GATES

INSTRUCTICN BOOK
FOR
FM-20B 20 KW
FII BRO_DC_ST TR.NSMITTER
SpecificationsPage
Description 1
Installation 4
Unpacking \& Reaiying for Operation 5
Theory of Operation 7
Initial Operating \& Tune-Up Procedure 9
Matching Into the A"plifier Grid Circuit 12
Neutralization

1. Driver 13
2. Amplifier 14
3. . u tomatic Recricle Operation 15
4. General Information 16
5. Renote Control Facilities 17
6. Resutting Overload Relays By Remote Control 18
Connections for Using Gates RDC-lOC Rewote Control Unit 18
7. Studio Unit RDC-lOC 19
8. Remote Controlling the Gates FM-20 19
Maintonance 20
Parts List 1-12dditional Instruction BooksPhotos:
8000184 002 Front View 8000202001 Rear View
Drawings:
8136026001B-655558423313001D-23127
$\begin{array}{llll}837 & 9748 & 001 \\ 842 & 3276 & 001\end{array}$

Power Output:	20 KW
Frequency Range:	88-108 Mcs.
R.F. Output Impedance:	50.0 ohms
Output Fitting:	3-1/8" EIA Flange
Type of Oscilletor:	Direct crystal controlled
Frequency Stability:	$\pm 0.001 \%$
Type of Modulation:	Phase Shift anploying pulse techniques.
Modulation Capabilities:	$\pm 100 \mathrm{KC}(\underset{\text { (lodulation })}{ \pm 75 \mathrm{KC} \text { considered } 100 \%}$
sudio Input Inpedance:	600 ohas
Audio Input Level:	For 100% modulation -+10 dbn , $\pm 2 \mathrm{db}$.
Frequency Response:	Within 1 db of standard 75 nicrosecond pre-emphasis curve, or flat $\pm 1 \mathrm{db}, 50$ to 15,000 cycles, whichever is desired (specified).
Distortion at 100\% Modulation:	1% or less - 50 to 100 cps . 0.5% or less - 100 to 10 KC 1% or less - loKC - 15 KC
Noise:	65 db below 100\% nodulstion (FM)
	50 db below equivalent 100\% (AM) Modulation.
Harmonic sttenuation:	At least 80 db (ratio of any single harmonic to carrier).
Power Input:	115 V., 50/60 Eps, 1 phase, 500W. demand.
	230 V., 50/60 cps, l phase grounded and neutral 5KVA demand 230 V., 50/60 cps, 3 phase 35 KW consumption at 20KW level
6/22/61 -1-	- FM-20B

Thabe Coupleiient:
$6-6 \AA U 6$
$1-12 _X 7$
$3-6 J 6$
$2-0.12$
$2-6146$
$1-7025$

2-4-400A
$1-6360$
1-6AQ5
1-6080
2-6146
2-4CX10,000D
3-6201
Silicon Rectifier Complement:

$$
\begin{array}{r}
2-55019 \\
2-66-3206 \\
16-1 N 2071 \\
152-50 \mathrm{KNF}
\end{array}
$$

Maximum Altitule:
7500 feet
Maxinurn imbient:
$45^{\circ} \mathrm{C}$
$S i_{z} \mathrm{C}$:
Width $-84^{\prime \prime}$ (less end bells)
$87^{\prime \prime}($ with end bulls)
Depth - 36-1/2"
Height - 78"
Weight:
2600 lbs. (approx.) net.
3200 lbs. (approx.) packed.

DESCRIPTIUN

The FM-20Bis an FM Transmitter with 20,000 watts nominal power output, operating on one fixed frequency between 88 and 108 mcs . The operating characteristics exceed those required by the Federal Communications Commission for standard FM broadcast service. The Transmitter is designed for continuous broadcast operation and consists of Exciter Unit, two intermediate Power Amplifiers and the Power Amplifier.

Three cabinets are required to house the entire Transinitter. The dimensions are given on the Specification Sheet. The left cabinet houses two Intermediate Power Amplifiers, Control Panel, Exciter and the 3,000 volt Power Supply.

The center cabinet houses the Amplifier, a pair of $4 \mathrm{CXIO}, 000 \mathrm{D}$ power tetrodes, the blower and blower controls, the Power Amplifier filament transformer, and the motor driven variable transformer for the driver plate transformer.

The right cabinet houses the control panel, the 6500 volt plate supply, the 1500 volt screen supply, and the bias supply for the 20Kw Amplifier. This cabinet houses all the relay equipment for starting and stopping the amplifier, and all overload and protection equipment that pertains to the Power Amplifier.
The M6095 Exciter, used in this Transmitter, employs a phase shift modulator using pulse timing techniques and may be adapted to single or dual channel Multiplexing on a plug-in basis, with blank panel space provided for the addition of the Multiplex unit.
Approximately 4 watts are required from the Exciter to drive the first Intermediate Power Amplifier, which is a pair of 6146's, Which in turn drives a pair of 4-400 ''s to a kilowatt output. These in turn drive a pair of $4 \mathrm{CXIO}, 000 \mathrm{D}$'s to a nominal 20KW output. From Exciter output to transmission line at 20,000 watts there are only three radio frequency stages. An important feature of this Transmitter is the lack of frequency multiplication, after the Exciter. This helps to eliminate spurious frequencies and improve tube life.

The driver, a nominal lKW unit, uses a pair of 4-400A power tetrodes. The plate circuit consists of a $1 / 4$ wave length shorted distributed open transmission line. The plate circuit is tuned by adjusting a grounded vane which changes the inductance of the plate circuit distributed lines, and thus the resonant frequency of the plate circuit. The output of the driver is coupled into the transmission line by means of an inductively coupled loop. Less than 400 watts is usually required from the driver for a 20 KW output from tie final Amplifier.

The final amplifier amploys a pair of $4 \mathrm{CXIO}, O 00 \mathrm{D}$ power tetrodes, in a push-pull grounded cathode type circuit. These tubes are conservatively rated at the 20KW output level. The plate circuit consisted of a distributed shorted $1 / 4$ wavelength line. This line is tuned by pivoting a shorting bar at one end to chnnge the electrical length of the line.

The output circuit consists of an inductively coupled balun which is rigidly mounted in the amplifier enclosure and is at d.c. ground at all points. The output loading is adjusted by means of a vacuum capacitor across the output balun.
The tube socket is of a special design for VHF frequencies. The RF by-passing for filaments and screens is built into the socket.

At the output of the amplifier there is the micromatch unit, which is used to meter the rof. power of the transmitter and to indicate the standing wave ratio of the transwission line.

This output is connectod directly to a low pass filter that substantially eliminates the second and higher order harmonics. The filter is $6-1 / 8^{\prime \prime}$ transwission line with distributed filtering elements inside. The cutput of the filter is fitted for a $3-1 / 8^{\prime \prime}$ E.I.s. flange. The filter is supplied as part of the transmitter and is tuned to the customers frequency at the factory.

All power supplies in the FM-2OBus silicon rectifiers. All voltage supplies in the Amplifier are separato and adjusted and operated independently for optimum amplifier operation.

All power supplies are protected by primary circuit breakers or fuses and the secondary of each power supply is protected by d.c. relays in the secondary return.

The high voltage plate supply is a 3 phase, full wave bridge configuration with a choke input. This supply is rated at 6500 V . d.c. at 5 amps. For preliminary testing this supply can be switched to about 3200 volts.

The screen and grid bias supplius for the dmplifier are single phase full-wave brj fe configurations. The screen supply is rated at 1500 volts at 500 ma. Both of these supplies can be adjusted from the front panel of the power cabinet.

The driver plate supply is a single phase full-wave type of design with a double section choke input type of filtering.

This supply is variable by means of a notor driven variable primary transformer and is controlled from the front panel of the P.f. power cabinet. This supply is capable of about 3000 volts at 500 raa . The 20Kw Power Amplifier and t te Intermediate Power Amplifier are totally enclosed, both tubes and components, in a non-ferrous type housing. Air from individual blowers cool both tubes and parts.

The P.A. tubes are air cooled by pressurizing the area below the anode and leaving a space above the anode to the ambient air pressure of the room. A blower mounted in the base of the amplifier cabinct is capable of supplying enough air for operation up to 7500 feut, and ambient air temperature up to $45^{\circ} \mathrm{C}$ and 50 cycle operation. Air enters the cabinet through a filter at the back of the cabinet and is then blown past the grid saal, screen seal and out through the radiating fins of the anodes and is exhausted through the top of the amplifier cabinet. Complete air cooling of all parts of the tubes and components associated with the power amplifier is accomplished in this innner. It will be noticed that the blower is ducted directly through the back of the cabinet snd all air intake for cooling the final tubes is taken through a filter, so that all air cooling the final amplifier cabinet is fresh filtered air. i disposablu type filter is used. In case the disconnect box supplying power to the transmitter would open, there is enough inertia in the blower itself to cool the tubj down to a safe valuo, and there is no nced to worry about heat rising within the tube, thus causing overheating of $\exists n y$ of the tube seals. Of course, standard practice would be to shut down the blower with the off delay relay and let it run for approximately three minutes after the transmitter, itself, is shut down.

Metering of all important stages is accomplished with muters located on the sloping panels at the top of the two end cabinets. Metorins of the F.A. consists of filmment voltmeter, and a switched multimeter for total grid current and individual screen currents, a switched total and individual pluts current meter, a plate voltmeter, and a switched power output and Visir neter.

Also located on the front panel of the power cabinat are neters for screen voltage and grid bias voltage.

Similar aeters are on the driver cabinut to determine driver operation.

The control panel for the Briver portion of the FNi-2OB is locsted in the first cabinet. This panel consists of the off-on switches for the linc, and the off-on switch for tie driver plate voltage, and various indicator lights, the "local-relote"switch, and the "tune-oper:to" switch.: The control pincl for the power awplifier is in the right c binet an̉ consists "f the "offon". , switch fir the power amplifier plate supply, a switch for filam dent voltages, a switch for grid and scroon currents, a switch for plate currents and the various lights indicating the operntion of the 3uplifier.

All over current and under current relays in the FM-2OB'Transmitter are tulephone type relays. The plato overload of tie driver and the plate and screen overload of the amplifier along with the grid over drive relay in the amplifier control circuit
are in a "locked out" type of circuit and after experiencing an overload these overload relays must be reset before plato voltage can again be applied.

Mechanically, the FM-2OB has been designed to be easily maintained. Ready accessibility to all parts is accomplished by lift off type doors. The sides for both cabinets may be easily removed by realoving two screws from the holding bracket at the bottom of the side panels and the side panels lifted off.

The use of drop down front panels in the amplifier and P.A. power cabinet also increase the accessibility of components mounted on the bottom of the cabincts from the front of the transmitter.
another feature is a swing-out panel in the P.A. power cabinet. By renoving the end bcil, the swing-out panel is free to open. In doing this, maintonance from the side is also possible.

The control panel located in the power cabinet is also hinged and is free to drop down. This completely exposes all metering circuits, overload relays, and switches so that it is possible to servica fron the front.

The meter panel for both the driver and the power amplifier are hinged and nay be lifted up by first loosening the fastener onequarter turn using a screwdriver or coin, and then lifting the muter panel up. This will give access to meter terminals and wiring of the Reflectometer or Micro-match switching section. The control circuit of the 20KW Amplifier is dependent on the control circuitry of 1 kw driver. If for any reason the 20 KW becomes inoperative, the driver can be connected to the transmission lime and operated independently of the 2OKW Amplifier.

INSTALIATION

In advance of actual $p l_{z} c e m e n t ~ a n d ~ a d j u s t m e n t ~ o f ~ t h e ~ t r a n s m i t t o r, ~$ certain prelininary planning should be done. The use of the floor plan drawing will assist in locating the power and audio inputs and power output of the transmittor. Power audio loads for the transaittur may be brought in through a trench provided under the transmitter if a concrute floor is used. If this is impossible a fremework of $2 \times 4^{\prime}$ s or $4 \times 4^{\prime}$ s may be made to set tie transmitter on.

Leads froin a low reactance power sources of 240 volts, 50/60 cycles, 3 phase with a 60 KVi capacity, also 230 volts, 50/60 cycle, single phase grounded neutral with a $5 \mathrm{KV}_{11}$ capacity, and $l 15$ volts, $50 / 60$ cycles with a 500 watt capacity should be placed underneath the proposed transmitter location or platforil. These wires should be in agreement with local electrical codes and which would be practical to carry the current of the transmittor.

Running of the power leads inside a steel conduit is highly recomended to obtain both audio and radio frequency shielding near the transwitter.

To assist in keeping RF currents in nearby audio equipment tu a minimum, a good ground at thesc froquencies is mandatory. One of the best known nethods of doing this is the installation of a sheet of copper or a ground system beneath the complete transmitter layout. RF usually shows up in one of two ways, feedback or high noise, or both. It should be pointed out that even a small arount of unshielded wire makes a very efficient antenna at FM frequencies, for transforring RF to the grids where it is rectified and passed on as noise and feedback. It is preforable to have a single comon ground point from the transmitter copper shield to a good ground.

Since heat is developed in the transmitter: it will be necussary to provide a means of wxhausting air expellcd through the top outlets of the unit to the outside. An air duct leading to the outside should bo provided, and provisions made for utilizing this heat in the winter if desired. Ther are several kilowatts of heat dissipated, and if allowed to recirculate back through the transmitter, the forced air couling will become very inefficient and can cause daiage to tubes and other coiponents. The duct work where the trans.itter is used should not introduce any back pressure. UNPACKING ND Ribat DYING FOR OPARiTION

The FM-2OB is carefully checked and packod at the Gates plant to assure its safe arrival at its destination in proper muchanical and electrical condition.

Tests of many diffurent kinds are made at the factory, and the unit is operated for several hours on the custoiner's operating frequency to assure correct adjustiant of proper operating conditions.

Iminediately after the FM-20Bhas been received and unpacked it should be carefully chocked for mechanical damage. If danage is noticed in any section of the equipment a clain should be filed imediately with the delivery transportation company and the necessary roplacemunt parts ordered from the Gates Radio Company.

It is good precautionary practice to completely go over the equipment to check for loose connections, loose coiponents, broken insulators, etc., that might have bucome. loosened or damaged in shipment. Make sure all relay contacts are free and in good rechanical operation. Make sure all mechanical connections are tight. The power contactors are either tied down or blocked sufficiently to keeo them from vibrating during shipment. These should be checked and the shipping material re-
\#oved. A good overall visual inspection may Save much time later in actual trouble getting the iransmitter to operate correctly.

Certain parts of the transmitter were removed for shipment and are packed separately to insure safe handing. These parts on the $F M-20 B$ hive been kept to a minimum, and are mainly plug-in units, relay covors and heavy components. The tubes that are not clamped in for normal operation are also removed. Reference to the packing check list included in this book will list the items renoved for shipment. As the components are renoved, the wires connecting each comonont are numbered, or tagged, for replacoment of these parts. Photographs are supplied to assist in the proper placement and orientation of thesc components that have been removed for shipment.

As the threc cubicles of the transmitter are unpacked, and heavy transformers, chokes, ctc. are unpacked, it will be noted that the components and wires that were connected to then have been marked. The high voltage plate transformer and heavy conponents in the right cabinet, that have been removed for shipment, should bo installed in the cabinet before the first and second cabinets are finally bolted together for final installation. The heavy components in the driver cabinet, that have been removed for shipment, should be re-installed in their proper pl cu bufore the first and second cabinets are bolted together. It will be noted that all inner cabinet wiring has been teminatcd on terininal borrds which are directly opposite the adjoining cable. All that is nucessary to connect the cabinets together is to connect the cable to the matching terminals on the terminal boards. The terainal board drawings which are included in the ins ruction book should be refered to in order to eliminate the possibility of errors in connecting the cubicles.

