

This being our next-to lagt issue, we'll mantion now the new club madress in Louisville It vill be NRC, Box 32125, Louieville, KY 40232. Itens of club business, clippinge, veries for publication, colums, requents for back issues or replencements and chnged of eddress will go there. Requests for publicetions/prices will still go to the NRC Publicentions Center, Box 401, Geles Ferry, CT 06335; while renewis, dsops, or requests for semples to be sent out (except to CRC testors) go to the MRC Mombership Center, P.O. Box 118, Poquonock, CT. CPC IEST notices slso go to Loulsville.

Once ngnin, the sked for the next few issues: Mosthend detes will be $3 / 28$ here in INJ, and $4 / 11$ and $4 / 25$ in Louisville. Dendines for these twe should be sesumed to be the smas as if they were being published in NJ, namely copy to oditors by $4 / 1$ and $4 / 15$, respectively. Further info on subsequent bulletins, te. will nppenr shortiy.

Effective long with the change of publishers, IDXD will iso buve new editor, be giming with issue \#' 22 (4/11). He 1s Chuck Hutton, 2114 Myrtle Le.; \#1; Decmtur, GA 30033. Chuck has bean in the international DX aceno for severnl yenra, and is well qualified for the post. He has most receatiy been handing distribution of fepirints. Thking over that tosk will be Kmrl Jeter, who, lucirily, lives close by and cen pick up thinga in person, s well as consult w/Chuck on problems.

NEW MEMBERS

Gregory Reams, Hural It. 5, Bax 103, Melbourne, FL 32935 (re-joins)
RENEWALS
J. Brumer, J. Ciealewics, A_{0} Meisels, P. Kemp, Y. Mattson, J. Cessin, H. Foin, Re Hymes, K. Onyschuk, D. Berber, J. Cohen, J. Siels, M. Holt, R. Northup,

ON THE INSIDE

**** SPRCLIRL PROPAGRTION ISSUE *****

- Propagation it Mediur Wave Frequencies - Phil Sullivan
- Fectors of Medium Wave Fropagetion - Frad Dimping, Mediun Weve Circle
(These two articles cover much of the same ground, mind we believe that each
has merits which is why both oppeer here)
- Answers to Frequently-Asked Questions About Domsatic Propegetion - RJE
onta hatlast,*
- Recsiver/Aacessory Interfeing Mede Cheep \& Stmple - RjE
- DXChange - RJE

(Please note thut the NNRC TEST bove may not nppenr. Most NNRC TESTS over the pest
fow geesons have not.)

Tetrins

W/KE - EZA max, TT, Irequent Ds_{s}. "M/ystery" code word which must apperr in mpts. V / s will be Rnndy Woolbright, CE, but send reports to John Bowker, 304 Brnndt H_{a} 11, 46383. Propididen cm (219) 462-6111. Full power non-DA. Arr: Bowker.

$\begin{aligned} \text { WCMI - } & \text { TT \& IDs. Propald calls at (} 815 \text {) }-434-6050 \text {. } V / \mathrm{s}: ~ D e l ~ D a y t o n, ~ C E, ~ B a x ~ 430, ~\end{aligned}$ 61360. Arr: Geoff Parrish. Mke-up for $3 / 7$ sked.

KTFI - Will use dey facilites of 5 kw NDA. No c_{9} lls. Return postage required. No program details. V/s: W6 Snow, CE, Box 65, 83301. Arr: Nick Hequired. No
KTXJ - Music, IDs, 1 kHz . TT; No v/sı Mdr: Box 6090, 75951. Arr: Noil Zank.
 Poine, 500 E. Liberty St., 23324 . Arr: Mike O' Shen.

FLASH TIPS \& SUCHLIKE

3/7 ; KYMe-740 had by hansch, Sundstrom; WCWh-1230, tantative by Hanach; WCMI-1430 net on. 3/13: CJGX-940 not hrd by Dailey, RJE, PT, due to aurorn. 3/14: WOI-640 not hrd ly RJE due to A Inrgely daylight poth.

NOTES \&c FROM NJPC

Al Morrimp noted that binder of the looselenf variety is ovailsble which fits the NRC Log, no re-punching necessary. This llows for onsy updoting without struggling to replace pages into the spirel binder, which is the price we pey for having 0 log which oan lay flat on the dosk. It is memde by Notional, and the Stock \# is 64-051. It's n high-quality binder, nd costa mroud $\$ 5.00$. We guess this would be avilioble through

Chuck Hutton noted that Aut ek Resenrch is offoring 10% discount on orders of 5 or more of their for the α - -2 is $\$ 32.95(\$ 29.66)$. If there's enough interest, Chuck will put through on order, ao contact him if interested. Seversi members are using them, ond find them to be bove.

LATE FLASH TIP. \qquad
WDJZ-1530, Bridgoport CT, now station will TEsT for the MRC on MN 3/28/77 from $0000-0130$ SST. Ho mrogram detaile ore avallable, but the CE in very intereoted in

Phone 703-354-2135 Before 2200 EdT "All Times Are GMT "Deadlines Are Fridav"

With the publishing change coning in a few weoks, this colum will also get a new editor. Chuck Hutton is going to take over IDXD at that time. My last doedline will be March 18 . After that, all material for publication will go to Chucis. His address is 2114 Myrtle Lane, Apt.i1, Decaturr, Georgia 30033.
Cx have picked up considerably - some good stuff this time. Will start is out with a report from Jin Ioung in Cailfornia, who noted another good th opening on the West Coast on March 6.
*Another Th opening from WCIA on March 6, 1977. This time using the Hamariund HA-180A and 235' Vee at home QTH. The Decenber TA batch heard mostly from Table Mountain $3 \frac{1}{2}$ ailes west, up edditional 1500 feet with SPR-4 and 200 foot long wire, if you recall. This time I was able to make some recordings of a fev.
647 HWrLIM Daventry, accented 5 by 2 m voices at 0536.
665 -PORTUGAL Lisbon I here at $0558 \mathrm{w} / \mathrm{mx}$ in PP.
-ANDORRA R. Andorca w/FF sounding ax and anmts at 0605.
-HOLLAND Lopik (?), carrier here at 0606.
-SENRCAL Dakar, wy strong w / f voice in FP at 0704 .
-PORTUGAL Miramar assumed here at $0645 \mathrm{~m} / \mathrm{carrier}$.
18 -ANDORRA Sud Fadio $w / m x$ and talking in/out between 0623 and 0647 . Strong, but WBAP-820 killed then!
U27 -LIBYM/MOROCCO ? MA mx and singing at 0608.
 when Africans in WGNA. Seems to be another carrier w / w.
345 -ITALY Rome w/pop ax at 0527.
097 -SPAN RNE, o/Peru w/SAH at 0616.
926 -UNID Carrier here at 0625, no audio.
935 -MOROCCO Agadir, M m in/out, distorted somewhat.
1034 -PORTVGAL Porto 12 to here at $0559 \mathrm{w} / \mathrm{s} /$ on ammes, anthem, into PP talking and mx at 0611 , 3/6; also hri $0727 \mathrm{w} / \mathrm{PP}$ pop ix and taiking from 0729 to 0734. Ad, annts, then back to PP pop wx pga, $3 / 7$.
1205 -FRANCE Bordesux, carrier here at 0620.
1214 -GREAT BRITAIN assumed w/carrler at 0643.
1349 -FRANGS Nice (and it wasi) w/FF ex at 0603 after FF a votce at 0600 . Carrier still noted at 0646.
1376 -FinM Lille, strong w/FF pop mx and annts fron 0601-0637 in/out.
1385 -UND Carrier at 0629. Spain?
1394 -ALRANIA? Seens too late, mx of some sort at 0627.
1403 -GUNRA R. Comakry carrier fron 0354 to as late as 0713 , almost daily, but strong this date, and little audio. PF pop nx, and P voice.
From ny SUBC observations on $3 / 4$ and $3 / 5$, TA's were probably to the WCIN, but I was too busy to think straight, and stayed on SH. Didn't even try BGB. On $3 / 6$, I once again heard Andorra on 6.230 for only a fow moments around 0745 . My Decosber 26 again heard Amorra on loging of then there ylelded ne a prompt and proper OSI and personal letterll How for a MV QSLI 73's till more TA's or unusumi Lh or TP'so"
Now, what else has been heard. If no credit, iten is fron Mark Comelly
529 -ALcerrin in Beida loud w/M 日x, 2332, 3/4.
545 -DOMINICA Roseau, R. Jumbo hrd w/"Jumbo" IDs between tunes, 0955, 2/28. (Renffrew)
545 -DCLCERIA Oran finally hrd w/potent sig w/AA chants $22423 / 4$. Local WFIL-560 splash not as bad at my new location. (Rckman) *Noted well w/at talk, heavy fast SAK present when loop noved to favor more northerly IA paths, 2315, 3/1. - MEST CRRMANY Konigslutter, on top at $0300,3 / 7$, w/someone just behind, per-

 -UNID at $0404,3 / 7$, but too much MFIL spiatter for a roeding. My guess is the E. Gerran for 3 ,

566 - Wist Benin fair sig 0402 on $3 / 7 \mathrm{w} / \mathrm{dX}$. FIrst sign of this stn aince about 1955. (Dunerfliela)
 gtan in the bolkromed. On $3 / 8$ at 0150, the A1gerian was proticelly all Elane. (Dargarfleld)
584 -SPATM Madrid strong w/11te mx, SAK also 2241 3/4. (Eckman) /(Dangerfield)
587 -SAIDI ARABIA This one tentative. Vy strong carrler has boon coning thru be tween 0300 and about 0430 (when fadeout) since first noted on $3 / 5$. So far - MEST GRPMAY Frankfurt, strong and clear at $0358 \mathrm{w} / \mathrm{GR}$ vocal. (Dreas a Litt

593 - Drear Mo) then the $1 \times$ (Dengerfield) -crechoscovirt
6) -crigchoslovaxia the Prague super pouer is putting in vy good signals here. The best so far was at 0335 on $3 / 7$. (Danferfield)
 - many/urid 35 talk moted w/2nd auatio ast ssil, 2312, $3 / 1$. (Cannelly.

 coicmia Bogot
650 -coLOMBIA Bogota. Am. Monserrate ID hrd at $0730,2 / 28$. WSM off. (Renfrew)
655 -FL SALVADOR San Salvador. R. Nacional ID at 0400 in the edist of nx about that days cruahod coup. Hrd names that appeared in next days paper. Kartia me in spots. Country \%19. (Renfrew)
 often play giol rock ex, ht. (Bothann) - Good $w /$ group woen $7 / 719$, viko pent nulled, 2310, 3/1. (Connelly)
674 -FoLLAND Lopik III, would almost have to be the one pla
soft, pop orch, $\mathbf{~ u x}$ on the 0345 -0400 segeent of 1 ts 24 hour sked.
2300 so not theng Is 2300 so not them. Is thero sonething new hare as Lopik not too possible $\mathrm{w} /$ this type pgag. (Eckman) Lopik is most likely. They have to compete w/Caroline $w / \mathrm{s} / \mathrm{off}^{2}$ at 2 AM . 2/20. (Clark) They've been here for yoars - haven't answered w/8/off at 2 AM. 2/20. (Clark) Th
a couple of reports of mine. (ED)
 to rake it in. Mx is rock in SS at 0235 2/20. (Clark)
719 -PORTUCAL Norte potent W / n in PP 2245 3/4. Virtually no trace of WGM. (Elaman) *Vy good (kililing 720) W/PP n voice and soft farz-style background, then PF talk and a group rocal, 2309, 3/1. (Connelly) 3/4. (Connelly)
737 -SPATN Barcelon atrong and alone on freq $23003 / 4 \mathrm{w} / \mathrm{nx} \mathrm{by}$ man. (Toman) w / m in $\mathrm{SS}, 2308,3 / 1$. Good $\mathrm{w} /$ jage influenced rock guitar mx, 0019. $3 / 2$.
740 HONTSERRAT R. Antilles "rubber bandish" IS had at $0926 \mathrm{u} / \mathrm{CBNM} \mathrm{s} / \mathrm{On}$. Has been louder in the past. 2/28. (Renfrew)
746 -UFPER VOLIA Ouagadougou. Another good ghort log on this one from 2345-2400 on $3 / 7$ (then s/off). Features a lot of soft ballads w/string acconpanisent, not the druas and shouting one night be looking for. (Dangerfield) * Fair on w/man in $\mu, 2245,3 / 3$. (Connelly)
755 -PORTUGAL Lisbos potent w / cl mx 2316 2/26. Also strong $22453 / 4$. (Bakman) * lint (no QRM) x / f in PP; then opera ixx, 2307, 3/1. (Connelly) large roon sconstle effect on wotce, $2305,3 / 1$. I talk, 11. in in locel ee the
 $0225,2 / 2 \mathrm{~B}$. (hanfrew)
773 agkin Caceros et 11 strong w/old British rock mx $02053 / 5$ holding 1 ts own against ABC. (Rckman) Must have been special pois of some type - nomal s/off is 0100. (ED) *Good w/n/f in SS, heave 2.4 hz SAH but too much WABC to extruct 2nd aunio, 2305. 3/1. (Connelly)
780 -COIONGLA Cali had drifted well off to the high side, 0345, 3/4. (Connelly)
-FORTUCK2 Miramar w/local-1ike sig $02003 / 5$) 782 -PORTUCN2 Miramar w/local-1ike sig $02003 / 5$ alone on the freq $w /$ time pips and
IS. No problens fin the Cuban at approx 784 . Nx at 0200 was $/ / 665$. (Rekean)
 aullo, 0001. $3 / 2$. (Oomelly) = Burg potant $w / 4$ in 60 mm top of Tortugel w/remultant skA, $23242 / 26$, Alao otrong $23902 / 27$ w/L4 taped - still well stop
 thats probably why NA piayed. I've even hed US stns play SSB at midnite when they weren't signing off. Burg listed as a megawatt here now. (ED) rough vobbly carrier; its frequency control has gone berserk, drifting as high as 790 , annihilating semi-local HEAN, as hrd $0343,3 / 4$. This should easily make it across the Atlantic. (Comneliy) * Have been hearing a vy distorted H. Rebelbe on or about this frep for bevoral nighth, sounds mlinont lile mite tand. IDet at $0900 \mathrm{~V} / 3$. (Ianfrow)

