TECHNICAL MANUAL.

MW-50C3 MEDIUM WAVE

AM BROADCAST TRANSMITTER

$$
9948832004
$$

HARRIS

T.M. No. 888-221.3-011

Printed: October 2, 1986
(C) Copyright HARRIS CORPORATION 1986 All Rights Reserved

MANUAL REVISION HISTORY
MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER
888-2213-xxx

REV \#	DATE	ECN	PAGES AFFECTED
002	10-10-85	29595	Replaced the following pages: Title Page, 9-3/9-4 Added the following page: Manual Revision History Page
003	2-5-86	29673	Replaced the following pages: Title Page, i, ii, iii, $6-2,7-1,7-40$ Manual Revision History Page
004	2-6-86	29816	Replaced the following pages: Title Page, 7-39 Manual Revision History Page
005	2-7-86	29830	Replaced the following pages: Title Page, 7-8, 7-9, 9-13/9-14 Manual Revision History Page
006	3-15-86	29922	Replaced the following pages: Title Page, 1-2, 7-5 Manual Revision History' Page
$\begin{aligned} & 007 \& \\ & 008 \end{aligned}$	7-01-86	$\begin{aligned} & 30077, \\ & 30189, \& \\ & 30627 \end{aligned}$	Replaced the following pages: Title Page, Manual Revision History Page $\begin{aligned} & 2-33,7-2,7-3,7-7,7-8,7-9,7-10,7-16, \\ & 7-40,7-47,8-25 / 8-26,8-27 / 8-28, \quad 9-3 / 9-4, \\ & 9-9 / 9-10,9-15 / 9-16 \\ & \text { Added pages } 7-48 \& 7-49 / 7-50 \end{aligned}$
009	8-1.5-86	30805	Replaced the following pages: Title Page, Manual Revision History Page $2-1,2-44,2-47,2-48,2-50,2-51,2-53,6-9$ $\& 6-10$
010	9-08-86	30891	Replaced the following pages: Title Page, Manual Revision History Page $7-13 \& 7-16$
011	10-02-86	31083	Replaced the following pages: Title Page, Manual Revision History Page $4-32$

WARNING

THE CURRENTS AND VOLTAGES IN THIS EQUIPMENT ARE DANGEROUS. PERSONNEL MUST AT ALL TIMES OBSERVE SAFETY REGULATIONS.

This manual is intended as a general guide for trained and qualified personnel who are aware of the dangers inherent in handing potentially hazardous electrical/electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

The installation, operation, maintenance and service of this equipment involves risks both to personnel and equipment, and must be performed only by qualified personnel exercising due care. HARRIS CORPORATION shall not be responsible for injury or damage resulting from improper procedures or from the use of improperly trained or inexperienced personnel performing such tasks.

During installation and operation of this equipment, local building codes and fire protection standards must be observed. The following National Fire Protection Association (NFPA) standards are recommended as references:

- Automatic Fire Detectors, No. 72E
- Installation, Maintenance, and Use of Portable Fire Extinguishers, No. 10
- Halogenated Fire Extinguishing Agent Systems, No. 12A

WARNING

ALWAYS DISCONNECT POWER BEFORE OPENING COVERS, DOORS, ENCLOSURES, GATES, PANELS OR SHIELDS. ALWAYS USE GROUNDING STICKS AND SHORT OUT HIGH VOLTAGE POINTS BEFORE SERVICING. NEVER MAKE INTERNAL ADJUSTMENTS, PERFORM MAINTENANCE OR SERVICE WHEN ALONE OR WHEN FATIGUED.

Do not remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances.

WARNING

IF OIL FILLED OR ELECTROLYTIC CAPACITORS ARE UTILIZED IN YOUR EQUIPMENT, AND IF A LEAK OR BULGE IS APPARENT ON THE CAPACITOR CASE WHEN THE UNIT IS OPENED FOR SERVICE OR MAINTENANCE, ALLOW THE UNIT TO COOL DOWN BEFORE ATTEMPTING TO REMOVE THE DEFECTIVE CAPACITOR. DO NOT ATTEMPT TO SERVICE A DEFECTIVE CAPACITOR WHILE IT IS HOT DUE TO THE POSSIBILITY OF A CASE RUPTURE AND SUBSEQUENT INJURY.

TREATMENT OF ELECTRICAL SHOCK

1. IF VICTIM IS NOT RESPONSIVE FOLLOW THE A-B-CS OF BASIC LIFE SUPPORT.

PLACE VICTIM FLAT ON HIS BACK ON A HARD SURFACE

(A) AIRWAY

IF UNCONSCIOUS,
OPEN AIRWAY

LIFT UP NECK
PUSH FOREHEAD BACK
CLEAR OUT MOUTH IF NECESSARY OBSERVE FOR BREATHING

CHECK
CAROTID PULSE

IF PULSE ABSENT. BEGIN ARTIFICIAL CIRCULATION

(C) circulation

DEPRESS STERNUM $11 / 2$ TO 2 INCHES

NOTE: DO NOT INTERRUPT RHYTHM OF COMPRESSIONS WHEN SECOND PERSON IS GIVING BREATH

CALL FOR MEDICAL ASSISTANCE AS SOON AS POSSIBLE.
2. IF VICTIM IS RESPONSIVE.
A. KEEP THEM WARM
B. KEEP THEM AS QUIET AS POSSIBLE
C. LOOSEN THEIR CLOTHING
D. A RECLINING POSITION IS RECOMMENDED

Personnel engaged in the installation, operation, maintenance or servicing of this equipment are urged to become familiar with first-aid theory and practices. The following information is not intended to be complete first-aid procedures, it is brief and is only to be used as a reference. It is the duty of all personnel using the equipment to be prepared to give adequate Emergency First Aid and thereby prevent avoidable loss of life.

Treatment of Electrical Burns

1. Extensive burned and broken skin
a. Cover area with clean sheet or cloth. (Cleanest available cloth article.)
b. Do not break blisters, remove tissue, remove adhered particles of clothing, or apply any salve or ointment.
c. Treat victim for shock as required.
d. Arrange transportation to a hospital as quickly as possible.
e. If arms or legs are affected keep them elevated.

NOTE

If medical help will not be available within an hour and the victim is conscious and not vomiting, give him a weak solution of salt and soda: 1 level teaspoonful of salt and $1 / 2$ level teaspoonful of baking soda to each quart of water (neither hot or cold). Allow victim to sip slowly about 4 ounces (a half of glass) over a period of 15 minutes. Discontinue fluid if vomiting occurs. (Do not give alcohol.)
2. Less severe burns - (lst \& 2nd degree)
a. Apply cool (not ice cold) compresses using the cleanest available cloth article.
b. Do not break blisters, remove tissue, remove adhered particles of clothing, or apply salve or ointment.
c. Apply clean dry dressing if necessary.
d. Treat victim for shock as required.
e. Arrange transportation to a hospital as quickly as possible.
f. If arms or legs are affected keep them elevated.

REFERENCE: ILLINOIS HEART ASSOCIATION
AMERICAN RED CROSS STANDARD FIRST AID AND PERSONAL SAFETY MANUAL (SECOND EDITION)
Paragraph Page
SECTION I. GENERAL DESCRIPTION
1-1. Introduction 1-1
1-3. Equipment Purpose 1-1
1-5. Physical Description 1-1
1-11. Functional Description 1-3
1-12. RF Circuit 1-3
1-14. Audio Circuit 1-3
1-15. Power Supplies 1-6
Transmitter Protection 1-6
1-16.

Equipment Characteristics

Equipment Characteristics 1-6 1-6
Electrical Characteristics 1-6
1-17.
1-17.
1-20. Mechanical/Environmental Characteristics 1-6
SECTION II. INSTALLATION
2-1. Introduction 2-1
2-3. Unpacking 2-1
2-5. Returns and Exchanges 2-1
2-7. Installation 2-1
2-9 Cooling Air Requirements 2-1
2-11. Transmitter Placement 2-2
2-14. Component Installation 2-2
2-19. Light Sensor Assembly Installation 2-14
2-25. Connections Between Cabinets 2-30
2-28. External Connections 2-34
2-30. Connections to Remote Controls/Monitors 2-38
2-32. Initial Turn 0n 2-41
2-35. Modulator Check 2-42
2-36 RF Section Check 2-48
2-37. High Voltage Check 2-48
2-39. Power and Modulation Check 2-51
High Power Adjustment 2-51
2-40
Low-Power Adjustment
Low-Power Adjustment 2-53 2-53
2-41
2-41
Typical Meter Readings 2-55
SECTION III. OPERATION
3-1. Introduction 3-1
3-3. Controls and Indicators 3-1
3-5. Operation 3-1
3-6. Transmitter Turn 0n 3-1
3-8. Transmitter Shutdown 3-2
3-10. Modulation Enhancement 3-2
SECTION IV. PRINCIPLES OF OPERATION
4-1. Introduction 4-1
4-3. Overall Functional Description 4-1
4-4. RF Section 4-1
4-6. Oscillator Chassis 1A10 4-1
4-7. RF Driver 1A9V1 4-1

TABLE OF CONTENTS (Continued)

Paragraph Page
4-8. Power Amplifier 3A9V2 4-14-9.
4-10.
PA Screen Automatic Gain Control 4-1
Isolated Enclosure Power Supplies 4-2
4-11. Output Network 4-2
Directional Coupler 4-2
4-12.
Modulator Section 4-2
4-13.
Pulse Duration Modulation 4-2
4-16.
MW-50C3 PDM Circuitry 4-6
4-25.
4-6
4-27. PIMM Circuit
4-7
4-28. Damper Diode
4-7
4-29. Modulator Power
4-8
4-30. Control Circuits
4-8
4-32. Control Assembly 1A1
4-8
4-33. High Voltage Step/Start Assembly 3
4-8
4-34. Fault Circuits
4-8
Fault and Overload Assembly 1A3
4-8
4-35.
Multiple Faults
4-8
4-37. High-Voltage Power Supply
4-39. Filter Circuit 4-8
Primary Requirements 4-9
4-40.
Metering Circuits 4-9
4-41.
Detailed Functional Description 4-10
4-43.
RF Section 4-10
4-44.
Oscillator 1Al0 4-10
4-45.
Oscillator AGC Circuit 4-10
4-46.
4-10
4-47. Oscillator RF Output Circuit
4-10
4-48. Oscillator Power Supply
4-10
RF Driver 1A9Vl

4-10

4-10

RF Driver Neutralization

RF Driver Neutralization 4-13 4-13
RF Driver Plate Circuit
RF Driver Plate Circuit
4-50.
4-50.
4-13
4-13
4-13
Double Resonant Circuit 4-13
4-52.
Power Amplifier 1A9V2 4-13

PA Screen Protection

PA Screen Protection 4-13 4-13
PA Neutralization
PA Neutralization 4-13 4-13
4-55.
4-55.
Output Network 4-15
4-57.
Output Network Adjustment
Output Network Adjustment 4-15 4-15
4-58.
4-58.
PA Efficiency Resonator Adjustment 4-15
4-62 Directional Coupler 2Al 4-16
4-64. Forward Power Sample 4-16
4-65. Reflected Power Sample 4-16
4-66. VSWR Trigger Unit 4-16
4-67. Modulator Section 4-17
4-70. Modulation Enhancer 4-17
4-73. PDM Chassis 4-18 4-18
PDM Board AI
PDM Board AI
4-80. PDM Board Al 4-20
4-82. PDM Feedback 4-20
4-85. Viewing PDM Waveforms 4-21
Paragraph Page
4-86. PDM Waveforms 4-22
4-88. Modulator Driver 1A8V1 4-22
4-89. DC Coupler 1A7 4-22
4-90. Auxiliary Modulation 4-22
4-91. Auxiliary Driver Transistor 1Q1 4-22
4-93. Modulator Tube 1V1 4-22
4-95. Damper 4-23
4-96. Modulator Power Supplies 4-23
4-97. Contro1 Circuits 4-23
4-99. Transmitter Turn On 4-23
4-105. Transmitter Turn Off 4-27
4-106. High-Voltage Time-Delay Trip Circuit 4-27
4-107. Automatic Return After Power Failure 4-27
4-109. Power Change High/Low 4-28
4-110. Power High 4-28
4-111. Power Low 4-28
4-112. Interlocks and Safety Switches 4-28
4-113. Step/Start Assembly 4-28
4-114. Fault and Overload Circuits 4-29
4-115. Fault and Overload Assembly 1A3 4-29
4-116. Power Amplifier Arc 4-29
4-118. DC Overload 4-29
4-119. Modulator Screen Overload 4-30
4-120. Output Arc 4-30
4-121. VSWR Overload 4-30
4-123. Resonator Arc 4-30
4-124. 4-30
4-125. Remote Plate Voltage Sample 4-31
4-126. Recycle Circuit 4-31
4-128. Metering Circuits 4-31
4-130. Supply Current Meter 1A11M1 4-32
4-131. Power Meter 2A2M1 4-32
4-132. Power Amplifier Screen Current Meter 1A9M4 4-32
4-133. Power Amplifier Plate Current Meter 1A9M2 4-32
4-134. Plate Volts Meter 1Al1M2 4-32
4-135. Supply Volts Meter 2A2M2 4-32
4-137. Power Supplies 4-33
4-138. High-Voltage Power Supply 4-33
4-139. PA Screen Power Supply 4-33
4-140. PA Bias Power Supply 4-33
4-142. Modulator Screen and Driver Power Supply 4-33
4-143. Modulator Bias Power Supply 4-33
4-144. Oscillator/Buffer Power Supply 4-35
4-145. Fault and Overload Assembly Power Supply 4-35

TABLE OF CONTENTS (Continued)

Paragraph Page
SECTION V. MAINTENANCE
5-1. Introduction 5-1
5-3. Purpose 5-1
5-5. Station Records 5-1
5-7. Transmitter Logbook 5-1
5-9. Maintenance Logbook 5-1
5-11. Safety Precautions 5-2
5-14. Preventive Maintenance 5-2
5-16. Fi.lter Cleaning 5-3
5-18. Blower and Fan Maintenance 5-3
5-20. Air Pressure Meter Calibration 5-3
5-23. High-Voltage Power Supply 5-6
5-24. Maintenance of Components 5-6
5-26. Transistors 5-7
5-27. Capacitors 5-7
5-28. Vacuum Capacitors 5-7
5-31. Fixed Resistors 5-8
5-32. Variable Resistors 5-8
5-33. Transformers 5-8
5-34. Fuses 5-9
5-35. Meters 5-9
5-36. Relays 5-9
5-37. Switches 5-10
5-38. Indicators and Indicator Switches 5-10
5-39. Printed-Circuit Boards 5-11
5-40. Corrective Maintenance 5-11
5-42. Oscillator Test and Alignment 5-11
5-44. PDM Frequency Adjustment 5-12
5-46. Ball Gap Adjustment 5-12
5-48. . Alignment/Adjustment Procedures 5-12
5-50. Test Equipment 5-12
5-51. Efficiency Resonator Adjustment for PA Plate 5-13
5-52. RF Driver Plate and PA Grid Efficiency Resonator Adjustment 5-14
5-53. Directional Coupler Adjustment 5-16
5-54. Audio Input/PDM Control - Feedback Board 5-18
5-55. Audio Board Alignment 5-18
5-56. Audio Board Adjustment 5-19
5-57. Bessel Filter Adjustment 5-20
5-58. Low-Frequency -3 dB Point Adjustment 5-20
SECTION VI. TROUBLESHOOTING
6-1. Introduction 6-1
6-3. Troubleshooting 6-1
6-8. Technical Assistance 6-2

TABLE OF CONTENTS (Continued)

Paragraph Page
SECTION VII. PARTS LIST
7-1. Introduction 7-1
7-3. Replaceable Parts Service 7-1
SECTION VIII. WIRE LIST
8-1. Introduction 8-1
SECTION IX. DIAGRAMS
9-1. Introduction 9-1
APPENDIX A. HIGH-VOLTAGE POWER SUPPLIES
A-1. Introduction A-2
APPENDIX B. MANUFACTURERS DATA
B-1. Introduction B-2.
Table Page
1-1. Electrical Characteristics 1-7
1-2. Mechanical/Environmental Characteristics 1-9
2-1. Typical Meter Readings (100 Percent Modulation) 2-55
3-1. Meter Panel Controls and Indicators 3-5
3-2. Cabinet 1 Left Side Controls and Indicators 3-8
3-3. Cabinet 1 Fault and Overload Assembly Printed-Circuit Board Controls and Indicators 3-13
3-4. Cabinet 1 PDM Controls and Indicators 3-15
3-5. Cabinet 1 Internal Controls and Indicators 3-18
3-6. Cabinet 1 Right Side Controls and Indicators 3-20
3-7. Cabinet 2 Left Side Controls and Indicators 3-23
3-8. Cabinet 2 Right Side Controls and Indicators 3-25
4-1. Characteristic Multiphase Supply Ripple 4-9
6-1. Fault Isolation Procedures 6-3
6-2. Modulation Enhancer 1A2A3 Troubleshooting 6-11
7-1. Replaceable Parts Jist Index 7-2
7-2. XMTR, 50KW AM MW50C3 60HZ 7-3
7-3. Basic MW50C3 Transmitter 7-6
7-4. Unit 1, Mod \& PA Cubicle 7-7
7-5. Control Unit 1A1 7-11
7-6. Printed Relay Board 7-12
7-7. PDM Unit 1A2 7-13
7-8. PDM Printed Board 7-14
7-9. PTD Bd Audio Input Assy 7-16
7-10. P.DM POT Kit-MW5/10/50 7-18
7-11. PWB, Mod Enhancer. 7-19
7-12. PWB, Interface 1A2A4 7-20
7-13. Flag \& Overload 1A3 7-21
7-14. Flag \& Overload 1A3Al 7-22
7-15. Bias Pwr Supply la5 7-24
7-16. D.C.Coupler 1A7 7-25
7-17. Audio Driver 1A8 7-26
7-18. Isolated Box 1A9 7-27
7-19. Metering Board 1A9A1 7-29
7-20. Metering \& Bias 1A9A2 7-30
7-21. Meter Multiplier 1A9A4 7-31
7-22. PWB, Oscillator 1A10Al\&2 7-32
7-23. Meter Panel 1A11 7-33
7-24. Switch Board 1AllAl 7-34
7-25. Assy. GRD Switch 7-35
7-26. AUX Driver/Meter Mult 1A14 7-36
7-27. PA Arc Detector 7-37
7-28. Mtr Ltg Iso Box $1 A 16$ 7-38
Table Page
7-29 Resonator Assembly 7-39
7-30. Unit 2, Output Cubicle 7-40
7-31. Directional Cplr 2A1 7-42
7-32. PWB, Dir Cplr 2AlAl 7-43
7-33. Feedback Board 2A3. 7-44
7-34. Meter Multiplier 2A4 7-45
7-35. Switch, Shorting 7-46
7-36. Unit 非3, Step Start 7-47

LIST OF ILLUSTRATIONS

Figure Page
1-1. MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER 1-2
1-2. High-Voltage Step/Start Assembly 1-4
1-3. MW-50C3 Simplified Block Diagram 1-5
2-1. MW-50C3 Outline Drawing (Sheet 1 of 4) 2-3
2-1. MW-50C3 Outline Drawing (Sheet 2 of 4) 2-5
2-1. MW-50C3 Outline Drawing (Sheet 3 of 4) 2-7
2-1. MW-50C3 Outline Drawing (Sheet 4 of 4) 2-9
2-2. Cabinet 2 Upper Right Rear 2-11
2-3. Cabinet 2 Lower Right Rear 2-12
2-4. Cabinet 1 Lower Left Front and Door 2-15
2-5. Cabinet 1 Left Front 2-16
2-6. Cabinet 1 Upper Left Rear 2-17
2-7. Cabinet 1 Lower Right Front 2-18
2-8. Cabinet 1 Left Rear 2-19
2-9. Cabinet 1 LeEt Rear 2-20
2-10. Cabinet 2 Upper Left Rear (Sheet 1 of 2) 2-21
2-10. Cabinet 2 Lower Left Rear (Sheet 2 of 2) 2-22
2-11. Cabinet 2 Lower Right Front 2-23
2-12. Cabinet 2 Lower Left Front 2-24
2-13. Oscillator Top 2-25
2-14. Oscillator Bottom 2-26
2-15. Control Panel 2-27
2-16. High-Voltage Step-Start Assembly 2-28
2-17. Modulator 2-31
2-18. Cabinet 2 Lower Right Rear 2-32
2-19. Wiring Between Cabinet 1 and 2 2-33
2-20. Wiring Diagram (Sheet 1 of 3) 2-35
$2-20$. Wiring Diagram (Sheet 2 of 3) 2-36
2-20. Wiring Diagram (Sheet 3 of 3) 2-37
2-21. Remote Plate Current Sensor Adjustment 2-40
2-22. Cabinet 1 Lower Right Rear 2-45
2-23. Cabinet 2 Lower Left Rear 2-46
2-24. PDM Controls 2-49
$2-25$. Low Power Distortion Adjustment 2-54
3-1. Meter Panel Controls and Indicators 3-4
3-2. Cabinet 1 Left Side Controls and Indicators (Sheet 1 of 2) 3-6
3-2. Cabinet 1 Left Side Controls and Indicators (Sheet 2 of 2) 3-7
3-3. Cabinet 1 Fault and Overload Assembly Printed-Circuit Board Controls and Indicators 3-12
3-4. Cabinet 1 PDM Controls and Indicators 3-14
3-5. Cabinet 1 Internal Controls and Indicators 3-17
3-6. Cabinet 1 Right Side Controls and Indicators 3-19
3-7. Cabinet 2 Left Side Controls and Indicators 3-22
3-8. Cabinet 2 Right Side Controls and Indicators 3-24

LIST OF ILLUSTRA'IIONS (Continued)

Figure Page
4-1. MW-50C3 Transmitter Block Diagram 4-3
4-2. PDM Equivalent Circuit 4-5
4-3. PDM Simplified Circuit 4-6
4-4. MW-50C3 Transmitter PDM 4-7
4-5. 12 Phase Circuit 4-9
4-6. Simplified Signal Path Schematic 4-11
4-7. RF Driver Plate Circuit 4-14
4-8. PA Output Waveform 4-16
4-9. PDM Waveforms 4-19
4-10. Contro1 Circuit Simplified Schematic 4-25
4-11. High Voltage Metering 4-34
5-1. Oscillator Unit Bench Test Cable 5-11
5-2. Test Setup for Efficiency Resonator Adjustment for PA Plate 5-13
5-3. Test Setup for RF Driver Plate and PA Grid Efficiency Resonator Adjustment 5-15
5-4. Directional Coupler 2A1, Adjustment Locations 5-17
9-1. Overall Schematic - MW-50C3 9-3
9-2. PDM Modulator 9-5
9-3. Output Network 9-7
9-4. RF Amplifier Isolated Enclosure 9-9
9-5. RF Oscillator 1A10 9-11
9-6. PDM Chassis/Audio Board (Sheet 1 of 2) 9-13
9-6. PDM Chassis/Audio Board (Sheet 2 of 2) 9-15
9-7. Fault and Overload Circuit 9-17
9-8. Remote Plate Current Sensor 9-19
9-9. PA Arc Detector 9-21
9-10. Directional Coupler 9-23
9-11. Modulation Enhancer 9-25
9-12. Utility Outlets and Lights 9-27
9-13. Frequency Determining Components 9-29

SECTION I

DESCRIPTION

1-1. INTRODUCTION
1-2. This Technical Manual contains the information necessary to install, operate, maintain and service the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER. Sections in this manual provide the following information:
a. SECTION I, GENERAL DESCRIPTION, provides a description of equipment features at block diagram level and lists the operating parameters and specifications.
b. SECTION II, INSTALLATION, provides unpacking and installation information, power requirements and preliminary checkout and operation.
c. SECTION III, OPERATION, identifies control and indicator function, together with their set up and operation.
d. SECTION IV, PRINCIPLES OF OPERATION, provides functional and detailed theory with supporting drawings.
e. SECTION V, MAINTENANCE, provides preventive and corrective maintenance information.
f. SECTION VI, TROUBLESHOOTING, contains fault location guides and troubleshooting with instructions for equipment servicing.
g. SECTION VII, PARTS LIST, provides information for ordering replacement components and assemblies.
h. SECTION VIII, WIRE LIST, provides wiring information with origin and termination points of identified cables and wires.

1. SECTION IX, DIAGRAMS, provides block, logic and schematic diagrams and other drawings necessary for transmitter maintenance.

1-3. EQUIPMENT PURPOSE
1-4. The HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER (figure 1-1) is a high-level, plate-modulated, 50 kW AM transmitter using Pulse Duration Modulation (PDM). PDM design allows continuous 100 percent sine-wave modulation which permits high-average modulation, boosting signal strength without increasing transmitter carrier power. Up to 130 percent positive-peak modulation capability is provided when operating full 50 kW rf power output.

1-5. PHYSICAL DESCRIPTION
1-6. The unit is contained in two cubicles except for the High-Voltage Power Supply and a wall-mounted High-Voltage Step-Start Assembly shown in

NOTE

SHOWN WITH OPTIONAL FRONT DOOR KIT ACCESSORY (994 8996 001) MOUNTED.

Figure l-1. MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER
figure 1-2. Components are accessible through four rear doors and five front access door. Meter panels are hinged for inspection and maintenance. External connections to the transmitter are made through either the top or bottom as desired for installation flexibility.

1-7. The entire transmitter uses just three tubes, all operating well below the manufacturers dissipation ratings. Only two tube types are used, which simplifies stocking the of spares. The rf section is conventional, using solid state circuitry to drive a Tetrode RF Driver Tube (4CX1500A) and a Tetrode PA Stage Tube (4CX35000C) . Solid-state circuitry is used throughout the modulator with exception of the Modulator Tube (4CX35000C).

1-8. After preliminary adjustment of internal high-power and low-power level controls has been accomplished, output power levels may be selected with front panel switches. Variations of ± 20 percent in output power are accomplished with a front panel fine adjustment control acting on a low-level modulator stage. Additional tuning when switching power levels is not required. An AGC circuit limits PA screen current to eliminate problems of PA screen over-dissipation.

1-9. Major components of the transmitter are protected by circuit breakers. Tubes and transistors are protected by overload relays or current-limiting devices. Momentary rf overloads will cause the Transmitter to recycle automatically. Should repeated overloads occur within 30 seconds, the transmitter will remain off until manually reset. If the time between overloads is greater than 30 seconds, continuous recycling will occur.

1-10. A five-horsepower blower operating at 3200 CFM air at two-inch water gauge pressure and a flushing fan, both operating at low-noise level, provide transmitter cooling. Provisions are avallable at the top of the transmitter cabinet to duct exhaust air to the outside of the transmitter building.

1-11. FUNCTIONAL DESCRIPTION
1-12. RF CIRCUIT. The rf chain of the $M W-50 C 3$ Transmitter is transistorized up to the RF Driver (figure 1-3). Two crystal-controlled Oscillators, each with two individual amplifier stages, feed a class C operated transistor stage (transistors $Q 1$ and $Q 2$). The output of the class C transistor stage drives the 4CX1500A RF Driver Tube, operated class $A B_{1}$, to provide drive for the 4CX35000C Power Amplifier Tube, operated class D, as ON-OFF switch.

1-13. Because the PA and Modulator Tubes are connected in series, either the rf circuit or the modulator must float above ground potential. The rf circuitry is placed off ground in an Isolated Enclosure because capacitance formed with ground would distort the modulator waveform if the modulator were placed off ground.

1-14. AUDIO CIRCUIT. Audio at +10 dBm is fed to the PDM circuit. PDM output drives the modulator driver stage (Mosfet Buz 53A) to operate Modulator Tetrode Tube 4CX 35000 C . The modulator is connected to the PA stage through a Low-Pass Filter. The filter removes the 75 kHz frequency component and its harmonics from the PA plate current. The damper diode connected between the

Figure 1-2. High-Voltage Step/Start Assembly

modulator plate and the +25 kV supply conducts alternately with the modulator at the 75 kHz rate to provide a current path for the energy stored in the Low-Pass Filter when the modulator is cut off. The PDM circuit monitors High-Voltage Supply current and PA output to provide automatic PA plate dissipation limiting and automatic carrier shift control. A Modulation Enhancer has been built into the PDM compartment. A bypass switch is incorporated to enable operation with or without the Modulation Enhancer.

1-15. POWER SUPPLIES. Primary three-phase current at 30 amperes is required for the MW-50C3 Transmitter internal power supplies and a separate 200-ampere circuit is required for the High-Voltage Power Supply. Fast acting contactors protect the power supplies from short circuits. Each contactor automatically resets after an overload. The MW-50C3 Transmitter contains the following six internal power supplies.
a. Power Amplifier Screen 900 Vdc at 2.5 amperes
b. Power Amplifier Bias -600 Vdc at 2 amperes
c. Modulator Screen 800 Vdc at 2.4 amperes
d. Modulator Bias -500 Vdc
e. Crystal Oscillator/Buffer 100 Vdc
f. Fault and Overload Relay Assembly Supplies +30 Vdc

1-16. TRANSMITTER PROTECTION. Transmitter fault circuits accept inputs such as high VSWR, arcs in the modulator, PA, or output circuitry, high-voltage overload status and inputs from safety and fault sensors such as de interlock status. If a fault or safety sensor is activated, the PDM circuit is provided with an OFF signal. This OFF signal removes PDM drive from the modulator and turns the modulator off to open the PA plate current path and shut the transmitter down. If the fault clears or is reset, the transmitter will automatically return to operation if the automatic return to aix feature is energized.

1-17. EQUIPMENT CHARACTERISTICS
1-18. ELECTRICAL CHARACTERISTICS
1-19. Table $1-1$ lists electrical operating characteristics and paxameters of the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER.

1-20. MECHANICAL/ENVIRONMENTAL CHARACTERISTICS
1-21. Table 1-2 lists physical/environmental characteristics of the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER.

1-22. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

FUNCTION	CHARACTERISTIC
Power Output	50 kW (rated), 60 kW (capable). Convenient power reduction through 10 kW .
RF Frequency Range	535 kHz to 1620 kHz
RF Output Impedance	50 ohms unbalanced
RF Output Terminal	3-1/8" EIA 50 ohm flange
RF Frequency Stablility	$\pm 10 \mathrm{~Hz}$
RF Harmonics and Spurious Emissions	Exceeds FCC and CCIR specifications.
Carrier Amplitude Regulation	Less than 2% at 100% modulation (measured at 1000 Hz).
Audio Intermodulation Distortion	2.4% or less, $60 / 7000 \mathrm{~Hz} 4: 1$, SMPTE standard @ 55 kW operation @ 90% modulation.
Audio Frequency Response	$\pm 1.0 \mathrm{~dB}$, from 20 to $12,500 \mathrm{~Hz}$ referenced to $1,000 \mathrm{~Hz}$ at 95% modulation at 55 kW with Besel filter out.
Squarewave Overshoot	Less than 3.0% using $1,000 \mathrm{~Hz} 6 . \mathrm{dB}$ clipped sinewave © 90% modulation.
Total Harmonic Distortion (Unenhanced)	Less than $2.4 \%, 20$ to $10,000 \mathrm{~Hz}$ at 95% modulation at 55 kW . 3% at 25 to 10 kW .1
Squarewave Tilt	Less than 8% at 20 Hz @ 60% modulation.
Compression Ratio	$4 / 1 \mathrm{~dB}$ at 3 dB of enhancement; -95%, $+125 \%$ modulation.
Positive Peak Capability	$+125 \%$ with program modulation at 55kW.

