, especially the airborne ones, the requirements of weight and space dictated that, if possible, no ribbing

Fig. 3. Removing parabolic-refector sections from the mold and checking for blemishes.

Fig. 1. How infernal ribbing can be used to strengthen a reflector. The stiffening members are applied between the two skins. They are glass rovings which give unique unidirectional reinforcement.

Fig. 2. How inserts are installed. Pins and plugs are designed to hold the inserts in place during lay-up.
or build-up should be employed beyond reasonably thin honeycomb sandwiches. This led to consideration of internal ribbing (fig. 1). This consisted of adding stiffening members between the two skins, and was found to be extremely satisfactory. This produced the first suitable plastic reflector. External ribbing that would increase the thickness of the plastic reflector structure could also give added rigidity and resistance to distortion.

Production Problems

One problem that would be faced in production would be the shaping and positioning of the aluminum screening. Therefore, consideration was given to the use of other types of conductive coating. Several techniques such as conductive lacquers, electrodeposition, electroless plating and metal spray appeared feasible. A recent development is a laminating resin sufficiently dc conductive to be suitable for a radar reflective surface.

Performance Tesis

One glaring obstacle at present is the temperature performance limitation. Plastic reflectors have been built and tested which have suitably performed up to temperatures of 275 F . Higher

NEW SELENIUM RECTIFIERS

Clip Assembly Vac－u－Sel＊Rectifiers priced up to $\mathbf{7 5 \%}$ less，with space savings up to 50% ．

Three new clip assembly selenium rectifiers are now being produced in quantity by General Electric using the Vac－u－Sel process．
Sizes and Ratings－Type 6RS6 uses 5／32＂diameter cells and is rated 2.5 ma ；Type 6RS5 uses $9 / 32^{\prime \prime}$ cells and is rated 8 ma ；Type 6 RS 20 uses $15 / 32^{\prime \prime}$ cells and is rated 25 ma．Each size can take from one to six cells depending on the voltage rating（from 37 to 378 volts PIV）．
Applications－Vac－u－Sel clip assembly rectifiers are designed for applications on half－wave，doubler，center－ tap or bridge circuits．They are low in cost－from 20 to 35 cents each in quantity lots．They are designed to replace rectifiers up to twice as large in applications such as small household appliances，instruments，low power control devices and other electrical and elec－ tronic equipment．
For complete information，contact your G－E Apparatus Sales Office．Semiconductor Products Dept．，General Electric Company，Lynchburg， Virginia．
＊Registered Trade－mark General Electric Company

The advantages of Vac－u－Sel rectifiers lie in General Electric＇s precision vacuum pro cess for obtaining a pure，more even deposi－ tion of selenium over the entire cell surface This results in longer life－even at high operating ambients and better－than－normal rated current．Performance can be reliably predicted from unit to unit．

Encircled is the tiny Vac－u－Sel clip assembly rectifier now being used in the compact Sleep－Guard ${ }^{\text {® }}$ Control of the General Electric Automatic Blanket．

Progress／s Our Most Important Product GENERAL（3）ELECtric

Fig．4．Plastic－sandwich－type parabolic reflecto Front view，above and rear view，below．
temperature resins，stable at 500 F ，offer promise of overcoming the present temperature perforn－ ance limitation．
The structure proved to have enough rigidity at high accelerations when mounted and gim－ balled．In very rigid drop tests the equipment attached to the reflector was severely damaged． while the reflector showed no visible signs of damage．All indications are that the epoxy－glass reflectors are remaining within operational tol erances，on creep and distortion with aging which would indicate the retention of mechanical tolerances．Some of the reflectors have been 01 test for three years．

The reflectors have successfully passed all en vironmental tests to which they have been sub－ jected．One of these tests consisted of keeping the reflector at a temperature of -62 C for 48 hours and then raising the temperature to -54 C for an additional 24 hours．After being brought to room temperature，mechanical inspection for delamination，appearance，fraying，color change contour change and loosening of hardware re vealed no effect of low temperature on the re－ flector．Another test required that the reflector be held at its resonant frequency for 6 hours． Again there was no mechanical damage．Drop testing at 8 g and 15 g did not damage the re

ANDWIC ONEYCC ONEYCC
 EFLEC
 ？
 $\stackrel{3}{\square}$

EXAGGERATED VIEW OF REFLECTOR ENDS
LIFTING FROM MOLD

Fig. 5. How the edges of the sandwich honeycomb tend to lift away from the mold on curing. This tendency must be ac counted for in mold design but is accurately reproduceable from reflector to reflector
ector. Electrical pattern checks have shown hat the plastic reflector compares favorably with all-metal reflector in beam width and side we characteristics.

Metal Aftachments

Metal attachments can be easily fastened to nolded-in inserts. Including inserts in the mold lecreased the time and effort of locating and positioning attachments and allowed through holes for wave-guide horn feeds-a valuable innovation to the manufacturing technique. Pins and plugs could be designed to hold inserts that would remain an integral part of the sandwich structure similar to that shown in fig. 2.
A sandwich construction was found to be much more desirable than a single laminate mainly because it proved to have the best weightstability factor. Reflectors were fabricated up to a laminate thickness of $3 / 8$ in., mainly, to study the dimensional stability possible. An attempt was made to obtain the best possible solid laminate reproduction of the mold by utilizing staggered orientation of glass fabric and a slow, low temperature cure technique. Even so, the laminate structure proved less satisfactory than the sandwich structure.

Tolerances

The actual degree to which the best sandwich structure reflectors can be held to the mold varies with reflector size, design, and shape. A simple parabolic reflector, fig. 4, displayed exceptionally good reproducibility, yet, it defied techniques to establish tolerances. Mold tolerance reproducibility of the parabolic section reflector in fig. 3 also proved a difficult job. With reflectors approximately five feet long, the tips of the relector showed a slight tendency to lift off, as shown in fig. 5. However, the reproducibility of one reflector to the next proved excellent by actual performance tests.
Evtensive work has been done with plastic and metal reflectors involving fiberglass, CTL honeycomb and magnesium skins, and aluminum honeycomb and magnesium skins, making use of high-temperature plastic interface bonding.

Handy \& Harman

Sil-Fos Silver Brazing is
Used by Induction Motors Corp. in 5427 Different Motors

Induction Motors Corp. of Westbury, New York, and Maywood, California, has built an outstanding reputation as a designer and manufacturer of sub-fractional horsepower motors... for 5427 high performance reasons.
This large variety of motors, blowers and fans for an equally large variety of applications, stems from 15 basic motor frame sizes, depending on length, pole materials, windings, groove angles and the like
Handy \& Harman silver alloy brazing is concerned with brazing the rotors. Each rotor (whatever the size) is joined by a preformed ring of Handy \& Harman Sil-Fos, by induction heating - at an alloy cost that is reckoned in pennies. For example, the alloy cost per $7 / 8^{\prime \prime}$ frame is two cents per joint, or four cents per complete assembly.
That's an example of the economics of silver alloy brazing. Performance requirements are quite another thing - and they are unquestionably stringent. Many of these motors are used in aircraft and missile work and must, of course, meet the most extreme environmental conditions.
Strength alone would be reason enough to
discuss the merits of silver alloy brazing . . and to point out as a reason for its wide acceptance throughout industry. The facts are that there are many more benefits; gasand leak-tightness, thermal and electrical conductivity, ductility, and production economy - are all joint qualities of silver alloy brazing. At any time, we will be happy to discuss any or all of these qualities (and others), as applied to your product or production method. The benefits are large and you can enjoy them.

Now...

Microwave "Packages"

 Weigh, Bulk, Cost Less

UHF and microwave assemblies in Sanders Tri-Plate Strip Transmission Line match the performance of conventional coaxial and waveguide plumbing . . . in $1 / 3$ the space . . . at $1 / 2$ the weight . . . at substantially lower costs.
Constructed of flat, photo-etched conductive strips sandwiched between dielectric sheets, Tri-Plate Line carries energy in shorter wave lengths than in free space, and components with dimensions proportional to wave length can be correspondingly reduced in size.

Tri-Plate "Packages", designed for broad band operation within the frequency range of 100 to $12,400 \mathrm{mc}$, feature low radiation and cross talk, precise reproducibility, and reliability that meets military specifications.

Tri-Plate Components now in use include: antennas, balanced mixers, hybrid rings, variable attenuators, directional couplers, filters, power dividers.

Sanders engineers are at your service to help adapt existing equipment or prototype designs to Sanders Tri-Plate Line.

[^0]

New Delay Line

triples delay/rise-time ratio

DESIGNERS of radar recognition systems can do a better job of encoding and decoding information, thanks to a new lumped constant delay line. With no sacrifice in reliability, this line performs three times better than older lines.
Its figure of merit, or delay to rise time ratio, is 145 , compared with 50 , formerly considered the practical upper limit. This enables computer engineers to design delay line memories with 72 bit storage capacity rather than 25.
Engineers at ESC Corp., in Palisades Park, N. J. feel their new family of delay lines with their faster rise times, better figures of merit, and greater bandwidth, can encompass applications previously beyond the scope of a delay line.

Radar engineers have been using delay lines for their high reliability, long term accuracy, thermal stability, and simple circuitry. But these lines limited the amount of information radar systems could handle.

The number of codes they can handle, and their ability to distinguish code groups depend on system bandwidth

Pulse train after transmission through a delay line with a delay-to-rise-fime ratio of 50 to 1.

Pul
with

But former lines, with their relatively long rise times, narrowed the bandwidth. Bandwidth is inversely proportional to ise time.)
With older lines, engineers were forced ${ }_{0}$ resort to additional circuitry to boost ystem performance. One approach used pulse shaping circuits at discrete time ntervals along the delay line. This improved the situation, but at the expense of circuit simplicity-hence reliability. It is theoretically possible to make lelay lines with any delay to rise time ratio by cascading low pass filter sections with the desired phase and frequency characteristics. But practical delay lines cannot realize the ideal because of the imits imposed by their components, paricularly inductors, with low Q's on the order of 50 or 100 .
ESC's new lines use advanced desig॥ techniques and higher Q inductors to each their unprecedented figure of merit. The only sacrifice they've made is size, and not much of that. Lines with the figure of merit of 145 measure $3 x$ $+1 / 2 \times 8-1 / 2$ in. compared with the $2 \times 4 \times 8$ dimensions for similar lines with a merit figure of 50 .
Like former lines, their temperature coefficient of delay is less than 65 ppm per deg C, and can be improved considerably. They can be tapped to within 0.1 per cent of total delay, while former lines could be tapped only to 0.5 per cent.
For more information, turn to the Reader-Service card and circle 32.

Pulse train after transmission through a line with a 145 to 1 merit figure. Notice the steep edges of the pulses.

TESTS SHOW HUMPHREY RATE GYROS HAVE WIDE DYNAMIC RANGE WITH USEFUL POTENTIOMETER OUTPUT

A $150^{\circ} / \mathrm{sec}$. range Humphrey gyro in tests on a torsional pendulum rate generator shows reliable output with inputs down to less than 1 degree amplitude at $1 / 3$ cycle per second. Frictionless spring steel flexures and
floating piston dry gas damper are design features that provide low threshold and practically zero hysteresis performance.
Write or phone Humphrey today about your gyro problems.

Humphrey $_{\text {mee }}$
DEPT. ED-58 2805 CAÑON STREET SAN DIEGO 6, CALIFORNIA

TEST SETUP

Electronic design • May 28, 1958

Count Read Print

 with CMC's COMPLETE NEW PACKAGEUNIVERSAL COUNTER \& TIMER
O cps to 1 mc 3 microseconds to $1,000,000$ seconds READABLE READOUT
Inline-Inplane, up to 12 presentations per second

FAST
PRINTER
Permanent printed record at 4 lines per second

CMC's complete counting. timing. and frequency measuring system for laboratory and industrial use.

Pitfalls

in Precision AC Measurements

Dr. H. A. Poehler
Section Head

General Precision Lab., Inc Pleasantville, N. Y.

Part 1

THE MOST common pitfalls in ac high pre cision measurements can be attributed ground loops; loading effects; improper connec tions of shielded cables; harmonics in the null? calibration at an impedance different from that used in the measurement; and cancellation of errors in an overall measurement. Errors created by ground loops, loading effects, and harmonica in the null are examined and illustrative examplet of typical circuit errors are presented.
A subsequent article will consider the remaining sources of error outlined above.

Ground Loops

Lack of attention to grounding connections can lead to appreciable errors in precision meas. urements. The errors lie in the difference in potential which may exist between different grounds. A circulation of current, therefore takes place through the "ground loops" and re sults in unrecognized IR drops.

An example of a ground loop is given in Fig. 1 in the circuit used to measure the output voltage of a tachometer. The loop is set up by double grounding at points A and B. Since the power source is generally located at one ond of the equipment and the tachometer to be tested is located at the other, the existence of the double ground is not always as obvious as it appears in the figure. The error in this measurement is the potential drop produced by the ground current in flowing from C to B. Removal of the ground at A will free the circuit from this current.

Loading Effects

The input impedance of the null detector is also frequently neglected. Fig. 2 shows a typical circuit for the measurement of the voltage ratio of a transformer. The input capacity of the null detector, and the capacity of the ground terminal of the null detector with respect to ground are (Continued on page 43)

The problems encounterd in high precision measurements are in some ways analogous to those encountered in high frequency measurements. It is, therefore, possible to draw from the techniques used in the h-f fields to analyze these problems. This article discusses the commonly incurred errors in precision ac measurements and some corrective techniques.

Fig. 1. Ground loop in the circuit for the measurement of the output of a tachometer.

Fig. 2. Circuit for measuring the output ratio of a transformer. Error is introduced by the loading effect of the null detector.

Fig. 3. The Null Detector is properly connected. There is no loading effect.

or the case of the sub-miniature toroid

Major Quiggley, DC, AC, etc. banged his fist on the table and stared with fascination at the breakfast cereal before him. "Eureka! I've got it!" he bellowed with enthusiasm. "Sub-miniature toroids, just the size of these Cheerios* to solve our limited space problems!"

The major beamed with satisfaction. "Great idea!" he purred.
"Ill call B \& W and get them to develop it!"
Major Quiggley rushed to the office, put through a call to
Barker \& Williamson, and rapidly outlined his earth-shaking idea. "It will revolutionize the industry!" he concluded with final triumph.

Tactfully, the harassed sales manager explained that B \& W
had not only been manufacturing toroids the size of Cheerios for many years, but also have available a complete line of sub-miniature as well as larger types. He indicated that many of the toroids were so small that the center hole was only $1 / 6^{\prime \prime}$ in diameter!

Send one of your sales engineers right over!"

Here's What Major Quiggley Learned About Toroids from the B \& W Sales Engineer:

- Sizes-B \& W manufactures a complete range of standard and special toroid coils and related networks.
- Tolerances- 5% for standard types and as close as 1%
for specials.
- Finishes-plain-waxed-tape wrapped-encapsulated, or hermetically sealed to MIL-T-27A Specs where required.
- Delivery -To meet your requirements in time and quantity.
*Reg. Trademark-General Mills

Barker \& Wolliamson,

Canal St., Bristol, Pa.
Specialists in Designing and building equipment To operating specifications

1/2-AMPERE FAST

SWITCHING DIODE

NEW FROM SPERRY is this high-temperature S-130 series silicon diode which gives you greater currenthandling capability than germanium diodes - with no sacrifice in recovery time!
Check for yourself the performance characteristics of this new diode in the graphs at left . . . then compare them with our minimum specifications below.

fast recovent. Maximum recovery lime is
0.8 microseconds to return to 10 K ohms. Recovery test switches from a forward current 2 microsecond pulse of 500 ma , to a reverse voltage of -50 volts with a loop impedance of 1 K ohm.

high forward conductance. The forward current specification is 400 ma at $25^{\circ} \mathrm{C}$ with 1.0 volt maximum drop under static ($\mathrm{d}-\mathrm{c}$) conditions. Conductivity increases with temperature - diagram shows typical " x - y " plots at 25° and $150^{\circ} \mathrm{C}$.

Low leakage at high inverse voltage. Specification at $25^{\circ} \mathrm{C}$ is maximum $0.25 \mu \mathrm{a}$ at rated voltages.

high inverse voltage. Saturation voltages can be supplied in a range from 40 to 200 volts for this high current series.

migh-TEMPERATURE OPERATION. Typically, leakage current is no greater than $30 \mu \mathrm{a}$ at working inverse voltage and $150^{\circ} \mathrm{C}$. Diodes are rated for both operation and storage at temperatures from -65° to $+150^{\circ} \mathrm{C}$.

SEMICONDUCTOR DIVISION
SPERRY RAND CORPORATION South Norwalk, Connecticut
address all inquiries: Marketing Department, Great Neck, N. Y., or Sperry Gyroscope offices in Brooklyn, Cleveland, Seattle, San Francisco, Los Angeles, New Orleans, Boston, Baltimore, Philadelphia.
shown. The capacities of the null detector will cause appreciable errors unless the impedances Z_{1} and Z_{2} are negligible compared to the impedance R and the output impedance at S_{1}.
A circuit which avoids these pitfalls is shown in Fig. 3. Note that the impedance Z_{1} is shorted out, and that Z_{2} has zero voltage applied to it at null.
The latter principle can be applied quite generally. Whenever a disturbing impedance cannot be eliminated in a measurement circuit, the circuit may be arranged so that the voltage across this impedance is zero at the null.
In cases where it is necessary to ground both the resistance divider and the output winding of the transformer a bridge transformer may be used as in Fig. 4. The disturbing effects of \mathbf{Z}_{1} and \mathbf{Z}_{2} are here eliminated.

Harmonics In the Null

Considerable errors in measurement may result when the effect of the harmonics and pickup on the null detector are ignored.
A typical example is shown in Fig. 5 where the output voltage of a tachometer is measured. Suppose R and C are adjusted for a balance as indicated by a phase-sensitive voltmeter, such as a Phazor. In a practical case where the output of the tachometer is 6000 mv and measurements are desired to $\pm 0.5 \mathrm{mv}$, harmonic errors of as much as 6 mv have been observed. The difficulty arises since the phase-sensitive voltmeters are not insensitive to harmonics pickup in the null.
For precision measurement harmonics should be less than 10 times the desired minimum-detectable signal. In a case where it is desired to measure within 0.5 mv , the maximum permissible harmonic level in the null is 5 mv .
It is common practice, unfortunately, to attempt a measurement of a 1 mv in-phase signal in the presence of harmonic residuals of 200 mv . At least two means of reducing the harmonic content of the null signal are available:

- The distortion in the supply voltage should be reduced by reducing the distortion at the output of the oscillator feeding the amplifier, or by reducing the distortion in the amplifier;
- The null signal at the null detector should be filtered.
For precision measurements, the distortion in the output voltage should not exceed 0.3 per cent tot 1 l. Phase shift in the filter will not affect the accuracy of the measurement, provided that both the in-phase and the quadrature components of th null are adjusted to zero. It is inconvenient, however, to use filters with too large a phase shift, since an in-phase adjustment of the null ca ses changes in both the in-phase and the quidrature components.

The circuit of Fig. 6 indicates application of these principles to avoid harmonics in the null.

TRANSISTORIZED Clarostat* CIRCUITS

Miniaturized Contrals and Resistors

So typical of Clarostat's application engineering! These miniaturized controls and resistors are geared to transistorized circuits. They achieve the highest degree of space-saving consistent with high level of performance.

It takes specialized skill and long experience to produce such tiny controls and resistors. Clarostat, "The House of Resistors,"* places over three and a half decades of collaboration with electronic designers, engineers and manufacturers, at the disposal of transistor users. Count on Clarostat!

Typical Clarostat "Miniatures".
(A) Series 49 wire-wound potentiometer. Only $2 / 32^{\prime \prime}$ dia. Molded phenolic casing With or without switch. Single or dual. 1.5 watt rating. 1 to 20,000 ohms. Also Series 48 composition-element. \%" dia. 0.2 watt rating. Linear, 200 ohms to 5 megohms; tapered, 1500 ohms 102.5 megohms. With or without switch. Single or dual. (B) Boiled.down version of popular $15 / 10$ "control, Series 44 is no bigger than a dime! 0.2 watt rating. 0.015 lb . 500 ohms to 5 megohms. With or without switch. Popular in hearing aids, pocket radios and other compact assemblies
(C) Fixtohm* deposited carbon precision resistors. $1 / 1,1 / 2,1$ and 2 watt ratings. Plus/minus 1% tolerance. Extremely stable. Excel. lent characteristics. Popular in critical electronic assemblies and fine instruments.
(D) Glasohm* flexible power resistors. Wire winding on fiber-glass core. Fiber-glass braided covering. Axial pigtail leads. 2-watt rating. Plus/minus 10% standard tolerance. 5 to 2000 ohms.

${ }^{\bullet}$ Reg. U. S. Pat. Off.

CLAROSTAT MFG. CO., INC. - DOVER, NEW HAMPSHIRE
In Canada: CANADIAN MARCONI CO., LTD., Toronto 17, Ont.

Overlap Method

Makes Fast Pulses In Transistor Circuits

Mark Smith

Bogue Electric Mfg. Co
Paterson, N.J.

Overlapping a pulse and a delayed pulse can provide very high pulse repetition rates with very steep rise and fall times. The technique employs delay lines to provide very high quality pulses.

CONVENTIONAL transistorized pulse generators usually cannot provide fast, flat-topped pulses. Where repetition rates and amplitudes must be very high, and rise and fall times must be very low, the overlap technique may be just what the doctor ordered.
This technique involves more elaborate circuitry. It consists in taking the pulse as the overlap between a positive and negative step, displaced by a time interval equal to the desired
pulse width. Though this technique is not new (see Ref. 1), its description with logical diagrams suggests many circuits by which the overlap can be obtained.

Logic

In Fig. 1, the arrow-headed lines may have one of two possible values, " 0 " or " 1 ." Electrically, these values are represented by a high and a low voltage respectively. The "NOT" block in Fig. la
inverts its input, so that if its input, X_{d}, is a " 0 ," its output, X_{d}, is a " 1 ." A plate amplifier can perform this inversion nicely.
The "AND" block provides a " 1 " at its output only when both inputs are " 1. " The expression, $X X_{d}{ }^{\prime}$, signifies X "AND" X_{d}. One type of "AND" circuit has two plate amplifiers with a common load resistor, followed by a second plate amplifier. The second amplifier has a "NOT" function, and is needed because the first two plate ampli-
 respect to the timing marks.
rs invert the signal. The "DELAY" block reproaces the input signal at a later time, as shown the shift in the pulse with reference to the ming mark.
Fig. 1 shows how logical building blocks may used to generate pulses. Many circuits are ailable to produce the simple logical funcons, "AND," "OR," "NOT," and "INHIBIT."
Fig. 1b shows an "INHIBIT" block which mply combines the functions of the "NOT" and "AND" blocks. The level of its output is at " only when one of its inputs is a " 1 " and the her is a "0."
Fig. 1c shows the overlap method applied here both the positive and negative steps are vailable. Both steps are available from multivirators, Eccles-Jordan flip-flops, or Schmitt trigers. The overlap method is suitable when these rrcuits provide leading and trailing edges which re short enough for the desired pulse.
This technique is particularly useful as a subitute for $R-C$ differentiators in circuits like inary counters. It has three main advantages:
The counter output has pulses only of the pority selected;
There is no trailoff;
Nonlinearity of the edges of the flip-flop outut is not emphasized.

