UNSTRUCTION BOOK

GMM-88F

FM FREQUMNCY MONITOR
M-6588

WARRANTY

Seller warrants new equipment manufactured by Gates Radio Company against defects in material or workmanship at the time for delivery thereof, that develop under normal use within a period of one year (6 months on moving parts) from the date of shipment, of which Purchaser gives Seller prompt written notice. Other manufacturers' equipment, if any, including electron tubes, and towers shall carry only such manufacturers' standard warranty.

Seller's sole responsbility for any breach of the foregoing provision of this contract, with respect to any equipment or parts not conforming to the warranty or the description herein contained, is at its option, (a) to repair or replace such equipment or parts upon the return thereof f.o.b. Seller's factory with in the period aforesaid, or (b) to accept the return thereof f.o.b. Purchaser's point of installation, whereupon Seller shall either (1) issue a credit to Purchaser's account hereunder in an amount equal to an equitable portion of the total contract price, without interest, or (2) if the total contract price has been paid, refund to Purchaser an equitable portion thereof, without interest.

If the Equipment is described as used, it is sold as is and where is. If the contract covers equipment not owned by Seller at this date it is sold subject to Seller's acquisition of possession and title.

Seller assumes no responsibility for design characteristics of special equipment manufactured to specifications supplied by or on behalf of Purchaser.

Seller shall not be liable for any expense whether for repairs, replacements, material, service or otherwise, incurred by Purchaser or modifications made by Purchaser to the Equipment without prior written consent of Seller.

> EXCEPT AS SET FORTH HEREIN, AND EXCEPT AS TO TITLE, THERE ARE NO WARRANTIES, OR ANY AFFIRMATIONS OF FACT OR' PROMISES BY SELLER, WIT'H REFERENCE TO THE EQUIPMENT, OR TO MERCHANTABILITY, INFRINGEMENT, OR OTHERWISE, WHICH EXTEND BEYOND THE DESCRIPTION OF THE EQUIPMENT ON THE FACE HEREOF.

RETURNS AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. Custom built equipment or merchandise specially ordered for you is not returnable. Where return is at the request of, or for the convenience of the customer, a restocking fee of 15% will be charged. All returned merchandise must be sent freight prepaid and properly insured by the customer. When writing to Gates Radio Company about your order, it will be helpful if you specify the Gates Factory Order Number or Invoice Number.

WARRANTY ADJUSTMENTS

In the event of equipment failure during the warranty period, replacement or repair parts may be provided in accordance with the provisions of the Gates Warranty. In most cases you will be required to return the defective merchandise or part to Gates f.o.b. Quincy, Illinois for replacement or repair. Cost of repair parts or replacement merchandise will be billed to your account at the time of shipment and compensating credit will be issued to offset the charge when the defective items are returned.

MODIFICATIONS

Gates reserves the right to modify the design and specifications of the equipment shown in this catalog without notice or to withdraw any item from sale provided, however, that any modifications shall not adversely affect the performance of the equipment so modified.

INSTRUCTION BOOK

GTM-88F
FM FREQUENCY MONITOR
FCC APPROVAL NO. 3-137

INDEX

I GENERAL DESCRIPTION 1
II SPECIFICATIONS 1
III INSTALLATION AND INITIAL ADJUSTMENT. 1
IV OPERATION 2
V CIRCUIT DESCRIPTION 2
VI RF OSCILLATOR ALIGNMENT. 3
VII MAINTENANCE. 3
VIII PARTS LIST. 3
PHOTOGRAPHS
BLOCK DIAGRAM
SCHEMATIC

ADDENDA
 GTM-88F FM FREQUENCY MONITOR

PARTS LIST, Page 4, Meter Board:
Change CR3 to read 3850158000 Zener Diode, IN5344A
SCHEMATIC - 8526317 OOJ:
Change CR3 from $1 N 4738$ to $2 N 5344$.

1 GENERAL DESCRIPTION

The GTM-88F FM Frequency Monitor has been designed to meet FCC requirements for measuring the center frequency deviation of an FM broadcast transmitter from its assigned frequency in the range of 88 to 108 Mc .

