PHILIPS att" "Miniwatt" 1938 # THE BRIDGE See Page 10 ### TO BETTER RADIO RECEPTION A suitable Philips Valve is available for every receiver; whether it is an old set, whose valves must be replaced by new ones, or the latest product of radio engineering . . . "Miniwatt" valves always care for sufficient volume in the speaker and "true-to-life" radio music! A tremendous progress has been realised in the creation of the new "Miniwatt" Red E-series; these are valves of small dimensions requiring a considerably lower heating power and which give ideal reception in both A.C. receivers and AC/DC receivers, and also in car-radio sets. New and improved radio valves are a prime condition for modern high efficiency receivers! "Miniwatt" valves are pillars of the bridge to greater radio enjoyment. ### TYPE INDICATION OF THE "MINIWATT" VALVES | lst letter: | 2nd letter: | Numeral: | |--|---|--| | Valve series | Valve type | consecutive number | | A = 4-V A.C. series B = 180 mA D.C. series C = 200 mA AC/DC series E = 6·3-volt A.C. or carradio series F = 13-volt car-radio series H = 4-V battery series K = 2-V battery series | A = Single diode B = Double diode C = Triode, power valves excepted D = Triode output valve E = Tetrode F = Pentode, H.F. amplifier H = Hexode K = Octode L = Output pentode M = tuning indicator X = Full-wave gasfilled rectifier Y = Half-wave H.V. rectifier Z = Full-wave H.V. rectifier | When a new type of a certain valve construction is introduced this is indicated by the next higher consecutive number. | For the older types the former type indication still applies. ### APPLICATION - 1 = H.F. amplifier - 2 = L.F. amplifier - 3 = oscillator - 4 = Converter valve (oscillator-modulator) - 5 = Modulator - 6 = Grid detector followed by transformer coupling - 7 = Grid detector followed by resistance coupling - 8 = Biased detector followed by resistance coupling - 9 = Diode detector and L.F. amplifier - 10 = L.F. amplifier followed by transformer couρling - 11 = L.F. amplifier followed by resistance coupling - 12 = Power amplifier - 13 = Diode detector - 14 = Tuning indicator - 15 = Push-pull amplifier driven up to the grid current point. - 16 = Push-pull amplifier driven into grid current. ### TYPE INDICATION OF THE CATHODE RAY TUBES | lst letter | 2nd letter | Numeral before
the stroke | Numeral after
the dash | |--|--|---|---| | Kind of deflection
of the electron ray | Colour of luminous
spot on fluorescent
screen | Diameter of the
fluorescent screen
in cm | Consecutive
number | | D = Double electrostatic deflection S = Electrostatic deflection in one direction only (the de- flection in the other direction can be effected by electro- magnetic means.) M = Magnetic de- flection in both directions. | G = green B = blue W = white N = screen with long persist- ence time | 7 = a tube with a useful screen diameter of 7 cm 9 = a tube with a useful screen diameter of 9 cm. etc. | When a new make- up of a certain tube construction is intro- duced this is indicat- ed by the next higher consecutive number. | With this sytem the first letter indicates the kind of deflection of the electron ray, i.e. whether it is effected by electrostatic or electro-magnetic means. The second letter indicates the colour of the luminous spot on the fluorescent screen and the subsequent numeral states the approximate diameter of the screen in cm. The numeral after the dash is a consecutive number for the different make-ups or newer types. Thus, for instance, the type number DG 16-1 stands for the first make-up of a cathode ray tube with double electro-static deflection, green luminescing screen material and a screen diameter of 16 cm. ### **RED "MINIWATT" E-VALVES** ### 6.3-volt A.C. valves and 200-mA AC/DC valves with quick-heating cathodes and side-contact bases. | Type
Number | Valve type | Maximum
dimensions | Base
(Connection
reference
in
brackets) | Applica-
tion
(see
p. 2) | Fil. Heating | ament da | ta
Current | Anode
voltage
Va | Anode
current
Ia | Neg.
grid
bias
Vg ₁ | Screen-
grid
voltage
Vg ₂ | Screen-
grid
current
Ig ₂ | Voltage
on
grids 3
(and 5)
Vg ₃ (5) | Voltage
on
grid 4
Vg ₄ | Mutual
conduct.
S | Amplifi-
cation
factor
u | Internal
resist-
ance
Ri | External anode resist. or optimum matching imped. | Output
at 10 °/ ₀
distor-
tion
Wo | Grid A.C. voltage at the indicated output Vi | Max.
anode
dissipa-
tion
Wa _{max} | Grid
anode
capacity
Cag ₁ | Type
Number | |----------------|--|-----------------------|---|-----------------------------------|--------------|----------|---------------|---|------------------------|--|---|--|--|---|--|-----------------------------------|---|---|--|--|--|---|----------------| | | | mm | 1) | | Treating | Volts | Amps. | Volts | mА | Volts | Volts | mA | Volts | Volts | mA/V | | Obms | Ra
Ohm | Watts | V _{R.M.S.} | Watts | μμ | | | | | | | | | | | 250 | (0,015) | 0 | 200 | 2,13) | 50 | $-2 \\ -25$ | (0.554)
(0.002) | | 1,5.10 ⁶
>10 ⁷ | | | | | | | | EK2 | Octode | 90 × 32 | P26
(38) | 4 | indir. | 6,3 | 0,200 | 100 | (0.015) | 0 | 100 | 1,56) | 50 | 2
25 | 0,554)
<0,002 | _ | 1,2.10 ⁸
>10 ⁷ | | | | | < 0,078) | EK2 | | | | | | | | | | 250 | 2.1')
<0.015 | 0 | 200 | 4 8) | 80 | 4
40 | $ \begin{array}{c c} 0.55^{4} \\ < 0.002 \end{array} $ | | 0,9.10 ⁶
>10 ⁷ | _ | _ | | _ ' | | | | EH2 | Variable-Mu | 90 × 32 | P26 | 5 | indir. | 6,3 | 0,200 | 250 | 1,85°)
<0,015 | 3
25 | 100 | Ig2 + Ig4 = 3,8 mÅ | $Rg_a = 0.5 M\Omega$ | 100 | $(0,4^4)$ $< 0,01$ | _ | 2.10 ⁶
>10 ⁷ | | | | - | < 0,0015 | EH2 | | 17112 | Heptode | | (36) | 1, 2 | indir. | 6,3 | 0,200 | 2 50 | 4,2
<0.015 | 3
25 | 100 | $Ig_2 + Ig_4$ $= 2.8 \text{ mA}$ | —3
—25 | 100 | 1,4
<0,002 | _ | 1.10 ⁸
>10 ⁷ | | | | | | | | EF5 | Variable-Mu | 90 × 32 | P26 | 1, 2 | indir. | 6,3 | 0,200 | 250 | 8
<0,015 | —3
—50 | 100 | 2,6 | 0 | _ | 1,7
<0,002 | 2000 | 1,2.10 ⁶
>10 ⁷ | _ | _ | | _ | < 0,003 | EF5 | | 620 | Pentode | | (34) | | | | | 100 | 8
<0,015 | —3
—50 | 100 | 2,6 | 0 | _ | < 0.002 | 500 | 0,30.10°
> 10° | _ | | _ | _ | | | | EF6 | H.F. Pentode | 90 × 32 | P26 | 1 2, 7 | indir. | 6,3 | 0,200 | 250 | 3 | —2 | 100 | 1,1 | 0 | _ | 2,0 | 5000 | 2,5.10 | _ | _ | | | < 0,003 | EF6 | | Ero | | 30 % 02 | (34) | 8, 11 | | | 0,200 | 100 | 3 | 2 | 100 | 1,1 | 0 | _ | 2,0 | 1600 | 0,8.10 | _ | _ | _ | - " | | Liv | | EB4 | Duodiode with
2 separate cathodes | 64 × 32 | P26
(25) | 13 | indir. | 6,3 | 0,200 | _ | | _ | | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | EB4 | | EBC3 | Dundiode-Triode | 90 × 32 | P26 | 9 | indir. | 6,3 | 0,200 | 250 | 5 | —5,5 | _ | _ | | | 2,0 | 30 | 15.000 | | _ | _ | _ | 1,4 | EBC3 | | | | | (28) | | | | | 100 | 2 | 2,1 | - | _ | _ | _ | 1,6 | 30 | 19.000 | _ | | | | | | | EBL1 | Duodiode and
High-sensitivity Pentode | 130 × 52 | P35
(33) | 13, 12 | indir. | 6,3 | 1,5 | 250 | 36 | $\begin{array}{c} \mathbf{R}\mathbf{k} = {}^{10}) \\ 150 \ \Omega \end{array}$ | 250 | 5 | _ | _ | 9,5 | _ | 50.000 | 7000 | 4,3 | 3,6 | 9 | _ | EBL1 | | EL2 | Power Pentode for
car receivers | 95 × 37 | P30
(32) | 12 | indir. | 6,3 | 0,2 | 250 | 32 | —18 | 250 | 5 | - | _ | 2,8 | _ | 70.000 | 8000 | 3,6 | 10 | 8 | - | EL2 | | E1.3 | High-sensitivity Power Pentode | 120 × 37 | P35
(31) | 12 | indir. | 6,3 | 1,2 | 250 | 36 | $Rk = 10$) 150 Ω | 250 | 5 | _ | - | 9,5 | _ | 50.000 | 7000 | 4,3 | 3,6 | 9 | - | EL3 | | EL5 | High-sensitivity Power | 117×51 | P35 | 12 | indir. | 6,3 | 1,35 | 250 | 72 | 14 | 275 | 7 | _ | _ | 8,5 | _ | 22.000 | 3500 | 8,8 | 8,2 | 18 | | EL5 | | ELS | l'entode | 117×51 | (31) | 15 | indir. | 6,3 | 1,35 | 250 | 2 × 58
2 × 65 | $\mathbf{R}\mathbf{k} := 120 \Omega$ | 275 | $\begin{array}{c} 2\times6,25\\ 2\times10,5 \end{array}$ | _ | _ | _ | _ | _ | 4500 | 0
19,5 ¹¹) | - | - | _ | ELS | | EM1 | Tuning Cross
(Electron ray
tuning indicator) | 75
× 28 | P26
(3 ⁹) | 14 | indir. | 6,3 | 0,200 | 250 12)
max. | 0,095
0,021 | 0 13)
— 514) | - | Is = 0.13
Is = 0,14 | _ | _ | _ | _ | _ | 2,0.106 | _ | _ | _ | _ | EM1 | | | Electron ray | | P30 | | | | | 250 ¹⁵)
250 ¹⁶)
250 ¹⁶) | _ | _ | $V_{s=250}$ $V_{s=250}$ $V_{s=250}$ | _ | | $\Theta = 160^{\circ}$
$\Theta = 150^{\circ}$
$\Theta = 0^{\circ}$ 17 | | _ | _ | _ | _ | _ | _ | | 0/7075 | | C/EM2 | tuning indicator | 75×31 | (40) | 14 | indir. | 6,3 | 0,200 | 25015)
01~) | | _ | $\begin{array}{c} V_s = 250 \\ V_s = 250 \end{array}$ | | $egin{array}{l} Vg'=0 \ Vg'=0 \end{array}$ | $\Theta = 150^{\circ}$
$\Theta = 95^{\circ 17}$ | | _ | _ | | _ | - | | _ | C/EM2 | | | | | | | | | | 25016) | 3 | — 3,5 | _ | - | - | _ | 2,0 | 50 | 25.000 | - | _ | _ | _ | | | See page 15. The numeral after the letters indicates the maximum base diameter in mm. The data of this horizontal column apply for the oscillating condition at $V_{osc}=9~V_{R,M,S_c}$ (Ig₁ = 200 μ A) and for use on long and medium waves. The grid leak resistance amounts to 50,000 ohms and is connected to the cathode. Screen grid current Ig₃ + Ig₅ = 1.0 mA. Conversion conductance. Capacity between anode and grid 4. Screen-grid current $Ig_3 + Ig_5 = 1.0$ mA. The data of this horizontal column apply for the oscillating condition at $V_{osc} = 6 V_{R.M.S.}$ ($Ig_1 = 150 \mu A$) and for use of this valve in all-wave receivers. The valve must not be controlled by A.V.C. in the short wave range. The grid leak resistance amounts to 50,000 ohms and is connected to the cathode. Screen-grid current $Ig_3+Ig_5=1.5$ mA. The data of this horizontal column apply for the oscillating condition at $V_{osc}=14~V_{R~M.S.}$ Only with automatic grid bias. At this value of the cathode resistance the grid bias is about — 6 V. At 5·1°/₀ distortion. Voltage on screen and triode series resistance. At this voltage the fluorescent screen is covered with light sectors of 10° (measured at the edge of the screen). At this voltage the fluorescent screen is covered with light sectors of 90° (measured at the edge of the screen). Voltage at the triode anode. Data for using the triode section for other amplifier purposes. Light angle, measured at the edge of the screen. ### 4-VOLT A.C. VALVES WITH QUICK-HEATING CATHODES AND SIDE-CONTACT BASES | Type
Number | Valve type | Maximum
dimensions | Base
(Connection
tion
reference
in
brackets) | Applica-
tion
(see
p. 2) | Fil Heating | lament da | Current | Anode
voltage
Va | Anode
current
Ia | Neg.
