THE

MULLARD

VALVE CATALOGUE

INDEX

Pages
A.C. Mains Valves 17-40, 85-89
Indirectly-heated Types 17-32, 40, 85-88
Directly-heated Types 33-37, 88-89
Rectifiers
38-40, 90
Equivalents
.96-99, 104-105
Acorn Valves56-57
Appendix 108
Base Connections 1C9-III
Battery Valves
2-volt Types3-16, 8r-83
4 -volt Types84
6 -volt Types84-85
Equivalents
Cathode Ray Tubes
D.C. Mains Valves
90-91, 106
D.C./A.C. Mains Valves
Pin Base Types41-54,91-93
Side Contact Types 4I-54, 92-93
Equivalents 91-92
100, 107
Deaf Aid Valves58-59
Equivalents
B.V.A.94-107
Non-B.V.A. 94-100
101-107
Rapid Valve Guide 80-93Special Valves
Stabilising Tubes 55-62
62Tuning Indicators
Universal Valves (see D.C./A.C. Valves) 19,43

MULLARD
 F.C.2.A

OCTODE FREQUENCY CHANGER for BATTERY RECEIVERS

PRICE LIST OF MULLARD

 2-VOLT VALVES FOR

 2-VOLT VALVES FOR BATTERY RECEIVERS

Valve Type.	Description.	For Details see Page	Price.
F.C. 2	Octode Frequency Changer . .	5	14/-
F.C.2A	Octode Frequency Changer . .	6	14/-
V.P. 2	Variable-mu H.F. Pentode . .	7	II/-
V.P. $2 B$	Hexode Mixer . .	8	II/-
S.P. 2	H.F. Pentode	9	II/-
2.D. 2	Double-diode-detector	10	5/6
T.D.D.2A	Double-diode-triode . .	II	9/-
P.M.IHL	Medium Impedance Triode . .	12	4/9
P.M.2HL	Medium Impedance Triode . .	12	4/9
P.M.2A	Output Triode . .	13	6/-
P.M.22A	Output Pentode	14	II/-
P.M.22D	High Sensitivity Output Pentode	15	13/6
Q.P.22A	Double Output Pentode for Q.P.P.	16	17/6

For_details of replacement valves not indicated above see pages 8 r to 85 .

OCTODE FREQUENCY CHANGER

F.C. 2

OPERATING DATA.
Filament Voltage 2.0 V. Filament Current o•I A. Max. Anode Voltage 150 V. Max. Osc. Anode Voltage .. 150 V. Aux. Grid and Screen Voltage .. 70 V .

APPLICATION.

Electron-coupled frequency changer in superheterodyne receivers. The filament and grids 1 and 2 are operated as a triode oscillator; grid 3 acts as a screen between the oscillator and mixer portion of the valve ; and grids 4,5 and 6 with the anode form a pentode mixer with variablemu characteristics.

BASE.
Standard 7-pin type. For connections see page rog.

BULB FINISH.

The F.C. 2 is supplied with metal. lised bulb only.

PRICE 14/-

F.C.2A

OPERATING DATA.

Filament Voltage	-			2.0 V .
Filament Current				0.12 A .
Max. Anode Voltage		.		135 V .
Max. Osc. Anode Voltag				135
Max. Aux. Grid and Screen Voltage				oo

APPLICATION.

Electron-coupled frequency changer in battery allwave superheterodyne receivers. The F.C.2A has been especially designed for operation at frequencies up to 19 megacycles (I 6 metres). The filament and grids I and 2 are operated as a triode oscillator; grid 3 acts as a screen between the oscillator and mixer portion of the valve; and grids 4,5 and 6 with the anode form a pentode mixer with variable-mu characteristics.

BASE.

Standard 7-pin type. For connections see page io9.

BULB FINISH.

The F.C.2A is supplied with metallised bulb only.

> PRICE 14/-

VARIABLE-MU H.F. PENTODE

OPERATING DATA.

Filament Voltage	\ldots	..	$2 \cdot 0 \mathrm{~V}$.
Filament Current	.	\ldots	$0 \cdot 18 \mathrm{~A}$.
Max. Anode Voltage	150 V.
Max. Auxiliary Grid Voltage..	150 V.		

CHARACTERISTICS.

(1) At Anode Volts 150; Auxiliary Grid Volts 150; Control Grid Volts Zero.

Anode Impedance 750,000 ohms. Mutual Conductance $1 \cdot 75 \mathrm{~mA} / \mathrm{V}$.
(2) At Anode Volts 150; Auxiliary Grid Volts 150; Control Grid Volts -7.

Mutual Conductance $0.017 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Radio frequency or intermediate frequency amplifier in receivers in which volume control is effected by manual or automatic adjustment of grid bias.

GRID BIAS.

Full control of volume can be obtained with a range of grid bias of approximately 9 volts.

BASE.
Standard 7-pin base. For connections see page 109.

BULB FINISH.

The V.P. 2 is supplied with metallised bulb only.

PRICE 11/-

V.P.2B

HEXODE MIXER

OPERATING DATA.

Filament Voltage	2.0 V.
Filament Current	0.14 A.
Max. Anode Voltage	135 V.
Max. Screen Grid Voltages	60 V.	

APPLICATION.

(1) The V.P.2B is a battery valve of the hexode type in which all the electrodes are brought out to separate pins. Used under these conditions with a separate oscillator it provides an extremely efficient frequency changer for short-wave operation as well as medium and long wave.
(2) Suitably connected the V.P.2B can also be used as a pentode or tetrode for R.F. or I.F. amplification.

BASE.
Standard 7-pin. For connections see page Iog.

BULB FINISH.

The V.P. 2 B is supplied with metallised bulb only.

PRICE 11/-

H.F. PENTODE

S.P. 2

OPERATING DATA.

Filament Voltage		2.0 V .
Filament Current	. \cdot	$0 \cdot 18$ A.
Max. Anode Voltage	-	150 V .
Max. Auxiliary Grid	Voltage	150 V .

CHARACTERISTICS.

(1) At Anode Volts 150; Auxiliary Grid Volts 150 Control Grid Volts Zero.

Anode Impedance 500,000 ohms. Amplification Factor 1,100 Mutual Conductance $2.2 \mathrm{~mA} / \mathrm{V}$.
(2) At Anode Volts 100 ; Auxiliary Grid Volts 100, Control Grid Volts Zero.

Mutual Conductance $1.5 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

(I) When used as an anode bend detector the following conditions are recommended :

Anode Voltage $\quad 100 / 150 \mathrm{~V}$.
Auxiliary Grid Voltage 100 V .
Grid Bias
Anode Resistance 250,000 ohms.
(2) As leaky grid detector the recommended conditions are:

Anode Voltage $\quad 100 / 150 \mathrm{~V}$.
Auxiliary Grid Voltage 50 V .
Anode Resistance 100,000 ohms.
(3) H.F. Amplifier.-No grid bias is normally required. As grid current reaches a value of 1.0 micro-amp, at +0.5 grid volts, pre-H.F. volume control should be provided in order to limit the input signal to 0.2 V . peak.

BASE.

Standard 7-pin base. For connections see page iog.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 11/-

2D. 2 DOUBLE-DIODE DETECTOR

OPERATING DATA.
Heater Voltage 2.0 V.
Heater Current 0.09 A.
Max. Diode Voltage 125 V.
Max. Diode Current 0.5 mA .

BASE.
Standard 5-pin. For connections see page 109.

BULB FINISH.

This valve is supplied with metallised bulb only.

APPLICATION.

The $2 \mathrm{D}_{2}$ is an indirectly heated doublediode valve. The two diode Anodes surrounding a common cathode. One diode is intended to be used as speech rectifier and the other can be used for the application of delayed A.V.C.

PRICE 5/6

DOUBLE-DIODE-

 TRIODE
T.D.D.2A

OPERATING DATA.

Filament Voltage	.	.	2.0 V.
Filament Current	\because	\because	0.12 A.
Max. Anode Voltage	..	.	150 V.

TRIODE CHARACTERISTICS.
At Anode Volts roo ; Control Grid Volts Zero.
Anode Impedance 26,000 ohms. Amplification Factor Mutual Conductance $1.2 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Of the two diode elements, that surrounding the negative limb of the filament (D.2) is intended for use as detector, and that surrounding the positive limb (D.I) for the application of automatic volume control. The triode portion is designed for use as an L.F. amplifier, when grid bias should be applied according to the following table :

Anode	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
I25	$\mathrm{I} \cdot 5$	$\mathrm{I} \cdot 3$
I50	$\mathrm{I} \cdot 5-3 \cdot 0$	$\mathrm{I} \cdot 4$

When followed by a Class "A" amplifier, resistance-capacity coupling is recommended, the value of the anode resistance being of the order of 80,000 ohms.

BASE.

Five-pin, with top grid connection. For connections see page 109.

BULB FINISH.

Type T.D.D.2A is supplied with metallised bulb only.

PRICE 9/-

р.M.2HL/HL M IMPEDANCE TRIODE

OPERATING DATA.
Filament Voltage 2.0 V . Filament Current o•r A.
Max. Anode Voltage 150 V.

CHARACTERISTICS.

At Anode Volts ioo ; Grid Volts Zero.
Anode Impedance 21,500 ohms.
Amplification Factor 30
Mutual Conductance $1.4 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

(I) As leaky grid detector. Recommended values of grid condenser and leak are $\cdot 000 \mathrm{mfd}$. and $\mathrm{I} \cdot 0$ to $\mathrm{I} \cdot 5$ megohms.
(2) As low frequency amplifier, operating with grid bias as indicated below.

Anode Voltage.	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
100	$\mathbf{1 . 5}$	1.0
125	2.0	1.5
150	2.5	2.0

BULB FINISH.

The P.M.2HL is supplied with either clear or metallised bulb.

BASE.
Standard 4-pin.
NOTE.
The P.M.2HL replaces the P.M.rHL in the majority of cases. Where the P.M.IHL is used as an oscillator the P.M.2HL must not be used as a replacement.

OUTPUT TRIODE

OPERATING DATA.

Filament Voltage 2.0 V .

Filament Current 0.2 A.
Max. Anode Voltage 150 V.
Optimum Load .. 7,000 ohms.

CHARACTERISTICS.

At Anode Volts 100 ; Grid Vol.s Zero. Anode Impedance 3,600 ohms. Amplification Factor 12.5 Mutual Conductance $3.5 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

As output valve when mozerate volume is required from comparatively small signal inputs. Grid bias should be applied according to the following table :

Anode Voltage.	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
100	4.0	4.0
125	5.0	5.0
150	7.0	6.0

BASE. Standard 4-pin.

BULB FINISH.

This valve is supplied in clear bulb only.

P.M. 22 A

OUTPUT PENTODE

OPERATING DATA.
Filament Voltage $2 \cdot 0 \mathrm{~V}$. Filament Current 0.15 A. Max. Anode Voltage 150 V.
Max. Auxiliary Grid Voltage .. 150 V. Recommended Load .. 20,000 ohms.

BASE.
Standard 5 -pin, or 4 -pin with side terminal.

CHARACTERISTICS.
At Anode Volts 100; Auxiliary Grid Volts 100 ; Grid Volts Zero.

Mutual Conductance $2.5 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

As output valve when a large output is required from comparatively small signal input voltages. Excellent results are obtainable when the valve is operated at an anode and auxiliary grid voltage of 100 V . and negative grid bias of 3 volts, the anode current being only 4.5 mA .

Operated at an anode voltage and auxiliary grid voltage of 150 and 4.5 volts grid bias, still larger outputs are obtained, while the anode current does not exceed approximately 9.5 mA .

PRICE 11/-

HIGH SENSITIVITY OUTPUT PENTODE

OPERATING DATA.
Filament Voltage 2.0 V. Filament Current 0.3 A. Max. Anode Voltage 150 V. Max. Auxiliary Grid Voltage .. 150 V. Optimum Load .. 24,000 ohms.

CHARACTERISTICS.
At Anode Volts 100; Auxiliary Grid Volts 100 ; Grid Volts Zero. Mutual Conductance $4.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Output valve in receiver where maximum gain is required. It requires only a small input to give an excellent performance with great economy in H.T. consumption.

With a sensitive valve of this type it is necessary to employ a system of graded auxiliary grid voltage.

Two grades are employed; in the case of a 135 volt H.T. battery, "A" grade indicates an auxiliary grid voltage of 135 V., and " B" grade an auxiliary grid voltage of 120 V., the grades being indicated by the letter " A " or " B " marked on both the valve base and glass envelope.

The following table gives the appropriate grades of auxiliary grid voltage. etc., for both 135 and 120 volt HT., batteries.

© U.	Vaux (Volts).	Va (Volts).	Vg (Volts).	Ia (Aver.) mA.
A	135	135	$-2 \cdot 4$	5
B	120	135	$-2 \cdot 4$	5
A	120	120	-2.4	3.8
B	110	120	$-2 \cdot 4$	3.8

When automatic bias is employed it is of course unnecessary to use this system of grading.

BASE.
Standard 5-pin.

Q.P.22A
 DOUBLE OUTPUT PENTODE FOR Q.P.P.

OPERATING DATA.

Filament Voltage			
Filament Current			0
Max. Anode Voltage			150 V .
Max. Aux. Grid Voltage	.		150 V .
Optimum Load- (Anode to Anode)		16,000	0 ohms.
CHARACTERISTICS.			
At Anode Volts Ioo; Auxiliary Grid Volts			
100; Control Grid Vo			
Mutual Conductance			$0 \mathrm{~mA} / \mathrm{V}$

The H.T. battery should have five tappings at the higher voltage end to enable the specified auxiliary grid voltage to be used. With a 135 V.H.T. battery these tappings should be at $7 \frac{1}{1}$ volts, the maximum tapping being $I \cdot 5$ volts lower than the maximum voltage of the battery. The grades are thus :
$\mathrm{T}=133.5 \mathrm{~V} ., \quad \mathrm{S}=126.0 \mathrm{~V} ., \quad \mathrm{R}=118.5 \mathrm{~V} .$, $\mathrm{Q}=\mathrm{III} \cdot 0 \mathrm{~V}$. and $\mathrm{P}=103.5 \mathrm{~V}$.

BASE.

Standard 9-pin. For connections see page 110.

APPLICATION.

The Q.P. 22 A comprises two matched power pentodes in a single bulb designed for use as a quiescent push-pull output stage in two-volt battery sets. The total quiescent current at various anode and auxiliary grid voltages, together with the recommended grid bias, are shown in the following table:

Anode and	Negative Grid Aux. Grid Voltage.	Total Bias Voltages.
		Quiescent Anode (mA).
150		
135	13.5	4.0
120	10.0	$2.5-3.0$
100	9.0	$2.5-3.0$
		$2.5-3.0$

In order that the two pentodes of the Q.P.2 A may be completely matched, a system of grading has been instituted, the matching being effected by correct adjustment of auxiliary grid voltages.

To identify the two electrode assemblies of the valve the letters " A " and " B " are printed on the base in line with Pins 2 and 7 respectively.

There are five grades and these are referred to by the letters " P, , " Q, ," " R ," " S " and " T ." One of these letters will be found etched on each side of the bulb above the assembly identifying letters "A" and "B."

MULLARD T.H.4.A.

