INSTRUCTION BOOK

For

The Executive

994-6158-02 Stereo Transistor Console

9946158002 STEREO IRANS ISTOR CONSOLE.

INDEX
Page
SPECIFICATIONS 1-2
INTRODUCTION 1
INSTALIMTION 2
Ambient Temperatures 3
Cable and Conduit Layout 3
Grounding Circuits 4
Balanced and Unbalanced Lines 5
Circuit Impedances 5
INSTALLATION -- WIRING 6
Power Connections 6
Studio Intercom Wiring 6
Monitor Speakers 7
Microphone Input Connections 7
Turntable Inputs 9
Tape Inputs 10
Remote Inputs 10
Network Input 11
Nemo Input 11
Iine Output Connections 11
Earphone Connections. 11
OPRRATION 11
Microphone Selector Switches 11
Turntable Switching 12
Tape Input Switching 12
Remote Input Switching 13
Network Input 13
Nemo Input 14
Monitor Input Selector and Ievel. 14
Line Anp Input Selectors 14
Master Gain Controls 15
Cue--Intercon System 15
VU Meter Switch 16
Headphone Jacks 16
PRINCIPLES AND THEORY OF OPERATION 16
Transistor Anplifier Circuitry 17
Cue-Intercon Systen 17
Simultaneous Feed to Line Amp. 2 \& 3 18
Mixing System 18
VU Meter and Isolation Pads 18
Relay Deck 18
Speaker Matching Transformers 19
Regulated Power Supply \& Power Transformer 19
MAINTENANCE 19
Voltage Measurements 19
Mechanical Components 20
MODIFICATIONS 20
Patch Panel Facilities 21
Muting Relays 21
Stereo Network Operation 22
PARTS LIST 1-4
PARTS LIST - M6205 Regulated Power Supply 1 1

DRAWINGS:

$$
\begin{aligned}
& 8423492001 \text { - Functional Block Diagram } \\
& 8525854001 \text { - Console Schematic } \\
& 8268534001 \text { - Component Layout } \\
& 8137290001 \text { - Microphone Input Connections } \\
& 8137289001 \text { - Power Transformer \& Warning Light Connections } \\
& 8137300001 \text { - Monitor Speaker Connections } \\
& 8137721001 \text { - Earphone Jack Connections } \\
& 8423485001 \text { - Schematic, M6205 Regulated Power Supply }
\end{aligned}
$$

INSTRUCTION BOOKS:
M-5700A Transistorized Program AmplifierM-6034 Transistorized Console PreamplifierM-6035 Transistorized Cue-Intercom AmplifierM-6108A Transistorized Monitor Amplifier

SPECIFICATIONS

THE EXPCUTIVE

9946158002 STEREO TRANSISTOR CONSOLE

GAIN:
Remote/Network to Line Out: $\quad 50 \mathrm{DB} \pm 2 \mathrm{DB}$ Remote/Network to Speaker: $\quad 58 \mathrm{DB}$ minimum Mi.crophone Input to Line Output: $102 \mathrm{DB} \pm 2 \mathrm{DB}$. Turntable Input to Line Output: $56 \mathrm{DB} \mp 2 \mathrm{DB}$. Microphone Input to Speaker Output: 106 DB minimum. Turntable Input to Speaker Output: 64 DB minimum.

FRERUENCY RBSFONSE: (I KC Reference)
$\pm 1.0 \mathrm{DB}$ from 30 to $15,000 \mathrm{cps}$ in all regular program circuits.
$\pm 2 \mathrm{DB}$ from 30 to $15,000 \mathrm{cps}$ in all emergency program circuits.
$\pm 1.5 \mathrm{DB}$ from 30 to $15,000 \mathrm{cps}$ in all monitoring speaker circuits.

HARMONIC DISTORTION:
0.5% maximum, 30 to $15,000 \mathrm{cps} @+8 \mathrm{DBM}$ output on all program lines.
0.5% maximum, 50 to $15,000 \mathrm{cps} @+18$ DBM output on all program lines.
1.0% maximum, 50 to $15,000 \mathrm{cps} @+39 \mathrm{DBII}$ (8 watts) output on all monitoring speaker outputs.
I.M. DISTORTIOIV:
0.5% maximum ($40 / 7000 \mathrm{cps}$ © $4: 1$) © +8 DBM equivalent sine wave output on all regular program circuits, 1.5\% maximum © +18 DBM out. 1.0% maximum @ +39 DBM equivalent sine wave output on all monitoring speaker outputs.

NOISE:
-122 DBM relative input noise on microphone channels.
‥75 DBM relative input noise on turntable channels.
CROSSTALK:
Below noise level in all stereo channels.
CHANNBLS:
10 Stereophonic.

SPECIFICATIONS CONT'D.

INPUTS:

6 stereo mics, 4 stereo turntables, 4 stereo tapes, 4 mono remotes and 1 mono network (can be wired for stereo), and 1 high level auxiliary stereo input.

OUTPUTS:

Program left, program right, program compatible, 3 stereo speaker lines with muting (plus one optional), 1 stereo speaker line without muting 2 studio intercom speaker lines and 2 phone jacks.

TOTAL TRANSISTORS:
$2 N 1307$
$2 N 422$
$2 N 1414$
2N214
2N1183
$2 N 1225$
2N1.539

Qty. 2
Qty. 10
Qty. 43
Qty. 5
Qty. 8
Qty. 2
Qty. 6
Total 76

SIZE:
531/2" long, $11-3 / 8^{\prime \prime}$ high, $17-3 / 8^{\prime \prime}$ deep. Net weight - 107 lbs.

INTRODUCTION

The Gates 9946158002 Stereo Control Console is a versatile and efficient ten channel audio control center especially designed to fill the need for such equipment created by the establishment of FM stereo broadcasting.

This console provides for the rixing cueing, and monitoring of a variety of program sources. These sources include microphones, turntables, tape recorders, remote pickups, and networks. These signals are fed to the two stereo channels in the transmitting system.

Due to the flexibility of the console, other combinations of output feeds are also possible. Provisions are included for the addition of a third output channel so that, simultaneously with the FM stereo program feed, a compatible signal (combination of left and right) may be fed to the AM transmitter. This third channel may also be used to broadcast a completely different monophonic signal to the AM transmitter. When stereo programs are not being broadcast, the two output channels of the console may be used to feed a monophonic signal to two transmitters simultaneously, or two completely different programs may be handied at once.

Microphone input switching is arranged so that a single microphone can feed both channels for isolated monophonic announcements on stereo broadcasting. Or, two microphones can be used for stereo announcements. Stereo monitoring of both the program output and the audition bus is prowided, as well as an external stereo monitor amplifier input.

More details on the operation of the console may be found in the section of this book titled OPERATION.

The console is completely transistorized and self-contained except for the power transformer, which has been placed externally to minimize hum pickup in the console and the earphone jack panel.

Breaking and jumpering of all major circuits allows full use of normalling jack fields, with all connections brought out to ter-minal blocks for ease of installation and future circuit check-. ing. Three speaker muting and warning light relays are supplied with provisions included for the addition of a fourth relay.

Corpensation of signal levels by the use of fixed pads throughout the console minimizes the necessity of readjusting gain controls when switching from one circuit to another.

The cue-intercom system provides cueing of turntable and tape sources as well as intercom facilities between the control room and each of the studios as well as the remote lines. The cueintercom system is interlocked with the speaker muting relays so that cueing and intercom signals cannot inadvertently get on the air.

This introduction has touched on some of the more important points of the console to give general information without excessive details. Those concerned with the daily operation should study the section labeled OPARATION. The installation crew should study their section before actually starting the work. Each section is broken down to cover different phases so that unnecessary confusion may be eliminated and the answer to any particular question may be easily found. The engineering staff is urged to become acquainted with all sections so that they can advise other groups in the best performance, as well as being able to keep the console in top operating condition.

INSTALIATION

All the packing material, including any shipping frames and platforms, should be carefully removed prior to the installation of the M6158i Stereo Control Console. The removable items include:

If any of the ilems listed above are missing, search all of the packing material again to determine if they have been overlooked. If still missing, contact the Gates Radio Company for instructions.

SIZE: The M6158A Console is 53-1/2" long, 11-3/8" high and 17-3/8" deep. The net weight is 107 pounds.

With the plug-in amplifiers removed, place the console on the control desk in the final operating position. Determine the routing of the interconnecting cables into the cabinet and the method of connecting the cables to the control desk. The conduit and/or duct layout should also be considered in the planning of the interconnecting cable runs. If the cables are to come up through the surface of the desk, mark the cable access holes (in the console base) on the desk top so they may be accurately drilled after removal of the cabinet.

In some cases, it is preferred to elevate the console cabinet sufficiently to permit the cables to lay between the desk top and the console base, making a right angle turn with the cables to enter the cabinet. The cables are then dressed off the rear of the desk and generally a protective cover is installed down the rear of the desk.

In either type of installation, the console should be fastened securely to the control desk after the wiring is complete. This is facilitated by the holes in the center of several of the large dimples in the cabinet base. The wiring adjacent to the mounting holes should be fully protected during the securing operation.

AMBIBNT TEMPSRATURES
The transistor amplifiers and the power supply used in the console have been designed for reliable operation at temperatures up to 55° C. or 131° F. No special ventilation is required. However, prolonged sine wave testing (especially in the monitor amplifiers) should be avoided to allow heat, built up in the power output transistors, to be dissipated. See the instruction books provided at the end of this manual for more information.

CABLE AND CONDUIT LAYOUT

Cable and conduit layout is of utmost importance in the studio installation. Good results, with a minimum of noise and crosstalk, require careful planning and construction. A system hastily installed, without thorough planning, invariably results in continuous trouble until rebuilt.

First, the matter of signal levels: Cables should generally be divided into three groups, low level cables may include levels from -60 DBM to -20 DBM. Medium level cables may include levels from - 20 DBM to +14 DBM. The high level cable may include levels from 114 DBM to +40 DBM, AC power wiring should be run in separate cables.

Whenever possible, do not run any or the four cables listed in a conduit along with cables of different level classification. If two or more cables must be run in a cominon conduit, never exceed a difference of 40 db in level between the highest and the lowest level in either cable. Use high quality shielded twisted pair for a.ll audio wiring, such as Gates catalog number l261. For all. microphone wiring and long medium level cable and conduit runs the use of rubber, plastic or cloth covered shielded pairs eliminates multiple ground loops and the resultant noise problems. Gates catalog number 8440 microphone cable is recomended.

In parallel cable runs of different levels, the most important aid is physical isolation. Up to six inch spacing is preferred. If there is not roon for this isolation, do not lace all of the wires in the same cables. Keep the cables laced separately for the different level classifications even if two or more must lay together. This will give much better isolation than when formed into one cable. The deviations from the preferred methods must not be taken lightly. Use them only as a last resort, not just for convenience.

Terminal layout is arranged in the console to allow adoquate separation of cables up to the point of connecting to the terminal blocks. Low level microphone cables connect on the left to TBl. Mediun level cables connect in the center to TB3. Figh level cables connect to TB4 and (in the rear) to TB6. Intercom wiring connections are brought out to TB5 since these are auxiliaxy circuits which may vary in level from -50 DB to +28 DBM. The speaker output cables are high level and should not be run with low level cables.

Conduit generally affords enough shielding so that different levels in separate conduit presents no isolation problem even without spacing them apart. Microphone level conduit and speaker level conduit can probably run along together with no crosstalk. However, if practical, it is advisable to maintain physical separation and add to the safety of the installation. Power circuits, especially those with high current, should not be in close proximity with progran carrying conduit; electromagnetic shielding is poor in most conduit.

GROUNDING CIRCUITS

Grounding circuits, like cable layout and most systems work methods, are unpredictable to a certain extent. Therefore, no hard and fast rules apply 100% of the time. In this section it is attempted to cover the things to avoid and to present generally accepted practices that always give gooa pesults, on allow good results to be obtained with minor modification. Entirely different approaches have been used, some with good results, but unless you are an expert on the subject, most are risky.

The console grounding system is based on the one point ground. Different circuit grounds are insulated from the chassis and other grounds except at one point, where they all join together and go to earth ground. This system prevents multiple ground loops with the resulting hum pickup from circulating currents and PF pickup and regeneration.

External circuits connected in the console should not destroy this system. Picrophone circuits are not grounded in the console. The shields should not be grounded externally except after noise checks. They may then be grounded if better results are obtained. Turntable and tape inputs are unbalanced and the common side is grounded. If the inputs are unbalanced, the common side should connect to the back row of the terminal blocks (1B, 2B, $3 B$, etc.). If the input circuit is grounded external to the console, the ground should be lifted if pos... sible to prevent ground loops. If the ground cannot be removed, or if the circuit impedance will not match the 600 ohm input, a matching transformer should be used. Order Gates A-21 line matching and isolation transformer.

Thus, a safe rule to follow is: Do not ground either side of external circuits. Generally, the shields of the cables should ground at the console only. They may be connected to the ground terminals in the console. There may be exceptions to this rule, especially on microphone input circuits, so the shield grounds should be wired in such a manner that they can be lifted in the console and grounded at the other end. Again, this is part of the test procedure to obtain lowest noise.

If patch panel facilities are used, special consideration of circuit grounding is necessary. Look in the section marked MODIFICATION FOR EXTRA FACIEITIES for instructions.