grid
bia;
Vg | Screen-
grid
voltage
Vg ₂ | Screen-
grid
current
Ig ₂ | Voltage
on
grids 3
(and 5) | Voltage
on
grid 4
Vg ₄ | Mutual
Conduct,
S | Amplification | Internal
resist-
ance
Ri | External
anode
resist, or
optimum
matching
imped. | Output
at 10 %
distor-
tion
Wo | Grid A.C.
voltage
at the
indicated
output | Max.
anode
dissipa-
tion
Wa _{max} | Grid
anode
capacity
Cag ₁ | Type
Number | |----------------|--|-----------------------|---|-----------------------------------|-------------|-----------|---------|------------------------|----------------------------------|---|---|---|---|---|-------------------------|---------------|-----------------------------------|--|--|---|--|---|----------------| | | | mm | 1) | | Heating | Volts | Amps. | Volts | mA | Volts | Volts | mA | Vg ₃ (,)
Volts | Volts | mA/V | | Ohms | Ra
Ohma | Watts | Vi
V _{R.M.S.} | Watts | μμF | | | AK2 | Octode | 116 × 46 | P35
(38) | 4 | indir. | 4,0 | 0,65 | 250 | 1,6°)
< 0,015 | -1/5 | 90 | 2,0 *) | 70 | —1,5
—25 | (0.6°)
(0.002 | - | 1,6.10 ^d
>10' | | _ | | _ | < 0.06 19) | AK2 | | AH1 | Variable-Mu Hexode | 110×46 | P35
(35) | 5 | indir. | 4,0 | 0,65 | 250
250 | 1,7 ⁵)
<0,15 | -2 0
-2 0
-2 0 | 80 | 2,6 4) | $-12 \text{ or } Rg_3 = 0,5 \text{ M}\Omega$ $-2,0$ | 80 | 0.554)
<0,002 | _ | 2,0.10°
>10°
2,0.10° | - | - | - | - | <0,003 | AH1 | | AF3 | Variable-Mu Pentode | 106 × 43 | P30 | 1, 2 | indir. | 4,0 | 0.65 | 250 | <0,015 | -24
-3.0 | 100 | 2,6 | <u>-24</u>
0 | | <0,002 | 2200 | >10 ⁷ | | | _ | | <0,003 | A13 | | AF7 | Duodiode | 106 × 43 | (34)
P30 | 1, 2, 7 | indir. | 4,0 | 0,65 | 250 | 3,6 | -55
-2.0 | 100 | 1,1 | 0 | | < 0,002 | 4200 | >107 | | | | | | AF7 | | AB2 | Tripde | | (34)
V24 | 8, 11 | | | | | | _ | | | | | 2,1 | | 2,0.106 | | | | | <0,003 | | | | | 85 × 29 | (53)
P30 | 13 | indir. | 4,0 | 0,65 | | | _ | | | | | | | | | | | | | AB2 | | ABC1 | Duodiode-Triode | 100 × 37 | (28)
P30 | 3, 6 | indir. | 4,0 | 0,65 | 250 | 4,0 | <u>-7,0</u> | | | | | 2,0 | 27 | 13.500 | | | | | | ABC1 | | AC2 | Triode | 100 × 37 | (26) | 10, 11 | indir. | 4,0 | 0,65 | 250 | 6,0 | —5 ,5 | | | | | 2,5 | 30 | 12.000 | | | | | 1,7 | AC2 | | AL1 | Power Pentode | 115 × 51 | P35
(30) | 12 | dir. | 4.0 | 1,1 | 250 | 36 | —15 | 250 | 6,8 | | _ | 2,8 | _ | 43.000 | 7.000 | 3,1 | 9,7 | 9 | | AL1 | | AL2 | Power Pentode | 115×46 | P35 | 12 | ındir. | 4.0 | 1,0 | 250 | 36 | -25 | 250 | 4 | | | 2,6 | _ | 60.000 | 7.000 | 3,8 | 14 | 9 | - | AL2 | | | | 110% 10 | (32) | 15 | indir. | 4,0 | 1,0 | 250 | 2×33 2×40.5 | Rk = 350 12 | 250 | 2×3.5
2×7 | - | _ | - | _ | _ | 6600 | 0
11,5 ¹⁸) | | _ | _ | 74.5- | | AL4 | High-sensitivity Power
Pentode | 115×50 | P35
(31) | 12 | indir. | 4,0 | 1,75 | 250 | 36 | $\mathbf{R}\mathbf{k} = 150 \ \Omega^7$ | 250 | 5 | _ | _ | 9,5 | _ | 50.000 | 7.000 | 4,3 | 3,6 | 9 | - | AL4 | | ABL1 | Duodiode and high sensi-
tivity Power Pentode | 130 × 52 | P35
(33) | 13, 12 | indir. | 4,0 | 2,25 | 250 | 36 | Rk = 150Ω ⁷) | 250 | 5 | _ | _ | 9,5 | _ | 50.000 | 7.000 | 4,3 | 3,6 | 9 | _ | ABL1 | | ATE | High-sensitivity | | P35 | 12 | indir. | 4,0 | 2.0 | 250 | (72) | 14 | 275 | 7 | _ | _ | 8,5 | _ | 22.000 | 3.500 | 8,8 | 8,2 | 18 | _ | | | AL5 | Power Pentode | 117×51 | (31) | 15 | indir. | 4.0 | 2,0 | 250 | 2 × 58
2 × 65 | Rk :=
120 Ω | 275 | 2 × 6 25
2 × 10,5 | _ | _ | - | | _ | 4500 | 0
19,5 ¹⁴) | _ | _ | | AL5 | | | | | P35 | 12 | dir. | 4,0 | 0.95 | 250 | 60 | -15 | _ | _ | _ | | | 4 | 670 | 2.300 | 4,28) | 30 | 15 | | | | AD1 | Power Triode | 135 × 58 | (24) | 15 | dir. | 4,0 | 0,95 | 250 | 2×60
$2 \times 62,5$ | Rk = 375 Ω | _ | _ | _ | _ | _ | _ | _ | 4000 | 9,214) | _ | _ | | AD1 | | AM1 | Tuning Cross 9) | 75 × 28 | P26
(34) | 14 | indir. | 4,0 | 0,3 | 250 10) | 0,095
0,021 | 0 11 1 | _ | $I_{s} = 0.13$
$I_{s} = 0.14$ | _ | _ | 9,5 | _ | _ | 2,0.10 | | _ | _ | | AM1 | | | | | (37) | | | | | 25016)
25010) | | | Vs=250 | | Vg' = +3 | | | | | | | | | | | | AM2 | Electron ray | gr | P30 | , | . ,. | ,, | | 25018) | | | $V_8 = 250$ $V_5 = 250$ | | Vg' = 0
Vg' = —6 | $\Theta = 150^{\circ}$ $\Theta = 5^{\circ}$ | | | | | _ | | _ | | | | AMIZ | Tuning Indicator | 75 × 31 | (40) | 14 | indir. | 4,0 | 0,32 | 250 ¹⁴) | _ | - | $\begin{array}{c} V_S = 250 \\ V_S = 250 \end{array}$ | | Vg'=0 $Vg'=0$ | $\Theta = 150^{\circ}$ $\Theta = 95^{\circ 18}$ | | _ | | _ | | _ | _ | | AM2 | | | | | | | | | | 25017) | 3 | —3,3 | _ | _ | - | _ | 2,0 | 50 | 25.000 | - | - | - | - | _ | | See page 15. The numeral after the letter gives the maximum base diameter in mm. Screen-grid current Ig₃ + Ig₅ = 3.8 mA. Conversion conductance. Voltage at grid and triode anode series resistance. At this voltage the fluorescent screen is covered with light sectors of 10° (measured at the edge of the screen). At this voltage the fluorescent screen is covered with light sectors of 90° (measured at the edge of the screen). At 3 °/₀ distortion. At 5 ·1 °/₀ distortion. At 1 ·3 °′₀ distortion. Voltage at the triode anode. Data for using the triode section for other amplifier purposes, Light angle, measured at the edge of the screen. Capacity between anode and grid 4. ### VALVES... TESTED PHILIPS "MINIWATT" TIMES The data of this horizontal column apply for the oscillating condition at $V_{osc} = 8.5 \text{ V} \cdot \text{R.M.S.}$ (Ig₁ = 100 μ A) and for allwave receivers. In the shortwave range the valve must not be controlled by A.V.C. The grid leak resistance amounts to 50,000 ohms and is connected to the neutral. b) The data of this horizontal column apply for the oscillating condition at $V_{osc} = 9 V_{RMS}$ ^{11.} I $g_2 + I g_1$. 2) Only with automatic grid bias. At this value of the cathode resistance the grid bias is about -6 V. 3) At 5 % distortion. Electron ray tuning indicator. ### AC/DC AND 13-V CAR-RADIO VALVES WITH SIDE CONTACT BASES | Туре | Valve type | Maximum | Base
(Connec-
tion
reference | Applica-
tion | Fil | ament da | ta | Anode
voltage | Anode current | Neg
grid
bias | Screen-
grid
voltage | Screen
grid
current | Voltage
on
grids 3 | Voltage
on
grid 4 | Mutual conduct. | Amplifi-
cation | Internal
resist-
ance | External
anode
resist. or
optimum | Output
at 10 %
distor-
tion | Grid A.C.
voltage
at the
indicated | Max.
anode
dissipa- | Grid
anode
capacity | Туре | |------------------------------------|--|------------------|---------------------------------------
-------------------|---------|------------------|------------------|----------------------------|--------------------------------------|---|---|------------------------------|---|---|---------------------------------|--------------------|---|--|--------------------------------------|---|------------------------------------|---------------------------------|--------| | Number | | dimensions
mm | in
brackets) | (see
p. 2) | Heating | Voltage
Volts | Current
Amps, | Va
Volts | Ia
mA | Vg ₁
Volts | Vg ₂
Volts | Ig ₂
mA | $(and 5)$ $Vg_3(b)$ Volts | Vg ₄
Volts | S
mA/V | factor
µ | Ri
Ohms | matching
imped.
