
$\$$

INSTRUCTIONS FOR INSTALLING, OPERATING AND SERVICING THE GATES' IMODEL BC-5P-2, M-5932 TRANSiviITTER IB-894

ADDEND i SHEET

The high frequency distortion can be improved in some instances by modifying the coupling between the primary and secondary of the modulation transformer. This is done by connecting a c_{2} parity of .001 to .003 mfds . between the high side of the secondary and one side of the primary. This is a matter of trial, and generally will be between terminals 3 and 5. When no advantage is gained, the capacity will be omitted.

Studio - 36661

$$
\begin{aligned}
& \text { BC5P2(S) } \\
& S / N 68522
\end{aligned}
$$

ADDENDA SHEET

ECN-8221, 8645
D-22251 Schematic:
On D-2225l Audio Driver Schematic, $C 423$ and C424 Capacitors $.005 \mathrm{mfd} .$, were added between Pin 4 of V404 and V405 respectively to ground.

Add symbol C425, . 005 mfd . 1 KV , from pin 4 of tube $V 403$ to ground.

Add symbol C426, . $005 \mathrm{mfd} ., \mathrm{l}$ KV, from pin 4 of tube V406, to ground.

ECN-8221, 8769
D-22250 Schematic - - C-78206 Overall Schematic
On D-22250 Frequency Control Unit Schematic and C-78206 Overall Schematic, add R524, Resistor, 22 ohm, 2W. 5\% to circuit between pin 6 of XV502 and pin 3 of XV504 to provide surge current limiting protection.

NOTE: To effect BC-5P2 with Serial numbers 64297 and higher.

D-22250 \& C-78206
Add Filament Bypass Capacitors C522 and C523 (.Ol uf., I KV.) from V501, Pins 2 and 7 to ground.

INDEX
Page
Specifications 1-2
Introduction 3
Preliminary Planning 4
Unattended Operation 5
Ventilation 5
Low Voltage Intercubicle Wiring 7
High Voltage Intercubicle Wiring 8-9
Description 10
Modulator Cubicle 11
Installation 15
External Components 17
Installation Instructions for Remote Control 18
Operation \& Adjustments 19
A-12219 Installation Rmt. Ctl. 19a
Holding Relay 23
Power Cubicle 23
Frequency Control Unit 24
R.F. Driver 27
Power Amplifier 28
Tuning Charts 31
Harmonic Reduction 31
Power Reduction 500/1000 Watts 35
Modulation Monitor Pickup 36
Audio Driver 36
Modulators 38
Distortion 39
Initial Test Procedure 40
Limits on $\mathrm{BC}-5 \mathrm{P} / 2$ Transmitter. 42
Controls 43
Maintenance 52
Test Equipment 53
Tools 54
Spare Parts. 55
Guarantee. 1-2
Photographs
Parts List 1-8
Drawings: A-32022, B-65948, B-65949 Tuning Charts.C-19628 Floor Plan \& WiringC-77891 H. V. Wiring (Modulator)C-77978 Schematic (R. F. Unit)C-77981 Low Voltage Wiring (Nodulator)D-2225I Schematic, Audio DriverD-22252 Low Voltage Wiring (Power Amp.)D-22249. Low Voltage Wiring (R.F. Unit)D-22253 Line DiagramD-22250 Schematic, Freq. Control UnitC-198.58 Transformer \& Reactor ConnectionsE-25690 Overall Schematic
M5422 AM Oscillator Instructions
Replacing Components on Chassis. 1 -4
Service Questionnaire
$6 / 6 / 58$ -2- $B C-5 P / 2 \quad M-5932$

INTRODUCTION

The Gates' BC-5P, 5 KW broadcast transmitter is designed for continuous duty operation. Many stations find a lucrative market in all night operation and maintain a "24" hour schedule except for brief weekly or semi-weekly shutdown periods for maintenance. Many stations are now being operated by remote control with no direct observation of the transmitting equipment during the majority of the operating time. The Gates' BC-5P, 5 KW broadcast transmitter has been designed with these considerations in mind and every effort has been made to obtain the best quality components and conservative ratings so that this equipment will perform satisfactorily under severe operating conditions. The Gates' BC-5P broadcast transmitter as herein offered is the culmination of a year and a half study by the broadcast section of the Gates Radio Company Engineering Staff. The close contact of the Engineering Department of the Gates Radio Company with those using various radio equipment has rovided a guide as to those features that users of broadcast equipment now currently desire incorporated in equipment and as far as practical, these features have been incorporated in the Gates' BC-5P, 5 KW broadcast transmitter.

The Gates' BC-5P, 5 KW broadcast transmitter, is completely selfcontained in three cubicles each $24^{\prime \prime}$ wide, $36^{\prime \prime}$ deep and $78^{\prime \prime}$ high. The three units, when joined as a single assembly, with trim, doors, etc., makes a unit 73-3/8 inches long, 39-1/4" deep and 78" high, These three cubicles contain as separate units, a power supply, a modulator, and a radio frequency unit. As there are no mechanical interconnections such as tuning drives, bus-work, supporting frames, etc., the cubicles may be arranged in respect with each other in any sequence as best suits the installation. With additional end bells, the cubicles may be installed as separate units. The interwiring requirements is only nine wires from the power cubicle to each of the other cubicles for standard operation. With the isolated unit operation, "High-Voltage ON and OFF" switches would be desirable on each separated cubicle, requiring two additional wires. High voltage wiring is by means of high voltage cable, approximately three per cubicle is required.

PHASOR	RF	PWR	MOD

MOD	PiR	RF	PHiSOR

The arrangement of the cubicles may be in any sequence desired. It is recommended that the Power Cubicle be next to the Radio Frequency Cubicle so the high voltage control will be convenient for tuning
adjustments.

MOD	FHiLOR	RF	PWR

The Power Cubicle may be placed at the end so the control functions can be reached from the operating desk without additional wiring. is suggested above, the Radio Frequency Cubicle should be adjacent to the Power Cubicle.

Currently, there has been considerable interest in "Conelrad" operation of broadcast transiitters. This is presently being done by (1) an auxiliary transmitter, generally lower power, (2) manually retuning the main transmitter which is the source of income for the broadcasting station and (3) retune the main transinitter to a Conelrad frequency by means of contactors to preset adjustments. The Gates' $\mathrm{BC}-5 \mathrm{P}, 5 \mathrm{KW}$ transmitter is so designed that a second radio frequency unit tuned to the Conelrad frequency may be installed and switched into service in place of the standard frequency unit. is the radio unit is reduced to its minimum essentials, the filter, modulation components, etc., being in the Power and Modulator Cubicles, the Conelrad R.F. unit is economically more practical than a complete transinitter of lower power. The regular broadcast frequency unit may be operated at its maximum efficiency for the normal broadcast service, and the Conelrad frequency unit at its maximum efficiency and power. This latter unit will also serve as a spare radio frequency unit which can be tuned to the standard frequency very quickly, or serve as a check on performance, if desired. Also, in the case of remote controlled transmitters, the Conelrad unit may be started, switched in service, or shut down, by the addition of a simple re-lay system.

PRELIMINARY PLMNNING

The initial planning of the transmitter arrangement is most frequently determined by individual conditions and requirements. These fall into five catagories: (1) a completely new installation, (2) replacement of present equipment, (3) increase of power from present equipment and (4) unattended operation, (5) auxiliary or Conelrad transmitter for high power installation. The points brought out in this discussion are to call attention to features which experience has found to obtain the bist efficiency of equipment and personnel. With a completely new installation, and due to the mechanical and electrical flexibility of the Gates' BC-5P transmitter, no particular arraneement will be recominended other than have been already indicated. Also such installations might require directional antenna systems with phasors of various $\mathrm{si}_{z} e s$ and complexities, the possibility of remote control for a portion of the operating time, or perhaps the full operating time; that the station might have or contemplate other broadcast services from the same site, each installation must be considered for its own peculiar conditions.

Should a new building be constructed, whether for attended operation or remote control, consideration should be given for adequate storage space for tubes and spare parts. For attended operation, the room should be well ventilated with windows on all sides, with ventilation provisions during hot rainy weather. The windows and doors should be protected by screens, especially in climates where insects prevail. While the transmitter is well enclosed so insects will not get into the equipment, the operators efficiency and comfort will be greatly improved.

UNATTENDED OPER:ITION

When a transmitter is to be operated solely be remote control, there is a tendency to make the transmitter building only large enough to house the trans:iitter and whatever auxiliary equipmont is required. It is suggested that consideration be given to allowing for storage facilities for tubes and spare parts, roum for a small workbench, and most important of all, some room for permitting the setting up of test equipment as may be required at the original installation, and to make the periodic performance measurements as required by the Federal Communications Compission or other governing body of the country in which the installation is made.

VENTILATION

Ventilating the transaitter building presents a wide range of problens due to the climate, general weather conditions, the particular type of operation, etc. Some localities may be subject to sudden heavy rain storms; other, dry with dust or sand; other cold, and heavy snow during the winter. If the transmitter is located in a fairly large room, the volume will tend to dissipate the heat. If the room is small, ceiling low, the exhaust heat may be trapped and built rather high by the end of the operating period. The heat given off by a radio trarsmitter is the difference of the power taken from the power lines and that put in the antenna system. The Gates' BC-5P transmitter through careful design has eliminated many sources of power loss and, consequently, heat rise. The designs has been, as in the case of previous Gates transmitters, to allow for unfavorable operating conditions. With previous models of transmitters, many so designed have given very satisfactory performance. a number of these installations have installed ventilating facilities for the building, and without exception, report increased tube life and improved performance of the transmitter.

It is suggested that if a ventilating system is not planned at the time of the transmitter installation, such a possibility be considered, and provisions made at the time of building construction so that a ventilating system might be added at a later date if this seens desirable without extensive remodeling of the building.

Many installations provide ducts from the top of the transmitter to the outside of the building. If this is done, the ducts should go straight up through the roof, and be capped with all-weather ventilators. Some provisions should be made to allow entry of outside air, should the building be sealed tight, efficient air circulation might not be obtained. The exhaust air might be arranged so as to be directed into the building during cold weather. The normal heat dissipation of the transmitter during program operation is six kilowatts.

The exhaust ducts may also be supplied with a booster fan. This fan may be controlled from the transmitter blower or filament circuits, or by a thermostat in the exhaust duct. The rectifier tubes are subject to arc-backs if they are too cold, and the thermostat would allow these tubes to reach the proper temperature. This thermostat can be the type used for furnace control.

If the transmitter is not equipped with oxhaust ducts, it is recommended that an attic fan of $2500 \mathrm{c} . \mathrm{f} . \mathrm{m}$. or larger be installed, This is most effective if the air flow can be directed as to pull air from across the top of the transwitter. That is, an attic fan in an unceilinged room such as might be used on a remotely controlled installation, would be ineffective if a window directly below it were open. However, if a window on the opposite side of the room were opened, air would be drawn from around the transmitter taking away the exhaust air. With such installation, the exhaust fan should be so mounted as to be operative during inclenent weather. This can be done by setting the fan back several feet from the exhaust opening, and building an exhaust tunnel. With louvres across the opening, no rain will be admitted except in the tunnel, and auch of this will be deflected away by the air strean during the operating period.

If the room has a ceiling, and the fan installed in the attic, ceiling openings above the transmitter will allow air to be drawn from around the transmitter, regardless of which windows are open.

A practical form of installation is to build the transaitter into a wall. This wall should join the transmitter behind the front corner trim strips (from front edge of the base) so these trim strips may be removed. Doors should be preferably located at each end. Such an installation will then permit the use of a room air conditioner if climatic conditions so warrant.

Some installations have studio and transmitting facilities combired in one building. The question is sonetimes asked as to whether a microphone might be used along side the transmitter. If a combined operation is desired, it is recommended that the transmitter be in a separate room, possibly with view windows for the observation of performance. High voltage ON-OFF switches could be readily run to the sontrol desk.

When the transaitter is replacing existing equipment, the installation is complicated in that transmitting facilities must be naintained during the installation. The Gates' BC-5P transmitter is the ideal answer to the problems as the three cubicles may be placed wherever space is available, and connected by temporary wiring. When the transmitter performance has bean checked, and the final position cleared, moving the transmittor and restoring it to operation is relatively simple and fast.

When the transuitter is to be used as an anxiliary or Conelrad transmitter at a high power transuitter site, the installation is dictated by the existent conditions. If the operation is anticipated for short durations, the ventilation considerations may be relaxed. The control circuits in the Gates' BC-5P transilitter are so designed and arranged that interlocking with other facilities may be done without internal wiring changes.

The external wiring nay be by neans of conduit or wire troughs in the floor. The latter allows for future expansion, but with some floorings is sometines hard to make a finished appearance. The drawing C-19628 shows the required external wiring and wire sizes. If the cubicles are arranged in a different order, the wiring is varied accordingly. If the cubicles are separated, provisions for inter-cubicle wiring should also be allowed.

LOW VOLTAGE INTERCUBICLE WIRING

	MODULATOR	POWER	RSDIO FREqUENCY
\#12	1.	1	1
\#12	2	2	2
\#12	$--3$	3	3
$\text { (P. } 22$	$\begin{array}{ll} 1 \\ 3 \\ 3 \end{array}$	-4	-4
	1--5	5	-9
	9		5
	6	6	6
	7	-7	-7
	8	-8	8
\#12	Gnd	Gnd	Gnd

Lines indicated should be \#l2 wire, others may be \#14, but using \#l2 wire throughout simplifies procurement. Connections between terainals \#8 required when audio level and/or monitor switching is used in power change.

$$
6 / 6 / 58
$$

$$
-7-
$$

M5932/M5565, BC-5P/2

SPECIFIC.TIONS

Frequency Range:
Frequency Response:
Frequency Stability:
Audio Distortion:
Noise:
Rated Power Output:
Capable Power Output:
Power Reduction:
R.F. Output Impedance:
Power Service:
Power Line Demand:
Power F_{Z} ctor:
Carrier Shift:
Audio Input Impedance:
Audio Input Level:
Dimensions of Transmitter:
Net Weight:
$73-3 / 8^{\prime \prime}$ lg. x2180 pounds
$6 / 6 / 58$-1-
M-5932/M5565, BC-5P/2

Tube Complement:

Oscillator	One	$61 . \mathrm{G7}$
Buffer	One	6146
R. F. Driver	One	4-250A
Power Amplifier	One	3X2500F3
1 st Audio	One	6SN7
2nd Audio	One	6SN7
Audio Driver	Four	6550
Modulator	Two	3X2500F3
Driver Hold Bias		
P.A. Hold Bias		
Audio Plate		
Modulator Bias		

6/6/58 -2- M-5932 BC, 5P2

POWER SUPPLY

This cubicle contains the power supply normally required for the Gates ' BC-5P/2 transmitter M-5932.
This transmitter uses silicon type rectifier in all power supplies. The silicion units will operate within ambient temperature ranges of from -30° to $150^{\circ} \mathrm{F}$. and all are hermetically sealed to insure trouble free life in any enviornment.

The low voltage rectifiers are of the plug-in type and are directly equivalent to type 5 R 4 GY and 6 W 4 rectifier tubes. It should be noted that in an emergency the alternative of tube operation is quickly available in the low voltage supplies since filament connections have been supplied.
The power amplifier plate voltage consists of a three-phase full wavo circuit which employs 90 silicon cells rated at 25 ampers and 500 volts peak inverse voltage. The 25 amperes rating is necessary to provide sufficient reserve capabilities to actuate protective circuits without damage to the silicon junction. Inverse voltage division across individual cells in each leg is assured through the use of a resistive voltage divider. Transient peaks are distributed in much the same manner by shunt capacitors. The peak inverse rating is 150% per leg assuring adequate safety factor for handing starting transient surges.
Also located in this cubicle is the central part of the control circuit, the transmitter control switches, the main high voltage contractor, and the rectifier output voltmeter.
The power cubicle has at the top a slanting meter panel for easy meter reading. The meters consist of a line voltage meter with a switch on the panel below it to select the line phase to be read, a voltmeter on the primary of the rectifier filaments to set the rectifier filament voltage, and a plate voltmeter reading the DC output voltage to the power amplifier. The rectifier filament rheostat is on the same panel with the line voltmeter switch. Below this panel is an access door interlocked with the high voltage, and is also provided with a high voltage grounding switch. This door, as are all the doors, is secured at the top by a pawl which puils the door shut tight. The bottom of the door is pivoted on open slots so the door may be dropped open, or removed entirely, enabling the operating personnel to get close to the transmitter and reach all front components,
Below this door is the control panel with the Star-Stop, High Voltage On-Off and $5 \mathrm{KW}-1 \mathrm{KW}$ power selector switches, and the $5 \mathrm{KW}-$ 1 kW status lights.
Below the control panel'is the access door to the power panel. This is not interlocked, so inspection of the operation can be - made at any time.

On the power panel at the top left is the overload lockout relay with adjusting potentiometer in the center, thermal time delays for running the blower two minutes after the filaments have been shut down and a 30 second time delay on the main rectifier filaments.
6/6/58ं
-10-
M-5932, PC-5P/2

On the right side n the panel is the terminal board for internal connections. Below the thermal relays is a fuse block with fuses for two circuits. As the transmitter may be operated with various cubicle combinations, and consequently, various loads on the lines, the fuses provide a readily changeable item to meet the individual requirements.
Across the center of the panel are located the filament, blower and high voltage control relays, and the power change control relay whichis a latching type permitting the extension of this switching. Below the relays is the terminal board for external connections. At the bottom of the panel, on both sides are two holes. The high voltage lines are fed through these holes to terminals on the back of the panel. A cover at the bottom over these cables protects the person ${ }_{n}$ el
In the center of the base at the front, and both sides just above the base are holes through which the wiring may be routed. If the cubicles are joined, the low voltage interwiring is formed to the side, down the side so as to be around the end of the shield through the matching holes to the adjoining cubicles. If conduit or wire ducts are desired, the wiring may be run through the hole in the base.

Inside the top access door, on the left facing from the front, is the high voltage contator. This is shock-mounted to minimize the jar and vibration of its operation. Abowe this contactor are the two A.C. overload relays. On the right nand side are the voltmeter multiplier resistors and dropping resistor for the unit fan, mounted in the top. Below this is the $5 \mathrm{KW}-1 \mathrm{KW}$ P.A. Voltage change contactor.
On a shelf across the unit towards the front and below the height of the power panel are on the right the power amplifier filter choke and on the left.the R.F. driver filter choke. These chokes have more than adequate insulation rating for normal operation, but with overloads particularly as might be encountered with a gessy tube, and extremely high transient voltage might be developed so as an added precaution, the chokes are mounted on insulators.

On the base, on the right side, the P.h. filter condenser sets in a tray and behind it the R.F. driver filter condenser is secured to the floor. The power transformer mounts in the romaining space, the high voltage connections towards the inside.
The air filter retainer is at the bottom rear of the cubicle. The filter may be removed during operation. A screen inside protects the personnel from the high voltage components. This screen may be rerovod for accoss to the basce "fonponents. The rear door sets on a supporting channel which is a part of the filter retainer, and latches at the top.

The filter supplied is non-renewable type. Experience has shown that the renewable or washable type are extremely difficult to properly clean. As the filters are a standard $16^{\prime \prime} \times 20^{\prime 8}$ size, the ronewable type may be installed, if so desired.

MODULATOR CUBICLE

The modulator cubicle has at the top a slanting meter panel with individual modulator plate current meters and filament voltmeter. The rheostat for the filament voltage is on the panel directly below. Below this panel is an access door to the addio driver. As there is no voltages appearing in this section, and there is a screen in the rear, this door is not interlocked.

The audio driver panel in height and styling matches the control panel on the power cubicle. The driver panel contains two modulator bias controls, and driver filarent and bias lights. On the top front right of the driver chassis is the terminal board for the driver operating service. Underneath, at the rear is the terminal board for the feeds to the modulator grid. This consists of a four terminal board which allows drive balancing adjustment. On the right underneath side of the audio chassis is the feedback terminal board. The audio driver may be completely renoved by renoving the style strips fror the cubicle, the right top door mounting angle. The panel is secured by four bolts, and the chassis itsolf is supported on side rails; By renoving the panel bolts, the chassis can removed for servicing. The weight of this chassis is 70 pounds.