BALANCED AND UNBALANCBD LINES

If a circuit is ungrounded, it is considered balanced to ground. If one side is grounded it is unbalanced. If the circuit is center-tap grounded with a pad or coil it is balanced to ground. Refer to the third paragraph under GROUNDING CIRCUITS for determining proper classification. Twisted shielded pairs should be used for all circuits whether they are balanced or unbalanced. Cancellation of noise and crosstalk pickup is approximately the same for either when the one point ground system is used.

If it is necessary to connect a balanced line to an unbalanced. line, or the opposite, an isolation transformer should be used between them. The transformer must have good balance, an electrostatic shield, and magnetic shielding sufíicient to reduce the hum pickup at least 65 DB below the signal level. Impedance tops on primary and secondary are important to properly match both circuits. The Gates Radio Company's general catalog lists these transformers. Balanced lines require balanced pads and attenuators, unbalanced lines requiro unbalanced ones. Mixing them generally results in poor noise, frequency response or other poor operation.

CIRCUIT IMPDANCLS

The microphone inputs are factory connected for 150 ohins. These are balanced inputs. The impedance can be changed to 50 ohms balanced by changing the connections of the input transformer on the preamp board. See the preamp instruction book included at the back of this book for more information on this change.

The turntables and tape inputs are 600 ohms unbalanced. These impedances cannot be changed in the console and if other impedances are desired, a matching pad or an isolation transformer must be used. If a matching pad is used it should be unbalanced and its common side connected to the common or grounded side of the imputs.

The remote input lines and the auxiliary stereo input to channel 10 are 600 ohm balanced circuits. The impedance can be changed by changing taps on T1, T9, and T1O, the matching transformer in these channels. is connected, to 1 and 3 , the impedance is 600 ohms. Connect to 1 and 2 for $150 / 200$ ohms and to 2 and 3 for 30/50 ohms. The net input to channel 9 is 600 ohms and no match.ing transformer is included in this channel. If other impedances are desired an external transformer must be used.

INSTALLATION - WIRTNG

POUER CONRECTIONS
A 117 VAC circuit should be connected to terminals 1 and 3 on the power transformer. Terminals 1 and 2 should be used if local AC line voltage is $10 \mathrm{w}(105-110 \mathrm{~V}$.$) and terminals 1$ and 4 should be used where the AC voltage is high (120 to 125 V.).

The three 28 V . secondary windings of the power transformer, teminals 5 and 6,7 and 8,9 and 10 should be connected to terminal block 8, terminals 1 and 2,3 and 4,5 and 6 .

117 VAC for the warning lights should be connected to terminels 1 and 2 of terminal block 7. Studio A warning lights connect to terminals 3 and 4 of terminal block 7. 117 VAC will appear at these terminals whon channel one lever switch is placed in program or audition positions. Iights connected to these texminals should, therefore, be in the same studio as microphones connected to channel 1 inputs. Studio B warning lights should be connected to terminals 5 and 6. These lights will be on when channel 2 lever switch is in program or audition position and should be in the same studio as microphones connected to channel 2 inputs. Control room warning lights, activated by lever switch 3 should be connected to terminals 7 and 8 of terminal block 7. Terminals 9 and 10 are wired for use with a fourth relay. See the section on modifications for more information. Warning light circuits should not be grounded at any point and should not draw moie than 2 amps of current. Drawing 8137289001 shows the above connections in detail.

STUDIO INTERCOM WIRING

When connecting the studio intercom units, the wiring should be kept separated from program circuits. Connect the Studio A unit to terminal block 6, terminals 5A and 5B. The Studio B unit should connect to terminals $7 A$ and $7 B$ on terminal block 6. These circuits should not be grounded.

MOSITOR SPEAKERS

All speaker wiring is high level and must be run in separate conduit away from low level progran circuits. Stereo monitoring is providcd to all studios as well as external lobby speakers. $45 / 60$ to $6 / 8$ ohm speaker matching transformers should be used. Gates 478-0291 speaker transformers are satisfactory. The relay deck has 47 ohm back loading resistors across the lines wher the speakers are muted. Do not parallel spakers across the monitor outputs without using the matching transformers just mentioned since serious damage to the monitor amplifiers will result if they are operated with a load of less than 4 ohms.

Speakers connect as follows to terminal block 6 -

Speaker

Studio A - Left
Studio A - Right
Stuadio - Left
Studio B - Right
Control Room - Left
Control Room - Right
Iobby - Left
Lobby - Right

Terminal

$8 A-8 B$
$9 A=9 B$
$10 A=10 B$
$11 A=11 B$
$12 A=12 B$
$13 A=13 B$
$18 A=18 B$
$20 A=20 B$

The "hot" side of each speaker should connect to the A terminal on TBS to insure proper phasing of speakers for best stereo operation.

Studio A spoakers will mute when channcl l lever switch is in progran or audition position. Studio B speakers mute when channel 2 lever switch is operated and control room speakers are muted when channel 3 lever switch is operated. SPGikit CIRCUITS MUST NOT BE GROUNDED.

External monitor inputs, if used, should comect to TB5, 2A-2B for the left chanel and TB5, lA-1B for the right channel.

MICROPHONE INPUT CONNECTIONS

Each microphone channel has provisions for two stereo microphone combinations, or a total of four microphones per channel. Switching between combinations, or fron stereo to monaural, is done on the front panel.

Channel l: With S9 in "mic $\mathrm{I}^{\prime \prime}$ position and Sl2 in "stereo" position, the console is set up for stereo broadcasting from microphones connected to the first two inputs on terminal biock 1. Vith Sll in "mono" position, the signal from microphone input 1 is fed through both preamps so that both left
and right channcls will carry the same signal. Moving 59 to "nic 2 " position, swjetches microphones connected to terminals 3 and 4 into the chanmel 1 preamps. The function of S12, the mono-stereo switch, renains the same with microphone 3 feeding both left and right channels (when 812 is placed in the "mono" position). Reference to the functional block diagram, drawing 8423492 001, will help clarify these functions. Channel 1 microphones should be located in the same studio as the speakers that are connected to mute when the channel 1 lever switch is operated.

Channel 1 microphone connections are made to terminal block 1 as follows -

Microphone	Terminal
$1-$ Left	$1 A-1 B$
$1-$ Right	$2 A-2 B$
$2-$ Ieft	$3 A-3 B$
$2-$ Right	$4 A-4 B$

The microphone inputs are balanced 1.50 ohm and the external circuit should not be grounded.
(See Instruction Book for the preamps for information on chan ing the impedance to $30 / 50$ ohms.) (See section on GROUNDING CTROTTS for inctallation techniques.)

It is important in stereo broadcasting that the left and right program sources bs ir the correct phase with each other to maintain proper sound perspective. This fact must be taken into account when connecting imputs to the stereo console. Color coding of microphone cables or connector pin mumbering should be noted and the same lead connected from each microphone to the corsesponding terminal on TBl in each channel.

Microphone arrangements for channel 2 are the same as for channel l. Switching functions of S10 and S13 are the same as S9 and Sl2 respectively, as explained above. The functional diagram arawing 8423492001 , shows these functions. Channel 2 microphones should be in the same studio as the speakers connected to mute when the channel 2 lever key is operated.

Microphone connctions to channel 2 are as follows -

Microphone

$$
\begin{array}{lll}
3 & - & \text { Left } \\
3 & - & \text { Right } \\
4 & -\cdots & \text { Left }
\end{array}
$$

$$
\text { - } \quad 4-\text { Pight }
$$

6/26/62

Again, proper phasing must be obtained between microphones for best operation.

Switches Sll and Sl. 4 perform the same functions as S9 and Sl2 respectively, as explained under channel l. Channel 3 microw phones should be in the same studio as the speakers connected to mute when the channel 3 lever switch is operated. Again, phasing of inputs is important and microphone polarity should be closely observed.

Connections should be made as follows -

Microphone

$$
\begin{aligned}
& 5-\text { Left } \\
& 5=\text { Right } \\
& 6-\text { Left } \\
& 6-\text { Right }
\end{aligned}
$$

Terminal Block

$$
\begin{aligned}
& 9 \mathrm{~A}-9 \mathrm{~B} \\
& \text { 10A - 10B } \\
& 11 \mathrm{~A}=11 \mathrm{~B} \\
& 12 \mathrm{~A}-12 \mathrm{~B}
\end{aligned}
$$

Drawing 8137290 001 shows the above microphone connections.

TURNTABLE INPUTS

Provision is made for four stereo turntable inputs, each of which can be switched to mixers 4 or 5. Tumbable inputs are medium level (-20 DBM) 600 ohm unbalanced. If the output of turntable preamp is unbalanced, the common side should be connected to the common side of the input terminals (Row B) on terminal block 3. As with microphone inputs, polarity of the tumtable inputs must be observed to insure thet right and left channel signals are in proper phase relationghipe This requires checking of all the wiring from the stereo pickup. through the preamp to the console for proper connections. Inputs to the turntable channels should not be grounded extemally. Isolation transformers may be used if necessary to isolate extexnal grounds or to connect inputs that should not be grounded to the unbalanced turntable inputs.

Turntable inputs connect to terminal block 3 as follows -

Turntable
 Terminals

1 - Left Channel
1 -- Right Channel
2 - Left Channel
2 - Right Channel
3 - Left Channel
3 - Right Channel
4 - Left Channel
4. - Right Chanael
$1 A-2 B$
$2 A-2 B$
3A - $3 B$
$4 A-4 B$
$5 A-5 B$
$6 A-5 B$
$7 A-7 B$
$8 A-8 B$

See the section on OPERATTON for details on switching functions.

TAPE INPUTS

Four sterso tape inputs are provided, switchable between channels 6 and 7. These are "medium-level" 600 onm unbalonced inputs.

Connections are made to terminal block 3 as follows -

Tape

Terminal

$$
\begin{aligned}
& 9 \mathrm{~A}-9 \mathrm{~B} \\
& 10 \mathrm{~A}-10 \mathrm{~B} \\
& 11 \mathrm{~A}-11 \mathrm{~B} \\
& 12 \mathrm{~A}-12 \mathrm{~B} \\
& 13 \mathrm{~A}-13 \mathrm{~B} \\
& 14 \mathrm{~A}-14 \mathrm{~B} \\
& 15 \mathrm{~A}-15 \mathrm{~B} \\
& 16 \mathrm{~A}-16 \mathrm{~B}
\end{aligned}
$$

As with other stereo inputs, tape connections must be made with proper polarity to insure proper phasing of stereo signals.

Although the console is intended to handle 4 turntables and 4 tapes, more than this number of turntables may be used by comecting to tape inputs and switching them into mixers 6 and 7. Of course, one or more of the tape inputs must be sacrificed. In the same manner, more than 4 tape inputs can be obtained by using turntable inputs and bringing the additional tapes into mixers 4 and 5. In this case, one ox more turntable inputs will be sacrificed. Of course, not all the tape or turntiable inputs need be used.

REMOTE INPUTS

Provision is made for the comection of 4 romote lines to mixer 8. These are "medium-level" 600 ohm balanced monophonic inputs. Connections for these inputs are located on terminal block 3 as follows .-

Remote Iine

Terminals

$17 \mathrm{~A}-17 \mathrm{~B}$
$18 \mathrm{~A}-18 \mathrm{~B}$
$19 \mathrm{~A}-19 \mathrm{~B}$
$20 \mathrm{~A}-20 \mathrm{~B}$

It is suggested that, rather than connect the remote lines directly to the console, they be brought out to jacks in the station patch panel to allow a greater versatility in programing. External circuits should not be grounded. The input level of these lines should be about - 20 DBI. This allows the use of isolation pads or equalizers and still have sufficient gain for proper operation.

The Ixecutive

NETWORK INPUT

A 600 ohm monophonic network input is provided with mixing accomplished through mixer 9. This channel can be converted to stereo if desired (see the section on MODIFICATIONS for details). As wired, the network will feed both left and right program channels. The network line should be connected to TB5, terminals 17A and 17B.

NEMO INPUT
Channel 10 is a high level stereo channel provided for auxiliary use. Input connection should be made to $T B 5,19 \mathrm{~A}$ and 19 B for the left channel and TB5, $20 A$ and $20 B$ for the right channel.

LINE OUTPUT CONNECTIONS

The level of these lines will be +8 DBM and they should be routed carefully to prevent crosstalk back into low level input circuits. Connect output line 1 to TB4 terminals 13A \cdots 13B. Output line 3 comnects to TB4 terminals 15A-15B. Line 2, if used, connects to TB4 terminals 14A - 14B. These are 600 ohm balanced outputs. Observe correct phase relationship between output lines to insure proper sound perspective between left and right channels. Instructions for balancing left and right channels may be found in the MASTER GAIN CONTROIS Section, page 15.

EARPHONE CONNECTIONS
The earphone jacks for both the cue-intercom system and the line monitoring circuits are mounted externally on a jack panel. The panel should be mounted in a convenient location in the control room and shielded twisted pair should be used to connect to the console. Drawing 8137721001 shows the conplete wiring details necessary for proper installation.

OPERATION

The arrangement of panel controls gives maximum versatility to console operation while keeping actual operating as simple as possible. Control functions are explained in the following sections. In all cases, reference to the block diagram of the console, drawing 8423492001 , will help clarify these functions.