Ra
Ohm | Wo
Watts | output
V _{R.M.S.}
Vi | tion
Wa _{max}
Watts | Cag ₁
μμ F | Number | | CK1 | Octode | 116 × 46 | P35
(38) | 4 | indir. | 13 | 0,200 | 200 | 1,6 ')
<0,015
1,6 ')
<0,015 | -1,5 -2 | 90
90 | 2 2) | 70
70 | -1,5
-25
-1,5
-25 | 0,6
<0,002
0,55
<0.002 | | 1,5.10°
>10°
1,0.10°
>10° | - | - | _ | - | <0.06*) | CK1 | | СН1 | Variable-Mu Hexode | 110 × 46 | P35
(35) | 5 | indir. | 13 | 0,200 | 200 | 2,2 4)
<0,15 | $ \begin{array}{c c} -2 \\ -24 \\ \hline -2 \end{array} $ | 100 | 4 2) | -12^{6}) or Rg ₃ = 0,5 M Ω | 50 | 0,55
<0,002 | _ | 2,0,10 ⁸ > 10 ⁷ 2,0,10 ⁶ | _ | _ | _ | _ | <0,003 | СН1 | | | | | | 1, 2 | indir. | 13 | 0,200 | 200 | < 0.015 | 24 | 100 | 2,07) | 24 | 50 | <0,002 | | >107 | | | | | | | | CF3 | Variable-Mu
Pentode | 106 × 43 | P30
(34) | 1, 2 | indir. | 13 | 0,200 | 100 | 8,0
<0,015
8,0
<0,015 | -3
-55
-3
-55 | 100 | 2,6 | 0 | | 1.8
<0,002
1.8
<0,002 | 1600
450 | 0,9.10 ⁶
>10 ⁷
0,25,10 ⁶
>10 ⁷ | _ | - | - | _ | <0,003 | CF3 | | | V 111 M | | | | _ | | | 200 | 4,5
<0,015 | $\frac{-35}{-2}$ | 100 | 1,4 | 0 | | 2.2
< 0.002 | 3000 | 1.4.10 ^a
>10 ⁷ | | | | | | | | CF2 | Variable-Mu
Pentode | 109×43 | P30
(34) | 1, 2 | indir. | 13 | 0,200 | 100 | 4,5
<0,015 | -2 -2 -22 | 100 | 1,4 | 0 | _ | 2.2
<0.002 | 800 | 0,1.10 ⁸ > 10 ⁷ | - | - | - | - | <0,003 | CF2 | | | | | P30 | 1 2 7 | | | | 200 | 3 | 2 | 100 | 1,1 | U | _ | 2,1 | 4200 | 2,0.10 | | | | | | OV. | | CF7 | H.F. Pentode | 106 × 43 | (34) | 1, 2, 7,
8, 11 | indir. | 13 | 0,200 | 100 | 3 | 2 | 100 | 1,1 | 0 | _ | 2,1 | 1500 | 0,7.10 | _ | _ | _ | _ | <0,003 | CF7 | | CF1 | H.F. Pentode | 109 × 43 | P30 | 1, 2, 7, | indir. | 13 | 0.900 | 200 | 3 | 2 | 100 | 0,9 | 0 | _ | 2,3 | 4000 | 1,7.106 | | | | | <0,003 | CF1 | | CFI | H.F. Pentode | 109 × 43 | (34) | 8, 11 | indir. | 13 | 0,200 | 100 | 3 | —2 | 100 | 0,9 | 0 | - | 2,3 | 1400 | 0,6.10 | _ | _ | - | _ | <0,003 | CFI | | CB1 | Duodiode | 89 × 29 | V24
(54) | 13 | indir. | 13 | 0,200 | _ | - | - | _ | ,- | _ | _ | - | _ | - | | - | _ | _ | _ | CB1 | | CB2 | Duodiode | 81 × 29 | V24
(53) | 13 | ındir. | 13 | 0,200 | _ | _ | _ | _ | _ | | _ | | _ | _ | _ | - | _ | _ | _ | CB2 | | СВС1 | Duodiode-Triode | 100 × 37 | P30
(28) | 9 | indir. | 13 | 0,200 | 200 | 4,0 | 5
 | | _ | _ | | 2,0 | 27 | 13.500
15.000 | - | | _ | _ | | CBC1 | | | | | _ | | _ | | | 200 | 6,0 | -1,5 | | | | | 2,5 | 30 | 12.000 | | | | | | | | CC2 | Triode | 100 × 37 | P30
(26) | 3, 6,
10, 11 | indir. | 13 | 0,200 | 100 | 2,0 | —1,5 | | _ | _ | | 1,8 | 30 | 16.000 | _ | - | - | - | 1,7 | CC2 | | CL1 | Power Pentode | 109×43 | P30 | 12 | indir. | 13 | 0,200 | 200 | 25 | —14 | 200 | _ | _ | 4 | 2,5 | _ | 50.000 | 8.000 | 1,7 | 9 | - 5 | | CL1 | | | | | (32) | | | | | 200
200 | 40
40 | —19
—11 | 100 | _ | = | = | 3,1 | = | 23.000
19.000 | 5.000
5.000 | 3,0 | 8.8 | 8 8 | | | | CL2 8) | Power Pentode | 123×46 | P35
(32) | 12 | ındir. | 24 | 0,200 | 100 | 50 | —15 | 100 | | | | 3.8 | _ | 16.000 | 2.000 | 1,7 | 9,7 | 5 | | CL2 | | CL48)9) | High-sensitivity
Power Pentode | 127 × 50 | P35
(32) | 12 | ındir. | 33 | 0,200 | 200 | 45 | -8,5 | 200 | 6,0 | _ | _ | 8,0 | _ | 35.000 | 4.500 | 4 | 5 | 9 | | CL4 | | CBL1 ⁸) ⁹) | Duodiode and high-sensi-
vity Power Pentode | 130 × 52 | P35
(33) | 13, 12 | indir. | 44 | 0,200 | 200 | 45 | —8,5 | 200 | 6,0 | _ | _ | 8,0 | 4_ | 35.000 | 4.500 | 4 | 5 | 9 | | CBL1 | | EM1 | Tuning Cross ¹³) | 75 × 27 | P26
(39) | 14 | indir. | 6,3 | 0,200 | 20014) | 0.075
0,020 | 0
—4 | _ | $l_{s=0,13}$
$l_{s=0,14}$ | _ | $\Theta = 10^{\circ 14}$ $\Theta = 90^{\circ 14}$ | - | _ | _ | 2,0.10 | _ | _ | _ | _ | EMI | | | | | Poo | | | | | 20011)
20011)
20011) | _ | - | $V_8 = 200$ $V_8 = 200$ $V_8 = 200$ | - | Vg'=0 | $\Theta = 160^{\circ}$ $\Theta = 150^{\circ}$ $\Theta = 5^{\circ +4}$ | - | _ | - | -, | _ | - | _ | _ | | | C/EM2 | Electron ray
Tuning Indicator | 75 × 31 | P30
(40) | 14 | indir. | 6,3 | 0,200 | 20011) | _ | | $\begin{array}{c} V_{\text{S}} = 200 \\ V_{\text{S}} = 200 \end{array}$ | | | $\Theta = 150^{\circ}$
$\Theta = 90^{\circ}$ | - | _ | _ | _ | _ | _ | _ | _ | C/EM2 | | | | | - | | | | | 20012) | 3 | -2,5 | _ | _ | _ | - | 2,0 | 50 | 25,000 | - | _ | - | _ | _ | - | ¹⁾ The data of this horizontal column apply for the oscillating condition at V_{osc} = 8.5 V_{RMS} (Ig₁ = 190 μA) and for all-wave receivers. The valve must not be controlled by A.V.C. in the short wave range. The grid leak resistance amounts to 50,000 ohms and is connected to the neutral. The figure given in column Mutual Conductance indicates the conversion conductance. a) Screen-grid current Ig₃ + Ig₅ = 3.8 mA. b) Capacity between anode and grid 4. d) The data of this horizontal column apply for the oscillating condition at V_{osc} = 9 V_{R,M,S}. The figure in column Mutual Conductance gives the conversion conductance. Ig₄ = 0·1 mA. With fixed bias. Ig₄ = 0·25 mA. Not for car-radio. Only for high anode voltages, Only for automatic grid bias (Rk = 167 ohms). Voltage on the triode anode. ¹³⁾ Data for using the triede section for other ampliner p 13) Electron ray tuning indicator. 14) Light sector, measured at the edge of the screen. 16) See page 15. Data for using the triode section for other amplifier purposes. ### 4-VOLT A.C. VALVES WITH PIN BASES (INITIAL STAGES) | Туре | Valve type | Maximum
dimensions | Base
(Connec-
tion | Applica- | Fi | lament de | ita | Anode
voltage | Anode
current | Neg.
grid
biss | Screen-
grid
voltage | Screen-
grid
current | Voltage
on
grida 3 | Voltage
on
grid 4 | Mutual
conducts | Amplifi- | Internal | External
anode
resist.or
optimum | Output
at 10 %
distor- | Grid A.C.
voltage
at the
indicated | Max
anode
dissipa- | Grid
anode
capacity | Туре | |--------|----------------------------------|-----------------------|------------------------------|----------------------|---------|------------------|------------------|------------------|--------------------|-----------------------------|----------------------------|----------------------------|--|--------------------------|--------------------|-------------------------------|--------------------|---|--|---|------------------------------------|---------------------------------|--------| | Number | , are type | 1)
11) | reference
in
brackets) | p. 2) | Heating | Voltage
Volts | Current
Amps. | Va
Volts | nA | Vg ₁
Volts | V _{Ex}
Volts | Ig ₁
mA | (and 5)
Vg ₃ (_b)
Volts | Vg ₁
Volts | mA/V | factor
H | ance
Ri
Ohms | matching
imped.
Ra
Ohm | tion
Wo
Watts | | tion
Wa _{max}
Watts | Cag _ι
μμ F | Number | | AK1 | Octode | 118×46 | C35
(12) | 4 | indir. | 4,0 | 0,65 | 200 | <0,015 | -15 | 90 | 2,0 4) | 70 | —1.5
—25 | _ | 0,6°)
<0,002 | | 1,6,10 ⁴
> 10 ⁷ | _ | | _ | < 0,068) | AK1 | | АСН1 | Triode-Hexode | 130 × 50 | C35
(13) | 4 | indir. | 4,0 | 1,0 | 300 | 2,5
0,01
5,0 | —2,0
—20 | 70 | - | V _{ofc} = 15 V ⁶) | 70 | 2,0 | 0,75 ³)
<0,002 | 13 | > 0,8.10°
> 10° | _ | - | | <0,1 ⁸) | ACH1 | | E418 | Hexode
(oscillator-modulator) | 130 × 50 | C35
(11) | 4 | indir. | 4 0 | 1,2 | 200 | 3,0 | —1 ₇ 5 | 120 | 8,5 °) | 200 | -4 ¹⁰) | | 0,5811) | _ | >
0,15.10° | _ | _ | _ | _ | E418 | | E449 | Variable-Mu Hexode | 130 × 50 | C35
(11) | 1, 2 | indir. | 4,0 | 1,2 | 200 | 3,0 | 2
8 | 80 | _ | -2
-8 | 80 | 3,0 | 1,8
<0,002 | _ | 0,45.10 ^d
>50.10 ^d | _ | _ | _ | < 0,002 | E449 | | E446 | H.F. Penthode | 138 × 51 | O35
(23) | 1, 2, 5,
7, 8, 11 | indir. | 4,0 | 1,1 | 200 | 3,0 | -2,0 | 100 | 1,1 | _ | _ | 3,5 | 2,3 | 5000 | 2,2.104 | _ | _ | _ | < 0,006 | E446 | | AF2 | Variable-Mu Pentode | 138×51 | O35
(23) | 1, 2, 5 | indir. | 4,0 | 1,1 | 200 | 4,25
<0,015 | —9,0
—22 | 100 | 1,8 | - | - | 3,2 | 2,5
<0,002 | 3500 | 1,4.10 ⁶
>10 ⁷ | _ | | _ | < 0,006 | AF2 | | E447 | Variable-Mu Pentode | 138×51 | O35
(23) | 1, 2, 5 | indir. | 4,0 | 1,1 | 200 | 4,5
0,01 | —2, 0
—5 0 | 100 | 1,8 | _ | _ | 3,5 | 2,3
<0,002 | 2300 | 1,0.10 ⁶
>10 ⁷ | _ | _ | _ | <0,006 | E447 | | E452T | Tetrode | 129 × 51 | O35
(22) | 1, 2, 8,
7, 11 | indir. | 4,0 | 1,0 | 200 | 3,0 | -2,0 | 100 | 0,7 | _ | | 3,0 | 2,0 | 900 | 450.000 | _ | _ | _ | 0,003 | E452T | | E455 | Variable-Mu Tetrode | 127×51 | O35
(22) | 1, 2, 5 | indır. | 4,0 | 1,0 | 200 | 3,0
0,01 | —1 ₁ 5
—40 | 100 | 8,0 | _ | | 3,0 | 2.0
0,005 | 700 | 350.000
>10 ⁷
| _ | _ | _ | 0,003 | E455 | | E442 | Tetrode | 112×47 | O35
