

Industrial Cathode Ray TubesVolume 2Data Section Issue 3

Data Section Issue 3

Volume 2

INDUSTRIAL GATHODE RAY TUBES

Volume 2

The facilities and organisation of Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS.9000.

Thorn Radio Valves and Tubes Limited Mollison Avenue, Brimsdown, Enfield, Middx. EN3 7NS Telephone: 01-804 1201 Telex: 23953

B171/SP/1.5M/1078

Printed in Gt. Britain

The third edition of the Brimar Handbook has been published in two volumes.

Volume 1	Operational recommendations Safety recommendations Aspects of Design Reports
Volume 2	Tube Index Tube selection tables Design data of phosphors Design data of accessories Design data of tubes

Volume 1 is printed in English, French, German, Italian and Spanish.

Volume 2 data sheets are printed in "English" but the "terms" used in the volume are translated and can be found in the general section. The data sheets are filed in alpha-numerical order of tube type numbers.

Extreme care has been taken in the preparation of the data to ensure these volumes are as comprehensive, accurate and up to date as possible at the time of going to press. Before designing tubes into equipment, it is advisable to check with the sales office or authorised agents that availability and data remain unaltered.

HEALTH AND SAFETY AT WORK ACT 1974

Attention is drawn to the recommendations under this heading in the Safety Recommendations in volume one.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the operational recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

APPLICATIONS SERVICE

The Applications Laboratory provide a free advisory service to equipment manufacturers.

THORN RADIO VALVES AND TUBES LIMITED Applications Laboratory, Mollison Avenue, Brimsdown, Enfield, Middx. EN3 7NS The following data is additional to that shown in the previous edition.

	New Tube Data
D10-293	6.8cm x 5.6cm display area, Medium to high bandwidth mesh p.d.a. tube.
D14-270	10cm x 8cm display area, short length, mono-accelerator tube.
D14-280	10cm x 8cm display area, Medium to high bandwidth mesh p.d.a. tube.
D14-310	10cm x 8cm display area, high performance mesh p.d.a. tube.
D18-160	12cm x 10cm display area, Medium to high bandwidth mesh p.d.a. tube.
M8-100	74mm x 24mm display area, low profile screen, ruggedised gun construction data display tube.
M17-152	M17-15 with special minimum blemish screen for diagnostic photo- graphy.
M23-111	23cm screen diagonal, 90° deflection angle, 20mm neck data display and monitor tube with anti-reflection face-plate.
M23-112	23cm screen diagonal, 90° deflection angle, 20mm neck data display and monitor tube with Rimguard III implosion protection.
M23-113	23cm screen diagonal, 90° deflection angle, 20mm neck data display and monitor tube with a tinted bonded face-plate and mounting lugs
M24-130	24cm screen diagonal, 90° deflection angle, Mobile or military monitor fully ruggedised construction tube bonded face-plate integral mounting lugs.
M28-133	28cm screen diagonal, 90° deflection angle, data display or monitor tube with a tinted bonded anti-reflection face-plate.
M31-190	31cm screen diagonal, 90° deflection angle, Medical, data display or general purpose monitor tube. Rimguard III protection. Integral mounting lugs.
M31-191	Version of M31-190 with a tinted bonded anti-reflection face-plate. 15% screen glass transmission.
M31-192.	Bonded face-plate version of M31-190 50% screen glass transmission.
M31-212.	31cm screen diagonal, 90° deflection angle tube specially designed for data display, with tinted bonded anti-reflection face-plate, integral mounting lugs.
M31-213.	M31-212. but with clear glass bonded face-plate.
M38-105	M38-100 with a tinted bonded anti-reflection face-plate. 15% screen glass transmission.
M38-106	M38-100 with a tinted bonded anti-reflection face-plate, 30% screen glass transmission.
M38-142	31cm screen diagonal, 110° deflection angle, high voltage focus, high resolution data display tube with Rimguard IV protection and integral mounting lugs.
59-60/90/074	38cm screen diagonal, 90 [®] deflection angle fully ruggedised construction tube for mobile or military monitor application. Rimguard III re-enforced envelope and flying lead connections.
	New Ancillary Data
Tube index	
Phosphor Scr	eens GX GY Socket B12FPC

Phosphor Screens	GX, GY	Socket	B12FPC
Graticules	58, 70, 82, 90, 98	Scan Coils	TBY2, TBY3, TBY5, TBY7

GENERAL	Pro-electron Nomenclature Translation of Terms Tube index Selection Tables for Oscilloscope, Radar, Monitor Data Display Tubes, Magnetic Shields and Tube Coils	GENERAL
PHOSPHOR SCREENS	Equivalents and Data Summary Chart Comparative persistence curves Spectral energy distribution curves and Persistence curves for individual phosphor screens	PHOSPHOR SCREENS
GRATICULES GAUGES BASES SOCKETS CAPS SCAN COILS	Graticules Gauges—Neck dimensions for scanning coil design Bases and Sockets—Dimensions Sparkguard flashover protection Caps and Scan Coils	GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COILS
OSCILLOSCOPE TUBES	Current and maintenance types filed in alpha/numerical order including Mono-accelerator tubes Spiral p.d.a. tubes Mesh p.d.a. tubes Tube coils and magnetic shields	OSCILLOSCOPE Tubes
RADAR TUBES	Current and maintenance types filed in alpha/numerical order including P.P.I. display radars Sector display radars Self-labelling radars Compass tubes	RADAR TUBES
DATA DISPLAY AND MONITOR TUBES	Current and maintenance types filed in alpha/numerical order including Tubes for alpha-numeric and graphic displays Medical waveforms Picture monitors	DATA DISPLAY & MONITOR TUBES
SPECIAL TUBES	Current and maintenance types filed in alpha/numerical order including Flying spot scanner tubes Monoscopes	SPECIAL TUBES

Pro Electron Nomenclature

Industrial Cathode Ray Tubes

The type nomenclature consists of one letter and number joined by a hyphen to a number and one or two letters.

FIRST LETTER CLASSIFICATION

The first letter indicates the application and/or construction of the tube.

- A TV display tube for domestic applications
- D Oscilloscope tube, single trace
- E Oscilloscope tube, multiple trace
- F Radar display tube, direct view
- L Display storage tube
- M Professional television or display tube (except radar), direct view
- P Professional television or display tube, projection
- Q Flying-spot scanner

FIRST NUMBER CLASSIFICATION

The first number indicates the overall diameter or the overall diagonal of the glass envelope (face-plate) in cm.

- 7 Represents a 7 cm (3 in) face-plate
- 13 Represents a 13 cm (5 in) face-plate
- 50 Represents a 50 cm (20 in) face-plate

Note: Since the centimetre is smaller than the inch it is possible that more than one first number corresponds to a particular inch size tube, e.g. 47 and 49 have both been allocated for 19 inch tubes.

SECOND NUMBER CLASSIFICATION

The second number is a two or three figure serial number indicating a particular design or development.

FINAL LETTER(S)

The final letter(s) indicates the screen properties.

The first letter denotes the colour of the fluorescence (or phosphorescence in the case of long or very long persistence screens) according to the regions of the Kelly Chart of colour designations for lights, where applicable:

- A Reddish-purple, purple, bluish-purple
- B Purplish-blue, blue, greenish-blue
- D Blue-green
- G Bluish-green, green, yellowish-green
- K Yellow-green
- L Orange, orange-pink
- R Reddish-orange, red, pink, purplish-pink, purplish-red, red-purple.
- W "Standard White" television display tube phosphor.
- X Tri-colour screen
- Y Greenish-yellow, yellow, yellowish-orange.

The second letter is a serial letter to denote other specific differences in screen properties.

SUFFIXES

Internal or external graticules are indicated by a two-figure suffix separated from the final letter by an oblique stroke. Letter suffixes may also be used for Sparkguard bases.

- EXAMPLES
 - D13-51GH Single trace oscilloscope tube with a 13 cm (5 in) face-plate with phosphor type GH.

M59-25GM/24 Professional display tube with a 59 cm (23 in) face-plate and phosphor type GM and having an external co-ordinate graticule. type 24.

Thorn Radio Valves and Tubes Limited

BRIMAR

Issue 3, Page 1

Translation of Terms

Tubes a Rayons Cathodiques Industriels FRANÇAIS

Traduction des Termes

Industrielle Elektronenstrahlröhren DEUTSCH Übersetzung der Fachausdrücke

ITALIANO

Traduzione di Termini

Tubi a Raggi Catodici Per Uso Industriale

Tubos de Rayos Catódicos Industriales ESPAÑOL Traducción de Términos

Thorn Radio Valves and Tubes Limited

ENGLISH Abridged data

Aluminised screen

Anti-flicher Anti-reflection faceplate

Application

Banded o.d.e Beam alignment

electrode Black 81ue **Bonded face plate**

Camera viewfinder Classification Clear glass Clased circuit television Common features

Common X deflection Comparables Compass tube Co-ordinate graticule

Corners cut Current type

Date Display Tube

Deflection yoke Demonstration tube Design data sheets Direction finder Double gun escillescope Duel phosphe

Edge illumination Electrostatic deflection Electrostatic focus

Equipment manufacturers Equivalente Esternal graticula

Fist face Flashover protection

Flexibility Flugrescent Flying-spot scanner

General purpose Graduated scale Graticule Green Grey

High sensitivity High voltage focus

Implosion protection Industrial

applications Industrial monitor

Instrument tubes Integral mounting luge Internal graticule Internal scale

FRANCAIS caractéristiques résumées

Acres alumined anti-acintiliament

Face avent anti-réflezion application

R P A en bande nammée

électrode d'alignement du faisceau Nor bleu plaqua protectrice de Verte

viseur de caméra classement Verrs transparent Idévision en circun

1 aurori A caractéristiques deflection X commi types comparables tube pour boussoles graticula de

coordonnées Coins Taillés types courants

Tube de visualisation de dannées Collier de déviation tube de démonstration feuilles de caractéristiques goniomètie oscilloscope à double canon phosphore double

Eclarage resent déviation Alectrosterious concentration

disct/ostatique Inbricants d équipements équivalents DIALICUIA BALARIANIA

caractéristiques Eace médiate Protection de contournement ouplesse Huprescent balayage à spot mobile

usege général échelle graduée graticule veri Gni

haute sensibilité Focal-sation haute-tension

protection contre les 06-071 utilizations industriellas

contrôle industrial

tubes dinstrument pattes de fisâtion incorporées graticule intérieure helie inténeurs

OBUTSCH Kurzdeten

Alumnumhinterleater Leuchstchim Schumbager mit Reflexionsschutz Anwendung

Nachbeschleunigung mil Bandelettode Zentnerslettode

Schwarz Bies Verbundglasscheibe

Kamerasuche Klassifizierung Durchsichtiges Glas Industrielles Fernechen

Gemeinsteine Merkmale

Normale X-Ablenhung Vergleichbare Typen Lunkpeilrohre Koordinatenraster

Gerundete Ecken Laufende Typen Datendarstellungsvolve

Ablentijoch Demonstrationsrohre Datenblatte Furikpeiler Zweistrahloszillograph

Dual Photobox

Randteleucht und Elektrostatische Ablenkung Fightigstatische Fokussierung Garalaberstelle

Aquivalente Außenreste

Markmala Flacher Schern Uberschlagschutz

Flaxibilitat Fluorestent

Mehrzweck Kalibuarte Stale Raster Grun Grau

Hohe Emplindlichkeit Huchspannungsbundelung

molowoosechutz

Industrielle Anwendungen

Industrieller Monito

Instrumentenrohren Eingearbeitete Befesti gungsosen Innenraster Innenskala

TALLANO Dati abbreviat

ermo alluminizzato nti-flicker

Pannello liontale anti-reliattente Applicazione

Post accelerazione anodica a banda Elettrodo de allanesmento del lasco Neio 814 Pannello frontale bonded

Mirino per telecamera Classificazione Vetro lucido Televisione a circuito

chiuso Carattenstiche comun

Dellessione X comun Tipi comparabile Tubo per bussola Reticolo a coordinate

Angoli tagliat Tigi conanti

Tubo overentezione den

giogo deviator Tubi da dimostrazione Pagine del dati Indicatore di diresione Oscilloscopio a doppio cannone Fostoro doppio

Illuminazione dei contois Dellessione elettrostatica

Focalizzazione elettro statica Costrutton di apparec chiature Equivalenti Reticolo esti

Carationsliche Faccia plana

Protezione contro scanche elettuche Flessibilità

Fluorescente Flying spot scanne

Impiego generale Scale graduate Retir ala Verde Grigio

Elevata sensibilità Focabzearione ad alla tensione

Protezione contro Fimplosione Applicationi industriali

Monitor per implegh industriali Tubi per istrumenti Alette di fisseggio

incorporate Reticolo interno Scala interna

ESPANOL Datos Abreviados

Pantalla Aluminizada

Anti-perpedeo Placa asterna antimellejos

Anlicación

acelerador post-deflexión de bande Electrodo de Alineación de Hez negro Azul Placa Protectora Incorporada

Visor de la Câmera licación viduo transparente Televisión en Circuito Cauado Carecteristicas Comunes

Desviación X Común Tipos comparables Tubo Compás Residula de Coordenades

esquines redondeades Tipos Comentes

Tubo para presentación too de desviat Tubo de Demostración Hojas de Dalos

Goniómetre Osciloscopio de Cañón Doble Fósforo Doble

Iluminación de bordes Desveción Electrostética

Enfoque Electrostática

Fabricantes de Equipos

Equivalentes Raticula Externa

Carácteristicas care liene protección salto de chuspa

Flambuldad Fluorescenie Exploración de Punto Volente

De Uso General Escala Graduada Reticula Veide Q'15

Alte Sensibilided foco de alte tensión

Protección contra Implosión Aplicaciones Industriales

Monitor Industrial

Tubos para instrumentos Orejetas de Montura Integradas Reticula Interna Escala Interne

ENGLISH Large display area

Large ecreen eres

Large screen oscilloscope Large spot Light injection Long Magnetic deflection

Magnetic focus

Magnetic shield Maintenance Marine redar Medical application Medium Medium bandwidth

Medium short Mash P.D.A

Mono eccelerator Monoscopes Mounting frame

Narrow nach Neck diameter

Obsolescent Obsolete Octantel correction Orange Decilloscope tube Overall length

Persistence P.D.A. ratio

Phosphorescence Photography Post dellection ecceleration P.P.I. display

Purple

Radar tube Rectangular face Reinforced envelope Bumband Rimguard Round face

Sales classification Scan coil Screen diameter

Secondary Shart length Short nech Shart persistence Side plns Single gu Small electrostatic lubes Socket Sparkguard base

Special quality Special phosphore Spiral P.D.A.

Standard phosphora Strengthened atructure Studio monitor

FRANCAIS granda surface d'image granda surface d'Acres

oscilloscope à grand Acren Grossog Injection lumineuse largeur de ligne lang

déviation magnétique concentration magnétique

Ecran magnélique entreuen redar marine Application médicale mayen largeur de bande oyenne

Iongueur moyecne post-accélération mesh Munoscelléraleu monoscopes cadre de montage

Col etroit mètre du col

panme conscion octantale tube pour oscilloscope Inneusur hors lout

persistance accelération luminescence phosphores photographie accélération après deflection vitualisation P.P.I.

tube radar face rectangulare enveloppe renforcée bande métallique coquille métallique Actes tond

Bolane de balavage diamètre de l'écra

paramètres secondaires

longueur réduite col court courte persistênce sorties latérales canon unique tubes peuts discircistatiques Douille base anti-flash

qualité spéciale phosphores spéciaux post accélération spirale

Phosphores standards tructure renforcée contrôle de studio

DEUTSCH Große nutzbere Schirmflache

Große Leuchtschem lische Oszillograph mit großem Leuchtschirm Großer Lichtliech Lichteinstreuung Zeilenbreite

Lang Magnetische Ablenbung Magnetische Fotussierung Magnetische Abschilmung Nachbestuckung Schillweder Medizinische Anwendung Mittel Mittlere Bandbreite

Mittel-Kurz Maschen-Nachbeschleu nigungselektrode M ... eschleuniger Monoskopen Befestigungsahmer

Enger Hals Haladurchmesse Austauland

Ausgetautene Achtelkreisige Konection Orange Oszillographeorohre Gesemilance

Nachleuchtdauer Nachbeschleumgungsver haltnis Nachleuchten Leuchtschaman Photographie Nachbeschleunigung

P.P.L.-Darstellung

Purout

Redarbildrohre Rechteckige Frontflache Verstanter Kolben Matalistradaoschutz Metallishmen Runder Schum

Klassifizierung Atlenhapule Leuchtschirmdurchmasses Sekundarparameter

Kurze Baulange Kurze Kolbenhala Kurz Nachleuchida Seitliche Anschlußstifte Kleine elektrostatische Rohrer

Spanial Phosphor Spiratformige Nach beschieumounes. alektrode Normalleuchtschirmerten Verstachtekonstruktion

ITALIANO

Veste area di rappresentezione Grande schermo

Oscilloscopio a grande scharmo Grande macchia luminosa Integione di luce Ampiezza di linea Lungo Deflessione megnetice

Focalizzazione magnetica

Schermo magnetico Menutenzione Radar manno Applicazione medica Medio Media larghezza di benda

Medio breve Post accelerazione anodica a griglia mono-acceleratore Monoscopi Telaio di fissaggio

Collo stretto Diametro del collo

In maummento Ensurito Correzione degli ottante Arancio Tubo per ascillascapio Lunghezza totale

Persistenza Rapporto di post eccelerazione anodica Fostorescenza Foston fotografia Post accelerazione anodica Indicatore di posizione ganoramico

Porpora Tubo per radas

Superficie remangolare nvolucro naloresto Strucia metallica Guscio metallico Faccus curcolaus Classificazione

Bobina per scansione Diametro dello schermo

Perameto seconder

Cono Collo corto Breve Persistenza Contetto laterali Cannone singolo Tubi piccoli elettrostetici

Press Rese di protezione contro le scariche Qualità speciale Fostori speciale Post accelerazione anodica a spirale

Fosfori standard Strutture inforzate

Monitor per studio

ESPANOL

Area de Presentación Ampha Area de Pantalia Ampha

Osciloscopio de Pantella Amolia

gran punto invección de luz Anchura de Lines Laugo

Detlesión Magnética Enfoque Magnético Blindelle meanduro

Mantenimiento Radar Marinu Aplicación medica Medio Anchura de Banda Media

Medio Conto Acel. Post Deav. Repla

Mono acelerado Monoscopios Márco de Monture

Cuello estrecho Diámetro de Cuello

Fuera de Uso Conección Octanial Narania Tubo de Osciloscopio Longitud Total

Persistencia Relación de Acel. Posi-Desv Fáslaros Fotografia Aceleración Post-Deflexión

Presentación P.P.I. Ritemuse

Tubo Radar Cara Rectangula Bulbo Relorado Banda metélica Piotección del Borde Cars curulas

Classific ación Bobina de exploración Diâmetro de Pantella

Parámetros Secundarios

Longitud Corta Cuello Corto Cons Persistencia Pabilas Laterales Cañón Sencello Tubos electrostáticos pequeños Zocalo Zócalo a Prueba de Arcos

Calidad Especial Fásicros Especiales Esperal Acel: Post Desv

Fásloros standard Estructure reforzade

Monitor de Estudio

Issue 2, Page 2

Einstrahlsystem Fassung Funkenschutzsockel Sonderquelitet

Studio, Monitor

ENGLISH

Television monitor Trace Transistorised Transistor scen Twist coil

Two phosphor screen Typical operation

Uniformly graduated

Very long Very short

Waveform display

White Wide bandwidth

Yellow X-Y plotter

plotter X Y

FRANCAIS

contrôle de télévision Trace transistonsé Balayage par transistor Bobine de dévration

écran à deux phosphores conditions typiques d'emplei gradué unformément

tiês long tiês coult

visualisation de la forme

blanc large bande

Jauna

DEUTSCH

Fernsehmonitor Spur Transistorisiert Transistoreblastung Koordinatenabglijichspule

Dual Leuchtschirm Typische Betlebsweite

Statige Teilung

Sehi lang Sehi kurz Oszillogramme

Weiß Große Bandbreite Gelb

Koordinatenschreiber

ITALIANO

Monitor per televisione Traccia luminose Transistorizzato Scansone a fumilistor Bobina di regolazione coordinate Schermo con due fostori Funzionamente libico

Graduato undormemente Molto lungo

Molto breve Representazione di forme d'onde Bianco Ampia larghezza di bende

Giallo Traccutore X-V

ESPANOL

Monitor de Televisión Trezado Transistorizado Barrido por Transistorea Bobina de alineación

Pantalla de dos Fóstoros Funcionamiento Tipico

Con Graduación Uniforma

Muy Largo Muy Corte

Presentación de Formas de Onda Blanco Gran Anchura de Banda

Amanilo

Trazador X-Y

Issue 2, Page 3

Industrial Cathode Ray Tubes

Index

	<u> </u>	
Type Number	Section & Replacement	
CV429	Radar	-
CV5119	Radar	
C V 5203	Radar	
CV5819	(Radar (F31-11LD	
C V61 98	Data & Monitor	
CV6237	(Data & Monitor (M31-100GH	
C V6238	(Special (XR1000D	
CV6244	(Data & Monitor (M16-100W	
C V 8299	(Oscilloscope SE4D/P31	
C V 8300	(Oscilloscope SE4D/T14	
C V 9315	{ Oscilloscope { D21-10GH	
C V 9337	(Oscilloscope (SE5/2A/P31	
C V1 0543	(Radar (F22-10LD	
CV10917	{ Radar { F21-12LC	
D3-130	Oscilloscope	
D7-200	Oscilloscope	
D7-201	Oscilloscope	
D9-110	Oscilloscope	
D10-210	Oscilloscop e	
D10-230	Oscilloscop e	
D10-240	Oscilloscope	
D10-293	Oscilloscop e	
D13-33	Oscilloscope	
D13-47	Oscilloscop e	
D13-51	Oscilloscope	
	L	ᆝ

	· · · · · · · · · · · · · · · · · · ·
Type Numb er	Section & Replacement
D13-471	Oscilloscope
D13-600	Oscilloscope
D13-601	Oscilloscope
D13-610	Oscilloscope
D13-611	Oscilloscope
D13-630	Oscilloscope
D14-150	Oscilloscope
D14-170	(Oscilloscope (D14-172
D14-171	(Oscilloscope (D14-173
D14-172	Oscilloscope
D14-173	Oscilloscope
D14-180	(Oscilloscope (D14-181
D14-181	Oscilloscope
D14-200	Oscilloscope
D14-210	(Oscilloscope (D14-310
D14-270	Oscilloscop e
D14-280	Oscilloscope
D14-310	Oscilloscope
D16-100	Oscilloscope
D16-110	Oscilloscope
D18-130	Oscilloscope
D18-160	Oscilloscope
D21-10	Oscilloscop e
D21-102	Oscilloscope
F10-100	Radar
F15-101	Radar
F16-101	Radar
F21-10	Radar

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

Radar

F21-12

Index

Industrial Cathode Ray Tubes

Type Number	Section & Replacement
F21-130	Radar
F22-10	Radar
F22-11	Radar
F31-10	Radar
F31-11	Radar
F31-12	Radar
F31-13	Radar
F31-14	Radar
F31-111	Radar
F31-112	Radar
F41-12	Radar
F41-13	Radar
F41-14	Radar
F41-120	(Radar (F41-12
F41-121	Radar
F41-122	(Radar (F41-123
F41-123	Radar
F41-124	Radar
F41-130	(Radar (F41-13
F41-140	(Radar (F41-14
F41-141	Radar
M8-100	Data & Monitor
M14-100	Data & Monitor
M16-100	Data & Monitor
M17-10	Data & Monitor
M17-12	Data & Monitor
M17-15	Data & Monitor
M17-152	Data & Monitor
M19-100	Data & Monitor
M21-13	Data & Monitor

Type Number	Section & Replacement
M23-110	Data & Monitor
M23-111	Data & Monitor
M23-112	Data & Monitor
M23-113	Data & Monitor
M24-120	Data & Monitor
M24-121	Data & Monitor
M24-130	Data & Monitor
M28-11	Data & Monitor
M28-12	Data & Monitor
M28-13	Data & Monitor
M28-131	Data & Monitor
M28-132	Data & Monitor
M28-133	Data & Monitor
M31-100	Data & Monitor
M31-101	Data & Monitor
M31-120	Data & Monitor
M31-182	Data & Monitor
M31-184	Data & Monitor
M 31-1 85	Data & Monitor
M31-190	Data & Monitor
M31-191	Data & Monitor
M31-192	Data & Monitor
M31-212	Data & Monitor
M31-213	Data & Monitor
M36 - 141	Data & Monitor
M36-142	Data & Monitor
M38-100	Data & Monitor
M38-101	Data & Monitor
M38-102	Data & Monitor
M38-103	Data & Monitor
M38-104	Data & Monitor
M38-105	Data & Monitor
M38-106	Data & Monitor
M38-111	Data & Monitor
M38-112	Data & Monitor
M38-113	Data & Monitor

1

Page 2, Issue 1.

Industrial Cathode Ray Tubes

Index

Section & Replacement Special Special GENERAL

	Type	Section &	Туре
	Number	Replacement	Number
	M38-120	Data & Monitor	XR1003
	M38-121	Data & Monitor	XR1003A
	M38-122	Data & Monitor	
	M38-142	Data & Monitor	
	M44-120	Data & Monitor	
	M50-120	Data & Monitor	7ABP33A
	M61-120	Data & Monitor	
		(Data & Maritan	31C13/T1
	PMT58 -1	(Data & Monitor (M36–141W	31C14/T1
	PM T61	(Data & Monitor	31014/11
	FM101	(M36-141LA	31C16
ĺ	PMT65	(Data & Monitor (M17-10W	
		(Data & Monitor	31E13/T7
	PMT66	(M36-141W	31F14
	PMT68	(Data & Monitor (M17-10LA	51114
		(M17-10LA	
			59-60/90/037
	Q13-202	Special	59-60/90/074
	Q13-203	Special	
	1		
	SE4D	Oscilloscope	
	SE5/2A	Oscilloscope	
	SE5 F	Oscilloscope	
	XR1000	Special	
	XR1000A	Special	
	XR1002	Special	
	XR1002A	Special	

(Data & Monitor (M17-12 (Radar (CV429 (Radar (F41-12) Data & Monitor Data & Monitor

Radar

(Radar CV5203

(Radar (CV5119

Page 3, Issue 1.

Index

Industrial Cathode Ray Tubes

Type Number	Section & Replacement
5960-99-000-0429	(Radar (CV429
5960-99-000-5119	(Radar { CV5119
5960-99-037-2027	(Radar (CV5203
5960-99-037-3477	(Oscilloscope (SE4D/P31
5960-99-037-4577	(Oscilloscope (D21-10GH
5960-99-037-4597	(Oscilloscope {SE5-2A/P31
5960-99-037-5397	(Radar (F22–10LD
5960-99-037-5739	(Radar (F21-12LC
5960-99-037-6038	(Data & Monitor (M31-100GH
5960-99-037-6039	(Special (XR1000-09
5960-99-037-6042	(Data & Monitor (M16-100W
5960-99-038-0170	(Data & Monitor { 59-60/90/037
5960-99-038-0723	(Data & Monitor (59-60/90/074
5960-99-118-0715	(Oscilloscope (D13-51GH
5960-99-118-1105	(Oscilloscope (D13-51GH/26
5960-99-118-1602	(Oscilloscope (SE5-2A/GH
5960-99-118-2158	(Radar F31-112LD
5960-99-118-2707	(Data & Monitor (M28-13LG/S
5960-99-118-3296	(Data & Monitor (M38-101LD/R
5960-99-118-3365	(Radar (F31-10LC
5960-99-118-3384	(Data & Monitor (M28–13W

Type Numb er	Section & Replacement
5960-99-118-4000	(Oscilloscope D21-10GM
5960-99-118-4668	(Data & Monitor (M38-112GH
5 960-99-11 8-5158	(Special { XR1003-36

SINGLE GUN INSTRUMENT TUBES - CURRENT TYPES

Page TYPICAL OPERATION - voltages to cathode Type Other Face§ Useful Overall Rase Number Current Description Screen length Diag. Type (Val δ_ν I_h V_{a2} D, ۲ Phosphors Diam Area a3 ิ ต 4 nom. focus lssue min. max. 81 яv cm^2 inch mm А kV v kV kV v V/cm V/cm N D3-130GH General purpose indicating $(\mathbf{1})$ 2.7* 103.2 0.3 1.0 96 1.0 1.0 34 80 to 58 to B13B device 120 88 D7-200GH GM Indicators, oscilloscopes, 3 5 x 4 180 0.3 1.0 132 1.0 1.0 38 21 to 25 to B13B alpha-numerical readout 29 35 5 x 4 190 D7-201GH GM Improved D7-200GH 3 0.12 1.2 165 1.2 45 29 to 14 to B13B -37 18 D9-110GH Low profile mono-accelerator 3.5 6.6 x 4 264 0.12 2.0 405 2.0 64 28 to 12.8 to B14G -34.8 16 D10-210GH GM Compact tube, mesh p.d.a. 4 7 x 5 230 0.075t 0.6 160 0.54 6.0 42 11.2 to 8 to 10 B12F 13.8 (4)Flat-faced mono-accelerator D10-230GH 8 x 6.4 260 0.3 1.5 305 1.5 48 21 to 13 to B14G -26 16 D10-240GH GM Medium bandwidth, spiral 4 7 x 5 260 0.12 1.0 262 2.0 1.0 52 21.6 to 8.3 to B12F p.d.a. 10.2 26.4 D10-293GH Medium to high bandwidth. 4 6.8 x 300 0.12 1.0 260 1.0 6 39 10.5 to 3.8 to B12F mesh p.d.a. 5.6 12.8 4.8 D13-47GH BE,GL Medium bandwidth, spiral 5 10 x 6 371 0.3 287 1.0 1.0 4.0 50 14.5 to 6.7 to B12F GM p.d.a. 17.5 8.3 D13-51GH GM High bandwidth, mesh p.d.a. 5 10 x 6 335 0.3 11 to 4.5 to B12F 1.0 90 1.0 10 70 15 6.0 D13-471GH GM D13-47GH with low wattage 5 10 x 6 371 0.12 1.0 287 1.0 4.0 50 14.5 to 6.7 to B12F heater 17.5 8.3 (5) 10 x 8 D13-600GH GM General purpose short 315 0.3 1.5 400 1.5 3.0 73 21 to 10 to B12F length, spiral p.d.a. 27 12.7

Common features: - Electrostatic deflection and focus, 6.3V heaters

Selection Tables

Other phosphor screens are available to special order. Both x and y-plates are designed for symmetrical operation.

* Diameter

† Cut-off

§()Round face

** Corners cut.

GENERAL

SINGLE GUN INSTRUMENT TUBES - CURRENT TYPES (continued)

§ Round face

Common features:- Electrostatic deflection and focus, 6.3V heaters.

Page 2,

Issue 2.

* Corners cut

† Cut-off

Type									Base					
Number	Current Phosphors	Description	Diag. Diam.	Screen Area	length	I _h	v _{al}			v _{a4}	-v _g †	D _X	Dy	Туре
			nom.	min.	max.			focus av			av			
			inch	cm ²	mm	A	kV	v	kV	kV	v	V/cm	V/cm	
D13-601GH		D13-600GH with low wattage heater	5	10 x 8*	315	0.12	1.5	400	1.5	3.0	73	21 to 27	10 to 12.7	B12F
D13-610GH	GM	General purpose, medium bandwidth, spiral p.d.a.	5	10 x 8*	371	0.3	1.0	275	1.0	3.0	50	12.5 to 15.8	6.8 to 8.7	B12F
D13-611GH	GM	General purpose, medium bandwidth, spiral p.d.a.	5	10 x 8*	371	0.3	1.0	275	1.0	3.5	52	14.1 to 16.9	7.0 to 8.9	B12 F
D13-630GH		Short length mono-accelerator	5	10 x 8*	340	0.3	2.0	230	2.0	-	50	19 to 23	12 to 15	B14G
D14-150GH		High bandwidth mesh p.d.a.	5.5	10 x 8	386	0.3	1.2	115	1.2	12	70	11 to 14.5	4.6 to 6.0	B12F
D14-172GH	GL,GM GV	General purpose, short length, spiral p.d.a.	5.5	10 x 8	308	0.3	1.0	280	1.0	2.0	50	15.7 to 18.7	7.4 to 9.7	B12 F
D14-173GH	GM,GV	D14-172GH with low wattage heater	5.5	10 x 8	308	0.12	1.0	280	1.0	2.0	50	15.7 to 18,7	7.4 to 9.7	B12 F
D14-181GH	GM	Medium bandwidth, spiral p.d.a.	5.5	10 x 8	384	0.3	1.0	287	1.0	4.0	50	14.1 to 17	6.7 to 8.7	B121
D14-200GH	GM	High bandwidth, mesh p.d.a.	5.5	10 x 8	405	0.3	1.2	115	1.2	12	70	11 to 14.2	4.3 to 5.4	B121
D14-270GH		Large screen short length mono-accelerator	5.5	10 x 8	333	0.3	2.0	262	2,0	-	50	19 to 23	12 to 15	B140
D14-280GH		Medium to high bandwidth mesh p.d.a.	5.5	10 x 8	395	0.3	2.0	535	2.0	12	80	14 to 17.4	5.6 to 6.9	B121
D14-310GH	GM	High performance, mesh p.d.a.	5.5	10 x 8	420	0.3	1.5	475	1.5	12	50	11 to 14	3.4 to 4.3	B121
D16-100GH	GM	Square face, X-Y plotter, spiral p.d.a. s are available to special orde		10 x 10		0.3	1.25		1.25			13.5 to 17	13.5 to 17	B121

Rectangular face.

Selection Tables

Single Gun Instrument Tubes

SINGLE GUN INSTRUMENT TUBES - CURRENT TYPES (continued)

Туре	Other		Faces	Useful	Overall	T	PIC	L OPI	ERAT		-	gestoca	thode	Base
Number	Current Phosphors	Description	Diag. Dia. nom.	Screen Area min.	length max.	'n	V _{al}	V _{a2} focus	V _{a3}	V ₈₄	-v _g †	D _x	Dy	Туре
			inch	cm ²	mm	A	kV	av V	kV	kV	av V	V/cm	V/cm	
D16-110GH		Medium bandwidth, square face, X-Y plotter, spiral p.d.a.	6.5	10 x 10	384	0.3	1.0	287	1.0	4.0	40	14.5 to 18.5	8.5 to 10.7	B121
D18-130GH		General purpose, large screen area, spiral p.d.a.	7	12 x 10	310 ·	0.3	1.5	420	1.5	3.0	60	23 to 29	13 to 16.5	B121
D18-160GH		Large screen mesh p.d.a.		12 x 10	450	0.3	2.0	540	2.0	12	60	10.5 to 13.5	4.1 to 5.5	B12)
D21-102GH		Large diameter diaplay p.d.a.	8.5	15 x 15	420	0.3	3.0	1000	3.0	Ġ	60	34.5 to 48	28.5 to 40.5	B121

Common features:- Electrostatic deflection and focus, 6.3V heaters

Selection Tables

GENERAL

* Corners cut

† Cut-off \$ Round face

Rectangular face.

Single Gun Instrument Tubes

DOUBLE GUN OSCILLOSCOPE TUBE - CURRENT TYPE

Electrostatic deflection and focus, post deflection acceleration, 6.3V 0.6A heater, B12F base, CT8 side contact.

Type Number	Description	Face Diam.	Screen	Overall Length		түр	ICAL (OPERA	TION	- voltag	ges refer	red to c	athode
			Area			Val	V _{a2} focus	v _{a3}	v _{a4}	cut-off	P.D.A. Ratio	D _x	Dy
		inch	min. _cm2	max. mm	max. mm	kV	av. V	кV	kV	av. V	max.	max. V/cm	max. V/cm
SE5/2A/GH CV9337	High sensitivity, common X deflection, beam alignment electrode.	5	10 x 5	380	65	1.0	200	1.0	4.0	60	4:1	22	7.0

Other phosphor screens are available to special order.

Page 4,

Issue 2.

FLYING-SPOT SCANNER TUBES - CURRENT TYPES

Common features: - High resolution, small spot size, magnetic deflection, 6.3V 0.3A heaters

Туре	Application and Description	Face Diam	Useful Sc ree n	Overall Length	Neck Dia.	түрі	CAL OPER	ATIC)N - voltag	es referred to cathode	
		nom. inch	Area min. mm ²	max. mm	max. mm	V _{a1} v	V _a Focus kV	V _a Final kV	1 6	Max.Spot Dia. at 60% pk.luminance mm at I _{a3} μA	
Q13-202GS	Electrostatic focus, Document readers or telecine. Precision mounting frame. EHT connection by rubber encapsulated flexible lead.	5	96.5 x 76.2 corners cut†	580	38	300	3.7 to 5.2	15	30 to 70	0.07 4.5	B12A
Q13-203GT	Smaller spot size version of Q13-202.	5	89 x 68.6 corners cut†	580	38	300	3.7 to 5.2	15	30 to 70	0.05 4.5	B1 2A

Other phosphor screens are available to special order.

† Diagonal 108 mm min.

Selection

Tables

RADAR TUBES - CURRENT TYPES

Page 5,

Issue 2.

Common features: - Electrostatic focus, magnetic deflection, 6.3V 0.3A heaters, aluminised screens, CT8 side contacts.

Type Number	Other Cur-	Application and Description	Face Dia.		Neck Dia.	Defl. Angle		oltages	AL OPERATIO		Base Type
	rent Phos- phors		nom.		max.	nom.			V _{a3}	-Vg cut-off	
	phore		inch	mm	mm		v	kV	v	v	
F10-100LD		Small boat radar	4	271	38	30	400	5	0 to 400	40 to 77	B14G
F15-101LD	[Small boat radar	6	242	29.4	53	400	9	0 to 400	40 to 77	В8Н
F16-101LD		Small boat radar	6	370	29.4	37	500	14	0 to 400	27 to 44	B8H
7AB P33A		American type for small boat radar	7	342	38	50	300	7	0 to 250	28 to 72	B12A
F21-10LD	GM,LG	General marine radar	8.5	450	35.5	41	600	14	0 to 400	32 to 48	вен
F21-130LD		General marine radar	8.5	326	29.4	60	400	14	0 to 400	34 to 78	ван
F22-10GM	۱ I	General marine radar	9	408	35.5	60	300	12	-300 to +300	30 to 78	B12A
F22-11LD		Enlarged spot version of F22-10LD	9	408	35.5	60	300	12	-300 to +300	30 to 78	B12A
F31-10GM	LC,LD LG	General marine radar	12	572	35.5	40	600	15	-300 to+300	40 to 85	в8н
F31-11LD	LC	Wider scan angle than F31-10LD	12	494	35.5	50	300	14	-300 to+300	30 to 70	B12A
F31-12LC		Narrower cut-off voltage range than F31-10LC	12	572	35.5	40	600	16	-150 to+450	44 to 70	B8H
F31-111LC	GR	Enlarged spot version of F31-11LC	12	494	35.5	50	300	14	-300 to+300	30 to 70	B12A
F31-112LD		Extended neck length variant of F31-11LD	12	528	35.5	50	600	14	0 to 400	32 to 48	B12A

The above tubes, in certain cases, can be supplied with phosphor screens other than those listed to special order. Tubes using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

GENERAL

RADAR TUBES - CURRENT TYPES (continued)

Page 6, Issue 2.

Common features: - Electrostatic focus, magnetic deflection, 6.3V 0.3A heaters, aluminised screens, CT8 side contacts.

Туре	Other Cur-	Appli cation and Description	Face Día.	Overall Length			, I		AL OPERATIO		Base Type
	rent Phos- phors		nom.	max.	max.	nom.	v _{a1}	V ₈₂₊₈₄	V _{a3}	-Vg cut-off	
	pnors		inch	mm	mm	°	v	kV	v	V	
F41-12LC	LD	Major radars for ships, ports & airport traffic control.	16	610	35.5	50	300	15	-300 to+300	40 to 80	B12A
F41-13LC		Narrower cut-off voltage range than F41-12	16	610	35.5	50	300	15	-300 to+300	40 to 64	B12A
F41-14LD	LC	Enlarged spot version of F41-12	16	610	35.5	50	300	15	-300 to+300	40 to 80	B12A
F41-123LG	LC	Long neck version of F41-12.	16	650	35.5	50	300	15	-300 to+300	40 to 80	B12A
F41-124LG	LG	F41-123 except positive focus voltage range	16	650	35.5	50	300	15	0 to+400	40 to 80	B12A
F41-141 LC		Enlarged spot version of F41-12	16	610	35.5	50	300	18	-300 to +300	40 to 80	B12A
			1			ł	ł				}
				ł							
											{

The above tubes, in certain cases, can be supplied with phosphor screens other than those listed to special order. Tubes using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Selection Tables

Radar Tubes

DATA DISPLAY AND MONITOR TUBES - CURRENT TYPES

Page

7, Issue 2.

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts.

Type Number	Other Cur-	Application and Description	Faces Diag.	Overali Length		Defl. Angle	Screen Glass		Volta	zes re	eferre	ERATIO	ode	Base Type
	rent Phos- pho rs		nom.	max.	max.		Trans. (Appr.)	Vh	Ih		V _a final		-Vg cut-off	
	phota		inch	mm	mm	•	%	v	mA	v	kV	v	v	
M14-100W	GH,GM GV	Medical and camera, viewfinder applications	5.5	184	20.7	70	62	11	75	250	10	0 to 350	35 to 69	B7G/1
M16-100W		Mobile or military monitor. Fully ruggedised construction Encapsulated flexible leads to base and anode button.	6	233.7	27.45	70	Clear	6.3	300	400	14	0 to 400	31 to 71	Flying leads
M17-10W		Small, quality monitor or TV camera viewfinder.	[7]	236	29.4	70	Clear	11.5	150	400	14	0 to 400	38 to 78	B8H
M17-12W		M17-10 with different heater	7	236	29.4	70	Clear	6.3	300	400	14	0 to 400	38 to 78	B 8H
	BE, GR GV	Self-protected version of M17-10 Bonded face-plate			29.4	70		11.5		400	14	-	38 to 78	
M17-152BE		M17-15BE with improved screen			29.4	70		11.5		400	14	0 to 400	38 to 78	B8H
M19-100W		Medical, data display or general purpose monitor.	7.5	196	20.7	90	65	11	75	250	10	0 to 350	35 to 69	B7G/ 1
59-60/90/ 037		Mobile or military monitor. Fully ruggedised construction	8.5	292	27.45	70	Clear	6.3	300	400	14	-50 to 400	35 to 75	Flyin leads
M23-110W	GH	Medical, data display or general purpose monitor.	9	222	20.7	90	50	11	75	250	10	0 to 350	35 to 69	B7G/ 1
M23-111W	GH	M23-110 with a tinted bonded anti reflection face- plate.	9	228	20.7	90	30	11	75	250	10	0 to 350	35 to 69	B7G/
M23-112GH	w	M23-110 with Rimguard III protection	9	222	20.7	90	50	11	75	250	10	0 to 350	35 to 69	B7G /3

Other phosphor screens can be supplied to special order. [m] Rectangular face, [m] Mounting frame, [m] Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Selection Tables

GENERAL

DATA DISPLAY AND MONITOR TUBES - CURRENT TYPES (continued)

Page 8 Issue ∾. Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts.

Type Number	Other Cur-	Application and Description		Overall Length			Screen Glass					RATION d to catho		Base Type
in in item in the interview of the inter	rent Phos-		nom.	max.	max.		Trans. (Appr.)	v.	Ih	v _{a1}	v _a	V _{a3}	-v _g	Type
	phors		inch	mm	mm	•	%	v	mA	v	final kV	focus V	cut-off V	
M23-113GV	GH,W	M23-112 with a tinted bond- ed anti-reflection face-plate	9	228	20.7	90	30	11	75	250	10	0 to 350	35 to 69	B7G/D
M24-120W	LC, WA	High resolution data display	9.5	260	29.4	90	52	6.3	300	400	14	0 to 400	38 to 82	B8H
M24-121W		Unprotected version of M24-120	9.5	260	29.4	90	52	6.3	300	400	14	0 to 400	38 to 82	B8H
M24-130GJ		Mobile or military monitor Fully ruggedised construction Bonded face-plate, integral mounting lugs.	9 .5	280	29.4	90	32	6.3	300	400	14	0 to 400	38 to 82	Flying leads
M28-12W	GM, GP	Medical, data display or general purpose monitor	<u>]11</u>	253	20.7	90	58	11	75	250	11	0 to 350	35 to 69	B7G/D
	GH, GR GV, LC LG, WA	Self-protected data display tube with Rimguard III for push-through mounting.	<u>]11</u>	266	29.4	90	58	11.5	150	400	1,4	0 to 400	40 to 76	B8H
M28-132GH		M28-13 with a tinted bonded anti-reflection face-plate	<u>]</u> 11	271	29.4	90	35	11.5	150	400	14	0 to 400	40 [°] to 76	B8H
M28-133GH		M28-13 with a tinted bonded anti-reflection face-plate	11	271	29.4	90	18	11.5	150	400	14	0 to 400	40 to 76	в8н
M31-120W		General purpose monitor tube	<u>]12</u>	233	20.7	110	50	11	140	250	12	0 to 350	35 to 69	B7G/D
M31-184W	GH	Data display or industrial monitor with Rimguard III protection	12	243	29.4	110	50	6.3	300	400	15	0 to 400	40 to 77	B8H
M31-185GH		Data display tube with tinted bonded face -plate	<u>]</u> 12	248.5	29.4	110	15	6.3	300	400	12	0 to 400	40 to 77	B8H

Other phosphor screens can be supplied to special order. § Rectangular face Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

DATA DISPLAY AND MONITOR TUBES - CURRENT TYPES (Continued)

Page 9,

Issue 1

Common Features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts

Type Number	Other Cur-	Application and Description	Diag.	Overall Length	Dia.		Glass	v				RATION to cathoo	de	Base Type
	rent Phos- phors		nom.	max.	max.		Trans. (Appr.)	v _h	1 _h	V _{al}	V _a final	V _{a3} focus	-Vg cut-off	
			inch	mm	mm	•	%	v	m A	v	kV	V	v	
M31-190GH	w	Medical, data display or general purpose monitor Rimguard III Protection integral mounting lugs.	12	277	20.7	90	50	11	75	250	12	0 to 350	35 to 69	B7G/
M31-191GH	w	M31-192 with a tinted bond- ed anti reflection face-plate	12	282	20.7	90	15	11	75	250	12	0 to 350	35 to 69	B7G/
M31 -19 2GH	w	Bonded face-plate version of of M31-190	12	282	20.7	90	50	11	75	250	12	0 to 350	35 to 69	B7G/
M31-212GH		Data display tinted bonded anti-reflection face-plate integral mounting lugs	12	282	20.7	90	15	11	75	300	12	0.to 350	40 to 79	B7G/
M31-213GH		M31-212 but with a clear glass bonded face-plate	<u>]12</u>	282	20.7	90	50	11	75	300	12	0 to 350	40 to 79	.B7G/
M36-141W		Studio quality monitor	14	425	38	70	60	6.3	300	300	12	-200 to +200	30 to 72	B12A
	GH, GJ GR, LC LG, WA	Industrial monitor. Data display. Rimguard III protection.Squared-off screen	15	356	29.4	90	50	11.5	150	400	16	0 to 400	38 to 82	B8H
M38-101GH	LD	M38-100. with longer neck for "position & write" coils	1 5	378	29.4	90	50	11.5	150	400	16	0 to 400	38 to 82	B 8H
M38-102GH		Bonded face-plate version of M38-100	<u>]</u> 15	383	29.4	90	50	11.5	150	400	16	0 to 400	38 to 82	B 8H
M38-103WA		Version of M38-100WA with modified lugs	<u>]15</u>	356 •	29.4	90	50	11.5	150	400	16	0 to 400	38 to 82	B8H

Other phosphor screens can be supplied to special order. § Rectangular face Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Data Display and Monitor Tubes

Selection Tables

DATA DISPLAY AND MONITOR TUBES - CURRENT TYPES (continued)

Page 10,

Issue 1:

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts

Type	Other	Application and Description	Faces	Overall	Neck	Defl.	Sc reen	<u> </u>	TYP	ICAL	OPFI	RATION		Base
Number	Cur-	Application and Description		Length			Glass	v.				to cathod	3	Type
	rent Phos-		nom.	max.	max.		Trans. (Appr.)	v _h	Ih	V _{a1}		v _{a3}	-v _g	
	phors		inch	mm	mm	•	%	v	mA	v	final kV	focus V	cut-off V	
M38-104GH		Bonded face-plate version of M38-100GH	Ĵ15 Ĵ	361	29.4	90	50	11.5	150	400	16	0 to 400	38 to 82	B8H
M38-105GH		M38-102 with a tinted bonded anti-reflection face- plate	15	383	29.4	90	15	11.5	150	400	16	0 to 400	38 to 82	B8H
M38-106GH		M38-102 with a tinted bonded anti-reflection face- plate	1 5	383	29.4	90	30	11.5	150	400	16	0 to 400	38 to 82	B8H
M38-113GH		High resolution "position and write" data display	15	441	38	90	50	6.3	300	400	15	0 to 400	30 to 70	B12A
59-60/90/ 074	i	Mobile or military monitor Fully ruggedised construction Rimguard III protection integral mounting lugs	Ĵ <u>15</u> Ĵ	372	29.4	90	50	6.3	300	400	16	0 to 400	42 to 86	Flying leads
M38-120W	GH	General purpose monitor tube	15	279.5	29.4	110	50	6.3	300	400	16	0 to 400	40 to 85	B8H
M38-121W	GH	Protected version of M38-120.	15	279.5	29.4	110	50	6.3	300	400	16	0 to 400	40 to 85	B8H
M38-122GH		Data display. Tinted bonded face-plate	15	284.5	29.4	110	15	6.3	300	400	16	0 to 400	40 to 85	B8H
M38-142W	GH	High voltage focus high resolution data display. Rimguard IV protection integral mounting lugs	Ĵ <u>15</u> Ĵ	321	29.4	110	50	6.3	300	450	17	4000*	35 to 85	B8H

Other phosphor screens can be supplied to special order. & Rectangular face & Mounting lugs. * Va2 Types using the B8H base may be fitted with the B8H Sparkguard Base and will have a suffix after the type number.

Selection Tables

Data Display and Monitor Tubes

Data Display and Monitor Tubes

DATA DISPLAY AND MONITOR TUBES - CURRENT TYPES (continued)

Page 11.

Issue 1.

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts

Type Number	Other Cur-	Application and Description	Diag.	Overall Length	Dia.				Voltag			ERATION to catho		Base Type
	rent Phos- phors		nom. inch	max. mm	max. mm	•	Trans. (Appr.) %		I _h mA	v _{al} v	V _a final kV	V _{a3} focus V	-Vg cut-off V	
M44-120W	rc	Squared-up screen. Rimguard III push-through protection	<u>]17</u>	291	29.4	110	48	6.3	300	400	16	0 to 400	40 to 77	B8H
M50-120W		Squared-up screen. Rimguard III push-through protection	20	319	29.4	110	45	6.3	300	400	16	0 to 400	40 to 77	B 8H
M61-120W	GH, GR	Squared-up screen. Rimguard III push-through protection	<u>]24</u>	370	29.4	110	42	6.3	300	400	16	0 to 400	40 to 77	B8H
				i										

Other phosphor screens can be supplied to special order. \$ ____ Rectangular face _____ Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will have a suffix after the type number.

GENERAL

Magnetic Shields Tube Coils

Oscilloscope Tubes

Tube Type	Magnetic Shield	Tub e Coil
	Numb er	Number
	MS	TW
D3-130	2	-
D7 000		
D7-200 D7-201	3 (33	28 28
D7-201	34	20
	(5.	
D9 -11 0	65	50
D10-210	6	24
D10-210	41	- 24
D10-240	7	33
D10-293	83	56
2100		
D13-33	27	- 1
D13-47	23	30
D13-51	36	21
D13-471	23	30
D13-600	47	-
D13-601	47	-
D13-610	49	- 1
D13-611	50	- 1
D13-630	43	- 1
D14-150	9	25
D14-172	15	(20
		26
D14-173	15	(20
		26
D14-181	20	23
D14-200	11	29
D14-270	70	52
D14-280	72	29
D14-310	1	29
D16-100	45	45
D16-100	45 63	45
D10-110		10
D18-130	61	48
D18-160	84	29

Thorn Radio Valves and Tubes Limited

Page 1, Issue 3.

Oscilloscope Tubes

Magnetic Shields Tube Coils

Magnetic Shield Number MS	Used on Type nu	
1 2 3	D14-310 D3-130 D7-200	
6 7	D10-210 D10-240	
9	D14-150	
11	D14-200	
15	D14-172	D14-173
20	D14-181	
23	D13-47	D13-471
27	D13-33	
33 34	D7-201 D7-201	
36	D13-51	
41	D10-230	
43	D13-630	
45	D16-100	
47	D13-600	D13-601
49 50	D13-610 D13-611	
52	D21-10	D21-102
55	SE4D	
58 59	SE5/2A SE5F	
61	D18-130	
63	D16-110	
65	D9-110	
70	D14-270	
72	D14-280	
83 84	D10-293 D18-160	

Tube Coil Number TW	Used on Tube Type number			
20 21	D14-172 D13-51	D14-173		
23 24 25 26	D14-181 D10-210 D14-150 D14-172	D14-173		
28 29	D7-200 D14-200 D14-280	D7-201 D14-310 D18-160		
30 33	D13-47 D10-240	D13-471		
45	D16-100	D16-110		
48	D18-130			
5 0	D9 -110			
52	D14-270			
56	D10-293			

Page 2, Issue 3.

CURRENT TYPES

Tube Type	Scan Coil Number	Tube Type	Scan Coil Number
M14-100	TBY3	M38-100	TBY1
		M38-101	TBY1
M16-100	*	M38-102	TBY1
		M38-103	TBY1
M17-10	TBY2	M38-104	TBY1
M17-12	TBY2	1	
M17-15	TBY2	M38-105	TBY1
M17-152	TBY2	M38-106	TBY1
		M38-113	+
M19-100	TBY3	M38-120	TBY1
		M38-121	TBY1
M21-13	TBY1		
		M38-122	TBY1
M23-110	TBY3	M38-142	*
M23-111	TBY3		
M23-112	TBY3	M44-120	TBY1
M23-113	TBY3		
		M50-120	TBY1
M24-120	TBY1		
M24-121	TBY1	M61-120	TBY1
M24-130	• 1		
	1 1	59-60/90/037	*
M28-12	TBY3	59-60/90/074	*
M28-13	TBY1		
M28-132	TBY1		
M28-133	TBY1		
M31-120	TBY3		
M31-184	TBY1		
M31-185	TBY1	[
M31-190	TBY3		
M31-191	TBY3		
M31-192	TBY3		
M31-212	TBY3		
M31-213	TBY3		
M36-141	•		

* For scan coil information on these tubes contact -Brimar Equipment Sales Department or Brimar Export Division.

Thorn Radio Valves and Tubes Limited Page 1, Issue 2.

PHOSPHOR SCREENS

WA Screen for Colour Television Control Rooms

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

Phosphor Screens

Equivalents & Data Summary

De	respoi signat	ions	Appro Persi Time	stence to 10%	Kelly Chart Colour	Flicker Threshold*	Typical use
New	EIA	Old	Spot	Raster	Fluorescence	Hz	uge
AA	P16	-	0.12µs		Bluish- purple (UV)	-	Flying-spot scanning
BE	P11	T 3†	40µs		Blue	-	Oscillography & photography
GE	P24	T 5	1.5 µs		Green	-	Flying-spot scanning
GH	P31	-	40 µs	0.2 s	Green	45	General oscillography & photography
GJ	P1	T1	25ms	30ms	Yellowish- green	36	General oscillography & photography
GL	P2	-	40 µs	0.5 s	Yellowish- green	40	General oscillography & photography
GM	P7	T6†	0.5 8 §	7 8 §	Purplish-blue ¶	38	Radar & oscillography
GP	-	-	100 µs	0.5 8	Green **	45	Data display
GR	P39	-	150ms	2 s	Yellowish-green	30	Radar & data display
GS	-	-	0.9 με		Yellowishgreen	-	Flying-spot scanning
GT	-	-	0.9 με		Bluish-green	1	Flying-spot scanning
GV	-	•		98	Green ¶	38	Radar & oscillography
GW_	P42	1	30 µs	0.2 8	Green	40	Data display
GX	P44	1	1.2 ms		Yellowish-green	45	Data display
GY	P43	1	1.2 ms		Yellowish-green	45	Data display
КВ	-	T14		1.58	Bluish-green ‡	38	Radar & oscillography
LA	-	T11	25 ms	50ms	Orange	36	Data display
	P26†	T 7		25 s	Orange	22	Radar & oscillography
LD	P33	T1 5		5 8	Orange	20	Radar
LG	-	T13		48	Orange	18	Radar & data display
w	P4	Т4	10 µs	10 ms	White	45	Monochrome television
WA	-	-	10 µs	10 ms	White	45	Television monitors

* Over a range of observers and display arrangements the onset of flickers may vary by at least 5Hz from the above figure.

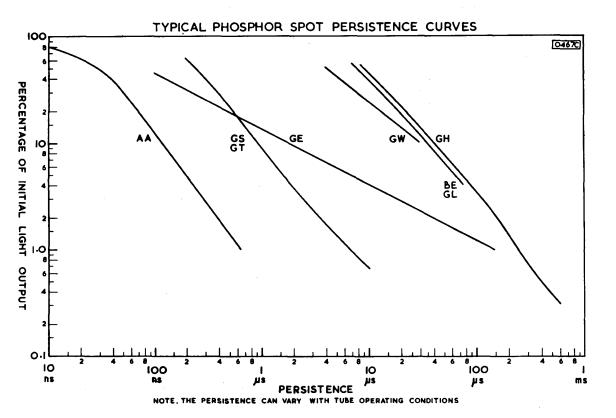
† Approximate. 1 The phosphorescence is yellow-green.

§ Yellowish-green component. ¶ The phosphorescence is yellowish-green.

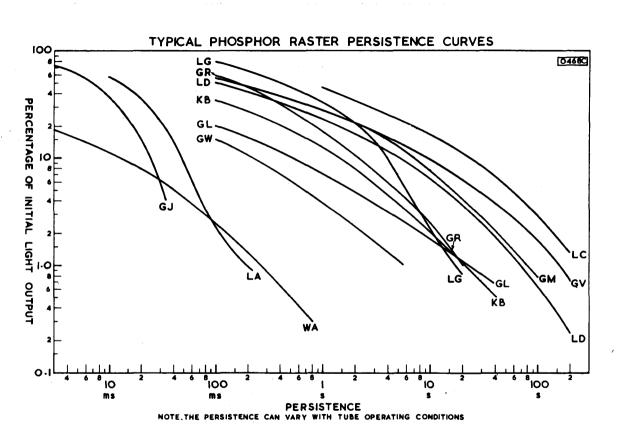
** The fluorescence at high brightness is bluish-green.

While alternative phosphors can be supplied to special order, most tube types are produced for stock with the particular phosphor most in demand by equipment manufacturers.

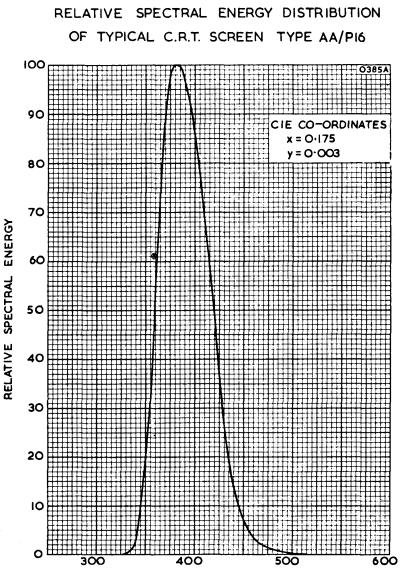
Thorn Radio Valves and Tubes Limited


Page 1, Issue 12.

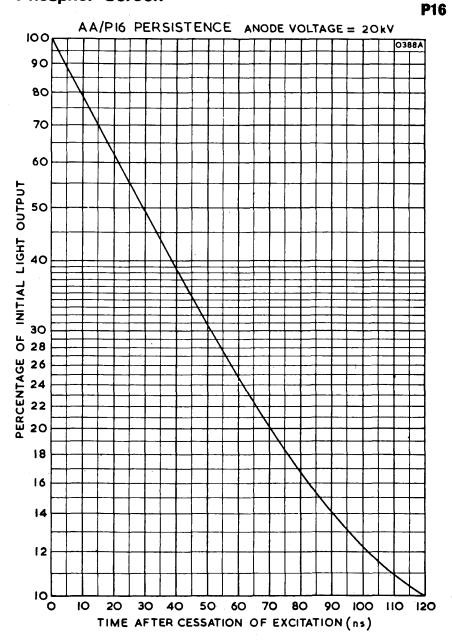
1


PHOSPHOR SCREENS

Phosphor Screen

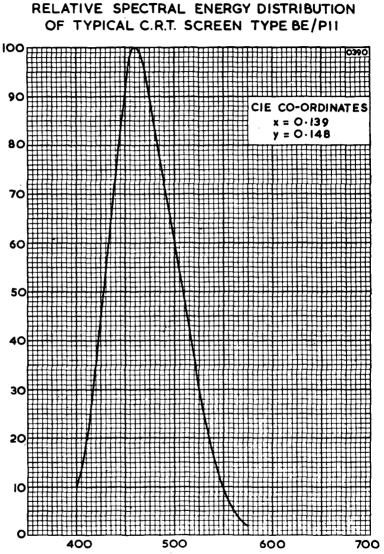

Persistence Curves Issue 5, Page 2

Phosphor Screen

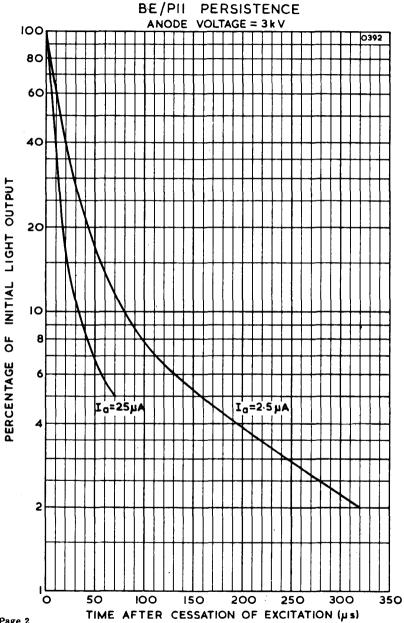

Persistence Curves

PHOSPHOR SCREENS

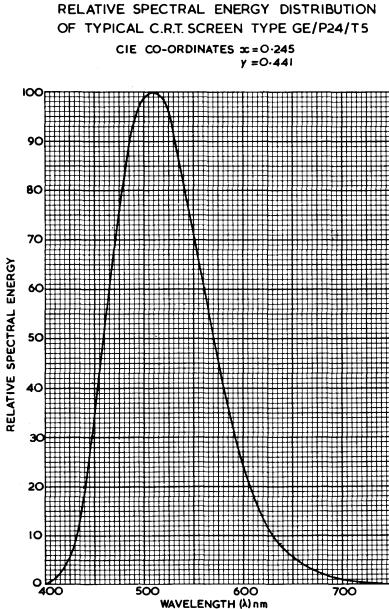
WAVELENGTH (λ) nm


Phosphor Screen

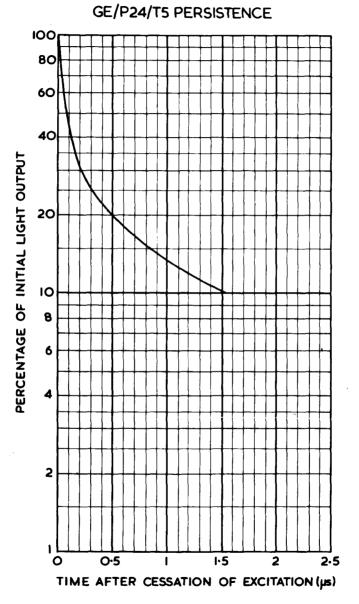
PHOSPHOR SCREENS

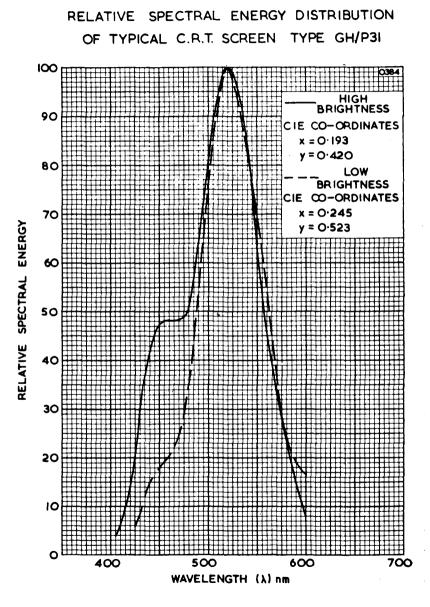

AA

Issue 1, Page 2


WAVELENGTH (λ) nm

BE P11


PHOSPHOR SCREENS

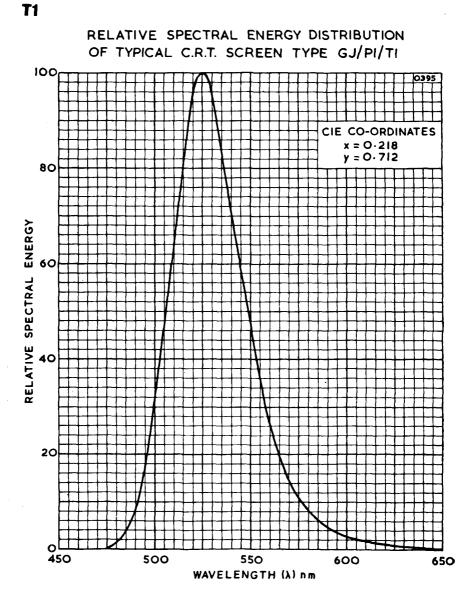


Issue 1, Page 1.

GE P24 T5

GH P31

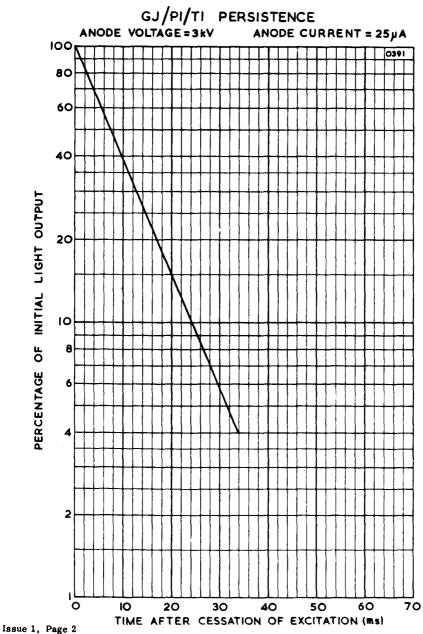
Issue 1, Page 1

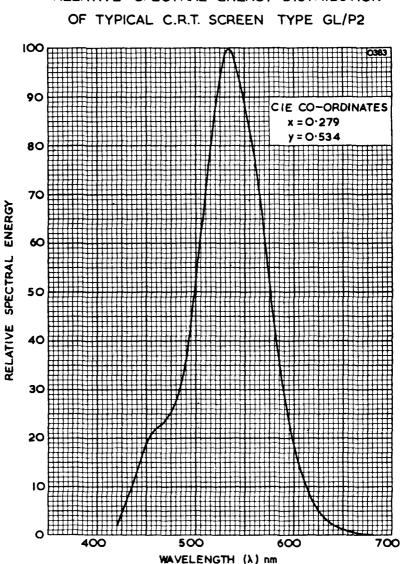

100 0381 80 60 40 20 PERCENTAGE OF INITIAL LIGHT OUTPUT 10 8 6 4 2 I 0-8 0.6 0.4 0.2 0.15 150 200 250 300 350 400 450 500 550 600 50 100 TIME AFTER CESSATION OF EXCITATION (#s) Issue 1, Page 2

GH/P3I PERSISTENCE

GH P31

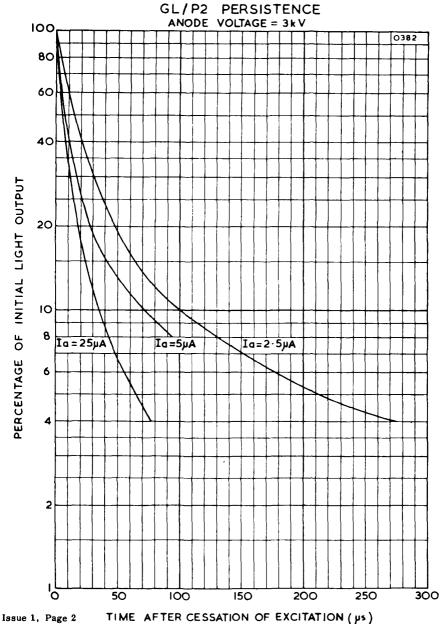
PHOSPHOR


SCREENS


Issue 1, Page 1

GJ P1

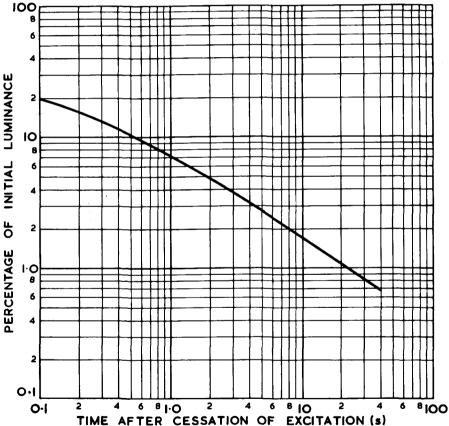
GJ P1 T1



PHOSPHOR SCREENS

RELATIVE SPECTRAL ENERGY DISTRIBUTION

Issue 1, Page 1

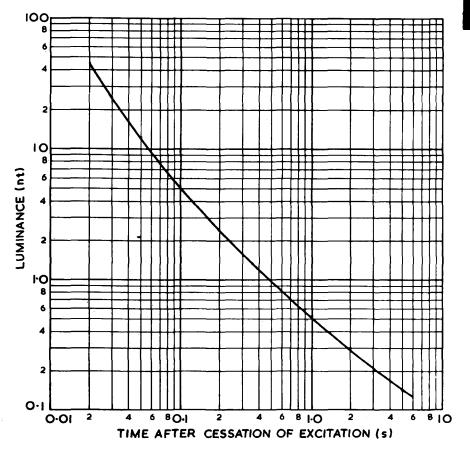


PHOSPHOR SCREENS

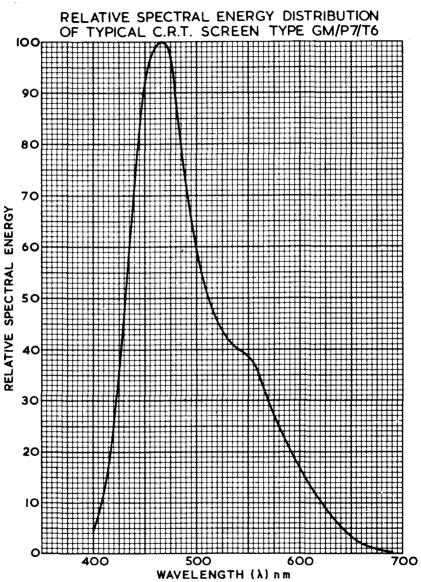
GL P2

GL/P2 PERSISTENCE

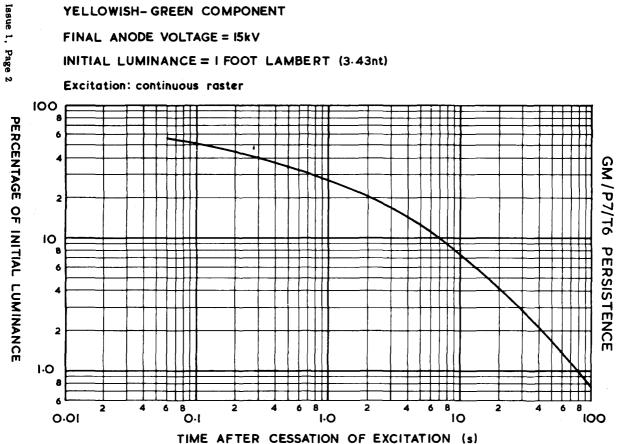
FINAL ANODE VOLTAGE = 15kV INITIAL LUMINANCE = I FOOT LAMBERT (3.43 nt) Excitation: continuous focused raster Measured on C.R.T. with aluminised screen



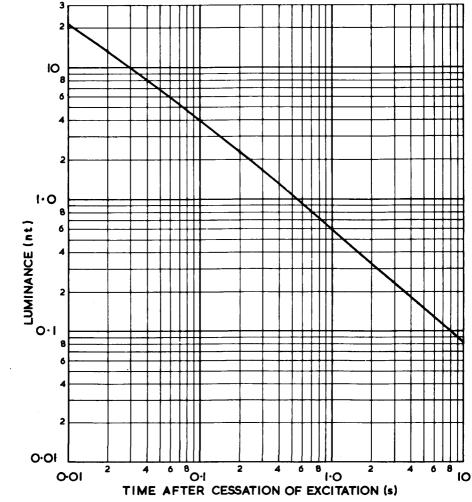
GL/P2 PERSISTENCE


FINAL ANODE VOLTAGE = 15 kV

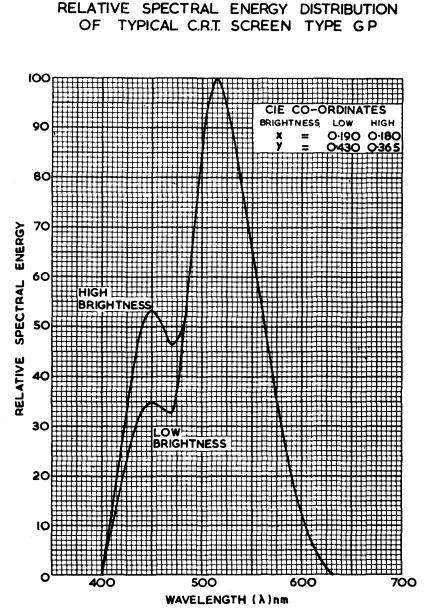
Excitation: single 20ms raster at IµA/cm²


Measured as average luminance of raster on C.R.T. with aluminised screen.