A Fast Pulse Generator

low It Works. Fig. 2 shows a Schmitt trigger friving a pulse forming circuit which uses the verlap technique. The Schmitt trigger delivers negative going step across R7. This causes Q5 oswing from cutoff to saturation. Since a negaive input provides a positive output, Q5 has profided the "NOT" function.
At the time Q5 is driven into saturation, curent is driven into the base of $Q 8$. Since $Q 7$'s pase is also negative at this time, both $Q 7$ and Q8 aturate, bringing Q7's collector to about zero folts.
After a time equal to the electrical length of he delay line, the collector voltage of Q5 appears at the input of the emitter follower Q6. Its putput, taken across R12, cuts Q7 off, so Q7's colector returns to -3 v .
The result of all this is a positive pulse at Q7's follector as wide as the length of the delay line. The Schmitt trigger which drives this pulseformer must have a positive going edge which is aster than the electrical length of the delay line. Q7, Q8, and R13 do not provide the "AND" unction referred to in Fig. 1a. "AND" may be performed by applying the positive pulse to a rroun led emitter amplifier. However, if a negaive pulse is needed, it may be obtained at the sollector of Q10 when the connections indicated by the broken lines are made.
(Continued on page 47)

CIRCLE 38 ON READER-SERVICE CARD

LINEMASTER

America's footswitch leader
A trio from more than 75 difmodels, designed to fit ever conceivable need. Writo for pricos and complote catalog or switch requirements.

LIMEMASTER SWITCH CORP.

130 Putnam Road. ©. Woodstock, Connecticut
CIRCLE 40 ON READER-SERVICE CARD

Fig. 3. Wave forms for the circuit of Fig. 2. The time base is set at $0.1 \mu \mathrm{sec}$ per major division. The delay line a, b, and d, was a 4 in . length of RG-65/U. A 12 in . length was used in Fig. 3c. a. Taken at Q7 collector. Sin wave input was 3 v peak to peak at 10 mc . Amplitude is 0.5 v per major division. \mathbf{b}. Same as Fig. 3a, but with me input. c. Same as Fig. 3b, but with 4 v p-p input. d. At collector of Q10. Input is $3 \mathrm{vp-p}$ at 5 mc . Amplitud is 1.0 v per major division.

wo Well It Works. Fig. 3 shows the wavems obtained from the circuit of Fig. 2. Wh and low frequency limits could not be demined due to the limitations of the test equipmot. The sine wave oscillator could not provide ine wave slower than 10 cps , and the scope, Tektronix 545 with a $53 / 54 \mathrm{~B}$ pre-amp had a t time of $0.015 \mu \mathrm{sec}$.
Though this scope is one of the fastest availle, it was still not fast enough to pass the freencies available from this pulse generator thout distortion. The rise times shown in the :illograms are for the CRO, not the pulse cir-

Since the test equipment was the limitation, effort was made to improve circuit performce with peaking coils, speed-up capacitors, ent-to-point wiring without sockets, and spe1 delay lines or resistors. Nevertheless, the pplitude vs time relationship was the same m 10 pulses per second to 5 million, with duty tios available to 40 per cent.
at the time the circuit was developed, in the fing of 1956, the 2 N240 was considered the pst suitable transistor. Since then the 2 N 393 s become available. It has higher power and rrent ratings, so it should permit much higher thut voltage and current with no sacrifice in th frequency performance.

The Inhibit Circuir

The "INHIBIT" function, which combines $10 T$ " and "AND," lends itself to transistorizapn. In Fig. 4, when the base of Q1 is at 0 v , its nitter voltage keeps Q2 and Q3 cut off. Q3's llector is then at -3 v . A negative step, fed to 1 causes Q3 to saturate, so its collector goes to 1.5 v . After a time equal to the length of the lay line, Q2's base conducts heavily and back arses the emitter-base diode of Q3, cutting Q3 Its collector swings back to -3 v , providing positive pulse. To complete the "INHIBIT" maction, this pulse can be applied to the base of grounded emitter amplifier.

Logic Conventions

The convention wherein " 0 " is represented by high voltage, and " 1 " by a low voltage, was fopted here because the circuits use pnp trantiors. When npn's are used, the convention is Nally reversed so a given logic circuit provides fe sane logic whether it uses pnp's or npn's.

References

Radiation Laboratory Series, Massachusetts Institute of echnclogy, Vol. 19, pp 244-245.
Trau istor Switching Circuits, M. Smith, Electronc Esici. Oct. 1, 1957.

For a reprint of this article turn to Readerervic card and circle 41.

> SPECIAL
> PACKAGING FOR DIODE ASSEMBLIES

At Hughes, the technique of multiple unit packaging has been perfected to an extent never before achieved. Now specific circuit configurations can be housed in any one of four Hughes packages. Each has its ow'n advantages but all offer one prime advantage - convenience.
Many individual parts are reduced to a single component-solving a spare parts problem for matched units by eliminating the chance they will become separated; circuit design and installation are simplified; and space problems are minimized by the unusual compactness of Hughes multiple unit packaging. With these features Hughes combines the ability to adjust to a wide range of individual requirements, while providing a completely satisfactory assembly.
encapsulated pair
*68" x $312^{\prime \prime} \times .2^{\prime \prime}$
encapsulated quad
$75^{\prime \prime} \times .5^{\prime \prime} \times .25^{\prime \prime}$
These two Hughes solder-In untts can house either matched or unmatched diodes in a variety of different ways.

HUGHES 픙

Applications: Full wave rectifier-bridge rectifier-modulator-demodulator-phase detector-and many others.
For literature, write: HUGHES PRODUCTS, Semiconductor Division, International Airport Station, Los Angeles 45, Calif.

METALLIC OCTAL SOCKET

ENCAPSULATED 9-PIN MINIATURE
Both are plug-ins intended primarily as direct sube replacement, and both can be adapted to contain special circuit configurations.

HCS HUGHES PRODUCTS O 1988. HUD
RVICE CARD

Optimum Design of Power Transformers
 Part 2 and Saturable Reactors
 T. R. Nisbef
 Alto Scientific Co., Inc. Palo Alto, Calif.

Here, in the concluding part of Mr. Nisbet's article, he presents useful nomograms and a procedure for optimizing transformer designs. The nomograms remove a great deal of the drudgery normally involved in transformer and saturable reactor designs.

MANY of the equations which arise in this work are of the form ${ }^{8} a e^{8}+b e^{4}-c e^{2}-$ $d=0$. The conventional method of solving them is very time consuming. Since great accuracy is not normally required, a simple trial and error method was first attempted, but even this was quite laborious.

Cubic Equations

The nomogram of Fig. 6 enables good approximate solutions (to two or three significant digits) for a cubic equation of this form. In effect, the first two terms are considered as $\left(e^{\prime}\right)^{4}\left(a e^{2}+b\right)$. The nomogram is used to find the value of e^{\prime} which makes the equation true. Successive approximations are discarded until $e^{\prime}=e$, that is, until the original value of e is reached.

Another type of cubic equation arises in the evaluation of v°. The coefficients in this case have similarities which enable the nomogram of Fig. 7 to be simpler to operate than Fig. 6.

Regulation

The calculated value of total wire loss can be visualized as a resistance in series with the secondary of a perfect transformer. The voltage drop which would be caused by the secondary current flowing through this value of resistance makes possible a quick check on the anticipated transformer regulation.

[^1]
Leakage Inductance

Regulation is affected by leakage inductance. By interleaving sections of the primary and secondary, the leakage inductance can generally be reduced significantly. For the type of transformer described, the leakage inductance effectively present in a winding of N turns is approximately
$L_{L}=5.3 N^{2}(M L T)\left(2_{-}^{-}-S_{w}\right) v^{-1} 10^{-6} \mathrm{mh}$ (15) where
$M L T=$ mean length of turn $=4(e+f) \quad(15 a)$
Eq (15) is based on the assumption that half the primary and half the secondary are wound on each of the two bobbins. If the windings are further split, so that each bobbin contains a fraction of one winding sandwiched between fractions of the other winding, the leakage inductance is multiplied by approximately n^{-2}, where n is the number of boundaries of insulating material between sections of the windings.
It is important to note that it is possible, in most cases, by interleaving sections of the windings, to make the leakage inductance small enough to be represented by a 5 per cent increase in the calculated value of resistance.

Maximum VA Rating

The core loss is a function of the peak flux density. It is important, therefore, to have a method for determining the optimum value of flux density.

If published graphs of core loss vs peak induc-

Table I. Differential Logarithmic Core Loss

Material	n	Frequency of Measurement
Ferrite	. 438	100 kc
Grain Oriented Steel	. 527	
Silicon Iron	. 485	" ${ }^{\text {c }}$
Grain Oriented Steel, 2 mils	. 5	10
Silicon Iron, 1 mil	. 434	
Ferrite (Ferroxcube IIIB)	. 41	
Grain Oriented Steel, 5 mils	. 575	400 cps
Silicon Iron, 4 mils	. 51	
High Perm 49,6 mils, at 15 kilogauss	. 64	" "
High Perm 49,6 mils, at 1 kilogauss	. 34	" "
Silicon Iron, 14 mils, at 14 kilogauss	. 535	60
Silicon Iron, 14 mils, at 1 kilogauss	. 38	"
Grain Oriented Steel, 14 mils, to 15 kilogauss	. 527	
Mumetal, 14 mils, at 2 kilogauss	. 725	
Mumetal, 14 mils, at 8 kilogauss	. 493	

(Source - graphs published in "Reference Handbook for Radio Engineers")
tion are studied, it will be seen that in the majority of cases the "curve" is a straight line when ordinates and abscissas are plotted on logarithmic scales. From any such graph, a constant, n, can be derived, representing the differential logarithmic core loss, a property of the material. As B varies from B_{1} to B_{2} kilogauss, the core loss,

KEY

Fig. 6. Nomograms for cubic equations.
a. To find e from $a e^{6}+b e^{4}$ $-c e^{2}-d=0$. Calculate $r=b / a ;$ $s=(d a / b c)-1 ; p=c / a$. Pick a point on the e scale and traverse the scales as shown in the key. In the sixth traversal, follow the sloping lines to plot a point on the right scale corresponding to one on the left. Note the point of intersection on the e scale after the sixth traversal. With this point, repeat from the start till the sixth traversals cut the e scale at the same point twice.
b. This solves for ealso, but in this case, $r=b / a ; t=1$ (da/bc); $q=a / c$. Start with any point on the e scale. Follow the key, repeating the first traversal from the point on the e scale where the sixth traversal finishes Repeat till the sixth traversal cuts the e scale twice at the same point.

for small parts and assemblles Simplifies, improves and speeds up component production. Pro vides local heat to otherwise inaccessible spots. Safe and watts, 100 watts standby: 11 volts. 60 cycles. $15^{3} s^{\prime \prime} \times 211^{\prime \prime} \times$
$15^{\prime \prime} .150$ Ibs. Bullotin on request. ${ }^{15 " .} 150$ lbs. Bullotin on request. Manchester, N. H., U. S. A.
Copyright © 195s, Marion

marion meters

CIRCLE 43 ON READER-SERVICE CARD
BOOST INSTRUMENT SENSITIVITY ... with MIN-AMP

HIGH IrNPUT IMPEDANCE LOW NOISE LEVEL STABILIZED GAIN $(\times 10, \times 100$
WIDE FREOUENCY RANGE WIDE FREQUENCY RANGI HI- and LO-PASS FILTER

Miniature, low-noise pre-amplifie
PRICE - $\$ 125.00$ (Model 201 illustrated) extends oscilloscope and voltmeter sensitivity by factors of 10 or 100 . Two-stage amplifier readily removed from power unit and "plugged-in" to instrument input terminals without wiring, connecting links or other accessories. Compact assembly requires minimum bench space. Normal frequency range; 5 cycles to 1 mc . Switch-controlled filter circuits limit amplifier pass band; improve signal/noise ratio. Wide dynamic range; over 10 volts maximum output. Write for technical bulletin: MIN-AMP

ELECTRONICS. INC. MOUNTAIN LAKES, NEW JERSEY CIRCLE 44 ON READER-SERVICE CARD
P, varies from P_{1} to P_{2} watts per lb. Hence

$$
\begin{equation*}
\frac{\log B_{2} / B_{1}}{\log P_{2} / P_{1}}=n \tag{16}
\end{equation*}
$$

a constant for the core material.
For maximum volt-amperes

$$
\begin{equation*}
P_{c} / P_{w o}=2 n \tag{17}
\end{equation*}
$$

This relationship should be observed in a design where the ultimate limiting factor is the temperature rise. Values of n for different core materials are shown in Table I. It should be noted that unlike the core loss itself, n is substantially independent of frequency.

By inserting the expanded formulas for core loss and wire loss in eq (17), an equation can be written for setting a maximum VA rating.

Optimum Design

For minimum weight

$$
\begin{equation*}
\frac{d}{d e}\left(P_{w}\right)=-\frac{Q}{P \rho_{w} S_{w}} \frac{d}{d e}\left(P_{c}\right) \tag{18}
\end{equation*}
$$

For maximum efficiency

$$
\begin{equation*}
\frac{d}{d e}\left(P_{u}\right)=-\frac{d}{d e}\left(P_{c}\right) \tag{19}
\end{equation*}
$$

For maximum efficiency and minimum weight

$$
\begin{equation*}
P=\frac{Q}{\rho_{w} S_{w}} \tag{20}
\end{equation*}
$$

This offers a useful starting point in design, provided that flux densities approaching saturation are not involved. From P, the manufacturer's data gives a value of peak induction B, which is necessary for the calculation of c in eq (la).

Where saturation densities are involved, (when P becomes fixed at its maximum permissible value), it can be shown that

$$
\begin{equation*}
Q \approx \frac{P \rho_{c} S_{c}}{(6 n-1)} \frac{e^{2}}{M} \frac{(v+1)}{v^{\frac{1}{2}}} \tag{21}
\end{equation*}
$$

and n is assumed at 0.5.

Window Shape

The window shape factor, v, has heretofore been assumed. It can now be evaluated.

If a design has been calculated for an assumed value of v, a value is obtained for the two sides, f and g. If f is multiplied by a correction factor z, and g is divided by the same amount, the window area remains the same but the distribution of weights and losses is changed.

To find the window shape which yields the lowest combined core and wire loss, the combined loss is evaluated. The window side g is retained as a separate entity, to enable it to be di-

Fig. 7. To solve for v. Calculate $M /\left[e^{2}(6 n-1)\right]$. With this point on scale w, find the number on the v_{1} scale which, when the key is followed, gives the same number on the v_{2} scale. This number is v.
vided by z while f is multiplied by z. Equating the differential with respect to z to zero gives

$$
\begin{equation*}
v^{\prime}=\frac{v}{z^{2}}=1+\frac{Q M^{2}}{P \rho_{c} S_{c} e^{4}} \tag{22}
\end{equation*}
$$

In this equation, v is the ratio g / f which was assumed in order to enable the first calculation to proceed. Since z has changed the ratio g / f, the new value v^{\prime} is the old value divided by z^{2}. This new value is used as v in the next calculation.

Comparison of eq (21) and (22) shows that 0 depends on Q, and Q on v. The equations must therefore be solved simultaneously. The solution is a cubic equation for which the nomogram of Fig. 7 was constructed.

The presence of the variable M / e^{2} in (21) and (22) requires that, after solving for v and Q, the design procedure must be continued, at least until e and M are evaluated. By a repetitive process (or by intelligent anticipation of a suitable value of M / e^{2}) a final design can be arrived at. Fortunately, stability is reached quickly, usually after two successive corrections to an assumed value of 0 .

Design Procedure

1. Assume values of $v=2$ and $Q=0.8$.
2. Find $P=Q / \rho_{10} S_{10}$ (20) and from manufacturer's data. Find corresponding value of B.
3. From the nomogram of Fig. 1 and from $V / N=$ $c e^{2}$ (1a) find c. Assume a suitable high temperature and from Q find D. (Fig. 2) From D find T. ($D=T I / S_{w}$) (3). Find M from

$$
\begin{equation*}
M=\sqrt{\frac{V}{c k T}}=e f^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

4. Find e for minimum weight with eq (9) solved by use of Fig. 5. Write values of e^{2}, e^{4}, and e^{d} and check solution.
$8.7 \rho_{c} \mathrm{~S}_{c} e^{6}+2 \rho_{c} S_{c}(v+1) v^{-\frac{1}{2}} M e^{4}$

$$
\begin{equation*}
-4 \rho_{w} S_{w} M^{2} e^{2}-6 \rho_{w} S_{v} M^{3} v^{-\frac{1}{2}}=0 \tag{22}
\end{equation*}
$$

5. Find $\quad v^{\prime}=1+\frac{Q M^{2}}{P \rho_{c} S_{c} e^{4}}$

Use this as new value for v in minimum weight equation. Repeat until $v^{\prime}=v$.
6. Find weight of core $=2.9 \rho_{c} S_{e} e^{s}+2 \rho_{0} S_{e}$ $(v+1) v^{-1 / 2} M e(6)$. Find core loss (P times core

Э 둔
weight). Find volume of windings $=4 M^{2} e^{-1}+$ $2 M^{3} v^{-1 / 4} e^{-3}(7)$. Find wire weight ($\rho_{\infty} S_{\infty}$ times volume). Find wire loss (Q times volume). Core loss should be $2 n$ times wire loss.
Find surface area $=2 f^{2}(2+3 v)+6 e f(2+$ 0) $+11.8 e^{2}$ (13); $f=M / e v^{1 / 2}(2)$. If no special methods of cooling are to be used, estimate the temperature rise from (14).
8. If temperature rise is too low, use a higher value of Q and repeat from Step 1, provided that this does not require a peak flux density which is too close to saturation.
9. If temperature rise is correct, proceed to Step 17.
10. If temperature rise is too low, and if closeness to saturation flux density prevents Q from being raised in accordance with (20), assume $0=2$ and $Q=1$ to start the calculation, or proceed from the results obtained in the previous calculation.
11. Use the maximum permissible values of B and P which do not involve saturation.
12. Same as Step 3.
13. Find v^{\prime} from Fig. 7. Find Q (21). Check values of v^{\prime} and Q from (22). Use these values for 0 and Q and repéat from Step 12. Repeat or anticipate likely change in M / e^{2} to hasten reaching of stability, where $v^{\prime}=v$.
14. Same as Step 6.
15. Same as Step 7.
16. Estimate temperature of wire from the surface temperature and apply this if necessary as a correction to Step 12. If temperature is unreasonably high or low, repeat from Step 10, using a lower or higher value of Q and the value of v vielded by the last calculation.
17. Evaluate $M L T=4(e+f)$, and from wire tables confirm total wire loss and the fact that the window will accommodate all the turns.
18. From wire tables, check on the value used for T.
19. Construct a diagram of the window, dimensioning the insulation thicknesses, wire diameters, unused portions of final layers of windings, etc., to confirm assumed values of S_{w} and \boldsymbol{k}.
In the majority of applications involving 400 cps and higher frequencies, the conditions described in Step 10 will apply and the design procedure can usually commence at that point.

References

Ele tronic Transformers and Circuits, Reuben Lee, John Wiley \& Sons, Inc.
Radio Engineering, F. E. Terman, McGraw Hill Book Co., Inc.
Rejorence Handbook for Radio Engineers, International Telephone \& Telegraph Corp.
Arnold Engineering Co., Bulletin SC-107.
Sprigue Engineering, Bulletin No. 400A.
For a reprint of both parts of this article turn to the Reader-Service card and circle 45.

WORLD'S LEADING

 ELECTRONIC TECHNICAL
MAGAZINE

in display advertising pages

In April, ELECTRONIC DESIGN carried 229 pages of display advertising-moving into first position-the world's leader-among electronic technical publications.
It hos token only 64 months for ELECTRONIC DESIGN to outpace all electronic maga-zines-a growth history unparalleled among business magazines.
This advertising revenue enables ELECTRONIC DESIGN to carry the greatest number of editorial pages devoted to electronic design engineering. Our ratio of editorial to advertising is extraordinarily high; 43%.
It means we can bring you all of the new products normally encountered in your work-more design information, more useful charts, tables, nomographs, largest amount of design engineering editorial. Thus, ELECTRONIC DESIGN is fulfilling its original concept as the "single central source of electronic technical information for the design engineer."
No wonder more and more electronic design engineers read and rely on ELECTRONIC DESIGN FIRST.

A hayden publication

830 Third Avenue. New York 22. New York
Plaza 1-5530

PRODUCTION PRODUC:TS

More than 20 tubes can be checked each min. ute for 20 characteristics per tube with a new tube tester, recently installed by Tung-Sol Electric Inc. The machine uses 60 meter-relays furnished by Chesterland, Ohio's Assembly Prod. ucts, Inc., and can test tubes four times faster than hitherto possible.

The meter relays monitor plate, screen, filament, and gas currents; leakage and cut-off currents; emission, voltage gain, and mutual conductance, as well as short circuits.

The tube tester can test almost any of a thousand vacuum tube type. In addition to testing, the meter-relays monitor all voltages and can automatically shut down the conveyor if improper test conditions develop.

In about a third of a second, each meter-relay can measure an electrical property and display the magnitude on a dial; reject a faulty tube; and reset itself so it is ready to test another tube

When a tube is faulty, a moving pointer on the meter-relay meets either a high or a low fixed pointer. Contacts on the pointer touch and lock electro-magnetically, closing a circuit. This actuates a load relay, closing the contacts of a heavy duty power relay. The power relay actuates a counter that keeps track of the number of tubes rejected for a particular characteristics. The power relay also breaks the circuit to a reject solenoid, whose plunger is released, pushing the defective tube from its socket at the right time so it falls through a chute with other tubes rejected for the same test.

Though the meter-relays are slower than electronic devices, they are more reliable, easy to work with, and rarely need calibration.

Assembly Products, Inc., Dept. ED, Chesterland, Ohio.

CIRCLE 47 ON READER-SERVICE CARD

NEW MATERIALS

Ceramic Magnetic Wire

Insulation withstands up to 1000 F
Two types of high-temperature magnet wire ave been announced. One of these has a bonded efractory insulation which is rated for continuhus use at 700 F , and for intermittent use up to 600 F . The other wire has a ceramic insulation Which is rated for continuous use at 1000 F . Both bf these insulations are normally supplied on copher wire but other metals or alloys which have better temperature characteristics are available. Secon Metals Corp., Dept. ED, 7 Intervale St., White Plains, N.Y.

CIRCLE 48 ON READER-SERVICE CARD

Damping Fluid

Low viscosity silicone
Available in 5, 10, and 20 centistoke grades, ype 81743 silicone fluid has a lower viscositylemperature coefficient and lower pour point than most methyl silicone fluids. Suggested uses for this compressible fluid are as a damping medium in vibration dampers, shock absorbers, dash pot relays and timing relays; and as a hydraulic fluid in servomechanisms, acceleromelers, instruments and other control devices. In common with other silicone fluids, type 81743 is highly resistant to shear breakdown and possesses unusual chemical resistance. Typical values for the three grades include a specific gravity of $0.92,0.94,0.96$; weight per gallon of 7.7, 7.8, 8 lbs ; refractive index of $1.3965,1.3998$, 1.4016; minimum boiling point (1.5 mm Hg) 275 , $390,480 \mathrm{~F}$; flash point, $310,415,525 \mathrm{~F}$; and pour point $-100,-100,-76$ F.
General Electric Co., Silicone Products Dept., Dept. ED, Waterford, N.Y.

CIRCLE 49 ON READER-SERVICE CARD

Tinning Process

Instantly coats printed circuits
Called Instant Tin, this solution is designed for the tinning of brass and copper articles at roon temperature. The process provides protection and acts as a soldering aid for non-ferrous elec rical components, printed circuits, solder luge and others.
D isert Laboratory, Dept. ED, 17-312 N. Indian Ave., N. Palm Springs, Calif.