Particular attention should be noted of the wires that are connectud to TB803, the main line input ter inal board. If thuse wires are not connuctud in the proper shase relation tiae blower will run backwards. C_{n} first turning the transmiutor on, this should be noted. If the blower ras backwards from the diruction indicated on the blower housing, revursing any two wirus will reverse the phase and cause the blower to run in the right direction. It should be well to note her that this blower, running in a backward direction will not supply sufficient air for cooling the amplifier tubc, neither will there bo sufficient air to close the air switch. Therefore, it will be inuossible to energize the filnment transformer for the amplifier filaacnts if the blower is running backwards.

THEORY OF OPERITION

When the low voltage "On" button, S502, is pressed on the 1KW control pancl, contactor, K501, is energized. When K501 is energized, linc voltage is applied to the cabinet fan, blowor, primary to all filament transformurs, the low voltage powor suppljes and the exciter power supply in the left cabinet. With the energizing of K501, K804 in the amplifier control cabinct is also energized. With the energizing of K804, the primary circuit is complete to K602, which is the blower off delay relay. Also, when 602 energizos, K601, which is the blower starting relay, will also energize. With the energizing of K601 the blower will start. As the blower comes up to speed, S605, which is the air switch, will close. With the closing of the air switch, the auxiliary filamunt contactor K806 will then closu and completo the prinary circuit to the P.A. filament transformer.
at this time all low voltago supplies, fan, blowers and tube filaments should be operating. This will be indicated by the lights on the control panels of the driver and the power amplifiar.

If all of these lights are not on, high voltage to the driver or the amplifier can not be applicd.

This condition will occur if these conditions are satisfied:

1. all door interlocks closed.
2. Grounding hooks in place.
3. Both air switches closed.
4. Voltago applied to tho filament transformers.

5, Grid bias developed in the driver.
6. Sufficient fixed bias developed by the P.A. supply.

Because of the nature of this control circuitry, all functions in the driver zust be complete bofore ny indications occur on the P.A. control panel.
With the closing of S506 the high voltage "on" button on the 1KW control panel, K 503 is unergized and both plate and screen voltagus are applied to the driver. With the pressing of S704, the high voltage "on" button on the power amplifier control panel, K805 is energized and plate voltage is applied to the power amplifier.

Voltage is then applied to CR801. This voltage is rectificd and operates a slow-operate relay K802. This relay then closes and cnergizos an auxiliary relay K801. When this occurs the main contcotor, K808, coil circuit is comleted and full line voltage is applied to tho plate transformer, T80l.

At the same time K801 completes the circuit to T802 and screen voltage is applied to the anplifier. This step-start technique eliminates much of the transients which occur on starting.

S801, which is the high-low switch, switchus the input to the filter from the output suction of the rectifiers to the center tap of the plate transformer, tus giving half voltagc output which is usuful in initial tune-up and primary checking of the transmituter.

A micro-match is used as an indicating or sampling device for the RF output and is also used to indicate the match to the transmission line and the antenna. The Micro-match in the driver and the Micro-match in the amplifier are the same in their operation, the only diffurence being the power handing capabilities. The Micro-match unit in the 20KW output is rodified to the cxtent of placing a sarpling loop in the output end, and this loop can be used for monitoring. It is also used for remote outout meturing for remote control operation.

Since the power contactors are non-circuit breaker type and require a momentary "on" and a momentary "off" typu of function to enorgize thein, the transmitter is easily remote controllud.

To facilitate easier remote control application the off-on functions of the transmittur heve been brought out to torminal boards.

To Multiplux the Gatus FM-2OBis relatively a simple mattor. The main channcl ixciter in the driver side was spociricaliy designed with Multiplex in mind. Space has been provided directly below the exciter for the placing of the Multiplex unit. a minimum amount of connections are necessary to connect this unit to the nain channcl oxciter. Connections necessary are the coax connectors to tho Filultiplox excitur in the Multiplux chein. This is done on the iront panel of tie two units. Other connections nucessary are power fron 115 volts source. This can be taken off of 115 volt terminals of tho main chenncl exciter and the connecting of the audio to the terminal board on the Multiplex unit complutes the nacussary wiring. The Multiplox unit is capable of handling two sub-channcls and, therofore, there are two cudio input terminal arrangements available on the terainal board of the lilultiplex unit.

INITIsi OP

Before attempting to tune up the transmiter, make sure it is connected to the transmission line and antenna that will present a load of a nominal 50 ohms, or a non-reactive dummy load with the proper power handling capability. At this time, reference should be made to the Factory Test Data Sheets and all controls and adjustments set to the readings given. Before actual tune-up begins, the tube data sheets included in this instruction book should be carefully studied and compared with the factory test sheet. In general these ratings are maximuins and should not bu oxceeded under normal operating conditions. Inserting $4 \overline{\mathrm{CXIO}}, \overline{O O D}$ into sockets:

1. Pick up tubes by handles.
2. Carefully align the tube so that it is directly over the plate line contact ring.
3. Carefully contact the anode radiator with the plate contact ring.
4. Continue lowering the tube into the socket.
5. When the tube has made contact with the filament contact rings, a gently downward thrust will set the tube in place.
6. When the tubes have seated, the tube should be rocked slightly to insure that all contact surfaces have mated.

DO NOT AT ANY TIME twist the tube into the socket.
Before applying any high voltage it is reconmended that an onmmeter chack be made of all power supplies to see that they have not become grounded by accident. The supplies will read about 100,000 ohis once the filter capacitors have charged.

After the installation is complete, all input and output cables have been connected and the crystal operating for a couple of hours or inore, primary power may now be applied. Before applying primary power, the switches on the drivur control panel should be in the following position. S518, which is a localremote switch, should be in the local position. The tune-operate switch, S519, which is used in conjunction with the automatic recycle unit should be in the tune position. Next, press the low voltage "on" button on the driver control panel. This applies all primary power to the complete transmitter. At this time it is woll to check the rotation of the main blower in the 172 cabinet to inake sure the blower is running in the right direction.

As previously mentioned, if the blower is running backwards change any two of the three phasu wires on TB803 to change rotation of the blower to the right direction.

Check P.A. filament voltage and adjust filament voltage with powerstat, 1803 , to read 7.5 volts as read on the filament
voltmeter of the amplifier, M801. Next, placu switch, S801, which is the high voltage-low voltage switch of the amplifier in the low voltage position. Next, reduce the driver plate voltage by depressing button marked "lower" on the amplifier power cabinet control panel.
This powerstat will be set to nearly maximum on receipt from the factory. It requires approximately 15 seconds for the motor driving the powerstat to take the powerstat from full maximum to ininimum. Depress button marked "lowar" for approximately 15 seconds, or until "Low "Limit" light operates. The powerstat should then be at minimum. Then depress the "Raise" button for approxirately 4 seconds. This should give 600 to 700 volts on the driver as read on the driver plate voltmeter, when the driver high voltage switch, S506, is depressed.

Provision is made on the first IPA driver stage for metering the grid bi2s voltage of the IPA driver by means of a test point on the panel. A meter such as a Simpson Model 260, or equivalent, may be used. With negative meter lead plugged into this test point and the positive lead on ground, a rise in grid voltage will be observed as the Exciter comes up to operating temperature. This is a good check on the exciter operation.
Place the switch, S512, which is a test meter switch located on the bottom center of the driving amplifier panel, in the grid position or extreme counterclockwise. If the exciter and IPA are functioning properly, about 20 ma, of driver grid current will be indicated. If this is not the case a bit of trimming of the previous tuned circuits will be nucessary. When this has becn achicvod initial tuning can proceed.

When originally chicking the driver portion of the FM-2OBcare must be exercised in keeping the driver plate voltage to a low setting. High plate voltage on the driver will result in uxcessive screen current due to rectified grid voltage on the amplifier.

Press the high voltage "ON" button, on the driver control panel, and immediately check the plate voltagi on the driver. Adjust as necessary for 700 to 800 volts of plate voltage on the driver. Increase the plate voltage on the driver to about l, 000 volts and check driver plate resonance with control marked "plate tuning." it this time P.i. grid current will be indicated. Therc should be about 50 Mm . depending on how much drive is applied and how much fixed bias is being used. It may be necessary at this point to reduce the fixed bias to about 200 volts. The grid tuning control to this time may need to be trimmed for maximum grid current.

Before pressing high voltage "ON" button on the amplifier control panel, reduce the amplifier screen voltage, as controlled
by powerstat, T804. Press high voltage "ON" button on the amplifier control panel. Reduce screen voltage to approximately 400 volts. It is best at this point to set the screen grid cirrent switch, S702, which is located on the amplifier control panel to the screen current position and monitor screen current as the transmitter is progrossively tuned.

Increase the driver plate voltage in steps to approximately 2,000 volts. This should give approximately 6 kilowatts output on the amplifier. Check tuning of the final amplifier with the control marked "Plate tuning". It will be noted that wien tuning the amplifier plate circuit, the best indication will be obtainod by watching the output moter, as the amplifier is quite heavily loaded and plate current dip is slight. This is in accordance with operating characteristics of tetrodes. They should be operated in a hoavily loaded circuit.

It will be noted that the output loading or output coupling control has a great iffect on the power output. This control should b e adjusted at a point where maximum power and minimum screen current occur simultancously. This will not be the point where a possible minimum screen current could occur.

This control should be trimmed for m_{a} xinum power output every time the amplifier operating characteristics are changed on initial tuning.

It is well to note here that the tuning of an FM Transmitter in the frequency range of 88 to 108 mcs offers greater difficulty in regard to tuning various circuits than is normally encountered on the lower AM frequencies. This fesults in greater reaction butween various circuits caused by small inductance and capacitive reactances that can be normally ignored at lowor frequencies, but which can become increasingly inportant at these high frequencies. Therefore, when tuning a high frequency transmitter it is well to constantly recheck the provious adjustinent as tuning progresses.

If all of the above conditions exist and all secms normal you are ready to go to full plate voltage on the amplifier with full power output.

First, turn the driver plate voltage off and the amplifier plate voltage off. Next, place the $6500 / 3000$ volt switch to the 6500 volt position, then turn the amplifier plate voltage on and the driver plate voltage on. Increase the amplifier screen voltage to about 800 volts. Increase driver plate voltage to the amount required to obtain 20KW output. A sliget amount of retuning nay be necessary on the grid of the ampIifier to obtain maxinum grid current in conjunction with minimum VSWR between stages. The plate tuning of the amplifier nay also have to be adjusted slightly for minimuw plate cur-
rent in conjunction with 20KW of output power. Igain, check the driver plete circuit for resonance by adjusting control on the driver panel ilarked "plate tuning".

At this time a check of the natch between the driver and the amplifier grid should bc made. The grid tuning control C618 and C619 should be adjusted for maxinum grid current and the grid loading control C 620 adjusted so that zaximum grid current and ininimurn VSWR occur simultaneously. i VNWR of 1.1-1.4 is normal.

The transuitter should now be operating normally.
Each installation has different conditions where the Trainsaitter works best bucause of trans.iission line and antenna characteristics. A careful triming of the amplifier should be made. These are the conditions which should be strived to achieve:

1. Minimun drive to the driver and amplifier grid for a given output power.
2. Plate circuits tuned to resonance, (Tetrodes which are heavily loaded, a plate current dip is very slight).
3. Plate and screen dissipition at a minimum for a given power output.
4. Operation of amplifier with as auch fixed bias as necessary without reducing the power output or excessive đrive requirenents for a given operating point.
5. Output loading control trinued for maxiaua loading conditions.
6. Minimum VSWR between driver and amplifier.

If a reduction in power output is desired this can be done by lowering the screen voltage and reducing the drive. The amp-
lifier should then be reloaded for this new operating point. Under no conditions should the power output of the amplificr be reduced by unloading the amplifier.

NEUTRALIZATION

DRIVER

The driver has been properly neutralized at the factory on the customer's frequency. Due to rough handling during shipmont neutralization may be affected. Impropur neutralization is indicated by several abnormal condttions showing up in the operation as follows.

1. When the jrid current does not rise to maximum with a dip in plate current as the amplifiur plate tank is tuned to resonance.
2. If excitation is renoved from the amplifier and the P.a. grid relay does not open. This indicates oscillation in the power amplifier. This self oscillation produces grid current which holds the relay, $K 506$, closed; thus, keeping the plate voltage appliud allowing the amplifier to continue. in self oscillation.
3. If the balance control, R504 and R505, do:not enable tube plate curients to maintain a balance within 10\%.
4. A radical change in grid current from the value given on the Factory Test Data Sheet. The nutralizing controls for the driver have been brought out to the front panel of the driver to a special machined bushing. In the center of this special bushing is a shaft for the machined screwdriver slot. It will be noted that on both the special bushing and the internal screwdriver shaft there are two black dots. These two dots are aligncd in a vertical position and the neutralizing capacitors arc of maximum capacit.y. It will also be noted that on this special machined bushing is a red dot, which will appear directly opposite the black dot on the moveable portion of the shaft. This red dot on the special machined bushing indicates the location of the neutralizing capacitors as they were set at the factory. These marks will scrve as a good starting placu if complete re-neutralization is nccessary. These neutralizing capicitors are locked in place with a locknut on the rear of the capacitor shaft.

If any of the aforementioned conditions are observed when the unit is first placud in operation, this indicates that reneutralization is in order. This is accomplished as follows:

1. Remove the bottom cover from the P.A. tank.
2. Loosen the locking nuts on the rear of the neutralizing capacitors slightly, so the shaft will turn free with a slight drag on the shaft.
3. Remove one of the plate caps from the high voltage rectifier.
4. Replace the bottom cover on the amplifier tank.
5. Apply low plate voltage and adjust either C303 or C308 in one direction and again check for neutralization.
6. If improvement results, adjust the other capacitors the same amount in the same direction and a ain recheck for neutralization.
7. Continue this procedure step by step rotating capacitor C303 and C308 in the direction that indicates proper neutralization.
8. Replace cap on high voltage rectifier for normal operation and rechock neutralization.
9. Kenove the bottom cover of the amplificr tank and retighten the locking nuts on the rear of the neutralizing capacitors, being careful not to move the adjustment when these locknuts are retightened.

SMPLIFIER

The amplifier also must be neutralized for proper operation. Improper neutralization is indicated by possible self-oscillation and great fluctuations of grid current as the plate tuning and loading controls are adjusted through plate resonance.
To eliminate this condition:

1. Remove amplifier tubes fron their sockets.
2. Loosen hardware securing neutralizing capacitor plates C624 and C625, and move capacitor plates simultaneously either towas the tubu or away from the tube.
3. Secure hardware, install tube, and turn on driver but do not apply plate voltage.
4. Tune grid circuit to resonance.
5. Tune plato circuit through resonance and watch for abnormal reflections into the grid circuit.
6. Repeat the previous 5 steps until minimum interaction and grid current fluctuations occur.
Another possible method of ncutralizing is to couple a sensitive R.F. Hetering device into the Amplifier Transmission line output. This can be donc in the following Bteps:
7. Couple the RF device into the transmission line.
8. Turn on tho low voltage filaments and apply grid but do not apply plato voltago.
9. Tun plate to resonance for $\mathrm{m}_{\text {a }}$ ximum meter indication.
10. Tune grid to resonance.
11. Adjust neutralizing capacitors for a minimum feedthru of R.F. power.