TRIODE•HEXODE FREQUENCY CHANGER for A.C. MAINS RECEIVER

PRICE LIST OF MULLARD
 INDIRECTLY-HEATED A.C. VALVES

Valve Type.	Description.	For Details see Page	Price.
T.V. 4	Tuning Indicator . . .	19	10/6
T.H. 4	Triode-hexode Frequency Changer .	20	15/-
T.H.4A	Triode-hexode Frequency Changer .	21	15/-
F.C. 4	Octode Frequency Changer . .	22	15/-
V.P.4B	Variable-mu H.F. Pentode . .	23	12/6
S.P.4B	H.F. Pentode	24	12/6
2D.4A	Double-diode-detector . .	25	5/6
2 D .4 B .	Double-diode-detector	25	5/6
T.D.D. 4	Double-diode-triode . .	26	12/6
354 V	Medium Impedance Triode . .	27	9/6
T.T. 4	Low Impedance Triode	28	10/-
PEN. A_{4}	Output Pentode	29	13/6
PEN. ${ }_{4}$	Large Output Pentode .	30	18/6
PEN.4DD.	Double-diode Output Pentode	31	16/-
PEN. 428	Large Output Pentode .	32	25/-

For details of replacement valves not indicated above see pages 85 to 88 .

ELECTRON BEAM TUNING INDICATOR

OPERATING CHARACTERISTICS AS VISUAL INDICATOR.
Heater Voltage 4.0 V.
Heater Current 0.3 A.
Max. Line Voltage 250 V.
Max. Target Voltage 250 V.
Series Triode Anode
Resistor 2 megohms.
Grid Voltage (zero signal) .. o V.
$\left(\varnothing=10^{\circ}\right)$
Grid Voltage (Max. signal) .. -4 V .
($\varnothing=90^{\circ}$)

Grid Voltage (zero signal) o V. $\left(\varnothing=10^{\circ}\right)$.

Grid Voltage (Max.signal) $-4 \mathrm{~V} \cdot\left(\varnothing=90^{\circ}\right)$.

PRICE 10/6

Т.Н. 4

BULB FINISH.

The T.H. 4 is supplied with a metallised
Heater Current i.o A. bulb only.
Max. Anode Voltage 250 V.
Max. Screen Voltage (Grids 2
and 4) 90 V .
Max. Oscillator Anode Voltage 150 V.

APPLICATION.

As frequency changer in superheterodyne receivers covering short wavebands. It consists of a hexode mixer and triode oscillator located on a common cathode assembly with adequate screening between each electrode system. It maintains its efficiency excellently at the high frequencies.

BASE.

Standard 7-pin type. For connections see page rog.

PRICE 15/-

TRIODE-HEXODE FREQUENCY CHANGER

T.H.4A

OPERATING DATA.
Heater Voltage 4.0 V . Heater Current I. 45 A. Max. Anode Voltage .. 250 V. Max. Screen Voltage (Grids 2 and 4) Max. Oscillator Anode Voltage

APPLICATION.

As frequency changer in superheterodyne receivers covering short wavebands. It consists of a hexode mixer and triode oscillator located on a common cathode assembly with adequate screening between each electrode system. It maintains its efficiency excellently at the high frequencies.

BASE.

Standard 7-pin type. For connections see page 109.

BULB FINISH.

The T.H.4A is supplied with a metallised bulb only.

PRICE 15/-

OCTODE

 FREQUENCY CHANGEROPERATING DATA.

Heater Voltage	.	..	4.0 V.
Heater Current	\ldots	..	0.65 A.
Max. Anode Voltage	250 V.
Auxiliary Grid and	Screen		
Voltage (G3 and G5)	..	90 V.	
Oscillator Anode Voltage (G2)	90 V.		

Oscillator Anode Voltage (G2) 90 V.

APPLICATION.

Electron-coupled frequency changer in superheterodyne receivers. The cathode and grids I and 2 are operated as a triode oscillator; grid 3 acts as a screen between the oscillator and mixer portion of the valve; and grids 4,5 and 6 with the anode form a pentode mixer with variable-mu characteristics.

BASE.

Standard 7-pin type. For connections see page rog.

BULB FINISH.
The F.C. 4 is supplied with metallised bulb only.

PRICE 15/-

VARIABLE-MU
 H.F. PENTODE

V.P.4B

CHARACTERISTICS.

OPERATING DATA.

| Heater Voltage | .. | .. | 4.0 V. |
| :--- | :--- | :--- | :--- | | At Auxiliary Grid Volts 250 ; Anode |
| :---: |
| Volts 250 ; Grid Volts Zero. |

APPLICATION.

Radio frequency or intermediate frequency Amplifier in circuits arranged for volume control by variation of grid bias.

BASE.
Standard 7-pin. For connections see page IIO.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 12/6

s.P.4B H.F. PENTODE

OPERATING DATA.

Heater Voltage 4.0 V .
Heater Current 0.65 A .
Max. Anode Voltage 250 V.
Max. Auxiliary Grid Voltage .. 250 V.

CHARACTERISTICS.

At Anode Volts 250; Auxiliary Grid Volts 250 ; Control Grid Volts Zero.

Mutual Conductance $4.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Operating conditions as L.F. amplifier and speech detector are as follows :
(a) As L.F. Amplifier operated under the following condition:

Anode Voltage (${ }^{(1)} 250 \mathrm{~V}$. Auxiliary Grid dropping resistance 0.5 megohm.

Cathode bias resist ree 1,500 ohms. Anode load 100,000 rlims.
(b) As $l^{-1} y$ gid detector operated under the foliowing conditions:

Anode Volta e (Lice) 250 V. Anode Load $\quad 100,000$ ohms.
Auxiliary G: :d resistance 0.5 megohm.

BASE.
Standard 7-pin. For connections see page IIO.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 12/6

DOUBLE-DIODE-

 DETECTOR
2D.4A

OPERATING DATA.

Heater Voltage 4.0 V . Heater Current 0.65 A . Max. Diode Voltage .. 200 V. Max. Diode Current .. 0.8 mA .

BULB FINISH.
This valve is supplied with metallised bulb only.

APPLICATION.
The $2_{2} \mathrm{D}_{4} \mathrm{~A}$ consists of two diode anodes surrounding a common cathode. One diode is intended for use as a speech rectifier, while the other can be used for the application of A.V.C. or noise suppression.

BASE.
Standard 5-pin. For connections see page 103.

PRICE 5/6

DOUBLE-DIODEDETECTOR

OPERATING DATA.
Heater Voltage 4.0 V . Heater Current 0.35 A. Max. Diode Voltage .. 200 V. Max. Diode Current .. 0.8 mA .

BULB FINISH.

The valve is supplied with metallised bulb only.

BASE.
Standard 7-pin. For connections see page 110 .

2D.4B

APPLICATION.

The 2D4B consists of two diode anodes located on separate cathode assemblies, with adequate screening between each electrode assembly. Since each cathode may be run at a different potential the applications of the 2 D 4 B are much more flexible than those of the 2D4A. Apart from its normal use as a speech rectifier and A.V.C. device it may also be used to obtain automatic tuning control.

PRICE 5/6

T.D.D. $4 M^{\text {ouvale. .iope }}$ TRIODE

OPERATING DATA.

Heater Voltage	4.0 V.
Heater Current	0.65 A .
Max. Anode Voltage	250 V.

TRIODE CHARACTERISTICS.

At Anode Volts roo; Grid Volts Zero.

Anode Impedance \quad Io,000 ohms.
Amplification Factor
Mutual Conductance

BASE.
Stardard 7-pin. For connections see page 1 Io.

BULB FINISH.

This valve is supplied with metallised bulb only.

MEDIUM IMPEDANCE TRIODE

 354V

 354V}

OPERATING DATA.
Heater Voltage 4.0 V .

Heater Current o. 65 A.
Max. Anode Voltage 250 V.
CHARACTERISTICS.
At Anode Volts 100 ; Grid Volts Zero.
Anode Impedance 10,500 ohms.
Amplification Factor
Mutual Conductance
$3.8 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

(i) Detector operated under " power grid " conditions, at an anode voltage of 250 V ., grid condenser of ooor mfd., and grid leak of $\cdot 25$ to $\cdot 5$ megohm.
(2) Low frequency amplifier operated at a line voltage of 250 V . and negative grid bias according to the following table. For auto-bias a resistance of $\mathrm{I}, 800$ ohms should be used.

If followed by a shunt-fed transformer, an anode resistance of 25,000 ohms is recommended.

Anode Voltage.	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
		.
150	3.0	3.0
200	4.0	4.0
250	5.0	5.0

BASE.
Standard 5-pin.

BULB FINISH.

This valve is supplied with either clear or metallised bulb.

PRICE 9/6

T.T. 4

 TRIODEBASE.
Standard 5-pin.

BULB FINISH.
The T.T. 4 is supplied with a clear bulb only.

CHARACTERISTICS.

At Anode Volts 100 ; Grid Volts Zero.
Anode Impedance 2,200 ohms.
Amplification Factor
12
Mutual Conductance $5.5 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

As output or voltage amplifier valve in A.C. mains operated equipment.
(1) Class "A" Output operated at an anode voltage of 250 V . and an anode load of ro,000 ohms.

For auto-bias a resistance of 800 ohms should be used.
(2) R.C. Amplifier operated with a line voltage of 250 V . and an anode resistance of 80,000 ohms.

For auto-bias a resistance of 9,000 ohms should be used.

PRICE 10/-

INDIRECTLY-HEATED OUTPUT PENTODE

OPERATING DATA.

Heater Voltage	. 4.0 V .
Heater Current	.
Max. Anode Voltage	.
Max. Auxiliary Grid	.
Oftimum Load	,000 ohms.

CHARACTERISTICS.

At Anode Volts roo; Auxiliary Grid Volts 100 ; Control Grid Volts Zero. Mutual Conductance $10.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

The PEN.A4 is a high sensitivity valve capable of a large output, and is particularly suitable for use in receivers as an output valve following a diode detector. With an anode and auxiliary grid voltage of 250 volts, the correct negative bias of approximately 5.8 V . should be obtained by means of a cathode bias resistor of 145 ohms.

BASE.

Standard 7-pin. For connections to 7 -pin base see page 110.

NOTE.
This valve is identical with the Pen4vb. except in heating time and will replace the Pen4VB, in all cases.

PRICE 13/6

PEN.B4

OPERATING DATA.

Heater Voltage 4.0 V .			
Heater Current			$2 \cdot 1 \mathrm{~A}$.
Max. Anode Voltage			
Max. Auxiliary Grid Voltage			
Optimum Load			

CHARACTERISTICS.

At Anode Volts roo; Auxiliary Grid Voltage 100 ; Control Grid Volts Zero. Mutual Conductance $8.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

As output valve in A.C. mains receivers where a large output is required. Due to its high sensitivity it can be employed immediately following a diode detector. With an anode voltage of 250 ; and an auxiliary grid voltage of 275 volts, the correct negative bias of approximately 14 V . sheuld be obtained by means of a cathod? tias resistance of 175 ohms.

PRICE 18/6

OPERATING DATA.

Heater Voltage	.	4.0 V .
Heater Current		2.25 A .
Max. Anode Volta		250 V .
Max. Auxiliary Gr	Voltage	250 V .
Optimum Load		o ohms.

PENTODE CHARACTERISTICS.

At Anode Volts 100 ; Auxiliary Grid Volts ioo; Control Grid Volts Zero. Mutual Conductance $10 \cdot 0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

The Pen.4DD has been designed to combine the functions of detector, A.V.C. and output valve in one bulb, the diodes and the pentode are two separate assemblies, surrounding a common cathode.

With an anode and auxiliary grid voltage of 250 the correct negative grid bias is 6.0 V . approximately, and should be obtained by employing a cathode bias resistance of 150 ohms .

BASE.
Standard 7-pin. For connections see page IIo.

PEN. 428

Heater Voltage \ldots	\ldots	\ldots	\ldots	\ldots	$4 \cdot 0 \mathrm{~V}$.
Heater Current	\ldots	\ldots	\ldots	\ldots	$2 \cdot \mathrm{I}$ A.
Max. Anode Voltage	\ldots	\ldots	\ldots	\ldots	375 V.
Max. Auxiliary Grid Voltage...	\ldots	\ldots	275 V.		
Optimum Load (Anode-anode)	\ldots	6,500 ohms.			

CHARACTERISTICS.

At Anode Volts 100; Auxiliary Grid Volts 100 ; Grid Volts Zero.

Mutual Conductance $8.0 \mathrm{~mA} . V$.

APPLICATION.

The Pen. 428 has been primarily designed for use in power amplifying equipment where an output of 20 to 30 watts is required.

To meet these requirements the operation of $2 x$ Pen. 428 in Class A.B. push-pull is recommended.

Additional operating data and circuit details for operating the Pen. 428 can be obtained upon request.

BASE.

Standard 7-pin. For connections see page 110.

> PRICE 25/-

PRICE LIST OF DIRECTLY-HEATED OUTPUT VALVES

Valve Type.	Description.				For Details see Page	Price.
A.C.042	Output Triode	34	$12 / 6$
A.C.044	Output Triode	34	$12 / 6$
P.M.24M	Output Pentode	\ldots	35	$13 / 6$
D.O.24	High-voltage Output Triode	36	$25 /-$		
D.O.26	High-voltage Output Triode	37	$25 /-$		

For details of replacement valves not indicated above see pages 88 and 89 . Valves of greater output designed specially for public address and similar equipment are available-details and circuits will be sent on application.

A.C.044/
 A.C. 042

OPERATING DATA.
Filament Voltage
Filament Current 2.0 A.
Max. Anode Voltage 250 V. Optimum Load .. 2,500 ohms.

CHARACTERISTICS.

At Anode Volts 100; Grid Volts Zero.

Anode Impedance 950 ohms. Amplification Factor Mutual Conductance $6.8 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Output valve in A.C. receivers designed for a directly-heated output triode with a maximum anode dissipation of 12 watts. Grid bias should be applied according to the following table :

Anode Voltage.	Approx. Neg. Bias Voltage.	Approx. Anode Current (mA).
150	$16 \cdot 0$	$33 \cdot 0$
200	$22 \cdot 0$	$40 \cdot 0$
250	$30 \cdot 0$	$48 \cdot 0$

The recommended value of biassing resistance is 600 ohms.

BASE. Standard 4-pin.

PRICE 12/6

NOTE.

The operating data given opposite is for type A.C.042, and except for filament rating this is the same as that for the A.C.o44, the filament characteristics of which are as follows:-
$\begin{array}{llll}\text { Filament Voltage } \\ \text { Filament Current } & . . & \quad . . & 4 \cdot 0 \mathrm{~V} . \\ \text { I } & 0 \mathrm{~A} .\end{array}$
These valves are not, therefore, directly replaceable.

OPERATING DATA.

Filament Voltage	4.0
Filament Current	A.
Max. Anode Voltage	250 V .
Max. Auxiliary Grid	Voltage. . 250 V .
Optimum Load	7,000 ohms

CHARACTERISTICS.

At Anode Volts roo; Auxiliary Grid Volts 100 ; Grid Volts Zero.

Mutual Conductance $3.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Type P.M.24M is suitable for use in A.C. receivers designed for a directlyheated output pentode.

Grid bias should be applied according to the following table:

Auxiliary Grid Voltage.	Approx. Neg. Grid Bias Voltage	Approx. Anode Current (mA).
150	$9 \cdot 0$	$20 \cdot 0$
200	$12 \cdot 0$	$30 \cdot 0$
250	$18 \cdot 0$	$30 \cdot 0$

For auto-bias, a resistance of 500 ohms is necessary. It is recommended that a fixed resistor of 400 ohms and a variable resistor of 250 ohms should be used in series, thus providing a margin for adjustment.

BASE.
Standard 5-pin.

PRICE 13/6

D.O. 24 HIGH-VOLTAGE-OUTPUT-TRIODE

OPERATING DATA.
Filament Voltage 4.0 V . Filament Current 2.0 A. Max. Anode Voltage 400 V. Optimum Load .. 2,500 ohms.

CHARACTERISTICS.

At Anode Volts 100; Grid Volts Zero.