CIRCLE 50 ON READER-SERVICE CARD

NEWS ABOUT SILICON DEVICES

Reverse current: 10-7 amp. Rectification ratio: 10,000,000:1

Now...new efficiency for TV power supplies with dependable diodes of Du Pont Hyperpure Silicon

More efficient power supplies . . . savings in space and weight . . . important reasons why TV manufacturers are replacing conventional rectifying systems with silicon diodes. Today, several types of silicon diodes and rectifiers are readily available for TV circuits. TV manufacturers have tested silicon rectifiers and report no noticeable change in output voltage under continuous load conditions over long periods of time. Sili-
con components can operate in ambients from -65° to $150^{\circ} \mathrm{C}$. They maintain excellent electrical stability and resist aging.
Silicon components have high shock and vibration limits. They are up to 99% efficient in units operated at 60 cps . and require little maintenance. Silicon cells permit a rectification ratio as high as 10 million to 1 -almost negligible reverse conductance. Silicon bridgesare

\NEW BOOKLET ON DU PONT HYPERPURE SILICON

 You'll find our new, illustrated booklet about Hyperpure Silicon helpful and interesting-it describes the manufacture, properties and uses of Du Pont Hyperpure Silicon. Just drop us a card for your copy. E. I. du Pont de Nemours \& Co. (Inc.), Pigments De. partment, Silicon Development Group, Wilmington 98, Delaware. (This offer limited to United States and Canada.)CIRCLE SI ON READER-SERVICE CARD
available with ratings from 1 to 1,000 amperes and more than 600 volts rms. Note to device manufacturers: You can produce silicon transistors, rectifiers and produce silicon transistors, rectifiers and
diodes of the highest quality with Du Pont diodes of the highest quality with Du Pont
Hyperpure Silicon. It's now availalle in three grades for maximum efficiency and three grades for maximum efficiency and
ease of use . . with a purity range of 3 to ease ot use . . with a purity range of 3 to
11 atoms of boron per billion. Technical information on crystal growing is availahle from Du Pont... pioneer producer of semiconductor-grade silicon.

PIGMENTS DEPARTMENT

better things for better uving
through chemistry

NEW PRODUCTS

To provide a complete coverage of ALL new products generally specified when designing electronic original equipment, the New Product section has been extended. To include the largest number of items, products which are best suited to a brief description have been noted at the end of the section.

SHOCK TESTER

Accurate shock patterns

 are reproduced on this machine through the use of differently shaped lead pellets placed on the impact anvil. Among other shock patterns, the shock tester provides a specified terminal-peak sawtooth pulse shapesimilar to the one shown -rising to 100 g in 6 msec and then dropping abruptly to zero. The machine accommodates specimen weights to 40 lb , a cross-sectional area to $12-1 / 2 \mathrm{in}$. sq.Avco Manufacturing Corp., Lycoming Div., Dept. ED, 550 Main St., Stratford, Conn.

CIRCLE 54 ON
reader-service card

OSCILLOSCOPE CAMERA

Ten traces can be photographed by the Oscillotron camera on a single frame, or a one-to-one presentation can be given, whichever is desired. The camera has a large polaroid back that takes up to 80 finished pictures in a single loading. The versatility of the unit is provided by a feathertouch multiple exposure positioning bar. A 35 mm or 70 mm electrically pulsed camera is also available for attachment to the same periscope system used with the Oscillotron camera.
Beattie-Coleman, Inc., Dept. ED, 1000 N. Olive St., Anaheim, Calif.

CIRCLE 55 ON READER-SERVICE CARD

GAUSSMETER

Magnetic flux densities up to 50,000 gauss, in static or ac fields, are measured to an accuracy of ± 3 per cent by model 1295 gaussmeter. The transistorized instrument utilizes the Hall effect to make these measurements. Two standard magnets of 1000 and 5000 gauss, calibrated to ± 1 per cent, are included.
Radio Frequency Labs., Inc., Dept. ED, Powerville Rd., Boonton, N.J.

CIRCLE 56 ON READER-SERVICE CARD

WIREWOUND RESISTORS

Temperature ratings over 250 C are featured in the Blu-Ohm series of wirewound resistors. Seven different sizes cover a power range from 2.5 w through 15 w . A typical 3 w unit, type B-2, w ill maintain its 3 w rating at 80 C , derated to 1 w at 275 C . Larger units, from 5 through 15 w , "ill derate at full load to 0 at 275 C . The series is constructed of ceramic materials together with a loy wires designed to withstand high temperatires.

Bradford Components, Inc., Dept. ED, Box 1)7, 65 South Avenue, Salamanca, N.Y. circle 57 on reader-service card

ALL-ELECTRONIC DIGITAL VOLTMETER...ONLY \$960

Here at last is a portable all-electronic digital voltmeter that measures DC voltages from .001 to 1000 volts with 0.1% accuracy. In less than $1 / 10$ of a second the measured voltage is presented in clear numerical form on a digital in-line readout that even unskilled personnel can read quickly and accurately, with little possibility of error. Direct voltage measurement by successive approximation provides accuracy and sensitivity previously obtainable
only in the delicate, complex and expensive instruments. Extremely stable operation - continuous calibration against an internal reference.
The low price of the Model 801 allows you to put one on every bench. Its accuracy and reliability are assured by KIN TEL's years of design and manufacturing experience
. experience gained in the manufacture of more than 10,000 precision electronic instruments.

Rangen - 0.000 to $1.599 ; 010.010$ to 15.99 ; (010). (1) to 159.9; (1010) to) 1010 volts (manual ranging and polarity)
Hecuracy Readout Input limpedance + digits nlun of feciuls seale

The Model 802 provides 10 megohms input impedance. Price \$1190, In other special models the binary coded decimal and decimal outputs are externally available to permit use as an analog to digital converter.
(model Bon
(onversion Rute Comversion Time. 1)isplas Time.

Dienensions. P'ower Requirroments

5725 Kearny Villa Road, Sun Diego 11 Culifornta. Phone Browning
. 10 per seciond
. approximately 70 milliseconds idjustahle from approximately 1 second to infinity ($p l$ us push-button read once control) $11^{\prime \prime}$ high $\times 71 / 2^{\prime \prime}$ wide $\times 20^{\prime \prime}$ deep tite today for demonstration or literature rite today for demonstration or literature. Representatives in all major cities. Write today for demonstration or literature. CIRCLE 58 ON READER-SERVICE CARD

KINTER
A Olvision of Cohu Electionices inc

Amperex ${ }^{\circ}$ proves

there's room for

extra engineering

even in standard

replacement tubes!

The hard core of the Amperex line has always been a group of electrically unique "proprietary" types, available from no othermanufacturer. However, the Amperex name has come to mean concrete engineering benefits even in standard communications and industrial tubes, above and beyond plug-in interchangeability. Thanks to a manufacturing philosophy of untiring perfectionism - combined with the most recent techniques of production, quality control and applications research - the Amperex replacement tubes shown here offer tighter tolerances, greater uniformity, extra ruggedness in critical applications, plus remarkable freedom from common defects and failures: in short, an extra dimension of quality.

NEW PRODUCTS

Gear Train Analyzer
Measures gear play

This gear train analyzer accurately evaluates lost motion in precision gear trains. The instrument consists basically of controls and a two-phase torque actuator. Total lost motion is measured by applying constant torque to the input pinion of the locked gear train and reading clockwise and counterclockwise actuator shaft displacement.

Daco Instrument Co., Dept. ED, Tillary \& Prince Sts., Brooklyn, N.Y. circle 59 on reader-service card

(1) hard glass envelope

3 rizid anode connection
3 rugged grid cylinder
anti grid-emission slot
heat shield prevents excessive grid temperatures
(6) reinforced cathode with special emitting material
7 coramic insulators
heavy leads allow high peak-currents
(9) highly effective getter
(10) rugged powder-glass base
(1) 8 supports give mechanical strength

Sampling Switches

2400 samples per min

General specifications for the series 1300 sampling switches include up to four accurately synchronized poles, and as many as 24 non-shorting channels. Type 1300 -a samples at the rate of 24 ,000 samples per minute per channel. The unit weighs 1 lb . and measures $2 \times 2 \times 3 \mathrm{in}$. Sizes in other models vary with the requirements of the switch.

General Devices, Inc., Dept. ED, Princeton, N.J.
circle 60 on reader-service card
< CIRCLE 61 ON READER-SERVICE CARD

Microwave Attenuator

Cover 0.8 to 6 kmc bandwidths

These microwave attenuators measure 5 in . diam and cover bands of 0.8 to 2.5 kmc and 2.0 to 6.0 kmc . There are three units to each bandwidth. The minimum insertion loss is 0.2 db and full insertion loss is at least 30 db over the full band. High resettability and accurate calibration are also featured.
Antenna and Radome Research Associates, Dept. ED, 1 Bond St., Westbury, N.Y.
CIRCLE 62 ON READER-SERVICE CARD

True Airspeed Computer
Accuracy of $\pm \mathbf{2}$ knots

SMI Type AXC 529 true airspeed computer has an accuracy of ± 2 knots in a range of 100 to 250 knots. The accuracies are possible through the utilization of a highly accurate and sensitive force balance Mach number transducer which generates a shaft position functionally proportional to Mach number.
The unit is designed to provide the necessary true airspeed input to airborne navigational systems. 'iervomechanisms, Inc., Dept E]), 12500 Aviation Blvd., Hawthorne, Calif.
rircle 63 ON reader-service card
CIRCLE 64 ON READER-SERVICE CARD $>$

Better shape factor over wider frequency range

DAvEn"s new EGG CRATELO fIIters...

Center frequency: covers the range from 0.4 MC to 60.0 MC depending upon specific requirements. Center frequency stability: $\pm 1.0 \mathrm{KC}$ per MC from $-55^{\circ} \mathrm{C}$ to $+10.5^{\circ} \mathrm{C}$. Shape factor: $B W_{60} / B W_{6}$ to 2.1. Shape factors can be modified for optimum time delay.

In addition to these outstanding specifications, Daven's new LC filters offer a unique type of construction which makes them the most rugged filters ever built. Small cells are welded
logether to form the partitioned shield compartment... making this the first filter with truly continuous mechanical and elec trical bond... providing a high degree of inter-circuit shielding.

Daven's new LC filters are ideal for shaping the pass banc of AM/FM or FM/FM data link receivers, double or single side band receivers and generators, direction finding receivers, com munication and telemetering receivers, and spectrum analyz ers. So versatile, in fact, that applications are almost limit less. Write today for complete, newly-published technical data

The $\mathbb{D} A \mathbb{E} \mathbb{E}$ coo (D) Livimastow, new uensev

TODAY, MORE THAN EVER, THE DAVEN (D) STANDS FOR DEPENDABILITY

Now for your television IF's, VHF oscillators and amplifiers plus high speed computer applications . . . new round welded 2 N 623 diffused-base germanium transistors give you 200 mc typical maximum frequency of oscillation, 90 mc alpha cutoff, plus a 25 musec typical total non-saturated switching time.

Check the specifications and application notes below - see how the TI 2N623 can help you with your next high gain/high frequency or ultra high speed switching application.

Write today to your nearest T/I sales office for Bulletin DL-S 904
maximum ratings at $25^{\circ} \mathrm{C}$

colifector to base
collector to emitter
emitter to base
fotal disssipation

typical design characteristics at $25^{\circ} \mathrm{C}$

(conditions)			
collector reverse current.	$L_{1}=0$	$v_{\mathrm{cc}}=-20 \mathrm{~V}$	$2 \mu \mathrm{~A}$
emitter reverse current.	$\mathrm{l}_{\mathrm{c}}=0$	$v_{\text {cig }}=-0.5 \mathrm{~V}$	$0.5 \mu \mathrm{~A}$
forword culrent transfer ratio	$\mathrm{I}_{\mathrm{c}}=-2 \mathrm{~mA}$	$v_{c i}=-6 \mathrm{~V}$	
current transfer ratio cutoff frequency	$\mathrm{I}_{\mathrm{c}}=-2 \mathrm{~mA}$	$v_{\text {c }}=-6 \mathrm{~V}$	90 mc
max. frequency of oscillation.	$t_{c}=-2 \mathrm{~mA}$	$v_{c s}=-\mathrm{ov}$	200 mc
frequency where $h_{\text {te }}$ is unity	$\mathrm{I}_{\mathrm{c}}=-2 \mathrm{~mA}$	$v_{\text {a }}=-6 \mathrm{~V}$	60 mc

NOTES

APPLICATION

TYPICAL VALUES -- AVALLABLE POWER OUTPUT 20 mW (PEAK)
NOISE FIGURE O DL DOWER GALM IS DL

THACAL SWTTCHINE TMMES OBTAINED IN ABOVE CIRCUIT

Texas Instruments
I NCORPORATED
SEMICONDUCTOR-COMPONENTS DIVISION
POST OFFICE BOX 312 . DALLAS.TEXAS

NEW PRODUCTS

Power Converter

Missile-telemetering types

Measuring 5-1/2 in. in diam and $4-3 / 4 \mathrm{in}$. long, these telemetering converters provide 270 v at 22 ma , 150 v at 10 ma , and 30 v at 15 ma , all with 75 mv or better ripple.
Inputs are respectively 16 v dc and 7 v dc for the PS1008 and PS1009 models. Weight is 2 lb 8 oz . Units are capable of operation at temperatures up to 85 C .

Power Sources, Inc., Dept. ED, Burlington, Mass.

CIRCLE 65 ON READER-SERVICE CARD

Decade Counter

Counts at rates of 150 kc

Model CT-101 transistorized decade counter is capable of counting at rates as high as 150 kc . The unit has an easy-to-read visual display featuring large $3 / 8 \mathrm{in}$. numerals. A 9-pin socket provides decimal or binary coded decimal electrical output for remote indication purposes. Power consumption is 120 mw , and only two supply voltages of -3 and -10 v are required.

Epsco Components, Dept. ED, 108 Cummington St., Boston, Mass. CIRCLE 66 ON READER-SERVICE CARD

Commutation Switches
With printed circuit commutation plates

Each commutation switch, designated Mycalex PC, has 2-poles, 60 contact per pole, and operates on a duty cycle of either 54 ± 4, or 87 to 95 ± 4 per cent, at speeds up to $1800 \mathrm{rpm}, 30$ signals per revolution, break before make. Depending on circuit conditions, noise level performance is less than 1 mv with a 5 v input signal. The switch can be completely enclosed, and measures $2-3 / 16 \times 2-3 / 16 \times 3-9 / 16 \mathrm{in}$. weighing approximately 24 oz .
Mycalex Electronics Corp., Dept. ED, 125 Clifton Blvd., Clifton, N.J.

CIRCLE 69 ON READER-SERVICE CARD

Quartz Crystals

․ Frequency range 3 to 15 kc

These vibration-resistant quartz crystals have a frequency range of 3 to 15 kc . Crystals will operate through vibration frequencies of 5 to $2(100$ cycles at 10 g over temperature range of -55 to 105 C and maintain a frequency stability of ± 0.025 per cent under dynamic conditions stated. When smaller ambient temperature ranges are encountered frequency stability as close as $\pm .002$ per cent can be achieved. Where greater fr_{1} quency stability is required, temperaturec ntrolling ovens are available.

Hill Electronic Engineering \& Mfg. Co., Inc., Dipt. ED, 400 E. Factory St., Mechanicsburg, P...

maintain and control reliability

with new

PRE-PROGRAMMED INSTRUMENTATION

NEW ROBOTESTER - IMMEDIATE AID TO IMPROVE MAINTAINABILITY OF EQUIPMENT RELIABILITY

A bold imaginative concept has evolved from Lavoie Labs in the form of a Programmed Instrumentation Approach with Failure Prediction. Designed for the active control of maintainability and reliability of electronic equipment in aircraft, missile and weapon systems. The universal-tape programmed performance checking Robotester is versatile and flexible and is the basis of this forward-thinking Lavoie program.
The Robotester itself expands checkout capabilities and slashes 80% of final test time. Operational testing and production line check out is accomplished through continuous, high-speed sampling and comparison ... split-second recognition, isolation and identification of abnormal functions.
Nominal circuit values and specified tolerances are tape-punched in minutes to accommodate voltages (AC and DC) from 0.5 to 500 volts; Hi Pot to 500 volts; resistances from 1 ohm to 9.99 megohms; and tolerances of $1 \%, 5 \%, 10 \%$ and 20% of nominal. A total in excess of 60000 tests possible .. the Robotester will check any two circuit points at rates up to 100 tests per minute.

Write today for complete technical information and specifications on the New Robotester.

Write on company letterhead for "Lavoie
Programmed Instrumentation" . . please specify application.

OPTIMUM

MINIATURIZATION

ACTUAL BODYSIZE only $\mathbf{. 2 5 0 "}$ diameter x $\mathbf{. 2 5 0 "}$ Ions

4.S. SEMNCOF medium power Sub-miniature Diodes

$$
1.5 \mathrm{amps} \text { at } 150^{\circ} \mathrm{C}
$$

TWICE the performance... in HALF the space!
streamlined configuration awkward hex or flange
may be installed for maximum pattern density
in iree air-up
to 12 watts with heat sink
inverse voltage—up to 500 volts
forward conductance1 amp at 1.5 volts
construction:
stainless steel body and stud. hermetically sealed glass end
4.40 stainless steel stud

3536 West Osborn Road • Phoenix Arizona Applegate 85591

For address of office nearest you -or for complete technical data - WRITE TODAY to Sales Engineering Dept U S Semicon ductor Products Inc 3536 West Osborn Road Phoenix. Arizona

NEW PRODUCTS

Electronic Timer

Ranges from 25 msec to 50 sec

Model T1 electronic timer can be used for single or repeat cycle timing, interval or delayed action timing. It features 25 msec to 50 sec range, regulated power supply, plug-in relays, 5 a isolated load contacts. Included are stabilized tubes, line transient suppression components, Mylar timing condensers.

Ferrara Inc., Dept. ED, 8106 W. Nine Mile Rd., Oak Park 37, Mich.

CIRCLE 73 ON READER-SERVICE CARD

Magnetic Clutches

16 and 32 oz-in. clutching torques

Model D-103 (shown) is a size $11,1.062 \mathrm{in}$. diam single-ended, magnetically activated clutch. Clutching torque is rated at 16 oz -in., with three watts of dc applied to the control coil. Voltage ratings range from 1.5 to 300 v dc, with 24 v as standard. Size 18 magnetic clutch brake, designated D-102, has a clutching torque of $32 \mathrm{oz}-\mathrm{in}$. The voltage ratings are the same as D-103. The unit has a diameter of 1.75 in .

Dynamic Instrument Corp., Dept. ED, 59 New York Ave., Westbury, N.Y.

Why do I favor SUPERICR ELECTRONICS for electron GUN MOUNTS?

Because this firm

* Has pioneered many new
manufacturing fechniques
* Is constantly improving the
quality of its gun mounts
* Offers uniform product per-
formance and dependable
service
* Assures me of fair prices

World's oldest and largest exclusive manufacturer of quality electron gun mounts
 SUPERIOR ET ELECTRONICS

CORPORATION
GRegory 2-2500

- 200 Million Count Life

- Rugged, oversize shaft and bearings
- Shakeproof-ónly one screw in counter assembly.
- All steel housing with snapon cover-chrome plated.
- Reliable - no skip or overcount.
- Tamperproof reset.

Thousands used in Automobile and Aircraft factories: in stamping, metal workling, die casting and plastic molding plants; In foundries, printing plants and factories.

- 50 Million Count Life
- 7 watts power consumptionoperable in plate circuit of electronic tubes.
- 1000 CPM rating-reliable to 1600 with suitable actuation.
- Quiet-no AC hum.
- Balanced armature-for reliability on airborne equipment.
Also endurance rafed counters for all purposes. See your PIC Distributor or write for catalog.

Transistor Tester
Gives direct $I_{\text {cbo }}$ readings

Model 960 portable transistor and crystal diode tester can test for $\mathrm{I}_{\text {(tron }}$ gain, leakage, shorts, on low, medium and high-power transistors of both the pnp and npn types, as well as the new tetrode transistors. Operating specifications are: direct $\mathrm{I}_{\text {cbo }}$ readings, in terms of true collector current, on wide-angle 5-1/2 in., 100 ua meter; five $I_{\text {ero }}$ ranges; wide range of collector potentials from 0.5 v de to 100 dc in 17 selected steps; direct reading gain ranges with five separate injection currents for low, medium and high power types; and leakage tests to check emitter to collector current at fixed collector bias.

Precision Apparatus Co., Inc., Dept. ED, 70-31 84th St., Glendale, Long Island, N.Y.

CIRCLE 77 ON READER-SERVICE CARD

Gyro Transducer

Senses motion about the roll, yaw and pitch axes

Consisting of three gyros mounted so as to sense motion about the roll, yaw and pitch axes of a vehicle, the free gyros provide an accurate reference in the form of an electrical signal which is proportional to displacement about the outer gimbal axis. The hermetically sealed unit weighs $19-1 / 4 \mathrm{lb}$, including caging mechanisms, inverter and radio-noise filters. Gyro motors may be operated directly from a $115 \mathrm{v}, 400 \mathrm{cps}$ source. If required, unit may be supplied with 27 v dc, and the 400 cps power generated internally. Altitude and humidity conditions have no effect and the unit will operate satisfactorily at temperatures from -65 to +160 F .

Clary Dynamics, Dept. ED, 408 Junipero St., San Gabriel, Calif.

CIRCLE 78 ON READER-SERVICE CARD

permanent

 dependability in small packages
U. 5. edcor hermetically sealed "glass-kase" capacitors

THE 1802 HYOROGEN THYRATRON, WITH UNPRECEDENTED PERFORMANCE AND RUGGEDNESS, CERAMIC-ENVELOPED and FAR Shaller

The new EG\&G Hydrogen Thyratron, Model 1802, delivers 30 megawatts peak power in a smaller package than any comparable unit. It supersedes many older types, and surpasses the performance of the Type 59481754 on all counts, in less than 1 7th the size. The new 1802 is aircooled by convection and will tolerate ambient temperatures up to $100^{\circ} \mathrm{C}$. Yet its warm-up time is only 5 minutes. Other comparisons with the 5948/ 1754 :

Input trigger power

Delay time

Jitter
Reservoir Range
Filament Power
Ambient Temp. Max.

1802
250 v at 400 ohms max
$0.5 \mu \mathrm{~s}$ rated (average is $0.25 \mu \mathrm{~s}$)
.002 to $.005 \mu \mathrm{~s}$
$\pm 10 \%$
90 watts
100 C

5948/1734 650 v at 250 ohms max. $1 \mu \mathrm{~S}$
$.02 \mu \mathrm{~s}$
$\pm 5 \%$
200 walts
$75^{\circ} \mathrm{C}$

The hydrogen thyratron was invented by K. J. Germeshausen. President of EG\&G. Advanced research continues to keep this company in the forefront of hydrogen thyratron development. For specific data on the 1802 , and for the most authoritative information on gas-discharge tube types and MILLI-MIKE* CRT's, TW oscilloscopes and systems, write to us on your company letterhead.

- Trademark

EDGERTON, GERMESHAUSEN \& GRIER,ING.

160 Brookline Avenue, Boston, Mass. 1622 South "A" Sireet, Las Vegas, Nev

NEW PRODUCTS

Attenuator

Measures rf power ratios

This instrument is intended for measuring rf power ratios in systems employing modulated rf power sources and square-law rf detectors. In such systems the audio voltage output from the detector is proportional to the rf power input, and it is therefore necessary to substitute audio attenuation corresponding to the change in rf attenuation. This audio attenuator reads, in decibels, this change in rf attenuation. The audio frequency attenuator has a characteristic impedance of 2000 ohms and is adjustable over a range of 104 db audio attenuation corresponding to 52 db rf attenuation.

Weinschel Engineering, Dept. ED, Kensington, Md.

CIRCLE 81 ON READER-SERVICE CARD
Power Supplies
For transistor use

The first of this series of power supplies is designed for both laboratory and production line use, and features three models with variable dc output. Model VM-120 has an output variable from $0-15 \mathrm{vdc}$, a maximum current of 2 and an internal impedance of 1.3 ohm . Model VM-300 has an output variable from 0.30 v dc , a maximum current of 1 , and an internal impedance of 5 ohm . Model VM-500 has an output from $0-50 \mathrm{vdc}$, a maximum current of 1 and an internal impedance of 8 ohm .

The second series has an output variable from $0-28 \mathrm{v}$ dc, a maximum current of 1 a , an internal impedance of 1.1 ohm ; and a ripple factor of 0.065 per cent.

