```
    MNTMM
```



```
        EOS
```


	 	Astm-32
	 A\% Th 	$2 x^{2} 8=9-33$
\$26\% $70 \% 30$	 	$4{ }^{2} 508-312$
CECTO 4	 MATVEIAK	$4 x^{2}=9-23$
SECTM04 50	Schematic of gM Hoxithay	$5-600$
SECTION 6.	 	ATF $-3-7{ }^{\text {a }}$

Y STITMEN:

 the fectory to ingure nofo dolivery wht zeasonably carelvi hemilme
 omclesed packiag llet for sroore or shorit ghtpment。

 ase menored Irom the quipent for shimment. These teme will bo founa

 fhoule be lookel fiox mexe eppliosblo.

 whare mounting is by meend of fingon ferulo tarminglas
 kig tyoer held ha locklag type aockote
d. Daph pot ois. for timing relgy of thet typa

- Dlugin typa rado frequarg snauctare
fo crystals - ratio frequency control type

Go Microphones, telegraph keg, eaphone etso

These fitem where epplacable shonld beratasialiod in thatr

 These should obviously be frete prior to inetalletton of facuta tuber ant mpplication of power.

 monto notify carrior immedately lacyng broken or damaged iten or items
 or protective material involved in the wraplag of the angaged ltex.

 Clsime nugt ugcelly bo made wthtr fifo daye of recelpt of ahipmento

Section Id

GEAEAEAL DESGREPTICR OF WQUIPMENT
FOR CAT \quad HOO SH BROADCAST MOD
 EGUIBMENTM

A 1. Genersi Description: $=$
The REL Cst. 600 FM Broadcast Modulation and Frequency menitor provides means of continuous monitoring of both instantanecus perceritage of Modulation in althar direction and average carrier frequency mhe monifor is completely crystal controlled and designed to opersie on any one frequency in the band of from 88.1 to 107,9 megacycles. It is furnished completsly aligned with crystals roy operaition on oifi specm ified frequency in the above band.

Also included is an overmodulation alarm ch ich may be accurateig adjusied to Elssh at some preset modulation level in the renee of from 50 to 120% modulation.
2. Assembly and Installation:-

Tubes and orystals removed for shipment should be reinstalled. Particular attention should be paid to insure correct placement of individual tubes. Each twbe will be found to have a symbol number rasked upon it. TUBES MUST BE REPLACED IN THE SOCKETS HAVING CORRES PONDING SYMBOL DESIGNATIONS. LTKEWISE WITH CRYSTALS.

It is recommonded thet the equipment be permanentiy inatalled near enough to the transuitter so that the connecting coaxial cable will not exceed 50 reet in length.
3. Primary Power Connection:-

115 wolt 60 cycle power should be brought into terminale 49 and H10 on the rear of the mein chassis. This line should be maiVen 24 hours a diy so that the two crystal ovens which connect to the ine prior to the "POWER" switch wlll be energized continuousiy.
4. Input Connections:-

RF input to monitor is made to jack J il located at the rear of the main chassis. A 50 or 70 ohn solid dielectric cable with vingl jacket is recommendad. Stendard cable connectors are furnished with equipment.

RF input requirements for eatigfactory performance are "Normal 10 volts RMS minimum 8 volts, meximum 30 volts into 50 ohm termination. Means should be provided at the transmitter end to insure that once set the input level to the monitor is constent.

$$
\text { Art }-9-33
$$

Fage \%o。

A 5. Accessory data and comection ol sanos-

Audio output sor oural nonitorine nay be obtatned by comsoring
 at ground potentian Ontput ievel of odea ior pius or mians 75 He

B 1. Circuit Descriptionso

The monitat consists of a very 20% sensi.inivty zupormbrody receiver, The hetrodyning algan is darived xar oven heatod cxtysual

 junctions as a high lavel likiting nexast.

 This control varics Vod sersen voltage.

Frequency modulation detector camprises transtonnar amsubhy $2-2$ and duo-diode V-3. The awerase carrier Erequency indicaton 2 a a zaro center 100 uA instriment in the common dioder yeturi. During moninlation
 Input irox these voltager to the 品modulaticn indicator lo selected
 DOㅃำ":
 and D.C. amplifier $\nabla-13$.
 trol grid voltage derizod fron $D_{3} C$ omplifice $\overline{\mathrm{F}}-13$.

The audiary eudio ampliter y-b lo provided for aural monitoxine purposes and is preceded by the standard 75 micre-becord deernhestio.

Oven heated arystal Y-2 and oscillator tubo Vuy oparase at ma halif the I.F. and serven 25 a calibrator for the Fild detector citemit.

The associated porrar supply is of conventional suli wro type using electronic voltage regulation.