FUNCTION	CHARACTERISTIC
Dimensions, Transmitter	Width 144 in. (3.7 meters) Depth 48 in. (1.3 meters) Height 78 in. (2.0 meters)
High Voltage Power Supply	Width 58 in. (1.47 meters) Depth 37.5 in. (0.95 meters) Height 60 in. (1.52 meters)
Wa. 11 Mounted Circuit	Width 30 in. (0.77 meters)
Breaker:	Depth 10 in. (0.26 meters) Height 46.3 in. (1.18 meters)
Floor Space Main Transmitter Assembly	48 Sq. Ft. (4.5 square meters)
High-Voltage Power Supply	15 Sq. Ft. (1.4 square meters)
Weights (approximate)	
Main Transmitter Assembly	Net unpacked 5000 pounds (2268 kg) Domestic packed 6000 pounds (2722 kg) Export packed 7200 pounds (3266 kg)
```50kW High-Voltage Power Supply (Wet)```	Net unpacked 650 pounds ( 294.84 kg )   Domestic packed 1780 pounds (807.39 kg )
	Export packed 2080 pounds ( 943.47 kg )
Wall Mounted Circuit	Net unpacked 75 pounds ( 34 kg )
Breaker	Domestic packed 125 pounds ( 57 kg ) Export packed 150 pounds ( 68 kg )
Cubage Complete Transmitter	$700 \mathrm{cu} . \mathrm{ft}$. ( 19.82 cu . meters)
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ at sea level (derate $2^{\circ}$ per 306 meters altitude)
Humidity	95\% maximum
Altitude	$10,000 \mathrm{Ft}(3048$ meters) above sealevel maximum

## 2-1. INTRODUCTION

2-2. This section contains information for installing the HARRTS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER and performing preoperational checks. Many components are removed from the transmitter after final test for shipment. These components will be identified with appropriate instructions for reinstallation and wiring.
$2-3$. UNPACKING
2-4. Carefully unpack the MW-50C3 Transwitter and perform a visual inspection to determine that no apparent damage was incurred during shipment. Retain the shipping materials until it has been determined that the unit is not damaged. The contents of the shipment should be as indicated on the packing list. If the contents are incomplete or if the unit is damaged electrically or mechanically, notify the carrier and HARRIS CORPORATION, Broadcast Transmission Division.

## 2-5. RETURNS AND EXCHANGES

2-6. Damaged or undamaged equipment should not be returned unless written approval and a Return Authorization is received from HARRIS CORPORATION, Broadcast Division. Special shipping instructions and coding will be provided to assure proper handling. Complete details regarding circumstances and reasons for return are to be included in the request for return. Custom equipment or special order equipment is not returnable. In those instances where return or exchange of equipment is at the request of the customer, or convenience of the customer, a restocking fee will be charged. All returns will be sent freight prepaid and properly insured by the customer. When communicating with HARRIS CORPORATION, Broadcast Division, specify the HARRIS Order Number or Invoice Number.

2-7. INSTALLATION
2-8. Prior to installation, this Technical Manual should be carefully studied to get a thorough understanding of the principles of operation, circuitry, and nomenclature. This will facilitate proper installation and initial checkout. The MW-50C3 Transmitter installation is accomplished in four steps, transmitter placement, component installation, transmitter wiring, and iaitial turn on and checkout.

## 2-9. COOLING AIR REQUIREMENTS

2-10. Air ducting should offer no restrictions to a minimum air flow of 5000 CFM. If possible, the transmitter room should be under positive pressure with the air supply as clean as possible. Air filters are located in the outside rear doors and consists of a 1 x 26 x 33 inch ( 2.54 x 66.04 x $83.82 \mathrm{~cm})$ washable, expanded foam element. Replacement filters are available
from HARRIS CORPORATION, Broadcast Transmission Division as required. Exhaust air may be ducted out of the transmitter room but the duct system must not introduce any back pressure on the transmitter exhaust. The exhaust fan in the duct system must overcome duct losses and overcome any wind pressures if vented to the outside. Two cooling air configurations are available. Refer to figure 2-1.
a. Rear air intake using internal blower and fan exhausting at transwitter top into free air.
b. Base entry of filtered air using internal blower and fan.

1. The Modulator and PA Cabinet requires 2200 CFM through any combination of " $A$ " openings. The air system must overcome all duct and entrance loses with positive pressure in the blower compartment.
2. The Output Cabinet requires 3000 CFM through any combination of "B" openings. The air system must overcome all duct and entrance loses with positive pressure in the fan compartment.

## 2-11. TRANSMITTER PLACEMENT

$2-12$. The two cubicles of this transmitter, as shown in figure $2-1$, should be placed in position, aligned level, and bolted together with 3/8-16 X 1inch bolts, flat washers, lock washers, and nuts. Install the four aluminum channels around the edges of the large opening between cubicles with $10-32 \mathrm{X}$ $1 / 2$-inch screws and lockwashers. The bottom channel mounts three cast mica capacitors (1C2, 1C2A and 1C2B). Figure 2-2 and 2-3 show component installation between cabinets.

2-13. The High-Voltage Power Supply, Transmitter, and the Step-Start Assembly should be located close to each other near the main ac power entrance to eliminate running heavy power cables any great distance.

2-14. COMPONENT INSTALLAATION
2-15. Tubes, capacitors, connectors, cables, etc. are shipped in separate cartons. The removal of components varies due to method and requirements of shipment. All removed items are tagged to permit reinstallation in the transmitter. Arrange these components in separate groups according to the section from which they were removed. Parts in the interior should be installed first. Both front and rear transmitter doors are removed for slipment and should be left off until the installation of removed components and cabinet wiring hook up is complete.

2-16. Items such as interconnecting wires and cables, shock mounted devices, and miscellaneous small parts may be taped or tied in for shipment. Remove all tape, string, and packing material that has been used for this purpose. BE SURE TO REMOVE ALL THE TAPE THAT MAY HAVE BEEN INSTALLED AS ANTI-CHAFFING STRIPS BETWEEN ALUMINUM PANELS.


## MECHANICAL DATA FOR MH-50C

AUDIBLE NOISE MEASUREMENT:
1 METER FROM FLOOR AND I METER FROM EACH ENCLOSURE.

MODULATOR FRONT	-
MODULATOR REAR	-70 dBA
PA FRONT	-88 dBA
PA REAR	-69 dBA
OUTPUT I FRONT	-81 dBA
OUTPUT I REAR	
OUTPUT 2 FRONT	-77 dBA
OUTPUT 2 REAR	-67 dBA

alr flow through the transmitter:
FLUSHING ATR (COOLS DUTPUT NETWORK,AND AREA ABOVE P.A. AND MOD. TUBES) 3000 CFM.
HIGH FRESSURE AIR (COOLS PA, MODULATOR AND DRIVER TUBES). 2200 CFM TOTAL.
AIR THROUGH P.A. TUBE $=860 \mathrm{cFM}$.
AIR THROUGH MOD TUBE $=860 \mathrm{CFM}$.
AIR THROUGH DRIVER TUAES $=480 \mathrm{CFM}$ TOTAL.
AIR TEMP RISE THROUGH PA TUBE $=36^{\circ} \mathrm{C}$.
AIR TEMP RISE THROUGH MOD TUBE $=38^{\circ} \mathrm{C}$.


WALL MOUNTED STEP START


460V 60Hz
STANOARD HV POWER SUPPLY

> COOLING AIR REQUIREMENTS

OPTION 1 - REAR AIR INTAKE USING INTERNAL•PRESSURE 日LUWER AND FLUSHING FAN EXHAUSTING AT TRANSMITTER TOP INTO FREE AIR.
OPTION 2 - BASE ENTRY OF FILTERED AIR USING INTERNAL PRESSURE
BLOWER AND FLUSHING FAN.
AIR REQUIREMENTS ARE AS FOLLOWS
I. MOD AND PA REQUIRE 2200 CFM THRU ANY

COMBINATION OF "A A" OPENINGS. CUSTOMER AIR
SYSTEM MUST DVERCOME ALL DUCT AND
ENTRANCE LOSSES (NO NEGATIVE PRESSURE IN
BLOWER COMPARTMENT).
2. GUTPUT REQUIRES 3000 CFH THRU ANV COMBINATION OF "B" OPENINGS. CUSTOMERS
AIR SYSTEM MUST OVERCOME ALL DUCT AND
ENTRANCE LOSSES (NO NEGATIVE PRESSURE IN FAN COMPARTMENT).

NOTE: EXHAUST AIR 5200 CFM MAY BE DUCTED OUT OF TRANSMITTER ROOM IN ANY OF THE ABOVE OPTIONS. THE DUCT SYSTEM MUST NOT INTRODUCE ANY BACK-PRESSURE ON THE TRANSMITTER EXHAUST. (THE EXHAUST FAN IN THE DUCT SYSTEM MUST OVERCOME DUCT LOSSES AND OVERCOME ANY WIND PRESSURES IF VENTED TO OUTSIDE).

FIGURE 2-1. MW-50C3 OUTLINE DRAWING


FIGURE 2-1. MW-50C3 OUTLINE DRAWING
(SHEET 3 OF 4) 8396587128
REAR ELEVATION

7. THIS TYPICAL TRANSMITTER SYSTEM HAS EEEN SIZED TO SLIGHTLY PRESSURIZE THE ROOM. IF ADDITIONAL COOLING IS REGUIKED FOR OTHER EGURMENT OR TOACCUNT FOR SOLAR EUILDING LOADS, CONSULT RARRIS OR QUALIFIED AIR CONDITIONING/ VENTILATION CONSULTANT FOR ASSISTANCE.
6. THE EXHAUST BLOWER (POWERLINE $245 B R E B H$, HAS BEEN SIZED FOR 6324 CFM AT $3 / \mathrm{B}^{\prime \prime}$ WATER. THE ACTUAL EXHAUST FLOW AFTER CONSTRUCTION OF THE EXHAUST SYSTEM SHOULD BE ADJUSTEO FOR A FLDWOF 5300 CFM AND OQWATER AT THE EXHAUST PORTS OF THE TRANSMITTER.
5. THE INTAKE BLOWER (POWERLNE JOEVBH) IS SIZED FOR 5610 CFM AT 3 /B'WATER. THE ACTUAL DESIRED MAKE-UP AIR REQUIREMENT IS 5200 CEM.

3. INLET FILTER GANK AT 5200 CFM FLOW RATE HAS A FACE VELOCITY OF APFROXIMATELY 433 FFM. THE TYPICAL PRESSURE DROP FOR CLEAN FILTERS IS APPROXIMATELY IHATER. THE TYPICAL PPESSURE DROP FOR A DIRTY FILTER IS APPROXAMATELY . 5 " WATER. THE FILTERS SHOULD BE CHANGED AT THIS POINT OR BEFORE.

FİGURE 2-1. MW-50C3 OUTLINE DRAMING


1. THE WEATHERHOOD IS IQ GA GALVANIZED STEEL WITH AUTOMATIC EACKDRAFT DAMPERS (POWERLINE FID 34 X3 4). AND A BIRDSCREEN OVER THE INLET. NOTE THE PREVAILING WIND PATTERNS SHOULD BE CONSIDERED EEFORE SELEETING WHICH WALL YHE INTAKGE SYSTEM IS MOUNTED ON.
IF POSSIBLE, DO NOT PLACE THE INTAKE OR EXHAUST PORTS ON THE SIDE AGAJST THE PREVAILING WINDS.


Figure 2-2. Cabinet 2 Upper Right Rear


Figure 2-3. Cabinet 2 Lower Right Rear

2-17. Symbol numbers and descriptions are provided on each removed component corresponding to the schematic diagram, parts list, and packing list. Symbol numbers are also stenciled near the cabinet location of each removed item. Terminals and wires carry tags with information telling how to reconnect each item. Mounting hardware will be found either in small bags attached to each removed component or inserted in the taped holes where each component mounts.

2-18. The method of shipment determines which components are removed. The following components are removed from the MW-50C3 Transmitter when shipped by truck or rail freight.
a. Removed from Cabinet 1 Modulator Section.
Item $\quad$ Ref. Designator $\quad$ Shown in Fig. No.

Transformer	1 T 1	$2-4$
Transforiner	$1 T 4$	$2-4$
Inductor	116	$2-4$
Capacitor	1 Cl 2	$2-5$

b. Removed from Cabinet 1 PA Section.

## Item

Ref. Designator
1A9T3
1A9T4
Transformer
Inductor
Inductor
Capacitor
Capacitor
Capacitor
Capacitor
.
. Removed from Cabinet 2 Output.

Item	Ref. Designator	Shown in Fig. No.
Capacitor		
Capacitor	2 Cl	$2-2$
Capacitor	2 C 2 A	$2-2$
Capacitor	2 C 6	$2-10$
Capacitor	2 Cl 2	$2-11$
Capacitor	2 Cl 3	$2-11$
Resistor	2 Cl 14	$2-11$
	$2 \mathrm{R} 7,2 \mathrm{R} 8$	$2-10,2-11$
Transformer	$2 \mathrm{R} 9,2 \mathrm{R} 10$	
	$2 \mathrm{~T} 1,2 \mathrm{~T} 2$	$2-3,2-12$

d. For reference during assembly, the Oscillator is shown in figures $2-13$ and $2-14$, the control panel is shown in figure 2-15, and the High-Voltage Step-Start Assembly is shown in figure 2-16.
e. Three 12 cc bottles of dashpot fluid are supplied with the transmitter which must be added as required to the oil bowls of the High-Voltage Step-Start Assembly magnetic overloads (3K3, 3K4, 3 K 5 figure 2-16). Adjustments are provided on the overload relays for both overload current and time delay. The overload value is set by rotating the armature on its threaded core. A tab aligns with markers on the armature to indicate the overload current. The amount of delay is determined by the quantity of oil in the dashpot. Only enough oil should be used as is required to stop the contactor from pumping when voltage is applied. If no pumping has occurred, no oll should be added.
f. If relay adjustment is required, unsnap the oil bowl from the bottom of each relay and remove the armature and piston. The overload tripping current should first be set by instructions printed on the face of each relay so that the ac overloads just hold in when the transmitter is 100 percent modulated at a low frequency. Only enough oil should be added as is required to touch the rings on the bottom of the piston when the piston is placed in the dashpot. Replace the cores and snap the bowls back on the magnetic trip units.

## WARNING

DO NOT CONNECT STATION PRIMARY POWER TO THE TRANSMITTER AT THIS TIME. USE A GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS, COMPONENTS, AND CONNECTIONS BEFORE TOUCHING THEM.

2-19. LIGHT SENSOR ASSEMBLY INSTALLATION
2-20. The Light Sensor Assembly is mounted on the top channel of the window between the PA/Modulator Cabinet and the Output Network Cabinet as shown in figure $2-2$. Terminal board 1 TB8 is mounted on the upperside of the top channel causing it to be hidden from view when the channel is in place. Terminal board 1TB8 is a junction for connecting the Indicator/Overload Assembly wiring to the Light Sensor wiring. Complete the following steps for installation:
a. Connect wires to terminal board 1TB8. Refer to schematic 839 6587037.
b. Install top channel in place.
c. Install Light Sensor in position shown.


Figure 2-4. Cabinet 1 Lower Left Front and Door


Figure 2-5. Cabinet 1 Left Front


Figure 2-6. Cabinet 1 Upper Left Rear


Figure 2-7. Cabinet 1 Lower Right Front


Figure 2-8. Cabinet 1 Left Rear


Figure 2-9. Cabinet 1 Left Rear


Figure 2-10. Cabinet 2 Upper Left Rear


Figure 2-10. Cabinet 2 Lower Left Rear


Figure 2-ll. Cabinet 2 Lower Right Front


Figure 2-12. Cabinet 2 Lower Left Front


Figure 2-13. Oscillator Top


Figure 2-14. Oscillator Bottom


Figure 2-15. Control Panel


Figure 2-16. High-Voltage Step-Start Assembly

2-21. Modulator Tube 1V1 (4CX35000C) must be installed from the front of the transmitter (refer to figure 2-5). RF Driver Tube 1A9V1 (4CX1500A) and RF Power Amplifier tube 1A9V2 (4CX35000C) are installed from the rear of the transmitter (refer to figure $2-8$ ).

2-22. RF Driver Tube (4CX1500A) must be slowly inserted into the socket until the tube seats and then rotated about $1 / 4$-turn clockwise in the socket (refer to figures $2-5$ and 2-8). The plate connector is then placed on the tube cap and tightened. Install the chimney on the tube.

2-23. Modulator Tube 1V1 ( 4 CX 35000 C ) is installed through the front access door (refer to figure 2-5) using the following procedure:
a. Remove upper cover from air duct.
b. Remove lower cover from air duct.
c. Tighten the wing nut at the bottom of the socket so that the fitting in the tip of the socket is snug against the bottom of the socket. This will make it easier to place the tube in the slot of the center pull-down pin.
d. Note the tube base and align the base to fit in the center slot when the tube is placed in the socket.
e. With hands under the cooling fins, pick up the tube and gently ease it into the socket.
f. Rotate the tube slightly back and forth until the tube slides down into the slot of the center pull-down pin.
g. Loosen the large wing nut at the bottom of the socket while attempting to rotate the center pin clockwise as viewed from the socket base. When the wing nut is properly loosened, the center pin will turn about l/8-turn clockwise.
h. Hold the pin while tightening the wing nut. The tube will move down into the socket about $1 / 4$-inch.

1. After the wing nut is tightened, check the tube. It should be held firmly in the socket.

## CAUTION

ENSURE AIR HOSE IS CONNECTED TO THE CENTER PIN AT THE BOTTOM OF THE TUBE SOCKET. THE TUBE CAN BE DESTROYED BY HEAT IF THE AIR HOSE IS NOT CONNECTED.
j. Connect air hose to center pin at the bottom of the tube socket.
k . Replace cover at the bottom of the tube socket.

1. Install the top air duct panel and tighten the quarter-turn fasteners on the panel and plate ring.

2-24. Power Amplifier Tube 1A9V2 (4CX35000C) is installed using the same procedure used for the Modulator Tube, except that it is installed from the rear of the transmitter (refer to figure 2-17).

CAUTION
CHECK FOR PROPER PULL-DOWN TIGHTNESS. ENSURE AIR HOSE IS CONNECTED TO CENTER TUBE SOCKET PIN. ENSURE AIR DUC'T COVER IS INSTALLED AND FASTENERS ON DUCT AND PLATE RING ARE TIGHTENED.

## 2-25. CONNECTIONS BETWEEN CABINETS

2-26. Terminal board 2TB2, which has 30 terminals, is located in Cabinet 2 along the bottom edge that matches up with Cabinet 1 (refer to figure 2-18). This terminal board connects the internal wiring of each cabinet together. The wires from Cabinet 1 are removed from the terminal board and tagged for easy reconnection. These connections are shown on figure 2-19. Reconneet them as indicated.
$2-27$. Two white 100 kV high-tension wires must be connected after the cabinets have been joined. Refer to figures 2-2 and 2-3.
a. In Cabinet 1, a 100 kV wire laying on the base toward the front of the transmitter is terminated at capacitor 1C12 in the modulator section. Connect this wire to the end of coil assembly 2L7 closest to the edge of Cabinet 2 .
b. The second high-tension wire to be connected is in Cabinet 2 with one end terminated at the top of inductor 2L1. The loose end should be connected to the plate side of capacitor 2 C 1 .
c. In the back of the meter panels at the top, route the coaxial cable from the power coupler through the grommet and connect to terminal board 1 TB10 (connect according to the tags on the cable).
d. Feed the audio feedback cable through the grommets and connect to the feedback board (connect according to the tags on the cable.


Figure 2-17. Modulator


Figure 2-18. Cabinet 2 Lower Right Rear

## CABINET NO. 2 GROUND STUD

## .14

1	1
2	2
3	3
4	4
5	5
6	6
7	23
8	24
9	46
10	47
11	48
12	62
13	63
14	66
15	67
16	74
17	75
18	81
19	82
20	-
21	-
22	281 SHIELD
23	281 COND.
24	284
25	283
26	282
27	244 COND.
28	244 SHIELD
29	260 COND.
30	260 SHIELD
$2 T B 2$	
2	

Figure 2-19. Wiring Between Cabinet 1 And 2

2-28. EXTERNAL CONNECTIONS
2-29. The following external connections must be made. Wiring information is shown in figure 2-20.

## CAUTION

THIS EQUIPMENT IS DESIGNED FOR CONNECTION TO A CLOSED DELTA, WYE THREE-PHASE PRIMARY POWER SERVICE.
a. Primary ac power is 3 -phase, $380 / 460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Primary line, as purchased. Two main ac entrance boxes are required (to be supplied by the customer). One 30-ampere, 3-phase, fused disconnect provides primary ac control for the transmitter. The second disconnect, 200-ampere, 3-phase, fused, allows primary ac voltage control of the High-Voltage Power Supply. Wire size is noted on figure 2-20. Primary control is recommended for safety so the transmitter can be checked with complete assurance that no high voltage will be present.

## WARNING

> DISABLE STATION PRIMARY POWER TO TRANSMITTER USE GROUNDING STICK TO DISSIPATE POTENTIAL FROM AL.L TAPS, CONNECTIONS, AND COMPONENTS BEFORE TOUCHING THEM.
b. Solidly connect the power supply case to earth ground. Use the grounding stick provided in the junction box to short out all

- capacitors and terminals. Clip leads may be used during installation to connect terminals and components to each other and ground for safety. Install and connect ac input and dc output wires to the supply as shown in figure $2-20$. Avoid installing wire entrance points close to high-voltage terminals. If used, ensure that the power factor correction capacitors are properly connected (refer to Appendix A).
c. Connect the coaxial antenna output, on the top of Cabinet 2, to the Antenna, or Phasor if used, with 3-1/8-inch diameter coaxial cable.
d. Connect the control wires to the High-Voltage Step-Start Assembly using number 16 wire.
e. Connect the shielded cables,
f. Connect the negative wire from the transmitter to the High-Voltage Power Supply using number 10 stranded wire.


WARNING: Disconnect primary power prior to servicing.




WARNING: Disconnect primary power prior to servicing.



> Figure 2-20. Wiring Diagram (Sheet 3 of 3)



888-2213-001

WARNING: Disconnect primary power prior to servicing.
g. Connect the positive high-voltage wire from Cabinet 2 to the HighVoltage Power Supply center tap (CT). This connection will be used for initial testing and changed later.
h. Connect the input audio line to Cabinet 1 , terminals 1 and 2 of terminal board 1TB2. Terminal 3 is connected to ground.

1. Connect the modulation monitor to $B N C$ connector $1 J 1$ located in the lower rear portion of Cabinet 1 near terminal board 1TB1. Use 75-ohm RG59/U coaxial cable for this connection.
j. A transmitter ground stud is located in Cabinet 1. Ground the Cabinets, High-Voltage Step-Start Assembly, and the large power transformer case using copper strap. They all should be connected to the main station ground system.

2-30. CONNECTIONS TO REMOTE CONTROLS/MONITORS
2-31. Figure 2-20 provides information required for connection of remote control facilities and termination data required for installation of monitoring equipment. If remote control or monitoring capability is utilized, the following connections must be made to terminal board 1TB1.
a. REMOTE FILAMENT ON/OFF. A contact continuously made between terminals 15 and 16 will turn filaments on and hold them on. Opening this contact will deenergize the filaments. A holding contact rated at five amperes, 120 Vac is required.
b. HIGH VOLTAGE ON. A momentary contact between terminals 19 and 20 will turn on the high voltage after the filament step-start has cycled. A five-ampere, 120 Vac contact is required. This feature is also activated by the Automatic Return After Power Failure feature.
c. HXGH VOLTAGE ORF. A momentary contact between terminals 21 and 22 will remove high voltage. A one ampere 12 Vdc contact between terninals 11 and 9 will raise power. The contacts must be rated at five amperes, 120 Vac.
đ. RAISE/LOWER POWER. A contact between terminals 11 and 10 will lower transmitter power. A contact between terminals 11 and 9 will raise power. The contacts must be rated at five amperes, 120 Vac.
e. HIGH/LOW POWER OPERATION. A momentary contact between terminals 16 and 17 will provide transmitter operation at high power. A momentary circuit between terminals 16 and 18 will reduce output power to a predetermined low-power level. The contacts must be rated at one ampere, 120 Vac.

## CAUTION

IF THE POWER IS TO BE REDUCED AT THE SAME TIME THAT THE STATION GOES DIRECTIONAL, BOTH HIGH/LOW POWER AND CARRIER Off functions must be carried out simulTANEOUSLY. TRANSMITTER CARRIER IS NOT CUT during a high/LOW POWER CHANGE.
f. CARRIER OFF (EBS or Phasor Control). A contact between terminals 24 and 25 will turn off the PDM which removes carrier, high voltage remains on. Use a contact rated one ampere at 12 Vdc .
g. AUTOMATIC RETURN AFTER POWER FAILURE. A momentary contact between terminals 14 and 15 will activate the auto return circuit. A contact rating of one ampere at 120 Vac is required.
h. REMOTE PLATE CURRENT METERING. Sensed final amplifier plate current is available on terminals 26 and 27. A LEVEL SET control, a ZERO control, and an ADJ control are provided on the remote plate Current Sensor for calibration. The LEVEL SET control provides an adjustment to scale the output range to any desired level. The ZERO control sets the 0 Vdc output with no through current. The ADJ control sets the output range from 0 to 5 Vdc for the full scale through current (refer to figure 2-21). To adjust the sensor proceed as follows:

1. Adjust LEVEL SET control to maximum clockwise.
2. With no through current, adjust ZERO control counterclockwise until output is 0.000 Vdc. Slowly continue to adjust ZERO control until output dc is between 0.001 and 0.010 Vdc to ensure the output is in the active region with no through current.

## WARNING

## HIGH VOLTAGE IS PRESENT WHEN PA PLATE CURRENT IS PRESENT.

3. Apply full through current and adjust $A D J$ control (located on the side of the unit) for full scale.
4. Remote final amplifier plate voltage is compared in integrated circuit Ul on the Fault and Overload board and is available on terminals 23 and 24 of terminal board ITB1.


## SPECIFICATIONS



1. VAC H1	5. OUTPUT (-)
2. VAC Lo	6. Spare
3. Case Grd.	7. Spare
4. OUTPUT (+)	8. Spare

Figure 2-21. Remote Plate Current Sensor Adjustment

2-33. Before proceeding with initial MW-50C3 Transmitter testing, ensure that the unit is completely installed, all parts are back in position and correctly wired, tubes are correctly positioned in their sockets, the transmitter is connected to a suitable rf load, all primary wiring is installed, the High-Voltage Power Supply is connected for approximately half-voltage output, audio input signal is provided, modulation and frequency monitors are connected, and all cabinets are free of debris and connected to station earth ground.

## WARNING

> ENSURE THAT THE MAIN BREAKERS IN THE PRIMARY CIRCUITS ARE SET TO THE OFF POSITION ( 30 AMPERE AND 200 AMPERE). A GROUNDING STICK TO DISSIPATE ANY RESIDUAI. CURRENT BEFORE TOUCHING ANY COMPONENT.

2-34. The complete transmitter should be inspected at this time. Check the following:
a. Make sure all connections at terminals boards and components are tight.
b. Remove any extra hardware or wire lying within the cabinets and the High-Voltage Power Supply and tighten all nuts and bolts.
c. Rotate blower and fan manually to be sure no obstructions are present.
d. Check relay and solenoid armature operation manually. Make sure they all have free, unobstructed movement.
e. All wires and cabling should be dressed properly.
f. All air ducts and shielding should be in place.
g. Use a vacuum cleaner and thoroughly clean the interior of the transmitter.
h. Replace the transmitter doors after all inspection and all cleanup work has been completed. The doors have spring-held slip pins in each hinge to make installation a quick operation.
i. BE SURE ALI THE TAPE THA' MAY HAVE BEEN INSTALIED FOR SHIPMENT AS ANTI-CHAFFING STRIPS BETWEEN ALUMINUM PANELS HAS BEEN REMOVED.

## CAUTION

THE HIGH-VOLTAGE POWER SUPPLY SHOULD NOT BE SUBJECTED TO PERIODS OF STORAGE IN A HIGH-HUMIDITY ENVIRONMENT. IF THERE IS ANY QUESTION OF HOW OR WHERE THE SUPPLY HAS BEEN STORED OR IF THE STORAGE PERIOD HAS BEEN 30 DAYS OR LONGER, IT IS RECOMMENDED 'THAT BEFORE PROCEEDING THE SUPPLY BE TEMPORARILY OPERATED IN A WYE INPUT CONFIGURATION FOR A FEW HOURS.

2-35. MODULATOR CHECK

## WARNING

DISCONNECT AND LOCK OUT STATION PRIMARY POWER TO TRANSMITTER. SET ALL TRANSMITTER CIRCUIT BREAKERS TO THE OFF POSITION.
a. Remove the lower left front panel of Cabinet 2.

## WARNING

USE A GROUNDING STICK AND TOUCH EACH TAP OF TRANSFORMER 2T2 TO DETERMINE THAT NO POTENTIAL IS PRESENT.
b. Using clip leads, connect a voltmeter between terminal 22 and terainal 23. Place the voltmeter in front of the transmitter.
c. Ensure all grounding sticks are in position of their interlocked holders. Close all doors and be sure all external interlocks are closed.

## WARNING

LEAVE THE 200-AMPERE CIRCUIT BREAKER IN OFF POSITION.
d. Apply station primary power to the transmitter.
e. Set the 30 -ampere circuit breaker to the $O N$ position to apply ac power to the transmitter control circuits, fan, and blower.
f. Check the external voltmeter reading. If the reading is 230 Vac $\pm 11.5$ Vac the transformer 2 T 2 taps are correctly set. If the indication is other than 230 Vac $\pm 11.5 \mathrm{Vac}$, a tap change will be required.
g. To change taps to obtain the correct voltage output, complete the following steps:

1. Set all transmitter circuit breakers to the OFF position.

## WARNING

> DISABLE STATION PRIMARY POWER TO TRANSMITTER. SET ALL TRANSMITTER CIRCUIT BREAKERS TO THE OFF POSITION. USE A GROUNDING STICK AND TOUCH EACH TAP OF TRANSFORMER 2T2 (FIGURE 2-12) TO DETERMINE THAT NO POTENTIAL IS PRESENT.
2. If the voltmeter reading was lower than $230 \mathrm{Vac} \pm 11.5 \mathrm{Vac}$, change the secondary leads from taps $2,9,16$, to $3,10,17$.
3. If the voltmeter reading was higher than $230 \mathrm{Vac} \pm 11.5 \mathrm{Vac}$, change the secondary leads from taps $2.9,16$, to $1,8,15$.
4. Repeat steps b, c, d, e, and f, as necessary until the 230 Vac $\pm 11.5$ Vac reading is obtained.

## WARNING

disconnect and lock out station primary POWER TO THE TRANSMITTER. SET ALL THE TRANSMITTER CIRCUIT BREAKERS TO THE OFF POSITION. USE A GROUNDING STICK AND TOUCH EACH TAP OF TRANSFORMER $2 T 2$ (FIGURE 2-12) TO DETERMINE THAT NO POTENTIAL IS PRESENT.
h. Remove the clip leads and the external voltmeter. Replace the lower left front panel.
i. Apply station primary power to the transmitter.
j. Set the 30 -ampere circuit breaker to $O N$ to apply ac power to the transmitter control circuits, fan, and blower.
k . Depress FILAMENT ON pushbutton switch. The blower and fan should operate and the AIR MALFUNCIION indicator should extinguish.

1. If the AIR MALFUNCTION indicator remains illuminated, check the air flow at the rear door filters of Cabinet 1 and Cabinet 2. The air flow should be into the cabinets. lf the airflow is out of either door filter, the rotation of the fan in Cabinet 1 or the blower in Cabinet 2 is reversed.

NOTE
If the AIR MALFUNCTION indicator remains illuminated after it is determined that fan in Cabinet 1 and blower in Cabinet 2 are rotating in the proper direction, the set point of the air interlock switch requires adjustment.

Rotate the adjusting screw (located in center of air switch mounting boss) counterclockwise in $1 / 2$ turn increments until AIR MALFUNCTION indicator on front panel is extinguished when blower is operating.
m. After determining which unit (fan or blower) has reverse rotation, correct the rotation problems as follows:

1. Depress FILAMENT OFF pushbutton switch.
2. Set the 30 -ampere circuit breakers to the OFF position.
3. DISABLE STATION PRIMARY POWER TO THE TRANSMITTER.

WARNING

DISCONNECT AND LOCK OUT STATION PRIMARY POWER TO THE TRANSMITTER. USE A GROUNDING STICK TO DISSIPATE ANY POTENTIAL FROM ALL COMPONENTS BEFORE TOUCHING THEM.
4. If the fan in Cabinet 2 has reversed rotation, interchange any two wires on fan terminal block 2TB3. Refer to figure 2-2.3 for the location of terminal block 2 TB 3 .
5. If the blower in Cabinet 1 has reversed rotation, interchange any two wires on blower terminal block lTB3.
n. Apply primary power to the transmitter. Set the 30 -ampere circuit breaker to the $O N$ position to apply ac power to the transmitter control circuits, fan, and blower.

888-2213-009

WARNING: Disconnect primary power prior to servicing.


Figure 2-22. Cabinet 1 Lower Right Rear


Figure 2-23. Cabinet 2 Lower Left Rear
o. Depress FILAMENT ON pushbutton switch. The fan and blower should operate and the AIR MALFUNCTION indicator should extinguish after a few seconds.
p. Set all remaining circuit breakers on the power control panel to the ON position. All switches remain off. After setting the last circuit breaker, the filaments should step-start $0 N$. The second step will begin in about five seconds.
q. Set filament voltage on the $P A$ and modulator by adjusting the POWER AMPLIFIER FILAMENT ADJUST and MODULATOR FILAMENT ADJUST controls to obtain a 9.5 Vac indication on the FILAMENT Meter for each section.
r. Open and close each door and ground stick interlock, one at a time. A DOOR or GND STICK SAFETY INTERLOCK indicator should illuminate and extinguish each time an interlock is violated and then restored.
s. Close all doors and interlocks. FILAMENT ON indicator should illuminate. No SAFETY or MALFUNCTION INTERIJOCKS indicators should be illuminated.
t. Check the PA meter panel for a CIRCUIT BREAKER open indication. If a circuit breaker is open, depress CIRCUIT BREAKER PUSH TO RESET pushbutton switch located on the lower PA panel.
u. Operate the PA MULTIMETER switch to the DRIVER GRID AMPS position. Peak the indicated current by adjusting the RF DRIVER GRID TUNE control located on the oscillator panel. The PA MULTIMETER should indicate above mid scale. Check operation of both oscillators and peak each oscillator with the RF DRIVER GRID TUNE control. Adjust PA screen protector control maximun CCW.
v. Set the ISO ENCL $B+$ and 25 kV switches to the OPERATE position.

## WARNING

ENSURE MAIN AC (200 AMPERE) TO THE HIGHVOLTAGE STEP-START ASSEMBLY IS OFF. THERE MUST BE NO HIGH VOLTAGE FOR THE FOLLOWING TESTS.
w. Depress the POWER HIGH pushbutton switch/indicator. The switch/ indicator should illuminate.
x. Open the PDM panel (refer Figure 2-24) and adjust high-power level control potentiometer R44 maximum counterclockwise. Depress HIGH VOLTAGE ON pushbutton switch/indicator. The switch/indicator should illuminate. The modulator MULTIMETER should indicate approximately as shown in Column 1.
Column 1Column 2

DRIVER SOURCE AMPS 0-3	1.2	0
DRIVER GATE VOLTS 0-30	11.5	0
DRIVER DRAIN VOLTS 0-1200	4.0	480.0
MOD GRID VOLTS 0-1200	400.0	0
MOD SCREEN VOLTS 0-1200	860.0	300.0
MOD SCREEN AMPS $0-3$	1.45	3.0
AUX DRIVER AMPS $0-1.2$	0.1	0.1
AUX DRIVER VOLTS $0-120$	100.0	100.0

y. Adjust high-power level control potentiometer R 44 , on the PDM chassis, maximum clockwise. The modulator MULITMETER indications should be approximately as shown in Column 2. Meter transitions should be smooth without jitter or jump. If the indications are satisfactory, adjust high power level control potentiometer R44 maximum counterclockwise and depress the HIGH VOLTAGE OFF pushbutton switch.

## 2-36. RF SECTION CHECK

a. Adjust PA SCREEN PROTECTOR potentiometer maximum counter clockwise. Only the following PA MULTIMETER switch positions should indicate above zero at this time.

1. OSC POWER SUPPLY VOLTS $0-300$ should indicate between 90 and 140 volts.
2. DRIVER GRID AMPS 0.03 should indicate over half-scale on the meter. Peak the indication by varying the RF DRIVER GRID TUNE control.
b. Depress the HIGH VOLTAGE ON pushbutton switch to energize all power supplies in the Isolated Enclosure. POWER AMPLIFIER SCREEN CURRENT should indicate less than 1.5 amperes. Adjust DRIVER PLATE TUNE control about $1 / 2$-turn for maximum POWER AMPLIFIER SCREEN CURRENT indication.
c. Set the POWER AMPLIFIER SCREEN CURREN'I indication to approximately two amperes by adjusting the PA SCREEN PROTECTOR control potentiometer clockwise. The PA MULTIMETER should indicate approximately the following values:
POWER AMP SCREEN VOLTS 0-1200 650
PA GRID AMPS 0-1.2 . 025
PWR AMPL BIAS VOLTS 0-1200 600
DRIVER PLATE VOLTS 0-3000 1300
DRIVER CATHODE AMPS 0-1.2 0.6
DRIVER SCREEN VOLTS 0-1200 420
DRIVER GRTD AMPS 0.030
OSC POWER SUPPLY VOLTS 0-300 110


Figure 2-24. PDM Controls
d. The Isolated Enclosure is now tuned for operation. Depress the HIGH VOLTAGE OFF and FILAMENT OFF pushbutton switches.

2-37. HIGH VOLTAGE CHECK
$2-38$. The transmitter will first be brought up to partial power. Ensure that the transmitter is terminated in a 50 -ohm load. The High-Voltage Power Supply primary must be connected in a delta configuration for a 50 kW supply or connected in a wye input configuration in case of a 100 kW supply. The high-voltage lead must be connected to the CT terminal (half-voltage). The transmitter is now ready for application of high voltage. Fuses may be installed, if used, and the main 200-ampere disconnect closed.
a. Depress the FILAMENT ON pushbutton switch/indicator. The switch/ indicator should illuminate and the filaments should step-start ON in about five seconds.
b. Depress the HIGH VOLTAGE ON pushbutton switch/indicator. The switch/indicator should illuminate, the high-voltage contactor should close, and supply volts should increase to approximately 12 kV . The PA PLATE VOLTS meter should indicate zero volts after the high voltage has completely cycled on. If not, adjust the METER ZERO control, located at the left of the power control panel in the lower front section of Cabinet 1 , to bring the meter pointer to zero. Refer to figure 3-2.
c. Open the PDM chassis panel. Adjust dissipation control potentiometer R34 fully clockwise.
d. Adjust high-power level control potentiometer R44 slowly counterclockwise until the PA PLATE VOLTS meter indication rises to 5 kV or the POWER AMPLIFIER PLATE CURRENT meter indication rises to 3 amperes, whichever occurs first.

> CAUTION
> ADJUSTMENTS OF THE PA PLATE TUNING SHOULD BE LIMITED TO 2 TURNS CW OR CCW FROM ORIGINAL SETTING. NO GREATER ADJUSTMENT SHOULD BE REQUIRED AS PA PLATE TUNING IS PRESET DURING FACTORY FINAL TEST.
e. Mark the position of the PLATE TUNE control so that the original factory setting will not be lost. The control may be adjusted two turns CW or CCW to resonate the PLATE circuit while monitoring the POWER AMPLIFIER PLATE CURRENT meter for a dip.