Issue 1, Page 1

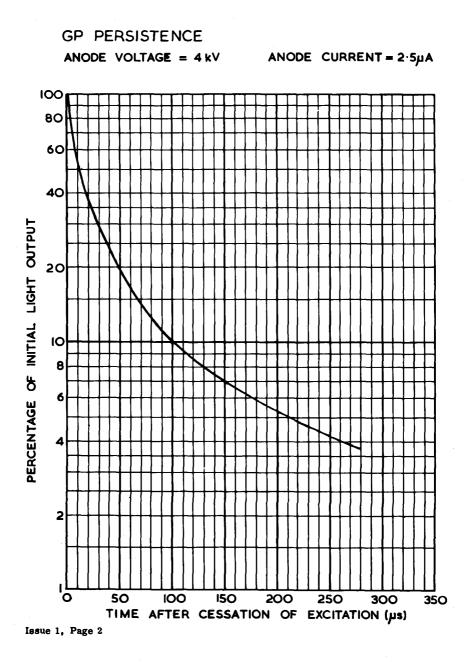

PHOSPHOR SCREENS

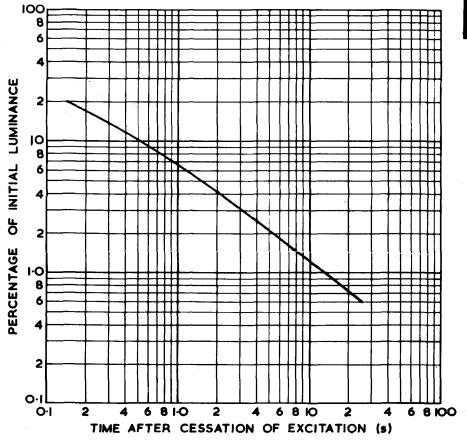
GM PERSISTENCE


YELLOWISH-GREEN COMPONENT

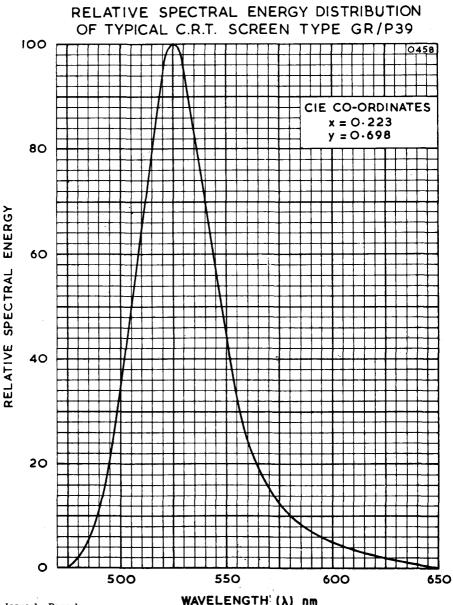
FINAL ANODE VOLTAGE = 15kV

Excitation: single 20ms raster at $l\mu A/cm^2$



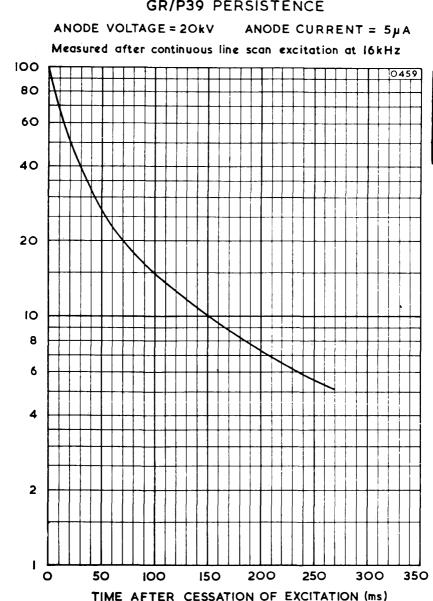

OSPHOR

Issue 1, Page 1


GP

GP PERSISTENCE FINAL ANODE VOLTAGE 15kV INITIAL LUMINANCE = I FOOT LAMBERT (3.43nt) Excitation: continuous focused raster Measured on C.R.T. with aluminised screen

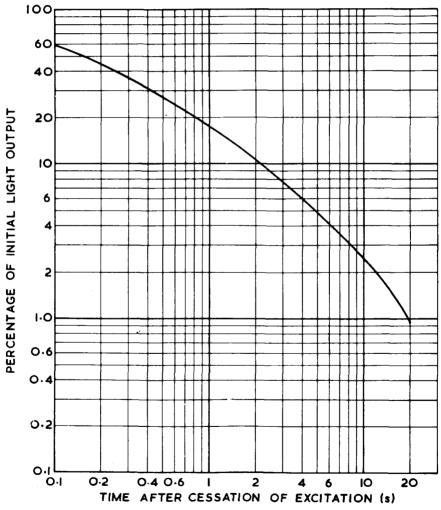
PHOSPHOR SCREENS



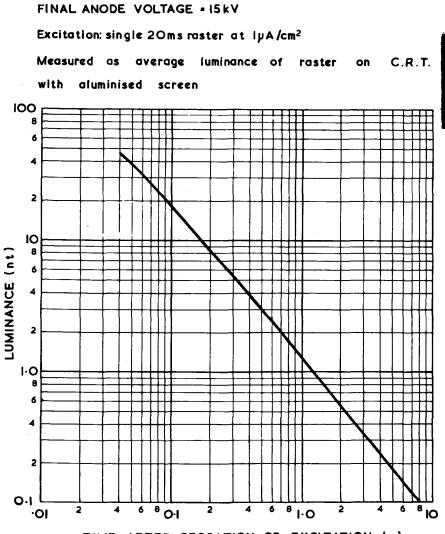
Я

SCREENS OHdSOHd

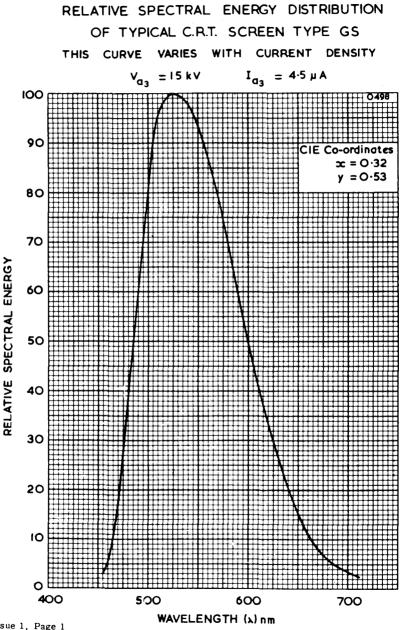
GR/P39 PERSISTENCE


PERCENTAGE OF INITIAL LIGHT OUTPUT

GR/P39 PERSISTENCE


INITIAL LUMINANCE = I FOOT LAMBERT

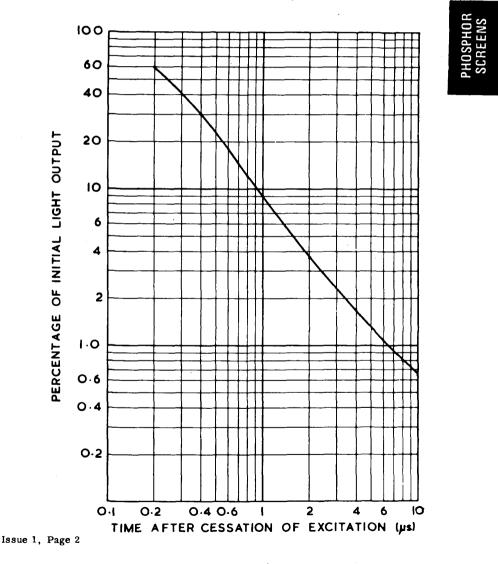
Excitation: Continuous focused raster

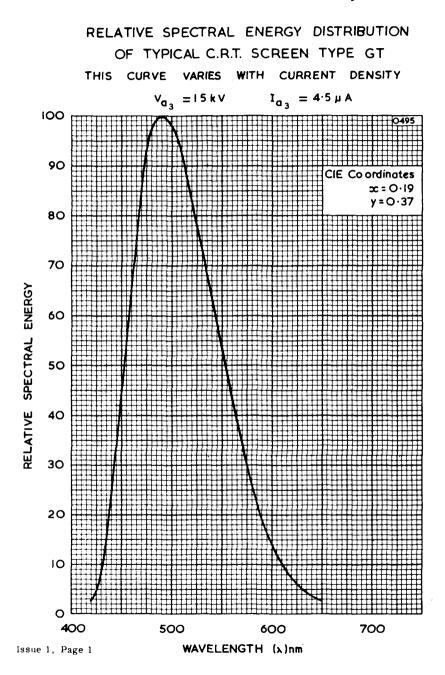

Issue 1, Page 3

GR/P39 PERSISTENCE

TIME AFTER CESSATION OF EXCITATION (s)

GR P39

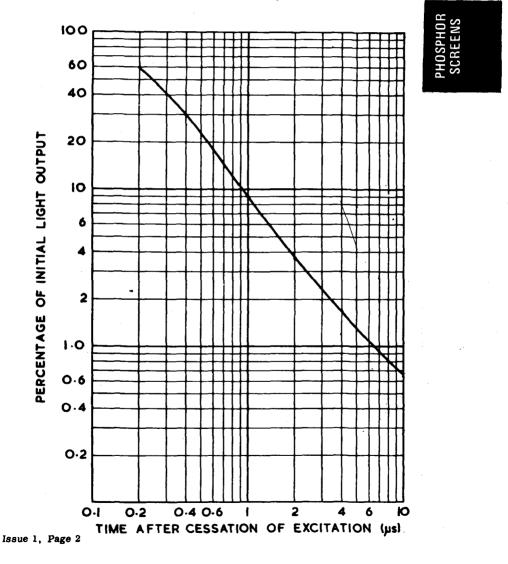

GS


Issue 1, Page 1

GS AND GT PERSISTENCE

ANODE VOLTAGE = 15kV

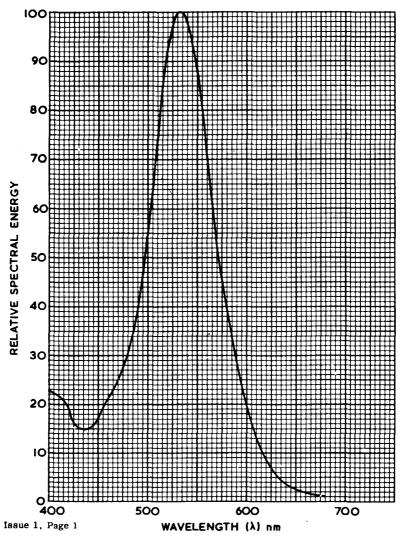
Excitation: Pulsed focused spot

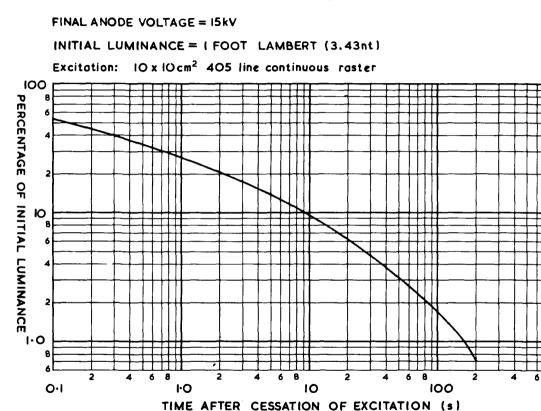


GS AND GT PERSISTENCE

ANODE VOLTAGE = 15kV

Excitation: Pulsed focused spot




GT

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GV

KELLY CHART COLOUR -YELLOWISH-GREEN (Phosphorescence)

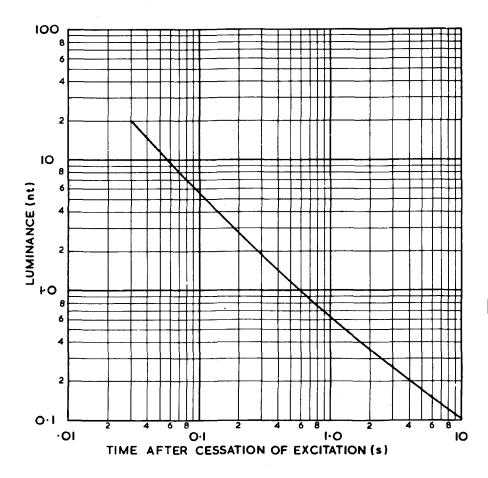
SCREEN VOLTAGE = 15kV CIE CO-ORDINATES $\propto 0.28$ y 0.53

GV

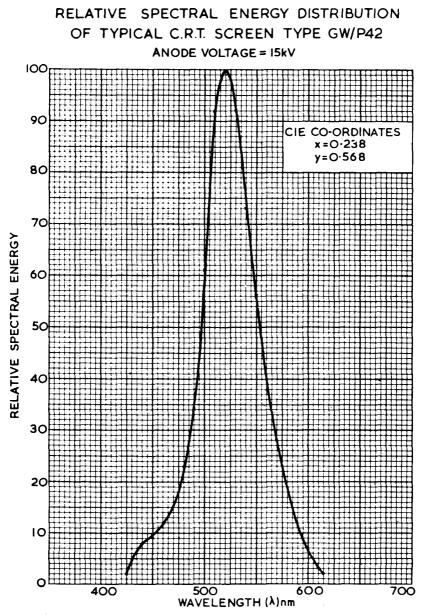
PERSISTENCE

8

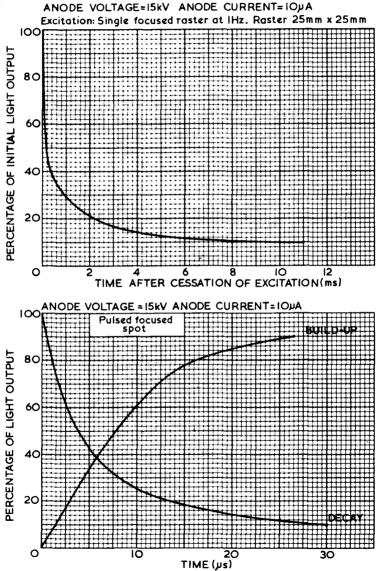
PHOSPHOR SCREENS


Issue 1, Page 2

GY


GV PERSISTENCE

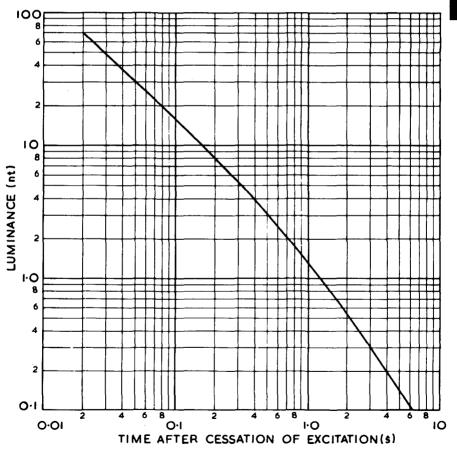
FINAL ANODE VOLTAGE = 15kV


Excitation: single 20 ms raster at $l\mu A/cm^2$

GW P42

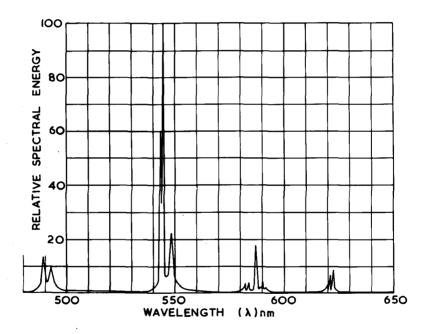
GW/P42 PERSISTENCE AND BUILD-UP

Issue 1, Page 2

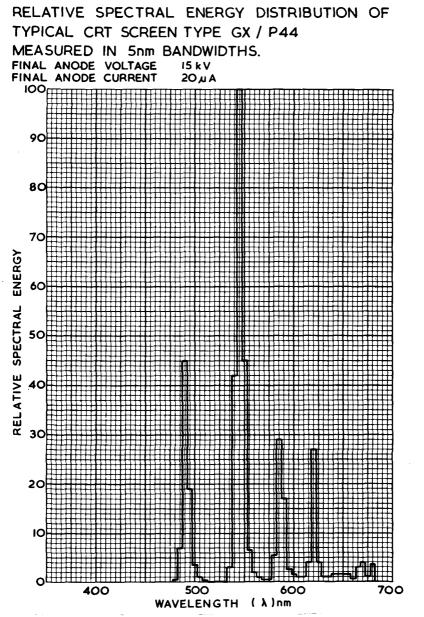

GW P42

GW/P42 PERSISTENCE

FINAL ANODE VOLTAGE = 15 kV

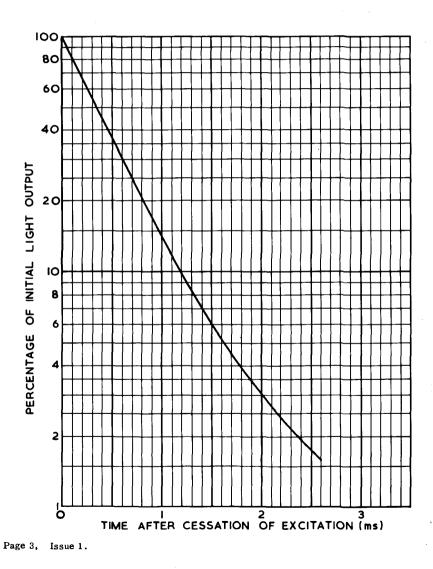

Excitation: single 20ms raster at IµA/cm²

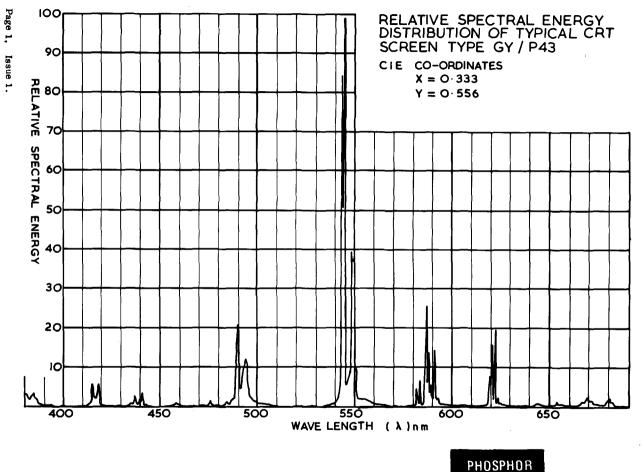
Measured as average luminance of raster on C.R.T. with aluminised screen.


Issue 1, Page 3

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL CRT SCREEN TYPE GX / P44 CIE CO-ORDINATES X = 0.300 Y = 0.596

Page 1, Issue 1.

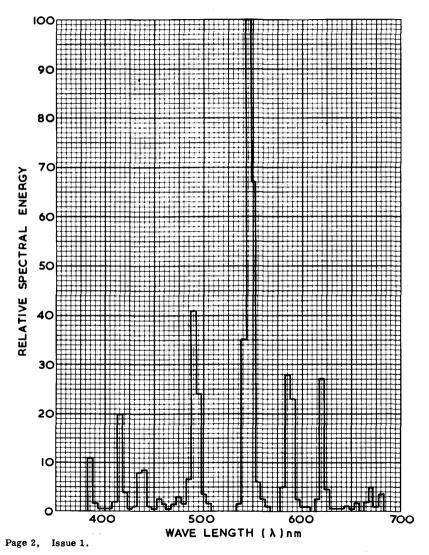

GX P44



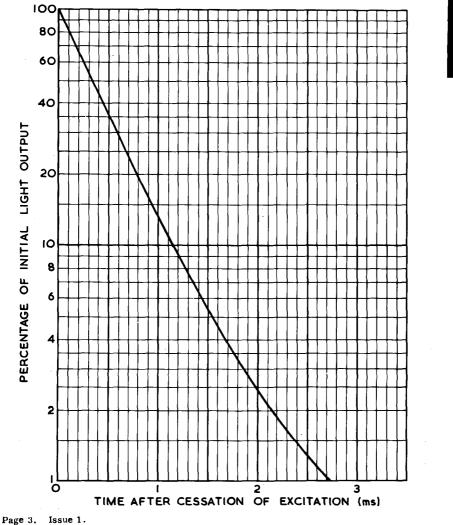
GX P44

GX / P44 PERSISTENCE FINAL ANODE VOLTAGE = 20 kV PULSED SPOT

-

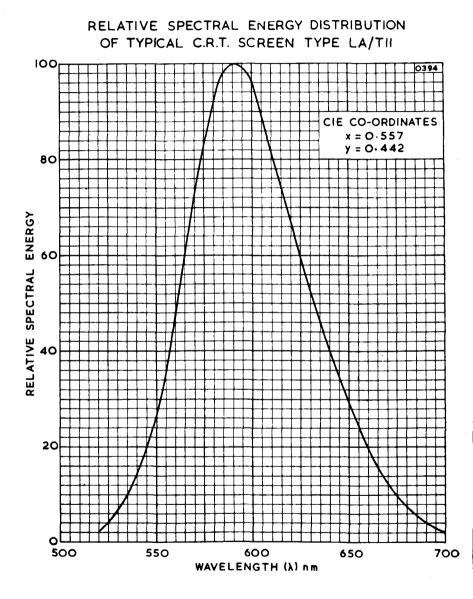

SCREENS

Phosphor Screen


P43

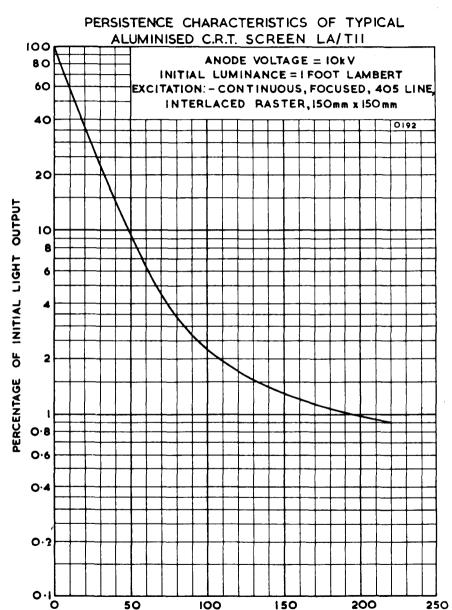
RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL CRT SCREEN TYPE GY/P43 MEASURED IN 5nm BANDWIDTHS.

FINAL ANODE VOLTAGE = 15 kV FINAL ANODE CURRENT = 20 م


GY/P43 PERSISTENCE FINAL ANODE VOLTAGE = 20 kV PULSED SPOT


GY P43

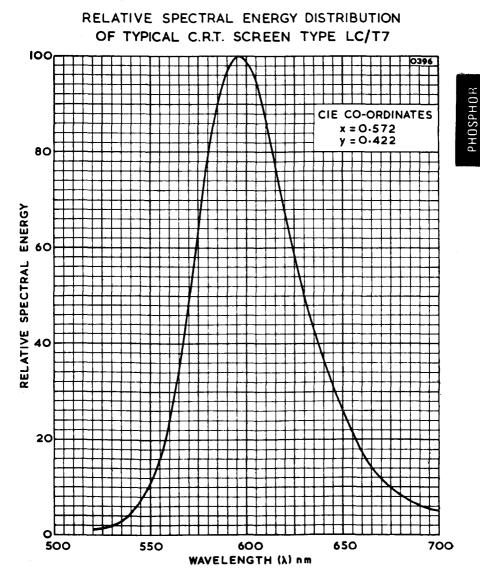
> PHOSPHOF Screens


Issue 1, Page 1

PHOSPHOR

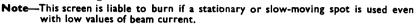
LA T11

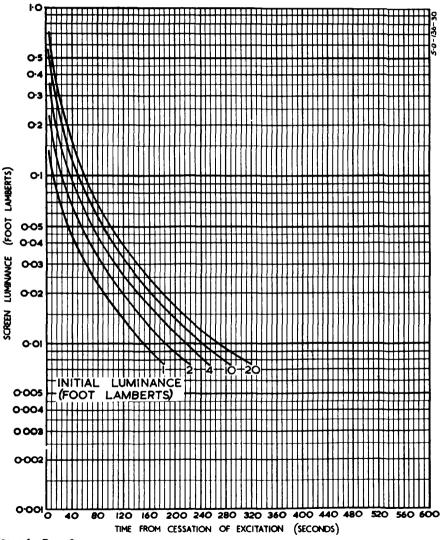
Issue 1, Page 2



TIME AFTER CESSATION OF EXCITATION (ms)

LC T7

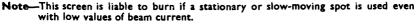

SCREENS

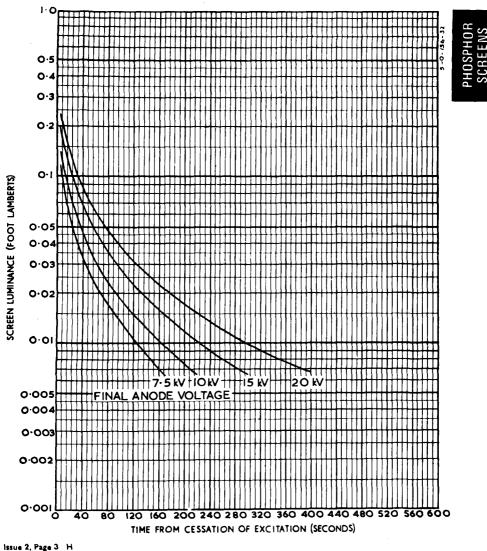


Issue 1, Page 1

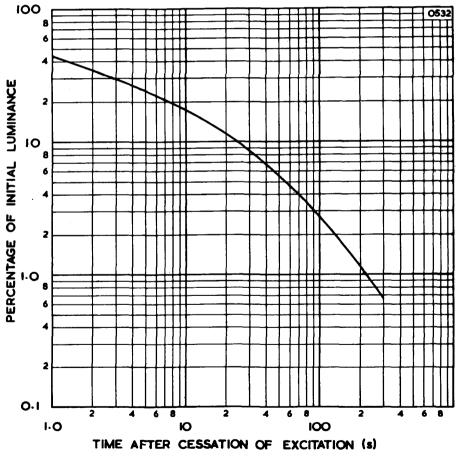
PERSISTENCE CHARACTERISTICS of typical aluminised CRT screen.

Excitation—Continuous, focused, 405 line, interlaced raster, 150 mm × 150 mm. Final Anode Voltage—10 kV.





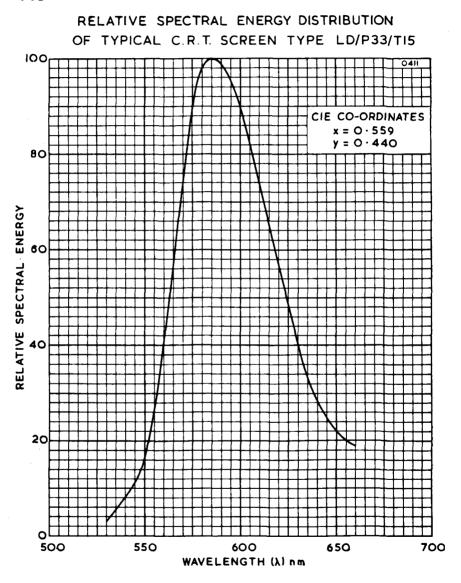
Issue 1, Page 2


PERSISTENCE CHARACTERISTICS of typical aluminised C.R.T. screen.

Excitation—Continuous, focused, 405 line, interlaced raster, 150 mm \times 150 mm. Initial Luminance—1 Foot Lambert.

FINAL ANODE VOLTAGE = 15kV INITIAL LUMINANCE = 1 FOOT LAMBERT (3-43mt) Excitation: continuous focused raster Measured on C.R.T. with aluminised screen

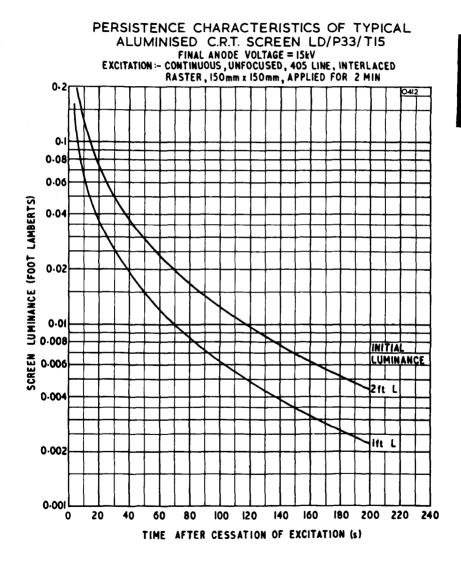
Issue 1, Page 4


FINAL ANODE VOLTAGE = 15kV Excitation: single 20 ms raster at $l\mu A/cm^2$ Measured as average luminance of raster on C.R.T. with aluminised screen 3 2 10 8 6 4 2 ŀO LUMINANCE (nt) 8 6 4 2 0.1 8 6 4 2 0.01 6 8 10 6 8I.O 2 4 2 4 2 4 6 ⁸100 0.1 TIME AFTER CESSATION OF EXCITATION (s)

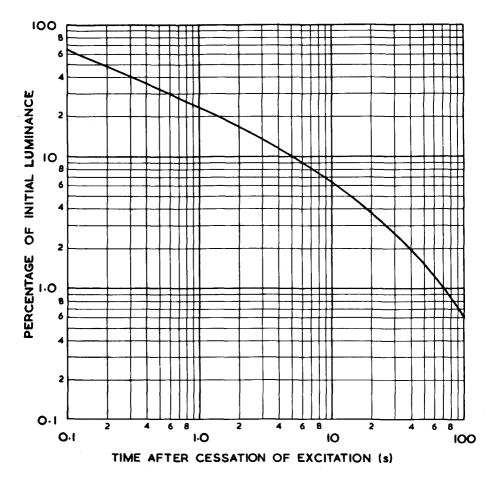
Issue 1, Page 5

PHOSPHOR SCREENS

LC/T7 PERSISTENCE


LD P33 T15

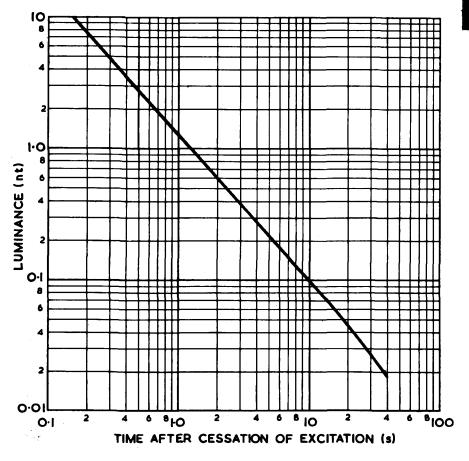
Issue 1, Page 1


Note—This screen is liable to burn if a stationary or slow-moving spot is used even with low valves of beam current.

LD P33 T15

LD/P33/TI5 PERSISTENCE

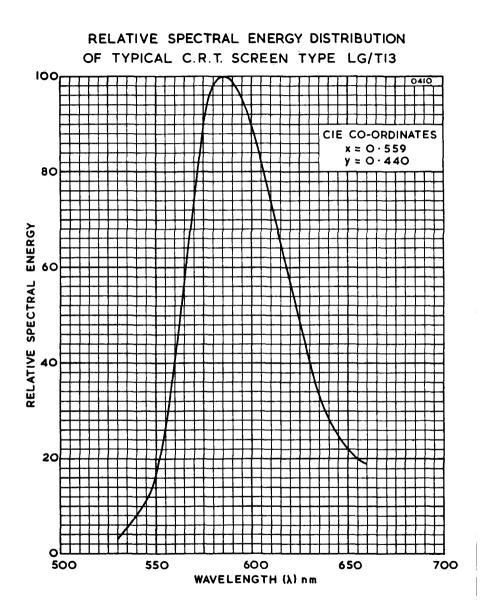
FINAL ANODE VOLTAGE = 15kV INITIAL LUMINANCE = 1 FOOT LAMBERT (3.43nt) Excitation: continuous focused raster Measured on C.R.T. with aluminised screen

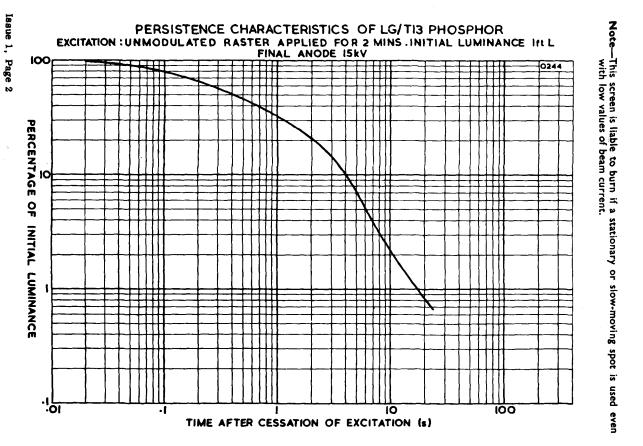


Issue 1, Page 3

LD/P33/TI5 PERSISTENCE

FINAL ANODE VOLTAGE = 15 kV


Excitation: single 20ms raster at $l\mu A/cm^2$ Measured as average luminance of raster on C.R.T. with aluminised screen.

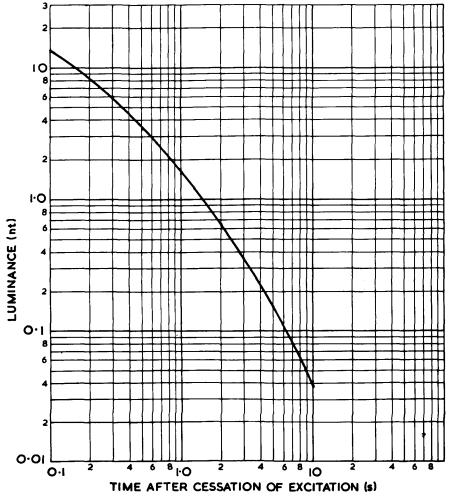


Issue 1, Page 4

LD P33 T15

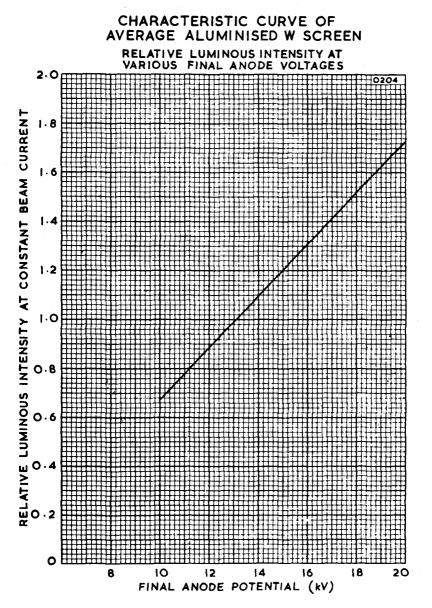
Issue 1, Page 1

26

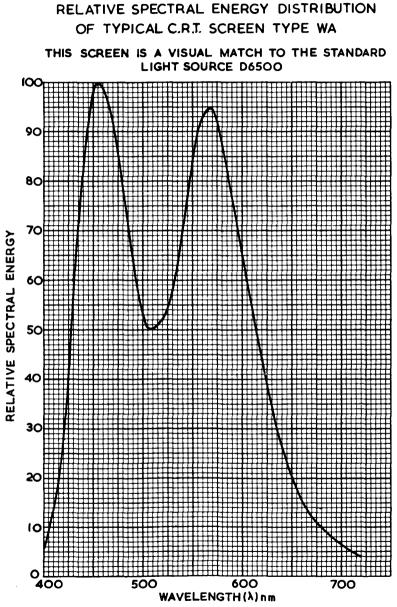

PHOSPHOR SCREENS

LG/TI3 PERSISTENCE

FINAL ANODE VOLTAGE = 15 kV


Excitation: single 20ms raster at $l\mu A/cm^2$

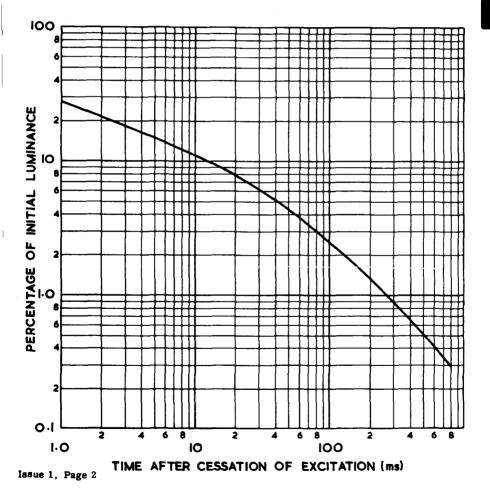
Measured as average luminance of raster on C.R.T. with aluminised screen



Issue 1, Page 3

ALUMINISED W SCREEN CHARACTERISTIC

Issue 1, Page 1

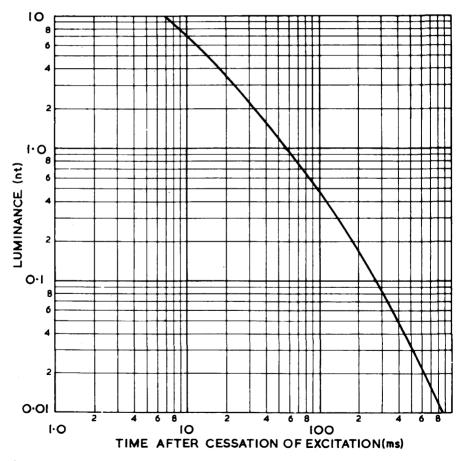


Issue 1, Page 1

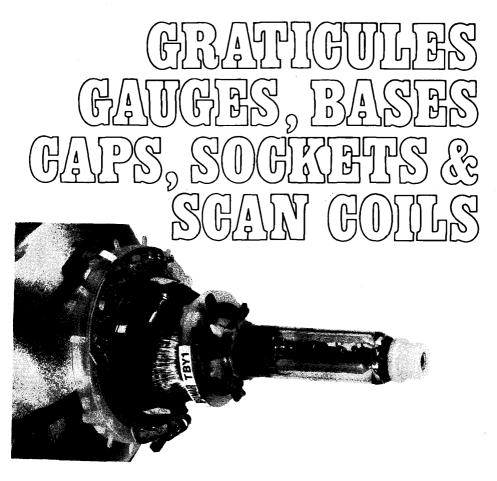
WA PERSISTENCE

FINAL ANODE VOLTAGE = 15kV INITIAL LUMINANCE = 1 FOOT LAMBERT (3.43nt) Excitation: continuous focused raster

Measured as average luminance of raster on C.R.T. with aluminised screen


PHOSPHOR SCREENS

WA PERSISTENCE


FINAL ANODE VOLTAGE=15kV

Excitation: single 20ms raster at lµA/cm²

Measured as average luminance of raster on C.R.T. with aluminised screen.

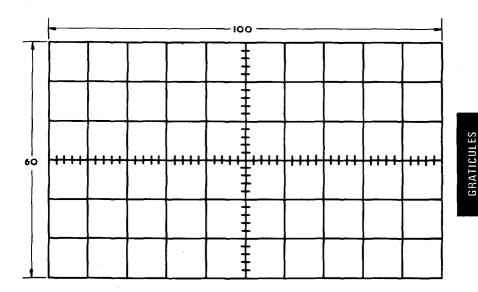
Issue 1, Page 3

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING


These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Type 26

DETAILS OF GRATICULE

All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 26 normally used on tubes with 13 cm diagonal .

The graticule x and y axes will be on tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 3.

DETAILS OF GRATICULE

	r						r		1	
				-						
				_	<u> </u>					
					-					
				-	•					
					-					
					E					
++++-	+++++	++++-	++++	++++	 	+++++		++++	++++	42
					-					
					[
	[.							5		1
ļ	ļ				<u> </u>					
					•					
					F	-				
-				70) —				-	

Dimensions In mm

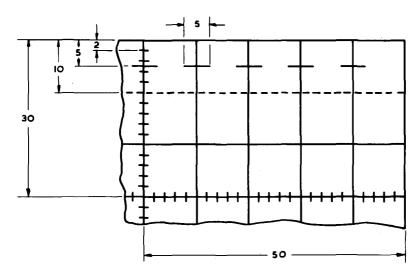
Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 32 normally used on tubes with 10 cm diagonal.

The graticule X and Y axes will be on the tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.


Thorn Radio Valves and Tubes Limited

BRIMAR

Page 1, Issue 2.

Type 34

DETAIL OF ONE QUADRANT OF GRATICULE

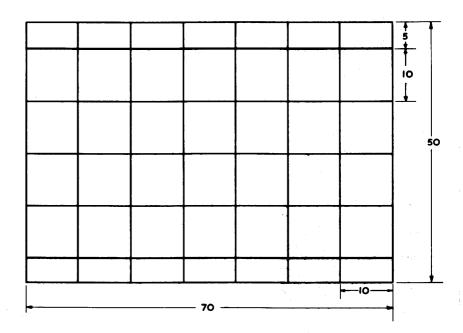
All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 34 normally used on tubes with 13 cm diagonal.

The graticule x and y axes will be on tube face axes $\pm 2^{\circ}$.


The centre of the graticule will be within 1 mm of the mechanical centre of the face.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 4.

DETAILS OF GRATICULE

All dimensions in mm

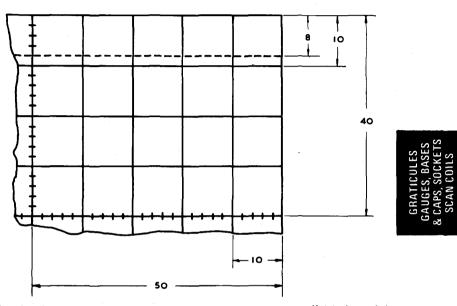
Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 42 normally used on tubes with a 10 cm diagonal.

The graticule axes will be on the tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.


Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

Type 50 Type 51

DETAIL OF ONE QUADRANT OF GRATICULE

All dimensions in mm

Not to be scaled

GRATICULE 50

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Square with 10 mm side. x and y axes, with markers at 10% and 90%.

Graticule 100 mm x 80 mm normally used on tubes with 14 and 15 cm diagonal.

The graticule x and y axes will be on the tube face axes $\pm 2^{\circ}$.

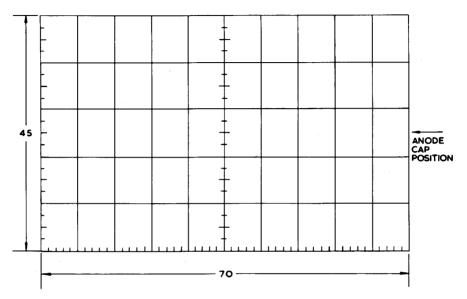
The centre of the graticule will be within 1 mm of the mechanical centre of the face.

GRATICULE 51 : Bonded face-plate light guide.

Tubes with graticule designation 51 (e.g. D14-280GH/51) have a 50 graticule together with a bonded face-plate to provide an alternative method of light injection and hence illumination of the graticule.

The bonded face-plate increases the tube overall length.

Thorn Radio Valves and Tubes Limited


Page 1, Issue 3.

Type 58

Graticule

DETAILS OF GRATICULE

All dimensions in mm

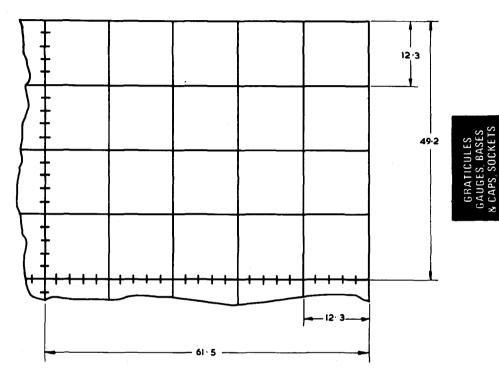
Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 58 normally used on tubes with 10 cm diagonal.

The graticule X and Y axes will be on the tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.


Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

Type 70

DETAIL OF ONE QUADRANT OF GRATICULE

All dimensions in mm

Not to be scaled

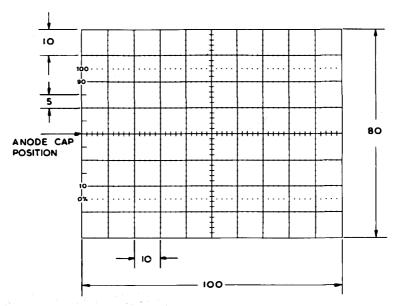
This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Squares with 12.3 mm side. x and y axes.

Graticule normally used on tubes with 18 cm diagonal.

The graticule x and y axes will be on the tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.


Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

Type 82 Type 98

DETAILS OF GRATICULE

All dimension in mm Not to be scaled This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

The graticule X and Y axes will be on the tube face axes $\pm 2^{\circ}$.

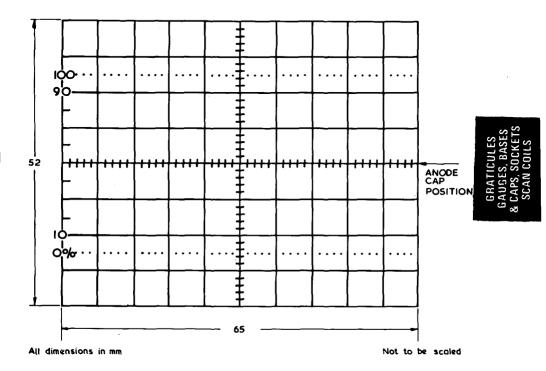
The centre of the graticule will be within 1 mm of the mechanical centre of the face.

Type 98

This is the standard graticule suitable for most 14 cm diagonal tube types.

Type 82

This graticule is specially designed for use on certain mesh p.d.a. tubes. for example, D14-280GH/82 and D14-310GH/82.


Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

BRIMAR

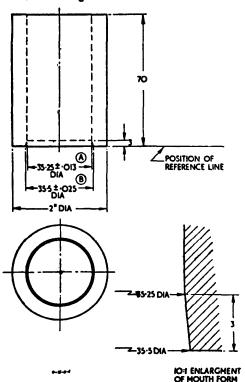
Type 90

DETAILS OF GRATICULE

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 90 normally used on tubes with 10 cm diagonal.

The graticule X and Y axes will be on the tube face axes $\pm 2^{\circ}$.


The centre of the graticule will be within 1 mm of the mechanical centre of the face.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

Reference Line Gauge

For C.R. Tubes having a Nominal Neck Diameter of 34-5 mm

All dimensions in mm unless otherwise stated.

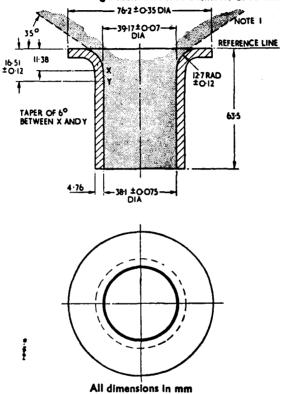
NOTE 1-Deflector Yoke Design

The internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

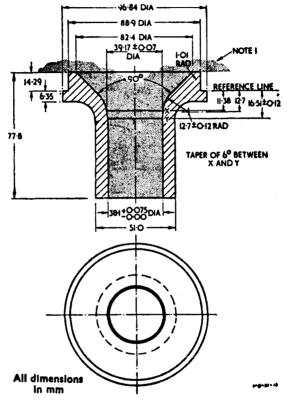
NOTE 2-Tolerances

The tolerances shown are initial manufacturing limits. The figures given below are the maximum allowable limits for wear :

(A) + 0.059 (B) + 0.075


Thorn Radio Valves and Tubes Limited

Issue 3, Page 1 H


Reference Line Gauge

Gauge No. 12

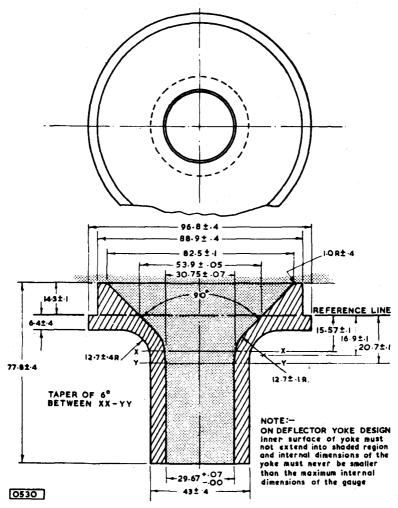
For C.R. Tubes having a Nominal Neck Diameter of 36-5mm,

NOTE 1—Deflector Yoke Design The inner surface of the yoke must not extend into the shaded region and the internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

For C.R. Tubes having a Nominal Neck Diameter of 36-5 mm

NOTE 1—Deflector Yoke Design

The inner surface of the yoke must not extend into the shaded region and the internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

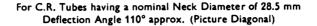

Gauge No. 15

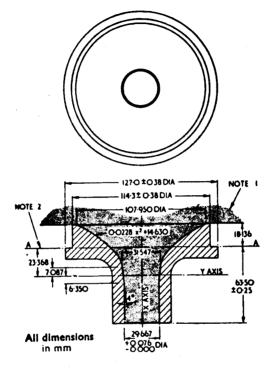
GAUGES, BASE CAPS, SOCKE ICULES

SCAN ž

GRATI

A NECK GAUGE FOR CATHODE RAY TUBES HAVING A NOMINAL NECK DIAMETER OF 28-5mm AND DEFLECTION ANGLE (PICTURE DIAGONAL) 90°


All dimensions in mm


Not to be scaled

Issue 3, Page 1 H

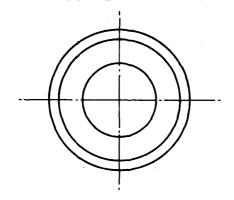
Gauge No. 16

Reference Line Gauge

NOTE 1.—Deflector Yoke Design.

The inner surface of the yoke must not extend into the shaded region and the internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

NOTE 2.—Reference Line.


The Reference Line is determined by the plane "A-A" when the gauge is seated against the funnel.

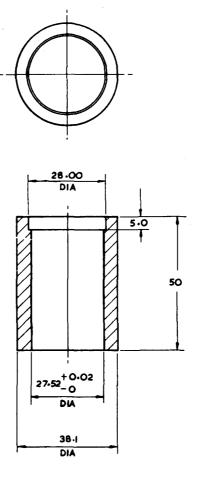
Thorn Radio Valves and Tubes Limited

Reference Line Gauge Gauge No. 18

NECK DIAMETER 28-5 NOMINAL

All dimensions in mm

Thorn Radio Valves and Tubes Limited



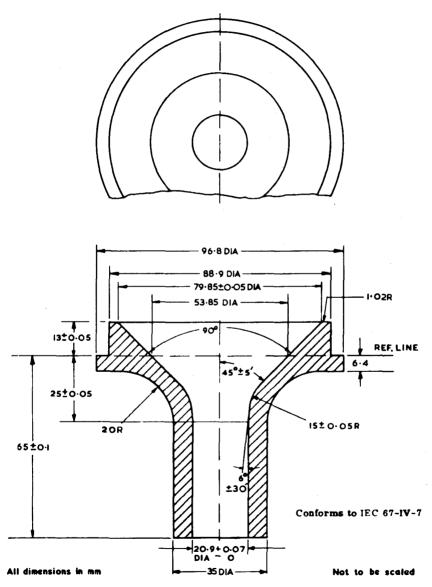
Not to be scaled

GRATICULES SAUGES, BASES CAPS, SDCKETS SCAN COLLS Gauge No. 19

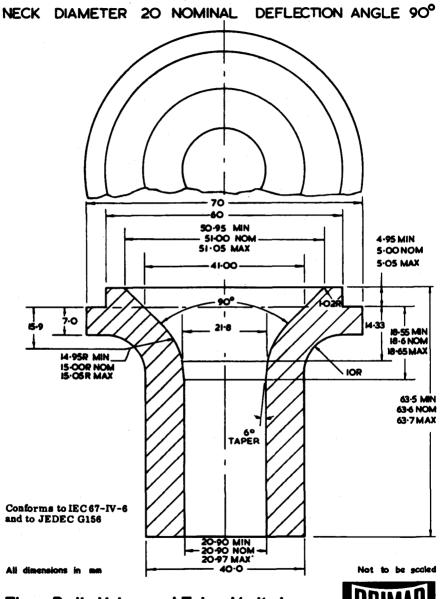
Reference Line Gauge

All dimensions in mm

Not to be scaled


Thorn Radio Valves and Tubes Limited

Reference Line Gauge

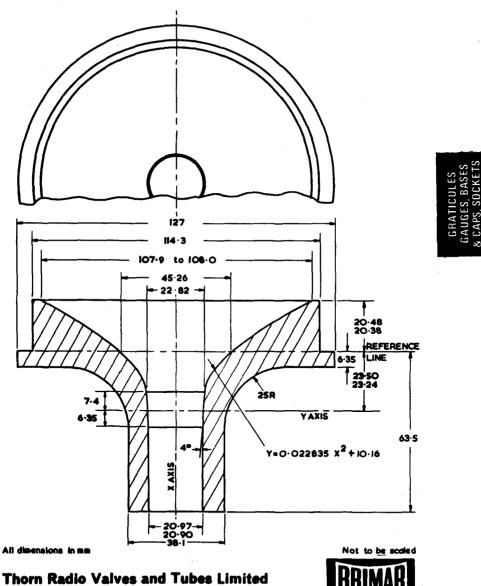

NECK DIAMETER 20 NOMINAL DEFLECTION ANGLE 90°

Gauge No 20

Gauge No 21

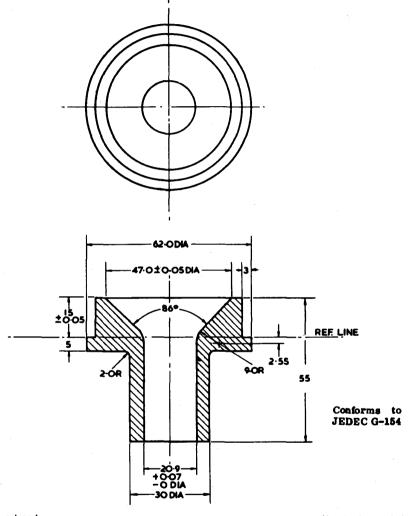
Reference Line Gauge

Thorn Radio Valves and Tubes Limited Issue 1, Page 1


Reference Line Gauge

SCAN COI

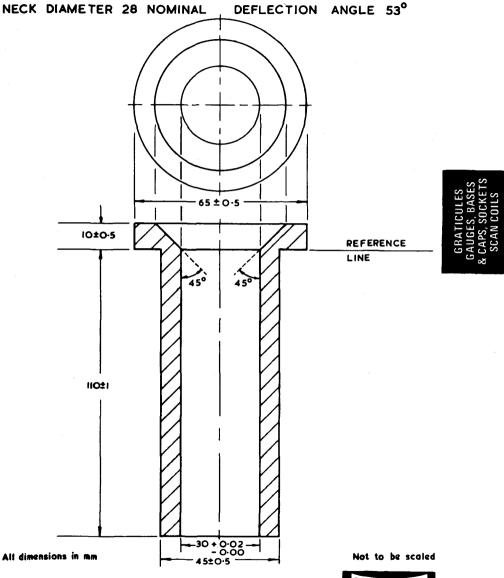
NECK DIAMETER 20 NOMINAL


DEFLECTION ANGLE 110°

Gauge No 23

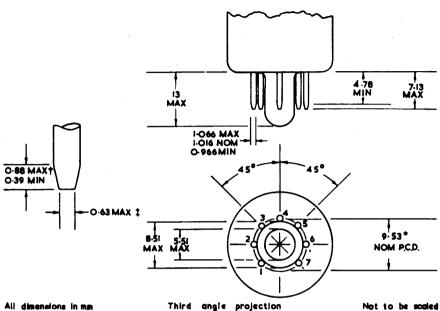
Reference Line Gauge

NECK DIAMETER 20 NOMINAL DEFLECTION ANGLE 70°


All dimensions in mm

Not to be scaled

Thorn Radio Valves and Tubes Limited Issue 1, Page 1



Reference Line Gauge Gauge No. 31

Thorn Radio Valves and Tubes Limited

Not to be scaled

The drawing shows the numbering of the pins as seen from their free ends.

- * The dimensions fixing the position of the pins refer to the fixed ends of the pins. The disposition may be checked by the appropriate gauge.
- t This dimension may vary within the limits shown around the periphery of any individual pin. The surface of the pin is convex or conical in shape and is not brought to a sharp point.

1 This surface is flat.

Conforms to JEDEC E7-91.

Thorn Radio Valves and Tubes Limited

DETAIL OF PIN

0.635 mgx

END OF PIN

FLAT SURFACE AT

23-22 max 22.5min + 3.429* 458 6 35 10-41min "12-70 max 17-53min) (20-**83 max**) BOX 10 0.89 max 0.38min + 2.36 max 2.11 min 11.15max 10.49min

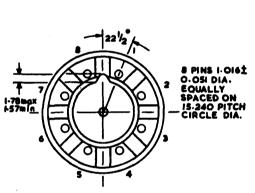
DETAIL OF KEY O2 max O-51max rad. rad. 0375

All dimensions in mm.

Not to be scaled.

The millimetre dimensions are derived from the original inch dimensions.

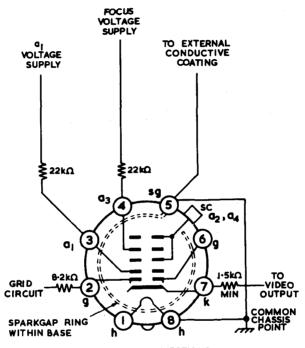
The drawing shows the numbering of the pins as seen from their free ends.


- * Dimensions for variant B8H base.
- † This dimension may vary within the limits shown around the periphery of any individual pin. This surface of the pin shall be convex or conical in shape and shall not be brought to a sharp point.
- t These dimensions illustrate current practice and are not regarded as compatibility features.

Note:

Base pin positions are held to tolerances such that the base will fit a flat-plate gauge having a thickness of 9-525 mm and eight equally spaced holes of 1.397 \pm 0.013 mm diameter located on a 15.240 \pm 0.013 mm diameter circle. The gauge is also provided with a centre hole to provide 0.254 mm diametric clearance for the spigot and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, enter into and disengage from the gauge.

Issue 1, Page 1



BRATICUL œ

AUG

B8H Sparkguard R

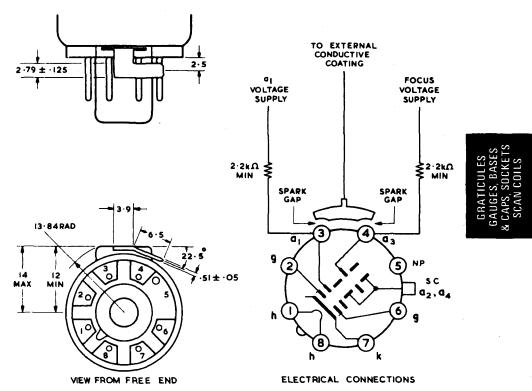
BBH SPARKGUARD R C.R.T. BASE CONNECTIONS

ELECTRICAL CONNECTIONS VIEW FROM FREE END OF BASE PINS

A metal ring within the B8H base, which is taken out to pin 5 (sg), forms a spark gap to all other tube electrodes thus providing flashover protection for all external electrode circuits and components.

All leads must be as short and direct as possible. The external conductive coating should be connected to pin 5 only, with no other connection to chassis.

The resistors, preferably carbon composition type, in series with the supply leads should be such as to have a minimum surface leakage path between leads of 10 mm.

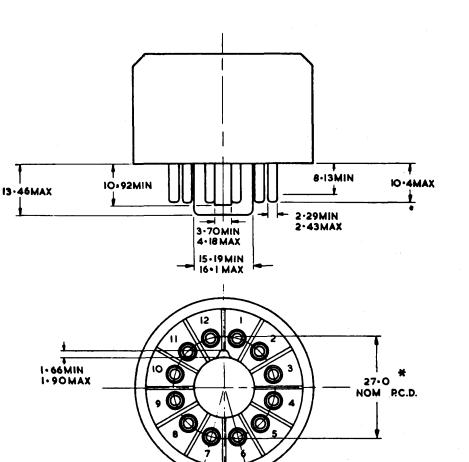

Tube types with the above sparkguard base have a suffix R after the type number and should only be used if the circuit modifications as above are incorporated.

Thorn Radio Valves and Tubes Limited

BRIMAR

Base

B8H SPARKGUARD S C.R.T. BASE



A metal plate within the B8H base, which is taken out to a flat, side, earthing tag, forms a spark gap to the first anode and focus electrode. The plastic of Sparkguard S is coloured black.

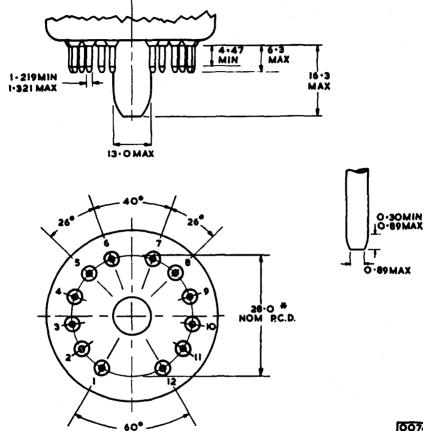
Tube types fitted with this base have a suffix S after the type number. Sparkguard Stubes can be used in any set without circuit modification, but in sets designed for Sparkguard R protection the side tag must be bonded to pin 5 on the socket.

It is recommended that the earthing tag should be returned to the external conductive coating by the shortest possible route. The resistors of $2.2k\Omega$ placed in series with the supply leads to the first anode and focus electrode should be such as to have a minimum surface leakage path between leads of 10 mm (e.g. at least 1/2 W size).

Connection to the earthing tag should be made by means of a push-on connector so that the connection may be removed whilst the deflector coil and other neck components are being fitted to the tube. An example of a suitable connector is the AMP ''110 Series Faston Receptacle ''(AMP of Great Britain Ltd., Terminal House, Stanmore, Middlesex).

All dimensions in mm.

Not to be scaled.


0073

Notes

•The dimensions fixing the positions of the pins refer to the fixed ends of the pins. The pin disposition may be checked only by means of the appropriate gauge. The drawing shows the numbering of the pins as seen from their free ends.

30°

15°_

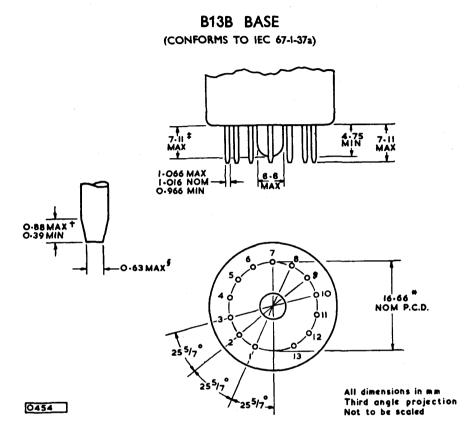
0074

All dimensions in mm.

Not to be scaled.

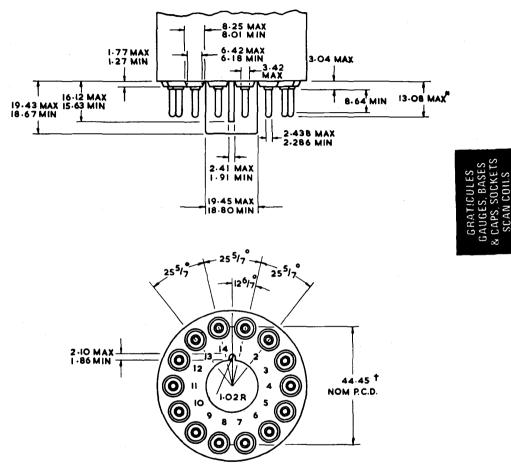
Notes

•The dimensions fixing the positions of the pins refer to the fixed ends of the pins. The pin disposition may be checked only by means of the appropriate gauge.


This surface of the pin shall be convex or conical in shape and shall not be brought to a sharp point.

The drawing shows the numbering of the pins as seen from their free ends.

Issue 1, Page 2


B12F

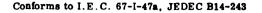
The drawing shows the numbering of the pins as seen from their free ends.

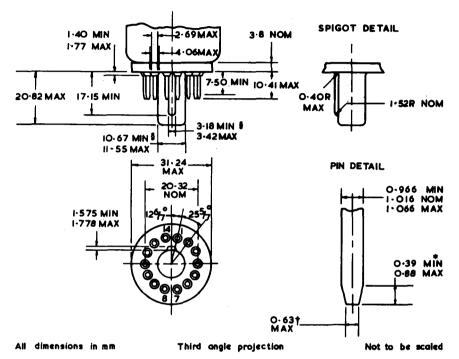
- * The dimensions fixing the position of the pins refer to the fixed ends of the pins. The pin disposition may be checked by the appropriate gauge.
- † This surface of the pin is convex or conical in shape and is not brought to a sharp point.
- § This surface is flat.
- † The tubulation should not project beyond the length of the pins. In some tube types, however, the tubulation does project beyond the length of the pins. Where this happens the maximum length of the tubulation is given on the tube outline drawing.

Conforms to B.S. B14A, I.E.C. 67-1-16a, JEDEC B14-38 and B14-45

All dimensions in mm

Third angle projection


Not to be scaled


The drawing shows the numbering of the pins as seen from their free ends.

- * This dimension may be increased by 0.76 mm max, for solder.
- [†] The dimensions fixing the positions of the pins refer to the fixed ends of the pins. The pin disposition may be checked by the appropriate gauge.

Any projections on the under surface of the base other than those shown, such as a rim or external barriers, shall have a height not exceeding 2.79 mm.

Issue 1, Page 1.

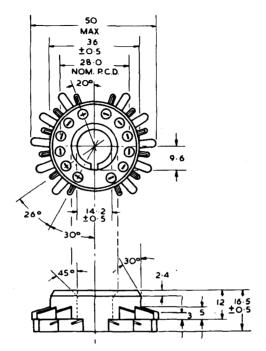
The drawing shows the numbering of the pins as seen from their free ends. The pin disposition may be checked by the appropriate gauge.

There is a second type with a shorter spigot having the following dimensions.

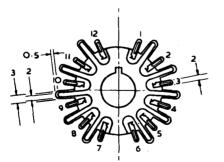
Type 2: Spigot length = 14.8 mm MAX Key length = 11.8 mm MIN

* This dimension may vary within the limits shown around the periphery of any individual pin. This surface of the pin shall be convex or conical in shape and shall not be brought to a sharp point.

† This surface shall be flat.


S The dimensions given include any necessary taper.

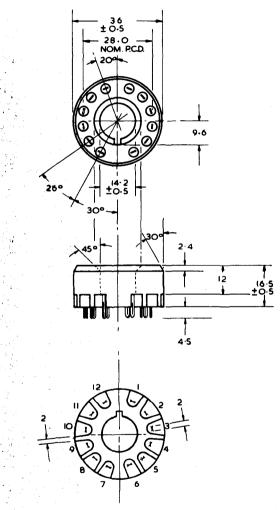
Thorn Radio Valves and Tubes Limited



Socket

B12F

All dimensions in mm

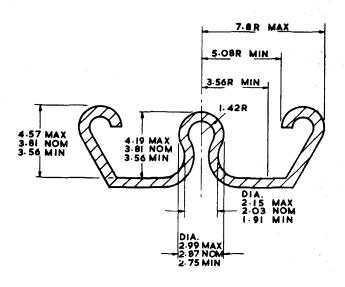

Thorn Radio Valves and Tubes Limited

Issue 1. Page 1.

Not to be scaled

Socket

All dimensions in mm


Not to be scaled

Page 1, Issue 1.

Cap

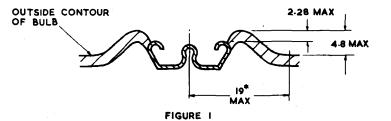
GRATICULES GAUGES, BASE & CAPS, SOCKET SCAN COILS

All dimensions in mm

Not to be scaled

Notes

- 1. This drawing is for illustration only. The shape may be varied provided the specified dimensions are adhered to.
- 2. When attaching or detaching the connector, the total force required should not exceed 36N (8lbf) applied perpendicular to the plane of the cap rim.
- 3. Conforms to IEC 67-III-3 and JEDEC J1-22.


Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

CT7

CT7 SEAL TOLERANCES

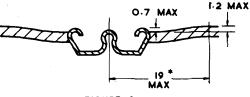
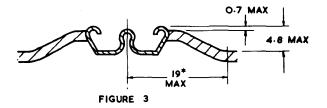
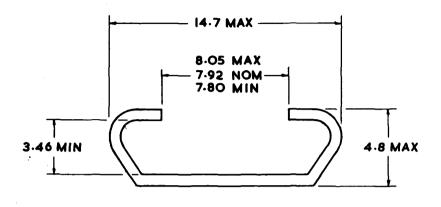



FIGURE 2

All dimensions in mm


Not to be scaled

Notes

* Protrusion of glass around cap above bulb contour is limited to area bounded by circle concentric with cap axis and having radius of 19 mm maximum.

The shape of the cap is for illustration purposes only.

Angle between plane of the rim of cap and plane tangent to original contour of bulb at centre of cap will not be more than 10°.

All dimensions in mm

Not to be scaled

Notes

- 1. This drawing is for illustration only. The shape may be varied provided the specified dimensions are adhered to.
- 2. When attaching or detaching the connector, the total force required should not exceed 35 N (8 lbf) applied perpendicular to the plane of the cap rim.
- 3. Conforms to IEC 67-III-2 and JEDEC J1-21.

CT8 SEAL TOLERANCES

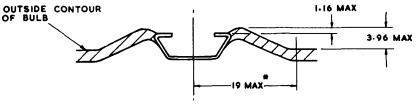


FIGURE I

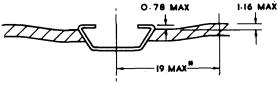


FIGURE 2

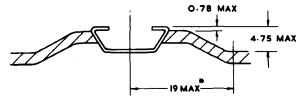


FIGURE 3

All dimensions in mm Notes

Not to be scaled

* Protrusion of glass around cap above bulb contour is limited to area bounded by circle concentric with cap axis and having radius of 19 mm max.

The shape of the cavity cap is for illustration purposes only.

Angle between plane of the rim of cap and plane tangent to original contour of bulb at centre of cap will not be more than 10° .

Scan Coils

PRELIMINARY DATA

GENERAL

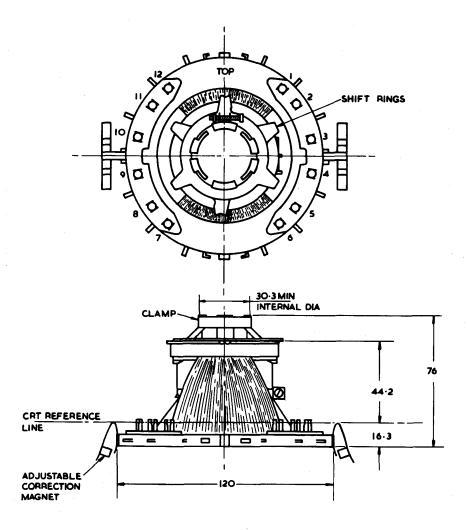
Scan ceils designed for 70°, 90° and 110° tubes with 28 mm diameter necks.

A short ferrite ring is used with saddle and toroidal wound coils. Shift rings and a clamp assembly are provided.

TBY1 has two picture shape correction rod magnets mounted on the x axis for adjustment by the user. This type is not suitable for tubes with diagonals smaller than 24 cm.

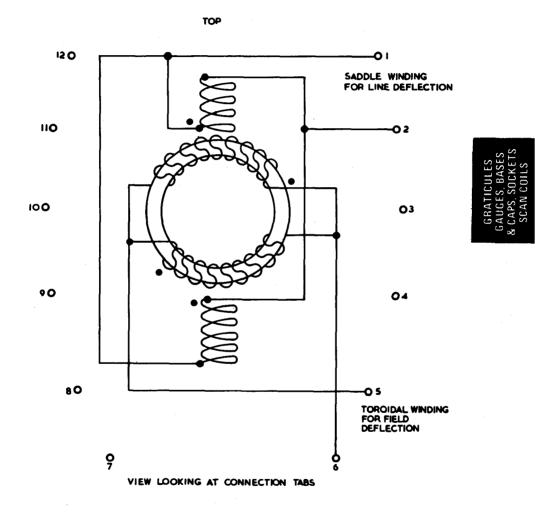
RATINGS						
Maximum voltage between line and field coils (50 Hz)			2.0	kV		
Maximum operating temperature			100	•C		
ELECTRICAL DATA*		X Axis	Y Axis			
Type of winding		Saddle	Toroidal			
Inductance at 1 kHz (Tolerance ± 5%)		2.9	7.6	mH		
Resistance at 20°C (Tolerance ± 6%)		4.1	3.2	Ω		
Deflection current, peak to peak, (Tolerance \pm 5%) for the following deflection		1.4 272	0.92 205	A mm		
Rectangularity between x and y traces †		90°±1	L.0°			
Maximum adjustment of shift ring (dia.)		60	mm			
Raster distortion §						
Test raster parallel to sides of rectangle to within		3.0	mm			
Maximum pincushion distortion	LHS	1.6		mm		
	RHS	3.0	1	mm		
Maximum barrel distortion	LHS	3.0		mm		
	RHS	1.6		mm		
Maximum pincushion or barrel distortion top or bottom		3.0	l i i i i i i i i i i i i i i i i i i i	mm		

* Applies, where applicable, to an M38-101.. tube operating at 15 kV


† To meet this limit, a coupling coil has occasionally to be fitted to the assembly. This is wired in series with the line coils and adjusted at the factory to limit the coupling factor to less than 0.001.

S Comparison of a test raster and rectangle of height 90% of the tube minimum screen height and aspect ratio 4:3.

Thorn Radio Valves and Tubes Limited


TBY 1

All dimensions in mm

Not to be scaled

Scan Coils

Issue 1, Page 3

TBY1

2.0

kV

PRELIMINARY DATA

GENERAL

Scan coils designed for 70° flat faced tubes with 28 mm diameter necks. These coils are particularly suitable for smaller tubes giving adequate clearance of the EHT connector. A short ferrite ring is used with saddle and toroidal wound coils. Shift rings and a clamp assembly are provided.

TBY2 has fixed picture shape correction rod magnets mounted within the plastic moulding.

To reduce raster distortion additional magnets may be placed on the pegs around the periphery of the plastic moulding.

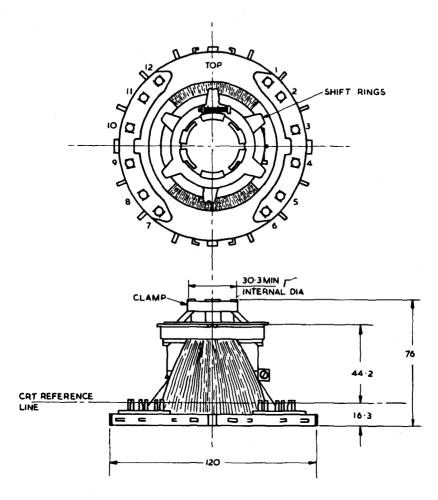
RATINGS

Maximum voltage between the and here cons (bonna)			2.0	n.v			
Maximum operating temperature		100	°C				
ELECTRICAL DATA*		X Axis	Y Axis				
Type of winding		Saddle	Toroidal				
Inductance at 1 kHz (Tolerance ± 5%)		2.9	7.6	mH			
Resistance at 20°C (Tolerance $\pm 6\%$)		4.1	3.2	Ω			
Deflection current, peak to peak, (Tolerance ± 5%) for the following deflection		1.35 127	0.87 95	A mm			
Rectangularity between x and y traces †		90° <u>+</u> 1.	0°				
Maximum adjustment by shift ring (diameter)		60		mm			
Raster distortion §							
Test raster parallel to sides of recta	ingle to within			mm			
Maximum pincushion distortion LH RH				mm mm			
Maximum barrel distortion LH. RH				mm mm			
Maximum pincushion or barrel disto	rtion top or bottom			mm			

* Measured, where applicable, on an M17-10.. tube operating at 14kV

- † To meet this limit, a coupling coil has occasionally to be fitted to the assembly. This is wired in series with the line coils and adjusted at the factory to limit the coupling factor to less than 0.001.
- S Comparison of a test raster and rectangle of height 90% of the tube minimum screen height and aspect ratio 4:3.

Thorn Radio Valves and Tubes Limited


Maximum voltage between line and field coils (50 Hz)

Page 1, Issue 1

Scan Coils

TBY2


All dimensions in mm

Not to be scaled

Page 2, Issue 1

TBY2

Scan Coils

TOP

Deflection Component

GENERAL - SCAN COILS

Scan coils can be used for 70°, 90° and 110° tubes with 20 mm diameter necks.

A short ferrite ring is used with saddle wound line and toroidal wound field coils. Shift rings and a neck clamp assembly are provided.

These scan colls are for use in low voltage transistor deflection circuits.

To reduce raster distortion picture shape correction magnets may be placed on the pegs around the periphery of the plastic moulding.

ELECTRICAL DATA	Tube	Anode Volta	X Axis	Y Axis	
Type of winding	Туре	(kV)	Saddle	Toroidal	
Inductance at 1 kHz (Tol. X ± 5%, Y ± 8%)			0.258	30	mH
Resistance at 20 °C (Tol. X ± 5%, Y ± 8%)			0.55	16.7	Ω
Deflection current, peak to peak, for full screen deflection					
	M14-100	10	3.6	0.36	A
1	M19-100	10	4.0	0.42	Ā
	M23-110	10	4.1	0.42	A
	M28-12	12	4.5	0.45	A
	M31-120	11	5.1	0.53	A
	M31-190	12	4.5	0.44	A
	M38-160	13	5.5	0.56	A
Rectangularity between x and y traces	9 0° + 1.0°			1.0•	

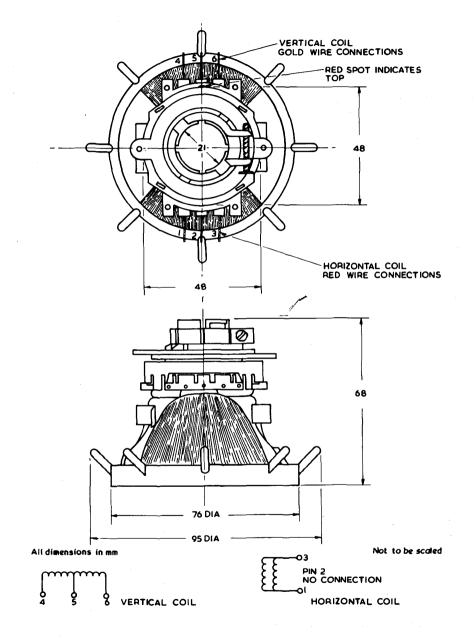
Mectaligutarity between x and y traces

Suitable field and line scanning circuits are shown in TBK3 sheets.

Raster distortion

The edges of a test raster for M31-120.. can be contained between two concentric rectangles.

All dimensions in mm


Thorn Radio Valves and Tubes Limited

Page 1. Issue 1.

GRATICULES GAUGES, BASES CAPS, SOCKET SCAN COILS

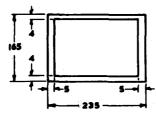
Deflection Component

Page 2, Issue 2.

GENERAL - SCAN COILS

Scan coils can be used for 70°, 90° and 110° tubes with 20 mm diameter necks.

A short ferrite ring is used with saddle wound line and toroidal wound field coils. Shift rings and a neck clamp assembly are provided.

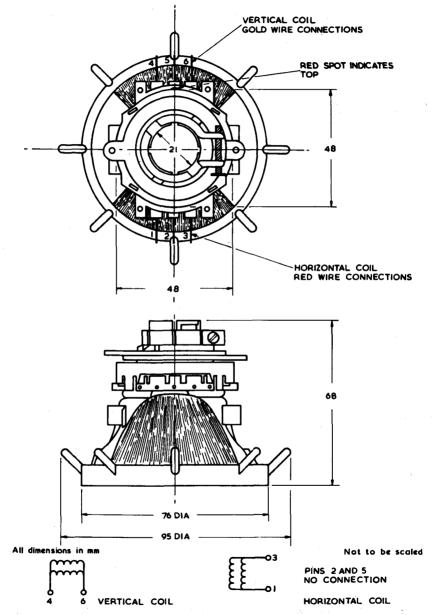

These scan coils are for use in low voltage transistor deflection circuits. The TBY5 is a version of the TBY3 with a low impedance field winding to permit operation with an integrated circuit drive amplifier.

To reduce raster distortion picture shape correction magnets may be placed on the pegs around the periphery of the plastic moulding.

ELECTRICAL DATA Type of winding	Tube Type	Anode Volts (kV)	X Axis	Y Axis	
			Saddle	Toroidal	
Inductance at 1 kHz (Tol. X ± 5%, Y ± 8%)			0.258	7	mH
Typical resistance at 20°C			0.55	3.1	Ω
Deflection current, peak to peak,					
for full screen deflection	M14-100	10	3.6	0.79	A
	M19-100	10	4.0	0.91	Ā
	M23-110	10	4.1	0.91	A
	M28-12	12	4.5	0.97	A
	M31-120	11	5.1	1.16	A
	M31-190	12	4,5	0.97	A
	M38-160	13	5.5	1.22	A
Rectangularity between x and y traces		90° ± 1.0°			

Raster distortion

The edges of a test raster for M31-120.. can be contained between two concentric rectangles.



All dimensions in mm

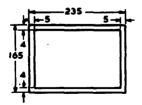
Deflection Component

Deflection Component

PRELIMINARY DATA

GENERAL -SCAN COILS

Scan coils can be used for 70°, 90° and 110° tubes with 20 mm diameter necks,

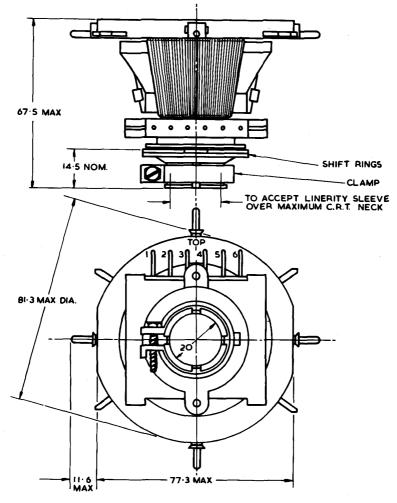

A short ferrite ring is used with saddle wound line and toroidal wound field colls. Shift rings and a neck clamp assembly are provided.

The reduce raster distortion picture shape correction magnets may be placed on the pegs around the periphery of the plastic moulding.

ELECTRICAL DATA	Tube Type	Anode Volts	X Axis	Y Axis	
Type of winding		(kV)	Saddle	Toroidal	
Inductance at 1 kHz (Tol. X ± 5%, Y ± 8%)			4.1	32	mH
Resistance at 20°C (Tol. X + 5%, Y + 8%)			8.8	16.0	Ω
Deflection current, peak to peak, for full screen deflection					
	M14-100	10	0.9	0.4	A
	M19-100	10	1.0	0.4	•
	M23-110	10	1.0	0.4	A
	M28-12	12	1.1	0.5	Å
	M31-120	11	1.3	0.5	A
	M31-190	12	1.1	0.4	A
	M38-160	13	1.4	0.6	A
Rectangularity between x and y traces			90° ±	1.0°	

Raster distortion

The edges of a test raster for nominal M31-120.. the corrected raster shape can be contained between two concentric rectangles.

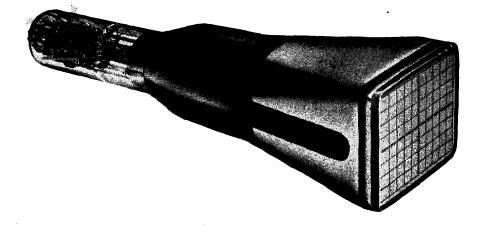

All dimensions in mm

Thorn Radio Valves and Tubes Limited Page 1, Issue 1.

TBY7

Deflection Component

All dimensions in mm


Not to be scaled

OSCHLOSCOPE TTBES

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

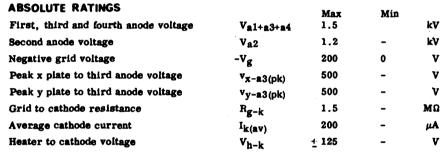
HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS



Instrument Tube

GENERAL

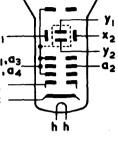
This 1 inch diameter low voltage instrument tube with electrostatic focus and deflection is for use as a general purpose indicating device.

Heater voltage	v _h	6.3	V
Heater current	Ih	0.3	A

All voltages referred to cathode unless otherwise stated.

TUBE WEIGHT (approximate) - 43 g

PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (D3-130GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

y, X₂ Y₂ a1, a3 CD \$, **d**∡

D3 - 130...

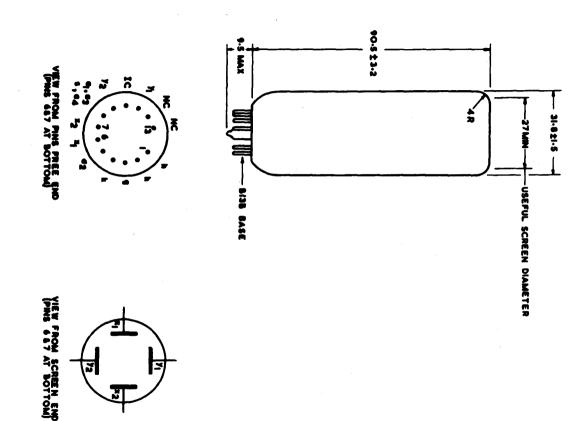
D3-130..

Instrument Tube

INTER - ELECTRODE CAPACITANCES

Cathode and heater to all	^c k, h-all	2.5	pF
Grid to all	cg-all	6.5	pF
Grid to x1;x2, y1, y2 plates	^c g-x1, x2, y1, y2	1.9	pF
x_1 plate to x_2 plate	^c x1-x2	1.1	pF
y1 plate to y2 plate	^c y1-y2	0.4	pF
x_1 plate to all, less x_2 plate	^C x1-ali, less x2	3.0	pF
x_2 plate to all, less x_1 plate	^C x2-all, less x1	3.0	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	3.0	pF
y2 plate to all, less y1 plate	^c y2-all, less y1	2.7	pF
x_1, x_2 to y_1, y_2 plates	^c x1, x2-y1, y2	0.3	pF

TYPICAL OPERATION - voltages with respect to cathode

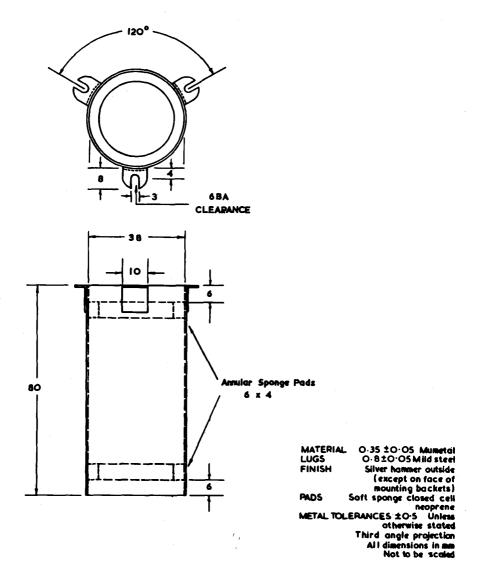

First, third and fourth anode voltage	V _{a1+a3+a4}	500	1000 V
Mean deflector plate potential*		500	1000 V
Second anode voltage for focus	Va2	24 to 72	48 to 144 V
Grid voltage for spot cut-off	v _g	-10 to -24	-20 to -48 V
x deflection coefficient	D _x	40 to 60	80 to 120 V/cm
y deflection coefficient	Dy	29 to 44	58 to 88 V/cm

* This tube is designed for symmetrical operation.

Issue 3, Page 3

Not to be scaled

All dimensions in an



03-130..

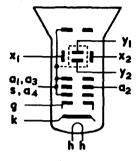
Instrument Tube

OSCILLOSCOPE TUBES

Magnetic Shield MS2

Thorn Radio Valves and Tubes Limited

Issue 2, Page E1



D7-200..

GENERAL

This 3 inch diagonal rectangular oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	Vh	6.3	v
Heater current	г _h	0.3	A

ABSOLUTE RATINGS

		Max	Min		
First, third and fourth anode voltage	Va1+a3+a4	. 2000		v	←
Second anode voltage	V _{a2}	600	-	v	
Negative grid voltage	-Vg	200	0	· v	
Peak x-plate to third anode voltage	^v x-a3(pk)	500	-	¥	
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v	
x-plate to third anode resistance	R _{x-a3}	2.0	-	MΩ	_
y-plate to third anode resistance	Ry-a3	2.0	-	MΩ	1
Grid to cathode resistance	R _{g-k}	1.5	-	MΩ	
Average cathode current	Ik(av)	200	-	μ A	
Heater to cathode voltage	v_{h-k}	<u>+</u> 125	-	V	

All voltages referred to cathode unless otherwise stated.

