ANNUAL SURPLUS ISSUE

TRAP-TYPE VERTICALS for 2m
IC AUDIO FILTER

To The REPEATER - on SKIS!

page 54

AMATEUR RADIO LICENSE STUDY COURSE
SAROC 1971

These being days of impoverishment, I had not intended to make the scene at Vegas. At the last minute Ken put on the pressure and, with the hopes of perhaps selling a page or two of ads to help balance the books, I hopped on down there.

Just after taking off from Boston I had a short contact with WITNO through the WIALE repeater in Concord, N.H. No answers at Schenevad, . . . some short contacts in western New York . . . Cleveland was kept busy with long-winded nonlistening talkers . . . ditto Detroit . . . contacts in Chicago . . . no one around in Urbana . . . and so it went. Omaha was not open to breakers. About ten minutes out of Vegas I picked up their repeater and talked with the gang the rest of the way in, while waiting for baggage, and during the limousine ride to the hotel. One mobile pulled up alongside, waved, and then broke in to say hello.

It was colder in Vegas (15°) than in New Hampshire so I grabbed my camera and went across the street (watching out for any possible ARL-driven cars) and took pictures of the ice-encrusted fountains at Caeser’s Palace. Art Housholder W9TRG, arriving on a Frontier Air Lines plane, came through the repeater at this time and I talked with him as he flew over Lake Mead and later while he was waiting for his baggage at and every mobile within 100 miles of town. My last contact was from the airport as I went to get on the plane and I said goodbye to Ken, who was just that minute getting out of bed back at the hotel. TWA shut me up from there until I landed in Boston. I have this black curse to put on TWA.

May the board of directors eat one meal a week in the tourist section of their planes. That’ll hold ’em.

FM/Airborne

Yes, I use my little two meter FM hand transceiver while I’m a passenger on the airlines! It works out beautifully, too. About the only serious problem I have with it is trying to get a word in edgewise on the repeaters I fly over. All too few of the fellows talking over repeaters ever give even one second for a passing-through breaker.

SAROC was great fun this year. The Flamingo Hotel provided excellent accommodations and Las Vegas provided the atmosphere. I didn’t hear a single complaint from so much as even one ham this time.

Times are Changin’, too. A few years ago, gamblers and hotel officials got uptight at the sight of individuals carrying hand-held transceivers through the casinos. But with literally hundreds of 2m FM units protruding from the pockets of so many bans this year, the hotel people apparently grew accustomed to it.

No one reported any problems at all – except for the fact that the hotel security people reportedly complained that the hams had newer and better equipment.

THE WORLD OF FM

Editorial by Ken Sessions K6MVH

THE FM SCENE

SAROC was great fun this year. The Flamingo Hotel provided excellent accommodations and Las Vegas provided the atmosphere. I didn’t hear a single complaint from so much as even one ham this time.

Times are Changin’, too. A few years ago, gamblers and hotel officials got uptight at the sight of individuals carrying hand-held transceivers through the casinos. But with literally hundreds of 2m FM units protruding from the pockets of so many bans this year, the hotel people apparently grew accustomed to it. No one reported any problems at all – except for the fact that the hotel security people reportedly complained that the hams had newer and better equipment.

Pretty Linda Mueller, wife of W861GZ, tended bar in Room 1031A, a spur-of-the-moment hospitality suite.

The lovely Sharon La Tralle, of Ventronta, Incorporated, demonstrated 2m transceivers, amplifiers, and antennas.
On The Cover:
Lin Green talks home via two meters while skiing on Mt. Snow in Vermont, checking on daughter Sage, being minded by Ken. The 110-mile path is via K12JH repeater about 60 miles away. (Where's skiing, you say? Who do you think took the picture?)

FEATnRES
1 Radio Amateur News Page
2 Never Say Die
3 The World of FM
4 Letters to the Editor
5 David Emporium
6 Lucky Lime
7 Presidents' Chaps
12 Advertiser Index
18 New Repeater Bulletin
220 Mile proposals.

In the FM room there was no other speaker on any other subject in the other quarter. He was peppered with questions about repeater rulemaking, unofficial sanctions, and such matters, and managed to sidestep all major issues with the adeptness of a politician.

In the FM room there was no other speaker on any other subject in the other quarter. He was peppered with questions about repeater rulemaking, unofficial sanctions, and such matters, and managed to sidestep all major issues with the adeptness of a politician.

The whole staff of Regency Electronics showed up. They were kept busy demonstrating the company's growing line of equip.

Mr. Henry's submission was understandable, in view of the fact that the FCC does not plan to get deeply involved in the spectrum field until the phone band expansion is settled. The notorious docket (18503) as well as my own petition (RM-1725) are still stacked neatly on the desk of FCC's Bill Grenfell, who will get going on them some time before midyear.

For me, SAROC was a stepping stone to a tropical vacation. When the convention was over, I flew to Los Angeles for a week in the sun and snog. Thanks to the hospitality of my California friends, the week was not as expensive as it could have been.

But I'm glad the week ended when it did. My California friends all know that I flip over Mexican food, and that the Mexican food is just not available in New England. So each of my contacts in California went overboard to serve

the airport... I was just walking around taking pictures all the while... and the FCC was an FM convention last year. The ARRL Forum pulled about a dozen while the FM Forum next door was jammed with hundreds. Ken Sessions organized the FM program and it certainly was the hit of the convention. Most of the exhibitors at the ARRL Forum were FM oriented... Regency was there in masse... Varitronics displayed their mobile 4CF, their hard unit, and lovely Sharon LaTristle (you saw her in the "Ham's Wide World")... Drake had their sideband gear there, but the attention was on their Marker FM rig and the brand new TR-22 walkie-talkie unit... Walt Henry proudly displayed his Tempo FM rig... Galaxy was there with their FM-210... Standard displayed a new transceiver and a minirepeater. Lou Trattao had a lower that he feels FM fans will like... Swan was showing the new FM rig from Roger & White showed their line of tone encoders and decoders... Senty took orders for a lot of crystals from their interesting booth... and it was a hit.

A few non-FM manufacturers were present too... Dick Ehrhom was showing his new all-band linear amplifier... Collins was there, but with nothing new for the amateurs and no FM plans whatever in the foreseeable future... Carl Mosley was there... Robot had a nice demonstration of slow-scan television. Spectronics brought a bunch of FM Motorola hand transceivers and the building crowd cleaned him out... ComSpec had its new gain vertical 2m antenna on display as well as their new 2 meter 50W amplifier... the Pierce-Simpson FM unit made its first appearance at SAROC.

My HT-220 hard unit was with me day and night and I have to admit to having a lot of fun. I kept in constant communication with Ken, the FM hospitality suite, dozens of friends, the convention, the exhibits, the talks, ask the plane captain for permission to use their rig while flying, and thought permission can be relied on, based on the basis of a regulation against using receivers in a plane, usually there is no hitch.

Sad to say, TWA has been one of the last cooperative with amateurs. Alan, I've been flying with TWA since they were Transcontinental Western Airlines, over 40 years ago, but I will choose alternative travel in the future where possible since I do enjoy operating while traveling. It wouldn't be nice if them not to be nice, there is a lot of competition... and a growing number of amateurs with hand transceivers.

Perhaps I should be more aware of the complicated electronics in these planes, but my experience as a pilot, my tenure with Airborne Instrumentation and other hortographs, has lessened the mystery. Add to that several trips with no interference reported, even with a SW unit, and similar reports from a dozen or other amateurs.

So look fellows, when you are talking through a repeater about some earth-shaking importance, like how many 6SN7 you have left from the old days, won't you be nice enough to give me a break between transmissions so I can break in for a minute or so and say hello as I pass over some other airline than TWA? You can't imagine how frustrating it is to hear you down there talking without being able to ever break you!

New Repeater Bulletin
Mike WASUGT has announced that he is planning on starting a repeater bulletin later this year. I am sure that all of us who remember the fine FM Journal that Mike and Ken Sessions published will be pulling for him to make it this time. With all but one amateur magazine reported to be in the red this is a particularly difficult task.
In an effort to prove a 1000 year old theory, that the early peoples of South America could have drifted to Australia, by making use of the Equatorial currents and winds, four courageous young men, one of them being a ham, HC9EBP, left Ecuador on May 29 1970, on a 45 ft raft made basically of seven large balsa logs. Appropriately, they named it La Balsa. Filled with the challenge of adventure, they hoisted a square mainsail and with hopeful hearts, turned their primitive ship and faces westward. After a drift of more than 8500 miles across the Pacific, they arrived safely at a small boat harbor named Mooloolaba, 80 miles north of Brisbane.

This incredible sea journey, in a nonpowered craft, must rank as one of the greatest ever by modern man. Others before this have set out from the west coast of South America, but none have come so far or been so long at sea (161 days) in one single hop. They survived the tropical heat, sickness, many severe storms in which all but one were washed overboard at one time or another, including the cat Minette, and by a mixture of skill and good fortune, managed to avoid the numerous coral reefs and shoals along the way.

Selim Canbekken TA2SC, 19, would like very much to come to the U.S. and learn about electronics. There just isn’t any good education in this field available in Turkey and Selim knows what he wants. Amateur radio has not been legal in Turkey for citizens since 1937 so the ISO or so active amateurs have operated quietly and in fear. Radio equipment is almost nonexistent and generally has to be built from what can be scrounged. There are no radio stores or manufacturers as in the U.S. Even so Selim was able to build a sideband transceiver, a linear amplifier and even a slow scan television flying spot scanner!

On April 28, 1970 the police came and confiscated everything... antennas, test equipment, a pre-war National 105A receiver, logs, QSL cards, parts, transceiver, linear... everything. This was a cruel turn of events for this avid amateur.

Selim writes, “Now I am a Tone Master for the famous Turkish singer Zeki Getin. We are working every night at night clubs. This life isn’t good for me. Last year I finished my school. I want to go to the U.S.A. for an electronic education. I can work
Approaching Australia, they faced their greatest danger, the treacherous thousand-mile-long Barrier Reef. It was at this point in their voyage that the VK hams began to play a vital part in this Norske saga of the sea. For example, Sid would request them to send four clicks if all four men were fit and well. A group of two or three clicks would indicate the number of knots drifted during each 24 hours. Their position in Lat. and Long., the state of the weather, the barometric pressure, and much other vital information was transmitted in this manner.

The raft was now in a busy Australian sea lane and all ships alerted but still no report came through. Excitement reached fever pitch. News papers ran headlines, "LA Balsa OR HOAX? - INCREDIBLE JOURNEY" and so on. On the morning of November 4th the raft indicated it may soon need some assistance. A strong on-shore wind was carrying it close to the coast of Queensland. A plane and boats were dispatched to search in the given area, but by darkness no sighting had been made and the affair remained as mysterious as ever. The skeptics still insisted it was nothing more than an elaborate hoax. Then, at 2300 GMT on the next day a searching plane radioed it had located La Balsa twelve miles off the Australian coast. The frequency came to life as many hams who had been listening quietly for days now briefly broke with congratulations. Air and sea emergency rescue services directed a boat to the scene and the raft was taken in tow to the nearest harbor, some 20 miles away. Capt. Asar, HO9EE, and his crew, triumphant and smiling, were taken ashore to a thunderous Australian welcome.

Without the VK hams' timely vigilance and direction - and most of all, their insistence that La Balsa was real - it is possible that the raft could have found itself in difficulties, handicapped as it was with no phone or CW transmission, and no one would have known. It might have been wrecked on Great Barrier Reef or struck by a passing ship or caught in bad weather on some inhospitable part of the coastline.

At the official welcome on Australian soil soon after La Balsa crew had landed, Captian Asar professed his gratitude to all hams who had monitored his transmissions right across Oceania. They were Raphael XE1EE1, Joe HC2OM, Gus ZM1RO, Sid AX2SG, Keith AX4KS, Les AX4LZ, and many others. Well done, chaps!!
WESTERNERS ACTIVE IN SLOW-SCAN TV

by W7SAB

The Western SSTV net has grown to quite a few members (principally on the west coast and middle west areas, though check-ins continue over the whole USA and anyone wishing to check in is certainly welcome.) Technical information and experience with various equipments are available and more especially availability of hard-to-get parts for those unable to locate them. New stations are always welcome and in fact such stations as KH6BSA in Hawaii have been practically developed with information over the air from W7SAB and K7YZZ, who have spent many hours in getting him set up and operating. Also stations KL7FH and KL7DRZ in Alaska have received assistance and hard-to-get parts from the group. 11LCF in Bologna, Italy has drawn heavy support and parts in getting his station in operation. ZS6ASR and ZS6PP have also received assistance. Likewise for ZL1DW, ZL1AOY, and ZL1NH (who has actually visited the group). Some contacts have also been made with UW6LC.

Normally the net is conducted by W7SAB with W7FEN, K7YZZ, W7VEV, W7ABW, W7MOW, K6STI, K6IV, W7LQO, WB6OMF acting alternate net control. For some time the net has been formalized as the Western SSTV Net and on May the 40 meter division of the Western SSTV Net was opened on 7220 at 9:30 local time. Some attempts have been made to interest our Canadian friends in SSTV and in fact a demonstration has been given recently at the University of British Columbia with 55 Canadian amateurs present in which slides, equipment, lecture and actual live demonstrations were conducted. Demonstrations and lectures have been given throughout the NW at various radio clubs and K7YZZ has had several articles presented in 73 Magazine and W7FEN and W7ABW have an article in June 1970 QST.

Early developments in SSTV have been thoroughly covered by our several amateur publications and a complete bibliography is quite comprehensive and of great help in getting started in SSTV. As much of the equipment must be designed and built by interested parties I would consider this activity a great incentive for advancing amateurs in the state of the art and general performance.

The above information about covers the activities and organization of the Western Slow Scan Television Net and I hope this will be of some help to you. I will again list the times and frequencies of the nets for your information.

- VE COUNTRIES BANNED -

By special edit dated 14 October, 1970, the Department of Communications has requested that all Canadian Amateurs be alerted to new regulations covering communications with various foreign countries. As a result the fifteen countries are now on the banned list under the authority of ITU, annex 2, to operational bulletin No. 55, dated 13 July, 1970.

A list of the forbidden countries is as follows:

- Burundi 9U5
- Cambodia 1111
- Cyprus ZC4
- Gabon TRK
- Greece SV
- Indonesia 117
- Iraq YI
- Jordan JY
- Laos XW8
- Libya 11
- Pakistan AP
- S. Yemen 4W1
- Syria YK
- Turkey TA/TC
- Vietnam 3W8

- INDIAN NEWS -

VU2GV

New Delhi. We are happy to advise you that we have been successful in getting a favourable response from the Government to our proposals for utilizing the radio amateur network for handling traffic in emergencies. We are also hopeful that some arrangements can be worked out for establishing an emergency net for simulated emergency tests by the authorities. This will give adequate opportunity for both sides to get acquainted with emergency procedures.

In order to enable this to be properly organised it is proposed to

- TOKELAUS -

The ZM7-Tokelaal effort looked ready to roll, then it founndered. Initially VE7THE and VE8RA had planned to stay at the home of the Catholic priest on the Tokelaus. However, with Pope Paul VI visiting Pago Pago, the padre locked up and took off to serve on the reception committee. Then the captain of the vessel they were to use began to worry about the typhoon season and the rhinoceros beetle and soon both the housing and the transportation had evaporated.

Apparently there is no docking space at these islands and ships have to lay offshore. The rhinoceros beetle infests the palms and ships have to get beyond three miles at night when the beetle is prowling about in order to avoid becoming a host for the beetle. With the typhoon season around the corner and the beetle problem, the vessel was not available. It seems that one must have definite arrangements to be allowed on the Tokelaus and the captain of the vessel was not for laying off the island for any length of time.

So this effort did not jell just about the time when everything seemed ready to go. VE7THE and VE8RA spent the week in Western Samoa signing 5W1AG and SWIAR. They had a good signal and their Tokelaus efforts, which came close to being accomplished, certainly would have gone well.

- NIUE -

ZK2AG, Trevor, reported active. Was at 14210kc at 0415Z - with an HW-32 and using a dipole 15 feet up in a palm. Home call said to be ZM7TV. ZM4NH to handle QSLs. Mail service intermittent from the island...about once monthly.
The annual Columbus, Georgia hamfest will be held on March 21, 1971 at the Fine Arts Building behind the Municipal Auditorium at the Fairgrounds. For information, write John Laney, K4VGI, 1905 Iris Drive, Columbus, Georgia 31906.

CONNECTICUT QSO PARTY
April 3-5, 1971
The Candlewood Amateur Radio Assn. invites hams throughout the world to take part in the 8th Connecticut QSO Party. Rules: 1) The contest period is from 2000 GMT to 0400 GMT April 3 to 0400 GMT April 5. Each station may be worked on each band and mode. The general call is "CQ CONNECT." 2) Consecutive QSOs count the same number of contacts times the number of contacts worked (maximum of 8). Consecutive QSOs may count only once toward ARRL sections and countries worked. 4) Certificates will be awarded to the highest scorer (6 or more contacts) on each ARRL section and country, also the two highest scorers in each country. 5) Certificates will be awarded to the highest scorer in each ARRL section and country. 6) Certificates will be awarded to the highest scorer in each country. 7) Certificates will be awarded to the highest scorer in each ARRL section and country. 8) Certificates will be awarded to the highest scorer in each country. 9) Certificates will be awarded to the highest scorer in each ARRL section and country. 10) Certificates will be awarded to the highest scorer in each country.

ARRL GREAT LAKES DIVISION CONVENTION
MUSKEGON COMMUNITY COLLEGE QUARTERLINE RD.
MUSKEGON, MICHIGAN.

 FOOTNOTES
Rio de Oro. Justo EA9EJ is on tent-to-q control...almost all aera. Wallz, SK2AF, presently on leave.

ST. BRANDONS
Alex, 3B7DA, who operated as 3B7DA from St. Brandons, advises that his gear, both the transmitter and receiver...suffered damage on his return to Mauritius from St. Brandons. This gear was donated by the Southern California DX Club and Alex is looking for some assistance to get the gear operating again. His present plans call for him to go to Rodriguez in 1971, possibly signing 3B9DA. Home address is 39 Brown Seguard Ave, Vaccaos, Mauritius. The damage was done by water seepage dousing the gear. Alex also interested in stamp collecting.

NEW PRODUCTS
Table of rates for the new Callbook Supplement...The supplement can be purchased for $3.50. That compares favorably with the $8.95 for the U.S. book and $6.95 for the DX edition. The supplement covers U.S. and U.S. possessions only.

News Page Three
LETTERS

Gray Matter

These photographs refute a statement which Wayne made in the January issue in the discussion of the EKY Video SSTV gear. Wayne stated that the SSTV pictures are composed of blacks and whites with no grade shades. The SSTV standards presently in use provide for a continuous gray scale between black and white as the photographs certainly show. To be frank, the lack of gray values in the gear that Wayne was observing was

probably a function of improper construction or adjustment in that particular piece of gear. Improper setup of the video discriminator will decrease the dynamic range of the monitor and result in an overly contrasty picture. SSTV pictures of normal well-lit scenes, whether televised with a vidicon camera or flying spot scanner, have excellent gray-scale rendition and I am sorry that EKY's gear gave the impression that this wasn't so. There are enough constraints required with the SSTV system that I tend to be perhaps overly sensitive to comments that impart still more

patches worth? Is a human life expensive enough?

At about 0330 EST on Christmas Day, 1970, I was driving home from a party at a friend's house in Miami. As I pulled up at a light on a deserted street, I saw that the car on my right was wobbling in the front; the door was open, and a person was sitting on the seat with a smashed face, losing blood, and in shock. At this time of the morning, when very few persons are awake to answer a radio call, the Miami autopatch enabled me to have the police and an ambulance on the scene within three minutes.

The ability to contact the police, while not necessarily instrumental in saving this person's life, has undoubtedly been so in the past, and will undoubtedly be so again in the future.

To the opponents of FM and the repeaters, I would like to ask another question. How would it have become involved in an accident on a deserted road late one night? Would you still be so opposed to that conglomeration of black boxes, antennas, and telephone lines if the ham who happened along procured an ambulance for you? You know, it's happened in the past, and it could happen again.

Amateur radio is very much a hobby of public service. If a repeater and autopatch provide this particular service only once in five years, what is the price of a human life?

Jeffrey R. Harrow WA4RLG

FM Correction

We have read your article regarding the Regency HR-2 2 meter FM transceiver in the December issue with great interest. We were disappointed to see that the chart contained in the article had one significant error and one significant omission with regard to our unit.

First, our SR-C906MA sells for $325.00 not $349.00. It also comes complete with 4 channels, not just 146.94 as indicated. I am sure these

clarified to avoid misleading your readers.

Virtually all DTL IC's available from any source are in the so-called "930" family which requires a supply of +5V = 10% rather than the +4V mentioned in the article.

Your definition of an inverter talks about "+ and - logic." In fact, an inverter has nothing to do with positive and negative logic or positive and negative voltage. An inverter merely inverts the logic signal put into it: a 0 becomes a 1 and a 1 becomes a 0. Figure 4 has two logic symbols called 2-input NAND gates. The one labeled "most common form" is correct, but the other is one representation of a 2-input NOR gate. The correct symbology is shown below:

![Logic Symbols](image)

The "typical buffer with gated input" in Fig. 5 is simply two gates with their inputs and outputs in parallel to increase the drive capability. This is possible with RTL, but is more complicated with DTL and TTL.

The "flip-flop" in Fig. 5 is not a flip-flop unless NAND gates are substituted for the AND gates shown.

The paragraph which says that you can make a 3-input gate from a 4-input gate by grounding one of the inputs is true for the NOR gates used in RTL, but not for the NAND gates used in DTL and TTL.

The existence of a clock input has nothing whatsoever to do with a flip-flop being RS or JK. An RS flip-flop is defined by its response to the R and S inputs, as shown below:

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>no change</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>unknown</td>
</tr>
</tbody>
</table>

I would like to ask my friends to write a short letter indicating what we ham experimenters have accomplished and how my activity has influenced or helped their progress. I'm sure that anything could be truthfully said would aid the city officials in understanding more about ham radio and its benefits.

If your local newspapers have written up ham activities or accomplishments, include the clippings with your letter. Be sure to include any specific association and activity with me.

Please address your letter to:
San Jose City Council
801 N. First Street
San Jose CA

Letters should be mailed as soon as possible.

Mike Staal K6MYC

HELP!

I recently came into some good fortune by being handed three wide band amplifiers, Instruments for Industry Model 500A, without tech data. Since I am a Novice and very limited in my electronic background I would like to know how and where I might use these beautiful pieces of electronic gear. And if it's not asking too much, how about where I might pick up a schematic and some additional tech data, as the corporation is now defunct.

Ted Onyszczak WN30IP
302 Red River Ave.
W.S.M.R., TN 38002

Thumbs Down

I am not renewing my subscription for the following reasons:
1. I don't like FM, much less repeaters which monopolize frequencies. (Maybe 10 years of Uncle Sam F M & repeaters gave me this negative attitude)
2. The condenning of amateur radio to support alien causes.
3. Lack of articles etc. for an old brassbounder like myself.
4. The constant lambasting of

Pro IL

The monkeys to pack your Gunsmoke evidently have been opening the mail for you. Almost a year ago I wrote with my comments supporting incentive licensing, but I noticed it was not included in the "sum total" of supporting statements that you allegedly received.

Paul Schenect WA6CSP

We printed only those letters received after the ACTION coupon was published (which probably your alleged letter by 9 months). In the last issue we have received additional letters, both pro and con - but those published last issue are still representative, and the mail runs heavy against incentive licensing.

Ken
things were simple oversights or errors as our ad in the same issue calls these things out correctly.

STANDARD COMMUNICATIONS CORP.

Thomas L. Fischer
Vice President - Engineering

We understand the SR-C606MA is now available, which surpasses the 806 and surpasses it in performance as well. An operational repeater at SAROC using 526 components was impressive indeed.

On page 96 of the December issue of 73 Magazine, you list specifications for several FM transceivers. Some of the information on the SAR-C606MA is in error. We are a dealer for Standard products and would like to see the errors corrected if possible.

The price of the SR-C606MA is $353 not $349 as listed in the chart. The SAR-C606MA comes with a 3-crystal channel in addition to 146.94 not just crystals for 146.94 and 145.75 in the chart.

I wish to thank you in advance for your cooperation.

Very truly yours,

ELKO Electronics Specialties

Thomas E. Doyle

The Standard is now licensed in American crystals for 94 direct, 76 direct, 346.94 and 346.76. Sorry about the error!

Hooray!

You really started off the New Year right with the FB January 1971 issue. I enjoyed every article in the magazine, including the front cover! Hope to see more articles on the humorous side, and the same type of cover in issues to come!

Gordon Bello WA1JWO
16 Beals St.
Brookline MA 02146

Get HELP!

Your article Getting HELP to IC’s in the January 71 issue contains several errors. I suspect that these may be primarily the result of trying to simplify and condense a lot of material into a short article, but they should be if the RS flip-flop has a clock or trigger input, it may be called a clocked RS flip-flop, or a clocked RS flip-flop. It behaves exactly the same as an unclocked RS flip-flop except that the inputs are ignored until a clock pulse occurs. A JK flip-flop is just like an RS flip-flop except that the output (Q) inverts when both J and K inputs are 1. A JK flip-flop may or may not have a clock, but usually does.

Again, the +2 and +4 circuits assume RTL flip-flops since grounding the S and C inputs will not work with DTL and TTL flip-flops. My point here is to say that 73 remains my favorite ham magazine, both technically and editorially. Right on! (Write on!)

E. Douglas Jensen W50EJ/K4ADD
Senior Digital Systems Engineer
RECOGNITION EQUIPMENT INC.
Dallas TX 75222

Harm in Trouble

For several months now my ham radio activity has been jeopardized by a local ordinance in San Jose limiting antenna height to 35 ft above the ground.

I have applied to the city for variances to allow for my THD-AX at 70 ft and my 2-meter collinear array to stay up at 40 ft. The variances have been denied. But at the last appeal the city indicated that I might be right about the fact that sometimes ham antennas should be higher than 35 ft. The city officials suggested I attempt to change the local ordinance limiting tower height. This is what I am working toward now and that is why I need your help.

City officials have stated what my best course of action should be to influence the city council. Of course, the modification of the 35 ft local ordinance will benefit all of the San Jose hams, so I am enlisting their support.

I have so many outstanding friends all over the world whom I have experimented with, it was suggested ARRL without any constructive and active solutions.

Page four
Caveat Emptor?

Price — $2 per 25 words for non-commercial use, $10 per 25 words for business venture. No discount or group rate available. Include your check with order. Deadline for ads is the 1st of the month. Two months prior to publication. For example: January 1st ad due by October 20th. This issue will be mailed on the 10th of February. Type copy. Phrases and punctuate exactly as you wish it to appear. No all caps or italic. We reserve the right to refuse or correct ads. Our responsibility for errors and omissions is limited to the amount of money paid. Send queries to P.O. Box 2129, South Station, Newark, NJ 07104.

SELLING OR SEEKING HAM, CB or H.F. EQUIPMENT? Get "Electronic Peddler," 2810 Calcedo, Cincinnati OH 45244, $1.75 yearly. Ad. 08 per word per insertion.

"1971 TESTS ANSWERS" for FCC First and Second Class License, plus "Self-Study Ability Test" Proven. $9.95. Satisfaction guaranteed. Command, Box 26348-S, San Francisco CA 94126.

2 PORTABLE TRANSMITTERS for two meters F.M. One on 146-340 MHz, 20 watts, SSB and CW. Output 10-15 VDC, 7W RF. Output 18 VDC, 0.5 W audio output, 14 diodes, 3 transistors, trimmer, copy, manual, $150.00. Each. Please send for Brochure. B. Dickerson, 1200 Johnston St., Philadelphia PA 19148.

Leaky Lines

I got a brainstorm recently and wrote a letter to the office of U Thant, Secretary General of the United Nations. The thought had occurred that since ham radio is an international hobby, and that I thought that it might be possible to establish a working station at UN Headquarters in New York, with operational privileges for visitors with current licenses. Since the UN constitutes a legitimate international enclave within New York City, as does the ITU within the city of Geneva, I reasoned that perhaps this station might achieve separate country status. In the same manner as 4U1ITU, it should be acceptable for DXCC credit. The latter part was an afterthought, to be discussed at some subsequent time. My target was to get permission from the UN authorities to establish the station.

I pointed out that since this year marks the 25th anniversary of the signing of the Charter in San Francisco, it would be an auspicious occasion for the initiation of such a station. And I asked the Secretary General if we might not be favored with a prompt reply.

The answer came in less than a week, and from Mr. U Thant, but from Josef Nichols, First Assistant Secretary. My poll consisted of a short questionnaire. Among about 1500 hams, have you any interest in DX? I have conducted a private survey among about 1500 amateurs, selected at random, more or less. My poll consisted of a short series of simple questions. Some people think DX is like some well-known politicians, not loaded nor designed to result in a predetermined conclusion. I wanted to learn the true facts concerning CW and SSB. Here are my results. My poll was from about 1500 amateurs. I asked them if I anticipated the result. I am still interested to get the station established... with or without separate country status. It would be a marvelous accomplishment to have a ham station operating at the UN, where the face of amateur radio could be observed by visitors from all over the globe, doing what it does best; establishing and maintaining international camaraderie, goodwill and peaceful co-operation among all the peoples of the planet. That's more than all the "good" statesmen and all the political geniuses have been able to do.

Over the last six months or so, ever since one of my close friends popped off that the code requirements ought to be scrapped, because they are obsolete. I have conducted a private survey among about 1500 amateurs, selected at random, more or less. My poll consisted of a short series of simple questions. Among about 1500 hams, have you any interest in DX? I have conducted a private survey among about 1500 amateurs, selected at random, more or less. My poll consisted of a short series of simple questions. Some people think DX is like some well-known politicians, not loaded nor designed to result in a predetermined conclusion. I wanted to learn the true facts concerning CW and SSB. Here are my results. My poll was from about 1500 amateurs. I asked them if I anticipated the result. I am still interested to get the station established... with or without separate country status. It would be a marvelous accomplishment to have a ham station operating at the UN, where the face of amateur radio could be observed by visitors from all over the globe, doing what it does best; establishing and maintaining international camaraderie, goodwill and peaceful co-operation among all the peoples of the planet. That's more than all the "good" statesmen and all the political geniuses have been able to do.

Then, of course, the idea hit me, square in the middle of my dumb skull. I have about as much chance of getting any League Committee to agree to a proposal of mine, as Spitz T. Agnew has of being elected Honorary Chairman of the S.D.S.

But I still think the thought has merit, and I still intend to try to get the station established... with or without separate country status. It would be a marvelous accomplishment to have a ham station operating at the UN, where the face of amateur radio could be observed by visitors from all over the globe, doing what it does best; establishing and maintaining international camaraderie, goodwill and peaceful co-operation among all the peoples of the planet. That's more than all the "good" statesmen and all the political geniuses have been able to do.

Leaky Lines

by Dave Mann K1AGZ

There has been a good deal of discussion pro and con concerning these list-type operations and frankly, I have mixed feelings about them myself, even though I thought with them as a sort of half-a-loaf.

To a great extent these are like the little girl with the little curl in the middle of her forehead. And Duncan's station succeeds in maintaining his chairmanship effectively, reducing the confusion to a minimum, the hubbub is neutralized, and a surprisingly large number of QSO's is the happy result. But in a number of instances, where the control station has been incapable, the sort of ignorance or inability, of handling the job properly, the ensuing chaos has been horrific.

I am sure that these nets, while they are not blessed with the number of participants to many, have certainly served a useful purpose to these DX chasers who are not blessed with the activity of DX super DXers and DX specialists. And they could never hope to compete on an equal basis with the big guns on our DX bands.

Perhaps the next time you are tempted to belittle these lists, you might give a charitable thought to all of those who, but for this method, would have precious little chance to realize their DX dreams.

And then, you may enjoy the knowledge that more people are experiencing the satisfaction of DXing. It probably would come only to those few DXers who are fortunate enough to be able to compete fairly with each other. View it as you would view your golf handicap, and it begins to make more sense.

Then, of course, the idea hit me, square in the middle of my dumb skull. I have about as much chance of getting any League Committee to agree to a proposal of mine, as Spitz T. Agnew has of being elected Honorary Chairman of the S.D.S.

But I still think the thought has merit, and I still intend to try to get the station established... with or without separate country status. It would be a marvelous accomplishment to have a ham station operating at the UN, where the face of amateur radio could be observed by visitors from all over the globe, doing what it does best; establishing and maintaining international camaraderie, goodwill and peaceful co-operation among all the peoples of the planet. That's more than all the "good" statesmen and all the political geniuses have been able to do.

Over the last six months or so, ever since one of my close friends popped off that the code requirements ought to be scrapped, because they are obsolete. I have conducted a private survey among about 1500 amateurs, selected at random, more or less. My poll consisted of a short series of simple questions. Among about 1500 hams, have you any interest in DX? I have conducted a private survey among about 1500 amateurs, selected at random, more or less. My poll consisted of a short series of simple questions. Some people think DX is like some well-known politicians, not loaded nor designed to result in a predetermined conclusion. I wanted to learn the true facts concerning CW and SSB. Here are my results. My poll was from about 1500 amateurs. I asked them if I anticipated the result. I am still interested to get the station established... with or without separate country status. It would be a marvelous accomplishment to have a ham station operating at the UN, where the face of amateur radio could be observed by visitors from all over the globe, doing what it does best; establishing and maintaining international camaraderie, goodwill and peaceful co-operation among all the peoples of the planet. That's more than all the "good" statesmen and all the political geniuses have been able to do.

There has been a good deal of discussion pro and con concerning these list-type operations and frankly, I have mixed feelings about them myself, even though I thought with them as a sort of half-a-loaf.

To a great extent these are like the little girl with the little curl in the middle of her forehead. And Duncan's station succeeds in maintaining his chairmanship effectively, reducing the confusion to a minimum, the hubbub is neutralized, and a surprisingly large number of QSO's is the happy result. But in a number of instances, where the control station has been incapable, the sort of ignorance or inability, of handling the job properly, the ensuing chaos has been horrific.

I am sure that these nets, while they are not blessed with the number of participants to many, have certainly served a useful purpose to these DX chasers who are not blessed with the activity of DX super DXers and DX specialists. And they could never hope to compete on an equal basis with the big guns on our DX bands.

Perhaps the next time you are tempted to belittle these lists, you might give a charitable thought to all of those who, but for this method, would have precious little chance to realize their DX dreams.

And then, you may enjoy the knowledge that more people are experiencing the satisfaction of DXing. It probably would come only to those few DXers who are fortunate enough to be able to compete fairly with each other. View it as you would view your golf handicap, and it begins to make more sense.
The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.

One thing I noticed almost immediately was the habit among those who had to ‘fess up that they hadn’t been on CW for years. They all vowed solemnly that ‘One of these days I’m gonna get out the old bug and get back on CW, because the phone frequencies are starting to become a real rat race.’ It seems that even those who suggest that less emphasis on CW is now in order, invariably add, somewhat wistfully: ‘There was a time I could copy forty per minute without any trouble at all.’ Somehow all these folks had a source of pride in that accomplishment, and are a bit ashamed to admit that they have allowed their skill on CW to atrophy.

The continued use of code is endorsed wholeheartedly. Even confirmed CWers who really, if ever, use telegraphy, expressed what I like to think was a sentiment, rather than merely an opinion. They would not care to see CW fade into limbo like the horse and buggy or the old-fashioned walkie.
When you consider that Mike is undertaking this all on his own with no support beyond good wishes from any of the amateur magazines you can see that he has his work cut out for him.

THAT QST EDITORIAL.

In December the unsigned QST editorial defected the ARRL position that amateur radio needs no hobby in Washington to protect the hobby. They attributed my concern about this to an effort to build up the circulation of 73. That allegation ill befits them.

Amateurs who took the time to read the QST editorial carefully and thoughtfully may have recognized the illogic of their argument. Actually they made an extremely strong case in favor of a Washington lobby for amateur radio. In essence, they said that since we have Goldwater in Congress, a lobby is not needed. It was Goldwater who broke the ice with the reciprocal licensing bill...Goldwater who was responsible for the effort to license aliens...etc.

Senior Goldwater is providing some of the functions of a Washington lobby for amateur radio...true. But Senior Goldwater has been sent to Congress by the people of Arizona and it is to them that he owes his primary efforts, not to us. If he has time left over, we are benefited...if not, well, too bad.

We have but to remember back to the years that amateurs worked toward getting that reciprocal licensing bill into Congress. To no avail. Without Senator Goldwater I doubt seriously if we would be any further along in getting reciprocal licensing today than we were ten or fifteen years ago. The FCC has announced that effective July 1, 1971 they will no longer accept 610 forms which are dated July 1970 or later. The form 610 is for applying for an individual amateur radio station and/or operator license.

NEW THREAT TO 220.

The Electronics Industries Association is petitioning the FCC to raise the 222-224 MHz amateur band and turn it over to CB. If this happens, it will be entirely from amateur use. They further are asking that the amateur frequency allocation be changed so that one class can use 220-222 and another class use 224-225 MHz. The following companies are financially supporting the EIA program:

K6MVH cont. from News Page 1

K6MVH cont. from News Page 1

The fellows at Standard Communications (both hams) showed their new superselective transceiver and demonstrated a repeater made from Standard transceiver parts.

respect to VHF operation. The hottest thing on the calendar right now is the First Annual Southwest Regional VHF Conference, slated for March 21 and 22 at the Sands Motel on West Hwy 80, in Midland Texas.

Tickets are modestly priced at $2 for the conference, $1 for the Saturday evening dance, and $2 for the Sunday swapfest. I don't know exactly what's on tap for the conference program, but I will be there as either speaker or "open-forum" participant.

According to Paul Storm (WASRAI), president of the Midland club, door prizes will be awarded at the dance and the swapfest. In addition, prizes will be awarded for CW, frequency guessing, homebrew equipment (no kits), etc. Talk-in frequencies will be 7270 SSB and 146.94 FM. (The local repeater is 34.94.)

Advance registrations may be sent to MARC, Box 967, Midland TX 79701.

