## TG-10A

# Field Synchronizing Generator Equipment 

MI-2 6920


RADIO CORPORATION OF AMERICA engineering products department camden, n. J.

## 11

$\qquad$

號
$\qquad$
－

# TG-10A <br> FIELDSYNCHRONIZING GENERATOR EQUIPMENT MI-2 6920 

## INSTRUCTIONS

Copyright 1952

## RADIO CORPORATION OF AMERICA

 RCA VICTOR DIVISIONManufactured by RADIO CORPORATION OF AMERICA ENGINEERING PRODUCTS DEPARTMENT Camden 2, New Jersey, U. S. A.

11

11

11

## FIRST AID

## WARNING!

Operation of electronic equipment involves the use of high voltages which are dangerous to life. Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustments inside the equipment with voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors, etc. To avoid casualties, always discharge and ground circuits prior to touching them.

## ABOUT FIRST AID

Personnel engaged in the installation, operation and maintenance of this equipment or similar equipment are urged to become familiar with the following rules both in theory and in the practical application thereof. It is the duty of every radioman to be prepared to give adequate First Aid and thereby prevent avoidable loss of life.

## PRONE-PRESSURE METHOD OF RESUSCITATION

1. PROTECT YOURSELF with dry insulating material.
2. BREAK THE CIRCUIT by opening the power switch or by pulling the victim free of the live conductor.

DONT TOUCH VICTIM WITH YOUR BARE HANDS UNTIL THE CIRCUIT IS BROKEN.


(A)
)

(B)
3. LAY PATIENT ON STOMACH, one arm extended, the other arm bent at elbow. Turn face outward resting on hand or forearm.
4. REMOVE FALSE TEETH, TOBACCO OR GUM from patient's mouth.
5. KNEEL STRADDLING PATIENTS THIGHS. See (A).
6. PLACE PALMS OF YOUR hANDS ON PATIENT'S BACK with little fingers just touching the lowest ribs.
7. WITH ARMS STRAIGHT, SWING FORWARD gradually bringing the weight of your body to bear upon the patient. See (B).
(C)

8. SWING BACKWARD IMMEDIATELY to relieve the pressure. See (C).
9. AFTER TWO SECONDS, SWING FORWARD AGAIN. Repeat twelve to fifteen times per minute.
10. WHILE ARTIFICIAL RESPIRATION IS CONTINUED, HAVE SOMEONE ELSE:
(a) Loosen patient's clothing.
(b) Send for doctor.
(c) Keep patient warm.
11. IF PATIENT STOPS BREATHING, CONTINUE ARTIFICIAL RESPIRATION. Four hours or more may be required.
12. DO NOT GIVE LIQUIDS UNTIL PATIENT IS CONSCIOUS.

```
RE PLACEMENT
    A N D
ENGINNEERING S ERVICE
```

When ordering replacement parts, please give symbol, description, and stock number of each item ordered.

The part which will be supplied against an order for a replacement item may not be an exact duplicate of the original part. However, it will be a satisfactory replacement differing only in minor mechanical or electrical characteristics. Such differences will in no way impair the operation of the equipment.

Service parts may be ordered through the local Broadcast Equipment Sales Representative, his office, or directly from the Service Parts Order Service Bldg。60, 19th and Federal Streets, Camden, N. J. Emergency orders may be phoned, telegraphed, or teletyped to RCA Emergency Service, Bldg. 60, Camden, N. J. (Telephone: Woodlawn 3-8000).

## ELECTRON TUBES

Replacement tubes should be ordered from local distributors or the nearest RCA tube warehouse. RCA tube warehouses are located at the following addressses:

34 Exchange Place<br>Jersey City 2, New Jersey<br>589 E. Illinois Street, Chicago 11, Illinois<br>420 S. San Pedro Street<br>Los Angeles 13, California

If, for any reason, it is desired to return tubes, please return them to the place of purchase. If this is not convenient, please notify your RCA serving warehouse so that Return Authorization may be forwarded to you.

## PLEASE DO NOT RETURN TUBES DIRECTLY TO RCA WITHOUT AUTHORIZATION AND SHIPPING INSTRUCTIONS.

It is important that complete information regarding each tube (including type, serial number, hours of service, and reason for its return) be given.

When tubes are returned, they should be shipped to the address specified on the Return Authorization form. A copy of the Return Authorization and also a Service Report for each tube should be packed with the tubes.

## ENGINEERING SERVICE

RCA field engineering service is available at current rates. Request for field engineering service may be addressed to the local Broadcast Equipment Sales Engineer or the RCA Service Company, Inc. Communications Service Division, Camden, N. J. Telephone: Gloucester 3-4560 during working hours; emergency service is provided through Woodlawn 3-8000.
TABLE 0 F CONTENTS
TECHNICAL SUMMARY
Page
Electrical Specifications ..... 6
Tube Complement
Fuse Complement ..... 76
Mechanical Specifications ..... 7
EQUIPMENT ..... 7
DESCRIPTION ..... 9
General ..... 9
Field Pulse Former ..... 9
Field Pulse Shaper ..... 15
INSTALLATION ..... 19
General ..... 19
Initial Adjustments ..... 19
Interconnections ..... 20
Installation of Shock Mounts ..... 20
OPERATION ..... 20
MAINTENANCE ..... 21
General ..... 21
Routine Maintenance ..... 21
Service Adjustments - Pulse Former ..... 22
Service Adjustments - Pulse Shaper ..... 23
Measuring Pulse Width ..... 25
Trouble Shooting ..... 27
Trouble Shooting Chart -- Tube Replacement ..... 28
Pulse Shaper Trouble Shooting Chart ..... 29
PARTS LIST ..... 30
Field Pulse Former, MI-26105 ..... 30
Field Pulse Shaper, MI-26115 ..... 32
Interconnecting Cables, MI-26735 ..... 37
LISTOFILLUSTRATIONS
Figure ..... Page
1 Field Pulse Former, Front and Rear Views; Field Pulse Shaper, Rear View ..... 6
2 Block Diagram, Field Pulse Former ..... 8
3 Simplified Schematic Diagram, 7:1 Counter Circuit; Pulse Former ..... 11
4 Simplified Schematic Diagram, 60-Cycle Lock-In Circuit; Pulse Former ..... 12
5 Block Diagram, Field Pulse Shaper ..... 14
6 Forming RMA Standard Sync Signal (in shaper unit) ..... 17
7 Interconnections, Field Pick-Up Television Equipment ..... 18
8 Front Porch Measurement ..... 24
9 RMA Standard Signals ..... 26
10 Field Pulse Former Tube- Side View, Panel Off ..... 38
11 Field Pulse Former, Wiring - Side View, Panel Off ..... 39
12 Field Pulse Shaper, Tube - Side View, Panel Off ..... 40
13 Field Pulse Shaper, Wiring - Side View, Panel Off ..... 41
14 Block Diagram and Waveshapes, Field Pulse Former and Pulse Shaper. ..... 43
15 Schematic Diagram, Pulse Former ..... 45
16 Schematic Diagram, Pulse Shaper ..... 47

## TECHNICALSUMMARY

## ELECTRICAL SPECIFICATIONS

Field Pulse Former and Field Pulse Shaper:
Input-A-C Power
$98-129$ volts, $50 / 60$ cycles, single phase
325 watts

Output-
Horizontal driving pulses, 15, 750 cycles
Vertical driving pulses, 60 cycles


Figure 1 -- Field Pulse Former, Front and Rear Views; Field Pulse Shaper, Rear View

## TUBE COMPLEMENT

| EQUIPMENT | RCA TYPE |  |  |  |  |  |  |  |  |  |  | Total <br> Tubes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { 品 }}{\stackrel{\rightharpoonup}{1}}$ | 范 | ご | E̛ | $\begin{aligned} & \text { W్ర } \\ & \text { Ç } \end{aligned}$ | 足 | $\mathfrak{A}$ | $\begin{aligned} & \mathrm{H} \\ & \text { Hy } \\ & \end{aligned}$ | $\begin{aligned} & \text { K } \\ & \text { N } \\ & \text { Zéo } \end{aligned}$ | $\overrightarrow{\stackrel{\rightharpoonup}{\circ}}$ | Õ |  |
| Field Pulse Former | 1 | 2 | 4 |  | 1 | 7 |  | 3 | 7 |  | 2 | 27 |
| Field Pulse Shaper |  |  | 6 | 4 |  |  | 4 | 12 | 2 | 2 |  | 30 |
| Total per Type | 1 | 2 | 10 | 4 | 1 | 7 | 4 | 15 | 9 | 2 | 2 | 57 |

For tube functions see Figures 2，5，14，15，or 16.

## FUSE COMPLEMENT





## MECHANICAL SPECIFICATIONS

|  | Field Pulse Former | Field Pulse Shaper |
| :--- | :---: | :---: |
| Height－overall | $18-1 / 2^{\prime \prime}$ | $18-1 / 2^{\prime \prime}$ |
| Width | $8-1 / 2^{\prime \prime}$ | $8-1 / 2^{\prime \prime}$ |
| Length | $26^{\prime \prime}$ | $26^{\prime \prime}$ |
| Weight | 67 lbs | 53 lbs. |

## EQUIPMENT

The Field Synchronizing Generator Equipment，RCA Reference Number MI－26920，consists of the following items：

| Quantity | Description | RCA Reference |
| :---: | :--- | :---: |
| 1 | Pulse Former | MI－26105 |
| 1 | Pulse Shaper | MI－26115 |
| 1 | Power Distribution Box | MI－26260 |
| 2 | Shock Mount（for pulse former and shaper） | MI－26510－1 |
| 1 | Set of Cables | MI－26735 |

The following may be ordered separately：

$$
\begin{array}{ll}
\text { Spare Set of Tubes for Pulse Former } & \text { MI-26684 } \\
\text { Spare Set of Tubes for Pulse Shaper } & \text { MI-26685 }
\end{array}
$$



Figure 2 -- Block Diagram, Field Pulse Former

## GENERAL

Two units, the Field Pulse Former and Field Pulse Shaper, constitute the synchronizing pulse generating equipment for field use. As the names imply, the pulse former generates and fixes the timing of the pulses, while the pulse shaper converts the pulses into horizontal and vertical driving pulses as well as providing the standard RMA synchronizing and blanking signals. For reference, and as an aid to understanding operation of these two units, the RMA recommended synchronizing generator waveforms are shown on Figure 9. The block diagram, Figure 14, includes both the pulse former and pulse shaper.

## FIELD PULSE FORMER

For convenience in description, the circuits in the pulse former are divided as follows:

```
Frequency-generating
Frequency control
Counter and frequency-indicating
60-cycle lock-in power supply and voltage-regulating
```

Reference should be made to the block diagram, Figure 2, to the pulse former illustrations, Figures 10, 11; and to the schematic diagram, Figure 15.

## Frequency-Generating Circuits

The pulse former generates and establishes the relative timing or phase relationship of pulses at three different frequencies: $60 ; 15,750$; and 31,500 cycles. The pulses are properly timed with respect to each other by deriving them from a common master oscillator. The frequency of this oscillator may be controlled either by automatic comparison with the frequency of the power line input, or by a crystal-controlled oscillator operating at the third harmonic frequency.

The master oscillator, V2, has its free-running frequency determined by inductance T3, capacitor C12, and the impedance presented by the plate circuit of reactance tube V1. The output of V2 drives an amplifier and clipper, V3, which is coupled to pin number 5 of the output connector, $J 1$, furnishing the $31,500-$ cycle pulses required in the pulse shaper.

The 31, 500-cycle output of V3 is also fed through a buffer tube, V13, to a 2-to-1 counter circuit, V12 and the first triode of V11, which divides the frequency by two. The resulting 15,750cycle pulse is amplified by the second triode in V11 and coupled to pin number 3 of the output connector J1.

The 60 -cycle frequency required in the output is derived from the 31,500 -cycle output of the oscillator by a series of four counter or frequency-dividing stages: Thus, the 31,500-cycle pulse from the clipper, V3, is fed through buffer stage V26 to a 7 -to-1 counter circuit formed by $\mathbf{V} 25$ and V18. The second triode in V18 amplifies the resulting 4,500 -cycle pulse which is coupled to the 5 -to-1 counter circuit, V17 and V24. For reduction to 180 cycles, the 900 -cycle amplified pulse from V24 is sent to a second 5-to-1 counter circuit formed by V23 and V16. Final frequency division is obtained in the 3 -to-1 counter circuit, consisting of V15 and V22, which derives the 60cycle output from the 180 -cycle pulses. The amplified output from $\mathbf{V} 22$ is coupled to pin number 1 of connector J1.