On the left side of the audio chassis is the audio driver, at the front the input transformer, behind this an amplifier balancing control, and to the left of this control, a balancing control for the feedback. In line are two 6SN7 voltage smplifiers, then the driver consisting of four 6550 tubes in push-pull parallel. Air fron the modulator plenun chamber directs air against these tubes. At the center rear of the audio chassis is the driver transformer, and at the right rear the plate transformer. In front of the plate transformer are two $S-5019$ rectificr tubes for the audio plate voltage. A single $S \sim 5019$ provides the modułator bias voltage. In front of the rectifier tubes, in the front riॄht corner is the bias plate transformer.
ibove the audio chassis on the right side panel of the cubicle are located the modulator overload relays and the filanent interlock relay.

Below the audio chassis, is a renovable access door.
Across the cubiclc, at the lowor part of the door, is the cubicle terminal board to which extornal connctions are made. Wiring is brought in, either through thebase opening or either side opening, up the side around the end of the shelf mounting the teruinal boarc then terminating at the terminal board.

Bencath this, is the high voltage compartment into which the high voltage connections are made. Space is allowed here to mount a high voltage changeover switch as might be used for a Conelrad radio frequency cubicle.

The nodulator tubes arc located on a plenun chamber across the rear of the cubicle. The tube connections are inside this plenurn chanber. To facilitate servicing, the rear side of the plenurn chamber is renovable. On the front center is located the air intcrlock switch. This is a captive platc which under air pressm ure closes an interlock switch. ibove the nodulator tubes is a shelf mounting the filamont transformer.

Underneath the filament transfirmer shelf on cach side is a triangular air box with a rubber nozale directing air against the filament seals of the nodulator tubes. These boxes obtain air from the main plenum chamber by an enclosure on the outside of the side panels, but staying within the corner post dimensions of the cubicle. The plenum chamber and audio deck with component mounting angles seal off the unit above the tube scckets. The blower mounts on a cross shelf under the plenum chamber and draws air from the intake on the bottom of the rear door, around the modulation transformer and reactor, providing coslini for these components.

On the right side panel are mounted the feedback resistors. Mounting on the base, at the front right is the modulation condenser setting in a retainer, at the front left the modulator filter condenser in a retainer, at the rear right the modulation transfurner and at the rear left the modulation reactor.

This cubicle with the M-5533 frequency control unit, provides a conplete radio frequency section. This comprises a M-5422 oscillator unit, buffer, driver and power amplifier stages, low voltage supply for the oscillator, buffor and driver screen grid, and holding bias for the driver and power amplifier.

The cubicle has at the top a slanting meter panel which mounts the plate current meter, filament voltmeter and the multimuter.
On the panel below this, on the luft side, is located tho power anplifier loading control. Space behind this control is allowed for permitting the installation of a power cuntrol motor when remote control operation is usud. filso on this panel in the center is the filainent rheostat for the cubicle, and the R.F. driver tuning contris is on the right side. in access door opens to the R.F. driver. This consists of a 4-250A tube, the socket of which is onclosed and The driver tank the power amplifier plenum chmber for tube cooling. The driver tank coil is located on the right side panel and the tuning is by means of a disc which threads into the coil and is directly connected to the panel dial.

Below the R.F. Driver is the M-5533 frequency control unit. The panel of this matches the control panel of the power cubicle and the audio driver panel of the modulator. The controls in this panel are the crystal selector switch, and frequency trimer c.ndensers behind a door on the panel, the buffer tuning condensers, excitation contril and the multimuter switch are directly on the pancl.

Below the froquency contril unit is a panel counting the power amplifier tank tuning control. This tuning, like the ariver tuning, consists of a disc which is threaded in and out of the tank coil, and is directly connected to the tuning shaft. Below this and accoss door opens to the unit terminal board located and wired sizilarly as in the modulator unit.

On the left side panel are located the power anplifier and R.F. driver overload relays, the filament interlock relay, and the driver screen grid relay. On the front of the power amplifier tank enclosure, which forms the rear of this section of the cubicle, is located on the left the adjusting resistors for the overload relays, In the center of this panel is the air switch, operating as lescribed in the nodulator description. On the right side panel are the power anplifier grid resistors.
At the botton front, as in the modulator cubicle, is a high voltage compartment to which the high voltage connections are made, and in which a high voltage switch imy be installed. In this compartment is a link in the power amplifier high voltage line so the power ampli.. fier voltage may be removed for tuning and neutralizing. In the rear on the floor is located the blower. Also on the floor is the power amplifier filament transfurmer and on the right side panel, the power amplifier cathode resistor. The blower is shock mounted and coupled to a plenum charber by means of a canvas bout. This plenum chamber is of aluminum, and contains the power amplifier tank components. The rear of this chamber is readily reavable by pawl fasteners. The bottom edge of the cover has an off-set flange which engages the lower fold of the plenum chamber. In this plenum chamber is the power amplifier tank coil, mounted so as to align with the tuning from the front panel. On the front right upper corner is a fixed vacuum condenser which is a part of the neutralizing circuit. On the right side panel are the plate blocking condensers and one plate choke.
On the base of the plenum chariber at the front is a second plate choke and on the right side, by-pass condensers. On the rear left side is provisi ns for vacuun condensers as required for the tank capacity. In the upper front left side is the first coupling concenser. The blower inlot is covered by an aluminum screen. The - screen serves nut only for shielding, but also prevents acciaentally aropping materials in the blower. The screen is hela in place by a frame so it may be readily be removed for cleaning.

The power amplifier tube retainer mounts on an insulating plate on the top of the tank plenum chamber. In this section are the filament bypass condensers, and grid parasitic suppressor, and filament transformer. This compartment has a removable aluminum shield.

Above the power amplifier tube compartment is the output coupling network. This shelf is perforated se as to allow the air to exhaust.

On the risht side panel is the first section coil with fixed taps. Behind this is the coupling c.ndenser. On the left side is the second line inductance which is a continuously variable coil, and is aligned with the power amplifier loaking contrul on the front panel.

On the front center of the divider panel is a cutout behind which a line current meter may be mounted. As this line current meter is generally not required, it is not supplied as standard. At the rear center of the output network shelf in a modulation nonitor pickup loop, the connecting terminal'block is on the left sile panel.

Tho transaitter output is taken out the tup. Cunnecting across the two side panels and across the top is a ground strap to allow the greatest possible flexibility to grounding the transmission line. This compartment is also closed off with removable aluanum door. It will be scen fron the pictures and the description of the power amplifier tank and output circuits, the power amplifier tank and output networks are physically separatel and shielded to give the most ảvantageous suppression of harmonic frequencies, particularly the high order harmonics. If there were inductive or capacitative coupling of the power amplifier tank to the transmitter output circuit, no amount of filtering within the transaitter would give harmonic suppression.

INST_LL_, TION

The Gates BC-5P transmitter is Jesmantled fir shipment the extent of this will at times be variod lependent upon the ranner of shiprent.

In the installation the power unit should be placel in position first if the rain power supply is to come through a conauit through the floor opening in the cubiclo, mainly because this location may be critical. However, if wire Jucts are used so the wire entry is not critical, any cubicle might be positioned first. For example; if a wall were on the right or loft, this could bo the first unit installed.

The primary power supply feed three number four or six wires, are brought into the power cubicle either through the base opening, or fod across fruy the other units through the side openings. The lines are then formed across the buttom of the cubicle, up the loft side to up above the main plate contactor. The leads are thon formed back in a loop, $12^{\prime \prime}-18^{\prime \prime}$, connecting on the powe: contactur, making sure that these are opposite the load connections. Connections al.. ready on the contactor supply the other operations of the transinitter. The cable should be secured. is the cuntactor is shock mountor, the loops are to maintain the flexibility of the shock mounting.

Removed for shipping are the power transforier, high voltage filtor conlenser, and both filtcr reactors. The positi ns of these have been given in the mechanical lescription. Contacturs, relays, resistors and wiring have been secured fur shipront, anci aii such bonlings should be removed.

In the radio frequency cubicle, the blower has been remived. All tuning capacities are gencrally rewoved. The two R.F. plate chokes are removed and should be installe with the spaced ends of the winding connecting towards the tube. The plate blocking sna vacuum neutralizing condensers are also renoved.

The fraquency contril unit is also removed far safe shipment. The chassis is slid intu place on mounting channuls, the front panel sccured to the corner posts.

6/6/58

The radio frequency cubicle should be thoroughly grounded to the station ground. This is best done by a four inch copper strap brought up either sile of the cubicle and bolted to the aluminum plenum chamber. On a strap of this size, it is suggested four 10-32 volts, and that over the copper be placed a stiffening plate so that the whole copper surface may contact with the aluminum. The aluminum is treated with a special conductive lacquer, the same type as is used on the R.F. coils. is strap acruss the top of the cubicle provides grounding facilitios for the transmission line. is there are many variations as to how this aight be done, it is essontial that this connection be cumplete and alequate. It may be necessary to drill adiitional connucting holes through the cubicle top, or to fold a strap through at the grill.

In sone cases, it might be desired to take the R.F. output through the bottor of the transmitter, a line, such as RGIVU may be brought through the base opening in the front of the transiaitter, or a hole may be cut through near the front luft cornor post. The line is then brought up in the front luft corner post and in the R.F. driver, turn\therefore ? to the rear and pass over the top of the divider panel between the driver and output network, terninating as required on line aeter or monitor loop. The outer shield should be thuroujhiy grounded so as not to introduce any R.F. feedback into the low power stages or frequency unit.

The frequency monitor line of the small RG/U type is brought in directly to terminals 517 and 518 on the board underncath rear of the frequency control chassis. The modulation monitor line is brought in, the radio frequency cubicle carried up the left corner post, across the top luft curner of the cubicle to the terainal board in the output network cuipartinent.
In the modulatur unit, the audio driver chassis is removed, and installs in the saine manner as the frequency control unit. The blower likewise is removed.

From the base are removed all components, modulation condenser, filter choke and filter condenser fry the frunt part of the base and consequently the first to be installed. The podulation transformer and reactor are at the rear with the terminals towards th conter.

The audio input line is brought in to the modulator cubicle, up the loft corner post, to the terininal board on the front luft top of the audi, chassis.

High v ltage connections to the other cubicles are brought in either through the side openings of base opening, through one of the openings at the bottom of the power panel, to the three high voltage terminals on the rear of the power panel at the top right. In the power cubicle a cable cover fits in the bottom over these high voltage cables. The low voltage interwiring should be brought to the left or right, or buth, so as to cluar the ends of this shield.

All wiring should be secured so there is no possibility of being pushed into high voltage teruinals, high voltage grounding switches, or other componints.

Provisions are made so that the cubicles can be bulted together by aligning holes in the corner posts. The rear of the radio frequency cubicle, because of the shiclding, cannot be bulted. However, bults may be used on the front and botton rear. The units should be bulted together so as to maintain a neat appearance.

EXTERN‘L POWER COMPONENTS

The Gates $B C-5 P$ may be had with sil filled power transformer, a modulation transfurmer and react. When so ordered, connecting terminals are installed as required in the cubicles. See Drawing ES-6134.

The power transformer primary terminal board is installed on the luwer left panel of the power cubicle. Terminals for thu sec onsary connections are male on the lower right side.

The modulation transformer connects tu a new set of high vultage terminals on the low r right side panel of the modulator.

The balance of the connctions are nade t. terminals already provided. Should additional wire be required more than supplied, automobile ignition cable will be entirely satisfactory.

Thun interlock can be provided by remuving the jumper between terainals 3 and 5 in the modulator cubicle and connecting the door interlock switch in this circuit.

IN G_TES BC-5P TRINSMITTER

M-5066 LOLD CONTROL \angle SSEMBLY

The motor assembly is rounted on the left sỉe of the RF driver con-. partment. The shaft frou the front panel cyclometer to the loading coil is removed. The motor shelf is then mounted in fror.t of the driver filament transformer. Motor mounts on this shelf. The ver. tical alignment is obtained by slotted holes in the shelf flanges the horizontal alignment by slots in the shelf plate. The motor is connected to the coil by means of a special shaft reduction coupling and shaft. i shield plate fits on the shelf lip, and should be installed to protect the notor fron any field from the driver tank coil.
The M-4806 relay assembly mounts behind the cubicle terminal board TB301, to the left of the transformer, T301. The relay unit is connected to the motor according to the diagran A-9392, in the instruction book for the relay assembly. The potor voltage source can be taken from the 115 volt secondary of the transformer, T301. In this way, the systen will be coipletely de-energized during shutdown per-iods. The potor to relay connecting cable should be forued down the corner post and secured. External connections can bo made direct to the terminal board on the relay assembly.
When the motor and relay assembly are interconnected, the notor stops should be adjusted. The motor is equipped with cam stops which pur mit 22 revolutions. This is not the full length of the coil, buit the tuning should always be such as to include some turns in the coil.

Also, in operation the loading variations will be accumilieherwitin relatively few turns, so it is always possible to obtain sufficient variation of the loading. If the operation is so that the slider in near the end of the coil, release the shaft and run the wotor in ihau direction until the stop operates, rotate the coil manually to ahout two inches from the end of the coil, then fasten the shaft.

M-4720 PLiATE CURRENT EXTRNSION UNIT

The plate current extension unit mounts to the right of TB301 in the radio frequency unit, and is secured by screws through cleared holes accessible in the high voltage compartment. The power amplifier ground return is from the power anplifier plate current meter, M3OL. to ground at the terminal board. Two wires connect to this ground, one of them to the neter. This wire is removid, a short length spij... ced in and connected to the terminal buard if the extension unit. The "G" teriainal on the extension unit then connects t; ground.

M4719 PL_TE VOLT ${ }^{\text {GE }}$ GE IXTENSION UNIT

The plate viltage extension unit mounts in the power cubicle, on the right sile panel in fr, nt of the fan resistor, Rl09. Tapped holes are provided for mounting. Screws may be run in from the outside if the units are separated at installation. The insulators mounting the exiension unit may be loosened and threaded on the panel screws. If the installation is complete, studs zay be cut and the insulaturs mounted in this manner.

A high viltage leả is then formed around to connect to the high voltage side of the transaitter aeter multipliers, RllO and Rlll. The ground is made to the ground bolt adjacent to the unit mounting. Maku sure the ground connection is secure. The neter lead may then be formed down the corner post.

CONTROL CI_CUIT CONNECTIUNS BC-5P2 REMOTE CONTROL
Filament holding circuit: The jumper between terminals 104 and 105 on TBlOl is revoved, opening the holding contacts of the start-stop relay, KlOl. The rewote "hold" is then connected to terminals 105 and 110 in TBlOl.

High voltage Contrul: Terminals 13 and 14 on TBlO2 provide the high viltage on circuit. Rewoval of the high viltage may be accomplished by momentarily opening the "filanent hold" circuit. The filament time aelay is so arranged the plate vultage nay be re-applied immediately if the filaments are re-started before the two minute shutdown period elapses.

If the remote contrul facilities provide for separate removal of the high voltage, this may be inserted by removine the External connection, to terminal 5 on TBlO2 and roving this to terminal 9. The remote contril "High Voltage Off" is then connectea between terminals 5 and 9 on TBlO2.

OPERLTION LIND ADJUSTMENTS

CONTROL CIRCUITS

The operation of the contrul circuit can best be studied by the line diagram, D-22253. In this diagran, all relays ana switches are shown in the ke-energized position, that is, as if all power were removed. The coils of the relays and contactirs are shown in the diagran to best indicate the relative circuit location. The contacts are connected to the coil by dotted lines and the position of the contacts in the circuit diagram may be considerably removed from the coil as suits the clarity of the diagram. Normally open contacts are shown with the bir spaced away from the contacts, and when the relay is energizel this circuit closes. Normally closed cuntacts are shown with the bar touching the contacts, and when the relay is energized, the circuit opens. Tine delay is indicated with an arrjw in the direction of the delay.

FOR
FIVE WIRE TUNING MOTOR
This unit is supplisd as an accessory with Gates' Remote Control Systems where it is necessary to control a 5-wire tuning motor that is either a component part of the station transuitter or is furnished as an accessory with the system. One asseably is required for each motor involved.

To understand the principle of operation, refor to drawing $i-9392$. Relay, Kl, is a six vjlt relay that is energized when the stepper switch selects the correct position. When K-l's contact close 115^{\top} A.C. relays $K-2$ and $K-3$ are ready to operate through the renote control increase-decrease circuits.

When increase (or raise) is operated, relay $\mathrm{K}-2$ energizes, an. wher decrease (or lower) is operated, relay $\mathrm{K}-3$ energizes. The motor voltage source connects to terninals 6 and 7 , one side going direc into the fieli coil of the motor through terminal 12. When either $\mathrm{K}-2$ or $\mathrm{K}-3$ energizes, the other side of the V oltage source is connected to the motor field coil through the right hanl set of conta of either relay.

Motor reversing is accomplished by interconnection of the shading poles made through the white, red and blue wires. The left-hand set of contacts on K-2 connect white and red, producing counterclockwise rotation. $K-3$ connects white and blue, reversing the direction.
The culor coding shown applies to motors manufactured by the Barbe: Coleman Company, but the method of connection will apply to any ty 5-wire motor. It is only necessary to connect the field coil to \# and \#12, the comron shading coil terminal to \#8, and the reversing shading coil turininals to \#9 and \#lo.

Remove the top panel mounting the driver tuning, filament rheostat and loading control. Transfer the driver tuning and filament rheostat to the panel provided. The local loading control switch is mounted in the loading turn counter position, being secured by the switch bearings with cover plate on the front. The terminal board should be towards the window.

M4806 RELAY UNIT L- TERMINAL * 3 (COMMON)

Solder two leads to A.C. relay terminals opposite common connection, and connect to two outside terminals of motor switch.

The center connection of the switch is taken to the remote control unit and connected to the llu volt supply opposite the side sunplying terminal \#3 of the relay unit.

7-2-57
Gates Radio Company Quincy, Illinois Drawing No. A-12219

All components within the power unit are of a "l00" series: in the modulator, "200" series with the udio driver as a "400" series: and in the radio frequency unit all components are of a "300:" series with the frequency control unit a "500" series. Each cubicle has a terminal board for interconnecting with other cubicles, each teminal board being numbered l, 2, 3, ete. For terminal designations for wiring within a cubicle, these terminals bear designations 101, 102,201, 202, etc. When power is applied to the transmitter, pressing the "Start" switch SlOl energizes the Start-Stop relay KiOl, the $A-B$ contacts seal across the switch SlOl The D-C contacts energize the blower contactor KlO2. The A-B contacts of this contactor across the D-C contacts of KlOl, sual in the blower contactor, KlO2. The C-D and E-F contacts of KlO2 energize terminals 1 and 2. The blower in each cubicle are connected in parallel across these terminals. Terminal 3 is supplied through the H-G contacts of relay, KlOl, the filanents of each cubicle are paralleled across terminals 2 and 3.

When the "Stop" switch, SlO3, is pressed the relay, KlOl, is deencrgized, breaking the seal-in. The normally closed E-F contacts then energize the thermal time delay, Kll3. After 60 seconds, this relay closes, beginning the tining of the second thermal relay, Kll4. At the end of another 60 second interval, the contacts of this relay open, breaking the seal-in of the blower contactor, KlO2 causing this to drop off, shutting off the blowers. It will be seen that the filanent circuits supplied through the H-G contacts of KlOl drop off imediately when SlO3 is opened, the blower continuing to run until Kll4 opens. After Kll4 opens about 20 seconds will required for this relay to 0001 and reclose Pressing the Start switch SlOl will close KlOl, the blower contactor will close as soon as Kll4 recloses, but this results in burning the contacts of Kll4 and this procedure is not renommended.