Speaking of Conventions

Wayne and I are occasionally invited to speak at conventions or hamfests, and we nearly always accept. But invariably, we attach a string to it so that 73 doesn't go broke paying air fares. What we require is sufficient guaranteed subscription sales to cover expenses for the trip. That way 73 picks up the tab, but the money comes from the area we visit. The whole thing generally works out quite satisfactorily for everyone.

NEW PREFIXES IN GERMANY.

In addition to the existing call sign prefixes the German postal authorities now issue the prefixes DA, DB, and DF. There are now the following call signs:
The Dutch national society, VERON, celebrated 25 years of service to the radio amateur at “A Day of the Amateur” held on 15 November 1970 at Philips Oostpoldercentrum (recreation center) at Eindhoven.

After opening speeches by the president of VERON, A. H. J. Claassen, PARCLA, and the president of the Eindhoven district club, members heard a lecture by Dr. J. A. Saxon, who is director of the UK Radio and Space Research Station. The lecture spoke of the past achievements of amateurs in the field of propagation research and emphasized the need for continuing vigorous work in the future.

Nearly 300 members attended during the day and the success of the meeting was assisted by the excellent facilities of the Philips center.

Prefix Club Stations Prefix Individual Stations Prefix Individual Stations

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA 1 AA – DA 2 ZZ</td>
<td>Amateurs of Foreign Armed Forces</td>
<td></td>
</tr>
<tr>
<td>DA 4 AA – DA 4 ZZ</td>
<td>Amateurs of Foreign Armed Forces</td>
<td></td>
</tr>
<tr>
<td>DB 1 AA – DB 9 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DC ø AA – DC ø EZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DC ø FA – DC ø JZ</td>
<td>Foreign civilians</td>
<td></td>
</tr>
<tr>
<td>DC ø KA – DC ø ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DC 1 AA – DC 6 ZZ</td>
<td>German amateurs in West Berlin</td>
<td></td>
</tr>
<tr>
<td>DC 7 AA – DC 7 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DC 8 AA – DC 9 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DF 1 AA – DJ 9 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DJ 1 AA – DJ 9 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DK ø AA – DK ø ZZ</td>
<td>German club stations, special call signs</td>
<td></td>
</tr>
<tr>
<td>DL 6 AA – DL 6 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DL 7 AA – DL 7 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
<tr>
<td>DL 8 AA – DL 9 ZZ</td>
<td>German amateurs</td>
<td></td>
</tr>
</tbody>
</table>

USSR PREFIXES

Prefix Club Stations Prefix Individual Stations Prefix Individual Stations

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK 1</td>
<td>UA1</td>
<td>RA1</td>
</tr>
<tr>
<td>UK 2</td>
<td>UA2</td>
<td>RA2</td>
</tr>
<tr>
<td>UK 3</td>
<td>UC2</td>
<td>RA3</td>
</tr>
<tr>
<td>UK 4</td>
<td>UA4</td>
<td>RA4</td>
</tr>
<tr>
<td>UK 5</td>
<td>UR2</td>
<td>RA5</td>
</tr>
<tr>
<td>UK 6</td>
<td>UB5</td>
<td>RB5</td>
</tr>
<tr>
<td>UK 7</td>
<td>UC6</td>
<td>RD6</td>
</tr>
<tr>
<td>UK 8</td>
<td>UD6</td>
<td>RF6</td>
</tr>
<tr>
<td>UK 9</td>
<td>UG6</td>
<td>RG6</td>
</tr>
<tr>
<td>UK 10</td>
<td>UA9</td>
<td>RA9</td>
</tr>
<tr>
<td>UK 11</td>
<td>UA10</td>
<td>RA10</td>
</tr>
<tr>
<td>UK 12</td>
<td>UA12</td>
<td>RA12</td>
</tr>
<tr>
<td>UK 13</td>
<td>UC13</td>
<td>RA13</td>
</tr>
<tr>
<td>UK 14</td>
<td>UA14</td>
<td>RA14</td>
</tr>
<tr>
<td>UK 15</td>
<td>UR15</td>
<td>RA15</td>
</tr>
<tr>
<td>UK 16</td>
<td>UB16</td>
<td>RB16</td>
</tr>
<tr>
<td>UK 17</td>
<td>UC17</td>
<td>RD17</td>
</tr>
<tr>
<td>UK 18</td>
<td>UD18</td>
<td>RF18</td>
</tr>
<tr>
<td>UK 19</td>
<td>UG19</td>
<td>RG19</td>
</tr>
<tr>
<td>UK 20</td>
<td>UA20</td>
<td>RA20</td>
</tr>
</tbody>
</table>

European USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>European USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kalinigrad

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byelorussin SSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithuanian SSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estonian SSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

European USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>European USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moldavian SSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenian SSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Azerbaijan SSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgian SSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

European USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>European USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turkmen SSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tadjik SSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kirgiz SSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzbek SSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asiatic USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asiatic USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asiatic USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asiatic USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asiatic USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asiatic USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asiatic USSR

<table>
<thead>
<tr>
<th>Prefix Club Stations</th>
<th>Prefix Individual Stations</th>
<th>Prefix Individual Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asiatic USSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A view of an encased WM3A filter and one with part of the casing removed to show the internal hybrid integrated circuitry. The encased filter measures only 8/10" x 7/10" and is about 3/16" thick. Photo courtesy Western Microwave, Los Gatos CA 95030.

INTEGRATED CIRCUIT AUDIO FILTER

The development of complicated multi-inductor filters and multi-transistor rc filters is culminated in a new type of integrated circuit audio filter. The filter should have many applications in amateur radio equipment designs.

One item that has been used in innumerable pieces of amateur equipment and accessories over the years is an audio filter. Such filters, particularly if they were used for audio selectivity purposes, could get to be very elaborate and large with multiple section designs. It was probably only inevitable that the current stream of progress toward the micro-miniaturization of electronic components would also reach audio filters. However, the miniaturization of audio filters that has been achieved is not just simply a miniaturization of inductors and transformers. None of these components are used in the audio filters to be described, and these integrated circuit filters offer adjustment versatility that could never be achieved with inductors. Such filters open up the possibility for the construction of numerous compact pieces of accessory equipment that can be used to improve the operation of receivers and transceivers.
Background

Many attempts have been made to do away with the use of inductors in filters both because of size and cost factors. Some of these attempts date back quite a few years and all revolve about the use of RC networks in place of inductors. For instance Fig. 1(A) shows an RC high-pass filter. As the frequency of the input signal increases, the reactance of the capacitors decrease and more voltage appears across the output. Fig. 1(B) shows a low-pass filter that works in a similar manner. If you combined the filters, using an amplifier for each, you could form a bandpass filter. You could also combine various forms of RC networks to form notching or peaking filters, as shown in Fig. 1(C). Such filters by themselves, of course, are crude and provide poor selectivity. Usually such filters are used together with amplifier stages to compensate for the filter attenuation and also in feedback arrangements so the filter

Fig. 1. Basic RC networks allow filter circuits to be built without the use of inductors. High-pass circuit (A), low-pass circuit (B), and notching and peaking circuits (C).

Fig. 2. Block diagram of the Western Microwave WM3 filter. ALL of the blocks shown are contained in the single filter unit shown in the photograph. Each amplifier is, in fact, a separate integrated circuit amplifier. The numbers refer to the terminal connections.

Fig. 3. The WM3 filter can be used alone [(A) and (B)] to function as a low-pass or high-pass filter or in conjunction with a postamplifier [(C) and (D)] to produce a steeper slope at the cutoff frequency.
circuits are not loaded down. Unfortunately, by the time you combine sufficient discrete component rc networks and transistor amplifier stages to have the rc filter duplicate the performance of an inductor network, the rc filter can be as large and as costly as the latter. The advent of integrated circuits has changed all that, however. High gain amplifier circuits and multiple rc networks can be incorporated in one physically compact unit.

The block diagram of the integrated circuit filter is shown in Fig. 2. Three multi-transistor operational amplifiers and the necessary rc networks in a feedback arrangement are combined in the hybrid filter unit. Three external resistors are used and can be manipulated to change the operational characteristics of the filter. One can see some of the filter components in the unencased view of the filter in the photograph. The encased filter measures 0.8 inches x 0.65 inches x .15 inches thick. The surface area is about that of a 25 cent piece, and it is hardly any thicker.

Performance

The filter really begins to shine when one investigates its performance possibilities. It can be used as a high-pass filter, low-pass filter, peaking filter, notching filter, etc. The center frequency can be adjusted as desired by an external potentiometer as well as the Q if desired. The unit can also be set up so you can switch select a variety of different filter effect outputs.

Graphs portray the performance of this type of filter best. Fig. 3 illustrates the output versus frequency characteristic of the filter in several low-pass and high-pass circuits. The filter can be used alone for these functions, or its output used to drive another ic operational amplifier power stage to further increase the slope of the frequency response at the cut-off frequencies.

Fig. 4 shows the filter used as a peaking or notching filter. Note the extreme

Fig. 4. The extremely sharp peaking and notching characteristics of the filter make it ideal for use as an cw selectivity device. The peaking and notching frequencies can be tuned from 500 to 1500 cycles.

Fig. 5. The above graphs indicate how by simple external potentiometer control, the frequency as well as the Q of the filter can be varied.
sharpness of the response at the nominal center frequency of 1 khz. Actually, both the center frequency as well as the sharpness of the filter response can be tuned by making various of the external resistors variable as shown in Fig. 5. Thus, the center frequency of a nominal 1khz filter can be tuned from about 500 to 1500 cycles. The Q can be varied from about 1 to a maximum of 100.

As might be imagined from looking at the arrangement of the external resistors and the output terminals used for each specific application of the filter, you can devise various switching arrangements to select different outputs, different specific center frequencies, etc. The possibilities in this direction are pretty well only limited by your imagination. Fig. 6 shows one simple circuit which provides simultaneous or switch selected different output possibilities.

Summary

The type of filter described is available now from firms such as Western Microwave. The price of such a filter—about $30 depending upon the type of casing used—will restrict its use in amateur equipment until greater sales will invariably bring the price down to that of regular integrated circuits. However, even though one may not be using such a filter tomorrow, such filters will be the type of component that will become common in amateur equipment as the micro-miniaturation of components for use if communications circuits continue.

Fig. 6. The above diagram illustrates how the filter can be used to simultaneously produce different output characteristics. Rf and Rq are chosen according to Fig. 5.

War On Poverty!

You can help fight a really serious poverty pocket in New Hampshire by sending in your subscription today to 73. Not only will this give you the warm feeling deep inside knowing that you have helped someone in need, but it will also bring you bounteous blessings.

1. You will save tremendously on the highly overpriced individual-copy cost of $1.
2. You will not have to worry about your dealer running out of copies just before you get there.
3. Many other blessings too numerous to mention.

Tax Deductible

A subscription to 73 is such an extraordinary act of generosity that it should be deductible. Unfortunately, it isn’t. It is generous to yourself, bringing you unfettered joy and enthusiasm for an entire year, spread out just enough to whet the etc. It is generous to the poor underprivileged employees of 73 who are eking out their lives, anxiously awaiting each and every subscription with grasping fingers. It is generous to the State of New Hampshire, for the only taxes in this fine state are on profits and, there is always the distant possibility that your subscription might be the one which would edge 73 out of the red and into the tax-paying bracket. This, unfortunately, is a slim possibility.

Name ____________________________
Call ____________________________
Address ____________________________
City ____________________________
State ____________________________ Zip ____________

☐ New subscription ☐ Renewal
☐ $6 One year
☐ $14 Three years ☐ $10 Two years

Foreign: add $1 per year.

73 Magazine • Peterborough NH 03458

MARCH 1971
INTEGRATED CIRCUIT
6 METER CONVERTER

At the present time, amateur 6-meter converters are built around nuvisor tubes or field-effect transistors. The former requires a b-supply in the order of 100V and filament power; both types usually require neutralization, which is tedious and requires additional components.

The 6-meter converter described in this article uses an integrated circuit in the front-end, eliminating the need for neutralization and yielding far better gain characteristics than the nuvisor or all-FET counterparts.

The amplified 6 meter signal is mixed at the gate of a 2N3819 FET mixer with the local oscillator signal, generated by a crystal controlled 2N3819 FET overtone oscillator operating at 49.5 MHz. This produces a difference frequency of 1.0 MHz which is in the middle of the broadcast band, making the converter ideal for mobile applications. If a 7 MHz difference frequency is desired, a 43.5 MHz crystal is used and the 3900 pf capacitor is the mixer drain tank circuit is changed to 100 pF.

Circuit Description

This converter uses a CA3028A integrated circuit in the rf amplifier, which is connected in cascode configuration. The cascode circuit behaves as a pentode tube, and thus prevents tendencies toward oscillation. These tendencies are further reduced by using toroidal coils, which prevents generation of stray magnetic fields and eliminates the need for shielding the input from the output tank circuits.

The converter has a gain of 36 dB up to the mixer drain tank circuit. However, since the tank circuit is high impedance, a link coupling must be used to match to the receiver input impedance, which is usually in the order of 50 ohms. The link consists of three turns of no. 22 wire around the mixer drain tank coil. Matching losses are unavoidable, but a gain of 24 db can be achieved without much difficulty. Typical bandwidth is 100 kHz.
R. L. DRAKE COMPANY

Alignment

With a VTVM connected at the oscillator gate, tune the oscillator tank circuit for maximum negative voltage. Remove the VTVM, and connect an oscilloscope at the mixer drain terminal. With a 1mV 50.5 MHz signal connected at the input, tune the output tank circuit of the rf amplifier for maximum signal. The signal at the mixer drain terminal should be sinusoidal, at a frequency close to 1 MHz if it is not sinusoidal, detune the oscillator plate tank circuit slightly. Now tune the mixer drain tank circuit for maximum signal, and tune the rf amplifier input and output tank circuits for maximum signal.

Construction Details

The converter was built on a piece of aluminum, with teflon sockets and terminals used for mounting components, although if built on a punched phenolic board with standard terminals the circuit will work as well. The only precautions to observe are making the connections as short as possible and to keep the coils well separated from each other.

The toroidal coils are not visible in the photographs because they are mounted under the trimmer capacitors.

The converter costs less than $20.00 in parts and outperforms by far many of the commercial units that are presently available for almost twice the cost.

...WB4KMB
The addition of a few stubs can add effective 2 meter operation to most trap-type vertical antennas without degrading the regular performance of such antennas and without requiring any change in transmission line connection.

Usually one erects a trap-type vertical antenna for use on the lower frequency bands because of antenna space restrictions. When carefully adjusted, such antennas are capable of reasonably good performance. Many operators who use such antennas would also like to have some antenna facility for operation on a vhf band—particularly 2 meters—and look fondly at the trap vertical structure trying to visualize how advantage might be taken of its height, etc., for use on 2 meters without erecting a completely separate antenna installation for the latter band. One could mount some small two meter antenna, such as a ground plane, on top of the trap vertical, but structural problems are involved with the relatively thin upper section of the trap vertical, a separate transmission line required (or a changeover relay to the trap vertical transmission line), and the basic trap vertical performance may be affected. A much better solution to the problem, of course, is to somehow utilize the trap vertical antenna itself as an antenna array with a low loss transmission line, such as RG-8, if it has been properly installed. So, there is no problem with the basic transmission line run to the antenna for use on two meters. The problems which do exist are with the trap vertical antenna itself as to how it can be modified into a useful antenna form on 2 meters that will correctly match the transmission line.

This article presents an easy method of modification that can be used with most trap verticals which permits use of the antenna on 2 meters while operation of the antenna on its basic design frequencies is not affected.

Basic Antenna Considerations

The usual trap type vertical can be electrically represented as shown in Fig. 1(A). The various tuned circuits isolate sections of the antenna on different bands such that the basic antenna structure always remains a ⅓λ vertical. Above their resonant frequencies, each tuned circuit would present a capacitive reactance. Thus, if the antenna were operated on a frequency several times higher than the resonant frequency of the highest frequency tuned circuit trap, the antenna could be electrically represented as shown in Fig. 1(B). The capacitive reactance still present would be very small because of the frequency being considered, although the series effect of the equivalent capacitors from the individual tuned circuits works to increase the total reactance on 2 meters. The total reactance
for the experimenter!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw, depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND AMP
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur $3.75

5. OX OSCILLATOR
Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ± .05% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the commercial user

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3096E.

CRYSTAL TYPES:
(GP) for "General Purpose" applications
(CS) for "Commercial Standard"
(HA) for "High Accuracy" close temperature tolerance requirements.

WRITE FOR CATALOG.

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLA. CITY, OKLA. 73102
present on 2 meters depends upon the number of traps used in the antenna and their specific parameters, but it can be as low as 30 ohms in a typical antenna.

For the moment, it can be considered that the series capacitive reactance on 2 meters is insignificant, and the antenna acts as a straight rod. If the antenna were excited on 2 meters, a situation similar to that shown in Fig. 2(A) would result. If the total length of the antenna happened, by chance, to be correct, it might still match the transmission line impedance. The chances of such an event taking place are rather small, however. Even if it were to occur, the total length of the antenna would be such that a number of current reversals (one every $\frac{1}{2}\lambda$) could take place. Since the currents in different sections would be out of phase, the resultant radiation pattern would split into a number of lobes in a manner similar to that for a long wire antenna. The result would be radiation and useful for little more than communicating with an aeronautical mobile station directly overhead.

Stub Placement

The use of a few simple $\frac{1}{4}\lambda$ stubs on 2 meters can provide both proper matching of the antenna to the transmission line and correct phasing of the antenna currents. This situation is illustrated in Fig. 2(B). Note that the stub on the bottom of the antenna is connected differently than the other stubs. The “closed” end is connected to the ground terminal (shield of the transmission line) and not to the antenna (center conductor of the transmission line). Calling it a “stub” is actually a misnomer since it functions on 2 meters as a quarter wave transmission line transformer to match the low impedance of the transmission line to the high impedance of the first $\frac{1}{2}\lambda$ section of the antenna. The operation is the same as the well-known “\[\D\]” antenna. The other stubs cause a phase reversal between the $\frac{1}{2}\lambda$ sections so that the currents in each section line up properly. The result is that a radiation pattern is produced which is omnidirectional in the horizontal plane and also which has several db of gain with low angle radiation in the vertical plane.

Fig. 3 shows an example of how the scheme of Fig. 2(B) was used with a 14AVG trap vertical (remove the rf choke in the base connector). The matching stub is simply ground end connected to one of the mounting bolts on the antenna base connector. A standard pillar insulator (Birnbach 440F) with pipe clamps on each end is used to support and insulate the other end of the stub. The other stubs are mounted in a
similar manner but using two insulators with a shorting strap across the bottom insulator. The photograph illustrates the construction used. The spacing of the stub is not critical nor is the diameter of tubing used for the stub. In the example shown, a center to center spacing of about 3½" was used and ¾" aluminum tubing for the stub.

The second stub (first phasing stub) is placed ½λ above the end of the matching stub. This stub can be placed below the first trap on almost all trap verticals which are designed for use down to 10 meters. The second ½λ section will encompass the physical length of all the traps in the usual 2 or 3 trap antenna, since these traps are placed relatively close together. As was mentioned before, however, the traps will still act to present some capacitive reactance on 2 meters. Therefore, in order to effect an electrical ½λ section, the physical length between the first and second phasing stubs must be made longer. In the example shown, the length required was about 50" which placed the second phasing stub just above the top trap. The last ½λ section above the last phasing stub is formed by the remainder of the antenna. Usually, the necessary length can be secured by slight adjustment of the top section length or adding to the capacity top-hat on the antenna. A slight adjustment of this length does not affect the antenna performance on the hf bands, since the length is not effective except on the lowest frequency used. The stubs themselves are insignificant electrically when the antenna is used on the hf bands. The physical placement of the small stubs does not in any way affect the mechanical strength of the antenna structure.

The only question about adjustment that may arise is the spacing to use between the first and second phasing stubs in order to allow for the capacitive reactance of the traps. Probably the easiest way to determine the correct length is to temporarily remove the section of the antenna above the top trap. Then using a field strength meter placed at a height equal to about the middle of the antenna and as far away as possible, the antenna is excited and various lengths of top section tried for maximum field strength indication. The regular top section is then replaced and the bottom of the second phasing stub placed a distance above the top trap equal to length just found necessary to peak the field strength reading. The last ½λ section above the top phasing stub is determined by direct measurement. In case the dimensions of a trap antenna are such that a stub would fall between traps, the same procedure as just described using a field strength meter should be followed to peak any ½λ section which contains a trap.

Summary

Most trap verticals can be modified at minimum expense into very effective 2 meter antennas by the method described. The performance will easily equal or exceed that which would be affected by placing a ground plane antenna at a height equal to the top of the trap antenna. The swr will remain reasonably low over most of the 2 meter band but can be dipped in any desired portion of the band by adjusting the length of the matching stub on the base of the antenna.

...W2EEY
RESURRECTING A GRANDDADDY

Part One: Granddaddy

A page in an old notebook, with a couple of circuits and the words “Crystadin” and “Losev,” brought a few memories and forced me to plug in a soldering iron and run a few experiments.

Time—middle 1920’s; Place—Moscow, Russia; Time of the day—just after midnight; Picture—15 year old ham (later K6BIJ), sleepy, but determined, trying to adjust two catwhiskers on two crystals at the same time, while listening to weird sounds emanating from two earphones.

This was “Crystadin,” a circuit introduced by a Russian ham Losev, a “temporary” invention — something to get by until the industry (in ruins after the WWI and the Civil War) started to produce tubes. Somehow the circuit was able to produce regeneration, and also worked as an rf amplifier, using “Zincite” crystals and steel wire catwhiskers. Looks like it was one of the granddaddies of some semiconductor devices “invented” later.

I will not attempt to explain the theory of the Crystadin — I do not know how it works, but it looks like a mixture of regeneration and parametric amplification. The semiconductor junction, dc bias, and the pump frequency are all there.

Crystadin was used for reception of European BC stations; there was only one Russian BC station (in Moscow) at the time, and we hams had to wait till midnight for it to quit, before we could start fishing for DX. Very little was known at the time about short waves; there were no ham transmitters (no tubes), and a “ham” was just a guy that built his own crystal receivers, spent a lot of his spare time on the roof, and was generally responsible for the absence of what you place on the hook in a telephone booth.

Fig. 1. RF amplifier.

Fig. 2. Receiver.
The poor granddaddy died at the age of three, killed by a "micro tube" (micro referring to a low filament current of 60 mA) that appeared on the market in the late 1920's. The death was very premature.

Passing (too briefly) through the regenerative circuits3 – the tubes made possible a monstrosity called "superhet," the Supreme Ruler of the receiver world, still being worshipped by the hams and engineers alike. Like anything else, being worshipped, it did not improve any since its invention (only the components did), and is still a contraption to bury weak signals in the noise and hiss generated by it.

2. Zincite–ZnO, a zinc ore (mineral), melted and cooled to produce a lump covered with red crystals.

Part Two: Resurrection

The circuit shown in Fig. 3 can be visualized as a superhet with local oscillator removed from the receiving frequency only just enough to produce an i-f that is, at the same time, your audio (this is true also in case of a regen, only there the oscillator and detector functions are performed by the same tube or a transistor). Let us compare a block diagram of Fig. 3 with that of a conventional six meter superhet. We can see that to produce the same gain, the audio section of the Fig. 3 must have as much gain as the two mixers, two i-f’s, and the audio of the superhet combined. This means quite an audio amplifier, but it also means quite less noise generated in the receiver because mixers are notorious noise generators and because transistors are much less noisy at lower frequencies than at high.

You probably saw in some manual that a certain transistor has a noise figure (nf) of let us say "4" at 200 MHz, but only "2" at 100 MHz, etc. In the audio range the nf is of course still lower. This, coupled with a complete absence of images, birdies, and all the other byproducts manufactured within any self-respecting superhet, explains the low internal noise of the Fig. 3 circuit.

Certain deficiencies of the K6BIJ engineering department, coupled with a complete inability to penetrate the semiconductor jungle existing in this country, and viewed through a large hole in the pocketbook – resulted in working, but far from perfect, audio amplifier. It consists of Fig. 1, \textit{WIDTY}'s article, March, 1967, in \textit{73}, followed by Fig. 14 (operated at 6 volts and

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{Schematic.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4.png}
\caption{Block diagram of receivers.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig5.png}
\caption{Block diagram of a 6 meter superhet.}
\end{figure}
with the filter centered around 800 cycles), and followed by an existing amplifier designed for crystal microphone input and one watt output. Transistors were PNP units marked 033, and taken from IBM surplus boards (disregarding the “0” — if the number is less than 50 it is PNP, if over 50 it is NPN). Failure to produce a quiet audio amplifier naturally will defeat the purpose of the project; in this case I suggest that you temporarily retain the rf amplifier — it will be a step backward, but a much simpler audio unit will do.

Normally regenerative receivers are stable, selective and sensitive, but you can wreck all this if you overcouple them to the antenna or try to get more “gain” by using higher voltage and current through the regenerating tube or transistor. The “gain” should be in the audio amplifier. The ARC-5 receivers, that are supposed to be “as broad as a barn door,” are broad only because they have practically no audio, and hams are trying to compensate for this by cranking up the rf i-f gain wide open. Result — the “barn door.” I added two stages of audio (also transistor bfo) and am using it on 80 meters SSB and CW without any “barn door” effects.

Now comes CR-1; I connected twelve diodes of all kinds to a twelve position switch, and just tested them in the circuit. Some of the diodes were transistor base-emitter junctions. Those that did not work were replaced by other “unknowns,” and so on. As a result it was found that 1N21 always performed fairly well, but some of the glass encapsulated catwhiskers from the IBM surplus boards outperformed the 1N21 quite a bit. Using an ohmmeter to choose the diodes resulted in a failure; my best diode has 30% reverse leakage, and the second best has practically none.

What takes place at the junction in CR-1? I do not know, but whatever it is, it makes possible a darn good receiver for really weak signals. Whether it is a regen, parametric amp, or a superhet with low internal noise, it works. And if someone will tell me that the three circuits are just variations of one and the same principle, I will not be surprised.

Further improvement can be made by using a vxo instead of a vfo (Fig. 49, page 21-A, 73, March, 1967; a search for a better diode should bring some results, and, of course, there is no limit in improving the audio system.

Variable condensers must be of the split-stator, insulated-rotor type, otherwise the noise produced by the rubbing contacts will split your eardrums. The meter shown in the circuit is useful only as an indicator of oscillations in your oscillator circuit, and also for tracking (just tune the trimmer condensers and adjust the coils for maximum reading on the meter). Minimum voltage should be used on the oscillator just enough to start it.

The circuit outperformed on six meters a usual converter (rf FET 2N3819—mixer 2N3819—crystal oscillator—RCA SK 3006) followed by an average receiver; it had less internal noise; therefore, weak signals were received much better. It worked best on SSB and CW; AM was somewhat difficult to tune unless the station was fairly strong.

K6BIJ

Photo of audio amplifier inside the chassis. The nicad battery pack at the rear of the unit supplies about 7.2V.
Henry Radio has a great antenna package program... big savings. Write for literature.

EASY FINANCING - 10% DOWN OR TRADE-IN DOWN - NO FINANCE CHARGE IF PAID IN 90 DAYS - GOOD RECONDITIONED EQUIPMENT

Nearly all makes and models. Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 90 days for full credit toward the purchase of NEW equipment. Write for bulletin. Export inquiries invited.

TED HENRY (W6UOU) BOB HENRY (W0ARA) WALT HENRY (W6ZN)

"World's Largest Distributor of Amateur Radio Equipment"
"Your frequency is 3637.490 kHz, OM. Would you please move 10 Hz higher to get on the teletype auto-start frequency?"

You'll never hear this on the ham bands? Wait 'till you contact me!

Ever dream of building a receiver/transmitter, or maybe an rf signal generator that would give a digital readout of frequency to the nearest hertz? Well, just you read this article about the digital indicators, and put a little tin on your dream rig.

In building such a project as this, there are 4 main considerations that must be kept in mind:

1) Usages, actual and possible.
2) Reliability (bulb burnout, etc.).
3) Component availability (readout indicators, transistors, integrated circuits, resistors).
4) How complex; number of parts, amount of wiring (transistors vs integrated circuits).

Having come this far, I now wish to show you the different ways you can get a 0-9 number, then discuss various driver circuits to light up your chosen indicator.

Numbered Light Bulbs

The simplest of all digital displays would be those of either Fig. 1a or 1b. Fig. 1a is merely a piece of clear plastic painted black on the front except where the number is. Lamps are placed behind each number, and shielded from showing through to the adjacent number.

Fig. 1b shows a similar method, only the light bulbs were encapsulated in plastic and little plastic letters were glued over the top of the appropriate bulb. Other arrangements, such as bulbs in a circle, etc., are also a possibility in this general type.

Advantages: Low cost—only the ten bulbs and a little plastic need be bought. Simplicity.

Disadvantages: Relatively short bulb life; small image, necessitating close reading; Out of line reading of long numbers, making the reading slower.

Light Bar Matrix

Fig. 1c shows a system used by the Simpson III digital voltmeter and others, which presents several advantages while adding a few disadvantages too.

Seven lights are placed so as to form 10 distinct numbers by lighting up various combinations of light bars. To get a "1", bar
C & F are lit; "2" has bar A, C, D, E, & G lit to give 2; "3" has bar A, C, D, E, F, & G lit to give 3; "4" has bar B, C, D, F, & G lit to give 4; "5" has bar A, B, D, F, & G lit to give 5; "6" has bar A, B, D, E, F, & G lit to give 6; "7" has bar A, C, & F lit to give 7; "8" has all bars lit; "9" has all bars lit except E to give 9; "0" has all bars lit except D to give 0.

These lights may take a number of forms. They may be a piece of plastic backlit to give a bar on the front. Another possibility is to use long lamps similar to those used in car dome lamps, only with low amperage. Even NE-2 neon bulbs may be used, along with high voltage switching transistors.

Advantages: Larger Number
Brighter number
Inline reading of long numbers
Cheaply made in comparison with commercially available readouts.

Disadvantages: Proper lamps difficult to find.
More difficult assembly as compared to simple numbered lights.
Brightness varies according to number of bulbs lit.
More current is drawn due to a number of lamps being lit.
Electronic driver circuit is more complex, though not much more expensive.

Edge Lighted

Some manufacturers have produced digital readouts which consist of 10 concentrically placed pieces of plastic, each with a number placed on it which is edge lighted to show the desired number. An example of this type is the readout sold by Radio Shack Corp. for $9.95.

Advantages: Very compact
Well formed number
Inline reading of long numbers.

Disadvantages: Dimmest of all displays.
Small angle of viewability.

Projected Image

This system consists of 12 light bulbs, 0-9 and + and -, which are projected on the back of a ground glass screen. Various bulbs may be used to achieve different levels of illumination. A #44 bulb will give the most brilliant display, but it requires a rather high current from the switching transistor, 250 mA. On the other hand, an 1819 bulb @ 40 mA is rather easy on the transistor, but is quite dim, having a relative character brightness of 15 as opposed to 145 for the #44 bulb.

By reducing the voltage 10%, bulb life of 3000 and 1000 hours, respectively, will be increased 5 times, for 15,000 hours for the #44. Relative brightness will be cut in about half. The popular #47 at 150 mA will perform at about ½ the brilliance of the #44.

Cost of these units varies considerably.
New ones run in the neighborhood of $30.
Fig. 2. Digital decoder #1. Reset to 0 by momentarily placing +3.6 v on reset line. All resistors of a similar function are the same value.

Each. However, various surplus stores do have them at prices from $6 to $10, the former being about the most that I would pay. At that price, a bank of 5, as I myself use, makes a very attractive display unit for $30.

Advantages:
- Nice looking image
- Ease of mounting
- Simple and cheaper driver circuits
- Low cost (if surplus)
- Inline reading of long numbers

Disadvantages:
- Bulb burnout
- Bulky

Nixie Tubes
These readouts are a gas filled, cold cathode type tube. They are somewhat similar in basic idea to a vr tube or a neon tube, only they display a given number depending on which of a number of cathodes is hooked up to negative voltage. When this happens, the gas around this element ionizes and glows. Prices on these devices vary according to size and construction. Units of interest to amateurs run from $8 to $30 in price, the $8 one looking like a miniature tube, giving numbers .6” high. These units require special sockets running about $1 apiece. I have seen Nixie tubes on the surplus market as low as $3 apiece. For information, write to: Burroughs Corp., Electronics Components Division, Plainfield NJ 07061.

Advantages:
- Very long life (200,000 hours)
- Bright and easy to read
- Compact
- Wide angle of viewability
- Simple driver circuit
- Different sizes available

Disadvantages:
- Require power supply of about 200V
- Special circuit needed for dimming
 (I don’t like their red colored number.)

Pixie Tubes
These are units similar to the Nixie, but instead of seeing a relatively large number lit up, a small number is visible through a perforated plate above the lit-up cathode. The advantage of these units over the more common Nixie lies in the fact that they are much cheaper, costing only $5 new, and much less surplus. The main disadvantage is that the number images are so small, about 3/16”， that it is very difficult to read them at a distance greater than 6 feet. Besides this,
Top view of digital decoder #2. At the top are the IC and 2 transistor gates. In the middle are the other gates. At the bottom are the drivers.

Top view of digital decoder #1. At the top are the 5 flip-flops. The 2nd row has the 900 driver at the left, and the other 5 IC's are the 914's. The other transistors are the drivers. At the left is a digital display which consists of 10—#49 light bulbs encapsulated in plastic.

Bottom view of digital decoder #2.

Bottom view of #5.

Disadvantages: Hv supply of 1-3 kV required, plus 1.1V filament supply
Smaller image and slightly higher cost than the Nixie.

Digital Drivers

So that you can arrive at the desired digital signal to your selected type of readout, you have 3 items to consider now.

First, you must have a set of flip-flops which will have 10 different states, and then start over. There are a number of different ways to hook up 4-6 flip-flops and additional gating transistors to achieve this. In this article, I have selected 2 ways as being the simplest to work with.

Secondly, you must select the outputs of the flip-flops and steer the proper voltage to the driver stage, which comprises the third part of the whole digital decoder.
Digital Decoder #1

This decoder needs 31-41 parts: 5 – JK flip-flops (Fairchild 923 IC); 1 – Driver/Buffer (Fairchild 900 IC); 5 – Dual 2 input gates (Fairchild 914 IC); 10 – 1K-1.5K ½ watt resistors; 10 – 10K-30K ½ watt resistors (only if Nixie/Pixies used); 10 – Driver xtrs (Surplus NPN, or, if Nixie/Pixie used, hv xstr as Fairchild 2N3568)

Cost: $20 if you use Nixie/Pixies and buy the resistors; $12 is you use lamps and have the resistors.

Wiring time: about 6 hours from start to finish.

To build this circuit, a great deal of care is necessary to avoid errors. The way that I wire them is to put all of the ICs in the order shown in the diagram, then wiring the common pins, 4, 8, and 6 of the 923’s. Next, wire the common pins of the driver and gating transistors and ICs. After this, put in the resistors and complete the wiring except the wiring of the 914 decoding gates which is the last to be wired and the most prone to error.

As you can see in the parts list, there are a few different ways to build this decoder. If you plan on using the Nixie/Pixie type of indicator, then you will need to use such transistors as the Fairchild 2N3568 or others with a 60V or more collector-to-emitter voltage rating. The 60V line and 10 resistors to the driver transistors is only necessary when Nixie/Pixies are used also. Fig. 3a shows how to hook up lamps to the decoder, and 3b shows how to hook up Nixie/Pixies.

Digital Decoder #2

This is the unit which I use in my present digital counter. It has only 4 ICs, so cuts down on the cost of the unit, but uses 22 NPN computer transistors, which, while cutting down on the cost, adds to the complexity.

Parts used are as follows: 4 – JK flip-flops (Fairchild 923 IC); 22 – NPN switching transistors (Surplus computer); 2 – 2.7K ½ watt resistors; 5 – 470-680Ω ½ watt resistors; 10 – 4.7K-6.8K ½ watt resistors; 10 – 1K-2K ½ watt resistors.

Cost: Well under $10.

Wiring time: About 6 hours.

As you can see, there is a definite cost advantage to decoder #2, if you can come by the transistors and resistors cheaply. I find the wiring of decoder #2 easier, due to less wires in the decoder, which is the most confusing part. Should you desire to use decoder #2 with Nixie/Pixie readouts, then change the driver transistors to hv types, and add a 10-30 kΩ resistor to each driver’s
Fig. 4. Digital decoder #2. All resistors of a similar function are the same value. To reset to 0, place +3.6 v on reset line momentarily.

collector from a +60V source, as in decoder #1. Please note on the decoder #2 diagram, Fig. 4, that the outputs are not in numerical order. This is due to the fact that the ICs are in a biquinary count configuration, which means that they count to 5 twice to reach 10, then start over.

Digital Decoder #3

This particular unit is made up of either of the two preceding decoders plus a diode matrix to drive the 7 light bars. As it is rather involved, I am not including it here, but those interested may obtain the schematic by sending me a SASE. The cost will approach $15 to $25, depending on parts availability, and the construction time will be about 10 or more hours.

Count Checker

A simple count checker which can be used to see that everything is counting correctly is shown in Fig. 5. Before you hook up the counter to read a multidigit number, make sure you have each digit counting correctly!

Improved Input Sensitivity

Fig. 6 shows the addition of an emitter follower to my original input circuit; this considerably improves the low frequency performance.

Digital Frequency Divider

As many have mentioned to me regarding the binary counter, it would be a shame to depend on the 60 Hz line frequency for a timing standard for such an accurate instrument as a digital counter. Therefore, I am now using a 100 kHz crystal as the standard. Fig. 7 shows that I am using one of Jim Fisk’s little crystal circuits into a 914 monostable pulse shaper. This in turn drives 24
923 flip-flops hooked up as 6 "divide by 10" frequency dividers. This results in a "divide by one million," giving me a final output frequency of one hertz in ten seconds. Using this to trigger the count controller and gate, I take a count of all pulses in 10 seconds, thereby giving me an accuracy to one tenth of a hertz. The decimal point is inserted as hertz. The decimal point is inserted as shown in the picture. Various other frequencies are tapped off the divide by one million set of flip-flops to achieve other values of counts. This is described in my previous article.

Bibliography

For those people who are interested in the theory behind digital readouts and decoders, I would like to recommend the following free literature.