- HCOgbl Sut Balle mtrone an well atop Hahat w/FF pop tuns, 2253 2/26. (Kolonan) - 0080000 hahat good o/TV gat w/a-eapella male woon, $0005,3 / 2$. (Comelly)
 SuH. Bropt umpposedly well off freq (reasiared se 017,5 in Oet, 75) bo woult anmane it in not them minleas they ${ }^{\text {v }}$ w drifted back up to BiB. (Eckan)
27 -UNID Possibly Spain although not // to 737, 773, 872: cut from P1nkfloyd's "Animals" LP played at 0010 and long live version of "Ridgetop" by Jessi Colin Young, at 0050, 3/2. (Connelly) This stn shouldn't be//737, 773, 872 even if it is Spain. A privately owned stn w/seperate pgig. (EMD)
36 -FRANGS Nancy strong w/f in FF //863 2254 2/26. Shoff at 2300. (Eckman)
645 -ITALY Roma ridiculously strong $23023 / 4$ and various times between 0000-0300 $3 / 5 \mathrm{w} / \mathrm{usual}$ nite pem of lite $m x$; $n x$ in FFF/GG on half hour noted several times as well. (Ecknan) * Most probably the one w/multilingual nx (including EF) at as well. (Ecknan) "ooking for a possible ID. (Renfrew)
-SPAIN Murcia. Several R. Nacional IDs hrd between 0530 and 0600 3/7. Anats

 guftar) $/ / 737$ and $773,0023,3 / 2$. (Counelly) Luke p2 thls in s Fivetely,

 positive ID noted. (Ecknan)
positive ID noted. (Ecknan)
SPAIN Madrid fair w/cl mo, 0029, 3/2. (Connelly)
1043
-EAST GRFAMANY Dresden, on $3 / 7$, had the nx up to 0310, then a rendition of "Volga Boatmen", w/sig clearer than WHO. (Dangerfield) "Volga Boatmen", w/sig clearer than $/$ (Dangerfleld) -UNID BBC or Albania, which one? Had oriental or A type pgr before and after 0500 on 3/6. Can"t find a listing for any such pgeg at that hour in WBTVH,
1106 -UNID non-stop cl mx, strong, 2318, 3/4. (Connelly)
/(Clark)
has not
1125 -DOMINICAN RRPPUBLIC HICN R. Antillas has noved off freq on $2 / 10$ and has not returned to their non 1120 spot. They are vy close to HIRL-1130 in Santiago
 house ID came thru WHAM slop at $01003 / 6$ after some gospel
-GREAT BRITAIN BBC fair w/violin me, $2315,3 / 4$. (Connelly)
1265 -ST KITTS DIdn't hear an ID thru adjacent channel noise, but freq and 50 kw power were mentioned quite clearly in EF at $00003 / 6$. (Renfrew)
power were mentioned quite clearlir when $04353 / 5$. (Eckman) *Pair, in GG, 2314, 3/4. (Connelly) in GG, 2314, 3/4. (Connelly)
1272 -rRANCS (?) Strasbourg perhaps the one occasiomaily peaking to fair level 0440 $04503 / 5 \mathrm{w} /$ what seemed to be FF culture pgm $/ / 1376$ though not absolutely positive. (Ecknan)
1320 -DOMINICAN RRPUBLIC A new stn on the air not in WRTH-76 in Sabana Grande de Boya, call not known however it is a strong daytimer in Puerto Plata. (Clark)
1330 -AUSTRALIA 4BU Bundaberg, Qsld. 1035. (Maguire)
-JAPAN JOSF good at 1033 2/23. (Maguire)
1358 -EAST GTRMANY Berlin fair thri WDRC splattor; talk by man, then jaze, 0347, 3/7. (Connelly)
1304 -ALBANIA Lushnje strong w / f in ss $23203 / 4$ and again at $23033 / 5$. (Rokman) * Strong $w / m / f$ in SS, 2301, 3/3. Loud w/ss talk, 2312, 3/4. (Connelly)

06
1400 -DOMINICAN REPUBLIC RISD is Pedernales not on 1310 has in WRTH-76. When RTVD gives out all their freq at $s / o f f$. 2/24. (Clark)
1403 GUINRA
of $\mathrm{TA} \mathrm{A}^{\circ} \mathrm{s}$ on the high end of the band at this time. (Connelly) else in the way
1415 -DOMIIICAN RGPPBLIC Radio Marion in Dajabon is another new stn on the air.
 Complete ID on the hour. 2/24. (Clark)
 table flim 1440 domestics. (Eckman)
1460 -PUSRTO RICO AFGN is still the only unlisted stn I get in the daytime w/rock mx at 1600. (Clark)
1466 MoNaco Monte Carlo booning in w/vocal mx on car radio 2355, 2/27. Good w/ "Trans Horld Radio, 205 meters" KE ID, 2300, 3/3. (Connelly) * Local-like w/ rel pgit in $M 2355$ 3/4 wia giving stn address. is 2359 repeated several times and carrier off. (Eckoan)
1475 -AUSTRLA vienna strong w/ys pop max $23393 / 4 \mathrm{w} /$ deep fades at times. (Eckman)
1490 -DOMINICAN REPUBLIC hisD Puerto Plata is a vy strong super pest for me. ID
as 1500 khz $1!$ (Clark)
(clark)
1500 TUUEXS \& CAICOS ISIANDS VSI is a vy strong daytimer o/HIJC in Santiago. don ${ }^{\circ} t$ see why they wanted this freq $w /$ HIIJC quite strong too. They $s /$ on at 1 PM daily and have no spots. Soumd like a bootleg radio stn to me. (Clark)
1554 Francis Nice poor to fair w/f in FF, 0614, $3 / 5$. (Connelly) -NVERRMTIOMAL MATERS Caroline or Mi Amigo whichever, had a good sig on $3 / 6$ nd DD, (and unless wears were playing tricks, were announcing in both and DD . (Dangerfield) * Ro Mi Amigo to good peaks atop low growl; rock mx, $0613,3 / 5$. (Connelly)
1586 - MRST GRPMANY Langenberg vy good w/GG mx about Rastern European countries then uptempo musak, 0610, 3/5. Good w/rock influenced insts, $0345,3 / 7$. (Con)

atil (Eckman) I still think they bought HIPA crystal when they went on the air. Mx is HL , (Clark)
1602 -WIST GrawdNY BR Munich strong w / m in GG $04082 / 26$. WDR-1586 only poor/fair at this time. (Eckman)
One lone verie
1330 -AUSTRalta 4Bu Bundaberg, Qsld. 2 kw , QSL and letter. G. L. MaKennariey, Mgr. Said stn will be using new RCA xmtr $w / 5 \mathrm{kw}$ in about 2 weeks. (Maguire)
Almost for gotten department - some longwave logelings from Steve Bohac FRANCR Allouis on $3 / 4$ at $0505 \mathrm{w} /$ fair audio level til 0520 fade, back up to oarlier level 0526. Featured FF mx fare w/a sonic mancr.
180 -HISST GREMANY Buropa /1, Saarlouis on $3 / 4$ between 0505 and $0520 \mathrm{w} / \mathrm{m} / \mathrm{f}$ FF vocals. Sig level a bit better than Allouis-164. M whisting at 0517 as part of what appeared to be a comercial of some sort. Sig level nose-dived approx 0520 ; all though much weaker, was still detectable past 0600 .
251 -ALciaril Tebesse, $3 / 4 \mathrm{hrd}$ well w/M fare and wailing 0506 , tho mixed $\mathrm{w} /$ beacon " $2 V^{\prime}$ ". Sig and audio at ear splitting level for a period of 10 minutes from $0525-0535$ completely obliterating the beacon. Checked for Azilal-209; however, nothing noted.
The reporters for this issue
Steve BOHAC - Pairview, New Jersey IM portable w/built in loopstick
Bichard CTAFKK - Puerto Plata, Dominican Republic SPR-4, H1600A, 4° and 8^{m} loops Mark CONNVELLY - Arlington, Mass. R390A, TKTF, SMM-2
Ben DANGERFIETD - Wallingford, Pa. HQ-180, SM-2
Richard ECKMAN - Philadelphia, Pa. Modified HQ-180a, Sanserino loop
Nozm MaCUIRE - Honolulu, Havail SPR-4, Sanserino loop
Jim RIENFECHI - Rcohestor, New York DX1500, $4^{\circ} 0^{\prime}$ Iongwire
Jil Young - Wrightwood, Callfornia Ho-1804, 235° Voe
That is all for another week. There is still some good DX to be had - give it a try and let us know what you are hearlng, Romember, my final deadline will be $3 / 18$ - .

Editor: Eric Rittenhouse
 2315 Dwight Way \#101 2315 Dwight Way \#101 Berkeley, CA 94 ? 04

(Never mind that it's really afternoon...). Not your basic biggi column this week; seems that maybe the ionosphere has finally decomposed on us, hi. I've even had to (dare I utter the words?) DX myself, in order to beef this one up a bit. Anyway, on to it, such as it is...

Changes:

600	WICC CT	BRIDGEPORT, now on til 0300 wkends only per phone	
1340	WRIT WI	CaII w/secretary. (KR-CT)	
1530	WJDZ	CT	BRIDGKEE, SP is MIM $0100-0600$, s/off w/ISSB. (W'ski-WI)
this; info from phone call w/CE. (KR-CT)			

Oh come on: I want to see 50 next week, hi.
Tests:
740 KYME ID BOISE, hrd by Starr, Hansch, not hrd by Arruda.
780 WBBO NC FOREST CIIY, hrd by Rychalsky.
1080 KYMN MN NORTHFIELD, hrd by Wessolowski.
1230 WCWA OH POLEDO, tent by Hansch, not hrd by Arruda.
1430 WCMY II OTTAWA, not hrd by Starr, Arruda, Hansch.

730	KWR.E	MO	WARRENTON, 3/2 C CoN 1910, then s/off data, ISSB 1912. Distinctive version, last portion is much slower than first part. (W'ski-WI)
1340	WOYL	PA	OIL CITY, $3 / 6$ ex WKRZ hrd using new call, also ments of WRJS (their new FM call). Seems now to be mostly $\mathrm{T}-40$, s /off still 0000. (*-Visiting in PA)
1380	CKPC	ON	BRANTFORD, $2 / 23$ call letters clear 2300, 2310 but no other audible copy u/WMEE. (W'ski-WI)
1470	CHOW	ON	WELLAND, $2 / 28$ ID by female 2328 in WMBD null, no sign of usual WOHO New here--are they now on 2.5 kw nite?
1550	WEVR	WI	RIVER FALLS, 3/2 ID out of sx 1856, then spot for Northland Ford Dealers. (W'ski-WI)

Midnight to Sunrise:
710 WGBS FL MIAMI, $2 / 28$ tuned in to hear "...ami, Florida" 011 ? followed by tone (lower than TI). Direction SE/NW followed by tone (low
per loop. (W'ski-WI) than T'I). Direction SE/N
740 KCBS CA SAN FRANCISCO, $3 / 7.0307$ s/off heard. (Ross-WI) KBRT CA AVALON, $\frac{3 / 7}{} 0307$ "This is KBRT Avalon on the air with this one, hi, ECR.