Each cubicle requiring a blower has its individual air pressur switch (S201 \& S301) protecting the tubes against insufficient air flow. These switches control the filamont circuit through the filament interlock relays K201, K301. The contacts are paralleded for higher current rating.
High voltage nay be applicd simultancously with filanent voltage with out damage to these tubes, so no time delay is required, but a slight delay is accomplished through the bias interlock circuit.

In the nodulator and radio frequency units, all door interlocks except the high voltage compartment in the bottom front of these cubicles arc connected in the prinary supply to the audio driver deck or the frequency control deck, so that opening any of these doors shuts off the respective deck with the attendant power bias supply. Λ
$6 / 6 / 60$
M5932 BC-5P / 2
bias interlock in each deck (K402, K501) provents the application of high voltage before the protective bias has reached a safe valuc. Indicating lights on both of these decks shows the status of filament and bias circuits.

The high v,ltage auxiliary relay KlO4 controls the operation of the high voltag contactor, K105. The relay is sealed in by one set of contacts when the high vultage on switch, SlO2, is pressed, the other cuntact of Kl04 closes the circuit to the hich viltage contactor, Kl05. In series with the high voltage auxiliary relay, Kl04, are the a.c. overloajs, the door interlocks in the rectifier cubicle, and the interlocks in the high voltage compartments of the modulator and radio frequency cubicles, the bias and filament interlocks of these cubicles. This control line starts with the power cubicle on terminal i $^{2} 5$ and connects to terminal \#9 of one of the other cubicles, teriainal \#5 of this then connecting to terilinal \#9 of the third, and should this be the last cubicle, terminal \#5 is then jumpered to terminal \#3 of that sanc cubicle to complete the circuit. This jumper is generally installed in the Modulator Cubicle. As it might be pussible to have additi nal units, such as a secund radio frequency cubicle, the series cinnection woula be followed until the last cubicle, in which case the circuit is terminated back to torminal \#3 of that cubicle. This is the only series connection required in the transiitter installation.
The two modulatur overloal relays, K202 and K203, the power amplifier overload relay K304 anl the R.F. ariver overload relay, K303, all have normally ojen contacts in parallel. The closing of any one of these will energize the overload auxiliary relay, KlO3, normally closed contacts of which are in series with the main high voltage contact or, Kl05, causing the high vitage to irop off. is quick as the overload relay opens, the circuit to the main contactur is asain completed, and high voltage is reapplied. connucted across the coil of the overloan auxiliary relay, Kl03, is a small dry rectifier, CRIOl, this in series with resistcrs, R106, R107 and RlO8, and the coil of a memory relay, Kl06. Connected across the coil of K106, R108 and to the arm of Rl07, is a large capacity condenser, Cl03. With each operation of the overload auxiliary relay, Kl03, the condenser, ClO3, receives a charge. If tho overloads repeat in rapid succession, the charge on the condenser will build sufficiently to operat: the relay, Kl06, a normally closed contact of which opens and arops out the high vjltag auxiliary relay, Kl04, then necessitating manual resetting of the high voltage. In case the overloajs do nut buill sufficient viltage to operate the relay, Kl06, the charge trains within a secund or two, an the recycling is renewed for any subsequent overloads series. The number of overloads bef ree an jutagu occurs may be set by the ajjustable potentioneter, R107, which should be then lockel to prevent accidental misuadjustments.
is alreajy mentioned, the a.c. overloads are in series with the high voltage auxiliary relay, KlO4, so that any a.c. overload takes off the high voltage which aust then bu reapplied manually. It is considered that on a.c. overload may be serious, and should have the operatir's attention, while a tube overload is in nany cases routine, such as a modulation transient.

6/6/58 -21- M5932/M5565, BC-5P/2

Connections from the loak side of the plate contactor, Kl05, to terminals \#6 and \#7 provides a source for closing the driver screen grid relay, K302, when plate voltage is applied.

Power reduction is accomplished by transferring the power amplifier Elate supply to the mid-tap of the power transformer, securing half roltage for the power amplifier. This is done by the power change contactor, Kl08. This is controlled by the latching relay, Kl0?, end the momentary contact high-low power switches, Sl05 and Sl06. mihis latching relay cannot be operated unless the high voltage auxijiary relay, Kl04, is open anł the back contact is closed. That is, before being able to make the power change, the high voltage must be djopped off, then the desired power switch pressed, after which the power may be reapplied. The latching relay holds the required power until intentionally changed, there can be no change in power by relays dropping out due to power failure.

Hoross the two change solenoids of the power change relay, KlO8, are two indicating lights to show the position of the power change relay. These lights are supplied on one side from the junction of the time delay contacts of Kl09 and the high viltage auxiliary relay, Kl04。 Until this time delay closes, there is a circuit complete through both lights so that both lights are on. When the time lelay closes, on?y one light remains on, that one indicating the power position. This gives the indication that the filament time delay, Kl09, has closed.
rom the low power side of the power change relay, Kl08, a line is brought to terminal \#8 which may be carried across to the modulator unit to operate an input level relay, and across to the radio frequency unit to operite a monitor change relay.

Many stations have special control circuit problens. The most commor. is the usc of directional antenna systems. Comnonly used is n prmally closed contacts of the "DiY-NIGHT" switches to break the nigh voltage while switching. This may be most conveniently inserted in the high voltage auxiliary contrul line. Terminals \#l3 and \#14 provided for an extension of high voltage on facilities. Power change may be accomplished by paralleling the power switches, NO5 and Sl06, with terminal \#114 common, connecting to \#113 and畆14 respectively. i spare contact arm on the latching relay, Kl07, mar be used to interlock the power with the directional pattern.

Operating facilities may be extended to a contrul deck similarly as well as filament on by paralleling SlOl from terminals \#105 and $\# 110$, and for filament off by removing the jumper between terminals \#l04 and $\underline{4} 105$ and replacing with a normally closed switch.

The transmitter control circuits have been designcd for operation with remote control systems with the consideration that many stations will be so operated. The Gates Radio Company provides units for remote control, and such units ara beine modified and improved as experience shows new desirable features. It is suegested that if remote control is contemplated, the Gates Radio Company be contacted for recommendations as to the latest dovelopments and improvements.
6/5/58
-22-
M5932/M5565, BC-5P/2

HOLDING RELAY BC-5P
Some stations experience difficulty from momentary power failures dropping off the transmitter. This is generally due to the voltage dropping low enough that the holding contacts of the "ST.RT" relay, KlO1, opens. If this is unnoticed for a minute or so, as could happen with a remote controlled transmitter, the time delay starting cycle would be required.

By installing a time delay relay which has the time delay on deenergizing, shutdowns from power slumps may be minimized. The available relays are limited, and relatively more expensive than the more conmon time delay types.

On shutting down the transmitter, the OFF button will have to be held until the time delay operates. Generally, a delay of one or two seconds will be sufficient.

Some remote controlled transmitters cut the high voltage by opening the start circuit momentarily. With a delayed opening, the "OFF" woild have to be held until the time delay opened.

POWER CUBICLE

The power transformer, Tl02 has $t 5 \%$ voltage taps. The Primary terminals 7, 8 and 9 are for 5000 volt output with 230 volts on the primary. Taps 4, 5 and 6 will increase the output voltage; 1, 2 and 3 will lower the voltage. The best transmitter operation will be with 5000 to 5200 volts on the plate of the power amplifier tube. Voltages below 5000 generally result in lower efficiency and higher drive requirements. Voltages above 5200 may result in excessive peak voltages generated in the power amplifier.

The incoming line voltage is metered by the top left voltmeter, and is switched between phases by the switch, Sllo.

The cubicle is sooled by a fan in the top, which runs while the rectifier filaments are on. It is considered that in the greatest majority of installations that the units will not cool during the shut-down period so that the cooling air will cause rectifier arc-backs during the early starting time. Should such a condition exist, such as in an unheated building common with remote control operation, it is suggested that a furnace thermostat be mounted in the cubicle and set to turn the f an on when the temperature reaches 80 to 90 degrees F.

FRONT VIEW POWER CUBICLE BC5P/BCIOP

The a.c. overload relays are of the instantanecus type. The tripping value is set by rotating the armature on the threaded shaft; a tab aligns with markers on the armature to indicato the tripping current. The armature is locked in position by a locknut. This should be tight so that the relay holds calibration.
The normal current for 100% modulation at 1000 cycles is approximately 30 amperes per phase, and slightly higher at the high frequency end of the range.

On the low frequency end of the audio range, the relativoly long duration of the load cycle may cause the overloads to open. The proper tripping current is just high enough the relays do not trip with modulation. This will be approximately 60-80 amperes.

The voltage change relay, Kl08, is designed that when the solenoids are fully closed, the arm does not rest against the spacer plates of the switch jaws, but make the clectrical contact through the side pressure of the switch jaws. Should the contactor be noisy in either position, axamine the closure in this position that the arm is not holding the arnature slightly open by pressing against the spacer plate.

Another cuasc for noisy operation is that the solenoid is slightly out of alignment, pulling the armature to the side when the solenoid is cnergized. A light application of grease on the armature will facilitate the movenent of the armature, dry metal surfaces at timos bind and causes the solenoids to be noisy.

M-5533 FRE ZUENCY CONTROL UNIT

The M-5533 Frequency Control Unit consists of the M-5422 oscillator unit incorporated in a chassis containing an intermediate power amplifier with plate supply, bias supplies for the power amplifier and driver tubes, and the necessary interlocks.
-24-

6/6/60 M5932 BC-5P /2

The M-5533 oscillator unit is locatad on the front right siale of the chassis. Connections are aade by a plug cable in the rear of the unit. The unit is recovable by renoving the cable, and from underneath loosening the four screws on the flange mounting. The crystal change switch and crystal trimaers are behind a hinged door on the front pancl so that crystals may be switched or adjusted without shutting lown the transuitter.

The oscillator uses a l2BY7i tube in an electron coupled circuit, Due to the low operating voltages and the extremely low crystal current the unit has exceptional frequency stability. A second l2BY7A also operating under conservative conditons acts as an isolation stage between the crystal oscillator and the lst IPi. The crystals are a low temperature coefficient type which do not need a heated oven to maintain frequency well within FCC linits. Elimination of the oven requirenent is dosirable for increased reliability as oven thermostats, when they stick or fail to close, can not be repaired by station maintenance personnel. Frequency trimmers Cl and C2 provide a small degree of frequency adjustment which will be required after the crystals have been shipped and during the first several weeks of oper tion due to ageing. Coil L3 and variablu capacitor C9 both in the second l2BY7A plate circuit are adjustable to the stations frequency. The oscillator unit has been thoroughly adjusted and tested on frequency before shipment and only a slight triming up of capacitor C9 and the frequency adjustment trimer capacitors, $C l$ and $C 2$ will be required on installations.

The crystals supplicd with the uscillator unit have been made and adjusted in a duplicate oscillator by the manufacturer so as to be within frequency tolerances. The use of any other crystals, or adopting other crystals, may not be satisfactory.

Should a ficla change of frequency be required, the output coil L3 is at maximun inductance (slug fully in coil) for a range from 540 Kcs to approximately $900 \mathrm{Kcs}$. With the slug out of the coil for minimuri inductance, the range if froa approxisately 800 Kcs to slightly above $1600 \mathrm{Kcs}$. With frequencies between 540 and 800 Kcs it would be possible to double in the second stage. If such occurs, it would be apparent by the position of L 3 , and also in the tuning of the following stage.

Terminals 519 and 520 are in the 6146 cathode, and are provided for carrier suppression and arc-quenching circuits. If such are not used, these terminals should be jumpered togethor.

Besides the standard rectifier circuit to provide plate power for the oscillator, buffor and R.F. driver screen erid, each side of the power transformer feed to a rectifior tube (6W4) which has half wave rectifiers provite holding bias for the r.f. driver and power amplifier. is soon as thesc tubes have normal grid drive, this bias voltagu is cancelled, and these two holding bias tubes draw no current from the plate transformer. In the holding bias supply for the power amplifior is a bias interlock relay to hold off the high voltage until adequate holdine bias is obtained. The front panel

$$
6 / 6 / 58
$$

has an indicating light for the filaments, and a second light which is on the bias relay closes.

The power amplifier bias, which may reach considerable voltage, is terminated on a separate terminal to the left of the terminal board under the chassis. As these holding bias supplies work against ground, before axcitation is applied, the holdine bias current flows through the power amplifier plate meter causin this meter to read reversed, and also through the grid current meter to read up on this meter. These readings serve to indicate the operation of the holding bias before high voltage is applied. These bias currents do not effect the accuracy of the meters during operation. The holding bias on the power amplifier is gdjusted so that approximately . 2 amperes current flows. This is far within the dissipation rating of the tube, and helps hold the plate voltage from becoming excessive where the tube biased to cutoff.

The 6146 output tank consists of the coil L506 which has a tap for shorting a portion of the end for the hich frequency end of the band. The tank will tune 1600 Kc without this short, but by shortine this portion, hisher capacity in the tank will be maintained and less criticsl tuning. This will tune to 1050 Kcs . With the short removed, the tank will tune to $850 \mathrm{Kcs}$. Connectinf the left padder condenser C512 by means of a jumper on the terminal board on the chassis gives tuning to 850 Kcs . The right side condenser of 500 mafds C5ll starts the high frequency end of the range at 850 Kcs , this can be raised by shorting thu end portions of the coil proviaing plenty of overlap.

The lowest frequency with the 500 mmfd padler is 540 Kc . For this low end, both pajaer condensers may be connected.

On the right side of the panel is a multimeter switch by which currents of the oscillator cathoie, buffer grid and cathołe, R.F. driver crid and cathode, and power amplifier crid may be measured. The meter is located on the cubicle meter panel on the right.

With the filaments on, the plate supply for the oscillat is on. With the propur buffer tank capacity for the frequency, and with the excitation c untr, 1 at mid-range, switch the multimeter switch to "Driver Grid", and tune for maximum grid current. The anount of pickup will bo largely deterained by the "Excitation" control which is determinel in the final adjustments of the transmitter. The final setting of tho "Excitation" control is just past the point at which thu power amplifier grid current no longer increáses as the excitation is increased.

When the buffer is tuned, grid current should be obtained on the
"Driver Gria" pusition of 30 Milliamperes with full the multimeter. This will be from 20 to excitation.

6/6/58

$$
-26-
$$

M5932/M5565, BC-5P2

䕎 255

R.F. DRIVER

The R.F. Driver utiliming a 4-250A tube, is mounted on a chassis on a shelf above the frequency control unit. This chassis with the socket, bypass condensers, grid parasitic and chokc, is coupled to the main plenum chamber, thus providing the coolins air as required for the tube. The filmant transformer is mounted on the shelf on the left side. The tube is shunt fed, the plate choke on the rear panel on the left, the blocking condenser right of center. The tank coil L 303 is mounted on the right side panel, the tuning is by a vane within the coil, and this is directly coupled to a turn counter tuning control on the front panel.
The tank condensers are of the fixed type, mounted on the shelf below the tank coil. The coil is floating, and fed through R.F. choke and a bypass condenser. The power amplifier gria tap is taken from the $4-250 \dot{A} p l a t e$ nd of the coil, the neutralizing tap from the opposite ond, the end mountine the tuning vane.
Whencver possible, the radio frequency cubicle has been tuncd to the specified frequency. This means that the coil taps are closely to the correct positions, and little if any, coil adjustments will be required.
The stage is tuned by (l) installing the tank cundeusers C304ía B , setting the coil tap on L 303 according to frequency, setting the center-tap $L 302$ to the mid-point of the number of turns of the coil that are used, setting the power amplifier crid and neutralizing taps at $1 / 2$ the turns between the conter-tap and the connections of C304A \& B, (2) open the power amplifier disconnect switch S307, (3) Turn the "Excitation" contr, 1 to midmpusition, (4) set the multimeter switch to the "Power hmplifier Grid".

Watching the multimeter on the power amplifier frid current position. apply plate voltage. If no current is in iic tod, cut the plate volt age nd tune over a ranse before re-applying voltage. If an indication of grid current is obtained, it can be quickly leterained the direction of tining, and if the inductance should be changed. The vane movins into the coil decreases inductance, zovin. out, increases inductance. When the final tuning adjustrents have been rade, the vane should, if possible, be about upposite the first turn of the coil. In this position, it has no noticeable effect on the neutralis ing. It is best to start with the tuning at ons end of the ranee, and in case of excessive tube heating, after cutting the plate v ltage, run the tuning to about mid-range an? reapply the high voltage, and arain to the other ond of the range if necessary. The equivalent tuning rance is one to two turns variation on the coil, depending on frequency and tank capacity. The L-C ratio of the tank is not critical, excert that for high capacity with low inductance, it is difficult to match th tube to the power amplifier grid, and the 4-250A tube will run considerably warner than if lower capacity and more coil were used. A low capacity in this tank might indicate a source of R.F. harmonic seneration, but tests show that this has very
little effect. ilso the low xapacity might indicate the loss of the "flywheel" effect, the carry-over of power during the positive arive cycle. Measurements show the lower capacity tank will actually give better performance due to better matching of the load. However, caution should be observed that the current rating of the tank condensers are not exceeded.

The excitation control should be brought up, the $4-250 \mathrm{~A}$ gria current will read approximately 20 to 25 milliameres on the multimeter.

The most desirable settine is found then the transinitter is fully tuned, and is the point just after the power amplifier grid current does not increase with an increase of the "excitation control". Power amplifiar gria saturation is obtained for best afficiency and also the noise generated in the radiu frequency circuits will be greatly reduced.
The power amplifier grid tap shoula be adjusted to give a puwer amplifier grid current readine of approximately 180-220 milliamperee. Increasing the number of turns to the grid tap will eventually reach the point where the grid current will not rise, but the heating of the $4-250 \mathrm{~A}$ will increase considerably. The tap should be moved back to the maximum most efficient operatine point. The 4-250A tube plate will show color. It is normal for these to show a bright cherry red and in many aplications are so operated. For the operation in the Gates $B C-5 P$ transmitter, the color generally is only a dull red. The plate current as given on the multimeter is between 250-300 milliamperes. If the loading is kept high on the stage, the tube shows slightly more color, but the tank currents are lower because of the lower "Q" and heating of thesc components will be reduced.
In some instances, increased output from the driver stage may be required. The cathole resistur R308 may be shorted, and/or one or both the plate droping resist.rs Rll5 and Rll 6 may be shorted. Such operation is permissible unless the tube runs more than a dull red, or unless the tank condenser current exceeds the rating. With such operation, the grid and cathode currents nay read slightly off-scale.

The driver stage is more easily tuned by reference to the power amplifier gria current rather then the arivor cahtode current.

POWER MMPLIFIER

The power amplifier consists of a 3X2500F3 tube. This tube is comletely enclosed in a compartment to the rear of the Ariver stage. The socket assembily mounts on top of a plenum chamber. Insiae the plenum chamber is the power amplificr tank. The underneath of the tube sjeket connects to the plato blocking cundensers, C318 anj C320. The stage is shunt fed through two radio frequency chokes, L306 and L307, with a bypass condenser at the junction of the two chokes to ground. This effectively keeps ratio fruquency voltages from feuding back into the modulation components. The tank coil, L308, is tuned
-6/6/58
-28-
M5932/M5565, BC-5P/2
by a movable vane within the coil, and is mounted so that this tuning is in line with a turn counter on the front panel. The tank capacity is from ne to four fixed vacuum conlonsers as required by frequency, These should be installed with outsiae plates to ground. The neutralizine condenser, C313, is nounted in the frunt top right hand corner of the chamber. The first cousline cundenser 0314 mounts in the upper front left corner, a lead from this going up through the tube compartment to the output network in the top compartiment.

On the center of the front pancl of the chamber is the air switch, tho operation of which is Aescribud in the "Modulator" section of this instruction bcok. The plenum chamber must be dosed to get this switch to operate. The air intake is at the bottom of the chamber, and is covered by an aluminum screen. This is readily renovable, and should be poriodically clcaned.