f. Adjust the LOADING control, if necessary, until high-power level potentiometer R 44 can be adjusted up to 5 kV PA PLATE VOLTS meter indication with a POWER AMPLIFIER PLATE CURRENT meter indication of 3 amperes.
g. Increase power until the SUPPLY CURRENT meter indicates approximately 3.95 amperes. The POWER meter should indicate 40 kW , the POWER AMPLIFIER PLATE CURRENT meter should indicate 5.4 amperes and the PA PLATE VOLTS meter should indicate 8.5 kV .

## CAUTION

ADJUSTMENTS OF THE GRID EFFICIENCY RESONATOR SHOULD BE LIMITED TO 1/2-TURN CW OR CCW FROM ORIGINAL SETTING. NO GREATER ADJUSTMENT SHOULD BE REQUIRED AS THE EFFICIENCY RESONATORS ARE PRESET DURING FACTORY FINAL TEST.
h. Mark the position of the GRID EFFICIENCY RESONATOR control. The control may be adjusted $1 / 2$-turn $C W$ or $C C W$ to resonate the $P A$ grid circuit while monitoring PA PLATE VOLTS for a dip.

1. Adjust high-power level potentiometer R 44 more clockwise to increase the SUPPLY CURRENT meter indication to 5 amperes. If the dc does not trip, adjust DC HIGH VOLTAGE OVERLOAD control until the transmitter trips out at a SUPPLY CURRENT meter indication of 4.5 amperes. High voltage should now be off.
j. Depress FILAMENT OFF pushbutton switch. After a blower run-down period of 5 minutes remove all ac inputs with primary disconnects.
k. Use grounding sticks to short the high-voltage circuitry and capacitors to ground. Leave the sticks in the shorting positions.

WARNING

DISCONJECT AND LOCK OUT STATION PRIMARY POWER TO THE TRANSMITTER. USE A GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS AND COMPONENTS BEFORE TOUCHING THEM.

1. Open the high-voltage supply protection barrier and short the positive full-voltage and half-voltage (Cr) terminals to ground. Remove the high-voltage wire from the half-voltage (CT) and connect to the full-voltage terminal.
m. Replace all grounding sticks on their interlocked holders and close all transmitter and power supply barrier doors.

2-39. POWER AND MODULATION CHECK
2-40. HIGH POWER ADJUSTMENT. To check the transmitter at its high-power level output, fully modulated, proceed as follows:

883-2213-009

## CAUTION

> EFFICIENCY RESONATORS AND PLATE TUNING AFFECT POWER OUTPUT, EFEICIENCY AND DISTORTION. ADJUSTMENTS SHOULD BE LIMITED TO 1/2-TURN CW OR CCW DEVIATION FROM ORIGINAL SETTINGS. NO GREATER ADJUSTMENT SHOULD BE REQUIRED AS ALL HAVE BEEN PREALIGNED DURING FACTORY FINAL TEST.
a. Adjust high-power level potentiometer R 44 maximum counterclockwise, zero power output position.
b. Depress FILAMENT ON pushbutton switch/indicator. The switch/indicator should illuminate.
c. After filaments have step-started, depress HIGH VOLTAGE ON pushbutton switch/indicator. The switch/indicator should illuminate.
d. Adjust high-power leve. 1 potentiometer R 44 clockwise until power output is 55 kW . The PA PLATE VOLTS meter should indicate approximately 9.4 kV and the POWER AMPLIFIER CURRENT meter should indicate approximately 6.2 amperes. If the above ratio of voltage to current is not present, adjust the LOADING control. This voltage-to-current ratio should be present but will vary from transmitter to transmitter. Values given are approximate. Check the Transmitter Test Specification Sheets for exact values.
e. Operate the modulator MULTIMETER switch to AUX DRIVER AMPS 0-1.2. Note the optimum value for each individual transmitter on the test specification sheets. Adjust the AUXILIARY DRIVER control to obtain the current listed on the Factory Test Specification Sheets.
f. Modulate the transmitter 95 percent negative with a 100 Hz tone. The POWER AMPLIFIER PLATE CURRENT METER and PA PLATE VOLTS meter indication may rise slightly. MODULATION ENHANCER bypass/operational switch $142 S 1$ should be in the bypass position at this time (refer to figure 2-24).
g. Adjust the PA SCREEN PROTECTOR control for a POWER AMPLIFIER SCREEN CURRENT meter indication of between 1.7 and 2.0 amperes. Note the optimum value for each individual transmitter on the Factory Test Specification Sheets.
h. If necessary, adjust the AUXILIARY DRIVER control at 95 percent modulation with a 1000 Hz tone for equal positive and negative peaks. It should be near the center of its range.
i. With modulation on, adjust dissipation limiter control potentiometer R34, on the PDM chassis, counterclockwise until a slight reduction in PA PLATE VOLTS meter or POWER meter indication is noted. Then adjust the control about 1/4-turn clockwise.
j. Adjust carrier shift control potentiometer R36 (located on the PDM chassis) to minimize carrier shift to less than one percent.

2-41. LOW-POWER ADJUSTMENT. The following low-power adjustments must be accomplished after the high-power adjustments are completed. To adjust the transmitter to the selected low-power output, proceed as follows:

## CAUTION

EFFICIENCY RESONATORS AND PLATE TUNING AFFECT POWER OUTPUT, EFFICIENCY AND DISTORTION. ADJUSTMENTS SHOULD BE LIMITED TO 1/2-TURN CW OR CCW DEVIATION FROM ORIGINAL SETTINGS. NO GREATER ADJUSTMENT SHOULD BE REQUIRED AS ALL HAVE BEEN PREALIGNED DURING FACTORY FINAL TEST.
a. Adjust low-power level control potentiometer R45 on the PDM, chassis, maximum clockwise. Refer to figure 2-24.
b. With the transmitter operating at high power, depress POWER LOW pushbutton switch. The power should drop very little.
c. Adjust low-power level control potentiometer R 45 , on the PDM chassis, for the output power required ( 10 kW or 25 kW ).
d. Distortion is generally a bit greater at low power but is minimized by changing the value of resistor 1A1R3 in Cabinet 1 (refer to figure 2-25). Maximum resistance is used for 10 kW output power. Move the resistor tap $1 / 2$-inch at a time until distortion is minimized.
e. Adjust low-power input audio control potentiometer R26, on the PDM chassis, to obtain the same percentage of modulation as obtained at the high-power level.
f. Adjust the POWER ADJUST RAISE/LOWER control to the center of its range. Operate the transmitter for 20 minutes. Depress POWER HIGH pushbutton switch. Adjust high-power level adjust potentiometer R44 for the desired transmitter high-power level output. Depress POWER LOW pushbutton switch/indicator. Adjust low-power level adjust potentiometer R45 for the desired transmitter lowpower level output. The POWER ADJUST RAISE/LOWER control will now be capable of making a $\pm 20$ percent change in transmitter power output.


Figure 2-25. Low-Power Distortion Adjustment

2-42. TYPICAL METER READINGS
2-43. Typical meter readings for various power levels are given in table 2-1. The values stated are approximate. For exact readings, refer to the Factory Final Test Specification Sheets furnished with the transmitter.

Table 2-1. Typical Meter Readings (100 Percent Modulation)

METER

SUPPLY VOLTS
SUPPLY CURRENT
pa Plate Volts
pa PLate current
pa screen current
PA FILAMENT VOLTS
MOD FLLAMENT VOLTS

10kW
24.9 kV
1.1 A
4.1 kV
3.1 A

2 A
9.8 V
9.8 V
1.05 A
8.5 V

100 V
400 V
585 V
1.45 A
0.02 A 95 V

25kW

24.8 kV	24.5 kV
2.3 A	4.4 A
6.5 kV	9.6 kV
4.5 A	6.7 A
2 A	2 A
9.8 V	9.8 V
9.8 V	9.8 V

Modulator MULTIMETER:

DRIVER SOURCE AMPS 0-3	1.05 A	0.9 A	0.75 A
DRIVER GATE VOLTS 0-30	8.5 V	7.0 V	5.5 V
DRIVER DRAIN VOLTS 0-1200	100 V	150 V	200 V
MOD GRID VOLTS 0-1200	400 V	390 V	250 V
MOD SCREEN VOLTS 0-1200	585 V	620 V	595 V
MOD SCREEN AMPS 0-3	1.45 A	1.65 A	2.1 A
AUX DRIVER AMPS 0-1.2	0.02 A	0.02 A	0.08 A
AUX DRIVER VOLTS $0-120$	95 V	95 V	95 V

PA MULTIMETER:

POWER AMPL SCREEN VOLTS $0-1200$	620 V	635 V	640 V
PA GRID AMPS 0-1.2	0.18 A	0.2 A	0.22 A
PWR AMPL BIAS VOLTS $0-1200$	580 V	580 V	580 V
DRIVER PJ.ATE VOLTS $0-3000$	1300 V	1350 V	1380 V
DRIVER CATHODE AMPS $0-1.2$	0.56 A	0.61 A	0.61 A
DRIVER SCREEN VOLTS $0-1200$	400 V	420 V	420 V
DRIVER GRID AMPS 0.03	0 A	0 A	0 A
OSC POWER SUPPLY VOLTS $0-300$	110 V	110 V	110 V

2-44. If high-power level-control potentiometer R44 is set for 50 kW operation and high voltage removed, readings of the modulator sections will not agree with those listed since negative feedback from the plate circuit will not be present. This will turn the PDM full on to 100 percent pulse width. To view the pulses on an oscilloscope, high-power level control potentiometer $R 44$ must be adjusted counterclockwise to lower the duty cycle to an observable value.
$2-45$. If high voltage is turned off, only the oscillator power supply and driver grid will indicate on the PA MULTIMETER. With filaments $0 N$ and no high voltage, DRIVER GRID AMPS should indicate from two-thirds to a fullscale reading, indicating the presence of rf drive. This provides a good check of oscillator output and tuning.

2-46. If the test specification sheets are reviewed closely, an increase in dc plate voltage and dc plate current will be noted even under conditions of zero carrier shift. A 200 to 300 -volt rise is normal. This is due to a dynamic change in the action of the 3rd Harmonic Resonator. An increase of more than 300 volts may be an indication of mistuning of the efficiency resonators, insufficient PA screen current or improper loading. Before any adjustments are made, review the theory section of this manual carefully.

## 3-1. INTRODUCTION

3-2. This section contains information pertaining to the operation of the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER as well as the identification, location, and function of the controls and indicators.

3-3. CONTROLS AND INDICATORS
3-4. Tables 3-1 through 3-8 1ist Controls and Indicators with the function of each. Figures $3-1$ through $3-8$ show the location of each control and indicator.

3-5. OPERATION
3-6, TRANSMITTER TURN ON

3-7. The operation procedure is presented under the assumption that the transmitter has been thoroughly and properly aligned and is free of any discrepancies. Visually inspect the transmitter to ensure that no foreign objects are inside the cabinet, all parts and components are properly installed, all connectors are secure, all grounding sticks are on their respective hooks and all doors are closed. To turn the transmitter on, proceed as follows:
a. During normal operation, the FILAMENT ON pushbutton switch/indicator is depressed. lf the transmitter is remotely controlled, a contact is made by the remote control system to turn on the transmitter tube filaments. This contact is maintained in remote operation as a failsafe requirement. The AIR MALFUNCTION indicator will illuminate momentarily and extinguish as air flow from the blower and fan increases.
b. After an approximately five-second delay for filament step-start operation, HIGH VOLTAGE ON pushbutton switch/indicator may be depressed. If the transmitter is remotely controlled, a momentary contact is made across the high-voltage $O N$ terminals. The transmitter will now be on the air.

## CAUTION

IF POWER IS TO BE REDUCED AT THE SAME PIME THAT THE STATION GOES DIRECTIONAL, BOTH HIGH/LOW POWER AND CARRIER OFF FUNCTIONS MUST BE CARRIED OUT SIMULTANEOUSLY. TRANSMITTER CARRIER IS NOT CUT DURING A HIGH/LOW POWER CHANGE.
c. AUTO ON pushbutton switch/indicator may be depressed or operated remotely. This provides for automatic transmitter return to operation after power failure.

3-8. TRANSMITTER SHUTDOWN

## CAUTION

Mancurn

> IT IS NOT RECOMMENDED THAT THE TRANSMITTER BE SHUT DOWN BY TURNING THE FILAMENTS OFF WITHOUT FIRST TURNING OFF HIGH VOLTAGE. WHEN THE HIGH-VOLTAGE SHORTING SWITCHES CLOSE, THE HIGH-VOLTAGE POWER SUPPLY WILL DISCHARGE, PIACING MANY CMPONENTS UNDER UNDUE STRESS.

## WARNING

> IF THE TRANSMITTER IS EVER TURNED OFF BY DEENERGIZING THE FILAMENTS AND THE AUTOMATIC RETURN TO AIR FUNCTION IS ENERGIZED AT TURN OFF, THE TRANSMITTTER WILL CYCLE ON BY ITSELF WHEN THE FILAMENTS ARE AGAIN TURNED ON AS IF EXPERIENCING POWER FAILURE.

3-9. To turn the transmitter OFF, depress the HIGH VOLTAGE OFF pushbutton switch. This removes the automatic transmitter return to operation function, removes high voltage, and discharges the high-voltage capacitors. The FILAMENT OFF pushbutton switch should then be depressed.

3-10. MODULATION ENHANCEMENT
SPECIAL NOTICE
OPERATIONAL/BYPASS SWITCH POSITION SHOULD NEVER BE CHANGED WHILE A PROGRAM IS ON THE AIR. THIS SWITCH IS USED TO PUT THE MODULATION ENHANCER ON OR OFF LINE AND CAUSES A 6 dB CHANGE IN MODULATION (OVERMODULATION IF SWITCHED TO BYPASS, UNDERMODULATION IF SWLTCHED TO OPERATIONAL). THE OPERATOR MUST CHANGE THE MODULATION OF THE TRANSMITTER ACCORDING TO THE SETTING OF THE SWITCH. ADDS 6 dB WHEN SWITCHED TO THE OPERATIONAL POSITION. REMOVES 6 dB WHEN SWITCHED TO BYPASS POSITION.

3-11. If modulation enhancement is desired, set the OPERATIONAL/BYPASS switch to OPERATIONAL. Adjust the Modulation Enhancer as follows:
a. Depress the CAI OUT pushbutton switch.
b. Modulate the transmitter with typical music. Set the AGC and limiter for fastest operation. Set the limiter for 125 percent modulation.

NOTE
The desired amount of enhancing can only be determined by listening to the output. The more enhancing ( 3 dB maximum) the louder the signal.
c. Depress the ENHANCING $1 \mathrm{~dB}, 2 \mathrm{~dB}$, or 3 dB pushbutton switch and adjust NEG PEAK potentiometer R16 and POS PEAK potentiometer R20 for maximum negative and positive peaks without overmodulating.


Figure 3-1. Meter Panel Controls and Indicators

Table 3-1. Meter Panel Controls and Indicators

REF.	CONTROL/INDICATOR	FUNCTION
1	SUPPLY VOLTS Meter	Indicates high-voltage dc supply voltage.
2	POWER   Meter	Displays forward or reflected power as selected by REFLECTED/FORWARD switch.
3	FILAMENT ON Pushbutton Switch/ Indicator	Turns on filament. Indicates filament voltage is applied.
4	FILAMENT OFF   Pushbutton Switch/   Indicator	Switch removes filament voltage from transmitter tubes. Indicator illuminates if a circuit breaker or temperature interlock opens.
5	AUTO ON   Pushbutton Switch/   Indicator	Energized and indicates the automatic return to air after power failure feature is enabled.
6	POWER LOW   Pushbutton Switch/   Indicator	Switch controls transistion to predetermined low-power level. Indicator shows low-power level has been selected.
7	POWER HIGH   Switch/Indicator   Indicator	Switch controls transistion to highpower level. Indicator shows highpower level has been selected.
8	HIGH VOLTAGE ON Pushbutton Switch/ Indicator	Switch controls application of highvoltage. Indicator shows high-voltage has been energized.
9	high voltage off   Pushbutton Switch/   Indicator	Switch removed high voltage from transmitter. Indicator illuminates if an interlock is violated.
10	REFLECTED/FORWARD Selector Switch	Selects between forward or reflected power as displayed on POWER meter.
11	SUPPLY CURRENT Meter	Indicates total transmitter current drain on high-voltage supply.
12	PLATE VOLTS   Meter	Indicates dc PA plate potential.



Figure 3-2. Cabinet 1 Left Side Controls and Indicators (Sheet 1 of 2)


Figure 3-2. Cabinet 1 Left Side Controls and Indicators (Sheet 2 of 2 )

Table 3-2. Cabinet 1 Left Side Controls and Indicators


Table 3-2. Cabinet 1 Left Side Controls and Indicators (Continued)

REF.	CONTROL/INDICATOR	FUNCTION
13	MODULATOR FILAMENT ADJUST	Adjusts modulator cabinet filament voltage.
14	25 kV OPERATE/DISABLE Switch	Controls primary power to high $\rightarrow$ voltage primary.
15	ISO ENCL B+ OPERATE/   DISABLE   Switch	Controls primary power to Isolated Enclosure dc supplies and high-voltage controls.
16	MOD BIAS   Circuit breaker	Controls primary power and provides overload protection for modulator bias power supply.
17	ISOLATED ENCL Circuit breaker	Controls primary power and provides overload protection for Isolated Enclosure ac circuits and power supplies.
18	MOD SCREEN Circuit breaker	Controls primary power and provides overload protection for the modulator screen and driver power supply.
19	BLOWER   Circuit breaker	Controls primary power and provides overload protection for blower and fan.
20	CONTROL   Circuit breaker	Controls primary power and provides overload protection for transmitter control circuits.
21	MODULATOR SCREEN   OVERLOAD   Control	Sets threshold of operation for modulator screen overload sensor.
22	MOD FILAMENT Circuit breaker	Controls primary power and provides overload protection for modulator filament circuit.
23	AUXILIARY MODULATOR Control	Assists $100 \%$ negative modulation.
24	METER ZERO Control	Adjusts PLATE VOLTS meter to zero.

Table 3-2. Cabinet 1 Left Side Controls and Indicators (Continued)


Table 3-2. Cabinet 1 Left Side Controls and Indicators (Continued)

REF.	CONTROL/INDICATOR	FUNCTION
38	AIR PRESSURE Meter	Indicates air pressure in inches of water.
39	POS PEAK   Ad justment	Used to adjust clipping threshold for positive audio peaks.
40	POS PEAK LED	Illuminates to indicate that the audio input has gone sufficiently positive to cause clipping by the Modulation Enhancer.
41	NEG PEAK   Adjustment	Used to adjust clipping threshold for negative audio peak.
42	NEG PEAK LED	Illuminates to indicate that the audio input has gone sufficiently negative to cause clipping by the Modulation Enhancer.
43	POWER LED	Illuminates to indicate primary power is applied and the internal +12 V power supply in the Modulation Enhancer is functioning properly.



Figure 3-3. Cabinet 1 Fault and Overload Assembly Printed-Circuit Board Controls and Indicators

Table 3-3. Cabinet 1 Fault and Overload Assembly Printed-Circuit Board Controls and Indicators


BEHIND


Figure 3-4. Cabinet 1 PDM Controls and Indicators

Table 3-4. Cabinet 1 PDM Controls and Indicators

REF.	CONTROL/INDICATOR	FUNCTION
1	AUDIO BYPASS   Switch 1A2A3S1	Permits audio to be processed by the Modulation Enhancer when set to operational. When set to BYPASS, routes to bypass Modulation Enhancer.
2	INPU'I GATN   Potentiometer   1A1A2R11	Provides adjustment for $100 \%$ modulation audio input level from 0 dBm to +10 dBm.
3	MODUI_ATION TRACKING   Potentiometer   1A1A2R26	Adjusts modulation tracking circuitry for best linearity.
4	LO POWER AUDIO   Potentiometer 1A1A2R25	Adjusts to provide low-power audio input at same level as high-power audio input.
5	JACK   Jumper IA1A2J1	Jumper position adjusts hum phase. To be positioned for greatest signal-tonoise ratio.
6	CMRR   Potentiometer 1A1A2R18	Adjusts input amplifier common mode rejection ratio at low frequencies.
7	BESSEL FILTER   IN/OUT   Switch 1A1A2S1	Allows bessel low-pass filter to be inserted in audio input circuitry for overshoot reduction and anti-aliasing protection.
8	HUM NULL   Potentiometer IA1A2R24	Adjusts hum injection level. To be adjusted for greatest signal-to-noise ratio.
9	CARRIER SHIFT   Potentiometer IA1A2R36	Adjusts to provide minor feedback corrections for shift of carrier during modulation.
10	DISS LIMITER   Potentiometer 1A1A2R34	Adjusts to set reference point at which overload occurs due to change between input power and output power.

Table 3-4. Cabinet 1 PDM Controls and Indicators (Continued)

REF.	CONTROL/INDICATOR	FUNCTION
11 12	HI PWR   Potentiometer   1A1A2R44   LO PWR   Potentiometer   1A1A2R45	Adjusts rf carrier output from 0 to 60,000 watts when operating in the high-power mode.   Adjusts rf carrier output from 0 to 50,000 watts when operating in the lowpower mode.



Figure 3-5. Cabinet 1 Internal Controls and Indicators

Table 3-5. Cabinet 1 Internal Controls and Indicators

REF.	CONTROL/INDICATOR	FUNCTION
I.	Low Power Distortion   Adjustment   Resistor 1A1R3	Adjusts primary input voltage to modu-   lator screen and driver power supply   to minimize low-power level distortion.
.		



Figure 3-6. Cabinet 1 Right Side Controls and Indicators

Table 3-6. Cabinet 1 Right Side Controls and Indicators


Table 3-6. Cabinet 1 Right Side Controls and Indicators (Continued)

REF.	CONTROL/INDICATOR	FUNCTION
13	RF DRIVER GRID TUNE	Adjusts tuning of RF Driver grid cir-
14	FREQ ADJUST 1 Control	Adjusts oscillator 1 frequency.
15	CIRCUIT BREAKER PUSH TO RESET Lever	Resets all breakers within the Isolated Enclosure.
16	POWER AMPLIFIER FILAMENT ADJUST Control	Adjusts PA Amplifier Cabinet filament voltage.
17	DRIVER PLATE TUNE Control	Adjusts tuning of RF Driver plate circuit (1A9L1).
18	OSC CIRCUIT BREAKER Indicator	Indicates if oscillator circuit breaker Isolated Enclosure opens.
19	DRV FIL CIRCUIT BREAKER   Indicator	Indicates if RF Driver filament circuit breaker in Isolated enclosure opens.



Figure 3-7. Cabinet 2 Left Side Controls and Indicators

Table 3-7. Cabinet 2 Left Side Controls and Indicators

REF.	CONTROL/INDICATOR	FUNCTION
1	PLATE TUNE   Control	Adjusts tuning of PA plate circuit.

WARNING: Disconnect primary power prior to servicing.


Figure 3-8. Cabinet 2 Right Side Controls and Indicators

Table 3-8. Cabinet 2 Right Side Controls and Indicators

REF.	CONTROL/INDICATOR	FUNCTION
1	Forward Power Null Adjustment	Balances forward port of the Directional Coupler.
2	Reflected Power Null Adjustment	Balances reflected port of the Directional Coupler.
3	VSWR Phase   Adjustment (2)	Balances the phase difference between the VSWR voltage and current sensors.
4	VSWR Null Ad justment	Nulls the reflected power from the VSWR indication.
5	VSWR Trip Sensitivity Adjustment	Adjusts the threshold of the VSWR trip circuit.
6	Test Connector TJ3	Allows monitoring the reflected power indication, top position, or the VSWR sensor output, bottom position, with the POWER meter.
7	Reflected Power Meter Calibrate	Calibrates POWER meter to display reflected power.
8	Test Connectors TJ1 and TJ2	Allows calibration of the directional coupler forward power indication (horizontal position) and the reflected power indication (vertical position).
9	Forward Power Meter Calibrate	Calibrates POWER meter to display forward power.
10	3RD HARMONIC TRAP Adjustment	Reduces radiated power of 3rd Harmonic Trap.
11	2ND HARMONIC TRAP Adjustment	Reduces radiated power of $2 n d$ Harmonic Trap.
12	LOADING control Adjustment	Adjusts coupling of PA to antenna.

## 4-1. INTRODUCTION

4-2. This section presents principles of operation with supporting diagrams for the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER. Two levels of discussion are provided. The first level provides an overall circuit description and basic theory. The second level provides a detailed description of the transmitter circuits.

4-3. OVERALL FUNCTIONAL DESCRIPTION
4-4. RF SEC'IION
4-5. The RF Section consists of Oscillator Chassis IA10, RF Driver IA9V1 and plate Modulated Power Amplifier IA9V2 (refer to figure 4-1). These three basic stages with associated power supplies and metering are contained in an Isolated Enclosure which operates above ground potential. This enclosure is at the cathode potential of the Power Amplifier or 15 kV for carrier conditions and varies from near zero to full supply voltage during the modulation cycle. Access to the Isolated Enclosure is accomplished through an interlocked rear door or an interlocked front door.

4-6. OSCILLATOR CHASSIS IA10. The Oscillator Chassis contains two identical oscillator/driver boards and one power supply. The output from the Oscillator Chassis provides approximately two watts of drive to the RF Driver Tube. The Oscillator/Buffer power supply is located in the Oscillator Assembly which permits assembly removal and testing as a unit using the test cable supplied with the transmitter.

4-7. RF DRIVER IA9V1. The RF Driver consists of one 4CX1500A Tetrode Power Tube as shown in figure 4-1. The plate-to-cathode voltage of this tube is a summation of the Bias Supply and the Screen Supply voltages (1500 Vd ). The plate circuit of the RF Driver is tuned to both the fundamental carrier freq- uency and the 3rd harmonic of the carrier frequency. Tuning the plate circuit in this manner provides a near square wave pulse to drive the PA.

4-8. POWER AMPLIFIER IA9V2. The Power Amplifier consists of one 4CX35000C Tetrode Power Tube. This tube operates class D by use of grid and plate 3rd harmonic resonators. The screen of this stage is modulated by the use of a choke in series with the screen grid. The PA plate is tuned to both the fundamental and 3rd harmonic which causes the plate waveform to be nearly square. This increases the conduction angle, decreases the peak current required, and increases the overall stage efficiency to approximately 90 percent.

4-9. PA Screen Automatic Gain Control. The screen current of the PA stage is automatically controlled by a feedback loop to the Oscillator Chassis. The RF Driver power is regulated by this feedback loop which keeps the PA screen current constant and within its dissipation rating even without plate
voltage applied to the PA. This method of controlling the PA screen current makes the stage act as a triode. The PA may thus be tuned and loaded without concern of over dissipating the screen.

4-10. ISOLATED ENCLOSURE POWER SUPPLIES. Two power supplies are contained within the Isolated Enclosure (refer to figure 4-1). A 600 Vdc Bias Supply provides fixed grid bias to the Power Amplifier and a 900 Vdc Supply provides PA screen current. The two supplies are connected in series to provide 1500 Vdc for the RF Driver. Relay $K 1$ is an under-voltage relay that prevents the PA Screen Supply from operating should the Bias Supply fail. The 230 Vac primary power for the Isolated Enclosure power supplies is furnished by isolation transformer 2 T 1.

4-11. OUTPUT NETWORK. The Output Network, as shown in figure 4-1, is a conventional double Pi circuit that matches the 1000 ohm PA Tube load to the 50ohm Antenna System. The Power Amplifier is tuned by adjusting the plate tuning capacitor for a dip in PA plate current. The PA is loaded by adjustment of the PA loading control. The 2 nd and 3 rd harmonic traps are located at the end of the output network to provide adequate harmonic attenuation.

4-12. DIRECTIONAL COUPLER. A Directional Coupler is located in the Transmitter Output Cabinet. The Directional Coupler provides samples of forward and reflected power and a VSWR fault circuit trigger to cycle the transmitter OFF during high VSWR conditions.

4-13. MODULATOR SECTION
4-14. The Modulator Section uses a HARRIS CORPORATION Broadcast Transmission Division patented Pulse Duration Modulator (PDM). The PDM is unique in that it provides conventional plate modulation of an RF Power Amplifier Tube at an efficiency of approximately 90 percent, using no modulation transformer or reactor. Refer to figure $4-1$ for the following discussion.

4-15. The PDM circuit generates a 75 kHz square wave that is width modulated by the Audio Input Signal. The square wave width change is linear, with respect to the amplitude of the audio wave. A 10 percent duty-cycle change in pulse width will change the PA voltage by 10 percent of the supply voltage. The pulse width rate of change is equal to the audio input frequency. These pulses are amplified by the Modulator Driver and Modulator stages and filtered out by the 75 kHz filter. Only dc and audio remain at the PA plate, as in conventional plate modulation.

4-16. PULSE DURATION MODULATION. Pulse duration modulation provides conventional plate modulation of the Power Amplifier, but does not require the customary modulation transformer and reactor, eliminating the most troublesome components normally used in a high-level plate-modulated transmitter. Pulse Duration Modulation is nothing more than an efficient series modulator.

4-17. In figure 4-2, assume the PA to be a 4CX35000C Tube operating at 9000 volts at 6.0 amperes. The power supply must provide at least 18,000 volts to provide the required voltage necessary at 100 percent positive peak. The plate voltage of a plate modulated Power Amplifier, swings to twice the



Figure 4-2. PDM Equivalent Circuit
carrier voltage at the 100 percent positive peak down to zero volts at the 100 percent negative peak. Therefore, the power supply must supply at least twice the voltage required at carrier. PDM Equivalent Circuits as shown in figure $4-2$ will provide plate modulation if the grid current floats with the cathode of the Power Amplifier.

4-18. To provide carrier, the resistor must be adjusted to drop the power supply B+ down to 9000 volts across the PA tube. There will be 9000 volts across the tube and 9000 volts across the resistor.

4-19. The positive peak is developed by decreasing the resistance to zero ohms, zero volts across the resistor, and 18,000 volts across the Power Amplifier.

4-20. The negative peak is developed by increasing the resistor value to infinity, 18,000 volts across the resistor and zero volts across the Power Amplifier. The speed at which the resistor value is changed is the modulating frequency. The amount of resistance changed from carrier level is the modulation percentage. The efficiency of this circuit is obviously poor as at carrier one-half the power is lost in the resistor.

4-21. Again, assuming that 9000 volts is required for carrier power, as shown in figure $4-3$, an 18,000 -volt power supply will be required for 100 percent positive modulation. The Modulator Tube accomplished the effect of the resistor in the preceeding example.

4-22. If a 75 kHz switching frequency is used and the Modulator is turned on to half-pulse width each 75 kHz pulse, half of the power supply voltage will appear across the PA.

4-23. As the 75 kHz pulse width increases, the PA Plate voltage will increase linearly until full pulse width, continuous pulse, is achieved. This will provide maximum positive peak modulation of the carrier. As the pulse width is decreased from the half-width alternately on and off, the PA plate voltage will decrease from half the power supply voltage to form the negative peak. Zero pulse width is 100 percent negative peak condition. Full pulse
width, continuous pulse, will put full supply voltage across the plate of the PA tube to form the 100 percent positive peak.


Figure 4-3. PDM Simplified Circuit
4-24. Basically a 10 percent pulse width will put 10 percent of the power supply voltage across the PA Tube and 20 percent pulse width will put 20 percent of the power supply voltage across the PA Tube, etc.

4-25. MW-50C3 PDM CIRCUITRY. The output of a 75 kHz Oscillator (refer to figures $4-1$ and $4-4$ ) is clipped to form a square wave and integrated to form a triangle waveform. This voltage (B) is summed with audio (A) at the input of a threshold amplifier (C). The output of the amplifier is a modulated pulse train (D) where amplitude changes in the audio input appear as duty cycle changes of constant amplitude rectangular waves.

4-26. Succeeding stages in the modulator chain are operated in the switching mode, capable of turning on and $0 F F$ at 75 kHz rate with less than one or two microseconds rise and fall time. The stages amplify the modulated pulse train to a level sufficient to modulate the PA Tube. The modulators are nearly independent of amplifier linearity as normal linearity is not a consideration in the switching mode of operation.

4-27. PDM CIRCUIT. The PDM Chassis shown in figure 4-1, consists of a PDM board on a control and feedback board. The PDM generates the 75 kHz pulse trains which is modulated with the audio signal to provide pulse width modulation. The control and feedback circuit provides power control and overall feedback to reduce distortion. The output from the PDM is a pulse width modulated square wave that drives the Audio Driver Tube. The output from the Audio Driver Tube is offset by a string of Zener diodes and a dc coupler, which drive the Modulator Tube operating as a square wave amplifier. The plate of the Modulator Tube swings from the high-voltage power supply, approximately 25 kV , to near ground potential at a 75 kHz rate with only the width of the pulse changing. The pulses are filtered and the dc and audio are left at the Isolated enclosure. The PA plate voltage is then equal to
the duty cycle of the square wave times the power supply voltage. If the modulator is on 10 percent of the time and OFF 90 percent of the time, 10 percent duty cycle, PA plate voltage will equal 10 percent of the high voltage.


Figure 4-4. MW-50C3 Transmitter PDM
4-28. DAMPER DIODE. The Solid-State Damper Diode Assembly is connected between the modulator plate and the positive side of the High-Voltage Power Supply (refer to figure 4-1). The Damper Diode conducts alternately with the Modulator, ON when Modulator is OFF and OFF when the Modulator conducts, at the 75 kHz rate. When the Modulator Tube suddenly stops conducting, current to the 75 kHz Filter cannot stop and voltage at the plate of the Modulator Tube increases towards infinity. When the voltage of the plate of the Modulator Tube attempts to go higher than the High-Voltage Power Supply potential, the Damper Diode conducts, eliminating high-surge voltage build up which could damage the modulation system. The alternating modulator/damper conduction provides a steady current load on the High-Voltage Power Supply. The damper current accounts for the difference in plate and supply currents, even though the PA and Modulator stages are connected in series.

4-29. MODULATOR POWER. Two power supplies are associated with the Modulator. One is a 500 Vdc Bias Supply that provides a negative bias to the

Modulator Tube. The second supply is an 800 Vdc Supply that provides screen voltage for the Modulator.

4-30. CONTROL CIRCUITS
4-31. The Control Circuits consists of Control Assembly 1Al and High-Voltage Step/Start Assembly 3. Refer to figure 4-1 for the following discussion.

4-32. CONTROL ASSEMBLY 1A1. The Main Power Control Assembly contains all the low-level circuit breakers for the power supplies and filaments of all tubes. The Control Assembly also controls the fillament step/start and the high voltage step/start.

4-33. HIGH-VOLTAGE STEP/START ASSEMBLY 3. The High-Voltage Step/Start Assembly is an external device that contains step/start resistors and contactors for the Main High-Voltage Power Supply. AC Overload Sensors are also contained within this assembly.

4-34. FAULT CIRCUITS
4-35. FAULT AND OVERLOAD ASSEMBLY 1A3. The Fault and Overload Assembly shown in figure 4-1, receives status information from various sensors throughout the transmitter. The circuit monitors transmitter operation, provides visual indications of where a fault or overload occurred and initiates action to turn off high voltage and shut down the transmitter if a fault is detected. Parameters monitored include (1)' VSWR, (2) high-voltage current, (3) arcs in the PA circuit, (4) output circuit arcs, (5) Modulator Screen current, (6) arcs at 75 kHz Filter gaps, and (7) arcs across Plate Efficiency Resonator gap.

4-36. Multiple Faults. An automatic recycle feature is included. This feature turns off the high voltage momentarily to see if the fault can be cleared. It then turns the high voltage back on. If the fault still exists, another recycle is attempted. Up to three or four recycles can be attempted before the transmitter shuts down automatically and the high voltage must be turned back on manually.

4-37. HIGH-VOLTAGE POWER SUPPLY
4-38. The High-Voltage Power Supply primary and secondaries are connected in a closed delta configuration. Each secondary winding leads or lags the primary winding by 15 degrees in phase, 30 degrees total, as constructed (refer to figure 4-5). The secondary phase separation divided into one cycle of primary phase rotation ( 360 degrees) equals 12 secondary phases.

4-39. FILTER CIRCUIT. The $12-$ phase output approaches true dc as ripple voltage is reduced to 1 percent without using a filter inductor (refer to table $4-1$ ). The principal output filter ripple frequency equals the line frequency times the secondary supply phases (12). The output filter section acts as both a ripple filter and a transient suppressor. Noninductive components are used in the Filter Circuit to ensure that the filter does not become resonant at a rf frequency.


Figure 4-5. 12-Phase Circuit

Table 4-1. Characteristic Multiphase Supply Ripple

SECONDARY   PHASES	LINE   POWER   FACTOR	SINGLE SECTION FILTER RIPPLE VOLTAGE   (RESISTIVE OR INDUCTIVE LOAD)	
		PEAK TO PEAK	RMS
		$50.0 \%$	$17.7 \%$
6	.83	$11.4 \%$	$4.0 \%$
12	.96	$3.4 \%$	$1.0 \%$

4-40. PRIMARY REQUIREMENTS. A requirement of multiphase supplies is that the three-phase primary line voltage must be balanced to within the percentage of ripple voltage which is to be obtained from the power supply. Line unbalance will show up as $100 \mathrm{~Hz}, 50 \mathrm{~Hz}$ primary, or $120 \mathrm{~Hz}, 60 \mathrm{~Hz}$ primary, ripple in the rectifier circuit and produce increased output ripple. A 5 percent primary line voltage unbalance will produce approximately 3 percent peak ripple in the secondary circuit into a resistive load at twice the power line frequency. Constant line unbalance can be corrected by the use of primary taps or a tapped three-phase auto transformer.