TUBE WEIGHT (approximate) - 100 g

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D7-200GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order. For optimum performance with W phosphor, the tube should be used as near the maximum final anode voltage as possible.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

JSCILLOSCO

INTER-ELECTRODE CAPACITANCES

Cathode and heater to all	^c k, h-all	3.0	pF
Grid to all	^c g-all	6.5	pF
Grid to x ₁ , x ₂ , y ₁ , y ₂ plates	$c_{g-x1, x2, y1, y2}$	1.0	pF
x1 plate to x2 plate	^c x1-x2	0.5	pF
y1 plate to y2 plate	с _{у1-у2}	1.3	pF
x_1 plate to all, less x_2 plate	c _{x1-all, less x2}	3.0	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	3.0	pF
y1 plate to all, less y_2 plate	^c y1-all, less y2	3.0	pF
y_2 plate to all, less y_1 plate	^c y2-all, less yl	3.0	pF
x_1, x_2 to y_1, y_2 plates	^c x1, x2-y1, y2	0.3	pF

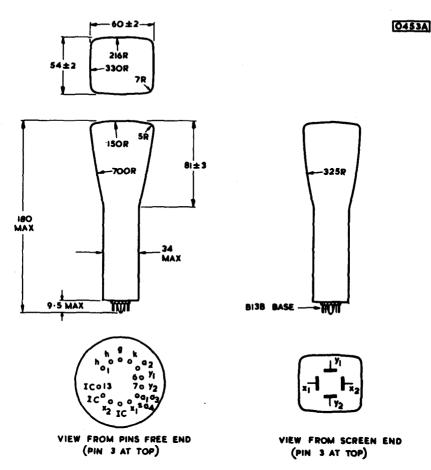
TYPICAL OPERATION - voltages with	respect to cat	hode	+	
First, third and fourth anode voltage	V _{a1+a3+a4}	1000	1800	v
Mean deflector plate potential*		1000	1800	v
Second anode voltage for focus	V _{a2}	65 to 200	115 to 355	V
Grid voltage for spot cut-off (approx)	vg	-25 to -50	-45 to -90	v
x plate deflection coefficient	D _x	21 to 29	37 to 52	V/cm
y plate deflection coefficient	Dy	25 to 35	45 to 63	V/cm
Minimum useful screen area	•	5 by 4.	5 by 4	cm^2
Line width at centre, measured by shrinking raster, at $25 \mu A$ cathode cu	ırrent	0.3	0.25	mm

* This tube is designed for symmetrical operation.

† Recommended for W phosphor.

NOTES

Rectangularity of x and y traces $90^{\circ} \pm 3^{\circ}$.

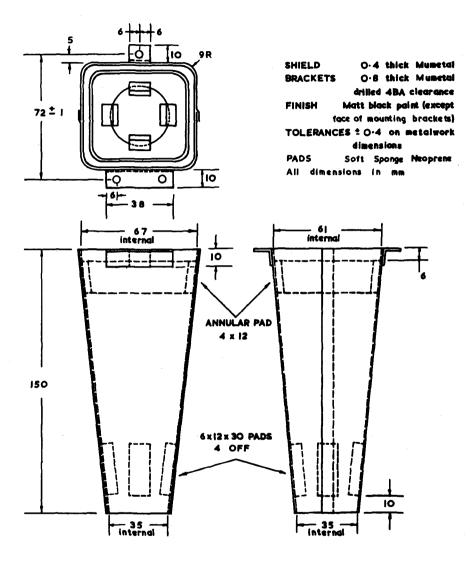

The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 3^{\circ}$.

The undeflected focused spot will lie within an 8 mm diameter circle central to the tube face.

Adequate magnetic shielding is required and to avoid screen charging and hand effects it is recommended that the tube is operated with the final anodes at earthy potential.

For critical requirements any residual astigmatism may be corrected by adjustment of the final anode to mean x-plate potential within the range \pm 30V.

D7-200..

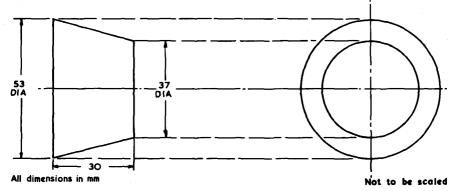

All dimensions in mm

Not to be scaled

SCILLOSCOPE

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Magnetic Shield MS3



Issue 1, Page E1

Tube Coil TW28

D7-200..

MANDREL FOR TWIST COIL TW28

SHIELD

This twist coll is designed to be used in conjunction with magnetic shield MS3 for D7-200..

WINDING

1200 turns of 0.080 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from the smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coll are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approximately 600 Ω

Twist coefficient approximately 4mA/degree measured on a typical D7-200..tube with $V_{a1} = 2kV$.

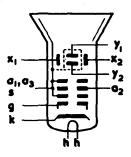
FITTING

The completed twist coil should be pushed hard onto the tube, with the lead out wires at one corner. Secure to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 2.

OSCILLOSCOPE TUBES


D7-201..

Oscilloscope Tube

GENERAL

This 7 cm diagonal rectangular oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	v _h	6.3	V
Heater current	I _h	0.12	A

ABSOLUTE RATINGS

ABSOLUTE RATINGS		Max	Min	٠
First and third anode voltage	V _{al+a3}	2000	700	V
Second anode voltage	V _{a2}	600	-	V
Negative grid voltage	-v _g	200	1.0	v
Peak x-plate to third anode voltage	[∀] x-a3(pk)	500	-	V
Peak y-plate to third anode voltage	¥y-a3(pk)	500	-	V
x-plate to third anode resistance	R _{x-a3}	2.0	-	Mß
y-plate to third anode resistance	R _{y-a3}	2.0	-	MQ
Grid to cathode resistance	Rg-k	1.5	-	MΩ
Average cathode current	Ik(av)	200	-	μA
Heater to cathode voltage	V _{h-k}	± 125	-	V

All voltages referred to cathode unless otherwise stated.

TUBE WEIGHT (approximate) - 150 g

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D7-201GH) giving a green trace of medium short persistance. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Iasue 2.

INTER-ELECTRODE CAPACITANCES

Cathode and heater to all	^C k, h-all	3.0	pF
Grid to all	^c g-all	7.0	pF
Grid to x1, x2, y1, y2 plates	^c g-x1, x2, y1, y2	1.0	pF
x_1 plate to x_2 plate	^c x1-x2	1.2	pF
y_1 plate to y_2 plate	^c y1-y2	1.1	pF
x1 plate to all, less x2 plate	^c x1-all, less x2	3.0	pF
x_2 plate to all, less x_1 plate	^C x2-all, less x1	3.0	pF
y1 plate to all, less y2 plate	^c y1-all, less y2	3.0	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	3.0	pF
x_1, x_2 to y_1, y_2 plates	^c x1, x2-y1, y2	0.3	pF

TYPICAL OPERATION - voltages with respect to cathode

First and third anode voltage	v_{a1+a3}	1	200		1800	v
Mean deflector plate potential*		1	200		1800	v
Second anode voltage for focus	v _{a2}	80 to	2 50	115	to 355	v
Grid voltage for spot cut-off	vg	-30 to	o − 60	-45	to -90	v
x plate deflection coefficient	D _X	29 te	37	44	to 56	V/cm
y plate deflection coefficient	Dy	14 to	1 8	21	to 28	V/cm
Minimum useful screen area		5 b	y 4	5	by 4	cm^2
Line width at centre, measured by shrinking raster, at 10 μ A beam cu	ırrent	0	,24		0.20	mm
Grid drive to 10 μ A beam current		1	B		17	v

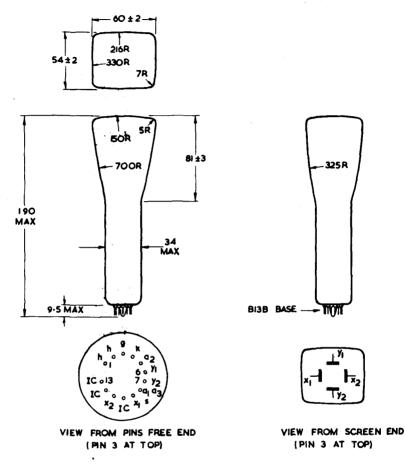
NOTES

The undeflected focused spot will lie within an 8 mm diameter circle central to the tube face.

Raster distortion : the edges of a test raster will fall between two concentric rectangles 5 cm x 4 cm and 4.85 cm x 3.88 cm.

Rectangularity of x and y traces $90^{\circ} \pm 1.5^{\circ}$.

The horizontal trace will be parallel with the major axis of the rectangular face-plate to within $\pm 3^{\circ}$.


For critical requirements any residual astigmatism may be corrected by adjustment of the final anode to mean x-plate potential within the range \pm 30V.

Adequate magnetic shielding is required and to avoid screen charging and hand effects it is recommended that the tube is operated with the final anodes at earthy potential.

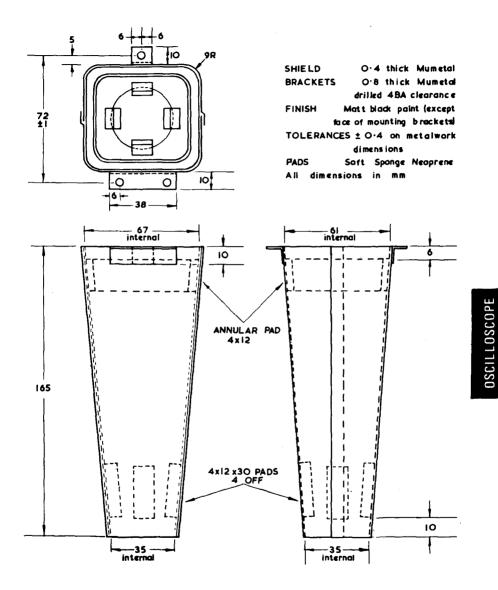
* This tube is designed for symmetrical operation.

D7-201..

D7-201..

All dimensions in mm

Not to be scaled

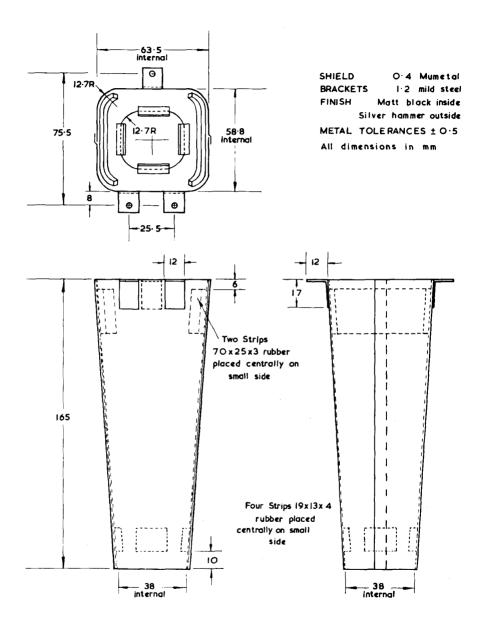

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on base pin 3 position with respect to minor axis of the rectangular faceplate $\pm 5^{\circ}$.

Issue 1, Page 3

Magnetic Shield MS33

D7-201..

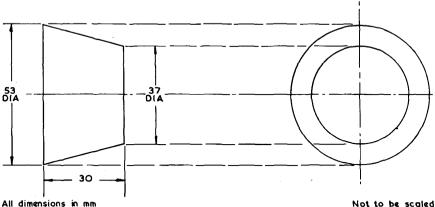


Issue 1, Page E1

I

D7-201..

Magnetic Shield MS34



Tube Coil TW 28

MANDREL FOR TWIST COLL TW28

D7-201

All dimensions in mm

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS33 for D7-201..

WINDING

1200 turns of 0.080 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

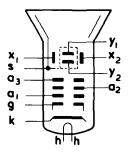
ELECTRICAL CHARACTERISTICS

Resistance approximately 600Ω Twist coefficient approximately 4mA/degree measured on a typical D7-201., tube with $V_{a1} = 2kV$.

FITTING

The completed twist coil should be pushed hard onto the tube, with the lead out wires at one corner. Secure to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited


SCILL OSCOPE

Page F1, Issue 3.

D9-110..

Oscilloscope Tube

GENERAL			
This 9 cm diago oscilloscope tube for use in inexper monitoring devic sufficient deflector transistor drive	e is prima nsive osci ces. or sensiti	arily inten illoscopes The tube vity to per	ded and has
Heater voltage	v _h	6.3	v
Heater current	Ih	0.12	Α

ABSOLUTE RATINGS - voltages with r	espect to cathode	Max	Min	
First anode voltage	v _{al}	2200	800	v
Second anode voltage	v _{a2}	800	-	v
Third anode voltage	v _{a3}	2250	750	v
Negative grid voltage	-v _g	200	1.0	v
Peak x-plate to third anode voltage	vx-a3(pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
Heater to cathode voltage	v_{h-k}	± 125		v
x-plate to third anode resistance	R _{x-a3}	2.0	-	MΩ
y-plate to third anode resistance	Ry-a3	2.0	-	MΩ
Grid to cathode resistance	Rg-k	1.5	-	MΩ
Peak cathode current	ⁱ k(pk)	500	-	μA

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D9-110GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	5.5	pF
Heater and cathode to all	^c h, k-all	3.8	pF
x_1 plate to x_2 plate	^c x1-x2	1.2	pF
y1 plate to y2 plate	^c y1-y2	1.4	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	4.2	pF
x2 plate to all, less x1 plate	^c x 2-all, less x1	4.0	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	. 3.4	pF
y ₂ plate to all, less y ₁ plate	^c y2-all, less y1	3.4	pF
x_1 , x_2 plates to y_1 , y_2 plates	c _{x1,x2-y1,y2}	0.8	pF

TYPICAL OPERATION - voltages with respect to cathode.

Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1500†	2000†	v
Second anode voltage for optimum focus	v _{a2}	230 to 380	300 to 510	v
First anode voltage	V _{al}	1500	2000	v
Shield voltage for optimum raster shape	V _s	1500†	2000†	v
Control grid voltage for cut-off	v_{g1}	-30 to -65	-40 to -87	v
x deflection coefficient	D _X	21 to 26	28 to 34.8	V/cm
y deflection coefficient	Dy	9.6 to 12	12.8 to 16	V/cm
Minimum useful screen area		6.6 x 4.0	6.6 x 4.	0 cm ²
Grid drive to 10 μ A beam current		13	13	v
Line width at 10 μ A beam current Shrinking raster measurement at cen	tre	0.31	0.27	mm

* This tube is designed for symmetrical operation.

 \dagger The required voltage will not differ from the quoted value by more than \pm 50V.

SCILLOSCOPE TUBES

Page 2, Issue 2.

D9-110..

Oscilloscope Tube

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 6.6 cm x 4.0 cm and 6.46 cm x 3.88 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. The mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 600 g

MOUNTING POSITION - unrestricted.

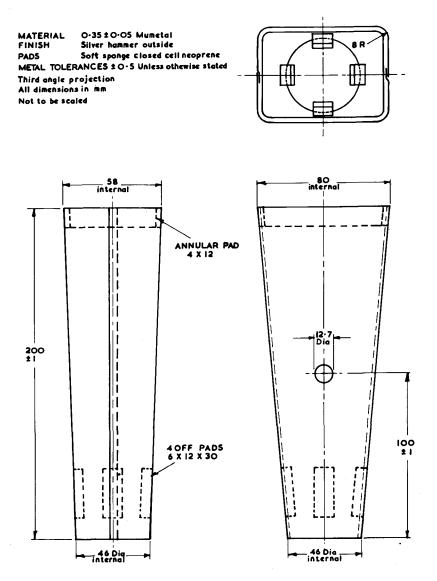
-77 ± 1.5 6±2R 49±1.5 18±3 3-ÓR MAX 1 25±5R 125 MAX 246·5 264 MAX 20±IOR 37±1 DIA **BI4G** BASE ٧i ٥2 ×ı 14 0 0 **a** 3 ο ο ٥ X AXIS 0 0 ×2 0 ο a 0 o O NI 8 í۹ ×2 NP y2 VIEWED FROM PINS FREE END VIEWED FROM SCREEN END (PIN I AT TOP) (PIN | AT TOP) Not to be scaled

0SCILL0SC0P

All dimensions in mm

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Tolerance on base pin 1 position with respect to tube y axis \pm 5°


Page 4, Issue 2.

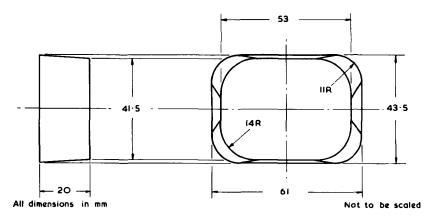
D9-110...

-

D9-110 ...

Magnetic Shield MS65

Thorn Radio Valves and Tubes Limited


Page E1, Issue 1.

Tube Coil TW 50

D9-110..

MANDREL FOR TWIST COIL TW50

MANDREL

Shaped from wood to dimensions given above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS65 for D9-110.

WINDING

1000 turns of 0.14 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coll and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 210 Ω . Current required for \pm 5° twist is \pm 20 mA measured on a typical D9-110.. with V_{a1} = 2.0 kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and fastened with adhesive tape.

Thorn Radio Valves and Tubes Limited

D10-210..

Oscilloscope Tube

GENERAL This is a very short 7 x 5 c. high deflection sensitivity purpose and portable osc p.d.a. system allows the driven for medium bandwi additional electrode voltag blanking at anode potent coupling to the grid is inco Heater voltage	y desig illoscop e tube dth app ges. A ial whi	gned for g pes. The to be tra plications A means o ich avoid	general e mesh nsistor without f beam	$\begin{array}{c} y_1 \\ x_1 \\ y_2 \\ a_3 \\ a_1 \end{array}$		
Heater current	I _h	75	mA	9,		J
ABSOLUTE RATINGS				Max	k,h h Min	
Fourth anode voltage		v _{a4}		10	5.0	k'
Third anode voltage		V _{a3}		1.25	0.5	k'
econd anode voltage		v _{a2}		1.0	0	k'
First anode voltage		v _{al}		1.25	0.5	k'
legative control grid voltage		-v _{g1}		200	1.0	
Beam blanking voltage		v_{g2}		2.0	0.5	k'
Peak x plate to third anode vo	ltage	^v x-a3(pk)	500	-	1
Peak y plate to third anode vo	ltage	vy-a3(pk))	500	-	,
plate to third anode resistar	nce	R _{x-a3}		5.0	· -	M
plate to third anode resistan	nce	Ry-a3		100	-	k
Control grid to cathode resist	ance	R _{g1-k}		1.5	-	M
econd anode current		I _{a2}		10	-	μ
P.D.A. ratio (V_{a4}/V_{a3})				10:1	-	·

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D10-210GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

D10-210..

OSCOPE

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	10	pF
Grid 2 to all	cg2-all	11	pF
Grid 2 to Grid 1	^c g2-g1	0.7	pF
Grid 1 to x_1 , x_2 , y_1 and y_2 plates	^c g1-x1, x2, y1, y2	1.2	pF
Heater and cathode to all	^c h, k-all	3.5	pF
x1 plate to x2 plate	c _{x1-x2}	1.9	pF
y1 plate to y2 plate	cy1-y2	0.9	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	5.7	pF
x_2 plate to all, less x_1 plate	c_{x2-all} , less x_1	5.7	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	5.4	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y ₁	5.1	pF
x_1 , x_2 plates to y_1 , y_2 plates	$c_{x1, x2} - y1, y2$	0.4	pF
TYPICAL OPERATION - voltages with r	respect to cathode		
Fourth anode voltage	V _{a4} 6.0	10	kV
Mean deflector plate potential	600	1000	v
Third anode voltage for optimum	V _{a3} 475 to	875 to	

Third anode voltage for optimum astigmatism correction	va	.3 4 6		875 to 1000	v
Second anode voltage for optimum	n focus V _a			160 to 380	v
First anode voltage	va	.1 6	00	1000	v
Shield voltage for optimum raster shape	vs			1000 to 1125	v
Beam blanking voltage for cut-of	í V _g	2 5	50†	920†	v
Control grid voltage for cut-off	vg	1 -3 -5		50 to 90	v
x plate deflection coefficient	D _x		-	18.6 to 23	V/cm
y plate deflection coefficient	Dy	-		13.4 to 16.6	V/cm
Minimum screen area		7	′ x 5	7 x 5	cm^2
Line width at centre		0	.65	0.6	mm
Line width at edge	at 5µA	1	.0	0.95	mm
Line width at centre measured by shrinking raster	beam current	0	.35	0.32	mm

[†] The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Issue 2, Page 2

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle 5 mm radius from the geometric centre of the tube face.

The total scanned area is 7 cm x 5 cm measured about a point \pm 3 mm from the centre of the tube face. The edges of a test raster will fall between two concentric rectangles 7 cm x 5 cm and 6.75 cm x 4.8 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield and should not extend more than 100 mm from the face. 40 ampere turns will suffice with provision for reversing the current if necessary.

The deflection coefficient (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the deflection coefficient over 10% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50 V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

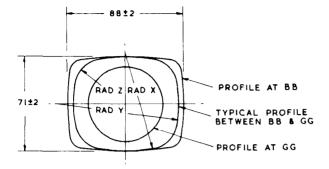
TUBE WEIGHT (approximate) - 500 g

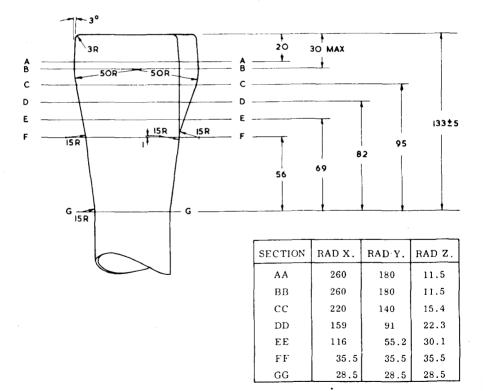
MOUNTING POSITION - unrestricted

Issue 3, Page 3

88±2 -1260R 180R 99±2 71±2 11.5R 36±2 CTB 230 MAX 57 ± 1.5 **B12F** 18 MAX THT I BASE Ŧ **g**1 d₃ k.h 141 Y, 12 α, h (sc) Q₄ a4 (sc) Fx, a₂ Y₂ Ty2 92 ×2 X, VIEW FROM PINS FREE END VIEWED FROM SCREEN END (CT8 AT RIGHT) (CT8 AT LEFT)

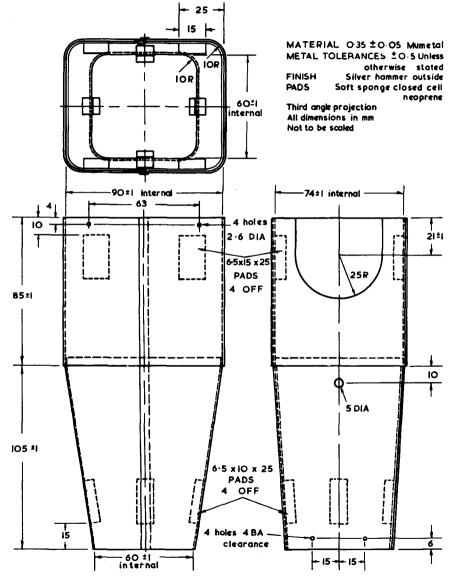
Not to be scaled

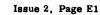

OSCILLOSCOPE


It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Issue 2, Page 4

All dimensions in mm

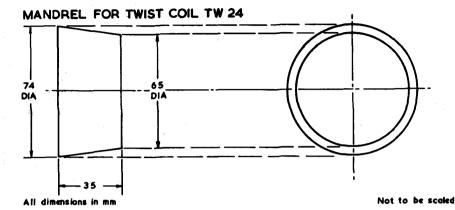

D10-210..



Issue 2, Page 5

D10-210..

Thorn Radio Valves and Tubes Limited



OSCILLOSCOPI TUBES

Tube Coil TW24

D10-210..

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS6 for D10-210..

WINDING

900 turns of 0.125 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coll and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 270 Ω . Twist coefficient approximately 5.5 mA/degree measured on typical D10-210.. with $V_{84} = 10$ kV and $V_{81} = 1.0$ kV.

FITTING

The completed twist coil should be pushed hard onto the tube with the lead-out wires in the middle of the short side of the tube on the same side as the cavity cap and sealed to the tube with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 3.

D10-230.

Min

x.

03

a, a

Max

X,

٧,

0٦

GENERAL

This 10 cm diameter short oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.				
Heater voltage	Vh .	6.3	V	
Heater current	1 _h	0.3	A	

ABSOLUTE RATINGS - voltages with respect to cathode

First anode voltage	V _{al}	2200	800	V
Second anode voltage	V _{a2}	800	-	V
Third anode voltage	Va3	2250	750	V
Negative grid voltage	-V _g	200	1.0	V
Peak x plate to third anot	ie voltage ^v x-a3(pk)	500		V
Peak y plate to third anot		500	-	V
Heater to cathode voltage	V _{h-k}	± 125	-	
x plate circuit impedance	Z _x	100	-	kΩ
y plate circuit impedance	Zy	100	-	kQ
Grid to cathode resistance	e R _{g-k}	1.5	- .	MΩ
Peak cathode current	¹ ik (pic)	500	-	μA

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D10-230GH) giving a green trace of medium short persistance. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

0SCILL0SC0P TUBES D10-230..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid to all	^c g-all		8.2	pF
Heater and cathode to all	^c h, k-all		2.3	pF
x_1 plate to x_2 plate	^c x1-x2		1.7	pF
y1 plate to y2 plate	^c y1-y2		1.3	pF
x ₁ plate to all, less x ₂ plate	^c x1-all, less x2		5.0	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1		4.8	pF
y1 plate to all, less y2 plate	^c y1-all, less y2		3.6	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1		3.7	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2-y1, y2		0.7	pF
g to x_1 , x_2 , y_1 and y_2 plates	^c g-x1, x2, y1, y2		0.6	pF
TYPICAL OPERATION - voltages wit	h respect to catho	de.		
Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1500†	2000†	v
Second anode voltage for optimum focus	s V _{a2}	120 to 250	160 to 335	v
First anode voltage	V _{al}	1500	2000	v
Shield voltage for optimum raster shape	e V _S	1500†	2000†	v
Control grid voltage for cut-off	· 2		30 to 70	v
x deflection coefficient	D _X	21 to 26	28 to 34.8 V	/cm
y deflection coefficient	Dy	13 to 16	17.3 to 21.4 V	/cm
Minimum useful screen area (Diagonal	9 cm)	8.0 x 6.4	8.0 x 6.4	cm^2
Grid drive to $10\mu\text{A}$ beam current		10	11	v
Line width at 10 µA beam current Shrinking raster measurement at cen	tre	0.31	0.27	mm

* This tube is designed for symmetrical operation.

 \dagger The required voltage will not differ from the quoted value by more than $\pm 30V$.

Page 2, Issue 4.

D10-230.

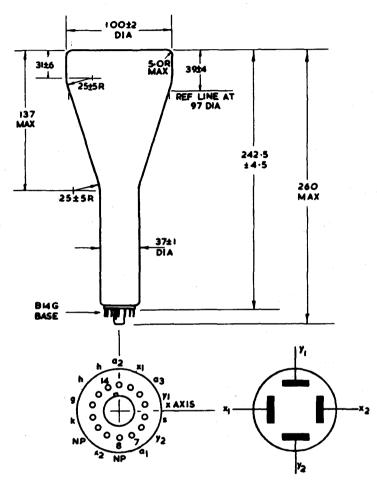
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 7.0 cm x 5.4 cm and 6.84 cm x 5.26 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 400 g

MOUNTING POSITION - unrestricted.

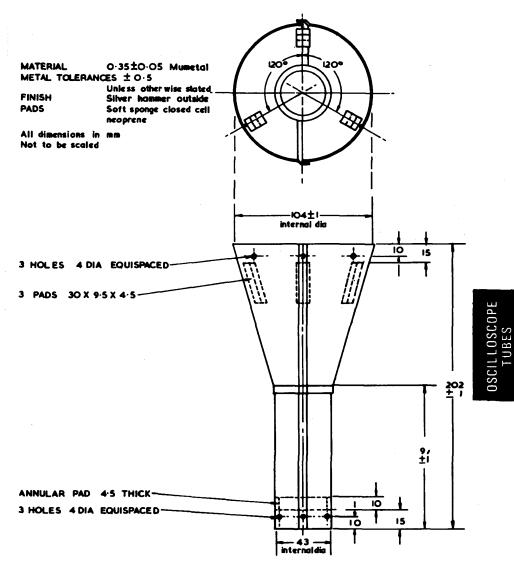
D10-230..

VIEWED FROM PINS FREE END (PIN 1 AT TOP) VIEWED FROM SCREEN END (PIN 1 AT TOP)

All dimensions in mm

Not to be scaled

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.


Tolerance on base pin 1 position with respect to tube y axis ± 5°

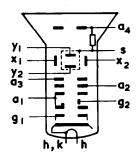
Issue 1, Page 4

Magnetic Shield MS41

D10-230..

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited



GENERAL

This 10 cm diagonal rectangular, p.d.a. tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater Voltage	v _h	6.3	V
Heater Current	Ih	0.12	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V _{a4}	3.5	1.5	kV
Third anode voltage	v _{a3}	1.75	0.75	kV
Second anode voltage	v _{a2}	1.0	0	kV
First anode voltage	v _{a1}	1.75	0.75	kV
Negative control grid voltage	-v _{g1}	200	1.0	v
Beam blanking voltage	v _{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	v _{x-a3(pk)}	500	-	v
Peak y plate to third anode voltage	vy−a3(pk)	500	-	v
x plate circuit impedance	z _x	100	-	kΩ
y plate circuit impedance	z _y	100	<u> </u>	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	La2	10	-	μA
P.D.A. ratio (Va4/Va3 nom)		2:1		
Helix resistance		-	20	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D10-240GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

INTER-ELECTRODE CAPACITANCES

Grid to all	^c g1-all	9.5	pF
Grid 2 to all	^c g2-all	9.0	pF
Heater and cathode to all	ch, k-all	3.5	pF
x1 plate to x2 plate	^c x1-x2	2.0	pF
y_1 plate to y_2 plate	^с у1-у2	1.5	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	6.2	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	5.9	pF
y1 plate to all, less y2 plate	c _{y1} -all, less y2	4.7	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	4.7	pF
x_1, x_2 plates to y_1, y_2 plates	^c x1, x2-y1, y2	0.6	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	1.0	pF
Grid 1 to Grid 2	°g1-g2	0.5	pF

TYPICAL OPERATION - voltages with respect to cathode.

Fourth anode voltage	Va4	2.0	3.0	kV
Mean deflector plate potential		1000	1500	V
Third anode voltage for optimum astigmatism correction	v _{a3}	1000*	1500*	v
Second anode voltage for optimum fo	cus V _{a2}	175 to 350	260 to 525	v
First anode voltage	V _{a1}	1000	1500	v
Shield voltage for optimum raster shape V8		1000*	1500*	v
Beam blanking voltage for cut-off	Vg2	935†	1400†	v
Control grid voltage for cut-off	v _{g1}	-35 to -70	-50 to -100	v
x deflection coefficient	D _x	21.6 to 26.4	32.4 to 39.6	V/cm
y deflection coefficient	D _y	8.3 to 10.2	12.4 to 15.3	V/cm
Minimum screen area		7 x 5	7 x 5	cm^2
Line width at 10 μ A beam current				
Shrinking raster measurement at centre Shrinking raster measurement at edge		0.27	0.20	mm
		0.42	0.33	mm
Grid drive for 10 μ A beam current (approx.)		25	25	· v
* The required rolters will not diffe	- from the me	tod value by more	than + 50V	

* The required voltage will not differ from the quoted value by more than ± 50V

 \dagger The beam is is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Issue 2, Page 2

OSCILLOSCOPE TUBES

RASTER DISTORTION AND ALIGNMENT

The following applies for the typical operation conditions.

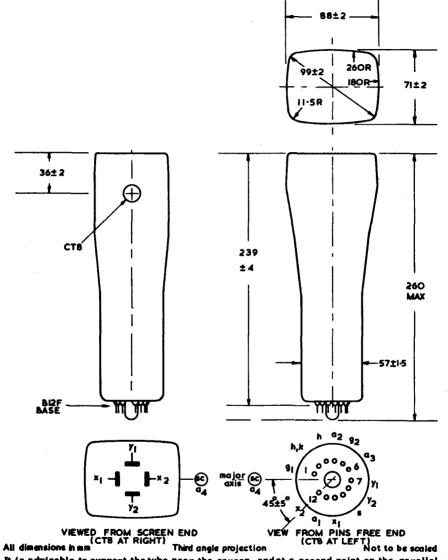
The undeflected spot will fail in a circle of 5 mm radius about the centre of the tube face.

The edges of a test raster will fall between two concentric rectangles 7cm x 5cm and 6.86cm x 4.88cm. Rectangularity of x and y axes is $90^\circ + 1^\circ$.

The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield, and should not be less than 50 mm from the face or extend more than 105 mm from the face. The ampere turns required will be equal to $16\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV), with provision for reversing the current if necessary.

The deflection coefficient (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the deflection coefficient over 10% deflection.

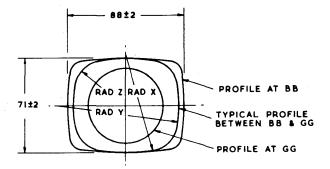
It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V.

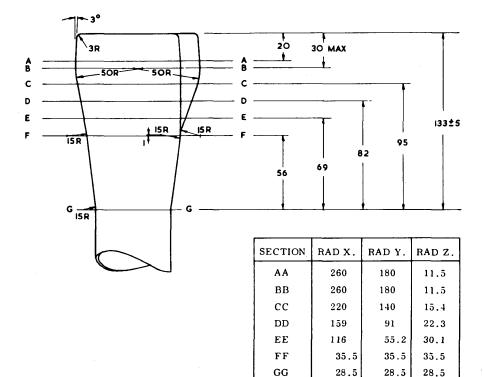

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 570g

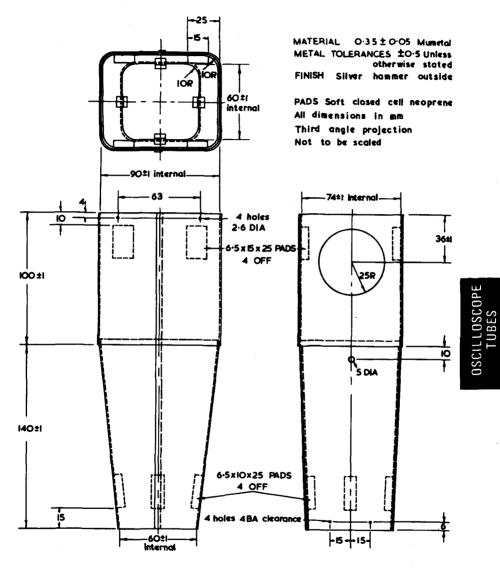
MOUNTING POSITION unrestricted.


SCIL



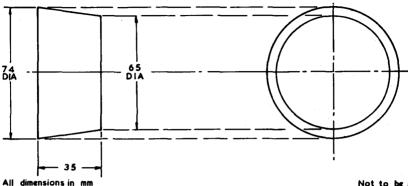
It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Issue 1. Page 4


D10-240..

Magnetic Shield MS7

EXAMPLE OF TYPICAL SHIELD


Thorn Radio Valves and Tubes Limited

BRIMAR

D10-240.

Issue 2, Page E1

D10-240

MANDREL FOR TWIST COIL TW33

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS7 for D10-240..

WINDING

900 turns of 0.10 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

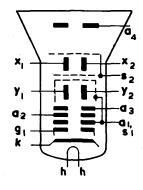
Resistance approx. 420 Ω . Twist coefficient approximately 5.6 mA/degree measured on typical D10-240.. with $V_{a4} = 3 \text{ kV}$ and $V_{a1} = 1.5 \text{ kV}$.

FITTING

The completed twist coil should be pushed hard onto the tube with the lead-out wires in the middle of the short side of the tube on the same side as the cavity cap and sealed to the tube with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 3.


D10-293.

PRELIMINARY DATA

GENERAL

This 6.8cm x 5.6cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and high brightness without additional electrode control voltages. The tube is designed for transistor deflection medium to high bandwidth applications.

Heater voltage	v _h	6.3	v
Heater current	Ľ <u>h</u>	0.12	A

ABSOLUTE RATINGS

Fourth anode voltage	Va4
Third anode voltage	Va3
Second anode voltage	V _{a2}
First anode voltage	V _{al}
Negative control grid voltage	-v _{gl}
Peak x plate to third anode voltage	vx-a3(pk)
Peak y plate to third anode voltage	^v y−a3(pk)
x plate to third anode resistance	R _{x-a3}
y plate to third anode resistance	Ry-a3
Control grid to cathode resistance	Rg1-k
Second anode current	Ia2
P.D.A. ratio (V_{R4}/V_{R3})	

Max.	Min.	
10	4.0	kV
2.25	0.8	kV
1.0	-	kV
2.2	0.75	kV
200	1.0	V
500	-	V
500	-	v
100	-	kΩ
100	-	kΩ
1.5	-	MΩ
10	-	μA
7;1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D10-293GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

D10-293..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	c _{g1-all}	10	pF
Heater and cathode to all	^c h, k-all	4.5	pF
x ₁ plate to x ₂ plate	c _{x1-x2}	1.0	pF
y1 plate to y ₂ plate	^c y1-y2	1.5	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	8.0	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	8.0	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	5.0	pF
y_2 plate to all, less y_1 plate	^c y2-ail, less y1	5.0	pF
x_{1, x_2} plates to y_{1, y_2} plates	^c x1, x2-y1, y2	0.8	pF
Grid 1 to x ₁ , x ₂ , y ₁ , y ₂ plates	^c g1-xl, x2, y1, y2	0.6	pF

TYPICAL OPERATION - Voltages with respect to cathode

Fourth anode voltage	v _{a4}	6.0	kV
Mean deflector plate potential		1000	v
Third anode voltage for optimum astigmatism correction	V _{a3}	970 to 1030	v
Second anode voltage for optimum focus	V _{a2}	180 to 340	v
First anode and y shield voltage	v _{a1+s1}	1000	v
Shield 2 voltage for optimum raster shape	eV ₈₂	900 to 1050	v
Control grid voltage for cut-off	v _{g1}	-26 to -52	v
x deflection coefficient	D _x	10.5 to 12.8	V/cm
y deflection coefficient	Dy	3.8 to 4.8	V/cm
Line width at $10\mu A$ beam current			
Shrinking raster measurement at centre Microscope measurement at centre Microscope measurement at edge		0.32 0.55 0.8	mm mm
Grid Drive to 10µA beam current (appr	ox.)	17	v

Page 2, Issue 1.

D10-293..

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

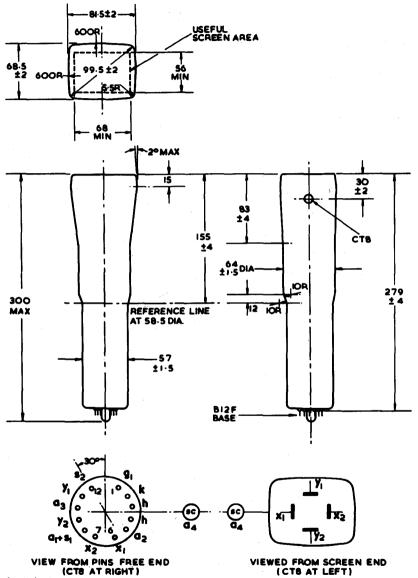
The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

Raster distortion: The edges of a test raster will fall between two concentric rectangles 6.8 cm x 5.6 cm and 6.55 cm x 5.4 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 80mm from the face and should not extend more than 130 mm from the face. The ampere turns required will be equal to $14\sqrt{V_{84}}$ (where V_{84} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 25% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

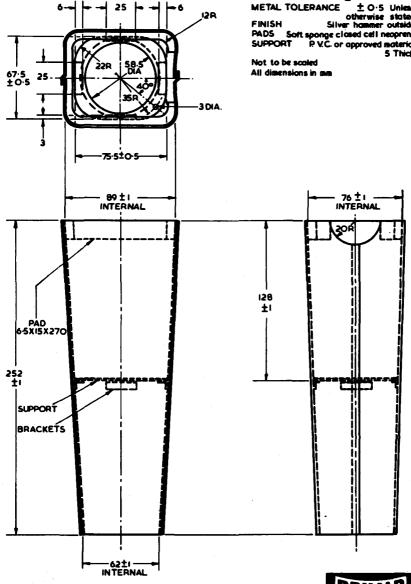

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 700 g.

MOUNTING Position unrestricted

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Page 3, Issue 1.


All dimensions in mm

Not to be scaled

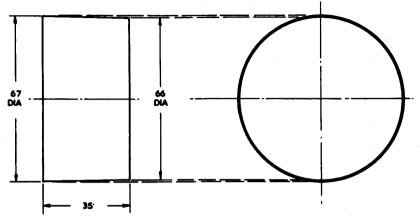
Page 4, Issue 1.

Magnetic Shield MS83

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited Page E1, Issue 1.

OSCILLOSCOPE TUBES


MATERIAL 0.35 ± 0.05 Munetal MATEHIAL 0.35 10.05 manners METAL TOLERANCE ±0.5 Unleas otherwise stated FINISH Sliver hammer outside PADS Soft sponge closed cell neoprene SUPPORT P.VC. or approved moterial 5 Thick

D10-293...

Tube Coil TW56

D10-293..

MANDREL FOR TWIST COIL TW56

All dimensions in mm

Not to be scaled

MANDRE L

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIE LD

This twist coil is designed to be used in conjunction with magnetic shield MS 83 for D10-293..

WINDING

900 turns of 0.125 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed creps paper to give 5 mm margins between the coil and each edge of the mandrel.

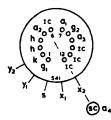
Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

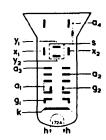
Varnish, if necessary, cover with adhesive backed creps paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance 260 $\Omega \pm 10$ %. Twist coefficient approximately 8 mA/degree measured on typical D10-293.. with $V_{n1} = 6 \text{ kV}$ and $V_{n1} = 1.0 \text{ kV}$.

FITTING


The completed twist coil should be pushed hard onto the tube with the lead-out wires in the middle of the short side of the tube on the same side as the cavity cap and sealed to the tube with suitable adhesive tape.


Thorn Radio Valves and Tubes Limited

Brimar

Page F1. Issue 1.

Maintenance Type

. . .

D13-336H

Base B12F, Cap CT8

GENERAL

This 5 in. diagonal rectangular tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid. The standard phosphor is GH, but phosphor types GL, GM and BE are also available.

Heater Voltage	Vh	6.3	V
Heater Current	l _h	0-3	A

ABSOLUTE RATINGS

Fourth Anode Voltage Third Anode Voltage Second Anode Voltage First Anode Voltage Regative Control Grid Voltage Beam Blanking Voltage Peak x-plate to Third Anode Voltage Peak y-plate to Third Anode Voltage Peak Heater to Cathode Voltage Peak Heater to Cathode Voltage x-plate to Third Anode Resistance y-plate to Third Anode Resistance Control Grid to Cathode Resistance Second Anode Current P.D.A. Ratio (Vad/Va3) Helix Resistance	V_{a4} V_{a3} V_{a2} V_{a1} $-V_{g1}$ V_{g2} $V_{x-a3}(pk)$ $V_{y-a3}(pk)$ $V_{h-k}(pk)$ R_{x-a3} R_{y-a3} R_{g1-k} I_{a2}	Max 7-0 1-75 1-0 2-0 500 250 500 250 5-0 100 1-5 10 4 : 1	Min 2:5 0:6 0 0:6 1:0 0-5 	5555<<<<<<<<<<<<<<<<<<<<<<<<>>5555<<<<<<	
Helix Resistance		—		50	50 ΜΩ

. .

All voltages referred to cathode unless otherwise stated.

INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-all	8-0	pF
Cathode to all	Ck-all	3.5	pF
x ₁ plate to x ₂ plate	Cx1-x2	1.2	pF
y ₁ plate to y ₂ plate	Cy1-y2	4.5	pF
x ₁ plate to all less x ₂ plate	Cx1-all, less x2	3.5	РF
x ₂ plate to all less x ₁ plate	^C x2-all, less x1	3.5	PE.
y ₁ plate to all less y ₂ plate	^C y1-all, less y2	5-0	рĘ
y ₂ plate to all less y ₁ plate	^C y2-all, less y1	5-0	PĒ
Grid 1 and Cathode to x1, x2, y1 and y2 plates	^C g1, k-x1, x2, y1, y2	0-2	pF

Thorn Radio Valves and Tubes Limited

Fourth Anode Voltage	V_{a4}	3-0	4.0	6.0	k٧
Mean Deflector Plate Potential		750	1000	1500	V
Third Anode Voltage for astigmatism correction	V _à 3	750*	1000*	1500*	v
Second Anode Voltage for focus	V _{a2}	50 to 200	75 to 275	100 to 400	V
First Anode Voltage	V _{a1}	750	1000	1500	V
Interplate shield voltage for optimum raster shape	۰ ۷,	750*	1000*	1500*	v
Beam Blanking Voltage for cut-off	Vg2	700†	930†	1400†	V
Control Grid Voltage for cut-off	V _{g1}	-30 to -50	-40 to -70	-60 to -105	V
x-plate sensitivity	Sx	6·15 to 7·85	8·2 to 10·5	12·3 to 15·75	V/cm
y-plate sensitivity	Sy	7·8 to 10·1	10·5 to 13·5	15·75 to 20·3	V/cm
Minimum screen area (x \times y)		10 × 6	10 × 6	10 × 6	cm²
Line Width at centre:		0-5	0.45	0-4	mm
Line Width at edget		0.9	0.8	0.8	mm

TYPICAL OPERATION—Voltages with respect to cathode.

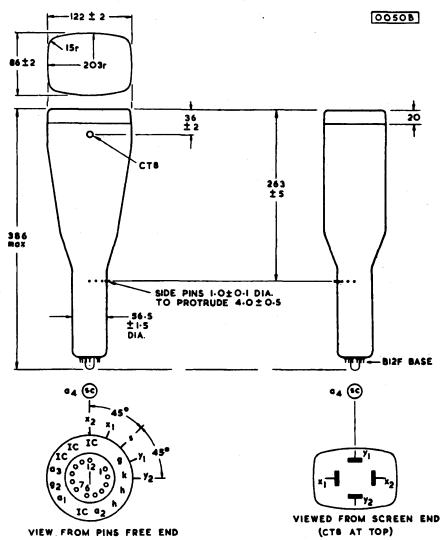
* The required voltage will not differ from the quoted value by more than \pm 50 V.

† The beam is unblanked when $V_{g2} - V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

t At 5·0μA beam current.

Raster Distortion and Alignment

The total scanned area is 10 cm \times 6 cm measured from the centre of the tube face. Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm \times 6 cm and 9.8 cm \times 5.8 cm. Rectangularity of x and y axes is 90°±1°.

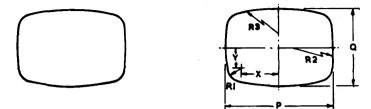

The horizontal trace will be parallel with the axes of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 175 mm from the face. 34 ampere turns will suffice, with provision for reversing the current if necessary.

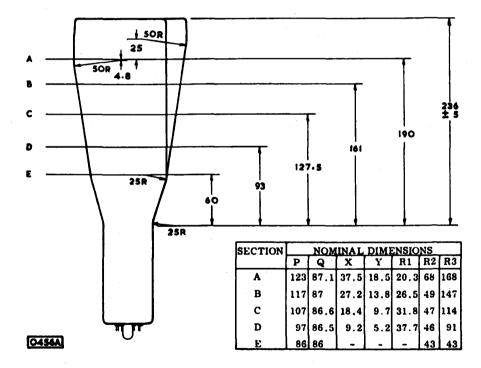
Magnetic Shielding

Adequate magnetic shielding is required. In addition, due attention should be paid to the position of the tube relative to transformers and chokes.

Approximate Net Tube Weight-0.9 kg (1 lb 15 oz)

D1 3-33GH

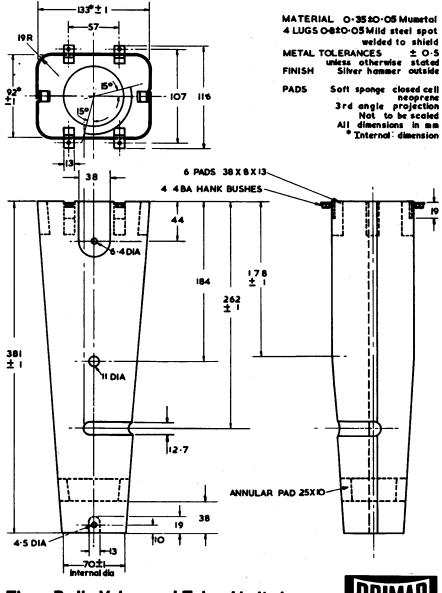



Tolerance on all side pin positions $\pm 5^{\circ}$

All dimensions in mm. Third angle projection. Not to be scaled.

Mounting Position-Unrestricted

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.


All dimensions in mm.

Not to be scaled.

Magnetic Shield MS27

D13-33..

Thorn Radio Valves and Tubes Limited Page E1 Issue 2

OSCILLOSCOPE TUBES

GENERAL This 5 inch diagonal rect static focusing and deflect bandwidth applications a deflected by transistor c means of beam blanking avoids d.c. coupling to th	tion is dea and is c ircuits. g at anod	signed for med capable of be It incorporate	lium eing es a	y ₁		
Heater Voltage	V _h	6.3	v	1		- 9 ₂
Heater Current	I _h	0.3	A	9,	h,k h	
ABSOLUTE RATINGS				Max	Mín	
Fourth anode voltage		v _{a4}		7.0	2.5	kV
Third anode voltage		v _{að}		1.75	0.6	kV
econd anode voltage		v _{a2}		1.0	0	kV
First anode voltage		Val		1.75	0.6	kV
legative control grid voltage	e	-v _{g1}		200	1.0	. V
Beam blanking voltage		v_{g2}		2.0	0.5	kV
Peak x plate to third anode v	oltage	vx-a3(pk)		500	-	v
Peak y plate to third anode v	oltage	vy-a3(pk)		500	-	v
plate to third anode resist	ance	R _{x-a3}		5.0	-	MΩ
y plate to third anode resist	ance	Ry-a3		100	-	kΩ
Control grid to cathode resis	stance	Rg1-k		1,5	-	MΩ
Second anode current		I _{a2}		10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})				4:1		
Helix resistance				-	50	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-47GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES

Grid to all	cg1-all	10	pF
Grid 2 to all	cg2-all	10	pF
Heater and cathode to all	ch, k-all	4.0	pF
x1 plate to x2 plate	^c x1-x2	2.1	pF
y1 plate to y2 plate	с _{у1-у2}	1.6	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	7.0	pF
x_2 plate to all, less x_1 plate	^C x2-all, less x1	6.7	pF
y1 plate to all, less y2 plate	^c y1-all, less y2	5.0	pF
y2 plate to all, less y1 plate	^C y2-all, less y1	5.0	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2-y1, y2	0.8	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	1.3	pF
Grid 1 to Grid 2	^c g1-g2	0.6	pF

TYPICAL OPERATION - voltages with respect to cathode.

Fourth anode voltage	Va4	3.0	4.0	6.0	kV	
Mean deflector plate potential		750	1000	1500	V	I
Third anode voltage for optimum astigmatism correction	v _{a3}	750 *	1000*	1500*	v	
Second anode voltage for optimum focus	v _{a2}	125 to 300	175 to 400	260 to 600	v	
First anode voltage	Val	750	1000	1500	V	
Shield voltage for optimum raster shape	vs	750*	1000*	1500*	v	
Beam blanking voltage for cut-off	Vg2	700†	935†	1400†	v	1
Control grid voltage for cut-off	v _{g1}	-25 to -50	-35 to -65	-50 to -95	v	
x deflection coefficient	D _x	10.5 to 13.2	14.5 to 17.5	21 to 26.2 V/	'cm	
y deflection coefficient	Dy	5.0 to 6.2	6.7 to 8.3	10 to 12.5 V/	'cm	
Minimum screen area		10 x 6	10 x 6	10 x 6 c	m ²	
Line width at centre] at $5\mu A$		0.5	0.45	0.4 1	mm	
Line width at edge beam current		0.9	0.8	0.8 1	mm	

* The required voltage will not differ from the quoted value by more than \pm 50V.

 \uparrow The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Issue 3, Page 2

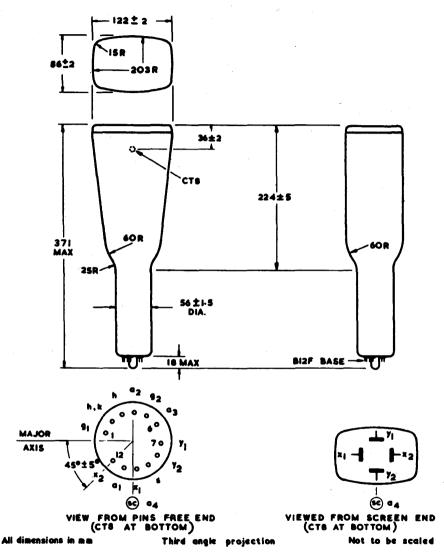
OSCILLOSCOPE TUBES

RASTER DISTORTION AND ALIGNMENT

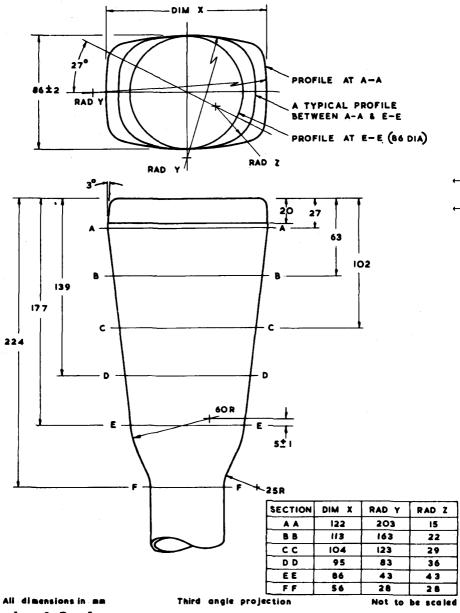
The total screen area is 10 cm x 6 cm measured about a point \pm 3 mm from the centre of the tube face. The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face. The edges of a test raster will fall between two concentric rectangles 10 cm x 6 cm and 9.8 cm x 5.85 cm.

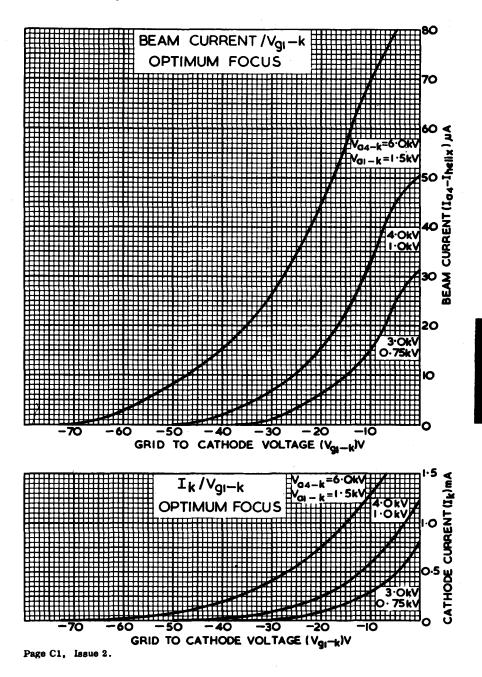
Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 175 mm from the face. 24 ampere turns will suffice, with provision for reversing the current if necessary.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V when the tube is operated at 4 kV.

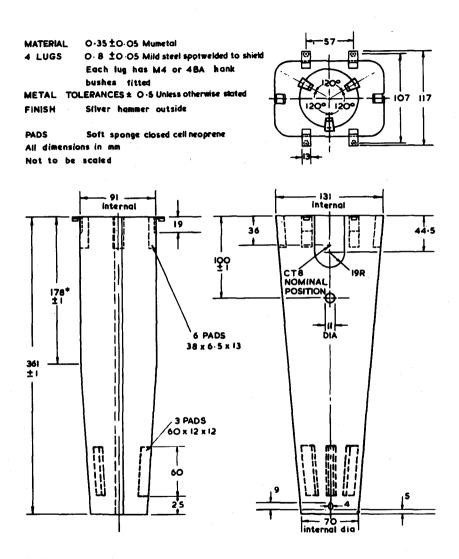

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT(approximate) - 960 g


MOUNTING POSITION unrestricted.

D13-47..

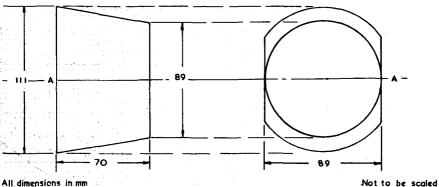

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

D13-47..

Magnetic Shield MS23

* Dimensions at this length are 92 outside x 102 outside with approx. 30R.

Thorn Radio Valves and Tubes Limited


Page E1, Issue 4.

Tube Coil TW 30

D13-47

MANDREL FOR TWIST COIL TW 30

All dimensions in mm

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS23 for D13-47..

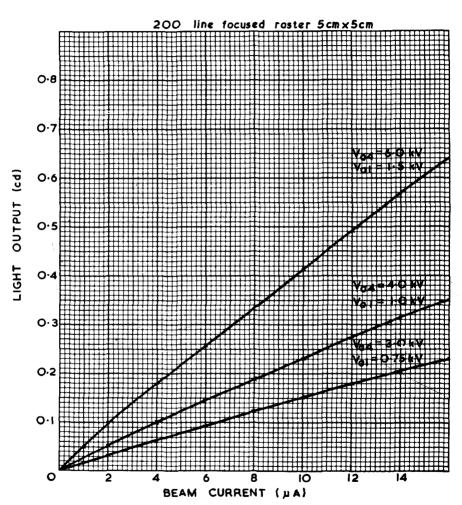
WINDING

1150 turns of 0.18 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at position A.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS


Resistance approx, 300 Ω . Twist coil coefficient approx, 4.5 mA/degree measured on a typical D13-47.. with $V_{a1} = 1.5kV V_{a4-k} = 6kV$.

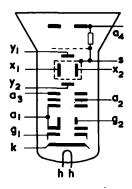
FITTING

The completed twist coil should be pushed hard onto the tube with the lead out wires coming out through the appropriate hole in the shield and secured in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

OSCILLOSCOPE

TYPICAL LIGHT OUTPUT GH/P3I PHOSPHOR SCREEN


Issue 1, Page C1

D13-51..

GENERAL

This is a short, rectangular, aluminised, all electrostatic tube providing a 10 cm x 6 cm display. High brightness and deflection sensitivity are achieved with a mesh p.d.a. system without additional electrode control voltages. The tube is designed for transistor deflection high bandwidth applications and incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v _h	6.3 V
Heater current	ц ^р	0.3 .A

ABSOLUTE RATINGS

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v _{a4}	15.5	5.0	kV
Third anode voltage	v _{a3}	1.75	0.6	kV
Second anode voltage	v _{a2}	1.0	0	kV
First anode voltage	v _{a1}	1.75	0.6	kV
Negative control grid voltage	-v _{g1}	200	1.0	v
Beam blanking voltage	Vg2	2.0	0.5	kV
Peak heater to cathode voltage	^v h-k(pk)	250	-	v
Peak x-plate to third anode voltage	^v x-a3(pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
x-plate to third anode resistance	R _{x-a3}	5.0	-	MΩ
y-plate to third anode resistance	Ry-a3	100	-	kΩ
Control grid to cathode resistance	Rg1-k	1.5	-	MΩ
Second anode current	I _{a2}	10	-	$\mu \mathbf{A}$
P.D.A. ratio (V_{a4}/V_{a3})		11:1	5:1	
Helix resistance		-	100	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-51GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Lasue 4.

D13-51..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all			9.5	pF
Grid 2 to all	^c g2-all			8.9	pF
Heater and cathode to all	^c h, k-al	I		4.0	pF
x_1 plate to x_2 plate	^c x1-x2			1.8	pF
y1 plate to y2 plate	с _{у1-у2}			1.7	р F
x_1 plate to all, less x_2 plate	^c x1-all,	less x2		4.1	pF
x_2 plate to all, less x_1 plate	^c x2-all,	less x1		4.1	рF
y_1 plate to all, less y_2 plate	c _{y1-all}	less y2		2.8	рF
y_2 plate to all, less y_1 plate	^c y2-all,	less yl		2.8	рF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1,x2	- y1,y2		0.5	pF
Grid 1 to grid 2	^c g1-g2			0.6	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1,	x2,y1,y2		0.012	pF
TYPICAL OPERATION - Voltages with	respect	to cathode			
Fourth anode voltage	Va4	7.5	10	15	kV
Mean deflector plate potential		750	1000	1500	V .
Third anode voltage for optimum astigmatism correction	v _{a3}	750*	1000*	1500*	v
Second anode voltage for optimum focus	v _{a2}	20 to 130	30 to 150	45 to 230	v
First anode voltage	V _{al}	750	1000	1500	v
Shield voltage for optimum raster shape		750*	1000*	1500*	
Beam blanking voltage for cut-off	v_{g2}	710 to 790†	955 to 1045†	1435 to 1565†	V .
Control grid voltage for cut-off	v _{g1}	-37 to -68	-50 to -90	-75 to -135	v
x deflection coefficient	D _X	8.2 to 11.3	11 to 15	16.5 to 22.5 V	/cm
y deflection coefficient	Dy	3.4 to 4.5	4.5 to 6.0	6.8 to 9.0 V	/cm
Minimum useful screen area		10 x 6	10 x 6	10 x 6	cm ²
Line width at centre at !	5µA	0.65	0.6	0.55	mm
Line width at edge bea	m	1.1	1.05	1.0	mm
Line width at centre measured by shrinking raster	rrent	0.40	0.34	0.30	mm

* The required voltage will not differ from the quoted value by more than \pm 50V. † The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

D13-51

RASTER DISTORTION AND ALIGNMENT

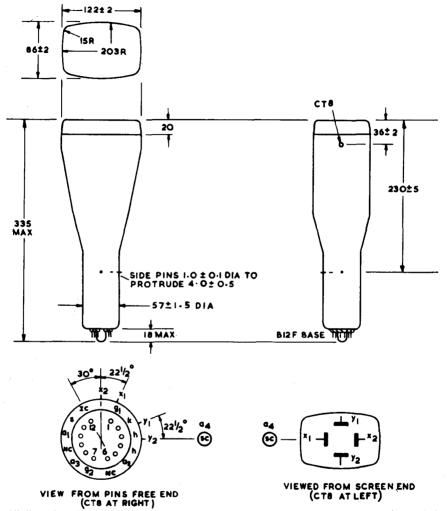
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 6 cm and 9.80 cm x 5.85 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 150 mm from the face. 45 ampere turns for 10 kV operation or 54 ampere turns for 15 kV operation will suffice, with provision for reversing the current if necessary. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

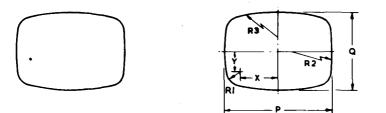

MAGNETIC SHIELDING

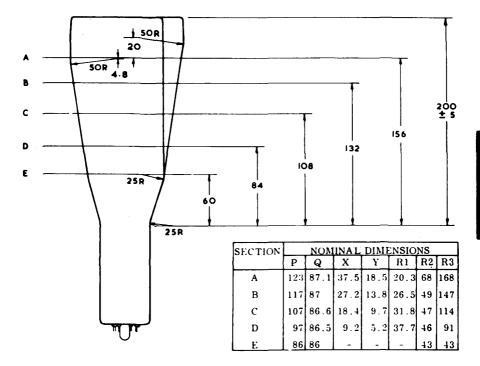
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 880 g

MOUNTING POSITION - unrestricted

OSCILLOSCOPE TUBES



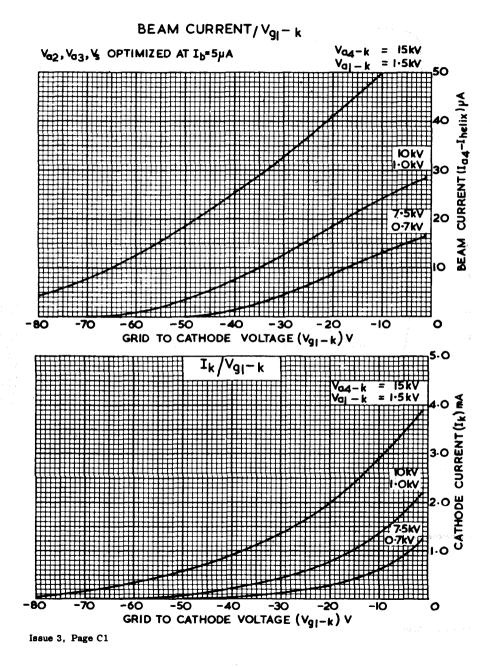

All dimensions in mm

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions $\pm 5^{\circ}$.

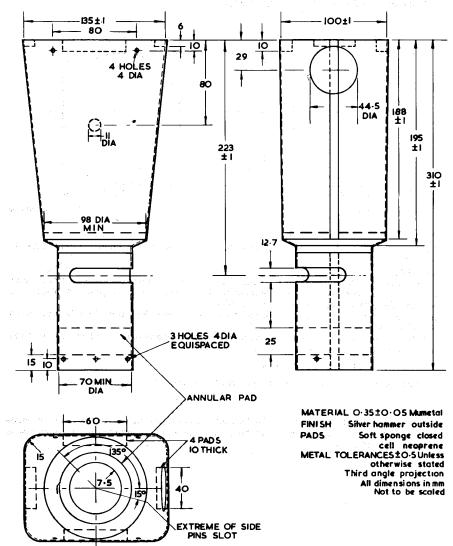
Not to be scaled

All dimensions in mm


Not to be scaled

OSCILLOSCOPE TUBES

pe Tube


D13-51..

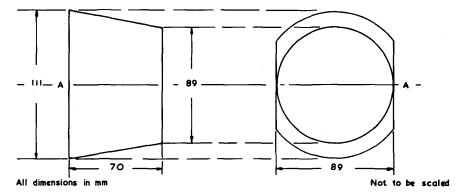
Magnetic Shield MS36

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited

<u>OSCILLOSCOPE</u> TUBES

D13-51..


Page E1, Issue 3.

nartiga strantin en m

D13-51..

Tube Coil TW21

MANDREL FOR TWIST COIL TW21

SHIELD

This twist coll is designed to be used in conjunction with magnetic shield MS36 for D13-51..

WINDING

1150 turns of 0.2 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at position A.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 215 Ω . Twist coil coefficient approx. 7.0 mA/degree.

FITTING

The completed twist coil should be pushed hard onto the tube with the lead out wires coming out through the appropriate hole in the shield and secured in two places with suitable adhesive tape.

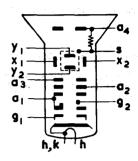
Thorn Radio Valves and Tubes Limited

Page F1. Issue 3.

The D13-471.. oscilloscope tube has a 6.3 V 0.12A heater otherwise it is identical to the D13-47..

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-471GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.


Thorn Radio Valves and Tubes Limited Issue 2, Page 1

GENERAL

This short 5 inch diameter flat-faced tube with electrostatic focusing and deflection is designed for general purpose applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v _h	6.3	v
Heater current	ц	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v _{a4}	4.0	1.5	kV
Third anode voltage	v _{a3}	1.75	0.6	kV
Second anode voltage	y_{a2}	1.0	0	kV
First anode voltage	Val	1.75	0.6	kV
Negative grid voltage	$-v_{g1}$	200	1.0	v
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x-plate to third anode voltage	^v x-a3(pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
x-plate to third anode resistance	R _{x-a3}	5.0	-	MΩ
y-plate to third anode resistance	Ry-a3	100	-	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	I _{a2}	10	· _	μA
P.D.A. ratio (V_{a4}/V_{a3})		2.2:1		
Helix resistance		-	15	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-600GH) giving agreentrace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

D13-600..

INTER-ELECTRODE CAPACITANCES	$(1 + 1) = \sum_{i=1}^{n} (1 + 1) = \sum_{i=1}^{n$		
Grid 1 to all	^c g1-all	9.5	pF
Grid 2 to all	^c g2-all	10	pF
Heater and cathode to all	^c h, k-all	3.5	pF
x_1 plate to x_2 plate	cx1-x2	2.2	pF
y1 plate to y2 plate	cy1-y2	1.6	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	6.3	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	6.3	pF
y ₁ plate to all, less y ₂ plate	^c y1-all, less y2	5.2	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	5,0	pF
x_1 , x_2 plate to y_1 , y_2 plates	$c_{x1, x2-y1, y2}$	0.8	pF
Grid 1 to grid 2	^c g1-g2	0.6	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	1.4	pF
TYPICAL OPERATION - voltages	with respect to cathode.		
Fourth anode voltage	V _{a4} 2.0	3.0	kV
Mean deflector plate potential	1000	1500	· v
Third anode voltage for optimum	Vas		

Mean defiector plate potential		1000	1500	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1000*	1500*	v
Second anode voltage for optimum focus	v _{a2}	200 to 340	300 to 500	v
First anode voltage	Val	1000	1500	v
Shield voltage for optimum raster shape	e V _s	1000*	1500*	v
Beam blanking voltage for cut-off	v_{g2}	935†	1405†	v
Control grid voltage for cut-off	v _{g1}	-35 to -65	-50 to -95	v
x-deflection coefficient	D _x	14 to 18	21 to 27	V/cm
y-deflection coefficient	Dy	6.6 to 8.5	10 to 12.7	V/cm
Minimum screen area (corners cut-off)		10 x 8	10 x 8	$^{\rm cm^2}$
Line width at centre-using microscope	at 10µA	0.55	0.5	mm
Line width at edge-using microscope	beam	0.85	0.82	mm
Line width at centre measured by shrinking raster	current	0.28	0.25	mm
				- 1 /

* The required voltage will not differ from the quoted value by more than \pm 75V.

 \dagger The beam is unblanked when V_{g2} = V_{a1} . This grid 2 electrode should not be used as a brilliance control.

RASTER DISTORTION AND ALIGNMENT

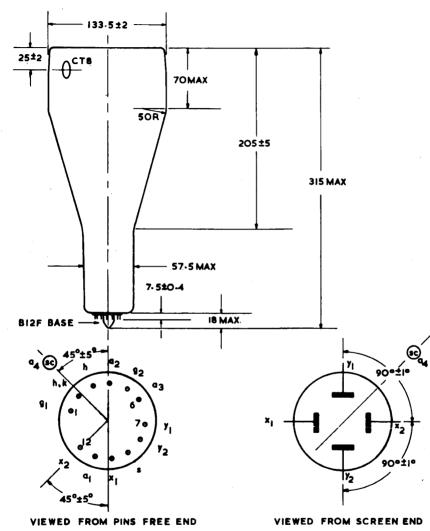
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.75 cm x 7.8 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

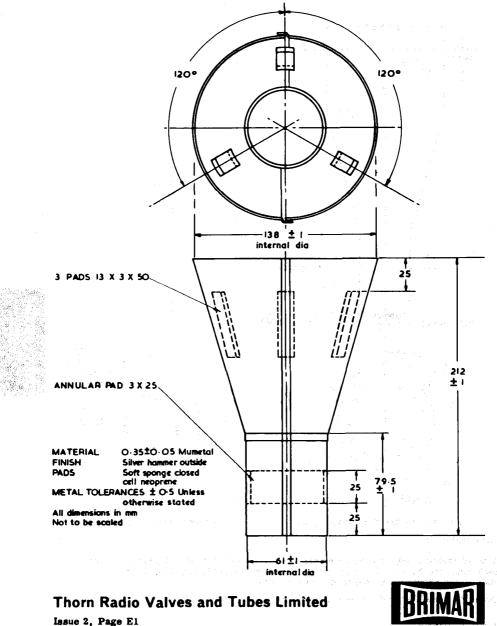
TUBE WEIGHT (approximate) 950g

MOUNTING POSITION - unrestricted

D13-600..

Not to be scaled

All dimensions in mm


It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Connecting leads should not be soldered directly to the tube pins.

Issue 2, Page 4

D13-600..

EXAMPLE OF TYPICAL SHIELD

D13-601..

The D13-601.. oscilloscope tube has a 6.3 V 0.12 A heater otherwise it is identical to the D13-600..

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-601GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

This 13 cm diameter round focusing and deflection is bandwidth applications an deflected by transistor cir means of beam blanking a avoids d.c. coupling to the	s design id is ca cuits. I at anode	apable of b t incorporat	lium eing es a	$\begin{array}{c} y_1 - \\ x_1 - \\ y_2 - \\ a_3 - \\ a_1 - \end{array}$		
Heater Voltage	Vh	6.3	v	9, -		 9 ₂
Heater Current	Ih	0.3	A	k -	hAh)
BSOLUTE RATINGS				Max	Min	
ourth anode voltage		Va4		7.0	2.5	kV
hird anode voltage		v _{a3}		1.75	0.6	kV
econd anode voltage		V _{a2}		1.0	0	kV
irst anode voltage		Val		1.75	0.6	kV
legative control grid voltage		-v _{g1}		200	1.0	v
leam blanking voltage		v _{g2}		2.0	0.5	kV
Peak x plate to third anode vo	oltage	vx-a3(pk)		500	-	v
Peak y plate to third anode vo	oltage	vy-a3(pk)		500	-	V
plate to third anode resista	nce	R _{x-a3}		5.0	-	M۵
plate to third anode resista	nce	Ry-a3		100	-	kΩ
control grid to cathode resis	tance	R _{g1-k}		1.5	-	MS
econd anode current		Ia2		10	-	μA
P.D.A. ratio (V_{a4}/V_{a3} nom.)			4:1		
lelix resistance				-	50	MS

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-610GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

INTER-ELECTRODE CAPACITANCES

Grid to all	^c g1-all			10	pF
Grid 2 to all	cg2-all			9.0	pF
Cathode to all	c _{k-all}			3.5	pF
x_1 plate to x_2 plate	cx1-x2			2.8	pF
y1 plate to y2 plate	c _{y1-y2}			2.0	pF
x1 plate to all, less x2 plate	c _{x1-all}	, less x2		5.7	pF
x2 plate to all, less x1 plate	^c x2-all	, less x1		5.6	pF
y1 plate to all, less y2 plate	cy1-all	, less y2		4.7	pF
y_2 plate to all, less y_1 plate	c _{y2-all}	, less y1		4.5	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2	-y1,y2		0.7	pF
Grid 1 to x_1 , x_2 plates	^c g1-x1	, x2		0.5	pF
Grid 1 to y_1 , y_2 plates	cg1-y1	, y2		0.5	pF
Grid 1 to Grid 2	^c g1-g2			0.6	pF
TYPICAL OPERATION - voltages	s with res	pect to cath	ode.		
Fourth anode voltage	v _{a4}	3.0	4.0	4.5	kV
Mean deflector plate potential		1.0	1.0	1.5	kV
Third anode voltage for optimum astigmatism correction	v _{a3}	1.0*	1.0*	1.5*	v

Third anode voltage for optimum astigmatism correction	v _{a3}	1.0*	1.0*
Second anode voltage for optimum focus	v _{a2}	170 to 380	175 to 400
First anode voltage	v _{a1}	1.0	1.0
Shield voltage for optimum raster shape	v _s	1.0*	1.0*
Beam blanking voltage for cut-off	v_{g2}	935†	935†
Control grid voltage for cut-off	v_{g1}	-35 to -65	-35 to -65
x deflection coefficient	D _x	12.5 to 15.8	14.5 to 17.5

y deflection coefficient Minimum screen area (corners cut-off)

Line width at $10\mu A$ beam current Shrinking raster measurement at centre Shrinking raster measurement at edge

* The required voltage will not differ from the quoted value by more than \pm 50V.

Dv

† The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Issue 2, Page 2

255 to 570

1.5

1.5*

1400†

-50 to

18.8 to 23.7 V/cm

10.2 to

13.1

10 x 8

. 33

.44

-95

5 to

7.1 to

10 x 6

8.9

. 36

.50

6.8 to 8.7

10 x 8

.39

.48

v

kV

kV

v

v

V/cm

 cm^2

mm

mm

RASTER DISTORTION AND ALIGNMENT

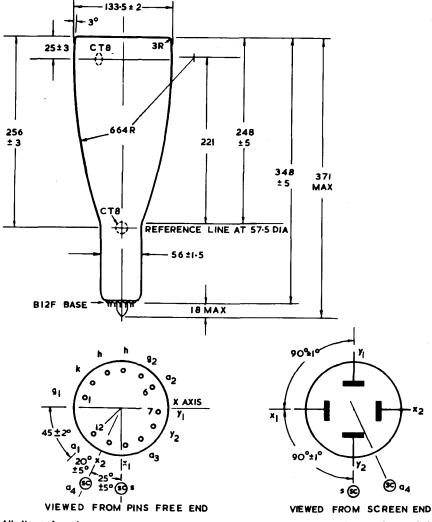
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.75 cm x 7.8 cm at a p.d.a. ratio of 3:1.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

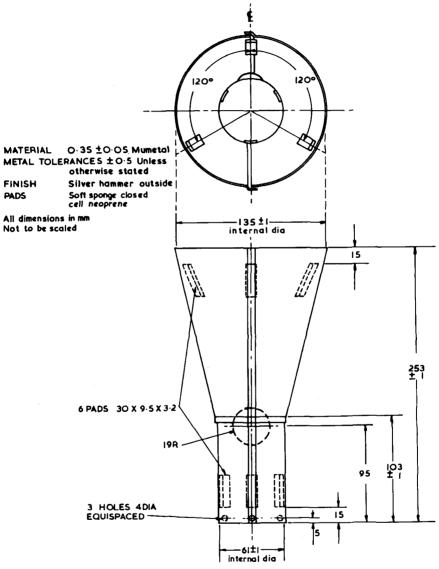
MOUNTING POSITION - unrestricted

D13-610.

OSCOP UBES OSCILL

All dimensions in mm

Not to be scaled


It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Connecting leads should not be soldered directly to the tube pins.

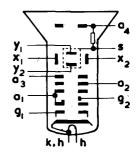
Issue 2, Page 4

D13-610..

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited

Issue 2, Page E1



D13-611..

GENERAL

This 13 cm diameter round tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater Voltage	$\mathbf{v}_{\mathbf{h}}$	6.3	v
Heater Current	г _ь	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V _{a4}	7.0	2.5	kV
Third anode voltage	Va3	1.75	0.6	kV
Second anode voltage	V _{a2}	1.0	0	kV
First anode voltage	v _{al}	1.75	0.6	kV
Negative control grid voltage	-v _{g1}	200	1.0	v
Beam blanking voltage	Vg2	2.0	0.5	kV
Peak x plate to third anode voltage	vx-a3(pk)	500	-	v
Peak y plate to third anode voltage	vy−a3(pk)	500	-	v
x plate to third anode resistance	R _{x-a3}	100	-	kΩ
y plate to third anode resistance	Ry-a3	100	-	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	Ia2	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3} nom.)		4:1		
Helix resistance		-	50	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-611GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

D13-611..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

cg1-all	10	pF
^c g2-all	9.0	pF
^c h, k-all	4.0	pF
c _{x1-x2}	2.0	pF
^c y1-y2	1.4	pF
^C x1-all, less x2	6.1	pF
^c x2-all, less x1	5.8	pF
^C y1-all, less y2	4.6	pF
^C y2-all, less y1	4.8	pF
^C x1,x2-y1,y2	0.6	pF
^c g1-x1,x2,y1,y2	1.0	pF
^c g1-g2	0.5	pF
^c a4-M	300	pF
	Cg2-all Ch, k-all Cx1-x2 Cy1-y2 Cx1-all, less x2 Cx2-all, less x1 Cy1-all, less y1 Cy2-all, less y1 Cx1, x2-y1, y2 Cg1-x1, x2, y1, y2 Cg1-g2	cg2-all 9.0 ch,k-all 4.0 cx1-x2 2.0 cy1-y2 1.4 cx2-all, less x2 6.1 cy2-all, less x1 5.8 cy1-all, less y2 4.6 cy2-all, less y1 4.8 cx1,x2-y1,y2 0.6 cg1-x1,x2,y1,y2 1.0 cg1-g2 0.5

TYPICAL OPERATION - voltages with respect to cathode.

Fourth anode voltage	v _{a4}	3.5	4.0	4.5	kV
Mean deflector plate potential		1.0	1.0	1.5	kV
Third anode voltage for optimum astigmatism correction	v_{a3}	1.0*	1.0*	1.5*	v
Second anode voltage for optimum focus	V _{a2}	170 to 380	175 to 400	255 to 570	v
First anode voltage	Val	1.0	1.0	1.5	kV
Shield voltage for optimum raster shape	vs	1.0*	1,0*	1.5*	kV
Beam blanking voltage for cut-off	Vg2	935†	935†	1400†	V
Control grid voltage for cut-off	vgl	-35 to -70	-35 to -70	-50 to -105	v
x deflection coefficient	D _X	14.1 to 16.9	14.5 to 17.5	18.8 to 23.7	V/cm
y deflection coefficient	Dy	7.0-to 8.9	7.1 to 8.9	10.2 to 13.1	V/cm
Minimum screen area (corners cut-off)		10 x 8	10 x 6	10 x 8	cm^2
Line width at 10µA beam current Shrinking raster measurement at cen	tre	.37	.36	.33	mm
Shrinking raster measurement at edg	e	. 48	.50	.44	mm

* The required voltage will not differ from the quoted value by more than ± 50V.

 \dagger The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Issue 2, Page 2

D13-611..

RASTER DISTORTION AND ALIGNMENT

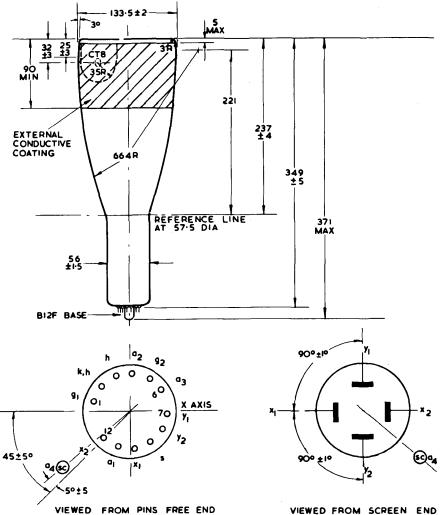
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 7 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.75 cm and 7.8 cm at a p.d.a. ratio of 3.5 : 1.

