

VOLUME 40
FEBRUARY 14, 1973
NUMBER 15
"Enclosed is a $\$ 13$ check for renewal of NRC membership Incidently, the coming year is my 40th with the NRC!"
(Sid Steele, Illinois)
IN THIS ISSUE...
Midday Skywave DX in Europe - 1972-Bengt Ericson \& Gordon Nelson Skyline Blockage - Father Jack Pejza
Skyline Blockage - Sources of Uncertainty in Calculated Arrival Angles Gordon Nelson

NEW MEMBERS THIS WEEK...

*Raymond Baron, 732 Franklin St., Trenton, NJ 08610
*Stan Polak, Jr., R. 255 Swetland St., Duryea, Pa. 18642
*Andrew Hagen, 4760 Chuck, Memphis, Tenn. 38118
*Rolland Lindblade, 1017 90th St., Apt 2, Omaha, Neb. 68114
*Dan Sheedy, Box 31, Encinitas, Ca. 92024 (Rejoins)

*Mike Riordan, 1596 Oramas Rd., Santa Barbara, Ca. 93103
*Frederick Baker, 14350 SW 284th St., Leisure City, Fla. 33030
Welcome to the Club, people; why not introduce yourself in a Musing?
NOTES FROM HQ...
rom running GPN's second article on the influence 2 blockage scheduled for this issue; it'll appear week of Fresnel diffraction after next. No one has bothered to evaluate the diffraction equations for horizon blockage on the MW band before to the best of our knowledge and the results are absolutely fascinating... *** The new Domestic Log is running ahead of schedule; the contributions of Bundy and Callarman have been received and Bill Bailey has taken care of part of the Canadian alphabetization; Chuck Rossier is finishing it up. Remember we are now accepting advance orders on the new DOMESTIC LOG at a special discount rate of $\$ 4.50$ (Book Rate; add 75% for First Class mail); the new Log will be mailed out in the same order as advance purchases are made. Target date remains March 15th. *** Longtime Publishing Committee member Ray Moore, presently serving as NRC Treasurer, has written a fine article on the design of communications receivers for strong signal reception; many of the points he makes are of concern to the advanced MW DX'er and you will find the article in the latest issue of Ham Radio magazine on your newsstand. *** After assuring us that they had them in stock and accepting our money, the new Kokusai mechanical filter distributor informs us that our order cannot be filled for several weeks. We've complained directly to Kokusai about this delay but it probably won't do any good. We'll mail them out immediately when they arrive. Fifteen of the 25 units we have ordered have already been spoken for so if you're interested you'd better move fast... Price is $\$ 15$ for members.

GPN \& BGK

且PICIAL5
－－＝－－－－
\qquad 970 Inmantaria，Loul Qempenis，Loulaians 1，000 U－1 $000 \mathrm{D-1}$ 00 Dover，Belavire 500 $900 / \frac{1}{1}$
$1810=1825$ $2830=3130$ $2830=3130$
$3130=4: 00$ $3130=4: 98$ $4: 00-8130$ $12+15=$
$12+01$ $12+01-1800$ $2: 00=3100$ $4: 00=4: 30$ 675 Ben Joee，Conts aten 15，000 14－1 $15115-5130$ 12501 － 1100
$2100-$
$8200-$
 A11 wornine Iron

隹 innased，bus thia in a lasiy regular frequengy check rof thetr suriliary trame the Allies，Pittabureh．Remarlmais，15019．Info frow Irci＇s Prian Oerskight．
 Cates，is back in rilito artor an sbemes of nbout foor yaris，es ligin＇s Itight amocaicer．He rues their mouthly treptiency chect vith eyule tcee and periodie Im，This is the adtrenn for your reoeption reportsi

Hild is a frequency check，and we don＇t know the style of eodulat us ad， 9010 will be on．Feporta go to WITB， 310 Iepox A varue at Ilsth Street，Ien York，H．Y． 10027 ．

 Woutreal，Win．，conice，plorids，Wo he Oilo，ete．This，with WRL， KATZ，KI，Win．，Chicugo，Plorids，We Ke．a anio，atc．ithis，With WRI，
 that type of masic，and mybe some cycle toase and Morbic Code In，and raice jingle IDB．Mr．C．Rayne，Omer／President of WCFX nif Iormeriy General Mapager of wis－1010，Fic，leaving there in suacr，b8．Send reports to Nr．C．Rayne，Onner／Preaident，WCPK， 500 But Liberty Street Chempenke，Virginia，23324． Infor froe IRC＇s Jim foterte．

HEEI．Thlil TEST will be wostly two－toned cycle tones，a Feiv records，and Ire－ quent TDE This TEST will be with DAY pattern，wich is 500 math，non－ diract loma．We hope，of course，for silence rian whim Sind your re－

 give giera a chance to give thee a oomenative report hetvem thelr utemel and that of woof vhich＇11 sign off at $3 \div 30$ ．They＇ 11 be using coustry is
 be velcones，at $504+7 T 5-5141$ ．Send those Feporte to Fobert Gurole，kazs， 1842 Benry 3treet，Dolden Mendov，Leuisias， 70357.

NETE－1190：
Another ISC leetoser，the vbIItraom and ve11－14had Josegh Jones，Ghier Hoginent hert，is fivisy the his stmasi rix ving－iting tais porning．They vil1 uss＂hb had musit，quale tones，and dial tobes，nnt ingy In．
 （next pege，plene）

 hoge Crmatiant on s 11 biflut，but give Joe a resi hard try？Info frae bive scpoctir hose casm hord true Hoer

 te ehiry，bot give a liatan Jugt in cnoe．

＝ZGGG Irle Street－Buiseots，Flaridn $=3357$
the Iand of Condentatims and Hirlaes，and Folutions X
Noun the land o？Condi．I inh it vowit fit giet cold sen

 fryboo，the hourli I have to vork sre so lad I methinicing on taking ip sin offer to

 20／64，when I started Irtry．The loop I denorilied in gy last hase has had soee re
 monse，I have has a Iev reguents fof borw intareptad writa to sbove sdarese．There

 traplatort I have otartel a log and I beane effective $1 / 2 / 73$ a as thin hue is mhelatort I have ractel atation logeed．I＇a gotne for 390 berore sprint．io oritsen the tovian to her gmmana up bent bet is vor $-9 y 0$ ．Good ix h C Usil．

 orndible on tasir nigit patterm，

 uras uver every time．That oos，sad the two A．Rumbe oiklole（T0 hoio）have to

JAMES R. CRIPCHEP = 1504 Glenwood Drive - gan Diego, On ifornia $=92103$
Betveen $12 / 12$ a $1 / 22$ reception reporta hare been neat to kiros 540 for DI Special 12/18; to KHAC-1300 for $1 / \mathrm{c}$ a an 12/27; to KDNA-1560 for DK PEST 1/8; to KOVE-1330 for f/c an $1 / 10$; tp KCAS-1050 for RS 7 to $7: 36$ Friday $1 / 12$; to KCNX-1330 for PS $9-9: 48$ sat. $1 / 13$; to KPO -1330 for last of daily achedule from 3 343-3:58 sum. $1 / 14 ;$ \& finalily to Gas-1550 for $/$ /on progran from 5 to $5: 28 \mathrm{MM} 1 / 21$. Verificationa have been recelved from KRKT -990 , Kricket Pudio, for KR on 12/1; KEAC-1300 for $12 / 26 \mathrm{f} / \mathrm{c}$; KCNX-1330 * KPOT-1330 an above. The firgt three were

 ked. $1 / 3$, a cell change mom KJVU. Triey night beve changed erlier, but not checked. KAZA-1200 Gilroy, OL. eaded 55 program w/ite s/off in REB B 8:15pm 1/10.

 timo listed for KIKN-1590 KINS-1480 \& XPDN-1340 $1 / 22$. KBNI-1440 Topeka had a
 Q $5: 26$, covering CBen 19M $1 / 22$. Sorisy to report that none of the NSP pents vere cangto off this week. That bringm ry report up to date. Beat wishee to all.

BILL PIIDE - 8708 Contee Rod - Apt. 14 - Laure1, Meryland - 20810
All mi continuea to be netted 538 here $v /$ nothing very spectacular added aince lat time. $1 / 3=$ MAB-1010 N. C. $5: 10-5: 14$ v/Five 0 'Clock Report for South Central 011 On., Thed $5: 15$ and saded. UFIV-1080 5:35-5:4epm way atop w/ c/w, my coll mantione, for upot for ocals County reataurant. WBAL ilop got them 8
 then eque w/power/pattern switch. WML-1330 Mse. 6:15pu atop w/tail end of a/off

 di. of /ofi: tha BR prom \& no anthen; not new here, but needed for tape. $1 / 13$ -

 Lona" Is At then into mporting event coverage; Chiongo z Havam both strangely

 wrict-1580 on. 5448 mw w/jingle \& w/ogf. 1/17- WELA-1430 s.c. 5:45-5:46 w/emd of a/

 WRCA-1470 Ca. 5:47pm above WBAN sothers w/apot for Enloe Drug Storee \& promo for the WRCA Dog of the Year comient; then into Ge. WX. How do you bave a geomegnetic trore aftier polar activity ba been low a very low for eight consecutive daya, as heppened an $1 / 20$ (1 dunmo, Bill, but better wear your rubbera -BRC)
ROY H. MILTAR - HoX 508 - Everett, Waghington - 98201
Hello: The thind week of ' 73 netted caly ane new logging, but that a logeing! 1/17- was-1385 mivetok, Marshall Is. logged 4:08-4:59n s/off for my mit diatart 250 w . (if ouch is borne out) even excelling my previoua beat caich of that powar, FRBAMinav, Japan. Caly verified catch that would be better
 be aniously looking for reply to ny detailed tape of this reception! 73. (Grent estci, Poy! Congratulations! -ERC)

Shas MCFSS - Boute 3 - Fandruar, Manseschusette -01 B30
$1 / 3-\mathrm{c} / 4$ on 1390 e 4130 pe tiarned out to be caico in the clear this PM
 the finters Book they"re still is like a boab. Una, but did I sver fight far

 han evemsl other purchases in itiag FOC GK (VTM on AM) A nane biling Tum by them

 QFM by a c/w. No verie last year on ahort
one From WKi w/OA leaves two in Delawatre.

CHRIS IUCAS - 407 Elmwood Avenue - Ithaca, New York - 14850
Only a little DX dore this pest week. 1/16-WAGL-1560 S.C. 6 4:02pm. I've noted WAGL many afternoons u/o WQXR around $3: 30-3: 45$ at which time they eut power. No trace of WADD-1560 here. 1/17- Nice reception of WHRL-1330 Wis. e 5:35 pm o/u WEAK, o/wFBC, w/H:Y.C. absent. An umID cut power e5:45, \% an unID a/off (a) 6 I seem to recall, all on 1330. R. Paradise- 1265 heard well 88:16pm. 1/19-WHYP-1530 Pa. © 5:02 o/u WIGM. 1/20-WKLV-1440 Va. e 5:07pa, WKCY-1300 Va. wade it past ITBR e 5:09pm. CKIS-900 a 7pm. M 1/22* I heard "CxLD" on 1400 , \& aince I believe CKFL-1400 is //-CKLD-1230 I Logged it an CKFL-1400 lac Magantic, Que. Ior gravejarder f66. Ianguage vas FF, time was 12:5lam. WEAM-1390 Va. e 1:10; u/wFg I also had a tester on 1390 arcuiti $1 \mathrm{w} / a n$ ID, but all I caught was "North Carolina" asI ws rotating the loop at tge time, \& had thew nulled when the calls and city were given. I'll keep this short an I've got lots of other work to do. 73 .