## 4-41. METERING CIRCUITS

4-42. These circuits provide visual indications of critical transmitter parameters including high voltage, high-voltage supply current, power amplifier plate voltage, power amplifier screen current, output power, modulator filament voltage, and power amplifier filament voltage. Meter circuits are also provided to monitor voltages and currents in the Modulator and its drive circuits and in the RF Section.

4-43. DETAILED FUNCTIONAL DESCRIPTION
4-44. RF SECTION
4-45. OSCILLATOR IA10. The Oscillator Chassis (figures 4-6 and 9-5) contains two identical printed-circuit boards, $1 A 10 A 1$ and IA10A2, and one power supply. An output from either of the two oscillators may be selected by the front panel OSCILLATOR $1 / 2$ switch. Transistor Ql operates as a Pierce oscillator using an on-frequency vacuum crystal in its series reso- nant mode to generate an output at the carrier frequency. Zener diodes CR1, CR2, and CR3 regulate the operating potential for low-level stages at 15 Vdc . The output from the oscillator stage is lightly coupled to buffer amplifier transistor Q2 through resistor R7. The output from transistor $\mathrm{Q}^{2}$ drives transistor Q3 and the RF Amplifier. The output from transistor Q3 drives a class $C$ tuned amplifier, transistor $Q 1$ or $Q 2$, as selected by the OSCILLATOR $1 / 2$ switch. Diode CR5 prevents either transistor Q1 or Q2 from being overdriven.

4-46. Oscillator AGC Circuit. Diode CR4 gates a current sample from the Power Amplifier screen supply to act as an AGC feedback voltage to control the gain of transistors $Q 1$ and $Q 2$. The current sample is adjusted by PA SCREEN PROTECTOR potentiometer R1 to provide proper PA screen current.

4-47. Oscillator RF Output Circuit. A "Pi" section, consisting of coil L1 or L2, acting as a tuning control, and capacitor C1 which operates as a loading control, matches the collector output of transistors Q1 and Q2 which is approximately 100 ohms, to the grid of RF Driver tube 1A9V1 which operates at approximately 2400 ohms. Changing capacitors 1A10AlC12 and 1A10C2 permits operation over the medium frequency band.

4-48. Oscillator Power Supply. The Oscillator Power Supply consists of a transformer powered, full-wave rectified supply with a choke input filter. This power supply produces .200 Vdc , even though the maximum voltage used on any transistor is 39 Vdc . The high voltage is used to provide an adequate current source to all stages to prevent under-voltage in any stage caused by mistuning.

4-49. RF DRIVER 1A9V1. RF Driver Tube 1A9V1 operates class $A B_{1}$ with a combination of cathode and grid leak bias (refer to figures 4-6 and 9-5). The driver plate voltage of 1500 Vdc is obtained by connecting the -600 Vdc PA Bias and +900 Vdc Screen Supplies in series respectively from cathode to plate across the tube. A cathode resistor develops tube bias. This method allows elimination of the PA grid leak resistors. The Driver Tube itself loads the PA Bias Supply, eliminating resistor and associated power loss. The driver screen grid is protected against over-dissipation by current limiting resistor 1A9R7.

4-50. RF Driver Neutralization. Neutralization of the RF Driver is not required as resistors AIR5, R6, R7, R8, R9 and R10 sufficiently swamp the grid to prevent parasitic oscillations. In addition, parasitic suppressors are used in the driver grid, screen and plate circuits to prevent possible high-frequency parasitic oscillation.


4-51. RF Driver Plate Circuit. The RF Driver plate circuit (figure 4-7A) contains a resonant circuit, consisting of coil 1A9L1 and capacitor 1A9C5, which tunes to the fundamental frequency and a circuit, consisting of coil 1A9L2 and capacitor 1A9C4, which resonates at the 3rd harmonic of the fundamental frequency. The 3rd harmonic component tends to square-up the pulse applied to the PA grid to increase PA stage efficiency. PA grid capacity, coil 1A9L1, and capacitors 1A9C5, 1A9C7, and 1A9C9 form a tuned circuit for the fundamental frequency and matches the PA grid impedance. Capacitors 1A9C7 and 1C9C9 also provide dc blocking and form a capacitive voltage divider to feed the PA grid.

4-52. Double Resonant Circuit. The fundamental and 3rd harmonic components form a double resonant circuit. At the fundamental frequency (figure 4-7B), coil L2 appears to increase the reactance of capacitor $C 4$ which resonates coil L 1 along with the series stack formed by capacitors C7, C5, C9 and PA grid capacity (Cg). At the 3rd harmonic (figure $4-7 \mathrm{C}$ ), coil L 2 appears lowered in reactance by capacitor C4, and parallels coil L 1 to form a low inductance which resonates with the series stack formed by capacitors C7, C5, C9 and PA grid capacity (Cg).

4-53. POWER AMPLIFIER 1A9V2. The Power Amplifier consists of one tetrode power tube operated class D (refer to figures $4-6$ and $9-5$ ). Fixed bias for the stage is provided through coil L 4 from the -600 Vdc Bias Supply. The PA Screen is modulated by 10 H choke 1A9L6 shunted with resistor R45 in series with the screen supply. Modulation of the screen is necessary to fully modulate the PA and also improves modulation linearity.

4-54. The PA Tube grid is driven with a symmetrical waveform consisting of fundamental plus 3rd harmonic waveforms. Squaring of the waveforms at the plate is achieved by a paralleled tuned circuit in series with the plate lead. The parallel circuit elements are connected in series with a number of other circuit elements such as plate capacity, bypass capacity and plate tuning capacity. Squaring the waveform increases efficiency by reducing the plate current conduction angle to 90 percent and also lowers the peak plate current. This allows much higher power to be developed from the tube and increases the already conservative ratings of the 4CX35000C tube.

4-55. PA Screen Protection. To prevent over dissipation of the PA Screen, PA Screen current is sampled across resistor R 23 and is fed back to the Oscillator Chassis through resistor 1A9A2R17 to operate as an AGC circuit acting on low-level stages in the oscillator assembly. This circuit keeps the PA Screen current constant and within its dissipation, even with no plate voltage applied to the tube. This allows the plate circuit of the PA to be tuned without over-dissipating the screen. Tuning ths stage is similiar to tuning a triode.

4-56. PA Neutralization. The Power Amplifier is neutralized at the 3rd Harmonic by the Bruene method with capacitors C35, C36, C37 and C39. This circuit is effective over a wide frequency range. Neutralization at the fundamental frequency is not required.
A. EIFCTRICAI. CIRCLIT

B. FLNDAMENTAL FRFQUENCY FQUIVALFNT CIRCLIT

C. THIRD HARMONIC

FQUIVALFAT CIRCUTT


Figure 4-7. RF Driver Plate Circuit

4-57. OUTPUT NETWORK. The MW-50C3 Transmitter Output Network is basically a double "Pi" circuit (refer to figures $4-6$ and $9-1$ ). The plate load is 1000 ohms and is stepped down to 150 ohms at the center point, which is capacitor 2C3, and then is stepped down to 50 ohms at the output. As the phase-shift between the plate tune and loading controls is approximately $135^{\circ}$, a change in loading does not require a change in tuning, when phaseshift through a network is an odd multiple of $45^{\circ}$, a minimum change in network reactance occurs if the terminating impedance is varied. The 2nd Harmonic Trap is formed by capacitor 2 C 4 and coil 2 L 4 . The 3 rd Harmonic Trap is formed by capacitor $2 C 5$ and coil 2 L 5 . Plate capacity and other components within the Isolated Enclosure and capacitor 2 Cl together with coil 1 L 3 act as the plate circuit 3rd Harmonic resonator. With the grid and plate circuits tuned to both the fundamental frequency and the 3rd harmonic, the PA operates nearly class D. This causes the plate waveform to square slightly which increases tube efficiency to about 90 percent and reduces peak tube currents by approximately 50 percent.

4-58. Output Network Adjustment. For proper operation, the 75 kHz Filter must be terminated in its characteristic impedance. The filter termination is the Isolated Enclosure and the impedance is approximately PA plate voltage divided by the PA plate current. Therefore, the Isolated Enclosure will present the correct impedance only when the PA is loaded properly and the efficiency resonators are correctly tuned. A ratio of 9.3 kV of plate voltage to 6.3 amperes of plate current usually provides a close approximation. However, each individual transmitter is provided with a set of final test data sheets which should be consulted for exact tuning valued for optimum performance.

4-59. To tune the PA Output Network, the PLATE TUNE Control is adjusted for minimum PA plate current but may be adjusted slightly off resonance for maximum efficiency. The JOADING Control is adjusted until the Power Amplifier Tube is typically loaded to 6.3 amperes of plate current with 9.3 kV of plate voltage. The PDM High-Power Level Adjust should be used to keep the plate voltage at 9.3 kV while the LOADING control is adjusted to obtain 6.3 amperes of plate current. The 2nd and 3rd Harmonic Traps should be tuned only when proper proof-of-performance equipment is available. The trap controls are each tuned for minimum output of the particular harmonic.

4-60. PA Efficiency Resonator Adjustment. The PA Efficiency Resonators have an effect on both distortion and noise as the 3rd Harmonic content must be adjusted to provide the same plate voltage-to-plate current ratio over a simultaneous PA plate voltage swing. Resonator adjustment is not difficult


Figure 4-8. PA Output Waveform
as long as a $1 / 2$-turn $C W$ or CCW from the original setting restriction is strictly observed. The waveform at the PA plate appears as shown in figure 4-8. The waveform consisting of the fundamental and 3rd Harmonic may be observed with an oscilloscope by placing the oscilloscope probe on the air output screen immediately above the PA Tube.

4-6l. After the PA Grid Efficiency Resonator is properly tuned, the PA Plate Efficiency Resonator may be tuned for maximum efficiency of the Power Amplifier stage. This may be checked by watching the power output and PA input. The following formula is used to calculate PA efficiency:

$$
\text { PERCENT EFFICIENCY }=\frac{\text { POWER OUTPUT IN WATTS }}{\text { PA CURRENT } \times \text { PA VOLTAGE }} \times 100
$$

4-62. DIRECTIONAL COUPLER 2Al.
4-63. The Directional Coupler consists of three basic circuits (figure 9-10): 1) a voltage sample proportional to forward power, 2) a voltage sample proportional to reflected power, and 3) a VSWR Trigger Unit.

4-64. FORWARD POWER SAMPLE. The current sample is derived from transformer T2 that develops a voltage across resistors R16 and R17. A voltage sample is produced by capacitor divider C15, Cl0, and Cll. These samples are added through diode CR4 to produce a voltage proportional to the power at terminals 6 and 5 on the Directional Coupler. The voltage at terminal 6 is adjustable by potentiometer R2l to properly calibrate the transmitter forward power meter. The second sample at terminal 5, goes directly to the Remote Power meter, if used.

4-65. REFLECTED PONER SAMPLE. The Reflected Power Sample is identical to that of the Forward Power Sample except that the current sample from transformer $T 2$ is reversed by 180 degrees, in phase, so that the meter indication is only that power which has been reflected by the Antenna. This sample is routed through meter calibration potentiometer R20 and through jack TJ3 to terminal 3 on the output Directional Coupler. A second sample, at terminal 4 of the Directional Coupler, feeds the Remote Power Indicator.

4-66. VSWR TRIGGER UNIT. The VSWR Trigger Unit consists of a power sample similar to the Reflected Power Sample. The ouput at terminal 9 is a voltage proportional to the change in reflected power rather than proportional to the change itself. Phase adjustment by capacitor C 2 and null adjustment by capacitor C4 allow the circuit to be adjusted for zero output voltage even with a small reflected power appearing from the Antenna. A voltage will appear at terminal 9 if the reflected power changes either way from that determined in null position. Should the VSWK change greater than approximately 1.2:1 from this preset value, the voltage at terminal 9 will increase to approximately two volts and cause SCR transistor Q1 to trigger and place a near ground at terminal 2. The current through transistor Q1 also flows through the base circuit of transistor 22 , causing it to conduct and energize relay K1. When relay Kl is energized, the normally open contact closes and places a short across transistor Ql, allowing it to cut off and the cycle is repeated. To zero the VSWR Trigger Unit, jack TJ3 is moved from its
normal position of jumping potentiometer R20, to terminal 3 and configured to jumper resistor R3 to terminal 3. The VSWR Trigger is adjusted to zero as indicated on the Transmitter Power meter, in the reflected position.

## 4-67. MODULATOR SECTION

4-68. The Modulation System used in the MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER is a patented HARRIS design called a Pulse Duration Modulator (PDM). The PDM is basically a voltage regulator in series with a power supply and load. In this case, the load is the Power Amplifier and the regulator is the Modulator. The regulator, when used as a Modulator, must have good frequency response from zero to 10 kHz so the Modulator will properly respond to the audio frequencies to control the PA plate voltage. A modulator switching frequency of 75 kHz is employed as a good compromise between frequency response and efficiency.

4-69. The Modulator itself acts similar to an SCR light dimmer, controlling voltage to a light bulb from zero to full brightness, by changing the conduction angle of the SCR. A small conduction angle or short-duty cycle will cause the lamp to glow very dimly, whereas a full-duty cycle will produce maximum brilliance. With the light adjusted to half its possible brilliance, adjustment of the SCR up and down from the half-brilliance setting will amplitude modulate the light bulb. The speed at which the light is adjusted up and down corresponds to the modulating frequency and the amount of adjustment corresponds to the percentage of modulation.

4-70. MODULATION ENHANCER. When the OPERATIONAL BYPASS switch (refer to figures $3-3$ and $9-11$ ) is in the OPERATIONAL position, the Audio Input is applied across switch-selectable pads controlled by the CAL OUT-ENHANCING/-
ldB/2dB/ 3dB switch. In the CAL OUT positon, the Audio Signal is routed directly to the transmitter without clipping to permit adjustment of the modulation prior to enhancement. When the ENHANCING $1 \mathrm{~dB}, 2 \mathrm{~dB}$, or 3 dB position is selected, the audio line is applied to diodes CR6 and CR8 at the inputs to the positive and negative clipping circuits formed by transistors Q1 through Q4.

4-71. The clipping threshold for the positive and negative peaks of the audio input are independently adjusted by NEG PEAK potentiometer R16 and POS PEAK potentiometer R20. These potentiometers are connected to the $\pm 12-\mathrm{volt}$ power supply formed by transformer Tl, bridge rectifier CRI through $\overline{C R} 4$, and Zener diodes CR5 and CR7 and are adjusted to set the switching levels of transistor Q1/diode CR5 and transistor Q3/diode CR8. When the audio input goes sufficiently positive to overcome this switching level, diode CR6 and transistor $Q 1$ conduct to prevent any further positive increase. With transistor Q1 ON, transistor Q2 turns ON and NEG PEAK LED indicator DS2 illuminates. Diode CR8, transistors Q3 and Q4, and POS PEAK LED indicator DS3 function similarly to clip negative excursions at the threshold set by POS PEAK Control potentiometer R20. The Modulation Enhancer is factory installed such that with normal audio inputs, the NEG PEAK Control adjusts clipping of negative modulation peaks and the POS PEAK Control adjusts clipping of positive modulation peaks.

4-72. POWER Indicator LED DS1 is illuminated whenever primary power is applied and the internal $\pm 12-$ volt power supply is functioning properly.

4-73. PDM CHASSIS. PDM Chassis consists of two printed-circuit boards. The PDM signal is generated and amplified on board A1. Board A2 contains the audio input pad, audio amplifier, and PDM controls. Refer to figures 4-6, 4-9 A-H, and 9-6 for the following discussion.

4-74. PDM Board A1. On PDM Board A1, transistor Q1 forms a 75 kHz LC oscillator. Crystal control is not necessary as the frequency output is not crit1cal. Capacitor C4 functions as a blocking capacitor and couples the 30 V p-p output signal to the base of transistor Q2 (refer to figure 4-9A). Transistor Q2 is overdriven by the 30 V sine wave and forms a $20 \mathrm{~V} \mathrm{p}-\mathrm{p}$ square wave at capacitor C7 (refer to figure 4-9B). Diodes CR1 and CR2 prevent transistor Q2 from saturating under this overdriven condition.

4-75. Resistor $R 7$ and capacitor C8 integrate the square wave to form a 5 V p-p type of sawtooth waveform resembling a triangle at the junction of resistor R7, capacitor C9, and resistor R9 (refer to figure 4-9C). Audio signal, audio feedback, and dc feedback are added to the triangle waveform through resistors R12 and R10. DC Bias voltage from the PDM power output controls apply an amount of positive voltage, depending on the control settings to point B. This voltage is summed with triangle waveform through resistor R11.

4-76. Transistor Q3 is a compensated threshold amplifier which conducts when the voltage at the base reaches approximately 0.7 volts and cuts off when the base voltage drops below the turn-on point. Audio added to the triangle wave varies above and below the 0.7 -volt threshold point of transistor Q3 (refer to figure 4-9DE). As the triangle wave goes above the threshold of transistor Q3 (refer to figure 4-9F), the voltage at the collector of transistor Q3 becomes a square wave with a duration equal to the percent of the triangle wave above the threshold of conduction. Transistor Q3 outputs a 75 kHz pulse train, the pulse width varying linearity according to the audio input and dc bias.

4-77. Audio input from PDM board A2, dc feedback from the dissipation control, and a dc level proportional to the setting of the Power Output Control are all summed with the triangular waveform at the base circuit of threshold amplifier transistor Q3. The audio input from PDM board A2 also includes a feedback inversely proportional to the audio output of the PA stage. The audio feedback, previously shaped for a desired response, minimizes the carrier shift and improves modulation linearity and response. The dc feedback from the Dissipation Control is inversely proportional to the dissipation of the Power Amplifier. If Power Amplifier dissipation increases above a preset value, the threshold amplifier duty cycle changes to decrease the power output.

4-78. During operation, a bias is established which causes transistor Q3 to output a 75 kHz pulse with about a 35 percent duty cycle. When the audio is added to the triangle wave, it causes the output from transistor Q3 to vary in pulse-width around this bias setting to plate-modulate the PA. The PA is capable of being controlled in excess of 125 percent modulation.

 INTEGRATOR ]-C
OUTPUT
 $+\quad$ TRIANGLE WAVE

AUDIO-ONE CYCLE 5 KHZ SINE WAVE


Figure 4-9. PDM Waveform

4-79. Transistor $Q 4$ is overdriven by the collector voltage of transistor Q3 to further square the waveform and provide adequate drive to transistor Q5. Zener diode CR4 provides a stabilized voltage for transistors Q3 and Q4. Diodes CR6, CR7, and CR8 prevent transistor Q5 from saturating. When transistor Q5 conducts, the voltage at point $F$ is near zero. When transistor Q5 cuts off, resistor R 23 pulls point F towards the 12 -volt potential established by diode CR10.

4-80. PDM Board Al. Transwitter audio is applied to operational instrumentation amplifier integrated circuit $U 1$ through an audio pad consisting of resistors R1, R2, R3, R4, and R5 and a RFI filter consisting of coils L1 and L2 and capacitors C1, C2, C3, and C4. Operational instrumentation amplifier integrated circuit Ul provides a balanced to single-ended transformation with high common-mode signal rejection. Potentiometer R11 determines the input amplifier gain and therefore the audio input level for 100 percent modulation Potentiometer R18 determines the low-frequency common-mode rejection ratio.

4-81. Printed-circuit board mounted switch S1 enables Bessel low-pass filter integrated circuit $U 2$, which effectively removes high-frequency low dutycycle energy to reduce complex wave overshoot in the high-level PDM filter.

4-82. PDM FEEDBACK. Three feedback inputs are provided to the PDM chassis (figures 4-6,9-3,9-6). A capacitive voltage divider comprised of capacitors 2C18, 2C19, 2C20, and 2A3C1 at the plate of the PA furnishes a rf voltage which is detected and filtered by 2A3CR1, 2A3CR2, and 2A3C2. At full output power, this Eeedback voltage which is proportional to output power applies about +10 Vdc to the PDM chassis at point M and -10 Vdc at point N (figure $9-6)$. The -10 Vdc is applied to point $N$ to provide power trim control and provides a degree of automatic gain control to keep carrier shift low. The voltage applied to point N also provides negative feedback when the transmitter is modulated, to improve modulation linearity, noise figure, and audio response. It is also applied to the automatic modulation tracking circuit. The +10 Vdc is applied to the Dissipation Circuit and the Carrier Shift circuit to provide protection against over-dissipation of the PA tube and carrier amplitude shift correction.

4-83. Audio information is stripped from the -10 Vdc feedback signal by a low-pass filter consisting of resistors R30 and R31, and capacitors C18 and C19. The resulting dc voltage represents the carrier level and is applied to integrated circuit U 3 which is the automatic modulation tracking circuit.

4-34. A sample of High-Voltage Power Supply current appears at point L on the PDM chassis. This voltage is developed across 1 ohm resistor 1 R 9 which is in series with the negative side of the High-Voltage Power Supply which will produce 1 volt for each ampere of supply current. The positive dc feedback voltage at point $M$ is applied through resistor R33 to Dissipation Control potentiometer R34. The variable positive voltage from Dissipation Control potentiometer R34 and the de supply current sample voltage at point $L$ are added, through resistors, at the positive terminal of integrator capacitor c32. If this voltage becomes more than 0.6 volts less than the PDM control line, diode CR6 will conduct and reduce transmitter output power accordingly. Dissipation of the final PA Tube is monitored by metering transmitter
power output and supply current.
4-85. VIEWING PDM WAVEFORMS. Viewing PDM waveforms with an oscilloscope is an excellent method which may be used to check transmitter performance. A few ground rules are listed so unsatisfactory results are not obtained when attempting to duplicate the waveforms.
a. The Oscilloscope used must have good response up to 30 MHz and display rise times as short as 0.5 microseconds. Use a low capacitance probe with approximately 7 pF of capacity and 10 megohms resistance.

## WARNING

DISCONNECT AND LOCK OUT STATION PRIMARY POWER TO THE TRANSMITTER. USE GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS AND COMPONENTS BEFORE TOUCHING THEM.
b. Voltages in the transmitter are dangerous to personnel and can damage equipment. An oscilloscope should be connected to a resistance or capacity type voltage divider if attempting to observe high-voltage signal waveforms.
c. It is possible to overload the transmitter by adjustment of the Power Output controls. Care must be exercised while observing waveforms at low-level stages in the Modulator chain. A small change in voltage at this point has a large effect on the power output of the transmitter by changing the effective resistance of the Modulator which is in series with the PA. As a precaution, turn off the high voltage by disabling the 200-Ampere Main Service. Perform the normal transmitter Turn-0n procedure, including depressing the HIGH VOLTAGE ON pushbutton switch/indicator, even though the high voltage will not be present because the 200 Ampere Main Service is still off.

4-86. PDM Waveforms. Signal waveforms for the Pulse Duration Modulator (PDM) are shown in figure $4-9$ as an explanation of circuitry theory. To view the pulses on an oscilloscope, High-Power Level Adjust potentiometer R44 must be adjusted clockwise to lower the duty cycle to an observable rate. Refer to figures 4-9, 4-6, and 9-2 for the following discussion.

4-87. The output (A) of the 75 kHz Oscillator at the junction of capacitor C4 and resistor R4 is essentially sinusoidal. The output of transistor Q2 at the junction of capacitor $C 7$ and resistor $R 7$ ( $B$ ) is clipped to a square wave. The square wave output of transistor $Q 2$ is integrated by resistor R7 and capacitor $C 9$ to produce a 5V p-p triangle waveform (C) at the junction of resistors R7 and R9. Audio app1ied at the base of transistor Q3 is shown at $D$. As the audio summed with the sawtooth waveform crossed the operation threshold of transistor Q3 (E), the transistor outputs the modulated pulse
train shown and low-level power adjustments which control the threshold bias of the stage. Transistors $Q 4$ and $Q 5$ amplify the waveform shown at $F$ to a level sufficient to drive the Modulator Driver. PA plate voltage and RF Output are shown at $G$ and $H$.

4-88. MODULATOR DRIVER 1A8. The Modulator Driver active device is a Mosfet Pulse Amplifier. The output of the PDM Chassis drives the gate of the Mosfet directly. Source voltage for the Modulator Driver is provided by the Modulator Screen and Driver Power Supply through reactor coil 112 and resistors 1R27 through 1R32. The Modulator Driver swings from approximately zero volts to approximately +600 volts and must be offset to Drive Modulator Tube 1V1. The offset function is performed by DC Coupler 1A7.

4-89. DC COUPLER 1A7. DC Coupler 1A7 consists of five 100 -volt Zener diodes connected in series. With this arrangement, the Modulator grid will reflect a +100 -volt potential when the Modulator Driver is at +600 volts and -500 volts when the Modulator Driver nears saturation (zero volts). This voltage swing is required to switch the Modulator $O N$ and to drive the stage into cut-off. The DC Coupler ensures rapid turn-on from an established threshold which is a requirement for fast switching functions. Modulator Tube efficiency is determined by how fast the tube is turned $0 N$ and OFF during periods of conduction.

4-90. AUXCLIARY MODULATION. Auxiliary Modulation potentiometer 1 R35 consists of a variable resistance across inductor $\amalg 2$ in the plate circuit on the audio driver (refer to figure 4-6). This circuit tends to vary pulse amplitude and aids in modulation. Basically, the Auxiliary Modulator assists 100 percent negative modulation and improves frequency response. The control is adjusted to minimize distortion.

4-91. AUXILIARY DRIVER TRANSISTOR 1A14Q1. This stage provides additional current to the Modulator grid during positive modulation peaks to reduce distortion, assists in providing high-positive peak modulation capability, and positive-to-negative peak modulation symmetry (figures 4-6 and 9-10).

4-92. Voltage is dropped across AUXILIARY DRIVER potentiometer 1A14R17 when the control grid of the Modulator Tube conducts (refer to figures $4-6$ and 9-10). This causes transistor $1 \mathrm{~A} 14 \mathrm{Q1}$ to conduct and pull the modulator grid positive on positive modulation peaks. The amount of pullup caused by transistor 1 A 14 Q 1 is limited by Zener diode 1A14CR1. The AUXILIARY DRIVER Control provides adjustment of the amount of auxiliary drive.

4-93. MODULATOR TUBE 1V1. Modulator Tube IV1 is a power tetrode operating as a high-power pulse amplifier (refer to figure $4-6$ and $9-10$ ). The output from the DC Coupler and Auxiliary Driver operates the Modulator Tube grid from +100 volts to -500 volts. Fixed bias is provided by the Bias Power Supply through resistor 1A14R13. Screen voltage for Tube 1V1 is provided by the Modulator Screen and Bias Power Supply through resistors 1R17 through 1R23. These resistors limit screen current and voltage to ensure that the screen is not over-dissipated. The choice of modulator screen voltage must be high enough to provide sufficient power gain by the Modulator Tube, but not so high as to limit the lower value to plate voltage swing. The closer
to zero the lower limit of plate voltage swing, the greater the percentage of modulation.

4-94. The Modulator Tube plate is connected to the 75 kHz Filter, consisting of coils $1 L 4$ and 1L5, capacitors 1C3, 1C4, and 1C22. This network filters the 75 kHz pulses more than 80 dB with a bandwidth from zero to approximately 20 kHz . The low inductance of the first section of the 75 kHz Filter allows the plate waveform to square for maximum stage efficiency. When the Modulator Tube is cut off, energy stored in the 75 kHz Filter could cause the plate voltage of the Modulator Tube to approach infinity. A Damper Diode is used to prevent arc-over in the Modulator Tube.

4-95. DAMPER. The Damper Diode is connected between the plate of the Modulator Tube and the High-Voltage Power Supply (refer to figure 4-6). Should the voltage at the plate of the Modulator Tube attempt to exceed the supply voltage, the Damper Diode will conduct the current back to the power supply. When the Modulator Tube is not conducting the Damper Diode conducts. Conversely, when the Modulator Tube conducts, the Damper Diode is cut off.

4-96. MODULATOR POWER SUPPLIES. Two power supplies are used in the modulator section (refer to figures $4-6$ and 9-8). One is a negative 500 -Volt Bias Power Supply consisting of transformer T1, bridge rectifier diode CR1, and a choke input filter consisting of coil L1, and capacitors C2 and C3. The second power supply is the Modulator Screen and Driver Power Supply which consists of transformer 1T2, bridge rectifier diode 1 A 4 CR 1 , and a choke input filter comprised of coil 1L6, and capacitors $1 \mathrm{~A} 4 \mathrm{C} 2, \mathrm{C}$, , and C 4 . This power supply provides approximately 800 volts at 2.4 amperes.

## 4-97. CONTROL CIRCUITS

4-98. The control system consists of Main AC Control Chassis 1A1, Fault and Overload Assembly 1A3, with its associated unit prefixed 3, overload and arc sensors, and High-Voltage Power Supply Step/Start. These circuits control the application and removal of primary power to: (1) the blower and fan, (2) the High-Voltage Power Supply, and (3) to a number of transformers for generation of filament, bias, screen, and plate potentials. Power application is accomplished in an automatic sequence that does not require operation, except for depressing two switches. Power removal is also performed in an automatic sequence that may be initiated by the detection of faults, overloads, or by operator control. Time-delay relays used in the various control circuits have adjustable delays which are set by a thumbwheel on the front of each relay, Refer to figures $4-10$ and $9-1$ for the following discussion.

4-99. TRANSMITTER TURN ON. Depressing FILAMEN'T ON pushbutton switch 1AllAlSl closes a set of contacts which applies 110 Vac to the coil of relay 1AlK1, causing the relay to energize. When LOCAL/REMOTE switch lA1S1 is in LOCAL, relay lAlKl will self-latch through one set of internal contacts. In the REMOTE position, a continuous contact is required between terminal points 15 and 16 on terminal board $1 T B 1$ to energize relay 1 AlK . When the LOCAL/REMOTE switch is in the LOCAL position and FILAMENT OFF pushbutton switch lallals2 is depressed, coil voltage is removed from relay 1A1K1, causing the relay to deenergize and open the self-latching contact. In the

REMOTE position, theconnection at terminal points 15 and 16 on terminal board 1TB1, through remote control equipment, is opened to turn the filaments off.

4-100. A second set of normally open, delay off, contacts of relay lalkl energizes relay lAlK2 and applied three-phase primary power to Blower 1B1 and Fan 2B1. The delay off contacts hold relay $1 A 1 K 1$ closed for approximately three minutes after coil voltage is removed. This allows the blower to run down and the filament seals to cool. A third set of normally open contacts applies voltage to relay 1 Alk 3 through the circuit breaker and the air and temperature interlock switches. Three normally open contacts of relay lAlk3 furnish power to all filament transformers through step/start resistors 1AllR1 and 1A1R2. Relay 1A1K4 is energized after a five-second lelay by a fourth delay-on contact on relay lA.lK3. Three contacts on relay 1A1K4 bypass step-start resistors 1A1R2 and 1A1R3, applying full voltage to the filaments. A set of normally open contacts of time-delay relay lalTDl close across the delay contacts of relay 1 AlK 3 and remain closed for at least two seconds after relay $1 A 1 K 3$ is deenergized. Time-delay relay 1AlTDl bypasses the five-second delay contacts of relay $1 A 1 K 3$ and the five-second filament step/start cycle during momentary power failures, allowing the transmitter to deenergize without delay.

4-101. A fourth contact of relay $1 A 1 k 4$ applies control voltage to the highvoltage turn-on circuit through the safety interlock circuit which includes all door, ground stick, and external interlocks. The high voltage can now be applied by depressing HIGH VOLTAGE ON pushbutton switch lAllAlS6. With all safety interlocks closed, depressing the HIGH VOLTAGE ON pushbutton switch energizes relay $1 \mathrm{AlK5}$ which self-latches through one of its normally open contacts, depressing AUTO ON pushbutton switch energizes latching relay 1A1K6, causing on of its normally open contacts to bypass the FILAMENT ON self-latching contacts of relay 1 AlK 5 . A third normally open set of contacts on relay IA1K6, activates the AUTO ON indicator (1A11A1DS3) circuit and with relay lAlk6 latched in the AUTO-ON position, the transmitter will automatically reenergize after a power failure or overload. Relay 1AlK6 may be deenergized by depressing FILAMENT OFF pushbutton switch 1A11AlS2 or by energizing the coil of relay 1A1K8.

4-102. Relay $1 A 1 K 8$ is energized by either depressing the HIGH VOLTAGE OFF pushbutton switch or by the recycle counting circuit on the Fault and Overload Assembly, or by closing of thermal switches 3 S 1 or 3 S 2 on the highvoltage Step-Start assembly. A second set of normally open contacts of relay 1A1K5 allows the Modulator Screen and Driver Power Supply and the Bias Power Supply to turn on. This same set of contacts also completes the circuit for Isolated Enclosure solenoid 1 L 7 through Isolated Enclosure disable switch 1A1S2. Solenoid $1 L 7$ causes the contacts of switch $S 2$, in the Isolated Enclosure, to close and activate the RF Driver and Power Amplifier Screen and Bias Supplies.

4-103. High-Voltage Step/Start Relay 3 Kl is energized through High-Voltage Disable switch 1AlS3 and magnetic overload units, relays $3 \mathrm{~K} 3, \mathrm{~K} 4$, and K5. After approximately one second, a set of normally open contacts on relay lAlk5 close and energize main high-voltage contactor relay 3 K 2 through overload relay 1 AlK 11 and one set of normally open contacts on relay 3 Kl .


4-104. A fourth set of normally open delay-on contacts of relay 1AlK5 applies voltage to the Fail-Safe circuit through isolated enclosure disable switch 1A1S2 and high-voltage disable switch 1A1S3. This completes the circuit for high-voltage lamp lAllAldS6 and the High-Voltage Fail-Safe Timer circuit consisting of diode 1AlCR2, resistor 1A1R12, diode 1A1CR3, and capacitor 1A1C1. The Fail-Safe circuit will energize relay 1AlKl0 through one set of normally closed contacts of relay 3 K 2 in the event relay 3 K 2 does not energize, and complete the high-voltage step-start sequence, or is deenergized by magnetic overload relay 3 K 3 , 3 K 4 or 3 K 5 . A set of normally closed contacts on relay 3 K 2 opens to allow the PDM to operate at the preset power level.

