NEW FROM ICOM
IC-µ2AT 2-Meter Micro Handheld
IC-03AT 220MHz Handheld

RELIABLE. ICOM's extensive line of reliable, field-proven hand helds and interchangeable accessories give you the most options for handheld communications. 2-meter, 220MHz, 440MHz or 1.2GHz...ICOM has your frequency covered.

2-METERS. For 2-meter coverage, ICOM offers the IC-02AT and IC-2AT handhelds. The versatile IC-02AT covers 140.000-151.995MHz, the IC-2AT covers 141.500-149.995MHz...both include frequencies for MARS and CAP operation. The IC-02AT features an LCD readout, 32 PL tones standard, DTMF, direct keyboard entry, three watts output, (optional 5 watts output with IC-BP7 battery pack), 10 memories and three scanning functions. The IC-2AT, the most rugged handheld on the market, has a DTMF pad, 1.5 watts output and thumbwheel frequency selection. The IC-2A is also available and has the same features as the IC-2AT except DTMF.

220MHz. To get away from the crowd, ICOM has the IC-3AT 220.000-224.990MHz handheld with 1.5 watts output, thumbwheel selection and a DTMF pad.

440MHz. For 440MHz operation, ICOM has two handhelds available, the versatile IC-04AT and the IC-4AT. The IC-04AT and IC-4AT offer full coverage from 440.000-449.995MHz. The IC-04AT includes an LCD readout, 32 PL tones standard, DTMF direct keyboard entry, three watts output, (optional 5 watts output with IC-BP7 battery pack), 10 memories and three scanning systems. The IC-4AT has a DTMF pad, thumbwheel selection and 1.5 watts output.

1.2GHz. ICOM announces the IC-12AT 1260.000-1299.990MHz handheld, the first 1.2GHz handheld available. The IC-12AT features 10 memories, an LCD readout, DTMF direct keyboard entry, two scanning systems and one watt output.

ACCESSORIES. A variety of interchangeable accessories are available, including the IC-BP8 800mAh long-life battery pack, HS-10 boom headset, CP4 cigarette lighter plug and cord, HM9 speaker mic (for IC-02AT, IC-04AT and IC-12AT), leather cases, and an assortment of battery pack chargers.

ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4, Canada
All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. H9866

ICOM HANDHELDs
SURROUND YOURSELF WITH THE BEST!

ICOM America, Inc., 2380-118th Ave NE, Bellevue, WA 98004
Customer Service hotline (206) 454-7619
3150 Premier Drive, Suite 128, Irving, TX 75063
ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4, Canada
All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. H9866
NOW — ALL KANTRONICS KPCs and KAM ARE TCP/IP NETWORKING COMPATIBLE INCLUDE THE PACKET MAILBOX AND COME WITH 32K RAM

EXTRA FEATURES — NO EXTRA CHARGE

That's right! Now all Kantronics packet units* include the Personal Packet Mailbox™, come with 32K RAM, and are TCP/IP Networking compatible — ALL AT NO EXTRA CHARGE. And there's more . . .

KAM and KPC owners** — you can add the Packet Mailbox and TCP/IP compatibility for the special low price of just $15.00.

At Kantronics we're committed to keeping you current. Check below and see — we offer more features and the best customer support around.

KPC-2™ This low cost/high performance Kantronics TNC features a built-in HF/VHF modem, the Personal Packet Mailbox, full duplex operation, and multiple connect capability. The serial RS-232/TTL port allows easy interfacing with all computers, even Commodores. KPC-2 is TCP/IP Networking compatible, includes 32K RAM, and uses only five front panel indicators for easy operation. Like all Kantronics units, KPC-2 is fully compatible with existing TNCs.

KAM™ KAM is the fully programmable All Mode unit that lets you operate VHF Packet, HF Packet, CW/RTTY/ASCII, and AMTOR. But that's not all . . .

Only KAM's dual VHF/HF radio ports work together for simultaneous Connects, Digipeating, and VHF/HF GATEWAY operations. And now KAM is TCP/IP Networking compatible, comes with 32K RAM, and has the Personal Packet Mailbox ALL STANDARD.

KAM includes watchdog timers on each port, an RS-232/TTL serial port, and a bargraph tuning indicator for HF operation. KAM even comes with an external modem connection point for optional 2400 b/s packet operation. For the greatest degree of sensitivity and flexibility, turn to KAM, Kantronics All Mode.

KPC-4™ Only KPC-4 features simultaneous Connects, Digipeating, and Gateway functions on two fully functional VHF radio ports — each of which includes a watchdog timer. What's more — you can add 2400 b/s operation to port 2 with Kantronics optional 2400 Modem™.

KPC-4 includes the Personal Packet Mailbox and 32K RAM (expandable to 64K), and is TCP/IP Networking compatible. The RS-232/TTL serial port assures easy interfacing with any computer. Make KPC-4 your GATEWAY into packet flexibility.

Kantronics
RF Data Communications Specialists
1202 E. 23 St Lawrence, Kansas 66046 (913) 842-7745
"DX-cellence!"

TS-940S

The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100% duty cycle transmitter. Super efficient cooling system using special air ducting works with the internal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour.
- High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel."
- Graphic display of operating features. Exclusive multi-function LCD sub-display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status.
- Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- ORM-fighting features. Remove "rotten ORM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (QSK) CW.
- 40 memory channels. Mode and frequency may be stored in 4 groups of 10 channels each.
- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz.
- 1 yr. limited warranty.

Another Kenwood First!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner.
- SP-940 external speaker with audio filtering.
- YG-455C-1 (500 Hz), YG-455C-1 (250 Hz).
- YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter.
- VS-1 voice synthesizer.
- SO-1 temperature compensated crystal oscillator.
- MC-43S UP/DOWN hand mic.
- MC-60A, MC-80, MC-85 deluxe base station mics.
- PC-1A phone patch.
- TL-922A linear amplifier.
- SM-220 station monitor.
- BS-8 pan display.
- SW-200A and SW-2000 SWR and power meters.

More TS-940S information is available from authorized Kenwood dealers.

KENWOOD

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
NOVEMBER 1987
volume 20, number 11
T. H. Tenney, Jr., W1NLB publisher
Rich Rosen, K2RR editor-in-chief and associate publisher
Dorothy Rosa, KA1LBO managing editor
Tom McMullen, W1SL
Joseph J. Schroeder, W9JUV
Alfred Wilson, W9NF associate editors
Susan Shorrock editorial production
editorial review board
Peter Berini, K1ZJH
Forrest Gehcke, K2GT
Michael Gruchalla, P E
Bob Lewis, W2EBS
Mason Logan, K4MT
Vern Rippetto, WA2LQQ
Ed Weatherford, W3N0N
publishing staff
J. Craig Clark, Jr., N1ACH assistant publisher
Rally Dennis, KA1JWF director of advertising sales
Dorothy Sargent, KA1ZK advertising production manager
Susan Shorrock circulation manager
Theresa Bourgault Circulation
Hans Evers, PABCX cover

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0496
Telephone: 603/878-1441

subscription rates
United States:
one year, $22.95; two years, $38.95; three years, $49.95
Europe (via surface mail), $47.00, effective January 1, 1986.
Canada, Japan, South Africa and other countries (via surface mail),
one year, $37.00; two year, $66.00; three years, $74.00
All subscription rates payable in U. S. funds, via international postal money order or check drawn on U.S. bank
international subscription agents: page 99
Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076
Cassette tape of selected articles from ham radio are available to the blind and physically handicapped
from Recorded Periodicals
919 Walnut Street, Philadelphia, Pennsylvania 19132
Copyright 1987 by Communications Technology, Inc.
Teleregistered at U. S. Patent Office
Second class postage paid at Greenville, New Hampshire 03048-0496
and at additional mailing offices
ISSN 0146-5389
Send change of address to ham radio
Greenville, New Hampshire 03048-0496

contents
8 tomorrow's receivers: what will the next 20 years bring?
Robert J. Zavrel, Jr., W7SX
17 designing a state-of-the-art receiver
Ulrich L. Rohde, KA2WEU/DJ2LR
26 a CAT control system for the Yaesu FT-757GX
Kjell W. Strom, SM6CPI
33 a thumbwheel frequency selector for the Yaesu FT-757GX
Brian J. Mork, KA9NSF
41 ham radio techniques: a new country for you?
Bill Orr, W6SAI
49 practically speaking: using voltage comparators
Joe Carr, K4IPV
65 an rf voltmeter
Ian Braithwaite, G4COL
77 VHF/UHF world: low-noise receiver update – part 1
Joe Reisert, W1JR
100 Elmer's notebook: receiver buzz words
Tom McMullen, W1SL
106 advertisers index and reader service
98 ham mart
91 new products
6 comments
4 reflections
57 DX forecaster
81 short circuits
96 flea market
November 1987
specs in secs: an idea whose time has come

What's smaller than a bread box, lighter than a Bic pen, faster than a speeding bullet, and of interest to thousands of Radio Amateurs (or least it will be)?

You guessed it. It's Motorola's solution to our transistor specification problem, all on a single floppy disk. Appropriately labeled Specs in Secs, that's exactly what you get when you load it into your IBM PC-compatible computer.

In the program, Motorola has provided device information for over 1600 bipolar power transistors and TMOST Power MOSFETs, and included a user-friendly method of retrieving the data as well. It's not only extremely useful, but also fun to use. And because of its flexibility, you feel like you're making real design decisions — and you are!

Did I just hear someone say "Now just hold on one dang minute! We're Radio Amateurs, not engineers. Why do we need this information, anyway?"

I'm really glad you asked. First of all, some of us are engineers or technicians, in addition to being licensed Radio Amateurs. And even if you're not an engineer or a technician, I'm willing to bet that sometime in your Ham career you've designed some circuit, or at least wished that you could have. Specs in Secs won't do the circuit design for you (although there are software programs out there that will). What it will do is, through a few keystrokes, provide parts choices in seconds.

"Great!" you say, with a little bit of sarcasm. Now you have 1600 or so power device specifications. But like most other Radio Amateurs, you're interested in rf circuits -- oscillators, preamplifiers, etc. Well, don't sell a power device short before you look at its specifications -- fT, for example, which is related to maximum frequency of operation. Some of these power devices provide real gain at frequencies that are of interest to us.

Without dwelling on this point, let me mention that Motorola indicated in the brochure that accompanied this diskette that they're working on entering their entire semiconductor product line on a single 360K floppy disk, and that takes time. I should know; I've done something similar with my compendium of Amateur Radio article references, From Beverages Thru OSCAR — A Bibliography (November 1980), and that only took me six years and eight diskettes, and I'm almost finished!

"But is Specs in Secs easy to use?" you ask.

It couldn't be simpler. You place the disk in any drive, type the letter M (Enter), and away you go. A menu provides a number of choices, including, in essence, an on-screen manual. Actually, the first thing you see is a Start-up Screen with a carefully chosen set of choices (defaults) that you'll probably want anyway.

Here's where it really becomes useful. Selection "D" is called "Parametric Search." With this choice, you're given the opportunity not only to choose the important parameters, but their order and value as well. The more specific you are, the more quickly you'll arrive at the appropriate component. Motorola does, however, recommend that you also have the hard copy (selection guide) available for the final decision-making process.

If you're reasonably sure of the component you want to use, just enter its part number after pressing Selection "C," appropriately labeled "Part Number Search." If it can't be found, you won't be hit over the head or knocked out of your chair by a loud noise. The program will just quietly tell you that it can't find that particular part number. Believe me, you still have many other choices.

I could easily go on about its other features, but for $2 you can get your own copy and see for yourself. By the way, Parlez-vous Francais? Or German, Spanish, or Italian? The on-screen manual is written in these other languages as well, and you can print all of them out and have a copy at your side.

For your copy of Specs in Secs (DK101/D), send a check or money order for $2 to Motorola Semiconductor Products, Literature Distribution Center, P.O. Box 20924, Phoenix, Arizona 85063.

Rich Rosen, K2RR
Editor-in-Chief

REFLECTIONS

4 November 1987
Kenwood brings you a wide range of 220 MHz gear designed for every need. Choose from two types of mobile and two types of HT. The TH-315A is a full-featured HT covering 220–225 MHz. Ten memory channels and 2.5 watts of power (5 W with PB-1 or 12 V DC) uses the same accessories as the TH-215A for 2 meters or TH-415A 440 MHz. For truly “pocket portability,” choose the TH-31BT, a thumb-wheel programmable, 1 watt unit. For mobile use, select the TM-321A or TM-3530A.

The TM-321A is the 25 W, 220 MHz, 14-channel version of the super popular, super compact TM-221A. The 25-watt TM-3530A has 23 channels, a 15 telephone number memory and auto dialer. Direct keyboard frequency entry and front panel DTMF pad enhances operating convenience. Novice to Amateur Extra, these transceivers will put everyone on the air “Kenwood Style”!

A complete line of accessories is available for all models.

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
77-character long “opinion string” of Y’s (like) and N’s (don’t like).

I’ll tabulate the answers and send the results to *ham radio* magazine, because, as the last line of the editorial said I also like “magazines crazy enough to publish this.”

