HEATHIKエT゚ ASSHIMIITY MAINUAI

TYPICAL COMPONENT TYPES

This chart is a guide to commonly used types of electronic components. The symbols and related illustra-
tions should prove helpful in identifying most parts and reading the schematic diagrams.

RESISTOR -WMN		
POTENTIOMETER (CONTROL) \qquad	ELECTROLYTIC $+\left.1\right\|^{-}$ CAPACITOR	
TRANSFORMER (adjustable CORE)		illuminating BULB
POWER TRANSFORMER		
INDUCTOR (COIL)		
	SPEAKER	
ANTENNA	CHASSIS GROUND	

Assembly and Operation

 of the
COLOR TELEVISION SET

Model GR-295

TABLE OF CONTENTS

INTRODUCTION. 3
CIRCUIT BOARDS
Sound-Sync Circuit Board.5
Parts List. 5
Step-By-Step Assembly 7
Color Circuit Board. 11
Parts List 11
Step-By-Step Assembly. 12
Convergence Circuit Board. 18
Parts List 18
Step-By-Step Assembly 18
CHASSIS
Parts List 21
Step-By-Step Assembly. 25
Convergence Bracket Assembly. 25
Tuner Bracket Assembly 28
Chassis Parts Mounting. 32
Chassis Bottom Wiring. 38
Chassis Top Assembly And Wiring. 50
Picture Tube And Shield Assembly 51
Chassis, Shield, And Bracket Assembly. 58
Degaussing. 64
Final Assembly And Wiring. 66
NORMAL OPERATING CHARACTERISTICS. 69
INITIAL TEST AND ADJUSTMENTS
Initial Test. 71
Preliminary Adjustments. 72
DC Convergence Adjustments. 75
Gray Scale Adjustments. 76
Purity Adjustments. 77
Dynamic Convergence Adjustments. 78
Pincushion Adjustments. 80
Final Adjustments. 81
INSTALLATION
Cabinet Installation. 83
Cabinet Parts List. 83
Cabinet Step-By-Step Assembly. 84
Custom Installation. 88
Preparation. 88
Mounting. 88
Installation Adjustments. 90
FINAL ASSEMBLY
Cabinet Installation 91
Custom Installation. 91
ANTENNAS. 92
OPERATION. 95
IN CASE OF DIFFICULTY
General. 96
Troubleshooting. 97
Troubleshooting Chart. 100
ALIGNMENT
Equipment Needed. 119
Video IF Alignment. 120
Trap Alignment Chart. 120
Sweep Alignment Chart. 122
Sound Alignment. 122
Color Alignment. 124
Horizontal And High Voltage Adjustments. 125
Tuner Alignment. 127
REPLACEMENT PARTS LIST
IF Circuit Board Assembly. 129
Horizontal Output Assembly. 130
VHF Tuner 131
SPECIFICATIONS. 133
COLOR TV THEORY
Basic Television Functions. 135
Color Beams. 140
The Color Signal. 144
Demodulation. 146
Obtaining The G-Y Signal From The
B-Y And R-Y Signals. 148
CIRCUIT DESCRIPTION. 151
CIRCUIT BOARD X-RAY VIEWS. 171
CHASSIS PHOTOGRAPHS 173
SCHEMATIC . . . (fold-out and fold-in). 175
REPLACEMENT PARTS PRICE LIST 179

INTRODUCTION

The Model GR-295 Color Television Set is an assemble-it-yourself color television receiver of the highest quality. After assembly, it can be installed in the Heath Model GRA-295-1 TV Cabinet, or it can be custom installed.

This Television Set is quite easy to assemble. All critical circuits are furnished preassembled and pretested, and all circuits are designed to keep the chassis unusually neat and clutterfree. The preassembled units include the UHF and VHF tuners, the horizontal output and high voltage circuits, and a circuit board that includes the IF amplifiers and sound detector. Almost all the circuits that you build are designed into three circuit boards.

Only the most sophisticated TV circuitry has been used in this kit to insure stable, highdefinition, noise-free pictures. Kit assembly helps you to become familiar with your Heath Color Television Set inside and out. This enables you to do any minor maintenance that may be needed in the future, such as tube replacements or picture adjustments.

Twenty-seven tubes and a transistor are used in this Color Television Set. The picture is displayed on a rectangular color picture tube that has safety glass bonded to the viewing surface. A built-in dot generator makes it easy and convenient to make all the adjustments necessary to put the Television Set into operation.

The deluxe VHF tuner provides individual fine tuning adjustments for each channel. A noiselimiting sync-clipper circuit assures you of a steady jitter-free picture, even in high interference areas. Gated AGC provides a balanced picture, even under fast-changing signal
conditions, such as those that occur when airplanes fly over the receiving area. A colorkiller circuit cuts off all color signals when a black and white picture is being received.

The 24,000 volt regulated high voltage power supply assures you of a sharp, clear picture. The low voltage power supply includes a power transformer, a circuit breaker, and a thermistor for safe dependable operation. An automatic degaussing circuit is used to degauss (demagnetize) the TV Set each time it is turned on: this eliminates the need for manual degaussing whenever the TV Set is moved. Two pincushion transformers and associated circuits have been included for dynamic pincushion control: this will assure you of straight vertical and horizontal lines in the picture.

A cathode follower audio output circuit is provided for connection to your high fidelity system, and an audio power amplifier circuit is provided for use with an 8Ω speaker. All of the above features, as well as many others, will bring you the best in color television reception.

Two sections of this Manual have been provided to give you some understanding of how this Color Television Set operates: the Color TV Theory explains color television in elementary terms; the Circuit Description is more technically oriented.

NOTE: Refer to the "Kit Builders Guide" for complete information on unpacking, parts identification, tools, wiring, soldering, and step-by-step assembly procedures. After reading the Kit Builders Guide, be sure to read the information on Page 5 of this Manual before you start to unpack the kit.

CIRCUIT BOARDS

> This section of the Manual contains a Parts List and Step-By-Step Assembly instructions for each of the three circuit boards to be assembled.

SOUND-SYNC CIRCUIT BOARD

PARTS LIST

NOTE: This parts list contains only the parts in pack \#1. They will be used in the assembly of the sound-sync circuit board. Set all other parts packs aside until they are called for later.

To avoid intermixing the parts, do not open any pack at this time except those called for. Do not open small envelopes with part numbers
on them until the part is called for in a step. Some of these parts, such as solder and hookup wire, will also be used in the Color Circuit Board, Convergence Circuit Board, and the Chassis Assembly sections of the Manual.

Unpack pack \#1 and check each part against the following Parts List. The numbers in parentheses are keyed to the numbers in the Parts Pictorial (fold-out from Page 7).

Before starting to assemble this kit, read the Kit Builders Guide for complete information on wiring, soldering, and step-by-step assembly procedures.

Position all parts as shown in the Pictorials. Follow the instructions carefully, and read the entire step before performing the operation.

Use $1 / 2$ watt resistors unless directed otherwise in a step. All resistors will be called out by only the resistance value (in $\Omega, \mathrm{K} \Omega$, or megohms), the color code will also be given for color-coded resistors. Capacitors will be called
out by only the capacitance value and type; the color code will also be given for color-coded capacitors.

When a circuit board is finished, set it aside until it is called for later in the assembly instructions.

NOTE: Only one-half of the sound-sync circuit board is shown in Pictorials $1-1$ and 1-2 A small drawing at the top of the Pictorial A small drawing at the top of the Pictoria shows the area of the circuit board to be assembled in each of these Pictorials.
() Position the sound-sync circuit board as shown in Pictorial 1-1. Complete each step on the Pictorial.

SOUND-SYNC CIRCUIT BOARD PARTS PICTORIAL

(13)

COLOR CIRCUIT BOARD PARTS PICTORIAL

(21)

PICTORIAL 1-1

CONTINUE \square

NOTE: Use hookup wire of the color specified, when wire is called for in a step. Cut the wire to the proper length, and remove $1 / 4^{\prime \prime}$ of insulation from each end. Position each wire as shown.
(V) 7" brown wire.
(レ) 6" brown wire.
($)$ P.E.C. \#84-32. The P.E.C. can be installed either way.

) P.E.C. \#84-32. The P.E.C. can be installed either way.
(2) $2-1 / 4^{\prime \prime}$ brown wire.
() Dual selenium diode (\#57-32). The diode can be installed either way.

) Check to see that all connections are soldered and cut off the excess leads of the dual diode.

FINISH
Set the circuit board aside temporarily. Proceed to Page 11.

COLOR CIRCUIT BOARD

PARTS LIST

Unpack pack \#2 and check each part against the following Parts List. The numbers in parentheses are keyed to the numbers in the Parts Pictorial (fold-out from Page 8).

1/2 Watt
(1) $1-49$

1-83
1-3
1-66
$1-45$
$1-48$
1-6
1-52
1-9
1-81
1-14
1-46
1-16
1-19
1-22
1-23
1-24
1-67
1-25
1-60
1-26
1-27
1-29
1-30
1-31
1-32
$1-35$
1-37
$1-71$
1.40

14

1
1
1
1
2
1
2

$$
1 V
$$

16
2
$1 \checkmark$
1
1
1
1
1
1
$56 \Omega 5 \%$ (green-blue-black-
100Ω (brown-black-brown)
150Ω (brown-green-brown)
470Ω (yellow-violet-brown)

$$
3 \sim
$$

$$
1
$$

$$
\begin{aligned}
& 9 \\
& 1
\end{aligned}
$$

2
$3-$ 1
$1 \vee$
7V

$1 r$

16
22Ω (red-red-black) gold) 220Ω (red-red-brown)
390Ω (orange-white-brown)
$680 \Omega 5 \%$ (blue-gray-browngold)
1000Ω (brown-black-red)
$1500 \Omega 5 \%$ (brown-green-red-gold)
3300Ω (orange-orange-red)
3900Ω (orange-white-red)
4700Ω (yellow-violet-red)
6800Ω (blue-gray-red)
$22 \mathrm{~K} \Omega$ (red-red-orange)
$27 \mathrm{~K} \Omega$ (red-violet-orange)
$33 \mathrm{~K} \Omega$ (orange-orangeorange)
$39 \mathrm{~K} \Omega$ (orange-white-orange)
$47 \mathrm{~K} \Omega$ (yellow-violet-orange)
$68 \mathrm{~K} \Omega$ (blue-gray-orange)
$100 \mathrm{~K} \Omega$ (brown-black-yellow)
$150 \mathrm{~K} \Omega$ (brown-greenyellow)
$220 \mathrm{~K} \Omega$ (red-red-yellow)
$270 \mathrm{~K} \Omega$ (red-violet-yellow)
$330 \mathrm{~K} \Omega$ (orange-orangeyellow)
$390 \mathrm{~K} \Omega$ (orange-whiteyellow)
1 megohm (brown-blackgreen)
2.2 megohm (red-red-green)
4.7 megohm (yellow-violetgreen)
10 megohm (brown-blackblue)

PART	PARTS	DESCRIPTION
No.	Per Kit	

1 Watt		$270 \Omega 5 \%$ (red-violet- (2) 1-54-1
$1-25-1$	1	6800Ω (blue-gray-red)
$1-27-1$	1	$33 \mathrm{~K} \Omega$ (orange-orange- $1-7-1$
2	orange) $47 \mathrm{~K} \Omega$ (yellow-violet-orange)	

Other Resistors

(3) 5-1-2 223900 (3.9 K) 2 watt, film

5-5-2 $1 \vee 10 \mathrm{~K} \Omega 2$ watt, film
$5-4-2 \quad 3-27 \mathrm{~K} \Omega 2$ watt, film
5-3-2 $2247 \mathrm{~K} \Omega 2$ watt, film
(4)5-2-3 $\quad 1 \mathrm{~V} 270 \Omega 3$ watt, film

5-1-3 1 2700 $\Omega(2.7 \mathrm{~K}) 3$ watt, film
Packaged and matched resistors (\#4-10) consisting of:
(5)4-6 2 megohm 5% low-noise (brown-black-green-gold)

Packaged and matched resistors (\#4-11) consisting of:
4-7 4 2.2 megohm 5\% low-noise (red-red-green-gold)

CAPACITORS
Mica
(6) 20-52

20-104
20-105
20-139

$7.5 \mu \mu \mathrm{f}$
$1-\quad 130 \mu \mu \mathrm{f}$
$180 \mu \mu \mathrm{f}$
$4 \checkmark 330 \mu \mu \mathrm{f}$

Disc
(7) 21-61

21-3
$1 \square$
$6.8 \mu \mu \mathrm{f}(6.8 \mathrm{~K})$
$10 \quad 10 \mu \mathrm{f}$
21-5 2 20 $\mu \mathrm{f}$
21-7 $\quad 3-33 \mu \mu \mathrm{f}$
21-86 1~ $\quad 75 \mu \mu \mathrm{f}$
21-11 1~. $150 \mu \mu \mathrm{f}$
21-22 $320 \mu \mu \mathrm{f}$
21-17 $\quad 1 \ldots 270 \mu \mu \mathrm{f}$
21-14 $3 \longmapsto .001 \mu \mathrm{fd}$
21-36 1 - $002 \mu \mathrm{fd}$
$21-26 \quad 1 \mathrm{~L} .003 \mu \mathrm{fd}$
$21-27 \quad 3 \quad .005 \mu \mathrm{fd}$
$21-16 \quad 14 \leftharpoondown \quad .01 \mu \mathrm{fd}$
$21-31 \quad 2 \quad .02 \mu \mathrm{fd}$

PART	PARTS	DESCRIPTION
No.	PerKit	

Other Capacitors

(8) $28-4$	1
(9) $21-29$	1
$(10) 23-52$	1
$(11) 27-36$	6
$27-28$	4
$27-35$	1

$1.5 \mu \mu \mathrm{f}$ phenolic (brown- (17) $52-75$ green-white) $52-77$
$4.7 \mu \mu \mathrm{f}$ ceramic $.047 \mu \mathrm{fd} 400 \mathrm{~V}$ tubular $.01 \mu \mathrm{fd}$ resin $.1 \mu \mathrm{fd}$ resin $.22 \mu \mathrm{fd}$ resin

COILS
(12) 45-39
(13) 40-583

40-582
40-599
40-488
40-581
(14) $40-577$
(15) $40-578$
(16) 40-585
$1 \checkmark$
1レ
$1 \checkmark$

2 L wn-brown)
180μ h peaking (brown-graybrown)
$620 \mu \mathrm{~h}$ peaking (blue-redbrown)
3.58 megacycle reactance

Color amplifier plate
Dot generator
$4.7 \mu \mathrm{~h}$ choke black)
$62 \mu \mathrm{~h}$ peaking (blue-red-
$112 \mu \mathrm{~h}$ peaking (brown-

PART PARTS DESCRIPTION
No. PerKit
——_
TRANSFORMERS
1 r
Burst phase
52-76 $\quad 1-\quad$ Color bandpass
$10 \mu \mathrm{~h}$ peaking (brown-black- MISCELLANEOUS
(18) $56-20 \quad 1$ v 1 N295 crystal diode (red-
(19) 00 white-green)
black) (19)60-21 1V DPDT slide switch
85-148-7
1 Color circuit board
(20) 206-207 $1 \mathrm{~L} \quad$ Coil shield

344-56 1 ․ Blue hookup wire
346-1 $\quad 1^{\prime} \quad$ Small sleeving
(21) 404-238
(22) 412-11
(23) 434-129
${ }_{1}\llcorner$ 3579.545 kilocycle crystal NE-2 neon lamp 7 -pin tube socket 434-130 7 9-pin tube socket

STEP-BY-STEP ASSEMBLY

Only a portion of the color circuit board is shown in each of the next four Pictorials, due to the large size of the circuit board. A small drawing at the top of each Pictorial shows the area of the circuit board to be assembled.

NOTE: In some instances, resistors will be mounted vertically on the circuit board.
(レ) Position the color circuit board as shown in Pictorial 1-4. Complete each step on the Pictorial.

PROCEED TO PICTORIAL $1-5$

PROCEED TO PICTORIAL 1-6

PICTORIAL 1-5
START

PIC TORIAL 1-6
PROCEED TO PICTORIAL 1-7

PROCEED TO PIC TORIAL 1-8

PICTORIAL 1-8

CONVERGENCE CIRCUIT BOARD

PARTS LIST

Unpack pack \#3 and check each part against the following Parts List. The numbers in parentheses are keyed to the numbers in the Parts Pictorial (fold-out from Page 19).

PART PARTS DESCRIPTION

No. Per Kit

RESISTORS

(1) 1-1
(2) 1-15-1

1-17-1
1-18-1
1-54-1
$1 \checkmark$
rown-green-brown)
$270 \Omega 5 \% 1$ watt
(red-violet-brown-gold)

PART PARTS DESCRIPTION
No. Per Kit

CONTROLS
(5) 11-56 3

11-66 1
11-57 2
11-59
11-67

COILS
(6) 40-736
(7) $40-738$
(8) $40-739 \quad 1 \quad$ Convergence
$\begin{array}{lll}\text { (8) 40-737 } 40-739 & 1 & \text { Convergence }\end{array}$

CAPACITORS
(3) 27-54 $2 \checkmark \quad .082 \mu$ fd resin

27-28 2 . $1 \mu \mathrm{fd}$ resin
27-55 $\quad 1 \quad .15 \mu \mathrm{fd}$ resin
27-56 $\quad 1 \quad .27 \mu \mathrm{fd}$ resin
(4) 25-44 $\quad 125 \mathrm{fd}$ electrolytic

MISCELLANEOUS
(10)57-43 1 4-section selenium diode

85-147-2 1 Convergence circuit board
(11)262-8 $2 \checkmark \quad$ Terminal pin

STEP-BY-STEP ASSEMBLY

(V) Position the convergence circuit board as shown in Pictorial 1-9. Complete each step on the Pictorial.

CHASSIS

> This section of the Manual contains a Parts List and the Step-By-Step Assembly instructions for the chassis.

PARTS LIST

Unpack pack \#4 and all remaining parts; then check each part against the following Parts List. The numbers in parentheses are keyed to the numbers on the Parts Pictorial (foldout from Page 20).

The large parts that are not packed in bags,
such as the chassis, picture tube, etc., should be set aside until they are called for in the assembly instructions.

NOTE: Do not remove the picture tube from its carton until you are ready to install it.

$\begin{aligned} & \text { PART } \\ & \text { No. } \\ & \hline \end{aligned}$	PARTS Per Kit	DESCRIPTION	$\begin{aligned} & \text { PART } \\ & \text { No. } \\ & \hline \end{aligned}$	PARTS Per Kit	DESCRIPTION
RESISTO		Electrolytic \checkmark			
1/2 Wat					
(1) 1-129	1	4.7Ω (yellow-violet-gold)	(12) 25-44		$25 \mu \mathrm{fd}$
1-3	4	100Ω (brown-black-brown)	25-36	16	$40 \mu \mathrm{fd}$
1-66	1	150Ω (brown-green-brown)	25-28		$100 \mu \mathrm{fd}$
1-112	1 V	$180 \Omega 5 \%$ (brown-gray-	(13) 25-139	1	$160 \mu \mathrm{fd}$
		brown-gold)	25-141	15	80-50-10-20 $\mu \mathrm{fd}$
$1-45$	$1 \checkmark$	220Ω (red-red-brown)	25-140	$1 \checkmark$	160-30-10-10 $\mu \mathrm{fd}$
1-4	12	330Ω (orange-orangebrown)	Other Capacitors		
1-9	$3 \checkmark$	1000Ω (brown-black-red)	(14) $23-38$	1	. $0033 \mu \mathrm{fd}$ tubular
1-44		2200Ω (red-red-red)	23-45	1	. $047 \mu \mathrm{fd} 600 \mathrm{~V}$ tubular
1-73		8200Ω (gray-red-red)	23-56	1	. $5 \mu \mathrm{fd}$ tubular
1-21		$15 \mathrm{~K} \Omega$ (brown-green-orange)	(15) 27-34	1	. $2 \mu \mathrm{fd}$ resin (if this capacitor
1-26	1	$100 \mathrm{~K} \Omega$ (brown-blackyellow)			is color coded, refer to foldout from Page 7)
1-27	1	$150 \mathrm{~K} \Omega$ (brown-greenyellow)			
1-126	1	$180 \mathrm{~K} \Omega$ (brown-gray-yellow)	CONTROLS		
1-29	12	$220 \mathrm{~K} \Omega$ (red-red-yellow)	(16) 10-186	1	500Ω
1-33	1	$470 \mathrm{~K} \Omega$ (yellow-violet-	10-184	15	$1200 \Omega(1.2 \mathrm{~K})$
1-37	$1 \checkmark$	yellow) 2.2 megohm (red-red-green)	$10-187$ $10-185$	1	$\begin{aligned} & 5000 \Omega(5 \mathrm{~K}) \\ & 100 \mathrm{~K} \Omega \end{aligned}$
Other Resistors-Thermistor			10-78	1	$15 \mathrm{~K} \Omega$
(2) 1-8-1	$1 \checkmark$	$68 \mathrm{~K} \Omega 1$ watt (blue-grayorange)	(17) 11-68	15	$2000 \Omega(2 \mathrm{~K})$ tab-mount $10 \mathrm{~K} \Omega$ tab-mount
(3) 1-17-2	$1 \checkmark$	$6800 \Omega 2$ watt (blue-gray-	10-192	12	$35 \mathrm{~K} \Omega$ tab-mount
		red)	10-181	2	1 megohm tab-mount
(4) 5-1-2	1	3900Ω (3.9 K) 2 watt, film	10-191	12	1 megohm tab-mount
5-3-2	1	$47 \mathrm{~K} \Omega 2$ watt, film	(18) 10-193	2	$5 \mathrm{megohm} \mathrm{tab-mount}$
5-3-3	1	$1000 \Omega(1 \mathrm{~K}) 3$ watt, film		1	$6000 \Omega(6 \mathrm{~K})$ tab-mount, green
$5-1-4$ $5-2-4$	$1 \checkmark$	5600Ω (5.6 K) 4 watt, film $39 \mathrm{~K} \Omega$ watt,	10-188	$1 \checkmark$	
(5) $\begin{gathered}5-2-4 \\ 3-13-7\end{gathered}$	$1 \checkmark$	$39 \mathrm{~K} \Omega 4$ watt, film $6500 \Omega 7$ watt, wire-wound		$1 \sim$	shaft
3-7-10	1	$10 \mathrm{~K} \Omega$ (10000) 10 watt, wire-wound	10-189	$1 \checkmark$	1.5 megohm tab-mount, red shaft
3-8-10		$15 \mathrm{~K} \Omega 10$ watt, wire-wound	10-194	1	1.5 megohm tab-mount,
(6) $3-10-25$	1	$750 \Omega 25$ watt, wire-wound	10-195	$1 \checkmark$	1.5 megohm tab-mount, blue
(7) 9-14		VDR (voltage dependent resistor)		12	shaft
(8) 9-15	$1 /$	VDR (voltage dependent	(19) 19-100	1	2 megohm with SPST switch
(9) $9-8$	$1 \checkmark$	resistor) Thermistor	SWITCHES-CIRCUIT BREAKER		
			(20) 60-2	$1 \checkmark$	DPDT slide (6 lugs)
CAPACITORS			$\begin{array}{r} 60-10 \\ \text { (21) } 65-11 \end{array}$	$\begin{aligned} & 12 \\ & 1 \mathrm{~V} \end{aligned}$	DPTT slide (8 lugs) Circuit breaker
Disc			COILS		
(10) 21-32	1	$47 \mu \boldsymbol{f}$	(22) 40-598	$1 レ$	$100 \mu \mathrm{~h}$ peaking (brown-black-
21-75	1	$100 \mu \mu \mathrm{f}$			brown)
21-14	$3 \checkmark$. $001 \mu \mathrm{fd}$	(23) 40-485	1	$250 \mu \mathrm{~h}$ peaking (red-green-
$21-36$ $21-16$	1	. $002 \mu \mathrm{fd}$			brown)
21-16	2	. $01 \mu \mathrm{fd}$	(24) 40-745		Pincushion phase

PART	PARTS	DESCRIPTION
No.	Per Kit	

Coils (cont'd.)

(225) 40-750	1	Width
(26) 41-1	1	Delay line
(27) $40-586$	1	Degaussing
(28) $40-744$	1	Automatic degaussing

CHOKE-TRANSFORMERS

(29) $46-37$	1	Filter choke
(30) $51-132$	1	Top-bottom pincushion
transformer		

GROMMETS-INSULA TORS
(33) 73-4

73-1
73-3
73-2
(34) 73-34
(35) 75-24
(36) 261-24
(37) 261-22

5/16" grommet
3/8" grommet
1/2" grommet
3/4" grommet
Test clip insulator
Line cord strain relief
Yoke mount Picture tube rubber bumper

CLAMPS-CLIPS

(38) 207-4

207-18
207-22
(39) 207-48
(40) 207-47
(41) 260-16

260-1

$1 \checkmark$	$1 / 4^{\prime \prime}$ cable clamp
$1 \checkmark$	$3 / 8^{\prime \prime}$ cable clamp
$1 \checkmark$	$1 / 2^{\prime \prime}$ cable clamp
3	Yoke positioning clamp
$1 \checkmark$	Yoke mounting clamp
2	Small alligator clip
1	Large alligator clip

DIODE-PILOT LAMP-TUBES

NOTE: Some tubes may have the suffix A or B following the type number. Example: 6GF7A
instead of 6GF7.
(42) 57-27
(43) 412-1

411-170
411-177
411-216
411-193
411-217
411-173
411-175
411-195 1 6JU8 tube
411-237 1 12HG7 tube
411-213 1- 25AP22A/25XP22

HARDWARE

\#3 Hardware
(44) 250-49 20
(45) 252-1 20
(46) 254-7 20

\#6 Hardware

(47) 250-89 60L $6-32 \times 3 / 8^{\prime \prime}$ screw
(48) 250-252 10 \#6 x 5/8" bronze screw
(49) 250-365 4
(50) 250-8 28
(51) 250-290 2
(52) 252-3 $58 \checkmark$
(53) 254-1 74
(54) 253-60 $4 \vee$
(55) 259-1
\#8 Hardware

(56) 250-137	
(57) 250-92	6

(58) 250-35 3 . $\quad \# 8 \times 7 / 8^{\prime \prime}$ sheet metal screw
(59) 250-289 3レ
$\begin{array}{ll}\text { (60) } 252-4 & 4 \\ \text { (61) } 254-2 & 6\end{array}$
\#10 Hardware
(62) 250-126 4
(63) 250-255 $\quad 10$
(64) 250-264
(65) 250-261

(66) 252-5	4
(67) 252-54	2
(68) 254-3	18
$(69) 253-19$	8
(70) $259-5$	4

Other Hardware

(71) 250-253
(72) 252-7
(73) 252-67
(74) 254-5
(75) 253-31
(76) 258-33
(77) 259-22
(78) 432-66 2 レ
$3-48 \times 1 / 4^{\prime \prime}$ screw 3-48 nut \#3 lockwasher
$8-32 \times 3 / 8^{\prime \prime}$ screw $8-32 \times 5 / 8^{\prime \prime}$ screw
DESCRIPTION \# $6 \times 1 / 4^{\prime \prime}$ sheet metal screw \#6 x $3 / 8^{\prime \prime}$ sheet metal screw \#6 x 5/8" flat head wood screw
6-32 nut
\#6 lockwasher \#6 flat washer \#6 solder lug $8-32 \times 1 / 2^{\prime \prime}$ wing-head screw 8-32 nut \#8 lockwasher
$10-32 \times 1 / 2^{\prime \prime}$ screw $10-24 \times 1 / 2^{\prime \prime}$ self-tapping screw
10-24 x $3 / 4^{\prime \prime}$ self-tapping screw
\#10 x 1-1/2' sheet metal screw
10-32 nut
\#10 speednut
\#10 lockwasher
\#10 flat washer
\#10 solder lug
$1 / 4-20 \times 7 / 8^{\prime \prime}$ screw
Control nut
1/4-20 self-retaining nut
Control lockwasher
1/4" flat washer
Coil spring
Spade lug
Terminal strip connector

NOTE: Do not remove the picture tube from its carton until you are ready to install it.

$\begin{aligned} & \text { PART } \\ & \text { No. } \\ & \hline \end{aligned}$	PARTS Per Kit	DESCRIPTION
WIRE-CABLE-SLEEVING		
89-13	1 L	Line cord
340-2	$1 \sim$	Bare wire
344-52	$1 \checkmark$	Red hookup wire
344-53	1 V	Orange hookup wire
344-54	$1{ }^{\text {rom}}$	Yellow hookup wire
344-55	1.	Green hookup wire
344-58	1 -	Gray hookup wire
344-59	1 w	White hookup wire
344-15	1 L	Black stranded wire
344-31	1	Brown stranded wire
343-6	$1{ }^{\circ}$	Shielded cable
347-3	1 V	2-wire shielded cable
343-9	1 r	75Ω coaxial cable
347-2	$1 \mathrm{w}^{\prime \prime}$	300Ω twin lead
(79) $134-110$	1	8 -wire cable assembly with octal plug
134-129	1 -	12 -wire cable assembly
134-166	1^{\prime}	Wiring harness
346-7	1 .	1/4" clear sleeving
346-6	2 い	3/8" fiberglas sleeving

TERMINAL STRIPS

STEP-BY-STEP ASSEMBLY

CONVERGENCE BRACKET ASSEMBLY

(fold-out from Page 25) for the following steps.
(Position the convergence bracket as shown
in the Pictorial.

Detail 2-1A
1 A and mount the controls on Refer to Detail $2-1$ A and mount as directed in the folthe converge
(K) tab-mount control (\#11-68) at) 2000 CD.
(M) 5 megohm tab-mount control (\#10-182) at CE.
() $10 \mathrm{~K} \Omega$ tab-mount control (\#10-183) at CF.
(C) 1 megohm tab-mount control (\#10-181) at
(V) 1 megohm tab-mount control (\#10-181) at (5) 5 megohm tab-mount control (\#10-182) at CH .
(1) 1 megohm tab-mount control (\#10-181) at oJ.
(4) Refer to Detail 2-1B and mount the assembled convergence circuit board (\#85-147-2) as shown in the Pictorial, wracked. Use four of the board next to the bricks and four \#6 \#6 x $3 / 8^{\prime \prime}$ sh

PICTORIAL 2-1

Connect the wires of the 8 -wire cable assembly (with octal plug) to the foil side of the convergence circuit board in the following steps. See
Pictorial 2-2.
(v) Red to U (S-1).

NOTE: When connecting a wire to a pin, the wire will be soldered even though instructions will be connected later. The solder instructions in each step indicate. The solder connected to the terminal pine number
(-) Black to
(-) Brown to $\mathrm{D}(\mathrm{S}-1)$
($)$ Yellow to B (S-1)

(V) Gray to C (S-1).
(\checkmark) Red-white to $E(S-1)$.
(V) Yellow-green to $F(S-1)$
(V) White to terminal pin H (S-1).

Refer to Pictorial 2-3 for the following steps Connect the 12 -wire cable assembly (134 -120) the foe foil side of the convergence circuit ($\# 34-129$) doe following steps. Use the end of the circuit board in does not have the three separate breakouts. NOTE: Prepare
to the circuit beach wire before connecting it gether and melt ard. Twist the wire strands tobared end.
(\checkmark) Yellow-red to $W(S-1)$.
(\checkmark) White-red to 11 (S-1).
(J) White-green to 7 (S-1).

1 \square

PICTORIAL 2-4

PICTORIAL 2-3
(C) Yellow-green to V (S-1). NOTE: Three holes near hole V are not used, as shown on the Pictorial.
(C) White-blue to 3 (S-1).
($)$ Yellow-blue to terminal pin G (S-2).
(\checkmark) Orange-blue to 2 (S-1).
(1) Black-red to terminal pin H (S-2).
(V) Green to terminal pin H (S-3).
(v) Red to 9 (S-1).
(V) Blue to 25 (S-1).
(V) Gray-green to 6 (S-1).

NOTE: The plastic nut starter will make it easier to hold 6-32 or 3-48 nuts and start them on the threads of a screw. Refer to the Tools section of the Kit Builders Guide.
(V) Slip a $3 / 8^{\prime \prime}$ cable clamp over the 8 -wire and 12 -wire cable assemblies. Then mount the cable clamp at CA with a $6-32 \times 3 / 8^{\prime \prime}$ screw, a \#6 lockwasher, and a 6-32 nut as shown in Detail 2-3A.

Set the convergence bracket assembly aside until it is called for in a later step.

Detail 2-3A

TUNER BRACKET ASSEMBLY

The term "hardware" will be used to refer to the screws, nuts, and lockwashers when parts are being mounted in some of the following steps. The phrase "Use 6-32 x 3/8" hardware," for example, means to use a $6-32 \times 3 / 8^{\prime \prime}$ screw, one or more \#6 lockwashers, and a 6-32 nut. Refer to the detail called out in the step for the correct number of lockwashers to use and the correct way to install the hardware.

NOTE: Two lockwashers will be used to mount terminal strips, one between the mounting surface and the mounting leg, and the other under the nut.

Refer to Pictorial 2-4 (fold-out from Page 26) for the following steps.

NOTE: It may be necessary to refer to the Parts List and Parts Pictorial (foldout from Page 20) to identify terminal strips when they are called for in the following steps.
(4 Position the tuner bracket as shown in the Pictorial.

Detail 2-4A

($\sqrt{ }$) Refer to Detail 2-4A and mount a small 3-lug terminal strip, center lug ground (\#431-10), at FE with 6-32 $\times 3 / 8^{\prime \prime}$ hardware.

In the next five steps, mount the indicated controd with a control lockwasher and a control nut as shown in Detail 2-4B. Position each control with its lugs as shown in Pictorial 2-4.
() $1200 \Omega(1.2 \mathrm{~K})$ control (\#10-184) at FD.
(V) 500Ω control (\#10-186) at FJ.
(\checkmark) $100 \mathrm{~K} \Omega$ control (\#10-185) at FG.
($) 5000 \Omega(5 \mathrm{~K})$ control (\#10-187) at FP.

1
CONTROL NUT

Detail 2-4B

(J) 2 megohm control with SPST switch (\#19100) at FL.
$(\sqrt{ })$ Mount a 1 megohm tab-mount control (\#10191) at FK. Insert the mounting tabs in the slots and twist the tabs $1 / 8$ turn.
(J) Similarly, mount a $35 \mathrm{~K} \Omega$ tab-mount controll (\#10-192) at FN.

Detail 2-4C

() Install a \#6 solder lug at FR on the VHF tuner bracket, and position the solder lug as shown in Detail 2-4C. Use a 6-32 x 3/8" screw and a 6-32 nut.
(5 Mount a small 2-lug terminal strip (\#431-2) at FS and position the terminal strip as shown. Use 6-32 $\times 3 / 8^{\prime \prime}$ hardware.

NOTE: It may be necessary, in the next step, to separate the VHF tuner (\#110-42) from the IF circuit board assembly by unplugging the coaxial cable from the tuner.
(L) Refer to Detail 2-4D and mount the VHF tuner on the VHF tuner bracket with four \#6 x $1 / 4^{\prime \prime}$ sheet metal screws. Position the VHF tuner with its tuning shaft as shown.

Mount the VHF tuner and bracket assembly on the tuner bracket as shown in Detail 2-4E. Use four \#6 x 3/8' sheet metal screws.
(U) Refer to Detail $2-4 \mathrm{~F}$ and mount the UHF tuner (\#110-37) at FC with $8-32 \times 3 / 8^{\prime \prime}$ screws and \#8 lockwashers. Position the tuner as shown.

Detail 2-4E

Detail 2-4F
(V)

Install \#47 pilot lamps in the two pilot lamp sockets.
$\sqrt{ }$) Push a length of $3 / 8^{\prime \prime}$ fiberglas sleeving over each pilot lamp and socket until the sleeving is even with the end of the pilot lamp. Then clip the pilot lamp sockets on the tuner bracket at FA and FB as shown in Detail 2-4G. The leads on the pilot lamp sockets will be connected later.