MICROFHONE SELECTOR SWITCHES

On the upper left side of the panel, above channel mixers 1 , 2 and 3, are three pairs of switches. These switches perform identical functions for each channel. The microphone selector switch is used to switch between two sets of stereo microphones in each studio. With the mono-stereo switch in the
stereo position, the left and right microphones will be switched to the left and right program busses when the proper mixer key is placed to the right. Thuse same microphones will be switched to left and right audition busses when the mirer key is placed to the left. If the mono-stereo switch is placed in the mono position, the left microphone will feed both left and right program or audition busses when the mixer key is placed in the progran or audition position. This allows announcements to be made on both channels while broad.casting stereo from other iincrophone combinations. For stereo broadcasting, the line output switch must bo in "stereo posi-. tion", as explained under LINE INFUT SWITCHING.

TURXTABLE SWITCHING

The four turntable switches, above mixers 4 and 5 , select the desired imput to each mixer. When the channel switches, above mixer 4, aro in the "OFP" position, turntable imputs are normalled through to the mixer 5 switches. When any of the switches in channel 4 are switched "ON", the turntable input will appear at the output of mixer 4. Moving the channel 4 mixer key to the right will bring up the turntable input on the left and right program busses, while moving the mixer key to the left will suritch the signal to the left and right audition busses. Moving the desired tumtable inut switch to the "ON" position, above mixer 5, will switch the desired turntable input into this mixer. Switching is arranged so that a turntable cannot be switched into mixer 5, if it js already switched into mixor 4. This prevents loading the turntable output by paralleling it into two console inputs. Cueing facilities are provided for by turning either turntable mixer fader fully counterclockwise. This connects the turntable inputs to the cue-intercom amp. Cueing can be accomplished by using the panel mounted speaker or headphones (plugged into the cue phone jack). The operation of the cue-intercom system is covered in a leter section. No special provision is necessary for monophonic operation, since mono records played on a stereo turntable will resvit in identical signals in both left and right channols.

TAPE INEUN SVITCHING

Mixcrs 6 and 7, located to the right of the VU meters are identical in operation to the turntable inputs discussed above. Four stereo inputs can be switched to either mixers 6 or 7. Outputs of mixers 6 and 7 can be switched to "program" or "audition" busses. Cueing facilities are provided by turning mixer 6 or 7 fully counterclockwise, thus, connecting the mixer to the cue-intercom system.

Four lever switches, located above mixer 8, control four renote inputs. The remote switches provide talkback and cueing facil.... ities to the remote operator. In the center position, they receive progran cue signal fron the monitoring amplifier. The level is adjusted to approximately +8 VU . This signal is fed back to the remote operator to allow him to start his program at the proper time. The lower position is the "mix" position and connects the remote program into the program or audition bus through mixer 8. The upper position of the switches have a temminating load for the remote lines and allow over-mide and talkback functions. See the section CUE-..INTERCOM SYSTMM for explanation of these functions. The remote lines are not tied together when any or all of the remote keys are in the talkback position. There is sufficient isolation between them even with the over-ride tie-in on all lines.

A typical sequence of operation for a remote line will be: Before air time, the studio operator would place the approm priate remote line switch in the "TB" position, and the cueintercom input selector switch to the "remote" position. When the remote operator arrives at the broadcast site, he would call in on the remote line. The studio operator would hear his call and be able to talk back via the cue-intercon systen. After preliminary instructions, the renote imput switch would be placed in the "cue" position. When the remote operator receives his cue the remote input switch is moved to the "mix" position and the remote signal is brought up on mixer 8. An alternate method of operation, before contact is established with renote operator, is to place the appropriate remote input switch in the "mix" position and the channel 8 mixer in the "cue" position. This allows the remote operator to call in and be heard regardless of the position of the cue-intercom input selector. After the call is heard, the remote switch is placed in the "TB" position and the cue-intercom input selector to the "remote" position and the above procedure is followed.

NETWORK INEUT

The network input is connected directly to mixer 9 and is put in use by placing the mixer key to the program or audition position and turning up the mixer gain control. Preview monitoring of the network is provided by turning the mixer control fullycounterclockwise into the "cue" position. Network can then be monitored with the "cue input" switch in any position. If it is desired to monitor the network with the mixer turned up ready for use, the "cue input" switch should be tumed to the "net" position allowing the network to be heard in the cue-intercom system.

NEMO INESUT

Channel 10 is a stereo channel with the imput connected directly into the mixer. Cueing is available by turning the mixer fully counterclockwise.

MONITOR INPUT SGLECTOR AND LEVEE
The monitor imput selector is located on the lower center of the panel. Input switching allows stereo monitoring of progran, audition ox an extermal signal source. The gain of both the "left" and "right" monitor amplifiers is controlled by the dual gain control located to the left of the monitor input selector.

IINE ANP INPUT SEITCTORS

The inputs to ine amplifiers 2 and 3 are selected by the two switches in the upper right corner of the panel. Only the inputs to the above amplifiers are switch selected. Line amp I is fed from the "left' program bus at all times.

For stereo broadcasting, line amp 3 input is switched to the "stereo" position. Mhis switches the "right" program bus into line amp 3 and "left" and "right" stereo output will appear at the outputs of ine amps 1 and 3 respectively. If it is dew sired to feed the sane program to lines 1 and 3 simultaneously, the line anp 3 imput switch should be placed in the upper or "simul." position. In this position, the signal on the left progran bus will appear at both line 1 and 3 outputse rlacing the line amp 3 input switch in the conter or "aud J" position switches line amp 3 input to the "left" audition bus. This enables the console to be operated as a dual channel console with line 1 being fed fron the "left" program bus and line 3 being fed fror the "left" audjtion bus. Stereo prograns cannot be broadcast when the console is operated in this manner.

Provision is included for the addition of a third line ampli.. fier to feed the line 2 output. With this unit in place, the versatility of the console is greatly increased.

The line amplifier 2 input switch selects the desired input. In the 'L $+\mathrm{p}^{\prime}$ " position, a compatible (left plus right) signal is available at the output of line 2. This allows broad. casting a compatible monophonic signal on line 2 while a stereo progran is carried on lines 1 and 3 .

With the line amp 2 input suitch in the "aud $L^{\prime \prime}$ position the line amp is switched to the "left" audition bus. This allows a completely different monaural signal to be carried in the middle channel, while stereo is being broadcast on channels 1 and 3. When the line 2 amp input switch is placed in the "simul." position, the signal on the "left" progran bus will appear simultaneously at both line 1 and 2 outputs.

It is evident that several possible operational setups are possible. Stereo can be broadcast on line 1 and 3 with a compatible ($L+R$) signal on line 2, or a completely independent program can be hand-led on line 2 through the "aud." bus. All three lines can handle the same program material, or the console can be used as a dual. channel system, handling two separate programs into two or three lines.

MASTER GAIN CONTROLS

The gain controls for line amps 1 (left) and 3 (right) are located on the upper right side of the panel.

The gain control for the optional line amp is located on the amplifier itself, and is accessible at the right end of the amplifier when the console cover is raised. Signal levels in the console are adjusted with the input channel mixers so that control should not need adjustment after being initially set to match the output levels of lines 1 and 3 .

Once the gain of line arap \#l (left channel) has been adjusted to the desired level, interchannel (left-right) balance can be set using the channel balance lever switch (S44) located to the left of the console monitor speaker on the hinged console control panel. With S44 in the "nuli" position, vu meter $\# 2$ is connected across the top of the left and right channels, and thus reads the difference in signal levels between channels. Adjust the level of line amp \#3 (right master gain control) until VU 2 meter nulls. This indicates there is no difference in level between channels, and thus the left and right channels are balanced. It should be obvious that a monophonic record must be used as a signal source when belancing the stereo channels, since a stereo source seldom has the same levels simultaneously on left and right chanels. The level difference between channels properly adjusted in accordence with the above procedure should not be more than $\pm .1$ db at 8 VU output.

When the balancing procedure is completed, 544 should be returned to the "normal" position.

CUE-INTERCOM SYSTEM
Controls for the cue-intercom amplifier axe located below the VU meter.

The top control is the gain control, and controls the level for both the "talk" and "listen" functions. Below the level control is the cue-intercom input selector switch, which has 6 positions. In the "net" position, the network line can be nonitored. Talk-back is not possible in the network position. The renote 1, 2, 3 and 4 positions tie the cue-intercom amp to the $1,2,3$ or 4 remote lines. For talkback facilities, the intercon selector is switched to the desired remote line and the appropriate renote input switch is placed in the "TB" position. The incoming renote signal line will then be heard in the panel mounted speaker. When the control roon operator desires to talk out on the remote line, he simply pushes the red "talk" button in the center of the panel and speaks into the panel speaker. "STl" and "ST2" positions allow listening and talkback into studios 1 and 2 if intercon units have been installed in ther.

Levels are adjusted so that normal listeming volume will provide sufficient gain for talkback purposes. The system is quite sensitive and does not require shouting or placing your mouth near the speaker.

Turntable and tape cueing circuits are connected directly to the input of the cue-intercom amp and may be used regardless of the position of the cue-intercon input selector.

The intercon speaker on the console is set up to mute when the channel 3 lever key is operated. This muting does not disable the "cue phone" jack, so it is still possible to cue a record by monitoring the cue circuit with headphones. This jack is labeled "cue". The intercom speaker is interlocked with the headphone jack so that this speaker is muted whenever a phone plug is inserted in the "cue" jack.

The studio intercom speakers are muted with the regular speaker muting relays so that it is impossible to talkback to a studio when the microphone channel is switched to either the prograr bus or the audition bus. This interlocking feature makes it impossible to disturb the progran and the console operator nay use the intercom system without concern.

VU METER SWITCH

VIJ meter 1 is not switched but is connected permanently across the output of line 3 . VU meter 2 is switched by the control directly beneath it. It may be used to monitor the level of output lines $1,2,013$, as well as the incoming network line. For monitoring, the network should be connected to TB4 temanals 16A - 16 B , this should be e balanced input. A utility position is also furnished to allow the panel mounted meter to monitor an external circuit. Connect desired external circuit to TB4-17-17B. The meters are set to read 0 VU with an input level of +14 DBM . With the 6 DB isolated pads in the output of each line this setting gives the standard +8 DBM level in the outgoing lines. This level can be changed by changing the pads on the rear of each meter. These pads are marked AT21 and AT23 on the schematic drawing 8525854001.

- HEADPHONE JACKS

The headphone jack labeled "line" is provided for headphone noni-
*toring of all output progran circuits. Fhones can be switched to the desired circuit by the switch labeled "phones". The upper or "stereo" position provides monitoring of the stereo prograri on lines 1 and 3. Stereo headphones with balanced separated inputs must be used. Switch positions marked "ALI", "AL工", "ALろ", provide monophonic ronitoring of the outputs of line amplifiers 1,2 and 3 respectively. The "network" position allows monitoring the income ing network line. The network should be tied to TB4, terminals 16A - 16B. The jack labeled "cue" allows monitoring the cue-intercom system with headthones if desired. See the section on the CUEINTERCOM SYSTEM for more information.

ERINCIFLES AND THEORY OF OPERATION

* Winis section is included to eive the engineer a better understanding of some of the more unusual features of the console.

The very obvious methods of operation will not be covered, since they are contion knowledge, or have been covered in pre... vious sections of this instruction book.

TRANSTSTOR AMETIELER CIROUITRY

Complete details on the various amplifiers used in the console will be found in the individual instruction books included in the back of this nanual. However, a word here about the circuitry will aid in explaining overall console setup. The preamps, monitor booster amps, cue-intercom amp and the monitor amps, have transformerless output circuits. Grounding of external wiring is critical for best noise figures and to avoid crosstalk, especially in the high gain cue-intercomamp. If modifications are made on the console, care should be exercised to insure that unwanted grounds do not enter the picture. Under no circumstances should the monitor speaker wiring be grounded extermally.

CUE-INTERCOM SYSTEM

Reference to the schenatic, arawing 8379345001 , of the cueintercom amplifier; and to drawing 8525854001 , the overall console scheratic for the wiring of this systen; will aid in understanding the operation of the cue-intercon system.

An interstage volume control, ronotely mounted on the front panel, helps reduce noise at normal operating levels.
the incoming remote lines nomally operate with a signal level of up to +8 vU. This level is paded down, to a level sufficiently low to prevent overloading the cue amplifier, when listening to the rumote lines. These pads consist of the 620 ond rosistor across the input of each rewote line and the 5100 on resistors in series with each side of the line. These pads are built up on 538 , the cue-intercom input selector switch, located on the front panel. These pads also give isolation between lines when more than one line is switched into the cue amp.

The maximun gain of this smafien is approximately 90 db . Since the input and output of the amplifier comes in close proximity at the talk-listen relay ($\bar{K} 5$), wire dress is very important here. The grounding of the cue-intercom system is also very critical. Do not allow any part of the external speaker or other systen to be grounded. They are grounded in the console. Shielding of all external speaker lines is necessary to prevent hum and possible regeneration.

The froquency response of the amplifier is rolled off severely on both ands of the spectrum to provide the best compromise of cueing and intercom functions. Do not attempt to alter it without taking all of the circuit requirements into consideration.