That’s what the last “Y” in my opinion string stands for:

```
Y Y Y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
The TS-711A 2 meter and the TS-811A 70 centimeter all mode transceivers are the perfect rigs for your VHF and UHF operations. Both rigs feature Kenwood's new Digital Code Squelch (DCS) signaling system. Together, they form the perfect "matching pair" for satellite operation.

- Highly stable dual digital VFOs. The 10 Hz step, dual digital VFOs offer excellent stability through the use of a TCXO (Temperature Compensated Crystal Oscillator).
- Large fluorescent multi-function display. Shows frequency, RIT shift, VFO A/B, SPLIT, ALERT, repeater offset, digital code, and memory channel.
- 40 multi-function memories. Stores frequency, mode, repeater offset, and CTCSS tone. Memories are backed up with a built-in lithium battery.

Optional accessories:
- IF-10A computer interface
- IF-232C level translator
- CD-10 call sign display
- SP-430 external speaker
- VS-1 voice synthesizer
- TU-5 CTCSS tone unit
- MB-430 mobile mount
- MC-60A, MC-80, MC-85 deluxe desk top microphones
- MC-48B 16-key DTMF, MC-43S UP/DOWN mobile hand microphones
- SW-200A/B SWR/power meters:
  - SW-200A 1.8-150 MHz
  - SW-200B 140-450 MHz
- SWT-1 2-m antenna tuner
- SWT-2 70-cm antenna tuner
- PG-2U DC power cable

- Automatic mode selection. You may select the mode manually using the front panel mode keys. Manual mode selection is verified in International Morse Code.
- All-mode squelch.
- High performance Morse Code.
- Speech processor. For maximum efficiency on SSB and FM.
- IF shift.
- "Quick-Step" tuning. Vary the tuning characteristics from "conventional VFO feel" to a stepping action.
- Built-in AC power supply. Operation on 12 volts DC is also possible.
- Semi-break-in CW, with side tone.
- VS-1 voice synthesizer (optional)

More TS-711A/811A information is available from authorized Kenwood dealers.
tomorrow's receivers: what will the next 20 years bring?

New techniques, technologies promise lower power,
smaller size, higher performance

It seems that with each new issue of *ham radio* and other journals, we witness new technological developments affecting nearly every aspect of Amateur Radio. From time to time many of us ponder the questions, "Where is it all going?" and "What will rigs look like 10, 20, or more years from now?"

Predicting the effects of today's research on tomorrow's reality is always tricky business. But new techniques now in use in commercial and military radio systems are likely to find their way into Amateur applications sooner or later. I've discussed some of these techniques here, emphasizing what I see as their implications for Amateur Radio design.

Recent breakthroughs in technology may change some of the fundamental ground rules not only of radio engineering, but of electrical engineering in general. Consequently, two levels of development will be addressed here: first, those techniques in current use and second, those which may be possible in the near future.

Figure 1 shows a block diagram of a typical radio receiver. This is the familiar superheterodyne design, which has been predominant for nearly 60 years. Most commercial receivers on the market today use this same architecture — and in truth, there's been little improvement in radio performance for the past 30 years!'

Other characteristics have certainly changed for the better, however: size, power consumption, 12-volt operation, frequency stability and accuracy, and ease of operation, for example. Yet the basic receiver functions remain the same; an rf signal down to the sub-microvolt level must be amplified, converted, filtered, amplified again, demodulated, amplified again, and then converted into acoustic audio. There's nothing to suggest that the principle of rf input and audio output will change as a basic function for radio engineers. Rather, it's how you get from point A to point B that's undergoing a quiet revolution.

Perhaps the most striking developments have been in miniaturization. There's a continuous trend towards developing components with excellent specifications but with smaller sizes and lower power consumption.

**rf amplifier**

The first stage of a receiver largely determines the noise figure. Up to about 15 or 20 MHz, there's little advantage in using low-noise amplifiers because atmospheric and galactic noise are more significant than the noise figure of the typical first mixer stage. For this reason the preamp has actually disappeared from many hf receivers. Diode ring mixers typically have about a 7-dB noise figure, which is quite adequate for most hf receivers. The preamp also lowers the dynamic range of a receiver as it increases the rf level to the first mixer. At VHF and higher, the atmospheric noise drops and the receiver noise figure becomes one of the most important system specifications. At VHF frequencies and higher, the GaAsFET has dramatically reduced receiver noise figure specifications. This trend will continue as GaAs technology improves and prices decline.

**first mixer**

The most common rf mixer is the passive quad diode ring. It has a relatively low noise figure and the limitation to dynamic range is mainly a function of LO power used. A generalization can be made about the LO power necessary to handle a given rf power level: the ratio of maximum rf input power to minimum LO power is about 1:10. That is, for a diode mixer to handle 100 mW of rf, the LO power must be at least 1 watt.

By Robert J. Zavrel, Jr., W7SX, P.O. Box 23447, Tucson, Arizona 85734

By Robert J. Zavrel, Jr., W7SX, P.O. Box 23447, Tucson, Arizona 85734
There have been two major developments in mixer technology during the past few years. The first is the passive FET ring, exemplified by the Siliconix Si8901. With this device, gate voltage rather than a forward-biasing current turns the switches “on” and “off.” Since the gates represent high impedances, voltage/power ratios can be increased, thus lowering the LO power requirements dramatically. Indeed, to handle the same 100-mW rf power in our diode ring example, the Si8901 requires about 25 mW of LO power instead of the 1 watt mandated by the diode rings. The other critical specification is the third-order intercept point, which is necessary for defining the useful dynamic range. Again, the Si8901 greatly surpasses the old diode ring mixer.

Working from the same empirical thinking that led to the development of the Si8901, a passive GaAsFET ring should surpass the performance of the silicon Si8901 by perhaps a 7-dB increase in third-order intercept point specification. Since the GaAs devices would be used as switching elements rather than active amplifiers, the 1/f noise limits of these devices wouldn’t be an issue. They could be used at sub-audio frequencies with comparable noise performance at hf.

Although purported as a passive mixer, the Si8901 should also make an excellent active mixer. Using the same concepts as the old U350, the DMOS Si8901 should outperform its JFET cousin. The smaller geometry SD201 DMOS family made excellent VHF low-noise amplifiers before Signetics discontinued its DMOS line several years ago. Siliconix and the other DMOS manufacturers have chosen not to build these smaller devices, although both mixer and amplifier performance could be enhanced by such a modification.

As the world of digital integrated circuits has shifted its attention to faster CMOS technologies, advances in analog bipolar IC techniques have quietly proceeded. A fundamental bipolar mixer circuit is the
FEATURES INCLUDE:

- Switch selectable - elevation from 0° - 90° and 0° - 180°
- Elevation scaling X1 or X2
- Northern or Southern Hemisphere
- Manual or automatic mode
- Baud rate (300 - 2400)
- 100 page detailed manual
- Cable for Kenpro's™ "A" series controller

MIRAGE/KLM COMMUNICATIONS EQUIPMENT, INC.
P.O. BOX 1000 MORGAN HILL, CA 95037

CALL YOUR DEALER TO ORDER ONE NOW!

**CJ2M**

**ELECTRICAL:**
- Bandwidth: 144-148 MHz
- Gain: 1.8 dBi
- VSWR: 1.5:1
- Feed Imp.: 50 ohms

**MECHANICAL:**
- Height: 61"
- Weight: 2½ lbs.
- Mast: 1½" o.d.

**CJ220**

**ELECTRICAL:**
- Bandwidth: 220-224 MHz
- Gain: 1.8 dBi
- VSWR: 1.5:1
- Feed Imp.: 50 ohms

**MECHANICAL:**
- Height: 40"
- Weight: 2 lbs.
- Mast: 1½" o.d.

**CJ440**

**ELECTRICAL:**
- Bandwidth: 420-470 MHz
- Gain: 1.8 dBi
- VSWR: 1.5:1
- Feed Imp.: 50 ohms

**MECHANICAL:**
- Height: 19½"
- Weight: 1 lb.
- Mast: 1½" o.d.
Gilbert Cell (fig. 2). Though the most familiar Gilbert Cell ICs are the Motorola MC1496 and MC1596, there are many manufacturers of these devices today. Over the past few years there have been several variations on this original commercial design. Good noise performance has been achieved with the Signetics NE602, but it can’t handle the higher input levels necessary for good hf first mixer design. The NE602, however, is perhaps the finest mixer available among low power consumption mixers. Advances in bipolar processing are pushing noise figures down and power handling capabilities up in simulation models as well as in newly available devices. If this trend continues, the diode ring may become an endangered species.

local oscillator

Perhaps the most dramatic advances in receiver technology have been in the design of local oscillator circuitry. Very exotic mechanical assemblies evolved for LO tuning in the 1950s. (Remember the NC300, HQs, and Collins receivers?) Permeability tuned oscillators (PTOs) simplified things in the 1960s with the SB300, R4, and S-lines. Today, PTO LO performance remains difficult, if not impossible to duplicate with PLL synthesis, given the constraints of typical Amateur budgets. Synthesizers offer distinct advantages in that they can be directly controlled by microprocessors and don’t require special mechanical rigidity or moving parts. A single crystal oscillator frequency is divided down to some low value and then “phase-locked” up to the desired LO frequency. At the output of the VCO, a multiple of the reference frequency equal to the reference frequency times the divider’s “N” value appears (see fig. 3). This represents a simple phase-locked loop synthesizer, but it contains all the necessary building blocks of a more sophisticated system. If the reference is 1 kHz and the divider is set to N = 7005, the VCO output will be 7005 x 1 kHz, or 7.005 MHz. Discrete frequency steps of 1 kHz will be possible because only division by whole numbers is possible in this system. N determines the output frequency because the dc control voltage feedback will “lock” the VCO to the output frequency that provides equal frequency inputs to the phase detector.

Another type of synthesizer — the “direct digital synthesizer” or DDS — holds great promise. To understand how DDS works, two concepts must be understood: first, the concept of how digital-to-analog converters function and second, the Nyquist Theorem. I’ll discuss each of these very briefly.

A digital-to-analog converter (DAC) takes a binary number and “converts” it into a discrete voltage or current value. An eight-bit DAC, for example, can have a maximum of 256 different voltage outputs. The digital eight-bit “word” can be generated by a microprocessor or memory circuit. A sine wave or any other waveform can be approximated by discrete steps as shown in fig. 4. For LO applications, sine wave approximation is preferred because sine waves have the lowest harmonic content. (A perfect sine wave will have no harmonic content.)

The Nyquist Theorem states that a sine wave can be derived if at least two discrete amplitude samples per period are obtained. Thus, if we want to synthesize a 5-MHz sine wave with a DDS, we’ll need an updating clock rate of at least 10 MHz. With DDS, a constant sample rate can be used to synthesize any frequency up to half the sample rate with excellent frequency resolution (0.1 Hz typical). Figure 5 shows how 1- and 2-MHz sine waves can be generated by a 10-MHz clock and a DAC. The microprocessor computes the values to be sequenced by the DAC for a given frequency output and a given clock rate. This special processing function is called a phase accumulator. Higher clock rates allow for more samples per period. More samples, in turn, allow for better approximation of the sine wave shape. Also, the greater number of bits allows for more discrete amplitude steps, which also enhance the accuracy of the sine wave approximation. DAC integral linearity affects waveform accuracy and harmonic levels. Indeed, the major efforts in DAC development are directed towards
better resolution (i.e., more bits) at higher update speeds. Off-the-shelf video-speed DACs now allow excellent performance for DDS circuits well into the hf spectrum. The Burr-Brown DAC63 is such a device. As DACs become faster and more accurate, the phase noise and harmonic performance improve.

Compared with PLL synthesizers, DDS offers other advantages. Since all the parameters of the waveform (frequency, amplitude, and phase) are digitally controlled, frequency hopping, or QSY, is almost instantaneous. PLL systems, on the other hand, have some finite settling time. In addition, nearly any type of modulation is possible if the applicable parameter is changed in accordance with a modulating waveform. Outstanding linearity is possible even at very wide bandwidths — in fm, for example. To achieve the necessary low spectral noise densities demanded by hf LOs, more work is needed; however DDS holds great promise as a replacement for PLL synthesizers.

**Figure 6** shows a direct conversion phasing SSB receiver. Traditional analog phase and amplitude nulling techniques employing all-pass active filters could yield 40-dB image rejection at best. The problem of this nulling is compounded by the need for broadband 90-degree phase shifters. However, if we digitize the two signals the phase and amplitude nulling can be performed using a digital signal processor (DSP). Small errors in phase and amplitude can be removed
and the ultimate image rejection will correspond to the bit resolution of the analog-to-digital converter ADC. A 16-bit ADC, for example, could provide 96-dB image rejection using an ideal DSP. This would make an excellent receiver. Very sharp analog audio filters would be required before the ADCs. Philips has produced such a dual-channel filter in monolithic form, but it’s not yet commercially available. More traditional upconversion schemes using DSP are discussed in an outstanding new textbook. Once the demodulated audio baseband signal is digitized, digital filtering techniques can be used. Very steep skirt notch and bandpass filters can be arranged. The amplitude coefficients can be manipulated to allow idealized audio AGC. Alternately, an AGC voltage can be provided through a DAC which controls an rf stage gain. Finally, the digitized audio can be converted back into analog form via a DAC, in much the same way as compact disc players function. The Burr-Brown PCM54 is an excellent 16-bit DAC for this application.

Figure 7 represents a daydream of where radio engineering state of the art might be within 20 or 30 years. A bandpass filter from 0.5 to 30 MHz tunes the entire hf spectrum. A futuristic 16-bit ADC with a 75-MHz sampling rate provides a 96-dB dynamic range over the bandwidth. The entire spectrum is digitized. All filtering, demodulation, AGC, and such, is performed in the rather sophisticated DSP. A PCM54 is then used to output the audio to an audio amplifier.

**superconductors**

In April the news media reported that a group working at an IBM facility in Switzerland had developed a new material that remains a superconductor up to 85 degrees K. This material, by itself, makes superconductors possible at liquid nitrogen temperatures, thus dramatically lowering the costs of using this class of material. Perhaps of far greater importance is that this work represents a crucial breakthrough for creating better superconducting materials. There is even talk of superconductors at room temperatures. What can this mean?

Superconductors are created when a material is cooled down to a critical temperature. Below the critical temperature the material exhibits zero electrical resistance. When superconductor offers literally no resistance at room temperature, electronic device technology could advance dramatically. Josephson junction or SQUID digital circuits could render even the fastest computers now available obsolete. For analog and rf circuits, zero resistance could have great implications for speed and noise specifications. Thermal noise disappears in superconductors as $V^2 = 4KTRB$. Never mind Boltzman; R is now zero. With zero resistance, charge mobility — a limiting factor for the speed of any semiconductor material — becomes quite high.

With superconductors, storage “battery” technology would be revolutionized. Imagine an electromagnetic car battery the size and weight of a donut! Charging efficiency would approach 100 percent. Superconducting antennas and transmission lines would improve efficiency and lower system noise figures. Can you imagine 160-meter loading coils with zero resistance?

This is the most exciting development in solid-state physics since the invention of the transistor. The implications may by far outweigh the transistor’s effects on the world. Electronic and electrical power engineers will have to rewrite all the books — again.

**what to watch for**

The radio art is in constant evolution. Here are some of the trends to watch for between now and the advent of the twenty-first century:

- Continued miniaturization of all components, thanks to higher levels of circuit integration and advances in wafer processing techniques.
- Lower supply voltage and current requirements for...
MFJ, Bencher and Curtis team up to give you America’s most popular keyer in a compact package for smooth easy CW

The MFJ-202B tells whether to shorten or lengthen antenna for minimum SWR. Also measure resonant frequency, radiation resistance and reactance.

Exclusive features: individually calibrated resistancescale, expanded reactance range, built-in range extender for measurements beyond scale readings. 1-100 MHz. Uses 9 V battery. 2x4x4 in.

1 KW DUMMY LOAD
Tune up fast, extend life of finals, reduce QRM! Rated 1KW CW or 2KW PEP for 10 minutes. Half rating for 20 minutes. continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 30 MHz, 1.5 to 300 MHz. Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. 7½x6½ in.

$129.95 MFJ-422B

MFJ’s smallest VERSA TUNER
MFJ-9091B $59.95

The MFJ-9091B is MFJ’s smallest VERSA TUNER... when both your space and your budget is limited. Matches dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced and coax lines. 1.8 to 30 MHz. Excellent for matching solid state rigs to lines. Efficient airwound inductor. 4½ balun.

$99.95 MFJ-1224

Free MFJ RTTY/AASCIICW software on disk and cable for VIC-20 or C-64. Send and receive computerized RTTY/AASCIICW with nearly any personal computer (VIC-20, Apple, TRS-80, Atari, TI-99, Commodore 64, 128 etc) Use Kantronics or most other RTTY/CW software. Copies both marks and spaces, any shift (including 170, 245, 850 Hz) and any speed (5-100 WPM RTTY/CW, 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170, 850 Hz shift. Normal reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. 8 x ½ x 6 inches. 12 VDC or 110 VAC with adapter. MFJ-1312, $9.95.

$89.95 MFJ-9598

Impedance match your antenna to your receiver to increase your signal strength with this MFJ-9598 and you may hear signals that you didn’t even know were there. A 20 dB preamplifier with gain control boosts weak stations and a 20 dB attenuator prevents overload. It has switches for selecting between two receivers and two antennas. Covers 1.8 to 30 MHz. 9x2x6 inches. Uses 12 VDC or 110 VAC with MFJ-1312, $9.95.
comparable performance and improved performance, generally among all building-block components.

- Increased use of digital techniques in LO circuitry, and use of DSP for filtering, demodulation, and other functions.
- Appearance of data conversion devices, first at baseband, then at the i-f, and then moving closer to the antenna circuitry.
- Dick Tracy’s two-way wrist radio will become a reality by 1995.

Putting predictions into print preserves the prophet’s prognostications for posterity. It might be amusing, in the year 2007, to dust off your yellowed, musty copy of this issue to see just how far off the mark we were. Happy dreams!

references

K.V.G.
CRYSTAL PRODUCTS

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Band-width</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$61.00</td>
</tr>
<tr>
<td>XF-9E</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$83.00</td>
</tr>
<tr>
<td>XF-9E-01</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$110.00</td>
</tr>
<tr>
<td>XF-9E-02</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$110.00</td>
</tr>
<tr>
<td>XF-9E-10</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>$145.00</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>$89.00</td>
</tr>
<tr>
<td>XF-9E</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>$89.00</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>$89.00</td>
</tr>
<tr>
<td>XF-9M</td>
<td>CW</td>
<td>500 Hz</td>
<td>4</td>
<td>$125.00</td>
</tr>
<tr>
<td>XF-9M</td>
<td>CW</td>
<td>500 Hz</td>
<td>8</td>
<td>$175.00</td>
</tr>
<tr>
<td>XF-9D</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>$21.00</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

WRITE FOR FULL DETAILS OF CRYSTALS AND FILTERS

Export inquiries invited. Shipping: $3.75

Other AMSAT Membership Benefits:

- Newsletter Subscription:
  Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

- Satellite Tracking Software
  Available for most popular PCs.

- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

- Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
EIMAC's new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221

Cards and plaque courtesy W6TC
designing a state-of-the-art receiver

Readily understood — though not greatly utilized — concepts mean better performance

The state of the art in hf receiver design using semiconductors has improved greatly. The use of either CATV-type transistors and double-balanced mixers using hot carrier diodes or double-balanced mixers with switch-type FETs has eased the large-signal handling problem of just a decade ago.

One weak link in the chain, however, remains; this is the synthesizer, with its inherent noise contributions. To a large extent the overall architecture of the receiver and the synthesizer determines its performance, and even the best high-performance components — placed in the wrong sequence — can cause a good design to fail.

systems approach

Because military and commercial users depend on high performance receivers for surveillance and/or point-to-point communication, it’s inevitable that these same technological advances will filter down to the Amateur community. In fact, in a cursory examination, the spec sheets of both commercial and Amateur communications receivers look quite similar.

Besides providing the “essentials,” modern communication receivers offer additional features, sometimes referred to as “bells and whistles”; these features include improved user interfaces or computer interfaces for remote control. Since the commercial and Amateur markets are price-sensitive and also very sensitive to proof of performance, any claims of lower capabilities are noticed. Consequently, when on-the-air tests of some late-model receivers suggested poorer performance than previous models, this raised the question of why, despite the knowledge acquired in recent years, such an inconsistency should occur.

Figure 1 is a functional block diagram of a modern microprocessor-controlled communication receiver. This diagram is representative of most modern design approaches and can be used to evaluate possible advantages and weaknesses, and to point out areas of potential difficulty.

operation

The rf signal is introduced into the receiver in one of two ways:

- at the input of a 30-MHz low-pass filter via a variable attenuator, which is controlled by an overload detection circuit activated at the first and second i-f level;
- or for receiving frequencies below 400 kHz, via a variable attenuator and low-pass filter combination.

The first mixer, which is responsible for the third-order intercept point, is driven by an extremely pure synthesized local oscillator. To terminate the double-balanced mixer properly, a diplexer (high-pass/low-pass filter) is used to absorb energy outside the crystal filter passband. The input impedance of the crystal filter rises significantly outside the passband of the crystal filter.

By Ulrich L. Rohde, KA2WEU/DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458
Rob, WA3QLS  Katherine, KA3IYO  Paul, WA3QPX

Delaware
Amateur Supply

71 Meadow Road, New Castle, Del. 19720  302-328-7728
Factory Authorized Dealer
9-5 Daily, 9-8 Friday, 9-3 Saturday
AEA • ALINCO • AMERITRON • CUSHCRAFT • ICOM
KANTRONICS • KENWOOD • MOSLEY • SANTEC
TELEX HY-GAIN • TENTEC • YAESU • AND MORE!

800-441-7008
New Equipment Order & Pricing

Prices are subject to change without notice or obligation.
Products are not sold for evaluation.
NO Sales Tax in Delaware!
one mile off I-95

SERVICE,
USED GEAR INFO:
302-328-7728

Large Inventory

Daily UPS Service

18 November 1987
THE NEW "KREEPIE PEEPIE" ATV TRANSMITTER

1. New final transistor typically gives more than 1.5 watts output on sync tip with 13.8 vdc applied.
2. Now you can see your own transmitted video with the on-board RF detector/monitor 1 v output.
3. Final RF output test point for setting up blanking pedestal with a voltmeter.
4. Improved lower distortion subcarrier sound generator IC for cleaner audio and 4.5 mHz stability.
5. All this at no increase in price! Single freq. KPA5-c board still $159 delivered*. Two freq. $174.

NEW TX70-1 ATV TRANSMITTER contains the KPA5 and TR relay ready to go in a small 6x5.2x2.5" shielded cabinet. Has both the 10 pin "VHS" camera & RCA phono jack video/audio inputs. If you are one of those with just a downconverter, saw some pictures and was bitten by the ATV bug, then this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just connect its input to the downconverter BNC connector on the back of the TX70-1. $229 delivered.

KPA5-c 70CM ATV XMTR BOARD FEATURES:
- >1 WATT P.E.P. RF OUTPUT ON SYNC TIP.
  Run barefoot for portable. Output properly matches Mirage D15N 15 watt or Mirage D24N-ATV 50 watt linear amp for full output and the Mirage D1010N-ATV to over 50 watts p.e.p.
- FULL COLOR AND SOUND on a small 3.25x4" board
- Wired and tested board runs on external 13.8vdc @ 300ma. supply or 12 V battery
- Accepts composite video from cameras, VCRs, computers, etc.
- 2 audio inputs, one for low Z dynamic mic, one line level from most cameras & VCRs
- Supplied with one xtal on 426.25, 434.0, or 439.25. 2nd xtal add $15. Specify freq. when ordering, check with local ATVers. ARRL Repeater Directory or call us.
- Only 2 channels available in any given area due to video bandwidth of 9.1 mHz.
- Price still $159 delivered via UPS surface in contiguous USA. Transmitters sold only to licensed Technician class or higher amateurs for legal purposes. We verify name, call letters, & QTH in the Callbook. If recently licensed or upgraded send a copy with order.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? Either a TVC-2G or TVC-4G downconverter connected to any TV set tuned to channel 3, and coax cable to a good 70cm antenna to receive. Connect up the TX70-1 or package up the KPA5, add 12 to 14 vdc, antenna, and any home TV camera, VCR, or computer with composite video output. It's that easy!

ACCESSORIES:
- TVC-2G GaAsfet downconv. board wired & tested.....$59
  varicap tuned, 420-450 MHz to ch3. Req 12vdc
- TVC-4G (TVC-2G in cabinet with 120vac supply).....$99
- TVCX-70 crystal controlled GaAsfet downconv.....$99
  specify in freq. & out on ch 3 or 45mhz IF. 2 freq. .....$114
- Hammond 1590D Use for KPA5. 7.3x4.7x2"...$17
1590C 4.6x3.6x2" aluminum box. Fits TVCX-70,...$11
800J 10 pin VHS color camera chassis connector.....$10
VOR Video (horiz sync) operated relay board..........$25
- MIRAGE D15N-ATV 1in/15 out all mode amp.....$119
- MIRAGE D24N-ATV 1in/50 out all mode amp.....$219
- 450 ISOPOLE omni 4dbd vert. gain antenna.........$65
- KLM 440-6X 8.9dbd ant., 28" boom, >50 degree BW $51
- KLM 440-10X 11.2dbd, antenna, 64" boom...........$65
- KLM 440-27 14dbd, 36 deg. BW antenna..........$107
- SAXTON 8285 100ft 50 ohm coax 3.5dbd/C loss....$41
- UG21 type N male connectors for larger ID coax......$5

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $39.
While most commercial or military high-performance receivers employ the input stage combination, most Amateur equipment uses a double-balanced mixer that incorporates adjustable-gain JFETs. As a result of its sensitivity to output impedance changes, the mixer suffers reduction in large-signal performance. The recent trend in mixer design involves the use of termination-insensitive mixers whose cleverly designed bridge circuits ignore the effects of reactive terminations. Passive mixers use hot carrier diodes; switching-type mixers use FETS — for example, a pair of matched SD 100 transistors — and achieve intercept points between +35 and +45 dBm.

Following a six- to eight-pole crystal filter is an amplifier stage which has medium gain and high dynamic range. This is typically achieved through the use of rf feedback. In addition, it is worthwhile to incorporate an AGC circuit between this amplifier and the mixer.

The signal, which is now in the 75- to 100-MHz frequency range, is converted to a low i-f frequency — for example, from 200 kHz to 2 MHz — by the second mixer. The second mixer must also have high dynamic range, but it can be a passive double-balanced mixer. (The latest advances in receiver design have included the use of careful filtering of the local oscillator synthesizer outputs, thereby reducing spurious responses.) The amplifier that follows this mixer compensates for the second i-f mixer losses. This, in turn, is followed by a popular frequency range crystal filter that is readily available from a number of manufacturers.

gain distribution is important

Each of these stages has very little gain — typically less than 12 dB. The main amplification of the signal takes place in the i-f sections. (This is different from what happens in Amateur receiver designs.) The problem with designing most of the gain into the i-f stages has to do with the ability to build the i-f amplifier circuits stable and free of unwanted oscillations. To minimize in-band intermodulation distortion, differential-type amplifiers with AGC stages are used. In many cases this requires a great deal of shielding and careful selection of grounds, since up to 100-dB open loop gain in the i-f section may be required.

One sign of good receiver design is evident when the noise of the first mixer, with no antenna connected, already shows slight AGC action, which can be monitored on the S-meter of the receiver. If signals of 1-μV or better are required before any S-meter action occurs, then the above design guidelines have not been followed.

Although I’ve noted these things thoroughly and repeatedly in previous articles, very few companies have followed through with this concept because it’s much less expensive to move the gain towards the antenna than to build high-gain i-f stages.
fig. 3. Multi-loop frequency synthesizer utilizes carefully separated analog and digital circuits.

Note 1. Boxes with single letter entries are “divide-by” circuits. The divide ratios are indicated below:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Divide-by</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>120/121</td>
</tr>
<tr>
<td>C</td>
<td>Range 3 to 122</td>
</tr>
<tr>
<td>D</td>
<td>Range 883 to 966</td>
</tr>
<tr>
<td>E</td>
<td>1200</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>I</td>
<td>18</td>
</tr>
<tr>
<td>J</td>
<td>100</td>
</tr>
<tr>
<td>K</td>
<td>5/6</td>
</tr>
<tr>
<td>L</td>
<td>Range 3 to 5</td>
</tr>
<tr>
<td>M</td>
<td>Range 9 to 64</td>
</tr>
<tr>
<td>N</td>
<td>18 or 36</td>
</tr>
</tbody>
</table>

Note 2. All boxes labeled with Greek letter "phi" are phase detectors.
Interestingly enough, the NRD 525 receiver, which follows these recommendations but is still fairly inexpensive, is one of the better designs. Figure 2 shows a typical block diagram with the various noise, gain and intermodulation distortion products specified. Such an analysis must be carried out and should be published together with the receiver specifications.

In fig. 1, the internal bus for the receiver that controls a variety of functions transfers digital data streams that consist of short-duration pulses with fast rise times. Consequently, significant shielding is required in this section in order to isolate the digital circuits and their concomitant switching spikes from the analog portion of the receiver. Many modern receivers suffer from this effect, in which background switching noise masks lower level signals. To make things worse, the synthesizer can also pick up some of the switching signals.

**synthesizer design**

Modern receivers should incorporate fully synthesized local oscillators and provide between 1- and 10-Hz resolution. All of the auxiliary frequencies in the design must be derived from the master (oscillator) standard.

The frequency synthesizer in this example uses two main loops in its multi-loop design. VC01, which oscillates between 127 MHz and 139 MHz, is phase locked in steps of 1.2 kHz; its output is then divided by 120 to an output frequency of approximately 1 MHz, which is then mixed with the 79.2-MHz standard. The difference frequency components are introduced into a 78.1-MHz crystal filter which removes all unwanted signals. The other portions of the synthesizer provide auxiliary frequencies. The areas where the phase detectors are located are heavily shielded; fairly high frequencies for the reference detectors are used for best noise performance.

Figure 3 shows a synthesizer that utilizes this design approach. In this design, analog and digital circuits are carefully separated. The sections of the synthesizer most vulnerable to picking up extraneous signals are the lines going into the output VCO (VCO2).
Depending on the type of phase detector used, the lines that feed the tuning diodes can be either very high impedance or low impedance. Inexpensive solutions frequently lead to such high-impedance feeding points, which then become "antennas" collecting all the switching noise. The use of circuits incorporating microwave transistors allows the design of discrete low-impedance amplifiers for this purpose. If the driving point impedances for the tuning diodes can be held at 100 ohms as opposed to the 100-k line impedance typically found, the sensitivity for pickup of stray signals is reduced by a factor of 100,000.

Another reason for noisy synthesizers is the use, in the synthesizer loops, of operational amplifiers that are too noisy. Wherever possible, either discrete low-noise amplifiers or Darlington stages must be used.

**use of microprocessors**

Today's microprocessor-controlled receivers feature built-in clocks, frequency scanning with variable scan rates, availability of at least 100 channels and channel scanning, plus a combination of receiver control functions such as the serial RS-232 or IEEE-488 bus remote control capabilities. Because the BFO and the main oscillator are both synthesized, the combination of the two allows either passband tuning or variable bandwidth.

Another area of interest in the use of microprocessors is the linearization of the transfer characteristic of the tuning range of the oscillator and the linearization of the S-meter. The microprocessor can also switch the tuning rates to correspond to the operating mode and select the appropriate bandwidth receiving crystal filters required for that same mode. Digital implementation of signal analysis allows demodulation of RTTY and Morse code. Many other novel approaches are possible.

**Figure 4** shows the architecture of such an internal computer system. One of the frequent mistakes made in this context is the use of only one microprocessor, which gets overloaded, or the use of four-bit microprocessors. In better radios, eight-bit microprocessors, which can handle all these functions efficiently, are used. The best approach is parallel processing.

**summary**

By following these simple guidelines and using architecture similar to that illustrated in **figs. 1 and 2**, it is possible to build receivers that come close to the limits of physics, yet still remain cost-effective.

**bibliography**


**Radio Shack Parts Place**

**HOLIDAY HAMMING WITH SHACK® GEAR**

---

**Plugs / Adapters**

- **(1)** Eight-Pin Mike Plug. Fits many popular Ham transceivers. #274-025. 2.10
- **(2)** Headphone Adapter. Accepts 1/4" stereo plug. Plugs into 1/4" monaural jack of home com gear. #274-360. 1.89
- **(3)** Mini to Submini Monaural Adapter. Great for HT’s. Accepts 1/8" plug. Plugs into 1/4" jack. #274-327. 1.29

**Boards for Building**

- **(9)** Plug-In Board With Ground Plane. 4 x 5". #276-151. 1.79
- **(10)** Multipurpose Plug-In Board. Three busses. 4 x 4". 1/4" grids. #276-155. 2.99
- **(11)** 44-Position Card-Edge Socket. #276-1551. 2.99

**Hobby Widgets**

- **NEW!**
  - **(19)** Brilliant Red LED With Holder. Incredibly bright! 500 mcd, 20 mA. #276-088. 1.79
  - **(20)** TDA7000 FM Receiver on a Chip. Combines RF mixer, IF and demodulator stages in one IC. With application notes. #276-1004. 3.95

**Parts-Pourri**

- **NEW!**
  - **(21)** Variable Tuning Capacitor. 335 pf. Two section, PC mount. #272-1337. 4.95
  - **(22)** 6.58 pf Trimmers. #272-1340. 2.19
  - **(23)** Thermistor. 271-110. 1.99

**Bench Multimeter**

- **NEW!**
  - **(24)** 1/4 Watt Carbon Film Resistors. Assorted. #273-312. 7.95

**Radar Detector**

- **NEW!**
  - **(25)** Low Noise—34 dB Max. #273-1374. 3.49

**8-Channel Pager**

- Super for Public Service Events. Digitally encoded for private paging. Push a button on transmitter and receiver "beeps" to alert user to check in. With one receiver Transmitter is AC powered. Receiver operates on 3 AAA batteries (extra). #49-710. 99.95

**Coax RF Connectors, Adapters, Crimping Tools & Cutters**

- **NEW!**
  - **(4)** PL-259 Plug. Standard UHF-type connector with screw-on back. #278-205. 4.95
  - **(5)** Outdoor RF Connector Sealant. Designed for TV antenna, satellite dish and other connections. Waterproof and non-corrosive. Stays flexible. #278-865. 2.49
  - **(6)** M-358 Right Angle Adapter. SO-239 plug to PL-259 plug for tight spots. #278-109. 2.19
  - **(7)** NEW! Coax Cable Cutter. Blades do not flatten cable, preserve correct impedance. #278-244. 4.05
  - **(8)** Coax Cable Stripper. Adjustable blades give perfect strips with RG6, RG59, RG58, RG8 and RG2 cables. For cables from 7/16" to 1/4" diameter. #276-240. 11.95

**Hookups for Computers & Peripherals**

- **NEW!**
  - **(14)** IC Insertor/Extractor Set. Helps you install/remove ICs from sockets without bending pins. For 6-pin to 25-pin DIPs. Extractor works with LSI, MSI and DIP devices. Both tools are groundable. #276-1261. 6.95
  - **(15)** IC Pin Aligner. With just a squeeze, bent pins become factory-straight. For 6-pin to 40-pin DIPs. Conductive plastic. #276-1854. 2.99

**Fan & Transformer**

- **NEW!**
  - **(26)** Low Noise. #273-140. 14.95

**88 Semiconductor Guide**

| Fig. Type | Positions | Cat. No. | Ea.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Male</td>
<td>9</td>
<td>276-1537</td>
<td>1.49</td>
</tr>
<tr>
<td>15 Female</td>
<td>9</td>
<td>276-1538</td>
<td>2.49</td>
</tr>
<tr>
<td>16 Female</td>
<td>9</td>
<td>276-1539</td>
<td>1.59</td>
</tr>
</tbody>
</table>

**Semiconductor Reference Guide. Cross-reference/substitution section lists over 80,000 types and low-cost Radio Shack replacements. Data on linear and digital ICs, modules, SCRs, LEDs, diodes, and opto devices. Illustrated, 288 pages. 276-401**

---

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners and more!

Revolving credit from Radio Shack. Actual payment may vary depending on purchases.

---

**Radio Shack**

A DIVISION OF TANDY CORPORATION

Prices apply at participating Radio Shack stores and dealers.
a CAT control system
for the Yaesu FT-757GX

C-64 BASIC routine
tunes popular transceiver

An earlier article on the CAT system, based on the Tandy TRS-80 Model 100, attracted the attention of a considerable number of users of Commodore 64 microcomputers. But while it was a relatively simple task to convert the TRS-80 program for other micros with a standard RS-232C port, it wasn't as easy to convert the program for the popular C-64.

Converting the unique Commodore "inverted TTL level" format is no problem because the CAT system also works with TTL levels. But the standard baud rates of the C-64 stop at 2400, and CAT works at 4800 baud. (In this case, baud and bps give the same number, so we'll stick to "baud," since that's what's used in the Commodore and Yaesu literature.)

It's possible to obtain the proper parameters for 4800 baud using a two-step formula for calculating "user-specified baud rates." Checking the output with an oscilloscope looked promising, but in practice the data transfer wasn't reliable, and bytes sometimes were lost on their way from BASIC to the radio. Commodore specialists have several explanations for this. Some say that it depends on the physical layout of the printed circuit board; others contend that Commodore BASIC has problems handling the NUL character. Whatever the reason, the data didn't always reach the RS-232C output buffer in good order.

In this program these problems are avoided by replacing the BASIC RS-232C statements with routines written in machine language. The parameters are POKEd into temporary storage in memory locations 52592 to 52596. The command byte (see table 1) goes into location 52592. The frequency number is sliced into four bytes (i.e., 12,345.67 kHz converts to 01, 23, 45 and 67), which are stored in the next four locations.

Another problem has also been solved in machine language. The frequency bytes just mentioned are in the CAT Binary Coded Decimal format, and ideally would be passed as such to the RS-232C port. But the Commodore BASIC interpreter expects all numbers to be in decimal form and converts them into hexadecimal when the program is executed. A look-up table is used to reconvert the hex into the proper BCD format. The five bytes are then sent out one by one, starting from the highest address, as required by the CAT system.

BASIC program

The BASIC part of the program (fig. 1) is straightforward and can be segmented as follows:

The program is initialized in lines 100 to 220. A title screen at lines 3000 to 3160 (subroutine) is displayed while the machine language part in lines 4000 to 4114 (subroutine) is being loaded. SYS 52480 is similar to OPEN File No. 1 for 4800 baud, eight bits per byte, two stop bits, and no parity. Line 210 determines the starting frequency.

The main screen is set up in lines 1000 to 1150 (see fig. 2). The keys available for commands are indicated within brackets. The upper row on the keyboard is used for general commands; the lower row - plus "A" and "B" - for tuning in steps of 10 Hz to 100 kHz. "F" is for steps of any size and "Q" for quitting the program.

Note that Band Down and Band Up have different functions, depending on whether the FT-757GX is in Amateur Band or General Coverage mode, and whether or not MR/VFO has been activated (see the FT-757GX Operating Manual). This short program doesn't take into account frequency changes made with Band Down or Band Up, so in order to get the correct screen display, you'll need to reinitialize the program by pressing "F" and entering the actual frequency before using the Fine Tuning keys. This isn't a problem, since you can still go directly to any frequency with the "F" command.

By Kjell W. Strom, SM6CPI, P.O. Box 2, I-28041 Arona, Italy

---

By Kjell W. Strom, SM6CPI, P.O. Box 2, I-28041 Arona, Italy
Table 1. Command byte codes.

<table>
<thead>
<tr>
<th>function</th>
<th>hexadecimal</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band Down (multi-function)</td>
<td>0B</td>
<td>8</td>
</tr>
<tr>
<td>Band Up (multi-function)</td>
<td>07</td>
<td>7</td>
</tr>
<tr>
<td>Dial Lock (on/off)</td>
<td>04</td>
<td>4</td>
</tr>
<tr>
<td>Clarifier (on/off)</td>
<td>09</td>
<td>9</td>
</tr>
<tr>
<td>Split Frequency (on/off)</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>Switch between VFO A and B</td>
<td>05</td>
<td>5</td>
</tr>
<tr>
<td>Transfer VFO to Memory</td>
<td>03</td>
<td>3</td>
</tr>
<tr>
<td>Transfer Memory to VFO</td>
<td>06</td>
<td>6</td>
</tr>
<tr>
<td>Exchange between VFO and Memory</td>
<td>0B</td>
<td>11</td>
</tr>
<tr>
<td>Temporary check of Memory</td>
<td>02</td>
<td>2</td>
</tr>
<tr>
<td>Frequency Set</td>
<td>0A</td>
<td>10</td>
</tr>
</tbody>
</table>

fig. 1. BASIC language program for CAT control of Yaesu FT-757GX.

