

INSARUCPIOITS FOR INJLALTING AND OPDRATING
 THE GATES TYFe BClG, $1000 / 250$ WATT
 BROADCAST TRAN SIITTER

MODULATION TRANSFORMER INSTRUCTIONS

Please read these instructions before attempting to test the modulation transformer in this transmitter.

The modulation transformer employed in this transmitter may be of a type which will indicate unequal resistance in the primary windings. An ohmmeter check of the windings may indicate that the transformer is defective; whereas in reality, this is a normal reading and the modulation transformer is performing normally.

In order to properly check this transformer outside of the transmitter circuit, merely apply 117 volts, 60 cycle a.c. to the secondary winding. Check the voltage on each half of the primary winding. If the transformer is operating normally, then these voltages should be approximately equal.

This equipment employs voltages which are dangerous and may prove fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

KEEP AWAY FROI LIVE CIRCUITS

Observe safety regulations. Do not change tubes or make adjustments inside equipment with high voltages on.

Do not depend on door interlocks or switches for protection. No reliance should be placed on the interlock switches for removing high operating voltages.

SWITCH TO SAFETY

SAFETY FIRST: When working on the transmitter, disconnect the primary power at the building wall switch.

WARRANTY

The Gates warranty, gladly supplied in detail on request, generously covers all materials when returned to the Gates factory for inspection, transportation paid. Certain moving parts and tubes are guaranteed usually on an hourly brisis and that of the menufacturer's guarantee. This warranty does not extend to free service in the field, but this service is available at a modest cost, where required.

SAFETY NOTICE

WARRAITTY
TABLE OF CONTENTS
SPECIFICATIONS
ILIUSTRATION, BC-IG FRONT VIEN - PHOTO 8000437001
SECTION I - GENERAL DESCRIPTION

1.1	Mechanical Construction
1.1 .1	Transmitter Controls
1.2	Incidental Information
1.2 .1	Tube Handling
1.2 .2	Transmitter Building Temperatures
1.2 .3	Grounding
1.2 .4	Antenna Coupling

SPCTION II - THEORY OF OPERATION

2.1	M5422 Oscillator Unit
2.1.1	Tube Complement, M5422 Oscillator Unit
2.1 .2	Type of Oscillator Cirouit
2.1 .3	Type of Crystal Used
2.1 .4	First IPA, 12BY7A
2.1 .5	M5422 Oscillator Tuning Procedure
2.2	BC-lG Transmitter Description
2.2 .1	- qube Lineup
2.2 .2	BC-1G Irammmtter Circuitry
2.3	Power Supplies
2.3.1	Bias Supply
2.3.2	600/625 Volt, Lov: Voltage Supply
2.3 .3	2800 Volt Supply
2.3.3.1	High Voltage Supply Operation at 250 Watts Output
2.3.3.2	BC-lG Power Change Facility
2.4	Attachment of Remote Control in BC-lG

SECTION III - INGAALIATION

3.1	Installation Hints
3.2	Transmitter Inspection
3.3	Transmitter Connections
3.3.1	Primary Power
3.3.2	Transmitter Ground
3.3.3	Audio Input
3.3.4	Modulation Monitor
3.3.5	Frequency Monitor
3.3.6	RFOutput
3.3.7	Remote Control (if used)

SECTION IV - YUNE-UP PROCEDURE, 1000 WATT CARRIER
$\left.\begin{array}{ll}\text { 4.1 } & \begin{array}{l}\text { Preliminary Tune-up Checks }\end{array} \\ \text { (Transmitter locally controlled) }\end{array}\right)$

SECTION V - TUNE-UP PROCEDURE, 250 WATTS
SECTION VI - heLppul Operational Inforiiation
6.1 Frequency Adjustment
6.2 Transmitter Cleanliness
6.3 Felay Fifintenance
6.4 Care of Printed Wiring Boards
6.5 Cabinet Ventilating Fan
6.6 . Test eqquipinent

Transformer
6.7 D.C. Resistance-ffeasurements Modulation Monitor.

AM-30469E - Gates 4780084000
6.8 Summary

Reprints a) Replacing Components on the Printed Chassis. (Gates has a printed sheet furnished on request, no charge)
b) Fulpful Genoral Information

SECTION VII - PARTS LIST
SECTION VIII - TRANSAITTER PHOTOGRAPHS
8000437002 - Front Door Open, Screen in Place
8000437003 - Front Door Open, Screen removed
8000437004 - Front Door Open, Screen removed, Panel \& Shelf
8000437005 - Inside View, Top Portion, Transmitter 8000437006 - Inside View, Bottom Portion, Transmitter
8000437007 - Rear View, Back Removed, showing Rectifiers 8000437008 - Rear View, Back Removed, showing Panel \& Shelf 8000437009 - Side View, Side Cover Off

f	A-30584	Typical Curves, Frequency Stability, Vacuum Crystal
	8213816001	Schematic, Oscillator Unit, M5422
	8137774001	Typical Voltage Chart
	8137711001	Tuning Chart
	8137626001	Wiring Diagram, Modulator Selector Switch
	8137928001	Supplemental Relay Connections, KlA
	8137961001	Supplemental Relay KlA Location
	8137914001	Wiring Diagram, Remote Flate Voltage Control
	8378485001	Wiring Diagram, Studio Unit, RDC-1OC
	8379369001	Wiring Diagram, Transmitter Unit, RDC-1OC
	8269003001	Interconnections using EDC-10C Transmitter. Unit
	8137963001	Running Sheets, Fanel \& Shelf
	8137962001	Running Sheets, Cabinet
	8268808001	Control Circuitry
	8137924001	Base Layout
	8137629001	Diagram, Primary Relay Kl
	8137628001	Wiring Diagram, Multimeter s2 Connections
	8138885001	Contact Identification
	8525878001	Overall Schematic

SPECIFICATIONS
BC-IG, 1000/250 WATT TRANMITTER

THE FOLLOWING BPECIFICARION: ARE TYPICAL -
RATED POVER OUTPUT: \quad 1000/250 watts. Capable of 1100/275 watts, if necessary, to overcome possible losses in directional arrays.

FREQUENCY RANGE:
PRIMARY POTER INPUT:
2000 Kc to 540 Kc
230 volts, 3 wire, solid neutral, single phase, 50 to 60 cycles. Approximately 3850 watts consumed at 100% tone moduain tion, at 1000 cycles.

FREQUENCY STABILITY:
± 5 cycles within temperature range of 50 to $122^{\circ} \mathrm{F}$.

ELEVATION:
6500 feet.
VENTILATION NECESSARY: Provision should be made to allow 1500 CFM of clean, outside air under all circumstances.

AUDIO INPUT:
$16 \mathrm{DB}, \pm$? nB , £ロッ 200% modulation for both output powers.

INPUT AUDIO IIPPEDANCE:

FREQUENCY RESPONSE:
DİTORTION:

NOINE:
CARRIER SIIFT:

RF OUTPUT IIIPBANCE:

DUMMY ANT $\operatorname{SNNA}:$
As supplied, 600 ohms, waich will also serve to match 500 ohms satisfactorily. Input may be connected for $150 / 250$ ohms, if desired.
$\pm 1.5 \mathrm{DB}, 30$ to 12,000 cycles.
Rated at 3% from 50 to 10,000 cycles, at 95\% modulation.

60 DB , or better, below 100% modulation.
3% or less, between 0 and 100% modulation.

Will match resistive loads from 50 to 70 ohms.
51.5 ohms, inbuilt

TUBES USED:
(2) 12 BY 7 A, Osc. \& lst IPA (6) 807, Audio \& 2nd IPA (4) 833A, Power Amp. \& Modulators

Silicon rectifiers are used in bias, intermediate voltage and high voltage supplies.

It is the purpose of this instruction book to thoroughly explain in a clear, concise manner, the workings of the Gates BC-1G Broadcast Transmitter, as well as installation and operational information. The pictures show clearly all components within the cabinet, these parts are adequately marked for easy reference back to the parts list and to the written text. This instruction book is a manual for installational information and for future reference during servicing of the transmitter.

1.1 MECHANICAL CONSTRUCTION

The BC-IG Transmitter is completely self-contained in one attractive steel cabinet, measuring 78" high, $37^{\prime \prime}$ wide and 29" deep, with a full front door with its "shadow moulding" covering practically the complete front. This door is hinged from the left side, it requires 331 floor space to swing. Four large meters are located on a panel mounted across the top of the cabinet. Host of the controls are mounted behind and hidden by this door, the exception being the filament start/stop, reset, plate off, low power and high power combination switch and neon indicators. These switches are mounted on the right hand cabinet corner post, protruding through an opening in the door, when it is closed.
The heavy power components are mounted on the base of the cabinet. The low powered audio and radio frequency stages are built upon a "panel and shelf" assembly, along with the control circuitry and the bias supply. Mounted on the shelf portion of this assembly is the multi-winding filament transformer used to energize all tube filaments in the silicon powered transmitter. (If tube rectifiers are used, two additional rectifier filament transformers must be used). At the top of this panel assembly is the four sets of filament connectors which secure the P.A. and modulator 833A tubes. The two tubes to the front of the transmitter, V40 and V41, are the RF amplifiers, the two toward the rear, V42 and V43, are the modulators.

This complete "panel and shelf" assembly is hinged to the right rear cabinet corner post, and held securely by three captive, slotted head screws at the front corner post. This feature allows this panel to be loosened, then swung inward on its hinges, to provide access to the complete panel without removing the right hand side of the cabinet. This is of great advantage if the transmitter is located in a position necessitating other equipment to be placed directly against the right hand side of the transmitter.

All tuning controls are available from the front of the transmitter. (Large front cabinet door must, of course, be opened). An interlocked perforated metal screen is mounted over the front opening of the transmitter, which gives the utmost physical protection to the operating personnel. This screen is easily re-movable from the cabinet, allowing full access to the inside of
the cabinet from the front.
One exhaust fan is located above the 833 A pover tubes, in the top of the cabinet, to draw the herted air up and out during operatior. Two disposable air filters are located in the lower portion of the back cabinet cover, through which cool air is drawn into the transmitter.

The dummy antenna assembly is mounted on the left cabinet wall, toward the top, as viewed from the front.

Both the back and right hand side of this transmitter cabinet is removable for servicing, if required.

1.1.1 TRANSMITTER COHNROLS

All transmitter tuning controls are available from the front of the transmitter. The small vertical panel, which is an integral part of the "panel and shelf" assembly located on the right side of the cabinet, behind the front door, has the following controls:

1. The crystal selector switch, $S l$, and the two crystal trimmer capacitors, Cl and C2. (The 115422 Crystal Oscillator Unit is mounted directly behind this panel. Its controls, Sl, Cl and C2, protrude through a small aperture in this panel, and thus, are available from the front).
2. The RF driver tank tuning capacitor, C4.
3. Multimeter switch, S2.
4. Modulator cathode current selector switch, Sl.
5. Modulator bias controls, RI and R2.

The following controls are located on the right hand corner post section of the cabinet:

1. Filament rheostat, R43.
2. Plate rheostat, R41.
3. Filament On/Off, S41. (Red pushbutton).
4. Reset, S42. (Red pushbutton).
5. Plate stop, 543. (White pushbutton).
6. 250 Watt carrier, S44. (Amber pushbutton).
7. 1000 Watt carrier, S45. (Mhite pushbutton).
8. Local/Remote toggle switch, S40.