Bob Menn -- Hia leah.
 terrific Christmas overtime \& also the many Cubans all over the dial. Most of those I've logged were arly morning stations \& those just signing on. WCIT Ky, e
 WNJB Pla. © 8, WHIZ O. © 7, R. Juventud, Venezuela, 3. Perbaps one of the experts in CA \& SA can give "a clue on a good mx atation on about 1240 that Ins as "La Plo del Oro - Musica". Also another on/about 1310 and also on 1250 that Ins as R. Bremplar, or something aimilar. Usually they are picked up after $2: 30 \mathrm{a} . \mathrm{m}$. I hope I bave more later on. Uatil then, 73 s fellas. (I owitted your adreas, Bob, at your requeat - wrin't you double space at mine, please7 -ERC)

AS THEY SAY IN THE SLAMER IN WORCESTER, MASS.: "HAAB" - WEATHER ASPEMTS ALWAYS BFAUFIFUL" - in The Bay State! So, come one, come all, to ROSTO for the Labor Day Weekead M. F.C. Convention - Aug. 31, Sept. 1-2-3! Dan't miss out on the FUN!

in C are good but I haven't gotten may new ontchen hntely. I an

 4:\%0pm. I thought this might be a good chance to clean up on some long-abseat

HAS BOYD - WHON - Youngrtom, Olio - 44505
Ix kind poor lant sevemal weeks due to equipment troublea that ere mootiy takea care of now. Hoted: wKic-1450 I.C. on $2-2: 30$ on $12 / 28$ w/EKB remote
 within 20 ninutes between 6 \& $6: 20 \mathrm{an}$. $1 / 8$ wav (

 an. KRDS-1190 in u/KTIT etc. all AN VIBM- $1100 \mathrm{v} / \mathrm{c} / \mathrm{v}$ all AM so he h KRDS may mave

 1570 from $2: 33$ to $2: 58 \mathrm{~mm}$. Ons In finally e $2: 57$ as UHII, Miss. I callod \& it is montily F / cj third marnday, $12: 15$ to $12: 30 \mathrm{CST}$ \& sometimes on longer for teating.
 2803 to $2: 06$, then gone. 1860 Tra $1: 30$ till part $2: 30$ only Kink/wne no mybe
 3:41-4:05 so is back on Mete. Er fron Krgr-1580 Mo. 3:31-3:40 w/rr. No sign of
 sommone ciee w/talk stuif there plus (I think) wivj w/c/w. WJAS a/off e $2: 05$. WFRG-; 290 on Ex anil v/daytime facilities. WAPS-690 kililing 690 e $4: 30$ so it had

 stuff from ISL rest of the veek. nesn't on 0 5m $1 / 21$, a SM.

ROIT MOSCD - 16 Chentiurt Drive - Mindsar, Connecticut - 06095

Overtime at work has severely cut down my DXing \& letter vriting. I'm preaently working on the jet fuel control for the Firpoon aissile. I'll be 31 in Pebruary, Earried, with two boys. I have been ixing off t on since 1962 . When 1
 I have been 经irly active aince 1970 now that I've got a loop. Dx: $1 / 1-\mathrm{narim}-1290$ 4-4:10pM v/VARE nulled for H.J. F17. FFC-1220 e 4:33pm but no ID henrd. WJSM-1110
 new R. Paradise-1265 pioning the S-acter $10-11: 04 \mathrm{pl}$ s/orf. Requert aired along w / religious measages, casily split off from uSPR-1270. 1/8- WCKJ-1550 finm $11 y$ 1:12$1: 303 \mathrm{~m} / \mathrm{S}-8$ aigon. Question: tho was testing on $1560 \mathrm{e} 1: 36 \mathrm{ID}$, but I miseed it? Ier state in $1 \mathrm{man}-1560$ 3-3:26 woak w/unk QRM. $1 / 22$ - CX eeemed bad w/only three teeters heard. INo different on 790, 12:18-12:32 but no IDs. wisins u/WCFL w/TT, phone no., address, so mbe PoP 12:40-12:45 tureout. And nFir-1450 w/announcel f/c 12:55-1 end, weak but readable. Veries in: v/q- WESTS WOKJ WSLT. v/i- WTRI WIS ITES WSAM. V/P-KATZ WCWC CKAC. And WKOX v/1 w/no f/up after 16 months. hion-1230 nolda the record at over two years. 73.

Deadlines: Fridays of each week; DX phone: 201-838-5721. Receptions:
540 VENEZUELA. YVOV, R. Perija, Rosario 0235, $1 / 27$ hrd weak W/ID not good enough for tape amidst lengthy comnentary w/ man. (Edmunds, NJ)
584 ERANCE. probably Marseille new FI outlet $1 / 31,0610 \mathrm{w} /$ talining in FF way over RIE, poss. nx. (Taylor, NJ)
ECJADOR. Emisoras Gran Colombia, Quito will be on with
lo . W. soon, if not already. Licensed to 615 , but will probably use 620. (David F. Gleason, Birmingham, Ala.) (Welcome:)
650 COLOIBIA. Bogota, HJJX, Emisoras Montserrate 0800 1/15 weak w/Mor mx at 0750 , SS ID 0800. WSM w/ET at 5 kw . easily nulled. (Richard Alien, okla.)
ECUADOR. R. Carrousel, Guayaquil. Has been, as reported, on with 10 kw . Actually, it has been operating with about 7600 watts to preserve final tubes. It can be used to check 805. If the 805 sounds lika 660 , 805 is the HC. Both have identical formats. (Gleason, Ala.)
DO: :TIITCAN REPUBLIC. HIAM, R. Quisqueyana, Santiago s/on 0930 after at least 25 minutes of $0 C$; possibly used NA at s/on, had some chimes much like HTMS-570. Surprising W/XERPM looped for only 2 kw . power. (Poterba, Pa.) (Nice catch!) ECUADOR. R. Omega, Quito. A New operation of the on and off ectation here will be on shortly. Block programming, 10 kw . Station here will be on shor of name in the work, too. (Gleason, ala.) There is a change of name in the works, too (Gleason, Xavier in Quito, and will move to this frequency with 30 kw . to in Quito, and will move to this frequency with 30 kwo to ${ }^{\text {and. }}$ avoid severe Hadio Sutatenza interference on 700 . (Gleason, VEIEZUELA. YVMH, Maracaibo $03001 / 26$ atop channel W/eng "R. Popular" ID seque
heard. (Edmunds,
heard. (Edmunds, INJ) COLOMBIA. HJCU, R. Tricolor, Bogota $1 / 260301$ strangely atop channel W / ID, no sign of usual Cuban mess. First time loggged here. (Edmunds, INJ)
ECUADOR. Radio Melodía, Quito. Power is 10 w. Station owner is very prone to exaegeration. (Transmitter is a 10 kw . Contel made in Hiami by Cuban refugees). Reports may be sent to the address listed in WRTVH for Radio IVacional Espejo-1310 in Quito. Owner is Gerrado Brborich. A notorious non-verie operation. (Gleason, Ala.)
COLOIBTA. Medelíin, HJDF, LV de Antioquía $1 / 22$ fair w/rr mx at 0640, CARACOL ID in SS 0700. WSB off. (Al1en, Okla.) MEXICO. XELO, Ciudad Juarez, Chih., "Radio $80^{\prime \prime}$ now with AN IT mx format. (Alien, Orla.)
ECTADOR. UNID listed here is possibly HCFV1, Canal Tropical (anm ${ }^{\text {radio") }}$ in Quito, which I returned to 805 from 810 in Thy of ' 72 . Power is just short of 1 cw. ${ }^{\text {and }}$ at also uses the slogens of "la onda ochenta" and "Núcleo Radion", the latter a reference to the group owner of the station. Renorts may be sent to Mary Lou Parra de Hay, G.lio, Box A-57, Quito. (Gleason, Ala.)
Q20.9 DO"IIICA: REPUBLIC. HIAZ, Santiago $1 / 26,0317 \mathrm{hrd}$ w/extremely raucous het against HitED/WBAP. Pgmg mostly lite male vocals. Ho ID hrd; loop says INI, ner WBF report. (Edmunds, IT:

GILBERT' \& ELLICE ISLANDS. VSZ1 Tarawa 1/16, 0930, some patches of audio surfacing. (Matt Edwards, NJ) (Congrats, MattiCUBA. CMDN, "R. Internacional", Havana $1 / 26,0345 \mathrm{w} / 50^{2}$ s rock, indigenous gx_{g} some lite MoR, very muddy audio in speaking. Bearing 220, format had me aImost convinced of TGMS until ID hrd 0345° (Edmunds, NJ) (Listed CMBL per PFS Cuban Iisted) @1/26, tune-in $0340 \mathrm{w} / \mathrm{mx}$ to $0400 \mathrm{ID}, \mathrm{nx}$ headlines to 0403 , then more mx. Good sig whannoying het from WWL easily chopped off thru use of AM gating function on SSB adaptor tied into HQ150. ofviously auroral condx that have persisted at least $4-5$ days after this logging. (Sundstrom, NJ)
CUBA. CMDN, Guantanamo weak w/Latin mx //720 0710 1/22. WWL offe (AlIen, Okla.)
Radio Amazonas and is under 10 kw , is changing its name to ECTADOR AKOnas and is under new ownershlp. (Gleason, Ala.) ECOADOR. HCDE2, R. Ifesa, Guayaquil $1 / 16$ 0230-0300 SS MoR MFXICO, on 2000 kH w/EE lyrics. (Edwards, NJ)
February (Reader ${ }^{\text {s }} \mathrm{s}$ Digest); not BS ad for Selecciones for ebruary (Reader's Digest); not R. Mil, so one of two or so other Mexicans. (Hauser, Texas) (Only Xiviv, Cd. Juarez Iisted my references, Glenn.-ed)
HOMGARY. New station $1 / 16 \mathrm{hrd}$ w/nonstop mr until 14002, then fungarian swc. (Bengt Ericson, Sweden in ARC "MN-ENKM 1/22) uniD. Probably East Germany tune-in $22561 / 3$, male ann in Balkan tongue; played NA for s/off 2258. After s/off, Morocco was at good level on freq w/TC, AA lang and mx. NA played was in common ($4 / \mu_{4}$) time, while Greek NA I Have is in $3 / 4$ time. East Germany dominated freq later. WRTH does not denote break in continuity. NA taped but still unID. (Bailey, Mass.) (Billhow about sending dub of tape? iny format R-tom, cassette-ed) GUATEMALA? TGRS? On $2200 \quad \mathrm{rH}_{\mathrm{Z}} \cdot 1 / 30$ 1234-1242 f/out SS mx, anmts, TCs, vy weak; maybe R. Superior, Escuintla hrd last season. (Hauser, Texas)
GOATEMALA. TGVR. Gene Martin's unID is LV de la Costa Sur, Retalhuleu, hrd well here $1 / 291041$ promoting 1,130 minutes of alegria per day (that's 18 h 50 m , perhaps extended to 18 h 55 m now,hi-gh) $1 D, 1043$ 5-min fast 1 C , overtallative DJ talks through entire cuts. (Hauser, Texas) (Tnx ID Glennl My unID al somed)
GDATEMALA. TGRL, R. Recuerdo, Quetzaltenango on $2341 \mathrm{x}, 1 / 30$ play those marimbas straight anym. (Hauser, Texas) (just can't play those marimbas straight anymore, eh?-ed)
unlD. Probably Int'l Waters; $1 / 4$, 0025 used old Radio Caroline format; EE male anno, rr mx, 0045 ann, spoke of "open windows" f/by 2 singers w/guitar. 0051 band w/flute solo in jazzed-up baroque tune; severe fading at times - seemed to change pwr at 0100. (Bailey, Mass.) (Caroline rptd here in ARC/Sweden-ed) MOROCCO. CaSablanca $B 1 / 40020$ good lvi in AA, typical chanting, then tuned lower to 1186 item. (Bailey, Mass.)
USSR. New DF 105 to Kharkov, Rostov? (Ericson, Sweden as rptd in V22 ARC "IN-EKO")

TICARAGIA. YIXXB, RFS' unID. $1 / 201003$ SS, ranchera mx; IICARAGUA. YIXB, RFS unID. 1008 tall abt terremoto 1013 TC for $6: 14$, "hora oficial de 1008 talk abt terremoto 1013 TC for $6: 14$, "hora oficial de Nicaragua", 1032 TC for $\frac{4}{2}$, ads for Pepsi and Orange Crush distrib, cigarillo jingle, Ron Tropical (an oblique ref to RSS? $5-\mathrm{gh}$), then TC for $5: 35$. Ancr either can't tell time or had too much ron; ID: rYMXB, R. Ondas del Calan, 1210 ond larga, transmitimos desde Juigalpa, Fin Not R. Ondas de Chontalenas as in WRB reprint in DXW fair sig, seemed closer to 1215 than 1214 or 1216. (Hauser, Tex) (Tnx, Glennl I must have mis-IDed YSS relay rptd here, or perfiaps it also exists?-ed)
ANGOLA?? 1/29 0030-0102 carrier cut - carrier only hrd, bearing 102° - a $2-3 \mathrm{~Hz}$ SAH noted and after carrier cut at 0102 a weaker carrier left on freq, too weak to tave bearing. (Ray Moore, Mass.) (Angola entirely possible-let's watch tilis one, ganglwed)
unID. $1 / 18,2210 \mathrm{w} /$ highmpitched woman's voice in unrecognized ang bearing 10-15 average of 25 bearings;fade characteristics similar to Urumehi-1525. (Taylor, HJ)
TMT watrRS R Croline closed down here $12 / 29 / 72$ to move to $1187 \mathrm{KH}_{2}$ (ARC $\mathrm{MN}_{\mathrm{MN}} \mathrm{EN}, 1 / 22 / 73$)
to $1 / 272315 \mathrm{w} / \mathrm{choral} \mathrm{mx}$ revolutionary style, littie PRC. Urumchi $1 / 27$ 2315 w/ choral mx, ovolutionary in 2230 on $1 / 30$, tals in talking, mx in CC, talis IS 2300 , suddenly very strong $2300+$ IS, ID $23001 / 31 ; 1 / 18$ (TS 2300 , SU)
HOIDURAS. On 3075 , R. Comercial $1 / 230025 \mathrm{FMy}$ overmod, ID, phone, jingles at every break; 0229 ID, unhrd on fund. (Hauser, Texas)
*157.6 Ingled aris Bristol; tune-in 0109 EE maie ann
 0121 "Ain't she Sveet" up-tempo w/brass, woodwinds and rhythm
 (one syllable) Bristol - BBC" 0138 alto singer in sad song w/bells, guitar and bass. Report sent. (Bailey, Mass) (Micel-ed) @england fair-good w/ Mor nx, some vocal, some inst, maie ancr NJ)
 GUATEMALA. On 3100, Cadena azul $1 / 291054$ fast-beat mx 1101 net ID, affiliate list, jingle; probable fundamental. (Hauser,TX)
Many thanirs to these supporters! Please don't let dom now! How about some more 6-page IDXDs? You send tem - I'II type 'em.