C 2. Operationai Ad fustmente:-
HARAMN Before turning on power see that the 100 chm safety shant reelstor is in place across terminals \#13 and \#4. po not semove unifil instructed to do so in the aligment steps.

$$
\begin{aligned}
& \text { Ari-9-3 } \\
& \text { Pfoge No. ? } 4 \text { ? }
\end{aligned}
$$

C 2．Operetionsi Adjustmentsim（Contumed）

 switeh marked＂powgrn off．LiEhts on mer center meter will light and will illcker ahowing operatlon of over hestere aftir several minutes at． room amblent．

 turn on MPOWRR＂。

STEP 3 ，using a 0.1 MA milianeter（negative tip）plug in fock locsted a．left hand and of front gubopanelo slowly increase coupling to irenem mitter tank until metar reads 0.5 ma－If ang doabs existeg check ouspus of cable at monitor ind of line with a VIVM loading the cable with 50 ohma capsble of $318 s i p a t i n g$ about 5 watts．

STEP 4．Set＂CAL OPER＂to＂CAL 2^{n} and adjust＂DRT CAL＂cararully to makt zero center meter read 0 ．
 ming 200 cFcles if trenamitter is mithim plus or mimus 2000 eyclow of assigned frequency（dum th 200 onm sarety shunt on rear harminalal．

$+1925$
 ＂RF CAIN＂setting unless input so monitor is changed．If if．is changed． readjust as in STe？ 3 for reading of $0_{0} 5$ M tolernnes $=0$ ．Wha plua 0.3 kif repoating STEPS 8,4 and 5 in that order．
 ＂ALARM CAE＂clockwisa until percent modulation mater resde deeifed alas＂ valve．Leaving the moter indicating this ralve turn＂gLARM SRTM somtrol counter clockwise until relay buzzes and alarm lamp flashes．matar should now be returned to extreme counter－clociriae position（past awitch） and＂CAL OPGR＂turned to＂OPRR＂LeQve＂ALARA SETM At posision determ minod abora．

STEP 9．Teminals 411 and k should be terminatad in a reaistance or impedance of about 600 ohms．Thia is the Aux．nudio output．Terminal \＃11 at chassis or ground potential．

C 2．MISCELLANEOUS NOTES AND WAKNIMGS：－
a．R－52 18 zero set for percent modulation meter in esse Vol3 is changed．
b．R－46 is gensitivity adjustment of percent modulation meter and must be set AFTER R－52 using accurately known tranamitter soing（plae or minus 75 ke equel 100% ）．
（Small black mark near right hand end of q modulation scale is set at） （133 1／3！modulation or plus or minus 100 ks gwing

 Aた！

 HONETOR

STMBOL PREF.	$\begin{aligned} & \text { REL PART } \\ & \text { YO } \end{aligned}$	DESGEIPTION
C-1	C-5047 5 SI	Cepactior - fixed. unca, 001 mPd . 500 WDC\% 20% accuracy
c-2	C-5000-45	racy.
$c-3$	C-5171-82	Capacitor - fixed, mica, 006 mfa , 500 YDCW, 20% mecuracy
C-4		Capacitor - Part of Zol dssembly
Cas		Capacitar o Part of 2-1. Ansembly
c-6		Capecitor - Part of $2-1$ Assombly
$\stackrel{\circ}{-7}$		Capactior or Part of 2-1 Assembly
${ }_{6} 8$	0.5013-51	Cepacitor - fixed micas 220 mapd. 500 FDCX 20% accuracy
C. 9		Capacitor on Same as C-3
C-10		Capacitor = Part of $2=2$ Assembly
C-11		Capacitor - Part of $z_{0} 2$ Assembly
C-2 4		Capacitor $=$ Part of 2-2 Asbembly
C-15		Capacitor - Part of Zos Agsembly
6-16	C-5002- ${ }^{\text {a }}$	CY_{y} zero cosficisnt.
c-17		Capacitar - Same as coll
C-18	C-5009-E2	Capacitor - variable. sir, split stator. 5-36 wac. $2,5-18$ mafd.
C-19	C-5175-c8	Cspecitor $=$ fixed raica, 005 ufd, 500 VDG\%, 20% accuracy
C-20		Capacitor - Same as Ca
C-21.		Capacitor - Seme er C-8
C-22		Capacitor - Same as cos?
C-23		Capacitor - Same a c-3
$C=24$	C-5172-SI	Capacitor cofixed. silvered mica, "000047mfa, 500 YDCi. 10\% accuracy