The output linc from tie power aiplifier tank enters the output network compartment in the front left corner, then passed across to connect to the first line coil, L309, then to the variable output coil, L310. A coupling cunzenser, C316, connects between the two coils to ground. This coupling arrangoment is for line impedances up to 100 ohms. When the line impedance is higher, such as 250 ohms, the variablc output coil, L3l0, used as a loadins adjustment, will have very little effect on the luading. If the transmitter is to be operated into a high impedance load, a condenser across the load side of the line coil, L3l0, will allow the loajing to be effectively controlled by L310. is ${ }_{3}$ n emerency matching, the line from the tank can be moved to L 310 with L 309 as the output coil. This arrangement results in consiłerable interaction between the loajing and tank tuning. The operation and adjustment will be more critical than the standard low ohmage output circuit.

Whenever possible, the radio frequency section is tuned for the speci fied frequency and loading. In which case, only minor reałjustiients may be required.

After the driver stace has been tuned, install the tank and luading condensors, C3ll, C315 an l C3l6 according to the frequency and load, close the link $S 307$ and put the power switch in the 1 KW position. fipply plate viltaee, watchine the plate current meter. If this is over 1.2 amperes, cut the plate viltage and tune, turning on the plate voltage momentarily to see if the current is changing, looking for a reduction of plate current. By starting with the tuning vane at one extreme of its travel, the tuning is equivalont to one or two turn changes of the tank coil, dependine on frequency and tank capacity. With erid and neutralizin.: taps set as instructed, there is no tendency for oscillations in the power anplifier. When the power amplifier is tunod and load adjusted, then the final neutralizing adjustments may bo made.

In case the transaitter is bein, tunul to a new frequency, capacities and coil turns will be approximately as sh.wn in tho chart.

When the resunance point has been achieved as indicated by ninimum platc current, the loading can then be adjusted. This may be ac-complished only by the variablu coil, L310, or readjustments of L309 may be required. When the final tuning is obtained, the tuning vane in L308 should be about even with the first turn of the coil. The first line coil, L309, will have considerablu effuct on harmonic radiation, and should heve the most number of turns possible, and still bo able to cuntrol the loading within limits by tho coil L3lO. As L309 is increased, there generally will be reached a point at which the loadinis goes up rapidly and L 310 will be near maximum. Neutralizing may be done "dynarically" by going back anl forth through the power amplifier tuning, at the same time watchine the power amplifier grid current. When the power anplifier is neutralized, the frid current will drop on both sides of plate resonance. In some instances, the current may not drop iamediately, but require a littlo letuning. Should the gria current incroase on either sile of resonance, cut the powor and move the noutralizing tap on L303 a turn, continuing until the acsired effect is achievっd. This is usually a turn or two loss than the srid tap.

Other means of neutralizing indication may be used. The front bottom of the plenum charaber has several ventilating holes, leads may be brought out through one of these to an oscilloscope from a pickup loop near the tank. In such cases, the power amplifier disconnoct link, 5307 should be opencd.

The final tuning of the power amplifiur should be that the loading is approximately 100 millianperes below the desired loading, and the tan tuning turned counterclockwise (lower inductance) from resonance unti. the correct current is sbtained. The effect of tuning to both sides of resonance will be quickly noticed on a line current meter, comimen point meter, or other output indicatins aevice. The explanation is that maximum impedance, as inłicated by minimum plate current, is not, exactly the same as unity power factur as indicatel by increased ouij... put current.

The efficiency of the power amplifier stage should be very close to 80%. Tho unit is factury tested, and the first test is to achieve this efficiency, usine a water co:led antenna. By measurine the water flow an the temperature rise of the wator, the actual power dissipated in the dummy antenna can be accurately measured. Efficiencies above 85% should be regarded with suspicion, and may be due to defective input current and/or voltage meters, line current meter, or to an error in measuring the ralio frequency loal at the measuring point. With the transmitter in tune, and reasonabl matched to the load, the poorest efficiency is sel.lom less then 75%. In the case of low efficiency, all power that is not going into the radio frequency load will be dissipated in the tube, tank and coupling components. Thus, ne indication of low efficiency is that the tubes and sometimes tank components will show considerable heating. The effect will be most prominent in the heating of the tubes. One check is $\geqslant 0$ set the modulator static current at 250 milliamperes per tube, representing a 彐issipation of 1250 watts. ifter running for ten or fifteen minutes with no signal, cut the power, feel tha heating on the plates of the modulator tubes nil quickly compare with the heating of the power aimplifier tube.

$$
6 / 6 / 58 \quad-30-\quad \mathrm{M} 5932 / \mathrm{M} 5565, \mathrm{BC}-5 \mathrm{P} / 2
$$

DI-148

LOWER SECTION P.A. CUBICLE
BC5P

In measuring true efficiency, the plate voltage reading should have subtracted from it the voltage drop in the cathode resistor and rudulation reactor. These are each 50 ohms, the total is 100 ohms, and if the plate current is 1.25 amperes the voltage drop is l25 volts, which should be subtracted from the meter readine. Thus, if the neter reading is 5125 volts at 1.25 amperes, the actual voltage would be 5125 ainus 125 , or $5,000 \mathrm{v}$ vits.

The meter is connected across the supply so that multiple unit operm ation may be hal without alditional meters. If singla unit operation is to be usud, the v.sltmeter could be connected directly across the power amplificr by transferring the high v iltage lead to the "RF" side of the rodulation reactur (using high vitage scale) and the ground side to the center-tap of the P.... filanent transformer, using 600 volt wire.

TJNING CH.RTS

The tuning charts for the R.F. Iriver an? power amplifier are given to serve as a guile f tuning the transmitter and are not to be con... strued as unalterable values. For example, 4308 might be indicated to have 20 turns, but at final tuning might have 18 or 22 turns.

The output circuit offers considerable flexibility to values of ccilponents, anl at times values of capacities might be used other than Given in the charts, this being cone perhaps as a result ff procurement or as the result of adkitional operational information. Lower capacitien will result in a correspondine increase in inductance ralues to compensate for the changes.

H:RMONIC REDUCTION

The Gates BC-5P transmitter has been esicned to reauce harmonic radiation as much as possible. High order harmonics may be strongly radiated if there is coupline between the power amplifier tank and the output. The physical arrangement of the BC-5P transmitter eliminates this stray coupling, and actual measurements on several frequencies and operating conditions show that harionics of the order of the fourth and higher are of very low strength.
The second and third harmonics are the only harmonics which show signs of reaching objectionable intensity. The strength of these are preatly affected by the tuning. The opinion that increasing all capricity values throurhout the power amplifier tank and coupling network to reduce harizonics is fallacious, the best harmonic reduc tion is obtained by the proper relationship of the various inductive and capacity valuos. is a general rule, the creater the inductance used in the first coupling coil, L309, the greater the harmonic reduction。

In the case of harmonic trouble, the first step should be to determine whether the harmonic radiation oricinates in the transinitter or externally such as in the antenna system. Tower guy lines might resonate at some haraonic frequency and be shock excited to radiate an objectionable signal.

Should the harmonic irisinate in the transmitter, and nut adequately respond to normal tuning procedures, circuit revisions may be made. In some instances, a harmonic aight bo lirectly on some frequency, such as airways or police, where a very small signal will interfere, and require far aure than normal suppression.

The condenser C can be the same type and capacity as at C316/C317. The circuit is tuned to normal loading on the fundamental without L. The coil L is tuned to the unwanted frequency when connected in parallel to C, using a grid dip meter. The coil L should be of $1 / 4^{\prime \prime}$ or $5 / 16^{\prime \prime}$ copper tubing. The mounting should be for minimum coupling to other circuit elements. With careful adjustment 20 to 30 DB attenuation may be obtained.

Tap 2 is adjusted so that the inductance between this tan and the end of the coil connecting to the coupling condensers, with the coupling condensers C $316 / 317$ form a series resonance circuit at the unwanted frequency. The position of tap 2 may be critical to $1 / 4^{\prime \prime}$. The normal loading is then adjusted by the position of tap l. This circuit shows 10 to 20 DB attenuation to the undesired signal.

Should attenuation be required on two frequencies, these two circuits can be both used.

POWER REDUCTION TO 1000 WiTTS

Reducing the power amifier plate v jltage tu half value also reduces the plate current to half value, Giving a power reduction to $1 / 4$ powc. or 1250 watts. In nost cases, a slight adjustment of loading is satisfactory. Many installations operate full time on 5 kilowatts, the power reduction serves as a tuning convenience. Shoula an exact power change from the full power value, generally over 5 kilowatts, to allow for antenna losses, to the low power value, installation of threa droppine resistors Rll7, Rll8 and Rll9 in the low voltage lead to the voltage changer Kl08 will drop the plate vjltafe and, consequently, the current, to a little below the l kilowatt value. By using adjustablu resistors, the low power luvel may be set within operating linits withcut varying the loading.

The three resistors mount below the P.A. voltage changer Kl08, on insulaturs. Tapped h les are provided. The resistors are connected in series the " 2500 Volt" lead is removed from $K 108$ " B " and connectoc. to one end of the three arcpping resistors. The other end connects to the " B " terminel of $\mathrm{KlO8}$.

POWER REDUCTION TO 500 W $\angle T T S$

The method is similar to the exact reduction to 1000 watts, except that a higher droping resistance is used. As considerable heat is leveloped, these resistors are mounted at the top of the cubicle. To eive an adequate wattage, four resistors are uscd.

ARC QUENCH CIRCUITS

Arc quench circuits operate generally on the principle of a low current supply of 200-300 volts being connected throuch a suitable radio frequency choke relay to the transmission lines. When an ara occurs, the direct current path is completed, the relay energizes and nurmally closed contacts open, aropising excitation until the: arc is quenched.

It is apparent this syster cannot bu applied when there is a cunduotive ground on the transuission line such as might be obtained with grounded phasor tank, or static 7rain resistors or chokes. ilso, in many directional antenna system, lines or towers iay be blocked to direct current by series capacitors. To obtain conplete and adequate arc protection will in most cases require a study of the parti" ular antenna systen beins used.

FREQUENCY MONITOR

Many stations installine the Gates BC-5P transmitter are replacing old transnitters or incruasing power of an existing station. Gener-. ally, these have a frequency monitor which is to be used with the BC-5P transmitter. Different nakes and wodels have different requirements for operating power and input impedance. A source for the frequency monitor is provided from terminal 517 which is connected to the tank circuit of the output tube of the oscillator unit

6/6/58 -35— M5932/M5565, BC-5P/2

This source is alequate for the Gates M4990 Frequency Monitor. There nay be some instances, depending on frequency and transmission line leneth, that the Gates M2890 Frequency Monitor will not work satisfactorily.

The tap on the IPis tank coil L506 nay be utilized for a source for the frequency monitor if this is nut shortel out. in excellent and flexible source of power for the frequency monitor is to remove the ground connection from L506, inserting a cundenser frum. Ol to .l rafa. capacity, preferably equivalent Saneme type A or H, 600 working volts. The capacity would be a matter of experiment, Jependine on frequancy, transwissi n line and monitor requirements.

The Gates M4990 may be operate from a modulated radio frequency source. With a suitabl power lropping levice, this could be paralleled across the molulation monitor input. It will be found preferable to have the monitor pickup fra the low yower stages as then the frequency can be checked without high voltage. islso, the calibrate ajustment may be maintained more uniformly.

MODULATION MONITOR PICKUP

The nodulation nonitor pickup, L313, is best adjusted after the installation is complete and the transmitter is tuned. is iany variables enter into the adjustment, no effort is wade at the factory to set the coil. The line to the modulation munitor should preferably be suall size concentric like RG-U. Shielded aujio wire introduces severe losses and difficulty will be had getting sufficient pickup to operate the monitor. The amount of pickup can be adjusted by swincine the coil. This shoul̉ be set fur low power. The pickup for full powor is then set by the slider on the resistor, R310.

Shoula the pickup be insufficient, a new coil can be tried. It is su,gested that temporary coils be first used, as additional turns on the coil does not always ilean more pickup. In some instances, it nay be necessary to replace the single turn line coil by a two turn coil. This could be maie frow \#l2 bus wire fr a trial. Copper tubing, from $3 / 16^{\prime \prime}$ to 5/16" may generally be obtaincd from auto supply or refrigeration service stores. Of primary importance is that rigility be obtainod.

\therefore UDIO DRIVER

Tho aulio lriver c.jnsists of two 6SN7 voltag amplifiors and four 6550 tubes in push-pull parallel. The audio input is direct to the input transformer, with provisions that a level change relay pad may be installed when it is lesirea to have automatic level change for 1 KW operation. The catholes of the first audic stagu has a balancing control, R413, in the cathodos. The main feuaback is returned to the first stage, an a balancing control, R409, is provided for this. Before startine measurcients, both controis should be centered. From tho plates of the 6550 driver stage to the cath0 oles of the second audio stage, is another feedback loop. The driver transforiser has 40% voltage taps to which the screens of the tubes are cunnected. Grids, plates and screens all have parasitic suppressin'j resisturs. The driver stage is cathode biased by the
resistor, R434. On a board on the side of the chassis by the tube sockets is a set of four individual 10 ohm resistors, a voltmeter reading across these will give the individual tube currents. This voltage is normally . 65 volts.

The driver transformer sucondary has drive balancing taps, on one side plus 5% and on the other minus 5%, enablind the drive to be balanced to 10%. In some cases it may be desirablu to reverse these, in which case the main foedback should also be reversed. Normally, the testine can be started with both sides on equivalent vultages, changing the balance if indicated.

The plate supply is self-contained. The rectifiers are two 5R4GY tubes with paralleled plates as a full wave rectifior. The normal voltage is 450 volts, the normal current to the four 6550 tubes is 300 to 325 milliamveres. The supply for the first two audio stages is obtained throưh a divỉur and separate filter system eliminating any tendency to motorboat.

A separate rectificr supplies the bias fur the nodulator tubes. This is well filtered, and the bias contrels on the front panel give adequatc control of modulator bias. Provided in the bias circuit is the bias interlock relay, K402, which closes the hieh voltage control circuit when the bias voltage has built to the proper value. A sucond contact of this relay closes the circuit to the pilot light indicating the bias is applied. fi pilot light across a filanent circuit indicates the filarents are on.

The power required for the audio chassis is 115 volts, ubtained in the transaitter by a step-down transformer, T203. The prinary of this transformer is controlled by the loor interlock switches, so that opening the dours reavel bias vultages. Should it bu desired to check the audio đeck by itself, the leck can be removed, llf volts connected t. the input supply. The driver transformer secondary should be loaled with 10,000 ohms srid to grid, 50 watt resistor rating should be used. The bias voltage may be blocked off by a l. 0 mfd. 400-600 volt condenser. A vacuum tube voltineter should be connected from this to ground and a reference level of 150 volts which is the nominal value to obtain 95% modulation with thim test, (RMS) should be used for reference.

The overall feedback is removed, and consequently, improvenents due to feedback are not obtained. This is particularly noticeable on the low frequency. Some loss of response on low frequency is aue to the 1 mfd. blocking condenser used. With these fact, rs in mind, the general performance of the audio driver may be checked external from the transmitter. The signal may require a divider to reduce the level fir the distortion meter, for example, 100,000 ohms, 1 watt to the blockine cundenser, 25,000 ohms, 1 watt on the ground side, the distortion meter being taken across this.

BOTTOM VIEW AUDIO DRIVER CHASSIS BC 5 P

Typical audio response and distortion of audio driver removed from transmitter with 10,000 ohm "grid tu erid load", reference 150 volt: RMS, the approximate value required for 95% modulation.

DIST.

30	10%	-3
50	3.5	-1.2
100	2.7	-.4
400	2.25	0
1000	2.25	0
2500	2.25	0
5000	2.1	0
7500	2.0	-.8
10000	2.4	-1.2
12000	1.7	-1.7
15000	---	-2.4

RESPONSE

$$
\begin{aligned}
& -1.2 \\
& -.4 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& -.8 \\
& -1.2 \\
& -1.7 \\
& -2.4
\end{aligned}
$$

MODUL:TORS

The modulators are operated on both 5 Kw and 1 Kw at full rectifier output viltare of approximately 5000-5200 volts. For 5 kw operation the modulator grid current excursion is very low, permittine the use of a low power driver stage.

During initial test procedures, disconnect the feedback, either by romevine the connections at the terminal board, or by removing one "asistor on each side of the feelback divider. The resistors removed woula be one of the 100,000 ohms on each side. NEVER APPLY HIGH VOLT H_{I} G WITH TH\& 5000 OHM RESISTORS ON TH: GROUND END OF THE DIVIDER REMOVED.

The feedback is supplied by a straisht resistor divider network. the feedback signal is reduced to a usable value in the audio leck. Whe feedback is taken to a terminal board on the richt side of the nubicle, directly below the feudback terminals on the audio chassis.

When the audio tonc is aprlicd, the input signal level will be about \cdots DB. When the operation has been checked, the feedback can be connected, and the input level should be approximately Q DB for 100% modulation. If the fuedback is reversed, the modulator may oscillate If it does not EO into oscillation, the level for modulation will be very low, -20 DB.

The static current on tho modulators normally shoula be 50 milliamperes per tube. However, they can be operated up to 300 milliamperes per tube without lamage, but this means that cunsiderable heat will be cenerated in the modulator unit. Operate the modulators at the lowest static current as is compatibie with performance, generally 50 milliamperes.

The driver transformer has balancing taps, one si.ie giving a $+21 / 2 /$ boost to one modulator. The other side gives a $-21 / 2 \%$ drop, so the total correction is 5%. The two center terminals of the output terminal board are marked "200" indicating a normal 200 volt signal. One outside terminal is marked "195" and the other "210" indicating relative voltages from these terminals. Normal testing would begin using the "200" terminals. If better results can be obtained by changing the taps, this should be donc. Frequently, the unbalance correction is in the other direction, reversing the grid leaks would then require reversing the feedback connections. To have the bias putenti meters regulate the tubes in the same relative position, the bias leads may be revorsel on the terminal board by the output transformer. These leals have spadu lugs, so the screws do not have to be removed.

After the transmitter has been placed in uperatinf condition, unless the performance is exceptionally gooz, several checks can be mado. The primary of the modulation transformer can be reversed. This frequently has an effect on distortion, mainly on the high frequency end of the range. Also, adition or cancellation of noise usually results from the polarity of the transformer. If the primary lines to the transforuer, or connecting on the transfurmer, are changed, the feedback will be unaffected. The secondary should always have \#5 terminal connected to the puwer amplifier, the \#4 terainal to the nodulation condenser. With the plate currents statically balance. when signal is applied it will be noted that frequently the plate currents will differ if the mudulation transfurmer is reversed, it may be noticod that the unbalance is also transferred, indicating that the loading is slishtly different between the two halves of the primary. Some balance may be achieved by means of the balance drive taps provided on the driver transformer. The unbalance need not be of great concern if the distortion is within limits. Generally, then the modulation transformer or ariver transformor are reversed, the two balancing controls R409 anl R413 will generally require changing. Preliminary testing can be done with 50, 1000 and 7500 cycles. The effect of the two controls varies, depending on the type of unbalance, but eenerally thu cathole balance R413 wili have the main effect on the low audio frequencies, and the foedback balance R409 on the high frequencies.

DISTORTION

The Gates BC-5P transmitter is tested thoroughly as possible at the factory to assure proper and satisfectory service and performance for the customer. Should the distortion be high, the followins items should be checkud and tosts made.