## Frequency-Control Circuits

In addition to the free-running condition, two methods of frequency control may be employed with the master oscillator, V2, by means of frequency control switch S1. With S1 in the first
position, the grid of reactance tube V1 is grounded, and the crystal oscillator, V4, is cut off by opening the cathode circuit. Oscillator, V2, then operates at the natural frequency of the resonant circuit formed by T3, C12, and plate of V1.

When placed in the second position, switch $S 1$ locks the oscillator to the 60 -cycle power supply, as explained later in this section under " $60-$ Cycle Lock-In Circuit." In this switch position the crystal oscillator is also biased to cut-off.

The third position of S1 permits the crystal oscillator section of V4 to operate, driving the grid of master oscillator V2 and holding its frequency constant. The grid of the reactance tube, V1, is grounded in this position of the switch. Frequency of the crystal oscillator circuit in V4 is 94,500 cycles, the third harmonic of the master oscillator frequency.

## Counter and Frequency-Indicating Circuits

Since all five counter circuits in the pulse former perform in a similar manner, the operation of only one will be described. The 4500-cycle counter, V25-V18, which divides the master oscillator frequency by seven, will be used as the example. In the following discussion, the section in V25 consisting of the plate at terminal three and the cathode at terminal four will be called the first diode, and the section consisting of the plate at terminal five and the cathode at terminal eight will be called the second diode. The simplified schematic diagram is shown in Figure 3.

The 31,500 -cycle pulses applied to the grid of V26 are of sufficient amplitude to drive the tube from cut-off to saturation。 The tube may, therefore, be considered as a variable resistance, ranging from a low value when the positive pulse is on the grid to a high value when the negative pulse is applied.

Assuming that capacitors C25 and C24 are completely discharged and that the grid of V26 is at maximum positive, the " $B$ " supply voltage is divided between the low resistance of the tube and plate load resistor R34, causing a minimum voltage $\mathrm{E}_{\mathrm{p} 1}$ to exist at the plate and across C23. Under steady state conditions, the first diode is conducting at this time, and hence $E_{p 1}$ also exists across C23.

When the grid is driven beyond cut-off, the plate resistance is increased and the plate voltage goes to a maximum, $\mathbf{E}_{\mathbf{p} 2}$, causing the second diode to conduct and the capacitors C23, C25, and C24 to charge to the new value, $E_{p 2}$. Capacitor $\mathbf{C} 23$ already has a charge, ${ }^{-} E_{P 1}$, and only the increment, $E_{P 2}{ }^{-E_{P 1}}$, will be added to the three-capacitor combination. Since the increment will be divided in inverse proportion to capacity, only about $1 / 40$ of it will appear across C25 and C24 at the cathode of the second diode.

When the grid voltage again goes positive, shunting R34 with the low tube resistance, the plate. voltage will return to $E_{P 1}$ and the first diode will conduct, discharging C23 back to the value Ep1.., Since the second diode will not conduct on the negative swing of the plate voltage, the charge on , C25 and C24 will remain constant until the plate voltage rises to Ep2 when it will receive a fresh charge only slightly smaller than the first. On an oscilloscope with a time sweep, the voltage on the cathode of the second diode would appear as a series of stair-steps, with each step representing one cycle of the applied voltage. The large capacitor, C24, in series with C25, receives a small portion of the total charge across the C25-C24 combination, and provides a monitoring signal for indicator tube V27.

The cathode of the second diode is connected to the grid of blocking oscillator V18 through the low-impedance winding of transformer T5. Cathode bias for V18 is developed across the bleeder combination consisting of R36, R37, and R38. This bias voltage is set so that the front edge of the seventh step of the counter voltage applied to the grid is sufficient to trigger the blocking oscillator. During the ensuing positive swing of the grid voltage, the grid draws current, discharges capacitors C24 and C25, and forces the grid beyond cut-off, where it remains until the tube is triggered by the next series of seven steps.


Figure 3 -- Simplified Schematic Diagram, 7:1 Counter Circuit; Pulse Former
The grid of the blocking oscillator is directly coupled to the grid of the amplifier, the second triode section of V18. This section is connected so that only the blocking oscillator pulse is amplified, to approximately 230 volts, and applied to the next counter diode, V17.

A 2-inch cathode ray indicator tube, V27, is used for checking the frequency division in the counter circuits. This tube, visible when the right side panel is lowered, is shown on Figure 10. A ratio-indicator switch, 55 , has five positions, each connected to the cathode circuit of one of the five counter diodes. By placing the switch in any given position the voltage (waveform shaped like a flight of steps) that appears on the cathode of the corresponding diode will be impressed on the grid of one section of the indicator amplifier, V10. The output of this section is coupled to one of the vertical deflection plates of CRO tube, V27. A portion of the output of the first section is fed into the second section of the tube and its output, of opposite polarity, is coupled to the other vertical deflection plate of V27.

The number of steps in the waveform applied to V10 indicates the ratio of the frequency division in the counter circuit. Since there is no horizontal deflection, the vertical deflection created by the stair-step voltage results in a series of dots in a line on the screen of the CRO tube, indicating the frequency division.

Two potentiometers are connected in a voltage-dividing network: R79 to adjust the focus of the spot on the CRO screen, and R80 to control the brightness.

The dots representing the frequency divisions in the counter circuits may be viewed on the V27 screen by use of COUNTER INDICATOR SWITCH S5 and one of the five frequency controls. These frequency controls are marked as shown in the table which follows.

FIELD PULSE FORMER COUNTER CIRCUITS

| Counter Circuit | Output Freq. | Position of Switch S5 | Dots on V27 | Frequency Controls |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Symbol | Designation |
| 31,500/2 | 15,750 | 15,750-2 | 2 | R62 | 15,750 PULSES |
| 31,500/7 | 4,500 | 4, 500-7 | 7 | R37 | 4,500 PULSES |
| 4,500/5 | 900 | 900-5 | 5 | R42 | 900 PULSES |
| 900/5 | 180 | 180-5 | 5 | R47 | 180 PULSES |
| 180/3 | 60 | 60-3 | 3 | R52 | 60 PULSES |

## 60-Cycle Lock-In Circuit

The control grid of reactance tube V1 is excited by the voltage developed across capacitor C60, which is charged by applying the current from the oscillator tank voltage to the capacity-resistance network C9, R90, and C60. This current is substantially in phase with the tank voltage. Since the voltage developed across capacitor C60 lags the current flowing in it by 90 degrees, the grid voltage and hence the plate current of the reactance tube lags the voltage of the tank circuit. Thus, the output impedance may be considered to have the nature of a virtual inductance, which may be varied over a limited range by changes in the transconductance of the tube, controlled by variation of the effective grid bias of tube V1.

Bias for the reactance tube is obtained from the 60 -cycle lock-in circuit, shown in simplified form in Figure 4. This circuit compares the 60 -cycle output pulse from the counters with the 60cycle supply voltage, and converts any phase difference into a d-c voltage.

The 60-cycle supply voltage is applied through a step-down transformer, T , and phase shift network, C1 and R1, to the grid of the clipper, V4. The 60-cycle square-wave output of the clipper is applied to a bridge circuit consisting of four diodes, V9 and V8, and transformer T2. One


Figure 4 -- Simplified Schematic Diagram, 60-Cycle Lock-In Circuit; Pulse Former
corner of the bridge is connected to the output of V4 through switch S4 and associated resistors, R2, R85, or R86. The opposite corner of the bridge is connected to capacitors C5 and to the grid of V1 through switch S1. The 60-cycle pulse from the counter circuits is taken from the input of the 60 -cycle pulse multivibrator, V30 in the pulse shaper, and applied to transformer T2 through buffer V7 and J1-7 in the pulse former and shaper. One end of the secondary of T2 is connected in series with the parallel combination, R3-C4, across one of the remaining two corners of the bridge circuit. The other end of the secondary is connected to the arm of the AFC BALANCE potentiometer, R97, which is connected in the remaining corner of the bridge circuit. See Figure 4.

When the 60 -cycle pulse occurs, all of the diodes conduct, making possible a transfer of current in either direction between the input and output corners of the bridge. The 60 -cycle pulse also creates a charge across the combination R3-C4 which is negative toward the double-plate corner of the bridge. This charge keeps the diodes non-conducting during the interval between pulses.

The master-oscillator frequency is adjusted to 31,500 cycles when the voltage on the reactance tube is zero. If the frequency is exactly 31,500 cycles, the square-wave voltage applied to the bridge will be passing through zero when the pulse from the counters causes the diodes to conduct. No current will pass through the bridge circuit under these conditions.

When the frequency is slightly higher than 31,500 cycles, the resultant 60 -cycle pulse will occur while the square-wave voltage is negative. Current will be passed through the bridge, placing a negative charge on capacitor $\mathbf{C 5}$ and, therefore, on the grid of the reactance tube. This reduces the mutual conductance which, in turn, increases the virtual inductance shunted across the tank circuit, with a resulting decrease in the master oscillator frequency.

A similar action takes place when the frequency falls below 31,500 cycles. The pulses occur after the square wave has passed through zero and when it is in the positive half of the cycle. Current will pass through the bridge in such direction as to place a positive charge on capacitor C60, causing the mutual conductance of the reactance tube to increase. This decreases the virtual inductance shinting the tank circuit thus raising the oscillator frequency.

The speed at which the charge on the reactance tube follows changes in the relation between supply voltage and master oscillator frequency depends upon the size of the R-C combination in the grid return circuit of the reactance tube. Switch $\$ 4$ provides time-constant adjustments which may be used to match similar time constants in associated equipment.

## Power Supply and Voltage Regulating

Power for operation of the pulse former and pulse shaper is obtained from a power supply in the pulse former case. One transformer, T11, provides heater current for the pulse former and plate voltages for both synchronizing units. Power input from J1 to the transformer primary may range from 98 to 129 volts, a-c, 50 to 60 cycles. A convenience outlet is provided, protected by a 10ampere fuse, F1. An interlock switch, S3, and two 5-ampere fuses F2 and F3, are connected in the leads to the primary of T1. Pin 4 of J1 is used for plate voltage output to the pulse shaper.

The transformer primary is tapped at four points, selected by voltage-adjusting switch, S 2 , which also has an OFF position. In adjusting the transformer for line-voltage variations it is necessary only to rotate the switch until the meter pointer falls within the red lines since the voltmeter is connected to the 117 -volt primary tap.

Full-wave rectification is accomplished by double-diodes V5 and V6. The rectified output is filtered and fed directly to the CRO tube. The portion required for plate supply to the other tubes passes through voltage-regulating tube V21.

Voltage-regulating tube V21 has its two triode sections connected in parallel so that the current flow from plate to cathode is in series with the current output of the power supply. Tube V21 then acts as a series resistor, adjustable by means of grid potential, which is controlled by the d-c amplifier tube, V20. The two gaseous-regulating tubes, V14 and V 19, serve to establish fixed potentials


Figure 5 -- Block Diagram, Field Pulse Shaper
in V20 to permit the voltage-regulating action. Tube V14 is connected to maintain the cathode of the left-hand section of V20 at a constant potential with respect to the high side of the output. Tube V19 holds the cathode of the other section of V20 at a constant voltage with respect to ground and establishes a fixed voltage on the grid of the left-hand section of V20.

The regulating circuit functions so that an increase in load that causes a drop in output voltage results in a drop in potential across R 66 and a reduction in the cathode voltage of V20 with respect to the grid. The grid potential is fixed by the action of V19. The relative increase of positive potential on the grid results in an increase of current through the tube and R70, thereby causing a drop in plate voltage. Reduction of plate voltage in the left-hand section of V20 also reduces the positive grid potential of the second section of this tube. This reduces the current drain through R72 with a resultant increase in positive voltage on the grids of V21, decreasing its plate resistance and raising the output voltage of the power supply to compensate for the increased load.