A complement of four large meters are mounted on-a panel at the top of the cabinet. From left to right, they are:

1. Nultimeter, M40
2. Modulator cathode current, 143.
3. P.A. plate current, M42.
4. P.A. Flate volts, M4l.

The line meter, 144 , is mounted on the power amplifier pancl, and is visible when the front cabinet door is open. Also, on this F.A. panel we find the power amplifier tuning control, I40, the power amplifier load control, I42, and the neutralizing adjustment, C40. This latter facility is a screw driver adjustment made through a small opening in the panel, it is, of course, a seldom manipulated control.
1.2 INCIDENTAL INFORNATION (TUBE HANDLING, TRANSMITTER BUTIDING TEMFERATURE, ETC.

It is well to mention several areas that make for better and more profitable operation.
1.2.1 TUBE HANDIING

The Gates BC-1G Transmitter uses 833 A power tubes in the power amplifier and modulator stages.

These are of the single wire or thread filament type, as compared to other tubes which may have the filament (heater) contained in a tube, which is commonly called the oathode assembly. Tubes having single wire, or thread type filaments, supported by springs (such as the 833A) require more than normal care in handling. These filament wires are easily broken by sudden, heavy vibration. At all times handle the tubes with oare, until they are safely inserted in the tube sockets of the transmitter.

At this point, more care must be exercised in this type of power tube, as the filament prongs are also the means by which the tubes are secured. Make sure the filament connections have some "give" so that no undue strain is placed on the glass-to-metal filament prongs. As the glass envelope will expand a bit during operation, the two securing filament connectors must be free to move themselves.

Take care when making the grid and plate connections to the tube, do not put any undue strain on these connections during tube installation. Of course, the connections to the grid and plate should be flexible to allow for expansion of the tube. For shipping or storing it is advisable to use the packing material and carton that the tube was shipped in from the tube manufacturer. Following these reasonable precautions, there should be no trouble in handling these tubes.

1.2.2 TRANSMITMER BUITDING TMTLMTURUS

If this transmitter is to be unattended (operated by remote control) care should be taken that winter temperatures inside the transmitter building do not go below $50^{\circ} \mathrm{F}$. Mercury vapor tubes (if used) will arc back at low temperatures, often causing severe damage either to themselves or other expensive components. Frotective relays and fan motors may also become sluggish under extremely cold conditions. Failure to provide adequate winter minimum building temperatures will void the guarantee.

1.2 .3 GROUNDIAG

The grounding of the transinitter installation is of major importance. Remember, it is a part of your radiating system. It can be safely assumed that the better the complete ground system, the nore efficient will be the radiating system. A lack of complete grounding of the transmitting and audio equipment may cause trouble from stray RF getting into the audio, and may cause unstable transmitter performance, etc. It is wise to bond all electrical conduit, water pipine, metal building framework to the overall ground system. If these suggestions are followed, there will be less trouble over the years, as the ground system ages.

1.2 .4 ANP NHNA COUPLING

Antenna coupling equipment not involved in these instructions is a very important part of the entire successful operation. The instructions supplied with the antenna coupler will aid in its adjustment. As all radiating tovers must be measured electrically by an approved engineer, he could check and advise on the tune-up of the antenna coupler. If your operation is directional the engineer will, of course, tune the entire directional system, which includes the antenna coupling equipment.

This section of the instruction bools will include the theory of operation of the 5422 Oscillator Unit when conbined as an integral part of this 1000/250 watt Transmitter. A general description of the complete, overall transmitter operation will be given.

2.1 M5422 O.SCILEAOL UNIT

This oscillator unit physically is $61 / 2$ inches wide, including mounting flanges, $6 \frac{1}{2}$ inches hiEgh, and $6 \frac{3}{4}$ inches deep, includins connector plug. The unit is mounted by means of its flanged botton on the aluminum vertical portion of the "panel and sinelf". Its controls extend out through a cutout in the front vertical panel. The oscillator shield cover held in place by one thumb screw, can be reaoved by unfastenirs aid sliding horizontally away from the oscillator chassis. Connections to the M5422 oscillator unit are made by a 8 position female plug, Pl, at the rear.

This oscillator unit uses a l2BY7A oscillator tube, Vl, driving another 12BY7A, V2, the first IPA.

2.1.2 TYY OF OSCIDLALUR OIRCUIT

The l2BY7A oscillator tube operates in a crystal controlled grid plate circuit, also often referred to as a grounded plate Colpitts circuit. Excitation is controlled by the proper ratio of the two capacitor values of C 3 and Ci .

2.1.3 TYPE OF CRYGTAL U, 3 D

This oscillator unit has facilities for two vacuum and glass enclosed crystal assemblies, each cryotal can be selected for use by means of the rotary switch, sl. (One crystal is needed for operation, the second, if used, would be a spare).

These crystals are mounted in octal based, glass envelopes which have been pumped to a high vacuum. These plug into octal sockets in the oscillator unit. The crystals are of the low temperature co-efficient type, there is no need for crystal heater ovens for normal operation.

Frequency trimmer capacitors, Cl and C2, are tunaine from the front - these capacitors are connected in shunt with the crystals. and afford a slight frequency adjustment which can be used during initial tune-up. Also, ageing of the crystals could cause a sliGht frequency change during day to day operation. This change can be compensated for by re-adjustinent of those capacitors.

2.1.4 12BY7A FIRST IPA

This tuned first IFA stage is lightly capacitively coupled to the oscillator. Its output circuit L 3 and CЭ, is used on frequencies from 1600 Kc to $800 \mathrm{Kc} ;$ from 800 Kc to 540 Kc a padder capacitor, Cll, 100 mmfd mica is connected in parallel with capacitor, C9, The output of this stage is capacitively coupled to the grid circuit of the two 807 second IFA tabes, through ClO in the oscillator unit and $C 8$ in the 807 stage. Adequate drive of from 2 to 5 ma., depending upon operating frequency is provided for the two 807^{\prime} s. Approximately 180 to 210 volts DC is applied to the oscillator unit, being supplied by the 625 volt power supply through dropping resistor, R5.

Drive voltage for operation of a Frequency Nonitor, such as the Gates M4990, is provided. The monitor drive output is obtained from the plate circuit of the lst IPA stage. A small coupling capacitor, Cl2, is used.

2.1.5 M5422 OSCILLAROR TUNING 上ROCEDURI

The following tuning instructions should be followed when placing the M5422 oscillator in operation. If this procedure is not followed, it is possible to tune the oscillator to the second harmonic of tine crystal rather than the fundamental.

Information that follows was obtained with the 15422 oscillator connected to its proper RF load and 30 feet of $R G 62 / \mathrm{U}$ cable connected to the monitor terminal 6 with shield to ground, or terminal if. RG62/U cable runs 13.5 mmf . per foot, or a total of approximately 400 mmfd . effective capacity on the 30 foot lengths. Shorter lengths of cable on frequencies above 600 kc will effect the tuning of the unit. More tuning capacity (C9) or more turns of the slug in $L 3$ may be required for resonance.

Shorter lengths of monitor cable on frequencies from 600 Kc to 540 Kc may prevent the unit from tunine to resonance. If this is the case, capacity should be added across the cable to make up the difference in effective capacity. Longer lengths of cable would mean less capacity or less inductance needed for resonance in this frequency range. It is recomaended that the proper length

* of RG62/U be used whenever possible.

Frequencies from 1600 Kc to 800 Kc

1. NO PADDING needed in this frequency range.
2. Make sure that slug of $L 3$ is screwed all the way out.

From 1600 Kc to approximately 1100 kc , tune C 9 for dip in plate current or peak in grid current of following stage.

If $C 9$ does not tune through resonance, screw in slug on i3 a turn at a time, until resonance is obtained with C9. 800 Kc is tuned with C9 near maximum capacity and slug of L 3 screwed in 7 turns.

If above procedure is not followed, it will be possible for crystals from approximately 900 he to 800 Kc ta tune to their second harmonic, if slug in $I 3$ has not been screwed down to approximately 7 turns for 800 Kc .

Frequencies from 540 Kc to 800 Kc

1. The padaer capacitor Cll, 100 mmfa . located on bottom of L 3 must be connected in the circuit.
2. The slus of L 3 should be screved down 14 turns.

Prequencies from 540 Kc to approximately 600 Kc car be resonated with capacitor C9. If complete resonance cannot be obtained on C9, screw the slug of L 3 back out a turn at a time until resonance is obtained by turning C9. At 800 Kc resonance will be with C9 near minimum capacity and the slug of L3 screwed out approximately 7 turns from the starting point, 14 turns down.

$$
\begin{aligned}
\text { CAUPION - } & \text { If above procedure is not followed and } \\
& \text { padder not connected, it will be possible } \\
& \text { to tune crystals from } 540 \mathrm{Kc} \text { to } 800 \mathrm{Kc} \text { to } \\
& \text { their second harmonic. }
\end{aligned}
$$

After resonance has been obtained, the crystal may be set to axact frequency by using the frequency monitor. Set the slots of the trimmer capacitors, $C 1$ and C2, located on the front of the unit, at right andes to the plane of the trimmer mounting screws. Jith the crystal selector switch turned to fly crystal, the frequency should be very close to zero; if not, adjust the trimmer $F R E Q$. ifl until frequency is zero or to point desired for operation. Iurn crystal selector switch to 活 2^{2} position and repeat above operition with trimmer FRPQ. 2 .

The tuning of these condensers will not effect tne resonate tuning of the unit and capacitor $C 9$ will have very little, if any, effect on the trimaer adjustments.

2.2 BC-1G TRANJITRAEDCRIPION

I'he following information will briefly describe this transmitter, giving tube line-up and circuitry of the audio and RF sections along with the various power supplies used.

2.2.1 TURE LTHE-UE

As mentioned previcusly the 15422 Oscillator Unit uses a 12BY7A oscillator and a l2BY7A first IPA. This stage drives a pair of 807's second IPf, which in turn supplies tne driving power for a pair of 833A tubes operating in parallel as the modulated Class "C" power amplifier.

The audio system uses a pair of push-pull 807's as the audio input amplifier, these drivinf another pair of 807's operating as a cathode follower stage which in turn drives the two Class "B" 333A modulator tubes, these tubes in turn high-level plate nodulate the 833A's in the in power amplifier.

The bias supply uses silicon rectifiers.
The intermediate voltage supply makes use of silicon rectifiers in a full-wave center tapped configuration.

Silicon units are used in the high voltage, full-wave center tapped rectifier.

2.2.2 BC-IG TRATMMITRER CIRCUITRY

The BC-lG transmitter uses the 145422 oscillator unit to drive the two 807's operating in parallel as the RF driver stage.... This stage operates with approximately $600 / 625$ volts on the plate of the tubes, 400 volts on the screens, and 60 to 65 volts negative on the Erids. Forty-five (45) volts of this bias is fixed, being supplied from the small bias power supply, this voltage is sufficient to limit the plate dissipation to an allowable value in the event that grid excitation is lost. In nornal operation, the cathode current of this 307 RF driver stage will run from 150 to 200 ma total for both tubes, varying sonewhat with operating frequency and loading. This current is indicated on the multimeter when the multimeter switch is set in the "iRF Driver Cath." position. With this same selector switch set in the "RF Driver Grid" position, grid current to the 807 dF driver stage will be indicated. This will be on the order of 2 to 5 mils.

The plate and screen voltages of the 807 RF driver are modulated slightly, this feature tends to increase the FF drive to the modulated power amplifier on peaks of the modulation cycle, this improves the distortion figure of the transmitter.

The RF driver stage is capacitively tuned by the 250 imfd. variable capacity, C4. Below 1150 kc a padding capacitor must be connected in parallel with C4.

The power amplifier of the transmitter uses two 833 A tubes connected in parallel. The output circuit of this PA stage can be said to be made up of an "L" and two "T:" networks, which effectively transform the operating tube impedance down to the 50/70 ohms found at the line terminal of the transmitter. This network also does a commendable job in reducing to a minimum the transmission of harmonics which might be generated in the transmitter.