```
10 REM ************************************
20 REM CAT CONTROL FOR YAESU FT-757GX
30 REM AND COMMODORE 64
40 REM BY KJELL W. STROM, SM6CPI
50 REM JUNE 5, 1987
60 REM ************************************
70 REM
100 REM *** LOAD ML AND OPEN FILE FOR 4800 BAUD ***
110 GOSUB 3000;GOSUB 244040;SYS 244040
200 REM *** SET INITIAL FREQ (10000 KHZ) ***
210 A=10000
220 GOSUB 2100
1000 REM *** MAIN SCREEN ***
1010 PRINTCH$(147)"YAESU FT-757GX CAT PROGRAM BY SM6CPI"
1015 PRINT:PRINT:PRINT
1020 PRINT"NEW FREQUENCY [V]"
1030 PRINT;PRINT;PRINT;PRINT"
1040 PRINT"<< << << <<";
1050 PRINT[A]100
1060 PRINT
1070 PRINT"10 5 1 . .01 .01 .1 5 10"
1080 PRINT"[2] [3] [C] [V] [B] [M] [M] [I] [I] [I] /J"
1090 PRINT"[DOWN]"
1100 PRINT"[1] BAND DOWN [2] BAND UP"
1150 PRINT"[HOME][DOWN][DOWN][HOME][UP][F]"
1160 GOSUB 2800;GOSUB 2100
1170 IF C$="B" THEN A=A:.01;GOTO 1600
1180 IF C$="W" THEN A=A+.01;GOTO 1600
1190 IF C$="V" THEN A=A-1;GOTO 1600
1200 IF C$="M" THEN A=A-.1;GOTO 1600
1210 IF C$="C" THEN A=A-1:GOTO 1600
1220 IF C$="S" THEN A=A-.2;GOTO 1600
1230 IF C$="X" THEN A=A-.5;GOTO 1600
1240 IF C$="Z" THEN A=A-4.5;GOTO 1600
1250 IF C$="T" THEN A=A-10.6;GOTO 1600
1260 IF C$="F"/"" THEN A=A-10.6;GOTO 1600
1270 IF C$="M" THEN A=A-1;GOTO 1600
1280 IF C$="P" THEN A=A+1:GOTO 1600
1290 IF C$="S" THEN A=A+1:GOTO 1600
1300 IF C$="T" THEN A=A+2.5;GOTO 1600
1310 IF C$="X" THEN A=A+2.5;GOTO 1600
1320 IF C$="Z" THEN A=A+2.5;GOTO 1600
1330 IF C$="W" THEN A=A+2.5;GOTO 1600
1340 IF C$="V" THEN A=A+2.5;GOTO 1600
1350 IF C$="S" THEN A=A+2.5;GOTO 1600
1360 IF C$="F" THEN A=A+2.5;GOTO 1600
1370 IF C$="M" THEN A=A+1;GOTO 1600
1380 IF C$="P" THEN A=A+1;GOTO 1600
```

November 1987 27
RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5" and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. (MHz)</th>
<th>Power (Watt)</th>
<th>Input</th>
<th>Output</th>
<th>NF-dB</th>
<th>Gain-dB</th>
<th>DC +Vdc</th>
<th>Power A</th>
<th>RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0508G</td>
<td>50-54</td>
<td>1</td>
<td>170</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>28</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>0610G</td>
<td>50-54</td>
<td>10</td>
<td>170</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>1409G</td>
<td>144-148</td>
<td>2</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>1410G</td>
<td>144-148</td>
<td>10</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>1412G</td>
<td>144-148</td>
<td>30</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>20</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>2210G</td>
<td>220-225</td>
<td>10</td>
<td>130</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
<td>21</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>2212G</td>
<td>220-225</td>
<td>30</td>
<td>130</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
<td>16</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>4410G</td>
<td>420-450</td>
<td>10</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>UHF</td>
<td></td>
</tr>
<tr>
<td>4412G</td>
<td>420-450</td>
<td>30</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>UHF</td>
<td></td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete suffix over model number). All units cover full amateur band—specify 10 MHz bandwidth for 420-450 MHz amplifier.

Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28V), Commercial, etc. also available—consult factory.
Commands entered from the keyboard are decoded by lines 1160 to 1590. SYS 52526 sends the bytes to the radio without converting from hex to BCD, since this isn't required for the single-byte commands.

Verification that the frequency is inside the range of the FT-757GX is accomplished with lines 1600 to 1650.

In lines 2100 to 2510 the frequency parameter is sliced into four bytes, as described above, after having been converted into a string and having found the position of the decimal point. SYS 52512 is the call for sending out the frequency byte after a hex-to-BCD conversion.

The frequency input subroutine used with the "F" command is contained in lines 2800 to 2860.

The subroutine for the QUIT command is in lines 2900 to 2940.

The last part of the program contains subroutines for the title screen and for loading of the machine language part, as mentioned before.

The numbering of the program lines may seem haphazard; this is because some numbers were intentionally omitted in order to reduce the time needed for some of the GOSUBs and GOTOs. Renumbering to a tighter sequence may slow down the program a little.

After typing in the program, SAVE it and type RUN 10000 /RETURN/ to confirm that the DATA lines have been entered correctly. Otherwise, if there's a mistake in the DATA and you try a RUN, you may lose the program!

interface

An interface circuit serves two purposes: it translates the input level to a suitable output level and stops potentially harmful interference from one connected unit from reaching the other, and vice versa.

Both the C-64 and the FT-757GX CAT system work with the same TTL levels, but the current needed to pull the CAT SI line to low, through a 680-ohm resistor, is probably higher than can be considered safe for the delicate C-64 CIA chip. We also want to minimize the possibility of computer noise reaching the receiver and of transmitter rf reaching the computer.

The Yaesu FIF-232C interface does this job. It accepts the inverted TTL level format from the C-64 if the internal switch S01 is set to the position opposite from nor-
mal. Since it also works with standard RS-232C format and with the two-way CAT systems of the FT-980, FT-757GXII, and FT-767GX, it can be regarded as a very flexible solution, especially since it has its own built-in power supply.

For our purpose we can also use the simple interface circuit shown in fig. 3. It receives 5 volts from the C-64 and can be assembled on a small IC-spaced perforated board as close as possible to the 24-position user port card edge connector. The cable from the TIL111 optocoupler output side should be shielded, with the screen connected to ground at the transceiver side only, not to computer ground. Connect all unused input pins on the 7404 IC to ground, together with pin 7.

summary

This article has been intended to show how easily you can interface and use the CAT system with the Commodore 64 and the Commodore 128 in C-64 mode. It also offers four machine language routines you can use in much more powerful programs, thereby adding your own special features to one of today's most appreciated transceivers.

references

Now! In America

For the first time, the AR2002 is available in the U.S.A. Acclaimed worldwide for its full spectrum coverage, its superior sensitivity, excellent selectivity and convenient, compact design; it has all the features a sophisticated and discerning public service band radio user desires. Experts in Europe, and around the world report excellent performance in independent lab tests. For example: sensitivity across all bands will typically exceed .3 microvolts in NFM. And now the AR2002 is available to you exclusively through this offer.

Performance Above and Beyond

You’ll hear signals from 25 through 550 MHz, plus 800 MHz through 1.3 GHz. In any mode: narrow band FM, wide band FM, or AM. Search through entire bands, or enter selected frequencies into any of 20 memory channels. The sidelighted LCD gives full information on status and programming. Profession quality hinged keys and a digitized front panel control knob make tuning easier than ever before. There’s even a real time clock with backup, a signal strength meter and a front panel head phone jack. Plus, programmable search increments, a laboratory quality BNC antenna connector with switchable attenuator, full memory backup, and power cords for AC or DC operation. A professional quality swivel mount telescoping antenna is also supplied.

...And More!

Every AR2002 has a special connector on the rear panel. It interfaces to our custom RC-pack. A little device that makes the AR2002 controllable by ANY computer with an RS-232C port. The possibilities that result from this option are nearly limitless. In effect, virtually your only monitoring constraint will be your imagination.

Yet Convenient to Own

The AR2002 is available exclusively through us — so call us direct, TOLL FREE. We’ll be happy to answer any questions you may have. And if you respond like thousands of other monitor users the world over, we’ll be shipping you an AR2002 within 48 hours by surface UPS for only $455. Plus we pay all freight and handling charges. Remember to ask about our custom test and triple extended buyer protection warranty plans, and our express shipping option. If you’re not satisfied within 25 days, return your AR2002. We'll refund your purchase and return shipping costs. There are no catches, no hidden charges.

The AR 2002
The Professional Monitor Receiver

10707 East 106th Street, Indianapolis, IN 46256
Call Toll Free 800-445-7717
COD slightly higher

(7¾"D × 5¾"W × 3¾"H Wt. 2 lbs., 10 oz.)
TURBO PC/XT COMPATIBLE
$649.00
PRICE INCLUDES
PHOENIX BIOS
HI-RES SAMSUNG MONITOR
2 DISK DRIVES DS/DD 360K
DELUXE KEYBOARD
MS DOS 3.1 WITH MANUAL
PRINTER PORT
SERIAL PORT
GAME PORT
CLOCK CALENDER
256K MEMORY
4.77 OR 8MHZ OPERATION
EXPANDABLE TO 640K
8 SLOT MOTHER BOARD
FREE SOFTWARE

WE STOCK
FLOPPY DISK DRIVES
HARD DISK DRIVES
MONITORS CABLES
I/O CARDS MODEMS
OCR PC-FAX EGA
SERVICE & REPAIRS

AZOTIC INDUSTRIES INC.
2026 W BELMONT
CHICAGO ILL 60618
(312)-975-1288
1 YEAR WARRENTY ON DRIVES MONITORS
KEYBOARD POWER SUPPLIES.
90 DAY WARRENTY ON MOTHER BOARDS
AND I/O CARDS. EXTENDED WARRENTY
AND MAINTANCE AVAILABLE.

ICOM

IC-735
IC-735 Gen. Cvg. Xcvr
IC-751A Gen. Cvg. Xcvr
IC-28A/H FM Mobile 25w/45w
IC-37A FM Mobile 25w
IC-900 Super Multi-Band Mobile
IC-04AT UHF HT
IC-48A UHF 45w
IC-39A FM Mobile 25w
IC-02AT FM HT
IC-32AT Micro HT

KENWOOD

TS-440SAT
TS-940SAT Gen. Cvg. Xcvr
TS-430S Gen. Cvg. Xcvr
TS-711A All Mode Base 25w
TR-751A All Mode Mobile 25w
TS-440SAT Gen. Cvg. Xcvr
TM-2550A FM Mobile 45w
TM-2550A FM Mobile 45w
TM-2570A FM Mobile 70w
TH-205 AT, NEW 2mt
TH-215A, 2mt HT Has It All
TH-215B 2M HT
TH-311BT 220 HT
TM-3500A FM 220 MHz 26w

YAESU

FT-757GX
FT-757 GX Gen. Cvg. Xcvr
FT-767 4 Band New
FT-211 RH
FT-290R All Mode Portable
FT-23 R/T Mini HT
FT-209RH RM Handheld 5w
FT-720S All Mode Xcvr.
FT-727R 2M/70CM HT
FT-720RH 2M/70CM 25w

JUN'S ELECTRONICS

3919 Sepulveda Blvd.
Culver City, CA 90230
213-390-8003
a thumbwheel frequency selector for the Yaesu FT-757GX

If you happen to own a Yaesu FT-757GX transceiver, this one-evening project will make its operation more convenient and enjoyable. If you don’t own one, you may find that this article will show the ease and simplicity with which features of modern computer-controllable radios can be accessed.

Because the 757’s minimum incremental tuning is in 500-kHz steps and the tuning dial moves only 10 kHz per rotation, any frequency change in other than 500-kHz steps takes several presses of the button and an average of 12-1/2 knob rotations! This project allows thumbwheel entry of any frequency, in or out of the current band. The design makes no modifications to the radio and connects to it with only two plugs on the back panel. A circuit board layout is given for those who wish to etch a board; the design can also be wire-wrapped, with no degradation in performance. All normal radio functions — including tuning with normal front panel controls — are still available.

design considerations

It’s best to think of the thumbwheel frequency selector (TWFS) as a unidirectional data source. Yaesu provided an interface to accept commands from an external source on the back panel of the 757, which, among other things, accepts serially encoded binary data as requests for frequency selection options; these are documented on page 10 of the 757 Technical Supplement Manual. In addition to duplicating front panel operations, a command is provided for loading any specific frequency. Using this command, discrete frequencies may be entered without all the front panel dial spinning. The 757 never sends data, so no provision needs to be made for data flow from the transceiver.

This circuit sends a prepackaged stream of 50 bits to the radio at 4800 bits per second every time you push a “load” button. The outputs of six BCD thumbwheel switches are part of the 50-bit stream and indicate what frequency is requested. The thumbwheels provide frequency selection with a resolution of 100 Hz. A two-wire data cable goes from the TWFS to the radio back panel and connects to pins 1 and 2 (the left and middle pins as viewed from the back) of a three-pin connector formally designated as J12 or the EXT CNTL jack. (See pages 9, 10, and 40 of the 757 Technical Supplement Manual for additional details.)

This pair of data wires, carrying TTL voltage levels, is the only connection to the 757 radio that’s necessary. But in order to operate the TWFS, a power source providing 5 volts is also required. One additional connection to the 757 back panel provides 13.8 vdc at 800 mA through an RCA phono plug. Using a three-terminal fixed regulator to convert the 13.8 volts provided by the transceiver to a regulated 5 volts, the prototypes were measured to draw 165 mA from the radio. If no other accessories use this connection, it may be used to power the TWFS.

design details

The schematic for the TWFS is shown in fig. 1. The 555 provides the clock pulses to the 74LS393 at a frequency of 19.2 kHz. The internal Q₁ and Q₆ stages of the 393 divide the signal frequency by 4 and the remaining six count-stages provide a 6-bit binary number updated at the rate of 4800 Hz. The frequency adjustment of the 555 is done with a ten-turn rheostat. Frequency stability of the 555 is sufficient in this application because of the short bursts of data that are sent. For instance, assume that the Yaesu can tolerate a 1/8 bit error in order to read the data correctly. A 1/8 bit error on the 50th bit implies 0.25-percent relative error, allowing a frequency range of the 555 from 19.152 to 19.248 kHz.

The 393 is configured as a 6-bit counter that automatically shuts itself off when it gets to a count of 50. Every time the load button is pressed, the counter is reset to zero and counts to 50 one more time. The 6-bit binary number generated by the 393 is interpreted by the three 74150 and one 153 multiplexers so that one of 50 TTL levels are sequentially provided at the output of the 153.

When no data is being sent (i.e., you haven’t pressed the load button recently), both address lines to the 153 are high and the HALT signal on pin 13 of
Table 1. Wiring and data description.

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Data source</th>
<th>Wire to</th>
<th>Description</th>
<th>Bit no.</th>
<th>Data source</th>
<th>Wire to</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>74150A</td>
<td>8</td>
<td>partial bit</td>
<td>26</td>
<td>74150B</td>
<td>21</td>
<td>1 MHz - 1</td>
</tr>
<tr>
<td>1</td>
<td>-7</td>
<td>1</td>
<td>start</td>
<td>27</td>
<td>-20</td>
<td>p19</td>
<td>1 MHz - 2</td>
</tr>
<tr>
<td>2</td>
<td>-6</td>
<td>1</td>
<td>10 Hz - 1</td>
<td>28</td>
<td>-19</td>
<td>p22</td>
<td>1 MHz - 4</td>
</tr>
<tr>
<td>3</td>
<td>-5</td>
<td>1</td>
<td>10 Hz - 2</td>
<td>29</td>
<td>-18</td>
<td>p21</td>
<td>1 MHz - 8</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>1</td>
<td>10 Hz - 4</td>
<td>30</td>
<td>-17</td>
<td>0</td>
<td>stop</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>1</td>
<td>10 Hz - 8</td>
<td>31</td>
<td>-16</td>
<td>1</td>
<td>start</td>
</tr>
<tr>
<td>6</td>
<td>-2</td>
<td>p4</td>
<td>100 Hz - 1</td>
<td>32</td>
<td>-20</td>
<td>p24</td>
<td>1 MHz - 1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>p3</td>
<td>100 Hz - 2</td>
<td>33</td>
<td>-17</td>
<td>p32</td>
<td>10 MHz - 2</td>
</tr>
<tr>
<td>8</td>
<td>-23</td>
<td>p6</td>
<td>100 Hz - 4</td>
<td>34</td>
<td>-16</td>
<td>p26</td>
<td>10 MHz - 4</td>
</tr>
<tr>
<td>9</td>
<td>-22</td>
<td>p5</td>
<td>100 Hz - 8</td>
<td>35</td>
<td>-15</td>
<td>p25</td>
<td>10 MHz - 8</td>
</tr>
<tr>
<td>10</td>
<td>-21</td>
<td>0</td>
<td>stop</td>
<td>36</td>
<td>-4</td>
<td>1</td>
<td>100 MHz - 1</td>
</tr>
<tr>
<td>11</td>
<td>-20</td>
<td>1</td>
<td>start</td>
<td>37</td>
<td>-3</td>
<td>1</td>
<td>100 MHz - 2</td>
</tr>
<tr>
<td>12</td>
<td>-19</td>
<td>p8</td>
<td>1 kHz - 1</td>
<td>38</td>
<td>-2</td>
<td>1</td>
<td>100 MHz - 4</td>
</tr>
<tr>
<td>13</td>
<td>-18</td>
<td>p7</td>
<td>1 kHz - 2</td>
<td>39</td>
<td>-1</td>
<td>1</td>
<td>100 MHz - 8</td>
</tr>
<tr>
<td>14</td>
<td>-17</td>
<td>p10</td>
<td>1 kHz - 4</td>
<td>40</td>
<td>-23</td>
<td>0</td>
<td>stop</td>
</tr>
<tr>
<td>15</td>
<td>-16</td>
<td>p9</td>
<td>1 kHz - 8</td>
<td>41</td>
<td>-22</td>
<td>1</td>
<td>start</td>
</tr>
<tr>
<td>16</td>
<td>74150B</td>
<td>8</td>
<td>p12</td>
<td>42</td>
<td>-21</td>
<td>1</td>
<td>10 kHz - 1</td>
</tr>
<tr>
<td>17</td>
<td>-7</td>
<td>p11</td>
<td>10 kHz - 2</td>
<td>43</td>
<td>-20</td>
<td>0</td>
<td>10 kHz - 4</td>
</tr>
<tr>
<td>18</td>
<td>-6</td>
<td>p14</td>
<td>10 kHz - 4</td>
<td>44</td>
<td>-19</td>
<td>1</td>
<td>10 kHz - 8</td>
</tr>
<tr>
<td>19</td>
<td>-5</td>
<td>p13</td>
<td>10 kHz - 8</td>
<td>45</td>
<td>-18</td>
<td>0</td>
<td>stop</td>
</tr>
<tr>
<td>20</td>
<td>-4</td>
<td>0</td>
<td>stop</td>
<td>46</td>
<td>-17</td>
<td>1</td>
<td>start</td>
</tr>
<tr>
<td>21</td>
<td>-3</td>
<td>1</td>
<td>start</td>
<td>47</td>
<td>-16</td>
<td>1</td>
<td>100 kHz - 1</td>
</tr>
<tr>
<td>22</td>
<td>-2</td>
<td>p16</td>
<td>100 kHz - 1</td>
<td>48</td>
<td>-HALT</td>
<td>command</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-1</td>
<td>p15</td>
<td>100 kHz - 2</td>
<td>49</td>
<td>-HALT</td>
<td>to load</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-23</td>
<td>p18</td>
<td>100 kHz - 4</td>
<td>50</td>
<td>-HALT</td>
<td>frequency</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-22</td>
<td>p17</td>
<td>100 kHz - 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The column headed “Wire to” lists either a header pin number, a “0,” or a “1.” Header pin numbers 1 and 2 are grounded. Each of the remaining 24 header pins must have a 10k pullup resistor. “0” bits are wired to ground and “1” bits are wired to the 580-ohm pullup resistor. The column headed “Description” indicates how the bit will be interpreted by the 757 transceiver. Remember that the 150s invert the data.
fig. 2. Upper (component) side artwork of frequency selector circuit. Be sure to use IC sockets that allow soldering on the top side of the board.

fig. 3. Lower (major foil) side artwork of frequency selector circuit.
NEW PRICE!

ANTENNA POLARITY SWITCHER MODEL APS-1

The APS-1 is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis.

The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.

In addition to switchable outputs for two antennas, the APS-1 also contains a 6-13 volt regulated DC power supply. This feature is designed for powering items such as preamplifiers, VHF/UHF converters, etc., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

Power Requirement (AC) .................................. 117V ± 10% AC 50/60 Hz 15 Watt
Power Requirement (DC) .................................. 11-16 VDC 500 mA

Outputs .......................................................... Two 12 VDC unregulated, switched (antenna relay supply).

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

P.O. BOX 1000 MORGAN HILL, CALIFORNIA 95037 (408) 779-7363 OUTSIDE CALIF. (800) 538-2140

FREE CATALOG!

Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-to-find precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.

JENSEN TOOLS INC. Dept. HR 7815 S. 46th Street Phoenix, AZ 85044 (602) 966-0241

Electronic Repair Center

Servicing

Amateur Commercial Radio

The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing "Hams" for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400
the 153 is available as data — a TTL high level. As soon as you press the load button, the 393 counter clears to zero and pin 8 of 74150A is sent out as data. Because your button presses aren’t synchronized with the clock, this first bit of data may or may not be held for a full 208.3 μsec (1/4900). That’s OK because it’s a TTL high signal — the same as the quiescent voltage level. In effect, the bit sequence has started but because it doesn’t recognize the TTL high level as the first bit.

The next 40 bits (bits 1-40) encode the thumbwheel-selected frequency digits. Data is sent in four 8-bit chunks. Each chunk is prefixed with a start bit (TTL low) and followed by a stop bit (TTL high), yielding a total of 40 bits. Within each 8 bits, two BCD numbers are sent least significant bit first. These numbers are read directly from the contacts of the thumbwheels, necessitating selection of thumbwheel switches with BCD outputs. The frequency is sent least significant digit first. The 100-MHz digit and the 10-Hz digit are permanently wired as zero. The 10-MHz through 100-Hz digits are read from the thumbwheels.

The last 8-bit value sent is decimal 10, which indicates to the transceiver that all the previous data should be interpreted as a frequency. The start bit and the first 6 bits of this data are retrieved through the 150/153 multiplex chain as all other bits were. The last 3 bits (0,0,1, sent in that order) actually reflect the status of the counter HALT signal. During the last 3 bits (48-50) the HALT line, which goes high to disable the counter when a count of 50 is reached, is fed through the 153. During counts 48 and 49, it is false (TTL low); on the 50th count, it goes true (TTL high). Because 555 pulses are locked out with this same signal, the data line stays indefinitely high.

Note that the 150 chip inverts data before passing it to the 153. This is the way most BCD switches work — grounding the logical true pins. Bits 0-47 are sent through the 150s and so are wired inverted. Bits 48-50 (the HALT line) are not inverted by the 153 alone.

### construction

The artwork for a double-sided circuit board is shown in figs. 2 and 3. A parts list is provided. The entire prototype was built using available components, though substitutions may be made. The only critical parts values are in the 555 timer circuit, and even these values could be recalculated to allow use of what you have in stock, following the formulas provided in manufacturers' data books. Although low-power Schottky integrated circuits are called for wherever possible, standard TTL chips would suffice. The power supply drain will increase, but no difference in operation will be noticed.

The circuit is simple enough to be wire-wrapped by hand; in fact, the prototype was wired on two small prototype boards with all the little holes. Provision is made on the pc board for a 7805 voltage regulator and its two bypass capacitors, assuming the 13.8 volt supply from the radio will be used. This portion of the circuit is not shown on the schematic. Refer to a manufacturer's data book or the ARRL’s Radio Handbook for details about the 7800 family of regulators. The connections to the 48 data lines of the 150s are listed in table 1.

Power connections and unused pins for all ICs are tabulated in table 2. I advise the following general order of construction and check-out. Using IC sockets, wire the entire circuit, including all non-IC components. Component placement — following the markings on the circuit board — should be straightforward. Each of the IC positions is marked with a square pad to indicate pin 1. Three columns of ten holes provide a mount for the SIP resistor packages. If SIPS aren’t available, mount nine 10k resistors on end, then connect all the tops of the resistors together and into the tenth hole (5 volts). Three holes are provided for a horizontal-style ten-turn potentiometer. Two holes relatively close together provide a mount for a radial lead, 13.8-volt decoupling capacitor, but a larger axial lead capacitor can be mounted by doubling one lead back next to its casing.

Four off-board connections need to be made. The power and data connections are each made with two wire cables. The load switch connects to the board...
with three wires. Each of these connections can use 0.1-inch space header strips for neatness. The connection to the thumbwheels is made with a 26-pin 0.1-inch space dip header. Twenty-five pins are needed (24 BCD data lines and one common ground line); they’re listed in table 1.

Install the 7805 regulator. A mounting hole is provided for laying the regulator flat on its back, but it can be left upright if you wish. In either case, a heatsink is suggested. Apply power and verify that the correct voltages are applied to the proper IC socket pins. With the power off, insert only the 555. Then — with the power back on — check to see that pin 14 of the 74LS10 socket is receiving an oscillating TTL signal. Adjust the ten-turn potentiometer until a frequency of 19.20 kHz is obtained. Turn the power off.

Install the 393, the 10, and the 74LS00. Apply power again and confirm that pins 2 and 12 of the 393 are stable at a TTL low level. Pressing and holding the load switch should make these pins go to a high level. As you’re holding in the switch, pin 1 of the 393 should be receiving an oscillating signal. Release the load switch. Pin 1 should stop oscillating in approximately 10.4 msec (the time needed to send 50 bits). If a digital event counter is available, measure pin 5 of the 393. It should be low while the load button is depressed and count 25 low-to-high transitions when the load button is released. Many frequency counters can be used as event counters by locking their count gate open.

With the power off, install the remaining four ICs. Turn on the power one last time, using the plug on the back of the radio if that’s your final intention. At this point, the data output (pin 9 of the 153) should be stable in a TTL high state and a valid 5-byte sequence of data should appear whenever the load button is pressed and released. Connect the ground side of the data connection to the left side and the data line itself to the center pin of the three-pin connector on the back of the 757 (J12). Dial a valid Amateur band frequency on the thumbwheels and press the load button. The radio should switch directly to that frequency!

If the transceiver doesn’t switch to the requested frequency after you release the load button, most likely one of the data lines into the 150 multiplexers has been wired incorrectly. If, after careful checking, everything looks correct, the following procedure may reveal the problem. Disconnect pin 3 of the 555 from its IC socket (bend it out horizontally) and plug a slowly oscillating TTL signal (about 4 Hz) or a low-pulse generator into pin 3 of the socket. Press and release the load switch. A TTL high level should be available as output data. Every four oscillations of the signal generator should cause pin 5 of the 393 to change and the data line to the radio should update. Set the frequency to 100000 and confirm the bit sequence shown in table 3(A). A frequency of 299999 should provide the bit sequence shown in table 3(B).

### conclusion

This should be a fairly simple project for anyone who has worked — even just a little — with digital logic circuits. The idea of simply multiplexing hard-wired data sequentially out a data line is about as simple a communication scheme as possible. I hope others will expand this concept to enable a computer to provide data to the radio. I know useful commercial programs are available, but designs that add greatly to operating convenience don’t need to be difficult to do yourself!

Ironically, although I’ve had fun designing the circuit and building several copies of it, I no longer have a 757 with which to use it. Therefore, I wish to express thanks to Gary LaPook, KA9UHH, for the use of his radio during the design of the project and for proofing the first prototype under actual use conditions. There’s a hamfest coming up. I wonder what a used 757 might cost?

---

**Table 2. Power connections and unconnected pins for ICs.**

<table>
<thead>
<tr>
<th>IC</th>
<th>+5 volts</th>
<th>Ground</th>
<th>Not Connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>555</td>
<td>8</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>74LS393</td>
<td>14</td>
<td>7</td>
<td>3, 4</td>
</tr>
<tr>
<td>74LS10</td>
<td>14</td>
<td>7</td>
<td>8-11</td>
</tr>
<tr>
<td>74LS00</td>
<td>14</td>
<td>7</td>
<td>8-10</td>
</tr>
<tr>
<td>74LS153</td>
<td>16</td>
<td>8</td>
<td>1, 8-7</td>
</tr>
<tr>
<td>74150</td>
<td>24</td>
<td>12</td>
<td>None</td>
</tr>
</tbody>
</table>

**Table 3. Bit sequences for two sample frequencies: (A) 10.000 MHz, and (B) 29.999 MHz.** The data sent by the TWFS will be interpreted by a normal ASCII computer terminal as the characters listed. Tenth bit groups must be sent with a maximum of 100 msec between them in order to be interpreted correctly by the transceiver.

(A) 10.000 MHz

<table>
<thead>
<tr>
<th>Bits 1-10</th>
<th>0 0000 0000 01 cntrl-@</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-20</td>
<td>0 0000 0000 01 cntrl-@</td>
</tr>
<tr>
<td>21-30</td>
<td>0 0000 0000 01 cntrl-@</td>
</tr>
<tr>
<td>31-40</td>
<td>0 1000 0000 01 cntrl-A</td>
</tr>
<tr>
<td>41-50</td>
<td>0 0101 0000 01 line feed</td>
</tr>
</tbody>
</table>

(B) 29.999 MHz

<table>
<thead>
<tr>
<th>Bits 1-10</th>
<th>0 0000 1001 1 cntrl P (8 bit set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-20</td>
<td>0 1001 1001 1 cntrl Y (8 bit set)</td>
</tr>
<tr>
<td>21-30</td>
<td>0 1001 1001 1 cntrl Y (8 bit set)</td>
</tr>
<tr>
<td>31-40</td>
<td>0 0100 0000 1 cntrl-B</td>
</tr>
<tr>
<td>41-50</td>
<td>0 0101 0000 01 line feed</td>
</tr>
</tbody>
</table>
Hustler VHF and UHF antennas offer a combination of gain, durability and value which have made them the antenna most often demanded for repeater applications.

**Reliability and Performance - Beyond Your Expectations**

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>G7 - 144</strong></td>
<td>- <strong>Electrical</strong>&lt;br&gt;  - Gain: 7dBd&lt;br&gt;  - VSWR: 3 MHz under 1.5:1&lt;br&gt;  - Lightning Protection: Shunt Fed - DC ground&lt;br&gt;  - Termination: Type N Female&lt;br&gt;  - <strong>Mechanical</strong>&lt;br&gt;  - Length: 15'4&quot;&lt;br&gt;  - Weight: 10 lbs.&lt;br&gt;  - Wind Survival: 100 mph&lt;br&gt;  - Mounting: Up to 2&quot; mast.</td>
</tr>
<tr>
<td><strong>G7 - 220</strong></td>
<td>- <strong>Electrical</strong>&lt;br&gt;  - Gain: 7dBd&lt;br&gt;  - VSWR: 4 MHz under 1.5:1&lt;br&gt;  - Lightning Protection: Shunt Fed - DC ground&lt;br&gt;  - Termination: Type N Female&lt;br&gt;  - <strong>Mechanical</strong>&lt;br&gt;  - Length: 10'2&quot;&lt;br&gt;  - Weight: 7.0 lbs.&lt;br&gt;  - Wind Survival: 110 mph&lt;br&gt;  - Mounting: Up to 2&quot; mast.</td>
</tr>
</tbody>
</table>
| **G6 - 440** | - **Electrical**<br>  - Gain: 6dBd<br>  - VSWR: 8 MHz under 1.5:1<br>  - Lightning Protection: Shunt Fed - DC ground<br>  - Termination: Type N Female<br>  - **Mechanical**<br>  - Length: 7'3"

HUSTLER, INC. - One Newtronics Place - Mineral Wells, Texas 76067 - (817) 325-1386
a new country for you?
We were sitting on the beach in front of the luxury hotel. As cool trade-winds caressed us, we enjoyed a second tall, iced glass of Long Island Iced Tea (1/3 each vodka, gin, and white rum, with a splash of cola for color).

"How about going on a DXpedition to a new country?" I asked The Big DXer.

"No way," he replied. "Look at the cost of the Bear Island trip. Activating a new country is too expensive these days."

I gestured toward the horizon. "There's your new country — only a few miles away. You can spend your nights right here in this dandy resort, living it up, and helicopter over and back each day. A 15-minute trip to a new country! Think how many hams you'd make very happy!"

The Big DXer stared at the island. "It looks easy," he said. "What's the trick? Why hasn't it been activated before?"

"Well," I replied, "there's a little problem . . . ."

The barren island of Kahoolawe lies a scant dozen miles south of the island of Maui, Hawaii. Uninhabited, it has no water or electric power. Jurisdiction rests with the United States Navy, much as in the case of Midway Island; the same reasons that Midway is accepted as a separate DX country, then, should be applicable to Kahoolawe.

The "little problem" is that this island is known as the "bombing island" because it's used by the military for bombing and assault practice. The whole surface of the island, it is said, is covered with unexploded ordinance. There's a boat dock, however, with an area around it that's considered safe for occupancy. Armed with a gasoline generator, a transceiver, and a portable antenna, DXers could conceivably operate from this area — if they could obtain permission to land.

Squinting at the island, The Big DXer admitted, "It would be nice to know who in the Navy to approach. Maybe a DXpedition to Kahoolawe is in the cards after all. I'll have another Long Island Iced Tea."

the 10, 18, and 24-MHz bands

As a result of an ITU conference some years ago, Radio Amateurs were granted operating privileges in narrow bands in the 10, 18 and 24-MHz region. Let's look at these bands as they appear in the fall of 1987, together with some simple antennas that will get you on these bands quickly.

Although the 50 kHz-wide 10-MHz band (10.100 to 10.150 MHz) has enjoyed a modest amount of CW activity over the years, it's still largely ignored by most Amateurs. One or two loud commercial stations operating in this range must be avoided, but otherwise the band is good for DX — if activity can be found.

It seems to me that in order to awaken general interest in the band, a portion of it should be opened to sideband operation. I therefore propose that the top 25 kHz be opened to sideband. Before the band became available for general Amateur use, I operated sideband on 10.105 MHz with an experimental license for several months; I can attest to the fact that allocating even a small segment of this assignment to sideband would be of great benefit to Amateur Radio. How about a petition in this regard, ARRL?