4-105. TRANSMIITER TURN OFF. Transmitter shutdown is accomplished by depressing HIGH VOLTAGE OFF pushbutton switch 1AllA1S7 which energizes relay lA1K8. A normally open contact closes which energizes th B coil at mechanical latching relay 1 AlK , disabling the auto - on function. A normally closed contact opens the PDM off circuit, keeping the Modulator on after the high voltage is turned off to discharge the high-voltage capacitors. Depressing FILAMENT OFF pushbutton switch 1AllAlS2 opens the self-1atching circuit on relay 1AlKl causing the relay to deenergize and remove filament voltage. The normally open delay-off contact on relay lAlKl remains closed for approximately three minutes after deenergizing relay 1A1K1, which holds the blower contactor relay 1A1K2 energized to allow a period of operation for cooling and blower run-down.

4-106. HIGH-VOLTAGE TIMB-DELAY TRIP CIRCUITT. This circuit consists of diode 1A1CR2, resistor 1AlR12, diode 1A1CR3, capacitor 1A1C1, relay 1A1K10, and a normally closed contact on relay 3 K 2 . When relay 1 Al K5 energizes, ac voltage is applied to diode 1A1CR2 and capacitor 1A1C1 begins charging through diode lA1CR2 and resistor 1A1R12. Relay 1A1K10 is connected across capacitor lA1Cl through a normally closed contact on relay 3K2, if relay 3K2 is not energized. When relay 3 K 2 energizes, completing the high-voltage step-start sequence, the contact on relay 3 K 2 opens so that relay 1AlK10 cannot energize. If the high-voltage step-start sequence is not completed (relay 3 K 2 does not energize) within a time period determined by resistor lAlRl2 and capacitor lA1Cl, relay 1 AlK10 energizes. A normally closed contact on relay 1A1K10 (which is in series with contacts on high-voltage relay 1A1K8 and dc overload relay 1AlK9) opens and relay lAlK5 deenergizes, turning off the high-voltage supply. A second normally open contact on relay 1AlK5 closes, discharging capacitor 1 AlCl through 100 -ohm resistor 141R15. Should a magnetic overload relay (relays 3 K 2 , 3 K 4 , or 3 K 5 ) trip, high-voltage step-start relays 3 Kl and 3 K 2 both deenergize, immediately removing primary power to the high-voltage power supply. A normally closed contact on relay 3 K 2 also closes and energizes relay lAlK10, which turns the high voltage circuits off.

4-107. AUTOMATIC RETURN AFTER POWER FAILURE. Depressing AUTO ON pushbutton switch lAllAlS3 causes latching relay lAlk6 to keep filament and highvoltage circuits closed in the event of a primary power interruption. Filaments and high voltage will automatically recycle when power is again applied. If the power outage is less than two seconds, filament time-delay 1A1TD1 will allow immediate return to air without step/start filaments.

4-108. Should a major high-voltage fault cause relay lAlK8 to energize, the automatic return circuit will be disabled and the transmitter will shut off. If dc overloads or repeated faults occur, the automatic return circuit will attempt to restore the transmitter to the air until stopped by the operator or by the Fault and Overload Assembly recycle fault-monitor circuit.

4-109. POWER CHANGE HIGH/LOW. Power output can be changed by depressing either POWER HIGH pushbutton switch 1A11A1S5 or POWER LOW pushbutton switch lAllAlS4. This causes relay 1AlK7 to latch in the corresponding position.

4-110. Power High. The sequence for high-power operation follows:
a. Latching of relay 1 AlK 7 to the $A$ mode removes voltage from the coil of relay 1 A 2 A 2 K 1 inside the $\operatorname{PDM}$ chassis to raise the $\operatorname{PDM}$ output and audio level.
b. One contact of relay lAlK7 applies full voltage to the modulator screen supply.
c. One contact of relay $1 A 1 K 7$ energizes POWJR HIGH Indicator 1AllDS5.

4-111. Power tow. Rf carrier is not removed from the air during a highpower to low-power output change. The sequence for low-power operation follows:
a. The latching relay $1 \mathrm{AlK7}$ in the B mode, applies voltage to relay 1A2A2K1 inside the PDM chassis to lower the PDM output and audio level.
b. Another contact of relay $1 A 1 K 7$ closes to connect resistor $1 A 1 R 3$ in series with the modulator screen power supply transformer primary. This reduces the voltage on both the audio driver drain and the modulator screen to allow low-power distortion adjustment.
c. One contact of relay 1A1K7 energizes POWER LOW indicator 1A11A1DS4.

4-112. INTERLOCKS AND SAFETY SWITCHES. When a safety interlock is opened, all voltages above that of the ac input mains are removed and normally open high-voltage shorting switches, relay 1 Kl and 2 Kl , close. The HIGH VOLTAGE OFF pushbutton switch will illuminate whenever a DOOR, GND STICK or EXTERNAL SAFETY interlock is violated. The FIJAMENT OFF pushbutton switch will illuminate whenever a BREAKER, AIR flow, or internal air TEMP MALFUNCTION interlock is violated.

4-113. STEP/START ASSEMBLY. The high-voltage step/start assembly contains the ac contactor and the ac overload switch which are required to operate the high-voltage power supply. Operation of this assembly is explained in paragraph 4-103. Excessive overall temperature of the step-start resistors does not illuminate any lamps, but does prevent the transmitter from restarting.

4-114. FAULT AND OVERLOAD CIRCUITS
4-115. FAULT AND OVERLOAD ASSEMBLY 1A3. Fault and Overload Assembly 1A3 contains printed-circuit board Al which receives fault information from the various overload sensors and causes the transmitter to recycle or completely shutdown. The Fault and Overload Assembly operates from a 30 -volt dc power supply. Low-voltage ac from transformer 1 T5 is applied to plug J1-23 and plug J1-24 on board A1. The ac is rectified by a bridge rectifier consisting of diodes CR1, CR2, CR3, and CR4. Filtering is accomplished with capacitor 1025 which is external to board A1. Refer to figure 9-7.

4-116. Power Amplifier Arc. Should an external arc develop between the plate and screen of the PA, arc gap El inside the Isolated enclosure, will flash-over and send a transient current through coil L7. This transient is sensed and rectified by PA Arc Sensor lA15 which turns on SCR diode 1A15CR1. This places a ground on plug J1-16 on board A1 of the Fault and Overload Assembly. This ground is placed through a normally closed set of contacts on relay K1 to diode CR7. Diode CR7 gates a ground to plug Jl-24 on board A. to relay 1 A1k11 causing high-voltage Step/Start Assembly to recycle. Ground is also applied to the junction of resistor R 68 and diode CR36, causing latching reed relay K 9 to energize, closing its normally open contact and illuminating PA ARC Indicator 1A3DS6. The ground at the junction of resistor R68 and diode CR36 is also gated through diode CR36 to the junction of diodes CR11 and CR14 and relay K2. The ground at diode CR11 is gated to the PDM chassis, inhibiting the 75 kHz pulses, which in turn, cuts off Modulator Tube IV1, and PA tube 1A9V2. The ground at diode CR14 is gated to the base of transistor Q1, causing it to conduct, which in turn, charges capacitor C3 to the supply voltage of 30 volts and turns on transistor Q2 through resistor R11. The collector of transistor $Q 2$ drops to approximately one volt, causing the high/low power relay on the PDM chassis to energize and switch the transmitter to low power. Transistor Q2 conducts for approximately 5 to 10 seconds after transistor Q1 cuts off, the turn-on charge of capacitor C 3 having been depleted. The ground at relay K 2 causes it to energize, closing its normally open contact, which transfers the charge on capacitor C6 to capacitor C5. After three-to-five recycles in a row, capacitor C5 will have charged up to a voltage higher than the zener voltage of diode CR17, causing transistor Q3 to conduct, placing its collector at approximately one volt. This one-volt level goes through resistor R18 and diode CR16 to plug J2-20 and onto and energizes relay lAlK8, which removes the high voltage to the transmitter.

4-117. When relay KI is energized, the normally closed contacts open, stopping current flow to SCR diode 1A15CR1 allowing it to reset.

4-118. DC OVERLOAD. If the high-voltage supply current goes above the threshold determined by resistor 1 R10, relay $1 A 1 K 9$ is energized and closes one set of normally open contacts to place a ground at plug Jl-5 on Fault and Overload Assembly board A1. The same sequence of operation for the PA arc occur as described in paragraph $4-115$, the $D C$ indicator illuminates and relays K 2 or K 7 (or both) is energized.

4-119. MODULATOR SCREEN OVERLOAD. If the modulator screen current goes above the value set by resistor 1 R14, relay $1 K 2$ is energized and places a ground on plug J1-9 of Overload Assembly board A1. This overload functions similar to the dc overload except the MOD SCREEN overload indicator illuminates and relays K 2 or K 6 (or both) is energized.

4-120. OUTPUT ARC. Plus 100 Vdc from the modulator screen supply is applied to plug Jl-13 on Fault and Overload Assembly board Al. This voltage goes through resistor R6 and relay K3 to plug J1-17 and is then applied to choke 2 L 6 in the output network of the transmitter. If an arc occurs to ground in the output network of the transmitter, the 100 volts are shorted to ground through the arc, causing relay K 3 on board A 1 to energize. The normally open contact of relay $k 3$ closes, placing a ground at the junction of resistor R64 and diode CR24 on Fault and Overload Assembly board A1. This overload operates identically to the dc and MOD SCREEN overloads to cause the PDM to recyc.le. The OUTPUT ARC indicator is illuminated by relay K5.

4-121. VSWR OVERLOAD. If the reflected power at the output goes above the value set at Directional Coupler 2A1, a ground is placed on plug J1-3 on Fault and Overload Assembly board A.l, causing relay K8 to energize. The VSWR indicator illuminates.

4-122. The ground on plug J1-3 is gated through diode CR42 to plug J1-13 (PDM off). A VSWR trip turns off the PDM and interrupts the carrier momentarily. The supply voltage remains on and the transmitter will be stepped down to low power before returning to high power after each VSWR trip. The VSWR trip will be counted by the recycle circuit and after three trips the high voltage will be recycled (refer to paragraph 4-127).

## NOTE

At the customers option, diode 1CR33 on Fault and Overload board A1 may be removed. The supply voltage will remain on and the VSIVR trip is not counted by the recycle circuit. Therefore, the trans-mitter is not stepped down to low power when it resumes operation.

4-123. Resonator Arc. Photocell 1PV1 looks at the arc gap across the 3rd Harmonic PA plate efficiency resonator through an opaque tube of insulation material. Plus 30 volts is applied to photocell 1PVl from plug J2-12. If the resonator gap fires, the light from the arc will lower its resistance, turning on Darlington Pair Transistor Q5 which grounds the junction of resistor R69 and diode CR39, latches Fault Board 1A3Al latching fault relay K10, and removes high voltage from the power amplifier stage by applying a PDM off signal through gating diodes CR39 and CR11, thus extinguishing the arc. Potentiometer R72 sets the trip level of the light sensor.

4-124. ARC GAP. A transient in the 75 kHz low-pass filter network consisting of coil 1 LL 5 , capacitor 1 C 3 , and coil 1 L 4 causes one of the bias spark gaps, 1E1, 1E2, or 1E3, to fire through resistors $1 R 50$, 1 R52, and 1 R54. This
causes a positive voltage to develop across resistor 1 R54 and be present at plug J1-35 on board Al. The positive voltages cause relay K 4 , on board A 1 , to energize and close the normally open contact supplying voltage to the arc gap indicator. This same positive voltage also causes transistor Q4, on board Al, to conduct, placing a ground at plug Jl-24 and energizing relay lA1K11, causing the high voltage to recycle.

4-125. REMOTE PLATE VOLTAGE SAMPLE. The plate voltage is the difference between the supply voltage and the voltage of the Isolated enclosure and must be referenced to ground to operate a remote voltmeter. This is accomplished by operational amplifier integrated circuit U1 on board A1. A voltage proportional to the high-voltage power supply, approximately 10 volts, is routed through plug J1-21 on board A1, to pin 10 of operational amplifier integrated circuit U1. A voltage proportional to the Isolated Enclosure voltage, approximately 6 volts at 50 kW output, is fed through plug $J 1-23$ on board A1, to pin 3 of operational amplifier integrated circuit Ul. Amplifier integrated circuit U1 translates this difference to ground at pin 14 and routes the voltage, through isolation resistor R20 and plug J1-22 to pin 24 on terminal board 1 TB1.

4-126. Recycle Circuit. Whenever any overload sensor, except for VSWR trip as already explained (NOTE on page 4-30), places a ground at the junction of diodes lCR11 and lCR14 of Fault board 1A3A.1, the ground is diode gated to turn the PJM circuit off and to operate relay K 2 of Overload board IA3Al. If recycle switch $S 2$ is on, each time relay $K 2$ energizes the charge on capacitor C6 is applied to capacitor C5. If there are 3 or 4 overloads in quick succession, the voltage on capacitor C5 will reach the conduction point of Zener diode CR17. This will cause transistor Q3 to conduct, and this will close relay lA1K8. This turns off the high voltage and defeats the automatic return after power failure.

NOTE
The high voltage must be restored with a manual command.

4-127. Resistor R15, shunted across capacitor C5, gives the trigger circuit about a 30 -second time constant. This allows the transmitter to recycle about twice each 30 seconds without tripping the high voltage off. Should the fault remain, causing relay K 2 to stay closed, resistor R14 will charge capacitor C5 in less than one second turning off the PDM and shutting off the high voltage. If recycle switch S 2 is off, i.e. contacts are closed, capacitor C5 is immediately charged through resistor R13 causing the high voltage to be turned off without delay.

## 4-128. METERING CIRCUI'TS

4-129. There are ten meters on the $M W-50 C 3$ Transmitter front panels. These meters monitor pertinent circuit parameters during tune-up and normal operation and aid in fault analysis of the equipment. Most of the meter circuits are simple and require no explanation. In general, these meters are mounted on metal panels and are placed in low-voltage circuits which offer little
personnel hazard. Meters in the area of the Isolated Enclosure are mounted on a chassis behind a window that makes unintentional physical contact with the meters impossible.

4-130. SUPPLY CURRENT METER 1M5. This meter is a 0 to 5 ampere dc ammeter. It is connected between the negative terminal of the high-voltage supply and ground to measure the total supply current. Carbon block 1E5 protects the meter from excessive voltage. If the voltage at the negative terminal of the meter exceeds 600 volts, as if the power supply positive output is shorted to ground, the carbon block will arc over to ground to pro- tect the meter.

4-131. POWER METER 1M3. This meter indicates the Transmitter RF Output to the Antenna. It is connected to Directional Coupler 2 Al via coaxial cable. The meter has a 100 microampere dc movement and is calibrated from 0 to 100 kV full scale.

4-132. POWER AMPLIFIER SCREEN CURRENT METER IA9M4. This meter measures the total current from 0 to 3 amperes furnished by the power amplifier screen power supply. As this supply also furnishes current for the PA grid circuit, the POWER AMPLIFIER SCREEN CURRENT meter indication includes the sum of the PA screen and PA grid currents.

4-133. POWER AMPLIFIER PLATE CURRENT NIETER IA9M2. This meter is connected between the $P A$ filament transformer center tap and the high voltage power supply ground return circuit to indicate PA plate current from 0 to 8 amperes dc.

4-134. PLATE VOLTS METER 1M6. This meter monitors the voltage between the plate and cathode of the PA stage. It has a sensitivity of 1 milliampere full scale and is calibrated from 0 to 12 kV . The meter is mounted in a panel which is at ground potential and the movement is connected to Isolated Enclosure LA7 through 20.02 megohms of series resistance consisting of resistors 1R2 through 1R5 and 1A11R7, refer to figure 4-11. Meter Zero potentiometer 1R7 is used to zero the meter.

4-135. SUPPLY VOLTS METER 1M4. This meter monitors the high-voltage supply output. It has a sensitivity of 1 milliampere full scale and is calibrated from 0 to 30 kV . It is connected to the high-voltage power supply through 30 megohms of series resistance consisting of resistors 2 R 1 through $2 R 6$ (refer to figure 4-11).

4-136. The PLATE VOLTS Meter and SUPPLY VOLTS Meter are connected in a bridge circuit as shown figure 4-11. The PLATE VOLTS Meter indicates voltage dropped across the PA tube and the SUPPLY VOLTS Meter indicates voltage applied to the PA-Modulator series chain. The PLATE VOLTS Meter will always indicate approximately half of the supply voltage depending on the PA duty cycle, 20 percent PA duty cycle will produce 50 kW output. The voltage on the PLATE VOLTS and SUPPLY VOLTS meters could reach the same potential only if the PA tube shorts internally or is turned on 100 percent, 250 kW carrier power.

4-138. HIGH-VOLTAGE POWER SUPPLY. The high-voltage power supply provides the power amplifier plate operating voltage. It consists of a three-phase delta input 12-phase dual-delta output transformer and a solid state bridge rectifier with transient protection resistors and capacitors. Taps are provided so the voltage output can be adjusted to account for various line conditions and provides approximately 25 kV at 4 amperes. The ripple component of the output voltage is inherently low and does not require the usual filter choke. Instead, a low-impedance filter circuit comprised of capacitors 1C12, 2C12, 2C13 and 2 C 14 provides all required filtering. The ac contactors and ac overloads required to operate the high-voltage power supply, are contained in the High-Voltage Step/Start Assembly.

4-139. PA SCREEN POWER SUPPLY. This power supply is located in Isolated Enc.losure 1A9. It consists of full wave bridge rectifier 1A9CR5 (refer to figure 9-4) and associated filters. The power supply operates from a secondary winding of transformer $T 4$ and provides approximately 900 Vdc at 2.5 amperes. The ac input to rectifier 1 A9CR5 is controlled by contactor 1 A 9 Kl . The ac input path is completed only when bias voltage is available at the power amplifier. Thus, if the blas supply fails, PA screen voltage is removed. In addition, the ac input is interrupted whenever excessive screen current is detected.

4-140. PA BIAS POWER SUPPLY. This power supply. (refer to figure 9-2, Assembly 1A9A2 Metering and Bias) consists of a voltage doubler comprised of rectifiers 1A9A2CR1 through 1A9A2CR4 and filter capacitors 1A9C21 and 1A9C22. The supply operates from a secondary winding of transformer 2 Tl to provide -600 Vdc at 2 amperes. The -600 Vdc is routed to the grid of the power amplifier and rf driver. The supply is also connected to the cathode of the RF Driver in series with the PA screen supply to provide a plate operating potential of approximately 1500 Vdc for the rf driver.

4-141. The PA bias power supply also provides the voltage to operate screen supply input contactor 1 A 9 Kl . No PA screen voltage is generated unless bias voltage is available.

4-142. MODULATOR SCREEN AND DRIVER PONER SUPPLY. This power supply (refer to figure 9-2) provides a nominal 800 Vdc source for the modulator screen grid and audio driver drain. The PDM chassis operating potential of 100 Vdc is also obtained from this 800 Vdc output. The supply consists of full wave rectifier 1A4CR1 which operates from a secondary winding of transformer T2. Current available from this power supply is approximately 2.4 amperes.

4-143. MODULATOR BIAS POWER SUPPLY. This power supply (refer to figure 9-2) provides an output of -500 Vdc which is used as bias voltage for the modulator. The actual bias voltages at the grid of the stage is, however, a function of the bias input voltage and the audio drive. The supply consists of the transformer 1A5T1, bridge rectifier 1A5CR1, choke 1A5L1, and capacitors 1 A 5 C 2 and 1 A 5 C 3.


Figure 4-11. High Voltage Metering

4-144. OSCILLATOR/BUFFER POWER SUPPLY. The oscillator power supply (refer to figure 9-5 consists of transformer T1, bridge rectifier CR3, and a choke input filter consisting of coil L3 and capacitor 6.5 . This power supply produces approximately 100 Vdc and establishes two low potentials from this voltage. Zener diode CR2 and resistors R5 and R6 establish a 39-volt potential to operate oscillator output stages transistors Q1 and Q2. Resistor R4 and components on each oscillator board establish a 15 Vdc potential to operate the low-level oscillator stages.

4-145. FAULT AND OVERLOAD ASSEMBLY POWER SUPPLY. Transformer 1T5 (refer to figure 9-1) provides power for the positive 30 Vdc supply contained within the Fault and Overload assembly (refer to figure 9-7). Positive 30 Vdc is produced by a full-wave bridge and filter circuit comprised of diodes 1A3A1CR2 through 1A3A1CR4 and capacitor 1C25.

## SECTION V

MAINTENANCE
5-1. INTRODUCTION
5-2. This section provides preventive maintenance checks, cleaning and corrective maintenance information for the HARRIS MW-50C3 MEDIUM WAVE BROADCAST TRANSMITTER.

5-3. PURPOSE
5-4. The information contained in this section is intended to provide guidance to establish a comprehensive maintenance program to promote operational readiness and eliminate downtime. Particular emphasis is placed on preventive maintenance and record keeping functions.

## 5-5. STATION RECORDS

5-6. The importance of keeping station performance records cannot be over emphasized. Separate logbooks should be maintained by operation and maintenance activities. These records can provide data for predicting potential problem areas and analyzing equipment malfùnctions.

## 5-7. TRANSMITTER LOGBOOK

5-8. As a minimun performance characteristic, the transmitter should be monitored using front panel meters and the results recorded in the transmitter logbook at each shift change or at least once a day.

5-9. MAINTENANCE LOGBOOK
5-10. The maintenance logbook should contain a complete description of all maintenance activities required to keep the transmitter operational. A list of maintenance information to be recorded and analyzed to provide a data base for a failure reporting system is as follows:

DISCREPANCY

CORRECTIVE ACTION

DEFECTIVE PART(S)

Describe the nature of the malfunction. Include all observable symptoms and performance characteristics.

Describe the repair procedure used to correct the malfunction.

List all parts and components replaced or repaired. Include the following details:
a. COMPONENT TIME IN USE
b. COMPONENT PART NUMBER
c. COMPONENT SCHEMATIC NUMBER
d. COMPONENT ASSEMBLY NUMBER e. COMPONENT REFERENCE DESIGNATOR

SYSTEM ELAPSED TIME

NAME OF REPAIRMAN

STATION ENGINEER

Total transmitter time on.
Person who actually made the repair.
Indicates Chief Engineer noted and approved the transmitter repair.

5-11. SAFETY PRECAUTIONS
5-12. It is very dangerous to attempt to make measurements or replace components with power on. The design of the transmitter provides safety features such that when a door is open or a grounding stick is not in its proper place, an interlock switch opens and removes transmitter power. DO NOT SHORT OUT OR BYPASS INTERLOCK SWITCHES.

5-13. Grounding sticks are provided as a safety feature. Each consists of a metal rod with a phenolic plastic handle. The metal end is connected to transmitter ground. USE THE GROUNDING STICK AND TOUCH EVERY PART IN THE AREA OR CIRCUIT ON WHICH MAINTENANCE IS TO BE PERFORMED BEFORE ATTEMPTING MAINIENANCE.

## 5-14. PREVENTIVE MAINTENANCE

5-15. Preventive maintenance is a systematic series of operations performed periodically on equipment. As these procedures cannot be applied indiscriminately, specific instructions are necessary.
a. Visual Inspection. Inspection is the most important preventive maintenance operation because it determines the necessity for the others. Become thoroughly acquainted with normal operating conditions in order to recognize and identify abnormal conditions readily. The remedy for most visible defects is obvious, however care must be taken if heat damaged components are located. Overheating is usually a symptom of trouble. It is essential to determine the actual cause of overheating before the heat damaged component is replaced, otherwise the damage will be repeated. Inspect for:

1. Overheating, indicated by discoloration, bulging of parts and peculiar odors.
2. Leakage of grease or oil.
3. Oxidation.
4. Dirt, corrosion, rust, mildew and fungus growth.
b. Feel. Check parts for overheating, especially rotating parts such as blower motors. The need for lubrication, the lack of proper ventilation, or the existence of some defect can be detected and corrected before serious trouble occurs. Become familiar with operating temperatures in order to recognize deviations from the normal range.
c. Tighten. Tighten loose screws, bolts and nuts. Do not tighten indiscriminately as fittings that are tightened beyond the pressure for which they are designed may be damaged or broken.
d. Adjust. Make adjustments when inspection shows that adjustments are necessary to maintain normal operation.
f. Lubricate. Lubricate meshing mechanical surfaces at specified intervals with specified lubricants to prevent mechanical wear and keep the equipment operating normally. Do not over lubricate.
g. Paint. Paint surfaces with the original type of paint using a prime coat if necessary when inspection shows rust, worn or broken paint film.

5-16. FILTER CLEANING
5-17. Cabinet filters are provided in the transmitter and modulator cabinet air intakes. Clean each filter once a week with replacement done on an as needed basis.

5-18. BLOWER AND FAN MAINTENANCE

5-19. Inspect the blower and fan for dust accumulation monthly. Remove dust with a vacuum cleaner and brush. All blower drives and fan bearings are sealed. Bearings that are noisy or show wear must be replaced. The blower mounting bolts should be checked for tightness. Blower motor current should also be checked occasionally at 1 TB 3 . It should range from 11.5 to 12.2 amperes.

5-20. AIR PRESSURE METER CAUIBRATION
5-21. A Dwyer pressure guage or a Manometer with a range of 0 to 5 inches of water will be needed for the calibration.

5-22. The following is the procedure for the calibration:

## WARNING

DISCONNECT AND LOCK OUT STATION PRIMARY POWER TO THE TRANSMITTER.
a. Set all transmitters circuit breakers to the OFF position.

WARNING: Disconnect primary power prior to servicing.
b. Open the right-hand (facing the rear of the transmitter) rear transmitter door exposing the blower compartment.

## WARNING

USE GROUNDING STICKS AND GROUND OUT ALL COMPONENTS AND CONNECTIONS BEFORE 'IOUCHING THEM.
c. Locate the plastic tee to the right of the air pressure switch.
d. Disconnect the plastic tube that is routed from the tee to the air pressure switch.
e. Connect a length of plastic tubing to this tee connection and route the tubing to the outside of the transmitter by wedging the top of the door open enough so as not to pinch the tubing. Connect the other end to a Manometer or a Dwyer pressure guage.
f. Close and latch the rear transmitter door.
g. Zero the meter needle using the adjustment screw accessible through the front panel access hole.
h. Set the blower and control circuit breakers to the $O N$ position and apply station primary power to the transmitter.
i. The Manometer/Dwyer pressure guage indication should be close to 3 inches of water. Compare the Manometer/Dwyer pressure guage reading to the transmitter air pressure meter reading. If the readings are the same no adjustment of the air pressure meter is necessary. However, if the readings differ an adjustment of the calibration screw will be necessary to match the meter to the Manometer/Dwyer pressure guage.
j. If the calibration screw is adjusted, the meter may have to be rezeroed.

SPECIAL NOTE
SOME TRANSMITTERS HAVE A ZERO ADJUSTING
HOLE IN THE FRONT PANEL AND SOME DO NOT. METER REMOVAL WILL BE NECESSARY FOR THOSE TRANSMITTERS WITHOUT THE HOLE TO ADJUST THE METER.
k. For those transmitters without the panel meter zero adjustment access hole, remove the air pressure meter and make the adjustment setup as follows:

## WARNING

DISCONNECT AND LOCK OUT STATION PRIMARY POWER TO THE TRANSMITTER.

1. Open the transmitter left-hand (facing the transmitter) panel.

WARNING

USE GROUNDING STICKS AND GROUND OUT ALL COMPONENTS AND CONNECTIONS BEFORE TOUCHING THEM.
2. Disconnect the plastic tube from the meter and remove the meter from the panel.
3. Route the plastic tube through the meter hole in the front panel and reconnect it to the meter.
4. Support the meter to prevent the plastic tubing from kinking.
5. Close the front panel.

1. Repeat steps g., h., and i.

## WARNING

DISCONNECT AND LOCK OUT STATION PRIMARY POWER TO THE TRANSMITTER.
m. Set the blower and control circuit breakers to the OFF position.

## WARNING

USE GROUNDING S'IICKS AND GROUND OUT ALL COMPONEN'IS AND CONNECTIONS BEFORE TOUCHING THEM.
n. Disconnect the test tubing installed in step e. and reconnect the air pressure switch tubing to the tee.

## CAUTION

PLASTIC THREADS IN MOUNTING HOLES.
o. Open the transmitter left-hand (facing the transmitter) panel and reinstall the air pressure meter with the plastic tube connected in the original position.

5-23. HIGH-VOLTAGE POWER SUPPLY. The High-Voltage Power Supply has enclosures to ensure personnel safety. Lethal voltages are exposed when access panels are removed. All servicing of the High - Voltage Power Supply should be carrled out in the presence of a safety observer qualified in industrial first-aid. The following safety rules should be followed as minimum guide11nes.

## WARNING

DO NOT PLACE RELIANCE ON INTERLOCKS, CAPACITOR BLEEDERS OR OTHER BUILT-IN SAFETY DEVICES.

## WARNING

> DISCONNECT AND LOCK OUT PRIMARY POWER TO THE TRANSMITTER AND POWER SUPPLIES BEFORE STARTTNG ANY MAINTENANCE ON THE TRANSMITTER. A GROUNDED SHORTING STICK SHOULD BE USED TO SHORT OUT ALL TERMINALS ON ALL POWER SUPPLIES AND ALSO TO TOUCH ALL COMPONENTS BEFORE ANY MAINTENANCE IS STARTED.
a. Remove cover over connection pane1 and check all capacitor and power supply terminals for leaking oil and general condition.
b. Check all connections for tightness.
c. Dust off high-voltage insulated bushings and terminals.
d. Replace shorting stick in its holder and replace cover.

5-24. MAINTENANCE OF COMPONENTS
5-25. The following paragraphs provide information for component maintenance.

5-26. TRANSISTORS. Routine checking of transistors used in the MW-50C3 is not required. The best check of transistor performance is actual operation In the transmitter. When transistors are replaced, check circuitry operation which may be affected. Replacement transistors should be of the original type or a recommended direct replacement. Preventive maintenance of transistors is accomplished by performing the following steps:

## WARNING

DO NOT TOUCH HEAT SINK AND TRANSISTORS MOUNTED IN HEAT SINKS IMMEDIATELY AFTER REMOVING POWER. BURNS MAY RESULT FROM CONTACT.
a. Examine all transistors for loose connections or corrosion.
b. Inspect the transistors and surrounding area for dirt as accumulations of dirt or dust could form leakage paths.
c. Use a vacuum cleaner to remove dust from the area.

5-27. CAPACITORS. Preventive maintenance of capacitors is accomplished as follows:
a. Examine all capacitor terminals for loose connections or corrosion.
b. Ensure that component mountings are tight.
c. Examine the body of each capacitor for swelling, discoloration, or other evidence of breakdown.
d. Inspect oil-filled or electrolytic capacitors for leakage signs.
e. Use standard practices to repair poor solder connections with a low-wattage soldering iron.
f. Clean cases and bodies of all capacitors.

5-28. VACUUM CAPACITORS. In relation to most types of capacitors, the vacuum capacitor is very expensive. Care in handling and maintenance are prime requisites in order to assure maximum service life. As the vacuum capacitor is evacuated to a higher degree than most vacuum tubes, it is even more susceptible to shock and rough handling. It should never be placed in container with other components without proper packing. During periods of maintenance, the capacitors should be provided with substantial protective coverings. The weakest points of the capacitor are the glass-to-metal seals on each end of the unit. Particular care should be exercised to prevent seal damage during removal or installation.

5-29. Current ratings of vacuum capacitors are limited by the glass-to-metal seal temperature and the temperature of the solder used to hold the capacitor plates. Seal temperature is raised by poor connecting clip pressure, excessive dust and dirt accumulation or excessive currents. The solder temperature is affected by high external temperature and high currents.

5-30. Dust accumulation or sharp points existing in the high-voltage circuitry close to the capacitor can cause arcs or corona which may burn holes through the glass envelope.

5-31. FIXED RESISTORS. Preventive maintenance of fixed resistors is accomplished by the following steps:
a. When inspecting a chassis, printed-circuit board, or discrete component assembly, examine resistors for dirt or signs of overheating. Discolored, cracked, or chipped components indicate a possible overload.
b. When replacing a resistor ensure the replacement corresponds to the component designated by the schematic diagram.
c. Clean dirty resistors with a small brush.

5-32. VARIABLE RESISTORS. Preventive maintenance of variable resistors follows:
a. Inspect and tighten all loose mountings, connections and control knob setscrews. Do not disturb knob alignments.
b. If necessary clean components with a dry brush or cloth.
c. When dirt is difficult to remove, clean with a cloth moistened with an approved cleaning solvent.

5-33. TRANSFORMERS. Preventive maintenance of transformers is accomplished by performing the following:
a. Check each transformer soon after power removal for signs of overheating.
b. Inspect each transformer for dirt, loose mounting brackets and rivets, loose terminal connections and insecure connecting lugs. Dust, dirt or moisture between terminals may cause flash overs. Insulating compound or ofl around the base of a transformer indicates overheating or leakage.
c. Tighten loose mounting lugs, terminals or rivets.
d. Clean with a dry cloth or one moistened with an approved cleaning solvent.
e. Clean corroded contacts or connections with crocus cloth.
"f. Replace defective transformer.
5-34. FUSES. Preventive maintenance of fuses is accomplished by the following:
a. When $a$ fuse blows, determine the cause before installing a replacement.
b. Inspect fuse caps and mounts for charring and corrosion.
c. Examine fuse clips for dirt, improper tension and loose connections.
d. If necessary, tighten fuse clips and connections to the clips. the tension of the fuse clips may be increased by pressing the clip sides closer together.
e. Dust fuses and clips with a small brush.

5-35. METERS. Preventive maintenance of monitoring meters is accomplished as follows:
a. Inspect meters for loose, dirty or corroded mountings and connections.
b. Examine leads for frayed insulation and broken strands.
c. Check for cracked or broken plastic cases and cover glasses.
d. Tighten loose mountings or connections. Since meter cases are made of plastic, exercise care to prevent breakage.
e. Clean meter cases and glass cover with a dry cloth.
f. Remove dirt from mountings and connections with a stiff brush moistened with an approved cleaning solvent.
g. Remove corrosion with crocus cloth.

5-36. RELAYS. Replace hermetically sealed relays if defective. Nonhermetically sealed relays are considered normal if:
