INSTRUCTIONS FOR INSTALIING AND OPERiTING

GaTES FM-lC TRANSMITTER

$\frac{\text { ADDENDUM }}{\text { Fii - IC }}$
POSITION OF ANODE CONNECTOR STRiAP

The position of the anode connector straps in relation to the plate lines will effect the frequency at which the plate will tune. If difficulty in getting the plate to hit frequency is experionced with the shorting bar at its factory setting, these straps should be dressed differently until plate will tune. (Closer to lines will raise frequency.)

REFERENCE: PAGE 5, FIRST PARAGRAPH

With reference to grid voltage measurement at TP40l, the teat point on the driver panel, this voltage will be approximately l0-20 volts with voltages removed from the driver unit. This is accomplished by removing the plug on the 600 volt rectifier stack on the 600 volt supply.

BE SURE THE ENTIRE TRENSMITTER IS TURNED OFF BEFORE REMOVING THIS PLUG.

REMOTE CONTROL

All remote control metering and OFF-ON functions are built into the FM-lC. All that is necessary to completely remote control the transmitter is the addition of the motor driven rheostat (M4703C), which will be supplied on special order.
SPECIFIC』ITION
Paçe
DESCRIPTION 2
THEORY OF OPER $I T I O N$ 3
UNPACKING $九 N D$ REぇDYING FOR OPRRATION 4
INSTiLL＿ıTION 4
OPERITING ．IND TUNB UP PROCEDURE 5
NEUTRiIIZ＿iTION 6
GENERiL INFORM 1 TION 8
MICROM＿TCH OPERiTION 9
REMOTE CONTROL 9
MiINTEN＿INCT 10
P：RTS LIST
8136026001 O．L．Relay Deck
8135901 Filter Installation
8135904001 Remote Control Wirins－RDC－200．．
8135903001 Remote Control Wiring－RDC－lOC．
ء－31735－1 Micrcmatch Cap assy．and Schematic．
A－31735－2 Micromatch Cap issy．and Schematic
8268394001 Schematic，Power Supply
B－67314－1 Recycle Unit Schematic
C－79128 Base Layout Information
8423513001 Overall Schematic
D－23127 Internal Wiring
M6095 EXCITER INSTRUCTION BOOK
M5675 50 WATT $4 M P L I F I E R$ INSTRUCTION BOOK
M5737 FILTER INSTRUCTIONS
M6023 $\AA \mathrm{A}$ UTOMATIC RECYCLE UNIT INSTRUCTIONS
FiCTORY TEST DiIA SHEETS．
$3 / 30 / 62$ －1－ Fli－1C

$$
\mathrm{FM}-1 \mathrm{C}
$$

Power Output:
Frequency Range:
RF Output Impedance:
Type of Oscillator
Frequency Stability:
Type of Modulatipn:
Modulation Capability:
sudio Input Impedance:
iudio Input Level:
Frequency Response:

Distortion:

Noise:

Power Input:

Power Supplies:
Max. iltitude:
Max. imbient:
RF Output Connector:
Tube Complement:

1000 Watts
88 to 108 mes.
50 ohms.
Direct Crystal Controlled.
$\pm .001 \%$
Phase shift employing plus techniques.
$\pm 100 \mathrm{kc}$.
600 ohms.
$+10 \mathrm{dbm}, \pm 2 \mathrm{db}$.
$\pm 1.0 \mathrm{db} 50$ to 15,000 cycles.
-2.0 db 30 cycles.
1% or less 30 to 15,000 cycles.
$1 / 2 \%$ or less 100 to 10,000 cycles.
65 db below 100\% modulation (FM) 50 db below equivalent 100% (:MO, modulation.

230 volts 60 cycles, single phase three wire, 5 KVi demand. 115 volts, 60 cycles single phase, 500 watts.

Silicon rectifiers.
7500 feet.
-20° to $45^{\circ} \mathrm{C}$.
7/8 inch coax flange.

6	-	6:126	1	-	6360
1	-	12.1. ${ }^{\text {a }}$	1	-	6i29 A
3	-	$6 J 6$	1	-	6080
2	-	0 H 2	3	-	6201
2	-.	6146	3	-	7025
2	-	4-400.1	1		5.i24/

FMi-lC Transmitter
Size:Width 24"Height 78"Depth $361 / 2^{\prime \prime}$

Front Door Swing:
Weight:
Cubage:
Finish:
$21^{\prime \prime}$
Packed 1140 Ibs., Net 880 lbs.
34 cu. ft. unpacked
Two-tone gray with black accent. Brushed aluminum trim.

DESCRIPTION:

Ihe Gates FM-IC frequency modulated broadcast transmitter will provide 1000 watts of frequency modulated power to a properly designed antenna and transmission line system on any frequency from 88 to 108 Mc. Characteristics obtained, in any proper installation, will exceed those required by the FCC for FM broadcast service。

The basic units of the FM-lC are: exciter, driver and power amplifier.
a) The exciter unit M6095 is capable of 10 watts output and is the basic exciter used in all of Gates FM equipment.
b) The driver uait M5675 is capable of 50 watts output and is link coupled to the input of the power amplifier.
c) The power amplifier of the FM-lC consists of two $4-400 \mathrm{~A}$ power tetrodes operated in a push-pull circuiio. Quarter-wave lines are employed in the plate circuit for maximum stability and efficiency.

The M6095 exciter used in this transmitter employs a phase shift modulator with pulse timing techniques and may be adapted to single or dual channel multiplcxing on a plug-in basis, with blank panel space provided for the addition of the multiplex unit.

An important feature of this transmitter is the lack of frequency multiplication after the exciter. This aids in helping to eliminate spurious frequencies and gives protection to tube life, as power type tubes in doubling or tripling operation are not always operated at their most stable life lengthening conditions.

Mechanically the FM-IC has been designed to be easily maintained. Ready accessibility to all parts is accomplished by liftoff type doors. The sides of the cabinet may be easily removed by removing two screws from the holding bracket from the bottom of the side panels and Jifting the side panels off.

The control panel for the FM-IC consists of the OFF-ON switches, for the line voltaßes, the OFF...ON switches for the plate voltage, varıous indicator lights, the local remote switch, the tune operate swich and the overload reset switch.

The neter panel for the FM..IC is hinged and may be lifted up by finst lacsonirg, the fastenan onc cuarter turn using a screw. driver or a coin and then iiftirf the meter panel up. This wili cive access to reter teminals :ad wiring of the reflectometer on Maciomatch switchime reation。

With the pressing of 5502 the low voltage ON button, primary voltage is applied to the exciter, the blower, the fan and the low voltage power supply. Filament voltage is also applied to both PA tubes, rectifier tubes and voltage is applied to the control circuitry. The exciter has its own power supply and DC voltage is applied to the exciter when its power supply comes up to operating tepperature. The exiciter power supply also supplies voltage for the driver screen. The low voltage supply supplies voltages for the driver plate and the araplifier screen. With switch S 512 in the grid position, about a minute after 5502 is pressed grid current will appear on the $P_{i 2}$ grid current meter, which is the second meter from the left on the cabinet meter panel. This meter should indicate 16 to 25 mils of grid current.

The low voltage power supply also supplies the screen voltage for the power amplifier, however, the DC path is broken through a set of contacts on K503, which is the high voltage contactor. By pressing the high voltage ON button $S 506$ both plate and screen voltage are applied to the power anplifier.

The function of S 518 is a "local-remote" switch, with the switch in the "remote" position the fail-safe relay in the remote control unit acts as the holding contacts for K501, which is the line contactor. With S518 in the "local" position the holding contacts on K501 are operative and the remote control unit is disconnected from the transmitter.

The function of S519 is the "tune operate" switch. In "tune" position $S 519$ disables the automatic recycling unit so the transmitter is on complete manual control. The theory and operation of the automatic recycling unit is covered in a separate set of instructions which are part of this instruction book.

The function of 5517 "overload reset" is the resetting of the plate overload relay K505. If 5519 is in the "tune" position the transmitter experiences an overload, $S 517$ must be pressed to reset K 505 before plate voltage can again be applied to the anplifier. Overload relay $K 505$ is in a "lock out" type of circuit. If S 519 is in the "operate" position the resetting of the plate overload is automatically taken care of in the recycling unit.

To multiplex the Gates $F M-1 C$ is a relatively simple matter. The rain channel exciter was specifically designed with zultiplex in mind. Space has been provided directly below the cxciter for the placine of the rultiplex unit. a minimuri areount of connctions are necessary to connect this unit to the pain channel exciter. Connections necessary are a coax connector to the multiplex exciter in the multiplex chain. This is Gunu on the front panel of the two units. Other connections nucessary are powor fron 115 volt scurce.

This can be taken off 115 volt terminals of the main channel exciter and the connecting of the audio to the terminal board on the multiplex unit completes the necessary wiring. The multiplex unit is capable of handling two subchannels and, therefore, there are two audio input terminal arrangenents available on the terminal board of the multiplex unit.

Since the power contactors are non-circuit breaker types, they require a momentary $O N$ and a momentary OFF type of function to operatc then, the transmitter is easily remote controlled.

UNPACKING AND READYING FOR OPERATION

The FM-lC is carefully checked and packed at the Gates plant to assure that safe arrival at its destination in proper electrical and mechanical condition.

Tests of many different kinds are made at the factory and the unit is operated for several hours to assure correct adjustment and proper operating conditions.

Certain large components are removed frou the unit and shipped separate to assure safe handling. The components removed are; T501, L501, L502, C501 and C502. Wires are numbered or tagged as a guide for replacement of these parts. Photographs are supplied to assist in the proper placement and orientation of the components that have bcen renoved for shipment.

After the FM-lC has been received and unpacked, it should be carefully inspected for any mechanical damage. If any danage is noticed to any section of the equipment, a claim should be filed imrediately with the delivering transportation company and necessary replacement items ordered from the Gates Radio Company.

It is a good precautionary practice to completely go over the equipment to check for loose connections, loose components, broken insulators, etc., that might have becone loosened or damaged in shipnent. Make sure all relay contacts are free and in good mechanical operation. Make sure all mechanical connections are tight.

The power contactors are either tied down or blocked sufficiently to keep them from vibrating during shipment. These should be checked and the shipping material removed.

A good overall visual inspection may save much time later in getting the transmitter to operate correctly.

INSTGLLATION

In advance of actual placement and adjustment of the transritter cortain preliminary planning should be done. The use of drawing C--79128 and 8135901001 will assist in locatine the power and audio input leads and the power output fror the transaitter。
3/30/62

The following should be arranged in advance of actual instal－ lation work．

1．Leads from a low reactance power source of 230 volts， 60 cycle，single phase and 115 volts， single phase， 60 cycle $九 C$ lines should be run in conduit underneath the proposel location or platerorm．

The wires should be at least $\# 6$ for 230 volts， 60 cycle，single phase and \＃l2 for the 115 volts， 60 cycle，single phasc for best regulation．

Running these power sources in lead enclosed wires or in a steel conduit is highly recomended to ob－ tain both audio and radio frequency shielding near the transmitter．

2．To assist in keeping $R F$ currents in nearby audio equipment to a minimum，a good ground at these frequencies is mandatory．One of the best known methods of doing this，is the installation of a sheet of copper for the ground system beneath the coriplete transmitter layout．RF usually shows up in one or both of two ways，feedback or hiêh noise level．It should be pointed out that even a small anount of wire unshielded is a very effective antenna at FM frequencies in transferring RF to the grid where it is recti－ fied and passed on as noise or feedback．It is preferable to have a single common ground point fron the transmitter copper shield to a good ground．

OPER．TING $\angle 1 N D$ TUNE UP PROCEDURE

Before attemptine to tune the transuitter，make sure it is connected to a transiission line and antenna that will pres－ ent a nominal load of 50 ohns or a non－reactive load with the proper power handling capabilities．

Before tuning the transmitter，refer to the factory test data sheets and check all dial readings to correspond with the data given on the factory test data sheets．

Switch S518 should be in the＂local＂position，switch S519 should be in the＂tune＂position．
ffter the installavion is complete all input and output cables have been connected and the crystal oven has been operatinif for two iours or more punching the low voltage ＂ON＂button applies primary voltages to all of the filaments， control circuits，the fan；the blower and the low voltare power suppiies．Provision is nade on the driver panel fon

World Radio History
metering the grid bias voltage of the driver by means of a test point on the front panel. s meter such as a Simpson Model 260 or equivalent may be used. With the negative lead plugged into this test point and the positive lead grounded, a rise in grid voltage will be observed as the exciter comes up to operating temperature. This voltage should be approximately 15 to 20 volts. This is a good check on the exciter operation. Place switch S 512 which is the test meter switch located on the botton center of the amplifier panels in the grid position, which is extrene counter--clockwise. Tune the grid circuit to resonance with control marked "grid tuning" and observe grid current on M502, this should be approximately 16 to 25 mils of grid current.