Power amplifier coils I40 and L42 are of the continuously variable type and are used to tune the power amplifier to resonance, in the case of L40, and to vary the loading by means of L42. Other than the neutralizing capacitor 040 , there are no variable air dielectric capacitors used in the power amplifier of this transmitter. This adds greatly to its reliability.

Grid drive to the ampifier should be at least 100 ma . for good operation. This will be indicated by the multimeter when the multimeter selector switch is in the "Power Amp. Grid" position. Higher grid drive up to 150 ma. is acceptable, but this drive will vary slightly, depending upon the transmitter frequency.

The-transmitter will match 50/70 ohm unbalanced loads, delivering full power outwut with jower amplifier plate efficiemcy of 70, or better. Other load impedances are available on speciai order.

Audio wise, the Gates $B C-l G$ transmitter is novel in many respects. The audio input/audio driver assembiy is made up basically of componerts mounted on a printed wiring board. Tis assembly is located on the panel and shelf section of the transmitter and includes the two 807 audio input tubes, the two 807 cathode follower audio driver tuioes, along with the balance co.strol, R3, condensers and resistors for these two stages. The audio system is pushpull in operation for all stages. The cethode follower audio driver tubes, V3 and V4, are biased by voltage controlled by the potentiometers, $i 22$ and Rl , located on the smail aluminum front panel. These controls indirectly adjust the operating bias on the modulators by varying the operating constants of the cathode followers, this causes a bias voltage change on the modulators by having a voltage drop occur across the high resistance cathode resistors, Rll and Fi2, of the cathode followers. A very smooth modulator bias change can be attained in this manner, making it possible to adjust the modulators for correct operating conditions. There is no metering of the plate current of the 807 cathode followers, V3 and V4, it is believed that if proper modulator operation is had, then the 807 cathode followers are operating satisfactorily.

High level Class "B" modulation is used in the $B C-I G$, a pair of 833A tubes providing the means. The grids of the modulators are excited by the two 807 cathode follower audio driver. The output of the modulators is coupled to the Class "C" amplipier by means of the capacitor C45, and the reactor L47. The secondary of the modulation transformar $T 41$ does not Csrry any power amplifier DC.

Feedback from the plates of the modulators back to the audio input tube grids has been provided. A small feedback ladder printed wiring board is located on the panel ard shelf assembly directly above the modulation transformer, 141 . By means of a resistor/ capacitor divider network out-of-pinase voltage is fed back to the audio input. The transmitter makes use of approximately 12 to 14 DB of feedback measured at 1000 cycles and 90% modulation. This feedback helps to reduce the noise and also improves tie distortion figures.

The power amplifier and the modulator plate circuits are protected against abnormally high overload currents by means of relays, K6 and K7. These are located on the top sheli of the "panel and shelf" assembly, adjacent to the multi-winding filament transformer, 13.

The overload relays, K6 and K7, have their coils shunted by 20 ohm semi-variable resistors. By adjustment of the slider tap., the relay pull-in point can be selected. These resistors have been set at the factory for normal operation. K6, the modulator overload will pull in at a modulator total plate current of approximately 600 Ma . (Normal plate current for voice and music programing, hitting 100% will be around 400 ma total).

I＇A overload K 7 is set for spproximoty 700 ja pull－in（normal PA plate current will range from 525 to 600 ia，depending on PA transmitter efficiency）．These relays may，pull－in prematurely during sine wave andio modulation at the 100；level．In this event the adjustments can be made to allow for this type of operation．

If the current in either circuit exceeds the vaiue for which its relay was set，the relay will enercize，cassing its nomally closed contacts to open，which in tumn opens the coil circuit of auxiliary relay， $\mathbb{K} 9$ ．This cases the contacts of relay 19 to reture to their normally open position；thus，opening the coil circuit of the high or low power contactor（whichever had beer in use），this reaoves primary voltage from r40，the high voltage power transformer．

2.3 POVER SUPPLISS

The Gates BC－IG，1000／250 watt，Transmitter makes use of three separate power supplies．These use full wave，C．l．rectifier and filter asserblies．Hach of the three silicon supplies used in the transmitter will be fully described in the following parasraphs．

2．3．1 BIAN SUPPLY

This supply is made up of a plate transformer，Tl，workine in conjunction with the bias rectifier，a silicon rectifier consist－ ins of 10 diodes， 400 volts，PIV，İilter choke Ll，filter capaci－ tor，C3，and associated resistors and potentiometers．The bias potentiometers，R1 and R2，indirectly vary the modulator bias by controlling the cathode follower bias and，tinus，the current flow through the cathode follower resistors，Rll and ill．There is applied a negative 280 volts between these resistors and ground． An opposing voltage of approximatcly 210 volts is developed by current flow through Rll and Rl2；thus，putting the difference （about 60 to 70 volts）on the gricis of the modulators．This bias supply also supplies 45 volts of 主主ed bias to the two 807 ＇s in the $\mathfrak{F i}$ driver stage．This voltage is obtained by a tap on bias resistor，Rl2．This bias supply is energized at tne time that the filament start button， 241 ，is depressed．

2．3．2 600／625 VOIP IOO：VOLE，GE SUE上LY

This supply uses 14 diode units of 600 volt PIV rating working as a full wave C．i．rectifier，with a choke input filter system． Choke $L 46$ is rated at 10 hy．，capacitor C47 is a 10 mfd unit． This supply develops aproxima ely $600 / 625$ volts which is applied to the two 807 RF driver tubes．The same voltage is dropped to around 575 volts through series resistor，$R 4$ ，and applied to the two audio stages．The 15422 oscillator unit derives its plate potential from this same power supply，the voltage being aropped to approximately 195 volts by means of series resistor，R5．

This supply has a time delay relay，K8，connected in its primary， which delays the application of this low voltage for approximately 10 seconds after the filament voltage has been applied．This
supply also has its primary in series with door interlock switaches S46 aind S48. If either tine front protective screen or tine buck cabinet cover is not securely in place this supply will be inoperative.

2.3.3 2800 VOLT SUFELY

High voltage for the power amplifier and nodulator is developed by two silicon rectifier assemblies, each consisting of 30 diode units of 600 volt PIV rating, working as a full wave C.T. rectifier. This supply is capable of delivering slightly over one ampere DC. The main power transformer, 140 , the filter choke, L45, and filter capacitor, C48, are located in the bottom section of the transmitter cabinet. This high voltage supply is interlocked with the front panel grill and the interlock switch, 347. As mentioned previuusly, this transmitter has a metal grill work covering the front of the unit, this protects tie operating personnel from the dangerous ligh voltages which are present inside the transmitter cabinet. The lower edge of the protective grill is secured by two quick operating ON/OFF fasteners. When this grill is in place, its lower edge operates the safety door interlock switches, 346 and 547 .
2.3.3.1 HIGH VOLPAGE SUPPLY OPERATION AT 250 GATTS OUPPUT

The BC-IG 1000/250 watt Transmitter can operate at 250 watts, this is made possible by reducing the primary voltage applied to the high voltage transformer, T40. For 1000 watt operation this primary voltage is approximately 230 volts, for 250 watt carrier output this primary voltage is dropped to 115 volts, this develops around 1350 volts through the supply which is applied to the power amplifier and modulators.

2.3.3.2 BC-1G PORAR CAMGE EACILITY

The operation of the $B 0-1 G$ pransmitter at either 1000 watt or 250 watt carrier level is accomplished by the operation of two power contactors, (K2 or K 3) and one auxiliary relay, K9. The relay and contactor operating sequence is as follows:

For 250 watt carrier - Filament OFF/OI pushbutton switch, S41, is depressed. All filaments are enersized, and after another 10 seconds, time delay relay, K8 has closed. ith both front screen and rear cabinet cover in place, the neon indicating lamps of "Filament" switch S41, the red "Reset" button 342 and the white "Plate Off" button 543 will be illuminated. A check of the multi. neter switch positions will show all multinetered circuits indicating correctly, the multineter switch can be left in the i.A. grid current position. Relay, K9, must now be locked in, this action will provide a 230 volt AC source for either high power contactor, K 2 , or low power contactor, $K 3$. Press the red "Reseti button S42; this operation will comlete the auxiliary relay, K9, coil circuit, causing it to lock in. A pair of nomally open contacts A and B close, this malies 230 volts $A C$ avaılable for contactors K 2 or K 3 . When the red "Reset" button was pressed, the neon lamp indication of both the "Reset" and the "Plate Off"
will go out. Now press the amber button marked "Low Power", 544 . This will complete the coil circuit of the low power contactor K3, causing it to lock in. Whe anber button will now be lit up, indicating operation on 250 watts. When low power contactor, K3, locks into position, the following functions ure performed -

1. Contacts $\mathrm{A}-\mathrm{B}$ and $\mathrm{C}-\mathrm{D}$, which are normally open now close; this completes a 115 volt primary circuit to power transformer 140 , for 250 watt operation.
2. Contacts $E-F$, these being nommally closed, are now open, this operation mares it electrically impossible to energize high power contactor, K .
3. Contacts G-if, normally open, are now closed, acting as holding contacts for this low power contactor, $K 3$.
4. Contacts I-J, normally closed, are now open. They remove the short across resistor R34, this allows the output of the modulation monitor pickup to remain at essentially the same level as it is for 1000 watt carrier output.
5. Contacts K-I, normally closed, now open, changing modulator bias.
6. Contacts $\mathbb{M}-\mathbb{N}$, normally open, are now closed. This operation adds resistor Rl4, in shunt with the 3600 ohm resistor in audio pad AIl, effectively reducing the audio input level to that required for 250 watt operation.

For 1000 watt carrier - To go from 250 watt to 1000 watt operation, the following procedure must be followed:

1. Press the "Plate Off" button, tiisswill open the holding circuit of coil of auxiliary relay, k9, causing it to drop out; thus, reiroving energizing voltage to coil of low power contactor K 3 . K3 then drops out, returning all seven sets of contacts to their normal positions. (hen in their normal positions, all circuitry is set up for 1000 watt carrier operation). This removes primary voltage from high voltage power transformer, the transmitter is now off the air.
2. Press the "Reset" switch which again locks up auxiliary relay, i9, providing source of 230 volt AC for the selected plate contactor. Now press high power switch, S45. This will energize the coil of high power contactor K, , causing sane to lock up. This action puts 230 volts AC on the primary of hish voltage power transformer T40. The transmitter is now on air with carrier of 1000 watts.

It is important to note here that the $B \mathbf{B}-1 G$ transmitter has its
carrier removed from air-before-any-ciange in output-power level can be made.

Also, in the event of a power outage, the carrier will be removed from the alr.

The BC-lG 1000/250 watt Broadcast iransmitter has most provisions for renote control built diaectly into its circuitry. It is necessary for the customer to purchase oniy the kit (Gates part j9994 6326 001) containing the reversible motor assembly which works with the plate rheostat, R'4l etne tie auxiliary relay KlA, to operate the power change. All other renote facilities are brought out to terminal boards located on the "panel and shelf" assembly. These terminations are as follows -

TB2-9 \& 10 - Renote Flate Voltmeter.
TB2-11 \& 12 - Renote Plate Current Feter.
TB2-6 \& 7 - Hish power (momentary make).
TB2-7 \& 8 - Low Power (momentary make).
TB2-3 \& 4 - Reset (momentory make).
TB2-4 \& 5-Plate Off (momentary break).
TB2-1 \& 2 - Filament OFi/OF?. These connections (TB2-1 \& 2) must be held closed by contact to provide "Pail Safe" operation. If stuadio telephone control line would open up, the complete transmitter would de-energize, removing carrier from the air.

The Gates overall schematic 8525873001 clearly shows the above mentioned comnections.