-

$\begin{aligned} & \text { SMBBOL } \\ & \text { REW } \end{aligned}$	$\begin{gathered} \text { RIS } P A R T \\ M O \end{gathered}$	DSSCRIPTIOX
C-25	C-5173-51	10\% accuracy
$8-26$	$c=5026 \times 55$	nomixal spacina.
$C-27$ $C-28$		Capacitox - Sem fixed, ceramic, 10 mm fd $s 00 \mathrm{VDCW} ., 10 \%$ accuracy, zero coefficient. Capacitor - Same å C-3
C-29		Capacitor \sim Same as Cric
C-30		Capaciter - Same as C-2
c-31	Co5001-E5	Capacitor mixad. ceramic. 100 mida. 500 yDCW. Log accuracy.
C-32		Capacitor - Same as cmj
6-33		Capreitor - Same aa cos
c-34		Capncitor - Seme as Cun 26
C-35	Cos 5174 mas	Capacitor $=$ fixad micas. 001 mfd 。500 VDCW, 5 \% accuracy
c-36	c-5169-74	Capacitor fixsd. paper, oil filled. 0.25 mid. plus 20% minus $10{ }^{\circ} 600$ VDCW
$c-37$	c-5168-84	minus 10%, 600 FDCW
C-39	C-5167-14	Cepacitor - fixed, electrolytic. pluganan 20 mid. 450 $\mathrm{VDCH}_{0} 20 \%$ accuracy ${ }_{0}$ netal cax
0.40	C-5166-14	Capacitor - fixed. electrolytic. pluemo 40 wfo, 450 VDCW. 20\% accuracy. metal can
c-41		Capacitor - Same as 0-37
C-42		Capacitar - Same as C-37
c-43		Capacitor - Same as C-31
C-44		Capacitor - Same as C=37
C-45		Capacitor fixed, payex oil filled, 0, 1 fo. plue 20% minus 10\% 600 VDCW

STMPOL REF	$\begin{gathered} \text { REL Psem } \\ \text { HO } \end{gathered}$	DHSGETPMYOA
C-46		
Cod 4		Capecitor - Same as $0=3$
C-48		Capeotitor - Same Cos
Cos 49		Capacibor - Seme as Cum
C-50		
$C=51$		Capscitor os Sara as
$C-52$		Capacitor $=$ Serie as Com
C 53		Cepacitor Same Coz
$6-54$		Capacitor orsme as Co?
$C-55$		Capacitor m Same tis Co?
C-56		Capacitor - Same as G-2
cos 57		Capacitor - Same as Cos
C-58		Capacitor - fixed, paper. 0.02 afd. 200 vocw. plus 20% minus 10\%
F-1	[-5000-L3	Fuse - glase enclosed. 1 smpers. 250 volit
P-2	$7.5006-13$	Fuse - Elas encioged, 2 ampere, 250 volts
I1	$I=50046 \mathrm{Gz}$	
$J=1$. $-5001-85$	Jack female contact, chassis mtg. type
$J-2$	T-5014-619	Jack - phone typen aingle closedsoirculto wingle bole
K-1	4-5029-017	Relay $=011$ for 100 volts DC with 25 M. As or less two form A contact sections per relaj
$\underline{L}-1$	I-5003-S5	integral type single layer wound. anshielded.

STMBOL REF 。	${ }^{3} 0$	DESCRIETEOX
$I \mathrm{I}=2$	$5=5028-13$	Co11．redio＝choke．Inductance E． 5 millinearies． 5 为
± 5	－65002－R7	Coil．radio a beterodymo oscillator ist．tixpler．integrex type ingle winding
$2 \sim 4$	5005051－55	Coils radio ooncillator plete taur
$L-5$		Coils radio－triplar ploto
I－6		Coilo radio＝Sume ea Imy
I－7	c－5033－014	1600 ohme heruatically moaled．
M－1	\％5020 513	deflection epecial scal and paintar，Bealo nes lo airio sians and plaffainus 2000 cyclen on the scale to corresm pond to pluspainas 50 micrampa on the moter．ep accuracy
M－2	$x-5027-13$	Merer－DC micrommeter a Hovement 0 to 250 microampertep 1400 obme scale as for Model 862 type $30 B$ Mith 250 解icro amperes giving full scale（plus 3W indication and with additiongil mark at a deflection corresponding to $233 \mathrm{~F} / 3 \mathrm{~F}$ nodulation damping inctor within 16 to 200，ofme for ome complste oscillation of the pointer is from 290 to 350 milliseconde。 $2 f$ gcouracy
$\mathrm{P}=1$	P $=5002=85$	Plug connector conxial used with ajol
B－1	8－5199－S16	Power measurement lamp－lockrin base，non－linent resige tance．
R－2	E．5125－A11	Fesistor－fixed，composition， 1000 ohas，1／2 wntt， 10%
8 m 3	8－5034－12	Rosistor－fixedn composition， 82,000 ohms， $1 / 2$ metto 10%
En4	E－52a 42	Resistor－iixed，comporition，20，000 ohms，2／2 whtt，108
R 5	R－5197－12	Fiesistor－ixed，composition 20.000 ohme 1 watto 10%
R－6	1－5219－66	Resietor－variable，wire wound． 50,000 ohms．10\％accuracy． 3 watts dissipation at full resistance．linear taper