Fichard Allen, Billings, Olla.; (4) Pioneer SX300T, unampl. 2' loop
 Russ Edmunds, Parsippany, N.J. (5) HQ180, 4' MRC loop, 21 1oop Russ Edmunds, Parsippany, N.J. David F. Gleason, Birminghan, Ala. (7) Glenn Hauser, Von Ormy, Texas (7) HQ160, 560: IW NW/SE Ray Hoore, Walpole, Miss.
(1) Homebrew 9 tubes, $2 \mathrm{FET}, 9$ diodes, 40" loor w/DIGFET preamp., 250' LW HQ200, Sll1
Jim Poterba, Yardley, Pa.
(1) HQ200, S111

PRESSTIME FLASH! In a call to HQ taken by Sam the answering machine earlier today Ron Schatz informs that he has made a positive identification of the Paraguayan on 645 kHz and that it is definitely not R. Caaguazu as previously announced by Geoff Trower and it is also not "Encarnacion" as Schatz has contended to date. For reasons that are not clear he refuses to give us the ID unless we call him back later tonight. Since this will be after presstime, the membership will have to wait until next week to find out. HQ

SKYLINE BLOCKAGE - Sources of Uncertainty in the Calculated

 Angle of Arrival for MW Signal Paths*Gordon P. Nelson
A number of MW DX'ers have prepared horizon blockage maps in an attempt to predict and explain the influence of local terrain on MW DX reception and to account for differences in reception patterns experienced in different locations. ${ }^{1,2}$ The author has done considerable work on this problem - both experimental and theoretical - although with a somewhat different motivation. . .

Many interesting and puzzling problems in MW DX reception might be solved if we only had an accurate method to measure the angle of arrival (above the horizon) of various rare DX signals. At least in principle we could then trace the signal back through the various reflecting layers all the way to the transmitter the information thus gained would be a great help in explaining and predicting frequency signals. The techniques used to measure signal arrival angle on high frequency signals are impractical on the broadcast band because of the impossibly large antenna dimensions required by broadcast band wavelengths. ${ }^{3}$ We had therefore hoped to make use of horizon blockage to provide us with a measure of the signal arrival angle: by moving a receiver closer and closer to a mountain of known height we had hoped to observe a sudden drop in signal strength as the incoming signal was blocked by the mountain. The horizon blockage angle at this point would then give us the arrival angle of the signal (see Figure 1).

experiments: (1) The asses of problems were anticipated and confirmed by later experiments: (1) The geometrical uncertainties in the calculated arrival angles Fresnel diffractiogation modes as described in this article and (2) The effect of Fresnel diffraction on MW signals (discussed in an article elsewhere in DX NEWS) While the former difficulties can be handled fairly well with the limiting ray technique to be discussed, the latter problem-diffraction - proved so intractable we were eventually forced to abandon the project. We strongly suggest that anyone interested in pursuing horizon blockage studies on the broadcast band consider
these problems carefully. these problems carefully.

Any potential usefulness of a horizon blockage map obviously depends greatly upon the accuracy of the calculated signal arrival angles; these same angles are important in auroral blockage studies also. Until someone succeeds in developing an accurate method for measuring arrival angles for MW signals, this vital factor The following calated on the basis of assumed layer heights and propagation modes. The following complications arise in connection with the calculation of $M W$ signal 1. Variability of effective reflection height.

Use of a single standard "textbook" value for the assumed signal reflection height
is unrealistic and readily leads to highly misleading results. The author has examined quite a number of ionograms ${ }^{5}$ showing measured reflection heights of MW signals and has observed actual $F 2$ layer reflections ranging from a low of about 260 kilometers to a high of about 400 kilometers. Thus a more realistic value of $F 2$ reflection height is 330 km with a possible variation of $\pm 70 \mathrm{~km}$. This normal variation in reflection height can significantly affect calculations of both arrival angle and maximum skip distance. Consider the 3212 mile path from Boston to Lisbon. If we assume the lowest likely value of F2 reflection height 260 km - the first possible $F 2$ path will consist of 3 skips and the arrival angle will be 13.2°. If instead we assume reflections from a height of 330 km , the path still requires 3 F 2 skips but the arrival angle is now 17.2°. If we admit the possibility of reflections from as high as 400 kilometers, the corresponding angle for a 3 skip path is 21°. But if the $F 2$ reflection height is as high as 400 km , the signal can also make it in only two skips - with an arrival angle of 10.5°.
The importance of taking into account the possible extremes of reflection height variation should now be obvious: not only will the calculated angles of expected signal arrival be affected, but normal height fluctuations may permit propagation by other modes (in this case the two F2 skip path possible when the F2 is near the top of its range).

Propagation via the nighttime E layers (see next section) is also subject to variation in effective reflection height. Based upon ionogram measurements, we suggest a realistic value of E layer reflection height of 105 km , with a possible variation of $\pm 10 \mathrm{~km}$.

Therefore instead of a single calculation with one assumed layer height, the computation should be done a number of times: once assuming the lower limit of reflection height and once assuming the highest for each reflection on the pa.th. instead of a single value of arrival angle, this approach gives several possible values - each of which is physically realizable on the basis of known variation in layer height. The highest and lowest of these values are the limiting rays - the extreme values we might expect given all possible combinations of possible layer heights.
In our work on auroral screening, we commonly use the lowest limiting ray angle to decide whether a particular signal can just barely skim in under the auroral absorption layer; for horizon blockage studies one would presumably use the highest limiting ray to decide whether or not the horizon would be blocked.

2. The " M " propagation modes.

For our purposes, at least two different types of E region reflecting layers may exist at night on the MW band. Propagation via the E layer is quite common at night on MW frequencies and must be taken into account when possible propagation modes are being considered.
One type is the so-called "normal night E layer". Highly variable and of unknown origin, the night E layer behaves in a simple manner for $M W$ signals: as long as the signal frequency is below the critical frequency of the layer, the E layer behaves like a perfect mirror and reflects all signals back down to Earth. Above the critical frequency, though, the layer is perfectly transparent and signals will pass through it as if it weren'1 present and continue up to the $F 2$ layer for reflection. The critical frequency of the night E often falls somewhere within the broadcast band and is likely to be responsible for much of the variation in reception on

12 different frequencies on any particular night. The critical frequency of the layer varies considerably with location and time. This type of layer is primarily an auroral zone structure and is most important in higher latitudes; during geomag netic/auroral disturbances, however, it extends southward over North America and Europe even further than the auroral absorption zone does. ${ }^{8,9}$
The second common source of night E reflection is the sporadic E layer. While DX'ers normally think of sporadic E as a high frequency phenomenon important on for VHF DX, it is extremely common on the MW band 4 is one of the most important factors controlling MW DX reception. As its name suggests, the sporadic E laye is sporadic, highly unpredictable, and varies with time and location. ${ }^{10}$ The sporad E layer affects MW signals at night in a somewhat different manner than the "normal" night E does. Below one particular frequency, called the sporadic E blanketing frequency, all signals are completely reflected back to the ground an cannot reach the F2 region - that is, they are blanketed by the sporadic E. On frequencies above the blanketing frequency, the sporadic E layer is only partially reflecting - part of the signal is reflected back to the ground and part passes through to reach the F2 layer. As the signal frequency is increased above the blanketing frequency, an increasingly large fraction of the signal passes through the layer until the sporadic E critical frequency is reached, above which the layer becomes perfectly transparent. The primary differences inbehavior between the normal night E and the sporadic E are twofold: sporadic E exhibits a "translucent quality for signals between the blanketing frequency and the critical frequency, and the sporadic E is "patchier" and more subject to rapid changes. Both the blanketing and critical frequencies may fall in the middle of the broadcast band on many nights and this probably accounts for much of the hour-to-hour and night to-night variation in reception conditions. Both the geographical location and frequency behavior of night sporadic E may change rapidly with time (as may reception conditions on the broadcast band!).

Auroral activity greatly increases the probability of sporadic E formation, particularly in the higher latitudes. Auroral-induced sporadic E is believed to be responsible for the rare but highly conspicuous receptions of only one or two stations in high latitude areas during high auroral activity when the rest of the band is entirely quiet due to absorption. ${ }^{8}$

The presence of these common nighttime structures in the E region makes possible MW propagation by " $\mathrm{M}^{\prime \prime}$ modes as are shown in the following figures. Instead of returning to the ground, a MW signal may be reflected back upward from the night E layer for another F2 reflection. Because of of the geographical variability of the night E layer, one part of the path may have a significant amount of E while another part may have none. In addition to producing M-type reflections, night E reflection can prevent a down-coming signal from reaching the receiver site or prevent a sky wave signal from reaching the F2 region - this latter is called E blanketing.

After 10 years of active international DX'ing with the best equipment available and much study of ionospheric research data, the author believes that many very long distance exceptional catches such as TA's on the West Coast and South and East Africans on the East Coast of North America take place by means of intermediate M-type reflections back and forth between the E and F2 regions without the signal being subjected to the scattering and attenuation resulting from

THE TWO BASIC TYPES OF NIGHT E LAYERS PRODUCING MW REFLECTION
THE "NORMAL" NIGHT E:

If the signal frequency is
below the critical frequency for the layer, total reflection takes place.

For signals above the critical frequency, the night E layer is perfectly transparent; MW signals will pass through to the F2 layer.

SPORADIC E LAYERS:

Signals below the sporadic E blanketing frequency are reflected completely.

Signals on frequencies above the blanketing frequency but below the critical frequency are partially reflected and partially transmitted through to the F2 layer.

Signals on frequencies above the sporadic E. critical frequency can pass through unaffected. The night E layer exists primarily in moderate-to-high latitudes and behaves much like the classical daytime E layer. and is relatively uniform on any particurate quite patchy and cloud-like; it changes from minute hour. Much of the short-term rapid drifts with speeds as great as 250 miles and hour-to-hour) is probably variation in MW propagation (minute-to-minute and hencies such as the sporadic E the result of sporadic E. The important layer frequencies aly fall in the middle of blanketing frequency, and the critical frequencies conghe frequency selective.
the band thus making many of these night E effects high

14
reflection from the ground. The path losses associated with intra-ionospheric reflections back and forth between the E and F2 can be considerably less than for ground or sea reflections. In all likelihood, the presence or absence of suitable variation observed in reception outside the the path is responsible for much of th Pacific reception, for example. outside the auroral region - African and TransPacific reception, for example.

Once we allow the possibility of M-type intra-ionospheric reflections, the problem of calculating the expected signal arrival angle becomes even worse. At each point where the signal path could pass through the E region, we have to admit the possibility of an effective E reflection there. In the case of our Boston to Lisbon path, for example, we have to enlarge our catalog of likely possible paths to include several likely M-type paths as shown in the figures

For each possible path mode we consider likely, we must calculate the final signal arrival angle. Since the reflection height can vary at each place of reflection within the limits discussed earlier, we must calculate all possible arrival angles resulting from all likely modes, with both high and low values of hight at each reflection point. This means several dozen calculations for each distant station of interest but, since we cannot identify the reflection layers or heights in advance, we must consider each one as a very real possibility to suppo propagation. As before, each mode and height set will produce an arrival angle; of all the angles so produced, there will be a highest one and a lowest one - the limiting rayso If the researcher is to be certain that his arrival angle calculation are physically meaningful, he must evaluate all possible likely paths and layer heights. Simple models are fine for getting a feel for what's going on but they seldom describe or predict rare and unusual receptions!

High order modes may provide skywave propagation by means of a relatively large number of skips with large angles. Each signal passage through the lower regions of the ionosphere will add significant absorption, however, and the greater the number of skips the weaker the signal will be in general. High order modes cannot be ruled out completely in MW DX reception until more data becomes available however. The Earth is actually round, of course.