AUTOMATIC RECYCLE OPERITION

With the transaitter operating properly, all that is nucessary to place the transmitter in automatic recycle operation is to place the "tune operate" switch in the "operate" position. This places the recycle unit into the transmitter's control circuit.

The recycle unit is described in a separate series of instructions which is a part of this instruction book. The following will take a typical transmitter malfunction and trace its operations:

1. The P.A. amplifier platu circuit experiences an overload. Relay K708 energizes and locks closed. At the same time the plate overload indicator light will be extinguished.
2. The primary auxiliary overload relay, K3 in the recycle unit, is energized by the contacts of K708 closing, which parform thres functions.
a. It breaks the 240 volts a.c. circuits to the high voltage contactors, K503 and K805 in the driver and power amplifier control circuit.
b. It applius 117 volts a.c. to the time dolay relay, K4, in the recycle unit.
c. It also applies 120 volt d.c. to Rl in the recycle unit, which starts the recycle sequence.
3. After ain elapsed tinu of approximately 3 seconds, relay K3 again opens. The overload relay which was previously locked down and K708 also opens and relay K2 closes, which in turn energizes the high voltage contactor coils. If the overload is still present the same sequence of operation will be again performed. This will happen a total of three consecutive times, after which the transmitter will remain off until it is reset and the overload cleared.

With the "tune-opurate" switch in the "operate" position, the following is the sequence of operation.

With the application of platc voltage on the driver, drive is applied to tho amplifier.

With the application of drive to amplifier, K702, the grid under drive relay is unergized. With the onergizing of K702
onc set of contacts in this relay complete the coil circuit to K703, an auxiliary relay. When this relay closes, its contacts complete the coil circuit to K 805 , which is the HV contactor. $K 805$ closes and completes the primary circuit to the HV plate transformer; thereby, applying voltage to the amplifier.

GË. LRII INFORMATUN

There are some facts about the driver which should be known and remembered that will help in operation of tise equipmont and contribute to bettur operating results.

1. Tuning of the plate circuit changes t e effective electrical lungth of the plate tank. Increasing the spacing butween the tuning vane and the plate tank line lungthuns the effective length of the plate linc and lowers the frequency. Convorsely, ducseasing the spacing will raise the frequency.
2. Switch, S510, locat d on the driver panel in the lower loft hand cornor is provided for checking individual cathode currents of V301 and V302.

The balance contril, R504 and R505, is provided on the front panel to enable the operator to maintain a balance of plate currents. When 5510 is in mid position the meter, M503, is reading total plate current of V301 and V302.

Thu suri of plate currents as indicated by switching 5510 either left or right of the mid position is not equal to the total plate current as indicatud on M503 when this switch is in the mid position. When S 510 is switched either left or right of mid positio., thu metei is roading cathode current of that particular tube. The switch wust be left in the normal or mid position while the transmitter is operating except on initial tune up or for checking balance between tube plate currents.

S5l2 is a multi-meter switch, which is used to read either total grid current or individual screen currents of the driving amplifier tubes.

Protection against ulectrical shock, from high voltaga circuits, is provided for by door interlock switch, S514. When the back door is removed, 5514 will open and immediately remove the high voltage from the amplifier. When S514 opens, relay K502 is de-unurgized and opens the holding circuit on K503. Therefore, removing the primary plate voltage from the high voltage transformer.

These are some facts about the amplifier which will contribute to better operation.

1. The amplifier control circuits are dependent on the driver.
2. There are, basically, two distinct systems. One series of circuits in the driver and the amplifier are for interlocks, air switches and grid bias functions. Because of the nature of the syster, all functions must be complete and satisfied in the driver before indications can occur in the amplifior.
3. The other control circuits have to do with driver and amplifier overload functions. When an overlond occurs, the associated relay closes. When this occurs, three events happen -
a. The indicator light is uxtinguished.
b. $110 \mathrm{~V} . d . c$. appliud through R708 holds the relay
c. The contacts of suction i of the relay complete the circuit to the recycle unit.
If the "tune-operate" switch is in the tune position, the rel_{9} y which has oxperienced the overload must be de-energized by pushing the inanual reset button.

If the transintter is in the operate position, the transmitter will recycle and try to turn itself on.

The filanent voltage on the amplifier will chan, e with output power. This is bocause of power line loading. The filament voltage during operation should be maintained at 7.5 volts.

The balance control, R806, has an effect on the individual grid bias voltage and is used to adjust the plate and screen currents to similar values.

These currents should be within 10% so that there is somewhat equal dissipation of each tube.

The grounding hooks which are a part of the transmitter should be used when making cepairs and adjustzaents on the transmitter. These devices must be returned to their hook before the transmitter is operated because this is part of the interlock system.

REMOTE CONTROL FACILITIES

To remote control the FM-20B, three reinote control functions will be required. These are:

1. The fail-safe control function required by the FCC.
2. A momentary "off", momentary "on" function required to turn the driver plate voltege off and on.
3. A raise-lower function for controlling the motor that is used to drive the plate voltage powerstat.

The first two remote control functions are terminated on TB503 in the driver portion of the FM-2OBtransmitter. The third, raise-lower function is terminated on TB604 in the amplifier cabinet.

Six matering functions have been provided, these are driver plate voltago and current, and amplifier plate current and voltage, filament voltags and RF output. The metering functions of the driver are terminated on TB503. The metering functions of the amplifior are teruinated on TB604.

RESTRTING OVBRLO A D $A D L Y S$ BY REMOTE CONTRUL
K507 is the remote overload relay reset and is connected to a $6 \mathrm{~V} . \mathrm{d} . \mathrm{c}$. source from one of the stepper positions on the renote control unit. All that is necessary to reset the overloads renotely is to dial through the position, on the stepper relay, to which $\mathbb{K} 507$ is connected.

CUNN CTIONS FOR USING GITES RDC-IOC REMOTN CONCROI UNIT RDC-10 TB503 DRIVRR

Overload-Relays
Jumper TB5-1 to TB3-30
Jumper TB604-13 to ground

RDC-10C	TB604	AMPLIFIER
TB2-1	7	Remote Plate Current
TB3-25	8	Transmitter Ground
TB2-2	9	Remote Plate Volts
TB2-3	10	Remote RF Output
TB2--4	11	Ramote Filament Volts
	12	Not Used
	13	Not Used

AMFIIFIER

TB3-26
TB3-28
TB3-27
TB3-17

14
15
16
17
18
19
20

Raise function
Lowar Function
Cominon
6V. Stepper relay position Ground

110V. a.c. from Driver

Studio Unit RDC-10C
Position \#2 P.s. Plate Voltage
Position \#3 P.A. Plate Current
Position ift P.A. Power Output
Position \#5 P.A. Filament Voltage
Position \#6 Driver Plate Voltage
Position \#7
REMOTE CUNTROLLING THE GAT TS FM-2OB

1. Connect the two wires from the fail-safc relay in the remote unit batwee n TB503-2 and TB503-3.
2. Remove jumper between TB503-4 and TB503-3.
3. Connest the momentary "on" function to these two terminals for plate off.
4. Connect two wires from remote unit to TB503-5 and TB503-6 for monontary plate on function.
5. Place "local-Remote" switch.in "Remote" position.
6. Place "Tune-Operate" switch in "Operate" position.
7. Connect "Raise-Lower" furction relays between 14,15 and 16 on TB604 with TB604-16 common.
8. Connect interlocking voltage to TB604-17.
9. Connect renote P.A. plate voltage meter to TB604-9.
10. Connect remote P.A. plate current meter to TB604-7.
ll. Connect remote P.A. RF output meter to TB604-10.
11. Connect renote P.A. filament volts to TB604-1l.
12. Connect realote driver plate voltage meter to TB503-8.
13. Connect remote driver plate current meter to TB503-7.

MAINTENANCE

Maintenance of the FM-2OBshould consist of periodic checking of tubes, cleaning, visual inspection and lubrication where required. The use of air filters materially assist in keeping the transintter interior clean; however, often periodical removing of dust will still be necessary. Since electrostatic fields create "dust catchers", attention should be paid to these placus. Support insulators in the tank are probably the worse offunders. They must be kept clean and free of all foreign material at all times. Not to do so may result in arcing and shattering of the insulators.

Particular care must be taken to remove dust fron the high voltage feod through capacitors in the amplifier. These capacitors should be cleaned both inside and outside of the araplifier enclosure. This part is probably the most critical in the high voltage wiring because of its nature to attract small particles of dust.

The teflon deck which acts as an air chimney for the tubes, should also be wiped clean.

The underside of this deck should also be kept clean. The removal of the tubes will be necessary for this operation.

When inspection of air filters discloses dirt or foreign material, they should be discaided and replaced with new ones. The type of filter used in the FM-2OBis a disposable type filte. and nay be replaced at most any local hardware or heating supply store.

Once a month the entire transmitter should be cleaned of dust. In the same case of the power amplifier, open the back door of the enclosure and thoroughly wipe it clcan of dust after checking for HV present. In the case of the driver anplifier, the back door is removed by loosening six Lion fasteners, the interior of this amplifier should also bu wiped clean of dust.

The protective relays should have the dust cleaned out as required and contacts burnished with a burnishing tool. Ihese relays are protected with dust covers and ara telephone type relays and should require little attention.

The contact aruas of the shorting bar in the plate linc asseribly should bo lubricatud occasionally with a silicon base lubricant. This will make for easier tuning and reduced wear. The moving parts in amplifier should also be lubricated for the same reason.

The bearings for the blower of the motor for the P.A. are sealed bearing normally giving long trouble free operation.

They are lubricated for approximately 20,000 hours of operation. If for any reason the transmitter is inoperative for long periods of time the grease in these bearings should be changed. This is done by taking the drain plug out of the bottom of the bearing and a grease fitting should be attached to the upper plug on the bearing and new grease applied until the new grease runs out of the drain plug at the botton. In the case of the blower in the driver portion of the transmitter it should require a periodic drop or two of oil in the oil cups provided. The exhaust fan in the driver and araplifier have sealed bearings and require no lubrication.
This transnitter is a precision electrical device and as such should be kept, at all times, clean and free of dust or foreign material. Dust shortens the life of many components due to flash-overs, arcs, etc. which damage same. Also, dust and moisture condensation will lead to possible arc overs and short conductive paths and possibly reduce the efficiency of the amplifier.
A small brush and a soft rag can be used very effectively in keeping the equipment clean.
A good preventive maintenance schedule will provide best assurancefor trouble free transmitter operation.

PARTS IIST

1KW TR.NSMITTER C.BINET

Symbol No.	Draw	ving	Ho.	Description
B501	430	0002	000	Fan, ll5V., 50/60 cy. 1500 RPM, 650 cfrl.
C501, 0502	510	0246	000	Cap., 4.0 mfa., 5000 V . (W)
F501,F502	398	0186	000	Fuse, 30 amp., 230 V .
L501, L502	476	0105	000	Choke, 10 Hy .
R501	552	0405	000	Rheostat, 15 ohm, 150 W .
R502,R503	540	0618	000	Res., 2000 ohm, 2W. 5\%
R504, R505	552	0721	000	Rbeostat, 2 Section in tandeir, 300 ohrl per section
R506, R50'7,				
R517	542	0056	000	Res., 20 ohre, 10W.
R508	542	1051	000	Res., 2.5 ohm, 10w.
R509	550	0029	000	Control, 10K ohm
R511	548	0004	000	Res., 5 meg. mutor uultiplior
R513	542	0565	000	Res., l00K ohn, 190 W.
R510	550	0067	000	Control, 10K ohm
S509, S511	600	0162	000	Switch, rotary
S510	600	0302	000	Switch, l suction, 3 circuit 5 position
S512	600	0280	000	Switch, Rotary
S513	604	0086	000	iir Switch, close at .25", open at . 1 " water colurn
S514	604	0061	300	Interlock Switch
S516	926	6665	001	Interlock Switch and Grounding Hook issembly
T301, T302	472	0111	000	Transformer, P.i. Filament
T501	472	0307	000	Transformer, Power
TB501	614	0047	000	Terminal Board, sudio
TB502, TB517	61.4	0092	000	Terminal Board, ll5V. A.C. and FM-lOi jumper
TB506	614	0052	000	Terminal Board, Contactor Pancl
TB507	614	0046	000	Terminal Board, Fan
TB510	614	0100	000	Terminal Board, Contactor Panel
TB511	614	0093	000	Terminal Board, Powerstat FMM-10i
TB514	614	0046	000	Terminal Board
XF501	402	0015	000	Fuse Block

Symbol No.	Drawing No.			Description
M501	630	0049	000	Meter, Fil. Volt 3-1/2" O-IOV.
				AC (non-magnetic panel)
M502	632	0074	000	Meter, PA Grid Current, 3-1/2" 0-50 Mi DC (non-magnetic panel)
M503	632	0026	000	Meter, Pis Plate Current, $3-1 / 2^{\prime \prime}$
				O-1 imp. DC (non-mag. panel)
M504	632	0148	000	Meter, Plate Voltage, 3-1/2" O-1 Mi DC movement w/O-5000V. DC
				Scale (non-magnutic panel)
M 505	913	1256	001	Meter, R.F. Output
C503, C504, C505				
C506, 6507	516	0082	000	Meter By-Pass Cap., . 01 wfd., IKV
DRIVIRR MPLIPIER T\& ${ }^{\text {N }}$ NK				
B301	432	0026	000	Blower, 115 V . 50/60 cycles, CCW
C303, C308	520	0091	000	Cap., Variable, 50 mid.
C306, C307,	516	0204	000	Cap., 100 mmfd., 5000 V.(W)
C311	520	0249	000	Cap., Variable, 20 uuf.
C312	516	0233	000	Cap., $500 \mathrm{mfd}$. , 30 KV .
C313,C314				```Neut. Padding Condenser (Det. by Freq.)```
DC501	620	0034	000	Micro-match, 0-1200 W. 50 ohm
J301	612	0232	000	Receptacle "N"
J302	612	0230	000	Receptacle "UHF"
L301	813	1281	001	Plate Choke
L302,L303,				
L306	494	0004	000	Choke, 7 Microhy.
L304	813	1532	001	Input Grid Coil
L305	813	1531	001	Input Coupler Coil
L309	926	5524	001	Plate Linc issembly
L310	813	1060	001	Output Coupling Loop
L311	910	9741	001	Monitor Loop issembly
R301,R304,				
R305	542	0728	000	Res., 100 ohm, 2W. 10\%
R306	542	0085	000	Res., 3500 ohn, 10W.
R307	542	0088	000	Res., 5000 ohm, l0W.
R308, R309	540	0740	000	Res., 1000 ohm, 2W. 10\%
R310	542	0316	000	Res., 2000 ohm, 20W.
TB301	614	0113	000	Terminal Board
TB302	614	0092	000	Terminal Board

FARTS IIST

M-5652A FOWER SUPPLY

Symbol No.
C201, C202
F201
F202
L201,L202
R201
T201
T202
T 203
TB201
TS201,TS202
TS203
V201
XF201, XF202
XV201

Description

Capacitor, 8 mfd., I000V. D.C.
Fuse, l/2 amp., 250 V .
Fuse, Slo-Blo, l-1/2 amp. 125V.
Filter Reactor
Resistor, l00K ohm, 20W.
Filament Transformer
Filament Transformer
Flate Transformer
Terminal Board
Tie Point
Tie Foint
Tube, 5R4GYA
Fuseholder
Socket