Detail 2-4G

Refer to Pictorial 2-5 (fold-out from Page 31) for the following steps.

NOTE: Position all wires and parts as neatly as possible when wiring your TV Set. Many of the wires will be longer than required to reach their connecting points. The wires should therefore be positioned down against the chassis. Use square corners (bent 90 degrees) when positioning the wires to make the completed kit as neat as possible.

The leads of resistors, capacitors, and similar components should be cut to proper length before the part is installed. Refer to the Kit Builders Guide for general information on kit assembly; refer also to the Chassis Photographs on Page 173 through 178 which show a typically well-assembled TV Set.
(\checkmark) Connect a $3-1 / 2^{\prime \prime}$ bare wire from lug 3 of control FK (S-1), through lug 1 of control FN (NS), to lug 1 of control FP (NS).
($)$ Connect a $2-1 / 2^{\prime \prime}$ bare wire from lug 2 of terminal strip FE (NS) to lug 1 of control FP (NS).

Black to ground lug 9 of socket $J(5-1)$.
Yellow to lug 3 of transformer TE
M Brown to log 2 of socket B (Ns).
. of socket R ((NS).
M Gren-yellow to lug 1 of terminal strip BC
(NS). (1) Red to lug 3 of terminal strip Bg (NS).

Blue to hole L of the sound-sync circuir

) Brown-black to chassis tab HJ ((-1).
(N) Black to lug 1 of terminal strip By (NS).
ck to lug of termina strip BM (Ns.

NOTE: Use only $1 / 2$ watt resistors in all steps unless larger wattage resistors are specifically called for.
(\downarrow) Connect a 2.2 megohm (red-red-green) resistor from lug 1 of terminal strip FE (NS) to lug 3 of control FG (NS).
($\sqrt{ }$) Connect a $220 \mathrm{~K} \Omega$ (red-red-yellow) resistor from lug 3 of terminal strip FE (NS) to lug 4 of control FL (NS).
($)$ Connect a . $002 \mu \mathrm{fd}$ disc capacitor from lug 2 (NS) to lug 3 (S-2) of terminal strip FE.

NOTE: When connecting a lead with sleeving on it, before soldering the connection, be sure the sleeving is not pushed into the connecting lug. This will allow the solder to flow into the connection.
(V) Place $3 / 4^{\prime \prime}$ of small sleeving on each lead of a $15 \mathrm{~K} \Omega$ (brown-green-orange) resistor Then connect this resistor from lug 1 of control FG (S-1) to lug 1 of control FP (S-3).
(\checkmark) Place $1 / 2^{\prime \prime}$ of small sleeving on each lead of a $47 \mu \mu \mathrm{f}$ disc capacitor. Then connect the capacitor from lug 3 (NS) to lug 4 (S-2) of control FL.
(\checkmark Connect a $100 \mu \mu \mathrm{f}$ disc capacitor from lug 2 (NS) to lug 3 (NS) of control FP.
(4) Connect a 100Ω (brown-black-brown) resistor from lug 2 (S-1) to lug 3 (NS) of the VHF tuner.

NOTE: When wire is called for, use the color of hookup wire specified in the step. Do not use stranded wire, shielded cable, or the degaussing coil until they are specifically called for.
(4Connect a $5^{\prime \prime}$ brown wire from lug 6 of the VHF tuner ($\mathrm{S}-1$) to lug 2 of terminal strip FS (NS).
$(\sqrt{ })$ Connect the free end of the lead from pilot lamp socket FA to lug 1 of terminal strip FS (NS).
() Connect the free end of the lead from pilot lamp socket FB to lug 1 of terminal strip FS (NS).
(ケConnect a 4.7Ω (yellow-violet-gold) resistor from lug 1 (S-3) to lug 2 (NS) of terminal strip FS.
(Connect a $6^{\prime \prime}$ red wire from lug 7 of the VHF tuner (S-1) to lug 3 of the UHF tuner (S-1).
(エ) Plug the end of the coaxial cable coming from FX of the UHF tuner into socket FU of the VHF tuner.

Set the tuner bracket assembly aside until called for later.

PICTORIAL 2-5

CHASSIS PARTS MOUNTING

Refer to Pictorial 2-6 (fold-out from Page 37) for the following steps.
($\sqrt{ }$ Install $3 / 8^{\prime \prime}$ grommets in holes GA, GK, GR, GS, and GT of the chassis.
($\sqrt{ }$)
Install $5 / 16^{\prime \prime}$ grommets at GC, GD, GE, and GU.
$(\sqrt{ })$ Install $1 / 2^{\prime \prime}$ grommets at GB, GH, GL, and GN.
(f) Install $3 / 4^{\prime \prime}$ grommets at GF and GP.
() Refer to Detail 2-6A and mount a double phono socket at H with $6-32 \times 3 / 8^{\prime \prime}$ hardware.

(V Mount a 2-lug screw type terminal strip at BJ from the top of the chassis as shown in BJ from the top of the chassis as shown in

Detail 2-6C

Mount the terminal strips on the bottom of the chassis at the locations called out in the follow ing steps. Refer to the Pictorial to identify and position each terminal strip. Use 6-32 x $3 / 8$ hardware as shown in Detail 2-6C. NOTE: may be necessary to refer to the Parts List and to the Parts Pictorial (fold-out from Page 20) to identify the terminal strips.
N) Small 4-lug terminal strip at $B D$.
(ل) Small 3-lug terminal strips at BG and BN.
($\sqrt{ }$) Large 5-lug terminal strips at BH, BL, and BM.
($\sqrt{ }$) Large 3-lug terminal strips at BA and BK.
(ل) Small 7-lug terminal strip at BP. Use 6-32 $x 3 / 8^{\prime \prime}$ hardware for each mounting foot.
(V) Large 2-lug terminal strip at BY.
(2) Small 2-lug (1 lug ground) terminal strip at BZ.
f) Small 6-lug terminal strip at BC.

Detail 2-6D
Refer to Detail 2-6D and mount octal sockets at J and R with $6-32 \times 3 / 8^{\prime \prime}$ hardware. Position each socket with the keyway as shown in the Pictorial.

($\sqrt{ }$) Mount the DPTT slide switch (\#60-10) at A with $6-32 \times 3 / 8^{\prime \prime}$ hardware as shown in Detail 2-6E.
) Mount the DPDT slide switch (\#60-2) at B with $6-32 \times 3 / 8^{\prime \prime}$ screws only.
(v) Refer to Detail 2-6F and mount the power transformer (\#54-149) at TC with 10-32 x $1 / 2^{\prime \prime}$ hardware. Insert the transformer leads through grommet GP.

Detail 2-6F

Before you perform the next step, carefully unpack the horizontal output assembly (\#100580) and remove all packing material. Lift the cover of the assembly and check the placement of the leads to the caps on tubes V704 and V705. These leads and caps should be positioned as shown in the photograph on Page 178.
(V) Mount the horizontal output assembly (\#100580) on top of the chassis, and insert the free wires through the large cutout at the left side of the chassis. Position the assembly with the high voltage lead as shown in Detail 2-6G (fold-out from Page 32). Use $6-32 \times 3 / 8^{\prime \prime}$ hardware. Be sure you do not pinch the wires between the assembly and the chassis. CAUTION: Do not change the setting of the control and coil on the horizontal output assembly, as they have been preset at the factory.

NOTE: Chassis assembly will be easier if the chassis is positioned on one edge, resting on the power transformer as shown in Detail 2-6H.

(w) Refer to Detail 2-6J and install the 1.5 meg ohm tab-mount control with red shaft (\#10189) at C.

(4 Install the 1.5 megohm tab-mount control with green shaft (\#10-194) at D.

Install the 1.5 megohm tab-mount control with blue shaft (\#10-195) at E.
(Install the $6000 \Omega(6 \mathrm{~K})$ tab-mount control with green shaft (\#10-193) at F.
(4) Install the $6000 \Omega(6 \mathrm{~K})$ tab-mount control with blue shaft (\#10-188) at G.
\backsim Refer to Detail $2-6 \mathrm{~K}$ and mount a $15 \mathrm{~K} \Omega$ control (\#10-78) at S with a control lockwasher and control nut. Position the control with its lugs as shown in the Pictorial.

Detail 2-6K
($)$ Mount the circuit breaker (\#65-11) at L. Insert the circuit breaker tabs into the slots of the chassis, and twist each tab $1 / 4$ turn as shown in Detail 2-6L.

Detail 2-6L

Detail 2-6M
M Install a capacitor mounting wafer on a $160 \mu \mathrm{fd}$ electrolytic capacitor (\#25-139) as shown in Detail 2-6M. Twist the mounting tabs $1 / 8$ turn.
($\sqrt{\text { Mount this electrolytic capacitor and mount- }}$ ing wafer on top of the chassis at K . Position the capacitor lug as shown in the Pictorial. Use $6-32 \times 3 / 8^{\prime \prime}$ hardware.
(V) Install an 80-50-10-20 $\mu \mathrm{fd}$ electrolytic capacitor (\#25-141) at P. Position the capacitor with its lug markings as shown in the Pictorial; then twist the mounting tabs 1/8 turn.
(V) Similarly, install a 160-30-10-10 $\mu \mathrm{fd}$ electrolytic capacitor (\#25-140) at N . Position the capacitor with its lug markings as shown.

Prepare the leads of the top-bottom pincushion transformer (\#51-132) as shown in Detail 2-6N. Measure each lead from the point where it breaks out from the transformer, cut the lead to length, and remove $1 / 4^{\prime \prime}$ of insulation from the end.

Detail 2-6N

Detail 2-6P
(W) Refer to Detail 2-6P and mount the topbottom pincushion transformer on top of the chassis at TF. Insert the blue and white-red-black leads through grommet GT; insert the other leads through grommet GS. Use $6-32 \times 3 / 8^{\prime \prime}$ hardware.

Detail 2-6R
(V) Refer to Detail 2-6R and mount the side pincushion transformer (\#51-136) at TE with 6-32 x $3 / 8^{\prime \prime}$ hardware. Position the transformer with the numbered lugs as shown in the Pictorial.
(1) Install the pincushion phase coil (\#40-745) on the bottom of the chassis at T. Place the locating tab in the slot, as shown in Detail $2-6 \mathrm{~S}$, and press down until both retaining tabs snap in place.
() Similarly, install the width coil (\#40-750) on the bottom of the chassis at U. Place the locating tab in the slot and press down until both retaining tabs snap in place.

Detail 2-6S

Detail 2-6T
(${ }^{T}$ Refer to Detail 2-6T and mount the vertical output transformer (\#51-135) at TB with $8-32 \times 3 / 8^{\prime \prime}$ hardware. Position the transformer with six leads (colors called out on the Pictorial) inserted through grommet GL. Insert the remaining leads through grommet GN.
(V) Prepare the leads of the audio output transformer (\#51-104) as shown in Detail 2-6U. Measure each lead from the point where it breaks out from the transformer, cut the lead to length, and remove $1 / 4^{\prime \prime}$ of insulation from the end.

Detail 2-6U

In the following step, position the wire from the horizontal output assembly as shown in the Pictorial. This wire will be connected in a later step.
(Position the shorter violet wire coming from lug 5 of terminal strip $B R$, next toterminal strip BY. Hook this wire over the chassis cutout to hold it in place as shown in the Pictorial.

When wiring this kit, you may find it easier to prepare the lengths of hookup wire ahead of time, as in the following step. To prepare a wire, cut it to the indicated length; then strip $1 / 4$ " of insulation from each end. When stranded wire is called for, melt a small amount of solder on the bare wire ends to hold the small wire strands together. The wires are listed in the order in which they will be used.
($)$ Prepare the following lengths of hookup and stranded wire:

3-1/2" green
$4^{\prime \prime}$ green
2-1/2" green
$4^{\prime \prime}$ blue
3-1/2" blue
$6^{\prime \prime}$ brown stranded
(15 Connect a $3-1 / 2^{\prime \prime}$ green wire from lug 3 of coil T (S-1) to lug 5 of terminal strip BP (NS).
(レ) Connect a $4^{\prime \prime}$ green wire from lug 2 of controll S (NS) to lug 7 of socket $\mathrm{R}(\mathrm{S}-1)$.
(4) Connect a 2-1/2" green wire from lug 1 of socket R (S-2) to lug 4 of terminal strip BP (NS).
($\sqrt{ }$ Connect a $4^{\prime \prime}$ blue wire from lug 1 of controd S (NS) to lug 8 of socket $\mathrm{R}(\mathrm{S}-1)$.
(\mathcal{V}) Connect a $3-1 / 2^{\prime \prime}$ blue wire from lug 1 of capacitor K (S-2) to lug 2 of terminal strip BL (NS).
(\mathcal{C} Connect a $6^{\prime \prime}$ brown stranded wire from lug 1 of terminal strip BJ (NS) to lug 5 of terminal strip BM (NS).
(- Connect the lead at the marked end of a $.0033 \mu \mathrm{fd}$ tubular capacitor to lug 1 (S-2) and the other lead to lug 3 (NS) of terminal strip BG.
(ね) Connect a $180 \Omega 5 \%$ (brown-gray-browngold) resistor from lug 3 (NS) to lug 4 (NS) of terminal strip BF.
(\mathcal{C} Connect a $3900 \Omega(3.9 \mathrm{~K}) 2$ watt film resistor from lug 1 (NS) to lug 2 (NS) of terminal strip BF.

Refer to Pictorial 2-8 (fold-out from Page 41) for the following steps.

Connect the vertical output transformer leads coming from grommet GL to socket J in the following steps:
$(\mathcal{)}$ Black-white to lug 3 (S-1).
($\sqrt{ }$) Black-red to lug 4 (S-1).
(- Green-red to lug 5 (S-1).
$(\mathcal{})$ Orange to lug 6 (S-1).
($\sqrt{ }$) Red-white to lug 7 (S-1).
($\sqrt{\text { C Connect the black-green transformer lead }}$ coming from grommet GL to chassis tab HE (NS).

Connect the free ends of the wires coming from the horizontal output assembly in the following steps. Position the wires as shown.
$(\sqrt{ })$ Locate the twisted pair of green wires coming from lugs 2 and 7 of socket Y. Connett one of these wires to lug 1 (NS) and the other to lug 2 (NS) of terminal strip BY. Connect the black wire coming from lug 4 of terminal strip BW to lug 1 of control C (NS). IMPORTANT: Be sure to route this wire as shown.
($\sqrt{() \text { Connect the white wire coming from lug } 5}$ of terminal strip BW to lug 3 of capacitor P (NS).
(\checkmark) Connect the large red wire coming from lug 2 of terminal strip BS to lug 5 of socket R (S-1).
$(\sqrt{ })$ Connect the large blue wire coming from lug 1 of terminal strip BS to lug 4 of socket R (S-1).
$(\sqrt{ })$ Connect the green wire coming from lug 1 of terminal strip BT to hole AB of the soundsync circuit board (S-1).
(
Connect the longer violet wire coming from lug 5 of terminal strip BR to lug 8 of socket J (NS). NOTE: Do not use the shorter violet wire from lug 5 of terminal strip BR that was positioned near terminal strip BY in a previous step.
(J) Solder the ground foil of the sound-sync circuit board to the chassis at the two locations shown in the Pictorial.
($\sqrt{ }$) Prepare the following lengths of hookup and bare wire:
$3^{\prime \prime}$ blue
1" bare 7-1/2" green

3' green
$11^{\prime \prime}$ white
(J) Connect a $3^{\prime \prime}$ blue wire from lug 8 of socket $\mathrm{J}(\mathrm{S}-2)$ to hole AE of the sound-sync circuit board (S-1).
(J)
($ل$) Connect a $7-1 / 2^{\prime \prime}$ green wire from lug 2 of socket J (S-1) to lug 3 of terminal strip BF (NS).
$(\sqrt{ })$ Connect a $3^{\prime \prime}$ green wire from lug 1 of terminal strip BF (NS) to hole R of the soundsync circuit board (S-1).
(J) Connect an $11^{\prime \prime}$ white wire from lug 2 of terminal strip BG (NS) to lug 3 of terminal strip BN (NS).
$(\sqrt{)}$ Connect a 1000Ω (1 K) 3 watt film resistor from $\operatorname{lug} 2$ (S-2) to lug 3 (NS) of terminal strip BG.

Detail 2-8A

(J)

Refer to Detail 2-8A and prepare a twisted pair of wires, using two $54^{\prime \prime}$ lengths of black stranded wire.
(
At one end of this twisted pair, connect one wire to lug 1 (S-2) and the other wire to lug 5 (NS) of terminal strip BH. Push the other end of this twisted pair through grommet GH to be connected later.
($ل$) Prepare the following lengths of hookup wire:

12-1/2" red
5-1/2" red
5-1/2" red
8-1/2" white 10" orange $4^{\prime \prime}$ green 4-1/2" orange
(J) Connect a $12-1 / 2^{\prime \prime}$ red wire from lug 4 of terminal strip BH (NS) to lug 4 of capacitor P (NS).
(J) Connect a $5-1 / 2^{\prime \prime}$ red wire from lug 4 of capacitor $P(S-2)$ to lug 2 of terminal strip BN (NS).
(J) Connect a $5-1 / 2^{\prime \prime}$ red wire from lug 4 of terminal strip BM (S-2) to lug 1 of circuit breaker L (S-1).
(J) Connect a $10^{\prime \prime}$ orange wire from lug 5 of terminal strip BL (NS) to lug 1 of capacitor P (NS).
($)$ Connect a $4-1 / 2^{\prime \prime}$ orange wire from lug 1 of capacitor P (S-2) to lug 1 of terminal strip BN (NS).
(\checkmark) Connect an 8-1/2" white wire from lug 4 of terminal strip BL (NS) to lug 3 of capacitor P (NS).
$(\sqrt{ })$ Connect a 4-1/2" white wire from lug 3 of capacitor $P(S-4)$ to lug 3 of terminal strip BN (NS).
$(\sqrt{ })$ Connect a $4^{\prime \prime}$ green wire from lug 1 of terminal strip BL (NS) to lug 2 of circuit breaker L (S-1).

Page 42

Place the wiring harness againsthe chassis,
and position the wires from Bot 5 through
Bof 10 as shown.
 Refer to picterial $2-10$ (fold-out from Page 45)

() White-black to AA ((-1).
(J) Center conducte

White-brown to $\mathrm{x}(\mathrm{s}-1)$

Red to $\mathrm{Y}(\mathrm{S}-1)$.

nonect the wires

of the luy wrap the wire around the lue
White to lug 3 of terminal strip BN (S-3). (J) Two red wires to lug 2 of terminal strip ()) Two orange wires to lug 1 of termina) Two black wires to lug 2 of capacitor) White-violet to lug 1 of capacitor $N(S-1)$
) Whit-blue to lug 2 of capacitor $\mathrm{P}(\mathrm{s}-1)$ () White-red to lug 2 of terminal strip b

Connect the free ends of the wires coming from the horizontal output assembly in the next three steps:
(i) Connect the large orange wire coming from lug 5 of terminal strip BS to lug 6 of transformer TE (S-1).
N) Connect the small brown wire coming from lug 9 of socket X to lug 2 of terminal strip BF (S-2).
$(\sqrt{ })$ Connect the yellow wire coming from lug 2 of terminal strip BW to lug 10 of transformer TE (NS).
() Locate the picture tube socket and lead assembly (\#434-157), and insert the black lead through grommet GU from the top side of the chassis.
$(\sqrt{ })$ Connect this black lead to lug 4 of terminal strip BU (S-1). Another lead has been soldered to the eyelet in this lug previously.
(\downarrow) Insert the twisted pair of brown leads from the picture tube socket through grommet GB.
(V) Connect one brown lead to $\operatorname{lug} 1(\mathrm{~S}-3)$ and the other brown lead to lug 2 (S-3) of terminal strip BY.

The remaining picture tube socket leads will be connected later.
() Prepare the following lengths of hookup and bare wire:

5-1/2" brown-gtranded
3-2" brown stranded
2-1/2" bare wire
1' bare wire
() Connect a 5-1/2" brown stranded wire from lug 1 of coil $U(S-1)$ to lug 6 of socket R (S-1).
(J) Connect a 3-1 brown stranded wire from lug6 of coil U (S-1) to lug 1 of terminal $\operatorname{strip} B P(N S)$. socket R(s-1)
($/$ Connect a $2-1 / 2^{\prime \prime}$ bare wire from lug 1 of transformer TE (S-2) to chassis tab HN (S-1).
($)$ Connect a $1^{\prime \prime}$ bare wire from lug 2 of socket R (S-2) to lug 6 of terminal strip BP (NS).
$(\sqrt{ })$ Connect a 150Ω (brown-green-brown) resistor from lug 3 of terminal strip BP (S-2) to lug 3 of transformer TE (S-2).
(-) Connect a 100Ω (brown-black-brown) resistor from lug 5 ($\mathrm{S}-3$) to lug $6(\mathrm{~S}-3)$ of terminal strip BP.
($)$) Connect the VDR resistor (\#9-14) from lug 1 of terminal strip $\mathrm{BP}(\mathrm{S}-3)$ to lug 10 of transformer TE (S-3). Do not allow the body of the VDR to touch any other lug of transformer TE.
(J) Place a $1-1 / 4^{\prime \prime}$ length of sleeving on a $2^{\prime \prime}$ bare wire. Then connect this wire from mounting lug 3 of capacitor $\mathrm{K}(\mathrm{S}-1)$ to the eyelet in lug 1 of terminal strip BK (NS).

Connect the thermistor (\#9-8) from the eyelet in lug 1 (S-2) to the eyelet in lug 2 (NS) of terminal strip BK.
($\sqrt{ }$) Connect the VDR resistor (\#9-15) from the eyelet in lug $2(\mathrm{~S}-3)$ to the eyelet in lug 3 (S-1) of terminal strip BK.
) Refer to the inset drawing on the Pictorial and bend lug 2 of terminal strip BK as shown. Position the thermistor and the VDR resistor on terminal strip BK so they do not touch the chassis or wires.
($)$ Connect a $.01 \mu \mathrm{fd}$ disc capacitor from lug 1 (S-4) to lug 3 (S-2) of terminal strip BL.
V) Connect a $180 \mathrm{~K} \Omega$ (brown-gray-yellow) resistor from lug 2 of terminal strip BL (S-3) to lug 2 of terminal strip BM (NS).
($\sqrt{ }$) Connect a $150 \mathrm{~K} \Omega$ (brown-green-yellow) resistor from lug 2 (S-4) to lug 3 (S-1) of terminal strip BM.
($)$ Connect the positive (+) lead of a $40 \mu \mathrm{fd}$ electrolytic capacitor (\#25-36) to lug 3 of terminal strip BG (S-4). Connect the other lead of this capacitor to chassis tab $\mathrm{HE}(\mathrm{S}-2)$.
(d) Connect the lead at the marked end of a $.047 \mu \mathrm{fd}$ tubular capacitor to lug 5 (NS) and the other lead to lug 2 (NS) of terminal strip $B H$.
$(\sqrt{ })$ Melt a small amount of solder on the bare lead ends of the line cord to hold the small wire strands together.
$(\sqrt{ })$ Insert the leads of the line cord through hole HG from the top side of the chassis; then connect one lead to lug $2(\mathrm{~S}-3)$ and the other lead to lug 5 (S-3) of terminal strip BH.
 cord strain relief in hole HG from the top side of the chassis.
Refer to Pictorial 2-11 (fold-out from Page 47) for the following steps.
(Connect the lead at the marked end of a . 5 $\mu \mathrm{fd}$ tubular capacitor to chassis tab HD (NS). Connect the other lead to lug 3 of terminal strip BF (NS).

Connect the positive (+) lead of a $25 \mu \mathrm{fd}$ electrolytic capacitor (\#25-44) to lug 4 of terminal strip BF (S-2). Connect the other lead of this capacitor to chassis tab HD (NS).
(J) Connect the positive (+) lead of a $100 \mu \mathrm{fd}$ electrolytic capacitor (\#25-28) to lug 1 $(\mathrm{S}-3)$ and the other lead to lug 3 (S-4) of terminal strip BF.

Connect the free ends of the leads coming from grommet GK in the next two steps:
() Black to chassis tab HD (NS).
(J) Green to lug 2 of socket H (NS).

) Conneta 1000Ω resistor from 1ug 1 of

Prepare the forlowing lenghs of hookup
and bave wire:

PICTORIAL 2-11

Connect a $6500 \Omega 7$ watt wire－wound re－ sistor from lug $1 \overline{(\mathrm{~S}-5)}$ to lug 3 （S－2）of terminal strip BD．Position the resistor away from the wires，Be sure all five leads are soldered at lug 1 of terminal strip $B D$ ．

Connect the wires coming from BO\＃3 in the following steps：
（V）Brown to lug 5 of terminal strip BC（S－3）．
N）White－black to hole CD of the color circuit board（S－1）．

Connect the wires coming from BO\＃2 in the next three steps：
（2）White to lug 2 of terminal strip BC（NS）．
（レ）White－blue－blue to hole X of the color circuit board（S－1）．
(\checkmark) White－violet to hole U of the color circuit board（S－1）．

Connect the remaining wires coming from BO\＃1 to the color circuit board in the following steps：
（レ）White－yellow－yellow to hole $\mathrm{N}(\mathrm{S}-1)$ ．
（ \sim ）Red to hole R（S－1）．
（ $\left.{ }^{(}\right)$Cut off the shield from the black coaxial cable，then connect the inner lead of this cable to hole P（S－1）．
（ $-\rightarrow$ Green to hole K（S－1）．
（レ）White－orange to hole J（S－1）．
(L) White－red－red to hole G（S－1）．
(v) Connect the violet wire coming from BO\＃1 of the wiring harness to lug 5 of switch B （S－1）．

This completes the wiring harness connections on the bottom of the chassis．Position the har－ ness and the harness wires close to the chassis as shown in the Pictorial．
（ - f Connect a $47 \mathrm{~K} \Omega 2$ watt film resistor from lug 1 （S－2）to $\overline{\operatorname{lug} 4}(\mathrm{NS})$ of switch A．
（L）Connect a $68 \mathrm{~K} \Omega$（blue－gray－orange） 1 watt resistor from lug 2 （S－1）to lug 4 （S－2）of switch A．
（4）Place $1 / 2^{\prime \prime}$ of small sleeving on one lead of a 2200Ω（red－red－red）resistor；then connect this lead to lug 2 of switch B（S－2）． Connect the other lead to lug 1 of terminal strip BZ（NS）．
（4）Place $3 / 4^{\prime \prime}$ of small sleeving on one lead of 8200Ω（gray－red－red）resistor；then con－ nect this lead to lug 3 of control F （S－3）． Connect the other lead to lug 1 of terminal strip BZ（S－3）．
（4）Connect a $5600 \Omega(5.6 \mathrm{~K}) \underline{4}$ watt film re－ sistor from lug 3 of switch B（NS）to lug 1 of terminal strip BC（NS）．
（ヶConnect a 6800Ω（blue－gray－red） 2 watt resistor from lug 1 （NS）to lug 3 （S－2）of terminal strip BC．
（レ）Connect a $250 \mu \mathrm{~h}$（red－green－brown）peak－ ing coil（\＃40－485）from lug 1 （S－3）to lug 2 （S－4）of terminal strip BC．
（ - －Connect a 3－1／2＂green wire from lug 3 of switch B（S－2）to hole T of the color cir－ cuit board（S－1）．Position this wire up and as far as possible away from the wiring harness．
（4 Connect a $3^{\prime \prime}$ green wire from CP（S－1）to CL（ $\mathrm{S}-1$ ）on the color circuit board．NOTE： These letters are not screened on the cir－ cuit board．At C P，wrap the bared wire end around the center post of socket V405 before soldering．Solder the end of the wire at CL to both the foil and the chassis as shown．

This completes the wiring on the bottom of the chassis．Carefully check to be sure there are no unsoldered connections，loose or broken leads，or short circuits．Turn the chassis over and shake out any loose bits of solder or wire clippings．

Carefully check to be sure that the wires con－ nected in the holes of the circuit boards are not touching the coil shields or component leads on the top side of the circuit boards．If necessary， cut off the excess wire or cable ends on the top side of each circuit board．

CHASSIS TOP ASSEMBLY AND WIRING

Refer to Pictorial 2-13 (fold-out from Page 51) for the following steps.

Detail 2-13A
(V) Refer to Detail 2-13A and mount a small 2-lug terminal strip on the top side of the chassis at BE. Use $6-32 \times 3 / 8^{\prime \prime}$ hardware.
() Connect the blue lead coming from transformer TA to hole BLUE of the sound-sync circuit board (S-1).
() Connect the red lead coming from transformer TA to hole RED of the sound-sync circuit board (S-1).
(V) Connect an $8^{\prime \prime}$ yellow wire from hole A of the IF circuit board ($\mathrm{S}-1$) to hole YEL of the sound-sync circuit board ($\mathrm{S}-1$).
(い) Connect an $11^{\prime \prime}$ yellow wire from hole R of the IF circuit board (S-1) to hole B of the color circuit board (S-1).

Connect the wires coming from BO\#11 in the next two steps:
($)$ Black to lug 1 of terminal strip BE (NS).
(V) White-violet to hole A of the color circuit board (S-1).
() At the end of the delay line (\#41-1) that has two lugs, push the lead through the hole at chassis tab HB. Then connect it to chassis tab HB on the bottom side of the chassis (NS).
(V) Connect the lead from the other end of the delay line to lug 2 of terminal strip BE (NS).
(Connect a $100 \mu \mathrm{~h}$ (brown-black-brown) peaking coil (\#40-598) from the open lug (no lead attached) of the delay line (S-1) to hole C of the color circuit board (S-1).
(L) Connect a 330Ω (orange-orange-brown) resistor from lug 1 (S-2) to lug 2 (S-2) of terminal strip BE.

NOTE: Be sure the delay line is positioned so it is flat against the chassis.
() Prepare two test leads using two 5" black stranded wires as shown in Detail 2-13B. Attach a small alligater clip on one end of each wire: then slip a test clip insulator over each alligator clip.

Detail 2-13B

(2)

5
Refer to Detail 2-14B for the following steps. (G) Position the two picture tube mounting assemblies as shown. Then install a pic-
ture tube rubber bumper on each bracketof ture tube rubber
the assemblies.
$1-$ Place nine lengths of felt strip on eachpicPlace nine lengths of felt strip on each pic-
ture tube mounting assembly. Remove the ture tube mounting assembly. Remove ress
paper backing rom the felt stips and press
them in place at the locations shown in the them in
Detail.
(- Install a \#10 speednut on the left end of each picture tube mounuting assembly. Possition
the flat side of the speednuts as shown. CAUTION
Extreme care must be exercised when handling the picture tube, due to its high vacuum and
large glass surface area.DONOT strike, scratch,
ar or subject the picture tube to more than moder-
ate pressure at any time. Never lift the picture ate pressure at any time. Never lift the picture
tube by its neck, A fracture of the glass could esult in an implosion of considerable violence capable of causing personal injury.
IMPORTANT: Do not set the picture tube down so any part of its weight rests on the neck of the
tube. Place a soft cloth over any surface on which the picture tube will be placed; then place which the picture tube whil be plat.
the tube face down on the cloth.

Refer to Pictorial 2-14 for the following steps,
NOTE: It will be easier if another person helps
X Place four $1-1 / 2^{\prime \prime}$ thick supports on your work area. Books may be used for this
(ك) Open the shipping box of the picture tube move the cardboard filler that is the bed ne nove the face of the tube. This cardboard fille can be used in the next step if desire CAUTION: When handing the picture tube, be careful not to touch the 2nd anode socket as
you may get a dangerous electrical shock from you may get
the socket.

Place the cardboard filler, or a soft cloth on top of these four supports to protect
the picture tube. Then place the picture tube mask face dow on the supports and pro
tective covering, Position the top side of the active covering. Position the top side of the
nask as shown. Note that the top side has mask as shown. Note that
six holes and a guide pin.
Carefully remove the picture tube from its carton and place it face down don the picture carton and place it face down on the picture
tube mask. Position the tube with its 2nd
anode socket toward the top side of the node socket toward the top side of the mask, as shown.

HinATHITMI

) Insert the free end of each test lead through
the cutout at chassis tab He them to chassis tab HA on the bottom side of the chassis ($\mathrm{S}-2$).

Clip the alligator clip of each test lead to its
insulated lead as shown in Pictorial 2-13.
/ Insert one end of a $1-1 / 2$ " bare wire through
the hole at chassis tab HB wire to the tab on the bottom side of the
chassis (S-2). chassis (S-2)
(1) Position the three picture tube socket leads that come from grommet GA as
shown in Pictorial 2-13. Bend the free shown in Pictorial 2-13. Bend the free
end of the bare wire at chassis tab HB end of the bare wire at chassis tab HB
around the three leads to hold them in
place. place.
(Install the tubes in their respective tube Install the tubes in their respective tube
sockets on the color and the sound-ync
circuit boards. The tube types are marked circuit boards. The tube types sare marked
near the sockets on the circuit boards.
() Install a small tube shield at V404 on the
color circuit board.

Install large tube shields at V401, V403,
V407, and V408 on the color circuit board
Install the focus knob on the adjustment screw at the top of the horizontal output
assembly, as shown. This knob fits lousely assembly, as shown. This knob fits loosely
on the adjustment screw.

Set the chassis aside temporarily.

PICTURE TUBE AND SHIELD ASSEmbly
Refer to Detail $2-14 \mathrm{~A}$ for the following steps.
Place the picture tube mask face down on rug, or on a soft cloth on your work surface
Position the top side of the picture tube mas as shown. Note that the top side has six holes a guide pin.
Prethread the ten holes in the picture tube
mask that are shown by the arrows mask that are shown by the arrows on the
Detail. Use a $10-24 \times 1 / 2$ " self-tappin screw: turn the screw hall- -way in, the
remove the screw. NOTE: You may find remove the screw. NoTE: You may find it
easier to prethread the holes if a different
10 $10-24$ screw is used after three or four
holes are prepared

(Install the solder lug at either end of the prepared $2^{\prime \prime}$ brown wire at location AD with a $10-24 \times 3 / 4$ " self-tapping screw and a \#10 flat washer. Do not tighten the screw. The other solder lug will be mounted later.

M Start $10-24 \times 3 / 4^{\prime \prime}$ self-tapping screws, \#10 lockwashers, and \#10 flat washers in the remaining five holes of the brackets. Do not tighten the screws.
(U) Tighten the two screws that hold the picture tube mounting assemblies to the picture tube.
(ねTighten the eight screws in the brackets of the picture tube assemblies. The face of the picture tube should touch the picture tube mask.

Detail 2-14C
(1) Connect a \#10 solder lug to each end of a $2^{\prime \prime}$ brown stranded wire as shown in Detail 2-14C. Solder both connections. This assembly will be installed later.

Refer to the inset drawing on the Pictorial, and fasten the brackets of the picture tube assemblies to the picture tube mask in the following steps. NOTE: Be sure to use 10-24 x $3 / 4^{\prime \prime}$ self-tapping screws.
(Install $10-24 \times 3 / 4^{\prime \prime}$ self-tapping screws, \#10 solder lugs, and \#10 flat washers at locations $A B$ and $A C$. Position the solder lugs as shown and do not tighten the screws.
Record the picture tube serial number on the picture tube warranty card. The serial number can be found on the base or on the rim around the face of the picture tube. Fill in the rest of this card and mail it as soon as possible.
(M) Install the picture tube mounting assemblies on the picture tube in the following manner, using two \#10 $\times 1-1 / 2^{\prime \prime}$ sheet metal screws: Position the assemblies so the bracket holes line up with the holes in the picture tube mask. Push the brackets down against the mask, then tighten the two screws just enough to hold the assemblies in place.