Chordal propagation modes are well known on higher frequencies and may prove to be quite common on the broadcast band. If the ionospheric reflection layer is tilted instead of parallel to the ground below, the signal may not return to the ground and may instead continue high above the surface for additional reflections. The signal will not return to the ground until another ionospheric tilt is encountered. Tilts are most common at sunrise and sunset.

Transauroral propagation of MW signals is a very complex subject. Reception of the Chinese Sinkiang transmitter on 1525 kHz (8 megawatt ERP in this direction!) has been definitely noted on the East Coast of North America during periods of auroral activity high enough to provide complete absorption for all other TA signals. The most likely path for these receptions involves the chordal mode: these receptions take place near the time of dusk at the receiver site and dawn in China - the conditions most likely to produce the necessary complementary tilt angles for the chordal mode. A second class of possible paths exists by virtue of the absorptionfree polar cap region; during all types of auroral disturbances excepting those of the "PCA" variety there is a large circular region centered on the magnetic pole devoid of auroral absorption. As shown above, paths which skip over the auroral absorption and through the polar cap area may possibly exist. (Not to scale)

3. High order modes.

Each reflection and each passage through the D and E regions will weaken a MW signal. In general, the fewer the total number of reflections, the stronger the signal will be. Propagation through the base of the E layer may produce enhance absorption, as will reflection from the ground. High order propagation modes such as 7 or 8 F2 skips over a short distance - have been observed on high frequencies. ${ }^{17}$ There is no data for the broadcast band, however, on this subject, and it may prove more important than we now realize. If and when we are able to measure MW signal arrival angles, the question of high order multiple reflections at steep angles will be resolved very quickly. While such reception modes probably produce very weak signals on the MW band because of the total accumulated absorption, the possibility of their presence should not be rejected out of hand until more data becomes available.
4. The chordal mode.

The commonly-used curves and equations for skip distance and ar rival angle all contain a very important implicit assumption that is very rarely made clear. This critical assumption is that where the signal reflection takes place, the ionospheric reflection layer is parallel to the ground beneath it. Ordinarily this is a very good assumption but it can be demonstrably incorrect in two special cases: around the sunrise and sunset shadow boundaries. Approaching dawn and dusk frequently produce a slight tilting in the ionosphere and this can produce a very interesting type of propagation called the chordal mode. ${ }^{13,14}$ If the F2 reflection region is tilted slightly in the proper direction by only a few degrees relative to the ground below, a MW signal on a low angle path may not return to ground and may instead continue on for additional E and F2 reflections. This type of propagation is well known on higher frequencies and may be more common on the $B C B$ than we now suspect. There are several interesting aspects to this mode. It may, for example, permit several F2 skip reflections without the signal ever having to experience a ground reflection or a passage through the absorption-laden D-E region. In principle, at least, it may even skim above auroral absorption.

Once a signal gets twisted out of its normal modes by reflection from a tilted layer it will not return to the ground until it experiences a second tilted layer somewhere further down the path. The most likely place for such a second tilt to occur is in the area of the sunset shadow boundary far to the west. ${ }^{11,18}$ One might then expect to possibly experience unusually strong MW DX reception over very long signal paths featuring dawn on one end and dusk on the other. Such reception definitely occur on a regular basis between New Zealand and Western Europe DX receptions over paths substantially in excess of half a great circle path are quite common there and may well be the result of chordal mode propagation. Clos to home, the very anomalous and intriguing receptions of Sinkiang -1525 made during periods of high auroral activity by the author and several other members this season when all other Transatlantics were inaudible may be the result of this rare propagation mode - although several other explanations are also possible. ${ }^{16}$

CONCLUSIONS. Whatever the application, prediction of the arrival angle of a MW DX signal is not a simple matter. A variety of different propagation modes exist for each signal path, and many involve intermediate intra-ionospheric reflections between the E and F2 layers. For each possible propagation mode, there remains an additional uncertainty in the calculated arrival angle due to the
normal fluctuations in the height of the reflection layers。 Given sufficient computer power, however, it's relatively simple to solve the arrival angle equations for all possible combinations of likely propagation modes and layer heights in order to arrive at the highest and lowest likely arrival angles. These are the so-called limiting rays. In addition, a number of more obscure propagation modes may be at work on the MW band: higher order modes consisting of relatively many reflections at steep angles, and the chordal mode which may permit unusual receptions over paths which feature dusk at one end and dawn on the other. Much of the variation experienced on the MW band - be it by frequency, geographical area, or time - in DX reception is due to sporadic E. While not commonly thought of as a MW effect, sporadic E is likely to be responsible for much of the night-to-night variability in low-latitude MW DX reception.

NOTES AND REFERENCES

1. "Post mortem on Ringwood - '70", Chas. Rossier, DX NEWS, 10/10/70.
2. "Skyline blockage", Fr. Jack Pejza, DX NEWS, 2/14/73.
3. "Arrival angle of HF waves", A. Wilkins and C. Minnis, Wireless Engineer February 1956.
4. "Skyline blockage of MW DX signals - can Fresnel diffraction be ignored? ", G. Nelson, DX NEWS, $2 / 28 / 73$.
5. The ionogram is the filmed record from the basic tool of ionospheric research, the ionospheric sounder. In this technique a ground-based research station transmits a pulse of radio energy beamed directly overhead and measures the time for the echo to return - thus providing a measure of the height of the reflecting layer. The height of the reflection is displayed on an oscilloscope and the the frequency is changed slightly and the process repeated - the result being a filmed record of reflection height versus signal frequency. Most of the se sounder operate over a frequency range of about 3 to 30 mHz ; operation through the MW band is very difficult beause of the interference to and from commercial stations, and the difficulty of obtaining a proper antenna match. As a consequence, very
few of the several million ionograms on file at the World Data Center A (Boulder) cover the broadcast band; those that do are invaluable for understanding $B C B D X$. Interpretation of ionograms is quite involved; a good introduction can be found in "Ionospheric radio propagation", NBS Monograph \#80, 1965, section 3.2.2.1.
6. Some readily available ionograms showing these variations in typical layer heights will be found in "Some results of sweep frequency investigations in the low frequency band", Watts and Brown, Journal of Geophysical Research, Vol. 59, p. 71, 1954.
7. These high and low limits are not to be taken as absolute; under unusual conditions even more atypical values may occur. See preceeding reference.
8. "Geographical patterns in BCB reception during periods of high auroral activity", G. Nelson, DX NEWS, 8/21/71.
9. See USRI "Handbook of ionogram interpretation", Piggott and Rawer, Elsevier, 1961.
10. "Solar cycle variation of blanketing sporadic E", Reddy and Matsushita, Journal of Geophysical Research, $3 / 1 / 68$.
11. "Effects of polarization on a medium-frequency sky-wave signal, including the case of multihop paths", Phillips, et al., Proceedings of the IEE, Vol. 112, January 1965.
12. If there was ever an ideal job for a computer, working out all of the possible angles to determine the limiting rays may be it. . . No humans need apply.
13. "Long distance one-hop ionospheric radio propagation", Muldrew and Maliphant, Journal of Geophysical Research, May 1962.
14. "Lateral deviation of radio waves reflected at the ionosphere", W. Ross, Dept. Scrientific and Industrial Research, Special Report \#19, London, 1949。
15. "The influence of chordal paths on signals propagating to the near antipode of an HF radio transmitter", G。Bold, IEEE Trans. Antennas and Propagation, Nov. 1972.
16. While chordal modes are probably the most likely origin of the anomalous Sinkiang -1525 receptions, several other possible explanations are also physically realizable. Since the Polar Cap region inside the auroral oval is relatively free of significant absorption during all but disturbances of the "PCA" variety, multiskip propagation through this clear area may be possible for certain highly limited combinations of distance and orientation.
17. "Propagation of HF radio waves to long distances", F. Kift, Proceedings of the IEE, 1960, p. 127.
18. "Effective tilts of the ionosphere at places about 1000 km apart", H. Whale, Proceedings of the Physical Society of London, Vol. 69, 3B, 1955.
19. While we've consistently talked about the "reflection" of MW signals from the ionosphere, the actual mechanism is more similar to refraction. The only full and complete description of what happens to a MW signal in the ionosphere is given by a full wave solution to the magnetoionic equations. See "Magnetoionic theory and its applications to the ionosphere", J.A. Ratcliffe, Cambridge University Press, 1962.
20. M-type propagation modes are relatively difficult to solve for arrival angle. The path must be broken up into a number of segments each involving a trigonometic function of the arrival angle; the sum of the terms equals the distance between the transmitter and receiver and this type of equation can only be solved with the approximation techniques suitable to computers.

Continued from page $35 \ldots$

occasionally produce what are at least theoretically stable paths in and near the oval region under conditions of moderate auroral disturbance. (h) Chordal modes and those involving m-type intra-ionospheric reflections between the F2 and E region structures commonly found in auroral areas are perfectly possible at leas in theory for certain physically realizable precipitation energy spectra. Field aligned horizontal electron density gradients in the region of the auroral oval can also produce slight but measurable tilts of the sort conducive to chordal modes. (i) The possibility that magnetoionic effects may come into play under rare conditions in the context of auroral disturbances cannot be discounted out-of-hand; in particular the possibility of mode coupling to permit penetration of E region structures cannot be ignored. **** These are just a few of the complexities which must be considered in connection with MW auroral effects. We have a great deal of data on many of these interesting topics plus some preliminary solutions to some of these propagation problems; this information will continue to appear here in DX NEWS.
(Gordon Nelson)

MIDDAY SKYWAVE MW DX IN EUROPE - 1972

* Bengt Ericson

After reading "The Limits of Daytime DX" I spent some hours around noon on December 10 th to see how far we could hear European stations from our location here in Southern Sweden. (Results are plotted on the accompanying map - GPN)

Midday DX is my great new interest up here. I have logged several new European stations then and details willbbe published in MV -EKO and DX NEWS. I check the daytime conditions every day on my car radio when driving home (3 km) for Iunch. If Luxembourgh-1439, Saar-1421, BBC-1457 and Radio Nordsee-1367 are booming in then I know that I have to check carefully and take preparations for a long lunch!

Last midsummer I heard the 10 kw Yugoslav station at Kragujevec near Belgrade on 962 kHz at 1815 local time, when the sun was 60° in the sky here and 45° in Yugoslavia. I think there is a lot of research to be done in this field and will report all of our discoveries to DX NEWS.

My FET altazimuth loop is really great. Thomas Nilsson, an Arctic member and a radio expert (one of the best we have), measured the output of the loop and found the value better than a Beverage-antenna 1 or 2 wavelenghs long. With my loop I nulled SWF on 1016 and got ONLY signal from Venice and a new Hungarian/CSSR -station. The combination of the gain from the FET loop, plus the tilt-nulling and midday DX is giving us a new dimension in MW DX'ing over here.

I have also tested a Space Magnet ferriteloop SM-2 Delux Model together with a modified altazimuth loop from DX NEWS plans - 40×40 inches with 7 windings. You can't even compare them. The nulling and signal strength of the FET loop is in a class by itself - much, much better. On the SM-2 you can't get a deep enough null. This ferrite loop is nothing for us here in Europe.
**
(Some comments and observations from GPN...)
We've plotted all of Bengt's midday DX catches on the following map of Europe; most of the stations he's considered to be midday DX catches are the relatively low-powered stations in the 1100 mile range. The agreement of his observations on the maximum range of midday reception with ours is so good that it's probably fortuituous... It is perhaps significant to note that the European DX'ers have substantially more powerful stations to work with during the midday period than we have here in North America; while we're limited to 50,000 watt Midwest stations on the fringe of the apparent midday skip limit, the Swedes have such powerhouses as the megawatt Libyan on 1124 etc. Yet despite the vastly greater power of the European and North African stations, the evidence to date suggests that midday reception is restricted to the same 1100 mile limit that we observe here. As we have suggested in our recent article on midday DX , this limit is determined by the 60 kilometer effective upper limit for the midday density-gradient partial reflections.

The furthest limit of Bengt's midday receptions falls along the same radius we observe here with the possible exception of one reception - the France Inter Varietees station on 1493 kHz . Several outlets on the channel are in parallel and he didn't get a positive ID on his logging. The likely candidates are Bayonne with 4 kw (substantially beyond the 1100 mile ring), and Brest with 1 kw (well within the range); the remaining stations on the channel are Mighty 50 watt Giants within the ring. Based on our observations
outlet rather than Bayonne.

We look forward to receiving more reports from Europe on midday DX. The European DX'ers are in a good position to give us this data: they've got the most powerful skywaves in the world, they're mostly in the same geomagnetic/auroral region as we are here, and their higher latitudes will give somewhat lower quantitites of D region absorption.

SKYLINE BLOCKAGE

Father Jack Pejza

One problem which sometimes faces DXers is that of signal blockage. High mountains or tall buildings can block signal paths, thus making DXing in certain directions very difficult. I faced this problem when I was DXing from Ojai, California, at a site about 700 feet above sea level, but in a valley surrounded by mountains up to 6000 feet high less than ten miles away. Fortunately it was a quiet location, and weaker signals could be heard there than in my present location in San Diego.