Press the high voltage ON button and tune the amplifier to resonance with the control rarked "plate tune" and observe plate current on meter M503. It may be necessary to go back and re-resonate the grid circuit after high voltage is applied。

Load the amplifier to the required power by the control narked "RF output" turning control clockwise increases loading and countcr-clockwise decreases loading. Observe power output on meter M505 which has been calibrated at the factory and reads power being delivered out of the transmitter to the transmission line. This meter has been calibrated and its calibrating controls locked in place and should not be tampered with without express authorization from the Gates Radio Company

NEUTRUIZMTION
Tuning of an FM transnitter in the frequency range of 88 to 108 Mcs, offers greater difficulties in regard to tuning various circuits than is norially encountered in the low iM frequencies. This is manifest in greater reaction between various circuits caused by silall inductive and capacitive reactances that can norilally be ignored at the lower frequencies, but which can becons increasingly important at these high frequencies. Therefore, when tuning a high frequency transnitter, it is well to constantly re-check the previous adjustments as tuntig progresses.

The transnitter has been proferly neutralized at the factory on the customer's frequency with a 50 ohm non-reactive load. Due to rough handling during shipment neutralization may be affected. Improper neutralization is indicated by several abnormal conditions showing up in the operation.

1. When the grid current does not rise to naximum or near maximun simultaneously with a dip in plate current as tine amplifier plate tank is tuned threus. resonance.
2. If excitation is rencved from the anplifier and the Pis grid relay does not open, this indicates oscillation in the power ampifier itself. This
self-oscillation produces grid current which holds the grid relay $K 506$ closed, this keeps the plate voltage applied allowing the amplifier to continue its self-oscillation.
3. If the balance control R504 and R505 does not enable the two plate currents to maintain a balance within 10%, this condition will indicate improper neutralization.
4. i radical change in Pi grid current from the value given on the factory test data sheet.
5. Spurious radiation detected across the band.

The neutralizing controls have been brought out to the front panel of the amplifier to a special machined bushing. In the center of this special bushing is a shaft with a machined screwdriver slot. It will be noted that on both this special bushing and the internal screwdriver slot shaft, there are two black dots. These two dots are aligned in a vertical position when the neutralizing capacitors are at maximum capacity。

It will also be noted that on this special bushing is a red dot which will appear directly opposite the black dot on the novable portion of the shaft. This red dot, on the special machined bushing, indicates the location of the neutralizing capacitors as they were set at the factory. These marks will serve as a good starting place if complete re-neutralization is required.

If any of the aforementioned conditions are observed when the transmitter is first placed in operation, this indicates that re-neutralization is in order. This is accomplished as follows:
I. Turn the high voltage OFF.
2. Remove the botton cover from the Pis tank.
3. Loosen the locking nuts on the rear of the neutralizing capacitor slightly, so that the capacitor shaft will turn free with a slight drag on the shaft.
4. Renove one of the leads from the high voltage rectifier stack, so as to reduce the plate voltage.
5. Keplace the bottom cover plate on the amplifier tonk.
6. ipfly low plate voltage and adjust either 0303 or 0308 in one direction and again check for neutralization.
7. If improvenent results adjust the other capacitor the same amount in the same direction and again re-check for neutralization.
8. Continue this procedure step-by-step rotating capacitor C303 and C308 in the direction that indicates the proper neutralization.
9. Replace the lead removed on the high voltage rectifier stack for normal operation and re-check neutralization.
10. Remove the bottom cover of the amplifier tank and re-tighten the locking nuts on the rear of the neutralizing capacitors, being careful not to move the adjustrient while these locking nuts are being tightened.

GENERAL INFORMATION

There are some facts about the power amplifier that should be known and remembered that will help in good operation of the equipment and contribute to best operating results.

Tuning of the plate circuit changes the effective electrical length of the plate tank. Increasing the spacing between the tuning and the plate tank lines lengthens the effective length of the plate tank and lowers the frequency; decreasing the spacing will raise the frequency.

Switch S510 located on the power amplifier panel in the lower left hand corner is provided for checking individual cathode currents of V3O1 and V302 as well as the total plate current on both these tubes.

The balance control R504 and R505 is provided on the front panel to enable the operator to maintain a balance in plate currents.

S510 is used for relative balance indication of plate currents. This switch nust be left in the normal or mid-position while the transmitter is operating, except on initial tune up or for checking balance between plate currents of the tubes. S5l2 is a nultineter switch which is used to read either total control grid current or individual screen grid currents of V301 and V302.

Protection against electrical shock from high voltage circuits are provided for by the door interlock switch S514. By removing the back door, S514 will open and imediately remove the high voltage from the amplifier. Forced air is provided for the amplifier tubes by a blower B301. B501 is provided to exhaust any hot air in the cabinet proper.

MICROMLTCH OPERITIION

On Drawing i-31735-2 is a complete schematic of the internal wiring for the Micromatch unit. The following is a description of this unit as used with the FM-lC transmitter.

On the Micromatch switching panel there are two controls which adjust the calibrating of the unit and a switch. One control has a knob which is the VSWR calibrating control, the other has a shaft lock. The control with the shaft lock adjusts the calibrating of the power function and is set at the factory and needs no further adjustment. The other control with the knob adjusts the calibration of the VSWR.

To calibrate the VSWR portion of the unit turn the switch to calibrate position and adjust the meter to full scale deflection using the control with the knob. Turn the switch to VSWR position and read the standing wave ratio on the lower scale of the meter.

To read forward power or power being delivered out of the transmitter to the transmission line, turn the switch to forward position and read power directly on M505.

REMOTE CONTROL

fill necessary provisions for remote controlling the Gates FM-lC are built into the equipment.

1. Remote plate voltage metering is obtained fron TB503 terminal 8 and is controlled by R 521.
2. Renote plate current metering is obtained from TB503-7 and is controlled by I5520.
3. The "LINE ON" function from the fail-safe relay in the remote control unit is connected to TB503-2 and TB503-3.
4. The plate ON function is connected between TB503-5 and TB503-6. Remove the jumper between the TB503-4 and TB5C3-5 for remote operation. Its function requires a romentary "on" type of function.
5. The plate OFF function is connected between TB503-5 and TB503-4. This function requires a momentary "off" type of function.
6. The remote overload reset function is connected between TB503-9 and TB503-10. This connection is 6 volt DC from a stepper position on the remote control unit.
7. The raise-lower functions are connected to TBl~1 and TBI-3 on the motor driven rheostat. (M4703C motor driven rheostat for remote control of power output not supplied.)
In the case of the Gates RDC-10C, one side of the 115 V. primary voltage for the motor of M4703C is connected between TBIOl-7 on the exciter terminal board in the transmitter and TBI-2 on M4703C. The other side of the 115 V . «iC line is connected to the common of the remote control unit which is TB2-27.

MaINTENANCE

Maintenance of the FMI-IC should consist of periodic checking of tubes, meter readings, cleaning and visual inspection, lubricating places where required.
The use of air filters materially assists in keeping the transmitter interior clean, however, periodic removal of dust will still be necessary. Since electrostatic seals create dustcatchers, special attention should be paid to these places. Support insulators for the tank elements are probably the worst offenders and must be kept clean and free from all foreign material. Failure to do so may result in arc-over and shattering of the insulators. When inspection of the air filter discloses that it is filled with dust or foreign matter they should be discarded and replaced with a new one. The type of filter used in the FM-lC is a disposable type filter and is obtainable from most any local hardware or appliance store.
Once a month the blower and exhaust fan should be cleaned and checked for proper operations. is few drops of light machine oil should be dropped in the oil holes provided at each end of the blower motor. The exhaust fan has sealed bearings and needs no attention.
Once a month the entire transmitter should be cleaned of dust. In the case of the power amplifier, remove the back cover and: the enclosure should be wiped clean of dust. The two protective relays should have the dust cleaned as required and contacts burnished with a burnishing tool. Each relay is protected with a dust cover and are telephone type relays and will require little or no attention.
This transmitter is a precision electrical device and as suob, should at all times be kept clean and free fron dirt and dust. Dust shortens the life of many components due to flashovers, arcs, etc., which damage the same. A small brush or soft rag can be used very effectively in keeping the equi....
ment clean.
A good preventative maintenance schedule will provide bost assurance of trouble-free transmitter operation.

PARTS LIST

FM-1.C 1KW TR.iNSMITTER			
Symbol No.	Gates	S Part No.	Description
B501	430	0002000	Fan, ll5V., 50/60 cy. 1500 RFM, 650 cfm.
C501,C502	510	0246000	Cap., 4.0 mfd ., 5000 V . W)
F501, F502	398	0186000	Fuse, $30 \mathrm{amp} ., 230 \mathrm{~V}$.
-. L501, L502	476	0105000	Choke, 10 Hy .
$\begin{aligned} & \text { R501 } \\ & \text { R502,R503 } \\ & \text { (R504,R505) } \end{aligned}$	$\begin{aligned} & 552 \\ & 540 \\ & 552 \end{aligned}$	$\begin{aligned} & 0405000 \\ & 0618000 \\ & 0721000 \end{aligned}$	Rheostat, 15 ohin, 150 W . Res., 2000 ohm, 2W. 5\% Rheostat, 2 Section in tandem, 300 ohm per section
$\begin{aligned} & \text { R506, R507, } \\ & \text { R517, } \\ & \text { R5088 } \\ & \text { R509 } \\ & \text { R111 } \\ & \text { R513 } \\ & \text { R510 } \end{aligned}$	$\begin{aligned} & 542 \\ & 542 \\ & 550 \\ & 548 \\ & 542 \\ & 550 \end{aligned}$	0056000 1051000 0029000 0004000 0565000 0067000	Res., 20 ohm, low. Res., 2.5 ohm, low. Control, loK ohm Res., 5 meg. meter multiplier Res., 100K ohm, 190 W. Control, loK ohm
$\begin{aligned} & \text { S509, } 5511 \\ & \text { S510, } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 0162000 \\ & 0302000 \end{aligned}$	Switch, rotary Switch, 1 section, 3 circuit 5 position
S512	600	0280000	Switch, Rotary
S513		0208500	Switch, Pressure
S514		0061000	Interlock Switch
S516	926	6665001	Interlock Switch and Grounding Hook Assembly
T301, T302		0111000	Transformer, P.i. Filament
T501		0307000	Transforner, Power
TB501		0047000	Terminal Board, Audio
TB502, TB517		0092000	Terminal Board, ll5v. i.c.
TB506		0052000	Terminal Board, Contactor Fanel
TB507		0046000	Terminal Board, Fan
TB510		0100000	Terminal Board, Contactor Panel
$\begin{aligned} & \text { TBS11 } \\ & \text { TBSI } \end{aligned}$		$\begin{aligned} & 0093000 \\ & 0046000 \end{aligned}$	Terminal Board, Powerstat
XF501	931:	8443001	Fuse Holder Ass'y
3/30/62		-1	FYT-1 C Xntr.