## FIELD PULSE SHAPER

The pulse-shaping unit converts the pulses developed in the pulse former into horizontal and vertical driving pulses, and by a procedure of mixing, shaping, and clipping provides standard RMA synchronizing and blanking signals. Reference should be made to the block diagram in Figure 5, the pulse shaper views, Figures 1, 12, 13; and the schematic diagram, Figure 16。

Pulses are fed into the pulse shaper at the following frequencies:
31,500 cycles (master oscillator frequency).
15,750 cycles (horizontal scanning frequency).
60 cycles (vertical scanning frequency).
The pulse shaper develops:
Horizontal Driving Pulse, 15, 750 cycles. Vertical Driving Pulse, 60 cycles. RMA Blanking Pulse, mixed 60 and 15,750 cycles. RMA synchronizing signal.

## Horizontal Driving Pulse

The driving pulse for line-frequency scanning is developed by using a 15,750 -cycle pulse to synchronize a horizontal-driving multivibrator, V11. The pulses from the pulse former are fed into a delay line in the pulse shaper, consisting of multiple capacitor-shunted inductances $\mathbf{L} 1$ to L32, the line being tapped to feed the multivibrator, V11. The positive pulse from V11 is coupled to the grid of output tube V6, amplitude of the pulse being sufficient to drive V6 beyond cut-off, thereby clipping the negative portion of the input waveform. The negative pulse formed in the output of the tube is coupled to pin 1 of connector J3.

## Vertical Driving Pulse

The field-frequency driving pulse is formed in a similar manner. The 60-cycle input synchronizes the vertical driving multivibrator, V3. A positive pulse from V3 drives the output tube V4 to cut-off, clipping the negative portion of the input pulse. The clipped pulse in the output of V4 is coupled to pin 3 of connector J3.

## RMA Blanking Pulse

The RMA blanking pulse is a combination of 60 -cycle and 15,750 -cycle pulses. The 15,750 cycle component is generated in the horizontal blanking multivibrator, V8, which is synchronized
by a negative pulse from the delay line. The 60-cycle pulses for the composite blanking signal are developed by the vertical blanking multivibrator, V12, triggered by 60 -cycle pulses from the pulse former. Positive pulses from both multivibrators are applied to the two grids in clipper and mixer tube V7. The two signals are mixed on the common load resistor R91 and the resultant signal fed to the final blanking clipper, V2. Edges of the pulses are steepened by the peaking coil, L67, in the plate of V2, and coupled to the blanking output tube, V1. The desired blanking signal of negative polarity from V1 is connected to pin 5 of the output connector, J3.

## RMA Synchronizing Signal

The RMA synchronizing signal is developed by mixing signals at various stages. This procedure requires the development of four signals, three of which are composite signals. Final mixing of the four signals across a common load resistor and clipping of the resulting signal, provide the waveform required in a standard synchronizing signal. The waveforms of the various signals and the combinations formed are shown in Figure 6.

The first of the four signals is generated in the equalizing pulse multivibrator, comprising tubes V27 and V28, which is synchronized by a 31,500 -cycle pulse from the delay line in the input circuit through buffer tube V25. This delay line is similar to that employed with the 15,750 -cycle pulses. Positive pulses from the multivibrator are clipped twice in V14 and appear across the adjustable load consisting of R126 and R220.

The second signal consists of 15,750 -cycle horizontal synchronizing pulses keyed by 60 -cycle pulses. Horizontal synchronizing pulses are obtained from the horizontal pulse multivibrator, V18 and V17, which is synchronized by a pulse from the 15,750 -cycle delay line through buffer tube V23. The positive output pulse of the multivibrator is fed to the first grid of mixer V16.

The 60-cycle keying is generated in the number-of-equalizing-pulses multivibrator, V30, which is synchronized by a 60-cycle pulse from the pulse former, and coupled to clipper V23. A negative keying pulse is obtained from the plate of V23 and coupled to the third grid in mixer V16. The mixer tube then develops 15, 750-cycle pulses in the output except during the interval when the $60-$ cycle pulse is applied to its third grid. The resultant signal is clipped in tube V15 and developed across the adjustable load.

The third signal is also composed of 15,750 -cycle pulses keyed by a 60 -cycle pulse from the number-of-equalizing-pulses multivibrator, V30. The 15, 750-cycle pulse is produced by the notching pulse multivibrator, V29, synchronized by a pulse from the delay line. The 60-cycle signals from V23 and the 15, 750-cycle signals from V29 are mixed in V22 and fed to a clipper, V9. The output of V9, which feeds the adjustable load, has the notching pulse present in the intervals between the 60 -cycle keying pulses.

The fourth signal consists of groups of six 31,500 -cycle pulses recurring at a 60 -cycle rate. The 31,500 -cycle pulses are generated in the vertical pulse multivibrator, V13 and V19, which is synchronized by a pulse from the 31,500-cycle delay line through buffer V25. Outputs of the multivibrator are fed to mixers V26 and V21. Since the groups must contain six complete vertical pulses, the leading edge of the 60 -cycle pulse must fall between adjacent $31,500-c y c l e$ pulses and not during these pulses.

Negative 60-cycle pulses obtained from the vertical pulse delay multivibrator, V24, are synchronized by 60 -cycle pulses from the pulse former. When the pulses are differentiated the trailing edges of the pulses become positive keying pulses, and are applied to the third grid of mixer V26.

Narrow 31, 500-cycle pulses are applied to the first grid of V26 from the multivibrator V19 and V13, as previously mentioned. The output of V26 consists of 31,500-cycle pulses occurring during the 60 -cycle keying pulse interval. The first of these pulses having sufficient amplitude is used to synchronize the number-of-vertical-pulses multivibrator V20. The positive output of V20 is applied to number-one grid (cap) of the mixer V21, while wide, positive, 31,500 -cycle pulses from the vertical pulse multivibrator, V13 and V19, are applied to the number three grid (pin 5) of V21. This
latter signal is the inverted form of wave used to trigger the number-of-vertical-pulses multivibrator, V20. Multivibrator V20 will be triggered only during the short interval between vertical pulses, and a whole vertical pulse will always appear at the beginning of the group of six

The negative output of mixer V21 is fed to the synchronizing mixer and clipper, V15, the output of which appears across the adjustable load.

The complex signal resulting from the four signals applied simultaneously to the adjustable load, R126-R220, is coupled to the final synchronizing clipper V10. In the second stage of the clipper, the peaking coil, L66, is used to steepen the sides of the pulses. The signal is then fed to the synchronizing output tube, V5, then coupled to the synchronizing output connector, J2.


Figure 6 -- Forming RMA Standard Sync Signal (in shaper unit)


## INSTALLATION

## GENERAL

Upon receipt of the equipment, the units should be unpacked and inspected for any damage that may have occurred in transit. Shipping lists should be checked to insure that all quantities are correct.

Before attempting to put the equipment into operation in the system, it is necessary to make certain preliminary adjustments and to determine the operating status of each unit in order to locate any derangements caused by shipping.

## INITIAL ADJUSTMENTS

## Preparation

Remove the side panels from the pulse former and pulse shaper cases by rotating the cowl fasteners at the top edge of the panels a quarter turn, swinging the panels away from the case to clear the interlock plug prongs, and then lifting them off the three spring studs at the bottom of the cases. This will open the interlock switch, which may be shorted for test purposes by removing the pronged plug from the clips on the side panel and inserting it in the interlocks.

Check the fuses, F2 and F3, located on the front panel of the Field Pulse Former to make certain they are in place. Rotate LINE VOLTAGE switch, $S 2$, on the front of the case to the OFF position. For testing, a temporary connection from a 115 -volt power source may be made to the POWER INPUT receptacle, at the rear of the pulse former. The 10 -foot power cable may be used for the purpose by plugging one end into the receptacle and arranging temporary connections to the power lines at the other end of the cable.

Plug one end of the seven-conductor cable into the top receptacle, POWER AND PULSES TO PULSE SHAPER on the pulse former, then attach the other end of the cable to the top receptacle, POWER AND PULSES FROM PULSE FORMER, on the pulse shaper.

As a dummy load for the equipment, attach the termination plug to the DRIVING AND BLANKING PULSES OUTPUT receptacle on the pulse shaper.

Counter Adjustments
Close the switch at the power source and rotate LINE VOLTAGE switch, S2 on the pulse former, until the meter pointer indicates between the two red lines on the scale. Allow the units to heat for several minutes and proceed with the following adjustments on the pulse former:

1. Set the FREQUENCY CONTROL switch to the OFF position.
2. Adjust the BRIGHTNESS control until the dots appear on the screen, then adjust the FOCUS control until the dots are the desired width. Adjust FOCUS control so that dots are distinct. The CRO tube should be biased off with the BRIGHTNESS control when not in use. When in use, it is desirable to defocus the CRO tube somewhat to avoid burning the screen.
3. Rotate the COUNTER INDICATOR switch to the 15750-2 position and adjust the FREQUENCY CONTROL 15750 PULSES until two dots appear on the indicator tabe.
4. Rotate the COUNTER INDICATOR SWITCH to the $4500-7$ position and adjust the FREQUENCY CONTROL 4500 PULSES until seven dots appear on the indicator tube.
5. Rotate the COUNTER INDICATOR SWITCH to the $900-5$ position and adjust the FREQUENCY CONTROL 900 PULSES until five dots appear on the indicator tube.
6. Rotate the COUNTER INDICATOR SWITCH to the $180-5$ position and adjust the FREQUENCY CONTROL 180 PULSES until five dots appear on the indicator tube.
7. Rotate the COUNTER INDICATOR SWITCH to the $60-3$ position and adjust the FREQUENCY CONTROL 60 PULSES until three dots appear on the indicator tube.

After completing the preceding adjustments, recheck each control to be sure that it is at the center of the available control range.

Master and Crystal Oscillator Adjustments
These oscillators have been adjusted at the factory prior to shipment. Should any readjustments be required, refer to the MAINTENANCE section.

## Shaper Unit Adjustments

All the shaper adjustments have been made, and the locknuts tightened, prior to shipment. Before using the sync generator for the first time, all the adjustments should be checked, then readjusted if necessary, as described in the MAINTENANCE SECTION.

Having made all the necessary preliminary adjustments the sync generator is ready for interconnection with the balance of the Field Pick-Up system.

## INTERCONNECTIONS

Figure 7 shows interconnections for a system using more than one camera and including a switching unit. If only one camera chain is used, connect the SYNC OUTPUT cable, W106, from the shaper to the SYNC INPUT jack on the camera-control. Connect the termination plug to the DRIVING AND BLANKING PULSES OUT jack on the camera control. The sync generator is now ready for operation.

## INSTALLATION OF SHOCKMOUNTS

Shockmount assemblies are for use when the equipment is installed in mobile units or when located where shock or vibration may affect the life or operation of the units. To attach the shockmount to a case engage holes in the lower back edge of the case with the spring-actuated pins on one end of the shockmount. Then engage the tapered collars of thumbscrews on the other end of the shockmount with extended lugs on the lower front edge of the case.

## O P ERATION

## TO START THE EQUIPMENT

To place the sync generator in operation turn the LINE VOLTAGE RAISE switch to the position that will cause the meter to indicate between the two red lines on the meter scale.

It is advisable to apply power to the sync generator at least 30 minutes prior to the start of the program. This allows the equipment to warm up and stabilize. The equipment should not be shut off unnecessarily once it has been turned on.

## AUTOMATIC FREQUENCY CONTROL (AFC)

Set the FREQ CONTROL switch for the desired mode of operation and the AFC TIME CONST switch to the highest time constant that will cause the equipment to operate in a satisfactory manner.

## PHASE SHIFT CONTROL

The PHASE SHIFT control is used only for film programs. For that application the control is used to adjust the vertical driving signal for the camera so that it is in phase with the projector.

## TO STOP THE EQUIPMENT

To stop the equipment, place the LINE VOLTAGE RAISE switch in the OFF position.


#### Abstract

WARNING The voltages employed in this equipment are sufficiently high to endanger life. Every reasonable precaution has been observed to safeguard maintenance personnel. Power should be removed completely before making internal repairs.

Make certain power is off and capacitors are discharged before touching any component. Be very careful when touching tubes. A serious burn can result from carelessly touching tubes that have been in operation for a considerable length of time.

When making resistance measurements, turn power off. When testing voltages with the interlocks bypassed, use well-insulated test probes.


## GENERAL

The Field Sync Generator has been conservatively designed for continuous operation. With ordinary care a minimum of service will be required to keep the equipment in satisfactory operation. To avoid interruptions due to equipment failure during operation, a regular schedule of inspection should be established.