In this article I will show how you can figure out why particular stations which everyone else is hearing might not be heard by you, or why you can hear some station which you don't think you should.

In general, radio signals leave a tramsmitter at an angle close to the ground in order to travel as far as possible. The closer a signal path is to the vertical, the further it has to travel into the ionospheric layer in order to be refracted back to earth. Since it must travel further, it will also be absorbed more. On the other hand, a wave leaving the transmitter at a low angle will barely enter the ionospheric layer before it is reiracted back to earth. (Figure 1)

If the earth were an infinitely long flat surface with a flat ionosphere above it, a wave leaving the ground would bounce back and forth between ionosphere and ground. A wave at a very small angle would travel an extremely long distance. Each reflection of the wave from the ground would cause a certain amount of energy to be lost; the same would be true for each refraction from the ionosphere. Consequently, a signal gets weaker as it travels further and makes more bounces. if two possible paths exist for a signal, the one which has the smaller number of skips ordinarily will retain more of its energy and bring a stronger signal to the receiver. (Figure 2)

On the curved earth, skip distances increase also as the angle of the signal decreases. However, with a round earth, there is a maximum skip distance. When the angle of the wave is 0°, the signal comes in right along the horizon. (Figure 3a). Most stations, bowever, do not lie at exactly the proper distance for such an occurrence Instead, they are at some other distance, and the signal arrives at the receiver at some other angle (Figure 3 b). From geometric considerations, the following relationship can be derived between the angle at the center of the earth (which is related to the distance along the earth's surface), the height of the ionospheric layer, and the angle at which the signal arrives at the receiver.

$$
\alpha=\sin ^{-1}\left(\frac{(H+R) \cos \theta-R}{\sqrt{2 R(R+H)(1-\cos \theta}}\right)
$$

where R is the radius of the earth, θ is the angle at the center of the earth, and H is the height of the layer.

The following algorithm can be used to figure out at what angle a signal will arrive at the receiver site. A table of sines and cosines of angles is needed, as is some means of finding out square roots (a slide rule will do).
D = Distance in statute miles between transmitter and receiver.
$N=2$ if D is less than 2400 miles
4 if D is between 2400 and 4800 miles
5 if D is between 4800 and 7200 miles
8 if D is between 7200 and 9600 miles
$\mathrm{VI}=\mathrm{D} / \mathrm{N}$
$\mathrm{V} 2=\mathrm{V} 1 \times 0.0144$
$\mathrm{V}_{3}=\cos \mathrm{V}_{2}$
$V_{4}=1-V_{3}$
$\mathrm{V} 5=6680 \times \mathrm{V} 3$
$V 6=V 5-6380$
$V 7=0.85 \times 10^{8} \times \mathrm{V} 4$
$V 8=/ V 7$
$v 9=V 6 / \mathrm{V} 8$
$\alpha=\sin ^{-1}$ (V9); i.e., the angle whose sine is V 9
The above algorithm applies to F-skip. For E-skip, the same procedure is used, with the following substitutions:
$\mathrm{N}=2$ if D is less than 1380 miles
4 if D is between 1380 and 2760 miles
6 if D is between 2760 and 4140 miles
$v 5=6480 \times v 3$
v8 $-0.825 \times 10^{8} \times V 4$
In these calculations, it is presumed that the F layer is at a height of 300 kilo meters above the surface, and the E-layer at 100 kilometers. These values are not quite correct for every path. As mentioned above, a wave travelling at a steeper angle will penetrate further into the layer. However, for simplicity, the values above are presumed.

Examples: San Diego to Mexico City

1-F skip	2-E skip
$D=1435$ miles	$D=1435$ miles
N $=2$	N $=4$
$V 1=718$	V1 $=359$
$V 2=10.3^{\circ}$	V2 $=5.18^{\circ}$
$V 3=.9839$	$V 3=.9959$
$V 4=.0161$	$V 4=.0041$
$V 5=6560$	$V 5=6450$
$V 6=180$	$V 6=70$
$V 7=1.37 \times 10^{6}$	$V 7=33.8 \times 10^{4}$
$V 8=1.17 \times 10^{3}$	$V 8=5.81 \times 10^{2}$
$V 9=.156$	$V 9=.124$
$\alpha=9^{\circ}$	$\alpha=7^{\circ} 7^{\circ}$

In the example, the E-layer wave arrives at a smaller angle than the F layer. This will not always be the case. It is also be possible to figure out in many cases, other modes which might be operating, such as $2-F$ or $3-E$. Figure 4 is a chart showing possible propagation modes existing at different distances.

Now to get down to the problem at hand. A mountain on the horizon will block out waves approaching at a low angle if it is tall enough, or close enough, to form an angle larger than that of the approaching wave. For nearby hills, a simple approxi mation that the earth is flat can be used. (Figure 5). In this case, $\tan \beta=H / D$, where H is the height of the hill and D is the distance away from you. Both H and D must be expressed in the same units--feet, yards, miles, etc.

For hills or mountains which are farther away, it is necessary to take the curvature of the earth into consideration. In this case, the bottom of the mountain will be hidden by the horizon, and the mountain will not subtend the same angle as it would if it were up close. To figure out the apparent height of the mountain, relationship Prom Bouditch's American Practical Navigator, relating the height of an observer above sea level and the distance to the horizon, will be used. In Figure 6, E represents your elevation above sea level; H represents the height of the mountain above sea level, and D is the distance in miles between you and the mountain.

The apparent height of the mountain will be H - H2, where H2 is the part of the mountain hiddent by the horizon. Once the apparent height H3 is figured out, then angle of blockage can be approximated by the method used above.
The following algorithm can be used to figure out the angle of blockage. A
trig table of tangents of angles is needed.

$\mathrm{E} \quad=$ Your elevation above sea level in feet

H Height of the mountain above sea level, in feet
= Distance to mountain in miles

1. Look up E in Table 1, call the corresponding value of d Dl
2. Compare D and $D 1$. If D is larger than $D 1$, then go to step 7. If D is smaller than Dl, go on to step 3
3. $\mathrm{D} 3=\mathrm{d} \times 5280$
4. $\mathrm{H} 3=\mathrm{H}-\mathrm{E}$
5. $T=H 3 / D 3$
6. Look up T in tangent table; find corresponding value of β
7. D2 = D - D1
8. Look up D2 in Table 1, find corresponding value of H2
9. $D 3=D \times 528$
10. $\mathrm{T}=\mathrm{D} \times 5$
11. $T=H 3 / D 3$
12. Same as step 6 .

Once you have figured out the angles that are blocked by your local terrain and the angles of the incoming signals, it is easy to prepare a chart showing your horizon and the location of imcoring signals in relationship to it. Figure 7 is a chart which I recently prepared for my previous location in Ojai. (My horizon is pretty clear here in San Diego, so only signals coming in at the very lowest angles would be blocked in a couple directions.)

Notice that in several cases (Emerald, Australia, for instance), the signal arriving from the third F-layer skip is blocked, but the signal arriving from the fourth F-layer comes in over the local terrain. That means that I could pick up the signal, but much weaker than someone sitting on a hilltop overlooking the Pacific. Fourth skip signals from Europe would have arrived above the mountains, but probably would have been so weakened by that extra skip in the auroral zone that they would not have gotten above the background noise. In fact, the only TA noted in 0jai was BBC-1214. Either a fourth skip did get through on that occasion, or ray calculations of the angle of blockage and/or $3 F$ skip angle are slightly inaccurate.

As can be noted from the chart, the only really clear portion of the horizon was to the Southwest. Experience bears this out. In the two years or so I DXed in Ojai, five or six Zedders were definitely logged and verified, whereas almost no Asiatic stations were even tentatively heard.

Havana poses an interesting problem. As can be seen, the only really clear path is by means of 3 rd skip E-layer. Someone better versed in propagation might be able to say whether such a mode is gossible, or whether it is more likely that second skip F-layer reception, at about 12 above the horizon, would be more probable.

I hope that these charts and algorithms will interest a few into doing some research into their blockage problems. If so, I hope to see the results published in the bulletins so that others can learn from our common problems.

FIC. 1 When a wave falls obliquety on an atmosphere contuining cherged perricles whose concontration increasses upwerclas the top (A) of the wave and is reflectied. A wave ariving more steeply muas travel higher to find
onough charged particles to reflect it

TABLE II

TABLE I

Distance to horizon for various

 heights| Height,
 leet | Distance,
 miles | Height,
 feet | Distance,
 miles |
| ---: | :--- | :--- | :---: |
| 50 | 9.3 | 2400 | 64.7 |
| 100 | 13.2 | 2500 | 66.0 |
| 150 | 16.2 | 2600 | 67.3 |
| 200 | 18.7 | 2700 | 68.6 |
| 250 | 20.9 | 2800 | 69.8 |
| 300 | 19.9 | 2900 | 71.1 |
| 350 | 24.7 | 3000 | 72.3 |
| 400 | 26.4 | 3100 | 73.5 |
| 450 | 28.0 | 3200 | 74.7 |
| 500 | 29.5 | 3300 | 75.9 |
| 550 | 31.0 | 3400 | 77.0 |
| 600 | 32.3 | 3500 | 78.1 |
| 650 | 33.6 | 3600 | 79.2 |
| 700 | 34.9 | 3700 | 80.3 |
| 750 | 36.2 | 3800 | 81.4 |
| 800 | 37.3 | 3900 | 82.4 |
| 850 | 38.5 | 4000 | 83.5 |
| 900 | 39.6 | 4100 | 84.5 |
| 950 | 40.7 | 4200 | 85.6 |
| 1000 | 41.7 | 4300 | 86.6 |
| 1100 | 43.8 | 4400 | 87.6 |
| 1200 | 45.6 | 4500 | 88.5 |
| 1300 | 47.6 | 4600 | 89.5 |
| 1400 | 49.4 | 4700 | 90.5 |
| 1500 | 51.1 | 4800 | 91.4 |
| 1600 | 52.8 | 4900 | 92.4 |
| 1700 | 54.4 | 5000 | 93.3 |
| 1800 | 56.0 | 6000 | 102.2 |
| 1900 | 57.5 | 7000 | 110.5 |
| 2000 | 59.0 | 8000 | 118.1 |
| 2100 | 60.51 | 9000 | 125.2 |
| 2200 | 61.9 | 10000 | 132.0 |
| 2300 | 63.3 | | |
| | | | |
| | | | |
| | | | |

$\left.H 3=H \frac{(D}{(1.32}-\sqrt{H 1}\right)^{2}$
$\beta=\tan ^{-1}\left(\frac{H 3}{D}\right)$

For approximation with plat earth
$\beta=\tan ^{-1} \frac{\mathrm{H} 3}{\mathrm{D}}$
For curved earth,
H3 $=\mathrm{H}-\mathrm{H} 2$
$D 2=D-D I$
$D 1-1.32 \sqrt{\mathrm{Hl}}$, where D is in miles and $H 1$ is in feet
$\mathrm{D} 2=1.32 \sqrt{\mathrm{H} 2}$
$\mathrm{H} 2=\left(\frac{\mathrm{D} 2}{1.32}\right)^{2}$
$\mathrm{H} 3=\mathrm{H}-\left(\frac{\mathrm{D} 2}{1.32}\right)^{2}$
$H 3=H-\left(\frac{D-D I}{1.32}\right)^{2}$
 स2
\square

aliforrain, Ojai California

Bearing Height, degrees feet	Distance, miles		
0	3800	4.8	7°
22.5	5200	7	$6^{\circ}{ }^{\prime} 7^{\prime}$
45	5200	8.5	$5^{\circ} 43^{\prime}$
67.5	6000	10	$5^{\circ} 43^{\prime}$
80	4840	15	3°
90	1700	2.5	$4^{\circ}{ }^{\circ} 20^{\prime}$
100	1000	1.8	$1^{\circ} 50^{\prime}$
117.5	2725	4	$5^{\circ} 23^{\prime}$
135	2500	3.25	6°
152.5	2000	2	7°
180	2000	2.5	5°
202.5	1200	3	$1^{\circ} 0^{\prime}$
225	850	0.7	$2^{\circ} 21^{\prime}$
247.5	1800	7.5	$1^{\circ} 37^{\prime}$
270	2200	9	$1^{\circ} 50^{\prime}$
292.5	4400	7.3	$5^{\circ} 30^{\prime}$
315	3000	5	5°
337.5	3600	7	$4^{\circ} 30^{\prime}$

Derivation of formula used for figuring out angle of arrival of signals
$R=$ radius of earth R to reach tangent line AJ
$h^{\prime}=$ apparent height
$\theta=$ angle at center of earth
$D=$ distance from transmitter T to receiver A