Anode Impedance 1,390 ohms. Amplification Factor
Mutual Conductance $6.5 \mathrm{~mA} / \mathrm{V}$. APPLICATION.
Output valve in powerful receivers amplifiers and medium-sized public address equipments, and particularly where a fairly high amplification is required in the output stage. The D.O. 24 will give its full output for a grid input voltage of 24 V . r.m.s. Negative grid bias should be applied according to the following table :

Anode Voltage.	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
200	13.0	40.0
300	24.0	50.0
400	34.0	63.0

PRICE 25/-

HIGH-VOLTAGE-OUTPUT-TRIODE

OPERATING DATA.
Filament Voltage 4.0 V . Filament Current $2 \cdot 0 \mathrm{~A}$. Max. Anode Voltage 400 V. Optimum Load 3,000 ohms

CHARACTERISTICS.

At Anode Volts 100; Grid Volts Zero.

Anode Impedance 600 ohms
Amplification Factor
Mutual Conductance
$6.3 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

This output valve has a lower amplification factor than type D.O.24, and therefore needs a larger grid-excitation voltage, of the order of 65 V . r.m.s. to load it fully. At the same time, owing to its very low anode impedance, it will give a substantially greater output than type D.O.24. Negative grid bias should be applied according to the table below. For auto-bias the value of biassing resistance should be 1,500 ohms, but a fixed resistor of 1,250 ohms and a variable resistor of 500 ohms in series is recommended, thus providing a margin for adjustment.

Anode	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
200	$40 \cdot 0$	$38 \cdot 0$
300	$63 \cdot 0$	$50 \cdot 0$
400	$92 \cdot 0$	$63 \cdot 0$

BASE. Standard 4-pin.

PRICE 25/-

PRICE LIST OF FULL-WAVE RECTIFIERS

Valve Type.	Description.	For Details see Page	Price.
D.W.2	Directly-heated full-wave rectifier	\ldots	39

For details of replacement valves not indicated above see page 90.

DIRECTLY-HEATED FULL-WAVE RECTIFIER

OPERATING DATA.
Filament Voltage $4 \cdot 0 \mathrm{~V}$.
Filament Current I•OA.
Max. Anode Voltage
250-0-250 V. r.m.s.

OUTPUT.
Maximum rectified current
60 mA D.C. at 250 V .

PRICE 10/6

DIRECTLY-HEATED FULL-WAVE RECTIFIER
 Filament Voltage 4.0 V.
 Filament Current $2 \cdot 0 \mathrm{~A}$.
 Max. Anode Voltage 350-0-350 V. r.m.s.
 OUTPUT.
 Maximum rectified current
 120 mA D.C. at 350 V .
 PRICE 10/6

DIRECTLY-HEATED FULL-W AVE RECTIFIER OPERATING DATA.
 Filament Voltage 4.0 V .
 Filament Current 2.0 A.
 Max. Anode Voltage 500-0-500 V. r.m.s.
 OUTPUT.
 Maximum rectified current 120 mA D.C. at 500 V .

PRICE 15/-

PRICE 10/6

I.W. 4

INDIRECTLY-HEATED FULL-WAVE RECTIFIER

OPERATING DATA.
Heater Voltage 4.0 V . Heater Current. 2.4 A .
Max. Anode Voltage 500-0-500 V. r.m.s.
OUTPUT.
Maximum rectified current 120 mA D.C. at 500 V .

PRICE
 15/-

MULLARD
 PEN 36 C

HIGH SENSITIVITY
 OUTPUT PENTODE for
 D.C./A.C. RECEIVERS

PRICE LIST OF MULLARD UNIVERSAL D.C./A.C. VALVES

Valve Type.	Description.	For Details see Page	Price.
T.V. 6	Tuning Indicator ..	43	10/6
T.H.13C.	Triode-hexode Frequency Changer	44	15/-
T.H.21C.	Triode-hexode Frequency Changer	45	15/-
T.H.22C.	Triode-hexode Frequency Changer	46	15/-
F.C.13C.	Octode Frequency Changer . .	47	15/-
V.P.13C.	Variable-mu H.F. Pentode .	48	12/6
S.P.13C.	H.F. Pentode . . .	49	12/6
H.L. 13 C.	Medium Impedance Triode . .	50	9/6
2D.13C.	Double-diode-detector	51	5/6
T.D.D.13C.	Double-diode-triode	52	12/6
Pen. 36C.	Output Pentode	53	13/6
U.R.IC.	Half-wave Rectifier	54	10/6
U.R.3C.	Full-wave Rectifier	54	15/-

For details of replacement valves, including side contact types, not indicated above, see pages 91 to 93 .

ELECTRON BEAM TUNING INDICATOR

T.V. 6

OPERATING CHARACTERISTICS AS VISUAL INDICATOR.

Heater Voltage	\ldots	\ldots	6.3 V.
Heater Current	\ldots	..	0.2 A.

Max. Line Voltage 250 V. Grid Voltage (Max. signal) .. - 4 V.
Max. Target Voltage 250 V. $\left(\varnothing=90^{\circ}\right)$
Series Triode Anode Resistance
2 megohms.
Grid Voltage (zero signal) .. o V.
APPLICATION.
($\varnothing=10^{\circ}$)
A visual tuning indicator operating on
Grid Voltage (Max. signal) $\quad .-4 \mathrm{~V}$. the Electron principle, for D.C./A.C. $\left(\varnothing=90^{\circ}\right)$

Grid Voltage (zero signal) .. o V.
$\varnothing=10^{\circ}$)

BASE. mains receivers and car radios. The T.V. 6 should always be operated so that full illumination $\left(\varnothing=90^{\circ}\right.$) is obtained under conditions of signal.
" P" type 8-contact universal base. For connections see page III.

PRICE 10/6

т.Н.I 3 C

TRIODE-HEXODE frequency changer

OPERATING DATA.

Heater Voltage 13.0 V.
Heater Current o 31 A.
Max. Anode Voltage 250 V.
Max. Screen Voltage (Grids 2 and 4) 90 V. Max. Oscillator Anode Voltage 150 V .

APPLICATION.

As frequency changer in superheterodyne receivers covering short wavebands. It consists of a hexode mixer and triode oscillator located on a common cathode assembly with adequate screening between each electrode system. It maintains its efficiency excellently at the higher frequencies.

BASE.

Standard 7-pin type. For connections see page 1 Io.

BULB FINISH.

The T.H.rsC is supplied with a metallised bulb only.

15/-

TRIODE-HEXODE FREQUENCY CHANGER

OPERATING DATA.
Heater Voltage 21.0 V.

Heater Current 0.2 A.
Max. Anode Voltage 250 V.
Max. Screen Voltage (Grids 2 and 4) .. $\quad . . \quad . . \quad 90 \mathrm{~V}$.
Max. Oscillator Anode Voltage 150 V.

APPLICATION.
As frequency changer in superheterodyne receivers covering short wavebands. It consists of a hexode mixer and triode oscillator located on a common cathode assembly with adequate screening between each electrode system. It maintains its efficiency excellently at the higher frequencies.

BASE.
Standard 7 -pin type. For connections see page rog.

BULB FINISH.

The T.H.2IC is supplied with a metallised bulb only.

PRICE 15/-

OPERATING DATA.

APPLICATION.

As Frequency Changer in superheterodyne receivers covering short wavebands. It consists of a hexode mixer and triode oscillator located on a common cathode assembly with adequate screening between each electrode system. It maintains its efficiency excellently at the higher frequencies.

BASE.
Standard 7-pin type. For connections see page iog.

BULB FINISH.

The T.H.22C is supplied with a metallised bulb only.

> PRICE 15/-

OCTODE FREQUENCY CHANGER

Mf.c.I3C

OPERATING DATA.
Heater Current 0.2 A.
Heater Voltage 13.0 V . Max. Anode Voltage 200 V. Max.Auxiliary Grid and Screen Voltage (G3 and G5) .. 90 V. Max. Oscillator Anode Voltage 90 V.

APPLICATION.

Electron-coupled frequency changer in superheterodyne receivers. The cathode and grids I and 2 are operated as a triode oscillator; grid 3 acts as a screen between the oscillator and mixer elements ; and grids 4,5 and 6 with the anode form a pentode mixer with variablemu characteristics.

BASE.

Standard 7-pin base. For connections see page 109.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 15/-

v.P.IIC

 VARIABLE-MU H.F. PENTODEOPERATING DATA.

Heater Current	0.2 A.
Heater Voltage	..	\ldots	13.0 V.
Max. Anode Voltage	.	..	200 V.
Max. Auxiliary Grid Voltage	..	200 V.	

CHARACTERISTICS.
At Anode Volts 200 ; Auxiliary Grid Volts 200 ; Control Grid Volts Zero.

Mutual Conductance $3.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.

Radio frequency or intermediate frequency amplifier in circuits where volume control is exercised either manually or automatically by adjustment of grid bias.

BASE.

Standard 7-pin base. For connections see page iro.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 12/6

H.F. PENTODE

CHARACTERISTICS.

OPERATING DATA.

Heater Current	0.2 A.
Heater Voltage	13.0 V.
Max. Anode Voltage ..	.	200 V.	
Max. Auxiliary Grid Voltage ..	200 V		

At Anode Volts 200 ; Auxiliary Grid Volts 200 ; Control Grid Volts Zero. Mutual Conductance $4.0 \mathrm{~mA} / \mathrm{V}$.

APPLICATION.
The S.P.13C is a straight H.F. Pentode for use in D.C./A.C. or Car Radio Receivers as :
(a) Speech Detector.
(b) Radio Frequency or Intermediate Frequency Amplifier.
(c) Low Frequency Amplifier.

BASE.

Standard 7-pin base. For connections see page ino.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 12/6

MEDIUM
 IMPEDANCE TRIODE

OPERATING DATA.
Heater Current
.. 0.2 A. Heater Voltage 13.0 V. Max. Anode Voltage 200 V.

CHARACTERISTICS.
At Anode Volts 100; Grid Volts Zero.

Anode Impedance 10,500 ohms.
$\begin{array}{lr}\text { Amplification Factor } & 40 \\ \text { Mutual Conductance } & 3.8 \mathrm{~mA} / \mathrm{V} \text {. }\end{array}$

APPLICATION.

(I) As detector with applied voltage of 200. Shunt-fed transformer coupling is recommended. The value of anode resistance is 25,000 ohms. The rest current under these conditions is 40 mA .
(2) Low frequency amplifier operated at an anode voltage of 150 V . to 200 V . and negative grid bias according to the following table. For auto-bias a resistance of 4,000 ohms should be used.

Anode Voltage.	Approx. Neg. Grid Bias Voltage.	Approx. Ande Current (mA).
100	2.0	2.0
150	3.0	3.0
200	4.0	4.0

BASE.
Standard 7-pin. For connections see page 110 .

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 9/6

DOUBLE-DIODE DETECTOR

OPERATING DATA.
Heater Voltage 13.0 V.

Heater Current 0.2 A.
Max. Diode Voltage 200 V.
Max. Diode Current . .
. . 0.8 mA .

APPLICATION.
The 2D.13C consists of two diode anodes surrounding a common cathode. One diode is intended to be used as speech rectifier and the other can be used for the application of A.V.C. or noise suppression.

BASE.
Standard 5-pin. For connections see page 109.

BULB FINISH.

The 2D.13C is supplied with metallised bulb only.

> PRICE 5/6

T.D.D.13C DOUBLE-DIODETRIODE

OPERATING DATA.
Heater Current
Heater Voltage
Max. Anode Voltage 200 V.
TRIODE CHARACTERISTICS.
At Anode Volts roo; Grid Volts Zero.

Anode Impedance 10,000 ohms. Amplification Factor
Mutual Conductance

APPLICATION.

The normal method of employing the T.D.D.I3C is to use one diode as speech detector and the other diode for A.V.C., the triode portion being employed as a low frequency amplifier. Grid bias should be applied to the triode amplifier according to the following table, while for auto-bias a 5,530 -ohms resistor should be used.

Anode Voltage.	Approx. Neg. Grid Bias Voltage.	Approx. Anode Current (mA).
	.	
100	1.5	4.5
150	2.5	6.5
200	35	8.5

For resistance-capacity coupling the optimum value of anode resistance is 50,000 ohms.

BASE.
Standard 7-pin. For connections see page 1 Io.

BULB FINISH.

This valve is supplied with metallised bulb only.

PRICE 12/6

OUTPUT PENTODE

OPERATING DATA.
Heater Current 0.2 A.
Heater Voltage $35 \cdot \mathrm{O}$.
Max. Anode Voltage 250 V.
Max. Auxiliary Grid Voltage.. 250 V.
Max. Anode Dissipation 9.0 watts.
Optimum Load .. 8,000 ohms.

PRICE

Page 53

U.R.IC

OPERATING DATA.
Heater Current. 0.2 A .
Heater Voltage $20 \cdot 0 \mathrm{~V}$.
Max. Anode Voltage .. 250 V. r.m.s.
OUTPUT.
Max. rectified output 75 mA D.C. at 250 V . APPLICATION.

Half-wave rectifier in D.C./A.C. receivers not using a mains transformer.
BASE.
Standard 5-pin base. For connections see page rog.

PRICE 10/6

OPERATING DATA.
Heater Current. 0.2 A.
Heater Voltage $\quad . \quad$. $30 \cdot 0 \mathrm{~V}$.
Max. Anode Voltage 2×250 V. r.m.s. OUTPUT.

Max. rectified output
APPLICATION. 120 mA D.C. at 250 V .

Multiple rectifier for use in D.C./A.C. amplifiers and receivers not using a mains transformer.
BASE.
Standard 7-pin base. For connections see page 1 Io.
PRICE 15/-

PRICE LIST OF SPECIAL VALVES

Valve Type.	Description.	For Details see Page	Price.
A.P. 4	Pentode for Ultra H.F. Work ..	56	60/-
A.T. 4	Triode for Ultra H.F. Work	57	50/-
D.A. 1	Medium Impedance Triode for DeafAids	58	15/-
D.A. 2	Low Impedance Triode for Deaf-Aids	59	15/-
H.V.R. 1	High Voltage Rectifier for Cathode Ray Equipment	60	20/-
H.V.R. 2	High Voltage Rectifier for Cathode Ray Equipment	60	20/-
T.S.P. 4	High Slope H.F. Pentode for Television Receivers	61	17/6
4687	Stabilising Tube	62	7/6

APPLICATION.
An indirectly heated H.F. pentode of "Acorn" type construction for operation as Detector or H.F. Amplifier at ultra high frequencies.

OPERATING

 CHARACTERISTICS. Heater Voltage 4.0 V . Heater Current 0.25 A. Max. Anode Voltage .. 250 V. Max. Aux. Grid Voltage. ioo V. CHARACTERISTICS. BASE CONNECTIONS.Viewed from top of valve. Lead No. r. Heater. $\begin{array}{ll}", & \text { ", 2. Cathode. } \\ \text { ", } & \text { 3. Heater. } \\ ", & \text { 4. Suppressor Grid }\left(\mathrm{G}_{3}\right) \text {. } \\ \text { ", } & \text { 5. Screening Grid }\left(\mathrm{G}_{2}\right) .\end{array}$ $\begin{array}{ll}", & \text { ", 2. Cathode. } \\ \text { ", } & \text { 3. Heater. } \\ ", & \text { 4. Suppressor Grid }\left(\mathrm{G}_{3}\right) \text {. } \\ \text { ", } & \text { 5. Screening Grid }\left(\mathrm{G}_{2}\right) .\end{array}$ $\begin{array}{ll}", & \text { ", 2. Cathode. } \\ \text { ", } & \text { 3. Heater. } \\ ", & \text { 4. Suppressor Grid }\left(\mathrm{G}_{3}\right) \text {. } \\ \text { ", } & \text { 5. Screening Grid }\left(\mathrm{G}_{2}\right) .\end{array}$ $\begin{array}{ll}", & \text { ", 2. Cathode. } \\ \text { ", } & \text { 3. Heater. } \\ ", & \text { 4. Suppressor Grid }\left(\mathrm{G}_{3}\right) \text {. } \\ \text { ", } & \text { 5. Screening Grid }\left(\mathrm{G}_{2}\right) .\end{array}$
Top connection Anode.
Bottom connection.-Control Grid.