Although available to Amateurs in over 40 countries, the 18-MHz band (18.068 to 18.168 MHz) is barred to United States hams because of alleged use by the military. But a number of operators monitored this frequency region for several months during the early summer of 1987 — see fig. 1 for a summary of the results of their work.

There's a small amount of overseas Amateur CW operation from 18.068 to 18.075 MHz. Sometimes there's a RTTY signal on 18.070. When it's ac-
PAC-COMM's NEW TINY TNC-2
PACKET CONTROLLER

A MODERN REDESIGN OF THE WORLD FAMOUS TNC-2

TINY SIZE, TINY PRICE, HUGE VALUE

THE PERFECT TNC...
- FOR THE PACKET NEWCOMER
- FOR NET/ROM NODES
- AS A SECOND OR THIRD TNC

*USES UNMODIFIED TNC-2 SOFTWARE EPROMS
*32K RAM AND 32K EPROM STANDARD
*SUPPORTS BOTH RS-232 AND TTL COMPUTERS, 300-9600 BAUDS
*EXTRUDED ALUMINUM CABINET WITH OVEN-BAKED WRINKLE FINISH.
*ONLY 5" x 7" - ABOUT HALF TNC-2 SIZE.
*WATCHDOG TIMER, MODEM DISCONNECT HEADER, 12V DC OPERATION:

INTRODUCTORY PRICE

$109.95
PLUS SHIPPING
FL ADDRESSES, ADD 5%

READY TO USE- NOT A KIT

$119.95 AFTER JANUARY FIRST
DELIVERY BEGINNING
NOVEMBER 15th

ACCESSORIES - 12V WALL MOUNT POWER SUPPLY $9.95
RS-232 CABLE $9.95, C-64 CABLE $12.95
TERMINAL SOFTWARE FOR THE PC, C-64, MAC -- CALL

PAC-COMM SUPPORTS ALL PACKET NETWORKING-
NET/ROM, TCP/IP, COSI

WRITE OR CALL FOR OUR NEW CATALOG OF PACKET EQUIPMENT, SOFTWARE AND ACCESSORIES.

TELEX: FAX:
650-288-1 (813) 872-8696
TECHNICAL INFORMATION
7:30 AM - 11 PM EASTERN
(813) 874-2980

Pac-Comm, 3652 West Cypress St., Tampa, FL 33607

YOU NAME IT. WE’VE GOT IT!

At Consolidated Electronics Inc. we carry over 10,000 parts and products such as fuses, semiconductors, batteries, capacitors, resistors, wire, cables, connectors, antennas, chemicals, speakers, test equipment, soldering equipment, style and cartridges, video heads, telephone accessories, and more. Consolidated Electronics is an authorized distributor for:

Action
Amperex
Amphenol
Argus
Beckman
B&K Precision
Burgess
CTS
Electro-Voice
Fluke
GE
LPC
Landis
Kester
Mecer
Nicholson
Nichols
O.C. White
Panavist
Philips
Pico
Plano
Pulse
Pyumo
SAMS
Simpson
Spray
Thompson
Ungar
VIZ
Walter
Weiler
Wheat
Xcel

You name it, we’ve got it in stock.

KENNEDY ASSOCIATES

Stocking all major lines. San Antonio’s Ham Store. Great Prices—Great Service. Factory authorized sales and service.

KENWOOD

Amateur Radio Division
5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

E.H. YOST & CO.

Everett H. Yost KB9X/1
7344 TETIVA RD
Sauk City, WI 53583
ASK FOR OUR CATALOG
(608) 643-3194

INDUSTRIAL QUALITY REPLACEMENT BATTERIES FOR COMMUNICATIONS
Nickel-Cadmium, Alkaline, Lithium, etc.

Repair Packs For
ICOM, KENWOOD, YAESU,
SANTEC, AZDEN, TEMPO,
CORDLESS PHONES... AND MORE!

NEW! I.C.E. PACK $49.95

November 1987
the BBC relay transmission on 18.080 MHz, which is very active.

Amateur sideband operation takes place around 18.10 MHz. Stations in Europe, Africa, South America, and Australia have been logged from time to time.

After observing the 18-MHz band for over four years, it seems to me that the military’s need for this span of frequencies makes for a pretty thin argument. I propose that the burden of proof of usage be placed on those opposing the presence of United States Amateurs in this band. Merely stating that the band is in use by the military, without proof of occupancy, should not justify the FCC’s withholding the band until 1989.

Australia had several government and military assignments in this frequency range. When they opened the band to VK hams, they merely identified certain small spots as “off limits” to Amateur operation. Our government could do the same thing if it wanted to!

The 24-MHz band (24.89 to 24.99 MHz) is in good use and, as the sunspot cycle rises, will quickly become one of the better DX bands. Overseas DX signals pound in, even from stations running low power. Make sure you operate this band during the fall and winter DX season!

You can get on the 10, 18, and 24-MHz bands quickly with a dipole antenna cut to the dimensions shown in fig. 2. Even if you can’t transmit on these bands, I urge you to listen, just to get the “feel” of propagation in these interesting portions of the radio spectrum.

W0SVM’s mini-dipole

Amateurs have used miniature antennas on 40 meters for years. The smallest antenna that comes to mind is the loaded 40-meter mobile whip. Some hams who’ve placed two of them back-to-back to form a compact dipole (about 16 feet long) have found that the mini-antenna works quite well if it’s mounted up in the air.

Even so, the 16-foot antenna is still too big for some hams who are unlucky enough to be handicapped by location. How about an indoor 40-meter antenna?

Jack Sobel wrestled with this idea for some time and finally came up with the antenna shown in fig. 3. He decided to use a long, thin radiating coil, or helix. Many hams frown on the helix antenna, but Jack and others have had good luck with the configuration.

Since material was at hand to make an antenna about 2 feet long, he decided this length would be a good place to start. The idea was to wind the antenna into a helix, or coil, and then place a matching coil at the center. Because the radiation resistance of the helix was bound to be
very low, Jack chose a tapped matching coil technique to approximate a match to a 50-ohm line. And since antenna Q would be very high, he decided to use a Transmatch at the station end of the transmission line.

construction details

The antenna can be wound on a cardboard mailing tube. Coils L1 and L2 are 10 inches long and wound at six turns per inch (60 turns per coil of No. 12 AWG insulated wire). Coil L3 is 5 inches long and wound at six turns per inch (30 turns) of No. 12 tinned wire. Coil L3 is wound in the direction opposite to the direction in which coils L1 and L2 are wound. The braid of the coax line is attached to the center point of L3, and the center conductor is tapped out until a match is found to provide the lowest value of SWR at the resonant frequency of the antenna. Resonance is established with the aid of a dip meter before the antenna is attached. The tap point is about 2/3 the distance from the center to one end of L3. (The exact point depends upon the coupling between the antenna and nearby objects and the exact spacing of the windings.)

The antenna is fed with an electrical half-wavelength of RG-58/U coax. The line can be coiled up if it’s too long to fit the available space.

The passband of the antenna is quite sharp, and if operation across the 40-meter band is desired, a Transmatch is necessary at the transmitter end of the line.

The antenna should be sprayed with a transparent polyurethane material or “corona dope” (a cellulosic resin such as General Cement’s No. 10-4702). So far, the antenna has been run only at low power levels; since there may be danger of corona discharge at the outer ends of the windings, it’s best to use the spray coating to help prevent this.

The antenna should be mounted as high in the air as possible and placed in a position where it can’t be touched. There’s very high rf potential at the ends of the little antenna, and an unsuspecting person could get a nasty rf burn during transmitter operation.

If more space is available, two mailing tubes can be epoxied together and the turns-per-inch increased so that the antenna covers more length along the longer tube. The winding will have to be readjusted to frequency with a dip meter if this change is made.

So far, Jack’s contacts have been limited to a few hundred miles on 40 meters. He says it isn’t as good as a full-size dipole, but it’s small and can be used in an apartment.

a communications speaker system

Tired of listening to that annoying high-frequency “monkey chatter” that seems to sneak through the receiver filter system? It can be extremely tiring, especially in a DX contest. The VK boys seem to have a handle on that problem. Rodney Champness, VK3UG, writing in the March, 1987, issue of Amateur Radio, the publication of the Wireless Institute of Australia, shows a simple audio filter that can be placed in the speaker line (fig. 4) to substantially reduce frequencies above 2500 Hz. A switch on the filter allows normal wideband reception to be retained.

The 1-mH inductor should be able to carry the audio current in the speaker circuit (something less than 1 ampere).
Why just dream of talking beyond earth?


You see, the FT736R is the most complete, feature-packed rig ever designed for the serious VHF/UHF operator. But you'd expect this of the successor to our legendary FT726R.

For starters, the FT736R comes factory-equipped for SSB, CW and FM operation on 2 meters and 70 cm (430-450 MHz), with two additional slots for optional 50-MHz, 220-MHz, or 1.2-GHz modules.

Crossband full duplex capability is built into every FT736R for satellite work. And the satellite tracking function (normal and reverse modes) keeps you on target through a transponder.

The FT736R delivers 25 watts RF output on 2 meters, 220 MHz, and 70 cm. And 10 watts on 6 meters and 1.2 GHz. Store frequency, mode, PL frequency, and repeater shift in each of the 100 memories.

For serious VHF/UHF work, use the RF speech processor. IF shift. IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker. Three-position AGC selection. Preamp switch for activating your tower-mount preamplifier. Even an offset display for measuring observed Doppler shift on DX links.

And to custom design your FT736R station, choose from these popular optional accessories: Iambic keyer module. FTS-8 CTCSS encode/decode unit. FVS-1 voice synthesizer. FMP-1 AQS digital message display unit. 1.2-GHz ATV module. MD-1B8 desk microphone. E-736 DC cable. And CAT (Computer Aided Transceiver) system software.

Discover the FT736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because you never know who's listening.
We Serve Hams Better
With DISCOUNT Prices

EGE VIRGINIA
14803 Build America Drive, Bldg. B
Woodbridge, Virginia 22191
Information (703) 643-1063
Service Dept. (703) 494-8750
Store Hours: M-Th: 10–6
F: 10–8
Sat: 10–4
Order Hours: M-F 9–7
Sat: 10–4
EGE NEW ENGLAND
8 Stiles Road
Salem, New Hampshire 03070
New Hampshire Orders,*
Info & Service (603) 898-3750
Store Hours: M-Th: 10–5
F: 10–9
Sat: 10–4
*Order & we'll credit you $1 for the call

Our associate store:
Daves & Jackson Rd., P.O. Box 293
Lacombe, Louisiana 70445
Info & Service (504) 882-5355

Terms: No personal checks accepted.
Prices do not include shipping. UPS
COD fee: $3.50 per package. Prices are
subject to change without notice or
obligation. Products are not sold for
evaluation. Authorized returns are sub-
ject to a 15% restocking and handling
fee and credit will be issued for use on
your next purchase. EGE supports the
manufacturers' warranty. To get a
copy of a warranty prior to purchase,
call customer service at 703-643-1063
and it will be handed at no cost.

Antennas
Amateur HF Bands
Cushcraft, Butternut, KLM,
Mosley, Hy-Gain, Mini-
Products, B&W, Van Gorden,
Hustler, Larsen, Antenna
Specialists, Centurion, SMiley

Antennas in Stock
for Mobiles, Base Stations,
and Handhelds
Everything from mini rubber
duckies to huge monobanders

ASK FOR PACKAGE
DEALS ON ANTENNAS
AND ACCESSORIES

Also...
Antennas for Scanners, CBs,
Marine, Commercial, and
Short Wave Listening

For Orders & Quotes Call Toll Free: 800-336-4799
In New England (except NH): 800-237-0047
In Virginia: 800-572-4201
Now that you can speak, talk to Larsen.

Novice Enhancement opens up a whole new way for novices to communicate. To make the most of it, talk to Larsen Electronics.

We'll tell you how Larsen antennas can greatly improve your powers of communication. We'll also explain how Larsen 220 and 1296 MHz antennas are designed to give you the best performance.

Talk to your Larsen amateur dealer today, and see if Larsen performance doesn't speak for itself.

This publication is available in microform from University Microfilms International.

**COMMUNICATIONS RECEIVERS**

**THE VACUUM TUBE ERA:**

50 GLORIOUS YEARS
1932-1981

- Book covers industry history
- Specs on 700 receivers
- 51 company histories
- 112 photos
- For collectors, connoisseurs and admirers of receivers

$14.95 plus $2 P/S, SASE for details.

RSM Communications
Box 218-H, Norwood, MA 02062

**IRON POWDER AND FERRITE**


Free catalog and winding chart on request.

**PALOMAR ENGINEERS**
Box 455, Escondido, CA 92025
Phone: (619) 747-3343

**Iron Powder and Ferrite**

**TOROIDAL CORES**

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

**AMIDON Associates** Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen Wilhelm - Mollies Str. 86 4930 Odenham 18. West Germany
In Japan: Takomura Electronics Company, Ltd., 7-9 2-Chome Sota Kanda Chiyoda-Ku, Tokyo, Japan

November 1987 47
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master® real speech sound, ability to readout of received signal strength, deviation, and frequency error, 4-channel receiver voting, clock time announcements and function control, helical filter receiver, extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

TELEX 4932256 Kendecom
FAX 617-373-7304

BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU * SEND YOUR NAME AND ADDRESS AND WE WILL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Dealer Inquiries Invited
In Australia contact
ATN Antennas, Birkdale, Victoria

synthetic textiles, inc. 2472 Eastman Ave Building 21
Ventura, California 93003 (805) 686-7903

Contact us for all of your amateur radio needs. FEATURING:
ICOM, AEA, LARSEN, VAN GORDEN, VIBROPLEX, NYE-WIKING, FALCON COMM, LEADING EDGE, DXRC PUBLICATIONS, KAGLO, HAMTRONICS, PROWRITER, ELEPHANT DISKS, DEBCO, TRONYX

VHF COMMUNICATIONS
915 North Main Street
Jamestown, New York 14701
PH: (716)664-6345

AN ALTERNATIVE TO TRADITIONAL WIRE ANTENNAS.

Invitation to Authors

ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).
using voltage comparators

A voltage comparator is basically an operational amplifier (or derived from the op amp) that has no negative feedback network (see fig. 1A). The open-loop gain of the op amp is very high — on the order of 50,000 at the low end to more than 1,000,000 for many devices. Thus, with no negative feedback the operational amplifier functions as a very high-gain amplifier with an output that saturates with only a few millivolts input potential. For example, with a gain of 100,000, and a maximum output potential of 10 volts, the amplifier will saturate with only 10 volts/100,000, or 0.1-mV input.

So what use is an amplifier that saturates with only a few millivolts of input voltage? The comparator is used to compare two input voltages and generate an output that denotes their relationship. In fig. 1A, potential $V_1$ is applied to the inverting input, and $V_2$ is applied to the noninverting input. If $V_1 = V_2$, then $V_o = 0$. Otherwise, the output voltage obeys the relationships shown in fig. 1B. The transfer function of the comparator is shown in fig. 1B. According to the normal rules for operational amplifiers, when $V_1$ is larger than $V_2$ (see fig. 1A), it looks as if a positive input has been applied to the inverting input, so the output potential saturates at $V_+$. Alternatively, when $V_1$ is smaller than $V_2$, it looks like a negative input potential, so the output is $V_-$. Typical Amateur examples include over- and under-deviation alarms on repeater receiver detector outputs, and over-temperature alarms for electronic equipment. For example, some form of alarm is needed at unattended repeater sites. The comparator can be used to let the control operator know by telephone or radio telemetry link that something is amiss. Other applications will occur to most readers in the light of their own special needs.

There is a small hysteresis band around zero, however, where no output changes occur. This is an unfortunate defect in practical op amps, and seems to fly in the face of the theory when the hysteresis band is larger than the potential needed to saturate the output terminal.

Several years ago, while working in a hospital electronics lab, I measured the hysteresis band on a number of operational amplifiers and IC comparators (LM-311). Not surprisingly, the 741-family devices had terrible hysteresis levels, on the order of 25 mV. The LM-311 devices had 8- to 10-mV hysteresis, which surprised me. Also surprising was the fact that then-premium devices such as the μA-725 had 10 to 20 mV of hysteresis (I haven’t tested modern high-performance units). The overall best device was a non-premium device that is readily available to Amateurs and other hobbyists: the CA-3140 (a BiMOS operational amplifier), which uses the industry standard "741" pinouts, as shown in fig. 1A.

The LM-311 device (fig. 2A) is a low-cost voltage comparator in IC form. Although based on op amp cir-
SSB ELECTRONIC, WEST GERMANY

The SSB Electronics preamplifiers represent a real progress in preamplifier design. Both the MV144S and MV432S preamps use genuine microwave GaAs FETs.

The input circuit transformation results in exceptionally low noise figures with overall gain of preamps being internally adjustable from 15 to 25 dB. The MV144S and MV432S are built in a solid aluminum case with stainless steel hardware throughout, with flanges of coax connectors and fastening screws coated with silicone grease to prevent corrosion. A MV1296S model is also available.

The DCW15A sequencer contains an electronically timed controller that delays the turn of a power amplifier until the preamp has turned off. Power for the preamps is supplied automatically thru the coax cable. The sequencer is switched thru the push to talk line of the T/R, with additional relay outputs.

SPECIFICATIONS
MV144S01
Freq. Range 144-146 MHz
Noise Figure 0.5 dB
Gain (internal adjustable) 15-25 dB
Max Thru Power 1000 watts
Connectors N female
Max Mast Dia. Mount 58MM (2 1/4"
Price $199.00

MV432S01
Freq. Range 430-440 MHz
Noise Figure 0.7 dB
Gain (internal adjustable) 15-25 dB
Max Thru Power 500 watts
Connectors N female
Max Mast Dia. Mount 58MM (2 1/4"
Price $199.00

DCW15A Sequencer Controller
Max Thru Power 2M-1000 watts
32-500 watts
23 CM-200 watts
Less than 0.10B
13.8 VDC @ 400 MA
(Internal fuse)
Price $79.00

Val Comm Inc., is the authorized U.S. Distributor for sales and service of SSB electronic's products. We are presently answering all of their product line which includes preamps, sequencers, converters and transverters for the VHF/UHF and microwave bands. Serious weak signal operators demand the best.
circuitry, this device is specifically designed as a comparator. Contrary to op amp practice, it has a ground terminal (pin 1) and requires an output pull-up resistor (R) to a positive voltage. The output terminal can drive loads such as relay coils, lamps, and LEDs to potentials of 40 to 50 volts (depending upon the type of device) and 50 mA. If the LM-311 is operated for compatibility with TTL digital logic, the pull-up resistor should be terminated at a +5 VDC potential, and R should be 1 to 3.3 k.

A means for limiting the output level, improving the sharpness of the transfer function corners (see fig. 1B), and improving speed by reducing latch-up problems, is shown in fig. 2B. In this circuit, two zener diodes are connected back-to-back across the output line. When the output voltage is HIGH, it is then limited to V_z1 + 0.7 volts; when LOW, it is V_z2 + 0.7 volts. These potentials represent the zener voltages of CR1 and CR2, plus the normal forward-bias voltage drop of the alternate diode.

Figure 3 shows a means for increasing the drive capacity of the comparator. In this circuit a switching transistor (a 2N3704, 2N2222, etc.) is used to control a larger load such as the relay coil shown here. The output voltage (V_o) of the comparator is used to set up the bias for the NPN transistor. When the comparator output is HIGH, the transistor is biased hard-on and the load is grounded. Alternatively, when the comparator output is LOW, the transistor is reverse biased and the load remains ungrounded.

The diode across the relay coil is essential for any inductive load. When the magnetic field surrounding a coil collapses the counter EMF generates a high-voltage spike that is capable of damaging components or interrupting circuit operation (especially digital circuits). Though the diode is normally reverse biased, it is forward biased for the counter EMF spike. The diode therefore clamps the spike to about 0.7 volts.

Figure 4 shows two methods. One is a zero-offset control used to reduce the effects of the hysteresis band, while the other is the so-called current mode. The offset control (R_4) slightly biases one input to a non-zero level so that it’s ready to trip when the other input is non-zero. In this particular case the inverting input is grounded (V_2 = 0), but could as easily be a non-zero voltage.

Current mode operation is usually faster and less prone to latch-up than voltage mode. For this reason, current mode comparators are sometimes used in high-speed analog-to-digital converters (A/D). Assume that the noninverting input is grounded. In this case, the output potential V_o will reflect the relationship of the two currents. If I_1 = I_2, then V_o = 0. This circuit is, to the outside observer, a voltage comparator in that I_1 = V_1/R_1 and I_2 = V_2/R_2. Of course, it’s also useful for current output devices such as the LM-334 temperature monitor IC.
is replaced with a zener diode, then the reference potential is the zener potential. In that case, $R_1$ is the normal current-limiting resistor needed to protect the zener from self-destruction. In the case where a resistor voltage divider is used, the bias voltage $V_1$ is set by the voltage divider equation:

$$V_1 = \frac{R_2 (V^+)}{R_1 + R_2} \quad (1)$$

For example, suppose $R_1 = R_2 = 10k$, and $V^+ = 12$ VDC:

$$V_1 = \frac{(10k) (+12 \text{ VDC})}{(10k + 10k)}$$

$$V_1 = \frac{120 \text{ volts}}{20k} = 6 \text{ volts}$$

**Figure 7B** shows an over-temperature circuit based on **fig. 7A**. In this circuit the inverting input is biased by $R_1/R_2$, while the noninverting input is set by another voltage divider, $R_4/RT_1$. Resistance $RT_1$ is a thermistor, which has a resistance proportional (or inversely proportional in some types) to the temperature. Potentiometer $R_4$ is used to set the trip point temperature. The values of the resistors depend upon the set trip point desired and the resistance of the thermistor over the range of temperatures being monitored.

**an invitation**

I'd like to hear what you think of this column. I also welcome your suggestions for future topics. You can reach me at P.O. Box 1099, Falls Church, Virginia 22041.
Now You Can Have the Best of Both . . .
Radio Data Communications and PC-Compatibility!

Now you can have the BEST in a radio data communications terminal with the NEW DS-3200.

Recognizing the chief weakness of previously available computer-based terminals is RFI generation and susceptibility, HAL has designed the fully-shielded DS-3200 for operation in the radio data communications environment. No longer do you have to QRT when that rare DX station’s signal dips near the noise level!

The DS-3200 is provided with an extensive RTTY software package which emulates the operation of our MPT3100/DSK3100 combination for message processing and handling. Continuous save to disk of all received text, direct transmission of selected files from disk, and full editing capability are just a few of the features of this "user-friendly" software package. Plus, we have included the latest release of MS-DOS with GW BASIC!

The built-in RS-232C serial port allows the use of the DS-3200 with an external demodulator such as the HAL ST-6000, ST-8000, or ST-9000. Or, add the HAL PCI-2000 for a completely self-contained RTTY/CW terminal and demodulator. Also, with the use of a second RS-232C serial port the DS-3200 can be used with your favorite TNC on Packet!

The DS-3200 with its IBM PC XT-style architecture gives you virtually unlimited flexibility for future expansion. Here is a list of just some of its hardware features: 8088 CPU, 640KB RAM, RS-232C Serial Port, Parallel Printer Port, Clock/Calendar with Battery Back-Up, Two 360KB Floppy Disk Drives OR One 360KB Floppy and One 20MB Hard Disk Drive, HERCULES-compatible Monochrome Graphics Adapter with High-Resolution 12 Inch Monochrome Video Monitor.

The DS-3200 is THE choice for modern radio data communications.

Write or call for complete specifications on the NEW DS-3200.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, IL 61801
(217) 367-7373   TWX 910-245-0784
7 STORE BUYING POWER

KENWOOD TS-940S

TOP-OF-THE LINE HF TRANSCEIVER
GREAT PRICE, CALL

KENWOOD TM-3530A

The First Comprehensive 220 MHz FM Transceiver.
ARE YOU READY FOR 220 MHz OPERATION?

Gordon West's
Critical Week's
21 DAY NOVICE

$19.95

CODE TOPICS • 112 PAGE BOOK • BANDS CHART ALL KEY FORMS • SIMPLE TESTS • PLUS MORE!
• 570 in equipment certificates from ICOM, KENWOOD, & YAESU.
• Ham radio equipment "Wish Books".
• RRRL membership forms.
• Holders for student questions.
• Course completion certificate.

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

GREAT PRICE. CALL

MA-40
40 TUBULAR TOWER
$745 SALE! $549

MA-550
55 TUBULAR TOWER
$1245 SALE! $899
• Handles 10 sq. ft. at 50 mph
• Plushees neighbors with tubular streamlined look
IN STOCK FOR QUICK DELIVERY OTHER MODELS AT GREAT PRICES

Alpha Delta
Model DELTA-4
Lightning Surge Protected 4-Position RF Coax Switch
• Exclusive center "off" (ground) position.
• Uses ceramic Arc-Plug® protector.
• Micro-strip circuitry—no wafer switch.
Model DELTA-4 (UHF Connectors) $69.95
Model DELTA-4/N (N-type Connectors) $89.95

FREE SHIPMENT
MOST ITEMS UPS SURFACE

FREE SHIPMENT
MORE PARTS NO LONGER IN STOCK

GEOCHRON GLOBAL TIME INDICATOR

• Detailed illuminated map shows time zone, sun position and day of the week at a glance for any place in the world.
• Continuously moving - areas of day and night change as you watch.
• Mounts easily on a wall. Size: 34"x22.5"
$1295 DELIVERED IN U.S.

INDUSTRIES INC.

30w in. 180w out. with low-noise preamp!
MODEL 2M30-160P for 2 meters SALE! $219.50

From the Originator of the QUALITY VHF AMP/PREAMP COMBO!

2 METERS 220 MHZ 440 MHZ
2M100P 1 3M2-60P 70CM2-50PG
2M2-100P 1 3M4-30P 70CM2-100PG
2M30-160P 1 3M30-140P 70CM30-100PG

Full Line Now Includes LHF Models with GaAs FET PREAMP!

November 1987
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER

HF SUPERIOR GRADE TRANSCEIVER
SALE! CALL FOR PRICE

2-METER MOBILES
IC-28A (25w) - IC-28H (45w)
LOW PRICE!

NOW! RAPID DELIVERIES FROM STORE NEAREST YOU

25 MHz-1300 MHz
IN STOCK FOR IMMEDIATE DELIVERY

ICOM IC-771

LOW PRICE!

ICOM IC-275A/275H

138 - 174 MHz
IC-275A (25w) - IC-275H (100w)
GREAT PRICE!

ICOM IC-900 MULTIBAND MOBILE

YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz
10 MTR 6 MTR, 220 MHz & 1.2 GHz
10 MEMORIES
ARE YOU READY FOR 1.2 GHz OPERATION?

ICOM HAND-HELD VHF/UHF

IC-02AT IC-2AT 2MTR
IC-03AT IC-3AT 220 MHz
IC-04AT IC-4AT 440 MHz

This is an advertisement for various ICOM radios, including the IC-28A, IC-275A, IC-900, and others. It highlights features such as the ability to operate six bands with one controller, low prices, and immediate delivery.
The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut Verticals
Butternut's HF verticals use highest-Q tuning circuits (not lossy traps) to outperform all multiband designs of comparable size!

Model HF6V
- Designed for the low-band DXers
- Automatic bandswitching on 80 and 40 meters
- Add-on units for 160 and 30 or 20 meters
- 32 feet tall may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure

1 KW COUPLER
CU-714/SRA-22 (Collins 18072) Automatic Antenna Coupler for 2-30 MHz transmitters with outputs to 1 KW PEP or 500 W average. Has UCSL-465 vacuum capacitor, variable ribbon inductor, and cooling blower in rugged aluminum enclosure. Operates from common 115/230 VAC 60 Hz power. Separate controller required. 11.5 x 18 x 20 in size. Requires 12 lbs. $149.50

MANUAL, part-repro... $12 SCHEMATIC only... $4
"AS-IS" CU-714 less cabinet and blower with broken connector $89.50 #CU714-OLC...

Pnras F.O. B. Lima, O... VISA, MASTERCARD Accepted
Allow for Shipping... Write for latest Catalog Supplement or call our Ad Dept. 419-227-6573

UNADILLA
CONTACT YOUR DEALER
FOR MORE INFORMATION
Amateur Radio Baluns-
Traps-Remote Coaxial Switches

Or Write To:
UNADILLA DIV. of ANTENNA'S ETC.
P.O. Box 215 E5 ANDOVER, MA 01810
617-475-7831

Become a DeVry VE
DeVry VE teams have the advantage of:
- Personalized service
- Quick Accreditation
- Free test generation software
- Out-of-pocket expense reimbursement
- Use of 800 number to communicate with the VEC
- Generating their own examinations

Contact: Jim Georgias, W9JUG
DeVry VEC
3300 N. Campbell Avenue
Chicago, IL 60618
(312) 929-8500
(800) 327-2444 (outside of Illinois)
winter DX

With the fall DX season (September and October) behind us, the winter DX season (November through February) is about to begin. Wintertime DX is characterized by:

- Better signal strengths on all bands most of the time — but especially during daytime on the lower frequencies, particularly in low sunspot years.
- Nighttime DX openings earlier in the evening.
- More frequent transequatorial paths, with higher MUFs and longer distances.
- Lower incidence of local thunderstorm-generated QRN conditions.
- More stable signal strengths and fewer geomagnetic field disturbances.

There are two main reasons for the first four characteristics: the tilting of the Earth's axis away from the sun, which results in shorter, colder days; and less ionization in the lower ionosphere, which results in less energy absorption as signals travel through the D region.

The amount of absorption per hop is related to the zenith angle to the sun at the location of each D region crossing. In working DX, it pays to use a higher frequency band to obtain more distance per hop (resulting in fewer transits) for less total signal loss. This is why we generally think of 6, 10, or 15 meters for DXing.

But in winter, particularly near sunspot minimum, we have the opportunity to work DX on the lower frequency bands with lower signal loss, day or night, than at any other time of the year. You can’t always count on it, however; signals traveling a high latitude path may be poor for several days at a time. This is known as the winter anomaly.

Along with lower signal attenuation, QRN decreases as fewer local thunderstorms pass through. As the large thunderstorm areas near the equator move further south, their noise decreases by about 6 to 8 dB. This is particularly noticeable on the 160, 80, and 40-meter bands.

Even though ion production in the D, E, and lower F regions is lower, ions are better able to diffuse and drift upward along the geomagnetic field lines into the F region. This layer is the major factor in defining the maximum usable frequency and maximum on each side of the geomagnetic equator, as shown in my October, 1983, column. These maximums, which are reached most evenings at about 2200 local time, eliminate one whole earth bounce and its accompanying double-D region transits for one-long-hop propagation.

The fifth characteristic of winter DX conditions — the increased stability of signal strengths and the decrease in the number and intensity of geomagnetic field disturbances — is attributable to the eccentricity of the Earth's orbit. When the Earth is closer to the sun, the solar flux pressure on the magnetosphere surrounding the earth tends to hold the magnetosphere steadier. This means that the geomagnetic field is least disturbed during November and December. This manifests as least variation of the magnitude and direction of the geomagnetic field lines in an hour's time, translating into fewer periods of QSB during these months.

last-minute forecast

The higher-frequency bands are expected to be best during the first two weeks of the month because of the probability of higher solar flux at that time. The new 11-year solar cycle is also expected to be well underway, with higher solar flux from the more active regions. More potent geomagnetic storms may accompany this increased activity, but they're not really expected during this quiet time of the year and at this point in the sunspot cycle. The most probable times of the month are November 2, 11, and 20.

The lower bands are expected to be best the third week of the month. Thanksgiving weekend should be a good one for the whole frequency range.

The Taurids meteor showers will occur from October 26 to November 22, with a maximum count of ten per hour from the 3rd through the 10th of November. Lunar perigee is on the 5th.

band-by-band summary

Ten and twelve meters, the highest day-only DX bands, are nearest the MUF for southern hemisphere paths. They will be open most days when the solar flux is above 75 during the 3- to 5-hour period centered on local noon. These bands open on paths toward the east and close toward the west. The paths are up to 4000 km (2400 miles) in single-hop length, and on occasion double that during evening transequatorial openings.

Fifteen meters, a day-only DX band open most of each day, has lower signal strengths and greater multipath variability than 10 and 12 meters. It will be best when the MUF is resting just above this band, until it drops below it — a transition period that occurs...
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

*Look at next higher band for possible openings.