Refer to Pictorial 2-15 (fold-out from Page 52) and Detail 2-15A for the following steps.
($)$ Position the bottom picture tube shield as shown. Then install four $1 / 4-20$ self-retaining nuts on this shield as shown in the inset drawing on Detail 2-15A.
() Refer to the inset drawing on Pictorial 2-15 and use a screwdriver to bend the tab on the bottom picture tube shield as shown. Slip a $1-1 / 2^{\prime \prime}$ length of $1 / 4^{\prime \prime}$ clear sleeving on this tab.

Fasten the wide flange of this shield to the bottom side of the picture tube mask with three $10-24 \times 1 / 2^{\prime \prime}$ self-tapping screws and three \#10 lockwashers. NOTE: It may be easier to install these screws if the lockwasher is placed on each screw before installing it.
$(\triangle$ Locate the left picture tube shield. This shield has four holes in the narrow flange and $a \operatorname{tab}$ in the large section.

Mount the left picture tube shield on the picture tube mask with two $10-24 \times 1 / 2^{\prime \prime}$ self-tapping screws and two \#10 lockwashers. Position the bottom end of the left shield inside the flange on the bottom shield.

Fasten the bottom shield to the left shield with three \#6 x $3 / 8^{\prime \prime}$ sheet metal screws.

Mount the right picture tube shield on the picture tube mask. Use two $10-24 \times 1 / 2^{\prime \prime}$ self-tapping screws, with the solder lug that is connected to the brown wire under the screw at AE, and with a \#10 lockwasher under the other screw. Position the bottom end of the right shield inside the flange on the bottom shield.
(1) Fast with three \#6 x $3 / 8^{\prime \prime}$ sheet metal screws.
(x) Cut off the guide pin at the top side of the picture tube mask, as shown in Detail 2-15A.

Bend the two tabs on the top picture tube shield toward the middle of the shield as shown in Pictorial 2-15. Slip a 1-1/2' length of $1 / 4^{\prime \prime}$ clear sleeving on each tab. There should be a $1 / 2^{\prime \prime}$ space between the ends of these tabs to install the degaussing coil in a later step.
$(\checkmark$ Mount the top picture tube shield on the picture tube mask with three $10-24 \times 1 / 2^{\prime \prime}$ self-tapping screws and three \#10 lockwashers. Position the flange at the ends of the top shield on the outside of the left and right shields.
(F Fästen the top shield to the left and right shields with \#6 x $3 / 8^{\prime \prime}$ sheet metal screws.

Refer to Pictorial 2-15 for the following steps.
NOTE: When soldering the connectors to the leads in the following steps, do not allow the solder to flow in the connector grooves.
(V) Refer to Detail 2-15B and slip a $3 / 4^{\prime \prime}$ length of $1 / 4^{\prime \prime}$ clear sleeving onto one lead of the automatic degaussing coil (\#40-744). Install a terminal strip connector on this lead (S-1), and bend the lugs down. Then push the sleeving over the connector.

Detail 2-15B
(1) Similarly, slip a $3 / 4^{\prime \prime}$ length of $1 / 4^{\prime \prime}$ clear sleeving onto the other lead of the automatic degaussing coil. Install a terminal strip connector ($\mathrm{S}-1$), bend the lugs down, and push the sleeving over the connector.
($\sqrt{ }$ Install the automatic degaussing coil in the following manner: At a location $21^{\prime \prime}$ from the two free leads, hook the coil on the tab at arrow \#1. Then follow the numbered arrows and hook the coil on the other tabs. Position the coil over the brackets at the four corners of the picture tube and in front of the two screws holding the mounting assemblies on the picture tube. NOTE: The coil should touch the picture tube at the approximate areas shown in Pictorial 2-15.
 with two \#6 x $3 / 8^{\prime \prime}$ sheet metal screws.
($)$ Start \#6 x 3/8" sheet metal screws into the four holes near the bottom side of the left picture tube shield, as shown.
\leadsto Refer to Detail 2-16A and install four yoke mount rubber bumpers on the yoke mount. Push each rubber bumper into the slot until it locks in place.

(レ) Install the yoke half-shell on the deflection yoke (\#58-7) with two \#8 x 7/8" sheet metal screws as shown in Detail 2-16B. Tighten each screw an equal amount. Make sure the screw at A does not touch the lead of the thermistor which is connected to the yoke. Refer to the inset drawing on Detail 2-16B.
Refer to Detail 2-16C and Pictorial 2-16 for the following steps.

Install the deflection yoke on the neck of the picture tube. Position the yoke with its cable as shown.
(1) Refer to the inset drawing on Detail 2-16C and insert the plastic lever in the hole on the side of the deflection yoke. Then, while holding this lever in place, slip the yoke mount down over the deflection yoke.
() Fasten the yoke mount to the deflection yoke with an $8-32 \times 1 / 2^{\prime \prime}$ wing-head screw and a yoke positioning clamp at each of the three locations shown on the Detail.
($)$ Install an $8-32 \times 5 / 8^{\prime \prime}$ screw through the yoke mount and into the plastic lever. Tighten this screw so it just touches the yoke half-shell and the lever is tight against the yoke mount. See inset drawing \#1 on Pictorial 2-16.
(\checkmark) Install the pole piece holder into the yoke mount as follows: Position the pole piece holder with its cutouts over the three tabs on the yoke mount; then push the pole piece holder into the yoke mount until it snaps in place.

Detail 2-16C
M Refer to inset drawing \#2 on Pictorial 2-16 and position the yoke assembly with its long cutout in line with the 2nd anode socket of the picture tube. This long cutout is located between two holes in the yoke mount.
(V) Fasten the yoke assembly on the picture tube neck with a yoke mounting clamp and a \#8 x $7 / 8^{\prime \prime}$ sheet metal screw. Be sure to position the yoke assembly correctly and tighten the screw just enough to hold the assembly in place.

CHASSIS, SHIELD, AND BRACKET ASSEMBLY

Refer to Pictorial 2-17 (fold-out from Page 63) for the following steps.
(V) Position the picture tube and shield assembly with the bottom of the shield on your work surface as shown.

Refer to Detail 2-17A and mount a half hinge with pin (\#265-10) at each of the two locations shown on the picture tube shield. Use $6-32 \times 3 / 8^{\prime \prime}$ hardware.

(L) Mount a half hinge with 2 holes (\#265-11) at each location shown on the chassis. Use $6-32 \times 3 / 8^{\prime \prime}$ hardware. Position the half hinges as shown in the Detail.

NOTE: Be careful not to bump the neck of the picture tube while handling the chassis in the following step.
(M) Line up the half hinges on the chassis with the half hinges on the picture tube shield; then hang the chassis on the picture tube shield as shown.
() Bend up the tab on the left picture tube shield as shown in Pictorial 2-17. Slip a $1-1 / 2^{\prime \prime}$ length of $1 / 4^{\prime \prime}$ clear sleeving on this tab.

Refer to Detail 2-17B and Pictorial 2-17 for the following steps.
M Connect a 4-1/2" brown wire from lug 3 of control CF (S-1) to tab CK (NS) on the convergence bracket assembly.
(T Connect a $470 \mathrm{~K} \Omega$ (yellow-violet-yellow) resistor from lug 3 of control CJ (S-1) to tab CK (S-2).
(V) Locate BO\#12 of the wiring harness. There are no coaxial cables at this breakout.

Connect the wires coming from BO\#12 to the controls on the convergence bracket in the following steps:
(L) White-red to lug 1 of control CD (S-1).
$($ White-blue to lug 2 of control CD (S-1).
(L) Gray to lug 1 of control CE (S-1).
()) Blue to lug 2 of control CE (S-1).
(- Black to lug 2 of control CF (S-1).
() White-green to lug 1 of control CG (S-1).
(White-yellow to lug 2 of control CG (S-1).
(レ) Two white-orange wires to lug 3 of control CG (S-2).
(レ) Orange to lug 2 of control $\mathrm{CH}(\mathrm{S}-1)$.
(L) White to lug 3 of control $\mathrm{CH}(\mathrm{S}-1)$.

儿 Red to lug 1 of control CJ (S-1).
(1) Green to lug 2 of control CJ (S-1).
(L)Slip a $1 / 4^{\prime \prime}$ cable clamp over the wiring harness and mount the clamp at CB with $6-32 \times 3 / 8^{\prime \prime}$ hardware.

This completes the wiring of the convergence bracket assembly.
(+ Refer to Pictorial 2-17 and hang the convergence bracket on the picture tube shield using the two screws near the top of the shield; then tighten the screws.

Detail 2－17C

Refer to Detail 2－17C for the following steps．
Connect the wires coming from BO\＃13 to the locations called out on the tuner bracket in the following steps：
（ K White－blue－blue to lug 2 of control FG（S－1）．
White－black to lug 3 of control FG（S－2）．
（ $)$ Large black to lug 2 of terminal strip FE （S－3）．
（V）White－orange to lug 1 of terminal strip FE （S－2）．
() White－violet to lug 3 of control FP（S－2）．
（V）Black to lug 2 of control FP（S－2）．
（T）Center conductor of violet coaxial cable to lug 2 of control FN（S－1）．
（ $)$ Shield of violet coaxial cable to lug 1 of control FN（S－3）．
（以）Yellow to lug 2 of control FK（S－1）．
（レ）Brown to lug 2 of terminal strip FS（S－3）．
（以）Blue to lug 3 of the VHF tuner（S－2）．
(V) White－brown to lug 1 of the VHF tuner（S－1）．
Refer to Detail 2－17D for the following steps．
Connect the coaxial cables coming from BO\＃13 in the following steps．

NOTE：When soldering the shield lead on each of these cables，clamp a pair of long－nosed pliers on the shield as shown in inset drawing \＃1 on Detail 2－17D．The pliers will act as a heat sink and prevent the insulation on the inner leadfrom melting．
（V）Inner lead of white coaxial cable to lug 2 （ $\mathrm{S}-1$ ）and the shield to lug 3 （ $\mathrm{S}-1$ ）of con－ trol FD．

(N) Imper lead of black coaviai cabie to lug 2
 ! 5.

Inner lead of rea coaxial cable to lug 3 (S-1) and the shield to lug $1(\mathrm{~S}-2)$ of control FJ .
(\checkmark) Inner lead of green coaxial cable to lug 3 (NS) and the shield to lug 1 (NS) of control FL.

Connect the free end of the 2 -wire shielded cable to control FL in the next three steps:
(V) Green wire to lug $3(\mathrm{~S}-3)$.
(Y) Yellow wire to lug 2 (S-1).
(f) Shield to lug 1 (S-2).
$1+$ Remove the shiela cap from control FL. Then cominect either wire of the twisted pair of black wires to lug 5 (S-1) and the other wire to lug $6(\mathrm{~S}-1)$ of control FL.
(4Reinstall the shield cap on control FL, and position the twisted pair in the cutout on the side of the shield cap. See inset drawing \#2 on Detail 2-17D.
(\triangle) Solder the bottom edge of the shield cap to the control as shown in the inset drawing on Detail 2-17D.
(4 Slip a $1 / 2^{\prime \prime}$ cable clamp over the wiring harness, twisted pair, and 2 -wire shielded cable. Mount the clamp at FH with 6-32 x 3/8' hardware.
(い
Plug the octal plug that is on a cable connected to the convergence bracket, in the convergence socket of the chassis. This socket is located near the sound-sync circuit board.
\Vdash At the free end of the coaxial cable connected to the IF circuit board, plug the phono plug in socket FT of the VHF tuner.

Refer to Pictorial 2-18 (fold-out from Page 63) for the following steps.
() Install a \#6 solder lug with $6-32 \times 3 / 8^{\prime \prime}$ hardware near the lugs marked VHF on the antenna (4-lug screw type) terminal strip. Refer to Detail 2-18A and position the solder lug as shown.

Detail 2-18A
$(\sqrt{ })$ Prepare the $36^{\prime \prime}$ length of 300Ω twin lead by completing the five steps in Detail 2-18B.

Page 63

At the other end of the twin lead, connec
one lead to lug $1(\mathrm{~S}-1)$ and the other
lead to one to lug $2(\mathrm{~S}-1)$ of the UHF tuner
(W) Refer to Detail ${ }^{2-18 \mathrm{C}}$ and prepare two $36^{\prime \prime}$ ensths of 75Ω coaxial cable. Be sure to
use the cable that is marked 75 ohm,
($\sqrt{ }$ At one end of a prepared length of 75Ω coaxial cable, connect the inner lead to lug
3 ($\mathrm{S}-1$) and the shield to the solder lug (NS) of the antenna terminal stri

At the other end of this shielded cable,
connect the inner lead to lug $4(S-1)$ and
the shield the shield to solder lug FR (NS) of the VHF
($\Downarrow_{75}^{\text {At one end of the other prepared length of }}$ to lug 4 (S-1) and the connect the inner lead
(S

4 At the other end of this shielded cable, connect the inner lead to lug $5(\mathrm{~S}-1)$ and
the shield to solder lug FR (S-2) of the VHF tuner
(4) Refer to Pictorial 2-17 (fold-out from this
page) and hang the tuner bracket on the two screws near the bottom of the picture tube screws near the bottom of the pi.
shield. Then tighten the screws.
(け Read, sign, and date the FCC certification label. Remove the protective backing and
press the label into position on the picture be shield, See Pictorial $2-17$.
Refer to Pictorial $2-17$ and install the
blue and white label on the chassis (hear the horizontal output assembly) as follows: Carefully peel away athe backing paper and ress the label into position. NoTE: The Model Number and Production Series Num-
ber of your kit is shown on this label. Refer or these numbers in any communications
with the Heath Company.

If an ohmmeter is available, it is suggested
that the following resistance check be made to insure against a possible short circuit. If the

 OUT THE INER LEAO.
remove the inner nnsulation and stretch out

resistance measurement does not check cor meter test leads ($)$ Connect the ohmmeter leads between the chassis and ohm lug 1 of the large 5 -lug terminal strip, BL. (Refer to Pictorial 2-8
fold-out from Page 41 to identify the terminal strip.) The ohmmeter should indicate a reading of about $20 \mathrm{~K} \Omega$ after the meter point-
er stops moving, A lower reading indicates er stops moving. A lower reading indicates
a short circuit, a wiring error, or a faulty
a component. If the ohmmeter indicates a
lower reading, check the installation of the lower reading, check the installation of the
silicon diodes. Also check the wiring of terminal strip. BL, and capacitors K, N, and
P. Do not turn the TV Set on until the difi P. Do not turn the TV Set on until the diffi-
culty is corrected

PIOTORIAL 2-17

PICTORIAL 2-18

Refer to Pictorial 2-19 for the following steps
The following degaussing process is used to re
move stray magnetism from the picture tube and move stray magnetism from the picture tube and
the metal objects around it. Even the very
weakest magnetic field can cause distortion in the form of impure colors. The parts that mus
be degaussed (demagnetized) in your Color TV ee degaussed (demagnetized) in your Color TV
Set are the picture tube, the picture tube shield Set are the picture tube, the picture tube shield
the chassis, the convergence bracket, and the
tuner bracket. tuner bracket.
 wisulation from the ends of the two coil and connect a large all:gator clip to the
other wire $(\mathrm{S}-1)$ of the degaussing coill
Connect the degaussing coil lead with the Connect the degausing coil lead with the
spade lug to terminal Gof terminal strip
BI BJ as show in Detaii $2-19 \mathrm{~B}$. Tighten the
screw at terminal G to hold the spade lug crew at terminal G to hold the spade lu
in place. CAUTION: Be sure the screw is tightened securely. on the spade lugew if it
were loose, the spade lug could twist toone were loose, the spade lug could twist to on
side and touch the terminal strip mounting screw. This would burn out the power trans former.
Clip the degaussing coil lead with the alli-
gator clip to the chassis in the corner of gator clip to the chassis in the
he large chassis cutout as shown
CAUTION: When the TV Set is placed in operatio
in the following steps, B+ voltage will be presen at various points on the bottom side of the chas sis. Do not touch any of the chassis components during the degaussing process.

ictorial

NOTE: The degaussing coil will vibrate when power is applied, and will also tend to get warm if left turned on for too long a period of time. The entire degaussing process should take no longer than one or two minutes. When performing the degaussing process, the coil should be moved with small circular motions near the objects being degaussed. The coil should be kept parallel to, and at a distance of about one to two inches from the objects being degaussed. When you have completed the degaussing process, move the coil away from the TV Set as far as the leads will permit before turning the power off.

Detail 2-19B
WARNING: Do not place the degaussing coil near the pole piece assemblies while power is applied to the coil. These pole piece assemblies have not been installed yet. To identify these assemblies, refer to item \#116 on the Chassis Parts Pictorial (fold-out from Page 20).
(V) Position the chassis as shown in drawing \#1 of Pictorial $2-19$, so the bottom side of the chassis and the inside of the picture tube shield can be degaussed first.
Check to be sure the TV Set is turned off by pushing in on the VOLUME control shaft. See Pictorial 2-21 on Page 68.
() Plug the line cord from the TV Set into a standard 110 volt AC outlet.

NOTE: It will not be necessary to connect the free bared ends of the wires coming from the convergence bracket before degaussing the TV Set.
(ル) Turn the TV Set on by pulling out on the shaft of the VOLUME control.

1 Move the degaussing coil in a circular motion near the bottom side of the chassis, and around the inside of the picture tube shield, as shown in drawing \#1 of the Pictorial.
()Similarly, degauss the top side of the chassis, the outside of the picture tube shield, the two brackets, and the picture tube face as shown in drawings \#2 and \#3.
(L) Move the degaussing coil as far away as possible from the TV Set; then turn the TV Set off by pushing in on the VOLUME control shaft.
$(\rightarrow$ Unplug the line cord and disconnect the degaussing coil leads from the chassis and terminal strip.
(2) Prepare a filament fuse by removing all of the insulation from a $1-3 / 4^{\prime \prime}$ green wire. Connect this fuse wire between lugs A and G of terminal strip BJ, as shown in Detail 2-19C. Form this fuse into a loop and be sure it does not touch the chassis.

Detail 2-19C

FINAL ASSEMBLY AND WIRING

CAUTION: Before proceeding, check to be sure you have connected the ground wire and coil spring between the brackets at the lower left and upper right corners of the picture tube. Also, be sure the picture tube shield is connected with a short wire to the bracket on the upper right corner of the picture tube. If necessary, refer to Pictorial 2-15 (fold-out from Page 52) to check these connections. If the outside of the picture tube and the picture tube shield are not properly connected to chassis ground, you may receive a severe electrical shock while operating the TV Set.
Refer to Pictorial 2-20 (fold-out from Page 77) for the following steps.
() Clip one of the automatic degaussing coil leads on lug 1 and the other lead on lug 3 of terminal strip BK. Note that lug 2 of this large 3 -lug terminal strip was bent down previously.
$(\sqrt{ })$ Connect the high voltage lead from the horizontal output assembly to the 2nd anode socket of the picture tube. Be sure both clips are inside the hole as shown in the inset drawing on the Pictorial, and be sure the anode connector is turned as shown.
(V) Insert the free end of the yoke cable through the large chassis cutout and insert the octal plug in the socket marked YOKE. Refer to the lettering on the cover of the horizontal output assembly for the location of this socket.
() Fasten the right side of the chassis to the picture tube shield with three $6-32 \times 5 / 8^{\prime \prime}$ bronze screws. Be careful not to pinch any wires or cables between the bottom and right-hand sides of the chassis and the shield.
(Locate the three pole piece assemblies (\#58-6). WARNING: When installing the pole piece assemblies in the next step, do not push on the adjustment knobs, as they can be broken very easily. See Detail $2-20 A$. Refer to Detail 2-20A and install each of the three pole piece assemblies as follows: Insert the end of the pole piece assembly with lugs into the pole piece holder next to the picture tube neck; then push the assembly in until the clip snaps in place. Be sure each pole piece assembly is touching the neck of the picture tube.

Refer to Detail 2-20B for the following steps. $(\sqrt{ }$ Check the position of the yoke mounting clamp and screw, to be sure the screw does not touch the lugs of the pole piece assemblies. If necessary, loosen this screw and reposition the yoke mounting clamp.

Connect the free end of the 12 -wire cable assembly coming from the convergence bracket, to the pole piece assemblies in the following steps. NOTE: Pole piece assembly AG is located at the top, and pole piece assemblies AF and AH are at the left and right sides of the pole piece holder.

NOTE: Prepare each wire before connecting it to a lug. Twist the wire strands together and melt a small amount of solder on the bared end. (Y) Yellow-green to lug 1 of pole piece assembly AF (S-1).
(1) Green to lug 2 of pole piece assembly AF (S-1).
(6) White-green to lug 3 of pole piece assembly AF (S-1).
() Gray-green to lug 4 of pole piece assembly AF (S-1).
$(\sqrt{ })$ Yellow-blue to lug 1 of pole piece assembly AG (S-1).
(() Blue to lug 2 of pole piece assembly AG (S-1).
() White-blue to lug 3 of pole piece assembly AG (S-1).
$(\sqrt{ })$ Orange-blue to lug 4 of pole piece assembly AG (S-1).
(\checkmark) Yellow-red to lug 1 of pole piece assembly AH (S-1).
(V) Red to lug 2 of pole piece assembly AH (S-1). $(\sqrt{ })$ White-red to lug 3 of pole piece assembly AH (S-1).
($)$ Black-red to lug 4 of pole piece assembly AH (S-1).
() Remove the plastic pin protector from the base of the picture tube.
() Refer to Detail 2-20C and install the blue lateral and purity assembly (\#100-582) on the neck of the picture tube. Position this assembly as follows: Position the blue lateral adjustment knob and two of the purity ring tabs at the top; position the purity rings $2^{\prime \prime}$ from the end of the picture tube base as shown. Tighten the clamp screw to hold the assembly in place.
CAUTION: The area of the blue lateral magnet assembly that contacts the neck of the picture tube is coated with a heat-sensitive adhesive. If you have to remove the blue lateral assembly for any reason after the TV Set has been in operation for some time, you can twist the assembly to break the adhesive contact. Do not pry the assembly from the neck of the picture tube as this could break the glass and destroy the tube.

Detail 2-20C
$(\sqrt{ })$ Push the picture tube socket on the base of the picture tube until it is against the base of the tube. NOTE: Be sure the socket is pushed tightly against the base of the tube.
(し) Refer to Detail 2-20D and prepare the ends of the 4 foot length of shielded cable. At the end of this shielded cable with the $3 / 4^{\prime \prime}$ bared inner lead, install a phono plug as shown.

Detail 2-20E
(レ) Refer to Detail 2-20E and connect the other end of this cable to the speaker as follows: Connect the inner lead to the bottom lug near the red dot (S-1) and the shield to the other bottom lug (S-1). NOTE: The red dot may be located at either end of the speaker terminal strip.

NOTE: It is suggested that you punch a few holes in one side of the speaker shipping box. Then reinsert the speaker in the box to protect it during the Initial Test and Adjustment of the TV Set. Also, if you plan to use the Hi-Fi output of the TV Set, it will be necessary to prepare a shielded cable long enough to reach from this output to the input of your hi-fi amplifier. An extra phono plug is supplied for use on this cable.
(\&) Plug the phono plug of the speaker cable into the SPEAKER socket. Locate this socket by referring to the lettering on the horizontal output assembly cover.

Refer to Pictorial 2-21 and install the knobs on the tuner bracket in the following steps:

M VHF fine tuning and VHF channel selector knobs on the VHF tuner shaft.

PICTORIAL 2-21
() UHF channel indicator and UHF tuning knobs on the UHF tuner shaft.
(L) Two thumbwheel knobs on the HORIZONTAL and VERTICAL HOLD control shafts.
(V) A front panel knob on each of the five remaining control shafts.

Save the left-over hardware as it will be used later to install your TV Set.

CAUTION: It will be easier if another person helps you handle the TV Set if you plan to move it to another location for test and adjustment. Use extreme care and be careful not to bump the neck of the picture tube while handling the TV Set.

NORMAL OPERATING CHARACTERISTICS

This section of the Manual explains the normal operating characteristics of your Color TV Set. Since you are observing the operation of your TV Set out of its cabinet, and youare concerned with its operation, the following conditions may appear to be difficulties. However, these operating conditions are normal for most color television receivers.

LOUD HUM AND BUZZ FROM SPEAKER DURING WARMUP

The loud hum and buzz from the speaker during warmup of the TV Set is normal for the first 30 to 60 seconds. The tubes in various circuits of the TV Set warm up at a different rate. Some of these circuits produce hum and buzz until they receive a signal from circuits that warmupat a slower rate.

LOUD BUZZ IN SOUND DURING INTENSE COLOR OR ONE COLOR SIGNAL

An intense color signal or a signal of predominantly one color is usually stronger than the average signal for which the AGC control has been set. Therefore, when these occasional strong signals are received, the AGC is overdriven, causing the buzz. This condition usually exists on commercials or program titles. The buzz will disappear as soon as the commercial or title is over.

SNA PPING NOISE

An occasional snapping (arcing) may be heard during the first two weeks of operation. This arcing, which occurs between the elements of the color picture tube, is normal during the initial aging of the picture tube.

TRAILING EDGES OR GHOSTS ON LETTERS OR TITLES

Trailing edges or ghosts on letters or titles is a television signal transmission problem and is not a fault of the TV Set. This is indicated by noticing that this condition will appear only on some channels and not on other channels.

VERTICAL LINES

You may notice faint vertical lines on the extreme left-hand edge of the picture. This is a normal characteristic which cannot be totally eliminated in TV Sets. However, this characteristic has been minimized through careful circuit design.

NORMAL TRANSFORMER OPERA TION

Power

The power transformer normally feels quite hot to the touch. This condition is caused by the normal heating of the transformer itself and by the heat radiated by tubes in the Set. This was taken into consideration in the transformer design.

High Voltage

A small quantity of wax may melt from high voltage transformer T701. This is caused by the high operating temperatures in this area. This condition has been taken into consideration in the design of the transformer.

Vertical Output Transformer

The vertical output transformer normally will buzz. This is caused by the physical makeup of the transformer and the frequency at which its circuitry operates.

INITIAL TEST AND ADJUSTMENTS

INITIAL TEST

The locations of all necessary adjustments are shown in Figure 1-1 (fold-out from Page 77). This Figure is divided into two sections: a rear view of the chassis and a front view of the chassis.

Refer to Figure 1-1 for the following steps.
() Set all front controls except the UHF and VHF CHANNEL SELECTORS as follows:

BRIGHTNESS - Center of rotation. TINT - Center of rotation. CONTRAST - Center of rotation. VOLUME - Off (pushed in). HORIZONTAL HOLD - Center of rotation. VERTICAL HOLD - Center of rotation. $/ \checkmark$ Connect the lead-in wire or wires from your COLOR - Fully counterclockwise. VERTICAL LINEARITY - Fully counterclockwise. HEIGHT - Fully counterclockwise. AGC - Center of rotation. ${ }^{2}$ COLOR KILLER - Center of rotation, \checkmark WARNING: Extremely high voltage (24,000 volts) SYNC - Center of rotation, \checkmark DOTS - Center of rotation.
(Set all the controls on the convergence circuit board (but not the coils) to the center of their range.
() Set the rear chassis controls and switches as follows:

NORMAL-SERVICE - NORMAL
KINE-BIAS - Position 3.

BLUE DRIVE - Center of rotation. GREEN DRIVE - Center of rotation. BLUE SCREEN- Center of rotation. ${ }^{2}$ GREEN SCREEN - Center of rotation. ${ }^{2}$ RED SCREEN - Center of rotation. TOP-BOTTOM PINCUSHION - Center of rotation.
DOTS-NORMAL - NORMAL.

Be sure the speaker is connected to the SPEAKER socket.
is present in the horizontal output assembly and at the high voltage anode of the picture tube. A very high voltage is also present at the cap on the top of horizontal output tube V701. Extreme care should be taken to make sure that you do not touch any of these parts while the TV Set is in operation. A safe rule to remember when you work around any high voltage is to use only one hand to work on a circuit and keep the other hand behind you. This helps prevent your body from becoming part of an electrical circuit by being connected from the high voltage to ground.

Figure 1-2
The capacitance between the inner and outer conductive coatings of the picture tube allows a high voltage charge to be stored at the high voltage anode. Be sure to discharge the picture tube as shown in Figure 1-2 before disconnecting the high voltage anode connector.
(1) Plug the line cord into a standard AC outlet.

PRELIMINARY

(L) Turn the CHANNEL SELECTOR to your strongest local station. Use the FINE TUNING and the other front panel controls to tune in the best possible black and white picture. Make sure the COLOR control is turned fully counterclockwise. (Refer to Figure 2-3 fold-out from Page 82 for information on how to operate the controls of the TV Set.) Do not tune in a color broadcast. When possible, a test pattern should be tuned in since the following adjustments are much easier to make with a test pattern. Generally test patterns are available for a short time in the morning when the TV station first comes on the air. Do not be concerned if some

NOTE: Three images, one of each color, will probably appear when the TV Set is first turned on and tuned to a station in the next step. This condition, which is shown in Figure 1-3 (foldout from Page 81), will be remedied during this adjustment procedure.

If any sign of malfunctioning appears in the following step, turn the TV Set off and refer to the In Case Of Difficulty section on Page 96. Prolonged operation of a malfunctioning set could result in damaged tubes or components. For example: no light on the picture tube may be caused by a lack of high voltage. In this case, tube V203 (6EJ7) should be removed until light appears on the screen again. (A malfunctioning high voltage circuit causes no AGC to be produced, and no AGC allows tube V203 to overload and draw excessive current. Refer to the Circuit Description on Pages 155 and 156).

NOTE: An occasional snapping (arcing) may be heard when the TV Set is first turned on. This arcing occurs between the elements of the color picture tube during its initial aging process.
(ケTurn the TV Set on by pulling outward on the VOLUME control. After a few moments light should appear on the face of the picture tube and sound should be heard from the speaker. If a picture and sound can be tuned in, proceed with the following steps, even if the picture does not have the correct color and size. In case you have no picture at all, check the settings of the BRIGHTNESS, AGC, HORIZONTAL HOLD, and VERTICAL HOLD controls.

ADJUSTMENTS

colors appear in the picture since the color circuits have not been adjusted yet.
(v) Turn the AGC control clockwise until the picture tears and/or a loud buzz is heard in the sound. Now turn the AGC control counterclockwise just enough for the tearing and buzz to disappear, or until the contrast control gives sufficient contrast when it is in the upper third of its rotation.
NOTE: If the sound is noisy or distorted when the FINE TUNING control is adjusted for the best picture, it may be necessary to adjust the quadrature coil L209, the IF plate coil L208, and the sound take-off coil L207. Refer to Sound IF And Detector Alignment Without Instruments on Page 122.

In some of the following steps, adjustments must be made at the rear of the TV Set while you watch the picture. It is often easier to make these adjustments if a large mirror is placed in front of the TV Set. Place the mirror so the picture can be easily seen while you work at the rear of the Set.

Figure 1-4
(4) If the picture is tilted, straighten it by rotating the yoke mount slightly. Do not rotate the pole piece holder. See Figures 1-4 and 1-5.

Figure 1-5
NOTE: Keep the picture locked in with the VERTICAL HOLD control while making the following adjustments for the correct height and linearity of the picture.
(2) Adjust the HEIGHT and the VERTICAL LINEARITY controls so there is approximately $1 / 2^{\prime \prime}$ of black space at the top and bottom of the picture. This size can only be obtained by compromising between the two adjustments; first adjust one control a small amount, then adjust the other. The HEIGHT adjustment primarily adjusts the bottom of the picture; the VERTICAL LINEARITY primarily adjusts the top of the picture. See Figures 1-6A, 1-6B, and 1-6C (Page 74).

VERTICAL LINEARITY control too far counterclockwise; HEIGHT control too far clockwise.

Figure 1-6A

VERTICAL LINEARITY and HEIGHT controls too far counterclockwise.

Figure 1-6B

VERTICAL LINEARITY and HEIGHT controls are adjusted properly.

Figure 1-6C
NOTE: In another method that can be used to adjust height and vertical linearity, the VER_ TICAL HOLD control is adjusted so the picture rolls slowly downward. The controls are then adjusted so that the black bar that moves down the screen stays the same height (or thickness) all the way down the screen.
(U) Now adjust the HEIGHT and VERTICAL LINEARITY controls to fill out the picture. When these controls are adjusted correctly, the top of the picture should seem to be about $1 / 2^{\prime \prime}$ beyond the top of the picture tube; the bottom of the picture should seem to be approximately $1 / 2^{\prime \prime}$ beyond the bottom of the picture tube.

The WIDTH coil L807, has been preset at the factory. If the picture has the proper width as shown in Figure 1-8C, then coil L807 should not be readjusted, If the picture has insufficient or excessive width as shown in Figures 1-7 and 1-8, adjust coil L807 as follows:

() If the picture has insufficient width, turn the adjustment screw of coil L807 counterclockwise; or if the picture has excessive width, turn the adjustment screw of coil L807 clockwise until the picture width is proper. Use a screwdriver with a thin blade to adjust this coil.

Figure 1-9B
（．）Turn the CHANNEL SELECTOR to the weakest channel and adjust the FINE TUN－ ING for the best picture．Now adjust the SYNC control for the most stable，most solidly locked－in picture．See Figures 1－9A and 1－9B．

NOTE：The SYNC control will have the most
effect in weak signal areas where there is strong electrical interference such as igni－ tion noise，etc．The normal setting of this control is approximately $1 / 4$ turn from the maximum counterclockwise position．If you are in a strong，noise－free signal area，the control will have little effect and should be set to this position．

DC CONVERGENCE ADJUSTMENTS

Color dots from the dot generator circuits in this TV Set（these dots are oblong in shape）are placed on the screen for the following adjust－ ments．The purpose of these adjustments is to converge the red，blue，and green dots together to make white dots in the center area of the screen．

Figure 1－10A

Figure 1－10B

NOTE：The DC convergence adjustments only converge the dots in the center area of the pic－ ture tube．See Figure 1－10A．Do not try to con－ verge the dots in other areas at this time．Refer to Figure $1-10 \mathrm{~B}$ to see which way each dot will move on the screen when you adjust the DC convergence magnets．
（T）Tune in a strong station transmitting a black and white picture，or if only color programs are available，tune in a color program and turn the COLOR control to the full counter－ clockwise position．
（LPlace the DOTS－NORMAL switch in the DOTS position．Note that the brightness of the dots may vary from time to time．These changes in brightness are caused by changes in light level in the TV program you are tuned to，which controls most of the circuits in the TV Set，even though dots are seen on the screen．
Keep the BRIGHTNESS control at a relatively low level when dot patterns are being used； this will keep the dots smaller in size and sharper，making them easier to work with． If the brightness level is too high a smear may appear between some rows of dots．
（T）Turn the DOTS control（see Figure 1－1 fold－out from Page 77）to obtain between 8 and 15 horizontal rows of dots，as shown in Figure 1－11（fold－out from Page 81）．Use this same adjustment to stop the dots if they should start to move or vibrate．
（）Turn the adjustment slug in coil L405 with the alignment tool to the point where the dots are sharpest and clearest on the screen． WARNING：Note the three upright resistors （marked BLUE TEST POINT，GREEN TEST POINT，and RED TEST POINT in Figure 1－1） at the right end of the color circuit board．Do not touch the chassis and the free ends of these resistors at the same time，since a high DC voltage is present at these three points．

These three test points are used several times to turn off the red, blue, and green guns of the picture tube. This is done by connecting one of the shorting clips to the free end of one of the resistors. Be sure to hold only the rubber insulator while connecting the shorting clips.
(以) Turn off the blue gun by connecting one of the shorting clips to the BLUE TEST POINT.
(V) Merge the green and red dots at the center of the picture tube to make yellow dots. See Figure 1-11 (fold-out from Page 81). Do this by turning the adjustment knobs of the red and green DC convergence magnets until you find the correct positions. It may be easier to merge the two colors if you move each dot back and forth first, as far as it will go, to see where it will travel to. See Figure 1-10B which shows the movement of each dot.
() Remove the shorting clip from the BLUE TEST POINT.
() Merge the blue dots with the yellow dots at the center of the picture tube by turning the blue DC convergence magnet and the shaft of the blue lateral magnet. See Figures 1-12 and 1-13 (fold-out from Page 81). When this is completed, you should have pure white dots at the center of the picture tube screen. Readjust the red or green dots slightly, if a red or green line appears at one edge of the

GRAY SCALE

The purpose of the adjustments in this section is to remove any predominant color shade that appears in the black and white picture.
() Put the NORMAL-SERVICE switch in the SERVICE position.
($)$ Turn each of the following controls fully counterclockwise: BLUE SCREEN, GREEN SCREEN, RED SCREEN. The CRT screen should now be completely dark.