PRICE 60/-

ACORN TYPE TRIODE

A.T. 4

CHARACTERISTICS. CHARACTERISTICS.
Heater Voltage 4.0 V .
Heater Current . . . 0.25 A.
Max. Anode Voltage .. 200 V.

APPLICATION.

An indirectly heated triode of "Acorn" type construction for operation as Detector or Oscillator at ultra high frequencies.

BASE CONNECTIONS.

Viewed from top of valve. Lead No. r. Heater.

$"$	$"$	2.	Cathode.
$"$	$"$	3.	Heater.
$"$,	$"$	4.	Grid.
$"$,	,	5.	Anode.

PRICE 50/-

OPERATING DATA.

Filament Voltage	2.0 V.
Filament Current	..	\ldots	0.05 A.
Max. Anode Voltage	100 V.

CHARACTERISTICS.

At Anode Volts	45
Control Grid Volts	0

Anode Impedance .. 60,000 ohms.
Amplification Factor 30
Mutual Conductance .. $0.5 \mathrm{~mA} / \mathrm{V}$.

BASE CONNECTIONS.

Viewed from underside of valve base
Pin No. r. Anode.
2. Grid.
3. Filament.
4. Filament.

APPLICATION.

As low frequency amplifier in compact equipment such as Deaf-Aids, etc.

The DAI is supplied in a metal case.
Overall dimensions being :-
Length 60 mm .
Diameter.. .. 19 mm .

PRICE 15/-

LOW Impedance triode FOR DEAF AIDS

D.A. 2

OPERATING DATA.

Filament Voltage	2.0 V.
Filament Current	0.05 A.
Max. Anode Voltage	.		..
Ioo V.			

CHARACTERISTICS.

At Anode Voltage	.	..	45
Control Grid Volts	.	.	\ldots
Anode Impedance	.	0	
Amplification Factor	7.0
Mutual Conductance	..	$0.78 \mathrm{~mA} / \mathrm{V}$.	

APPLICATION.
As voltage amplifier or output valve in compact equipment such as deafaids, etc.

The DA2 is supplied in a metal case.
Overall Dimensions being:-
Length 60 mm .
Diameter .. 19 mm .

BASE CONNECTIONS.

Viewed from underside of valve base.
Pin No. I. Anode.
$\begin{array}{llll}", & \text { 2. } & \text { Grid. } \\ ", & , & 3 . & \text { Filament. } \\ , ", & 4 . & \text { Filament. }\end{array}$

PRICE 15/-

OPERATING DATA.
Filament Voltage $2 \cdot 0 \mathrm{~V}$. Filament Current 0.3 A. Max. Anode Voltage .. 6,000 V. r.m.s. Max. Rectified Current $\quad .5 .0 \mathrm{~mA}$.
APPLICATION.
A directly heated rectifier for use in Cathode Ray Tube equipment.
BASE CONNECTIONS.
Pin No. I. -

Viewed from free end of pins.

Pin No. 3. Filament.
Pin No. 4. Filament.
Top Cap. Anode.

PRICE 20/-

H.V.R. 2

HIGH VOLTAGE RECTIFIER

OPERATING DATA.
Heater Voltage 4.0 V .
Heater Current 0.65 A .
Max. Anode Voltage .. 6,000 V. r.m.s.
Max. Rectified Current $\quad .3 .0 \mathrm{~mA}$.
APPLICATION.
An indirectly heated rectifier for use in Cathode Ray Tube equipment.
BASE CONNECTIONS.
Pin No. 1.
Pin No. 2. -
Pin No. 3. Heater (Cathode internally connected).
Pin No. 4. Heater.
Top Cap. Anode.
PRICE 20/-

Viewed from free end of pins.

OPERATING CHARACTERISTICS.
Heater Voltage 4.0 V .
Heater Current I.3 A.
Max. Anode Voltage 250 V.
Max. Aux. Grid Voltage .. 250 V.

APPLICATION.
A general purpose valve for use as high frequency or intermediate frequency amplifier, and as an output valve operating the cathode ray tube in Television receivers.

CHARACTERISTICS.

At Anode Volts 250
Aux. Grid Volts 250
Control Grid Volts
Mutual Conductance .. 7 I mA/V.

BASE.
Standard 7-pin base, for connections see page 1 Io.

BULB FINISH.

This valve is supplied with a metallised bulb.

> PRICE 17/6

OPERATING CHARACTERISTICS.
Burning Voltage 90-100 V.
Striking Voltage roo-ı 10 V.
Extinction Voltage 8o V. (approx.)
Maximum Average Current 20 mA .
Maximum Peak Current 45 mA .
Lower Current Limit for Stabilisation. .4 mA . (approx.)
A.C. Resistance at 20 mA rest current 165 ohms. (approx.)
D.C. Resistance at 20 mA rest current $4,500-5,000$ ohms.

APPLICATIONS.

Voltage regulating device for use in mains receivers, measuring instruments, signal generators, special amplifiers and any instrument demanding a constant voltage supply.
BASE CONNECTIONS.

> The electrodes are brought out to contacts 5 and 8 .

Viewed from underside of valve base.

Full details of the method of application of these tubes may be obtained from the Technical Service Department of the Mullard Wireless Service Co., Ltd.

PRICE 7/6

MULLARD CATHODE RAY TUBES

Type.	Base.	Approx. Screen Diameter.	Fluorescent Colour.	Deflection and Focussing.	Pages.
$\mathrm{E}_{40}-\mathrm{G}_{3}$	" P "	3 inches	Green	Electrostatic	$64-65$
4002	9-pin	4 ,	"	'	66-67
4002A	9 ,	4 "	Blue	"	66-67
$\mathrm{A}_{4} \mathrm{I}-\mathrm{G}_{4}$	9 "	4 "	Green	"	68-69
$\mathrm{A}_{4} \mathrm{I}-\mathrm{B} 4$	9 "	4 "	Blue	"	68-69
$\mathrm{E}_{4} \mathrm{I}-\mathrm{G}_{4}$	9 "	4 "	Green	"	70-71
$\mathrm{E}_{4} \mathrm{I}-\mathrm{B} 4$	9 ,	4 "	Blue	"	70-71
E42-G6	12-contact	6	Green	"	72-73
E42-B6	12 "	6	Blue	'	72-73
E46-G10	12 ,	IO ,	Green	"	74-75
E46-B10	12 "	IO ,	Blue	"	74-75
E46-12	12	12 "	White	"	76-77
M46-12	-	12	"	ElectroMagnetic	78
M46-15	-	15 ,	"	," ,	79

OSCILLOGRAPH

 TUBE
GENERAL DESCRIPTION.

Cathode ray tube type $\mathrm{E}_{4}-\mathrm{G} 3$ is of the high vacuum double electrostatic type. It is particularly suitable as an indicating or measuring instrument or as a means of investigating both high and low frequency phenomena.

The screen is approximately 3 inches in diameter and the fluorescent colour is green. Owing to the small bulb size and low operating voltages, this tube is well suited for use in portable oscillograph equipment.

TECHNICAL DATA.

Operating Conditions.
Heater Voltage (A.C. or D.C.) $4 \cdot 0$ V.
Heater Current I•o A. (approx.)
Cathode internally connected to Heater.
Negative Grid Voltage 0-30 V.
(Value adjusted to give required light intensity)

Second Anode Voltage-

Maximum 80o V.
Working Value 500-800 V.
First Anode Voltage-
Maximum 300 V.
Working Value I40-200 V.
Deflection Sensitivity.
Plates nearest cathode30-• $19 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen -20-12 mm/V.
Inter-electrode Capacities.
Grid to all other Electrodes $6 \cdot 7 \mu \mu \mathrm{~F}$.
Inter-plate Capacity DI-DI' $2 \cdot 9 \mu \mu \mathrm{~F}$.
Inter-plate Capacity $\mathrm{D}_{2}-\mathrm{D}_{2}{ }^{\prime}$.. $3 \cdot 7 \mu \mu \mathrm{~F}$.
Connections.
Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

> PRICE £3.10.0

FIG. 2

DIMENSIONS IN M/M

4002-4002A

GENERAL DESCRIPTION.

Cạthode ray tubes types 4002 and 4002 A are of the high vacuum dotible electrostatic type, and are therefore suitable for oscillographic use for investigating high or low frequency phenomena.

The fluorescent screen is approximately 4 inches in diameter. The type 4002 tube gives a green image suitable for visual observation. When it is desired to make photographic records the type 4002 A should be employed. This tube has a screen which produces a blue violet image of high actinic value.

TECHNICAL DATA.
Operating Conditions.
Heater Voltage (A.C. or D.C.) $4 \cdot 0$ V.
Heater Current I•o A. (approx.)
Cathode internally connected to Heater.
Negative Grid Voltage . .
(Value adjusted to give required light intensity)
Second Anode Voltage-
Maximum I,ooo V.
Working Value I,000 V.
First Anode Voltage-
Maximum 600 V.
Working Value 200 V.
Deflection Sensitivity.
Plates nearest cathode $49 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen $39 \mathrm{~mm} / \mathrm{V}$.
Inter-electrode Capacities.
Grid to all other Electrodes 1о $\mu \mu \mathrm{F}$.
Inter-plate Capacity $\mathrm{Dr}_{\mathrm{-}}^{\mathrm{DI}} \mathrm{I}^{\prime}$.. $2 \mu \mu \mathrm{~F}$.
Inter-plate Capacity $\mathrm{D}_{2}-\mathrm{D}_{2}{ }^{\prime}$.. $2 \mu \mu \mathrm{~F}$.
Connections.
Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

> PRICE £6.15.0

A41-G4/B4
 OSCILLOGRAPH TUBE

GENERAL DESCRIPTION.

Cathode ray tubes types $\mathrm{A}_{4} \mathrm{I}-\mathrm{G}_{4} / \mathrm{B}_{4}$ are of the high vacuum double electrostatic type and are, therefore, suitable for oscillographic use for investigating high or low frequency phenomena. A special electrode assembly is employed which enables the pair of plates nearer the screen to be used with a non-symmetrical deflection circuit, without introducing trapesium distortion.

The fluorescent screen is approximately 4 inches in diameter. The type A4I-G4 tube gives a green image suitable for visual observation. When it is desired to make photographic records the type $\mathrm{A}_{4} \mathrm{I}-\mathrm{B}_{4}$ should be employed. This tube has a screen which produces a blue-violet image of high actinic value.

TECHNICAL DATA.

Operating Conditions.
Heater Voltage (A.C. or D C).. $4 \cdot o \mathrm{~V}$.
Heater Current I•oA. (approx.)
Cathode internally connected to Heater.
Negative Grid Voitage $0-40 \mathrm{~V}$.
(Value adjusted to give required light intensity)
Second Anode Voltage-
Maximum $1,200 \mathrm{~V}$.
Working Value I,000V.
First Anode Voltage-
Maximum 500 V .
Working Value 400 V .
Deflection Sensitivity.
Plates nearest cathode $39 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen (with non-symmetrical circuit) .. $\quad .28 \mathrm{~mm} / \mathrm{V}$.
Inter-Electrode Capacities.
Grid to all other Electrodes $6.5 \mu \mu \mathrm{~F}$.
Inter-plate Capacity Di-DI' $4.5 \mu \mu \mathrm{~F}$.
Inter-plate Capacity D2-D2' $5.5 \mu \mu \mathrm{~F}$.

Connections.

Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

Note.-The Deflection Plate Dz' should be connected direct to the Second Anode a2.

PRICE £6.15.0

GENERAL DESCRIPTION.

Cathode ray tube types $\mathrm{E}_{4} \mathrm{I}-\mathrm{G}_{4} / \mathrm{B}_{4}$ are of the high vacuum double electrostatic type and are, therefore, suitable for oscillographic use for investigating high or low frequency phenomena.

The fluorescent screen is approximately 4 inches in diameter. The type E4I-G4 tube gives a green image suitable for visual observation. When it is desired to make photographic records the type E4I-B4 should be employed. This tube has a screen which produces a blue-violet image or high actinic value.

TECHNICAL DATA.
Operating Conditions.
Heater Voltage (A.C. or D.C.).. $4 \cdot o \mathrm{~V}$.
Heater Current I oA. (approx.)
Cathode internally connected to Heater.

(Value adjusted to give required light intensity)
Second Anode Voltage-
Maximum $1,200 \mathrm{~V}$.
Working Value $1,000 \mathrm{~V}$.
First Anode Voltage-
Maximum 500 V .
Working Value 400 V .

Deflection Sensitivity.

Plates nearest cathode $39 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen $28 \mathrm{~mm} / \mathrm{V}$.
Inter-Electrode Capacitites.
Grid to all other Electrodes $6.5 \mu \mu \mathrm{~F}$.
Inter-plate Capacity DI-DI' $4.5 \mu \mu \mathrm{~F}$.
Inter-plate Capacity D2-D2' $5.5 \mu \mu \mathrm{~F}$.
Connections.
Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

> PRICE £6.15.0

OSCILLOGRAPH TUBE

E42-G6/B6

OSCILLOGRAPH TUBE

GENERAL DESCRIPTION.

Cathode ray tubes types E42-G6 and E42-B6 are of the high vacuum double electrostatic type and are, therefore, suitable for oscillographic use for investigating high or low frequency phenomena.

The fluorescent screen is approximately 6 inches in diameter. The type E42-G6 tube gives a green image suitable for visual observation. When it is desired to make photographic records the type E42-B6 should be employed. This tube has a screen which produces a blue-violet image of high actinic value.

TECHNICAL DATA.

Operating Conditions.

Heater Voltage (A.C. or D.C.) 4.0 V.
Heater Current . .
I•o A. (approx.)
Cathode internally connected to Heater.
Negative Grid Voltage .
(Value adjusted to give required light intensity)
Second Anode Voltage-

First Anode Voltage-
Maximum 600 V.
Working Value 200-400 V.
Deflection Sensitivity.
Plates nearest cathode $54^{-.} 27 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen $40-\cdot 20 \mathrm{~mm} / \mathrm{V}$.
Inter-electrode Capacities.
Grid to all other Electrodes $12 \mu \mu \mathrm{~F}$.
Inter-plate Capacity ${\mathrm{DI}-\mathrm{DI}^{\prime} . . \quad . . \quad . \quad .}$.. $\mu \mu \mathrm{F}$.
Inter-plate Capacity $\mathrm{D} 2-\mathrm{D} 2^{\prime} . . . \quad . \quad . \quad . \quad 7 \mu \mu \mathrm{~F}$.
Connections.
Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

PRICE £8.8.0

FIG 3

E46-10/:10 OSCILLOGRAPH TUBE

GENERAL DESCRIPTION.

Cathode ray tubes types E46-Gio/Bio are of the high vacuum double electrostatic type and are, therefore, suitable for oscillographic use for investigating high or low frequency phenomena.
1 The fluorescent screen is approximately io inches in diameter. The type E46-Gio tube gives a green image suitable for visual observation. When it is desired to make photographic records the type E46-Bio should be employed. This tube has a screen which produces a blue violet image of high actinic value.

TECHNICAL DATA.
Operating Conditions.