M-5675 AMFLIFIER

C401	520	0004	000	Capacitor, Variable, 2-19 mmfd.
C402	520	0194	000	Capacitor, $500 \mathrm{mmfa} ., 500 \mathrm{~V}$. Button Type
C403, $\mathrm{C4O4}, \mathrm{C405}$	516	0215	000	Capacitor, $100 \mathrm{mmfd} ., \pm 10 \%$
C406	520	0115	000	Capacitor, Variable, 5-25 mmfd.
C407	520	0164	000	Capacitor, Variable, 2-15 mmfd.
C408, 6409	516	0227	000	Feedthru Capacitor, 500 mmfd .
C410	516	0235	000	Feedthru Capacitor, 1000 mmfa .
C411	520	0112	000	Variable Capacitor, 2.2-21.5 mmfd.
J401, J402	612	0233	000	Receptacle
L401	813	1772	001	Grid Coupling Coil
I402	813	1762	001	Grid Coil
L403	813	1761	001	Grid Coil
I.404	913	1774	001	Plate Coil Assembly
L405	813	1771	001	Plate Output Loop
L406	494	0007	000	R.F. Choke
L407, 工408,				
L410,1411	494	0004	000	R.F. Choke
L409	813	0246	001	Filament Choke
L412	813	3607	001	Coil
I413	813	3608	001	Coil

POWER IMPLIFIER CENTIR CUBICLE

Symbol No.	Gates Part No.	Description
L607	8267787001	Fil. C'hoke
L608	8267790001	Fil. Choke
$L 609$	9267581001	Grid Line Assembly
L610	9267581002	Grid Line Assembly
L611	9267587001	Grid Input Coupling Line Assy.
I612	9379526002	Plate Line Assy.
L613	9267582001	Flate Output Coupling Line Assy.
L614	9267593001	Plate Choke Assy.
R601, R602	5500061000	Potentiometer, IK ohm, 2W.
R603, R604	5400740000	Resistor, 1K ohm, 2W.
R605, R606	5400837000	Resistor, 250 ohm, 10\%
S601	9265589002	Switch, High Voltage Gnd.
5602	9266665002	Switch, Gnd. Hook Assembly
S603, S604	6040061000	Switch, Dour Interlock
S605	6040092000	Air Switch
T601	4720337000	Transformer Filament
T602	4740050000	Powerstat, (Two Ganged)
TB601	6140104000	Terminal Board
TB604	6140064000	Terminal Board
V601, V602	3740077000	Tube, 4CXIO, O00D
XF603	4020074000	Indicating Fuseholder
XV601, XV602		Tube Socket Assembly
DRIVER ELATE VOLTAGE CONTROL UNIT (CENTER CUBICLE)		
F604, F605	3980095000	Fuse, 8 amp . Slo-Blo
L615	4760230000	Chole
R818	5400480000	Resistor, 10K ohm, 1W. 10\%
T602	4740050000	Fowerstat (two ganged)
XF604, XF605	4020024000	Fuseholder
2921117001 TUNING MOTOR \& IITMIT SWITCH		
	4360003000	lotor, Speed Reducing
	6040137000	Switch
	6140049000	Terminal Board
2944806002 RE AI ASSEMBLY		
K1	5720050000	Relay, 2A, 6 V 。
K2, K3	5720011000	Relay, 2A, 110 V. A.C.
TBI	6140079000	Terminal Board
TB2	6140070000	Terminal Board
6/22/61	-7	FM-20B

M-6092 RAMOT FIL MENT MLTLRING KIT

Symbul No.	Gates Fart No.	Description
Cl	5220014000	$50 \mathrm{mfd} ., 150 \mathrm{~V} . \mathrm{Cap}$.
CRI	3840020000	Silicon Rect., 1N-2071
$\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{R} 2 \end{aligned}$	5400178000 5500067000	Res., 1000 ohis, $1 / 2 \mathrm{~W}$. 10% Control, 10K ohn
T1		Transformer (Part of mech. assy.)
TBI	6140069000	Terisinal Board
M-4845 NF OUTPUT CUR IENT EXTENSION KIT		
A1	3840006000	Diode
Cl, Cl_{2}	5160054000	Cap., . $001 \mathrm{mfd} ., 600 \mathrm{~V}$.
J1	6120230000	Receptacle
L2	4940004000	RF Choke
	6100231000	Plug
$\begin{aligned} & \mathrm{R1} \\ & \mathrm{R} 2 \end{aligned}$	$\begin{array}{lll} 552 & 0545 & 000 \\ 540 & 0178 & 000 \end{array}$	Control, 1000 ohm Res., lK ohim, l/2W. 10\%
R3, R4	5400728000	Res., 100 ohm, $2 \mathrm{~W} .10 \%$
TBI	6140069000	Terainal Board
PONER CUBICL (RECTIFIER \& CONTROL)		
i801	3960062000	Neon Lamp
B801	4300012000	Fan, 115 V. $60 \mathrm{cy}$. . 1500 rpm.
$\begin{aligned} & \text { C801 } \\ & \mathrm{C804}, \mathrm{C805}, \mathrm{C80} \\ & \mathrm{C} 807, \mathrm{C808}, \mathrm{C80} \\ & \mathrm{C} 810 \end{aligned}$	$\begin{array}{llll}510 & 0312 & 000 \\ 6, \\ 9 & \\ 516 & 0082000\end{array}$	Cap., 4 uf., 7500 V . Cap., . 01 uf., 1 KV
$\begin{aligned} & F 801, F 802 \\ & F 803, F 8.34 \end{aligned}$	$\begin{array}{lll} 398 & 0137 & 000 \\ 398 & 0054 & 000 \end{array}$	Fuse, 8 anp. Fuse, 1 imp., Slo-Blo
K803	5740036000	Relay, 6 VDC
L801	4760234000	Filter Reactor
$\begin{aligned} & \text { M801 } \\ & \text { M802 } \\ & \text { M803 } \end{aligned}$	6300049000 6320104000 6320398000	Meter, 0-10 K. iC Meter, 0-300 MisDC Meter, 0-10 dinp., DC
M804	6320399000	Meter, O-1 Minc, movement with $0-8000$ V. DC Scale
M805	9131256003	R.F. Output Meter
6/22/61	-8-	FM-20B

LITT SIDE FANEL PALRTG (POWER CUBICLE)

C802	5100317000	Cap., 1 uf., 600 V.
C803	5220133000	Cap., 16 uf., 450 V.
CB801	6060057000	Circuit Breaker, Curve 2, pole, 240 VAC
CB802	6060084000	Circuit Breaker, 3 pole

5160054000	Cap., . 001 uf., I KV
3840020000	Silicon Rectifier 1H2071

ST.\&ION GU_RDIAN

This FM-2OB is also equipped with a device which protects the transitter, transuission line, and antenna frou abnomal load conditions.

The unit consists of two sensitive d.c. amplifiers whose input signals are taken froi the Micromatch coupler. The voltages from the coupler are aimlified and operate a pair of wulticontact relays which operate the associated indicutor lights and alare functions.

This unit can be set to operate under any pre-determined VSWR conditions. Ihis is done by adjusting the control Rll located on the deck below the meter panel on the power cabinet.

The sane procedure is then used in adjusting power control RlO to the desired level at which tie relay RYI operates.

The normally closed terminals of RYl and RY2 are connected in series and are included in the interlock circuits.

Therefore, if any malfunction occurs because of improper transrission line irnpedance or power, the intarlock circuit is opened. The plate voltage on both the driver and amplifier is ciropped. The only way the transaitter can be operated is to clear the responsible malfunction.

General

The unit is designed to provide a low voltage source for pilot lights and interlock circuits. In addition, with the transmitter wired properly, it provides a lock-in function on overloads for maximum indication of source of trouble. This lock-in feature can be reset manually at the transmitter or at a remote point.

The third function of the unit makes recycling possible when an overload occurs and the "tune-operate" switch is switched to "operate" position. An R/C circuit operating an auxiliary relay provides three complete recycles during a lo second interval.

NOTE: The above number of recycles can be changed by adjusting a potentiometer to almost any desired number within a certain time puriod. Also, the total recycle time can be changed by inserting another time delay relay of the desired type. When using a 10 second time delay and the transmitter has overloaded, the following will occur. If, during the 10 second interval, the transmitter overload has not corrected itself, the transmitter overload at fault will lock out and remain locked out until manually reset. If the transmitter experiences one or two overloads and then clears itself, the recycle unit will again be ready for three more complete recycles after approximately 15 seconds.

Circuit Description

The time constant which determines the pulse interval for recycling is the 50 K 2 W . potentiometer, Rl, and the capacity of ClA, When the voltage on the positive terminal of ClA equals the voltage necessary to close the relay Kl, this occurs causing the capacitor to discharge through R3, 100 ohm to ground. The discharge time constant is cnosen to allow sufficient time for the high voltage contactor to close prior to the reopening of relay Kl.

This discharge interval must not be sufficiently long to allew damage to the transmitter in an overloaded condition.

The second set of contacts on relay K2, a slave rclay, switches the heavicr currents involved in closing the high voltage contactor and also breaking the 130 volts D.C. which locks in the overload relays. Therefore, recycling of the reset occurs just prior to the closing of the high voltage contactor.

The time delay relay $K 4$ is activated the instant that $K 3$ energizes which occurs when an overload relay locks down. After an elapsed time of $t \in n$ seconds or three recycle periods, K4

$$
1 / 27 / 61 . \quad \text {-1- }
$$

closes, shorting the coil of Kl to ground, thus stopping the operation of the time constant circuit. After this elapsed time of ten seconds, the unit must be reset either remotely or by the reset button located on the front panel of the lKw driver. It is necessary to wait approximately 15 secunds for the element in K4 to cool before you can expect another three recycles.

Relay K3 performs three functions, the aforementioned closing of K2 when K3 is energized and also to supply lj0 V. DC to potentiometer Rl in an overload condition. It also breaks the 230 V . AC which supplies the high voltage contactor coil. In an untnergized condition K3 breaks 130 V . DC to Kl through R1 and maintains coil voltage to the high voltagc contactor. Also, the time delay relay $K 4$ has operating voltage removed which should increase the operating life of this relay. K3 is operated by 6 V . AC which is supplied by the unit. One coil terminal is tied common to the 6 V . AC transformer and the other coil terminal is tied in series with a parallel string of overload relay contacts which return to the other side of the 6 V . AC transformer.

Resistor R4 acts as a surge resistor while $R 2$ is merely a bleeder resistor.

The two switches and one push button which control the recycle unit are mounted on the lKW driver control panel. The operation of the push button acts as a manual reset. It is a normally closed switch, which when open, removes 130 V . DC from the j. 5K resistors in series with the coil and overload potentiometers of the overload relays. These relays then open to again permit operation of thu transmitter.

The "local-remote" switch opens the circuit for the remote "on" function, thus placing the transmitter in a local operate condition only.

The "tune-operate" switch performs two functions, in "tune" position it shorts out the coil of Kl in the recycle unit, thus making the unit inoperative. In "operate position", the short is removed from the coil of relay Kl. When the lKW transmitter is used as a driver for a higher power amplifier, the "tune-operate" switch also performs the following functions. It supplies 240 V . $A C$ to the manual push button on the P.A. high voltage control panel when in tune position. In this position the driver and P.A. high voltages must be turned on independently. In "operate" position the short is removed from the coil of Kl and the 240 V . AC is removed from the P.A. high voltage push button on the F. A. Instead 240 V . AC is supplied to one contact of the K809 under drive auxiliary relay, which when closed, turns the F.A. high voltage contactor on.

INSTRUCTIONS FOR OF RATION OF M5675 MMFLIFIER

General Description

The M5675 orplifier covers a frequency range of 88 to 108 nc . This is done without the addition or renoval of any padding components in either grid or plate circuits. Fower grin of this amplificr is approximately lo. Then used as a final output stage, 山nximum power output is in the vicinity of 50 to 60 watts. The 195675 may also be used to drive following anplifier stages.

The series type of circuit is used in the grid and a conventional parallel type of circuit is used in the plate. This tends to rake for less susceptibility of parasitics at higher frequencies than the mplifier is used. Screens of the 6146 anplifier tubes ane isolated by chokes rather then PF grownded. This has proven to be more effective at VHF frequencies and eliminates the need for neutralizing. The reader should refer to sclenatic B-65555 for a better understanding of the circuit.

Tune-up

This particular anplifier should be tuned up for best efficiency and coupled for best transfer of power even if considerably less than full output power is desired. The screen cointrol may then be turned down to reduce output power to the desired level.

To tuise the grid circuit, place the negntive probe of a voltmeter, into TP401 and ground the positive lead. With drive coniected to input receptocle J401, tune 6401 (grid tunine) for maximurn neg?tive reading on the voltmeter. This voltage may vary all the way iron -15 to -45 volts depending on the arount of drive. This reading will drop as soon as screen nd plate voltage are applied to the amplifier.
ifter the grid. circuit has been rroperly tuned, coupling between I Ol an $\mathrm{I} H 02$, I ~ 3 slould be varied to obtain the maximum negative voltage at TF40l with a nininum of drive. C401 rust be retuned each tine coupling is changed.

When the input circuit h os been properly tuned, plate and screen voltage may be applied to the amplifier and the plate cjrcuit tuned. It is recormended that this be done with the amplifier coupled into a 51 ohim non-reactive load. If nlate curreat is being netered, tune the piate tune control C407 for a dip. Otherwise, tune 6407 for maximun power output. Now vary coupling between 1404 and L405. Turn anplifier back on and tune 0406 for maximus poser output along with C407. Several trys may be needed to find the best point of coupling between L404 and L405. Eack time the coupling between L404 and I' 405 is varied, the plate must be retuned along with output coupling capacitor 6406.
4/21/60

After tuning has been completed for best power output and efficiency, screen control R405 should be set for the desired power output. In no case should the output circuit be decoupled to reduce output power.

It should be emphasined that this amplifier is easily overdriven. For 50 watts output power approximately 3 watts drive is requirer. For 15 to 25 watts output power, about l watt of driving power is required. If driving power is increased above the required amount, power output of the amplifier will fall off due to high grid leak bias being created. A typical set of reading are given on this amplifier on the following page.

Counling Amplifier To Another Stage.

When the amplifier is going to be used to drive another amplifier stage, it is suggested thit it first be tuned up into a load and then coupled to the grid circuit of the following amplifier stage.

To reduce the possibility of oscillations and/or parasitics, the input circuit of the following stage should be properly coupled and matched to the 51 ohm coaxial line connected to the output of the 50 watt amplifier. This may be done with a micromatch coupling unit. The following grid and input circuit should be adjusted for minimum SWR.

If a micromatch coupling unit is not available, the input coupling and grid tuning of the following stage should be tuned for maximum grid current in that stage.

If the following input circuit is properly matched, plate tuning of the 50 :satt amplifier will not change appreciably when switching from a non-reactive load to being coupled to the following amplifier stage.

If the 50 watt amplifier stage was properly tuned up into a load and plate tuning deviates radically from where it was after being coupled into another stage, a major mis-match exists.

If the 50 watt amplifier unit is over-driving the following amplifier, screen control R 405 should be adjusted for the desired drive. Do not de-couple the 50 watt amplifier stage.