(22) | 1, 2 | indir. | 4,0 | 1,0 | 200 | 1,5 | -1,3 | 100 | 0.6 | _ | _ | 1,2 | 0,9 | 700 | 800.000 | _ | - | _ | 0,005 | E442 | | E442S | Tetrode | 120 × 51 | O35
(22) | 1, 2, 8,
11 | indir. | 4,0 | 1,0 | 200 | 4,0 | -2,0 | 60 | 0,5 | _ | _ | 1,1 | 1,0 | 400 | 400.000 | _ | _ | _ | 0,02 | E442S | | E445 | Variable-Mu Tetrode | 127 × 51 | O35
(22) | 1, 2, 5 | indir. | 4,0 | 1,1 | 200 | 6,0
0,01 | -2\0
-40 | 100 | 8,0 | _ | _ | 1,2 | 1,0
0,005 | 30u | 300.000
>10° | _ | | _ | 0,003 | E445 | | AB1 | Duodiode | 91 × 28 | O24
(21) | 13 | indir. | 4,0 | 0,65 | _ | _ | | _ | _ | - | _ | _ | _ | | - | - | _ | | | AB1 | | E444 | Binode
(Diode-Tetrode) | 130 × 51 | B35
(7) | 9 | ındir. | 4,0 | 1,1 | 200 | 0,35
0,9 | —2 3
—2 3 | 33
45 | | _ | _ | 3,0 | | 1000
800 | 2,5.10 ⁶
1,0.10 ⁶ | 0.3.10 ⁶
0,1.10 ⁶ | | _ | | E444 | | E444S | Binode
(Diode-Triode) | 115×46 | O35
(20) | 9 | indir. | 4,0 | 1,0 | 200 | 6,0 | -3,5 | | | _ | _ | 2,5 | 2,0 | 30 | 15.000 | _ | _ | _ | | E444S | | E499 | High-Mu Triode | 101 × 46 | O35
(17) | 7, 8, 11 | indir. | 4,0 | 1,0 | 200 | 0,2
0,08 | —1,6
—1,6 | _ | _ | _ | _ | 4,0 | _ | 99 | 100.000
330.000 | 0.3.10 ⁸
1,0.10 ⁶ | _ | _ | 1,5 | E499 | | E424N | Triode | 100 × 46 | O35
(17) | 3. 6, 7,
10, 11 | indir. | 4,0 | 1,0 | 200 | 6,0 | -3 5 | _ | _ | | _ | 3,5 | 2,4 | 30 | 12.500 | _ | _ | _ | 2 | E424N | | E438 | Triode | 91 × 47 | O35
(17) | 7, 8, 11 | indir. | 4,0 | 1,0 | 200 | 0.3
0,1 | -2,5
2,5 | _ | _ | _ | _ | 1,5 | | 38 | 120.000
400.000 | 0.3.10 ⁸
1,0.10 ⁸ | _ | - | 3 | E438 | | E409 | Triode | 91 × 47 | O35
(17) | 3 | indir. | 4,0 | 1.0 | 200 | 12 | -15 | - | _ | | _ | 4,0 | 1,3 | 9 | 7.000 | - | _ | _ | 4 | £409 | Without pins. See page 15. The figure after the letter indicates the maximum base diameter in mm. The data of this holizontal column apply for the oscillating condition at $V_{\rm osc} = 8.5~V_{\rm R.M.S.}$ $(Ig_1=190~\mu A)$ and for all-wave receivers. The valve must not be controlled by A.V.C. in the short wave range. The grid leak resistance amounts to 50,000 ohms and is connected to the Screen-grid current $1g_3 + 1g_6 = 3.8$ mA. Capacity between anode and grid 4. Across a resistance of 20,000 ohms. Conversion conductance. $^{\rm s})$ Capacity between grid 1 and grid 3. $^{\rm p})$ Current of the third grid. $^{\rm 10})$ V $_{\rm 0sc}=6^{\circ}3$ V R.M.S. $^{\rm 11})$ Conversion conductance at V $_{\rm 0sc}=6^{\circ}3$ V R.M.S. # 4-VOLT A.C. VALVES WITH PIN BASES (POWER STAGES) | Type
Number | Valve type | Maximum
dimensions
1)
mm | Base
(Connec-
tiou
reference
in
brackets) | p. 2) | Fi
Heating | Voltage | | Anode
voltage
Va
Volts | Anode
current
Ia
mA | Neg.
grid
bias
Vg ₁
Volta | Screen-
grid
voltage
Vg ₃ | Screen-
grid
current
Ig ₂
mA | Voltage
on
grids 3
(and 5)
Vg ₃ (₅)
Volts | Voltage
on
grid 4
Vg ₄
Volts | Mutual
conduct.
S
mA/V | | resist- | External
anode
resist, or
optimum
matching
imped.
Ra
Ohm | Output
at 10 º/o
distor- | indicated | Max.
anode
dissipa-
tion
Wamax
Watts | Grid
anode
capacity
Cag ₁
μμ F | Type
Number | |----------------|------------|-----------------------------------|--|-------|---------------|---------|------|---------------------------------|------------------------------|--|---|---|--|---|---------------------------------|-----|---------|---|--------------------------------|-----------|---|--|----------------| | E453 | Pentode | 105 × 51 | (8) | 12 | indir. | 4,0 | 1,1 | 250 | 24 | —15 | 250 | _ | _ | _ | 2,5 | 175 | 70.000 | 15.000 | 2,8 | 8 | 6 | - | E453 | | E463 | Pentode | 119×55 | B35
(8) | 12 | indir. | 4,0 | 1,35 | 250 | 36 | —22 | 250 | _ | _ | _ | 2,7 | 100 | 37.000 | 8.000 | 4,1 | 12,3 | 9 | _ | E463 | | B409 | Triode | 91 × 46 | A32
(1) | 12 | dir. | 4,0 | 0,15 | 250 | 12 | -18 | - | _ | - | - | 1,8 | 9 | 5.000 | 12.000 | 0,65%) | 12 | 3 | _ | B409 | | B443 | Pentode | 92×51 | O35
(19) | 12 | dir. | 4,0 | 0,15 | 250 | 12 | —19 | 150 | _ | - | _ | 1,3 | 60 | 45.000 | 20.000 | 1,35 | 12,1 | 3 | _ | B443 | | B443S | Pentode | 92 × 51 | O35
(19) | 12 | dır. | 4,0 | 0,15 | 250 | 12 | —12 | 80 | _ | - | | 1,6 | 100 | 60.000 | 22.000 | 1,12 | 6,8 | 3 | _ | B443S | | C443 | Pentode | 92 × 51 | O35
(19) | 12 | dir. | 4,0 | 0,25 | 300 | 20 | —25 | 200 | _ | - | _ | 1,7 | 60 | 35.000 | 15.000 | 2,8 | 16 | 6 | _ | C443 | | C443N | Pentode | 89×51 | O35
(19) | 12 | dir. | 4,0 | 0,25 | 300 | 20 | -42 | 200 | _ | - | | 1 5 | 37 | 25.000 | 15.000 | 3.0 | 20 | 6 | _ | C443N | | E443H | Pentode | 123×55 | O35
(19) | 12 | dır. | 4,0 | 1,1 | 250 | 36 | —15 | 250 | _ | _ | _ | 2,8 | 120 | 13.000 | 7.000 | 3.1 | 9,7 | 9 | _ | E443II | ¹⁾ Without pins. ## 180-MA D.C. VALVES | Type
Number | Valve typc | Maximum
dimensions | Base
(Connection
reference
in
brackets) | Application (see p. 2) | Fi | lament da
Voltage
Volts | Current | Anode
voltage
Va
Volts | Anode
current
Ia
mA | Neg.
grid
bias
Vg ₁
Volts | Screen-
grid
voltage
Vg ₂ | Screen-
grid
current
Ig ₂
mA | Voltage
on
grids 3
(and 5)
Vg ₃ (₅)
Volts | Voltage
on
grid 4
Vg ₄
Volts | Mutual
conduct.
S
mA/V | Amplification factor | Internal
resist-
ance
Ri
Ohms | External
anode
resist. or
optimum
matching
imped.
Ra
Ohm | Output
at 10 %
distor-
tion
Wo
Watts | Grid A.C. voltage at the indicated output Vi V _{R.M.S.} | Max,
anode
dissipa-
tion
Wa _{max}
Watts | Grid
anode
capacity
Cag ₁
μμF | Type
Number | |----------------|---------------------------------|-----------------------|---|------------------------|--------|-------------------------------|---------|---------------------------------|------------------------------|--|---|---|--|---|---------------------------------|----------------------|---|---|---|--|---|--|----------------| | B2046 | H.F. Pentode | 138 × 51 | O35
(23) | 1, 2, 5,
7, 8, 11 | indir. | 20 | 0,180 | 200 | 3,0 | -2,0 | 100 | 1,1 | - | - | 3,5 | 2,2 | 5000 | 2,2.108 | _ | - | - | < 0,000 | B2046 | | B2047 | Variable-Mu Pentode | 138 × 51 | O35
(23) | 1, 2, 5 | indir. | 20 | 0,180 | 200 | 4,0 | -2,0
-50 | 100 | 1,8 | _ | _ | 3,0 | 2.0
<0,002 | 2200 | 1,1.10 ⁸
> 10 ⁷ | | _ | _ | < 0,006 | B2047 | | B2048 | Hexode
(oscillator modulator | 130 × 50 | C35
(11) | 4 | indir. | 20 | 0,180 | 200 | 3,0 | -1,5 | 120 | 8,5 *) | 200 | —4 ³) | _ | 0,58 4) | _ | >
0,15.10 ⁶ | _ | _ | _ | - | B2048 | | B2049 | Variable-Mu Hexode | 130 × 50 | C35
(11) | 1, 2 | indir. | 20 | 0,180 | 200 | 3 | —1,5
—8 | 80 | - | —1,5
—8 | 80 | 3 | 1,8
<0,002 | _ | 0,45.10 ⁶
>50.10 ⁶ | _ | | _ | < 0,002 | B2049 | | B2052T | Tetrode | 127 × 51 | O35
(22) | 1, 2, 5,
7, 8, 11 | indir. | 20 | 0,180 | 200 | 3,0 | -2,0 | 100 | 0,2 | _ | | 3,0 | 2,0 | 900 | 0,45.10 | _ | _ | _ | 0,003 | B2052T | | B2045 | Variable-Mu Tetrode | 120 × 51 | O35
(22) | 1, 2, 5 | indir. | 20 | 0,180 | 200 | 4.0
0.01 | -2,0
-40 | 60 | 0,9 | _ | _ | 1,2 | 1,0
0.005 | 400 | 0,4.10 ⁸
> 10 ⁷ | | | _ | 0.004 | B2045 | | B2044 | Binode
(Diode-Tetrode) | 130 × 51 | B35
(7) | 9 | indir. | 20 | 0,180 | 200 | 0.29
0.76 | -3,2
-4,0 | 40
60 | _ | _ | _ | 2,8 | _ | 700
600 | 2.4.10 ⁸
1,2.10 ⁶ | 0,32.10 ^a
0.1,10 ^a | _ | _ | 0,003 | B2044 | | B2044S | Binode
(Diode-Triode) | 108×46 | O35
(20) | 9 | indir. | 20 | 0,180 | 200 | 6,0 | -3,0 | _ | - | _ | _ | 2,0 | 1,8 | 30 | 16.000 | _ | - | | - | B2044S | | B2038 | Triode | 105 × 51 | O35
(17) | 3, 6, 7,
10, 11 | indir. | 20 | 0,180 | 200 | 6,0 | -3,0 | _ | _ | - | _ | 3,5 | 2,3 | 33 | 14.000 | - | _ | _ | _ | B2038 | | B2099 | High-Mu Triode | 101×46 | O35
(17) | 11 | indir. | 20 | 0,180 | 200 | 0,08
0,2 | -1.6
-1,6 | _ | _ | _ | _ | 3,0 | - | 99 | 330.000
100.000 | 0,32.106 | _ | _ | 1,5 | B2099 | | B2006 | Power Triode | 105 × 51 | O35
(16) | 12 | indir. | 20 | 0,180 | 200 | 15 | —18 | _ | _ | _ | _ | 2,5 | 1,6 | 6 | 4.000 | 16.000 | 0,214) | 5 | _ | B2006 | | B2043 | Power Pentode | 105 × 51 | B35
(8) | 12 | indir. | 20 | 0,180 | 200 | 20 | 18 | 200 | 8 | _ | _ | 2,5 | 1,7 | 70 | 40.000 | 10.000 | 1,7 | 5 | _ | B2043 | ¹⁾ Without pins. ²⁾ At 5 % distortion. ²⁾ Current of the third grid. $^{^{3}}$) $V_{osc} = 6.3 V_{R_{*}M_{*}S_{*}}$ ⁴⁾ Conversion conductance at Vosc = 6.3 VR.M.S. ⁸⁾ At 5 0/0 distortion. ### BATTERY VALVES (Low filament current series) WITH SIDE CONTACT BASES | Type
Number |
Valve type | Maximum | Rase
(Connection
reference | Applica-
tion | Fil | lament da | ita | Anode
voltage | Anode
current | Neg.