Nixie/Pixie tubes: Bulletin 1104A
Bulletin 1095
#616E (General Catalog & Applications.

High Vacuum/Projected Image readouts: Request information from:
Industrial Electronic Engineers, Inc., 7720 Lemona Ave., Van Nuys CA 91405.

Fairchild IC’s: Applications brief 36 on 9960 series
Circuit Notes RTL 1 through 5. App-120/2, App-118/2 & SL-218

Write: Fairchild Semiconductor, 313 Fairchild Dr., Mountain View CA.

Fairchild parts and information: Request “Designing with Integrated Circuit Components”

Write: Hyer Electronics Co., Denver Technological Center, PO Box 22227, Denver CO 80222.

General digital information:
IF YOU'VE EVER USED A REPEATER,

If you haven't already received a copy of our NEW 1971 Catalog of Precision Quartz Crystals & Electronics for the Communications Industry,

SEND FOR YOUR COPY TODAY!

Somewhere along the line, in virtually every ham repeater in the world, you'll find a couple of Sentry crystals.

Repeater owners and FM "old-timers" don't take chances with frequency—they can't afford to. A lot of repeater users depend on a receiver to be on frequency, rock stable...in the dead of winter or the middle of July. The repeater crowd took a tip from the commercial "pros" a long time ago—and went the Sentry Route.

That's one of the reasons you can depend on your local repeater to be there (precisely there) when you're ready to use it. FM'ers use the repeater output as a frequency standard. And for accuracy, crystals by Sentry are THE standard.

IF YOU WANT THE BEST, SPECIFY SENTRY CRYSTALS.

"Ask the Hams and Pros Who Build Repeaters!"

SENTRY MANUFACTURING COMPANY
Crystal Park, Chickasha, Oklahoma 73018

PHONE: (405) 224-6780
TWX-910-830-6425
Now The Best Is Even Better!

- More power capability with lower VSWR
- Higher Q plus broad band performance
- Higher radiation effectiveness
- Lightweight, super strength construction
- Shake-proof sleeve lock folds over for garaging
- Lightweight precision wound coils sealed in an indestructible epoxy-fiberglass sleeve
- Swivel base for quick change from band to band
- Nominal 52 ohm impedance on all bands—no special matching (any length coax will work)
- Coil sleeve is distinctive white with heavy chrome plated brass fittings
- Turn-over mast is hefty ¾" dia. heavy wall tubing of highly polished heat-treated brite dipped aluminum
- All connections are standard ¾ x 24 thread
- Mast folds over, swivels, turns over—mount it on bumper or deck
- Swivel lock base is stainless steel
- Coil and tip rods are a one-piece assembly. Coil diameters are constant, only lengths change

Order No. 257 All new design 5' long heavy duty mast of high strength heavy wall tubing

<table>
<thead>
<tr>
<th>Mast Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 meters</td>
<td>$16.95</td>
</tr>
<tr>
<td>40 meters</td>
<td>$19.95</td>
</tr>
<tr>
<td>20 meters</td>
<td>$17.95</td>
</tr>
<tr>
<td>15 meters</td>
<td>$15.95</td>
</tr>
<tr>
<td>10 meters</td>
<td>$12.95</td>
</tr>
</tbody>
</table>

Hy-Gain Heavy Duty Bumper Mount

- Rugged stainless steel construction
- Handles full size heavy whip
- Clamps to most car bumpers

Order No. 415

$8.95

HY-GAIN ELECTRONICS CORPORATION
P.O. Box 5407-GC, Lincoln, Nebraska 68505
NOW... A GREAT NEW WIDE BAND VERTICAL for 80 through 10 Meters

HY-GAIN’S 18AVT/WB

Take the wide band, omni-directional performance of Hy-Gain’s famous 14AVQ / WB, add 80 meter capability plus extra-heavy duty construction—and you have the unrivalled new 18AVT/WB. In other words, you have quite an antenna.

- Automatic switching, five band capability is accomplished through the use of three beefed-up Hy-Q traps (featuring large diameter coils that develop an exceptionally favorable L/C ratio).
- Top loading coil.
- Across-the-band performance with just one furnished setting for each band (10 through 40).
- True 1/4 wave resonance on all bands.
- SWR of 2:1 or less at band edges.
- Radiation pattern has an outstandingly low angle whether roof top or ground mounted.

CONSTRUCTION...of extra-heavy duty tapered swaged seamless aluminum tubing with full circumference, corrosion resistant compression clamps at slotted tubing joints...is so rugged and rigid that, although the antenna is 25' in height, it can be mounted without guy wires, using a 12” double grip mast bracket, with recessed coax connector.

ORDER NO. 386
$59.95 SUGGESTED RETAIL PRICE

Take a look at that price...then see the best distributor under the sun ...the one who handles all Hy-Gain products.

HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-GC Lincoln, Nebraska 68505
Mobile 2 Meter FM Transceiver

Here is what the 2 meter, FM Ham World has been asking for.

Specifications: 90 day warranty

RECEIVER
The HR-2 receiver is a double conversion, superhetrodyne with highly selective ceramic filter.

- Frequency Range: 144-148 MHz
- Sensitivity: 0.35 µV (nom.) 20 DB Quieting
- Selectivity: 6 DB Down ± 16 KC
- 50 DB Down ± 32 KC
- Audio Output: (3-4 Ω Speaker) 3 Watts 10% Distortion 5 Watts Maximum
- Channels: 6 Crystal controlled with provision for adding an additional 6 channels
- I.F. Frequencies: 10.7 MHz & 455KHz

TRANSMITTER
The HR-2 transmitter uses phase modulation for the ultimate in carrier stability. Built in SWR load mismatch circuitry provides protection against open and shorted antenna conditions.

- Frequency Range: 144-148 MHz
- Power Output: 10 Watts (min.) @ 13.6 VDC
- Modulation: Phase Modulation with automatic deviation limiting
- Deviation: Automatic Limiting with internal adjustments from 0-15KC deviation
- Microphone: Plug-in, hand held, high Z Ceramic supplied
- Channels: 6 Crystal controlled with individual trimmer capacitors for Frequency netting

GENERAL

- Power Requirements: 13.6 Volts (nominal)
- Receive (Squelched): 180 MA.
- Receive (Max. audio output): 800 MA.
- Transmit: 2.5 Amps (max.)

STANDARD EQUIPMENT

- Built-in 4" Speaker
- Mobile Mounting Bracket
- SO-239 Antenna Connector Socket
- T & R Crystals for 146.94 MHz
- PTT Ceramic Mike

only $229.00 Amateur Net

AMERICAN MADE

ELECTRONICS, INC.
7900 Pendleton Pike, Indianapolis, Indiana 46226
General: All switching from front panel • For any 20 meter exciter or TR-6 Transceiver • Oscillator injection from Drake SC-2 or SC-6 receiving converter • Transmit AGC • Plate current and relative output meters • Built-in antenna relay • 5½"H x 7½"W x 11¾"D, weight 9 lbs.

TC-2 Full 2-Meter band • 180 Watts $300.00
TC-6 Full 6-Meter band • 300 Watts $250.00

Most hams are vaguely familiar with the two- and three-letter prefixes used on military electronic equipment. The JAN (Joint Army-Navy) designations have been expanded upon and superseded by the Joint Electronics Type Designation System (JETDS). JETDS designations apply to all Air Force, Army, Marine, and Navy electrical/electronic equipment.

The following tables provide information which permits quick classification of any military electronic item which bears the customary letter identification. Table I shows the three-letter classifications used with the complete systems, sets, and groups. Table II shows one and two-letter classifications used with units and components which are basically parts of the systems, sets, and groups detailed in Table I.

The information shown in Tables I and II is primarily extracted from MIL-STD-196B (Joint Electronics Type Designation System), dated 7 April 1965.
<table>
<thead>
<tr>
<th>First Letter (Installation)</th>
<th>Second Letter (Equipment Type)</th>
<th>Third Letter (Equipment Purpose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Invisible Light, or Heat Radiation</td>
<td>A Auxiliary Assembly (Not Complete Operable Sets)</td>
</tr>
<tr>
<td>B</td>
<td>Pigeon (Obsolete)</td>
<td>B Bombing</td>
</tr>
<tr>
<td>C</td>
<td>Carrier</td>
<td>C Communications (Receiving and Transmitting)</td>
</tr>
<tr>
<td>D</td>
<td>Radiac</td>
<td>D Direction Finder, Reconnaissance and/or Surveillance</td>
</tr>
<tr>
<td>E</td>
<td>Nupac</td>
<td>E Ejection and/or Release</td>
</tr>
<tr>
<td>F</td>
<td>Photographic (Canadian only)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Telescope or Teletype</td>
<td>G Fire Control or Searchlight Direction</td>
</tr>
<tr>
<td>H</td>
<td>Interphone or Public Address</td>
<td>H Recording and/or Reproducing (Graphic, Meteorological, or Sound)</td>
</tr>
<tr>
<td>J</td>
<td>Electromechanical or Inertial-Wire Covered</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Telemetering</td>
<td>K Computing</td>
</tr>
<tr>
<td>L</td>
<td>Telemetering</td>
<td>L Searchlight Control (Obsolete - use H)</td>
</tr>
<tr>
<td>M</td>
<td>Sound in Air</td>
<td>M Maintenance and/or Test Assemblies, including tools</td>
</tr>
<tr>
<td>P</td>
<td>Radar</td>
<td>N Navigation - including Altimeter, Beacon, Compass, Depth Sounder, Landing & Approach, and Radar</td>
</tr>
<tr>
<td>Q</td>
<td>Underwater Sound and Sonar</td>
<td>P Reproducing (Obsolete - Use H)</td>
</tr>
<tr>
<td>R</td>
<td>Radio</td>
<td>Q Special or Combination of Purposes</td>
</tr>
<tr>
<td>S</td>
<td>Special Types, such as Magnetic or Combination of Types</td>
<td>R Receiving-Passive Detection</td>
</tr>
<tr>
<td>T</td>
<td>Telephone (Wire)</td>
<td>S Active Detection and/or Range and Bearing</td>
</tr>
<tr>
<td>U</td>
<td>Ground-Transportable</td>
<td>T Transmitting</td>
</tr>
<tr>
<td>V</td>
<td>General Utility</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Visual and Visible Light</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armament, Not Otherwise Covered</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Facsimile or Television</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Data Processing</td>
<td></td>
</tr>
</tbody>
</table>

As an example, the AN/APS-80A(V) is (first letter A) installed in a piloted aircraft, (second letter P) is a Radar type equipment, (third letter S) is used for search purposes, is Model number 80, is modification A, and consists of a variable grouping. Model numbers and modification letters are used in sequence. The T, V, X, Y, and Z suffixes respectively indicate Training, Variable Grouping, Voltage Change, Phase Change, and Frequency Change in the basic equipment.

The two-letter unit/component identification is commonly identified to the system/set it is designed for by suffixing a slant bar and the identification of the system or set. As an example, the AM-3474/APS-80A(V) is a synchro signal amplifier designed as part of the APS-80A(V) airborne search radar system.
CA	Sonar Comruminator Assembly	All types	OX*	Coder, Decoder, Interrogator, or Transponder Group	All types and composites
CB	Capacitor Bank	Power Supply, etc.	OY*	Radar Set Group	Where applicable, use a more definitive indicator such as OE, OH, OT, etc.
CG	RF Cable Assembly	RF cable, waveguide, transmission line, etc., with connectors	OZ*	Radio Set Group	Where applicable, use a more definitive indicator such as OE, OH, OT, etc.
CH	DrawervDoor Chassis	Framework which contains (but does not include) plug-in modules. Circuitry and/or receptacles may be included.	PF	Prime Driver	Diesel locomotive, diesel engine, synthro, etc.
CK	Crystal Kit	Kit of crystals with holders	PG	Pigeon Article (Obsolescent)	Cable hanger, timepiece, protector, etc.
CM	Comparator	Computes two or more signals	PH	Photographic Article	Camera, projector, sensitometer, etc.
CN	Compensator	Electrical and/or mechanical compensation, regulation, or attenuation	PL	Plugin Module	Where applicable, use a more definitive indicator such as AM, PM, etc.
CP	Computer	Electronic or mechanical mathematical computing equipment	PP	Power Supply	Non-rotating pack rectifier, thermoelectric, etc.
CR	Crystal	Crystal in a crystal holder	PT	Plating Equipment	Rotating power equipment other than dynamotor or motor generator
CU	Coupler	Impedance matching device, directional coupler, etc.	PR	Recorder	All types except telephone
CV	Converter	Electronic device which changes phase, amplitude, or frequency or changes from one medium to another	RC	Recorder	Disc, facsimile, film, graphic, magnetic, mechanical, sound, tape, wire, etc.
CY	Case or cabinet	Right or semi-rigid structure for enclosing or carrying equipment	RE	Relay Assembly	Composite component of an RF circuit.
D	Dispenser	Bombard, chill, fans, leaflet, napkin, etc.	RF	RF Frequency Component	Where applicable, use a more definitive indicator.
DA	Electrical Dummy Load	RF or non-RF test load	RG	RF Bulk Cable	RF, cable, transmission line, waveguide, etc., without terminals
DD	Detecting Head	Hydrophone, magnetic pickup, search coil, etc. (see RF)	RH	Roller	Mechanisms for dispensing and rewinding antenna wire, field wire, recording wire, recording tape, etc.
DY	Dynamotor	Power supply	RL	Reeler	Disc, facsimile, film, graphic, magnetic, mechanical, sound, tape, wire, etc.
E	Hole	Sonar hole assembly, etc.	RO	Recorder	Disc, facsimile, film, graphic, magnetic, mechanical, sound, tape, wire, etc.
F	Filter	Bandpass, noise, telephone, wavestr, etc.	RP	Reproducer	Disc, facsimile, film, graphic, magnetic, mechanical, sound, tape, wire, etc.
FN	Furniture	Chair, desk, table, etc.	RS	Reflector	Center, etc., but not antenna reflector (See AS)
FR	Frequency Measuring Device	Frequency meter, tuned cavity, etc.	RT	Receiver-Transmitter	Composite radio/remote receiver and transmitter
G	Generator	Electrical power generator without prime mover (See PD and PU)	RU	Receiver-Transmitter	Impact, manual, motor-driven, pressure, etc.
GA	Ground Rod	Ground rod, stake, etc.	RB	Receiver	Fire control, panel, power, telephone, etc.
H	Handset, Headset, or Gristset	Includes earphone	SG	Signal Generator	Noise generator, test oscillator, etc. (See OI)
HC	Crystal Holder	Crystal holder, less the crystal	SA	Switching Device	Aircraft, flight, signal, target, etc.
HD	Environmental Control	Cooling, dust-trapping, heating, pressure, vacuum, etc.	SN	SNDR	Circuit to coordinate two or more functions
ID	Non-CRT Type	Calibrated dial, calibrated meter, indicating light, etc.	SS	Switchboard	Transformer, test, etc. (See AS)
IL	Insulator	Feedthrough, standoff, strain, etc.	SM	Simulator	Aircraft, flight, signal, target, etc.
IM	Intermediate Measuring Device	Field intensity meter, noise meter, slotted line, SWR gear, etc.	SN	SYMBOL	See G, L for designation
IP	CRT-Type	Achromatic, elevation, pan/tilte, etc.	ST	Strip	Data transmission, line, waveguide, etc., without terminals
J	Indicator	Jack box, jack box, terminal box, etc.	ST	Switching Device	Aircraft, flight, signal, target, etc.
KY	Keyer	Coiler, electrical keyer, electronic keyer, interrupter, mechanical keyer, etc.	SU	Switching Device	Aircraft, flight, signal, target, etc.
LC	Line Construction Tool	Cable plow, etc.	SU	Switching Device	Aircraft, flight, signal, target, etc.
LD	Loudspeaker	Enclosed loudspeaker, etc.	SV	Switching Device	Aircraft, flight, signal, target, etc.
MA	Magazine	Magnetic tape, magnetic wire, etc.	SW	Switch	See G, L for designation
MD	Modulator, Demodulator, or Discriminator	Device to very amplitude, frequency, or phase	SX	Switch	See G, L for designation
ME	Meter	Multimeter, power meter, VOM, VTM, etc.	SY	Switch	See G, L for designation
MF	Magnet or Magnetic Field Generator	Electromagnet, magnetic tape or wire eraser, permanent magnetic, etc.	T	Transmitting Device	Separate identification only when used as a test item.
MK	Microphone	Hand, radio, telephone, throat, etc.	T	Transmitter	Tilt and/or train assembly
ML	Miscellaneous Kit	Maintenance, modification, etc., except crystal (CX) and tool (TI) kits	TK	Tool Kit	Miscellaneous electrical and mechanical equipment
MN	Meteorological Device	Barometer, barograph, scale, thermometer, etc.	TL	Tool	Miscellaneous tool assemblies.
MT	Mounting	Frame, mount, rack, stand, etc.	TN	Tuning Unit	Miscellaneous tool assemblies.
MU	Memory Unit	All types	TR	Transducer	Miscellaneous tool assemblies.
MX	Miscellaneous Equipment	Otherwise unclassified equipment, including subassemblies. Use a definitive indicator instead of MX, if possible.	TS	Test Set	Test and measurement equipment not otherwise categorized
O	Oscillator	Blocking, master, multivibrator, etc.	TU	Test Unit	Miscellaneous electrical, tape, telephone and similar equipment
OA*	Miscellaneous Group	Otherwise unclassified group. Use a definitive indicator instead of OA, if possible.	TV	Tube Tester	All types
OB*	Multimeter and/or Damptomplex Group	All types and composites	TW	Tape and Recording Wire	Electrical tape, insulated tape, recording tape, splicing tape, recording wire, etc.
OC	Oceanographic Device	Bathythermograph, etc.	UX	U Audio or Power Amplifier	Adapter, plug, receptacle, socket, etc., union, etc.
OD*	Indicator Group	All types	UD	UG	Cable
OE*	Antenna Group	All types	V	Vehicle	Adapter, choke coupling, ribbon, flexible, flexible, cable, antenna, etc.
OG*	Amplifier Group	All types	VS	Visual Signalling Equipment	Flag set, serial panel, signal lamp, etc.
OH*	Simulator Group	All types	W	Wave Generator	Persistent, etc.
OM*	Console or Console Group	All types	WD	Two-Conductor Cable	Non-RF, cable and cable in bulk (See RG)
ON*	Control Group	All types	WF	Four-Conductor Cable	Non-RF, cable and cable in bulk (See RG)
OP*	Power Supply Group	All types	WM	Multiple-Conductor Cable	Non-RF, cable and cable in bulk (See RG)
OR*	Test Set Group	All types	WP	Three-Conductor Cable	Non-RF, cable and cable in bulk (See RG)
OT*	Recording Group	All types	ZM	Impedance Measurement	Matches C, L, Q, R, power factor, Device
OU*	Oscilloscope	Scopes for general test use			
OV*	Generator Group	All types except power-generation			
OW*	Terminal Group	Radio, telegraph, telephone, etc.			

Table II. One- and Two-Letter Unit/Component Classifications

- * Represents a collection of items which are part of (or used with) a system/sets or a series of systems.

The two-letter unit/component identification is commonly identified to the system if it is designed for by substituting the identification of the system or set, as an example, the AM-347A/APS-80-ADI (a) is a synchro signal amplifier designed as part of the APS-80ADI aircraft search radar system.

MARCH 1971
Many amateurs who are not fortunate enough to be wealthy will find this article of interest. Many of us desire higher power so as to cut through the QRM present on 20 meters but do not have the spare cash to purchase exotic tubes such as the 4-1000, 4-400, etc.

It has long been known that it is possible to parallel various tubes such as the 807 or 1625 and create an operable linear. This linear is merely a modern version of this paralleling circuit which works well and is simple and inexpensive to construct. In addition to this, the unit exhibits no instability.

With a well stocked junkbox, the average amateur should be able to construct this amplifier for under $20.

I concentrated the design of the linear shown in Fig. 1 about the 6JE6 tube, which is commonly used as the horizontal output tube of many of the present color television receivers on the market. The specifications of the 6JE6 from tube manuals do not show it as a powerhouse. When looking at the size of the plate on the 6JE6, it becomes apparent that it must be capable of a good amount of dissipation. Also, as a pentode, it would have the necessary isolation between cathode and plate that is required for unneutralized operation. We are grounding all the grids, so essentially the tubes are working as triodes for this application.

Six of the 6JE6s are paralleled in the final. All of the grids are grounded directly to the shell of the 9-pin socket. It is essential that these grids are grounded as close as possible to the shell or instability will result. Simply bend down the socket pins and solder them directly to the shell.

I attempted to operate the cathodes at ground potential; however, the resting current of the linear was in the neighborhood of 225 mA — which, of course, is excessive. The choke that isolated the cathodes from rf ground is wound on a half-inch piece of ceramic stock 4 in. long. Fill the entire length of this with 26 AWG enamel wire. It was necessary to bias the cathodes of these tubes to lower the resting current to 80 mA. This was done with the use of two 75Ω, 160W wirewound resistors in series with the cathode choke to ground.

![Fig. 1. Schematic diagram of the “horizontal-output” linear amplifier.](image-url)
The large resistors are only $2.50 each.

At this point, you may think that it would be easier to bias the grids. I tried this but instability resulted. Also, it is easier to solder in two large resistors than build an entire bias supply. In operation, these two resistors run very cold even at 500 mA instantaneous current.

It was necessary to use parasitic chokes in the plate lead of each of the tubes. These are constructed from 5 turns of 14 AWG copper wire (½ in. diameter coil) around a 92Ω, 1W resistor. With these chokes in the circuit, there is no trace of parasitics.

The plate rf choke is also homebrew. In fact, it is identical to the cathode rf choke. This is mounted at a central point in the group of tubes and is bypassed to the chassis with a 0.001 μF, 6 kV disk ceramic capacitor. The dc blocking capacitor (rf coupling) is merely a TV "doorknob" capacitor rated at 500 pF, 30 kV.

The final tank coil is constructed from 5 turns of ½ in. copper tubing, 2½ in. in diameter. This is resonated in a pi-network configuration with a 50 pF variable for resonance and a 300 pF broadcast variable for antenna loading. Make sure that the 2.5 mH choke going from the output lead to ground is in the circuit or a brilliant display of fireworks will occur in the test stages of this rig.

The power supply (Fig. 2) uses a 1 kV secondary, 500 mA power transformer. You probably could use two identical TV power transformers phased in parallel to achieve the necessary current capability. We were fortunate enough to have this transformer lying about from a military regulated supply. With 1 kV going into the diode rectifier bridge, the output voltage will fall at approximately 1.3 kV with 80 mA of resting current and will drop to 1 kV when the linear is drawing 500 mA. Of course this represents 500W dc input, or 1 kW sideband power.

The bridge consists of bargain silicon diodes which are rated at 600 PIV, 500 mA each. In each leg of the bridge, four of these diodes are in series and equalized, which gives each leg a 2.4 kV rating. Each diode is voltage equalized and protected from surge and transient spikes by paralleling 470 kΩ, 1 watt resistors and .001 μF, 600V disk ceramic capacitors about the diode. The high voltage is activated by grounding the negative side of the bridge with a toggle switch. Filtering is achieved through two 8 μF, 1.5 kV oil-filled capacitors and an 8H, 500 mA filter choke.

It may sound surprising but each of the 6JE6s draws 2.5A of filament current at 6.3V ac. When you consider that there are 6 of these, it takes 15A at 6.3V to keep these bottles heated. Make sure that the filament transformer is adequate to handle this current.

When tuning up the linear, apply drive to the input and resonate it as with any final. There should be no current drawn above 80 mA with no drive applied. Do not hold the linear at 500 mA for any length of time as it will overheat the finals. The linear is designed for CW or sideband operation where the average will be much lower than 500W dc. Of course the rf peak will be 1 kW in this mode.

I have been driving this linear with a DX-35 in CW mode and have had fine reports with a clean signal. This indicates that 50W drive will excite the linear nicely.

The simplicity and performance of the linear will make it well worth the time and effort of construction.

Fig. 2. Linear power supply.
watts up?

SR-2000 that's what. the Hallicrafters SR-2000 transceiver is packed with watts. 2000 watts. that's WATTS of power. you can buy it today.

FEATURES: < 1 KC readout • exclusive RIT (Receiver Incremental Tuning) • AALC Amplified Automatic Level Control • built-in Noise Blanker • 100 kHz crystal calibrator, VOX, PTT, Break-in CW • < 1 uv sensitivity for 20 db $: N/N • compact rugged cabinet • 2000 watts SSB, 1000 watts CW in a package only 7¾ x 16½ x 15 inches • P-2000 AC power supply including built-in speaker, final amplifier plate metering, 110/220 VAC • See WATTS UP at your local Hallicrafters distributor today.
One of the real thrills offered to the licensed amateur radio operator is the opportunity to work DX. That thrill is trebled when the DXing is done from some exotic out-of-the-way place. Unfortunately, most of us have neither the time nor the money to travel extensively crossing oceans to far-flung islands or dense jungles. We may never visit the other continents nor hope to ham from the moon. However, there is nothing to prevent any ham from sharing in the thrill of a DXpedition within reach of simple transportation, in short vacation periods, and best of all, within the range of the billfold.

The wife permitting, the rig usually accompanies the family on every summer vacation. Installing the antenna and rig is as important as setting up the tent and preparing the first meal. The working of DX is fairly simple if the equipment includes the low frequencies. If you have never taken 6 and 2 meter equipment as your only station on a DXpedition you have missed one of the most exciting and interesting pleasures in all of ham radio.

Because of the short distances normally covered by VHF rigs, a good antenna is recommended. On the other hand, the smaller dimensions make this an easier antenna to pack along with all the other gear. Having decided what is to go, it is well to talk over with the rest of the family where the vacation is to be spent. If you are fortunate enough to live near a large lake or on either coast, an island makes an ideal hideout for the family and for hamming.

Recently, we made such a decision; and since we lived in New England, we decided to visit the island of Matinicus, 25 miles off the coast of Rockland (Maine). The old Merc was laden with clothes, the Clegg Zeus, Interceptor, a borrowed 40 ft mast, miles of stranded aluminum guy wire and coax, a CDR rotor, all the tools I could pack, and a 1.25 kW alternator manufactured under the name of Zeus. We had written ahead to the skipper of the Mary A making reservations for the 7:45 a.m. departure on August 1.

On the ferry next morning, I heaved a real sigh of pleasure when I noted all our things safely loaded on deck. Paint cans, a
live chicken or two, and tons of fresh foods were stacked between piles of building materials, plumbing supplies, and the raw materials for lobster traps and floats. When the morning sun came out through the fog, an island appeared on our starboard. Up to then we had been aware of an occasional bit of something floating in the grayish water, but with the clearing fog, we could make out literally hundreds of multi-colored lobster floats bobbing in the cold blue water of the Atlantic.

What before we had only heard as a chug, chug, chug now turned out to be the lobstermen's boats as they visited their traps. We were to learn more of these men and their adventures later in our stay on the island. I was told that each lobsterman makes and paints his own floats and unerringly travels to each one marking a lobster trap baited and lying on the sea bottom. For the life of me, I could never tell how he knew where each was placed as he looked for the trap in the fog. I was told they never lose one except to a storm.

By this time we had become accustomed to the fascinating accent of the other passengers. They were mostly natives of Maine who lived on Matinicus or who were visiting their families and friends on the island. Our skipper was apparently too busy avoiding the rocks which began to appear more numerous as we neared our destination. The island is approximately three miles long and about a mile across. The skipper brought us deftly through the maze of other boats in the harbor, and at last – three hours from the time of our departure – we arrived at the dock. I immediately learned that if I was to have assistance in getting my freight off the ferry, I would have to pitch in and help unload the boat. After the restful trip and the invigorating air clear of all man-made impurities, I was ready to work and joined in the line relaying the cargo from hand to hand until all was now dockside.

Our letter affirming our desire to rent a small cottage, the only one then being offered to let, had brought an accommodating fellow, Mr. Bunker, down to the dock with a pickup truck. He helped me load our gear, and with the family riding in front with him, I hopped into the back and bumped along over the dirt roads taking in the view of land and sea.

One of the things we learned about vacationing on a small island in New England is the importance of buying all necessary provisions for the larder at the local store. We had heard of those who came up from New Jersey and Long Island in the summer time bringing cases and boxes of canned goods with them. This not only alienated the local people whose economy depends on the local store, but was also costly as by the time the food was carried on the ferry the price of it was higher than at the local store. Also, the local people were unhappy to the point of refusing transportation to the outlying camp. All our goods were hauled free by our landlord, Mr. Bunker, and he took us back to town so that we could do our grocery shopping, and later delivered it for us.

We were now safely established in our vacation cottage on the shore of a small cove with a northeast exposure allowing us to see nearby Birdrock better known as Gull Rock, Cannonball Island, and Ragged Island. We had a late lunch, had the freezer section of the refrigerator (which ran on bottled gas) well stocked, the ham gear set up in one corner of the front room near the fireplace, when Mr. Bunker drove up with a five-gallon can of gasoline and two quarts of motor oil for the alternator. We were all set to begin our DXpedition except for installing the antennas.

News travels fast in New England, and it travels even faster on Matinicus. I was wondering how one man, one woman, and a lad of fourteen would get the 40 ft telescoping mast erected, guyed, and sporting two beams without accident. Ed, the junior op, mentioned that there was a man coming along the shore and into our cove. In that delightfully informal way that the people of Maine have, he introduced himself and then said, "I hear you have some radio equipment with you."

Not being short of words myself, I quickly introduced him to the family and then the ham gear. He was Charlie Pratt, the local telephone man on Matinicus. He
Our value engineering and advanced methods of production are not restricted to our manufacturing efforts alone. One of the bases for our success has been our ability to market products equal or superior to other makes, at a lesser cost to the amateur.

The introduction of foreign made products, sold on a direct basis, has offered an interesting new challenge to our marketing department, and we believe they have developed the ideal solution.

Introducing Swan’s new SALES PROGRAM
You can now buy any Swan equipment direct from our factory at substantially reduced prices. If you wish to trade, or desire individual financing, purchase your Swan equipment from one of our authorized Swan dealers, at a price slightly higher than the factory price. Either way, you are now able to have proven, American made amateur radio equipment, at prices competitive with any foreign made products.

Write for our 1971 Swan catalog. It contains photos, descriptions, specifications, and the new Factory Direct Prices for every piece of equipment we make. (Did you know Swan manufactures over 50 different pieces of amateur radio equipment?)

NOW...you can have the complete line of Swan amateur equipment at FACTORY DIRECT PRICES
Versatility plus!...in a
2 Meter FM Transceiver

...IN THE FIELD
IN THE CAR
IN THE HOME...

The TR-22 is a 2-meter VHF-FM completely transistorized, compact, portable transceiver with capacity for six channels. It can be used over the shoulder, mobile, or in your home. Has a built-in telescoping antenna, and SO-239 connector provided for external antenna. May be used barefoot or with accessory two-way amplifier. Operates on external 12 VDC or on internal rechargeable nickel-cadmium batteries. Has built-in 120 VAC 50-60 Hz battery charger.

SPECIFICATIONS

GENERAL
- Frequency Coverage: 144-148 MHz
- 6 channels, 3 supplied:
 (1) Rcv: 146.94 MHz, Xmit: 146.34 MHz;
 (2) Simplex: 146.94 MHz;
 (3) Rcv: 146.76 MHz, Xmit: 146.34 MHz
- Frequency modulation
- Push-to-talk Xmtr Control
- DC Power Drain: Rcv: 45 mA, Xmit: 450 mA
- Power Source: 12 VDC ± 20%; 120 VAC 50-60 Hz (for recharging nickel cadmium batteries only)
- Size: 5½" x 2½" x 7¼", Wt: 3½ lbs.

RECEIVER
- Completely transistorized crystal controlled double conversion superhetorodyne circuit
- 1st IF 10.7 MHz
- 2nd IF 455 KHz
- Antenna Input Impedance: 50 ohms
- Sensitivity: 1 microvolt or less for 20 dB S+N/N ratio
- Audio Output: 0.7 watt at 10% or less distortion
- Built-in speaker

TRANSMITTER
- RF Output Power over 1 watt
- Frequency Deviation adjustable to 15 KHz maximum; factory set to 5 KHz.

R. L. DRAKE COMPANY
540 Richard Street
Miamisburg, Ohio 45342

AT YOUR DEALER'S!
had singlehandedly installed telephone wires throughout the island to all the residents who for a small sum per month could keep in touch. In the meantime, the telephone company on the mainland had installed a microwave telephone station on the island and employed Charlie to take care of the power generators and make periodic checks by radio with the home office. He also was the designated Civil Defense contact for the island and the CD net on the mainland. His interest in ham radio had led him to visit us and glad I was to see him. He said he would help me get the antenna up; and with Bette, Ed, and me on the three guy wires, Charlie did what I have never since seen done. He stood on the next to the top rung of a small ladder which in turn was leaning against the mast. We had guessed the approximate lengths of the remaining guy wires which were fastened at the top of each 10 ft section except the last one. The 2 meter beam was at the top and spaced below was the 6 meter “hilltopper.”

Charlie, although short of stature, is sturdy and his years of pulling up his lobster lines have developed muscles I don’t even have. He would give a tug on a 10 ft section of mast, hauling along the antenna; guy wire, and coax. And up it went!

It still is hard to believe as I think back on it, but there it stood, and well guyed too, as it turned out. We had one whale of a summer thunderstorm with wind and lightning during our stay one memorable afternoon.

Our first contacts were strictly local Maine coastal stations, and evoked some comment since Matiniclus had neither electric power nor licensed amateurs. Every expedition is subject to minor irritations and difficulties, and ours was no exception. About the second day on the air the Clegg Zeus went dead without a sputter. Charlie again proved himself a ham’s best friend. When he came over after his day out in the lobster dory, he learned of my problem and asked if I could use a VOM. I traced my difficulty to one of two ballast tubes in the modulator power supply. Since the ferry makes its trip to the island on Tuesday, Thursday, and Saturday, sending and receiving an order by mail would mean at least a week off the air.

The island’s 6 meter rig was connected to our antenna, the beam pointed southeast, and attempts were made to make a contact with one of my buddies, K1WPS, Murray of Marblehead, Massachusetts, who knew I was on the island and would be looking for my signals. As it turned out, I heard two of my friends in New Hampshire. It was difficult to break them as they lived on opposite hills from one another and I was not giving them more than a few watts of antenna power. Before they did sign off, I managed to get through with my order for replacement tubes and asked them to pass the traffic on to Murray.

The very next ferry had a package addressed to me with the necessary ballast tubes. Needless to say, we had no more technical difficulties for the rest of our stay. I was able to get into Massachusetts regularly several times a day and with no trouble each evening except one. I learned that every ham with any kind of gear on 6 meters was trying to raise K10XK/1 on Matiniclus Island. The QSLs began to come in from Long Island, New York, Connecticut, Rhode Island, Maine, New Hampshire, Vermont, and with some partial openings customary in August I worked North and South Carolina and several other southern states.

The real thrill of the DXpedition came one night as I was in QSO with a fine YL camping with her father in southern Maine when I heard a breaker calling me from W2-land. I had several contacts with other 2s and 3s on what appeared to be a very effective aurora. Suddenly, they were gone and I was in contact with the midwest. In short order I was working stations at the rate of four or five every two or three minutes. Each time that I signed over it was like turning on the switches on ham rigs all over the country. In a matter of moments every ham who could copy my signals was calling: “Hi Bob, do you copy WA9XXX?”

I had to do what you have heard Wayne
WHEN IT COMES TO ANTENNA SYSTEMS... IS YOURS
a space problem? a budget problem? an applications problem? an installation problem?
or simply a problem of where to buy?

Your one-stop solution is ANTENNAS, INC.
Exclusively specialists in radiating systems, complete systems or any component part.
Arrays—complete or in kit form, quads, yagis, dipole assemblies, verticals—fixed or mobile, towers, masts, rotors, guy and control cable, transmission line, coax relays and switches, connectors and adaptors, test gear, technical publications, corrosion resistant hardware, corrosion proofing chemicals, insulators, installation and wiring hardware, aluminum tubing and plate, wire, and much, much more.

If your requirements are for a complete system, major components, or the smallest yet important piece of hardware—

Our prices and deliveries are hard to beat... anywhere.

ANTENNAS, INC.
Dept. B, 512 McDonald Road
Leavenworth, Kansas 66048.

Green and all those other fellows do who
join on rare DXpeditions. I began looking
up and down the band 20–30 kHz to find one
voice among the many that could be
copied. You will readily imagine my sur-
prise the following morning when I learned
that Massachusetts had had no opening on
six meters that eventful night. It was the
only night I didn’t keep schedules with my
friends in Massachusetts.

I hesitate to close this account without
telling you that we witnessed the fiery
results of what appeared to be a feud on
the neighboring Ragged Island. It seems
that whenever there are claim jumpers or
perhaps more appropriately trap robbers,
alldades breaks loose on their Maine
Islands. Whole families have been known to
disappear and never be heard of again on
their home island. It was one of those
beautiful clear days with a soft breeze
blowing across our cove. I could hear the
ignitions of the engines on the lobster
boats buzzing in my speaker sometime
before they crossed into sight of the
cottage. I looked out the window to see if
the lobsterman was going to enter our cove
and spotted instead a wisp of smoke where
I thought there shouldn’t be any. I rushed
out to the bank which protected us from
the storm’s high waves during inclement
weather, and caught a good view of what
by now was obviously a great fire burning
on Ragged Island. What I had thought was
a boat’s ignition proved to be the Coast
Guard plane flying back and forth
observing the blaze at Creehaven.

Later that day we learned at the general
store that one of the residents of the
neighboring island had somehow made

enemies who took advantage of his absence
from the island to burn his house down. So
you see fellows, and gentle readers, all is
not always sweetness and light, calm and
peace, even twenty-five miles out in the
Atlantic. Should you care to walk the trails
among the blue spruce, pick wild blue-
berries, and strawberries, and apples, and
feast on Aunt Lizzy’s homegrown vege-
tables, I think that I should warn you,
Today you don’t need to take your own
generator for there’s power on the island
now. Right, you guessed it; Charlie Pratt,
the telephone magnate and lobsterman
supreme, the CD chief, and antenna instal-
er, is the new utility expert. He has
installed power lines to each home and no
longer do the residents have to run gasoline
powered washing machines nor generate
power for their color TV. I had the honor
of being the first ham ever to have his
signals read on a color TV on Matinicous
Island. Fortunately, the owner of the TV
was more intrigued by the situation than
the ones I have met with at home. (Besides,
if I remember correctly, he was Charlie’s
uncle — and Charlie could square any-
thing.)