Rectangularity of x and y axes is $90^{\circ} \pm 1$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

MOUNTING POSITION - unrestricted

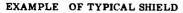
OSCILLOSCOPE TUBES

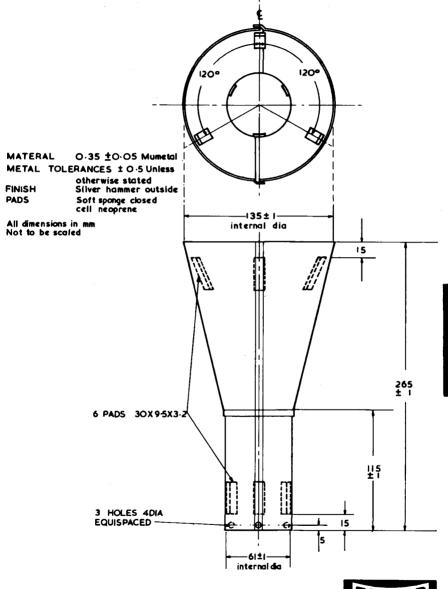
All dimensions in mm

VIEWED FROM SCREEN END

Not to be scaled

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

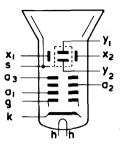

Connecting leads should not be soldered directly to the tube pins.


Issue 1, Page 4

Magnetic Shield MS 50

D13-611..

Н



Thorn Radio Valves and Tubes Limited

Issue 2, Page E1

OSCILLOSCOPE TUBES

GENERAL			
This 13 cm dia			
primarily intend	led for use	e in inexpe	nsive
oscilloscopes and	l monitoring	devices.	The
tube has suffici			
	ent deflect	or sensitiv	
tube has suffici permit transistor	ent deflect driven defl	or sensitiv lection.	
tube has suffici	ent deflect	or sensitiv	

ABSOLUTE RATINGS - voltages with re-	spect to cathode	Max	Min	
First anode voltage	v _{al}	2200	1250	v
Second anode voltage	V _{a2}	800	-	v
Third anode voltage	v_{a3}	2250	1200	v
Negative grid voltage	-Vg	200	1.0	v
Peak x-plate to third anode voltage	vx-a3 (pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
Heater to cathode voltage	v_{h-k}	± 125		v
x-plate to third anode resistance	R _{x-a3}	2.0	-	MΩ
y-plate to third anode resistance	Ry-a3	2.0	-	MΩ
Grid to cathode resistance	Rg-k	1.5	-	MΩ
Peak cathode current	ⁱ k(pk)	500	-	$\mu \mathbf{A}$

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D13-630GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 2.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	8.2	pF
Heater and cathode to all	^c h, k-all	2.3	pF
x_1 plate to x_2 plate	c _{x1-x2}	1.7	pF
y1 plate to y2 plate	^с у1-у2	1.3	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	5.0	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	4.8	pF
y1 plate to all, less y2 plate	^c y1-all, less y2	3.6	pF
y2 plate to all, less y1 plate	^c y2-all, less y1	.3.7	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1,x2-y1,y2	0.7	pF

TYPICAL OPERATION - voltages with respect to cathode

-	-			
Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1500 †	2000†	v
Second anode voltage for optimum focus	V _{a2}	125 to 220	170 to 290	v
First anode voltage	v _{a1}	1500	2000	v
Shield voltage for optimum raster shape	v _s	1500 †	2000†	v
Control grid voltage for cut-off	v_{g1}	-22 to -52	-30 to -70	v
x deflection coefficient	D _x	14.3 to 17.5	19 to 23	V/cm
y deflection coefficient	Dy	9.0 to 11.3	12.0 to 15.0	V/cm
Minimum useful screen area (Diagonal 1	1.4 cm)	10 x 8.0	10 x 8.	0 cm ²
Grid drive to $10 \mu A$ beam current (approx	ox)	10	11	v
Line width at $10 \mu A$ beam current Shrinking raster measurement at centr	re	0.40	0.35	mm

* This tube is designed for symmetrical operation.

 \dagger The required voltage will not differ from the quoted value by more than \pm 30V.

D13-630..

D13-630...

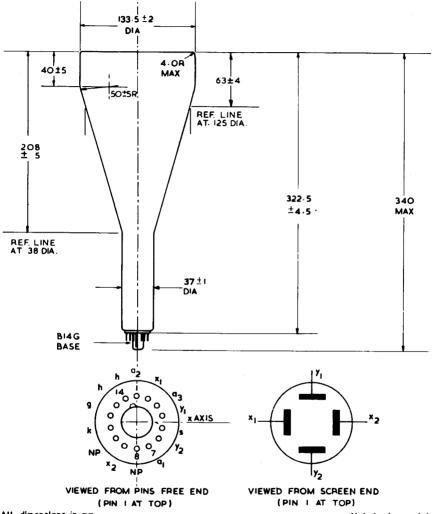
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 7 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 8.5 cm x 7.0 cm and 8.3 cm x 6.88 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 900 g

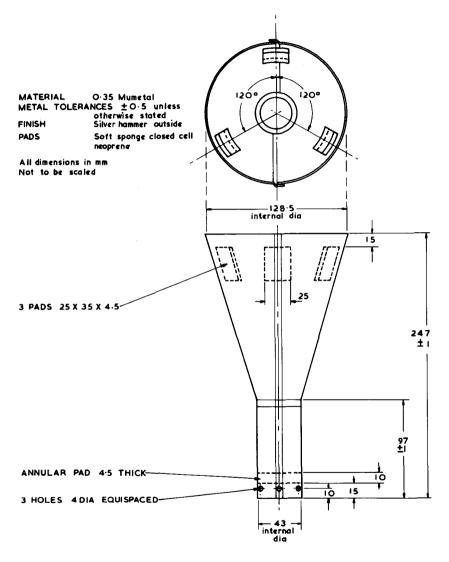
MOUNTING POSITION - unrestricted.

D13-630..

All dimensions in mm.

Not to be scaled

OSCID

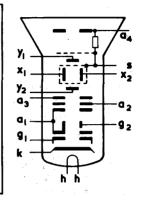

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Tolerance on base pin 1 position with respect to tube y axis $\pm 5^{\circ}$

Issue 1, Page 4

D13-630..

EXAMPLE OF TYPICAL SHIELD


Thorn Radio Valves and Tubes Limited Page E1, Issue 2.

GENERAL

This 10 cm x 8 cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and very high brightness without additional electrode control voltages. The tube is designed for transistor scan high bandwidth applications, and incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v _h	6.3 V
Heater current	Ih	0.3 A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V _{a4}	16	5.0	kV
Third anode voltage	v _{a3}	1.75	0.6	kV
Second anode voltage	v _{a2}	1.0	Ó .	kV
First anode voltage	v _{al}	1.75	0.6	kV
Negative control grid voltage	$-v_{g1}$	200	1.0	. V
Beam blanking voltage	V _{g2}	2.0	0.5	kV .
Peak x-plate to third anode voltage	vx-a3(pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
x-plate to third anode resistance	R _{x-a3}	5.0	-	MΩ
y-plate to third anode resistance	R _{y-a3}	100	-	kΩ
Control grid to cathode resistance	Rg1-k	1.5		MΩ
Second anode current	Ia2	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		11:1		
Helix resistance		-	100	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-150GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 3.

INTER-ELECTRODE CAPACITANCES

	THE ELECTROPE ON ACTION						
	Grid 1 to all		cg1-all			9.5	pF
	Grid 2 to all		cg2-all			8.9	pF
	Heater and cathode to all		^c h, k-all			4.0	pF
	x_1 plate to x_2 plate		c _{x1-x2}			1.9	pF
	y1 plate to y2 plate		c _{v1-v2}			1.7	pF
	x_1 plate to all, less x_2 plate		Cx1-all,	less x2		3.9	pF
	x_2 plate to all, leas x_1 plate		cx2-all,	less x1		3.9	pF
	y1 plate to all, less y2 plate		^c y1-all,	less y2		2.8	pF
	y_2 plate to all, less y_1 plate		cy2-all,	less yl		2.8	pF
	Grid 1 to grid 2		cg1-g2			0.7	pF
	Grid 1 to x ₁ , x ₂ , y ₁ , y ₂ plates		cg1-x1,	x2,y1,y2		0.012	pF
	x_1, x_2 plates to y_1, y_2 plates		cx1,x2-	y1, y2		0.5	pF
		ges wit	-	t to cathod			
	Fourth anode voitage		v _{a4}	10	12	15	kV
	Mean deflector plate potential			1000	1200	1500	v
- 58 ^{5,1}	Third anode voltage for optimum astigmatism correction		VaS	1000*	1200*	1500*	v
	Second anode voltage for optimum	focus	V ₂₂	25 to 180	30 to 200	40 to 250	v
	First anode voltage		V _{al}	1000	1200	1500	v
	Shield voltage for optimum raster	shape		970 to 1070	1170 to 1270	1470 to 1570	v
	Beam blanking voltage for cut-off		v _{g2}	960 to 1040†	1150 to 1250†	1435 to 1565†	v
	Control grid voltage for cut-off		v_{g1}	-40 to -75	-50 to -90	-60 to -115	v
	x deflection coefficient		D _x	9.2 to 12.1	11 to 14.5	13.8 to 18	V/cm
	y deflection coefficient		Dy	3.8 to 5.0	4.6 to 6.0	5.8 to 7.5	V/cm
	Line width at centre	at 5µA		0.75	0.7	0.65	mm
	Line width at edge	beam		1.1	1.0	0.9	mm
	Line width at centre measured by shrinking raster	curre	nt	0.42	0.39	0.35	mm

* The required voltage will not differ from the quoted value by more than \pm 50V.

 \dagger The beam is unblanked when V_{g2} = V_{a1} . This grid 2 electrode should not be used as a brilliance control.

Page 2, Issue 4.

RASTER DISTORTION AND ALIGNMENT

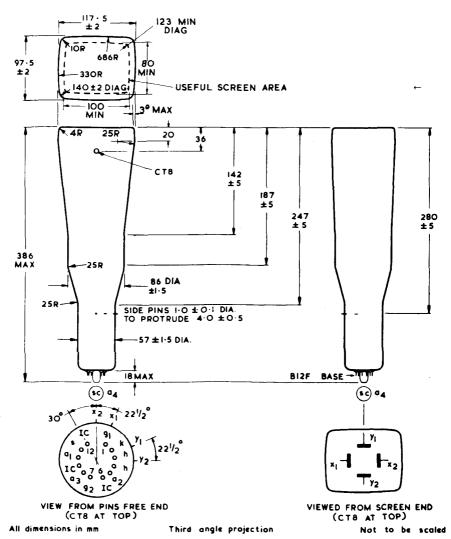
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.80 cm x 7.84 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 70 mm from the face and should not extend more than 175 mm from the face. 45 ampere turns for 10 kV operation or 54 ampere turns for 15 kV operation will suffice,with provision for reversing the current if necessary. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

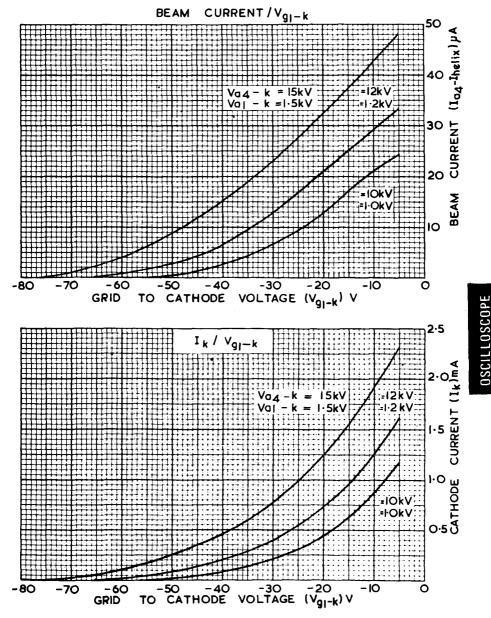

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 1.3 kg

MOUNTING POSITION- unrestricted

Issue 2, Page 3

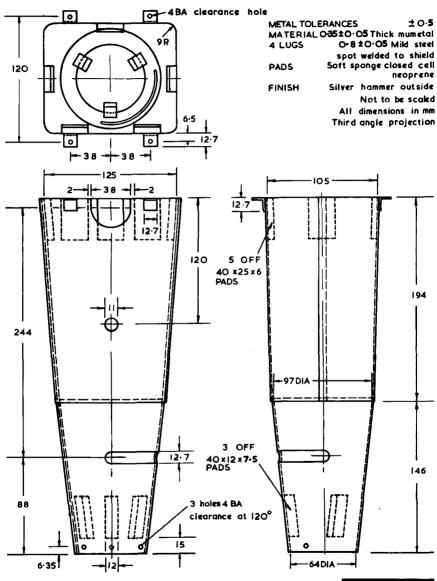


It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions \pm 5°.

Issue 2, Page 4

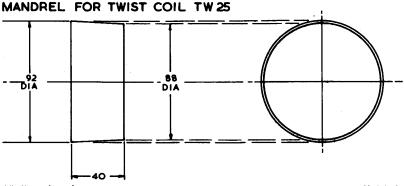
D14-150..



D14-150..

Magnetic Shield MS9

EXAMPLE OF TYPICAL SHIELD



Thorn Radio Valves and Tubes Limited

BRIMAR

Page E1. Issue 4.

Tube Coil TW25

All dimensions in mm

Not to be scaled

<u>OSCILLOSCOPE</u>

UBES

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS9 for D14-150..

WINDING

1400 turns of 0.20 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coll and each edge of the mandrel. Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from larger end of winding. Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the

edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 230 Ω . Twist coefficient approximately 7 mA/degree measured on typical D14-150.. with $V_{a4} = 15$ kV and $V_{a1} = 1.5$ KV.

FITTING

The completed twist coll should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 4.

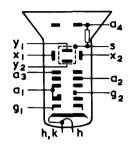
D14-170.. D14-171..

OBSOLESCENT TYPES

The D14-170.. is replaced by the D14-172.. The D14-171.. is replaced by the D14-173..

The D14-172.. and the D14-173.. differ from the obsolescent tubes by having a 'squared-up' face-plate with a larger diagonal dimension.

Thorn Radio Valves and Tubes Limited Page 1. Issue 3.



D14-172..

GENERAL

This short $10 \text{ cm} \times 8 \text{ cm}$ rectangular tube with electrostatic focusing and deflection is designed for general purpose applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	$\mathbf{v_h}$	6.3	v
Heater current	Ih	0.3	A

Min

Max

ABSOLUTE RATINGS

Fourth anode voltage	v _{a4}	4.0	1.5	kV
Third anode voltage	V _{a3}	1.75	0.6	kV
Second anode voltage	v _{a2}	1.0	0	kV
First anode voltage	V _{al}	1.75	0.6	kV
Negative grid voltage	-v _{g1}	200	1.0	v
Beam blanking voltage	v _{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	^v x-a3(pk)	500	-	v
Peak y plate to third anode voltage	vy-a3(pk)	500	-	v
x plate to third anode resistance	R _{x-a3}	5.0	-	MΩ
y plate to third anode resistance	R _{y-a3}	100	-	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	Ia2	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		2.2:1		
Helix resistance		-	15	MΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-172GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 3.

SCILLOSCOP TUBES

D14-172..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	c _{g1-all}		10	pF
Grid 2 to all	^c g2-all		10	pF
Heater and cathode to all	^c h, k-all		4.0	pF
x_1 plate to x_2 plate	c _{x1-x2}		2.1	pF
y_1 plate to y_2 plate	c _{y1-y2}		1.4	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2		6.9	pF
x2 plate to all, less x1 plate	^c x2-all, less x1		6.6	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2		5.1	pF
y_2 plate to all, less y_1 plate	cy2-all, less y1		5.1	pF
x_1, x_2 plates to y_1, y_2 plates	^c x1, x2-y1, y2		0.8	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	2	1.4	pF
Grid 1 to grid 2	^c g1-g2		0.7	pF
TYPICAL OPERATION - voltages with	respect to cathod	le.		
Fourth anode voltage	V _{a4}	2.0	3.0	kV
Mean deflector plate potential		1000	1500	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1000*	1500*	v
Second anode voltage for optimum focus	V _{a2}	180 to 380	270 to 570	v
First anode voltage	Val	1000	1500	v
Shield voltage for optimum raster shape	v _s	1000*	1500*	v
Beam blanking voltage for cut-off	V _{g2}	935†	1405†	v
Control grid voltage for cut-off	v _{g1}	-35 to -65	-50 to -95	v
x deflection coefficient	D _x	15.7 to 18.7	23.5 to 28	V/cm
y deflection coefficient	Dy	7.4 to 9.7	11 to 14.3	V/cm
Line width at centre-using microscope	at 10µA	0.55	0.49	mm
Line width at edge-using microscope	beam	0.90	0.88	mm
Line width at centre measured by shrinking raster	current	0.28	0.25	mm
* The manufactured malar as well and different				

* The required voltage will not differ from the quoted value by more than \pm 50V.

 \dagger The beam is unblanked when V_{g2} = V_{a1} . This grid 2 electrode should not be used as a brilliance control.

Page 2, Issue 1.

D14-172

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

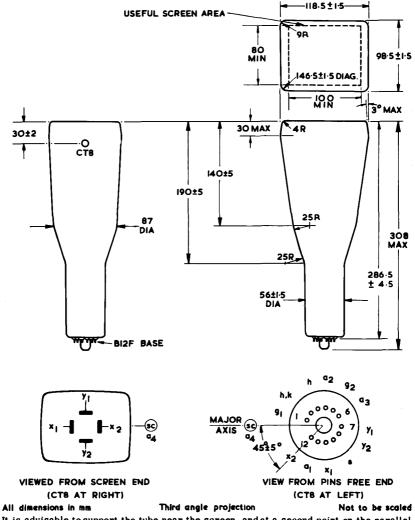
Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.75 cm x 7.8 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 165 mm from the face. 26 ampere turns will suffice, with provision for reversing the current if necessary.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V when the tube is operated at 3 kV.

MAGNETIC SHIELDING

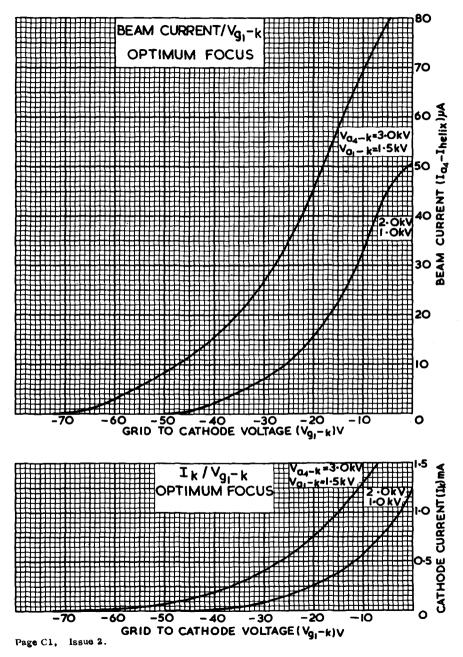
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) 1.0 kg

MOUNTING POSITION - unrestricted.

OSCILLOSCOPE TUBES

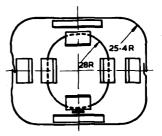
D14-172..

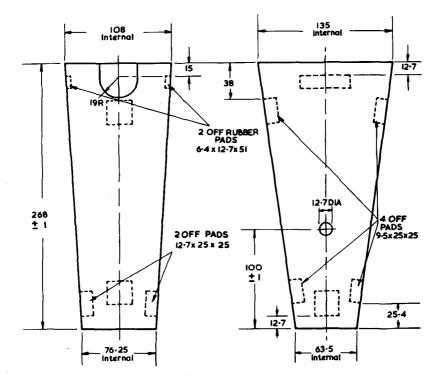

Oscilloscope Tube

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Page 4, Issue 1.

D14-172..

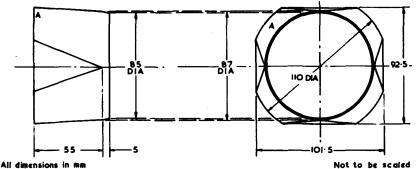



OSCILLOSCOPE TUBES

D14-172..

Magnetic Shield MS15

MATERIAL 0.35 ± 0.05 Mumetal FINISH Silver hammer outside PADS Soft sponge closed cell neoprene METAL TOLERANCES ± 0.5 Unless otherwise stated Third angle projection All dimensions in mm Not to be scaled


Thorn Radio Valves and Tubes Limited Page E1, Issue 1.

Tube Coil TW 20

D14-172...

MANDREL FOR TWIST COIL TW20

MANDREL

Shaped from wood in the form of a shaped truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS15 for D14-172..

WINDING

575 turns of 0.28 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at position A on drawing.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

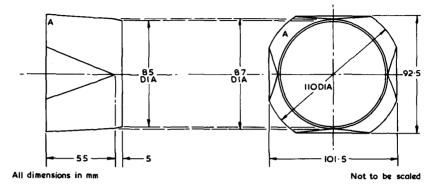
Resistance approx. 50 Ω . Current required for $\pm 5^{\circ}$ twist is ± 42 mA measured on typical D14-172.. with $V_{B4} = 3$ kV and $V_{B1} = 1.5$ kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 1.



OSCILLOSCOPE

UBES

D14-172..

MANDREL FOR TWIST COIL TW26

MANDREL

Shaped from wood in the form of a shaped truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS15 for D14-172..

WINDING

2500 turns of 0.125 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 1060 Ω . Current required for $\pm 5^{\circ}$ twist is ± 10 mA measured on typical D14-172.. with $V_{a4} = 3kV$ and $V_{a1} = 1.5 kV$.

FITTING

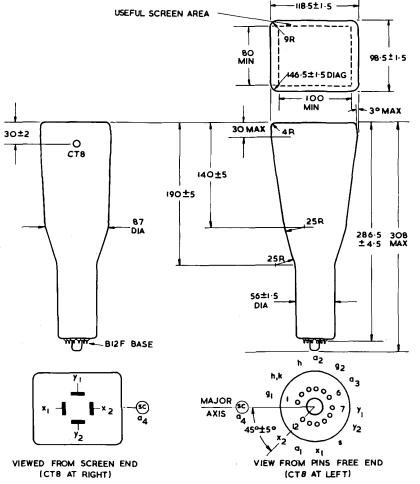
The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F2, Issue 1.

This D14-173.. tube has a 6.3V, 0.12A heater otherwise it is identical to the D14-172..

All dimensions in mm Third angle projection Not to be scaled It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.


Thorn Radio Valves and Tubes Limited

Page 1, Issue 3.

D14-173..

ISCILLOSCOPE TUBES

D14-180..

Oscilloscope Tube

MAINTENANCE TYPE

The D14-181.. is the replacement type for the D14-180..

The D14-180.. and D14-181.. differ only in the back cone region with the cylindrical region approximately 10 mm further from the face on the D14-181..

Thorn Radio Valves and Tubes Limited

Page 1. Issue 3.

D14-181..

PRELIMINARY DATA

GENERAL This 10cm x 8cm rectangul static focusing and deflec medium bandwidth applica of being deflected by tra- incorporates a means of be potential which avoids d.c.	tion is tions nsistor am bla	designed and is cap circuits nking at a	for pable . It node	y		∕ s s
Heater voltage	v _h	6.3	v	g,		-9
Heater current	1 _h	0.3	A	h h	, FT	
ABSOLUTE RATINGS				Max.	Min.	
Fourth anode voltage		v _{a4}		7.0	2.5	I
hird anode voltage		v _{a3}		1.75	0.6	۱
econd anode voltage		v _{a2}		1.0	0	I
first anode voltage		v_{a1}		1.75	0.6	1
legative grid voltage		-vg1		200	1.0	
Seam blanking voltage		v_{g2}		2.0	0.5	1
eak x plate to third anode vol	ltage		3 (pk)	500	-	
eak y plate to third anode vol	ltage	^v y−a		500	-	
plate to third anode resistan	ce	R _{x-a}		5.0	-	N
plate to third anode resistan	ce	R _{y-a}	3	100	-	
Control grid to cathode resists	ance	Rg1-	k	1.5	-	N
econd anode current		Ia2		10		μ
P.D.A. ratio (V _{a4} /V _{a3})				4.3:1		
lelix resistance				-	50	N

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-131GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	c _{g1-all}	10	pF
Grid 2 to all	^c g2-all	10	pF
Heater and cathode to all	ch, k-all	4.0	рF
x ₁ plate to x ₂ plate	^c x1-x2	2.1	pF
y1 plate to y2 plate	^c y1-y2	1.4	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	6.9	рF
x_2 plate to all, less x_1 plate	^C x2-all, less x1	6.6	pF
y_1 plate to all, less y_2 plate	^C y1-all, less y2	5.1	pF
y_2 plate to all, less y_1 plate	^C y2-all, less y1	5.1	рF
x_1, x_2 plates to y_1, y_2 plates	^c x1,x2-y1,y2	0.8	pF
Grid 1 to x ₁ , x ₂ , y ₁ , y ₂ plates	^c g1-x1, x2, y1, y2	1.4	рF
Grid 1 to grid 2	^c g1-g2	0.7	pF

TYPICAL OPERATION - voltages with respect to cathode

	-				
Fourth anode voltage	v _{a4}	3.0	4.0	6.0	kV
Mean deflector plate potential		750	1000	1500	v
Third anode voltage for optimum astigmatism correction	v _{a3}	750*	1000*	1500*	v
Second anode voltage for optimum focus	v _{a2}	125 to 300	175 to 400	260 to 600	v
First anode voltage	v _{al}	750	1000	1500	v
Shield voltage for optimum raster shape	vs	750*	1000*	1500*	v
Beam blanking voltage for cut-off	v _{g2}	700†	935†	1400†	v
Control grid voltage for cut-off	v _{g1}	-25 to -50	-35 to -65	-50 to -95	v
x deflection coefficient	D _x	10.6 to 12.8	14.1 to 17	21.2 to 25.5	V/cm
y deflection coefficient	Dy	5.0 to 6.6	6.7 to 8.7	10 to 13.1	V/cm
Minimum screen area		10 x 8	10 x 8	10 x 8	cm ²
Line width at centre-using microscope	at 5µA	0.52	0.47	0.42	mm
Line width at edge-using microscope	beam	0.94	0.89	0.84	mm
Line width at centre measured by shrinking raster	current	0.31	0.28	0.25	mm

* The required voltage will not differ from the quoted value by more than \pm 50V.

 \dagger The beam is unblanked when V_{g2} = V_{a1} . This grid 2 electrode should not be used as a brilliance control.

Page 2, Issue 1.

D14-181..

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face. The edges of a test raster will fall between two concentric rectangles $10 \text{ cm } \times 8 \text{ cm}$ and $9.8 \text{ cm } \times 7.8 \text{ cm}$.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 195 mm from the face. The ampere turns required will be equal to $12\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV), with provision for reversing the current if necessary.

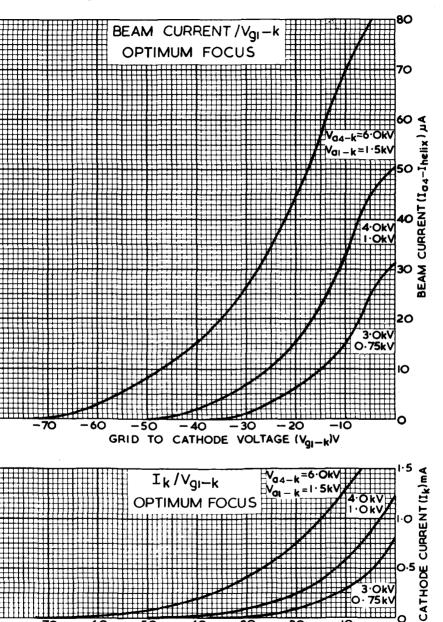
It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate by more then 50V when the tube is operated at 4kV.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.1 kg

MOUNTING POSITION - unrestricted.


OSCILLOSCOPE TUBES

Page 3, Issue 1.

All dimensions in mm Third angle projection Not to be scaled It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Page 4, Issue 1.

OSCILLOSCO TUBES

THTT

-10

20

30

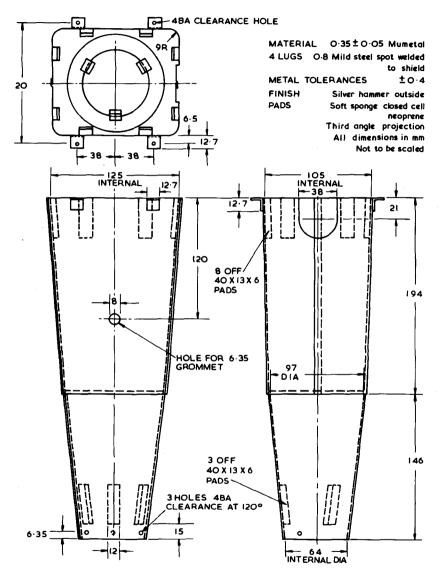
D14-181..

Page C1, Issue 1.

70

-60

-50

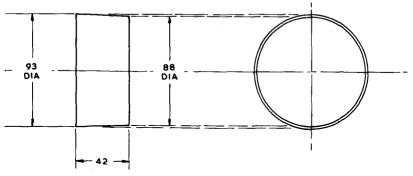

-40

GRID TO CATHODE VOLTAGE (Vgi-k)V

Magnetic Shield MS 20

D14-181..

EXAMPLE OF TYPICAL SHIELD


Thorn Radio Valves and Tubes Limited Page E1, Issue 1.

Tube Coil TW 23

D14-181..

MANDREL FOR TWIST COIL TW23

All dimensions in mm

Not to be scaled

OSCILLOSCOPE

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIE LD

This twist coil is designed to be used in conjunction with magnetic shield MS20 for D14-181..

WINDING

1200 turns of 0.16 mm Lewmex Grade 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel. Start and finish of winding to be brought out on 450 mm long thin flexible lead wire from larger end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper, and ensure that the edges of the coll are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 300Ω . Twist coefficient approximately 5mA/degree measured on typical D14-181...with $V_{a4} = 6$ kV and $V_{a1} = 1.5$ kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 1,

D14-200..

Oscilloscope Tube

GENERAL This 10 cm x 8 cm rectang electrostatic focusing and p.d.u. to achieve high defle brightness without addition: ages. The tube is designee high bandwidth applications, of beam blanking at anode per coupling to the grid.	deflection us ection sensitiv al electrode c d for transisto and incorporat	es a m ity and h ontrol ve r.deflect es a me	esh nigh olt- tion ans	$\begin{array}{c c} y_1 \\ x_1 \\ y_2 \\ a_3 \\ a_1 \end{array}$		
Heater voltage Heater current	V _h I _h	6.3 0.3	V A	9,		
					ħħ	
BSOLUTE RATINGS	V.			Max . 16	Min. 5.0	kV
ourth anode voltage	v _{a4}			1.75	5.0 0.6	кл kV
hird anode voltage	V _{a3}			1.75	0.6	KV kV
econd anode voltage	V _{a2}			-	0.6	KV kV
irst anode voltage	V _{al}			1.75 200		
egative control grid voltage	-v _{g1}				1.0 0.5	/
eam blanking voltage	V _{g2}			2.0 500	0.0	k1 1
eak x-plate to third anode vol	- x uo(• •			-	
eak y-plate to third anode vol	e j uo(pk)		500	-	N N
plate to third anode resistan	X 40			5.0	-	MS
plate to third anode resistant	<i>y</i> 40			100	-	k۵
ontrol grid to cathode resista	5- N			1.5	-	M۵
econd anode current	I _{a2}			10	-	μA
.D.A. ratio (V_{a4}/V_{a3})				11:1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-200GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes

Thorn Radio Valves and Tubes Limited

BRIMAR

Page 1, Issue 3.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	9.5	pF
Grid 2 to all	cg2-all	8.9	pF
Heater and cathode to all	^c h, k-all	4.0	pF
x ₁ plate to x ₂ plate	^c x1-x2	1.9	pF
y1 plate to y2 plate	с _{у1-у2}	1.7	pF
x1 plate to all, less x2 plate	^C x1-all, less x2	3.9	pF
x2 plate to all, less x1 plate	^c x2-all, less x1	3.9	pF
y1 plate to all, less y2 plate	^c y1-all, less y2	2.8	pF
y2 plate to all, less y1 plate	^c y2-all, less y1	2.8	pF
x_1, x_2 plates to y_1, y_2 plates	^c x1,x2-y1,y2	0.5	pF
Grid 1 to grid 2	^c g1-g2	0.7	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	0.012	pF

TYPICAL OPERATION Voltages with respect to cathode

Fourth anode voltage	V _{a4}	10	12	15	kV
Mean deflector plate potential		1000	1200	1500	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1000*	1200*	1500*	v
Second anode voltage for optimum focus	v _{a2}	25 to 180	30 to 200	40 to 250	v
First anode voltage	v _{al}	1000	1200	1500	v
Shield voltage for optimum raster shape	vs	970 to 1070	1170 to 1270	1470 to 1570	v
Beam blanking voltage for cut-off	v_{g2}	960 to 1040†	1150 to 1250†	1435 to 1565†	v
Control grid voltage for cut-off	v_{g1}	-40 to -75	-50 to -90	-60 to -115	v
x deflection coefficient	Dx	9.2 to 11.8	11 to 14.2	13.8 to 17.7	V/cm
y deflection coefficient	Dy	3.6 to 4.5	4.3 to 5.4	5.4 to 6.8	V/cm
Minimum screen area		10 x 8	10 x 8	10 x 8	cm ²
Line width at 5µA beam current Shrinking raster measurement at co Microscope measurement at centre Microscope measurement at edge		0.47 0.80 1.0	0.41 0.73 0.98	0.39 0.70 0.96	mm mm

* The required voltage will not differ from the quoted value by more than $\pm 50V$.

 \dagger The beam is unblanked when V_{g2} = $V_{a1}.$ This grid 2 electrode should not be used as a brilliance control.

Issue 2, Page 2

D14-200...

D14-200...

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.80 cm x 7.84 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 70 mm from the face and should not extend more than 195 mm from the face. The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV), with provision for reversing the current if necessary. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

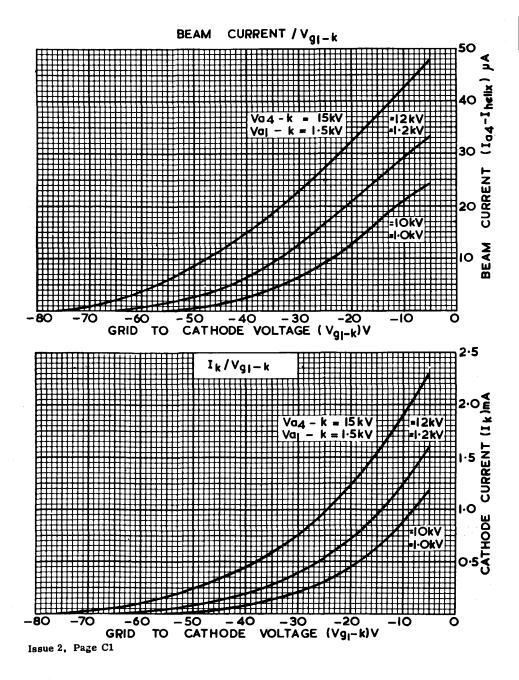
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 1.3 kg

MOUNTING POSITION - unrestricted

D14-200...

UBES

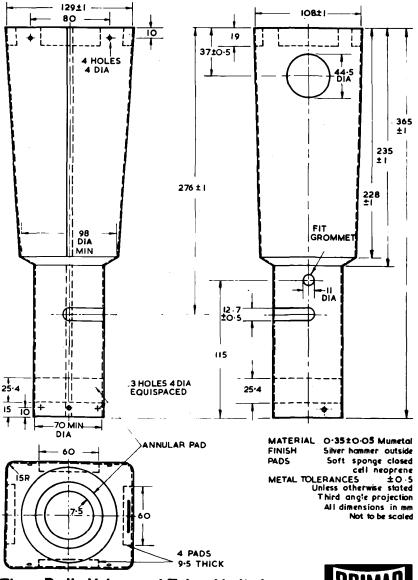

All dimensions in mm

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions ± 5°.

Page 4, Issue 3

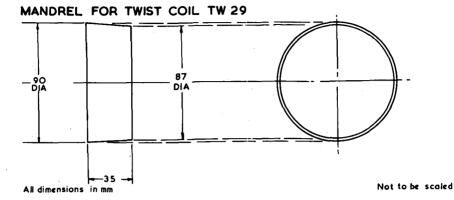
Magnetic Shield MS11


D14-200..

OSCILLOSCOPE TUBES

•

4


EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited Page E1 Issue 4.

D14-200..

Tube Coil TW29

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS11 for D14-200..

WINDING

1600 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

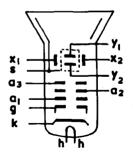
Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 550 Ω . Twist coefficient approximately 7 mA/degree measured on typical D14-200.. with $V_{a4} = 15 \text{ kV}$ and $V_{a1} = 1.5 \text{ kV}$.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.


Thorn Radio Valves and Tubes Limited

Page F1, Issue 3

D14-270..

GENERALThis 10cm x 8cm display rectangular oscilloscopetube is primarily intended for use in inexpensiveoscilloscopes and monitoring devices. The tubehas sufficient deflector sensitivity to permittransistor driven deflection.Heater voltage V_h 6.3VHeater current I_h 0.12A

- -

ABSOLUTE RATINGS - voltages with respect to cathode

		Max.	Min.		
First anode voltage	v _{a1}	2200	1250	v	
Second anode voltage	v _{a2}	800	-	v	
Third anode voltage	v _{a3}	2250	1200	v	
Negative grid voltage	-Vg	200	1.0	V	
Peak x-plate to third anode voltage	v _{x-a3(pk)}	500	-	v	
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v	
Heater to cathode voltage	V _{h-k} ±	125		v	
x-plate to third anode resistance	R _{x-a3}	2.0	-	MΩ	
y-plate to third anode resistance	Ry-a3	2.0	-	MΩ	
Grid to cathode resistance	Rg-k	1.5	-	MΩ	
Peak cathode current	ⁱ k(pk)	500	-	μA	

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D14-270GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

CILLOSCO TUBES

D14-270..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all		8.2	pF
Heater and cathode to all	^C h.k-all		3.8	pF
x_1 plate to x_2 plate	°x1-x2		1.7	pF
y_1 plate to y_2 plate	^c v1-v2		1.3	pF
x_1 plate to all, less x_2 plate	^c x1-all, less	x2	5.0	pF
x_2 plate to all, less x_1 plate	^c x2-all, less	x1	4.8	рF
y_1 plate to all, less y_2 plate	^c v1-all, less		3.6	pF
y_2 plate to all, less y_1 plate	^c y2-all, less	y1	3.7	рF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1,x2-y1,y2		0.7	pF
TYPICAL OPERATION - voltages with	n respect to cat	hode		
Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	V _{a3}	1500†	2000†	v
Second anode voltage for optimum focus	V _{a2}	125 to 220	170 to 290	v
First anode voltage	v _{al}	1500	2000	v
Shield voltage for optimum raster shape	vs	1500†	2000†	v
Control grid voltage for cut-off	v _{g1}	-22 to -52	-30 to -70	v
x deflection coefficient	D _X	14.3 to 17.5	19 to 23	V/cm
y deflection coefficient	Dy	9 to 11.3	12 to 15	V/cm
Minimum useful screen area		10 x 8.0	10 x 8.0) cm ²
Grid drive to 10µA beam current		10	11	v
Line width at 10µA beam current Shrinking raster measurement at centr	e	0.4	0.35	mm

* This tube is designed for symmetrical operation.

† The required voltage will not differ from the quoted value by more than + 30V.

Page 2, Issue 2.

RASTER DISTORTION AND ALIGNMENT

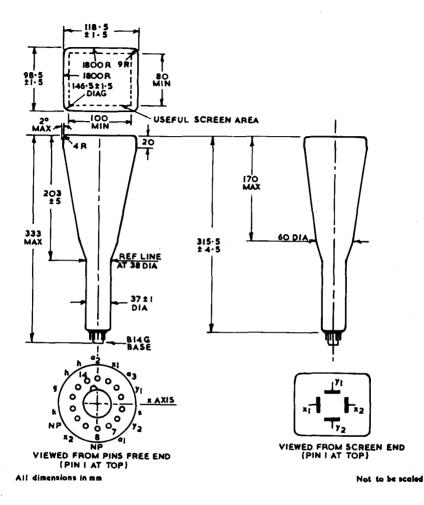
The undeflected spot will fall in a circle of 7mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $8.5 \text{ cm} \times 7.0 \text{ cm}$ and $8.3 \text{ cm} \times 6.88 \text{ cm}$.

Rectangularity of x and y axes is $90^{\circ} + 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

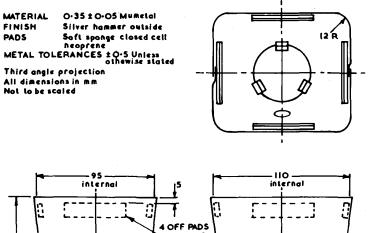

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

MOUNTING POSITION - unrestricted.

DSCILLOSCOPE TUBES

Page 3, Issue 1

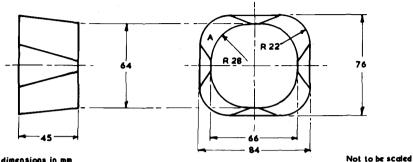

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.


Tolerance on base pin 1 position with respect to tube y axis $\pm 5^{\circ}$

Page 4, Issue 1

Magnetic Shield MS70

D14-270..


Thorn Radio Valves and Tubes Limited

OSCILLOSCOPE TUBES

MANDREL FOR TWIST COIL TW52

All dimensions in mm

MANDREL

Shaped from wood in the form of a shaped truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS70 for D14-270.

WINDING

1000 turns of 0.14 mm Lewmex Grade 1 or 2 wire, or approved alternative. layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at position A on drawing.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

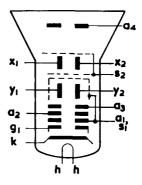
Resistance approx. 300 Ω . Current required for $\pm 5^{\circ}$ twist is ± 20 mA measured on typical D14-270.. with $V_{a1} = 1.5 \text{ kV}$.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue I.


D14-280..

PRELIMINARY DATA

GENERAL

This 10cm \times 8cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and high brightness without additional electrode control voltages. The tube is designed for transistor deflection medium to high bandwidth applications.

Heater voltage	v_h	6.3	v
Heater current	1 _h	0.3	Α

100

....

ABSOLUTE RATINGS

	Max	Min	
v _{a4}	13	8.0	kV
v _{a3}	2.2	1.2	kV
v _{a2}	1.0	-	kV
V _{a1}	2.2	1.1	kV
-v _{g1}	200	1.0	v
vx-a3(pk)	500	-	v
vy-a3(pk)	500	-	v
R _{x-a3}	100	-	kΩ
R _{y-a3}	100	-	kΩ
R _{g1-k}	1.5	-	MΩ
I _{a2}	10	-	μA
	7:1	-	
	V_{a3} V_{a2} V_{a1} $-V_{g1}$ $v_{x-a3}(pk)$ $v_{y-a3}(pk)$ R_{x-a3} R_{y-a3} R_{g1-k}	$\begin{array}{cccc} V_{a4} & 13 \\ V_{a3} & 2.2 \\ V_{a2} & 1.0 \\ V_{a1} & 2.2 \\ -V_{g1} & 200 \\ v_{x-a3(pk)} & 500 \\ v_{y-a3(pk)} & 500 \\ R_{x-a3} & 100 \\ R_{y-a3} & 100 \\ R_{g1-k} & 1.5 \\ I_{a2} & 10 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-280GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

OSCILLOSCOPE TUBES

Page 1, Issue 2.

D14-280..

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	9.5	рF
Heater and cathode to all	^c h, k-all	3.5	pF
$\mathbf{x_1}$ plate to $\mathbf{x_2}$ plate	c _{x1-x2}	2.0	pF
y_1 plate to y_2 plate	c _{y1-y2}	1.5	pF
x_1 plate to all, less x_2 plate	c _{x1-all} , less x2	6.0	pF
\mathbf{x}_2 plate to all, less \mathbf{x}_1 plate	^c x2-all, less x1	6.0	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	5.0	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	5.0	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2-y1, y2	0.8	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	0.8	pF

TYPICAL OPERATION - Voltages with respect to cathode

Fourth anode voltage	V _{a4}	10	12	kV
Mean deflector plate potential		1500	2000	v
Third anode voltage for optimum astigmatism correction	V _{a3}	1470 to 1530	1970 to 2030	v
Second anode voltage for optimum focus	v _{a2}	320 to 480	420 650	v
First anode and shield 1 voltage	V _{a1 +s1}	1500	2000	v
Shield 2 voltage for optimum raster shape	v _{s2}	1400 to 1500	1900 to 2000	v
Control grid voltage for cut-off	v _{g1}	-40 to -80	-53 to -106	v
x deflection coefficient	D _X	10.5 to 13	14 to 17.4	V/cm
y deflection coefficient	Dy	4.2 to 5.2	5.6 t o 6.9	V/cm
Minimum screen area		10 x 8	10x8	cm^2
Line width at 10µA beam current Shrinking raster measurement at ce Microscope measurement at centre Microscope measurement at edge	entre	0.38 0.75 1.0	0.35 0.64 0.9	mm mm mm
Grid Drive to $10\mu A$ beam current (approx	x.)	18	19	v

Page 2, Issue 2.

D14-280..

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion : The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.80 cm x 7.84 cm.

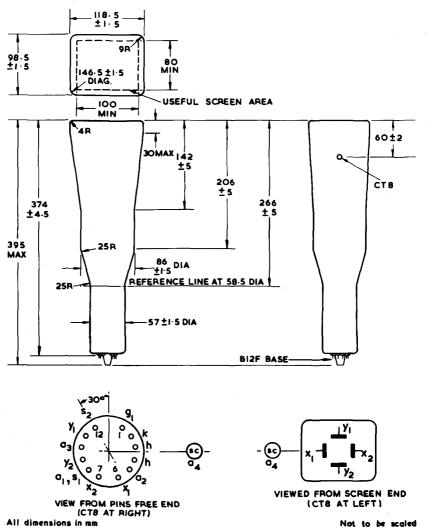
Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 130 mm from the face and should not extend more than 195 mm from the face. The ampere turns required will be equal to $14/\overline{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 25% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 1.4 kg


MOUNTING POSITION - unrestricted

JSCILLOSCOPI TUBES

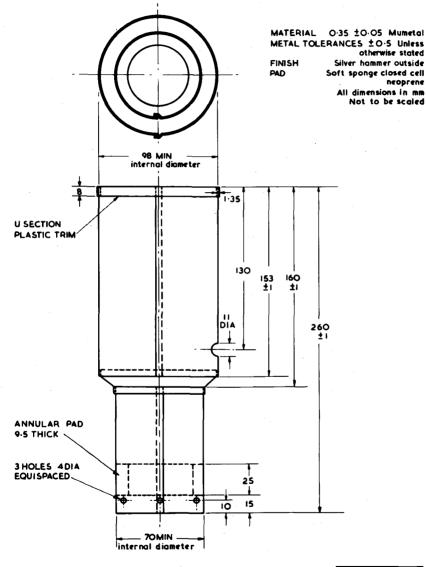
Page 3, Issue 2.

D14-280...

Oscilloscope Tube

All dimensions in mm

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

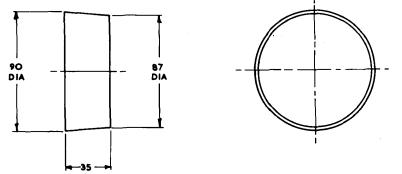

Page 4. Issue 2.

D14-280...

OSCILLOSCOPE TUBES

Magnetic Shield MS72

EXAMPLE OF TYPICAL SHIELD


Thorn Radio Valves and Tubes Limited

Page E1, Issue 1.

D14-280..

MANDREL FOR TWIST COIL TW29

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIE LD

This twist coil, is designed to be used in conjunction with magnetic shield MS72 for D14-280..

WINDING

1600 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

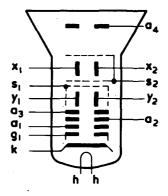
Resistance approx. 550 Ω . Twist coefficient approximately 6.5 mA/degree measured on typical D14-280.. with V_{a4} = 12kV and V_{aj} = 2.0 kV.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 1.


D14-310...

PRELIMINARY DATA

GENERAL

This 10cm x 8cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and very high brightness without additional electrode control voltages. The tube is designed for transistor deflection high bandwidth and high writing speed applications.

Heater voltage	$\mathbf{v_h}$	6.3	v
Heater current	ľh	0.3	А

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V _{a4}	18	8.0	kV
Third anode voltage	V _{a3}	2.25	1.0	kV
Second anode voltage	V _{a2}	1.0	0	kV
First anode voltage	v _{a1}	2.2	1.0	kV
Negative control grid voltage	-v _{g1}	200	1.0	v
Peak x plate to third anode voltage	[♥] x-a3(pk)	500	-	v
Peak y plate to third anode voltage	vy-a3(pk)	500	-	v
x plate to third anode resistance	R _{x-a3}	5.0	-	MΩ
y plate to third anode resistance	R _{y-a3}	100	-	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	I _{a2}	10	-	μ A
P.D.A. ratio (V_{a4}/V_{a3})		9: 1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-310GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

D14 - 310..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	9.0	pF
Heater and cathode to all	^c h, k-all	5.0	pF
x_1 plate to x_2 plate	c _{x1-x2}	3.5	pF
y1 plate to y2 plate	^c y1-y2	1.5	pF _.
x1 plate to all, less x_2 plate	^c x1-all, less x2	5.0	pF
x ₂ plate to all, less x1 plate	^c x2-all, less x1	5.0	pF
y_1 plate to all, less y2 plate	^C y1-all, less y2	3.5	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	3.5	pF
x_1, x_2 plates to y_1, y_2 plates	^c x1,x2-y1,y2	0.2	pF
Grid 1 to x ₁ , x ₂ , y ₁ , y ₂ plates	^c gl-x1, x2, y1, y2	0.05	pF

TYPICAL OPERATION - Voltages with respect to cathode

Fourth anode voltage	v _{a4}	10	12	16	kV
Mean deflector plate potential		1250	1500	2000	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1210 to 1290	1460 to 1540	1960 to 2040	v
Second anode voltage for optimum focus	v _{a2}	315 to 450	380 to 540	505 to 720	v
First anode voltage	v _{a1}	1250	1500	2000	v
y shield voltage	v _{s1}	1250	1500	2000	v
Shield voltage for optimum raster shape	v _{s2}	1180 to 1280	1420 to 1520	1905 to 2005	v
Control grid voltage for cut-off	v_{g1}	-30 to -55	-35 to -66	-48 to -88	v
x deflection coefficient	D _X	9.1 to 11.6	11 to 14	14.6 to 18.6	V/cm
y deflection coefficient	Dy	2.8 to 3.6	3.4 to 4.3	4.5 to 5.8	V/cm
Minimum screen area		10 x 8	10 x 8	10 x 8	cm ²
Line width at $10\mu A$ beam current					
Shrinking raster measurement at ce Microscope measurement at centre Microscope measurement at edge	ntre	0.34 0.60 0.70	0.31 0.50 0.65	0.28 0.44 0.60	mm mm
Grid Drive to 10µA beam current(approx	:.)	23	23.5	24	v

Page 2, Issue 2.

D14-310..

RASTER DISTORTION AND ALIGNMENT

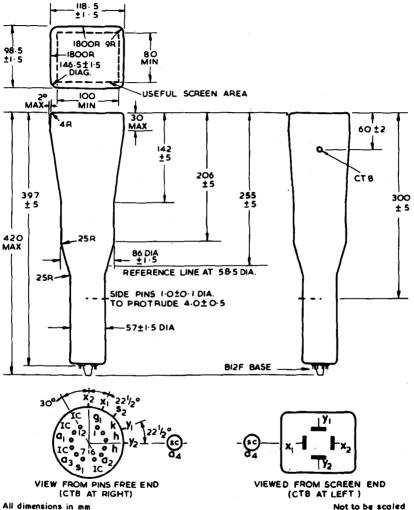
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.80 cm x 7.84 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 200 mm from the face. The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

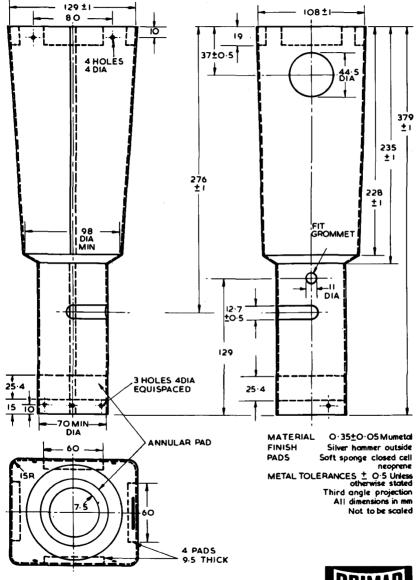

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 1.4 kg

MOUNTING POSITION - unrestricted

OSCILLOSCOPE TUBES


It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

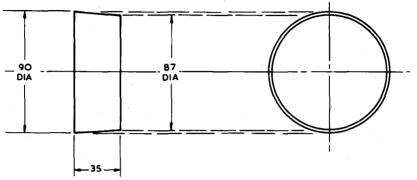
Tolerance on all side pin positions + 5°.

Page 4, Issue 2.

Magnetic Shield MS1

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited Page E1, Issue 1.


OSCILLOSCOPI

D14-310..

Tube Coil TW 29

MANDREL FOR TWIST COIL TW29

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS1 for D14-310..

ŴINDING

1600 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx.550 Ω . Twist coefficient approximately 7 mA/degree measured on typical D14-310. with $V_{a4} = 12 \text{ kV}$ and $V_{a1} = 1.5 \text{ kV}$.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 2.

D16-100..

7

7

GENERAL					<u> </u>	
This 10 cm x 10 cm square electrostatic focusing and designed for use as an x- tube incorporates spiral acceleration.	d defle	ection is er. The	Υ ₁ × ₁ γ ₂ α ₃ α ₁			
Heater voltage V	h	6.3 V	g ₁ —	<u></u>		
Heater current Ih	ł	0.3 A	k —			
ABSOLUTE RATINGS			Max	Min		
Fourth anode voltage		V _{a4}	6.0	1.5	kV	
Third anode voltage		V _{a3}	2.3	0.7	kV	
Second anode voltage		V _{a2}	1.0	0	kV	
First anode voltage		Val	2.2	0.7	kV	
Negative grid voltage		-v _{g1}	200	1.0	Ň	
Peak x plate to third anode vol	ltage	^v x-a3(pk)	500	-	v	0.05
Peak y plate to third anode vol	ltage	vy-a3(pk)	500		v	c c
x plate to third anode resistant	ce	R _{x-a3}	5.0	-	MΩ	-
y plate to third anode resistant	ce	Ry-a3	100	-	kΩ	
Control grid to cathode resista	ance	Rg1-k	1.5	-	МΩ	
Second anode current		Ia2	10	-	μA	
P.D.A. ratio (V _{a4} /V _{a3})			3.2:1			
Helix resistance			-	50	MΩ	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D16-100GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

LLOSCOPE LUBES

D16-100..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

			~
Grid 1 to all	^c g1-all	10.5	pF
Cathode to all	c _{k-all}	3.5	pF
x_1 plate to x_2 plate	^c x1-x2	2.3	pF
y ₁ plate to y ₂ plate	c _{y1-y2}	1.0	pF
x_1 plate to all, less x_2 plate	c _{x1-all,less x2}	6.2	pF
x_2 plate to all, less x_1 plate	cx2-all, less x1	6.4	pF
y_1 plate to all, less y_2 plate	^c y1-all,less y2	5.4	pF
y_2 plate to all, less y_1 plate	c _{y2} -all, less y1	5.2	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2-y1, y2	1.2	pF
Grid 1 to x_1 , x_2 plates	^c g1-x1, x2	0.8	pF
Grid 1 to y_1 , y_2 plates	^c g1-y1, y2	0.8	pF

TYPICAL OPERATION - voltages with respect to cathode.

.	-				
Fourth anode voltage	v_{a4}	2.5	4.0	4.5	kV
Mean deflector plate potencial		1250	2000	1500	v
Third anode voltage for optimum astigmatism correction	v_{a3}	1200 to 1300	1925 to 2075	1425 to 1575	V
Second anode voltage for optimum focus	v _{a2}	250 to 450	400 to 720	280 to 580	v
First anode voltage	v _{al}	1250	2000	1500	v
Shield voltage for optimum raster shape	vs	1200 to 1300	1925 to 2075	1425 to 1575	v
Control grid voltage for cut-off	v _{g1}	-45 to -85	-72 to -135	-53 to -105	v
x deflection coefficient	D _x	13.5 to 17	21.6 to 27.2	18.5 to 23.5	V/cm
y deflection coefficient	Dy	13.5 to 17	21.6 to 27.2	18.5 to 23.5	V/cm
Line width at $10 \mu A$ beam current				*	
Shrinking raster measurement at cen	tre	0.50	0.31	0.32	mm
Shrinking raster measurement at cor	ner	0.68	0.58	0.58	mm
Grid drive for 10 μ A beam current (appr	·ox.)	28	26	27	v

Issue 2, Page 2

D16-100..

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion : the edges of a test raster will fall between two concentric squares 10 cm x 10 cm and 9.74 cm x 9.74 cm at a p.d.a. ratio not greater than 2:1.

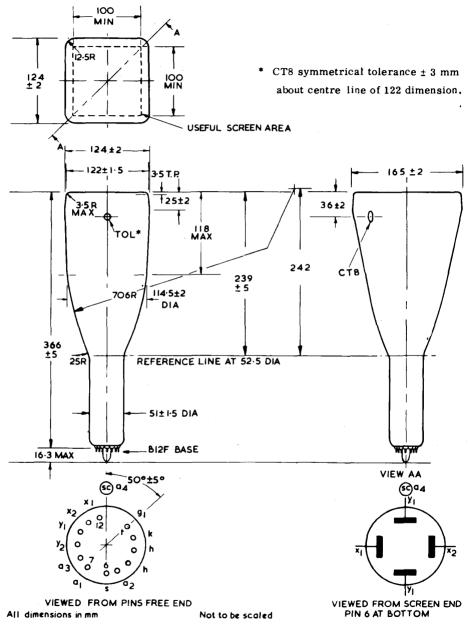
Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 100 mm from the face and should not extend more than 170 mm from the face. The ampere turns required will be equal to $13\sqrt{V_{24}}$ (where V_{24} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 10% deflection.

It is not advisable that the deflector plates be run asymmetrically, or severe raster distortion may result and the focus quality cannot be guaranteed. It is preferable that the tube be operated with mean x and y potentials equal, otherwise the raster distortion and focus quality will suffer and the limits for V_{a3} and V_{s} will differ from specification.

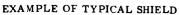
It is recommended that the maximum p.d.a. ratio is not exceeded as this may reduce scan area.

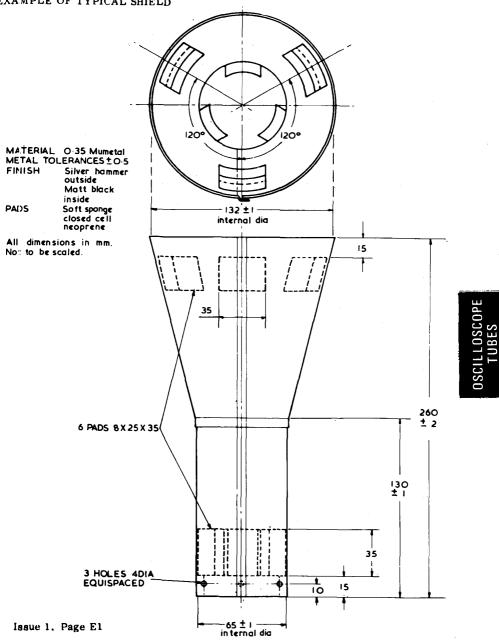
MAGNETIC SHIELDING


Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

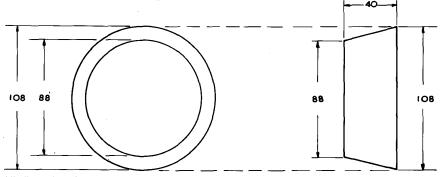
MOUNTING POSITION - unrestricted


It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.


JSCILLOSCOPE TUBES

Issue 2, Page 4

Magnetic Shield MS45



D16-100...

Tube Coil TW 45

MANDREL FOR TWIST COIL TW45

All dimensions in mm

SHIELD

This twist coil is designed to be used in conjunction with Magnetic Shield MS45 for D16-100..

WINDING

1500 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coll and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

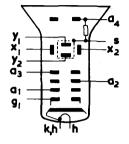
Resistance approx. 590 Ω . Twist coefficient approx, 3.4 mA/degree measured on a typical D16-100.. with $V_{a1} = 2.0$ kV and $V_{a4-k} = 4.0$ kV.

FITTING

The completed twist coil should be pushed hard on to the tube and secured in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 2


D16-110...

GENERAL

. . . .

This square faced tube with 10 cm x 10 cm display area has spiral p.d.a., electrostatic focusing and deflection. The tube is designed for medium bandwidth applications and is capable of being deflected by transistor circuits.

Heater voltage	$\mathbf{v_h}$	6.3	v
Heater current	Ih	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V _{a4}	7.0	2.5	kV
Third anode voltage	V _{a3}	1.8	0.6	kV
Second anode voltage	Va2	1.0	0	kV
First anode voltage	V _{al}	1.8	0.6	kV
Negative grid voltage	-v _{g1}	200	1.0	v
Peak x plate to third anode voltage	v _x -a3 (pk)	500	-	v
Peak y plate to third anode voltage	vy-a3(pk)	500	-	v
x plate to third anode resistance		100	-	kΩ
y plate to third anode resistance		100	-	kΩ
Control grid to cathode resistance		1.5	-	MΩ
Second anode current		10	-	μ A
P.D.A. ratio (Va4/Va3)		4.5:1		
Helix resistance		-	50	MΩ

Helix resistance

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D16-110GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1. Issue 2.

<u>0SC1</u>

D16-110..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	12	pF
Heater and cathode to all	^c h, k-all	7.0	pF
x1 plate to x2 plate	c _{x1-x2}	2.4	pF
y1 plate to y2 plate	с _{у1-у2}	1.5	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	6.3	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	6.6	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	5.0	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	5.0	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2-y1, y2	0.7	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2	1.4	pF

TYPICAL OPERATION - voltages v	with respect to catho	de.		
Fourth anode voltage	V _{a4}	4.0	6.0	kV
Mean deflector plate potential		1000	1500	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1000*	1500*	V .1
Second anode voltage for optimum focus	V _{a2}	175 to 400	260 to 600	v
First anode voltage	Val	1000	1500	. V
Shield voltage for optimum raster shape	vs	1000*	1500*	V _
Control grid voltage for cut-off	v _{g1}	-27 to -53	-40 to -80	v
x deflection coefficient	D _x	14.5 to 18.5	21.8 to 27.8	V/cm
y deflection coéfficient	Dy	8.5 to 10.7	12.8 to 16.1	V/cm
Minimum screen area		10 x 10	10 x 10	cm ²
Line width at $10 \mu A$ beam current Shrinking raster measurement at ce	ntre	0.30	0.24	mm
Grid drive to 10 μ A beam current		17	17	v

* The required voltage will not differ from the quoted value by more than \pm 50V.

Page 2, Issue 2.

D16-110..

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion : the edges of a test raster will fall between two concentric squares 10 cm x 10 cm and 9.7 cm x 9.7 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 160 mm from the face and should not extend more than 215 mm from the face. The ampere turns required will be equal to $13\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 10% deflection.

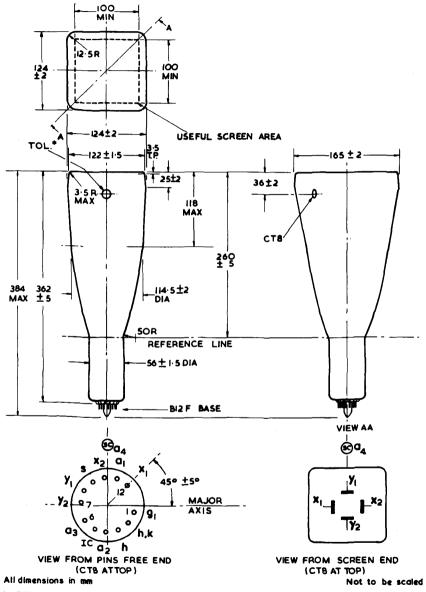
It is not advisable that the deflector plates be run asymmetrically, or severe raster distortion may result and the focus quality cannot be guaranteed. It is preferable that the tube be operated with mean x and y potentials equal, otherwise the raster distortion and focus quality will suffer and the limits for V_{a3} and V_s will differ from specification.

It is recommended that the maximum p.d.a. ratio is not exceeded as this may reduce scan area.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

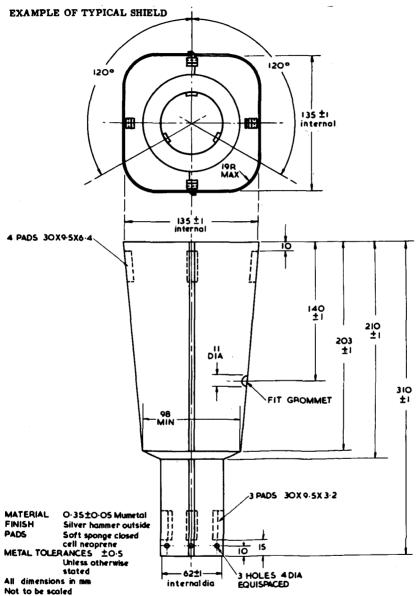

MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Page 3, Issue 2.

D16-110..

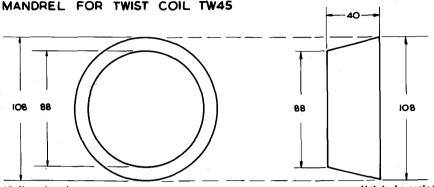
Oscilloscope Tube



* CT8 symmetrical tolerance ±3 mm about centre line of 122 dimension on CT8 side.

Issue 1. Page 4

Magnetic Shield MS63


Thorn Radio Valves and Tubes Limited

Issue 1, Page E1

0SCILL0SC0PE TUBES

D16-110..

All dimensions in mm

Not to be scaled

SHIELD

This twist coil is designed to be used in conjunction with Magnetic Shield MS63 for D16-110..

WINDING

1500 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

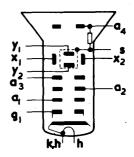
ELECTRICAL CHARACTERISTICS

Resistance approx. 590 Ω . Twist coefficient approx. 4.0 mA/degree measured on a typical D16-110.. with $V_{a1} = 1.5 \text{ kV}$ and $V_{a4-k} = 6.0 \text{ kV}$.

FITTING

The completed twist coil should be pushed hard on to the tube and secured in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited


BRIMAR

Page F1, Issue 2

GENERAL

This short rectangular tube with $12 \text{ cm} \times 10 \text{ cm}$ display area, spiral p.d.a., electrosatic focusing and deflection is designed for general purpose applications. It is capable of being deflected by transistor circuits.

Heater voltage	$\mathbf{v_h}$	6.3	v
Heater current	Ih	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	Va4	4.0	1.5	kV
Third anode voltage	V _{a3}	1.8	0.6	kV
Second anode voltage	V _{a2}	1.0	0	kV
First anode voltage	Val	1.8	0.6	kV
Negative grid voltage	-v _{g1}	200	1.0	v
Peak x plate to third anode voltage	^v x-a3(pk)	500	-	v
Peak y plate to third anode voltage	Vy-a3(pk)	500	-	V
x plate circuit impedance	Z _x	100	-	kΩ
y plate circuit impedance	Zy	100	-	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	Ia2	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		2,2:1		
Helix resistance		-	15	MΩ

All voltages referred to cathode unless otherwise stated

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D18-130GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

CILLOSCO TUBES

D18-130..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	10	pF
Heater and cathode to all	ch, k-all	4.5	pF
x_1 plate to x_2 plate	^c x1-x2	2.3	pF
y_1 plate to y_2 plate	cy1-y2	1.2	pF
x_1 plate to all, less x_2 plate	cx1-all, less x2	6.3	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	5.9	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	4.8	pF
y_2 plate to all, less y_1 plate	^c y2-all, less y1	4.9	pF
x_1, x_2 plates to y_1, y_2 plates	$c_{x1, x2-y1, y2}$	0.6	pF
Grid 1 to x1, x2, y1, y2 plates	^c g1-x1, x2, y1, y2	0.9	pF

TYPICAL OPERATION - voltages with	n respect to cathode.		
Fourth anode voltage	V _{a4}	3.0	kV
Mean deflector plate potential		1500	v
Third anode voltage for optimum astigmatism correction	V _{a3}	1500*	v
Second anode voltage for optimum focus	V _{a2}	270 to 570	v
First anode voltage	Val	1500	v
Shield voltage for optimum raster shape	V _a	1500*	v
Minimum useful screen area	-	12 x 10	cm ²
Control grid voltage for cut-off	v _{g1}	-40 to -80	v
x deflection coefficient	D _x	23 to 29	V/cm
y deflection coefficient	Dy	13 to 16.5	V/cm
Line width at 10 µA beam current Shrinking raster measurement at cent Microscope measurement at centre	re	0.25 0.49	mm

* The required voltage will not differ from the quoted value by more than \pm 50V.

Issue 2, Page 2

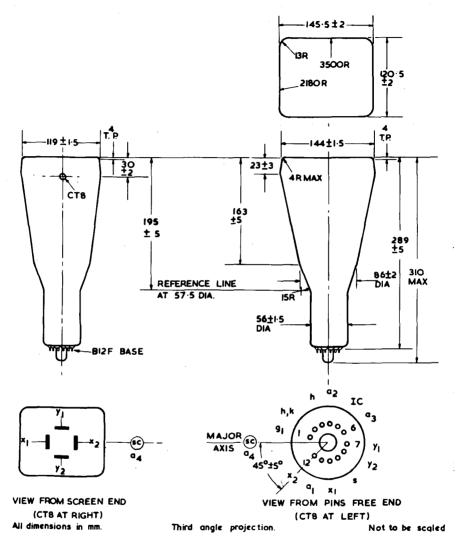
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 7.5 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $12 \text{ cm} \times 10 \text{ cm}$ and $11.7 \text{ cm} \times 9.75 \text{ cm}$.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 80 mm from the face and should not extend more than 130 mm from the face.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V when the tube is operated at 3 kV.

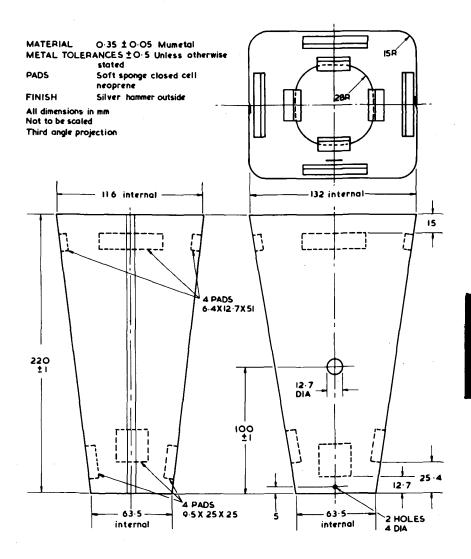

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

MOUNTING POSITION - unrestricted.

TUBE WEIGHT (approximate) 1.4 kg

OSCILLOSCOPE TUBES

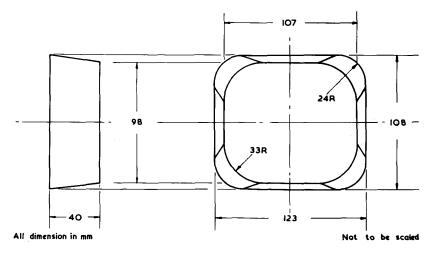


It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Issue 2, Page 4

Magnetic Shield MS 61

D18-130..


Thorn Radio Valves and Tubes Limited

Issue 2, Page E1

OSCILLOSCOPE TUBES

MANDREL FOR TWIST COIL TW 48

MANDREL

Shaped from wood to dimensions given above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS61 for D18-130..

WINDING

2000 turns of 0.14 mm Lewmex Grade 1 or 2 wire, or approved alterative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 900 $\Omega_{.}$ Current required for \pm 5° twist is \pm 9.5 mA measured on a typical D18-130.. with $V_{a,1}$ = 3.0 kV and V_{a1} = 1.5 kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and fastened with adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 3.

D18-160 ..

PRELIMINARY DATA

ENERAL his 12 cm x 10 cm recta be with electrostatic focus es a mesh p.d.a. to achie nsitivity and high br Iditional electrode contro be is designed for tran edium to high bandwidth ap	ing i eve h ightn ol vo isisto	and defle igh defle ess wit ltages. or deflec	ction ction hout The	x ₁	
ater voltage	v _h	6.3	v	₀₂ -+- 9, -+-	┋┋
ater current	I _h	0.3	A	* -{	
LUTE RATINGS				Max	Min
a anode voltage		v _{a4}		13	8.0
anode voltage		V _{a3}		2.5	1.4
l anode voltage		v _{a2}		1.0	-
anode voltage		v _{al}		2.5	1.4
ve control grid voltage		-V _{g1}		200	1.0
plate to third anode volt	age	v _{x-a3}	(pk)	500	-
v plate to third anode volt	age	vy-a3		500	-
to third anode resistanc	.e	R _{x-a3}		100	-
to third anode resistance	:e	Ry~a3	1	100	-
ol grid to cathode resista	nce	R _{g1-k}		1.5	-
d anode current		I _{a2}	•	10	-

0SCILL0SC0PE TUBES

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D18-160GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

.

D18-160..

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	^c g1-all	9.5	рF
Heater and cathode to all	^c h, k-all	3.5	pF
x ₁ plate to x ₂ plate	^c x1-x2	2.0	pF
y ₁ plate to y ₂ plate	^c y1-y2	1.5	рF
x_1 plate to all. less x_2 plate	^C x1-all, less x2	6.0	pF
x2 plate to all, less x1 plate	^c x2-all, less x1	6.0	pF
y_1 plate to all. less y_2 plate	^C y1-all, less y2	5.0	рF
y2 plate to all. less y1 plate	^C y2-all, less y1	5.0	pF
x_1 , x_2 plates to y_1 , y_2 plates	^c x1, x2-y1, y2	0.8	pF
Grid 1 to x_1 . x_2 , y_1 . y_2 plates	^c g1-x1. x2.y1.y2	0.8	pF

TYPICAL OPERATION - Voltages with respect to cathode

Fourth anode voltage	v _{a4}	12	kV
Mean deflector plate potential		2000	v
Third anode voltage for optimum astigmatism correction	V _{a3}	1970 to 2030	v
Second anode voltage for optimum focus	V _{a2}	420 to 660	v
First anode and shield 1 voltage	Val +s1	2000	v
Shield 2 voltage for optimum raster shape	v _{s2}	1950 to 2050	v
Control grid voltage for cut-off	v _{g1}	-40 to -80	v
x deflection coefficient	D _X	11.0 to 14.2	V∕¢ m
y deflection coefficient	Dy	4.3 to 5.8	V∕c m
Minimum screen area		12x10	cm ²
Line width at 10µA beam current Shrinking raster measurement at Microscope measurement at cent Microscope measurement at edge	re	0.35 0.65 0.9	mm mm
Grid Drive to 10µA beam current (a)	pprox.)	18	v

D18-160..

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 10 mm radius about the centre of the tube face.

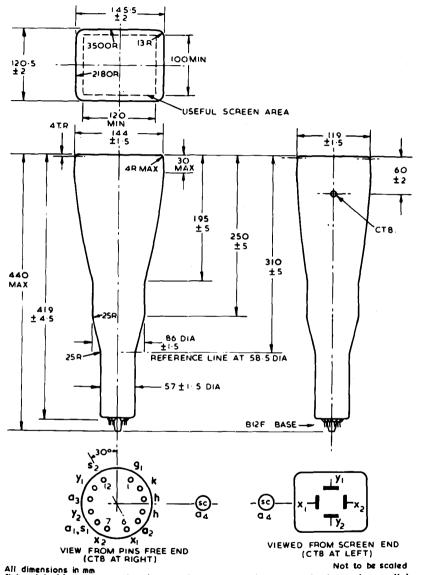
Raster distortion: The edges of a test raster will fall between two concentric rectangles 120 mm x 100 mm and 117 mm x 97.5 mm.

Rectangularity of x and y axes is $90^{\circ} + 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield between 200 mm and 250 mm from the face.

The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 25% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

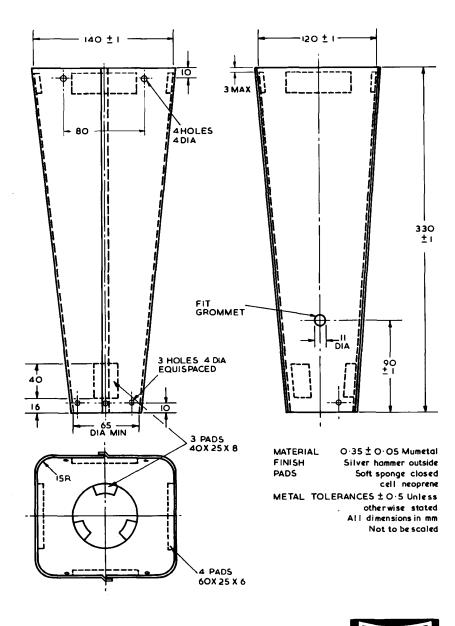
MAGNETIC SHIELDING


Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 2.1 kg

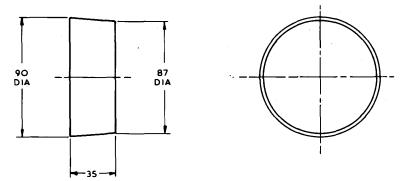
MOUNTING POSITION - unrestricted

OSCILLOSCOPE TUBES


Page 3, Issue 1.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Page 4, Issue 2.


BRIMAH

Thorn Radio Valves and Tubes Limited Page E1. Issue 2.

OSCILLOSCOPE TUBES

MANDREL FOR TWIST COIL TW29

All dimensions in mm

MANDREL

Not to be scaled

Shaped from wood in the form of a truncated circular cone, dimensions as above. SHIELD

This twist coil, is designed to be used in conjunction with magnetic shield MS84 for D18-160..

WIND ING

1600 turns of 0.140mm Lewmex Grade 1 or 2 wire. or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

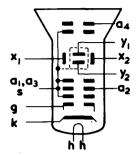
ELECTRICAL CHARACTERISTICS

Resistance approx. 550Ω . Twist coefficient approximately 6.5 mA/degree measured on typical D18-160.. with $V_{ad} = 12kV$ and $V_{a1} = 2.0 kV$.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited


Page F1, Issue 1.

MAINTENANCE TYPE

GENERAL

This 21 cm (8.5 inch) diameter tube with electrostatic focusing and deflection has a large display area and can operate at a p.d.a. ratio of 2:1.

Heater voltage	$\mathbf{v_h}$	6.3 V
Heater current	г _ь	0.3 A

ABSOLUTE RATINGS

Maximum fourth anode voltage	V _{a4(max)}	6.6	kV
Maximum first and third anode voltage	Val+a3(max)	3.3	kV
Maximum second anode voltage	Va2(max)	2.0	kV
Maximum negative grid voltage	-V _{g (max)}	220	v
Minimum negative grid voltage	$-v_{g(min)}$	1.0	v
Maximum peak x plate to third anode voltage	^v x-a3(pk)max	500	v
Maximum peak y plate to third anode voltage	♥y−k(pk)max	500	v
Maximum peak heater to cathode voltage	^v h-k(pk)max	150	kΩ
Maximum x plate to third anode resistance	R _{x-a3(max)}	100	kΩ
Maximum y plate to third anode resistance	Ry-a3(max)	100	kΩ
Maximum grid to cathode resistance	Rg-k(max)	1.5	MΩ
Maximum p.d.a. ratio		2:1	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D21-10GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Type D21-10GH is the commercial version of the CV9315.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

SCILLOSCOP TUBES

D21-10..

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES

Grid to all	c _{g-all}	8.0	pF
Cathode to all	ck-all	10	pF
x ₁ plate to x ₂ plate	c _{x1-x2}	4.0	pF
y1 plate to y2 plate	cy1-y2	2.0	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	8.0	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	8.0	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	6.0	pF
y_2 plate to all, less y_1 plate	¢y2-all, less y1	6.0	pF

TYPICAL OPERATION - voltages with respect to cathode

Fourth anode voltage	Va4	4.0	6.0	kV
First and third anode and shield voltage	V _{al+a3+s}	2.0	3.0	kV
Second anode voltage	v _{a2}	540 to 800	800 to 1200	v
Grid voltage for cut-off	$\mathbf{v_g}$	-24 to -56	-36 to -84	v
x deflection coefficient	D _x	23 to 32	34.5 to 48	V/cm
y deflection coefficient	Dy	19 to 27	28.5 to 40.5	V/cm
Minimum screen area		15 x 15	15 x 15	cm ²

RASTER DISTORTION AND ALIGNMENT

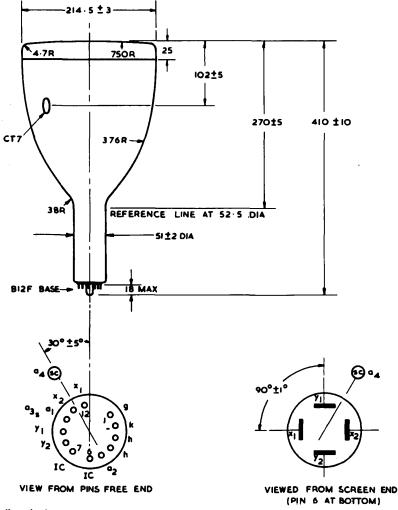
The undeflected spot will fall in a circle of 10 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 12.5 cm x 12.5 cm and 12.25 cm x 12.25 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. The mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

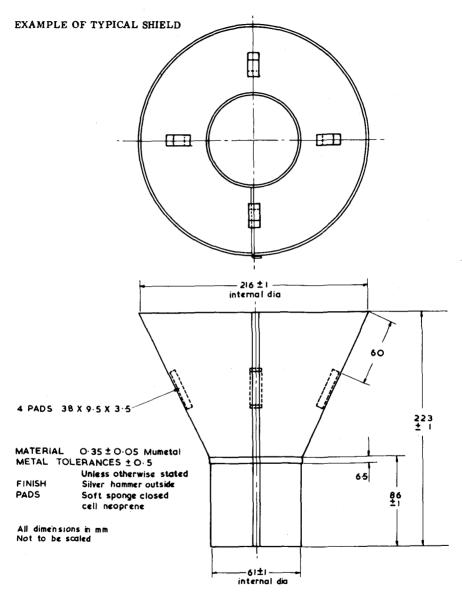

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 2.4 kg

MOUNTING POSITION - unrestricted

Issue 3, Page 2

D21-10.