NOTE: If lines do not appear when you adjust any one of the three SCREEN controls in the next two steps, place the KINE-BIAS switch in position \#2 or \#1. Leave the KINE-BIAS switch in the highest numbered position that permits proper adjustment of all three SCREEN controls.

white dots. NOTE: Some red may show around the edges of the dots. This is due to the red dots being normally slightly larger than the blue and green dots.
(H) Place the DOTS-NORMAL switch back in the NORMAL position and tune in a black and white broadcast.
(- Adjust FOCUS coil L704 for the sharpest separation between the trace lines in the center of the picture as shown in Figure 1-14. You will find that you have to get quite close to the picture tube to see these individual lines and to judge when they are most sharply defined.

ADJUSTMENTS

(L) Turn the RED SCREEN control up until a red line appears: then turn the control back to that point where this line just disappears.
(し) Kepeat the previous step with the GREEN SCREEN and BLUE SCREEN controls.
$6+$ Put the NORMAL-SERVICE switch back in the NORMAL position.
(1) Alternately adjust the GREEN DRIVE and BLUE DRIVE controls until the shade of the picture is black and white in both the highlight and in the dimly lit areas of the picture. Some discoloring will still be seen at the top, bottom, and sides of the picture. Usually, the final settings of these controls will be approximately three-fourths of the way up from the fully counterclockwise position.

IMPORTANT: If, at this time, there is no pre-
dominant color shade in the black and white picture, disregard the following steps and pro-
ceed to the Purity Adjustments. If the screen still appears slightly purple or yellow, it will be
necessary to complete the following steps.

To obtain proper gray scale adjustment and maximum response from your particular picture
tube, proceed as follows: If the screen appears tube, proceed as follows. If the screen appears
slightly purple, complete steps $1 \frac{1}{2}$ and 3 . fit the screen appears slightly yellow, complete steps
2 and 3 .
Refer to Pictorial 2-11 (fold-out from Page 47) for the following steps.

1. If the screen appears purple, inter-
change the yellow-red lead connected to

$$
\begin{aligned}
& \text { change the yellow-red lead connected to } \\
& \text { lug } 1 \text { of terminal strip } B Z \text { and the yel- }
\end{aligned}
$$

low-green
control F.
() If the screen appears yellow, change the yellow-red lead connected to
lug 1 of terminal strip $B Z$ and the yellow-blue lead connected to lug 2 of
control G.
() Now repeat the last step in the ribl Now repeat the last step in the right-
hand column on Page 76, under Gray
Scale Adjustments. NOTE: If the wires hand column on Page 76, under Gray
Scale Adjustments. NoTE: fit the wires
in Step $\# 1$ were interchanged, the in Step \#1 were interchanged, the
GREEN drive knob will not correspond GREEN drive knob will not correspond
to the color chane on the scren. If the
wires in step \# 2 were interchanged, the wires in step \#2 were interchanged, th
color of the BLUE drive knob will no color of the BLEE drive knob will not
correspond to the color change on the screen. However, this will not interfere
with the with the adjustments.

PURITY ADJUSTMENTS

Figure 1-15
Figur
made
NOTE: The following adjustments should be made North or South direction. This reduces the effect of the earths magnetic fiel.
The purpose of the purity adjustment is to align he electron beams so the red beam strikes
only the red phosphor dots on the screen, the green beam strikes only the green dots, and the
blue beam strikes only the blue dots. This done to remove impure color areas from the creen. See Figure 1-15,
1.(Turn the CONTRAST control to the full
counterclockwise position. Turn the

BRIGHTNESS control clockwise until color is visible on the screen.
2. \rightarrow Position the purity rings with the two round-end tabs pointing straight
fore starting these adjustments.
3.(Turn the blue and green guns off by connecting shorting clips to the BLUE
TEST POINT and GREEN TEST POINT.
4. - Loosen the three wing-head screws that secure the deflection yoke in the yoke
mount. Pull on these screws to move the mount. Pull on these screws to move the
deflection yoke back as far as possible deflection yoke babe
in the yoke mount.

FIGURE 1-1

FIGURE 1-23A

Page 78

NoTE: The following adjustnents will be easier
to make if the room lights are dimmed. The to make if the room lights are dimmed. The
movement of the yoke is the coarse adjustment, movement of the yooke is the coarse adustment,
and the movement of the purity rings is the fine adjustment of color purity.
5.(V) Turn the purity rings until you obtain a red area in the center of the screen. See
Figures $11-16$ and $1-17$ (fold-out from Page 81 .
Figure $1-15 \mathrm{C}$ shows the action of the
purity rings on the red area. Spreading the purnty rings on the red area.spashing them closer together
tabs apart or pus. moves the red area in a radial direction.
Rotating both purity rings in the same direction (maintaining the space between the
tabs) will cause the red area to move in a tabs) will cause the red area to move in a
circular pathe circular path.
First, move only one ring about an inch in the same direction to move the red area toward the center of the screen. It may be necessary to increase or de-
crease the spread between the tabs. The tabs may end up in any position around
the neck of the tube when the best rehe neck of the tube whe
sults are finally obtained.
Finally, adjust each of the e rings separately
to move the red area to the center of the screen.
6.(LSlowly move the yoke a small amount to warea larger. Alternately adjust the yoke

DYNAMIC CONVERGENCE ADJUSTMENTS

The adjustments in this section should be per-
formed twice to obtain the best dynamic con vergence. Go to trough all the steps in the D y
namic Conver gence section the first time to namic convergence section the first time to
tain approximately the correct merging of dots.
Tate The Second time you go through these steps,
you will be more faniliar with the procedure you will be more faniliar with the procedure;
thus, good dynamic convergence will be much thus, good dynam.
easier to attain.
These adjustments converge the red, blue, and
green dots into white dots at those reeas away green dots into white dots at those areas away
from the enter of the screen. First, all
the dots that lie along a vertical line that the dots that lie along a vertican line thatr runs
through the center of the screen, are converged through the center of the screen, are converged
to obtain a row of pure white dots. Then, all
the dots that the dots that lie along a horizontal line that
runs through the center of the screen, are runs throug
converged.
and the purity rings until the screen
becomes pure red. See Figure 1 - 18 (foldbecomes pure red.
After obtaining a pure red screen, re After obtaining a pure red screen, re-
tighten the three wing-head screws to If you are unable to obtain a pure red screen, remove the shorting clips from
the BUEE and GREEN TEST POINTS, the BLUE and GREEN TEST POINTS,
and recheck the DC convergence. Make and recheck the DC convergence. Make
sure the dots at the cent or the scren
are still pure white if if they are not ure are still pure white: if they are not pure
white, repeat the DC Convergence Adjustments on Page 75 , then repeat previous
steps 3 and 6 steps 3 and 6 .

- Place the Dots-NORMAL switch in the DOTS position. Make sure thitch in inure is
not tilted. If necessary, straighten the not tilted. If necessary, straighten the
pieture by rotating the yoke mount slightly

8. T Remove the shorting clips from the BLUE and GREEN TEST POINTS and rechec ,
NOTE: It may be helpful, as a more exact
method of checking purity, to look at the TV screen with a magnitying glass. When only the red beam is turned on, as in the adjustments ahove, only the red dots should be illuminated
See Figure $1-15$ on Page 77 . The green dots and blue dots may be rechecked in the same manner if the green and blue beams are turned on Do not try to get perfect convergence at all
corners of the screen, since this cannot be realized. Careful examination of any color re-
ceiver will show slight misconvergences, especcelver will showsiight misconvergences, espec-
ially near the corner of the picture. When all
the dots appear as pure white at anormal viewhe dots appear as pure white at a normal view-
ing distance (at least five feet away), convergence can be considered to be satisfactory.

NOTE: Improper DC convergence could preven you from obtaining proper dynamic convergence
in the following steps. If the center area of the Screen becomes misconverged while performing
the dynamic convercence steps go back and ne dynamic convergence steps, go back and re
peat DC convergence. Then continue with dy peat DC convergence
namic convergence.

vertical line convergence
Refer to Figure 1-19. Note that the convergence
circuit board is divided into four rows of concircuit board is divided into four rows of con-
trols and coils. The two rows at the bottom converge the vertical center line in areas 1 and 2
on the picture tube screen. The two rows at the on the picture tube screen. The two rows at the
top converge the horizontal center line in areas 3 and 4 of the screen.
Turn off the blue gun by connecting a short
ing clip to the BLUE TEST POINT.
$C \rightarrow$ Be sure the DOTS-NORMAL switch is in (t) $\begin{gathered}\text { Be sure the Dots } \\ \text { the DOTS position. }\end{gathered}$

NOTE: Only the center vertical row of dots will se adsusted in certain amal in the following steps. Since a certain amount of interaction will
occur between the controls, it will be enecessary
to repeat the to repeat the next two steps several timess be-
fore the dots become converged in both areas. fore the dots become converged in both areas.
See Figures $1-20$ and $1-21$ (fold-out from Page 81).
Refer to Figure 1-22A (fold-out from Page 78). (4 Adjust control A, and then control D to move the red and green dots closer to-
gether vertically in area 1 and area 2 .

Figure 1-19
TAdjust control B, and then control E to
converge the red dots and green dots into converge the red dots and green
yellow dots in area 1 and area 2 .
Check all of the dots in the vertical line in
areas 1 and 2 . areas 1 and 2 . Make sure that all red and
green dots are merged together to for green dots are merged together to form
pure yellow dots. If the dots near the center pure yellow dots. If the dots near the center
of the screen are not properly converged
readiust the red readjust the red and green DC convergence
magnets, then repeat the previous two steps. (\llcorner Remove the shorting clip from the BLUE TEST POINT.
Refer to Figure 1-22B (fold-out from Page 78) Merge the blue dots with the yellow dots
to make white dots in area 1 and area 2 , by to make white dots in area
adjusting controls C and F .
4 check all the dots in the center vertical row to make sure they are all white. If the blue dots at the center of the screen are not properly converged, readjust the blue $D C$
convergence magnet and the blue lateral magnet; then repeat the previous step.

This completes convergence of the vertical
enter row of dots. This completes co
center row of dots.

6HA5V101		$\underbrace{\text { V102 }}_{\text {6GJ7 }}$				$\underbrace{}_{\substack{6 G M 6 \\ \text { V202 }}}$		${ }_{\substack{6 E J 7 \\ \text { v203 }}}$		${ }_{\substack{\text { 6AW8 } \\ \text { V204 }}}$		${ }_{\substack{\text { 6Hz6 } \\ \text { V205 }}}$	
${ }_{\text {Lug }}^{\text {Lug }}$	Ohms	${ }_{\text {Lug }}^{\text {Lug }}$	ohms	${ }_{\text {Lug }}^{\text {Lug }}$	ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Ler }}$	ohms	${ }_{\text {Lug }}^{\text {Lug }}$	Ohms	${ }_{\text {Leg }}^{\text {Lug }}$	Ohms	${ }_{\text {Lug }}^{\text {Lug }}$	Ohms
1	2.4 M	1	0	1	з00к	1	${ }^{79}$		270	1	270		
2	0	2	220 K	2	1600	2	inf	2	0	2	100к	2	560
5	$3_{30}{ }^{\prime}$	3	0	5	nf	5	${ }^{18 K^{\prime}}$	3	270	3	${ }_{75} \mathrm{~K}^{\prime}$	5	490 K
6	0	6	$28 \mathrm{~K}^{\prime}$	6	[NF	6	${ }^{18 K^{\prime}}$	7	$20 \mathrm{~K}^{\prime}$	6	56	6	${ }_{30 \mathrm{~K}}{ }^{\prime}$
7	0	7	$46 \mathrm{~K}^{\prime}$	7	1600	7	nve	8	${ }_{20 \mathrm{~K}}{ }^{\prime}$	7	370^{4}	7	480 K
		8	48K ${ }^{\prime}$					9	0	8	$22 \mathrm{~K}^{\prime}$		
										9	28k ${ }^{\prime}$		

$\underbrace{\text { 为 }}_{\substack{\text { 6Ew6 } \\ \text { V404 }}}$						${ }_{\substack{6 \\ \text { V408 }}}^{\substack{\text { vid }}}$		$\underbrace{\text { a }}_{\substack{\text { 6GF8 } \\ \text { V408 }}}$		$\underbrace{\text { a }}_{\substack{\text { 6Gu7 } \\ \text { V409 }}}$		$\underbrace{\text { cos }}_{\substack{\text { 6GU7 } \\ \text { V410 }}}$					
$\underbrace{}_{\substack{\text { Lug } \\ \text { No. }}}$	Ohms	$\underbrace{\substack{\text { Lug }}}_{\text {Lug }}$	ms	${ }_{\text {L }}^{\text {Lug }}$ No.	ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Nor }}$	ms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Lic }}$	ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Ler }}$	ohms	${ }_{\substack{\text { Lug } \\ \text { Nof }}}^{\text {ater }}$	Ohms	${ }_{\text {Lug }}^{\text {Lug }}$	Ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Not }}$	orms
1	${ }^{33 \mathrm{~K}}$	1	70^{2}	1	70^{2}	1	nf		$20 \mathrm{~K}^{\prime}$	1	$44 \mathrm{~K}^{1}$	1	44K'	1	2	1	2
2	39K	2	100	2	150	2	220	2	47K	2	1 m	2	${ }^{19}$	2	. 6	2	. 6
5	${ }_{18}{ }^{\prime}$	5	20 K	5	$20 \mathrm{~K}^{\prime}$	3	nf	3	60k ${ }^{\prime}$	3	270	3	270	4	1.5m	3	1.5M'
6	${ }_{18 \mathrm{~K}}$ '	6	${ }_{29}{ }^{\prime}$	6	${ }_{296}{ }^{\prime}$	7	4.8M	6	$22 \mathrm{~K}{ }^{1}$	6	${ }_{65 K}{ }^{1,3}$	6	${ }_{42 \mathrm{~K}} 1$	5	1.5.5 ${ }^{\prime}$	5	INF
7	з9к	7		7	. 8	8	22K	7	0	7	${ }^{330 \mathrm{~K}}$	7	${ }_{1 m}$	6	1.5M'	6	1.5M'
						9	4.8M	8	680	8	390	8	270	7	4.5	7	100
								9	${ }^{\text {nje }}$					8	5	8	100

		${ }_{\text {6GF7 }}^{\text {6.F2 }}$		$\underbrace{\text { a }}_{\substack{\text { 6FQ7 } \\ \text { V303 }}}$		$\begin{aligned} & \text { 6GW8} \\ & \text { v304 } \end{aligned}$		${ }_{\text {V401 }}^{\text {6G88 }}$		${ }_{\substack{12 \mathrm{H} G 7 \\ \text { V02 }}}^{\text {(}}$		¢G488	
	Ohms	${ }_{\text {Lug }}^{\text {Lug }}$ No.	Ohms	${ }_{\text {L }}^{\text {Lug }}$ No.	Ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}$	ohms	${ }_{\text {Lug }}^{\text {Lug }}$	Ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Nor }}$	Ohms	${ }_{\text {Lug }}^{\text {Lug }}$	Ohms
1	$5 \mathrm{~K}^{2}$	1	0	1	30к'	1	490 K	1	$16 \mathrm{~K}^{\prime}$	1	22	1	${ }^{800}$
2	$3_{31}{ }^{1}$	2	4.7M	2	1.5M	2	12.5 K	2	3.5M	2	$350 \mathrm{~K}^{2}$	2	${ }^{420 \mathrm{~K}}{ }^{\prime}$
3	820K '	3	$1600{ }^{2}$	3	1200	3	16K '	3	${ }_{60 \mathrm{~K}}{ }^{\prime}$	3	0	3	110 ${ }^{\prime}$
6	255K	6	${ }^{201}{ }^{1}$	6	100K'	6	18K ${ }^{\prime}$	6	${ }_{60 \mathrm{~K}}{ }^{\prime}$	7	20K'	6	22K
7	$1.6 \mathrm{~m}^{2}$	8	$7_{\text {m }}{ }^{1,2}$	7	$36 \mathrm{~K}^{2}$	7	220	7	0	8	$5_{52 \mathrm{~K}}$	7	390
8	100k ${ }^{\prime}$	9	500K ${ }^{2}$	8	1200	8	$90 \mathrm{~K}^{2}$	8	$1600{ }^{2}$	9	0	8	
9	10M					9	${ }_{16 \mathrm{~K}}{ }^{\prime}$	9	700K			9	4.5M ${ }^{2}$

notes.
保
Resistance readings may vary $\pm 20 \%$. Those readings marked with footnote numbers may vary
more than 20%.
Varies with charge on fitter capacitors
Varies sith

Measured with conver engen eplug removed.
Depends on internal wiring of tube.

				${ }_{\text {lve }}^{\text {V72 }}$		${ }_{\substack{3 A 3 \\ \text { V704 }}}^{\text {a }}$								
$\underbrace{\text { Lut }}$	ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Nor }}$	ohms	$\underbrace{\text { a }}_{\substack{\text { Lug } \\ \text { No. }}}$	ohms		$\underbrace{\substack{\text { Lug } \\ \text { No. }}}_{\text {Lug }}$	Ohms	${ }_{\text {Lug }}^{\text {Lug }}$	Ohms	${ }_{\substack{\text { Lug } \\ \text { No. }}}^{\text {Nor }}$	Ohms		ohms
$\left\|\begin{array}{c} 7 \\ 8 \\ 8 \\ 9 \\ \left.\begin{array}{c} \text { pate } \\ \text { cap } \end{array} \right\rvert\, \end{array}\right\|$		9	$\begin{aligned} & 16 \mathrm{~s}^{\prime} \\ & 16 \mathrm{~s}^{\prime} \\ & 2.4 \mathrm{~m}^{\prime} \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~m}^{6} \\ & 66 \\ & 66 \mathrm{M} \\ & 66 \mathrm{M} \\ & 664 \\ & 2.4 \mathrm{~m}^{\prime} \end{aligned}$		$\left\lvert\, \begin{aligned} & 1 \\ & 2 \\ & 5 \\ & 5 \\ & 7 \\ & \text { Patat } \\ & \text { Pap } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 20 \mathrm{~K}^{\prime} \\ 90 \mathrm{~K} \\ \text { 1. } \mathrm{m}^{2} \\ 90 \mathrm{~K} \\ \text { oo Not } \\ \text { Measure } \end{array}$	14		1 2 3 4 5 6 6 7 8	0 0 $1 \mathrm{IM}^{\prime}$ INF 1.4 1 1 INF INF 1	5 5 6 7 8	020 200^{2} 300^{2} 360^{2} 360^{2} 360^{2} 310^{2} N NF

FIGURE 1-26A

$\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

FIGURE 1-26B

FIGURE 1-26C

Gorizontal Line convergence
Figures 1-23A and 1-23B (fold-out from Page
78) show the area where each horizontal con78) show the area where each horizontal con-
vergence control or coil is most effective. Revergence control or coil is most effective. Re-
fer to these Figures to see which dots each control or coil will move, and to see which way

Turn off the blue gun by connecting a
shorting clip to the BLUE TEST POINT. To overcome the interaction between the controls, repeat the next two steps as many times
as necessary, until the dots are merged at as necessary, untit the dots a
both locations. See Figure $1-23 \mathrm{~A}$.
Adjust controls G and H to converge the
red and green dots in area 3 on the pic red and g.
ture tube.

NOTE: Use the alignment tool supplied with ergence board he

Two or three turns of each coil may be necessary coil L501.
Adjust coils K and L to converge the red
and green dots in area 4 on the picture tube. Rémove the shorting clip from the BLUE test point.
Cy'Merge the blue dots with the yellow dots at areas 3 and 4 by adjusting coil M and control J. See Figure 1-23B and Figures
$1-24$ and $1-25$ (fold-out from Page 81).

This completes the Dynamic Convergence Ad-
justments. Now recheck the FOCUS and GRAY justments. Now recheck that ${ }^{\text {SCALE adjustments. See Page }} 7$. Keep in mind that the SCREEN controls affect the shade of the low light areas of the picture, and that the DRIVE
controls affect the high light areas of the picture. For example, if a dimly lit background scene is predominantly green, the GREEN SCREEN con-
trol should be turned down slightly. If a brigh area was predominantly blue, the blue driv should be turned down slightly.

PINCUSHION ADJUSTMENTS

NOTE: The pincushion adjustments in the follow-
ing steps affect the top and bottom of the picture ng steps affect the top and bottom of the picture,
When making the adjustments, watch the rows
of dots closely to observe the changes.
) Place the Dots-NORMAL switch in the
) Turn the TOP-BOTTOM PINCUSHION control fully clockwise. Note that there is a
slight bow or tilt in the top horizontal row slight bow or tilt in the top
of dots. See Figure 1-26A.

Adjust PINCUSHION PHASE coil L801 until the upward bowing of the top horizontal row
of dots is exactly in the middle of the screen.

Reduce the setting of the TOP-BOTTOM PINCUSHION control until the first top hori-
zontal row of dots is straight when your eyes are level with this row of dots. See
Figure $1-26 \mathrm{~B}$.

Figure 1 -26c shows the top hor izontal row of
dots bowed down in the middle as a result of turning theTOP-BOTTOM midde as a result of
INCUON control too far counterclockwise

WARNING: Make sure that you turn only the coil
you are directed to turn in the following steps. you are turn any other coils.

Place the DOTS-NORMAL switch in the
NORMAL position.
Tune in a color picture, See Figure 1-2 fold-out from this page).
Set the TINT control to the center of its
range and set the COLOR control for a range and set the co
normal amount of color.

Using the alignment tool, carefuly adjust burrst phase transformer T402 (on the color circuit board) for normal flesh tones on the
people in the picture. It should not be neesssary to turn the slug of this coil more than one turn in either direction. After this
adjustment, the TINT control should change the flesh tones from purple, through normal to oreen. See Figure $1-1$ ((fold-out from Page 7) for he location or 402
Tune in a weak black and white program
and check to see if any colored confetti (small flashing colored spots) appear in he picture.
If colored confetti (colored noise, see
Figure $1-28$) appears on black and white Figure $1-28$) appears on black and, white
programs, adiust the COLOR KIL trol clockwise slightly until the colored noise is removed. Recheck the color pro-
gram to make sure the color signal is still gram to make sure the color signal is still
eceived normally.

The COLOR KLLER control is set properly and black and white programs are free from
and and black and
colored noise.

Figure 1-18

Figure 1-16

Figure 1-3

Figure 1-12

1 1 1 1 1 1 1 !
111111111
111111111
111111111
111111111
111111111
111111111
Figure 1-24

1 1 \| \| \| \| \| \| ,

- 1 ! 1 !

111111111
1 1 1 1 1 1 I I
111111111
111111111 111111111

Figure 1-25

Figure 1-17
Figure 1-21

INSTALLATION

This section tells you how to install your TV Set in the Model GRA-295-1 TV Cabinet, or how to custom mount it. If you plan to custom mount the TV Set, disregard the Cabinet Installation section and proceed directly to the Custom Installation section on Page 88.

NOTE: Since the TV Set is heavy and bulky it is suggested that you have another person help you with either the Cabinet or Custom installation.

Be careful not to jar the TV Set during installation as this could disturb the TV Set adjustments.

CAUTION: DO NOT BUMP OR ATTEMPT TO MOVE THE TV SET BY THE NECK OF THE PICTURE TUBE, AS BREAKING THE PICTURE TUBE WOULD RESULT IN AN IMPLOSION OF CONSIDERABLE VIOLENCE.

CABINET INSTALLATION

Check the Cabinet parts supplied against the following Parts List; then proceed with the steps for installing the TV Set in the Cabinet.

CABINET PARTS LIST

The numbers in parentheses are keyed to the numbers in the parts pictorial below.

PART PARTS
No. Per Kit
91-140 $1 \quad$ Walnut cabinet
94-419 1 Cabinet back panel
(1) 206-247 $1 \quad$ Picture tube back panel
(2) 204-704 $1 \quad$ Convergence support bracket
(3) 250-252 $10 \quad$ \#6 x 5/8' bronze screw
(4) 252-4 $8 \quad 8-32$ nut
(5) 253-45 4 \#8 flat washer
(6) 261-1 2 Rubber bumper

HEATHEIT

CABINET STEP-BY-STEP ASSEMBLY

NOTE: Some of the following items, which are used to mount the TV Set in the Cabinet, were furnished with the TV Set.

Refer to Pictorial 3-1 for the following steps.

PICTORIAL 3-1
() Refer to Detail 3-1A and unlock the speaker door. The wing lock can be rotated by reaching up through the access hole at the right bottom front of the cabinet.
() Open the speaker door by pushing in on the bottom and pulling down the top.
() Unplug the speaker from the TV Set.
() Remove the speaker from its box and mount it on the inside of the speaker door with four 8-32 nuts and four \#8 flat washers. Align the holes of the speaker carefully with the studs so you do not puncture the cone of the speaker. Position the terminal strip of the speaker as shown.

() Prethread the two indicated holes in the convergence support bracket with a \#6 x 5/8' bronze screw. See Detail 3-2A.

Detail 3-2A
() Refer to Pictorial 3-2, and mount the convergence support bracket on the inside of the speaker door with two 8-32 nuts. Position the speaker cable as shown.

PIC TORIAL 3-2

() Remove all knobs, except the Horizontal and Vertical Hold thumbwheel knobs, from the tuner bracket.

Refer to Pictorial 3-3 for the following steps.
() Carefully position the TV Set on the floor directly behind the Cabinet.
() Remove the convergence and tuner brackets from the TV Set, and position them on the floor next to the TV Set as shown. Leave the \#6 x $3 / 8^{\prime \prime}$ mounting screws installed in the side of the picture tube shield in case you should want to remove the TV Set from the Cabinet at some future date.
() Lift the TV Set into the Cabinet. Slide it forward as far as possible so that the picture tube mask fits into the opening in the front of the Cabinet.
() Secure the TV Set to the Cabinet with four $1 / 4-20 \times 7 / 8^{\prime \prime}$ screws and four $1 / 4^{\prime \prime}$ flat washers. The screws should pass through the bottom of the Cabinet and into the self-retaining nuts of the picture tube shield.

PIC TORIAL 3-3

Refer to Pictorial 3-4 for the following steps.
() Refer to Detail 3-4A, and mount two rubber bumpers in the proper holes of the convergence bracket.
() From the inside of the Cabinet, slip the convergence bracket through the Cabinet opening for the speaker door.
() Mount the convergence bracket on the speaker door as follows: Position the convergence bracket with its rubber bumpers hooked inside the Cabinet opening as shown. Lift up the speaker door, and then fasten the bracket on the top speaker mounting studs with two 8-32 nuts.
() Secure the convergence bracket to the convergence support bracket with two \#6x5/8" bronze screws.
() Close and lock the speaker door.
() Refer to Detail 3-4B and position the tuner bracket on the screws in the tuner bracket mounting panel. Tighten the screws. Be sure the wires to this bracket are not twisted together with the wires going to the convergence bracket.
() Carefully remove the protective backing from the control panel label.
() Position the control panel label on the control panel as shown, and line up the holes in the label with the control panel holes. Press the label firmly into place.
() Secure the control panel to the Cabinet with two \#6 x $5 / 8^{\prime \prime}$ flat head wood screws.

NOTE: If the knob shafts extending from the tuner bracket are not centered in the holes of the control panel, loosen the tuner bracket mounting screws and reposition the tuner brack-

Detail 3-4B
et as required. The thumbwheel knobs on the Horizontal and Vertical Hold controls may be repositioned to center the knobs in the control panel openings. Retighten the tuner bracket mounting screws.
() Check the position of the pilot lamps on the back of the tuner bracket. The pilot lamps should be directly behind the pilot light holes in the control panel. Pictorial 3-4 shows the location of these holes.
() Replace the knobs on the shafts extending through the control panel.
() Hook the wiring harness and cables coming from the tuner bracket (all cables except those connected to the antenna terminal strip) behind the tab on the picture tube shield. The tab location is shown in Pictorial 3-3 on Page 85. Then these cables will not interfere with opening the speaker door.
() Refer to Pictorial 3-5 and mount the antenna terminal strip at the location shown on the rear of the cabinet. Use a $\# 6 \times 5 / 8^{\prime \prime}$ bronze screw.
() Form the excess antenna cables in a loop and secure them with a string or a rubber band. NOTE: Do not hook the antenna cables over the tab on the picture tube shield.

This completes the Cabinet installation. The Cabinet back panel will be installed later. Proceed to the Installation Adjustments on Page 90.

PICTORIAL 3-6

CUSTOM INSTALLATION

There are many ways the Color TV Set can be custom mounted. This section of the Manual describes only one of these ways, to provide you with a guide for your installation. You may wan to read the cabinet installation instructions (starting on Page 84) to help in planning your installation.

There are three important considerations that must be studied carefully when you plan your nstallation. These are the viewing angles, chas is ventilation, and access to the chassis. Th next three paragraphs briefly describe each of these considerations

The angles from which the TV Set will be viewed should be considered carefully, especially in a wall-mounted installation where the position of the Set cannot be changed.

Be sure to have adequate ventilation around the chassis. Most TV Sets develop a considerable amount of heat while they are operating. This heat must be able to escape or the TV Set wil be damaged due to overheating.

Install the TV Set so there is easy access to the convergence controls and chassis controls at the rear of the Set. As the components age may be necessary to make minor adjustments of these controls. Also, the tubes should be accessible in case servicing should be necessary at some future date.

Pictorial 3-6 shows a typical installation. The TV Set is installed on a mounting board and then mounted in a wall cutout. Three possible loca tions are shown for the control panel (tuner bracket). The convergence board is mounted on the picture tube shield.

PREPARA TION

1. Make the wall cutout for the TV Set, using the dimensions shown in Pictorial 3-6.
2. Install the mounting board supports. Pictorial 3-6 shows one type of support that may be used.
3. Prepare a mounting board as shown in Pic torial 3-7 (fold-out from Page 89). Check o see that the mounting board fits propery in the wall cutout. Make any necessary adjustments in fitting the mounting board at this time.
4. Pictorial 3-6 shows the area in which the control panel (tuner bracket) may be mount. This location is limited by the length of the tuner bracket cables. Select the desired control panel location, then make the wall cutout and mark the locations for the four mounting screws. See Detail 3-7A (fold-out from Page 89) which is a full-size template and may be cut from the Manual. CAUTION: Do not change the length of any of the wires to the tuner bracket.
5. If a speaker cutout is required, it can be made now, using Detail 3-7B (fold-out from Page 89), a full-size speaker template. This template can be removed from the Manual.

MOUNTING

1. Mount the TV Set on the mounting board as shown in Pictorial 3-6.
2. Now, while the chassis controls are stil accessible, complete the Installation Ad justments that start on Page 90. Then complete the custom mounting as follows:

tion, it tit suysested that tatoles speareer
be purchased from the Heath Company.
3. 56 " of shielded cable
4. Four $8-32$ nuts.

The second speaker can be installed as follows
) Unplus the line cord,

) $\begin{gathered}\text { Open the speaker door (see Pictorial } 3 \text { - } 1 \text { on } \\ \text { Page } 844 \text {. }\end{gathered}$

 This completes the installation of the second
speaker.
 Conenet the antemas to the entenna terminal

 After the ajuisstments have been completed to to
your satisfaction, procoeca to Final Assembly.

FINAL ASSEMBLY

A tube and coil location chart for your Color TV Set is included in the Manual (Figure 3-1, fold-out from Page 99). Signal paths for the picture, sound, color, and sync signals are also on this chart. This Figure is duplicated on the fold-out sheet from Page 177. Cut off this duplicate Figure 3-1 and attach it to the inside of the Cabinet or Custom enclosure.

Be sure to fill in the picture tube warranty card and mail it to the Heath Company within 10 days to validate the warranty.

The following steps are separated into two sections: Cabinet Installation and Custom Installation. Complete only the group of steps that apply to your installation.

CABINET INSTALLATION

Refer to Pictorial 3-5 on Page 87 for the following steps.
() Install the picture tube back panel shield by placing the four tabs into their respective slots of the Cabinet back panel. Push the tabs in until they lock in place.
() Start \#6 x 5/8' bronze screws into the three starting holes along the bottom edge of the Cabinet as shown.
() Set the Cabinet back panel on the three bronze screws started in the bottom edge of the Cabinet. Then fasten the back panel to the Cabinet with \#6 x $5 / 8^{\prime \prime}$ bronze screws in the other seven Cabinet starting holes. Be sure to position the line cord in the back panel cutout as shown.

NOTE: Now that the Color TV Set has been completely assembled and adjusted, it is suggested that you read the remaining sections of this Manual. Then place the Manual in a large envelope and staple it to the Cabinet back, or in a place near the TV Set, for future reference.

CABINET CARE

Protect the surface of the Cabinet with a high grade furniture wax.

Clean the Cabinet now and then by dusting with a soft dry cloth to remove fingerprints and any dull film.

CUSTOM INSTALLATION

() Complete the custom installation.
NOTE: Now that the Color TV Set has been completely assembled and adjusted, it is suggested that you read the remaining sections of
this Manual. Then place the Manual in a large envelope and staple it on the back of your custom enclosure, or in a place near the TV Set, for future reference.

ANTENNAS

INTRODUCTION

This section will provide you with information concerning antennas, antenna lead-ins (twin lead and coaxial cable), proper antenna orientation, and signal preamplifiers for fringe areas. This information will help you select the proper antenna installation for maximum performance from your Color Television Set.

TYPES OF ANTENNAS

Your Color TV Set is designed to operate with one of the broadband types of antennas such as the inline types recommended for color TV reception. It is very important to use an antenna which is suited for your area. Indoor antennas and some of the outdoor types of antennas that are used satisfactorily with black and white TV sets do not provide sufficient signal pickup and bandwidth for color television. The impedance of the antenna can be either 300Ω or 75Ω.

ANTENNA LEAD-INS

The color television signal is carried from the antenna to the television set by a length of twin lead or by a coaxial cable. The most commonly used types of twin lead and coaxial cable are listed below, with a description of how they respond to good and bad weather.

Flat twin lead - Little signal loss in fair weather. High signal loss in bad weather, especially at UHF frequencies.

Tubular twin lead - Little signal loss in fair weather. Less signal loss in bad weather than with flat twin lead.

Encapsulated twin lead - Little signal loss in fair weather. Less signal loss in bad weather than with tubular twin lead.

The signal loss may be even greater with the preceding three types of twin lead if they have accumulated a noticeable amount of foreign matter (dirt, etc.). Also, do not route these types of lead inside a metal pipe or on any metal surface. Figure 2-1A shows how to connect any one of the above three types of twin lead to the antenna terminal strip.

Shielded twin lead - This type does not perform as well in fair weather as the preceding three types do. However, the signal is hardly affected by bad weather. Figure 2-1B shows how to connect this twin lead to the antenna terminal strip.

Low loss coaxial cable - This cable has an impedance of 75Ω and the same characteristics as the shielded twin lead. It should be used whenever a 75Ω antenna is used. Figure $2-1 \mathrm{C}$ shows how to connect it to the antenna terminal strip. This cable can be used with a 300Ω antenna when a balun coil (300Ω to 75Ω matching transformer) is used between the antenna and the 75Ω cable. See Figure 2-1D.

NOTE: The preceding two types of lead can be routed inside a metal pipe or on any metal surface.