M5675 AMPLIFIRR OPERATING AT 99.1MC

Pwr. Out	65 W.	50 W	23 W.	17 W.	13 W.
Plt. Current	250 Ma.	215 Ma .	140 Ma .	130 Ma.	110 Ma
Plt. Voltage	500 volts	520 volts	570 volts	580 volts	590 volts
Screen volts	290 volts	235 volts	150 volts	147 volts	132 volts
Screen Current	t 12 Ma .	8.5 Ma	3 Ma .	2:2 Ma.	1.5 Pla .
Cathode volts	68 volts	58 volts	35 volts	33 volts	29 volts
Driving power	6.5 watts	2.5 watts	1 watt	. 8 watt	. 8 watt
Grid Voltage (Grid voltage	$-10 /-42^{\prime \prime}$ measured at	$\begin{aligned} & -7 /-33^{\prime \prime} \\ & 01.11 \text { indio } \end{aligned}$	$-8.5 /-23$ vnltage he	$\begin{aligned} & -6 . \boldsymbol{r}^{\prime}-20 " \\ & \text { applying scre } \end{aligned}$	$\begin{aligned} & -3.5 /-15^{\prime \prime} \\ & \text { plate vol } \end{aligned}$
Plt.Pwr.Input	107 watts	97 watts	75 watts	72 wãtちs	61 watts
Plt. Dissipation	42 watts	47 watts	52 watts	55 ratts	48 watts
Plt. Circuit ßfficiency	61\%	52\%	31\%	23.5\%	21\%
Figures bel	below obtained	th no ärive			
Plt. Voltage	550 volts	560 volts	580 volts	580 volts	590 volts
Plt. Current	165 Ma .	155 Ma.	125 Ma .	125 Ma .	105 Mia
Cathode volts	45 volts	40 volts	31 volts	31 volts	27 volts
Plt. Dissipation (All readings	n 83 watts were made wi	80 watts screen connec	69 watts t) regulate	69 watts 20 regulated	59 watts
		-3-			

INSTRUCTION BOOK FOR
 THE M-6095 FM EXCITER

I.B. \#888 0648001 August l, 1961

Gates Radio Company Quincy, Illinois
INDEX
M6095 EXCITER
(Freq。Range 88 - 108 MC.)
PAGE
Specifications 1
Introduction 3
Installation 3
Pre-operation 4
Daily Operation 5
Theory of Operation \& General Explanation of Circuitry 6
General 7
DC Resistance of Frequency Multiplier Coils LlOl Through Lll 3 and Capacitor Values Across Them 7
Coupling Exciter To A Following Stage δ
Efficiency Calculations of V1l5 Stage 9
Typical DC Test Point Voltages 11.
Proof of Performance Data 12
Setting Carrier Frequency 13
Distortion Measurements and Adjustments 13
Overall Frequency Rosponse 15
FM Noise 17
AM Noise 17
Typical Proof of Performance Readings 18
Proof Of Performance Data Sheet(This data shoet is located at the veryback of the instruction book. It isfilled out only when the exciter unit isshipped by itself. When the exciter unitis shipped as an integral part of anotherunit, this data will be included with theoverall dat? sheet for the transmitter.)
Maintenance 19
Trouble Shooting 19-26
No Carrier 20
Low Carrier 21
Intermittent Carrier 21
Oscillation 22
Carrier Off Frequency 22
High Distortion 23
Improper Frequency Response 24
Will Not Modulate At All 24
FM Noise 25
AM Noise 25
Typical RF Voltage Measurements 26
Tlectrical Parts List I
WarrantyDrawings at the Back of the Book in the Order Referred to inthe Text:
8525774001 Schematic, FM Exciter
8379534001 Functional Block Diagram Exciter Unit
ES-6170 Standard 75 Microsecond Fre-emphasis Curve
$\dot{A}=4165$ Test Sat-Up for FM
8267991001 Typical Waveforms of Stages VlOl thru V106
8267990001 Typical Waveforms of Stages V107 thru V112
Tables and Charts Included Within Text of Book That areHelpful in Trouble Shooting:
DC Resistance of Frequency Multiplier Coils Llol thru Lll 3 7
Typical DC Test Point Voltages 11.
Typical RF Voltage Measurements 26
NOTE: Complete Tune-up Procedure At Customer Request

SPECIFICATIONS

Power Output:
Frequency:
RF Output Impedance:
Frequency Stability:
Type of Oscillator Circuit:
Type of Modulation:

Modulation Capability:

Audio Input Impedance:

0 - 10 watts, continuously variable
88-108 Mc.
51-72 ohms
$\pm .001 \%$
Direct Crystal Control
Phase shift employing pulse techniques
$\neq 100 \mathrm{Kc} 100 \%$ Modulation equals
$\pm 75 \mathrm{Kc}$
600 ohms

Audio input level for 100% modulation at 400 cycles: $\neq 10 \mathrm{dbm}, \pm 2 \mathrm{db}$

Overall Audio Frequency Response:

Distortion at 100% Modulation:

FM noise:

AM noise:

Power input:

Within 1 db of standard 75 microsecond pre-emphasis curve or flat $\nsubseteq 1 \mathrm{db} 50$ to 15,000 cycles depending on specifications of plugin audio pad. -30 db at 30 cycles.
3% or less, 30 to 50 cycles. 1% or less, 50 to 100 cycles. $.5 \%$ or less, 100 to 10,000 cycles. 1% or less, 10,000 to 15,000 cycles.

65 db below 100% modúlation at 400 cycles or better.

60 db below equivalent 100% amplitude modulation.

Approximately 120 watts when exciter is putting out full 10 watts. (1 ampere at 117 volts.)

Approximately 6 watts (intermittent) crystal oven circuit.

Tube Complement:
$3-6201$
$7-6 A U 6$
$1-6 A Q 5$
$3-6 J 6$
$1=12 A X 7$
$2=0 A 2$
$1=6234 / 5 A R 4$
$1-6080$
$1=6360$
$3-7025$

INTRODUCTION

All FM transmitters require a device that will supply an RF driving voltage of sufficient amplitude to drive the succeding amplifier stage to the required output power level. In addition, this device must have necessary provisions made for frequency modulating the carrier the proper amount.

These requirements are fulfilled by the $M 6095$ exciter unit. The exciter panel is standard $19^{\text {¹ }}$ wide for rack mounting, height is 14". A rear dust cover is provided that extends $2-1 / 2^{\prime \prime}$ beyond the back of the panel. This dust cover is held on by four acorn nuts easily removed from the front of the panel. The highest unit on the front of the panel is the crystal oven which extends $4-1 / 2^{\prime \prime}$ beyond the panel proper.

The unit is complete with its own power supply. It is light in weight; $21-1 / 2$ lbs, this makes it very easy to remove the unit from the cabinet or rack in which it is mounted and to place it on a bench. All that is needed to operate the unit is an AC cord connected from TB1Ol-788 to a 117 V . AC outlet.

INSTaLLATION

Generally, when the exciter unit is received at the point of operation it will be mounted in a cabinet along with additional amplifier stages. The unit finds its greatest usage in driving 50 watt and 250 watt amplifier stages. With some additional external metering, the unit becomes a complete 10 watt $F M$ transmitter.

Forced air cooling is not required for the unit. Sufficient ventilation should be allowed to provide normal circulation and up-draft at least for the front of the panel, where all of the tubes are mounted.

External wiring to the unit consists of the following:

1. In shielded, twisted pair that connects to TBlOl-1 $-2-3$. The shield should connect to TBlO1-3 which is ground. These are the audio input terminals. fudio requirements for 100% modulation are approximately $f 10 \mathrm{DBM}$, and the input impedance is 600 ohms.
2. Two wires connected to TBlOI-788. These wires are to provide operating voltases for the unit. Requirements are

117 volts, AC at l ampere.

3. Two wires to connect to TB101-9810. This provides operating voltage for the crystal oven. Requirements are 117 volts, $4 C$ at about 6 watts intermittent service.

In addition, if the exciter unit is used to supply $B \notin$ to some other unit a wire must be connected from TBlOl-6 to the other unit. in additional 20 to 30 milliamps at $\neq 320$ volts may be drawn from this terminal when the exciter is transmitting a full 10 watts. If output power from the exciter unit can be reduced to 3 or 4 watts, up to 50 milliamps may be drawn from TB101-6.

The exciter may also be used to supply filament voltage to some other unit. To do this, a wiro must be connected from TBlOl-4 to the other unit. 6.3 volts, $\dot{H} C$ at about $1-1 / 2$ amps. is available to be drawn from this terminal.

If the power amplifier stage of the exciter unit (Vll5) is to be externally metered the jumper connecting TBlOl-5\&6 should be removed. I_{L} wire should then be connected from TBIOl-5 to the positive terminal of the external milliammeter and a wire should be connected from TBlOl-6 to the negative terminal of the milliammeter. The final stage will draw about 65 milliamps when output power is 10 watts. The external milliammeter should heve a minimum full scale deflection of 100 milliamps.

PRE-OPER.1TION

In almost all cases the exciter unit has been properly tuned up to customer frequency at the Gates plant. If all tubes and other components are properly in place, wires connected, etc., the exciter may be placed into operation by turning siol to the "ON" position. This switch is located in the primary circuit of TIO3. When it is turned "ON" both the filament voltage and the $B \notin$ voltage come on to all tubes. The rectifier tube is of the slow heating indirect cathode type; and positive voltage will not exist for perhaps 20 seconds, after this length of time the exciter power output will come up.

The only adjustments that will have to be made are to tune Cl69 (output coupling) and C167 (V115 plate tune) for maximum power output into a load, following stage, or antenna. Final adjustment of Cl67 and C169 should be done only after the exciter has come up to full operating temperature; this will take about 15
minutes after first turning the unit on. Stray capacities of tubes tend to change slightly as the tube warms up and a small change of even $1 / 4 \mathrm{pf}$ can considerably de-tune a circuit operating in the VHF range.

Frequency adjust control ClO 4 should be set to the value given in the factory test data sheet. Oven pilot lamp AlOl will start cycling after the oven heater has been on for about 20 minutes. The crystal oven does not really stabilize until it has been on for about 1 hour. If, after this length of time, the carrier center frequency does not agree with that shown on a frequency monitor of know accuracy, readjust the ClO 4 for proper center frequency. Normal cycling of oven pilot lamp ill ${ }^{2}$ will be "ON" $1 / 3$ and "OFF" $2 / 3$ timeswise for a room temperature of 750 F .
is quick check of the B f voltage is advisable. This can be done by placing the negative probe of a 20,000 ohms per volt meter into a black test point (TP122 or TP123), and a positive probe into TP121. The voltmeter should read $\$ 320$ volts DC.

DsILY OPERATION

It is considered good practice to arrange wiring and control circuits so that the crystal oven heater operates independcntly of the main power switch. If this is done, and the crystal oven remains on all the time, the exciter will be close to center frequency, even frer a cold. start. Power requirements for the oven are about 6 watt and this only intermittently: On a presumed basis of the oven being "ON" $1 / 3$ or the time, the oven would use only 2 watt of power per hour.
issuming that the crystal oven is on continuously, then the only thing that needs to be done in the normal dars operation is to turn the main power "ON" when starting the vruadcasting day and "OFF" when finished. In most cases, this will be accomplished when the low voltage switch is turned on in the transmitter, whether the transmitter be 250,1000 or 5000 watts.

If the exciter is turned on 10 or 15 minutes before "iIR" time, no other adjustments should be necessary. The exciter will reach 80 to 90% of full power in about 5 minutes and full power in 10 to 15 minutes. This assumes that the unit was fine tuned while thoroughly warmed up.

THEORY OF OPER.ATION \& GENER.L EXPL\&NATION OF CIRCUITRY.

Of all the known methods used to generate a frequency modulated signal, the one used in this exciter unit is the simplest and most straight forward. Since the signal generation depends upon direct crystal control, the output frequency will be very stable. In addition, tuned circuits will be uncritical in operation and low cost receiving type tubes may be used in the majority of circuits.

VlOl is a crystal controlled oscillator. The crystal controlled output of VlOl is shaped into a series of sawtooth waveforms by V101 and V102, for application to Modulator \#l, V104. The output of Modulator \#l, V1O4, is then again shaped into a sawtooth waveform at crystal frequency for application to Modulator 腯2。

The reason for two Modulators is to increase the modulating ability of the Exciter at low frequencies. The two modulator stages are driven in parallel from audio stages V1l6 and V1l7. Vlo through V114 are frequency multiplier stages. V107 through Vlll are single ended pentode stages, while Vll2 through Vll4 are push-push doublers. Vll5 is a power amplifier stage, which is capable of producing 10 watts at output frequency of 88 to 108 mcs. The coaxial jumper between JlOl and JlO2 connects frequency multiplier stage Vlll to Vll2, when Multiplex is not in use. When Multiplex is used, the output of Jlol feeds into the Multiplex unit and the Multiplex unit feeds back to the input jack, JlO2.

Stages Vll6 through Vl22 make up a conventional regulated power supply with an output voltage of 320 volts. Maximum current to be drawn from this power supply is in the vicinity of 160 milliamps.

This unit has been properly tuned up at the factory. If the customer desires a complete tune-up procedure for the M6095 Exciter unit, it may be obtainod by writing to the Gates plant.

GENERLL

If the exciter has been properly tuned up, output power in the vicinity of 10 watts should be obtained. If trouble is experienced along the way in the tune-up procedure, the fault can usually be isolated by referring to typical test point voltages given on a following page. There are five key test points that are indicative of proper operation.
about -35 volts should be obtained at TPlO6, this indicates that the pulse stages V1Ol thru V106 are properly operating.

About -2 volts should be obtained at TPl08, this indicates that V107 and associated circuitry is working O.K.

Approximately .5 volts RMS RF voltage should be obtained at TPll3 and/or TPll4, this would indicate that the frequency multiplier stages VlO7 thru Vlll are operating properly.
iround -7 volts should be obtained at TPll8, this indicates sufficient driving power to final amplifier stage Vll5.

If a defect is suspected, but can not be spotted, checking resistance of the various tuning coils LlOl thru Lil5 may locate the trouble.

The proper resistance value of these coils is listed below along with the capacitor values for comparison purposes. The measured resistance should not deviate by more than about 10%. If the accuracy of the voltmeter is not know, a comparison between similar coils can be made. For exampie, the resistance of LlOl, L102 and Ll03 should be the same.

COIL

LlO1;LlO2,Ll03
L104;L105
L106;L107
L108, L109
Lllo,Llll
Lll2,Lll4,Lll5
Lll 3

DC RESIST.ANCE

21 ohms
9.6 ohms
5.5 ohms
2.1 ohms

1 ohm
.12 ohm
.43 ohm

CONDENSER V.LUE _CROSS COIL

$$
\begin{aligned}
& 150 \mathrm{mmf} \\
& 100 \mathrm{mmf} \\
& 24 \mathrm{mmf} \\
& 24 \mathrm{mmf} \\
& \text { See Schematic } \\
& \text { See Schematic } \\
& \text { See Schematic }
\end{aligned}
$$

Considerable deviation of resistance from the above given values indicate either the wrong coil, shorted turns, open turns, or a
change in value of some other component connected across the coil.

The value of any other parts connected across the coils is to be considered insignificant when compared to the DC resistance of the coil.

COUPLING EXCITER TO A FOLLOWING ST..GE

It is preferred that the final amplifier of the exciter be con.. nected to an external dummy load of 51 ohms through a 51 ohm cable while tuning, Tuning the final amplifier in this manner is a good check on its proper operation.