All dimension in mm

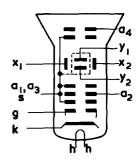
(PIN 6 AT BOTTOM) Not to be scaled **OSCILLOSCOPE** UBES

Connecting leads should not be soldered directly to tube pins.

It is advisable to support the tube near the screen, ... nd at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Issue 3, Page 3

Thorn Radio Valves and Tubes Limited



lssue 1, Page E1

GENERAL

This 21 cm (8.5 inch) diameter aluminised tube with electrostatic focusing and deflection has a large display area and can operate at a p.d.a. ratio of 2:1.

Heater voltage	V _h	6.3	v
Heater current	1 _h	0.3	A

ABSOLUTE RATINGS

Maximum fourth anode voltage	V _{a4(max)}	6.6	kV
Maximum first and third anode voltage	Val+a3(max)	3.3	kV
Maximum second anode voltage	Va2(max)	2.0	kV
Maximum negative grid voltage	-Vg(max)	220	v
Minimum negative grid voltage	-Vg(min)	1.0	· v
Maximum peak x plate to third anode voltage	[♥] x-a3(pk)max	500	v
Maximum peak y plate to third anode voltage	^v y−k(pk)max	500	v
Maximum peak heater to cathode voltage	^v h−k(pk)max	150	v
Maximum x plate to third anode resistance	R _{x-a3(max)}	100	kΩ
Maximum y plate to third anode resistance	Ry-a3(max)	100	kΩ
Maximum grid to cathode resistance	^R g-k(max)	1.5	MΩ
Maximum p.d.a. ratio		2:1	
	· · · ·		

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D21-102GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1

SCILLOSCO TUBES

INTER-ELECTRODE CAPACITANCES

Grid to all	^c g-all	8.0	pF
Cathode to all	c _{k-all}	10	ρF
x_1 plate to x_2 plate	^c x1-x2	4.0	pF
y ₁ plate to y ₂ plate	с у1-у 2	2.0	pF
x_1 plate to all, less x_2 plate	^C x1-all, less x2	8.0	ρF
x_2 plate to all, less x_1 plate	^C x2-all, less x1	8.0	pF
y_1 plate to all, less y_2 plate	^C y1-all, less y2	6.0	pF
y_2 plate to all, less y_1 plate	cy2-all, less y1	6.0	pF

TYPICAL OPERATION - voltages with respect to cathode

Fourth anode voltage	Va4	6.0	kV
First and Third anode and shield voltage	V _{a1+a3+s}	3.0	kV
Second anode voltage	V _{a2}	800 to 1200	v
Grid voltage for cut-off	vg	-36 to -84	v
x deflection coefficient	D _x	34.5 to 48	V/cm
y deflection coefficient	D _y	28.5 to 40.5	V/cm
Minimum screen area (corners cut)		15 x 15	cm ²

RASTER DISTORTION AND ALIGNMENT

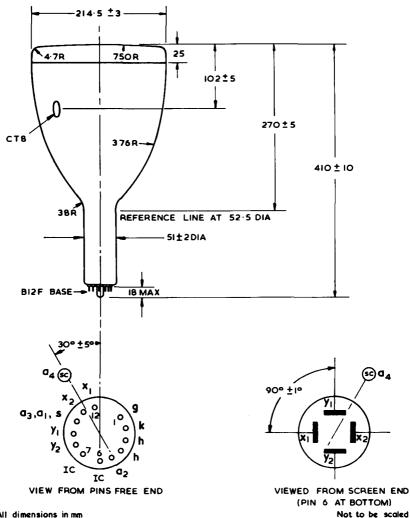
The undeflected spot will fall in a circle of 10 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 12.5 cm x 12.5 cm and 12.25 cm x 12.25 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. The mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING


Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

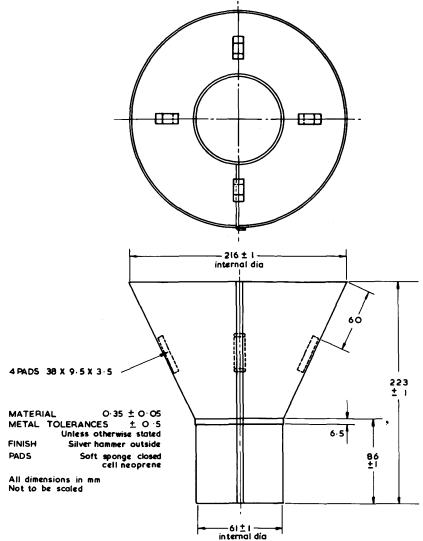
TUBE WEIGHT (approximate) 2.4 kg

MOUNTING POSITION - unrestricted

Page 2, Issue 1

D21 - 102...

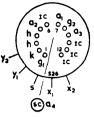
All dimensions in mm

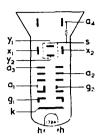

Connecting leads should not be soldered directly to tube pins.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Page 3, Issue 1

ISCILLOSCOPI


EXAMPLE OF TYPICAL SHIELD



Thorn Radio Valves and Tubes Limited Page E1, Issue 1

Maintenance Type

Base B12F, Cap CT8

GENERAL

This 4 inch diameter tube incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid. The screen is not aluminised. The standard phosphor for this tube is P31, but P7 and P11 can be supplied to special order.

r i i call de supplied te	special of c		
Heater Voltage	΄ ν _h	6-3	V
Heater Current	۱ _h	0.3	A

ABJOEUTE RAT	intes .	7.0	1.14
Maximum Fourth Anode Voltage	V _{a4(max)}	7.0	kV
Minimum Fourth Anode Voltage	Va4(min)	2.0	k۷
Maximum Third Anode Voltage	V _{a3(max)}	2.0	k٧
Maximum Second Anode Voltage	V _{a2(max)}	500	V
Maximum First Anode Voltage	V _{a1(max)}	1.7	k٧
Maximum Negative Control Grid Voltage	-V _{g1(max)}	300	V
Minimum Negative Control Grid Voltage	-Vg1(min)	1.0	V
Maximum x plate to Third Anode Voltage	V _{x-a3(max)}	50 0	V ,
Maximum y plate to Third Anode Voltage	Vy-a3(max)	500	V
Maximum Peak Heater to Cathode Voltage	Vh-k(pk)max	250	V
Maximum × plate to Third Anode Resistance	R _{x-a3(max)}	5.0	MΩ
Maximum y plate to Third Anode Resistance	Ry-a3(max)	100	kΩ
Maximum Control Grid to Cathode Resistance	Rg1-k(max)	1.5	MΩ
Minimum Helix Resistance	•••••••	50	MΩ
Maximum P.D.A. Ratio		4:1	
All votages referred to cathode unless otherwise state	ed.		
INTER-ELECTRODE CAP	ACITANCES		
Grid 1 to all	Cg1-ali	8.2	pF
Grid 1 to Grid 2	Cg1-g2	0.3	pF
Grid 2 to all	Cg2-all	6.7	pF
Cathode to all	C _{k-all}	3.2	pF
x ₁ plate to x ₂ plate	C _{x1-x2}	1.7	pF
y1 plate to y2 plate	Cy1-y2	1.3	pF
x_1 and x_2 plates to y_1 and y_2 plates	^C x1,x2-y1,y2	0.2	рF
x1 plate to all, less x2 plate	Cx1-all, less x2	3.3	рF
x2 plate to all, less x1 plate	Cx2-all, less x1	3 ·3	pF
y1 plate to all, less y2 plate	Cy1-all, less y2	3.2	pF
y2 plate to all, less y1 plate	Cy2-all, less y1	3.5	pF
Grid 1 to x_1 , x_2 , y_1 and y_2 plates	^C g1-x1,x2,y1,y2	0.03	pF
The SE4D/P31 is also known as the CV8299.			

ABSOLUTE RATINGS

Thorn Radio Valves and Tubes Limited

The SE4D/T14 is also known as the CV8300.

Issue 2, Page 1

ILLOSCO TUBES

SE4D

TIPICAL OPERATION	-voitaj	ges with resp	ect to cathod	с.	
Fourth Anode Voltage	Va4	3.0	4-0	6-0	k٧
Mean Deflector Plate Potential		750	1000	1500	V
Third Anode Voltage for astigmatism correction	Va3	750*	1000*	1500*	v
Second Anode Voltage for focus	V22	60 to 160	80 to 200	80 to 300	V
First Anode Voltage	V _{a1}	750	1000	1500	V
Interplate Shield Voltage for optimum raster shape	ν,	700 to 800	950 to 1050	1450 to 1550) v
Control Grid Voltage for visual cut-off	Vg1	-27 to -50	-35 to -65	-53 to -98	i v
Beam Blanking Voltage	V _{z2}	695 †	930 1	1395†	V
Maximum x plate Deflection Coefficient	D _{x(max}) 19	25	37.5	V/cm
Maximum y plate Deflection Coefficient	D _{y(max}		7.5	11-25	V/cm
Maximum Second Anode Current	la2(max)	10	10	10	μA
Maximum Fourth Anode Current	la4(max)	75	100	150	μA
Minimum Screen Area	,	5 x 8	5 x 8	5 X 8	cm
Line Width		0.2	0.4	0.32	mm
				_	

TYPICAL OPERATION-Voltages with respect to cathode.

* The required voltage will not differ from the quoted value by more than \pm 50V.

 \dagger The beam is unblanked when $V_{g2}\!=\!V_{a1}.$ This grid 2 electrode should not be used as a brilliance control.

Raster Distortion

At the recommended P.D.A. ratios, over the nominally useful screen area, raster distortion will not be greater than 2 per cent. Raster geometry can be adjusted by varying the interplate shield voltage (V_s) with respect to the mean deflector plate potential. It is essential to ensure that the correct raster shape has been achieved by this means before adjusting for optimum focus.

Deflection of the spot is proportional to the voltage applied to the deflector plates within \pm 2 per cent.

Rectangularity of x and y axes is 90° \pm 1°.

The Deflector System

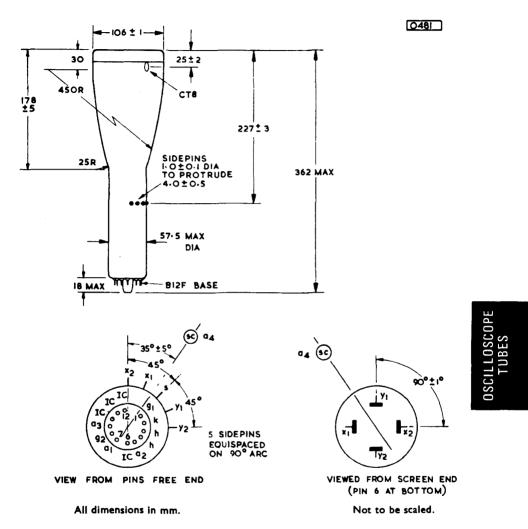
Both x and y plates are designed for symmetrical operation. Should the tube be required to operate asymmetrically, some degradation of focus and trace geometry will result.

If the mean plate potentials for both x and y plates are the same, the third anode voltage for astigmatism correction will be within \pm 50 V of the mean plate potential.

If the x plate mean potential differs considerably from that of the y, greater variation of the third anode voltage (V_{a3}) and the interplate shield voltage (V_s) will be required, and the x and y sensitivities will decrease.

The y plate mean potential should not be allowed to become greater than that of the x or severe deflection defocusing will result.

The deflection system is designed to intercept part of the beam, so that low impedance deflector plate drive is desirable.


Magnetic Shielding

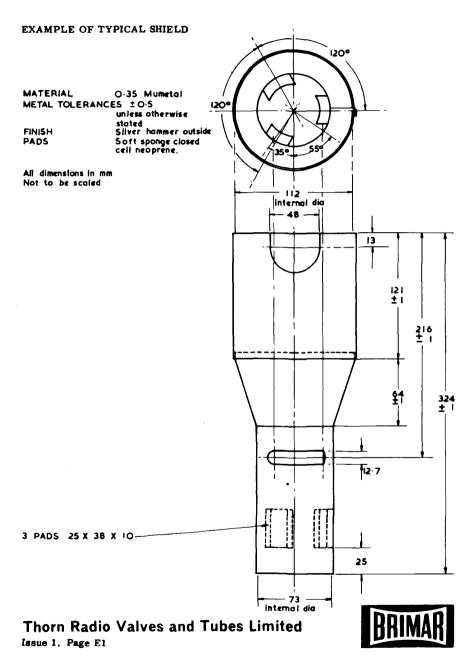
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

Net Tube Weight-0.8 kg (1³/₄ lb)

Issue 2, Page 2

SE4D

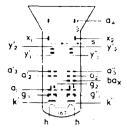
Mounting Position-Unrestricted.

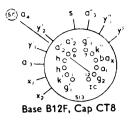

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions \pm 5°.

Issue 2, Page 3

SE4D


Magnetic Shield MS55



SE5/2A

Max

Min

GENERAL

This 5 in. dlameter screen cathode ray tube has two electron guns, common x plates and a spiral post deflection accelerator. The tube has a common beam alignment electrode and a separate beam blanking electrode on each gun.

The standard phosphor screen is P31(GH), and screen types P2(GL), P7(GM) and P11(BE) are available to special order.

Heater Voltage	Vh	6∙3	V
Heater Current	1 _h	0.6	Α

ABSOLUTE RATINGS

		1144		
Fourth Anode Voltage	V _{a4}	8.0	2.5	k٧
Third Anode Voltage	V _{a3}	2.0	0.7	k٧
Second Anode Voltage	V _{a2}	1.0	0	k٧
First Anode Voltage	Val	1.7	0.7	kV 🛛
Negative Control Grid Voltage	-V _{g1}	200	1.0	v
Beam Blanking Voltage	V _{g2}	1.8	0.55	kΥ
Peak x plate to Third Anode Voltage	Vx-a3(pk)	500	-	V
Peak y plate to Third Anode Voltage	Vy-a3(pk)	500	-	V
x plate to Third Anode Resistance	R _{x-a3}	5.0	-	MΩ
y plate to Third Anode Resistance	R _{y-a3}	100	-	kΩ
Control Grid to Cathode Resistance	R _{g1-k}	1.5	-	MΩ
Second Anode Current (each gun)	l _{a2}	10	-	μA
P.D.A. Ratio (V_{a4}/V_{a3})		4.0		
Post Deflection Helix Resistance		-	60	MΩ

All voltages referred to cathode unless otherwise stated.

INTER-ELECTRODE CAPACITANCES

Cg1-all	7.6*	. pF
5	5.4*	pF
Cx1-x2	3.05	pF
Cy1-y2	1.9*	pF
Cx1-all, less x2	3.8	pF
Cx2-all, less x1		pF
Cy'1-all, less y'2		pF
Cy'2-all, less y'1	4.0	p۶
	4.0	p۶
	3∙05	pF
Cg1,k-x1,x2, y1, y2	0.2*	pF
	Cy1-y2 Cx1-ali, less x2 Cx2-ali, less x1 Cy1-ali, less y1 Cy12-ali, less y1 Cy12-ali, less y1 Cy12-ali, less y11	Cyr1-all 5.4* Cx1-x2 3.05 Cy1-y2 1.9* Cx1-all, less x2 3.8 Cx2-all, less x1 3.8 Cy1-all, less y2 3.05 Cy1-all, less y1 4.0 Cy2-all, less y1 4.0 Cy2-all, less y1 3.05 Cy2-all, less y1 3.05 Cy2-all, less y1 3.05 Cy2-all, less y1 3.05 Cy2-all, less y1 3.05

* Each gun.

Net Tube Weight (approx) 1.15 kg (2.5 lb)

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

TUBES

SE5/2A

Oscilloscope Tube

TYPICAL OPERATION

6.0 3.0 4.0 k٧ Fourth Anode Voltage ٧,4 Third Anode to Mean y plate Voltage for + 50 $V_{a3-y(av)}$ +50v astigmatism correction \pm 50 V_{a2} 75 to 250 100 to 300 150 to 450 Second Anode Voltage for Focus (Range) 750 1000 1500 v V_1 First Anode Voltage Interplate Shield to Mean x plate ± 50 v Voltage for optimum raster shape +50 \pm 50 $V_{s-x(av)}$ 750 1000 1500 v Mean Plate Potentials ٧ -35 to -55 -45 to -75 -65 to -110 Control Grid Voltage for cut-off ٧_{e1} -70* -100* V_{g2-a1} v Beam Blanking to First Anode Voltage Beam Alignment to First Anode Voltage \pm 50 \pm 50 \pm 50 ν for coincidence of vertical traces Vbax-a1 5×10 5×10 5 x 10 Minimum Screen Area (each gun) cm² 4.0 4.0 4.0 cm Minimum Overlap 16.5 22 33 V/cm Minimum x plate Sensitivity Sx(min) 7.0 10.5 5.5 V/cm Minimum y plate Sensitivity Sy(min) 0.6 0.5 0.5 Line Width (Centre) mm 1.2 1.0 1.0 Line Width (Edge) տո

All voltages referred to cathode unless otherwise stated.

* The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Raster Distortion and Alignment

Total scanned area is 6cm (y) \times 10cm (x) minimum, measured about a centre \pm 3mm from the centre of the tube face.

Angle between axes of deflecting plates is 90° \pm 1°.

Angle between axes of two guns is 1° maximum.

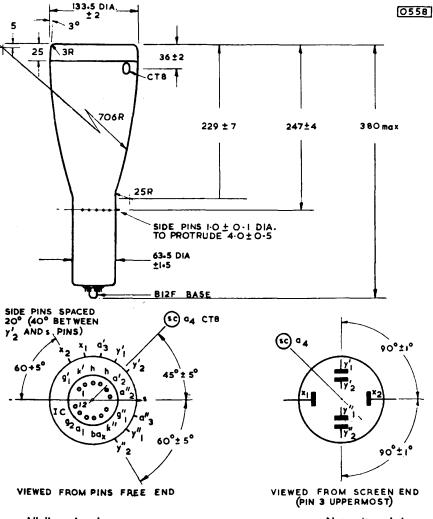
The undeflected spots will lie within two rectangles 6 mm \times 4 mm, the 6 mm side being vertical, whose centres lie on the vertical centre line of the face, displaced 6 mm above and below the horizontal centre line.

Coincidence of the two vertical traces at the centre of the tube may be achieved by varying the voltage on the beam alignment electrode.

The vertical traces, when deflected in the x direction, will register to one line width. Full deflection registration will be obtained by varying the cathode voltage of one gun with respect to the other. The variation in cathode voltage required will not be greater than ± 1 per cent of V_{a3}.

Raster distortion on each raster will not be greater than 2 per cent. The edges of a test raster scanned by one gun will fall between two concentric rectangles 100 mm \times 50 mm and 102 mm \times 51 mm.

The individual mean y plate potentials should not differ by more than 10V, and the difference between these and the mean x plate potential should be as low as possible. Unless these conditions are met, raster distortion, linearity and sensitivity cannot be guaranteed, and the voltages required for a_3 and the interplate shield (s) will differ from those specified.


It is advisable that the y deflector plate drive impedance should be as low as possible, as the y plates intercept part of the beam near the edge of the scan area.

Magnetic Shielding

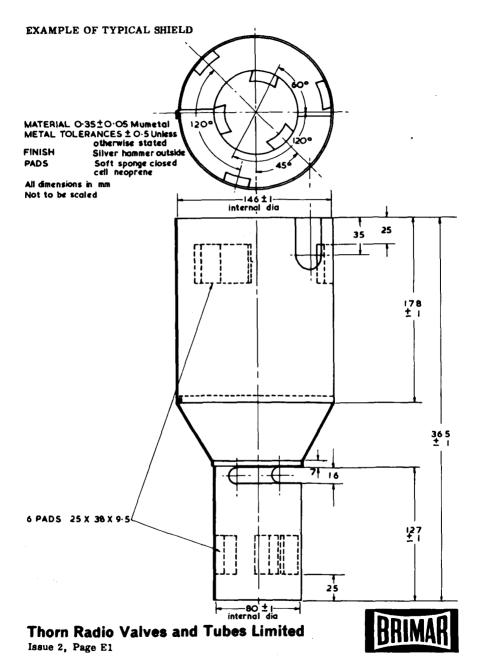
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

Issue 3, Page 2

SE5/2A

0SCILL0SC0PE TUBES

All dimensions in mm.

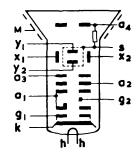

Not to be scaled.

Mounting Position-Unrestricted.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions \pm 5°.

Issue 4, Page 3


Oscilloscope Tube

Maintenance Type

GENERAL

This short 13 cm diameter flat-faced tube with electrostatic focusing and deflection is designed for general purpose applications. It has a large screen area coupled with good performance and the added facility of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v _h	6.3	v
Heater current	Ih	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v _{a4}	5.0	1.5	kV
Third anode voltage	V _{a3}	2.5	0.6	kV
Second anode voltage	v _{a2}	500	0	v
First anode voltage	V _{al}	2.5	0.7	kV
Negative grid voltage	-V _{g1}	300	1.0	v
Beam blanking voltage	v _{g2}	2.5	0.5	kV
Peak x plate to third anode voltage	vx-a3(pk)	500	-	v
Peak y plate to third anode voltage	vy-a3(pk)	500	-	v
Peak heater to cathode voltage	vh-k(pk)max	250	-	v
x plate to third anode resistance	R _{x-a3}	5.0	-	MΩ
y plate to third anode resistance	Ry-a3	100	-	kΩ
Control grid to cathode resistance	R _{g1-k}	1.5	-	MΩ
Second anode current	Ia2	10	-	μA
P.D.A. ratio (V _{a4} /V _{a3} nom.)		2:1		
Helix resistance		-	15	МΩ

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (SE5F/GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Note: Prior to 1972 this tube was produced without external conductive coating.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

SE5F/..

SE5F/..

Oscilloscope Tube

INTER - ELECTRODE	CAPACITANCES
-------------------	--------------

Grid 1 to all	^c g1-all	8.0	pF
Grid 2 to all	^c g2-all	10	pF
Cathode to all	^c k-all	4.75	pF
x1 plate to x2 plate	^c x1-x2	2.75	pF
y1 plate to y2 plate	с _{у1-у2}	1.5	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	6.0	pF
\mathbf{x}_2 plate to all, less \mathbf{x}_1 plate	^c x2-all, less x1	6.0	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	6.5	pF
y2 plate to all, less y1 plate	^c y2-all, less y1	6.5	pF
x_1, x_2 plates to y_1, y_2 plates	^c x1, x2 -y1, y2	1.5	pF
Grid 1 & cathode to x_1 & x_2 plates	$c_{g1,k-x1,x2}$	0.9	pF
Grid 1 & cathode to y_1 & y_2 plates	^c g1, k-y1, y2	0.5	pF
Anode 4 to coating M (approx.)	^c a4-M	400	pF

TYPICAL OPERATION .- Voltages with respect to cathode

Fourth anode voltage	v _{a4}	2.0	3.0	4.0	kV
Mean deflector plate potential		1000	1500	2000	v
Third anode voltage for optimum astigmatism correction	v _{a3}	1000*	1500*	2000*	v
Second anode voltage for optimum focus	v _{a2}	50 to 200	75 to 250	80 to 360	v
First anode voltage	v _{a1}	1000	1500	2000	v
Shield voltage for optimum raster shape	vs	1000*	1500*	2000*	v
Beam blanking voltage for cut-off	v _{g2}	950†	1430†	1900†	v
Control grid voltage for cut-off	v _{g1}	-30 to -55	-45 to -80	-56 to -100	v
x deflection coefficient	D _x	18.6 to 23.5	28 to 35	37 to 47	V/cm
y deflection coefficient	Dy	7.4 to 10	11 to 15	14.5 to 20	V/cm
Minimum screen area (corners cut-off)		8 x 10	8 x 10	8 x 10	cm^2
Line width at centre at 10 µA beam curre measured by microscope	nt	0.6	0.5	0.4	mm

* The required voltage will not differ from the quoted value by more than $\pm 50V$.

 \dagger The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Oscilloscope Tube

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 6 cm and 9.80 cm x 5.88 cm.

Raster geometry can be adjusted by varying the interplate shield voltage (V_S) with respect to the mean deflector plate potential. The interplate shield voltage (V_S) for optimum raster shape will be within $\pm 50V$ of the mean deflector plate potential, though differing from the third anode voltage (V_{a3}) . It is essential to ensure that the correct raster shape has been achieved by this means before adjusting for optimum focus.

For an 8 cm x 10 cm raster the corners will be cut to 120 mm minimum diameter.

Rectangularity of X and Y axes is $90^{\circ} \pm 1^{\circ}$.

Both X and Y plates are designed for symmetrical operation. Should the tube be required to operate asymmetrically, some degradation of focus and trace geometry will result.

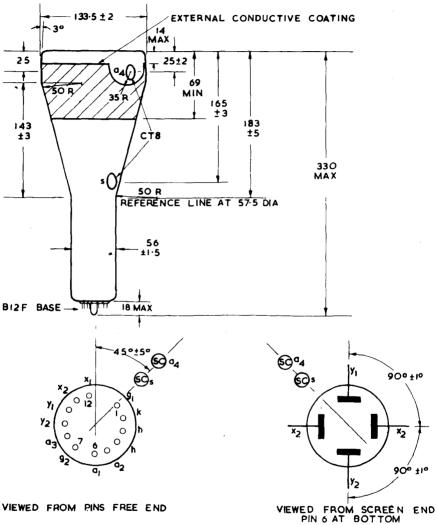
It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

The Y plate mean potential should not be allowed to become greater than that of the X or severe deflection defocusing will result.

The deflector system is designed to intercept part of the beam, so that low impedance deflector plate drive is desirable.

SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


The primary object of the external conductive coating is as an electrostatic shield and and in use this coating should be earthy.

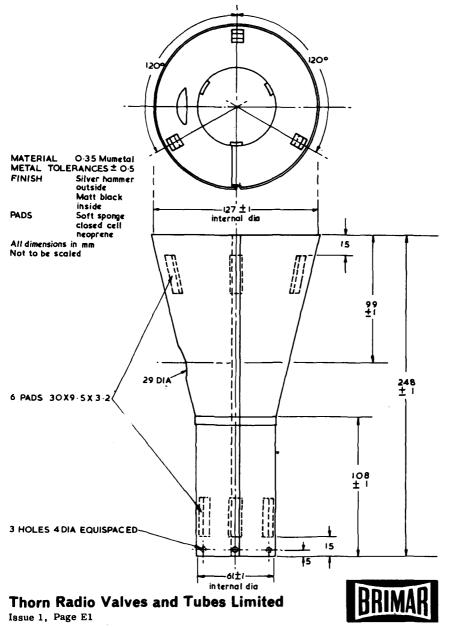
TUBE WEIGHT (approximate) 1.0 kg (2.25 lb)

MOUNTING POSITION - unrestricted

SE5F/..

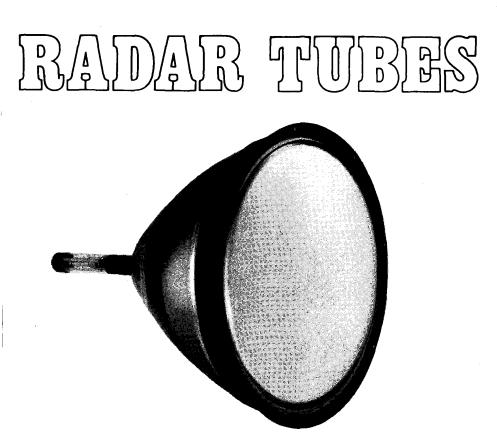
Oscilloscope Tube

All dimensions in mm


It is advisable to support the tube near the screen and at a second point on the neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Connecting leads should not be soldered directly to the tube pins.

PIN 6 AT BOTTOM Not to be scaled.


Magnetic Shield MS 59

EXAMPLE OF TYPICAL SHIELD

SE5F

OSCILLOSCOPE TUBES

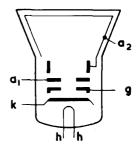
The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.


Thorn Radio Valves and Tubes Limited Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

CV429

Maintenance Type

GENERALRound flat face 12 inch tube, 50° deflectionMagnetic focus and deflectionStraight tetrode gun, non ion trapAluminised screen, orange traceLC phosphor, very long persistenceHeater VoltageVb6.3VHeater CurrentIbIb0.3A

ABSOLUTE RATINGS-voltages referred to cathode

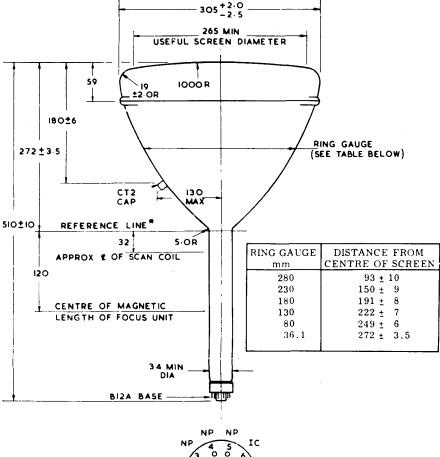
Maximum second anode voltage	V _{a2(max)}	15.5	kV
Minimum second anode voltage	$v_{a2(min)}$	9.0	kV
Maximum first anode voltage	$v_{a1(max)}$	600	v
Minimum first anode voltage	Val(min)	250	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	150	v
Maximum beam current	I _{b(max)}	50	μA

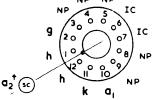
INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	< 12	pF
Grid to all	^c g-all	< 12	pF

TYPICAL OPERATION - grid modulation, voltages referred to cathode

Second anode voltage	v_{a2}	15	kV
First anode voltage	v _{al}	300	v
Grid to cathode voltage for cut-off	v_{g-k}	-30 to -90	v
Average peak to peak modulating voltage for modulation up to 50 μ A	e	24	v
Maximum deviation of unfocused and undeflected spot from centre of scree	en	15	mm
Maximum unfocused spot diameter for 50 μ A beam current		15	mm
Maximum line width for 50 μ A beam cur	rent*	0.4	mm
LC screen persistence to 10% (approxim	nate)	25	S

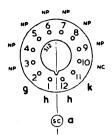

* Measured on T.V. raster with frame scan expanded.

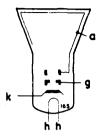

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

Thorn Radio Valves and Tubes Limited

CV429

All dimensions in mm


Not to be scaled


- * Reference line is the line where a 36.1 diameter ring gauge 100 mm long will stop against bulb.
- \dagger Anode cap in line with spigot $\pm 15^{\circ}$.

Compass Tube

CV5119

Maintenance Type

B12A (5 Pin) Base, CT8 Cap

GENERAL

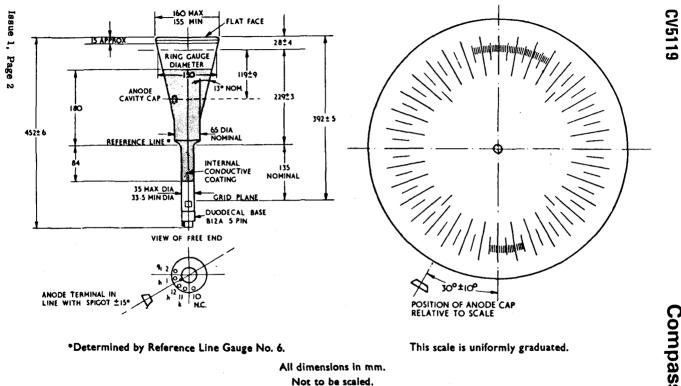
Round Flat Face Internal Compass T1 Phosphor	Alur	minised S netic Foc	creen—	ecular Refle Green Trad Deflection	ce		
	Heater Voltage	V _h	6.3	v			
	Heater Current	١ _ħ	0∙6	A			
	RATIN	GS					
Maximum Anode	Vo!tage		V _{a(ma}	x)	10*	kV	
Minimum Anode	Voltage		v.		7.5	۲V	

Minimum Anode Voltage	V _{a(min)}	7.5	kV
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	V _{h-k(max)}	150	v

* 10 kV is a design centre rating, the absolute maximum of 12.5 kV must not be exceeded.

INTER-ELECTRODE CAPACITANCES †

Cathode to all	C _{k-all}	5-3	рF
Grid to all	Cg-ail	4.7	pF


† These capacitances include an AEI wafer type duodecal holder.

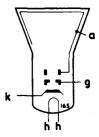
TYPICAL OPERATION—Grid Modulation	(Voltages re	ferred to cathode)	
Anode Voltage	V _a	9.5	k٧
Grid to Cathode Voltage for cut-off of 140 mm focused line	٧g	43 to93	v
Average Peak to Peak Modulating Voltage for modulation up to 150 μA		30	v
Maximum Peak to Peak Modulating Voltage for modulation of limit CRT up to 150 μA		35	v

Note

A resistance should be inserted in the anode circuit in order to limit the discharge current to 100 mA max. in the event of a flash-over inside the tube.

Tube Weight (approx)—Net $2\frac{1}{4}$ lb Packed $16\frac{1}{4}$ lb




Compass Tube

Compass Tube

CV5203

Maintenance Type

B12A (5 Pin) Base, CT8 Cap

GENERAL

Round Flat Face —6 in. Diameter Internal Compass Scale Aluminised Screen—Green Trace Magnetic Focus and Deflection	Treated to reduce Specular Reflect Graduated with Octantal Correct T1 Phosphor—Medium Persistence High Brightness Level		
Heater Voltagè	Vh	6.3	V
Heater Current	1 _h	0.6	A

RATINGS

Maximum Anode Voltage	V _{a(max)}	10*	k٧
Minimum Anode Voltage	V _{a(min)}	7.5	k٧
Maximum Heater to Cathode Voltage,			
Heater Negative (d.c.)	V _{h-k(max)}	150	V

* 10 kV is a design centre rating, the absolute maximum of 12.5 kV must not be exceeded.

INTER-ELECTRODE CAPACITANCES †

Cathode to all	C _{k-all}	5.3	pF
Grid to all	Cg-ali	4.7	рF

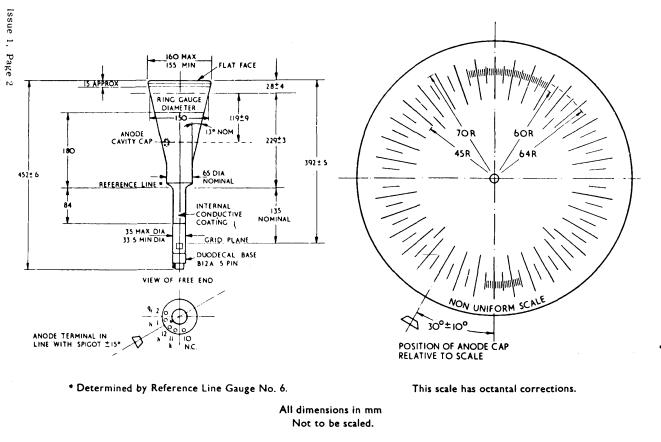
† These capacitances include an AEI wafer type duodecal holder.

TYPICAL OPERATION—Grid Modulation	(Voltages ref	erred to cathode)	
Anode Voltage	٧a	9.5	k٧
Grid to Cathode Voltage for cut-off of 140 mm focused line	v	-43 to -93	v
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		30	v
Maximum Peak to Peak Modulating Voltage for modulation of limit CRT up to 150 μA		35	v

Note

A resistance should be inserted in the anode circuit in order to limit the discharge current to 100 mA max. in the event of a flash-over inside the tube.

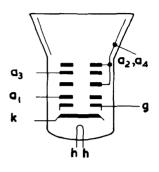
Tube Weight (approx)-Net 24 lb


Packed 164 Ib

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

RADA! TUBES


CV5203

Compass Tube

F10-100..

PRELIMINARY DATA

Round face, 10 cm	tube, 30°	deflectio	n
36.5 mm maximur Electrostatic focu			ion
Straight gun			
Clear glass			
	v _h	6.3	v

ABSOLUTE RATINGS (voltages refer	red to cathode)		
Maximum second and fourth anode voltage	V _{a2+a4(max)}	8.0	kV
Minimum second and fourth anode voltage	Va2+a4(min)	4.0	kV
Maximum third anode voltage	V _{a3(max)}	+1000 to -500	v
Maximum first anode voltage	V _{al (max)}	550	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400*	v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

All voltages referred to cathode

* During a warming up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor(F10-100LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

F10-100..

INTER-ELECTRODE CAPACITANCES

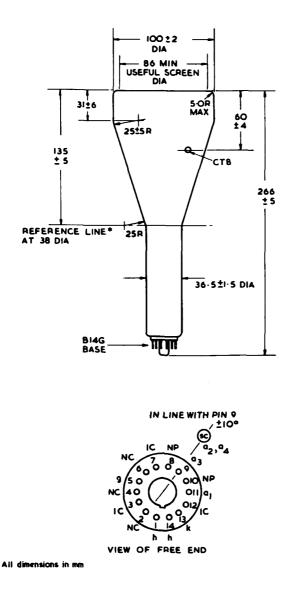
Cathode to all	^c k-all	3.5	pF
Grid to all	^c g-all	10	pF

* Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

Second and fourth anode voltage	V _{a2+a4-k}	5.0	kV
First anode voltage	V _{al-k}	400	v
Third anode voltage range for focus	Va3-k	0 to 400	v
Grid to cathode voltage range for cut-off of raster	v _{g-k}	-40 to -77	v
LD screen raster persistence to 10% (a	approx.)	4.0	8

TYPICAL OPERATION - Cathode modulation, voltages referred to grid


Second and fourth anode voltage	V _{a2+a4-g}	5.0	kV
First anode voltage	V _{al-g}	400	v
Third anode voltage range for focus	V _{a3-g}	0 to 400	v
Cathode to grid voltage range for cut-off of raster	v _{k-g}	36 to 66	v
LD screen raster persistence to 10% (approx.)	4.0	8

The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

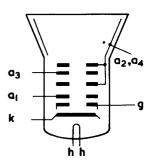
TUBE WEIGHT (approximate) - 400 g

MOUNTING POSITION - unrestricted

F10-100..

Not to be scaled

* Gauge 38 mm internal diameter, 50 mm long to slide freely over neck.


Issue 1, Page 3

RADAR TUBES

F15 -101..

Radar Tube

GENERAL			
Round face, 15 cm 29.4 mm maximum Electrostatic focu	m neck dis	meter	
Straight gun, alur Clear glass		reen	
Straight gun, alun		r een 6.3	v

ABSOLUTE RATINGS (voltages referred to cathode)

· -			
Maximum second and fourth anode voltage	Va2+a4(max)	13.5†	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	7.5	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	v
Maximum first anode voltage	Val(max)	550	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400§	v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

All voltages referred to cathode

$I_{a2+a4} = 0$

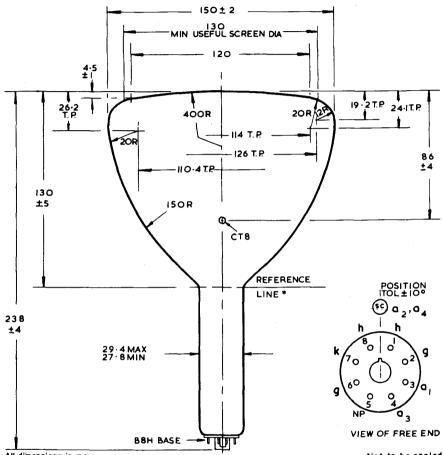
§ During a warming up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F15-101LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited


F15-101..

INTER-ELECTRODE CAPACITANCES	S	*	t	
Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	c _{g-all}	6.5	8.0	pF
* Holder capacitance balanced out.	8			
† Total capacitances including a typic:	al B8H holder.			
TYPICAL OPERATION - Grid modula	tion, voltages r	eferred to cath	ode.	
Second and fourth anode voltage	V _{a2+a4-k}	9	.0	kV
First anode voltage	V _{al-k}	4	00	V
Third anode voltage range for focus	v_{a3-k}	0 to	o 400	v
Average peak to peak picture modulating voltage for $200 \mu A$ cathod		2	9	v
Grid to cathode voltage range for cut-off of raster	v _{g-k}	-40 to	o -77	v
LD screen raster persistence to 10% (approx.)	4	.0	8
TYPICAL OPERATION - Cathod	e modulation, vo	oltages referre	d to grid	
Second and fourth anode voltage	V _{a2+a4-g}	9	.0	kV
First anode voltage	V _{al-g}	4	00	V
Third anode voltage range for focus	V _{a3-g}	0 to	o 400	v
Average peak to peak picture modulating voltage for 200 µA cathod	-	2	5	v
Cathode to grid voltage range for cut-off of raster	v_{k-g}	36 to	o 66	v
LD screen raster persistence to 10% (a	approx.)	4	.0	ន

The LD screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

TUBE WEIGHT (approximate) - 0.6 kg

MOUNTING POSITION - unrestricted

All dimensions in mm

Not to be scaled

A straight line passing centrally through the neck will pass within ± 2 mm of the centre of the screen.

* Determined by reference gauge No. 31

F16-101..

GENERAL					
Round face, 16 cm deflection.	(6 inch)) tube, 3'	7•		`
Electrostatic focu	s, magno	etic defle	ection		, U 4
Straight gun, aluminised screen					
Clear glass, external conductive coating					-
29.4 mm maximur	n neck d	iameter.			- 9
Heater voltage	$\mathbf{v_h}$	6.3	v		
Heater current	ľh	0.3	A	hh	
				1	

ABSOLUTE RATINGS (voltages referred to	cathode)		
Maximum second and fourth anode voltage	Va2+a4(max)	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage range	V _{a3(max)} +10	00 to -500	v
Maximum first anode voltage	$v_{a1(max)}$	600	v
Minimum first anode voltage	Val(min)	300	v
Maximum negative grid voltage	-V _{g(max)}	150	v
Maximum positive grid voltage	Vg(max)	0	v
Maximum heater to cathode voltage heater negative (d.c.) heater positive (d.c.)	V _{h-k(max)}	200 125	v v
Maximum peak heater to cathode voltage heater negative heater positive	^v h-k(pk)max	300 250	v v
Maximum third anode current	I _{a3(max)}	± 15	μ A
Maximum first anode current	Ial (max)	± 15	μA
Maximum heater to cathode resistance	R _{h-k(max)}	1.0	MΩ
Maximum grid to cathode resistance	Rg-k(max)	1.5	MΩ
Maximum grid to cathode impedance (50 Hz)	Zg-k(max)	500	kΩ
Maximum cathode to earth impedance (50 Hz)	Zk-e(max)	100	kΩ

PHOSPHOR SCREEN

This tube is usually supplied with LD phosphor (F16-101LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES

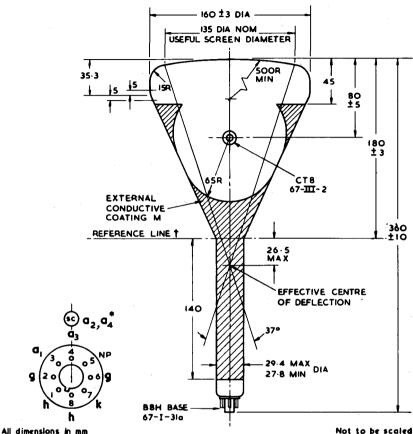
Cathode to all	e _{k-all}	< 6.0	pF
Grid to all	^c g-all	< 10	рF
Anodes 2 and 4 to external conductive coating, M (approx.)	c _{a2+a4-M}	750	pF
TYPICAL OPERATION			
Second and fourth anode voltage	v_{a2+a4}	14	kV
Third anode voltage range for focus	v_{a3}	0 to 400	v
First anode voltage	v_{a1}	500	v
Grid to cathode voltage for visual extinction of focused spot	v _{g-k} *	-27 to -44	v
Cathode to grid voltage for visual extinction of focused spot	v _{k-g} *	25 to 40	v
Average peak to peak modulating voltage for modulation up to $150\mu\text{A}$		25 †	v
Line width at $I_{a2+a4} = 50 \ \mu A$		0.3	mm
LD screen persistence to 10% (approximate)		4.0	s

The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliront for the performance of the protection.

- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.

TUBE WEIGHT (approximate) - 1.2 kg (2 lb 10 oz)


MOUNTING - unrestricted

The tube should not be supported by the base alone and under no circumstances should the socket be used to support the tube.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

Not to be scaled

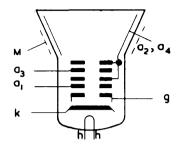
ADAR

* Anode cap in line with pin $4 \pm 10^{\circ}$.

† Determined by Reference Gauge No. 18. (See T.D.S. 5-0-91-18).

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.


The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 3.0 mm at the deflection centre and at a point 100 mm from the reference line.

F21-10..

Radar Tube

GENERAL

Round face, 21cm tube, 41° deflection Electrostatic focus, magnetic deflection Straight gun, aluminised screen Clear glass, external conductive coating 35.5 mm maximum neck diameter					
Heater voltage	Vh	6.3*	v		
Heater current	I _h	0.3	A		

ABSOLUTE RATINGS (voltages referred to e	cathode)		
Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	18 †	kV
Minimum second and fourth anode voltage	V _{a2+a4} (min)	10	kV
Maximum third anode voltage range	v _{a3}	+1000 to -300	v
Maximum first anode voltage	V _{al (max)}	800	v
Minimum first anode voltage	$v_{a1(min)}$	400	v
Maximum negative grid voltage	-V _{g (max)}	150	v
Minimum peak negative grid voltage	^{-v} g(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.) heater positive (d.c.)	V _{h-k(max)}	200 125	v v
Maximum peak heater to cathode voltage heater negative heater positive	^v h-k(pk)max	300 250	v v
Maximum first anode current	^I al (max)	±15	μ A
Maximum third anode current	I _{a3 (max)}	<u>+</u> 15	$\mu \mathbf{A}$
Maximum heater to cathode resistance	Rh-k(max)	1.0	MΩ
Maximum grid to cathode resistance	Rg-k(max)	1.5	MΩ
Maximum grid to cathode impedance (50 Hz)	Zg-k(max)	500	kΩ
Maximum cathode to earth impedance (50 Hz)	Zk-e(max)	100	kΩ

* For series operation the surge heater voltage must not exceed 9.5V r.m.s. when the the supply is switched on. When used in a series heater chain a current limiting device may be necessary in the circuit to ensure that this voltage is not exceeded.

† Adequate precautions should be taken to ensure that the equipment is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube.

PHOSPHOR SCREEN

This tube is usually supplied with LD phosphor (F21-10LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	< 6.0	pF
Grid to all	^c g-all	< 10	pF
Anodes 2 and 4 to external conductive coating M (approx.)	^C a2+a4-M	1000	pF
TYPICAL OPERATION			
Second and fourth anode voltage	V _{a2+a4}	14	kV
Third anode voltage range for focus	v_{a3}	0 to 400	v
First anode voltage	Val	600	v
Grid to cathode voltage for visual extinction of focused spot	v _{g−k} ∗	-32 to -48	v
Cathode to grid voltage for visual extinction of focused spot	V _{k-g} *	30 to 45	v
Average peak to peak modulating voltage for modulation up to 150 μ A		25 †	v
LD screen persistence to 10% (approximate)		4.0	s

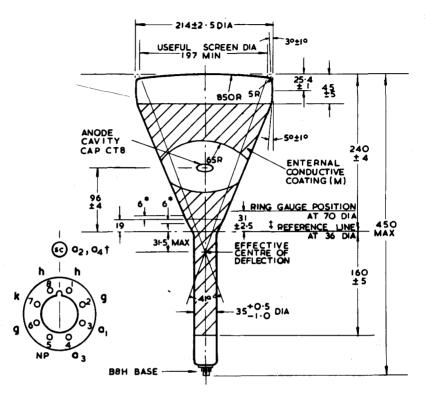
The LD screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.

TUBE WEIGHT (approximate) - 2.6 kg (5 lb 10 oz)

MOUNTING - unrestricted


The tube should not be supported by the base alone and under no circumstances should the socket be used to support the tube.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

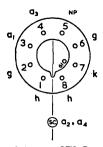
Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

All dimensions in mm

Not to be scaled

* Weld is contained within this area (12 mm)

† Anode cap in line with spigot $\pm 10^{\circ}$.


[‡] Gauge 36 mm I/D x 100 mm long to slide freely over neck.


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at a point 102 mm from the reference line.

Maintenance Type

B8H Base, CT8 Cap

GENERAL

Round Face	8½ in. Diameter	Deflection Angle	65° Diameter	
Electrostatic Fo	cus—Magnetic Deflection	Aluminised Scree	en —Orange Trace	
Straight Gun	-Non Ion Trap	LC Phosphor	-Very Long Per	sistence
	External Con	ductive Coating		
	Heater Voltage	V _h 6	.∙3* V	
	Heater Current	۱ _h 0	•3 A	

ABSOLUTE RATINGS

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	18 †	k٧
Minimum Second and Fourth Anode Voltage	V _{22,24(min)}	10	k٧
Maximum Third Anode Voltage (Range)	V _{a3(max)} +	1000 to -300	V
Maximum First Anode Voltage	Val(max)	800	V
Minimum First Anode Voltage	Va1(min)	400	V
Maximum Heater to Cathode Voltage,	V _{h-k(max)}		
Heater Negative (d.c.)	• •	200	V
Heater Positive (d.c.)		125	V
Maximum Peak Heater to Cathode Voltage,	Vh-k(pk)max		
Heater Negative		300	V
Heater Positive		250	V
Maximum Negative Grid Voltage	-Vg(max)	150	V
Minimum Peak Negative Grid Voltage	-Vg(pk)min	1.0	V
Maximum First Anode Current	la1(max)	\pm 15	μA
Maximum Third Anode Current	a3(max)	\pm 15	μA
Maximum Heater to Cathode Resistance	R _{h-k(max)}	1·0	MΩ
Maximum Grid to Cathode Resistance	Rg-k(max)	1.5	MΩ
Maximum Grid to Cathode Impedance ($f = 50 Hz$)	$Z_{g-k(max)}$	500	kΩ
Maximum Cathode to Earth Impedance $(f=50 Hz)$	Zk-e(max)	100	kΩ

All voltages referred to cathode.

- * For series operation the surge heater voltage must not exceed 9.5V R.M.S. when the supply is switched on. When used in a series heater chain a current limiting device may be necessary in the circuit to ensure that this voltage is not exceeded.
- † Adequate precautions should be taken to ensure that the associated equipment is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube.

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-all	<10	рF
Cathode to all	Ck-all	<6.0	рF
Anode 2 and Anode 4 to External			
Conductive Coating (approx.)	Ca2,a4-M	750	рF

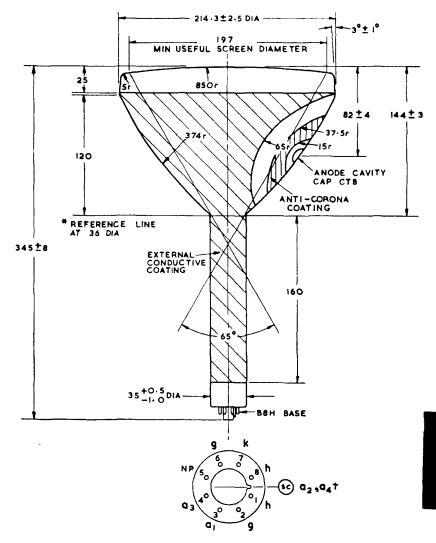
TYPICAL OPERATION

Second and Fourth Anode Voltage	V_22.24	14	k٧
Third Anode Voltage for Focus (Range)	V _{a3}	0 to 400	V
First Anode Voltage	V _{a1}	600	V
Grid to Cathode Voltage for visual extinction of focused spot	V _{g−k} *	-32 to -48	v
Cathode to Grid Voltage for visual extinction of focused spot	∨ _{k-g} *	30 to 45	v
Average Peak to Peak Modulating Voltage for modulation up to 150µA	-	25 †	v
LC Screen Persistence		200‡	s

The LC screen is liable to burn even at low values of beam current if operated with stationary or slow-moving spot.

- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.
- * Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

MOUNTING POSITION : Any


The tube should not be supported by the base alone. Under no circumstances should the socket be used to support the tube.

Tube Weight (approx.)-Net 1.7 kg (3 lb 12 oz)

Note

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

F21-12LC

All dimensions in mm.

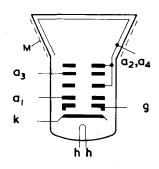
Not to be scaled.

Notes

* Gauge 36 mm I/D imes 100 mm long to slide freely over neck.

† Anode cap in line with base key, tolerance \pm 15°.

The tube should not be handled in the region of the anti-corona coating.


F21-130..

Radar Tube

GENERAL Round face, 21 cm dia.tube 60° deflection.

Clear glass. Aluminised screen. Electrostatic focus, magnetic deflection 29.4 mm maximum neck diamoter.

Heater voltage	$\mathbf{v}_{\mathbf{h}}$	6.3	v
Heater current	Ih	0.3	A

ABSOLUTE RATINGS - voltages referre	ed to cathode		
Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10	kV
Maximum third anode voltage range	Va3(max)	± 500	v
Maximum first anode voltage	Val(max)	550	v
Maximum negative grid voltage	-Vg(max)	200	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage	^v h-k(pk)max	400*	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F21-13OLD)giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1,

ABSOLUTE RATINGS - voltages referred to cathode

F21-130..

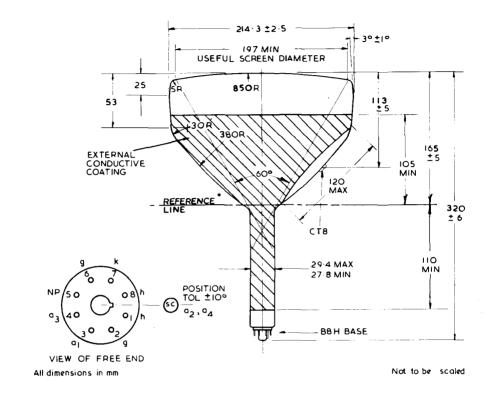
INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0*	pF
Grid to all	cg-all	6.5*	рF
Anodes 2 and 4 to external conductive coating M (approx.)	c _{a2+a4-} M	800	pF
* Holder capacitance balanced out.			
TYPICAL OPERATION - Grid modulation,	voltages referred t	o cathode.	

Second and fourth anode voltage	v_{a2+a4}	14	kV
First anode voltage	v _{a1}	400	v
Third anode voltage range for focus	v _{a3}	0 to + 400	v
Grid to cathode voltage range for cut-off of spot	v _g	-34 to -78	v
LD screen persistence to 10% (approx.)		4.0	s

The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

If this tube is operated at voltages in excess of $16 \, kV$, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

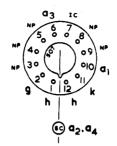

MOUNTING

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 3 kg


Page 2, Issue 1.



There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

* Determined by reference line gauge No. 15 (See T.D.S. No. 5-0-91-15)

F22-10LD

B12A (7 pin) Base, CT8 Cap

GENERAL

Round Face —9 in. Diameter	Deflection Angle —60° Diameter
Electrostatic Focus—Magnetic Deflection	
Straight Gun —Non Ion Trap	LD Phosphor —Long Persistence
External Co	onductive Coating
Heater Voltage	V _h 6⋅3 V
Heater Current	I _h 0·3 A

RATINGS

Maximum Second and Fourth Anode Voltage Minimum Second and Fourth Anode Voltage Maximum Third Anode Voltage	Va2,a4(max) Va2,a4(min) Va3(max)	15* 8·0 ± 500	kV V
Maximum First Anode Voltage Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	Va1(max) Vh-k(max)	500 200	v v
Maximum Peak Heater to Cathode Voltage, Heater Negative	^V h-k(pk)max	400†‡	v

* 15kV is a design centre rating, the absolute rating of 16.5 kV must not be exceeded.

+ Absolute rating.

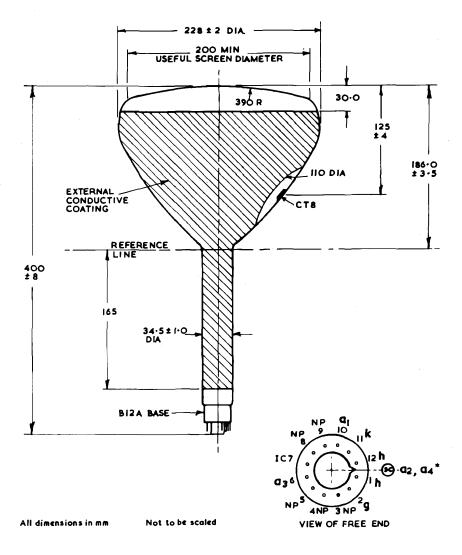
[‡] During a warming-up period not exceeding 1 minute.

INTER-ELECTRODE CAPACITANCES

Cathode to All	Ck-all	7∙0§ pF
Grid to All	Cg-all	9•0§ pF
Anode 2 and Anode 4 to External Conductive Coating	Ca2,34-M	750 approx pF
§ These capacities include a typical duodecal holder.		

TYPICAL OPERATION—Grid Modulation (Voltages referred to cathode)

Second and Fourth Anode Voltage	Va2.a4	12	k٧
First Anode Voltage	Val	300	Ň
Third Anode Voltage for Focus (Range)	V _{a3}	-300 to $+300$	V
Grid to Cathode Voltage for Cut-off of Raster	Vg	–30 to –78	V
Average Peak to Peak Modulating Voltage for	-		
Modulation up to $150\mu A$		24	V
Line Width $(I_{a2+a4}=50\mu A)$		0·4 to 0·6	mm
LD Screen Persistence to 10% (approximate)		4.0	S


The LD screen is liable to burn even at low values of beam current if operated with stationary or slow-moving spot.

MOUNTING POSITION—Unrestricted

Net Tube Weight (approx) 2.7 kg (6 lb)

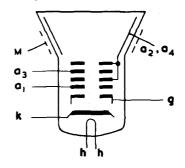
F22-10..

Radar Tube

* Anode cap in line with spigot $\pm 15^{\circ}$

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.


Page 2 Issue 3,

F22-11.

GENERAL

Round face, 22 cm tube, 60° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap External conductive coating Aluminised screen

Heater voltage	$\mathbf{v_h}$	6.3	v	
Heater current	Ih	0.3	A	

10 0

L-17

ABSOLUTE RATINGS	- Voltages referred t	o cathode
Maximum second and for	with anode voltage	Vou

Maximum second and fourth anode voltage	*a2+a4(max)	10.0	K.V
Minimum second and fourth anode voltage	Va2+a4(min)	8.0	kV
Maximum third anode voltage range	V _{a3(max)}	<u>+</u> 500	v
Maximum first anode voltage	V _{al(max)}	500	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	400†	v

† During a warming-up period not exceeding 1 minute.

PHOSPHOR SCREEN

ABCOUNTE DATINGS

This type is usually supplied with LD phosphor (F22-11LD) giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

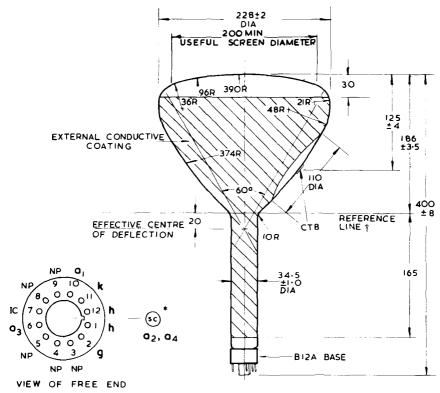
8

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	7.0*	pF
Grid to all	^c g~all	9.0*	pF
Anodes 2 and 4 to external conductive coating, M (approx	.) ^c a2+a4-M	750	pF
* Including a typical duodecal holder.			
TYPICAL OPERATION - grid modulation (voltages	referred to ca	athode)	
Second and fourth anode voltage	v_{a2+a4}	12	kV
Third anode voltage range for focus	V _{a3} -30	00 to +300	v
First anode voltage	Val	300	v
Grid to cathode voltage for cut-off of raster	V _{g-k} -30) to -78	v
Average peak to peak modulating voltage for modulation up to 150 μA	-	24	v

0.4 to 0.6 Line width at $I_{a2+a4} = 50 \mu A$ mm LD screen persistence to 10% (approximate) 4.0

The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

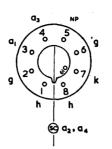

TUBE WEIGHT (approximate) - 2.7 kg (6 lb)

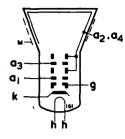
MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of the external conductive coating (M) should be made in a manner appropriate to the protection system employed.

F22-11..


All dimensions in mm


Not to be scaled

* Anode cap in line with spigot $\pm 10^{\circ}$. † Determined by 36.1 diameter ring gauge. There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at a point 102 mm from the reference line.

B8H Base, CT8 Cap

GENERAL

Round Face —12 in. Diameter Electrostatic Focus —Magnetic Deflection Straight Gun —Non Ion Trap External Conductive Coating	Deflection Angle40° Diameter Aluminised ScreenOrange Trace LC PhosphorVery Long Persistence LD PhosphorLong Persistence
Heater Voltage	V _h 6.3 V
Heater Current	í _h 0·3 A

RATINGS.

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	16*	k٧
Minimum Second and Fourth Anode Voltage	Va2, a4(min)	12	k٧
Maximum Third Anode Voltage Range	V _{a3(max)}	+1000 to -300	V
Maximum First Anode Voltage	Val(max)	800	V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	Vh-k(max)	200	v
Maximum Peak Heater to Cathode Voltage, Heater Negative	^V h-k(pk)max	300†‡	v
Minimum Negative Grid Voltage	-V _{g(mia)}	1.0	V
Maximum Negative Grid Voltage	-V _{g(max)}	200	v
Maximum Grid to Cathode Resistance	Rg-k(max)	1.5	MΩ

All voltages referred to cathode.

* 16 kV is a design centre rating, the absolute rating of 18.5 kV must not be exceeded.

† Absolute rating.

F31-10LC F31-10LD

[‡] During a warming-up period not exceeding 1 minute.

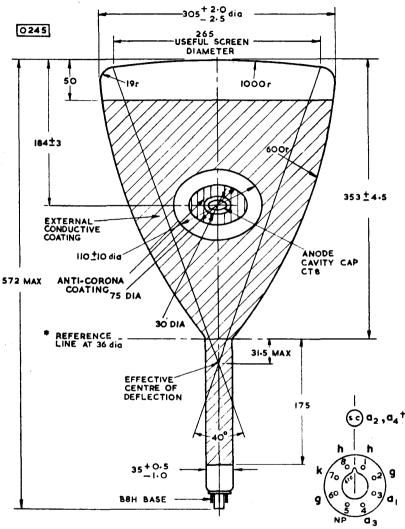
INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-att	<10	pF
Cathode to all	Ck-all	< 6.0	pF
Anode 2 and Anode 4 to External Conductive			•
Coating (approx)	Ca2,a4-M	2500	ρF

TYPICAL OPERATION—Grid Modula	tion (Voltages	referred to Cathode)	
Second and Fourth Anode Voltage	V _{a2,a4}	15	k٧
First Anode Voltage	V _{a1}	600	V
Third Anode Voltage for focus (Range)	V_{a3}	-300 to + 300	V
Grid to Cathode Voltage for visual extinction of focused spot	٧ _g	-40 to -8 5	v
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		25	v
Persistence of LC screen		200 §	5
Persistence of LD screen		100§	s

.....

The LC and LD screens are liable to burn even at low values of beam current if operated with stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

§ Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

MOUNTING POSITION—Unrestricted

Net Tube Weight (approx)-13 lb 8 oz (6.2 kg)

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

All dimensions in mm.

Not to be scaled.

- * Gauge 36 mm I/D 100 mm long to slide freely over neck.
- \dagger Anode cap in line with base key, tolerance $\pm 15^{\circ}$.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.

The tube should not be handled in the region of the anti-corona coating.

Issue 3, Page 3

F31-10LC F31-10LD

F31-11

GENERAL				<u>//</u>	
Round face, 12 i	nch tube,	, 50° defle	ction	///	H.
Electrostatic for	us, mag	netic defle	ction	M/	// a2,
Straight gun, nor	n ion trap	0		a3 —	=1
External conduct	ive coati	ing			
Aluminised scre	en				╴╺┓╴┼┈┈╸
Heater voltage	$\mathbf{v_h}$	6.3	v i	k	
Heater current	Ih	0.3	A		\square
				h	i h

(voltages referred to cathode) ABSOLUTE RATINGS

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	V _{a3(max)}	<u>+</u> 500	v
Maximum first anode voltage	$V_{a1(max)}$	500	v
Minimum first anode voltage	V _{a1(min)}	200	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage	V _{h-k(max)}	150	v
Maximum heater to cathode resistance with separate heater transformer	R _{h-k(max)}	100 1.0	kΩ MΩ

PHOSPHOR SCREEN

This tube is usually supplied with either LC phosphor (F31-11LC) giving an orange trace of very long persistence or LD phosphor (F31-11LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

The F31-11LD is also known as the CV5819.

Thorn Radio Valves and Tubes Limited

First anode voltage

Grid to cathode voltage for cut-off

300

-30 to -70

v

V

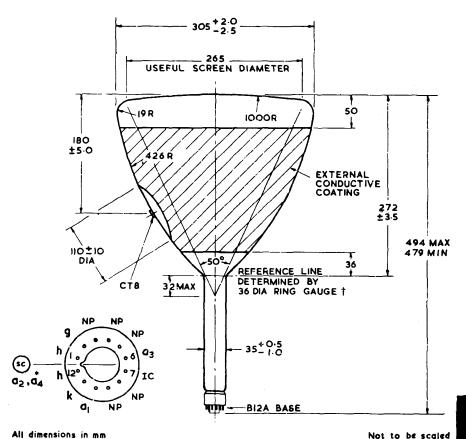
INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	< 8.0	pF
Grid to all	^c g-all	< 8.0	pF
Anodes 2 and 4 to external conductive coating, M (approx.)	^c a2+a4-M	1500	pF
TYPICAL OPERATION - Grid modulation (volta	ages referre	d to cathode)	
Second and fourth anode voltage	v _{a2+a4}	14	kV
Third anode voltage range for focus	v_{a3}	-300 to +300	v

LC screen persistence to 10% (approximate)	25	s
LD screen persistence to 10% (approximate)	4.0	s

Val

Vg


The LC and LD screens are liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 5.4 kg (12 lb)

MOUNTING POSITION - unrestricted

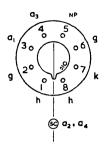
F31-11..

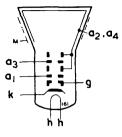
All dimensions in mm

Anode cap in line with spigot $\pm 15^{\circ}$.

t Gauge 36 mm I/D x 100 mm long to slide freely over neck.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.


The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at a point 102 mm from the reference line.

RADAR TUBES

F31-12..

Radar Tube

B8H Base, CT8 Cap

GENERAL

Round Face	—12 inch Diameter		•	-40° Diameter
Electrostatic rocus	-Magnetic Deflection	Aluminised 3	creen	—Orange Trace
Straight Gun	—Non Ion Trap	LC Phosphor	•	—Very Long Persistence
Ū	External Condu	ctive Coating		
	Heater Voltage	Vh	6.3	V
	Heater Current	l _h	0·3	Α

RATINGS

Maximum Second and Fourth Anode Voltage	V _{a2,a4(max)}	16*	k٧
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	k٧
Maximum Third Anode Voltage Range	V _{a3(max)}	+ 1000 to −300	۷
Maximum First Anode Voltage	V _{a1(max)}	800	V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	V _{h-k(max)}	200	v
Maximum Peak Heater to Cathode Voltage, Heater Negative	Vh-k(pk)max	300†‡	v
Minimum Negative Grid Voltage	$-V_{g(min)}$	1.0	V
Maximum Negative Grid Voltage	$-V_{g(max)}$	200	۷
Maximum Grid to Cathode Resistance	Rg-k(max)	1.5	MΩ

All voltages referred to cathode.

* 16 kV is a design centre rating, the absolute rating of 18.5 kV must not be exceeded.

† Absolute rating.

t During a warming-up period not exceeding 1 minute.

INTER-ELECTRODE CAPACITANCES

Grid to all	C _{g-all}	<10	рF	
Cathode to all	C _{k-all}	< 6.0	pF	
Anode 2 and Anode 4 to External Conductive				
Coating (approx)	Ca2,a4-M	2500	рF	

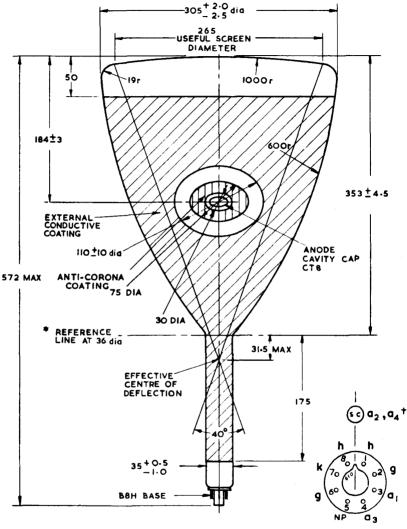
PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F31-12LC) giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

TYPICAL OPERATION—Grid Modula	tion (Voltages	referred to Cathode)	
Second and Fourth Anode Voltage	V _{a2,24}	16	k٧
First Anode Voltage	Val	600	۷
Third Anode Voltage for focus (Range)	V_{a3}	-150 to + 450	V
Grid to Cathode Voltage for visual extinction of focused spot	٧ _g	-44 to -70	v
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		25	v
Persistence of LC screen		200 §	s

....... ODEDATION CONT n / 1

The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

§ Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

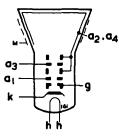
MOUNTING POSITION—Unrestricted

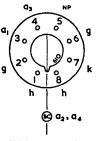
Net Tube Weight (approx)-6.2 kg (13 lb 8 oz)

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard S base see separate sheet.

All dimensions in mm.

Not to be scaled.


- * Gauge 36 mm I/D 100 mm long to slide freely over neck.
- \dagger Anode cap in line with base key, tolerance $\pm 15^{\circ}$.


The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.

The tube should not be handled in the region of the anti-corona coating.

F31-13LC

Maintenance Type

B8H Base, CT8 Cap

GENERAL

Electrostatic Focus	12 in. Diameter Magnetic Deflection Non Ion Trap External Conduc	Alúminised S LC Phosphor	creen	—40° Diameter —Orange Trace —Very Long Persistence
	Heater Voltage	Vh	6.3	v
	Heater Current	16	0.3	Α

RATINGS

Maximum Second and Fourth Anode Voltage	V _{a2,a4(max)}	16*	k٧
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	k٧
Maximum Third Anode Voltage Range	V _{a3(max)}	+1000 to -300	V
Maximum First Anode Voltage	V _{a1(max)}	800	V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	V _{h-k(max)}	200	v
Maximum Peak Heater to Cathode Voltage, Heater Negative	^V h-k(pk)max	300†‡	v
Minimum Negative Grid Voltage	-V _{g(min)}	1-0	V
Maximum Negative Grid Voltage	-Vg(max)	200	V
Maximum Grid to Cathode Resistance	Rg-k(max)	1.5	MΩ

All voltages referred to cathode.

* 16 kV is a design centre rating, the absolute rating of 18.5 kV must not be exceeded.

† Absolute rating.

[‡] During a warming-up period not exceeding 1 minute.

INTER-ELECTRODE CAPACITANCES

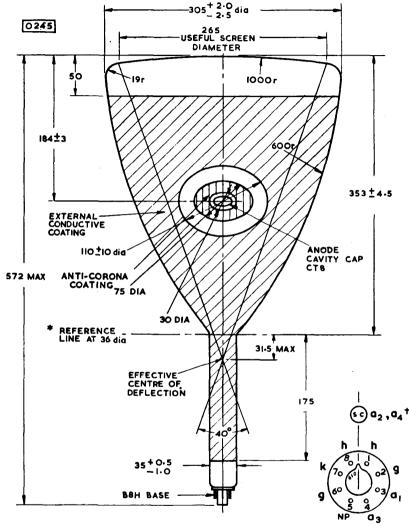
Grid to all	C _{g-all}	<10	рF
Cathode to all	Ck-all	< 6.0	pF
Anode 2 and Anode 4 to External Conductive			
Coating (approx)	Ca2,a4-M	2500	ρF

Issue 1, Page 1

ADAR 'UBES

TYPICAL OPERATION—Grid Modula	tion (Voltages i	referred to Cathode)	
Second and Fourth Anode Voltage	$V_{a2,a4}$	15	kV
First Anode Voltage	V _{a1}	600	V
Third Anode Voltage for focus (Range)	V _{a3}	-300 to +300	V
Grid to Cathode Voltage for visual extinction of focused spot	٧ _z	-40 to -85	• V
Average Peak to Peak Modulating Voltage for modulation up to 150 μA		25	v
Line Width ($I_{a2} + {}_{a4} = 50\mu$ A)		0.5 to 0.7	mm
Persistence of LC screen		200 §	S

The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

§ Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

MOUNTING POSITION—Unrestricted

Net Tube Weight (approx)—13 lb 8 oz (6·2 kg)

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

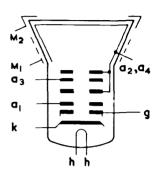
All dimensions in mm.

Not to be scaled.

Gauge 36 mm I/D 100 mm long to slide freely over neck.

 \dagger Anode cap in line with base key, tolerance $\pm 15^{\circ}$.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.


The tube should not be handled in the region of the anti-corona coating.

F31-14..

Radar Tube

Maintenance Type

Rectangular face,	12 inch 1	10° diago	nal
Rimband reinforce		•	nia i
29.4mm maximum			
Electrostatic focus			ion
straight gun, alumi	nised scre	en	
Straight gun, alumi Grev glass., 50% tr			x.)
Grey glass, 50% tr External conductiv	ansmissio		ĸ.)
Grey glass, 50% tr External conductiv	ransmissic e coating	on (approx	x.)
Grey glass, 50% tr	ansmissio		×.) V

DESIGN CENTRE RATINGS

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5†	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10.5	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	v
Maximum first anode voltage	Val(max)	550	v
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400§	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

Ali voltages referred to cathode

* In a series heater chain the CRT should always be connected at the chassis end.

† The absolute rating of 16.5 kV must not be exceeded.

§ During a warming up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F31-14LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

F31-14..

	*	t	
^c k-all	3.0	3.5	pF
^c g-all	6.5	8.0	рF
$c_{a2+a4-M_1}$	4	50	pF
^c a2+a4-M2	1	50	pF
B8H holder.			
ion, voltages re	ferred to catl	node.	
$V_{a2+a4-k}$	1	2	kV
V _{al-k}	4	00	v
v _{a3-k}	0 te	o 400	v
ⁱ a2+a4(pk)	2	00	μA
	2	9	v
v _{g-k}	-40 to	o -77	v
	4	. 0	8
lation, voltages	referred to g	rid	
V _{a2+a4-g}	1	2	kV
V _{al-g}	4	00	v
V _{a3-g}	0 te	o 400	v
ia2+a4(pk)	2	00	μA
	2	5	v
v _{k-g}	36 te	o 66	v
	4	.0	S
	c_{g-all} $c_{a2+a4-M_1}$ $c_{a2+a4-M_2}$ B8H holder. ion, voltages reveal $V_{a2+a4-k}$ V_{a1-k} V_{a3-k} $i_{a2+a4-k}$ V_{g-k} Notages V_{g-k} Notages $V_{a2+a4-g}$ V_{a1-g} V_{a3-g} $i_{a2+a4(pk)}$	c_{k-all} 3.0 c_{g-all} 6.5 $c_{a2+a4-M_1}$ 4 $c_{a2+a4-M_2}$ 1 B8H holder. 1 ion, voltages referred to cath $v_{a2+a4-k}$ V_{a1-k} 4 v_{a3-k} 0 to $i_{a2+a4}(pk)$ 2 V_{g-k} -40 to 4 v_{a3-k} 0 to v_{a1-g} 4 V_{a3-g} 0 to $i_{a2+a4}(pk)$ 2 V_{a3-g} 0 to $i_{a2+a4}(pk)$ 2 v_{a3-g} 0 to v_{a3-g} 0 to v_{a3-g} 0 to $v_{a2+a4}(pk)$ 2 v_{a3-g} 0 to v_{a3-g} 0 to v_{k-g} 36 to	c_{k-all} 3.0 3.5 c_{g-all} 6.5 8.0 $c_{a2+a4-M_1}$ 450 $c_{a2+a4-M_2}$ 150 B8H holder. ion, voltages referred to cathode. $V_{a2+a4-k}$ 12 V_{a1-k} 400 v_{a3-k} 0 to 400 $i_{a2+a4(pk)}$ 200 V_{g-k} -40 to -77 4.0 400 valation, voltages referred to grid $V_{a2+a4-g}$ V_{a1-g} 400 V_{a3-g} 0 to 400 $i_{a2+a4(pk)}$ 200 2_{a3-g} 0 to 400 $i_{a2+a4(pk)}$ 200

The LD screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

F31-14.

PICTURE CENTRING

Maximum magnet flux density at centre of neck should not be less than	15	Gs
Maximum distance of centre of magnetic field from reference line	53	mm
DEFLECTION ANGLES		
Height 80° Width	99°	Diagonal 110°

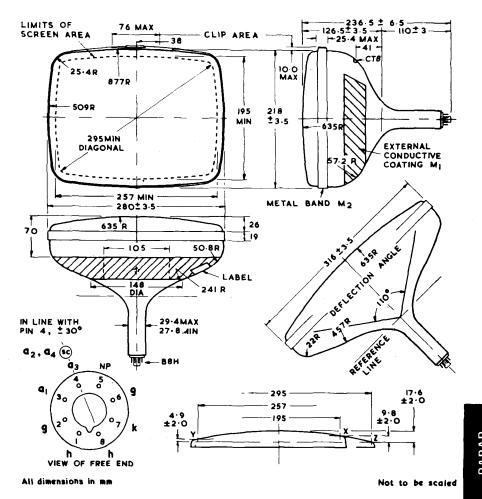
MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.


The metal rimband (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c. / d.c. equipment, for example $2M\Omega$.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 2.7 kg (6.0 lb)

F31-14..

UBES

† Determined by Reference Gauge No.16. (JEDEC No. 126)

1

F31-111..

Radar Tube

The F31-111.. is the F31-11.. with increased line width.

PHOSPHOR SCREEN

This type is usually supplied with an LC phosphor (F31-111LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

F31-112..

	GENERAL				<u> </u>	
	Round face, 12 in	nch tube, s	50° deflec	tion		H.
	Electrostatic focu	us, magne	tic deflec	tion	M _///	///a2,a
	Straight gun, alu	minised so	reen		a,	
	Clear glass, exte	rnal condu	uctive coa	ting		
	35.5 mm maximu	ım ne ck di	ameter			
	Heater voltage	v _h	6.3	v	k	
	Heater current	Ih	0.3	Α		+
_					j h	h

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10	kV
Maximum third anode voltage	Va3(max)	+1000 to -300	v
Maximum first anode voltage	Val (max)	800	v
Minimum first anode voltage	Val(min)	400	v
Maximum negative grid voltage	-Vg(max)	150	v
Minimum negative grid voltage	-V _{g(min)}	1.0	v
Maximum heater to cathode voltage heater negative (d.c.) heater positive (d.c.)	V _{h-k(max)}	200 150	v v
Maximum peak heater to cathode voltage heater negative heater positive	^v h-k(pk)max	300 250	v v
Maximum heater to cathode resistance	R _{h-k(max)}	1.0	MΩ
Maximum grid to cathode resistance	Rg-k(max)	1,5	MΩ
Maximum grid to cathode impedance (50 Hz)	Zg-k(max)	500	kΩ
Maximum cathode to earth impedance (50 Hz)	Z _{k-e(max)}	100	kΩ

PHOSPHOR SCREEN

This tube is usually supplied with LD phosphor (F31-112LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

NECK LENGTH

This tube has an extended neck length to accomodate an auxiliary high frequency deflector coil.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

RADAR TUBES

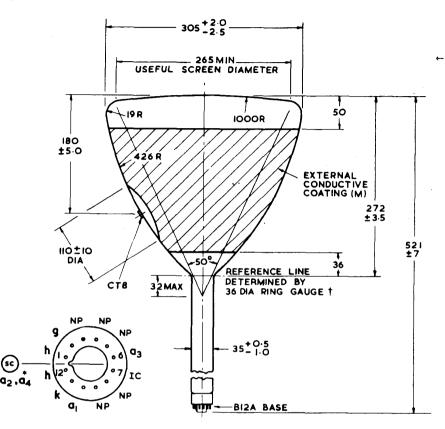
INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.5	рF
Grid to all	^c g-all	7.5	pF
Anodes 2 and 4 to external conductive coating, M (approx.)	^c a2+a4-M	1500	pF
TYPICAL OPERATION			
Second and fourth anode voltage	v_{a2+a4}	14	kV
Third anode voltage range for focus	v _{a3}	0 to 400	v
First anode voltage	Val	600	v
Grid to cathode voltage for visual extinction of focused spot	Vg-k*	-32 to -48	v
Cathode to grid voltage for visual extinction of focused spot	v _{k-g*}	30 to 45	v
Average peak to peak modulating voltage for modulation up to $150\mu A$		25 †	v
LC screen persistence to 10% (approximate)		25	s
LD screen persistence to 10% (approximate)		4.0	s

The LC and LD screens are liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.


TUBE WEIGHT (approximate) - 5.4 kg (12 lb)

MOUNTING - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

F31-112..

All dimensions in mm

Not to be scaled

* Anode cap in line with spigot ± 10°.