SIMULTANEOUS FTED TO IINE AMP 283

The line amplifier input switches allow switching the output of line amp 1 into line amp 2 and 3. Pads ATl2, ATl3, and ATl4 adjust the signal level to a level comparable to those appearing at the other positions of the line input switches. The absolute output level of line amp 2 will depend upon the relative gain control settings of both line amps 1 and 2. For example, pads AT12 and iTl3 have a total loss of 65 DB . If both line anps are set to have a gain of 65 DB, a -55 DBM signal applied to the input of ALl will appear at the output at a +10 DBM level. After passing through the pads it will appear at the input of $\Lambda L 2$ at a -55 DB level. ALR has the same gain as All so it will appear at cutput of iL2 at +10 DBM also. However, if the amplifiers are set for different amounts of gain, the signal will not be the same at both outputs. A signal anplified 70 DB for example, will be padded down only 65 DB and again anplified 70 DB , so the output of AL2 will be 10 DB higher then the output of ALl. Fads ATl2 and ATl3 are adjusted to give equal levels at the outputs of all line arps, when imput switches are in "sinul." position, with nomal operating levels. Pads ATl3 and ATl4 can be adjusted, if necessary, to better suit the local requirements.

MIXING SYSTEM

The mixing system consists of a ten chanel mixen, utilizing ladder type controls comected in a parallel, minimum loss type nixing circuit.

VU METER GND ISOLGITON FADS

The two VU meters are set up to read "zero" when signal level of +8 VU is being fed into the progran line. Isolation pads are placed in each output lime to isolate the console circuits fron the various telephone line reactances.

RELAY DECK

Speaker muting relays are mounted on a shock mounted deck to reduce nechanical noise.

The releys have two sets "D" contacts, one "A" contact and one "B" contact that are connected to mute the studio speakers and connect a 47 ohin load resistor in place of the speakers. The relays also energize the proper warning light in the studio, and mute the intercon speaker to prevent intercon use in a studio with a live microphone.
11/20/64
-18-
The Executive

SPEAKER MATCHING RRANSFORMERS

All house monitor spuakers should have matching transformers. These should be $45 / 50$ ohis to voice coil. The output impedance of the monitor amplifiers is 4 to 16 ohms (8 ohms nowinal). The parallel combination of the speakers should fall in this range. The 47 ohin back loading resistors, mounted on the relay deck, prevent the load from changing when the speakers are muted.

REGULATED POTDR SUPPIY GND FOTER TRGNSFORMER

The power supply has two DC outputs. A -37 V unregulated out-put for the cue-intercom anp, and a -30 V regulated supply for all other circuits. Transistors XQ4, XQ5, and XQ6 amplify any change in output voltage. This sensing signal is then fed to XQ2, which in turn controls the voltage drop across XQ1. XQl is in series with the output and naintains a constant voltage with varying load and power line. Zener diodes CR9, CRlO and CRll provide, reference levels for the voltage sensing amplifier.

Overload protection is provided by XQ3 and the associated cir. cuitry. Maximum current out of the power supply is limited to approximately 600 ma. R12 provides for adjusting the output voltage over a small range, to allow for zener diode voltage tolerances. When installing the console, this voltage should be checked and if necessary, Rl2 readjusted to give -30 volts at the output + and - bus. The console power transformer is designed to nount externally. This prevents the high hum field, surrounding the powor transformer, from inducing a high hum level into the low level console circuits. Three independent 28 volt windings are necessary to provide complete isolation between each monitor amplifier and the main console power supply.

MAINTENGNCE

On of the great advantages in the use of transistors is the long life expectancy of semiconductor devices. In this console, high quality components, conservatively rated, have been combined with the latest circuit techniques to give maximum dependability with a minimum of emergency maintenance. However, even the finest equiprent may becone erratic or inoperative if not properly cared for. We strongly recomend that the station engineer plan a routine preventive maintenance schedule and make every'effort to faithfully follow it.

VOLTAGE MEASURIMENRS

Average voltage readings are given on the schematic diagrans of the various amplifiers. It is recomended that, after the console is installed and operating satisfactorily, these readings be checked and recorded on the schematic. Thi.s will provide

$$
6 / 26 / 62 \quad-19
$$

the station engineer with a record of the actual voltage readings in his installation, using his metar. If trouble later develops, he will thon be better able to judge whether or not a particular circuit is operating properly since he will have available a record of the various readings of his particular equipment. DC readings were taken. with a 20,000 ohm/volt meter as indicated on the schematic. RMS signal voltages are shown in paranthesis and must be measured with a vacuum tube volt.meter. If a VMVM is used to measure DC voltages, slightly higher readings may be obtaincd.

Moanto I COMPONGTS

The channel mixers are step type low impedance attenuators. If sealed types are used, they require no maintenance. If unsealod types are used, they require cleaning about four times a year in the average location. A well air conditioned room would allow longer periods between cleaning them. A very dusty location would require more frequent cleaning. The at... tenuator contacts should be cleaned and lubricated by using Davenol (sometimes called Daven oil). A soft, lint-free cloth should be used to renove the dirty accumulation from the contact surfaces. Davenol is inexpensive and may be purchased from the Gates Radio Company.

The relays, and the channel lever keys, were selected for longlife and troubie-free service. The contacts are seli-wiping and everyday use will keep these contacts burnished. The contacts on the keys and relays that receive infrequent use can be cleaned by operating the equipment several times, thus, periodic operation of unused equipment will keep the contacts clean. In case of stubborn trouble, use a contact burnishing tool (Gates TM-1). Abrasive papors, files and grease solvents should nover be used on these contacts. Grease or oil should not be used on relay or key contacts. This would make then collect dust, get gumy and cause contact burning and possible failure.

The Centralab lever keys have excellent wiping action and will probably not require any cleaning. If one of these keys is danaged, it is better to replace it than to attempt to repair it. Use the parts list for the description, if it is necessary to order a new one.

MODIFICATIONS

In the design and construction of the equipment we have tried to provide a console which would give most installations adequate operating facilities. Realizing, however, that some uscrs may require facilities that are not comon, we have included in this section information about possible nodifications which can be made on the console. Plan your modification carefully and allot sufficient time to complete it so that it will be well executed and will not be a source of trouble.

PATCH FANEL FiLCILITIES

All of the important internal circuits of the console are terminated and jumpered on the main terminal board. These jumpers nay be removed and nornalling jacks wired in flace of them. This would permit patching around sections of the console, feeding the console signal to other equipment and feeding signals into selected sections of the console. Of course, any of the inputs or outputs may normal through patch panels before connecting to the external connections. The proper use of patch fanels will rake the difference between a very versatile and a rather restricted installation. On the other hand, if patch panel facilities are not required, their elimination will reduce the number of possible operational errors. The station engineer must weigh all of the factors carefully and act accordingly.

If patch panels are used, they must be wired correctly. They should be wired so that the polarity of the circuits are phased properly in nomalling and patching operations. The patch panel should not introduce grounds in any of the circuits, circuits that need ground will have them as explained in the seetion labeled GROUND CIRCUITS under INSTALIATION.

Circuits of more than 40 DB difference in level should be separated in the patch panels. It is recomended that the jacks be segregated into low level, nediur level and high level groups and all wiring attached to the different groups be cabled separately. The cables nust have sufficient physical separation to prevent crosstalk as explained in INSTALLATION. If the circuits on the fatch panel were located in a progreesive order, as located in the console or system, patching would be much easier.

MUTING RELAYS
A spare relay is frovided on the relay deck for a fourth muting relay, if desired. This relay may be wired to mute with the operation of channels 1,2 or 3 when the lever key is actuated.

The "hot" side of the relay coil appears at terminal 4B on TB6. For operation with Sl (channel 1), connect 4 B to 1 B on TB6. For operation with $S 2$, connect $4 B$ to $2 B$ on $T B 6$. For operation with $S 3$, connect 4 B to 3 B on TB6. With the fourth relay in place, warning light connections (l amp nax. load) can be made to terminals 9 and 10 on TB7. Monitor speaker connections may be rade on TB6: "Left" spkr. - Terminals 14 A - 14B; "Right" spkr. - Terminals 15A - - 15B. The speakers will nute, and the warning lights will operate simultancously with the other relay already connected to the channel key selected. The fourth relay (as well as the other three relays) aay also be wired to operate with external switching, if desired.

Simply connect teminal $4 B$ to one side of the switch and rur a lead fron the regulated " +30 volt bus" on the power supply to the other switch contact. Muting of relays 1,2 and 3 mey be changed, if desired. The "hot" side of relay coils 1,2 and 3 appear on TB6, terminels lA, 2A and 3A, respectively. Muting voltage from channel switches S1, $S 2$ and $S 3$ appear on TB6, terminals 1B, 2B and 3B, respectively. To change relay operation, renove the factory installed jumpers and connect the desired relay coil terminal to the desired channel switch terminal. For example, if it is desired to operate relay 3 from channel 1 key switch, jumper TB6-3A to TB6-1B.

STEREO NGTWORE OPERATION
If it should be desired to operate mixer 9 as a stereo channel the splitting pad (AT27) in the input should be renoved and the inputs converted directly into the mixer. Shielded twisted pair should be used for this purpose. Connect TB5 -- 17A-17B to the mixer 9 teminals nerked IN and C respectively on the rear section of the nixer. Connect TB5 - 18A-18B to the nixer 9 terminals marked IN and C respectively on the front section (closest to the panel) of the mixer. The left progran input will then connect to TB5-17A-17B. The right program source will connect to TB5 - 17A-18B.

Symbol No. Gates Part No. Description
ES1 9946205001 Console Fower Supply

$$
\begin{aligned}
& \mathrm{R} 2, \mathrm{R} 9 \\
& \mathrm{R} 14, \mathrm{R} 21, \\
& \mathrm{R} 26, \mathrm{R} 33, \mathrm{R} 40, \\
& \mathrm{R} 44, \mathrm{R} 53, \mathrm{R} 57, \\
& \mathrm{R} 68, \mathrm{R} 72, \mathrm{R} 81, \\
& \mathrm{R} 85, \mathrm{R} 91, \mathrm{R} 98, \\
& \mathrm{R} 99, \mathrm{R128,} \\
& \mathrm{R1} 35, \mathrm{RI} 36, \\
& \mathrm{R1} 46, \mathrm{R150,}
\end{aligned}
$$

$$
\text { R155,R160 } 5400042000 \quad \text { Resistor, } 510 \text { ohm, 1/2W. } 5 \%
$$

R3,R5,R10,R12,
R15,R17,R22,
R24, R27, R29,

$$
\mathrm{R} 34, \mathrm{R} 36, \mathrm{R} 41 \text {, }
$$

$$
\mathrm{R} 43, \mathrm{R45}, \mathrm{R} 47
$$

$$
\mathrm{R} 54, \mathrm{R} 56, \mathrm{R} 58
$$

$$
\mathrm{R} 60, \mathrm{R} 69, \mathrm{R} 7 \mathrm{I},
$$

$$
\mathrm{R} 73, \mathrm{R75}, \mathrm{R} 82
$$

$$
\mathrm{R84}, \mathrm{R86}, \mathrm{R88} .
$$

$$
\mathrm{R92,R94,R129,}
$$

R144, R147,R148,

$$
\mathrm{Kl} 51, \mathrm{RI} 53, \mathrm{R156} \text {, }
$$

$$
\text { Rl58,R161,R1635400051000 Resistor, } 1200 \text { ohm, } 1 / 2 \mathrm{~W} .5 \%
$$

R4, R11, R16,
R23, R28,R35,
R37,R38,R42,
R46,R48,R49,
R50,R51,R55,
R59,R61,R62
R63, R64, R65,
R66, R70, R74,
R76, R77,R78,
R79, R83, R87,
R89,R93,R107
RlOS,R110,R113.
R116,R119,R141,
R152,RI57,R162'5400044000
R6, R8, Rl8,
$R 20, R 30, R 32 \quad 5400076000$
R7,R19,R31 5400029000

Fesistor, 620 ohm, 1/2W. 5%

Resistor, 13 K ohm, $1 / 2 \mathrm{~W}$. 5%
Resistor, 150 ohm, $1 / 2 \mathrm{~W} .5 \%$
R95

5400032000
R96, R97

RIOO
R101, RlO2,
R104

RlO3
R105
5500236000
5500237000

5400018000
5400039000
5500215000

R106, R109,R111,
R112,R114,R115,R117,
RI 18, RI42,R143 5400066000
R120,R121,R122,
R123,R124,R125,
R126,R127
5400579000
R137, R138,
R139, IT140
R164
S1, S2,53,54,
S5,56,57,58, 59,510

S11,S12,S13, S14, S15,516, S17,S18,519; S20,521, S22, 523,524,525, S26,527,528, S29,530,
S41, S42, S44
S31,532,533. S34,536,537
S35
S38
S39
S40
S43
$10 / 22 / 62$

6020007000
6020047000

6020005000
9148507002

9148507004
9148507003
6040230000

Fesistor, 200 ohm, 1/2W. 5\%
Master Control, 2500 ohm
Mon. Gain Dual Control CLAROSTAT 2500 ohm or Med Pet D. 53 M 70THGO565252A Resibistor, 51 ohm, $1 / 2 \mathrm{~W}$. 5% Resistor, 390 ohm, 1/2W. 5% Control, 10 K chm

Resistor, $5100 \mathrm{ohm}, 1 / 2 \mathrm{w} .5 \%$

Resistor, 47 ohn, 2W. 5%, (Part of relay board)

Resistor, 2700 onm, 1/2W. 5%
Resistor, 3900 ohr, $1 / 2 \mathrm{~W}$. 5\%

Lever Key, Series 4803, Pos. I Locking, 1A, IB, ID Left \& Right, Eos. 2, Locking, IA, IB, 1D Left \& Right

Lever Switch
Lever Switch
Vion. Selector Switch
Intercom Selector Switch
VU2 Selector Switch
Phone Selector Switch
Fushbutton Switch, SPST, N.O. The Executive

Symbol No.	Gates Stock No.	Description
$\begin{aligned} & T 1, T 5, T 6, \\ & T 7, T 8, T 9, \\ & T 10 \end{aligned}$	4780009000	Audio Transformer, A21
T2, 14	4780230000	Speaker Transformer, A-36283
T3	4780231000	Speaker Transformer, A-36792
T11.	4720429000	Power Transformer, A-36766
$\begin{aligned} & T B 1, T B 2, T B 3, \\ & T B 4, T B 5, T B 6 \end{aligned}$	6140434000	Terminal Block, 20 pair
TB7	6140054000	Terminal Board
TB8	6140050000	Teruinal Board
$\begin{aligned} & \text { XA1, XA2, } \\ & \text { XA3, XA4 } \end{aligned}$.4060317 000	Filot Light Socket
XK5	4040160000	Relay Socket

PARTS LTST

M6205 TRAISISTOR

REGULATED FOWER SUPPLY

Warning, disconnect primary power prior to servicing.