From law of sines，$\frac{L}{\sin \beta}=\frac{h}{\sin \alpha}$ ，
$\sin \alpha=$ \qquad （Equation 1）
－－－－－
$\theta($ in radians $)=\frac{D}{2 R}$

$$
\beta=90+\theta
$$

$\sin \beta=\cos \theta \quad 1$
$h=H-h^{\prime}$
$\cos \theta=\frac{R}{R+h^{\prime}}$
$h^{\prime}=\frac{R}{\cos \theta}-R$
$h=H+R-\frac{R}{\cos \theta}$（Equation 3）

$$
L^{2}=R^{2}+(R+H)^{2}-2 R(R+H) \cos \theta
$$

$$
\left.L^{2}=2 R(R+H)(1-\operatorname{Cos} \theta) \text {. (Equation } 4\right)
$$

Substituting Equations 2， 3 and 4 into Equation 1，we get

$$
\alpha=\sin ^{-1}\left(\frac{(H+R-R / \cos \theta) \cos \theta}{\sqrt{2 \pi(R+\pi)(1-\cos \theta)}}\right)=\sin ^{-1}\left(\frac{(H+R) \cos \theta-R}{\sqrt{2 R(R+H)(1-\cos \theta)}}\right)
$$

EDITAR：
 P．J．elmunts bex 916
 wiyne．1．J． 1477
 （201） 335 － 6387

Greetings again，folk．The past two weeks have featured extremely strange cx here in North Jersey，and for more on that，there＇ll be a special report by PT \＆yours truly after the regularness of the column．．．．

changes

+1140 WCJW－NY（Warsaw）CP is on（IRCA）
+1190 KEX－OR NET：A1
+1240 KWJB－AZ CP is on
+1310 WHER－AL NET：M
+1450 KOKO－MO NET：M
＋ 1510 WKAO－FL NET：M（CP，not yet on as far as we know）

P／C＇s

JANJARY：3rd MM：KXEO－1340，WDIC－1430，KXLR－1150；3rd TU：WGTN－1400，WHOL－1600， WEHH－1590，WVNA－1590；3rd FM：WCDL－1440，WFOY－1240，WMNS－1360，WBBK－ 1260；4th TU：WSGO－1440；th TH：WDWS－1400，WHIY－1530，WTCB－990；Lth FM：KGVL－1400，KSIW－1450，KPOS－1370；亿化爵 SA：KBIZ－1240，WPTN－1550； LAST MM：WCBG－1590．

THE C．R．T．C．has approved a new AM net，Le Reseau Telemedia，consisting of stations CKAC－730，CHLN－550，CHLT－630，CKCH－970，All P．Q．．

sunset evening

KWKA－NM Copied 1855－1900 1／21，good at first，lost sig 1900，but no pattern switch involved．Called，pattern is along a line 107° so is not only ha（090））me to hear， DXers．Sked Very strong，mixing w／WGY，w／spots for Murphreesboro area
WKKO－FL S／off annet suaddenly atop channel L\＆C w／no SSB 1746 1／29（ RjE ）
860 WKKO－FL
WSWN－FL S／off 1744 up o／noise，garble，etc． $1 / 25$（dm） 1746 1／29（RjE）
WCOR－TN Atop channel w／promo for 97.3 FM ，several Ids to s／off 1800 1／29（RJE）
WCRY－GA Hrd w／s／off w／vocal SSB u／WGOK，etc．， 1743 1／30（RjE）
WCRY－GA Hrd w／s／off W／Vocal SSB u／WGOK，etc．， 1743 1／30（RjE）
WGOK－AL Hrd w／soul mx，promo，ad 1748．Later weak ID ending mx 1804 $1 / 30$（ RjE ）
WATV－AL Hrd ending CBS nx into local nx 1755，w／ID 1／30（RjE）
WKAJ－NY A most－wanted hrd w／SID in miv pgm u／WFLN $17242 / 1$（RJE）
unID Hrd w／CBS $n x \operatorname{logo} 1817$ 1／30，w／annct \＆ID phonetically eq． to WNOK，announcing some sort of annual social function co－ sponsored by stn，then another CBS logo 1818．WGOR \＆WATV al－
ready off，no W－calls listed on then Help？？（RJE）
980 WONE－OH Vy strang atop usually dominant WILK－WTRY－WRC w／c\＆ow and many Vy strong atop usually dominant WILK－WTRY－WRC w／c\＆ow and ma
area spots，new here $1715 \mathrm{~T} / 28$（JMPl＊＊You don＇t hear＇em
on \mathbb{N} NSP ？？？？－RjE
1050 KFMJTOK
1070 WAPI－AL S／off copied 1829 1／17．Should be easy but for XEG．．（PKH） Good 1755－1800 b4 CBA build－up．Suddenly disappeared 1800， pattern－power change？？This $1 / 24$（JO）＊＊Yup－RjE
Hrd vy wk u／unusually strang CBA w／s／off annct 1745 1／31（RjE）$) ~$ WHYZ－SC Hrd vy wk u／unusually strong CBA w／s／off annct
WCIR－WV Fairly good w／s／off，atop all else，surprised me， $17301 / 25$
F

1090 KNWS-IA Copied s/off 1830 1/21, weak but no problems (PKH)
1190 WAVS-FL Hrd $1 / 27 \mathrm{w} /$ cruise ad out of Port Everglrades 1843, then mx, then s/off 1845 clear w/no WOWO. Uses slogan "Radio Waves", new here (TRS 2 here atop WTAE/WTMA (JMP)

1280 WYAL-NC Vy good and alone w/spots for Cumberland area \& some rr, 1/24 1729 (JMP)

唯 WIBB-GA Hrd $17321 / 22 \mathrm{w} / \mathrm{ad}$ for used car dealer :2nd \& Palm (dm) (JMP) their listed QTH, 1/23 1707 (JMP)
1330 WDALmM Hrd w/ s/off $18141 / 23,18151 / 24,18161 / 25$. Wonder if they think they're following the SS, hi (dm) ** Red sails and all, no doubt - RjE
WRIE-PA DJ screaming o/garble gave calls, beautiful, 1817 1/24 (dm) KVOL-LA W/ mentiones of La wx 1817 1/25 (dm)
1370 WISK-GA Uses "Be Still and Know" b4 s/off, hrd $1758 \mathrm{w} /$ WHMA 1/22 (dm) WRIS-VA Hrd w/ s/off 1725 1/23 (dm)
WIMB-SC Mention of "Glarendon City Radio" in s/off 1829 1/23 (dm) ** Manning, SjC. is Clarendon City ??? -RjE
WRMN-IL S/off starts w/DJ yelling "It's sundown and now WRMN..." hrd 1743 1/23 (dm)
unID Looped s/sw playing country gospel mx $17551 / 24$, ad for what sounds on tape like "Fulbright's in downtown Lint City; clothing store. There is no Lint City in U.S. or Canada (** NO KIDDING, DAN -RjE) and no "Fulbright's" w/a phone number in the directory of all stns, on 1410 ($* *$ You have all of them? $=\mathrm{R} j E)$. This is going to drive me crazy 'til I find out who it is. (dm) \#f if hasn't already, hi. Seriously, (if that sort of thing is possible) if 1410 can sport a town calling itself the Clarendon City, why not ane calling itself the Lint City, for some reason which currently escapes me. After all, Syracuse, N.Y. is the Salt City.... -RjE
Hrd $1 / 28$ s/off 1659 finally thru WKBW and relatively good at that. Many yrs of trying, but WKBW, WTHE, WCHE made it impossible even though fairly olose. (TRS) same time. (TRS)
1540 KGLA-LA CST TC \& rr $1 / 24$, pretty good, considering cx on $1 / 24(\mathrm{dm})$
1570 WSSA-GA
1580 KWED-TX Noted w/ c\&w then s/off 1731 1/24 (dm)
S/off 1859 in mud; caught a few words \& timin, so called stn, who played $s / o f f$ cart \& 10 and behold, it matched my tape perfectly. $1 / 27$, no SSB (dm)

midnight to sunrise

680 WPTF-NC
This much-wanted copied $06001 / 14$. At 0730, In was a complete statement of the type usually used for shon or s/off, so a very nice tape. (PKH)
710 CJRN-ON Hrd $1 / 29$ noted first time this freq. w/WOR off or \propto ing 01030125 w/ ID \& hockey scores. Even decent thr u WOR OC 0110-20 \& a/LA hets on freq. (TRS)
Hrd w/. WOR off w/MOR, sx 0120-25 1/29 (RjE)

KEEL-LA Hrd o/u CJRN w/WOR off \& OC'ing w/ phone-talk format, 0105-
840 WMOB-AL 0110 1/29. (RJE)

900 WSWN-FL
resting again w/DT 0130-0145. 1/22, all we can be sure of is
910 KCJB-ND that they test some MMs, hi (PKH)

KCJB-ND Testing aggain MM $1 / 220115$, nice sig, good IDs (PKH) looking on fet. Was looking for CKLY, but no luck. (JO)
*** 920 WMPL-MI 1/17. Off 0030 . V/l semmanthly $0000-0030$ every 45 secs .
WMEL-FL Noted AN $1 / 29$ em/T sezminthly 0000-0030 3rd WM. (JS)
WMNI-OH CKCY (JS)
WERC-AL Not noted 0230-0310+ 1/29, announced as 1973 PoP (JS) 0350 on NRC TEST, but several anncts $0050+$. Later good check s/on. Poor modulation on SS made ID impossibl unID SS 0400
CKRM-SA) times, CKNW of AM $1 / 15$ w/KFWB, unusually weak. Good copy at claim of either est noted from b/ 0215 to $t / o u t 02191 / 15$, not 4 th MM, but times are right. (PKH)
Tent not hrd again $1 / 22$, did it run ?? (PKH)
Tentative heze 0315-30 $1 / 29$, TT periods of specific lenghts, i e. 30, 60 secs., several anncts hrd, one ment. new studios and ane possible call on tape. XEPRS wes solid \& lo-freq, het that lives on 1090 didn't help. (JS)
1330 WHBL-WI Al
1360 WSAI-OH Hrd on freq. 0700 1/20, no sign of WHOT (JO)
/
1370 WDEF-TN C/1a -0145 t /out. 0143 ID . ($\mathrm{R} j \mathrm{E}$)
then as WTTS (PKH) 28 . Copied also on $12 / 28$, but mis-IDed
1380 WAOK-GA Noted an WTTS (PKH)

WIVR-VA Hrd 1/28 W/ ceaw mance for WAMS test is gone. (PKH) off. (TRS) ** Anybody know when MM s/an is or if NSP?? Hrd c\&w here 0230-ish $1 / 29$, unID -RjE
un Hrd $06001 / 28 \mathrm{w} /$ religious message, $0603 \mathrm{mx}, 0610$ approx.
into c\&w mx, call sounded like WTFE into c\&w mx, cal I sounded like WTFE. Closest thing I could come up with is WGSE, for new CP in New Bern, N.C. Are they on?? (TRS) ** Maybe the new nighttime operation of WDAT,
1400 WHIH-VA Hrd $1 / 28$ each, Fl. ?? -RjE

1410 KAHL-NE pgmg. Consistently atop thru 045 (IXX,

+ KRIG-TX Testing agein $1 / 15$ and off 02つ (
On AN $1 / 22$, confirmed by phone, sked is NSP Daily SP
1440 WOHN-VA Hrd o/uWKLV and others w/ID 0631 1/27 (dm)
this as regular 3rd MM as hrd here b/ $1 / 15$. Suggest listing
1460 unID this as regular 3rd MM as hrd here b4. Sked still NSP(PKH)
1520 WTTO-OH unID c\&w and WAXC w/ OC-ET. (RjE)
Doing very well W/WKBW on OC \& TT. In most of AM $1 / 29$, an
1550 WDLR-OH tip from schmidt, while talking to him day b4. (JMP)
null towards Toledo for CBE. (dm)
1590 KCSI A
WCSL-NC Hrd w/ exc. sig atop channel w/rr, soul, for tape 0125 1/29 Hrd $0603 \mathrm{~s} /$ on after SSB , into nx , then maybe into c\&w, not sure. hrd $1 / 27$ (dm)
(Pirate) Hrd $1 / 21$, noted $w /$ fairly good carrier, but relatively lo audio. Readability difficult, noted 0130-0200 ID. Believe in Ne Phila. Not hrd following weekerid. (TRS) ** As some will rember this one hrd, taped in North NJ by PT \& myself last Spring。-RjE

CONTRIBUTORS:
Tom Sundstrom (TRS) - Willingboro, N.J. ; HQ-150, SMR; DX-150A \& LW Dan Myers (dm) - Toledo, Ohio ; HQ-180A \& 3^{\prime} box loop
Paul K. Hart (PKH) - Ft. Worth, Tx.; Rebuilt SX-28A w/MF w/ 4' altaz loop Ft. Worth, Tx.;
Fisher 90T, SM1.
Jerry Osborne (JO) - Ottawa, Ontario, CANADA; SX-133 \& SM1
Jerry Starr (JS) - Youngstown, Ohio; HQ-180A \& 4 ' altaz loop
R. J. Edmunds (RJE) - Wame N.J. ; HQ-150 w/ 4' FET altaz loop; Fisher 100T w/ 2^{\prime} altaz amplified loop.