Symbol No.	Gates Part No.		Description
M501	630	0049000	Meter, Fil. Volt 3-1/2" O-loV:
M502	532	0574000	Meter, Pi Grid Current, 3-1/2"
,			- $0-50 \mathrm{Mi}$ DC (non-inagnetic panel)
M503	632	0026000	Meter, Pi Plate Current, 3-1/2"
			O-l amp. DC (non-mag. panel)
M504	632	0148000	Meter, Plate Voltage, 3-1/2"
			0-1 Mii DC movement $W / 0-5000$ DC Scale (non-magnetic panel)
M505	913	1256001	Meter, R:F: Output
$\mathrm{C} 503, \mathrm{C} 504, \mathrm{C} 505$			Meter By-Pass Cap:, .Ol mfd., 1KV
AMPLIEIER TANK			
B301	432	0026000	Blower, ll5V. 50/60 cycles:CCW
C303,C308 5200091000			
C304, C 305,	516	020400	Cap., 100 minfd., 5000
C311	520	0249000	Cap., Variable, 20 uuf.
C312	516	0233000	Cap., 500 mmfa . 30 KV .
C313,C314			```Neut: Fadding Condenser (Det by Freq:)```
DC501	620	0034300	Micro-Match, O-1200 W. 50 ohm.
J301	612	0232000	Receptacle "N"
J302	612.	0230000	Receptacle "UHF"
L301	813	1281001	Flate Choke
L302,L303			
L306	494	0004000	Choke; 7 Microhy.
L304	813	1532001	Input Grid Coil
L305	813	1531001	Input Coupler Coil
L309	926	5524001	Flate Line issembly
L310	813	1060001	Output Coupling Loop
L311	910	9741001	Monitor Loop issembly
R301, 2304,			
2305	540	0728000	Res., 100 ohm, 2W. 10\%
R306	542	0085000	Res., 3500 ohm, 10W.
12307	542	0088000	Res:, 5000 ohm, 10W.
R308,2309	540	0740000	Res., 1000 ohm, 2W. 10\%
R310	542	0136000	Res., 2000 ohm, 20W.
13301	614	0113000	Temanal Board
T3302	614	0.92000	Terminal Board

M-5652A POWER SUPPLY

600V. SCREEN RECTIFIER BOARD ASSEMBLY

FMIE $M \cdot 5517$

ごMー B
T8 50 3

Tr 1

M47635

$$
5=4-4
$$

SB）$F=1,3$

$$
(5 \%
$$

(5)
(5

$$
\begin{gathered}
1= \\
45=
\end{gathered}
$$

inc

$$
\begin{aligned}
& \left(\begin{array}{l}
49 \mathrm{~F} \\
44 \mathrm{E}
\end{array}\right. \\
& \begin{array}{l}
497 \\
475 \mathrm{E} \\
79 \mathrm{E} \\
49 \mathrm{E}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { くこ: } \\
& 160 \\
& \text { (5きに) シ }
\end{aligned}
$$

$$
\operatorname{UND}_{N} \begin{cases}\text { TB501 } \\
\begin{array}{ll}
(1) & \text { TB101-1 } \\
(2) & \text { TB101-2 } \\
3 & \text { TR101-3 } \\
\text { GND }
\end{array}\end{cases}
$$

(450) T501-

S519	TUNE OPERATE SW.
5518	LOCAL-REMOTE SW
S 517	O.L. RESET

TB1 RECYCLE UNIT
TB101 EXCITER
TE 201600 VOLT POWER SU
TB 301 AMPLIFIER
TB 302 AMPLIFIER BLOWER
TB401 DRIVER
TB501
TB503
CONTACTOR PANEL
TB505 CONTACTOR PANEL
TB 507 CABINET FAN
TB 510 MIDDLE LEFT FRON TB511 LOWER LEFT FRON
TB 513 O.L. RELAY DECK
TB514 PA. PANEL
TB502 XTAL. OVEN
TB 50\% UPPER LEFT CORNE
TBSI5 CONTACTOR PANEL
TB5I6 CONTACTOR PANEL
TESI7 MIDDLE LEFT CORIVER
TBSI7

115 V. AC.

w
$x \quad 8 \& 2$ y $3 / 2$

| ON | FIN. | DESCRIPTION | MATERIAL |
| :--- | :--- | :--- | :--- | :--- |

REST (KLIR VIEW)

| TITLE INTERNAL WIRING FMIOA ORIVER | M5833B |
| :--- | :--- | :--- | :--- | :--- |

ADDENDA SHEET

M-6095 FM EXCITER UNIT

8525774001 Schematic ECN-9105

1. Change value of Cll5 and Cll6 from 1 mfd. to 2 mfd .
2. Change value of Cl 83 and Cl84 from . 03 mfd . to . 027 mfd . (Audio input circuit)
3. Change value of R180 from loK ohm, 2 W . to 10 K ohn, 10W.

4. Delete "or S5019" from Vll8. GZ34/5AR4 tube is supplied with unit.

INSTRUCTION BOOK
 FOR

THE M-6095 FM IXCITER

I.B. 78880648001

Gates Radio Compraj
quincy, Illincis
INDEX
M6095 EXCITER
(Freq. Range 88 - 108 MC.)
PAGE
Specifications 1
Introduction 3
Installation 3
Pre-operation 4
Daily Operation 5
Theory of Operation \& General Explanation of Circuitry 6
General 7
DC Resistance of Frequency Multiplier Coils LlOl Through Lll3 and Capacitor Values Across Them 7
Coupling Exciter To A Following Stage 8
Efficiency Calculations of Vll5 Stage 9
Typical DC Test Point Voltages 11.
Proof of Performance Data 12
Setting Carrier Frequency 13
Distortion Measurements and Adjustments 13
Overall Frequency Rosponse 15
FM Noise 17
AM Noise 17
Typical Piouf of lerfommance F.cadints 18
Proof Of Performance Data Sheet(This data sheet is located at the veryback of the instruction book. It isfilled out only when the exciter unit isshipped by itself. When the exciter unitis shipped as an integral part of anotherunit, this data will be included with theoverall data sheet for the transmitter.)
Maintenance 19
Trouble Shooting 19-26
No Carrier 20
Low Carrier 21
Intermittent Carrier 21
Oscillation 22
Carrier Off Frequency 22
High Distortion 23
Improper Frequency Response 24
Will Not Modulate ht All 24
FM Noise 25
AM Noise 25
Typical RF Voltage Measurements 26
Electrical Parts List I
Warranty
Drawings at the Back of the Book in the Order Referred to in the Text:
8525774001 Schematic, FM Exciter
8379534001 Functionsl Block Diagram Exciter Unit
ES-6170 Standard 75 Microsecond Pre-emphasis Curve
A-4165 Test Set-Up for FM
8267991001 Typical Waveforms of Stages Vlol thru V106
8267990001 Typical Waveforms of Stages V107 thru V1l2
Tables and Charts Included Within Text of Book That are Helpful in Trouble Shooting:
DC Resistance of Frequency Multiplier Coils LlO1 thru Lil3 7
Typical DC Test Point Voltages 11
Typical RF Voltage Measurements 26
NOTE: Complete Tune-up Procedure At Customer Request

SPECIFICATIONS

Power Output:
Frequency:
RF Output Impedance:
Frequency Stability:
Type of Oscillator Circuit:
Type of Modulation:

Modulation Capability:

Audio Input Impedance:
Audio inout level for
100% modulation at 400 cycles: $\neq 10 \mathrm{dbm}, \pm 2 \mathrm{db}$
$\pm .001 \%$
Direct Crystal Control
Phase shift employing pulse techniques
$\nmid 100 \mathrm{Kc} 100 \%$ Modulation equals $\pm 75 \mathrm{Kc}$

600 ohms

Overall Audio Frequency Response:

0 .. 10 watts, continuously variable 88-108 Mc.

Distortion at 100\% Modulation:

FM noise:

AM noise:

Power input:

65 db below 100% modulation at
400 cyel 2 os better.
60 ib below equivalent 100% ampli-
tude modulation. tude modulation.

Approximately 120 watts when ex. cites is putting out full 10 watts. (1 anpere at 117 volts.)

Approximately 6 watts (intermittent) crystal oven circuit.

Tube Complerient：

$$
\begin{aligned}
& 3-6201 \\
& 6-6 A U 6 \\
& 1-6 A Q 5 A \\
& 3-6 J 6 \\
& 1-12 A X 7 \\
& 2-0 A 2 \\
& 1-G Z 34 / 5 A R 4 \\
& 1-6080 \\
& 1-6360 \\
& 3-7025
\end{aligned}
$$

INTRODUCTION

All FM transmitters require a device that will supply an RF driving voltage of sufficient amplitude to drive the succeeding amplifier stage to the required output power level. In addition, this device must have necessary provisions made for Irequency modulating the carrier the proper amount.

These requirements are fulfilled by the M6095 exciter unit. The exciter panel is standard $19^{\prime \prime}$ wide for rack mounting, height is $14^{\prime \prime}$. \dot{A} rear dust cover is provided that extends $2-1 / 2^{\prime \prime}$ beyond the back of the panel。 This dust cover is held on by four acorn nuts easily removed from the front of the panel. The highest unit on the front of the panel is the crystal oven which extends $4-1 / 2^{\prime \prime \prime}$ beyond the panel proper.

The unit is complete with its own power supply. It is light in weight; $21-1 / 2$ lbs, this makes it very easy to remove the unit from the cabinet or rack in which it is mounted and to place it on a bench. $\dot{A l l}$ that is needed to operate the unit is an AC cord connected from TB10 $1-788$ to a 117 V . AC outlet.

INSTALLATION

Generally, when the exciter unit is received at the point of operation it will be mounted in a cabinet along with additional amplifier stages. The unit finds its greatest usage in driving 50 watt and 250 watt amplifier stages. With some additional external metering, the unit becomes a complete 10 watt FM transmitter.

Forced air cooling is not required for the unit. Sufficient ventilation should be allowed to provide normal circulation and up-draft at least for the front of the panel, where all of the tubes are mounted。

External wiring to the unit consists of the following:
l. i_{2} shielded, twisted pair that connects to TBlOl-l
-2-3. The shield should connect to TBlOl-3 which is ground. These are the audio input terminels. iudio requirements for 100% modulation are approximately $f 10 \mathrm{DBM}$, and the input impedance is 600 ohms.
2. Two wires connected to TBlOl-7\&8. These wires are to provide opernting voltaoes for the unit. Requirements are

117 volts, AC at I ampere.
3. Two wires to connect to TB101-9\&l0. This provides operating voltage for the crystal oven. Requirements are 117 volts, iC at about 6 watts intermittent service.

In addition, if the exciter unit is used to supply $B f$ to some other unit a wire must be connected from TBlOl-6 to the other unit. in additional 20 to 30 milliamps at $\not \subset 320$ volts may be drawn from this terminal when the exciter is transmitting a full 10 watts. If output power from the exciter unit can be reduced to 3 or 4 watts, up to 50 milliamps may be drawn from TBlO1-6.

The exciter may also be used to supply filament voltage to some other unit. To do this, a wire must be connected from TBlOl-4 to the other unit. 6.3 volts, AC at about $1-1 / 2$ amps. is available to be drawn from this terminal.

If the power amplifier stage of the exciter unit (VII5) is to be externally metered the jumper connecting TBIOl-586 should be removed. L_{2} wire should then be connected from TBIOl-5 to the positive terminal of the external milliammeter and a wire should be connected from TBlOl-6 to the negative terminal of the milliammeter. The final stage will draw about 65 milliamps when output power is 10 watts. The external milliammeter should have a minimum full scale deflection of 100 milliamps.