grid
bias | Screen-
grid
voltage | Screen-
grid | Voltage
on
grids 3 | Voltage
on
grid 4 | Mutual | Amplifi- | Internal
resist- | External
anode
resist. or
optimum | at 10°/,"
distor- | Grid A.C.
voltage
at the
indicated | Max.
anode
dissipa-
tion | Grid
anode
capacity | Туре | |----------------|---------------------|------------------|----------------------------------|-------------------|---------|------------------|---------------|------------------|-------------------------------|----------------------|----------------------------|-----------------|---|-------------------------|--------------------------------|-------------|---|--|----------------------|---|-----------------------------------|---------------------------|---------| | Number | | dimensions
mm | in
hrackets) | (see | Heating | Voltage
Volts | Current Amps. | Va
Volts | la
mΛ | Vgl
Volts | Vg ₁ Volts | Ig _s | (and 5)
Vg ₃ (s)
Volts | Volts | s
mA/V | factor
µ | Ance
Ri
Ohms | matching
imped,
Ru
Ohm | Wo
Watts | output
Vi
VR.M.S. | Wamax
Watts | | Number | | | | | | | | | | 135 | 0,7 ¹)
<0,015 | 0 | 135 | 2,1 8) | 45 | -0,5
-12 | 0,27 ¹⁰)
<0,002 | _ | 2,5.10°
>10° | | | | | | | | KK2 | Octode | 120 × 46 | P35
(37) | 4 | dir. | 2,0 | 0,13 | 90 | 0.7 ¹)
< 0.015 | 0 | 90 | 1,3 4) | 45 | -0,5
-12 | 0,2710)
< 0.002 | _ | 2,0.10°
>10° | _ | _ | _ | _ | <0,070) | KK2 | | | | | | | | | | 135 | 1,01) | 0 | .135 | 2,3 5) | 60 | -1,5 | 0,2710) | _ | 1,7.10 | | | | | | | | KF3 | Variable-Mu Pentode | 102 × 40 | P30 | 1, 2, 5 | dir. | 2,0 | 0,045 | 135 | 2.0
<0,015 | -0.5
-19 | 135 | 0,6 | 0 | | 0,65
<0,002 | 850 | 1,3.10 ⁶
>10 ⁷ | | | | | <0,006 | KF3 | | KIJ | vanabie-mu rentode | 102 X 40 | (29) | 1, 2, 3 | un. | 2,0 | 0,013 | 90 | 1,0
<0,015 | 0,5
10 | 90 | 0,3 | 0 | _ | 0.5
<0.002 | 1000 | 2,0.10°
>10° | _ | _ | | _ | < 0,000 | Krs | | KF4 | H.F. Pentode | 102×40 | P30 | 1, 2, 7,
8, 11 | dir. | 2,0 | 0,065 | 135 | 2,6 | -0,5 | 135 | 1,0 | 0 | _ | 8,0 | 800 | 1,0.10 | | _ | | _ | <0,006 | VE4 | | X1:- | n.r, Fentode | 102 × 40 | (29) | 8, 11 | uu. | 2,0 | 0,003 | 90 | 1,2 | -0,5 | 90 | 0,4 | 0 | _ | 0,7 | 900 | 1,3.106 | _ | | _ | _ | < 0,000 | KF4 | | KB2 | Duodiode | 72 × 30 | V24
(53) | 13 | indir. | 2,0 | 0,095 | _ | _ | - | - | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | KB2 | | KC1 | Triode | 90×44 | P30 | 7, 11 | dir. | 2,0 | 0,065 | 135 | 1,2 | -1,5 | - | _ | _ | _ | 0,6 | 25 | 40.000 | | | _ | 0.5 | 7. | W.O. | | KCI | Trioue | 30 × 44 | (24) | ', 11 | dir. | 2,0 | 0,003 | 90 | 0,3 | -1,5 | _ | _ | | - | 0,4 | 25 | 60.000 | _ | | | 0,5 | 3,5 | KC1 | | KC3 | Triode | 92 × 43 | P30
(24) | 10 | dir. | 2,0 | 0,21 | 135 | 3,0 | -2,3 | _ | _ | _ | _ | 2,5 | 30 | 12.000 | _ | - | _ | - | _ | КСЗ | | KBC1 | Duodiode-Triode | 112×47 | P35 | 9 | dir. | 2,0 | 0,1 | 135 | 2,5 | -4,5 | - | _ | _ | _ | 1,0 | 16 | 16.000 | | | | | | V.D.C.I | | KBCI | Duodioge-1710de | 112 X 47 | (27) | , | un. | 2,0 | 0,1 | 90 | 1,0 | -3,0 | 9- | _ | _ | _ | 0,7 | 16 | 23.000 | _ | - | _ | _ | _ | KBC1 | | KL4 | Power Pentode | 100 × 42 | P35 | 12 | dir. | 2,0 | 0,14 | 135 | 6,5 | _5 | 135 | 1,0 | _ | _ | 2,1 | | 150.000 | 19,000 | 0,44 | 3,3 | 1.0 | | KL4 | | KL/4 | rower Pentode | 100 X 42 | (30) | 12 | ur. | 2,0 | 0,14 | 90 | 4,7 | -2,6 | 90 | 0,7 | _ | _ | 1,8 | _ | 170.000 | 19.000 | 0,16 | 2,0 | 1,0 | _ | KL4 | | KDD1 | Double Triode | 92 × 43 | P30
(47) | 16 | dir. | 2,0 | 0,22 | 135 | 2 × 1,56) | 0 | _ | _ | _ | <u> </u> | _ | _ | _ | 10.0007) | 2,0 8) | - | - | _ | KDD1 | - $^1)$ The data of this horizontal column apply for the oscillating condition at $V_{\rm OSC}=8.5~V_{\rm R.M.S.}$ (Ig $_1=100~\mu A)$ and for long and medium wave reception. The grid leak resistance amounts to 50,000 ohms and is connected to the neutral. - 2) The data of this horizontal column apply for the oscillating condition at V_{osc} = 6 V_{R,M,S} (I_{Et} = 60 µA) and for short wave reception. In this range the valve must not be controlled by A.V.C. The grid leak resistance amounts to 50,000 ohms and is connected to the neutral. - 3) Screen-grid current Ig₃ + Ig₅ = 0.7 mA. - 4) Screen-grid current Ig₈ + Ig₅ = 0.6 mA. - 5) Screen-grid current Ig₃ + Ig₅ = 1.0 mA. - 6) Quiescent current, anode current at full load $= 2 \times 14$ mA. - 7) From anode to anode. - 8) Ratio of intervalve transformes = 2 : (1 + 1) (primary to secundary turns). Driver valve KC 3, required A.C. voltage on grid of KC 3 = 2 V_{R.M.S.} - 1) Capacity between unode and grid 4. - 10) Conversion conductance. - 11) See page 15. The numeral after the letter gives the maximum base diameter in mm. ### PHILIPS NEON TUNING INDICATOR | Type
Number | Dimensions
without
pins
mm | Rase
(Connection
reference
in
hrackets) | Striking
voltage
at the
auxiliary
anode
Va.
Volts | Operating voltage at the main anode Va ₁ Volts | Main anode
current at
fully lighted
cathode
Va.
mA | Auxiliary
anode
current
Ia
μΑ | |----------------|-------------------------------------|---|---|---|---|---| | 4662 | 98×13 | Small,
4-pin
(XV, see
page 12) | 165—190 | 150—170 | 2 | 4050 | ### **BATTERY VALVES WITH PIN BASES** | Туре | Valve type | Maximum | Base
(Connection | tion | Fi | lament da | ata | Anode
voltage | Anode
current | Neg.
grid
bias | Screen-
grid
voltage | Screen-
grid
current | Voltage
on
gride 3 | Voltage
on
grid 4 | Mutual
conduct. | Amplifi-
cation | Internal | External
anode
resist. or
mostfav. | Output
at-10 º/ ₀
distor- | Grid A.C.
voltage
at the
indicated | Max.
anode
dissipa- | Grid
anode
capacity | Туре | |--------|---------------------|------------------|------------------------------|----------------------|---------|------------------|------------------|------------------|--------------------------------------|--------------------------|----------------------------|----------------------------|--|-------------------------|--------------------|--------------------------------|--------------------|---|--|---|------------------------------------|---------------------------|--------| | Number | | dimensions
mm | reference
in
brackets) | (see
p. 2) | Heating | Voltage
Volts | Current
Amps. | Va
Volts | Ia
mA | Vg ₁
Volts | Vg ₃
Volts | Ig ₂
mA | (and 5)
Vg ₃ (₅)
Volts | Vg ₄ Volts | S
mA/V | factor
µ | ance
Ri
Ohms | matching
imped.
Ra
Ohms | tion
Wn
Watts | | tion
Wa _{max}
Watts | Cag ₁
μμF | Number | | KF2 | Variable-Mu Pentode | 118×47 | C35
(10) | 1,2 | dır. | 2,0 | 0,2 | 135 | 3,0
appr 0,01
1,4
appr 0,01 | 0
16
0
11 | 135
90 | 1,0 | 0 | - | 1,3 | 1.3
<0,002
0,8
<0,002 | 1400 | 1,1.10°
>10°
1,9.10°
>10° | 1 | - | - | <0,01 | KF2 | | KF1 | H.F. Pentode | 118×47 | C35
(10) | 1, 2, 7,
8, 11 | dir. | 2,0 | 0,2 | 135 | 3,0 | 0 | 135 | 1,0 | 0 | _ | 1,8 | 1,8 | 1600
1500 | 0,9.10 ⁶ | - | _ | - | <0,01 | KF1 | | B228 | Triode | 81 × 41 | A32
(1) | 7, 11 | dir. | 2,0 | 0,1 | 150 | 2,0 | | _ | _ | _ | _ | 1,3 | 1,2 | 28 | 23.000 | _ | _ | | 5,5 | B228 | | B217 | Triode | 81 × 41 | A32
(1) | 3, 6, 10 | dir. | 2,0 | 0,1 | 150 | 4,5 | -3,0 | _ | - | _ | - | 1,4 | 1,3 | 17 | 13.000 | _ | _ | _ | 5,5 | B217 | | C243N | Power Pentode | 89 × 51 | O35
(19) | 12 | dir. | 2,0 | 0,2 | 150 | 9,5 | -4,5 | 150 | | - | _ | _ | 2,4 | - | 75.000 | 15.000 | 0,58 | 1,5 | _ | C243N | | B240 | Double Triode | 96×47 | C35
(9) | 16 | dir. | 2,0 | 0,2 | 150 | 2 × 1,51) | 0 | _ | _ | _ | _ | _ | _ | | _ | 14.0003) | 1,0°) | _ | _ | B240 | | B442 | Tetrode | 108 × 46 | A35
(3) | 1, 2 | dir. | 4,0 | 0,100 | 200 | 4,5 | -1,0 | 100 | - | _ | _ | 0,9 | 0,9 | 350 | 0,4.10 | _ | _ | _ | 0,005 | B442 | | A442 | Tetrode | 105 × 46 | A35
(3) | 1, 2, 5,
7, 8, 11 | dir. | 4,0 | 0,06 | 200 | 4,0 | -1,0 | 100 | - | - | _ | 0,8 | 0,7 | 280 | 0,4.104 | - | _ | _ | 0,01 | A442 | | B424 | Triode | 92 × 46 | A35
(1) | 3. 6, 10 | dir. | 4,0 | 0,100 | 200 | 6,0 | -0,3 | _ | | _ | _ | 3,0 | 2,5 | 24 | 9.000 | _ | _ | _ | 4 | B424 | | B438 | Triode | 78 × 38 | A35
(1) | 7, 8, 11 | dir. | 4,0 | 0,100 | 200 | 0.2
0.05 | —2,5
—2,5 | - | _ | _ | _ | 2,0 | _ | 38 | 170.000
400.000 | 0,32.10s
1,0.10s | _ | _ | 4 | B438 | | A415 | Triode | 83 × 42 | A32
(1) | 3, 6, 10 | dir. | 4,0 | 0,085 | 150 | 4,0 | -4,0 | _ | _ | _ | _ | 2,0 | 1,5 | 15 | 10.000 | 11,- | | _ | 4,5 | A415 | | A425 | Triode | 83 × 42 | A32
(1) | 7, 8, 11 | dir. | 4,0 | 0,065 | 200 | 0,25
0,1 | —2,5
—2,5 | _ | _ | _ | _ | 1,2 | - | 25 | 80.000
250.000 | 0,32,10°
1,0,10° | _ | _ | 3 | A425 | | A409 | Triode | 83 × 42 | A32
(1) | 3, 6, 10 | dir. | 4,0 | 0.065 | 150 | 3,5 | -9,0 | + = | | _ | - | 1,2 | 0,9 | 9 | 10.000 | | _ | _ | 4 | A409 | | A441N | Double-grid valve | 92 × 46 | A35b
(4) | 4 | dir. | 4,0 | 0.08 | 100 | 4,0 | 01) | 4,04) | _ | _ | - | _ | 0,3ª)
1,0º) | - | 1 5 | _ | _ | _ | | A441N | | B405 | Triode | 91 × 46 | A32
(1) |
12 | dir. | 4,0 | 0,15 | 150 | 11 | -18 | _ | _ | _ | _ | 2,0 | 1,6 | 5 | 3.000 | - | | _ | _ | B405 | | B406 | Triode | 91 × 46 | A32
(1) | 12 | dir. | 4,0 | 0,1 | 150 | 8 | —15 | _ | _ | _ | _ | 1,4 | 1,3 | 6 | 4.500 | _ | _ | - | _ | B406 | | B409 | Triode | 91 × 46 | A32
(1) | 12 | dir. | 4,0 | 0,15 | 250 | 12 | —16 | _ | - | - | _ | 2.0 | 1,8 | 9 | 5.000 | 12.000 | 0,65*) | 3 | _ | B409 | | B443 | Power Pentode | 92 × 51 | O35
(19) | 12 | dir. | 4,0 | 0,150 | 250 | 12 | -17 | 150 | - | - | _ | _ | 1,3 | _ | 45.000 | 20.000 | 1,35 | 3 | _ | B443 | ¹⁾ Quiescent anode current for both anodes. 2) From anode to anode. s) At Va = 120 volts. ⁴⁾ Voltage of the control grid. ⁷⁾ Conductance of space charge grid. ⁸⁾ Without pins. ⁹⁾ At 5 0/0 distortion. ⁶⁾ Conductance of control grid. ### PHILIPS POWER AMPLIFIER VALVES | Туре | Valve | Maximum | Base
(Connection | Fil | lament da | ta | Assissa | Anode
Voltage | Screen-
grid
voltuge | Quies-
cent
anode | Anode
current
at full | Quien-
cent
Screen- | Screen-
grid
current
at full | Neg.