We had planned to return to our cove
the next year, but our inquiries about the
cost of such a cottage led to an unantic-
pated early purchase by the judge who had
been renting it in all the previous years. We
can’t go back to that cottage, but I know
we shall never forget how we spent an
August “down Maine” and met one won-
derful lobsterman trying out our own
version of DX America first.

... W6LZJ
In the past I have read many articles about phone patching. All of these had some form of actual wire attached to the telephone company lines. Similar attachments are needed for the commercial patch, either in kit form or purchased as a complete and finished piece of gear. Another point which was hammered at, was the impedance matching to the telephone lines, which seemed to scare me away more than anything else. Then there was the fact of a $20 to $30 outlay for the patch (I always found something better to do with the $20 or $30).

In my travels along the shelves of used-book stores, I came across an article which seemed, with a little revision, to be just what I wanted in the way of a patch without any of the bugaboos I had read about in the past. The cost turned out to be not a single red cent and nothing was wired into the precious lines of the telephone company. I will attempt to go through my construction of the patch as I revised it and present the problems that showed up and what I did to clear them up.

The construction is simple, straightforward and noncritical. The heart of the patch as I constructed it was a used automobile ignition coil. New, an ignition coil can cost about $9 or more. This cost can be avoided by asking a local service station operator for a used, discarded ignition coil. Maybe I was fortunate in the first coil I tried. A few may have to be checked out. The coil that was given to me was grease covered. I wiped it clean and used steel wool to clean the 3 terminals. One binding post terminal is primary positive, one is common negative, and the third is the “tower” secondary positive. The continuity of the primary and secondary coils are tested with an ohmmeter to see if it is shorted beyond use. The primary
positive to common negative was about 1.5Ω. The tower secondary to common negative was about 10 kΩ. The remaining needed parts for the patch came from the overflowing junkbox. These were:
1. About 40–50 ft of thin enameled wire. I used 24-gage because I had a spool of it, but any small-size wire can be used if it is insulated and not so fragile that it breaks with a small amount of abuse.
2. Two-conductor shielded wire about 18 in. long.
3. Two alligator clips.
4. A two-conductor coiled cable, the kind that contracts when not in use and can be pulled out to a length of 3–4 ft on extension. I took this from an old telephone. This was used only as a matter of neatness. The patch will work just the same without it.
5. Assorted nuts, bolts, washers, tape, etc.

Construction

Clean up the ignition coil, check it out, and set it aside. Using the 40–50 ft of enameled wire, I left a lead of about 2 ft and started to wind the remainder of the wire around the earpiece of the telephone. I found that if I confined my turns to the screw-on cover of the earpiece and not let my turns work their way on to the handpiece, it was much easier to remove and tape the turns together. I made about 60 turns of wire around the earpiece rim and left about a 2 ft lead when I finished.

If the coiled cable is used, the following steps should be taken. The coiled cable I used had four conductors: two white, one pink, and one black. This was great because I only needed two of these and this meant I had a built-in color code. I removed the insulation from both ends of the pink and black wires. The ends of both white wires were cut short to be out of the way. After removing the insulation from the wires I discovered that these wires are special in that they are multistranded and that every two strands were braided with a thread. This thread was unraveled by rolling the two wires between the fingers. The freed thread is cut away.

After all the ends were ready for soldering I found out I could not solder these wires. In order to secure the induction loop to the coiled cable I first cut the lead lengths on the induction loop down to about 4 in. and steel-wooled the enamel of the last 2 in. A homebrew binding post was made to secure the induction loop leads to the coiled cable leads. Two such binders were needed. These consisted of a small bolt, long enough to accommodate two washers, the two leads to be united, and a nut.

One washer was slipped on the bolt up to the head of the bolt, the two wires were wound on the shaft of the bolt up close to the washer, one lead from the induction loop and one lead from the coiled cable. (It was now able to replace this loop back on the earpiece with slight pressure.

The phone patch works even with this induction loop held about ½ in. away from the earpiece. So do not worry if the loop will not go back onto the earpiece and fit as it did before removing it.
does not matter which lead goes to which wire of the loop.) The second washer is slipped on and the nut follows this and is tightened to clamp the two wires between the washers. The remaining lead from the induction loop and the remaining wire from the coiled cable were united in the same way.

We now have, if you used the coiled cable, one induction loop attached to the end of a coiled cable. If the coiled cabled was not used, you have an induction loop with 2 ft leads, cleaned of insulation for about 2 in. at the ends.

The free ends of the coiled cable or the ends of the induction loop leads are now attached to the ignition coil binding posts. It does not matter which lead goes to which of the following binding posts. One lead to the primary positive and one lead to the common negative. The primary positive post can have its nut tightened at this time, but leave the nut on the common negative loose. Prepare a 2 in. length of insulated wire with an alligator clip on one end and no insulation on the other for about ½ in. This bare end is placed around the binding post of the common negative and the nut is tightened.

Remove the tower terminal and clean it with the steel wool. Prepare another insulated wire as just done. I soldered this wire to the inner portion of the tower conductor and I replaced the conductor inside the tower. These last two leads that are from the tower terminal and the common negative I elected to connect to my mike PTT switch because this saved me the trouble of going into the rig and it also provided me with an extra control switch in addition to the PTT switch on the rig.

The preparation of the mike to the ignition coil is the final step in completing the patch. On the breadboard circuit I used two separate wires for this step without any problem.

The PTT switch on my mike is on the upright hand grip. The hand grip is hollow, so this is ideal. I unscrewed the PTT switch and pulled it away from the hand grip to expose the switch tie points. At this time both ends of the shielded cable were prepared. One end of the shielded cable was slipped up the hollow center of the hand grip from the bottom of the open base and fished out the hole of the PTT switch. My PTT switch has two tie points, and one of the leads was soldered to each tie point. It makes no difference which wire goes to which tie point. I did not solder the braid of the shielded cable to anything. It was cut back close to the insulation to get it out of the way, because I found that if I touched it when the rig was on VOX my rig went into the transmit mode. The PTT was replaced after making sure that there were no shorts and solder bridges.

The remaining end of the shielded cable coming out of the bottom of the mike has the end prepared as follows: about 3 in. of outer insulation and the shielding braid were removed. The remaining insulated wires were cleaned of insulation for about ½ in. These ends were each given a coating of solder to keep the strands from wandering and to give it some strength. Some 1/8 in. spaghetti from the junkbox was cut to give me two pieces each about 2½ in. long. These were slipped over the soldered tips of the shielded cable conductors and pushed back far enough so that the bare wire was exposed. Do not connect the leads from the shielded cable to the ignition coil at this time.

I turned on the rig and while it was warming up I placed the induction loop over the earpiece of my telephone. This was a real live telephone. I replaced the telephone handpiece to its cradle to kill the dial tone. I tuned to an unoccupied frequency and tuned up the rig. I placed the PTT switch on the rig in the OFF position and the PTT switch on the mike in the ON position. I then attached the two alligator clips from the ignition coil to the leads from the shielded cable just installed in the mike.

I advanced my mike/CW level just a bit more than I usually have it during normal voice operation. I now placed the rig PTT switch in the active position which is VOX on my HW-100, and I heard a hum in the speaker which was never there before. I will get back to the hum later. I lifted the
handpiece of the telephone from the cradle and the dial tone activated the rig into the transmit mode. I replaced the telephone handpiece and the rig went into the receive mode.

If the dial tone does not activate the rig to transmit, raise the mike/CW level. If this does not make the dial tone activate the rig then replace the handpiece and reverse the alligator clips to the shielded cable. Lift the handpiece again and the rig should go into transmit when the dial tone starts. Make a note of which lead goes to which clip.

The patch is now ready to transmit through your rig from the telephone. In fact, that is all this patch does: It lets the telephone earpiece activate the rig and whatever is coming into the earpiece is transmitted. So how is the signal received by the rig sent over the telephone? This I have done by the very simple method of plugging in my earphones and placing the earphone over the mouthpiece of the telephone. It may not be the latest in circuitry but it works.

You can also place the mouthpiece of the telephone near the speaker, but since all transmissions from my station are my responsibility I monitor all patches. This was simplified by fashioning a retaining ring that slips over the mouthpiece of the telephone and holds the earphone in place. In this way, I can hold the telephone as in normal use or I can rest it on my shoulder, leaving both hands free. If your hearing is better than mine, you can leave the whole thing on the operating table in front of you.

As this phone patch now stands it must be worked on a PTT basis. The mike is active on my circuit and I can break in by use of the mike or the telephone mouthpiece.

Now about that hum I heard: I found that it was dependent on where the ignition coil was placed on the operating table, so I kept moving the coil around until I found a spot where the hum went away and this is where I place the ignition coil whenever a patch is to be made. When not in use, the induction loop is removed from the telephone and hung over the tower terminal. That takes care of all the attachments to the telephone. The alligator clips are removed and clipped together and the patch is put away.

Now for the two leads coming from the bottom of my mike stand: The spaghetti pulled over the exposed ends of the two wires and the wires are bent back on themselves and tucked up the hollow mike stand.

Summary

My ignition-coil phone patch is shown in Fig. 1, and the deployment is pictured in Fig. 2. There are no interconnecting wires to the telephone lines. Since the audio introduced into the telephone lines is nothing more than audio there is no worry about adding any voltages to the telephone lines. I wonder what would happen if I cascaded a few ignition coils?

...WA2EAW...
STEP UP TO TELREX
Professionally Engineered Antenna Systems

Single transmission line "TRI-BAND® ARRAY"
By the only test that means anything... on the air comparison... this array continues to outperform all competition... and has for two decades. Here's why... Telrex uses a unique trap design employing 20 HiQ 7500V ceramic condensers per antenna. Telrex uses 3 optimum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

ONLY TELREX GIVES YOU ALL THESE FEATURES...
- Power rating 4 KW PEP...
- Rain or shine
- Wind rating survival 110 MPH
- Patented broad-band coaxial Balun
- Heavy-duty steel gusset mounting plate
- Aluminum boom 2 in., 2½ in. O.D. x 18 ft.
- Large diameter, .058 wall taper-swaged dural elements for minimum weight and exceptional strength to weight ratio
- Stainless steel electrical hardware

With a Telrex Tri-band Array you get 49 lbs. of educated aluminum engineered and built to provide many, many years of performance unmatched around the world by any other make. Longest element 36 ft. Turning radius 20 ft. Shipping weight 65 lbs. Shipping container 13 in. x 5 in. x 13 ft.

Note: If not available from your dealer, order direct. You'll get fast, personal service.

Telrex Labs are design engineers, innovators and manufacturers of the world's finest ¼ to 160 meter communication systems and accessories priced from $25 to $25,000.

For technical data and prices on complete Telrex line, write for Catalog PL 71.

TB5EM $395

Some thoughts from Mike Ercolino, P.E. — W2BDS, Telrex Chief Engineer...

"I've been in the game over 50 years (pounded brass for 25) and found out a long time ago that antennas were the weak link. We changed all that."
"Good antennas such as those we build can be ruined in two minutes by a tinker. So put 'em up and leave 'em up the way we make 'em."
"Our 'Big Bertha' systems cost more than a Rolls Royce. Three of our customers have bought two of them... that's living."

---telrex~edU~!~~~~~a~i~!~~~~~~2s ~~~C~R1A9~~ RIE S
Asbury Park, New Jersey 07712 201-775-7252
Installing and maintaining a repeater on an isolated mountaintop usually means a lot of lonely hours for the fellow who does the work. But at least one repeater man feels it doesn't have to be that way. Gordon Pugh, W1JTB, who has probably set up more repeaters along the eastern seaboard than any other amateur in the country, makes it a point to select his sites so that he can combine his "business" with his pleasure.

Gordon's "business," in this case at least, is setting up repeaters that have greater coverage than other systems in his area of the country. The "pleasure" is skiing. And Gordon's most laudable effort recently has been the deployment of his 146.31/146.88 MHz FM repeater at Mt. Snow, Vermont.

Mt. Snow is an extraordinary place. Europeans and Americans alike might find it difficult to believe that Mt. Snow is actually the largest ski area in the world — but it really is! With as many as 10,000 visitors on a good skiing day, Mt. Snow goes unchallenged as "biggest." Not even those renowned resorts in Switzerland can compete with Snow in terms of human traffic.

The mountain is not particularly high — at least not by worldwide standards. But at its 3600 ft perch atop Mt. Snow's...
famous North Face, the .31/88 machine, licensed under the call of WA1KFX, provides effective automatic relay coverage in five states—New York, New Hampshire, Massachusetts, Connecticut, and, of course, Vermont.

When Gordon Pugh services his Mt. Snow repeater—which is curiously nearly every weekend in winter and virtually never during summer months—he arms himself with all the tools he’s likely to use and myriads of items he’s not; then he packs up his skis and vacation gear, and off he goes—sometimes for days at a time.

If things really need fixing at the repeater site, Gordon’s first day is usually spent in earnest. He’s been known to spend as much as seven hours on the top of a tower at one sitting. He makes a marathon of the repeater repair job, staying with it until the task is done. In the unheated, open area where the WA1KFX repeater is installed on Mt. Snow, the temperatures frequently drop to the uncomfortable side of zero and remain there for long periods. But Gordon simply plugs in a 1 kW bulb (for heat more than light) and hacks away at the problem. When it’s licked, the funtime starts.

From the top of North Face, Gordon has a wide choice of trails on which to descend. An expert skier himself—and a part-time ski instructor, Gordon usually chooses one of the brisker slopes—like Snow’s Jaws of Death or the Challenger both carefully marked, “For experts only.”

If there’s still daylight left when the repeater is once again operational and he’s descended to the Snow Lake lodge area, Gordon will take maximum advantage of the remaining hours. With no less than 16 lifts to choose from, and 42 descent trails, he’ll spend the day tackling the Main Mountain, with its thousand acres of ski facilities.

“The trip to the top is almost as much fun as the race down the mountain,” Gordon says. And he’s not kidding. There aren’t many thrills equaling that of scaling the mountain in one of Mt. Snow’s “skison,” enclosed gondolas. The gondola lifts you high above the tree-studded mountain side and offers a breathtaking panorama of scenery.

“What I like about Snow,” says Gordon, “is the solitude. The 80-odd miles of ski trails are sufficient to accommodate the hordes of visitors without crowding.
There's something about a solitary trip down the mountain that puts you in pretty close contact with Nature." With an almost reverent, poetic tone, Gordon added, "When the wind isn't blowing too hard, the only sounds you hear are the swishing of your skis and the rustle of the trees."

At the lodge, Gordon always winds up his day with a swim in the heated outdoor pool. It doesn't look comfortable when the air temperature is in the low teens, but Gordon insists that it is. The water temperature in the winter is rarely below 100°F, he says, and a swim is more refreshing than a hot shower.

Some of us conservatives remained skeptical about the comforts of swimming outdoors in below-freezing weather, though. And it didn't help a bit to see Gordon's hair freeze into brittle spikes when his head came out of the water.

It certainly made an interesting picture, if nothing else. What is more incongruous than a photo of swimsuit-clad bathers with bundled-up skiers gliding over a snowy slope in the background?

That "slope in the background" is one of Mt. Snow's more interesting attractions. The hill, called Fountain Mountain, is a glacier made as a cooperative enterprise by man and nature. The management at Mt. Snow provide the geyser-fountain—tons of water jetting nearly 400 ft into the sky. Nature provides the water-to-snow conversion. The result is a glacier that takes several months to build.

The water geyser gets turned on when low-temperature season comes around—usually late in November. For a month or two, the geyser continues, day and night, while the glacier grows and grows. When the water is finally shut off, the glacier, with its ski-able snowlike surface, stands a full 200 ft. Skiers can then negotiate the miniature mountain until well into April.

Mt. Snow is an ideal repeater site, as the coverage performance of the WAIKFX machine will attest. It towers high enough above the surrounding countryside to make the .31/.88 machine accessible from even flea-power units like hand-held transceivers and battery-operated portables. But there are FM'ers who use Mt. Snow for communicating on frequencies other than those of the Snow system. Wayne Green, for example, likes to take his Motorola Handie-Talkie down the slopes of Snow, talking to distant amateur stations on a "direct" basis.

When Gordon makes a repair trip to the repeater site, he does it in style. During summer, he'd have to walk up; but in winter, it's easy going all the way—in an enclosed skis-on gondola that offers warmth as well as a panoramic view of the mountain.

Wayne also noted that other New England repeaters are accessible from Mt. Snow's Main Mountain. Heading down on skis at a neckbreaking clip, Wayne managed to combine two hobbies in one, and was able to talk through a number of New England repeaters during the course of one trip. Transmitting on 146.34 MHz, Wayne communicated through W1ABI, W1KOO, W1ALE, K1ZIH, W2NSD/1, and probably other repeaters that weren't active during the minutes of his descent.

For people who question Gordon Pugh's frequent trips to Mt. Snow, he offers a two-edged answer. If the query comes from a skier, he'll say, "There's more to snow resorts than skiing." And to curious amateurs, he says, "There's more on Mt. Snow than a repeater."
The audio mixer described in this article, although designed primarily for repeater use, can be used anywhere it is desired to mix a number of audio inputs with a high degree of isolation between inputs. The mixer is adaptable to almost any configuration which may be required to suit the individual's requirements. The number of inputs can be increased by a factor of two or three to suit the user's needs. The isolation between individual inputs of over 40 dB makes it possible in repeater operation to have tone command information on one channel not be affected by another input. The mixer shown in this article is the one designed for use in the WA1KFY repeater. It has eight inputs—three of them squelched, the other five continuously on.

Operation

The amplifier uses a single 709D opamp plus one FET for each squelched input. The audio inputs as shown in Fig. 1 are applied to the opamp's inverting input. The output is fed back through 150 kΩ resistor R1. Notice that the signal from each input is applied through 150 kΩ also. The resultant voltage at the input terminal of the opamp is the combination of the input signal plus the out-of-phase feedback voltage. Since both are applied through equal series resistances, the resultant voltage is zero. This condition results in the opamp's having an extremely low (almost zero) input impedance. This resultant low impedance, together with the high series resistance on each input, accounts for the high degree of isolation between inputs. The squelched inputs use a FET across each input as a switch. With zero volts on the gate, the FET exhibits a drain-to-source resistance of about 350Ω, effectively shorting its associated input to ground. When +15V is applied to the gate, the FET switches off, enabling the input channel. The 75 kΩ resistors between each FET and the input bus prevent the input bus from being shorted by the FETs.
The gain of the opamp is determined by the ratio of the feedback resistance to the input series resistance. In this case, the gain on all the inputs is unity. If more gain is desired on a particular channel, the input resistance can be lowered to change the ratio (and therefore the gain). For example, it was found necessary to increase the gain from the main channel receiver when the phone patch was connected in order to increase the level into the phone line. (The phone patch does not load down the output; rather, the gain had to be raised in order to properly drive the line.) The gain change is accomplished by a photocell—lamp assembly, with the photocell in series with a second 150 kΩ.

The frequency response of the amplifier is essentially flat from dc up to about 8 kHz. Beyond that point, it rolls off. The 22 pF capacitor across the feedback resistor determines the rolloff frequency characteristic. The audio output voltage swing can go as much as ±10V. This is more than ample to drive 10 or more high-impedance inputs. The audio amplifier in WA1KFY is presently used to drive three transmitters, a phone patch, and a monitor earpiece. The number of inputs can be expanded to suit individual requirements. The unsquealed inputs require only an additional 150 kΩ series resistor and load resistor for each leg. The squelched inputs each require an additional FET switch in addition to the load resistor and series resistors.

The opamp requires 15V (positive as well as negative) to operate it. The current requirements are approximately 30mA. The components shown in the detail schematic (1.5 kΩ 0.005 mF, and 200 pF) are used to compensate the amplifier against instability. The 100Ω resistor, 30 µF capacitor and 0.1 µF capacitor on the +15V line form a decoupling network.

Two trimpots at the top edge of the board (see photo) are used to provide audio outputs for tone-operated command functions. They are connected across the load resistors of the six meter receiver and the main-channel two-meter receiver as shown in Fig. 1. The arms of both pots connect to pins on the edge connector and go off the board to their associated tone decoders on another board. These pots are mounted on the audio mixer board as a matter of convenience and would not be used if it is not required to bring audio to another point in the system for tone command or other functions. The photocell—lamp assembly for gain changing on the main channel input is on the right side of the board. Similarly, it could be deleted if this feature is not required.

Summary

This audio mixer provides the repeater owner a high-quality audio mixer system which has minimal space and power requirements. It is especially attractive for use in more sophisticated repeater systems where several receiver/transmitter combinations are used. However, if the same construction techniques as those described in this article are used, it is just as good to use with a simpler repeater system because there is more than adequate room for expansion at a later time.

...WIELU,WIRH
NOW
The Quality Leader In Amateur FM
At A Competitive Price

Deluxe 2 Meter FM Transceiver

Always the quality leader, (see December and January 73 Magazine, and reviews in January QST and March CQ) the IC-2F remains the same — superb performance, deluxe features, 1 year warranty . . .

TRANSMITTER: RF input power — 20 watts; RF output — 10 watts minimum; maximum frequency deviation — 15KHz (adjustable); Automatic Protection Circuit (APC) — NEW! Not offered in any other transceiver on the market. Absolute assurance of final PA protection from shorted or high VSWR antennas by instantaneous transmitter disabling; Electronically switched — no relays; Sealed low pass filter to eliminate spurious radiation.

RECEIVER: Double conversion superheterodyne; Sensitivity better than 0.4µV @ 20 db of quieting; FET front end; ceramic filters for excellent bandpass shaping; Integrated Circuit IF; built-in speaker on front panel.

GENERAL: Six channels (six transmit and six receive crystals) selectable from the front panel; large RF/“S” meter and easier to read controls; power requirements 12 to 15 volts DC.

The Deluxe IC-2F comes complete with high impedance microphone, three-position chrome mobile mounting bracket, crystals installed for two channels (Ch. 1, 146.34/146.94; Ch. 2, 146.94/146.94), power cables and plugs and manual. Amateur Net $299.95

Optional AC Power Supply with built-in Discriminator Meter, Model IC-3P. Amateur Net $42.50

PA-50A 50 watt solid state AFTERBURNER for more power mobile. Amateur Net $129.95

Available at your dealer

VARITRONICS INCORPORATED
2321 EAST UNIVERSITY DRIVE • PHOENIX, ARIZONA
NEW 12 vhf-fm channels all solid state

6m and 2m models

AGC circuit at the front end
3 TRANSMITTING POWER positions.
REAR panel has provision for 25w unit,
TONE squelch, and MULTIPLIER unit.
CHANNEL SELECTION by diode switch.
Remote control possible
34/94, 94/94, MIKE included. $289.95

TELECOMM ELECTRONICS
P.O.BOX 461, CUPERTINO, CA. 95014
Some of the nice things about being associated with a major ham magazine is that I get a chance to preview a lot of interesting products. Some of the things I get to see are obviously gimmicks that will never take hold. Others are reasonably new good ideas, most of which are doomed to oblivion because the cost exceeds the ultimate value to the user. But once in a while — not often, mind you — but just on rare occasions, I get the chance to see something that smacks of real greatness.

Such is Circuit-Stik, an item that I think is the most important development in the history of printed-circuit construction. I think this item is important because it will permit any amateur to make even the most complex circuit boards without any art, camera work, photoresist exposure, or etching. And that's really something!

You can get Circuit-Stik in a kit that includes everything you need to make professional circuit boards, but I haven't the faintest idea what the price is. A quick letter to the manufacturer will get you that information in no time, I would imagine. It's the process itself that I'm excited about. The trouble is, it's extremely difficult to describe it adequately, even with pictures.

I'll try explaining it anyway: The kit includes a fairly large sheet of perforated board with very close-spaced holes (on 100-mil centers). From this sheet, you can cut your basic circuit board to whatever size your project might require. But rather than etching circuit paths onto a copper-clad layer, you can lay the circuit paths down onto the board with already-

MARCH 1971

Ken-Sessions, Jr. K6MVH
A wide variety of circuit-element patterns are available allowing the user maximum flexibility in his selection.

When MSI or LSI components are pre-lead bonded to Circuit-Stik subelements, (as the "flat-pack" units have been in the photos), they can be immediately tested in a circuit or become part of a permanent circuit board in minutes.

Circuit-Stik subelements are pressure sensitive and the adhesive formula offers exceptionally good adhesion strength, withstands soldering temperatures and yet may be removed for easy circuit design modifications.

Circuit-Stik "1000-series" subelements are designed "on-grid," are pre-drilled, and when used in conjunction with .100 inch punched board, require no drilling.

All subelement conductors are preplated and ready for soldering.

No terminals are needed as active circuit components are soldered directly to the subelements and resulting circuit boards made from Circuit-Stik materials are as durable and reliable as conventional printed circuit boards.
prepared patterns that are gold-plated or tinned copper on thin adhesive sheets of epoxy-glass.

The adhesive-backed conductive patterns are called "subelements," and they are available for virtually any transistor or IC package you could dream up. There are even subelements for all conventional card-edge connectors. The beauty in the system is that the subelements are all predrilled, and the holes fall directly over the holes that already exist in the perf-board. So making a complete board for any project is nothing more complex than laying out the board with a pencil and paper, then dropping the subelements onto the board in their proper positions.

I don't know what kind of adhesive is used on these superthin patterns, but it certainly does hold. And no matter how much you solder to the patterns and paths, they stay down. If you place a sharp knife under a pattern or circuit path, you can lift it without sacrificing any of its holdability, then reposition it anywhere else on the board.

...K6MVH
Ray Grenier, K9KHW, Mail Order Sales Manager at AMATEUR ELECTRONIC SUPPLY, says:

"Operating all bands (160 thru 2 Meters) is a real pleasure with my DRAKE 4 LINE setup. You, too, can eliminate all of that extra gear and mess usually needed for that much frequency coverage. Let me help you go the same route...all the way, as I have done - or just one unit at a time.

Visit our store or write me at AMATEUR ELECTRONIC SUPPLY for the best Trade or No-Trade Deal on new DRAKE equipment. You will be surprised how little per month it would cost you to own new DRAKE equipment when you use our convenient Revolving Charge Plan.

Remember, too! When trading with AMATEUR ELECTRONIC SUPPLY you can use our STAY-ON-THE-AIR PLAN, which means you can keep your trade-ins until your new equipment arrives. - Lose no operating time! CU on the air!"
Ever try and read the tape that you just printed off your Model 19? Here is an interesting way of reading it, using the binary system. Look at the tape from the top with two holes to the left of the sprocket and three holes to the right of the sprocket. Group the two to the left, to read 2-1 and the three to the right to read 4-2-1. Now all you have to do is add up all the holes that are punched to the left as one digit and all the holes punched to the right as one digit. This will give you two digits which can be converted to a function on the machine.

Example 1. If all holes are punched, add up the two weights on the left (2+1=3). Now add up all the weights on the right (4+2+1=7). You now have two digits which put together is 37. Look on the table and you find 37 would be the LTRS function.

Example 2. No. 1 hole on the left with a weight of 1, and the No. 2 hole on the right with a weight of 2. Put together, this is 12. Look on the table and you find 12 is the function R.

Example 3. No. 2 hole on the left weight of 2 and the number 4 and 1 hole on the right summed is a weight of 5. Putting the two digits together gives 25. Look on the table and find 25 is the Y function.

TABLE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>T</td>
<td>20</td>
</tr>
<tr>
<td>02</td>
<td>CAR RET</td>
<td>21</td>
</tr>
<tr>
<td>03</td>
<td>O</td>
<td>22</td>
</tr>
<tr>
<td>04</td>
<td>SPACE</td>
<td>23</td>
</tr>
<tr>
<td>05</td>
<td>H</td>
<td>24</td>
</tr>
<tr>
<td>06</td>
<td>N</td>
<td>25</td>
</tr>
<tr>
<td>07</td>
<td>M</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>LINE FEED</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>I</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>V</td>
<td>36</td>
</tr>
<tr>
<td>00</td>
<td>BLANK</td>
<td>37</td>
</tr>
</tbody>
</table>

If you study the table you can see that there is no wasted functions. There is a possible combination of 32 functions. If you add the 26 upper case operations we have 58 different possibilities. When reading the tape you should know if the tape is in upper or lower case. This should not create any problems. You could add one more function which is the blank.

Anthony Sperduti WB2MPZ •
This article describes three accessories for the RTTY station. The first is a regenerative repeater; you put highly distorted, biased signals in one end and get nice, clean, properly timed signals out the other. The second forms the basis of an electronic stunt box; it performs the “cleaning up” function of the first, plus converting the serial TTY signal to a 5-line parallel signal which can be used to perform various functions on receipt of a specified group of characters. The third performs all the functions of the first two plus speed conversions; with this little goodie you can put 100 wpm gears in your machine for copying the commercials and use the speed conversion function to operate at 60 wpm on the ham bands.

In order to understand the operation of these three devices, let’s take a moment to review the manner in which a TTY printer decodes a signal. The start element of the code drops the selector magnet, initiating a mechanical timing cycle. Five times during this cycle the machine mechanically “samples” the condition of the selector magnet and positions the code bars accordingly. In a 60 wpm machine these samples are 22 ms apart and about 4.4 ms long. The length of time between the beginning of the start element and the first sample can be varied with the range adjustment. With the range control set at 60 the samples occur 33 ms, 55 ms, 77 ms, 99 ms, and 121 ms after the beginning of the start element.

The Regenerative Repeater

The repeater electronically samples the TTY signal in much the same manner as the printer. A start element initiates a series of seven sampling pulses. The input signal is sampled in the middle of the start element, in the middle of the five signal elements, and 11 ms into the stop element. The condition of the signal at the time of each sample is loaded into a flip-flop memory where it is stored until the next sample is taken. Thus, the output of the
flip-flop is a perfectly timed TTY signal, delayed 11 ms from the input signal, with signal elements corresponding to the condition of the input at the time of sampling (see Fig. 1). After the stop element is sampled, the circuit resets and waits for the next start element.

The logic required to perform these functions may be implemented in many different ways. The diagrams included here show 803 series DTL integrated circuits. It should be noted, however, that the same functions could just as well be accomplished with RTL, TTL, ECL, or HTL ICs, discrete transistors, or even tubes or relays, to name a few! with this series of DTL a high logic level is approximately +5V and a low logic level is approximately ground.

Referring to the logic diagram of Fig. 2 and the timing diagram Fig. 3, a start element (space) puts nor gate U4 input pin 1 at a low level, forcing output pin 3 and inverter U5 input pin 1 high. Output U5 pin 2 goes low, starting the 91 Hz synchronous clock.

"Synchronous clock" is simply a high-powered term for an oscillator that can be turned on in an orderly fashion; that is, the first cycle after the start command has the same period as all the following cycles. A simple oscillator of this type is shown in Fig. 4. It produces a series of narrow positive-going pulses at 11 ms intervals, the first occurring 11 ms after the input goes low.

The clock output drives divider flip-flop U3, the output of which is a square wave with a period of 22 ms. Nand gate U4 picks
out every other clock pulse and drives inverter U5 input pin 3. The signal at U4 pin 4 is the string of positive going sampling pulses. The first of these pulses causes JK flip-flop U3 output pin 6, which has been high until now, to go low. As long as the K input, pin 3, of this flip-flop remains low the following sample pulses will have no effect on its output. The low output at pin 6 goes to nor gate input U4 pin 2, causing the timing cycle to continue regardless of the signal at the input. Note, however, that this happens only after 11 ms of continuous spacing signal. This means that a spacing condition must exist at the input for at least 11 ms to initiate a timing cycle. This provides protection against noise on the signal line.

The first sample pulse also loads the start element into output flip-flop U1 pin 5 and causes the counter outputs, U1 pin 9, U2 pin 5, and U2 pin 9 to step from all (ill), the reset condition, to (Hill). The second sample pulse loads the first signal element into the output flip-flop and steps the counter to LHL. This process continues for pulses three through six. At this time the last signal element has been loaded into the output flip-flop and the counter outputs are LHH. This makes both U4 pin 9 and U4 pin 10 high, so U4 pin 8 and U5 pin 9 go low. Inverter output U5 pin 8 JK flip-flop U3's K input, pin 3, go high. The next sample pulse, which loads the stop element into the output flip-flop, also causes JK flip-flop output U3 pin 6 to go high. This, together with the condition on the signal line, causes nor output U4 pin 3 to go low, stopping the clock, resetting the counter to LLL, and forcing the output flip-flop to remain in the mark condition until the next start element initiates a new timing cycle. Just add some simple level converters to make your TU, printer, keyboard, and keyer DTL compatible and you're all set to clean up distorted received

Fig. 3. Timing diagram for Fig. 2.

Fig. 4. Synchronous clock.
New FM for '71
Standard's SR-C826M

professional quality, solid state, two-way radio, designed and sold exclusively for amateur use in the United States and Canada.

Standard Communications Corp., the world's largest manufacturer of marine V.H.F. equipment, has just developed a new industrial quality, high-performance 2-meter unit. This rugged, compact transceiver is available only in the U.S. and Canada thru an authorized Standard dealer. The “826” is so compact that it makes mobile installation practical in almost any vehicle or aircraft, it becomes fully portable with the addition of Standard's battery pack.

GENERAL
Freq. Range — 143 to 149 MHz, 2 MHz spread
Supply voltage — 11 to 16 VDC, Negative Ground
13.8VDC nominal
Current Consumption — .15 amp receive standby, 2.4 amp transmit
Number of channels — 12-
Supplied with 4 channels
1) 146.94 Simplex
2) 146.34/94
3) 146.76 Simplex
4) 146.34/76
Microphone — Dynamic
Dimensions — 6½" w x 2½" h x 9½" d

Weight — 4½ lbs. max.
Frequency stability — 001% (-10 to +60°C)
TRANSMITTER
RF power output — .8 or 10 watts
Output impedance — 50 ohms nominal
Deviation — Internally adjustable to ±10 kHz min. factory set to ±7 kHz
Spurious and harmonic attenuation — 50dB below the carrier power level
Type of modulator — Phase
RECEIVER
Sensitivity — .4 or less microvolts for 20 dB quieting
Squelch sensitivity — .2 microvolts or less
Threshold — .2 microvolts or less
2 MOSFET RF Amplifiers
1 MOSFET Mixer
Deviation acceptance — Up to ±15 kHz deviation
Spurious and image attenuation — 65 dB below the desired signal threshold sensitivity
Adjacent channel selectivity (30 kHz channels) — 60 dB attenuation of adjacent channel
Type of receiver — Dual conversion superheterodyne
Audio output — 5 watts
For external speaker

$339.95 (complete as shown with microphone, built-in speaker and external alternator whine filter.)
signals and to transmit perfectly clean signals from your aging keyboard!

The Stunt Box

The stunt box is a relatively simple expansion of the repeater, requiring only a few more parts and the rerouting of a few wires. Comparing the stunt box (Fig. 5) and the repeater, (Fig. 2), we find three differences: First, the output flip-flop is now the first stage of a six-stage shift register; when the first signal element is loaded into U1 pin 5 the start element moves to U1 pin 9, and so on until after the sixth sample, when the start element is present at U6 pin 9 and the five signal elements are stored in the first five stages of the register.

Second, instead of counting out seven sample pulses with a counter, we now wait for the start element to move into the last stage of the register, causing U6 pin 8 and U3 pin 8 to go high. Now, as before, the seventh pulse samples the stop element and resets the whole works.

Third, 11 ms after the sixth pulse we find that* U5 pin 9, U5 pin 11, and U5 pin 13 are all low, allowing U5 pin 8, 10, and 12, and U4 pin 12 to go high and forcing U4 pin 11 low. Thus, we get both a positive and a negative strobe pulse which occur once each character, and at a time when the entire character code is stored in the register. This is all the information we need to decode a character.

A simple stunt box decoder is shown in Fig. 6. This decoder is set up to respond to the two character sequence ZB. When the positive strobe pulse occurs the two flip-flops sample the **nand** gate outputs U7 pin 6 and U7 pin 8. If the character in the register is anything other than a Z, U7 pin 6 will be high when strobed and U8 pin 6 will remain low. A Z forces U7 pin 6 low and U8 pin 6 goes high after the strobe pulse. If the next character is anything other than a B, U7 pin 8 and U7 pin 6 will be high at the time of the strobe pulse and U8 pin 8 will remain low. If, however, the character after the Z is a B, U7 pin 8 will go low and U8 pin 8 will go high and remain high until the next character is received. Using this decoder as a starting point, much more complex decoders can be built to respond to any number of character sequences of any length and used to set and reset latches to turn your printer, tape unit, or coffee pot on and off on command.

The Speed Converter

Now that we have taken a 60 wpm TTY signal and shifted it into a register where we have it temporarily stored, all that

Note: The asterisk () next to the signal elements indicates that U5 and U4 are used for the negative strobe pulse.
remains to be done to make it print on a 100 wpm machine is to load it into another resistor, in parallel form, and shift it out to the printer with shift pulses that occur every 13.5 ms. The hardware required to accomplish this is shown in Fig. 7.

Before a character is received U6 pin 8 and the input to the 74.2 Hz synchronous clock are low, the clock is running, and the register is shifting. But since the input to the first stage of the resistor, U10 pin 3, is held low and the output to the printer, U14 pin 6, remains high, or marking. When the start element of a character shifts into the last stage of the first register U6 pin 8 goes high and the 74.2 Hz clock stops. When the strobe pulse occurs, 11 ms later, U5 pin 10 goes high, loading the five signal elements into the first five stages of the second register. At the same time U4 pin 11 goes low, forcing a space, or start element, into the last stage of the second register. The output to the printer remains in the marking condition, however, since U6 pin 9 is holding U14 pin 4 and the input to the output nand gate at a low level. When the stop element has been sampled and the first register resets, U6 pin 9 goes high, allowing the start element in the last stage of the second register to appear at the output to the printer. At the same time U6 pin 8 goes low, restarting the 74.2 Hz clock and allowing the character to shift out of the register to the printer. As the character shifts out the register fills up with marks so that 13.5 ms after the last signal element is sent to the printer the output goes to a marking condition and stays there until the next character arrives.