The accuracy of measurement is within 1000 cycles (. 001%) and the effects of modulation of the center frequency of the transmitter have been minimized. The monitor has been designed to provide stability, accuracy and long trouble-free performance. It cannot cause any deteriorative effects on the transmitter or affect the signal being transmitted. It is designed for continuous operation, and does not require frequency adjustment to maintain its accuracy. It is not affected by typical changes of power line voltage, changes of input signal level from the transmitter, ambient temperature variations, or component aging during regular service.

II SPECIFICATIONS

FREQUENCY RANGE: 88 to 108 Mc - fixed.
DEVIATION RANGE: +3 KHz to -3 KHz of specified frequency.
AMBIENT TEMPERATURE: $\quad+10{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
ACCURACY:
Better than $.001 \%$ or better than 1000 Hz at any frequency.
STABILITY:
R.F. INPUT:

Maximum change within 24 hours 100 Hz .

50 ohms, .2 to 1 watt.
FRONT PANEL INDICATORS: Deviation meter, AC Power Pilot Light, Crystal Oven Lamp
FRONT PANEL CONTROLS:
Selector switch (Power ON/OFF, RF Input Cal, Monitor Cal, and Operate), Meter Zero,
R.F. level, (Recessed) Frequency Adjustment, (Recessed).

DIODE \& TRANSISTOR COMPLEMENT

DIODE	QTY.	TRANSISTOR	QTY.
1N54A	2	2N697	1
1N542	2	2N708	10
1N821(Zener)	1	2N709	1
1N914	9	2N2369	1
1N4729(Zener)	1	2N3055	1
1N4738(Zener)	2	2N4036	1
MZ1000-24	1	2N3903	1
COD1 6082			
(stabistor)	1	RCA 40314	5
Molded Bridge	1		
POWER INPUT:			
100 to 130 VAC, $50 / 60 \mathrm{~Hz}$,			
POWER SUPPLY;	40 Watts max.		
FUSES:			
Monitor			

DIMEMSIONS:	Standard rack, $19^{\prime \prime} \mathrm{W}, 7 " \mathrm{H}$, $10^{\prime \prime}$ Deep
WEIGHT:	20 Lbs, max

III INSTALLATION AND INITIAL ADJUSTMENT

INSPECTION: Upon receipt of your GTM-88F, remove it from the packing material and inspect for any damage caused in transit due to handling or vibration. If damage either concealed or obvious, is determined, immediately call the transportation company that delivered the material to you and go over the damages with them. They will either note the shipping way-bill which you have or give you a damage report indicating that you may proceed with repairs, order the necessary parts from Gates, Gates will bill these parts to you and you in turn can bill the parts to the transportation company under the damage claim.

All Gates equipment is shipped in approved packing containers and anything broken in transit, the transportation company is obligated to pay for, not you.

LOCATION: Installation preferably should be made in a standard equipment rack or cabinet which is well connected electrically to the main station ground and away from strong RF fields created by the transmitter. The monitor should be located near the transmitter in order to take an RF sample directly from the transmitter. If a remote application is desired, RF can be fed from an RF amplifier.

CONNECTIONS, INPUT: Plug the AC line cord into a nominal 115 volt, $50 / 60 \mathrm{~Hz}$ power source.

Connect a 50 ohm coaxial cable (RG-58 or RG-8) between an RF pick-up loop (or RF amplifier) and the input Jl at the monitor. (Amphenol Type 83-ISP connector is used).

CAUTION: DO NOT APPLY MORE THAN 2 WATTS FROM THE PICK-UP I,OOP OR THE MONITOR MAY BE DAMAGED.

Abstract

When using the GTM-88F in conjunction with other existing monitor equipment, simultaneous connection of the RF inputs from the same pick-up can be made. However where other monitors are in use, it may be necessary to incorporate a resistive pad to achieve the correct RF input level for each unit.

Separate pick-up loops or an RF amplifier should eliminate any interference encountered between monitors in the field.

INITIAL ADJUSTMENTS: Turn the power on and allow the monitor to warm-up $1 / 2$ hour for temperature stabilization. The red light will indicate that the power is on.

When the instrument is first plugged in, the amber crystal temperature indicator light will appear. As the oven brings the crystal towards its desired temperature, the light will begin the flash off and on. This lamp will light and turn off in a rather fast and erratic manner. (As fast as 3 to 4 times per second occasionally). THIS IS COMPLETELY NORMAL. The oven maintains the crystal temperature within $1 / 10$ th of a degree.
Select the Cal position of the function switch on the front panel. The meter should be within a few hundred cycles of zero, and can be set exactly to zero with the METER ZERO control. With the function switch in the RF INPUT position, the meter pointer should be in the red RF CAL area of the meter; if it does not, the pickup loop or RF amplifier output should be adjusted so that with the RF LEVEL control at approximately its mid-range, the meter indicates the desired plus 1.5 KHz . Periodic adjustment of the RF level should be made by means of the RF LEVEL control, keeping the indication in the RF CAL area.