grid
bias for | Common
cathode
resist.
with | Mutual
conduct.
at | resist. at | Optim.
matching
imped.
(between | Max. | Distor-
tion
at max. | Grid A.C.
voltage
at full | Max.
anode
load | Туре | |---------------|----------------|------------------------------|--|---------|------------------|-----------------|--------------------|------------------|----------------------------|----------------------------------|-------------------------------------|---|---------------------------------------|---|--------------------------------------|-------------------------------|---------------------|--|----------------------------|----------------------------|--|----------------------------|--------| | Number | type | Dimensions ¹) mm | reference
in
brackets)
⁷) | Heating | Voltage
Volts | Current
Amps | Application | Va"
Volts | Vg ₃
Volts | current
Ia ₀
mA | modulat.
Ia _{max}
mA | grid
current
lg ₁₀
mA | modulat,
Ig _{2max}
mA | fixed
bias
Vg ₁
Volts | autom.
bias
Rk
Ohms | working
point
S
mA/V | point
Ri
Ohms | the two
anodes)
Ra
Ohms | Wo _{max}
Watts | output
dtat
°/n | modulat,
Vi _{max}
V _{R.M.S.} | Wa _{max}
Watts | Number | | | | | 1 425 | | | | Class A, 1 valve | 500 | | 24 | | | | 68 | | 3,0 | 2000 | 11.500 | 5.3 | 5 | 45 | 12 | | | E406N | Triode | 130 × 51 | A35
(1) | dir. | 4,0 | 1,0 | Class AB, 2 valves | 500 | | 2 × 20 | 2 × 38 | | | <u>70</u> | | | | 12.000 | 15 | 1,4 | 43 | 12 | E406N | | | | | | | | | Class AB, 2 valves | 500 | | 2 × 24 | 2 × 27 | | | | 1400 | | | 16.000 | 13 | 3,3 | 52 | 12 | | | | | | A40 | | | | Class A, 1 valve | 400 | | 30 | | | | —36 | | 2,7 | 3000 | 6.000 | 2,6 | 5 | | 12 | | | E408N | Triode | 121×51 | (1) | dir. | 4,0 | 1,0 | Class AB, 2 valves | 400 | | 2 × 20 | 2 × 28 | | | -40 | | | | 12.000 | 7 | 0,56 | 28 | 12 | E408N | | | | | | | | | Class AB, 2 valves | 400 | | 2 × 30 | 2 × 32 | | | | 600 | | | 10.000 | 7 | 0.62 | 26,5 | 12 | | | E443N | Pentode | 110 × 57 | 040 | dir. | 4,0 | 1,0 | Class A, 1 valve | 400 | 200 | 30 | | | | -40 | | 1,9 | 40.000 | 14.000 | 5,4 | 10 | 20,2 | 12 | E443N | | LIFOIT | | | (19) | | | | Class AB, 2 valves | 400 | 2004) | 2 × 25 | 2 × 28 | 2 × 4,7 | 2 × 10 | _ | 720 | | _ | 16,000 | 14 | 4,1 | _ | 12 | LTION | | | Double-grid | | 005 | | | | Class A, 1 valve | 250 | | 22 | _ | _ | | —33 ²) | _ | 2,4 | 2400 | 6.4004) | 1,25 | 5 | | 10 | | | E451 | power
valve | 123×55 | O35
(18) | dir. | 4,0 | 1,1 | Class B, 2 valves | 300 | | 2 × 6 | 2 × 48 | _ | _ | 0 a) | | _ | _ | 6.000 | 16 | 8,46) | _ | _ | E451 | | | Valve | | ` ′ | | | | Class B, 2 valves | 400 | _ | 2 × 8,5 | 2 × 56 | _ | _ | 0 9) | _ | _ | _ | 6.000 | 22,4 | 5,46) | _ | _ | | | | | | | | | | Class A, 1 valve | 800 | _ | 40 | _ | _ | _ | —80 | _ | 2.0 | 3500 | 11.000 | 10 | 5 | 58 | 32 | | | E707 | Triode | 200 × 51 | W42
(56) | dir. | 7,2 | 1,1 | Class AB, 2 valves | 800 | _ | 2 × 30 | 2 × 52 | _ | _ | —87 | | _ | _ | 10.000 | 23 | 1,3 | 55 | 32 | E707 | | | | | ` ' | | | | Class AB, 2 valves | 800 | _ | 2 × 40 | 2 × 45 | _ | _ | _ | 1000 | _ | _ | 12.000 | 24 | 1,3 | 61 | 32 | | | | | | | | | | Class A, 1 valve | 550 | _ | 45 | _ | _ | _ | —36 | | 4,0 | 2500 | 7.000 | 5,9 | 5 | 24,5 | 25 | | | F410 | Triode | 145×60 | A40
(1) | dir. | 4,0 | 2,0 | Class AB, 2 valves | 550 | _ | 2 × 20 | 2 × 40 | _ | _ | -43 | | | _ | 10.000 | 14,6 | 1,08 | 28 | 25 | F410 | | | | | . ' | | | | Class AB, 2 valves | 550 | _ | 2 × 45 | 2 × 48 | _ | _ | _ | 400 | _ | _ | 10.000 | 14,4 | 0,86 | 25 | 25 | | | | | | | | | | Class A, 1 valve | 550 | 200 | 45 | _ | 1,4 | _ | -30 | 647 | 3,2 | 30.000 | 12.000 | 12 | 10 | 12,5 | 25 | | | | | | | 1 | | | Class A, 1 valve | 300 | 300 | 83 | _ | 4.6 | _ | —4 0 | 457 | 3,9 | 20.000 | 3.500 | 10,3 | 10 | 20 | 25 | | | F443N | Pentode | 160×67 | O40
(19) | dir. | 4,0 | 2,0 | Class AB, 2 valves | 550 | 250°j | 2 × 45 | 2 × 53 | 2 × 0,8 | 2 × 7,4 | _ | 455 | _ | _ | 12.000 | 41 | 4,3 | 37 | 25 | F443N | | | | | (, | | | | Class AB, 2 valves | 300 | 3006) | 2 × 15 | 2 × 72,5 | 2 × 0,54 | 2 × 14,3 | —63 | _ | _ | _ | 4.500 | 26,5 | 3,4 | 46 | 25 | | | | | | | | | | Class AB, 2 valves | 300 | 3006) | 2 × 64 | 2 × 72,5 | 2 × 2,0 | 2 > 11.9 | _ | 340 | | _ | 4.000 | 24 | 2,9 | 39 | 25 | | | | | | | | | | Class A, 1 valve | 1000 | _ | 25 | _ | _ | _ | —80 | | 3,2 | 3200 | 25.000 | 11,5 | 5 | 58 | 25 | | | 4647 | m · . | 1/8 // | W42 | ,. | 4.0 | 2,0 | Class AB, 2 valves | 1000 | | 2 × 25 | 2 × 39 | _ | _ | —80 | _ | _ | _ | 35.000 | 30 | 0,67 | 56 | 25 | 1613 | | 4641 | Triode | 165 × 66 | (56) | dir. | 4,0 | 2,0 | Class AB, 2 valves | 1000 | _ | 2 × 25 | 2 × 28 | _ | <u> </u> | _ | 1600 | _ | _ | 35.000 | 29 | 4,5 | 55 | 25 | 4641 | | | | | | | | | Class B, 2 valves | 1000 | _ | 2×5 | 2 × 45 | _ | | —90 | _ | _ | | 18.000 | 41 | 4,0 | 60 | 25 | | | 4600 | D 4 1 | 115 .46 | P35 | | 4.0 | 1.0 | CI ARA : | 375 | 250°) | 2 × 26 | 2 × 45 | 2 × 3 | 2 × 5,5 | -32 | _ | _ | _ | 9.000 | 19 | 1,5 | 21,5 | 9 | 4600 | | 4682 | Pentode | 115 × 46 | (32) | indir. | 4,0 | 1,0 | Class AB, 2 valves | 375 | 2504) | 2 × 24 | 2 × 29 | 2 × 3,5 | 2 × 4 | _ | 540 | _ | _ | 15.000 | 14 | 5,2 | 16,5 | 9 | 4682 | | 4600 | m : . | 100 00 | P35 | | 4.0 | 0.05 | | 350 | | 2 × 35 | 2 × 69,5 | _ | | —75 | _ | _ | _ | 5.000 | 20 | 2,1 | 49 | 15 | 1400 | | 4683 | Triode | 135 × 59 | (24) | dir. | 4,0 | 0,95 | Class AB, 2 valves | 350 | _ | 2 × 43 | 2 × 46,5 | | | _ | 850 | | _ | 8.000 | 15,6 | 2,3 | 51 | 15 | 4683 | | 4684 | Pentode | 115 × 50 | P35
(31) | indir. | 4,0 | 1,75 | Class AB, 2 valves | 375 | 250°) | 2 × 24 | 2 × 30 | 2 × 3,2 | 2 × 5 3 | - | 142 | _ | | 13.000 | 12 | 2,3 | 6,9 | 9 | 4684 | | ≥ 4688 | Pentode | 117 × 51 | P35
(31) | indir. | 4.0 | 2,0 | Class AB, 2 valves | 375 | 2750) | 2 × 48 | 2 × 62 | 2 × 5 | 2 × 9 | (9) | 165 | _ | _ | 6.500 | 28,5 | 2,25 | 16 | 18 | 4688 | | 4689 | Pentode | 117×51 | P35
(31) | indir. | 6,3 | 1,35 | Class AB, 2 valves | 375 | 275") | 2 × 48 | 2 × 62 | 2 × 5 | 2 × 9 | - | 165 | _ | | 6.500 | 28,5 | 2,25 | 16 | 18 | 4689 | | 4694 | Pentode | 120 × 37 | P35
(31) | indir. | 6.3 | 1,2 | Class AB, 2 valves | 375 | 250°) | 2 × 24 | 2 × 30 | 2 × 3,2 | 2 × 5,3 | - | 142 | | - | 13.000 | 12 | 2,3 | 6,9 | 9 | 4694 | Without pins. Anode and grid 2 interconnected, class A as driver valve. Grids 1 and 2 interconnected, class B driven into grid current. Optimum external resistance for maximum power output. About double the value is recommended as load when using this valve as driver valve of class B power stages driven into grid current. Measured with a valve E 451 as driver (Va = 250 V, Vg = — 33 V) and an intervalve transformer with a ratio 2.5: (1 + 1) (primary to secundary turns). ^{*)} The screen-grid voltage must be maintained a constant as possible in push-pull stages by a chain of neon stabiliser tubes. The tubes type 4687 are very suitable for the purpose. 7) See page 15. The numeral after the letter gives the maximum base diameter in mm. |--| | 1 | cathor
oscillo | or
le ray
graphs | amı | or
olifier
lations | car-r
recei | adio | AC/
recei | DC | | | | | For A | A.C. ma | ins rec | ceivers | | | | | | | |-----------|-------------------|------------------------|--------------------------------|---------------------------------|----------------|-------------|------------------|-------------|-------------|-------------------|-------------|------------|------------|----------------|------------|-------------------|------------|------------|----------------|--------------|------------------------------------|---------| | gasfilled | Half-
high | wave
-vac. | Half-
wave
high-
vac, | Full-
wave
gas-
filled | Full-
high | | Half-
high- | | | alf-wav
h-vacu | | | | | | ull-way
h-vacu | | | | | | | | 10184) | 1876 | 1875 | 4646 | IXV | FZ1 | EZ2 | CY2 | CXI | 1832 | 1803 | 1802 | 1831 | 1815 | 1561 | 1805 | 1817 | 506 | 1801 | AZ1 | EZ4 | Type
Number | | | ı | 97×52 | 145×50 | 145×60 | 110×47 | 91×37 | 85×37 | 100×44 | 102×43 | 145×60 | 100×52 | 92×46 | 145×59 | 145×59 | 125×51 | 116×53 | 160×67 | 105×51 | 93×47 | 110×53 | 85×37 | Maximum
Dimensions *)
mm | Mariana | | ı | P35
(41) | P35
(42) | W42
(55) | A35
(5) | P30
(45) | P30
(45) | P30
(46) | P30
(43) | H35
(14) | H35
(14) | H32
(14) | A35
(5) | A40
(5) | A35
(5) | A35
(5) | A40
(5) | A35
(5) | A35
(5) | P35
(44) | P30
(45) | br br | | | dir. | di. | dir. | dir. | dir. | indir.