To convert the 100 wpm output of the keyboard to a 60 wpm input for your keyer it is only necessary to reverse the input and output leads of the converter and switch the clock frequencies from 91 Hz and 74.2 Hz to 148.4 Hz and 45.5 Hz. Of course, the keyboard may only be operated at typing speeds up to 60 wpm, but that shouldn’t cramp the typing style of too many of us!

...K5ZBA
For UHF and VHF applications in particular, the groundplane is perhaps the most utilitarian of all antenna types. It is simple to build and offers effective performance for both receiving and transmitting. The most economical of the groundplanes is the "coathanger" type, where the elements are cut from wire coathangers or some other stiff conductor (such as 10 AWG type TW copper wire).

With a little imagination on the part of the builder, the coathanger groundplane can be made into a very professional-looking antenna.

To build up a quickie 2 meter groundplane, you'll need five coathangers, five toy plastic beads, a chassis-mounting UHF connector, and some silicone grease.

The first step is cutting. Refer to the cutting chart to determine the lengths of
the radials and the radiator, then straighten the wires and cut accordingly.

When the elements have all been cut to length, sand the protective coating from the coat hanger wires for \(\frac{3}{4} \) in. at one end of each piece. Most coat hangers are coated with a heavy varnish-like compound to retard rust and corrosion. The sanding operation removes this coating and prepares the wire to accept solder.

The beads will be affixed to the unsanded ends of the elements. The beads offer an added measure of safety and give a professional appearance to the antenna. To attach the beads, heat the unsanded end of a wire on the kitchen stove for a few seconds; then, while the conductor is still very hot, press the bead down firmly over the wire end. The heat melts the plastic of the bead so that the stiff wire bores its own hole. Now, as the wire and bead cool, the plastic bead hardens and becomes securely attached to the end of the element.

The four screw holes in the chassis UHF connector will be the “solder lugs” for the radials. Using a pair of long-nose pliers, bend a “U” in the sanded end of each of the four longer pieces. (The shorter piece is the upright radiator, and requires no bend.) Allow no more than \(\frac{1}{2} \) in. for each bend, and be sure to keep each piece the same length.

Hook each bend into the UHF connector as shown in the sketch on the preceding page, then compress the joints with pliers. Try to keep each radial positioned so that it maintains a 90-degree interval from adjacent elements.

Before soldering, adjust the positions of the radials precisely so that a symmetrical cross is formed by looking directly down onto the antenna from the top. Then solder all connections with a heavy iron or gun. The chassis connector requires a considerable amount of heat to keep the solder flowing, and insufficient heat will mean cold solder joints.

When the radials have been soldered, insert the shorter upright piece into the “center conductor” soldering point of the chassis connector. Twirl the radiator in the tube as you solder to make sure it is tinned completely, but don’t allow excess solder to build up to the point where it exudes onto the dielectric. The characteristic impedance of the connector is determined by the dielectric material as well as the radial distance from the center conductor to the shield. If this distance is shortened in any way—as from a blob of solder—the characteristic impedance will be lowered and a mismatch will result.

When the joints have cooled, carefully bend the radials downward about 30° from the horizontal. This will lower the radiation angle of the antenna and will result in a better match for a 50Ω input impedance. Spread a generous amount of silicone grease over all connections to prevent corrosion and minimize the chance for water entry.

That’s all there is to it; the antenna is ready to use. And in appearance, it’s “just like downtown.”

If you’re thinking of building up this antenna to use in conjunction with a repeater or remote installation, there’s one other trick of interest: Mount the thing upside down! Of course, this type of an installation would not be beneficial at all in run-of-the-mill applications, but it could mean the difference between “hearing” and “hearing nothing” on a mountaintop. The groundplane characteristically has a very high angle of radiation. This problem is not too evident when the antenna is put into service in the lowlands; but when it is part of a mountaintop station, a high angle of radiation gets less and less tolerable. By mounting the groundplane so that the vertical radiator is suspended, the angle of radiation can be put to work for you. Try it! It really works!

. . . K6MVH •
To operate any radio equipment, whether transmitting or receiving, you’ve got to have power — and it has to be just the right kind. While receivers can get by with a mere thimbleful of energy, transmitters have healthy appetites. The more potent the signal output, the greedier the rig’s gulps of power.

So every different kind of equipment has its own power requirements, and the result is that the art of providing the proper power structure to keep a station simmering isn’t as simple as might be expected.

Like all other aspects of radio theory, the FCC expects its licensees to be familiar with the theory of power supplies, and devotes a number of questions in the General examination to that subject. This time around in our study course, we’re going to take a look at them. The specific questions are numbers 2, 10, 12, 18, 26, 28, and 34 on the official study list:

2. Of what use is a bleeder resistor in amateur equipment?
10. What is meant by the ripple frequency of an ac power supply voltage?
12. How does a zener diode operate and of what use is it in amateur equipment?
18. How do electrolytic capacitors operate and why are they widely used in power supply circuitry?
26. Why is a center tap return connection employed on the secondary of a transmitting tube’s filament transformer?
28. Describe ways of equalizing the reverse voltage drops across series connected silicon diodes.

34. How does an ac power supply produce a dc voltage? Distinguish between a choke-input and a capacitor-input filter and compare their operating characteristics. What is dynamic regulation and how can it be improved? How do the output voltages of a full-wave center tapped and a full-wave bridge rectifier compare?

Following our usual practice, we’ll recast these questions into more general ones which will, we hope, cover the subject more completely.

For openers, we’ll try to learn “How is ac converted to dc?”. We can then address ourselves to the question, “How is our new dc made usable?” and find out how filters operate. Next, we will ask “How is power supply performance rated?” to gain some definitions of necessary terms. Finally, we’ll see “How can power supply performance be improved?” and look into methods of regulating voltage and current.

How is AC Converted to DC? Most electronic equipment operates from direct current. FCC rules require “pure dc” for the plate supply of any transmitter operating below the VHF region, and good operating practice requires it up into the microwaves. Yet dc of the proper voltage and power level doesn’t come out of the wall outlet on demand. We must have circuits which take the ordinary ac available in any home, and convert it to the required dc. Such circuits are known as “power supplies,” and they’re the subject of our discussions in this installment.
In general, any power supply is composed of three distinct functions as shown in the block diagram of Fig. 1. These are (1) the voltage-determining portion, (2) the rectification portion, and (3) the filter. Operation of each depends upon the characteristics of the other two, yet many choices are possible for each block of the circuit.

The voltage-determining portion usually consists of one or more transformers which step the household ac from its 115 or 230V value up or down as required. For most power supplies, a step up is necessary, although filament supplies normally involve a step down.

The amount of step-up required depends both upon the desired output voltage and the rectifier arrangement, as well as upon the type of filter employed. The transformer itself, however, is essentially the same as those employed for impedance matching and examined in our previous installment, except that power transformers need operate at only one frequency and so are somewhat simpler to design.

The stepped-up ac goes from the voltage-determining block to the rectifiers, and there's where wide choice comes into play. At least three different rectifier arrangements are in common use with single-phase power supplies; all three are shown in Fig. 2.

The half-wave rectifier is the simplest of the three, but is also the least efficient since it throws away half the ac cycle. This circuit is seldom used for circuits which are intended to deliver any appreciable amount of power, although it finds frequent application in bias supplies and other low-current uses.

The center tapped full-wave rectifier is probably the most commonly used circuit. While it requires a center tapped transformer capable of supplying twice the voltage desired at the output, it makes full use of the input ac cycle and places no severe demands upon any circuit components. When virtually all rectification was accomplished by vacuum tubes or mercury-vapor bottles, this circuit was almost universal.

The full-wave bridge rectifier, like the

![Fig. 1. Any power supply must include these three functions. Voltage is usually determined by transformer, which may step input ac either up or down. Vacuum tubes require step up, usually, while transistors require step down. Rectifiers change ac output of voltage-determining function into pulsating dc, and filter smooths out the ripple in the rectifier output to produce "pure dc."

Fig. 2. These three circuits represent the only rectifier hookups in common use. Half-wave circuit is used only in ac/dc receivers and extremely lightweight gear. Full-wave center-tap circuit is functionally just two half-wave circuits back to back, with transformer providing two-phase ac. Bridge circuit uses four diodes, but steers ac input through to output without need of transformer while retaining full-wave advantages.](image-url)
centertapped circuit, makes full use of the input ac cycle, but with some rather significant differences. The centertapped circuit is, essentially, just a pair of half-wave circuits of opposite phase operating in parallel. The bridge, however, is a completely different kind of circuit, in that its diodes “steer” the incoming ac in the proper direction so that it always comes out at the same output terminal regardless of the input terminal it entered.

Because of this steering effect, the bridge does not require a double-voltage transformer. If used with the same transformer as a centertap full-wave circuit, the bridge will produce twice the output voltage—and this arrangement is often used to produce a 100W power supply operating from ordinary TV-replacement power transformers.

The bridge circuit does, however, place additional requirements upon some of its diodes, which limit its attractiveness if tube-type diodes are to be used. Full output voltage appears between cathodes and filaments of the “off” diodes; most tube-type diodes are not rated for this stress. With solid-state rectifiers, though, the bridge is not limited by this difficulty—and since the advent of silicon rectifiers, the bridge circuit has gained wide popularity.

All three of these rectifier circuits involve diodes, which are electronic one-way valves. Diodes come in three major flavors, with subflavors in some cases. They may be high-vacuum tubes, of either high, medium, or low impedance; mercury-vapor tubes; or solid state, such as silicon, germanium, or selenium stacks.

Tubes are used when extremely high reverse voltages are involved, but in many new designs only solid-state diodes are employed.

Tubes are usually rated for maximum direct current per plate, maximum peak current per plate, maximum peak inverse plate voltage, and maximum rms supply voltage per plate.

Solid-state diodes may be rated for peak inverse voltage (PIV), rms supply or input voltage, average forward current, peak one-cycle surge current, peak forward current, forward voltage drop, and thermal resistance. Of all these, the most important are those which correspond to the tube ratings: PIV, average forward current, and peak one-cycle surge current.

PIV is the maximum voltage which can be applied “in reverse” to the diode before it breaks down and permits current flow “against the stream”; when exceeded instant destruction of the diode usually results. If the diode is connected to a capacitor, diode PIV should be at least twice the peak value of applied ac voltage; otherwise, PIV should be at least equal the peak of the applied ac.

Two or more diodes can be connected in series to increase their PIV ratings, provided that equalizing resistors are connected in parallel with each as shown in Fig. 3. These resistors assure that each diode gets only its share of the applied voltage; otherwise, most of the voltage would appear across the diode with highest back resistance.

Average forward current is the maximum current which the diode can pass without overheating, on a steady basis.

Peak one-cycle surge current, usually at least 10 times greater than average current,
is the maximum current which can be tolerated on a “one-time” basis without destruction of the unit. Surges occur each time the power supply is turned on, as the filter capacitors charge, and if this rating is ignored with semiconductors, diodes will behave like expensive (and rapid) fuses every time.

While surge current limitations appear more often in connection with solid-state diodes, they apply to all rectifiers. However, tube-type diodes normally have such high internal resistance that they automatically limit themselves to surge currents too small to cause damage. Solid-state diodes, on the other hand, have much less internal resistance and at the same time are much more prone to damage by surges. For this reason a current-limiting resistor capable of holding maximum current within the “surge” rating even in case of a dead short should always be included in series with solid-state diodes as shown in Fig. 3.

Regardless of the type of rectifier used, the output of the rectification part of the power supply is dc rather than ac. This dc is, however, not yet usable because it is “pulsating” rather than “pure.” The waveform of the dc at this stage, were it to be fed into a resistive load, would look like Fig. 4 which shows both half-wave and full-wave rectifier-output waveforms. The continual change in level of this power makes it unusable for our purposes; that’s why our power supply contains the final block, the filter.

How is Our New DC Made Usable?

When our dc emerges from the rectifier circuit, it’s pulsating as shown in Fig. 4, and cannot be used. The filter circuit evens out the voltage and current waveforms, turning it into “pure” dc required by FCC regulations.

Filters are composed of capacitors and inductors, with the capacitors being connected in parallel with the output of the power supply, and the inductors in series. This arrangement makes possible two different layouts for the filter’s input circuit, as shown in Fig. 5. Either the series

![Choke Input Filter](image)

![Capacitor Input Filter](image)

Fig. 5. These schematics show the two types of filter circuits most often encountered in ham equipment. Choke-input filter produces better regulation but lower output voltage; capacitor-input filter is harder on diodes and transformer but produces higher output voltage. Capacitor input is widely used at low power levels but choke input is almost exclusively employed at high power.

Regardless of the type of rectifier used, the output of the rectification part of the power supply is dc rather than ac. This dc is, however, not yet usable because it is “pulsating” rather than “pure.” The waveform of the dc at this stage, were it to be fed into a resistive load, would look like Fig. 4 which shows both half-wave and full-wave rectifier-output waveforms. The continual change in level of this power makes it unusable for our purposes; that’s why our power supply contains the final block, the filter.

How is Our New DC Made Usable?

When our dc emerges from the rectifier circuit, it’s pulsating as shown in Fig. 4,
The voltage across the capacitor follows waveform B; from point B1 to B2 the capacitor is charging, and from B2 to B3 it is discharging. Current through the diodes, however, flows only during the time from B1 to B2 because the transformer voltage is less than the capacitor voltage for the
remainder of the cycle, so the rectifier current waveform follows that shown as C. With very little current being drawn, the discharge portion of the capacitor-voltage waveform (that from B2 to B3) becomes almost horizontal, and the entire waveform shown at B rises toward the peak of the rectified waveform. Waveform C then becomes smaller and smaller, until it disappears at the limit of zero load current, with output voltage becoming equal to ac peak input voltage.

Under heavy current load, the discharge curve (B2 to B3) steepens, pulling the entire waveform toward the “zero” line and increasing the amplitude and duration of the pulses in waveform C. These current pulses eventually become so large as to limit the performance of the power supply. The ac component remaining in waveform B is known as the “ripple” frequency of the power supply, and is determined by the timing between voltage peaks in waveform A. In a half-wave circuit, the ripple frequency is the same as the frequency of the input ac, while in a full-wave circuit, the ripple frequency is twice that of the ac

Fig. 7. Waveforms found in choke-input filter are very different from those of capacity-input circuit. Input choke maintains current through diodes essentially constant, so capacitor voltage does not vary widely between light (solid) and heavy (dashed) load conditions. With half-wave rectifier, output voltage would be only half as great as with full-wave; this difference does not show up nearly so much with capacitor-input filters.
input. Amplitude of the ripple is determined by the peak-to-peak excursions of waveform B, and so depends upon the current being drawn from a capacitor-input filter — the less the current drain, the lower the ripple amplitude!

In the capacitor-input filter, then, we have seen that current is drawn through the rectifier circuit only when the transformer voltage exceeds the capacitor voltage, and as a result flows in pulses.

The choke-input filter's waveforms are shown in Fig. 7. Again, waveform A merely repeats the full-wave ac waveform in the absence of any filter.

Since the inductance of the choke acts to oppose any change in current flow through the choke, it will tend to keep current flow out of the rectifier circuit steady, as shown in waveform B. This in turn provides a steady flow of current into the rest of the filter circuit, which produces a steady level of voltage across the output, as shown at waveform C.

Waveforms B and C are obtainable only with "perfect" chokes, and in practice, some ripple will be present just as in the capacitor input filter waveforms. This ripple is due to changes in the inductance of the choke as current flow through it changes.

Whether the choke or the capacitor appears first, the combination of a choke in series and a capacitor in parallel is called a "filter section" and most practical power supplies use at least two sections of filtering in order to reduce ripple to the desired low values. Occasionally, in receivers, the choke will be omitted from the second section, to produce a "pi-section" filter composed of two capacitors separated by a choke.

In addition to the chokes and capacitors, every power supply should include a bleeder resistor across its output.

One of the most important purposes so far as the individual user of the equipment is concerned is safety; the bleeder provides a path for eventual discharge of the filter capacitors, so that they cannot retain their possibly lethal charge for indefinite times. This, though important for safety, is not the primary reason for including the bleed-er resistor, however — mere danger does not justify the expense of the components, nor the power required by their presence.

The electrical purpose of the bleeder resistor is to establish a minimum load upon the power supply, which will maintain current flow through the filter circuit at or above a certain critical level. This is necessary because the inductance of the chokes in the filter varies with the current through them; by maintaining a minimum current at all times, smaller values of inductance may be used.

Whether the filter uses choke or capacitor input, both the inductance and capacitance values required are very large in comparison to those required for radio-frequency circuits. Inductance values are usually measured in henrys rather than millihenrys or microhenrys, and capacitors are in the range from 2 to 200 microfards. These large reactive elements are necessary both because the ripple frequency to be filtered out is low (120 Hz is the highest ripple frequency normally encountered in power supplies operating from commercial ac power), and the energy drain is high, which forces the circuit to operate at a low impedance level.

To achieve the high inductance values, "swinging" chokes are often used, particularly in choke-input filters. When a swinging choke is used, the value of the bleeder resistor becomes a critical item in filter design.

A swinging choke differs from an ordinary inductor in that it has a smaller-than-normal air gap in its core. This smaller air gap permits the choke's inductance to fluctuate as current through its winding varies; with low current, inductance is high, and as current increases, inductance drops. Typical swinging chokes vary over a 10-to-1 inductance range through their rated current range. Only enough copper and iron are necessary to provide the minimum inductance, in this design, which gets by because high inductance is necessary only at low current levels.

No such trick is available to help cut the cost of capacitors — but fortunately a special type of capacitor exists, which finds wide use in power supply circuits. Like all
capacitors, it consists of two conductors separated by an insulating dielectric, but in this case the dielectric is a film of metal oxide formed chemically on the surface of one of the conductors, while the other conductor is the chemical solution which forms the oxide layer. Such a unit is called an electrolytic capacitor.

An electrolytic capacitor provides more capacitance in a given space and at a lower cost per microfarad than any other type, but it has several disadvantages which partially cancel this advantage. Since the capacitor is literally formed by the action of direct current upon a chemical solution, it can be used only on dc; any ac in the circuit must be kept small in relation to the dc present, or the capacitor will be shorted out. All electrolytics depend upon internal moisture for their action, even though they may be called "dry." The "dry" means merely that all the moisture stays inside, in contrast to early designs called "wet" which had grave tendencies to drip electrolyte all over everything.

In addition, the highest voltage rating seldom exceeds 500V peak, and any voltage in excess of this can cause instant punch-through. The resulting arc does two things immediately: it dries out the capacitor and vaporizes the chemical. A few milliseconds later, the former capacitor is a mess of sticky goo all over the interior of a once-clean chassis.

Unlike other capacitors, electrolytics have rather high leakage current ratings. This may be as much as 1 mA for every 4 mF of capacitance, but varies widely with temperature, age of the individual capacitor, operating voltage, and many other factors. The need to maintain polarization and the high leakage are the two factors which restrict electrolytics' main applications to power supply filters.

Electrolytics are manufactured in an assortment of voltage ratings from 3V up to 525V (working ratings, with surge voltages of up to 10% higher permissible), and in capacitances from 1,000,000 microfarads (yes, that’s one full farad) down to as small as 2 mF. In general, the high capacitance values are obtainable only at low voltage, and vice versa. Typical units
found in most power supplies range from 8 to 50 mF, at 350 to 450V. For low-voltage supplies, typical values might be 1000 mF at 15V.

When voltage is first applied to an electrolytic capacitor, leakage current is very high. The current "forms" the dielectric film, however, and leakage drops rapidly. This ability to form a new dielectric gives this capacitor a "self-healing" characteristic in case of momentary overvoltage, provided that the overvoltage doesn't start an arc which prevents the healing action.

Electrolytics are manufactured by wrapping an aluminum foil sheet and an electrolyte-soaked cathode material together, and applying dc with carefully limited current until the dielectric film is formed. The film tends to dissolve when the capacitor is idle, but usually re-forms when power is applied unless the power surge is too great and causes overheating. For this reason, it's advisable to keep power supplies in operation intermittently when equipment is to be shut down for extended periods of time, or alternatively to carefully re-form the filter capacitors before applying full voltage again.

How is Power-Supply Performance Rated? Performance of a power supply, like that of any other item of electronic equipment, can be measured only by comparison to known standards. The process of making such comparisons amounts to "rating" the performance of the supply.

Some of the obvious factors involved in such a rating are the output voltage and output current available from the supply, as well as the input voltage and current required. Not so obvious, however, are some nevertheless important factors, such as "regulation" and "ripple content" of the supply's output.

Let's start this discussion by defining our terms. Then we'll be in a position to find out how to fit values into the phrases, or interpret them should we encounter a statement such as, "This circuit offers a high degree of regulation but cannot tolerate input voltage variations."

One of the major terms, and unfortunately, one with many contradictory meanings — is "regulation." All of its
meanings deal with changes of output voltage from a given power supply, but that’s about all they have in common. A highly regulated supply maintains fairly constant output voltage, and a supply with poor regulation has an output voltage which can be expected to vary widely — but just what makes the output vary isn’t too clearly defined.

One of the meanings often attached to “regulation” is a measure of the change in output voltage as the input ac voltage is varied. For instance, if a supply is designed to operate with 115V ac input and produces 250V dc output, then we mean by “static” what we mean by “contradictory,” since we’ve given an example of a well-regulated supply which is poorly regulated (for load changes).

Compounding the situation is the addition of adjectives to the word “regulation,” to create such phrases as “static regulation” and “dynamic regulation.”

While the phrase “dynamic regulation” appears in the FCC study list as something you are expected to be able to define, we have not been able to find any mention of this phrase in the standard engineering texts and references, such as Terman’s “Fundamentals of Vacuum Tubes,” the “Radiotron Designer’s Handbook,” “Electronic Designer’s Handbook” by Landee, Davis, and Albrecht, or “Reference Data for Radio Engineers,” all of which have extensive sections on power supply design and measurements. Neither could we find the phrase in three separate editions of the ARRL “Radio Amateur’s Handbook,” or two editions of the Editors and Engineers’ “Radio Handbook.” This makes it a bit difficult to provide a guaranteed definition of the phrase!

Some authors have attempted to separate the sometimes-contradictory meanings of “regulation” by attaching “static” to indicate changes caused by changes in input voltage, and “dynamic” to indicate changes due to variations in current drawn. The idea is that input-voltage variations are likely to occur more slowly, and to persist longer, than are current variations caused by circuit operation, thus justifying their being called “static” and using “dynamic” for the more rapidly varying current changes.

This does not, however, remove all confusion, because the idea of a “static change” is in itself a contradiction. And at least a few stubborn souls have reversed these conventions as well, using “dynamic” to mean input-voltage changes and “static” for changes of load.

Another meaning possible for “dynamic regulation” involves the reaction of the power supply to a rapidly changing load such as that produced by a class B modulator or an SSB final. Many supplies which exhibit good regulation under conventional testing go wild under such rapidly changing loads, because they are unable to keep up with the changes. In this context, static regulation would be that measured by imposing various loads for relatively long times while making measurements, and dynamic regulation would be that shown in action under loads which were continually changing — and this is probably the context meant by the FCC.

While we’re compounding the confusion, it must be brought out that “regulation” as a general property of a power supply is one thing, confusing though it
may be—but "regulation" as a factor to be measured is something else. In the U.S., engineers measure power supply regulation in percent, and the regulation percentage is defined as the ratio between the difference of unloaded and loaded voltage, and the loaded voltage, all times 100. That is, a supply which delivers 250V without load, and 225V when loaded, has a regulation percentage of (250-225)/225, times 100, or 25/225 times 100, or 11.1%.

Regulation percentage doesn’t necessarily mean the same thing everywhere. In other countries, it's sometimes figured as the difference over the no-load voltage, which would make that same example come out to 10% rather than 11.1, and occasionally it’s figured as the loaded voltage over the no-load value, or 90%!

In short, about the only thing you can be certain of when the word “regulation” is used is that changes in the output voltage of a power supply are being discussed.

Hand-in-hand with regulation, but fortunately with much more precise meaning, is the term "output impedance" as applied to a power supply. The output impedance of a power supply is defined as the no-load voltage minus full-load voltage, divided by full-load current, and is expressed in ohms. If the power supply we used as an example to show the confusion possible with "regulation percentage" achieved that performance with a 100 mA current drain at full load, its output impedance would be 250-225 or 25V divided by 0.1A, or 250Ω.

The importance of the "output impedance" is that the power supply acts to any external circuit just like a short circuit in series with a resistor of the corresponding value. If 10 mA is drawn through a 250Ω resistor, the resulting voltage drop is 2.5V. Similarly, if 10 mA is taken from our example supply, the voltage should drop 2.5V from its no-load value, or to 247.5V.

Output impedance is especially important with regard to both "static" and "dynamic" regulation in the final context we examined. In both cases, good regulation demands low output impedance—well below 100Ω in most cases.

“Ripple frequency” is a term we’ve already met, as is “ripple amplitude.” Ripple amplitude is usually specified as a percentage of ripple, which is the ratio of the peak-to-peak value of the ripple component only compared to the average value of the dc output voltage. A more meaningful way to rate ripple is directly in terms of peak-to-peak ripple voltage and frequency. In some cases, any ripple voltage over a microvolt or so is too much; in others, as much as 25 to 30V peak-to-peak of ripple may be acceptable. It all depends on what the resulting dc is to be used for.

Usual values of ripple percentage range from 0.1 to 5%; most charts for filter design appearing in the handbooks are calculated for 5% ripple, but if two sections of filtering are used the result will be 5% of 5%, or 1/4 of 1%, ripple.

Now that we have our terms defined, we can turn our attention to the performance factors to which they refer. The major factor is, as one might expect since it is surrounded by the most confusion, “regulation.” Ideally, a power supply should produce an output voltage which is constant, regardless of changes in either input voltage or load. This would be perfect regulation, or “zero” output impedance, and in general it cannot be achieved. But it can be attained over a surprisingly wide range of load currents, by use of some special circuitry we’ll examine shortly.

Unless special regulator circuits or components are used, however, the regulation of the supply must necessarily be less than perfect. Just how much less depends upon the entire design of the supply. A choke-input filter provides better regulation over its range of operating current than does a capacitor-input one, but requires a higher-voltage transformer to achieve the same output voltage. Large filter capacitors produce better dynamic regulation than do small ones (it’s difficult to get too large an output filter capacitor; 500 mF still leaves room for improvement on a 500V supply!) but may produce more loading of the transformer and rectifiers, and at any rate are more costly. A comparison of the output regulation for choke-input and capacitor-input filters appears as Fig. 8, and dynamic regulation of small and large
output filter capacitors is illustrated by Fig. 9.

If better performance than that shown in Figs. 8 and 9 is necessary, then a fourth block must be added to Fig. 1—a regulator circuit.

How Can Power Supply Performance Be Improved? When the utmost in performance is required from a power supply, some form of regulator circuit is usually included between the filter and the output terminals.

Regulator circuits may be as simple as a gas-tube (VR tube or neon bulb), or more complex than many communications receivers. They may regulate the output voltage, the output current, or both. They may guard against changes in output with changes in load, with changes in input voltage, or both. In general, a wide choice of regulators is available.

The simplest voltage regulator for many purposes is a simple neon bulb. The neon gas which provides the bulb’s glow has an unusual characteristic of maintaining constant voltage, regardless of current (within limits, of course) through it. In most cases, this is about 55V. A resistor must be

![Fig. 8. This graph compares output voltage at various load currents for a typical power supply using (a) capacitor input filtering and (b) choke input filtering, with all other factors held constant. Note that minimum current drain is necessary in order to pull voltage of choke-input filter circuit down into "regulation" region, and that capacitor-input voltage is always higher than that from choke-input circuit.](image1)

![Fig. 9. These waveforms illustrate the meaning of "dynamic regulation" more effectively than could many many words. The graph shows static regulation of the test supply, which remained the same for any value of output filter capacitor. Waveform A shows the transients which appeared on the power lead when full load was suddenly applied with 2 mF output capacitance, and B shows removal of load. C and D are the same, application and removal of full load, but with 90 mF output capacitance.](image2)
placed in series with the bulb, to limit the current through it to the maximum for which the bulb is rated, as shown in Fig. 10. Output voltage remains constant at the bulb’s “maintaining voltage” from zero current drain up to the point at which the current drain through the resistor reduces voltage below the maintaining level and the bulb goes out. So long as the bulb glows, output voltage is regulated.

The familiar VR tube is simply a variation of the same principle. A mixture of argon, neon, and xenon gas is used, and the electrodes in the tube are shaped to permit higher current operation, but the circuit remains the same. VR tubes come in ratings of 75, 90, 105, and 150V, and may be series-connected to produce additional values.

The semiconductor equivalent of the neon bulb or the VR tube is the zener diode. Any silicon diode operated beyond its PIV rating will exhibit the same constant-voltage effect, but zener diodes are especially processed to improve their performance, and to bring the PIV rating down to lower levels. Zener diodes are available to regulate voltages from 3.9 to 150V, and capable of dissipating anywhere from 0.1V to 50W or more of heat while doing so. Like VR tubes, they can be series-connected for “oddball” voltage values, and both VR tubes and zener diodes can be connected in the same series string if need be to achieve some unusual level.

Regulation of these devices is much better than that attained from a bare power supply, but is far from perfect. Output voltage across a VR tube may vary as much as 2V from the full-load to the no-load condition, which is nearly 3% variation for a 75V tube. While this is better than triple the regulation of many bare supplies, it’s not good enough for many purposes.

When better performance is required, the electronic regulator becomes necessary. This circuit, in general, combines a voltage reference source, an amplifier, and a control device (series pass vacuum tube or transistor in most cases), to continually compare the output of the power supply with the reference, and to change the output in such a direction as to drive the difference between output and reference toward zero.

Fig. 11 shows the block diagram of a typical simple regulator, while Fig. 12 shows a simplified version of the schematic (omitting such things as rf chokes, parasitic-suppression resistors, bypass capaci-
tors, etc., which are required in practical regulators).

In this circuit, the voltage reference is a VR tube. Its regulation is much better when used as a reference, however, than when used directly as a regulator, because the load current on the reference remains constant. When near-perfect performance is required, special voltage-reference tubes guaranteed to maintain voltage within a fraction of a percent of rated levels are available.

The amplifier is a bit unusual in its hookup, because it must do the job of comparing output voltage with the voltage reference. In Fig. 12, it does so because the

![Fig. 12. Simplified schematic of regulator shown in Fig. 11. This circuit omits such items as parasitic suppressors, bypass capacitors, etc., to emphasize those parts which do the job of regulation.](image)

output voltage is connected to the amplifier's grid and the reference voltage is connected to the cathode. This "clamps" the cathode permanently to the reference level.

So long as the output voltage is higher than the reference voltage, the grid of the amplifier is positive with respect to the cathode and the amplifier tube conducts heavy current. This causes a large voltage drop across the amplifier plate load resistor, and as we shall see shortly this in turn reduces the output voltage.

When the output voltage drops below the reference voltage, the difference between output and reference becomes the grid bias voltage for the amplifier, and plate current becomes less heavy. Output voltage rises. As output rises, the amplifier's bias decreases, which makes the amplifier draw more current and pulls down the output voltage. The output level thus stabilizes at whatever point produces an amplifier bias level capable of producing exactly the same output level. This is negative feedback in action, or what engineers call a "servomechanism."

The control device is an ordinary power tube or transistor. Fig. 12 shows a triode tube; tetrodes or pentodes require some special complications to keep the screen voltage at the right level. You can view the control tube as being a cathode follower, in which the cathode voltage "follows" the voltage applied to the grid, or you can look at it as being a variable resistance which forms the upper leg of a voltage divider, with the lower leg being composed of the load connected to the power supply.

The plate of the amplifier is connected directly to the grid of the control tube, so that whatever voltage appears at the amplifier is reproduced (except for a small offset voltage established by the tube's operating grid bias requirements) at the control-tube cathode, which is the output terminal of the circuit.

Now let's imagine that we have such a circuit, with all tubes warmed up and the VR tube glowing at a fixed voltage of +90V, but no power supplied to the amplifier and control-tube plates.

When we first apply power to the plates, the output voltage of the supply is zero, so the amplifier grid is effectively grounded. With the +90V from the reference applied to its cathode, the amplifier tube is effectively cut off and no current flows in its plate circuit. The voltage drop through the load resistor is thus zero, and full plate voltage is applied to the amplifier plate and the control-tube grid.

This full plate voltage is reproduced at the output terminal - but in order to rise from zero, where it started, to the full-voltage level, the output terminal must pass through every intermediate voltage level on its way, and as it does so this changes conditions inside the regular circuit in such a manner that the output voltage never climbs higher than the desired regulation point.
Until output voltage approaches the VR-tube voltage, nothing much happens. As soon as the difference between output voltage and reference voltage is smaller than the cutoff voltage for the amplifier tube, though, current begins to flow through the amplifier tube, and this current flow through the amplifier load resistor reduces the voltage at the amplifier plate and control-tube grid. Remember that the output voltage of the regulator can never be higher than the voltage at the control-tube grid.

As output voltage continues to rise, the difference between output and reference voltages continues to decrease, reducing the grid bias on the amplifier and thus increasing current flow through the amplifier load resistor. This increased current flow reduces the voltage at the amplifier plate and control-tube grid, and so reduces the upper limit to which output voltage can rise.

This action continues until the control-tube grid voltage and thus the output voltage is reduced to the point at which difference between output and reference voltages is exactly right to maintain current flow through the amplifier at a level which will hold the control-tube grid voltage at that same point. Any additional rise in output voltage would then cause a fall in control-tube grid voltage, pulling output voltage back down, and so the action freezes.

The output voltage at which this freeze occurs depends upon the characteristics of the specific tubes used in the circuit, but is always a few volts lower than the reference voltage.

When a load is connected to the power supply output, the load current must flow through the resistance established by the control tube, and this increased current flow will cause output voltage to fall slightly. However, as soon as output voltage begins to fall, the difference between output and reference voltages increases, which means the the amplifier’s grid bias increases and less current flows through its load resistor. This raises the voltage applied to the control-tube grid, which increases output voltage until the original level is
IS IT EASY TO LEARN THE CODE?

Frankly, no. Neither was it easy to learn how to read without two things: Proper instruction, and practice. CODEMASTER tapes, proven in over five years of sales of thousands of tapes all over the world, give you that essential instruction. No other teaching system offers you a more proven method, more accurate sending, more complete guidance. Select your CODEMASTER tapes below!

CM-1: For the beginner, a complete course of instruction is on the tape. Practice material at 5, 7, 9 WPM. Prepares you for Novice exam. Includes code groups and punctuation.

CM-1½: An intermediate tape, especially for General Class exam study. No instruction; just practice. ½ hr 11 WPM; 1 hr 14 WPM; ½ hr at 17 WPM. Includes coded groups and straight text.

CM-2: For Extra Class license study. Mostly straight text, some code groups. 1 hour at 20 WPM, ½ hour at 30 WPM. For real GRO, play this tape at twice speed.

CODEMASTER tapes are 2-track monaural; available in two styles: 7 inch reel (3% IPS) and cassette. Be sure to specify both the program (CM-1, etc) and the style (reel or cassette). Any tape, $6.95 postpaid USA 4th class. Any two tapes, $13.00; all three, $17.00 PPD. For air shipment in USA add 50¢ per cassette or $1.00 per reel. Immediate delivery. Mastercharge and BankAmericard honored; give us your account number. CODEMASTER tapes are made only by Pickering Radio Company, P O Box 29A, Portsmouth, RI 02871. See your dealer or order direct. Satisfaction guaranteed.

restored. Action occurs so rapidly that the change in output level is usually not detectable — but the change must occur in order for the circuit to detect and correct it.

If the power supply load requires additional current, the same thing happens — whenever current drain from the output terminals tends to pull output voltage down, the control tube’s grid voltage is automatically increased just enough to bring it back up again. If the current taken from the supply is reduced, the action works in reverse. Any tendency of output voltage to rise above the established “regulated level” causes the control-tube grid voltage to be reduced, pulling output level back down. The action is effective over a wide range of current. Only when the original supply is unable to deliver enough current, or the control tube is unable to pass it, can the output voltage fall.

A regulator circuit such as this normally acts to reduce ripple in the output, as well as to clamp voltage level constant regardless of variations in load current, because any ripple which gets through is also detected as a variation in output voltage, and is canceled just as is any other output-level change.

A regulator circuit of this type acts to improve both the static and the dynamic regulation of the supply, and reduces output impedance of the supply to nearly zero.

A number of changes are possible to the basic circuit, which permit a circuit designer to choose any type of action he may desire. For instance, he may retain good static regulation and low dc output impedance, while deliberately introducing poor dynamic regulation and high ac output impedance, by placing low-pass filters in the amplifier circuit so that rapid changes in output level cannot cause changes in control-tube voltages, and so cannot be canceled. The simplest such low-pass filters are bypass capacitors from grid to cathode on both amplifier and control-tube stages. However, some bypassing is necessary to prevent oscillation, and so it’s not safe to assume that the presence of capacitors at these points means that the designer has

DOES DAYTON HAVE THE WORLDS LARGEST HAMVENTION? YES!
20th Anniversary 24 April 1971
DAYTON HAMVENTION Wampler’s Hara Arena
Technical Session • Exhibits • Ladies Program • Hidden Transmitter Hunt
Flea Market • Awards • Banquet
Dept: S Box 44, Dayton, Ohio 45401

MARCH 1971
chosen to degrade dynamic regulation.

Another modification which can be made permits the output impedance of the power supply to be made exactly zero, or even to be made negative. When output impedance is zero, a change in load current makes no change at all in output voltage. When output impedance is negative, output voltage actually climbs as current is drawn, and drops as current demand increases.

To achieve these effects, the designer need only include a low-value current-sensing resistor in the negative lead of the circuit, as shown in Fig. 13, and return the negative end of the reference voltage source to the load side of this resistor while returning the voltage-sampling network to the regulator side.

As load current increases, the voltage across this current-sensing resistor also increases, and this change is added to the reference voltage "seen" by the amplifier. In effect, the reference voltage to which the output level is clamped is made to increase as load current increases, and the automatic clamping does the rest.