MICROPHONE INPUT CONNECTIONS STEREO CONSOLE M6158

TB8-FRONT

1,ALL RESISTORS $\frac{1}{2}$ WATT 5% EXCEPT WHERE NOTED.
2:ALL CAPACITANCE IN MFD., WITH D.C.W.V.
3.0C VOLTAGES MEASURED WITH $20 \mathrm{~K} \Omega$./VOLT METER.
4. R7 IS ADJUSTED TO PROVIDE - 3OV OUTPUT
5. DESIGNATES BOARD LUG GONNECTIONS.
6. LAST R NO 15
7. LAST G NO 8

MRRRIS-INTERTYPE CORPORATION

in754

TRANSISTOR REGULATED POWER SUPPLY
M-6205 (STEREO CONSOLE)
8423485001

Warning, disconnect primary power prior to servicing.

)
 solid statesman line

M5700
TRANSISTOR
PROGRAM AMPLIFIER

Fig. 1-M5700 Transistor Program Amplifier

The Gates Transistor Program Amplifier is available in two versions:

1. The M5700 is designed specifically for use in Gates Transistor Consoles. It is supplied less the interstage level control, and with the input unterminated. The control is mounted externally on the Console panel.
2. The M5700B is designed for rack mounting in system installations with the level control mounted internally. The input of the amplifier is unterminated to facilitate application. Terminate the input connect ions on the amplifier mounting tray in the proper resistance (150 or 600 ohms). The gain of the M5700B will then be approximately 70 db maximum.

TECHNICAL DATA

Gain:
M5700: $80 \mathrm{DB}, \mathrm{M} 5700 \mathrm{~B}: 76 \mathrm{DB}$, may be reduced as required with internal volume control.
Frequency Response:
$\pm 1 \mathrm{db}$ from 30 to $15,000 \mathrm{cps}$.
Harmonic Distortion:
Under 0.75% at $30 \mathrm{cps} ., 0.5 \%$ from 50 to $15,000 \mathrm{cps}$. , at +24 dbm output.

Intermodulation Distortion:
Under 0.3% at +14 dbm equivalent sine
wave power output, using 40 and 7000 cps., mixed 4:1. Under 1.5% at +24 dbm.

Noise Level:
-122 dbm equivalent input noise.
Source Impedance:
$150 / 250$ ohms, or $500 / 600$ ohms.
Input Impedance:
Factory connected for 150 ohms. May also be connected for $600 \mathrm{ohms}$.

Load Impedance:
Factory connected for 600 ohms. May also be connected for 150 ohms.
...aximum Input Level: -35 dbm .
Maximum Output Level: +24 dbm .
Maximum Operating Ambient Temperature: $55^{\circ} \mathrm{C}$. ($13.1^{\circ} \mathrm{F}$.)
Maximum Storage Ambient Temperature: $85^{\circ} \mathrm{C} .\left(185^{\circ} \mathrm{F}.\right)$
Power Requirements:
30 volts D.C., $90 \mathrm{ma}, 0.1 \mathrm{mv}$. maximum ripple.
Transistors:
4 - 2N1414
2-2N5087
1 - 2NI183

Finish:
Satin-silver cover, black escutcheon plate.
Mounting:
M6031 Mounting Tray required to mount in M6029 Shelf Assembly. Shelf assembly accommodates seven Program Amplifiers and requires panel space of $3-1 / 2^{\prime \prime}$ X 19".
Size:
2-7/32" wide, $3-1 / 8^{\prime \prime}$ high, $10-3 / 4^{\prime \prime}$
long, overall.
'Weight:
4-1/4 lbs. net. 8-1/4 lbs. packed.
Cubage:
$0.8 \mathrm{cu} . \mathrm{ft}$. domestic pack.

DESCRIPTION

The M5700 Program Amplifier is completely transistorized, and is designed for use as a line or isolation amplifier in broadcasting 1 recording applications. Special tech-
ues have been employed to obtain low noise, low distortion, and good temperature stability.

The amplifier is used with the M6031 Mounting Tray which carries a mating receptacle and is supplied with mounting hardware. Up to seven trays may be installed on the M6029 Shelf Assembly, which mounts in a standard Gates rack cabinet, and occupies $3-1 / 2$ " of panel space. A keying pin is pro-
vided with the mounting tray to prevent accidental interchange of non-similar plug-in units in the system.

The interstage level control is located on the front panel of the M5700B model. The output transformer and receptacle are attached to the frame, and all other components are mounted on the printed wiring boards.

Typical frequency response and distortion curves are shown in Fig. 2. These measurements were taken with all transistors selected at random.

Fig. 2 - Response and Distortion.

MOUNTING TRAY AND SHELF ASSEMBLY

Mounting holes have been spaced in the shelf assembly to allow it to be completely filled with trays of any one type for the Gates transistorized units. It is possible, where maximum use of shelf space is not required, to mix trays of different sizes. Thus a program amplifier and preamplifier could be placed at the left and a power supply at the extreme right. Proceed as follows:

1. Locate the first tray at the extreme left or right of the shelf assembly, with the receptacle at the rear. The countersunk holes of the tray will fit into the matching holes in the shelf, when properly located. Leave a $1 / 16^{\prime \prime}$ space between trays.
2. Secure the tray to the shelf with the two \#4-40 $\times 1 / 4 "$ flat head screws with the two \#6 internal-external shakeproof washers under two \#4 hex nuts.

Fig. 3-Shelf Assembly With Guide Bar
3. Determine whether or not the guide bar', shown in Fig. 3, will be required. The purpose of this bar is to prevent possible damage to the mating connectors when upward pressure is inadvertently applied to the amplifier during withdrawal. The bar will be required only where no other protecting obstruction is present in the rack, or where the shelf is used at a location such as a work bench.

It will not be required where another M6029 Shelf Assembly is mounted directly above,
or where overhead equipment interferes with mounting of the shelf due to the presence of the bar. The mounting screws are located so that they may be removed from within the shelf.
4. Mount the shelf in the rack using hardware supplied with the rack. The two end strips mount under the screw heads, and are to be flush with the drop panel.

INPUT AND OUTPUT TRANSFORMERS

The input transformer is factory connected for 150 ohms primary impedance, as shown on the schematic diagram and on Fig. 4. If a terminated input is desired, a 150 ohm resistor should be connected to terminals 9 and 10 on the amplifier mounting tray, since the amplifier input is unterminated.

Fig. 4 - Input Transformer Connections
Refer to Fig. 4 for connection to 600 ohms impedance. If a terminated input is required, connect a 620 ohm resistor across terminals 9 and 10 on the amplifier mounting tray.

If 6 db more gain is desired in some applications, the input terminating resistor may be deleted. In this case, however, the system component preceeding the amplifier will not be properly terminated.

The output transformer is factory connected
for 600 ohms secondary impedance. To reconnect for 150 ohms refer to the schematic diagram. Remove the green/white and black wires from terminal \#7. Connect the black wire to terminal \#5 and the green/white wire to terminal \#6.

EXTERNAL CONNECTIONS

External connections are made to the mounting tray receptacle as follows:

Circuit

External Control (Optional) +30 V .
Circuit Ground
Output Connections
Output Center--Tap (600 ohms)
Input Connections
Input Center-Rap
-30 V .
Chasis Ground
No Connection
Jumper together all \#13 terminals on the shelf, whether program amplifiers or other types, and connect to the rack ground bus. Connection from rack ground to the circuit ground in the program amplifier ($B+$) should be made at the amplifier (not at the power supply). Make a connection from the rack ground bus to each amplifier terminal \#14, SEPARATELY, with at least 18 guage wire. These circuit grounds must be carried separately to prevent the possibility of interac-
tion (due to mixing of return currents in a common wire). Where other types of amplifiers are mounted on the same shelf, consult their respective Instruction Book for grounding information. Where many amplifiers and power supplies are mounted in a rack, it is preferable to run a vertical rack ground bus-bar, to pick up grounds at each shelf.

Run the D. C. supply leads, output pair, and chassis and circuit ground leads along the rear edge of the shelf. The D.C.. supply leads shouldbe at least 18 gauge, and must be run SEPARATELY from each program amplifier to its respective power supply, to prevent the possibility of common coupling in the power wiring. See the power supply Instruction Book for further information.

Run input pairs and external control leads along the shelf brace, above the receptacles.

EXTERNAL VOLUME CONTROL

Reference to the schematic diagram will indicate that the program amplifier is wired to accommodate an external volume control. This feature makes it possible to locate the volume control on an adjacent rack panel, or on a console control panel, when the amplifier is mounted internally. The internal control, R30, must be disconnected when the amplifier is to be used in this way. The (R30) control may be ordered as part number 5500218000.

THEORY OF OPERATION

For the purpose of explanation, the program amplifier can be considered to be made up of two parts: the preamplifier, and the high level amplifier.

THE PREAMPLIFIER

The four stage preamplifier has a transformer coupled input and emitter follower output, with direct coupling utilized between Q1 and Q2, and between Q3 and Q4. Q1 and Q2 transistors are low noise types de-
signed for use in critical low noise applications.

Biasing is accomplished by a combination of voltage divider and emitter resistance, as with R2, R3, and R5. This method of biasing also insures a high degree of temperature stability. Signal degeneration is provided for Q1 by R6, and for Q3 by R17. A loop feedback network connects from Q3, thru R7 and C5, to Q1. The large amount of feedback and degeneration obtained by these

methods reduces distortion in the preamplifier to an extremely low value, and makes the operation almost completely independent of variations in transistor parameters.

THE HIGH LEVEL AMPLIFIER

The output stage, Q7, is connected in the common emitter configuration, with a series fed output transformer, T2, in the collector circuit. Emitter resistor R29 provides a large amount of degeneration, to reduce
large-signal distortion to a low value.
The low driving impedance required by d stage of this type is obtained from the emitter follower, Q6. The stages are direct coupled, with R25 and R26 establishing the bias on both Q6 and Q7. Q5 provides additional gain for the high level amplifier.

The feedback network, R28 and C16, is used primarily for low frequency response compensation.

Fig. 6 - Printed Board Component Location, Viewed from Wiring Side.

MAINTENANCE

PREVENTIVE MAINTENANCE

The M5700 Program Amplifier is designed for long, trouble-free service. However, as with all high quality electronic equipment, a regular program of inspection should be followed.

It is recommended that when the amplifier is first placed in operation, D.C. voltage be measured with the same voltmeter that will be used for maintenance and trouble shooting, and that these readings berecorded on the amplifier schematic above the typical voltage shown.

Dust and dirt should be periodically removed with a soft brush.

SERV ICING

When servicing the amplifier, the following points should be observed:

1. The condition of the output stages, Q7
and Q6, can be most readily checked by measuring the D. C. voltages associated with these stages.
2. Circuit resistances should be measured only after removing the associated transistor or transistors, to prevent damage due to ohm-meter battery voltage.
3. Do not remove or insert transistors with the power on.
4. Do not probe the printed board with a metal probe with the power on.
5. Circuit voltages are reversed from standard vacuum tubepractice, as is the polarity of all the electrolytic capacitors.
6. The location of the positive end of each electrolytic capacitor is indicated by the white dot marked on the top of the circuit board.

PRINTED CHASSIS COMPONENT REPLACEMENT

CHECKING COMPONENTS

$l_{\text {. The components should be carefully }}$ checked by measuring circuit voltages and resistances before attempting to remove one of the leads from the printed chassis. Extreme care must be exercised in removing the lead to prevent damage to the board or conductors. This operation should not be considered unless it is the only way the component can be checked. If one lead must be removed without damage to the component, apply a well cleaned and tinned 25 to 60 watt iron to the fillet adjacent to the lead. With small long nose pliers or thin crewdriver, pry the folded portion of the read in line with the holes. Applying the iron for more than four seconds at a time may damage the chassis base material.