PRE-OPER.TION

In almost all cases the exciter unit has been properly tuned up to customer frequency at the Gates plant. If all tubes and other components are properly in place, wires connected, etc., the exciter may be placed into operation by turning siol to the "ON" position. This switch is located in the primary circuit of TlO3. When it is turned "ON" both the filament voltage and the Bf voltage come on to all tubes. The rectifier tube is of the slow heating indirect cathode type; and positive voltage will not exist for perhaps 20 seconds, after this length of time the exciter power output will come up.

The only adjustments that will have to be made are to tune Cl69 (output coupling) and Cl67 (V115 plate tune) for maximum power output into a load, following stage, or antenna. Final adjustment of Cl67 and C169 should be done only after the exciter has cone up to full operating temperature; this will take about 15
minutes after first turning the unit on. Stray capacities of tubes tend to change slightly as the tube warms up and a small change of even $1 / 4$ pf can considerably de-tune a circuit operating in the VHF range.

Frequency adjust control ClO4 should be set to the value given in the factory test data sheet. Oven pilot lamp AlOl will start cycling after the oven heater has been on for about 20 minutes. The crystal oven does not really stabilize until it has been on for about 1 hour. If, after this length of time, the carrier center frequency does not agree with that shown on a frequency monitor of know accuracy, readjust the ClO 4 for proper center frequency. Normal cycling of oven pilot lamp illOl will be"ON" 1/3 and "OFF" $2 / 3$ timeswise for a room temperature of 750 F 。
i_{1} quick check of the $B f$ voltage is advisable. This can be done by placing the negative probe of a 20,000 ohms per volt meter into a black test point (TP122 or TP123), and a positive probe into TPl21. The voltmeter should read $f 320$ volts DC.

DAILY OPERATION

It is considered good practice to arrange wiring and control circuits so that the crystal oven heater operates independconty of the main power switch. If this is done, and the crystal oven remains on all the time, the exciter will be close to center frequency, even fror a cold.start. Power requirements for the oven are about 6 watt and this only intermittently: On a presumed basis of the oven being "ON" $1 / 3$ or the time, the oven would use only 2 watt of power per hour.
issuming that the crystal oven is on continuously, then the only thing that needs to be done in the normal dars operation is to turn the main power "ON" when starting the oroadcasting day and "OFF" when.finished. In most cases, this will be accomplished when the low voltage switch is turned on in the transmitter, whether the transmitter be 250 , 1000 or 5000 watts.

If the exciter is turned on 10 or 15 minutes before "iIR" time, no other adjustments should be necessary. The exciter will reach 80 to 90% of full power in about 5 minutes and full power in 10 to 15 minutes. This assumes that the unit was fine tuned while thoroughly warmed up.

THEORY OF OPER\＆TION \＆GENER汭 EXPL＿N＿NTION OF OIECUITRY．
Of all the known methods used to generate a frequency modulated signal，the one used in this exciter unit is the simplest and most straight forward．Since the signal generation depends upon direct crystal control，the output frequency will be very stable． In addition，tuned circuits will be uncritical in operation and low cost receiving type tubes may be used in the majority of circuits．

VlOl is a crystal controlled oscillator．The crystal controlled output of VlOl is shaped into a series of sawtooth waveforms by VlOl and VlO2，for application to Modulator \＃l，V104．The output of Modulator \＃l，V1O4，is then again shaped into a saw－ tooth waveform at crystal frequency for application to Modula－ tor 游。

The reason for two Modulators is to increase the modulating ability of the Exciter at low frequencies．The two modulator stages are driven in parallel from audio stages V1l6 and V1l7． VlO7 through Vll4 are frequency multiplier stages．V107 through Vlll are single ended pentode stages，while Vll2 through V1l4 are push－push doublers．Vll5 is a power amplifier stage，which is capable of producing 10 watts at output frequency of 88 to 108 mcs．The coaxial jumper between JlOl and Jl02 connects frequency multiplier stage Vlll to Vll2，when Multiplex is not in use，When Multiplex is used，the output of Jlol feeds into the Multiplex unit and the Multiplex unit feeds back to the input jack，JlO2．

Stages V119 through V122 make up a conventional regulated power supply with an output voltage of 320 volts．Maximum current to be drawn from this porer supply is in the vicinity of 160 milliamps．

This unit has been properly tuned up at the factory．If the customer desires a complete tune－up procedure for the M6095 Exci－ ter unit，it may be obtained by writing to the Gates plant．

GENERiL

If the exciter has been properly tuned up, output power in the vicinity of 10 watts should be obtained. If trouble is experienced along the way in the tune-up procedure, the fault can usually be isolated by referring to typical test point voltages given on a following page. There are five key test points that are indicative of proper operation.
ibout -35 volts should be obtained at TPIO6, this indicates that the pulse stages V1Ol thru V106 are properly operating.
ibout -2 volts should be obtained at TPl08, this indicates that V107 and associated circuitry is working O.K.

Approximately .5 volts RMS RF voltage should be obtained at TPII 3 and/or TPII4, this would indic?te that the frequency multiplier stages V107 thru Vlll are operating properly.
iround -7 volts should be obtained at TPll8, this indicates sufficient driving power to final amplifier stage Vll5.
If a defect is suspected, but can not be spotted, checking resistance of the various tuning coils LlOl thru Lil5 may locate the trouble.

The proper resistance value of these coils is Iisted below along with the capacitor values for comparison purposes. The measured resistance should not deviate by more than about 10%. If the accuracy of the voltmeter is not know, a comparison between similar coils can be made. For exampie, the resistance of LlOl, LlO2 and Ll03 should be the same.

COIL

Ll01;L102,L103
L104;L105
L106;L107
Ll08,L109
Lllo, Llll
Lll2,Ll14,L115
Lll 3

DC FESSIST.NCE

21 ohms
9.6 ohms
5.5 ohms
2.1 ohms

1 ohm
.12 ohm
.43 ohm

CONDENSER VILUE _CROSS COIL

150 mmf .
100 mmf .
24 mmf .
24 mmf .
See Schematic
See Schematic See Schematic

Considerable deviation of resistance from the above given values indicite either the wrong coil, shorted turns, open turns, or a
change in value of some other component connected across the coil.

The value of any other parts connected across the coils is to be considered insignificant when compared to the DC resistance of the coil.

COUPLING FXCITER TO \& FOLLOWING ST..GE

It is preferred that the final amplifier of the exciter be connected to an external dummy load of 51 ohms through a 51 ohm cable while tuning. Tuning the final amplifier in this manner is a good check on its proper operation.

When changing the RF output connection of the exciter from a dummy load to a following amplifier stage an attempt should be made to get a proper match to 51 ohms at the input to the follower amplifier stage.

If the output coupling control, (Cl69) and plate tune (C167) on the exciter unit, have to be considerably readjusted when coupled into the succeeding amplifier stage, a major mis-match of impedance is to be suspacted at the input of the following amplifier stage. This will result in considerable loss of drive to the following stage and cause high standing waves to appear on the inter-connecting coax between the exciter and the following stage.

Most of the amplifier stages that will be used following the M6095 exciter unit will not generally require the full 10 watts of driving power. is 50 watt amplifier stage will require about 2 watts of drive and a 250 watt amplifier about 4 watts of drive.

In no case, should Cl67 (plate tune) or Cl69 (output coupling) be de-tuned to roduce output power. This is equivalent to oparating V115 in an off-resonant condition and would damage the tube eventually.

Output power can be reduced to almost zero by tuning Rl67 (output control) to a counterclockwise position. This reduces screen voltage to Vll5 and, consequently, the plate current which increases efficiency to Vll5.
In some cases, Bf voltage of 320 volts will be tapped off of TBlol-6 to sunply scrern voltage to a following amplifier stage

The external $f 320$ volts should not exceed a drain of about 30 milliamps for continuous operation.

Reducing screen voltage of Vll5 by adjustment of Rl67 will drop Vll 5 current drain from about 60 milliamps for 10 watts output to about 25 milliamps for 2 watts output. This extra current may then be used for external purposes.

In summary, when driving an additional amplifier stage from the exciter unit, reduce output by adjustment of R167 and keep Cl67 and Cl69 tuned for maximum grid drive in the following stage.

V115 EFFICIENCY

in external jumper is provided on TBIO1-5\&6. in ammeter may be connected in series with this jumper to measure Vll5 plate current.

B \neq voltage has been previously set at $\nless 320$. Power input to the plate circuit of VIl5 may be calculated from the ammeter and voltage readirigs. The voltage drop across Rl 55 must first be calculated. This resistor is in the cathode circuit of Vll5: its value is 250 ohms.

The formula to use would then read:
Power input to plate circuit Vll5 = $I_{p} X\left(E_{p}-(I R)\right.$)
Where $I R$ is the drop across Rl55
If, for example, the ammeter reading obtained when connected in Series with TBIOL -5 and 6 was 60 ma . and Bf to ground was $\nrightarrow 320$

$$
\begin{aligned}
\text { Power input Vll5 } & =.06 \times(320-(.06 \times 250)) \\
& =.06 \times(320-15) \\
& =.06 \times 305 \\
& =18.3 \text { watts }
\end{aligned}
$$

issuming an output power of 10 watts:

> Plate dissipation VIl5 = Power input - Power output

$$
\begin{aligned}
& =18.3-10 \\
& =8.3 \text { watts } \\
\text { Efficiency of V115 Stage } & =\frac{\text { Power output }}{\text { Power input }} \\
& =\frac{10}{18.3} \\
& =54.8 \%
\end{aligned}
$$

These figures can be considered typical. If the output power is not known, an efficiency factor of 55% should be assumed.

TYPIC.L DC TEST POINT VOLT.GES OF M6095 EXCITER UNIT NO MODUL.aTION. ME.sUUED WITH 20,000 OHMS/VOLT VOLTMETER

	WITH DRIVE	NO DRIVE
	VOLTS	VOLTS
TP101	-27	0
TP102	,12	+29
TP1. 03	t1	A1.4
TP104	-4	0
TP105	+9.2	f15
TP106	-. 30	0
TP107	460	+33
TP108	-3.2	0
TP109	f61	+50
TPllo	+72	+34
TPlll	f68	+30
TPII2	t133	f195
TPl13	. 46 RIVS (fi.P. Probe)	0
TP114	. 42 RMM (H.P. Probe)	0
TPI15	f113	f185
TP116	f140	¢235
TP117	+227	¢ 260
TP1I8	-. 6	0
TP119	¢157	¢187
TPl20	t172	$\not ¢ 172$
TP121	t 320	+320
Toto Readinge for TFice and TFI.9 were obtained with RI 55 output control full clockwiso or naximum output position.		

PROOF OF PERFORMANCE

Center Frequency, Noise, Distortion, Response
Proof of performance data as made by the Gates Radio Company on FM transmitters can be likened to listening to the transmitter on a high quality receiver. This tends to "prove-out" the transmitter since measuring and listening equipment is completely external to the transmitter proper and the RF signal is taken from "off-the-air". Instead of a receiver, an FM monitor of good quality and FCC approved is used. Reference to drawing $4-4165$ will show the general test set up for making proof of performance measurements.

First off, a sample of the transmitted RF is coupled to the modulation and frequency monitor. This is taken from the antenna, transmission line or from the Pii chamber. The method used is determined somewhat by the amount of power needed by the monitor (usually about 1 watt) and by the output power of the transmitter. For low power FM transmitters up to perhaps 250 watts, a sample of RF may be taken by "tapping" of f the output transmission line with c variable condenser in series with the coaxial line going to the monitor. This has the disadvantage though of introducing a slight mismatch back into the transmitter. Usually, it is impossible to obtain enough power to drive the monitor from the antenna without introducing another amplifier ahead of the monitor to raise the receiver signal up to the necessary level. In higher powered transmitters, a monitor loop is usually coupled to the final amplifier section to sample a portion of the transmitted output.
A good quality audio oscillator of 600 ohms output impedance is then connected to the audio input terminals. These are TBlOl-1, 2 and 3 on the exciter unit with terminal $\# 3$ being ground. Output level requirements are at least flo DBM. Since the exciter itself is capable of generating a. frequency modulated carrier with distortion ranging as low as . 2% the audio oscillator must be in good working order.
\therefore distortion analyzer or meter is connccted to the audio output terminals of the monitor. in oscilloscope while being an optional item in making measurements is very helpful in tracing any possible difficulty.