Figure 2-1

ANTENNA ORIENTATION

Antennas often need more careful orientation for good color TV reception than for black and white reception. Some antenna positions could result in good black and white pictures, but poor color pictures. This is mainly because the color information is transmitted differently than the black and white information. If a new antenna is being installed, or if the position of an older antenna seems questionable, orient it during a color program for best reception.

If the antenna is not oriented properly, signals from several directions may be reaching the antenna at the same time. These signals are usually reflected from objects such as large buildings or large metal structures. The reflected signals may cause slight phase shifts in the television signal. On black and white pictures, this would result in a very slight ghost (a duplicate image appearing right next to the actual image) or smear. On color pictures, however, the phase shift can cause excessive color smear and incorrect color areas. To eliminate this problem, turn the antenna until the best picture is received.

Distorted pictures can sometimes be caused by too strong a signal, especially in metropolitan areas, where the transmitting antenna is quite close to the receiving antenna. In these cases, the signal from the antenna can be reduced by using an attenuator pad, like the one shown in Figure 2-2, and connecting it between the antenna and the Color TV Set, as shown. Resistors for making these pads can be obtained locally.

FOR A SMALL AMOUNT OF ATTENUATION 16DBI
FOR A SMALL AMOUNT OF ATTENUATION 16DBI
RI= 910\Omega
RI= 910\Omega
R2=110\Omega
R2=110\Omega
FOR A MEDIUM AMOUNT OF ATTENUATION (IZDB)
FOR A MEDIUM AMOUNT OF ATTENUATION (IZDB)
RI= 510\Omega
RI= 510\Omega
R2=270\Omega
R2=270\Omega
FOR A LARGE AMOUNT OF ATTENUATION (1BDB)
FOR A LARGE AMOUNT OF ATTENUATION (1BDB)
R1= 390\Omega
R1= 390\Omega
$R 2=560 \Omega$

Figure 2-2

SIGNAL PREAMPLIFIERS

If you live in a fringe area where it is difficult to receive a strong TV signal, a preamplifier may be a solution to your problem. A preamplifier will amplify the weak signal received by the antenna. If a unit of this type is purchased, make sure the specifications qualify it to be used for color as well as black and white signals. If the bandpass specification is too narrow, a phase shift could occur which could cause color smear and incorrect color areas (ablack and white picture would not be affected).

There are two types of preamplifiers; outdoor and indoor. The outdoor type will be described first.

The outdoor preamplifier is mounted on the antenna mast near the antenna. The antenna is connected to the input terminals, and the lead is connected to the output terminals. The other end of the lead is connected to the antenna terminal strip. The power supply which supplies operating voltages for the preamplifier is mounted in the house, and the voltages are fed up to the unit through a cable.

The main advantage in using an outdoor preamplifier of this type is that only the TV signal from the antenna is amplified and not the noise picked up by the lead. This gives a better signal-to-noise ratio and less snow in the picture.

The indoor preamplifier is installed inside the house between the lead and TV set. This unit amplifies the signal as well as the outdoor unit, however, the noise picked up by the lead-in is also modified. This causes the signal-to-noise ratio to stay approximately the same, and you may still have a snowy picture.

NOTE: Make sure that the lead going to the TV set is not routed next to the lead coming from the antenna. This could cause the preamplifier to oscillate and cause interference in the picture.

The indoor preamplifier is a good unit to use for couplers when more than one TV set is used. This type of unit can usually be purchased with more than one set of output terminals. Additional TV sets can be connected to these terminals. This would serve as an amplifier stage for each TV set, and also keep the sets from interfering with each other.

When using preamplifiers as multi-set couplers in strong signal areas, the input of the preamplifier (depending on the circuitry), may be overdriven. This would result in cross-modulation problems in the preamplifier and cause interference on one or more channels. Be sure to use an attenuator pad in these cases, such as the one shown in Figure 2-2, on the input of the preamplifier to reduce the amount of signal to the Color Television Set.

OPERATION

Refer to Figure 2-3 (fold-out from Page 82) while reading the following information on the operation of the controls of your Color TVSet. Tune in a color TV program and turn the different front panel controls back and forth to become familiar with them.

NOTE: Figures 2-4 through 2-7 (fold-out from Page 82) are examples that show how the colur controls should be used.

Figure 2-5 is a normal color picture.
Figures 2-4 and 2-6 show what happens if the TINT control is turned too far in either direction.

Figure 2-7 shows what happens when the COLOR control is advanced too far.

Slight color fringes may sometimes be seen around objects that are near the edges of black and white pictures. A small amount of this "color fringing" is normal for all color TV receivers. Color fringing is caused by slight misconvergences between the red, blue, and green beams in the picture tube.

NOTE: Do not place antenna rotor controls, electric clocks, telephones, etc., on top of the Cabinet of your Color TV Set. These devices may produce undesirable magnetic effects that could distort the colors in the picture.

AGING IN

After one to two weeks of operation, the Dynamic Convergence Adjustments on Page 78
should be repeated. This time period will allow for the initial "aging in" period which most color TV receivers must go through before the components stabilize. After readjusting the dynamic convergence circuits, the Set will only require slight readjustment from time to time to maintain optimum performance.

COLOR PROGRAMS

There are many variables that affect the quality of the colors and the sharpness of the images. In general, live programs and some color film will produce better pictures on your screen than programs that have been recorded on video tape. When you judge the quality of the color picture, be sure to consider the source of the program before deciding that there is a problem in the TV Set.

Color programs that are televised outdoors may appear quite different from color programs that are televised indoors, due to the differences between natural light and artificial light. Often, slight differences can even be seen between the signals from different TV cameras on the same program.

Color quality may also change when you tune from one channel to another. It may be necessary to adjust the COLOR, TINT, and FINE TUNING controls when a color program is being tuned in, or when switching from one channel to another.

IN CASE OF DIFFICULTY

NOTE: Refer to the Kit Builders Guide for Service and Warranty information.

This section of the manual is divided into several parts. The first part, titled General, describes what to do about any difficulties that occur right after the Color TV Set is assembled. The second part, titled Troubleshooting, tells what to do if some problem occurs after the TV Set has been in operation for some time.

A Troubleshooting Chart is also provided. This Chart lists a number of possible difficulties that could arise. It also shows what the TV picture would look like for these difficulties, and lists several possible causes.

A tube and coil location chart for your Color TV Set (Figure 3-1, fold-out from Page 99) is included at the end of this section of the Manual.

Signal paths for the picture, sound, color, and sync signals are also shown on this chart.

Circuit Board X-Ray Views (Page 171) and Chassis Photographs (Page 173) have been furnished as an aid in locating components on the circuit boards and chassis. The foil pattern has been inked on the top of the circuit boards to help you locate parts when troubleshooting.

Before you try to locate the cause of a difficulty, be sure to check the operation of the controls on your TV Set. Difficulties may also be due to improper adjustments of the chassis and convergence controls. A recheck of these adjustments as outlined in the Initial Test And Adjustments section may help to locate the source of trouble.

WARNING: Since high voltages are present at many points throughout the TV Set, caution should be taken to avoid personal shock.

GENERAL

The following paragraphs deal with the types of difficulties that may show up right after a kit is assembled, before you can put it into operation. These difficulties are most likely to be
caused by assembly errors or faulty soldering.
The following checks will help you locate any error of this type that might have been made.

1. The first step in looking for your difficulty is to make a quick visual check of the whole unit to make sure there are no obvious difficulties, such as unsoldered connections, burned or overheated parts, bare wires touching each other, obviously faulty solder connections, etc. Make sure there are no bits of solder, wire ends or other foreign matter lodged in the wiring. Carefully check all terminals that have several wires attached to make sure that all wires, especially the lower ones, are soldered.
2. Check all wires to make sure they are connected to the right places. Usually, it is quite helpful to have a friend help you check your work. Often, someone not familiar with the unit will notice an error that you have overlooked consistently.
3. Check to make sure that each of the tubes is in its proper location and that its filament is lit. (Normally, only a slight glow will be seen in tube V704, the high voltage rectifier.)
4. Check all solder connections carefully to make sure they are bright and shiny. It is interesting to note that about 90% of the kits
that are returned to the Heath Company for repair do not operate properly due to poor solder connections. Reheat and, if necessary apply a little more solder to all questionable connections to make sure they are soldered as described in the Soldering section of the Kit Builders Guide.
5. Check all leads soldered to the foil side of the circuit boards. Be sure these leads do not protrude through the circuit board and short to coil shields or component leads on the component side of the circuit boards.
6. Check the values of resistors and capacitors to make sure the proper part is wired into the circuit in each position. It is sometimes easy to misread the third color band on a resistor. For example, if a $22 \mathrm{~K} \Omega$ (red-red-orange) resistor were installed instead of a $220 \mathrm{~K} \Omega$ (red-red-yellow) resistor, the circuit would not operate properly.
7. If all of the checks listed above have been made and the trouble still is not located, it may be helpful to refer to the Troubleshooting Chart, and to the Troubleshooting information on the following pages.

TROUBLESHOOTING

The following information will most often be used to deal with the type of difficulties that occur after the TV Set has been in operation for some time. This type of difficulty is usually caused by tube failure or parts breakdown.

Troubleshooting your TV Set means the process of searching through it to find out why it is not operating properly. First, you must determine what general area the trouble is in; then you must find the trouble itself and correct it.

FINDING THE AREA

Studying a faulty TV Set is like a detective trying to solve a crime; the source of the trouble must be determined by analyzing the symptoms, or clues, that are shown by the TV Set. Figure 3-2 on Page 98 is provided to help you find out what part of the TV Set your trouble is in. Careful reading of the Color TV Theory and Circuit Description sections of this Manual will also help you to analyze the problem.

These circuits hold the picture stationary on the screen.
(2)

Horizontal sweep circuits fill the picture out horizontally.
Vertical sweep circuits fill the picture out vertically.
(3)

High voltage circuits cause the screen to light up, using a signal it gets from V303 and V701. The damper circuit aids circuit V701, and supplies extra operating power to picture tube screen and vertical sweep circuit.
(4) Convergence circuits make the red, blue and green beams in the picture tube strike the same spot on the screen at the same time.

Figure 3-2

Figure 3-2 is a block diagram that shows the major sections of your Color TV Set and the tubes that are used in each section. It also shows the signals present in each section. Note that all four parts of the Color TV signal pass through the tuners and IF amplifiers. Then this signal is divided into four separate parts: the sound signal, the black and white picture signal, the color signals, and the controlling (or synchronizing) signals.

Carefully study the symptoms shown by your TV Set and try to determine which section could cause the type of trouble you are having. Suppose, for example, there is no sound, but the picture looks normal. Since all four signals pass through the tuners and IF amplifiers together, these circuits are probably OK. Thus the trouble is probably in the sound section, in the circuits of V204, V205, or V304.

A case where you had no light on the screen could also be used as an example of the trouble shooting process. Figure e 3 -2 shows that the high
voltage circuits cause the screen to light up Voltage circuits cause the screen to light up,
so the trouble may well be in the circuit of
V702 v703 v70 and V70 V702, V703, V704, and V705, or in the circuits
of V303 and V701 which supply an operating of veno3 and vign which supply
Another example might be a case where the
picture rolls verticilly picture rolls vertically very rapidly, and canno
be made to stop. In this case, the trouble migh be either in the vertical sweeping circuits of V302, or in V204A, or
trolling signals to V302.

inding the troubl

When you have determined the section the trouble is most likely to be in, search through that area
carefully to find the exact cause of the trouble. carefully to find the exact cause of the trouble.
Start by making more complete visual checks in Start by making more comp
this area, as listed below.

1. Search through the trouble area carefully to make sure all of the solder connections are good. Truble can sometimes be elimi-
nated by reheating all questionable connated by reheating all questionable con-
nections to make sure they are soldered properly.
2. Check the tubes in this section by sub-
stituting tubes of the same types that are Lituting tubes of the same types that are
known to be good, or by using a tube tester The substituting of good tubes is always the

硅
3. Carefully check the values of the parts in
this section to make sure the proper part is wired into each position

VOLTAGE AND RESISTANCE MEASUREMENTS
If the trouble still is not located and a voltmeter
is available, check the voltage readings against is available, check the voltage readings against
those shown on the Schematic. NoTE: All voltage readings were taken with an 11 megohm in-
put vacuum tube voltmeter. Voltages may vary as much as 20%.

The voltage measurements should be made with all components in the circuit. The deflection yoke, convergence assemily, speaker,
ture tube leads should all be connected,
In some cases it is not possible to turn on the TV Set to make voltage measurements due to the nature of the trouble in the Set.. Under these
conditions resistance measurements throughut conditions resistance measurements throughout
the circuit can be very useful in troubleshooting the circuit can be very useful in troublestooting
the TV Set. A complete Resistance Chart is provided on the follot-out from Page 79 . These
measurements were made with a vacuum tube measurements were made with a vacuum tube
voltmeter. All resistance readings may vary as
much as much as 20% Those readings marked in the
mhart with footnotes may vary more than 20%. The resistance measurements should be made
with all components in the circuit and with the with all components in the circuit and with the
Set unplugged from the AC outlet. The deflection yoke, convergence assembly, speaker, and
picture tube leads should all be connected, The complete Color TV Set can be removed by reversing the process that was usedto install it. See Pictorials $3-1$ through $3-6$.
repairing the tV set
In repairing your TV Set, make sure you
eliminate both the cause and effects of your tirminate both the cause and effects of your
trouble. For example, suppose you found a burneed-up resistor and a bad tube, one with a
short circuit in it. If you anl rela short circuit in it. If you only replace the re-
sistor, the shorted tube will also cause the new sesistor to burn up.
Since a color television set is an extremely complex device, a case may sometimes arise
where the trouble is not found even after makin where the trouble is not found, even after making
the checks listed above, If this condition should the checks isted above, if this condition should
occur, you may avail yourself of the help pro-
vided by the Heath Technical Consultation De vided by the Heath Technical Consultation De-
partment or Service Department as described partment or Service Dep.
in the Kit Builders Guide.
NoTE: When writing to the Heath Company, be
sure to include the following information: kit sure to include the following information: kit
Model Number Series sure to include the foliowing information:
Model Number, Series Number, purchase date,
and date of the kit assembly manual (date at
bottom of Page 1).

$\overline{\text { anden }}$

This Troubleshooting Chart lists some possible difficulties that might arise in the adjustment and
operation of your Television Set. It may be necessary to refer to more than one trouble listed in the operation of your Television Set. It may be necessary to refer to more than one trouble listed in the
Chart to help locate the difficulty The suggested corrective your attention to the areas most likely to be faulty: they do not definitely rule out all other poss

PICTURE

TROUBLE AREA OF TROUBLE

POSSIBLE CAUSE

Figure 3-5

Light on screen, no picture, no sound.

Light on screen, sound ok, no picture or picture jumbled.

Figure 3-6

Figure 3-7

No vertical deflection (line across center of screen).

Tuners, or IF amplifier sections.

1. No antenna or faulty antenna connections.
2. AGC control misadjusted.
3. Fine Tuning badly misadjusted.
4. IF input cable not plugged into VHF tuner.
5. Check all connections to IF circuit board and tuner.
6. Tubes V101, V102, V201, V202, V203, V401B, V402, and associated circuits. (Also, UHF tuner transistor Q1.)

Video section, controlling signals section, or horizontal (V303) section.

1. Fine tuning misadjusted.
2. Horizontal Hold misadjusted.
3. Vertical Hold misadjusted.
4. AGC control misadjusted.
5. Contrast turned off.
6. V301, V303, V204, V401, and associated circuits.
7. Normal-Service switch in wrong position or defective switch.
8. Height and Vertical Linearity controls misadjusted.
9. Tube V302.
10. Vertical output transformer T801.
11. Deflection yoke.

PICTURE

TROUBLE AREA OF TROUBLE

POSSIBLE CAUSE

Figure 3-8
Top of picture
stretched (heads of people are too long).

1. Adjustment of Vertical Linearity control.
2. Tube V302.
3. Resistors R318 and R339.
4. Capacitor C806.
5. Controls R341 and R513.
6. Adjustment of Height control.
7. Tube V302.
8. Resistors R318 and R339.
9. Capacitor C806.
10. Controls R341 and R513.

Figure 3-10

Deflection yoke.

1. Deflection yoke positioned too far back on picture tube neck. Refer to Purity adjustments on Page 77.

Figure 3-11

Figure 3-12B

Picture rolls (no vertical sync).

Vertical sweep circuits, controlling signal circuits.

1. Speaker or hi-fi amplifier not connected.
2. Speaker connected to Hi-fi jack instead of Speaker jack.
3. Hi-fi amplifier not turned on.
4. Hi-fi amplifier selector not turned to TV input position.
5. Shielded cable to volume control shorted out.
6. Tubes V204, V205, V304, and associated circuits.
7. Adjust Vertical Hold control.
8. AGC and Sync controls.
9. Tubes V302, V301.
10. Faulty vertical integrator (P.E.C. \#1).
11. Circuit components of tube V302. 6. Capacitor C312.

Figure 3-15A

Picture rolls, tears and/or bends in strong signal area.

Figure 3-15B

Figure 3-16A

Figure 3-16B

Herringbone interference in picture.

Tuners, IF amplifiers section.

1. Fine Tuning misadjusted.
2. Local RF interference.
3. 4.5 mc trap alignment with instruments (see Page 123).

PICTURE

TROUBLE AREA OF TROUBLE

POSSIBLE CAUSE

Picture smears, (not clear).

Figure 3-17

Tuners video section focus circuit.

1. Fine Tuning misadjusted.
2. Improper adjustment of Focus coil L704.
3. Tube V703 defective.
4. Open peaking coil, L403, L404, or delay line.
5. Poor video IF alignment.

Figure 3-18
No picture contrast (washedout picture).

Figure 3-19

Picture snowy.

1. Contrast control.
2. Brightness control.
3. AGC control.
4. Tubes V101, V102, V201, V202, V203, V401A, V402, and associated circuits.
5. Diode D202 defective.
6. Control R219 open.
7. VHF and UHF antenna leads interchanged at TV Set.
8. Poor antenna.
9. Tube V101 or V102.

PICTURE

TROUBLE AREA OF TROUBLE

POSSIBLE CAUSE

Figure 3-20

Picture blooms more than normal (grows in size) when brightness is turned up.
\longrightarrow

Excessive width.

Picture takes a long time to come on, and does not fill screen horizontally.

Insufficient width.
Figure 3-21

Figure 3-22

White lines run diagonally across picture (retrace lines).

Video section.

1. Check tubes V701 and V702.

Horizontal or damper circuits.

1. Low AC line voltage.
2. Width coil L807 misadjusted.
3. High Voltage adjust control set too high.
4. Connect a jumper wire between lugs 1 and 2 of Width coil L807.
5. No vertical retrace blanking, check R413, C411.

* Some retrace lines will normally be seen if the Contrast control is set at minimum and the Brightness control at maximum.

TROUBLE	AREA OF TROUBLE	POSSIBLE CAUSE
Weak or distorted sound.	Tuners, sound circuits.	1. Fine Tuning misadjusted. 2. Tubes V204, V205, V304. 3. Adjustment of coils L207, L208, L209. 4. Capacitors C606B, C608D.
VHF channel selector indicates wrong channel.		1. Fine Tuning misadjusted. 2. Defective VHF channel selector knob (if all VHF channels are wrong).
Intermittent picture or sound.		1. See Cleaning The VHF Tuner Contacts on Page 118.
Unable to obtain dot pattern.		1. Defective neon lamp (type NE -2) in color dot circuit. 2. Open, defective, or improperly connected diode D401.
Unable to obtain dots but can get vertical bars.		1. Defective NE2 neon lamp or diode D401. 2. Defective capacitors C405 and C412.
Unable to obtain dots but can get horizontal bars.	Video section.	1. Defective coil L405. 2. Defective capacitors C413 and C414.
Smear between rows of dots.		1. Brightness control advanced too far. 2. Coil L405 misadjusted.
Dots bloom (grow in size).		1. Brightness control advanced too far. 2. Diode D401 installed with leads reversed.
One or more convergence controls have no effect.	Convergence circuit board.	1. Check wiring and solder connections.

Figure 3-23

Figure 3-24

Top and bottom rows of dots bowed inward.

Sweep circuits.

POSSIBLE CAUSE

1. Pincushion phase coil improperly adjusted.
2. Defective transformer T803 or coil L801.
3. Top-Bottom Pincushion control too far counterclockwise.
4. Pincushion Phase coil slug too near the ends of its adjustment range.
5. Capacitor C802.
6. Defective coil L801.
7. Defective voltage dependentresistor R803.
8. Defective transformer T802.

PICTURE

TROUBLE AREA OF
POSSIBLE CAUSE
TROUBLE

Diathermy interference

Figure 3-26

Outside interference.

Co-channel interference.

Figure 3-27

Figure 3-28

Barkhausen interference.

Horizontal sweep circuit.

1. Interference from a diathermy machine in your vicinity.
2. Tune to a different channel.
3. Turn antenna to a different direction.
4. Use a more directional type of antenna.
5. You are receiving too weak a signal.
6. Remove jumper wire between lugs 8 and 9 on tube socket V701, then install jumper wire between lugs 3 and 8 of same socket. NOTE: If tube V701 is ever replaced, and the Barkhausen interference is noticed, reverse the preceding connections.
7. Change tube V701, the horizontal output tube.

Figure 3-32

Unable to complete purity adjustments, dynamic conver gence adjustments do not work.

Figure 3-33A

Figure 3-33B

White objects in black and white picture are outlined in color (color fringing*).

Convergence board. TROUBLE

POSSIBLE CAUSE

Conver gence circuits.

1. Convergence assembly not plugged into chassis.
2. Misconvergence (see Convergence Adjustments on Pages 75 to 80).
*NOTE: If this color fringing can not be seen at normal viewing distance, it can be considered normal.

Figure 3-34A

Figure 3-34B

Small areas of picture predominantly one color (especially noticeable when viewing black and white pic tures).

TROUBLE

POSSIBLE CAUSE

1. Repeat purity adjustments (see Page 77).
2. Degauss picture tube (see Page 64). Temporarily remove the filament fuse from terminal strip BJ during the degaussing process. See Detail 2-19C on Page 65. CAUTION: Degauss only the face of the picture tube and the picture tube shield. While power is being applied to the degaussing coil, do not place it near the pole piece assemblies on the neck of the picture tube.
3. Repeat purity adjustments (see Page 77).
4. Degauss picture tube (see Page 64). Temporarily remove the filament fuse from terminal strip BJ during the degaussing process. See Detail 2-19C on Page 65. CAUTION: Degauss only the face of the picture tube and the picture tube shield. While power is being applied to the degaussing coil, do not place it near the pole piece assemblies on the neck of the picture tube.
5. Check positions of the deflection yoke and the blue lateral and purity assembly.

Figure 3-36

Figure 3-37

Figure 3-38

Figure 3-39

TROUBLE
POSSIBLE CAUSE

Unable to converge screen properly.

1. Check position of the blue lateral and purity assembly.
2. Check Vertical Height and Linearity adjustments.

Vertical dynamic convergence controls (areas 1 and 2 on convergence board) have no effect.

1. Check R813, C806, C808, and vertical output transformer T801.
2. Defective convergence coil L502 or L503 or transformer T501.

Unable to obtain vertical dynamic convergence.

1. Defective diode D501.
2. Defective vertical output transformer T801.
3. Defective deflection yoke.

Horizontal dynamic convergence controls (areas 3 and 4 on convergence board) have no effect.

Control H (area 3 on convergence board) has no effect.

1. Check diode D501 on convergence board.
2. Violet wire from horizontal output assembly not properly connected to lug 8 of convergence socket.
3. Defective convergence coils L502 or L503 or transformer T501.
4. Red-green left control R506 incorrectly installed.

Each of the following troubles assumes that you are able to TUNE IN A NORMAL BLACK AND WHITE PICTURE.

Figure 3-40
trouble area of possible cause

No color, or not enough color, on color broadcasts

Color section.

1. Fine Tuning misadjusted.
2. Color Killer control advanced too far.
3. Color control turned down.
4. Leads on foil side of circuit boards shorted to parts on component side of circuit boards.
5. Poor antenna.
6. Tubes V401, V403, V408, and associated circuit components.

Figure 3-41

No color sync (colors may seem to float around), colors keep changing.

Color section.

NOTE: Do not confuse this problem with a normal occurance in some video-taped color programs called "video tape lines". These lines will be narrow and sharply defined, extending horizontally across the screen.

1. Tube V408 and associated circuit components.
2. Coil L411 misadjusted. See Page 125.
3. Weak signal.
4. Tubes V404, V407, and associated circuit components.

Color Picture predominantly green when Color control is advanced.

Figure 3-42

PICTURE \begin{tabular}{lll}

TROUBLE \& | AREA OF |
| :--- |
| TROUBLE | \& POSSIBLE CA USE

\end{tabular}

PICTURE TUBE TESTERS.
Some types of picture tube testers may falsely indicate a bad color picture tube, due to insufficient filament voltage. Make sure the picture tube tester supplies at least 6 volts during the test.

FIGURE 3-46

CLEANING THE VHF TUNER CONTACTS

The contacts in the VHF tuner are plated with high quality gold or silver alloy. However, they can become tarnished and cause a poor electrical connection. These contacts, when tarnished, would cause an intermittent picture or sound when the Vhrner tur it turned slightiy. To correct this problem, it mercial contact cleaner, which can be obtained from your local radio and television dealer.

The following two steps must be completed to gain access to the VHF tuner. You will have to
use the assembly instructions in your Manual on the specified Pages as a guide when removing the specified Pages as a guide when removing any wires for this procedure.

1. Remove the TV Set from the cabinet (Page 85).
2. Remove the tuner bracket (Page 63).

Refer to Figure 3-46 (fold-out from this page) and complete the steps for cleaning the tuner contacts.

ALIGNMENT

Alignment of this TV Set is not normally required, since both the tuners and the IF amplifiers have been carefully prealigned at the factory. The following information is given in case alignment is needed at some future time due to parts replacement.

WARNING !

Do not attempt to align this TV Set unless you have previous TV alignment experience, a thorough knowledge of the theory involved, and the necessary equipment.

EQUIPMENT NEEDED

VHF-TV sweep and marker generator.

UHF-TV sweep and marker generator (if UHF tuner alignment is to be done).

Accurate RF generator with a range of 4 mc to 50 mc .

Oscilloscope, such as the Heath Laboratory Oscilloscope, and an oscilloscope demodulator probe.

Vacuum tube voltmeter such as the Heath VTVM.

High Voltage Probe.

Color bar generator, such as Heath Color Bar And Dot Generator.

Bias Supply, capable of furnishing bias voltages from 0 to 2.5 V . (Batteries and a control can be used.)

Figure 4-1
Matching Pads, as needed; see Figure 4-1. Use $1 / 2$ watt 5% composition resistors.

VIDEO IF ALIGNMENT (FIGURE 4-2)

PREPARA TION

1. Remove the plate cap from tube V701. Refer to Figure 3-1 (fold-out from Page 99) for the location of this plate cap.
2. Connect a $2500 \Omega 100$ watt resistor from lug 4 of terminal strip BL (+390 V) to ground. Refer to Pictorial 2-8 (fold-out from Page 41) for this connection.
3. Set the NORMAL-SERVICE switch in the SERVICE position.
4. Connect a 1 megohm resistor from the IF AGC to ground (from the point marked G to the center post of socket V201 on the IF circuit board).
5. Solder one lead of a $47 \mathrm{~K} \Omega$ resistor to TP5 (test point 5) on the IF circuit board.
6. Connect the oscilloscope and the VTVM, set to the lowest AC range, to the free lead of the $47 \mathrm{~K} \Omega$ resistor. Set the vertical gain of the oscilloscope to near maximum; set
the horizontal range to line sweep, or use the horizontal sweep from the sweep generator.
7. Set the VHF tuner to the highest unused channel or, if all channels are used, remove a tuning strip.

NOTE: Be sure to terminate the output cable (or cables) of the sweep and marker generator in its characteristic impedance. Use the matching pads, as needed. Refer to Figure 4-1 on page 119.

TRAP ALIGNMENT

() Connect an RF generator with 400 cps modulation to TP1 (grid of mixer tube V102A) on the VHF tuner. The ground lead of the generator should be connected to the square cutout adjacent to TP1.
() Complete the steps in the Trap Alignment Chart. NOTE: Each of the frequencies listed in the Chart should be of crystal controlled accuracy.

TRAP ALIGNMENT CHART

	TRAP	RF GENERATOR FREQUENCY	ADJUST FOR MINIMUM
1	Sound trap	41.25 mc	Top slug of T204, R219.
2	Adjacent channel sound trap	47.25 mc	L201, R201.

IF CIRCUIT BOARD

TOP VIEW

Figure 4-2

SWEEP ALIGNMENT

() Remove the 1 megohm resistor and replace it with a jumper wire (from point G to the center post of socket V201 on the IF circuit board).
() Complete the steps in the Sweep Alignment Chart.

SWEEP ALIGNMENT CHART

	StAGE	Connect the sweep and marker generator through a $.001 \mu \mathrm{fd}$ capacitor to test point.*	Sweep generator center frequency approximately 43.5 me. Sweep width approximately 8 mc .	Marker generator Frequency CW (Unmodulated)	Adjust for maximum gain and bandwidth	REMARKS
1	$\begin{aligned} & \text { 3rd IF } \\ & \text { T204 } \end{aligned}$	TP4 (pin 2 of V203)		$\begin{aligned} & 42.17 \mathrm{MC} \\ & 45 \mathrm{mc} \\ & 45.75 \mathrm{mc} \end{aligned}$	T204 (bottom slug)	Adjust output of sweep generator for approximately $2^{\prime \prime}$ of deflection. Keep marker output low enough so that it does not distort the waveform.
2	$\begin{aligned} & \text { 2nd IF } \\ & \text { T203 } \end{aligned}$	TP3 (pin 1 of V202)		41.25 mc 42.17 mc 42.50 mc 45.75 mc	T203	Reduce output of sweep and marker generator.
3	$\begin{aligned} & \text { 1st IF } \\ & \text { T202 } \end{aligned}$	TP2 (pin 1 of V201)		$\begin{aligned} & 41.25 \mathrm{mc} \\ & 42.17 \mathrm{mc} \\ & 45 \mathrm{mc} \\ & 45.75 \mathrm{mc} \end{aligned}$	T202	Reduce output of sweep and marker generator.
4	Overall IF response	TP1 (mixer grid)		41.25 mc 42.17 mc 42.50 mc 45 mc 45.75 mc 47.25 mc	L111 Mixer plate coil T201 IF input coil	Reduce output of sweep and marker generator. If necessary. retouch preceding IF adjustments to obtain the correct overall response.

() Disconnect the test leads. Disconnect the $47 \mathrm{~K} \Omega$ resistor from TP5 and disconnect
*Connect the generator ground lead to the center ground pin of the tube socket.
the jumper wire between point G and socket V201.

SOUND ALIGNMENT (FIGURE 4-3)

CAUTION: Make sure you adjust only the coils you are directed to adjust in the following steps. Do not adjust any other coils.

SOUND IF AND DETECTOR ALIGNMENT WITHOUT INSTRUMENTS

() Set the Channel Selector to your weakest local station.
() Tune the Fine Tuning control until the sound gets weak and noisy.
() Adjust coils L207 (top and bottom slugs), L208, and L209 for the loudest clearest sound.

SOUND IF AND DETECTOR ALIGNMENT WITH INSTRUMENTS

Preparation

1. Connect one lead of a . $001 \mu \mathrm{fd}$ capacitor to TP6 (pin 7 of V204).

Figure 4-3
2. Connect the sweep and marker generator to the other lead of this . $001 \mu \mathrm{fd}$ capacitor. Set the marker generator to 4.5 mc . Set the sweep generator to a center frequency of 4.5 mc , with a sweep width of about 100 kc .
3. Connect the oscilloscope to lug 3 of the VOLUME control.

NOTE: Keep the output signals from the generators adjusted to a low amplitude during the following steps to keep from distorting the signal by overloading the circuits.

Adjust the following coils to obtain waveform A as shown in Figure 4-3. When these coils are tuned properly, a turn in either direction on any coil will produce the misaligned pattern of waveform B.
() L207 (top and bottom slugs).
() L208.
() L209.

4.5 MC TRAP ALIGNMENT WITH INSTRUMENTS

() Put the NORMAL-SERVICE switch in the SERVICE position.
() Connect an AM Generator, tuned to 4.5 mc , 400 cps modulated, to TP5. Connect an oscilloscope and/or audio voltmeter through demodulator probe to TP7 (TP7 is the green wire on the NORMAL-SERVICE switch).
() Adjust 4.5 mc trap L205 for minimum output.
() Put the NORMAL-SERVICE switch back in the NORMAL position.

3.58 MC TRANSFORMER (T403) ADJUSTMENT

() Connect a VTVM, set to read negative DC voltage on the 15 volt scale, to TP10 (pin 2 of V408).
() Adjust T 403 for maximum grid voltage.
() Disconnect the VTVM.

BANDPASS ALIGNMENT

() Remove tubes V303 and V203, Refer to Figure 3-1 (fold-out from Page 99).
() Remove the plate cap from tube V701. See Figure 3-1 for the location of this plate cap.
() Connect a $2500 \Omega 100$ watt resistor from lug 4 of terminal strip BL (+390 V) to ground. Refer to Pictorial 2-8 (fold-out from Page 41) for this connection.
() Set the COLOR control to midrange.
() Connect the oscilloscope through a demodulator probe to TP9.
() Connect the sweep generator to TP8 through a . $001 \mu \mathrm{fd}$ capacitor. Set the sweep generator for a center frequency of 3.58 mc , with a sweep width of about 2 mc .
() Adjust the top and bottom slugs of T401 for the response curve shown in Figure 4-5.

Figure 4-5
() Remove the sweep generator leadfrom TP8 and connect it to TP5 on the IF circuit board (see Figure 4-2). Reduce the output of the generator.
() Adjust L402 for the response curve shown in Figure 4-6. (NOTE: The 3.58 mc marker from the TV Set 3.58 mc oscillator will be present on this response curve.)
() Disconnect the oscilloscope and sweep generator. Replace tubes V303 and V203. Disconnect the 2500Ω resistor. Replace the plate cap on tube V701.

ADJUSTMENT OF REACTANCE COIL L411 WITHOUT INSTRUMENTS

() Tune TV Set to a color program.
() Set the TINT control to the center of its range.
() Remove burst amplifier tube V404 from the color circuit board.
() Carefully adjust reactance coil L411 for the most stable color picture. (There is only one correct setting for this coil.) After this coil is properly adjusted, the entire picture should be in color, but the flesh tones and background hues will gradually change. NOTE: The entire picture should be predominately one color, and not bars of color as shown in Figure $3-41$ on Page 115.
() Replace tube V404.
() If necessary, adjust burst phase transformer T402 so that proper flesh tones are obtained with the TINT control near the center of its range.

Alternate Method Of Adjusting L411

NOTE: Use this alternate method only when the previous method has not achieved the desired results.

HORIZONTAL AND HIGH

This Color Television Set has been designed with adequate metal shielding around the high voltage power supply and the picture tube to prevent the emission of any harmful x-rays.

The high voltage power supply has been adjusted and tested at the factory so the high voltage will be maintained within the safety zone.
() Tune the TV Set to a color program.
() If the picture is normal (Figure 1-27, foldout from Page 81) no adjustment is required.

If the picture is out of color sync (Figure 3-41), proceed as follows:
() Set the TINT control to the center of its range.
() Carefully adjust reactance coil L411 for a normal color picture.
() Tune the TV Set from station to station. If the color sync does not hold, readjust L411 until the color holds on all stations.