The size of the current-sensing resistor determines whether output impedance is zero or negative. The smaller the resistor's value, the less its effect. With a very low value, the effect can be made just enough to cancel the positive output impedance of the rest of the circuit, giving a net output impedance of zero. With higher values, output impedance becomes negative.

Figure 13 also introduced the "voltage-sampling network," which is simply a voltage divider connected across the output of the supply, with the amplifier grid or base connected to its midpoint. This network permits output voltage of the supply to be higher than the reference voltage, because it establishes the voltage fed to the amplifier as a fixed fraction of actual output voltage, and the regulator circuit actually clamps the voltage fed to the amplifier at the reference level.

For example, with a 90V reference source and a sampling fraction of 2/3, the regulator would hold output voltage at something less than 135V. If the bias requirements of amplifier and control stages introduced a 10V offset, so that the circuit would clamp amplifier-input-voltage level to 80V, then output would be 120V (2/3 of 120 being 80).

To change the output voltage of this supply to 200V, all that would be necessary (if unregulated input voltage were 300V or above as noted below) would be to change the ratio of the resistors in the sampling network so that the sampling fraction changes from 2/3 to 2/5. Now, when output is at 200V, 2/5 of this output, or 80V, is applied to the amplifier, and action is just the same as before.

In practice, most regulated supplies use such sampling networks, and include a potentiometer at the junction point to

![Fig. 13. Modifications to regulated power supply include voltage sensing network which permits output level to be higher than reference voltage, and series current-sensing resistor which allows output impedance to be reduced to (or even below) zero ohms.](image)

![Fig. 14. Current regulator circuit uses two resistors, one zener diode, and a single transistor to regulate current to some maximum value set by design, over entire range from short-circuit to open-circuit load conditions. Naturally, design current cannot be made to flow through open circuit, but regulator assures that regulating level is never exceeded, and is achieved if input voltage is high enough to force that much current through load resistance.](image)
permit variations of the actual output level by permitting small changes in sampling fraction. Some supplies have a wide adjustment range, while others permit only a narrow margin.

Note that a regulated supply of this sort requires an unregulated input voltage considerably higher than the desired output voltage. This additional voltage is necessary in order to provide operating voltage for the control device, and represents "wasted" power so far as the external load circuit is concerned. Current capability of the regulated supply is also limited by the control device. These two disadvantages are the major reasons why regulated power supplies are not more widely used. In ham gear, fully regulated supplies are found only in critical frequency-control circuits and low-current bias supplies, if at all.

While the term "regulated power supply" usually means a supply in which the output voltage is regulated, it's also possible to regulate output current so that it remains constant regardless of changes in load resistance. This is sometimes called "current limiting," as we did in discussing Fig. 10.

The need for current regulation occurs far less frequently than that for voltage regulation, however, and so in general use "regulation" has come to mean only "voltage regulation" unless specifically called out as applying to current.

Current regulation, when it is encountered at all, usually shows up the in voltage-reference portion of a regulated power supply, where the VR tube is supplied with constant current in order to hold its voltage more constant.

The simplest current regulator consists of a resistor, having a value from 10 to 100 times greater than the resistance of the expected load circuit, in series with a power supply which produces from 10 to 100 times the anticipated voltage requirement. Most of the voltage drops across the resistor, and current remains fairly constant.

For instance, a 300V supply connected through a 300 kΩ resistor will permit a maximum of 1 mA to flow, even if the output is shorted. With a load resistance of 30 kΩ the total series resistance is only 10% (9%, to be exact) less. If load resistance is not permitted to exceed 3 kΩ the resistance variation will be only 1%, and the current varies less than 1%. Voltage across the load ranges from 300 with no current flow down to zero with a short circuit.

For more effective regulation of current, a servo regulator such as that shown in Fig. 14 can be used. This circuit acts in much the same manner as the voltage regulator of Fig. 12, but combines the amplifier and control stages in a single transistor.

The transistor base is clamped to a voltage somewhat lower than the input voltage, by zener diode D1. Emitter voltage, however, varies with current flow through the circuit. With no current flow, the emitter resistor causes no voltage drop, the emitter is at input voltage, and since the transistor is PNP, this turns it on.
Emitter-to-collector resistance is low and high current can flow, just as output voltage could skyrocket (initially) in Fig. 12.

As current flows, however, it produces a voltage drop across the emitter resistor, reducing the difference between emitter and base voltages, and so reducing the forward bias on the transistor. Emitter-to-collector resistance increases.

When enough current is flowing to bring the emitter voltage almost down to the base level (because of the voltage drop in the emitter resistor), the high emitter-to-collector resistance at this operating point prevents additional current flow. Thus, even with the collector shorted to ground, only enough current can flow through the emitter resistor to bring emitter voltage down to base level and turn the transistor off.

For any value of load resistance from zero to infinite (short circuit to open circuit), current flow through the collector is held at the value which develops approximately the zener-diode voltage across the emitter resistor. With a 3.9V zener and 3.9 kΩ in the emitter, current regulated at 1 mA; with 390Ω at 10 mA, and so forth.

Many variations of regulator design and action are possible. It’s far beyond the scope of this series to go into any greater detail now, but if your interest in the subject has been whetted you can find much additional data in either of these two books:

Now that we know all about power supplies, or at least more than most of us really wanted to discover, we’re ready to take a look at the subject of amplification.
FREQUENCY MODULATED TRANSMITTER BC604
Brand new government surplus in sealed cartons.
Power output 30 watts
Freq. Dev. 40 kc.
Freq. Range 20. to 27.9 Mc.
10 preset channels
Complete with tubes and spares.
Adaptable to ham band modification. Needs only power supply, crystal and mike to get on the air.
Surplus Issue Special Price
Stock No. 5001 $22.50
Wt. 76 Lbs.

LIGHT ACTIVATED SCRs

<table>
<thead>
<tr>
<th>STOCK</th>
<th>PRV</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4116</td>
<td>60</td>
<td>1.00</td>
</tr>
<tr>
<td>H4117</td>
<td>100</td>
<td>1.75</td>
</tr>
<tr>
<td>H4118</td>
<td>200</td>
<td>2.50</td>
</tr>
<tr>
<td>H4119</td>
<td>300</td>
<td>3.50</td>
</tr>
</tbody>
</table>

COMPUTER GRADE CAPACITORS
Stock No.
$2040
Sangamo or Pyramid 4 1/8 x 1 1/8. 4000 Mfd. 50 volts
$2049
Sprague or Sangamo 4 1/8 x 1 1/8. 3500 Mfd. 55 Volts
$2062
Sprague (Brand New) 3 x 4 1/8. 40,000 Mfd. 12 Volts

PHOTO ELECTRIC ASSEMBLIES
S 7000
Contains cadmium sulfide photo cell, potentiometer, relay & Fairchild 2N-2657, 1 5/8" x 1 1/4". Original used as exposure control.
Complete with circuit diagram & application data
$1.25

S 7001
Contains cadmium sulfide photocell, 2 500Ω variable resistors & Fairchild 2N2240. Change in light changes bias on transistor. Useful for all types of light sensing & alarm devices
$1.75 ea.
SURPLUS ISSUE SPECIAL
3 each S7000 & S7001 $5.00

FUSIBLE RESISTORS
Protect your power transistors with one of these in emitter circuit.
$8027. 27 Ohm 2 Watt $6.10
$8028. 50 Ohm 5 Watt Pos. Temp. Coef. $4.10

COMPUTER BOARD SPECIALS

S9082
Honeywell Computer boards, 4 1/4" x 12". Transistors, diodes, zeners, capacitor, precision resistors, heat sink, trimmers, etc. 2 different boards
$1.00

S9127
Honeywell Boards 5 1/2" x 6". Loaded with latest transistors, diodes, resistors and capacitors
$1.50

MINIATURE RELAYS
S9130
Operates from 12 to 24 volts. 3/4" x 3/8" x 3/8" DPDT Printed Circuit or socket mount
$.75 ea. 3/2.00 10/6.00

SILICON CONTROLLED RECTIFIERS

<table>
<thead>
<tr>
<th>TO-5</th>
<th>PRV</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4200</td>
<td>50</td>
<td>4.00</td>
</tr>
<tr>
<td>S4201</td>
<td>100</td>
<td>2.00</td>
</tr>
<tr>
<td>S4202</td>
<td>200</td>
<td>3.00</td>
</tr>
<tr>
<td>S4203</td>
<td>300</td>
<td>.80</td>
</tr>
<tr>
<td>S4204</td>
<td>500</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TO-66</th>
<th>PRV</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4206</td>
<td>50</td>
<td>.40</td>
</tr>
<tr>
<td>S4207</td>
<td>100</td>
<td>.50</td>
</tr>
<tr>
<td>S4208</td>
<td>200</td>
<td>.65</td>
</tr>
<tr>
<td>S4209</td>
<td>300</td>
<td>.85</td>
</tr>
<tr>
<td>S4211</td>
<td>500</td>
<td>1.35</td>
</tr>
</tbody>
</table>

400 PRV 6 AMP TRIACS.
Transistor TTD10 (RCA 40639) Comes mounted on its own heat sink.
$.15 ea 6/8.00

TO-5 HEAT SINKS
Increase the power rating of your TO-5 transistors. Adjustable for larger or smaller transistors.
S9109 $1.00

TUNNEL DIODES

FIELD EFFECT TRANSISTORS (FETS)

S4016 N Channel Sim. to 2N3819 $.60 6/3.00
S4129 P Channel Sim. to 2N3920 $.60 6/3.00

NIXIE DRIVERS

NPN-TO-18
S4105 Hfe 20 $10/3.00
S4106 Hfe 40 $10/4.00

$1.00 FREE WITH $10.00 ORDER
MINIMUM ORDER $3.00

DELTA ELECTRONICS CO.
BOX 1, LYNN, MASSACHUSETTS 01903

Lots of other items—send for free flier. All merchandise fully guaranteed. Please include postage: excess will be refunded.

TO CONVERT 10 WATTS, FOR 420 MHZ FREQUENCY, YOU NEED AN IMPEDANCE 2000-4000 OHM RECEIVER, TO MEET THE TYPICAL 420 MHZ RECEIVER WITH CONTROL HEAD, the transmission of the FM transmitter, 122.5-150.0 MHZ, single channel, AFSK, 3000 TO 6000 WATTS, 12/28 MHZ INPUT, SEE PAST CONVERSION ARTICLES FOR 420 MHZ VERS.

COFFEE S-40W/R-13, transmitter, 2.18-4.0 MHZ, 20 Watts, 8130A final. $79.50

BENDIX RA-10 RFD receiver, tunes 150-1100KHz and 2-10 MHz, ideal for boats, weather, transmitter hunts. $18.50

APX-6 transponder, the famous moonbounce set. RT-2500/SJ-41 transmitter, tunes 1.5 MHz thru 12 MHz, power output 20 Watts, voice, 40 Watts, variable in output level on popular unit. $32.50

AN/PRC-6 FM walkie talkie, 47 to 85 MHz, 44 different operating channels, only one can be used at a time, 2 ft whip antenna, last battery and crystals. $39.50

RT-6/GRC Receiver-Transmitter, FM 20.0 to 27.9 MHz, 16 Watts. $65.00

RT-7/GRC Receiver-Transmitter, FM 27.0 to 36.9 MHz, 16 Watts. $65.00

RT-8/GRC Receiver-Transmitter, FM 39.0 to 54.9 MHz, 16 Watts. $65.00

RT-9/GRC Receiver-Transmitter, FM 47.0 to 58.4 MHz, 16 Watts. $79.00

BENDIX RA-16 Receiver, 138 to 240 MHz, FM. $65.00

R-110/GRC Receiver, 38.0 to 54.9 MHz. $60.00

AN/PRC-4 T-7 control head receiver, 2 to 12 MHz, AM, CW, or M McG, 7 Watts. $15.00

R-278/GRC-27 Receiver, 225 to 400 MHz, 10 preset channels, AM, 1750 selected channels. $165.00

T-217/GRC-27 Transmitter, 225 to 400 MHz, 100 Watts, 1750 selected channels, AM/MCW. $165.00

MD-129/GRC-17 Modulator, goes with T-217/GRC-27 transmitter. $189.00

RCA AN/FFR-21 Receiver, AM, A2, F1 reception, 14-600KHz tunable, 115V/60C. $189.00

AN/APX-42 Receiver-Transmitter, Radar X-Band. $199.00

BC-348 Receiver, tunes 200-500KHz and 1.5 to 18 MHz, 28 Watt, voice, 65 Watts, unmodulated. $165.00

BC-345 Receiver, tunes 200-250Khz and 20 to 60 MHz, A, SP, FM, voice, 65W Watts, VFO. $165.00

SK.40GK Transmitter, 20.0 to 16.1 MHz, VFO, CW, CW capable of relay keying speeds up to 100 WPM, 115V/220V, 60 cycle. $165.00

BENDIX RA-17 Transmitter, 175 to 600 KHz and 2 to 16 MHz, VFO, CW, MCW, 200 Watts, keying speed 100 WPM. $220.00

TELETYPYPER EQUIPMENT:

AN/PRC-40 Mitey-Mite page printer with 60, 75, 100 WPM gears, the miniature type printer, light grey color, 115V/60C, sync motor, looks good in any ham shack. $179.00

TEST SET TS-21G teletypewriter signal distortion test set, transmits four test signals, R, Y, Space, or character, selected item for all RTTY operations. $69.50

TT-4A/TG Teletypewriter, KSR-115/60 cycle. $69.50

RADIC, INC. Model TDMS-5ER-26 teletype test transmitter, used to over haul late type teletype sets. $39.50

MISCELLANEOUS EQUIPMENT:

AN/PRC-3 Mine Detecting set in shipping case, the best portable system for battlefield, beach, and treasure hunting can be used around salt water and iron soil, the best. $49.50

PHILIPS SM-380/M-238/M, military version of PH-8A Type T-200, 400-600KHz IF input, PHILIPS MD-2788. $125.00

CRT Complete with PS-8 115V/60C cycle power supply. $145.00

NORD CLARK TLM-32A Telemetry pre-amplifier. $65.00

BOEHME TYPE B-D automatic keying unit, 10-100 WPM. $35.00

BC-709C Interphone amplifier, uses standard flashlight batteries, ideal for plane, car, camper, boat, home. $19.00

RA-84 AC power supply for BC-779 Super-Pro receivers. $18.50

C-138/ARN-3 Control head. $18.50

C-149/ARN-6 control head. $12.50

C-250/ARN-3 control head. $12.50

C-252/GRF-39 control head. $12.50

REORDER WIND DIRECTION AND SPEED Type RO-14/AN/GMO-20, goes with wind measuring set GMO-20. $37.00

COURSE INDICATOR ARC-141, VOR/ILS indicator for ARC 15 Omni. $37.00

BENDIX IN-4D Indicator, left-right meter movement. $37.00

ARN-14 control head. $37.00

ID-819/ARN-6 Radio Bearing Indicator, 360 degree rotation, ideal for antenna beam. $6.50

JUNK BOX NIGHTMARE:

FOR THIS SPECIAL 73 SURPLUS ISSUE WE HAVE PUT TOGETHER 50 POUNDS OF SMALL VOLUME PAIRS OF COMPOUNDS, MOSTLYUNUSED SPARE PARTS, SWITCHES, CONNECTORS, CIRCUIT BOARDS, TRANSISTORS, SMALL SCREWS, VIBRATORS, VARIOUS CIRCUIT BOARDS, TRANSFORMERS, ETC. A TERRIFIC ONCE A YEAR BARGAIN. EACH BOX IS DIFFERENT, GUARANTEED TO SATISFY YOU. SPECIAL POSTAGE PAID DEAL. $18.00, TWO FOR $32.50.

AIRCRAFT PILOTS:

SKYCHARTERS Model Model-AMT-9/AMTR-4 VHF Transceivers, 24 channel with crystals, 118.1 to 123.0, Size 3-5/8" x 5/4 x 7" size, choice of 12 or 24 transriborized power supply, size 2" H x 3" W x 4" D, total wt. 4000 G. COMPLETE SYSTEM WITH ANTENNA AND CABLES, BRAND NEW 1970 models, ready for installation. $25.00. Sells now for $75.00.

ATENTION: LINEAR AMPLIFIER BUILDERS:

B & W 850A Pi-Nt Inductor, designed for 80-10 meter amateur bands, plate load impedance 2500-5000 ohms, input and output designed for single or parallel tubes series fed circuits, 813, 4-125, 4-400, 4-1000, rated 1000 watts, new boxed. $39.50

B & W 852 Pi-Nt Inductor, designed for 80-10 meter amateur bands, plate load impedance 2000-4000 ohms, used for single or parallel tubes series or shunt fed circuits, 3-400Z, 3-500Z, 3-1000Z, 4CX1000A, etc., rated 900 watts, new boxed. $39.50

B & W 3902-1 Cyclometer, 100 turn counter, numbers increase with clockwise rotation of handle, a beautiful precision counter. $29.50

MISSABLE UHF, 200-400 MHZ LEMAC YELLOW BOXED TUBES, FACTORY GUARANTEED

Emac 3-400Z. $32.00

Emac 3-500Z. $34.00

Emac 3-1000Z. $37.00

Emac 4-1000A. $42.00

Emac 5-119. $42.00

Emac SK-510 Socket, 3-1000Z, 4-1000A. $10.50

Emac SK-400Z, 3-400Z, 5-400Z. $10.50

Emac SK-650 Socket, 4X150A, 4CX250B, no screen by-pass. $12.00

Emac SK-620 Socket, 4X150A, 4CX250B, has screen by-pass. $12.00

Emac SK-600 Socket, 4CX1000A. $12.00

Emac SK-506 Chimney for 4-1000Z. $12.00

Emac SK-500 Chimney for 5-1000Z. $12.00

Emac SK-506 Chimney for 4-1000Z. $12.00

Emac SK-416 Chimney for 3-400Z, 3-500Z. $7.00

Emac SK-650 Chimney for 5-1000Z. $7.00

Emac SK-600 Chimney for 4-1000A. $7.00

Emac HR-6 Heat Dissipating Plate Cap for 4-65, 4-125, 4-400. $2.20

Emac HR-8 Heat Dissipating Plate Cap for 3-1000Z, 4-1000A. $2.85
TEST EQUIPMENT:

OS-34/UM-32 Oscilloscope, 3WP tube, portable general purpose, 10cy to 4mhz $385.00

OS-8/U Oscilloscope, portable, 3RP tube, general purpose, DC to 2mhz $389.00

MICROLINE MODEL 555 Klystron signal source $598.00

MEASUREMENTS MODEL 100, 50-500 kHz, 2000 volts $250.00

G. R. 869A Pulse generator, 3 to 70 microsec, 20-4000v $29.50

LARK 1609, 10cps, software variable, 1 to 1V peak to peak, high gain band 3 CRT $79.50

G. R. 1932D Distortion and noise meter, audio freq range 50cps to 15kHz, distortion measurement 10mhz to 46,000mhz $125.00

TS-375/U VTM, AC/DC volts, freq range 40cps to 150mhz, the military favorite, with probes $32.50

G. R. 476A, L, and N. Excellent for measuring resistance, line, networks, earth ground. Resistance range 0 to 1000 ohms $145.00

SG-12/A Signal generator, FM, 20 to 100mhz, used by military, for alignment of G.R. FM $76.00

G. R. 762A Vibration analyzer, range 2.5 to 750ps $69.50

OS-50 Frequency, 5 to 50mhz, precision, high quality generator $70.00

TS-497/URR Signal generator, 6, 2 to 40mhz, MILITARY VERSION OF MEASUREMENTS MODEL 100, output 1 to 100,000mHz $175.00

H.P. 5248C Frequency counter with 526A plug-in, range 20cycles to 100mhz $360.00

H.P. 5248D Frequency counter for 526B, C, and D counters, 1R-38 and Northeastern, can be used to make other ranges, 20mhz to 100mhz $69.50

TS-620/U Frequency meter, 65 to 1000mHz, 0.05%, 20mv to 2vs, sensitive 1,000mHz $55.00

BC-21 Tube tester, mutual conductance, checks off and on, military receiver, transmitter and sub-min. tubes. $95.00

H. P. 185B Oscilloscope with 1878 dual trace amplifier, DC to 1000mHz, 10V/Cm to 200V/Cm, internal voltagereader, noise, X-Y recorder output. One of the best $475.00

TS-413/U Signal generator, 25Hz to 40mHz in 5 bands, precise calibration, from 1HzmHz crystal oscillator, has $125.00

% modulation meter, CW or AM, 400/1000cps, variable 0-50% and RF level meters 0 to 1.0V, ideal for $104.00

FREED 1140A Null detector amplifier, input impedance 1 megohm, gain 100db with 1 megohm load $495.00

60 cy, 115/60c, P.I. $120.00

TS-382/U Audio oscillator, 0 to 200Hz to 600 cycle reed meter. Ideal for audio work $125.00

URM-91 Field strength meter, receiver range 1 to 125mHz, with antenna and power supply $85.00

G. R. 1111A made to 7 ranges, reads directly from logarithmic multiplier switch, accuracy within 1, 115/60c, ideal for shops and labs $65.00

H. P. 2111A audio frequency, rack mount and meter test $200.00

G. R. 1176-A Frequency meter, 25 to 60,000mHz in 6 ranges, voltage input 0.25 to 160V $45.00

BRUSH BL-320 Universal strain amplifier, up to 1000mHz, used with Bushen recorder $295.00

ME-36/AP Portable oscilloscope, 2A, 1 with 2X magnification lens, vertical amp flat 30cps to 1mHz, a good precision scope $85.00

USM-24 Oscilloscope, vertical freq, resp. 1.5cy to 10mHz, horiz. 0.5cy to 1.5mHz, sweep time 1.25 to 125 microseconds, 115/60c $95.00

TS-303/A 10mHz, 30mHz, 60mHz, 115/60c, P.I. $295.00

TS-11/AP Portable DC Milliammeter, 0.1 plus 0-25mcma ranges, mounted in nice wooden box $22.50

TEP-459A FM, low level preamplifier, 115/60c $125.00

USM-29 Frequency meter, 15khz to 30mHz, 0.01% accuracy, 115/60c $75.00

UMP-2 WAVE METER test set, range 80-122mHz, absorption type $37.50

UMP-25 Signal generator, 4-405mHz, portable type in case, ideal for AM/FM work $225.00

SG-85/UMP-1 Signal generator, 120-200mHz, 0.2% accuracy in case $39.50

SG-557/URM-52B Signal generator, 3800 to 7500mHz, 115/60c, military version of the H.P. 618B $205.00

G. R. 1300B Random noise generator. This instrument generates wide band noise of uniform spectrum level, useful for noise and vibration testing in electrical and mechanical systems $125.00

WATERTOWN 250A RX METER Frequency range 50khz to 250mHz, measures equivalent parallel resistance and capacitance or inductance of networks, R-range 16-100,000 ohms, C-range 0-20pF, L-range 01/2 to 10mHz $439.00

BOYON 250A RX METER Frequency range 50khz to 250mHz, measures equivalent parallel resistance and capacitance or inductance of networks, R-range 16-100,000 ohms, C-range 0-20pF, L-range 01/2 to 10mHz $389.00

AN/UPA-39 Coder-Decoder, used with UPM-4 oscillator test set $79.50

TS-251/U/URM-4C Frequency, 4-405mHz, portable type in case, ideal for AM/FM work $225.00

H. P. 335B FM MONITOR, has two panel meters to show carrier deviation and percent of modulation with lamp to indicate peak modulation $225.00

G. R. 604A combination wheatstone bridge and VTM, range 0.1 to 1,000,000,000 $525.00

GAF-2104 Signal generator, 2620 to 3750mHz $100.00

IE-19 TEST SET in chest, complete with 100-165mHz signal generator, field strength meter, ideal for one who wants a low price VHF test set-up $18.50

UPM-14 test set with probe, FAA approved $39.50

TS-281/U/UP Lorentz test set, used to calibrate all AF navigation equipment $79.00

TS-325/HG resonant cavity, 5220-9420mHz, 115/60c $125.00

IE-36 test set, used to test VHF SCR-274N equipment $17.50

TS-419/U, same as H.P. 616A or ARC H-12, 900mHz to 2100mHz $125.00

IDEAL INDUSTRIES Type 1241-001 Portable insulation tester, 500-2600V, complete with probes $65.00

TS-226/A/UP Power meter, range 400 to 420mHz, 1000V, 115/60c, ideal for high TV use $16.50

HOUSTON INSTRUMENTS HLC-200 servo driven voltmeter and log converter. Has 13" mirror back, calibrated in RMS volts and DB, AC/DC lmv-3.16V, 100mv-316V, DB scale movable from +76 db to -75db, electronic gain control or subtracting from 0 db reference, G.R. 869A $42.50

G. R. 783A Output power meter, used for direct reading measurements of power output in audio circuits 0.2mW to 100 watts in 5 ranges, decibel range 10 to +10dB above line $42.50

COLLINS 478A-1 filter, FAA approved to check omni signal generators $15.00

ME-118B/A omni signal generator, 0.01 to 10mHz, frequency range is for any for which boint thermodetectors that are available $42.50

G. R. 869A Pulse generator, 3 to 70microsec, 20-4000v $29.50

WATERMAN'S S-12C, 3") rackmount oscilloscope, 1 cycle to 50kHz $37.50

NATIONAL WAVE, 0.01 to 10mHz, frequency range is for any for which boint thermodetectors that are available $42.50

STRIPPER SPECIALS:

FOR THOSE WHO LIKE TO STRIP OUT EQUIPMENT FOR RESISTORS, CAPACITORS, TUBE SOCKETS, TRANSFORMERS, CHokes, HARDWARE, WIRE, CHASSIS, CIRCUIT BOARDS, WE HAVE A NUMBER OF USEFUL ITEMS. SEE OUR SURPLUS EQUIPMENT LIST AND OUR STRIPPER SPECIALS. WITHOUT THESE, YOU WILL HAVE MANY HOURS OF ENJOYMENT GUARANTEED TO SATISFY YOU. ORIGINAL COST IN THE THOUSANDS. 100 LBS. SHIPPED MOTOR FREIGHT PAID FOR $25.00

ALL EQUIPMENT EXCELLENT CONDITION F.O.B. ELENTON, FLORIDA. SATISFACTION GUARANTEED OR MONEY REFUNDED! IMMEDIATE SHIPMENT. WRITE OR PHONE 813-723-1843, BILL SLEEP OR AL JONES.
MOTOROLA 2 METER POWER AMPLIFIER
UP TO 700 WATTS OUTPUT!
BRAND NEW!
SPECIAL LOW PRICE!
TRUCKLOAD SALE!

Freq. range 136 MHz to 174 MHz
Amplifier tubes pair of 4X150A’s
Input excitation 2 watts to 15 watts
Power output 250 watts to 700 watts *
Type of operation Class C, push-pull
Input/output impedance: 50 ohms
A.C. power: 115 or 230 vac

This is a completely self-contained power amplifier designed specifically to increase the power output of low power transmitters. It requires no modifications to operate on rtty, fm, mow, etc. in the above listed freq. range. It will deliver 250 to 300 watts out when driven by a 2 or 5 watt handle talkie! The power output can be increased up to 700 watts with a very simple modification. (Change tubes to 4CX250B’s, make minor change in power supply, instructions supplied with each unit.) Very compact (26¼ inches H, 20¼ inches W, 16½ inches D.) Fully metered, antenna change over relay, blower motor. No external keying circuits required. Amplifier keys automatically. (Just hook a piece of co-ax from your low power base or handle talkie and push the mike button!) Original cost: $2,100.00. Our price, brand new, unused, complete with instruction manuals is only $350.00 FOB Trenton, Mich.

NEWSOME ELECTRONICS
19675 ALLEN RD. TRENTON, MICHIGAN 48183
PHONE AREA CODE 313-282-6464
ALL ITEMS MARKED (*) ARE HALF PRICE UNTIL MAY 31st 1971.

LOOKING FOR A CERTAIN MOTOROLA ITEM?
LET US KNOW WHAT IT IS.
WE MAY HAVE IT!

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two wire remotes, 2 freq., intercom, tone osc.</td>
<td>$29.95*</td>
</tr>
<tr>
<td>T51, 6/12 v, 40-50 MHz 50 watt mobiles</td>
<td>$39.95*</td>
</tr>
<tr>
<td>L44 450 MHz base stations</td>
<td>$125.00</td>
</tr>
<tr>
<td>D43 2 meter 6/12 v mobiles (30 watt)</td>
<td>$100.00</td>
</tr>
<tr>
<td>TU 588 transistorized pwr supplies w/heat sink</td>
<td>$40.00</td>
</tr>
<tr>
<td>FM Station Monitors, 40-50 MHz F4M24B1C</td>
<td>$85.00*</td>
</tr>
<tr>
<td>Dispatcher power supplies, 12 v NU 169</td>
<td>$19.95</td>
</tr>
<tr>
<td>450 MHz receiver strips</td>
<td>$14.95</td>
</tr>
<tr>
<td>U44 BBT "T" power 12v 450 MHz mobiles</td>
<td>$75.00*</td>
</tr>
<tr>
<td>T43 GGV 150 MHz 6/12v 30 watt mobiles</td>
<td>$100.00</td>
</tr>
<tr>
<td>a.c. power supplies P846, for Motorola R-394 & 257 receivers, etc.</td>
<td>$12.95*</td>
</tr>
<tr>
<td>VHF to UHF repeaters</td>
<td>$125.00</td>
</tr>
<tr>
<td>40-50 MHz receiver strips</td>
<td>$12.00</td>
</tr>
<tr>
<td>U43 GGT 150mc, 30 watt, 12 v mobiles</td>
<td>$149.00</td>
</tr>
<tr>
<td>150 MHz "HT" handi-talkies, like brand new, w/batt</td>
<td>$250.00</td>
</tr>
<tr>
<td>T41 GGV 6/12v 30 watt, 40-50 MHz mobiles</td>
<td>$39.95*</td>
</tr>
<tr>
<td>450 MHz 20 watt transmitter strips</td>
<td>$12.50</td>
</tr>
<tr>
<td>T44 AAV 6/12v 450 MHz mobiles</td>
<td>$24.95*</td>
</tr>
</tbody>
</table>

Above mobile equipment complete with acc. (less ant, Xtal ovens). Prices shown are fob Trenton, Michigan. We sell Motorola equipment only. Our terms are cash with order (25% deposit on c.o.d.'s). Mich. residents add 4% sales tax. We have a very large stock of Motorola equipment, tell us what you are looking for, we may have it. (Sorry, no catalogs or lists available.) Please give your amateur call with all inquiries. Our store hours are by appointment only.
Iii) BRIGAR ELECTRONICS for INDUSTRY

Alice Street Binghamton New York 13904 · Tel. 607-723-3111

CB CASE
PANEL OPENING
6-1/4 X 3

HAVE YOU EVER WANTED TO BUILD SOMETHING AND HAD TROUBLE FINDING THE RIGHT ENCLOSURE? HERE IT IS. WE HAVE CASES, ORIGINALLY MADE FOR CB RADIOS WHICH ARE CONSTRUCTED OF 22 GAUGE STEEL, ALL WELDED CONSTRUCTION. PANEL OPENING IS ROLLED FOR A NEATER APPEARANCE. SLOTTED VENTILATION OPENINGS ON EACH SIDE (NOT SHOWN). Included IS A SLIDE IN CHASSIS FOR MOUNTING EQUIPMENT. MOUNTING BRACKET IS FURNISHED FOR EASE IN MOUNTING UNIT UNDER BENCH, TABLE, DASH OF YOUR CAR, ETC. SIZE 8-3/4" L x 7" W x 3-1/4" H. SHP WGT 4 1/2 LBS. ORIGINAL COST $9.95. OUR PRICE, THIS ADD ONLY $2.95

Belden #8497 Coiled Microphone Cord, 3 Cond. 1 Shielded, Neoprene Jacket, Retract Length 11 3/4" Stretches to 6 Feet

PRICE EACH 95c

TUNING METER TYPE 1-70-D
G.E. Type DW-33
Dial Calibrated in 7 Divisions, White on Black Face. Meter Reads Tune for Max. Movements 0 to 4.2 MA. Built In Socket for DIAL LITE. Size 2-3/8" DIA. Flush Mtg. SHP WGT 1 LB $90 EA

PRINTED CIRCUIT COMPUTER BOARDS (SPECIAL SALE)
Boards Consist of Diodes, Transistors, Capacitors, and Resistors. All Boards Are Different. SHP WGT 4 LBS. PRICE 10 FOR $1.00

HAMMARLUND AIR VARIABLE CAPACITORS
5 PF to 50 PF. Gear Reduction on Shaft for That Fine Tuning of Your VFO ETC. SHP WGT 1 LB $.75 EA

INSULATED COMPUTER-GRADE ALUMINUM ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>MFD.</th>
<th>VOLT</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000</td>
<td>5</td>
<td>3 X 4-1/2</td>
</tr>
<tr>
<td>25,000</td>
<td>5</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>66,000</td>
<td>6</td>
<td>2-9/16 X 4-3/4</td>
</tr>
<tr>
<td>40,000</td>
<td>7</td>
<td>2 X 5</td>
</tr>
<tr>
<td>7,750</td>
<td>10</td>
<td>1-3/8 X 4-1/2</td>
</tr>
<tr>
<td>15,000</td>
<td>10</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>15,000</td>
<td>10</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>30,000</td>
<td>10</td>
<td>3 X 3-1/2</td>
</tr>
<tr>
<td>7,000</td>
<td>10</td>
<td>3-1/16 X 5</td>
</tr>
<tr>
<td>15,000</td>
<td>12</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>7,000</td>
<td>13</td>
<td>1-3/8 X 4-1/2</td>
</tr>
<tr>
<td>14,000</td>
<td>13</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>10,000</td>
<td>15</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>15,000</td>
<td>15</td>
<td>2-1/2 X 4-1/2</td>
</tr>
<tr>
<td>20,000</td>
<td>15</td>
<td>2-1/2 X 4-1/2</td>
</tr>
<tr>
<td>12,500</td>
<td>16</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>11,500</td>
<td>18</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>5,500</td>
<td>19</td>
<td>1-3/8 X 4-1/2</td>
</tr>
<tr>
<td>11,000</td>
<td>19</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>12,000</td>
<td>21</td>
<td>2 X 4-1/8</td>
</tr>
<tr>
<td>1,000</td>
<td>30</td>
<td>1-3/8 X 4-1/2</td>
</tr>
<tr>
<td>1,000</td>
<td>45</td>
<td>1-3/8 X 4-1/2</td>
</tr>
<tr>
<td>3,500</td>
<td>55</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>6,000</td>
<td>55</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>5,100</td>
<td>75</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>3,500</td>
<td>75</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>3,750</td>
<td>75</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>1,500</td>
<td>80</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>1,000</td>
<td>100</td>
<td>1-3/8 X 4-3/8</td>
</tr>
<tr>
<td>1,500</td>
<td>100</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>250</td>
<td>150</td>
<td>1-3/8 X 4-1/2</td>
</tr>
<tr>
<td>1,250</td>
<td>180</td>
<td>2 X 4-1/2</td>
</tr>
<tr>
<td>500</td>
<td>200</td>
<td>2 X 4-1/2</td>
</tr>
</tbody>
</table>

PRICE $4.50 EA

2500 UF 275 VDC 2-1/8 X 6 $2.45 EA

PLASTIC FILM CAPACITORS

GOLD PLATE CASE

<table>
<thead>
<tr>
<th>CASE SIZE</th>
<th>CAPACITANCE</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001uf</td>
<td>2000v</td>
<td></td>
</tr>
<tr>
<td>0.01uf</td>
<td>5000v</td>
<td></td>
</tr>
<tr>
<td>0.05uf</td>
<td>5000v</td>
<td></td>
</tr>
<tr>
<td>0.1uf</td>
<td>5000v</td>
<td></td>
</tr>
<tr>
<td>0.5uf</td>
<td>5000v</td>
<td></td>
</tr>
<tr>
<td>1uf</td>
<td>5000v</td>
<td></td>
</tr>
</tbody>
</table>

HAMMARLUND AIR VARIABLE CAPACITORS

5 PF to 50 PF. Gear Reduction on Shaft for That Fine Tuning of Your VFO ETC. SHP WGT 1 LB $.75 EA

NO COD, FOB BINGHAMTON, N.Y.

MINIMUM ORDER $5.00
Please send us your surplus inventory lists. We want to buy other tubes and Transceivers – Receivers – Test Equipment.

The TED DAMES Co.