The RC-850 controller offers your group the most advanced repeater control technology available anywhere. Through ongoing hardware and software enhancements, even our first customers enjoy new features that keep it ahead of the pack. With the RC-850, your repeater becomes fully remotely programmable. From command codes to the repeater's operating schedule, virtually everything can be easily changed. Touch-Tone programming from your radio or the phone with synthesized voice readback, or programming from your home computer via modem or packet.

The autopatch supports local and radio-linked remote phone lines, extending your patch coverage to match your RF coverage. You don't even need a phone line at your site! The 250 autodial slots meet everyone's needs, with up to 35 digit storage for personal MCI/Sprint codes.

The easy-to-use mailbox lets you include phone numbers, times, or frequencies in messages. The controller is so smart, it'll even leave you a message if you miss a reverse patch or an alarm.

Selective call capabilities range from CTCSS and two-tone to display paging, so you can always be available without having to listen. Voice response telemetry lets you remotely meter your site. Its continuous measurements with storage of updated min and max readings let you find out how cold it gets, how high the reflected power reads... and when.

Individual user access codes, with call sign ID, offer secure access to selected functions to completely prevent horseplay.

The industry's top-of-the-line controller, now better than ever, for your repeater.
New rigs and old favorites, plus the best essential accessories for the amateur.

CALL FOR ORDERS
1 (800) 311-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
ALL ITEMS ARE GUARANTEED OR SALES
PRICE REFUNDED

EQUIPMENT
New Icom IC 761
Kenwood TS200A
Call for trade
New Icom IC 725
Sanatel TM 340 220 MHz
Mirage Amps
Tokyo Hy Power HL 1K AMP, no 4X526B
New Kenwood TM-221A
VJ Amplifier, VHF, built in England, 1 in 100 out
New Kenwood TM-440
Call
ACCESSORIES
DBVB 150WATT ANTENNA TUNER
Heil HA4/HC5 Stock
Bell BM-10 Boom Mike head 249.95
TR 1000A DR Remote Phone $185.00
Danze NS6180/2200/3000 watts 135.00
Alinco LIH250D Excellent buy
New MBS A (for the big boys) 529.00
Shure 4440 54.95
Ameco PT-3 500
New Tokyo HC 200A 115.00
Artical MC212 Cartridge D104 12.00
Ten Tec Mobile Switch 3001 17.00
ANTENNAS
Isopole 110 MHz 44.95
Isopole 220 MHz 59.95
Cashburn 124 WB (146 MHz) 150.00
Butterman HF690-10 vertical 125.00
HFZV 80-40 vertical 119.00
HFAB 119.00
Hudler G7-144 119.00
Hudler BBTV 139.00
KLM HF, World Class Series Antennas Call Don
NH K4A Delta DX DD 89.00
Coax Seal 20 roll
BWP Dipoles Loss 10%
KLM K 3/4 A
W2AU, W2DU New Available
NEW KLML 2 241 BX 129.00
1290 Pho Ducer
Create CD 78 - BS 60 & 75/80 rotatable dipole 385.00
G-5V 44.00
OTHER ANTENNAS
Diamond D 130 Disc 25-1300 MHz 79.00
Larsen KL-52 Trisat 20 MHz 75.00
Larsen MS2 VHF/1500 MHz 20 MHz 75.00
Avant AP151 3G on Glass Antenna 36.00
Avantico MS 2/5/8 Magna Mount Comp 25.00
Van Gordon ND 4-8 band Novice dipole 45.00
Val Air 5/8 75.00
Stone DAA-100 Active Rx Antenna 190.00
DC Tennis 3/8 24 Thread
Parts 1/8" x 1/4" 3/8" trailerfic 29.95

PACKETS
1:41 MHz Swing
2:8/1000Hz Expcy dipole 299 each or 199 100
3001-10K or 001020k 1.95 each
3N101 95
4 in foam rod 1.95
365P cap 25.00
Sanyo AWA AA Nics, nicetuts 20.00
2.5 8 P & mpp dip 100.00
1/4 1/4 watt cer resonators 85 each
Meter 0.900 VDC 0.1 Amp DC 21/2" Square
w/ shunt 19.95
Drake Collins mike plug 20.00
Thousand of used pedestals 9.95 up CDA
Mica Cap 004-3KV 5.00 others CALL
Dodecs 2A1000100V 29
Dandridge 4 Volt Battery 2 Pack MN1004 3.49
DC Fan 6" X 9" 1.95
GROD 10 cent box for Drake etc Female 3.00
Ampco 1000 x 500 kHz bread about caps 3.95
Mallory 9 volt 4 prong Vibrator PN-400A 5.00
100mtr/500Amp Axial 2.00
Everyday 9 volt batt (2) 2.16
01/100V Baked Muller Caps 25

Icom 28H/TT M 399.00

AMPHENOL
211P/15-250 Silverplate 1.25
UG 176 reducer RG159 30
831J Double Female UHF 200.00
82 N Male 9.00
82 97 N Female Bulkhead 3.00
82 63 Inline Female N 40.00
98 96 N electric 9.00
802 1006 N Male for 99.13
1.0 312 BNC RG59 1.95
210 1216 UG291 A/U N Male BNC Female 2.00
212 BNC RG58 1.50
4025 N Male RG 58 8.00
412S N Female UHF male 9.00
328 BNC Female FL 295 3.00
4400 N Male 20 7.00
290U/100 239 5.00
Coax Elbow 9.50/10.

TUBES
Collins & Drake Replacement tubes Stock
GE 5416B 3,199.00
GE 350Z 119.95
GE Industrial Tubes Call
GE 12BY7A 7.00
GE 6J6C 12.95
GE 6H9C 16.00
12AU7 SYLVIA 6.00
Hard to find tubes 50-90% off list 12.95
6J6A/6E 9.95
6J6C/6K9G 9.95
RCB 66CS 6.00
6KD6 6.95

PACKET POWER
AEA PK 232 with new WX-FAX 299.00
Kenwood KPC 1 149.00
MFJ 1270 149.00
New Kenwood KAM 299.00

SERVICES
Complete KWM 2 Retrofit 179.00
Fixate Collins CET 399.00
Wanted - Collins KWS 1 - Met - Will Pick Up

THE 1988 ARRL HANDBOOK FOR THE RADIO AMATEUR

NEW EDITION
The 1988 ARRL Handbook For The Radio Amateur carries on the tradition of the previous editions by presenting 1200 pages of comprehensive information for the radio amateur, engineer, technician and student. Clothbound only. $21 in the U.S., $23 in Canada and elsewhere.

THE AMERICAN RADIO RELAY LEAGUE

155
Boomer XL is "the antenna for 2 meter DX". More than 3 years of design, antenna range tests, and on-the-air contesting have been combined to produce the 4218XL's higher gain and cleaner pattern. This antenna is designed to survive. It features step tapered boom, tubular support braces and all stainless steel hardware. The new 4218XL is the only antenna with this great combination of features to make your 2 meter activity more successful and satisfying.

**SPECIFICATIONS**

- Frequency range 144-145 MHz.
- 18 elements, boomlength 28.8 ft.,
- Typical SWR 1.2:1, 50Ω T-match,
- Beamwidth 2 x 13°,
- 60 dB side lobe attenuation,
- Turn radius 16.7 ft.,
- Windload 3.5 ft², weight 14.3 lbs.,
- Excellent gain, F/B ratio 24 dB.

**ANOTHER BOOMER FIRST**

Bill Duval, K5UGM of Irving, Texas, created VHF history on June 14, 1987, by making the first ever 220 MHz sporadic E contact during the June VHF QSO party. He contacted W5HUU/4 in Florida at 1544 UTC.

Bill used the high performance Cushcraft 220B "Boomer" to make this record breaking contact. Proof once again that Cushcraft leads all antenna manufacturers in developing the newest technology for Ham Radio. We offer more results to make your hobby more fun.

P.O. BOX 4680, 48 Perimeter Road, Manchester, NH 03108 USA • Telephone: 803-627-7877

Telex: 4949472 Cushsig Man

November 1987
New PK-232 Breakthrough

Six Digital Modes - Including Weather FAX

$319.95 AMATEUR NET
$379.95 AEA RETAIL

Your home computer (or even a simple terminal) can be used for radio data communication in six different modes. Any RS-232 compatible computer or terminal can be connected directly to the PK-232, which interfaces with your transceiver. The only program needed is a simple terminal program, like those used with telephone modems, allowing the computer to be used as a data terminal. All signal processing, protocol, and decoding software is in ROM in the PK-232.

The PK-232 also includes a no compromise VHF/HF/CW modem with an eight pole bandpass filter, four pole discriminator, and 5 pole post detection low pass filter. Experienced HF Packeteers are reporting the PK-232 to have the best Packet modem available.

Operation of the PK-232 is a breeze, with twenty-one front panel indicators for constant status and mode indication. The 240 page manual includes a "quick start" section for easy connection and complete documentation including schematics. Two identical back panel radio ports mean either your VHF or HF radio can be selected with a front panel switch. Other back panel connections include external modem disconnect, FSK and Scope Outputs, CW keying jacks, and RS-232 terminal interface.

The RS-232 connector is also used for attaching any Epson graphics compatible parallel printer for printing Weather Fax. Weather maps and satellite photos, like the one in this ad, can be printed in your shack.

Contact your local AEA dealer today for more information about the one unit that gives you six modes for one low price, the PK-232.

Brings you the Breakthrough

2006-196th St. SW
Lynnwood, WA 98036
(206) 775-7373
WELCOME—NOVICES
Call for Special Prices on 220 MHz Radios & Antennas

NEW ENGLAND'S FACTORY-AUTHORIZED SALES & SERVICE FOR KENWOOD

Also displaying the popular accessories needed to complete a HAM STATION . . .

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL • ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI • BELEDEN • BENCHEER • B & W • DAIWA • ALINCO • HUSTLER • KLM • LARSEN • MIRAGE • ROHN • TELEX/HY-GAIN • TOKYO HY-POWER LABS • TRAC KEYERS • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1½ miles from Rte. 495 (Exit 31) toward Groton, Mass.

SSB ELECTRONIC TRANSVERTERS & PREAMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT-25</td>
<td>144/228 XVRTR 20W GaAsFet DMM</td>
<td>$549</td>
</tr>
<tr>
<td>LT35S</td>
<td>902/144 Xvr 200W GaAsFet</td>
<td>$599</td>
</tr>
<tr>
<td>LT35S</td>
<td>1296/144 Xvr 10W GaAsFet</td>
<td>$549</td>
</tr>
<tr>
<td>MICRO-13</td>
<td>230/244 XVRTR 0.5W GaAsFet</td>
<td>$429</td>
</tr>
<tr>
<td>MICRO-X</td>
<td>1130/144 XVRTR 2W GaAsFet</td>
<td>$599</td>
</tr>
<tr>
<td>DK</td>
<td>series low noise GaAsFet preamps</td>
<td>$199</td>
</tr>
<tr>
<td>MV</td>
<td>series mast mounted GaAsFet preamps</td>
<td>$199</td>
</tr>
<tr>
<td>K</td>
<td>series x-xvtr GaAsFet DMM from...</td>
<td>$129</td>
</tr>
</tbody>
</table>

TRANSVERTERS UNLIMITED

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T20/28</td>
<td>220 MHz Xvr 28 or 50 IF 20 W</td>
<td>$270</td>
</tr>
<tr>
<td>T14/28</td>
<td>144 MHz Xvr 28 or 50 IF 25 W</td>
<td>$199</td>
</tr>
<tr>
<td>PK5200</td>
<td>902 MHz 2 tube PA, 20W</td>
<td>$499</td>
</tr>
<tr>
<td>PK2130</td>
<td>1296/244 tube PA, 150 +</td>
<td>$449</td>
</tr>
<tr>
<td>PK1330</td>
<td>296 MHz 1 tube PA, 25 + W</td>
<td>$279</td>
</tr>
<tr>
<td>HF400</td>
<td>High power relay 360 at 144 MHz</td>
<td>$179</td>
</tr>
<tr>
<td>RK500</td>
<td>Medium power relay 1KV at 144 MHz</td>
<td>$69</td>
</tr>
</tbody>
</table>

Factory Authorized Dealer for SSB Electronics

GIVE YOUR EARS A BREAK!

X-MAS SPECIAL!

AUTO-KALL AK-10

$79.95

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter

- Expandable to 32 Channel by Just Adding Cards
- Continuous Voting
- LED Indicators of CDR and Voted Signals
- Built in Calibrator
- Remote Voted Indicator Plated Out
- (2) x 6 Double Sided Grid Printed 44 Pin Card
- Remote Double Input
- More

Built, tested and calibrated with manual

$350.00

Telephone interface now available

For more information call or write

HALL ELECTRONICS

Voter Department

815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

November 1987
EASY DOES IT!

At last, a Circuit Analysis System that you cannot afford to be without — at a price you can afford...

from Western Systems Corporation.

EASY gives you the power to quickly explore new electronic designs on your personal computer with state-of-the-art software.

- Pull down Menus
- Full interactive graphic editing
- Linear and non-linear circuit elements
- Graphic and tabular display of results
- Frequency and Time Domain Analysis
- Data Sheet Capture,
  ...and much, much more!

EASY is remarkably simple to use.
- Analyze complex or simple circuits
- Allows up to 100 nodes and 400 components

EASY ... the affordable ELECTRONIC ANALYSIS SYSTEM.
Introductory price $89.95

Order TODAY from
Western Systems Corp.
6536 Simms Street
Arvada, Colorado 80004
(303) 422-6002

VISA & MASTERCARD accepted.
Colorado residents add 3% tax.

Available for the IBM PC, XT, AT and full compatibles. EASY requires a minimum of 256 k-bytes of memory and a CGA or EGA graphics environment.
an rf voltmeter

Don’t let its apparent simplicity fool you — this instrument has many uses.

Many of us who experiment with circuits need to measure the level of signal sources such as oscillators, amplifiers and multipliers in transmitters, and local oscillator systems in receivers. The voltmeter design described in this article came about when I wanted to measure the voltage reflection coefficient of antenna systems using a return loss bridge at low levels so as not to interfere with other band users.

The common method of measuring signal levels is through the use of a simple diode detector. In its basic form, however, it has a number of shortcomings, some of which can be easily overcome.

**voltmeter requirements**

This voltmeter covers a range from less than 70 millivolts to greater than 3 volts rms (equivalent to –10 to +23 dBm in a 50-ohm system), covers a frequency range from 10 kHz to 150 MHz, and provides readings accurate to within ±2 dB without calibration — i.e., as built and tested. Its input impedance is set by the input resistor; a value of 50 ohms was used in the models shown. Its output is linear; if an analog meter is used, no special marking of the meter scale is necessary. An external general-purpose meter can also be used. The meter draws less than 15 mA from a pair of 9-volt transistor batteries.

**diode detectors**

The characteristics of an ideal linear voltage detector are illustrated in fig. 1. This mythical device conducts current in one direction only, with a low and constant resistance when forward biased and an infinite resistance in the reverse direction. The constant forward resistance is maintained right down to 0 volts.

By Ian Braithwaite, G4COL, 28 Oxford Avenue, St. Albans, Herts, AL1 5NS, England
TELEWAVE ANTENNAS CABLES
BEFORE YOU BUY YOUR NEXT ANTENNA OR CABLE.....DIAL:
800-331-3396

CELLFLEX - 5/8" - 1 1/4" - 7/8" - 1 1/2"
BELDEN RG-213 & RG-214 Type
CONNECTORS AVAILABLE

* ANTENNAS *
COLLINEAR - YAGI - DIPOLE
We are major suppliers of: Cavities, Duplexers and Antenna Combining Systems

THE RF CONNECTION
"SPECIALIST IN RF CONNECTORS AND COAX"

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>321-11084-3</td>
<td>BNC 2 PTT 28 volt coaxial relay, Amp; insertion loss: 0 to 0.15 Ghz; 0.16 db</td>
<td>$1.10</td>
</tr>
<tr>
<td>200-2123-U</td>
<td>Male RG-8, 213, 214, Amphenol</td>
<td>$1.25</td>
</tr>
<tr>
<td>200-2128-U</td>
<td>Male RG-8, 213, 214, Jones</td>
<td>$1.75</td>
</tr>
<tr>
<td>9913-PN</td>
<td>N Male 50, 9913, 9086, 4214</td>
<td>$1.50</td>
</tr>
<tr>
<td>200-2191/3</td>
<td>N Male for RG-8 &amp; with 9093 Pin</td>
<td>$1.50</td>
</tr>
<tr>
<td>200-2191/3</td>
<td>N Male for RG-8 &amp; with 9093 Pin</td>
<td>$1.75</td>
</tr>
<tr>
<td>200-2191/3</td>
<td>N Male to 50-239, Teflon USA</td>
<td>$3.00</td>
</tr>
<tr>
<td>200-83/3</td>
<td>Female to 50-239, Teflon USA</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

"THIS LIST REPRESENTS ONLY A FRACTION OF OUR HUGE INVENTORY"

THE R.F. CONNECTION
213 North Frederick Ave., #11
Gaithersburg, MD 20877
(301) 840-5477

CASH PRICES

SYNTHESIZED SIGNAL GENERATOR

| MODEL | SG-100F | $429.95 |

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy ±1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spur and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ ½ Amp
- Available for immediate delivery
- $429.95 delivered
- Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details
- Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.

CADDELL COIL CORP.
35 Main Street
Poultney, VT 05764
802-287-4055

BALUNS
Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3-30 MHz operation. (See ARRL Handbook pages 19-9 or 6-20 for construction details.)

<table>
<thead>
<tr>
<th>Watt</th>
<th>1.5</th>
<th>1.9</th>
<th>1.1</th>
<th>impedance - select one</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16.50</td>
<td>16.50</td>
<td>16.00</td>
<td>16.00</td>
<td>Universal Transmatch 1 KW (1.1 impedance)</td>
</tr>
<tr>
<td>14.50</td>
<td>14.50</td>
<td>14.50</td>
<td>14.50</td>
<td>Universal Transmatch 2 KW (1.1 impedance)</td>
</tr>
<tr>
<td>17.00</td>
<td>17.00</td>
<td>17.00</td>
<td>17.00</td>
<td>Universal Transmatch 1 KW (0.5, 0.1, 1.1 - select one)</td>
</tr>
<tr>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>Universal Transmatch 2 KW (0.5, 0.1, 1.1 - select one)</td>
</tr>
</tbody>
</table>

Please send large BASE for info.
with an abrupt transition to the reverse region. Such a device used as a rectifier would deliver a dc output proportional to the applied ac.

Real diodes, however, don’t behave this way. Most do not conduct appreciably in the forward direction until the input voltage across them exceeds a threshold or “knee” voltage, which for an ordinary silicon junction diode is around 0.7 volts. The threshold voltage for germanium and Schottky diodes is lower — 0.2 to 0.4 volts. Real diodes also conduct slightly in the reverse direction (the so-called reverse leakage current).

The transition between the conducting and nonconducting states is not sharp, but occurs over a region where the diode is said to have “square law” behavior and the dc output is proportional to the applied power (voltage squared), rather than the signal voltage. This is used to advantage in low-level diode power meters.

To see how real detectors behave, I made some measurements on a few types using a crystal oscillator signal source at 10 MHz, and a power meter and attenuator to give a range of calibrated levels. Figure 2 shows the first test circuit, a simple peak detector using an HP2826 Schottky diode. The right-hand plate of the input capacitor is clamped at the diode knee voltage below ground on negative input swings. If this knee voltage were actually zero, the average voltage on the diode would equal the peak of the input voltage, but the real diode produces less. The resistor and capacitor filter the rf present on the diode, leaving the dc component. This can be measured by a high impedance meter which reads the peak of the rf voltage minus the diode knee voltage.

A dc forward bias current can be used to improve the sensitivity of the diode detector. If the diode is fed from a high resistance with a current of a few µA, its forward junction voltage will sit around the knee voltage. This potential no longer has to be supplied by the rf, which sweeps the diode’s nonlinear characteristic and is detected. Direct current bias is used in the more sophisticated circuit shown in fig. 3. Two diodes are used. Both are biased, but rf is fed to only one of them. An op-amp subtracts the diode voltages so that the output of the circuit can be set to zero in the absence of an rf signal. With the diodes connected together, with no rf, the op-amp offset is nullled. The 500-k pot is then adjusted to give zero output with the circuit exactly as drawn. The circuit works best with matched pairs of diodes, since these track well with temperature.

The performance of these detectors is described graphically in fig. 4. This shows the improvement in sensitivity achieved with bias. Also shown is the curve for the voltmeter design, which indicates further improvement in sensitivity and linearity, gained by using just one additional technique.

The complete rf voltmeter is shown in the block diagram in fig. 5. Two detectors are used. One receives the incoming rf signal, while the other, a “mimic” detector, is fed with a low frequency signal. This signal is an internally generated sinusoid, derived by chopping the dc output of an integrator to give a square wave which is then filtered, leaving the fundamental frequency component.

The integrator input is the difference of the two detector voltages, and its output will change (or “slew”) when this difference (the feedback loop’s error signal) is other than zero. The action of the negative feedback loop around the mimic detector in fact causes the integrator to try to achieve this zero-error condition, at which point, if the detectors are well matched, the low frequency signal will have the same amplitude as the rf signal. Because the low frequency signal is produced by chopping and filtering the integrator’s dc output, this latter voltage is proportional to the rf input voltage, and can be scaled and metered to provide readings in “rf” volts.

Through the use of well-matched and closely spaced
diodes, their temperature and I-V curve variations are minimized. Of course, since the mimic detector measures only a fixed low frequency signal, no frequency response compensation for the input detector is provided. Therefore, it's best to choose the diode that has the flattest possible response.
HAS IT ALL!
Call Today (215) 357-1400
LOOK AT THE PRICES!!

ICOM DAY
SAT. December 12, 1987
9:00 AM - 3:00 PM

Even though we offer the best deals, we will meet or beat all legitimate competitive deals.
UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140.000-151.000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz.

CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range facilitates use of CAP and all MARS FREQUENCIES including NAVY MARS. COMPARE!

TINY SIZE: Only 2 inches high, 5½ inches wide and 7¼ inches deep!

MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.

UP TO 11 NONSTANDARD SLOTS: COMPARE this with other units.

20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.

DUAL MEMORY SCAN: Scan memory banks separately or together. ALL memory channels are tunable independently. COMPARE!

MEMORY SCAN LOCKOUT: Allows you to skip over channels you don't want to scan.

TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!

BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-resume.

DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT): Always stays on frequency desired when scanning.

PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when channel is occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored for up to 3 years even if power is removed.

FREQUENCY REVERSE: Allows you to listen to repeater input frequency.

ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly.

CRISP, BACKLIGHTED LCD DISPLAY: Easily read no matter what the lighting conditions.

DIGITAL S/R F METER: Shows incoming signal strength and relative transmitter power.

MULTI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.

FULL 16-KEY TOUCHTONE PAD: Keyboard functions as auto-patch when transmitting.

MICROPHONE CONTROLS: Up/down frequency control and priority channel recall.

PL TONE GENERATOR BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE!

TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!

HIGH/LOW POWER: Select 25 watts or 5 watts output — fully adjustable.

SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for 20-dB quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!

DIRECT FREQUENCY ENTRY: Streamlines channel selection and programming.

OTHER FEATURES: Rugged dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE 800-327-3102
46 Greensboro Highway, Watkinsville, Georgia 30677 Telephone (404) 769-8706 Telex: 4930709 ITT

MANUFACTURER:
JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku, Mitaka, Tokyo, 181 Japan
Telex: 781-2822452
RF enters the instrument via socket SK1. R5 and R6 provide a good impedance match to 50-ohm cable. Two 0.5-watt metal film resistors (or any other combination providing 50 ohms and a 1-watt rating) should be used. Diodes CR1 and CR2 form the detectors: CR1 is supplied with rf, and CR2 with the internally generated 25-kHz sine wave. They should be Schottky diodes and, if possible, should be reasonably well matched in terms of forward voltage at around 10μA. Many types will do, among them the HP2800 and 2826 and the Thomson BAR28. The forward voltage will be in the region of 250 mV, and a pair matched to within a few millivolts can often be found from a small batch. Circuitry around U4 performs subtraction of the two detector outputs with a gain of 10. R14 allows U4’s offset voltage to be nulled. Because this is a relatively high gain stage, the remaining stages do not need to be nulled, and can be grouped into a quad package. USB is wired as an integrator, and CR3 and buffer USC prevent the CMOS switch U3 from being driven negative. The buffer’s dc output is chopped by switch U3, which is operated by 25-kHz square waves from U2, a divide-by-2 flip-flop fed from U1, a 50-kHz oscillator. U2 could be omitted and U1 run at 25 kHz, but U2 does achieve a perfect square wave (1:1 mark-to-space ratio) at small cost. U2B provides a 12.5-kHz output signal so that a rough check can be made on the switching signal with a crystal earpiece at test point C. The chopped dc from U3, now a 25-kHz square wave with a peak-to-peak amplitude equal to the UBC dc output, is filtered by active filter US5A (second order bandpass) so that CR2 receives a fairly sinusoidal signal. L1 was included to stop hf oscillations in the output stage of US5A when the connection to the detector was completed via several inches of ribbon cable (the adjacent wire being grounded). It consists of four turns of enameled wire on a single-hole ferrite bead (I used an FX1115), and has no measurable effect at 25 kHz. R18 and R19, buffered by US5D, attenuate the dc by a factor of 0.45 (see appendix for derivation), which provides scaling to units of volts rms. An external voltmeter plugged into SK2 will then read the rf input voltage. R21 and R22 with switch S2 allow the use of a meter to read 1 and 10 volts full-scale. With 9-volt supplies from batteries, the maximum voltage that can be read will be around 3 volts.

construction

I have built three instruments according to the design described in this article (see fig. 7). The outer two are battery powered (internally); the “economy model” in the center uses an external power supply and meter. Details of the unit on the left are shown in figs. 8A, 8B, and 8C. Construction is straightforward and can be done with ordinary hand tools. The only critical area is the detector, which carries rf. The other areas involve only low frequency circuitry. As shown in fig. 8C, I built the input circuitry, consisting of the two detector diodes and U4, on a small piece of double-sided, copper-clad glass-fiber board, using a counterbore tool to provide pads for the components. Frankly, this method of construction — with the components mounted rats-nest style above a copper ground plane, will work at least as well and probably better than a pc board, and is certainly much faster. Those willing to make a pc board for the voltmeter are welcome to do so — I’m afraid I’m too lazy!

The rest of the circuit is wired on a perforated breadboard with copper strips on the underside (known in the UK as “Veroboard”). As the photo of the detector board shows, the signal connection from the front panel socket was made using RG-178 coaxial cable. The only place it’s important to keep leads as short as possible is in the detector area. Try to mount the two diodes close to each other for good thermal tracking.

alignment and testing

Check the 50-kHz oscillator and divider by placing a crystal earpiece or high impedance audio amplifier between test point C and ground. The frequency can now be adjusted to coincide with the bandpass filter.
**Super Comshack 64**
Programmable Repeater Controller/ HF & VHF Remote/patch
Rotor control/ Voice & Sub Tone Paging/Expandable/ Low Cost
H.F. REPEATER #1
C65-65, 16W, CE-6
H.F. REPEATER #2
C72-65, 16W, CE-6
VHF REMOTE #1
FT-727/H/76, 15-71/811
DUPLEXER
AUTOPATCH & REVERSE
Touchtone Decoder 4 Digit Sequence on/off latching, 1116 Digits

**2 METER AMPLIFIERS**
- 300 Watts output each channel
- 500 Watts total peak output
- Digital Signal Processing
- 12V Power Supply

**ATV CONVERTERS**
- 10 Watt output
- 500 Watt peak output
- Digital Signal Processing
- 12V Power Supply

**MINI (BEAR CAT) SCANS/ PROGRAM—FT 727R**
Programs and Scans 100 ch. in Ham/General coverage. Converts VHF into a powerful 1000 ch. scanner & programs all for yield use

**Audio Blaster**
11002/042/7167/727/208
Model installs inside the radio in 15 min. No special tools required. Quickstandby drain. Converts low audio 02's to of high energy sound files into audio amplifier module—

**2 METER AMPLIFIERS • ATV CONVERTERS**
DISCOVER THE WORLD OF FAST SCAN TELEVISION:
RF Amplifiers Per Motorola Bulletins
Computer Parts Not For
150 Watt or 30 Watt HF Amplifiers per
Motorola Bulletins

**RECEPTOR**
- 450-455 MHz
- 455-500 MHz
- 500-555 MHz
- 555-600 MHz

**MIXER**
- 500-600 MHz
- 600-700 MHz
- 700-800 MHz

**RF FILTERS**
- 450-455 MHz
- 455-500 MHz
- 500-555 MHz
- 555-600 MHz

**POWER SUPPLIES**
- 13.8VDC output
- 12VDC output

**AMATEUR TELEVISION CONVERTERS**
ATV-1 450-455 MHz $49.95
ATV-2 500-555 MHz $54.95
ATV-3 500-600 MHz $59.95
ATV-4 555-600 MHz $64.95

Available in Kit or Assembled/Traded
Add $1.00 For Shipping and Handling

**TORRES**
by ALUMA
HIGHEST QUALITY ALUMINUM
- TELESCOPING (CRANK-UP)
- GUYED (STACK-UP)
- TILT-OVER MODELS
Easy to install. Low Prices. Crank-ups to 100 ft.

**“INSTANT” MORSE CODE**
Beginners: Deliciously Easy
Experts: Automatically Fast

**CURLYCODE™ MANUAL**
ONLY $6.50
Guaranteed

**SAY YOU SAW IT IN HAM RADIO**
Turn R9 or R14 so that U4 output is slightly negative, which will cause the integrator U5B to slew to the positive limit. This should result in a healthy square wave output from U3 (pins 1 and 2). A high impedance meter should read a voltage (dc) here that is half that at the U5C output. If the meter is transferred to the anode of CR2, it should be possible to peak this voltage by adjusting the oscillator frequency control R4.

The detector circuit can now be set up with no input. Ground test point A to stop the 50 kHz oscillator. Connect CR1 and CR2 so that the subtractor sees the same voltage at both its inputs. Set test point B to zero volts with R14. Remove the connection between the diodes, and again zero-test point B, this time with R9.

If rf is now applied, U5C should go positive, and the voltage at the output socket SK2 should be 0.45 of this. The meter is now ready to use.

Performance

The absolute accuracy and linearity of this meter is illustrated in fig. 4, which was constructed from measurements made at 10 MHz. The flatness with frequency was measured at 1 mW, 224 mV rms (0 dBm), and the results are shown in fig. 9, which represents a respectable performance of within ±3 percent up to 150 MHz. This could no doubt be improved to extend the useful range to 70 cm and beyond.

To verify the repeatability of these measurements, I tested the three units against each other using the same source, a 10-MHz crystal oscillator. Referring to the units by position in the photo, the results were:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Reading on external voltmeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>268 mV</td>
</tr>
<tr>
<td>Center</td>
<td>244 mV</td>
</tr>
<tr>
<td>Right</td>
<td>258 mV</td>
</tr>
</tbody>
</table>

Obviously, three is only a small sample, but considering that the voltmeters had received only the simple dc setup procedure described earlier, I was quite pleased with the outcome, and I hope that this sort of performance will be adequate for your applications.

Further Suggestions

I hope that readers who build this voltmeter will find it a handy instrument to have around the shack. Those who like to experiment and develop their own hardware might enjoy exploring the following options:
**ASTRON POWER SUPPLIES**

- **HEAVY DUTY**
- **HIGH QUALITY**
- **RUGGED**
- **RELIABLE**

**SPECIAL FEATURES**
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

**PERFORMANCE SPECIFICATIONS**
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5mV peak to peak (full load & low line)
- Also available with 220 VAC input voltage

**19" x 5 1/4 RACK MOUNT POWER SUPPLIES**

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>H x W x D</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>RM-12M</td>
<td>9</td>
<td>12</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>RM-35M</td>
<td>25</td>
<td>35</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>RM-50M</td>
<td>37</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

**RS-A SERIES**

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>H x W x D</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>4</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>5</td>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>7</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>

**RS-M SERIES**

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>

**VS-M AND VRM-M SERIES**

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>@13.8VDC</td>
<td>12</td>
<td>H x W x D</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>VRM-35M</td>
<td>25</td>
<td>35</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>VRM-50M</td>
<td>37</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

**VS-S SERIES**

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>H x W x D</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)*

**INSIDE VIEW — RS-12A**

**MODEL RS-50A**

**MODEL RM-35M**

**MODEL RS-7A**

**MODEL RS-35M**

**MODEL VS-35M**

**MODEL RS-12S**

**INSIDE VIEW — RS-12A**
• The design can be simplified by omitting the divider U2. The oscillator could then be run at 25 kHz, or the filter redesigned for 50 kHz. (The choice of frequency was somewhat arbitrary, being high enough to use small coupling capacitor C3 and low enough for active filtering. U2 does guarantee an excellent square wave, but the oscillator alone may well be adequate.)
• The detectors can be built into a high-impedance probe for circuit tracing, rather than a 50-ohm instrument. Keep CR1 and CR2 physically and electrically close together, though.
• By paying attention to the detector matching and circuit offsets, particularly around U4, the useful range could be extended downwards. With attenuators, the range could be extended upwards.
• Careful selection of devices and construction could greatly extend the frequency range.
• The filtering of the square waves could be improved. The units I have built tend to read slightly high, and this could be because the active filter output is not a pure sinusoid, giving a slightly wrong scaling factor. Why didn’t I just feed CR2 with a raw square wave? Well, when I tested a diode detector using an accurate function generator, the peak readings were different between sine and square waves — i.e. the diode appeared to clamp at slightly different voltages, depending on the waveform. I wish I knew why; in any case, the results might be worth repeating. If CR2 gave the same response to square waves, the active filter could be omitted. U5C output would then be the peak input voltage, and scaling by 0.707 would give readings in volts rms.