STMBOJ， RET	BKI PART ${ }_{3}{ }^{2} 0$	DESCRIFTMOM
R－7	E－5225－A1I	Foristor－fized，compozition， 510 oham，I／2 whtto i\％
R－8		Resietor－Same as Bry
Bra	E－5203－All	
H－10		Resistor－Same zs $\mathrm{l}=9$
R－11	R－5204－111	Resistor－fixed composition， 1 meg ohme $1 / 2$ witt 10 \％
R－12	8－5226－A11	
R－13		Rebiator $=$ Same 08 Bm
Rol 14	은200－411	
R－15		Resistor a Same as Prel 4
R－16	R－5035－4］1	
R－17		Resistor－Same an In 3
E－18		Resibtor－Same as B－16
B－29		Resintor－Same an R 3
B－20	R－5206－411	Resistor－fixed，composition 75,000 ohma $1 / 2$ wats． 5% accuracy
R－21		Easistor－Seme as M－14
R－22	A－5207－All	
R－23．	R－5208－12	Resibtor $=$ ficed，composition 2000 ohns． $1 / 2$ wett， 10%
8－24		Regiator－Same as R－11
B－25	Bme5134－411	Resistor－fixed．composition， 15000 ohms 1 watto 10 灰
B－26	R－5217－111	Resisfor－fixed．composition， 150,000 ohma $1 / 2$ watt， 10%
B－27	R－5220－66	Resistor $=$ Variable，composition 100,000 ohms．20\％accuro acy． $1 / 2$ watt at full resistance．Innear taper．
R－28	E－5209－12	Fresistor－ifxede composition 40000 ohmo $/ 2$ watit． 10%
R－29		Resistor－Same as ${ }^{\text {Pmon }} 16$

-

SYMBOL 풌․	$\begin{gathered} \text { RKL PART } \\ \text { NO } \end{gathered}$	DESCCIPTIOX
R-30	或5223-12	
$\mathrm{R}=31$	8-5112-4x1	Resistox-fixoc, comperition, 100,000 ahan 2 \% tit. 10%
- 32	$\mathrm{B}=5032 \mathrm{All}$	
$8-33$	R-5101-12	Hesistor - firud, compocition 150,000 onaen 1 wat\% 20%
$\mathrm{B}=34$	R-5223-12	Resistor - 11zed, composition 30,000 ohes, 1/2 watto 10 出
R-3 35		Reristor - Same at Ere 33
- 36	R-5221-06	Resietor = variable composition 100,000 ohser $1 / 2$ watt at full resistance, linear taper. 20\% accuracy
E-37		
R-38	E-5210-411	Resistor - fixed composition 33,000 onms 10% \% 1 . watt
B-39		Resiabar - Smat as R-31
[140		Resistor - Snste as Eric
8 m 41		Resistor - Some as $\mathrm{E}-2$
R-42		Regiator - Same as R-2
B-43	Rno5126~A] 1	Rosibtor - itxed. composition. 250,000 obmpl/ whto 10%
Rma 44	R-5212-12	
8-45		Resistor - Sama as R-36
F-46		Registor - Same as Bre 36
R-47		Resistor - Same as R-3
R-48	E-5213-12	Resistor - fixed composition. 5000 ohms, 1/2 wation 10%
B-49		Resistor - Same ab E-4
R-50		
R-51	Pmon 5215 - 12	Resistor - fixed composition 200,000 ohm, $1 / 2$ wât. 10% Accuracy
R-52	.	Resistor - Same as R-27

$\begin{aligned} & \text { STMBOL } \\ & \text { REM } \end{aligned}$		Dxscrimftor
B-5 5		Rosistor - Seme
R-54	R-5023-65	Desidtor - Variable. carbon .5 mag ohmen fotation conates clockulse. tape cury andith witch
B-55		Resistor - Same as Paz
H-56		
R-57		Resistor coseme An Bre
2-58	B=5200-A.1	1/2 wat
B-59		Rabistor $=$ Same 0 \% R-28
L-60		
R-61		
$R=62$		Resistor - Same as R-2
S 1	5-5020-49	at 125 wolta $\mathrm{A} G$
S-2	S-5029-419	at 125 volts AC
S-3	S -5018×10	Swtch = circuit selector typs. 4 circuiten 3 posftions. non ghoting
\$1	T-5035-62	Trangformer - Crystal heater - Primaxy 1155. 60 giclen Sec. 6,3 volte fus at 2.0 supa-hermeticaliy ealed
T-2	T-5052-C14	Tramaformer - Thyration plate o Primary $1157_{0} 60$ cyclea
T-3	9-5034-c24	 volts fixs at $4.0 \mathrm{amps} C T$ - hermetically sealed.
$\nabla=1$		Sube - Type 7\%7
V-2		Tube - Type 6agt