Finis. 24 tips this week; hard to believe I had 150 just a couple of issues ago! Maybe it's bad breath... But I use a leading mouthwash... Regardless, I want to see 150 for next week, or else, hi. Guess everyone's got an early case of Spring Fever, or something... Later...

Almost forgot:

ECR Grand Poohba, Kentucky Derby Ecumenical Society..
ot necosesarily reflect tho of the oditon, the publishers, or the National Radio Club.

SKIP DABELSTEIN - 8209 West 78th Street - Overland Park, KS -66204
The month of February ended pretty well for this DXer as I received a $v / 1$ from fellow NRCer Chris Bobbitt of WBXO for mh $\# 1,900$. Other veries since last Muse have been $\nabla / 1 \mathrm{~s}$ from KSYM-1370, wrov-1000, KALT-900, KHIL-1250, KNED-1150, WDUZ-1400. V/f from-wDOC-1310 \& V/r from KCLA-111, 2 just prior to the veing: 1/31-WTMA-1250 Charleston SC IDing for ET $8 / 0$ If $11: 59 \mathrm{pm} .2 / 5$ ry grought $\mathrm{r} / \mathrm{c}-\mathrm{TT}$ from WDOC-1310 Prestonburg, KY. On $2 / 11$ I finaliy got onough on WBLO-1470 Evergreen, AL during their r / $\mathrm{c}-\mathrm{DT}$ for a report. Unnough on WBLO-1470 EVergreen, AL during their $2 / 12$ G:35 (thanks, Ne11). 11sted f/c-TT frem/ KGRN-14 KSTP on TEST. $2 / 18$ brought my kind of f / c from WYHI1570 Fernandina Beach FL during their r / c W/IDs EVERY MINJTE! Finally,
 the wDU -1400 TEST Was heard here fair welcome to Murray Mann back into logged and in BCB DXing bacis in 1959 when NRC. As for the Convention, we are remer the attorney representing the Superpower Brom the firm of Dewey, Cheetum and Howe. 73 s till next time and good DX.

CONRAD R. DUROCHER - 437 Essex Street - Saugus, M - 01906
Happy St. Pat's everyone! Well, the knocked-down LW is atill embedied in ice \& may have come up with a new design as the DX keaps on $2 / 10 \mathrm{R}$. Tiempo-1200 was blasting in e $\mathrm{S}-9$ around $6: 30 \mathrm{pm}$. Sounds 1ike SS T-40 screaming DJ's and all. At 7, Antigua-1165 was S-9 plus 10 and I almost mistook it for WWVA. 2/16- On 1000, still looking for WRNJ's s/ off $u / l o c a l$ WLMS, I did catch WHWB VT W/NX t111 5:30pm. At 6 on 1466 , Monaco changed from FF to EF "This is Monte Carlo", folo by announcer of Monaco Does Manaco relay Nederland? Same ID $6: \frac{30}{}$, and to SS. Heavy flutter signals on $2 / 28$ \& $3 / 1$. But would aU bring in CFCY-PEI on 630 wiping out usually strong WPRO Ce l:40am? See y'all next trip.

TEX STOUT - 9720 Thor Avenue - Loulsville, KY - 40229 have just joined the NRC \&e this is my first Muse. I am 19 years old \& have been DXing for about five years. I started keeping a log of my AM DX in 1974 along with my SW loggings. I enjoy AM DXing the most but also DX SW \& TV. I have logged 380 stations from 33 atates, four provinces, \& 14 countries including one TA; Algeria-529 waicijust really ID d bere yesterday, although I buve heard what I thought was this station before. I use a $D X-150 B \mathrm{w} / \mathrm{a} 120^{\prime} \mathrm{LW}$ stretching in the E / W direction, \& a 65° LW stretching from NW to SE. The latter is a new antenna which has really been bringing in results. New loggings from here include: $2 / 24-$ WOOF-560 6:30pm w/s/off; WGOK-900 6:42 s/off $6: 45$; WWNN-1590 6:55pm, WDOD$130010: 39 \mathrm{pm} \mathrm{W} / \mathrm{rr}$, on $2 / 26$. WNLA- $13807 \mathrm{am} ; \mathrm{WJRL}-15307: 07 \mathrm{w} / \mathrm{c} / \mathrm{w} .2 / 28-$ TILX-725 "R. Columbia" midnight s/off. WONE-980 3:46pm W/QRM from WAVE; WJKY-1060 3:56pm; WCBR-1110 4:08; Algeria-529 7:49pm W/AA mx. I've really had a lot of time to $D X$ lately \& have been at the controls almost 24 hours day on some days. I have logged 23 new ones since $2 / 13 . F / C$ ilst has
 the NRC. Tex! We hope you will Muse often! Where were you when we had the NRC Tex. We hope you will Muse often
our 1976 convention in your city?

RANDY TOMER - Route 2 - Box 177 - Sonora, CA - 95370 ing. As an owner of both the yesu and an I'li throw in my 2 ϕ worth. I could either totally praise my FRG-7 or verbally tear it to pieces, depending on what factors I felt were or important. If I was feeling ornery enough, I could even criticize my HQ-180. One thing is for certain, if you're a serious DXer \& are planning to buy the FRG-7, you should definitely also plan on making a seleccarefully to avoid spurs. otso, its pre-selector control must be tuned it definitely has the necessary sensitivity 300 bucks is a good RX, an dough. If you are making necesary sensitivity. 300 bucks is a lot of portability is not mecessary my opinion is that the $\mathrm{HQ}-180$ is one and portability is not necessary, my opinion is that the HQ-180 is the only takes a little time patience to locate one. The main reason I got th FRG-7 was to use as a traveling RX \& with its built-in speaker \& D-cell operation it works out great. Because of its battery operation, the FRG-7 saved an MM DX session for me when a storm knocked the power out, right when CX were getting good. One criticism I have is the Yaseu's black main dial w/close-together white markings. If you are losing your eyesight this dial won't do you any good at all. At BCB frequencies the HQ-180 dial readout is totally superior. I am happy with my FRG-7, but I also think the "old-fashioned" tube RXes have an awful lot to say for themselves, and can be had for the same price or even less. 73 from Sonora.

JAMES E. CRITCHENT - 1635 Walbridge Street - Red Bluff, CA - 96080
From 2/24-28 the following items of possible interest to the other DXers were noted. Thurs. $2 / 24$ - 10 am EST on 910, KURY, Curry County, OR, Broolings, was heard, finally. (Not a pleasure enduring KNEM from 9:32). Same morning 10:32 on 970, KREM IDed u/KOIN/KBEE. KCHV mentioned Idaho, but not IDed yet. Fri. 2/25 © 8:15pm on 1310, KNPT, Newport, OR IDed at the end of their NX. (KLIX, Iwin Falls, ID there 7:45). Sat. $2 / 26$ 4:37 on 1440 , CFCP, Courtenay, BC said " Mx all weekend long", also $4: 53$, so not off 3 \& 4 weekends. ing Same morming 10:Ilam on 1430, KALI IDed as the SS, no KNTA yet. At 8:18pm, KCHJ -1010 , Delano IDed. SM $2 / 27$, while trying for KMWX- $1460 \mathrm{u} / \mathrm{KDON}$, I heard ingtead KYSN, Colorado Springs e 6:07am. At 6:10 it was KENO; no KMWX jet. MM $2 / 28$ was a l230k morning. At $2: 55$ KGEE, Bakersfield, IDed; KRDG, Redding went off 3, folo $3: 02$ by KWG, Stockton. KYJO, Medford OR gave the TX \& IDed 3:25; not off yet. At $3: 30$ the TEST from KAMA1230 was IDed by code \& voice, coordinated with the NRC, on top of KGEK unt11 4:01 s/orf w/code. At 4:07 KLAV, Las Vegas, IDed at the end of the NX. At $4: 16$ KRDR-1230, Gresham, OR IDed at end Of USAF recruiting program. At $4: 39$ on 1520, KYXI IDed, o/s music station, unID. Too much HJAQ \& KOMO OC for 1 ZD 5. XEHL-1010 ID 5:30, \& W/CFRB, nO KLLRA Was heard, If on then. There was an SSB on 1530 © 6 , but faded u/WCKY CBS NX. Slx new sations in one night. At 11:08 on 1430, KGAY, Salem, OR, IDed u/KARM/KJAY religion. KGAY was \#456. Keep trying, they are
there - and report to MUSINGS! 73s.

BOB WEssOLOWSKI - 1933 South 33 Street - Milwaukee, WI - 53215
The Polack With the Pabst \& Philco). Back in one of my first Muses, I asked what a PoP was. Well, I found out Sat. $2 / 5$ it's boring' Sure was nice logging newie WEYY-1580, but I wish I could have done it without listening to two hours ($2: 05-4: 05$) of assorted TTs 0 Cs \& unIDs from WCLS \& KLOU. Could someone please tell me what a POP 1s needed for? Also, at the end they played two c / w songs. I thought daytimers couldn't do that on checks \& TESTs \& such. Sure were a lot of checks of one sort or another going on that pight $(2 / 5)$. Between 3 \& 3: around any of 'em long enough to get an ID cause I wanted to be sure I bagged my 1580. Other recent stuff: Tentative KVGB-1590 s/off $12: 14 \mathrm{am}$
(Wessolowski) $1 / 24$, but too weak to be sure. WAKR's a pest here, \& my location ID $3: 30 \mathrm{l} / 29$, a nice surprise. WLTD-1590 (LTD for Limifen range, no doubt, h1) s/off $5: 46 \mathrm{pm} 1 / 29$, mentions "The Sound of the Shore" $1 / 31$ brought in WRBJ's TEST; report sent $2 / 1$ \& verie received today, $2 / 7$. That must be record time! I still haven't received a verie from WIQTThat must be record time T I still baven t received a verie from WIQ (first Sat.) Maybe a f / c, not in the list. Antenna direction, E / W. 'TIs time to depart again with my same question ; "WWWR?" "Why Won't \#iscontime to depart again with my same question
ites Rite?
(Again, your editor must apoldgize for a miseed report this should have been two issues ago - it got put aside apparently beaase it contained a tip I needed myself -ERC). Now, for Bob's current Muse:

BOB WESSOLOWSKI - 1933 South 33rd Street - Milwaukee, WI - 53215
I got the KYMN TEST 2/2l rather clearly, about even w/ WTIC. Makes me wonder how come I never puiled mil atSSS. I have been trying to snag, WWQM-1550 from Madison (about got them 2/I9 latouple of Weeks, and can t do it. I'm pretty sure I got them $2 / 19$ late morning ${ }_{\text {a }}$ aggrevating not to be able to pull a $5 \mathrm{kw}-e r$ within a hundred miles, espocially since I got WEVR-2550 from River Falls, this afternoon 6:56 \% they're only lkw. Other new stuff includes KCBS-740 2:06am 2/20 w/ID by woman out of NX. I had unID TTer on 1590 from 12:06-12:1814N ON 2728, antenna E / W, no IDs heard. I think I may have snagged WKIS-740 $2 / 28$ ein 1:36am w/WX mentioning the temperature at Daytona Beach. I thought Inally had the WLDY-1340 r/c $1: 52 \mathrm{am} 2 / 28$. I heard TT then, but the direction was WW/NE and Ladysmith is NW of here. Does anyone know 11/2102 has NBC NX © midnight? I heard the NBC tones E/W on 1360 e 12 2/23-24 \& the only 1360 NBCer is WIXZ per our Log. I got up early Tues, $3 / 1$ \& added WFNC-940, WTHM-1530 \& WSAU-550 to my log. I had to null the slop from WIND-560 Chicago to get WSAU. Also a tentative on WCGO-1600. Listenin SSS $3 / 2$ got me WEVR- 1550 \& $\mathrm{KWRE}-730$ around 7 . At $7: 27$ I got some formake out ID. Who is this? Question: Could someone give me the call of one or two of the strong Canadians who s/off w/O Canada? I've heard thla anthem mentioned many times, \& don'z know if I've heard it or not. I've got to say it again - there are 15 other Wisconsin NRCers. There are NO other Wisconsin Musers. Someone else from Wisconsin please write!
STEPHEN FRANCIS - 1629 Lodge Street - Alcoa, 37701
If tennis pro Dr. Renee Richards was a DXer, would she have to start verify ing everything all over again? MM $2 / 14-$ CKAP-580 Ont. finally IDed as the one w/non-stop EKL instrumentals; they re in most MMs nearly alone on channel. A taped "CKAP, 580" about overy 20 minutes is apparently their only ID AN. 2/17- Montserrat-930 iair/good u/WGNT w/ that same IS 740 uses to s/on by carib-accented male $4: 25$. MN 2/21-KXEO-1340 MO W/ID on r /c 1:20am u/local WKGN. WFSO-570 strong w/ID $3: 34$ on ET/TT/OC for long-awaited FL Floo - they'd been in the 90 's here since 6/75! WMRN-1490 OH good w/detalled ET ID $4: 01$ during what I thought was a rare SP of local WKVQ. Tums out it Was actually the pirst night of their new 5:00 to $12: 06$ sked, after being NSP for as long as I can remem-WYTL-1490 WI fair w/c/w female DJ 3.41 M N150 $1: 50 \mathrm{~W} / \mathrm{ID}$ on r / c.
1490 SC strong li:28 W / rr. W1th April almost here it's a good time to re1490 SC strong $1: 28 \mathrm{~W} / \mathrm{rr}$. With April almost here, it s a good time to re mind SRS fans that many daytimers in the East will be signing on w/full power as early as $5: 15,5: 30$ or $5: 45$, depending on which time their LSR WRCP/WARD-1540, WADR-1480, WKMC-1370, WHLW-1170 (first SM during WWA's $4-6 \mathrm{am}$ SP), WWOL-1120, WCMS-1050, WLIB-1190, WSVS-800 \& WPIT-730. There's bound to be some in Now England too, but I ve never heard any or noticed one reported in recent years. WJBQ-1440, WEXT-1550 \%WILD-1090 were reported in the early $70^{\prime} \mathrm{s}$, though. Give it a try. again in June since DST s/on times will be roughiy the same as Aprkl's. 73 .