INSTALLATRON

This instruction book affords valuable information for the persons who are installing and operating the Gates BC-1G Transmitter. The following mentioned points should be studied so that the unpacking and setting up procedure will be well in mind when doing the actual work.

3.1 INSTALIMTON HINTS

1. Check all packing lists for materials supplied.
2. Study the instruction book before attempting to set up the equipment.
3. Have the transmitter location clean so that the variouss parts can be safely placed out of harms way when the unit is unpacked.
4. It is well to have a mounting base set in place upon which the transmitter can be set. This base can be made from $2^{\prime \prime} \times 4^{\prime \prime}$ lumber. It should be lagged to the floor and measures taken to insure that the top side of the frame is perfectly level. This will give a good, solid, level base on which the transmitter can be set. This procedure also allows the external transmitter wiring to enter the cabinet from practically any point underneath and be run to the entry holes provided in the base of the cabinet. See Gates drawing 8137924001 for base layout and dimensions.
5. Use heavy primary wire from the building switchbox terminals to the transmitter fuse block. if 4 copper wire should be suitable for these leads.
6. Be sure the power company has installed large enough service for all the equipment; transmitter, lights, water pump, etc., which will be used at the transmitter site.
7. Do a good job of installing the equipment. Time spent in making the installation as good electrically and mechanically as possible, will pay off in the future by insuring less off-the-air time.

3.2 TRANBMITEER INSPECTION

All packing material, string, cape, etc., should be removed. All relays shocild be inspected for free travel of armature and contacts. Heavy components, suci as the high voltage power transformer, high voltage swinging choke, modulation transformer and modulation choke are shipped separately, each in its own box.

$$
-14 \quad B C-1 G
$$

Pubes and crystals have also been removectrom transmitter, thess too are packed separately. The small, Elass enclosed time deay relay is shipped in its socket, on the panel and shelf assembly.

Go over the complete transmitter. After traveling a long distance a fastener could come loose. Put a screw ariver or wrench to all nuts and bolts. This work may take an hour or so, but hay save loss of air time liter on.

3.3 TRANMITTER CONNECTIONS

After the transmitter has been uncrated and placed in its final operating position, the external connections can be made to it. These connections will be outlined and each one will be gone over in detail.

3.3.1 PEIMARY EONER

This line will supply the power requirements of the transmitter. For good regulation the wire size is important. We have suggested f 4 wire from the wall switch boy to the transmitter. This service calls for a three wire, 230 volt installation; in other words, 115 volts each side of a solid neutral. The two hot wires should be \#4, the neutral can be smaller in size, if desired, but in no case smaller than 8 . These wires can be brought in to the cabinet at the right hand rear corner (as viewed from the front). Make sure the wall switcin is in the OPF position. Comnect the three primary wires to the transmitter fuse block XFI.

3.3.2 TRANSMITTER GROLIND

A large ground stud is loc ted on the cabinet frame very close to the modulation transformer, T4l. Nonnect a good ground strap from this stud to the ground system of the station. A copper strap $l^{\prime \prime}$ or $2^{\prime \prime}$ in width will do. This strap may enter the cabinet through the access hole in the base at the rigit rear through which the AC primary wires enter.

3.3.3 AUDIO INPUT

The audio input pair siould be in shield, the two audio wires should be connected to terminals, 14 and 115 on TB2. The cable shield can be grounded on terminal it3 of TB2.

3.3.4 MODULATION PONITOR

The modulation monitor should be connected to terminals in and 14 of TBlA. Dolid dielectric coaxial cable, such as RG62/U can be used for this connection. TBlA-14 is the "Hot" wire, TBlA-13 is ground.

3.3.5 FREVUNCY MONITOR

The frequency monitor should be connected to teminals, 30 and 29 (29 ground) on TB2. This connection can also be made up of RG62/U coaxial cable, the center wire connectins to terminal 430 .

Ground the shield to 29 .
3.3.6 KF OUTPUT

Connect the coaxial transmission line center conductor to the ceramic feedthru insulator stud. This feedthru insulator is located near the output loading coils L42. You may run the coaxial line either through tise top of the cabinet, through a hole provided there, or up through the base. In any event, be sure the outer shield, or conductor is totally grounded to the transmitter cabinet and to the station's ground system.
3.3.7 RETOTE OO TROL (IF ROD)

If the transmitter is going to be renotely controlled using Gates RDC-lOC remote equipment, the folloving information must be used for making the connections.

With facilities already available in the BC-lG circuitry for remote filament OH/OFF, remote RESNT and remote plate OFF, it is only necessary for the customer to install the small motor assembly to actuate the plate rheostat R 41 and the supplemental relay KlA which operates the $250 / 1000$ watt carrier function.

3.3.7.2 PJATE RHEOSTAT MOHOR ASOEBLY

The plate rheostat motor assembly 79946326001 has full mechanical information supplied with the kit to allow for easy installation in the transinitter, suitable brackets, sprockets and chain are included. With this motor and associated components installed, the following connections must be run from the motor bracket terminal board TBl, to the $R D C-10 C$ Iransmitter Control Unit.
a) Terminal $n=1$ connects to $\operatorname{TB2}-26$ in $\mathcal{R D C}-10 C$ unit.
b) Terminal i 2 connects to cabinet ground stud.
c) Terminal if 3 connects to TB2-28 in IDC-10C unit.
d) Terminal if 4 connects to TB2-17 in $\mathrm{RDC}-100$ unit.
e) Terminal \#5 connects to cabinet ground stud.
f) Connect a wire from TBI-4 in the BG-lG Transmitter to TB2-27 in the RDC-lOC Trensmitter unit. Tinis connection carries hot 115 volts $A C$ to the transmitter unit from the $I 1$ side of the line within the BC-lG Transmitter. (115 volt AC between TBl-4 of $B C-1 G$ transmitter and ground).

3.3.7.3 REIOTE PONR CILANGE

The BC-IG has in-built provisions to change power from 1000 watts to 250 watts and bacl. to 1000 watts. The two power change
contactors K2 and K3, working in conjunction with plate auxiliary relay $K 9$, and the front-of-cabinet pusinoutton switches marked "Reset" S42, "Plate Off" S43, "Low Power" 544 and "High Fower" S45, perform the function of changing carrier power. Suppose we are operating at 1000 watt carriei power and wiah to drop carrier power to 250 watts, the sequence of syitching is as follows -
S43, the "Plate Off" button is depressed, causing auxiliary plate relay $K 9$, to drop out; its contacts $A-B$ and $C-D$ open. Contacts $A-B$ control $A C$ voltase to low and high power contactors $K 3$ and K2. (As we were on 1000 watts, the hish power contactor $\mathrm{K} 2 \mathrm{de}-$ energizes, removing primary voltage from the high voltage power transformer $\mathbf{T} 40$), the carrier is now off. "Reset" button 542 is then romentarily depressed, again setting un and locking in auxiliary relay K9. This operation then makes it possible to select the low power contactor K 3 , by depressing "Low Power" button 544 momentarily. Contactor $K 3$ pulls in, energizing the primary of high voltage power transformer T40, with li5 volts AC. This action along with several other circuit changes (all made by contactor K3) allows the $B C-1 G$ to operate on 250 watts carrier power.
By remote control, these power change functions are performed as follows -

1. Place switch Sl, function switch, on the front panel of the RDC-IOC Studio Unit to position 2 . The remote plate current meter will read plate current.
2. Place switch $S 6$, the plate $0 n / O f f$ switci on the front panel of the RDC-IOC Studio Unit, to its "Off" position momentarily, this will de-energize auxiliary plate relay K9, in the transmitter. The transmitter is now off the air, the remote plate current meter should read zero.
3. Place the plate $O N / O F F$ switch $S 6$, of the Studio Unit, momentarily to its ON position. This energizes the coil of auxiliary relay $K 9$, causing it to again lock in and at the same time providing 230 volts AC for possible use by K 2 or K3 contactors.
4. Now operate the Raise/ Iower switch 54 , on the panel of the RDC-10C stidio unit. "Raise" for high power, "Lower" for low power. Assuming 1000 watt carrier operation is desired, S4 will be placed momentarily in its "Raise" position. This will complete the circuitry to the coil of high power contactor, K2, causing it to pull in and lock, putting 230 volts AC on the primary of high voltage power transformer, 140.

The following connections must be made between the BC-IG Transmitter and the RDC-10C Transmitter unit, to perform this high power/low power function. It will use stepper position 2 .
A supplemental 6 volt DC relay $K l_{\text {a }}$, having two sets of "A" contacts must be installed in the BC-IG iransmitter, this relay is included in remote control kit if 9946326001 . This relay will be
mounted in the space provided on the "Yanel and Shelf', see Gates drawinE 8137961001 for physical location of supplemental relay KlA , also drawing 8137928001 for KlA connections. These connections are as follows -
a) Coil $\mathrm{KlA}-1$ conmected to $\mathrm{IBL}-20$ in $\mathrm{BC}-1 \mathrm{G}$.
b) Coil KlA-2 connected to $\mathrm{IBl}-26$ in $\mathrm{BC}-1 \mathrm{G}$.
c) KlA-5, normally open contact, is connected to TB1A-15 in BC-1G Transmitter.
d) KlA-4, normally open aim, is connected to TB2-6 in $B C-1 G$.
e) KlA-8, normally open contact, is connected to TBl-30 in BC-lG Transmitter.
f) KlA-7, normally open arm, connects to $1 \mathrm{~B} 2-8$ in $B C-1 G$ Transmitter.

With the supplemental relay $K l A$ installed and connected, the external connections to the RDC-IOC Transmitter Unit can be made -
a) TBI-50 in EC-IG must conrect to IBE-28 in RDC-10C こrasrittor Unit.
w) TB1A-15 in BC-1G connects to TB2-26 in RDC-10C Transmitter Unit.
c) TBl-20 in BC-lG connects to $T B 2-25$ in $R D C-10 C$ Pransmitter Unit.
d) TBl-26 in BC-1G connects to TB2-16 in RDC-10C Transmitter Unit.

If İ AGAIN NOMED these functions make use of stepper position if 2 . 3.3.7.4 RESET, PLAL'i OPF (Netting up Auxiliary Relay, K9)

Three connections must be made between the $1 B C-I G$ Transmitter and the RDC-IOC Transmitter unit. They are -

1. TB2-3 in BC-1G must connect to $\mathrm{PB} 2-29$ in RDC-10C Transmitter Unit.
2. TB2-4 in BC-lG connects to TB2-30 in PDC-lOC Transmitter Unit.
3. 'TB2-5 in BC-IG must connect to PB5-2 in KDC-10C Transmitter Unit.

Also a jumper must be ADDED in the $B D C-10 C$ Transmitter Unit, from TB2-30 to TB5-1.

3.3.7.5 RTAO LIATE VOLAGGM IMDICATION

There are two connections which must be made between the BCi-IG transmitter and the i iDC-ICC transinitter unit.

1. The positive terminal of the plate voltage extension in the $B C-1 G$ transmitter, 9 B2-9 must be connected tc TB2-1 in the $\operatorname{aDC-10C}$ Transmitter Unit.
2. The negative terminal of tre plate voltage extension in the BC-lG transmitter, TB2-10 must be connected to TB2-25 in the RDC-lOC Iransmitter Unit.

This function is on position ,l of the iDC-lOC Studio Unit.

3.3.7.6 REHOTP PLATE CURHENT IHDLCATION

There are two connections which must be made between the BU-lG Transmitter and the RDC-IOC Transmitter Jnit.

1. The positive terminal of the plate current extension TB2-12 in the BC-1G must be connected to $T B 2-2$ in the RDC-10C Transmitter Unit.
2. The negative terminal of the plate current extension $T B 2-11$ in the BC-lG Pransmitter must be connected to TB2-25 in the RDC-1OC Iransmitter Unit.