a. The relay is mounted securely.
b. Connecting leads are not frayed and the insulation is not damaged.
c. Terminal connections are tight and clean.
d. Moving parts travel freely.
e. Spring tension is correct.
f. Contacts are clean, adjusted properly and make good contact.
g. The coil shows no signs of overheating.

5-37. SWITCHES. Preventive maintenance of switches is accomplished by checking the following:
a. Inspect switch for defective mechanical action or looseness of mounting and connections.
b. Examine cases for chips or cracks. Do not disassemble switches.
c. Inspect accessible contact switches for dirt, corrosion or looseness of mountings or connections.
d. Check contacts for pitting, corrosion or wear.
e. Operate the switches to determine if each moves freely and is positive in action. In gang and wafer switches the rotor should make good contact with the stationary member.
f. Tighten all loose connections and mountings.
g. Adjust contact tension if required.
h. Clean any dirty or corroded terminal connection or switch section with crocus cloth.
i. Replace defective switches.

5-38. INDICATORS AND INDICATOR SWITCHES. Preventive maintenance of indicator lamps and indicator switches is accomplished by checking the following:
a. Examine indicator sockets for corrosion, loose nuts and condition of rubber grommets.
b. Examine indicator switch by pulling the plastic cover (indicator assembly) from the case.
c. Inspect indicator assemblies from broken or cracked covers, loose envelopes, loose mounting screws and loose or dirty connections.
d. Tighten loose mounting screws and solder loose connections. If connections are dirty or corroded, clean with crocus cloth before soldering.
e. Clean indicator covers, bases and glass bulb with a dry cloth.
f. Clean corroded socket contacts and connections with crocus cloth. Low-operating voltages require clean contacts and connections.

5-39. PRINTED-CIRCUIT BOARDS. Preventive maintenance of printed-circuit boards is accomplished by checking the following:
a. Inspect the printed-circuit boards for cracks or breaks.
b. Inspect the wiring for open circuits or raised foil.
c. Check components for breakage or discoloration due to overheating.
d. Clean off dust and dirt with a clean dry cloth.
e. Use standard practices to repair solder connections with a lowwattage soldering iron.

5-40. CORRECTIVE MAINTENANCE
5-41. Corrective maintenance for the transmitter is limited by the objective of minimum downtime. Maintainability and care are considerably simplified For operation and maintenance personnel as the transinitter was designed and built with highly reliable and proven elements to minimize downtime. If the need to remove and replace a defective component rises, refer to Section II, Installation, Reverse the sequence of installation to remove the component and reinstall as described.

5-42. OSCILLATOR TEST AND ALIGNMENT
5-43. An ac power cable and dummy load which mates J1 on the oscillator chassis is provided with the transmitter (HARRIS P/N 9922222 001) to assist bench check and alignment of the oscillator assembly, refer to figure 5-3. Connections to plug Jl pins, 1 and 3, 2 and 4, provide primary power for the oscillator power supply. Capacitor C1 and resistor R1 provide an oscillator load which simulates the rf driver grid circuit.


Figure 5-1. Oscillator Unit Bench Test Cable

WARNING: Disconnect primary power prior to servicing.

## 5-44. PDM FREQUENCY ADJUSTMENT

5-45. The frequency should only be adjusted to compensate for component failure when adequate test equipment is available. The PDM frequency must be adjusted to 75 kHz modulator filter notch. A dip in output noise will be noted as the PDM frequency is tuned through the 75 kHz filter resonance frequency.

5-46. BALL GAP ADJUSTMENT

5-47. The transmitter operates with several arc gaps associated with the high voltage, modulator and damper tubes, Isolated Enclosure and rf output circuits. These gaps are adjusted to operate just above the normal operating potentials so that abnormal voltages will fire the gap. If a transmitter or modulator arc gap is removed for maintenance or is incorrectly positioned, adjust the spacing to the following:

## WARNING

DISABLE STATION PRIMARY POWER TO TRANSMLTTER. USE GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS AND COMPONENTS BEFORE TOUCHING THEM.

SPARK GAP
Modulator Screen 1E6

Damper 1E3
Modulator 1E1
1E2

Isolated Enclosure 1E1 1E2

Output 2E2
PA Efficiency Resonator 1E4

SPACING
$.020 \pm .002$ inches
$.625 \pm .0625$ inches
$.625+.0625$ inches
$.625 \pm .0625$ inches
$.020 \pm .002$ inches
$.020 \pm .002$ inches
$.030 \pm .002$ inches
$.50 \pm .05$ inches

5-48. ALIGNMENT/ADJUSTMENT PROCEDURES

5-49. Alignment/adjustment consists primarily of returning or adjusting specific stages in the transmitter after a component has been removed or relaced.

5-50. TEST EQUIPMENT. To properly perform the alignment/adjustment procedures the following test equipment, or equivalent, is required.

NAME
Frequency Counter Oscilloscope Oscillator, Audio Signal Generator

TYPE
Hewlett-Packard HP5245I, Tektronix 543A
Data Royal F380A Hewlett-Packard HP606

5-51. EFFICIENGY RESONATOR ADJUSTMENT FOR PA PLATE. Perform the 3rd Harmonic resonator adjustment as follows:

## WARNING

DISABLE STATION PRIMARY POWER TO TRANSMITTER. USE GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS AND COMPONENTS BEFORE TOUCHING THEM.
a. Ensure that no power is present at the transmitter.
b. Verify components for proper values, tap settings, and tuning control settings.
c. Connect test equipment as shown in figure 5-2.


Figure 5-2. Test Setup for Efficiency Resonator Adjustment for PA Plate
d. Adjust PLATE EFFICIENCY RESONATOR for a dip in PA plate voltage. PA plate voltage should not be allowed to rise more than 200 volts from the dip. If a dip cannot be observed, repeat the procedure in paragraph 5-51 and check P/A output waveform (refer to paragraph 4-60 and figure 4-8).
e. Set signal generator for 3rd Harmonic frequency output.
f. Adjust PLATE EFFICIENCY RESONATOR for peak indication on oscilloscope.

NOTE

If the transmitter has been detuned to the extent that efficiency is poor or improper indications are present, perform the above procedure and the Grid Resonator Adjustment.

5-52. RF DRIVER PLATE AND PA GRID EFFICIENCY RESONATOR ADJUSTMENT. Perform the rf driver plate and PA grid efficiency resonator adjustment as follows:
a. Ensure that no power is present at the transmitter.

## WARNING

DISABLE STATION PRIMARY POWER TO TRANSMITTER. USE GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS AND COMPONENTS BEFORE TOUCHING THEM.
b. Connect test equipment as shown in figure 5-3.
c. Set signal generator for carrier frequency output.
d. Adjust coil L1 for peak indication on oscilloscope.
e. Reset signal generator for third harmonic frequency output.
f. Adjust coil L2 for peak indication on oscilloscope.
g. Repeat steps c. through f. until a peak at both frequencies is attained.
h. Remove test setup for transmitter.
i. Apply primary power, 40-ampere service only, to transmitter.
j. Set ISO ENCL B+ - OPERATE/DISABLE switch to OPERATE.

k. Depress HIGH VOLTAGE-ON pushbutton switch. Verify that POWER AMPLIFIER SCREEN CURRENT meter indicates less than 2.2 amperes.

1. Adjust DRIVER PLATE TUNE for maximum indication on POWER AMPLIFIER SCREEN CURRENT meter.

NOTE
In the next step, do not adjust more than $1 / 2$ turn.
m. Using a blade screwdriver, adjust GRID EFFICIENGY RESONATOR for a small peak indication on the POWER AMPLIFIER SCREEN CURRENT meter.
n. Adjust PA SCREEN PROTECTOR for 2.4 amperes indication on the POWER amplifier screen current meter.

5-53. DIRECTIONAL COUPLER ADJUSTMENT. Adjust the Directional Coupler as follows:

## WARNING

DISABLE STATION PRIMARY POWER TO TRANSMITTER. USE GROUNDING STICK TO DISSIPATE POTENTIAL FROM ALL TAPS AND COMPONENTS BEFORE TOUCHING THEM.
a. Disconnect trip lead from terminal 2.
b. Check that test connectors TJ1 and TJ2 are in the horizontal position and TJ3 is in the upper (left) position. Refer to figure 5-4.
c. Adjust potentiometers 2A1R20 and 2A1R21 maximum clockwise.
d. Apply power to transmitter.
e. Depress HIGH VOLTAGE ON pushbutton switch/indicator.
f. Adjust transmitter for 50 kW output as indicated by calibrated dumny load.
g. Set FORWARD/REFLECTED switch to REFLECTED.
h. Adjust capacitor 2A1C9 for null indication on POWER meter.
i. Remove test connectors TJ1 and TJ2 and install in vertical position.
j. Adjust potentiometer 2A1R20 for same indication (as in step f.) on POWER meter. Do not change 2AlR20 unless transmitter output power is accurately known.
k. Set REFLECTED/FORWARD switch to FORWARD.

1. Adjust capacitor 2A1ClO for null indication on POWER meter.
m. Remove test connectors TJ1 and TJ2 and reinstall in horizontal position.
n. Adjust potentiometer 2A1R21 for same indication (as in step 1.) on POWER meter. Do not change 2A1R21 unless transmitter output power is accurately known.
o. Remove test connector TJ3 and reinstall it in the lower position.
p. Operate REFJECTED/FORWARD switch to REFLECTED.


Figure 5-4. Directional Coupler 2Al Adjustment Locations
q. Alternately adjust capacitors 2A1C4 and 2A1C2 for an optimum null on POWER meter.
r. Remove test connector TJ3 and reinstall in original upper position.
s. Repeat steps g. through o. to ensure proper meter settings and compensation for any interactions that may be present.
t. Replace the $\operatorname{trip}$ lead which was disconnected in step a.
u. Potentiometer 2A1R9, which is the VSWR Trip Sensitivity Control, is set at the factory to meet pre-shipment test conditions. However, following installation it may be necessary to readjust the control if spurious VSWR trips are noted.

5-54. AUDIO INPUT/PDM CONTROL - FEEDBACK BOARD. Adjust and align the Audio Board as follows:
a. Adjust the controls as follows prior to starting an alignment/adjustment procedure. If only minor adjustments are to be made to the Audio Board, the controls do not need to be changed before starting the adjustment procedure.

1. INPUT GAIN potentiometer R11 fully CCW.
2. CMRR potentiometer R18 fully CW.
3. HUM NULL potentiometer R24 fully CCW.
4. DISS LIMITER potentiometer R34 fully CW.
5. CARRIER SHIFT potentiometer R36 midrange.
6. LO POWER AUDIO potentiometer R25 midrange.
7. MODULATION TRACKING potentiometer R26 midrange.
8. HI POWER potentiometer R44 fully CCW.
9. LOW POWER potentiometer R45 fully CCW.
10. BESSEL FILTER IN/OUT switch set to the OUT position.

5-55. Audio Board Alignment. Ensure board controls are adjusted as outlined in paragraph 5-54. Accomplish the following steps for alignment:
a. Apply power to the transmitter and depress FILAMENT ON pushbutton switch.
b. Check for the following voltages:

1. Transistor Q 1 emitter, $14.0 \pm 1.0 \mathrm{~V}$.
2. Transistor Q 2 emitter, $-14.0 \pm 1.0 \mathrm{~V}$
c. Jumper terminals $G$ and $H$ together and drive against ground using a low-distortion oscillator with an output impedance of 600 ohms or less.
d. Connect an oscilloscope to pin 8 of integrated circuit UlC.
e. Adjust the oscillator output to 0 dBm at 60 Hz and adjust CMRR potentiometer R18 for null. Null depth must be greater than 60 dBm.
f. Remove jumper wire from terminals $G$ and $H$.
g. Drive terminals $G$ and $H$ with a balanced sinusoidal signal at $0 d B m, 300 \mathrm{~Hz}$ and adjust MODULATION TRACKING potentiometer R26 for a null at pin 7 and 9 of integrated circuit U3.
h. Energize relay K 1 by switching to low power.
i. Adjust LO POWER AUDIO potentiometer R25 for a null at pin 7 and 8 of integrated circuit U3.

5-56. Audio Board Adjustment. Ensure board controls are adjusted as outlined in paragraph 5-54. Accomplish the following steps for adjustment:
a. Complete normal transmitter start-up procedures, with no audio applied.
b. Depress POWER HIGH pushbutton switch and adjust HI POWER potentiometer R44 CW until normal high operating power is attained.
c. Depress POWER LOW pushbutton switch and adjust LO POWER potentiometer R45 CW until normal low operating power is attained.
d. Depress POWER HIGH pushbutton switch to return transmitter to normal high operating power.
e. Set Modulation Enhancer operate/bypass switch to the bypass position.
f. Apply +10 dB 300 Hz sinusoidal audio signal to the transmitter input and adjust INPUT GAIN potentiometer R11 for 100 percent modulation.
g. Alternately remove and apply the +10 dB 300 Hz audio input signal while adjusting CARRIER SHIFT potentiometer R36 for no change in the carrier level, as indicated on the station modulation monitor.
h. Reduce the +10 dB 300 Hz audio input signal to a 50 percent to 80 percent modulation range as indicated on the station modulation monitor.
i. Connect a Volt/Ohm meter to pin 10 of integrated circuit U3 and adjust MODULATION TRACKING potentiometer R26 for a 0.0 Vdc indication on the meter.
j. While monitoring the station modulation monitor, adjust front panel power control from minimum to maximum end of its range. If modulation level changes more than 1 percent for a 20 percent change in power level, adjust MODUIATION TRACKING potentiometer R26 CW. Potentiometer R26 will vary absolute modulation levels, therefore it will be necessary to readjust audio input level/INPUT GAIN potentiometer R11. This will be an iterative process which will require careful, deliberate adjustments.
k. Apply a +10 dB 300 Hz sinusoidal audio signal to the transmitter input and adjust INPUT GAIN potentiometer R11 for 100 percent modulation.

1. Depress POWLR LOW pushbutton switch and adjust LO POWER AUDIO potentiometer R25 for 100 percent modulation.
m. With no audio signal applied to the transmitter and plug $P 1$ in jack J1 in any position, adjust HUM NULL potentiometer R24 CW from fully CCW position until a dip in noise measurement is noted. If noise increases or no dip is observed, adjust potentiometer R24 fully CCW and reposition plug P1 to another position in jack J1. Repeat the procedure until a dip in noise measurement is noted. With some transmitters no dip will be noted in any position. In this case leave potentiometer in the full CCW position.

5-57. Bessel Filter Adjustment. The bessel filter as supplied with the Audio Board has a 47 k -ohm resistor network which will eliminate overshoot, but "roll-off" the transmitter at 10 kHz . Decreasing network resistance by replacing the 47 k -ohm network with 39 k -ohm, 33 k -ohm, 27 k -ohm or 22 k -ohm networks, or by inserting fixed, $1 / 4 \mathrm{~W}, 5$ percent resistors of those values directly in the socket will increase the transmitter 3 dB down frequency or will increase the transmitter -3 dB frequency. It is possible to reduce overshoot 50 percent, without affecting transmitter frequency response, by using a 27 k -ohm resistor network.

5-58. Low-Frequency -3 dB Point Adjustment. With inadequate processing, dc overloads or erratic supply current may present a problem. If carrier shift under modulation is severe, check the output of the processing equipment with a dc coupled oscilloscope. The resulting oscilloscope base line should be steady. If the base line oscillates adjust the station processing equipment. If, however the processing equipment cannot be adjusted to produce a steady base line, capacitor $C 41$ should be replaced with a lesser value to correct the problem.

## SECTION VI

## TROUBLESHOOTING

6-1. INTRODUCTION
6-2. This section contains troubleshooting for the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER.

## 6-3. TROUBLESHOOTING

6-4. Most troubleshooting consists of visual checks. Because of high voltages present in the transmitter, it is not safe to work with power on. In the event of problems, isolate the trouble area to the power supply, antenna system, PA section or modulator section with the meters, circuit breakers and indicators for each section.

6-5. Malfunctions in the modulator system may be isolated by comparing the following list to the modulator MULTIMETER indications. Column 1 1ists the indications obtained with the high-power level adjust potentiometer R44 set to the maximum clockwise position and column 2 lists indications obtained with potentiometer R44 set to the maximum counterclockwise position. These read- ings are taken with the 200 -ampere high-voltage supply turned off so that supply voltage is not present, and after PLATE ON pushbutton switch/indicator is depressed to energize all other transmitter power supplies.

Modulator MULTIMETER Switch Position		Column 1	
DRIVER SOURCE AMPS 0-3			
DRIVER GATE VOLTS 0-30		1.2	0.750
DRIVER DRAIN VOLTS 0-1200	11.5	5.5	
MOD GRID VOLTS 0-1200	40	000	
MOD SCREEN VOLTS 0-1200	400	300	
MOD SCREEN AMPS 0-3	860	3.0	
AUX DRIVER AMPS 0-1.2	1.45	0.1	
AUX DRIVER VOLTS 0-120	0.1	100	

6-6. When the trouble has been isolated to a specific area, refer to the theory section of this manual for circuit discussion or schematic diagrams to aid in problem resolution. Table $6-1$ lists some typical trouble symptoms, probable causes, and corrective actions pertaining to the overall transmitter. The corrective action given for a trouble symptom is not necessarily the only answer to a problem. It only tends to lead the repairman into the area that may be causing the trouble. In event parts are required refer to Section VII Parts List.

6-7. Prior to starting a troubleshooting procedure check all switches, power cord connections, connecting cables, and power fuses.

6-8. TECHNICAL ASSISTANCE
6-9. HARRIS Technical and Troubleshooting assistance is available from HARRIS Field Service during normal business hours (8:00 AM - 5:00 PM Central Time). Emergency service is available 24 hours a day. Telephone $217 / 222-8200$ to contact the Field Service Department or address correspondence to Field Service Department, HARRIS CORPORATION, Broadcast Transmission Division, P.0. Box 4290, Quincy, Illinois 62305-4290, USA. The HARRIS factory may also be contacted through a TWX facility (910-246-3212) or a TELEX service (247319).

Table 6-1. Fault Isolation Procedures.



Table 6-1. Fault Isolation Procedures (Continued).


Table 6－1．Fault Isolation Procedures（Continued）．

TROUBLE SYMPTOM	PROBABLE CAUSE	CORRECTIVE ACTION
Audio distortion at high frequencies．	1．Antenna phasor Q too high．	1a．Check antenna phasor and ad－ just if necessary．
	2．PA mistuned．	2a．Check PA tuning．Retune if necessary．
	3．Grid or plate efficiency resonators mistuned．	3a．Check tuning of efficiency resonators，Retune if neces－ sary to in or near plate voltage dip．
	4．Incorrect auxiliary modulator driver adjustment．	4a．Check adjustment of AUXIILIARY MODULATOR and AUXILIARY DRI－ VER．Readjust if necessary．
Audio distortion at all frequencies．	1．PA loaded incorrectly．	1a．Check PA plate loading． Adjust if necessary．
	2．Auxiliary modulator driver maladjusted．	2a．Check adjustment of auxiliary modulator driver．Adjust AUXILIARY DRIVER as neces－ sary．
	3．Defective resistor in modulator screen circuit．	3a．Check resistors 1R24 and 1R25 in modulator driver．Adjust AUXILIARY DRIVER．
	4．Excessive modulator screen current．	4a．Check modulator screen and driver power supply IA4． Repair as necessary．

Table 6-1. Fault Lsolation Procedures (Continued).


Table 6-1. Fault Isolation Procedures (Continued).

TROUBLE SYMPTOM	PROBABLE CAUSE	CORRECTIVE ACTION
Noise on carrier (120 or 60 Hz )	1. Primary ac power Iine-to-line or voltage-to-phase inbalance.   2. Low PA screen current,   3. PA feedback circuit voltage low.	1a. Check primary ac power line-to-line voltage and phase currents. Correct as necessary.   2a. Check rf driver tube 1A9V1. Replace if necessary.   2b. Check rf driver plate and PA screen supply for low voltage. Repair as necessary.   3a. Check PA feedback voltage at terminal N on PDM board IA2A2 for -10 to -12 Vdc to ground at 55 kW transmitter output power. Repair as necessary.
	4. Grid or plate efficiency resonators mistuned.   5. RF in audio lines.   6. Noisy rf driver tube.	4a. Check tuning of efficiency resonators. Retune if necessary to in or near plate voltage dip.   5a. Check and repair bypass, filters, and shielding.   6a. Check rf driver tube 1A9V1. Replace as necessary.

Table 6－1．Fault Isolation Procedures（Continued）．

						禀          c		
	京  			$\begin{aligned} & \text { 9. Bad capacitor in PDM feedback } \\ & \text { circuit. } \end{aligned}$		$\stackrel{n}{2}$ $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{2}}$ $\stackrel{\rightharpoonup}{ت}$      $\stackrel{\square}{0}$ 둠 － 풀 앙 ন		
						Y逃糹元気：管品是总穻		



7-1. INTRODUCTION
7-2. This section provides a description, reference designator and part number for selected replaceable parts and assemblies necessary for proper maintenance of the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER. Table $7-1$ lists assemblies having replaceable parts, located. Identity of the assembly nomenclature in table $7-1$ signifles the equipment level within the overall equipment configuration.

## 7-3. REPLACEABLE PARTS SERVICE

7-4. Replacement parts are available 24 hours a day, seven days a week from the HARRIS Service Parts Department. Telephone $217 / 222-8200$ to contact the service parts department or address correspondence to Service Parts Department, HARRIS CORPORATION, Broadcast Transmission Division, P.O. Box 4290, Quincy, Illinols 62305-4290, USA. The HARRIS factory may also be contacted through a TWX facility (910-246-3212) or a TELEX service (247319).

Table 7-1. REPLACEABLE PARTS LIST INDEX

TABLE				
NO.	UNIT NOMENCLATURE	PART NO.		PAGE
7-2	XMTR, MW50C3 AM 50KW 60HZ	9948832	004	7-3
7-3	XMTR, BASIC MW50C3	9948832	006	7-6
7-4	UNIT \#1, MOD \& PA CUBICLE	9926311	002	7-7
7-5	CONTROL UNIT LAI	9926325	001	7-11
7-6	PWB, RELAY P/O 1A1	9923769	003	7-12
7-7	PDM UNIT 1A2	9926327	002	7-13
7-8	PWB, PDM GEN 1A2A1	9926771	001	7-14
7-9	PWB, AUDIO INPUT 1A2A2	9925898	001	7-16
7-10	PDM POT KIT-MW5/10/50	9926692	001	7-18
7-21	PWB, MOD ENHANCER	9924474	001	7-19
7-12	PWB, INTERFACE 1A2A4	9926416	002	7-20
7-13	FLAG \& OVERLOAD 1A3	9926323	001	7-21
7-14	FLAG \& OVERLOAD 1A3A1	9926411	001	7-22
7-37	SCREEN PWR SUPPLY 1A4	9923468	001	7-48
7-15	bIAS PWR SUPPLY 1A5	9923469	001	7-24
7-16	DC COUPLER 1A7	9923471	002	7-25
7-17	AUUIO DRIVER 1A8	9925326	002	7-26
7-18	ISOLATED BOX 1A9	9926322	002	7-27
7-19	METERING BOARD 1A9A1	9926408	001	7-29
7-20	METERING \& BIAS 1A9A2	9926409	001	7-30
7-21	METER MULTIPLIER 1A9A4	9926404	003	7-31
7-38	OSCLELATOR UNIT 1A10	9926324	001	7-49
7-22	PWB, OSCILEATOR 1A.l0A1\&2	9922.165	002	7-32
7-23	METER PANEL 1AL1	9926321	00.1	7-33
7-24	SWITCH BOARD 1allal	9926437	001	7-34
7-25	ASSY, GRD SWITCH	9291.979	001	7-35
7-25	AUX DRVR/METER MULT 1A14	9926429	002	7-36
7-27	PA ARC DETECTOR	9923012	001	7-37
7-28	MTR LTG ISO B0X 1A. 16	9926435	001	7-38
7-29	RESONATOR ASSY	9430398	003	7-39
7-30	UNIT \#2, OU'rPut Cubicle	9926312	002	7-40
7-31	DIRECTIONAL COUPLER 2A1	9924926	001	7-42
7-32	PWB, DIR CPLR 2Alal	9924927	001	7-43
7-33	FEEDBACK BOARD 2A3	9926393	001	7-44
7-34	METER MULTIPLIER 2A4	9926404	001	7-45
7-35	SWITCH, SHORTING	9923037	003	7-46
7-36	UNIT \#3, STEP START	9926498	001	7-47

Table 7-2. XMTR, MW50C3 AM 50KW 60HZ - $994883200 \dot{4}$

REF. SYMBOT,	HARRIS PART NO.			DESCRTPTION	QTY	UM
1A09C04	504	0264	000	CAP MICA 680 PF 10KV	0.0	
				FREQ DET		
1A09C04	504	0373	000	CAP 1200PF 10KV 5\% (292)	0.0	
				FREQ DET		
1A09C04	504	0374	000	CAP 2000PF 15KV 5\% (293)	0.0	
				FREQ DET		
1409C05	504	0365	000	FREQ DET	0.0	
1 A 09 C 05	504	0412	000	CAP 4300PF 3KV	0.0	
				FREQ DET		
1 A 09 C 05	504	0413	000	CAP 12000PF 2KV	0.0	
				FREQ DET		
1A09C07	504	0239	000	CAP 2200pF 6KV 5\% (291)	0.0	
				FREQ DET		
1A09C07	504	0242	000	CAP. . 0036 UF 6KV	0.0	
				FREQ DET		
1A09C07	504	0372	000	CAP 5600PF 4KV 5\% (291)	0.0	
				FREQ DET		
$1 \mathrm{A09C09}$	504	0239	000	CAP 2200PF 6KV 5\% (291)	0.0	
				FREQ DET		
$1 \mathrm{~A} 09 \mathrm{C09}$	504	0256	000	CAP 1000PF 6KV 5\% (291)	0.0	
				FREQ DET		
1409C09	504	0367	000	CAP 560PF 6KV	0.0	
				FREQ DET		
1 A 09 V 01	374	0121	000	TUBE, 4CX1500A	1.0	
1 A 09 V 02	374	0099	000	TUBE 4 CX 35000 C	1.0	
1Al0A01C01	500	0846	000	CAP, MICA 8200PF 100V 5\% FREQ DET	0.0	
1AI0A0.1C01	500	0882	000	CAP 3600PF 500V 5\% FREQ DET	0.0	
1A10A01C01	500	0966	000	CAP 2200PF 500VDC 5\% FREQ DET	0.0	
1A10C02	500	0835	000	CAP, MICA 470PF 500V 5\% FREQ DET	0.0	
1410C02	500	0852	000	CAP 1000 PF 500 V	0.0	
				FREQ DET		
$1 \mathrm{AlOC02}$	500	0756	000	CAP, MICA 330PF 500V 5\%	0.0	
				FREQ DET		
1A10C02A	500	0842	000	CAP, MLCA $820 \mathrm{PF} 300 \mathrm{~V} 5 \%$	0.0	
				FREQ DET		
$1 \mathrm{Al0} 022 \mathrm{C} 12$	500	0846	000	CAP, MICA 8200PF 100V 5\%	0.0	
				FREQ DET		
1A10A02C12	500	0832	000	CAP 3600PF 500V 5\% FREQ DET	0.0	
1A10A02Cl2	500	0966	000	CAP 2200PF 500VDC 5\% FREQ DET	0.0	
$1 \mathrm{C02}$	516	0208	000	CAP HV 50 UUF 15 kV FREQ DET	0.0	

Tab1e 7-2. XMTR, MW50C3 AM 50KW 60HZ - 9948832004

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION	QTY	UM
1C24	500	0759	000	CAP, MICA $100 \mathrm{PF} 500 \mathrm{~V} 5 \%$ FREQ DET	0.0	
1 C 24	500	0813	000	CAP MICA 33UUF 500V	0.0	
				FREQ DET		
1C24	500	0821	000	CAP MICA 68UUF 500V	0.0	
				FREQ DET		
1DS03,1DS04	396	0004	000	LAMP, 60W 130V		
10S05					3.0	
1J02,1J03	612	0412	000	RECP DUPLEX OUTLET	2.0	
1V01	374	0099	000	TUBE 4CX35000C	1.0	
2C04B	512	0053	000	CAP VAC 250UUF	0.0	
2DS01,2DS02	396	0004	000	LAMP, 60W 130V		
2DS03,2DS04					4.0	
2J02,2J03	612	04.12	000	RECP DUPLEX OU'ILET	2.0	
2L03	992	3511	007	TANK COIL, 2L3	0.0	
				FREQ DET		
2L03	992	3511	009	TANK COIL	0.0	
				FREQ DET		
2L03	992	3511	012	TANK COIL 12 TURN	0.0	
				FREQ DET		
2L03	992	35.11	014	TANK COIL 14 TURN	0.0	
				FREQ DET		
2L03	992	3511	016	TANK COIL	0.0	
				FREQ DET		
2L03	992	3511	018	TANK COIL	0.0	
				FREQ DET		
2L03	992	3511	022	TANK COIL	0.0	
				FREQ DET		
2L04	992	6444	001	COIL, 6 TURN 2L4	0.0	
				FREQ DET		
2L04	992	6445	001	COIL, 14 TURNS 2L4	0.0	
				FREQ DET		
2L05	943	3777	002	COIL, VAR. 17VC1644	0.0	
				FREQ DET		
2L05	943	3777	012	COIL, VAR 26VC2344	0.0	
				FREQ DET		
$3 T 01$	736	0119	000	PWR SUPPLY	1.0	
	530	0002	000	FLG MTG TERM FMOB	0	
				FREQ DET		
\#1A09C04	829	1769	001	TUBE, CONNECTING	0	
				FREQ DET		
\#IA09C04	829	1769	002	CONNECTING TUBE	0	
				FREQ DET		
*2C4B	839	1950	001	MTG. BRKT OUTPU'I CAB	0	
				FREQ DET		
${ }^{\text {\# }} 2 \mathrm{CO} 04 \mathrm{~B}$	839	1950	002	MTG. BRKT OUTPUT CAB	0	
				FREQ DET		

Table 7-2. XMTR, MW50C3 AM 50KW 60HZ - 9948832004

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION	QTY	UM
\#1C02	929	0613	001	STRAP CAP	0	
				FREQ DET		
	336	0209	000	SCREW DRIVE 0 X . 25	4	
	839	9468	059	STRAP, CAPACITOR	0.0	
				FREQ DET		
	994	8832	006	XMTR, BASIC MW50C3	1.0	
	994	8996	001	KIT, FRONT DOOR MW50C3	0.0	

Table 7-3. XMTR, BASIC MW50C3-994 8832006

| REF. SYMBOL | HARRIS PART NO. | DESCRIPTION | QTY | UM |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \#1A10 | 992 | 2222001 | CABLE, OSC TEST/DUMMY LOAD | 1 |
|  | 9926311002 | UNIT \#1, MOD \& PA CUBICLE | 1 |  |
|  | 9926312002 | UNIT \#2, OUTPUT CUBICLE | 1 |  |
|  | 9926498001 | UNIT \#3, STEP-START | 1 |  |

Table 7-4. UNIT \#1, MOD \& PA CUBICLE - 9926311002

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION	QTY	UM
1A01	992	6325	001	CONTROL UNIT 1A1	1.0	
1 A 02	992	6327	002	PDM UNIT 1A2	1.0	
1A03	992	6323	001	FLAG \& OVERLOAD 1A3	1.0	
1A04	992	3468	001	SCREEN PWR SUPPLY 1A4	1.0	
1405	992	3469	001	BIAS PWR SUPPLY 1A5	1.0	
1A07	992	3471	002	DC COUPLER 1A7	1.0	
1408	992	6326	002	AUDIO DRIVER 1A8	1.0	
1 A 09	992	6322	002	ISOLATED BOX 1A9	1.0	
1A10	992	6324	001	OSCILLATOR UNIT 1A10	1.0	
lall	992	6321	001	METER PANEL LAII	1.0	
1A12	929	1979	001	ASSY, GRD SWITCH	1.0	
1A14	992	6429	002	AUX DRVR/METER MULT LA14	1.0	
1A15	992	3012	001	PA ARC DETECTOR	1.0	
1A16	992	6435	001	MTR LTG ISO BOX 1A16	1.0	
1CR01	386	0320	000	ZENER, 1N3340A 100V	1.0	
1CR04,1CR05	384	0639	000	RECTIFIER UFS10		
1CR06,1CR07					4.0	
1CR08	384	0676	000	RECTIFIER ASSY	1.0	
1.C01	000	0000	007	APPEARS ON LOWER LEVEL	1.0	
1C03, 1C04	516	0483	000	CAP 4,000PF 32 KV , 120A	2.0	
$1 \mathrm{C05}$	500	0477	000	CAP .01UF 10\% 2500V	1.0	
1C07,1C08	510	0638	000	CAP 4UF 1000V 10\%	2.0	
1C09	510	0551	000	CAP 30 UF 1KV 10\%	1.0	
1 C 10	504	0273	3000	CAP .047UF 1500V 5\%	1.0	
1Cll	510	0552	000	CAP 8 UF 1500 V	1.0	
1C12	510	0685	000	CAP 2.45 UF 40 KV	1.0	
1.16	504	0272	000	CAP 7500PF 2KV 5\%	1.0	
1C17,1C18	516	0080	000	CAP DISC . 01 LJF 600 V	2.0	
1C21	522	0372	000	CAP 2500 UF 15V	1.0	
1 C 22	504	0350	000	CAP 220PF 30kV	1.0	
1 C 23	524	0178	000	CAP 860 UF 450V	1.0	
1 C 24	000	0000	003	FREQUENCY DETERMINED PART	1.0	
1 C 25	524	0323	300	CAP 1800uF 40 V	1.0	
1C30,1C31,1C32	516	0080	000	CAP DISC . 01UF 600V		
$1 \mathrm{C33}$					4.0	
1E01, 1E02,1E03	815	5012	001	SPACER	3.0	
1E04	829	1580	001	CAP, DETECTOR	1.0	
1 E 05	927	7092	002	CARBON BLOCK ASSY	1.0	
1E06	815	5042	001	BRKT., SPARK GAP	1.0	
1 E 07	560	0013	3000	SPARK GAP 600V	1.0	
1 E 08	560	0043	3000	SPARK GAP IKV	1.0	
1 J 01	620	0410	000	JACK, BULKHEAD UG-657/U	1.0	
1J02,1J03	000	0000	002	APPEARS ON A HIGHER LEVEL	0.0	
1 J 04	620	0410	000	JACK, BULKHEAD UG-657/U	1.0	
1K01	992	3037	002	RELAY, HV SHORTING	1.0	
1K02	572	0161	000	RELAY, MINIATURE	1.0	
1L01	916	9089	001	COIL ASSEMBLY	1.0	
1 LO	476	0400	000	REACTOR, MODULATION	1.0	
1L03	000	0000	007	appears on lower level	0.0	
1L04	927	3879	005	CHOKE, LOW PASS FLTR	1.0	

Table 7-4. UNIT \#1, MOD \& PA CUBICLE - 9926311002 (Continued)


Table 7-4. UNIT \#1, MOD \& PA CUBICLE - 9926311002 (Continued)

REF. SYMB0L	HARRIS PART NO.			DESCR.IPTION	QTY	UM
1505,1506	442	0022	000	THERMOSTAT	2.0	
1 S 07	604	0061	000	SW, SPDT	1.0	
1508	604	0280	000	SW, PRESS.	1.0	
1S09	928	9309	001	SWI'TCH ASSY 1S9	1.0	
1S10,1511	604	1026	000	SW, DPDT 15A 125/250VAC	2.0	
1S12,1S13	604	0450	000	SW, PRECISION DPDT	2.0	
1TB01	614	0328	000	TERM BOARD 27 TERM	1.0	
1TB02	614	0048	000	TERM BOARD 4 TERM	1.0	
1TB03	614	0093	000	TERM BOARD 3 TERM	1.0	
1 1304	614	0057	000	TERM BOARD 13 TERM	1.0	
1 1304	829	9468	184	MARKER STRIP 36 TERM	1.0	
1 1305	614	0053	000	TERM BOARD 9 TERM	1.0	
1TB06	614	0094	000	TERM BOARD 4 TERM	1.0	
1TB07	614	0046	000	TERM BOARD 2 TERM	1.0	
1TB08	614	0048	000	TERM BOARD 4 TERM	1.0	
1TB08	614	0690	000	TERM BOARD 3 TERM	1.0	
1 1TB09	614	0048	000	TERM BOARD 4 TERM	1.0	
1TB01A	614	0047	000	TERM BOARD 3 'IERM	1.0	
1 TB10	614	0053	000	TERM BOARD 9 TERM	1.0	
1 T B04A	614	0067	000	TERM BOARD 23 TERM	1.0	
1 101	472	0596	000	XFMR, FIL, P11539	1.0	
1 T 02	472	0605	000	XFMR, PLT, P11540	1.0	
1 T 04	474	0090	000	XFMR, VAR, VT8LN	1.0	
1705	472	0622	000	XFMR, CTL, P6377	1.0	
1 T06	472	0210	000	XFMR, ISO, N66A	1.0	
1V01	000	0000	002	APPEARS ON HIGHER LEVEL	0.0	
1XK02	404	0200	000	RELAY SOCKET	1.0	
1XQ01	404	0136	000	SOCKE'T KIT, TRANSISTOR	1.0	
1xu01	404	0309	000	SOCKET SK-1510A	1.0	
	358	0184	000	RETAINER 82 ALL HDS	20	
	358	0185	000	RCPTCL 85 SPRING	10	
	358	0187	000	RCPTCL 82 SPRING	20	
	358	0410	000	RETAINER 85 ALT HDS	8	
	402	0001	000	CLIP, 1.062 FUSE 60A 600V	6	
	402	0002	000	CLIP, . 812 FUSE 60A 250V	2	
\#1512,\#1S13	402	0107	000	FUSE CLIP	2	
\#1B01	432	0307	000	WIIEEL, BLOWER $15 \times 6$	1	
\#1801	436	0253	000	MOTOR 5HP 3PH	1	
\#1C23	542	0105	000	RES 25.0 K OHM 12 W	1	
	620	2411	000	GAUGE, PRESSURE, 0-10"	1.0	
	650	0021	000	KNOB RD SKIRT . 911	1	
	650	0148	000	KNOB ROUND 2253 5G	1	
	650	0149	000	KNOB, ROUND	1	
	815	4279	016	FILTER, REAR DOOR AIR	1	
	816	9062	001	KNOB	2	
	928	0661	001	CABLE ASSY	1	
	929	9468	250	CABLE MOD\& PA MAIN MW50c3	1	
	938	3828	036	CAbLe, COAX	1	
\#1L10, \#1R40	939	2056	005	CABLE JUMPER	1	

Table 7-4. UNIT \#1, MOD \& PA CUBICLE - 9926311002 (Continued)

REF. SYMBOL	HARRIS	ART NO.	DESCRIPTION	QTY	UM
\#154, \#1V2	9392056	015	CABLE JUMPER	2	
\#1C12,\#2L7	9392056	018	CABLE JUMPER	. 1	
\#1CR8, \#1C12	9392056	020	CABLE, JUMPER	1	
\#1C12,\#1K1	9392056	022	CABLE ASSY	1	
\#1C01, \#1L03	9430398	003	RESONATOR ASSY	1	

Table 7-5. CONTROL UNIT 1A1 - 9926325001

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION				QTY	UM
CB001	606	0148	000	CKT BR	BREAKER 10A	250 V	60HZ	1.0	
CB002	606	0508	000	BREAKER	KER,CKT 20A			1.0	
CB003	606	0149	000	CIRCUI	IIT BREAKER	25 A		1.0	
Св004	606	0186	000	CKT BR	RREAKER 35A	250 V	60Hz	1.0	
Св005	606	0145	000	CKT BR	breaker 1a	250 V	60Hz	1.0	
CB006	606	0461	000	BREAKFR	KER, CKT 15			1.0	
CB008	606	0187	000	CKT BR	BREAKER 2A	250V	60Hz	1.0	
CR002	384	0020	000	RECTIF	FIER IN400			1.0	
CR003	386	0169	000	ZENER,	, 1N5352A	15V		1.0	
CR004	384	0020	000	RECTIF	FIER IN400			1.0	
C001	524	0181	000	CAP 27	2700uF 25V			1.0	
DS001,DS002	396	0194	000	LAMP,	.014A 10V	344			
DS003, DS004									
DS005,DS006								6.0	
K001	574	0221	000	RELAY	700-NT400	-A1		1.0	
K002	570	0120	000	CONTAC	C'COR 40 AMP			1.0	
K003	574	0221	000	RELAY	700-NT400	-A1		1.0	
K004	570	0251	000	CONTAC	C'COR 40A 4	POLE		1.0	
K005	574	0221	000	RELAY	700-NT400	-A1		1.0	
K006,K007	574	0062	000	RELAY	Latching	4 PDT		2.0	
K008	574	0219	000	RELAY	4PDT 12VD			1.0	
K009	574	0225	000	RELAY	6VDC 4PDT			1.0	
K010	574	0220	000	RELAY	4PDT 1000	ОНм		1.0	
K011	580	0001	000	RELAY,	, VACUUM 2	2.5VDC		1.0	
M001	636	0042	000	METER,	, ELAPSED	TIME 6	60Hz	1.0	
R001,R002	542	1006	000	RES	5.4 OHM	766W	10\%	2.0	
R003	542	1008	000	RES	8.5 оНм	751W	9.4A	1.0	
R004,R005,R006	540	0625	000	RES	3.9 K OHM	2W			
R007,R008,R009									
R010,R011								8.0	
R012	542	0183	000	RES	2.0K OHM	25W		1.0	
S001	915	3526	008	SWITCH	CH MODIF.			1.0	
S002,5003	604	0460	000	SW, TG	GGL DPDT			2.0	
TD001	576	0047	000	RLY P	PNeumatic t	IMING		1.0	
XDS001,XDS002	406	0384	000	SKT 18	83-9730-14	-602			
XDS003, XDS004									
XDS005, XDS006								6.0	
	406	0377	000	LENS	RED . 75 IN	SQ		6	
	650	0028	000	KNOB R	RD SKIRT 1	. 135		1	
	992	3769	003	PWB, R	RELAY P/O	1A1		1	

Table 7-6. PWB, RELAY P/0 LAI - 9923769003

REF. SYMBOL	HARRIS PART NO.	DESCRIPTION	QTY	
CR001	3840020000	RECTIFIER IN4005	1.0	
R015	5400025000	RES 100.0 OHM 1/2W	$5 \%$	1.0
XK008, XK009	4040214000	RELAY SOCKET		
XK010			3.0	
	929	3663001	PRINTED BOARD	1.0

Table 7-7. PDM UNIT 1A2 - 9926327002

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION	QTY	UM
A01	992	6771	001	PWB, PDM GEN 1A2A1	1.0	
A02	992	5898	001	PWB, AUDI0 INPUT 1A2A2	1.0	
A03	992	4474	001	PWB, MOD ENHANCER	1.0	
A04	992	6416	002	PWB, INTERFACE 1A2A4	1.0	
A03DS01	384	0610	000	LED, GREEN	1.0	
A03DS02,A03DS03	384	0611	000	LED, RED	2.0	
A0 3T01	472	0730	000	XFMR, CTL, P8395	1.0	
B01	550	0919	000	POT 2.5 K OHM 117V	1.0	
CR01	386	0320	000	ZENER, 1N3340A 100V	1.0	
CR02	386	0101	000	ZENER, 1N2992A 39V	1.0	
C15	526	0221	000	CAP 150 UF 15 V 20\%	1.0	
C047	526	0315	000	CAP, 150UF, 15v, $20 \%$	1.0	
J01	620	0410	000	JACK, BULKHEAD UG-657/U	1.0	
R01	548	1518	000	RES 1200 OHM 25W 1\%	1.0	
S01	604	0471	000	SW, TGL 4PDT	1.0	
	650	0021	000	KNOB RD SKIRT . 911	1	
	929	9468	251	CABLE, MW50C3 PDM	1	

Table 7-8. PWB, PDM GEN 1A2A1 - 9926771001

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION					QTY	UM
CR001, CR002	384	0205	000	DIODE	E SILIC	CON 1	1N914			
CR003									3.0	
CR004	386	0092	000	ZENER	R, 1N47	7441	15V		1.0	
CR005	386	0085	000	ZENER	R, 1N47	740 A	10V		1.0	
CR006, CR007	384	0205	000	DIODE	E SILIC	CON 1	1N914			
CR008									3.0	
CR010	386	0187	000	ZENER	R 1N534	49A 1	12V		1.0	
CR011	386	0136	000	ZENER	R, 1N47	745A	16 V		1.0	
CR012	386	0085	000	ZENER	R, 1N47	740A	10V		1.0	
C001, C002, C003	500	0882	000	CAP	3600pF	500V	5\%		3.0	
C004	516	0393	000	CAP D	DISC . 0	025UF	500V		1.0	
C005	500	0902	000	CAP	3300pF	500 V	5\%		1.0	
C006	516	0082	000	CAP,	DISC .	.01UE	1KV	GMV	1.0	
C007	506	0236	000	CAP	.0047UF	F 63v	5\%		1.0	
C008	500	0783	000	CAP	5100 PF	F 500	VV 5\%		1.0	
C009	516	0054	000	CAP,	DISC .	.001U	JF 1KV	10\%	1.0	
C010	526	0057	000	CAP	100UF 2	20 V 2	20\%		1.0	
C011	526	0020	000	CAP	15UF 20	0V 10	PCT		1.0	
C012	516	0054	000	CAP,	DISC .	.001U	UF 1KV	10\%	1.0	
C013	500	0837	000	CAP,	MICA 5	510PF	500 V	5\%	1.0	
C014	506	0245	000	CAP	.33UF 6	63 V 5			1.0	
C015	526	0337	000	CAP	2.7UF 5	50 V 1	10\%		1.0	
L001	492	0344	000	INDTO	OR VAR	VIV-	-1500		1.0	
Q001,Q002	380	0082	000	XSTR	, 2N189				2.0	
Q003, Q004, Q005	380	0083	000	XSTR,	, 2N236				3.0	
Q006	380	0631	000	XSTR	, IRF53	31 (E	ESD)		1.0	
RT001	559	0048	000	THERM	MISTOR,	, DIS	C 1K	OHM	1.0	
R001	540	0075	000	RES	12.0K	OHM	1/2W	5\%	1.0	
R 002	540	0071	000	RES	8.2 K	OHM	1/2W	5\%	1.0	
R003	540	0053	000	RES	1.5K	OHM	1/2W	5\%	1.0	
R004	540	0047	000	RES	820.0	OHM	1/2W	5\%	1.0	
R005	540	0049	000	RES	1.0K	OHM	1/2W	5\%	1.0	
R006	540	0059	000	RES	2.7 K	OHM	1/2W	5\%	1.0	
R007	540	0068	000	RES	6.2 K	OHM	1/2W	5\%	1.0	
R008	540	0017	000	RES	47.0	OHM	1/2W	5\%	1.0	
R009	540	0066	000	RES	5.1K	OHM	1/2W	5\%	1.0	
R010	540	0053	000	RES	1.5 K	OHM	1/2W	5\%	1.0	