MICHAEL COUGHLIN - 17 Bellis Circle - Cambridge, MA - 02140 This weokend I bought a Realistic Long Range AM radio (with TRF) \& heard Ain-Beida-529, Algeria the first night. Everything -1se was anti-climatic. Algeria comes in right after SSS \& can still be heard a l0-11pm although boacon QRM gets worse as time gets later. I have heard it three aights in a row so far, March 5, 6, \& 7. Programing is in Arabic with very pleasant musical selections; of course, Arabic singing does take a bit of getting used to. As for the RX, it performs very well for a broadcast radio. Tuning is smooth with no backiash, \& the high end of the band is spread out with a straight $11 n e$ frequency characteristic. The bottom of the band has a straight line wavelength characteristic. As for a DX RX, it has the disadvantage of poor skirt selectivity and shallow nulls in the loop pattern. Everybody complains about the lack of selectivity in their less than $\$ 500$ recelvers; however, there is ittile said about the fact that for AM reception we need good selectivity at 60 DB down which we get by having lots of tuned circuits in the IF. These can either be the 6 to 10 or so elements ina mechanical filter (or in a ceramic ladder fllter) or even lots of 455 kHz IF transformers. So when the manufacturer says his kX has a 6 or 4 k selectivity, we are not getting the whole scoop. Don't be impressed with a receiver unless it has selectivity of 8 to 12 k at 60 DB down with 5 k at 6DB down. The Realistic Long Range AM radio has one IF transformer \& one ceramic filter, so it's no surprise that selectivity is not enough for split channels. , What would it do if it had three ceramic IF filters? An interresting experiment is to hook up this RX to your hi-f1. Sub-audible hetrodynes become audiable In the deep bass and yiu can hear all sorts of fantastic hets and thumps on weak stations. You get good audio on strong stations, little or no distortion, and hu fldelity except for the missing high audio frequencies.
dave schild - 42 Chelwynne Road - Castle Hills - New Castle, DE - 19720 Here's a few lines for the Captain of the Keys. First, the following verles were added: WJJJ-1260, WKDE-1000, WKX0-1500-TEST (thanks, Chris!) all v/l. V/f's from WGSM-740, WWPA-1340, WIVS-850-TEST 4WWWD-1240.Total: 865. Heard and reported: 2/23- CHIC-790 1:12-1:25am w/as show, first time using the recorder/RX on the timer. 2/24- WBLT-1350 $5: 55-5: 59 \mathrm{pm}$ 日/off. 2/27-W/WSBA/WRNL both off, WGAF on top w/NBC NX and Drake automated rr, 3:59-4:15am. With my fingers crossed, a f/up went to WCBG-1590. To help keep your log updated a bit, WGAL-1490 is now using the calls of WDDL, still MOR. WFEC-1400 is now running a modern c / w format, with signs ail over Harrisburg for "WFEC Country." I understand they're supposed to change calls also. I, also, miss the "Changes" section that Wes ran in DXDD; any of our radio station employee members who may be able to get that stuff from Broadcasting! Welcome to new member Allon Luckey, turns out he live about three blocks away! First person to hear WWWD in Bradford, MA wins a case of Dr. Pepper! Til next time,73s

RICHARD CLARI - Avenida 27 de Febrero \#23 - Puerto Plata, Dominican Rep. everybody know I am still around. First of all we moved from 51 Paso, TX to Dominican Republic in November, but however the moving company took about three months just to get here. We now have a place in Puerto Plata * all my antennas are up to do Dxing again. My wife Esperanza (also a DXor too) has been trying to find the ideal DX area in this country \& we or tove found it in La Vega as being ideal, only to have lokw HIDV-590 onl less than $\frac{1}{6}$ mile from me. Anyway you look at it, it still is the ideal area for DX. I hope to buy land there so I could build a house in this place. So for now I am living in Puerto Plata, in which is really nice \& HOT!! Cesar Objlo from Sto Domingo is coming up for a big DX weekend of. $4 / 3$ at my house. We get VSI very strong w/s\%on lpm daily. Their power is lkw. (Frequencyis -ERC) Also a very strong AFCN- 1460 from Puerto Rico
 stations on the air. One is R. Boya-1320 in Sabana Grande de Boya, and R.
(Clark) Marien-1415 in Dajabon. Also HISD in Pedernales is 1400, not 1310 in WRTH. Also I must say that R. St. Vincent is not a new station! It has been on for a few years and very strong here. I have a very strong FF on 1403 that I haven't IDed yet. I guess it is Africa from its mx format. TAs are very strong so I have quite a bit of DXing until I mx format. Tas are very strong so I have quite a bit of Dxing until I tions! I had! How about XEJ-970 here we need 1t. Great station! I love ranchera mx : For now, 73s. (Good luck in your new country, Richard, but please Double-Space us more:-ERC)

JEFFREY KAY - 12 Peveril Hill south - Toronto, Ontario - M6C 3A8 The DX bug has bitten again. The TRF is pulling in many stations that I had never been able to hear on my other RXes. Many distant clear channel stations can be listened to almost static-free. To DX: 2/7-WQXI-790 in very faint w/local CHIC off. 4/13-TEST of WNRI-1380heard, this TEST points out the great advantage of IDs in Morse Code. The code IDs were clear and easily copied, the VIDs were almost unreadable. Let s have more TESTs w1th CIDs! $2 / 14-$ WIVS- $850-$ TEST only CIDs heard
from this station. The A1ght of $2 / 19-20$ was the best Canadian night in
a long time. At iopm CBF-690 finally was pulled out from u/CFTR-680 slop a long t1me. At 10pm CBF-690 finally was pulled out from u/CFTR-680 slop At 1:49am "Winn1peg's Friendly Giant" CKY -580 heard. At ${ }^{2}$, CBK-540 w/CBC NX, moving further West, CFAC-960 w/ c/w "Music City CFAC". I tried for several stations in BC this night with success. CFAC \& CBK represent two new provinces heard. $2 / 21$, another successful night: KNXX-1070 \& WMBD1470 heard briefly, WBBO-780-TEST w/march mx heard well u/WBBM \& UnID SS Veries have been arriving in bunches here. WIVR arrived, among them my first two V/PP/cis from WDXR-1560 \& KFVS-960. KFVS also sent a very large cM. in v / s column. Contrary to pupular belief, All verie info will appear in V / s column. Contrary to pupular belief. DXing does NOT give you warts, hi! 73 s .
ERIC FADER - 23-35 Bell Boulevard - Bayside, NY - 11360 2/6- WCSH-970 dul noted 2/6- WCSH-970 duly noted on top in NNIS RS, $2: 35$. Itried for the Cuban 1180 ticker, but only local spurs and eead alr were in evicence. were exagain for a positive ID on the 860 Brazilian creature, but they were extremely weak w/EZ \& vocals. The only newie of the morning was The FM nounded 11ke CFMY-FM? They were runing MoR \& oldies; very low-key like AT-40 add-on: KODY-i240 NE. Thatzall. 738.
MICHAEI L. HOGAN - 9224 Cottage Grove Avenue - Highland, IN - 46322 $3 / 7$ turned out to My fellow DXers, because I think I have now set a World in the number of TTS I have not IDed on consecutive MMS: 3 hours, yes, count 'em, $3 \frac{1}{2}$ of listening, to those musical devils that we call TT \& not one ID from any of those! A musical sympnony, for a DXer's sympathy, hi! Also it looks like another night ime for me as tend w/CKCY, but now both
GEOFFREY L. PARRISH says: CMY-1430, Ottawa, IL was not alred as sked on Mon. 3/7/77. Mr. Deiner隹 J. Dayton, CE, was unable to Perfst for MM 3/28, again from 2-3am EST. All How operates on $1430 \mathrm{k} \mathrm{w} / \mathrm{a}$ programming details \& power of 500 w non-arect 95.3 m, which operates w/a power hope that you and your Club members will this may have caused you and new TEST date.
WE'RE NOT SURE OF OUR NEXT DEADLINE DATE, SO GET THOSE MUSINGS IN NOW!

The citizens were quite confused - And then the winds began to blow citizens were quite conf
We didn't hold a parade Conventioneers were never boozed nventioneers were never boor
Nor jailed in any raid.
We gained the name around the town Of being quiet folks
In public spots we didn't clown
Nor make with nolsy jokes.
The Roger Smith was quiet

lly pleased

nd then the winds began to b
The quietude had ceased:
Iwenty-five men in a bedroom Are too many by a far
There was simply never the headroom For the corwed who'd made it a bar

White Plains today is unlittered We left it in usable shape
If anyone there is embittored Complaints are submitted on tape.

TO REMIND YOU OF THE GET-TOGENHER IN PROVINCETOWN ON SATURDAY, APRIL 2, from 11 a.m. to 6 p.m. We're hoping for a large turnout of DXers from the area. Everyone is invited. We re asking a \$2 donation towards the colreshments please by calling 617-487-9337 in talk DX, have some fun,

ERNIE COOPER - The Cape Tip DXer - 5 Anthony Street - Provincetown 02657 We ${ }^{\prime}$ ve had recent enjoyable phone calls from Paul Mount and Stan Morss - and one $\nabla / 1$-CM from WBBO-TEST who received 29 reports on the Stan Morss - and one $\nabla / 1-C M$ from BBD-IEST who recelved 29 reports on TEST. I've seen several members mention hearing WBDC s TEST and Whose names are NOT onthe list as or tuned for them - they think that only 29 sistened! Even if youdon't collect veries, at least send the station a listened. Even if youron collect verles, ar courtesy to us DXers - that's not much to a.sk now, is it? Verie count: 4,031. The Bohac-NRC 4 ' altaz not much to ask now, 1 s it? loop is now A-OK in 100\% working order and pulling om in, to witime, but men Cuban who battled WBBO's test is lating till at least $2: 17$ bedt me be bed he didn't drift earlier. Unn WFBC orr 780 now, about 1330 ide $2: 10$. Oops-another fine phone-in, from Franis Dailey topping 1330 today, 150 in 15 , ID sounded like WILU??? TT-1500 again, N / S, Sat 3/5- EI/rr on SM 3/6- WKEW maintaining silence again. FFC-1290 on top $1: 32-2: 17$ \& 4 , SM $3 / 6-38$, then quickly died, no report. No sign of WYWY-950 r/c. briefly $4: 38$, Tentative on WCWA-1230-TEST, many TTB but no IDs noted here, l:ll MM 3/7- Tentative on wish in/out u/WEZE all AM till surprise (to me) s/off $-1: 51$. Needed aNDE-126 No sign of WCMY-1430-TEST here. Preaching on 1520 4, to return at 5: Toledo catch of the day \& completes that city for me; landed me my second folereports today, WCWA-1230 WGOR-1520 \& WNDE-1260; So, three new ones sorems to s/on 4 notede $4: 03$ with sermonette to $4: 15$, UnID SS-1560 we'll try again next week, \& be there at "the grand opening. 3/8- Unn WVMM-1430 on r $\mathrm{c}-\mathrm{TT}$ 1-1:08. UnID TT-1490 1:07-1:17. KKal-150 3/8- Unn $1: 59$ all w / f announcer. Newle notea WGes 15 1:03-2:35 \& on with no annoucer. $\mathrm{w} / \mathrm{rr}, \mathrm{OC}$ \& IT On /Gubs today ($1: 55$: UnID TT-1320 2:05-2:10 one U/KYW--1560 topping of the Frenchie 2:10, and still another on 147 $10: 30-3: 45$ $1060 \mathrm{~W} / \mathrm{no}$ s1gn of course. 3/11- TT-1600 while looking for WQCK 1:30-1:45 on, none IDed, of course. 30 seconds \& too loud for them. TT also on 1590 $\mathrm{f} / \mathrm{c} 1: 31$, but only on $3002834-2: 47$. I can't tune the NRC HAM NET for I 1:34-1:44, and one on 1330 : $34-2: 47$ DK session. Others do, too! CUN7. sleep 8pm-1am Sundays

Welcom to still nother edition of DXChenge. Agnin, we suggest you note the commenta about other publicetions leaturing this type of material if you don't find it here. Soe issue \# 19 for this info.