The complete method used to adjust the exciter for proper response; distortion, noise and etc., will now be given as it is done at the Gates factory. Proper proof of performance adjustments at the factory are made only after complete tuneup has been done. ifter the customer receives the unit, any part of the measurements may be made without undue effect upon other measurements.
ill proof of performance measurements should be made with shield covers in place.

SETTING C:RRIER FREQUENCY

It is desirable to first set the exciter unit to proper carrier frequency. This should be done first, not only because it is desirable to have the unit on proper frequency, but if the carrier is several thousand cycles off center, undesirable beats may occur within the monitor. This will cause noise readings and may effect apparent frequency response。

Usually, all that is required to place the exciter unit on proper center frequency, is to sample a portion of the RF output with a good frequency standard and adjust ClO (frequency adjust control) until the frequency standard shows proper frequency.
Occasionally, a crystal may be used that can not be set exactly to center frequency by means of ClO 4 alone. ilso, a crystal that was originally on proper frequency may drift off the range of ClO4 due to ageing. Then this happens additional frequency adjustment may be made by varying the value of ClO5. This capacitor controls the amount of feadback to the crystal. Increasing the value of Cl05 lowers the carrier frequency and decreasing the value of Cl05 raises the carrier frequency.

With the value of CIO5 set at the optimum value of 150 PF , varying ClO 4 (frequency adjustment control) from minimum to maximum will cause the center frequency to vary approximately 30,000 cycles. Changing the value of Cl05 from 150 PF to 50 PF will raise carrier frequency about 10.000 cycles. Chenging Clos from 150 PF to 250 PF will lower carrier frequency about 3,000 cycles.

ETSTORTION MTM:SURTIENTS AMD :DJUSTVENTS
After the oxciter unit has been properly set to carrier frequency distortion ad.justments are made, Set the modulator selector
switch (S2) in the modulator \#2 position. Set the audio oscillator frequency to 30 cycles and modulate the exciter with $\neq 14$ DBM. Next, adjust Cll9 so that the FM monitor reads 70% modulation. Distortion adjustment control (R126) is then adjusted for best distortion. If Rl26 is considerably awey from the proper adjustment point, it may be impossibile to obtain the desired level of modulation or the waveform obtained may be completely torn up. If such is the case, adjust R126. for minimum distortion while modulating somewhat less than 70%, say, about 50%. Then, reset the level on the audio oscillator to tlu DBM and adjust Cll9 and RI26 as described above. Then place the modulator selector swiitch in the modulator \#l position, and follow the procedure just described to adjust modulator \#l. In this case, however, the capacitor adjustment is Clll and the distortion adjustment control is Rll5.

If it is impossible to reduce distortion at 30 cycles, it is advisable to check just the audio portion of the exciter unit and/or the audio oscillator itself. The audio portion of the exciter consisting of tubes Vll6 and Vll7 may be checked by running test leads from TP120 and TP122 or TPl23 to the input of tho distortion analyzer. Distortion as measured at TPl20 should be well below. 5% at any audio frequency. If distortion from the audio section is O.K. but overall distortion as measured from the monitor is not, then the waveforms of the pulse circuitry should be checked. Typical weveforms of Vlol thru V106 are given on drawing 8267991001.
100% modulation should occur at an input level of approximately $\not 110$ DBM from 30 to 1,000 cycles. This input level will cause an Rill audio voltage at TPI20 of about 15 volts. If an input level of $\neq 1 \mathrm{Cl}$ DBM does not generatc an RRiS voltage of about 15 volts at TPl20, then a defect in the audio section may be suspected. If sufficient iMS voltage exists at TP120 and the exciter will not modulate 100%, then adefect in the modulator or previous stage should be suspected.

In any FM system worse distortion occurs at the lowest modulating frequency. In other words, if distortion is 1% at 30 cycles then the distortion can be expected to be botter at all higher modulating frequencies. Uccasionally; a high distortion figure may result between 10,000 and 15,000 cycles. The fault will not generally lio in the modulator stage, however, it could lie in the audio section.

If high distortion is present at the higher modulating frequencies only, it can usually be traced to one of three causes.

1. High FM or LM noise.
2. Insufficient bandwidth in the frequency multiplier
stages.
3. Frequency and modulation monitor not correctly tuned to carrier frequency.

A standard FM monitor contains de-emphasis circuitry that causes lower modulating frequencies of 30 to 1,000 cycles to come out of the monitor with an apparent advantage of around 15 to 17 DB over the audio that is recovered at 15,000 cycles. If noise is down only 40 to 50 DB with respect to 100% modulation at 400 cycles, it will usually not prevent a good distortion reading at a low modulating frequency. Howevor, if frequencies between 10,000 and 15,000 cycles are 15 DB lower in amplitude then 400 cycles, the noise with respect to these frequencies, will only be about 30 DB down. This would correspond to the 3% distortion range on a distortion analyzer. A quick check to determine whether noise is causing an apparent high distortion reading is to remove all modulation from the input to the exciter or transmitter. If the distortion meter needle does not drop appreciably a noise measurement should be made on the exciter.

If bandwidth is insufficient in frequency multiplier stages, some of the higher frequency sidckands will be clipped causing undue distortion. is complete re-tune up is then recommended.
Mis-tuning of the monitor will also cause some clipping of sidebands at higher frequencies. In addition, beat frequencies may be present that show up as noise and prevent a good distortion reading.

Once set, the distortion controls Kll5, Clll, R126 and Cll9 may not have to be re-set for the life of the the exciter unit. Changing modulator tubes will probably not cause distortion figures to change by more than .l or $.2 \%$. There are exceptions to overy rule though.

OVER LL FGEGUENCY RESPONSE

If the exciter unit is used in the FM broadcast bend of 88 to $10 \mathrm{U}^{\mathrm{C}} \mathrm{C}$ or as the aural exciter unit for TV transmitters, over-
all frequency response should follow the 75 microsccond curve shown on drawing ES-6170. In other frequency ranges, it may be desirable to have the overall frequency response flat.

Several methods of making frequency response measurements using an FM monitor are available. Two will be described; the simplest is to set the audio frequency at about mid-range, say 5000 cycles, and modulate the exciter the proper amount, in this case the prover modulation level would be 35%. Keeping the input audio level constant, the frequency may then be adjusted upward to 15,000 cycles and then downward to 30 cycles. Using this method the response will seldom rise above the curve and makes it easy to calculate the peraent or decibel error. For examole, if at 15,000 cycles modulation the modulation monitor reads only 80% modulation, it can be quickly seen from the drawing ES-6170 that the response is 2 DB below the normal curve. The same reasoning may be applied to the low end of the curve. If the input attenuator is calibrated in small steps, it is also possible to determine the amount that the audio input has to be increased to bring the monitor up to the required percentage of modulation at any modulating frequency.
inother method of measuring frequency response involves keeping the percentage of modulation constant as read on the monitor. To use this method the audio oscillator output must be accurately calibrated, To start with, the carrier should be modulated 100% at 400 cycles, changing the audio frequency from about 30 cycles to 400 cycles should not change the percentage of modulation appreciably. If the modulating frequency is raised upward, say to 5,000 cycles, the input level must be reduced to keep the percent of modulation at 100%. For 5,000 cycles the amount of reduction should be 8.2 DB . For 15,000 cycles the amount of reduction of input level should be $16,9 \mathrm{DE}$. Recording the amount of reduction of the input level versus modulcting frequency and reversing the sign of polarity, will give the curve and frequency response. This can then be compared to the curve of drawing
ES-6170.

The second suggested method is particularly useful when response measurements are being made at 25 and 50% modulation levels, or when a standard FM monitor is being used to measure response of an exciter being used to senerate the aural carrier for a TV transmitter where normal 100% modulation is $\pm 25 \mathrm{KC}$. This will correspond to $33-1 / 3 \%$ modulation on a standard FM monitor for the FM broadcast band of 88 to 108 NC .
** For U.S.A. duty only.

Seldom will any difficulty be encountered in coming close to the standard 75 microsecond curve between 400 and 10,000 cycles. Generally, if troubles develop with response it will show up as being 2 or 3 db down a.t 15,000 cycles. i frequency compensating capacitor has been incorporated in the audio amplifier section to take care of just such a contingency. Cl70 affects response between 10,000 and 15,000 cycles. Increasing the value of Cl70 raised the frequency response between 10 and 15,000 cycles. Decreasing the value of Cl70 drops frequency response between 10 and 15,000 cycles.

Stagger tuning Ll03 will al so help response at 15,000 cycles a DB or so, when this is done a voltmeter should be connected to TPl08 and the amount of staggering of Ll03 should not reduce the negative voltage observed by more than . 5 volts.

FM NOISE

FM noise is measured with respect to 100% modulation at 400 cycles, To make this measurement, modulate the exciter 100% at 400 cycles and set a reference level on the distortion analyzer. Remove ail modulation and read the FM noise on the appropriate scale. FM noise of the exciter unit can be expected to approach 70 DB or better.

If $F M$ noise is high the audio section is the most logical place to start looking. Removal of the last audio tube Vll7 is a quick way of checking if the trouble is in the audio. The next best bet is the power supply. Hum and noise voltage of the power supply should be between $\mathcal{E} 5$ and 90 DB down with respect to $f 320$ volts DC. If these two places fail to show any defect the noise is probably originatirg from the pulse circuits V10l thru Vl06. Stages after V106 are unlikely to cause FM noise,

M NOISE

illi noise is measured or referenced with respect to 100% amplitude modulated wave. This AM noise usually consists of 60 or 120 cycle hum superimposed upon the carrier. There are several ways of making this measurement. Some FM monitors have a provision for making this moasurement. This measurement should be made with no modulation present.
in noise as mossured from the exciter unit is usually so low as to be difficult to moasurc. It will generally be better than

0

70 DB . If AM noise is high, it can actually originate in most any stage. However, if, upon analyzing the type of noise, it is found to have a basic 120 cycle component the power supply should be suspected. If the noise appears to be mostly a 60 cycle component a heater to cathode leak in any stage should be suspected. i loose connection in any stage will cause the fiM noise to rise when the exciter cabinet is jarred. it point often overlooked when making hiM noise measurements is the sampling loop or device. For ex mple; if the RF sampling loop is mounted in a Pri chamber where blower vibration is apt to occur, this vibration will show up as high LM noise, if the sampling loop is not securely mounted.

TYPICAL PROOF OF PERFORM.NCE HEADINGS

If the exciter unit has been shipped as an individual unit the complete test data sheet will probably have been filled out and included in this section. If the exciter unit is part of a high power transmitter the test data sheet is included with the overall instruction book. h set of typical readings for proof of performance is given below:

Carrier Frequency, O.K.

Distortion at 100\% modulation
30 cycles $\quad 1.75$

50 cycles . 85
100 cycles . 56
400 cycles .47
1000 cycles . 42
2500 cycles . 38
5000 cycles . 34
7500 cycles 058
10,000 cycles .58

Response with reference to standard 75 microsecond pre-emphasis curve
$-1.7 \quad$ DB
-.2
+.5
$t .8$
$t .8$
+.5
+.4
+.3
$t .1$

0

15,000 cycles $\quad .48$
FM Noise: -68 DB
AM Noise: Better Than -70 DB

MiINTENANCE

Since moving parts are at a minimum in the exciter unit routine maintenance is a simple procedure. The few moving parts that are used, such as, variable capacitors, potentiometers and variable inductors will perhaps stay set in one position for the life of the exciter unit. The one exception to this would be Cl03 the frequency adjust control.

Because routine maintenance is used to prevent trouble and not start it, it is not deemed advisable to poke and pull at every component part at a pre-arranged time. Tubes are the most likely components to go bad. A routine testing of all of the tubes at least once every six months is recommended.