Remove as much solder from the lead as
possible. Remove all the kinks in the wire. With heat applied, gently pull the wire through the hole.

RESOLDERING THE COMPONENT

2. If the component is good, replace as follows: Use a metal twist drill (1/8" dia. or less) to clear the hole only in the fillet of solder. Turn with the fingers only remove solder slowly to prevent the drill from tearing the fillet.

Fig. 7-Cleaning Holes

Be sure the component lead is straight and free of solder. Push it gently back through the hole until some of it shows on the other side. Solder carefully but rapidly to prevent chassis damage.

REPLACING COMPONENTS

3. Components can be replaced with less chance of damage to the chassis than the removal and rewiring of one of the leads. Remove as follows: Clip the leads close to the body of the component. Heat the fillet and gently push the wire through until the hook may be clipped off. Clip the hook off (on the soldered side) with sharp cutters.

Fig. 9 - Removing Components
With the iron applied to the fillet, pull the wire gently out of the component side of the chassis:

Fig 8 Fig. 8 - Removing Lead
After removing the leads, prepare the chassis for the new component as explained in Fig. 7, paragraph 2.

To replace the component, fold the leads on the new part to the same spacing as the mounting holes. Insert the part and fold the
leads under the chassis to hold the component firmly against it.

Fig. 10 - Installing New Component
Clip off the excess wire. Place the iron on both the component lead and fillet. Solder carefully and rapidly to prevent damage to the chassis base. If one of the conductors is damaged, it is seldom necessary to scrap the printed chassis. Lay a small piece of wire (\#18 to $24 \mathrm{ga}$.) across the break and solder each end to the conductor.

If a fillet is pulled loose, break it off to get rid of the loose end. Fold the new component lead to lay on the conductor and solder. If the component lead is too short, solder in another piece of wire to bridge the gap. Printed chassis construction places no strain on repairs of this nature, thus, soldering alone will provide sufficient mechanical strength even with heavy shock and vibration in almost every case.

The base material used on the printed chassis is the best available for this service. The two oz. copper is twice as heavy as used in average applications of this type of equipment. This assures reliable service and repair, if and when required. If replacement parts are ordered from the Gates Radio Company, please list the Gates stock number given in the parts list, as well as the description of the part. This will assure receipt of the right part immediately.

PARTS LIST

Symbol No.	Gates Stock No.		
Cl (M5700)	508	0076	000
C1 (M5700B)	508	0215	000
C2, C11	522	0178	000
C3	522	0160	000

Description

```
Cap., . }005\mathrm{ uf., 100 V.
Cap., . }01 uf., l00V
Cap., 25 uf., 6V. D.C.
Cap., 100 uf., 3 V. D.C.
```

Symbol No.

C8

C4, C7,
Cl0, Cl3
C5
C
C
C, Cl
Cl
Cl4
Cl5
Cl6 (M5700)
C16 (M5700B)
Cl7
C18, C19, C20, C21,
C23, C24, C25
C22,C26
C 27
Pl
Q1, Q2
Q3, Q4,
Q5, Q6
Q7
Rl (M5700A)
R1 (M5700,B)
R2, R4
R12, R22
R5
R6
R7
R8
R9
R3, R10
Rll
R14
R15
R16
R17
R18
R19
R20
R21
R23
R24
R25
R26
R27, R31
R28 (M5700)
R28 (M5700B)
R29
R30 (M5700A/B)
T1
T2
XQ3, XQ4, XQ5, XQ6 XQ7.

Gates Stock No. 5220227000

5220242000
5160054000
5220187000
5160043000
5220189000
5160075000
5260085000
5220251000
5160035000
5160426000
5160435000
5000759000
6100244000
3800112000
3800014000
3800022000
5400044000
5400034000
5480050000
5400062000
5400066000
5480049000
5400046000
5400077000
5400068000
5400064000
5400095000
5400086000
5400048000
5400063000
5400032000
5400058000
5400035000
5400089000
5400073000
5400025000
5400049000
5480135000
5480095000
5400053000
5400064000
5400059000
5480093000
5500218000
4780183000
4780125000
4040066000
4040149000

Description
Cap., 50 uf., 15 V. D.C.
Cap., 25 uf., 25 V. D.C.
Cap., . 001 uf., 1 KV
Cap., 200 uf., 6V D.C.
Cap., 470 pf.,: 1 KV . $300 \mathrm{uf}$. . 6 V.
Cap., . 005 uf., l KV
Cap., 2.7 uf., 60 V. D.C.
Cap., 5 uf., 50 V. D.C.
Cap., 250 uuf., 1 KV
Cap., . 005 uf., 500 V
Cap., , 05 uf., 100V
Cap., 100pf., 500 V.
Plug
Transistor, 2 N5087
Transistor, 2 N1414
Transistor, 2Nl183A
Res., 620 ohm, $1 / 2$ W., 5%
Res., 240 ohm, l/2 W., 5\%
Res., 20 K ohm, l/2 W., 1%
Res., 3600 ohm, 1/2 W., 5\%
Res., 5100 ohm, l/2 W., 5\%
Res., 100 ohm, 1/2 W., 1\%
Res., 750 ohm, l/2 W., 5\%
Res., 15 K ohm, l/2 W., 5%
Res., 6200 ohm, $1 / 2$ W., 5%
Res., 4300 ohm, 1/2 W., 5\%
Res., 82 K ohm, $1 / 2 \mathrm{~W} ., 5 \%$
Res., 36K ohm, l/2 W., 5\%
Res., 910 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
Res., 3900 ohm, $1 / 2$ W., 5\%
Res., 200 ohm, l/2 W., 5\%
Res., 2400 ohm, l/2 W., 5%
Res., 270 ohm, l/2 W., 5\%
Res., 47K ohm, l/2 W., 5\%
Res., loK ohm, l/2 W., 5\%
Res., 100 ohm, l/2 W., 5\%
Res., 1000 ohm, $1 / 2$ W., 5%
Res., 25 K ohm, l/2 W., 1%
Res., 4640 ohm, $1 / 2$ W., 1%
Res., 1500 ohm, l/2W., 5%
Res., 4 . 3 K ohm, l/2 W., 5\%
Res., 2.7 K ohm, 1/2 W., 5\%
Res., 61.9 ohm, 1 W., 1\%
Potentiometer, 2500 ohm
Transformer, Input
Transformer, Output
Socket
Socket

INSTALLATION AND OPERATING INSTRUCTIONS FOR M-6034 TRANSISTOR PREAMPLIFIER

TECHNICAL DATA

GAIN:	$45 \mathrm{DB} \pm 1 \mathrm{DB}$ operated into a 600 ohm load.
FREQUENCY	
RESPONSE:	$\pm 1 \mathrm{DB}, 30 \mathrm{cps}$ to $15,000 \mathrm{cps}$.
HARMONIC	
DISTORTION:	Under 0.5% from 50 cps to 15
	KC at +5 DBM output
	Under 0.5% from 30 cps to 15
	KC at --50 DBM output
INTERMODULATION	
DISTORTION:	Under 0.5% at -5 DBM output
	level, and under 1.0% at +5
	DBM output level.
	Distortion measured at equiva-
	lent sine wave output using 40
NOISE LEVEL:	-122 DBM equivalent input noise

SOURCE IMPEDANCE: $30 / 50$ and $150 / 250$ ohms
INPUT IMPEDANCE: Input transformer unloaded, resulting in input impedance being substantially higher than source impedance
OUTPU'T LOAD IMPEDANCE:

600 ohms $\pm 10 \%$.
MAXIMUM INPUTT
LEVEL: -40 DBM
MAXIMUM OUTPUT
LEVEL: +5 DBM
MAXIMUM OPERATING
AMBIENT
TEMPERATURE: $\quad 55^{\circ} \mathrm{C} .\left(131^{\circ} \mathrm{F}\right)$
MAXIMUM STORAGE
AMBIENT
TEMPERATURE: $\quad 85^{\circ} \mathrm{C} .\left(185^{\circ} \mathrm{F}\right)$
POWER REQUIRE-
MENTS:
-30 V DC at 15 ma with less than 1 MV ripple

TRANSISTORS: 3-2N5087 1-40319
MOUNTING: Requires M-6039 mounting frame

SIZE: $\quad 3-1 / 4^{\prime \prime}$ Wide $\times 6-3 / 8^{\prime}$ Long x 1 " Thick
DESCRIPTION
The Gates M-6034 Transistor Preamplifier is a premium quality low noise unit for use in consoles, and is completely temperature compensated using the latest techniques. The amplifier has a gain of 45 DB with a maximum output is unbalanced and tiansformerless, which
is designed to operate into a 600 ohm variable attenuator

The input is balanced, and is connected for $150 / 250$ ohm source impedance at the factory but may be reconnected for $30 / 50$ ohms.

THEORY OF OPERATION

This amplifier is designed to provide a fixed gain of 45 DB . It is a four-stage amplifier and utilizes a transformerless output. It features negative feedback to reduce distortion to a very low level and minimizes specification changes with transistor changes.

Signal is applied to pins C and E and is fed through transformer, T1, to the base of Q1 (2N1307) Q1 is a low noise transistor operated at ideal collector current for minimum noise It will be noted that the first stage is series fed through T1 to provide the maximum input gain from T1 C1 and R1 are connected across the secondary of T1 to stabilize the amplifier. The value of R1 and C1 were picked to provide a roll off above the audio range to prevent amplification of very high frequency noise

The signal is then direct coupled from the collector of Q1 to the base of Q2 Q2 is a very high gain stage because the emitter is completely by-passed. The signal is then coupled from the collector of Q2 (thru C8) to Q3. The collector of Q3 is direct coupled to the base of Q4 Q4 is an emitter follower Emitter followers are very stable and are virtually distortionless. This also provides the low output impedance required to feed a 600 ohm fader Feedback is applied from R17 through R13 and C9, R7 and C5 to the emitter resistor (R6) of the first stage. R13 and C9 provide a boost of 1 DB at 30 cps to make the response flat in the audio range

MAINTENANCE

Transistor amplifiers are designed for a long troublefree life, however, dust and dirt can cause trouble. A monthly dusting with a soft brush should be adequate

SHOULD TROUBLE OCCUR -

Step 1 - First check all DC voltages The DC voltages determine the bias points of the transistors and any departure of 20% or more should be considered a defect NOTE: Use of the resistance chart will help detect faulty components

Step 2 - Before any signal measurements are made, replace any defective parts to make DC voltages correct

Step 3-After all DC voltages are comect, signal tests may be performed. The correct (RMS) voltages are shown on the schematic diagram. Voltages shown are for -40 DBM input @ 150 ohms not terminated.

DO NOT remove or insent transistors with the power ON

REMEMBER - In this transistor circuitry $\mathrm{B}+$ is ground, therefore, capacitors have the positive side connected to ground

DO NOT probe the printed board with the power ON with a metal screwdriver, etc., that could short out wiring.

Symbol No Gates Stock No Description

INSTRUCTION BOOK

INSTRUCTION BOOK FOR

M-6035 CUE-INTERCOM AMPLIFIER

HARRIS

INSTALLATION AND OPERATING INSTRUCTION

 FOR M-6035 CUE-INTERCOM AMPLIFIER| | TECHNICAL DATA |
| :---: | :---: |
| GAIN: | $86 \mathrm{DB} \pm 2 \mathrm{DB} @ 1 \mathrm{KC}$
 Variable - Requires 10K varia
 ble resistor. (Part of Console) |
| FREQUENCY RESPONSE: | Peaked for maximum intelligibility |
| $\begin{aligned} & \text { HARMONIC } \\ & \text { DISTOR'TION: } \end{aligned}$ | Under 4% at +28 DBM (6 W) at mid-band frequencies. |
| NOISE: | -105 DBM equivalent input noise. |
| $\begin{aligned} & \text { SOURCE } \\ & \text { IMPEDANCE: } \end{aligned}$ | 45 Ohms |
| OUTPUT LOAD IMPEDANCE: | 45 Ohms. (High Impedance Speaker) |
| MAXIMUM INPUT LEVEL: | $\sim 40 \mathrm{DBM}$ |
| MAXIMUM OUTPUT LEVEL: | $+30 \mathrm{DBM}$ |
| MAXIMUM OPERATING AMBIENT TEMPERATURE: | $55^{\circ} \mathrm{C} .\left(131^{\circ} \mathrm{F}.\right)$ |
| MAXIMUM STORAG AMBIENT TEMPERATURE: | $85^{\circ} \mathrm{C} .\left(185^{\circ} \mathrm{F}\right)$ |
| POWER REQUIREMENTS: | $\begin{aligned} & -37 \mathrm{~V} . \mathrm{DC} \text { (unregulated) } \\ & 10-75 \mathrm{ma} \text {. } \end{aligned}$ |
| TRANSISTORS: | $\begin{array}{ll} 1-2 N 214 & 2-2 N 1183 \\ 3-2 N 1414 & 1-2 N 5088 \\ 1-2 N 5087 & \end{array}$ |
| SIZE: | $\text { 3-1/4"Wide x } 7-1 / 2^{\mathrm{n}} \text { Long }$ $\text { x } 1 \text { " Thick }$ |
| | ESCRIPTION |

The Gates M-6035 Transistor Cue-Intercom Amplifier is designed to be used in transistor consoles for cueing and talkback purposes. The amplifier utilizes a gain control for adjusting to different input levels. The amplifier is designed to be fed from a 45 ohm source and to operate into a 45 ohm speaker or resistive load.