WANTED

Reel-to-reel tape reconder - momo only - for DX momitoring use. Good working condition, please. (Bob Hoflman, 507 Woods Edge, Weikel Rd., Iensdale, PA 19446; (215) 855-6501)

Airchecks (nc DX airchecks, pleasel) of major and secondary market atations (top 40, contemp., MoR \& $A O R$ onis) in the US and Canga. Cassetto or reel-torreel, full length (no telescoped airchecks). Will exchange for afrohecks of Chicago area stetions. If you can rum them, but wish reimbursement for tape, I'll send tape. FM archecks almo appreciated, same formats, ex as above. (Tim Benko, 2748 179th St. Lansing, II 60438)

0ld radio programs for sale or trade. (Yours for mine.) send list of programs available. (Donald E. Birch, 4420 N . Newland Blvd., Tucson, A2 85705)

Any 1930's redios by E. H. Scott, preforably Philharmomic models. (30 tubes, 2 chassis, chrome plated.) Will buy, or trade for commaications receiver. (Diek Nelson, 3470 Travis Ave., Simi $V_{a} 11 \mathrm{er}, \mathrm{CA} 93063$)
H_{a} llicrafters $5 \times-42,5 x-62$, or $\mathrm{K}-621$ in good working condition. (RjE \& Box 127, Boanton, NJ O7005)

NRC HIMM OPS. INFO: For NRC Ham List. If you heven't sent yours, send it now. Copies of the list availeble for SASE (RJE)

IS THERE A LIBRARIAN IN THE HOUSE ??? If we have a librerian somewhere within the NRC, would you please contact me a.s.a.p. 1! (RJE)

FOR SALE

(receivers)
Drake SPR-4, mint candition, $1 \frac{1}{2}$ Yrs. old, $w / x t a l s$ for ameteur bands \& SCC-4 calibrator, with SM-1 anteman. Best offer. (J.H. Ross, O. D., Hunter Hills, Apt. F9, Flemington, NJ 08822 (201)-782-0316).

Hommarlumd H0-180, oxc. cond., plastic clock cover missing. $\$ 285$ irm. (Charles Zipser, \% Courtney Look \& Hardware Co., 2242 Jerome Ave., Bromx, NI 10453 - ph weekdnys: (212)-733-1262 or 1263. Nights and weekenis: (914)-636-8123.)
Wards Airline AM-FM, Vintage 1955-60, Mod 35WG-1570B; Good on both AM \& FM sor DX. Needs minro work on $\mathrm{FM}_{0} \$ 20+$ shipping or best offer (RJE)
(aztemnas)
NRC 4' FET altasinuth loop. Wound w/ \#12 wire, w/ brass, threaded bmse. Perfect ax - is too big for the shack. \$55. (Zipser)
SM-2. 2 months old. \$45. (zipser)

Matiompl mar-500; 80-10 mor trahaceiver. PEP- 500w., SSB, CW. W/homebrew PS. 200. (Page Tarlor, Box 282, Butler, NJ 07405)

(acceasorien)

Angex Micro 88 cassett recorder. 8 watts per chanel, self-contained. $\$ 100$ (Trylor)

(niscellameous)

ädio Shack Mod. 15-1639 FM antema. Fre. cx. \$5.75 post. incl. in US. Mdd 504 to Canada. Prefer postal Noney Onder in US funds. (Albert Lobel, 10514 Caminito Bay wood, in Diego, CA 92126)

MINRAs TSAF Autopilot A5 Pamel Mount DC Voltmoter; 0-130v, \$4; Westinghouse \# 516583 portable 2-asal voltmoter, 0-50 and 0-250 VDC - \$5; Micronta 0-15 VDC panel-mount otrer ueed \$3. (RJE)

Trangiormara: 2) 8, 16 ohm to $25,70 \mathrm{~V}$, line trensformars for $P A$, multi-speaker use Hew. List \$6 ea, Jours for $\$ 2$.

Sprague "Filteral" Ling Filter. \$3 (RJE)
CAPACITORS, RESISPORS: Neny values, most now or slightly used. Medium quantities of omioin valuee, fewar of others. Resistors $5 \neq 0,25 / \$ 1 ; \mathrm{C}_{\text {apacitors: }}$ Dise - $10 \$$ ea. tubular - 15\& ene, eleotrolytic (singleaseotion only) - 25p ea. Sand list of needs and Siss. (RJE)

Hin 1977 WRTH's. \$8 postpaid book rate. extra copies at same addreas, \$7. Delivery 111 Vary W/ vililaility. Sand SAs for confirmation W/ check or manay order. (Donald Eriekson, 6059 Essex $\$$ e, Riverside, CA 92504)

OFD RUBESR STMMPS. Doee aybods out there have the facilities to use ald rubber tep blooks and handies to mike new omes 37 If so, make offer. Various sises. suvisi avilablo. (RJ)

OR TRMDF OR SME

Atwater Kent Model 35, ser. 982881, good ex; Atwater Kent Model 41, ser. 1564784, V. good cas; Atwater Kent Model 42, ser, unr; poor ex; Unlonom make and model 4tube battery-operated radio w/ aplar, about 1925 vintage, good cx.; Temple dynamic peaker, Model 14, lair canditions Operadio 6 tube battery=operated radio w/ builtin splar., good cx, abt. 1925 vinto ${ }^{2}$ batch of tubes for the aboves 111 but Operadio an وth st., Pomona, CA 91766. 714-622-1473 eveninga or 714-629-5111 ext. 4838 days.)

- TiVIGES:

locoiver alignments/ropaire on Hammarlund equipment. Also repairs and aligament of FET Loop amplifiers. (Steve Bohac, 97 Shaler Ave., Fairview, IW 07022)

Well, that wrapa up another one. Heat issue in $3-4$ issues. We will run new items, and only those previouslymum items for which we reoeive notification to re-rum. We had hoped to rum all ads $2-3 \pi$, but volume at present prohibits it umless we are aure

R. J. Edmunds

If you're the type of JX'er who never expects to go beyond his current receiver, ard has no accessories aside from headphones and maybe a tape recorder, then this article isn't for you. If, on the other hand, you're the proud possessor of two receivers, or perhaps an audio filter or two, and perhaps two tape recorders; even if those accessories in multitude are still in the planning stages, then pay attention。
ifany DX'ers who have equipinent which dictates that certain segments of the receiving system be interchanged with others, or who have one piece of equipment of one type but it must be used with two of everything else, will appreciate the need for an effective means of interfacing their equipment in such a manner that quick changes can be achieved while still affording maximum versatility. Kany years ago, I developed such a symtem out of necessity, and never thought another thing of it until I began to realise that many DX'ers hadn't done the same thing, and that zome of them were interested in the idea.

My first such device was a combination antenna tuner and switcher, first built back in 1963. The basic tuner odrcuitry is contained in a prior article entitled "Anten n_{9} Tuning Devices for Longwires' on the M $\mathrm{NCB}^{\prime \prime}$ contsined in the NRC Receiver Reference Manual. At the time, I had three longwires strung, each favoring a different direction. The initial attempt proved quite unsatisfactory, inasmuch as I simply employed a switch for this purpose. I soon discovered what many DX ers already know that antennae will radiate the received signals, which can be pickad up by nearby antes plugs for he lowed for selection of any ane, two or sil three antennae at a given tine。 he in puts he three antennae were not phased ane to anolher an any way, as I mis inclined to do now, but rather directly comnected to the same tuning circuit. The unused lead-in (s) would be kept as far away as possible from the connexions in use
This setup endured for the entire time I lived in that location with no modification whatever. Many $D X^{\prime}$ ers who have both longwire and loop antennae use a similar arrangement to switch between the two. Generslly, loop circuitry being as sensitive as it is, great care nust be exercised to keep the loop shielned from the lead-in from the longwire, and this is best done through the use of jacks and plugs instead of, or in addition to, switches.

Another interface device which I put into use fairly early on was patterned after commercial units designed for home workshop use. This was a switchoble power console. Since a DX'er never has enough electrical outlets to suit his needs unless he installs them especially for that purpose, I decided to do it once, and never have to worry about it again no matter how many times I'd move, by making it portable. While I could have bought one of the commercisl units (even though the cost would have been somewhat more than the cost of my consoled, the main reeson I didn't was a feature which I wanted which couldn't be bought, namely, the incorporation of a clock-timer device for remote warm-up of equipinent, or for remote taping of $N X$ TESTS when not at home, or when asleep. Thus, I procured a minibox large enough to accomodate six console-mount $A C$ receptacles on one side, and six toggle switches on the other, then procured those parts, and set to work. By using the DPDT tog gles, one side of each switch may be wired to a line going to the power from the source, while the other side of the awitch could be wired to the timed source. The center poles of the switches were tied to the receptacles at the rear of the bax.

Six outlets seemed to be sufficient for anything I could conceive of wanting to rum through the timer, and has proved to be adequate. Currently, I run the receivers (2), a tape recorder (stereo, serving the two receivers), the audio filter, shack lamp, and spectrum analyser through it. The latter three are really never put on the timer, and so are run there simply for the convenience of having all the wires in one place. When the toggles are up, the plugs are directly powered, and when down, they are pow ered through the timer. A second timer can be employed with the taper switch in the direct" position to warm up the rig (and, if necessary, both rigs) at one time, and the taper at another. With either a solid state rig, or with one with a predictable amount of drift in frequency over a given period of time, this will present no problems. If your receiver is prone to drift for hours, then you'll have to let it run on "direct" all night to insure that it stays where you want it. My Ho-150 needs at least six hours of warmup time before it can be set on a frequency and be expected to stay there for another six. This, by the way, is an unusual case, and indicates that the receiver needs to be serviced. I just don't care to take the rig out of the line during the $D X$ seasan for the time it takes to fix it

In a similar manner, two tape recorders may be used with as many receivers, and set for different times. The second taper should be powered on "direct", and a second tiner device used between the comeole and the taper. Further still, the DX er may want to really get tricky, and install two timers in series, one set to turn on the equipnent as desired, and the other to turn it off again at some time later. Some timers incorporate the capacity to do both in one was, while others will do eithermor, and still others will do only one or the other. Generally, household timers will allow you to turn things on at one time, and off at another, but the interval between the two is inevitably at least 90 minutes on the less expensive models. Still other types, such as used in clock radios allow tum-on at a set time, or an up to 60 -minute leaveon feature. You may mix these units to suit your needs.

The interface device which is perhaps the most versatile is the one for audio interface. This allows a adio coupling of multiple receivers, tapers, filters, headphones, and speakers, and can be as simple or as complex as your needs dictate. Such other accessories as operate on RF or IF, such as sccpes, spectrum analysers, and the like, hould be directly coupled with quick-disconnects, as the fewer connexions in those lines, the better to eliminate stray pickup. In my particular device, the audio line rom the receiver (s) is taken from the speaker termingls, simply because it gets the wiring behind the rig and out of the way. Thie in turn goes to a plug into the back in the same fashion, both input and output. Likewise speaker attachnents may be made in this way also. Headphone jacks, due to the nature of the beast, should be mounted on the front. Due to the frequent interchange of tape machines in my shack, my tape input and output are also located on the fornt panel. It should go without saying that the switches should all be located there also.