$\begin{aligned} & \text { SNMBOL } \\ & \text { REF. } \end{aligned}$	$\begin{gathered} \text { RELI PARM: } \\ \text { NO。 } \end{gathered}$	DSSCETPMEOH
Fo3		Tu0n - Type 7A6
7 Cm 4		Tub - Type 783
$\nabla-5$		Tube - Same ma $\mathrm{Ta}^{\text {c }} 4$
T. 6		Tube - Same ex ${ }^{\text {最 }} 4$
V00 7		Tube - Type 2050
F-8		Tribe $=$ Pype 5849
V-9 9		Tube - Pype 6\%6\%
Yos 10		
V-11		Trabo - Type 063/VELO5
V 012		Tubo - Same as Pol
V-13		
$\nabla=14$		Tubs $=$ Sque as ${ }^{\text {TV }}$ -
In	X 5007 51	Socket for T-I, Loktal, ceramic
E=?	-5006005	
$x-3$		
I-4		Socket for 7 - 4 - Same ag X-1
± 5		Socket for $7=5-S_{\text {Rme }}$ as kril
x-6		Socket for $\overline{\nabla-6}$ - Same as X-1
- 7	- $5060-85$	
$\times 8$		Socket - Seme as Sof^{7}
- -9		Socket = Same as X -7
I-10		Socket for V-10-Same as $\mathrm{Km}_{\text {- }} 1$
X-11		Socket, for V-11 - Seme as K-7

$A r t=5-2124$
Fage os


```
SFAREOG ESPLAGEMRTT PARTS = PRO
```


Hormal meintenencs requires pariode ingpetion of equipasht with careful scrutiniziag of the various components to detect gigne of operload or fimingnt failuro.

Componont which require psriodfc maiutenaca are sabulated baiowo Where applicabls to this equipment. imetructione given ehould be collowed.
 periodic lubrication if not of the engled rollor bearine pype Follow lubrication instructions attacher to arechine.
 chain drive arrangementa require occssional lubrication ut tio a paw drope of light maine oil. Do not spply oil to silikis contacte founc in Radio Frequency "Lsan" assemblios.

Meczalleal CONNECTIORS - Torminel stripe hould bo inspoctor occagiono ally for loose luge broken or bedy frayad wires. Chuck of clamp type plate and grid lead connectors should be tried for secure fit. Coaxial cebles may breat loose from plue anemblen 15 bubject to rem peated handing or flaxingo

RELASISCONTACTOES - Relaya and contactort wh encloged contact do not require servicing for the life of equipment. Telephone type relays and other exponed contact relays may require occasional cleansing of burnishing of contack surfaces. Bond paper strips snturated in furs othyl alcohol may be arawn between contacta while holding relay closed normally.

Mectro-pnematic and oll-daabot type timing relay ghould be checked for maintenance of correct timing interval. Acjuatment lus atructions for these itemb are found ia Section IV of this manunin

RESISTCRS - Low voltege resistors ghould be examineà for digcoloration of paint indicating ororloaded operating conditions. Large size plag-in sticks should be checked for 100 se ferrules and clean contact wurfaces.

CLEARSING - The necessity for maintaining equipment in clean condition should be obvious. Dust and dirt will definitely have a deletorous effect on the operation of most el ectronic componentis. The necansity and frequency of cleaning operations will vary with the type and location of equipment. Equipment in pressurised cabinets with air filters on - intake and sxhaust ducts will require lage gertice than a rack mounted raceiver。
 dust and old ofl. When clean sebnd up to drain then roimeores fa SAR 30 motor oil. Agsin ghend to aratm. Hipe off exceme and rato stald.

Special atteation should be paid to wiping dust of of kugur tors ia high voltege circuits gad gion giags onvologea on racmum tobes having plate and grid capo
then cleaning racuus tube gavelopee an excellant opportanity presente itnelf for an exsmination and chect for loose or corroded tube or tubs socket plase

The more carefuly "Prevenitre Kaintenance is parforised, the lese eervice and trouble shooting will be eacountared

2. ORDERXNO SPAEE OR REPLACMGNT PAETS

 Stock husbars. and are designsted as such either on the componeat itedin or if impracticable, on the mbular List of Parta, Section 6 of thim Inc atruction manual. when ordering spare or replecsment parta please stade quantity and REL Stock Jumber to inguxe exist daplicetion.