This function is on position 2 of the RiC-lOC Studio Unit.

3.3.7.7 RDIOTE TOVR LIGFT IMDICATION

We must connect the renote tower light indication kit into the RDC-lOC transmitter unit. whis will be accomplished by the installation of the M5143 current transforner. It will be mounted with one leg of the tower lighting circuit passing through it. There are two external connections out of the transformer which must be connected to the RDC-lOC Transmitter Unit.

1. One lead connects to IB2-4 in the $\mathrm{ZDC}-10 \mathrm{C}$ Transmitter Unit.
2. The second lead connects to TB2-25 in tine RDC -10C Transmitter Unit.

This function is on position ":4 of the RDC-l0C Studio Unit.

3.3.7.8 REMOIE AMN NNA CURIETT MEP, ITING

For remote transmitter operation, a method of metering the antenna current is required. The Gates 148862 kit will do this.

Install this equipment mechanically as given in the instructions supplied. Connect the tivo leads as follows -

1. Negative lead to $1 \mathrm{~B} 2-25$ in RDC-10C Transmitter Unit.
2. Positive lead to $T B 2-3$ in RDC-10C Pransmitter Unit. With stepper positioning switch in Studio Unit set to position 3 (ant. cur.). This remote Ris current indication will be read on meter M3.

NOTE - Then the BC-lG Transmitter is being set up for renote control operation, a jumper wire nomally connecteu between TB2-4 and TB2-5 in the transmitter, must be reroved.

The Local/Remote toggle switch 540 , loceted on the right hand corner post of the cabinet, above the pushbutton switches, must be placed in the "Renote" position.

3.3.8 STUDIO FROCEDUAS, PO R R OM SO HOL OPERATION

This information will describe the actual switch manipulations of the RDC-IOC Studio Unit which are necessary to perform the following functions -

1. Place BC-lG Pransmitter on air, with 1000W. carrier.
2. Place BC-1G Transmitter on air, with 250W. carrier.
3. Iith transmitter operating at 1000 watts, to drop power to 250 W .
4. With transmitter operating at 250 V, to increase power to 1000\%.
5. To raise or lower transmitter power by means of plate rheostat.
6. With transmitter operatine, to have power failure at studio.
7. Fith transmitter operating, to have power failure at transmitter.
8. To completely close dow transmitter.
3.3.8.1 PLACING BC-1G ON AIR, IITH 1000 WATT CARRI SR
a) RDC-10C Studio Unit aust be turned on.
b) Filament switch 53 of Studio Unit must be turned to ON position.
c) Allow 10 to 15 seconds for transmitter time delay to heat and close.
d) Homentarily operate switch S6 (Plate ON/OFF)* to its ON position (up for ON).
e) Flace stepper positioning switch SI of RDC-100 Studio Unit to position t^{2}. This position normally reads P.A. plate ciarrent.
f) For high power (1000 !!) carrier ON, operate IXAISE/ Lu En switch S4 to "UP" (raise) position momentarily. Transmitter is now operating on 1000 watts.

3.3.8.2 PLACIAG BC-IG ON AI : 2 ITH 250 NATM CARRIER

Follow steps a, b, c, d, e as described in paragraph 3.3.8.1 above.
f) For low power (250 N.) carrier ON, operate RAISE/ LO:IER switch 54 to "DO IT" (lower) position momentarily. Transmitter is no: operating on 250 watts.
3.3.8.3 IITH TRANTHTRAR OFARALG AT 1000 MATRS, TO DROP PO:TEK TO 250 TATNS.
a) Set stepper positioning switch to position 2 (plate current).
b) Operate Plate ON/OFF* switch S6 momentarily to its "OFF" (down) position.
c) Now operate same switch, $S 6$, momentarily to its "ON" (up) position.
d) Operate RAI: W/LO.IER switch $S 4$ momentarily to its "LO.VEi" (down) position.

Follow steps a, b, and c as described in paragrapin 3.3.8.3 above.
 "RAISE" (up) position.

a) Set stepper positioning switch of Studio Unit to position it 3 (ant. current).
b) Operate RAINE/LONR switch S4 to "RAIvil (up) position to increase plate voltage. This operation will be indicated by the increase of antenna current on meter.

Operate RAISE/LOUDR switch to "LOFER" (down) position to decrease plate voltage; thus, lowering RF output of transmitter.
3.3.8.6 TRLNSIITRER OPERATING, HAVING 5 OITREAUUREAT STUDIO

If the studio commercial power would fail momentarily while the $B C-1 G$ Iransmitter is on the air, the following functions must be performed to return transmitter to air.
a) Set stepper positioning switch $S I$ of RDC-lOC Studio Unit to position , 2 .
b) Operate S6 (Plate ON/OFF*) to "ON" (up) pasition momentarily.
c) Operate switch $S 4$ (RAITE/LONER) to "UP" position momentarily for 1000 . carrier, or the $\mathrm{H} D \mathrm{NN}$ position momentarily for 250 watt carrier.

To shut down transmitter completely at close of broadcast day the following operations should be made -
a) Operate switch S6 (Plate ON/OFF*) of studio unit of RDC-10C to its "DOIN" (off) position.
b) Operate switch S 3 (filament) to its "DOIN" (off) position.
*It is called to the attention of operating personnel that the Plate ON/OFF switch is used as a "RESEP" function switch in its "UP" position, as a "PLATE OFF" switch (as marked) in the "DO'IN" position, when the RDC-10C Studio Unit is working in conjunction with a BC-IG Transmitter.

3.4 CRYSUAL INS'LALLATION

The M5422 Oscillator Unit has provisions for two vacuum, glass mounted crystals. These crystals are octal based and plug directly into the crystal sockets XYI and XY2. Remove thumb screw which secures the oscillator cover. Rerove tie cover. Flug in the crystal, or crystals, to be used. Be sure it is correctly marked, as to the operating frequency. At this same time place the two 12BY7A tubes in this unit, then replace the cover and secure same with the thumb screw.

TUNE-UP PROCEDURA, 1000 AATT CARKTER

For tune-up we will use 1400 Kc as an example. The same information will be usable for tuning the transmitter to any frequency within the broadcast band. The tuning chart furnished in this book will spell out the component values for the parts which must be changed to put the transmitter on any specific frequency. When this transmitter was shipped fron the factory the correct components had been installed for the operatine frequency specified.

HIGH VOLTAGES ARE DANGEROUS

Use extreme care when tuning up the transmitter, high voltages will be present. DO NOT strap out door interlocks. We suggest two people be present during the initial tune-up so one may observe the other's actions. Using normal care and average intelligence, operation around high voltage can be completely safe.

CARELTNSNESS CATMEAN DEATH
4.1 PRELIMINARY TUNE-UP CFPCKS (Transmitter locally controlled)

At this time, the switch in the station's distribution box, which supplies 230 volts to the transmitter, should be placed in the ON position.

Place toggle switch, 340 , in the LOGAL position.
Fush the "Filament Start" switch, $\{41$, all tube filaments should light. It is well to note here that filament switch, S4l, is a push ON/push OFF type. It may have been in the ON position, and if so, the filaments would have energized at the time the wall switch was placed in the ON position. These pushbutton switches have in-built neon indicators which tell the operator when the controlled circuit is energized. SWitch, 341 , the filament ON/OFF control must be pressed to close and must be again pressed to open its circuit. Also at this same time the cabinet fan is running and the bias transformer, Tl, has its primary energized, this providing the transmitter with its bias requirements.

After about 10 seconds the "Low Voltage" time delay relay, $K 8$, will close its N.O. contacts, this will cause the low voltage power supply to deliver power to the oscillator unit, the RF driver stage and the audio input/audio driver stage. (This will occur if the front protective metal grill is in place, closing the door interlock switch, 546 , and if the rear cabinet panel is in place to close interlock switch, S48).

Set the multimeter selector switch, 52 , to the "Plate Cur. Osc./ Buf" position, multimeter 140 , should indicate from 20 to 25 ma . This is total cathode current of both oscillator tube and buffer tube. Now place multimeter selector switch in the "RF Driver Grid" position, the multimeter should read from 2 to 5 grid ma.

$$
-23-
$$

BC-IG

If such is the-case, immediately place the multimeter switch to the "RF Driver Cathode" position and read the cathode current of the 807 RF driver stage on the multimeter. Check this reading for minimum indicated current by tuning the RF driver capacitor, 04. A minimum reading will indicate resonance, this current will indicate somewhere in the range of 140 to 175 ma .

Now set the multimeter selector switch to "PA grid" position. If tuning is proper to this point, the multimeter shouid indicate between 100 and 150 ma . grid current flowing in the 833 A power amplifier grid circuit.

NONE: At this time, if readings do not follow these instructions, it would be well to check the tuning of the M5422 oscillator unit. In the forepart of the instruction book are full detailed instructions for padding and tuning this unit. Normally, this oscillator unit will require no tuning, as it has been thoroughly checked in our factory before shipment, but if some fault has developed during shipment, these instructions should be followed explicitly. In nearly all cases, correct operation can be expected, if the grid drive to the 807 buffer stage is reading within the range of 2 to 5 ma .

At this time set the multimeter selector switch to "Input Audio" position and read current as indicated on the multimeter. This will run from 5 to 10 ma .

4.1.1 CHECKING FILAHLNP VOLTAGE, BIAD SUPPLY AN:D LOW VOITAGE SUFiLY

Remove the right hand side of the cabinet. First we will check the filament voltage and its indication on the multimeter. Using a Model 法260 Simpson meter or equivalent, place meter on low range AC scale. (iVill measure lo volt AC). Connect meter leads to filament connections of V40, the 833 A PA tube. fith filaments ON, read AC voltage. It will be somewhere between 9.5 and 10.5 volts. Set filament control R43, so that indicated AC voltage on Simpson meter is 10 volts. Now set transmitter multimeter switch. S2, to "filament volts". By use of a small screw driver adjust potentiometer R7, located on "Panel and Shelf" so that multimeter M40, at top of cabinet, reads 10 volts (the mark on multimeter scale). The multimeter is now calibrated for filamert AC indication. Remove test leads from V40.

Using voltmeter, similar to the Simpson iodel $\dot{\vec{r}} 260$, or equivalent (20,000 ohms per volt) measure the negative bias voltage being developed in the small bias supply. Jith the filament energized, there should be negative 280 volts measured from either transformer, Tl, termina 4 to ground. An alternate place to measure this voltage would be across the resistor, Rl2. For voltages see the "Typical Voltage Chart" in this instruction book. All voltages will vary slightly, reading of plus or minus 10% are considered satisfactory.

Now check the low voltage supply. This supply delivers approximately $600 / 625$ volts DC at the output of its choke input filter

$$
-24-\quad B C-1 G
$$

system (I46 and C47). A good place to measure this voltage vould be terminal ill on 1 B2 to ground. After this cineck, replace the cabinet side.

Now turn each modulator bias control (Kl and R 2) completely to its counterclockwise position. This will bias the moduiators to cutoff, precluding the possibility of these tubes from drawing hish current during this phase of adjustment.

NOTE: We will cone back to these modulator adjustments later on. De-energize the filament circuit by pressing the filament ON/OFF switch S41.

At this time refer to the Tuning Chart for the BC-IG which is a part of this instruction book. Check the "active turns" listed for:
a) The PA Tank Coil, L40.
b) For Loading Coil, I,4l.
c) For output coil, L42.

For your frequency, adjust each coil, either variable or fixed, to what is indicated on the chart. Again, these turns will vary slightly under local installation conditions. In our 1400 Kc tune-up example, we have:
16.7 active turns for PA tank coil, L40.