Third Anode VoltageMaximum 5,000 V. Working Value 4,000-5,000 V.
Second Anode VoltageMaximum 1,700 V. Working Value 1,100-1,400 V.
First Anode VoltageMaximum 250 V. Working Value 250 V.
Deflection Sensitivity.
Plates nearest cathode $16-13 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen 14-• II mm/V.
Inter-electrode Capacities.
Grid to all other Electrodes $15.0 \mu \mu \mathrm{~F}$.
Inter-plate Capacity $\mathrm{DI}_{\mathrm{I}}^{\mathrm{DI}} \mathrm{DI}^{\prime}$.. $5.5 \mu \mu \mathrm{~F}$.
Inter-plate Capacity $\mathrm{D}_{2}-\mathrm{D}_{2}^{\prime}$.. $6.5 \mu \mu \mathrm{~F}$.
Connections.
Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

PRICE £12.12.0

FIG 3

E46-12

TELEVISION TUBE

GENERAL DESCRIPTION.

Cathode ray tube type $\mathrm{E}_{4} 6-12$ is of the high vacuum double electrostatic type. It has been specially designed for television reception.

The fluorescent screen is approximately 12 inches in diameter and gives a black and white picture.

Owing to the special screen construction, an image of great brilliance is readily obtainable.

TECHNICAL DATA.
Operating Conditions.

> V.

Heater Voltage (A.C. or D.C.) 4•oA. (approx.)

Heater Current

I•O

Cathode internally connected to Heater.

Negative Grid Voltage .
(Valve adjusted to give required light intensity)
Third Anode Voltage-
Maximum 5,000 V.
Working Value 4,000-5,000 V.
Second Anode Voltage-
Maximum I,700 V.
Working Value I, 100-I,400 V.
First Anode Voltage-
Maximum 250 V.
Working Value 250 V.
Deflection Sensitivity.
Plates nearest cathode21-• $17 \mathrm{~mm} / \mathrm{V}$.
Plates nearest screen $16-\cdot 13 \mathrm{~mm} / \mathrm{V}$.
Inter-electrode Capacities.
Grid to all other Electrodes $15 \cdot 0 \mu \mu \mathrm{~F}$.
Inter-plate Capacity Di-DI' $5.5 \mu \mu \mathrm{~F}$.
Inter-plate Capacity $\mathrm{D}_{2}-\mathrm{D}_{2}^{\prime}$.. $6.5 \mu \mu \mathrm{~F}$.
Connections.
Figs. I and 2 show the connections to the electrodes and Fig. 4 a suitable circuit for the H.T. supply unit.

$$
\text { PRICE } £ 15.15 .0
$$

'TELEVISION TUBE"

E46-I2

TELEVISION TUBE

GENERAL DESCRIPTION.

Cathode ray tube type $\mathrm{M}_{4} 6-\mathrm{I} 2$ is of the high vacuum fully electromagnetic type. It has been specially designed for television reception.

The fluorescent screen is approximately 12 inches in diameter and gives a black and white picture.

Owing to the special screen construction an image of great brilliance is readily obtainable.

TECHNICAL DATA.

Operating Conditions.

Heater Voltage (A.C. or D.C.) 4.0 V.
Heater Current I•OA. (approx.)
Cathode internally connected to Heater.
Negative Grid Voltage o-6o V.
(Value adjusted to give required light intensity)
Second Anode Voltage-
Maximum 5,000 V.
Working Value 4,000-5,000 V.
First Anode Voltage-
Maximum 250 V.
Working Value 250 V.
Maximum electro-magnetic deflection sensitivity 13 L .
(Where L is the length of deflection zone in $\sqrt{\overline{\mathrm{Vaz}} \mathrm{mm}}$. per Gauss. millimeters and Vaz the second anode voltage)
Ampere turns for focussing coil $500 \mathrm{~A} / \mathrm{T}$.

PRICE $£ 12.12 .0$

GENERAL DESCRIPTION.
Cathode ray tube type M_{46-15} is of the high vacuum fully electrcmagnetic type. It has been specially designed for television reception.

The fluorescent screen is approximately 15 inches in diameter and gives a black and white picture.

Owing to the special screen construction an image of great brilliance is readily obtainable.

TECHNICAL DATA.

Operating Conditions.
Heater Voltage (A.C. or D.C.) 4.0 V.
Heater Current I•o A. (approx.)
Cathode internally connected to Heater.
Negative Grid Voltage
(Value adjusted to give required lighting intensity)
Second Anode Voltage-
Maximum 5,000 V.
Working Value 4,000-5,000 V.
First Anode Voltage-
Maximum 250 V.
Working Value 250 V.
Maximum electro-magnetic deflection sensitivity $1 \Delta \mathrm{~L}$.
$\sqrt{\overline{\overline{\mathrm{Vaz}}}} \mathrm{mm}$. per Gauss.
(Where L is the length of deflection zone in millimeters and Va2 the second anode voltage)
Ampere turns for focussing coil 5co A/T.

$$
\text { PRICE } £ 15.15 .0
$$

CHARACTERISTICS

AND

OPERATING DATA

In the earlier part of this catalogue current types of Mullard receiving valves are described in detail.

The tables on the following pages are intended as a rapid guide, not only to the latest valves but also to earlier types which may be required for re-valving.

MULLARD 2-VOLT VALVES FOR BATTERY SETS

References :
If $=$ Filament or Heater Current.
$\mathrm{m}=$ Amplification Factor.
gm $=$ Mutual Conductance.
$\mathrm{Va}=$ Anode Voltage.
Vaux $=$ Auxiliary Grid Voltage.
$\mathrm{I}=$ Anode current.

Type.	Description.	Base.	Bulb Finish.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0 .$			(a)Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Optimum Load	Price.
					ra	m	gm						
F.C. 2	Octode Frequency Changer ..	7-pin	Met.	O.I	-	-	-	150	70	0	0.8	-	14/-
F.C.2A	Octode Frequency Changer ..	7-pin	Met.	$0 \cdot 12$	-	-	-	135	45	0.5	0.7	-	14/-
V.P. 2	Variable-mu H.F. Pentode ..	7-pin	Met.	0.18	750,000	-	$\left\{\begin{array}{l}\text { I. } 75 \\ 0.017\end{array}\right.$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	150 150	$\stackrel{\circ}{7} 0$	$\left.\begin{array}{c} 3.75 \\ 0.1 \end{array}\right\}$	-	II/-
V.P.2B	Hexode Mixer	7-pin	Met.	0.14	-	-	-	135	60	0.5	I. 6	-	II/-
S.P. 2	H.F. Pentode	7-pin	Met.	0.18	500,000	1,100	$\left\{\begin{array}{l}2 \cdot 2 \\ 1 \cdot 5\end{array}\right.$	150 100	150 100	\bigcirc	$\left.\begin{array}{l}3.6 \\ 1.5\end{array}\right\}$	-	II/-
P.M.12A	Screened Tetrode	4-pin	Met. or Clear	$0 \cdot 18$	330,000*	500*	1.5*	$\left\{\begin{array}{l}150 \\ 100\end{array}\right.$	90 60	\bigcirc	$\left.\begin{array}{l}2.9 \\ 1.2\end{array}\right\}$	-	11/-
P.M.12	Screened Tetrode .. .	4-pin	Met. or Clear	$0 \cdot 15$	180,000 \dagger	$200 \dagger$	I-1 \dagger	150	75	-	$4 \cdot 25$	-	II/-
P.M.12M	Variable-mu Screened Tetrode	4-pin	Met. or Clear	0.18	-	-	$\left\{\begin{array}{l}\mathrm{r} \cdot 4 \ddagger \\ 0 \cdot 014 \ddagger\end{array}\right.$	150 150	90 90	7-0	$\left.\begin{array}{l}2.5 \\ 0.1\end{array}\right\}$	-	11/-
2D2	Double-diode-detector ..	5-pin	Met.	$0 \cdot 09$	-	-	-	-	-	-	-	-	5/6
T.D.D.2A	Double-diode-triode	5-pin	Met.	$0 \cdot 12$	26,000	$31 \cdot 0$	1.2	$\left\{\begin{array}{l}125 \\ 150 \\ 18\end{array}\right.$	二	$\begin{aligned} & 1 \cdot 5 \\ & 1 \cdot 5-3 \cdot 0 \end{aligned}$	$\left.\begin{array}{r}\text { I } \\ \text { I } \\ 4\end{array}\right\}$	-	9/-

*At $\mathrm{Va}=125 ; \quad \mathrm{Vs}=75 ; \mathrm{Vg}=0 . \quad \quad \quad \mathrm{At} \mathrm{Va}=150 ; \mathrm{Vs}=75 ; \mathrm{Vg}=0 . \quad \ddagger \mathrm{At} \mathrm{Va}=150$; $\mathrm{Vs}=90$.

MULLARD 2－VOLT VALVES FOR BATTERY SETS－continued

Type．	Description．	Base．	Bulb Finish．	If．	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0 .$			（a） Va	（b） Vs or Vaux	（c） Vg for （a）or（b）	Ia for （c）	Opti－ mum Load．	Price．
					ra	m	gm						
T．D．D． 2	Double－diode－triode ．．．．	5－pin	Met．	O．I	12，000	$16 \cdot 5$	I•4	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	－	$3 \cdot 0$ 4.5 $5 \cdot 5$	$\left.\begin{array}{l}1 \cdot 7 \\ 2 \cdot 0 \\ 2 \cdot 5\end{array}\right\}$	－	9／－
P．M．IA	High Impedance Triode ．．	4－pin	Clear	O．I	41，600	50	I－2	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	0.5 0.75 1．0	$\left.\begin{array}{l} 0.5 \\ 0.75 \\ 1.0 \end{array}\right\}$	－	4／9
P．M．IHF	Medium Impedance Triode ．．	4－pin	Clear	O．I	22，500	18	0.8	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	$\begin{gathered} 1 \cdot 5-3 \cdot 0 \\ 3 \cdot 0 \\ 3 \cdot 0-4 \cdot 5 \end{gathered}$	$\left.\begin{array}{l}0 \cdot 9 \\ 1 \cdot 2 \\ 1 \cdot 5\end{array}\right\}$	－	4／9
F．M．rHL	Medium Impedance Triode ．．	4－pin	Met．or Clear	O．I	20，000	28	I－4	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	I 5 $\mathrm{I} \cdot 5-3 \cdot 0$ $\mathrm{I} \cdot 5-3 \cdot 0$	$\left.\begin{array}{l}1 \cdot 0 \\ 1 \cdot 5 \\ 2 \cdot 0\end{array}\right\}$	－	4／9
P．M．2HL	Medium Impedance Triode ．．	4－pin	Met．or Clear	O．I	21，500	30	I•4	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	－	1.5 2.0 2.5	$\left.\begin{array}{l}1 \cdot 0 \\ 1 \cdot 5 \\ 2 \cdot 0\end{array}\right\}$	－	4／9
P．M．ILF	Medium Impedance Triode ．．	4－pin	Clear	O•I	12，000	II	0.9	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	4.5 $6 \cdot 0$ $7 \cdot 5$	$\left.\begin{array}{l}2 \cdot 5 \\ 3 \cdot 0 \\ 4.0\end{array}\right\}$	－	4／9
P．M．2DX	Medium Impedance Triode ．．	4－pin	Met．or Clear	O－I	12，000	18	$1 \cdot 5$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	－	$1 \cdot 5-3 \cdot 0$ $3 \cdot 0$ $3 \cdot 0-4 \cdot 5$	$\left.\begin{array}{l}2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0\end{array}\right\}$	－	4／9
P．M．2DL	Driver for Class B．．．	4－pin	Met．	$0 \cdot 1$	12，000	18	1－5	$\left\{\begin{array}{l}100 \\ 135\end{array}\right.$	－	3.0 4.5	$\left.\begin{array}{l}1.5 \\ 2 \cdot 0\end{array}\right\}$	－	4／9
P．M．2A	Output Triode．．．．．．	4－pin	Clear	0.2	3，600	12.5	$3 \cdot 5$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	4.0 5.0 7.0	$\left.\begin{array}{l}4 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0\end{array}\right\}$	7，000	6／－
P．M． 2	Output Triode．．．．．．	4－pin	Clear	$0 \cdot 2$	4，400	$7 \cdot 5$	I•7	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	－	$7 \cdot 5$ $9.0-10 \cdot 5$ $12 \cdot 0$	$\left.\begin{array}{l}4 \cdot 0 \\ 5 \cdot 3 \\ 6 \cdot 6\end{array}\right\}$	9，000	6／－

MULLARD 2-VOLT VALVES FOR BATTERY SETS—continued

[^0]t At $\mathrm{Va}=120 ; \quad \mathrm{Vg}=0$.

MULLARD 4－VOLT VALVES FOR BATTERY SETS

Type．	Description．	Base．	Bulb Finish．	If．	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			（a） Va	（b） Vs or Vaux	（c） Vg for （a）or（b）	Ia for （c）	Opti－ mum Load．	Price．
					ra	m	gm						
P．M．I4	Screened Tetrode ．．．．	4－pin	Clear	0.075	230，000	200	$0 \cdot 87$	150	75	0	2．75	－	20／－
P．M． 3	Medium Impedance Triode ．．	4－pin	Clear	0.075	13，000	14	I． 05	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	3.5 4.5 6.0	$\left.\begin{array}{l}\mathrm{I} \cdot 6 \\ 2 \cdot 2 \\ 2 \cdot 8\end{array}\right\}$	－	8／6
P．M．4DX	Medium Impedance Triode ．．	4－pin	Clear	O．I	7，500	15	$2 \cdot 0$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	$1 \cdot 5-3 \cdot 0$ $3 \cdot 0-4.5$ $4.5-6.0$ 5.0	$\left.\begin{array}{l} I \cdot 5 \\ 2 \cdot 0 \\ 2 \cdot 5 \end{array}\right\}$	－	8／6
P．M． 4	Output Triode．．．．．．	4－pin	Clear	O：I	4，000	8	$2 \cdot 0$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	－	5.0 7.0 8.0 0.0	$\left.\begin{array}{r}5 \cdot 5 \\ 7 \cdot 5 \\ 10 \cdot 0 \\ 6 \cdot 0\end{array}\right\}$	9，000	10／6
P．M． 254	Super－power Triode ．．．．	4－pin	Clear	0.2	2，150	$6 \cdot 5$	$3 \cdot 0$	$\left\{\begin{array}{l}100 \\ 150 \\ 200\end{array}\right.$	二	9.0 15.0 21.0	$\left.\begin{array}{r}6 \cdot 0 \\ 10.0 \\ 15.0\end{array}\right\}$	6，000	13／6

MULLARD 6－VOLT VALVES FOR BATTERY SETS

Type．	Description．	Base．	Bulb Finish．	If．	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			（a） Va	（b） Vs or Vaux	（c） Vg for （a）or（b）	$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Opti－ mum Load．	Price．
					ra	m	gm						
P．M．5X	Medium Impedance Triode ．．	4－pin	Clear	0.075	14，700	$17 \cdot 5$	I 2	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	$\mathrm{I} \cdot 5-3 \cdot 0$ $3 \cdot 0$ $3 \cdot 0-4 \cdot 5$	$\left.\begin{array}{l}I \cdot 2 \\ I \cdot 6 \\ 2 \cdot 0\end{array}\right\}$	－	8／6
P．M．6D	Medium Impedance Triode ．．	4－pin	Clear	O．I	9，000	18．0	$2 \cdot 0$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	$1 \cdot 5-3 \cdot 0$ $3 \cdot 0-4 \cdot 5$ $4 \cdot 5$	$\left.\begin{array}{l}1 \cdot 5 \\ 2 \cdot 0 \\ 2 \cdot 5\end{array}\right\}$	－	8／6
P．M． 6	Output Triode．．．．．．	4－pin	Clear	O．I	3，550	$8 \cdot 0$	$\cdot 25$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	二	6.0 7.5 9.0	$\left.\begin{array}{l}4 \cdot 5 \\ 7 \cdot 0 \\ 9 \cdot 5\end{array}\right\}$	8，000	10／6