Another mathod of oxdering corgorents when the above in laprea
 signated on the Tabular Ligt of Parte and Viring Diegrang as circutt mym bol ine. $2100, C 500_{0} 6300$ otc. This aymbol neq be used in orderigg spert or replacemont partis howevern the catalagye numbar of the ogutpment mast be stated.

3. PROCMDURE FOR RETURN OR WATYRIAL

Attached here. सagre are copies.of forme ured by RML in deeling with return of defective materigls uged in our catalogued articles.

If for any reason you have ar reject which is due to Iavity 3xanc ufacture or a direct fault of manfacture. please forward this inforwation in the MMOTEICATION" form letter, fithin 10 deys we will notify you of what digposition is to be mado. NOTE\& Do not forwerd the rejects to us before being notified by our acceptance letter. Thite will save you cost of shipping in certain cases whore a return is not required, and also per mite us to keep our records in order.

When you receive our depooision notice requesting that the gabject material may be returned, the "RTMUR MATERIAL REPORTM is to be forwarded ua, packed with material itselfo along with your regular packing slip ria el ther Parcel Post or Bailway Express prepaid. In certain caser additional information may be required in order for us to complete our examination, Forme will be forwarded for compdance. Page 3 ghows nNotification Form: Page 4 ghow "BETURN MATERIAL RTPORT". These form may be duplicated or additionel copies will be furnished you on request.

RTOTLTENTMOH MOEA

```
Tadio Fmgineerfag Levorstordewn Tme。
```



```
original\y xoceiv%qu
on our इurcinsmefoxdez
%%
Gentlamons
```



```玉ona herafni
```

RTASOE FOR REJEGRLONZ

```
Rotury for Replacemorts Fen Mo
```



```
Fleago let xe know prompty what dieposition you dagixe un wo mate
```



``` retarn to your adcress of bowe for xeclacsmanto
```


Reply directiy tos
"RETURN MATMRIAL RTHORT"

Date

\qquad

PURCHASED FROM: Radio Exgincering Laboratories. Inc. 35-54 Thirty-sixth Street Long Islazd City $\mathrm{I}_{\mathrm{o}} \mathrm{N}, \mathrm{X}$ 。

Against our Burchase Order No. \qquad
Thi a material was originally received on 1946

Fepair or replacement of this material should be charged to \qquad
\qquad CDANTIT:
E.trarned

194 \qquad Via \qquad
Nam: of person claiming deinoct \qquad
Binal Deposition Received Replacement \qquad Gredit \qquad

 600\%)

masNritic

Soveral of the operations datalled below are relatively eritical. and are go noted, in that inproper execution asy resuit in the deterioration
 equipment is at hand sad unless porsonaci hes working faniliarity with the byoe of procedur indicated. it is stronely urged that the entire instrument
 Return of Material")

Before performing any ervice worly ou the fonitoro be oure to read sil the servics notes below.

TUBE SOCKET VOLTAGE CEPCTS

 of the tube cockets. Fieble I is for the opge condition of the Monitor but,

 fixed to the probs. and the fiem ond of the resistor used as the actual
 ohn prove isolator) but the roedinge wlll be lower according to the metor scale used. A 1000 ohe per polt metor is of limited usefulnese and mould be uged with caution.

All poltagea are meamured to the inetallic chassim. CAL Switch AT OPGA. TABLI

TUBET	1	2	3	4	5	6	7	8
F-1	438	4250	${ }_{8}^{815}$	0	0	0	85	438
V-2	0	- 438	0	-3	0	475	438	1230
V-3	438	0	\bigcirc	0	0	0	0	$+38$
$\nabla 4$	-16	+38	4105	0	\$488	\&180	\$38	-. 2
- -5	0	138	+250	\$130	+ 230	\$250	\$38	0
- -6	0	438	$\$ 200$	12.5	48.5	+ 24.4	+38	0
V-7	0	438	850	42.8	421	850	438	\$50
V-8	486	\$375	0	0	$+250$	0	420	$+375$
V-9	0	\$250	\$375	\$375	4235	4235	1250	\$250
V-10	438	+235	+230	\$105	+105	\$105	\$105	$+38$
V-11	0	0	-	4250.	4105	\$38	-	4375
V-12	0	+38	\$125	42.3	42.3	\$125	438	0
$v-13$	${ }_{8}^{81} 4.5$	438	+14.5	425	$+21$	4250	\$38	415
$\nabla-24$	438	4240	$\$ 95$	0	0	-4.5	+4.2	\$38