![Graph](image1)

*fig. 9. Flatness with frequency at 0 dBm.*

![Graph](image2)

*fig. A1. Relationship between a square wave and its fundamental sinusoidal component.*

---

**Appendix**

**How readings are scaled to volts rms**

The voltmeter works by making an internally generated sine wave derived from filtering a square wave equal to the rf input. The square wave, then, is generated by chopping a dc voltage. As illustrated in fig. A1, Fourier theory tells us that the fundamental (sinusoidal) component of a square wave has a larger peak amplitude than the square wave itself (don’t worry, there is less power in this sine wave). If we call the peak amplitude of the sine wave $V_{sin}$ and the peak-to-peak amplitude of the square wave $V$ then:

$$V_{sin} = \frac{2V}{\pi}$$

But in the voltmeter circuit, the peak-to-peak square wave amplitude is equal to the integrator’s dc output voltage $V_{dc}$, that is:

$$V = V_{dc}$$

We want to make the voltmeter read rms volts. If the applied rf has an rms voltage $V_{rms}$, then the feedback loop makes:

$$V_{rms} = \sqrt{2} V_{in}$$

So, the quantity we want to measure, $V_{in}$, is given by:

$$V_{in} = \frac{V_{rms}}{\sqrt{2}} = \frac{V_{dc}}{\sqrt{2}} = 0.45 V_{dc}$$

This is why the dc produced by the integrator is scaled by 0.45.
EXCLUSIVE!!! PATENTED WIDEBAND Z COUPLER, AVAILABLE IN NO OTHER UNIT AT ANY PRICE, PROVIDES LABORATORY ACCURACY AND QUALITY AT AMATEUR PRICES...

**WAVE MONITOR SCOPE**

**MS 1**

INTRODUCTORY PRICE $279

**RF 1.8 ~ 54 MHz, AF 10Hz ~ 40KHz**

Wave Monitor Scope MS1 directly monitors 1.8 ~ 54MHz band transmission signals (10 ~ 100W PEP). Front panel operation makes it possible to monitor RF envelope patterns and RF trapezoid patterns. Also, since the MS 1 has two sets of input terminals (one on the front and one on the rear panel) for observing audio patterns, an RTTY terminal unit can be connected to allow monitoring of RTTY (radio telegraph) cross patterns.

**FEATURES:**
1. AM, CW, SSB transmission signals, amplifier linearity: drive, carrier, sideband and CW key click conditions can be observed.
2. Shift adjustments are easy to make as RTTY cross patterns can be displayed.
3. Receiver signals can be monitored as patterns in the 10Hz ~ 40KHz audio band can be observed.
4. Superior commercial quality.
5. Two sets of input terminals allow multi-reg connection, without changing cables, with simple front panel switch selection.

**EXCLUSIVE DISTRIBUTOR:**

AMATEUR-WHOLESALE ELECTRONICS
46 Greensboro Highway, Watkinsville, Georgia 30677

**TO ORDER:**

TOLL FREE..800-327-3102
Telephone (404) 769-8706 Telex: 4930709 ITT
low-noise receiver update: part 1

"You can't work 'em if you can't hear 'em" is an old adage that's still very true. Building bigger and better antennas helps, but sooner or later the antenna size limitation places the burden on the receiver.

Only a decade ago, most Amateurs were using bipolar transistor preamplifiers on the front ends of their VHF and lower UHF band receivers. On the upper UHF and lower SHF bands, diode mixers without preamplifiers were common — with typical noise figures of 6 to 10 dB! That's all changed now, first with the arrival of low-noise silicon bipolar transistors capable of operation into the GHz region, and then with the introduction of GaAs (Gallium Arsenide) FETs in the late 1970s.

Since reference 1 was written, there have been many new and startling developments in the area of low-noise devices and techniques. Noise figures are still dropping; device prices have stabilized. So this seems like an appropriate time to update the earlier material and to present state-of-the-art (SOA) information.

This month's column will serve as a quick review and update of the present SOA in low-noise receiver technology. Next month's column will be devoted more to low-noise circuit techniques, recommended devices, testing, and optimization. With all this information in place, you should be right on the cutting edge of low-noise receiver technology.

a quick review

The SOA in VHF/UHF and microwave low noise figure Amateur receivers and preamplifiers is now dominated by GaAsFETs, which are technically classified as Metal Semiconductor FETs (MESFETs). The term MESFET is used in the professional community because the gates of a GaAsFET are formed using aluminum, which is a metal that is in direct contact with the semiconductor material. Thus a Schottky barrier diode is formed in the N-type material as shown in fig. 1A.

When the lowest noise figure is required above about 100 MHz, GaAsFETs are favored over silicon bipolar transistors because they have up to five times faster electron mobility. Hence, GaAsFETs have much higher cutoff frequencies and gain than silicon bipolar transistors. Furthermore, they typically have much lower noise figures.

Reference 1, an introduction to low-noise GaAsFET technology, gave details on preamplifier designs for 144, 220, and 432 MHz, with suggestions for higher-frequency operation. When this material was published in 1984, the GaAsFET was king, but that's no longer true; lower-noise devices and new breakthroughs in technology now threaten to decrease noise figures so far that they will no longer be the primary limitation to communication capability. Stay tuned.

In addition, during the last few years there's also been a proliferation of "mast-mounted" low-noise preamplifiers using GaAsFETs. These preamps almost completely eliminate the losses associated with feed lines, and virtually eliminate the mismatch loss associated with feed line losses. This is a major problem with low-noise preamplifiers because they often have high input VSWR.

latest developments in devices

GaAsFETs were originally used in commercial and government low-noise amplifiers operating above 2 GHz. Amateurs were in the forefront of developing low-cost GaAsFET preamplifiers to frequencies as low as 30 MHz, but these devices were practical mainly on 2 meters and above, where ambient and sky noise are low.

GaAsFETs are now being used commercially through 40 GHz and possibly
higher. New lower noise figure, higher gain, and cutoff frequency devices seem to be appearing almost monthly. Needless to say, if you want to be on the cutting edge of technology, you might as well use any premium-quality devices you have in your desk drawer as soon as possible — before they become obsolete! GaAsFETs with noise figures less than 1.0 dB are now available through 4.0 GHz!

Fortunately, the SOA in GaAsFET noise figures is shown in fig. 2. Probably the most important recent improvement in the SOA in low-noise devices is the development of the HEMT (high-electron-mobility transistor). Sometimes referred to as TEG-FETs (two-dimensional electron GasFETs) or heterojunction FETs (to avoid infringing the copyright on the name HEMT in Japan). Technically speaking, the HEMT is a heterojunction superlattice device that was first described in 1978 and demonstrated by Fujitsu and Thompson-CSF in 1979. It is very similar in structure to the GaAsFET except for the two-dimensional electron gas as shown in fig. 1B.

The HEMT's major feature is, typically, its higher transconductance with a cutoff frequency twice that of a comparable GaAsFET, with higher gain and noise figures as low as half those of typical GaAsFETs! Cutoff frequencies well above 100 GHz have been reported. HEMTs with less than 1.0-dB noise figures are now available through X band (12 GHz). The SOA in HEMT noise figures is shown in fig. 2.

Right now, however, most HEMTs are laboratory devices, and the lowest noise devices are very scarce. Only a few HEMT types are available commercially, and these devices are expensive — typically more than $150 each! However, remember that GaAsFETs were in the same price range in the mid-1970s, and better devices are now available for less than $5! HEMTs are known to be manufactured by Fujitsu, GE, Gould-Drexel, NEC, Sony, Thompson-CSF, Toshiba, TRW, and Varian Associates. Other suppliers and even lower noise figures are promised!

Unlike other innovations in technology, the HEMT is compatible with existing GaAsFET dc biasing and rf characteristics. HEMTs usually use the same packages and can be virtual "drop-ins" for GaAsFET circuits. The primary difference is that the HEMT's optimum source impedance is generally higher than an equivalent GaAsFET's. Therefore, an adjustable input-matching circuit similar to the one described in reference 1 is recommended so that the optimum source impedance can be achieved.

One major MESFET anomaly should be stressed. As pointed out in reference 1, GaAsFETs (as well as HEMTs) have a very high noise figure in the so-called 1/f or low-frequency region. This
means that the noise figure increases not only as you increase frequency, but also as frequency is decreased! This effect is shown in fig. 2.

The amount of noise figure increase and the frequency where it begins to increase (below the normal operating frequency) depends on the device type. Generally speaking, the ideal rf operating region for GaAsFETs and HEMTs is over a one decade-wide frequency range referenced down from the specified operating frequency (not the \( F_{\text{max}} \)).

For example, a device specified for 1-GHz operation at the top of its operational frequency range will probably be well suited for operation down to about 100 MHz. However, a device specified for 10 GHz will probably have a higher noise figure if it’s used much lower than about 1 GHz!

Therefore, don’t expect that a very low-noise GaAsFET specified for 10 GHz will be a super low-noise device at 144 MHz. A low-noise 10-GHz HEMT may well have a higher noise figure at 432 MHz than a much less expensive device specified for operation through 4 GHz. This is why so many Amateurs have been able to demonstrate incredibly low noise figures on 2 meters using GaAsFETs costing no more than $5 to $10!

Also, the higher the cutoff frequency of a GaAsFET or HEMT, the narrower the gate; hence, the susceptibility to static burnout increases. Furthermore, higher frequency devices are more prone to oscillate when operated at lower frequencies. So don’t “read into the specifications” anything that isn’t there. For optimum performance versus cost, operate MESFETs in the frequency range recommended by the supplier.

### noise figure limitations

I’m often asked the question, “What limits noise figure?” It should be intuitive that part of the limitation on noise figure is in the actual device itself. Furthermore, for the lowest possible noise figure in a receiver, the gain of the first stage must be high and the second stage should also have a low noise figure. This is shown mathematically by the following equation.\(^7\)

\[
F = F_1 + (F_2 - 1)/G_1 + (F_3 - 1)/(G_1 \cdot G_2) + \ldots
\]

where \( F \) is the overall noise factor of the receiver, \( F_1 \) is the noise factor of the first stage, \( F_2 \) is the noise factor of the second stage, \( F_3 \) is the noise factor of the third stage, \( G_1 \) is the numeric gain of the first preamplifier and \( G_2 \) is the numeric gain of the second preamplifier. Note that noise factor and gains are in numerics, not decibels, so they often have to first be converted from decibels to numeric values before using them in eqn. 1.

After the final noise factor is determined, you’ll probably want to convert noise factor back to noise figure using the following equation.

\[
NF = 10 \log F
\]

For example, refer to fig. 3, a block diagram of a typical Amateur front end. In example 1, if the noise figure of the first stage of a receiver is 0.5 dB (noise factor = 1.122), with a gain of 13 dB (gain = 20) and the second stage noise figure is 4.0 dB (noise factor = 2.51), with a gain of 15 dB (gain = 31.6) -- ignoring the third stage contribution and assuming it to be negligible) -- the overall receiver noise figure will be 0.78 dB (noise factor = 1.197), a significant 0.28-dB increase over the first stage alone.

Now if we reduce the noise figure of the second stage to 1.75 dB (noise factor = 1.496) [example 2] or increase the gain of the first preamplifier to 8 dB (gain = 63) [example 3], the overall noise figure will be 0.59 dB (noise factor = 1.46), only 0.09 dB above the preamplifier alone, a small penalty to pay.

These calculations are often laborious and prone to error. For this reason, it’s best to program eqn. 1 and eqn. 2 into a computer or scientific calculator to simplify the calculations and decrease the possibility of human error.\(^8\)

Finally, don’t get carried away with gain. Increasing the first stage gain too much may lead to intermodulation distortion or instability, thus limiting the ability to use the inherent low noise figure.\(^9\)\(^10\) Therefore, with the low cost of devices today, it’s preferable to design for a reasonable first stage gain (15 to 20 dB) and use a similar type second stage with a moderate noise figure (1.0 to 2.0 dB typical). This provides an inexpensive and useful cost/performance tradeoff.

### other noise figure limitations

Another noise figure limitation is incurred by operating a preamplifier at room temperature (more on this shortly). However, the major limitations on Amateur receivers attaining very low noise figures commensurate with device specifications are losses associated with the input impedance-matching circuitry.

Amateur preamplifiers are usually designed for a single frequency band. Typically the circuits employ some form of input tuning. This is a preferred technique since the input network will not only allow the device to be optimized for the lowest possible noise figure at the frequency of interest, but will also act like a filter and prevent strong out-of-band signals from entering or causing IMD.

Most Amateur preamplifier input circuits, especially below 500 MHz, use an inductor and capacitor tank circuit similar to those shown in figs. 4A and 4B. Figure 4A has one less component, but it also requires the tap to be
Abbreviated type of input matching circuit. Therefore, the input impedance-matching network is one of the types that uses a broadband output network. The Q of the preamplifier (and therefore the loaded Q of the inductor) is then determined as follows:

$$Q_{\text{preamp}} = \frac{f_0}{f_{\text{HL}} - f_L}$$  \hspace{1cm} (4)

where $f_0$ is the center frequency in MHz, $f_{\text{HL}}$ is the upper half-power frequency, and $f_L$ is the lower half-power frequency. For example, if we have a 432-MHz preamplifier with half-power frequencies of 440 and 423 MHz respectively, the loaded $Q$ will be $432/(440 - 423)$ or 25.4.

Now, if we assume that all other components contribute negligible loss, we can determine the approximate input circuit losses attributable to the inductor’s Q. Using eqn. 3 and assuming a good inductor with an unloaded Q of 500 and a preamplifier with a loaded Q of 25.4, we have an input circuit insertion loss of approximately 0.45 dB.

Typical GaAsFET preamplifiers using input tank circuits of this type have noise figures of 0.5 to 0.75 dB. Therefore, with a 0.45-dB input loss, the overall noise figure of the preamplifier is almost entirely due to the losses in the input network and the GaAsFET itself must be virtually noiseless!

To show the $Q_L/Q_0$ losses more graphically, I’ve prepared the graph in fig. 5 and scaled it for low loss and hence low noise figure conditions. (Check fig. 5 for the 432-MHz preamplifier case above.) For a $Q_L/Q_0$ ratio of 500/25.4, or approximately 20, you’ll see that the insertion loss is indeed 0.45 dB.

Also note in fig. 5 that to get the input losses down below 0.1 dB, the unloaded-to-loaded Q ratio must be equal to or greater than 90. This means that the unloaded Q of the inductor in the preamplifier just described would have to be over 2000! If you want a very low-noise preamplifier, you’re going to have to use some pretty low-loss inductors — such as a large (1- to 3-inch diameter) coaxial cavity resonator — and possibly have them silver plated.

Figure 4C is a different input circuit topology which eliminates the tank circuit per se by using a series input inductor and “lossless feedback” in the source lead. This type of circuit definitely has lower input losses and potentially a better input VSWR. However, it’s more prone to out-of-band interference and therefore is more appropriate for use on the microwave bands. It will be discussed further in next month’s column.

other component losses

Don’t forget that there can be other losses besides the input inductor. Tuning capacitors can also have losses. Only the lowest loss, highest Q tuning capacitors should be used in the

![Figure 4C](image-url)
**Barry Electronic Corp.**

**World Wide Amateur Radio Since 1950**

*Your one source for all Radio Equipment!*

For the best buys in town call:

212-925-7000

Los Precios Mas Bajos en Nueva York

---

**MULTI BAND TRAP ANTENNAS**

**TRAP DIPOLES:**

* Model Band Length Price
  - 40 10/15-20/20 24' $10.00
  - 40 10/15-20/20 38' $15.00
  - 40 10/15-20/20 50' $20.00

**TRAP VERTICALS: “SLOPERS”**

* Model Band Length Price
  - 40 10/15-20/20 1 35' $15.00
  - 40 10/15-20/20 1 50' $20.00
  - 40 10/15-20/20 1 70' $25.00

*New! Complete kit with all parts included. Each trap measures 11' x 11' x 11’. *(Call for details)*

---

**SATELLITE TV BUYING GUIDE**

**SATELLITE TV**

**NAME BRADS AT 50% DISCOUNT**

This FREE 24 page Consumer Buying Guide tells all about Satellite TV and lists guaranteed lowest prices...

---

**TELL YOUR FRIENDS about ham**
input-matching network. The air-variable type capacitors manufactured by Johanson and others are a preferred type. They not only have low loss and high Q, but also good tuning resolution with little or no backlash. Furthermore, they often have special sealing caps that can be placed over the tuning mechanism to help keep out moisture and prevent inadvertent mistuning.

The minimum Q of a Johanson-type 5200 air variable, one commonly used by Amateurs, is 5000 at maximum capacitance at 100 MHz. This figure decreases rapidly to less than 1000 above 300 MHz! Higher Q types such as the Johanson 5700 and 5800 are recommended, but they have lower maximum capacitance so they’re useful only for higher frequencies and for series connections where lower capacitance values are required.

Chip capacitor losses can also be considerable, especially when used in source bypassing or in the rf path. In critical low-loss circuits, the porcelain types are highly recommended despite their higher initial cost. Be careful, too, of resistor types. The older carbon or film types that are becoming so popular are usually quite reactive and lossy, and are therefore not recommended.

Finally, coaxial connectors – especially type N, TNC, and SMA – are highly recommended for low-noise preamplifiers because they have low loss and a very positive mating mechanism. On the other hand, BNC- and UHF-type connectors should be avoided because their impedance isn’t constant, and they have questionable mating.

---

**Figure 5.** Insertion loss of an inductor (or capacitor) due to the effects of unloaded and loaded Q.
tolerances and known insertion losses. Connector types and losses are discussed further in references 12 and 13.

lower noise techniques

Cooling is probably the last resort when it comes to really low-noise preamplifiers. Bipolar transistors generally don’t work well below about 70 to 80 degrees Kelvin. However, many GaAsFETs and HEMTs seem to do quite well when cooled even as low as 12 degrees Kelvin, the temperature of liquified Helium.

The National Radio Astronomy Observatory (NRAO), in Charlottesville, Virginia, has been building low-noise preamplifiers for many years. Their preamplifiers are used in radio telescopes where the sky temperature is as low as 3.5 degrees Kelvin, almost absolute zero. By 1980 they were using GaAsFET preamplifiers cooled to about 13 degrees Kelvin in a Dewar with liquified Helium.

At first NRAO used GaAsFETs because they noticed that the transconductance would often increase — sometimes by as much as 50 percent — as temperature was decreased. At the same time, the noise figure would drop. However, the optimum source impedance changes at low temperatures and oscillations may occur. Consequently the preamplifier has to be optimized at the cold temperature. Recently, NRAO noticed the same effects with HEMTs.

Because the cryogenic coolers used by NRAO cost about $5000 each, they’re not really practical for Amateurs. Other less expensive coolers such as the thermo-electric type are available commercially. However, they use diodes that may generate noise, so be cautious if you use them. It should be sufficient to mention that if you have an antenna-mounted preamplifier, especially for EME, you should mount it so that it won’t be heated excessively by the sun.

Finally, of the GaAsFETs tested by NRAO, the MGF 1412 seems to have consistently low noise figure at room temperature. Furthermore, at cryogenic temperatures, the MGF 1412 type seems to be one of the most reliable for low noise figures. Since this is one of the most popular types used by Amateurs seeking the lowest possible noise figures, it may be a place to start.

summary

In this month’s column, I’ve attempted to bring you up to date on the SOA in low-noise receivers for VHF and above. Noise figures are still dropping, but at some frequencies can’t go lower unless we change the circuit techniques we’re presently using. In next month’s column, we’ll discuss some circuit and device recommendations.

acknowledgments

I’d particularly like to thank Bill Lakatosh, AA4TJ (ex K3QCQ and KJ4QJ), of NRAO for their input on SOA noise figures and cooling techniques.

new records

In last month’s column we mentioned the outstanding sporadic E occurrence during the ARRL June VHF QSO party and asked for any new record claims. Shortly after the contest was over, I received and authenticated a new North American 2-meter, double-hop sporadic E record. The new record holders are Jim Poore, KD4WF, in Savannah, Georgia (EN92LK) and Jim Frye, NW70/7, operating portable from Mount Potosi, southern Nevada (DM25GV). Their contact took place on June 14, 1987, at 1704 UTC and extended the existing record by almost 90 miles for a new record of 1980 miles (3186 km). Congratulations to both Jims.

The North American 10-GHz DX record has also been broken; more on that in next month’s column.

important VHF/UHF events

**November 3**

- Predicted peak of the Taurids meteor shower at 2200 UTC
- Predicted peak of the Cassiopids meteor shower at 2200 UTC

**November 14-15**

ARL EME Contest (second weekend)

**November 15**

- Predicted peak of the Leonids meteor shower at 1500 UTC
- New moon EME perigee
- Predicted peak of the Geminids meteor shower at 1900 UTC

**December 3**

- New moon ± month. Winter peak of sporadic E propagation
- Predicted peak of the Ursids meteor shower at 2200 UTC
- EME perigee

**December 22**

references

8. Joe Reisert, WlJR, and Gary Field, WA1GRG, “RF CAD Electronics Design Program.” (Available for IBM PC from ham radio’s Bookstore, $39.50 plus $3.50 shipping and handling.)

**November 17**

- Predicted peak of the Leonids meteor shower at 1500 UTC
- New moon EME perigee
- Predicted peak of the Geminids meteor shower at 1900 UTC
- New moon ± month. Winter peak of sporadic E propagation
- Predicted peak of the Ursids meteor shower at 2200 UTC
- EME perigee
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AT STANDARD EQUIPMENT!!)

BAND WIRED KIT 6M, 2M, 220 $880 $630 UHF $980 $730

FEATURES:
• SENSITIVITY SECOND TO NONE! 0.15µV Typ.
• SELECTIVITY THAT CAN’T BE BEAT! Both 8 pole xtal filter & ceramic filter for > 100kHz at 12kHz. Helical resonator front end to combat desense & interference.
• Flatter-proof squelch, Automatic frequency control, separate xtal amplifier.
• CLEAN, EASY-TUNE TRANSMITTER, up to 20W output 50W with additional PA.

ACCESSORIES
• TD-2 DTMF DECODER/CONTROL KIT only $78. Full 16 digits, 5 functions, toll call restrictor, programmable. Much more. Great for selective calling too!
• AP-1 AUTOPATCH kit only $78. Reverse patch & phone line remote control std.
• AP-2 Simplex Autopatch. Use with above.
• CWID kit, new low price $48. Full 16 digits, 5 functions, toll call restrictor, programmable. Much more. Great for selective calling too!

GaAs FET PREAMPS
at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $49!
Wired/Tested
FEATURES:
• Very Low Noise: 0.76 dBVH, 0.8dB UHF
• High Gain: 13-20dB, depending on freq.
• Wide Dynamic Range: To resist overload
• Stable: new-type dual-gate GaAs FET
* Frequency tuning range desired: 26.30, 46.56, 137.150, 150.170, 210.230, 400-470, or 900-960 MHz.

LNW -(*)
MINIATURE GaAs FET PREAMP
Unbelievably Low Price — ONLY $19/kit, $34 Wired/Tested
GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8" X 1/8" X 3/4". Easily mounts at various points.
* Frequency tuning range desired: 25-35, 55-55, 90-120, 120-150, 210-230, 400-500 MHz.

LNS-(*)
IN-LINE PREAMP
ONLY $59/kit, $79 Wired/Tested
GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W. Tower mtg, hardware supplied.
* Frequency tuning range desired: 120-175, 200-240, or 400-500 MHz.

HRA -(*)
HELICAL RESONATOR PREAMP
ONLY $49 VHF or $64 UHF
Low-noise preamps with helical resonators reduce intermod & cross-band interference in critical applications.
* Frequency tuning range desired: 143-150, 156-162, 162-174, 213-233, 420-450, 450-465, or 465-475 MHz.

HAMTRONICS, INC.
65-E Moul Rd.; Hilton NY 14468-9535

□ High quality equipment at reasonable prices surely appeals to me; but I want more details before I buy! Rush my copy of the 40-page Hamtronics catalog by return first class mail. I enclose $1 ($2 for overseas air mail).

Name ____________________________________________________________
Address ________________________________________________________
City ____________________________________ State/ZIP ________________

Hamtronics, inc.
65-E MOUL ROAD • HILTON NY 14468-9535
Phone: 716-392-9430

November 1987 Page 106

Five compartment刑警的注册商标

- Order by phone or mail • Add $3 S&H per order (Electronic answering service evenings & weekends)
- Use VISA, MASTERCARD. Check, or UPS COD.
Subscribe Today To The World's Leading Magazine For Shortwave & Scanner Listeners!

- International Broadcasting
- Utility Monitoring
- Scanners
- Shortwave and Longwave
- Satellites
- Electronic Projects
- Listening Tips
- Frequency Lists
- Equipment Reviews
- News-breaking Articles
- Feature Articles
- Exclusive Interviews
- Insights by the Experts
- New Products

Each month MONITORING TIMES, the first wide-spectrum listener's publication and still the best, brings you 64 giant tabloid pages of late-breaking information on every aspect of monitoring the radio spectrum.

Fast-paced and information-packed, MONITORING TIMES consistently scoops the publishing industry.

ORDER YOUR SUBSCRIPTION TODAY before another issue goes by: only $15 per year (U.S. and Canada), $22 per year (foreign) or send $1 for a sample issue (foreign send 2 IRCs).

MONITORING TIMES
P.O. Box 98
Brasstown, N.C. 28902

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on beam antenna design. Covers HF and VHF Yagis and 10, 11 and 24 MHz WARC bands. Everything you need to know. 204 illustrations. 268 pages. $19.95. Revised 1st edition.

SIMPLE LOW-COST WIRE ANTENNAS

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the simple element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. $14.95. 3rd edition.

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. $19.75. 1st edition.

Please enclose $3.50 for shipping and handling.

#1 Source of PACKET Info

The Magazine
For Amateur Radio and Computerists
Why You Should Subscribe!

It's in the fine print!
- Your magazine is the finest innovation that I have seen in ham radio since 1953—except... maybe the all-solid state transceiver. Carl Soltesz, W8FFT • • • have most certainly received my money's worth in software... Michael Regan, K8WRB • • • you have found a nice niche for CTM in packet... you have me getting interested... Charlie Curle, ADF Chattanooga, TN • The packet computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homey style of your magazine and the many fine computer articles... Andy Kosior, Lakewood, OH • I was both pleased and dismayed upon becoming acquainted with your magazine at HAM-COM. Pleased that I discovered your magazine—dismayed that I didn't long before now. Bill Lathan, AK5K • • • CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet amateur radio articles and computer articles. Barry Siegfried, K2MF • Of the three HAM magazines I received each month CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT

U.S.A. $18.00 1 Yr—$10.00 6 Months (Limited Offer) $33.00 2 Yr
Mexico & Canada $32.00 1 Yr (Surface) Other Countries (Air) $68.00 (Surface) $43.00 1 Yr U.S.FUNDS ONLY
Sample Copy & Back Issues—$3.50

Mail to:
Circulation Manager
1704 Sam Drive
Birmingham, AL 35235
(205) 854-0271

Name

Call Sign

Address

City ST ZIP

Date

Signature

W6SAI BOOKSTORE

Greenville, NH 03048
(603) 878-1441

November 1987
Special
OUTSTANDING PRICES ON IBM XT™
COMPATIBLE SYSTEMS!

SYSTEM #1 $299.00
MOTHERBOARD WITH BIOS AND
ZERO K OF RAM UPGRADABLE
TO A FULL 640 K RAM, FLIP TOP
CASE, XTAT LOOK ALIKE KEY-
BOARD, 150 WATT POWER SUP-
PLY WITH ALL THE POWER
NEEDED TO RUN EXTRA DRIVES
AND CARDS.

SYSTEM #2 $499.00
MOTHERBOARD WITH BIOS AND
THE FIRST 256K OF RAM UP-
GRADABLE TO A FULL 640K OF
RAM, FLIP TOP CASE, XTAT
LOOK ALIKE KEYBOARD, 150
WATT POWER SUPPLY, DUAL
DISK DRIVE CARD WITH CABLES,
ONE FLOPPY DRIVE DS DD 360K,
A COLOR GRAPHICS CARD WITH
RGB AND COMPOSITE OUTPUT.

(System #2 also includes a 250 WATT
POWER SUPPLY, 250 WATT POWER
SUPPLY, DUAL DISK DRIVE CARD WITH
CABLES, ONE FLOPPY DRIVE DS DD 360K,
A COLOR GRAPHICS CARD WITH
RGB AND COMPOSITE OUTPUT.)

SYSTEM #3 $799.00
MOTHERBOARD WITH BIOS
CONTAINING 640K OF RAM FLIP
TOP CASE, XTAT LOOK ALIKE
KEYBOARD, 150 WATT POWER
SUPPLY, COLOR GRAPHICS
CARD WITH RGB AND COMPO
SITE OUTPUTS, MULTI I/O CARD
WITH TWO DISK DRIVE PORTS,
ONE PARALLEL PORT, ONE
SERIAL PORT AND ONE
SERIAL PORT, ONE GAME PORT,
CLOCK AND CALENDAR WITH
BATTERY BACKUP TWO FLOPPY
DISK DRIVES DS DD 360K AND A
COMPOSITE MONITOR.

Seagate ST-225, 20 MHz hard drive
with control card available with any system
Call for customized systems.

HAL-TRONIX, INC.
P.O. BOX 1101 DEPT. N
12671 DIX-TOLEDO HWY
SOUTHGATE, MICH. 48195 PHONE (313) 261-7773

Radiosporting
A magazine dedicated to quality and sportsmanship
in amateur radio operating. Fresh, timely, practical and
down to earth reading for little pistols and big guns. Written by
the world's best in their fields: ON4UN, SMHAGD, L22CJ,
VE3BMW, K6H4Z, DJJZB, Z56RZ, W1NY, N2AU, K7G6Z,
K42N, W4GF, VEJTO, W9AZW, W9STU, KQ2M, N56X, W3GF,
K43B, KIP4R, W7CDO, VE3MM, KE7ER, VE49KJ and others.
Includes DX News, QSL Info, 160m, 80m, 10m, 6m columns,
Dxpeditioning, Propagation, Awards, Contest rules and results,
Traffic - Emergency, FCC News, New Products, Antennas,
Technical news and articles, equipment reviews and
modifications, computer programs, Radio Funnies, Club Life,
RTTY, VHF/UFH, Mail Box, Classified Ads and much more in
a magazine format with the speed of a bulletin.

Radiosporting sponsors DX Century Award, Contest
Hall of Fame and World Radio Championship contest.

"Your publication is superb! Keep it up!" Joe Reisert, W1JR
"Your W2PV articles are priceless. Your magazine is super!"
Rush Drake, W7RM
"Let me congratulate you on a very impressive magazine. Just
what I've been looking for as a Dker and Contest!" Dick Moen, N7RO
"RADIOPORTING, once received, cannot be tossed aside until
it is read from cover to cover. Then reviewed again and
again." Chas Browning, W4PKA

Subscription rates: 1 year USA $18, Canada CDN$26, Overseas
US$33; 2 years $33, $48, $42 respectively. Single issue $2.
USA First Class Mail add $5/year, DX Air Mail add $15/year.

TRY US! SUBSCRIBE OR SEND $1 FOR YOUR SAMPLE COPY.

Radiosporting Magazine
P.O. Box 282, Pine Brook, NJ 07058, USA
HOLIDAY GIFT

1988 NORTH AMERICAN RADIO AMATEUR CALLBOOK
Extensively revised with all the latest call signs and addresses for Amateurs North America. Also includes handy operating aids such as time charts, QSL bureau, census information by state and license class (US) and country and much more. Get your's today 1987
CB-F8B $24.95

1988 INTERNATIONAL RADIO AMATEUR CALLBOOK
Includes all countries outside of North America and has been revised with all the latest calls and addresses available. The listing is in a clearing operating book and it is an invaluable aid to getting coveted DX QSL cards. Includes plenty of extra information too (Order yours now!) 1987
CB-F8B $24.95

ORDER BOTH AND SAVE $5
REG. $51.90 JUST $46.90
Books available late November

ARRL OPERATING MANUAL
This book has been completely revised and up-dated! Over 600 pages are crammed full of the information every ham should have at their fingertips. In addition to message handling, emergency operating, repeaters and contesting, this book includes sections written by noted DXers WW6KI and W6AVN-1987 658 pages
AR-OG $24.95

WIFB's ANTENNA NOTEBOOK
by Doug DeMaw, WIFB
Antennas have been one of DeMaw's passions in Amateur Radio. He has worked with countless designs of all shapes and configurations. This fully illustrated book is a great book and it is an invaluable aid to getting coveted DX QSL cards. Includes plenty of extra information too (Order yours now!) 1987
CB-F8B $24.95

TRANSMITTER HUNTING: RADIO DIRECTION FINDING SIMPLIFIED
by J.D. Mose, K0GIV and T.N. Curlee W6BUZZ