ADJUSTMENT OF BURST PHASE TRANSFORMER T402 AND REACTANCE COIL L411 WITH A COLOR BAR GENERATOR

() Connect the color bar generator to the antenna terminals of the TV Set. Tune the generator for a color display on the TV Set screen. Figure 4-7 (fold-out from Page 82) shows a normal color picture with a Heathkit Color Bar Generator.
() Set the TINT control to the center of its range.
() Remove burst amplifier tube V404.
() Adjust reactance coil L411 for the most stable colors.
() Replace tube V404.
() Adjust T402 for proper sequence of color bars (the third bar should be bright red if the Heath Color Bar Generator is being used).
() Disconnect the color bar generator.

HORIZONTAL STABILIZING COIL (L301) ADJUSTMENT (Figure 4-8)
() Tune in a station.
() Connect a jumper wire from lug 1 to lug 2 of coil L301.
() Connect a jumper wire from test point TP11 to ground.
() Adjust the HORIZONTAL HOLD control to obtain as stable a picture as possible.
() Remove the jumper wire from coil L301. Adjust L301 to obtain as stable a picture as possible.
() Remove the jumper wire from TP11 to ground.

HORIZONTAL EFFICIENCY COIL (L703) ADJUSTMENT

() Remove the ground connection from pin 3 (cathode) of horizontal output tube V701. See Figure 4-9.
() Connect a $0-500$ ma DC milliammeter from pin 3 of V701 to ground.
() Adjust coil L703 for minimum current (approximately 200 ma); then turn the coil slug clockwise until the meter reading increases 3 ma . Refer to the Chassis Photographs on Page 1.74 for the coil location.
() Remove the milliammeter and reconnect the ground wire to pin 3 of V701.

HIGH VOLTAGE ADJUSTMENT

IMPORTANT: Be sure to make the following adjustments carefully so the high voltage power supply will continue to meet the standards set by the National Center For Radiological Health. The adjustments should be made with the line voltage between 110 and 130 volts (normal line voltage).
() Tune in a station.

Figure 4-9
() Connect the high voltage probe to the second anode of the picture tube. Refer to Pictorial 2-20 (fold-out from Page 77) for the location of the second anode.
() Set the Brightness and Contrast controls to minimum.

Refer to Figure 4-9 for the following steps.
() Turn the High Voltage Adjust control to obtain a reading of 24 KV on the voltmeter.
() Disconnect the high voltage probe.
() Connect a VTVM, set to read a positive voltage on the 1.5 volt range, across 1000Ω resistor R713. The positive probe of the VTVM should be connected to the resistor lead that connects to V705.
() The voltage across R713 should be between 1.4 V (1.4 V across $1000 \Omega=1.4 \mathrm{ma}$) and . 85 V :

If the voltage across R713 is higher than 1.4 V , reset the High Voltage Adjust control to read 1.4 V .

If the voltage across R713 is less than .85 V , reset the High Voltage Adjust control to read . 85 V. (After this adjustment, you may not have a full 24 KV , but this will
not materially affect the quality of the picture.)
() Disconnect the VTVM.

TUNER ALIGNMENT

VHF TUNER ALIGNMENT

Refer to Figure 4-10 for the following steps.
() Connect the oscilloscope, sweep and marker generator, and bias supply (set to -2.5 volts) to the VHF tuner as shown in the Figure.
() Turn the Channel Selector to the channel 10 position.
() Adjust the sweep generator to a center frequency of 196 mc , with a sweep width of 10 mc .
() Adjust the marker generator for markers at 193.25 mc (Pix Carrier) and 197.75 mc (Sound Carrier).
() Adjust capacitors C113 and C114 for the correct response, as shown.
() If the tilt or valley between the markers cannot be adjusted to within the 30% maximum tolerance, it can be brought within limits by physically compressing or expanding coil L107 for this channel.
() Check the other channels for the correct bandwidth and tilt or valley. Use the accompanying Tuner Frequency Chart on Page 128 for the correct marker frequencies for each channel. Compress or expand coil L107 to bring the tilt or valley within the 30% tolerance on any channels where the valley is over 30% of the overall waveform amplitude.

NOTE: If the bandwidth is too wide or too narrow on most of the high channels, it can be corrected by compressing or expanding coil L112. If tube V101, the 6HA5 RF amplifier is changed, it may also be necessary to adjust RF neutralizing capacitor C109.

Figure 4-10

VHF OSCILLATOR ALIGNMENT

NOTE: Disregard these steps if your tuner does not have an oscillator trimmer capacitor.

Do not use the following procedure unless the Fine Tuning control will not tune through a station.
() Connect the VHF antenna to the antenna input terminals of the tuner.
() Tune through each of the channels normally received in your locality. If the Fine Tuning control does not properly tune all of these channels, set the Channel Selector to the

Channel on which the Fine Tuning Control has the least effect (the one that is farthest off frequency).
() Turn the Fine Tuning control two full turns clockwise, then turn it back counterclockwise exactly one turn. This will center the Fine Tuning control mechanically for this channel.
() Adjust oscillator trimmer capacitor C122 to obtain the best sound and picture. This will automatically adjust the Fine Tuning range for all the other channels.

This completes the VHF tuner alignment.

TUNER FREQUENCY CHART

U.S. TELEVISION CHANNEL FREQUENCIES					
		CENTER FREQ. MC.	PIX CARRIER	SOUND CARRIER	
	BAND	54	55.25	59.75	
3	$54-60$	57	65	65.75	
4	$60-66$	63	67.25	71.75	
5	$66-72$	69	77.25	81.75	
6	$76-82$	79	83.25	87.75	
7	$82-88$	85	175.25	179.25	
8	$174-180$	177	181.25	185.75	
9	$180-186$	183	187.25	191.75	
10	$186-192$	189	193.25	197.75	
11	$192-198$	195	203.75		
12	$198-204$	201	199.25	209.75	
13	$204-210$	207	205.25	215.75	
45	$210-216$	213	211.25	661.75	

UHF TUNER ALIGNMENT

NOTE: The complete VHF tuner and IF strip must be aligned properly before aligning the UHF tuner.
() Connect a UHF sweep generator to the UHF antenna terminals through the matching pad used in the VHF alignment procedure. See Figure 4-1 on Page 119.
() Connect a jumper wire from the IF AGC to ground (from the point marked G to the center post of socket V201 on the IF circuit board. See Figure 4-2 on Page 121.
() Connect the direct oscilloscope probe to TP1 through a $10 \mathrm{~K} \Omega$ resistor. See Figure 4-2.
() Turn the VHF Channel Selector to the UHF position. Tune the UHF dial to channel 50.
() Tune the sweep generator to a center frequency of 698 mc , with a sweep width of approximately 15 mc .
() Adjust coil L106 for maximum gain and bandwidth. See Figure 4-10 on Page 127.

This completes the alignment procedure.

replacement Parts list

This list covers replacement parts for the preassembled units supplied with your TV Set.

$\begin{gathered} \text { PART } \\ \text { No. } \\ \hline \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { PART } \\ & \text { No. } \end{aligned}$	DESCRIPTION
Coils-Chokes-Transformers (cont'd.)		Tubes-Sockets-Shields (cont'd.)	
40-741	1st IF transformer	206-206	$9-$ pin tube shield
40-742	2nd IF transformer	206-207	Small coil shield
40-743	47.25 mc trap coil	206-205	Large coil shield
45-35	$1.7 \mu \mathrm{~h}$ choke	434-129	7-pin tube socket
45-57	$10 \mu \mathrm{~h}$ choke	434-130	9 -pin tube socket
52-74	3rd IF transformer and 41.25 mc trap	434-132	7 -pin tube socket with shield
TUBES-SOCKETS-SHIELDS			
411-96	6AW8 tube	MISCELL	NEOUS
411-160	6EJ7 tube	10-155	750Ω control
411-169	6GM6 tube	10-180	$15 \mathrm{~K} \Omega$ control
411-222	6HZ6 tube	56-20	1N295 crystal diode
411-188	6.JH6 tube	134-127	IF input cable with phono
206-77	7-pin tube shield	85-146-3	IF circuit board

HORIZONTAL OUTPUT ASSEMBLY (\#100-580)

PART No.\quad DESCRIPTION

RESIS TORS

All resistors are $1 / 2$ watt unless specified otherwise.

1-1 $\quad 47 \Omega$ (yellow-violet-black)
1-3 100Ω (brown-black-brown)
1-9 $\quad 1000 \Omega$ (brown-black-red)
1-44 2200Ω (red-red-red)
1-26 $\quad 100 \mathrm{~K} \Omega$ (brown-black-yellow)
1-35 $\quad 1$ megohm (brown-black-green)
1-34-1 1 megohm 1 watt (brown-blackgreen)
1-35-1 1.5 megohm 1 watt (brown-greengreen)
1-40 10 megohm (brown-black-blue)
3-3-2* $\quad 2.7 \Omega 2$ watt (red-violet-gold)
1-32-2 4.7 megohm 2 watt (yellow-violetgreen)
5-1-7 $\quad 13 \mathrm{~K} \Omega 7$ watt, film
2-12-2 $\quad 66$ megohm 6 KV
*NOTE: These resistors are 2 watt wire-wound resistors, but are the same size as 1 watt composition resistors.

PART DESCRIPTION
No.

CAPACITORS

21-106 $\quad 22 \mu \mu \mathrm{f} 1 \mathrm{KV}$ disc
21-49 $\quad 68 \mu \mu \mathrm{f} 4 \mathrm{KV}$ disc
21-107 $\quad 130 \mu \mu \mathrm{f} 6 \mathrm{KV}$ disc
21-11 $\quad 150 \mu \mu \mathrm{f}$ disc
21-108 $\quad 180 \mu \mu \mathrm{f} 1 \mathrm{KV}$ disc
21-120 $\quad 500 \mu \mu \mathrm{f} 3 \mathrm{KV}$ disc
21-16 . $01 \mu \mathrm{fd}$ disc
21-117 . $01 \mu \mathrm{fd} 1.4 \mathrm{KV}$ disc with spark gap
23-102 . $0022 \mu \mathrm{fd}$ tubular
23-45 . $047 \mu \mathrm{fd}$ tubular
23-11 . $1 \mu \mathrm{fd}$ tubular
23-99 . $12 \mu \mathrm{fd}$ tubular
23-48 . $15 \mu \mathrm{fd}$ tubular
27-28 . $1 \mu \mathrm{fd}$ resin
COILS-CHOKE-TRANSFORMER
40-580 Horizontal efficiency coil
40-735 Focus coil
45-42 $\quad 8.5 \mu \mathrm{~h}$ choke
51-131 Horizontal output transformer

PART No.	DESCRIPTION	PART No.	DESCRIPTION
TUBES-SOCKETS		MISCELLANEOUS	
411-65	1V2 tube	57-27	750 ma silicon diode, 500 V PIV
411-189	3A3 tube	75-62	High voltage socket insulator
411-190	6BK4B tube	260-40	HV rectifier plate cap and lead
411-191	6DW4/6CL3 tube	260-46	HV regulator plate cap and lead
411-192	6JE6A tube	432-49	2nd anode connector and lead
434-39	Octal tube socket		assembly
434-144	9 -pin novar tube socket		
434-155	$9-\mathrm{pin}$ miniature tube socket		

VHF TUNER (\#110-42)

PART DESCRIPTION
No.

NOTE: Refer to Figure 4-11 below for replacing the converter strip and tuning strips in the VHF tuner.

411-226 6GJ7
411-220 6HA5 tube
246-59
246-60
246-61
Channel 1 UHF converter strip

246-62
Channel 2 tuning strip
Channel 3 tuning strip
Channel 4 tuning strip

PART No.

Figure 4-11

246-63 Channel 5 tuning strip
246-64 Channel 6 tuning strip 246-65 Channel 7 tuning strip 246-66 Channel 8 tuning strip 246-67 Channel 9 tuning strip 246-68 Channel 10 tuning strip 246-69 Channel 11 tuning strip 246-70 Channel 12 tuning strip 246-71 Channel 13 tuning strip 246-57 Antenna balun assembly

MISCELLANEOUS

PART DESCRIPTION
No.

NOTE: Refer to Figure 4-12 for replacing a pole piece magnet in a pole piece assembly. 474-13 Pole piece magnet

Figure 4-12

SPECIFICATIONS

Picture Size. 295 square inches.
Deflection. Magnetic, 90 degrees.
Focus. Electrostatic.
Convergence. Magnetic.
Antenna Input Impedance. 300Ω balanced or 75Ω unbalanced.
Tuning Range. VHF TV channels 2 through 13.
UHF TV channels 14 through 83.
Picture IF Carrier. 45.75 megacycles.
Sound IF Carrier. 41.25 megacycles.
Color IF Subcarrier 42.17 megacycles.
Sound IF Frequency. 4.5 megacycles.
Video IF Bandpass. 3.58 megacycles.
Tube Complement. 6HA5 - RF amplifier.
6GJ7 - Oscillator and mixer.
6JH6 - 1st IF amplifier.
6GM6 - 2nd IF amplifier.
6EJ7 - 3rd IF amplifier.
6GH8 - Video cathode follower and color am-plifier.
12HG7 - Video output.
6AW8 - Sound and sync amplifier.6 HZ 6 - Sound detector.
6GW8 - Cathode follower and sound output.
6HS8 - Sync and AGC.
6GF7 - Vertical oscillator and vertical output.
6FQ7 - Horizontal oscillator.
6JE6A - Horizontal output.
6DW4/6CL3 - Damper.

The Heath Company reserves the right to discontinue instruments and to change specifications at any time without incurring any obligation to
incorporate new features in instruments previously sold.

COLOR TV THEORY

While it is not necessary to understand color television theory to successfully build the Heathkit Color TV Set, a basic knowledge of the functions of the various sections is invaluable for future care. These fundamentals can also add to your enjoyment of the completed TV Set.

This section of the Manual is designed to take you as deeply into circuit operation as you wish to go. It starts with the basic functions of television,
and then advances to the more unique color TV circuitry. A detailed technical Circuit Description of this TV Set is also given on Pages 151 through 170 of this Manual.

If you wish to continue your study of the subjects discussed in this Manual, we recommend that you contact local educational institutions for their recommendations; they can recommend books or courses which are available locally.

BASIC TELEVISION FUNCTIONS

The picture that you see on a black and white television set is caused by a moving electron beam striking a phosphor coated screen inside the picture tube. Color TV operates on the same principle, except there are three electron beams in the tube, and phosphor dots of the three basic colors: red, blue, and green. Black and white television, therefore, is the foundation on which color TV is built, For this reason, the fundamental principles of black and white television will be explained first.

The black and white television picture is made up of very small dark and lighted areas. Note that the photograph at the left in Figure 5-1 appears to be shades of gray as well as black and white. Actually, it too is an arrangement of small black and white areas, as the enlargement on the right shows.
A complete picture is assembled on the picture tube by "scanning" the phosphor screen with the electron beam. The process of scanning is similar to the way that you are reading this page.

Your eyes read one line from left to right, then drop down one line and move again from left to - ght. An electron beam inside the black and lite picture tube scans the screen in a similar anner to form a black and white picture. It oves across the entire screen many times in $1 / 30$ of a second; a speed that is faster than the human eye can detect. This beam causes a white glow when it hits the phosphor coating on the inside of the screen; when the beam is interrupted, dark areas are produced on the screen.

The complete TV picture is made up of 525 individually scanned horizontal lines; but for purposes of illustration, Figure 5-2 uses only six scans to cover the screen. Note that when the dark and light areas of the six scanned lines are stacked on top of each other, the letter H is formed on the TV picture tube.

The objectives of a black and white television receiver may be set forth as follows. See Figure 5-3.

1. To select only one channel's signal from the air and strengthen it (receiver circuits).
2. To scan or "sweep" the screen horizontally with an electron beam (horizontal scanning circuits).
3. To deflect the electron beam vertically. This fills in the screen to form a rectangular pattern called a "raster" (vertical scanning circuits).
4. To turn the beam on and off to create the black and white areas which form a picture on the raster (beam controlling circuits).

5. To provide sound for the picture (sound circuits).
6. To convert ordinary household power to usable types of power in the TV set (power circuits).

These six functions are shown graphically in the block diagrams in Figure 5-3. By expanding this block diagram in Figures 5-4, 5-5, 5-6, 5-7, $5-8$, and 5-9, the individual stages or sections are shown. The function of each group of blocks in each Figure is listed, along with the visual effect on the screen. The "V-numbers" are the tube designations, and the "Q-number" is the transistor designation, so that if you wish, you may correlate the block diagrams with corresponding parts of the complete electronic Schematic (fold-out from Page 175) and the complete Block Diagram (fold-out from Page 150) for this Color TV Set.

RECEIVER CIRCUITS

A. Selects one channel's signal.
B. Converts the signal to the proper frequency for the (IF) intermediate frequency amplifiers.
C. Amplifies the signal.

Figure 5-4

SCANNING CIRCUIT-HORIZONTAL

A. Separates and amplifies the synchronization pulse used for proper timing of the horizontal scanning lines (horizontal sweep voltage).
B. Generates the horizontal sweep voltage.
C. Amplifies the horizontal sweep voltage.
D. Causes the electron beam to bend side-ways inside the picture tube. This causes the beam to sweep across the phosphor screen.

Figure 5-5

SCANNING CIRCUIT-VERTICAL

A. Generates the vertical deflection voltage.
B. Amplifies the vertical deflection voltage.
C. Bends the beam up and down inside the picture tube.

Each horizontal scanning line (solid line) is moved down from the previous line by the vertical deflection voltage (shown by the dotted lines).

Figure 5-6

BEAM CONTROLLING CIRCUITS

A. Detects the picture signal.
B. Together, these stages delay the black-and-white signal so the color signals can get to the picture tube at the same time.
C. Turns the beam on and off to create the black and white areas, which form a picture.

Figure 5-7

COLOR BEAMS

Photographs may be printed in color, as well as black and white. Looking at the Sunday comic strips with a magnifying glass will demonstrate how a few colors in the form of organized dots can be blended to look like many colors. Similarly, the picture on a color TV screen is made up of an organization of color dots.

All colors shown on the picture tube screen are combinations, or blends, of the red, blue, and green dots that light up on the screen. Black is obtained by stopping all dots from glowing. White is produced when all three color dots glow in the right proportion.

Separate electron beams are used to light the blue, red, and green dots. Each of these three beams control only one color of dots. To show blue on the screen, the red and green beams are turned off, therefore only the blue dots will glow. See Figure 5-10A (fold-out from Page 82). These are examples that show how the three primary colors, red, blue, and green can be blended to obtain other colors.

A device called a shadow mask is built into the picture tube to allow only one group of dots (triad) to glow at one instant of scanning. The three

Figure 5-10B
beams scan the screen together just like the single beam scans the screen of a black and white TV. See Figure 5-10B.

For demonstration purposes, the color dots have been considered to be either on or off, but actually the intensity with which each dot glows can be varied by varying the strength of the electron beam.

The objectives and circuits that a color TV receiver has, in addition to the black and white receiver, may be listed as follows:

1. To receive the color signals and separate them.
2. To use the three color signals to operate each color's beam independently.
3. To determine the proper intensity of each beam so the proper blend of colors will occur in each triad of dots.
4. To turn off the color circuits when there is a black and white broadcast.
5. To cause the electron beams to always hit the right dots on the screen.

These five functions are shown graphically in the block diagrams in the following Figures. Objectives 1 and 2 are shown in Figure 5-11; objectives 3, 4, and 5 are shown in Figures $5-12,5-13$, and 5-14, respectively.

CIRCUITS TO TURN BEAMS ON AND OFF

A. Amplifies the signal containing color information.
B. Passes only color information.
C. Separates the information into two color signals.
D. Combines the two color signals to obtain the three primary color signals: red, blue, and green.

CIRCUITS TO DETERMINE THE PROPER AMOUNT OF EACH COLOR

A. Amplifies the 3.58 mc 'burst" signal that is transmitted by the TV station. This signal is used as a reference for the demodulators to determine the intensity of each beam. The beam intensity, in turn, determines the proper amount of each color.
B. Compares the output frequency of the 3.58 mc reference signal oscillator with the burst frequency, and generates a correction voltage based on the comparison.
C. Reacts to correct the 3.58 mc oscillator and make it the same frequency as the burst signal.
D. Creates a continuous 3.58 mc reference voltage; provides the reference to the demodulators to obtain correct color signals.

HOW THE COLOR CIRCUITS ARE TURNED OFF FOR BLACK AND WHITE BROADCASTS

A. Determines when there is no color (no burst signal is present).
B. Provides voltage to disable color circuitry.
C. Voltage from color killer stops stray color signals from passing through the bandpass amplifier on black and white broadcasts.
D. Stops the beams temporarily while the beams go back to start the sweep again.
E. Controls the strength of color signals based on the strength of the burst.

Figure 5-13

CIRCUITS THAT CAUSE THE ELECTRON BEAMS TO ALWAYS HIT THE RIGHT DOTS

A. Develops voltages to correctly aim the electron beams in the picture tube. The picture tube uses these voltages to compensate for the curvature of the screen.

Figure 5-14

THE COLOR SIGNAL

The color signal is sent over the same channel as the black and white signal. The black and white or "luminance" signal is used to illuminate the screen, and the color signal is used to color the picture. The luminance signal, which is applied to the cathodes of the picture tube, furnishes a controlling voltage to all three beams simultaneously. The color signal, which is applied to the control grids of the picture tube, stops all but the desired color beams. See Figure 5-15.

The absence of a blocking color signal allows a black and white picture to be shown, since the controlling voltages for all three beams are provided (in the proper proportions) by the luminance signal. In other words, with no color signal voltage applied to them, the grids cannot stop the beams, thus the beams will be controlled by the luminance signal only, making a
black and white picture. Black and white TV sets use only the luminance signal which is the sum of the brightness contained in all three color signals. The color broadcasting system is therefore compatible with either black and white or color TV sets.

Figure 5-15

The luminance signal is often called the " Y " signal. This Y signal causes three beams of properly proportioned strength to be formed. The color signal must only pass or stop these beams, but must not add to them. Therefore, the color signal is only the pure color information without the Y , or luminance signal. This is expressed as: "R-Y" (R minus Y) for the red signal less the luminance signal, as "B-Y" (B minus Y) for the blue signal less the luminance signal, and as " $\mathrm{G}-\mathrm{Y}$ " (G minus Y) for the green signal less the luminance signal.

With no controlling signals on the cathodes or grids of the picture tube, there will be a raster on the screen. Each beam will be at a moderate level. The " Y " voltages either add to or detract from the beam's intensity, and the color signals stop the unwanted color beams.

Blanking, or "darkening," pulses are applied to the picture tube so retrace lines are not visible when the beams return across the screen to start a new scanning line. The synchronization ("Sync") pulses that start each scanning line at exactly the right time, are transmitted during this darkened period. The signals that form the letter H in Figure 5-2 for a black and white broadcast, will resemble those at the cathodes in Figure 5-16 for a color broadcast, except that the blanking and sync pulses have been added.

Even if the luminance signal at the cathode tries to brighten the picture, the color signals at the control grids can stop the electron beams. Figure $5-16$ shows the color signals that put color in the " H ".

DEMODULATION

The demodulators separate the color information into two signals: red and blue. They may be looked upon as switches, as they are shown in the simplified block diagram in Figure 5-17A. The \mathbf{X} demodulator is switched "on" onlyduring the time that the red (or R-Y) information is present in the combined color signal. Similarly, the blue demodulator is switched "on" only during the time the blue (or B-Y) information is present. In the actual circuit, there is no switch; the tubes are switched "on" and "off" by the reference signal.

For a more technical analysis, it is necessary to associate time with this switching or "phase demodulation" process. Time, with respect to the 3.58 mc reference signal, is measured in phase degrees. One complete cycle of the reference signal is 360 degrees; when the waveform repeats itself, it starts at 0 degrees again.

The color signal that is recreated in the receiver is a result of the information the transmitter sends out. This transmitted information is a combination of the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals. The two signals are combined in such a way that they can be separated by taking a sample of the color signal at 0 and 90 degrees. A wave built on samples taken at 0 degrees is the R-Y color signal, and a wave built on samples taken at 90 degrees is the B-Y color signal. Figure 5-17B shows the sampling process graphically.

Figure $5-18$ is a schematic-type drawing that shows how the sampling is accomplished elec-
tronically. The tubes will conduct only on the peaks of the reference signal. Since the reference wave is shifted by 90 degrees before it is applied to the Z demodulator, the X demodulator and Z demodulator tubes conduct at 0 degrees and 90 degrees, respectively. NOTE: A 90 degree phase shift of the X and Z demodulators is used in this description to simplify the explanation of demodulator operation. In actual use, the X and Z demodulators are about 60 degrees apart to satisfy the overall color balance of the receiver.

The color signal is applied to the control grid of each tube. The strength of the color signal at the time of the sample determines the output signal from that stage. Detection in either tube, can occur only during its sampling period, since current is allowed to flow through it during that time.

Even when there is no color signal, a certain amount of current will flow due to the positive portion of the reference signal. The color signal varies the output above or below this level. In the actual circuit, the two tubes are V406 and

V405 and the phase shifting network is made up of L408, C454 and R463.

A crystal-controlled oscillator is used to maintain the reference frequency between color bursts. The burst is only transmitted for a short time between the scanning lines, It is transmitted right after the horizontal sync pulse. The beams are all turned off at that time so there is no effect on the screen. It is often said that the color burst is on the "back porch" of the horizontal blanking pulse. See Figure 5-19.

To insure that the internal oscillator is in phase, or correctly timed, with the 3.58 mc color burst from the station, a phase detector and reactance tube are used. A little of the oscillator's output is fed back to the phase detector. It compares the oscillator's output with the reference color burst, and any phase difference between them results in either a positive or negative correction voltage. This correction voltage is fed back to the oscillator's reactance tube, which in turn corrects the oscillator phase. In this way, a high degree of oscillator stability is maintained.

OBTAINING THE G-Y SIGNAL FROM THE B-Y AND R-Y SIGNALS

To show how the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals are combined to make the G-Y signal, it will be necessary to show the composition of both signals. The left portion of Figure $5-20$ represents the transmitter. NOTE: Numeric values are given to the various voltages in Figure 5-20 for demonstration purposes only. They do not necessarily represent typical voltages.
A. To produce white, the camera lenses at the transmitter each see maximum color and their output is 10 volts.
B. The matrix takes 30% of the red lens circuitry's output, 59% of the green's, and 11% of the blue's and combines them to make the Y signal. In this example: $\mathrm{Y}=3+5.9+1.1=$ 10 V . Colors mixed in these proportions appear "white" to the human eye.
C. R-Y is generated by subtracting the Y signal voltage from the Red lens circuitry's output voltage; in this example $\mathrm{R}-\mathrm{Y}=$ $10-10=0 \mathrm{~V}$. Similarly, B-Y is generated
by taking the Y signal from the Blue lens voltage. Example: $\mathrm{B}-\mathrm{Y}=10-10=0$. NOTE: G-Y is not transmitted.
D. Represents the components of the broadcast containing color ($\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$) and luminance (Y) elements.
E. Represents the received signal components after they are separated into color and luminance components.
F. R-Y and B-Y signals are separated by their demodulators.
G. This section of the circuit takes 51% of R-Y signal and 19% of the B-Y signal. The output wave is inverted which is shown by a minus sign. Since the R-Y signal voltage is 0 volts, 51% of it is still 0 , and 19% of the $0, B-Y$ voltage is also 0 volts. Therefore, adding the two derived voltages still equals 0 for the G-Y signal voltage.
H. With no color signal voltage on the grids of the picture tube, the " Y " potential on the cathode will cause white to be shown.
$\begin{array}{ll}\text { Figure 5-21 shows how the G-Y yignal is devel- } & \text { duce a red color, using the same process as } \\ \text { oped to procuce a areen color, and Figure } 5-22 & \begin{array}{l}\text { described for white execep with different values } \\ \text { dhows how the R-Y signal is developed to pro- }\end{array} \\ \text { of voltage. The B-Y signal is developed in a }\end{array}$

block diagram

FIGURE 6-1

CIRCUIT DESCRIPTION

Refer to the Schematic Diagram (fold-out from Page 175) as well as to the Block Diagram (Figure 6-1, fold-out from Page 150) while reading this Description. The circuit part numbers (R1, C101, L201, etc.) for all resistors, capacitors, coils, and transformers have been put into the following groups. This grouping will make specific circuit parts easier to locate, both on the TV chassis and Schematic.
0 to 99 Parts in UHF tuner.
100 to 199 Parts in VHF tuner.
200 to 299 Parts on IF circuit board.
300 to 399 Parts on sound-sync circuit board.
400 to 499 Parts on color circuit board.
500 to 599 Parts on convergence circuit board.
600 to 699 Parts in low voltage power supply

700 to 799 Parts on horizontal output assembly.
800 to 899 Parts mounted on the chassis.

UHF TUNER

For shielding purposes, the UHF tuner is divided into three compartments; the RF compartment, the mixer compartment, and the oscillator compartment. These compartments, which are shown by the ground (dotted) lines on the Schematic, prevent undesirable feedback.

The input TV signal from the UHF antenna is coupled from coil L1 to the input tuned circuit, which consists of coil L2 and capacitor C1 (one section of the tuning capacitor). This circuit tunes in the desired UHF channel signal and rejects all others. The signal is then coupled to coil L3 in the mixer compartment.

In the oscillator compartment, capacitor C4 (a section of the tuning capacitor) tunes transistor oscillator Q1 to oscillate 45.75 mc (megacycles) above the video carrier frequency (41.25 mc above the sound carrier frequency). Coil L6, a single loop of wire, then couples the oscillator signal to the mixer compartment.

In the mixer compartment, capacitor C2 (a section of the tuning capacitor) is tuned with coil L3 to the frequency of the desired input signal. Coil L4 then picks up this signal and feeds it to diode D1. The incoming frequency and the oscillator frequency are combined in the diode mixer, resulting in an IF difference signal which is coupled through RF choke L5 and the output cable to the VHF tuner.

A UHF converter strip, for the UHF position in the VHF tuner, alters the circuits of tubes V101 and V102 so the VHF tuner operates as two additional IF amplifiers. See the Schematic of the converter strip. The output signal from the UHF tuner is coupled to the UHF converter strip through coil L106 of the VHF tuner. This signal is then coupled through input coil L113 on the converter strip to the grid of tube V101. Here the signal is amplified and coupled through coils L114 and L115 to the grid of V102A. The amplified signal from the plate of V102A is coupled through coil L111 and capacitor C123 to the output terminal of the VHF tuner. Oscillator stage V102B in the VHF tuner is disabled when the VHF tuner is set to the UHF position.

VHF TUNER

The signal received from the antenna is changed from a balanced to an unbalanced signal by the input "balun" coil, L101. From L101, the signal passes through a high-pass filter that attenuates all frequencies below channel 2. This filter consists of L102, L103, L104, and capacitors A, B, C, and D of P.E.C. (printed electronic circuit) 101.

From the high-pass filter, the input signal passes through feedthrough capacitor C105 and antenna coil L107 to the grid of RF amplifier tube V101. Neutralizing capacitor C109 balances the feedback voltage to V101.

A set of four coils for each VHF channel (mounted in the rotating turret) selects the correct channel. These four coils are antenna coil L107, RF plate coil L108, mixer grid coil L109, and oscillator coil L110.

The amplified signal from RF amplifier V101 is coupled through RF plate coil L108 and mixer grid coil L109 to the grid of the mixer stage, V102A. Capacitor C113 is the RF plate trimmer, and capacitor C114 is the mixer grid trimmer.

Tube V102B is connected as a Colpitts oscillator tuned to oscillate 45.75 mc above the picture carrier frequency (41.25 mc above the sound carrier frequency). The output signal from the oscillator is connected through capacitor C117 to the grid of the mixer tube.

The input signal from tube V101 and the oscillator signal from tube V102B beat together in mixer stage V102A, resulting in an IF difference signal that contains the picture and sound information. The picture IF carrier is at 45.75 mc and the sound IF carrier is at 41.25 mc . This IF signal is then coupled through mixer plate coil L111 and capacitor C123 to the IF output terminal of the VHF tuner. B+ voltage, filament voltage, AGC voltage, and the test points are all connected to the VHF tuner through feedthrough capacitors.

IF AND VIDEO AMPLIFIER

Figure 6-2 shows a complete television signal for channel 2. The IF amplifiers must be able to pass the complete bandwidth of this signal.

COMPLETE TELEVISION SIGNAL FOR CHANNEL 2

Figure 6-2

The IF signal from the VHF tuner is connected through a shielded cable and through capacitor C201 to the first IF transformer, T201. An adjacent-channel sound trap, composed of L201 and C202, along with control R201 is used to lower the level of the sound carrier.

From the secondary of the first IF transformer, the signal is coupled to the grid of first IF amplifier tube V201. AGC voltage is applied to this grid through a decoupling network consisting of R202 and C204, through the 47.25 mc trap, and through the secondary of T201.

Amplified signal from the plate of V201 is coupled through second IF transformer T202 to the grid of second IF amplifier tube V202. Note that the plate voltage of V201 comes from B+ through resistors R211 and R212 and through IF amplifier tube V202. Thus, the AGC voltage controls the gain of both stages, V201 and V.202. The first IF stage, V201, is tuned close to the picture IF carrier frequency and is arranged to have slightly more gain than V202 when less AGC voltage is developed. This causes the IF bandwidth to become narrow on weak signals, giving greater amplification to the sync signals and the other low frequency components of the picture signal.

The signal from the plate of V202 is coupled through IF transformer T203 to third IF amplifier tube V203. IF signal from V203 is coupled through detector transformer T204 to video detector diode D202. The secondary of T204 has a "bridged T" sound trap made up of control R219, coil L202, and the secondary winding of T204. This trap is tuned to 41.25 mc , which
severely attenuates the sound carrier before it reaches the video detector.

The video detector demodulates the IF signal so that the luminance (brightness) and color picture signals are available at the output of the detector circuit. The luminance signal from D202 passes through a "tweet filter" consisting of capacitors C221 and C222, and coil L204. This filter prevents any harmonics of the IF frequency from radiating back into the input circuits and producing an unwanted beat frequency. Coil L206 and resistor R221 form the detector load. From the filter, the luminance signal passes through a "bridged T" 4.5 mc sound carrier trap made up of R222, L205, and C223. This trap further attenuates any sound signal that is in the luminance signal. The luminance signal then passes through a series peaking network to the grid of video cathode follower tube V401B. This series peaking network is formed by R402 and L403. Tube V401B matches the impedance of the output circuit of the video detector to the delay line impedance.

The luminance signal from the cathode of V401B is connected to Contrast control R410. Capacitor C403 compensates the Contrast control so that it presents a flat frequency response to the signal over the Contrast control range. The amount of luminance signal chosen with the Contrast control is then coupled through resistor R406 and through the delay line. The delay line is made up of a coil of wire with a specific inductance and capacitance. This combination of inductance and capacitance is placed in the signal path to introduce a slight delay in the luminance signal. This delay is necessary, since the color signal must go through much more circuitry than the luminance signal before it reaches the CRT (cathode ray tube). From the delay line, the luminance signal is coupled through series peaking coil L413. It is then coupled through C404 to the Dots-Normal switch.

Brightness control R400 varies the brightness of the picture. This is done by varying the DC bias on the grid of V402, which varies the B+ voltage on the plate of this tube. Since the three cathodes of the CRT are connected to the plate circuit of V402, their emission is affected by the setting of the Brightness control. The DC component of the luminance signal is coupledfrom the video detector circuit to a voltage divider consisting of R403, Brightness control R400, and

R460. From the Brightness control, a portion of this DC component is coupled through the DotsNormal switch to the grid of video amplifier tube V402.

The Dots-Normal switch provides a means of switching a dot signal into the video circuit to make convergence (picture) adjustments. The dot generating circuit is made up of D401, NE -2, C405, C414, C415, C416, C417, R416, R417, R418, Vertical Dots control R420, and L405, the Horizontal Dots coil. The operation of the dot generating circuit will be explained later with the sweep circuits.