 indir. | indir. | indir. | dir. indir. | Heating | | | 1,8 | 4,0 | 4,0 | 4,0 | 4,0 | 13 | 6,3 | 30 | 20 | 4,0 | 4,0 | 4,0 | 4,0 | 4.0 | 4,0 | 4,0 | 4,0 | 4,0 | 4.0 | 4,0 | 6,3 | Voltage
Volts | _ | | 1,8 | 0,3 | 2,3 | 1,3 | 2,0 | 0,25 | 0,4 | 0,200 | 0,200 | 1,3 | 0,6 | 0,4 | 1,0 | 2,5 | 2,0 | 1,0 | 4,0 | 1,0 | 0,5 | 1,1 | 6,0 | Current
appr.
amps. | | | 16 | 850 | 7000 | 1000 | 2×500°) | 2×250 | 2×350 | 1×250
2×1271) | 250 | 700 | 500 | 250 | 2×700 | 2×500 | 2×500
2×350 | 2×500 | 2×350 | 2×300 | 2×250 | 2×500
2×300 | 2×400 | no. load
voltage
VoltsR.M.S. | Max AC | | 200 | 5 | 5 | 75 | 125 | 50 | 60 | 120
60 | 80 | 120 | 30 | 30 | 60 | 180 | 120
160 | 60 | 300 | 75 | 30 | 100 | 175 | Max. D.C.
current
mA | | # PHILIPS HEATING CURRENT REGULATOR TUBES | | | | | | | | | | | | | | | | | _ | | | | | |-------------|---------------------|------------|------------|------------|-------------------|------------|------------|--------------------|--------------|-------------|---------------------------------------|--------------|--------------|------------------|--------------|--------------|---------------------------------------|-------------|-------------|---| | - | For i
hea
val | ted | F | | . heate
valves | d | For in | ndir, b
C. valv | eated
res | w | r AC/I
ith a s
curren
resist | witchi | ng | | wi
on | thout | OC val-
switchi
t limit
ince | ng | | | | 1910 | 1949 | 1941 | 1920 | 1915 | 1911 | 1904 | 1928 | 1927 | 1926 4) | C7 | 60 | C4 | C3 | C12 | C10 | C9 | 83 | C2 | CI | Type
Number | | 90×33 | 95×38 | 140×50 | 115×38 | 115×38 | 90×36 | 90×36 | 125×38 | 115×38 | 105×33 | 105×39 | 125×39 | 105×39 | 125×39 | 142×41 | 115×39 | 115×39 | 125×39 | 115×39 | 125×39 | Maximum
dimensions *) | | H32
(15) | A35
(6) | A35
(6) | A32
(6) | A32
(6) | A32
(6) | A32
(6) | A35
(6) | A35
(6) | A32
(6) | P30
(48) | P30
(48) | P30Y
(51) | P30X
(50) | P30
(49) | P30Y
(51) | P30Z
(52) | P30X
(50) | P30
(48) | P30
(48) | Base
(Connection
reference
in brackets) | | 4,514,5 | 30—90 | 77—200 | 50—70 | 50—70 | 5070 | 50—70 | 100—225 | 35—100 | 16 5) | 35—70 | 70—140 | 55—105 | 100—200 | 80—200
35—100 | 35—100 | 35—100 | 80-230 | 35—100 | 80—230 | Voltage control
range
Volts | | ı | 90 | 200 | | 1 | 1 | | I | 1 | 1 | 70 | 140 | 105 | 200 | 200
100 | 100 | 100 | 200 | 100 | 200 | Maximum
operating
voltage
Volts | | 1440 | 300 | 300 | 250 | 240 | 150 | 100 | 180 | 180 | 180 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | Regulated
current
rating
mA | | | 127 3) | 250 1) | | 1 | ı | 1 | 1 | 1 | ı | 110 | 160 | 160 | 250 | 250 ¹)
160 ²) | 160 2) | 160 2) | 250 1) | 160 2) | 250°) | Max.voltage
across the
tube when
switching on
Volts | The total heating current of the receiving valves in series with the regulator tube must be at least 52 volts. The total heating current of the receiving valves in series with the regulator tube must be at least 74 volts. The total heating current of the receiving valves in series with the regulator tube must be at least 63 volts. Resistance tube. Voltage drop in the resistance. ### PHILIPS' HIGH-VACUUM CATHODE RAY TUBES | Type
Number | Tube type | Deflection | Colour
of
luminous | Max.
screen
diameter | length
without | Greatest
length
without | Base
con-
nec- | | ament o | Com | Max.
voltage
on 3rd
unode | Max.
voltage
on 2nd | anode | Max.
grid bias
for
suppr, of
the ray | | Voltage
on 3rd
anode | Voltage
on 2nd
anode | Operatin Voltage on lst | Volt-
age of | Sensi-
tivity 2) | Sensi- | capacity 1) | deflec-
tion | Capacity
of
deflec-
tion | Type
Number | |----------------|---|-------------------------|--------------------------|----------------------------|-------------------|-------------------------------|----------------------|--------------|---------|------|------------------------------------|--------------------------------|-----------------------------|--|------------|----------------------------|----------------------------|--------------------------|---------------------------|---------------------|------------------------|--------------|------------------|-----------------------------------|----------------| | | | | spot. | mm | (max.) | pins
(min.) | tio n | Heat-
ing | age | rent | Va _{amax}
Volts | Ÿa₂max
Volts | Va _{imax}
Volts | Vgmax
Volts | | Va ₃
Volts | Va.
Volts | Va ₁
Volts | grid
Vg
Volts | N,
mm/V | N ₂
nm/V | Cg
µµF | plates 5) CD,D,' | plates")
C _{D2} D2' | | | DG7-1 | Cathode ray tube
for oscilloscopes | Double
electrostatic | Green | 75 | 165 | 150 | I | indir. | 4,0 | 1,0 | _ | 800 | 300 | -30 | | | 800
500 | 2001)
1401) | | 0,20 | 0,14 | 7 | 3 | 4 | DG7-1 | | DG9-3 | Cathode ray tube
for oscilloscopes | Double
electrostatic | Green | 103 | 350 | 320 | II | indir. | 4,0 | 1,0 | _ | 1200 | 500 | <u>_40</u> | positive | - | 1000 | 400 1) | sired | 0,40 | 0,3011) | 6 | 4 | 5.5 | DG9-3 | | DG16-1
8) | Cathode ray tube
for oscilloscopes | Double
electrostatic | Green | 167 | 440 | 416 | 111 | indir. | 4,0 | 1,0 | _ | 2000 | 600 | _40 | ome pos | | 2000 | 400¹)
200¹) | the de | 0.27 | 0.20 | 10 | 1.5 | 2 | DG16-1 | | DG16-2 | Cathode ray tube
for oscilloscopes | Double
electrostatic | Green | 167 | 450 | 425 | ıv | indir. | 4,0 | 1,0 | _ | 2000 | 600 | _40 | er bec | | 2000 | 400¹)
200¹) | adjusted to | 0,27 | 0.20 | 12 | 6 | 7 | DG16-2 | | DG25-1 | Cathode ray tube for oscillographs and television receivers | Double
electrostatic | Green | 257 | 580 | 550 | v | indir. | 4,0 | 1,2 | 5000 | 1700 | 250 | —60 | тау печ | 5000 | 1400 1) | 250 | be adju | 0,13 | 0,11 | 15 | 5,5 | 6,5 | DG25-1 | | DW31-1 | Cathode ray tube for television receivers | Double
electrostatic | White | 310 | 640 | 610 | VI | indir. | 4,0 | 1,2 | 6000 | 1200 | 250 | —60 | voltage 1 | 5000 | 1000 1) | 250 | e must | 0,17 | 0,13 | 15 | 4 | 5 | DW31-1 | | MW31-2 | Cathode ray tube for television receivers | Double
magnetic | White | 310 | 695 | 660 | VII | indir. | 4,0 | 1,2 | 6000 | magnetic
concen-
tration | 250 | —60 | The grid v | 5000 | 19) | 250 | grid voltag
intensity. | 1,814) | 1,814) | _ | - | _ | MW31-2 | | DW39-1 | Cathode ray tube for television receivers | Double
electrostatic | White | 395 | 765 | 735 | VI | indir. | 4,0 | 1,2 | 6000 | 1200 | 250 | —60 | T | 5000 | 1000 1) | 250 | The g | 0,18 | 0,14 | 15 | 4 | 5 | DW39-1 | | MW39-2 | Cathode ray tube for
television receivers | Double
magnetic | White | 395 | 745 | 700 | VII | indir. | 4,0 | 1,2 | 6000 | magnetic
concen-
tration | 250 | 60 | | 5000 | — ¹⁸) | 250 | | 2,314) | 2,314) | - | - | _ | MW39-2 | Set to spot sharpness. Of the deflection plates on the cathode side. Of the deflection plates on the screen side. With respect to all other electrodes. On the cathode side. On the screen side. This tube can also be supplied with a blue screen (type number DB 9-3). This tube can also be supplied with a blue screen (DB 16-1) or with a white screen (DW 16-1). This tube can also be supplied with a blue screen (DB 16-2) or a long persistence yellow fluorescent screen (DN 16-2). 10) This valve can also be supplied with a blue fluorescent screen (DB 25-1). The deflection of the deflection plates D_2 and D_2' is asymmetrical to enable asymmetrical control by means of a simple time-base voltage or amplifier circuit (control voltage that fluctuates only in one direction with respect to Va₂). The plate D₂' must be connected to anode a₂. Plate D₂ can then be connected to the asymmetrical time-base voltage or output voltage of the amplifier. The number of turns required for magnetic concentration is about 500. The distance of the coil centre from the lower edge of the base must be about 140 mm. 13) The newer type, the DW 31-2, is fitted with deflection plates led out at the base. Expressed in mm deflection per cm coil width (length of the field through which the electrons of the ray pass) per Gauls mean fieldstrength .The distance of the coil centre to the screen is 420 mm for tube MW 31-2 and 540 mm for tube MW 39-2. ### **PHILIPS NEON STABILISER TUBES** | Type
Number | Maximum
dimensions
without pins | Hase
(Connection
reference in
brackets,
see p. 12) | Running
voltage at
the given
quiescent
current | Striking
voltage | Extinction
voltage | Quiescent
current at
the given
running
voltage | Maximum
permis-
sible
current | Lower
current
limit for
stabilisa-
tion | A.C.