MULLARD 6-VOLT VALVES FOR BATTERY SETS-continued

Type.	Description.		Base.	Bulb Finish.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			$\begin{aligned} & \text { (a) } \\ & \mathrm{Va} \end{aligned}$	(b) Vs or Vaux	(c) Vg for (a) or (b)	$\begin{aligned} & \mathrm{Ia} \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Optimum Load.	Price.
						ra	m	gm						
P.M. 256	Super-power Triode ..		4-pin	Clear	0.25	1,850	$6 \cdot 0$	$3 \cdot 25$	$\left\{\begin{array}{l}100 \\ 150 \\ 200 \\ 250\end{array}\right.$	二	$7 \cdot 5-9 \cdot 0$ $10 \cdot 5-13 \cdot 5$ $18.0-21 \cdot 0$ $27 \cdot 0$	$\left.\begin{array}{r}6 \cdot 0 \\ 10 \cdot 0 \\ 15 \cdot 0 \\ 20 \cdot 0\end{array}\right\}$	6,000	13/6
P.M.256A	Super-power Triode ..		4-pin	Clear	0.25	1,400	$3 \cdot 6$	$2 \cdot 6$	$\left\{\begin{array}{l}100 \\ 150 \\ 200\end{array}\right.$	二	12.0 22.5 33.0	$\left.\begin{array}{l} 17 \cdot 0 \\ 23.5 \\ 30 \cdot 0 \end{array}\right\}$	2,200	13/6
P.M. 25	Output Pentode (also replaces P.M.2̈б)	.	$\begin{aligned} & \text { 4-pin } \\ & \text { or } 5-\mathrm{pin} \end{aligned}$	Clear	$0 \cdot 10$	-	-	I. 6	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	100 125 150	9.0 12.0 15.0	$\left.\begin{array}{l}6 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0\end{array}\right\}$	8,000	17/6

MULLARD INDIRECTLY-HEATED A.C. MAINS VALVES

Type.	Description.	Base.	Bulb Finish.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0 .$			(a) Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Optimum Load.	Price.
					ra	m	gm						
T.V. 4	Tuning Indicator ..	P. \dagger	Clear	$0 \cdot 3$	-	-	-	250	-	-	-	-	10/6
T.H. 4	$\begin{gathered} \text { Triode-hexode } \\ \text { Changer } \end{gathered} \text { Frequency }$	7-pin	Met.	I-O	-	-	I-O	250	70	I.5	4.0	-	15/-
T.H.4A	$\begin{array}{cc} \text { Triode-hexode } & \text { Frequency } \\ \text { Changer } & \text {.. } \\ \text {.. } \end{array}$	7-pin	Met.	I. 45	-	-	-	250	100	$2 \cdot 0$	3.5	-	15/-
F.C. 4	Octode Frequency Changer ..	7-pin	Met.	0.65	-	-	I.0	250	90	I. 5	-	-	15/-
V.P. 4	Variable-mu H.F. Pentode ..	$\begin{aligned} & \text { 5-pin or } \\ & 7 \text {-pin } \end{aligned}$	Met.	1.0	-	-	$\left\{\begin{array}{l} 2.5^{*} \\ 0.025^{*} \end{array}\right.$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 1 \cdot 5 \\ 22 \cdot 0 \end{array}$	$\left.\begin{array}{l} 6.0 \\ 0.25 \end{array}\right\}$	-	12/6
V.P.4A	Variable-mu H.F. Pentode ..	$\begin{aligned} & 5 \text {-pin or } \\ & 7 \text {-pin } \end{aligned}$	Met.	1.2	-	-	3.27*	200	100	1.5	5.0	-	12/6

* At $\mathrm{Va}=200 ; \mathrm{Vs}=100 . \quad \dagger 8$-side contact.

MULLARD INDIRECTLY-HEATED A.C. MAINS VALVES—continued

Type.	Description.	Base.	Bulb Finish.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			(a) Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Optimum Load.	Price.
					ra	m	gm						
V.P.4B	Variable-mu H.F. Pentode ..	7-pin	Met.	0.65	-	-	3•5	250	250	$3 \cdot 0$	$12 \cdot 0$	-	12/6
S.P. 4	H.F. Pentode	$\left\{\begin{array}{l} 5-\text { pin } \\ 7-\text { pin } \end{array}\right.$	Met.or $\left.\begin{array}{l}\text { Clear } \\ \text { Met. }\end{array}\right\}$ Met.	I.O	900,000*	2,700*	3.0*	200	100	I 5	$4 \cdot 5$	-	12/6
S.P.4B	H.F. Pentode	7-pin	Met.	0.65	-	-	$4 \cdot 0 \ddagger$	250	250	$2 \cdot 0$	4.5	-	12/6
M.M.4V	Variable-mu Screened Tetrode	5-pin	Met.	I•0	-	-	$\left\{\begin{array}{c}2.5 \dagger \\ 0.01 \dagger\end{array}\right.$	200 200	110	1.5 40.0	$\left.\begin{array}{l} 6.0 \\ 0.15 \end{array}\right\}$	-	12/6
V.M. 4 V	Variable-mu Screened Tetrode	5-pin	Met.	I. 0	-	-	$\left\{\begin{array}{l}\text { I } 22^{*} \\ 0 \cdot 005^{*}\end{array}\right.$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	100 100	$\begin{array}{r} 1 \cdot 5 \\ 40 \cdot 0 \end{array}$	$\left.\begin{array}{c} 8.5 \\ 0.025 \end{array}\right\}$	-	17/6
S.4V	Screened Tetrode	$\begin{gathered} 4-\text { pin or } \\ 5-\mathrm{pin} \end{gathered}$	Clear	1-0	909,000	1,000	I•I	200	75	I•0	1.5	-	17/6
S.4VA	Screened Tetrode	5-pin	Met. or Clear	I-0	500,000 \dagger	1,000 \dagger	$2 \cdot 0 \dagger$	200	110	1.5	$2 \cdot 75$	-	12/6
S.4VB	Screened Tetrode	5-pin	Met. or Clear	1.0	300,000	$750+$	$2 \cdot 5 \dagger$	200	110	I•5	$5 \cdot 0$	-	12/6
2D.4A	Double-diode	5-pin	Met.	0.65	-	-	-	-	-	-	-	-	5/6
2D.4B	Double-diode with separate Cathodes	7-pin	Met.	0.35	-	-	-	-	-	-	-	-	5/6
S.D. 4	Diode-tetrode	7-pin	Met.	I-0	-	-	3-0*	200	100	-	-	-	20/-
T.D.D. 4	Double-diode-triode	7-pin	Met.	0.65	10,000	29	$2 \cdot 9$	250	-	$7 \cdot 0$	$4 \cdot 0$	-	12/6

*At Va $=200 ; \quad \mathrm{Vs}=100$.
\dagger At Va $=200 ; \mathrm{Vs}=110$.
$\ddagger \mathrm{At} \mathrm{Va}=\mathrm{Vg} 2=250 ; \quad \mathrm{Vg}=\mathrm{c}$.

MULLARD INDIRECTLY-HEATED A.C. MAINS VALVES—continued

Type.	Description.	Base.	Bulb Finish.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			(a) Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Opti-mum Load.	Price.
					ra	m	g m						
994V	High Impedance Triode ..	5-pin	Met.	0.65	35,000	125	$3 \cdot 6$	200	-	1.5	I 35	-	13/6
904V	High Impedance Triode ..	5-pin	Met. or Clear	0.65	20,600	72	$3 \cdot 5$	$\left\{\begin{array}{l}150 \\ 200\end{array}\right.$	二	1.5 2.0	$\left.\begin{array}{l} \text { • } 6 \\ 2 \cdot 2 \end{array}\right\}$	-	9/6
484 V	Medium Impedance Triode ..	5-pin	Met.	I-0	21,800	48	$2 \cdot 2$	200	-	3.0	$2 \cdot 8$	-	13/6
354 V	Medium Impedance Triode ..	5-Pin	Met. or Clear	0.65	10,500	43	$3 \cdot 8$	250	-	$4 \cdot 5$	$6 \cdot 5$	-	9/6
244 V	Medium Impedance Triode ..	5-pin	Met.	0.65	9,000	25	$2 \cdot 8$	$\left\{\begin{array}{l}100 \\ 150 \\ 200\end{array}\right.$	-	3.0 4.0 5.5	$\left.\begin{array}{l}3 \cdot 0 \\ 4 \cdot 0 \\ 5.5\end{array}\right\}$	-	13/6
164 V	Medium Impedance Triode ..	5-pin	Clear	0.65	3,640	16.4	$4 \cdot 5$	$\left\{\begin{array}{l}100 \\ 150 \\ 200\end{array}\right.$	二	4.5 6.5 8.5	$\left.\begin{array}{r}5.5 \\ 9.5 \\ 13.0\end{array}\right\}$	-	14/-
154 V	Medium Impedance Triode ..	4-pin	Clear	0.65	7,500	15	$2 \cdot 0$	200	-	$6 \cdot 0-7 \cdot 5$	$9 \cdot 0$	-	14/-
T.T. 4	$\underset{\text { (Replaces 104V) }}{\text { Low Impedance Triode }} \quad .$.	5-pin	Clear	1-0	2,200	12	$5 \cdot 5$	250	-	$16 \cdot 0$	$20 \cdot 0$	10,000	10/-
Pen.4VA	Output Pentode	$\begin{aligned} & \text { 5-pin or } \\ & 7 \text {-pin } \end{aligned}$	Clear	1.5	-	-	3.5	$\left\{\begin{array}{l}150 \\ 200 \\ 250\end{array}\right.$	150 200 250	12.0 18.0 22.0	$\left.\begin{array}{l}20 \cdot 0 \\ 25 \cdot 0 \\ 32 \cdot 0\end{array}\right\}$	6,000	13/6

MULLARD INDIRECTLY-HEATED A.C. MAINS VALVES-continued

Type.	Description.	Base.	Bulb Finish	If.	Characteristics at$\mathrm{Va}=\mathbf{1 0 0} ; \mathbf{V g}=0$			$\begin{aligned} & \text { (a) } \\ & \text { Va } \end{aligned}$	$\begin{aligned} & \text { (b) } \\ & \text { Vs or } \\ & \text { Vaux } \end{aligned}$	$\begin{gathered} (\mathrm{c}) \\ \mathrm{Vg}_{\mathrm{g}} \mathrm{for} \\ (\mathrm{a}) \text { or (b) } \end{gathered}$	$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	Optimum Load.	Price.
					ra	m	gm						
Pen.4VB	Output Pentode	7-pin	Clear	1.95	-	-	$10 \cdot 0$	250	250	$5 \cdot 8$	$32 \cdot 0$	6,000	
Pen. A4	Output Pentode	7-pin	Clear	1.95	-	-	$10 \cdot 0$	250	250	5.8	32.0	8,000	13/6
Pen.B4	Output Pentode	7-pin	Clear	$2 \cdot 1$	-	-	$8 \cdot 0$						13/6
Pen.4DD	Double-diode Output Pentode				-	-		250	275	14.0	72.0	3,500	18/6
Pen. 428	Output Pentode	7-pin		$2 \cdot 25$	-	-	10.0	250	250	$6 \cdot 0$	$36 \cdot 0$	7,000	16/-
Pen. 428	Output Pentode ..	7-pin	Clear	$2 \cdot 1$	-	-	$8 \cdot 0$	375*	275*	20.5*	$62 \cdot{ }^{*} 0^{*}$	6,500*	25/-

Data for $2 \times P$ Pen. 428 used in Class ${ }^{}$ AB."

º MULLLARD DIRECTLY-HEATEDOUTPUTVALEVESFORA.C.SETS

MULLARD DIRECTLY－HEATED OUTPUT VALVES FOR A．C．SETS－continued

Type．	Description．				Base．	Bulb Finish．	If．	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0 .$			（a） Va	（b） Vs or Vaux	（c） Vg for （a）or（b）	Ia （c）	Opti－ mum Load．	Price．	
					ra			m	gm								
P．M．24A	Pentode．．	－	－			5－pin	Clear	$0 \cdot 275$	－	－	$2 \cdot 0$	300	$\left\{\begin{array}{l}100 \\ 150 \\ 200\end{array}\right.$	9.0 15.0 22.5	$\left.\begin{array}{l}10.0 \\ 15.0 \\ 20.0\end{array}\right\}$	10，000	18／6
P．M．24M	Pentode．．	\cdots	．		5－pin	Clear	I－O	－	－	$3 \cdot 0$	250	$\left\{\begin{array}{l}150 \\ 200 \\ 250\end{array}\right.$	9.0 12.0 18.0	$\left.\begin{array}{l}20 \cdot 0 \\ 30 \cdot 0 \\ 30 \cdot 0\end{array}\right\}$	8，000	13／6	
P．M．24B	Pentode．．	－	－	－•	5－pin	Clear	1－0	－	－	2－1	$\left\{\begin{array}{l}250 \\ 300 \\ 400\end{array}\right.$	250 300 300	33.0 $35 \cdot 0$ $40 \cdot 0$	$\left.\begin{array}{l}25 \cdot 0 \\ 40 \cdot 0 \\ 30 \cdot 0\end{array}\right\}$	8，000	22／6	
P．M．24C	Pentode．．	－	－	－•	5－pin	Clear	I•O	－	－	$3 \cdot 0$	400	200	$28 \cdot 0$	$30 \cdot 0$	12，000	22／6	
P．M．24E	Pentode．．	－	－	－	5－pin	Clear	$2 \cdot 0$	－	－	4•0	$\left\{\begin{array}{l}250 \\ 500\end{array}\right.$	200	$\begin{aligned} & 25 \cdot 0 \\ & 35 \cdot 0 \end{aligned}$	$\left.\begin{array}{l}70 \cdot 0 \\ 50 \cdot 0\end{array}\right\}$	7，000	45／－	
D．O．10	Triode ．．	－•	－	－•	4－pin	Clear	$\begin{aligned} & 6 \cdot 0 \mathrm{~V} \\ & 0.85 \mathrm{~A} \end{aligned}$	2，850	$2 \cdot 4$	0.85	（ $\left\{\begin{array}{l}200 \\ 300 \\ 400\end{array}\right.$	二	60.0 90.0 130.0	$\left.\begin{array}{l}17.0 \\ 25 \cdot 0 \\ 25.0\end{array}\right\}$	6，000	25／－	
D． 0.20	Triode ．．	－	－	－•	4－pin	Clear	$\begin{aligned} & 7.5 \mathrm{~V} \\ & \mathrm{I} \cdot 1 \mathrm{~A} \end{aligned}$	2，000	$5 \cdot 0$	$2 \cdot 5$	$\left\{\begin{array}{l}350 \\ 400 \\ 425\end{array}\right.$	二	$52 \cdot 5$ 61.5 $66 \cdot 0$	$\left.\begin{array}{l}34 \cdot 0 \\ 38 \cdot 0 \\ 40 \cdot 0\end{array}\right\}$	5，000	30／－	
D． 0.24	Triode ．．	－•	＊	＊	4－pin	Clear	$2 \cdot 0$	1，390	9＊0	$6 \cdot 5$	$\left\{\begin{array}{l}200 \\ 300 \\ 400\end{array}\right.$	二	13.0 24.0 34.0	$\left.\begin{array}{l}40 \cdot 0 \\ 50 \cdot 0 \\ 63 \cdot 0\end{array}\right\}$	4，000	25／－	
D． 0.25	Triode ．．	－•	－•	－	4－pin	Clear	$\begin{aligned} & 6 \cdot o \mathrm{~V} \\ & \mathrm{I} \cdot \mathrm{IA} \end{aligned}$	800	$3 \cdot 0$	$3 \cdot 75$	$\left\{\begin{array}{l}200 \\ 300 \\ 400\end{array}\right.$	－	45.0 78.0 112.0	$\left.\begin{array}{l}60 \cdot 0 \\ 60 \cdot 0 \\ 63 \cdot 0\end{array}\right\}$	4，000	30／－	
D．0．26	Triode ．．	－	－	．．	4－pin	Clear	$2 \cdot 0$	600	$3 \cdot 8$	$6 \cdot 3$	$\left\{\begin{array}{l}200 \\ 300 \\ 400\end{array}\right.$	二	$40 \cdot 0$ $63 \cdot 0$ $92 \cdot 0$	$\left.\begin{array}{l}38 \cdot 0 \\ 50 \cdot 0 \\ 63 \cdot 0\end{array}\right\}$	4，000	25／－	