When changing the RF output connection of the exciter from a dummy load to a following amplifier stage an attempt should be made to get a proper match to 51 ohms at the input to the follower amplifier stage.

If the output coupling control, (C169) and plate tune (C167) on the exciter urit, have to be considerably readjusted when coupled into the succeeding amplifier stage, a major mis-match of impedance is to be suspected at the input of the following amplifier stage, This will result in consideroble loss of drive to the following stage and cause high standing waves to appear on the inter-connecting coax between the exciter and the following stage.

Most of the amplifier stages that will be used following the M6095 exciter unit will not generally require the full 10 watts of driving powere is 50 watt amplifier stage will require abouiv 2 watts of drive and a 250 watt amplificr about 4 watts of drive.

In no case, should Cl67 (plate tune) or Cl69 (output couplingi be de-tuned to reduce output power. This is equivalent to operacing Vll5 in an off-resonant condition and would damage the tube eventually.

Output power can be reduced to almost zero by tuning Rl67 (ous put control! t) a counterclockwise position. This reduces screen voltage to Vlls and: consequently, the plate current which in. creases efficiency to V115.

In some cases, B, L voltage of 320 volts will be tapped off of TBlOl-6 to supply screen voltage to a following amplifier stage

The external $\not\langle 320$ volts should not exceed a drain of about 30 milliamps for continuous operation.

Reducing screen voltage of V1l5 by adjustment of Rl67 will drop Vll5 current drain from about 60 milliamps for 10 watts output to about 25 milliamps for 2 watts output. This extra current may then be used for external purposes.

In summary, when driving an additional amplifier stage from the exciter unit, reduce output by adjustment of Rl67 and keep Cl67 and Cl69 tuned for maximum grid drive in the following stage.

V115 EFFICIENCY

in external jumper is provided on TBIOL-5\&6. in ammeter may be connected in series with this jumper to measure Vll5 plate current.

B f voltage has been previously set at $\neq 320$. Power input to the plate circuit of Vll5 may be calculated from the ammeter and voltage readings. The voltage drop across Rl55 must first be calculated. This resistor is in the cathode circuit of Vll5, its value is 250 ohms.

The formula to use would then read:
Power input to plate circuit VII5 $=I_{p} X\left(E_{p}-(I R)\right)$ Where IR is the drop across Rl55

If, for example, the ainmeter reading obtained when connected in series with TBlOl-5 and 6 was 60 ma. and $B f$ to ground was $f 320$ V.:

Power input Vll5 $=.06 \times(320-(.06 \times 250))$
$=.06 \times(320-15)$
$=.06$ X 305
$=.813$ watts
isssuming an output power of 10 watts:
Plate dissipation Vll5 = Power input - Power output

$$
\begin{aligned}
& =18.3-10 \\
& =8.3 \text { watts } \\
\text { Efficiency of V115 Stage } & =\frac{\text { Power output }}{\text { Power input }} \\
& =\frac{10}{18.3}
\end{aligned}
$$

$=54.8 \%$

These figures can be considered typical. If the output power is not known, an efficiency factor of 55% should be assumed.

> TYPIC.LL DC TEST POINT VOLTAGES OF M6095 EXCITER UNIT NO MODUL,..TION. ME. SURED WITH 20,000 OHMS/VOLT VOLTMETER

	WITH DRIVE	NO DRIVE
	VOLTS	VOLTS
TP101	-27	0
TP102	-12	+29
TP1.03	t	f. 4
TP104	4	0
TP105	+9.2	f15
TP106	-30	0
TP107	f60	+33
TP108	-3.2	0
TP109	+61	+50
TPl10	+72	+ 34
TP111	+68	+30
TPl12	t133	A195
TPl13	. 46 RIMS (H.P. Probe)	0
TP114	. 42 RMS (H.P. Probe)	0
TP115	f113	¢ 185
TPl16	f140	+235
TP117	+227	+260
TPl18	6	0
TPl19	7157	f187
TP120	¢ 172	¢172
TP121	+320	+320

Note: Readings for TPll8 and TPll9 were obtained wi.th Rl55 output control full clockwise or maximum output position.

PROOF OF PERFORM.NCE

Center Frequency, Noise, Distortion, Response

Proof of performance data as made by the Gates Radio Company on FM transmitters can be likened to listening to the transmitter on a high quality receiver. This tends to "prove-out" the transmitter since measuring and listening ec̣uipment is completely external to the transmitter proper and the RF signal is taken from "off-the-air".

Instead of a receiver, an FM monitor of good quality and FCC approved is used. Reference to drawing A-4165 will show the general test set up for making proof of performance measure-

First off, a sample of the transmitted RF is coupled to the modulation and frequency monitor. This is taken from the antenna, transmission line or from the Pia chamber. The method uscd is determined somewhat by the amount of power needed by the monitor (usually about l watt) and by the output power of the transmitter. For low power FM tranamitters up to perhaps 250 watts, a sample of RF may be taken by "tapping" off the output transmission line with a variable condenser in series with the coaxial line going to the monitor. This has the disadvantage though of introducing a slight mismatch back into the transmitter. Usually, it is impossible to obtain enough power to drive the monitor from the antenna without introducing another amplifier ahead of the monitor to raise the receiver signal up to the necessary level. In higher powered transmitters, a monitor loop is usually coupled to the final amplifier section to sample 2 portion of the transmitted output.
A good quality audio oscillator of 600 ohms output impedance is then connected to the audio input terminals. These are TBlOl-1, 2 and 3 on the exciter unit with terminal \#3 being ground. Output level requirements are at least $\neq 10 \mathrm{DBM}$. Since the exciter itself is capable of generating 0 . frequency modulated carrier with distortion ranging as low as $.2 \%$ the audio oscillator must be in good working order.
i distortion analyzer or meter is connected to the audio output terminals of the monitor, in oscilloscope while being an optional item in making measurements is very helpful in tracing any possible difficulty.

The complete method used to adjust the exciter for proper response, distortion, noise and etc., will now be given as it is done at the Gates factory. Proper proof of performance adjustments at the factory are made only after complete tuneup has been done. After the customer receives the unit, any part of the measurements may be made without undue effect upon other measurements.
ill proof of performence measurements should be made with shield covers in place.

SETTING C., RRIER FREQUENCY

It is desirable to first set the exciter unit to proper carrier frequency. This should be done first, not only because it is desirable to have the unit on proper frequency, but if the carrier is several thousand cycles off center, undesirable beats may occur within the monitor. This will cause noise readings and may effect apparent frequency response.
Usually, all that is required to place the exciter unit on proper center frequency, is to sample a portion of the RF output with a good frequency standard and adjust ClO4 (frequency adjust control) until the frequency standard shows proper frequency.

Occasionally, a crystal may be used that can not be set exactly to center frequency by means of ClO alone. ilso, a crystal that was originally on proper frequency may drift off the range of ClO due to ageing. When this happens additional frequency adjustment may be made by varying the value of Cl05. This capacitor controls the amount of feedback to the crystal. Increasing the value of cil 5 lowers the carrier frequency and decreasing the value of Cl05 raises the carmier frequency.
With the value of Cl 05 set at the optimum value of 150 PF , varying ClO 4 (frequency adjustment control) from minimum to maximum will cause the center frequency to vary approximately 30,000 cycles. Changing the value of C105 from 150 PF to 50 PF will raise carrier frequency about 10:000 cycles. Changing Cl05 from 150 PF to 2.50 PF will lower carrier frequency about 3,000 cycles.

DISTORTION ME: SUREIENTS AND ADJUSTVENTS

iffer the exciter unit has been properly set to carrier frequency distortion adjustments are made. Set the modulator selector
switch (S2) in the modulator \#2 position. Set the audio oscillator frequency to 30 cycles and modulate the exciter with $\neq 14$ DBM. Next, adjust Cl19 so that the FM monitor reads 70% modulation. Distortion adjustment control (R126) is then adjusted for best distortion. If Rl26 is considerably away from the proper adjustment point, it may be impossible to obtain the desired level of modulation or the waveform obtained may be completely torn up. If such is the case, adjust R126-for minimum distortion while modulating somewhat less than 70%, say, 7 bout 50%. Then, reset the level on the audio oscillator to f14 DBM and adjust Cll9 and R126 as described above. Then place the modulator selector swiitch in the modulator \#l position, and follow the procedure just described to idjust modulator \#l. In this case, however, the capacitor adjustment is Clll and the distortion adjustment control is Rll5.

If it is impossible to reduce distortion at 30 cycles, it is advisable to check just the audio portion of the exciter unit and/or the audio oscillator itself. The audio portion of the exciter consisting of tubes V116 and V117 may be checked by running test leads from TP12O and TP122 or TP123 to the input of the distortion analyzer. Distortion as measured at TP120 should be well below. 5% at any audio frequency. If distortion from the audio section is O.K. but overall distortion as measured from the monitor is not, then the waveforms of the pulse circuitry should be checked. Typical waveforms of V101 thru V106 are given on drawing 8267991001.
100% modulation should occur at an input level of approximately $\nmid 10$ DBM from 30 to 1,000 cycles. This input level will cause an RMS audio voltage at TP120 of about $\frac{15 \mathrm{volts} \text {. If an input }}{}$ level of $\neq 10$ DBM does not generate an RITS voltage of about 15 volts at TP120, then a defect in the audio section may be suspected. If sufficient RMS voltage exists at TPI20 and the exciter will not modulate 100%, then a defect in the modulator or previous stage should be suspected.

In any FM system worse distortion occurs at the lowest modulating frequency. In other words, if distortion is 1% at 30 cycles then the distortion can be expected to be botter at all higher modulating frequencies. Occasionally; a high distortion figure may result between 10,000 and 15,000 cycles. The fault will not generally lic in the modulator stage, however, it could lie in the audio section.

If high distortion is present at the higher modulating from quenciés only, it can usually be traced to one of three causes.

1. High FM or $A M$ noise.
2. Insufficient bandwidth in the frequency multiplier stages.
3. Frequency and modulation monitor not correctly tuned to cirrier frequency.

A standard FM monitor contains de-emphasis circuitry that causes lower modulating frequencies of 30 to 1,000 cycles to come out of the monitor with an apparent advantage of around 15 to 17 DB over the audio that is recovered at 15,000 cycles. If noise is down only 40 to 50 DB with respect to 100% modulation at 400 cycles, it will usually not prevent a good distortion reading at a low modulating frequency. However, if frequencies between 10,000 and 15,000 cycles are 15 DB lower in amplitude then 400 cycles, the noise with respect to these frequencies, will only be about 30 DB down. This would correspond to the 3% distortion range on a distortion analyzer. A quick check to determine whether noise is causing an apparent high distortion reading is to remove all modulation from the input to the exciter or transmitter. If the distortion meter needle does not drop appreciably a noise measurement should be made on the exciter.

If bandwidth is insufficient in frequency multiplier stages, some of the higher frequency sidc ands will be clipped causing undue distortion. is complete re-tune up is then recommended.

Mis-tuning of the monitor will also cause some clioping of sidebands at higher frequencics. In addition, beat froquencies may be present that show up as noise and prevent a good distortion reading.

Once set, the distortion controls Fill, Clll, Rl26 and Cll9 may not have to be re-set for the life of the the exciter unit. Changing modulator tubes will probably not cause distortion figures to change by more than .l or $.2 \%$. There are exceptions to every rule though.

OVERLLI FIEEGUENCY RESPONSE

If the exciter unit is used in the FM broadcast band of 88 to 108 IC or as the aural exciter unit for TV transmitters, over-

3ll frequency response should follow the 75 microsecond curve shown on drawing ESmb170. In other frequency ranges, it may be desirable to have the overall frequency response flat.

Several methods of making frequency response measurements using an FM monitor are available. Two will be described; the simplest is to set the audio frequency at about mid-range, say 5000 cycles, and modulate the exciter the proper amount, in this case the prover modulation level would be 35%. Keeping the input audio level constant, the frequency may then be adjusted upward to 15,000 cycles and then downward to 30 cycles. Using this method the response will seldom rise above the curve and makes it easy to calculate the peroent or decibel error. For example, if at 15,000 cycles modulation the modulation monitor reads only 80% modulation, it can be quickly seen from the drawing ES-6170 that the response is 2 DB below the normal curve. The same reasoning may be applied to the low end of the curve. If the input attenuator is calibrated in small steps, it is also yossible to determine the amount that the audio input has to be increased to bring the monitor up to the required percentage of modulation at any modulating frequency.
inother method of measuring frequency response involves keeping the percentage of modulation constant as read on the monitor. To use this method the audio oscillator output must be accurately calibrated. To start with, the carrier should be modulated 100% at 40 C cycles, chenging the audio frequency from about 30 cycles to 400 cycles should not change the percentage of modulation appreciably. If the modulating frequency is raised upward, say to 5,000 cycles: the input level must be reduced to keep the percent of modulation at 100%. For 5,000 cycles the amount of reduction should be 8.2 DB. For 15,000 cycles the amount of reduction of input level should be 16.9 DB . Recording the amount of reduction of the input level versus modulating frequency and reversing the sign of polarity, will give the curve and frequency response. This can then be compared to the curve of drawing ES-6170。

The second suggested method is particularly useful when response neasurements are being made at 25 and 50% modulation levels, or when a standard FM monitor is being used to measure response of an exciter being used to generate the aural carrier for a TV transmitter where normal 100% modulation is $\neq 25 \mathrm{KC}$. This will correspond to $33-1 / 3 \%$ modulation on a standard FM monitor for the FM broadcast band of 88 to 108 MC.

Seldom will any difficulty be encountered in coming close to the standard 75 microsccond curve between 400 and 10,000 cycles. Generally, if troubles develop with response it will show up as being 2 or 3 db down at 15,000 cycles. is frequency compensating capacitor has been incorporated in the audio amplifier section to take care of just such a contingency. Cl70 affects response between 10,000 and 15,000 cycles. Increasing the value of Cl 70 raised the frequency response between 10 and 15,000 cycles. Decreasing the value of Cl70 drops frequency response between 10 and l5,000 cycles.

Stagger tuning Ll03 will also help response at 15,000 cycles a DB or so, when this is done a voltmeter should be connected to TP108 and the amount of staggering of LlO3 should not reduce the negative voltage ooserved by more than . 5 volts.

FM NOISE

FM noise is measured with respect to 100% modulation at 400 cycles. To make this measurement, modulate the exciter 100% at 400 cycles and set a reference level on the distortion analyzer. Remove all modulation and read the FM noise on the appropriate scale. FM noise of the exciter unit can be expected to approach 70 DB or better.

If $F M$ noise is high the audio section is the most logical place to start looking. Removal of the last audio tube Vll7 is a quick way of checking if the trouble is in the audio. The next best bet is the power supply. Hum and noise voltage of the power supply should be between 85 and 90 DB down with respect to $\$ 320$ volts DC. If these two places fail to show any defect the noise is probably originating from the pulse circuits V101 thru V106. Stages after V106 are unlikely to cause FM noise.

MM NOISE

NM noise is measured or referenced with respect to 100% amplitude modulated wave. This aM noise usually consists of 60 or 120 cycle hum superimposed upon the carrier. There are several ways of making this measurement. Some FM monitors have a provision for making this mvasurement. This measurement should be made with no modulation present.
fiM noise as moasured from the exciter unit is usually so low as to be difficult to measure. It will generally be better than

70 DB . If $A M$ noise is high, it can actually oricinate in most any stage. However, if, upon analyzing the type of noise, it is found to have a basic 120 cycle component the power supply should be suspected. If the noise appears to be mostly a 60 cycle component a heater to cathode leak in any stage should be suspected. i loose connection in any stage will cause the iM noise to rise when the exciter cabinet is jarred. it point often overlooked when making GM noise measurements is the sampling loop or device. For ex mple; if the RF sampling loop is mounted in a Pa chamber where blower vibration is apt to occur, this vibration will show up as high AM noise, if the sampling loop is not securely mounted.