resistance | |----------------|---------------------------------------|--|--|---------------------|-----------------------|--|--|---|--------------------| | | mm | . , | Volts | Volts | Volts | m A | mA | mA | Ohms | | 4357 | 106 × 60 | A35
(XVIII) | 90—100 | 100—110 | 83 | 20 | 45 | 10 | 100 | | 4376 | 115 × 60 | Edison
(XX) | 90—100 | 100-110 | 83 | 20 | 45 | 10 | 100 | | 4377 | 115 × 60 | Edison
(XX) | 105—115 | 130—140 | 104 | 20 | 45 | - | 80 | | 4687 | 94 × 29 | P26
(XVI) | 90 | 105 | 85 | 20 | 40 | 5 | 180 | | 7475 | 60 × 28 | A25,5
(XIX) | 90110 | 100—135 | 85—110 | 4 | 8 | 1 | 300 | | 13201 | 144 × 53 | Ed or A40
(XX),(XIX) | 90 – 110 | 100-135 | 85—110 | 100 | 200 | 5 | 80 | ###
PHILIPS PHOTO-ELECTRIC CELLS | Type
Number | Valve type | Maximum
dimensions
without
pins | Base (in brackets base connections, see p. 12) | Anode
cathode
capac-
ity
Cak
μμF | Norm.
anode
voltage
Va
Volts | Sensitivity | Striking
voltage
Volts | Max.
anode
voltage
Va _{max}
Volts | Max.
anode
current
Ia _{max} | Min.
protec-
tive
resist-
ance
MΩ | |----------------|--|--|--|---|--|-------------|------------------------------|--|---|--| | 3510 | High vacuum cell with potassium cathode | 165 × 60 | H
(XXII) | 3 | 100 | 3 | _ | 500 | 3 | - | | 3512 | High vacuum cell with potassium cathode | 118 × 55 | (XXI) | 3 | 100 | 20 | _ | 500 | 5 | _ | | 3530 | High vacuum cell
with caesium cathode | 60×16 | (XXIII) | 5 | 100 | 150 | ≥ 140 | 100 | 3 | 0.1 | | 3533 | High vacuum cell
with caesium cathode | 60×25 | (XXIV) | 5 | 100 | 150 | ≥140 | 100 | 3 | 0,1 | | 3534 | High vacuum cell
with caesium cathode | 85 × 25 | (XXV) | 5 | 100 | 150 | ≥140 | 100 | 3 | 1,0 | ¹⁾ Measured with a tungsten filament lamp. The temperature of the tungsten filament is 2600° K and the light current measured statically is 0.05 lumen. ### PHILIPS GASFILLED TRIODES FOR TIME BASE UNITS | Type
Number | Gasfilled | Maximum
dimensions
mm | Base
(in brackets
base
connection,
see p. 12) | Indirect Voltage Volts | Current Amps. | Caj
Grid &
anode
Cag
µµF | Pacity betwo
Anode &
cathode
Cak
μμF | Grid &
cathode
Cgk
μμF | Arc- voltage (Extinc- tion voltage) Volts | Max. peak value of voltage between 2 electrodes Volts | Max. peak value of anode voltage Volts | Max. peak value of anode current mA | Maximum value of mean anode current in oscillating condition mA 1) | Minimum resistance in grid circuit per volt peak voltage at grid | Maximum
resistance
in grid
circuit
Rg _{max}
MΩ | Maximum voltage between filament & cathode Volts²) | between
striking
voltage | Maximum
attainable
frequency
c/sec | Type
Number | |----------------|-----------|-----------------------------|---|------------------------|---------------|--------------------------------------|--|---------------------------------|--|---|---|-------------------------------------|--|--|--|--|--------------------------------|---|----------------| | 4686 | Argon | 100 × 37 | P30 (IX) | 4,0 | 1,2 | 2,2 | 3,2 | 3,8 | about 17 | 350 | 300 | 300 | 3 | 1000 | 0,5 | 100 | 21 | 50.000 | 4686 | | 4690 | Helium | 100 × 43 | P30 (X) | 4,0 | 1,3 | 3,7 | 2,0 | 3,7 | about 50 | 600 | 500 | 750 | 10 | 1000 | 0,5 | 100 | 40 | 150.000 | 4690 | ¹⁾ In a time-base circuit. ### PHILIPS AMPLIFIER VALVES FOR SPECIAL PURPOSES | Type
Number | Vulve type and
application | Maximum
dimensions
without pins
mm | Base
(Connection
reference in
brackets
see p. 12) | Fi
Heating | Jament da
Voltage
Volts | | Max.
anode
voltage
Va _{max}
Volts | Anode
current
Ia
mA | Neg.
grid
bias
Vg ₁
Volts | Screen-
grid
voltage
Vg ₂
Volts | Voltage
on 3rd
grid
Vg.
Volts | | Conduct,
at
operat-
ing
point
S
mA/V | Amplifica-
fica-
tion
factor
µ | Internal
resist-
ance
Ri
Ohms | Grid
current
of 1st
grid
Ig ₁
µA | Anode
and
lat grid
Cag ₁
µµF | Anode
and
cathode
Cak
μμF | 1st grid
and | Type
Number | |----------------|--|---|---|---------------|-------------------------------|------|--|------------------------------|--|--|---|-----|--|--|---|--|---|---------------------------------------|-----------------|----------------| | C408 | Triode for valve voltmeter and other measuring instruments | 150 × 58 | A 35
(XI) | dir. | 4.0 | 0,25 | 150 | 14 | _7 | _ | _ | _ | 2,7 | 8 | 3000 | - | _ | _ | _ | C408 | | 4060 | Electrometer triode | 152 × 59 | H 35
(XII) | dir. | about
0,5—0,7 | 1,0 | 4 | _ | -2,5 | _ | _ | _ | 0,028 | 0.5 | - | <10-14 | _ | _ | - | 4060 | | 4671 | Triode for ultra short wave sets | 35 × 26 | without base
(XIII) | indir. | 6,3 | 0,15 | 200 | 4,5 | 6 | _ | | _ | 2,0 | 25 | 12500 | _ | 1,4 | 0,6 | 1,0 | 4671 | | 4672 | Pentode for ultra short wave sets | 48 × 26 | without base (NJV) | indir. | 6,3 | 0,15 | 250 | 2,0 | —3 | 100 | 0 | 0,7 | 1,4 | 5000 | 3,5.10 ^e | - | <0,007 | 3,0 | 2,7 | 4672 | | 4695 | Variable-Mu Pentode for ultra
short wave sets | 48 × 26 | without base (XIV) | indir. | 6.3 | 0,15 | 250 | 5,5 | —3
—45 | 100 | 0 | 1,8 | 1,8 | 1440 | 0.8.10 ⁶
> 10° | _ | < 0,007 | 3.5 | 2,7 | 4695 | | 4673 | Pentode for television receivers | 118 × 47 | P 30
(VIII) | indir. | 4,0 | 0 15 | 250 | 8,0 | -2,5 | 200 | 0 | 1,5 | 5,0 | _ | > 1,5.106 | _ | < 0,012 | 7,5 | 9,6 | 4673 | ²⁾ Cathode always positive with respect to the filament. ### PHILIPS THERMO COUPLES | Type number | Current range (mA) | Resistance of
the thermo
couple
(ohms) | Resistance of the filament | E.M.F. at
max. current
of the range
(mV) | |-------------|--------------------|---|----------------------------|---| | TH 005 | 0—5 | 13 | 80 | 5 | | TII 010 | 0—10 | 5 | 28 | 3.6 | | TII 020 | 0—20 | 5 | 10 | 3.6 | | TH 050 | 0—50 | 5 | 3 | 3.6 | | TII 100 | 0—100 | 5 | 1,2 | 3,6 | The Philips Thermo Couples arc so designed that in conjunction with a measuring instrument for $0-2^{\circ}4$ mV with an internal resistance of $10^{\circ}\Omega$ they give maximum deflection at the indicated maximum current. When using the Philips Thermo Couples with a measuring instrument giving purely quadratic reading the deviation is maximum $1.5^{\circ}0/_{0}$. The tolerance of the indicated maximum value of the current is $-20^{\circ}0/_{0}$. The full deflection of the measuring instrument is attained after $8-10^{\circ}0/_{0}$ seconds. An overload of up to $100^{\circ}0/_{0}/_{0}$ has needer, mental effect. F= filament connections +E= thermo couple (positive pole) -E= thermo couple (negative pole) ### SURVEY OF PHILIPS VALVES | Туре | Page | - | Туре | Page | | |--|--|---
--|--|---|---|---|--|---|---|---|--|--| | A 409 A 415 A 425 A 441N A 442 AB 1 AB 2 ABC 1 ABC 1 AC 2 ACH A | 9
9
9
9
9
9
9
9
6
4
4
4
4
4
4
4
4
4
4
4 | | B 438 B 442 B 443 B 443 B 443S B 2006 B 2038 B 2043 B 2044 B 2044S B 2045 B 2046 B 2047 B 2048 B 2049 B 2052T B 2052T C 2 C 3 C 4 C 6 C 7 C 8 C 9 C 10 C 12 C 243N C 408 C 443 C 443N C B 1 C B 2 C BC 1 | 9
7, 9
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | CBL 1
CC 2
C/EM 2
CF 1
CF 2
CF 3
CF 7
CH 1
CL 1
CL 2
CL 4
CY 1
CY 2
DG 7-1
DG 9-3
DG 16-1
DG 16-2
DG 25-1
DW 31-1
DW 39-1
E 406N
E 408N
E 409
E 424N
E 438
E 442
E 443N
E 443N
E 444S
E 444S
E 444S
E 444S | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
11
11
12
12
12
12
12
12
12
10
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6 | E 446
E 447
E 448
E 449
E 451
E 452T
E 453
E 455
E 463
E 499
E 707
EB 4
EBC 3
EBL 1
EF 5
EH 2
EL 2
EL 2
EL 2
EL 2
EL 2
EL 3
EL 5
EM 1
EZ 2
EX 2
EX 40
F 443N
FZ 1
KB 2
KBC 1
KC 3
KDD 1
KF 1
KF 2 | 6
6
6
10
6
7
6
7
6
10
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1 | KF 3 KF 4 KK 2 KL 4 MW 31-2 MW 39-2 TH 005 TH 010 TH 020 TH 050 TH 100 506 1018 1561 1801 1802 1803 1805 1815 1817 1831 1832 1875 1876 1904 1910 1911 1915 1920 1926 1927 1928 1941 | 8
8
8
12
12
14
14
14
11
11
11
11
11
11
11
11
11
11 | 1949
3510
3512
3530
3533
3534
4060
4357
4377
4641
4616
4662
4671
4672
4673
4682
4683
4684
4686
4687
4688
4689
4690
4694
4695
7475
13201 | 11 13 13 13 13 13 13 13 13 13 10 11 8 13 13 10 10 10 10 13 13 10 10 11 3 13 11 10 10 11 13 13 10 10 11 13 11 10 11 11 11 11 11 11 11 11 11 11 11 | | For other valves, such as transmitter valves, large amplifier valves, rectifier valves, valves for industrial purposes, etc. special catalogues are available on demand. ### BASE CONNECTIONS OF PHILIPS "MINIWATT" VALVES In the column "Bases" the first letter refers to the type of base, and the numeral to the base diameter in mm, whilst the number in brackets refers to the base connections as shown on this page. The base connections are those as seen from the underside of the base. The connection on the top of the bulb also is shown diagrammatically.