There are as many ways to go with this unit as there are nX'ers, but I have included three circuits with this article. Figure 1 is a very basic interfacer, with one input, into one channel, into two outputs - tape and speaker or phones. There is no input switching, you jack in either taper or receiver, although you could put two inputs on it, and switch them into the single channel with a little extra construction. The audio filter is jacked and switched, and the speaker and headphones are wired in the same way. $\$ 3$ is a record switch, which may seem at first glance to be Ire in I heve discovered, however, that it is not dvisable to ploy toper into the interfacer while the taper input is connected. This switch eliminates th nto the later acering the necessity for removing the plug. If you're using a switchable input on the interfacer, you could mount these two switches close beside each other, and tie e bar across the toggles so that they throw together, or, you might want to subsitute a

"1-SIMPLE SYSTEM

RECorD $J 13$ (Tape inputs)

switenes

Figure 2 depicts about the most complex system most DX'ers could ever need, and probably it is too complex. It fentures four inputs, switcheble into two chennels, with two filters, two nccessory speakers, hesdphones with either mono or stereo (one channel in each ear) opergtion, record switches, and back into two tape inputs. It requires 13 jacks and 15 switches and would thus be quite large in size. The circuit allows selection of inputs for either two receivers or two tape channels, but they are not mixable, mostly because there is no good reason to do so. Either channel mo into either inter (neither filter should accept audio from both channels, but one channel is fed so that it may go through both filters), and the circuit is earefully wired (see inset) to prevent cross-switching, which may result in filter input demage. The wiring must automotically divert through the switch and on into the line when the other channel is switched into the filter input.
It also festures multiple speskers, either so that both may be used simultaneouslys, with two different channels of adio, or so that they may be used interchangably. This latter espect is especially useful if you happen to have speskers with different tongl characteristics to supplement the aud io filters with somewhat less sttemution, in extreme cases. I have included as much in this circuit as ppssible in order to illustrate the many possibilities which may be covered. The DX'er may use whatever parts of it as will be necessary in the individual case.
Figure 3 is a diagram of the unit I hove been using successfully for the past several years. It has two jacked and switcheble inputs, one channel, two filter posi
 jacks and ane quailínry switch (not show) for possible future use.

In Figures 1, 2 \& 3, however, we heve made some over-simplifications in two areas, which we will now proceed to discuss. Initially, we are ssuming (and therefore not illustrating) a common ground bus connecting reml ground with the chassis grounds on each piece of equipment used, ms well as to the audio interiacer and the power interfacer described erlier. For a variety of rensons concerning individual unit specificgtions, this may not always be possible. The common bus serves two purposes, one, to reduce or eliminate the potential for shock harerds due to different voltage drops with respect to electrical ("real") ground in the house power system in each unit; and two, to reduce or elimingte the possibility of an anoying buar which may develop in any of the audio lines ns a result of the same voltage drop differences. These problems are especislly true with the use of active sudio filters. Under certian conditions, however, buzzing may still be encountered. In ny case, the cause was because the rocord" and "playback" functions of my tape machine had two disparate grounds within the one unit. In this case, it whs neces sary to isolete the offending "rocord" chassis ground from the comon ground in the remsinder of the system. This was done by the insertion of rubber grommet in the hole where the "record" jack is mounted an the audio interfecer. Another solution, which is beyand the scope of this article, would be to rectify the metter within the recorder itself, which is more difficult.

The second aren of oversimplification for the sake of clarity lies in the area af impedance matching. Nost stereo herdphones and spenkers operate on 3.2 or 4 ohms impedance (the two are essentiolly identical). Most receiver and tape recorder outputs are of this velue also. (Receiver headphone jecks ore sometimes quother matter. I suggest use of the spenker terminals insteed, but if you wish to बo otherwise, be sure to consult the receiver manul for the impedance of the phone jack, whichy by the way, is ensily convertible to stereo phones in the mono mode.) Trpe inputs, along with filter outputs and inputs, however, are not. These mey run anywhere from 500 to 50,000 ohms. Most filter and taper inputs are of the higher figures, and will accomodate number of lower values with minimal losses of goin. It is adviseble, however, to increase the impedance of the audio entering these imputs to at least 500 ohms, as the 3.2 or 4 ohm impedances will result in low audio gain

ee well as probable distortions or tonal imblance. The insertion of transiormers to step up the impedanoe for filter or tape inputs becomes highly desirable, as does their use in stepping down filter outputs to match phones and speakers. Figure 4 a depiots the use of a transiormer to step up impedance to the audio filter (if one is used or to the taper if an audio filter is not used. The trampormer in this ease is stamdard output transformer of 3.2 to 500 ohms. If a higher impedance is necessary, then a 3.2 to 5000 ohm transformer may be substituted. Figure 4 b deals with the problem of matching a presumed 500 ohm filter output im-
pedance to both taper input and speaker or phomes simultgneously. While this circuit does not appear to provide alose enough match, it should be far greater improvement over system using no transformers then it is a compromise to an idel aystem using more, and less-generally-available, transformers. The filter output is feeding to taper directiy, with an input impedance of 5000 to 50000 ohms, as phones), which results in mismatch of between 1.1 to 1 and 1.01 to one, depending on the netual vilue of the taper input impedance figure.
In the case of the use of multiple audio filters, inter-ifilter matching must also be taken into account. If you are using two passive filters of the same manufacture, there should be no problem, as it is highly likely that input and output impedances of these units will be the same, and need no matching. If you are using two active iliters, the ohances are very good that no additional metching will be needed, as an output of 500 ohms from one should be suificieat to drive a 5000 ohin input on the other. If this should prove to be a problem, you will need to insert a 500 to 5000 ohm transformer between the filters (assuming these Velues). Such a transformer is far less comon than the others already described.

In an case, it is aften best to experimant a bit to determine how much imbalance of impedance can be tolerated by your filters and taper, as well as most impostantly, by your ears. Iou may find that the only transformers necessary will be those to bring up the 3,2 ohm line for the taper input ado to step back down for the phones
Kany If'ers do not wish to introduce ifltering into the line before the recorder, thereby recording onto the tape all of the received signal, and filtering it later. This is accomplished by moving the recond outputs (and associated matching transiormers) back in the line to a point before the filters. This will undoubtedly cause additional imbalances in the filter inputs as far as impedance goes, bwing to the 3.2 ohm side of the output transformer. In this case, it will be better to step up the impedance before taking off the recording jack, and stepping up to 1000 ohms, so that there will be sufficient amount of impedance to satisfy both the reconder and filter inputs, as in Figure $4 c$.

Thus it can be seen that with a certa in amount of work of a not-too-complicated nature and a relatively small outlay of fumds, you can construct interfacers to suit your own noeds. They make life much easier than chasing plugs, jacks and cords all, over your shack every time you want to substitute piece of equipment.

Perhapa the most frequently-asked queation about propagation of domestic atations is some form of ' why does W- got out so much better than W- when thes heve the same (or less) power and similar loogtion? I

There are actually several answers to this question, and some of the more common ones are answered belows

GROMD COMDUCTIVITI. This is the factor which most frequently effeots propagation. A station located on marshy $l_{\text {and }}$, or other wot areas, such as seaconsta has the best looation for "getting out". The atation located on dry desert land, or rooky antan and otupliy efficieney of the tion' amplo to cround its antion employa to ground its antema, the better gromdvave sigal it will have.
HORIZON BLOCKAGE, After ground conductivity, horison blookage is the major factor offocting propegation. Whethar or not the blockege is men-made is of little consequence, as the sigal will still be blocked. Mont man-made atructures are composed requaty do thials which will also absorb signals to some degree, and mountains usually "on do the same thing. Natural "ducts" such as canyons, river beds, ets. will usually "oarry" aigals along them much farther than thoy would normally go over
average terreln.

WeATHER. Old-timers will recognise the importanoe of weather. patterns to the DXIer, In addition to the comonly-lmown fact that cold weather, plue the shorter days in winter osume lasser amovata of ionospherio absorption and make groun conductivity alightly better. Likewises, a cover of anow, or extremely wet ground due to heavy rains will also cause greatar aigaal coverage. Occasionally, heavy frontal systeme under the sace reception slightly within ita area (both tranamitter and recoiver are under the same front). This is especially prevalent with snowatormana
AMTENEA. The efficiency of the sitenna syatem as a whole can rake a signal got out much better. A poor aystem will radiate less power (regardless of the power put into the system) than a good one will. Likevise, some stations employ antemas which are eapecially designed to limit skivave components. WPAT-930 is one of these.
MODULATION, A atation with good, clean modulation mas well be heard bettery (and, as a result, more easily ID'ed) than one which modermodulated or has muddy audio. A good example of this is WGSA-1310, which has vary poor quality modulation and, deapite a fairly good aiganl, is not often ID'ed.

All of the above reasons oan ome to bear in any given comparison of atations. One of them in usually enough to acount for a aignificant difference between two ata tions of equal power equidistent from the DX'er. Likevise, these factors serve to prevent any hard and fast rules as to how far an AM atstion's coverage oan be pre-
 ither with time or persornal changes at the arme station. Thus, it becomes virtrialIf impossible to generalise about this are of propagition.

By Philip L. Sullivan

There are four basic ways by which a radio wave can propagate or travel, from transmitter to receiver. These are illustrated in Fieure 1.

Path A is a direct, Iine-of-sieht, propagation called IIspace wave. 11 Path B involves reflection of the sienal from an irresularity in the troposphere; this is called IItropo-scatter. 11 Path C, known as liground wavell propagation, is a wave guided alone and by the earthis surface. Path D involves a sienal travelline to and then returnine from the ionosphere; this is referred to as Hsky wave' propacation. The first two paths are not important in the reception of distant broadcast band stations (the space wave is useless beyond the horizon, and tropo-scatter is important only at hish frequencies). Therefore, we will only consider the characteristics of the last two propagation modes.

Ground Wave Propagation

The wave that propasates alone the surface of the earth does so as a عuided wave, Euided in a way analogous to a wave guided throurh a wavesuide or alone a transmission line. The waveruide encloses the wave on all sides by good, metallic conductors, whereas in the case under consideration there is a conductor (the earth) only on one side. The earth has a much lower conductivity; nevertheless, many of the same ideas apdly.

Two factors contribute to the loss in sienal strensth durine ground wave propacation. The first is the distance factor due to dispersion of the sienal as it radiates out from the antenna.

This $1 / d^{2}$ factor enters into the si\&nal streneth formulas no matter what the means of propasation. The second factor accounts for the amount of sienal power lost by absorption by the earth because of the finite and variable conductivity of the earth. At large enoush distances, combinine both factors, we get the followine expression for the received eneray of the around wave:
$E_{\text {eround wave }}=\frac{K \sigma}{f^{2} d^{2}}$
where K is a constant of proportionality involvine transmitter power, antenna \&ain, etc., f is the frequency in mhz, o is the dround conductivity in mu/m units, and d is the distance $i \bar{n}$ miles. This formula is an approximation of more ceneral (and more comolicated) formulas, but it is adequate for the values of σ, f and d that normally occur in the study of broadcast band propagation.

From the above equation for received sienal streneth, it is apparent that better eround wave reception will be achieved over eround with a higher conductivity, or lookine at it the other way round, ereatest weakenine of the eround wave is over terrain havine lowest conductivity. Typical values of the ground conductivity in North America ranee from 1 to $5 \mathrm{mb} / \mathrm{m}$ in dry, desert regions and mountainous areas; from 5 to 10 in the Great Lakes resion; and from 10 or 20 in the Great Plains and Praries, with some areas in the Dakotas and just north havine values up to 30. For seawater, the eround conductivity is about $5000 \mathrm{~m} / \mathrm{m}$, meanine that ground wave reception over seawater is much better than for a correspondine distance over land. Over fresh water, σ is not as hish but is still considered above that of average soil and results in very cood daytime reception over the Great Lakes.

In summary, ground wave propasation is the primary means by which we receive broadcast band stations at distances of up to a few hundred (and occasionally 1000 miles) in the daytime.

Sky Wave Propagation

The important mode of propaeation known as IIsky wavell is due to the existence of a resion in the upper atmosphere called the ionosphere. Althoueh sky wave is the principal (and often only) means of propazation from a distant transmitter, it suffers from many variations and irresularities. To understand the mechanism of sky wave propagation and of the disturbances that affect it, we must first examine the ionosphere.

The ionosphere consists of several layers of ionized eases (fie. 2), the ionization beine mainly profuced by ultraviolet radia tion from the sun. The lowest layer, at a heicht of 30 to 50 miles, is the D layer. Above this is the E layer from 60 to 80 miles. The D layer exists only in the daytime; the E layer exists both day and nieht, beine much weaker at nieht. Above the E layer is a reaion known as the F layer. At nieht, this consists of a sinele layer between 150 and 200 miles up. At broadcast band frequencies, the principal effect of the D and daytime E layers is absorption of the
si\&nal. Since these are the lowest layers, they prevent the signal from reachine the higher layers where refraction would otherwise take place. This is why sky wave propacation of broadcast band sienals is virtually non-existent in the daytime. The layers that are most important four our consideration are the niehttime E and F layers.