IV OPERATION

At this time, the function switch can be set to operate position and any deviation of the transmitter center frequency will be indicated on the zero center meter.

Calibration against an external frequency standard may be made at the station as follows: While in contact with an outside measuring service, the transmitter frequency can be adjusted for the exact assigned frequency. Place the GTM-88F in CAL position and zero the meter. Then place the function switch in operate position and observe any deviation. If the indication is not zero, adjust the FREQ. ADJ. control (C1) until the meter reads zero. If the meter zero is beyond the range of C 1 see paragraph on RF oscillator!alignment.
An alternate method can be used. The frequency of the transmitter is first measured by the frequency measuring service. The moniter is corrected by adjusting meter zero so the frequency meter indicates the same frequency as determined by the measuring service. Then the transmitter can be adjusted so that zero deviation is measured on the meter. When the monitor reads zero. place the function switch to Calibrate and zero the meter. Return the function to Operate position and adjust the FREQ. ADJ. control for a zero meter'reading. The meter zero besides zeroing the meter, temperature compensates the monitor. It is suggested that the function switch'be turned to Cal position to be sure that the pointer is on zero every time a reading is taken.

Re-adjust to zero if necessary. This should require very little adjustment unless there has been a major temperature change. Then return the function switch to the OPERATE position for accurate logging of center frequency. It is suggested that the RF level be checked at least daily.

NOTE: The pointer of meter M-1 may peg when switching, between RF INPUT, CAL and OPERATE This is particularly true if the incoming signal is considerably off frequency. The meter can not be damaged under normal operation. However, if the input signal remains considerably off frequency the meter should be returned to the CAL position until the frequency is brought within the range of the monitor.

V CIRCUIT DESCRIPTION

The signal will be traced through the GTM-88F referring to the schematic with the function switch in the OPERATE position.
The sample RF is fed through the input connector J 1 to a variable attenuator (C-9). This attenuator offers a nominal input impedance of 50 ohms to the input signal. The output of the attenuator is coupled to the emitter of Q3.

Refer now to Q1. This is a crystal controlled oscillator. The frequency of this oscillator is maintained by a quartz crystal housed in an oven. The oven maintains the crystal temperature within $1 / 10$ th of a degree at approximately $70^{\circ} \mathrm{C}$. Vernier adjustment of the frequency may be accomplished by FREQ. ADJ. control C-1. The de veloped frequency appears on the base of Q2. Q2 is a frequency tripler. The tripled frequency is coupled to the base of Q3, and so selected that it is 200 KHz below the input frequency to be monitored. Q3 is a mixer which produces an amplified 200 KC signal.

The 200 KC signal is coupled to a Schmitt trigger (Q4, 05) which limits and squares the 200 KHz signal. The 200 KHz square wave is coupled to a monostable multivibrator (Q6, Q7, Q8). The monostable produces a constant width pulse proportional to the input signal frequency.

The constant width pulse is passed through an emitter follower Q9 to a phase splitter Q 10 .
Both the in-phase and out-of-phase constant width pulses are passed through emitter followers ($211, \mathrm{Q} 12$) to pulse amplifiers (Q13 and Q 14).

The pulse amplifiers create a DC voltage proportional to the input frequency. At 200 KHz the developed DC voltage of each pulse amplifier is equal and the meter. reads zero. As the frequency moves away from the 200 KHz , zero point, the DC voltage of the pulse amplifiers changes, causing the meter to deflect.