Knowing how to use direction finding equipment can be an important addition to your Ham skills. Besides the fun aspects like, Fox or Tuning, you might someday be called upon to assist a search and rescue group save lives! Written by two DX experts, this book is full of helpful hints, facts and suggestions. Includes how to equip yourself, weak signal hints, equipment you can build to optimize your efforts, hunting techniques plus much more! Two BASIC computer programs are also included with complete instructions for triangulation 1987 323 pages
AR-AN $7.95

MICROWAVE UPDATE
September 1987
These papers were presented at the September 1987 meeting held in Estes Park, Colorado. 15 Papers includes the latest in technology, designs and microwave techniques
AR-MU $5.95

LOW BAND DX-ING COMPUTER PROGRAMS
by John Devoldere, ON4UN
For Apple II, MS-DOS, Commodore C-128 and Kaypro CPM Computers
Here's a collection of 28 programs written by ON4UN. Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: shunt and series input L network design, feed line design, shunt neutralization design, SWR calculation, plus more! General Ham programs include: sunrise/sunset, great circle distances, gray-line, T/R converter design, summer calendar plus 9 more! When you sit down to use these programs you'll be amazed at what you have. The best value in computer software available today 1986
UN-App $9.95
UN-MC (MS-DOS) $19.95
UN-CPM/Kaypro $19.95
UN-C-128 (COMMODORE) $19.95
UN-MAC (MACINTOSH) $24.95

Program prices going up Jan. 1. Order now and save!

BEVERAGE ANTENNA HANDBOOK
by Victor Miskie, W1WCR
Recognized around the world as the definitive work on Beverage Antennas! This book gives you all the practical information to design the single wire Beverage and SWA (Stearable Wave Antenna) with helpful hints and tips on how to maximize performance for each application. The book goes on to explain the configuration of the Beverage antenna and the most efficient ways to use them. Includes computer programs that will help the Radio Amateur or engineer design many common types of radio circuits. Emphasis has been placed on ease of use and minimum menus of choices with examples are displayed. Should the user be computer literate, the programs are not protected so they can be modified to suit the user's needs. (Full documentation is also provided.) Programs include: Filters, LC- active, LP SP, Inductor design, toroidal, surface mount and chip antenna design information, Crystal oscillator, Microstrip, Transmission Line, Antennas, Yagi-Uda, helix, dish, horn, element scaling, Pi and T attenuators. Also includes Radio Path calculations, F mode propagation analysis. Miscellaneous conversions. Geostationary satellite pointing, Moon tracking aids; Receiver nose figure calculations and computer program response predictions. Requires IBM-PC with at least one floppy drive and 128K of RAM 1987
RAF-CAD (MS-DOS) $39.95

HAMILONG (MS-DOS Computer)
by Rick Martin, WA5YLD
Harness the power of your MS-DOS computer with this tested and proven program. HAMILONG is fully menu driven and features fand-tastic record retention and display. Can be edited at any time and allows hard copy print-outs by call sign, date or a number of other parameters. Also includes helpful frequency allocation tables by license class and third party agreements for traffic handlers
RM-HL (MS-DOS) $49.95

DIGIPAC II (MS-DOS Computers)
by Matt Assoc.
Digipac II combines a full featured computer communications program with a powerful message editing and formatting program designed for traffic handling. The message/ program features address prefixes, complete subcommand form, prompts and pop up help and selection menus. Full user defined help system plus more. The communications program has plenty of features too, multi-level alarm, multi screen, (full, split or recall) user programmable function keys, and a lot more. No matter what your interest is in packet - from rag chug to traffic handling - this program is for you.
KA-DPII (MS-DOS Computers) $49.95

OSO-PRO (MS-DOS)
by Mark and Mary Morland
Not just another logging program. Written with the active Ham in mind, this MS-DOS program has been professionally designed to unleash the potential of the MS-DOS computer. Uses a logical standardized data entry format and allows editing, sort and selection of data. Powerful program at a very reasonable price.
MM-QP (MS-DOS Computers) Reg. 39.95 Special $34.95 (special expires December 1, 1987)

ULTRA-HAM Contest Logger (C-64 COMPUTER)
ULTRA-HAM is a powerful program. It includes local and foreign databases, automatic log sheet printing and a printing program. Easy-to-use and full of helpful hints. Hams from Exits to Novices will find this to be a great addition to their software library. Other features include automated numbering, super fast duplexer, automatic UTC clock, automatic disk saving every 80 pages; running score totals plus more. Also includes editing capabilities
RG-UH (for C-64) $39.95

RF-CAD ELECTRONICS DESIGN PROGRAM - Version 3.7 Includes Intermodulation and Distortion Program
by Joe Reeselt, W17JR and Gary Field, WAI6RC
For IBM PC and compatible computers
This software package has been written by electronic engineers. It is an automated software program that will help the Radio Amateur or engineer design many common types of radio circuits. Emphasis has been placed on ease of use and minimum menus of choices with examples are displayed. Should the user be computer literate, the programs are not protected so they can be modified to suit the user's needs. (Full documentation is also provided.) Programs include: Filters, LC- active, LP SP, Inductor design, toroidal, surface mount and chip antenna design information, Crystal oscillator, Microstrip, Transmission Line, Antennas, Yagi-Uda, helix, dish, horn, element scaling, Pi and T attenuators. Also includes Radio Path calculations, F mode propagation analysis. Miscellaneous conversions. Geostationary satellite pointing, Moon tracking aids; Receiver nose figure calculations and computer program response predictions. Requires IBM-PC with at least one floppy drive and 128K of RAM 1985
RAF-CAD (MS-DOS) $39.95

BUY 'EM BOTH SPECIAL OFFER
Book & Software Reg. $29.90 ($34.96 for Mac) Just $24.90 ($29.90 for Mac) UN-SCO (specify computer) $24.90 UN-MSO Macintosh Special $29.90
SHOPPING IDEAS

RADIO HANDBOOK 23rd Edition
by Bill Orr W6SAI
Here are some of the highlights of this exciting new edition:
- New easy-to-use charts for Chetwynd and elliptic filter configurations
- New data on power MOS-FETs, how to use state of the art (OP-AMPS, etc.)
- A computer compact RTTY to name just a few examples.
- New projects include: GaAsFET preamps for 902 and 1566 MHz, easy-to-build audio CW filter.
- Economy two 3-500Z, 160 meter amplifier, multiband amp using two 3CX600A's, and a deluxe amplifier with the 3CX1200A7 tube.
- New antenna projects include: Efficient Monoband for 160 and 80 meters, computer generated dimensions for HF-Yagis, and a 2 meter slot beam.

COMPUTER PROGRAMS FOR THE RADIO AMATEUR
Book currently unavailable.
by Wayne Overbeck, N6BZ, and Jim Steffen, K6GA
Here are the best computer programs for the Radio Amateur available. Gives your programs that will help you to:
- Determine sunspot/sunrise times, track the Moon's path across the sky, use Greyline propagation and setup record systems for WAS, DXCC and VUCC, or any other award:
The full advantage of your computer with well written and tested programs. © 1984.

Data Base Mgmt.
Logs, Awards Data Base, Gridocator
Latitude/Longitude Programs
Data File, Beamheadings, DX Display, Sunline Chart, Greyline, Gridocator
Contest and Duping
Dupcheck, General Contest Logger, Field Day Logger, Sweepstakes Logger, Log Print
Antenna Programs
Antenna Scalor, Matching Evaluator, Vertical Pattern Plotter
EME
EME System Calculator, Sky Locator, Moon tracker
Program disk $19.95
specify computer (see list below)

HAM RADIO LICENSE STUDY GUIDE
by Diamond System (MS-DOS Computers)
Use your home computer to study for your Amateur License. Questions and answers are taken from the FCC
standard syllabus for each license class. You can either study the whole question pool or one of the individual sub-
jects. Novice, General and Extra programs also include a Morse code program that will allow you to bone up on your code. The program can either generate code randomly or from a text file. State of the art learning. MS-DOS only.

SO-1 Novice (with code study) $39.95
SO-2 General (with code study) $34.95
SO-3 Advanced $49.95
SO-4 Extra (with code study) $49.95

HAM RADIO LOG books
back by popular demand!!

For over 2100 QSL's— that's over twice as many as the other log books. For contesters, each page contains 40
QSL's for east counts. You also get the latest up-to-date
frequency spectrum chart, ITU call list and ARRL DXCC list. 40 separate logs to log for. Unquestionably the best log book value anywhere. © 1986

HR-LB $15.95
HR-JLB Special buy 2 price Save 22% Get 3 offer $16.95

RADIO COMMUNICATION HANDBOOK
by RSSB 5th Edition
Here is an inside look at Amateur Radio with the British
version of the ARRL Handbook. Full of projects, theory and
other helpful technical information. Also includes antennas,
propagation, satellites plus much more! 1982 20 chapters 1.25" thick!

RS-RICH Softbound $21.95

BASEBALL CAP
How about an attractive BASEBALL style cap
that has name and call on it. It gives a
patriotic air when worn at hamfests and it is
a great help for friends who have never
met to spot names and calls for easy recognition. Great for birthdays, anniver-
saries, special days, special occasions. Hats comes in the following colors:

GOLD, BLUE, RED, KELLY GREEN
Price each and name and call
(maximum 6 letters per line)

UFBC-81 $6.00

I.D. BADGES
No ham should be without an I.D. badge
It's just the thing for club meetings,
conventions, and get-togethers, and you have a
wide choice of colors. Have your name and call en-
graved in either standard or script type on one of these plastic laminated I.D. badges.
Available in the following color combinations
(badge/lettering): white/red, blue/white, white/red, white/blue, white/white, blue/white, red/white, green/blue, metal/white, metal/gold, metal/black, silver/black.

Q10 Engraved I.D. Badge $2.50
## RAMSEY OSCILLOSCOPES

All RAMSEY oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby, service and production applications.

*Add an additional $10.00 for each unit for shipping.*

### MINI-100 COUNTER

- **Model:** MINI-100
- **Freq Range:** 1-500 kHz
- **Sensitivity:** Less than 200mV
- **Accuracy:** 10 MHz
- **Price:** $119.95

### CT-70 9 DIGIT 525 MHz COUNTER

- **Model:** CT-70
- **Freq Range:** 30 Hz to 500 MHz
- **Sensitivity:** 100 Hz
- **Accuracy:** 10 MHz
- **Price:** $139.95

### CT-90 9 DIGIT 600 MHz COUNTER

- **Model:** CT-90
- **Freq Range:** 30 Hz to 600 MHz
- **Sensitivity:** 100 Hz
- **Accuracy:** 10 MHz
- **Price:** $169.95

### CT-125 9 DIGIT 1.2 GHz COUNTER

- **Model:** CT-125
- **Freq Range:** 1.2 GHz
- **Sensitivity:** 100 Hz
- **Accuracy:** 10 MHz
- **Price:** $189.95

### RAMSEY FREQUENCY COUNTERS

Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for its quality products at breakthrough prices. Our frequency counters have features and capabilities of counters costing twice as much. BP-4 Nickel battery pack for CT-70. CT-90 and CT-125 Frequency Counters. $8.95.

### RAMSEY D-4100 COMPACT DIGITAL MULTITESTER

- **Model:** RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER
- **Price:** $249

### TONE DECODER

- **Model:** WPL-2300
- **Price:** $5.95

### COLOR ORGAN

- **Model:** WPL-1000
- **Price:** $8.95

### VIDEO MODULATOR

- **Model:** E200
- **Price:** $7.95

### LED Blinks Kit

- **Model:** E200
- **Price:** $2.95

### UNIVERSAL TIMER

- **Model:** E200
- **Price:** $4.95

### WHISTLER LIGHT

- **Model:** E200
- **Price:** $4.95

### BUS MAPPER

- **Model:** E200
- **Price:** $9.95

### RF TIME BASE

- **Model:** E200
- **Price:** $14.95

### PS-101 GHz PRESCALER

- **Model:** E200
- **Price:** $18.95

### MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

### ACCESSORIES FOR RAMSEY COUNTERS

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescopic whip antenna</td>
<td>$8.95</td>
</tr>
<tr>
<td>High impedance probe, light</td>
<td>$16.95</td>
</tr>
<tr>
<td>Low pass probe, audio use</td>
<td>$16.95</td>
</tr>
<tr>
<td>Direct probe, general purpose</td>
<td>$12.95</td>
</tr>
<tr>
<td>Tilt fill, for CT-70, 90, 125</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

### PHONE ORDERS CALL

**716-586-3950**
**TELEX 46673 RAMSEY CI**
**FAX 716-586-4754**

**RAMSEY ELECTRONICS, INC.**
2675 Baird Ave., Dept. RH
P.O. Box 1143, New York, N.Y. 10152

**INCLUDES 2 HOOK-ON PROBES**
**20 MHz DUAL TRACES**
- **Price:** $396.95*

### INCLUDES 2 HOOK-ON PROBES

- **Model:** RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER
- **Price:** $499.95*

### INCLUDES 2 HOOK-ON PROBES

- **Model:** RAMSEY D-4100 COMPACT DIGITAL MULTITESTER
- **Price:** $499.95*

### INCLUDES 2 HOOK-ON PROBES

- **Model:** RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER
- **Price:** $499.95*
Over the past few years, packet radio has grown from a rather esoteric part of Amateur Radio to one of the fastest growing segments ever. There must be at least ten manufacturers of TNCs, all selling basically the same product.

One way of selecting a TNC is to look closely at the features each unit offers. Do you want to go beyond packet? How about RTTY, AMTOR, ASCII, CW and weather FAX (WEFAX)? How about SIAM, Signal Identification and Acquisition Mode? If you want all these features in a single unit, your only choice is the AEA PK-232.

All currently manufactured PK-232s have the FAX and SIAM option installed. The unit we reviewed earlier (see page 81 of the July, 1987 issue) was one of the first units off the line and needed to be modified to work on WEFAX and SIAM.

When I learned of AEA's modification for WEFAX, I immediately called and placed an order for the kit. Because demand was enormous, it took a few weeks for my kit to arrive. Besides the parts and instructions needed to perform the mod, AEA also supplied an addendum for the operator's manual and a pre-made computer-to-TNC to printer cable. The cable alone is more than worth the $40 price of the modification kit.

AEA is currently supporting most parallel graphics, and your dealer will have a complete list of printers that AEA has tested with the PK-232.

Four simple steps were all that were required to make the modification: remove the unit from use, disconnecting all cables; prepare a clean, static-free work area; remove six screws and open the unit; remove and replace EPROM U2 and install EPROM U3, then screw the cover back on. That's all there is to it. You're ready to reconnect and get back on line.

Sometimes it's hard to believe that the EPROM is as powerful as it is. Without EPROMS, the unit can't operate. Yet they can be installed in less than a heartbeat.

I'll break this section into two parts: WEFAX and SIAM.

WEFAX. While WEFAX is basically a service for ships and aircraft, it offers a wealth of information for amateur meteorologists too. Stations transmit weather maps that show actual conditions and prognostications, satellite photographs of the earth's surface, taken from geosynchronous and orbiting satellites, and plenty of additional information. Of particular interest to me has been the hurricane maps that are sent during the hurricane season here on the East Coast.

Transmitting stations are located around the world, with each transmitting information for its own geographical area. Here in the Northeast, Halifax, Canada and Norfolk, Virginia provide the most reliable reception and information. I haven't had much luck with European or West Coast stations, but this is more a problem of time on the air and propagation.

The PK-232 represents the third generation of WEFAX equipment I've operated. Of the three units I've used, it's by far the easiest to set up and the most convenient to use. No special paper is required. There are no noxious fumes, the unit is easy to transport and install — it's really a pleasure!

From the time the modifications were finished, the cables installed, the computer hooked up and
booted, to the reception of the first pictures, a grand total of 15 minutes passed.

Because you're using a dot matrix printer, you can't resolve shades of gray and therefore can't reproduce satellite images with pure photographic quality. The images, however, are very good and quite usable. Since maps and charts are black on white, their reproduction quality is excellent.

All you need to do is tune to a station transmitting FAX (with digital readout radios, tuning the PK-232 is no more complicated than subtracting 1.7 kHz from the transmitting station's published frequency). That's a heck of a lot easier than it was with the old Hammerlund HQ-110's "coarse" and "fine" tuning controls. Then just configure the PK-232 to FAX mode, turn on the printer, and Bingo! Out come the maps and charts you've been waiting for.

You can also transmit FAX pictures. Frankly, because transmitting FAX requires a special program, I didn't try this option, so I can't comment on the PK-232's capabilities in this area. AEA is currently developing an MS-DOS program for FAX transmission. Details are too sketchy to report. However, early versions include FAX display on screen, transmission capabilities, and a number of other features. Availability is scheduled for late fall or early winter.

**SIAM**. One of the first things you notice when you tune across the HF bands is the variety of different digital signals. Even if you were an expert and could tell by sound alone, it would take time to configure the PK-232 to receive these signals. With SIAM, the PK-232 analyzes the signal and identifies the type of transmission and its speed. The operator can then decide whether to receive the station or continue on with a band search.

**SIAM** will decode a number of different digital codes: ASCII, ARQ, and FEC AMTOR and Baudot. It will also decode the Russian Cyrillic and Japanese Katakana codes.

To use SIAM, all you do is type in the command OMODE SIGNAL, confirm that the receive (DCDI) LED is lit, and wait approximately 10 seconds. The PK-232 will respond with a baud rate indication and a confidence of mode factor. In another 15 seconds, the PK-232 will identify the signal. To copy the signal, all you do is type in the command OK. If the SIAM analysis is correct, you'll start seeing text. If not, the PK-232 will give you a bad prompt.

If the text is decoding but seems to be encrypted, you can try setting BITINV to a through 31, if only simple bit-inversion encryption is being used. If none of these 32 settings will decode the station, chances are another more sophisticated encryption system is being used.

**miniaturized DTMF encoders**

Pipo Communications has introduced the P-7 and P-8 series of miniaturized DTMF encoders designed for custom installation in radios or systems that are exposed to harsh or abusive environments. Built with steel keys and sealed gold dome contacts to ensure reliability and long life, the P-7 and P-8 encoders will fit most radios.

![Miniaturized DTMF encoders](image)

The P-7, a 12-key touchtone encoder, comes in vertical (P-7V) or horizontal (P-7H) formats measuring 2.16 inches by 1.5 inches by 0.20 inches. The P-8, a 16-key touchtone encoder, is available in a vertical (P-8V) format only; it measures 2.16 inches by 1.9 inches by 0.20 inches. Both are available in black or dark brown.

For more information, contact Pipo Communications, P.O. Box 2020, Pollock Pines, California 95726-2020.

Circle **E302** on Reader Service Card.

**power strip spike protector**

TDP's Model 10PS101 Power Strip Voltage Spike Protector has been specifically designed to guard solid-state circuits against potentially

---

**REVIEW**

Typically, AEA has included a well written owner's manual that describes the operation of both WEFAK and SIAM modes fully. In case of difficulty, AEA has listed a number of common faults and the appropriate fixes. They also offer excellent advice by telephone if the manual and a little bit of work fail to solve the problem.

If you have a PK-232 and haven't yet modified it, you're missing out on a treat. I wouldn't just walk — I'd run to place the order!

AEA, 2006 196th Street SW, Lynnwood, WA 98036.

Circle **E302** on Reader Service Card.

---

**QSO PRO**

A Easy-To-Use Logbook Program For Your MS-DOS® Compatible Computer

- Complete Cursor Control
- Room to store complete address information
- A Real-Time Log
- Total QSL's by State
- 900 QSO's on floppy, hard disk limited by space available

$39.95

Introductory Offer

$34.95*

* Ohio resident must add 5% sales tax.

Make Checks Payable To: MORLAN SOFTWARE
P.O. Box 2400
East Liverpool, Ohio 43920-0400

---

**WHOLESALE PRICES ON CCTV**

**MINI-P**

- 5150 MHz dual input color monitor
- Color input 1080/1440 line resolution
- Color input 900 TV line resolution
- 300/1000 MHz color input
- 2000 MHz color input

**MINI-CCTV SYSTEM**

- Mini-CCTV System (MS-1000)
- MS-1000 includes 2 cameras, monitors, and bracket

**DETECTION DYNAMICS**

- 4700 Loyola Lane, Suite 119 Austin, Texas 78723 (512) 345-8401

---

**NEW BOOKS SOFTWARE**

PLENTY OF BOOKS LISTED IN THE BOOKSTORE'S HOLIDAY CATALOG—TURN TO PAGES 88-89. SAVE TIME AND MONEY. SHOP BY MAIL FROM YOUR #1 SOURCE OF AMATEUR BOOKS AND SOFTWARE.
damaging voltage spikes by absorbing and dissipating them through two 50-joule MOVs without interfering with normal current flow. All six outlets are circuit-breaker protected and rated at 15 amps.

In addition, the 10PS101 features a bi-directional noise filter to eliminate both RFI and EFI interference. The noise filter functions over a broad band (100 KHz to 20 MHz); high frequency signals in this range are attenuated by up to 30 dB for improved equipment performance.

UL-listed and American-made, the 10PS101 has six NEMA-type plug-ins and a heavy-duty threewire grounded 6-foot power cord. MOV working status is confirmed by a built-in indicator lamp.

For more information, contact TDP Electronics, 111 Old Bee Tree Road, Swannanoa, North Carolina 28778. Circle #304 on Reader Service Card.

all-mode 440-MHz base station transceiver

ICOM has introduced the IC-475A 440-MHz base station transceiver. This deluxe all-mode base receives from 430 to 450-MHz and has 99 tunable full-function memories, passband tuning, a notch filter, noise blanker, built-in SWR bridge, semi or full CW break-in, and a multifunction meter. The new IC-475A also has a velvet smooth tuning knob and easy-to-read amber LCD readout with variable backlight.

THROW AWAY YOUR FALCON CATALOGS

Falcon Communications, THE source for quality American made, MOSFET repeater, base station and mobile power amplifiers announces a major re-design of our line.

See your dealer, or contact the factory, for the latest information on our new MOSFET and bipolar power amplifiers.

FALCON COMMUNICATIONS
P.O. Box 8979 • Newport Beach, CA 92658
(714) 760-3622

Multiband QRV 160-10 Emergency Pack
Built for repeated deployment and storage, wet or dry, the Emergency Pack contains QRV 160-10 all band kit; proof sealed antenna, rapid launch kits, 70 KG Rx, 160 meter adapter, all band counterpoise, 20 wattproof dacron. Nothing more needed to be QRV Fast. One person installs in 15 mins.

1971 N. Oak Lane 1300 E.
Provo, UT 84604 2138

AntennasWest
(801) 374-4084

Fastest Antenna in the West

November 1987
THE HIGHEST VSWR BASE/REPEATER VHF JOINTS WATERPROOF CONNECTOR:

UHF HIGH GAIN: 410-470 MHz CONNECTING N TYPE FEMALE

FREQUENCY: BROAD BAND 140-170 MHz 410-470 MHz

GAIN: VHF - 8.2dB UHF - 11.5dB VSWR - 1-1.2 or less

CONNECTOR: N TYPE FEMALE

LIGHTNING PROTECTION GROUNDED DIRECT

LENGTH: 16 FT. WEIGHT: 5 LBS. 3 OZ. WIND LOAD: 90 MPH MOUNTING: UP TO 2 IN. MAST CAN SIMULCAST ON BOTH BANDS

WATERPROOF CONNECTING JOINTS

UPS SHIPPABLE

AMATEUR SPECIAL

1275 NORTH GROVE ST.
ANAHEIM, CALIF. 92806
(714) 630-4541
CABLE: NATCOGLZ
FAX (714) 630-7024

SPEC-COM Communications & Publishing Group P.O. Box H, Lowden, Iowa 52255


Circle #306 on Reader Service Card.

new products

an FL-83 500-Hz, 10.749 MHz CW filter, and an AG-35 mast mounted pre-amp.

All subaudible tones are built in, and the actual subaudible frequency is displayed. Standard repeater splits are also built in, and odd splits are programmable. The 25-watt IC-475A is similar in design to ICOM's compact base station line: the IC-735, IC-275A, IC-275H and IC-575A.

The IC-475A is priced at $1,999.00. More information is available from ICOM America, Inc., 2380 116 Avenue N.E., P.O. Box C-90020, Bellevue, Washington 98009-9029.

Circle #306 on Reader Service Card.

CTCSS encoder

Communications Specialists of Orange, California has introduced a small programmable CTCSS encoder for use in handheld radios and other size-restricted applications. Dubbed the SS-32SMP, this new encoder measures only 0.53 x 1.00 x 0.16 inches, and offers full-tone versatility and high audio level.

Any 32 tone frequencies between 0.01 and 255.0 Hz may be selected for storage into a 32-bit EEPROM memory. These tone frequencies may be standard or non-standard, and may be changed at a later date if desired. The required tone frequency may then be selected by soldering binary coded jumpers on the tone board. The SS-32SMP may also be ordered to work as a six-tone encoder (no switching diodes are necessary) at no extra charge. Multiple tone switching over six tones can be done with switching diode networks or a binary switch. Tone frequencies above 255.0 Hz may be ordered for a slight additional charge.

The SS-32SMP features a low impedance, low-distortion, adjustable sine wave with adequate audio level to provide sufficient deviation for most handheld radios. It operates on 6 to 15 Vdc so that voltage dropping resistors should never be required.

Priced at $27.95, the SS-32SMP is covered by a one-year warranty and is available for immediate delivery from factory stock. A catalog is available on request; contact Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92665-4296.

Circle #306 on Reader Service Card.
In 1937, Stan Burghardt (W9IT), because of his intense interest in amateur radio, began selling and servicing amateur radio equipment in conjunction with his radio parts business. We stand proud of this long-lasting tradition of Honest Dealing, Quality Products and Dependable "S-E-R-V-I-C-E!"

Above all, we fully intend to carry on this proud tradition with even more new product lines plus the same "fair" treatment you've come to rely on. Our reconditioned equipment is of the finest quality with 30, 60 and even 90-day parts and labor warranties on selected pieces. And always remember:

— WE SERVICE WHAT WE SELL —

Write today for our latest Bulletin/Used Equipment List.
RATES Noncommercial ads 60¢ per word; commercial ads 50¢ per word payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

TEST EQUIPMENT WANTED. Don’t wait — we’ll pay cash for LATE MODEL HP, Tek, etc. Call Glenn, N7/E PK, at Skagtronics, Co 0303 366 TRON.

HAMSLOG: COMPUTER PROGRAMS, 17 modules auto logs, sorts, bands was/OCXO. Full features. Alpha $19.95, IBM or CP $24.95. KAIHWB, PO Box 2105, Peabody, MA 01960.

RV OPERATORS are invited to check in on Sun 2 PMC, 1420-1430 & Fri 8 PMC 3800-5000. Good Sam RV Net. Info: KSK4H.

YAESU FT-727-R COMPUTER INTERFACE. For info write Harold Gossigertt, 1518 Woodland, Palo Alto, Cal 94303.


RECONDITIONED TEST EQUIPMENT. 125 for catalog. Send SASE to Center, 25 Village Drive, Eastwick, N.J. 08020.

CONNECTICUT: November 15. SCARA Indoor Ham Radio and Computer Flea Market, N. Haven Park and Recreation Center, 7 Long Wharf Drive, N. Haven, CT. 9 AM to 3 PM. Tables are $10 in advance, $15 at the door. General attendance admission $1 per person. Tickets available at the door. You will be responsible for protection of your property.

ILLINOIS: November. Rockford Hamfest, Forest Hills Lodge, 9900 Forest Hills Rd, Rockford, IL. 8 AM to 3 PM. Tickets $3 at the door. 50¢ for children under 12. Send SASE for details to: Bill Mullen, 526 W. Beverley, Rockford, IL 61101.

IOWA: November 21 through 22. 7th Annual Ankeny Hamfest, sponsored by the KQWA CQWA and the AQARC. Details: W5ZDK, 1631 Ankeny, Des Moines, IA 50309.

ALABAMA: November 14 and 15. The Montgomery ARC’s 12th annual Central Alabama Montgomery Hamfest, Ed Trugue ARE, Central Alabama State Fairgrounds near Calhoun. Free admission, free parking. Group discounted RV parking with hookups. 15% off. Free flea market and dealer setups Friday 7 to 11 PM Saturday 7 to 10 PM Sunday 7 to 11 AM. Free parking and dealer setup. No reservations needed. Dogs open to public on 9 to 10 PM. Free flea market and dealer setup Saturday 8 AM to 4 PM Sunday 8 AM to 2 PM. Excellent flea market and dealer setup. Send SASE to Montgomery Hamfest, POB 3145, Montgomery, AL 36109 or call Randy (205) 832-4896 or Ken (205) 371-0288.

 COLORADO: November 21. The Denver Radio Club’s annual Hamfest and ARRL State Convention, Jefferson County Fairgrounds, 5th Avenue and Indiana. See classified section for complete list of attractions.

COLORADO: November 19. The Denver Radio Club’s annual Hamfest and ARRL State Convention, Jefferson County Fairgrounds, 5th Avenue and Indiana. See classified section for complete list of attractions.

FLORIDA: November 21 and 22. South Florida ARRL Suntree Convention sponsored by the Florida Club Coast ARC Council, St. Petersburg Hillsborough Amateur Radio Club, Free flea market and dealer setup. Free admission both days. No reservations needed. Dogs open to public on 9 to 10 PM. Free flea market and dealer setup Saturday 8 AM to 4 PM Sunday 8 AM to 2 PM. Excellent flea market and dealer setup. Send SASE to Volunteer Committee, POB 2172, Milwaukee, WI 53201 by November 7, 1987. Talk in on 140.2 and 146.52.


GEOrgia: October 31 and November 1. Ham Radio & Computer Expo ’87 sponsored by the Affiliated Memorial Radio Club, Gwinnett Amateur Radio Club, and the ARRL Georgia Division. Details: GA Tech, 2030 Herty Drive, Atlanta, GA 30332. VEC exams both days, covered flea market, free parking, RVs for hookups, conventions, lodging. 15% admission includes Saturday night cookout. For more information: Expode, P.O. Box 192, Ocoee Road, Boulder, CO 80302.


OHIO: November 22. The Massillon ARC will sponsor AUC TIDEST ’87. Massillon K of C hall, off Rt. 21, 8 AM to 5 PM. Send admission to Andy Schuster, 522 8th Avenue, Massillon, OH 44646.

OHIO: November 22. The Massillon ARC will sponsor AUC TIDEST ’87. Massillon K of C hall, off Rt. 21, 8 AM to 5 PM. Send adm mission to Andy Schuster, 522 8th Avenue, Massillon, OH 44646.

OPERATING EVENTS


COMING EVENTS

Activities — "Places to go..."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUNCEMENTS WHETHER OR NOT YOUR HAMFEST INCLUDES ACTIVITIES FOR THE HAM RADIO HANDICAPPED. ARE THERE ANY WHEELCHAIR ACCESSIBLE SITES? THIS INFORMATION WOULD BE GREATLY APPRECIATED BY OUR BROTHER/SISTER HAMS WITH LIMITED PHYSICAL ABILITY.

TELEVISION SETS made before 1946, early TV parts, kinescope tubes wanted for salvaged cash. Especially interested in "mir- rors in the lid" and spinning disc tv's. Fender's fee paid for leads. Arrangements? Send HighRoad, West Hartford, Conn. 06117. 203-512-5280.
November 8: To observe Veteran’s Week, members of the Hamfender Radio Club, Chicago, will operate from the Hines VA Hospital’s Robert K. “Pappy” Wade KIRCH Memorial Ham Shack using Hines’ club call K9WNN. 1500Z to 0300Z, 40, 20, 15, 2M SSB and 2M FM. For a commemorative certificate, send QSL, QSO number and 9912 SASE with 30 cents postage or $1.00 to Hamfenders Radio Club, Inc., Chicago, 803 Robert K. “Pappy” Wade Memorial Ham Shack, 8th Fl., Hines VA Hospital, Hines, IL 60141.

November 25: Cocoa - Keeling Island. Listen for Hans, F8GVD and Victor, O3AAG. For two weeks. No specific frequency or time except first 10 minutes of the hour they will stand by for QRP stations only and at half hour for handicapped operators. QSL via O3G manager VK9VC or direct to F8GVD.

HAM EXAMS: The MIT LHU Repeater Association and the MIT Radio Society offer monthly Ham Exams. All classes Monday 9 to 11 AM. RHU CS, Cambridge, MA. Reservations required 2 days in advance. Contact Ron Hoffmann at (617) 864-1641. Exam fee $5.25. Bring a copy of your current license (if any), two forms of picture ID, and a completed form F500 available from the FCC in Quincy, MA (617) 770-4023.

LOW BAND DX-ING COMPUTER PROGRAMS
by John Devoldere, ON4UN, for Apple IIe/c, MS-DOS, Commodore C-128 Apple Macintosh and Kaypro CPM Computers

Here’s a collection of 30 super programs written by ON4UN. Just about every interest is covered: antenna design and optimization to general operating programs. Antenna programs include: shunt and series input L network design, feedline transformer, shunt network design, SWR calculation, plus 11 more! General Ham programs include: sunrise/sunset, great circle distances, grayline, vertical antenna design program, sunrise calendar plus 9 more! When you sit down to use these programs you’ll be amazed at what you have. The best value in computer software available today, 1986.

- UN-Apple IIe/c, $19.95
- UN-MS (MS-DOS), $19.95
- UN-CPM/Kaypro, $19.95
- UN-C-126 (COMMODORE), $19.95
- UN-MAC (MACINTOSH), $24.95

BUY’EM BOTH

SPECIAL OFFER

Book & Software Reg. $29.90 ($34.96 for Mac)
Just $24.90 ($29.90 for Mac)
- UN-MSO (specify computer) $24.90
- UN-MSO Macintosh Special $29.90

SAVE $5

Please enclose $3.50 shipping & handling

ham radio BOOKSTORE
GREENVILLE, NH 03048
603-878-1441

LOW BAND DX-ING
by John Devoldere, ON4UN

Now Available! The new, 2nd edition of the definitive book on Low Band DX-ing. Based upon years of practical on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations—dipoles, inverted V’s, slopers, phased arrays and Beverages—they’re all in this book. Also covered: propagation, transmitters, receivers, operating, software and an extensive Low Band bibliography. Going to be a best seller! Get yours today. © 1987 2nd Edition 200 pages