Many discussions of sky wave propagation consider the ionosphere to reflect the radio waves. Strictly speaking, the signals are refracted, not reflected, as shown in figure 3. A signal from the transmitter (X) enters the ionosphere at a point A at an angle from the normal ($N-N /$). The effect of the ionization is to reduce the index of refraction (n) within the ionized layer to a value less than that of the atmosphere below it;
$\left(n=\sqrt{1-81 N / f^{2}}\right.$, where \underline{N} is the number of electrons per $\mathrm{cm}^{2}{ }^{2}$ and f is the frequency in $k H_{z} ; n_{\text {air }}=1$.)

Usine Snell's law from optics, we find that when a wave enters a recion with a lower \underline{n} it is bent away from the normal. Since \underline{n} continues to decrease with increasine heieht the actual path of the si\&nal is the curve XABCR in figure 3. For most purposes, though, the problem can be treated by pretendine the sianal is sharply reflected from point D. The heisht, h', of D is called the tivirtual

heisht/l of the ionosphere. For the niehttime E layer h^{\prime} is about 65 miles, for F it is about 190 miles.

Besides refraction, the other way in which the ionized gases of the ionosphere affect a radio signal is by absorption. As previousIy mentioned, this is the principal effect of the D layer and daytime E layer, but does occur to some extent in the F layer. Usine a simplified model ye find that the attenuation per unit is proportional to $N \nu /\left(v^{2}+4^{2} f^{2}\right.$) where N is again the electron density and v is the collision frequency of the ions. Thus a hisher frequency will have a lower attentuation. Unfortunately for the broadcast band however, the earth has a masnetic field. Solvine the equations of motion
of an electron in a mannetic field we find that this motion has a resonant frequency f_{0} given by $f_{0}=B_{0} e / 2 \pi m$, where B_{0} is the earth/s magnetic field and \underline{e} and \underline{m} are the charee and mass of the electron. Evaluatine this expression eives f_{0}, often called the 'lgyrofrequency, 11 a value between 1100 and 1500 kHz , right in the top of the broadcast band. (This holds over most of the world, however over parts of SA the gyrofrequency is as low as 680 kHz .) A sienal at or near f_{0} will have a larger portion of its energy absorbed by this resonant system and thus an attentuation higher than would otherwise result occurs in the hicher part of the broadcast band. This attenuation is in addition to that normally expected when the magnetic field is not considered.

Variations and irreqularities in sky wave propadation are linked to changes in the ionosphere. These can be grouped into four classes: (1) daily, (2) seasonal, (3) those followine the sunspot cycle and (4) irregular.

The daily chances have already been discussed as the appearance of the D and E layers durine the daytime. Durine the course of a year there are two major seasonal effects on broadcast band sky wave propagation. First there is the change in the electron density (N) in the F layer -- in the summer it is hisher than in the winter and this results in higher attenuation cattenuation is proportional to N) and thus poorer propagation in the summer. Secondly the loneer days and shorter nights in the summer result in more ionization of the D and E layers and it takes longer after sunset for this ionization to disappear. With an earlier sunrise this means there is much less time durine the nieht when the D and E absorption is low enoueh for good propagation. Both of these effects, in short, make sky wave propagation of broadcast band signals much better in winter than summer.

Years of sunspot maxima also result in higher N and hence sky wave propagation is worse in such years than in years of minima. Sunspots come in 11-year cycles, the laxt maximum beine 1968 and the last minimum 1963-64. We are now (in early 1977) at or near a minimum. In addition to deterioration of propaeation conditions durine the summer and in years of sunspot maxima, the level of the atmospheric noise is zenerally higher at these times too and this further degrades reception. Sunspot maxima also increase the occurrance of ionospheric storms as discussed below.

Irregular changes in the ionosphere are by their very nature unpredictable. They do, however, have considerable effect on sky wave propacation. At broadcast band frequencies, the most important of these disturbances are the ionospheric storms. These ionospheric storms result in charged particles precipitatine into the lower Iayers (as low as 35 miles - the D layer). The effect is the same as that produced by the normal daytime ionization of these layers increased absorption. In areas experiencine an ionospheric storm the effect is much as if the D layer and daytime E layers lasted thraush the ni\&ht. Propadation alone any path passine throuch a region of ionospheric storm activity will be virtually eliminated.

While the time at which an ionospheric storm will occur is random, some idea can be obtained as to the times most likely. The cause of the ionospheric storm is the arrival in the ionosphere of hishly enereized particles emitted by the sun. The emission of these particies is associated with solar flares - laree clouds of hot glowing eas, often millions of miles lone - that erupt from the surface of the sun. These flares are the result of increased solar activity and are most prevalent near and sliehtly after the time of the sunspot maxima. Since the lieht from the flare reaches the earth some time before the particles do, sightine of a flare by an observatory is an indication of probable ionospheric storm activity in the immediate future. These particles enter the ionosphere mainly in the recion above the masnetic poles, so the masnetic polar areas are the regions in which ionospheric storms are centered. For DXers in North America, an ionospheric disturbance will black out signals from the north, includine those from central Asia which must come over the pole (when they do come). This clears many frequencies for reception from Central and South America. The correspondine effect in the southern hemisphere makes it almost impossible to hear South African stations from New Zealand. Besides disruptine normal propagation, these storms also cause the eas in the upper atmosphere to \&low; this Elow is the l/Aurora Borealis/l cor australis) and for this reason propaeation conditions resultine from ionospheric storms are often called "lauroral conditions." Once started, such a condition may last 2 or 3 days.

In summary: sky wave propasation involves the return of a sisnal to the earth from the ionosphere. It is the method by which broadcast band sienals travel over lone distances (from a few hundred to several thousand miles), but, because of many changes in the ionosphere, the characteristics of this means of propagation are constantly chansine. Of ereat importance is the existence in the daytime of the absorbine D and E layers, allowine sky wave propagation only when the path from transmitter to receiver is mostly or entirely dark. Summers and years of sunspot maxima are the worst times for this type of propasation, whereas winters and sunspot minima are best.

Propasation by Several Modes

So far, we have discussed eround wave and sky wave propagation as if only one of these modes was present at a عiven time. For daytime reception this is true: ground wave alone is present. At nieht, Just because the sky wave becomes possible and ereatly dominates over the ground wave, this does not mean that the Eround wave disappears or is weaker - it is essentially constant throushout the day and nieht.

The presence of two possible paths for a sisnal to travel to a given receiver location might merely result in a ereater signal streneth received, but this isnit always true. The difference in the lensths of these paths results in a difference in phase between two arrivine sienals. The phase of the Eround wave is essentially con-
stant so any change in the path differences will come from sky wave variations. A phase shift of $0^{\circ}, 360^{\circ}, 720^{\circ}$, etc. (correspondine to a path lensth difference of 0,1 wavelensth (λ), 2λ, etc.) results in the addition of the two sisnals: while a phase shift of 180°, $540^{\circ}, 900^{\circ}$, etc. (a path leneth difference of $1 / 2 \lambda, 11 / 2 \pi, 21 / 2 \lambda$, etc.) results in the subtraction of the two sienals. Thus, a change
 ference can result in sisnal strensth variations equal to twice the strensth of the weaker of the two components. This variation in path leneth is so small that it occurs very readily due to normal fluctuations in the ionosphere, resultine in "flutterines" in the sienal from many semi-local stations (out to perhaps 200 miles) at night, since for these stations the sky and ground waves are of comparable strensth.

Similar effects can occur at ereater distances due to the presence of Imulti-hopIl sky wave propagation (fig. 4). Path 1 is the normal one-hop sky wave that has already been discussed. Path 2 is an example of two-hop propasation: refraction from the ionosphere, reflection from the ground at point A, and another trip to the ionosphere and back, finally arrivins at the receiver. AEain the same sisnal arrives by two different paths, Dossibly resulting in some cancellation of the sienal. While not shown, other possible paths of three or more hops exist, and scattering of
waves as they pass throueh lower ionospheric layers causes spreadine of the idealized paths, further complicatine the problem. In eeneral, the sienal arrivine by the fewest number of hops will be stronest. The largest distance that can be covered by a single hop is about 2000 miles. Beyond this distance, the two-hop sianal predominates with the three-hop beine the chief component of interference. Beyond 4000 miles the two-hop disappears and the three-hop is dominant, and so on. For multi-hop propasation, the ground conductivity at a point of reflection is important in much the same way that it is for ground wave propazation. For example, TA and TP paths are often good for receptions over lone distances, but cross-country reception is more difficult. The presence of several simultaneous modes of propaeation and the deviation from ideality of the received sianals makes day to day reception on the $B C B$ quite variable and difficult to predict accurately, but hopefully the above discussion will have given you an idea of the general physical phenomena that controls BCB propagation.
--This article was oriعinally written in 1967 for the IRCA. Article retyped by Lynn Burke

Fred Dìnning, Medium Wave Circ1e, reprinted by permission

Introduction Although at first the subject of Medium Frequency radio waves may seem somewhat outdated with the advent of Very High Frequency usage for high fidelity stereophonic broadcasts for both local and national networks, the Medium Frequency broadcast band still plays an important below the Medium Frequency band is more suitable for certain applications, e.g. reception in moving vehicles when phase distortion and multipath reception would cause distortion, in hilly zones, and for rural areas. Medium frequencies are als of regular international broadcast. For these reasons every country regular international broadcast. For thes at present uses medium frequencies is tending to continue their which at present uses medium frequencies

In spite of this continual usage of medium frequencies, very little research has been done into the varieties of modes of propagation encountered since the $1930^{\prime} \mathrm{s}$. This research was unfortunately brought to an untimely end by the state of war in Europe. Some renewed inter est has been shown by groups of scientists and engineers, mainly in and the United States National Bureau of Standards Ionospheric Records and the Un

The subject however is of great importance in planning of effective toverage areas by day and night for new transmitter installations and in agreements on channel spacing and shared frequencies. Hence a full knowledge of Medium Frequency propagation phenomena would be very visable in order to be best able to plan for maximal and effective coverage with minimum interference proble plies to local stations serving a small town as well as international services.
The subject is of considerable value in helping to coordinate knowledge of solar effects on the earth, the atmosphere, and magnetic nature of the earth. Much information about solar radiation can be derived from radio observations of M.F. propagation
Physical phenomena governing propagation of M.F. radio waves. Ground wave. Firstly consider the propagation of waves traveling along the surface of the earth. Field strengths at various distances away from the transmitter are obviously governed by the effective hight of trans mission antennae above ground - the higher the antennae the more 1ik ly that the wave will be able to follow a straight line path to the receiver. In practise, however, it has been found that waves propa gate beyond the horizon. At M.F. this can be described in terms of diffraction of the signal round the spherical earth. This corresponds with the laws of diffraction as derived from the boundary conditions of Maxwell's equations. As also expected from these solutions, the signal strengths depend on the conductivity of the ground over which the signal has passed. It should be noted that ground conductivity affects the penetration of the wave into the ground and hence the relevant conductivity may be that of the ground up to several hundred meters below the surface where the earth currents are set up. The angle of inclination of electric and magnetic components of the wave to the ground is thus affected by ground conductivity as reflected by the penomena of diffraction.
The diffraction effect is enhanced by decrease in frequency used and an increase in ground conductivity. These effects are displayed in greater range of lower M.F. signals (around 500 kHz) over sea paths,
e.g. Radio Yeronica when on 557 kHz , on a ship anchored in the North Sea, A full solution of signal strengths for a variety of ground paths allowing for variations in topography and soil conductivity is mathematically possible using the boundary conditions of Maxwell's equations. Other factors can also be considered, e, g. Soviet scien tists have discovered that signals are enhanced over tree covered paths when the leaves are green and moist resulting in higher conduct ivity. In hilly regions areas of shielding and areas of enhanced reception due to reflections from surrounding objects, diffractions at sharp boundaries, and so forth. it is also found that at the edge of high cliffs overlooking the sea high field strengths can be obtained at a wedge There is no real advantage in having the transmitter over the sea so long as there is a sea path in the direction of the propagation.

It is now necessary to consider that part of the signal leaving the transmitter which travels upwards at an angle toward the sky instead of at a grazing incidence to the ground. Appropriately these are called sky waves. At this point it becomes necessary to examine the nature of the upper layers of the atmosphere. These layers are under constant bombardment by solar radiation - Xrays, ultraviolet rays, and on occasion by solar corpuscles. This bombardment results in ionis ation of the molecules in the atmosphere, and the ionisation density can be approximated to a parabola.
Solutions to this parabolic ion distribution can be approximated for a wide range of parameters by the Appleton-Benyon transmission equation This equation holds true for thick ionisation layers. Using Maxwell's equations and the Appleton-Benyon equation it can be shown that cer tain frequencies can be reflected back from this layer.