8 active turns for loading coil, L4l.
9 active turns for output coil, L42.
Again, consulting the Tuning Chart, we find the proper value of capacitor for your frequency. Using 1400 Kc as our example, we find:

PA tank padder capacitor C42 and C43 - Two Type G2, .00025 mfd .

Input loading capacitor, $C 44$ - . 002 mfd .
Output loading capacitor, C45 - . 002 mfd .
4.2 NEUTRALIBING TE POTER ATEIFIRR

Attention to this procedure is very important as complete neutralization is mandatory for good performance. The objective of the neutralizing process is reducing to a minimum the RF driver voltage fed from the input of the power amplifier to its output circuit through the grid-plate capacitance of the tubes. This is done by adjusting the neutralizing capacitor until an RF indicator in the output circuit reads minimurn BE POSITIVS pHE HIGH VOLIGGE IS OPF.

A grid dip meter, a wave meter with some sort of indicator, or a flashlight lamp connected to a few turns of insuiated wire willa-du as a neutralization indicator. Of course, a very good neutralization indicator is already built in the transmitter; namely, the power amplifier grid current meter. Two methods of neutralization will be described; first, that of using the grid current meter for neutralization indication.

1. Keep the dunmy load connected to the power amplifier.
2. Energize all filaments by depressing the "Filament Start: switch tab. After approximately 10 seconds, the oscillator, lst IPA and 2nd IPA are in operating condition and grid current will be flowing in the power amplifier. (The multimeter selector switch is set on "PA Grid Cur." position).
3. Set the neutralizing condenser C 40 , at maximum capacity, plates fully meshed. This control is conveniently located on the top front PA panel, near the right hand corner.
4. Adjust the PA tank coil, L40, tuning by means of the right hand knob on the PA panel (marked "PA Tune"). Then resonaince is reached, the grid current, as indicated on the multimeter, will dip noticeably (if not neutralized).
5. Change the neutraliaing capacitor setting by a small amount (gradusily decreasing capacity), then reresonate the power amplifier, roting the dip in the grid current. As the correct neutralization point is reached, the grid current dip will become less and less until complete neutralization is effected. This will be indicated by no deflection of the power amplifier grid current.meter when resonance is obtained....Ender these conditions the amplifier should be neutralized.

In case complete neutralization cannot be obtained, several taps on the driver tank coil [4, are provided to aid this situation. Using the exact center tap, move the grid lead over one tap and repeat the entire neutralization procedure, as outlined above. The correct tap will always be found for satisfactory neutralization. In many instances your transmitter is tuned at the factory to your operating frequency. In this case, you will find neutralization is largely a touch-up procedure.

NEUTRALIZING IITA A FIASHLIGHT BULB

The same procedure will apply as previously mentioned concerning grid current to the power amplifier. A small flashlight bulb is a sensitive and inexpensive RF indicator. The bulb should be connected in series with a couple of turns of insulated wire, approximately the sane diameter, or a bit smaller, than the power amplifier tank coil, L40.

Place this coil and lamp RF indiotor-in ciose-inductive ralation with I4O.

1. Set the neutralization capacitor at maximum-capacjty.
2. Very carefully tune the power amplifier toward the resonance point. It is very important to tune slowly because is the resonance point is ootained quickly, there most likely will be sufficient RF in the power amplifier tank to burn out the flashlight bulb.
3. Adjust the coupling between the lamp coil and 140 so that the lamp will glow brightly when resonance is reached. Now decrease the neutralizing capacitor's capacity a bit, the limp brilliance will decrease, adjust the power amplifier tuning again for resonance, which may cause the laip to brighten up a bit. Continue this operation until the lamp goes out. The amplifier will be sutisfactorily neutralized under this condition.
4. Renove the lamp and coil RF indicator from the tranamitter. Renember, all of thesc neutralizirg procedures are done with the high voltage reaved from the power amplifier.

We are ready, after neutralizing is complete and satisfactory, to tune the power amplifier. This is the lare final ki amplifier that puts out the power, so we go about it carefully and methodically. Your overload relays should protect the equipment if you do anything wrong, but here we are dealing with power - so watch the power amplifier plate current meter, and if readings get too high (above 700 ma), check your overload relays to see why they are not operating.
The 833A tubes may have a cherry red glow in the center of their plates. This is normal, but a deep red spread all over the plate of the tube, usually indicates excessive current and will be indicated on the plate current meter.

Turn off all primary voltage by pressing the "Pilament Stop" tab. We have earlier set all tank and loading coils to the proper "active turns", as shown in the tuning chart. Also, the correct capacitors are installed for the operating frequency.

Remove the front screen, again be sure all voltage is OFF. Now connect one lead from one silicon assembly to a secondary connection on high voltage T40. Leave the other high voltage OFF of the power transformer. Nake sure it is not shorted or grounded at its free end. This set-up will provide partial plate voltage for the tune-up of the power amplifier.

Now replace the perforated front cabinet screen. Turn on the transmitter by pressing the "Pilement start" button. Ailow time
for the time delay relay to operate. Check to be sure you have PA grid current of from 120 to 150 ma . Je are ready for our first try of the power amplifier.

Press the "Keset" button, S42. This in turn energizes the auxiliary plate relay, K9. This relay locks itself closed, and by means of a second set of contacts which are now closed, sets up 230 volts AC to become vailable for uperation of either the low power contactor K 3 , or high power contactor K 2 . As we are prevaring the transmitter to operate on 1000 watts, the pushbutton designated "ifigh Fower" (white, S45) is depressed, this closes high power contactor K2, which locks itself up, putting 230 volts AC on the primary of high voltage power trinsformer T40. Immediately adjust the "Power Amplifier Tune" control for lowest plate current reading on the "PA Plate" meter. Keeping this control in one hand adjust the "PA Loading" control. If current goes up, re-adjust the "Power Amplifier Tune" for lowest current. When you reach about 200 ma . at 900 volts, you are near normal loading and tuning. 175 ma. at around 950 or 1000 volts is just about normal, but plate current much above 200 ma. would indicate improper tuning or loading.

If the amplifier has been tuned up and meets the above conditions, you are ready to apply the full high voltage. Shut down the transmitter by pressing the "Filament Stop" button. The plate voltage is interlocked with the filaments, when the filaments are de-energized, this shuts down the transnitter completely. Remove the front perforated screen - then look to see that all tubes are de-energized. Now attach the other high voltage lead (which has been disconnected) to the secondary of the power transformer, $T 40$. This will make the high voltage power supply effective. Again, replace the front protective screen, this will definitely close the low and high voltage interlock switches, 546 and 347 . Be sure the rear cover of cabinet is securely closed, making door interlock 548 , closed. You are now ready to try full power. Press the "Filament On" switch button, wait for grid drive to be available on power amplifier. Press S42, "Reset" button to set up auxiliary relay K9, now press "High Hower" switch 345 . If things are right, the power amplifier plate current will rise to between 500 and 600 ma . and you will have between 2500 and 2550 plate volts, indicated on the plate meter. The "Line Current" ammeter will be indicating around 4.2 to 4.4 amperes. Rotate your "Power Amplifier Tune" control slightly to see if you can raise the line current. Re-adjust your "PA Loading" control, watching your line current meter. You have arrived, if you approximate these readings.

> Plate Current - 500 to 550 ma .
> Plate Voltage - 2500 to 2550 volts.

Line Current - 4.45 amperes (into 50 ohm dummy).
With inductive tuning, maximum power output does not always occur at minimum power amplifier plate current. Usually, one side of resonance provides greater output than the other side. De-tune 10 to 15 ma .

At this time, check the operation of the fan at the top of the cabinet. It should be operating and exhausting the heated air out of the cabinet.
The modulator tubes should be drawing very little, or no plate current. (Remember, we adjusted the bias controls in their counterclockwise positions, thus putting maximum bias on the modulators).

4.4 MODULATOR ADJUSTRENT

At this time we want to adjust the modulators. What we want is approximately 40 ma . per tube, making a total of 80 ma . Be sure no audio signal is being fed into the transmitter. If your limiter is already connected, make sure its controls are in the OFF position.
Now place the modulator selector switch 51 , located just below the modulator bias controls, to position Mod. l", then adjust the left modilator bias control until the modulator plate meter reads $40 \mathrm{ma}$. Flace the modulator selector switch to "Yod. 2" position and adjust the right bias control to 40 na . By setting this switch to "Total", a reading of 80 ma total for both tubes is indicated. This will be your operating position of the modulator selector switch for normal broadcasting. This feature allows you to check modulator tubes for balance and to reset them if they are out of balance. Slight touch-up of these controls often helps in final distortion readings. Actual perfect balance of static modulator currents is not mandatory. In some cases, one tube drawing slightly more static current than the other provides the best measurements; however, they shoula not be severely out of balance.
The plate rheostat R4I, marked "Plate" on the inside cabinet support, provides about 200 volts variation for day to day power adjustments. Clockwise rotation increases the plate voltage. The filament rheostat, $R 43$, located below the plate riseostat adjusts correct primary voltage to all the filament transformers.

4.5 MODJLATIUN HONTPIR CONTNCLIUSS

Terminals 13 and 14 on TBla furnish R drive for the Modilation Monitor. Terminal if3 is ground, 1.4 is the "hot" lead. RF voltage is supplied by the positioning of a variable tap on the modulation monitor coil, 443 , located in the top front of the transmitter, near the line $\mathbb{R} F$ ammeter.

With the BC-IG Transmitter capable of operation at either 1000 or 250 watts, provision must be made to hold the output voltage of the modulation monitor excitation source constant at either power. The modulation monitor will then be in calibration and indicating percentage of modulation depth, regardless of output carrier power.

With the transmitter turned OFF, adjust the variable tap on coil, I43 to a position about midway on coil. Turn transmitter on (250 1) low power. Adjust input tuning of modulation monitor for maximum indication of carrier meter. Note reading of carrier meter; if high, the tap on coil 143 must be relocated closer to ground end, if meter reads low, the tap must be relocated closer to "hot" end of coil L43. The transmitter must be shut down, of course, for safety's sake, when changing taps.

With monitor output level from transmitter correct for modulation monitor calibration at 250 watt output level, place transmitter on high power, 1000 watts. Checi reading on modulation monitor carrier meter. (Do not re-adjust modulation monitor input tuning). If reading is high or low, adjustment must be made by change of resistance of resistor, R34. Turn transmitter off. Adjust R34 variable tap as follows - If carrier meter reads high, it will be necessary to decrease the resistance of R34 until the carrier meter is indicating correctly (l00 on scale). Conversely, if meter reads too low, more resistance must be added in $R 34$ until carrier meter reads correctly. Now operate the transmitter at 250 watt level. Modulation inonitor carrier level meter should indicate calibration. If adjustments are so made, the carrier meter should be "on calibration" (read 100) for either 250 watt or 1000 watt operation.

If the customers modulation monitor drive requirements are such that the semi-variable 150 ohm resistor, $R 34$, must be adjusted to 50 ohms, or less, in the shunt circuit, it (R34) must be replaced by one having a total overall resistance of 50 ohms. A 50 ohm , 50 watt semi-variable resistor has been supplied with the transmitter, for this purpose.

This resistor change will be necessary for users of the Gates M-2639 Modulation Monitor.

World Rediohisiory

TUNE-UP PROCEDURE, 250 WATTS

Let us assume that the $B C-l G$ Transmitter has been operating satisfactorily at 1000 watts power output. The adjustments and operational procedure to place the BC-lG on 250 watts is as follows -

1. Depress the "Plate Off" switch 343. This de-energizes the auxiliary plate relay Kg , causing its holding contacts to open, also opening the 230 volt AC circuit to coil of high power plate contactor K2. Contactor K2 opens, removing primary voltage from transformer T40.
2. Now press the "Reset" switch S42. This again energizes the coil of auxiliary relay $K 9$. This relay locks itself in and makes control voltage again available to high and low power contactors. Now depress "Low Fower" pushbutton switch S44. This energizes the coil circuit of "Low Power" contactor $K 3$, causing it to lock in. This action connects 115 volts into the prinary of the high voltage plate transformer T40. The transmitter is now developing 250 watts carrier. When contactor K 3 energizes, various other connections were completed to fulfill the 250 watt circuit requirements. The operation of contactor in 3 , has been previously described in this instruction book.