AR-UN
Softbound $9.95

Crystal Filters

YEAR-END CLEARANCE

All starred ( *) items 20% off; all others 10%. Prices are each except as noted. All filters 8-pole. Sale ends December 31, 1987.

FILTERS FOR KENWOOD - Reg. $60 except as noted. 8.83MHz IF for models: TS100 through TS940
Bandwidths: 500, 400, 1000, 500Hz, 300Hz
TS440 • Pair (400Hz CW, 2kHz SSB) • Reg. $120
TS430 • Triple (Both above plus AM) • Reg. $160
455kHz IF for TS620, TS580/90/940 • Reg. $110
Bandwidths Available: UO, SSB + 2.1kHz
Matched Filter Pair for Above • Reg. $170 pr.
8.83MHz and 455KHz SSB: • 2100Hz CW, • 400Hz
3.39MHz IF for TS200, TS211, TS990.
Bandwidths Available: 50, 400, 1000, 2100Hz
Filter Cascade Kits with Amplifier
- $750 $50 $100 $50 $80 $70
FILTERS FOR YAESU - Reg. $80 except as noted.
3.18MHz IF for FT-101 Series except Z/D.
BWS: 250, 500Hz, 1, 2, 2.1, 2.4, 6kHz
2.8MHz IF for FT-102, FT-857D
Bandwidths Available: 250, 200, 500Hz, 1kHz
454KHz IF for FT-101 • 500kHz, 2kHz, Reg. $75
454KHz IF for FT-102 • 2.4kHz, Reg. $105
9.0MHz IF for FT-101/2D • 7.050kHz, FT-980, FT-77
BWS: 250, 500Hz, 1, 2, 2.1, 6kHz
10.76MHz IF for all but 980, 0MHz, 2.1kHz, 2kHz
465IF for FT890 only BWS: 1kHz
8.15MHz IF for FT890, FT876, 2kHz, Wavelength BWS: 250, 500Hz, 1, 2, 4kHz, 6kHz
NOTE: Above are our “customers’ favorites!”
FILTERS FOR ICOM (exact replacements)
465IF for IC737/470/745/751, 7071, etc.
Bandwidths: FL44A (SSB + 2.4kHz) • Reg. $109
FL52A (500Hz, FL51A (250Hz), Reg. ea. $95
FILTERS FOR HAYTHAM - ALL MODELS
Bandwidths Available: 250, 400Hz, 1, 2kHz, 2.1kHz
For SB-104 Only: • 400Hz (3935.71F)
FILTERS FOR DRAKE 4-RC • Reg. $65 ex. as noted
GUF1 • Replaces original 1st IF-4 pole unit
2nd IF 125 (75S), 250, 400Hz, 1kHz, 2kHz
FILTERS FOR DRAKE TR7/RE, etc. • Reg. $65
BWS Available: 250, 400Hz, 1, 2kHz
LIMITED QUANTITIES - ORDER NOW!

Slight price increases are based on our present stock. Orders for any exhausted type of filter are subject to a 6-week delay. Order by phone to check availability.

SPECIFY: Make and model number (reg. if Rig). Frequency and Bandwidth (of filters)
ORDER by Mail or Phone - VISAM/CARD or COD OK.
SHIPPING: $5 US and Canada, $10 elsewhere.

FOX-TANGO Corp. Box 15944, W. Palm Beach, FL 33416 Telephone: (305) 683-9587

1986-87 CALL DIRECTORY
(plus microchips)
Call Directory Name Index Geographic Index
$8 $8 $8
All three—$20
Shipping per order $3
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-9777

Multiband QVR 160-10 Dipole/V/Sloper

Ready to Use
Coil Feed
Coax Feed
100 feet long
Full Legal Power
No Lossy Traps
2300 VSWR
Never Corrodes
Info: 39c s.a.s.e.
1971 N. Oak Lane 1300 E.
Provo, UT 84604-2138

49.95 p.p.d.
(plus I.T. Manual)
Antennas West
(801) 374-1084

November 1987 97
Ham Radio’s guide to help you find your loca

California

A-TECH ELECTRONICS
1033 HOLLYWOOD WAY
BURBANK, CA 91505
(818) 845-9203
New Ham Store and Ready to Make a Deal!

JUN’S ELECTRONICS
3919 SEULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3298
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden, Full service dealer.
M-F 10-7 SAT 9-5

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-836-8340
617-868-3040
The Ham Store of New England
You Can Rely On.

Michigan

ATLANTIC SOLAR POWER/ENCON
(SINCE 1979)
37279 W. SIX MILE RD.
LIVONIA, MI 48152
(313) 591-7745
Call Paul, W8AHO

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware’s Friendliest Ham Store.

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3141
Dale Porray “Squeak.” AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Hampshire

RIVENDELL ELECTRONICS
8 LONDON FERRY ROAD
DERBY, NH 03038
603-343-5371
Hours M-S 10-5; THURS 10-7
Closed Sun/Holidays

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

New Jersey

ABARIS SYSTEMS
276 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
Astatic, Azden, B&W, Butter nut, Larsen, Mirage/KLM, Kenpro, Nye, Santecc, THL, and many others.
M-F 10 am-9 pm
SAT 9 am-7 pm
VISA/MC

KJI ELECTRONICS
66 SKY TOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389
Gene K2KJ
Maryann K2RH

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York’s finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLIFE, OH 44092(Cleveland Area)
216-585-7398
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9:30-5:30, Sat. 9-3

DEBEO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-5PM
Buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1200 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS
DIV. OF TREVOS ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LARUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Tennessee

MEMPHIS AMATEUR ELECTRONIC SUPPLY
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Keenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBD
SAN ANTONIO, TX 78238
512-680-6110
Stocking all major lines. San Antonio's Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

Foreign Subscription Agents for Ham Radio Magazine

Canada
Koos Diederich
P.O. Box 256
New Westminster, BC V3L 3P1
(604) 984-4848

Larsen
Theo L. Jensen
P.O. Box 700
Kirkland, WA 98033
(206) 858-6124

JEFFREY SANDER
Elec. Sales & Service
624 58TH ST
Itasca, IL 60143
(312) 354-7500

MISSION COMMUNICATIONS
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77022
(713) 879-7764
Now in Southwest Houston—full line of equipment. All the essentials and extras for the "ham."

All Band Trap "Sloper" Antennas!
FULL COVERAGE: ALL BANDS AUTOMATIC SELECTION WITH PROVEN WEATHERPROOF ANODIZED ALUMINUM TRAP GROUND MOUNT SLOPERS: No Radiation NEEDED GROUND SWR OVER ALL BANDS: MULTIPLE TRAPS LEFT HAND MAINTAINED COMPLETELY ASSEMBLED: 50 to 500 WATTS: PRICED TO SELL: Manufactured outside USA for EXCELLENT PERFORMANCE. ORDER NOW!!

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBD
SAN ANTONIO, TX 78238
512-680-6110
Order your RF USED EQUIPMENT FROM US NOW!!! SEND Full PRICE FOR PPPEL IN USA ONLY

Amateur Radio Dealer

ALL BAND TRAP "SLOPER" ANTENNAS!
FULL COVERAGE: ALL BANDS AUTOMATIC SELECTION WITH PROVEN WEATHERPROOF ANODIZED ALUMINUM TRAP GROUND MOUNT SLOPERS: No Radiation NEEDED GROUND SWR OVER ALL BANDS: MULTIPLE TRAPS LEFT HAND MAINTAINED COMPLETELY ASSEMBLED: 50 to 500 WATTS: PRICED TO SELL: Manufactured outside USA for EXCELLENT PERFORMANCE. ORDER NOW!!

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBD
SAN ANTONIO, TX 78238
512-680-6110
Order your RF USED EQUIPMENT FROM US NOW!!! SEND Full PRICE FOR PPPEL IN USA ONLY

November 1987
Because this is the annual receiver issue, I’II try to clarify some receiver-related terms you might be wondering about. Who knows? This information might even help you choose a rig from among the many available.

One of the biggest problems an Amateur faces is interference from other signals, so I’II emphasize techniques that help reduce that problem.

**RIT** stands for Receiver Incremental Tuning, a way of tuning the receiver without disturbing the transmitter frequency. This feature is useful if the station you’re listening to drifts slightly, or if you have to tune just a wee bit off frequency to minimize the effects of interference. In the earlier days of single-VFO transceivers without RIT, when you moved your receiver dial you also moved your transmitter. The other station then had to move to tune you in. Then you’d move again — and so on. This led to the two stations “walking” each other across the band; if they weren’t careful, they could wind up out of bounds. With RIT, you can leave the transmitter alone and move the receiver a few Hz to keep the other station tuned in.

A **direct conversion** or **single conversion** receiver is perhaps the simplest type of heterodyne receiver in use. It’s basically a local oscillator (usually a very stable **VFO**) and a balanced mixer. The rf signal and the VFO are both fed into the mixer, and when the two frequencies are the same (zero-beat with each other), any audio present on the rf signal becomes a product of the mixing process. This audio is fed to audio amplifiers to drive a headset or a speaker, as needed. An rf amplifier is often used ahead of the mixer, and an audio filter after the mixer to prevent hearing the beat notes produced by nearby signals. Many low-power or portable stations use this type of receiver because of its simplicity, light weight, and low power requirements. While **direct conversion** isn’t directly related to interference problems, it’s worth knowing about this type of receiver in order to understand other discussions to come.

If a single-conversion receiver converts once — from rf to audio frequencies — then it follows that a double-conversion receiver converts twice. The first conversion mixes an rf signal with the first local oscillator, which produces an intermediate frequency signal, abbreviated **i-f**. (Notice the hyphen; it’s there so you’ll know not to read “i-f” as the word “if.”)

The second conversion mixes the i-f signal with a second local oscillator to produce . . . Uh, here’s where our nice, neat scheme falls apart!

Older receivers, designed to handle amplitude modulation (**a-m**) and **CW**, really shine with SSB signals. So whether a receiver is double or triple conversion really depends on the definition of the detector circuit. For example, a receiver that uses a VFO to produce an i-f of, say, 9 MHz, and then a second oscillator and mixer to produce a lower i-f at, perhaps, 455 kHz, which is followed by a diode detector, is clearly a double-conversion receiver.

Does changing the diode detector to a product detector make the receiver **triple conversion**, then? The purists will say yes, but many manufacturers just don’t mention it. (And it really isn’t important unless you need to know the definition in order to prove a point!)

Double-conversion receivers are important, however, in solving **image problems**. To follow me through this one, **image rejection**, you’ll need to look at fig. 1 and check the arithmetic.
If the signal you wanted to listen to was the only one on the band, life would be simpler. But there are plenty of signals out there, and most of them aren't the ones you want to hear. A simple receiver (such as a single-conversion type) is capable of receiving all sorts of things you don't want, many of them signals that aren't in the Amateur bands. Let's say you want to tune in a signal at 28.205 MHz. Your i-f is 455 kHz, so your VFO is at 27.750. This produces the right i-f, but if there's a loud signal at 27.295 (as there often is), it too can mix with the VFO to produce 455 kHz. This intruder is called the image signal. An interesting thing is that the image signal is always twice the first i-f away from the signal you want. In the case above, 2 x 455 = 910, and 28.205 - 0.910 = 27.295. If you know that, you can track down suspected image interference. 

How do you get rid of it? There are a couple of common tricks: one is to place the VFO above the signal — at 28.660 to receive 28.205 MHz, for example. This would place the image at 29.115, which means that the signal would be from an Amateur station — but that's not much help if it buries your QSO.

A more practical method is to use a double-conversion receiver and make the first i-f high — perhaps 9, 10.7, or even 70 MHz. The high i-f places the image quite some distance away from where the receiver front end is tuned, and it's easier for simple tuned circuits to reject a signal that's far removed from its design frequency. For instance, a 10.7-MHz i-f will place the image of 28.205 at 49.605 MHz, as shown in fig. 1. Even a mediocre front end can reject that one. 

Another common cure is to build filters (special tuned circuits) that pass only a narrow range of frequencies, say from approximately 27 to 31 MHz for the 10-meter band, but greatly attenuate anything outside that range. Many modern solid-state receivers use this technique on all bands, along with broadband rf amplifier sections, to provide good performance and require minimum attention from the operator.

SINAD isn't a remedy for sinus trouble; it's a test commonly used to determine how well a receiver hears a weak signal. SINAD is an acronym for signal + noise + distortion to noise + distortion ratio. (Aren't you glad they shortened it?) This is what it means:

If you disconnect the antenna from your receiver and turn the audio gain up, you'll hear a hiss or rushing noise. That's the "noise" part of the formula. It takes a certain amount of signal strength to be heard through that noise. The level of that signal is the "signal" part of the formula. The "distortion" part comes in because a signal can be loud but not clear.

The signal generator used for this test is modulated, and the recovered audio from the receiver is compared with the modulation waveform to see if it has been distorted — and usually, it has. Thus, the test will determine how strong a signal it takes to produce some specific output above the noise, and how badly the i-f filters, audio amplifiers, and even the power supply hum have distorted the audio output. 

Fortunately for us, the test results are neatly summed up on a meter on the test equipment, and we don't have to spend a lot of time calculating ratios and such. The test instrument, naturally enough, is called a SINAD meter.

The usual method of rating a receiver under this test is to state a signal strength that's required to meet a particular dB SINAD ratio: for example, 0.5 \( \mu \text{V} \) for 12-dB SINAD. The lower the microvolt (\( \mu \text{V} \)) number, the better the receiver, and 12 dB is an industry-wide benchmark used in the test. 

An i-f notch filter (or i-f notch tuning) is another device used to
reduce the effect of interference. It consists of a high-Q circuit that works within the "window" or passband of the i-f amplifier. Instead of acting as a bandpass device, however, it's a band-stop circuit designed to attenuate greatly whatever frequency it's adjusted for. This is most useful if you're listening to a weak signal (or even a moderately strong one) and someone pops up close enough to create an ear-splitting whistle or lots of "splatter" on top of the signal you want to hear. By adjusting the i-f notch, you can often reduce the commotion to a level you can live with.

An i-f notch filter will have limited usefulness, however, because any notch deep enough to really eliminate an interfering signal will also reduce the strength of the signal you want to hear.

Interference suppression can also be handled by an audio filter that cuts off all audio tones outside a narrow range. This is great for CW signals, but voice (SSB) tends to sound hollow and distorted if the audio passband gets too narrow. There is an equivalent to the i-f notch filter called the audio-notch filter or audio-rejection filter. A piece of electronic trickery that uses op amps to create a phase shift that will cancel the offending tone, it works quite well, and usually consists of one or two integrated circuits, a potentiometer or two, and a few resistors and capacitors. Both the frequency of rejection and the degree of rejection (depth of the notch) are adjustable. The audio-notch filter is a great add-on for direct-conversion receivers.

Another neat bit of electronic sleight-of-hand is i-f shift. It takes some of study to figure out how it works, but it's really quite simple. In essence, it works this way: when a signal is in the same i-f passband as the one you want to hear, you just move the passband "window" over a bit until that signal is outside it. You can do the same thing by slowly tuning your receiver until the interference is out of the passband, but when you do that, the signal you want is moving also, and might end up as a tone that's not easy to hear (on CW) or as duck-talk (on SSB).

Perhaps fig. 2 will help clarify this. At A, both the interfering signal and the wanted signal are in the i-f passband. By adjusting the i-f shift, you can move the interfering signal out of the passband, as at B, and leave the wanted signal in. Now, the only trick is to get the wanted signal back into the center of the window again, as at C.

How do they do that? By adding two more conversions in the i-f amplifier chain, and using the same beat-frequency oscillator (BFO) to mix with the signal twice. For example, you can mix a 455-kHz signal with an 8.0-MHz BFO to produce an 8.455 i-f. This i-f signal then passes through a filter and into another mixer. There, the 8.455-MHz signal mixes with 8.0 to produce the original 455 kHz i-f again.

Now to exercise the cranium a bit more — with the help of fig. 2 — and get more specific: let's say that the signal you want comes through the i-f amplifiers at 455,000 Hz (455 kHz). The one that's bothering you comes through at 455,500 Hz. This produces the normal result at A, with both signals inside the i-f passband. By detuning the 8.500-MHz VFO a few Hz to 8.499, and mixing with the i-f signals, you can change the wanted signal to 8.044, and the interference is at 8.0435 MHz, as shown at B.

The 8-MHz i-f filter will pass 8.044, but not 8.0435, so the interference is gone! When 8.044 is again mixed with 8.499, the difference is 455 kHz, which is right back in the middle of your i-f window (at C), just where you want it.

Of course, this is a greatly simplified example of how it works, and I've made the frequency separations large to make the example easier to follow, but you get the idea. Many manufacturers use more complex circuits to accomplish this, and some use phase-locked loop (PLL) circuits to move the signals around and reject the unwanted ones. No matter how they do it, the results make it worth looking for this feature in a receiver.
The degree of interference rejection you need depends upon the type of operating you do. On most of the HF bands, crowding is a way of life, and the best DX is usually buried beneath several layers of loud signals. It seems to be magic when an experienced operator can peel away those layers to leave an S1 or S2 signal standing alone, perfectly readable among S9 + "locals.” By carefully choosing your interference-fighting weapons, and with some practice, you too can become a magician.

Next month, I’ll explore the possibilities of 1200 MHz.

28th ANNUAL TROPICAL HAMBOREE
ARRL HAMFEST OF THE AMERICAS
FEBRUARY 6-7, 1988
DADE COUNTY YOUTH FAIR GROUNDS
Tamiami Park, 10901 S.W. 24 Street (Coral Way), Miami, Florida

FREE PARKING 15,000 VEHICLES
1,000 INDOOR SWAP TABLES
300 CAMPSITES WITH FULL HOOKUPS
200 COMMERCIAL EXHIBIT BOOTHS
COMPUTERS & SOFTWARE
HAMBOREE DEALER SPECIALS
LICENSE EXAMS
PACKET RADIO PROGRAMS
DX FORUM
RCA FLORIDA SECTION LUNCHEON
TECH TALKS
ACTIVITIES FOR NON-HAMS

Registration: $5.00 Advance — $6.00 Door. Valid both days. (advance deadline Jan. 30th)
Swap Tables, 2 days: $16.00 each. Power: $10.00 per user.
All swap table holders must have registration ticket.
Campsites: $12.00 per day, includes water, power, sanitary hook-ups, showers.
(All RV vehicles, tent campers, vans, trailers welcome — no ground tents, please.)
Headquarters Hotel: Miami Airport Hilton, 5101 Blue Lagoon Drive.
Special Hamboree Rates: $55.00 Single or Double.
Reservation forms available through Dade Radio Club December 1st.

Make checks for Registration, Swap Tables & Campsites payable to:
DADE RADIO CLUB, P.O. BOX 350045, MIAMI, FL 33135

Exhibit Booth Information:
Evelyn D. Gauzens, W4WYR, Chairman 2780 N.W. 3rd St. Miami, FL 33125 Telephone: (305) 642-4139

4-Page Brochure Available . . . December 1st
Dynamite Discovery

Communications Specialists' latest excavation brings to light yet another dynamite discovery—our new dip switch programmable SD-1000. No need to tunnel your way through Two-Tone Sequential decoding anymore. We've mined this amazing unit! Now, for the first time, you can stock one unit that will decode all calls in a 1000-call paging system with ± .2Hz crystal accuracy. The EEPROM onboard memory can even be programmed for custom tones, and every unit includes group call. Universal switched outputs control your call light, squelch gate and horn. The SD-1000 can also generate CTCSS and decode Two-Tone Sequential. Its miniature size of 2.0" x 1.25" x .4" is no minor fact either, as it's a flawless companion for our PE-1000 Paging Encoder. We ensure one-day delivery and our one-year standard warranty. Tap the rich vein of Communications Specialists and unearth the SD-1000 or other fine gems.

$59.95 each

COMMUNICATIONS SPECIALISTS, INC.
426 West Taft Avenue • Orange, CA 92665-4296
Local (714) 998-3021 • FAX (714) 974-3420
Entire U.S.A. 1-800-854-0547
Giving HAM RADIO Magazine is both *fun* and *thoughtful.*

One Year/12 issues

**$19.95** SAVE
OVER 10%

FOR ONE GIFT SUBSCRIPTION
OR RENEWAL

OR

**$16.95** SAVE
25%

FOR TWO OR MORE GIFT SUBSCRIPTIONS OR EXTENSIONS
INCLUDING YOUR OWN

A handsome gift card will be sent if your order is received before December 15, 1987.

Every month your Ham friend will be reminded of your gift as they read through the latest issue of HAM RADIO Magazine.

Staying on top of the ever changing world of electronics is tough. With a subscription to HAM RADIO, however, you get all the latest breakthroughs in electronic design and developments as they happen — not years later. Each issue is packed with theory, state-of-the-art projects and the latest designs. Plus plenty more.

The Special ANTENNA issue in May, VHF/UHF issue in July and the RECEIVER issue in November alone are worth the price of a subscription!

You also get monthly columns by Orr, Reisert, Stonehocker, Carr and McMullen covering from antennas to zener diodes and repair techniques.

There’s no time like now to give the present of HAM RADIO Magazine for that hard-to-buy-for ham friend. While you’re at it, why not renew your own subscription and take advantage of the special low one year rate.

---

1987 GIFTS AT 1985 PRICES!
Please enter my one year gift/renewal subscription(s) to Ham Radio Magazine as follows:

First gift or renewal $19.95  Save $3
Two or more gifts or renewals $16.95 Save $6

---

**FIRST**

NAME: ____________________________  CALL: _________

ADDRESS: __________________________

CITY: ______________________  STATE: ________  ZIP: ________

**SECOND**

NAME: ____________________________  CALL: _________

ADDRESS: __________________________

CITY: ______________________  STATE: ________  ZIP: ________

---

**THIRD**

NAME: ____________________________  CALL: _________

ADDRESS: __________________________

CITY: ______________________  STATE: ________  ZIP: ________

---

FOR EXTRA FAST SERVICE, CALL TOLL FREE TO ORDER YOUR GIFT SUBSCRIPTIONS OR BOOKS.

**CALL TOLL FREE**

800-341-1522

M-F 8-9 EST • SAT 9-5 EST

FOR ORDERS ONLY

603-878-1441 8-4:30 EST
### ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number and make a check mark in the space provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2588, Woburn, MA 01801.

<table>
<thead>
<tr>
<th>Name</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

Please use before December 31, 1987.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>119 - Ace Communications</td>
<td>31</td>
<td>206 - Lunar Electronics</td>
<td>103</td>
</tr>
<tr>
<td>157 - Advanced Computer Controls, Inc.</td>
<td>59</td>
<td>159 - Madison Electronics Supply</td>
<td>60</td>
</tr>
<tr>
<td>151 - Advanced Receiver Research</td>
<td>56</td>
<td>121 - The Meadowlake Corp</td>
<td>28</td>
</tr>
<tr>
<td>165 - AEA</td>
<td>62</td>
<td>250 - MFJ Enterprises</td>
<td>14</td>
</tr>
<tr>
<td>182 - All Electronics Corp</td>
<td>80</td>
<td>144 - Micro Control Specialties</td>
<td>48</td>
</tr>
<tr>
<td>175 - Aluma Tower Co</td>
<td>72</td>
<td>174 - Minds Eye Publications</td>
<td>72</td>
</tr>
<tr>
<td>172 - Amateur Wholesale Electronics</td>
<td>70</td>
<td>199 - Mirage Communications</td>
<td>10</td>
</tr>
<tr>
<td>177 - Amateur Radio Classified</td>
<td>76</td>
<td>130 - Mirage Communications</td>
<td>36</td>
</tr>
<tr>
<td>141 - Amidon Associates</td>
<td>47</td>
<td>178 - Mission Communications</td>
<td>76</td>
</tr>
<tr>
<td>110 - AMSAT</td>
<td>15</td>
<td>208 - Missouri Radio Center</td>
<td>107</td>
</tr>
<tr>
<td>165 - Antennas West</td>
<td>80</td>
<td>190 - Monitoring Times</td>
<td>86</td>
</tr>
<tr>
<td>165 - Antennas West</td>
<td>83</td>
<td>192 - Morhan Software</td>
<td>92</td>
</tr>
<tr>
<td>188 - Amish Craft</td>
<td>93</td>
<td>193 - Morin Electronics</td>
<td>63</td>
</tr>
<tr>
<td>194 - AFRL</td>
<td>52</td>
<td>200 - NC2A</td>
<td>94</td>
</tr>
<tr>
<td>155 - AFRL</td>
<td>52</td>
<td>196 - Nemal Electronics</td>
<td>95</td>
</tr>
<tr>
<td>156 - AFRL</td>
<td>59</td>
<td>205 - Nuts &amp; Volts</td>
<td>102</td>
</tr>
<tr>
<td>178 - Astron Corp</td>
<td>74</td>
<td>210 - OPTOelectronics</td>
<td>108</td>
</tr>
<tr>
<td>219 - Austin Amateur Radio Supply</td>
<td>39</td>
<td>135 - B.C. Electronics</td>
<td>20</td>
</tr>
<tr>
<td>126 - Arctic Industries</td>
<td>32</td>
<td>136 - Band-It</td>
<td>42</td>
</tr>
<tr>
<td>130 - Baxter &amp; Williamson</td>
<td>75</td>
<td>137 - BBW</td>
<td>47</td>
</tr>
<tr>
<td>139 - Block Electronics</td>
<td>87</td>
<td>183 - The PX Shack</td>
<td>80</td>
</tr>
<tr>
<td>147 - Briar Company</td>
<td>48</td>
<td>209 - Radio Amateur Callbook</td>
<td>106</td>
</tr>
<tr>
<td>184 - Buckmaster Publishing</td>
<td>80</td>
<td>113 - Radio Shack</td>
<td>25</td>
</tr>
<tr>
<td>201 - Buckmaster Publishing</td>
<td>87</td>
<td>169 - Radiokit</td>
<td>66</td>
</tr>
<tr>
<td>195 - Burghardt Amateur Center</td>
<td>96</td>
<td>204 - Radiosporting</td>
<td>102</td>
</tr>
<tr>
<td>196 - Buttermilk Electronics</td>
<td>56</td>
<td>173 - The Radio Works</td>
<td>72</td>
</tr>
<tr>
<td>197 - Call</td>
<td>92</td>
<td>191 - Ham Radio Electronics, Inc</td>
<td>90</td>
</tr>
<tr>
<td>193 - Call Flash</td>
<td>69</td>
<td>170 - The RF Connection</td>
<td>66</td>
</tr>
<tr>
<td>195 - Call Flash</td>
<td>69</td>
<td>197 - RF Parts</td>
<td>83</td>
</tr>
<tr>
<td>194 - Call Flash</td>
<td>93</td>
<td>140 - RSM Communications</td>
<td>47</td>
</tr>
<tr>
<td>172 - Call Flash</td>
<td>93</td>
<td>112 - S-Com Industries</td>
<td>28</td>
</tr>
<tr>
<td>170 - Call Flash</td>
<td>93</td>
<td>188 - Samson, Inc</td>
<td>82</td>
</tr>
<tr>
<td>177 - Call Flash</td>
<td>93</td>
<td>118 - Sommer</td>
<td>24</td>
</tr>
<tr>
<td>189 - Call Flash</td>
<td>93</td>
<td>166 - Spec Com</td>
<td>44</td>
</tr>
<tr>
<td>196 - Call Flash</td>
<td>93</td>
<td>111 - Spectrum International</td>
<td>15</td>
</tr>
<tr>
<td>197 - Call Flash</td>
<td>93</td>
<td>187 - Sp-Ro Manufacturing, Inc</td>
<td>82</td>
</tr>
<tr>
<td>198 - Call Flash</td>
<td>93</td>
<td>123 - Stroudsburg Engineering Co</td>
<td>36</td>
</tr>
<tr>
<td>199 - Call Flash</td>
<td>93</td>
<td>121 - STV/OR Sat</td>
<td>36</td>
</tr>
<tr>
<td>200 - Call Flash</td>
<td>93</td>
<td>145 - Synthetics, Inc</td>
<td>48</td>
</tr>
<tr>
<td>201 - Call Flash</td>
<td>93</td>
<td>120 - TE Systems</td>
<td>28</td>
</tr>
<tr>
<td>202 - Call Flash</td>
<td>93</td>
<td>161 - Tel-Eco</td>
<td>63</td>
</tr>
<tr>
<td>203 - Call Flash</td>
<td>93</td>
<td>168 - Telvy, Inc</td>
<td>66</td>
</tr>
<tr>
<td>204 - Call Flash</td>
<td>93</td>
<td>162 - Transmitters Unlimited</td>
<td>63</td>
</tr>
<tr>
<td>205 - Call Flash</td>
<td>93</td>
<td>152 - Tropical Hamstore</td>
<td>103</td>
</tr>
<tr>
<td>206 - Call Flash</td>
<td>93</td>
<td>161 - University of Maryland, Inc</td>
<td>56</td>
</tr>
<tr>
<td>207 - Call Flash</td>
<td>93</td>
<td>148 - Val Comm, Inc</td>
<td>50</td>
</tr>
<tr>
<td>208 - Call Flash</td>
<td>93</td>
<td>171 - Vargard Labs</td>
<td>66</td>
</tr>
<tr>
<td>209 - Call Flash</td>
<td>93</td>
<td>114 - Varian EIMAC</td>
<td>16</td>
</tr>
<tr>
<td>210 - Call Flash</td>
<td>93</td>
<td>146 - VHFA Communications</td>
<td>48</td>
</tr>
<tr>
<td>211 - Call Flash</td>
<td>93</td>
<td>212 - W9NNN Antennas</td>
<td>103</td>
</tr>
<tr>
<td>212 - Call Flash</td>
<td>93</td>
<td>202 - Western Electronics</td>
<td>99</td>
</tr>
<tr>
<td>213 - Call Flash</td>
<td>93</td>
<td>167 - Western Systems</td>
<td>64</td>
</tr>
<tr>
<td>214 - Call Flash</td>
<td>93</td>
<td>199 - West Communications, Inc</td>
<td>94</td>
</tr>
<tr>
<td>215 - Call Flash</td>
<td>93</td>
<td>191 - World Data Enterprises</td>
<td>86</td>
</tr>
<tr>
<td>216 - Call Flash</td>
<td>93</td>
<td>133 - Yaesu America, Inc</td>
<td>45</td>
</tr>
<tr>
<td>217 - Call Flash</td>
<td>93</td>
<td>211 - Yaesu America</td>
<td>48</td>
</tr>
<tr>
<td>218 - Call Flash</td>
<td>93</td>
<td>138 - E. H. Yost Co</td>
<td>42</td>
</tr>
</tbody>
</table>

### PRODUCT REVIEW/NEW PRODUCTS

| 302 - AEA | 91 |
| 306 - Communications Specialists | 93 |
| 305 - ICQ America, Inc | 93 |
| 303 - Comms Products | 92 |
| 304 - TDP Electronics | 92 |

The “Flying Horse” sets the standards

Continuing a 67 year tradition, we bring you three new Callbooks for 1988.

The North American Callbook lists the calls, names, and address information for 478,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Haiti and the U.S. possessions.

The International Callbook lists 481,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1988 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1, 1988, this Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

The 1988 Callbooks will be published December 1, 1987. See your dealer or order now directly from the publisher.

**SPECIAL OFFER**

- Both N.A. & International Callbooks incl. shipping within USA $55.00
- incl. shipping to foreign countries $60.00

* Illinois residents please add 6 1/2% tax.
All payments must be in U.S. funds.

RADIO AMATEUR Callbook Inc.
Dept. 24
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA

Tel: (312) 234-6600

November 1987
NEW POCKET SIZE
SIZE: 4" H x 3.5" W x 1" D
MADE IN USA

$99.95 - $150.00

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys! They can actually outperform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

#1200HKC  Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions ................................................ $ 99.95

#1200HC  Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger ........................................... $137.50

#1300HC  Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger ........................................... $150.00

ACCESSORIES:

#TA-100S  Telescoping RF pick-up antenna with BNC connector ........................................... $12.00

#P-100  Probe, direct connection 50 ohm, BNC connector ................................................ $18.00

#CC-70  Carrying case, black vinyl with zipper opening. Will hold a counter and accessories ................................................ $10.00

ORDER FACTORY DIRECT
FLA (305) 771-2050
1-800-327-5912

AVAILABE NOW!

OPTOelectronics inc
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

Orders to US and Canada add 5% of total ($2 min., $10 max)
Florida residents add 5% sales tax. COD fee $2.
Yaesu's mini HTs.
The smallest, smartest, toughest radios. Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreciate the high power, durability and size of Yaesu's FT-23R Series mini HTs.

To begin with, you'll find a model that's right on your wavelength. The 2 meter FT-23R. The 220 MHz FT-33R. Or the 440 MHz FT-73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moisture-resistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, microprocessor controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:


The FT-23R comes with a 72 volt, 2.5 watt battery pack. The FT-73R with a 72 volt, 3 watt pack. And the FT-33R with a powerful 12 volt, 5 watt pack.

You can choose the miniature 72 volt, 2 watt pack shown in the photo below. And all battery packs are interchangeable, too.

And consider these options: Dry cell battery case for 6 AAA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, toughness and small size, seeing is really believing.
Adequate DX-ing!

**TS-140S**

HF transceiver with general coverage receiver.

- Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140S HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of "look-alike" transceivers!
- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz. (Receivers & specifications guaranteed from 500 kHz to 30 MHz.) Modifiable for HF MARS operation. (Permit required)
- All modes built-in. LSB, USB, CW, FM and AM.
- Superior receiver dynamic range.

Kenwood DynaMix high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.

- New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRMI to nonparticipants.
- Famous Kenwood interference reducing circuits. IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC, and FM squelch.

- M. CH/VFO CH sub-dial. 10 kHz step tuning for quick QSY at VFO mode, and UP/DOWN memory channel for easy operation.
- Selectable full (QSK) or semi break-in CW.
- 31 memory channels. Store frequency, mode and CW wide/narrow selection. Split frequencies may be stored in 10 channels for repeater operation.
- RF power output control.
- AMTOR/PACKET compatible!
- Built-in VOX circuit.
- MC-43S UP/DOWN mic. included.

Optional Accessories:
- AT-130 compact antenna tuner
- AT-250 automatic antenna tuner
- HS-5/HS-6/HS-7 headsets
- IF-322C/IF-10C computer interface
- MA-5/VF-1 HF mobile antenna (5 bands)
- MB-430 mobile bracket
- MC-43S extra UP/DOWN band mic.
- MC-55 5 in 1 pro gauge neck mic.
- MC-98A/MC-87A microphone.
- PS-430 power supply.
- SP-40/SP-50B mobile speakers
- SP-430 external speaker
- SW-100A/SW-200A/SW-2000 SWR power meter
- TL-922A/KM-11/UHF V/UHF band amplifier for CW/FSK
- TU-8 GTCS15 tune shift
- YG-455C-1 500 Hz deluxe CW filter, YK-455C-1 New 500 Hz CW filter.

**TS-680S**

All-mode multi-bander

- 6m (50-54 MHz) 10-W output plus all HF Amateur bands (100 W output)
- Extended 6m receiver frequency range 45 MHz to 60 MHz. Spreads guaranteed from 50 to 54 MHz.
- Same functions of the TS-140S except optional VOX (VOX-4 required for VOX operation).
- Preamplifier for 6 and 10 meter band.