MULLARD FULL-WAVE RECTIFIERS

MULLARD D.C. MAINS VALVES (DIRECTLY-HEATED)

Type.	Description.	Base.	Bulb Finish.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			(a) Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	Ia for (c)	Optimum Load.	Price.
					ra	m	gm						
P.M.I3	Screened Tetrode	$\left\{\begin{array}{l}\text { 4-pin } \\ 5 \text {-pin }\end{array}\right.$	$\left.\begin{array}{l} \text { Clear } \\ \text { Met. } \end{array}\right\}$	O-I	360,000	250	$0 \cdot 7$	200	100	0	4*0	-	20/-
P.M.4DX	Medium Impedance Triode . .	4-pin	Clear	O.I	7,500	15	$2 \cdot 0$	$\left\{\begin{array}{l}100 \\ 125 \\ 150\end{array}\right.$	-	$1 \cdot 5-3 \cdot 0$ $3 \cdot 0-4 \cdot 5$ $4 \cdot 5-6 \cdot 0$	$\left.\begin{array}{l} I \cdot 5 \\ 2 \cdot 0 \\ 2 \cdot 5 \end{array}\right\}$	-	8/6
P.M. 25	Output Pentode	$\begin{aligned} & \text { 4-pin or } \\ & 5-\text { pin } \end{aligned}$	Clear	O-I	-	-	I 6	150	150	15.0	10.0	8,000	17/6

MULLARD D.C. MAINS VALVES (INDIRECTLY-HEATED)

MULLARD UNIVERSAL (D.C./A.C.) MAINS VALVES $\underset{\substack{(S I D E \\ \text { BASES }}}{\substack{\text { CONTACT }}}$

Type.	Description.	Base.*	Bulb Finish.	Vf.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			(a) Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	I7 for (c)	Optimum Load.	Price.
						ra	m	gm						
T.V. 6	Tuning Indicator	P	Clear	$6 \cdot 3$	0.2	-	-	-	250	-	-	-	-	10/6
F.C.13	Octode Frequency Changer	P	Met.	13	0.2	1,500,000	-	-	200	90	I-5	I-6	-	20/-
V.P.i3A	Variable-mu H.F. Pentode. .	P	Met.	13	$0 \cdot 2$	1,000,000	2,200	$2 \cdot 2$	200	100	$2 \cdot 0$	4-0	-	17/6
S.P. 13	H.F. Pentode	P	Met.	13	0.2	1,300,000	3,000	$2 \cdot 2$	200	100	$2 \cdot 0$	$3 \cdot 5$	-	17/6
2D.13A	Double-diode-detector .	V	Met.	13	0.2	-	-	-	-	-	-	-	-	5/6

[^1]
MULLARD UNIVERSAL (D.C./A.C.) MAINS VALVES (SIDE CONTACT BASES)-continued

Type.	Description.	Base.*	Bulb Finish.	Vf.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0 .$			(a)Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	Ia for (c)	Optimum Load.	Price.
						r2	m	gm						
2D.13	Double-diode-detector ..	V	Met.	13	$0 \cdot 2$	-	-	-	-	-	-	-	-	5/6
H.L. 13	Medium Impedance Triode	P	Met.	13	$0 \cdot 2$	12,500	40	$3 \cdot 2$	$\left\{\begin{array}{l}100 \\ 150 \\ 200\end{array}\right.$	二	$2 \cdot 0$ $3 \cdot 0$ 4.0	$\left.\begin{array}{l}2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0\end{array}\right\}$	-	13/6
Pen. 26	Output Pentode ..	P	Clear	24	$0 \cdot 2$	-	-	$8 \cdot 0$	$\left\{\begin{array}{l}100 \\ .200\end{array}\right.$	100	$\begin{aligned} & 15.0 \\ & 19.0 \end{aligned}$	$\left.\begin{array}{l}50 \cdot 0 \\ 40 \cdot 0\end{array}\right\}$	9,000	18/6
						Max. Anode Volts (r.m.s.).				Max. Rectified Output (mA).				
U.R.I	Half-wave Rectifier . .	P	Clear	20	0.2	250				75				12/6
U.R. 3	Multiple Rectifier ..	P	Clear	30	0.2	250-0-250				120				15/-

MULLARD D.C.|A.C. VALVES (fin basss)

Type.	Description.		Base.	Bulb Finish.	Vf.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0$			(a) Va	(b) Vs or Vaux	(c) Vg for (a) or (b)	Ia for (c)	Optimum Load	Price.	
			ra				m	gm								
T.H.13C	Triode-hexode Changer	Frequency		7-pin	Met.	13.0	$0 \cdot 31$	-	-	-	250	70	I 5	4*0	-	15/-
T.H.2IC	Triode-hexode Changer	Frequency	7-pin	Met.	21.0	0.2	-	-	-	250	70	1-5	$4 \cdot 0$	-	15/-	
T.H.22C	Triode-hexode Changer	Frequency	-	-	-	-	-	-	-	-	-	-	-	-	15/-	

MULLARD D.C./A.C. VALVES (PIN BASES)-continued

Type.	Description.	Base.	Bulb Finish.	Vf.	If.	Characteristics at$\mathrm{Va}=100 ; \mathrm{Vg}=0 .$			(a) Va	$\begin{aligned} & \text { (b) } \\ & \text { Vs or } \\ & \text { Vaux } \end{aligned}$		$\begin{aligned} & \text { Ia } \\ & \text { for } \\ & \text { (c) } \end{aligned}$	OptiLoad.	Price.
						ra	m	gm						
F.C.13C	Octode Frequency Changer	7-pin	Met.	13	0.2	-	-	-	200	90	1.5	I 6	-	15/-
V.P.i3C	Variable-mu H.F. Pentode. .	7-pin	Met.	13	0.2	-	-	3.0*	200	200	$2 \cdot 0$	$9 \cdot 0$	-	12/6
S.P.13C	H.F. Pentode	7-pin	Met.	13	0.2	-	-	4***	200	200	1.5	$2 \cdot 5$	-	12/6
2D.13C	Double-diode-detector ..	5-pin	Met.	13	0.2	-	-	-	-	-	-	-	-	5/6
$\text { T.D.D. }{ }_{13} \mathrm{C}$	Double-diode-triode ..	7-pin	Met.	13	0.2	10,000	29	$2 \cdot 9$	200	-	$5 \cdot 0$	4.0	-	12/6
H.L.13C	Det. or L.F. Triode ..	7-pin	Met.	13	0.2	10,500	40	$3 \cdot 8$	200	-	$3 \cdot 7$	$5 \cdot 0$	-	9/6
Pen.13C	Output Pentode	7-pin	Clear	13	0.5	-	-	$6 \cdot 5$	250	250	II.9	$32 \cdot 0$	6,400	13/6
Pen.36C	Output Pentode	7-pin	Clear	35	0.2	-	-	8.0	200	200	9.0	$40 \cdot 0$	4,000	13/6
						Max. Anode Volts (r.m.s.).				Max. Rectified Output (mA).				
U.R.I.C.	Half-wave Rectifier.. .	5-pin	Clear	20	0.2									10/6
U.R.3C	Multiple Rectifier	7-pin	Clear	30	0.2		250-0							15/-

* At $\mathrm{Va}=\mathrm{Vg} 2=200 ; \mathrm{Vg}=0$

MULLARD EQUIVALENTS-B.V.A. TYPES

These tables provide a guide to the Mullard equivalents of valves of other makes, but it should be remembered that all types are not directly interchangeable. Correct replacements for, all sets will, however, be found in the booklet "Valves for Commerclal Receivers" or the Valves-in-Sets Binder.

2-VOLT VALVES

MULLARD EQUIVALENTS (B.V.A.)—continued
4-VOLT VALVES

Cossor.	Ever-Ready.	Ferrantr.	MULLARD.	Marconi, Osram.	Mazda.	Standard.	Six-Sixty.
4roSG	-	-	PM14	S410	-	-	4075SG
410SG	-	-	PMI3	S4io	-	-	-
4IORC	-	-	PM3A	$\mathrm{H}_{4} \mathrm{IO}$	-	-	4075RC
410HF	-	-	PM3	HL4io	-	-	4075 HF
410LF	-	-	PM4D X	L410	-	-	410D
410 P	-	-	PM4	P4io	-	-	4 roP
$\left\{\begin{array}{l}425 \mathrm{XP} \\ 415 \mathrm{XP}\end{array}\right.$	-	-	PM254	$\left.\left.\underset{\mathrm{P}_{425}}{\mathrm{P}_{415}}\right\}\right\}$	P425	-	420SP

6-VOLT VALVES

Cossor.	Ever-Ready.	Ferranti.	MULLARD.	Marconi, Osram	Mazda,	Standard.	Six-Sixty.
6roHF	-	-	PM5 ${ }^{\text {P }}$	HL6ro	HL610		75
6roLF	-	-	PM6D	L6io	-		oD
6roP	-	-	PM6	P6io	-		rop
625 P	-	-	PM256	P625	P625B		625 SP
6ıoXP	-	-	PM256A	P625A	P625A		625 SPA
615PT	-	-	PM25	PT625	-		617 PP

MULLARD EQUIVALENTS (B.V.A.)-continued

INDIRECTLY-HEATED A.C. VALVES

Cossor.	Ever-Ready.	Ferranti.	MULLARD.	Marconi, Osram.	Mazda.	Standard.	Six-Sixty.
41STH	A36A	-	TH4	-	-	-	-
-	A36B	-	TH4A	$\mathrm{X}_{4} 1$	AC/THI	-	-
$\left\{\begin{array}{l}\text { 41MPG } \\ 4 \mathrm{IPGD}\end{array}\right\}$	A80A	VHT4	FC4	$\mathrm{MX}_{40} \mathrm{X}_{42}$	-	15A2	-
MVS/PEN	A50M	$\mathrm{VPT}_{4}, \mathrm{VPT} 4 \mathrm{~A}$	VP4	VMP4	AC/VPr	9 AI	HP2AC
-	AsoN	VPT4B	VP4A	VMP4G	-	-	-
--	A50P	-	VP4B	-	$\mathrm{AC} / \mathrm{VP}_{2}$	-	-
MS/PenA	AsoA	SPT4, SPT4A	SP4	MSP4	AC/S2Pen	8AI	HPIAC
-	A50B	-	SP4B	-	-	-	-
MV/SG	A40M	-	MM4V	$\left\{\mathrm{VMS}_{4} \mathrm{VMS}_{4}\right.$ (${ }^{\text {a }}$	AC/SGVM	VSGAx	4MMAC
-	-	VS_{4}	VM4V	-	ACSIVM	-	4VMAC
4IMSG	-	-	S4V	MS/4/C	-	-	4SGAC
MSG/HA	-	-	S4VA	MS/4/B	$\mathrm{AC} / \mathrm{S} 2$	SGAI	4XSGAC
MSG/LA	-	-	S4VB	MS/4B	AC/SG	SGAi	4YSGAC
DD4, DDL4	A20B	-	2D4A	$\mathrm{D}_{4} \mathrm{r}$	$\left\{\begin{array}{l}\text { AC/DD } \\ \text { V914 }\end{array}\right\}$	DDAI	-
DDT	A23A	$\mathrm{H}_{4} \mathrm{D}$	TDD4	MHD 4 , DH42	AC/HLDD	$\left\{\begin{array}{l}\text { IIAI } \\ \text { IIA2 }\end{array}\right\}$	4DDTAC
-	-	-	994 V	-	-	HLAI	-

MULLARD EQUIVALENTS (B.V.A.)-continued

INDIRECTLY-HEATED A.C. VALVES-continued

MULLARD EQUIVALENTS (B.V.A.)-continued

DIRECTLY-HEATED A.C. OUTPUT VALVES

Cossor.	Evir-Ready.	Frrranti.	mullard.	Marconi, Osram.	Mazda.	Standard.	Six-Sixty.
-	-	P_{4}	AC064	-	-	-	HV/4/r
4 XP	$\mathrm{S}_{3} \mathrm{C}$	LP_{4}	AC044	PX4	$\mathrm{PP}_{3 / 250}$	-	HV/4/2
-	-	-	AC042	-	PA2O	-	-
$\left\{\begin{array}{l}415 \mathrm{PT} \\ 4 \mathrm{IOPT}\end{array}\right\}$	-	-	PM24	425PT	Pen425	-	415PP
-	-	-	PM24A	-	-	-	4 PenSP
PT_{41}	-	-	PM24M	PT4	-	PenAr	$4^{\text {PenM }}$
$\mathrm{PT}_{4} \mathrm{IIB}^{\text {B }}$	-	-	PM24B	-	-	-	-
-	-	-	PM24E	PT25	-	-	-
-	-	-	D024	PX25	PP5/400	-	-
68.0 T	-	-	D025	LS6A	-	-	HV/65
-	-	-	D026	PX25A	-	-	-

FULL-WAVE RECTIFIERS

Cossor.	Evir-Rrady.	Frrranti.	MULLARD.	Marconi, Osram.	Mazda.	Standard.	Philips.
$\left\{\begin{array}{l}408 \mathrm{BU} \\ 506 \mathrm{BU}\end{array}\right\}$	Sira	-	DW2	Uro	-	-	1821
442 BU	Sind	R4	$\left\{\begin{array}{l}\text { DW } \\ \text { d/350 } \\ \text { W }\end{array}\right.$	UI2	UU120/350	-	1807
460BU	-	R4A	$\left\{\begin{array}{l}\text { DW4/500 } \\ \text { DW4 }\end{array}\right\}$	U14	UU120/500	-	1561
-	-	-	IW2	-	$\left\{\begin{array}{l}\text { UU2 } \\ \text { UU60/250 }\end{array}\right\}$	Ri	1881
-	Aitb	-	IW3	MU12	$\mathrm{UU}_{3}, \mathrm{UU}_{4}$	${ }_{1} \mathrm{~A}_{7}, \mathrm{R}_{2}$	1867
-	Aird	-	IW4/350	-	4.	䢒家	-
-	Airc	-	IW4	MU14	UU5	R_{3}	1861

UNIVERSAL (A.C./D.C.) VALVES (Pin Base Types)

Cossor.	Ever-Ready.	Ferranti.	MULLARD.	Marconi, Osram.	Mazda.	Standard.	Six-Sixty.
-	-	-	THI3C	X3I	-	-	-
202STH	C36A	-	TH2IC	-	-	-	-
$\left\{\begin{array}{l} \text { 13PGA } \\ \text { 202MPG } \end{array}\right\}$	C80B	VHTA	FCl3C	-	-	15DI	-
-	C50N	-	VPI3C	-	VP1322	-	-
-	-	ZD	2013C	-	DD620	10DI	-
$\left\{\begin{array}{l} \text { 13DHA } \\ \text { 202DDT } \end{array}\right\}$	C23B	HAD	TDDI3C	-	HL/DDI320	${ }_{11} \mathrm{D}_{3}$	-
-	C30B	DA	HLI3C	-	HLI320	4DI	-
-	C70D	-	Pen36C	-	Pen. 3520	7D6	-
40SUA	CroB	RZ	URIC	-	U4020	ID_{5}	-
-	-	-	UR3C	-	-	--	-

MULLARD EQUIVALENTS
 Non-B.V.A. Types

These tables provide a guide to the Mullard equivalents of valves of other makes, but it should be remembered that all types are not directly interchangeable. Correct replacements for all sets will, however, be found in the booklet "Valves for Commercial Receivers" or the Valves-in-Sets Binder.