There will be approximately 2.2 amperes sliown on the RF line meter. The modulator will be enersized. The plate current to the power amplifier will approximate $260 / 280 \mathrm{ma}$. at a plate voltage of 1250 volts. The modulator plate current will be around 25 ma. per tube (total of 50 ma .). If the modulator plate currents do not read this, adjust tap on bias resistor RI3, until they do.
DO NOT ADJUST the bias controls $R 1$ and $R 2$, if the modulator static plate current of each modulator is not approximately 25 ma ., adjust tap on the bias resistor R13, until this cordition is obtained.

NOTE: We have previously adjusted the bias potentiometer RI and $\overline{R 2}$, to give the correct static plate currents at the 1000 watt carrier level and we desire this to remain so. By increasing the total resistance in resistor combination of R11 and R13, the bias voltage across the output bleeder resistors R1, R2 and R3, will decrease, this reduces the modulator bias causing the modulator static plate current to rise; by decreasing the total resistance of R11 and R13, the voltage across the R1, R2, R3 bleeder will increase; thus, increasing the modulator bias, this causes the modulator static plate current to decrease. (It will be noted that after the resistance value of Rl3 is determined and tap is secured on the resistor, then any re-adjustment of Rl and R2, the modulator bias potentiometers, will affect the static
modulator plate currents at both the 1000 watt and 250 watt carrier level). By slight re-adjustment of these two controls, if necessary, satisfactory modulator operation will be assured at the two output powers.

HELPFUL OPARATIOTAL IUFORHATION

This section will contain information that should help the operating personnel keep this transmitter running correctly and reliably in its day-in and day-out broadcast service.

6.1 FREQUENCY ADJUSTIENT

The Gates BC-1G Transmitter makes use of vacuum, mounted-in-glass ovenless crystals for the control of the operating frequency.

These crystals are capable of holding the transmitter frequency within a range of plus or minus ten cycles (or better) over the standard broadcast band. There are no crystal air gaps to adjust, no thermostats to bother with, etc. The only adjustment that may have to be made is the one that allows for "Zeroing-in" of the crystal frequency. If the crystal frequency is off a few cycles, it can be brought back to zero deviation by the slight adjustment of the variable capacitors marked "Freq. 1" and "Freq. 2" on the M5422 oscillator unit. These controls will allow about a plus or minus 30 cycle change at 1600 Kc and a plus or minus 10 cycles change at 540 Kc .
If the crystal adjustments are being made at a new station there will be no accurate way of setting the frequency to exactly "zero". The station could go on the air for tests, with the assurance that the operating frequency will be sonewhere within the range of the "Frequency Adjust" controls, as mentioned above.

The external frequency monitoring service can advise the frequency deviation, the engineer at the station can adjust one crystal to "zero". After the transmitter crystal has been so adjusted, it would be well to adjust the station's frequency monitor to coincide with the transmitter frequency. (The frequency monitor should have been heating for a sufficient length of time to stabilize).
Once the station's frequency monitor has been calibrated and is working satisfactorily, the station engineer has a reliable suurce of frequency measurement and can, from this point, $\mathcal{E} \circ$ ahead and adjust the second crystal, using the station frequency monitor as a standard.
For the station that has been on the air and has a calibrated frequency monitor in operation, the station engineer can simply make the transmitter crystal adjustment while observing the results on the frequency monitor.

6.2 TRANSIITNER CLEANLINESS

Keeping the transmitting equipment clean cannot be over-emphasized. Dirt, grime, dust, cause more outages than nearly any other cause.
Air filters should be replaced whenever necessary. The length of use depends, of course, on the individual transmitter location.

Replace filters when inspection shows they ure getting dirty anc are not doing the job intended.

5.3 RELAY MATMTENATCE

Kelay maintenance should be a resular operation. Keep relays clean, free from dust and dirt. Contacts should be checked for pitting. The use of a burnishing tool to keep contacts in shape is preferred. If such a tool is not available, a very light grade of sandpaper can be used, but used sparingly.
5.4 CARE CF FRINTED WIRIIGG BO 1 RDS

Frinted wiring boards are used in the BC-lG Transmitter in four separate locations, in the M5422 oscillator unit, in the 807 RF driver board, in the audio input/audio driver board and the feedback ladder board. For protection, these boards have been treated with a silicon varnish. Use a soft bristled brush to remove dust, nothing else.
6.5 CABINTT VENTILATING FAN

The transmitter makes use of a top-of-cabinet ventilating fan, to provide adecuate ventilation. Keep the fan blades clean, free from dust and dirt. Clean blades will remove more air. The fen requires no lubrication.

6.6 TEST EOUIPMENT

A broadcast station should own, as a minimum requirement, a good volt-ohmmeter and an oscilloscope. Annually all broadcasters must take Froof-of-Ferformance measurenents, for top flight performance monthly tests are recommended. The Gates $\bar{j} A-131$ Froof of Ferformance set is available, the use of which will help the operating personnel keep the transmitter working at its very best all of the time.
6.7 D.C. RESINTATCE MEAGUKEMENTS MODULATION TRENSFONAER Ar"-30469E GaTES :\#7480084000

These measurements were made using a Model ${ }^{2} 260$ Simpson Voltohmmeter, an average value of several transformers.

Frimary, between Terminals irl and 42 --- 55 ohms. Frimary, between Terminals it and $\# 3--75$ ohms. Frimary, between Terminals it it and $; 13$ - - 40 ohms.

Secondary, between Terminals 774 and $155-89$ ohms.
Tertiary linding, between Terminals 6 \& Tertiary Winding, between Terminals 泙6 \& \#8 -- 5.4 chms. Tertiary Winding, between Terminals \ddagger \& $\$ 9--7.3$ chms.
6.8 SUTTLRY

A radio broadcast transmitter, regardless of its size cannot be fully described and/or all oi the operating problems that arise cannot be fully anticipated ard information given in any instruction book.

Information has been given that will cover most installations. There has been provided in the book schematics of all pertinent circuits of the Gates BC-IG.

In preparing this instruction book, it has beer recognized that the installation engineer undoubtodly is very familiar with Eeneral broadcast procedures, and that many of the things referred to in this book are well known to him. It is suggested, however, that the installation engineer and personnel who will operate the transmitter not only familiarize themselves with the contents of this instruction book, but more important, with the transmitting equipment itself.

The Gates Radio Company, in designing the BC-lG broadcast transmitter, has done everything possible to provide the finest equipmert available today. It is not possible to supply the operating location, the actual ground systen, and in some instances, the associated equipment that will be used with this transmitter.
Beçuse of this, certain things must be left for the user of the equipment to do, and cortain problems solved. In every instance tho use of good orgineering practice and sound fundamental reasoning will develop the desired high quality results expected and made possible by this equipment.

It is repeated again, make a good instailation, eliminate hasty methods; in doing so you will help to minimize future off-the-air time. Also, remember that cleanliness and "preventive maintenance" for this transmitter will pay large dividends in uninterrupted service. Take some time each week for cleaning the inside and outside of the transmitter and associated equipment, testing tubes, checking all connections and doing the other things that might be classed under the general heading of "freventive maintenance". Some station engineers rotate the large power tubes every few months, including spares on hand. Accurate records of actual tube hours may be kept, if deemed necessary. In case a problem might arise in which the Gates Kadio Company could help, do not hesitate to call. Co-operation with users of Gates equipment, to help in every way to obtain maximum service and satisfaction, is the aim of the Gates Radio Company.

PARTS LIST

Symbol No.	Gates Part No.			Description
C1, C2	520	0116	000	Cap., Variable, 3.9-50 mmfd.
C3	502	0147	000	Cap., 24 mmfd., 500 (w) V.
C4	502	0094	000	Cap., $800 \mathrm{mmfd}, 500$ (W) V.
C5,C7, C8	516	0082	000	Cap., . $01 \mathrm{mfd}$. , 1000 V .
C6,Cl1	502	0163	000	Cap., $100 \mathrm{mmfd}$. , 500 (W) V.
C9	520	0119	000	Cap., Variable, 6.7-140 mmfd.
C10	502	0163	000	Cap., 100 mmfd., 500 (W) V.
C12	500	0815	000	Cap., $39 \mathrm{mmfd.}$,500 (W) V.
J1	610	0047	000	Receptacle
L1, L2	494	0033	000	R.F. Choke, 2.5 mh
L3	492	0019	000	Variable Coil, 105-200 uh
R1, R6	540	0764	000	Res., 100 K ohm, 2 W., 10%
R2	540	0740	000	Res., 1000 ohm, 2 W., 10%
R3,R9,				
R10,R11	540	0757	000	Res., 27 K ohm, 2 W., 10%
R4	540	0754	000	Res., 15 K ohm, $2 \mathrm{~W} ., 10 \%$
R5,R8	540	0752	000	Res., 10 K ohm, $2 \mathrm{W.} 10 \$, \hline R7 & 540 & 0730 & 000 & Res., 150 ohm, 2 W., 10%
R14	540	0284	000	Res., 10 ohm, 1 W., 5\%
S1	913	0316	001	Rotary Switch
V1,V2	370	0123	000	Tube, 12BY7A
XV1, XV2	404	0059	000	Socket, Noval
XY1, XY2	404	0016	000	Socket, Crystal
Y1, Y2				Vacuum Crystal (Det by Freq.)

FEEDBACK LADDDR ASGEMELY

1 K: DUTTMY ANT LINTVA

R1, R2, R3,

R4, R5, R6

5460216000

RF DRIVER FRIFTED IIRING ASSMBLY
$\mathrm{Cl}, \mathrm{C2}, \mathrm{C3}$,
C4, C5, C6,
C7, C8
LI
L2, L3
R2
R3, R4, R5
R6, R8-
R7, R9
R10
Rll, Rl2
V1, V2
XV1, XV2

5160082000
4940033000
9130520001
5420425000
5400271000
5400724000
5400724000
5420147000
5400291000
3740030000
4040012000

Cap., . 01 mfd., l000(I)V.
Choke, 2.5 mh
Parasitic Suppressor
Res., 35 K ohm, 20W.
Res., 3 ohm, lJ., 5\%
Res., 47 ohm, 2\%., 10% (Used on L2 and L3)
Res., 47 ohm, 2 i., 10%
Res., 15 K ohm, 20W.
Res., 20 ohm, lW., 5\%
Tube, 807
Socket

AUDIO INPUT AND DRIVER PRITIED VIRING ASSY.

| C1, C2 | 5000035000 |
| :--- | :--- | :--- |
| C3 | 5060027000 |
| C4,C5 | 5080063000 |
| C6,C7 | 5080070000 |
| C8 | 5160082000 |
| C9,C10 | 5000024000 |
| L1, I2 | 9130531001 |
| R1, R2 | 5400758000 |
| R3 | 5520545000 |
| R4 | 5400763000 |

Cap., . 00027 mfd.
Cap., . $47 \mathrm{mfa} ., 40 \mathrm{CV}$.
Cap., . 022 mfd, 600V. Cap., . $33 \mathrm{mfd.}$,600 V . Cap., . 01 mfa., $1000(1) \mathrm{V}$. Cap., . 0001 mf (i., 500V.