1. The proper connecting of the feulback, the modulation transforme: reactor, condenser, also that the fiiter condensers are connectod or the load side of the filter chokes.
2. Sufficient R.F. drive on the power amplifier. \& slieht increase in drive inay make noticeablu improverent.
3. Proper test procedure. Thu diode may be sensitive to anount of pickup, try varying coupling. The location of pickup may be such that harmonics are also included, or that pickup may be from two Bources of different phase. The usu of a modulation monitor fur modulation reference may result in higher percentage of inodulation than desired. in iscilloscupe is the best means for obtaining the reference level.
4. Renove or lisc nnect feedback, use audio divider on modulator grids as described in the audio driver section, detormine if the distortion to the modulaturs is high. This normally will bounder $2-3 \%$. The diyider aight also be applied across the crounded feedback resistors R208 and R209 for measuring modulator output. Also, the divider might be used across the 50 ohn power amplifier cathole resistor, R302, tho power amplifier tube acting as the load element on the modulator. This test, however, nay not be cunclusive, as the power amplificr might not be presonting a linear load to the modulators.

INITIAL TEST PROCEDURE

Then the transmitter has been completely installed, all connections made, all blocks and ties removed from the contactors and relays, and to the best knowledge of the installation engineer the transmitter is ready for test, the followine outline as leveloped in the factory for testing is recumenaed. The eneineer should have stuaicä the operation as outlinea in this instruction book so that when he begins the initial testing, the proper performance will bu recoernized He has the assurance that before the trnasmitter was dismantled for shipping, all circuits were functionine properly. Any failure to do sc may be due to damage in shipment or minor mechanical failures such as a breaking. finy faults should be corrected before proceeding to the next step.
\therefore Install tub.s.
E. Close the transmitter service switch. Press the "Start" switch. Both power tube blowers should run as well as the rectifier unit fan. The rectifier filaments should be on.
3. Press the "Stop" switch. The blowers should shut down after two minutes.
4. After the thermal tine delays have recycled (about $15 \mathrm{sec-}$ onds), reapply the "Start". Check filament vultages.
5. If the modulator unit is closed, the filament light will show on the audio driver panel and after a few seconds, the bias light. If the power amplifier is closed, the filament light will show on the oscillator panel and after a few seconds the bias lieht. The multimeter on thu "P.... GRID" will show some current rcading. The power arplifier plate current meter will road in a reversed direction due to the holling bias in reversed direction.
6. The first R.F. buffer can be tuned as given in the instructions on this unit.
7. With the high voltage centrol closed, open various doors and check action of docr interlocks.
8. Open the power amplifier disconnoct link S307, close the high voltage primary discunnect switch S107, turn the modulator bias controls to the mid-position. Disconnect the modulator feedback. Set up the driver tunine as outlined in the section on this stage. If possible, when tuning the lriver check the modulator static current. If this is not possible, it would be well to first aisconnect the R.F. driver high vjltace line and apply high viltase and set the modulator static current to 100 milliamperes per tube.
9. With the R.F. driver tuncd, the power amplifier high voltage can then be applied by closing the link S307, and the power amplifier tuned in accordance with the instructions on this stage.
10. With the transaitter now operatine with full puwer, final tests and adjustments can be male.
11. Open the top mojulator panel (not interlocked), anl with some insulating material, tap the overload relay armature, checkins the action of the overload recycling.

$$
\begin{aligned}
& \text { GATES BC-5P2 MODULATIUN REACTOR } \\
& \text { 1Fした } \\
& \text { REA (土川た }
\end{aligned}
$$

STEPDOWN TRANSFOEMEX

$$
\begin{gathered}
A 311278 \\
T 203.7303
\end{gathered}
$$

FILTER REACTORS				
EYN゙ヒOL	NUMEFEK	INDUCTANCE	CURRENT	$\begin{aligned} & \text { INSULATION } \\ & \text { RMSTEST) } \end{aligned}$
（101）	AC 3143	4 HY	1.5 A ．	8000 V ．
1202				
1102	E6422	8 HY	600 MA ．	$4000 \mathrm{~W} . \mathrm{V}$.
L401	C194	10 HY	300 MA ．	3000 V
L402）	c $5 \times$	12 HY	75 MA ．	1500 V ．
L003）				
L4．04）	c $12 x$	6 HY	160 MA ．	1500 V ．
L405				
－507	$A C 3123$	8 HY	200 MA ．	1500 V ．

$$
A \subset 7719 E
$$

MOD REEACTOR $3 O$ HENRIES

1403
AUDIO RECTIFIER FIGAMENT

TSO1
TRIAD R2EA
$=$ REQ．CTL．SUPPLY

B：ACK \＆BLACK PRIMARY
$\left.\begin{array}{l}\text { BLACK G BLACK PRIMARY } \\ \text { GN SL } \\ \text { GN．} Y-C . T .\end{array}\right\} \quad 6.3$ 〇 SAMPS
GNSL
$\left.\begin{array}{ll}3 L \cdot & 3 L \\ 3 i K & 5 L\end{array}\right\}=303 A M=S$
$\left.\begin{array}{l}\text { RED SL } \\ \text { RED SL }\end{array}\right\} 63$＠IAMP
YELLONSL SV E
YELOM Si．
H．V
REDTORET BBOV．© 203 MA
GN．TO GN． 720 V ． 200 MA
マEE＋YELLSN CT．

TRANSFORMER \＆REACTOR
BC5P M5349

SPECIFICATIONS

Frequency Range:
Crystals:

Frequency Tolerance: Supply Voltages:

Output Impedance: Tubes:
$\therefore 600 \mathrm{Kc}$ to 540 Kc
2 Vacuum Crystals
± 5 cycles, typical ± 2 cycles. 180-210 Volts D.C. @ 10 MA. 6.3 Volts A.C. @ 1.2 inps.

High Z (capacity coupled). 2 Type 12BY7A

Tuning Procedure for the M5422 Oscillator

The following tuning instructions should be followed when placing the M5422 oscillator in operation. If this procedure is not followed, it is possible to tune the oscillator to the 2nd harmonic of the crystal rather than the fundanental.

Information trat follows was obtained with the M5422 oscillator connected to its proper R.F. load and 30 feet of RG-62/U cable connected to the monitor terminal 46 with shield to ground or terminal \#7.

RG-62/U cabie runs 13.5 uufd. per foot, or a total of approximately 400 uufd. effective capacity on the 30 foot length. Shorter lengths of cable on frequencies above 600 KC will effect the tuning of the unit. More tuning capacity (C9) or more turns of the slug in L 3 may be required for resonance.

Shorter lengths of monitor cable on frequencies from 600 KC to 540 KO may prevent the unit from tuning to resonance. If this is the case, capacity should be added across the cable to make up the difference in effective capacity. Longer lengths of cable would nean less capacity or less inductance needed for resonance in this frequency range.

It is recomended that the proper length of $R G-62 / \mathrm{U}$ be used wnenever possible.

Prequencies from 1600 KC to 800 KC

1. NO PKDDING neeतea in this range.
2. Make sure that siug of L 3 is screwed all the way out.

From 1600 KT to approximately 1100 KC , tune C9 for dip in plate current or peak in grid current of following stage. If C9 does not tune through resonance, screw in slug on 13 a turn at a time until resonance is obtained with C9. 800 KC is tuned with C9 near maximum capacity and slug on $L 3$ screwed in 7 turns. If above procedure is not followed it will be possible for crystals from approximately 900 KC to 800 KC to tune to their 2nd harmonic if slus in L3 has not been screwed down to approximately 7 turns for 800 KC .
$3 / 6 / 61$

Frequencies from 540 KC to 800 KC

1. The padder (Cll) 100 uufd. located on bottom of 13 must be connected in the circuit.
2. Slug on L3 should be screwed down 14 turns.

Frequencies from 540 KC to approximately 600 KC can be resonated with C9. If complete resonance can not be obtained on C9, screw slug on L3 back out a turn at a time until resonance is obtained ly tuning C9. At 800 KC resonance will be with C 9 near minimum capacity and slug of L3 screwed out approximately 7 turns from starting point (14 turns down).

CAUTION - If above procedure is not followed and padder not connected, it will be possible to tune crystals from 540 KC to 800 KC to their 2nd harmonic.

After resonance has been obtained, the crystal'may be set to exact frequency by using the frequency monitor. Set the'slots of the trimmer condensers, located on the front of the unit, at right angles to the plane of the trimmer mounting screws. With the crystal selector switch turned to \#l crystal, the frequency should be very close to wero. If not, adjust the trimmer FRER. \#l until frequency is zero or to point desired for operation. Turn crystal selector switch to \#2 position and repeat above operation with trimmer FREQ. \#2.

The tuning of these condensers will not effect the resonate tuning of the unit and C9 need not be bothered again. The tuning of $C 9$ will have very little if any effect on the trimmer adjustments.

	Minimum	Nornal	Maximum
M5422 Plate Voltace	150	180	250
M5422 Plate Current *	16	18	20
6146 Plate Vultage	450	490	525
6146 Plate Current (2)	40	50	70
Driver Hold Bias	70	75	80
P.is. Hold Bias	210	230	250
Driver Grid Current $\$$	17	20	25°
Driver Plate Current \%	260	280	300
P.i. Grid Current 通	175	200	230
P.s. Plate Current (Ip)		1.25	
P.f. Plate Volt (Meter) (Eb)	5100	5200	5300
P.A. Input $\mathrm{Ip} \times$ ($\mathrm{Eb}-100 \mathrm{Ip}$)		6650W	
P.A. Output		5300W	
P.A. Efficiency	78\%	80\%	83\%
Carrier Shift 100\%, 1000 Cy .	2\%	3\%	4\%
6550 Plate Voltage	440	450	460
Modulator Bias	230	240	260
Modulator Plate Current	0.6 @	cyclo	\% Mod.
Response 50-10000 95\%			$\pm 2 \mathrm{DB}$
Distortion 50-7500 95\%			3\%
Noise 100\% Modulation, 1000 Cy .			60

RIDIO FREGUENCY CUBICLE

TOP LEPT - Power amplifier loading, indicatul as D.C. current to power amplifier on zuter jirectly above this control, or as R.F. output by line meter or comon-point current meter. Use to adjust output as requirẻ, approxinately 1.24 amperes plate current, or R.F̈. line current as required for specific installation.

TOP CENTER - Filanent rheostat for filament viltare in unit. Maintain to reả 7.5 volts on filament feter directly above.

TOP RIGHT - R.F. Driver tuning, adjust to maximum multimeter reading when this meter is on "Power implifier Gria" position.

OSCILLiTOR PiNAL RIGHT - Behind small panel Zuor - Crystal selector switch to sclect crystal to be used. On each side of selector switch is a vernier frequency adjustraent for the corresponding crystal. OSCILLATOR PiNEL CENTER - Buffer tuning. Tune for maximum current when multimeter is set on "Driver Grid" A Excitation Contril-Turn clockwise beyind point P.i. erid current remains constant. Observe distortion measuring equipment on "Noise" position for region of low noise reading.

OSCILLATOR FiNEL L_FT - Multimeter selector switch. Most useful indicatinc position is on "Power implifier Grid".
U. in TUNING PiNEL - Power amplifier tuning, tune for minimum current on top left neter (Power Amplifier Plate Current), at 5 KW output, furn counterclockwise to raise the current .1 to .2 amperes above "he minirum value, then adjust "Power inplifier Loaline" to give zequired output.

OOWER OUBICLE
TOP LPFT - Line meter switch by which the voltages of the three phase power supply may be read.

TOP RIGHT - Rectifior filanent v」ltmeter, measuring the primary voltagu on the filament transformer, to be maintained at a specific ralue as measured to cive 5 v , lts n the rectifier filaments.

CONTROL P-NEL LEFT - Start and stop switches frum left to right, to swart and shut down transwitter.

CONTROL ${ }^{3}$ NITL CENTER - Low and high power selector switches with lights above, frum luft to right.

CONTROL PANIL RI HT - High vjltage on an - off switches respectively. MODUL.TOR. CUBICLE

TOP CENTER - Filanent rheostat for filament voltage in unit. Maintain to 7.5 v its filanent on meter directly above.

ATJDTO DRIVER - Two bias contrils, ajjust tu read equally . 05 to . 1 amperes stiatic current on the two plate current meters on the top punel. Use lowest current t; give satisfactory performance.
6,6/58 -43- M5932/M5565, BC-5P/2

MAINTEN.NCE

REL_IS

The RBM contactors used in the contr, 1 circuits and as power cuntactors of all but the high voltage, arc of the same type and rating, reducing the need if a wide variety or replacenent itens. Normal expectancy is for long life; the coils are rated $220 \mathrm{volt}, 50 / 60$ cycle for continuous operation plus 10% to minus 15% of rated vjltage. The contacts operate variously up to 10 amperes and have a 15 ampere rating. The magnet frame ank coil assembly are realily removable by two screws. The coil may be replaced by removing the screw which holls the coil retaining clips. No spring adjustments are required for various contact arrancments.

The contacts aru of silver-palladium alloy to give long mechanical and electrical life. It is not necessary to clean or file the contact tips at any time durine the life of the contacts.

The contacts may be realily reversed by takinc off the stationary contacts, then the removable contacts, and re-installine in the opposite position.

Quite frcquently extra contactors are lesired for auxiliary compnents at the transmitting station, to be operated by various functions of the transmitter, or to be independent of the transmitter operation. is wide variaty of relays anl contacturs may be obtained from the Gates factory. Specify cuil voltage and contacts. In the case of the RBM contactors, the most satisfactory way is to or ar four pole normally open contacts, which arrangement is a stock iter, and alter the contact arrangement as lesired.

IDJUSTMENT OF OVERLO_DS

The overloa? relays, with the exception of the a.c. overload relays, are 6 volt D.C. type which pulls in at approxinately 4.5 volts. Thesi relays are shunted by appropriate resistances which at the lesired overload current will develop the required operating voltaje. Decreasing the amount of shunt resistance increases the overload trippine point.

The power amplifier overload may be adjusted by letunine the power amplifier momentarily to 1.5 or 1.6 amperes. If the overloas does not trip, then the amount of shunt resistance should be increased. The R.F. driver may be adjustei in a similar manner, detunine until the tube shows more than normal heatine, if the current is in excess of the plate current neter reading. The tube need not be left in this operating conzition more than a seconl or so. When this relay is set, the applic tion of high voltase may cause tripping or pumping of the overloais, in which case the overload should be set alimht ly higher. The moduiator overlozas may bu set by applying 7500 cyclo tone, then lecreasine bias on one nolulatur tube until the plate current tncreases further by . 2 or .3 amperes, an setting this relay for tripping. The other modulator tube is ajustea similarly.

With this method of adjustment, the overload need be applied only for a couple of seconds, and as such no damage will be done the tubes. The power amplifier, driver and modulator overload relays, as explained in the control circuit discussion, must close their contacts on an overload to energize the auxiliary control relay, Kl03, which in turn opens the high voltage control circuit. This prevents chattering on modulation peaks. The rapidity of the operation depends on the rapidity at which the overload occurs. The manner of setting the overloads as described brings the current to the
 tri \therefore curront sutdenly and res such supplios a ruchi for fer closirf wore, so that the "ctal tripping current ill w water that as it the manner nescrilud.
formonare overlond tripring currents should be as rollo:ia:

$$
\begin{array}{ll}
\text { Ower halifior } & 1.6 \\
\text { Hodulators } & .35
\end{array}
$$

TRANBEORMERS

The power tube filament transformers have voltage range taps. Primary terminal \#l is always connected to one side of the supply line. The other side, connecting to terminal \#2 delivers the highest secondary voltage, to terminal $\# 4$ the lowest voltage. The voltage range used depends on the line voltage and linc voltage variations and the most suitable connection to keep the filament voltages correct by means of the rheostats. When the line voltage is regulated, the taps should be used that allow the rheostats to be operated near the minimum resistance, reducing the heating from these components.

BLOWER

It may be expected that the blower motor will vary from time to time as to details of construction, but will be the proper speed, and power for 230 volt single phase 50 or 60 cycle operation to deliver the required air volume and pressure. It is suggested that the chief engineer, if not thoroughly familiar with motor maintenance, to avail himself of any opportunity to discuss fully such maintenance with any qualified person as may be found in a motor repair shop or electrical shop.
The motor may be equipped with grease cups or oil cups: Grease cups should be given a partial turn every three months, refilling with a good grade of cup grease when necessary. DO NOT use graphite grease. Bearings requiring oil should be oiled lightly when received. As these motors are tested with the equipment, some oil will already be applied, use a good grade of machine oil S.A.E. 10, and oil lightly about every three months.

CE \& CY TYPE MOTORS

in capacitor start induction run motor has a condenser in the start. ing circuit. This starting circuit is opencd by a switch or rulay when the motor has attained a speed of about 75% of the rated spee which it should do in a few seconds.

TROUBLE CHECK LIST

l. The motor will fail to start if the starting circuit is open which may result from an open conaenser ur failure of the cut-out device to make contacts. An opening in this circuit can be detormined by connecting a test lamp in series with Cl an̉ C2.
2. IF THE MOTOR OVERHEATS: Check the motor speed to see that the motor is not overloadel and operatins at reluced specd. Check the line voltage at the iotur terminals; it should bo within 10% of the name plate voltage. Mak sure the couling air is free to flow through the motor. Chack for a shorted stator. Motor usually hotter at .ne spot or smokes.
3. IF THE MOTO\& FiiILS TO COME UP TO SPEED: Check load an vultaer as above. Cundenser hay be shorted; if so, replace cundenser with one of same rating, viltagu anl microfarads.
4. MOTOR HUMS OR GROWLS: Probable causes - shurted statur, worn bearings, or excessive en? play. Shurtel stator will be indicated by high watts an? overheating.

RIR PRESSURE SWITCH

The air pressure switch cunsists of a captivu plate, hula against the force of the air pressure by the spring tonsion of the switch, The switch mountine, outside plate and spacer plate are held together by bolts threadine through the spacer plate, ans held on th inside of the plenum chamber by nuts.

The switch mounting plate is slotted, su the switch may be lousenei and by chaneine the ansle of the switch, the switch will operate b_{i} the movement of the plate to the pressure p sition. When the air pressure is released, the switch arm spring presses the plate to the no-pressure position, at the sanu tinc opening the circuit.

If the action of the switch uac mes arratic, exarine the air filters for stoppage łue to lirt collection. In the power amplifier, if the screen on tho buttom of the plenum chamber becomes clogged. the air switch will fail t operate.

A.C. OVERLOADS

These relays are the instantaneous type. The tripping value is set by rotating the armature on the threaded shaft; a tab aligns with markers on the armature to indicate the value.

To adjust the relay, the cup under the solenoid is unscrewed, the armature and piston removed. The armature is slotted, and inside this slot will be seen a brass shaft with a groove around it. This groove aligns with the tripping current marked on the armature for tripping at that current. A nut on the brass shaft determines the distance the armature sets in the solenoid which establishes the current required to trip the overload.

The overload tripping current should first be set so that the a.e. overloads barely hold in with 100% modulation at 30 cycles. This will generally be between 60 and:'80 omperes.

AIR PRESSURE

At times it is desirable to measure the air pressure. Numberous heating companies have inexpensive pressure indicators which are used across the filters. One such is the "VISIFLOAT" by the F. W. Dwyer Company.

A "Manometer" for measuring air pressure may be easily made. Two pieces of glass tubing, about $1 / 41$ diameter and 6 to 10 inches long, and connected together by tubing, rubber or plastic such as spaghetti sleeving, and the two pieces of glass tubing mounted side by side an inch or inch and half apart, making a "U" tube. Clear plastic tubing could be formed in the shape of a "U" for this without requiring glass tubing. The "U" tube is filled with water to about midway on the straight sides. A length of tubing fits on one leg of the "U" and this is then placed inside the chamber under pressure. The air pressure is then measured in inches as the difference in water level in the two legs of the "U" tube.

When making measurements, the U tube should be held vertical. The tube in the plenum chamber should be at right angles to the air stream. Impact of the air will give a higher reading. It is convenient to have some solid tubing on the end of the hose. If this tubing is bent on the end, the end may be very easily turned in the air stream.