TYPICaL PROOF OF PERFORM.NCE KE:.DINGS

If the exciter unit has been shipped as an individual unit the complete test data sheet will probably have been filled out and included in this section. If the exciter unit is part of a high power transmitter the test data sheet is included with the overall instruction book. h set of typical readings for proof of performance is given below:

Cerrier Frequency, O.K.

Distortion at 100% modulation

Response with reference to standard 75 microsecond pre-emphasis curve

30 cycles	1.75	-1.7
50 cycles	.85	-.2
100 cycles	.06	$\neq .5$
400 cycles	.47	$\neq .8$
1000 cycles	.42	$\neq .8$
2500 cycles	.38	$\neq .5$
5000 cycles	.34	$\neq .4$
7500 cycles	.58	$\neq .3$
10,000 cycles	.58	$\neq .1$

FM Noise: -68 DB
AM Noise: Better Than -70 DB

Mi INTENANCE

Since moving parts are at a minimum in the exciter unit routine maintenance is a simple procedure. The few moving parts that are used, such as, variable capacitors, potentiometers and variable inductors will perhaps stay set in one position for the life of the exciter unit. The one exception to this would be ClO3 the frequency adjust control.

Because routine maintenance is used to prevent trouble and not start it, it is not deemed advisable to poke and pull at every component part at a pre-arranged time. Tubes are the most likely components to go bad. A routine testing of all of the tubes at least once every six months is recommended.

One of the best ways to foretell trouble is by test point voltages. These are recorded on the factory test data sheet. When the exciter is first received and placed into operation, it is advisable to go over these test point voltages and record the reading obtained. The test point voltages should then be checked weekly or monthly. A substantial variation from the original recorded value would indicate a failing tube or other component in that circuit. These voltage measurements should always be made with the same meter since a normal 10% variation from one meter to the next may be expected.
in occasional check on the noise, distortion and response with a test set up such as shown in drawing $\dot{\operatorname{s}}-4165$ will probably reveal an eminent failure of one of the audio stages or one of the pulse stages VlOl thru Vlo6.

When tubes are checked and replaced, it is wise to replace them in their original sockets. If V1l3, V114 or V115 is changed, it miny be necessary to retune associated circuitry for best performance.

TROUBLE SHOOTING

It would be impossible to list every failure and possible
cure that might occur in the exciter unit. The same thing may be said of any other piece of electronic gear. However, 90 to 95% of all failures can perhaps be predicted with a few possible clues listed that may help in locating the defect.

Failures or difficulties that may occur in the exciter unit can be divided into two broad categories.

1. Problems associated with carrier only.
2. Problems associatcd with modulation of carrier.

Problems associated with carrier only can be sub-divided into several groups.
i. No carrier (no power output)
B. Low Carrier (power output low)
C. Intermittent carrier
D. Oscillation
E. Carrier off frequency

Problems associated with carrier only will now be discussed and possible remedies and trouble shooting hints suggested.

NO C.2RRIER

Of the many problems that can occur, this perhaps is the most serious and yet the easiest defect to find. When this happens, a tube has usually gonc completaly dead. A comparison of test point voltages with those given at the end of the complete tuneup procedure, test data sheet or voltages recorded when the unit was working proporly should reveal the defectivc stage. The difference in test point voltages with and without drive is in the most cases quite pronounced. When a tube has gonc completely sour or dead, voltages noted at test points located in the plate circuit of that particular tube will rise up to the full plate vritage of +320 volts. If the tube is drawing excessive current, the voltage noted at the test point will be extremely low. is failure of any circuit from oscillator stige to power amplifier stage will, of course, cause loss of carrier. The power supply itself should not be overlooked.

To quickly isolate the trouble to a single general area the following procedure could be followed.
l. Check to see if $B \nmid$ voltage exists at TP12l.
2. Check the negative voltage at TP106, a reading of about -35 volts here indicetes V101 thru Vl06 are operating properly.
3. Check negativo voltage at TP108. A negative reading here from -2 to -3 volts indicates that the grid of V1O8 is receiving drive from previous stages.
4. Check RF voltage at TPll3 and/or TPll4. in RF voltage here of about $\cdot 5$ volts RMS indicates that there is sufficiant drive up to this point.
5. Check negative grid voltage of Vll5 at TPll8. i reading of at least -5 volts herc indicates plenty of drive and that the grid circuit of Vll5 is operating.

Should all of the suggested methods fail to locate the trouble a more thorough check will have to be made. Reforence to voltages listed on the schematic dirgram 8525774001 and to waveform measurements on diagrams 8267991001 and 8267990001 in the back of the book may help. hipproximate RF voltage measurements are also included at the end of this section.

LON C厶RRTER

The same general routine used to track down the stage causing a. carrier failure can be used to check for a low carrier. Tracing down the fault for a low carrier can be more elusive though because voltages will not deviate as much from normal. Low carrier levels are usually caused by a tube with low emission. i slight mis-tuning somewhere along the frequency multiplier chain can cause low output. Reference to the RF voltage chart at the end of this section may be of additional help.

INTERAITTENT C, Firlier

sn intermittent carrier can be very difficult to track down because about the time test equipment is set up to find the trouble, it disappears. is recommended mothod finding this is to start at the final stage (VIl5) and place a meter probe into TPll9. Then tap on the chassis or whatever else it takes to cause the intermictent condition. Working back toward the
crystal from stage to stage and test point to test point; a point should be reached where a test point voltage does not vary. This should be the last properly operating stage. Immediately following the point where the test point voltage is not varying. An intermittent carrier can be caused by most anything. is bad tube, capacitor, resistor or loose connection or an intermittent short.

OSCILL.:TION

It is an almost unheard of condition for a frequency multiplier stage to oscillate since frequencies found in the grid circuit are different from frequencios found in the plate circuit. It is within the realm of possibility, however. If an oscillation should occur, it will probably be traced to the final amplifier stage, Vll5. This stage is self neutralizing and will orobably not cause any trouble as long as the shields over the coils are tightly in place and all connections are tight.
I condition somewhat akin to oscillation has been noted while using pulse circuitry similar to that in this exciter unit. is leaky capacitor or intermittent connection in the pulse circuitry can cause the frequency multiplier stages to "fire" off at their resonant frequency. This oscillation will be damped and only occurs momentarily but may be aggravating.

C. RRIER OFF FREQUENCY

When the carrier is consistently too far removed from proper centcr frequency, the trouble can be traced directly to the oscillator stage. This could be due to the oven thermostat sticking and causing the crystal to overheat or could be due to the oven not heating at all. If the thermostat is sticking, pilot lamo illl will be on all the time provided it is not burned out. If the oven is not hoating at all, the pilot lamp should not light.

Some crystals will age and drift off frequency after a length of time. Replacement of the crystal is the only solution here. A change of value of almost any component in the oscillator stage V1Ol could also cause the carrier frequoncy to deviate.
Problems associnted with modulation of the carrier will ncw be discussed and some possible remedies and trouble shooting hints suggested. Under this category, sub-division might be as follows:
A. High Distortion
B. Imporper Frequency Response
C. Will not Modulate at all
D. High FM Noise
E. High AM Noise

When it is known that any of the above listed feults exist, it will save time to first isolvte the trouble to either the audio stares or the rest of the exciter unit. It is casy to check the output of the audio stages by connecting a ground lead from a black test point and a "hot" lead from TPl20. These two leads can then be run to the input of a distortion analyzer. If these leads are very long, they should be shielded or they may pick up external hum and noise.

HIGH DISTORTION

When high distortion is present, it can usually be divided into three categories.

1. Distortion high throughout the audio spectrum 30 to 15,000 cycles.
2. Distortion high at low frequencies only.
3. Distortion high at high frequencies only.

When distortion is high through the audio spectrum of 30 to 15,000 cycles the fault is apt to lie in the audio stages of V116 and Vll7. It is wise to check these stages anyway when modulation difficulties are experienced. it failure of any component in the audio stages could cause the distortion to rise. Checking volta cs against the schematic should show the difficulty. Changing a tube will usually cure thc trouble.

It is characteristic of an FM system that the grentest difficulty in attempting to modulate occurs at the low frequencies. When the overall distortion is high between 30 and 400 cycles only, the trouble will usually be found in cither one or both of the modulator stages or in the pulse circuitry just preceding them. A check of the w?veform in stages VIOl thru V106 is advisable. These can be checked against drawing 8267991001.

These waveforms were mece on a calibrated scope type 524AD Tektronix, if a calibrated scope is not availablc an ordinary scope may be calibrated approximately by the following method: Peak-to-peak waveforms are always 2.8 times the RMS value of a sine wave. The hot scope lead can be connected to 7 hot filament wire which should have an AC voltage present of about 6.3 volts AC . The peak-tomeak value would then be 17 or 18 volts. The scope can then be calibrated accordingly by setting a reference point on the scope screen.

The two most important maveforms to check are those at TP1O2 and TP105. With pin 7 of V103 disconnected, the waveform at TPlO2 should be a good saw-tooth with an amplitude of 25 to 30 volts peak-to-peak. The leading edge should be linear with no rounding off. When pin 7 of V103 is connected and the bias properly set the waveform will be cut approximately in the middle horizontally.

With V106 removed the waveform at TPl05 should be a good sawtooth with an amplitude of about 25 to 30 volts peak-to-peak. The leading edge should be lincar with no rounding off. When Vl06 is inserted and the bias properly set the waveform will be cut approximately in the middle horizontally.

IIIPROP IR FREGUENCY FESPONSE

If the frequency response is not correct, the audio section should again be chocked for proper response. The frequency response as noted at TPI20 should be approximately the desired overall frequency response. It usually will be 2 DB or so high at both extremes of the audio spectrum.

Should the frequency response noted at TPI20 prove to be O.K., but overall frequency response be down at 15,000 cycles, it will usually be caused by too narrow a bandwidth or mis-tuning of some of the low frequency multiplier stages, LlOl thru LiO7. Ll01 thru Ll03 are most apt to cause this difficulty. Improper tuning of the modulation and frequency monitor can also affect apparent frequency response.
is change in the components associnted with the modulator stages can cause poor low frequency response, this is uspecially true of Cll2, Cl21, Rll4, Rll3, Rll5, Rl26 and Rl27.

WILL NOT HODULATE AT ALL
This condition will probably resolve down to a dead audio stage.

FM NOISE

If $F M$ noise exists the audio stages can be quickly eliminated by pulling Vll7 from its socket. Noise in the audio stage can be caused by a heater to cathode leak or a filament wire lying near a grid connection. Hum from the power supply or improper regulation of the power supply can cause noise in the audio strges.

If the noise is not located in the audio stages, the next most probable suspect is the pulse stages of V1Ol thru V106. An amplitude variation in these stages will cause a frequency modulated noise component. This could be caused by a heater to cathode leak or failure of a stage to properly limit. Hum from the power supply could also cause this difficulty. Modulation at a 60 cycle rate can also be caused in the crystal circuit by induction from the crystal heater.

M NOISE

iM noise is one fault that will not usually, bo traced to the audio stagus because an amplitude varintion in the audio stages causes an FM noise component to appear. While this type of difficulty can occur in most any stage cxoept the audio stages, it is most apt to prevail in ne of the frcquency multiplier stages and usually near the higher frequency end of tho multiplier chain. Hum in Bf corning from the power supply, heater to cathode leakage or an intermittent connection can cause this defect. Hum from heater to cathode leakage will show itself as a 60 cycle component and power supply hum as a 120 cycle component.
ill Values Are RMS

Location	Reading
Pin 5, V107	13.5 V .
Junction Cl30, Cl31,5102	8.2V.
Pin 1, V108	6.0 V .
Pin 5, V108	18.0 V .
Pin 1, V109	5.2 V .
Pin 5, V109	29.0 V .
Pin 1, V110	4.7 V .
Pin 5, Vll0	29.0 V
Pin 1, Vlll	6.6 V .
Pin 5, Vlll	34.0 V .
J101, TPII3	. 47 V .
J102, TPll4	. 51 V .
Pin 5, V112	6.2 V .
Pin 6, Vll2	6.4 V .
Pin 1 \& 2, Vll2	21.0 V .
Pin 5, Vll3	9.0 V .
Pin 6, Vll 3	10.5 V .
Pin 1 \& 2, Vll3	23.0 V .
Pin 5, V1l4	9.0 V .
Pin 6, V114	9.5 V .
Pin 1 \& 2, Vll4	26.0 V .
Pin 1 \& 3, V115	19.0 V .
Pin 6 \& 8, V115	150 V .

Cap., O.1 uf., 200 V.(w) D.C
Cap., Variable, 5-100 uuf. Cap., 150 uuf., 600 V. (河)

Cap., . 001 uf., 1000 V.(W)
D.C.

Cap., 50 uuf., 600 V.(W) D.C:
Cap., 100 ưf., 600 V.(W)

Cap., . Ol uf., l KV.

Cap., . 005 uf., 1000 V.(W)
Cap., Voriable, 50-400 uuf.
Cap., 2 uf., 200 V.(W) D.C.
Cap., 10 uuf., 600 W.V. D.C.
Cap., 1 uf., 400 V. (V) D.C.
Cap., 15 uuf., 600 V.(W)
D.C

Cap., 5 uuf., 600 V.(W) D.C.
 Cap., 330 uuf., 600V. ${ }^{+r}$)

Cap., 25 uuf.; 600V. (W) D.C.
Cap., 0.5 uf., 400 V .(W) D.C.

Cap., 470 uuf., IKV (W) D.C.
Cap., Vriable 2.7-19.6 uuf.
Cap., Verisble.2.4-10.8 uuf。
Cap., 500 uuf., 500 W V.