R011	540	0028	000	RES	130.0	OHM	1/2W	5\%	1.0	
R012	540	0025	000	RES	100.0	OHM	1/2W	5\%	1.0	
R013	540	0050	000	RES	1.1K	OHM	1/2W	5\%	1.0	
R014	540	0053	000	RES	1.5 K	OHM	1/2W	5\%	1.0	
R015	540	0613	000	RES	1.2 K	OHM	2W	5\%	1.0	
R016	540	0001	000	RES	10.0	OHM	1/2W	5\%	1.0	
R017	540	0073	000	RES	10.0K	OHM	1/2W	5\%	1.0	
R018	540	0001	000	RES	10.0	OHM	1/2W	5\%	1.0	
R019	540	0611	000	RES	1.0K	OHM	2W	5\%	1.0	
R020	540	0608	000	RES	750.0	OHM	2W	5\%	1.0	
R021	540	0049	000	RES	1.0 K	OHM	1/2W	5\%	1.0	
R 022	540	0073	000	RES	10.0K	OHM	1/2W	5\%	1.0	

Table 7-8. PWB, PDM GEN 1A2A1 - 9926771001

REF. SYMBOL	HARRIS PART NO.				DESCRIPTION				QTY	UM
R023	540	0599	000	RES	330.0	OHM	2W	5\%	1.0	
R024	546	0104	000	RES	1500	HMS	5W 5		1.0	
R025	540	0017	000	RES	47.0	OHM	1/2W	5\%	1.0	
R026	540	1162	000	RES	1.0 M	OHM	1/2W	5\%	1.0	
R027	540	0621		RES	2.7 K		2 W	5\%	1.0	
	943	4209	102	PWB,	PDM				1	

Table 7-9. PWB, AUDIO INPUT 1A2A2 - 9925898001


Table 7-9. PWB, AUDIO INPUT 1A2A2 - 9925898001


Table 7-10. PDM POT KIT-MW5/10/50-9926692 001


Table 7-11. PWB, MOD ENHANCER - 9924474001


REF. SYMBOL	HARRIS PART NO.				DESCRIPTION				QTY	UM
C001	522	0379	000	CAP	100UF	250 V			1.0	
C002	508	0497	000	CAP	.47UF	600 V			1.0	
C003, $\mathrm{C004}$	516	0067	000	CAP	DISC	003UF	1KV	20\%	2.0	
C005, C006, $\mathrm{C007}$	516	0082	000	CAP,	DISC	.01UF		GMV		
C008, C009, 0010										
C011									7.0	
J001	610	0768	000	PC H	EADER,	24 P			1.0	
R002	540	0594	000	RES	200.0	OHM	2W	5\%	1.0	
TB001	614	0726	000	TERM	BOARD	15 T	RM		1.0	
	943	4209	101	PWB,	PDM I	NTERF			1	


Table 7-13. FLAG \& OVERLOAD 1A3-9926323001						
REF. SYMBOL	HARRIS PART NO.	DESCRIPTION				
A001	9926411001	FLAG \& OVERLOAD 1A3A1	QTY	UM		

Table 7-14. FLAG \& OVERLOAD 1A3A1 - 9926411001


Table 7-14. FLAG \& OVERLOAD 1A3A1 - 9926411001

REF. SYMBOL	HARRIS PART NO.				DESCRIPTION				QTY	UM
Q005	380	0152	000	XS'TR	R, D40C5				1.0	
R001	540	0615	000	RES	1.5 K	OHM	2W	5\%	1.0	
R002	540	0032	000	RES	200.0	OHM	1/2W	5\%	1.0	
R003	540	0049	000	RES	1.0 K	онм	1/2W	5\%	1.0	
R004	540	0066	000	RES	5.1K	OHM	1/2W	5\%	1.0	
R005	540	0622	000	RES	3.0K	ОНм	2W	5\%	1.0	
R006	540	0632	000	RES	7.5K	OHM	2W	5\%	1.0	
R007	540	0622	000	RES	3.0K	онм	2W	5\%	1.0	
R008	540	0603	000	RES	470.0	OHM	2W	5\%	1.0	
R009	540	0049	000	RES	1.0K	онм	1/2W	5\%	1.0	
R010	540	0651	000	RES	47.0K	ОНм	2W	5\%	1.0	
R011	540	0108	000	RES	300.0K	OHM	1/2W	5\%	1.0	
R012	540	0053	000	RES	1.5K	ОНM	1/2W	5\%	1.0	
R013	540	0025	000	RES	100.0	онм	1/2W	5\%	1.0	
R014	540	0089	000	RES	47.0 K	онм	1/2W	5\%	1.0	
R015	540	0121	000	RES	1.0 M	OHM	1/2W	5\%	1.0	
R016	540	0073	000	RES	10.0K	онм	1/2W	5\%	1.0	
R017	540	0121	000	RES	1.0 M	ОНM	1/2W	5\%	1.0	
R018	540	0017	000	RES	47.0	OHM	1/2W	5\%	1.0	
R019	540	0608	000	RES	750.0	ОНМ	2W	5\%	1.0	
R020	540	0049	000	RES	1.0K	онм	1/2W	5\%	1.0	
R021	550	0626	000	POT,	, 10K 0 H	HM . 5	5W 10\%		1.0	
R022	540	0090	000	RES	51.0K	оНм	I/2W	5\%	1.0	
R023,R024	540	0073	000	RES	10.0K	OHM	1/2W	5\%	2.0	
R025	540	0049	000	RES	1.0 K	онм	$1 / 2 \mathrm{~W}$	5\%	1.0	
R026,R027	540	0025	000	RES	100.0	OHM	1/2W	5\%	2.0	
R028	540	0105	000	RES	220.0 K	ОНм	1/2W	5\%	1.0	
R029	540	0049	000	RES	1.0K	OHM	1/2W	5\%	1.0	
R030	540	0089	000	RES	47.0K	ОНм	1/2W	5\%	1.0	
R031	550	0626	000	P0T,	, 10 K 0 H	HM . 5	5W 10\%		1.0	
R050,R051,R052	540	0615	000	RES	1.5 K	OHM	2W	5\%		
R053,R054,R055										
R056,R057,R058										
R059,R060,R061										
R062,R063									14.0	
$\mathrm{R} 064, \mathrm{R} 065, \mathrm{R} 066$	540	0065	000	RES	4.7K	OHM	1/2W	5\%		
R067,R068,R069									6.0	
R070	540	0608	000	RES	750.0	OHM	2W	$5 \%$	1.0	
R071	540	0059	000	RES	2.7K	OHM	1/2W	5\%	1.0	
R072	550	0797	000	Рот	50K OHM	M . 5 W	N 10\%		1.0	
R073	540	0081	000	RES	22.0K	OHM	1/2W	5\%	1.0	
R074	540	0121	000	RES	1.0 M	OHM	1/2W	5\%	1.0	
S001	604	0905	000	SW,	Рв MOME	ENTAR			1.0	
S002	604	0904	000	SW,	TGL SPD				1.0	
U001	382	0415	000	IC,	324				1.0	
XF001, XF001A	402	0129	000	CLIP	P FUSE				2.0	
XK001	404	0214	000	RELA	AY SOCKE				1.0	
	943	4209	033	PWB	FLAG \&	OULD			1	

Table 7-15. BIAS PWR SUPPLY 1A5 - 9923469001

REF. SYMBOL	HARRIS PART NO.		DESCRIPTION	QTY
CR001	3840230000	RECT 67D030B20TTN	1.0	
C001	5080326000	CAP .015UF 1600V 10\%	1.0	
C002,C003	5240178000	CAP 860 UF 450V	2.0	
L001	4760289000	REACTOR 8145242001	1.0	
R001	5400609000	RES 820.0 OHM 2W $5 \%$	1.0	
R002,R003	5420105000	RES 25.0K OHM 12W	2.0	
TB001	6140094000	TERM BOARD 4 TERM	1.0	
T001	4720604000	XFMR, FIL, 814-5236-001	1.0	
	9279943001	CABLE, MOD BIAS SUP	1.0	

Table 7-16. DC COUPLER 1A7 - 9923471002

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION					QTY	UM
CR003, CR004	386	0320	000	ZENER	R, 1N33	340A	100 V			
CR005,CR006										
CR007									5.0	
C001	510	0713	000	CAP 1	10 UF 1	500V			1.0	
C002	504	0272	000	CAP 7	7500PF	2KV	5\%		1.0	
R001	540	0563	000	RES	10.0	OHM	2W	5\%	1.0	
	404	0282	000	HEAT	SINK,	TAPP	ED	END	5	

Table 7-17. AUDIO DRIVER 1A8-9926326 002

REF. SYMBOL	HARRIS PART NO.	DESCRIP'IION	QTY	UM
CR001	3860085000	ZENER, 1N4740A 10V	1.0	
J001	6201677000	RECEPTACLE, PC MT, BNC	1.0	
Q001	3800675000	XS'IR, BUZ-53A (ESD)	1.0	
R001	5400291000	RES 20.0 0HM 1W 5\%	1.0	
R002	5401131000	RES 30.0K OHM 1/2W 5\%	1.0	
R003	5401156000	RES 2.7K OHM 1/2W 5\%	1.0	
R004	5401162000	RES 1.0M OHM 1/2W 5\%	1.0	
R005,R006	5400849000	RES 2.0 OHM 1/2W 5\%	2.0	
R007	5460231000	RES 25 OHM 80W 10\%	1.0	
'TB001	6140733000	'IERM BOARD, PC MT 10 TERM	1.0	
\#Q001	4040498000	HEAT SINK FOR CASE TO-3	1	
\#Q001	6120891000	JACK, PC MT	2	
	9434209108	PWB, AUDIO DRIVER	1	

Table 7-18. ISOLATED BOX 1A9 - 9926322002

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION					QTY	UM
A001	992	6408	001	METER	RING BO	ARD	1A9A1		1.0	
A002	992	6409	001	METER	RING \&	BIAS	1A9A2		1.0	
A004	992	6404	003	METER	R MULTI	iplier	R 1A9		1.0	
CB001	606	0480	000	BREAK	KER, CK	T 5A			1.0	
CB002	606	0529	000	BREAK	KER, CK	T 30A			1.0	
CB003	606	0187	000	CKT	BREAKER	2A	250 V	60Hz	1.0	
CB004	606	0145	000	CKT	BREAKER	1A	250 V	60Hz	1.0	
CR005	384	0229	000	RECT	PIV 4 KV	KV 12			1.0	
CR006	560	0042	000	VARIS	Stor V5	10LA	880A		1.0	
C001, 0002	500	0458	000	CAP .	.01uF 1	10\% 1	200V		2.0	
C003	500	0436	000	CAP.	. 01 UF	600 V	10\%		1.0	
C006	500	0477	000	CAP .	.01uF 10\%	10\% 2	2500V		1.0	
C010, 0011	504	0269	000	CAP	MICA . 1	UUF 5	500V		2.0	
C012	504	0236	000	CAP M	MICA . 01	U UF	4KV		1.0	
C013, $\mathrm{C014}, \mathrm{C015}$	516	0080	000	CAP D	DISC . 0	1UF	600 V			
C016									4.0	
C017, $\mathrm{C018}, \mathrm{C019}$	524	0178	000	CAP	860 UF	450 V			3.0	
C020	510	0718	000	CAP .	. 1 UF 2	2500	VDC		1.0	
C021, 0022	524	0178	000	CAP	860 UF	450V			2.0	
C029	504	0236	000	CAP	mica . 0	01 UF	4 KV		1.0	
C033, 0034	504	0269	000	CAP	MICA . 1	LUF 5	000		2.0	
C035, $0036, \mathrm{C037}$	516	0208	000	CAP HV	HV 50	JUF 1	.5kV		3.0	
C038	516	0206	000	CAP	HV 1000	UUF'	F 5000		1.0	
C039	516	0208	000	CAP H	HV 50	UUF 1	5KV		1.0	
DS001,DS002	396	0060	000	LAMP,	, .04A	28 V	327			
DS003,DS004									4.0	
K001	574	0176	000	RELAY	Y DPDT	110 V			1.0	
K002	574	0388	000	RELAY	Y 240VA	AC DP			1.0	
L001	943	3777	012	COIL,	, VAR	26VC2	2344		1.0	
L002	943	3777	002	COIL,	, VAR.	17VC	1644		1.0	
L003,L004	494	0065	000	CHOKE	E R F 1	1 MHY			2.0	
L006	476	0292	000	REACT	TOR 814	526	7001		1.0	
L007	916	5499	002	PA AR	ARC. SAM	MPLE			1.0	
L008	476	0307	000	REACT	TOR, FI	TR 1	1. 2 HY		1.0	
M001	632	1027	000	METER	WR WITH	0-3/	0-12		1.0	
M002	632	1025	000	METER	R 0-8AD				1.0	
M003	630	0178	000	METER	R 0-15V	VAC			1.0	
M004	632	0988	000	METER	R, 0-3A	A D.C			1.0	
R001,R002	542	0083	000	RES	2.5 K	OHM	10W		2.0	
R007	542	0327	000	RES	2.0K	ОНM	160W		1.0	
R017	546	0227	000	RES 5	50 OHM	80W	10PCT		1.0	
R020	540	0685	000	RES	1.2 M	OHM	2W	5\%	1.0	
R021	540	0073	000	RES	10.0K	OHM	1/2W	5\%	1.0	
R022	542	0305	000	RES	20.0K	ОНм	100w		1.0	
R023	542	0318	000	RES	10.0	онм	160W		1.0	
R024,R025,R026	542	0105	000	RES	25.0K	OHM	12W		3.0	
R027	540	0589	000	RES	120.0	OHM	2 W	5\%	1.0	
R028	542	0095	000	RES	10.0K	OHM	10W		1.0	
R029	542	0105	000	RES	25.0K	OHM	12W		1.0	

Table 7-18. ISOLATED BOX 1A9 - 9926322002


Table 7-19. METERING BOARD 1A9A1-992 6408001

REF. SYMBOL	HARR	RIS P	ART NO.	DESCRIPTION					QTY	UM
C001, C002	516	0080	000	CAP	DISC . 0	01UF	600V		2.0	
R001	540	0116	000	RES	620.0K	OHM	1/2W	5\%	1.0	
R002	540	0073	000	RES	10.0K	OHM	1/2W	5\%	1.0	
R003	540	0116	000	RES	620.0K	OHM	1/2W	5\%	1.0	
R004	540	0584	000	RES	75.0	OHM	2W	5\%	1.0	
R005,R006,R007	540	0616	000	RES	1.6 K	OHM	2W	5\%		
R008,R009,R010									6.0	
R011	540	0630	000	RES	6.2K	OHM	2W	5\%	1.0	
R012	540	0611	000	RES	1.0K	OHM	2W	5\%	1.0	
R013	540	0630	000	RES	6.2K	OHM	2W	5\%	1.0	
Z001, Z002	914	7180	001	PARA	ASITIC	SUPP			2.0	
	943	4209	009	ASSY	PWB,	METER	ING	BOARD	1	

Table 7-20. METERING \& BIAS IA9A2 - 9926409001

REF. SYMBOL	HARRIS PART NO			DESCRIPTITON					QTY	UM
CR001, CR002	384	0317	000	RECT	, SILIC	CON 1	1 N4725			
CR003, CR004									4.0	
C001	516	0080	000	CAP	DISC .	01UF	600V		1.0	
C002	500	0458	000	CAP	.01uF 10	10\% 120	200V		1.0	
C003, $0004, \mathrm{C005}$	516	0080	000	CAP	DISC .	.01UF	600V			
C006									4.0	
C007, 0008	508	0497	000	CAP	.47UF	600V			2.0	
R001	542	0445	000	RES	75.0	OHM	50W		1.0	
R002,R003	540	0089	000	RES	47.0K	人 HM	1/2W	5\%	2.0	
R004,R005	540	0687	000	RES	1.5 M	OHM	2W	5\%	2.0	
R006	540	0073	000	RES	10.0K	0НM	1/2W	5\%	1.0	
R007	542	0166	000	RES	5.0	OHM	25W		1.0	
R008, R009	540	0066	000	RES	5.1K	OHM	1/2W	5\%	2.0	
R010	542	0167	000	RES	10.0	OHM	25W		1.0	
R011	540	0685	000	RES	1.2 M	OHM	2W	5\%	1.0	
R012	540	0073	000	RES	10.0K	OHM	1/2W	5\%	1.0	
R013,R014,R015	542	0206	000	RES	25.0	OHM	50W			
R016									4.0	
R017	540	0608	000	RES	750.0	OHM	2W	5\%	1.0	
	943	4209	010	ASSY	PWB,	METER	BD \&	BIAS	1	

Table 7-21. METER MULTIPLIER 1A9A4 - 9926404003

| REF. SYMBOL | HARRIS PART NO. | DESCRIPTION | QTY | UM |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C001 | 5220256000 | CAP 20 UF 50V | 1.0 |  |
| R001,R002,R003 | 5481539000 | RES 5 MEGOHM 10W 1\% |  |  |
| R004 |  |  |  |  |
| R007 | 5400627000 | RES 4.7K OHM 2W 5\% | 1.0 |  |
|  | 8434209107 | PWB METER MULTIPLIER | 1 |  |

Table 7-22. PWB, OSCILLATOR 1A10A1\&2 - 9922165002

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION					QTY	UM
CR001,CR002	386	0092	000	ZENE	R, 1N47	441	15V			
CR003									3.0	
CR004, CR005	384	0205	000	DIOD	DE SILIC	CON 1	1N914		2.0	
C002	500	0889	000	CAP	75PF 50	O0V 5			1.0	
C003	502	0216	000	CAP	1600 PF	500V	1\%		1.0	
C004	516	0387	000	CAP	. 47 UF	10 V			1.0	
C005	502	0218	000	CAP	510PF 5	500 V	1PCT		1.0	
C006	516	0411	000	CAP	.1UF 50	V DI	ISC		1.0	
C007	516	0438	000	CAP	.033UF	25 V			1.0	
C008	516	0411	000	CAP	.1UF 50	V DI	ISC		1.0	
C009	516	0387	000	CAP	. 47 UF	10 V			1.0	
C010	516	0430	000	CAP	.02UF 50	500 V	20\%		1.0	
C011	526	0015	000	CAP	47UF 20	V 10	OPCT		1.0	
C013	516	0087	000	CAP	DISC . 0	05UF	600 V		1.0	
L001	494	0194	000	CHOK	E RF 12	20UH			1.0	
Q001, Q002, Q003	380	0083	000	XSTR	, 2N236				3.0	
R001	540	0087	000	RES	39.0K	OHM	1/2W	5\%	1.0	
R002	540	0340	000	RES	2.2K	OHM	1W	5\%	1.0	
R003	540	0049	000	RES	1.0K	OHM	1/2W	5\%	1.0	
R004	540	0079	000	RES	18.0K	OHM	1/2W	5\%	1.0	
R005	540	0015	000	RES	39.0	OHM	1/2W	5\%	1.0	
R006	540	0035	000	RES	270.0	OHM	1/2W	5\%	1.0	
R007,R008	540	0065	000	RES	4.7 K	OHM	1/2W	5\%	2.0	
R009	540	0620	000	RES	2.4 K	OHM	2W	5\%	1.0	
R010	540	0049	000	RES	1.0K	OHM	1/2W	5\%	1.0	
R011	540	0043	000	RES	560.0	OHM	1/2W	5\%	1.0	
R012	540	0628	000	RES	5.1K	OHM	2W	5\%	1.0	
R013	540	0031	000	RES	180.0	OHM	1/2W	5\%	1.0	
R014	540	0079	000	RES	18.0K	OHM	1/2W	5\%	1.0	
R015	540	0019	000	RES	56.0	OHM	1/2W	5\%	1.0	
XY001	404	0016	000	SOCK	EET, TUB	B 8	PIN	OCTAL	1.0	

Table 7-23. METER PANELIA11 - 9926321001

REF. SYMBOL	HARRIS PART NO			DESCRIPTION	QTY	UM
A001				SWITCH BOARD 1A1IA1		
DS001,DS002	396	0060	000	LAMP, .04A 28 V 327		
DS003,DS004						
DS005,DS006						
DS007					7.0	
S001	914	9494	002	SELECTOR SW. MOD	1.0	
\#A1s2, \#A1S7	598	0169	000	SWITCH CAP, Pb, RED	2	
\#A1S1,\#A1S3	598	0170	000	SWITCH CAP, PB, GR		
\#A1S6					3	
\#A1S4	598	0172	000	SWITCH CAP, PB, BLUE	1	
\#A1S5	598	0195	000	SWITCH CAP, PB, YELL	1	
	650	0028	000	KNOB RD SKIRT 1.135	1	



Table 7-25. ASSY, GRD SWLTCH - 9291979001

REF. SYMBOL	HARRIS PART NO.	DESCRIPTION	QTY	UM	
	929	1824	001	ASSY, GRD SWITCH	1
	604	0061	000	SW, SPDT	2

Table 7-26. AUX DRVR/METER MULT 1A14-992 6429002

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION				QTY	UM
CR001	000	0000	002	APPE	EARS ON HIGHir	IER LEV		1.0	
CR002	384	0612	000	DIODE	de 1N3070			1.0	
CR004, CR005	384	0317	000	RECT	, SILICON 1N	1 N 4725			
CR006								3.0	
C002, $\mathrm{C} 003, \mathrm{C004}$	516	0074	000	CAP,	, DISC .005UF	JF 1KV	20\%	3.0	
Q001	380	0205	000	XSTR	, STI804			1.0	
R001,R002	540	0678	000	RES	620.0 K OHM	2W	5\%	2.0	
R003	540	0635	000	RES	10.0 K OHM	2W	5\%	1.0	
R004	540	0685	000	RES	1.2 M OHM	2W	5\%	1.0	
R005	540	0635	000	RES	10.0 K OHM	2 W	5\%	1.0	
R006	540	0685	000	RES	1.2 M OHM	2W	5\%	1.0	
R007	540	0635	000	RES	10.0 K 0 OM	2W	5\%	1.0	
R008,R009	540	0568	000	RES	10.0 оНм	2W	5\%	2.0	
R010,R011, R012	540	0270	000	RES	2.7 OHM	1W	5\%	3.0	
R013	542	0191	000	RES	10.0 K OHM	25W		1.0	
R014	546	0231	000	RES	25 OHM 80W	10\%		1.0	
R015,R016	540	0639	000	RES	15.0K ОНM	2W	5\%	2.0	
R017	552	0825	000	POT	5 OHM 2W			1.0	
TB001	614	0714	000	TERM	M BOARD 20 T	TERM		1.0	
\#0001	404	0498	000	HEAT	S SINk FOR CA	CASE T0		1	
\#Q001	540	0270	000	RES	2.7 OHM	1W	5\%	3	
\#Q001	612	0891		JACK	K, PC MT			2	
	943	4209	103	PWB,	, AUX DRIVER	R METER	MUL	1	

Table 7-27. PA ARC DETECTOR - 9923012001

REF. SYMBOL	HARRIS PART NO.	DESCRIPTION	QTY	UM
CR001	3840232000	RECTIFIER 2N2324A	1.0	
CR002	3840205000	DIODE SILICON 1N914	1.0	
C001	5000838000	CAP, MICA 560PF 300V 5\%	1.0	
C002	5000783000	CAP $5100 \mathrm{PF} 500 \mathrm{~V} 5 \%$	1.0	
C 003	5160054000	CAP, DISC .001UF 1KV 10\%	1.0	
C004	5160081000	CAP, DISC .01UF 1KV 20\%	1.0	
L001	9147181001	INDUCTOR	1.0	
R001	5500067000	POT 10K OHM 2W 10\%	1.0	
R002	5400049000	RES 1.0K OHM 1/2W 5\%	1.0	
R003	5400081000	RES 22.0K OHM 1/2W 5\%	1.0	
	9152028001	ASSY, PRINTED BD	1.0	

Table 7-28. MTR LTG ISOBOX 1A16 - 9926435001

| REF. SYMBOL | HARRIS PART NO. | DESCRIPTION | QTY | UM |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C001,C002,C003 | 5160080000 | CAP DISC .01UF 600V |  |  |
| C004 |  |  |  | 4.0 |
| DS001, DS002 | 3960111000 | LAMP, 6W 130V 6S6DC130 | 2.0 |  |
| XDS001, XDS002 | 4060009000 | SOCKET PILOT LIGHT | 2.0 |  |
|  | 9434209036 | PWB ASSY METER LIGHTING | 1 |  |

Table 7-29. RESONATOR ASSY - 9430398003

REF. SYMBOL	HARRIS PART NO.	DESCRIPTION	QTY	
1 Cl	5140145000	CAP VAR $25-500 \mathrm{PF} \mathrm{15} \mathrm{KV}$	1.0	
$1 L 03$	916	6253001	COIL ASSY	1.0

Table 7-30. UNIT \#2, OUTPUT CUBICLE - 9926312002

REF. SYMBOL,	HARRIS PART NO.			DESCRIPTION	QTY	UM
2A01	992	4926	001	DIREC'IIONAL COUPLER 2A1	1.0	
2A03	929	1979	001	ASSY, GRD SWITCH	1.0	
2A03	992	6393	001	FEEDBACK BOARD 2A3	1.0	
2A04	992	6404	001	METER MULTIPLIER 2A4	1.0	
2A05	740	0115	000	SENSOR, DC CURRENT	1.0	
2 B 01	436	0129	000	MOTOR $1 / 4 \mathrm{HP} \mathrm{50/60Hz}$	1.0	
2 CO 1	516	0483	000	CAP 4,000PF 32KV, 120A	1.0	
2 CO 2	514	0284	000	CAP 30-650 PF 45 KV	1.0	
2 CO 3	514	0240	000	CAP 50-2300 PF 15KV	1.0	
2C03A	516	0816	000	CAP 4000pF 32KV	1.0	
2 C 04	514	0042	000	CAP VAR 12-500PF 15kV	1.0	
2 C 04 A	512	0056	000	CAP VAC 500uUF	1.0	
2C04B	000	0000	003	FREQUENCY DETERMINED PART	1.0	
2 C 05	512	0056	000	CAP VAC 500UUF	1.0	
2006	504	0364	000	CAP . 11 UF 3 KV	1.0	
2 C 07	504	0366	000	CAP . 1 UF 1 KV	1.0	
2C09,2C10	516	0439	000	CAP 2700 PF 40 KV	2.0	
2C.11	516	0483	000	CAP 4,000PF 32KV, 120A	1.0	
2C.12,2C13,2C14	510	0685	000	CAP 2.45UF 40 KV	3.0	
2C18,2C19	516	0207	000	CAP HV 25 UUF 15kV	2.0	
2C02A	512	0351	000	CAP, VAC 1000PF 50KV	1.0	
2C20,2C21	516	0207	000	CAP HV 25 UUF 15kV	2.0	
2C22	500	0783	000	CAP 5100 PF 500V 5\%	1.0	
2C23,2C24	516	0087	000	CAP DISC . 050 F 600V	2.0	
2 C 25	516	0206	000	CAP HV 1000 UUF 5000	1.0	
2 C 26	516	08.12	000	CAP, CER 3000PF 32KV 20\%	1.0	
2E01	560	0013	000	SPARK GAP 600V	1.0	
2.J01	620	0410	000	JACK, BULKHEAD UG-657/U	1.0	
2K01	992	3037	003	SWITCH, SHORTING	1.0	
2L01	927	9845	001	RF CHOKE	1.0	
2L02	938	3234	001	COIL, CHOKE ASSY.	1.0	
2L.03, 2L04, 2L05	000	0000	003	FREQUENCY DETERMINED PART	3.0	
2L06	938	3234	003	COIL, CHORE ASSY	1.0	
2L07	938	3234	001	COIL, CHOKE ASSY.	1.0	
2R07,2R08,2R09	540	0839	000	RES 220.0 OHM 100W 10\%		
2R10,2R11					5.0	
2R14	542	1006	000	RES 5.4 OHM 766W 10\%	1.0	
2R15	540	1314	000	RES 1.0K OHM 150W 10\%	1.0	
2R16	542	0325	000	RES 1.0K OHM 160W	1.0	
2S01,2S02	604	1026	000	SW, DPDT 15A 125/250vac	2.0	
2 SO 3	604	0525	000	SW, PRESS.	1.0	
2S04,2S05	604	1026	000	SW, DPDT 15A 125/250vaC	2.0	
2S06,2S07	604	0450	000	SW, PRECISION DPDT	2.0	
2TB01	614	0275	000	TERM BOARD 4 TERM	1.0	
2 TB 02	614	0546	000	TERM BLOCK BTH30	1.0	
2 тв03	614	0047	000	TERM BOARD 3 TERM	1.0	
2 2TB04	614	0053	000	TERM BOARD 9 TERM	1.0	
2 TB05	614	0056	000	TERM BOARD 12 TERM	1.0	
2TB06,2TB07	614	0048	000	TERM BOARD 4 TERM	2.0	

Table 7-30. UNIT \#2, OUTPUT CUBICLE - 9926312002

REF. SYMBOL	HARRIS PART NO.		DESCRIPTION	QTY
$2 T 01$	472	1140000	XFMR, ISO, E17976	1.0
$2 T 02$	474	0088	000	XFMR, AUTO, 815-3618-001

Table 7-31. DIRECTIONAL COUPLER 2AI - 9924926001

| REF. SYMBOL | HARRIS PART NO. | DESCRIPTION | QTY |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A001 | 9924927 | 001 | PWB, DIR CPLR 2A1A1 | 1.0 |
| C013 | 8146327 | 001 | PLATE, CAP. | 1.0 |
| T001 | 9146686001 | TRANSFORMER | 1.0 |  |
| T002 | 9166270 | 001 | XFMR COIL ASSY | 1.0 |

Table 7-32. PWB, DIR CPLR 2A1A1 - 9924927001

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION					QTY	UM
CR001	384	0134	000	DIOD	D, SIL	ICON	1N914		1.0	
CR002	386	0383	000	ZENE	ER, LVA	43A 4	. 3 V		1.0	
CR003, CR004	384	0134	000	DIOD	DE, SIL	ICON	1N914		2.0	
C001	500	0806	000	CAP	MICA 1	SUUF	500 V		1.0	
C002	500	0848	000	CAP	TRIMMER	R 918	80uUF		1.0	
C003	500	0826	000	CAP,	, MICA	120PF	500V	5\%	1.0	
C004	520	0119	000	CAP	VAR 6.	7-140			1.0	
C005	522	0244	000	CAP	50 UF	25 V			1.0	
C006	526	0337	000	CAP	2.7UF	50V 10\%			1.0	
C007	516	0082	000	CAP,	, DISC	. 01 UF	1KV		1.0	
C008	500	0829	000	CAP,	, MICA	180PF	500V		1.0	
C009, 0010	520	0119	000	CAP	VAR 6.7	7-140			2.0	
C011	500	0832	000	CAP,	, MICA	360PF	500V		1.0	
C012	516	0082	000	CAP,	, DISC	. 01 UF	1 KV		1.0	
C014	500	0837	000	CAP,	, MICA	510PF	500 V	5\%	1.0	
K001	574	0352	000	RELA	AY CORR	EED CC	C-12		1.0	
L001	494	0190	000	CHOK	KE, RF	3300	UH 80	MA	1.0	
Q001	384	0232	000	RECT	TIFIER	2N232			1.0	
Q002	380	0204	000	XSTR	, D44C				1.0	
R001,R002	540	0594	000	RES	200.0	OHM	2W	5\%	2.0	
R003	540	0097	000	RES	100.0K	ОНм	1/2W	5\%	1.0	
R004	540	0073	000	RES	10.0K	ОНм	1/2W	5\%	1.0	
R005	540	0053	000	RES	1.5 K	OHM	1/2W	5\%	1.0	
R007	540	0097	000	RES	100.0K	ОНм	1/2W	5\%	1.0	
R008	550	0410	000	POT	25k OH	M 1/4			1.0	
R009	540	0056	000	RES	2.0 K	OHM	1/2W	5\%	1.0	
R010	540	0049	000	RES	1.0 K	онм	1/2W	5\%	1.0	
R011	540	0025	000	RES	100.0	оНм	1/2W	5\%	1.0	
R012,R013	540	0095	000	RES	82.0 K	ОНм	1/2W	5\%	2.0	
R014,R015,R016	540	0587	000	RES	100.0	OHM	2W	5\%		
R017									4.0	
R018,R019	540	0095	000	RES	82.0K	OHM	1/2W	5\%	2.0	
R020,R021	550	0378	000	POT	100k 0	HM 1/4			2.0	
TJ001,TJ002	610	0679	000	PLUG	, SHOR	TING				
TJ003									3.0	
	939	2679	001	PRIN	NTED BOA	ARD			1.0	

Table 7-33. FEEDBACK BOARD 2A3-9926393001

REF. SYMBOL	HARRIS PART NO.	DESCRIPTION	QTY
CR001,CR002	3840612000	DIODE 1N3070	2.0
C001	5000910000	CAP, 6200PF 300V 5\%	1.0
C002	5160067000	CAP DISC .003UF 1KV 20\%	1.0
L001,L002	4940199000	CHOKE RF 2200UH 10\%	2.0
	6040061000	SW, SPDT	2
	9434209035	PWB, FEEDBACK	1

Table 7-34. METER MULTIPLIER 2A4 - 9926404001

| REE. SYMBOL | HARRIS PART NO. | DESCRIPTION | QTY | UM |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R001,R002,R003 | 5481539000 | RES 5 MEGOHM 10W 1\% |  |  |
| R004,R005,R006 |  | 8434209004 | PWB METER MULTIPLIER | 6.0 |

Table 7-35. SWITCH, SHORTING - 9923037003

REF. SYMBOL HARRIS PART NO. DESCRIPTION QTY UM 5900037000 SOLENOID 240V 60HZ 8276207001 CONTACT, INTL SW. 2.0


Table 7-37. SCREEN PWR SUPPLY IA4 - 9923468001

| REF. SYMBOL | HARRIS PART NO. | DESCRIPTION | QTY | UM |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CR001 | 3840229000 | RECT PIV 4KV 12A. | 1.0 |  |
| C001 | 5100718000 | CAP .1 UF 2500 VDC | 1.0 |  |
| C002,C003,C004 | 5240178000 | CAP 860 UF 450V | 3.0 |  |
|  | 8529112001 | SCHEM OVERALL MW50C | 1.0 |  |
|  | 8396587 | 164 | SCHEM, PDM MODULATOR | 1.0 |
|  | 8529113 | 001 | SCHEM, OVERALL MW50C3 | 1.0 |
| R001,R002 | 540 | 0584000 | RES 75.0 OHM 2W 5\% | 2.0 |
| R003,R004,R005 | 5420105000 | RES 25.0K OHM 12W | 3.0 |  |

Table 7-38. OSCILLATOR UNIT 1A10-9926324 001


WIRE LIST
8-1. INTRODUCTION
8-2. This section provides wire running lists for the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER and the various components making up this unit. Each individual wire is identified by number from origin and terminal to termination. The following wire running lists are contained in this section.
T.LTLE $\underline{\text { NUMBER }}$
MOD and PA Cabinet ..... 8171494050
PDM Cable ..... 8171494051
RF Oscillator (1A10) ..... 8155172001
RF Isolated Enclosure Cable (1A9) ..... 8155171001
RF Isolated Enclosure (1A9) ..... 8171494019
RF Driver Grid and Oscillator Cable (1A9) ..... 8171494020
500-Volt Bias Supply Cable (1A5) ..... 8155181001
Cabinet 2 Cable ..... 8171494014
Step-Start8171494022
Cabinet 2 Cubicle Coupler ..... 8171494015
External ..... 8166338001
Meter and Switch Cable ..... 8171494054
Cabinet 1 Interlock Mod and PA ..... 8171494018
Cabinet 2 Interlock Output ..... 8171494013
Cabinet 2 Cable (Output) ..... 8171494053


MOD and PA Cabinet 8171494050
(Sheet 1 of 13)

WARNING: Disconnect primary power prior to servicing.


MOD and PA Cabinet
8171494050
(Sheet 2 of 13)

$$
\begin{array}{r}
888-2213-001 \\
8-5 / 8-6
\end{array}
$$

WARNING: Disconnect primary power prior to servicing.

DATE 03-19-85		RUNNING SHEET	817-1494-050 CA	CABLE NOREV	
WIRE NO.	FROM		WIRE SIZE AND TYPE	TO	
	EQUPMENT	TERMINAL		EQUIPMENT	TERMINAL
53					
54					
55					
56					
57					
58	1AlK1	2	\#16 STRANDED	1 186	3
59	1A1R7	1	\#16 STRANDED	1TB6	3
60	1 AlK4	1	\#16 STRANDED	1786	4
61	1AIR8	1	\#16 STRANDED	1 1B6	4
62	1A1M1	1	\#16 STRANDED	2TB2	12
63	1TB5	1	\#16 STRANDED	2 TB2	13
64	1 TB5	2	\#16 STRANDED	1S2B	NO
65	1A1R9	1	\#16 STRANDED	1787	1
66	1A1R9	1	\#16 STRANDED	2 TB 2.	14
67	1TB5	3	$\stackrel{\# 16}{4}$ STRANDED	2TB2	15
68	1 1B5	4	\#16 STRANDED	157	NO
69	1ATR10	1	\#16 STRANDED	1S13	COM
70	1A1RIO	1	\#16 STRANDED	$1 \mathrm{TB1}$	1
71	1A1R11	1	\#16 STRANDED	1TB1	2
72	1A1R11	1	\#16 STRANDED	1ATK4	T4
73	1A1K4	T4	\#16 STRANDED	1K1	1
74	1 Kl	1	\#16 STRANDED	2TB2	16
75	1K1	2	\#16 STRANDED	2TB2	17
76	1K1	2	\#16 STRANDED	1A1K1	5
77	1A1R7	1	$\# 16$ STRANDED	155	1
78	156	1	\#16 STRANDED	1S5	2

MOD and PA Cabinet
(Sheet 3 of 13)

DATE 03-19-85		RUNNING SHEET 817-1494-050		CABLE NOREV		
WIRE NO.	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
79	156	2	\#16 STRANOED		7A1R6	1
80	156	2	\#16 STRANDED		158	NO
81	158	COM	\#16 STRANDED		2TB2	18
82	1 ATR5	1	\#16 STRANDED		2TB2	10
83	7A1R5	1	\#16 STRANDED		1A] CB2	9
84						
85	1 A1CB3	7	\#16 STRANDED		1A1CB4	3
86	1A1CB4	5	\#16 STRANDED		1 A1 CB5	5
87	$1 \mathrm{AlCB5}$	4	\#16 STRANDED		1A1CB6	7
88	1A1CB6	6	\#16 STRANDED		1A1R4	1
89	1A1TD1	2	\#16 STRAMDED		1 AlPCB	7
9 D						
91	1A]K1	10	\#16 STRANDED		1A1R4	1
92	1A1M1	1	\#16 STRANDED		1A1R8	1
93	1A1M7	2	\#16 STRANDED		1A1K3	11
94	JAlK4	1	\#16 STRANDED		1A1K2	1
95	1A1K4	1	\#16 STRANDED		1ATK3	2
96	1A1K2	1	\#16 STRANDED		1A1K3	10
97	1A1K3	2	\#16 STRANDED		1A1K5	5
98	1A1K3	10	\#16 STRANDED		JATK5	11
99	1A1K5	13	\#16 STRANDED		1A1S2	2
100	1ATK3	2	\#16 STRANDED		1A1TDI	2
101	1A7K5	11	\#76 STRANDED		1 TB4	15
102	1A1K2	2	\#T6 STRANDED		IAIK1	11
103	1A1K1	9	\#76 STRANDED		1A1K3	11
104	1A1K3	1	\#16 STRANDED		1A1K1	9

MOD and PA Cabinet
8171494050
(Sheet 4 of 13)

888-2213-001
8-9/8-10

WARNING: Disconnect primary power prior to servicing.

DATE 03-19-85		RUNNING SHEET 817-1494-050		CABLE NOREV		
WIRE NO.	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EOUIPMENT	TERMINAL
105	1AlK3	12	\#16 STRANDED		1A1K4	2
106	1AlK4	T4	\#16 STRANDED		1 TB4	2
107	1A1CR2	CATH	\#16 STRANDED		1TB4	3
108	1AIK7	B12	\#16 STRANDED		1ATK1	2
109	1A1K7	B12	$\stackrel{\# 1}{\#} 16$ STRANDED		1AIKT	12
110	1AlK1	12	\#16 STRANDED		1A1K6	BT2
111	1AIK6	Al1	\#16 STRANDED		1A1PCB	1
112	1 AlK6	B12	\#16 STRANDED		1AIKI	6
113	1A1K1	6	\#16 STRANDED		1A1K1	8
114						
115	1A1K5	14	\#20 STRANDED		1A1K11	3
116	1A1K4	2	$\stackrel{\# 16}{\# 1}$ STRANDED		1A1TD1	B1
117	1A1TDI	B2	\#16 STRANDED		1AlK3	1
118	1TB4	4	\#16 STRANDED		1TB1	11
119	1 TB4	4	\#16 STRANDED		1T5	1
120	1 TB4	5	$\stackrel{\# 16}{\# 1}$ STRANDED		1T5	4
121	1 TB4	5	${ }^{\prime \prime} 1 \mathrm{C}$ STRANDED		1A1K1	4
122	1A1K1	4	\#16 STRANDED		1AIK6	A9
123	1A1K6	A9	\#16 STRANDED		1A1K1	1
124	1A1K1	1	\#16 STRANDED		1A1S1	3
125	1A1K1	3	\#16 STRANDED		1ATK6	A4
126	1A1K1	3	\#16 STRANDED		1A1S1	4
127	1ATS1	5	\%16 STRANDED		1 TB4	6
128	JA1K6	B11	\#16 STRANDED		1AIPCB	2
129	1A1K6	B11	\#16 STRANDED		1 TB4	7
130	1A1K6	B1	\#16 STRANDED		1AJK5	3


DATE   WIRE   NO.	03-19-85	RUNNING SHEET	817-1494-050 CA		cable No.rev	
	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
137	1A1K6	B9	\#16 STRANDED		IA1K5	4
132	1ATK5	4	\#16 STRANDED		1A1S1	8
133	1A1K5	4	\#16 STRANDED		1AIK4	14
134	1A1K5	3	\#16 STRANDED		1A1K5	1
135	1AIK5	2	\#16 STRANDED		1 AlPCB	12
136	1A1K1	8	\#16 STRANDED		1 TB1	11
137	1AIKI1	4	\#20 STRANDED		1TB1	3
138	1A1S1	11	\# 6 STRANDED		TTB4	1
139	ITB4	19	\#16 STRANDED		1 AlPCB	6
140	1A1CB5	1	\#16 STRANDED		1A1S2	2
141	1A1S2	1	\#16 STRANDED		1A1S3	2
142	1A1S2	1	\#16 STRANDED		1 L 7	1
143	1ATS2	5	\#16 STRANDED		1A1K5	12
144	1A1S2	6	\#16 STRANDED		1A1K5	6
145	1ATS2	6	\#16 STRANDED		1A1S3	6
146	1A1S2	4	\#16 STRANDED		1A153	5
147	1ATS3	4	\#16 STRANDED		1A1CR2	CATH
148	1A1K6	AII	\#16 STRANDED		1A1CR3	ANODE
149	1T2	1	\#16 STRANDED		117	2
150	1A1K7	B11	\#16 STRANDED		1 TB4	8
151	1A1K7	Al2	\#16 STRANDED		1TB4	9
152	1A1K7	A1	\#16 STRANDED		1TB4	10
153	1A1K7	A4	\#16 STRANDED		T TB4	11
154	1 AlPCB	5	\#16 STRANDED		1TB4-	34
155	1AIPCB	5	\#16 STRANDED		1A2TB1	3
156	IA3A1J1	17	\#20 STRANDED		1A2TB1	4

MOD and PA Cabinet
8171494050
(Sheet 6 of 13)
888-2213-001
8-13/8-14

WARNING: Disconnect primary power prior to servicing.


MOD and PA Cabinet
8171494050
(Sheet 7 of 13)
888-2213-001
8-15/8-16

WARNING: Disconnect primary power prior to servicing.

DATE   WIRE NO.	03-19-85	AUNNING SHEET	817-1494-050	CABLE NO. REV		
	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
183	1M2	-	\#16 STRANDED		IS]	A12
184	1M2	+	\#16 STRANDED		151	B12.
185	1A8TB1	3	\#20 STRANDED		1S1	B1
186	[A8TB]	4	\#16 STRANDED		1\$1	A1
187	1 A PTB1	5	\#16 STRANDED		1\$1	B2
188	$1 \mathrm{Al4TB1}$	12	\#16 STRANDED		1\$1	83
189	1 Al 4 TBT	3	\#16 STRANDED		151	A4
190	$1 \mathrm{Al4TB1}$	13	\#16 STRAMDED		151	B5
197	1R37	1	\#16 STRANDED		1S1	A6
192	$1 \mathrm{Al4TB1}$	10	$\stackrel{\text { ¹ }}{\pi} 16$ STRANDED		1\$1	B7
193	1A14TB1	5	\#16 STRANDED		151	A7
194	1A2TBT	6	\#16 STRANDED		1 TB4	15
195	1A2TBl	5	\#16 STRANDED		1TBT	9
196	1A2TB1	7	$\stackrel{\#}{\pi} 16$ STRANDED		1 TB1	10
197	1A2TB1	12	\#16 STRANDED	$\cdot$	TR10	2
198	1A2TB1	14	\#16 STRANDED		1 RT 6	1
199	1R10	1	\#16 STRANDED		1R9	1
200	1C21	1	\#16 STRANDED		1R9	2
201	$1 \mathrm{C21}$	1	\#16 STRANDED		1ATPCB	11
202	1R10	2	\#16 STRANDED		1A1PCB	10
203	1R12	1	\#16 STRANDED		IK2	1
204	1R12	2	\#76 STRANDED		1 R14	I
205	1R7	3	\#16 STRANDED		1R14	1
$2 \mathrm{D6}$	1A9A4	E4	\#16 STRAIIDED		1R7	1
207	1A5TB1	1	\#16 STRANDED		1 TB4	20
208	$1 \mathrm{A5TB1}$	2	\#1 6 STRANDED		1 TB4	21

MOD and PA Cabinet 8171494050
(Sheet 8 of 13)

DATE	03-19-84	RUNNING SHEET	817-1494-050	CABLE NO. REV		
WIRE NO.	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
209	1A5TB1	3	\#16 STRANDED		1 Al 4 TB1	7
210	1 A5TB1	4	\#16 STRANDED		1R12	2
211	1 A 5 TB 1	4	\#16 STRANDED		1 A4 GRD	STUD
212						
213	1A4C4	-	\#16 STRANDED		1R12	1
214	1 AlPCB	13	\#16 STRANDED		1 TB1	7
215	1A1R12	1	\#f16 STRANDED		1 TB1	8
216	1A1K11	1	\#20 STRANDED		1A3A1J1	4
217	1A1K11	2	\#20 STRANDED		1A2TB1	3
218	1 TB4	15	\#16 STRANDED		1 TB1	15
219	1 AlS1	2	\#16 STRANDED		1 17 1	16
220	1TB4	8	\#16 STRANDED		$1 \mathrm{TB1}$	18
221	1 TB4	9	\#16 STRANDED	-	1 TB1	17
222	1A1S1	9	\#16 STRANDED		1 TBI	19
223	1 TB4	18	\#16 STRANDED		1 TB1	20
224	1TB4	25	\#16 STRANDED		1 TB1	21
225	1 TB4	19	\#16 STRANDED		1 TB1	22
226						
227						
228						
229						
23D						
231	1023	-	\#1 6 STRANDED		GRD, STUD	
232	1A14CR1	1	\#16 STRANDED		1 Al 4 TB1	9
233	1 R48	1	\$16 STRANDED		1A74TB1	9
234R	1A2TB1	1	\#8451 BELDEN		1TB2	1

MOD and PA Cabinet
8171494050
(Sheet 9 of 13)
888-2213-001

WARNING: Disconnect primary power prior to servicing.


MOD and PA Cabinet 8171494050
(Sheet 10 of 13)

WARNING: Disconnect primary power prior to servicing.

DATE	03-19-85 RUNNING SHEET		817-1494-050	CABLE NO. REV A		
WIRE NO.	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
247	1 L 6	2	\#18 RED TURBO		1A4C2	+
248	1L6	2	\#18 RED TURB0		1R15	2
249	1R19	2	\#18 RED TUR80		1 R23	1
250	1 R34	1	\#18 RED TURB0		1L2	1
251	1 R35	1	\#18 RED TURBO		$7 \mathrm{R62}$	2
252	1A4CR1	AC1	\#18 RED TURBO		172	4
253	1A4CR1	AC2	\#18 RED TURBO		172	6
254	1L2	1	\#18 RED TURBO		1R2.9	2
255	1 R62	2	\#18 RED TUPBO		$1 \mathrm{P}, 17$	1
256	1 R48	2	\#18 RED TUPBO		1R15	2
257	1 TB7	2	\#16 STRANDED		1517B	COM
258	1A151	12	$\# 16$ STRANDED		1 TB1	14
259	1 Cl 2	2	\#10 STRANDED		GRD.	STUD
2604	2 TB2	29	\#8411 BELDEN		1 TB1	26
$260 \$$	$2 \mathrm{TB2}$	30	\#8471 BELDEN		1 TB 1	27
2614	1L8	2	RG58/U COAX		1849	3
261\$	118	1	RG58/U CDAX		1 1.49	GRD. LLIG
262W	1 AIPCB	3	\#8417 BELDEN		1 TB1	12
262\$	$1 \mathrm{AlTP1}$	1	\#8411 BELDEN		1 TB 1	13
263 4	1 C 25	+	\#8411 BELDEN		1 TB4	32
' $263 \$$	1C25	-	"8411 BELDEN		1 TB4	33
2644	1 R54	1	$\# 8411$ BELDEN		1A3A] J?	21
264\$	1R54	2	\#8411 BELDEN		1A3A1J2	22
265束	1A3A1J2	12	\$8451 BELDEN		1 TB4	34.
2651	1A3A1J2	16	\#8451 BELCEN		1 TB4	35
265\$	1A3A1J2	15	\#8451 BELDEN		1TB4	36


DATE	03-19-8.5RUNNING SHEET		817-1494-050	Cable no. Rev ${ }_{\mathrm{c}} \mathrm{M}$	
WIRE NO.	FROM		WIRE SIZE AND TYPE	TO	
	EQUIPMENT	TERMINAL		EQUIPMENT	TERMINAL
273	1A2Tb1	13	\#16 STRANDED	ITB4	4
274	IATK4	4	\#16 STRANDED	1ATK1	12
275	TAIK4	3	\#16 STRAMDED	IAIKI	11
276	1AITDI	B1	\#16 STRANDED	1A1TDI	1
278	1тв3	1	\#T4 STRANDED	1 B 1	1+7
279	1TB3	2	\#14 STRANDED	181	2+8
280	1TB3	3	414 STRANDED	1BT	$3+9$
2874	2 TB2	23	\#8411 BELDEN	1 TB4	26
2815	2TB2	22	\#8411 BELDEN		
282	2TB2	26	\#12 STRANDED	1TB4	27
283	2TB2	25	\#12 STRANDED	1 TB4	28
284	2 TB2	24	\#12 STRANDE0	TTB4	29
285	1513	NO	\#16 STRANDED	1512	COM
286	1S12	HO	\#16 STRANDED	157	COM
287	1S11B	NO	\#16 STRANDED	1S10	COM
288	1S10B	NO	\#16 STRANDED	1S2A	COM
290	1510	COM	\#16 STRAHDED	1ST1A	COM
291	1S1D	HO	\#16 STRANDED	1511A	NO
292	1517A	COM	\#16 STRANDED	1T85	7
293	1511A	NO	\#16 STRANDED	1TB5	9
294	1S2B	COM	\#16 STRANDED	1TB5	7
295	152.8	NC	\#16 STRANDED	1TB5	8
296	ITB4	27	\#12 STRAMDED	ITB5	5
297	1TB4	28	\#12 STRANDED	1TB5	6
298	ITB4	29	\#12 STRAMDED	1TB5	7
299	1 185	8	\#12 STRAAIDED	1 189	1

MOD and PA Cabinet
8171494 050-C (Sheet 12 of 13)


MOD and PA Cabinet 8171494 050-B (Sheet 13 of 13)

DATE	3-25-85 RUNNING SHEET		817-1494-051	CABLENO	A	
WIRE NO.	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
1R	1A2A4P1	17	8451 BELDEN		S1	2
1 B	1A2A4P1	13	8451 BELDEN		S1	5
15	1 A2A4P1	14	8451 BELDEN		CUT	OFF
3	TA2A4P1	9	\#20 STRANDED		1A2A2	I
4	1 A2A4P1	5	\#20 STRANDED		1A.2A2	J
5	1 A2 A4PT	1	\#20 STRANDED		B1	1
6	1A2A4P1	3	\#20 STRANDED		B7	2
7	1A2A4P1	4	\#20 STRANDED		BT	3
8	1A2A4P1	8	\#20 STRANDED		1A2A2	K
9 W	1A2A4P1	12	RGT 96/U COAX		1A2A2	H
9 S	1A2A4P1	11	RGT 96/U COAX		CUT	OFF
10	1A2A4P1	21	\#20 STRAMDED		1A2AT	C
11W	1A2A4P1	16	RGI96/U COAX	-	1A2A2	M
115	1A2A4P1	15	RG196/U COAX		CUT	OFF
12	1A2A4P1	20	\#20 STRANDED		1 A2A2	L
13	1A2A]	C	\#20 STRANDED		1A2A2	C
14W	1A2A4P1	22	\#8417 BELDEN		1A1A.	-H
14S	1A2A4P1	23	\#B411 BELDEN			
15	1A2A4P1	24	\#20 STRANDEO		TA2A1	D
16	R41	1	\#20 STRANDED		TA2A2	E
17	R41	2	\#20 STRANDED		1A2A2	D
18	R41	3	\#20 STRAINDED		1A2.A. 2	F
19W	$J 1$	COND	RG196/U COAX		1A2A]	F
19S	J	SHLD	RG196/U COAX		TA2A1	G
20	1A2A1	A	\#20 STRANDED		1A2A2	A
21	[A2A]	B	\#20 STRANDED		1A2A2	B


DATE	3-25-8\$ RUNNING SHEET		817-1494-051	cable no. A		
WIRE NO.	FROM		WIRE SIZE AND TYPE		TO	
	EQUIPMENT	TERMINAL			EQUIPMENT	TERMINAL
36	1A2A4P1	2	8451 BELDEN		1A2A3-	1
37R	ST	1	8451 BELDEN		TB1	2
37B	S1	4	8451 BELDEN		TB1	1
37S	CUT	OFF	8451 BELDEM		TB1	3
38R	S1	7	8451 BELDEN		TB2A3-	5
38B	S1	10	8451 BELDEN		TB1	4
38S	CUT	OFF	8451 BELDEN		TB]	3
39 R	S1	11	8451 BELDEN		1A2A2	G
39B	S1	8	8451 BELDEN		1A2A2	H
395	S1	GND STUD	8451 BELDEN		C.UT	OFF
40	1A2A4P1	6	\#20 STRANDED		1A2A3	2
41	1A2A3	2	\#20 STRANDED		1A2A2	P
42	1 1223	3	\#20 STRANDED		1A2A2	R
			(JUMPERS)			
	CR2	CATH	\#20 BUSS SPAGHETTI		R1	1
	CR1	CATH	\#20 BUSS SPAGHETTI		R1	2
	S1	9	\#20 BUSS SPAGHETTI		S1	6
	S1	12	\#20 BUSS SPAGHETTI		S1	3
	1A2A4	E2	\#20 STRANDED		R1	1
	1A2A4	E1	\#20 STRANDED		R1	2

PDM Cable

WARNING: Disconnect primary power prior to servicing.


DATE 6-6-72		RUNNING SHEET 875-5171-001			CABLENO.		1
WIRE NO.	FROM		WIRE SIZE AND TYPE			TO	
	EQUIPMENT	TERMINAL				EQUIPMENT	TERMINAL
	2 T	5	3/8" TUBING AND SFAGETTI			TB1	1
	271	6	3/8" TUEING AND SPAGETTI			TB1	2
	V2	PLT CONN	5/16" TUBIMG			C35	1
	C37	feed Thru	5/16" TUBING			C5	2
	C5	2	1/2" STP.AP			L2	1
	C. 5	?	1/2"	STRAP		L1	1
	XV2	FIL 1	1/2"	STRAP		C10	2
	XV?	FIL 2	$1 / 2^{\prime \prime}$	STP.AP		0.11	2
	XV2	SCY 1	1/2"	STRAP		C 12	2
	YV?	SCY ?	1/2"	STRAP		C. 29	2
,	TB1	1	1/2"	STRAP		C.33	2
,	TB1	2	1/2"	STPAP		C34	2
	P7	2	1/2"	STRAP	-	R7	GND STUD
	L3	1	\#16	STRANDED		C6	2
	L3	2	\#16	STRANDE.D		L1	1
	L4	2	\#16	STRANDED		C7	1
	R.44	1	\#16	STPANDED		C38	2
	P. 44	$?$	\#16	STPANDED		E1	1
	A2R6	1	\#16	STRAMDED		C8	2
	C21	+	$\frac{\square}{\pi} 16$	STPANDED		C22	-
	C17	-	\#16	STPANDED		C18	+
	C18	-	\#16	StPanded		C. 19	+
	C31	1	\#16	STRANDED		C32	2
	C32	2	$\frac{\# 20}{\# 20}$	BUSS		GNO	LUG
	L6	2	\#18	STRANDED TURBO		E1	1

RF Isolated Enclosure Cable (1A9) 8155171 001-A1 (Sheet 1 of 2)


WARNING: Disconnect primary power prior to servicing.


RF Isolated Enclosure (1A9)


DATE   WIRE   NO.	9-26-83	RUNNING SHEET	817-1494-019	CABLE No.	
	FROM		WIRE SIZE AND TYPE	TO	
	EQUIPMENT	TERMINAL		EQUIPMENT	TERMINAL
b3	A2	E9	\#16 STKANLED	STA	7
54	A2	E 10	\#16 STKANUE U	SIB	7
55	K21	1	\#16 STRANLE	SIA	8
56	K21	2	\#10 STKANUE U	SIB	8
b7	SIA	12	\#16 STKANLED	M1	-
58	S18	12	\#16 STKANDE 4	M1	+
59	CR5	AC1	\#18 KED TUKb0	T4	4
60	CK5	AC2	\#18 kEv TURBO	T4	5
67	CR5	+	\#18 KED TUR80	L8	1
62	K22	2	\#18 KE U TURBO	C17	+
63	K22	2	\#18 KEL TUKBO	L8	2
64	L8	2	\#18 kED TUKBO	L6	1
bb					
66					
67	E2	1	\#18 KEV TUKBU	A2	E6
68 .	A2	E6	\#18 KEU TUKİO	L3	1
70	C21	-	\#18 KEU TUKBU	A2	E13
72	A2	E8	\#18 kEU TURBU	L4	1



RF Isolated Enclosure (1A9)
8171494019
(Sheet 4 of 5)

WARNING: Disconnect primary power prior to servicing.


RF Isolated Enclosure (1A9)
(Sheet 5 of 5)

WARNING: Disconnect primary power prior to servicing.

DATE	9-26-83	RUNNING SHEET	$8171494 \quad 020$	CAble No.	
WIRE NO.	FROM		WIRE SIZE AND TYPE	TO	
	EQUIPMENT	TERMINAL		EQUIPMENT	TERMINAL
1	TB2	1	\#16 STRANLED	J1	1
2	TB2	2	\#16 Strandeo	$3)$	4
3	TB2	3	\#16 STRANLE ${ }^{\text {d }}$	T2	3
4	TB2	4	\#16 STRANDED	Al	E4
5	TВ2	5	\#16 STRANCED	I2	5
6	Tb2	6	\#16 STRANOE 0	AI	E5
7	Tb2	7	\#16 STRANLELJ	A1	E6
8	Tb2	8	\#16 STRANUE ${ }^{\text {d }}$	A]	E8
9	TB2	9	\#16 STRANLE ${ }^{\text {d }}$	Al	E3
10	TB2	10	\#16 STRANDED	C3	1
11	TB2	11	\#16 STKANLE ${ }^{\text {a }}$	31	6
12.	TB2	12	\#16 STRANDE 0	31	5
13	TB2	2	\#16 STRANDED	T2	1
14	TB2	5	\#16 STRANDED	A1	E7
			(NOT IN CABLE)		
15W	31	8	\#18 253-0021-000	A1	E2
15S	J1	Gnclug	"	A1	E1
16	T2	4	\#10 STKANDED	XVT	Fil 1
17	T2	6	\#10 STRANLED	XVI	Fil 2
	XVI	Fil 1	1/2" STRAP	C1	2
	XV1	Fil 2	"	C2	2
	נ	2	\#20 BUSS	31	3
	31	7	$\cdots 20$ bUSS	31	GndLug
	A 1	E 10	\#20 buss \& Surstec,i	1A9C3	2
	A]	E3	\#20 Buss \& -jagetij	XV1	GRD


DATE	9-26-83RUNNING SHEET		8171494020 CABL	ABLE NO.	
WIRE NO.	FROM		WIRE SIZE AND TYPE	TO	
	EQUIPMENT	TERMINAL		EQUIPMENT	TERMINAL
1	TB2	1	\#16 STKANUES	11	1
2	TB2	2	\#16 STRANDED	$1]$	4
3	TB2	3	\#16 STRANDE. ${ }^{\text {d }}$	I?	3
4	TB2	4	\# 36 STRANDE	Al	Ea
5	TB2	5	\#16 STRANDED	I2	5
6	TB2	6	\#16 STKANUED	Al	F5
7	TB2	7	\#16 STHANLEU	Al	E6
8	Tв2	8	\#16 STKAMDE ${ }^{\text {d }}$	Al	ER
9	Tb2	9	\#16 STKANDEL	Al	Fg
70	Tb2	10	\#16 STKANUED	C3	1
11	Tb2	11	\#16 STRANUEL	ل1	6
12	TB2	12	\#16 STRANDED	11	5
13	Tв2	2	\#16 STKANUED	i2	1
14	TB2	5	\#16 STRANDED	AI	E7
			(NOT IN CAbLE)		
15W	31	8	\#18 253-0021-000	AI	E2
15S	31	Gnalug	"	A1	E)
16	T2	4	\#10 STRANDE	XV1	Fil 1
17	T2	6	\#10 STRANDED	XVI	Fil 2
	XV1	Fil 1	1/2" STRAP	C]	2
	XV1	Fil 2	${ }^{1}$	C 2	2
	31	2	\#20 BUSS	$J 1$	3
	J	7	\#20 buss	31	Ginaluq
	A)	E10	\#20 Buss \& Spaghetti	1A9C3	2
	A)	E3	\#2U buss \& Spaghetti	XV1	GRD

RF Driver Grid and Oscillator Cable (1A9)
8171494020
(Sheet 2 of 2 )