AIR FILTERS

The air filters shoult be examined regularly. The $20^{\prime \prime} \mathrm{x} 20^{\prime \prime}$ size is rated fur 800 c.f.in., Biving over twice the recumended arua fo the blower capacity. This allows a reasonablo anount of dust collection without loss in ffficiency. The frequency with which the filters should bo changed deponds entiroly upon the conditions at the transmitter, an with close observation, a replace_ient schedule can be establishod. The non-renewable type of filter is furnished, as experience shows that the rencwable or cleanable type is generally difficult to clean, and as the airt bucoras dueply imbedjed and cannot be rem ved by the usual availablu methods, the filtering action is creatly impaired. is the filter is of a standard size, and as such, obtainable from local heating supply firms, either type may be used.

ELEXIGLA.S

The plastic windows should have a certain amount of care and there is included a plastic polishin kit shipped with the transaitter. Plastic surfaces attract dust. This is because plastics tend to accumulate olectro-static charges that act as a magnet to attract the particles of lust flying constantly in the air.

Dust is not only unsightly, but causes scratches when inproperly wiped off. The plastic windows in the BC-5P transilitter have already been waxed and hence, constant dusttng is unnecessary.

POWER TUBES

All tubes shoula be inspected carefully imrediatcly on receipt. Power tubes should be given close attention, particularly to the glass around the plate, filament ana grid seals for flaws. Tubes should be tested as soon after receipt as possible, pperating first for fifteen minutes at rated filament viltace without plate voltare By testing in the power armplifier, the tube can ve operated normall of reducca power for fiftuen minutes, and then fifteon minutos at full power. A normal for Class "B" operation, for the absolute minimum of noise and distortion, the tube should be matched, but in practice, randum rixture of tubus will not give noise or distortion detectable by aural means.

The tubes should be kopt clean, and no foreicn matter allowea to collect between the filament terminals. The tube shoula not be subject to vibration or shock, the 3X2500F3 tubes should be handed by holding to the pins, and supportine the filament loals as much as possible. The best storagn is a cabinut not used for storage of other equipment, built with the proper support and cushioning. Such a cabinet may bo cibtained frum the Gates factory.

The tube locates in the socket with the outside terminal lead away from the filament air seal nozzle. The leajs should be formed towards the connectors by holding the top of the tube so as not to place a strain on the glass. The tube is then inserted in the socket, and the leads placed in the terminal clamis. The wing nuts should be firmly tight by $h_{2} n d$. The s.ring clam on the gria should be loosened so the rine can be turned to allow the erid cunnection to be made between tho two clan, ing plates. The clamp need not be tightened, as the pressure remains fairly firm.

The filaments should be turned on and off as few times as possible. The delay timo of the blower should not be shortened after a sustained period of operation. The operatin; personnel should familiarize themselves with the tube tomerature at normal shutauwn, so that on intermittance testing, or filament unly, the blowers can be cut when the tubes have cuoled sufficiently.

The tube life of a thoriatel tungsten filament tube cannot be extended by reduction of filament viltaee as with brisht tungsten filament tubes, as actual filament evajoration is negligible. During operation, omission is ojtained frun the thoriun coating of the tungsten filament. To maintain balance of the coating of thorium, the filament shoula be operated close to s,ecified voltage, that is olus or minus 5\%. Filament voltage should bu measured on each tube, and the voltage balenced by the primary taps on the transformer if necessary. This normally should not be required, The ranges of the taps are giver in the information on transformers. When tubes are chenced, the filament vilage should be checked as soon after as possible. The operation range is n t materially narrower than brioht tungsten filaments, as this latter cannct be operatad ovir-voltase without great Ioss of life, an with unlervoltage, the emission may not bu sufficient for satisfac屯ory operation.

Filament operation plus or minus 10% is occasi nally permissible for periods of short luration, but for all intent and purpose, the filament shoula be operated at rated voltage. The tube life is not materially affected by filament operation within this range. if the periods of such operation are of relatively short and infrequent duration.

The thoriated tuncsten filament nomally holds eaission throughout life, and very close to the end of life, the cuission starts to fall off rapialy. This ives the station personnel a chance to anticipate the end of life an: t. replace the tube without suffering transmitter outages. Once the emission has started to go, it is only a matter of a few lays until the tube will be completely unsatisfactory.

The loss of emission will be indicated the same as with any other type of filament. One of the carliest indications is the falling off of erid current in the case of a power amplifier tube. This results from the fact that a very small reauction in output power
6/6/58
and consequent reduction in R.F. voltage loveloped in the jate circuit causes a drop in control grid current. In fact, the control grid current acts as a monitoring vacuum tube voltmeter for the developed R.F. plate voltage. By referring to constant current curves and noticing that as the oper ting line fails to push into the region of equal sriz and plate voltages, the grid current falls off rapỉly.

Other indications are failure to hit the modulation peaks on both the positive and negative. The positive jeaks are not reacheł because there is a lack of space current, an? the negative peaks are not auveloped because there is insufficient eril current to leveloj? the necessary variations in sri? lwak bias to drop tho output power momentarily to zero.

In the molulators, failure of cmision of one of the tubes may result in unbalance of the modulation paak. Loss of emission by the modulator supplying tho positive modulation peak would sh w as failure to attain full modulation on the positive jeaks; where failure of the modulator supplying the negative peak would give a similar indication for this mudulation cyclo. There may also be present a quality breakin, or oscillatin, aurin the peak of the cycle. Suspicious molulator tubes could be checked in the power amplifier position and th results compared with a known gool tube。 In the case of unbalance of mołulation peaks, the performance should be checked that there is not some fault existent in the
 is jicking up radic frequency harmonics will show unbalance on the modulation peaks, although the transmittor has been adjusted and performin normally with no indication of change, this possibility does still exist. is the tubes are easily changed, it can be noted if the condition changes with a replacement, or rearrangement, of tubes.

It is succested that no tube remain idle more than three months. One rocedure is to rotat. tubes, placing spare tubes in service, and more or less equalizine the usade of the tubes.
in alternate methoz is given, that is to place the spare tubes in service only for a day or so at three or four nonth intervals. Thus, tubes are kept conditioned, and when tube troubl or loss of emission is suspected, a ractically new set of conditioned tubes will be availablc for comparison.

3X2500F3
Filament Vultage 7.5
Filament Current 48
Maximum Start Current 100
Amp. Factor 20
Interelectrcae Capacity:
Grid-plate 20 minfa.
Gril-Fil. 48 mind. Plate-Fil. 1.2 mmfa.
Transconluctance 20,000 minus.(3000V. - .83A)
Net Weicht 7.5 lbs.
Maximum Ratine:
DC Plate Voltage 5500
DC Plate Current 2.0Plate Dissipation2500 Watts (1)1670 Watts (2)
Plate Cooler Core Temp. $150^{\circ} \mathrm{C}$.
Gria Dissipation 150 watts

HIGH VOLTAGE SUPPLY

Some of the outstanding advantages of semi-conductor rectifiers are their long life and low maintenance costs. However; when continuity of services is of primary concern, a few simple periodic preventative maintenance measures may eliminate an eventual unexpected equipment shutdown.

After the first 500 to 1000 hours of operation, it is suggested that a simple ohmmeter check on individual rectifier cells be performed to locate any possible shorted cells that need replacement. There after, this check need not be repeated at intervals less then 5,000 to 10,000 hours.More critical tests can be made on individual cells by applying rated inverse voltage and displaying the cell reverse characteristic on a scope. Circuits for performing this test can be found in any good text on semi-conductors.

Unless exceptionally clean filtered air is available for rectifer cooling, dust will in time deposit on rectifer surfaces and reduce the effectiveness of heat dissipation. The rectifer assemblies should be cleaned on a regular maintenance basis, the interval between cleaning depending on the particular enviornmental conditions of the installation.

RATINGS:

SILICON CELL

> Audio Devices type 50 K 7 N Standard Rectifier type Sl081

Negative base type;
Peak inverse voltage............... 500 Volts
Current................................ 25 Amperes
Reverse current....................... 25 MA
Instantaneous forward drop
@ 25 Amps . \& $25^{\circ} \mathrm{C}$. Junction temp......l. 5 Volts
These cells are rated by the manufacture to carry 100 amperes for one second before reaching dangerous junction temperature.

$$
6 / 6 / 58 \quad-52-\quad \mathrm{M}-5932, \mathrm{BC}-5 \mathrm{P} / 2
$$

A hard and fast maintenance schedule cannot be set up in this instruction book. Each installation will have its own problems and conditions which effect the schedule. Thus, a location which is dusty, where mud is tracked in during inclement weather to become dust on drying, will require more often cleaning of the air filters and this dust and mud may be carried inside the transmitter by the personnel to require more frequent cleaning of components.

After each signoff, the personnel should give the transmitter an inspection. This inspection should include:
I_{n} All condensers in power amplifier and R.F. Driver.
2. All coils in the power amplifier tank and coupling circuits for undue heating, also the slips on the coils for heating.
3. Components of phasor (if used).
4. Filament connections of power tubes for heating.
5. Bearings of blowers. Note if any vibration is present in blower as might indicate a loose wheel.

This inspection will only take a few minutes, and may anticipate a failure which would lose valuable program time. The BC-5P transmitter is like any machine, for the best performance it should be properly maintained.

The following are given to serve as guide in planning maintenance. Each installation may require modiviation to suit the local conditions. is transmitter weekly maintenance schedule is suggest as follows:
I. Inspect all relays and clean contacts as required.
2. Clean internally all part of the transmitter, including insulators.
3. Inspect power amplifier tank coils, connections, etc.
4. Inspect blowers for vibration.
5. Test operation of overload relays.
6. Test door interlocks.
7. Inspect sliding contacts of variable coils.

A monthly maintenance routine is suggest as follows:

1. Clean with crocus cloth low power and rectifier contacts.
2. Clean all socket and tube prong contacts.
3. Check all filters, and clean if required.
4. Tube rotation according to schedule.
5. Give a general detailed close inspection of each unit in the transmitter with whatever test of components seems adiisable.
6. Check all connections for tightness and heating.
7. Check tube radiators and clean any dust accumulation.
8. Test air pressure switch.

TEST EQUIPMENT

The operating performance of broadcasting equipment may be kept to high standards by having and using certain items of test equipment. It is impossible to say which should be had in preference to others, but the utility of each will be pointed out.

FORTABLI: VOLT-OHMMETER to use for quick checking of voltage, continuity and resistance. The self-contained type is preferable for convenience.

VACUUM TUBE VOLTMETER to use for checking audio signal voltages and d.c. voltage where low current drain of the meter is essential. At least one meter either VTVM or volt-ohmmeter should be available which would read 3000 volts d.c.

AUDIO OSCIILATOR to use to obtain e signal source for checking audio equipment.
$\frac{V U}{}$ METER AND PAD to obtain input level readings for frequency re-
NOISE ANF DISTORIION ANALYZER to use for checking both radio frequency and audio units for distorticn and noise. If the unit does not contain a diode, a diode unit will be required.
OSCILLOSCOPE to use for observing wave shapes, calibrating modula-

This test equipment can be used not only for transmitter maintenance but also in keeping the studio equipment at peak of performance. Most of these items are listed in the GATES RADIO COMFANY catalog and all are obtainable through this company. Where test equipment is available, a regular check should be made of the equipment as a part of the maintenance schedule.

TOOLS

A list of desirable tools would probably include everything on the store counter. Where station personnel build part of the station equipment, or construction equipment for home or amateur use, the tool rack will usually be found to be well equipped. Where tools are used strictly for maintenance, the tool supply is too frequently lacking important tools. The design and construction of the transmitter has been to use "standard" parts where possible, and no special tools are required.

The recommended tool list is as follows:

1. Screwdrivers - 5 or 6 ranging from $1 / 16^{\prime \prime}$ bit to 7/16". An offset screwdriver is frequently time saving. A full set of Phillips screwdrivers should also be included.
2. Wrenches - 3 or 4 from $4^{\prime \prime}$ to $10^{\prime \prime}$ adjustable. These can well be augmented by sets of open end box wrenches and socket sets.
3. Spintite wrenches are exceedingly convenient in working close quarters, such as transformer terminal boards.
4. Soldering irons - 2, one small, fairly rapid heating, the other, heavy duty for soldering tubing, large lugs, etc.
5. Pliers - needle nose medium and heavy duty side cutters, Bernard and vise grip types are frequently very useful. Also, one or two sizes of cutters should be included.
6. Electric drill - the $1 / 4^{\prime \prime}$ medium duty is probably the best for general use. A light duty drill may fail at an inopportune time; a heavy duty drill is generally too heavy and cumbersome for average station use.
7. Among the miscellaneous tools, at least standard hacksaw should be included, as well as tin shears, vise, hammer, etc.
8. Allen wrenches from $6-32$ to $1 / 4-20$ sizes.

To complete the workshop an assortment of nuts, bolts, lockwashers and washers, some wire, \#12 and \#14 flameproof, hookup wire, bus wire \#8, \#l2 and \#16, some high voltage cable, an assortment of soldering lugs should be on hand. Many other items suggest themselves.

SFARE PARTS

Except for tubes, frequently a station has no spare parts. The Gates' BC-5P has been designed with the intention that there should be no part failures. This of course, must be qualified "in normal operation". The most common sources of damage are perhaps electrical storms which may damage condensers in the antenna system, power amplifier tank and coupling and the R.F. meters. Accidental short circuits are damaging to switch and relay contacts. Breakage may occur to resistors especially of the ferrule type.

The location would also be a determining factor. Near large cities many substitute parts may be obtained should such be required. Stations located near smaller cities often do not have access to substitute replacement parts.

The problem then reserves itself to one of individual conditions. The Gates' BC-5P tr insmitter has been designed as far as practical for the duplication of parts. The Engineering Department of Gates Radio Company will be glad to cooperate to work out a spare parts inventory to meet the customer's requirements and desires.

SAFETY PRECAUTIONS

Rigid rules for safety should be established and enforced.
The rectifier filters are equipped with grounding relays, which normally give protection from high voltage, but even then enough voltage may be passed to give a severe shock. Condensers in the $B C-5 P$ have been so arranged that they are shorted by the grounding switches or have some form of drain. However, in event of a fault, or some phase of maintenance, a condenser might be left with a dangerous charge. Always test the high voltage condensers with a grounding stick before handling components.

Do not try to make repairs on a "hot" circuit. The accidental slip of a tool might cause far more damage than to shut completely down in the first place, or result in physical harm to the operator.

A good many times an operator will be working alone. This calls for continuous caution on his part, that he use tools sensibly, that if he needs to reach the top part of the transmitter he have a safe step-ladder, that if he has to move a heavy unit he has the work so organized to require the minimum of physical strain such as having blocks and rest positions ready.

Extreme care should be used around the power tubes. In working around them, if there is any possibility that a tool may slip and hit the tube, remove it to a safe place. Such a blow may shatter the glass and cause severe injuries to face and eyes.

When more than one operator is working on the transmitter, make surf that everyone is clear before applying any voltages. The best way is to get verbal clearance from everyone, then announce the voltage is being applied.

Do not short out door interlocks to get inside of a unit in operation.

This equipment is warranted by Gates Radio Company of Quincy, Illinois to be free from defects in workmanship and material and will be repaired or replaced in accordance with the terms and conditions set forth below:

1. Gates Radio Company believes that the purchaser has every right to expect first-class quality, materials and workmanship and has created rigid inspection and test procedures to that end, and excellent packing methods to assure arrival of equipment in good condition at destination.
2. Gates Radio Company will endeavor to make emergency shipments at the earliest possible time giving consideration to all conditions.
3. Gates Radio Company warrants new equipment of its manufacture for one (1) year and (six (6) months on moving parts), against breakage or failure of parts due to imperfection of workmanship or material, its obligation being limited to repair or replacement of defective parts upon return thereof f.o.b. Gates Radio Company's factory, within the applicable period of time stated. Electron tubes shall bear only the warranty of the manufacturer thereof in effect at the time of the shipment to the purchaser. Other manuracturers' equipment covered by a purchaser's order will carry only such manufacturers' standard warranty. These warranty periods commence from the date of invoice and continue in effect as to all notices, alleging a defect covered by this warranty, received by Gates Radio Company prior to the expiration of the applicable warranty period.

The following will illustrate features of the Gates Radio Company warranty:
Transmitter Parts: The main power or plate transformer, modulation transformer, modulation reactor, main tank variable condensers all bear the one (l) year warranty mentioned above.

Moving Parts: As stated above, these are warranted for a period of six (6) months.

Electron Tubes: As stated, electron tubes will bear such warranty, if any, as provided by the manufacturer at the time of their shipment. Gates Radio Company will make such adjustments with purchasers as given to Gates Radio Company by the tube manufacturer.

All other component parts (except as otherwise stated): Warranted for one (1) year.

Abuse: Damage resulting from abuse, an Act of God, or by fire, wind, rain, hail, in transportation, or by reason of any other cause or condition, except normal usage, is not covered by this warranty.
4. Operational warranty - Gates Radio Company warrants that any new transmitter of its manufacture, when properly installed by purchaser and connected with a suitable electrical load, will deliver the specified radio frequency power output at the output terminal(s) of the transmitter, but Gates Radio Company makes no warranty or representation as to the
coverage or range of such apparatus. If a transmitter does not so perform, or in the event that any equipment sold by Gates Radio Company does not conform to any written statement in a contract of sale relative to its operating characteristics or capabilities, the sale liability of Gates Radio Company shall be, at the option of Gates Radio Company, either to demonstrate the operation of the equipment in conformance with its warranty, or to replace it with equipment conforming to its warranty, or to accept its return, f.o.b. purchaser's point of installation and refund to purchaser all payments made on the equipment, without interest. Gates Radio Company shall have no responsibility to the purchaser under a warranty with respect to operation of equipment unless purchaser shall give Gates Radio Company a written notice, within one (l) month after arrival of equipment at purchaser's shipping point, that the equipment does not conform to such warranty.
5. Any item alleged by a purchaser to be defective, and not in conformance with a warranty of Gates Radio Company shall not be returned to Gates Radio Companj until after written permission has been first obtained from the Gates Radio Company home office for such return. Where a replacement part must be supplied under a warranty before the defective part can be returned for inspection, as might be required to determine the cause of a defect, purchaser will be invoiced in full for such part, and if it is determined that an adjustment in favor of the purchaser is required, a credit for an adjustment will be given by Gates Radio Company upon its receipt and inspection of a part so returned.
6. All shipments by Gates Radio Company under a warranty will be f.o.b. Quincy, Illinois or $f .0 . b$. the applicable Gates Radio Company shipping point.
7. Gates Radio Company is not responsible for the lose of, or damage to, equipment during transportation or for injuries to persons or damage to property arising out of the use or operation of Gates equipment. If damage or loss during transportation occurs, or if the equipment supplied by Gates Radio Company is otherwise damaged, Gates will endeavor to make shipment of replacement parts at the earliest possible time giving consideration to all conditions. It is the responsibility of a purchaser to file any claim for loss or damage in transit with the transportation company and Gates will cooperate in the preparation of such claims to the extent feasible when so requested.
8. Gates Radio Company, in fulfilling its obligations under its warranties, shall not be responsible for delays in deliveries due to depleted stock, floods, wars, strikes, power failures, transportation delays, or failure of suppliers to deliver, acts of God, or for any condition beyond the control of Gates that may cause a delayed delivery.
9. This warranty may not be transferred by the original purchaser and no party, except the original purchaser, whether by operation of law or otherwise, shall have or acquire any rights against Gates Radio Company by virtue of this warranty.
10. Gates Radio Company reserves the right to modify or rescind, without notice, any warranty herein except that such modification or rescission shall not affect a warranty in effect on equipment at the time of its shipment. In the event of a conflict between a warranty in a proposal and acceptance and a warranty herein, the warranty in the proposal and acceptance shall prevail.