Since the ionisation zone is uniform, it can be shown that the angle of elevation of the sky wave at transmission is equal to the angle at reception, and it can be seen that there is a zone where no signal is heard - the skip distance. Note also the possibility of 'multihop' propagation due to reflection at earth's surface. The 'hop' depends on the transmission angle, the vertical height of the ionosphere, i.e. the point from where the wave seems to be reflected as though the ionosphere were a discrete dielectric boundary rather than a parabolic distribution of ion density.
It should be noted that from the solution of Maxwell's equations, for low frequencies the degree of absorption of signals is greater (due to conductivity associated with a plasma.) The mechanism of this absorption associated with a passage through an ionised layer has been des cribed by the Appleton-Hartree magnetoionic theory in terms of the ions oscillating at the frequency of the wave. If ionic recombination occurs, part of the energy of the wave is lost. It should also be noted that the degree of bending is inversely proportional to the frequency.
If one now considers the actual structure of the ionosphere, one finds a series of ionisation levels depending on the time of day, year, etc (see later). The main zones of interest are D, E, F1 and F2 in as cending order of elevation. C, E5 and G layers have been observed under unusual conditions but are of little interest to this discussion.

It is useful to define the following terms: The Lowest Usable Freqquency (L.U.F.) At a certain level of ionospheric activity the degree of attenuation of the sky wave is , too great to allow good communica tion. This is usually due to D layer ionisation. The D layer when ionised by direct sunlight (mainly ultraviolet radiation) has the effect of absorbing all but high frequencies making signals below 5 MHz unusable. Above 5 MHz the attenuation effect is decreased. The Max-
imum Usable Frequency (M.U.F.) The highest frequency for which this
wave is reflected back to the earth from any path, Normally this wi. 11 be from the F2 layer but also could be from the F1 or E layer The Critical Frequency is that frequency from which some signal is still scattered back for vertically incident waves.

Brief descriptions of layers of the ionosphere and their dependance on solar radiation level
D Layer (30-55miles) At this level the atmosphere is still quite dense and is directly ionised by the incident ultraviolet and X-ray radiation in sunlight. Thus the level of ionisation appears at ion ospheric sunrise, i.e. the time at which the sun's rays strike the layer, and disappears at ionospheric sunset. Due to the density of the layer, recombination of electrons and ions occurs very quickly at ionospheric sunset. Thus the layer is absent during darkness. The level of ionisation depends directly on solar radiation and hence is higher when the sun is at its zenith on midsummers day in the northern hemisphere. The level of attenuation due to this layer is great enough to absorb all M.F. signals during daylight hours. Daytime M.F. propagation is therefor solely due to groundwave. It should be noted also that Appleton and Ratcliffe have postulated the possibil ity of D layer reflection below 2 MHz . This however in practise would seem to be unimportant compared to the groundwave. It should be noted that H.F. waves of above 5 MHz can pass through this layer E Layer (50 - 90 miles) This layer like the D layer rises in electron density to a maximum value during daylight hours. The atmosphere is thinner so attenuation is much lower so that mid-high frequency pass through (see E critical frequency above). The E layer combines less quickly at night and hence is present to some extent after dark when it contributes to M.F. attenuation.
F Layer (200 - 300 miles) This layer varies considerably in height and density dependent on the degree of solar activity. The layer is responsible for H.F. propagation by day and night and M.F. propagation by night. Recombinaton is slow due to the rarified nature of the atmosphere. The F2 rises to a much higher level separating from the F1 soyer in daylight. Ionisation levels are high and so are M.U.F. and Critical Frequencies. Very high levels of F2 are associated with a thermal expansion effect in summer.

Solar Activity Many variations in day to day and month to month and year to year results exist over given signal paths. These effects ere studied in detail in the 1930^{\prime} s by J.H. Dellinger, J.A. Pierce and others commissioned by the Institute of Radio Engineers. It was oted on certain days signals on a trans-Atlantic path were not has to whereas sults obtained then modified by more recent findings are detailed sults
Long term cycles on M.F. signal paths
22 year cycle Optimal M.F. conditions at every other minimum when ionisation falls to all time low levels.
11 year cycle This cycle corresponds to the well known cycle of sunspots - dark patches appearing on the disc of the sun. This is one alf of the cycle above. The underlying causes of these two cycles traviolet and X-radiation. There would appear to be a high correlathis radiation with sunspot cycles. Plots of critical freq uencies against sunspot numbers indicate highest F2 ionisation at the maximum of the sunspot cycle. Optimum M.F. conditions hence oc cur at low points of the cycle when L.U.F.'s are low. Methods of numbering sunspots have been derived counting numbers and areas and converting them to a standard scale - the Wolf number (R).
$R=k(10 g+f)$
$k=$ correction factor particular telescope
$\mathrm{f}=$ number of individual sunspots
$g=$ number of observed sunspot groups Typically $R=0$ to 150

1 year cycle This cycle is due to $23 \frac{1}{2}$ degree tilt of the earth on its axis resulting in the variation of the amount of sunlight on the its axis resulting in the variation of the amount of sunlight on the ionosphere. The residual daytime absorption levels are higher in
summer than in winter. This also affects the parts of the signal summer than in winter. This
Short term cycle (25-27 days) This cycle results directly from the location of the sun on its own axis. Hence groups of sunspots or individual sunspots take 25 to 27 days to orbit the sun. The exact mechanism of this cycle involves a study of the nature of the effect that the sun has on the earth's magnetic field. Associated with most sunspots there is a 'throwing off' into space of streams of solar corpuscles. So far as researchers can tell these consist of protons, electrons and various other sub-atomic particles, e.g. neutrinos in various concentrations. Much research work into the nature and composition of this solar wind as it is called is still going on. Much of the work done by the U.S. Sky-lab project was of this nature. Associated with the earth is a magnetic field, the exact distribution of whose lines of force is shown on isogonic maps. In space a magnetosphere and a magnetopause result from the modification of the earth's magnetic field due to the solar wind.

It is now necessary to examine the nature of a 'gust' of this solar wind. The term 'gust' is appropriate as there is an overall level associated with the average sunspot level, i.e. it displays 11 and 22 year cycles as above. Associated with most sunspots at particular times and positions on their transits across the disc of the sun, streams of particles are thrown out across space some of which encounter the magnetic field of the earth. This encounter occurs around 20 hours after the radiation effect of the sunspot on the ionosphere, due to the transit time of the particles across space. Only a few of these high energy particles actually reach the earth, and by far the bulk of those that do are deflected aside by the earth's magnetic field due to the shock front of the solar gust. It is known that there are several regions within this protected area where very high energy particles which have got through over time have been trapped. These areas are called the Van Allen radiation belts.
These areas are kept charged even during periods of low solar corpus cular activity by replenishment by the solar wind. The high energy shock front of the 'solar gust', however, has the effect of the whole magnetic field forcing it inwards toward the surface of the earth. This results in the particles in the Van Allen radiation belts being forced downwards along the lines of magnetic field. This process is described as a solar precipitation or dumping effect. Associated with this effect are disruptions in H.F. and certain M.F. signals known as magnetic storm disturbances, auroral effects, etc.
Basically the above can be regarded as resulting from a transfer of energy from the solar corpuscles to the earth's magnetic field - a magnetohydrodynamical effect. The consequences of this precipitation effect result in a chanelling of particles towards the magnetic polar zones and into the atmosphere. These particles set up oval belts of ionisation as they cut the D layer of the earth at points where the relevant magnetic field lines cut this layer. These are called auroral zones because of the phenomena of Aurora Borealis and Aurora Polaris resulting when abnormally high degrees of ionisation in the D layer produce a fluorescent effect as quanta of light emanate from the ionisation process. It should also be noted that changes in the earth's magnetic field of this type result in earth currents being set up causing disruption of wire communications. It is obvious
that the above will a1so have a dramatic effect on radio propagation at M.F. With D layer ionisation levels abnormally high even at night due to considerable time required for recombination after extreme ionisation, signals passing through this zone will be highly attenuated. Thus signal paths through the auroral belt are subject to disruption. The exact position of the auroral belt obviously depends on the severity of the 'solar gust' and can vary as far south as Florida in a very magnetic storm. Under undisturbed conditions the auroral zone will be virtually absent. Detailed studies over many years by the I.R.E. on path performances in the 1930's showed a correlation 20 hours before) observation of sunspot groups and the sun's activity over the last few weeks - the last observation due to the fact that since extreme degrees of ionisation are involved, several days or even weeks are required for recovery in all layers. During a storm the F layer will be lowered considerably due to the compression of the magnetic field. Attenuation in lower layers will increase, i.e. L.U.F.'s anf M.U.F.'s decrease. As a result in the British Isles signals from the south will predominate and signals from North America will be absent.

For study purposes the main bodies involved in the study of radio propagation gauge ionospheric and magnetic activity and present results in number form. The K index is obtained every three hours by measuring the rate at which particles are being induced to precipitate from the Van Allen radiation belts at a particular locality. Measurement is usually by balloons or satellites. Thesperiments over many years have confirmed the validity of the above model over a great variety of signal paths.

Miscellaneous other effects As well as the previously mentioned cycles, there are also other factors governing day to day possibilities. Sudden ionospheric disturbances resulting in very high D layer ionisation during daylight hours and resultant residual ionisation at night. This effect - the Dellinger Effect - is caused by solar eruptions with which high levels of ultraviolet radiation are associated - solar flares. These effects have short duration and have greatest effect at the Equator.

A phenomenon called the Mid-Winter Anomaly and of unknown origin results in higher auroral absorption zone effects during mid-winter sunspot minimum years.
A variety of weather associated effects can result in reflection of ground waves and low angle sky waves - tropospheric effects (boundary solutions of Maxwell's equations between air masses).
In practise it would appear that the layers of the ionosphere are not at all even or uniformly ionised. This results in diffuse reflection. Partial reflection would also appear to be common. Sharp patches of ionisation result in ionospheric electron gradients. As a result of these factors great circle would be found less often in practise than one would expect for the solution of a perfect ionosphere over a perfectly conducting earth. The discontinuous nature of the ionosphere results in signal fading due to reception from several paths simultaneously but which are changing with time. Ionospheric slopes are most commonly observed at dusk.

From the above notes on various common and less common modes of M.F. propagation, it can be clearly seen that no hard and fast conclusions can be drawn for methods of mathematical madelling of the sky wave because of discontinuous nature of the ionosphere, the earth's magnetic field, etc. - although reasonable results have been obtained
for the ground wave, It is however important to note the basic qualitative trends, e, g. an M, F: station in Europe is less likely to suffer co-channel interference from a U, S. A, station than a South American one due to auroral absorption; two stations separated by sea are more likely to cause each other interference than two separated by land. With a knowledge of these general trends, the designer of M.F. transmitter and antenna installations can glean much information on angle of radiation required for area coverage, night/day power ratios, choice of site, frequency, etc.

In the wider field much information has been added to our knowledge of the sun, earth and atmosphere and their relation to radio communications and geophysics.

Fred Dinning is member of Britain's Medium Wove Circle, holds s degree in Electronics, and prepared this thesis in comection with studies on his Masters. He has a 6600 foot beverage, and lives on farm Southwest of Glasgow. He is employ od with Ferranti, Asrge British olectronics firm, and has atudied European propagation extensively, with writings on that subject due to appear in Modium Wh fews shortly. This work is reprinted by permission of the author and MWC. Waves in straight languge. Thanks to Glenn Cooper for retyping the article from MNN - RjE

11 April 1974

This confires your reception of WWDE - 1260 KHZ between $5: 27-5: 38 \mathrm{am} \mathrm{CDT}$ 1027-1038 3 OT or 18 Varch 1974

WiDE ojerates witin a power of 5000 watts. Our daytime anterna is non-directional. Our nightine anjerna is dinectional with two main lobes at 171 and 351 degrees, we also have two smaller lozes at $\delta 1$ and 251 ciegrees. then you recieved us we we also have two smailer Doves at ol and 201 cegrea

Our main transmitter is a SCA BTA-5H and our alternate main transmitter is a RCA ETA-5U2. Both transwitters operats with an output power of 5000 watts. Ne were operating on the STA-5H transmitter when you recieved us.

We changed our call letters to WDE in August of 1973. Our former call letters were Wr5\% \% WBM was the Iirst comercial radio station in the state if INDIABA.
 52,000 waこts.

Than's you very mach for your report.
Charles J. Collingwood
Engineering Deparinent m:DE/wRQ

Many Thanks Brian for an excellant report. You now hold the distinction of being the second furthest report this station has recieved. The furthest being one from New Zealend. Your lo ; was 100% correct which is rare coming from BC listeners. The reports from WRC cliub members are usually pretty good.