Ferrotran Electronics Co., Dept. ED, 693 Broadway, New York 12, N.Y.

CIRCLE 82 ON READER-SERVICE CARD

FAST, ACCURATE, DIELECTRIC TESTING FOR MULTI-CONDUCTOR DEVICES
DESCRIPTION: The function of this instrument is to apply if programmed sequence a know poltage between the variou conductors under test for specific period of time and ty where they occur.
SPECIFICATIONS
TEST VOLTAGE.. TEST TIME
NUMBER OF TEST TERMINALS...........2-11
NULL DETECTOR

A sensitive battery operated null detector ideal fol shering bridges of other applications where com plete isolation from power lines is desirable.

- Long Battery Life - High Harmonic Rejection ${ }^{-}$ Shielded against external fields
SENSITIVITY: t microvolt for $\mathbf{1 \%}$ deflection

INDUSTRIAL TEST EQUIPMENT CO SSE IIHST. NEW YORK 3 . GR 3.408

CIRCLE 83 ON READER-SERVICE CARD

Telemetering Noise Cutout

Permits recovery following noise bursts

Model MNC-1 noise cutout unit rovides for the rapid recovery of lemetered signals following noise pursts which often cause data to be emporarily lost due to interference. buring periods of signal drop-out, bis unit stores control-loop voltage evels to provide wave form restoation with a minimum loss of data we to recovery time factors. Signal estoration accuracy after one-half minute of drop-out is within two per cent of full scale.
Applied Science Corporation of finceton, Dept. ED, P.O. Box 44, finceton, N.J.
CIRCLE 84 ON READER-SERVICE CARD

Power Pack
For electrostatic devices

Designed primarily for electroliatic devices, this encapsulated ligh voltage dc power pack will leliver voltages up to $12,000 \mathrm{v}$ at nurents ranging up to 0.5 ma . It is arrent limited to 5 ma under short bircult conditions and measures only $2-1 / 4 \times 2-1 / 2 \times 6-1 / 4 \mathrm{in}$. Sk sweeper, Inc., Dept. ED, McHenry, Ill.
CIR:LE 85 on reader-service card
CIRCLE 86 ON READER-SERVICE CARD $>$

A completely new Concept in

BOBBINLESS RESSTIORS

New Subminiature Precision Wirewound Bobbinless Resistors feature exceptional stability, reliability and performance

General Transistor has developed a new concept for precision bobbinless resistors incorporating these exclusive features... the bobbiniess construction eliminates wire stress and strain ... a special viscous medium is used providing extreme shock and vibration resistance ... welded case for positive hermetic sealing . . . the temperature coefficient of resistance of the finished resistor is the same as the wire and is not affected by the container. This insures repeatability and minimum hysteresis of resistance characteristics with temperature cycling.
These positive hermetically sealed units are designed for printed circuit boards and subminiature assemblies for airborne and missile applications.

The quality of materials and production superiority of these resistors is the same that has made General Tramsistor the Fastest Growing Name in Transistors.

Write today for complete technical information.

S P E C I	Style R-2	$\begin{aligned} & 10 \text { N S } \\ & \text { Style R-5 } \end{aligned}$
Resistance Range	0.1Ω to $750 \mathrm{k} \Omega$	0.1Ω to $750 \mathrm{~K} \Omega$
Resistance Tolerance	$\pm 0.05 \% \mathrm{~min}$. at $25^{\circ} \mathrm{C}$	$\pm 0.05 \% \mathrm{~min}$. et $25^{\circ} \mathrm{C}$
Power Rating	$1 / 4$ watt continuous in free air (increased dissipation possible with heat sink)	i/3 watt continuous in tree air (Increased dissipation possible with heat sink)
Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Operating Voltage	250V, DC	500V, DC
Temperature Coefficient of Resistance	± 20 parts per million $/{ }^{\circ} \mathrm{C}$	± 20 parts per million $/^{\circ} \mathrm{C}$
Dielectric Strength	500 V rms, winding to case	1000 V rms, winding to case

Construction - Terminations: - Welded

ACTUAL SIZE

NEW PRODUCTS

Transistor Enclosure
Hermetically sealed at 1000 C

This all-glass transistor enclosure is made possible by the develop. ment of a close-control electric sealing process. The base and envelope are hermetically sealed at 1000 C while temperature near the semiconductor, less than $1 / 4$ in. away, is kept below 150 C . Sealing is done in approximately 10 sec. Both base and envelope of the 200 mil lead circle-enclosure are made of strong, thin-walled, precision glass tubing.

Corning Glass Works, Dept. ED, Corning, N.Y.

CIRCLE 88 ON reader-service card

Dual-Beam Scope
DC to 100 kc frequency response

Type 502 dual-beam oscilloscope has two high-gain vertical amplifiers with calibrated sensitivities in 16 steps from $200 \mu \mathrm{v} / \mathrm{cm}$ to 20 v / cm.

Frequency response is dc to 100 kc at maximum sensitivity, dc to 500 kc at sensitivities lower than $50 \mathrm{mv} / \mathrm{cm}$. Both channels have differential input with high rejection, and a constant input imped ance of $1 \mathrm{meg}, 47 \mu \mu \mathrm{f}$.
Tektronix, Inc., Dept. ED, Portland 7, Ore.

CIRCLE 89 ON READER-SERVICE CARD

10

BRUSH PROBLEM

You get . . .

Greater Reliability From G-E Inductrol* Voltage Regulators

There are no brushes to worry about on the G-E Inductrol regulator. Because it is a brushless induction device, this highly reliable voltage regulator is far easier and more economical to operate. There are many more advantages, such as high overload capabilities and accurate, driftfree control (just set it and forget it), that you'll want to know about.
For more information, write Section 425-11, General Electric Company, Schenectady, N. Y.
-Registered irademark of General Electric Company for Induetion Voltag* Regulators

Progress ls Our Most Importiont Praduct ofneral electric

CIRCLE 91 ON READER-SERVICE CARD

DC Potentiometer

 Permits readings to three places

This de potentiometer includes standard cell, working battery, null balance galvanometer, volt box, shunts and adjustable power supply for calibration of de instruments in any ranges from 0.1μ a to 9.99 a and 0.1 mv to 999 v . Three decade switches provide readings to three places. Precision wire wound resistors are manganin with tolerance of 0.5 per cent.

Assembly Products, Inc., San Gorcinto Div., Dept. ED, P.O. Box XX, Palm Springs, Calif.

CIRCLE 92 ON READER-SERVICE CARD

Parabolic Antennas

Range between 200 and 5000 mc

These 28 foot parabolic antennas with dualpolarized feed horns cover the range between 200 and 5000 mc . The reflector consists of a center section of four identical pie segments, and an outer section of six ring segments. Type 21 mount is for mounting on the face of a 10 -foot tower, but is adaptable to other sizes. It provides for azimuth and elevation positioning through ± 5 deg. Type 22 mount is for mounting on the corner of a tower, and may be used on triangular towers with leg spacings of 10 feet or less, providing azimuth and elevation position through $\pm 4 \mathrm{deg}$. The antenna weighs 1800 lb net, including face mount.

Technical Appliance Corp., Dept. ED, 1 Taco St., Sherburne, N.Y.

FERRANTI

The Ferranti High Speed Tape Reader accelerates to full speed within 5 milliseconds and stops within ? milliseconds. It has achieved a sound repulation for simplicity and reliability in regular operation.

Proven Reliability in hundreds of data processing and data transmission installations from coast to coast.

Photoelectric Sensing uses "pin hole camera" optical system for increased signal/noise ratio with any type of fully punched tape; no lenses or mirrors. Output signals greater than 20 volt.

Rugged Differential Type Friction Drive eliminates sprocket hole wear and requires very little maintenance.

Stop-on-a-Character feed mechanism allows operation in any mode from free run to stop on every character at any speed up to 200 characters $/ \mathrm{sec}$. Feed speed controlled by equipment receiving data. Tape positioned by sprocket hole associated with character being read, eliminating errors due to variations in character pitch. Higher speed models available for 400 characters per second, stopping on or before next character.

Simple Tape Loading with no threading. Character being read is visible to operator. Lap or butt splices accepted.

FERRANTI

No Minimum Tape Length. Compatible motorized spooling units available for lengths up to 1,000 feet.
Desk or Console Mounting for comfortable operation.
Size $9^{\prime \prime} \times 11^{1 / 2 "} \times 11^{11} 4^{\prime \prime}$, Weight 37 lbs.
Consulf Ferranti Electric for any paper tape reading problem.

FERRANTI ELECTRIC, INC.
30 Reckefeller Plaza New York 20, N. Y.

NEW! From the Laboratories of General Ceramics

50 MIL O.D. Memory Cores for Transistorized High Speed Memories

These new 50 mil O.D. cores are now available in General Ceramics S-4, the material that has proven so successful in such vitally important systems as the SAGE computer. Switching time is less than one microsecond with 550 ma full drive. At recommended operating conditions, the "ONE" output voltage is greater than 60 millivolts; the "ZERO' output voltage is less than 6 millivolts. Cores are provided in two quality levels, to .015 AQL and to 6.5 AQL. Dimensions are . $050^{\prime \prime}$ O.D., . $030^{\prime \prime}$ I.D.
and $.015^{\prime \prime}$ in height, all with tolerances of $\pm .002^{\prime \prime}$. General Ceramics has designed and built special equipment for core testing to insure that each unit meets established electrical properties. 50 mil O.D. cores are supplied in production quantities in two quality levels. Parts are shipped according to MIL Specification 105A to 0.015 AQL or 6.50 AQL . For complete information on this core write General Ceramics Corporation, Keasbey, New Jersey, for Bulletin 326 ; address Dept. ED.

GENERAL CERAMICS

Industrial Coramics for Industrial Progress... Since 1906

NEW PRODUCTS

Time Delay Relays
10 a contact rating

Design and performance details of the transistorized time delay relays include: tin delay periods from 0.01 to 60 sec ; timing accurac of ± 10 per cent of nominal delay period; cor tact arrangements and ratings of 1 -pole, doub throw, 10 a resistive or 3-pole, double throw, 10 resistive; ambient temperature from -55 to 12 C; vibration resistance of 10 to 80 cps., 0.12 i peak double amplitude, 80 to 2000 cps at 20 shock resistance of 50 g for 11 msec ; input vol age of nominal 28 vdc . A typical model measure $1-1 / 4 \times 1-11 / 16 \times 2-1 / 4 \mathrm{in}$. and weighs $5-1 / 20$

Tempo Instrument Inc., Dept. ED, 24001 Country Rd., Hicksville, N.Y.

CIRCLE 96 ON READER-SERVICE CARD

Data/Log

Capable of 150 printing operations a minute

The Data/Log series MC 203 units are adapte to large scale data logging systems. As many at 14 digits can be entered on one printing cycle in any arrangement from 1 up to 14 , or in any grouping within 14 digits. These machines are capable of a maximum of 150 printing operation a minute. Hence it is possible to obtain a speed of over 30 characters per second. With the 18 in carriage, up to 136 characters and spaces may be printed on a single line.
Monroe Calculating Machine Co., Inc., Elec tronics Components Div., Dept. ED, 60 Main St. San Francisco, Calif.

CIRCLE 97 ON READER-SERVICE CARD

$10=$ PROBLEMS

You can
Simplify
Design Circuitry With G-E Inductrol* Voltage Regulators

The G-E Inductrol voltage regulator does not introduce harmful waveform distortion in your circuits.
Because it's an induction device, this voltage regulator offers you the advantages of brush-free operation .. . no voltage drift and tubeless whtrol. Result: the ultimate in reliable voltage control.
For more information write Section 425-16, General Electric Company, Schenectady, New York.

Ohegistered trademark of General Electric Company for Inauetion Voltage Regulators

Pregress is Our Most Important Product
GEMERAL (92) ELECTRIC

CIRCLE 98 ON READER-SERVICE CARO

Antennas

For communication and telemetering in the 2,200 mc region

This 8 foot diameter horn-fed paraboloid antenna weighs only 82 lb and provides a 4 deg pencil beam for high gain requirements. Another type is a compact blade antenna which has been designed for missiles and supersonic aircraft. It is less than 1 in . high, has very low drag, and provides an omni-directional pattern. A conical scanner is available for installation in 6,8 , or 10 foot diameter paraboloids. Optimum reception of telemetering signals even at long range is obtained by automatic tracking with the narrow beam provided. Horizontal, vertical and circular polarization are available.

Canoga Corp., Dept. ED, 5955 Sepulveda Blvd., Van Nuys, Calif.

CIRCLE 99 ON READER-SERVICE CARD

Transducer

Accurate to 1 sec of arc

T833 transducer which is a differential transformer type pickoff consists of an E-core stator and one or more separate companion rotors. The transducer is accurate to 1 sec of arc and is used in position pickoff in servo rate or optical systems. The dimensions of the transducer in potted core are $1-1 / 8 \times 5 / 8 \times 1 / 2 \mathrm{in}$. while in potted housing the dimensions are $2 \times 1-1 / 4 \times 3 / 4 \mathrm{in}$. The rotor face is 0.250 in . diameter round or 0.250 in . square. Excitation: 5 to $100 \mathrm{ma} / 300 \mathrm{cps}$ to 2 kc . Sensitivity of 0.1 ma per .001 in . per ma excitation at 400 cps .
Sterling Precision Corp., Instrument Div., Dept. ED, 17 Matinecock Ave., Port Washington, N.Y.

CIRCLE 100 ON READER-SERVICE CARD

ACEPOT*

SUB-MINIATURE, PRECISION, WIRE-WOUND
LINEAR POTENTIOMETERS

Small pot size - Big pot performance

Only $1 / 2^{\prime \prime}$ in diameter, the ACEPOT excels in a combination of all around top performance characteristics comparable to larger units. For example, these precision units feature $\pm 2 \%$ resistance tolerance and $\pm 0.3 \%$ independent linearity. Every potentiometer is completely sealed against sand, dust and foreign matter to avoid abrasive action between moving parts. All materials and metals are treated for maximum resistance to salt spray, corrosion, humidity and conform to shock and vibration tests. ACEPOTS are designed and assembled MIL-A-8625A, QQ-M-1512, JAN-T-152, MIL-E-5272A, MIL-R19A, NAS-710 and MIL-R-19518 (ships).

ACEPOT LINEARITY TEST
Plot of voltage ratio error versus rofation illustrates linearity to better than $\pm 0.3 \%$.

ACEPOT RESOLUTION TEST
Section of escillograph trace of electrical resolution shows voltage change for each turn of wire.

ACE offers a wide varioty of linear and nonlinear precision, wirewound potentiometers in standard, special and AIA sizes. Custom designs to meet special requirements can be made available on short lead time. Call, write or teletype Dept. G, ACE ELECTRONICS ASSOCIATES, INC., 99 Dover Street, Somerville, Mass., SOmerset 6-5130, TWX SMVL 181.

ACETRIM
ACEOHM ${ }^{\text {B }}$

PM BLOWERS

MINIATURE, GO VDC BLOWER UNITS
RELIABLE - EFFICIENT•RUGGED

Eicor Permanent Magnet 60 Volt blower motors provide unusual power and performance in a small unit of only 1.186 diameter and 1.890 length.

- Class B insulating system.
- Suitable for operation from a rectified $115 \mathrm{~V}, 60 \mathrm{eps}$ or 400 cps source.
- Input voltage may be de. signed for any voltage up to 60V.
-Long brush life.
- Toroidal magnet for low external field and high mechan. ical strength.
- Cartridge brushholders for easy field maintenance.
- All-metal frame construction.
- Designed to withstand severe environmental conditions.

4233 WEST NORTH AVE., CHICAGO 39 Another F. L. Jacobs Division

NEW PRODUCTS

Telemetering Unit

For use with solid state commutators

The DKO-11 keyer subcarrier oscillator makes it possible to combine pw data channels with existing channels in $\mathrm{fm} / \mathrm{fm}$ and $\mathrm{fm} / \mathrm{pm}$ airborne telemetering systems. The DKO-11 is especially designed to operate from negative pedestal triggering pulses typical of those generated by solid state high level commutators. It is suited for use in airborne $\mathrm{pw} / \mathrm{fm} / \mathrm{fm}$ telemetering systems. When used in conjunction with a suitable pw commutator, the DKO-11 permits the multiplexing and pw encoding of a large number of data channels on a single 70 kc subcarrier oscillator frequency. This subcarrier can then be mixed with other subcarriers and applied to an rf carrier for radio transmission.

Applied Science Corp. of Princeton, Dept. ED, P.O. Box 44, Princeton, N.J.

$$
\text { CIRCLE } 103 \text { ON READER-SERVICE CARD }
$$

Terminals

Features 4 way crimp

These terminals used on both stranded and solid wire, are available in three sizes: 22 thru 16, 16 thru 14 and 12 thru 10. These one-piece terminals are all copper and feature small overall size for applicability in restricted spaces, wide bell-mouths for easy wire insertion, serrated barrels for joint efficiency, and open-end construction for easy visual inspection. The terminals may be installed with the C-241 hand pressure tool or with the D-241 dies which are adaptable for mounting in most common presses.

Buchanan Electrical Products Corp., Dept. ED, 234 Rt. 22, Hillside, N.J.

CIRCLE 104 ON READER-SERVICE CARD

NO
 DRIFT PROBLEM

You get . . .
 Assured Accuracy From G-E Inductrol* Voltage Regulators

With the G-E Inductrol regulator control, voltage is automatically held to within $\pm 1 \%$ bandwidth. Unique compensating controls on the G-E Inductrol regulator make it unnecessary to continually reset voltage level. You merely set it at the desired voltage level, and forget it. This highly reliable and accurate automatic control is also compensated for temperature, and is inherently insensitive to frequency or power factor changes.
For more information write Section 425-12, General Electric Co., Schenectady, N. Y.
RRegistered irademark of General Electric Company for induction Voltoge Regulators

Fiogress Is Our Most Importient Product GENERAL (920) ELECTRIC

CIRCLE 106 ON READER-SERVICE CARD

Oscilloscope

 DC to 15 mc

Type 533 is a dc-to- 15 mc oscilloscope with the company's plug-in feature. All type 53/54 plug-in units can be used with this instrument for signalhandling versatility. Risetime of the main vertical amplifier is $0.022 \mu \mathrm{sec}$. The Type 533 has 22 calibrated direct-reading sweep rates from 0.1 $\mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, with sweep magnifications of $2,5,10,20,50$, and 100 times. Full sweep range is $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $15 \mathrm{sec} / \mathrm{cm}$.

Sweep lockout-reset feature provides for oneshot recording. $10-\mathrm{kv}$ accelerating potential assures bright trace for single sweeps. Writing rate is $250 \mathrm{~cm} / \mu \mathrm{sec}$. Viewing area is 6 by 10 cm . Amplitude calibrator has 18 fixed steps from 0.2 mv to 100 v peak to peak. Square-wave frequency is about 1 kc . Other features include automatic blanking for switching transients when dual-trace unit is used in its chopped mode, and warning lights for uncalibrated sweep rate and magnifier settings.

Tektronix, Inc., Dept. ED, P.O. Box 831, Portland 7, Ore.

CIRCLE 107 ON READER-SERVICE CARD
RF Amplifier Extended range to 245 mc

The REL-09-HF is a further development of the REL-09 rf power amplifier extending the amplification range from 235 to 245 mc . The unit employs a type 6360 miniature dual-beam poweramplifier tube with a CCS rating of 15 w . With 1.4 w input drive, it will deliver an 8 w minimum output to a 52 ohm grid plate.
Rheem Electronics Div., Dept. ED, 7777 Industry Ave., Rivera, Calif.

$$
\text { CIRCLE } 108 \text { ON READER-SERVICE CARD }
$$

Ferrites are the finest material for tuning slugs wherever a high-Q, high-permeability core is required and space is at a premium. These Ferroxcube funing slugs have been specifically developed for the permeability funing of inductors, filters and transformers in the 1 kc to 4 Mc frequency range. They come in a large variety of sizes and threads, and have been found particularly useful for final inductance adjustments on filters with ferrite pot cores. The screwdriver slot in the slugs runs all the way through the core for simpler coil assembly and easy adjustability at either end. All Ferroxcube threaded slugs are furnished complete with self-threading coil forms of phenolic-impregnated tubing.

For complate date, as well as information on the availability of specific iypes and sizes, write to:

FERROXCUBE CORPORATION OF AMERICA

55C East Bridge Street, Saugerties, New York

Manufacturers of forrite cores for rocording hoads, magnotic momories, TV flybeck fransformers, pulce transformers, fillers, Induclors, high frequency shiolds and power transformers

NEW PRODUCTS

4PDT Relay

Sensitivity of 1 mw per contact

Type 104 4pdt relay features a sensitivity of 1 mw per contact. The unit can be used for very close differential applications where dropout is required as close as 85 per cent of pickup. The relay is designed for de operation but is also made for ac, using selenium rectifiers contained within the enclosure. Standard coil resistance is up to 30,000 ohms with special windings to 100,000 ohms.
Contact capacity is 1 amp inductive or 3 amp resistive at 115 v ac or 29 v dc. Contacts are available in silver, palladium, silver cadmium oxide, or gold alloy. The relay has thorough wipe action on the contacts.

General Automatic Corp., Dept. ED, 12 Carlton Ave., Mountain View, N.J.

CIRCLE 110 ON READER-SERVICE CARD

Temperature Control

Explosion-proof dual switch
Type D98A is a sensitive, remote bulb temperature control designed for use in hazardous locations where explosive vapors and gases are present. Two separate switches permit switch action above or below the set point, control of two independent circuits, and great flexibility of switching arrangement. The standard head compensation provided is effective from -65 to +160 F .
United Electric Controls Co. Dept. ED, 79 School St., Watertown, Mass.

CIRCLE III ON READER-SERVICE CARD

\leftrightarrows MICRO SWITCH Precision

 "50 PB" Series LightedProvide More Versatility

BUTTONS

Buttons for "50 PB" Series switches are available from MICRO SWITCH in four sizes and shapes, as illustrated, and in a selection of colors, as listed.

Pushbutton Switches ... More Flexibility . . . Require Less Panel Area

These switches combine indicating light and switch in one unit, have separate lamp and switch terminals for maximum freedom in circuitry, and are available in more than 200 variations to meet your requirements.

The six switches shown are representative of only one of the several families of lighted pushbutton switches. All are panel mounting designs, and are easily mounted on oneinch centers. Indicating light and switch are combined in one unit to further conserve panel space and simplify design. Separate terminals for the light and the switch assure
widest circuit adaptability. Basic switching element is the well-known micro switch sub-miniature switch. Each is a single-pole double-throw unit. Number of SPDT circuits is given in the description of each series. These switches have qualified under many of the Military environmental specifications.

Request Data Sheet No. 133 which covers all details.

MOMENTARYLONG TRAVEL SERIES

Provides excellent positive "feel" action with long travel-more than $1 / 4$ inch including lost motion-to guard against false actuation. The longer travel and positive "feel" action fit the accepted human engineering concept of pushbutton switch operation. Available in 2-, 3-, or 4-pole construction.

TWO POSITION ALTERNATE-

ACTION SERIES

Combines visual mechanical indication and visual electrical indication in one unit. Has simple action with long operating life. Gives excellent positive "feel" in operation. Available in 2-, 3-, or 4 -pole construction.

PUSH-AND-TURN-TO-HOLD SERIES
A combination momentary and optionally maintained-contact action switch. Locks and releases with the turn of a fingertip. Available in 2 -, 3 -, or 4 -pole construction.

MAGNETICALLY-HELD SERIES

Combines a switch, a light, and a magnetic coil in one unit. Coil is available in 6,28 , or 48 vdc. Coil, lamp and switch terminals are electrically isolated. Energizing of coil does not operate switch, but does hold switch in ON position after manual operation. De-energizing of coil returns switch to normal. Available in $2-, 3$-, or 4 -pole construction.