308 HICKORY ST. ARLINGTON, N.J. 07032
Phone: 201 998-4246
COLUMBIA
TEST EQUIPMENT SPECIALS

All in excellent condition, recently calibrated by N.B.S. approved standards labs and supplied with calibration certificate.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 201C</td>
<td>Audio Oscillator</td>
<td>150.00</td>
</tr>
<tr>
<td>HP 205A</td>
<td>Audio Oscillator</td>
<td>250.00</td>
</tr>
<tr>
<td>HP 205AG</td>
<td>Audio Oscillator</td>
<td>275.00</td>
</tr>
<tr>
<td>HP 400D VTM</td>
<td></td>
<td>150.00</td>
</tr>
<tr>
<td>HP 400R VTM</td>
<td></td>
<td>130.00</td>
</tr>
<tr>
<td>HP 400H VTM</td>
<td></td>
<td>175.00</td>
</tr>
<tr>
<td>HP 400H VTM</td>
<td></td>
<td>175.00</td>
</tr>
<tr>
<td>HP 400AB VTM</td>
<td></td>
<td>125.00</td>
</tr>
<tr>
<td>HP 410B VTM</td>
<td></td>
<td>150.00</td>
</tr>
<tr>
<td>HP 433C</td>
<td>Microwave Power Meter</td>
<td>125.00</td>
</tr>
<tr>
<td>HP 433CR</td>
<td>Microwave Power Meter</td>
<td>125.00</td>
</tr>
<tr>
<td>HP 415C SWR</td>
<td>Meter</td>
<td>250.00</td>
</tr>
<tr>
<td>HP 524D</td>
<td>Counter</td>
<td>650.00</td>
</tr>
<tr>
<td>HP 525A</td>
<td>Converter 10-100 mc</td>
<td>150.00</td>
</tr>
<tr>
<td>HP 525B</td>
<td>Converter 100-220 mc</td>
<td>150.00</td>
</tr>
<tr>
<td>HP 684C</td>
<td>Sweep Osc. 4.8-8 km</td>
<td>500.00</td>
</tr>
<tr>
<td>HP 211 A</td>
<td>Sq. Wave Generator</td>
<td>250.00</td>
</tr>
<tr>
<td>HP 212A</td>
<td>Pulse Generator</td>
<td>250.00</td>
</tr>
<tr>
<td>HP 614A</td>
<td>Signal Generator</td>
<td>1,000.00</td>
</tr>
<tr>
<td>HP 616A</td>
<td>Signal Generator</td>
<td>1,000.00</td>
</tr>
<tr>
<td>HP 618B</td>
<td>Signal Generator</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Measurements</td>
<td>65B Signal Generator</td>
<td>500.00</td>
</tr>
<tr>
<td>SG-1A/ARN</td>
<td>Signal Generator with</td>
<td></td>
</tr>
<tr>
<td>PP-345</td>
<td>Power Supply</td>
<td>1,295.00</td>
</tr>
<tr>
<td>Bogen 212A</td>
<td>Glide Slope Test Set</td>
<td></td>
</tr>
<tr>
<td>Adapter</td>
<td>for SG-1A/ARN</td>
<td></td>
</tr>
<tr>
<td>Tektronix 531</td>
<td>Oscilloscope</td>
<td>500.00</td>
</tr>
<tr>
<td>Tektronix 532</td>
<td>Oscilloscope</td>
<td>550.00</td>
</tr>
<tr>
<td>Tektronix 533</td>
<td>Oscilloscope</td>
<td>600.00</td>
</tr>
<tr>
<td>Tektronix 535A</td>
<td>Oscilloscope</td>
<td>750.00</td>
</tr>
<tr>
<td>HP 160B</td>
<td>Oscilloscope w/2 plug-ins</td>
<td>600.00</td>
</tr>
<tr>
<td>HP 170A</td>
<td>Oscilloscope w/2 plug-ins</td>
<td>700.00</td>
</tr>
<tr>
<td>HP 120AR</td>
<td>Oscilloscope</td>
<td>225.00</td>
</tr>
<tr>
<td>HP 200CD</td>
<td>Audio Oscillator</td>
<td>165.00</td>
</tr>
<tr>
<td>HP 100A</td>
<td>Audio Oscillator</td>
<td>145.00</td>
</tr>
<tr>
<td>HP 606D</td>
<td>Signal Generator</td>
<td>800.00</td>
</tr>
<tr>
<td>HP 616A</td>
<td>Signal Generator</td>
<td>800.00</td>
</tr>
<tr>
<td>HP 620A</td>
<td>Signal Generator</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Collins 497S-3</td>
<td>VOR Modulator</td>
<td>1,250.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW TUBES & SOCKETS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>Tubes</td>
<td>$14.95</td>
</tr>
<tr>
<td>5CP1</td>
<td>C.R.T.</td>
<td>4.95</td>
</tr>
<tr>
<td>5SP4</td>
<td>C.R.T.</td>
<td>4.95</td>
</tr>
<tr>
<td>4-1000A</td>
<td>Elmac SK-500 Airflow Socket & SK-506 chimney</td>
<td>25.00</td>
</tr>
<tr>
<td>4X150A</td>
<td>Tubes</td>
<td>15.00</td>
</tr>
<tr>
<td>4CX2508</td>
<td>Tubes</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TELETYPEx EQUPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-15KSR Page Printer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untested Tested OK w/Keyboard</td>
<td>$115.00</td>
<td></td>
</tr>
<tr>
<td>$170.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-14TD Tape Reader</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>M-14RD Tape Reprat.</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>M-28KSR Page Printer</td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td>M-28KSR Raperf. w/Keyboard</td>
<td>150.00</td>
<td></td>
</tr>
<tr>
<td>HP 400H VTM</td>
<td>Sweep Osc. 4.8-8 km</td>
<td>500.00</td>
</tr>
<tr>
<td>HP 211A Sq. Wave Generator</td>
<td>250.00</td>
<td></td>
</tr>
<tr>
<td>HP 212A Pulse Generator</td>
<td>250.00</td>
<td></td>
</tr>
<tr>
<td>HP 614A Signal Generator</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td>HP 616A Signal Generator</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td>HP 618B Signal Generator</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td>Measurements 65B Signal Generator</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td>SG-1A/ARN Signal Generator with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP-345 Power Supply</td>
<td>1,295.00</td>
<td></td>
</tr>
<tr>
<td>Bogen 212A Glide Slope Test Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adapter for SG-1A/ARN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tektronix 531 Oscilloscope</td>
<td>500.00</td>
<td></td>
</tr>
<tr>
<td>Tektronix 532 Oscilloscope</td>
<td>550.00</td>
<td></td>
</tr>
<tr>
<td>Tektronix 533 Oscilloscope</td>
<td>600.00</td>
<td></td>
</tr>
<tr>
<td>Tektronix 535A Oscilloscope</td>
<td>750.00</td>
<td></td>
</tr>
<tr>
<td>HP 160B Oscilloscope w/2 plug-ins</td>
<td>600.00</td>
<td></td>
</tr>
<tr>
<td>HP 170A Oscilloscope w/2 plug-ins</td>
<td>700.00</td>
<td></td>
</tr>
<tr>
<td>HP 120AR Oscilloscope</td>
<td>225.00</td>
<td></td>
</tr>
<tr>
<td>HP 200CD Audio Oscillator</td>
<td>165.00</td>
<td></td>
</tr>
<tr>
<td>HP 100A Audio Oscillator</td>
<td>145.00</td>
<td></td>
</tr>
<tr>
<td>HP 606D Signal Generator</td>
<td>800.00</td>
<td></td>
</tr>
<tr>
<td>HP 616A Signal Generator</td>
<td>800.00</td>
<td></td>
</tr>
<tr>
<td>HP 620A Signal Generator</td>
<td>1,000.00</td>
<td></td>
</tr>
<tr>
<td>Collins 497S-3 VOR Modulator</td>
<td>1,250.00</td>
<td></td>
</tr>
<tr>
<td>HP 348B 200 500KC</td>
<td>& 1.5 18MC</td>
<td>100.00</td>
</tr>
<tr>
<td>Recondtioned 24V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARB 190-5000KC Good Condition</td>
<td>24.95</td>
<td></td>
</tr>
<tr>
<td>with Control Box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-444/APR-4Y AM & FM Excellent Condition</td>
<td>49.95</td>
<td></td>
</tr>
<tr>
<td>RBB 600-4000KC Recondtioned</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>115/1/60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBC 4.27MC Reconditioned</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>115/1/60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC-3 Receiver 100-156MC 24 Channel Exl. Condition</td>
<td>19.95</td>
<td></td>
</tr>
</tbody>
</table>

MAYDAY * URGENTLY NEEDED

Top prices for AN/VRC-24, AN/TRC-68, AN/ARC-51, 52, AN/PRC-10A, Collins 618T AN/URC-9, AN/ARC-20&21, plus all H.P., Tektronix, and lab grade test equip. Also all late model military electronic and radio gear.

Write or Call Collect for top offer 213-875-2970

COLUMBIA ELECTRONIC SALES, INC.
P.O. Box 9266
7360 Atoll Ave., North Hollywood CA 91609 Tel (213) 875-2970 & 764-9030
C & H SALES WELCOMES 1971 WITH A TREMENDOUS
TEST EOPT. SALE. NOW IS THE TIME TO BUY AND
SAVE LOTS OF MONEY

Panoramic Sweep Gen. Model SG-1
40 CPS to 200 kc ... $250.00
Boonton 292G FM AM Sig. Gen. 195-270 kc $295.00
Sierra H. F. Wave Analyzer Model 158A
with two probes 5 to 10 mc $295.00
Doer Wave Analyzer
Model 2102 0 to 50 kc $195.00
John Fluke 407D Power Supply $100.00
John Fluke 801 HR
Differential Voltmeter .. $95.00
John Fluke 803
Differential Voltmeter AC-DC $100.00
Backman Universal Eput & Timer
Model 5311-1 .. $125.00
Backman Universal Eput & Timer
Model 7350R-38 ... $125.00
Backman Universal Eput & Timer
Model 7360C ... $125.00
C.M. C. Preset Counter-Timer
Model 1213C .. $125.00
Ad-Yu Time Delay Standard
Model 20A .. $25.00
L & N K3 Pot ... $185.00
L & N 2430C Galvo ... $50.00
L & N 5300 Wheatstone Bridge $95.00
L & N 9834 DC Null Detector $75.00
L & N 8067 Mueller Bridge $195.00
Jade Research VFO 105
Voltage Divider .. $250.00
Shallcross 8265 Resistance Box $35.00
ESI SV 194B Voltage Calibrator $250.00
Rutherford 87 Pulse Gen. $150.00
Rutherford 89 Pulse Gen. $250.00
Ballantine 350 True RMS VTVM $150.00
Hathaway C-6B Resistance Meter $95.00

SCOPE BARGAINS
TEK 502 Dual Beam Scope 1.2 mc $500.00
TEK 516 Dual Trace 15 MHz $500.00
TEK 533A Needs CRT 15 MHz $450.00
TEK 536 XY Scope 11 MHz with
"T" plug in & scope cart $500.00
H.P. 130A DC to 100 kc $175.00
H.P. 130C DC to 500 kc $395.00

TEK 80 Vertical Pre-amp $35.00
TEK 80 Vertical Pre-amp with probe $45.00
TEK TU-2 Test Load ... $45.00
TEK "K" Fast Rise ... $40.00
Mercury Pulser .. $40.00
Calibrated Pre-amp ... $75.00
TEK "N" Sampling Plug In $135.00
TEK "R" Transistor Rise $150.00
Time Plug in ... $150.00

TEK GENERATORS
TEK 105 Sq. Wave Gen. $75.00
TEK 111 Pre Trigger Pulse Gen $75.00
TEK 121 Wide Band Pre-amp $25.00
TEK 162 Wave Form Gen $65.00
R77/ARC3 Rcvr 100-156 mc $9.95
BC683 FM Rcvr 27-39 mc $25.00
DM-34 12 Volt Dynamotor for BC 683 $3.95
A.R.C. R10A Rcvr 520-1500 kc $10.95
Collins 70E2 PTO ... $15.00

GENERAL RADIO TEST EOPT.
G.R. 107L Var. Ind. ... $40.00
G.R. 107M Var. Ind. ... $40.00
G.R. 716C Capacitance Bridge $150.00
G.R. 1021 P2 Sig. Gen. (250-920 mc) with P1 Power Supply ... $195.00

G.R. 1105A FREQ. MEASURING EOPT.
CONSISTING OF
1106A Freq. Transfer Unit $95.00
1106B Freq. Transfer Unit $26.00
1107A Interpolation OSC. $150.00
1108A Coupling Panel $75.00
1108A Comparison Bridge comes complete with Speaker & housed in 6 ft. Relay Rack $350.00
G.R. 1203B unit P.S. .. $25.00
G.R. 1218A Pulse Vert. $75.00
G.R. 1602B UHF Admittance Meter $75.00
G.R. 1750A Sweep Drive $75.00

H.P. TEST EOPT.
H.P. 202A Function Generator $95.00
H.P. 219C Pulse Duration Unit $25.00
H.P. 350D Add. Generator $75.00
H.P. 355B VHF Attenuator $50.00
H.P. 355C VHF Attenuator $75.00
H.P. 400 HR-VTVM .. $100.00
H.P. 4100-VTVM .. $100.00
H.P. 417A VHF Detector $125.00
H.P. 475B Tunable Bolometer Mount $25.00
H.P. 430 CN Microwave Power Meter $35.00
H.P. 426A Clip on DC MA. Meter $150.00
H.P. 525A Plug in 10 to 100 mc $100.00
H.P. 525B Plug in 100 to 220 mc $100.00
H.P. 526C Period Multiplier $100.00
H.P. 522B Counter .. $100.00
H.P. 151A High Gain Amp. $50.00
TS 403/U Sig. Gen. same as $295.00
TS 429 Sig. Gen. same as $295.00

ALL MERCHANDISE IN EXCELLENT CONDITION • MERCHANDISE SHIPPED FREIGHT COLLECT
SEND CHECK OR MONEY ORDER WITH ORDER • CALIFORNIA RESIDENTS ADD 5% SALES TAX

C & H Sales
2176 E. Colorado Blvd., Pasadena, California 91107
213-681-4925

• JUST ARRIVED! MICROWAVE DEVICES, INC. Model 636NC Brand New Dummy Loads
5052 • 0-3000 MC • Maximum Wattage 600

• ONLY $50.00
TS-323UR FREQ. METER, portable crystal controlled heterodyne-type instrument.
PRICE: $74.95 Freq. range 20-450mc.
With power supply, PRICE: $90.00
EXCELLENT CONDITION, SHPT. WT. 35#

R509 ARC RECEIVERS freq. range 118-143mc with squelch. NEW.
PRICE: $14.95 ea. . . .SHPT. WT. 9#

T19 ARC RECEIVERS freq. range 3-4mc. NEW
PRICE: $12.95
WINTRONIX MODEL 850 INDUCED WAVE FORM ANALYZER
This unit, in conjunction with your present oscilloscope, permits you to view wave forms in the range from audio thru MHz without any direct connection. The probe is simply placed over the tube in question and the wave form is displayed on the oscilloscope. It may also be used as a high gain amplifier to increase oscilloscope sensitivity. Excellent for T.V., radio, amplifier, and transmitter repair and maintenance. BRAND NEW, WITH PROBE.
PRICE: $19.95 ea.

HP 524 COUNTER without plug in EXCELLENT CONDITION, checked out.
PRICE: $199.50 . . .SHPT. WT. APPROX 125#

AN/ASM-72 POSITION FIXING NAVIGATION SETS freq. range 72-128kc.
This set includes: Mark V111 Receiver
Computer
Flight Log Control Display Unit (in form of a strip chart recorder)
3 Decimeters
1 Lane Identification Meter
Pre Amplifier
Rec. Control Box
In the receiver there are 65 hermetically sealed-in glass crystals. Operating tech. manual included. BRAND NEW
PRICE: $299.00 . . .SHPT. WT. 100#

TS497 (SIMILAR TO MEAS. MODEL 80) Freq. range 2-400 mc. In 6 bands, checked out and GUARANTEED.
PRICE: $175.00
TORROID INVERTER POWER SUPPLY with 22 stud diodes (IN256 & IN254) 2 power transistors, 3 VR tubes, chokes, caps., res., etc. 300 150-240 VTC output. 12-24V input.
PRICE: $4.95

1 MC XTALS precision type for octal socket
PRICE: $4.95 ea.
NI-CAD BATTERIES
Nylon case kaplo 1.2V 95 amp. hour. 11 3/8” H x 5 1/4” D x 3” W. LIKE NEW.
PRICE: $12.95
5 batteries with connecting bracket $39.95

All prices are F.O.B. our warehouse, Philadelphia, Pa. All merchandise described accurately to the best of our knowledge. Your purchase money refunded if not satisfied. Terms are cash and minimum order is $5.00. All merchandise subject to prior sale.
see the Mann

for the best in USED FM communications equipment

Two-Way FM Units • Walkies • Repeaters
Mobile Phone • Bases • Mobiles

Here are some of the great buys at Mann...

MOTOROLA 6 METER MOBILES

T41GGV 30W 6/12V Vibrator Supply in 10" housing, with acc. . . . $60
T51GGV 60W 6/12V Vibrator Supply in 15" housing, with acc. . . . $70
U41GGT 30W 12V T-Power Supply in 10" housing, with acc. . . . $125
U51GGT 60W 12V T-Power Supply in 10" housing, with acc. . . . $145

MOTOROLA 2 METER MOBILES

T43GGV 30W 6/12V Vibrator Supply in 10" housing, with acc. . . . $99
X53GAD Two Separate 60W Transmitters, single receiver in 20" wide housing, 6/12V Dynamotor supply with acc. . . . $66
T53GKT Two Separate 60W Transmitters, single receiver in 20" wide housing, 12V T-Power Supply with acc. . . . $120

MOTOROLA 450 MHZ MOBILES

U44BBT 18W 12V T-Power Supply in 10" housing, with acc. . . . $115
U44BBT-3100 Same as above i50, with Private Line, with acc. . . . $135

WRITE FOR FREE CATALOG

Mann Guarantee
Money refunded without question if equipment is returned within seven days from shipment, undamaged, freight prepaid.

Conditions of Sale
Unless otherwise specified, equipment is used, and is sold as-is. All items shipped FOB Tarzana, California. Crystals, ovens, antennas not included unless specifically stated in catalog. All equipment is sold on a first-come, first-served basis.

Mann COMMUNICATIONS
P.O. Box 138, 18669 Ventura Blvd., Tarzana, Calif. 91356
Phone: (213) 342-8297
IF YOU'RE AN AMATEUR* YOU QUALIFY FOR THE LOWEST PRICES THE SURPLUS INDUSTRY HAS TO OFFER!

SPECTRONICS IS THE BIRTHPLACE OF REPEATERS

Handie-Talkies
VHF and UHF Transmitter Strips
VHF and UHF Receiver Strips
Trunk-Mount & Dash-Mount Mobiles
NI-CAD Batteries
Base Stations, Remote and Local Complete Repeaters, VHF & UHF
Plus Accessories of all kinds:
 Tone Encoders
 Tone Decoders
 COR Parts
 PLUS PLENTY OF SPECIAL GOODIES

*SPECTRONICS
“THE FM PEOPLE”
1009 GARFIELD AVE. OAK PARK, ILL. 60304
HYCON COLOR BAR GENERATOR: Complete with tubes without crystals, unchecked $19.95
TS-186 FREQUENCY METER: 100 to 10,000 MC Accuracy ±0.1%. 110VAC Power Supply $75.00
TS-173 FREQUENCY METER: 90 to 450 MC. Accuracy .005. Only $75.00
TS-174 FREQUENCY METER: 20 to 250 MC $97.50
LM FREQUENCY METER: without book, good condition. 125KC to 20 MC $25.00
OS-8 SCOPE: Portable, compact and light weight $49.50
TS-382 AUDIO OSCILLATOR: 20 to 2000 00 cy $75.00
SPECIAL COLLINS R390A with mech. filter, mint cond. $895.00
will Trade???

TS 148 Spectrum Analyzer $75.00

TS 659 Teletype Test Set for checking Teletype by sending out signals, motor driven $19.95

MODEL 14 REPERF with synch motor. As is cond. $14.95
TELETYPY PAPER, WITH CARBON** Case of 12 rolls per case/$5.95
REPERF PAPER M-14 Case of 40 rolls. . . . per case/$6.95
TELETYPY RIBBONS Box of 12 each. . . . per box/$2.49
88MH COILS 5 for $1.50

ASR TELETYPYWRITER, COMPLETE MODEL 28 teletype $1100.00

BC 348 Receiver, Complete unchecked $49.50
VARIAC 0-250 V at 6 amps $24.50
LS 166 LOUDSPEAKER: A 4" square heavy duty PM loudspeaker with an 8 ohm voice coil housed in a steel case, complete with an 8 ohm to 800 ohm transformer $3.95
URA-8 Teletype: Converter, checked and working. Good cond. $97.50
AC RETRACTABLE CORD: 6 foot cord mounted on spring loaded wheel $1.00

Walkie Talkie Citizen Band: Factory Seconds. Good cond. 2 for $3.95
MUFFIN PAN: Funnel type, many uses. 110V/60 cy $3.50
WEATHER BALLOON MODULATOR: Complete with built-in barometric pressure element. New $2.95

RT-70/GRC TRANSCEIVER: Compact 14"x7"x5". Late type 46-58 MC FM $49.50
RT-109/GRC RECEIVER: 270-390 MC FM $35.00
RT-110/GRC RECEIVER: 380-550 MC FM $49.50
STEEL ANTENNA WHIP: 8½ ft. long $1.49

EARPHONES
Low Impedance phones $1.50
Phones and Boom Mike comb. Aircraft type $3.95

CRYSRALS
100 KC $4.95
200 KC $1.50
1000 KC for LM or 221 $3.95
1000 KC in FT-243 holder $3.50
ARC 11 for 180 to 950 KC $14.95
URR-13, 200 to 400MC $97.50
2V rechargeable battery $2.49
One Inch CRT Tube Mounted In A Plastic Holder With Cable Lead. $4.95
DIAL TELEPHONE can be used as extension phone $4.95
BEAM FILTER $1.95
JENNINGS VACUUM CAPACITOR: 125-250 at 7500 V. $9.95
10-85 at 35,000 V. $29.50
16 to 90 at 3000 V. $7.95
URC-4 VHF COMPACT WALKIE TALKIE good to line to sight. Makes good 6 or 2 meters $27.50
SUPER OSCILLATOR - Late Type. Consists of 18 crystals mounted on a turret with oven plus the proper selector coils designed to select over 700 frequencies. Only $14.95
CONVERTER: 12 to 24 VDC at 4 Amps Rotary type $7.95

Space prevents us from listing all items. Please write us your needs and we will answer immediately.

Terms: Remittance in full or 25% deposit on COD orders. Minimum order $5.00 FOB our warehouse, L.A. Calif.

J.J. GLASS ELECTRONICS
1624 SO. MAIN ST.
LOS ANGELES, CALIF. 90015
CERAMIC FILTERS
455 Khz ceramic filters type BF-455-A. These filters will help to sharpen the selectivity of most sets using 455 Khz IF's. Use across cathode bias resistor in place of a capacitor, or in transistorized sets, across the emitter bias resistor. Impedance is 20 ohms at 455 Khz. DC resistance is infinite. Impedance increases rapidly as you leave 455 Khz. Plan your own LC. filter circuits at very low cost.
10 for $1.00 25 for $2.00

TOROID POWER TRANSFORMER
T3—Has powdered iron core and is built like a TV fly-back transformer. Operates at about 800 cps. 12 vdc pri. using 2N442's or equivalent. DC output of v/dibl 475 volts, 90 watts. Core feed back winding for 2N442's $2.95 ea. 2 for $5.00

TRANSFORMERS
P4—105 115-125 v 60 cy pri. 6.4 v @ 11 A, 205v @ ¾ A, 17 v @ 45 mA (relay power). Wt. 10 lbs $2.95
P5—Pri. 117 vac/12 vdc. Sec. 1: 12.6 vac & 12.6 volt for vibrator. Double half shell. Wt. 12 lbs $2.95 each 2 for $4.00
P6—Pri. 117 vac/12 vdc, Sec. 1: 275 vdc (v/dibl) @ 150 ma, Sec. 2: 12.6 vac & 12.6 volt for vibrator. Wt. 4½ lbs $2.95 each 2 for $5.00
P7—117 vac pri. Sec. 1: 183 vac @ 120 ma. Sec. 2: 6.3 vac @ 4 A. Double half shell mail box type. Wt. $2.75 each 2 for $4.00
P8—117 vac pri. Sec. 1: 470 CT. DC out of bridge 600 v 300 mA max. Sec. 2: 100 vac — 10 ma for bias. Sec. 3: 12.6 vac @ .75 A. Half shell HT-46 type. Wt. 7½ lbs $3.50
P9—117 vac pri. Sec. 1: 900 vac @ 300 ma. Sec. 2: 100 vac @ 10 ma bias. Sec. 3: 12.6 vac @ 2 A. Double half shell. Wt. 16½ lbs $4.50
P10—117 vac pri. Sec. 1: 960 vac CT @ 160 ma. Sec. 2: 415 vac CT and tap at 100 vac @ 10 ma bias. Sec. 3: 12.6 vac @ 4.5 A. Double shell mail box type. Wt. 8 lbs $3.75

OUTPUT TRANSFORMERS
59¢ each or 3 for $1.50
OT 2—Pri. imp. 7000 ohms, Sec. 3.2 and 500 m for phones or 70 volt line. 3 watts. Full shielded double half shell.

TUBES
New bulk packaged tubes made by RCA
6BA7—$1.00 6 for $5.00
6C6E—$1.00 6 for $5.00
12AU6—$5.00 6 for $3.00
86BQ—$8.50 6 for $4.50
12AX7—$.75 6 for $4.00

CABLE
RG 196 AU 50 ohm telcon coxialic cable. Outside diameter .080", RF loss .29 db per foot at 400 MHz. Silver plated shielding and conductor. Used for internal chassis wiring, antenna coupling. RF coupling between stages, etc. Random lengths from 35 foot to 150 foot. Colors: black, brown, gray, orange. Regular price 23¢/foot. Our price 5¢/foot. $3.00 per 100 ft.

All prices FOB Racine, Wisc. Orders under $3.00 postage, excess will be refunded. All weights are net. Include 50¢ handling charge. Please allow enough weights.
IMPOSSIBLE?...BARGAINS IN SURPLUS ELECTRONICS (AND OPTICS)

- GOVERNMENT SURPLUS GEIGER COUNTER
 "USAF" radiation detectors are in like new condition, with instructions. Shirt pocket size, epoxy plastic case. Requires one each 1.25 V and 5.4 volt mercury batteries, cost about $3.00. Will operate fine from less expensive penlite batteries. Quantity limited. ASAFOC .. $7.50 ppd.

- POWER SUPPLY KITS
 We have taken a select group of surplus components, and put together this bargain kit. The kit includes all components required to make a power supply as shown capable of supplying 24 volts at 2 amps, 12 volts at 4 amps or 6 volts at 8 amps. You couldn't build or buy this same supply at 4 times our low price of $13.50. For an additional $6.00, we supply the P.C. board and components to build an integrated circuit, required for this supply, using a silicon power transistor and the I.C. regulator described elsewhere in this ad.

- EXPERIMENTERS TTL LOGIC KIT
 This kit contains sixteen J-K flip-flop, eight dual four input nand/nor gates, eight quads two input nand/nor gates, eight triple three input nand/nor gates and three of our instant ultralarge logic cards with mating connectors. Full information on the integrated circuits, including circuits for counters, decoders, memories, shift registers etc. are included. The I.C.'s are made by T.I., Sprague or Signetics (no choice) and are new packaged in the flat-pak configuration. I.C.'s are equivalent to 54/7400 series logic.

- SPECIAL INTEGRATED CIRCUIT VOLTAGE REGULATOR
 Latest type, Motorola MC1450G, RCA 30Bb or equivalent. Range 3 to 30 volts at 200 mA, 4 amplifiers with external transistor. Foldback current limiting makes short circuit proof. Complete with circuit diagrams and data sheets. MFGS price over $6.00.

- NOISE CANCELLING MICROPHONE
 Carbon microphones used in high altitude Air Force G suits. Impedance, 40 ohms at 85 ma, dc. Uniform response 200 to 4,500 Hz. Construction is brass rive and bakelite. Rugged blast-proof, sealed, altitude compensated. N.S.M. ... $2.00 each.

- TTL INTEGRATED CIRCUITS
 TTL 7400 series I.C.'s need no introduction to the electronics experimenter. They are the latest most frequently used units. Our units are brand new, fully marked and are guaranteed to meet original manufacturers specifications. The low price needs no comment.

- DUTL INTEGRATED CIRCUITS
 This is the SP600 series of integrated circuits made by Sprague and Signetics. Compatible with other manufacturers integrated circuits. Each order will include circuits for decade counters, bi-directional counters, decoding circuits, shift registers, memories and many other circuits, in addition to data sheets. These I.C.'s represent one of the latest and most economical logic families for equipment design. Available are the SP020 J-K flip-flop, SP025A P-S flip-flop, SP031A quad 2 input gate expander, SP059A dual 4 input buffer driver, SP067A triple 3 input NAND/NOR gate, and SP068A quad 2 input NAND/NOR gate. Removed from new equipment.

- DIODES BY THE FOOT!
 These diodes are packaged in rolls, for automatic machine insertion, spaced 0.2 inches apart, so there are 60 to the foot. They are TRANSITION SG 2847 general purpose silicon fast switching diodes, 75 volt, 0.1 amps, in glass package. Buy a few feet and you should have diodes handy all the time. Pull them off the strip as you need them. At a BARGAIN low price.

- PUSH BUTTON SWITCHES
 These high grade moulded bakelite push button switches were made to be used as a computer entry device. Uses are limited only by your imagination. Consists of seven sections, six double pole double throw and one four pole double throw. May be cut apart to make seven independent switches. Alternate action, similar to switches on professional audio equipment.

- POWER SUPPLY KITS
 All items postage paid in the U.S.A.

- B. & F. ENTERPRISES

- PHONE: 617 522-2323
P.O. Box 44, Hatherne, Massachusetts 01937
FM SCHEMATIC DIGEST

FOR MOTOROLA OWNERS

Complete circuits, technical notes, and hard-to-get dope like alignment info and crystal-ordering data on Motorola FM equipment produced from 1947 to 1960.

136 GIANT PAGES — 11½ x 17 in. ALL THIS! And for less than the cost of a single crystal. Can you really afford not to have this valuable collection of facts and schematics for all the popular Motorola units?

S. Wolf
1100 Tremont Street
Boston, Massachusetts 02120
This is a sample listing of our stock. Some are one of a kind, many we have in stock in large quantity. We also have hundreds of others not listed.

All manuals listed are originals, not copies, and 99% are brand new, unused.

PROPAGATION PRODUCTS CO.

P. O. Box 242 Jacksonville Fl.

TECH MANUALS

ORDER TODAY — YOUR MANUAL MIGHT BE SOLD OUT TOMORROW!

All publications are subject to prior sale without notice.
INTEGRATED CIRCUITS
FACTORY FRESH - NO REJECTS
W/SPEC. SHEETS
FAIRCHILD - PHILCO - RCA
MOTOROLA
YOU NEED IT - WE HAVE IT!
RTL or TTL LOGIC

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 900 Buffer</td>
<td>80¢</td>
<td>10/5.50</td>
</tr>
<tr>
<td>UL 914 Gate</td>
<td>80¢</td>
<td>10/5.50</td>
</tr>
<tr>
<td>UL 923 JK Flip-flop</td>
<td>$1.50</td>
<td>10/8.50</td>
</tr>
<tr>
<td>MC 790P Dual JK Flip-flop</td>
<td>$2.00</td>
<td>10/18.95</td>
</tr>
<tr>
<td>MC 890P Dual JK Flip-flop</td>
<td>$2.00</td>
<td>10/18.95</td>
</tr>
<tr>
<td>MC 789P Hex Inverter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 724P Quad 2 Input Gate</td>
<td>$1.00 ea.</td>
<td>10/9.25</td>
</tr>
<tr>
<td>MC 979P Dual Buffer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC 780P Decade</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>MC 767P Quad Latch</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>MC 9760P Decade</td>
<td>5.00</td>
<td></td>
</tr>
</tbody>
</table>

ONE EACH OF 3 ABOVE $10.50

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400 Quad 2 Input NAND Gate</td>
<td>75¢</td>
<td>10/6.95</td>
</tr>
<tr>
<td>7404 Hex Inverter</td>
<td>85¢</td>
<td>10/7.95</td>
</tr>
<tr>
<td>7441A Decimal Decoder/Driver</td>
<td></td>
<td>10/39.95</td>
</tr>
<tr>
<td>7473 Dual JK Flip-flop</td>
<td>$1.60</td>
<td>10/14.95</td>
</tr>
<tr>
<td>7475 Quad Latch</td>
<td>$2.30</td>
<td>10/21.50</td>
</tr>
<tr>
<td>7490 Decade Counter</td>
<td>$2.70</td>
<td>10/25.50</td>
</tr>
<tr>
<td>709 Op Amp</td>
<td>$1.75</td>
<td>10/16.50</td>
</tr>
<tr>
<td>741 Op Amp</td>
<td>$3.10</td>
<td>10/29.95</td>
</tr>
<tr>
<td>CA 3035 Linear Amplifier</td>
<td>$2.25</td>
<td>10/21.95</td>
</tr>
<tr>
<td>14 Pin Dual Inline socket terminals</td>
<td>25¢</td>
<td>10/2.25</td>
</tr>
<tr>
<td>16 Pin Dual Inline socket terminals</td>
<td>30¢</td>
<td>10/2.75</td>
</tr>
</tbody>
</table>

NEW NATIONAL Long Life Nixie tubes NL 940S 0-9 with two decimal points $4.50 ea. 10/42.95

SOCKET for NL 940S $4.50 each

100 KC CRYSTAL NEW $3.95

88 MH TOROID $10.00

DOOR KNOB CAPACITORS

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 PF - 20 KV</td>
<td>75¢</td>
</tr>
<tr>
<td>600 PF - 12 KV</td>
<td>75¢</td>
</tr>
<tr>
<td>40 PF - 5 KV</td>
<td>50¢</td>
</tr>
<tr>
<td>50 PF - 7.5 KV</td>
<td>50¢</td>
</tr>
</tbody>
</table>

R & R ELECTRONICS
311 EAST SOUTH ST.
INDIANAPOLIS, IND. 46225

$5.00 minimum order. FOB Indianapolis

the all "NEW" CRYSTAL CALIBRATOR
FROM

- 100 - 50 - 25 KC MARKERS
- ZERO BEAT TO W W V
- USES NEW 100 KC CRYSTALS (included in all units)
- GLASS EPOXY BOARDS
- VERY COMPACT 2" x 3" x ½"
- 3.5 V. OPERATION

$12.95 KIT
with
100 KC CRYSTAL

Wired and zenered to W W V $15.95

ARN-30 108-135 mc tunable receivers. High frequency version of the famous command receivers. Listen to local airport frequency or convert to 2 meters. Like New with schematic and operating instructions. 12 lbs. $14.95

Western Union facsimile machines, send and receive pictures and memos. Works on 115 v 60 cycles. Shipped with auto-start, auto-phase pos-to-pos, conversion instructions. 20 lbs. $19.95

Telfax paper 2¢ each 1000 for $12.95

DOOR KNOB CAPACITORS

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 PF - 20 KV</td>
<td>75¢</td>
</tr>
<tr>
<td>600 PF - 12 KV</td>
<td>75¢</td>
</tr>
<tr>
<td>40 PF - 5 KV</td>
<td>50¢</td>
</tr>
<tr>
<td>50 PF - 7.5 KV</td>
<td>50¢</td>
</tr>
</tbody>
</table>

R & R ELECTRONICS
311 EAST SOUTH ST.
INDIANAPOLIS, IND. 46225

$5.00 minimum order. FOB Indianapolis
EXOTIC DISCRETE COMPONENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET N-CHANNEL 2N3819 unused, TI</td>
<td>2/1.00</td>
</tr>
<tr>
<td>709C OP AMP</td>
<td>1.50</td>
</tr>
<tr>
<td>TIS-43 UNIJUNCTION, Ti, branded</td>
<td>2/1.00</td>
</tr>
<tr>
<td>TRIACS 600V 6 AMP, TO-66 case</td>
<td>1.25</td>
</tr>
<tr>
<td>TUNNEL DIODE GE SMD-700</td>
<td>1.00</td>
</tr>
<tr>
<td>TUNNEL DIODE GE TO-717</td>
<td>0.75</td>
</tr>
<tr>
<td>LED VISIBLE</td>
<td>1.25</td>
</tr>
<tr>
<td>LED DETECTOR</td>
<td>1.25</td>
</tr>
<tr>
<td>2N918 TRANSISTOR NPN 750W VHF 33V 500MC</td>
<td>2/1.00</td>
</tr>
<tr>
<td>2N2218A TRANSISTOR NPN3 3 watt 40V 250MC</td>
<td>2/1.00</td>
</tr>
<tr>
<td>2N2907A TRANSISTOR NPN1 1 watt 60V 125MC</td>
<td>3/1.00</td>
</tr>
<tr>
<td>2N708 HI-FREQ TRANSISTORS</td>
<td>3/1.00</td>
</tr>
<tr>
<td>JK FLIP FLOP TEXAS INST N5470F</td>
<td>2/1.00</td>
</tr>
</tbody>
</table>

SYLVANIA DIP IC

Brand new dual inline package, factory marked, DTL series. Priced at a new low.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>932 - Dual 4 input expandable buffer</td>
<td></td>
</tr>
<tr>
<td>933 - Dual 4 input N/D/N gate</td>
<td></td>
</tr>
<tr>
<td>931 - JK/RS Flip-flop</td>
<td></td>
</tr>
<tr>
<td>930 - Expandable Dual 4 input</td>
<td></td>
</tr>
<tr>
<td>934 - Dual 4 input expandable power gate</td>
<td></td>
</tr>
</tbody>
</table>

455 KC IF ASSEMBLY

Complete miniature 455kc IF assembly. 1.5 inches long, little over 3/4 inch square. Ready to use w/schem. Sim to Miller 8902... 2.50

RF VACUUM SWITCH

Made for the ART-13 good for 100 watts RF, no doubt handles much more due to being underrated for the military... 71-17 3/2:00

NIXIE TUBES

Brand new BURROUGHS, 0-9 w/decimals. B5441, with socket. List of $8.40. B5441 5.25

7400 SERIES IC GRAB BAG

Mix of 7400 series DIP, unmarked untested. Some schematics provided... 10 for 1.00

LM FREQUENCY METER $35.00

UHF TRANSmitter

One of the later designs being released. Superb workmanship by HUGHES. Utilizes 3 pencil triodes worth over $46.00. Looks like a "natural" for 220 mc transmitter as it's on 264mc now. Simple to lower freq., W/tubes & schematic. Built-in power supply 400 cycle would have to be changed. Measures only 3x4x8 inches. Nice piece of scarce gear, easy to work on & first class condition.

70 AMP POWER SUPPLY KIT $16.00

Runs on 115V 60 cycle. We include diagram, diodes, caps, resistors, transformer. Gives you a choice of 6V at 70 amps; 12V at 35 amps; 24V at 17 amps.

OP AMP MODULES $2.00

Mfrs' name withheld but you'll recognize them. Worth over $10 each. Slightly below mfrs specs but tested OK & guaranteed. Any SA-1, SQ, SQ-1 or SQ-10 for $2.00 w/diagram. Many others on hand, send for list.

PAMOTOR $6.00

Brand new PAMOTORs for 115V 60 cycle, 115CFM, list of $18.00 each. Mfr guarantee of 100,000 hours.