1d. This warranty shall be applicable to all standard Gates catalog items sold on or after March $1,1960$.
$1 / 6 / 60$

BC-5P2 TRANSMITTER

-	Symbol No.	Gates Part No.			Description
	R505	540	0308	000	Res., 100 ohm, 1 W., 5\%
	R507	540	0482	000	Res., 15K ohm, 1 W., 10\%
	R508, R518	540	0284	000	Res., 10 ohm, 1 W., 5\%
	$\begin{aligned} & \text { R509 } \\ & \text { R510, R514, } \end{aligned}$	542	0132	000	Res., 1000 ohm, 20 W.
	R515 ${ }^{\text {a }}$	5420	0703	000	Res., l ohm, l W., 5\%
	R512	552	0258	000	Control, 25K ohm
	R513	540	0317	000	Res., 240 ohm, l W., 5\%
	R516	542	0081	000	Res., 2000 ohm, 10 W.
	R517	542	0095	000	Res., lok ohm, 10 W.
	R522	542	0148	000	Res., 20K ohm, 20 W.
	R519	542	0099	000	Res., 15 K ohm, 10 W.
	R523	542	0410	000	Res., 3500 ohm, 20 W .
	R524	540	0571	000	Res., 22 ohm, 2 W., 5\%
	S502	600	0160	000	Switch
	T501	472	0069	000	Transformer, Power
	TB501	614	0118	000	Terminal Board
	TB502	614	0116	000	Terminal Board
	TB503	614	0070	000	Terminal Board
	V501	374	0051	000	Tube, 6146
\cdots	V502	374	0020	000	Tube, 5R4GY
	V503, V504	370	0103	000	Tube, 6W4GT
	XA501, XA 502	406	0144	000	Pilot Light Assembly, Green
	XF501	402	0021		Fuseholder
	XV501, XV502, XV503, XV504	404	0016	000	Socket

M5422 OSCILLATOR UNIT FOR AM TRANSMITTERS

Symbol No.	Gates Part No.	Description
R1, R6	5400764000	Res., look ohm, 2 W., 10\%
R2	5400740000	Res., 1000 ohm, 2 W., 10\%
R3,R9,		
R10,R11	5400757000	Res., 27K ohm, 2 W., 10\%
R4	5400754000	Res., 15K ohm, 2 W., 10\%
R5, R8	5400752000	Res., lok ohm, 2 W., 10\%
R7	5400730000	Res., 150 ohm, 2 W., 10\%
R12	5400740000	Res., 1000 ohm, 2 W., 10\%
R13	5400760000	Res., 47 K ohm, $2 \mathrm{~W} ., 10 \%$
R14	5400284000	Res., 10 ohm, 1 W., 5\%
S1	9130316001	Rotary Switch
V1, V2	3700123000	Tube, 12BY7A
XV1, XV2	4040059000	Socket, Noval
XY1, XY2	4040016000	Socket, Crystal
Y1, Y2	,	Vacuum Crystal (det. by freq.)

FRONT VIEW MODULATOR CUBICLE BC5 P

rear view modulator cubicle BC5P

Since this is a destructive operation, the engineer must be reasonably sure that the part is defective before removing it. He may determine this from the D.C. and signal voltage measurements or by visual observation.

WARNING: The copper conductors are only .0027" thick on the printed chassis. They are easily damaged! Do not attempt to pull one component lead loose to check the component. Use only the approved procedure as outlined in the sketches and the sub-paragraphs listed below.

Use a small electric soldering iron (60 watts or less) and allow it to come up to full heat before starting the repair job. The tip must be clean and well tinned.

CAUTION: Do not use a soldering gun. The extremely high temperature of the tip will damage the phenolic board.

Put the iron tip on the fillet under the chassis, right beside the component lead being removed. Put a gentle, but firm pressure on all leads and components being moved while the heat is applied. Do not hold the iron to the printed chassis for long periods of time. If the lead or component is difficult to remove, make repeated short passes at it rather than one long period that may overheat the board.

1. REMOVING PARALLEL MOUNTED COMPONENTS WITH AXIAL LEADS:

A clip leads

C

push wire through hole until hook can be clipped off.
clip off hook that was soldered to chassis.
place iron on fillet again and pull the wire out of the hole on the top side of the chassis.
2. REMOVING VERTICALLY MOUNTED FESISTORS AND COMPONENTS WITH AXIAL LEADS:

place iron on fillet and push wire through the hole until the hook can be clipped off.
clip off hook that was soldered to chassis.
remove wire as illustrated in. paragraph l. (c).

Page 1

Tube sockets are very difficult to replace and should not be replaced until you are positive that the one in question is actually defective. Resolder all of the socket pin fillets to assure that this is not the trouble. Inspect the top side to see if the tube pin sleeve is bent and can be straightened. Use a socket alignment tool to re-size. Check continuity from the top to the bottom side of the chassis. If there is a connection and the socket sleeve is not out of alignment or spread open, the socket is $0 . K$. and should not be removed.
(A) If the socket has been damaged or is excessively corroded it must be replaced. Stand the unit so that the chassis is vertical. Hold a small iron to the hex nut in the center of the socket (if the socket is retained in this manner). After the solder has melted, unscrew the retaining screw.
(B) Remove the excess solder from all pin fillets by carrying it away with the tip of the iron. Repeat until all solder that will come loose is removed. Do not hold the iron to the chassis for long periods of time.
(C) Starting at pin 1 or pin 7 (8 or 9 on other sockets), apply the iron and push against the socket to raise it at this point. Use the thumb and fingers only to raise socket to prevent damage to the board. The socket will not move very much but any movement at all is helping. Place the iron on each pin in rotation around the socket while pushing up on the side of the socket adjacent to the pin being heated. After several passes around the socket it will no longer be held in by solder. Gently rock the socket and pull it free of the holes.
(D) Use a small metal twist drill as illustrated in paragraph 5 of these instructions to clear the fillet holes of solder.
(E) Install the new socket and put in a new retaining screw similar to the one removed (if retaining screws are used). Do not tighten the nut excessively and put a great strain on the phenolic board.
(F) Solder the screw, nut and each socket pin fillet swiftly and securely. Be sure that there is no solder bridging between adjacent fillets or conductors.
(G) If one of the fillets was damaged in the replacement operation, form a small loop on the end of a small piece of wire. Drop the loop over the socket pin and lay the wire to join the proper conductor. Flow solder on the connections and clip off the excess wire.

From the Engineering Department of
The Gates Radio Company
A Subsidiary of the Harris-Intertype Corp.

REPLACING COMPONENTS ON THE PRINTED CHASSIS

Since this is a destructive operation, the engineer must be reasonably sure that the part is defective before removing it. He may determine this from the D.C. and signal voltage measurements or by visual observation.

WARNING: The copper conductors are only .0027" thick on the printed chassis. They are easily damaged! Do not attempt to pull one component lead loose to check the component. Use only the approved procedure as outlined in the sketches and the sub-paragraphs listed below.

Use a small electric soldering iron (60 watts or less) and allow it to come up to full heat before starting the repair job. The tip mast be clean and well tinned.

CAUTION: Do not use a soldering gun. The extremely high temperature of the tip will damage the phenolic board.

Put the iron tip on the fillet under the chassis, right beside the component lead being removed. Put a gentle, but firm pressure on all leads and components being moved while the heat is applied. Do not hold the iron to the printed chassis for long periods of time. If the lead or component is difficult to remove, make repeated short passes at it rather than one long period that may overheat the board.

1. REMOVING PARALLEL MOUNTED COMPONENTS WITH AXIAL LEADS:

A

C

push wire through hole until hook can be clipped off.
clip off hook that was soldered to chassis.
place iron on fillet again and pull the wire out of the hole on the top side of the chassis.
2. REMOVING VERTICALLY MOUNTED RESISTORS AND COMPONENTS WITH AXIAL LEADS:

place iron on fillet and push wire through the hole until the hook can be clipped off.
clip off hook that was soldered to chassis.
remove wire as illustrated in. paragraph 1. (c).

place the iron against the folded wire and rotate it away from the conductor lead. ing into the fillet $(2-c)$.
cut the wire as near the chassis as possible after

removing as much excess solder as possible. Remove solder by carrying it away with the iron tip and wiping the tip on a clean cloth. Repeat until the hook can be clipped with small sharp diagonal cutters, illustrated in (2-D).

3. REMOVING PRINTED WIRING TYPE CAPACITORS:

(A) hold iron tip on one of the folded leads, as soon as the solder melts - push gently but firmly on the side that will lift this lead. The capacitor should be pushed over just far enough to clear the lead from the hole.
(B) cut the lead off to prevent it from going back into the hole when removing the other lead.
(C) hold the iron tip to the other lead and push the capacitor over until it comes free.
4. REMOVING SADULE TYPE ELECTROLYTIC CAPACITORS:

Place the iron tip on top of the folded over mounting ear. As the solder melts, slip a thin knife between the mounting ear and the copper conductor pad. DO NOT PRY THE TAB UP WITH THE KNIFE! See (4-B) for bending ears away from chassis. When the knife is completely under the ear, remove iron and let the solder cool.

Repeat on other two mounting ears.

Using a pair of small sharp diagonal cutters, bend the mounting ears up and away from the copper conductor pads. DO NOT PRY THE MOUNTING EARS UP WITH A KNIFE OR SCREWDRIVER!

Repeat the process on the other two mounting ears and drop the capacitor off the board.
5. PREPARING THE HOLES FOR THE REPLACEMENT COMPONENT:

Use a small metal twist drill (l/8" dia. or less) to clear the hole only in the fillet of solder. Twirl the drill by hand. Do not attempt to remove all of the solder in one turn, do it slowly and carefully.

Do not attempt to increase the hole size, just remove the solder. It is soft and easily removed in this way.
6. REPLACING THE COMPONENTS:

A

(A) \& (B) Fold the leads on the new part to the same spacing as the mounting holes. Insert the part and fold the leads under the chassis to hold the part tightly against the top of the chassis. Clip off the excess wire.

Put the iron tip on the fillet and lead. Solder swiftly and securely. If the printed chassis is damaged by accident it is seldom necessary to scrap it. If one of the conductors is broken, lay a piece of small wire (\#18 to \#24 AWG) across the break and solder each end to the conductor. If a fillet is pulled loose, break it off to get rid of the loose end. Fold the new component lead toward the end of the conductor and solder the lead to the conductor. If the component lead is cut too short, lay a small piece of wire across the gap solder it in.

Tube sockets are very difficult to replace and should not be replaced until you are positive that the one in question is actually defective. Resolder all of the socket pin fillets to assure that this is not the trouble. Inspect the top side to see if the tube pin sleeve is bent and can be straightened. Use a socket alignment tool to re-size. Check continuity from the top to the bottom side of the chassis. If there is a connection and the socket sleeve is not out of alignment or spread open, the socket is O.K. and should not be removed.
(A) If the socket has been damaged or is excessively corroded it must be replaced. Stand the unit so that the chassis is vertical. Hold a small iron to the hex nut in the center of the socket (if the socket is retained in this manner). After the solder has melted, unscrew the retaining screw.
(B) Remove the excess solder from all pin fillets by carrying it away with the tip of the iron. Repeat until all solder that will come loose is removed. Do not hold the iron to the chassis for long periods of time.
(C) Starting at pin 1 or pin 7 (8 or 9 on other sockets), apply the iron and push against the socket to raise it at this point. Use the thumb and fingers only to raise socket to prevent damage to the board. The socket will not move very much but any movement at all is helping. Place the iron on each pin in rotation around the socket while pushing up on the side of the socket adjacent to the pin being heated. After several passes around the socket it will no longer be held in by solder. Gently rock the socket and pull it free of the holes.
(D) Use a small metal twist drill as illustrated in paragraph 5 of these instructions to clear the fillet holes of solder.
(E) Install the new socket and put in a new retaining screw similar to the one removed (if retaining screws are used). Do not tighten the nut excessively and put a great strain on the phenolic board.
(F) Solder the screw, nut and each socket pin fillet swiftly and securely. Be sure that there is no solder bridging between adjacent fillets or conductors.
(G) If one of the fillets was damaged in the replacement operation, form a small loop on the end of a small piece of wire. Drop the loop over the socket pin and lay the wire to join the proper conductor. Flow solder on the connections and clip off the excess wire.

From the Engineering Department of
The Gates Radio Company
A Subsidiary of the Harris-Intertype Corp。

HOW CAN WE HELP YOU?

Where problems exist, we want to help. - The best way is to work out the problems together. In that way, you are completely familiar with what is done and future maintenance will be routine.

1. You will note the SERVICE QUESTIONNAIRE. Fill this out completely and mail back today, if possible. Use an extra sheet of paper if further comments are necessary. The following are statements of fact or things to look for. Always remember that most problems have a simple solution. If some of the statements below are elementary, it is because busy, intelligent people often assume that the simple, elementary things are okay.
2. LOW OR HIGH EFFICIENCY. This is important as a first test. As efficiency will vary with transmitter powers, these estimates will help:
250 watts -65 to 75% efficiency
500 watts -65 to 75% efficiency
1000 watts -68 to 77% efficiency
5000 watts - 72 to 80% efficiency
(a) The above variances in limits could be for many reasons such as slight meter error, tune -up and/or variance in transmission line length.
3. COMPUTING EFFICIENCY. To compute wattage input, multiply the plate voltage by the plate current in the final radio frequency amplifier. For example, if plate volts were 2500 and plate current was $550 \mathrm{MA} .$, we have:

$$
\begin{array}{r}
2500 \\
.550 \\
\hline 1375.000
\end{array}
$$

This means the power input to the final P.A. stage as required to compute power is 1375 watts, which would be approximate for a 1000 watt transmitter. If, at this power input, the transmitter is delivering 1000 watts output as computed by antenna current (see Par. 4), then we find the transmitter is approximately 73% efficient, or:

$$
\frac{1000}{1375}=73 \%
$$

4. COMPUTING POWER OUTPUT. The formula $I^{2} R$ is employed here. $I=$ the current reading of your antenna meter at the tower and $R=$ the resistance measurement of your tower as provided by your consultant who measured your tower after it was erected. If the tower resistance was 50 ohms (they vary widely from tower to tower), then the antenna current squared, multiplied by the tower resistance, would be the power output. Using 1000 watts as the transmitter power, we find if the antenna current was $4 \frac{1}{2}$ amperes that the square of this, or 4.5×4.5, is 20.25 and we have this simple problem:

$$
20.25 \times 50=1012.5 \text { (watts) }
$$

5. CORRECTING LOW EFFICIENCY. Basically a broadcast transmitter by inherent design cannot produce low efficiency unless it is tuned up incorrectly. If you have low efficiency, your first check should be into an approved dummy antenna. Light bulbs or dummy antennas of unknown resistance under power do not help. As every station should have a dummy antenna for off-hours testing, etc., this should be part of your test equipment. Several types are listed in the Gates catalog and they are not expensive. By use of the dummy antenna, we have a known resistance to compute the transmitter efficiency without using the antenna tower, antenna coupling equipment or transmission line. By using the formula in Par. 4 above, we use the resistance of the dummy antenna as R. The $I^{2} R$ gives us the power out of the transmitter.
6. When using a dummy antenna and efficiency is low or below that in Par. 2, the first thing to do is check the accuracy of the plate voltmeter and P.A. milliammeter. This is the gas tank that is always full but often turns out to be the offender. Meters are delicate and the transportation company could have dropped the box in just a way to render a meter inaccurate. You must have another meter of known accuracy for both circuits. A reliable volt-ohm-meter will suffice. Be careful as the voltage is lethal. If you find either of these meters is off, you have found the trouble.
7. If all is normal, then reconnect the transmitter to the antenna. Get another R.F. ammeter (perhaps you can borrow one from a nearby station) and check the accuracy of this meter. An error of only a couple tenths on the scale makes a huge difference. Using our example in Par. 4 above, you will note we used a meter reading of 4.5 amperes as an example which gave us 1012.5 watts output. If this meter had read 4.4 amperes, the output would have been 968 watts. Thus, if the meter was off only 0.1 amperes, we lose 44 watts or nearly 5% of our 1000 watts output.
8. ARCING PROBLEMS. Power must go to the antenna. When it gets sidetracked, it has to go somewhere and this often causes arcing. As efficiency, discussed above, tells many stories, we often find that low efficiency and arcing go together. If the dummy antenna shows good efficiency and the antenna itself shows poor efficiency, it means part of the power is not getting to the antenna. This could indicate several things:

- Improper tuning of antenna coupler.
-- Standing waves on the transmission line usually indicated by different current readings at each end of the line.
- Improper ground return from the ground radials to the transmitter.
- Incorrect resistance measurement of the tower.

9. TUNING ANTENNA COUPLER. Your consultant can help you by tuning up your coupler with an R.F. bridge at the same time he measures your tower. -- Where this is not possible and a bridge is not available, consult the graphs in the instruction book and use the cut and try method. Result desired is the greatest antenna current without increasing the power input to the transmitter to get the increased antenna current.
10. STANDING WAVES on the transmission line are caused by improper impedance match between the output of the line and the antenna coupler. Poor match between transmitter output and input to line will reduce power transfer and cause low efficiency. Standing waves may also be caused by a poor or no ground on the outer shield of the transmission line. This line should be grounded to the ground radials at the tower end and to the transmitter at the transmitter end.
11. IMPROPER GROUND. Here is where many good installations go astray. We plow in 120 ground radials but fail to connect them well to the transmitter. Remember, this is the second conductor of our radiating circuit. Where the radials are bonded together at the tower, extend at least a 2 -inch copper strap directly to the ground of the broadcast transmitter. Do not attach to one radial closest to the transmitter. Vision your transmitter the same as an ordinary light bulb circuit. The transmission line to the tower is one wire. The other is the ground strap from the radials under the tower back to the transmitter. And don't forget to ground the antenna coupler box too. In fact, you can't do enough good grounding.
12. INCORRECT RESISTANCE MEASUREMENT OF TOWER. Here is where Gates might offend a consulting engineer. It can be said that consultants seldom miss because they know the importance but it has happened. We recall one world-famous consultant that came up with a wrong one and there are lots of good reasons, such as an error in the R.F. bridge. One cause is making changes in the ground system after the measurements are made. This one has upset all of us at times. Any good consultant will recheck his measurements if everything points that way. Be sure first because these consultants are mighty accurate. - The importance of this point is understood by reading Par. 4 again. If the resistance was actually 40 ohms instead of 50 ohms, the power output would be 20% less and the efficiency would be nothing short of horrible.
13. FUSE BLOWING. This doesn't happen often but when it does, it is a big problem. Especially in remote control unattended operation. It is a little embarrassing to suggest the fuses as too small. Don't forget the fuse power is computed by a good safety factor as you may have some things on these fuses that you have for gotten about, such as a window fan or a well pump. .-. Also fuse rating and heat go together. A hot day and border line fuses is asking for trouble.
14. More important is the deeper causes of fuse blowing. Here are a few points:

- In extremely cold weather if you blow a fuse at morning turn-on, it is a safe bet the temperature of the room has gone very low and the mercury in your rectifiers has collected, causing an arc-back. You can correct this by placing a light bulb or small heating element next to the rectifiers which turns on when the transmitter is turned off.
- Dirt or scum is the evil of all transmitters. Enough will cause arc-overs that will blow fuses.
- Look for cable abrasions.