2-VOLT VALVES

Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362.
BK22	-	FC2	O202	MH206	-
-	-	FC2A	-	VO_{2}	-
PF472	VP215	VP2	S217	$\left\{\underset{\mathrm{HP}_{221}}{\mathrm{HP}_{21 \mathrm{I}}}\right\}$	VP2C
PF462	HP215	SP2	S218	$\left\{\begin{array}{l}\mathrm{HP}_{210} \\ \mathrm{HP}_{220}\end{array}\right\}$	-
TB622	SG220	PMI2A	$\left\{\begin{array}{l}\mathrm{S}_{207} \\ \mathrm{~S}_{215}\end{array}\right\}$	$\left\{\begin{array}{l}\text { S220 } \\ \mathrm{SS} 210\end{array}\right\}$	SG2
-	SG215	PMI2	S215	S2io	SG2
TB452	D	PMI2M	$\left\{\begin{array}{l}\mathrm{S} 208 \\ \mathbf{S 2 1 3}\end{array}\right\}$	$\left\{\begin{array}{l}\text { SV220 } \\ \text { SE220 } \\ \text { SE21I }\end{array}\right\}$	VS2
-	DDT220	TDD2	-		-
BBCi2	-	TDD2A	DT215	DDT_{2}	-
-	-	PMIA	W213	R208	H_{2}
-	-	PMIHF	HD_{2}	H210	-

MULLARD EQUIVALENTS (Non-B.V.A.)-continued

2-VOLT VALVES-continued

MULLARD EQंUIVALENTS (Non-B.V.A.)-continued
4-VOLT VALVES

Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362.
-	-	PMI4	S409	S407	SG4
-	-	PM3A	-	-	-
	-	PM3	H_{412}	HL406	HL4
-	-	PM4DX	A430	$\left\{\begin{array}{l}\text { LD } \mathrm{L}_{408} \\ \mathrm{LD}_{410}\end{array}\right\}$	L4
-	-	PM4	E414	L414	LP_{4}
-	-	PM254	E425	SP414	P_{4}

6-VOLT VALVES

Dario.	Hrvac.	MULLARD.	Triotron.	Tungsram.	362.
-	-	PM5X	-	HR607	HL6
-	-	PM6D	-	LG607	L6
-	-	PM6	-	P615	LP6
-	-	PM256	-	SP614	P6
-	-	P M256A	-	-	-
-	-	P M 25	-	PP6io	ME6

MULLARD EQUIVALENTS (Non-B.V.A.)-continued INDIRECTLY-HEATED A.C. MAINS VALVES

Dario.	Hivac.	MULLARD.	Triotron.	Tungeram.	362.
-	-	TH4	-	TX4	-
TK24	-	FC4	$\left\{\begin{array}{l}0407 \\ 0406\end{array}\right\}$	$\left\{\begin{array}{l}\mathrm{V}_{4}{ }_{4} \\ \mathrm{MH}_{4105}\end{array}\right\}$	$\mathrm{AC} / \mathrm{FC}_{4}$
TE474	AC/VP	VP4	S434N	$\left\{\begin{array}{l}\mathrm{HP}_{4105} \\ \mathrm{HP} 4106\end{array}\right\}$	ACVP4
-	-	VP4A	-	-	-
-	-	VP4B	-	VP4B	-
TE464	AC/HP	SP4	S435N	$\left\{\begin{array}{l}\text { HP4100 } \\ \mathrm{HP}_{41 \mathrm{I}} \\ \text { SPI }\end{array}\right\}$	ACHN4
-	-	SP4B	-	SP4B	-
TE554	$\left\{\begin{array}{l}\text { AC/VS } \\ \text { AC/VH }\end{array}\right\}$	MM4V	S43IN	AS_{4125}	ACVS_{4}
-	-	VM4V	$\left\{\begin{array}{l}\text { S415N } \\ \text { S43IN }\end{array}\right\}$	$\left\{\begin{array}{l}\mathrm{AS}_{4105} \\ \mathrm{AS}_{4125}\end{array}\right\}$	-
-	-	S4V	S4ION	AS494	-
TE424	AC/SH	S4VA	$\left\{\begin{array}{l}\text { S430N } \\ 304 \mathrm{AC}\end{array}\right\}$	AS495	ACSG4
TE524	AC/SL	S4VB	$\left\{\begin{array}{l}\mathrm{S}_{410 N} \\ \mathrm{~S}_{412} \mathbf{N}\end{array}\right\}$	$\left\{\begin{array}{l}\mathrm{AS}_{4} 120 \\ \mathrm{AS}_{4100}\end{array}\right\}$	-
TB24	AC/DD	2D4A	D401, D400	DD465	-
TE444	-	SD4	B430N	DS4ior	-
TBCi4	AC/DDT	TDD4	DT436	$\left\{\underset{\mathrm{DDT}_{4}}{\mathrm{DDT}_{4} \mathrm{f}} \mathrm{l}\right.$	AC/HL4DD
-	-	994 V	-	-	-
TE994	-	904V	A440N	AR495	-
TE384	-	484V	-	-	-
$\left\{\begin{array}{c}\text { TE384 } \\ \text { TE244 }\end{array}\right\}$	AC/HL	354V	$\left\{\begin{array}{l}\text { A430N } \\ \text { W4I5N }\end{array}\right\}$	$\left\{\begin{array}{l}\text { AR410I } \\ \text { AR4100 }\end{array}\right\}$	ACHL4
TE244	-	244V	-	-	-

MULLARD EQUIVALENTS (Non-B.V.A.)-continued
INDIRECTLY-HEATED A.C. MAINS VALVES-continued

Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362.
-	-	164 V	-	AG495	-
TE094	ACL	TT4	$\left\{\begin{array}{l}\text { E430N } \\ \mathrm{YN4} 4\end{array}\right\}$	AP495	ACPX_{4}
$\left\{\begin{array}{c}\text { TB634 } \\ \text { TB534 }\end{array}\right\}$	AC/Y	Pen4VA	$\left\{\begin{array}{l}\text { P441N } \\ \text { P440N }\end{array}\right\}$	APP4120	$\mathrm{ACME}_{4} \mathrm{C}$
TL44	AC/Z	PenA4	P495	APP4B, APP4C	-
-	AC/YY	PenB4	-	$\mathrm{APP}_{4} \mathrm{D}$	-
DIRECTLY-HEATED A.C. OUTPUT VALVES					
Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362.
-	-	ACI04	E425	P_{430}	-
- -	$\mathrm{PX}_{4} \mathrm{I}$	AC044	K435/10	$\left\{\begin{array}{l}\mathrm{P}_{4} 60 \\ \mathrm{Or5} / 400\end{array}\right\}$	$\mathrm{ACPX}_{4} \mathrm{~A}$
-	-	PM24	-	PP_{415}	ME4
TC434	--	PM24A	P_{425}	PP43I	-
TE434	FY	PM24M	P_{435}	$\left\{\begin{array}{l}\text { PP4 } 4101 \\ \text { APP4ioo }\end{array}\right\}$	$\left\{\begin{array}{l} \mathrm{ACME}_{4} \mathrm{~A} \\ \mathrm{ACME} 4 \mathrm{~B} \end{array}\right\}$
-	-	PM24E	P_{440}	-	,
-	-	DO20	-	210	-
-	-	DO24	K480	P25/500	-
-	-	DO26	-	P26/500	-

MULLARD EQUIVALENTS (Non-B.V.A.)-continued
D.C. MAINS VALVES

Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362.
-	-	VP20	S2034N	HP2II8	-
-	-	SP20	S2035N	HP2018	MHM20
-	-	SG20	-	SS2018	MSG20
-	-	SD20	B2030N	DS2218	-
-	-	H20	A2040N	-	-
-	-	HL20	-	R2018	MHL2O
-	-	Pen20	P2020N	PP2018	MME2o

FULL-WAVE RECTIFIERS

Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362.
FWI	-	DW2	$\left\{\begin{array}{l}\text { G470 } \\ \text { G431 } \\ \text { GN24 } \\ \text { GA24 }\end{array}\right\}$	PV495	RB4x
FW2	-	$\left\{\begin{array}{l}\text { DW4/350 } \\ \text { DW3 }\end{array}\right\}$	G4iro	PV495	RB/350/80
FW3	-	$\left\{\begin{array}{l}\text { DW4 } \\ \text { DW4/500 }\end{array}\right\}$	G4120	$\left\{\begin{array}{l}\text { PV } \mathrm{PV}_{4200} \\ \mathrm{PV} 4201\end{array}\right\}$	$\left\{\begin{array}{l}\mathrm{RB}_{442} \\ \mathrm{RB} 500 / 120\end{array}\right\}$
-	UU/60/250	IW2	-	-	-
-	UU/120/350	IW3	-	$\mathrm{APV}_{4200}, \mathrm{APV}_{4}$	-
IFW 1	UU/120/500	IW4	G4120N	-	-

MULLARD EQUIVALENTS (Non-B.V.A.)-continued

UNIVERSAL (A.C./D.C.) VALVES (Pin Base Types)

Dario.	Hivac.	MULLARD.	Triotron.	Tungsram.	362
	-	TH2IC	-	TX21	-
TB5013	-	FCl3C	Or307	VOr3	-
TF313	-	VPI3C	SI323	$\mathrm{VPras}_{3} \mathrm{~B}$	-
TF713	-	SPI3C	Si328	SP13B	-
-	-	2D13C	Di300	DD13	-
TBCiI3	-	TDDI3C	DT1336	DDTı3	-
-	-	HLI3C	-	HLi3	-
TL413	-	Pen36C	-	PP35	-
TWI	-	URIC	G2080	V30	-
-	-	UR3C	G3060	-	-

APPENDIX

Pages

Base Connections of Mullard
Valves:-
5-Pin, 7-Pin and 9-Pin Iog-IIo
Universal P Type and V
TyPE III

Mullard
 THE•MASTER•VALVE

BASE CONNECTIONS FOR 5-pin, 7-pin \& 9-pin VALVES

Valve bases viewed from the free ends of pins.

5-PIN BASE

Descripton.	Valve Type.	Pin Number.					Top Cap.
		I	2	3	4	5	
I.H. Battery Double-diode	2D2	D2	DI	H	H	C	-
Battery Double-diode-triode ..	$\begin{array}{ll} \text { TDD2 } & . . \\ \text { TDD2A } & . . \end{array}$	A	Dr	F	F	D2	G
I.H. Mains Double-diode	$\begin{array}{ll} 2 \mathrm{Dr}_{3} \mathrm{C} & \ldots \\ 2 \mathrm{D}_{4} \mathrm{~A} & \ldots \end{array}$	D2	DI	H	H	C	-
I.H. Half-Wave Rectifier ..	URIC ..	A	-	H	H	C	-

7-PIN BASE

Description.	Valve Type.	Pin Number.							Top Cap.
		I	2	3	4	5	6	7	
I.H. Mains Triode Hexode Frequency Changer	$\begin{array}{ll} \mathrm{TH}_{4} & \cdots \\ \mathrm{TH}_{4} \mathrm{~A} & \cdots \\ \mathrm{TH}_{13} \mathrm{C} & \cdots \\ \mathrm{TH}_{21} \mathrm{C} & \cdots \\ \text { TH22C } & \cdots \end{array}$	Ao	$\begin{aligned} & \text { Go } \\ & \text { G3 } \end{aligned}$	$\begin{aligned} & \mathrm{G}_{2} \\ & \mathrm{G}_{4} \end{aligned}$	H	H	$\begin{aligned} & \mathrm{C} \\ & \mathrm{M} \end{aligned}$	A	Gr
I.H. Mains Octode	$\begin{array}{ll} \mathrm{FC}_{4} & \cdots \\ \mathrm{FCI}_{3} \mathrm{C} & \cdots \end{array}$	G2	Gr	$\begin{aligned} & \text { G3 } \\ & \text { G5 } \end{aligned}$	H	H	$\begin{aligned} & \mathrm{C} \\ & \mathrm{MI} \\ & \mathrm{G} 6 \end{aligned}$	A	G_{4}
Battery Octode	$\begin{array}{ll} \mathrm{FC}_{2} & . \\ \mathrm{FC}_{2} \mathrm{~A} & \cdots \end{array}$	G2	GI	$\begin{aligned} & \mathrm{G}_{3} \\ & \mathrm{G}_{5} \end{aligned}$	F	F	M	A	G4
Battery H.F. Pentode . . .	VP2; SP2	M	Gr	G3	F	F	-	G2	A
Battery Hexode Mixer	VP2B	M	A	G3	F	F	G4	G_{2}	GI

BASE CONNECTIONS-continued

7-PIN BASE-continued

Description.	Valve Type.	Pin Number.							
		1	2	3	4	5	6	7	ap.
I.H. Mains H.F. Pentode . .	$\begin{aligned} & \mathrm{VP}_{4} ; \mathrm{VP}_{4} \mathrm{~A} ; \\ & \mathrm{SP}_{4} \quad . \end{aligned}$	M	Gi	G3	H	H	C	G2	A
,	$\begin{array}{ll} \mathrm{VP}_{4} \mathrm{~B} & \cdots \\ \mathrm{SP}_{4} \mathrm{~B} & \cdots \\ \mathrm{VP}_{13} \mathrm{C} & \cdots \\ \mathrm{SP}_{13} \mathrm{C} & \cdots \\ \mathrm{TSP}_{4} & \cdots \end{array}$	M	A	C3	H	H	C	G2	GI
I.H. Mains Output Pentode . .	PenyVA Pen4VB PenA_{4} PenB4 Pen428 Pen36C Peni3C		GI	G 2	H	H	C	A	-
I.H. Mains Double-diode-triode	$\begin{array}{ll} \mathrm{TDD}_{4} & . \\ \mathrm{TDDI}_{3} \mathrm{C} \ldots \end{array}$	Dr	M	D_{2}	H	H	C	A	G
I.H. Mains Double-diode Output Pentode	Pen4DD ..	DI	C	D2	H	H	A	G2	Gi
I.H. Mains Triode . . .	HLi3C ..	M	-	-	H	H	C	A	G
Battery Class B Output ..	$\begin{array}{ll} \mathrm{PM}_{2} \mathrm{~B} & . \\ \mathrm{PM}_{2} \mathrm{BA} & \ldots \end{array}$	G_{2}	GI	AI	F	F	-	A2	-
Mutiple Rectifier ..	UR3C ..	-	AI	Cr_{1}	H	H	C 2	A_{2}	-
I.H. Double-diode (Separate Cathodes)	$2 \mathrm{D}_{4} \mathrm{~B} \quad$.	M	D2	C2	H	H	CI	Dr	-

9-PIN BASE

Description.	Valve Type.	Pin Number									Top Cap.
		I	2	3	4	5	6	7	8	9	
Battery Q.P.P. Output .. .	QP22A ..	Gr_{1} (a)	A (a)	\mathbf{G}_{2} (a)	F	F	-	G_{2} (b)	A (b)	GI_{1} (b)	-

[^0]: * Total Quiescent Current.

[^1]: ${ }^{*}$ P Base $=8$ contact ; V base $=5$ contact.