The amplifier is designed to be used with the M-6039 mounting frame, which carries a mating receptacle for the printed card type connection. The connections on the printed wiring board are gold flashed for positive connection with the gold contacts on the mating receptacle.

The amplifier requires a -37 V DC unregulated power source and requires from 10 ma . (at average power output) to a maximum of 75 ma . (at +28 DBM output).

THEORY OF OPERATION

For the purpose of explanation, the Cue-Intercom Amplifier can be considered to be made up of two distinct parts: The preamplifier, and the power amplifier.

THE PREAMPLIFIER

The two stage preamplifier is driven by an input transformer which is somewhat loaded by the input resistor. This resistor prevents excessive signals from being developed by the speaker at its resonance frequency, which would over-drive the input stage. Both stages are of the common emitter configuration, with direct coupling utilized between the stages. On the schematic, 8379345001 , it should be noted that Q1 is a NPN type tiansistor and has its emitter returned to B - for biasing purposes.

Biasing is accomplished by a combination of voltage divider and emitter resistance as with $\mathrm{R} 1, \mathrm{R} 2$ and R5. This method of biasing also insures a high degree of temperature stability. Signal degeneration is also for Q2 by R7.

The volume control, (located on the console) situated between the preamplifier and power amplifier, is connected in reverse, to maintain the high source impedance at all settings that the power amplifier requires.

THE POWER AMPLIFIER

The output stages of the power amplifier operate Class B, and are arranged in the circuit configuration known as "single ended push-pull", or "followed emitter follower". The upper and lower units are in series across the power supply, and the load is connected at their junction when the signal at the collector of Q4 goes negative Q6 and Q8 conduct, since they are all PNP types. When the signal goes positive Q5 and Q7 conduct since Q5 is a NPN type Thus, the full signal appears at the junction point

Note that Q4 is the only stage in the power amplifier with this voltage gain. A high frequency transistor is used at this point to improve stability. Several feedback loops are employed in this circuit, including $\mathrm{R} 10, \mathrm{C} 7, \mathrm{C} 10$, and $\mathrm{C} 9, \mathrm{C} 7$ and C 10 provide high frequency stability, C12 supplies positive feedback from the output to the collector circuit of Q4 to increase the signal handling capability of this stage.

MAINTENANCE

PREVENTIVE MAINTENANCE

The M-6035 Cue-Intercom Amplifier is designed for long, trouble-free service However, as with all high quality electronic equipment, a regular program of inspection should be followed.

It is recommended that when the amplifier is first received, part of the console, D.C voltage be measured with the same voltmeter that will be used for maintenance and troubleshooting, and these

SAFETY NOTICE

WARNING: THE CURRENTS AND VOLTAGES IN THIS EQUTPMENT ARE DANGEROUS AND UNDER CERTAIN CONDITIONS, COULD BE FATAL。

This Manual is intended as general guidance for trained and qualified installation, operating, maintenance and service personnel who are familiar with and aware of the dangers inherent to handing potentially hazardous electrical andor electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

THE INSTALIATION, OPERATION, MAINTENANGE AND SERVICING OF THTS EQUIPMENT INVOLVES RISKS TO BOTH PERSONNEL AND EQUIPMENT, AND MUST BE PERFORMED ONLY BY PROPERIY TRAINED AND EXPERIENCED PERSONNEL EXERCISING DUE CARE. PERSONNEL MUST FAMILIARIZE THEMSELVES WITH SAFETY REQUIREMENTS, SAFE HANDLING AND OPERATING PRACTICE, AND RELATED FIRST-AID PROCEDURES (E.G., FOR ELECTRICAL BURNS AND ELEGTRICAL SHOCK).

Gates shall not be responsible for injury or damage resulting from improper installation, operation, maintenance or servicing, or from the use of improperly trained or inexperienced pexsonnel in the performance of such tasks, or from the failure of persons engaged in such tasks to exercise due care.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present, either thru design or short circuit. Caution should also be observed in lifting and hoisting equipment, especially regarding large structures, during installation.

LIABILTTY LIMITATION

The procedures outlined in this Manual are based on the information available at the time of publication and should permit the specified use with minimum risk. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

The manufacturer is specifically not liable for any damage or injury arising out of failure to follow the instructions in this Manual or failure to exercise due care and caution during installation, operation, maintenance and service of this equipment.

CAUTIONARY NOTICE

Always disconnect power before opening covers, doors, enclosures, gates, panels or shields. Always use grounding sticks and short out high voltage points before servicing. Never make internal adjustments, perform maintenance or service when alone or when tired.

Never remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances. Proper training of experienced personnel and observing the above guidelines will help assure safe and continued operation of this equipment.
readings be recorded on the amplifier schematic above the typical voltages shown.

SERVICING

When scrvicing the amplifier, the following points should be observed.

1. The condition of the output stage measuring the speaker bus voltage at the junction of R21 and the collector of Q8
2. Circuit resistances should be measured only after removing the associated transistor or transistors, to prevent damage due to ohmmeter battery voltage.

3 DO NOT remove or insert transistors with the power ON

4 DO NOT probe the printed board with a metal probe with the power ON
5. Circuit voltages are reversed from standard vacuum tube practice, as is the polarity of all electrolytic capacitors

6 The location of the positive end of each electrolytic capacitor is indicated by the white dot marked on the top of the circuit board

PARTS LIST

Symbol No. Gates Stock No. Description
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$,
C4, C9
C5
C6

5220242000 Cap., $25 \mathrm{mfd}, 25 \mathrm{~V}$
5060005000 Cap., 1 mfd., 200 V
5220178000 Cap., $25 \mathrm{mfd}, 6 \mathrm{~V}$.

Symbol No	Gates Stock No	Description
C7,	5160054000	Cap , . $001 \mathrm{mfd}, 1 \mathrm{KV}, 10 \%$
C8	5220256000	Cap., 20 mfd , 50 V .
C12	5220246000	Cap, $100 \mathrm{mid}, 25 \mathrm{~V}$
C13	5060006000	Cap, 25 mid., 200 V
C14	5060004000	Cap , 05 mfd . 200 V
Q1	3800115000	Thansistor, 2^5088
Q6	3800011000	Transistor, 2N214
Q2,	3800112000	Transistor, 2N5087
Q3. Q4, Q5	3800014000	Transistor, 2N1414
Q7, Q8	3800012000	Transistor, 2N1183
R1	5400081000	Res., 22 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
R2, R3	5400071000	Res., 8200 ohm, 1/2W, 5%
R4	5400076000	Res., 13 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
R5	5400075000	Res., 12 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
R6	5400057000	Res., 2200 ohm, $1 / 2 \mathrm{~W}, 5 \%$
R7,	5400036000	Res, 300 ohm, 1/2W., 5%
R8	5400045000	Res., 680 ohm, $1 / 2 \mathrm{~W}, 5 \%$
R9, R19, R20	5400041000	Res ., 470 ohm, $1 / 2 \mathrm{~W}, 5 \%$
R10, R14	5400073000	Res, 10K ohm, 1/2W, 10\%
R11	5400085000	Res, 33 K ohm, $1 / 2 \mathrm{~W}, 5 \%$
R12, R18	5400039000	Res., 390 ohm, 1/2W.,5\%
R13	5400098000	Res, 110K ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R15	5400049000	Res., 1 K ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R16	5400070000	Res., 7500 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R23	5400017000	Res., $47 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
R24	5400023000	Res., 82 ohm, 1/2W. 5%
R21, R22	5400005000	Res ., $15 \mathrm{ohm}, 1 / 2 \mathrm{~W} ., 5 \%$
R25	5400845000	Res., $68 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
R17	5400025000	Res., 100 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
T1	4780285000	Transformer, Input
XD1, XD2	4040227000	Dissipator
$\begin{aligned} & \mathrm{XQ1}, \mathrm{XQ2}, \\ & \mathrm{XQ} 3, \mathrm{XQ} 4, \end{aligned}$		
XQ5, XQ6	4040066000	Socket
XQ7, XQ8	4040149000	Socket

M6108A TRANSISTOR MONITOR AMPLIFIER

COMMUNICATIONS AND
INFORMATION HANDLING

Gain:
53 db (matching 600 ohm).
39 db min. (bridging 6,000 ohm)

Frequency Response:

$\pm 1.0 \mathrm{db}$ from 20 to $20,000 \mathrm{cps}$ @ normal output level.

Harmonic Distortion:
Under 1.0\% from 30 to $15,000 \mathrm{cps}$
(3) +39 dbm output (8 watts).

Intermodilation Distortion:
Under 1.0% at +38 dbm equivalent sine wave power output, using 40 and 7000 cps mixed 4:1.

Noise Level:

- 85 db below rated output lesel (+39 dbm).

Source Impedances:
600 ohms for 600 ohms matching input. $150 / 600$ for 6000 to 10,000 ohm bridging input.

Input Impedances:
600 ohms matching input, balansed (transformex input).
6,000 ohms, bridging input, balanced (bridging pad and transformer input).
Load Impedances:
4 to 16 ohms (rated at 8 ohms), unbalanced (transformerless output, isolated from AC ground by power transformer)。

Output Impedance:

1.2 ohms, approximately.

Maximum Input Level:
0 dbm.
Maximum Output Level:
+40 into 8 ohms (10 watts).
Maximum Operating Ambient Temperature: $55^{\circ} \mathrm{C}$ 。 ($131^{\circ} \mathrm{F}$.)
Maximum Storage Ambient Temperature:

```
85 C. (185 % F.)
```

Power Requirements:
117 Volts at $50 / 60$ cps., 18 watts.
Transistors:

| $2-2 N 1414$ | $1-2 N 5087$ |
| :--- | :--- | :--- |
| $1-2 N 214$ | $2-2 N 3614$ |
| $2-2 N 1183$ | |

Rectifiers:
4 - X5A2 (silicon)
Finish:
Light grey cover, flat black heat sink chassis.

Mounting:
Two keyhole slots, rubber bumpers on bottom, permanent or movable mounting in any position.

Size:
3-1/4" high, 4-3/8" deep, 8-1/2" long. Weight:

4 lbs.. net. 7 lbs., packed.
Cubage:
$0.9 \mathrm{cu} . f t$. inmestic pack.

DESCRIPTION

The M6l08A Monitor Amplifier is a transistorized, self-contained amplifier designed for use in broadcasting, recording, and general sound reinforcement applications. Special techniques have been employed to obtain reliability,
low distortion, aud good temperature stability. The amplifier can be mounted in any position and does not require ventilation when handling 8 watts of program material. The input, power, output connections, fuse ard input level control are mounted on end panels of the chassis.

INSTALIATION

MOUNTING

©
le amplifier has been provided with two keyhole slots for \#8 screws for fixed or permanent mounting.

INPUT CONNECTIONS

Provisions are made for changing from 600 ohm matching to 6,000 ohm bridging on the input terminal strip. Fig. 1 shows the connection for 600 ohms. Fig. 2 shows the connection for 6,000 ohm bridging.

In the event that a preamplifier driver is used requiring a minimum load of 10,000 ohms: a 2200 ohm resistor may be added at each bridging input terminal. With this change, 1.5 volts input will be required for full output.

$$
\text { Fis. } 1
$$

Fig. 2

OUTPUT CONNECTIONS

Output connections are made to the two lug terminal strip on the end plate of the chassis. Groups of speakers may be driven with this amplifier; connected in series, parallel, or series parallel; but the combined impedance should rot be less than 4 ohms. With ar impedance of more than 12 ohms, the amplifier will not be able to deliver full outıut power. Speaker matching transformers permit the paralleling of a number of speakers, depending on the unit required. Gates Part No. 4780291000 transformer is tvailable, having a primary of 48 ohms find a secondary of 8 ohms for matching purposes.

In wiring speaker loads it should be remembered that 8 watts at 8 ohms represents 1 ampere of audio current. The recommended use of No. 16 gauge twisted and shielded wire will prevent power Losses and possible interaction of circuits.

AMPLIFIER PARALLELING

It is not recommended that amplificrs of this type be paralleled at their outputs to obtain higher power. Where more power is required than can be supplied by one amplifier, the speaker load should be divided between several amplifiers which have their inputs bridged across the common signal source.

POWER CONNECTIONS

117 volts A.C., 50/60 cycles is supplied thru the power cord and power plug on the chassis end plate. A power switch is not required due to the low power consumption and heat dissipation.

NOTE

While the amplifier can handle a continuous 8 watts of program material, CAUTION should be exercised during full power sine wave testing to avoid exceeding the thermal capabilities of the chassis heat sink.