15. It is also important to note that if you have had a fuse blowing ordeal, that after locating the cause, the fuse clips may be so badly charred that you will continue to blow fuses until the clips are replaced. Fuses will often blow while circuit breakers either in the transmitter or in the wall will not act. Fuses are faster but if you have proper size fuses the circuit breaker ahead of them will usually operate first.
16. UNEXPLAINED OUTAGES. This is the one that puzzles all technicians and often the best of them. A trans mitter that goes off the air for no reas on and can be turned back on by pushing the start button always brings the question, "What caused that?" - Of course, if this happens infrequently we can say it is normal as power line dips, a jump across the arc gap at the tower base, or other normal things will cause this and it should remove the transmitter momentarily to protect it. Some circuits include an automatic carrier reset while other transmitters require the operator, either remote or in attendance, to push the start button. In either case, frequent outages demand the cause to be located.
17. Your transmitter always looks like the offender. It is the device with meters and it is the device that quits if there is a failure anywhere in the entire system. An open or short circuit in a transmission line does not hoist a flag at the point of trouble in the transmission line. It does react at the transmitter. A faulty insulator in an antenna guy wire or a bad connection in the antenna tuning unit only shows at the transmitter. In fact, as you can see, the transmitter always shows as the offender. Often it is not, in fact more often it is not. -- If the drive shaft between your car motor and the rear wheels fails, it does not mean the motor is defective.
18. Earlier we mentioned the need of a dummy antenna at every radio station. Here again we see how valuable it becomes because you can disconnect everything after the transmitter and use the dummy antenna. By quick process of elimination of the tower, coupler, transmission line, tower chokes and ground system, you are able to determine if the transmitter is the offender. By modulating the transmitter and doing regular programming for an hour or $s 0$ into the dummy antenna you experience the same transmitter outages, then you can hang it on the transmitter. Conversely, if the transmitter gives no trouble into the dummy, you can conclude that the fault is not the transmitter but in what is connected to it.
19. Step by step trouble shooting is always best. Trouble shooting is never on the basis of "It might be this or that." Instead, follow through from the beginning. If the transmitter was okay on the dummy antenna, the question becomes - "Where is the trouble? "If a transmission line connects the transmitter to the antenna coupler, then move the dummy antenna to the far end of the line and repeat the tests. Always remember that tests should be made, in part, under full modulation because often an open or an arc will occur under conditions of the greatest voltage and/or current. If, in this condition, an irregularity is noted, you have found the point of trouble in the transmission line. If not, reconnect the antenna coupler and the next job is to visually observe the antenna coupler under operation. In so doing, you may actually note a small arc or corona during a modulation peak. This could be caused by dirt, a bad connection, or even a component that is defective.
20. It is well to remember that one bad connection in the radiating system can cause outages. Several years ago an engineer solved weeks of investigation by stepping on a poorly brazed connection at the base of the tower. When he did so, he noted the antenna current increase nearly $\frac{1}{2}$ ampere. So don't assume. Be sure the entire chain is well connected. Carelessness around the base of the tower, where wires are brazed and at which point is the hub of the entire ground system, has caused many problems.
21. Other outage conditions not affecting the transmitter are listed for their value in checking:
-- Under certain conditions, especially at higher altitudes, the guy insulators will arc across, caused by static. This will always cause an outage as it changes the antenna characteristics. This is hard to find as it is hard to see. Use of field glasses at night is the best way. If it happens, the vulnerable insulators should be shunted with a res is tor. Write our Engineering Department for advice, giving full antenna detail when writing.

- At times the arc gap at the base of the tower is set too close or has accumulated dirt. This causes an arc to \dot{g} round under high modulation.
- A crack in the tower base insulator is unlikely but keeping it clean is very necessary. A low resistance path at this point can cause trouble.
- Look at the tower chokes. Though they are husky, they are in a vulnerable position as to lightning.
-- Shunt fed towers (no base insulator) are usually more sensitive to static bursts than series fed towers. The best method is to try and make the feed line to the tower equal the impedance of the transmission line.
- One side of the tower lighting circuit shorted to the tower itself can cause a lot of trouble, yet the lights may function perfectly.

22. OTHER OUTAGES. If the transmitter is the offender or it acts improperly on a dummy antenna, the process of elimination by starting at the first and following through is preferred unless the cause is actually known. The following hints may help both as to outages and improper operation:
(FALL OUT) The transmitter kicks out a relay at high modulation. Possibly the overload relay is set too sensitive. Look for an arc at any variable condenser. If this condition is noted, it usually indicates improper tune -up or lack of complete neutralization. Improper L/C ratio means the amount of coil to the amount of capacitor used can cause high circulating current and arcs. Use of more coil and less capacity, and in some instances just the reverse, will solve the problem.
(HARD TO MODULATE) Cause can be either improper impedance match at output of transmitter or low grid drive to the final power amplifier. Consult instruction book for recommended grid drive. Correct match of transmitter to load is covered, in part, in the instruction book. The remainder depends on local conditions. It is a very important part of good performance. Indication is a sluggish line or antenna meter, does not move up under modulation or even moves down.
(BAD REGULATION) Usually power line is too s mall and voltage varies at input under modulation. Often hard to find as public utility meters and graphs are slow speed. Best check is to apply sine wave to transmitter. Check line voltage at zero modulation and then at 100% modulation. If line voltage drops at 100% modulation, then call your utility company. Watch for high line voltage. If much over the stated primary voltage for the transmitter, you are headed for parts failure. Likewise, low line voltage causes poor performance. -- Improper loading of the transmitter to the tower will also cause poor regulation.
23. SHORT TUBE LIFE is usually not the fault of the tubes. Instead, is caused by over-working the tubes. If efficiency is low, tubes must put out more watts to make it up and thus last longer. Answer is get the efficiency up (see Par. 2). Arc-overs anywhere, may under certain conditions, cause the big tubes, the expensive ones, to self-oscillate. Find and stop the arc-over. Short tube life is compared to using more gas if the car is running up hill all the time. Eliminate the cause for your running up hill and tube life will be long.
24. POOR QUALITY can be for so many reasons that to list them all would take many pages. It seems foolish to even suggest that a poorstylus in the transcription turntable is a cause for poor quality, but it happens. Every station must take proof of performance measurements. This proof of performance equipment is usually owned by the radio station. In fact, it is difficult to keep a radio station at top performance without one. With this equipment, each major equipment may be checked for distortion, noise and frequency response and it is these checks that tell good or bad quality. Where studios are aeparate from transmitter, even the quality of the telephone line may be checked.
25. Poor quality is often guessed at as to cause and yet we all know that the finest broadcast trans mitter is only as good as the microphone used, which is to say, "A broadcast system is as strong as its weakest link." We thus can agree that poor quality usually ties down to any one item in the entire system. By use of proof of per formance equipment, we find out what this item is and fix it. - Though this data is not intended in any way to be sales data, some may wonder where to get "Proof of Performance Equipment". This will be found in the Gates catalog. The SA-131 complete proof of performance package sells for $\$ 498.00$ and is available on time payments as we feel every station should have one regardless of budget.
26. Earlier it was stated that poor quality is possible from many places. The obvious is easiest to find, such as the poor microphone or bad turntable styli. Radio frequency leakage is often a cause for poor quality. This leakage is where a small amount of R.F. voltage gets into other equipment, such as the limiter, audio cables, and in combination installations the speech input console. -In most cas es, this leakage is small enough to be quickly eliminated but also small enough to be hard to indicate by use of the usual methods auch as a small neon lamp, etc. __ R.F. leakage is usually caused by lack of grounding or grounds at varied potentials. Grounding to one common ground is best. Of course, be sure you have a ground connection. Once in awhile a
full rack of equipment will be found with the only ground coming through a shield of the audio cable. This, of course, is poor grounding and copper strap should be employed.
27. Care should always be taken not to run R.F. cables in the same conduit or cable group as audio cables. For example, running the coaxial connecting cables from transmitter to monitors in the same cable as audio lines would be very wrong. Likewise, inserting high and low level cables, even if individually shielded, in the same conduit or cable group is very wrong. A high level circuit would be any output circuit. A low level circuit would be any input circuit. Thus, a microphone or turntable pair in the same conduit or cable group as the output of the program amplifier or monitoring amplifier would be asking for trouble.
28. Poor quality is possible through overloading. All equipment is usually rated as to maximum input and output levels. For example, if an input circuit is rated at 0 Db ., this means that putting more than 0 Db . into this circuit is overloading. If an output circuit is rated at +18 Db , and you are developing +24 Db ., the distortion goes up. -. Careful attention to good sensible engineering practice is the answer. Short-cuts, speed in getting the equipment installed and throwing long known precautions to the wind cause many quality problems and usually demand rework.
29. THE CHIEF ENGINEER. He has the job of keeping everybody happy - listeners, manager and stockholders. When trouble comes, he is under pressure. He will do his best to correct trouble as fast as he can. It is well to remember that electronic equipment has many circuits and many avenues of travel. Where problems are known, the solution is usually quick. Where the problem has to be found, the solution will take longer. -- It is well to remember that if equipment did not need maintenance, it would not need a Chief Engineer. The greatest service he renders is the insistence on regular preventive maintenance and his being there when problems arise.
30. PREVENTIVE MAINTENANCE. Few of us would fly in commercial airlines if we felt the planes were not carefully checked after every flight and, of course, they are. -- We even check our automobile tires before we take a trip. Our lives are lived and protected, even our homes are run on preventive maintenance. The good wife cleans to prevent moths. -__ In broadcasting equipment, preventive maintenance is mandatory. Most offages can be eliminated before they happen by checking before instead of fixing afterwards.
31. Dirt is the first cause of all trouble. Excessive heat is Number 2. With the advent of unattended operation, both have grown. With the transmitter in a locked building, it is cleaned much less and with the windows closed it becomes an oven in summer months. In all cases, remember:

> -- The dirt-free transmitter is the trouble-free transmitter.
-- The cool transmitter is the longest lasting transmitter.
Clean once weekly and duct hot air out of closed transmitter buildings. Check tubes at least monthly. Poor tubes mean poor quality and eventual outage. Rotate the bigger tubes every month. Include spares in this rotation, both to prevent gassing and also remember the guarantee will run out. If you have a defective spare and you rotate it into the equipment, you will find the defect before the guarantee runs out.
32. Other things in preventive maintenance include oiling of motors in blowers and turntables, burnishing relay contacts as needed, cleaning attenuators, checking batteries where used, cleaning inside of all equipment. The inside is more important than the outside. Every station should have a small suction type cleaner such as used to clean an overstuffed chair. This will pick out dirt and dust from pesky trouble-making nooks and corners. If we take a leaf from the Navy book which says everything must at all times be sparkling clean or what is called "Shipshape" \qquad we have preventive maintenance in the complete form.
33. ADEQUATE TEST EQUIPMENT. When you go out to take pictures you must have a light meter to test exposure time. This light meter has nothing to do with the camera. It is test equipment.
34. Comparatively, you can neither maintain nor correct without the tools to do the job. An investment in expensive broadcasting equipment dictates a modest investment in the necessary equipment to keep it operating at top performance. Listed below is suggested test equipment for the average radio station. Where the station is directional (uses more than one tower), an item or two more will be required, such as a field strength meter for sure. Here is the suggested list:
—. Dummy antenna.

- Proof of performance equipment consisting of:

1. Audio oscillator.
2. Distortion meter.
3. Gain set.
4. R. F. pickup coil or rectifier.

- Good grade volt-ohm-meter.
- Spare antenna current meter.
-- Spare antenna

35. GATES ASSISTANCE TO HELP YOU. The Gates Radio Company sincerely believes that the best type of assistance it can render to the technical personnel in the radio broadcast field is in full cooperation with them in solving any problem, no matter how small. It is believed that the solution of any problem is best accomplished by getting to the seat of it through mutual working together between the station engineer and Gates technical people. As we all have a certain amount of pride, there is often some reluctance to write, asking about a problem that might seem simple. It is emphasized that often the problem that appears the simplest might be the most complex. It is only by the asking of questions that assistance can be rendered.
36. Gates engineers and technical personnel invite the correspondence of the technical people that are using Gates equipment, and for that matter, even if they are not using Gates equipment, and are willing and ready to spend any amount of time necessary to not only be of help and assistance but to make the life of the broadcast technician more pleasant - and most important of all, to make the radio broadcasting equipment always a pleasant experience by continued satisfactory performance.

SERVICE QUESTIONNAIRE

If you have a transmitter problem, your filling out answers to the following questions will permit our various englneers to carefully analyze and in many cases solve the problem without expense. Please fill out completely and mall Sustomer Service Section, Gates Radio Company, Quincy, Illinois.
(1) Radio Station \qquad City
(2) Street Address \qquad Office Phone

Xmitter Phone

\qquad
(3) Chief Engineer Home Address
(4) Number of years with Station
(5) Make of transmitter

Model

(6) Date placed in service
(7) Is transmitter located in the same building or immediately adjacent to a FM Transmitter \qquad TV Transmitter \qquad , Other \qquad ?
(8) Height of tower Tower resistance

Date resistance measured
Reactance (indicate plus or minus)
(9) Method of coupling transmitter to tower (please check):
$\square \square$ transmission line
\square direct coupled
\square series feed (insulated tower) \square shunt feed (no base insulator)
\square If transmission line employed, please state following:
\qquad Type \qquad Impedance \qquad
Length \qquad
(10) No. of ground radials \qquad Length

Do you use ground screen? Size
(11) State method of connecting ground system to main ground of transmitter
(12) If antenna coupler used, please state following:

Make \qquad Age

State antenna current (meter connecting to tower)
Amps.
State line current at transmitter
at coupler
If transmitter feeds directional antenna system, please state whether all monitor points checked or measured daily \qquad weekly \qquad other \qquad
(14) Number of towers \qquad . When installed? \qquad .

Plate voltage at: no modulation	90% modulation
P.A. Plate current at: no modulation	90% modulation
P.A. Grid current at: no modulation	90% modulation
Line or antenna current at: no modulation	
A.C line volts at: no modulation	90% modulation
NOTE: For 90% modulation measurements use a	
constant tone and not program.	

(16) In your opinion, how does transmitter sound?
(17) If answer to 16 is "poor" state following:

Date proof of performance made
By whom
-Response curve of transmitter: 50 cycles \qquad 400 cycles
1000 cycles 2500 cycles _ 5000 cycles

7500 cycles \qquad 10,000 cycles \qquad
-Distortion: 50 cycles 100 cycles

1000 cycles \qquad 5000 cycles \qquad
-Noise: Db . reduction below 100% modulation \qquad
(18) Have you experienced part failures?

If so, state what:
(19) Have you experienced severe electrical storms recently? \qquad (Important as it helps in many instances to find trouble).
(20) Give your opinion as to the cause or fault of your problem. Use another sheet of paper, if need be \qquad
\qquad
\qquad
\qquad
(21) Have you experienced any arcing? If so, state where:
(22) State make of power tubes used (the larger, more expensive tubes):
(23) Where station has been on the air long enough, state tube life as follows:
P.A. tube No. 1 \qquad hours
P.A. tube No. 2 \qquad (if used) hours
Mod. tube No. hours

Mod. tube No. 2_hours
Main rectifiers hours

SPEECH INPUT EQUIPMENT:

(24) Make of speech equipment \qquad Model

When purchased
(25) Make of transcription turntables

Model \qquad When purchased
(26) State make of pickup as follows:

Arm
Head
Filter or equalizer
Preamplifier
Styli: \square diamond \square sapphire
('̌., State your opinion of fault or cause of speech equipment problem. Use another sheet of paper, if need be
\qquad
\qquad
\qquad
(28) Make of limiter Model

When purchased
(29) Do you use a constant level amplifier such as a Gates Sta-Level or GE Uni-Level?
(30) Are studios separate from Iransmitter?
(31) If answer to 30 is Yes, have you run a response curve on the connecting telephone line? \qquad
How is it?
(32) DO YOU OPERATE BY REMOTE CONTROL? \qquad INDICATE PART TIME \qquad FULL TIME
(33) Type of Remote Control System, DC__ Tone Operated__ Other__ Make.
(34) Do you consider youI Remote Control System completely reliable? \qquad
(35) If you operate with Remote Control full time, what provisions do you have to assure correct operating temperture of transmitter?
(36) Is transmitter bullding heated in winter?
(37) Please make rough sketch on another sheet of the Transmitter Building Ventilating System.

THE OVERALL SYSTEM

When all of the equipment from microphone to tower is tied together in a system, the following information will help:
(38) Do you notice the performance is satisfactory until you add a specific piece of equipment?

What is it?
What happens when you add it? \qquad
\qquad
\qquad
\qquad
(39) Please list "Test Equipment" available to Station. Low distortion audio oscillator \square, distortion meter \square, scone \square, volt ohm meter \square, R F Bridge \square, other \square,
(40) State anything peculiar to you that may seem either simple or complex that might be worthy to note in analysis. Such things as outages at certain times of the day, or transmitter works well all day but won't turn on immediately in morning, or . . . anything at all that seems odd to you and yet you can't put your finger on it \qquad

SUMMARY

In filling out this Questiennare, do not feel in any way that a problem is too simple to merit comment. It is well to remember that most serious problems have a very simple cause. Gates well understands that often those closest to the problem will often overlook something that becomes easier to solve when a second person such as a Gates engineer is able to look at it, through this Questionnaire, and without the pressure often existing at the scene of action.

GATES RADIO COMPANY - - QUINCY, ILLINOIS, U. S. A.

Subsidiary of Harris-Intertype Corporation

SERIAL NO. 68522 CUSTOMER ULSI
FREQUENCY 900 KC Pikeville, Kentucky
R. F. UNIT
CRYSTAL HEATERS___ LIGHTS
CRYSTAL SELECTOR SWITCH \#1_ok GRYSTAL SELECTOR SWITCH \#2 os
PLATE VOLTAGE_560 _ DRIVER BIAS VOLTAGE_100_P.A.BIAS VOLTAGE_230
BUFFER TUNING_or_C511. Out C512_ Out
OSC. PLATE 22.5 BUFFER GRID_2.5 BUFFER PLA TE_ 15
DRIVER GRID_20 _ DRIVER PLATE 280_P.A. GRID__ 175
MULTIMETER OR EXCITATION CONTROL_ OX
R. F. DRIVER
P.A. GRID TAP FROM CT 13 NEUT. TAP FROM CT
POWER AMPLIFIER
C314 .003 C315_ TURNS L309_10
C316.002 C317__CURRENT, C316, C317_104 TURNS L312 8.2
PLATE CURRENT 1.3 3 , PLA'TE VOLT (NETER READING) 5225
TRUE POWER INPUT_6_ 600 _POWER OUSPUT 5220 _EFFICIENCY _ 80.58
OVERLOAD RELAYS P.A. 1.75 DRIVER 300¢ FIL. INTERLOCK RELAY OR
AIR PRESSURE O O AIR PRESSURE SWITCH a
LINE CURRENT METER___ MOUNTING

MODULATOR UNIT

RECTIFIER UNIT

SHEET 3 BC-5F2/S
SERTAL NO. 68522
RECTIFIER
ITNT METER SWJTCH OR RECTIFIER PRI. VOLTS FOR 5V. SECONDAPY
PLATE Vm._OK_POWER TRANGFORMER AFBCOOF
PLATE CONTACTOR (ELO5) CR
STEP-START
\qquad
SHITDON TME DET AY \qquad FIIAIANT TIME DELAY \qquad OK
RECYCI.ING \qquad re
P.A. VOLTAGE CHANGE REIAY (ElO8) \qquad ar

PRODUCTICN NO. 762 \qquad
SHC? ORDER NO. \qquad -1.501 RECTIFIER PRI. VOLTS FOR 5V. SECONDAPY \qquad POWER TRANGFORNER \qquad 1880001
PLATE CONTACTOR (EIO5) ar STEP-START

Art Brown ENGR. Actinn 11/7/61 TEST ENGR. DATE

STEPOCVIJ TRANEFOEMEこ
As 11278
T203．T303

AC7719E
MOD REACTOR
30 HENRIES
MOD REACTOR
30 HENRIES

AF 7782
T3OI POWEE AMP FILAMEIT

APBSCO TIO2 MANPEREC
 CONNECT TO $1,2,3-3 \%$ S．L VOL－AEE CONNECT TO $4,5,6-5 \%$ J．C VOLTAGE

AF－105 $=6$

1403
40

T501

TRIAD R2SA
$=$ REEG．CTL．SUPPLY

B：ACK Z ZVAZK PZIMAZY
GN 5

3．した：

$\left.\begin{array}{l}\text { ZED SL } \\ \text { ZED Si }\end{array}\right\} 63 @$ I AMP

H．V
 GN．TにGH．720V $\triangle 05 \mathrm{MA}$

CATES BC-5P2 MODULATION RAACTOR

World Radio History