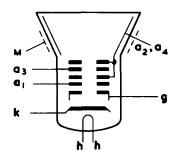
† Gauge 36 mm I/D x 100 mm long to slide freely over neck.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at a point 102 mm from the reference line.

It is recommended that the deflector coil assembly including "position" and "write" coils should not extend further than 100 mm from the reference line otherwise there may be undesirable interaction with the tube gun.


Issue 2, Page 3

RADAF TUBES

F41-12 ..

Radar Tube

GENERAL			
Round face, 16 in Electrostatic focu Straight gun, non Clear glass External conducti Aluminised screek 35.5 mm maximu	is, magne ion trap ve coating n	tic deflec	tion:
Heater voltage	$\mathbf{v_h}$	6.3	v

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	Va2+a4(max)	20	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	Va3(max)	<u>±</u> 500	v
Maximum first anode voltage	Val (max)	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	$-\mathbf{v}_{\mathbf{g}(\min)}$	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk) max	400*	v

* During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LC phosphor (F41-12LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

F41-12 ..

٠

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	Ca2+a4-M	1200	I.	pF

* Holder capacitance balanced out.

† Total capacitances including a typical B12A duodecal holder.

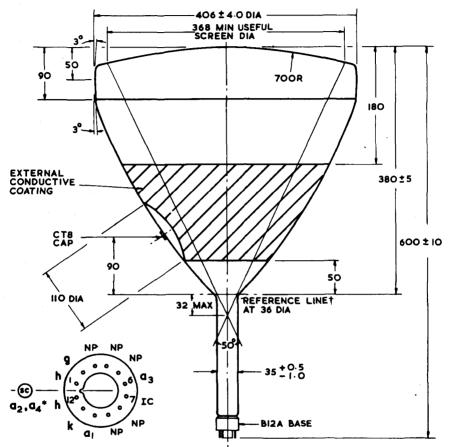
TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	Va2+a4	15	kV
Third anode voltage range for focus	V _{a3}	-300 to +300	v
First anode voltage	v _{a1}	300	v
Grid to cathode voltage for cut-off of raster	vg	-40 to -80	v
Average peak to peak modulating voltage for modulation up to 150 μ A		24	v
LC screen persistence to 10% (approximate)		25	8

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 11.8 kg (26 lb)


MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

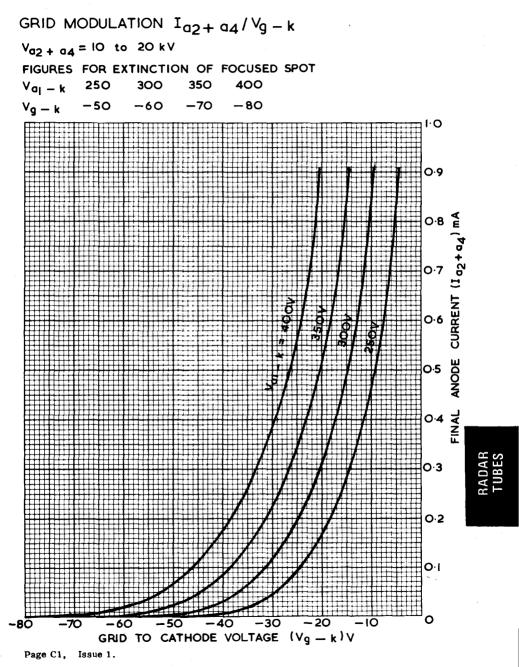
F41-12..

Radar Tube

All dimensions in mm

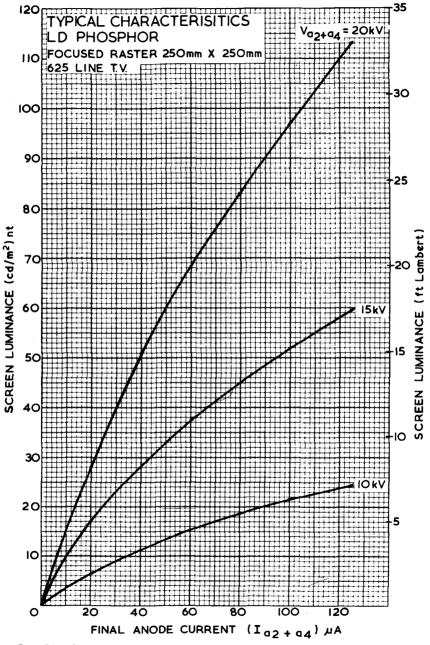
Not to be scaled

*. Anode cap in line with spigot \pm 10°


† Gauge 36 I/D x 100 long to slide freely over neck.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face. The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.


Issue 4. Page 3

F41-12..

F41-12LD

Radar Tube

Page C1, Issue 1.

F41-13..

GENERAL				[[
Round face, 16 in Electrostatic focu Straight gun, non Clear glass	is, magne			M	
External conductiv					
35.5 mm maximu	-	ameter			╺┓╌┼╌──╺
Heater voltage	$\mathbf{v}_{\mathbf{h}}$	6.3	v	k	
Heater current	Ih	0.3	A	\sim	+
				h'	'n

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	Va2+a4(max)	20	kV
Minimum second and fourth anode voltage	V _{a2+a4(min)}	10	kV
Maximum third anode voltage	V _{a3(max)}	<u>+</u> 500	v
Maximum first anode voltage	Val (max)	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	400*	v

* During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LC phosphor (F41-13LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.5	4.5	рF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	ca2+a4-M	1200		pF

* Holder capacitance balanced out.

† Total capacitances including a typical B12A duodecal holder.

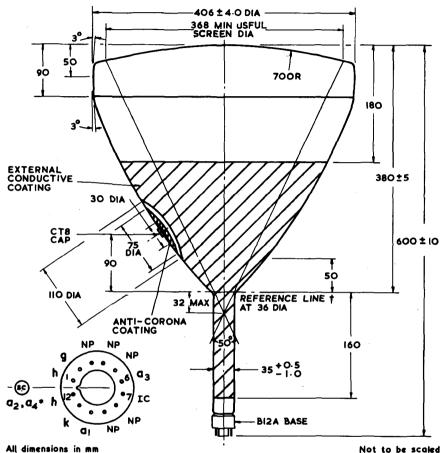
TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}		15	kV
Third anode voltage range for focus	v _{a3}	-300	to +300	v
First anode voltage	v _{al}		300	v
Grid to cathode voltage for cut-off of raster	vg	-40	to -64	v
Average peak to peak modulating voltage for modulation up to 150 μA			24	v
LC screen persistence to 10% (approximate)			25	s

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 11.8 kg (26 lb)


MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

F41-13...

UBES

All dimensions in mm

Anode cap in line with spigot $\pm 10^{\circ}$

† Gauge 36 I/D x 100 long to slide freely over neck.

The tube should not be handled in the region of the anti-corona coating.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face. The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for. the e.h.t. supply.

F41-14..

Radar Tube

The F41-14.. is the F41-12.. with an increased line width of 0.5 to 0.7 mm at $I_{a2} + a_4 = 50 \ \mu A$.

* Microscope measurement.

TUBE WEIGHT (approximate) - 11.8 kg (26 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-14LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-12.. data sheets.

Thorn Radio Valves and Tubes Limited

F41-120..

OBSOLETE TYPE

The F41-12.. is the replacement type for the F41-120..

The F41-120...is the F41-12.. with a grey glass face-plate having a light transmission of approximately 52%.

TUBE WEIGHT (approximate) - 9.0 kg (20 lb)

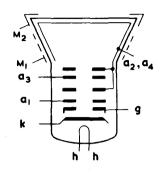
PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-120LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-12.. data sheets.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 5.



F41-121..

Radar Tube

Maintenance Type

Round face, 16 in Metal mounting fr Electrostatic focu Straight gun. non External conducti Aluminised scree	ame is, magne ion trap ve coatin	etic deflect	
Mullimbed serve			
Heater voltage	v _h	6.3	v

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	20	kV
Minimum second and fourth anode voltage	V_{a2+a4} (min)	10	kV
Maximum third anode voltage	Va3(max)	± 500	v
Maximum first anode voltage	V _{a1(max)}	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	400*	v

* During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with either LC phosphor (F41-121LC) giving an orange trace of very long persistence or GR phosphor (F41-121GR) giving a yellowish-green trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

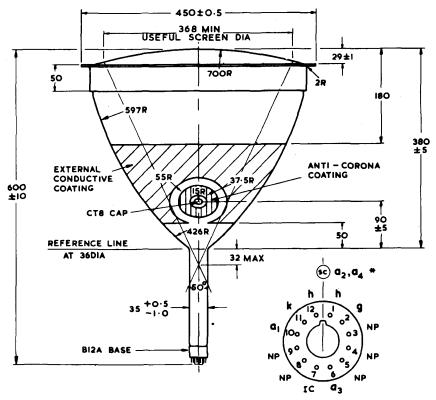
INTER-ELECTRODE CAPACITANCES		*	t	
Cathode to all	^c k-all	3.5	4.5	pF
Grid to all	^c g-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M_1	^c a2+a4-M1	120	00	pF
Anodes 2 and 4 to mounting frame, M_2	^c a2+a4-M2	250) .	\mathbf{pF}
· · · · · · · · · · · · · · · · · · ·				

Holder capacitance balanced out.

† Total capacitances including a typical B12A duodecal holder.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	V _{a2+a4}	15	kV
Third anode voltage range for focus	v _{a3}	-300 to +300	• v
First anode voltage	v _{al}	300	v
Grid to cathode voltage for cut-off of raster	v_{g}	-40 to -80	v
Average peak to peak modulating voltage for modulation up to 150 μA		24	v
LC screen persistence to 10% (approximate)		25	s


The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

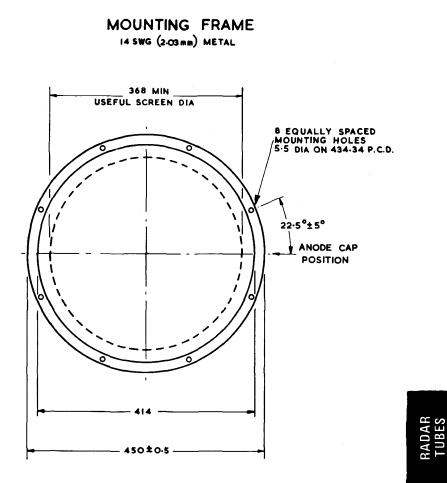
TUBE WEIGHT (approximate) - 12 kg

MOUNTING POSITION - unrestricted

F41-121..

All dimensions in mm

Not to be scaled


* Anode cap in line with spigot $\pm 10^{\circ}$.

The tube should not be handled in the region of the anti-corona coating .

For details of the mounting frame see following page.

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and the final anode may be used to provide smoothing for the e.h.t. supply.

F41-121.,

All dimensions in mm

Not to be scaled

F41-122..

Radar Tube

OBSOLETE TYPE

The F41-123.. is the replacement type for the F41-122..

The F41-122...is the F41-123.. with a grev glass face-plate having a light transmission of approximately 52%.

TUBE WEIGHT (approximate) - 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LG phosphor (F41-122LG) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-123.. data sheets.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 4.

F41-123...

GENERAL				\overline{n}	
Round face, 16 in					- H
Electrostatic focu		tic defle	etion		///a
Straight gun, non	ion trap				■ ∮(```
Clear glass				0 ع ا	
External conductiv					
Aluminised screer	-		1		
35.5 mm maximu	m neck di	ameter			
Heater voltage	$\mathbf{v}_{\mathbf{h}}$	6.3	v	k	
Heater current	I.	0.3	A		\downarrow
	-n	2.0			
					n n

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	20	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10	kV
Maximum third anode voltage	V _{a3(max)}	<u>+</u> 500	v
Maximum first anode voltage	Val(max)	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	200	v
Maximum peak heater to cathode voltage heater negative	^v h~k(pk)max	400*	v

* During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LG phosphor (F41-123LG) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

NECK LENGTH

This tube has an extended neck length to accommodate an auxiliary high frequency deflector coil.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

INTER - ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3,5	4.5	pF
Grid to all	c _{g-all}	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	c _{a2+a4} -M	1200		pF

* Holder capacitance balanced out.

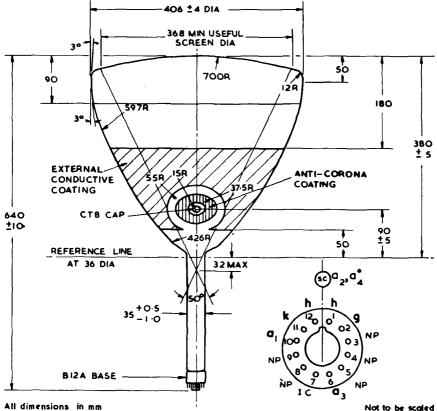
† Total capacitances including a typical B12A duodecal holder.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}	15	kV
Third anode voltage range for focus	v _{a3}	-300 to +300	v
First anode voltage	v_{a1}	300	v
Grid to cathode voltage for cut-off of raster	vg	-40 to -80	v
Average peak to peak modulating voltage for modulation up to 150 μ A		24	v
LG screen persistence to 10% (approximate)		4.0	8

The LG screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.


TUBE WEIGHT (approximate) - 11.8 kg (26 lb)

MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

F41-123.

All dimensions in mm

* Anode cap in line with spigot $\pm 10^{\circ}$.

The tube should not be handled in the region of the anti-corona coating.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

It is recommended that the deflector coil assembly including "position" and "write" coils should not extend further than 95 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

The F41-124.. is the F41-123.. with a third anode voltage range for focus of 0 to 400 V.

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-124LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see F41-123.. data sheets.

Thorn Radio Valves and Tubes Limited Issue 1, Page 1

F41-130..

OBSOLETE TYPE

The F41-13.. is the replacement type for the F41-130..

The F41-130, is the F41-13, , with a grey glass face-plate having a light transmission of approximately 52% .

TUBE WEIGHT (approximate) - 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F+1-130LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-13.. data sheets.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 5.

OBSOLETE TYPE

The F41-14.. is the replacement type for the F41-140..

The F41-140...is the F41-14...with a grey glass face-plate having a light transmission of approximately 52%.

TUBE WEIGHT (approximate) 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-140LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For other data please see the F41-14.. data sheets.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 5.

F41-141..

GENERAL				1	
Round face, 16 in Electrostatic foci Straight gun, non	us, magi	netic defle		M	/ a2, a
Clear glass. External conduct:	ive costi	ng		03	
Aluminised scree					
35.5 mm maximu	ım neck	diameter			g
Heater voltage	$\mathbf{v_h}$	6.3	v	K	
Heater current	Ιh	0.3	A		Ţ

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$V_{a2+a4}(max)$	20	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10	kV
Maximum third anode voltage	V _{a3(max)}	± 500	v
Maximum first anode voltage	Val(max)	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	[♥] h-k(pk)max	400*	v

* During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LC phosphor (F41-141LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

F41-141...

INTER-ELECTRODE CAPACITANCES

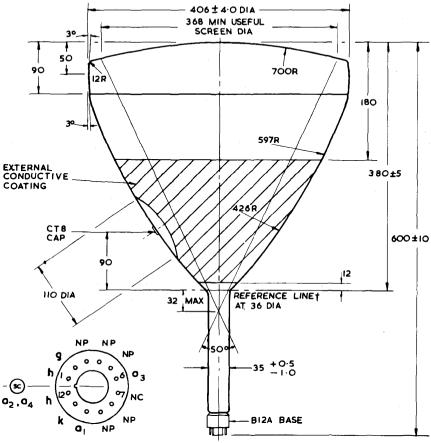
Cathode to all	^c k-all	3.5	4.5	pF
Grid to all	^c g-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	^c a2+a4-M	1	400	ρF

* Holder capacitance balanced out.

† Total capacitances including a typical B12A duodecal holder.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}	18	kV
Third anode voltage range for focus	v_{a3}	-300 to +300	v
First anode voltage	v_{a1}	300	v
Grid to cathode voltage for cut-off of raster	v_{g}	-40 to -80	v
Average peak to peak modulating voltage for modulation up to 150 μA		24	v
Line width at 50 μ A beam current microscope measurement		0.5 to 0.7	mm
LC screen persistence to 10% (approximate)		25	s


The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 9 kg (20 lb)

MOUNTING POSITION - unrestricted

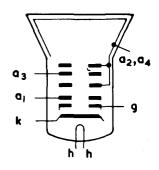
F41-141..

All dimensions in mm

Not to be scaled

* Anode cap in line with spigot ± 15°

† Gauge 36 I/D x 100 long to slide freely over neck.


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face. The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

7ABP33A

Radar Tube

GENERAL			
Round face 7 inch tu Electrostatic focus, Straight gun, non ion Aluminised screen, P33(LD)phosphor, v	magnetic trap orange tra	deflect ace	ion
Hester velters	V _h	6.3	v
Heater voltage			

ABSOLUTE RATINGS (voltages referred to cathode)

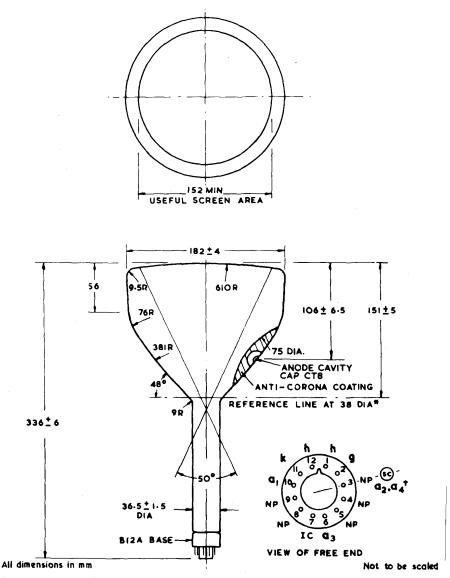
Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	11	k₹
Minimum second and fourth anode voltage	Va2+a4(min)	6.0	kV
Maximum third anode voltage range	Va3(max)	+1100 to -550	v
Maximum first anode voltage	Val(max)	770	v
Maximum negative grid voltage	$-v_{g(max)}$	200	v
Maximum positive grid voltage	Vg(max)	0	v
Maximum peak positive grid voltage	^v g(pk)max	0	v
Maximum peak heater to cathode voltage heater negative or positive	^v h-k(pk)max	200	v
Maximum grid to cathode resistance	Rg-k(max)	1.5	MΩ

Other phosphors are available to special order.

Thorn Radio Valves and Tubes Limited

7ABP33A

INTER - ELECTRODE CAPACITANCES

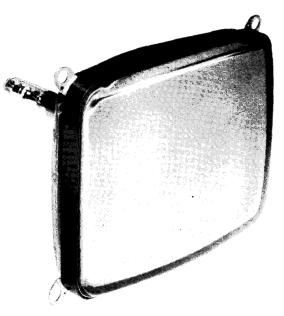

Cathode to all	^c k-all		5.0	pF
Grid to all	^c g-all		6.0	pF
TYPICAL OPERATION - grid modulation (vo	ltages referred	l to cath	ode)	
Second and fourth anode voltage	v_{a2+a4}		7.0	kV
Third anode voltage range for focus	v _{a3}	0	to 250	v
First anode voltage	v _{al}		300	v
Grid to cathode voltage for visual extinction of focused spot	v_{g-k}	-2	8 to -72	v
P33 (LD) screen persistence to 10% (approxima	te)		3.0	s

The P33(LD) screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

TUBE WEIGHT (approximate) - 1.6 kg (3.5 1b)

MOUNTING POSITION - unrestricted

RADAR TUBES



* Gauge 38 mm I/D 50 mm long to slide freely over neck.

† Anode cap in line with pin $3 \pm 10^{\circ}$

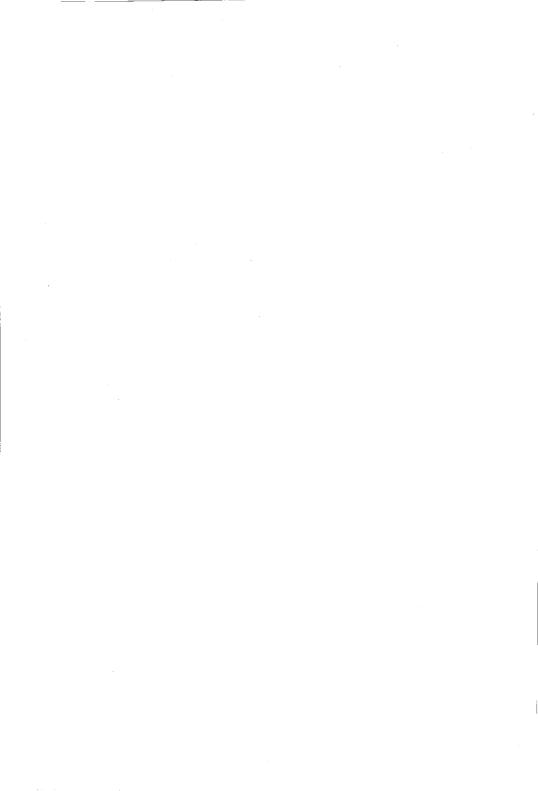
The tube should not be handled in the region of the anti-corona coating.

DATA DISPLAY & MONIFOR TVBES

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

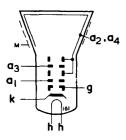
HEALTH AND SAFETY AT WORK ACT, 1974

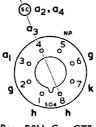
Attention is drawn to the recommendations under this heading in the Operational Recommendations.


WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited


Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS



CV6198

Maintenance Type

Base B8H, Cap CT8

GENERAL

Rectangular Face	-8½ in. Diagonal
Electrostatic Focus	s — Magnetic Deflection
LG Phosphor	-Very Long Persistence
	Heater Voltage
	Heater Current

Deflection Angle --90° Diagonal Aluminised Screen --Orange Trace External Conductive Coating V_h 11.5 V I_h 0.15 A

RATINGS

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	16*	k٧
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	8.0	kV
Maximum Third Anode Voltage	$V_{a3(max)}$	- 700	V
Maximum First Anode Voltage	$V_{a1(max)}$	500	Ý
Maximum Heater to Cathode Voltage,	$V_{h-k(max)}$		
Heater Negative (d.c.)		200	V
*16 kV is a design centre rating, the absolute rati	ng of 18 kV must not	be exceeded.	

All voltages referred to cathode.

INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-all	7.0		PF
Cathode to all	C _{k-all}	3.0	3.2	рF
Anode 2 and Anode 4 to External Condu	ctive			
Coating (approx)	^C a2,a4-M	400		рF
¶ Inter-electrode capacitance with holder	balanced out.			-

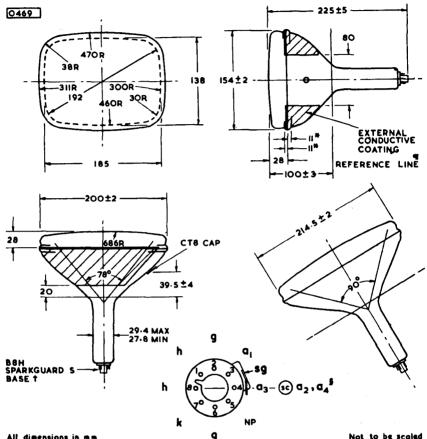
§ Inter-electrode capacitance including a typical B8H holder.

TYPICAL	OPERATION —Grid Modulation (all voltages	reterred to cathode)
---------	-------------------------------------	--------------	----------------------

	• •	- /	
Second and Fourth Anode Voltage	$V_{a2,a4}$	14	k٧
First Anode Voltage	V _{a1}	400	V
Third Anode Voltage for Focus (Range)	V _{a3}	0 to 400	V
Grid to Cathode Voltage for cut-off of Raster Average Peak to Peak Modulating Voltage for	Vg	-30 to -72	v
Modulation up to 150µA		24	v
LG Screen Persistence to 10% (approximate)		4.0	s
The LG screen is liable to burn even at low v stationary or slow-moving spot.	alues of beam cu	rrent if operated wit	:h a

Note

This tube can be supplied with a number of different phosphors as requested. This tube is fitted with a B8H Sparkguard S base, details of which are given on a separate sheet.

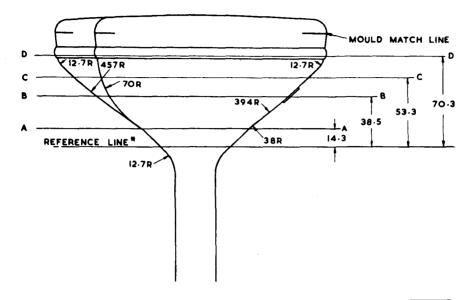

Net Tube Weight (approx)-1.36 kg (31b).

Issue 1, Page 1

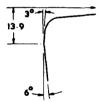
DATA DISPLAY & MONITOR TUBES

CV6198

Data Display or Monitor Tube


All dimensions in mm

Not to be scaled


There is an annular region of anti-corona coating with an external diameter of 60 mm 'surrounding the CT8 cap, the tube should not be handled in this region.

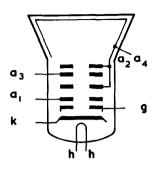
- * During the face sealing operation the glass in this area (total 22 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † The socket for the B8H button base should not be rigidly mounted, it should have flexible leads and be allowed to move freely. The design of the socket should be such that the wiring cannot impress lateral strains through the socket contacts on the base.
- § Anode cap in line with pin $4 \pm 30^{\circ}$.
- ¶ Determined by Reference Gauge No. 15.

0470

MAXIMUM CONE SIZES AT POINTS A-A. B-B, C-C. D-D MAJOR MINOR AXIS SEC'N DIAG'L AXIS 82.4 82.4 82.4 A-A 153 134 B-B 146 C-C 180 149 193 201 216 D-D 155

All dimensions in mm

Not to be scaled


* Determined by Reference Line Gauge No. 15.

.

M8-100..

PRELIMINARY DATA

Rectangular face- Ruggedised gun co Electrostatic focu Flying lead connect	nstructio s, magne	n tic defle	ction
Aluminised screen 20.7 mm maximum	i, clear g	lass	
Aluminised screen	i, clear g	lass	v

ABSOLUTE RATINGS - Voltages referred to cathode

8			
Maximum second and fourth anode voltage	Va2+a4(max)	12	kV
Minimum second and fourth anode voltage	Va2+a4(min)	8	kV
Maximum third anode voltage	V _{a3(max)}	-50 to +500	v
Maximum first anode voltage	Val(max)	350	v
Maximum negative grid voltage	-Vg(max)	100	v
	-Vg(min)	1*	v
Maximum heater to cathode voltage heater negative (d.c.)	Vh-k(max)	110	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with GX phosphor (M8-100GX). This is a line spectrum phosphor giving a yellowish green fluorescence of medium persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 180 g

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

BRIMAR

Page 1, Issue 1

M8-100..

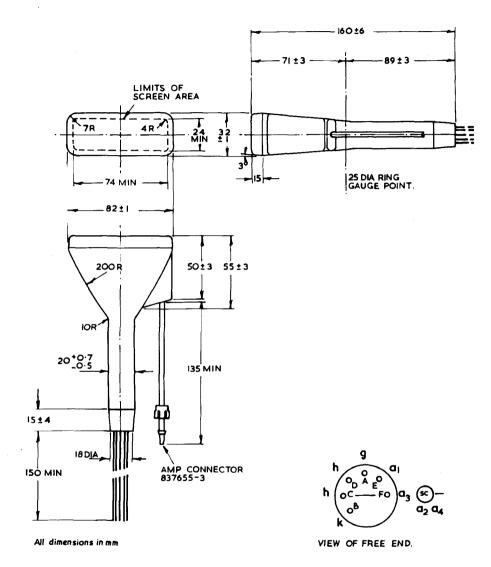
INTER-ELECTRODE CAPACITANCES

Cathode to all Grid to all	^C k-all ^C g-all	4.0* 7.0*	pF pF
* Lead capacitance balance	d out.		
TYPICAL OPERATION	- Grid modulation (Voltage r	eferred to cathode)	
Second and fourth anode volt	ago V	10	l-X7

V _{a2+a4-k}	10	kV
V _{al-k}	250	v
Va3-k	0 to 350	v
Vg-k	-35 to -69	v
face centre	0.25	mm
odulation (Voltag	e referred togrid)	
Va2+a4-g	10	kV
V _{a1-g}	250	v
Va3-g	0 to 350	v
v _{k-g}	32 to 58	v
	V_{a3-k} V_{g-k} face centre odulation (Voltag $V_{a2+a1-g}$ V_{a1-g} V_{a3-g}	Val-k 250 Val-k 0 to 350 Vg-k -35 to -69 face centre 0.25 odulation (Voltage referred to grid) Val+al-g 10 Val-g 250 Val-g 250 Val-g 0 to 350 Vk-g

Characteristic curves as M23-110..

MOUNTING

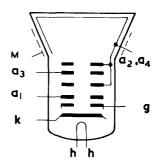

The tube can be mounted in any position.

When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

ENVIRONMENTAL TESTS CAPABILITIES

Temperature range:	Operational Storage	-15°C to + 85°C -54°C to + 85°C
Vibration endurance		5 to 55 Hz 1.5g maximum 55 to 2000 Hz 1.0g constant
Bump and shock		6 bumps, 6g, 11ms, half sine wave, all three axes
Tropical environmen	t	95% relative humidity cycled 38°C to 50°C. total 48 hrs
Altitude: Operationa Non operat		5000m 6000m

Page 2, Issue 2.


Page 3, Issue 1.

M14-100..

GENERAL

Rectangular face, 14 cm, 70° diagonal Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 62% transmission (approx) 20.7 mm maximum neck diameter External conductive coating

Heater voltage	$\mathbf{v_h}$	11	v
Heater current	1 _h	75	mA

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4}(max)$	13.5	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	8	kV
Maximum third anode voltage	V _{a3 (max)}	-50 to +500	v
Maximum first anode voltage	V _{al(max)}	350	v
Maximum negative grid voltage	-Vg(max)	100	v
Minimum negative grid voltage	$-V_{g(min)}$	1*	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M14-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 400 g

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M14-100.

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.0*	pF
Grid to all	^c g-all	4.0*	pF
Anodes 2 and 4 to coating M (min.)	^c a2+a4-M(min)	200	рF

* Holder capacitance balanced out.

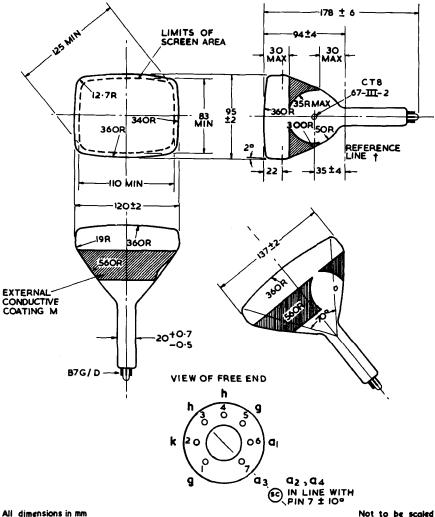
TYPICAL OPERATION - Grid modulation (Voltage referred to cathode)

Second and fourth anode voltage	V _{a2+a4-k}		10	kV
First anode voltage	V _{al-k}		250	v
Third anode voltage range for focus	v _{a3-k}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A			24	v
Grid to cathode voltage for cut-off of raster	v _{g-k}	-35	to -69	v
TYPICAL OPERATION - Cathode m	odulation (Voltage	referred	to grid)	
Second and fourth anode voltage	V _{a2+a4-g}		10	kV
First anode voltage	Val-g		250	v
Third anode voltage range for focus	Va3-g	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A	U		20	v
Cathode to grid voltage for cut-off of raster	v _{k-g}	32	to 58	v

MOUNTING

There is an annular region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

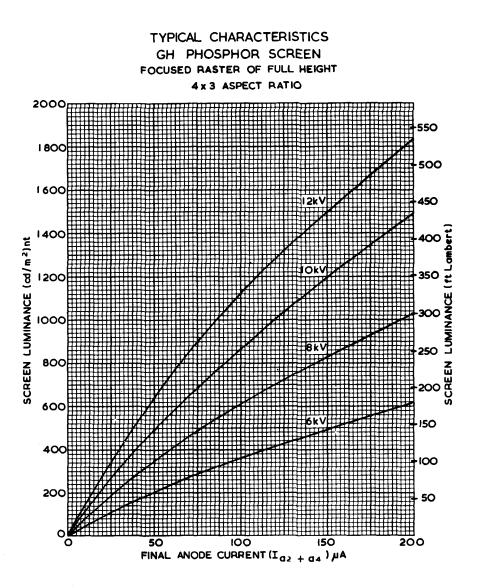
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

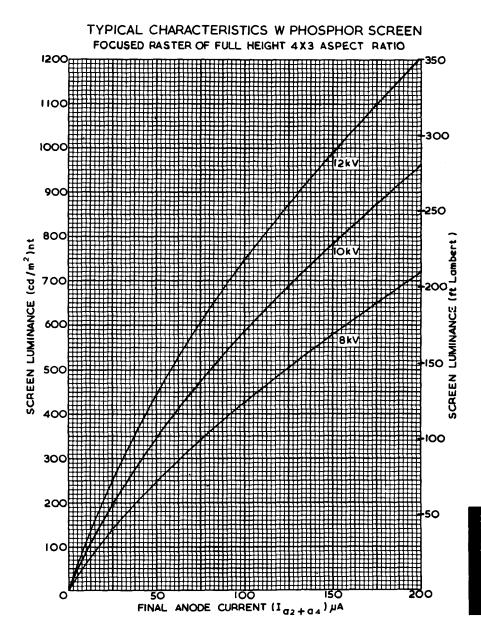

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

Characteristic curves as M23-110..

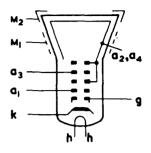
Page 2, Issue 2.


M14-100..



All dimensions in mm

š


† Determined by reference line gauge No. 23

lasue 1, Page C2

GENERAL			
Rectangular flat fa Ruggedised constr Electrostatic focu Flying lead connec Aluminised screer Clear glass, 27.4	uction, me s, magnetic ctions for b a, external	tal mounting c deflection ase and anode conductive co	frame e pating
Heater voltage	v_h	6.3	v
Heater current	Ih	0.3	A

ABSOLUTE RATINGS - All voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	12	kV
Maximum third anode voltage	V _{a3(max)}	1000	v
Maximum negative third anode voltage	-Va3(max)	500	v
Maximum first anode voltage	V _{al(max)}	500	v
Maximum negative grid voltage	-V _{g(max)}	200	v
Minimum negative grid voltage	$-V_{g(min)}$	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	v

TYPICAL OPERATION - Grid modulation, voltages with respect to cathode

Second and fourth anode voltage	V _{a2+a4}		14	kV
First anode voltage	V _{al}		400	v
Third anode voltage range for focus	v _{a3}	0	to 400	v
Grid to cathode voltage for cut-off of raster	v _g	-31	to -71	v

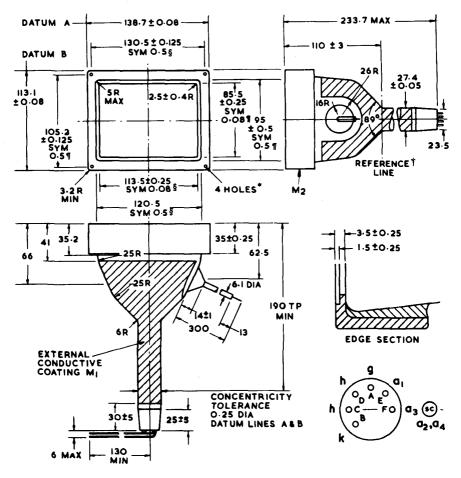
If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M16-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Type M16-100W is the commercial version of the CV6244.

Thorn Radio Valves and Tubes


M16-100..

INTER-ELECTRODE CAPACITANCES - Lead	capacitances balanced out
Cathode to all	c _{k-all} 4.0 pF
Grid to all Anode 2 and anode 4 to coating M ₁ (minimum) Anode 2 and anode 4 to frame M ₂ (minimum) TUBE WEIGHT (approximate) - 1.0 kg	^c g-all 15 pF ^c a2+a4-M1(min) 350 pF ^c a2+a4-M2(min) 80 pF
ENVIRONMENTAL TEST CAPABILITIES Storage and operational temperature range	-30°C to +55°C
Vibration endurance	10 to 60 Hz displacement \pm 0.15 mm 60 to 2000 Hz 2g all three axes for a specified time
Centrifuge	13g all three axes 2 minutes each
Bump and shock	40 g all three axes for specified number of bumps
Tropical environment	95% relative humidity, cycled 20°C to 40°C, total 10 days
Mould growth	To BS2011 Test 2J severity 28 days
Salt mist	To BS2011 Test 2K 92.5% humidity, 35°C, total 28 days
Solar beat	Continuous cycling 30°C to 84°C total 5 days

NOTE

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

DATA DISPLAY & MONITOR TUBES

All dimensions in mm

Frame finish - black anodised. Minimum useful screen area 113 x 85

- * Tapped 6 32UNC x 7.0 deep.
- † Determined by Reference Line Gauge No. 19
- § Symmetrical tolerance width Datum A.
- ¶ Symmetrical tolerance width Datum B.

Issue 2, Page 3

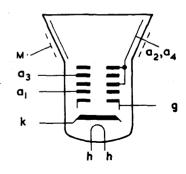
Not to be scaled

The M17-10.. monitor tube has a 11.5V, 0.15A heater otherwise it is identical to the M17-12..

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M17-10W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

For all other data please see M17-12.. data sheets.


Thorn Radio Valves and Tubes Limited

Issue 4, Page 1.

GENERAL

Rectangular face, 7 inch, 70° diagonal
Electrostatic focus, magnetic deflection
Aluminised screen, clear glass
29.4 mm maximum neck diameter
Straight gun, non ion trap
External conductive coating
Heater voltageVh6.3VHeater currentIh 0.3^* A

DESIGN CENTRE RATINGS

- Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	16†	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	12	kV
Maximum third anode voltage	V _{a3(max)}	+1000 to -500	v
Maximum first anode voltage	V _{al (max)}	500	v
Maximum negative grid voltage	-V _{g(max)}	200	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	200	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400§	v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* In a series heater chain the CRT should always be connected at the chassis end.

† The absolute rating of 18 kV must not be exceeded.

§ During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M17-12W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

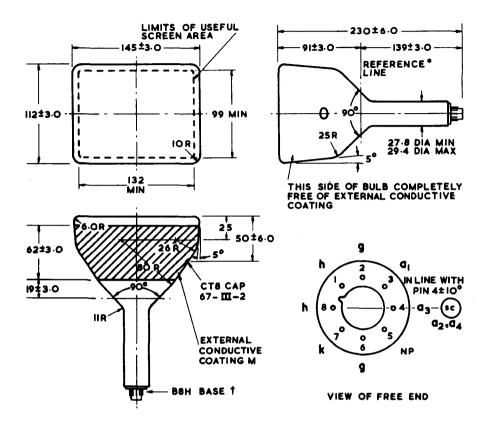
35 to 68

v

INTER - ELECTRODE CAPACITANCES	5	•	•	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	^c g-all	6.5	8.0	pF
Anodes 2 and 4 to coating M (approx.)	^c a2+a4-M	350		pF
* Holder capacitance balanced out.		nces including typ	ical ho	lder.
TYPICAL OPERATION - Grid modul	ation, voltages re	eferred to cathode.		
Second and fourth anode voltage	V _{a2+a4-k}	14		kV
First anode voltage	V _{al-k}	400		v
Third anode voltage range for focus	V _{a3-k}	0 to 400)	v
Grid to cathode voltage range for cut-off of raster	v _{g-k}	-38 to -78	3	v
TYPICAL OPERATION - Cathode mo	dulation, voltages	referred to grid		
Second and fourth anode voltage	V _{a2+a4-g}	14		kV
First anode voltage	V _{al-g}	400		v
Third anode voltage range for focus	v _{a3-g}	0 to 400)	v
Cathode to grid voltage range for	v _{k-g}	26 4- 69		17

If this tube is operated at voltages in excess of 16 kV x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

MOUNTING

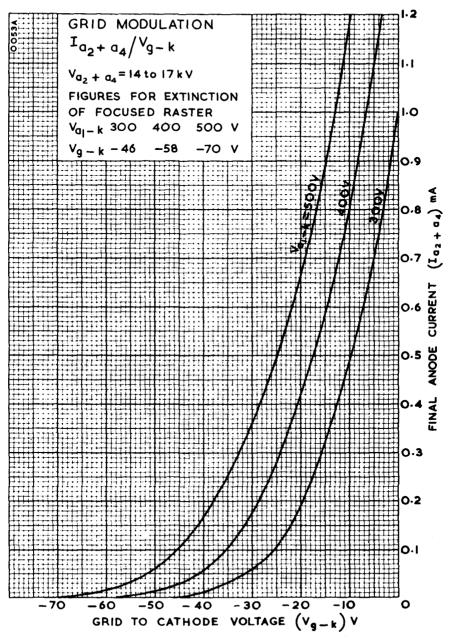

cut-off of raster

The tube can be mounted in any position.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of the external conductive.coating should be made in a manner appropriate to the protection system employed.

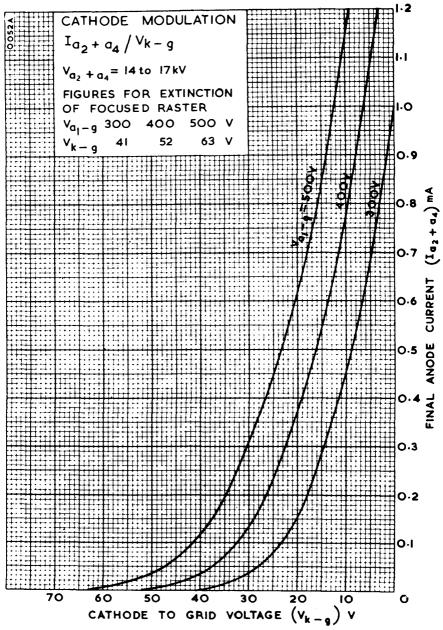
TUBE WEIGHT (approximate) - net 650g

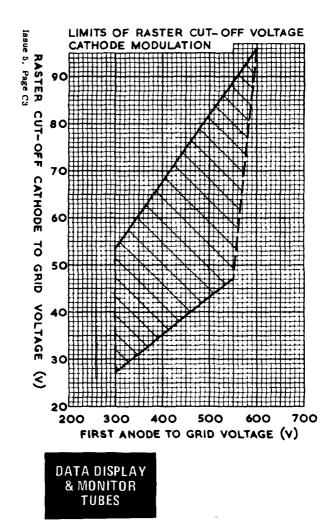


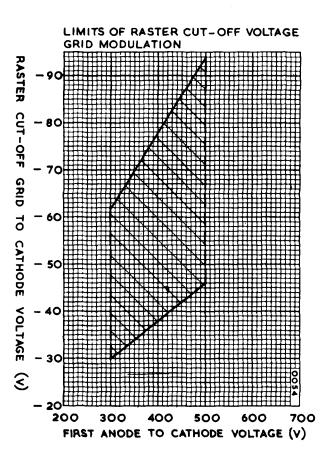
All dimensions in mm

Not to be scaled

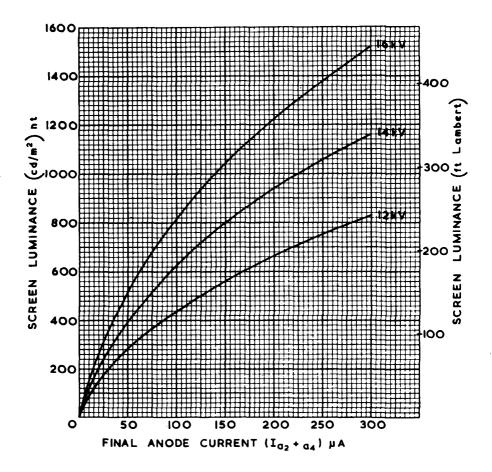
There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

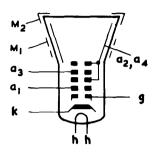

- * Determined by reference line gauge No. 15
- **†** The tube socket should not be rigidly mounted, it should have flexible leads and be allowed to move freely.


Issue 5, Page C1


M17-12.

Data Display or Monitor Tube


Issue 5, Page C2


TYPICAL CHARACTERISTICS W PHOSPHOR

FOCUSED RASTER OF FULL HEIGHT 4x3 ASPECT RATIO

M17-15..

GENERAL			
Rectangular face Bonded face-pla Electrostatic foo Straight gun, alu 29.4 mm maxim Clear glass, exte	te with n cus, ma uminised um neci	nounting fra gnetic defle screen diameter	ame ction
Heater voltage	$\mathbf{v_h}$	11.5	v

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	16*	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	12	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	v
Maximum first anode voltage	V _{al(max)}	500	v
Maximum negative grid voltage	-V _{g(max)}	200	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400	V
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.)	v _{h-k(max)}	200	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400†	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* The absolute rating of 18 kV must not be exceeded.

† During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M17-15W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES	5	*	t	
Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	^c g-all	6.5	8.0	ρF
Anodes 2 and 4 to coating $M_1(approx.)$	^c a2+a4-M1	200)	pF
Anodes 2 and 4 to frame M_2 (approx.)	^{(°} a2+a4-M2	80		рF
* Holder capacitance balanced out.	† Total capacitan	ic es includin	g typical h	old er .

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

Second and fourth anode voltage	V _{a2+a4-k}	14	kV
First anode voltage	v_{a1-k}	400	v
Third anode voltage range for focus	V _{a3-k}	0 to 400	v
Grid to cathode voltage range for cut-off of raster	v _{g-k}	-38 to -78	v

TYPICAL OPERATION - Cathode modulation, voltages referred to grid

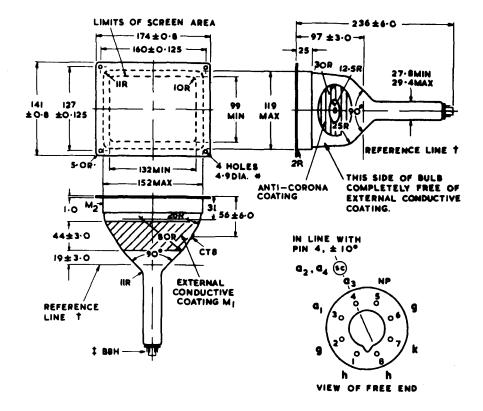
Second and fourth anode voltage	$v_{a2+a4-g}$	14	kV
First anode voltage	V _{al-g}	400	v
Third anode voltage range for focus	v _{a3-g}	0 to 400	v
Cathode to grid voltage range for cut-off of raster	v _{k-g}	35 to 68	v

Characteristic curves as M17-12...

If this tube is operated at voltages in excess of 16 kV x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

MOUNTING

The tube can be mounted in any position.


The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 1.1 kg

All dimensions in mm

Not to be scaled

There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CTS cap, the tube should not be handled in this region.

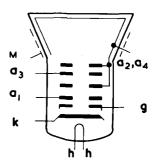
* It is recommended that 2BA bolts be used for mounting the tube.

† Determined by reference line gauge No. 15

The M17-152BE is the M17-15BE with a fine grain and minimal blemish screen for medical applications.

For all other information please see the data sheets for type M17-15..

Thorn Radio Valves and Tubes Limited


Page 1, Issue 1.

M19-100..

GENERAL

Heater current

Rectangular face, Electrostatic focus Aluminised screen Grey glass, 65% tr 20.7 mm maximum External conductive	ansmissio neck diar	tic deflection (approx	tion
Heater voltage	v _h	11	v

ABSOLUTE RATINGS - Voltages referred to cathode

I,

75

mA

Maximum second and fourth anode voltage	V _{a2+a4(max)}	13.5	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	Va3(max)	-50 to +500	v
Maximum first anode voltage	Val(max)	350	v
Maximum negative grid voltage	-Vg(max)	100	v
Minimum negative grid voltage	-Vg(min)	1.0*	v
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	110	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* A $10 k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M19-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 800g

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M19 - 100 ...

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M (min.)	^c a2+a4-M(min)		pF

* Holder capacitance balanced out.

TYPICAL	OPERATION	- Grid modulati	on (Voltage	referred to	cathode)
---------	-----------	-----------------	-------------	-------------	----------

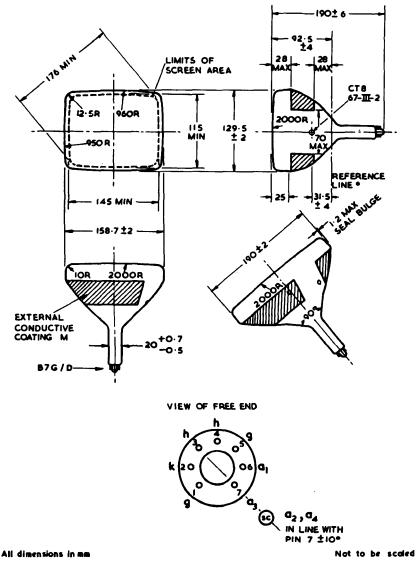
Second and fourth anode voltage	V _{a2+a4-k}		10	kV
First anode voltage	v _{a1-k}		250	v
Third anode voltage range for focus	V _{a3-k}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A			24	v
Grid to cathode voltage for cut-off of raster	v _{g-k}	-35	to -69	v
TYPICAL OPERATION - Cathode mo	dulation (Voltage	referred t	o grid)	
Second and fourth anode voltage	Vo2+01-9		10	kV

Second and fourth anode voltage	v _{a2+a4-g}		10	kV
First anode voltage	v _{al-g}		250	v
Third anode voltage range for focus	v _{a3-g}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A			20	v
Cathode to grid voltage for cut-off of raster	$\mathbf{v}_{\mathbf{k}-\mathbf{g}}$	32	to 58	v

MOUNTING

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.


The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

Characteristic curves as M23-110...

Page 2, Issue 2.

M19-100..

* Determined by reference line gauge No. 21 (See T.D.S. 5-0-91-21)

M21-13..

Data Display or Monitor Tube

MAINTENANCE TYPE

GENERAL

Rectangular face, 21 cm 90° diagonal tube Electrostatic focus, magnetic deflection Straight gun, aluminised screen 29.4 mm maximum neck diameter Clear glass, external conductive coating Heater voltage V_h 11.5 V Heater current I_h 0.15 A

DESIGN CENTRE RATINGS - voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	16*	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	V _{a3(max)}	± 700	v
Maximum first anode voltage	V _{a1(max)}	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	200	v

* 16 kV is a design centre rating, the absolute rating of 18 kV must not be exceeded.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millicontgens per hour, the window will normally provide adequate protection.

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (M21-13LC) giving an orange trace of very long persistence or with W (television white) phosphor. Other phosphor screens can be made to special order.

Tube incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 4.

Monitor Tube

INTER-ELECTRODE CAPACITANCES	i	*	+	
Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	^c g-all	6.5	8.0	pF
Anodes 2 and 4 to coating M (approx.)	Ca2+a4-M	4	00	pF

* Holder capacitance balanced out.

† Total capacitances including a typical B8H holder.

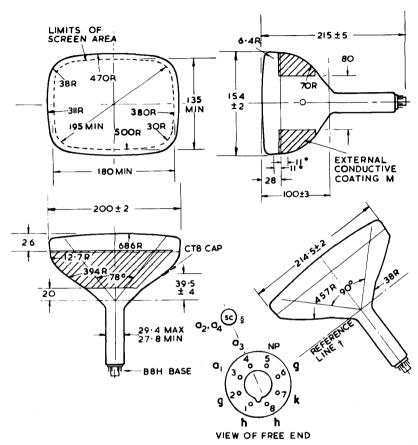
TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	v_{a2+a4}		12		kV
First anode voltage	Val		400)	v
Third anode voltage range for focus	V _{a3}	0	to	400\$	v
Grid to cathode voltage range for cut-off of raster	v _g	-30	to	-72	v
Average peak to peak modulating volta final anode current \approx 150 μ A	ge		24		v
LC screen persistence to 10% (approx.)		20		8

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

⁵ The change of spot size with variation of focus voltage is small and the limit of 0 to 400V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least -100V to +500V will be required.

MOUNTING


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The design of the socket should be such that the wiring cannot impress lateral strains through the socket contacts on the base. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

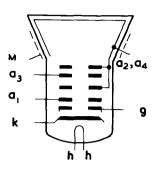
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 1.3 kg

DATA DISPLAY & MONITOR TUBES

All dimensions in mm

Not to be scaled


- * During the face sealing operation the glass in this area (total 22 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † Determined by Reference Gauge No. 15
- § Anode a₂, a_4 cap in line with pin 4 tolerance $\pm 10^\circ$

There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

Page 3, Issue 4.

M23-110..

Rectangular face, Electrostatic focu Aluminised scree	is, magneti n	ic defle	ection
Grey glass, 50% t			rox)
20 7 mm mavimu	m nock dia	motor	
20.7 mm maximu External conducti		meter	
		meter 11	v

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	13.5	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	V _{a3(max)}	-50 to +500	v
Maximum first anode voltage	Val(max)	350	v
Maximum negative grid voltage	-V _{g(max)}	100	v
Minimum negative grid voltage	-Vg(min)	1.0*	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M23-110W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 1.4 kg

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

DATA DISPLAV & MONITOR TUBES M23-110...

Data Display or Monitor Tube

INTER - ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M (min.)	^c a2+a4-M(min)	300	pF

* Holder capacitance balanced out.

TYPICAL OPERATION - Grid mod	ulation (Voltage r	e ferre d t	o cathode)	
Second and fourth anode voltage	V _{a2+a1-k}		10	kV
First anode voltage	Val-k		250	v
Third anode voltage range for focus	v_{a3-k}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A			21	v
Grid to cathode voltage for cut-off of raster	v _{g-k}	-3	5 to -69	v

TYPICAL OPERATION - Cathode modulation (Voltage referred to grid)

Second and fourth anode voltage	$v_{a2+a4-g}$		10	kV
First anode voltage	V _{al-g}		250	v
Third anode voltage range for focus	v _{a3-g}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 µA			18	v
Cathode to grid voltage for cut-off of raster	v _{k-g}	32	to 58	v

MOUNTING

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

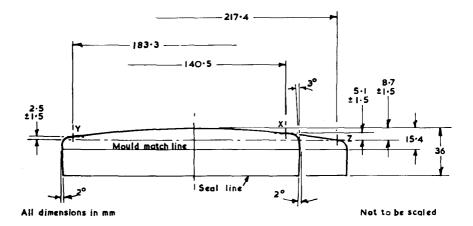
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

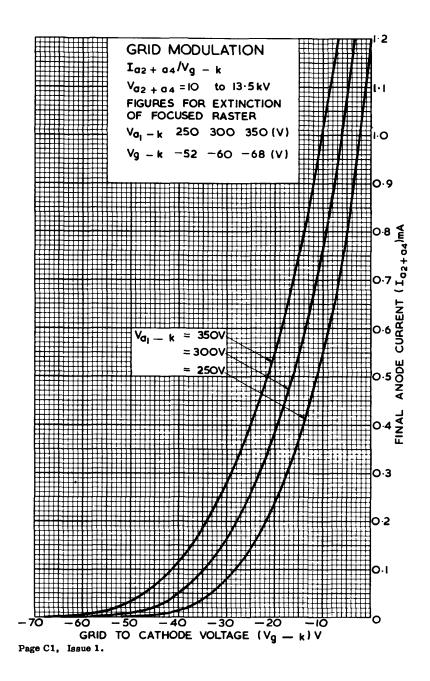
When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

Page 2 Issue 2.

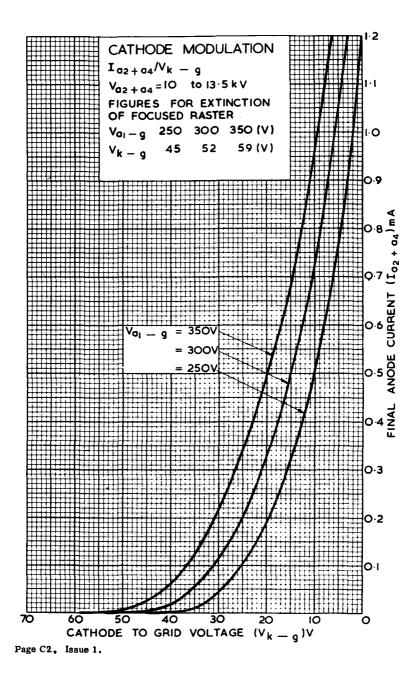
M23-110..


20

Page 3, Issue 2.

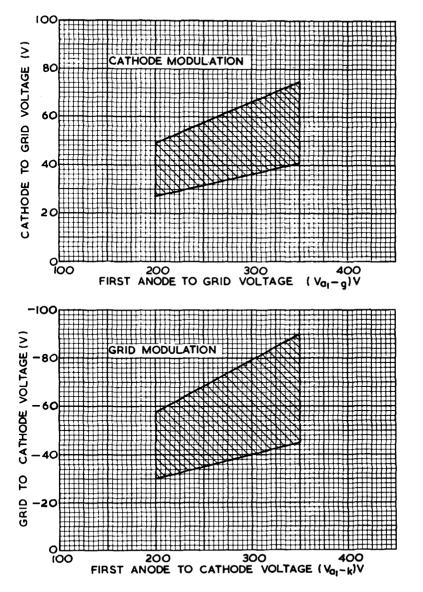

M23-110..

Data Display or Monitor Tube

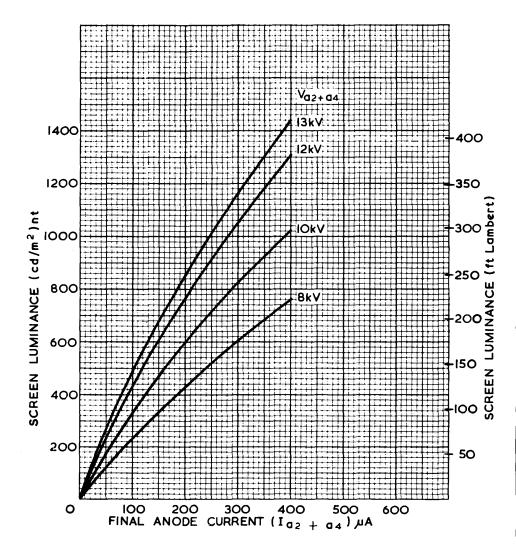


Page 4 Issue 2

M23-110..



ATA DISPLA & MONITOR TUBES


M23-110..

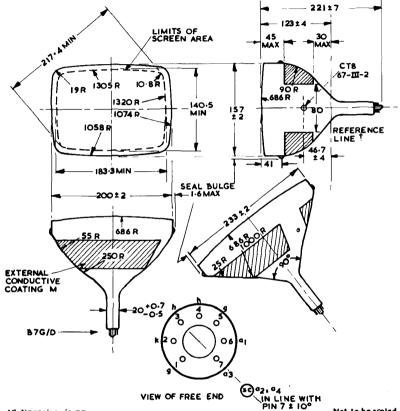
LIMITS OF RASTER CUT-OFF VOLTAGE

Page C3, Issue 1.

TYPICAL CHARACTERISTICS GH PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4X3 ASPECT RATIO

Page C1, Issue 1.

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4X3 ASPECT RATIO



Page C1, Issue 1.

M23-111.

Data Display or Monitor Tube

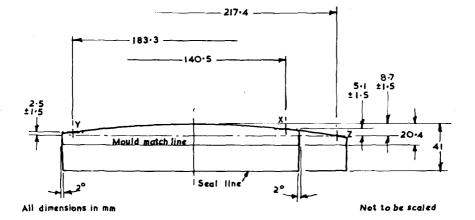
The M23-111., is the M23-110., with a tinted bonded face-plate giving a total glass transmission of approximately 30%. The external surface is treated to reduce specular reflection

All dimensions in mm

Not to be scaled

† Determined by reference line gauge No. 21

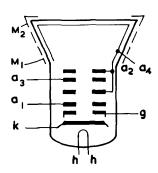
PHOSPHOR SCREEN


This type is usually supplied with W phosphor (M23-111W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - net 1.7kg

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1


Page 2 Issue 1.

M23-112..

Data Display or Monitor Tube

PRELIMINARY DATA

GENERAL Rectangular face, 23 cm, 90° diagonal Rimguard III reinforced envolope * Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 50% transmission (approx) 20.7 mm maximum neck diameter External conductive coating Heater voltage 11 v V_h Heater current 75 mA I_h

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	13.5	kV
Minimum second and fourth anode voltage	Va2+a4(min)	8.0	kV
Maximum third anode voltage	Va3(max)	-50 to +500	v
Maximum first anode voltage	Val(max)	350	v
Maximum negative grid voltage	-V _{g(max)}	100	v
Minimum negative grid voltage	-Vg(min)	1.0 †	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

- * This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.
- $\dagger~A~10\,k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M23-112GH) giving a Green trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 1.5kg

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

M23-112..

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0*	pF
Grid to all	^c g-all	4.0*	ρF
Anodes 2 and 4 to coating $M_1(min.)$	^c a2-a4M ₁ (min)	300	pF
Anodes 2 and 4 to metal M ₂ (approx)	$c_{a2-a4-M_2}$	100	pF
 Holder capacitance balanced out. 			

TYPICAL	OPERATION	- Grid modulation	(Voltage	referred to cathode)
---------	-----------	-------------------	----------	----------------------

Second and fourth anode voltage	v _{a2+a4-k}		10	kV
First anode voltage	V _{al-k}		250	v
Third anode voltage range for focus	V _{a3-k}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A			24	v
Grid to cathode voltage for cut-off of raster	v _{g-k}	-35	to - 69	v
TYPICAL OPERATION - Cathode m	odulation (Voltag	e refer	red to grid)	
Second and fourth anode voltage	Va		10	kV

Second and fourth anode voltage	V _{a2+a4-g}		10	kV
First anode voltage	Val-g		2 50	v
Third anode voltage range for focus	Va3-g	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μ A			20	v
Cathode to grid voltage for cut-off of raster	v _{k-g}	32	to 58	v

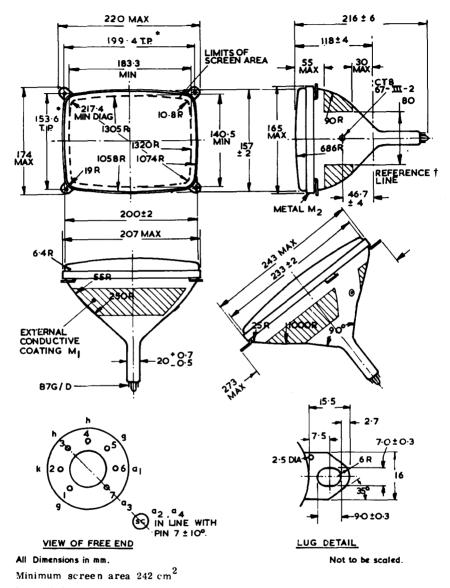
MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and bulb contours.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

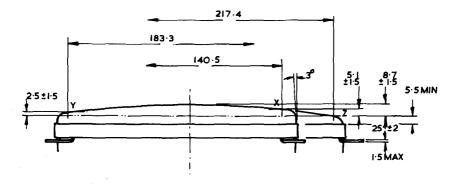
The metal (M₂) should be connected to the chassis in an a.c., receiver operating from an isolating transformer, or via a suitable leakage path in an a.c., d.c. receiver, for example 2 M Ω .


When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

Characteristic curves as M23-110..

Page 2. Issue 2.


DATA DISPLAY & MONITOR TUBES

The bolts to be used for mounting the tube must lie within circles of 4.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs
† Determined by reference line gauge No. 21.

Page 3, Issue 1.

M23-112..

All Dimensions in mm.

Not to be scaled.

DATA DISPLAY & MONITOR TUBES

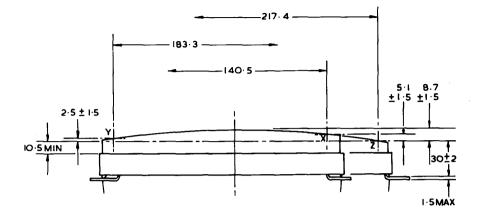
Page 4, Issue 1,

-221 ± 7 -220 MAX 123 ± 4 199 4T.P 30 183-3 MIN LIMITS OF 55 СТ8 67-Ш-2 SCREEN AREA MAX MAX 80 305R 153.6 IO-8R 217.4 MIN 90R T.P 165 DIAG 140-5 MIN MAX 1320R 157 174 1074R <u>+</u>2 686R MAX 1058R IOR REFERENCE 46.7 Ŧ Å METAL M2 200 ±2 207 MAX wat WAT 203 686R 233 Ē 55R 6860 0 250P 1000 EXTERNAL COATING M 20 +0.7 -0.5 87G/D ►15 · 5+ h g h 2.7 0 17.0 ± 0.3 م `ھ Δ 2-5 DIA ,6R k 02 60 a ۱Ġ 7₀ o 350 à3 9.0 a2,a4 IN LINE WITH ±0.3 LUG DETAIL Not to be scaled VIEW OF FREE END All dimensions in mm

The M23-113.. is the M23-112.. with a tinted bonded face-plate giving a total glass transmission of approximately 30%. The external surface is treated to reduce specular reflection.

† Determined by reference line gauge No.21 PHOSPHOR SCREEN

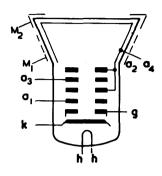
This type is usually supplied with GV phosphor (M23-113GV) giving a green trace of very long persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT (approximate) - net 1.8kg.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

M23-113..


All dimensions in mm

Not to be scaled

Page 2, Issue 1

GENERAL

Rectangular face, 24 cm, 90° diagonal Rimguard reinforced envelope* Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 52% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating Heater voltage Vh 6.3 v 0.3 A **Heater** current Ih

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	18	kV
Minimum second and fourth anode voltage	V _{a2+a4(min)}	10	kV
Maximum third anode voltage range	Va3(max)	± 700	v
Maximum first anode voltage	Val(max)	600	v
Minimum first anode voltage	Val(min)	200	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0†	v
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	200	v
Maximum peak heater to cathode voltage heater negative	Vh-k(pk)max	250	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

 \uparrow A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M24-120W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

* This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

M24-120..

INTER-ELECTRODE CAPACITANCES		*	t	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	cg-all	6.5	7.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	^c a2+a4-M1	4	00	pF
Anodes 2 and 4 to metal M_2 (approx.)	^c a2+a4-M2	. 1	25	pF

* Holder capacitance balanced out.

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	V _{a2+a4}	12	to 16	kV
First anode voltage	Val		400	v
Third anode voltage range for focus	V _{a3}	0	to 400 §	v
Grid to cathode voltage for cut-off of raster	v_{g}	-38	to -82	v
Typical line width at $50 \mu A$ (Shrinking ra	ister)		0.2	mm

S The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage range of at least -100V to +500V will be required.

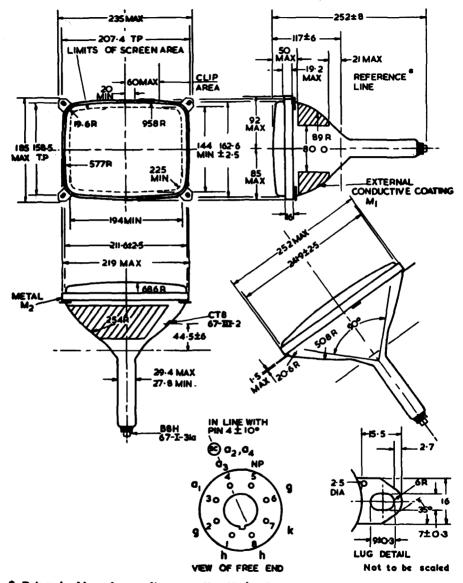
MOUNTING

If a mask is used with this tube it should be flexible enough to take up small variations in fixing and bulb contours.

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

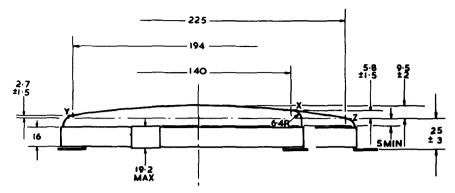
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The bolts for mounting the tube must lie within circles of 4 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.


The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 $M\Omega$.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

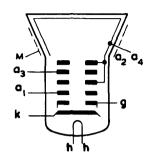

TUBE WEIGHT (approximate) 1.8 kg

DATA DISPLAY

Determined by reference line gauge No. 15 (See T.D.S. 5-0-91-15)

M24-120..

All dimensions in mm


Not to be scaled

M24-121..

Data Display or Monitor Tube

GENERAL

Rectangular face, 24 cm, 90° diagonal
Electrostatic focus, magnetic deflection
Aluminised screen
Grey glass, 52% transmission (approx.)
29.4 mm maximum neck diameter
External conductive coatingHeater voltageVh6.3 V
Heater currentHeater currentIh0.3 A

ABSOLUTE RATINGS - Voltages referre	ed to cathode		
Maximum second and fourth anode voltage	V _{a2+a4} (max)	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage range	Va3(max)	± 700	v
Maximum first anode voltage	Val(max)	600	v
Minimum first anode voltage	$v_{a1(min)}$	200	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0†	v
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	200	v
Maximum peak heater to cathode voltage heater negative	[♥] h−k(pk)max	250	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

. . . .

-- -

 \uparrow A 10 kΩ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M24-121W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

The M24-121.. is the M24-120.. without implosion protection.

Thorn Radio Valves and Tubes Limited

M24-121..

INTER-ELECTRODE CAPACITANCES		•	t	
Cathode to all	°k-all	8.0	3.5	pF
Grid to all	cg-all	6.5	7.5	pF
Anodes 2 and 4 to coating M (approx.)	^c a2+a4-M	4	00	pF

* Holder capacitance balanced out.

OBED ATION

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Gria mo	duiation, voitages	reterred	to carnode	
Second and fourth anode voltage	Va2+a4	12	to 16	kV
First anode voltage	v _{al}		400	v
Third anode voltage range for focus	V _{a3}	0	to 400 \$	v
Grid to cathode voltage for cut-off of raster	vg	-38	to -82	v
Typical line width at 50 μ A (Shrinking r	aster)		0.2	mm

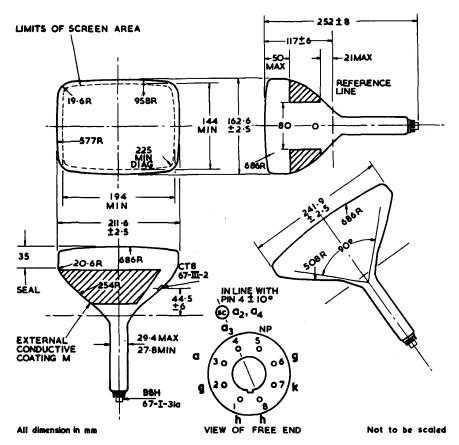
nadulation malterner referred to esthede

⁵ The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage range of at least -100V to +500V will be required.

MOUNTING

If a mask is used with this tube it should be flexible enough to take up small variations in bulb contours.

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

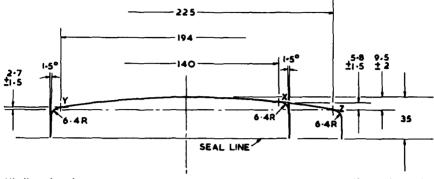

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) 1.7 kg

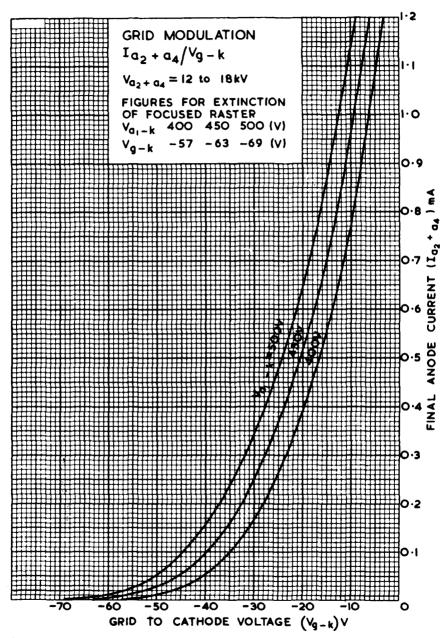
DATA DISPLAY & MONITOR TUBES

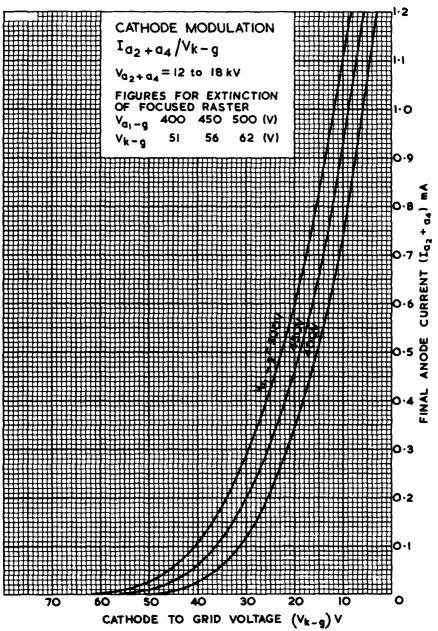


- * During the face sealing operation the glass in this area may be disturbed and the shape may be either convex or concave. The bulb should not be gripped within this region unless special precautions are taken, such as, the use of resilient packing material.
- † Determined by reference line gauge No. 15.

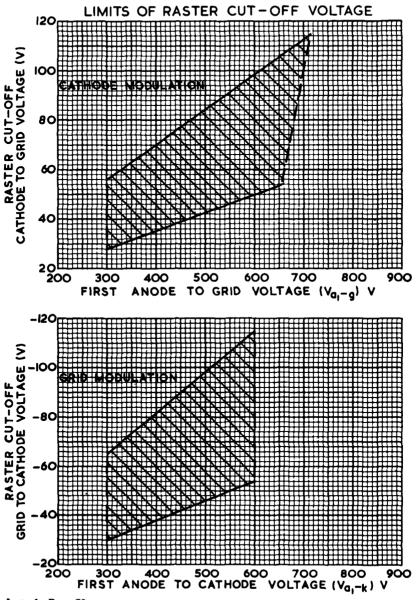
Thorn Radio Valves and Tubes Limited

BRIMAR

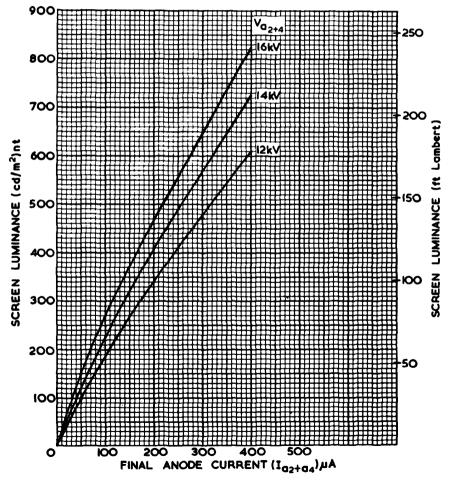

M24-121..


All dimensions in mm

Not to be scaled


Issue 1, Page 4

Issue 1, Page C1

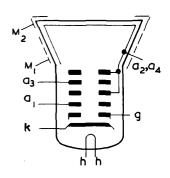

Issue 1, Page C2

Issue 1, Page C3

M24 - 121W

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4 x 3 ASPECT RATIO

Issue 1, Page C4


M24-130.

PRELIMINARY DATA

GENERAL

Rectangular face, 24 cm, 90° diagonal Bonded face-plate treated to reduce specular reflection. Ruggedised gun construction Rimguard reinforced envelope with mounting lugs Flying lead connections for base and anode Electrostatic focus, magnetic deflection Grey glass, 32% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating Heater voltage Vh 6.3 V

Ih

ABSOLUTE RATINGS

Heater current

- Voltages referred to cathode

А

0.3

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage range	Va3(max)	<u>+</u> 700	v
Maximum first anode voltage	Val(max)	600	v
Minimum first anode voltage	$v_{a1(min)}$	200	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0†	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	250	v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

 \dagger A 10 k\Omega grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with GJ phosphor (M24-130GJ) giving a yellowish-green trace of medium persistence. Other phosphor screens can be made available to special order.

This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

BRIMAR

Page 1, Issue 1.

M24-130..

INTER - ELECTRODE CAPACITANCES

Maximum cathode to all	c _k -all (max)	5.0	pF
Maximum grid to all	^c g-all (max)	16	pF
Minimum anodes 2 and 4 to coating M_1	^c a2+a4-M1 (min)	550	pF
Minimum anodes 2 and 4 to metal M_2	^c a2+a4-M2 (min)	100	pF

* Flying leads capacitance balanced out.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

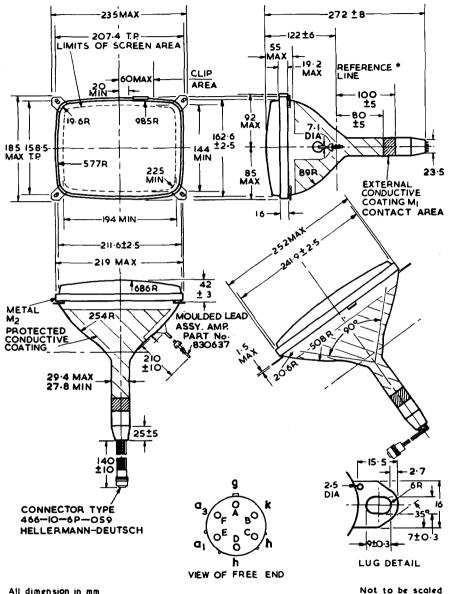
Second and fourth anode voltage	v_{a2+a4}	12	to 16	kV
First anode voltage	v _{al}		400	v
Third anode voltage range for focus	v _{a3}	0	to 400 §	v
Grid to cathode voltage for cut-off of raster	vg	-38	to -82	v
Typical line width at $50 \mu A$ (Shrinking ra	ister)		0.2	mm

S The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage range of at least -100V to +500V will be required.

MOUNTING

If a mask is used with this tube it should be flexible enough to take up small variations in fixing and bulb contours.

The bolts for mounting the tube must lie within circles of 4 mm diameter centred on the true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.

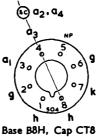

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

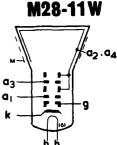
The metal frame (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M1 and M2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - 2.2kg

Page 2, Issue 1.


All dimension in mm


* Determined by reference line gauge No. 15

Page 3, Issue 1.

Monitor Tube

Maintenance Type

GENEI	h h		
Rectangular Face —11 in. Diagonal Aluminised Screen—Silver Activated Phosphor Grey Glass —58% Transmission (approx) External Conduc	Straight Gun 🗕	–90° Diagonal –Magnetic Defle –Non Ion Trap	ction
Heater Voltage	V _h 11·5	V	
Heater Current	ا _h 0.15 ا	A	
DESIGN CENTI	RE RATINGS		
Maximum Second and Fourth Anode Voltage	V _{a2,a4(max)}	18*	k٧
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	kV
Maximum Third Anode Voltage	V _{a3(max)}	±700	V
Maximum First Anode Voltage	V _{a1(max)}	500	Ý
Maximum Negative Grid Voltage	-V _{g(max)}	200	v
Minimum Negative Grid Voltage	-V _{g(min)}	1.0	v
Maximum Heater to Cathode Voltage,	V _{h-k(max)}		•
Heater Negative (d.c.)		200	V
* 18kV is a design centre rating, the absolute All voltages referred to cathode.	rating of 20kV must r	ot be exceeded.	
INTER-ELECTRODE	CAPACITANCES	1 6	
Grid to all	Cg-all	7.0 8.5	- 5
Cathode to all		3.0 3.5	pF pF
Anode 2 and Anode 4 to External Conductive Coating (approx) ¶ Holder capacitance balanced out.		700	рг pF
§ Total capacitances including a typical B8H he	older.		
TYPICAL OPERATION—Grid Modula	tion (all voltages refe	rred to cathode)	
Second and Fourth Anode Voltage	V _{a2,a4}	14	k٧
First Anode Voltage	Val	400	Ň
Third Anode Voltage for Focus (Range)	V _{a3}	0 to 400	v
Grid to Cathode Voltage for cut-off of raster	Vg	-40 to -76	v
Average Peak to Peak Modulating Voltage (Final Anode current= 200μ A)	· t		v
v		27	¥

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.


Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

DATA (ð

Monitor Tube

All dimensions in mm

Not to be scaled

* During the face scaling operation the glass in this area (total 22mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).

† Determined by T.D.S. Reference Gauge No. 91-15 (See T.D.S. 5-0-91-15)

There is an annular region of anti-corona coating with diameters of 25 mm and 60 mm surrounding the CT8 cap, the tube should not be handled in this region. The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and the final anode may be used to provide smoothing for the e.h.t. supply.

Issue 3, Page 2

M28-12.

(GENERAL].	r			
I I	Rectangular face,	28 cm, 9	0° diag	onal		11/		7/	
	Rimguard III reinfo		elope		M2			I_{I}	
	ntegral mounting l				1			The	а.
	Electrostatic focus		ic defle	ection	M ₁ -			/ 42,	4
-	luminised screen	•			a.				
	Frey glass, 58% tr		on (app	rox.)	43				
1 -	10 mm neck diame								
j	External conductiv	e coating			1		╵╺┓ _┥		9
ŀ	leater voltage	v _h	11	v	k				•
E	leater current	In	75	mA			\vdash		
1		4							
1					1	0	1		

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	14*	kV
Minimum second and fourth anode voltage	Va2+a4(min)	7.5 .	kV
Maximum third anode voltage	Va3(max)	-50 to + 500	v
Maximum first anode voltage	Val(max)	350	V
Maximum negative grid voltage	-Vg(max)	100	v
Maximum peak negative grid voltage	^{-v} g(pk)max	350†	V
Maximum positive grid voltage	vg	05	V
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	110	v
Maximum peak heater to cathode voltage, heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* Ig2+g4 = 0

- † Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- § A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M28-12W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

DATA [& MO

M28 – 12..