WARNING: Disconnect primary power prior to servicing.


500-Volt Bias Supply Cable (IA5)

DATE 8-26-3 R		RUNNING SHEET	817 1494-014		CAB	REV AM	
WIRE NO.	FROM		WIRE SIZE AND TYPE			TO	
	EQUIPMENT	TERMINAL				EQUIPMENT	TERMINAL
1	2TB7	1	$\frac{\#}{\pi} 6$	STRANDE		212	2
2	2 TbT	2	\#6	STKANDED		$2 T 2$	9
3	2TB7	3	\# 6	STRANDED		$2 T 2$	16
4	2TB1	4	\#6	STRANDED		GND	STU0
5	212	22	\#6	STRANDE D		2 TB2	1
6	$2 T 2$	23	\#6	STKANDE D		2TB2	2
7	$2 T 2$	24	\#6	STRANDE 0		2TB2	3
8	2 E 2	1	\#10	STRANDED		2TB2	4
9	2 T 1	1	\#10	STRANDED		2 TB2	5
10	2 T 1	3	\#10	STRANDED		$2 T B 2$	6
11	2 T 2	25	\#14	STRANJED		2 TB2	7
12	$2 T 2$	26	\#14	STRANDE D		2TB2	8
13	2Tb3	1	\#16	STKANDED		$2 T 82$	9
14	2TB3	2	\#16	STRANDED		2782	10
15	$27 B 3$	3	\#16	STRANDED		2TB2	11
16	$2 T 84$	1	\#16	STKANDED		254	COM
17	2 TB4	2	\#16	STRANDE U		$2 T B 2$	13
18	$2 T$ B4	3	\#76	STRANOE D		2TB2	14
19	2TB4	4	\#16	STRANDED		2S6	NO
20	2 Kl	1	\#16	STKANDE O		$2 T B 2$	16
21	2 K 1	2	\#16	STRANDE D		2TB2	17
22	253	N.O.	\#16	STRANDE D		RTB2	18
23	253	COM	\#16	STRANCED		:TB2	19
23	2Tb2-23		\#16	STRANOED		2A4	E3

Cabinet 2 Cable 8171494 014-A (Sheet 1 of 3)

888-2213-001
8-55/8-56

WARNING: Disconnect primary power prior to servicing.


Cabinet 2 Cable

WARNING: Disconnect primary power prior to servicing.


Cabinet 2 Cable



WARNING: Disconnect primary power prior to servicing.


Cabinet 2 Cubicle Coupler 8171494 015-A

WARNING: Disconnect primary power prior to servicing.


External
8166338 001-C1
(Sheet 1 of 2 )
888-2213-001
8-67/8-68

WARNING: Disconnect primary power prior to servicing.


External
8166338 001-C1
(Sheet 2 of 2)
888-2213-001 8-69/8-70

WARNING: Disconnect primary power prior to servicing.


Meter and Switch Cable 8171494 054-A (Sheet 1 of 3 )


Meter and Switch Cable 8171494 054-A (Sheet 2 of 3 )

$$
\begin{array}{r}
888-2213-001 \\
8-73 / 8-74
\end{array}
$$

WARNING: Disconnect primary power prior to servicing.


Meter and Switch Cable
8171494 054-A
(Sheet 3 of 3 )
888-2213-001
8-75/8-76

WARNING: Disconnect primary power prior to servicing.


Cabinet 1 Interlock Mod and PA


Cabinet 2 Interlock Output 8171494 013-A

DATE 3-21-85		RUNNING SHEET	817-1494-053		CABLE NO. REV		
WIRE NO.	FROM		WIRE SIZE AND TYPE			TO	
	EQUIPMENT	TERMINAL				EQUIPMENT	TERMINAL
1	2 TB1	1	\#6	STRANDED		2 T2	2
2	2 TB1	2	\# 6	STRANOED		2 T 2	9
3	2 T 81	3	\#6	STRANDED		2 T 2	16
4	2TB1	4	\#6	STRANDED		GND	STUD
5	2 T 2	22	\#6	STRANDED		$2 \mathrm{TB2}$	1
6	2T2	23	\#6	STRANDED		2TB2	2
7	2T2	24	\#6	STRANDED		2 TB 2	3
8	2E2	1	\#10	STRANDED		2TB2	4
9	2 T	1	\#10	STRANDED		2TB2	5
10	2 I	3	\#10	STRANDED		2TB2	6
11	2 T 2	25	\#14	STRANDED		2TB2	7
12	2 T 2	26	\#14	STRANDED		2TB2	8
13	2TB3	1	\#16	STRANDED		2TB2	9
14	2 T83	2	\#16	STRANDED		2ТВ2	10
15	2TB3	3	\#76	STPANDED		2TB2	11
16	2TB4	1	\#16	STRANDED		254	COM
17	2TB4	2	\#16	STRANDED		2TB2	13
18	$2 T 84$	3	\#16	STRANDED		2 TB2	14
19	2TB4	4	\#16	STRANDED		2S6	NO
20	2K1	1	416	STRANDED		2TB2	16
21	2K1	2	\#16	STRANDED		2TB2	17
22	253	N. 0.	\#16	STRANDED		2TB2	18
23	253	COM	\#16	STRANDED		2TB2	19
25W	2TB2	23	\#8411	BELDEN		2A4	E3
255	2 TB2	22	\#8411	BELDEN			
26	2 TB2	22	\#16	STRANDED		GND	STUD

Cabinet 2 Cable (Output)

WARNING: Disconnect primary power prior to servicing.


Cabinet 2 Cable (Output)
8171494053
(Sheet 2 of 3 )
888-2213-001
8-83/8-84

WARNING: Disconnect primary power prior to servicing.


Cabinet 2 Cable (Output)

## SECTION IX

DIAGRAMS
9-1. INTRODUCTION
9-2. This section provides schematic, interconnection, and wiring diagrams necessary for maintaining the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER. The following diagrams are contained in this section.

Figure	Tit1e	Drawing No.			Page
9-1	Overall Schematic - MiW-50c3	852	9113	001	9-3/9-4
9-2	PDM Modulator	839	6587	164	9-5/9-6
9-3	Output Network	839	6587	163	9-7/9-8
9-4	RF Amplifier Isolated Enclosure	839	6587	161	9-9/9-10
9-5	RF Oscillator 1A10	839	6587	040	9-11/9-12
9-6	PDM Chassis/Andio Board (Sheet 1 of 2 )	839	6587	152	9-13/9-14
9-6	PDM Chassis/Audio Board (Sheet 2 of 2 )	839	6587	152	9-15/9-16
9-7	Fault and Overload Circuit	839	6587	154	9-17/9-18
9-8	Remote Plate Current Sensor	829	2756	001	9-19/9-20
9-9	PA Arc Detector	815	5021	001	9-21/9-22
9-10	Directional Coupler	829	1718	001	9-23/9-24
9-11	Modulation Enhancer	839	1066	001	9-25/9-26
9-12	Utility Outlets and Lights	839	7293	001	9-27/9-28
9-13	Frequency Determining Components	843	4209	111	9-29/9-30






4 = driver cathode amps
$5=0-1.2,2$ er mathe amps



15 FREQuENCY DETERMINED COMPONENT
4. $\operatorname{\text {HNOCTTANCE}}$ IS IN UH

FIGURE 9-4. RF AMPLIFIER ISOLATED ENCLOSURE

8396587 161-B


## EC FREQUUENCY DETERMINED COMPONENT

## 5. $A 101, A 102, A 103$,


$\begin{aligned} & \text { AICR } 4 \text { AlCRS } \\ & \text { A2CR4 } 4 \text { ARCR }\end{aligned}=1$ N914

3. inductance is in uh

FIGURE 9-5. RF OSCILLATOR 1A10
2. capacitance is in ur







FIGURE 9-9. PA ARC DETECTOR 8155021 001-B


5 mominal values: may be changed in final test

[^0]



	cabinet ।																		
FREQ kHz	IC2	icz strap																	
700 750 880 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600																	I		

APPENDIX A

# MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER <br> HV POWER SUPPLIES 

## APPENDIX A <br> HV POWER SUPPLIES

## A-1. INTRODUCTION

A-2. This appendix contains electrical specifications, parts lists, and simplified schematic diagrams for the following optional HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER power supplies.

50KW SUPPLIES: $\quad \frac{\text { PART NO. }}{736-0032-000} \frac{\text { PAGE }}{\text { A3 }}$
736-0033-000 A4
736-0084-000 A5
736-0085-000 А6
736-0119-000 A7
100 KW SUPPLIES: 736-0038-000 A8

Harris Part No.: 7360032000
Harris Specification No.: 8155031001
Manufacturer: Aydin Energy Systems, No. 2 T 68 , Oil filled transformer, dry rectifiers.
Primary: 440/460/480 V, $3 \emptyset, 60 \mathrm{~Hz}$, Delta.
Maximum Primary Overvoltage: 5\%
Secondary: 24.5 kV at 4 Amperes continuous, $12-\mathrm{phase}$ (98 kW Maximum)

REF. SYMBOL	HARRIS PART NO.		
CR1 thru CR3	384	0386	000
T 1			
Cl thru C3	510	0638	000
C4, C5	510	0568	000
R1, R2	542	0354	000


DESCRIPTION	QTY.
$\begin{aligned} & \text { Rectifier Stack, } \\ & \text { IR 1HQ10K16A } \end{aligned}$	3
High Voltage Transformer,   Energy Systems 1B86	1
Power Factor Correction Capacitor, 30 uF, 500 Vac	3
Surge Suppression Capacitor $0.02 \mathrm{uF}, \pm 20 \%, 30 \mathrm{kV}$	2
Surge Suppression Resistor, 50 ohms, $\pm 5 \%, 225$ W, Wirewound.	2
Insulating Oil: Shell Diala-AX High Grade mineral oil	$\begin{gathered} 91 \mathrm{Gal} . \\ (344.47 \\ \text { Liters) } \end{gathered}$

Rectifier Stack, ..... 3 Energy Systems 1B86
Power Factor Correction ..... 3
Surge Suppression Capacitor250 ohms, $\pm 5 \%, 225$ W, Wire-wound.

Insulating Oil: Shell Diala-AX High Grade mineral oil


WARNING: Disconnect primary power prior to servicing.

Harris Part No.: 7360033000
Harris Specification No. : 8155032001
Manufacturer: Aydin Energy Systems, No. 4T43, Dry transformer, dry rectifiers.

Primary: $\quad 460 \mathrm{~V}, \pm 20 \mathrm{~V}, 3 \emptyset, 60 \mathrm{~Hz}$, Delta
Maximum Primary Overvoltage: $5 \%$
Secondary: 24.5 kV at 4 Amperes continuous, $12-\mathrm{phase}$ ( 98 kW Maximum)

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION	QTY.
CR1 thru CR3	384	0386	000	Rectifier Stack, IR 1HQ10K16A	3
T 1				High Voltage Transformer Energy Systems 4B164	1
C1 thru C3	510	0638	000	Power Factor Correction Capacitor, $30 \mathrm{uF}, 500 \mathrm{Vac}$	3
C4, C 5	510	0568	000	Surge Suppression Capacitor, $0.02 \mathrm{uF}, \pm 20 \%$. 30 kV	2
R1, R2	542	0354	000	Surge Suppression Resistor, 50 ohms, $\pm 5 \%, 225 \mathrm{~W}$, NonInductive, Wirewound	



Harris Part No.: 7360084000
Harris Specification No.: 8165093001
Manufacturer: Aydin Energy Systems, No. 2 T74, Oil filled transformer, dry rectifiers.
Primary: $365 / 380 / 395 / 410 \mathrm{~V}, 3 \emptyset, 50 / 60 \mathrm{~Hz}$, Delta
Maximum Primary Overvoltage: $5 \%$
Secondary: 24.5 kV at 4 Amperes continuous, $12-\mathrm{phase}$ (98 kW Maximum)

REF. SYMBOL	HARRIS PART NO.	DESCRIPTION	QTY.
CR1 thru CR3	3840386000	Rectifier Stack, IR 1 HQ 10 K 16 A	3
T 1		High Voltage Transformer, Energy Systems 1B98	1
Cl thru C3	5100683000	Power Factor Correction Capacitor, $30 \mathrm{uF}, 500 \mathrm{Vac}$	3
C4, C 5	5100568000	Surge Suppression Capacitor, $0.02 \mathrm{uF}, \pm 20 \%, 30 \mathrm{kV}$	2
R1, R2	5420354000	Surge Suppression Resistor, 50 ohms, $\pm 5 \%, 225 \mathrm{~W}$, Non-Inductive, Wirewound	2
		Insulating Oil: Shel1 Diala-AX High Grade Minera Oil	91.7 Ga1. (347.12 Liters)



Harris Parrt No.: 7360085000
Harris Specification No.: 8165094001
Manufacturer: Aydin Energy Systems, No. 4T50, Dry transformer, dry rectifiers.

Primary: 365/380/395/410 V, 3ø, 50 Hz , Delta
Maximum Primary Overvoltage: 5\%
Secondary: 24.5 kV at 4 Amperes continuous, $12-\mathrm{phase}$ (98 kW Maximum)

REF. SYMBOL	HARRIS PART NO.			DESCRIPTION	QTY.
CR1 thru CR2	384	0386	000	Rectifier Stack, IR $1 H Q 10 K 16 A$	3
T 1				High Voltage Transformer, Energy Systems 4B191	1
C1 thru C3	510	0683	000	Power Factor Correction Capacitor, 30 uF, 500 Vac	3
C4, C5	510	0568	000	Surge Suppression Capacitor, $0.02 \mathrm{uF},+20 \%, 30 \mathrm{kV}$	2
R1, R2	542	0354	000	Surge Suppression Resistor 50 ohms, $+5 \%, 225 \mathrm{~W}$, NonInductive, Wirewound	



Harris Part No.: 7360119000
Harris Specification No.: 8169171 001
Manufacturer: Aydin Energy Systems, No. 2 T 90 , Oil filled transformer, dry rectifiers.
Primary: $\quad 380 / 430 / 485 \mathrm{~V}, \pm 4 \%, 3 \emptyset, 50 / 60 \mathrm{~Hz}$, Delta
Maximum Primary Overvoltage: $5 \%$
Secondary: 24.5 kV at 4.5 Amperes continuous, $12-\mathrm{phase}$ ( 110.25 kW Maximum)

REF. SYMBOL HARRIS PART NO. DESCRIPTION QTY.
CR1 thru CR3 3840553000

T 1

C1, C 2
$510 \quad 0712 \quad 000$

R1, R2
5420353000
Rectifier Stack, 3
IR 1HQl0J17A -
High Voltage Transformer, 1 Aydin Energy Systems 1B136
Surge Suppression Capaci- 2 tor, $0.03 \mathrm{uF}, \pm 5 \%, 30 \mathrm{kV}$
Surge Suppression Resistor, 2 25 ohm, $\pm 5 \%, 200 \mathrm{~W}$, Wirewound

Insulating Oil: Shell Diala 83 Gal. Diala-AX High Grade (314.19 Mineral Oil


Harris Part No.: 736-0038-000
Harris Specification No.: 815-5423-001
Marufacturer: Electro Engineering, No. El7318, 0il filled transformer, dry rectifiers.

Primary: $365 / 380 / 395 \mathrm{~V}, 3 \emptyset, 50 / 60 \mathrm{~Hz}$, Delta
Maximum Primary Overvoltage: 5\%
Secondary: $33 / 29 \mathrm{KV}$ at 7.6 Amperes continuous, $12-\mathrm{phase}$ (248 KW Maximum)

REF. SYMBOL HARRIS PART NO.
CRI thru CR3 3840627000

C1, C 2
5100693000

R1: R2
5420370000

T 1

DESCRIPTION	QTY.
Rectifier Stack, IR 1HQ10J21A	3
Transient Suppression Capacitor, 0.05 uF , $+20 \%, 25 \mathrm{kV}$	2
Transient Suppression Resistor, 15 K ohm, $\pm 5 \%$ 225 W, Wirewound	2
High Voltage Transformer,   Electro Engineering E17319.	
Insularing Oil: Shell Diala-AX High Grade Mineral oil	$\begin{gathered} 136 \text { Gal. } \\ (514.82 \\ \text { Liters) } \end{gathered}$



## APPENDIX B

## MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER MANUFACTURERS DATA

## APPENDIX B

## MANUFACTURERS DATA

## B-1. INTRODUCTION

B-2. This appendix contains technical data sheets which identify operating characteristics and parameters for various replaceable items used in the HARRIS MW-50C3 MEDIUM WAVE AM BROADCAST TRANSMITTER.

B1 - Eimac Engineering Newsletter - WHM65D29 MOD. 9-10-65
B2 - Eimac Technical Data Sheet - 4CX1500A Tetrode
B3 - Eimac Technical Data Sheet - 4CX35000C Tetrode
B4 - HARRIS Engineering Department Power Distribution Recommendation

LIFE VS. FILAMENT VOLTAGE<br>TUBE TYPES WITH THORIATEDTUNGSTEN FILAMENTS OR CATHODES.

; Power tube users and equipment manufacturers are naturally interested * in extending the life of thesc tubes. A very large factor in tube life is the temperature of the thoriated-tungsten cathode.

The equipment manufacturer and the end user of the equipment have more control over tube life through proper adjustment of filament voltage
! (filament power) than is generally realized. This is true because tube
! ratings and most equipment designs are conservative in peak cathode emission required of the tube compared with peak cathode emission available at nominal rated filament voltage. combination of equipment and operating power level, the nominal filament voltage for best life. This is best done in the fiold by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage on the power tube is reduced. At some
? point in filament voltage there will be a noticeable reduction in plate current, or power output, or an increase in distortion. Operation may safely be at a filament voltage slightly higher than that point at which performance appeared to detcriorate. A recheck should be made in 12 to 24 hours to make certain that emission is stable.

The thoriated-tungsten filament or cathode is processed in a hydrocarbon atmosphere to form a deep layer of di-tungsten carbide on the surface. Stable emission is not possible without the carbide. If the carbide layer is too deep the filament becomes too brittle to withstand shipping and handling. The end of useful life for this type of filament occurs when most of the carbon has evaporated or combined with residual gas, depleting the carbide surface layer.

Theoretically it is estimated that a $3 \%$ increase in filament voltage will result in a $20^{\circ} \mathrm{K}$ increase in temperature, a $20 \%$ increase in peak emission, and a $50 \%$ decrease in life due to carbon loss. This, of course, works the other way, too. For a small decrease in temperature and peak emission, life of the carbide layer and hence tube life can be increased by a substantial percentage. Peak emission as meant here is the emission obtained in the test for emission described in the Test Specification. This is normally many times the peak emission required in communication service.

ENL- 12
Continued.......

Obviously, if small percentage variations in filament voltage are to have a large percentage effect on tube life, it is important to be able to measure and adjust filament voltage measured at the tube terminals with accuracy of about $1 \%$.

The common rectifier type of multimeter which is used for almost every measurement in electronic gear, should not be relied on for $A C$ filament voltage measurement. A simple iron-vane AC meter which has recently been checked against a reliable standard is the best inexpensive instrument for this measurement because it responds to the RMS, or heating value, of the voltage wave form.

As a guide for use with most communications, and broadcast equipment, to get the best life service from your EIMAC power tubes, the following table has been prepared. It is not meant to imply that luwer filament voltage will not be satisfactory in some instances.

SUGGESTED NOMINAL FILAMENT VOLTAGE
FOR
EXTENDED LIFE IN BROADCAST AND COMMUNICATION SERVICE

## TUBE TYPE

3X2500A3 and F3	7.2 volts
3X3000A1 and A7	7.2
3CX2500A3 and F3	7.2
3CX3000A1 and A7	7.2
3CX10,000A3, A1 and A7	7.2
3CX15,000A3	6.0
6697A	12.3
4-125A	4.8
4-400A	4.8
4-1000A	7.2
4W20,000A	(2300 watts cathode heating power)
4CX3000A	8.6 volts
4CX5000A	7.2
4CX10,000D	7.2
4CX15,000A	6.0
4CX35,000C	9.0
4CV100,000C	9.0
4E27A	4.8
5-500A	9.5
5CX1500A	4.8
5CX3000A	8.6

Credit is due the paper, High Power Transmitting Valves ---, by Walker, Aldous, Roach, Webb and Goodchild, IEE Paper No. 3200E March, 1960, also the paper Life Expectancy Tubes ---, Eitel-McCullough, October 6, 1963, by Paul Williams.

Page 2

## 4CX1500A

The EIMAC $4 C X 1500 \mathrm{~A}$ is a general purpose tetrode for use up to and through VHF. Insulation is ceramic and the thoriated tungsten filament is a rugged mesh design. The screen terminal is a continuous ting which allows good isolation between the plate circuit and the control grid circuit.

The $4 C X 1500 \mathrm{~A}$ is recommended for use as a class C power amplifier, class B . or class $\mathrm{AB} \mathrm{B}_{1}$ linear amplifier, as a regulator, and in pulse modulator service.

## GENERAL CHARACTERISTICSI

## ELECTRICAL

Filament Voltage . . . . . . . . . . . . . . . . . . . . . . . 5.0 volts
Filament Current . . . . . . . . . . . . . . . . . . . . . . 38.5 amps
Amplification Factor (Grid Screen) . . . . . . . . . . . . . . 5.5
Transconductance ( $\mathrm{I}_{\mathrm{b}}=1$ ampere )
$\mathrm{Ec}_{2}=500$ volts. $\mathrm{Eb}-200$ valts)
26,000 mho

Frequency for Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 MHz
Direct Interelectrode Capacitances (Grounded Cathode) ${ }^{2}$
Cin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78.0 pF
Cout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 pF
Cgp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 pF
 as the result of additional data or product efingment. LliAAC. Division of varan shosuld be consulted before using thas mfomation for frat exwhement des gin.
 Clustres Ássociltorn Standard RS i yl.

## mechanical

B	Special ring and breechblock terminal surfaces
Recommended Socket	EIMAC SK-831
Recommended Air Chimney	EIMAC SK-806
Operating Position	Axis Vertical
Maximum Anode Core Temperature	$250{ }^{\circ} \mathrm{C}$
Maximum Seal Temperature	$250{ }^{\circ} \mathrm{C}$
Cooling	Forced Air

Maximum Dimensions
Height $4.90 \mathrm{in} ; 124.5 \mathrm{~mm}$$3.37 \mathrm{in} ; 85.6 \mathrm{~mm}$
Net Weight ..... 30 oz ; 850 gm
Shipping Weight (Approximately) 3 b ; 1.21 kg
RANGE VALUES FOR EQUIPMENT DESIGN
Filament Current, $\mathrm{E}_{\mathrm{f}}=5.0 \mathrm{~V}$Min. Max.
Interelectrode Capacitance (grounded cathode circuit) 1
Cin ..... $73.0 \quad 83.0 \mathrm{pF}$
Cout ..... $8.5 \quad 12.5 \mathrm{pF}$
Cgp ..... 0.4 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## RADIO-FREQUENCY LINEAR AMPLIFIER Class AB

## MAXIMUM RATINGS:

DC PLATE VOLTAGE . . . . . . . . . .	4000	VOLTS
DC SCREEN VOLTAGE . . . . . . .	750 VOLTS	
DC PLATE CURRENT . . . . . . .	1.0 AMPERE	
PLATE DISSIPATION . . . . . . .	1500 WATTS	
SCREEN DISSIPATION . . . . . . .	75 WATTS	
CONTROL GRID DISSIPATION . . . .	25 WATTS	

TYPICAL OPERATION Class AB 1

| DC Plate Voltage . . . . . . . . . . . | 2500 | 3900 V |
| :--- | :--- | ---: | :---: |
| DC Screen Voltage . . . . . . . | 600 | 600 V |
| DC Grid Voltage 1. .. . . . . . . | -105 | -110 V |
| Zero-Signal Plate Current . . . . . | 250 | 200 mA |
| Max-Signal Plate Current . . . . . | 765 | 750 mA |
| Max-Signal Screen Current 2. . . . | 46 | 40 mA |
| Peak RF Driving Voltage . . . . . | 95 | 100 V |
| Resonant Plate Load Resistance . . | 1670 | $2900 \Omega$ |
| Max-Signa! Plate Power Out . . . . | 1080 | 1850 W |

1. Adjust to specified zero-signal dc plate current.
2. Approximate values.

## RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM
(Continuous Operating Conditions)

MAXIMUM RATINGS:

DC PLATE VOLTAGE . . . . . . . . . . . .	5000
DC SCREEN VOLTAGE . . . . . . . . . .	750
VOLTS	
DC PLATE CURRENT . . . . . . . . . . .	1.0
AMPERE	

TYPICAL OPERATION

	Low Freq. Calculated		$220 \mathrm{MHz}$ Measured
DC Plate Voltage	3000	4000	3000 V
DC Screen Voltage	500	500	500 V
DC Grid Voltage	-200	-200	-116V
DC Plate Current	800	800	1000 mA
DC Screen Current2	36	37	35 mA
DC Grid Current 2	17	15	0 mA
Peak RF Grid Voltage	240	240	--- V
Driving Power	4.1	3.6	31.5 W
Resonant Load Resistance	1720	2570	-- $\Omega$
Plate Dissipation	600	700	-.- W
Power Output . . . . . .	1800	2500	$1500 \mathrm{~W}^{\text {1 }}$
1. Useful Power Output   2. Approximate values.			



NOTE: TYPICAL OPERATION data is obtained by direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias screen and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In Class $C$ service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

## APPLICATION

## MECHANICAL

MOUNTING - The 4CX1500A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC SK-831 socket and SK-806 chimney have been designed especially for the $4 \mathrm{CX1500A}$. The use of recommended airflow rates through these sockets provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the
tube terminals through the Air Chimney, and through the anode cooling fins.

COOLING - The maximum temperature rating for the anode core of the 4 CX 1500 A is $250^{\circ} \mathrm{C}$. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below $250^{\circ} \mathrm{C}$. Air-flow requirements to maintain seal temperature at $225^{\circ} \mathrm{C}$ in $50^{\circ} \mathrm{C}$ ambient air are tabulated on page 4 (for operation below 30 MHz ).

	SEA LEVEL		6000 FEET	
Plate   Dissipation   (Watts)Air Flow   (CFM)	Pressure   Drop   (Inches   of Water)	Air Flow   (CFM)	Pressure   Drop   (Inches   of Water)	
1000	27	0.33	33	0.40
1500	47	0.76	58	0.95

*Since the power dissipated by the filament represents about 200 watts and since grid-plus-screen dissipation can, under some conditions, represent another 100 watts, allowance has been made in preparing this tabulation for an additional 300 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and arbient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

## ELECTRICAL

FILAMENT OPERATION - The rated filament voltage for the 4 CX 1500 A is 5.0 volts. Filament voltage, as measured at the socket, should be maintained at this value or below to obtain maximum tube life.

CONTROL GRID OPERATION - The rated dissipation of the grid is 25 watts. This is approximately the product of dc grid current and peak positive grid voltage. Operation at bias and drive levels near those listed will insure safe operation.

SCREEN GRID OPERATION - The power dissipated by the screen of the 4 CX 1500 A must not exceed 75 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon RMS screen current and voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 75 watts in the event of circuit failure.

HIGH VOLTAGE - Normal operating voltages used with the 4CX1500A are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz , most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground".

The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

MULTIPLE OPERATION - To obtain maximum power out put with minimum distortion from tubes operated in multiple, it is desirable to adjust individual screen or grid bias voltages so that the peak plate current for each tube is equal at the crest of the exciting voltage. Under these conditions, individual dc plate currents will be approximately equal for full input signal.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.




## TECHNICAL DATA

RADIAL-BEAM POWER TETRODE

The FIMAC $8349 / 4 \mathrm{CX} 35,000 \mathrm{C}$ is a ceramic/metal, forced-air cooled power tetrode intended for use at the 50 to 150 kilowatt output power level. It is recommended for use as a Class-C if amplifier or oscillator, a Class$A B$ of linear amplifier, or a Class- $A B$ push-pull af amplifier or modulator. The 8349 CX $35,000 \mathrm{C}$ is also useful as a plate and screen modulated Class-C if amplifier.

The forced-air cooled anode is rated at 35 kilowatts maximum dissipation.
GENERAL CHARACTERISTICS ${ }^{1}$
ELECTRICAL
Filament: Thoriated Tungsten Voltage ..... 10.0 V
Current, at 10.0 volts ..... 295 A
Amplification Factor (Average): Grid to Screen ..... 4.5
Direct Interelectrode Capacitances (grounded cathode) ${ }^{2}$
Cin ..... 440 pF
Cout ..... 55 pF
Cgp ..... 2.3 pF
Frequency of Maximum Rating:
CW ..... 30 MHz

1. Characteristics and opergung values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this inforniation for final equipment design.
2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electromic Industries Association standard RS-191.
MECHANICAL
Maximum Overall Dimensions:
Length ..... $17.34 \mathrm{in} ; 440.4 \mathrm{~mm}$
Diameter ..... $9.75 \mathrm{in}: 247.7 \mathrm{~mm}$
Net Weight ..... $50 \mathrm{lb} ; 22.7 \mathrm{~kg}$
Operating Position Vertical, base up or down
Maximum Operating Temperature:
Ceramic/Metal Seals ..... $250^{\circ} \mathrm{C}$
Anode Core ..... $250^{\circ} \mathrm{C}$
Cooling ..... Forced Air
Base Special, graduated ringsRecommended SocketEIMAC SK-1500 Series



## RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN

1. Adjust to specified zero-signal dc plate current.
2. Approximate value.

IYPICAL OPERATION (Frequencies to 30 MHz

Crest Conditions

## RADIO FREOUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM
(Key-Down Conditions)
MAXIMUM RATINGS:

DC PLATE VOLTAGE . . . . . . . . . . .	20,000
VC SCREEN VOLTAGE . . . . . . . .	2500
VOLTS	
DC PLATE CURRENT . . . . . . .	15.0 AMPERES
PLATE DISSIPATION . . . . . . . .	35,000 WATTS
SCREEN DISSIPATION . . . . . . . .	1750 WATTS
GRID DISSIPATION . . . . . . . . .	500 WATTS

TYPICAL OPERATION (Frequencies to 30 MHz )

Plate Voltage	10.0	15.0	19.0	Vdc
Screen Voltage	750	750	750	Vdc
Grid Voltage	-425	-480	-550	Vdc
Plate Current	7.5	6.8	6.96	Adc
Screen Current ${ }^{1}$	0.84	0.51	0.80	Adc
Grid Current ${ }^{1}$	. 0.29	0.23	0.35	Adc
Peak rf Grid Voltage ${ }^{1}$	600	660	730	$\checkmark$
Calculated Driving Power!	180	150	258	W
Plate Dissipation	19.3	19.0	21.0	kW
Plate Output Power	. 55.5	82.5	110	kW

1. Approximate value.

## PLATE MODULATED RADIO FREOUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)
MAXIMUM RATINGS:

dC Plate voltage	14,000	VOLTS
dC SCREEN VOLTAGE	2000	VOLTS
DC PLATE CURRENT	15.0	AMPERES
PLATE DISSIPATION ${ }^{1}$	23,000	WATTS
SCREEN dissipation ${ }^{2}$.	1750	WATTS
GRID DISSIPATION ${ }^{2}$	500	WATTS

1. Corresponds to 35,000 watts at $100 \%$ sine-wave modulation.
2. Average, with or without modulation.

TYPICAL OPERATION (Frequencies to 30 MHz )

Plate Voltage	12.0 kVdc
Screen Voltage	750 Vdc
Grid Voltage	-600 Vdc
Plate Current	5.4 Adc
Screen Current ${ }^{1}$	0.52 Adc
Grid Current ${ }^{1}$.	0.16 Adc
Peak af Screen Voltage ${ }^{2}$ ( $100 \%$ miodulation)	500
Peak rf Grid Voltage ${ }^{1}$	740
Calculated Driving Power	125 W
Plate Dissipation	13.2 kW
Plate Output Power	55.0 kW
Resonant Load Impedance	120 ת

1. Approximate value.
2. Approximate value, depending upon degree of driver modulation.

## 4 CX35.000C

\author{

AUDIO FREOUENCY POWER AMPLIFIER OR MODULATOR <br> Class AB, Grid Driven (Sinusoidal Wave) <br> MAXIMUM RATINGS (Per Tube): <br> | DC PLATE VOLTAGE . . . . . . . . . . . . | 20,000 |
| :--- | :--- |
| VC SCREEN VOLTAGE . . . . . . . . | 2,500 |
| VOLTS |  |
| DC PLATE CURRENT . . . . . . . | 15.0 |
| AMPERES |  |
| PLATE DISSIPATION . . . . . . . . | 35,000 |
| WATTS |  |
| SCREEN DISSIPATION . . . . . . . . | 1750 WATTS |
| GRID DISSIPATION . . . . . . . . | 500 WATTS |

}

1. Approximate value.

TYPICAL OPERATION (Two Tubes)

Plate Voltage	12.0 kVdc
Screen Voltage	1.5 kVdc
Grid Voltage $1 / 3$.	-400 Vdc
Zero-Signal Plate Current	3.0 Adc
Max Signal Plate Current	9.2 Adc
Max Signal Screen Current 1	1.8 Adc
Peak af Grid Voltage 2	280
Max Signal Plate Dissipation 2	20 kW
Plate Output Power	70 kW
Load Resistance (plate to plate)	2860 ת
2. Per Tube	
3. Adjust to give stated zero-si	

> NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

## RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater: Current at 10.0 volts	280	310 A
Interelectrode Capacitances (grounded cathode connection) ${ }^{2}$		
Cin	410	470 pF
Cout	50	60 pF
Cgp	1.5	3.2 pF

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

## MECHANICAL

MOUNTING - The $4 \mathrm{CX} 35,000 \mathrm{C}$ must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

SOCKET - The EIMAC sockets, type SK-1500, and SK-1510 have been designed especially for the concentric base terminals of the $4 \mathrm{CX} 35,000 \mathrm{C}$.

COOLING - The maximum temperature rating for the external surfaces of the $4 \mathrm{CX} 35,000 \mathrm{C}$ is $250^{\circ} \mathrm{C}$. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below $250^{\circ} \mathrm{C}$.

## APPLICATION

Air-flow requirements to maintain core temperature at $225^{\circ} \mathrm{C}$ in $40^{\circ}$ ambient air are tabulated below (for operation below 30 megahertz.) These data are for air flowing in the base-to-anode direction.

	Base-to-Anode Air Flow			
$\begin{gathered} \text { Plate } \\ \text { Dissipation } \\ \text { (Watts) } \end{gathered}$	Sea Level		10,000 Feet	
	Air Flow (CFM)	Pressure Drop/Inches of Water)	Air Flow (CFM)	Pressure Drop(Inches of Water)
15,000	440	1.0	635	1.44
20,000	650	2.0	935	2.9
25,000	975	3.8	1400	5.5
30,000	1300	6.0	1870	8.6
35,000	1760	9.6	2535	13.8

* Since the power dissipated by the filament represents about 3000 watts and since grid-plus-screen dissipation can, under some conditions, represent another 2250 watts, allowance has been made in preparing this tabulation fo: an additional 5250 watts dissipation.


## 4CX35,000C

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

Separate cooling of the tube base is required and is accomplished by directing approximately 120 cfm of air horizontally through the socket from the side. It is preferable to direct this air through three equally spaced ducts.

The well in the center of the baseplate of the tube is a critical area which requires cooling to maintain envelope temperatures less than $250^{\circ} \mathrm{C}$. For most applications, 1 to 2 CFM of air directed through the center of the socket is sufficient for this purpose.

At other altitudes and ambient temperatures the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

## ELECTRICAL

FILAMENT OPERATION - The peak emission at rated filament voltage of the EIMAC 4CX35, 000 C is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the $4 \mathrm{CX} 35,000 \mathrm{C}$ by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not affect the operation of the equipment. This is done by measuring some important parameter of performance such as plate current, power output, or distortion while filament voltage is reduced on the $4 \mathrm{CX} 35,000 \mathrm{C}$. At some point in filament voltage there will be a noticeable reduction in plate current, or power output, or an increase in distortion. Operation may be at a filament voltage slightly higher than that point at which performance appears to deteriorate. This voltage should be measured at the socket with a $1 \%$ meter and periodically checked to maintain proper operation.

Filament starting current must be limited to a maximum of 900 amperes.

Voltage between filament and the base plates of tube and SK-1500 socket, must not exceed 100 volts.

GRID OPERATION - The 4CX35,000C grid has a maximum dissipation rating of 500 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power
should be kept near the values shown in the "Typical Operation" sections of the data sheet whenever possible. The maximum grid circuit resistance should not exceed 100,000 ohms per tube.

SCREEN OPERATION - The power dissipated by the screen of the $4 \mathrm{CX} 35,000 \mathrm{C}$ must not exceed 1750 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 1750 watts in the event of circuit failure.

PLATE DISSIPATION - The plate-dissipation rating for the $4 \mathrm{CX} 35,000 \mathrm{C}$ is 35,000 watts. When the $4 \mathrm{CX} 35,000 \mathrm{C}$ is operated as a plate-modulated rf amplifier, under carrier conditions, the maximum plate dissipation is 23,000 watts.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capaci-
tance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

HIGH VOLTAGE - Normal operating voltages used with the $4 C X 35,000 \mathrm{C}$ are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

FAULT PROTECTION - In addition to normal cooling airflow interlock and plate and screen over-current interlocks, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high plate voltage.

In all cases some protective resistance, at least one or two ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur. Where stored energy is high, it is recommended that some form of electronic crowbar be used which will discharge power supply capacitors in as short a time as possible following indication of start of a plate arc.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X -ray radiation as the voltage is increased. The $4 \mathrm{CX} 35,000 \mathrm{C}$, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.



## 4CX35,000C



HARRIS ENGINEERING DEPARTMENT
POWER DISTRIBUTION RECOMME NDATION

Radio and Television transmitters using three-phase power must operate with the line-to-line voltages well balanced. Operation with the incoming line-to-line voltages substantially unbalanced will increase the ripple from the three-phase power supplies, primarily at twice the power line frequency, and thus increase the hum of the transmitter. Unbalanced line voltages result in unbalanced currents in the windings of the three-phase transformers, and in unbalanced currents in the windings of three-phase motors.

Three-phase motors should be run with line voltage balance within $1 \%$ a 3-1/2 percent line voltage unbalanced will produce a temperature rise approximately $25 \%$ above normal in the winding carrying the greater of the unbalanced currents, while a $5 \%$ unbalance will produce a temperature rise approximately $50 \%$ greater than normal.

The regulation of a three-phase open delta transformer bank is much poorer than that of a closed delta bank. (1) The closed delta bank is symmetrical; the open delta is not; so the regulation in each of the three phases differs widely, and the effect of this may be an appreciable line voltage unbalance. The regulation of a closed delta is symmetrical on each phase.

Depending upon the impedances of the two transformers making up the open delta this appreciable line voltage unbalance may be great enough to impair satisfactory operation of the transmitter. HARRIS customers have experienced this with open delta distribution, and when the third transformer was added for closed delta service, the problem disappeared.

Transient overvoltages with open delta distribution can cause transmitter damage, particularly to the silicon rectifiers used in the main $H V$ power supply. This is sometimes troublesome when the open delta transformers are at the end of a long overhead open wire distribution system. Several HARRIS

[^1]customers, upon following the HARRIS recommendation and adding the third transformer, have found the difficulty gone.

Although the above argument specifically calls out Closed Delta distribution, a WYE distribution also uses three transformers, and is symmetric, avoiding the difficulties arising from the non-symmetrical configuration of the Open Delta distribution.

WYE TYPE POWER DISTRIBUTION

In large segments of the world the power distribution is four-wire WYE. Single phase service is derived between the neutral of the WYE distribution and any one of the three other wires.

Three-phase main power supply transformers for small transmitters - 10 kilowatts or less - in the United States are generally operated from three-phase lines in the 210 to 250 volt range, line to line. HARRIS has adopted the practice of specifying three-phase transformers for transmitters of this class with three separate primaries, each having appropriate taps to accommodate the several nominal voltages in this range. For service in the United States these primaries are connected in Delta.

For service in those parts of the world in which the power distribution is four-wire WYE in the 360 to 415 -volt range these three primaries are connected tin WYE, with each primary tapped for the line to neutral voltage. The neutral point of the three primaries of the transformer within the transformer within the transmitter is solidly connected to the power distribution system neutral, to provide a path for zero sequence currents, as well as any harmonic currents which might flow due to the rectification of the secondary voltages.

The line-to-line voltage is equal to the line to neutral voltage multiplied by the square root of three (1.732 approximately), nominally.

```
Tvjpical system voltages: (Nomina1)
LINE TO NEUTRAL (single phase) LINE TO LINE (three phase)
2 1 0 ~ v o l t s ~ 3 6 4 ~ v o l t s
2 2 0 ~ v o l t s ~ 3 8 0 ~ v o l t s
2 3 0 \text { volts } 4 0 0 \text { volts}
240 volts 415 volts
2 5 0 \text { volts 433 volts}
In summary, either a closed delta or WYE distribution system is satisfactory
for HARRIS transmitter.
```


[^0]:    4. INDUCTANCE IN UH
    5. CAPACITANCE IN UF
    6. RESISTANCE IN OHMS
    7. RESISTORS ARE 1.2 WATT $5^{\circ}$
    unless otherwise nated:
[^1]:    1. "Transformer Engineering" - Blume, Boyajian, Camilli, Lennox, Minneci, \& Montsinger (John Wiley \& Sons). 2nd 1967.