One of the best ways to foretell trouble is by test point voltages. These are recorded on the factory test data sheet. Then the exciter is first received and olaced into operation, it is advisable to go over these test point voltages and record the reading obtained. The test point voltages should then be checked weekly or monthly. A substantial variation from the original recorded value would indicate a failing tube or other component in that circuit. These voltage measurements should always be made with the same meter since a normal 10% variation from one meter to the next may be expected.

An occasional check on the noise, distortion and response with a test set up such as shown in drawing a-4165 will probably reveal an eminent failure of one of the audio stages or one of the pulse stages Viol thru ViO6.
When tubes are checked and replaced, it is wise to replace them in their original sockets. If vil3, vil4 or Vlls is changed, it may be necessary to retune associated circuitry for best performance.

TROUBIE SHOOTING

It would be impossible to list every failure and possible
cure that might occur in the exciter unit. The same thing. may be said of any other piece of electronic gear. However, 90 to 95% of all failures can perhaps be predicted with a few possible clues listed that may help in locating the defect.

Failures or difficulties that may occur in the exciter unit can be divided into two broad categories.

1. Problems associated with carrier only.
2. Problems associated with modulation of carrier.

Problems associated with carrier only can be sub-divided into several groups.
A. No carrier (no power output)
B. Low Carrier (power output low)
C. Intermittent carrier
D. Oscillation
E. Carrier off frequency

Problems associated with carrier only will now be discussed and possible remedies and trouble shooting hints suggested.

NO C.4RRIER

Of the many problems that can occur, this perhaps is the most serious and yet the easiest defect to find. When this happens, a tube has usually gone completely dead. it comparison of test point voltages with those given at the end of the complete tuneup procedure, test data sheet or voltages recorded when the unit was working properly should reveal the defectivc stage. The difference in test point voltages with and without drive is in the most cases quite pronounced. When a tube has gonc completely sour or dead, voltages noted at test points located in the plate circuit of that particular tube will rise up to the full plate v-Itage of $\neq 320$ volts. If the tube is drawing excessive current, the voltage noted at the test point will be extremely low. \therefore failure of any circuit from oscillator stage to power amplifier stage will, of course, cause loss of carrier. The power supply itself should not be overlooked.

To cuickly isolate the trouble to a single general area the following procedure could be followed.

1. Check to see if $\mathrm{B} \nmid$ voltage exists at TP121.
2. Check the negative voltage at TPIO6, a reading of about -35 volts here indicates V101 thru V106 are operating properly.
3. Check negative voltage at TP108. A ncgative reading here from -2 to -3 volts indicates that the grid of Vlod is receiving drive from previous stages.
4. Check RF voltage at TP113 and/or TP1l4. in RF voltage here of about .5 volts RiMS indicates that there is sufficiant drive up to this point.
5. Check negative grid voltage of V115 at TPll8. A reading of at least -5 volts here indicates plenty of drive and that the grid circuit of Vill is operating.

Should all of the suggested methods fail to locate the trouble a more thorough check will have to be made. Reforence to voltages listed on the schematic dirgram 8525774001 and to waveform measurements on diagroms 8267991001 and 8267990001 in the back of the book may help. ipproximate RF voltagc measurements are also included at the end of this section.

LOM CARRIER

The same general routine used to track down the stage causing a. carrier failure can be used to check for a low carrier. Tracing down the fault for a low carrier can be more elusive though bec?use voltages will not deviate as much from normal. Low carrier levels are usually caused by a tube with low emission. A slight mis-tuning somewhere along the frequency multiplicr chain can cause low output. Reference to the RF voltage chart at the end of this section may be of additional help.

INTERMITTENT C.ARIER

in intermittent carrier can be very difficult to track down because about the time test equipment is set up to find the trouble, it disappears. is recommended method finding this is to start at the final stage (Vll5) and place a meter orobe into TPll9. Then tap on the chassis or whatever clse it takes to cause the intermittent condition. Working back toward the
crystal from stage to stage and test point to test point; a point should be reached where a test point voltage does not vary. This should be the last properly operating stage. Immediately following the point where the test point voltage is not varying. An intermittent carrier can be caused by most anything. h bad tube, capacitor, resistor or loose connection or an intermittent short.

OSCILL:ATION

It is an almost unheard of condition for a frequency multiplier stage to oscillate since frequencies found in the grid circuit are different from frequencies found in the plate circuit. It is within the realm of possibility, however. If an oscillation should occur, it will probably be traced to the final amplifier stage, Vll5. This stagc is self neutralizing and will probably not cause any trouble as long as the shields over the coils are tightly in place and all connections are tight.
i. condition somewhat akin to oscillation has been noted while using pulse circuitry similar to that in this exciter unit. i leaky capacitor or intcrmittent connection in the pulse circuitry can cause the frequency multiplier stages to "fire ${ }^{\text {f }}$ off at their resonant frequency. This oscillation will be damped and only occurs momentarily but may be aggravating.

C. RRIER OFF FREQUENCY

When the carrier is consistently too far removed from proper centor frequency, the trouble can be traced directly to the oscillator stage. This could be due to the oven thermostat sticking and causing the crystal to overheat or could be due to the oven not heating at all. If the thermostat is sticking, pilot lamp illol will be on all the time provided it is not burned out. If the oven is not hoating at all, the pilot lamp should not light.
Some crystals will agc and drift off frequency after a length of time. Replacement of the crystal is the only solution here. is change of value of almost any component in the oscillator stage V1Ol could also cause the carrier frequency to deviate.
Problems associrted with modulation of the carrier will ncw be discussed and some possible remedies and trouble shooting hints sugeosted. Under this cetogory, sub-division might be as foliows:
i. High Distortion
B. Improper Frequency Response
C. Will not Modulate at all
D. High FM Noise
E. High $A M$ Noise

When it is known that any of the above listed faults exist, it will save time to first isolate the trouble to cither the audio stazes or the rest of the exciter unit. It is cesy to check the output of the audio stages by connecting a ground lead from a black test point and a "hot" load from TP120. Those two leads can then be run to the input of a distortion analyzer. If these leads are very long, they should be shielded or they may pick up extornal hum and noise.

HIGH DISTORTION

When high distortion is present, it can usually bo divided into three categories.

1. Distortion high throughout the audio spectrum 30 to 15,000 cycles.
2. Distortion high at low frequencies only.
3. Distortion high at high frcquencies only.

When distortion is high through the audio spectrum of 30 to 15,000 cycles the fault is apt to lie in the audio stages of Vil6 and Vll7. It is wise to check these stages anyway when modulation difficultics are experienced. is failure of any component in the audio stages could cause the distortion to rise. Checking volta es against the schematic should show the difficulty. Changing a tube will usually cure the trouble.

It is characteristic of an FM system that the greatost difficulty in attempting to modulate occurs at the low frequencies. Then the overall distortion is high between 30 and 400 cycles only, the trouble will usually be found in either one or both of the modulator stages or in the pulse circuitry just preceding them. at check of the weveform in stages VlOl thru V106 is advis:ble. These con be checked against drawing 8267991001.

These waveforms were made on a calibrated scope type 524AD Tektronix, if a calibrated scope is not available an ordinary scope may be calibrated approximately by the following method: Peak-to-peak waveforms are always 2.8 times the HMS value of a sine wave. The hot scope lead can be connected to a hot filamont wire which should have an AC voltage present of about 6.3 volts iC. The peak-toneak value would then be 17 or 18 volts. The scope can then be calibrated accordingly by scting a reference point on the scope screen.

The two most important waveforms to check are those at TP1O2 and TP105. With pin 7 of V103 disconnected, the waveform at TPlO2 should be a good saw-tooth with an amplitude of 25 to 30 volts peak-tompeak. The leading edge should be linear with no rounding offo When pin 7 of V103 is connected and the bias properly set the waveform will be cut approximately in the middle horizontally.

With V106 removed the waveform at TPl05 should be a good sawtooth with an amplitude of about 25 to 30 volts peak-to-peak. The leading edge should be linear with no rounding off. When V106 is inserted and the bias properly set the waveform will bo cut approximately in the middle horizontally.

IMPROPZR FREGUENCY HESPONSE

If the frequency response is not correct, the audio section should again be checked for proper response. The frequency response as noted at TP12O should be approximately the desired overall frequency response. It usualiy will be 2 DB or so high at both extremes of the audio spectrum.

Should the frequency response noted at TPl20 prove to be 0.K., but overall frequency response be down at 15,000 cycles, it will usually be caused by too narrow : bandwidth or mis-tuning of some of the low frequency multiplicr stages, Llol thru Lio7. Llol thru Ll03 are most ant to ciuse this difficulty. Improper tuning of the modulstion and frequency monitor can also affect apparent frequency response.
is change in the components associnted with tho modulator stages can cause poor low frequency response, this is uspecially true of Cll2, Cl21, Rll4, Rll3, R115, R126' and R127.

WILL NOT VIODULATE AT ALL
This condition will probably resolve down to a dead audio stage.

FM NOISE
If $F M$ noise exists the audio stages can be quickly eliminated by pulling Vll7 from its socket. Noise in the audio stage can be caused by a heater to cathode leak or a filament wire lying near a grid connection. Hum from the power supply or improper regulation of the power supply can cause noise in the audio stages.

If the noise is not located in the audio stages, the next most probable suspect is the pulse stages of V101 thru V106. An amplitude variation in these stages will cause a frequency modulated noise component. This could be caused by a heater to cathode leak or failure of a stage to properly limit. Hum from the power supply could also cause this difficulty. Modulation at a 60 cycle rate can also be caused in the crystal circuit by induction from the crystal heater.

MM NOISE

HM noise is one fault that will not usually bo traced to the audio stages because an amplitude variation in the audio stages causes an FM noise component to appear. While this type of difficulty can occur in most any stage except the audio stages, it is most apt to prevail in me of the frequency multiplier stages and usually near the higher frequency end of the nultiplier chain. Hum in $B f$ coming from the power supply, heater to cathode leakage or an intermittent connection can cause this defect. Hum from heater to cathode leakage will show itself as a 60 cycle component and power supply hum as a 120 cycle component.
ill Values ire RMS

Location	Reading
Pin 5, Vl07	13.5 V .
Junction Cl30,Cl31,I102	8.2 V .
Pin 1, V108	6.0 V .
Pin 5, Vlog	18.0 V.
Pin l, Vl09	5.2 V .
Pin 5, V109	29.0 V.
Pin l, Vllo	4.7 V.
Pin 5, Vllo	29.0 V.
Pin 1, Vlll	6.6 V .
Pin 5, Vlll	34.0 V .
J101, TPIl3	. 47 V.
J102, TPll4	. 51 V.
Pin 5, Vll2	6.2 V .
Pin 6, Vll2	6.4 V .
Pin 1 \& 2, V112	21.0 V .
Pin 5, Vll3	9.0 V.
Fin 6, VII 3	10.5 V .
Pin 1 \& 2, V113	23.0 V.
Pin 5, Vll4	9.0 V.
Pin 6, Vll4	9.5 V ,
Pin 1 \& 2, V114	26.0 V .
Pin 1 \& 3, V115	19.0 V.
Pin 6 \& 8, V115	150 V .