Symbol No.	Gates Drawing No.			Description
$\begin{aligned} & \text { C174; C175, C176, } \\ & \text { C177; C178, C179, } \end{aligned}$				
Cl85, $\mathrm{Cl} 86, \mathrm{Cl87}$	516	0319	000	$\begin{aligned} & \text { Cap., } 1000 \text { uuf., 500V.(W) } \\ & \text { D.C. } \end{aligned}$
Cl 70	516	0195	000	Cap., 200 uuf., 600V.(W) DC
C.11	506	cold	000	Dis,
C172	516	0067	000	Cap., . 003 uf., l000V.(W)
Cl80	522	0133	000	Cap., 16 uf., $450 \mathrm{~V} .(\mathrm{W})$ D.C.
Cl81, Cl82	524	0013	000	$\text { Cap., } 30 / 30 \text { uf., } 525 \text { V.(W) }$
Cl83, Cl84	506	0012	000	Cap., 03 uf., 400V.(W) D.C.
Flol	398	0079	000	Fuse, Slo-blo, l-l/2 amp.
Fl02	398	0011	000	Fuse, 1/4 amp.
HR101	558	0016	000	Crystal Oven, 6.3 V. $60^{\circ} \mathrm{C}$.
$\mathrm{JlOl}, \mathrm{JlO} 2$	612	0237	000	Receptacle, UG-290 ${ }^{\text {/ }}$ U
J103'		0232	000	Receptacle, UG-58/U
LlOl	913	1104	001	Freq. Mult. Coil issy.
Ll02,Ll03	913	1105	001	Freq. Mult. Coil sissy.
LlO_{4}	913	1106	001	Freq. Mult. Coil assy.
L105	913	1107	001	Freq. Mult. Coil issy.
Ll06;L107	913	1108	001	Freq. Mult. Coil issy.
Ll08, Ll09	913	1109	001	Freq. Mult. Coil Assy.
Lll0;Llll	913	1110	001	Freq. Mult. Coil issy.
Ll12,Lll5	492	0025	000	Coil, 2-3.7 uh:
Lll3	492	0027	000	Coil, 3.4-7 uh.
L114		0024	000	Coil, Var. w/Brass Slug
L116	813	1112	001	Plate Coil for Vll4
Lll 7	813	1113	001	Grid Coil for Vll5
L118	813	1114	001	Pl=te Coil for Vll5
Lll9				Output Coupling Coil for V115 (Pt. of 6360 output coil (Assy)
L120				R.F. choke, 3.3 uh.
Ll22,Ll23,L126,				
L127,L128		0004	000	R.F. Choke
Ll21		0013	000	Choke, 6 hy,@ 160 ma., 165 ohm.
Ll24,Ll25	913	1116	001	Parasitic Suppressor

Symbol No.
XÁl01
XC181, XC182, XV118, XV119

XF101, XF102
XHR 101
XV101, XV102, XV103; XV104; XV105, XV106, XV115, XV116 XV107, XV108, XV109, XV110; XV111, XV113; XV111, XV117, XV120

YlO1

Gates Drawing No.
4060057000
Pilot Light isssmbly

4040016000 Socket, 8 pin
4020021000 Fuseholder
4040068000 Socket, 8 pin

4040042000 Socket, 9 pin miniature

4040038000
Socket, 7 pin miniature
Crystal in T9D Holder

WARRANTY

This equipaent is warranted by Gates Radio Company of Quincy, Illinois to be free from defects in workmanship and material and will be repaired or replaced in accordance with the terms and conditions set forth below:

1. Gates Radio Company believes that the purchaser has every right to expect first-class quality, meterials and workianship and has created rigid inspection and test procedures to that end, and excellent packing methods to assure arrival of equipment in good condition at destination.
2. Gates Radio Company will endeavor to make emergency shipments at the earliest possible time giving consideration to all conditions.
3. Gates Radio Company warrants new equipment of its manufacture for one (1) year, (six (6) months on moving parts), against breakage or failure of parts due to imperfection of workmanship or material, its obligation being limited to repair or replacement of defective parts upon return thereof f.o.b. Gates Radio Company's factory, within the applicable period of tine stated. Electron tubes shall bear only the warranty of the manufacturer thereof in effect at the time of the shipment to the purchaser. Other manufacturers' equipment covered by a purchaser's order will carry only such manufacturers' standard warranty. These warranty periods comence from the date of invoice and continue in effect as to all notices, alleging a defect covered by this warranty, received by Gates Radio Company prior to the expiration of the applicable warranty period.
The following will illustrate features of the Gates Radio Company warranty:

Transmitter Parts: The main power or plate transformer, modulation transformer, modulation reactor, main tank variable condensers all bear the one (l) year warranty mentioned above.

Moving Parts: As stated above, these are warranted for a period of six (6) months.
Electron Tubes: As stated, electron tubes will bear such warranty, if any, as provided by the manufacturer at the time of their shipment. Gates Radio Company will make such adjustments with purchasers as given to Gates Radio Company by the tube manufacturer.
All other component parts (except as otherwise stated): Warranted for one (l) year.
Abuse: Daniage resulting from abuse, an Act of God, or by fire, wind, rain, hail, in transportation, or by reason of any other cause or condition, except normal usage, is not covered by this warranty.
4. Operational warranty - Gates Radio Company warrants that any new transmitter of its manufacture, when properly installed by purchaser and connected with a suitable electrical load, will deliver the specified radio frequency power output at the output terminal(s) of the transwitter, but Gates Radio Company makes no warranty or representation as to the coverage or range of such apparatus. If a transmitter
does not so perform, or in the event that any equipment sold by Gates Radio Company does not conform to any written statement in a contract of sale relative to its operating characteristics or capabilities, the sale liability of Gates Radio Company shall be, at the option of Gates Radio Company, either to demonstrate the operation of the equipment in conformance with its warranty, or to replace it with equipment conforming to its warranty, or to accept its return, f.o.b. purchaser's point of installation and refund to purchaser all payments made on the equipment, without interest. Gates Radio Company shall have no responsibility to the purchaser under a warranty with respect to operation of equipment unless purchaser shall give Gates Radio Company a written notice, within one (1) month after arrival of equipment at purchaser's shipping point, that the equipment does not conform to such warranty.
5. Any item alleged by a purchaser to be defective, and not in conformance with a warranty of Gates Radio Company shall not be returned to Gates Radio Company until after written permission has been first obtained from the Gates Radio Company home office for such return. Where a replacement part must be supplied under a warranty before the defective part can be returned for inspection, as might be required to determine the cause of a defect, purchaser will be invoiced in full for such part, and if it is determined that an adjustment in favor of the purchaser is required, a credit for an adjustment will be given by Gates Radio Company upon its receipt and inspection of a part so returned.
6. All shipments by Gates Radio Company under a warranty will be f.o.b. Quincy, Illinois or f.o.b. the applicable Gates Radio Company shipping point.
7. Gates Radio Company is not responsible for the loss of, or damage to, equipment during transportation or for injuries to persons or damage to property arising out of the use or operation of Gates equipment. If damage or loss during transportation occurs, or if the equipment supplied by Gates Radio Company is otherwise damaged, Gates will endeavor to make shipment of replacement parts at the earliest possible time giving consideration to all conditions. It is the responsibility of a purchaser to file any claim for loss or damage in transit with the transportation company and Gates will cooperate in the preparation of such claims to the extent feasible when so requested.
8. Gates Radio Company, in fulfilling its obligations under its warranties, shall not be responsible for delays in deliveries due to depleted stock, floods, wars, strikes, power failures, transportation delays, or failure of suppliers to deliver, acts of God, or for any condition beyond the control of Gates that may cause a delayed delivery.
9. This warranty may not be transferred by the original purchaser and no party, except the original purchaser, whether by operation of law or otherwise, shall have or acquire any rights against Gates Radio Company by virtue of this warranty.
10. Gates Radio Company reserves the right to modify or rescind, without notice, any warranty herein except that such modification or rescission shall not affect a warranty in effect on equipment at the time of its shipment. In the event of a conflict between a warranty in a proposal and acceptance and a warranty herein, the warranty in the proposal and acceptance shall prevail.
ll. This warranty shall be applicable to all standard Gates catalog items sold on or after March 1, 1960.
$12 / 13 / 61$
World Radio History
Gates Radio Company
Quincy, Illinois

$\sqrt{92 V P P}$
TPIO2
PIN 7 WOB CONHECTEO

TP105
TP105
$V 106$ IN PLACE

NOTE:
THE ABCVE PP WAVEFORM MEASWASMENTS WERE
MADE WITH A MOWEL 524 WE TEXTRONIX SCOPE
AN LINCALABDATED SCOPE WTHI RE IIAIFRATEO BY
USING FILAMENT VOLTAGE Y SET A REFERENCE.
PEAK TO PEAK VOLTAGE LOLMLS $28 \times$ TMS VALUE.
$6.3 V A C=17.5 V P P$.

TVPICAL WAVEEORRMS OF
STAGES VIOI THROUGH VIOG शF THE M6095 ЕXCNTER

PINI, VIO9

(ARIATION BARELY DISCERNED)

$$
\text { JUNCTION } 0130,0131,1 \text { If }
$$

PlN1, VIO8

(PURE SINE WAVE)

$$
P \mid N 5, V 110
$$

ivafian lon.
BARELY DISCERNABLE)

PIN 5, VID8

PINI, VIII

SINE WAVE (NO VARIATION)

PIN 5, VIII

JIOI, JIUZ WAVEFORM SAME AS ABOVE BUT AMPLITUDES WERE 1.4, 13, 1.25 VPP RESPT.

PIN $5 \& 6, V 112$

SINE WAVE (NO VARIATION)

NOTE: TO MAKE THE WAVEFORM MEASUREMENTS SHOWN ON THIS DRAWING, A MODEL S24AD TEXTRONIX SCOPE WAS USED. AN ATTENUATOR PROBE WAS USED WHICH REDUGED CAPAGITY. FREQUENCY OF THE UNIT UNDER TEST WAS 88.1 MC . IN EACH EASE THE STAGE UNDER TEST HAO TO BE RETURNED WHEN THE PROBE WAS
CONNECTED. IT MAY BE IMPOSSIBLE TO RE-RESONATE THE CIRCUIT UNDER TEST IF THE EXCITER IS TUNED UP NEAR THE HIGH END OF THE BAND.

F AN UNGALIBRATED SCOPE IS USED, it MAY be CALIbrated by using filament voltage to set a reference. peak to peak voltage equals 2.8 X RMS VALUE. 6.3 VAC THEN EQUALS 17.5 VPP .

IT WAS IMPOSSIBLE TO SYNC SCOPE AFTER VIIZ.

```
TYPICAL WAVEFORMS OF STAGES
V1O7 THROUGH VII2. M6095 EXCITER
```


\square

∞
0
0
0
0
0
+
0
0

1002020008

					GATES RADIO COMRANY dimNEY: iLLINOIS					A-39 ${ }^{\text {a }}$ (${ }^{\text {a }}$		
									SCALE			
9	9	9	\#	${ }_{4}^{4} 8$	LISTOFPARTS							
of	9T1	atr	arr.	ITEM	REFERENCE		FIN.			DESCRIPTION		MKTL.

FUBS DAFA 4-400A

Clabn "0" Kardmum (00s Retings (pur tube)

DC Plute Voltage
DL Screen Yoltage
DC P1ate Current
Date Diasipation
Soreen Disaipation
Grid Di 3H1pation
Pllagent voltage
Fllament current

$$
\begin{aligned}
& 4000 \text { max. volts } \\
& 600 \text { max. volte } \\
& 350 \text { max. NA. } \\
& 400 \text { max. watts } \\
& 35 \text { max. Watts } \\
& 10 \text { thax. watts } \\
& 5.0 \pm 55 \text { volts } \\
& 14.5 \text { smp. }
\end{aligned}
$$

Hate Dissipation
Min. Hilr flow (ou. It/min)
Inlat preasure (inches of water)
(e2)
Max. Hate jeal (o C)

400 watts 14
.25
$200=$
2209

	9 TK	
$\begin{aligned} & \text { ald ay } \\ & \text { Ow } \end{aligned}$	ETes:	Fin

Raclu: Breqpency Poser Amplif1er (60 - 110 Me)
Naximum Hathnies:
D. 4. Flete foltage - 6500 volto

Did. Sereen Voltage - 1900 voltin
D.3. Plste curpent - 2.0 gubs.

Mate 15331裡tion - 10,000 Watta
Strem Hest patton - 250 ketts
Grid Lisaipation - Tis watte
Hiament Voltage - 7.5 volts ± 56
Y 1 Lment Ourrent -75 mowa.
Cooling: To razintiain tube meal temperatiare at $200^{\circ} 0$. at 50.G. umblent afr temierature.

23gte in ang plation
4000 Matta
6000 wett 8
8000 watta
10,000 wetta

CH: (Ser tieval)
100
190
290
400

Inches of datex Pressure
0.3
0.18

1. 5
2.5

EQUIVALENT CIRCUIT- LOM PASS FILTEE
NOTE 6 有 TRANSMIESION CINE NPUT \neq OUTPUT $3 \% / \frac{1}{3}$ E/A FLANGE

\%akt. 3 'thash Delua. 50/50 crate	

SECONDARY- WYE -ctargoted nttli neutral terminal. D.C. Irom 20 ohm Sliter to be 650 doitt Gurrent in load to be 5.5 A.. D. G. continuous, Voltage veriation from 7. 5 umph, to 5.5 A . to be 5% or iess. Rectiffers bo be full wave mevdury yapor tybes.

SHIELDING - NGOe

TYPE OF CONNEOTIONS Primery: cuu Texininils oeconquny: Coil stids:
HIPOT TEST (ALL VOLTAGES ARE RMS)
COLL TO COIL- 16,000 vOLtE
PRIMARY TO CORE AND CASE- \& , On0 vOLIE
SECONDARY TO CORE AND CASE-16,000 volts
TEMPERATURE RISE---
ADDITIONAL INFORMATION
bay be onnn irame construction
Dry tyna conatruction
sonce lifulted, nhysictal, sise co be
at imall as ratings will permit.
Ftriash with non-lutrient Vartish.

Rot Uese dimmstons free saeet :wo.

Whaniec Gursent.
Eutenit from

รवнsMaтा

		Fick Hews Phe	Poecticuthe: $\mathrm{y}=\mathrm{mlim}:$

E'RISARBY-

SBCONDARY-
SHRLDING- Nane
TYPE OF CONNLCTIONS Coll studs.
HIPOT TEST (ALL VOLTACES ARE RMS)COLL TO COLL-PRDMARY TO CORE AND CASE-SECONDARY TO (ORE AND) CASF- 16,000 voltsTEMPERATURE RISE-
ADDITIONAL INFORMATION
H.V. Phluer, 6500 volts D.C.
Dry typer conatraction.
Snact is ifuited, physical site tobe at swall as the ratiags will permit.
Onen type oonstmiction may be used.
continuous duty.
Flritsh \%ith for-nitifent virnish.
Hor לan Jiteruion
mos ahmet Two.


```
7-2-6-5 3.\sqrt{}{0}
J"##民Ed ज゙"#runt
FOL\*TM I DOTH
    #.4. पQ1 5.2N%


\section*{TRANSEOFMEA SPECIFICATIONS}




```

SEGONDARY - IWo nomarate vindincm,

```
SEGONDARY - IWo nomarate vindincm,
    7.5 Folts: it e5 amp=, w]th cention tap.
    7.5 Folts: it e5 amp=, w]th cention tap.
SHIELDDNG- IGME
TYPE OF CONNECTIONS PILL: Baryter Str2p
Sc0: Coll stuts
HIPOT TEST (ALA. VOLTAGES ARE RMS)
COH. TO COHL
2000 volts
PELMARY TO CORE AND CASE- 2000 valt:$
SECONDARY TO CORE AND CASE-2000 vOlte
TEMPERATLIRE RISE-
ADDITIONAL INFORMATION
```


SECONDARY- No C.T. - 7.C. frhm Lon ingefance riter to De 1500 Vale . Guytent in load to be 500 BA . hectili or to be fill -whye bridge hype itsinc ablteon rectifilurs.

SHIELDING- Horte
TYPE OF CONNECTRONS irimary (hsrrien strty)
Sec. (14-32 Studs)
HIPOT TEST (ALL VOLTAGES ARE RMS)
COII. TO COLL- 7500 VoltS
PRIMARY TO CORE AND CASE- 2, 000 Voltm
SECONDARY TO CORE AND CASE- . ${ }^{7}$, 500 Valt
TEMPERATURE RISE- -
ADDITIONAL INFORMATION

```
Vay be open fruine fonstrruct Ion.,
Dry type oonstzructlem.
Sname imiteel, phystcel slate to tio
as smnly ar ruthint tr141 permli.
Bln\shywith non-nutrient varmish.
```

For Cusu Dimenulons
see sheet two.

Мแमझมに
zermajim

gysel 14 u5 $=$