Since the equipment will probably be subjected to conditions of excessive dust and moisture by reason of its use in the field, a periodic inspection routine should be established to assure the removal of dust and other extraneous substances that may cause current leakage or arc-over between high-potential points. The equipment units should be cleaned and dusted thoroughly during inspection periods. All bushings and terminal boards, should be kept free of dust.

All cable connections should be checked periodically and tightened when necessary. Make certain all ground connections are tight. A spare set of cables will facilitate cable maintenance.

When fuses are renewed, the fuse cartridge caps should be clean to insure good contact and to prevent fuse heating due to contact resistance.

When improper operation is experienced, make certain all controls are properly adjusted. This is the most frequent cause of improper operation. The use of elaborate test equipment is not always a necessity if correct trouble-shooting procedure is followed. The cause of faulty operation may often be detected by visual inspection of wiring and components.

The amplitude and pulse widths of the output signals should be checked periodically, as aging of tubes may cause small variations or unwanted pulses to appear in the sync signal. The latter condition may be remedied by adjusting the CLIPPING LEVEL control.

Defective counter circuits may be isolated by turning the FREQUENCY CONTROL switch to the OFF position and checking each counter on the indicator tube. One dot on the screen indicates a defective counter. No spots on the indicator with BRIGHTNESS control all the way clockwise may be due to defective heater or low heater volt age on V27.

## ROUTINE MAINTENANCE

The most effective way of assuring cont inuous satisfactory operation of the equipment is to initiate a regular schedule of maintenance. All performance data should be recorded on previouslyprepared forms so that a continuous record of all parts of the equipment will be available. A suggested schedule follows:

DAILY - Note any abnormal conditions such as position of knobs. A general inspection should be made immediately after shut-down. Check for signs of overheating in all parts of the equipment.

WEEKLY - Clean internal and external parts of the equipment. Inspect and tighten all cable connections. Check adjustment of the equipment controls and readjust if necessary.

MONTHLY - Check all tubes in the equipment, noting the tube tester readings on previouslyprepared forms. Record and compare all cable socket voltages. As far as possible, tube failure should be anticipated by keeping a log of tube life. Spare tubes should be available for immediate use in the event of an obvious failure.

## SERVICE ADJUSTMENTS - PULSE FORMER

## Master Oscillator

Should it become necessary to adjust the master oscillator coil, T3, due to replacement, proceed as follows:

1. Turn on the equipment, allow a 5 -minute warm-up period, then set the master oscillator core of coil T3, to approximately midway between maximum clockwise and maximum counterclockwise positions.
2. Set the FREQUENCY CONTROL switch in OFF position.
3. Connect a 60-cycle sine wave source of suitable amplitude to the horizontal deflection terminals of an oscilloscope. (Internal 60 cycle sweep of oscilloscope may be used.)
4. Connect the oscilloscope vertical input to the SYNC output terminal at the rear of the pulse shaper (or to any other signil terminal where the 60 -cycle vertical blanking or driving pulses are present).
5. Switch power onto the units and adjust the plug on the oscillator coil T3, shown on Figure 10, until the 60 -cycle pulse from the pulse former remains approximately stationary. The 31,500-cycle oscillator will then be set at the correct frequency. Disconnect oscilloscope and reset the frequency control switch to either 60 -cycle or crystal position as required. Turn power off.

## AFC Balance Adjustment

To adjust the AFC Balance control, R97, proceed as follows:

1. Connect the vertical input cable of an oscilloscope to pin 1 of J 1 or to C 43 . Set the horizontal sweep of the oscilloscope to line frequency (sine wave).
2. Turn the equipment power on and allow a warmup period of at least 5 minutes.
3. Turn the FREQ CONTROL switch to the OFF position and the AFC TIME CONST switch to position 4.
4. Turn the core of T3 to its extreme clockwise position, and FREQ CONTROL switch to 60 cycles, then connect a VoltOhmyst or similar vacuum-tube voltmeter across C5.
5. Using a screwdriver, adjust the AFC Balance Potentiometer, R97 on Figure 11, until the voltage reading on the meter falls between 0 and +0.05 . Allow a short time for the voltage to
stabilize, then turn the FREQ CONTROL switch to OFF。
6. Note that a pulse slowly moves around the perimeter of the oscilloscope pattern, adjust the core of T3 for minimum drift of the pulse.
7. Check for proper 60 cycle "lock-in" as evidenced by the stationary position of the pulse on the oscilloscope pattern. Note that as the AFC time constant is increased, the "lock-in" period is also increased. If the 60 cycle "lock-in" appears to be abnormal, check the reactance tube, V1, for grid current (gassy tube); if there is no evidence of grid current, readjust the AFC balance potentiometer as in step 5 。
8. Reset the panel controls to the desired position, shut the power off and disconnect the test equipment.

## Crystal Oscillator Adjustment

To adjust the crystal oscillator, connect a Voltohmyst or similar instrument to pin 1 of V4; tune the crystal oscillator coil, T4; for maximum voltage indication on the meter, then turn the core of the coil two turns in the counterclockwise direction. Maximum voltage is approximately between 70 and 100 volts.

## SERVICE ADJUSTMENTS - PULSE SHAPER

## General

Adjustment of the 11 controls in the pulse shaper should be periodically checked and readjusted if necessary. When a tube in any circuit is replaced, it is advisable to recheck the adjustments of all circuits. Methods for measuring pulse widths are described farther on in this section.

## Pulse Shaper Adjustments

To check and readjust the pulse shaper controls proceed as follows:

1. Connect the pulse shaper to the pulse former, terminate the SYNC OUTPUT jack with 75 ohms; connect the pulse termination plug, supplied with the equipment, to the DRIVING AND BLANKING PULSES OUTPUT jack; then connect the power cable to the POWER INPUT jack on the pulse former and to a suitable power outlet. Turn the power on and allow at least 5 minutes for the equipment to warm up.
2. Remove the side covers, plug in the interlock shorting-bar, then connect the vertical input terminals of an oscilloscope to pin 2 of V9. Use the 60 -cycle sine-wave horizontal sweep for the following adjustments:
a. Adjust the NUMBER OF EQUALIZING PULSES control until the total of equalizing and vertical sync pulses equals eighteen.
b. Adjust the VERTICAL PULSE DELAY control until six equalizing pulses occur before the vertical sync pulse.
c. Adjust the NUMBER OF VERTICAL PULSES control until six vertical sync pulses appear in the vertical sync pulse interval.
d．The amplitude of the signal at V9，pin ${ }^{\text {，}}$ ，should be adjusted to approximately 22.5 volts，peak－to－peak，by means of the CLIPPING LEVEL control，R126，identified on Figure 12．

3．Connect the vertical input terminals of the oscilloscope to the SYNC OUTPUT termination， then using any desired method for pulse width measurement，see＂MEASURING PULSE WIDTH＂， adjust the controls for the following RMA standard pulse widths：

NOTE
$H$＝Time fromstart of one line to start of next line or 63.5 microseconds．$V=1 / 60$ second．Pulse widths are measured at points shown on Figure 9 （ $10 \%$ below maximum amplitude）．
a．EQUALIZING PULSE WIDTH－－－－ $4 \% \mathrm{H}$（ 2.5 microseconds）
b．VERTICAL PULSE WIDTH－－－－ $46 \%$ H（ 27.3 microseconds）
c．HORIZONTAL PULSE WIDTH－－－－ $8 \% \mathrm{H}$（ 5.0 microseconds）
4．Without removing the pulse termination plug adjust the following：
a．Connect the oscilloscope to pin 1 of J3 and adjust the HORIZONTAL DRIVING WIDTH to $10 \% \mathrm{H}$（ 6.4 microseconds）。
b．Connect the oscilloscope to pin 3 of J3 and adjust the VERTICAL DRIVING WIDTH to $4 \% \mathrm{~V}$ 。
c．Connect the oscilloscope to pin 5 of J3，then adjust the HORIZONTAL BLANKING WIDTH to $17.5 \% \mathrm{H},(11.0$ microseconds），and the VERTICAL BLANKING WIDTH to $7.5 \%$ V．

5．Lock ALL the controls．
6．To check the＂front porch＂，temporarily connect the blanking output，J3－5，to the SYNC OUTPUT jack，J2，then connect the oscilloscope to the SYNC OUTPUT jack．Compare the waveform with Figure 8。

If an adjustment is necessary，this may be accomplished by moving the red－black and red－ yellow wires along the delay line formed by capacitors C1 to C32 and coils L1 to L32．These components are shown on the pulse shaper schematic diagram，Figure 16．CARE SHOULD BE TAKEN TO INSURE THAT THE 15，750－CYCLE COUNTER CIRCUIT IS PROPERLY ADJUSTED BEFORE DELAY LINE CHANGES ARE MADE．

7．Shut the power off，disconnect the oscilloscope，remove the terminations and interlock shorting－bar，then replace the side covers．This completes the adjustment of the Field Shaper．


Figure 8 －－Front Porch Measurement（see text）

## MEASURING PULSE WIDTH

Horizontal Sweep with Microsecond Markers
A convenient method of measuring 31,500 and 15,750 -cycle pulses utilizes an RCA Type 715-A Oscilloscope, or equivalent, which has a horizontal sweep on which it is possible to place onemicrosecond markers.

External synchronizing should be used on the oscilloscope to insure some pulse delay with respect to the beginning of the sweep. The synchronizing signal can be obtained from the input end of the delay line in the pulse shaper. The pulse to be measured should be applied to the vertical amplifier, and the synchronizing gain control adjusted until the start of the pulse coincides with one of the one-microsecond markers. The pulse width can then be determined by counting the number of markers that occur during the pulse.

There is some chance for error in this method because it is necessary to estimate the time between adjacent markers when the end of the pulse is not coincident with a marker.

Sine Wave Sweep; 15, 750 and 31,500 cycles
A 15,750 -cycle sine wave which is synchronous with the pulses to be measured may be used for horizontal deflection of the oscilloscope. The pulse to be measured is applied to the vertical amplifier and phased so that the pulse occurs during the most linear portion of the sine wave.

The picture on the oscilloscope screen is an edge view of a circle with an arc dropped from it due to the occurrence of the pulse. Since the pulse occurs during the most linear portion of the sine wave sweep, the length of the chord subtended by the arc appears in true length on the screen. The circumference of the circle can be determined by multiplying the length of the sweep (the diameter of the circle) by 3.1416.

The width of the pulse in per cent is determined by the following equation:

$$
\begin{aligned}
& \text { Per cent width }=\frac{\text { length of arc }}{\text { circumference }} \times 100=\frac{c}{\pi d} \times 100 \\
& \text { where: } \quad \begin{array}{l}
\mathrm{c} \\
\begin{array}{l}
\mathrm{d}
\end{array}=\text { length of arc } \\
\pi
\end{array}=3.14
\end{aligned}
$$

For accurate measurements it is absolutely necessary that the pulses occur during the most linear portion of the sine wave sweep, $i_{0}$ e., center of horizontal sweep.

## Sine Wave Sweep - 60 cycles

The method of using a sine wave sweep for horizontal deflection when measuring 60-cycle pulses is especially convenient when the synchronizing equipment is locked to the power line. The same procedure of measuring is used for 60 -cycle pulses as was followed for 15,750 -cycle pulses, and the same precautions must be taken to insure accurate results. Since the widths of the 60 -cycle pulses vary from 500 microseconds to 2000 microseconds, it is not practicable to use one-microsecond markers as a measuring device.

A convenient method is to use a flexible scale, calibrated in millimeters, to measure the diameter of the circle ( $d$ ) and the width of the pulse (c). For example:

$$
\begin{aligned}
& \mathrm{d}=60 \mathrm{~mm} \\
& \mathrm{c}=15 \mathrm{~mm}
\end{aligned}
$$

$$
\text { Per cent width }=\frac{c}{\pi d} \times 100=\frac{15 \times 100}{3.14 \times 60}=8 \%
$$

Any unit of length may be used. For ease of measuring, a transparent scale should be used.
When using this method bear in mind that the "per cent width" in the formula now refers to $1 / 60$ of a second or the time for one picture field.

GENERATOR WAVEFORMS

- SYNCHRONIZING SIGNAL

3-VERTICAL DRIVING SIGNAL
4-HORIZONTAL DRIVING SIGNAL

ALL SIGNAL AMPLITUOES TO BE MOR THAN 3.5 VOLTS
ANO LESS THAN B. VOLTS ACFOSS TS OHMS. BOTH SIGMAL POLARITIES SHALL BE AVALLABLE. POSITTVE
POLARITY NOT SHOWN AND PULSE WIDTHS NOT TO SCALE.