SYLVANIA DIP IC

Complete miniature 455kc IF assembly. 1.5 inches long, little over 3/4 inch square. Ready to use w/schem. Sim to Miller 8902... 2.50

RF VACUUM SWITCH

Made for the ART-13 good for 100 watts RF, no doubt handles much more due to being underrated for the military... 71-17 3/2:00

NIXIE TUBES

Brand new BURROUGHS, 0-9 w/decimals. B5441, with socket. List of $8.40. B5441 5.25

7400 SERIES IC GRAB BAG

Mix of 7400 series DIP, unmarked untested. Some schematics provided... 10 for 1.00

LM FREQUENCY METER $35.00

UHF TRANSmitter

One of the later designs being released. Superb workmanship by HUGHES. Utilizes 3 pencil triodes worth over $46.00. Looks like a "natural" for 220 mc transmitter as it's on 264mc now. Simple to lower freq., W/tubes & schematic. Built-in power supply 400 cycle would have to be changed. Measures only 3x4x8 inches. Nice piece of scarce gear, easy to work on & first class condition.

70 AMP POWER SUPPLY KIT $16.00

Runs on 115V 60 cycle. We include diagram, diodes, caps, resistors, transformer. Gives you a choice of 6V at 70 amps; 12V at 35 amps; 24V at 17 amps.

OP AMP MODULES $2.00

Mfrs' name withheld but you'll recognize them. Worth over $10 each. Slightly below mfrs specs but tested OK & guaranteed. Any SA-1, SQ, SQ-1 or SQ-10 for $2.00 w/diagram. Many others on hand, send for list.

PAMOTOR $6.00

Brand new PAMOTORs for 115V 60 cycle, 115CFM, list of $18.00 each. Mfr guarantee of 100,000 hours.
WORLD'S LARGEST SELECTION OF
NEW & USED TV CAMERAS & ASSOC. EQUIPMENT

Broadcast & Closed Circuit TV
Audio and Video Systems

1971
INDEX PAGE 142

25th anniversary
CATALOG # 971 A 1

THE DENSON ELECTRONICS CORP.

OFFICE Longview St. Tel. Area Code 203/875-5198
MAIL POST OFFICE BOX 85
ROCKVILLE CONN 06066 USA

PRICE $1.00
ppd.-$2.00 foreign
Tucker Electronics Offers High Quality Reconditioned Equipment at Great Savings!

Tucker Electronics specializes in the sale and servicing of all types of military and commercial test equipment such as oscilloscopes, signal generators, bridges, voltmeters, and similar instruments. Our experienced sales engineers can aid you in selecting quality test equipment for your specific requirements at a considerable saving in cost to you. We maintain stock inventory of over 8,000 instruments by 250 different manufacturers. All our used equipment is reconditioned, calibrated, and fully guaranteed.

Tucker Electronics maintains a well-equipped repair and calibration laboratory. Calibration standards are traceable to the National Bureau of Standards, and services satisfy the requirements of MIL-C-45662A. Our customer list includes many nationally known electronic and aerospace companies, as well as many government agencies. Turn-around time on calibration work is kept to a minimum for quick service.

Write or Call today for FREE catalog.
JEFF-TRONICS

TEST EQUIPMENT

USED, CHECKED GUARANTEED IN GOOD WORKING CONDITION

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEKTRONIX</td>
<td>Plug-ins for 530-series scopes, Types B, D, E, K, L</td>
<td>$60.00 each</td>
</tr>
<tr>
<td></td>
<td>FLUKE 801 Differential Voltmeter</td>
<td>$125.00</td>
</tr>
<tr>
<td></td>
<td>FLUKE 101 VAM Meter with 3 shunts</td>
<td>$125.00</td>
</tr>
<tr>
<td></td>
<td>DUMONT 304-A Oscilloscope, 5-1/2 digit</td>
<td>$100.00</td>
</tr>
<tr>
<td></td>
<td>HEWLETT-PACKARD 524-B Counter, to 10 Mc.</td>
<td>$400.00</td>
</tr>
<tr>
<td></td>
<td>HEWLETT-PACKARD 523-B counter, to 1 Mc.</td>
<td>$250.00</td>
</tr>
<tr>
<td></td>
<td>HEWLETT-PACKARD 185-A Sampling Scope with 187-B dual-trace plug-in</td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td>HEWLETT-PACKARD 415-A Standing Wave Ratio Indicator</td>
<td>$45.00</td>
</tr>
<tr>
<td></td>
<td>HEWLETT-PACKARD 520-A High Speed Scaler for counter</td>
<td>$75.00</td>
</tr>
<tr>
<td></td>
<td>KROHN-HITE UF-101-A Ultra Low-Distortion Power Amplifier</td>
<td>$75.00</td>
</tr>
<tr>
<td></td>
<td>BALLANTINE 320 True RMS Voltmeter</td>
<td>$60.00</td>
</tr>
<tr>
<td></td>
<td>BALLANTINE 302CS/2 Battery operated AC VTVM</td>
<td>$35.00</td>
</tr>
<tr>
<td></td>
<td>ELECTRO-INSTRUMENTS A-12 DC Amplifier in portable case</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td>KEPCO KR-2 Regulated Power Supply, 195-325 vdc</td>
<td>$35.00</td>
</tr>
<tr>
<td></td>
<td>KEPCO KR-6 Regulated Power Supply, 195-325 vdc</td>
<td>$50.00</td>
</tr>
<tr>
<td></td>
<td>BERKLEY 5570 Digital Freq. Meter, 0-43 Mega-cycle, Counts to 1 cycle</td>
<td>$250.00</td>
</tr>
<tr>
<td></td>
<td>G-R 736-A Wave Analyzer</td>
<td>$100.00</td>
</tr>
<tr>
<td></td>
<td>TELETRONICS PG-200-AA Pulse Generator with extender</td>
<td>$35.00</td>
</tr>
<tr>
<td></td>
<td>MICROMETER 123-B Wattmeter Bridge, Bridge</td>
<td>$35.00</td>
</tr>
<tr>
<td></td>
<td>PRD 650-A Universal Power Bridge</td>
<td>$35.00</td>
</tr>
<tr>
<td></td>
<td>ESE 270-R Capacitance Bridge. Rack mounting</td>
<td>$100.00</td>
</tr>
<tr>
<td></td>
<td>ULTRASONIC INDUSTRIES Ultrasonic Generators. In small table-top cabinets. Model G4001P, 80 Kc, 80 watts</td>
<td>$35.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Model GB01CF, 80 Kc, 120 watts</td>
</tr>
<tr>
<td></td>
<td>G.E. “Volt-pac” variable voltage transformers. Input 120/240 v., output 0-240/480 volts, 35 Amps max. Shpg. Wt. 60 pounds</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

DIGITAL MECHANICAL COUNTERS:
- 3-digits 20 vdc relay operated. Thumb-wheel to reset. Counts remaining: “1½” x ½”.
- 3-digit, uncased. 3/8” high numbers. Left-hand digit alternates 0-1-0-1. 3½” diam. shaft, 1” x 1”.

WESTON #1524 0-500 AC Milliammeter. 2” round. $2.95

POWER TRANSFORMER. 275 v., 125 ma. 12 v. 2 amps. Upright mounting, 8 pounds. $2.00

METAL-CASED PAPER TUBULAR CAPACITORS, mil spec.
- 100 vdc: .01, .047, .1, .22, .68, 1 uf.
- 200 vdc: .022, .033, .047, .056, .068, 1.33 uf.
- 400 vdc: .015, .033, .047 uf.
- 600 vdc: .0022, .0047, .022, .047 uf. $1.00 each

SELENIUM RECTIFIER, Full-wave Bridge, 55 v. ac max. 3½ amps. $1.00 each

GENERAL RADIO POTENTIOMETERS:
- #971-M 5000 ohms. $75.00
- SELSIN DIFFERENTIAL GENERATOR, G.E. 21H11. 400 cycle unit, works well on 12 volts 60 cycles, for beam indicator, etc. New. $2.00

HUMIDISTAT.. Honeywell type H4681002-1. $2.00

COAX RELAYS, from MOTOROLA “MOTORAC” 12 vdc coil. 100 watts RF. Connections: 1 SO-239, 2 RCA plugs. $3.00

OFFNER CHOPPER AMPLIFIER: model 190, with 12AU7 & 2 2A2X7 tubes, chopper. Used, appear good. $4.50

Prices are FOB our store. PLEASE include sufficient money for shipping. Any excess will be immediately refunded.

Send 25¢ for our catalog of hundreds of items: Test equipment, parts, new and used ham gear. We will add your name to our permanent mailing list.

Jeff-Tronics

4252 Pearl Rd.
Cleveland, Ohio 44109
749-4237
When it comes to great used mobile communications equipment, we wrote "the book"... Send for a free copy of "the book" (our new catalog).

Here are only a few of our LOW PRICES:

2 METERS

GENERAL ELECTRIC MA/E33 6 or 12 volts, 30 watts
Vibrator Power Supply *with accessories* $148.00

MOTOROLA X43GGV, New Low Price, Special Model in 10" case,
30 watt, transmitter narrow band, receiver wide band, vibrator powered, 2 freq. transmitter, and transistor powered 2 freq. "Private Line" receiver (single squelch), less reeds,
complete accessories $108. *In quantities of ten* $88.

6 METERS

MOTOROLA FMTR140D, 6 or 12 volts, 60 watt, wide band.
Dynamotor Power Supply $48.

Transmitter Narrow Band $58.

Fully Narrow Band $68.

complete with accessories (less accessories deduct $15)

GENERAL ELECTRIC PRE-PROGRESS 4ER6 RECEIVER, 30 or 60 watts (as available), 6 or 12 volts, *including all accessories* $28.

UHF

MOTOROLA... T44A6A *with accessories* $38.

T44AAV *with accessories* $48.

RCA CMU15A... 15 watts, *minus accessories* $18.

For Your Convenience **SCHEMATIC DIGESTS**. *(Post Paid)*

G.E. SCHEMATIC OUTLINE AND INTERCONNECTION DIAGRAMS FOR GE 2-WAY FM RADIOS.

Vol. 1 Pre-Progres Line ('49 - '55) 25-50 MHz 72-76 MHz $4.50

Vol. 2 Pre-Progres Line ('49 - '55)
150-170, 405-425 MHz, 450-570 MHz each volume $4.50

MOTOROLA FM SCHEMATIC DIGEST

revised edition to 1960 $6.50

GREGORY ELECTRONICS CORP. 249 Route 46, Saddle Brook, N. J.
Phone (201) 489-9000 Dept. 73
RADIO BOOKSHOP BIG DEALS

BOOKS!

ADVANCED CLASS STUDY GUIDE Up-to-the-minute simplified theory, written with the beginning radio amateur in mind. This unique book covers all aspects of radio theory for the Advanced Class license and has helped hundreds of ham schools throughout the country. Nothing else like it in print. 1001...Hardcover $6.95

EXTRA CLASS LICENSE STUDY COURSE BOOK The Extra Class License Study Guide is now available in book form as a permanent addition to your radio library. This is the complete course that was published in 73, covering every technical phase of the new license exams for this highest amateur license. This also covers, in the easiest-to-understand form, just about every technical question likely to be asked on the First Class Radiotelephone exam. This study guide ever published that is written for the radio amateur to understand it. With this book you can face the FCC exams knowing that you understand the theory and with no fear of rewritten questions. 1002...ppd USA $4.95

VHF ANTENNAS This handbook contains a complete collection of up-to-date information about VHF and UHF antennae, with design hints, construction and theory. If you've been wondering what array you need, this book will give you enough background to make the right decision. 1003...$3

CAT HAMSTAND Invaluable book for the ham or the lab and for everyone else who doesn't want to have to keep lifting heavy equipment around. Conveniently arranged for reference...or even worse, have to write to the manufacturer. 1005...Hardcover $3

73 USEFUL TRANSISTOR CIRCUITS If you've been looking for a transistor circuit to do a special job, chances are there is a circuit in this book that will give you a head start. It covers circuits for amplifiers, receivers, transmitters and test equipment. 1006...$1

SIMPIFIED MATH Does math scare you? It shouldn't. This easy-to-understand book explains the simplified exponential system of arithmetic, standard formulas, logarithms, and their application to the ham shack. 1007...$5.00

AMATEUR TEST AND MEASUREMENTS By W5REZ. Using VOM, Scope VTM, dipper, SWR bridges, etc. Covers all users of test equipment in the ham station. 208 pages, softbound. Interesingly written, covers tuning receivers, all kinds of transmitters, etc. Invaluable for every ham shack. 1012...$5.50

ELECTRONICS FOR THE AMATEUR By W5REZ. Hardcover book, 272 pages. Covers entire theory needed for passing the amateur licenses. Fine book for instructors, and for amateurs wanting a refresher course before exposing themselves to the FCC examiners. Hardback books look nice and last. 1013...$7.95

NCX-1000

NATIONAL NCX-1000 TRANSCEIVER Transceivered (except for driver and final) runs 1000 watts, yet is just a bit larger than ordinary transceiver! Complete kilowatt ham station in your shack. Tested by 73 staff and found to be a really great unit. The world of transceivers and ICs makes it possible to have a complete kilowatt all band ham station in one small unit! Not much larger than normal transceiver yet runs solid 1000 watts. Extremely sensitive, processed speech for maximum umphs when wanted, everything you need in one little package. Only tubes are driver and final. The NCX-1000 lists for $1100 and is an unusual bargain at that price. The 73 test unit, used a few days and under brand new factory warranty is available to the first $700 check received. 1004...$1100

GR 1105

HAMSHACK WITHOUT A GLOBE? RIDICULOUS! Particularly when these fabulous Hammond globes (the best in the line) are available at low, low price! $3 $1105A This primary frequency standard will measure from 1 Hz to over 100 MHZ with a 2.4 MHz crystal oscillator and a 10 MHz crystal. All types of test equipment are available in stock and when they are gone, that's it! 1013...$195

GR FREQUENCY MEASUREMENT EQUIPMENT

A HAMSHACK WITHOUT A GLOBE? RIDICULOUS! Particularly when these fabulous Hammond globes (the best in the line) are available at low, low price! $3 $1105A This primary frequency standard will measure from 1 Hz to over 100 MHZ with a 2.4 MHz crystal oscillator and a 10 MHz crystal. All types of test equipment are available in stock and when they are gone, that's it! 1013...$195

LAPEL BADGES Name and call identifies you at club meetings, hamfests, busted pot parties, and engraved by skillful New Hampshire craftsmen with loving care. Only one hundred dollars. Send first name and call. 1012...$1

LAPLAP BADGES Name and call identifies you at club meetings, hamfests, busted pot parties, and engraved by skillful New Hampshire craftsmen with loving care. Only one hundred dollars. Send first name and call. 1012...$1

OX STUFF

FABULOUS DX MAP OF THE WORLD Show visitors OX, you've worked. Wall sized (23" x 31") flat in malleable tin, suitable for framing, most complete map available; up-to-date world prefixes shown; color in certain areas, as worked; shows islands, reefs, rare DX spots; use colored map pins for different bands. 1007...$1

OX STUFF

DX HANDBOOK includes giant world-country zone wall map. Articles on QSL design secrets, winning DX contests, DXCC rules, DXpeditions, reciprocal licensing and many more. World postcard sales, WAZ record lists, time charts, propagation, etc. Special ham maps and bearing charts. A must for the DXer. 1021...$3
Once upon a time there was a young boy who lived in a big city. He attended school during the day (he was in the sixth grade), but at home in the evenings he “fooled around” with his electrical experiments. Tom’s teachers said he was lazy and inattentive. He did not study his textbooks like the other kids did. He had a poor memory and was unable to remember things the teacher had told him the day before.

He was so lazy that he never wrote out the details of his arithmetic problems. He had decided that it was much easier to memorize all the tables up to 20 x 20, than to calculate them every time.

He spent considerable time at the library, looking for books on electricity and radio. He was “friends” with the radio serviceman in his neighborhood and with a neighbor who worked for the telephone company. He also had a very special friend who was a ham radio operator.

His basement workshop was a mess, with parts of old radios, discarded appliances, tubes, meters and assorted miscellany all over. By the time he was in eighth grade, he had built several 1 and 2 tube receivers and his latest project which he was just finishing was a six-tube superheterodyne. He also had built a ham band transmitter and had been on the air for about six months.

He had acquired a number of basic skills using electrical and electronic instruments, troubleshooting all kinds of equipment and doing some simple design work, based mostly on Ohm’s law.

During high school he continued his ham activities, and did just average in his school work. His math teacher told him he would never learn math and should avoid technical subjects. His physics teacher, however, was impressed by Tom and encouraged him, provided opportunities for him to use school equipment.

As you might expect, Tom decided to study electrical engineering in college. Here again, his grades were average, and studies left little time for ham radio. But Tom picked up some spending money working part time in a radio repair shop and, in his last year, worked as a technical assistant to one of the professors in the EE department.

The professor was working on a project that involved using tube circuits to perform mathematical computations. There were no textbooks to refer to. Every aspect of the equipment was a step into an uncharted land. How do you represent numbers using electrical circuits? What circuits do you need to perform arithmetic operations? How do you get results out of the machine?
The professor didn’t want to hire Tom at first, but some of the A students working on the project were completely lost when it came to troubleshooting. And, in designing circuits that weren’t in the textbooks, they were rather confused. So Tom got the job. And strange as it seems, this indifferent scholar, with “no talent” and a “bad memory,” became a leader and an outstanding engineer on a project that opened up a whole new vista in technology — the computer era.

Why do we spend time to review this thumbnail sketch about Tom? Because what happened here is happening to thousands of Toms across the country. There’s a chasm between the world of school and the world outside of school, and considerable misunderstanding about what constitutes learning.

Tom didn’t trust words, or textbooks, but he felt intuitively that his experiments were worthwhile. Some educators say “You learn by doing,” which is somewhat of an oversimplification. Tom’s teachers didn’t trust the real world; they only felt comfortable with the world of words, which is to a large extent an unreal world. And what does this all have to do with a magazine?

If you want to learn electronics, you are going to learn about a lot of physical phenomena which exist without words, and which can be experienced and observed without words. This means that the equipment does the teaching.

If you want to argue, you can say “Wait! A magazine is nothing but words, so what gives?”

So here is the straight scoop:

The words can tell you what equipment to get and what to do with it. You have to experience how it works and that’s your job. But afterwards, if you want to know more, people who have also experienced similar experiments and have written about them can communicate with you in the articles in this magazine.

This column will have comments on things to build, some techniques that help us understand the things we see, and some comments about learning, education, and communication.
Now, let's do some experimenting. I will assume that you own or can borrow a general purpose multimeter, also called a VOM (volt-ohm-milliammeter). If you have a VTVM (vacuum-tube voltmeter) you can use it as well for these experiments. You will also need some diodes and a few transistors.

There are many kinds of diodes that can be used. Rectifier diodes are usually readily available, and are often more clearly labeled than some others. Be sure the polarity is clearly shown. Transistors can be obtained as surplus or on surplus circuit cards. You should accumulate an assortment for experimenting. New transistors are fine but are usually somewhat more expensive.

Set the meter switch to the lowest OHMS scale, touch the prods together and "zero" the meter. Touch the test prods to the diode and read the meter. Now, turn the diode around and read the meter again. (see Fig. 1). One reading will be very low, as meter current flows through the diode in the "forward" direction. The other reading will indicate a high resistance (or open circuit) as the meter tries to "push" current through the diode in the reverse or blocking direction.

I have not given any numerical values of resistance because they would depend on many things, including the voltage of the dry cell in the meter, the diode being checked, and some other things. However, a good diode will read low in the forward direction and high resistance in the reverse direction.

Now, once more touch the meter prods to the diode with the diode in the forward or low resistance direction. Assuming that the diode is correctly marked, as shown,
and the probs are two different colors, usually red and black, two possibilities can arise, either A or B (Fig. 2). In A, “current” flows from the red prod, through the diode to the black prod. Knowing this, you can use the prod colors to help decide which way is forward for an unmarked diode. However, if B is the situation with your meter, then inter-

Fig. 2. The two possible arrangements that could give a “forward” reading, depending on the internal arrangement of your ohmmeter.

change the red and black leads at the meter. Now, to put current through the diode in the forward direction, your probs will match A, and you can still say that current flows from the red prod through the diode to the black prod.

When you are checking diodes or transistors, you can use the “reversed leads” trick described above. However, for voltage and current measurements, restore the leads to the proper positions. Incidentally, it is a good idea to label your ohmmeter.

POLARITY REVERSED ON OHMS, or... POLARITY CORRECT ON OHMS whichever applies to your meter. This can save you from trouble and goof-ups later on.

You have now acquired a “test set” (and some knowhow) that will permit you to do the following:

1. Determine the forward and reverse direction of an unmarked diode.
2. Check diodes for “opens” (high resistance both ways).
3. Check diodes for “shorts” (low resistance both ways).

In addition, this know-how can be directly applied to checking transistors, by testing between two terminals at a time and interpreting the readings as though
they were diode readings. Look at the transistor symbols in Fig. 3. The base and emitter form a diode, which can be checked just as we did before, with the ohmmeter. In the PNP transistor, “forward” is from emitter to base, while in the NPN transistor, forward is from base to emitter. These diodes can be normal, open, or shorted just as in any “regular” diode.

In a similar manner, the base-collector pair forms a diode, with polarity, for these tests, the same as the base-emitter diode. The “forward” polarities are:

- PNP: Collector to base
- NPN: Base to collector

In order to use this information, we need a guide that tells us which terminal is which on the physical transistor, since the leads are not marked. (See Fig. 4.)

You are now ready to take the ohmmeter and some transistors and check them to see if they are PNP or NPN. Then check for shorts and opens. Notice that there is no need to know how transistors “work” or how to design circuits, in order to perform these tests. Yet you will find yourself using this technique many times in the future. Even when you have much more elaborate test facilities you may want to run a quick check on a transistor or diode this way. So go to it, have fun, and the transistors, through the ohmmeter, will be happy to tell you about themselves.
REDUCING MOBILE NOISE

Ward Stewart VE3FGS
8 Church St.
Penton, Ontario

With the introduction of transistorized 2m FM transceivers and various amateur receivers for mobile use, there is a natural tendency to pick up the supply voltage from the ignition switch or the switched terminals on the fuse panel. Reduced current demands have rather obsoleted the old power relay…but not quite.

Because of the compactness of wiring harnesses, all kinds of voltages are induced into other wires in the same harness. It is quite possible for your receiver to get alternator, gage, and turn-signal noises induced on the supply line, and much of it will get past the receiver’s filtering and appear at the speaker terminals.

The best way to eliminate this problem is to run the supply lead directly from the battery terminal, and route it away from other wiring while keeping it close to the metal chassis parts of the vehicle, which of course are at ground potential.

The battery itself is a big fat capacitor and a beautiful hash filter! But taking our lead directly from it means we have to turn the rig on by hand for now it won’t come on automatically with the turn of the ignition switch.

Here we come back to our old friend, the relay. Any relay with the current capacity for your rig and a 12V dc coil is okay. Your local two-way radio serviceman will undoubtedly have some old ones he would be glad to sell cheap (or he may even give them away). If you want a new one, ask for Motorola part number 59K813674. It looks like a horn relay off a car but it isn’t! The illustration shows both the physical and electrical layout of this particular relay.

Use of this type of voltage supply will do much to reduce “local QRN” generated by the vehicle. Give it a try. ...VE3FGS
GUNSMOKE?

Blow your mind on our back issue bargain bunch, 30 (count 'em) assorted (we hope) back issues, all before 1968, for the incredibly low price of $6 post-paid (hardly pays for the postage). These are packed by slave labor (to cut costs) so please ignore notes calling for help, etc. that may be slipped into the bundles. 73 Gunsmoke, Peterborough NH 03458 Send cash, check or negotiable securities.

Standard Communications
New high performance 2-meter transceiver
SR-C826M

$339.95

Basic Features: All silicon semiconductors solid state circuitry 12 crystal controlled channel capability 4 channels factory installed 10 watts of R.F. output power Low power consumption MOSFET R.F. Amplifiers and mixer Noise operated squelch circuit Hi/lo power switch Illuminated dial Self contained speaker (for remote speaker included) Metering of battery voltage, relative received signal strength and power output .4 microvolt or better sensitivity

SPECIAL CLOSEOUT!
Standard SRC-806MA two meter FM transceiver - 10 watts output, 12 channel capability. While they last - $265.00 with 4 channels installed and full six month warranty. Regularly $335.00

Write for brochure describing the SRC 826M and Standard's full line of accessories, including the SRC-851SH 25 watt 2 meter FM transceiver.

ERICKSON ELECTRONICS
4657 N. Ravenswood Ave., Chicago, Illinois 60640
Tel: AC 312 334-3200
TELETYPEN! Using tape for repetitive material such as station description, over-the-air QSL, and such! You should Model 7A tape transmitters $9.

RELAYS? W.E. Model 215A polar relays, in fine shape, $5 each; fair shape $2.50 each. Poor shape $1.

TELETYPEN DISTRIBUTORS. Model 30A start-stop distributors for any printers requiring separate distributors, for tape equipment, etc. Includes both transmitting and receiving distributor, Westinghouse 1/75 hp, 115 V 60 Hz, 1800 rpm motor, $17.50.

TELETYPE TAPE GEAR. Complete tape transmitter with built-in distributor, ac. $32.75. These are compact units, ideal for setting up in a line with various tape loops for standard QSO information or messages.

TELETYPEN PERFORATOR. Model 2A typewriter perforator, good shape, does not tie up your system when you are making tapes. $35.

TELETYPEN DISTRIBUTOR. Model 7A tape distributor (matches 7A tape transmitters) with plug-in jack for 7A tape head, $14.95.

TELETYPEN DISTRIBUTOR. Model 73 distributor (see page 100 of HAM-RTTY book) for use with tape transmitters, printers with no distributors, etc., $10.

TELETYPEN PRINTER. Strip printer for those interested in a compact unit, less than one cubic foot in size! Model 401. Allows you to copy signals off the air while cutting tape in answer without tying up your regular page printer. Prints on standard 5/32" tape. $45 in good shape, $25 not in good shape.

All units in short supply; first come, first served. All sold FOB N.H. Quality of the units varies from new to dirty and ough. Early orders will get best gear. All units are priced at ugh condition price so if you get a new unit, be glad; if you get an ough model, be thankful that you get one at all. Send check or money order to Radio Book shop, Peterborough NH 03458. USA only, please. And include postage unless you want units sent collect by UPS or Railway Express.
Hi-Sensitivity Wide-Band AM6FM RCVR
38-1000 MHZ: AN/ALR-5 consists of brand-new Tuner/Converter. CV-253/ALR in original factory package and an exc. used, checked OK & grtd. main rcvr (844 mHz) 120 v. 670 Hz. Packed with each tuner is the factory checkout sheet. The one we opened showed SENSITIVITY: 1.1 uv at 38.3 mHz., 0.8 at 133 mHz. & at 588 mHz., 4% at 778 mHz., 7 at 1 ghz. With book and pw-r input plug, all, for .. 276.00
30 mHz Panadapter for the above 97.50
R-39/URR Rcvr; Collins xti-zero-beating, driftless receiver, grtd 100% perfect .. 795.00
R-390 A/URR has mach. filters, grtd. perfect 995.00
PP 106/U: Metered. Knob adjustable 90-270 v up to 80 ma dc; also select an AC of 6.3 v 5A, or 12.6 v 2% A or 26 v 2% A. With mating output plug & all tech. c ate., Shpg. wt., 60 lbs. 19.50
BARGAINS WHICH THE ABOVE WILL POWER:
LM (**) Freq: Meter: 125-20 MHz. 01%, CW or AM, with serial-matched calib. book, tech. date, mating plug & all tech. c ate., Shpg. wt., 16 lbs. 57.50
Jame. less calib. book 12.95
TS-203 FM/Hz. 26-4169.50
A.R.C. R22: 540-1600 khz r cvr w/knob + data 17.95
A.R.C. R32: 108-132 mh z r cvr w/knob + data 13.95
Versatile Plate & Filam. Transformer
Depot Spares for SP-600 JX: P1. 95/105/117/130/ 190/210/234/260 v 59-60 hz. Sec. 1: 305-306 v 150 ma. Sec. 2: 5 v 3 A. Sec. 3: 1.5 v 5A. Sec 4: 7 v 5A. Sec. 5: 7 v 1 A. A. Legend for pins is plainly marked. Herm. sealed. Add postage for 13 lbs 3.95
Our warehouses are bursting with good OSCIL- LOSCOPERS, Digital Counters, Aeronaunal Test Sets, Audio Test Sets, Oscillators, TV-V/ M's Precision Meters, Pulse Generators, Signal Generators, Differential Voltmeters, Regulated Power Supplies, Ham Receivers, Wattmeters, Line-Voltage Regulators, etc. etc. etc. We can't possibly begin to list everything in these ads. We have separate Catalogs for each Category of Equipment, so please ask for your needs by the type of equipment you need! THANKS!
WE ALSO BUY! WHAT DO YOU HAVE?
R. E. GOODHEART CO., INC.
Box 1220-GC, Beverly Hills, Calif. 90213
Phones: Area Code 213, Office 272-5707

Thousands of Parts
ELECTRONIC PARTS & EQUIPMENTS
See us U Builders for Bargains (no fliers)
DOW TRADING CO. INC.
1829 E. Huntington Drive
Duarte CA 91010 - 213-357-3763

FREE Catalog of the World's Finest Gov't Surplus Electronic BARGAINS

Now BIGGER and BETTER Than Ever!

MAIL THIS COUPON NOW:

NAME: ___________________________
ADDRESS: _______________________
CITY: ___________________________ STATE: ______ ZIP: ______

For your FREE copy, fill out coupon and mail. Dept. 73

FAIR RADIO SALES
1016 E. EUREKA • Box 1105 • LIMA, OHIO • 45802

The manufacturer would be held responsible to include those laws when in China. If Citizens Advice is used, the manufacturer and dealer for carrying that an manual will be separable for ensuring that the P is the case of new and used equipments. It is usually that the Commission makes due to provide the above, all is much harder concerning for the name of all citizens and their generating requirement for individuals, a short term licence application (T), personal business telecommunications for con-

A 30 to 50 megacycle rig? Why can't you walk to school like I did?

"QRX QRL! No new repair jobs can be accepted until further notice.

PANTRONICS OF VIRGINIA, INC.
P.O. Box 209
Annandale, Virginia 22323

4-1000A FILAMENT TRANSFORMERS
7.5 VCT @ 21 AMPS 117 VAC PRIMARY
3/"H, 4/"W, 3/1 D. NET WT. 8 LBS.
$14.95 PPD

PETER W. DAHL CO.
5325 Annette Ave.
EL PASO, TEXAS 79924 Tel:915-761-4856

LARGEST ASSORTMENT of BRAND NAMES
You can save enormous amounts of money while choosing from a complete line of trans-

WE HAVE EVERYTHING IN HAM GEAR
SAVE MONEY ORDER BY MAIL
CB Radio Co., Inc.
89 Aspen Rd.
Swampscott, Mass. 01901
617-998-9700

Blow Your Mind!
AND ALL YOUR MONEY AT
DAYTON SURPLUS
1001 East 2nd, Dayton OH 45403

73 MAGAZINE
1971 SPECIAL!
FREE! SUBTRACT $1 WITH EVERY $10 PURCHASE

POPULAR “LINE LITERS”

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN7400N</td>
<td>Quad 2-input NAND gate</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7401N</td>
<td>Same as 7400 but with open collector output</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7402N</td>
<td>Quad 2-input NOR gate</td>
<td>0.89</td>
</tr>
<tr>
<td>SN7404N</td>
<td>Hex inverter</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7410N</td>
<td>Triple 3-input NAND gate</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7411N</td>
<td>Quad 4-input NAND gate</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7430N</td>
<td>8-input NAND gate</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7440N</td>
<td>Dual 4-input NAND buffer</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7441N</td>
<td>BCD-to-NXtie tube driver</td>
<td>0.95</td>
</tr>
<tr>
<td>SN7450N</td>
<td>BCD-to-decimal-decoder</td>
<td>0.95</td>
</tr>
<tr>
<td>SN7460N</td>
<td>Dual 4-input expander</td>
<td>0.88</td>
</tr>
<tr>
<td>SN7472N</td>
<td>J-K Master slave flip flop</td>
<td>0.99</td>
</tr>
<tr>
<td>SN7473N</td>
<td>Dual J-K master slave flip flop</td>
<td>1.19</td>
</tr>
<tr>
<td>SN7474N</td>
<td>Dual D-type edge triggered flip flop</td>
<td>1.19</td>
</tr>
<tr>
<td>SN7475N</td>
<td>Quad bistable latch</td>
<td>2.95</td>
</tr>
<tr>
<td>SN7476N</td>
<td>Dual J-K flip flop</td>
<td>1.49</td>
</tr>
<tr>
<td>SN7481N</td>
<td>Gated full adder</td>
<td>1.49</td>
</tr>
<tr>
<td>SN7482N</td>
<td>16-bit MEMORY</td>
<td>4.50</td>
</tr>
<tr>
<td>SN7483N</td>
<td>2-bit binary full adder</td>
<td>4.95</td>
</tr>
<tr>
<td>SN7493N</td>
<td>2-bit binary full adder</td>
<td>4.50</td>
</tr>
<tr>
<td>SN7498N</td>
<td>Decade counter</td>
<td>3.95</td>
</tr>
<tr>
<td>SN7499N</td>
<td>8-bit shift register</td>
<td>3.95</td>
</tr>
<tr>
<td>SN74A2N</td>
<td>Divide-by-twelve counter</td>
<td>3.95</td>
</tr>
<tr>
<td>SN74A3N</td>
<td>4-bit binary counter</td>
<td>3.95</td>
</tr>
<tr>
<td>SN74A4N</td>
<td>4-bit shift register</td>
<td>3.95</td>
</tr>
<tr>
<td>SN74B5N</td>
<td>4-bit right-shift left-shift register</td>
<td>3.95</td>
</tr>
</tbody>
</table>

LIGHT-EMITTING DIODES (LEDs)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible LED “Brite Red”</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>Visible “Brite Red” Detector</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>Invisible “Infrared” Detector</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>Invisible LED “Infrared”</td>
<td>3.50</td>
<td></td>
</tr>
</tbody>
</table>

LIGHT ACTIVATED SCRS

Built-in lens transmits light energy, activates, triggers TO-18 case silicon control rectifier. A companion to our fiber optic light pipes. Requires as little as 30 UA.

SPRING CATALOG

POLY PAKS

P.O. BOX 942 A
Lynnfield, Mass. 01940

For the 1st time anywhere

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 AMP</td>
<td>100 $1.95</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>3.50</td>
<td></td>
</tr>
</tbody>
</table>
PROPORTATION CHART

J. H. Nelson

Good Fair (open) Poor

March 1971

SUN MON TUES WED THUR FRI SAT

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

EASTERN UNITED STATES TO:

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALASKA</td>
<td>21</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>22</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>23</td>
</tr>
<tr>
<td>CANAL ZONE</td>
<td>24</td>
</tr>
<tr>
<td>ENGLAND</td>
<td>25</td>
</tr>
<tr>
<td>HAWAII</td>
<td>26</td>
</tr>
<tr>
<td>INDIA</td>
<td>27</td>
</tr>
<tr>
<td>JAPAN</td>
<td>28</td>
</tr>
<tr>
<td>MEXICO</td>
<td>29</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>30</td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td>31</td>
</tr>
</tbody>
</table>

CENTRAL UNITED STATES TO:

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALASKA</td>
<td>32</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>33</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>34</td>
</tr>
<tr>
<td>CANAL ZONE</td>
<td>35</td>
</tr>
<tr>
<td>ENGLAND</td>
<td>36</td>
</tr>
<tr>
<td>HAWAII</td>
<td>37</td>
</tr>
<tr>
<td>INDIA</td>
<td>38</td>
</tr>
<tr>
<td>JAPAN</td>
<td>39</td>
</tr>
<tr>
<td>MEXICO</td>
<td>40</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>41</td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td>42</td>
</tr>
</tbody>
</table>

SOUTH AMERICA TO:

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGENTINA</td>
<td>43</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>44</td>
</tr>
<tr>
<td>CANAL ZONE</td>
<td>45</td>
</tr>
<tr>
<td>ENGLAND</td>
<td>46</td>
</tr>
<tr>
<td>HAWAII</td>
<td>47</td>
</tr>
<tr>
<td>JAPAN</td>
<td>48</td>
</tr>
<tr>
<td>MEXICO</td>
<td>49</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>50</td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td>51</td>
</tr>
</tbody>
</table>

WESRERN UNITED STATES TO:

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGENTINA</td>
<td>52</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>53</td>
</tr>
<tr>
<td>CANAL ZONE</td>
<td>54</td>
</tr>
<tr>
<td>ENGLAND</td>
<td>55</td>
</tr>
<tr>
<td>HAWAII</td>
<td>56</td>
</tr>
<tr>
<td>JAPAN</td>
<td>57</td>
</tr>
<tr>
<td>MEXICO</td>
<td>58</td>
</tr>
<tr>
<td>PHILIPPINES</td>
<td>59</td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td>60</td>
</tr>
</tbody>
</table>

MAIL TO 73 Inc., Peterborough NH 03458

Name

Call

Address

Zip

ADVERTISER INDEX

- American Elec. Supply 42
- American Vixl 92
- Antennas Inc. 48
- Arcor's 112
- ATV 81
- B & K 107
- Biplas 99
- B & W 119
- Callbook 120, 123
- CB Radio 126
- CB M. 101
- Circuit Specialists 63
- Columbia 100
- Crawford 119
- Dai 125
- Danis 99
- Dayton Hamvention 81, 89
- Dayton surplus 120
- Daten 92
- Denon 119
- Divo 126
- Drake Cover IV, 17, 37, 46, 51, 88, 122
- Eastron 82
- EK V Invision 78
- Epison 79
- Erickson 124
- Estee 52
- Fair 126
- Freq 88
- Gateway 121
- G & G 122
- Glass 105
- Goodheart 126
- Gregory 115
- Hal 82
- Hollis CH 64
- Henry 25
- H & L 92
- Hy-Cable 24, 30
- Interant'l Xtal 19
- Jamer 81
- Julian Xtsal 123

J. Nelson

A = Next higher frequency may be useful also.
B = Difficult circuit this period.