25

TUBE	1	2	3	4	5	6	7	8
$\mathrm{V}-\mathrm{L}$	338	$\$ 250$	8250	0	0	0	830	438
$\nabla \square_{0}$	0	+38	0	-9	0	1110	738	4235
∇ - 3	$\frac{8}{83}$	-0.5	3^{25}	0	0	- 5	725	+38
$\nabla \times 4$	-15	438	4105	0	848	\$180	\$35	0
V-5	-33	838	4205	0	438	4250	\$38	4.6
$\nabla-6$	0	438	${ }_{+}+105$	82.6	48.8	. 8180	438	0
$\nabla-12$	2	438	4125	42.3	42.3	$+125$	438	0
V-13	$\$ 15$	438	+15	415	421	\$250	438	415
$\nabla-14$	438	+248	893	0	0	-4	44	\$38

Tube socicet voltagea differing materially from the tabulated values indicate a defective or altered component. Inspection axd the use of an orme meter (with all power off the monitor) wil generally dieclose the defoctive part. If a resistor. capacitor, or inductor is not found to be at fault, the trouble lies with a tube, in all likelinood the one at whoss socket the variant voltage was observed. then replacing a tube consult the table below. The lettored procadures indl catod for ach tubs are those necessary to recover the orlginal calibration, and correspond to the lettered procedures of the second hall of theso service notos.

Pow - Procodure C
Yo2-Procedure C end D
T-3 - Procedure D
Vol - Procedura A
V-5 - Procedure 3
Vo6- Eo recalibrate procedur nocessary
V-7 Ho recalibrate procsdure necessary
V-8 - No recalibrate procedure necossary
V-9 - Mo recalibrate procedure necessary
V-10 - No recalibrato procedure neceseary
V-11 - Vo recalibrate procedure necsseary
--12 - Procodure E
-13-Procedure
Voll - Procedure A

REAMTUSMMENT AND RECALIERATION

GEMERAL - Servicing this equipment can be diveded a_{s} followni adjustpents in both crystal oscillator circults: adjustrents involying the dise criminator and associated tabea and components; and adjustments in the modulation monitor circuits. The se are further sub-divided according to the lottered headings belou.

HOT: WARNIMG ON PAGE NO. 40 OR SMCTIOTS II

PROCHOTRE A - hduastman of Cxybtal Xol and Associated Circuit. Failurg of any part inciuding tube and cristal aszociated directly with I-I may neco aegitate romajustment of the variable lemsats. It is our experisnce that replecement of Ymu does not effact the frequency of oscillation of Y-1 by more than about 200 cycles referzed to 100 megacyclob. Howover, the basic accuracy of the carrier frequency mearuring function depends on this crystal occillator circuit, and recalibration is indicated if any groes component fallure occurb.

The crystal unit $\bar{y}-1$ operater at either $1 / 18 \mathrm{th}_{\mathrm{o}}$ or $1 / 24 \mathrm{th}_{\mathrm{n}}$ of the trangmitter frequency 10 ss the intormediate iroquency tated on page 2 of section II (ucually 10.7 megacycles). To adjust the frequency of the crystal oscillator requires a god recelver capable of receiving the crystal frequency or a low order harmonic of it, acondary frequency atandard with multivibrators, an adio oncillator to serve for intarpelation and an oscilloscops. Of courae, the secondary standard should be aet against the tranonissions of the Mational Eureau of Standsrds (WV) or nome other primary thandard. If this equipmont is at hand or conveniently available it goes without gaying that the calibration process is iamilar, and the detalls are ouitted bere.

The correct condition for Im $\mathrm{H}_{\text {, wish controls the "strength" of }}$ oscillation is about $3 / 4$ turn back from the point where oscillations sudden-
 Justed. $\mathrm{C}-26$ is the fine ir equency control. if co 26 will not bring the fres quency to its correct value, the crystal or iss holder have been damged. and should be returned for oxarination.

The tank circuit containing In 3 is remated at of ther the 3 rd. or the 4th. harmonic of Tol and is adjusted to peat: the drive on $\overline{\mathrm{T}} \mathrm{i}$ h. . Ehis poak may bo oberved by noting the variationg in the D.C. csthodo voltage of F-14. Voll alway triples the output of 7×4, and the resonating olesent is Co29. This circuit can always be adjusted by lopsely compling the monitor to the transmitter so that notmore than 0.1 M . A. is obtained at Jom. This low RF_{N} drive is usually mont conveniently secured by loose coupling to the tranenitter PA grid circais and ghould be done whth the PA plate voltage off. an 29 is then adjusted for a peats in the meter reading at Jmo. Be careful not to pick the wrong harmonic of Im.
 gtantially the same as Procedure $A_{\text {o }}$ except that here the requirements on ere actness of oscillation frequency are no so evere (by atout 10 to 1) and in that $I-6$ is adjusted so that the drivo meagured at $J-2$ is 0.5 时 A_{0} o in the CAL 2 conclition.