SHORT TRAVEL ALTERNATE-

 ACTION SERIESPush to turn "on," push to turn "off." In this series, the back-of-panel space is $21 / 4$ inches. Available in 2-pole construction only.

MOMENTARY SHORT TRAVEL SERIES
A short-length switch with back-of-panel length less than 2 inches. Available in 2-, 3-, or 4 -pole construction.

MICRO SWITCH . . . FREEPORT, ILLINOIS In Canada: Leaside, Toronto 17, Ontario A division of Honeywell

The two-word name micro switch is not a generic term. It is the name of a division of Honeywell.

Control Panel Units
For transistorized circuitry

Included in this line of control panel components are: the Echolite, a push button with an NE-2 neon bulb enclosed; the Memo-lite, a subminiature thyratron indicator for transistor circuitry; and the Transistor-lite, a transistor controlled neon lamp circuit. Each is housed in an anodized aluminum tube of $1 / 2-\mathrm{in}$. diameter, 2 -in. long. The gold plated terminal connections take A-MP series 53 taper pins. The lenses are molded from clear plastic, but are available in colors as well. The terminal header is nylon, and mylar insulation is used internally. Provisions are made internally for as many as four $1 / 2 \mathrm{w}$ composition resistors.

Transistor Electronics Co., Dept. ED, 3357 Republic Ave., Minneapolis 26 , Minn.

CIRCIE 113 ON READER-SERVICE CARD

Digital Totalizer

Visual and electrical readout

Model 7106 Digitote accepts pulses at a rate of 60 per second and totalizes any input quantity for remote indication, control, or telemetry. Three and five digit visual and electrical readouts provide high accuracy and large capacity (up to 99999) totalizing. Number wheels are lighted for photographic and visual clarity.
Digitran Co., Dept. ED, 45 W. Union St., Pasadena, Calif.
circle 114 on reader-service card
 has received extensive notoriety at many of the poshier type missile test centres throughout the land. Obstinate audile that he is, his attempt at aligning specific frequencies to assure accurate reception and with the tines* transmission has led many a countdown into the wee hours. A pity, too, when one considers how perfectly our new Model 82 Signal Generator Series may be utilized as a pole beacon for missile checkout equipment. One power supply - six plug in r-f oscillators and you're in business all over the place.

The basic power chassis comprises both high and low voltage power supplies, a variable-amplitude (1 kc) sine-wave oscillator and a square wave shaper. Individual, interchangeable, r-f oscillator assemblies contain the remainder of the generator components: low frequency unit 20.80 mc , medium frequency units 300.500 mc , and four hi-freaks $500-1000 \mathrm{mc}, 800-1100 \mathrm{mc}, 1100-1600$ mc and 2700.3000 mc . The people who use it say such versatility makes it truly unique
 among all other signal generators.
The Model 82 Series is very flexible plug. in equipment, taking up but a bit of the van racking space previously required for attuning telemetry and guidance channels, tracking and acquisition radar and voice links too. If you warm toward the 82 for missile checkout or even general laboratory measurements, be of inquiring mind-write for literature please.
-Thimk about it

3300 NEWPORT BOULEVARD, P. O. BOX 1679 , SANTA ANA, CALIFORNIA EXPORT SALES: BORG.WARNER INTERNATIONAL CORP., CHICAGO, ILLINOIS CIRCLE 115 ON READER-SERVICE CARD

NEW PRODUCTS

Pressure Transducer

Repeatability of 1 per cent

Model 451212 pressure transducer, a potentiometer output device, has a 2000 wire (0.05 per cent) resolution and accuracy within 1.0 per cent of reading. The instrument is available in pressure ranges from 0-10 through 0-50 psi absolute, differential, or gage.
G. M. Giannini \& Co., Inc., Dept. ED, 918 E. Green St., Pasadena, Calif.

CIRCLE 116 ON READER-SERVICE CARD

Tape Strobe

Checks type speeds of all tape records

Under 60 cps light sources, reference marks on the wheel disc appear to stand still if the tape is moving past the capstan at correct speeds: $7-1 / 2$, 15 , and 30 ips . Only a 60 cps light source is necessary.

Scott Instrument Labs., Dept. ED, 17 E. 48 St., New York 17, N.Y.

CIRCLE 117 ON READER-SERVICE CARD

Magnetic Shield

Eliminates ion fields

This small cylindrical netic co-netic magnetic

GUDEBROD LACING

TAPES ARE USED IN

COMMUNICATION, UTILITIES
\& MILITARY
AS WELL AS
RESEARCH PROJECTS.
CAN WE HELP YOU?

Gudebrod flat braided lacing tapes hold harness securelyno bite-through or slip, yet are easy on the hands. Some resist high temperature, some are color-coded . . . and they come wax-coated or wax-free . . . rubber-coated . . . or with special coating. Gudebrod makes many tapes for many purposes, including defense work. Send us your lacing problems or your specifications . . . we can supply the answer to both.

GUDELACE - GUDE-NYLACE GUDELACE H • TEFLACE

GUDEBROD BROS. SILK CO., INC. Electronics division
225 W. 34th St., New York 1, N. Y. EXECUTIVE OffICES
12 South 12th St., Philadelphia 7, Pa. CIRCLE 118 ON READER-SERVICE CARD

If you want reliable transformers
 don't overlook this old solution

light now, you demand more from ransformers than ever before. You nust have high reliability, even at xareme altitudes, and you need maller lighter units.

Used, and proved, for decades, oilnncased transformers should not be orgotten in a search for new nethods.

Everyone knows the advantages: ffective convection of heat, excelent insulating properties, complete nsurance against hidden leaks. Oilpaled types (with a nitrogen bubbie) are good, light, high-altitude ransformers. Gas-free oil-filled tpes (with a bellows to allow for feat expansion) withstand very high polage stresses. Except in the smallsts sizes, they save space, too.
You can place several high voltage mits close together in a single oilfiled case, and save case weight. Those connections moved inside the ase no longer need large insulators. tien the units themselves can be maller. This all adds up-particuorly in high altitude service-to materesting savings in space and weight.

We make all sorts of transformers Ind special assemblies for the communication industry: encapsulated, mast in epoxy or foam, and just potted in pitch. But oil transformers still have an important place.

Whatever type you need, we'll be glad to hear from you. Our facilities in design, production, and quality control are at your service. Our experience, too.

BIECTKONICS AND TRANSFORMER CORPORATION

> Dept. ED-5, Caledonia, N.Y.

FREEZE-UP of solenoid-controlled valve in airborne system at $-65^{\circ} \mathrm{F}$ can choke off vital air supply. Manufacturer faces tight contract delivery schedule.

SPECIAL HEATING unit custom-designed and delivered by G.E. in 5 days enables stock valve to function properly, saves customer time, money.

AIR VALVE OPERATING AT -65F SHOWS HOW...

General Electric Specialty Heating Maintains Component Temperature

When components must be kept at operating temperature, G-E specialty heating equipment does the job! Thermal conditioning applications ranging from hydraulic and electronic components to tiny test instruments have all been solved by experienced G-E heating engineers.
let us analyze your heating PROBLEM. Whether it's fast delivery on a prototype or quantity production. General Electric can provide specialty heating products engineered to your specific component needs.

FOR MORE INFORMATION contact your local General Electric Apparatus Sales Office or send coupon.

NEW LITERATUR

Semiconductor Applications

"The Use of Silicon Junction Diodes to Pr_{r} tect Sensitive Current Devices" is the first of bulletin series on semiconductor application The 4 -page text shows how silicon diode now linear characteristics, both in the forward an zener operating regions, improve the protectiq of ac and de meters. Typical circuits are illu trated along with the test results obtained fra these circuits. The applications presented includ de microammeter, de and ac voltmeter, ac suil ammeter, and microwatt and low current rela protection. Hoffman Electronics Corp., Sem conductor Div., 930) Pitner Ave., Evanston,

Rectifier Handbook

A silicone rectifier handbook explains the ted nicalities of these devices, how they are mad where they are used, and how they can be use in many applications. This booklet is available a price of $\$ 1.00$. For further information wri direct to Audio Devices Inc., Rectifier Div., $D_{\mathcal{C l}}$ ED, 620 E. Dyer Rd., Santa Ana, Calif.

HF Transistor

High-frequency transistors are described this 12 -page brochure. The maximum rating cut-off and small signal characteristics, and char showing the common emitter output static chä acteristics for 4 npn and 5 pnp transistors are in cluded in Brochure G-150. General Transist Corp., 91-27 138th Pl., Jamaica 35, N.Y.

Bobbin Cores

With pictures, Bulletin TB-103 describes a lin of bobbin cores for digital data processing s tems. The 4-page folder includes data on avail able magnetic materials-Orthonik and 4.7 molybdenum permalloy. It also covers the iise sizes, and protective covering of the bobbin G-L Electronics, 2921 Admiral Wilson Blvd. Camden 5, N.J.

Permanent Magnets

Publication nent magnets is anoumeer Magnet Design" or Bulletin 158, fundamental properties, lesign testing, magnetic attraction, mechanical col siderations, and stabilization and magnetizatio of finished magnets. The booklet is illustrate with pictures and curves. Thomas \& Skimer Inc., 1151 E. 23rd St., Indianapolis 7, Ind.

Two papers about a voltage-variable capacitor e offered free: "Report on Potential Applicamns of the PSI Varicap" and "Varicap Research dd Development." The papers are reprints of lerdepartmental correspondence multilithed 1012 -page and 8 -page formats. Pacific Seminductors, Inc., 10451 W. Jefferson Blvd., CulCity, Calif.

unched Card Reader

130

In Product Data Sheet 5705, a punched card ader for automatic control of blending, batchg, and proportioning operations is described. lustrated with photographs and a cutaway inAllation drawing, the 2 -page sheet shows how mula changeovers are made. It also tells how pe PCR control is used with IBM or other mohed cards. Richardson Scale Co., Clifton,

olenoids and Switches

131
Four-page Bulletin 1157LS presents a line of tary solenoids, selector switches, hermetically कaled selectors, and stepping motors. It has a imension and torque chart for all stock solenoid podels, a cutaway drawing of the stepping modimensional data on selector switches, and a ief review of sealed selectors. G. H. Leeland, c., 123 Webster St., Dayton 3, Ohio.

The engineering properties and fabrication maracteristics of a complete range of special lloys for electronic, magnetic, and electrical apormation covers physical constants, mecha ial properties, working instructions, heat treatnent, and corrosion resistance in all categories. the illustrated booklet also has a useful glossary flerms. The Carpenter Steel Co., 3116 W. Bern 1. Reading, Pa.

erminal Catalog Directory

133
The "Selectalog" is a 20-page annotated direcory of catalogs on solderless terminals and apflication tooling. A reference index for those oncerned with electric circuitry, the 4 -color pooklet is also a digest of solderless termination phriques. From it engineers can select the cata$0 g$ uith the information they want. The catalogs ? list. cover all company terminal and connector tpes splices, Autostrip terminals, as well as tapacitors, pulse forming networks, power supplies, patchcord programming systems, and application tooling. Amp Inc., Harrisburg 30, Pa.

DELCO

HIGH POWER

 TRANSISTORS are made from

In the center of the quartz housing, a germanium crystal is being grown. A "perfect crystal lattice," it will be cut into wafers $3 / 10$ ths of an inch square and less than 1/100th of an inch thick to become the heart of Delco High Power transistors.

GERMANIUM

because it alone combines these 5 advantages:

Lower saturation resistance - Germanium gives Delco High Power transistors a typical saturation resistance of only $3 / 100$ ths of an ohm. No other present material offers this characteristic, which permits efficient high-power switching and amplification from a 12 - or 24 -volt power supply.

Higher current gain_Gain with germanium is not only higher but is more linear with current.

Lower distortion - In many applications, distortion requirements can be satisfied only with germanium transistors.

Lower thermal gradient-As far as deliverable power of present devices is concerned, germanium meets the need and, in addition, provides a thermal gradient of only $1.2^{\circ} \mathrm{C} /$ watt.

Greater economy - More power per dollar.

DELCO RADIO
Division of General Mofors, Kokomo, Indiana

Examine Delco High Power germanium transistors and see how practical It is to go ahead with your plans now. For high current applications there is no better material than germanium, or Delco Radio would be using it. All Delco High Power transistors are produced in volume; all are normalized to retain their fine performance and uniformity regardless of age. Write for engineering data and/or application assistance.
CIRCLE 134 ON READER-SERVICE CARD

20 Insulated Clips

 on a 15/16" Diameter Centerab sumiten

NコW sub-miniature Series 100 laminated Phenolic Switches

This high quality, economical subminiature rotary switch provides up to 20 insulated heavy duty clips on each section. These contact combinations are available plus any intermediate arrangement to meet your requirements:

1 Pole-12 Pos. 3 Pole- 4 Pos.
2 Pole- 6 Pos. 4 Pole-3 Pos. Laminated type PBE (MIL-P-3115) phenolic construction makes these Series 100 switches suitable for high reliability commercial use, as well as many military applications.

- rating: Make and break, resistance load, $0.5 \mathrm{amp}, 6 \mathrm{VDC}, 100 \mathrm{ma}, 110 \mathrm{VAC}$. Current carrying capacity 5 amp .
- vibration: Meets Mil-S-3786
- insulation: Mects MIL-S-3786
- contact resistance: Mcets MIL-S-3786
- sections: $1 / 8^{\prime \prime}$ thick, back-to-back insulated clips; up to 4 sections on a $2^{\prime \prime}$ deep switch; 1 pole-12 position (continuous rotation) through 4 pole- 3 position.
- sections: $1 /$ gh 7 thick, no back-to-back in sulated clips; up to 6 sections on a $2^{\prime \prime}$ deep switch; 1 pole-11 positions (continuous rotation)
- mounting: Bushing $3 / 8^{n} 32$ NEF 2 A Thd.行" ${ }^{\prime \prime}$ dia., shaft length optional. Bushing
$1 / 42$ NEF 2A Thd. $1 /{ }^{\prime \prime}$ dia., shaft length ($2^{\prime \prime}$ max.).
For detailed specifications write for Centralab Fingineering Bulletin EP-529.

A DIVISION OF GLOBE.UNION, INC 960E E KEEPE AVE, MILWAUKEE I, WIS In Conoda: 804 Mt. Pleasont Rd. - Toronto, Ontario VARIABLE RESISTORS - PACKAGED ELECTRONIC CIRCUITS - ELECTRONIC SWITCHES CERAMIC CAPACITORS - ENGINEERED CERAMICS - SEMI-CONDUCTOR PRODUCTS

NEW LITERATURE

Bellow Diaphragms

A 5 -page brochure describing a precision built welded diaphragm type bellows has just been prepared. It gives facilities available, industries served and material used. Metal Bellow Corp., 31 Mica Lane, Wellesley Hills, Mass.

Testing Facilities

This brochure illustrates and describes facilities, equipments, and instrumentations used for testing components for missile, rocket, and aircraft applications. The laboratories are available to general industry for component reliability tests. Networks Electronic Corp., 14806 Oxnard St., Van Nuys, Calif.

Terminals

138
Subscriptions to "Terminalogy," a bimonthly news bulletin devoted to Teflon terminals and connectors, are offered free. The first issue, January-February, contains information on the latest pressfit types, installation procedures, applications, and tests. Sealectro Corp., 610 Fayette Ave., Mamaroneck, N.Y.

Details of an adjustable, size 11 , locity-damped servomotor are covere in Data Sheet 912. The sheet includes cutaway drawing, electrical and ma chanical specifications, dimensional and schematic drawings, and torque-spea curve of the $115-\mathrm{v}, 400$ cycle serv Beckman/Helipot Corp., Newport Bead Calif.

Electrolytic Capacitors

Bulletin TQ-10 covers subminiatur tantalum solid electrolyte capacitors the are metal cased and hermetically seale The 1-page sheet gives specifications, c pacitance ranges, and dimensions. Min tronics Corp., 328 Grand St., New Yor 2, N.Y.

Fasteners

A complete line of "quarter-turn" fas teners is illustrated and described this 24 -page catalog. Information on eac fastener includes dimensional data, com prehensive installation instructions, an where-to-use information. Illinois Tod Works, Fastex Div., 195 Algonquin Rd Des Plaines, Ill.

Toggie

Pull-

re ca

 sheet 1 tograp! 1, 2-, jogs s charts Div. lator RF Fil Her withst loss o perfor broch eral c tenua Wayn$$
\begin{aligned}
& \text { new FORK } \\
& \text { OSCILLATOR- } \\
& \text { Stability } 1 \text { part } \\
& \text { in } 10,000,000
\end{aligned}
$$

Improvements in the amplifier circuitry have minimized frequency excursions caused by variables such as temperature, plate supply voltage, tube aging, etc.
Fork employs compact oven developed for this unit.
Fork FK5-A Standard frequencies
(1600, 1800 or 2000 cps$). \$ 350.00$.
Also furnished without oven. Write for detailed specifications.
TIMES FACSIMILE
CORPORATION
540 West 58th Street, New York 19, N. Y.

Pull-to-unlock, sealed toggle switches re cataloged and described in Data Sbeet 142. The 4 -page brochure has pholographs and dimensional drawings of 1 1, 2-, and 4 -pole types. It also has drawings showing 11 locking designs, and chart: of electrical data. Micro Switch, Div. of Minneapolis-Honeywell Regulator Co., Freeport, Ill.

Hermetically sealed rf filters that will withstand extreme temperatures without loss of impregnant or degradation of performance are the subject of a 4-page brochure. The pamphlet contains general characteristics and frequency vs. attenuation curves. The Magnavox Co., Ft. Wayne, Ind.

Contacts

This revised and expanded 16-page general catalog ${ }^{\text {describes properties and }}$ uses of a line of electrical contacts. The publication is designed to aid in selection and application of these electrical contacts throughout the broad original
equipment field. One feature of the catalog is an outline showing the company's best contacts for various applications. The company's contact assembly service is also described. Gibson Electric Co., Delmont, Pa .

Microwave Test Units

Detailed coverage is given to microwave test equipment in 32 -page Catalog No. 58. Pictures, descriptions, and specifications cover coaxial attenuators, insertion loss test sets, modulated rf sources, bolometer preamplifiers, terminations, and other units. Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md.

Automation Controls

A catalog lists automatic controls most commonly used to design automatic systems. Called "Automation Controls," the booklet includes counting devices, switches, electric valves, actuators, relays, limit controls, time switches, and accessory equipment which can serve as building blocks. General Controls Co., 801 Allen Ave., Glendale 1, Calif.

UP TO 1000 MFD-VOLTS IN LESS THAN 2/100 OF A CUBIC INCH PYRAMID TANTALUM CAPACITORS

Pyramid Tantalum slug capacitors are miniaturized to provide maxı mum space economy.

New Pyramid Tantalum slug capacitors have cylindrical cases and contain a non-corrosive electroiyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both seep and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance - made to meet MIL-C. 3965 Specifications.
Commercially available immediately, these new Pyramıd Tantalum capacitor units have an operating range between -55 C to 100 C for most units without any de-rating at the higher temperature.
To obtain complete eng:neering data and prices for Pyramid Tan talum slug capacitors, write to: Pyramid Research and Development Dept., Pyramid Eiectric Company, 1445 Hudson Boulevard, North Bergen, New Jersey.

CAPACITORS - RECTIFIERS FOR ORIGINAL EQUIPMENT FOR REPLACEMENT

Microwave Associates' new MA421A, 421B and 423A provide the lowest noise figures in the field to date.

Available in production quantities right now, these rugged, high-reliability diodes mark a new advance in the field.
Electrically these new diodes are similar to Microwave Associates' well known Eseries, but provide a significant advance in noise figure as shown in the above illustration.
Physically, they are fully interchangeable with the older IN21 and IN23 types which they can replace in existing systems to advantage.

SEND FOR THIS DESIGNERS HANDBOOK
Our new Handbook-Catalog is a valuable aid in application and measurement techniques. Ask for Brochure 58S

Zener Diode Uses-

1 In Series With Capacitor

WHEN circuits require subminiature parts, an electrolytic capacitor with a low voltage rating can be used in series with a zener diode. This is illustrated in a dc restorer application.

The dc restorer illustrated was required for a 15 cps square wave signal. The resulting varying dc voltage was required to be insensitive within a temperature range of 0 to 100 deg C . The circuit was required to utilize subminiature components.

The output of an ac amplifier stage with a 150 to 300 v plate supply may well have 100 to 200 v dc level at the plate. The conventional dc restorer will require a series capacitor with a voltage rating equal or larger than the dc level at the plate. To hold the flat top of the square wave within 2 per cent, a capacitor of at least $3.33 \mu \mathrm{ff}$ is required in accordance with the equation $T / R C=$ $P / 100$ where P is the desired percentage, R_{2}, C and T as indicated on the diagram.

In the illustrated example, a $4.7 \mu \mathrm{f}$, 150 v capacitor would be required. Even an electrolytic capacitor would be of considerable size, besides an appreciable
amount of leakage current would flow through the capacitor.
A zener diode in series with the capacitor overcomes both disadvantages. The diode D_{1} drops the dc plate level to the vicinity of ground level. A small volt age rating for the capacitor is sufficient and a subminiature capacitor can be used.

Temperature changes will influence the zener breakdown voltage of D_{1} but this is of no consequence since the charge of the capacitor will adjust to compensate for that change. For similar reasons B+ changes are not sensed at the output. R_{1} provides for current flow through D_{1} and its value should be chosen in accordance with allowable dissipation of D_{1}. Without the divider network of R_{3} and R_{4} the restorer will restore to -0.5 v rather than to ground because of the forward breakdown characteristic of D_{2}. At the expense of increasing the forward resistance of D_{2} by R_{4} the biasing network \boldsymbol{R}_{3} and \boldsymbol{R}_{4} provide precise restoration to ground potential.

Manfred Hilsenrath, Assoc. Engineer, Lockheed Aircraft Corp., Palo Alto, Calif.

et $\$ 10.00$ plus a by-line for the time tokes you to jot down your clever esign idea. Payment is made when the idea is accepted for publication.

As Output Limiter

A zener diode at the output of an amplifier replace input limiting devices which alter quency response. This solution worked well protecting a magnetic deflection amplifier in overloading. The output of the operanal amplifier which preceded the magnetic flection amplifier was limited.
The maximum operating output of the operaonal amplifier was to be $\pm 30 \mathrm{v}$; the maximum llowable without damaging the deflection amWier was $\pm 35 \mathrm{v}$. Amplifier saturation occurred $\pm 70 \mathrm{v}$, so a limiter was required which would perate in the range of 35 to 70 v , without afecting the amplifier characteristics. A feedback divider (R 1 and R2) of $1: 1$ was serted, and the feedback resistor (R3) was renced by a factor of two to retain the same

eedback factor as originally. R1 was bypassed y a 15 v (1N228) double anode zener diode. These characteristics determine R1 and R2: Rl limits the current through the diode to revent burnout, hence it depends on the watage rating of the diode; \boldsymbol{b}. the combination of 1 and R2 must be of high enough value not to vad the amplifier; c. R1 must be sufficiently low fot to be affected by the leakage resistance of the diode. The leakage current of the diode prerents its use directly in the high impedance feedl)ack loop in ordinary feedback systems.
Once the output signal exceeds thirty volts, the diode conducts heavily, effectively removing Rl from the circuit. The gain of the amplifier is cut in half, and the amplifier saturation level serves a limit for the new gain factor, and the outp it never exceeds $\pm 35 \mathrm{v}$.
Hol C. Martin, Intermediatc Engineer, Litton Industries, Beverly Hills, Calif.

RELIABILITY DOWN-TIME HIGHEST EVER reduced to MINUTES

CUBIC'S NEW DIGITAL SYSTEMS with builr-in rely/ance

Cubic's Digital Systems reflect the extreme reliability and ease of maintenance present in Cubic's Electronic Tracking Equipment, currently in use by the United States Air Force in the IRBM and ICBM programs. They have
been designed to accommodate the widest possible range of customer applications. A demonstration of these systems and individual units will prove that they are the most reliable, practical and versatile available.
ease of maintenance cuts down-time

Cubic Digital Systems provide easy and rapid access to replaceable parts and adjustments, an indispensable requirement in any system.