Parasitic Suppressor
Res., 33K ohm, 2i., 10\%
Control, 1000 ohm, wirewound , Raper, Style 2 Shaft
Res., 82 K ohm, $2 \%, 10 \%$

Symbol Mo.	Gates Stock To.			Description
F5, K9	574	0066	000	Relay, Low Voltage, lockout \& P.A. Auxiliary DPDI, 230V. AC Coil
no	572	0081	000	Relay, Iiod. O.L.
K8	576	0019	000	Relay, Time Delay (use w/Sil. Rect.)
K8	576	0022	000	$\begin{aligned} & \text { Relay, Time Delay (use w/Iub } \\ & \text { Rect.) } \end{aligned}$
L1, L2	476	0009	000	Choke, Bias x Isolation, 10 hy
L3	913	0518	001	Coil, 807 R.F. 2nd IPA
L4	926	5284	001	Assembly Flate Coil, 807 Tank
(L48, L49)	913	0910	001	Pa Parasitic juppressor Assy.
P1	612	0099	000	Plug
RI, R2	552	0255	000	Potentiometer, liod. Bias, 10K olms, 4\%.
R3	542	0083	000	Res., Bias, 2500 ohms, 10\%
R4	542	0180	000	Res., Aud. Dropping, 1000 ohn, 25 H .
R5	542	0194	000	Res., Osc. Dropping, 20K ohm, 25:
R6	542	0089	000	Kes., for Kל́ Heater, 6000 ohm, 10N.
R27,R28	550	0067	. 000	Potentiometer, AC Volt \& PA Volt. Rmt. Ind. $10 \mathrm{~K} \quad \mathrm{hm}, 2 \%$.
R9,R10,R38	552	0008	000	Res., $A d j . K 4, K 6$ \& K7 shunt, $20 \mathrm{ohm}, 10 \mathrm{~W}$.
R11	542	0088	000	Res., Series Bias, 5000 ohm, 10\%.
R12	552	0109	000	Res., Adj. 807 Bias, 40K ohm, 50.J.
R13	552	0104	000	Res., Adj. Mod. Bias Jet, 12K ohm, 50\%.
R14	550	0238	000	Potentiometer, Aud. Fad Shunt, 250 oins.
R15,R16	542	0219	000	Re.., red Grid, 5000 ohm, 50W.
$\begin{aligned} & \text { R17, R18, R19 } \\ & \text { R20,R21,R22, } \end{aligned}$	540	0271	000	Kes., 3 ohm, 1\%., 5\%
R23, 1224, H 25	544	1367	000	Res., 500K ohm, 2.J., 1%
R29	542	0056	000	Res., 20 ohm, 10w.
R30	542	0057	000	Res., 25 ohm, 10%
R31	550	0055	000	Fotentiometer, PA Current, $100 \mathrm{ohm}, 2 \mathrm{H}$.
R32,R33	542	0053	000	Res., 7.5 ohm, 10\%.
1334	552	0088	000	Res., Adj. liod. Hon. Adjust 150 ohin, 50\%.
R35,R36,R37	540	0066	000	Res., 5100 ohm, $1 / 2$., 5\%
S1	602	0005	000	Switch, Lever, liod. Selector
S2	600	0187	000	Switch, Rotary, Multimeter
T1	472	0453	000	Transformer, Bias Power
T2	478	0142	000	Transformer, Audio Input
T3	472	0452	000	Transformer, Hulti-Filament
TB1, TBlA, TB2	614	0123	000	Terminal Board (Qty. 5 used)
			Vorldradionis	BC-IG

*913 5958002 - 280 V. BIAS SUPPLY BOARD

3840094000
5400214000
5160054000
*Alternate for
91359580023840107000

Diode, 400V. PIV, 500MA (qty.10) Res., 1 megohm $1 / 2 W_{0}, 10 \%$ (qty. 10)

Cap., Disc. $1 \mathrm{KV}, .001,10 \%$ (qty. 10)

280V. Bias Silicon Rectifier
**926 7689002 - 625 V. INPEMEDiape SUPPLy

***Alternate
for
93796070023840109000
2800V. I/2Wave iq. V. Silicon Rectifier

BCIG, M6245
1000/250 WATT
BROADCAST TRANSMITTER

TYFICAL VCLTAGE CHART

Gates bclg, 1000/250 WATT BROADCAST TRANSMITTER

These measuremerits made with a Simpson \#260 volt-ohmaeter, a 20,000 ohm per volt DC and 1000 ohr per volt AC instmuent.

DC voltades measured to GROUND.
First Audio Input (V1, V2, 807's)

Cathode Follower (V3, V4, 807's)
Flate Volts 580 DC)
Screen Volts 195 DC) Same for both
Cathode Volts, Neg. 70 DC
Filament Volts6.6.6AC
Modulators (V42, V43, 833A's)
1000 W . powers.

Plate Volts 2600 DC 1300 DC
Flate Current, Static 40 MA \in. ... 25 MA ea.
Bias Volts
65/70 DC 35 DC
Filament Volts $10 \mathrm{AC} . . .$. . 10 AC
Crystal Oscillator (V1, l2BY7A)
Plate Volts 100 DC)
Screen Volts 50 DC) Same for both Cathode Volts 8 DC) powers.
Filaments Volts 6.3 AC)
First IPA (V2, l2BY7A, a part of Osc. Unit)

Second IPA (V1, V2, Farallel 807's)
Plate Volts 625 DC)
Screen Volts
Grid Volts, Neg.
400 DC) Same for both
Filament Volts
60/65 DC) powers
Fllaient Volts 6.3 AC)
BC-IG, 1000/250 W.
8137774001
Sheet 1 of 2.

TYPICAL VOLTAGE CHART

BCIG TRANSMITNER

Fower Anplifier (V40, V4l, 833A's) 1000 W. 250%.
Ilate Volts 2500 DC 1250 DC
Flate Current 500/550 Más 260/280 MA
Bias Volts, Neg. 360 DC
.... Neg. 330 DCFilament Volts10 AC10 AC
Bias Supply
Output of Supply measured on
hot side of resistor, Rl2 Neg. 280 V.$)$ Same for bothVariable tap on reaistor, Rl2.. Neg. 45 V.$)$ powers.
Intermediate Plate Supply
Output of supply measured at
I46, terminal 600/625 V. DC) Same for both powers.
High Voltage Flate Supply $1000 \mathrm{~W} . \quad 250 \mathrm{~W}$.Output of supply measured attop end of resistor, R42 2600 DC 1300 DC

NOTE: Voltages and eurrents are approximate, and will vary slightly with line voltage and other local conditions.

Top Views of S1
WIRING DIAGRAM
EXTERNAL CONNECTIONS, MOD. SEL. SW. FIRST TWO TRANS. ON CDO94398 中 BCIG IKW AM XMTR M.6245
F nu

WIRING DIAGRAM,
REMOTE PLATE VOLTAGE CONTROL, M6245F $1000 / 250 \mathrm{~W}$. TRAINS. SDCIOC REMOTE CONTROL $10-10-62$

Worldradiohistory

BELG, M6245. $1000 / 250 \mathrm{We}$

DWG. NO. 8137963001

BClG, M6245, 1000/250 W.
DATE 10-12-62 RUNNING SHEET-PANEL \& SHELF

Na.	EQUIPMENT	TERMINAL	WIRE	TYPE	EQUIPMENT	TERMNAL
29	Tie Pt 1	4	14	Blue	Tie Pt 3	2
30	Aud	12	14	Blue	Tie Pt 3	3
31	Aud	13	14	Blue	Ie Pt 3	4
32	TB1A	7	16	Brown	K9	D
33	TBla	6	16	Brown	K9	C
34	K9	1	16	Brown	TB1	22
35	K9	1	16	Brown	K3	1
* 36	K1	c	16	Brawn.	Kl	2
37	K2	G	16	Brown	K3	2
38	K2	2	16	Brown	K3	E
39	TBIA	8	16	Brown	K2	F
40	Kl	A	16	Brown	TB1	13
41	TB2	1	16	Brown	TB1	14
42	TB2	2	16	Brown	K1	$1(\operatorname{cosid})$
43	TB1	15	16	Brown	K 1	1(coil)
44	TB1	16	16	Brown	K1	$2(\operatorname{cosin})$
45	K2	D	16	Brown	XP3	2
46	TBI	17	16.	Brawn	XF3	2
-47	K5	A (arm)	16	Brown	TB1.	19
48	K5	$B(N . C$.	16	Brown	XK8	$5(\mathrm{~N}, \mathrm{O}, 2)$
49	TBI	24	16	Brown	XK8	7
50	XK8	7(N.O.)	16	Brown	XF4	2
51	TB1	21	16	Brown	XF4	1
52	K9	1	16	Brown	TB1	27
53	TB1	23	16	Brown	K7	A
54	TB1A	5	16	Brown	TB2	24
55	$K 2$	B (NeC.)	16	Brown	K6	A(Nece)
56	TB2	3	16	Brown	K6	B

BElG. M6245, 1000/250 We

[^0]BClG, M6245, 1000/250 W.

[^1]BElG, M6245, $1000 / 250 \mathrm{~W}$.

*Not in "Panel \& Shelf Cable.

SHEET 5 OF 7 GATES RADIO COMPANY QUINCY, ILLINOIS

DUG. NO. 8137963001

DATE 10-12-62 RUNNING SHEET - PANEL \& SHELF ${ }^{\text {a }}$ (CABLE NO. 9525801001					
WIRE Na	FROM		WIRE SIZE AND TYPE	TO	
	EQUIPMENT	TERMINAL		EQUIPMENT	TERMNAL
141	R 33	2	16 Brown	K6	2
142	Gnd	Nr Tl	16 Brown	K6	1
143	R9	1	16 Brown	K6	1
144	R 9	2	16 Brown	K6	2
145	TB2	21	16 Brown	R32	2
* 146	El (hat		16 Brown	R29	1
147	K4	2	16 Brown	Gnd	Nr T 2
148	Bl, R2	2	16 Brown	R3	2
149	TBla	11	16 Brown	TB1	28
150	K9	B	16 Brown	K3	G
151	TBIA	13	16 Brown	Gnd	Nr T2
152	R12	2	16 Brown	Gnd	Nr Tl
153	R32	1	16 Brown	Sl	1
154	TB2	29	16 Brown	Gnd	Nr Tl
* 155	F.B.Laddey F.B.Ladतer	5	16 Brown	Gnd	Nr Tl
* 156	F.B.Ladder	4	16 Brown	Aud	3
* 157		3	16 Brown	Aud	2
158					
159	TB2	16	16 Brown	K3	G
$\begin{array}{r} 160 \\ 160 \end{array}$	f TB2	15	Red	ATI	6
	(TB2	14	(Shielded pair) Black	AT1	1
161	AT1	2	Single Shield	K3	M
162	814	2	Single Shield	K3	N
* 163	$\int \mathrm{ATl}$	3	Red	T2	6
	(amd	4	(Shielded pair) Black	12	1
164	K3	K	16 Brown	R13	1
165	K 3	I	16 Brown	R13	2
166 TBlA		12	RG58U	R34	2
SHEET 6 OF 7 GATES RADIO COMPANY QUINCY, ILLINOIS				DWG. NO. 8137963001	

BClG, M6245, 1000/250 W.

RUNNING SHEET (SILICON) BC-1G, M-6245 1000/250W.

RUNNING WHEAT (UILICON) BC-IG, M-6245 1000/250N.

SHEET OOF 4
GATES RADIO COMPANY
DUG. NO. 8137962001
*Not in Main Cabinet Cable.

*Not in Main Cabinet Cable 。

K1, (permacy Contion)
FRONT OF REARY

 M6245

$$
813-7629-001
$$

[^0]: *Not in "Panel \& Shelf" Cable.
 SHEET $30 F 7$ GATES RADIO COMPANY

[^1]:
 DWG. NO. 8137963001