Data Display or Monitor Tube

INTER - ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0*	pF
Grid to all	^c g-all	4.0*	pF
Anodes 2 and 4 to coating M_1 (approx.)	^c a2+a4-M1	600	pF
Anodes 2 and 4 to shell M_2 (approx.)	^c a2+a4-M2	125	pF

* Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation	on (voltage re	elerred to cathoo	ie)	
Second and fourth anode voltage	v _{a2+a4-k}	11	13	kV
First anode voltage	V _{al-k}	25 0	350	v
Third anode voltage range for focus	V _{a3-k}	0 to 350	50 to 400	v
Grid to cathode voltage for cut-off of raster	v _{g-k}	-35 to -69	-46 to -91	v

Canta --- dulation (Claisson notemand to anthoda)

TYPICAL OPERATION - Cathode modulation (Voltage referred to grid)

Second and fourth anode voltage	V _{a2+a4-g}		11		13	kV
First anode voltage	v _{a1-g}		250		350	v
Third anode voltage range for focus	Va3-g	0	to 350	50	to 400	v
Cathode to grid voltage for cut-off of raster	$\mathbf{v}_{\mathbf{k}-\mathbf{g}}$	32	to 58	44	to 80	v

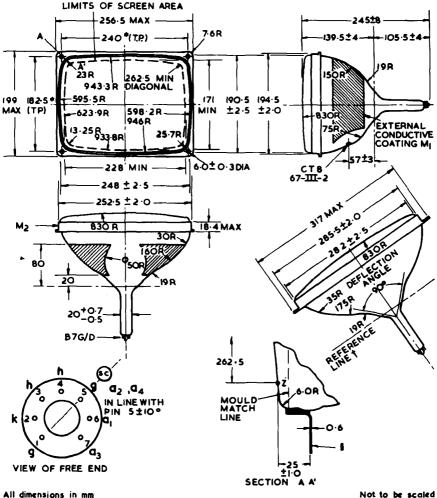
MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and faceplate contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.


The metal shell (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

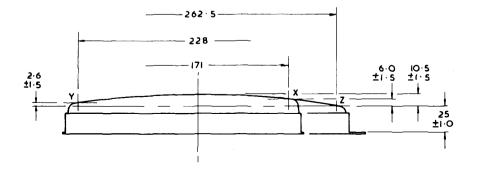
When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - 2.2 kg

Issue 1, Page 2

M28-12..

Not to be scaled


4 DAT/

20

- The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 20 (See T.D.S. No. 5-0-91-20)
- 5 Maximum departure from flatness of the rim is 1.0 mm.

Issue 1, Page 3,

M28 - 12..

All dimensions in mm

Not to be scaled

Characteristic curves as M31-190..

Page 4, Issue 2.

M28-13..

a

GENERAL				۲ T
Rectangular face, Rimguard III reinf Integral mounting	orced en		onal	M ₂
Electrostatic focus			tion	M
Straight gun. Alur				a3
Grey glass, 58% t			rox.)	-
29.4 mm maximun	n neck di	ameter	rox.)	a,
Grey glass, 58% t 29.4 mm maximun External conductiv	n neck di	ameter	rox.)	aı
29.4 mm maximun	n neck di	ameter	rox.) V	a _l k

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18 †	kV
Minimum second and fourth anode voltage	Va2+a4(min)	12	kV
Maximum third anode voltage	V _{a3(max)}	<u>+</u> 700	v
Maximum first anode voltage	Val(max)	50 0	v
Maximum negative grid voltage	^{-V} g(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	200	v

[†] The absolute rating of 20kV must not be exceeded.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M28-13W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

* This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

M28-13.

Data Display or Monitor Tube

ŧ

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0	3.5	рF
Grid to all	^c g-all	7.0	8.5	рF
Anodes 2 and 4 to coating M_1 (approx.)	^c a2+a4-M1	60	00	ρF
Anodes 2 and 4 to frame M_2 (approx.)	c _{a2+a4} -M2	12	25	pF

* Holder capacitance balanced out.

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

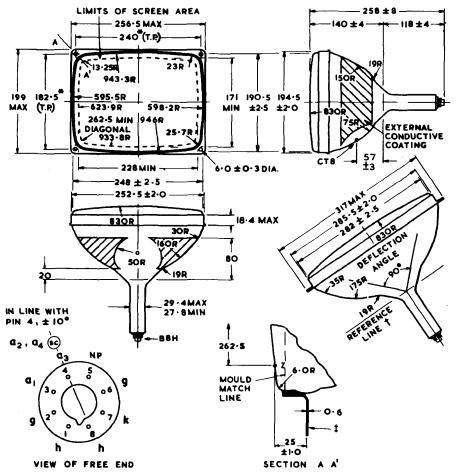
Second and fourth anode voltage	v_{a2+a4}		14		kV
First anode voltage	v _{al}		400		v
Third anode voltage range for focus	v _{a3}	0	to	400	v
Grid to cathode voltage for cut-off of raster	v _g	-40	to	-76	v
Average peak to peak modulating voltage for $200\mu A$ final anode current	•		29		v
Typical line width [§] at 100 ft-L (343 nt).	155μ Α		0.3		mm
§ Using shrinking raster method.					

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region 'of anti-corona coating with external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

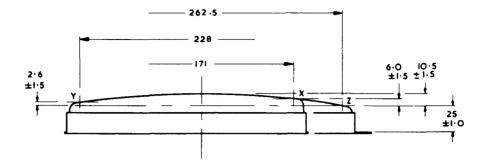

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 2.1 kg

Issue 2, Page 2



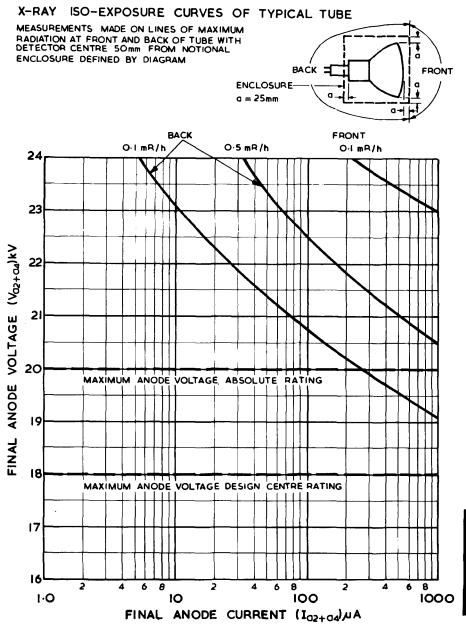
All dimensions in mm

Not to be scaled

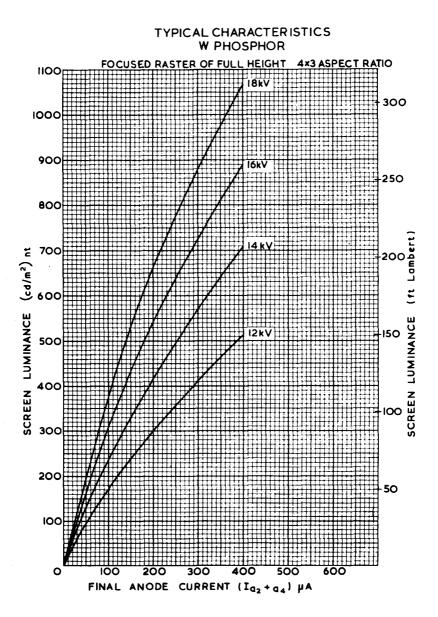
- * The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15 (See T.D.S. No. 5-0-91-15).
- 1 Maximum departure from flatness of the rim is 1.0 mm.

DATA DISPLAY & MONITOR TUBES

All dimensions in mm


Not to be scaled

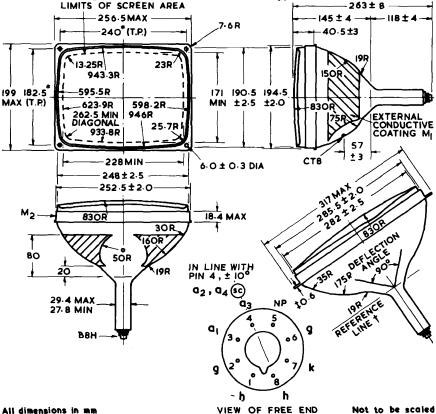
Issue 2, Page 4


Ч

8

DATA DISP M

Page C1, Issue 1.



Issue 2, Page C1

M28-131..

MAINTENANCE TYPE

The M28-131.. is the M28-13.. with a bonded face-plate treated to reduce specular reflections. For general and electrical data see tube type M28-13..

* The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.

- † Determined by reference line gauge No. 15.
- ‡ Maximum unflatness of the rim is 1.0 mm.

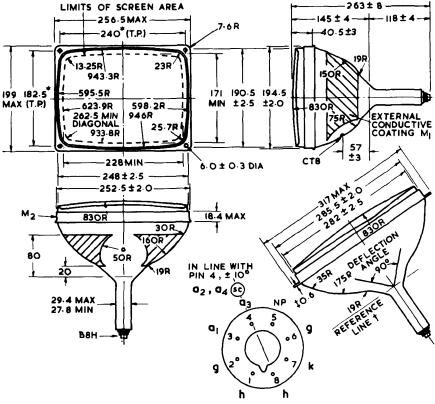
PHOSPHOR SCREEN

This type is usually supplied with GR phosphor (M28-131GR) giving a yellowish-green trace of very long persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 2.5 kg

Thorn Radio Valves and Tubes Limited

Page 1, Issue 4.



DATA DISPLAY & MONITOR TUBES

M28-132..

Data Display or Monitor Tube

The M28-132.. is the M28-13.. with a tinted bonded face-plate treated to reduce specular reflections. The total centre glass transmission is approximately 35%. For other general and electrical data see tube type M28-13..

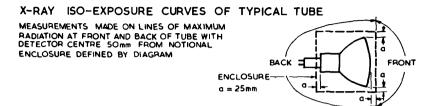
All dimensions in mm

VIEW OF FREE END Not to be scaled

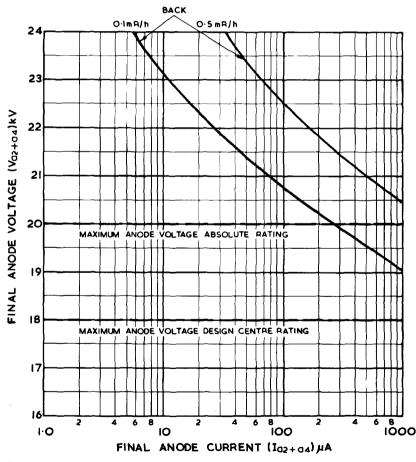
- The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15. (See T.D.S. No. 5-0-91-15)
- 1 Maximum unflatness of the rim is 1.0 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M28-132GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

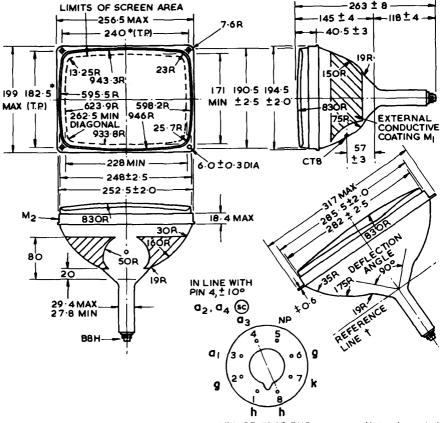

TUBE WEIGHT (approximate) 2.5 kg

Thorn Radio Valves and Tubes Limited


Issue 2, Page 1,

M28-132..

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED OI $m\,R/h$



Page C1, Issue 1.

DATA DISPL & MONITO TUBES M28-133..

Data Display or Monitor Tube

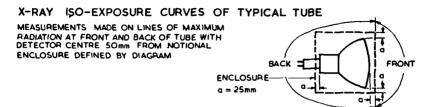
The M28-133.. is the M28-13.. with a tinted bonded face-plate treated to reduce specular reflections. The total centre glass transmission is approximately 18%. For other general and electrical data see tube type M28-13..

All dimensions in mm

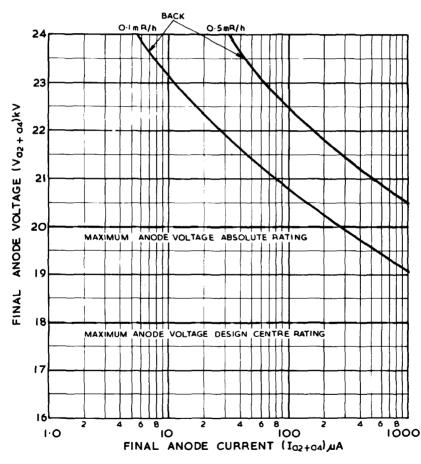
VIEW OF FREE END

Not to be scaled

- * The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15
- ‡ Maximum unflatness of the rim is 1.0mm.


PHOSPHOR SCREEN

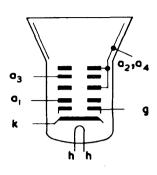
This type is usually supplied with GH phosphor (M28-133GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT (approximate) 2.5 kg.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O Im R/h


DATA DISPL/ & MONITOF TUBES

M31-100..

Data Display or Monitor Tube

Maintenance Type

Rectangular face, Bonded faceplate (reflections. Alum Electrostatic focus 38 mm maximum r	treated to r inised scre , magnetic neck diame	educe spec en. deflection ter	
Grey glass, 50% tr Straight gun, non i		n (appr ox.)	
		n (approx.) 6.3	v

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage	Va3(max)	+ 800	v
Maximum first anode voltage	V _{a1(max)}	800	v
Maximum negative grid voltage	-Vg(max)	180	v
Maximum positive grid voltage	Vg(max)	0	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	200	v

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

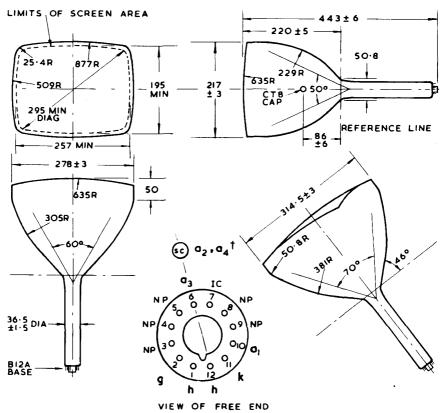
PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-100GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

The M31-100GH is also known as the CV6237.

Thorn Radio Valves and Tubes Limited

Issue 4, Page 1


TYPICAL OPERATION - Grid modulation,	voltages refe	rred to cath	ode	
Second and fourth anode voltage	Va2+a4		12	kV
First anode voltage	v _{a1}		400	v
Third anode voltage range for focus	V _{a3}	0	to +400	v
Grid to cathode voltage for cut-off of raster	vg	-30	to -70	v
INTER-ELECTRODE CAPACITANCES		*	+	
Cathode to all	c _{k-all}	3.5	4.5	pF
Grid to all	^c g-all	7.0	7.5	pF

* Holder capacitance balanced out.

† Total capacitance including a typical holder.

TUBE WEIGHT (approximate) - 4.4 kg

Issue 4, Page 2

All dimensions in mm

Not to be scaled

* Determined by reference line gauge No. 12 (See T.D.S. No. 5-0-91-12)

† Anode a_2 , a_4 cap in line with pin 6, tolerance $\pm 10^\circ$

The socket for the base should not be rigidly mounted, it should have flexible leads and be allowed to move freely.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

Issue 4, Page 3

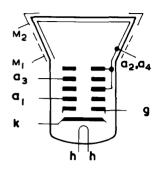
Maintenance Type

The M31-101.. is the M31-100.. with an increased neck length to permit the use of an additional high frequency deflector coil ("write" coil) for data display applications. The neck length of this tube is 264 mm making the overall length 484 ± 6 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-101GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

For all other data please see M31-100.. data sheets.



Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

M31-120.

1 cm (12 in) rced envelo		onal
ugs, 20 mm magnetic o	dia.necl	k
$\mathbf{v}_{\mathbf{h}}$	11	v
Ih	140	mA
	magnetic of ansmission on trap coating V _h	magnetic deflection ansmission (approx.) on trap coating Vh 11

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4 (max)}	13.5†	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10.5*	kV
Maximum third anode voltage - range	Va3(max)	-50 to +500	v
Maximum first anode voltage	Val(max)	350	v
Maximum negative grid voltage	-V _{g(max)}	100	v
Maximum peak negative grid voltage	-vg(max)	350\$	v
Maximum positive grid voltage	Vg(max)	O¶	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage, heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

All voltages referred to cathode

† The absolute rating of 16.5 kV must not be exceeded.

- * Absolute minimum rating is 8.5 kV.
- § Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- \P A 10 k\Omega grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- ** This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M31-120W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M31-120..

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.0*	pF
Grid to all	^c g-all	4.0*	pF
Anodes 2 and 4 to coating $M_{1(min.)}$	^c a2+a4-M1(min.)	450	pF
Anodes 2 and 4 to shell M_2 (approx.)	^c a2+a4-M2	200	pF
* Holder capacitance balanced out.			

TYPICAL OPERATION - Grid	modulation (Voltages re	ferred	to cathode)	•
Second and fourth anode voltage	$v_{a2+a4-k}$		12	kV
First anode voltage	Val-k		250	v
Third anode voltage range for focu	s V _{a3-k}	0	to 350	v
Final anode current (peak)	ⁱ a2+a4(pk)		250	$\mu \mathbf{A}$
Average peak to peak picture modulating voltage			33	v
Grid to cathode voltage for cut-off of raster	v_{g-k}	-3	5 to -69	v
TYPICAL OPERATION -	Cathode modulation (Vo	oltage r	eferred to g	rid)

Second and fourth anode voltage	$v_{a2+a+-g}$		12	kV
First anode voltage	Val-g		250	v
Third anode voltage range for focus	V _{a3-g}	0	to 350	v
Final anode current (peak)	ⁱ a2+a4 (pk)		250	$\mu \mathbf{A}$
Average peak to peak picture modulating voltage			26	v
Cathode to grid voltage for cut-off of raster	v _{k-g}	32	to 58	v

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

.

Page 2, Issue 2.

M31-120.

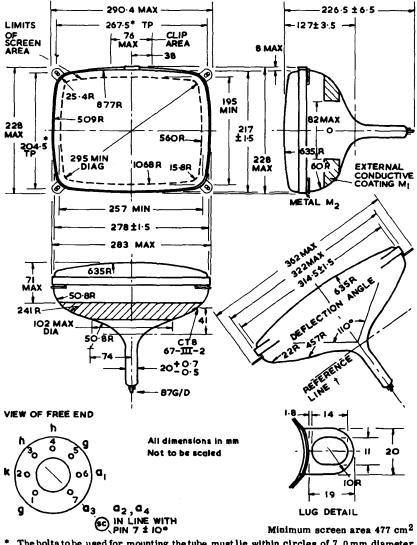
PICTURE CENTRING

	m magnet flux density at ck should not be less than			15	Gs
	m distance of centre of m from reference line	agnetic		44	mm
DEFLEC	TION ANGLES				
Height	80°	Width	99°		Diagonal 110°

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal shell (M_2) should be connected to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example $2 M\Omega$.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 3.0 kg (6.5 lb)



* The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.

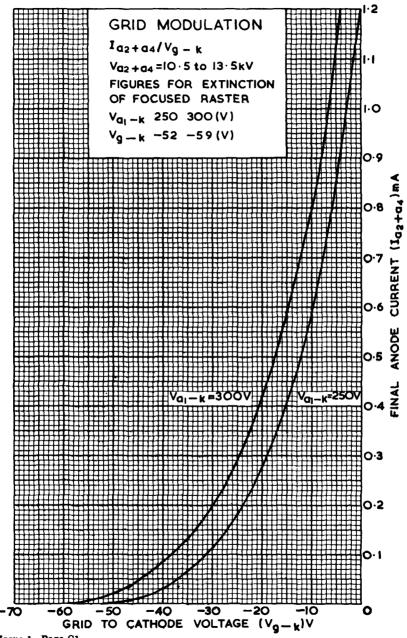
† Determined by reference line gauge No. 22. (See T.D.S. 5-0-91-22)

Issue 1, Page 4

DATA DISPLAY & MONITOR TUBES

74.5 ---- I ------ MAXIMUM DIMENSIONS FOR CONE PROFILE CO-ORDINATES

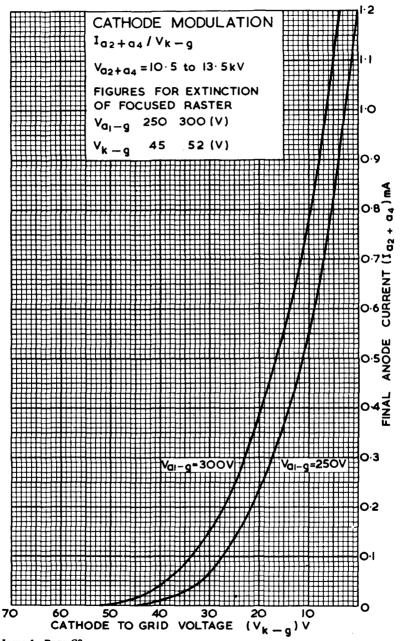
Reference Plane No.	0° Major	10°	20°	30*	Diag.	40*	50*	60°	70°	80°	90° Minor
1	140.2	141.5	146.0	154.0	157.8	154.6	136.7	123.5	115.5	111.0	109.6
2	137.8	139.2	143.4	151.1	154.1	151.5	134.3	121.6	113.7	109.4	108.1
3	133.9	134.8	137.8	143.0	145.3	143.2	129.4	118.4	111.1	107.3	106.0
4	127.3	127.7	129.3	132.0	133.2	132.1	122.3	113.2	107.2	103.8	102.6
5	116.4	116.8	117.7	.119.2	120.0	119.3	112.8	105.9	101.5	98.6	98.1
6	103.0	103.2	103.8	104.8	105.2	104.7	101.5	97.0	94.2	92.5	91.9
7	87.0	87.1	87.2	87.4	87.8	87.1	85.9	84.6	83,6	83.0	82.8
8	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3


Issue 1, Page 5

67.5

- 2

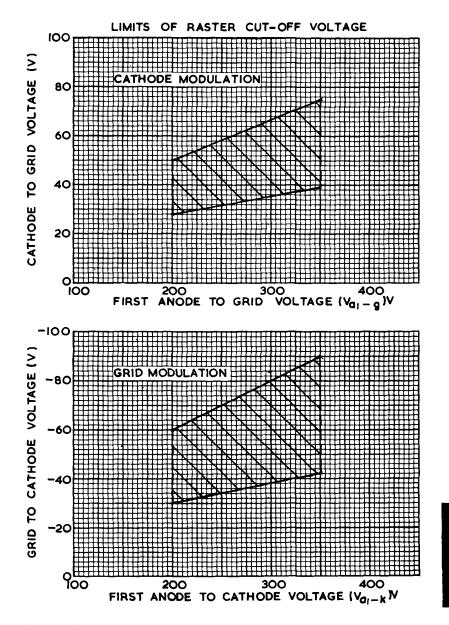
I


M31 - 120..

Issue 1, Page C1

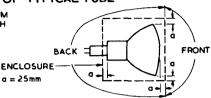
M31 – 120.

Data Display or Monitor Tube

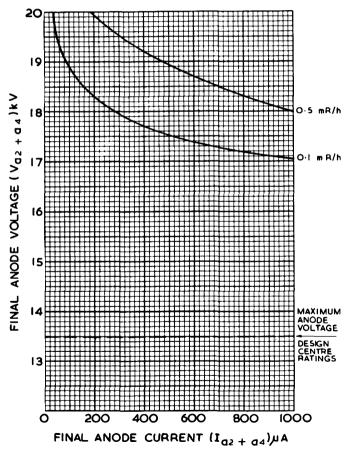


Issue 1, Page C2

M31-120..


ATAD

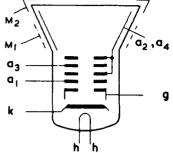
20


X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED OI mR/h

RADIATION FROM BACK OF TUBE



Page C4, Issue 1.

M31-182..

Maintenance Type

GENERAL Rectangular face, 12 inch, 110° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen. Bonded face-plate a3 Face treated to reduce reflections Grey glass, 50% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating Heater voltage Vh 6.3 v Heater current Ih 0.3* А

DESIGN CENTRE RATINGS

- Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5†	kV
Minimum second and fourth anode voltage	V _{a2+a4(min)}	10.5	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	v
Maximum first anode voltage	Val(max)	550	v
Maximum negative grid voltage	-Vg(max)	150	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400	v
Maximum positive grid voltage	Vg(max)	0¶	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	v _{h-k(pk)} max	400§	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* In a series heater chain the CRT should always be connected at the chassis end.

† The absolute rating of 16.5 kV must not be exceeded.

- ¶ A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LG phosphor (M31-182LG) giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

M31-182..

Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	+	
Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	^c g-all	6.5	8.0	pF
Anodes 2 and 4 to coating M_1 (min)	^c a2+a4-M1 (min)		450	pF
Anodes 2 and 4 to frame M ₂ (approx.)	^c a2+a4-M2		200	pF
* Holder capacitance balanced out.				
† Total capacitances including a typical	B8H holder.			

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

Second and fourth anode voltage	Va2+a4-k	1	12	kV
First anode voltage	V _{a1-k}	4	100	v
Third anode voltage range for focus	V _{a3-k}	0 t	0 to 400	
Final anode current (peak)	ⁱ a2+a4(pk)	200	350	μA
Average peak to peak picture modulating voltage		29	36	v
Grid to cathode voltage range for cut-off of raster	v _{g-k}	-40 1	to -77	v
LG screen persistence to 10% (approx.	.)	:	3.0	8
TYPICAL OPERATION - Cathode mod	dulation, voltages	referred to	grid	

TYPICAL OPERATION - Callode mod	ulation, voltages	Teleffed to a	5110	
Second and fourth anode voltage	V _{a2+a4-g}	1	12	
First anode voltage	V _{al-g}	4	400	
Third anode voltage range for focus	V _{a3-g}	0 t	o 400	v
Final anode current (peak)	ⁱ a2+a4(pk)	200	350	μ A
Average peak to peak picture modulating voltage		25	31	v
Cathode to grid voltage range for cut-off of raster	v _{k-g}	36 to 66		v
LG screen persistence to 10% (approx.)	:	3.0	8

The LG screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

Issue 3, Page 2

PICTURE CENTRING

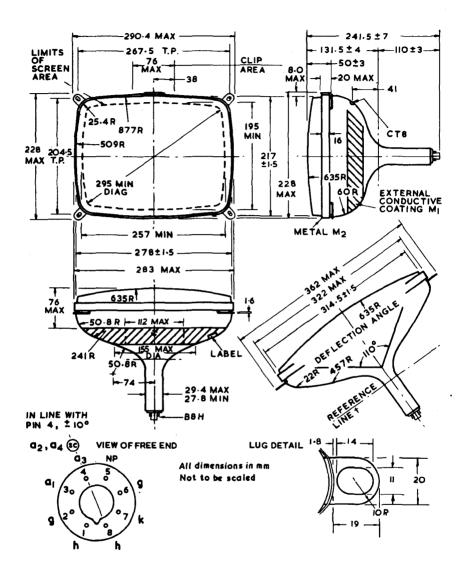
Maximum magnet flux density at centre of neck should not be less than			15	Gs	
Maximum distance of centre of magnetic field from reference line			53	mm	
DEFLEC	TION ANGLES				
Height	80°	Width	99°	Diagonal	110°

MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The bolts to be used for mounting must lie within circles of 6.5 mm diameter centred on the true positions of the lug holes. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.


The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 3.4 kg (7.5 lb)

DATA DISPLAY & MONITOR TUBES

† Determined by reference line gauge No. 16. (B.S.RL4 : IEC67-IV-3 : JEDEC126) Minimum screen area 477 cm²

Issue 5, Page 4

M31-184..

				٦
GENERAL				7
Rectangular face, 1 Rimguard III reinfo			onal	M ₂
Integral mounting lu				M ₁ // 02,04
Electrostatic focus, Aluminised screen	magneti	c deflect	ion	
Grey glass, 50% tra		on (appro:	x.)	
Straight gun, non io	n trap			
External conductive	coating			
Heater voltage	$\mathbf{v_h}$	6.3	v	$ \cdot - \tau \cap J $
Heater voltage	Ih	0.3*	A	
				l h'h

DESIGN CENTRE RATINGS - Voltages refe	erred to cathode		
Maximum second and fourth anode voltage	Va2+a4(max)	16†	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10.5	kV
Maximum third anode voltage	V _{a3(max)}	+1000 to -500	v
Maximum first anode voltage	Val(max)	550	v
Maximum negative grid voltage	-Vg(max)	150	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400**	v
Maximum positive grid voltage	Vg(max)	0¶	v
Maximum heater to cathode voltage heater negative (d.c.)	v _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400§	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* In a series heater chain the CRT should always be connected at the chassis end.

- [†] The absolute rating of 18 kV must not be exceeded.
- ¶ A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- S During a warming-up period not exceeding 45 seconds.
- ** Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.

PHOSPHOR SCREEN

This type is usually supplied with a W phosphor (M31-184W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

INTER-ELECTRODE CAPACITANCE	s	*	+	
Cathode to all	ck-all	3.0	3.5	ρF
Grid to all	^c g-all	6.5	8.0	рF
Anodes 2 and 4 to coating M_1 (min)	$c_{a2+a+-M1}(min)$		450	ρF
Anodes 2 and 4 to shell M_2 (approx.)	(a2 a 4 - M2		200	рF
* Holder capacitance balanced out.				
† Total capacitances including a typic	al B8H holder.			
TYPICAL OPERATION Grid modula	tion (Voltage refer	red to c	athode)	
Second and fourth anode voltage	Va2-a4-k		15	kV
First anode voltage	V _{al-k}		400	v
Third anode voltage range for focus	v_{a3-k}	0	to -100	v
Final anode current (peak)	ⁱ a2-a4(pk)	200	350	$\mu \mathbf{A}$
Average peak to peak picture modulating voltage		29	36	v
Grid to cathode voltage for cut-off of raster	v_{g-k}	- 4	0 to -77	v
TYPICAL OPERATION Cathode mo	dulation (Voltage re	ferred	to grid)	
Second and fourth anode voltage	$v_{a2}a_{4-g}$		15	kV
First anode voltage	V _{al-g}		400	v
Third anode voltage range for focus	V _{a3-g}	0	to 400	v
Final anode current (peak)	ia2 at	200	350	$\mu \mathbf{A}$
Average peak to peak picture modulating voltage		25	31	v
Cathode to grid voltage for cut-off of raster	$\mathbf{v}_{\mathbf{k}-\mathbf{g}}$	36	to 66	v

This tube meets the requirements for intrinsically safe tubes laid down in the section of I, E, C. Publication 65 dealing with implosion.

Page 2, Issue 2.

M31-184...

PICTURE CENTRING

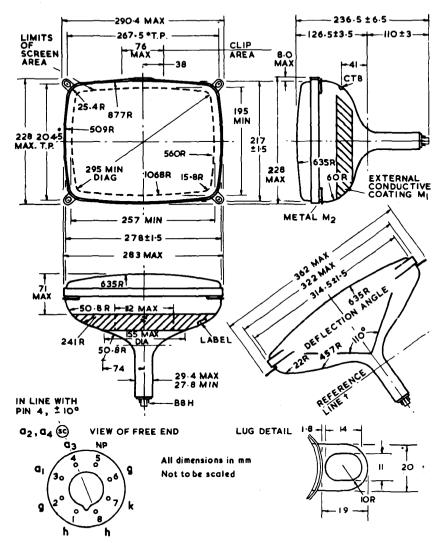
	t flux density at centre not be less than	15		Gs
Maximum distand field from refe	ce of centre of magnetic erence line	53		mm
DEFLECTION AN	IGLES			
Height 80°	Width	99°	Diagonal	110.

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

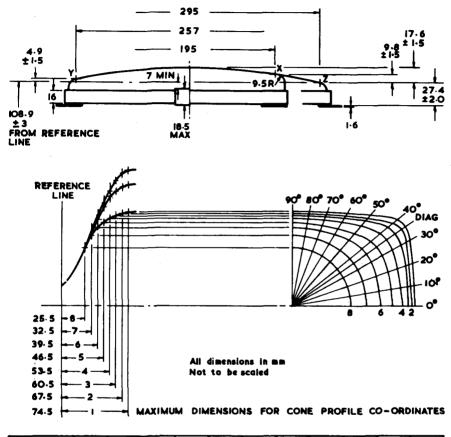

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal rimband (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c. / d.c. equipment, for example $2M\Omega$.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 3.0 kg (6.5 lb)

DATA DISPLAY & MONITOR TUBES

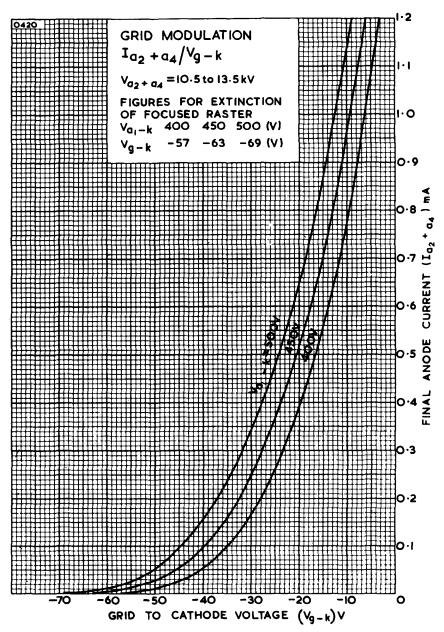


- * The bolts to be used for mounting the tube must lie within circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No.16. (B.S.RL4 : IEC67-IV-3 : JEDEC126)

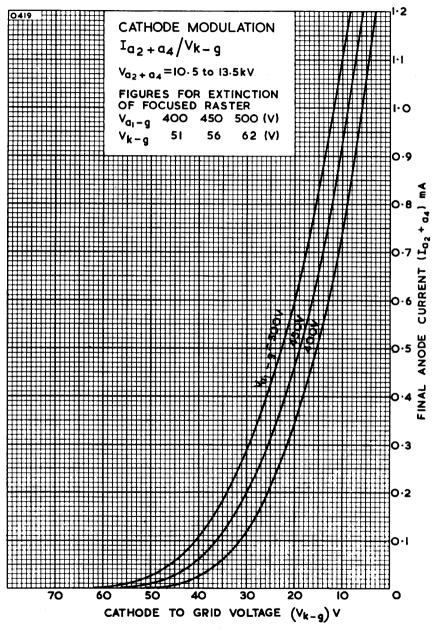
Minimum screen area 477 cm²

Issue 2, Page 4

0

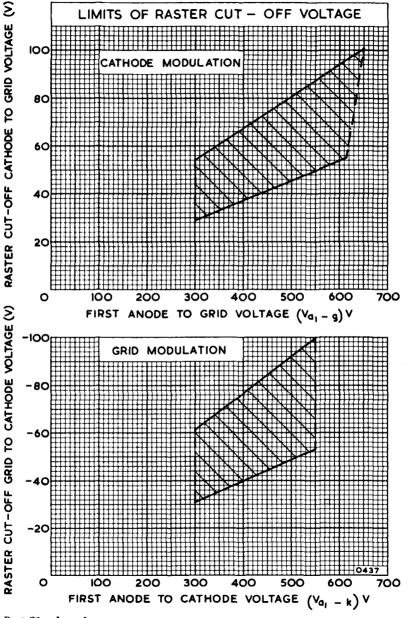


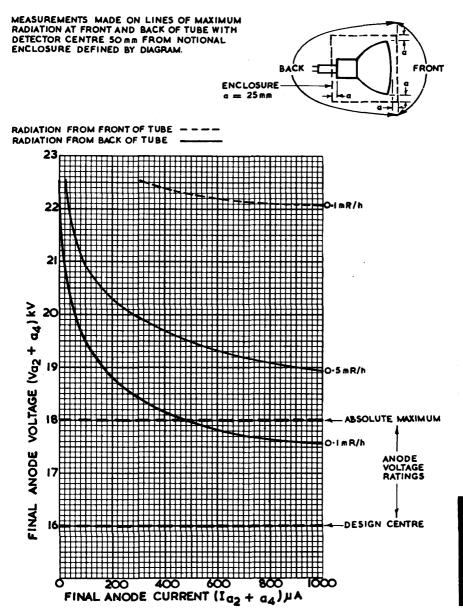
Reference Plane No.	• 0° Major	10.	20°	30°	Diag.	40°	50°	60°	70*	80°	90° Minor
1 2	140.2 137.8										
3	133.9		-								
4	127.3								-		
5	116.4										
6	103.0	103.2	103.8	104.8	105.2	104.7	101.5	97.0	94.2	92.5	91.9
7	87.0	87.1					85.9		83.6		
8	68.3	68.3	68.3	68.3	6 8.3	68.3	68.3	68.3	68.3	68.3	68.3

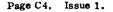

Issue 1, Page 5

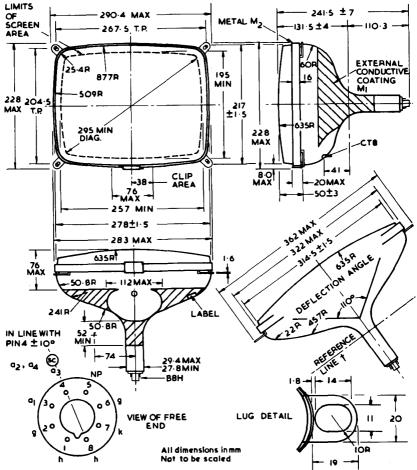
M31-184..

Monitor Tube


Page C1, Issue 2.


DATA DISPL & MONITO TUBES


M31-184..


Page C3, Issue 1.

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

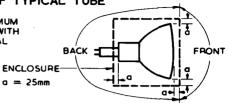
The M31-185.. is the M31-182.. with a tinted bonded faceplate giving a total glass transmission of approximately 15%. The M31-185.. has external conductive coating dimensions as shown below which also differ from the M31-182..

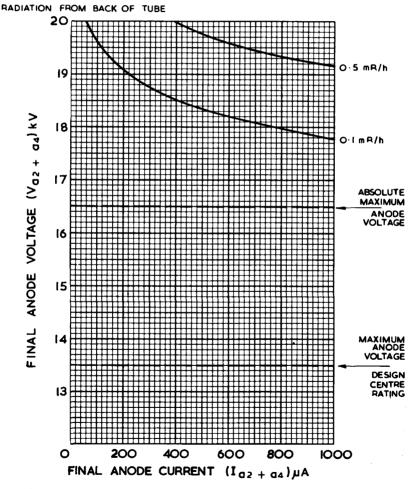
PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-185GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

† Determined by reference line gauge No.16. (B.S.RL4: IEC67-IV-3: JEDEC126) Minimum screen area 477 cm²

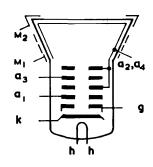
Thorn Radio Valves and Tubes Limited


Issue 2, Page 1


M31-185..

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONTAND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM


UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED OI I m R/h

Page C1 Issue 1.

ATA DISPLAY & MONITOR TUBES

GENERAL			
Rectangular face, : Rimguard III reinfo Integral mounting I Electrostatic focus Aluminised screen Grey glass, 50% tr Straight gun, non id External conductive	orced envel ugs, 20 mr , magnetic ransmission on trap	ope** n dia. ne deflectio	ck na
Heater voltage	$\mathbf{v_h}$	11	v
Heater current	Ih	75	mA

DESIGN CENTRE RATINGS Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	13.5†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10.5*	kV
Maximum third anode voltage - range	Va3(max)	-50 to +500	v
Maximum first anode voltage	V _{al (max)}	350	v
Maximum negative grid voltage	-Vg(max)	100	v
Maximum peak negative grid voltage	-vg(max)	350§	v
Maximum positive grid voltage	Vg(max)	PO T	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage, heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

All voltages referred to cathode

- † The absolute rating of 16.5kV must not be exceeded.
- Absolute minimum rating is 8.5 kV.
- § Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- 1 A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- ** This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-190GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

BRIMAR

Page 1, Issue 1.

M31-190..

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.0*	pF
Grid to all	^c g-all	4.0*	pF
Anodes 2 and 4 to coating M_1	$c_{a2+a4-M1}$	700	pF
Anodes 2 and 4 to shell M_2 (approx.)	^C a2+a4-M2	200	pF
* Holder capacitance balanced out.			

TYPICAL OPERATION - Grid modulation (Voltages referred to cathode)

Second and fourth anode voltage	V _{a2+a4-k}	12	kV
First anode voltage	v _{a1-k}	250	v
Third anode voltage range for focus	V _{a3-k}	0 to 350	v
Average peak to peak picture modulating voltage up to 250µA		33	v
Grid to cathode voltage for cut-off of raster	V _{g-k}	-35 to -69	v
TYPICAL OPERATION - Cathode mod	lulation (Voltages	referred to grid)	
Second and fourth anode voltage	V _{a2+a4-g}	12	kV
First anode voltage	V _{a1-g}	250	v
Third anode voltage range for focus	v _{a3-g}	0 to 350	v
Average peak to peak picture modulating voltage up to 250µA		26	v
Cathode to grid voltage for cut-off of raster	v_{k-g}	32 to 58	v

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Page 2. Issue 1

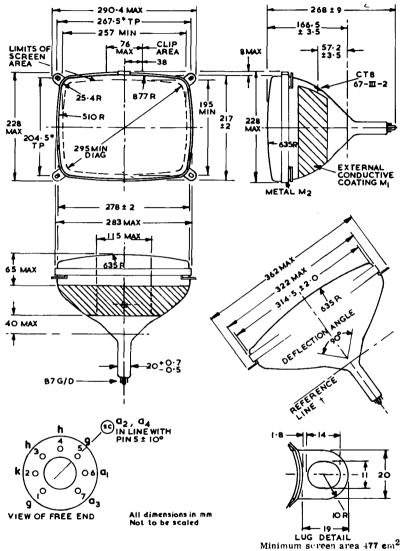
M31-190...

MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and bulb contours.

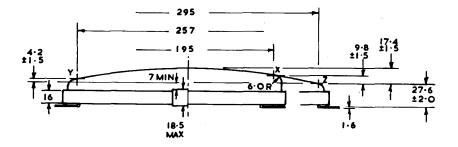
There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 36 mm diameter which is centred on the perpendicular from the centre of the face.

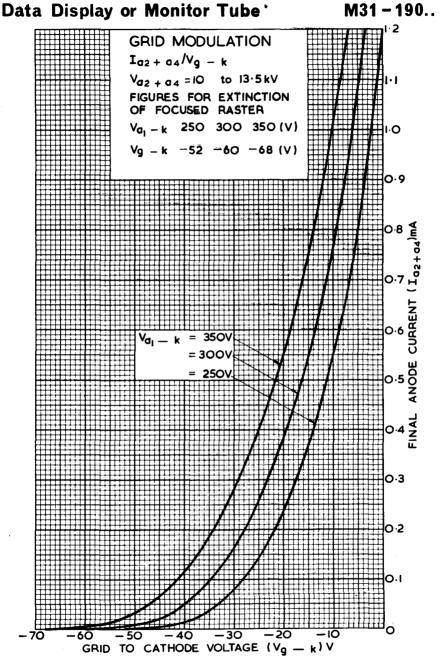

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal shell (M_2) should be connected to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.


TUBE WEIGHT (approximate) - net 3.0 kg (6.5lb)

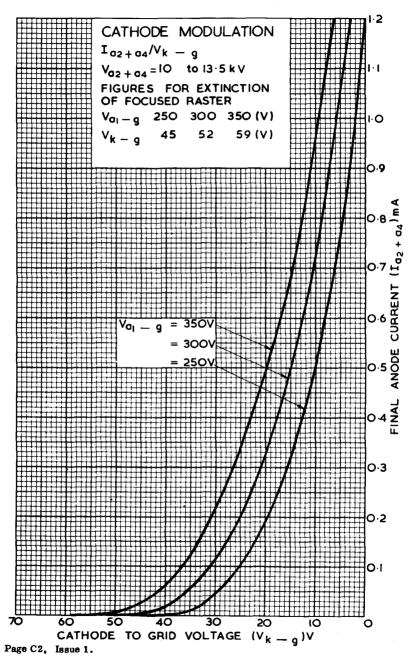
Page 3, Issue 1



- * The holts to be used for mounting the tube must lie within circles of 7.0mm diameter centred on these true positions. One of the four lugs may deviate 2.0mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 20. (See T.D.S. 5-0-91-20)

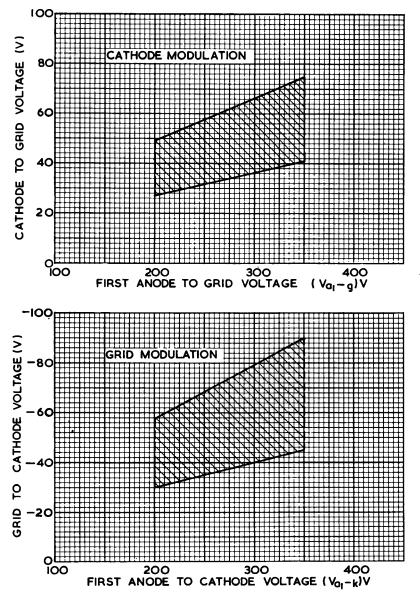
Page 4, Issue 1

Page 5, Issue 1.

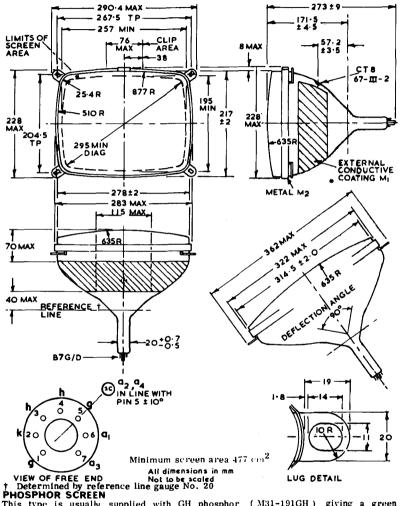


Page C1, Issue 1.

)ATA DISPLA & MONITOR TUBES


M31-190..

Data Display or Monitor Tube

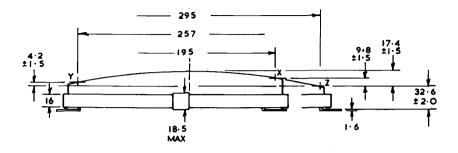

Data Display or Monitor Tube M31-190..

LIMITS OF RASTER CUT-OFF VOLTAGE

Page C3, Issue 1.

The M31-191.. is the M31-190.. with a tinted bonded face-plate giving a total glass transmission of approximately 15% and the surface treated to reduce specular reflections.

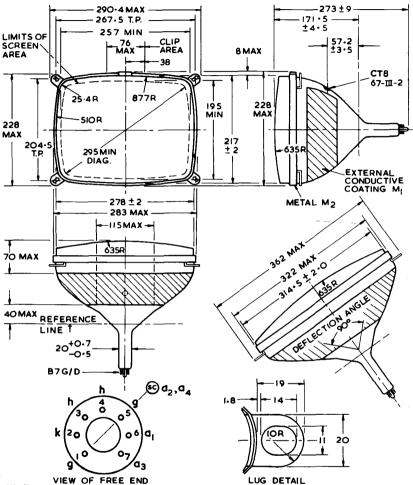
This type is usually supplied with GH phosphor (M31-191GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT (approximat

(approximate) - net 3.6 kg

Thorn Radio Valves and Tubes Limited

Page 1. Issue 2.



MOUNTING

The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0mm maximum from the plane through the other three lugs.

Page 2, Issue 1

The M31-192.. is the M31-190.. with a bonded face-plate giving a total glass transmission of approximately 50%.

All dimensions in mm

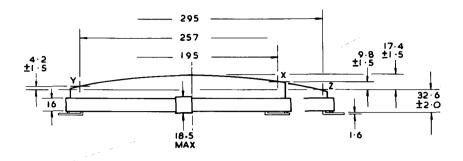
Minimum screen area 477 cm²

Not to be scaled

t Determined by reference line gauge No. 20

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M31-192W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT

(approximate)-net 3.6 kg

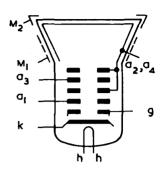
Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

BRIMAR

MOUNTING

The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.


Page 2, Issue 1.

M31-212..

Data Display Tube

PRELIMINARY DATA

GENERAL					
specifically designed data display applica Bonded tinted fac- specular reflection. Integral mounting lu Electrostatic focus.	Rectangular face, 31cm (12in). 90° diagonal tube specifically designed for high character density data display applications. Bonded tinted face-plate treated to reduce specular reflection.** Aluminised screen. Integral mounting lugs, 20 mm dia. neck. Electrostatic focus, magnetic deflection. Grey glass, 15% total transmission (approx).				
Heater voltage	v _h	11	v		
Heater current	Ih	75	mA		

DESIGN CENTRE RATINGS Voltages referred to cathode

Maximum second and fourth anode volta	age V _{a2+a4(max)}	13.5 †	kV
Minimum second and fourth anode volta		10.5 *	kV
Maximum third anode voltage - range	V _{a3(max)}	-50 to +500	v
Maximum first anode voltage	Val(max)	350	v
Maximum negative grid voltage	-v _{g(max)}	100	v
Maximum peak negative grid voltage	^{-v} g(max)	350 \$	v
Maximum positive grid voltage	V _{g(max)}	0 5	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage heater negative	g e ^vh- k(pk)max	130	v
Maximum impedance, grid to cathode (50Hz) Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

All voltages referred to cathode

† The absolute rating of 16.5kV must not be exceeded.

- * Absolute minimum rating is 8.5 kV.
- § Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- ? A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- **This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-212GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Page 1. Issue 1.

Data Display Tube

M31-212..

INTER-ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.0*	pF
Grid to all	^c g-all	4.0*	рF
Anodes 2 and 4 to coating M ₁	^{(°} a2+a4-M1	700	pF
Anodes 2 and 4 to shell M ₂ (Approx)	^c a2+a4-M2	200	pF
* Holder capacitance balanced out.			

TYPICAL OPERATION - Grid modulation (Voltages referred to cathode)

Second and fourth anode voltage	V _{a2+a4-k}	12	kV
First anode voltage	v_{a1-k}	300	v
Third anode voltage for best overall focus*	v _{a3-k}	0 to 350	v
Drive for peak beam current of 200μ A		32	v
Grid to cathode voltage for cut-off of raster	$\mathbf{v}_{\mathbf{g-k}}$	-40 to -79	v

TYPICAL OPERATION - Cathode modulation (Voltages referred to grid)

Second and fourth anode voltage	V _{a2+a4-g}	12	kV
First anode voltage	V _{a1-g}	350	v
Third anode voltage for best overall focus*	V _{a3-g}	0 to 350	v
Drive for peak beam current of $200\mu A$		28	v
Cathode to grid voltage for cut-off of raster	v_{k-g}	41 to 75	v

* RESOLUTION IN DATA DISPLAYS

The spot performance over the screen is sufficiently uniform to permit a focus setting within this range which allows rapid and positive recognition of alpha-numeric characters of density 2000 max. (i.e. character size 2.8 mm x 5 mm minimum) If it is required to pass through the point of focus at any point on the screen a focus range of -50V to 400V with respect to cathode should be provided.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes

DATA DISPLAY & MONITOR TUBES

MOUNTING

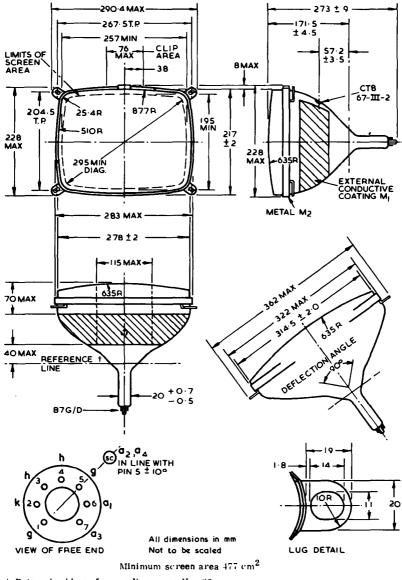
Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 36 mm diameter which is centred on the perpendicular from the centre of the face.

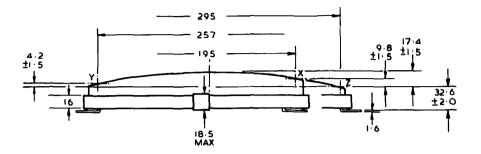
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal shell (M_2) should be connected to the chassis in an a.e. receiver operating from an isolating transformer, or via a suitable leakage path in an a.e./d.e. receiver, for example 2 M Ω .


When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 3.6 kg.

Page 3. Issue 1.

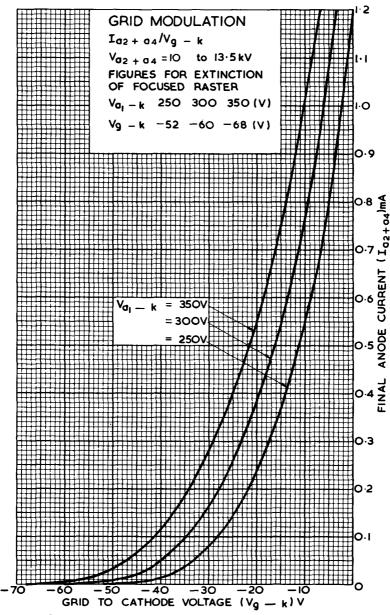

Data Display Tube

M31-212..

DATA DISP & MONIT

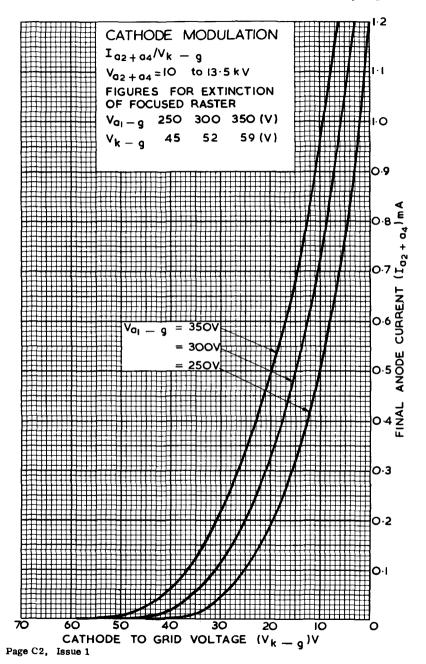
† Determined by reference line gauge No. 20

Page 4. Issue 1.

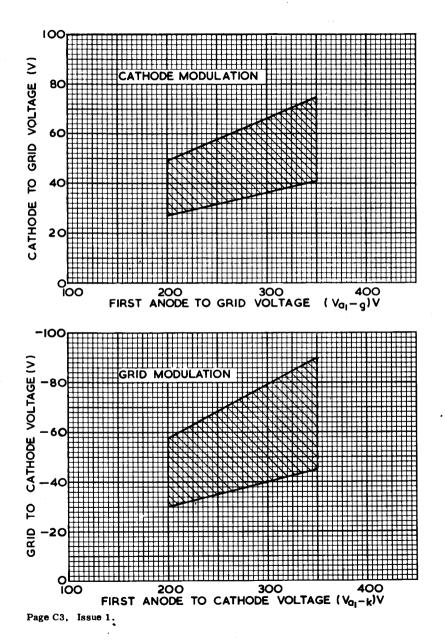


MOUNTING

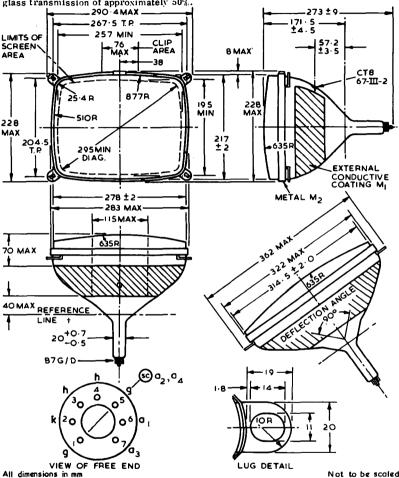
The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.


Page 5. Issue 1.

Data Display Tube


Page C1, Issue 1.

DATA DISPLA & MONITOR TUBES M31-212..


Data Display Tube

LIMITS OF RASTER CUT-OFF VOLTAGE

DATA DISPLA & MONITOR TUBES

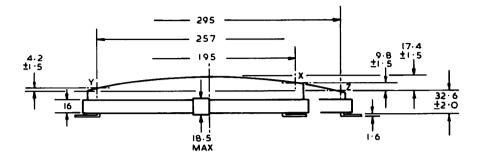
Data Display Tube

The M31-213.. is the M31-212.. with a clear glass bonded face-plate giving a total glass transmission of approximately 50%.

> Not to be scaled Minimum screen area 477 cm²

Determined by reference line gauge No. 20. PHOSPHOR SCREEN This type is usually supplied with GH phosphor (M31-213GH) giving a green trace of

medium short persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT (approximate) - net 3.6 kg.

Thorn Radio Valves and Tubes Limited

Page 1. Issue 1.

Data Display Tube

MOUNTING

The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.

Page 2, Issue 1.

GENERALRectangular face, 36 cm 70° diagonal tubeGrey glass, 60% transmission (approx.)Electrostatic focus, magnetic deflectionStraight gun, aluminised screenHeater voltageVh6.3KK

ABSOLUTE RATINGS - voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4}(max)$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4}(min)$	10	kV
Maximum third anode voltage	V _{a3(max)}	± 500	v
Maximum first anode voltage	Val (max)	500	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	180	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	400†	v

* In a series heater chain the C.R.T. should always be connected at the chassis end.

† During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M36-141W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

Thorn Radio Valves and Tubes Limited

02,04

h

Issue 2, Page 1

INTER-ELECTRODE CAPACITANCES

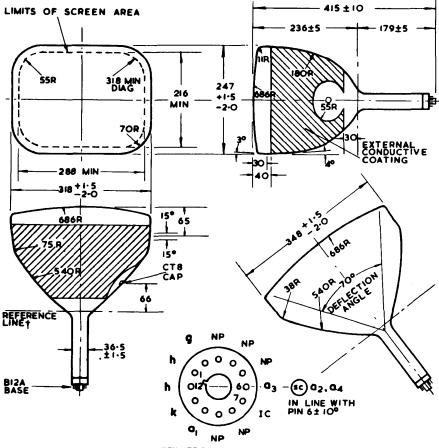
Cathode to all	^c k-all	7.0*	pF
Grid to all	^c g-all	9.0*	pF
Anodes 2 and 4 to external conductive coating, M (approximate)	^C a2+a4-M	1300	pF

* Total capacitances including a typical holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	V _{a2+a4}	12	kV
First anode voltage	Val	300	v
Third anode voltage range for focus	V _{a3}	-200 to +200†	v
Grid to cathode voltage for cut-off of raster	vg	-30 to -72	v
Average peak to peak modulating voltage for modulation up to 150 μ A	-	24	v

 \dagger The change of spot size with variation of focus voltage is small and the limit of $\pm 200V$ is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least $\pm 300V$ will be required.


MOUNTING

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

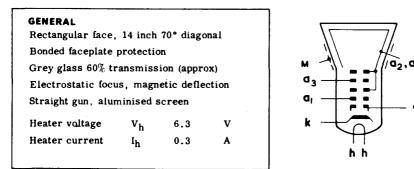
TUBE WEIGHT (approximate) - 4.7 kg

DATA DISPLAY & MONITOR TUBES

VIEW FROM PINS FREE END

All dimensions in mm

Not to be scaled


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT3 cap, the tube should not be handled in this region.

- During the face sealing operation the glass in this area (Total 30 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave, the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † Determined by Reference line gauge No. 12.(See T.D.S. No. 5-0-91-12).

Issue 2, Page 3

M36-142..

Maintenance Type

ABSOLUTE RATINGS - voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	10	kV
Maximum third anode voltage	Va3(max)	<u>+</u> 500	v
Maximum first anode voltage	$v_{a1(max)}$	500	v
Maximum negative grid voltage	-V _{g(max)}	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	180	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	400*	v

* During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M36-142W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

Thorn Radio Valves and Tubes Limited

Issue 2. Page 1

M36-142..

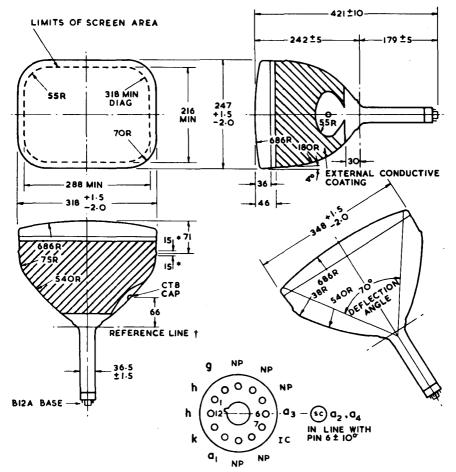
Data Display or Monitor Tube

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	v_{a2+a4}	14	kV
First anode voltage	v _{al}	300	v
Third anode voltage range for focus	v_{a3}	-200 to +200†	v
Grid to cathode voltage for cut-off of raster	v _g	-30 to -72	v
Average peak to peak modulating voltage for modulation up to 150 μ A		24	v

 \dagger The change of spot size with variation of focus voltage is small and the limit of \pm 200V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least \pm 300V will be required.

INTER-ELECTRODE CAPACITANCES


Cathode to all	^c k-all	7.0	pF
Grid to all	^c g-all	9.0	pF
Anodes 2 and 4 to external co coating, M (approximate)	nductive ^C a2+a4-M	1300	pF

TUBE WEIGHT

(approximate) - 5.4 kg

Issue 2, Page 2

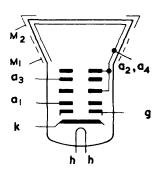
M36-142..

VIEW FROM PINS FREE END

All dimensions in mm

Not to be scaled

DATA DISP


20

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

- During the face sealing operation the glass in this area (Total 30 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave, the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- t Determined by Reference line gauge No. 12.

Issue 2. Page 3

GENERAL Rectangular face, 15 inch, 90° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Straight gun. Aluminised screen Grev glass, 50% transmission (approx) 29,4 mm maximum neck diameter External conductive coating 11.5 v Heater voltage Vh Heater current I_h 0.15 A

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	20†	kV
Minimum second and fourth anode voltage	Va2+a4(min)	12	kV
Maximum third anode voltage	V _{a3(max)}	<u>+</u> 700	v
Maximum first anode voltage	Val(max)	600	v
Maximum negative grid voltage	-V _{g(max)}	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage. heater negative (d.c.)	V _{h-k(max)}	200	v

 $+ I_{a2+a+} = 0$

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M38-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 4, Page 1

INTER-ELECTRODE CAPACITANCES		*	+	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	^c g-all	6.5	7.5	pF
Anodes 2 and 4 to coating M_1 (approx)	^c a2+a4-M1	70	0	pF
Anodes 2 and 4 to frame M ₂ (approx)	^C a2+a4-M2	25	0	pF
* Holder capacitance balanced out.				

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION _	Grid modulation,	voltages referred to cathode
---------------------	------------------	------------------------------

Second and fourth anode voltage	V _{a2+a4}	16	kV
First anode voltage	v _{a1}	400	v
Third anode voltage range for focus	V _{a3}	0 to 400§	v
Grid to cathode voltage for cut-off of raster	vg	-38 to -82	v

§ The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least-100V to +500V will be required.

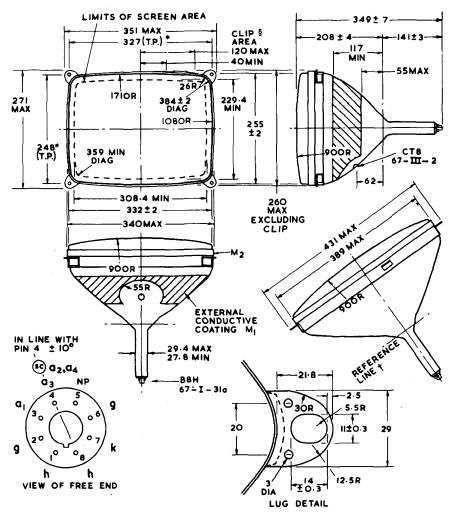
MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

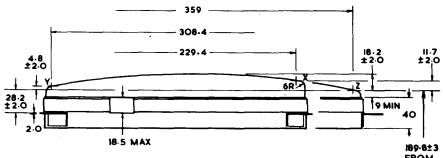

The metal frame (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

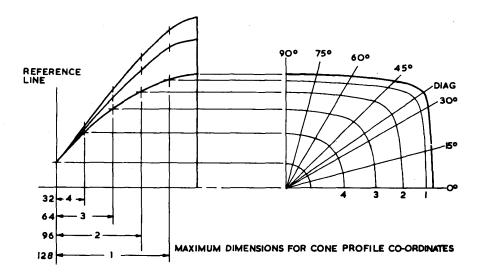
TUBE WEIGHT (approximate) - net 5.7 kg (12.5 lb)

DATA DISPLAY & MONITOR TUBES

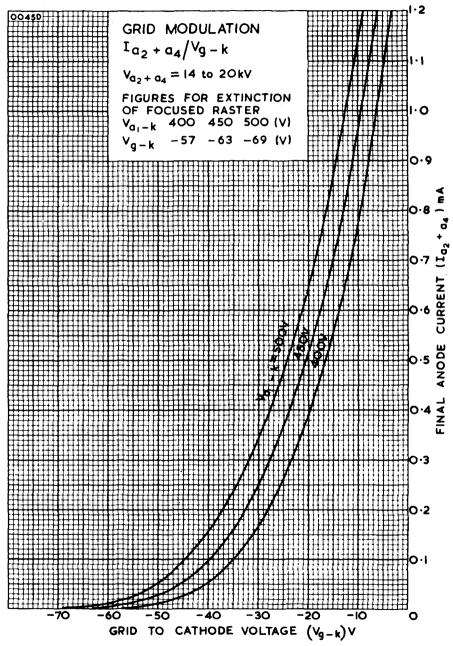
Issue 4, Page 2

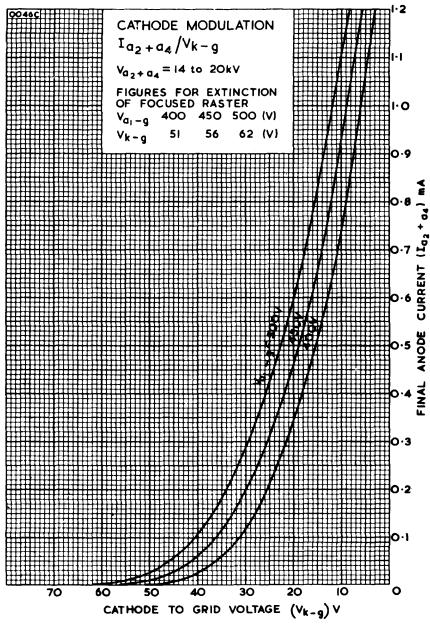

All dimensions in mm

Not to be scaled

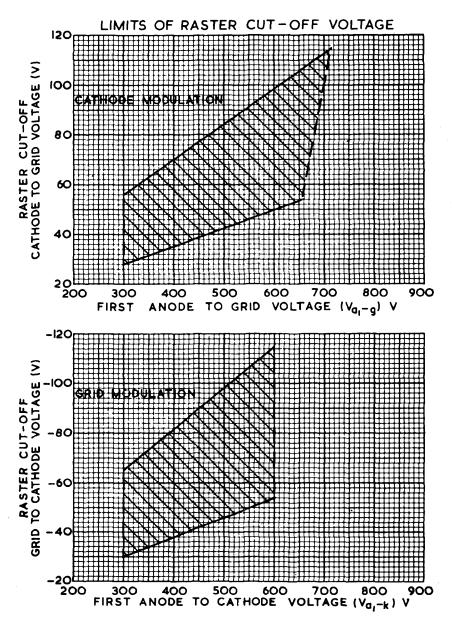

- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- t Determined by reference line gauge No. 15. (See T.D.S. No. 5-0-91-15).
- § Total thickness of shell, tension band and clip 8 mm maximum.

Issue 5. Page 3


FROM REFERENCE LINE

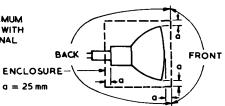

Reference Plane No.	0° Major	15°	30°	Diag.	45°	60°	75°	90° Minor
1 2	160.7	164.9	177.6	181.6	165.9	140.5	127.9	124.0
	134.0	136.6	145.5	148.0	139.3	122.0	112.6	109.7
3	103.0	104.8	110.3	111.3	107.9	97.7	92.0	90.5
4	66.8	67.4	69.3	69.4	69.0	66.0	64.0	63.5

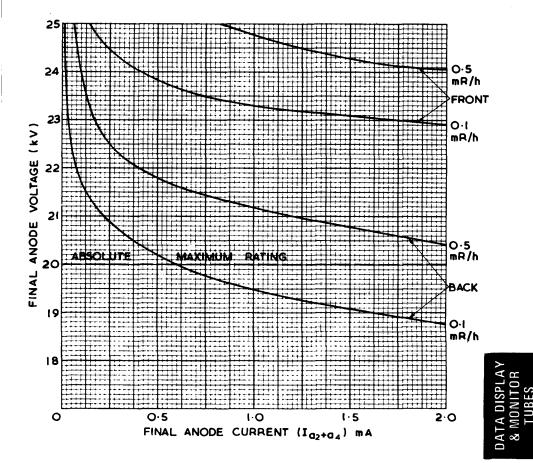
All dimensions in mm Issue 4, Page 4 Not to be scaled



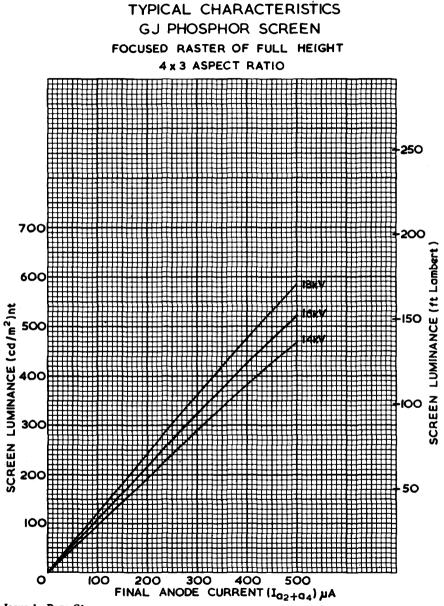
Issue 4. Page C1

Issue 4. Page C2

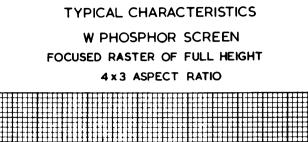


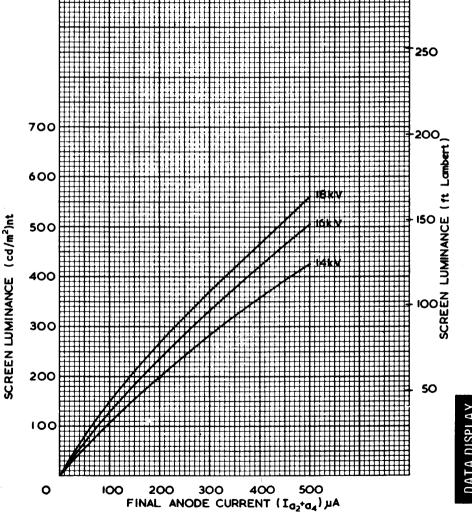

Issue 4, Page C3

M38-100..


X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE 50mm FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM




Page C4, . Issue 1.

Issue 1, Page C1

M38-100W

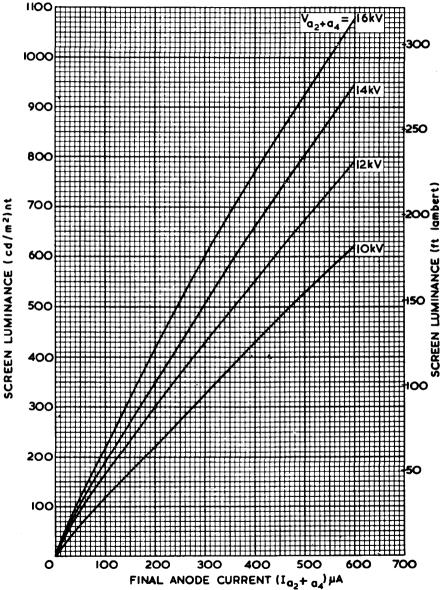
Issue 4, Page C1

The M38-101.. is the M38-100.. with an increased neck length to permit the use of an additional high frequency deflector coil ('write' coil) for data display applications.

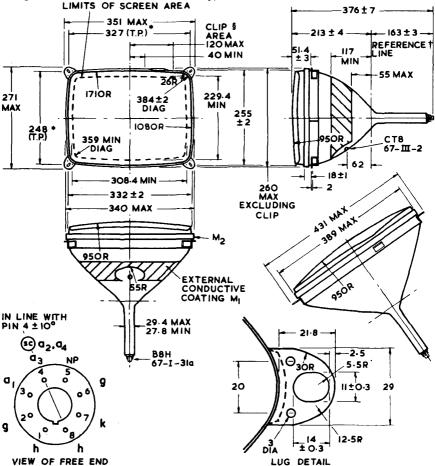
The neck length of this tube is 163 \pm 3 mm making the overall length 371 \pm 7 mm

It is recommended that the deflector coil assembly including "position and write" coils should not extend further than 60 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (M38-101GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited



Issue 2, Page 1

TYPICAL CHARACTERISTICS GH PHOSPHOR SCREEN Focused raster of full height 4x3 aspect ratio

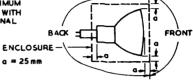
Issue 2, Page C1

The M38-102... is the M38-101... with a bonded face-plate to reduce specular reflections. For general and electrical data see tube type M38-100...

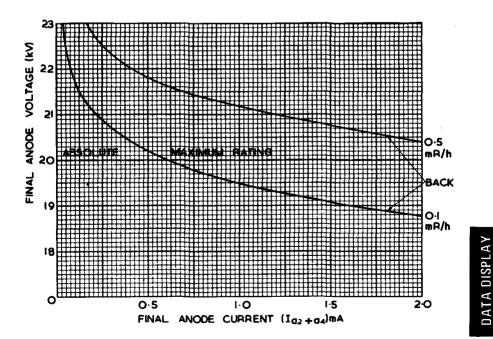
All dimensions in mm

TUBE WEIGHT (approx) - net 6.0 kg Not to be scaled

- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 15. (See T.D.S. No. 5-0-91-15).
- § Total thickness of frame, tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.


Issue 3, Page 1

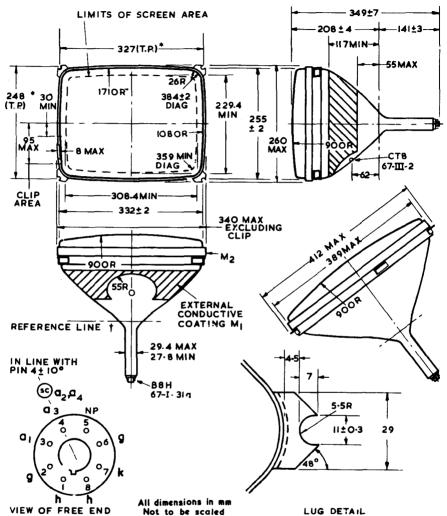
M38-102


õ

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED OINR/h

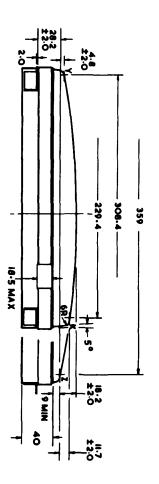


M38-103..

Data Display or Monitor Tube

For general and electrical data on the M38-103.. see tube type M38-100.., the tubes differ only in lug shape and tension band clip position.

* The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.


† Determined by reference line gauge No. 15 (See T.D.S. No. 5-0-91-15).

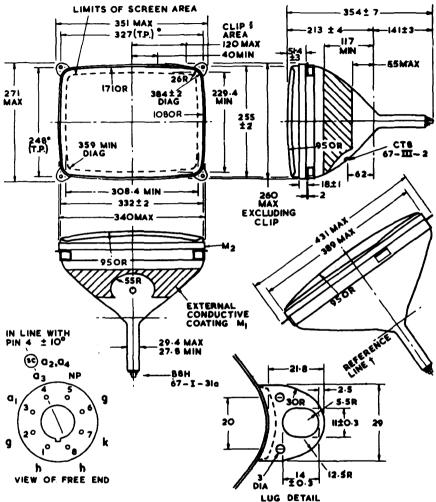
TUBE WEIGHT (approx.) - net 5.3 kg

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

lssuel, Page 2

All dimensions in mm


Not to be scaled

DATA DISPLAY & MONITOR TUBES

M38-104.

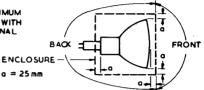
Data Display or Monitor Tube

The M38-104.. is the M38-100.. with a bonded face-plate to reduce specular reflections . For general and electrical data see tube type M38-100..

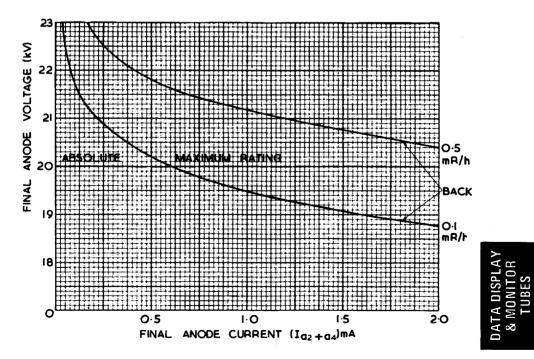
All dimensions in mm

- Not to be scaled TUBE WEIGHT (approx.) - net 6.0 kg * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- + Determined by reference line gauge No. 15.(See T.D.S. No. 5-0-91-15).
- § Total thickness of frame tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.

This type is usually supplied with GR phosphor. Other screens available to special order.

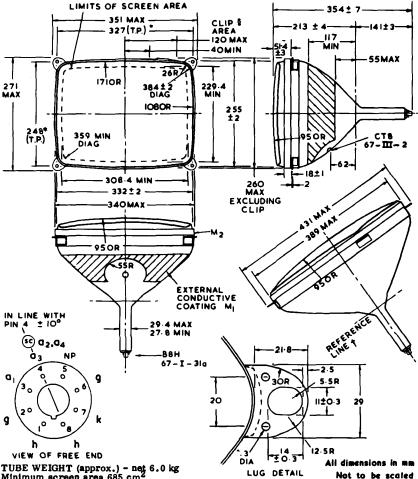

Thorn Radio Valves and Tubes Limited

issue 2. Page 1



X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM



UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O I mR/h

The M38-105.. is the M38-100.. with a tinted bonded face-plate. The total centre glass transmission is approximately 15% and the surface is treated to reduce specular reflection. For general and electrical data see tube type M38-100..

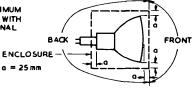
Minimum screen area 685 cm

This type is usually supplied with W phosphor. Other screens available to special order. * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.

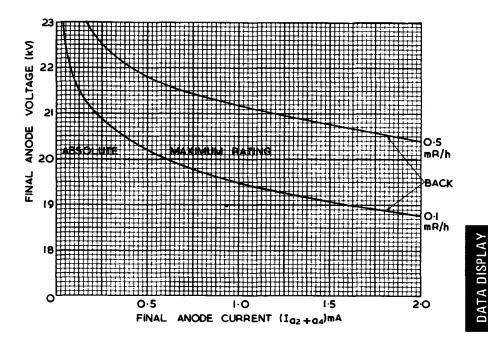
- † Determined by reference line gauge No. 15.
- § Total thickness of frame tension band and clip 8 mm maximum. project in front of the frame dimension.

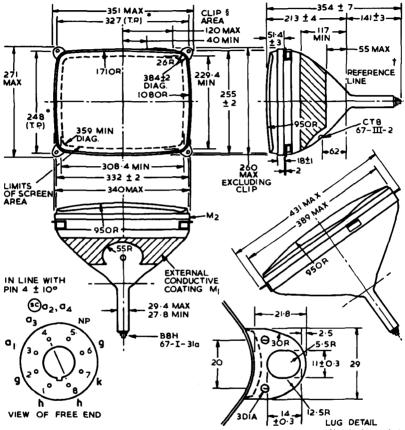
Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.



M38-105


8


X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O Im R/\hbar

The M38-106.. is the M38-100.. with a tinted bonded face-plate. The total centre glass transmission is approximately 30% and the surface is treated to reduce specular reflection. For general and electrical data see tube type M38-100..

All dimensions in mm

Not to be scaled

Minimum screen area 685 cm². TUBE WEIGHT (approx.) - net 6.0 kg.
The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.

† Determined by reference line gauge No. 15.

S Total thickness of frame tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.

This type is usually supplied with GH Phosphor. Other screens available to special order.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

M38-111..

MAINTENANCE TYPE

The M38-111.. is the M38-113.. with a bonded face-plate and with external conductive coating. The overall length is 438 ± 8 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M38-111GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

For all other information please see the data sheets for type M38-113..

Thorn Radio Valves and Tubes Limited

Page 1, Issue 3.

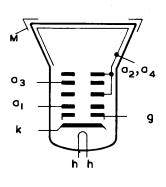
M38-112..

Maintenance Type

The M38-112.. is the M38-111.. without a bonded faceplate thus making the overall length 433 ± 8 mm and the faceplate radius 900 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M38-112GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.


For all other information please see the data sheets for type M38-111...

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

GENERAL			
Rectangular fac Rimguard III re Integral mountir Electrostatic for Aluminised scre Grey glass, 509 Straight gun, no 38 mm maximur	inforced e ng lugs cus, magn een , transmis n ion trap	nvelope * netic deflecti sion (approx	on
••• • •.	Vh	6.3	
Heater voltage		***	v

ABSOLUTE RATINGS -Voltages referred to cathode Maximum second and fourth anode voltage kV $V_{a2+a4(max)}$ 18 Minimum second and fourth anode voltage 12 kV $V_{a2+a4(min)}$ Maximum third anode voltage v Va3(max) +1000Maximum first anode voltage 800 v Va1(max) Maximum negative grid voltage - Vg(max) 200 v Minimum negative grid voltage - Vg(min) 1.0 v Maximum heater to cathode voltage V_{h-k(max)} 200 v heater negative (d.c.)