The luminance signal from the Dots-Normal switch is connected to the grid of video amplifier tube V402. Amplified luminance signal is coupled from the plate of V402 through a series peaking network consisting of coil L404 and R414 to the Normal-Service switch. The Nor-mal-Service switch disables the vertical oscillator and places a set-bias on the cathodes of the CRT. This switch is used when making the "gray scale" picture adjustment.

The luminance signal from the Normal-Service switch is coupled through R819 to the red cathode of CRT V801. The luminance signal is also coupled through Blue Drive control R817 to the blue cathode, and through Green Drive control R820 to the green cathode of the CRT. These controls are used to vary the level of the blue and green video signals in relationship to the fixed red signal.

SOUND IF, DETECTOR, CA THODE FOLLOWER, AND OUTPUT STAGES

The sound and picture carriers of a standard television signal are always separated by 4.5 mc. (Example: The separation between the 41.25 mc and 45.75 mc IF frequencies is 4.5 mc .) The sound carrier is frequency modulated and the picture carrier is amplitude modulated. See Figure 6-2.

These two signals beat together at sound and sync detector diode D201 to form a 4.5 mc difference frequency. This 4.5 mc sound signal is coupled through a tweet filter consisting of coil L203 and capacitor C219, to the grid of sound and sync amplifier tube V204A. (The sync signal will be explained later.)

The sound signal is then coupled from the plate of sound-sync amplifier V204A, through capacitor C229, to the grid of sound IF amplifier V204B. The sound take-off coil, L207, and capacitors C226 and C228 are connected in a parallel resonant circuit that is tuned to select only the 4.5 mc sound signal and couple it to V204B.

The 4.5 mc sound signal is amplified in tube V204B and coupled through capacitor C231 to sound IF plate coil L208. This coil is divided into three sections. The center section of this coil is connected in a swamped tuned circuit that is tuned to 4.5 mc . The small bottom portion of the coil (actually part of the same winding) along with capacitor C232 forms a neutralization circuit for tube V204B. The upper portion of coil L208 is tuned in series resonance with the input grid capacitance of tube V205. This produces the gain and bandwidth required for the 4.5 mc FM IF stage.

THE LOCKED OSCILLATOR (QUADRATURE GRID) DETECTOR AND SOUND OUTPUT CIRCUITS

Tube V205, which is connected in a locked oscillator detector circuit, separates the FM modulation from the 4.5 mc sound signal and converts it into an audio signal. The audio signal is then coupled to Volume control R342. The circuit operates in the following manner.

The 4.5 mc frequency modulated input signal coupled to control grid \#1 (pin 1) of tube V205, density modulates the electron stream flowing through the tube. This density modulated stream, as it flows by control grid \#2 (pin 7), induces a similar 4.5 mc oscillation at control grid \#2. This oscillation is reinforced by a tuned circuit, composed of quadrature coil L209 and capacitor C239. Resistor R236 is a swamping resistor to lower the Q of L209. The stray capacitance between control grid \#2 and control grid \#1 furnishes the feedback path that sustains the oscillations, therefore, the circuit oscillates much like a tuned-grid, tuned-plate oscillator.

The frequency induced at control grid \#2 will remain locked to the frequency present at control grid \#1 over a range of frequencies near 4.5 mc, but control grid \#2 voltage will lag behind control grid \#1 voltage by 90 degrees. These voltages are shown in Figure 6-3.

The locking range is the range of frequencies where the oscillator frequency locks onto the frequency of the incoming signal; this range becomes wider as the input signal becomes larger in amplitude. Within the locking range, the oscillator frequency changes with the frequency of the input signal. Outside the locking range, the oscillator fails to synchronize with the incoming signal and no audio signal is produced.

As the oscillator follows (locks onto) the frequency changes of the input signal, the phase angle between control grid \#1 and control grid \#2 becomes either less than 90 degrees or larger than 90 degrees, depending on which way the frequency changes. These phase changes cause amplitude changes in the plate current of V205. The average plate current of the tube thus varies with the frequency changes of the 4.5 mc frequency modulated sound signal.

Refer to Figure 6-3 and note that the plate current can be changed by shifting the phase of the control grid \#2 voltage slightly forward or backward. Note also that plate current only flows when the instantaneous voltage at control grid \#2 is at zero. Thus, amplitude modulation of the input signal does not affect the output of the detector.

Sound Output Circuits

The audio signal is coupled from the plate of detector tube V205, through capacitor C241, and to Volume control R342. Capacitors C242 and C243, and resistor R238 are used for loudness compensation.

Figure 6-3

Two types of sound output are available. Cathode follower stage V304A provides a low impedance output that can be connected to your high fidelity system. Power amplifier stage V304B amplifies the signal and connects it to output transformer T804. An 8Ω speaker is connected to the secondary of T804. Resistor R814 provides a load for the sound output stage when a speaker is not used.

GATED AGC AND SYNC SEPARATOR

Tube V301 is a twin pentode used in the gated AGC and sync separator circuits. The cathode, grid \#1, and grid \#2 of the tube are common to both sections. There is a separate grid \#3 and plate for each section.

The Gated AGC Circuit

The left-hand section of tube V301 is used to develop AGC bias voltage to control the gain of the tuner and the IF amplifiers. This prevents changes in contrast with changes in signal strength; it also prevents the receiver from overloading in strong signal areas. The circuit operates in the following manner.

The sync signal, with negative-going sync pulses, is coupled from the sound and sync detector circuit through resistor R223 and capacitor C302 to grid \#1 (pin 7) of V301. The Sync control R300 is adjusted so that the tip of this negative sync pulse almost drives the grid to cutoff. Then any noise pulses that are received on this grid cause it to cut of the tube and the noise signals do not appear in either of the plate circuits.

A sync signal is also coupled from the plate circuit of sound and sync amplifier V204A, through sound take-off coil L207, R226, R308, R304, and C301 to grid \#3 (pin 6) of V301. This signal has a positive-going sync pulse. Since this positive pulse was amplified by V204A it is much larger than the negative pulse at pin 7. It has a much larger effect on the plate current of V301.

Another pulse is coupled from a winding on the horizontal flyback transformer, through capacitor C308, to the AGC plate (pin 3) of V301. The polarity of this pulse is such that it places a large positive voltage on the AGC plate during horizontal retrace time. Current flows to the AGC plate only when both of these pulses, the pulse on the AGC plate and the pulse on grid \#3 are present at the same time.

How large or how small these gated pulses become depends on how large or how small the sync signal is that is received from the sync amplifier. The pulses are filtered in the AGC plate circuit by two separate AGC filters. One filter comprised of R306 and C203 supplies a varying negative AGC voltage to the first video IF amplifier; the other filter, comprised of R307 and C303 supplies AGC voltage to the VHF tuner.

Bias voltages for grids \#1 and \#3 of this section of V301 are adjusted by Sync control R300, which is connected in a voltage divider that consists of resistors R301, R302, R303, and R304. AGC control R310 adjusts the positive bias on the cathode of V301, thus it sets the level of the developed AGC voltage.

The biggest advantage of a gated AGC circuit such as this, is that noise pulses and sync signal level changes such as from airplane flutter, do not have much affect on the AGC voltage since the AGC amplifier only conducts during the horizontal sync pulse retrace time.

Sync Separator Circuit

The positive-going sync signal from the plate circuit of the sound and sync amplifier V204A is coupled through capacitors C306 and C307, and
resistor R312 to grid \#3 (pin 9) of the sync separator portion of V301. This signal causes grid current to flow, and the long time constant of capacitor C307 and resistor R313 causes this grid to be biased approximately to the blanking level of the composite video signal. This allows this portion of the tube to conduct only on signals which are greater in amplitude than the blanking level, or only on the sync pulses.

The same noise-cancelling effects, which were mentioned previously, are obtained both in the sync section and in the AGC section by the action of grid \#1. Large noise pulses cause grid \#1 to be cut off, and the noise pulses do not appear at the plate of the sync amplifier.

SWEEP CIRCUITS

Vertical Sweep Circuit

The vertical sync signals are coupled through isolating resistor R316 to the vertical integrating network which is contained in P.E.C. 1. This network adds the vertical sync pulses to form a large single pulse that triggers the vertical oscillator stage, V302A and V302B.

The free-running frequency of the vertical multivibrator is controlled by Vertical Hold control R330 which adjusts the time constant in the grid circuit of V302A. The actual vertical frequency is then locked to the televised signal by the vertical sync pulse from the vertical integrating network. This sync pulse is coupled through capacitors C310 and C314 to tube V302B.

From V302B, the vertical sweep waveform is coupled through vertical output transformer T801, and through the yoke plug and socket to vertical deflection coils L803 and L804. The pincushioning and convergence circuits, which will be explained later, are also connected to T801. Thermistor R826 is used to damp out any oscillations that might appear in the vertical deflection coils.

The vertical sweep waveform is also coupled from V302B to the dot generating circuit, and through capacitor C411 and resistor R413 to the cathode of each gun in the CRT. This vertical sweep waveform synchronizes the dot gen-
erating circuit to oscillate at a multiple of the vertical sweep frequency. The dot patterns are used to make color adjustments of the CRT. In the CRT, the vertical waveform is used to cut off the CRT during vertical retrace time.

Secondary windings on the vertical output transformer provide the vertical sweep waveform through pins $3,4,5,6$, and 7 of the convergence plug and socket to the convergence circuits. (The convergence circuits will be explained later.)

Figure 6-4

Pincushioning

Pincushioning, the stretching out of the raster at all four corners of the CRT, is a condition found in all wide-angle deflection rectangular picture tubes. Figure 6-4 shows the shape of the vertical and horizontal lines in a raster with pincushioning. Note that the greatest "stretch" distortion is in the areas furthest from the center of the CRT.

Figure 6-5 illustrates top and bottom pincushioning. Top and bottom pincushioning is

Figure 6-5
corrected in the vertical deflection circuits by adding vertical sweep amplitude at the top and bottom of the raster.

The vertical sweep waveform is coupled from V302B through vertical output transformer T801 to the top and bottom pincushion circuit. A simplified version of this circuit is shown in Figure 6-6. The vertical sawtooth current passes through the two control (center) windings of switching reactor T803. The path is from one vertical yoke winding, through a control winding, through one winding of coil L801, back through the other coil of L801, through the other control winding to the other vertical yoke winding.

The vertical sawtooth current, passing through the control winding of T803 controls the reluctance of the cores on which the outer (load) coils are wound. The horizontal sawtooth current passes through these load windings on its way to the horizontal deflection yoke. Any change in the reluctance in these cores changes the inductance of the load windings.

Figure 6-6

On one half of the vertical sawtooth, one load winding becomes higher in inductance than the other load winding; on the other half of the vertical sawtooth these inductances are reversed. These alternating changes in the load windings induce horizontal pulses into the control windings. These pulses are filtered into sine waves by pincushion phase coil L801 and capacitor C802. These sine waves are then added to the vertical sawtooth current in the control windings to correct top and bottom pincushioning.

These sine waves must be properly phased with the vertical sawtooth current to correct parabolic bending. Parabolic bending is the elongation of the scanning spot as it nears the edge of the CRT. Proper phase relationship, between the sine wave and the vertical sawtooth current is accomplished by adjusting L801. Top-Bottom control R810 is adjusted for the required amount of top and bottom pincushion correction.

Horizontal Sweep Circuit

The horizontal sync discriminator circuit includes the dual selenium diodes D301, resistors R328 and R329, and capacitors C323, C324, and C325. The $15,750 \mathrm{cps}$ horizontal sync signals are coupled from the plate of the sync separator, through capacitor C309, to this discriminator. Pulses from the horizontal output transformer are also coupled to this circuit through resistor R331.

This discriminator compares the horizontal sync pulses to the horizontal output pulses, and produces a DC voltage that represents the phase difference between the two signals. This DC voltage is filtered and then coupled to the grid (pin 2) of V303 in the horizontal oscillator (multivibrator) circuit.

The DC voltage from the discriminator adjusts the conduction point of V303, thus adjusting the horizontal oscillator to the same frequency as the sync signals. The purpose of this horizontal discriminator circuit is to prevent noise pulses from coupling through and triggering the horizontal oscillator.

The horizontal oscillator circuit uses a dual triode, connected as a stabilized cathode-coupled multivibrator. The free-running frequency of this multivibrator is adjusted by Horizontal Hold control, R340, which adjusts the time constant in the grid (pin 7) circuit.

Stabilizing coil L301 is adjusted to develop a sine wave of voltage at the correct horizontal oscillator frequency. This sine wave steepens the slope of the grid (pin 7) waveform of V303, thus stabilizing the multivibrator frequency during weak sync signal periods and lessening the chance of noise accidentally triggering the oscillator.

The horizontal sweep waveform is formed across capacitor C328 and resistor R337. This waveform is coupled through capacitor C322 and resistor R701 to horizontal output tube V701. The horizontal sweep waveform is then amplified by V701. From here it is fed to horizontal output (flyback) transformer T701.

Figure 6-7
Side pincushioning, as shown in Figure 6-7, is corrected by subtracting from the horizontal deflection width at the top and bottom of the vertical scanning line. Side pincushioning correction takes place in the horizontal deflection circuit and is accomplished with the use of saturable reactor T802. Figure 6-8 shows a simplified version of this circuit.

The center (control) winding of T802 has a low DC voltage applied through it to set up the proper operating inductance. The horizontal sweep waveform passes through the two outside (load) windings of T802 through wielth coil 6807 , and through both horizontal yoke coils, L805 and L806. A vertical pulse from T801 is fed to the control winding of $T 802$, which changes the reluctance of the cores in the load windings.

Figure 6-8

This change in reluctance affects the inductance of the load windings. As each vertical pulse passes through the control winding, the horizontal sweep waveform is reduced in amplitude, and thus reduces the horizontal deflection width to correct the side pincushioning effect.

Capacitor C814, along with resistor R828, tune the horizontal deflection coil to prevent the ringing (vertical lines in the picture) that the quick discharge of the horizontal waveform might tend to cause in the deflection circuit.

The horizontal output transformer and deflection coil circuit is tuned to a resonant frequency of approximately 71 kc (kilocycles) by the associated circuit capacitances. When the horizontal output tube is cut off during retrace time, the circuit oscillates for one half cycle at this frequency, thus obtaining the necessary rapid retrace.

After the retrace cycle of the horizontal waveform (the "flyback") has occurred, the polarity of the voltage on the transformer reverses, the next trace starts, and the voltage at the plate of damper tube V702 becomes positive. Thus the damper tube begins to conduct, and acts as a load across the terminals of the deflection coil
system; this damps out any further tendency of the circuit to oscillate at 71 kc . The horizontal waveform thus increases at a linear rate until the next retrace cycle occurs.

Coil L703 is adjusted to present the correctimpedance load to V702, thereby increasing the efficiency of the damper circuit. Coils L701 and L702 act as chokes to prevent high frequency oscillations from the damper stage from feeding into the RF stages. A horizontal retrace pulse is also coupled through capacitor C413 to the dot generating circuit.

The operation of the dot generating circuit is as follows. Neon lamp NE-2, capacitor C415 and resistor R 417 make up a relaxation oscillator. An oscillation is generated when voltage to C415 causes it to charge to a point where the neon lamp fires. This discharges C415 and it then starts charging again. This oscillation rate is controlled by varying the amount of voltage to C415. The higher the voltage, the faster it charges to the firing potential across the neon lamp. How fast it charges depends on the setting of Vertical Dots control R420. This control is used to vary the amount of voltage applied to the oscillator circuitry. The oscillations from the oscillator are synchronized at a multiple of the vertical sweep rate and applied through C417 to diode D401.

Coil L405 is tuned to a multiple of the horizontal retrace frequency ($15,750 \mathrm{cps}$). When the horizontal retrace pulse is applied to L405, a ringing pulse, or train of pulses, are generated. These pulses are mixed with the relaxation oscillator pulses and coupled through C417 to D401. Diode D401 is biased so that only the positive tips of the pulses are passed to V402. The Vertical Dots control provides a means of varying the number of horizontal rows of dots; the Horizontal Dots coil varies the number of vertical rows of dots. These dot patterns are used to make CRT color adjustments.

At the beginning of the retrace cycle, a positive pulse from T701 is applied through capacitors C706 and C715 and resistor R494 to the grid of blanker tube V409B. This pulse causes V409B to conduct and places a negative pulse across resistor R485. The strength of the negative pulse across this resistor is controlled by the bias on blanker tube V409B which, in turn, is governed by the position of the KineBias switch.

The three-position Kine-Bias switch changes the grid bias at each color grid of the picture tube in the following manner: This switch changes the gain of tube V409B, thus changing the amplitude of the pulse at its plate. The amplitude of this pulse determines the bias on tubes V409A, V410A, and V410B, which determine the picture tube grid bias.

Resistor R485 is common to color amplifier tubes V409A, V410A, and V410B. As these tubes conduct, a negative pulse is DC coupled to the color grid of each gun in the CRT and cuts them off. Therefore, the CRT is cut off during the horizontal retrace time. Tubes V409A, V410A, and V410B are also used to amplify and apply the color signals to the color grids of the CRT. Operation of the color circuits will be explained later.

The supply of $B+$ voltage to the plate of vertical oscillator tube V302A, horizontal output tube V701 and the \#2 grid of each gun in the CRT is increased from +390 volts to approximately
+800 volts by the action of the damper tube. The pulses of current that flow through the damper tube keep capacitor C711 charged to a voltage of approximately +410 volts. Since this voltage on C711 is in series with the B+ voltage of +390 volts, the two voltages can be added together to realize a total "B+ boost" voltage of +800 volts.

The boosted $\mathrm{B}+$ voltage is then applied through T701 to the plate of horizontal output tube V701. This boosted B+ is applied through resistor R714, Height control R320, and resistor R319 to the plate of V302A.

A voltage pulse from T701 is applied to diodes D701 and D702 to provide a B+ boosted boost voltage. The $\mathrm{B}+$ boosted boost voltage is applied to the \#2 CRT grids through the Red, Green, and Blue Screen controls (R822, R823, and R824). These controls are used to vary the amount of B+ boosted boost applied to the \#2 grids for proper gray scale tracking of the CRT.

NOTE: Proper gray scale tracking for black and white pictures is obtained when the Brightness and Contrast controls can be adjustedover their full range without any color (only variations of gray) appearing on the screen of the CRT.

Voltage pulses from T701 are also applied to focus rectifier tube V703 and coupled through R708 to the focusing grid (pin 9) of the CRT. Coil L704 provides a means of varying the focus voltage for the clearest picture on the CRT.

HIGH VOLTAGE POWER SUPPLY

During retrace time, the steep sides of the horizontal "flyback" waveform cause very high voltage pulses to be induced in transformer T701. Another winding on the transformer steps up these voltages to still higher levels by autotransformer action. These stepped-up pulses are applied to the plate of high voltage rectifier V704; they are used in this circuit to produce high voltage for the CRT.

This high voltage is regulated (held at a constant level) by voltage regulator tube V705. The grid of V705 is connected to the bottom of T701 through R711. High Voltage Adjust control R710 is connected through R712 to the grid of V705 and is adjusted so that the high voltage is held constant at approximately 24,000 volts over the range of picture brightness.

Regulator tube V705 operates as follows: During the time of an all-white picture, the beam currents in the CRT are very high. This keeps the high voltage near 24,000 volts and very little current is drawn by V705 for regulation purposes. During the time of an all-black picture, there are no beam currents in the CRT. As a result, the high voltage tends to increase; this causes V705 to conduct, holding the high voltage constant near 24,000 volts.

Filament voltage for V703 and V704 is obtained from small (one-turn) windings on transformer T701. High voltage from the filament of V704 is filtered by the capacitance between the inside and outside coatings of the CRT. C709 and C713 are spark-gap capacitors which provide arc protection for the CRT.

COLOR CIRCUITS

This section describes the color circuits of the TV Set. The purpose of these circuits is to extract the color signal from the luminance signal. The color signal is developed into three primary color signals which are applied to the CRT. The color stages are represented by the shaded blocks in Figure 6-1.

The signal path through the color stages will be mentioned first, then each stage in the color circuit will be described. This should give you a better understanding of how and where each color stage affects the color signal. The color signal is amplified by color amplifier stage V401A and coupled to bandpass amplifier V403A.

Amplified color signal is then coupled to X and Z demodulator stages V406 and V405. After demodulation, the color signals are coupled to color amplifier stages V410A (R-Y), V410B (G-Y), and V409A (B-Y). The amplified color signals are then coupled to the red, green, and blue control grids in the CRT.

Color, Burst, and Color Killer Amplifiers

The video signal is coupled from the video detector through capacitor C418 to the grid of color amplifier tube V401A. Coil L401 and capacitor C418 form a wave-shaping network. Since the color signal is in the higher frequencies of the luminance signal (see Figure $6-2$), the wave-shaping network passes the higher frequencies to be amplified and limits the lower frequencies of the luminance signal. The amplified color signal from V401A is coupled through capacitor C430 to the grid of bandpass amplifier, V403A.

At the beginning of the horizontal retrace, a pulse applied from horizontal output transformer T701 causes blanker tube V409B to conduct. This conduction develops a pulse at the cathode of V403A during retrace time, causing the bandpass amplifier tube to be cut off. This prevents the burst signal from being passed by V403A during retrace time and being seen on the CRT. At the same time, T701 also couples a positive pulse through R428 to the grid of burst amplifier stage V404, causing this tube to conduct only during the horizontal retrace time.

Color Killer and ACC Detector

The color "burst" signal is a small portion of the 3.58 mc color carrier signal used in the TV transmitter. This burst signal is transmitted with the horizontal sync pulse. The burst signal is used as a reference to determine the proper phase and frequency of the 3.58 mc signal developed in the TV Set.

Figure 6-9

The color burst signal from the plate of V401A is coupled through capacitor C422 to the grid of V404. Here the burst signal is amplified and then is coupled through burst phase transformer T402. The burst signal is coupled through C437 and C438 and placed across the plate and cathode (pins 7 and 9) of the color killer and ACC (automatic color control) detector, V407A. See Figure 6-9. At pin 8 of this tube (plate and cathode tied together), a 3.58 mc signal is applied from 3.58 mc oscillator tube V408A. When the burst signal is present, a negative voltage is developed at the junction of R446 and R447. This negative voltage is applied to the grid of color killer amplifier tube V403B.

Color Killer control R430 is adjusted to provide a reference bias voltage on the grid of V403B. This causes this tube to be cut off during the time the burst signal is being transmitted. The positive pulse from the plate of V403B is DC coupled to the grid of bandpass amplifier V403A, causing V403A to conduct and pass the color signal. When no color signal is being received, there is no burst signal and color killer amplifier V403B holds V403A in cutoff. This prevents the bandpass amplifier from operating when no color signal is being received.

During the time the burst signal is received, a negative voltage is also developed at the junction of R444 and R445. This negative voltage is coupled through R421 and R419 to the grid of V401A. This is the ACC (automatic color control) voltage which controls the gain of tube V401A. If the burst signal is weak, a small negative voltage is applied to the grid of V401A, allowing greater amplification of the color signal; when the burst signal is strong, a large negative voltage is fed to the grid of V401A, causing less amplification of the color signal in this tube. This ACC action holds the color signal going through color amplifier V401A at a constant level.

3.58 MC Oscillator, Phase Detector, and Reactance Control Tube (Color Sync)

Tube V408A is a modified tuned-grid, tunedplate crystal-controlled oscillator stage designed to operate at $3.58 \mathrm{mc}(3579.545 \mathrm{kc}$). See Figure 6-10. A 3.58 mc crystal is used in the tuned-grid circuit and determines the frequency of the oscillator signal. The voltage set up by the crystal as it vibrates, is applied to the grid (pin 2). This controls the signal frequency in the tuned-plate circuit. Feedback voltage is directly coupled from the screen grid (pin 3) to the crystal.

Figure 6-10

A 3.58 mc signal from this tube is coupled through C446 to pin 2 (plate and cathode tied together) of phase detector tube V407B. A 3.58 mc burst signal from the transmitter is coupled from T402, through C442 and C443 to the plate and cathode (pins 1 and 3) of phase detector tube V407B. These two 3.58 mc signals are compared (phase and frequency) in this tube. The 3.58 mc signal from V408A must be locked in phase and frequency with the 3.58 mc burst signal from the transmitter. If the two signals are not in phase, a DC voltage is developed at the junction of R449 and R451. This control voltage is DC coupled through R454 to the grid of reactance control tube V408B.

The control voltage from the phase detector will vary in proportion, plus or minus, depending on the direction of the error in frequency or phase, with respect to the 3.58 mc burst signal. This varying control voltage on the grid of V408B causes the plate current to change, which in turn causes the tube circuit reactance to change. Oscillator tube V408A sees the reactance tube as a variable capacitor connected in parallel with its grid circuit. As the control voltage varies, the changing reactance of V 408 B tunes the grid circuit of V408A, which in turn causes the oscillator frequency to increase or decrease until it is locked in phase and frequency with the 3.58 mc burst signal.

Bandpass Amplifier and Demodulators

The signal from color amplifier V401A is amplified by bandpass amplifier V403A and is then coupled through bandpass transformer T401 to Color control R440. Tube V403A amplifies and transformer T401 passes only the range of frequencies containing the color signal. Therefore, the color portion of the signal appears across the Color control. Any remaining 4.5 mc signal has been attenuated, the lower frequency luminance signal has been blocked, and the color burst and sync signals have filtered out.

Color signal from the Color control is fed through coil L406 to control grid \#1 (pin 1) of V406 and V405, the X and Z demodulators. The 3.58 mc signal from T 403 is fed to control grid \#2 (pin 7) of V405 and V406. V405 receives its signal from T403 through a phase shifting network consisting of L408, R463, and C454. This network shifts the phase of the 3.58 mc signal approximately 60 degrees.

The X demodulator operates as follows: The 3.58 mc signal applied to control grid \#2 is of constant amplitude and frequency. The color signal applied to control grid \#1 is constantly varying in phase and amplitude; these variations in the color signal represent changes in the colors in the transmitted TV picture. As the color signal varies, it controls the conduction of V406 during the time this tube is turned on by positive half cycles of the 3.58 mc oscillator signal on control grid \#2.

Figure 6-11

See Figure 6-11. In condition A, the color signal is in phase with the oscillator signal and the tube conducts heavily. As the phase of the color signal goes negative, at the same time the oscillator signal is positive, the tube conducts less, as in condition B . In condition C , the color signal is going highly negative. This increases the negative voltage on control grid \#1 and causes the average current through the tube to decrease. Therefore, the current through the tube is proportional to the amplitude of the inphase portion of the color signal. Amplitude modulation of the color signal does not affect the output signal of the tube.

Operation of the Z demodulator is the same as that of the X demodulator, except that the oscillator signal applied to control grid \#2 has been shifted 60 degrees. Since the reference wave is shifted by 60 degrees before it is applied to the Z demodulator, the X demodulator and Z demodulator tubes conduct at 0 degrees and 60 degrees, respectively.

The color signals from the demodulators are coupled through a filter network formed by a capacitor and a coil, C457 and L407 for the X demodulator, and C456 and L410 for the Z demodulator. This filter network filters out the 3.58 mc oscillator signal that was used for demodulation and passes the color signal. The red, green, and blue color signals are designated as R-Y, G-Y, and B-Y, respectively. They are expressed in this manner to indicate their relationship to the Y (luminance) signal.

Color Amplifiers

From the X demodulator filter network, the R-Y color signal is coupled through C458 to R-Y amplifier tube V410A. Amplified R-Y signal is then DC coupled through resistors R471 and R472 to the control grid (pin 3) of the red gun in the CRT. The B-Y color signal from the Z demodulation filter network is coupled through C463 to B-Y amplifier tube V409A. After amplification, the B-Y signal is DC coupled through resistors R487 and R488 to the control grid (pin 12) of the blue gun in the CRT.

As the $R-Y$ and $B-Y$ tubes conduct, due to the color signals they receive from the demodulators, a bias voltage is developed across resistor R485. This resistor is common to the cathodes of V409A, V410A and V410B. The bias voltage developed across R 485 due to color signals in V409A and V410A, affects the conduction of V410B. As V410B conducts, it develops the G-Y signal which is amplified and then is DC coupled through resistors R478 and R479 to the control grid (pin 7) of the green gun in the CRT. Thus, a G-Y signal is produced by combining the proper proportion of $R-Y$ and B-Y signals. R475, L409, and C461 form a matching network in the grid circuit of V410B so that it has the same gain and frequency response characteristics as V409A and V410A. Figure $5-21$ on Page 149 gives additional information on how the G-Y signal is obtained.

Figure 6-12

CA THODE RAY TUBE, DEFLECTION YOKE, AND CONVERGENCE YOKE

The three main parts of the color CRT are the phosphor-dot screen, the aperture mask, and the three-electron gun assembly. See Figure 6-12. The phosphor screen has three different types of phosphors placed in triangular dot patterns (triads) on it. The dots are placed very close together but do not touch each other. See Figure 6-13. Each dot in each triad glows a different color (red, green, and blue) when an electron beam strikes it.

Figure 6-13

The characterisitics of the human eye are such that the light emissions from a triad of phosphor dots cannot be distinguished separately at normal viewing distances. The eye blends the three light emissions to give the appearance of a single color. For example, when the light outputs of a triad of dots are equal, each dot glows with its respective color, but the eye blends them together so that the screen will appear to be white. By controlling the energization of the dots, it is possible to produce a variety of colors.

There is an electron beam for each of the three color dots. These beams must be made to strike their respective set of dots at all times. An aperture mask is placed between the electron guns and the dots for this purpose.

The aperture mask is a thin sheet of metal that has been etched with a series of small holes. These holes are positioned so that each one is aligned with a triad of phosphor dots. The three electron beams from the guns must converge at a hole in the aperture mask to properly strike a triad of phosphor dots. The three beams are controlled so that each beam strikes only its respective color dot as the beams are scanned across the screen.

By varying the intensity of the three beams together, the brightness of the triad of dots can be controlled. In addition, the intensity of each individual beam can be controlled, making it possible to change the mixture of colors and thus produce all desired colors.

Figure 6-14

The CRT employs three electron guns; red, green, and blue. The guns are spaced equidistant, 120 degrees apart from each other, around the center axis of the gun assembly. Each gun is identical and complete within itself. That is, each gun contains a filament, \#1 grid (control), \#2 grid (accelerating anode), and a \#3 grid (focus electrode). The \#4 grid is a high voltage anode that is connected to the aperture mask and the inside coating of the CRT. See Figure 6-14. Each gun has a pair of pole pieces mounted at the end of the \#4 grid. These pole pieces are used in conjunction with the convergence electromagnets to provide a means of positioning each beam for correct convergence. In addition, a pair of extra pole pieces are mounted on the focus electrode of the blue gun only. These pole pieces are used in conjunction with a lateral correction magnet to properly converge the blue beam.

The physical relationship between the electron beams, aperture mask, and phosphor screen is very precise. Very close tolerances are used during manufacture of the CRT, but some variations still exist. Static magnetic beam controls are mounted outside the neck of the CRT and are used to compensate for these variations. See Figure 6-15.

Figure 6-15
A lateral correction magnet is used to provide a magnetic field that will move the blue beam in a horizontal direction.

A beam positioning magnet (pole piece assembly) is mounted directly over each gun. Each magnet provides a magnetic field that will move the beam of its gun toward or away from the center axis of the CRT. Their fields act on the pole pieces mounted at the end of each gun.

In addition, a purity magnet is placed completely around the neck of the CRT. This magnet is actually two magnetic rings. Each ring has a north and a south pole and can be rotated 360 degrees. With unlike poles adjacent to each other, no appreciable magnetic field exists. As one ring is rotated, the field becomes strongest when the like poles are adjacent to each other. This field is uniform and exerts an equal force on all three beams. Depending on the position of both rings, the force the field exerts can position the three beams vertically, horizontally, or anywhere between the vertical or horizontal axis.

Figure 6-16

Deflection Yoke

The deflection yoke is made up of two different pairs of coils. The coils are positioned perpendicular to each other and are shaped in such a manner as to fit over the neck of the CRT. See Figure 6-16. The ends of the coils are sharply flared away from the center. This is done to prevent the magnetic fields around these sections from interacting with the beam positioning magnets and convergence coils. When current is applied through the deflection yoke coils, a magnetic field is formed between them. This field varies in strength and direction in proportion to the signal current applied to the coils. This exerts an equal force on all three beams and deflects them vertically, and horizontally across the screen.

The physical position of the yoke on the neck of the CRT is very critical. If the yoke is improperly positioned, the beams may strike the wrong color dots, giving the wrong color purity to the picture.

CONVERGENCE CIRCUITS

As the beams scan toward the outer edges of the screen, the distance between the guns and the screen becomes longer than when the beams were scanning the center area of the screen. This varying distance between the guns and the screen must be compensated for while the beams are scanning.

To accurately control where the three beams converge, as they are scanning the screen, a horseshoe shaped magnet is placed directly over each gun. A horizontal and vertical coil is placed over each magnet. The horseshoe magnets and the horizontal and vertical coils are located in the pole piece assemblies as shown in Figure 6-15. An AC signal, that is in step with the horizontal and vertical sweep signals, is applied to each coil to produce a resultant magnetic field. This field corrects the direction of the beams before the field of the deflection yoke acts on them. These convergence coils are called the dynamic beam controls.

The AC signal for the convergence coils is taken from the vertical and horizontal sweep circuits. It is the job of the convergence circuits to modify the sweep waveforms in amplitude, shape, and phase, and then to couple the resultant waveforms into the convergence coils.

VERTICAL CONVERGENCE

Figure 6-17

For explanation purposes, the horizontal and vertical convergence circuits have been separated in Figures 6-17 and 6-18. The vertical circuit will be explained first. Controls R509 and R510 vary the overall amplitude of the input signal and the remaining controls vary the waveshape of the input signal.

Vertical

A sweep waveform from the cathode of vertical output tube V302B is coupled through capacitor C806 and through pin 2 of the connectors to controls R510 and R509. The wave-shaping network made of R813, C807, and C808 tends to change the sawtooth shape at the cathode of V302B, to a more parabolic shape. Part of this waveform is tapped from R510 and through controls R511 and R513 for the red and green
convergence coils; and from R509 for the blue convergence coil. Resistor R512 and diode D501D provide more shaping of the waveform.

Two waveforms of opposite polarity are coupled from a secondary winding of T801, through pins 4 and 5 of the connectors, to controls R515 and R514. Here, the resultant waveforms from the arms of the controls can be varied in amplitude and polarity, depending on the setting of the controls. The waveform at the controls corresponds to a sawtooth with the steepness and direction of the sawtooth shape variable with the setting of the controls. The waveform from R515 is coupled to the blue coils where it is mixed with the parabolic waveform from R509. The waveform from R514 is coupled to the red and green coils where it is mixed with the parabolic waveform from R510.

Figure 6-18

Horizontal

In the horizontal convergence circuitry (Figure $6-18$), each control is labeled to indicate the convergence coil affected when adjusting that control. A pulse waveform is coupled from a secondary winding on T701 through pin 8 of the connectors to the convergence circuitry. As this waveform is coupled through C503, and T501 to the blue coils, C503 and T501 cause the shape of the waveform to beome parabolic. Adjusting T501 varies the amplitude of the waveform. C501, C502 and Blue Left control R503 broadens or narrows the waveform. Diode D501A clamps the peak AC portion of the waveform.

The secondary of T501 couples two waveforms of equal and opposite polarity to the red and green convergence coils. The main red-green input waveform is coupled through C504 and L502 to the center of L503. The wave-shaping network of C504 and L503 tends to make the waveform parabolic in shape. Adjusting L503 varies the amount of waveform applied to either the red or green convergence coils. The wave-shaping net-
work made up of C505, C506, and control R507, varies the amplitude and the polarity of the waveform applied to the coils. Control R506 varies the amplitude of the waveform, while diodes D501B and D501C clamp the peak AC portion of the waveforms. The resultant waveforms are coupled to the red and green convergence coils where they are mixed with the waveforms from T501.