When rack-mounted, simply releasing the front panel locking knob allows the unit to slide out. No other operation is required.
Another reliability feature is controlled drive. Transistors drive the stepping switches, and these, in operating, turn off the transistor drive circuit. Since the switches control their own drive, circuit adjustments are neither frequent nor critical.

The switch assemblies, mounted on horizontal bars, swing up and out, giving easy access to wire-wound resistors and/or switch assemblies.

*relylance is Cubic's engineering philosophy which regards reliability and ease of maintenance as inseparable features of a truly functional system.

For a free illustrated brochure, write
CUBIC CORPORATION
5575 Kearny Villa Road, San Diego 11, California

IDEAS FOR DESIGN

Transistor Driven Slow Speed Stepping Switch

Problems of radio noise and slow speed whic occasionally arise in stepping switch circuits a eliminated in a circuit using a p-n-p power tran sistor to drive the switch. Radio noise is reduce from approximately $75 \mu \mathrm{v} /$ meter $/ \mathrm{kc}$ in a con ventional circuit to $0.15 \mu \mathrm{v} /$ meter $/ \mathrm{kc}$ as meas ured at 50 mc in a screenroom. The high spee of selfdriven switches may be preserved if de sirable, but can be reduced to any reasonabl rate down to about 1 step per second without component values getting excessively large.
In the circuit shown, C-1 discharges through $\mathrm{R}-1$ until its potential is within about a volt of ground. At this point, the transistor goes into conduction and pulls in the stepping switch coil, holding it closed. The interrupter contacts recharge C-1 to +28 v , cutting off the transistor and releasing the armature of the switch, which then steps forward. Holding the switch closed is an undesirable delay since the switch cycles only on the release. The 1 N 91 diode prevents arcing when the capacitors are charged. A small resistor can also be inserted in the N. O. contact to avoid the charging surge.

With the circuit constants shown, the switch cycles at about 2 steps per second. C-1 can be changed, or R-1 can be reduced to adjust the
he constant. R-1 cannot be increased since the se current would then result in a bias high ough to prevent the transistor from conducting. 1 lead may be broken at "A" to control the cuit. George S. F. Orsten, Engineer, The Martin , Denver, Colo.

A Fast Square Amplifier

i squaring amplifier capable of constant outt amplitude, fast rise and fall time, and minimom distortion of symmetry, can be designed ith two high frequency transistors utilizing a pdified Schmitt trigger configuration.
There are four design considerations to keep mind:

1. pup transistors can be used equally effecvely;
2. zener diode may be replaced with an appopriate emitter resistor and bypassing capacipr. This will require the two transistors to have milar saturation voltages;
3. keep collector current low and transistor pt-off frequency high, rise and the fall time on be as low as $0.2 \mu \mathrm{sec}$;
4. excessive loading is to be avoided since it marally detenates waveform and output amlitude. Output impedance is essentially $7 / 100 \mathrm{k}$.
Max Lang, Electronic Engineer, Consolidated lectrodynamics Co., Pasadena, Calif.

No More Lost Wires

Tool often, when wiring electronic equipment, vall pieces of cut wire fall into the chassis and me lost or hard to find.
A couple of small pieces of $1 / 16 \mathrm{in}$. neoprene, lued to the open side of diagonal pliers, can plve the problem. They will grip the wire as pliers close.
Clirence J. Brown, SCP-11, Los Alamos Scienifc Laboratory, Los Alamos, New Mexico.

Sylvania casts Silicon in new smaller diameters to save engineering time

Cast silicon rod in diameters ranging from 4 mm to 15 mm and lengths from 1 inch to 18 inches is now available from Sylvania, leading source for semiconductor materials. In this new form Sylvania silicon is ready for floating zone purification without further processing. Laboratory analysis and experimentation are accomplished with greater speed and convenience.

Rods are polycrystalline, high in purity and have a density near theoretical. They are available in three standard grades based on resistivity - from solar grade to over 100 ohm cm p-type or 40 ohm cm n-type. Sylvania silicon is available also as polycrystalline, stalagmitic rod $11 / 2$ inches in diameter.
Sylvania supplies n-type germanium in the form of undoped single crystals and polycrystalline as-reduced or purified ingots. Resistivity of the purified material is greater than 40 ohm cm at $25^{\circ} \mathrm{C}$. Both silicon and germanium are available in specially cut pieces to fit practically every type of crucible or boat for crystal growing.

Contact Sylvania's Chemical and Metallurgical Division for further information on the new small diameter cast silicon rods and other semiconductor materials.

CIRCLE 153 ON READER-SERVICE CARD

CIRCLE 154 ON READER-SERVICE CARD

REPORT BRIEFS

Alkaline Storage Batferies

This volume reports part of a continuing project aimed at better understanding, and possible utilization in naval applications, of the alkaline type of storage battery. Positive plate characteristics of the nickel oxides were studied in several different types of cells. It was found that a current efficiency of 95 to 100 per cent could be attained if oxygen evolution was avoided during charge. Under such conditions, however, the capacity of the positive plate nickel oxide was reduced one-third. A summary of earlier and present work on the electrode showed that the $\mathrm{NiNi}(\mathrm{OH})_{2}$ and $\mathrm{NI}_{3} \mathrm{O}_{2}(\mathrm{OH})_{4}$-beta NIOOH couples are well defined, while two other possible nickel oxide couples are not. (Two other NRL studies were released earlier through OTS and are still available under the general title Alkaline Storage Batteries: The Self-Discharge of the Positively Charged Nickel Oxide Electrode. The volumes are PB 121430 Part 1-The Role of Water in the Process, Oct. 1956, $7 \mathrm{pp}, \$ 0.50$; and PB 121483 Part 2-Potential as a Function of Time on Open Circuit and as a Function of the Active Oxygen on the Nickel Oxide Plates, Oct. 1956, 17 pp, \$0.50.)

Alkaline Storage Batteries: An Investigation of Nickel Oxide Positive Plate Characteristics, A. L. Pitman and G. W. Work, Naval Research Lab., Dec., 1957, 23 pp, \$0.75. Order PB 131329 from OTS, U.S. Department of Commerce, Washington 25, D.C.

Copper-Mandrel Potentiometers In A-C Operational Amplifiers

A simple method is described for phase error compensation for multiturn copper-mandrel potentiometers used as variable feedback resistance elements for gain setting of operational amplifiers in a-c analog computers. The potential of the copper mandrel is held close to one-third the potential of the potentiometer slider with respect to the beginning of the resistance winding. A figure of merit is established. The report discusses the stability of the operational amplifier with phase error compensation. Practical circuit configurations employing phase error compensation are presented. A study also is made of the envelope behavior of the compensated operational amplifier by means of modulation equivalent transfer matrices. Performance of Copper-Mandred Potentiometers In A-C Operational Amplifiers, H. H. Hosenthien, Army Ballistic Missile Agency, Sept., 1956, 35 pp, \$1.00. Order PB 131289 from OTS, U.S. Department of Commerce, Washington 25, D.C.

NEW DEVELOPMENT FRO ME GENERAL ELECTRIC. H A QUARTZ TUBING IN NEW SHAPES!

- Same high standards of purity and precision as regular cylindrical tubing
- Special shopes can be made to your specifications .. . in virtually any polygonal shape Now you can get non-circular quartz tubing! Priced only slightly higher than standard round tubing, it will be sold by the piece, foot or poundaccording to type. Lengths up to six feet or more, circumferences up to two inches per side on a square. Excellent optical and insulating properties-softening point is $1667^{\circ} \mathrm{C}$. Low coefficient of expansion . . .essen. tially free of Boron impurities.
Immediate demand seen in electronics industry in the production of semi-conductor transistor instruments. Special shapes can be made and cut for use as insulators and liners in the production of radio and electronic components. For full particulars, write: General Electric Co., Lamp Glass Dept., Nela Park, Cleveland 12, Ohio.

CIRCLE 155 ON READER-SERVICE CARD

MEASURES HASEANGLE

0° to 360 ; $\pm 1^{\circ}$
ACCURACY
20 cps to 20,000 cps

IRECT READING MOD. 120 HASE ANGLE METER \& MONITOR

ADVANTAGES

Drect Rooding Without Amblgully:
Wen onglo in read directly on a lorge $41 / /^{\prime \prime}$ meter. The Coarse
ivi Scole is groduated trom $0^{\circ} 10300^{\circ}$ in 5°. divisions. Wi Scole is graduated lrom 0°. 10360° in 5° divisions. A men engite, providingo o vernier reading on of $0^{\circ} 1030^{\circ}$ seole Nan ongle, providing o vernier readi
Migh Acsuracy Over a Wide Frequenty And Amplifudo Ranger
-occurocy of ± 1 degree is obtroined over the frequency vic: of $20 \mathrm{cps} 1020,000 \mathrm{cps}$ and from 2 to 30 volt peat We Al fon be mode ol slightly reduced accuracy.
Mrepts Sinusoldel or Comploz Wove Formse F the mathod of phase delection is based on the point of 2. cross-over, ony type of wave form is acceplable which Finclo.

Plecerdor Outpur:

Palpul is availoble which is suilable for use with pecording Enemen. provides 0 to 10 volls DC corresponding to 0 Noo ongle of 010360°.
livgged:
Priseitr designed for Military use, as Monitor, Phase N/UMM-67.

USES

luarnte and rapid measurement of phase difference.
Coulinuous, unattended monitoring of phase angle by ase of chart recorder.

WF emnirange measurements.
Imasurement and adjustment of LC filter networks.
thasurement and adjusting of phase shift networks.

TOTNG AND INSPECTION OF:

an Amplifiers	Goniometers
Whack Amplifiers	Synchros
Whers	Polyghase Systems

Audio and Power Transformers

WANTED: Soler Ropt - Key areos

CONTROL ELECTRONICS SALES CORP.
1925 New York Avenue
Huntinalon Station. New York
IICLE 156 ON READER-SERVICE CARD

Environmental Requirements

This volume provides a guide to the research and development requirements for environmental design of electronic parts, including related test procedures. The guide was intended for use by the three military services in current and future electronic planning. A chart provides environmental requirements for 10 groups of parts, including those for use in electronic hardware items; highly specialized components; general shipboard and ground components and those under nuclear radiation; high-performance aircraft and surface-to-air and air-to-air missiles; nuclear-powered aircraft and ballistic missiles; shipboard missiles; and nuclear-powered weapons. Data are given for such environmental characteristics as temperature, pressure, moisture, vibration, shock, acceleration, explosive atmosphere, sand and dust, salt atmosphere, flammability, nuclear radiation, and fungus resistance. Also described are test procedures to determine the resistance of electronic parts to harmful effects of natural elements and the conditions of use in military equipment. Environmental Requirements Guide for Electronic Parts, Advisory Group on Electronic Parts, Office of the Assistant Secretary of Defense for Research and Engineering, Oct., 1957, 11 pp, \$0.50. Order PB 131423 from OTS, U.S. Department of Commerce, Washington 25, D.C.

NEW MOow pancs trom GRC

Economically mass produced on fully automatic, patented parts are available from stock in many sizes and ypes. GRC uses single cavity fechnique, molds in one automatic cycle, gets accurate, uniform parts, ready for immediate use. These advantages, these economies, apply to made-to-order parts to our specifications n quantifies of 25,000 to many millions. Write for unique methods for unique methods for plastic parts or send prints for guotation. Ask about our zinc alloy die castings, too!

No size
No 85 too small, Maximim: 11/4" lons .03 ez.

GRC NYLON SCREWS

molded to close tolerances

Economical...clean, sharp Class 2 threads ... high strength to weight ratio...built-in electrical insulating properties . stable over a wide range of temperatures resillent and elastic, conform to irregular shapes, seal, don't loosen under vibration, .. non-magnetic resistant non-corrosive in colors to order resistant . . . in colors to order These unique GRC nylon screws permit radical product changes improved design. Available from stock.
Write NOW
for prices
and NEW
GRC FASTENER
GATALOG

World's Foremost Producer of Small Die Castings
40 Second St., Now Rochelle, N.Y. - NEw Rochelle 3-8600 CIRCLE 157 ON READER-SERVICE CARD

New G-E NE-5! H glow lamp gives 20 times more light!

. . . without changing bulb size or shape!
Do your customers complain that indicator lamps seem to fade out when general lighting goes on? Here's a tiny but powerful glow lamp that's buile to make indicators more readable-even in today's better lighted plants and homes.

The new G-E NE-51H gives 20 times more light than the familiar NE-51 when operated with the recommended resistors. It has the same bayonet base, same rugged construction that stands up under shock and vibration-and it uses approximately $1 / 4$ of a watt! Rated at more than 5,000 hours, it's ideal for machine tools, electrical controls and household appliances-plus hundreds of other applications where a brighter indicator is called for. There are considerable advantages in size and space over larger lamps of equal brightness-and they fit standard holders -AC only.

If you'd like more information on this versatile new G-E Glow Lamp, and how it can solve your indicator problems, write: General Electric Co., Miniature Lamp Dept. E1) -58, Nela Park, Cleveland 12, Ohio.

Progress Is Our Most Imporrant Product GENERAL (96) ELECTRIC

Hart Disegen IEsale, U. © A.

RELIABLE TANTALUM CAPACITORS SINCE 1930
CIRCLE 159 ON READER-SERVICE CARD

PATENTS

Miniature Super-Regenerative Radio Receiver Using Transisfors

Patent No. 2,821,625. Harry L. Price.
A special super-regenerative circuit described in this patent permits the production of miniature transistorized receivers.

Transistor 20 is connected as a tuned regenerative detector. Tickler winding 15 adjusts the feedback and resistor 24 introduces volume control. The Colpitts quench oscillator includes pnp transistor

42 and the tank circuit of inductance and condensers 37 and 38. At junctic point 39, a tap point of relatively low in pedance, the quench signal is conde tively coupled to the low impedan base electrode input circuit of transist 20. As a result there is a minimum loading on the quench oscillator by t regenerative detector and vice vers Good selectivity is obtained with trar former 11 operated in a high " Q " circu

NOW... make microvolt DC readings with your AC VTVM!....NEW

 microdyneVOLTMETER INVERTER

Add a new dimension to your standard AC vacuum tube voltmeter at little additional cost! Microdyne voltmeter inverter gives you accurate low level DC voltage readings as a simple plug-in accessory. Other functions, too . . . detailed in our Bulletin No. 100, yours for the asking.

Range 100 Microvalts to 100 Volts AC Meter Scales Read Directly in DC High Input Impedance . . . 10 Megohms Rugged, Reliable, Precision Construction SEND FOR free literature
Representatives' Inquiries Solicited

listable Multivibrator

patent No. 2,803,747. W. E. Woods. (Asligned to United States of America)
The multivibrator illustrated permits vider tolerances in component parts and hence becomes less expensive to manuficture. This circuit substitutes a gaseous discharge tube 35 and 45 for the shunting resistor in each of the connections from the anode of one tube to the control grid of the other. In addition a parallel combination of a resistor and condenser are included in each connection. The gaseous discharge tube provides constant voltage drop across its terminals end across its parallel condenser for all values of current. The grid current of each tube is limited by resistors 38 and
48. Capacitors in parallel with the gaseous discharge tubes result in a quick response of the circuit. Because of the gaseous discharge tubes the voltages at the junction points 50 and 60 change with the respective anode voltage, volt for volt. As a result resistor tolerances are much less critical and much less dependent upon each other.

Magnetic Pulse Generator

Patent No. 2,817,773. Henry F. McKenney. (Assigned to Sperry Rand Corporation)

The rectangular pulse generator comprises a source of alternating voltage having a pair of branch circuits across its terminals. Each of the circuits has a reactor winding disposed on one of the cores of a pair of saturable cores. The flux is controlled to consecutively saturate the cores. A transformer has a pair of input windings each of which is disposed in one of the circuits and poled to induce opposing fluxes in the transformer. The output is taken from an output winding of the transformer.

to choose

 the right power supply- For research . . . transistors . . . automation . . . strain gauges . . . obviously, no power supply will do every job. That's why E/M Regulated-Power Supplies are applica-tion-engineered.

Before you make a choice, send for a personal copy of Bulletin No. 350. A wide variety of standard models are described, ranging from the popular Model 212A (with a $0-100 \mathrm{~V}$ dc output) to the extra-heavyduty 1000 volt units. Current ratings go as high as 15 amperes.

And if you're looking for "A New Approach to Practical Control" . . . make sure you also request Bulletin No. 765.

ELEGTRONIC MEASUREMENTS CO., Inc.

Ealontown - New Jersey

CIRCLE 161 ON READER-SERVICE CARD

FOR EASIER MOUNTING

FANTTEEL

sillem M 5TREMK日

SINGLE-PHASE

1 amp. (resistive or inductive load)
d-c output: up to 249 volts maximum

SINGLE-PHASE

1 amp. (resistive or inductive load)
d-c output: up to 249 volts maximum

SINGLE-PHASE

-

1 amp. (resistive or inductive load)
d-c output: up to 125 volts maximum

THREE-PHASE

1.5 amp . (resistive or inductive load) d-c output: up to 372 volts maximum

GREATER SENSITIVITY... STABILITY...COMPACTNESS... than any scope in its class!

. . in less space from new ETC $41 / 2 \times 51 / 2^{\prime \prime}$ rectangular C-R tube. Bezel adapter fits all standard cameras.
. . . for X and Y axis simplify precise studies of phase shift and servo mechanisms.
in only $16^{\prime \prime}$ depth by $7^{\prime \prime}$ high. Fits standard relay racks with doors closed.

New Model K-11-R Outstanding in performance, price and size-sets new standards for general-purpose oscilloscopes. Identical, high-sensitivity horizontal and vertical amplifiers have less than 3% phase shift below 100 kc . A built-in calibrator and wide range of accurate sweep speeds simplify measurements of voltage and time without external patching.

Carefully miniaturized, but with reliability foremost in mind, the K-11-R is built around a compact new ETC rectangular $C-R$ tube that gives the same raster area as a conventional $7^{\prime \prime}$ round tube.

Write for complete specifications

PERFORMANCEBRIEFS

X AND Y AMPLIFIERS
Sensitivity: $1 \mathrm{mv} / \mathrm{cm}$ to $150 \mathrm{v} / \mathrm{cm}$.
Stability: $1 \mathrm{mv} / \mathrm{hr}$ after warmup.
Bondwidth: DC 10300 kc .
Allenuator: 15 calibrated ranges.
Coupling: DC or AC, balanced or unbat. anced thru panel or rear receptacle for console operation.

CALIBRATED SWEEP
Linear-Sweep Time Base: 3\% acc. Calibrated from $100 \mathrm{msec} / \mathrm{cm}$ 10 1 $\mu \mathrm{sec} / \mathrm{cm}$. Uncalibrated from $1 \mathrm{sec} / \mathrm{cm}$ to $2 \mu \mathrm{sec} / \mathrm{cm}$.
Trigger Sync: Int., Ext., or Line on voltage rise from $0.023 \mu \mathrm{sec} / \mathrm{v}$ to $20 \mathrm{msec} / \mathrm{v}$. CALIBRATOR

Internal, 500 eps square-wave at 300 milli .
volts peak-to-peak. volts peak-to-peak.

$$
\text { Price: } \$ 595.00 \text { poinib; po. }
$$

Logical Design of Digital Computers

Montgomery Phister, Jr., John Wiley d Sons, Inc., 440 Fourth Avenue, New York 16, N.Y. 408 pp, \$10.50.

Using synchronous circuit components almost entirely, this book describes and interprets the methods and techniques used in the digital computer field, and applies them to a wide variety of problems in logical design. The book provides the reader with the information, tools, and procedures needed to carry out the complete design of a general or special-purpose computer.

Featured in this volume are the detailed discussions of: (1) the Veitch Diagram method of simplification of Boolean equations; (2) the "difference-equation" approach to memory elements; (3) the Huffman-Moore model of digital sys-
tems; (4) the complete solutions to $\mathrm{Al}^{\text {i }}$ flop input equations; and (5) a nath matical introduction to Boolean Algebr

Permanent Magnet Handbook

Crucible Steel Co. of America, Th Oliver Building, Mellon Square, Pitt, burgh 22, Pa., 360 pp, \$10.00.

A complete, authoritative reference 0 the nature, characteristics, and economi uses of permanent magnet materials i provided by this handbook. It include sections on Permanent Magnet Design Permanent Magnet Measurements, The ory of Ferromagnetism, Magnetizatio and Demagnetization, and Electromag netic Theory. Sections on important per manent magnet materials commerciall, available or not are included.

RIGHT OFF-THE-SHELF® . . .

More than 30 different sizes ond types including continuous or piono type hinges, butt hinges in blank-fixed pin loose pin types, etc.
Wide range of variations for special applications.
HELP YOURSELF from Star's new catalog of stainless steel Write, wire, phone for your copy RIGHT NOW.

Solid State Physical Electronics

Nert can der Ziel, Prentice-Hall, Englerood Cliffs, N.J., 604 pp, \$13.00.
Here is a comprehensive account of he application of solid state physics to nodern solid-state devices used in, or leveloped for, the electronics industry. The author attempts to convey a clear inderstanding of the operation of cathpdes, vacuum tubes, transistors, and ther solid state devices in terms of the physical phenomena which make them possible. Circuit applications are elaborated only to the degree required for a better understanding of the operation Ind the usefulness of the devices.
The author has organized his book in four main sections. In the first five chaplers he presents a lucid account of atomic physics, statistics, structure of the solid state, and the theory of semiconductors. Chapters 6 through 11 cover thermionic and field emission, cathodes, vacuum whe problems, secondary emission, and photo-emission. The third section, depoted to semiconductor devices, discusses metal semiconductor contacts, p-n junctions, transistors, semiconductor photodevices, and luminescence and light amplification.

In his concluding section, the author takes up dielectrics, piezoelectrics, and ferroelectrics (with applications in each case), as well as ferro- and ferri-magnetic devices of various kinds.

Management for Engineers

Roger C. Heimer, McGraw-Hill Book Co., 330 W. 42nd St., New York 36, N.Y., $453 \mathrm{pp}, \$ 6.75$.

The book takes a practical basic look at the impact of costs, standards, materials, methods, taxes, insurance, power, equipment, labor, and ethics upon engineering considerations. It describes the fundamentals of business cost considerations and shows how both cash and credit are made to work in behalf of the overall business purpose.

The author analyzes the income contributions of engineers and the costs which are controllable by them in his discussion of a mythical business firm. A chapter "Money Flow in the Business Enterprise" explains basic record keeping for corporation financial transactions. Another chapter is on "Depreciation" and one acquaints the reader with "The Legal Forms of Business Organization."

Another TIMES first - A complete range of standard miniafurized low capacifance cables that covers most Radio Frequency, Pulse and Data Transmission applications. Special constructions which fall outside standard range and size are available upon request.

$\begin{aligned} & \text { TIMES } \\ & \text { WUMEE } \end{aligned}$	TEMP. RAMGE	$\begin{aligned} & \text { CAPACITAMCE } \\ & \text { MMF/TT. } \end{aligned}$	$\begin{aligned} & \text { IMMER } \\ & \text { cowDuctor } \\ & \text { 0.D. } \end{aligned}$	$\begin{aligned} & \text { CAOLE } \\ & \text { O.O. } \end{aligned}$	Impmimat
M1-101 *	-75 ${ }^{\circ}$ to $250^{\circ} \mathrm{C}$	$9.0 \pm .3$.012 ${ }^{\prime \prime}$. $185^{\prime \prime} \pm .004$	140 ± 5 ohms
M1-102 ${ }^{\text {- }}$	-40° to $80^{\circ} \mathrm{C}$	$0.5 \pm .5$.012 ${ }^{\prime \prime}$.185" $\pm .004$	130 ± 5 chms
MI-104*	-75 ${ }^{\circ}$ to $250^{\circ} \mathrm{C}$	$11.0 \pm .5$.019 ${ }^{\prime \prime}$. $185^{\circ \prime} \pm .004$	$110 \pm 5 \mathrm{chms}$
M1-125 -	-40° to $80^{\circ} \mathrm{C}$	$11.5 \pm .5$.019"	1885" $\pm .004$	105 ± 5 ohme
M1-126 *	-75 ${ }^{\circ}$ to $250^{\circ} \mathrm{C}$	$6.0 \pm .3$.0070	. $330^{\circ \prime} \pm .010$	190 ± 10 omme
M1-127 -	-40° to $80^{\circ} \mathrm{C}$	$6.5 \pm .3$.007"	. $325^{\prime \prime} \pm .010$	185 ± 10 chmes

- Polyotinylowe aliolectric, Nyion peckets.