## TROUBLE SHOOTING

## General

Although the Field Synchronizing Generator contains 57 tubes，there are no difficult trouble shooting problems involved．Maintenance personnel will find that the illustrations in this in－ struction book generally pertain to trouble shooting．The＂TROUBLE SHOOTING CHART－ TUBE REPLACEMENT，＂should help to isolate a defective tube quickly．

## Pulse Former

The block diagrams，Figures 2 and 14；schematic diagram，Figure 15；PULSE FORMER D－C VOLTAGE CHART，and the photographs，Figures 1，10，and 11；will aid in trouble shooting and identifying components in the pulse former．The schematic diagram includes waveforms．

Since the pulse former generates its own signal and also contains a cathode－ray indicator tube， it is best to start trouble shooting by observing the counter－circuit indications on the cathode ray tube．

Note that the block diagram，Figure 2，is divided into sections by dotted lines，therefore trouble shooting should be completed in one section before proceeding to another．It is sug－ gested that tests be made in the following order：

1．Check counter circuits on indicator．If indicator is inoperative，proceed with steps 2 and 3 otherwise proceed with step 4 ．

2．Power supply section。
3．Frequency indicating section．
4．Frequency generating section．
5．Frequency control section．
6．Check signals at J1。

## Pulse Shaper

The pulse shaper is the more complicated of the sync generator units．However，MOST TROUBLES ARE DUE TO TUBE FALLURE．As an aid to trouble shooting，the following illus－ trations and charts are included in this book．

1．Block diagrams，Figures 5 and 14.
2．Waveforms on Figures 6，9，14，and 16.
3．Schematic Diagram Figure 16。
4．Pulse Shaper，D－C Voltage Chart．
5．Pulse Shaper Trouble Shooting Chart．
6．Photographs，Figures 1，12，and 13.
Defective circuits can usually be isolated by the signal tracing method without resorting to the trouble shooting chart，which involves removing all the tubes then replacing them several at a time．This chart should be used only for isolating severe and obscure defects in the sync output signal．

| PULSE FORMER |  |  |  |
| :---: | :---: | :---: | :---: |
| Step <br> No. | Sympton | Check Tube Numbers | Remarks |
| 1 | No spot on CRO indicator tube | a. 27 <br> b. $5,6,14,19$, 20, 21 | Check positions of FOCUS and BRIGHTNESS controls Check power input |
| 2 | Single spot on CRO tube, all positions of INDICATOR SWITCH | 1, 2, 3, 10 |  |
| 3 | Only one spot on CRO for: <br> a. 15750-2:1 counter <br> b. 4500-7:1 counter <br> c. $900-5: 1$ counter <br> d. 180-5:1 counter <br> e. 60-3:1 counter | $\begin{array}{ll} 11, & 12, \\ 18, & 13 \\ 17,24 & 26 \\ 16,23 & \\ 15,22 & \end{array}$ | 7:1 counter checked ok <br> First 5:1 counter checked ok <br> Second 5:1 counter checked ok |
| 4 | Does not lock-in on 60-cycle | 1, 7, 8, 9 | Check 60 cycle input from pulse shaper at J1-7 on pulse former |
| 5 | Does not lock-in on crystal | V4 | Check power line frequency if possible, then check free running frequency of master os 1 llator (FREQ CONTROL switch in the OFF position); 60-cycle output should not deviate from power line by more than one cycle |
| PULSE SHAPER* |  |  |  |
| 1 | No vertical drive | 3, 4 |  |
| 2 | No vertical blanking | 12 | Horizontal ok |
| 3 | No horizontal blanking | 8 | Vertical ok; Delay line ok |
| 4 | No blanking signal | 1,2, 7, 8, 12 |  |
| 5 | No horizontal drive | 6, 11 | Check delay line |
| 6 | Sync Signal: <br> a. No Sync Signal <br> b. No horizontal pulses; Horizontal sync pulse half normal width; HORIZONTAL PULSE WIDTH control ineffective <br> c. No equalizing pulse <br> d. Horizontal pulses appear where equalizing pulses should appear <br> e. Equalizing pulses appear between horizontal pulses <br> f. Unwanted pulses in positive region of sync output | $\begin{aligned} & 5,10 \\ & 15,16,17,18, \\ & 23 \\ & 25,27,28,14 \\ & 30,23 \\ & 29,22,9 \end{aligned}$ | Check delay line <br> Check delay line <br> Adjust clipping le vel control |

*NOTE: If pulse former is functioning properly and more than one signal is missing at the shaper output, check the interconnecting cable between the two units.

CONDITIONS

1. Pulse former connected to pulse shaper, with PULSE FORMER ADJUSTED FOR NORMAL OPERATION, 75-ohm terminations on J2 and J3 of pulse shaper.
2. Mark "V" numbers on tubes of pulse shaper, remove tubes, turn power on, allow at least 5-minute warm-up, then proceed with tests.
3. All voltages on chart are peak-to-peak.

| Step <br> No. | Install <br> Tube No. | Connect Vertical Input of Oscilloscope to | Oscilloscope <br> Horizontal <br> Sweep <br> Frequency <br> in Cycles | Waveform | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 30 | V23-4 | $\begin{gathered} 60 \\ \text { (sine wave) } \end{gathered}$ |  | Pulse width adjustable by: NUMBER OF EQUAL. PULSES, R42 |
| 2 | 3,4 | J3-3 | $\begin{gathered} 60 \\ \text { (sine wave) } \end{gathered}$ |  | Adjustable by: VERTICAL DRI VING WIDTH, R212。 $4 \%$ (normal setting) |
| 3 | 6,11 | J3-1 | 15,750 | 3.5 TO 5 VOLTS | Adjustable by: HORIZONTAL DRIVING WIDTH R166. RMA std. $10 \%$ ( 6.4 us) |
| 4 | $\begin{aligned} & 1,2,7, \\ & 8, \text { and } \\ & 12 \end{aligned}$ | J3-5 | 15,750 | 3.5 TO 5 <br> ${ }^{+}$VOLTS | Pulse width adjustable by: HORIZONTAL BLANKING WIDTH, R110. RMA std. 17. $5 \%$ (11.0 us) |
| 5 | - | J3-5 | $\begin{gathered} 60 \\ \text { (sine wave) } \end{gathered}$ | HORIZ. PULSES VERT. PULSE | Pulse width adjustable by: VERTICAL <br> BLANKING WIDTH, R100. RMA std. 7. 5\% |
| 6 | $\begin{aligned} & 9,22,23 \\ & \text { and } 29 \end{aligned}$ | V15-2 | 15,750 |  | A mplitude adjustable by Clipping Level Control R126. One complete notching cycle is 63.49 us |
| 7 | $\begin{aligned} & 15,16,17, \\ & \text { and } 18 \end{aligned}$ | V15-2 | $\begin{aligned} & 15,750 \\ & \text { (triggered } \\ & \text { sweep) } \end{aligned}$ |  |  |
| 8 | $\begin{aligned} & 14,25,27 \\ & \text { and } 28 \end{aligned}$ | V15-2 | 15,750 | FRONT EDGE HORIZ. PULSE FRONT EDGE EQUAL. PULSE EQUAL.OURING VERT. <br> f-POSITIVE NOTCHING PULSEEQUAL. PULSE IN NOTCH | The $2: 1$ counter control in the pulse former must be in the center of the two-count range. SEE NOTE 1。 |
| 9 | $\begin{aligned} & 13,19,20, \\ & 21,24, \\ & \text { and } 26 \end{aligned}$ | V15-2 | 15,750 |  | Adjust Clipping Level Control for 22. 5 volts peak-to-peak |
| 10 | - | V15-2 | 15,750 |  | Adjust R158, R141, and R142 for six pulses in each group |
| 11 | 10 | V10-5 | 15, 750 |  | - |
| 12 | - | V10-2 | 15,750 |  |  |
| 13 | 5 | J2 <br> (75-ohm <br> termina- <br> tion) | 15,750 |  |  |

NOTE 1: In order to obtain desired timing, adjustment of the delay-line tap (red/blue wire) may be necessary after $2: 1$ counter is adjusted.

## FIELD SYNCHRONIZING GENERATOR

FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { DRAWING } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  | FIELD PULSE FORMER, MI-26105 |  |  |
| C1 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C2 | Not Used |  |  |
| C3, C4 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-895406-3 | 56124 |
| C5 | Capacitor, $4.0 \mathrm{mf}, 600$ volts | K-8856404-1 | 52983 |
| C6 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-895406-3 | 56124 |
| C7 | Capacitor, 68 mmf , 500 volts | P-722001-569 | 51338 |
| C8 | Capacitor, 0.10 mf , 400 volts | P-72061-514 | 67910 |
| C9 | Capacitor, $470 \mathrm{mmf}, 500$ volts | P-722001-589 | 39644 |
| C10, C11 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C12 | Capacitor, $120 \mathrm{mmf} \pm 5 \%, 500$ volts | P-722002-525 | 39630 |
| C13 to C15 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C16 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | P-72061-518 | 54145 |
| C17 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| ${ }^{\text {C18 }}$ | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-895406-3 | 56124 |
| C19 | Capacitor, $390 \mathrm{mmf}, 500$ volts | P-722001-587 | 39642 |
| C20 | Capacitor, 10 mmf , 500 volts | P-722001-552 | 39604 |
| C21 | Capacitor, 0.01 mf , 600 volts | P-72061-538 | 51628 |
| C22 | Capacitor, 0.5-0.5 mf, 600 volts | K-895406-1 | 51916 |
| C23 | Capacitor, $27 \mathrm{mmf}, 500$ volts | P-722001-559 | 39614 |
| C24 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C25 | Capacitor, $1000 \mathrm{mmf}, 500$ volts | P-722008-597 | 68954 |
| C26 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C27 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-895406-3 | 56124 |
| C28 | Capacitor, 27 mmf , 500 volts | P-722001-559 | 39614 |
| C29 | Capacitor, $0.02 \mathrm{mf}, 400$ volts | P-72061-545 | 53114 |
| C30 | Capacitor, $1000 \mathrm{mmf}, 500$ volts | P-722008-597 | 68954 |
| C31 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C32 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-895406-3 | 56124 |
| C33 | Capacitor, 27 mmf , 500 volts | P-722001-559 | 39614 |
| C34 | Capacitor, $0.02 \mathrm{mf}, 400$ volts | P-72061-545 | 53114 |
| C35 | Capacitor, $1000 \mathrm{mmf}, 500$ volts | P-722008-597 | 68954 |
| C36 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C37 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-895406-3 | 56124 |
| C38 | Capacitor, 270 mmf , 500 volts | P-722001-583 | 39638 |
| C39 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C40 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C41 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C42 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-895406-3 | 56124 |
| C43, C44 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C45 | Capacitor, 150 mmf , 500 volts | P-722001-577 | 39632 |
| C46 | Capacitor, 27 mmf , 500 volts | P-722001-559 | 39614 |
| C47 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C48 | Capacitor, $1000 \mathrm{mmf}, 500$ volts | P-722008-597 | 68954 |
| C49 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C50 | Capacitor, $100 \mathrm{mmf}, 600$ volts | K-895406-3 | 56124 |
| C51 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C52 | Capacitor, $20-20 \mathrm{mf}, 450$ volts | M-95695-39 | 34889 |
| C53, C54 | Capacitor, 1.0 mf , 600 volts | K-895406-3 | 56124 |
| C55 | Capacitor, $50-40 \mathrm{mf}, 450$ volts | M-442900-59 | 94280 |
| C56 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C57 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C58 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-544 | 52974 |
| C59 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C60 | Capacitor, 1800 mmf , 500 volts | P-722018-515 | 52784 |
| C61, C62 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| F1 | Fuse, 10 amperes | K-850339-2 | 61971 |
| F2, F3 | Fuse, 5 amperes | K-850339-3 | 64203 |
|  | Fuse holder | K-99088-1 | 48551 |
| J1 | Connector | P-722805-14 | 52002 |
| J2 | Connector | P-722805-19 | 52003 |
| J3 | Receptacle | K-895389-1 | 52004 |
| M1 | Meter | K-859073-1 | 44919 |
| R1 | Resistor, variable, 100, 000 ohms (log taper) | M-433196-25 | 51934 |
| R2 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R3 | Resistor, 4.7 megohms, 1 watt | K-99081-106 | 19480 |
| R4 | Resistor, 6800 ohms, $1 / 2$ watt | K-82283-72 | 14659 |
| R5 R6 | Resistor, 82, 000 ohms, 1 watt | K-90496-85 | 512382 |
| R6 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |

FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | DRAWING NO. | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| R7 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R8 | Resistor, 3.3 megohms, $1 / 2$ watt | K-82283-104 | 31417 |
| R9 | Resistor, 560 ohms, 1 watt | K-99081-59 | 38884 |
| R10 | Resistor, 6800 ohms, 1 watt | K-99081-72 | 38887 |
| R11 | Resistor, 120 ohms, $1 / 2$ watt | K-82283-51 | 30189 |
| R12 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R13 | Resistor, 820 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-157 | 30158 |
| R14 | Resistor, 56,000 oh $\overline{\mathrm{ms}}+5 \%, 1$ watt | K-99081-201 | 17440 |
| R15 | Resistor, 47, 000 ohms $\pm 5 \%, 1$ watt | K-99081-199 | 71988 |
| R16 | Resistor, 15,000 ohms, 1 watt | K-90496-76 | 70723 |
| R17 | Resistor, 470,000 ohms, $1 / 2$ watt | K-82283-94 | 30648 |
| R18 | Resistor, 6800 ohms, $1 / 2$ watt | K-82283-72 | 14659 |
| R19 | Resistor, 470,000 ohms, $1 / 2$ watt | K-82283-94 | 30648 |
| R20 | Resistor, 39,000 ohms, 1 watt | K-99081-81 | 71084 |
| R21 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R22 | Resistor, 15,000 ohms, 2 watts | K-99126-76 | 68935 |
| R23 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R24 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R25 | Resistor, 15,000 ohms, 2 watts | K-99126-76 | 68935 |
| R26 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R27 | Resistor, 2200 ohms, 1 watt | K-90496-66 | 71991 |
| R28 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 30649 |
| R29 | Resistor, 2.2 megohms, $1 / 2$ watt | K-82283-102 | 30649 71993 |
| R30 | Resistor, 1.0 megohm, 1 watt Resistor, 100 ohms , 1 watt | K-99081-98 | 71993 31215 |
| R31 | Resistor, 100 ohms, 1 watt | K-90496-50 | 31215 30499 |
| R32 | Resistor, 470 ohms, $1 / 2$ watt Resistor, 100,000 ohms, 1 watt | K-82283-58 | 30499 72635 |
| R34 | Resistor, 6800 ohms, 1 watt | K-99081-72 | 38887 |
| R35 | Resistor, 1.5 megohms, 1 watt | K-99081-100 | 47967 |
| R36 | Resistor, 5600 ohms $+5 \%, 1 / 2$ watt | K-99080-177 | 30734 51923 |
| R37 | Resistor, variable, 5000 ohms | M-433196-7 | 51923 31895 |
| R38 | Resistor, 150,000 ohms $\pm 5 \%, 1$ watt Resistor, 47,000 ohms, 1 watt | K-99081-211 | 31895 71988 |
| R39 R40 | Resistor, 47,000 ohms, 1 watt Resistor, 1.5 megohms, 1 watt | K-99081-100 | 47967 |
| R41 | Resistor, 4700 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-175 | 30494 |
| R42 | Resistor, variable, 5000 ohms | M-433196-7 | 51923 |
| R43 | Resistor, 56,000 ohms $\pm 5 \%, 2$ watts | K-99083-201 | 28741 |
| R44 | Resistor, 47,000 ohms, 1 watt | K-99081-82 | 71988 47967 |
| R45 | Resistor, 1.5 megohms, 1 watt Resistor, 8200 ohms $+5 \%, 1 / 2$ watt | K-99081-100 | 502282 |
| R47 | Resistor, variable, 50000 ohms | M-433196-7 | 51923 |
| R48 | Resistor, 68,000 ohms $\pm 5 \%, 1$ watt | K-99081-203 | 38897 |
| R49 | Resistor, 47,000 ohms, 1 watt | K-99081-82 | 71988 |
| R50 | Resistor, 1.5 megohms, 1 watt | K-99081-100 | 47967 30694 |
| R51 | Resistor, 3900 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-173 $\mathbf{M}-433196-7$ | 30694 51923 |
| R52 R53 | Resistor, variable, 5000 ohms Resistor, 68,000 ohms $+5 \%, 1$ watt | K-99081-203 | 38897 |
| R53 R54 | Resistor, ${ }^{\text {a }}$, 68,000 ohms $\pm 5 \%, 1$ watt Resistor, 47,000 ohms, 1 watt | K-99081-82 | 71988 |
| R55 | Resistor, 1.0 megohm, 1 watt | K-99081-98 | 71993 |
| R56 | Resistor, 100 ohms, 1 watt | K-90496-50 | 31215 |
| R57 | Resistor, 470 ohms, $1 / 2$ watt | K-82283-58 | 30499 72635 |
| R58 | Resistor, 100,000 ohms, 1 watt | K-90496-86 | 72635 38887 |
| R59 R60 | Resistor, 6800 ohms, 1 watt Resistor, 1.5 megohms, 1 watt | K-99081-72 K-99081-100 | 38887 47967 |
| R61 | Resistor, 680 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-155 | 12262 |
| R62 | Resistor, variable, 5000 ohms | M-433196-7 | 51923 |
| R63 | Resistor, 390,000 ohms $+5 \%, 1$ watt | K-99081-221 | 32725 |
| R64 | Resistor, 47, 000 ohms, 1 watt | K-99081-82 | 71988 |
| R65 | Resistor, 2700 ohms, 1 watt | K-99081-67 | 14421 |
| R66 | Resistor, 7500 ohms, 5 watts | M-428781-44 $\mathrm{M}-428781-45$ | 51995 45354 |
| R67 | Resistor, 10,000 ohms, 5 watts Resistor, 56,000 ohms $+5 \%, 1$ watt | M-428781-45 | 45354 17440 |
| R68 R69 | Resistor, 56,000 ohms $\pm 5 \%, 1$ watt Resistor, 62,000 ohms $+5 \%, 1$ watt | K-99081-202 | 2724 |
| R70 | Resistor, ${ }^{\text {Resistor, } 470,000 \text { ohms, } 1 \text { watt }}$ | K-90496-94 | 72521 |
| R71 | Resistor, 270 ohms, 1 watt | K-90496-55 | 30497 |
| R72 | Resistor, 470,000 ohms, 1 watt | K-90496-94 | 72521 |
| R73 to R76 | Resistor, 10 ohms, 1 watt | K-99081-38 | 69640 30497 |
| R77 | Resistor, 270 ohms, 1 watt | K-99081-82 | 71988 |
| R78 R79 | Resistor, 47,000 ohms, 1 watt Resistor, variable, 100,000 ohms | M-433196-4 | 51924 |

FOR ORDERING INFORMATION SEE PAGE 4


FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{gathered} \text { DRAWING } \\ \text { NO。 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| C84 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C85 | Capacitor, $680 \mathrm{mmf}, 500$ volts | P-722008-593 | 51919 |
| C86 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | P-72061-518 | 54145 |
| C87 | Capacitor, 0.10 mf , 400 volts | P-72061-514 | 67910 |
| C88 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-984680-8 | 56124 |
| C89, C90 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C91 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-984680-8 | 56124 |
| C92 | Capacitor, $0.01 \mathrm{mf}, 600 \mathrm{volts}$ | P-72061-538 | 51628 |
| C93, C94 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C95 | Capacitor, 68 mmf , 500 volts | p-722001-569 | 51338 |
| C96 | Capacitor, 0.01 mf , 600 volts | p-72061-538 | 51628 |
| C97A, B, C, and D | Capacitor, $10-10-10-20 \mathrm{mf}, 450$ volts | M-442900-30 | 59759 |
| C98 | Capacitor, 1.0 mf , 600 volts | K-984680-8 | 56124 |
| C99 to C101 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C102, C103 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C104 | Capacitor, $56 \mathrm{mmf}, 500$ volts | P-722001-567 | 39622 |
| C105 | Capacitor, $0.05 \mathrm{mf}, 400$ volts | P-72061-512 | 69565 |
| C106 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-984680-8 | 56124 |
| C107 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C108 | Capacitor, $0.005 \mathrm{mf}, 500$ volts | P-72061-543 | 51917 |
| C109 | Capacitor, $560 \mathrm{mmf}, 500$ volts | P-722008-591 | 51918 |
| C110 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | P-72061-518 | 54145 |
| C111 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C112 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C113 | Capacitor, 0.10 mf , 400 volts | P-72061-514 | 67910 |
| C114 | Capacitor, $220 \mathrm{mmf}, 500$ volts | p-722001-581 | 67562 |
| C115 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C116 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C117 to C121 | Capacitor, 1.0 mf , 600 volts | K-984680-8 | 56124 |
| C122 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C123 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-984680-8 | 56124 |
| C124A, B, C, and D | Capacitor, $10-10-10-20 \mathrm{mf}, 450$ volts | M-442900-30 | 59759 |
| C125 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C126 | Capacitor, $680 \mathrm{mmf}, 500$ volts | P-722008-593 | 51919 |
| C127 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | P-72061-518 | 54145 |
| C128 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C129A and B | Capacitor, $20-20 \mathrm{mf}, 450$ volts | M-95695-39 | 34889 |
| C130 | Capacitor, $0.01 \mathrm{mf}, 600 \mathrm{volts}$ | P-72061-538 | 51628 |
| C131 | Capacitor, $1000 \mathrm{mmf}, 500 \mathrm{volts}$ | P-722008-597 | 68954 |
| C132 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C133 | Capacitor, $680 \mathrm{mmf}, 500$ volts | P-722008-593 | 51919 |
| C134 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | p-72061-518 | 54145 |
| C135 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C136 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C137 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C138 | Capacitor, $150 \mathrm{mmf}, 500$ volts | P-722001-577 | 39632 |
| C139 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C140 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-984680-8 | 56124 |
| C141 | Capacitor, $0.01 \mathrm{mf}, 600$ volts | P-72061-538 | 51628 |
| C142 | Capacitor, $1.0 \mathrm{mf}, 600$ volts | K-984680-8 | 56124 |
| C143 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | P-72061-518 | 54145 |
| C144 to C146 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-984680-8 | 56124 |
| C147 | Capacitor, $1000 \mathrm{mf}, 25$ volts | M-442900-31 | 59891 |
| C148 | Capacitor, $20 \mathrm{mf}, 450$ volts | M-442901-136 | 52008 |
| C149 | Capacitor, 20-20 mf, 450 volts | M-95695-39 | 34889 |
| C150A and B | Capacitor, 1000-1000 mf, 15 volts | M-442900-40 | 59757 |
| C151 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-984680-8 | 56124 |
| C152 | Capacitor, $0.02 \mathrm{mf}, 400$ volts | P-72061-510 | 69564 |
| C153 | Capacitor, $20 \mathrm{mf}, 450$ volts | M-442901-136 | 52008 |
| C154 | Capacitor, $1.0 \mathrm{mf}, 600 \mathrm{volts}$ | K-984680-8 | 56124 |
| C155 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C156 | Capacitor, $2200 \mathrm{mmf}, 500$ volts | P-722017-567 | 39660 |
| C157 | Capacitor, 560 mmf , 500 volts | P-722008-591 | 51918 |
| C158 | Capacitor, $0.25 \mathrm{mf}, 400$ volts | P-72061-518 | 54145 |
| C159 | Capacitor, $0.10 \mathrm{mf}, 400$ volts | P-72061-514 | 67910 |
| C160 | Capacitor, $470 \mathrm{mmf}, 500$ volts | P-722001-589 | 39644 |
| J1 | Connector | P-722805-13 | 52013 |
| J2 | Connector | P-255223-1 | 51800 |

FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{aligned} & \text { SYMBOL } \\ & \text { NO } \end{aligned}$ | DESCRIPTION | $\begin{gathered} \text { DRAWING } \\ \text { NO. } \end{gathered}$ | $\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| J3 | Connector | P-722805-14 | 52002 |
| L1 to L64 | Coil Assembly | K-889979-501 | 51920 |
| L65 | Coil Assembly, 400 turns, 1.18 mh | K-895311-501 | 51921 |
| L66, L67 | Coil Assembly, 500 turns, 2.0 mh | K-895311-502 | 51922 |
| R1, R2 | Resistor, 1000 ohms, 1 watt | K-90496-62 | 71916 |
| R3 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R4 | Resistor, 82,000 ohms, 1 watt | K-90496-85 | 512382 |
| R5, R6 | Resistor, 270,000 ohms, 1 watt | K-90496-91 | 19232 |
| R7, R8 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R9 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R10 | Resistor, 1000 ohms, 1 watt | K-90496-62 | 71916 |
| R11 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R12 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R13 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R14 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R15 | Resistor, 1.0 megohm, 1 watt | K-99081-98 | 71993 |
| R16 | Resistor, 22,000 ohms, 2 watts | K-99126-78 | 72629 |
| R17 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R18 to R20 | Resistor, 1800 ohms, 1 watt | K-99081-65 | 38875 |
| R21 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R22, R23 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R24 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R25 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R26 | Resistor, 6800 ohms, 1 watt | K-99081-72 | 38887 |
| R27 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R28 | Resistor, 56,000 ohms, $1 / 2$ watt | K-82283-83 | 30650 |
| R29 | Resistor, 820 ohms, 1 watt | K-99081-61 | 68025 |
| R30 | Resistor, 1200 ohms, 1 watt | K-99081-63 | 38896 |
| R31 | Resistor, 100,000 ohms, 1 watt | K-90496-86 | 72635 |
| R32 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R33 | Resistor, 100,000 ohms $\pm 5 \%, 1$ watt | K-99081-207 | 72635 |
| R34 | Resistor, variable, $5000{ }^{-}$ohms | M-433196-18 | 52009 |
| R35 | Resistor, 18,000 ohms, 1 watt | K-99081-77 | 18757 |
| R36 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R37, R38 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R39 | Resistor, 2.2 megohms, 1 watt | K-99081-102 | 38898 |
| R40 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R41 | Resistor, 680,000 ohms $+5 \%, 1$ watt | K-99081-227 | 52012 |
| R42 | Resistor, variable, 100, 000 ohms | M-433196-19 | 5.2010 |
| R43 | Resistor, 56,000 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-201 | 30650 |
| R44 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R45 | Resistor, 2. 2 megohms, $1 / 2$ watt | K-82283-102 | 30649 |
| R46 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71986 |
| R47 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R48 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R49 | Resistor, 3900 ohms, 1 watt | K-90496-69 | 38894 |
| R50 | Resistor, 100,000 ohms, $1 / 2$ watt | K-82283-86 | 502410 |
| R51 | Resistor, 4700 ohms, $1 / 2$ watt | K-82283-70 | 30494 |
| R52 | Resistor, 2700 ohms, 1 watt | K-99081-67 | 14421 |
| R53 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R54 | Resistor, 1000 ohms, 1 watt | K-90496-62 | 71916 |
| R55 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R56 | Resistor, 22,000 ohms, 1/2 watt | K-82283-78 | 30492 |
| R57 | Resistor, 3300 ohms, 1 watt | K-90496-68 | 71986 |
| R58 | Resistor, 4700 ohms, 1 watt | K-90496-70 | 71987 |
| R59 | Resistor, 100,000 ohms, 1 watt | K-90496-86 | 72635 |
| R60 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R61 | Resistor, 220,000 ohms $\pm 5 \%, 1$ watt | K-99081-215 | 54449 |
| R62 | Resistor, variable, 5000 ohms | M-433196-18 | 52009 |
| R63 | Resistor, 33,000 ohms, 1 watt | K-90496-80 | 38895 |
| R64 | Resistor, 1.0 megohm, 1 watt | K-99081-98 | 71993 |
| R65 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R66 | Resistor, 330,000 ohms, 1 watt | K-90496-92 | 38892 |
| R67 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R68 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R69 | Resistor, 1800 ohms, 1 watt | K-99081-65 | 38875 |
| R70 | Resistor, 100,000 ohms, $1 / 2$ watt | K-82283-86 | 502410 |
| R71 | Resistor, 4700 ohms, $1 / 2$ watt | K-82283-70 | 30494 |
| R72 | Resistor, 3900 ohms, 1 watt | K-90496-69 | 38894 |
| R73 | Resistor, 100,000 ohms, 1 watt | K-90496-86 | 72635 |

FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { DRAWING } \\ & \text { NO。 } \end{aligned}$ | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| R74 | Resistor, 1000 ohms, 1 watt | ii-90496-62 | 71916 |
| R75 | Resistor, 1000 ohms, $1 / 2$ watt | K-82283-62 | 34766 |
| R76 | Resistor, 3900 ohms, 1 watt | K-90496-69 | 38894 |
| R77 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R78 | Resistor, 4700 ohms, 1 watt | K-90496-70 | 71987 |
| R79 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R80 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R81 | Resistor, 5600 ohms, $1 / 2$ watt | K-82283-71 | 30734 |
| R82 | Resistor, 820 ohms, 1 watt | K-99081-61 | 68025 |
| R83 | Resistor, 1200 ohms, 1 watt | K-99081-63 | 38896 |
| R84 | Resistor, 82, 000 ohms, 1 watt | K-90496-85 | 512382 |
| R85 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R86 | Resistor, 330,000 ohms $\pm 5 \%, 1$ watt | K-99081-219 | 38892 |
| R87 | Resistor, variable, 5000 ohms | M-433196-18 | 52009 |
| R88 | Resistor, 270,000 ohms $\pm 5 \%$, 1 watt | K-99081-217 | 19232 |
| R89 | Resistor, 1.0 megohm, $\overline{1} / 2$ watt | K-82283-98 | 30652 |
| R90 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R91 | Resistor, 1800 ohms, 1 watt | K-99081-65 | 38875 |
| R92 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R93 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R94 | Resistor, 47,000 ohms, 1 watt | K-99081-82 | 71988 |
| R95 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R96, R97 | Resistor, $5600 \mathrm{ohms}, 1$ watt | K-90496-71 | 38886 |
| R98 | Resistor, 1.0 megohm, 1 watt | K-99081-98 | 71993 |
| R99 | Resistor, 270,000 ohms $\pm 5 \%$, 1 watt | K-99081-217 | 19232 |
| R100 | Resistor, variable, 100, 000 ohms | M-433196-19 | 52010 |
| R101 | Resistor, 68,000 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-203 | 14138 |
| R102, R103 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R104 | Resistor, 2.2 megohm, $1 / 2$ watt | K-82283-102 | 30649 |
| R105, R106 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R107 | Resistor, 330,000 ohms, 1 watt | K-90496-92 | 38892 |
| R108 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R109 | Resistor, 270, 000 ohms $\pm 5 \%, 1$ watt | K-99081-217 | 19232 |
| R110 | Resistor, variable, 100,000 ohms | M-433196-19 | 52010 |
| R111 | Resistor, 82,000 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-205 | 8064 |
| R112 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R113 | Resistor, 39, 000 ohms, $1 / 2$ watt | K-82283-81 | 30147 |
| R114 | Resistor, 1500 ohms, 1 watt | K-90496-64 | 72762 |
| R115 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R116 | Resistor, 2700 ohms, 1 watt | K-99081-67 | 14421 |
| R117 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R118, R119 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R120, R121 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | ${ }_{50652}$ |
| R122 | Resistor, $10 \mathrm{ohms}, 1 / 2$ watt | K-82283-38 | ${ }_{38875}$ |
| R123 | Resistor, 1800 ohms, 1 watt | K-99081-65 | 30652 |
| R124 | Resistor, 1.0 megohm, $1 / 2$ watt Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R126 | Resistor, variable, 2000 ohms | M-433196-17 | 52011 |
| R127 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R128 | Resistor, 1800 ohms, 1 watt | K-99081-65 | 38875 |
| R129 | Resistor, 560,000 ohms, 1 watt | K-99081-95 | 32726 |
| R130 | Resistor, 15,000 ohms, $1 / 2$ watt | K-82283-76 | 36714 |
| R131 | Resistor, 56, 000 ohms, $1 / 2$ watt | K-82283-83 | 30650 |
| R132 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R133, R134 | Resistor, 10,000 ohms, 1 watt | K-90496-74 | 71914 |
| R135 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R136, R137 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R138 | Resistor, 1.0 megohm, 1 watt | K-99081-98 | 71993 502010 |
| R139 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 72636 |
| R140 | Resistor, 120,000 ohms, 1 watt Resistor, variable, 250,000 ohms | M-433196-21 | 51589 |
| R142 | Resistor, 100,000 ohms $\pm 5 \%, 1 / 2$ watt | K-99080-207 | 502410 |
| R143 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R144 | Resistor, 2.2 megohms, $1 / 2$ watt | K-82283-102 | 71914 |
| R145 | Resistor, 10,000 ohms, 1 watt | K-90496-71 | 38886 |
| R146 | Resistor, 5600 ohms, 1 watt | K-90496-79 | 71990 |
| R147 | Resistor, $27,000 \mathrm{ohs}$, ${ }^{\text {Res }}$, 1 watt | K-90496-92 | 38892 |
| R149 | Resistor, 33,000 ohms, $1 / 2$ watt | K-82283-80 | 502333 |
| R150 | Resistor, 470,000 ohms, 1 watt | K-90496-94 | 72521 |

FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{gathered} \text { SYMBOL } \\ \text { NO. } \\ \hline \text { R151 } \end{gathered}$ | Resistor, 100 DESCRIPTION | $\begin{aligned} & \text { DRAWING } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { STOCK } \\ \text { NO. } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| R151 | Resistor, 100,000 ohms, $1 / 2$ watt Resistor, 22,000 hms 1 matt | K-82283-86 | ${ }_{502410}$ |
| R153, R154 | Resistor, 5600 ohms, 1 watt | K-90496-78 | 71989 |
| R155 | Resistor, 1.0 megohm, 1 watt | K-90496-71 | 38886 |
| R156 | Resistor, $10 \mathrm{ohms}, 1 / 2$ watt | K-99081-98 | 71993 |
| R157 | Resistor, 120,000 ohms, 1 watt | K-82283-38 | 502010 |
| R158 | Resistor, variable, 250,000 ohms | K-90496-87 | 72636 |
| R159 | Resistor, $100,000 \mathrm{ohms}, 1 / 2$ watt | M-433196-21 | 51589 |
| R160 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-86 | 502410 |
| R161 | Resistor, 2.2 megohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R162 | Resistor, 22,000 ohms, 1 watt | K-82283-102 | 30649 |
| R163 | Resistor, 15, 000 ohms, 1 watt | K-90496-78 | 71989 |
| R164 | Resistor, 27,000 ohms, 1 watt | K-99081-76 | 719723 |
| R165 | Resistor, 180, 000 ohms $\pm 5 \%, 1$ watt | K-90496-79 | 71995 |
| R166 | Resistor, variable, 100, 000 ohms | M-433196-19 | 12356 |
| R167 | Not Used |  | 52010 |
| R168, R169 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R170 | Resistor, 27,000 ohms, $1 / 2$ watt | K-99080-79 | 502327 |
| R172 | Resistor, 4700 ohms, 1 watt | K-90496-70 | 71987 |
| R173 | Resistor, $22,000 \mathrm{ohms}$, 1 watt | K-90496-78 | 71989 |
| R174 | Resistor, 1.0 megohm, 1 watt | K-90496-71 | 38886 |
| R175 | Resistor, 100 ohms , 1 watt | K-99081-98 | 71993 |
| R176 | Resistor, 270 ohms, $1 / 2$ watt | K-90496-50 | 31215 |
| R177 | Resistor, 56 ohms, 1 watt | K-82283-55 | 30929 |
| R178 | Resistor, 2700 ohms, 2 watts | K-99081-47 | 71992 |
| R179 | Resistor, 1.0 megohm, $1 / 2$ watt | K-99126-67 | 33855 |
| R180 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-98 | 30652 |
| R181 | Resistor, 8200 ohms, 2 watts | K-82283-38 | 502010 |
| R182 | Resistor, 2200 ohms, 1 watt | K-99126-73 | 43493 |
| R183 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 71995 |
| R18 | Resistor, 10 ohms, 1/2 watt | K-82283-38 | 502010 |
| R185 | Resistor, 10,000 ohms, 2 watts | K-99126-74 | 44294 |
| R186 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R188 | Resistor, 100 ohms, $1 / 2$ watt Resistor, 270 ohms, $1 / 2$ watt | K-82283-50 | 502110 |
| R189 | Resistor, 56 ohms, 1 watt | K-82283-55 | 30929 |
| R190 | Resistor, 2700 ohms, 2 watts | K-99081-47 | 71992 |
| R191 | Resistor, 220 ohms, $1 / 2$ watt | K-99126-67 | 33855 |
| R192 | Resistor, 2700 ohms, 2 watts | K-99126-67 | 33855 |
| R193 | Resistor, 270 ohms, $1 / 2$ watt | K-82283-55 | 30929 |
| R194 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R195 | Resistor, 100 ohms, $1 / 2$ watt | K-82283-50 | 502110 |
| R196 | Resistor, 8200 ohms, 1 watt | K-90496-73 | 38888 |
| R197, R 198 | Resistor, 10 megohms, $1 / 2$ watt | K-82283-110 | 30992 |
| R198, R199 R200 | Resistor, 10 ohms, $1 / 2$ watt | K-82283-38 | 502010 |
| R200 | Resistor, 100 ohms, 1 watt | K-90496-50 | 31215 |
| R201 | Resistor, 10, 000 ohms, 2 watts | K-99126-74 | 44294 |
| R202 | Resistor, 3900 ohms, 1 watt | K-90496-69 | 38894 |
| R203 | Resistor, 1500 ohms, $1 / 2$ watt | K-82283-64 | 30654 |
| R204 | Resistor, 1.0 megohm, $1 / 2$ watt | K-82283-98 | 30652 |
| R205 | Resistor, 100 ohms, 1 watt | K-90496-50 | 31215 |
| R206 | Resistor, 47, 000 ohms, 1 watt | K-99081-82 | 71988 |
| R207 R208, R209 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R208, R209 R210 | Resistor, 5600 ohms, 1 watt | K-90496-71 | 38886 |
| R210 | Resistor, 1.0 megohm, 1 watt | K-99081-98 | 71993 |
| R211 $\mathbf{R 2 1 2}$ | Resistor, 150,000 ohms $\pm 5 \%$, 1 watt | K-99081-211 | 31895 |
| R212 R213 | Resistor, variable, $100, \overline{0} 00 \mathrm{ohms}$ | M-433196-19 | 52010 |
| R213 ${ }_{\text {R214, }}$ | Resistor, $15,000 \mathrm{ohms} \pm 5 \%, 1 / 2$ watt | K-99080-187 | 36714 |
| R214, R215 | Resistor, 10 ohms, 1/2 watt | K-82283-38 | 502010 |
| R216 | Resistor, 2.2 megohms, $1 / 2$ watt | K-82283-102 | 30649 |
| R217 R218 | Resistor, 1000 ohms, 1 watt | K-90496-62 | 71916 |
| R218 | Resistor, 22,000 ohms, 1 watt | K-90496-78 | 71989 |
| R219 | Resistor, 4700 ohms, 1 watt Resistor, 1000 ohms, 1 watt | K-90496-70 | 71987 |
| T1, T2 | Resistor, 1000 ohms , 1 watt | K-90496-62 | 71916 |
| X1 to X30 | Socket, octal, saddle type | K-895326-3 | 58619 54414 |

FOR ORDERING INFORMATION SEE PAGE 4

| $\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | DRAWING NO. | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | FIELD PULSE SHAPER - Continued |  |  |
| MISCELLANEOUS |  |  |  |
|  | Cap, dust, for J1 <br> Cap, dust, for J2 <br> Cap, dust, for J3 <br> Plate, capacitor mounting, steel, for C74, C83, C97, C124, C147, C150 <br> Plate capacitor mounting, steel, for C129 <br> Plate, capacitor mounting, phenolic, for C149 | $\begin{aligned} & \text { M-441522-6 } \\ & \mathbf{K}-887140-1 \\ & \mathbf{M}-441522-2 \\ & \mathbf{K}-85559-3 \\ & \mathbf{K}-85559-2 \\ & \mathbf{K}-85558-2 \end{aligned}$ | $\begin{gathered} 52006 \\ 52007 \\ 52005 \\ \\ 28452 \end{gathered}$ |
| INTERCONNECTING CABLES, MI-26735, FOR FIELD PULSE FORMER AND SHAPER |  |  |  |
| W103 <br> W104 <br> W105-A <br> W109-A <br> W109-B <br> W110 | Power Cable, 2 conductor, complete with connectors and dust cap <br> 10 feet long <br> Connector, female, 2 contacts <br> Connector, male, 2 contacts <br> Dust Cap, for female connector <br> Power Cable, complete with lugs and connector - 2 feet long <br> Connector, female, 4 contacts <br> Transmission Line, complete with connectors and dust caps <br> 7 feet long <br> Adapter <br> Connector, coaxial <br> Dust Cap <br> Power Cable, 4 conductor, complete with connectors: <br> 50 feet long <br> 100 feet long <br> Connector, female, 4 contacts <br> Connector, male, 4 contacts <br> Pulse Cable, 7-conductor, complete with connectors and dust caps <br> 4 feet long <br> Connector, female, 7 contacts <br> Connector, male, 7 contacts <br> Dust Cap, for female connector <br> Dust Cap, for male connector <br> Pulse Termination Plug: <br> Cap only <br> Connector, 7 contacts, contact section only <br> Resistor, fixed, composition, 75 ohms $\pm 5 \%, 1 / 2$ watt |  | $\begin{aligned} & \text { MI-26759-2 } \\ & 54243 \\ & 54244 \\ & 52005 \\ & \text { MI-26759-5 } \\ & 54262 \\ & \text { MI-26759-12 } \\ & 54246 \\ & 66344 \\ & 54247 \\ & \\ & \text { MI-26759-3 } \\ & \text { MI-26759-4 } \\ & 54262 \\ & 54245 \\ & \\ & \text { MI-26759-10 } \\ & 54249 \\ & 54248 \\ & 52005 \\ & 52006 \\ & 56178 \\ & 54250 \\ & 34764 \end{aligned}$ |




TERM. BOARD TBI (TOP TO BOTTOM)

| LEFT | RIGHT |
| :---: | :---: |
| C43 | R73 |
| R54 | R74 |
| R50 | R72 |
| C41 | R7I |
| C33 | R75 |
| C34 | R76 |
| C35 | R77 |
| R44 |  |
| C31 |  |
| R40 |  |
| C23 |  |
| C24 |  |
| C25 |  |
| C21 |  |
| R30 |  |
| R31 |  |
| R33 |  |
| R34 |  |
| C16 |  |
| C I |  |

TERM. BOARD TB2 (TOP TO BOTTOM)

| LEFT | RIGHT |
| :---: | :--- |
| C62 | C5I |
| C40 | R64 |
| C38 | R60 |
| R49 | C49 |
| R45 | C47 |
| C36 | C48 |
| C28 | C46 |
| C29 | C44 |
| C30 | R56 |
| C26 | $R 55$ |
| $R 35$ | $R 59$ |
| $R 39$ | $R 58$ |
| $R 67$ | C39 |
| $R 68$ | $R 65$ |
| $R 69$ | $R 66$ |
| $R 70$ |  |
|  |  |
|  |  |

TERM. BOARD TB3 (TOP TO BOTTOM)

| LEFT | RIGHT |
| :--- | :---: |
| C60 | C8 |
| CI3 | R14 |
| CII | R15 |
| R16 | R12 |
| R90 | C10 |
| C9 | R20 |
| R63 | C14 |
| R38 | R22 |
| R43 | R25 |
| R48 | C15 |
| R53 | C61 |
| R95 | C17 |
| R92 | R27 |
| R93 | R26 |
| R83 |  |
| R82 |  |
| R81 |  |
|  |  |
|  |  |

TERM. BOARD TB4 (TOP TO BOTTOM)




TERM. BOARD TB3 (TOP TO BOTTOM)

| LEFT | RIGHT |
| :---: | :---: |
| CI34 | CI35 |
| RI54 | RI62 |
| RI53 | CI33 |
| RI52 | RI55 |
| CI32 | CI25 |
| R74 | RI38 |
| R73 | CI26 |
| CI3I | RI37 |
| CI48 | RI45 |
| C99 | CI28 |
| R26 | RI47 |
| C82 | RI46 |
| R35 | RI50 |
| C79 | R3I |
| R30 | C80 |
| R29 | C8I |
| R25 | C68 |
| C7O | R5 |
| RIO | R4 |
| R6 | C87 |
| R46 | C84 |
| R39 |  |
| C85 |  |
| R38 |  |
| C86 |  |

TERM. BOARD TB4
(TOP TO BOTTOM)

| LEFT | FIGHT |
| :--- | :--- |
| CIO2 | CIII |
| CIOI | RIO5 |
| R82 | CIIO |
| CI27 | R83 |
| R72 | R84 |
| RI36 | CIO4 |
| RI35 | R88 |
| R79 | CIO3 |
| R78 | CI22 |
| R77 | RI29 |
| CIOO | RI27 |
| R76 | R128 |
| CI3O | C93 |
| R3 | R66 |
| C67 | R59 |
| R1I | C94 |
| RI2 | R63 |
| C72 | R53 |
| RI7 | R54 |
| RI8 | C90 |
| RI5 | R52 |
| RI6 | C89 |
| R49 |  |
| R36 |  |
| R37 |  |

TERM. BOARD TB5
(TOP TO BOTTOM)

| LEFT | RIGHT |
| :--- | :--- |
| CIO7 | R94 |
| R98 | R96 |
| CIO9 | CII3 |
| CIO8 | RIO7 |
| R97 | CII4 |
| R95 | CII2 |
| C77 | RIO6 |
| R19 | R220 |
| R20 | RI23 |
| C76 | R217 |
| R68 | RI8I |
| R69 | RI82 |
| R64 | CI37 |
| C96 | RI64 |
| R57 | CI38 |
| R58 | CI36 |
| C92 | R163 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

TERM. BOARD TB 6

| (TOP TO BOTTOM) |  |  |
| :---: | :---: | :---: |
| LEFT | RIGHT |  |
| CI52 | L67 |  |
| CIO5 | R196 |  |
| R91 | CI55 |  |
| CII6 | R210 |  |
| R115 | C157 |  |
| R114 | CI56 |  |
| CII5 | R209 | TERM. |
| R116 | R208 | BOARD |
| R192 | R207 | TB7 |
| R202 | Cl59 | (TOPTO |
| R206 | R218 | BOTTOM) |
| R190 | C158 | R211 |
| R201 | R205 | R165 |
| R178 | C148 | R99 |
| CI53 | R189 | RIO9 |
| R200 | C143 | R61 |
| L66 | R177 | R86 |
| R185 | R175 | R33 |
| R172 | R174 | R157 |
| L65 | Cl41 | R140 |
| R219 |  | R41 |

RI71
CI39
R173



SYMBOLS
B- BUFFER
F- FREQUENCY DIVIDING CIRCUIT
F- FREQUENCY
MV-MULTIVIB
MV-MULTVIIE
C-CLIPPER
M
M M MIXER
A-LINE AMP
LA-LINE AMPLIFIER
OO - NNMBER
NESIGRENTHESES INDICATE TUBE
-

## NOTES

ARROWS ON SOLID LINES INDICATE DIRECTION OF LETERSS $a$, dETC. NEAR SOLID LINES INDICATE WAVESHAPES. ARROWED DOTTED LINES INDICATE WAVES COMBINED TO
 WAVES $\alpha$, , Ja $m$ (HEAVY LINES) ARE MIXED IN COMMON PLAT
RESISTOR OF CLIPPERS 14 , 15 , 15 , TO PRODUCE WAVE $n$. RESISTOR OF CLIPPERS 14 , 9 , $15-15$, TTO PRODUCE WAVE
WAVE 15 CLPPED AT EVE
tubes not shown
POWER SUPPLY-(5)(6)(14)(19)(20) \& (21) INDICATOR AMP - (10)
inDICATOR TUBE - 27 (27)

CONTROLS


OUTPUTS
wave a- blanking
wave $c$ - VERTICAL DRIVING WAVE P- HORIZ. DRIVING WAVE O- SYNCHRONIZING (RMA)


Block Diagram, Field Pulse Former




RADIO CORPORATION OF AMERICA EnGInEERING PRODUCTS DEPARTMEnT CAMDEn, n. J.