 －fnn 9•6T－L•己＇әтqețuen

－O•T（M） 1009 ••Jnn S•O＇•deo
 －D•（M）（M009＇•Inn S己＇•dep
 $\cdot D \cdot \pi(M) \Lambda O O S$

－deo

000 6T\＆O 9TS 000 69T0 O2S 000 टโT0 O己S 000 £ャ00 9TS

000 Sゃ\＆O 9TS
000 9T00 90S
000 6LTO 9TS
000 こちट0 9TS
000 E8TO 20S
000 己LTO 9TS
000 SLTO 9TS
$000+800$ 90S
000 हLTO 9TS
0006000 905
000 2620 025
000 tLOO 9TS

000 2800 9Ts

000 T6T0 9TS 000 S8T0 9TS 000 ＋500 9TS

0008200 205
000 TO\＆O OटS
000 S000 905
000 Sto 96を
－ON fued sə7ey

とちこの＂こち七刀
＋8T0＇と8TD
こ8Tが 18 TD $08 T 0$己LTD Tして OLTD L8TD＇98TD＇S8TD
‘6LTD＇8LTD＇LLTD
89TD
L9TD＇ 79 TD
69TD＇ 29 TD
T6TD＇06TD＇88TD
＇99TD＇S9TD＇と9TD
＇T9 TD＇09TD＇6STD
カカレロ
＋STD
\＆STD＇TSTD

○カてロ
8STD＇9\＆TD
โとTD＇O\＆TD＇己己TD
9TID＇SITD
9STD＂6ヵTD＇とTTD
โ己TD＂こさTっ
6TID＇TIT
9＋TD

＇6とTD＇8\＆TD＇LETD
＇S\＆TD＇8TID＇OTTD

＇ことTD＇6てTD＇8てTD

カITD 「80て，
LOTD
68T0
‘LSTD＇SSTD＇8ヵTD
＇LカTD＇とटTD＇90TD
＋OTD
とOTD＇スOTD＇TOTD
LOTV
－ON TOQWKS

Symbol No.	Gates Eart No.	Description
FlOl	3980079000	Fuse, Slo-Blo, l-1/2 amp.
Fl02	3980011000	Fuse, $1 / 4$ amp.
HRIO1	5580016000	Crystal Oven, 6.3 V. $60^{\circ} \mathrm{C}$.
J101, J102	6120237000	Receptacle, UG-290A/U
J103	6120232000	Receptacle, UG-58/U
J104	6120369000	Phone Jack
LlO1	9131104001	Freq. Mult. Coil Assy.
Ll02,L103	9131105001	Freq. Mult. Coil Assy.
Ll04	9131106001	Freq. Mult. Coil Assy.
Ll05	9131107001	Freq. Mult. Coil Assy.
L106, Ll07	9131108001	Freq. Mult. Coil Assy.
Lll0, Llll	9131109001	Freq. Mult. Coil Assy.
Lll2, Lll	4920025000	Freq. Mult. Coil Assy.
Lll3	4920027000	Coil, 3.4-7 ur
Lll 4	4920024000	Coil, Var. w/Brass Slug
Lll 6	8131112001	Flate Coil for Vll4
Lll?	8131113001	Grid Coil for Vlls
Lll8	8131114001	Plate Coil for Vll 5
Lll9	8131115001	Output Coupling Coil for V1l5 (Fart of 6360 Output Coil
Il20	4940110000	(Fart of 6360 Output Coil Assy R.F. Choke, 3.3 uh.
Ll22,Ll23,Il26, R.F. Choke, 3.3 uh.		
Ll27,L128	4940004000	R.F. Choke
Ll21	4760013000	Choke, 6 hy., @ 160 ma.,
Il24,Il25	9131116001	Farasitic Suppressor
PlO1,PlO2	6100238000	Flug, UG-88/U
Fl03	6200122000	Adaptor, UG-27/U
R101,R178,R179	5400218000	Res., 2.2 megohm, $1 / 2 \mathrm{~W} .10 \%$
R102	5400476000	Res., 4700 ohm, 1W. 10\%
R103	5400644000	Res., 24 K ohm, $2 \mathrm{~W} .5 \%$
Rl04	5400758000	Res., 33K ohm, 2W. 10\%
Rl05,R112,R128	5400497000	Res., 270K ohm, 1W. 10\%
R170,R171,R175,		
R193	5400202000	Res., look ohm, l/2W. 10\%
R107,R118	5400180000	Res., 1500 ohm, $1 / 2 \mathrm{~W} .10 \%$
R108,R109,R1-24	5400492000	Res., look ohn, l W. 10%
RlIO, R160	5400178000	Res., 1000 ohm, l/2 W. 10%
R143:R147,R156	5400186000	Res., 4700 ohm, $1 / 2 \mathrm{~W} .10 \%$
R114	5400198000	Res., 47K ohm, 1/2 W. 10\%

PARTS IIST

PARTS LIST

WARRANTY

This equipment is warranted by Gates Radio Campany of Quincy, Illinois to be free from defects in workmanship and material and will be repaired or replaced in accordance with the terms and conditions set forth belaw:

1. Gates Radio Company believes that the purchaser has every right to expect first-class quality, materials and workmanship and has created rigid inspection and test procedures to that end, and excellent packing methods to assure arrival of equipment in good condition at destination.
2. Gates Radio Campany will endeavor to make emergency shipments a the earliest possible time giving consideration to all conditions.
3. Gates Radio Company warrants new equipment of its manufacture for one (1) year (six $\{0$) monins on maving parts), against breakage or failure of parts due to imperfection of workmanship or material, its obligation being limited to repair or replacement of defective parts upon return thereof f.o.b. Gates Radio Compony's factory, within the applicable period of time stated. Electron tubes shall bear only the warranty of the manufacturer thereof in effect at the time of the shipment to the purchaser. Other manufacturers' equipment covered by a purchaser's order will carry only such manufacturers' standard warran'y. These warranty periods commence from the date of invoice and cantinue in effect as to all notices, alleging a defect covered by this warranty, received by Gates Radio Company prior to the expiration of the applicable warranty period.
The following will illustrate features of the Gates Radio Company warranty:

Transmitter Parts: The main power or plate transformer, modulation transformer, modulation reactor, main tank variable condensers all bear the one (1) year warranty mentioned above.
Moving Parts: As stated above, these are warranted for a period of six (0) months.
Electron Tubes: As stated, Electron tubes will bear such warranty, if any, as provided by the manufacturer at the time of their shipment. Gates Radio Company will make such adjustments with purchasers as given to Gates Radio Company by the ube manufacturer.
All other component parts (except as otherwise stated): Waranted for one (1) year.
Abuse: Damage resulting from abuse, an Act of God, or by fire, wind, rain, hail, in transportation, or by reason of any ther cause or condition, except normal usage, is not covered by this warranty.
4. Operational Warranty - Gates Radio Company warrants that any new transmitter of its manufacture, when properly installed by purchaser and connected with a suitable electrical load, will deliver the specified radio frequency power output at the output terminal(s) of the transmitter, but Gates Radio Company makes no warranty or rep. resentation as to the coverage or range of such apparatus. If a transmitter does not so perform, or in the event that any equipment sold by Gates Radio Company does not conform to any written statemen in a contract of sale relative to its operating characteristics or capabilities, the sole liability of Gates Radio Company shall be, at the
option af Gates Radio Company, either to demonstrate the operation of the equipment in conformance with its warranty, ar to replace it with equipment conforming to its warranty, or to accept its return, f.o.b. purchaser's point of installation and refund to purchaser all payments made on the equipment, withaut interest. Gates Radio Company shall have no responsibility to the purchaser under a warranty with respect to operatian of equipment unless purchaser shall give Gates Radio Company a written notice, within one (1) month after arrival of equipment at purchaser's shipping point, that the equipment does not conform to such warranty.
5. Any item alleged by a purchaser to be defective, and not in conformance with a warranty of Gates Radio Company shall not be returned to Gates Radio Company until after written permission has been first obtained from the Gates Radio Company home office for such return. Where a replacement part must be supplied under a warranty before the defective part can be returned for inspection, as might be required to determine the cause of a defect, purchaser will be invoiced in full for such part, and if it is determined that an adjustment in favor of the purchaser is required, a credit for an adjustment will be given by Gates Radio Company upon its receipt and inspection of a part so returned.
6. All shipments by Gates Radio Company under a warranty will be f.a.b. Quincy, Illinois or f.o.b. the applicable Gates Radio Company shipping point.
7. Gates Radio Company is not responsible for the lass of, or damage to, equipment during transpartation or for injuries to persons or dam. age to property arising out of the use or operation of Gates equip. ment. If damage or loss during transportation occurs, or if the equipment supplied by Gates Radio Company is orherwise damaged, Gates will endeavor to make shipment of replacement parts at the earliest possible time giving considration to all conditions. It is the responsibility of a purchaser to file any claim for loss or damage in transit with the transpartation company and Gates will cooperate in the preparation of such claims to the extent feasible when so requested.
8. Gates Radia Company, in fulfilling its obligations under its warranties, shall not be responsible for delays in deliveries due to depleted stock, floods, wars, strikes, power failures, transportation delays, or failure of suppliers to deliver, acts of God, or for any condition beyond the control of Gates that may cause a delayed delivery.
9. This warranty may nor be transferred by the original purchaser and no party, except the original purchaser, whether by operation of law or otherwise, shall have or acquire any rights against Gates Radio Company by virtue of this warranty.
10. Gates Radio Company reserves the right to modify or rescind, withoul notice, any warranty herein except that such modification or rescission shall not affect a warranty in effect on equipment at the time of its shipment. In the event of a conflict between a warranty in a proposal and acceptance and a warranty herein, the warranty in the proposal and acceptance shall prevail.
11. This warranty shall be applicable to all standard Gates catalog items sold on or after March 1, 1960.

FIGURE 12

PIN I, VIOI
PIN 7, VIOI

TPIO2
PIN 7 VIO3 CONNECTED
PINGV/03

 PIN 7 VIO3 DISCONNECTEO

TP105 $V 106$ REMOVEO
$\checkmark 106$ IN PLACE

NOTE:
THE ABOVE PP WAVEFORM MEASUREMENTS WERE
MADE WITH A MOOEL 524 AD TEXTRONIX SCOPE.
AN UNCALABRATED SCOPE MAY BE CALIBRATED BY' USING FILAMENT VOLTAGE TO SET A REFERENCE. PEAK TO PEAK VOLTAGE EQUALS $2.8 \times$ PMS VALUE 6.3 VAC: $=17.5$ VPP.

TYPICAL WAVEFORMS OF STAGES VIOI THROUGH VIOG OF THE MGO95. EXCITER

8267991001

INSTRUCTIONS POR OFER.TION OF M5675 MMELIFIER

General Description

The M5575 anplifier covers a frequency range of 88 to 108 nc . This is done without the addition or renoval of any padding components in either grid or plote circuits. Fower grin of this amplifier is approximately 10. Then used as a final output \approx tage, moximun power output is in the vicinity of 50 to 60 watts. The M5675 may also be used to drive following anplifier stages.

The series type of circuit is used in tine grid and a conventional parallel type of circuit is used in the plate. This tends to rake for less susceptibility of parasitics at higher frequencies than the amplifier is used. Screens of the 61*6: arplifier tubes she isolsted by chokes rather then fif grourded. This has proven to be more effective at VHF frequencies and elininates the need for neutralizing. The reader should refer to schenatic B-65555 for a better understanaing of the circuit.

Tune-up

This particular amplifier should be tuned up for best efficiency and coupled for best transfer of power even if considerably less then full output power is desired. The screen control may then be turned down to reduce output power to the desired level.

To tuise the grid circuit, place the negative prove of a voltmoter, into TP401 and ground the positive lead. With drive coniected to input receptacle J401, ture 5401 (grid tuning) for moximum negative rodine on the voltmeter. This voltage may vary all the wey fron -15 to -45 volts depending on the ailout of drive. This reading will drop as soon as screen nd pirte voltage are applied to the amplifier.
ifter the grid circuit hes been rroparly tuned, coupling betweer I Wil maximur negative voltage at TF40l with a minimum of drive. C401 rust be retuned each tins coupling is changed.

When the input circuit his been properly tuned, plate and screen voltage may be applied to the amplifier and the plate circuit tuned. It is recomended thet this be done with the amplifier coupled into a 51 ohm non-reactive load. If rlate current is being retered, tune the plate tune control 0407 for a dir. Otherwise, tune 6407 for maximun power output. Now vary coupling betweer 1404 and L405. Turn amplifier back on and tung 0406 eor moxinus poser output along with 0407. jeveral trys may be needed to find the best point of coupling beiweer I404 and I405. Enck time the coupling betwer. IHO4 and 1405 is varied, the plate must be retund flome wit outout coupline cascitor 0406 .