LOW VOLTAGE POWER SUPPLY

Power is supplied from the AC power line through the Power Switch and through transformer T601. The high voltage secondary of T601 uses diodes D601 and D602 with capacitors C605 and C606A as a full-wave voltage doubler.

An automatic degaussing circuit, consisting of thermistor R606, voltage dependent resistor R605, and degaussing coil L602, is connected in series with the high voltage secondary winding of T601. When cold, R606 offers a high
resistance to the secondary current, while R605 has a low resistance due to the high voltage that is across it. Thus, most of the current from T601 goes through R605 and coil L602 to degauss the CRT.

As R606 heats, its resistance drops allowing more current to pass through it. The decrease of current through R605 causes its resistance to increase. This action continues until all the current is going through R606, and automatic degaussing stops. This circuit action occurs each time the TV Set is turned on from a cold (not warmed up) start.

A circuit breaker is also connected in series with the high voltage secondary of T601 to protect the transformer in case of a short circuit. The rectified output from this winding is fed through filter choke $L 601$ to a three-section filter network made up of capacitors C608A, C608B, and C608C, and resistors R603 and R604. This filter network provides decoupling and smooths out power supply ripple.

A voltage divider network consisting of R601 and R602 provides a DC bias voltage to the tube filament winding for V705 and V801. This provides a safe operating voltage difference between the cathode and filament in these two tubes.

Another filament winding supplies filament voltage to all the remaining tubes. A short length of \#22 wire, which is connected between this winding and the filament string, acts as a fuse to protect the transformer in case of a short in the filament wiring. The pi-filter made up of C244, C245, and L212 prevents high frequencies from being coupled from the filament of V203 to the rest of the filaments.

Filament voltage is connected to the VHF tuner through feedthrough capacitor C127. This capacitor keeps any high frequencies which may appear on the filament string from entering the tuner.

SOUND-SYNC CIRCUIT BOARD (VIEWED FROM FOIL SIDE)

CONVERGENCE CIRCUIT BOARD
(VIEWED FROM FOIL SIDE)

CHASSIS PHOTOGRAPHS

TOP VIEW OF CHASSIS

BOTTOM VIEW OF

TUNER BRACKET

CONVERGENCE BRACKET

NOTE THIS FIGURE SHOULD BE GLUED
NSEE THE CABINOR AN INSE
WALL FOR CUSTIOM MOUNTING.
FIGURE 3-1 (DUPLICATE)

horizontal output assembly

REPLACEMENT PARTS PRICE LIST

SOUND-SYNC CIRCUIT BOARD

The following prices apply only on purchases from the Heath Company where shipment is to a U.S.A. destination. Add 10% (minimum 25 cents) to the price when ordering from an authorized Service Center or Heathkit Electronic Center to cover local sales tax, postage and handling. Outside the U.S.A. parts and service are available from your local Heathkit source and will reflect additional transportation, taxes, duties and rates of exchange.

A completely assembled sound-sync circuit board (\#100-650), for replacement purposes only, can be obtained for $\$ 18.55$. Individual parts can be purchased for the prices listed below.

| PART PRICE | DESCRIPTION |
| :--- | :--- | :--- |
| No. | Each |

RESISTORS
1/2 Watt

$1-45$.10	220Ω
$1-9$.10	1000Ω
$1-10$.10	1200Ω
$1-81$.10	1500Ω
$1-14$.10	3300Ω
$1-20$.10	$10 \mathrm{~K} \Omega$
$1-109$.10	$12 \mathrm{~K} \Omega 5 \%$
$1-21$.10	$15 \mathrm{~K} \Omega$
$1-23$.10	$27 \mathrm{~K} \Omega$
$1-24$.10	$33 \mathrm{~K} \Omega$
$1-47$.10	$56 \mathrm{~K} \Omega$
$1-60$.10	$68 \mathrm{~K} \Omega$
$1-102$.10	$82 \mathrm{~K} \Omega$
$1-26$.10	$100 \mathrm{~K} \Omega$
$1-30$.10	$270 \mathrm{~K} \Omega$
$1-31$.10	$330 \mathrm{~K} \Omega$
$1-32$.10	$390 \mathrm{~K} \Omega$
$1-33$.10	$470 \mathrm{~K} \Omega$
$1-34$.10	$680 \mathrm{~K} \Omega$
$1-35$.10	12 megohm
$1-37$.10	2.2 megohm
$1-38$.10	3.3 megohm
$1-71$.10	4.7 megohm
$1-40$.10	10 megohm

PART No.	PRICE Each	
Other Resistors		
$1-22-1$.10	
$1-1200 \Omega 1$ watt		
$1-4-2$.20	$470 \Omega 2$ watt
$1-4$.20	$15 \mathrm{~K} \Omega 2$ watt

CAPACITORS

Mica

$20-118$.15	$15 \mu \mu \mathrm{f}$
$20-109$.15	$62 \mu \mu \mathrm{f}$
$20-115$.25	$300 \mu \mu \mathrm{f}$
$20-122$.30	$1000 \mu \mu \mathrm{f}$

Disc

21-6 . $10 \quad 27 \mu u f$
21-32 . $10 \quad 47 \mu \mu \mathrm{f}$
21-21 $\quad .10 \quad 200 \mu \mu \mathbf{f}$
21-22 . $10 \quad 220 \mu \mu \mathrm{f}$
21-13 . $10 \quad 500 \mu \mu \mathbf{f}$
21-24 . $10 \quad 800 \mu \mu \mathbf{f}$
21-14 . 10 . $001 \mu \mathrm{fd}$
$21-25 \quad .10 \quad .0013 \mu \mathrm{fd}(1300 \mu \mu \mathrm{f})$
21-26 . 10 . $003 \mu \mathrm{fd}$
21-16 . $10 \quad .01 \mu \mathrm{fd}$
21-31 . 10 . $02 \mu \mathrm{fd}$

Tubular

$29-1$.15	$3900 \mu \mu \mathrm{f}$
$23-40$.15	$.0068 \mu \mathrm{fd}$
$23-100$.30	$.015 \mu \mathrm{fd}$
$23-11$.35	$.1 \mu \mathrm{fd}$

PART No.	PRICE Each		
Resin			
$27-59$.15		$.0047 \mu \mathrm{fd}$
$27-57$.15		$.018 \mu \mathrm{fd}$
$27-47$.20	$.1 \mu \mathrm{fd} 50 \mathrm{~V}$ or 100 V	
$27-28$.20	$.1 \mu \mathrm{fd}$	

MISCELLANEOUS

$40-492$.55	Horizontal oscillator coil $57-32$
$84-32$.35	Dual selenium diode P.E.C. (printed electronic circuit)

PART No.	ERICE	DESCRIPTION

Miscellaneous (cont'd.)
85-145-5 1.70 Sound-sync circuit board
344-51 .05/ft Brown hookup wire
434-130 . 15 9-pin tube socket
434-156 . 20 9-pin novar tube socket
331-6 . 10 Solder
595-838 2.00 Manual

COLOR CIRCUIT BOARD

A completely assembled color circuit board (\#100-649), for replacement purposes only, can be obtained for $\$ 35,00$. Individual parts can be purchased for the prices listed below.

PART No.	PRICE Each	DESCRIPTION
RESISTORS		
1/2 Watt		
1-49	. 10	22Ω
1-83	. 15	$56 \Omega 5 \%$
1-3	. 10	100Ω
1-66	. 10	150Ω
1-45	. 10	220Ω
1-48	. 10	390Ω
1-6	. 10	470Ω
1-52	. 10	$680 \Omega 5 \%$
1-9	. 10	1000Ω
1-81	. 15	$1500 \Omega 5 \%$
1-14	. 10	3300Ω
1-46	. 10	3900 ת
1-16	. 10	4700Ω
1-19	. 10	6800Ω
1-22	. 10	$22 \mathrm{~K} \Omega$
1-23	. 10	$27 \mathrm{~K} \Omega$
1-24	. 10	$33 \mathrm{~K} \Omega$
1-67	. 10	$39 \mathrm{~K} \Omega$
1-25	. 10	$47 \mathrm{~K} \Omega$
1-60	. 10	$68 \mathrm{~K} \Omega$
1-26	. 10	$100 \mathrm{~K} \Omega$
1-27	. 10	$150 \mathrm{~K} \Omega$
1-29	. 10	$220 \mathrm{~K} \Omega$
1-30	. 10	$270 \mathrm{~K} \Omega$
1-31	. 10	$330 \mathrm{~K} \Omega$

$\begin{gathered} \text { PART } \\ \text { No. } \end{gathered}$	PRICE Each	DESCRIPTION
Resistors - 1/2 Watt (cont'd.)		
1-32	. 10	$390 \mathrm{~K} \Omega$
1-35	. 10	1 megohm
1-37	. 10	2.2 megohm
1-71	. 10	4.7 megohm
1-40	. 10	10 megohm
1 Watt		
1-54-1	. 20	270 ת 5\%
1-25-1	. 10	6800Ω
1-27-1	. 10	$33 \mathrm{~K} \Omega$
1-7-1	. 10	$47 \mathrm{~K} \Omega$
Other Resistors		
5-1-2	. 30	3900Ω (3.9 K) 2 watt, film
5-5-2	. 15	$10 \mathrm{~K} \Omega 2 \mathrm{watt}$, film
5-4-2	. 15	$27 \mathrm{~K} \Omega 2$ watt, film
5-3-2	. 20	$47 \mathrm{~K} \Omega 2$ watt, film
5-2-3	. 20	$270 \Omega 3$ watt, film
5-1-3	. 20	$2700 \Omega(2.7 \mathrm{~K}) 3 \mathrm{watt}$, film

Packaged and matched resistors (\#4-10) consisting of:
4-6 .25* 1 megohm 5\% low-noise

* Matched pair.

Packaged and matched resistors (\#4-11) consisting of:
4-7 .50** 2.2 megohm 5\% low-noise **Matched set of four.

PART No.	PRICE Each	DESCRIPTION	PART No.	PRICE Each	DESCRIPTION
CAPACITORS			COILS		
Mica			45-39	. 20	$4.7 \mu \mathrm{~h}$ choke
20-52	. 15	$7.5 \mu \mu \mathrm{f}$	40-583	. 20	$10 \mu \mathrm{~h}$ peaking
20-104	. 15	$130 \mu \mu \mathrm{f}$	40-582	. 15	$62 \mu \mathrm{~h}$ peaking
20-105	. 20	$180 \mu \mu \mathrm{f}$	40-599	. 15	$112 \mu \mathrm{~h}$ peaking
20-139	. 25	$330 \mu \mu \mathbf{f}$	40-488	. 15	$180 \mu \mathrm{~h}$ peaking
Disc			40-581	. 15	$620 \mu \mathrm{~h}$ peaking
21-61	. 10	$6.8 \mu \mu \mathrm{f}$ (6.8 K)	40-577	. 65	3.58 megacycle reactance
21-3	. 10	$10 \mu \mu \mathrm{f}$	40-578	. 50	Color amplifier plate
21-5	. 10	$20 \mu \mu \mathrm{f}$	40-585	. 50	Dot generator
21-7	. 10	$33 \mu \mu \mathrm{f}$			
21-86	. 10	$75 \mu \mu \mathrm{f}$	TRANSFORMERS		
21-11	. 10	$150 \mu \mu \mathbf{f}$			
21-22	. 10	$220 \mu \mu \mathrm{f}$	52-75	. 90	Burst phase
21-17	. 10	$270 \mu \mu \mathrm{f}$	52-77	. 95	3.58 megacycle coupling
21-14	. 10	. $001 \mu \mathrm{fd}$	52-76	1.35	Color bandpass
21-36	. 10	. $002 \mu \mathrm{fd}$	MISCELLANEOUS		
21-26	. 10	. $003 \mu \mathrm{fd}$			
21-27	. 10	. $005 \mu \mathrm{fd}$	56-20	. 55	1N295 crystal diode
21-16	. 10	. $01 \mu \mathrm{fd}$	60-21	. 20	DPDT slide switch
21-31	. 10	. $02 \mu \mathrm{fd}$	85-148-7	3.30	Color circuit board
Other Capacitors			206-207	. 15	Coil shield
28-4	. 10	$1.5 \mu \mu \mathrm{f}$ phenolic	344-56	.05/ft	Blue hookup wire
21-29	. 15	$4.7 \mu \mu \mathrm{f}$ ceramic	346-1	.10/ft	Small sleeving
23-52	. 20	. $047 \mu \mathrm{fd} 400 \mathrm{~V}$ tubular	404-238	3.00	3579.545 kilocycle crystal
27-36	. 15	. $01 \mu \mathrm{fd}$ resin	412-11	. 20	NE-2 neon lamp
27-28	. 20	. $1 \mu \mathrm{fd}$ resin	434-129	. 15	7-pin tube socket
27-35	. 35	. $22 \mu \mathrm{fd}$ resin	434-130	. 15	9 -pin tube socket

CONVERGENCE CIRCUIT BOARD

A completely assembled convergence circuit board (\#100-651), for replacement purposes only, can be obtained for $\$ 24.15$. Individual parts can be purchased for the prices listed below.

PART	PRICE	DESCRIPTION
No.	Each	

RESISTORS

$1-1$.10	$47 \Omega 1 / 2$ watt
$1-15-1$.10	$47 \Omega 1$ watt
$1-17-1$.10	$100 \Omega 1$ watt
$1-18-1$.10	$150 \Omega 1$ watt
$1-54-1$.20	$270 \Omega 5 \% 1$ watt

CAPACITORS

$27-54$.25	$.082 \mu \mathrm{fd}$ resin
$27-28$.20	$.1 \mu \mathrm{fd}$ resin
$27-55$.25	$.15 \mu \mathrm{fd}$ resin
$27-56$.35	$.27 \mu \mathrm{fd}$ resin
$25-44$.50	$25 \mu \mathrm{fd}$ electrolytic

PART PRICE DESCRIPTION
CONTROLS

$11-56$.35	60Ω (white knob)
$11-66$.35	60Ω (gray knob)
$11-57$.35	120Ω (black knob)
$11-59$.35	150Ω (blue knob)
$11-67$.35	500Ω (yellow knob)

COILS

$40-736$.40	Convergence
$40-738$.45	Convergence
$40-739$.60	Convergence
$40-737$.55	Convergence

MISCELLANEOUS

57-43 .85 4-section selenium diode 85-147-2 1.00 Convergence circuit board 262-8 .05 Terminal pin

IF CIRCUIT BOARD ASSEMBLY (\#100-685)

A completely assembled IF circuit board (\#100685) can be obtained for $\$ 38.80$. Individual parts can be purchased for the prices listed below.

PART No.	PRICE Each	DESCRIPTION
RESISTORS		
1-41	. 10	10Ω
1-83	. 15	56Ω
1-2	. 10	68Ω
1-3	. 10	100Ω
1-66	. 10	150Ω
1-42	. 10	270Ω
1-4	. 10	330Ω
1-119	. 10	560Ω
1-14	. 10	3300Ω
1-16	. 10	4700Ω
1-18	. 10	5600Ω
1-73	. 10	8200Ω
1-22	. 10	$22 \mathrm{~K} \Omega$
1-47	. 10	$56 \mathrm{~K} \Omega$
1-60	. 10	$68 \mathrm{~K} \Omega$
1-26	. 10	$100 \mathrm{~K} \Omega$
1-27	. 10	$150 \mathrm{~K} \Omega$
1-29	. 10	$220 \mathrm{~K} \Omega$
1-33	. 10	$470 \mathrm{~K} \Omega$
1-37	. 10	2.2 megohm
1-22-1	. 10	$1500 \Omega 1$ watt
5-1-3	. 20	2700Ω (2.7 K)

CAPACITORS

$20-130$.15	$12 \mu \mu \mathrm{f}$ mica
$20-97$.15	$50 \mu \mu \mathrm{f}$ mica
$20-103$.15	$150 \mu \mu \mathrm{f}$ mica
$20-120$.20	$220 \mu \mu \mathrm{f}$ mica
$20-107$.40	$680 \mu \mu \mathrm{f}$ mica
$21-33$.10	$3.3 \mu \mu \mathrm{fisc}$
$21-78$.10	$5 \mu \mu \mathrm{fisc}$
$21-96$.10	$85 \mu \mu \mathrm{f} \mathrm{disc}$
$21-24$.10	$800 \mu \mu \mathrm{f} \mathrm{disc}$
$21-14$.10	$.001 \mu \mathrm{fd}$ disc
$21-27$.10	$.005 \mu \mathrm{fd}$ disc
$21-16$.10	$.01 \mu \mathrm{fd}$ disc
$21-31$.10	$.02 \mu \mathrm{fd}$ disc
$21-48$.15	$.05 \mu \mathrm{fd}$ disc
$28-4$.10	$1.5 \mu \mu \mathrm{f}$ tubular
$21-29$.15	$4.7 \mu \mu \mathrm{f}$ tubular
$27-28$.20	$.1 \mu \mathrm{fd}$ resin

$\begin{aligned} & \text { PART } \\ & \text { No. } \end{aligned}$	PRICE Each	DESCRIPTION
COILS-CHOKES-TR ANSFORMERS		
40-583	. 20	$10 \mu \mathrm{~h}$ peaking coil
40-488	. 15	$180 \mu \mathrm{~h}$ coil
40-489	. 75	Sound take-off coil
40-490	. 70	4.5 mc sound IF coil
40-491	. 40	Quadrature coil
40-576	. 70	4.5 mc sound trap coil
40-740	. 30	Input IF transformer
40-741	. 30	1st IF transformer
40-742	. 30	2nd IF transformer
40-743	. 25	47.25 mc trap coil
45-35	. 15	$1.7 \mu \mathrm{~h}$ choke
45-57	. 30	$10 \mu \mathrm{~h}$ choke
52-74	1.60	3rd IF transformer and 41.25 mc trap

TUBES-SOCKETS-SHIELDS

$411-96$	1.80	6AW8 tube
$411-160$	1.80	6EJ7 tube
$411-169$	1.40	6GM6 tube
$411-222$	1.40	6HZ6 tube
$411-188$	1.25	6JH6 tube
$206-77$.15	7-pin tube shield
$206-206$.15	9-pin tube shield
$206-207$.15	Small coil shield
$206-205$.25	Large coil shield
$434-129$.15	7-pin tube socket
$434-130$.15	9-pin tube socket
$434-132$.30	7-pin tube socket with shield

MISCELLANEOUS

$10-155$.40	750Ω control
$10-180$.65	$15 \mathrm{~K} \Omega$ control
$56-20$.55	1N295 crystal diode
$134-127$.75	IF input cable with phono plug
$85-146-3$	1.70	IF circuit board

CHASSIS PARTS

PART No.	PRICE Each	DESCRIPTION
RESISTORS		
1/2 Wa		
1-129	. 10	4.7Ω
1-3	. 10	100Ω
1-66	. 10	150Ω
1-112	. 15	$180 \Omega 5 \%$
1-45	. 10	220Ω
1-4	. 10	330Ω
1-9	. 10	1000Ω
1-44	. 10	2200Ω
1-73	. 10	8200Ω
1-21	. 10	$15 \mathrm{~K} \Omega$
1-26	. 10	$100 \mathrm{~K} \Omega$
1-27	. 10	$150 \mathrm{~K} \Omega$
1-126	. 10	$180 \mathrm{~K} \Omega$
1-29	. 10	$220 \mathrm{~K} \Omega$
1-33	. 10	$470 \mathrm{~K} \Omega$
1-37	. 10	2.2 megohm

Other R	stor	tor
1-8-1	. 10	$68 \mathrm{~K} \Omega 1$ watt
1-17-2	. 20	$6800 \Omega 2$ watt
5-1-2	. 30	3900Ω (3.9 K) 2 watt, film
5-3-2	. 20	$47 \mathrm{~K} \Omega 2$ watt, film
5-3-3	. 20	1000 (1 K) 3 watt, film
5-1-4	. 20	5600Ω (5.6 K) 4 watt, film
5-2-4	. 30	$39 \mathrm{~K} \Omega 4 \mathrm{watt}$, film
3-13-7	. 15	$6500 \Omega 7$ watt, wire-wound
3-7-10	. 30	$10 \mathrm{~K} \Omega$ (10000) 10 watt, wire-wound
3-8-10	. 30	$15 \mathrm{~K} \Omega 10$ watt, wire-wound
3-10-25	. 75	$750 \Omega 25$ watt, wire-wound
9-14	. 70	VDR (voltage dependent resistor)
9-15	. 70	VDR (voltage dependent resistor)
9-8	, 00	Thermistor

CAPACITORS

Disc		
$21-32$.10	$47 \mu \mu \mathrm{f}$
$21-75$.10	$100 \mu \mu \mathrm{f}$
$21-14$.10	$.001 \mu \mathrm{fd}$
$21-36$.10	$.002 \mu \mathrm{fd}$
$21-16$.10	$.01 \mu \mathrm{~d}$

PART No.	PRICE Each		DESCRIPTION

CONTROLS

10-186	. 50	500Ω
10-184	. 50	$1200 \Omega(1.2 \mathrm{~K})$
10-187	. 50	$5000 \Omega(5 \mathrm{~K})$
10-185	. 50	$100 \mathrm{~K} \Omega$
10-78	. 45	$15 \mathrm{~K} \Omega$
11-68	. 90	2000Ω (2 K) tab-mount
10-183	. 30	$10 \mathrm{~K} \Omega$ tab-mount
10-192	. 35	$35 \mathrm{~K} \Omega$ tab-mount
10-181	. 30	1 megohm tab-mount
10-191	. 35	1 megohm tab-mount
10-182	. 30	5 megohm tab-mount
10-193	. 40	$6000 \Omega(6 \mathrm{~K})$ tab-mount, green shaft
10-188	. 40	$6000 \Omega(6 \mathrm{~K})$ tab-mount, blue shaft
10-189	. 40	1.5 megohm tab-mount, red shaft
10-194	. 40	1.5 megohm tab-mount, green shaft
10-195	. 40	1.5 megohm tab-mount, blue shaft
9-100	. 30	2 megohm with SPST switc

SWITCHES-CIRCUIT BREAKER

$60-2$.25	DPDT slide (6 lugs)
$60-10$.35	DPTT slide (8 lugs)
$65-11$.60	Circuit breaker

PART No.	PRICE Each	DESCRIPTION
COILS		
40-598	. 25	100μ h peaking(brown-blackbrown)
40-485	. 15	$250 \mu \mathrm{~h}$ peaking (red-greenbrown)
40-745	. 75	Pincushion phase
40-750	1.00	Width
41-1	1.95	Delay line
40-586	1.65	Degaussing
40-744	5.25	Automatic degaussing

CHOKE-TRANSFORMERS

46-37	2.20	Filter choke Top-bottom pincushion transformer
	4.05	
$51-136$	4.90	Side pincushion transformer
$51-104$	3.75	Audio output transformer
$51-135$	5.35	Vertical output transformer
$54-149$	12.25	Power transformer

GROMMETS-INSULATORS

$73-4$.10	$5 / 16^{\prime \prime}$ grommet
$73-1$.10	$3 / 8^{\prime \prime}$ grommet
$73-3$.10	$1 / 2^{\prime \prime}$ grommet
$73-2$.10	$3 / 4^{\prime \prime}$ grommet
$73-34$.10	Test clip insulator
$75-24$.10	Line cord strain relief
$261-24$.05	Yoke mount rubber bumper
$261-22$.05	Picture tube rubber bumper

CLAMPS-CLIPS

$207-4$.10	$1 / 4^{\prime \prime}$ cable clamp
$207-18$.10	$3 / 8^{\prime \prime}$ cable clamp
$207-22$.10	$1 / 2^{\prime \prime}$ cable clamp
$207-48$.30	Yoke positioning clamp
$207-47$.25	Yoke mounting clamp
$260-16$.10	Small alligator clip
$260-1$.15	Large alligator clip

DIODE-PILOT LAMP-TUBES

NOTE: Some tubes may have the suffix A or B following the type number. Example: 6GF7A instead of 6GF7.

$57-27$.60	750 ma silicon diode, 500V PIV
$412-1$.15	\#47 pilot lamp
$411-170$	1.20	6EW6 tube

PART No.	PRICE Each		DESCRIPTION
Diodes-Pilot Lamp-Tubes (cont'd.)			

HARDWARE

\#3 Hardware

$250-49$.05	$3-48 \times 1 / 4^{\prime \prime}$ screw
$252-1$.05	$3-48$ nut
$254-7$.05	$\# 3$ lockwasher

\#6 Hardware

$250-89$.05	$6-32 \times 3 / 8^{\prime \prime}$ screw
$250-252$.05	$\# 6 \times 5 / 8^{\prime \prime}$ bronze screw
$250-365$.05	$\# 6 \times 1 / 4^{\prime \prime}$ sheet metal screw
$250-8$.05	$\# 6 \times 3 / 8^{\prime \prime}$ sheet metal screw
$250-290$.05	$\# 6 \times 5 / 8^{\prime \prime}$ flat head wood
		screw
$252-3$.05	$6-32$ nut
$254-1$.05	$\# 6$ lockwasher
$253-60$.05	$\# 6$ flat washer
$259-1$.05	$\# 6$ solder lug
\#8 Hardware		
$250-137$.05	$8-32 \times 3 / 8^{\prime \prime}$ screw
$250-92$.05	$8-32 \times 5 / 8^{\prime \prime}$ screw
$250-35$.05	$\# 8 \times 7 / 8^{\prime \prime}$ sheet metal screw
$250-289$.05	$8-32 \times 1 / 2^{\prime \prime}$ wing-head screw
$252-4$.05	$8-32$ nut
$254-2$.05	$\# 8$ lockwasher

\#10 Hardware

250-126	.05	$10-32 \times 1 / 2^{\prime \prime}$ screw $10-24 \times 1 / 2^{\prime \prime}$ self-tapping
$250-255$.05	screw
$250-264$.05	$10-24 \times 3 / 4^{\prime \prime}$ self-tapping screw
$250-261$.10	\#10 $\times 1-1 / 2^{\prime \prime}$ sheet metal $252-5$
.05	screw $10-32$ nut	
$252-54$.15	\#10 speednut
$254-3$.05	\#10 lockwasher
$253-19$.05	\#10 flat washer
$259-5$.05	\#10 solder lug

PART	PRICE	DESCRIPTION
No.	Each	

Other Hardware

$250-253$.10	$1 / 4-20 \times 7 / 8^{\prime \prime}$ screw
$252-7$.05	Control nut
$252-67$.10	$1 / 4-20$ self-retaining nut
$254-5$.05	Control lockwasher
$253-31$.05	$1 / 4^{\prime \prime}$ flat washer
$258-33$.10	Coil spring
$259-22$.05	Spade lug
$432-66$.10	Terminal strip connector

WIRE-CABLE-SLEEVING

$89-13$.40	Line cord
$340-2$	$.05 / \mathrm{ft}$	Bare wire
$344-52$	$.05 / \mathrm{ft}$	Red hookup wire
$344-53$	$.05 / \mathrm{ft}$	Orange hookup wire
$344-54$	$.05 / \mathrm{ft}$	Yellow hookup wire
$344-55$	$.05 / \mathrm{ft}$	Green hookup wire
$344-58$	$.05 / \mathrm{ft}$	Gray hookup wire
$344-59$	$.05 / \mathrm{ft}$	White hookup wire
$344-15$	$.05 / \mathrm{ft}$	Black stranded wire
$344-31$	$.05 / \mathrm{ft}$	Brown stranded wire
$343-6$	$.05 / \mathrm{ft}$	Shielded cable
$347-3$	$.15 / \mathrm{ft}$	2 -wire shielded cable
$343-9$	$.10 / \mathrm{ft}$	75Ω coaxial cable
$347-2$	$.05 / \mathrm{ft}$	300Ω twin lead
$134-110$.95	8 -wire cable assembly
		with octal plug
$134-129$	1.35	12-wire cable assembly
$134-166$	5.00	Wiring harness
$346-7$	$.10 / \mathrm{ft}$	$1 / 44^{\prime \prime}$ clear sleeving
$346-6$	$.05 / \mathrm{ft}$	$3 / 8^{\prime \prime}$ fiberglas sleeving

PART No.	PRICE Each		DESCRIPTION
SOCKETS-PLUG			

PLASTIC PARTS

$266-88$.15	Plastic lever
$95-27$.60	Pole piece holder
$95-28-1$.60	Yoke half-shell
$95-26$	1.50	Yoke mount
$203-459$	2.15	Control panel
$210-30$	5.00	Picture tube mask

KNOBS

$462-197$	1.00	VHF channel selector
$462-202$.35	VHF fine tuning
$462-198$.65	UHF tuning
$462-271$.75	UHF channel indicator
$462-200$.50	Front panel
$462-224$.30	Thumbwheel
$462-204$.10	Focus

METAL PARTS

TERMINAL STRIPS

431-2	.10	Small 2-lug
$431-14$.10	Small 2-lug, 1 lug ground
$431-41$.10	Large 2-lug
$431-3$.10	Small 3-lug
$431-10$.10	Small 3-lug, center lug $431-43$
.10	ground	
Large 3-lug		
$431-5$.10	Small 4-lug
$431-42$.10	Large 5-lug
$431-45$.10	Small 6-lug
$431-35$.10	Small 7-lug
$431-54$.10	2-lug screw type
$431-68$.20	4-lug screw type, VHF and
		UHF

$265-10$.10
$265-11$.10
$206-77$.15
$206-206$.15
$206-263$.10
$204-701$.25
$204-887$.30
$204-702-1$	
	3.00
	1.20
$206-297$	1.90
$206-301$	1.80
$206-296$	2.10
$206-300$	2.10
$206-298$.85
$200-534$	5.00

Half hinge with pin
Half hinge with 2 holes
Small tube shield
Large tube shield
Circuit board shield
VHF tuner bracket
Tuner bracket
Convergence bracket
Picture tube mounting assembly
Left picture tube shield
Right picture tube shield
Top picture tube shield
Bottom picture tube shield Internal picture tube shield Chassis

PART No.	PRICE Each		DESCRIPTION		PART No.	PRICE Each	

MODEL GRA-295-1 CABINET PARTS

PART No.	$\begin{gathered} \text { PRICE } \\ \text { Each } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { PART } \\ \text { No. } \end{gathered}$	PRICE Each	DESCRIPTION
206-247	. 45	Picture tube back panel	253-45	. 05	\#8 flat washer
		shield	261-1	. 05	Rubber bumper
204-704	. 20	Convergence support			
		bracket	NOTE:	The Wa	at Cabinet (\#91-140) and the
250-252	. 05	\#6 x 5/8' bronze screw	Cabinet	back pa	1 (\#94-419) are not available
252-4	. 05	8-32 nut	as repla	cement	

HORIZONTAL OUTPUT ASSEMBLY (\#100-580)

A completely assembled horizontal output assembly ($\# 100-580$) can be obtained for $\$ 28.50$. Individual parts can be purchased for the prices listed below.

PART No.	PRICE Each	DESCRIPTION	PART No.	PRICE Each	DESCRIPTION
RESISTORS			CAPACITORS		
1-1	. 10	47Ω	21-106	. 10	$22 \mu \mu \mathrm{f} 1 \mathrm{KV}$ disc
1-3	.10	100Ω	21-49	. 20	$68 \mu \mu \mathrm{f} 4 \mathrm{KV}$ disc
1-6	. 10	470Ω	21-107	. 35	$130 \mu \mu \mathrm{f} 6 \mathrm{KV}$ disc
1-9	. 10	1000Ω	21-11	. 10	$150 \mu \mu \mathrm{f}$ disc
1-44	. 10	2200Ω	21-108	. 10	$180 \mu \mu \mathrm{f} 1 \mathrm{KV}$ disc
1-26	. 10	$100 \mathrm{~K} \Omega$	21-120	. 15	$500 \mu \mu \mathrm{f} 3 \mathrm{KV}$ disc
1-35	. 10	1 megohm	21-16	. 10	. $01 \mu \mathrm{fd}$ disc
1-34-1	. 10	1 megohm 1 watt	21-117	. 20	. $01 \mu \mathrm{fd} 1.4 \mathrm{KV}$ disc with
1-35-1	. 10	1.5 megohm 1 watt			spark gap
1-40	. 10	10 megohm	23-102	. 20	. $0022 \mu \mathrm{fd}$ tubular
3-3-2	. 25	$2.7 \Omega 2$ watt	23-45	. 20	. $047 \mathrm{\mu fd}$ tubular
1-32-2	. 20	4.7 megohm 2 watt	23-11	. 35	. $1 \mu \mathrm{fd}$ tubular
5-1-7	. 25	$13 \mathrm{~K} \Omega 7 \mathrm{watt}$, film	23-99	. 30	. $12 \mu \mathrm{fd}$ tubular
2-12-2	. 70	66 megohm 6 KV	23-48	. 30	. $15 \mu \mathrm{fd}$ tubular
			27-28	. 20	. $1 \mu \mathrm{fd}$ resin

PART No.	PRICE Each	DESCRIPTION	$\begin{gathered} \text { PART } \\ \text { No. } \end{gathered}$	PRICE Each	DESCRIPTION
COILS-CHOKE-TRANSFORMER			Tubes-Sockets (cont' ${ }^{\text {d.) }}$		
			434-39	. 15	Octal tube socket
40-580	. 80	Horizontal efficiency coil	434-144	. 20	9-pin novar tube socket
40-735	1.25	Focus coil	434-155	. 20	9 -pin miniature tube socket
45-42	. 20	$8.5 \mu \mathrm{~h}$ choke			
51-131	6.80	Horizontal output transformer	MISCELLANEOUS		
			57-27	. 60	750 ma silicon diode, 500 V PIV
TUBES-SOCKETS			$\begin{aligned} & 75-62 \\ & 260-40 \end{aligned}$	$\begin{aligned} & .35 \\ & .35 \end{aligned}$	High voltage socket insulator HV rectifier plate cap and
411-65	1.10	1V2 tube			lead
411-189	1.60	3A3 tube	260-46	. 75	HV regulator plate cap and
411-190	3.80	6BK4B tube			lead
411-191	1.80	6DW4/6CL3 tube	432-49	. 35	2nd anode connector and lead
411-192	4.25	6JE6A tube			assembly

VHF TUNER (\#110-42)

PART	PRICE	DESCRIPTION
No.	Each	

NOTE: Refer to Figure 6-19 below for replacing the converter strip and tuning strips in the VHF tuner.

411-226	2.25	6GJ7 tube
$411-220$	1.85	6HA5 tube Channel 1 UHF converter
$246-59$	1.80	Strip
$246-60$	1.60	Channel 2 tuning strip $246-61$
$246-62$	1.60	Channel 3 tuning strip
Channel 4 tuning strip		

PART	PRICE	DESCRIPTION
No.	Each	

$246-63$	1.60	Channel 5 tuning strip
$246-64$	1.60	Channel 6 tuning strip
$246-65$	1.60	Channel 7 tuning strip
$246-66$	1.60	Channel 8 tuning strip
$246-67$	1.60	Channel 9 tuning strip
$246-68$	1.60	Channel 10 tuning strip
$246-69$	1.60	Channel 11 tuning strip
$246-70$	1.60	Channel 12 tuning strip
$246-71$	1.60	Channel 13 tuning strip
$246-57$	2.70	Antenna balun assembly

YOKE REPLACEMENT PARTS

$\begin{aligned} & \text { PART } \\ & \text { No. } \end{aligned}$	PRICE Each	DESCRIPTION
1-2-2	. 20	$4700 \Omega 2$ watt resistor
9-22	. 50	Thermistor

NOTE: The 100 pf capacitor in the yoke assembly is not available as a replacement part.

MISCELLANEOUS

PART PRICE		
No.	Each	

NOTE: Refer to Figure 6 -20 for replacing a pole piece magnet in a pole piece assembly.

474-13 . 30 Pole piece magnet

Figure 6-20

$$
x_{2}
$$

エIEATII COMIPANTY

Nold

 .