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prelonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M38-113GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

NECK LENGTH

This tube has an extended neck length to accommodate an auxiliary high frequency deflector coil.

* This tube meets the requirements for intrinsically safe tube laid down in the section of I.E.C. Publication 65 dealing with implosion.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M38-113..

Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	t	
Cathode to all	c _{k-all}	3.5	4.5	pF
Grid to all	^c g-all	7.0	7.5	pF
Anodes 2 and 4 to frame M (approx)	c _{a2+a4-M}	2	50	pF

* Holder capacitance balanced out.

† Total capacitance including a typical holder.

TYPICAL OPERATION G	Grid modulation, voltages referred to cathode				
Second and fourth anode voltage	V _{a2+a4}	15	kV		
First anode voltage	v _{al}	400	v		
Third anode voltage range for centre	focus V _{a3}	0 t o 400\$	v		
Grid to cathode voltage for cut-off of raster	$\mathbf{v}_{\mathbf{g}}$	-30 to -70	v		

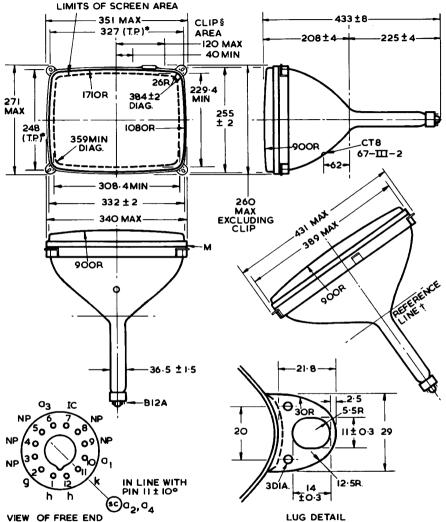
The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtain within this range. If it is required to pass through the point of focus a voltage of a least -100V to +500V will be required. The voltage for corner focus will be greater than at the face centre by approximately 500 V with a suitably designed deflection yoke.

MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and faceplate contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.


It is recommended that the deflector coil assembly including "position and write" coils should not extend further than 70 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

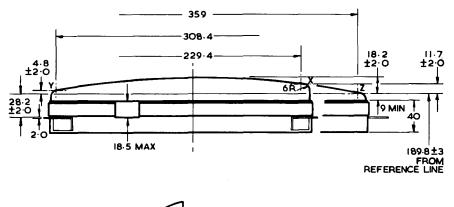
The metal frame (M) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in non isolated equipment, for example 2 M Ω .

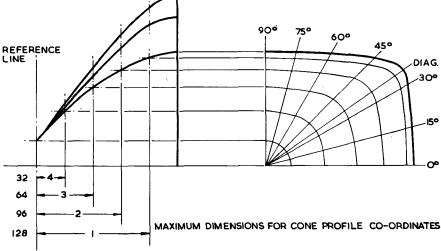
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - 5.5 kg

Page 2, Issue 1.

All dimensions in mm


Not to be scaled


- The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 13.
- § Total thickness of frame, tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.

Page 3, Issue 1.

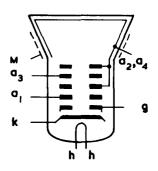
DATA DISP

ž

All dimensions in mm

Not to be scaled

Reference Plane No.	0° Major	15°	30°	Diag.	45°	60°	75°	90° Minor
1	160.7	164.9	177.6	181.6	165.9	140.5	127.9	124.0
2	134.0	136.6	145.5	148.0	139.3	122.0	112.6	109.7
3	103.0	104.8	110.3	111.3	107.9	97.7	92.0	$90.3 \\ 63.5$
4	66.8	67.4	69.3	69.4	69.0	66.0	64.0	


Page 4, Issue 1.

M38-120..

GENERAL

Rectangular face, 38 cm, 110° diagonal Electrostatic focus, magnetic deflection Straight gun. Aluminised screen Grey glass, 50% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

Heater voltage	Vh	6.3	V
Heater current	Ih	0.3	A

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	13	kV
Maximum third anode voltage range	V _{a3(max)}	+1000 to -500	v
Maximum first anode voltage	Val(max)	550	v
Minimum first anode voltage	Val(min)	350	v
Maximum negative grid voltage	-V _{g(max)}	150	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.) heater positive (d.c.)	Vh-k(max)	250 135	v v
Maximum peak heater to cathode voltage heater negative heater positive	[♥] h-k(pk)max	300 180	v v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	100	kΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M38-120W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

BRIMAR

DATA DISPLAY & MONITOR TUBES M38-120..

ŧ

Anodes 2 and 4 to coating M (approx.)	^C a2+a4~M	6	00	рF
Grid to all	^c g-all	7.0	8.5	ρF
Cathode to all	^c k-all	3.0	3.5	pF

- * Holder capacitance balanced out.
- † Total capacitances including a typical B8H holder.

TYPICAL OPERATION	- Grid modulation, voltages referred to cathode	
-------------------	---	--

Second and fourth anode	Va2+a4	16	kV
First anode voltage	Val	400	v
Third anode voltage range for focus	Va3	0 to 400 \$	v
Grid to cathode voltage for cut-off of raster	vg	-40 to -85	v

This tube will resolve 650 lines measured at a beam current of 100 μ A

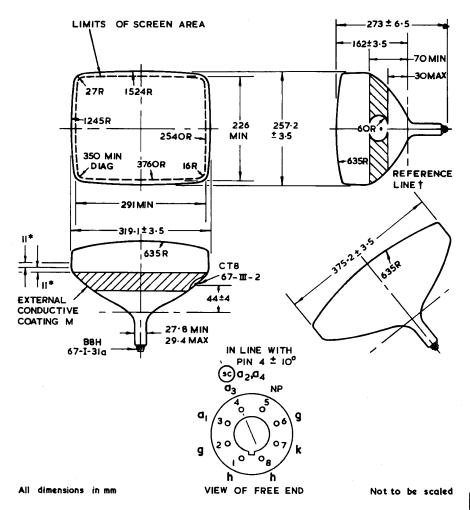
S The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least -100V to +500V will be required.

RESOLUTION OPTIMISATION

For optimum overall resolution an external beam steering magnet may be required. Adjustment of the magnet should not be such that a general reduction of brightness or shading of the raster occurs. Typically the flux density at neck centre should be adjustable from 0 to $0.8 \,\mathrm{mT}$ (0 to 8 gauss).

MOUNTING

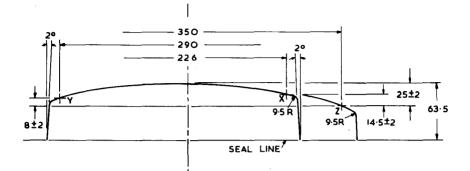
There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

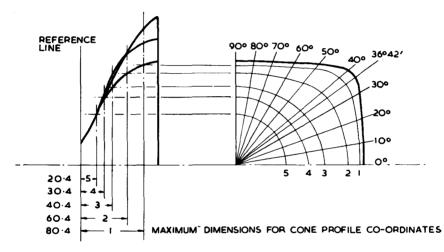

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 4.5 kg

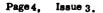

M38-120..

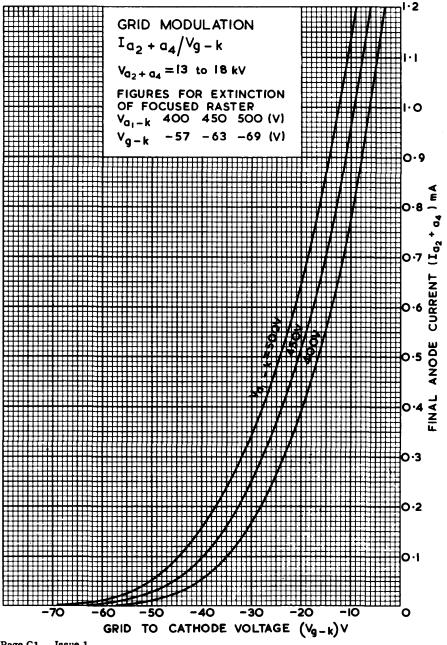


- * During the face sealing operation the glass in this area (±11 mm) may be disturbed and the shape may be either convex or concave. The bulb should not be gripped within this region unless special precautions are taken, such as, the use of resilient packing material.
- † Determined by reference line gauge No. 16 (B.S. RL4 : IEC 67-IV-3 : JEDEC 126).

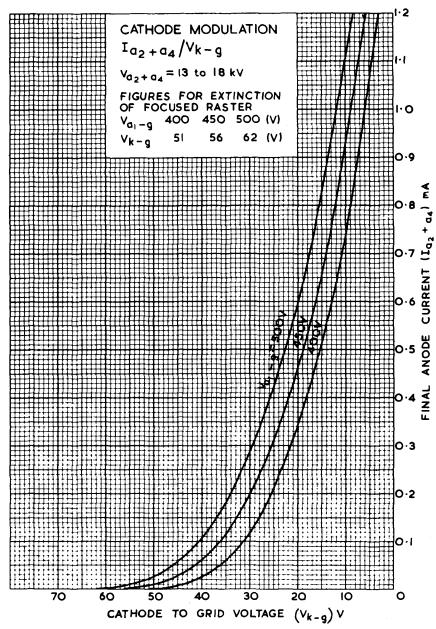
DATA DISPLAY & MONITOR TUBES

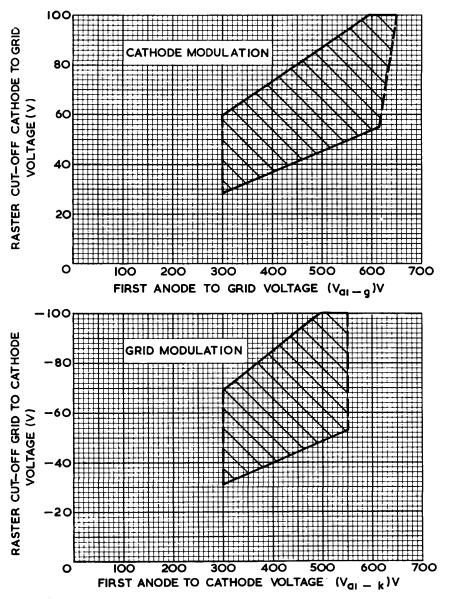
Page 3, Issue 3.



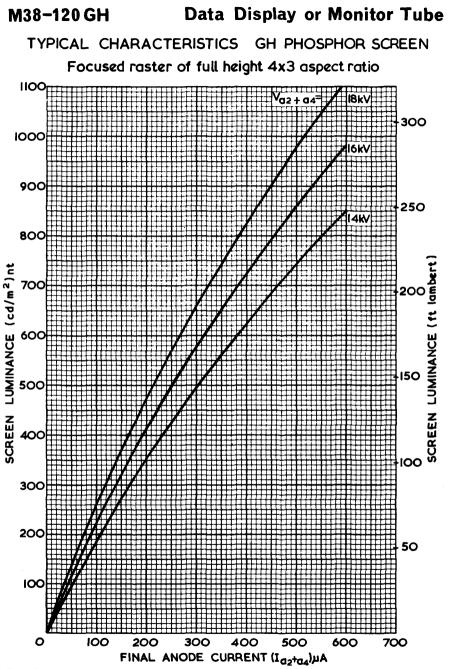

```
All dimensions in mm
```

Not to be scaled


Reference Plane No.	0° Major	10°	20°		36°42' Diag.		50°	60°	70°	80°	90° Minor
1	155	157	162	170	173	171	156	141	131	126	124
2	140	141	143	143	141	140	134	126	119	116	115
3	112	112	110	108	106	105	104	102	101	99	99
4	90	89	88	86	86	86	85	85	86	86	85
5	63	64	63	63	63	63	63	64	64	64	64

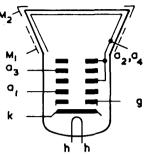


Page C1, Issue 1.


Page C2, Issue 1.

LIMITS OF RASTER CUT-OFF VOLTAGE

Page C3, Issue 1,


IATA DISPLA & MONITOR TUBES

Page C4, Issue 1.

M38-121..

Rectangular face, Rimguard IV rein	onal			
Integral mounting Electrostatic focu		in defla	tion	
Straight gun. Alun				
Grey glass, 50% to 29.4 mm maximu External conductiv	ransmissi n neck di	ion (appr ameter	'ox.)	
Grey glass, 50% to 29.4 mm maximum	ransmissi n neck di	ion (appr ameter	v.)	

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4 (max)}	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	13	kV
Maximum third anode voltage range	Va3(max)	+1000 to -500	v
Maximum first anode voltage	Val(max)	550	v
Minimum first anode voltage	Val(min)	350	v
Maximum negative grid voltage	-V _{g(max)}	150	v
Minimum negative grid voltage	-V _{g(min)}	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.) heater positive (d.c.)	V _{h-k(max)}	250 135	v
Maximum peak heater to cathode voltage heater negative heater positive	^v h-k(pk)max	300 180	v v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	100	kΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M38-121W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode ray tubes.

Thorn Radio Valves and Tubes Limited

M38–121.. Data Display or Monitor Tube

INTER - ELECTRODE CAPACITANCES

Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	cg-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	^C a2+a4-M1	60	00	pF
Anodes 2 and 4 to metal M ₂ (approx.)	^c a2+a4-M2	25	50	pF

* Holder capacitance balanced out.

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode								
Second and fourth anode	V _{a2+a4}	16	kV					
First anode voltage	Val	400	v					
Third anode voltage range for focus	v _{a3}	0 to 400 §	v					
Grid to cathode voltage for cut-off of raster	v _g	-40 to -85	v					

This tube will resolve 650 lines measured at a beam current of 100 μA

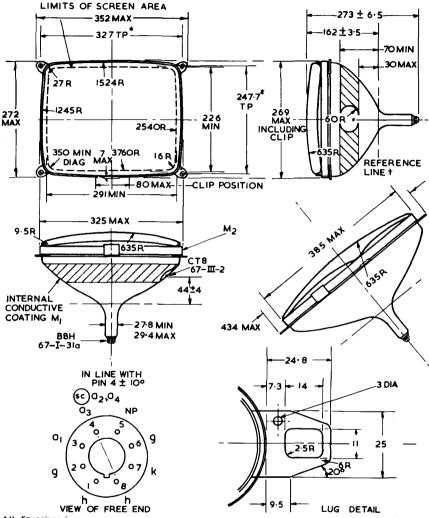
S The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least -100V to +500V will be required.

RESOLUTION OPTIMISATION

For optimum overall resolution an external beam steering magnet may be required. Adjustment of the magnet should not be such that a general reduction of brightness or shading of the raster occurs. Typically the flux density at neck centre should be adjustable from 0 to 0.8 mT (0 to 8 gauss).

MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

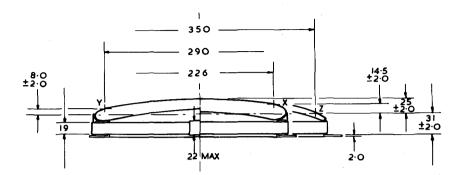
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c.equipment, for example $2M\Omega$.

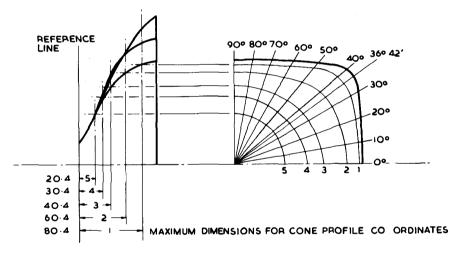
When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 4.7 kg

All dimensions in mm

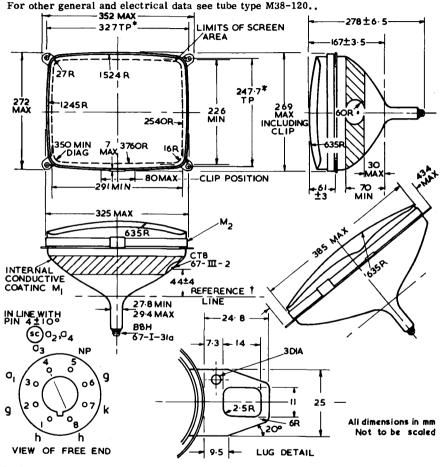

Not to be scaled

- * The bolts to be used for mounting the tube must lie within the circles of 7.5mm diameter centred on these true positions. One of the four lugs may devlate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S. RL4 : IEC 67-IV-3 : JEDEC 126).


Minimum useful screen area 646 cm^2

Page 3, Issue 3.

DATA DISPLAY & MONITOR TUBES


All dimensions in mm

Not to be scaled

Reference Plane No.	0° Major	10°	20°	30°	36°42 Diag.	40°	50 °	60°	70*	80°	90° Minor
1 2	155 140	157 141	162 143	170 143	173 141	171 140	156 134	141 126	131 119	126 116	124 115
3 4	112 90	112 89	110 88	108 86	106 86	105 86	104 85	102 85	101 86	99 86	99 85
5	63	64	63	63	63	63	63	64	64	64	64

Page 4 Issue 2.

The M38-122.. is the M38-120.. with a tinted bonded face-plate, reinforced envelope, and integral mounting lugs. The total centre glass transmission is approximately 15% and the surface is treated to reduce specular reflections.

TUBE WEIGHT (approximate) 5.5 kg

- * The bolts to be used for mounting the tube must lie within the circles of 7.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S. RL4 : IEC 67-IV-3 : JEDEC 126).

Minimum useful screen area 646 cm²

Thorn Radio Valves and Tubes Limited

Page 1, Issue 4.

DATA

M38-142.

Data Display or Monitor Tube

PRELIMINARY DATA

GENERAL				M2	
Rectangular face, Rimguard IV rein Integral mounting High voltage elec Magnetic deflecti Grey glass, 50% Aluminised scree External conducti 29.4 mm maximu	forced e lugs trostatio on transmis n ve coati	envelope c focus ssion (app ng			
Heater voltage	$\mathbf{v_h}$	6.3	v		+
Heater current	Ih	0.3	A	h	'h

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum third anode voltage	V _{a3(max)}	20*	kV
Minimum third anode voltage	V _{a3(min)}	14	kV
Maximum second anode voltage	V _{a2(max)}	5.0	kV
Maximum first anode voltage	V _{al(max)}	770	v
Maximum negative grid voltage	-V _{g(max)}	155	v
Minimum negative grid voltage	v _{g(max)}	-1 ¶	v
Maximum heater to cathode voltage, heater negative (d.c.)	v _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative	^v h-k(pk)max	400 §	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ
Maximum peak cathode current	ⁱ k(pk)max.	0.5	m A

T A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

§ During a warming-up period not exceeding 45 seconds. * $I_{a3} = 0$

PHOSPHOR SCREEN

This type is usually supplied with a W phosphor (M38-142W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode ray tubes.

Thorn Radio Valves and Tubes Limited

– q

Page 1, Issue 1.

M38-142..

INTER-ELECTRODE CAPACITANCES

Cathode to all (max)	^c k-all (max)	7.0	pF
Grid to all (max)	^c g-all (max)	10	pF
Anode 3 to coating M (approx.)	c _{a3-M}	600	pF
DEFLECTION ANGLES			
Height 76°	Width 93°	Diagonal	110°
TYPICAL OPERATION - Grid modulati	on voltages referred	to cathode	
Third anode voltage	v_{a3}	17	kV
First anode voltage	V _{a1}	450	v
Second anode voltage for centre focus (non	1) V _{a2}	4.0	kV
Grid to cathode voltage for cut-off of raster	vg	- 35 to -85	v
Typical line width at 50 μ A beam current raster measurements at face centre	shrinking	0.2	mm

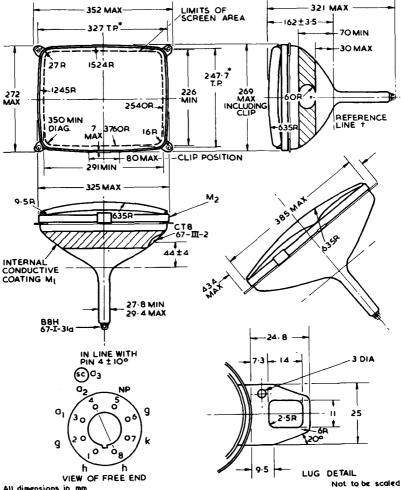
Note: To obtain best overall performance, a dynamic focus voltage variation of approximately 450V is required between the centre of the screen and any corner.

* In operation the second anode current will vary with beam current. To avoid focus variation the supply impedance should be kept low.

MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

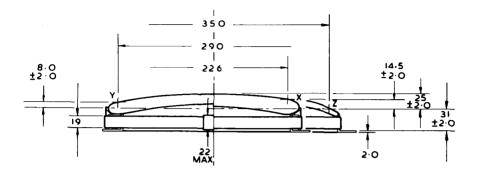

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

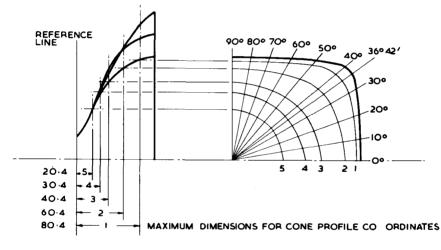
The metal (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 4.7 kg.

Page 2, Issue 1.

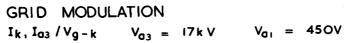

All dimensions in mm


* The bolts to be used for mounting the tube must lie within the circles of 7.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.

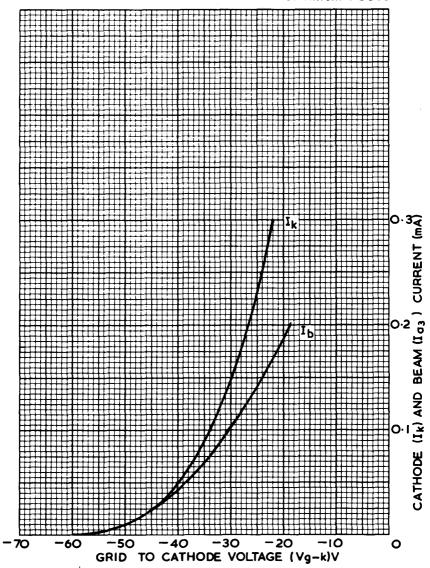
+ Determined by reference line gauge No. 16(B.S. RL4 : IEC 67-IV-3 : JEDEC 126).

Minimum useful screen area 646 cm²

Page 3, Issue 2.

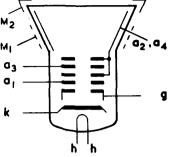


All dimensions in mm


Not to be scaled

Reference Plane No.	0° Major	10°	20°	30°	36°42' Diag	40°	50°	60°	70°	80*	90° Minor
1	155	157	162	170	173	171	156	141	131	126	124
2	140	141	143	143	141	140	134	126	119	116	115
3	112	112	110	108	106	105	104	102	101	99	99
4	90	89	88	86	86	86	85	85	86	86	85
5	63	64	63	63	63	63	63	64	64	64	64

Page 4. Issue 1.


OPTIMUM FOCUS

Page C1, Issue 1.

M44-120..

GENERAL				Marine Marine
Rectangular face, 1			nal	2
Rimguard III reinfor Integral mounting lu		ope		MI /
Electrostatic focus,		deflecti	on	03-
Aluminised screen				a
Grey glass, 48% tra		a (approx	r.)	
Straight gun, non ion				
External conductive	coating			k -
Heater voltage	v_h	6.3	v	1
Heater current	Ih	0.3*	Α	

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	18†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	13	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	V
Maximum first anode voltage	Val(max)	700	V
Maximum negative grid voltage	-Vg(max)	150	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400**	v
Maximum positive grid voltage	Vg(max)	0 ¶	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	vh-k(pk)max	400 \$	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

- * In a series heater chain the CRT should always be connected at the chassis end.
- $I_{a2+a4} = 0.$ ** Maximum pulse duration 22% of one cycle with a max. of 1.5 ms.
- ¶ A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with either a GR phosphor (M44-120GR) giving a yellowishgreen trace of very long persistence or a W (television white) phosphor. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

a

DATA DISPLA & MONITOR TUBES

M44-120..

Data Display or Monitor Tube

ŧ

Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	^c g-all	7.0	8.5	рF
Anodes 2 and 4 to coating M_1 (approx.)	^c a2+a4-M1	700 to 1300		pF
Anodes 2 and 4 to shell M_2 (approx.)	c _{a2+a4-M2}	20	00	pF
• •• • • · · · · · · · · · · · · · · ·				

Holder capacitance balanced out.

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltage referred to cathode

Second and fourth anode voltage	$v_{a2+a4-k}$	16	16	kV
First anode voltage ¶	v_{a1-k}	400	500	v
Third anode voltage range for focus	V _{a3-k}	0 to 400	0 to 400	v
Final anode current (peak)	ⁱ a2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		40.5	45	v
Grid to cathode voltage limits for cut-off of raster	Vg-k	-40 to -77	-50 to -93	v
GR screen raster persistence to 10% (approx.)	2	.0	8

TYPICAL OPERATION - Cathode modulation, voltage referred to grid

Second and fourth anode voltage	V _{a2+a4-g}	16	16	kV
First anode voltage ¶	Val-g	400	500	v
Third anode voltage range for focus	Va3-g	0 to 400	0 to 400	v
Final anode current (peak)	ⁱ a2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		35.5	39.5	v
Cathode to grid voltage limits for cut-off of raster	v _{k-g}	36 to 66	45 to 80	v
GR screen raster persistence to 10% (approx.)	2.	.0	8

1 Within this range a higher first anode voltage will provide improved focus performance.

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

M44-120..

PICTURE CENTRING

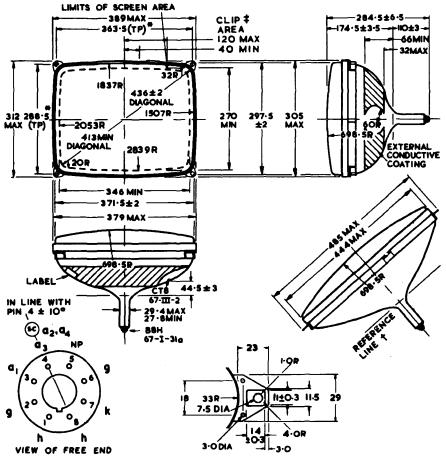
	um magnet flux density at ce ack should not be less than	ntre	17	Gs
	am distance of centre of mag from reference line	53	mm	
DEFLEC	TION ANGLES			
Height	83°	Width 100°	Diagonal	110°

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 100 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

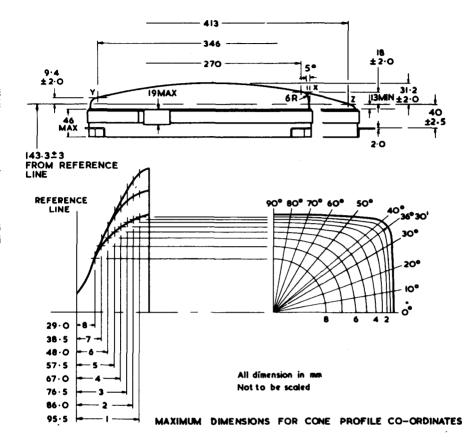

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 M Ω .

TUBE WEIGHT (approximate) - net 5.5 kg (12 lb)

Characteristic curves as M50-120..

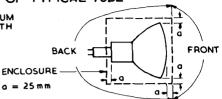
DATA DISPLAY & MONITOR TUBES

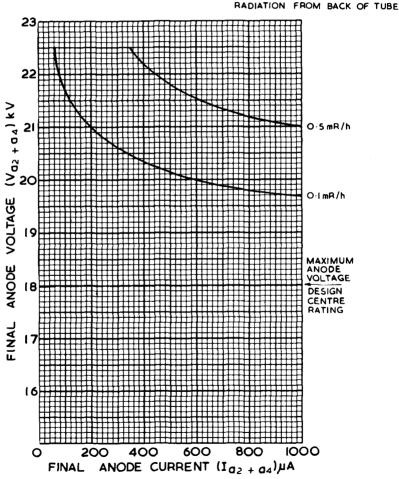


All dimensions in mm

Not to be scaled

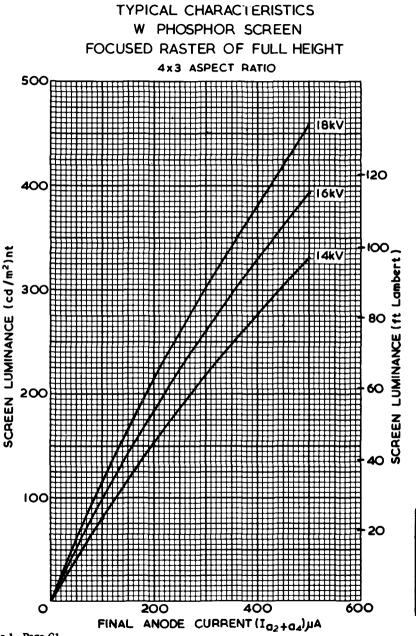
- * The bolts to be used for mounting the tube must lie within the circles of 7.5 mm. diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- t Determined by reference line gauge No. 16 (B.S. RL4 : IEC 67-IV-3: JEDEC 126)
- * Total thickness of shell, tension band and clip 8 mm maximum.




Reference Plane No.	0° Major	10°	20°	30°	36°30' Diag.	40°	50°	60*	70°	80*	90° Minor
1 2					210.8 199.0						
3 4					184.8 168.1			-	1		-
5 6					149.9 131.2						
7 8	107.5 82.8				109.5 82.8						

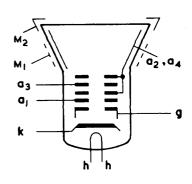
X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM.



UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O $\ln n R / \hbar$

Page C1, Issue 1.


M44-120W

M50-120..

Data Display or Monitor Tube

GENERAL Rectangular face, 20 inch, 110° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 45% transmission (approx.) Straight gun, non ion trap External conductive coating Vh 6.3 v Heater voltage 0.3* A Heater current Ih

DESIGN CENTRE RATINGS - Voltages referred to cathode

BEGIGIT GENTLE			
Maximum second and fourth anode voltage	Va2+a4(max)	20†	kV
Minimum second and fourth anode voltage	$v_{a2+a4(min)}$	13	kV
Maximum third anode voltage	V _{a3(max)}	+1000 to -500	v
Maximum first anode voltage	Val(max)	700	v
Maximum negative grid voltage	-Vg(max)	150	v
Maximum peak negative grid voltage	~vg(pk)max	400**	v
Maximum positive grid voltage	Vg(max)	0¶	v
Maximum heater to cathode voltage, heater negative (d.c.)	v _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max		
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)		

Rg-k(max)

Maximum resistance, grid to cathode

* In a series heater chain the CRT should always be connected

- $I_{a2+a4} = 0.$ **Maximum pulse duration 22% of one cycle wi
- ¶ A 10 k Ω grid series resistor mounted close to the tube base is the peak grid voltage.
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with either a GR phosphor (M50-120 green trace of very long persistence or a W (television white) physician screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

BRIMAR

M50-120..

INTER-ELECTRODE CAPACITANCES		•	+	
Cathode to all	^c k-all	3.0	3.5	pF
Grid to all	^c g-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	^c a2+a4-M1	10	000	pF
Anodes 2 and 4 to shell M_2 (approx.)	^c a2+a4-M2	35	0	pF
* Holder capacitance balanced out.				

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltage referred to cathode

Second and fourth anode voltage	v _{a2+a4-k}	16	16	kV
First anode voltage ¶	v _{al-k}	400	500	v
Third anode voltage range for focus	v _{a3-k}	0 to 400	0 to 400	v
Final anode current (peak)	ⁱ a2+a4(pk)	500	500	$\mu \mathbf{A}$
Average peak to peak picture modulating voltage		40.5	45	v
Grid to cathode voltage limits for cut-off of raster	v_{g-k}	-40 to -77	-50 to -93	v
GR screen raster persistence to 10%	(approx.)	2	.0	s

TYPICAL OPERATION - Cathode modulation, voltage referred to grid

Second and fourth anode voltage	$V_{a2+a4-g}$	16	16	kV
First anode voltage ¶	Val-g	400	500	v
Third anode voltage range for focus	V _{a3-g}	0 to 400	0 to 400	v
Final anode current (peak)	ⁱ a2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		35.5	39.5	v
Cathode to grid voltage limits for cut-off of raster	v_{k-g}	36 to 66	45 to 80	v
GR screen raster persistence to 10%	(approx.)	2	.0	S

1 Within this range a higher first anode voltage will provide improved focus performance.

If this tube is operated at voltages in excess of 20 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

DATA DISPLAY & MONITOR TUBES

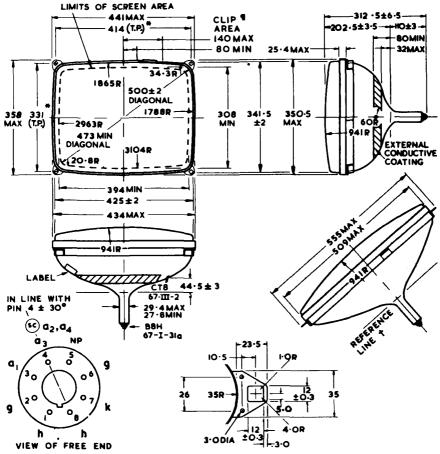
M50-120..

PICTURE CENTRING

	am magnet flux density at c eck should not be less than	entre		17	Gs	
	am distance of centre of ma from reference line	agnetic		53	mm	
DEFLEC	TION ANGLES					
Height	81°	Width	98°		Diagonal 110°	

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

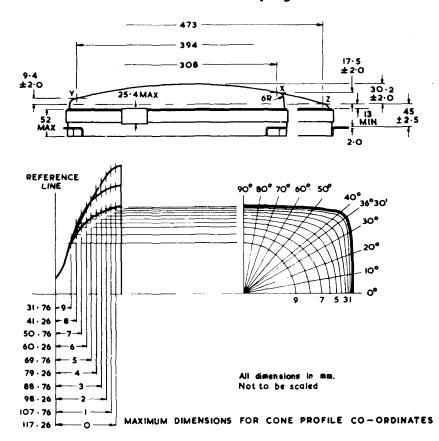

There is an annular region of anti-corona coating with external diameter of 100 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 40 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 M Ω .

TUBE WEIGHT (approximate) - net 9.5 kg (21 lb)

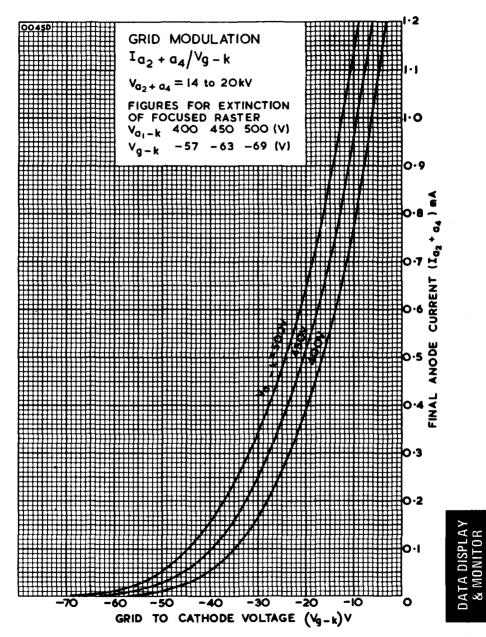


All dimensions in mm

Not to be scaled

- * The bolts to be used for mounting the tube must lie within the circles of 8.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S.RL4 : IEC 67-IV-3: JEDEC 126). See T.D.S. 5-0-91-16.
- ¶ Total thickness of shell, tension band and clip 8.0 mm maximum.

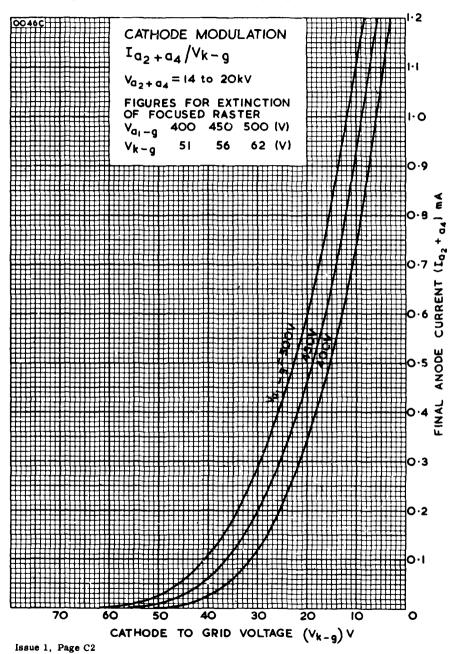
DATA DISPLAY & MONITOR TUBES

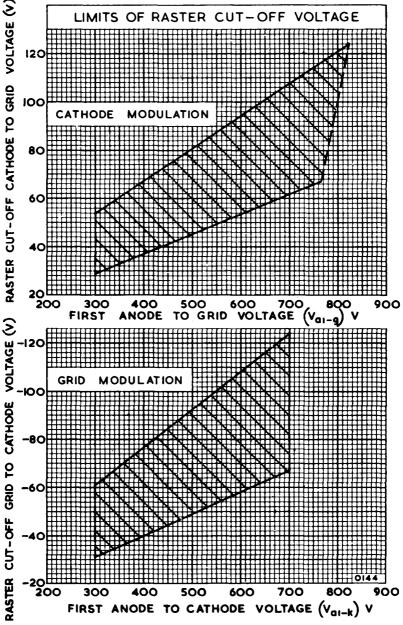


Reference Plane No.	0° Major	10°	20°	30°	36°30' Diag.	40°	50°	6 0°	70°	80°	90° Minor
0	210.5	213.3	222.0	237.8	247.1	243.7	213.5	192.0	178.6	171.3	168.9
1	207.0	209.6	218.0	233.4	241.2	238.1	209.5	188.5	175.0	167.8	165.5
2	202.7	205.2	212.4	225.0	228.3	225.6	202.5	183.2	170.5	163.9	162.0
3	197.1	198.8	204.4	213.0	213.9	211.6	192.7	176.4	165.3	159.2	157.8
4						196.1					
5	180.9	181.4	182.7	183.6	182.0	179.7	169.2	158.5	151.3	147.0	146.2
6						162.1					
7	151.5	150.4	149.5	147.2	144.8	143.4	138.2	134.0	131.2	129.0	128.5
8						122.6					
9	103.4	102.5	101.0	99.6	99.2	99.2	99.1	99.1	98.9	98.7	98.4

Issue 1, Page 5

- -

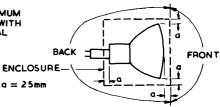

M50-120..



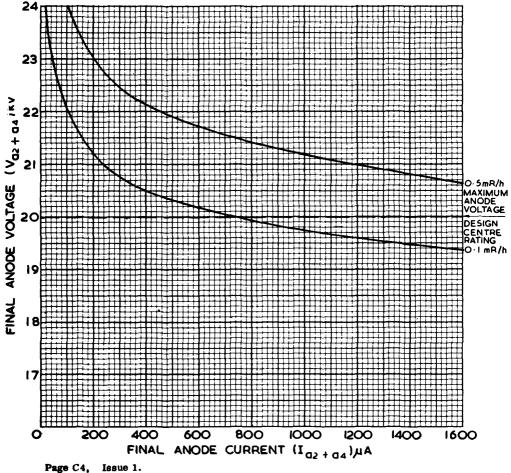
Issue 1, Page C1

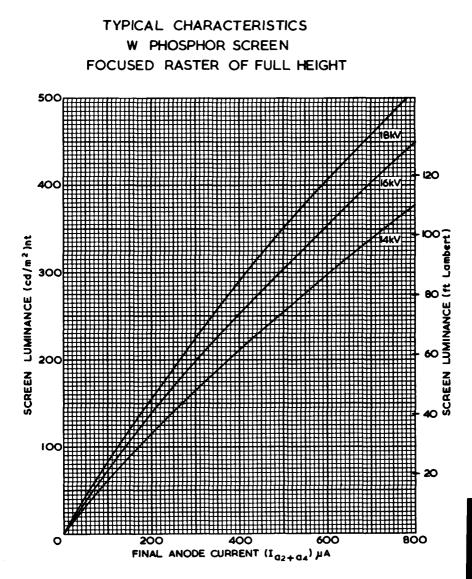
M50-120..

Data Display or Monitor Tube



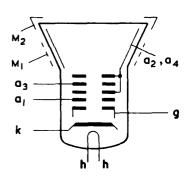
Issue 1, Page C3


X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE


MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE SOMM FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O I m R/h

RADIATION FROM BACK OF TUBE


Issue 1 Page C4

M61-120..

Data Display or Monitor Tube

GENERAL

Rectangular face, 24 Rimguard III reinford Integral mounting lug Electrostatic focus, Aluminised screen Grey glass, 42% tran Straight gun, non ion External conductive	ced enve gs magneti nsmissio trap	elope c deflecti	on
Heater voltage	Vh	6.3	v
Heater current	Ih	0.3*	A

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	20†	kV
Minimum second and fourth anode voltage	$V_{a2+a4}(min)$	13	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	v
Maximum first anode voltage	Val(max)	700	v
Maximum negative grid voltage	-Vg(max)	150	v
Maximum peak negative grid voltage	^{-v} g(pk)max	400**	v
Maximum positive grid voltage	Vg(max)	0¶	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	^v h-k(pk)max	400\$	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	MΩ
Maximum resistance, grid to cathode	Rg-k(max)	1.5	MΩ

* In a series heater chain the CRT should always be connected at the chassis end.

- $I_{a2+a4} = 0$. ** Maximum pulse duration 22% of one cycle with a max. of 1.5 ms.
- 1 A 10 k\Omega grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- Solution State State

PHOSPHOR SCREEN

This type is usually supplied with either a GR phosphor (M61-120GR) giving a yellowishgreen trace of very long persistence or a W (television white) phosphor. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	+	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	^c g-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	^c a2+a4-M1	10	00	pF
Anodes 2 and 4 to shell M_2 (approx.)	^c a2+a4-M2	35	0	pF
* Holder capacitance balanced out.				

† Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltage referred to cathode

Second and fourth anode voltage	V _{a2+a4-k}	16	16	kV
First anode voltage ¶	v_{a1-k}	400	500	v
Third anode voltage range for focus	v _{a3-k}	0 to 400	0 to 400	v
Final anode current (peak)	ⁱ a2+a4 (pk)	500	500	μA
Average peak to peak picture modulating voltage		40.5	45	v
Grid to cathode voltage limits for cut-off of raster	v_{g-k}	-40 to -77	-50 to -93	v
GR screen raster persistence to 10%	(approx.)	2	.0	s

TYPICAL OPERATION - Cathode modulation, voltage referred to grid

Second and fourth anode voltage	V _{a2+a4-g}	16	16	kV
First anode voltage ¶	V _{al-g}	400	500	v
Third anode voltage range for focus	v _{a3-g}	0 to 400	0 to 400	v
Final anode current (peak)	ⁱ a2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		35.5	39.5	v
Cathode to grid voltage limits for cut-off of raster	v _{k-g}	36 to 66	45 to 80	v
GR screen raster persistence to 10%	(approx.)	2	.0	s

1 Within this range a higher first anode voltage will provide improved focus performance.

If this tube is operated at voltages in excess of 20 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

M61-120.

PICTURE CENTRING

	um magnet flux density at ce eck should not be less than	ntre		17		Gs
Maximum distance of centre of magnetic field from reference line			53		mm	
DEFLEC	TION ANGLES					
Height	81 <i>°</i>	Width	98°	Diag	gonal 1	10°

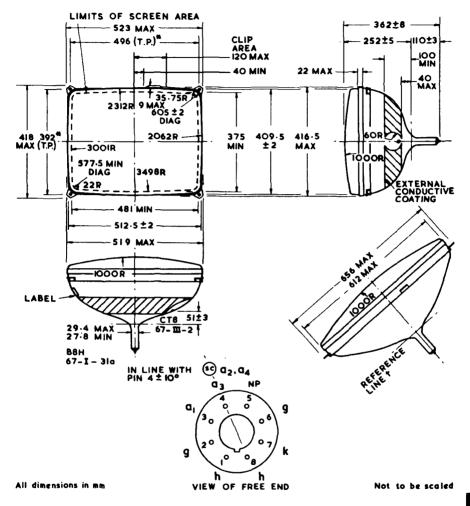
MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 100 mm surrounding the CT8 cap, the tube should not be handled in this region.

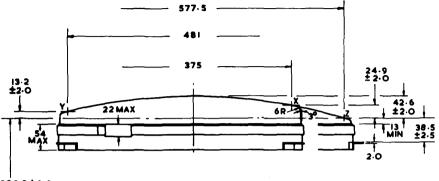
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 40 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

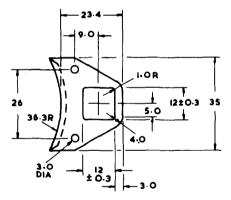

The metal frame (M_2) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 M Ω .

TUBE WEIGHT (approximate) - net 13.2 kg (29 lb)

Characteristic curves as M50-120,.


Data Display or Monitor Tube

M61-120..

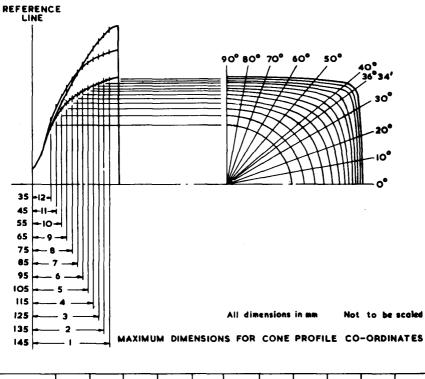


- * The bolts to be used for mounting the tube must lie within the circles of 8.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S.RL4 : IEC 67-IV-3 : JEDEC 126).

DATA DISPLAY & MONITOR TUBES

All dimensions in mm

Not to be scaled


Data Display or Monitor Tube

_

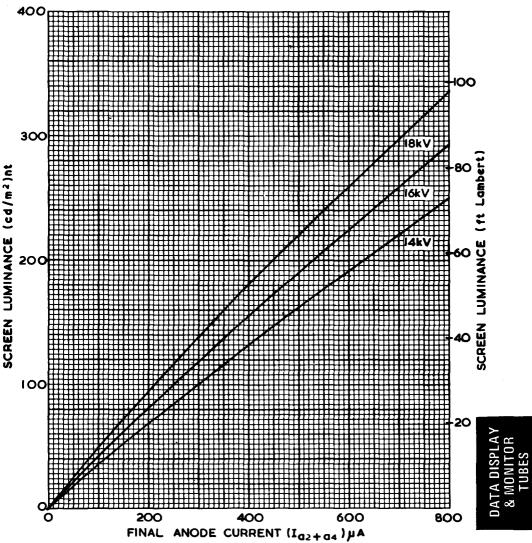
M61-120..

5

DATA & M(

Reference Plane No.	0° Major	10°	20°	30°	36°34' Diag.	40°	50°	60°	70°	80°	90° Minor
1	250.5	254.0	265.0	284.8	293.5	288.5	252.0	226.0	210.5	201.8	199.0
2	245.5	249.0	259.4	278.0	282.1	278.0	244.5	220.5	205.5	198.0	195.0
3	241.0	243.5	252.0	263.7	269.8	266.0	237.0	215.0	201.5	193.5	191.5
4			-	-		253.5	-		1		
5	229 5	231 0	236 5	243 0	242 1	240.0	219.5	201.5	189:5	184.0	181.0
5 6						224.0					
7	210 0	210 5	213 0	214 5	210 1	209.0	195.0	183.0	174.8	170.5	169.0
8						192.5					
9	183 0	181 0	180 7	180 0	176 2	175.5	168 5	161 0	155 5	152 5	151 5
10						156.5					
11	146 5	1144 0	141 6	1140 0	124 6	135.5	121 5	129 5	128 5	128 5	128 5
12	1		1			113.5	,	,		,	, ,

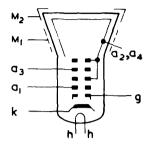
X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE



Data Display or Monitor Tube

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT

4 x 3 ASPECT RATIO


59-60/90/037

Data Display or Monitor Tube

ABRIDGED SPECIFICATION

GENER	AL
Rugged	gular flat face, 22 cm 70° diagonal tube lised construction, metal mounting frame ostatic focus, magnetic deflection
Flying Alumir	lead connections for base and anode iised screen, external conductive coating
Clear	glass, 26.95 ± 0.5 mm neck diameter.

Heater voltage	$\mathbf{v_h}$	6.3	v
Heater current	I _h	0.3	A

ABSOLUTE, RATINGS - All voltages referred to cathode

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	20	kV
Maximum third anode voltage	V _{a3 (max)}	800	v
Maximum negative third anode voltage	-V _{a3(max)}	300	v
Maximum first anode voltage	V _{al (max)}	800	v
Maximum negative grid voltage	-Vg(max)	150	v
Minimum negative grid voltage	$-v_{g(min)}$	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	100	v

TYPICAL OPERATION-Grid modulation, vol	ages with respe	et to cathode	
Second and fourth anode voltage	V _{a2+a4}	14	kV
First anode voltage	V _{al}	400	v
Third anode voltage range for focus	v_{a3}	-50 to 400	v
Grid to cathode voltage for cut-off of raster	vg	-35 to -75	v

WRICAL OPERATION Crid wedulation weltages with respect to esthade

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor giving a television white trace of medium short persistence.

Thorn Radio Valves and Tubes Limited

Data Display or Monitor Tube

59-60/90/037

13 g all three axes 2 minutes each 40 g all three axes for specified

eveled 20°C to 35°C, total 100 hrs.

92.5% humidity, 35°C, total 28 days Continuous cycling 30°C to 84°C

number of bumps

95% relative humidity.

To BS2011 Test 2J severity 28 days

To BS2011 Test 2K

total 5 days

INTER-ELECTRODE CAPACITANCES	Lead capacitances bala	nced out	
Cathode to all – maximum Grid to all – maximum Anode 2 and anode 4 to all (minimúm)	^C k-all(max) ^C g-all(max) ^C a2+a4-all(min)	8.0 25 250	pF pF pF
TUBE WEIGHT (maximum) - 3.25 ENVIRONMENTAL TESTS CAPABILITIE	0		
Storage and operational temperature range	-30°℃ to +55°℃.		
Vibration endurance	10 to 60 Hz displ 60 to 2000 Hz all three axes fo	2g -	

Bump and shock

Acceleration

Tropical environment

Mould growth

Salt mist

Solar heat

NOTE

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply

õ

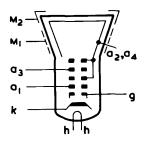
59-60/90/037

_

_

Minimum useful screen area 162 x 122.

Issue 1. Page 3


_

Data Display or Monitor Tube

59-60/90/074

ABRIDGED SPECIFICATION

GENERAL			
Rectangular face, : Ruggedised Constru Rimguard III reinfo Integral mounting I Electrostatic focus Flying lead connect Aluminised screen, Grey glass, 50% tr 29.4 mm maximum	uction orced env ugs , magnet tions for , externa ansmissi	elope* tic deflect base and l conducti lon (appro	ion anode ve coating
Heater voltage	v_h	6.3	v
Heater currant	Iь	0.3	A

ABSOLUTE RATINGS - All voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	18	kV
Maximum third anode voltage	Va3(max)	700	v
Maximum negative third anode voltage	- V _{a3(max)}	700	v
Maximum first anode voltage	Val(max)	600	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	- Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	Vh-k(max)	200	v

TYPICAL O	PERATION	-Grid modulation,	voltages w	with respect to cathode
-----------	----------	-------------------	------------	-------------------------

Second and fourth anode voltage	V _{a2+a4}	16	kV
First anode voltage	v _{al}	400	v
Third anode voltage range for focus	V _{a3}	0 to 400	v
Grid to cathode voltage for cut-off of raster	v _g	-42 to -86	v

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

* This tube meets the requirements for intrimsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is supplied with W phosphor giving a television white trace of medium short persistence.

This data should be read in conjuction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Ltd. is an Approved Manufacturer of Cathode Ray Tubes to MOD (PE) Defence Standard 05-21 and BS 9000.

Thorn Radio Valves and Tubes Limited

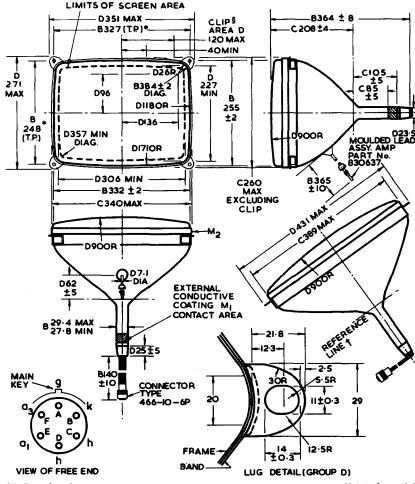
Page 1 Issue1.

DATA DISPLAV & MONITOR TIIRFS

59-60/90/074 Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES	Lead capacitances balanced out
Cathode to all - maximum	ck-all(max) 5.0 pF
Grid to all - maximum	cg-all(max) 16 pF
Anode 2 and anode 4 to M1 (minimum)	ca2+a4-M1(min) 800 pF
Anode 2 and anode 4 to M2 (minimum)	c _{a2+a4-M2(min)} 150 pF
TUBE WEIGHT (maximum) - 6kg	
ENVIRONMENTAL TESTS CAPABILITIES	
Storage temperature range	-55°C to +80°C
Operational temperature range	-40°C to +70°C
Vibration endurance	10 to 500 Hz displacement $4g$ 500 to 1000 Hz $0.5 g$ all three axes for a specified time
Acceleration	10g all three axes 15 seconds each
Bump and showk	30g all three axes for specified number of bumps
Damp heat	92.6%, relative humidity. total 40°C 10 days
Mould growth	To BS2011 Test 2J severity 28 days
Salt mist	To BS2011 Test 2K 92.5% humidity, 35°C, total 3 days

NOTE


The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return paths of M₁ and M₂ should be made in a manner appropriate to the protection system employed.

Page 2, Issue 1.

Data Display or Monitor Tube 59-60/90/074

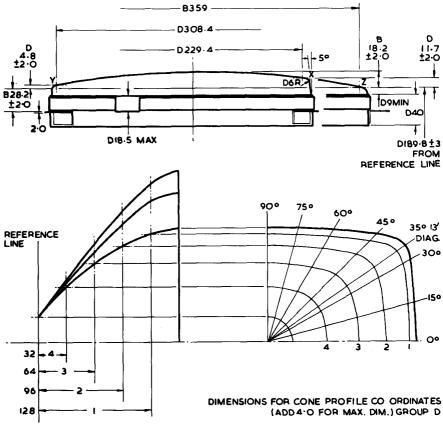
INSPECTION DRAWING

All dimensions in mm

Not to be scaled

The bolts to be used for mounting the tube must lie within the circles of 8.5 mm • diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs (Group D).

† Determined by reference line gauge


5 Total thickness of shell, tension band and clip 8 mm maximum. (Group D).

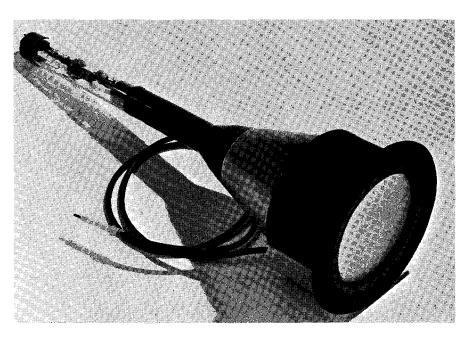
Note: Group letters are associated with each dimension.

Page 3, Issue 1.

A 0Β DISPL UBES M0 A DAT/ & N

59-60/90/074 Data Display or Monitor Tube

INSPECTION DRAWING (Continued)


All dimensions in mm

Not to be scaled

Reference Plane No.	0° Major	15°	30°	35°13' Diag.	45°	60°	75°	90° Minor
1 2	156.7	160.9	173.6	177.6	161.9	136.5	123.9	120.0
	130.0	132.6	141.5	144.0	135.3	118.0	108.6	105.7
3	99.0	100.8	106.3	107.3	103.9	93.7	88.0	86.5
4	62.8	63.4	65.3	65.4	65.0	62.0	60.0	59.5

Page 4, Issue 1.

SPECIAL TUBES

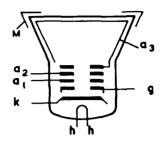
The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.


Thorn Radio Valves and Tubes Limited Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

Flying-spot Scanner Tube

Round flat face 5 in Mounting flange, p Electrostatic focus Resolution greater	otted anoo	le lead ic deflec	
		/	
Aluminised screen			
		6.3	v

ABSOLUTE RATINGS

Maximum third anode voltage
Minimum third anode voltage
Maximum second anode voltage range
Maximum first anode voltage
Maximum negative grid voltage
Maximum heater to cathode voltage
Maximum final anode current
Maximum second anode current
Maximum resistance grid to cathode

V _{a3(max)}	16	kV
Va3(min)	12	kV
Va2(max)	2.5 to 5.5	kV
V _{al(max)}	500	v
Vg(max)	150	v
V _{h-k(max)}	<u>+</u> 150	v
Ia3(max)	10	μA
I _{a2(max)}	600	μA
Rg-k(max)	1.5	MΩ

Adequate precautions should be taken to ensure that the associated circuitry and the tube are protected from damage which may be caused in the event of a high voltage flash-over within the tube.

PHOSPHOR SCREEN

This type is usually supplied with GS phosphor (Q13-202GS) giving a yellowish-green trace of very short persistence. Other phosphor screens can be made available to special order.

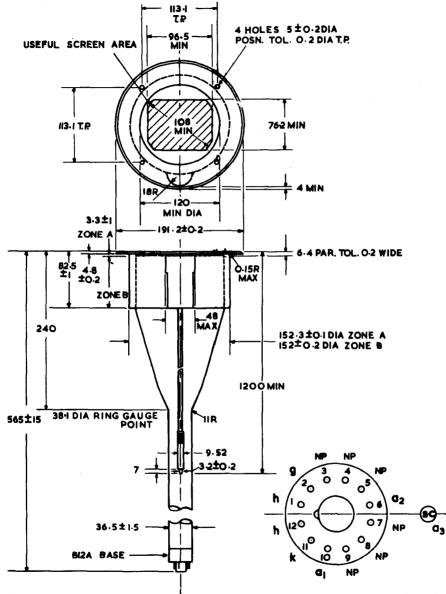
Thorn Radio Valves and Tubes Limited

Q13-202..

Flying-spot Scanner Tube

INTER - ELECTRODE	CAPACITANCES
--------------------------	--------------

Cathode to all	^c k-all	4.0	ρF
Grid to all	^c g-all	12	pF
Anode 3 to shell M	^c a3-M	200	pF
TYPICAL OPERATION voltages with respect to c	athode.		
Third anode voltage	v _{a3}	15	kV
Second anode voltage range for focus	V _{a2}	3.7 to 5.2	kV
First anode voltage	Val	300	v
Grid to cathode voltage for cut-off ($I_{a3} = 0.5 \mu A$)	Vg	-30 to -70	v
Resolution by shrinking raster $(I_{a3} = 4.5 \mu A)$		> 1200	lines
Maximum spot diameter at 60% peak luminance $(I_{a3} = 4.5 \mu A)$		0.07	mm
Maximum screen noise (peak to peak)		30*	%
Typical radiant output $(I_{a3} = 4.5 \ \mu A)$		250	μW
GS screen persistence to 10% (approx.)		0.9	μ s


* Measured with 0.07mm spot at a writing speed of 25 m/s and with a detector bandwidth of 1.5 MHz.

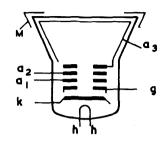
TUBE WEIGHT (approximate) - 2.0 kg

Page 2 Issue 3.

Flying-spot Scanner Tube

013-202..

At dimensions in mm


Not to be scaled

Q13-203..

Flying-spot Scanner Tube

GENERAL

Round flat face 5 inch diameter 25° tube Mounting flange, potted anode lead Electrostatic focus, magnetic deflection Resolution greater than 1600 lines Aluminised screen				
Heater voltage	v _h	6.3	v	
Heater current	I _h	0,3	A	

ABSOLUTE RATINGS

Maximum third anode voltage	Va3(max)	16	kV
Minimum third anode voltage	Va3(min)	12	kV
Maximum second anode voltage range	V _{a2(max)}	2.5 to 5.5	kV
Maximum first anode voltage	Val(max)	500	v
Maximum negative grid voltage	-V _{g(max)}	150	v
Maximum heater to cathode voltage	Vh-k(max)	± 150	v
Maximum final anode current	Ia3(max)	10	μ A
Maximum second anode current	Ia2(max)	600	μ A
Maximum resistance grid to cathode	Rg-k(max)	1.5	MΩ

Adequate precautions should be taken to ensure that the associated circuitry and the tube are protected from damage which may be caused in the event of a high voltage flash-over within the tube.

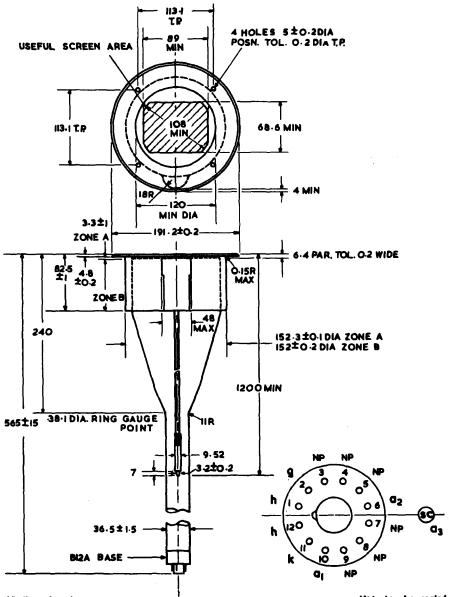
PHOSPHOR SCREEN

This type is usually supplied with GT phosphor (Q13-203GT) giving a bluish-green trace of very short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Flying-spot Scanner Tube

Q13-203..

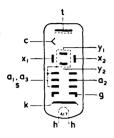

INTER-ELECTRODE CAPACITANCES

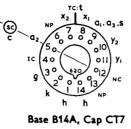
Cathode to all	^c k-all	4.0	pF
Grid to all	^c g-all	12	pF
Anode 3 to shell M	^c a3-M	200	pF
TYPICAL OPERATION - voltages with respect to	cathode.		
Third anode voltage	v _{a3}	15	kV
Second anode voltage range for focus	V _{a2}	3.7 to 5.2	kV
First anode voltage	V _{al}	300	v
Grid to cathode voltage for cut-off $(I_{a3} = 0.5 \ \mu A)$	Vg	-30 to -70	v
Resolution by shrinking raster (I _{a3} = 4.5 μ A)		> 1600	lines
Maximum spot diameter at 60% peak luminance ($I_{B3} = 4.5 \ \mu A$)		0.05	mm
Maximum screen noise (peak to peak)		45 *	%
Typical radiant output power ($I_{a3} = 4.5 \ \mu A$)		250	μ₩
GT screen spot persistence to 10% (approx.)		0.9	μs

TUBE WEIGHT (approximate) - 2.0 kg

 Measured with 0.05mm spot at a writing speed of 25 m/s and with a detector bandwidth of 1.5 MHz. Q13-203..

Flying-spot Scanner Tube




All dimensions in mm

Not to be scaled

XR1000

Maintenance Type

GENERAL

This monoscope is used for electrical generation of alpha-numeric characters and symbols. The output signals are generated by scanning the individual characters and symbols which are arranged in an array, typically 8×8 , on a target. The electron gun has electrostatic focus and deflection.

This device has applications in business and data processing equipment for cathode ray tube display.

Heater Voltage	Vh	6.3	V
Heater Current	lh.	0.3	Α

ABSOLUTE RATINGS

Maximum Target Voltage		2850	V
Maximum Collector Voltage	V _{c(max)}	2850	V
Maximum First and Third Anode Voltage	$V_{a1+a3(max)}$	2850	· V
Maximum Second Anode Voltage	Va2(max)	1100	V
Maximum Collector to Target Voltage	V _{c-t(max)}	20	V
Maximum Peak x-plate to Third Anode Voltage	Vx-a3(pk)max	550	V
Maximum Peak y-plate to Third Anode Voltage	Vy-a3(pk)max	550	V
Maximum Grid Voltage	,		
Negative Value	–V _{g(max)}	220	V
Positive D.C. and Peak Value	Vg(pk)max	0	V
Maximum Peak Heater to Cathode Voltage	Vh-k(pk)max	\pm 200	V
Maximum Grid to Cathode Resistance	Rg-k(max)	1·5	MΩ
Maximum Resistance in any Deflection	8		
Electrode circuit*		5-0	MΩ

All voltages measured with respect to cathode unless otherwise stated.

* It is recommended that the deflecting electrode circuit resistances be approximately equal.

INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-all	10.6	pF
Cathode to all	Ck-all	5.1	pF
Collector to all	C _{c-all}	5.7	pF
Target to all	Ct-all	2.3	pF
x ₁ plate to x ₂ plate	Cx1-x2	1.5	ρF
y ₁ plate to y ₂ plate	Cy1-y2	2.7	pF
x ₁ plate to all, less x ₂ plate	C _{x1-all} , less x2	6.9	pF
x ₂ plate to all, less x ₁ plate	Cx2-all less x1	6.4	pF
y ₁ plate to all, less y ₂ plate	Cy1-all, less y2	8.6	pF
y ₂ plate to all, less y ₁ plate	Cy2-all, less y1	8∙3	рF

The target used with this tube is indicated by a letter suffix to the type number.

Thorn Radio Valves and Tubes Limited

XR1000

TYPICAL OPERATION AND CH	ARACTE	RISTICS	
Target Voltage	V _t	1200	V
First and Third Anode Voltage	V_{a1+a3}	1200	V
Mean Deflector Plate Potential		1200*	V
Minimum Collector to Target Potential	V _{c-t(min)}	3.0	V
Second Anode Voltage for Focus	V _{a2}	150 to 515	ν
Grid to Cathode Voltage for beam cut-off	V _g	-25 to -65	V
Deflection voltage per symbol area (8 $ imes$ 8 array)			
Vertical direction (nominal)		9.0	V
Horizontal direction (nominal)		6.5	V
Voltage required for full beam deflection [†] (nominal)			
Between centres of lowest and highest rows		90	V
Between centres of extreme left and right columns		55	ν
Target Load Resistance		500	Ω
Typical Peak Output Signal		5.0	μ A

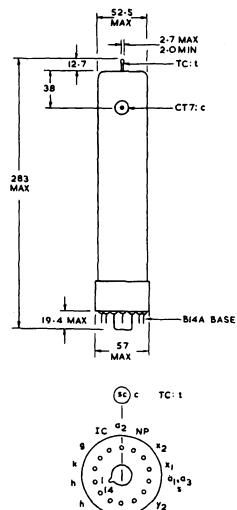
* If the mean deflector plate potential differs from the first and third anode voltage the quality of focus will deteriorate.

† Undeflected beam normally at centre of target pattern.

Notes: The electron beam should be cut-off when no raster is being scanned otherwise a blemish may be produced by a change in the secondary emission of the target. It is recommended that no character be used in such a way that it has a usage factor greater than ten times the average.

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

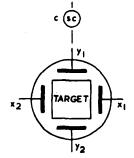
PRINCIPLE OF OPERATION


In operation a smaller raster is generated just large enough to scan a single character on the target. The scan circuit also selects and positions the beam on the character to be generated.

As the electron beam lands on the target surface secondary emission electrons are produced and are attracted to the collector which is held at a slightly more positive voltage. The secondary emission from the printed character is lower than from the surrounding target surface where the secondary emission ratio is considerably greater than unity. Hence when the beam lands on the character the target current falls.

The changes of the target current through the load resistance produce the output video voltage signal. By synchronisation of scan and scan position any entire character can be recreated on the final display cathode ray tube. Using suitable circuitry any individual monoscope target character or any sequence of characters can be selected and displayed as required.

Characters can be " read out " from the monoscope at a rate exceeding 60,000 characters per second, corresponding to the rate required for a display of approximately 1,000 characters refreshed at 50 fields per second, with due allowance made for retrace times in the display. The resolution capability is adequate for a display of this complexity.


Approximate Net Tube Weight-380g (0.84 lb.)

NP NC

Y1

VIEWED FROM PINS FREE END (PIN 5 AT TOP)

All dimensions in mm.

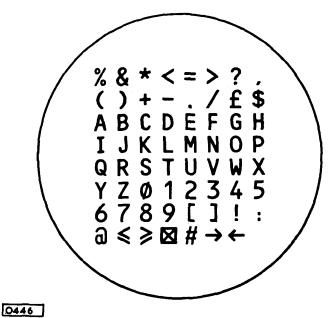
Not to be scaled

Care should be taken to avoid bending the target pin as this may cause misalignment of the target.

Issue 2, Page 3

SPECIAL TUBES

XR1000


XR1000A

Monoscope Tube

Maintenance Type

MONOSCOPE

TARGET "A" TYPICAL TARGET USING ECMA FOUNT OCR-B

Alignment of Traces

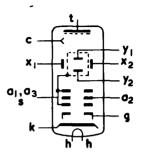
A positive voltage on y1 deflects beam towards top row. A positive voltage on x2 deflects beam towards left hand column.

Angle between x and y traces $90^{\circ} \pm 1^{\circ}$.

Angle between trace and target symbols \pm 1°.

See XR1000 data for tube electrical and mechanical details.

Thorn Radio Valves and Tubes Limited


Maintenance Type

......

GENERAL			
This monoscope of alpha-numeric output signals are idual characters in an array, typ electron gun has e This device has a processing equipt	c character e generated and symbo bically 8 x electrostati applications	rs and symbol. by scanning th ls which are a 8, on a targe c focus and def s in business a	s. The he indiv- rranged et. The flection, and data
Heater Voltage		6.3	37

Ih

0.3

T

A

ABSOLUTE RATINGS

Heater Current

Maximum target voltage	V _{t (max)}	2850	v
Maximum collector voltage	V _{c(max)}	2850	v
Maximum collector to target voltage	V _{c-t(max)}	20	v
Maximum first and third anode voltage	Val+a3(max)	2850	v
Maximum second anode voltage	V _{a2(max)}	1100	v
Maximum peak x plate to third anode voltage	vx-a3(pk)max	550	v
Maximum peak y plate to third anode voltage	vy-a3(pk)max	550	v
Maximum grid voltage negative value positive d.c. and peak value	^{-V} g(max) ^v g(pk)max	220 0	v v
Maximum peak heater to cathode voltage	^v h-k(pk)max	±. 200	v
Maximum grid to cathode resistance	Rg-k(max)	1.5	MΩ
Maximum resistance in any deflection electrode circuit*		5.0	MΩ

All voltages measured with respect to cathode unless otherwise stated.

* It is recommended that the deflecting electrode circuit resistances be approximately equal.

The target used with this tube is indicated by a letter suffix to the type number.

Thorn Radio Valves and Tubes Limited

Issue 1. Page 1

XR1002

SPECIAL TUBES

INTER-ELECTRODE CAPACITANCES

Grid to all	^c g-ali	10.6	pF
Cathode to all	c _{k-all}	5.1	pF
Collector to all	^c c-all	5.7	pF
Target to all	ct-all	2.3	pF
x ₁ plate to x ₂ plate	^c x1-x2	2.7	pF
y ₁ plate to y ₂ plate	с _{у1-у2}	1.5	pF
x_1 plate to all, less x_2 plate	^c x1-all, less x2	2 8.6	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	8.3	pF
y_1 plate to all, less y_2 plate	^c y1-all, less y2	2 6.4	pF
y2 plate to all, less y1 plate	cy2-all, less yl	6.9	pF
TYPICAL OPERATION AND CHARACTERISTICS			
Target voltage	v _t	1200	v
First and third anode voltage	V _{al+a3}	1200	v
Mean deflector plate voltage		1200†	v
Minimum collector to target voltage	v _{c-t(min)}	3.0	v
Second anode voltage for focus	v _{a2}	150 to 515	v
Grid to cathode voltage for beam cut-off	vg	-25 to -65	v
Deflection voltage per symbol area (8 x 8 array) Vertical direction (nominal) Horizontal direction (nominal)		6.5 9.0	v v
Voltage required for full beam deflection* (nomin Between centres of lowest and highest rows Between centres of extreme left and right colu		55 90	v v
Target load resistance		500	Ω
Typical peak output signal		1.5	μA

* Undeflected beam normally at centre of target pattern.

† If the mean deflector plate potential differs from the first and third anode voltage the quality of focus will deteriorate.

CAUTION

The electron beam should be cut-off when no raster is being scanned otherwise a blemish may be produced by a change in the secondary emission of the target. It is recommended that no character be used in such a way that it has a usage factor greater than ten times the average.

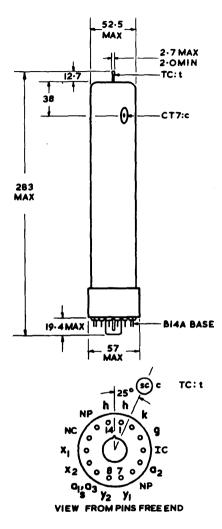
NOTE

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

PRINCIPLE OF OPERATION

In operation a small raster is generated just large enough to scan a single character on the target. The scan circuit also selects and positions the beam on the character to be generated.

As the electron beam lands on the target surface secondary emission electrons are produced and are attracted to the collector which is held at a slightly more positive voltage. The secondary emission from the printed character is lower than from the surrounding target surface where the secondary emission ratio is considerably greater than unity. Hence when the beam lands on the character the target current falls.

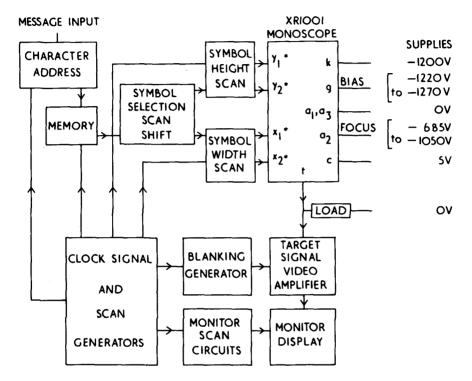

The changes of the target current through the load resistance produce the output video voltage signal. By synchronisation of scan and scan position any entire character can be recreated on the final display cathode ray tube. Using suitable circuitry any individual monoscope target character or any sequence of characters can be selected and displayed as required.

Characters can be "read out" from the monoscope at a rate exceeding 60,000 characters per second, corresponding to the rate required for a display of approximately 1,000 characters refreshed at 50 fields per second, with due allowance made for retrace times in the display. The resolution capability is adequate for a display of this complexity.

TUBE WEIGHT (approximate) 380g (0.84 lb)

XR1002

Monoscope Tube


All dimensions in mm

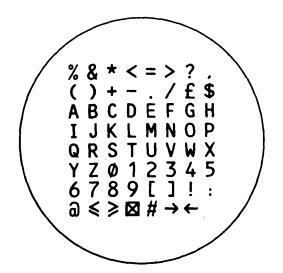
Not to be scaled

Care should be taken to avoid bending the target pin as this may cause misalignment of the target.

XR1002

OPERATIONAL BLOCK DIAGRAM

* Zero mean voltage



XR1002A

Monoscope Tube

Maintenance Type

Alignment of Traces

A positive voltage on y_1 deflects beam towards top row. A positive voltage on x_2 deflects beam towards left hand column. Angle between x and y traces 90 ± 1 . Angle between trace and target symbols ± 1 .

See XR1002 data for tube electrical and mechanical details.

Thorn Radio Valves and Tubes Limited

XR1003

Maintenance Type

	·		———— ₁			
GENERAL					t,	
This monoscope is of alpha-numeric output signals are idual characters a in an array, typi electron gun has el This device has a processing equipm	characte generate nd symbol cally 8 x ectrostat oplication	ers and symbols d by scanning the ols which are ar 8, on a target ic focus and defl as in business and	. The indiv- ranged . The ection. nd data	c x ₁ a ₁ ,a ₃ s		y ₁ x ₂ y ₂ y ₂ 0 ₂
Heater Voltage	v_h	6.3	v	k		9
Heater Current	Ih	0.3	A	n	hh	J
ABSOLUTE RATING					0050	
Maximum target volta	•		V _{t (max)}		2850	v
Maximum collector v	oltage		V _{c(max)}		2850	v
Maximum collector to	target v	oltage	V _{c-t(max)}		20	v
Maximum first and th	urd anod	e voltage	Val+a3(max)		2850	v
Maximum second ano	de voltag	e	Va2(max)		1100	v
Maximum peak x plat	e to third	i anode voltage	^v x-a3(pk)max	ł	550	v
Maximum peak y plat	e to third	ł anode voltage	vy-a3(pk)max		550	v
Maximum grid voltag negative value positive d.c. and p		e	^{-V} g(max) ^v g(pk)max		220 0	v v
Maximum peak heater	r to catho	ode voltage	^v h-k(pk)max	t	200	v
Maximum grid to cath	nod e res i	stance	Rg-k(max)		1.5	MΩ

Maximum resistance in any deflection electrode circuit*

All voltages measured with respect to cathode unless otherwise stated.

* It is recommended that the deflecting electrode circuit resistances be approximately equal.

The target used with this tube is indicated by a letter suffix to the type number.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

5.0

MΩ

XR1003

Monoscope Tube

INTER-ELECTRODE CAPACITANCES

Grid to all	cg-all	9.0	pF
Cathode to all	ck-all	3.5	pF
Collector to all	c-all	5.5	pF
Target to all	^c t-all	2.5	pF
x1 plate to x2 plate	c _{x1-x2}	2.3	pF
y_1 plate to y_2 plate	с _{у1-у2}	0.9	pF
x_1 plate to all, less x_2 plate	^C x1-all, less x2	7.5	pF
x_2 plate to all, less x_1 plate	^c x2-all, less x1	7.5	pF
y_1 plate to all, less y_2 plate	^C yl-all, less y2	6.0	pF
y2 plate to all, less y1 plate	^c y2-all, less yl	6.5	pF

TYPICAL OPERATION AND CHARACTERISTICS

Target voltage	vt		1200		v
First and third anode voltage	Val+a3		1200		v
Mean deflector plate voltage			1200	1	v
Minimum collector to target voltage	V _{c-t(min)}		3.0		v
Second anode voltage for focus	V _{a2}	150	to 51	5	v
Grid to cathode voltage for beam cut-off	Vg	-25	to -6	5	v
Deflection voltage per symbol area for two arrays Vertical direction (nominal) Horizontal direction (nominal)			8 x 8 6.5 9.0	12x8 6.5 6.0	v v
Voltage required for full beam deflection* (no Between centres of lowest and highest rows Between centres of extreme left and right	1		55 90	55 95	v v
Target load resistance			500		Ω
Typical peak output signal			2.5		μA

* Undeflected beam normally at centre of target pattern.

† If the mean deflector plate potential differs from the first and third anode voltage the quality of focus will deteriorate.

CAUTION

The electron beam should be cut-off when no raster is being scanned otherwise a blemish may be produced by a change in the secondary emission of the target. It is recommended that no character be used in such a way that it has a usage factor greater than ten times the average.

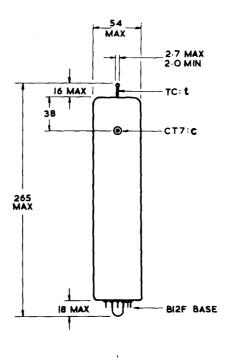
NOTE

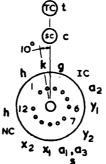
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

PRINCIPLE OF OPERATION

In operation a small raster is generated just large enough to scan a single character on the target. The scan circuit also selects and positions the beam on the character to be generated.

As the electron beam lands on the target surface secondary emission electrons are produced and are attracted to the collector which is held at a slightly more positive voltage. The secondary emission from the printed character is lower than from the surrounding target surface where the secondary emission ratio is considerably greater than unity. Hence when the beam lands on the character the target current falls.


The changes of the target current through the load resistance produce the output video voltage signal. By synchronisation of scan and scan position any entire character can be recreated on the final display cathode ray tube. Using suitable circuitry any individual monoscope target character or any sequence of characters can be selected and displayed as required.

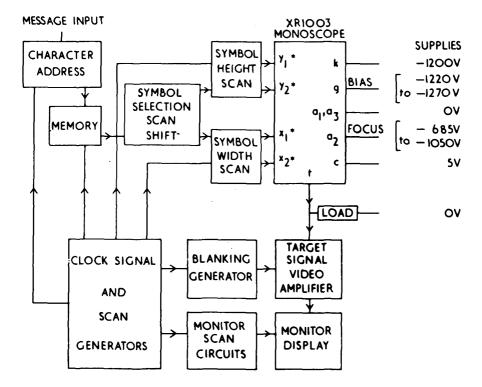

Characters can be "read out" from the monoscope at a rate exceeding 60,000 characters per second, corresponding to the rate required for a display of approximately 1,000 characters refreshed at 50 fields per second, with due allowance made for retrace times in the display. The resolution capability is adequate for a display of this complexity.

TUBE WEIGHT (approximate) 330 g (0.73 lb)

XR1003

Monoscope Tube

VIEW FROM PINS FREE END

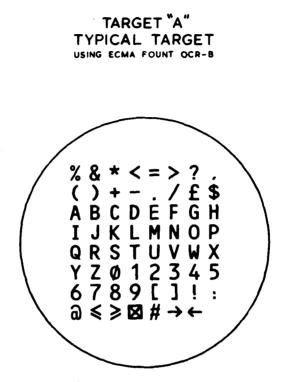

All dimensions in mm

Not to be scaled

Care should be taken to avoid bending the target pin as this may cause misalignment of the target.

XR1003

OPERATIONAL BLOCK DIAGRAM



* Zero mean voltage

XR1003A

Monoscope Tube

Maintenance Type

Alignment of Traces

A positive voltage on y_1 deflects beam towards top row. A positive voltage on x_2 deflects beam towards left hand column. Angle between x and y traces $90^\circ \pm 1^\circ$ Angle between trace and target symbols $\pm 1^\circ$.

See XR1000 data for tube electrical and mechanical details.

Thorn Radio Valves and Tubes Limited

NOTES

NOTES

THORN RADIO VALVES & TUBES LIMITED

Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7NS. Telephone: 01-804 1201

PRICE £5.00

Volume 2 Date Section Issue 3