After tuning has been completed for best power outwut and efficiency, screen control R405 should be set for the desired power output. In no case should the output circuit be decoupled to reduce output power.

It should be emphasired that this anplifier is easily overdriven. For 50 watts output power approximately 3 watts drive is require". For 15 to 25 watts output power, about 1 watt of driving power is required. If driving power is increased above the required amount, power output of the adiplifier will fall off due to high grid leak bias being created. A typical set of reading are given on this amplifier on the following page.

Coupling Amplifier To Another Stage.

When the amplifier is going to be used to drive another amplifier stage, it is suggested theit it first be tuned up into a load and then coupled to the grid circuit of the following amplifier stage.

To reduce the possibility of oscillations and/or parasitics, the ingut circuit of the following stage should be properly couplea and matched to the 51 ohm coaxial line connected to the output of the 50 watt amplifier. This may be done with a micromatch coupling unit. The following grid and input circuit should be adjusted for minimum SNR.

If a micromatch coupling unit is not available, the input coupling and grid tuning of the following stage should be tuned for maximum grid current in that stage.
If the foilowing input circuit is properly matched, plate tuning of the 50 :Jatt amplifier will not change appreciably when switching from a non-reactive load to being coupled to the following amplifier stage.

If the 50 watt amplifier stage was properly tuned up into a load and plate tuning deviates radically from where it was after being coupled into another stage, a major mis-match erists.

If the 50 watt amplifier unit is over-driving the followins amplifier, screen control R405 should be adjusted for the desired drive. Do not de-couple the 50 watt amplifier stage.

TYPICAL OP RATIONAL TEST DAT:
OBTAINAD ON
M5675 AMPLIFIDR OPERATING AT 99.1MC

Symbol No.	Gates Stock No.	Description
C401	5200004000	Cap., Variable, 2-19 mmfd.
C402	5200194000	Can., $500 \mathrm{mmfd} ., 500 \mathrm{~V}$. Button Type
C403, 6404 ,		
C405	5160215000	Cap., $100 \mathrm{mmfd} ., \pm 10 \%$
C406	5200115000	Cap., Variable, 5-25 mmfd.
C407	5200164000	Cap., Variable, 2-15 mmfd.
C408, C409	5160227000	Feedthru Cap., 500 mmfd
C410	5160235000	Feedthru Cap., 1000 mmfd .
C411	5200112000	Var. Cap., 2.2-21.5 mmfd.
J401, J402	6120233000	Receptacle
I401	8131772001	Grid Coupling Coil
I402	8131762001	Grid Coil
I403	8131761001	Grid Coil
I404	9131774001	Flate Coil Assembly
I405	8131771001	Plate Output Loop
I406	4940007000	R.F. Choke
I407, 工408,		
I410,1411	4940004000	R.F. Choke
I409	8130246001	Filament Choke
L412	8133607001	Coil
L413	8133608001	Coil
P401, P402	6200122000	Right Angle Adaptor, UG-27C/U
R401, R402	5400482000	Res., 15K ohm, 1W. 10\%
R403	5520058000	Res., 500 ohm, 25W. Adj.
R404	5400367000	Res., 30K ohm, 1W., 5\%
R405	5500073000	Control, l00K ohm
R406	5400748000	Res., 4700 ohn, 2W., 10\%
R407,R408	5400752000	Res., lOK ohm, 2W. 10\% (Used in $F M-1 B / 1 C$ only)
TB401	6140096000	Terminal Board
TP401	6140312000	Test Foint Jack
V401, V402	3740051000	Tube, 6146
XV401, XV402	4040016000	Socket, Octal

The FM harmonic filter is of a distributed constant nature using coaxially designed elements.

The characteristic impedance of the filter is 50 . ohm, therefore matching both the output impedance of the transmitter and the transmission line to be used.

The insertion loss of the filter is 0.2 db or less at the operating frequency resulting in low power loss in the filter.

Iith the aid of the filter all transmitter harmonics are suppressed at least 70 db below the fundamental.

Since the filter is of a symmetrical design either end can be used as an input.

The filter proper is an 11 foot section of $1-5 / 8^{\prime \prime}$ dia. coaxial line provided with l-5/ ${ }^{\prime \prime}$ fixed flanges at each end. Included with the filter are two adaptors for reduction to a $7 / 8^{\prime \prime}$ coaxial line. A 7/8:" right angle bend is also provided to aid in a flexible installa tion.
-- INŚTALLATION --
Since the filter is not a standard section of transmission line, special care should be taken when installing the filter to prevent damage to the inner conductor.

If the $1-5 / 8^{\prime \prime}$ to $7 / 8^{i i}$ coaxial adaptor is used this problem is reduced because the inner conductor is captive. Then using the $1-5 / 8:$ craxial line directly, it is suggested that the inner conductor of the filter be slipped out several inches and mated with the inner conductor of the transmission line. If the filter is mounted vertically it is very important that the transmission line sections above the filter be installed proparly sn as not to have the added weight of the inner conductors bearing down upon the inner conductor of the filter.

12/1/58 -1M5737

PROCEDuRE
BOTTOM NUTS ON INNER CONDUCTING RODS ITEMS 7 , 49 INSTALL BEADS ITEM 6 ON ROD AND INSTALL ITEMS AS SHOWN BELOW, BOTTOM ALL RODS BEFORE TIGHTENING STOP NUT ITEM II. MAKE CERTAIN ALL CONNECTIONS ARE TIGHT, THEN INSTALL ASSEMBLY INTO ITEM 10.
USNAG APPROPRIATE HARDWARE AT EACH ITEM 12 TO ONE END ITEMS 12 Gi 3 TOTAL OTHER NO OF ITEM 10

INSTALL ITEM $\%$ WITH ELASTIC END TOWARD

GROUP DOZ, 50 OHMS WITH ADAPTERSFOR
 $7 / 8^{\prime \prime} \operatorname{COAX}$
(12) 10

M-6023 AUTOMATIC RECYCLING UNIT

1. $\quad \mathrm{R}^{7}$ has been added in heater circuit of K 4 to compensate for individual differences of this time delay relay. It is adjusted at the factory for a ten second delay.

If K 4 should be changed, it may be necessary to re-adjust $R 6$ for a ten second delay.
2. R8 has been added in contact circuit of $K 4$ to insure more dependable performance of the time delay relay by preventing arcing and consequent sticking of its contacts.

General

The unit is designed to provide a low voltage source for pilot lights and interlock circuits. In addition, with the transmitter wired properly, it provides a lock-in function on overloads for maximum indication of source of trouble. This lock-in feature can be reset manually at the transmitter or at a remote point.

The third function of the unit makes recycling possible when an overload occurs and the "tune-operate" switch is switched to "operate" position. An R/C circuit operating an auxiliary relay provides three complete recycles during a 10 second interval.

NOTE: The above number of recycles can be changed by adjusting a potentiometer to almost any desired number within a certain time puriod. Also, the total recycle time can be changed by inserting another time delay relay of the desired type. When using a lo second time delay and the transmitter has overloaded, the following will occur. If, during the 10 second interval, the transmitter overload has not corrected itself, the transmitter overload at fault will lock out and remain locked out until manually reset. If the transmitter experiences one or two overloads and then clears itself, the recycle unit will again be ready for three more complete recycles after approximately 15 seconds.

Circuit Description

The time constant which determines the pulse interval for recycling is the 50 K 2 W . potentiometer, Rl, and the capacity of Cl.A. When the voltage on the positive terminal of ClA equals the voltage necessary to close the relay Kl, this occurs causing the capacitor to discharge through R3, 100 ohm to ground. The discharge time constant is cnosen to allow sufficient time for the high voltage contactor to close prior to the reopening

……of.relay Kl.

This discharge interval must not be sufficiently long to allnw damage to the transmitter in an overloaded condition.

The second set of contacts on relay $K 2$, a slave relay, switches the heavier currents involved in closing the high voltage contactor and also breaking the 130 volts D.C. which locks in the overload relays. Therefore, recycling of the reset occurs just prior to the closing of the high voltage contactor.
The time delay relay $K 4$ is activated the instant that $K 3$ energizes which occurs when an overload relay locks down. After an elapsud time of ten seconds or three recycle periods, K4
closes, shorting the coil of Kl to ground, thus stopping the operation of the time constant circuit. After this elapsed time of ten seconds, the unit must be reset either remotely or by the reset button located on the front panel of the lKw driver. It is necessary to wait approximately 15 secunds for the clement in $K 4$ to cool before you can expect another three recycles.

Relay $K 3$ performs three functions, the aforementioned closing of K2 when K3 is energized and also to supply ljo V. DC to potentiometer Rl in an overload condition. It also breaks the 230 V . AC which supplies the high voltage contactor coil. In an unenergized condition $K 3$ breaks 130 V . DC to Kl through Rl and maintains coil voltage to the high voltagu contactor. Also, the time delay relay K4 has operating voltage removed which should increase the operating life of this relay. K3 is operated by 6 V . AC which is supplied by the unit. One coil terminal is tied common to the 6 V. AC transformer and the other coil terminal is tied in series with a parallel string of overload relay contacts which return to the other side of the 6 V . AC transformer.

Resistor R4 acts as a surge resistor while R2 is merely a bleeder resistor.

The two switches and one push button which control the recycle unit are mounted on the lKW driver control panel. The operation of the push button acts as a manual reset. It is a normally closed switch, which when open, removes 130 V . DC from the 3.5 K resistors in series with the coil and overload potentiometers of the overload relays. These relays then open to again permit operation of the transmitter.

The "local-remote" switch opens the circuit for the remote "on" function, thus placing the transmitter in a local operate condition only.

The "tune-operate" switch performs two functions, in "tune" position it shorts out the coil of Kl in the recycle unit, thus making the unit inoperative. In "operate position", the short is removed from the coil of relay Kl. When the lKW transmitter is used-as a driver for a higher power amplifier, the "tunemoperate" switch also performs the following functions. It supplies $240 \cdot \mathrm{~F}$ AC to the manual push button on the F.A. high voltage control panel when in tune position. In tris position thu driver and P.A. high voltages must be turned on independently. In "operate" position the short is removed from the coil of $K l$ and the 240 V . AC is removed from the F.A. high voltage push button on the $F \cdot A$. Instead 240 V . AC is supplied to one contact of the K809 under drive auxiliary relay, which when closed, turns the F.A. high voltage contactor on.

PARTS LIST

M-6023 גUTOMiTIC RECYCIING UNIT

Symbol No.	Drawing No.	Description
C1	5240091000	Cap., 200-200 mfd., 150 V .
CRI	3840020000	Silicon Rectifier
Fl	3980017000	Fuse, 1 amp. 250V.
Kl	5740020000	Plug-in Relay, Double Pole
K2	5740040000	Relay, ll5V. inc, D.P.D.T.
K3	5740073000	Relay, 6V. A.C, 3P.D.T.
K4	5760019000	Time Delay Relay, ll5V. 10 Sec .
R1	5500071000	Control, 50K ohm, 2 W .
R2	5420135000	Res., l. 5K ohm, 20W.
R3	5500059000	Control, 500 ohm, 2 W.
R4	5400724000	Res., 47 uhr, 2W. 10\%
R5, R6	5400752000	Res., loK ohm, 2W. 10\%
R7'	5520023000	Adj. Res., 1000 ohri, 10 W.
R8	5400468000	Res., 1000 ohw, 1 W. 10\%
Tl	4720208000	Isolation Transformer
T2	4720090000	Fil. Transformer
TBI	6140034000	Terminal Board
XFI	4020021000	Fuseholder
XK1, XK 4	4040016000	Octal Socket

3/24/61 -1ー
M-6023 sutomatic Recycling Unit