PROCRDURT C - Adjustment of $2-1_{0}$ Thi intormediate irequency trangformer is ovorcoupled and is originally adjus ted to bo flat ulthin plus/minual 1 db for plus/minus 100 kc 。deriation lrom the intermediate frequency value. Replacement of V-1 or V-2 may require elight readjustment of C-5 or C-7 raspectively. The correct setting is that which secures the least change in reading at $J-2$ when about 100% tone modulation is keyed on and of x°. This chenge should not exceed 0.03 ma . when the whole reading is about 0.5 sa. Incidently if a check at J-2 during programming shows changes on program peake it is a pretty sure sign thet $2-1$ is out of adjustment. This should not occur except for change of tubes or mechanical damage to $2-1$. Be sure first, however, that the tranamitier is free of amplitude modulation when programed.

$$
\begin{equation*}
\text { Art - } 9=74 \text { Page } 3 \tag{5}
\end{equation*}
$$

\cdot
 ment of rither $7=2$ or $7+3$ will requir ot he leart ar ingpection to verify

 quency meter exhibite less than plus／aimus 200 cyclea arerage shift with 100% tone module dallcate meter and should always bo ghumted com（tominals 13 and 14 at rear）whon makiag preliminery aidiziments．Ail finel adjustments．however． must be made without tine ehant to socure a correct calibretiong If it
 transulter then the vary sof i park in the reading of the \％Modulation mo－ ter mugt be used as an indiatica of primary resonanca．Do not une more than 50% modulation for this adjue bment．

Afier，an adjustmont of the primary，the sccondary will hafe to be retuned glightiy．If it is macessery to retune c－15．the frequency meter should be protected，and it should bo done in the CAL 2 condition，and with an inguiated tunige tool．The diseriminator trangformer is slighty over－ coupled，and it will ba naceasary alternatoly to repeat primery and secon－ dary adjustamis．

With Z－2 properly tuned，the cad 1 comaition ahould be met：that is control of R－5（psael）shuald giold thu Proquancy meter readng inecribed on the serfel muzter card for the mavitor（gtapled to front cover of the in struction hook）This adjustineut astabliahes the gradient of the detection
 （plas／minug 75 kc 。 peak deriation）an audie poltage of 676 rolte rme will appear across both man 27 and 品 8_{0} ．Provided the discriminator has not guf－ fered mechanical dange（euch as altered coupingl．and provided all ansoc ciated componenta are of retod velono this provides a basic check of the percent modulstion of the transitter．

 evar such readjustment，if necossafy，ie straight forward provided the transmittior deviation is accurataly khomo If the discriminator is corm rectiy tuned and the monitor in cosrect operating sdjustmont，tha voltage
 above in Procedure D ．The andio frequency metor used for this parpose should be a good one and should not have an lapedques of less than 5000 ohma．Por eccurate results this．wil have to be done with no ghunt on the frequency meter．Since all the audio output current flows in this meteris moving coil． 100% tone modulation ginuld netor be continuously applied for more than $1 / 2$ minute；nor should an ausio froquency to ne lyine between 350 and 700 cycles ever be ubed at greater than 50% modulation becanse of mechanical reaonance in the meter．

As an entively indepondont measixement of deviation the method thet follows may be used．It in an adaptation of the somecaliod nBessel Function method，but in in our experience more accurate and requires less accurate equipment．The iteas neceagary ares a comanications typerm－ ceiver of good stability，capable of tuning to the IoF。frequency of the monitor，and having A BPO；an audio oscillator of reasonably accurate frem quency calibration；an oscillography，With the transaittor umodulated
-
 intermediato frequency Using the BPO adjat to as near zero beat an con veniont, Modulato approximately 100% ot 15000 cycios. Slowly tume the receiver awey from the IF to the 5 th , goro begt. which will be the 5 tho aldem band of the modulation, and will be sccasetely 75 kilocycles ftom the LF. Change the modulative froquency to a low valuo. such as 100 cyclesc. Slowly raise the modulation until one burgt of beat note per andio cycle in seen on the scope. It will be obeerved that for less than $75 \mathrm{kc}_{\mathrm{s}}$ deviation, the burst on the scope will have no zero beat center. At 75 hco deviation 8 zero beat center will appear in the burst, and for more than 75 kc. deviam tion there will be sigas of the frequancy modulatod signal swinging twice per audio cycle through zero best with the recelver. At the single zero boat point the deviation will be plus/man 75 kilocycles. plus/minus a few mandred cycles. plue 5 times the inaccuracy of the 15000 cyclo setting of the audio oscillator.

ceparate poner SUPELY CHASSIS

线

$\forall 009$ 7300W BOLINOW WJ 70 OILVWZHOS

'31 'SIIIOLHYOQV7 SNHZ3MIINI OIOWY

0919
-6Λ

$\stackrel{n}{\sim} \underset{\sim}{n}$