By placing the selector switch in CAL position a 200 KHz signal from a crystal oscillator (018, Q19) is coupled to the Schmitt trigger through an emitter follower (020). The meter is then zeroed by adjusting the meter zero control which changes the pulse width of the monostable, and calibrates the monitor circuitry by making the developed DC voltage at the pulse amplifiers equal. When the monitor is placed in the RF CAL position the meter is switched in series with a diode (CR5) and measures the current produced by the diode which is proportional to the RF voltage applied at the input J .
The heart of the power supply is CR12, a temperature compensated zener diode. CR12 maintains a constant voltage over the temperature range and controls the transistor regul ator (Q15, Q16, Q17) which produces +15 DC volts for all monitor circuitry.
The oven, a 117 VAC type, is fused and connected directly to the power cord. It will function immediately when the monitor is plugged into the power source and is not switched by the selector switch (S1). The oven is temperature controlled by a bi-metal thermostat. To indicate that the oven is controlling the crystal temperature an incandescent lamp on the front panel is connected in parallel with the heater circuit of the oven.

VI RF OSCILLATOR ALIGNMENT

If the oscillator frequency can not be adjusted for a meter zero position with correct input frequency by using C1, set C1 at mid-range and adjust C 3 until meter is about zero. Then re-adjust (Cl until meter is at zero.

Should it be necessary to re-align the RF oscillator follow this procedure -

RF ALI(SNIENT PROCEI)CRE FOR FM FREQUENCY MONITOR, GTM-88F

1. Connect an oscilloscope to IF output at switch SID.
2. Adjust C1 (FREQ. AD.J.) to mid-range capacity.
3. Connect RF voltage (. 2 to 1 watt) to J1. The RF shall be at carrier frequency $\pm 10 \mathrm{cps}$. Read frequency on a counter.
4. With the Function Switeh (S1) in RF position adjust C9 (RF level) to a red line reading on the meter (RF Cal).
5. Switch the Function Switch (S1) to Cal position.
6. Adjust C3 and C4 (Chassis controls) for and IF voltage on the scope. (Range: 10 to 50 Vpp).
7. Adjust the meter to a zero setting with meter zero control R29.
8. Switch the Function Switch (S1) to Operate position. Adjust the meter for a near zero reading with C:3. (Chassis control).
9. Switch the Function Switch (S1) to RF position and check to see that the meter is on the red line of Step 5.
10. Switch Function Switch (S1) to Operate position. Adjust (4 (Chassis control) until a .8 to 1.0 volt pp reading is obtained on the scope.
11. The Frequency Adjust control (C1) should be able to adjust the meter $\pm 500 \mathrm{Ilz}$ at this time. Check the tuning range. Zero the meter with C. 1.
12. Switch the Function Switch to Cal position and zero the meter with the meter zero control (R29).
13. Return the Function Switch (S1) to Operate position and recheck the meter zero. If not zero reset with Frequency Adjust control (C1).
14. With nomal signal from transmitter at J1 and function switch in Operate position - proceed with a frequency check by an FCC approved method as outlined in the OPERATION section of the instruction book.

VII MAINTENANCE

No periodic maintenance is necessary. If dust or dirt should accumulate in the equipment at any time remove it by use of an air hose.

Should you need to repair a printed circuit board, a printed sheet \#1234 is available without charge, on request, covering "How to Replace Items on Printed Boards".

c

VIII PARTS LIST

CHassis
Symbol No. Gates Part No. Description

Symbol No. Gates Part No. Description
C 1
C 2
$\mathrm{C} 3, \mathrm{C} 4$
C 5
C 6
C 7
C 8
C 9
C 10
C 11
$\mathrm{C} 12, \mathrm{C} 38$
$\mathrm{C} 13, \mathrm{Cl}$
$\mathrm{C} 15, \mathrm{Cl}$
C 17
C 35
C 36
C 37
C 40