Write for
Bulletin 55
and Sample

TIMES WIRE \& CABLE CO., Inc. An affiliate of ThE INTERNATIONAL SILVER CO. Wallingford, Conn.

CIRCLE 166 ON READER-SERVICE CARD

CIRCLE 167 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

What The Russians Are Writing

Y. George Adashko

MICROWAVES

Large-Amplitude Electromagnetic Waves in Ferrite with Alternating Magnetization by Ya. A. Monesov. REE 8/57, pp 951-959, 5 figs.
Examination of the propagation of a uhf electromagnetic wave in a ferrite medium, magnetized by an alternating magnetic field. The problem is solved by assuming the magnetizing and microwave fields are commensurate. If the frequency of the electromagnetic oscillations exceeds a certain critical value and the frequency of the magnetization field is less, the parameters of the medium for the electromagnetic oscillations vary with the magnetizing oscillations, but with a certain phase shift. This change in parameters is linearly related to the amplitude of the magnetizing field and is independent of the amplitude of the microwave field. Theoretical results are confirmed experimentally for $3-\mathrm{cm}$.

KEY

The sources of the Russian articles and their dates of issue follow the authors' names. Here is the key to the names of the journals in which the articles originally appeared.

AT	Automation and Telemechanics (Avtomatika i
CJ	Telemekhanika)
Communications Journal (Vestnik Svyazi)	
EC	Electrical Communications (Elektrosvyaz')
IET	Instruments and Experimental Techniques
	(Pribori i Teknika Eksperimenta)
R	Radio
RE	Radio Engineering (Radiotekhnika)
REE	Radio Engineering and Electronics (Radiotekh.
	nika i Elektronika)

Quadratic Relationships for Media with Tensor Parameters by A. G. Gurovich. REE 8/57, Pp 960-968, 3 figs.
General quadratic relationships (such as the Lorentz or the Poynting-Umov equations), which are very significant in electrodynamics, are obtained for complex amplitudes in the case of media with tensor parameters. These equations, together with the use of perturbation theory, lead to formulas for hollow systems (regular and irregular waveguides and resonators) containing media with tensor parameters.

Variational Method of Design of Waveguides with Periodic Irregularities, Part II by Sh. Ye. Tsimring. REE 8/57, pp 969-988, 6 figs.
The variational method, developed in the first port of this article (Radiotekhnika i Elektronika, January 1957, Page 3) (ED 9/1/57) is extended to odic waveguide (resonant cavity) permits the par-

TRANSLATIONS AVAILABLE

Electronic Design is gratified to learn of the growing availability of full translations of important Russian electronics journals.

Consultants Bureau, Inc. of 227 W. 17th St., New York 11, N.Y. translates Automation and Telemechanics regularly.
Pergamon Press of 122 E. 55th St., New York 22, N.Y. is preparing translations of Radio Engineering, Radio Engineering and Electronics, and Electrical Communications.

Readers interested in specific Russian journals can obtain more information by writing directly to one of these publishers.
tial-region method. The author formulates and proves a theorem to determine a pair of dispersion curves (and corresponding natural frequen. cies), located on both sides of the true dispersion curve. This is important in the estimate of the accuracy of the results.

As an example, the procedure developed was used to obtain the dispersion equation for a decelerating system with rectangular corrugations of finite thickness. Various dispersion curves ar calculated for several values of dimensions of this system. Reference is made to work by Chu and Hansen, Journal of Applied Physics, 1949, Volume 20, Page 280 and to J. R. Pierce's "Traveling Wave Tubes."

Calculation of the Critical Wave Lengths of the Lower Modes for Asymmetrical Pi, T, and Several Other Waveguide Shapes by A. Ya. Yashkin REE 8/57, Pp 989-1000, 7 figs.

The author derives equations relating the critical wave lengths with the cross sectional dimensions of asymmetrical pi and T waveguides, of waveguides having L and E cross sections, and of waveguides having two symmetrically located grooves. The calculated data are used to plot curves which illustrate the characteristics of these waveguides. Certain calculation data are compared with available experimental data.

Determination of Eigenvalues and Eigenfunctions of Gyrotropic Systems by Successive Approximations by V. V. Nikol'skiy. REE 8/57, Pp 1074-1077, 3 figs.

Supplement to work performed by the author and published in the April 1956 (Page 447) and February 1957 (Page 157) issues of Radiotekhnika i Elektronika. See ED $11 / 15 / 56$ and $9 / 15 / 57$. In these articles the author derived an exact formula for the gyrotropic perturbation of a resonator waveguide. In this article he shows approximate solutions to these equations.
Nonlinear Theory of Traveling Wave Tube, Part II. Numerical Results by L. A. Vaynshteyn. REE 8/57, pp 1027-1047, 25 figs.

The first part of this article was published in the July issue of Radiotekhnika i Elektronika Page 883. (See ED 3/19/58.) In this part the equations of the nonlinear theory of the traveling wave tube, operating as an amplifier for monochromatic signals, are numerically evaluated. The propagation and buildup of the electromagnetic field along the tube are studied, as well as the motion and bunching of the electrons. Dependence of the maximum power of the electromagnetic field on various factors and the connection between the input and output powers are investigated. Certain new nonlinear effects are obtained. Reference is made to work by Nordsieck (proceedings IRE, 1953, Vol. 41, Page 630) Tien, Walker and Wolontis (ibid. 1955, Vol. 43, Page 260), and to Pierce's "Traveling Wave Tubes."

Fig. 1. Setup for investigating simultaneous operation of two reflex klystrons: 1-klystron; 2-cavity; 3coupling element; 4-detector; 5-attenuator; 6modulator; 7-wavemeter; 8-oscillograph; 9-power supply.

Mutual Synchronization of Reflex Klystrons Without Discontinuities in Ampliwde and Frequency by R. B. Braginskiy, s. D. Grozdover, A. S. Gorshkov, and I. T. Profimenko. REE 8/57, pp 1048-1052, 5 ligs.
The purpose of this experimental inrestigation was to obtain a wide band of electronic frequency retuning. The muthors have established the region of the values of fundamental parameters, in which klystrons operate in synchronism without discontinuities in amplitude and irequency of the generated oscillations. The resultant range over which electronic frequency detuning is possible is three times greater than obtained with a single klystron. Although the simultaneous operation of klystrons was alreadly considered previously by Abdel Dayen (Synchronization of Reflex Oscillators, Zurich, 1953), the mutual synchronization studied there was under identical transit angles, and the purpose of that investigation was an increase in the general output power in the center of the oscillation region. The problem of extending the range of electronic retuning of the generated frequency was not touched upon there at all. Fig. 1 shows the experimental setup.

Contribution to the Design of Waveguides with Gradually Changing Cross Sections by A. L. Gutman. RE 9/57, Pp 20-28, pp 20-28.
Expressions are derived for the elementary waves in a waveguide with gralually changing transverse cross section s. These expressions are used to obtain formulas for converting impedances
and admittances in such a waveguide. The external parameters of the four-terminal equivalent of a gradually varying section are formulated.

An integral equation for the longitudinal profile of a waveguide junction with minimum distortion, namely a waveguide section with gradual change in transverse cross section is also obtained.

COMPONENTS

New Type of Broadband Transformers by Yu. M. Lebedev-Krasin. RE 9/57, pp

 38-46, 9 figs.Description of new broadband transformers operating effectively from 10^{3} to $10^{8} \mathrm{cps}$. They are used in apparatus designed for simultaneous transmission of signals with a wide frequency spectrum, as well as for tuned amplifiers with a tuned frequency that is smoothly adjustable over a wide range. In the latter case the special transformer developed for this purpose is used simultaneously for inductive variation of the resonant frequency of the tuned circuit with electronic control. Refers to "Very Wide Band Radio Frequency Transformers" by Maurice and Minns (Wireless Engineer, June 1947) and "A Wide Band High Frequency Transformer Using a Ferrite Core" by T. R. O'Meare (Proceedings of the National Electronic Conference, October, 1954).

High Sensitivity Vacuum Relay by K.P.Yegorov, V.G.Krasin'lov and L.V.Reyman. EC 9/57, pp 58-64, 9 figs.

Description of a relay design for operation at 0.01-0.05 microamperes, with a

marconi a must for missile measurements

FM Telemetering equipment is quickly and accurately checked with the unique instruments described below. All are immediately available against DX Priorities.

FM SIGNAL GENERATOR model 1066/1 Frea. Ramge: 10 to 470 Mc in 5 bands. FM, eentinueusly variable:

0 to 100 kc . Higher to order. DFrequency: 1 to 200 kc , calibrated. stability: $.0025 \%$ per 10 min .
AMPLITUDE MODULATOR medel 1102 For use with any Sig Gen. Gives monitored AM, 0 to 80% with zero FM. Handles any wave shape.

FM DEVIATION METER model $928 / 2$
Freq. Rance: 215 to 260 Mc , directly callbrated. Motulation Freqsas 50 cps to 120 kc .
Deviation Ranges:
0 to 100, 200 and 400 kc , or to order. Aecursey of Measurament: 3%.
Built in crystal standardization, aural and visual monitoring, counter type discriminator. Instrument is rugsedized and watorproor.
FM DEVIATION METER model 928. similar to $928 / 2$, covers 20 to 500 Mc .

EDDYSTONE FM/AM RECEIVERS,

models 770 R. 770 U
Model 770 U covers 150 to 500 Mc , 770R covers 19 to 165 Mc . Both are sensitivo, stable, directly callbrated and have excellent logeing scales.

AS SUPPLIED TO: US Signal Corps, Wright Patterson AFB, Mavy Electronics Lab, AEC, Convair, Martin, Dougles, McDonnell, GM, Chrysier, etc., etc.
"HOP" specialists know hand-operated switches and assemblies, their applications, advantages and specifications. Their service is available for

- design development, testing and production techniques of new control situations through hand-operated switches and assemblies
- certified application data, modifications and inquiries on existing products in this group to meet specified requirements.
"HOP" carefully considers all applications from a "human engineering" standpoint, beforehand, in order to reduce human failure to a minimum. Some typical examples of products are . . .

LIGHTED PUSH-BUTTON SWITCHES

C-6 Series-Combines two-piece, color coded push-button, pilot-light and switching unit in one space-saving component, panel mounted. Use singly or stacked.

C-8 Series-Combines 3-color monitoring and switching in one, compact, modular unit, panel mounted. Ten-second replacement of lamp modules from front of panel. Variety of colors available.

- toggle actuated switches
- push-button actuated switches
- rotary gang switches
- hand operated assemblles

Whissue [Jomponents hroup

"'MCG' technical specialists fully appreciate and completely understand reliability and what it means to you. Their service is available to you for . . .

- problem analysis through design development, testing and production techniques of new electro-mechanical controls, switches and other components for aircraft and missiles
- certified application data and modifications on existing controls, switches, and other components to meet required conditions.
"MCG" specialists combine basic Electro-Snap products with others to produce systems of high reliability and precision. This service is made available for aircraft and missile applications alike. It is faster and at lower cost than you can achieve yourself. Typical examples of developments are

COMPLETE CONTROL PANELS

llluminated and instrumented control consoleltes are representative of the versatility offered by the new ElectroSnap Modulume panel rechnique. Lighted pipelines, vaive and rank load indications, discrete "go, no-go" readout areas, and illuminated switching controls combined with translucent panals show a new direction in control and monitoring consoles. The basic presentaion is the concept of readouls sequencing in changing colors to conserve vial spis ules are replaceable in ten seconds from front of panel. Front panel configurations are unlimited.

- EmERGENCY fire controls

- GROUND POWER CHANGEOVER CONTROLS
- FIELD SENSING CONTROLS
- POWERING AND DE-POWERING CONTROLS
- digital readouts

Take advaniage of these new services now-
TELEPHONE CHICAGO—VAn Buren 6-3100 Just ask for "HOP" or "MCG"

4216 West Lake Street, Chicago 24, Illinois
Telephone: VAn Buren 6-3100
TWX No. CG-1400

RUSSIAN TRANSLATIONS

winding resistance of $800 \pm 100 \mathrm{ohms}$, a curren carrying capacity of $1-2 \mathrm{ma}$, and an op ratin time of 0.5 sec .

INFORMATION THEORY

Contribution to the Estimate of the Noise Reje fion of Radio Reception Methods Based on A eraging the Functions of the Signal and Noi by N. L. Teplov. RE 9/57, pp 3-11, 8 figs.
Generalized statistical analysis and relati comparison of radio reception methods based averaging the functions of a signal and a rando noise (method of multiple repetition, integral r ception method, method of storage, and metho of discrete averaging). The deductions an equations derived can be directly used for cal culating the noise rejection of actual radio re ceiving apparatus. Refers to "Mathematica Analysis of Random Noise" by S. O. Rice, Be System Technical Journal, July 1944 and Januar 1945.

RECEPTION

Mechanism of Occurrence of Phase Distortion in Partial Suppression of One Sideband Fre quency by A. B. Polonskiy. RE 9/57, pp 29-37 11 figs.
Phase distortion in partial suppression of one sideband occurs, fundamentally, as a result o carrier phase shift, occurring in the single side band receiver. This leads to a phase shift in al the modulating frequencies transmitted by th single sideband, by the same phase angle througl which the carrier is shifted.
The transient characteristics of the single side band receiver with phase distortion are calcu lated.

CIRCUITS

Analysis of Detection of Amplitude-Modulated Oscillations by Means of Low-Frequency Equivalent Method by L. S. Gutkin. REE 8/57, pp 1012 1026, 17 figs.

In the detection of am signals the loading produced by the detector on the circuit that feeds it should, in general, be taken into account not onl by determining the input resistance of the detector for the carrier frequency, but also by determining the input impedance of the same detector for deviations of the envelopes of the detected signal. The difference in many cases of practical importance can be so great, that the bandwidth of the tank circuit for the sideband frequencies may differ by a factor of several times from the bandwidth of this tank circuit determined by taking only the impedance into account.

A general method is given for the analysis of e detection of am signals, based on the account the difference between the input impedance ad resistance and replacing the supply tuned Ircuit (or system of tuned circuits) by its lowequency equivalent.
ock-in of a Self Excited Oscillator by Means of In Amplitude Modulated External Signal by P. Martynenko and R. V. Khokhlov. REE 8/57, p 1001-1011, 6 figs.
The article shows that if a detuned oscillator
requency Dividers Employing Transistors by M. Z. Tseytlin. EC 9/57, pp 33-41, 11 figs.

Description of regenerative transistorized frepuency dividers úsing junction and point-contact ransistors. This circuit contains a frequency multiplier in the feedback loop and is similar to the vacuum-tube equivalent circuit. The applicalion of the circuit is described and an experimental proof of the theoretical premises is given. The circuit gives reliable frequency division at a coefficient from three to ten and above. The dibider operates reliably with supply voltages ranging from five to 40 volts. The tolerance in the eircuit parameters increases from 2-2.5 per cent at $\mathrm{n}=0$ (n is the frequency division coefficient) $104-10$ per cent at $n=3$.
Another circuit described is a regenerative frequency divider employing a ferrite peaking transformer, in accordance with the circuit proposed by V. M. Rozov (Elektrosvyaz', June 1956), (See ED $1 / 15 / 57$), which can raise the frequency division coefficient to 14-16. A divider with a peaking transformer is cheaper and consumes less power than a circuit using two transistors. See Figs. 2, 3 and 4.

Coupling of Tank Circuits of Superheterodyne Receivers and Nonlinear Distortion Connected with Misalignment by I. M. Simontov and L. Ye. Yashchuk. EC 9/57, pp 30-32, 2 figs, 1 table.
The present method of aligning superheterodyne tuned circuits with trimmer capacitors produces a correct alignment only at two or three frequencies, depending on the number of additioral elements in the heterodyne circuit. At the remaining circuits there is a certain detuning. This article tells how to determine how close the alignment is in mass-produced radio broadcast apparatus and to what extent the misalignment increases the nonlinear distortion in the receiver.

Fig. 2. Block diagram of frequency divider.

Fig. 3. Actual frequency divider circuit.

Fig. 4. Another version of the frequency divider.

PRECISION CONTROL ASSEMBLIES a WRIGHT specialty

MAJOR SUB-ASSEMBLIES: Size 9 motor tachometer generator, 7/8" in diameter; two Size 11 high accuracy synchros; precision gear reduction unit with 6000 to 1 ratio.

This servo illustrates Wright's exceptional capability for production of special small precision components and assemblies. You are invited to consult us on your next requirement for ...

A.C. and D.C. Motors • Servo Tach Units

Synchros In All Categories
Gyro Motors - Tachometer Generators And Related Components or Assemblies

MOTOR DIVISION

EST. 1893 - DURHAM, N. C. W

West coast warehouse: 1. r. stern co., 4109 burbank blvo, burbank, calif.-export division: rocke international corp., i3 east 40th st., n. y., CIRCLE 171 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

WORLD'S FAIR

World's Fair by M. Likhachev and A. Shokin 1/58, pp 28-30, 5 figs.

Describes what the Russians planned to exhit at the World's Fair in Brussels. A televis studio installed at the Soviet pavilion is to p duce local tv programs and demonstrate the on new model sets. They intend to broada in Belgium and surrounding countries
They will telecast exhibits, commercial me ings, appearance of Soviet artists, scientists, at other guests. Telecasts of Soviet theatric groups, both from the pavilion and from theat halls in Brussels are to be broadcast from mobi equipment.
Various tv cameras incorporate new tran mitting tubes. A new truck-mounted three-car era mobile station with receiving equipment to insure reliable transmission of images with 600 line definition, and a frequency character tic, uniform to within 2 or 3 db . A reporti setup is intended for on-the-spot transmission. includes a portable transmitting camera with gun-like construction and a stationary receivi stand. With transmission regulated with chan of illumination, high sharpness is insured, ev at low illumination levels.
The Russians will also display underwater apparatus, with a special camera in a bath sphere. Many circuit novelties make it smalle lighter, and reduce the power consumption. Th equipment provides maximum image linearit and permits instantaneous change in viewin angle.
The exhibit will have many industrial tv it stallations as well as more than twenty types o tv receivers. These will have crt's measurin from 14 inches to 21 . Some will include radio and phonographs. The article illustrates many a the new models.

In addition to tv apparatus, they will shov some of their best radio receivers and sound systems, many of them pilot models of equip ment they expect to sell in the USSR next year

REE NOVEMBER 1957

This issue has no technical articles. It is en tirely devoted to a survey of the history of elec tronics in the USSR since the November 1917 revolution.

Articles cover the history of Soviet develop ments in surface propagation; and meter, deci meter, and centimeter wave propagation in the ionosphere and troposphere. Also covered a antenna theory, interference immunity, non linear oscillations and the development of ther mionics.

RUSSIAN BOOK REVIEW

Intermediate Frequency Amplifiers

M. L. Volin, 3rd edition, Soviet Radio Pub. lishing Press, Moscow, 1956, 232 pages.

This was written for electronic engineers who design intermediate frequency amplifiers. It contains very practical information. This reviewer discussed the book with two Russian electronic engineers at the 1957 Wescon show; they said it was highly regarded by Soviet engineers. A German translation has also been published.

The first part of the book develops basic i-f amplifier theory. It develops methods of calculating selectivity, shape factor, gain, LC ratios, and maximum gain stability. Results of the analyses are tabulated.

The material illustrates the design of complete i-f amplifier sections to meet specific requirements. These include a $465 \mathrm{kc}, 8 \mathrm{kc}$ bandwidth amplifier; a 30 mc amplifier with an 8 mc bandwidth; and a 60 mc unit with 20 mc bandwidth.

The author then presents a detailed treatment of i-f amplifier transient response. He treats methods for computing rise time, overshoot, and decay time for pulse modulation signals as encountered in television, radar and data transmission systems. Here again, design examples illustrate the text.

One of the more difficult aspects of practical i-f amplifier design is the prevention of feedback loops that cause regeneration and distortion of the frequency response. The last two chapters depict the most common feedback problems and their correction. It covers shielding, decoupling, measurement technique, and physical placement of parts. For many engineers, this will be the most valuable part of the book, since published material dealing with i-f amplifier feedback problems is very rare.

Available in Russian from:
Imported Publications and Products, 4 West 16th Street, New York 11, New York;

Four Continent Book Corp., 822 Broadway, New York, New York; ;

Victor Kamkin, Inc., 2906-14th Street N.W., Washington, D.C.

Reviewed by Richard E. Daniel, Sr., Electronic Engineer, Hoffman Laboratories Div., Hoffman Electronics Corp., Los Angeles, California.

AMCI AUTOMATIC IMPEDANGE PLOTTERS

CIRCLE 173 ON READER-SERVICE CARD

YEARS AHEAD IN DESIGN PERFORMANCE

> For critical applications, many of our customers have saved years of trial and error in YOKE selection by specifying Colco YOKES.

The construction of our yokes makes it possible to achieve sensitivitios, linearthies, responses and distortion-free deflecting fields not possible with the usual types of yoke.

For precision military and commercial displays, Celco also offers standard yokes in $7 / 8^{\prime \prime}, 1^{1 \prime \prime}, 1$ K6" $2^{\prime \prime \prime}, ~ \& ~ 21 / 2^{\prime \prime}$ CRT neck diameters.

Write for CELCO DEFLECTION YOKE Catalogue \& Design Sheafs or for immediate engineering assistance Call your nearest CELCO Plant:

Celco

Constantine Engineering Labaratories Ca.

GERMAN ABSTRACTS

Noise Voltage Measuremen in Low Impedance Element

WHEN noise voltages generated in resistors are measured, a wideband amplifier generally precedes the frequency selective voltmeter. The order of magnitude of the equivalent noise resistances of such preamplifiers increases with decreasing frequency in the audio frequency range. The order of magnitude of this equivalent resistance with typical first stage tubes is about 1 K at 5 kc . Consequently the noise voltage generated by resistors of the order of 10 ohms cannot be measured with such an arrangement.

In many practical applications such measurements must be made; i.e. the measurement of noise voltage generated by germanium or silicon diodes conducting in the forward direction. A suitably designed transformer, connected as in Fig. 1, can be used to step up the noise voltage of the test element so that the
equivalent noise voltage at terminal pa $a-a$ can be made to exceed the noise ge erated by the first stage of the wide-bar amplifier.

The equivalent noise resistance, R_{e}, a device whose complex impedance is is defined from the basic resistor nois equation

$$
\overline{V_{N}}{ }^{2}=4 k T \int_{f_{1}}^{R_{e}} R_{e} Z d f
$$

through the formula

$$
\bar{V}_{N}{ }^{2}=4 k T R \Delta f
$$

where T is temperature in ${ }^{\circ} \mathrm{K}$.
The transformer introduces the extr noise due to the losses in the transforme The equivalent circuit of the arrange ment is shown in Fig. 2. All quantitic are referred to the secondary, and th the "noise generator" associated with ead

Fig. 1. Use of input transformer to step up noise voltage from the test element Z.