MS108 MONITOR AMPLIFIER

THEORY OF OPERATION

The amplifier is driren by an input transformer which provides for isolation and matching functions in the primary by means of split windings and resistive pads. The input level control provides a constant load to the input transformer secondary while furnishing a gain control function. Transistor Q1 operates as an emitter follower and provides impedance matching from the input to the voltage amplifier, Q2. Note that Q2 is the only stage which has voltage gain. A high frequency transistor is used at this point to improve stability, The output stages of the amplifier operate Class B, and are arranged in the circuit configuration known as "single ended push-pull" or a "followed emitter follower". The upper and lower units are in series across the power supply, and the load is connected at their junction. When the signal at the collector of Q2 goes negative; Q3, Q5, and Q7 conduct; since they are all PNP types. When the
signal goes positive; $Q 4, Q 6$, and $Q 8$ a17 conduct; since Q4 is an NPN type. The the full signal appears at the junction point. Q3, Q5, Q7, and Q6, Q8 are connected in a compound or "Darlington" configuration, a connection which provides extremely high current gain, and improves linearity at high signal levels.

General feedback loops are employed in the amplifier including $\mathrm{R} 3, \mathrm{Rl9}, \mathrm{C} 2, \mathrm{C} 4$, and C5., C2 and C4 provide high frequency feedback while C5 supplies positive feedback from the output to the collector circuit of Q2 to increase the signal handling capacity of this stage.

Thermistor R 4 compensates for variations in the amplifier bias due to temperature changes. Choke Ll renders the amplifier insensitive to changes in capacity across the output leads." The power supply is a conventional full wave bridge rectifier with filter capacitor circuit.

SAFETY NOTICE

WARNING: THE CURRENTS AND VOLTAGES IN THIS EQUTPMENT ARE DANGEROUS AND UNDER CERTAIN CONDITIONS, COULD BE FATAL。

This Manual is intended as general guidance for trained and qualified installation, operating, maintenance and service personnel who are familiar with and aware of the dangers inhexent to handing potentially hazardous electrical and/or electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

THE INSTALIATION, OPERATION, MAINTENANGE AND SERVICING OF THIS EQUIPMENT INVOLVES RISKS TO BOTH PERSONNEL AND EQUIPMENT, AND MUST BE PERFORMED ONLY BY PROPERLY TRAINED AND EXPERIENCED PERSONNEL EXERGISING DUE CARE. PERSONNEL MUST FAMTLIARIZE THEMSELVES WITH SAFETY REQUIREMENTS, SAFE HANDLING AND OPERATING PRACTICE, AND REIATED FIRST-AID PROCEDURES (E.G., FOR ELECTRICAL BURNS AND ELECTRICAL SHOCK).

Gates shall not be responsible for injury or damage resulting from improper installation, operation, maintenance or servicing, or from the use of improperly trained or inexperienced personnel in the performance of such tasks, or from the failure of persons engaged in such tasks to exercise due care.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present, either thru design or short circuit. Caution should also be observed in lifting and hoisting equipment, especially regarding large structures, during installation.

LIABILITY LIMITATION

The procedures outlined in this Manual are based on the information available at the time of publication and should permit the specified use with minimum risk. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

The manufacturer is specifically not liable for any damage or injury arising out of failure to follow the instructions in this Manual or failure to exercise due care and caution during installation, operation, maintenance and service of this equipment.

CAUTIONARY NOTICE

Always disconnect power before opening covers, doors, enclosures, gates, panels or shields. Always use grounding sticks and short out high voltage points before servicing. Never make internal adjustments, perform maintenance or service when alone or when tired.

Never remove, short-circuit or tamper with interlock switches on access
covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances. Proper training of experienced personnel and observing the above guidelines will help assure safe and continued operation of this equipment.

PREVENTIVE MAINTENANCE

The M6108A Monitor Amplifier is designed for long, trouble-free service. However, as with all high quality electronic equipment, a regular program of inspection should be followed. These points should be covered:

1. Check the power amplifier supply voltage at the collector of $Q 5$ or $Q 7$. On the power transistors, such as the $2 N 1183$ and $2 N 3614$, the collector is connected to the case.
2. Check the speaker bus voltage, which appears at the sollectors, or cases of Q6 and Q8.
3. Remove dust which collects on the printed board or in the housing, with a sofft brush.

It is recommended that when the amplifier is first placed in operation, that D.C. voltages be measured with the same voltmeter that will be used for maintenance and troubleshooting, and that these readings be recorded on the amplifier schematic. The speaker bus and B- voltages should be recorded with an without signal.

SERVICING

When servicing the amplifier, the following points should be observed:

1. The condition of the power supply can be most readily checked by measuring
the D.C. voltage between the chassis and the case of output transistor Q8. (One of the two power transistors mounted on the end of the chassis). This voltage will be much higher or lower than normal if trouble is present in the power amplifier.
2. Voltages may be checked with Q5, Q6, Q7 and Q8 removed, provided that the speaker load is disconnected.
3. Circuit resistances should be measured on 1 y after removing the associated transistor or transistors, to prevent damage due to ohm-meter battery voltage.
4. Do not remove or insert transistors with the power on.
5. Do not probe the printed board with a metal probe with the power on.
6. Circuit voltages are reversed from standard vacuum tube practice, as is the polarity of all electrolytic capacitors.
7. The location of the positive end of each electrolytic capacitor is indicated by the white dot marked on top of the circuit board.
8. When replacing either $Q 7$ or $Q 8$, and before turning on the power, check with an ohm-meter between transistor case and chassis to make certain that a short circuit does not exist. Note that insulating washers are placed under the transistors to provide insulation.

PRINTED CHASSIS COMPONENT REPLACEMENT

1. CHECKING COMPONENTS

The components should be carefully checked̉ by measuring circuit voltages and resistances before attempting to remove one of the leads from the printed chassis. Extreme care must be exercised in removing the lead to prevent damage to the board or conductors. This operation
should not be considered unless it is the only way the component can be checked.

If one lead must be removed without damage to the component, apply a well cleaned and tinned 25 to 60 watt iron to the fillet adjacent to the lead. With small long nose pliers or thin screwdriver, pry the folded portion of the lest in line

SAFETY NOTICE

WARNING: THE CURRENTS AND VOLTAGES IN THIS EQUIPMENT ARE DANGEROUS AND under certain conditions, could be fatal.

This Manual is intended as general guidance for trained and qualified installation, operating, maintenance and service personnel who are familiar with and aware of the dangers inherent to handing potentially hazardous electrical and/or electronic circuits. It is not intended to contain a complete statement of all safety precautions which should be observed by personnel in using this or other electronic equipment.

THE INSTALIATION, OPERATION, MAINTENANCE AND SERVICING OF THIS EQUIPMENT INVOLVES RISKS TO BOTH PERSONNEL AND EQUIPMENT, AND MUST BE PERFORMED ONLY BY PROPERLY TRAINED AND EXPERIENCED PERSONNEL EXERCISING DUE CARE. PERSONNEL MUST FAMILIARIZE THEMSELVES WITH SAFETY REQUIREMENIS, SAFE HANDLING AND OPERATING PRACTICE, AND RELATED FIRST-AID PROCEDURES (E.G., FOR ELEGTRICAL BURNS AND ELECTRICAL SHOCK).

Gates shall not be responsible for injury or damage resulting from improper installation, operation, maintenance or servicing, or from the use of improperly trained or inexperienced personnel in the performance of such tasks, or from the failure of persons engaged in such tasks to exercise due care.

As with all electronic equipment, care should be taken to avoid electrical shock in all circuits where substantial currents or voltages may be present, either thru design or short circuit. Caution should also be observed in lifting and hoisting equipment, especially regarding large structures, during installation.

LIABILITY LTMITATION

The procedures outlined in this Manual are based on the information available at the time of publication and should permit the specified use with minimum risk. However, the manufacturer cannot assume liability with respect to technical application of the contents and shall, under no circumstances, be responsible for damage or injury (whether to person or property) resulting from its use.

The manufacturer is specifically not liable for any damage or injury arising out of failure to follow the instructions in this Manual or failure to exercise due care and caution during installation, operation, maintenance and service of this equipment.

CAUTIONARY NOTICE

Always disconnect power before opening covers, doors, enclosures, gates, panels or shields. Always use grounding sticks and short out high voltage points before servicing. Never make internal adjustments, perform maintenance or service when alone or when tired.

Never remove, short-circuit or tamper with interlock switches on access covers, doors, enclosures, gates, panels or shields. Keep away from live circuits, know your equipment and don't take chances. Proper training of experienced personnel and observing the above guidelines will help assure safe and continued operation of this equipment.
with the hole. Applying the iron for more than four seconds at a time may damage the chassis base material.

Remove as much solder from the lead as possible. Remove all the kinks in the wire. With heat applied, gently pull the wire through the hole.

2. RESOLDERING THE COMPONENT LEAD

If the component is good, replace as follows: Use a metal twist dxill (1/8" dia. or less) to clear the hole only in the fillet of solder. Turn with the fingers only. Remove solder slowly to prevent the drill from tearing the fillet.

With the iron applied to the fillet, pull the wire gently out of the component side of the chassis:

Fig. 4 - Removing Lead
Be sure the component lead is straight and free of solder. Push it gently back thru the hole until some of it shows on the other side. Solder carefully but rapid 1 to prevent chassis damage.

3. REPLACING COMPONENTS

Components can be replaced with less chance of damage to the chassis than the removal and rewiring of one of the leads. Remove as follows: Clip the leads close to the body of the component. Heat the fillet and gently push the wire thru until the hook may be clipped off. Clip the hook off (on the soldered side) with
sharp cutters.

Fig. 5 - Removing Components
After removing the leads, prepare the chassis for the new component as explained in paragraph 2 and Fig. 3.

To replace the component, fold the leads on the new part to the same spacing as the mounting holes. Insert the part and fold the leads under the chassis to hold the component firmly against it:

Fig. 6 - Installing New Component Clip off the excess wire. Place the iron on both the component lead and fillet. Solder carefully and rapidly to prevent damage to the chassis base. If one of the conductors is damaged, it is seldom necessary to scrap the printed chassis. Lay a small piece of wire (\#18 to 24 ga.) across the break and solder each end to the conductor.

If the fillet is pulled loose, break it off to get rid of the loose end. Fold the new component lead to lay on the conductor and solder. If the component lead is too short, solder in another piece of wire to hridge the gap. Printed chassis construction places no mechanical strain on repairs of this nature, thus, soldering alone will provide sufficient mechanical strength even with heavy shock and vibration in almost every case.

The base material used on the printed chassis is the best available for this service. The two ounce copper is twice as heavy as used in average applications of this type of equipment. This assures reliable service and repair.

PARTS LIST

Symbol No.	Gates Part No.	Description
C1	5220227000	Cap., 50 ufd., 15 V .
C2	5000818000	Cap., 50 uufd., $500 \mathrm{~V}_{\text {. }}$
C3	5220256000	Cap., 20 ufd., 50 V .
C4	5160045000	Cap., . 0005 uf., $1 \mathrm{KV} .{ }^{ \pm} \pm 10 \%$
C5	5220242000	Cap., 25 ufd., 25 V.
C6	5220160000	Cap., 100 ufd., 3 V .
C7	5220306000	Cap., 1000 ufd, 25 V .
C8	5060006000	Cap., . 25 ufd., 200 V.
C9	5240147000	Cap., 2600 ufd., 50 V .
C10	5080076000	Cap ${ }_{\text {", }} 005 \mathrm{ufd}$, 100 V .
C11	5160087000	Cap., . 05 ufd., 600 V .
CB1	6060116000	Circuit Breaker, 1 Amp.
CR1, CR2, CR3, CR4	3840371000	Silicon Rectifier
L1	4940135000	Choke, RF, 5 uh.
Q1, Q3	3800014000	Transistor, 2N1414
Q2	3800112000	Transistor, 2N5087
Q4	3800011000	Transistor, 2N214
Q5, Q6	3800022000	Transistor, 2N1183 A
Q7, Q8	3800035000	Transistor, 2N3614
R2	5400043000	Resistor, 560 ohm, 1/2W. 5\%
R3	5400100000	Res., 130K ohm, 1/2W., 5\%
R4	5590002000	Thermistor, 50 K ohm
R5	5400091000	Res., 56 K ohm, 1/2W., 5%
R6	5400041000	Res., 470 ohm, 1/2W., 5\%
R7	5400073000	Res., 10K ohm, 1/2W., 5%
R8	5400049000	Res., 1K ohm, 1/2W., 5\%
R9	5400070000	Res., 7.5K ohm, 1/2W., 5\%
R10	5400025000	\because Res ${ }^{\text {, }}$, 100 ohm, 1/2W., 5\%
R11	5400035000	Res., 270 ohm, $1 / 2 \mathrm{~W}$., 5%
R12, R15	5400041000	Res., 470 ohm, 1/2W., 5\%
R13, R16	5400018000	Res., 51 ohm, 1/2W., 5\%
R14, R17	5421074000	Res., 1 ohm, 2W., 5\%
R18	5400009000	Res., 22 ohm, 1/2W., 5\%
R19	5400089000	Res., 47 K ohm, $1 / 2 \mathrm{~W} ., 5 \%$
T1	4780187000	Transformer, Input
TB1	6140218000	Terminal Strip, 7 terminal
TB2	6140024000	Terminal Strip, 2 terminal
TB3	6140213000	Terminal Strip, 2 terminal
$\begin{aligned} & \mathrm{XQ1}, \mathrm{XQ2} \\ & \mathrm{XQ3}, \mathrm{XQ4} \end{aligned}$	4040066000	Socket
XQ7, XQ8	4040294000	Socket
XQ5, XQ6	9138826001	Socket parts