CR .5

XHR1
XQ1, XQ2,

5200123000 Cap., Var., 3.2 to 50 pF
5000822000 Cap., $75 \mathrm{pF}, 500$ V. 5%
5200305000 Cap., Var., 3.2 to 50 pF
5000787000 Cap., $200 \mathrm{pF}, 500 \mathrm{~V}$.
5220218000 Cap., $5 \mathrm{uF}, 15 \mathrm{~V}$.
5160063000 Cap., . $002 \mathrm{uF}, 1 \mathrm{KV}$
5000784000 Cap., $300 \mathrm{pF}, 500 \mathrm{~V}$.
5200125000 Cap., Var., 4.5 to 100 pF
5000759000 Cap., $100 \mathrm{pF}, 500 \mathrm{~V}$.
$5000842000 \mathrm{Cap} 820 \mathrm{pF},. 300 \mathrm{~V}$.
5160375000 Cap., $01 \mathrm{uF}, 50 \mathrm{~V}$.
5160084000 Cap., . 02 uf, 600 V.
5060088000 Cap., $1 \mathrm{uF}, 200 \mathrm{~V}$.
5240135000 Cap., $1500 \mathrm{uF}, 75 \mathrm{~V}$.
5220372000 Cap., $2500 \mathrm{uF}, 15 \mathrm{~V}$.
5160054000 Cap., . $001 \mathrm{uF}, 1 \mathrm{KV}$
5000812000 Cap., $30 \mathrm{pF}, 500 \mathrm{~V}$.
3840210000 Diode, 1N542
3980016000 Fuse, $75 \mathrm{~A}, 250 \mathrm{~V}$, AGC
5580029000 Crystal Oven
6120230000 Receptacle
8147246000 Coil
8145572001 Coil
4940198000 Choke
4940114000 Choke, R.F.
8147247001 Coil
6320623000 Meter
3800096000 Transistor, 2 N 3903
3800078000 Transistor, 2N709
380) 0053000 Transistor, 40314

3800043000 Transistor, 2N3055
5400070000 Res., 7.5 K ohm, $1 / 2$ W. 5%
5400042000 Res., 510 ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400018000 Res., $51 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
5400056000 Res., 2.0 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400032000 Res., 200 ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400085000 Res., 33 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400053000 Res., 1.5 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400025000 Res., 100 ohm, $1 / 2$ W, 5%
5400060000 Res., 3 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400024000 Res., $91 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
5400010000 Res., $24 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
5400306000 Res., 82 ohm, 1 W, 5%
9146159001 Pot., 500 ohm (Mod.)
5400089000 Res., 47 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
5400067000 Res., 5.6 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
9273319001 Switch, Rotary, 3 Section
4720611000 Ṫransformer
4040023000 Fuseholder
4040016000 Socket

4040187000 Transistor Socket
4040136000 Transistor Mtg. Kit
Symbol No. Gates Part No. Description

Symbol No. Gates Part No. Description
R26, R52 5400045000 Res., 680 ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$
R27
R31
R32
R33
R34
R35
R36, R43,
R46, R68
R37, R79
R39, R74
R41
R44, R47
R45, R50
R49, R54
R51, R57
R53
R55, R56
R58
R59
R60
R69
R75, R77
R76
R78, R82
RT2
XY1

Y1
5520796000 Potentiometer, 5 K ohm
5400084000 Res., 30 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$
5400046000 Res., $750 \mathrm{ohm}, 1 / 2 \mathrm{~W}, \pm 5 \%$
5400042000 Res., 510 ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$
5400071000 Res., 8.2 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400092000 Res., 62 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$

5400097000 Res., 100 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400056000 Res., 2 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400078000 Res., 16K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400070000 Res., 7.5 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400101000 Res., 150K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5441603000 Res., $825 \mathrm{ohm}, 1 / 2 \mathrm{~W}, \pm 1 \%$ 5400032000 Res., 200 ohm, $1 / 2 \mathrm{~W}_{2} \pm 5 \%$ 5400312000 Res., 150 ohm, 1 W, $\pm 5 \%$ 5520802000 Potentiometer, 1K ohm 5400025000 Res., 100 ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5441604000 Res., 332 ohm, $\pm 1 \%$ 5400024000 Res., 91 ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5520797000 Potentiometer, 100 ohm 5400060000 Res., 3.0 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400088000 Res., 43 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400081000 Res., 22 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400044000 Res., 620 ohm, 1/2 W, $\pm 5 \%$

5590013000 Thermistor, 20K ohm
4040132000 Crystal Socket w/Holder
4441232000 Crystal, 200 kHz

POWER SUPPLY BOARD

(CR7, CR8,
CR9, CR10) 3840196000 Silicon Bridge Assembly
CR11 3860111000 Zener Diode, MZ1000-24
CR12 3860044000 Zener Diode, 1N821
CR13, CR14 3840006000 Diode, 1N54AS
Q16 3800045000 Transistor, 2N4036
Q17 3800042000 Transistor, 2N697
R61
R62, R65
R63
R64
5400049000 Res., 1000 ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$ 5400615000 Res., 1500 ohm, $2 \mathrm{~W}, \pm 5 \%$ 5400611000 Res., 1000 ohm, $2 \mathrm{~W}, \pm 5 \%$ 5520776000 Potentiometer, 500 ohm