Fig. 2. Equivalent circuit for Fig. 1. Generators A, B, and C represent noise voltages due to transformer resistance. Generator V_{e} represents noise generated by first amplifier stage.

istance is shown in the diagram. It is Sirable to have a large input impedce at the primary terminals of the msformer compared to the resistance the test element since this element can ry within wide limits. Assuming the ment under test is principally resistive, transformer is designed for a particufrequency f_{0}. It can be shown, hower, that a particular transformer can rve over a frequency range of about o decades.
The inductance L_{2}, given by $\left(n_{2} / n_{1}\right)^{2}$, is chosen to resonate with C_{2}. The pacitance C_{2} includes the winding cacitance of the secondary, and the input pacitance of the amplifier. The order magnitude of C_{2} is $10^{-10} \mathrm{fd}$. The turns tio of the transformer is chosen from ne inequality
$\left.n_{2} / n_{1}\right)^{2} Z \geq 5\left[R_{e}+\left(n_{2} / n_{1}\right)^{2} R / w_{1}+R_{w_{2}}\right]$ here R_{e} is the noise resistance of the mplifier, and $R_{w 1}, R_{w 2}$ are the winding אsistances of the primary and secondary, spectively. If the winding resistances ve negligible compared to R_{e} then the prns ratio is chosen to correspond to the pinimum expected value of the test imedance by

$$
\left(n_{1} / n_{2}\right)^{2}=5 R_{e} / Z_{\min }
$$

addition, if the maximum value of the st element is $Z_{\text {max }}$, it can be shown that

$$
Z_{\max } / Z_{\min }=R_{o z} / 50 R_{e}
$$

There $R_{p 2}$, the resonant resistance of the monk circuit is given by

$$
R_{p^{2}}=Q / \omega_{o} C_{2}
$$

the transformer can be realized using a errite core. A Mu metal magnetic shield or the transformer and the input circuit used to eliminate stray noises. Using a oc bandwidth, it is possible to measure te noise voltage of a 10 ohm resistor rith an accuracy of 10 per cent.
With this arrangement it was found wssible to measure the noise voltage enerated by crystal diodes in the high wrent region. It was found that while
or low currents the diode acts as a restor with half the value of the increnental resistance, for large currents the wise resistance ceases to decrease (with treasing currents) and actually inreases in the ma range.
Abstracted from an article by W. Nonenmacher, Nachrichtentechnische Zeitphrít, Vol. 10, No. 11, Nov. 1957, pp 59-553.

Note-Commercial and Military Packaging Engineers:

Rugged LINK-LOCK

...your best answer to exacting closure problems

LINK-LOCK provides pressure-tight closure on this rigidly specified equipment container

SIMMONS

FASTENER CORPORATION
1763 North Broadway, Albany 1. Now York QUICK-LOCK-SPRING-LOCK• ROTO-LOCK-LINK-LOCK•DUAL-LOCK

See our 8 page catalog in Sweet's 1958 Product Design File

Simmons LINK-LOCK provides quick opening and closing as well as impact-resistant dependability on transit cases manufactured by Craig Systems, Inc., Danvers, Mass.
The cylindrical Craig container above is gasketed and pres-sure-tight, and contains delicate electronic equipment. Twelve LINK-LOCK fasteners are used on this model.
Here's why LINK-LOCK is ideal for use on military cases produced to exacting specifications as well as on inexpensive commercial containers:

- Impact and shock resistant (positive-locking).
- High closing pressure with light operating torque..... insures pressure-tight seals where required.
- Available in 3 sizes, for heavy, medium, and light duty.
- Compact design...lies flat against case even when unlocked.
- Opening and closing by wing-nut, screwhead, or hex nut.
- Flexible engagement latch design...can be varied to suit different conditions.
Also available: Spring-Loaded LINKLOCK. Ideal for the less expensive containers where costs won't permit precision production. Spring provides take-up to compensate for set in gasketing, irregularities of sealing surfaces, and mounting inaccuracies.

Where does the versatile Simmons LINK-LOCK belong in your design? For complete information and specifications, send for the Simmons Catalog today. Samples and engineering service available upon request.

CIRCLE 176 ON READER-SERVICE CARD

THE HERMASEAL COMPANY, INC 1010 N. Main, Elkhart, Indiane

CIRCLE 177 ON READER-SERVICE CARD

Photographic Reconnaissance and Mapping, Extreme Wide-Angle, Telephoto and Plotting Lenses, Radar Recording, Data Recording, Infra-Red and Ultraviolet Optical Systems, Light Relay Systems, Components from Synthetic Crystals, Closed Circuit Television Lenses, Aspherics and Anamorphics.
Quotations to your specifications.
C. ? C. $1: 75=3$

American Optical Company Inwood 96, I. In, N. Z.

CIRCLE 178 ON READER-SERVICE CARD

GERMAN ABSTRACTS

All-Pass Filter Time and Frequency Response

THE lattice-type, all-pass filters shown in the accompanying table are used as phase equalizers. Various reference equations are provided for each. Such networks are popular for the linearization of the envelope delay time in single sideband transmission, as in TV. The original

$R_{o}=\sqrt{L / C} \quad \omega_{o}=1 / \sqrt{L C}$
paper includes universal curves for the characteristic functions given in the accompanying table.
Abstracted from an article by H . Dobesch, Hochfrequenz und Elektroakustik, Vol. 66, No. 3, Nov. 1957, pp 67-70.

Complex Transfer Function

$\frac{V_{2}}{V_{1}}=\frac{j\left(\omega / \omega_{o}\right)-1}{j\left(\omega / \omega_{o}\right)+1}$

$$
\frac{V_{2}}{V_{1}}=\frac{(j \omega-a-j b)(j \omega-a+j b)}{(j \omega+a+j b)(j \omega+a-j b)}
$$

Phase Shift of the Transfer Function

$$
\phi=\operatorname{Tan}^{-1} \frac{Z \omega / \omega_{o}}{\left(\omega / \omega_{o}\right)^{2}-1}
$$

$$
\phi=\operatorname{Tan}^{-1} \frac{2 \alpha \mu\left(\mu^{2}-1\right)}{(1-\mu)^{2}-\alpha^{2} \mu^{2}}
$$

$$
\alpha=\frac{Z a}{\sqrt{a^{2}+b^{2}}} ; \quad \mu=\frac{\omega}{\sqrt{a^{2}+b^{2}}}
$$

Envelope Delay: $\tau=\mathrm{d} \phi / \mathrm{d} \omega$

$$
\tau=-\frac{1}{\omega_{0}} \cdot \frac{2}{\left(\omega / \omega_{0}\right)^{2}+1}
$$

$$
\frac{d \phi}{d \mu}=-\frac{2 \alpha\left(\mu^{2}+1\right)}{\left(1-\mu^{2}\right)^{2}+\alpha^{2} \mu^{2}}
$$

Step Response
$v_{2}(t)=\left(2 e^{-\omega_{0} t}-1\right)$

Parameters

$R_{o}=\sqrt{L_{1} / C}=\sqrt{L / C_{1}} ; C=1 / 2 R_{o} a ;$
$L=2 R_{o} a /\left(a^{2}+b^{2}\right) ; L_{1}=R_{o} / 2 a$
$a=1 / 2 R_{o} C ; b^{2}=1 /(L C)-a^{2}$

Approximation

for Logarithmic

Functions

RANSCEDENTAL equations involving the natural logarithm can often be explicitly blved by approximating the logarithmic funcon with a function of the form $A x^{c}$. Using this orm. power series approximations may often be voided.
It can be shown that in an interval x_{1} to x_{2}, as llustrated, the function $\ln x$ may be approxipated within a relative error value, Δ, by the orm
$x \approx A x^{e}=\frac{\ln \dot{x}_{m}}{1+\Delta}\left(\frac{x}{x_{m}}\right)^{\frac{1+\Delta}{\ln x_{m}}} \approx \ln x_{m} \frac{(x)^{1 / \ln x_{m}}}{e}$ there the last approximation holds for very small alues of Δ. The limits of the approximation, x_{1} nd x_{2} are chosen so that the error is just equal Δ at these extremes. It is shown that x_{m} is the pometric mean of x_{1} and $x_{2}\left(x_{1} x_{2}=x_{m}^{2}\right)$. The raD. x_{2} / x_{1} is related to x_{m} and Δ through

$$
\frac{x_{2}}{x_{1}}=x_{m}{ }^{\frac{+}{1+\Delta} \sqrt{\frac{\Delta}{1-\Delta}}} \approx x_{m}{ }^{4 \sqrt{ } \Delta}
$$

It can be shown that the approximation imroves, i.e., includes a larger interval of the varibe, as the value of the variable increases. For lis reason a scale change is often indicated. If

$$
\ln x=\frac{1}{m} \ln x^{m}=\frac{A}{m}\left(x^{m}\right)^{c}
$$

Written then the choice of m as 10 or 100 results athe desired improvement.
Alstracted from an article by W. Rehwald and 1. Zinke Archiv der Elektrischen Uebertragung iol. 11, No. 10, October 1957, pp 397-402.

The function and curve which approximates the function.

AMP.
3 CIRCUITS

9 CIRCUITS

the NEW LOOK in AMP-Iok

Now . . connect 3,6,9 or 12 circuits simultaneously with the AMP-lok multiple connector and a simple push of the fingers.

All units are self-anchoring and require no supplementary mounting parts in through panel multiple connector applications.
AMP-lok can be used as a safe, free-hanging multiple connector also.

desianed for contitimouns duty

 PRECISE FIXED FREQUENGY

 PRECISE FIXED FREQUENGY THREE PHASE POWER SUPPLY

WHERE DEPENDABILITY IS OF PRIME

Operating from $115 \mathrm{~V}, 60 \mathrm{cps}$ power, the Model 1452C is one of aseries of CML Electronic Generators designed for production testing of gyro spin motors and similar devices.

Catalog " M " describing this unit as well as other CML generators in the power range of from 50 VA to 80 KVA in single and three phase units and frequency range of 20 cps to 60 KC with all specifications listed, is yours on request.
Our design engineering department is at your service to design and custam-build a power supply unit for your specific need.

CIRCLE 180 ON READER-SERVICE CARD

11 CN${ }^{8} 395$

LOW-COST, LOW-RIPPLE MAGNET SUPPLY

HIGHER OUTPUT PER DOLLAR from this medium-power unregulated supply. Compact and efficient. Widecange, continuously-adjustable output. Designed for use with high power traveling wave fubes. Ideal for tube development work or as general-purpose lab. oratory supply.

Check these feafures. Get more supply for your monoy from Manson. OUTPUT: 0-250VDC @ 10 amps. MAX. RIPPLE: 0.5\% peak to peak

LOAD PROTECTION: Undercurrent relay, adjustable 1-10 amps. for removing power from external circuits when magnet current falls below preset value. INPUT: 208V., $3 \phi, 60 \mathrm{cps} ., 2.7 \mathrm{KVA}$ DIMENSIONS: $211^{\prime \prime}{ }^{\prime \prime} \mathrm{W} \times 15^{\prime \prime} \mathrm{D} \times 10^{1 / 2} 2^{\prime \prime} \mathrm{H}$ WEIGHT: 50 pounds
FEATURES: Silicon rectifiers, continu-ously-adjustable output voltage control, output curront meter, 10 -foot, 4 -wire power cord with male and female connectors, polarized iwist-lock male output connector, shorting plug for undercurrent inferlock cennector.

207 GREENWICH AVE

THE INTRINSIC-BARRIER transistor offe the following advantages over the famili pnp or npn transistor structures:

- Feedback capacitance from collector to ba is reduced;
- Maximum voltage sustainable between colle tor and base is greatly increased permitting ope ation at higher power levels;
- Transit time is reduced, hence, a smaller ba current is necessary to control emitter-to-ba current to much higher frequencies;
- Smaller input power is required for any give value of control current since base resistance reduced.

Significant improvement in the design of f miliar pnp and npn transistors can, of course, obtained by reducing the thickness and the r sistivity of the base region, and by reducing th area of the transistor in an effort to reduce und

Fig. 2. The pnip transistor in a commor emitter circuit; relatively thick i-layer has bee introduced between base and collector.

Fig. 1.(a) conventional pn junction has narrow strong-field region; (b) n-i-p junction has constant field through wide intrinsic layer.
able feedback capacitance. There are, hower, very definite limits to such design modifica-

Since thinner base regions and lower base retivities decrease the width of the strong-field gion between collector and base there is an asFiated larger feedback capacitance and, hence, maller permissible maximum voltage. A relaely wide strong-field region is necessary to pert application of high and useful voltages beren collector and base. An examination of the ctors affecting width of the strong field region ds to the concept of the intrinsic-barrier tran-

P-N and P-I-N Junctions Compared Consider the distribution of charges in an ordiry pn junction, as illustrated in Fig. 1(a). A ry narrow region of strong field is developed. his region acts as a parallel plate capacitor and, perefore, capacitance is high. The maximum otage which this field can sustain is small. If now the n and p regions are separated by a ide region material, as in Fig. 1(b), which is either n nor p type and which contains subentially no fixed-charge centers, this layer will ${ }^{t} t$ as a strong-field region. The base layer may av be made much thinner and at the same time resistivity may be reduced. Moreover, the msit time is lowered without raising base remance.
The intrinsic barrier is incorporated into the ensistor structure illustrated in Fig. 2.

465 Mc Transistors Built

An oscillator circuit in which intrinsic-barrier nsistors have been operated at a frequency of 15 mc has been built. The circuit employed is a mmon-base circuit in which a tuned circuit is aced between the collector and base electrodes, leedback capacitor between collector and emitr rand a tuned circuit between emitter and base. circuits of this type, very substantial powers eve been obtained at frequencies as high as

It should be emphasized that despite the rewed capacitance possible in intrinsic-barrier ansistor structures, the high-frequency transisir remains a very small-area device. For exmple, all of the electronic action in the 465 mc crillator takes place in a region which is only 010 in . in diam and 0.001 in . thick. A structure exceedingly small is, of course, difficult to mstruct. Nonetheless, this tiny structure promes to help solve the problem of application of he tiansistors to broadband systems and to tuned igh frequency systems like mobile radio. Alstracted from the article, The Intrinsicarrier Transistor-How It Works by J. M. Early, ell Laboratories Record, March, 1958.

SELECT CLOSURE HARDWARE TO IMPROVE UTILITY, APPEARANCE, AND TO LOWER COST

QUICKLY INSTALLED SOUTHCO CAPTIVE PANEL SCREWS END MISALIGNMENT
PROBLEM..

Simplicity of design contributes to clean, distinctive appearance and fast, low-cost installation. Stand-off is slipped into panel hole and secured by flaring. Screw is passed through standoff and made captive by vinyl o-ring.
"Floating" screw design eliminates costly close tolerance manufacture and permits easy ergagement regardless of panel distortion encountered under adverse use conditions.

SPECIFICATIONS

Material: Screw is brass, chrome plated; can be supplied in stainless steel. O-ring is vinyl plastic.
Overall length of screw: $13 / 16^{17}$
Depth of screw head: $1 / 4$

Sizes:

SCLEW MELD DIMMETER	ThRECO SIIE
$3 / 41$	1/4-20
\%/6	1/4-20, 12.24
\% $\%$	10-24,10-32

Length of thread: $38^{\prime \prime}$
Screw head is supplied plain, as shown, or slotted for screw driver.

PRE-ASSEMBLED

PAWL ADJUSTS TO
DESIRED THICKNESS AND PRESSURE

This neat, compact Southco panel and door fastener is supplied assembled, requires but two rivets or bolts for low cost installation. It is available in three mod-els-large, intermediate and midget.
The unique feature of Southco Pawl Fasteners is the fact that, by metely turning the knob, the pawl is adjusted to a wide range of frame thicknesses. This assures a tight grip without precision setting regardless of variations in frame or door dimensions or changes that are produced by wear or warping of sheets.

Pressure exerted by the pawl on the frame is controlled in the same way, by merely turning the knob. Against gasketed frames, pressure can be easily applied to compress the gasket.

SPECIFICATIONS
Knob: Cadmium or chromium plated steel.
Head Styles: Protruding ribbed or knurled knob; flush screw driver slotted for large size only.

	LRGE		mideet
Knob diameter	\%"	\%/6"	1/201
Total width	$21 / 2{ }^{\prime \prime}$	$13 / 4{ }^{17}$	$11 /{ }^{17}$
Total height	13/6"	\%"	23/4"
Back of panel depth	123/4"	11/4"	\%"
Knob length	$11 /{ }^{n}$	13/6"	/2"

FAST, HAMMERDRIVEN BLIND RIVETS CUT INSTALLATION TIME

You "hit-the-pin" and the rivet's in. No special tools to limit production or require maintenance, no bucking, no finishing. For blind or open applications, Southco Drive Rivets save time, reduce costs.
Automatic "pull-up" action assures uniform, tight grip.
Southco Rivets are made of aluminum or cadmium plated steel with cadmium plated or stainless steel pins. Diameters are from $1 / 8^{n}$ to $1 / 4^{n}$, grip range is from $1 / 16^{10}$ to $1 / 8^{\mathrm{n}}$.

Increased widespread use is due to low installed cost and elimination of down time and maintenance associated with fasteners requiring special tools.

FREEI

Fastener Handbook

Send for your free copy of Handbook No. 7, just released. Gives complete data for designers on these and many other specialty fasteners. 52 pages, in two colors.
Write on your letterhead to Southco Division, South Chester Corporation, Industrial Highway, Lester, Pa.

At Hughes the Systems Engineering approach is considered essential for optimum reliabllity.

The basic design of complex electronic systems is relatively more advanced than the Reliability Engineering which will ensure their successful operation.

Thus, the challenge of the reliability barrier now requires the optimum application of creative engineering.

Several openings for both senior and junior engineers-preferably with radar systems, missiles, or communications backgroundsnow exist in these areas of reliability: Prediction, Design Review, Analysis, Promotion. Your inquiry is invited. Please write Mr. J.C. Bailey at the address below.
the West's leader in advanced electronics

HUGHES

Scientific and Engireering Staff

$=$
 SYSTEMS:

Group Leaders and Senior Electronic Engineers required with minimum five years experience. Need men capable of establishing requirements for, and supervising the development of, major and sub electrical and electronic systems-including check out equipment-for missiles and airplanes.
Flight Control Systems Communications Systems Radar Systems

Infra-red Systems

Guidance Systems
Navigational Systems

CIRCUIT \& PRODUCT DESIGN:

Senior and Junior Electronic Engineers needed for assignments in the design and development of:

Antennas	
Electronic Packaging	Beacons Airborne Digital Computers Missile \& Airplane Check Out EquipmentAirborne Radar Auto-pilots

Supervisory positions available in many of the above fields.
Associate yourself with a team of champions-developers of the world's
M1900 fastest operational jet fighter, the F-101 Voodoo.
is the time to join the expanding Electronic section of either our Airplane or Missile Engineering Divisions. Write today, sending complete resume of education and experience to:

Raymond F. Kaletra
Technical Plocement Supervisor
P. O. Box 516, St. Lovis 3, Mo.
(located in suburzam st. LOUIS)
CIRCLE 551 ON READER-SERVICE CARD

An open invitation to those with aspirations and executive potential for key positions in electronics.

Industry forever searches for the right man. He may be near the top already or awaiting his opportunity at a lower level. These opportunities are open to all. Men with creative talent, a flair for being original with an executive talent developed or yet to be developed. can realize success on new horizons by taking the initiative.

Assistant to President - \$12,000-\$16,000
2 liaison Men for Electronics VP
$\$ 11,000-\$ 14,500$
6 Staff Engineers Research and Development
$\$ 10,500-\$ 14,000$
Career positions with a future, and saturated with potential. It will well be worth your time to check in to these now. All expenses incurred are paid for by our clients.

CALL - WRITE - WIRE

FRANK SANDFORD, BSEE OKLA '43 AIEE
businessmen's clearing house
209 SO. STATE ST., CHICAGO, ILL. HARRISON 7-4577

YOU HAVE 1-MILLIONTH OF A SECOND TO ANSWER!

Athena, the Univac ${ }^{(8)} \mathrm{G}$ round Guidance Computer for the Air Force ICBM TITAN is a fast thinker - phenomenally fast.

At each point in its powered flight, there are an infinite number of paths the missile might follow. Only one represents the optimum trajectory. Athena must, therefore, make decisions involving months of human calculation in split seconds. An infinitesimal error could cause the missile to completely miss its target. Traveling at speeds up to 15,000 miles per hour, the missile continually "asks"

IMMEDIATE OPENINGS FOR:

Electronic Engine ers BS. MS and PhD degrees in Experiencent Engineering mechanisms, communications, data processing desirable but not necessary

EE's, Mathematicians and Physicists With BS, MS and PhD deorees for Systems Engineering. Two or more years experience on electronic data processing systems.

Mechanical Engineers With BS or MS degrees -Development Engineering
involving the packaging of electronic equipment to meet military environmental specifications.

Athena "Which way?" - and faced with untold millions of possible answers, the computer instantly gives the right one.
Fast thinking . . . the result of hard thinking and hard work on the part of Univac scientists and engineers. Univac is proud of the work these men are doing. In both the military and commercial fields, Univac offers experienced scientists and engineers full recognition of their achievements and an unlimited future in the field of electronic computers. Investigate the opportunities described helow.

Address replies to: MR. R. K. PATTERSON. Dept. 5-3

Promingtom Trund Thivac.

DIVISION OF SPERRY RAND CORPORATION

(8) Reogistered in U.S. Potent Office

Univac Park • St. Paul 16, Minnesota

None of the books will tell you this, but the Trojan War was really brought to an end by radar.
Fact is, the Greeks intended to use a radar-controlled horse as a super-weapon against the Trojans. But the scientists assigned to Project Phony Pony never were able to make it work (faulty tubes, someone said) - which made the Greek commander Odysseus so mad he had all the scientists sealed up inside the horse and left for dead outside the gates of Troy.

The curious Trojans, neglecting to look this gift hearse in the mouth, dragged it inside the city - their last mistake of the war. That night the scientists managed to escape and open the gates of the sleeping city for the Greek Army. No one could have been more surprised at this unexpected victory than Odysseus - but he managed to squelch the real story and claim all the credit for himself. Which goes to show that people haven't changed much in 3500 years. But tubes have.*

No. 3 of a scries . . . BOMAC LOOKS AT RADAR THROUGH THE AGES

* Today, Bomac makies the finest microwave tubes and components this side of the Acropolis

Somac

Anode current averaged over any period of 15 seconds maximum

Again, RCA leads the way in industrial tube development-with a husky thyratron designed for applications in which high peak currents are required or in which high average or rms currents are demanded. Here are just a few of the big jobs the RCA-7086 can do:

- It can deliver a maximum peak anode current of 400 amperes in intermittent service or 160 amperes in continuous service.
- In a typical X-ray tube control circuit, two tubes can control a current of 280 amperes rms through the primary of the power transformer (supplying high amperes rms through the proltage to the X-ray tube).
volt
- In welding service utilizing a single-phase inverse-parallel circuit, two tubes can provide a maximum average ac output of 130 kva.
- In inverter equipment, two tubes can deliver up to 15 kva average power.
- In speed control of dc motors, two tubes will control 220-volt dc motors rated up to 20 horsepower.
The 7086 has a high commutation factor, a relatively short dionization time, and a negative-control characteristic that is essentially ind fendent of ambient tempera-negative-control characteristic that is essentially ind the wide range -55° to $+75^{\circ} \mathrm{C}$ because of is xenon gas content.

RCA-7086 DATA

Your RCA field Representative will be glad to discuss application of this new thyratron with designers of power-control equipment. For a technical bulletin on the RCA-7086, write RCA Commercial Engineering, SectionE-18-Q-2, Harrison, New Jersey.

[^0]: NASHUA, NEW HAMPSHIRE - Dayfon, Ohio - Inglewood, California - Washington, D.C.

[^1]: ${ }^{\circ}{ }^{e}=$ side of core area=tape width=inches of build-up; $v=$ ratio of window sides $=g / f$. See ED, Apr. 16, pp 2728 , figs. $3,4$.