And now, for that extra section an the wierd cx. I note from tips and comments in the stuff above that Poterba, Sundstrom are experiencing this sort of thing too, so at least Page \& I arent hearing t.hings, hi...

Cx started off in the classical auroral sense $1 / 19$, with what seeme? to be a far areater absorption than was warranted by an A index which barely got above 20 . Cx became more classically auroral up to about $1 / 26$, but with two major exceptions The ambient noise levels were vastly greater than they traditionally aro for the The ambient noise levels wer some unknown effect made direction-finding appear to values of Afr noted, and that some hat was encountered was noise on most channels be useless except on $10-50^{\circ}$, but stations hrd did not usually lie except in t ese bearing areas. This was of (still with the above two Boulder $1 / 25$ during a resurgence 3 during the exceptions) yielded a previous period, and 4 the period before. This calculates to a rough guesstimate from 15 to 27, dependent on the other periods, of 21, despite the lact that cx appeared to be indicative of and Then the outbreaks of apparent sporadic E propagation which have become a regula event during most auroras over the past 10 months (it never used to be a factor here - Canadians were just gone during aurorae, with occasional individual exceptions)were noted, starting $1 / 25$. By $1 / 28$, things had progressed from strange to worse, and the cx which will shortly be documented are those which prevailed at least thru 2/3, and are evident in Poterba's and Sunstrom's loggings as well. These ar mot and from late sunset to midnight and later or the nites R $1 / 20$ 30 $31,2 / 1,2$ by either PT or RjE or both: Good to excellent reception, not of $1 / 29,30,31,2 / 1,2$ by either $1 / 2$ or R , apparently sporadic an (NS), Hamilton (ON), Moncton, Boston, Spring= lowing areas Chicoutimi, Bridgewater Providence, Sherbrooke, Grand Falls, Edmundston, field (MA), Hartford, Worcester and St. Johns. Uike san An FFC on 1240. Miami, New Orleans, Ft. Worth and Mantre poor but genSignals from Baltimore, Buffalo, Montreal, Mindserally audible. Signals from Wheeling, Richmond, Atlanta, Chicago, Cleveland, Pit burgh, Ft. Weyne, Cincinnati, Louisville, Nashville, and St, Louis were gane, as were those from many intermediate locations. Notable exceptions were only two: reception from Charlotte and Washington, D.C. were still excellent, though the latter might possibly have been groundwave propagation.

To further confuse us, TAs were in, and generally in well. High and low-latitude paths were in, with good audio on 1602,1594,1586,1578, 1554,1538(Senegal), 1475, $1466,1439,1421,1394,1367,1358,1295,1268$ (G), 1205, 1169 (Port. \& Ger.) , 1196, 1061, 1034, 1007 Spain, 989, 854 and the Moroccans on 818, 701, 863. Carriers were noted from 1088 (BBC) $, 899,845,836$ (Spain), and 683. To add insult to injury, Urumchi on 1525 was good throughout the period.

This leads us to a very limited number of conclusions: 1) some other factor than auroral absorption is respansible for these receptions and non-receptions (we note that wx conditions have been truly strange as well, with regular variations from 3 days of very low temperatures to 2 of very high temperatures within the stated period); 2) Some sort of strange auroral event the likes of which we've never seen which might cause a massive shift of the auroral zone southward, which is highly unlikely; 3) Some sort of massive flaw in our prevailing auroral theory. We here in New Jersey do not have sufficient info nor sufficient background to evaluate these phenomena, and suggest that perhaps GPN may. We expect that others among you may have noticed some strange cx, and suggest that you forward any observations to HQ. Of the three possibilities above, we currently tend to favor the first or some variation thereof, although we cannot discount completely the other two, nor can we state that we haven't neglected something. Suffice it to say, the matter is both enormously interesting and enormously frustrating.

At least one more likely possibility exists: 4) The model for MW auroral effects that you are using is greatly oversimplified. Auroral and magnetospheric effects are among the most interesting but complex problems in contemporary geophysics. Quite a number of factors above and beyond those we have had time to describe here in DX News must be taken into account; for example, (a) The diagrams showing the location of the auroral absorption zone which we have made available to Russ are based upon the Starkov-Feldstein model oval - a statistical model. The statistical aspects of this model must not be underestimated. (b) The StarkovFeldstein model ovals of auroral location provide accurate statistical descriptions of the electron precipitation region only since they are based upon spectrophotometric data only. (c) MW absorption effects are noticeable far from the edge of the S. - F. oval because they are due to the non-visual proton auroral precipitation region located to the south and north of the electron precipitation region. (d) You neglect to consider the effect of auroral substorms and other effects of relatively limited geographical extent which may produce local increases in regional indices such as AFR. (e) While regional indices are the only ones readily available right away, they are definitely not the best ones for our purposes. The planetary indices A_{p} and k_{p} essentially average the geomagnetic disturbance over many stations throughout the world, thus effectively smoothing out relatively local disturbances. (f) The S. $-F$. ovals are expressed in terms of the best index for our purposes: the Q index. The Q is the only geomagnetic disturbance index expressly designed to measure the degree and intensity of precipitation of charged particles into the auroral oval. While indices such as the k and A measure the disturbance to the entire magnetic field vector, the Q measures only the horizontal disturbances; since particle precipitation in the auroral zone is an electric current the precipitation-induced disturbance field is horizontal. (g) You do not take into account the possibility of TA propagation modes involving auroral-induced night E and sporaction with the geomag netic time dependence of the auroral oval (the "rotation" of the oval), may
(continued on page 18)

DAI MMER - 2650 104th Street - Toledo, Chio - 43611 419-726-4348 Greetings, Nroers - 33 new stations this week, making my Jan. total as of $1 / 28140$ new stations, with total heard up to 1,166 . That a lso is 367 new ones this searon. Spending all free time DKing is sure paying off, hi. DX: $1 / \mathrm{g}^{2}=$
 for quick ID then return to rr; 5:32 I heard ad for "S ith \& Smith Used cars", Sece and at Paim". Itfound through phone co. it is in Macon, so WIBB-1280 logged; $5: 58$ s/Off of WISK-1390 Americus heard. - they use "Be Still \& Know" program before s/off armouncement. 1/23-Muhh-machmanted WDLR- 1550 s/0a © $8 \mathrm{w} / \mathrm{SSB}$; they have extremely deep null pointed atraight at me (for CBE). S/Offs on 1410: WRIs WMAB \& WRNS, $5: 25$ $5: 29: 5: 44 p \mathrm{~m}$. 6:14, UDAL-1330 Meridian s/off heard next two nights also. 1/a4-USSA- $1570 \mathrm{w} / \mathrm{c} / \mathrm{w}$ \& s/off $5: 31 \mathrm{p}$ m; then surprise as KGIA- 1540 Gretna (one of the hardest stations in the vorid to find; they're hidden in the middle of a forest!) in $w /$ CSI TC \& rF © 6:13pm. 1/25-1:14am, WROZ- $1400 \mathrm{w} / \mathrm{c} / \mathrm{w}$; WDNS WHITY \& WTCB on r / cB.
 KYOL-1 30 v /aentions of Is. WX. I1pm, WSPD-1370 nulled \& WITS-1370 Ind. heard going into XX \& ID $1 / 26-$ KCVI- $1400 \&$ KSIV- 1450 r/cs which aren't a bed wey to start out a morning; then I hear TT u/WSPD; noticing KPOS Rex. is sked for r / c, I quick-like 11 WSPD \& sk announcer for flve seconds of dead air after next record so I can get IPOS to ive TD. Fe soid 0 , so I called KPOS \& when aly anawered phone, there get in vas IT in backsround (up goes blood pressure, hi). I explalaed the situstion to hin, s he said to give him a cue. Up comes dead sir, I cued him \& bingo. Abso lutely perfect ID. I may be able to do this again, so check all r/cs on 1370 \& hope for some dead alr. It'd be a good idea to listen for whole duration of listed time 'cuz I'd coly ask him to do it conce during time period. $10: 15 p a=$ W/Frank Mer rill, George Greeme \& Gary Siegel over, WBET- $1380 \mathrm{w} / \mathrm{mice}$ ID. $1 / 27-1 \mathrm{BIZ}-1210 \mathrm{r} / \mathrm{c}$

 taped. I callod today, got him to play their s/off cart \& 'tias they. $1 / 28$ Blight Aurora - aice ID from Fadiolandia-1160 asa; 2:32 R. Tropical-ENFV-1040. CX coutinue to deteriorate. I hope Feb. will bring better CX. 30, so 73 s \& best DX.
ALAR MERRDMAI - Box 6 - Pairiax, Virginia - 22030
Ho Musing for two months but DX hesn't been that exciting. Decem= ber never has been a good mosth for me \& this one wa no exception. And January didn't improve axy. Veries have come in from Rabat-818 PJC2-855 TIJC-675 MND-675 HJAQ-1000 Guyan -560 CFGO WGEA KJCM WPRS; KMM MUPP WINM KAPI WCRV WKST WCHL WERC WIII WEXR \& last but not least after six years of trying, KCNMO-1550 finally came through w/a nice $v / 1$. Here is wat little domestic Dx I ve managed in the past
 moraing on TEST. 12/12-WHUN-1410 noted $\mathrm{w} / \mathrm{f} / \mathrm{c}-$ TI $12: 30-12: 36 \mathrm{~s} / 0$ If. KREN -1600 noted W/ETV/DT © 12:45. 12/18-WCRV-1260 noted an DK © 3:04. WKKR-1240 well heard 3:32 on DY. 1/8-HGNG=550 noted 2.50 and various other times during the morne
 ing on their DX but heavily QRMed. $1 / 15-$ WrRC -980 logged for call change e $2: 16$. Iove those call letters: - Fic)
 1/29- KrGo-1090 not beard e I doubt they were one Possio 1090 that you mentioned in $1 / 24$ DX NEWS was also notdefinite ID ERC, that OC on $10 g 0$ that you mentioned In $1 / 24$ px

JACS BUCKCEX $=5149$ Monte Verde Place - San Fernando, Ca 11 fornis - 90004 Greetsongs a.11! DX has been great lately. $1 / 17$ - KCNO-570 © midnight. $1 / 18$ - KKUA- 690 © $10: 13 \mathrm{pm}$, KNEI-1260 © $11: 25 \mathrm{pm}$, KSTP-1500 © 12:05am. 1/23-WIBC-1070 © $7 \mathrm{Q} \boldsymbol{m}$, KZRK -1540 © 7:25. All these times are ELT, and so were the ones in my last Musing. With the Caristmas bonus I was able to buy the family Christmas presents and qyself an SPR-4 without going backrupt. It really works great. Thanks to all of you who recommended it. Iatest veries: KPFA KBBX KKEPO KISW KNOB MIET KLSN KUOW KNOE.

Hix IFIO MASS. - FOR THEIR LABOR DAY FIESTA: AUGUST 31, \& SEPTEMBER 1, 2, \& 3.

JM POPERBA - Th9 queens Drive - Yardiey, Pennsylvania - 1900 1/14 PM - Greeting8. Quite a bit of DX done lately, CX seeningly quite good.
 1530 r/c 1:45, CJBK-1290 for ca 11 change; $2: 57$; unID 8/off (SS) on $710 \mathrm{w} / \mathrm{Taps}$ cheap American C / w \& rr before. I"m sending dape of tape to page laylor for transiation. $5: 30 \mathrm{pm}$, GBI-1140 killing WRVA. $1 / 17-5: 11 \mathrm{pm}$, CKCW-1220 etop; $5: 37$
 house; $5: 15 \mathrm{pm}$ WJSM- $1110 \mathrm{~s} /$ /ff. $1 / 20-4: 58 \mathrm{pm}$, WNHJ- 1390 atop; $5: 29$ WRSK $-1600 \mathrm{w} / \mathrm{s} /$
 1260 7an (Ruas Edmunds, eat your heart ourt, hi GERC) $5: 45 \mathrm{pm}$, CHAM-1280 \%/WADO. /22-1:30am, WCIV-1260 w/AN phone show; $5: 30 \mathrm{pm}$, Wers $-810 \mathrm{o} / \mathrm{WGY}$. $1 / 23-5: 07 \mathrm{pm}$, |BES-1290 aicely atop wars. $5: 20$, WHKY-1290 atop. $1 / 24=$ WUCK-1270 5:20pm. $1 / 25=$ $5: 30 \mathrm{pm}$, WCTR-1070 s/off, 10pm, HJAN-720 doing well belaind Cuban. $1 / 26=5: 20 \mathrm{pm}$, dJS $-1220,5: 20$ pm, CBOF-1250 very nicely atop channel. $1 / 28=6: 15 \mathrm{~mm}$, long-anted IRE-1430 w/sports for Ceatral Indisn, Caxg-1059.3 strong a 11 AM. Veriea lately:

 CHC. Glad to see HO has NPs in nov. I think I'il pick one up sometime in the ruture. Hice siticle by Pon Schatz on selectivity and selectivity derices. " 1260 is soing to revie - been month now wino reply yetc Ch pril, there's alvare $12-555$. (Been two yeen a there, Jim - FRC) reply yet. is raliy a great offer by a great prer a collect phomescalls, and even prizes better than the WBI -1400 ones last year). That seem a 11 for now, so 73a.

STAN MORSS - Foute 3 - Bradford, Massachusetta - 01830
1/13- CNCIB-1350 in about 5-M W/USLR QRN - nosma 11 y it 's CHOV in that
 tonal" and "Ici Radio cansde". I still can "t flgure this for CBAG. $1 / 15$ - WCDU2580 in very strong o/CBJ to 1:30am, an outlav with "huwor" giving Jpkes and come ments about Kennedys and Mary Jo Kopechne. They mat be wexy close as they pushed needle over just like a 10km local. SS © $1: 31$ om 1375 very distorted. Rome -1331 ta ir but WCRB TI made it tough. KIN-1060 AM this AM. KKII-1000 2:13am a week
 tho? IS10-1030 Fadio del Plate in o/XGaR B 3:29am \& on w/ "Panomane." UBTX MNST
 $4: 30$ in the clear. PM, working on 1400, WITK weak spot had c/w © 5:50 - And a WSLB Ogdensburg M.Y. ID 6 wille looking for kisin. $1 / 18$ - WCDU- 1580 still Iight. ing CBJ 6pa, talking about equipment \& mentioning sames of DKers, CBJ wiming to
 ing © 1:30, new here \& leaving 11 to go to complete $\mathrm{H}_{\mathrm{B}} \mathrm{Y}$. providing carrent reports nswer. WERC-1560 ESI 2:15. MHO-860 ES 2:35. CFJR-1450 FS 2:56aw covering 1450. 0 KFL-1400 All topping the net this AM w/CEML-CJALi-CPDA in that onder \& CKID not adible. USAR with weird ETP 3:40. $E M_{3}$, WIXE-1140 peaking for part of a/off e 6 but not enough for a report. $1 / 23$ FM- WBFI- 1500 is $u / W I O P ~ 5: 52$ for several items, um. To 1400 looking for wini but WIIF weak spot had FP \& UBRI until WITH put on "Jeaus Churist Super-star " and that covered things up. No WCDI heard tonight. $1 / 24$ W WOV-1000 in o/u wCFI to 6pm when WCFL took over. Reported. $1 / 26=\mathrm{A}$ weird anthem on 1475 is $5: 14$ \& then off, falr signal, but Igot there too late for any voice. Maritimes area strong - CBD/CBI atop $1110 / 1140$ \& FP on 1550 topping chan voice. Maritimes area stroag - CBD/CBI atop $1110 / 1140$ \& FI On 1550 topping channel. WBaP in strong but no sign of Cour as usum. Verie, WaVS.
ARDREM F. RUCG - 16 Iake Breeze Avenue - Pointe Claire 700, quebec
don't have too wuch DX to report, but I still exist. The ondy ew logging is a report to HQQW-1590 on 1/26. I hatre heard Ro Paradise-1265 and BI-1367, but not enough to report. No veries at all. After $12 \frac{1}{2}$ years of BCB DX, totals are 1,495 loged \& 1,414 veries. 73.

WE WANT TO THANS THE NEWRR MISBERS WHO ARE STARTING TO CHECK ITIO MUSIMGS REGULARIY, AND WE ALSO WRECONE TERS MLSINGS OF THEE GUYS WHO ${ }^{\circ} V E$ BEFP WITH US FOR YEARS. WE
 BUDOIES? SURETY THIS GRAND OLD HOBEI OF DXIIG IS SIIII DEAR TO YOUR HEARIS!

RICEARD C．MAYRI－ 266 matforim How－Valleyfield，Oneboc
 queats for reports has fimily forced me to report．I joined IRC last March，so I
 lage in Moutreal，in I bave bee yring since 12／69．Totals： 575 heard， 34 ntates， seven provinces， 11 countries．Verified low，Just over 100 veries．I don＇t Like to verity，just to heer the good catches is enough for ma．However，when I really get a goodie，I try to verie it．Bent foreign atch is reme－ 1340 in Bermude． Thesy vere bonbing in here last June just after the big floods in hert U．S．I did－ $n^{\prime} t$ got them verifled though，I wish I hed．I didn＇t seand a report as I dom＇t like to verify thet mitch，eapecialiy foreiga catches．On another note，I also beo loag to that other club，IBCh．I jolwedr then flurat，about a year before I joined HRC．It sure is afce to get two bulletime a week．I DXX minly BCB，but when CX are right，I 叹 TV．Fuasy，I get good ojd Alakke on the boob－tube but whem it comes to radio，nothing from that state ever mkes it here．Well，on to a little
 cror－1310 s／con $2: 15$ after Fr，arnoumed they went off © $1: 30$ ．Is this regular？ $1 / 18,1 / 90$ 取 realiy cane in but few IDs palled out．wixa usually wy 1490 domine ant mas very weak for a change．WPOR，Me： $1: 30$ an ID，c / v, ID herrd agin in promo about c / w Ex abue offer $2: 2$ ban，followed by wx．May other unide heard，

 all 3xeept I forgot to give My IK．I happen to uae a $\$ 30$ portable along $\mathrm{w} / \mathrm{a} / 75^{\prime}$ all 3xcept I forgot to give KY．I happen to uae a $\$ 30$ portable along W／a 75 longirie．Worke pretty good．Mow everyse else，remember to Mase，liraie＇s fingera Section，Flcharc，and do drop in oftem！－ERC）
LaUREIT GAGMCW－ 99 Pourth Aveaue－Quebec 3，quebec
2／3 vers another good eveaing for the S ．2IZ－555 St．Kitte heard
 spenidig．Germen good enough on 1586 but no sigme from France，G．B．or Horocco． $1 / 5-$ A little opening of TAE between 6 k 7 pm ．Gernawi $-15866: 10 \mathrm{w} / \mathrm{good}$ signal， c88e－1034 Lisbom 6：20 a 180 good．Morocco－935 6：30 poor \＆Datar 764 6：40－7 finir to good．Ro Libertad－600 Rarreyquille heard $9: 30$ on top of Cube $v / C F C F$ nulled．R． Popular－700 Meracaibo，wis also IDed e lopm with loud and pompous amouncements．

 misutes．Ro caraibes－840 e Tiq5 in FF，good enough w／WHAS barely audible．At $7: 35$ JBC－750 ft．Garina，Jama ica in ESE w／wh not audible．Mortego By－700 Jamice from

 en on 1586．1／8－clear WX， 150 below sero．Fimb－683 Mdrid，fair $6: 20 \mathrm{pm}$. ．At 9：50，Ro Rmbes－670 Careces w／Bisore Venezuels，IMC．10pm，Ro Popular－700 in Maracaibo．10：10，Unisora Unides－720 Parranquille． $11: 15$ ，HIJB－ 330 IDed as R HIMB，sento Doningto，\＆11：30，the Dominican Republic station ags in on 1600．In取 IIEs of $1 / 15$ the station mentioned by Caris Lucss on P． 8 at quebec on 1060 is CJRP，instead of old call letters cJlio Next 15 daya I will be on SW．

THCNAS R．SUMDERROM－Box 205 －Willingboro，Hev Jersey－ 08046
Ininga are looking a bit better an the home front here，\＆a couple of projects related to the house a to the DXing hobby have been completed． On the latter aubject，I fimay hocated an appropriate awitch to wire up a switch－ ing arrangement for biaural reception，as deacribed in Moore＇s JX Mrish article of $10 / 20 / 72$ ，imputiag the EQ－150 and nevily acquired Realistic 欧－150A．After polari－ zing the apeaker wires coning from the $\mathrm{HQ}-150$ ，as its audio level wea being reduced whenever the IK－150A mas attached to the switching box，the unit worked well．Also I got around to adding a tape recorder jack to the hot side of the volume control in the $[X-150 \pi$ ；I＇m surprised at the relatively low level of output available for the tape recorder．Ho matter though as I just crank up the level cantrol on the tape recorder－and it is atill better than trying to tape eftery the voluve con－ tro1．on the subject of mying，in the last tso veeks the level of activity has decrensed somewht，but Ive noticed whom the strong signal strengths noted in the
first week of Janusry to now（c．1－22），the wispels have been relatively poor over a number of days／tines at this time．I wonder if there＇s been a change？And fin－ aliy，deapite WLDB－1h90 Atlantic caty being ordered of the air by $12 / 29$ ，it was still on the air noted when I uss in Atlantic county an business $1 / 16$ ，\＆it can be hesrd here daytimed $u / W B C B$ Levittown，Ba．with the latter nulled． 73 ．

CURIIS DO HMGBERG－ 80 COncord Road－Minland，Mesmachusetts－ 01778 Ho Th sigrals noted here the past month，so I＇vecconcentrated on picking up a few domestice and other goodies．12／29－WJSO－1590／off e 5：15pm
 for $\#$ first reception of them since they left 820 ． $1 / 21$－WGRA－ $100 \mathrm{~s} / 0$ of e 5 pm um，but almas nice to haer a 250w blasting like a local．I awitched to 1110 \＆ just missed two s／offs as MA in／out with itself．CBD ID after Maritime CX 5 5：10， then a real strange one on 1200 from about $5: 25$ on，a 11 a lone looping $\mathrm{M} / \mathrm{GB} \mathrm{s}$ w／rec ards \＆ES talls between times about places in the Far West．Too early for wori，e rock－ateady sigma though not sitrong．I didn＇t catch any ID in 25 minates，but then all of a sudden it was gwayped by an emormous R．Tiempo signa．A quick check then showed EIK booming in， 4 VIC all alone on 830，SRS high，etc．I believe the unID signel we just whet it sounded ifke in retrospect，an APRAS stations，Roose velt hoads，Po Ro hay I didn＇t have wis tape recorder on，only a atupid DKer would velt，hi！Actually it vee probably because I was sneking a listen while in bed with the Londas fiu（even that＇s TA these dys，hi！） $1 / 22-$ looking for Frnie＇s

 65：45．1／23－Following Stan Morsa＇tip I caught WeIz－810 g／off e $5: 30$ ，but no
 have finaliy decided I＇ve spent enough years DXing with cheap equipmant（my two IXX－ ea，an Bchophone a an 耳C－125 cont me a coubined total of \＄12）\＆heve started doing some serious looking．I looked at an $S P-600$ ，but it didn＇t apeak nicely to me in the demo．I tried a used Swha which seemed to have plenty of poop \＆no doubt about dial accuracy，but of course it lacks a lot of the aice Dxing features．I might hare bought it anymy，but 1 ound too much cross－mod on BCB．At least two signa is evident on all clean daytime frequencies iake $1160 \& 1200$ ．Does anyoue have enough faniliarity to know if this is typical of the SW－la？I can＇t find any place around that handles new ones for a better demo．I＇ll keep looking，there＇s no real hurry after 30 oodd ydare of Dxing，hi！

CBRIS LUCAS－ 407 Elmuood Avenue－Ithera，New York－ 14850
DK continued at a rather slow pace this past week，until $1 / 29$ e SS when many stations ware logged as I seemed to be on the right frequency at the
 usux－1570 Pa．85：01p s／ote，
 heard something that sounded like URRC not heard，although aroum $2: 25 a \mathrm{~m}$ I thought I go on KMOO－1090 esther； during KTGO TEST tiee；just LAs \＆hets．A couple IT oldies were heard at timea know who it wes．sss but no voice or axything else made th throust，so I dan＇t know who it wes．SSS $1 / 29-\mathrm{WALL-910} \mathrm{~Pa}$ ． $64: 58 \mathrm{~s} / 01 \mathrm{f}$（ 15 minutes early according

 local uKri－920．Total loggings now 666， 66 of which are gravejarders．Signis TVI．In favt，Inis SSS，\＆I was straining to hear these stations anidst terrible inn in squealo from sone set outside this builing保 hoould beve its sure radiating a lot of signal．By the time you read this，JYC hould have its very own c / v station in the form of Wiv－1050，which is reportediy changing from MoR to c / w ．I hope it doesn＇t distract graie from his bxing，hi．
YOU FROM SAN JACINTO－TTADE II YOUR PINTO！GO GET YOU AN AUSTIN－ATD DRIVE IT TO BCSTCN！LABOR DAY WERKCITD！

